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Foreword

With great pleasure, I accepted the invitation extended to me to write these few lines
of Foreword. I accepted for at least two reasons. The first is that the request came
to me from two colleagues for whom I have always had the greatest regard, starting
from the time when I first knew and appreciated them as students and as young
researchers.

The second reason is that the text by Gabbrielli and Martini is very near to the
book that I would have liked to have written but, for various reasons, never have. In
particular, the approach adopted in this book is the one which I myself have followed
when organising the various courses on programming languages I have taught for
almost thirty years at different levels under various titles.

The approach, summarised in 2 words, is that of introducing the general concepts
(either using linguistic mechanisms or the implementation structures corresponding
to them) in a manner that is independent of any specific language; once this is done,
“real languages” are introduced. This is the only approach that allows one to re-
veal similarities between apparently quite different languages (and also between
paradigms). At the same time, it makes the task of learning different languages eas-
ier. In my experience as a lecturer, ex-students recall the principles learned in the
course even after many years; they still appreciate the approach which allowed them
to adapt to technological developments without too much difficulty.

The book by Gabbrielli and Martini has, as central reference point, an under-
graduate course in Computer Science. For this reason, it does not have complex
prerequisites and tackles the subject by finding a perfect balance between rigour
and simplicity. Particularly appreciated and successful is the force with which they
illuminate the connections with other important “areas of theory” (such as formal
languages, computability, semantics) which the book rightly includes (a further jus-
tification for their inclusion being that these topics are no longer taught in many
degree courses).

Giorgio Levi, Pisa.
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Introduction

Facilius per partes in cognitionem totius adducimur
(Seneca, Epist. 89,1)

Learning a programming language, for most students in computing, is akin to a
rite of passage. It is an important transition, soon recognised as insufficient. Among
the tools of the trade, there are many languages, so an important skill for the good
computer professional is to know how to move from one language to another (and
how to learn new ones) with naturalness and speed.

This competence is not obtained by learning many different languages from
scratch. Programming languages, like natural languages, have their similarities,
analogies and they inherit characteristics from each other. If it is impossible to learn
tens of languages well, it is possible completely to understand the mechanisms that
inspire and guide the design and implementation of hundreds of different languages.
This knowledge of the “parts” facilitates the understanding of the “whole” of a new
language and therefore underpins a fundamental methodological competence in the
life of the computing professional, at least as far as it allows them to anticipate
innovations and to outlive technologies that grow obsolete.

It is for these reasons that a course on the general aspects of programming lan-
guages is, throughout the world, a key step at advanced level for a computing pro-
fessional (at university or in a profession). The fundamental competences which a
computing professional must possess about programming languages are of at least
four types:

• Some aspects that are properly considered linguistic.
• Knowledge of how language constructs can be implemented and the relative cost

of these implementations.
• Knowledge of those architectural aspects influencing implementation.
• Compilation techniques.

It is rare that a single course deals with all four of these aspects. In particular, de-
scription of architectural aspects and compilation techniques are both topics that are
sufficiently complex and elaborate to merit independent courses. The remaining 2
aspects are primarily the content of a general course on programming languages and
comprise the principle subject of this book.
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x Introduction

The literature is rich in texts dealing with these subjects. Generations of students
have used them in their learning. All these texts, though, have in mind an advanced
reader who already understands many different programming languages, who al-
ready has a more than superficial competence with fundamental mechanisms and
who is not afraid when confronted by a fragment of code written in an unknown
language (because they are able understand it by analogy using the differences be-
tween it and what they already know). These are texts, then, that we can say are
on “comparative languages”. These are long, deep and stimulating, but they are too
long and deep (read: difficult) for the student who begins their career with a single
programming language (or at most 2) and who still has to learn the basic concepts
in detail.

This text aims to fill this gap. Experts will see that the content in large measure
reflects classical themes. But these very themes are treated in an elementary fashion,
assuming only the indispensable minimum of prerequisites. The book also avoids
being a catalogue of the differences between different existing programming lan-
guages. The ideal (or reference) reader is one who knows one language (well) (for
example, Pascal, C, C++ or Java). It is better if they have had some exposure to
another language or paradigm. References to languages that are now obsolete have
also been avoided and code examples are rarely written in a specific programming
language. The text freely uses a sort of pseudo-language (whose concrete syntax
was inspired by C and Java) and seeks, in this way, to describe the most relevant
aspects of different languages.

Every so often, the boxes at the top of pages contain development of material or
a note on a basic concept or something specific about common languages (C, C++,
Java; ML and LISP for functional languages; PROLOG for logic-programming lan-
guages). The material in boxes can almost always be omitted on a first reading.

Every chapter contains a short sequence of exercises which should be understood
as a way of demonstrating an understanding of the material. There are no truly
difficult exercises or any that require more than 10 minutes for their solution.

Chapter 3 (Foundations) deals with themes that are not usually encountered in
a book on programming languages. It is, however, natural, while discussing static
semantics and comparing languages, to ask what are the limits to syntactic analysis
of programs and whether what can be done in one language can also be done in an-
other. Rather than send the reader to another text, given the cultural and pragmatic
relevance of these questions, we decided to answer these questions directly. In an
informal but rigorous manner, in the space of a few pages, we present the undecid-
ability of the halting problem. We also show that all general purpose programming
languages express the same class of functions. This helps students who do not al-
ways have complete courses on foundations understand the principal results on the
limitations on computations.

As well as principles, the text also introduces the three principal programming
paradigms: object oriented (a theme that is already obligatory in computing), func-
tional and logic programming. The need to write an introductory text is the reason
for the exclusion of important themes, such as concurrency and scripting languages,
whose mastery represent important skills.



Introduction xi

Use of the text The text is first of all a university textbook, even if there is an
almost total absence of mathematical and formal prerequisites (this lack makes the
book suitable for personal study by the professional who wishes to deepen their
knowledge of the mechanisms that lie behind the languages they use). The choice
of themes and the presentation style were largely influenced by the experience of
teaching the content as part of the degree course in Computer Science in the Faculty
of Mathematical, Physical and Natural Sciences at the University of Bologna.

In our experience, a course on programming languages for 6 credits in the second
year of a 3-year degree course can cover most of the fundamental aspects covered
in the first ten chapters (say 4/5 of them) and, perhaps, including a brief outline of
one of the remaining paradigms. With increase in student maturity, the quantity of
material that can be presented will clearly increase. In a master’s degree course, the
material could also be completed by a treatment of compilation.
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the grace to write the Foreword. Both of us owe to him our first understanding of
the mechanisms that underpin programming languages. His teaching appears in this
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Chapter 1
Abstract Machines

Abstraction mechanisms play a crucial role in computing because they allow us to
manage the complexity inherent in most computational systems by isolating the
important aspects in a specific context. In the field of programming languages,
these mechanisms are fundamental, both from a theoretical viewpoint (many impor-
tant concepts can be appropriately formalised using abstractions) and in the practi-
cal sense, because programming languages today use common abstraction-creating
constructs.

One of the most general concepts employing abstraction is the abstract machine.
In this chapter, we will see how this concept is closely related to the programming
languages. We will also see how, without requiring us to go into the specific details
of any particular implementation, it allows us to describe what an implementation
of a programming language is. To do this, we will describe in general terms what
is meant by the interpreter and the compiler for a language. Finally, will see how
abstract machines can be structured in hierarchies that describe and implement com-
plex software systems.

1.1 The Concepts of Abstract Machine and of Interpreter

In the context of this book, the term “machine” refers clearly to a computing ma-
chine. As we know, an electronic, digital computer is a physical machine that ex-
ecutes algorithms which are suitably formalised so that the machine can “under-
stand” them. Intuitively, an abstract machine is nothing more than an abstraction of
the concept of a physical computer.

For actual execution, algorithms must be appropriately formalised using the con-
structs provided by a programming language. In other words, the algorithms we
want to execute must be represented using the instructions of a programming lan-
guage, L . This language will be formally defined in terms of a specific syntax and
a precise semantics—see Chap. 2. For the time being, the nature of L is of no con-
cern to us. Here, it is sufficient to know that the syntax of L allows us to use a given
finite set of constructs, called instructions, to construct programs. A program in L
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2 1 Abstract Machines

Fig. 1.1 The structure of an abstract machine

(or program written in L ) therefore is nothing more than a finite set of instructions
of L . With these preliminary remarks, we now present a definition that is central to
this chapter.

Definition 1.1 (Abstract Machine) Assume that we are given a programming lan-
guage, L . An abstract machine for L , denoted by ML , is any set of data structures
and algorithms which can perform the storage and execution of programs written
in L .

When we choose not to specify the language, L , we will simply talk of the ab-
stract machine, M , omitting the subscript. We will soon see some example abstract
machines and how they can actually be implemented. For the time being, let us stop
and consider the structure of an abstract machine. As depicted in Fig. 1.1, a generic
abstract machine ML is composed of a store and an interpreter. The store serves
to store data and programs while the interpreter is the component that executes the
instructions contained in programs. We will see this more clearly in the next sec-
tion.

1.1.1 The Interpreter

Clearly the interpreter must perform the operations that are specific to the language
it is interpreting, L . However, even given the diversity of languages, it is possible
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to discern types of operation and an “execution method” common to all interpreters.
The type of operation executed by the interpreter and associated data structures, fall
into the following categories:

1. Operations for processing primitive data;
2. Operations and data structures for controlling the sequence of execution of oper-

ations;
3. Operations and data structures for controlling data transfers;
4. Operations and data structures for memory management.

We consider these four points in detail.
1. The need for operations such as those in point one is clear. A machine, even

an abstract one, runs by executing algorithms, so it must have operations for manip-
ulating primitive data items. These items can be directly represented by a machine.
For example, for physical abstract machines, as well as for the abstract machines
used by many programming languages, numbers (integer or real) are almost always
primitive data. The machine directly implements the various operations required to
perform arithmetic (addition, multiplication, etc.). These arithmetic operations are
therefore primitive operations as far as the abstract machine is concerned1.

2. Operations and structures for “sequence control” allow to control the execu-
tion flow of instructions in a program. The normal sequential execution of a pro-
gram might have to be modified when some conditions are satisfied. The interpreter
therefore makes use of data structures (for example to hold the address of the next
instruction to execute) which are manipulated by specific operations that are differ-
ent from those used for data manipulation (for example, operations to update the
address of the next instruction to execute).

3. Operations that control data transfers are included in order to control how
operands and data is to be transferred from memory to the interpreter and vice
versa. These operations deal with the different store addressing modes and the or-
der in which operands are to be retrieved from store. In some cases, auxiliary data
structures might be necessary to handle data transfers. For example, some types of
machine use stacks (implemented either in hardware or software) for this purpose.

4. Finally, there is memory management. This concerns the operations used to
allocate data and programs in memory. In the case of abstract machines that are
similar to hardware machines, storage management is relatively simple. In the limit
case of a physical register-based machine that is not multiprogrammed, a program
and its associated data could be allocated in a zone of memory at the start of exe-
cution and remain there until the end, without much real need for memory manage-
ment. Abstract machines for common programming languages, instead, as will be
seen, use more sophisticated memory management techniques. In fact, some con-
structs in these languages either directly or indirectly cause memory to be allocated
or deallocated. Correct implementation of these operations requires suitable data

1It should, however, be noted that there exist programming languages, for example, some declara-
tive languages, in which numeric values and their associated operations are not primitive.
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Fig. 1.2 The execution cycle of a generic interpreter

structures (for example, stacks) and dynamic operations (which are, therefore, exe-
cuted at runtime).

The interpreter’s execution cycle, which is substantially the same for all inter-
preters, is shown in Fig. 1.2. It is organised in terms of the following steps. First,
it fetches the next instruction to execute from memory. The instruction is then de-
coded to determine the operation to be performed as well as its operands. As many
operands as required by the instruction are fetched from memory using the method
described above. After this, the instruction, which must be one of the machine’s
primitives, is executed. Once execution of the operation has completed, any results
are stored. Then, unless the instruction just executed is a halt instruction, execution
passes to the next instruction in sequence and the cycle repeats.

Now that we have seen the interpreter, we can define the language it interprets as
follows:

Definition 1.2 (Machine language) Given an abstract machine, ML , the language
L “understood” by ML ’s interpreter is called the machine language of ML .

Programs written in the machine language of ML will be stored in the abstract
machine’s storage structures so that they cannot be confused with other primitive
data on which the interpreter operates (it should be noted that from the interpreter’s
viewpoint, programs are also a kind of data). Given that the internal representation
of the programs executed by the machine ML is usually different from its external
representation, then we should strictly talk about two different languages. In any
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“Low-level” and “High-level” languages

A terminological note is useful. We will return to it in an historical perspective in
Chap. 13. In the field of programming languages, the terms “low level” and “high
level” are often used to refer, respectively, to distance from the human user and from
the machine.

Let us therefore call low-level, those languages whose abstract machines are
very close to, or coincide with, the physical machine. Starting at the end of the
1940s, these languages were used to program the first computers, but, they turned
out to be extremely awkward to use. Because the instructions in these languages
had to take into account the physical characteristics of the machine, matters that
were completely irrelevant to the algorithm had to be considered while writing pro-
grams, or in coding algorithms. It must be remembered that often when we speak
generically about “machine language”, we mean the language (a low-level one) of
a physical machine. A particular low-level language for a physical machine is its
assembly language, which is a symbolic version of the physical machine (that is,
which uses symbols such as ADD, MUL, etc., instead of their associated hardware
binary codes). Programs in assembly language are translated into machine code us-
ing a program called an assembler.

So-called high-level programming languages are, on the other hand, those
which support the use of constructs that use appropriate abstraction mechanisms
to ensure that they are independent of the physical characteristics of the computer.
High-level languages are therefore suited to expressing algorithms in ways that are
relatively easy for the human user to understand. Clearly, even the constructs of
a high-level language must correspond to instructions of the physical machine be-
cause it must be possible to execute programs.

case, in order not to complicate notation, for the time being we will not consider
such differences and therefore we will speak of just one machine language, L , for
machine ML .

1.1.2 An Example of an Abstract Machine: The Hardware
Machine

From what has been said so far, it should be clear that the concept of abstract ma-
chine can be used to describe a variety of different systems, ranging from physical
machines right up to the World Wide Web.

As a first example of an abstract machine, let us consider the concrete case of a
conventional physical machine such as that in Fig. 1.3. It is physically implemented
using logic circuits and electronic components. Let us call such a machine MHL H

and let L H be its machine language.
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Fig. 1.3 The structure of a conventional calculator

For this specific case, we can, using what we have already said about the compo-
nents of an abstract machine, identify the following parts.

Memory The storage component of a physical computer is composed of various
levels of memory. Secondary memory implemented using optical or magnetic com-
ponents; primary memory, organised as a linear sequence of cells, or words, of fixed
size (usually a multiple of 8 bits, for example 32 or 64 bits); cache and the registers
which are internal to the Central Processing Unit (CPU).

Physical memory, whether primary, cache or register file, permits the storage of
data and programs. As stated, this is done using the binary alphabet.

Data is divided into a few primitive “types”: usually, we have integer numbers,
so-called “real” numbers (in reality, a subset of the rationals), characters, and fixed-
length sequences of bits. Depending upon the type of data, different physical repre-
sentations, which use one or more memory words for each element of the type are
used. For example, the integers can be represented by 1s or 2s complement num-
bers contained in a single word, while reals have to be represented as floating point
numbers using one or two words depending on whether they are single or double
precision. Alphanumeric characters are also implemented as sequences of binary
numbers encoded in an appropriate representational code (for example, the ASCII
or UNI CODE formats).

We will not here go into the details of these representations since they will be
examined in more detail in Chap. 8. We must emphasise the fact that although all
data is represented by sequences of bits, at the hardware level we can distinguish
different categories, or more properly types, of primitive data that can be manip-
ulated directly by the operations provided by the hardware. For this reason, these
types are called predefined types.

The language of the physical machine The language, L H which the physical
machine executes is composed of relatively simple instructions. A typical instruc-
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tion with two operands, for example, requires one word of memory and has the
format:

OpCode Operand1 Operand2

where OpCode is a unique code which identifies one of the primitive operations
defined by the machine’s hardware, while Operand1 and Operand2 are values
which allow the operands to be located by referring to the storage structures of the
machine and their addressing modes. For example,

ADD R5, R0

might indicate the sum of the contents of registers R0 and R5, with the result being
stored in R5, while

ADD (R5), (R0)

might mean that the sum of the contents of the memory cells whose addresses are
contained in R0 and R5 is computed and the result stored in the cell whose address is
in R5. It should be noted that, in these examples, for reasons of clarity, we are using
symbolic codes such as ADD, R0, (R0). In the language under consideration, on the
other hand, we have binary numeric values (addresses are expressed in “absolute”
mode). From the viewpoint of internal representation, instructions are nothing more
than data stored in a particular format.

Like the instructions and data structures used in executing programs, the set of
possible instructions (with their associated operations and addressing modes) de-
pends on the particular physical machine. It is possible to discern classes of machine
with similar characteristics. For example, we can distinguish between conventional
CISC (Complex Instruction Set Computer) processors which have many machine
instructions (some of which are quite complex) and RISC (Reduced Instruction Set
Computers) architectures in which there tend to be fewer instructions which are, in
particular, simple enough to be executed in a few (possibly one) clock cycle and in
pipelined fashion.

Interpreter With the general structure of an abstract machine as a model, it is
possible to identify the following components of a physical (hardware) machine:

1. The operations for processing primitive data are the usual arithmetic and logi-
cal operations. They are implemented by the ALU (Arithmetic and Logic Unit).
Arithmetic operations on integers, and floating-point numbers, booleans are pro-
vided, as are shifts, tests, etc.

2. For the control of instruction sequence execution, there is the Program Counter
(PC) register, which contains the address of the next instruction to execute. It is
the main data structure of this component. Sequence-control operations specifi-
cally use this register and typically include the increment operation (which han-
dles the normal flow of control) and operations that modify the value stored in
the PC register (jumps).
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3. To handle data transfer, the CPU registers interfacing with main memory are
used. They are: the data address register (the MAR or Memory Address Register)
and the data register (MDR or Memory Data Register). There are, in addition,
operations that modify the contents of these registers and that implement various
addressing modes (direct, indirect, etc.). Finally, there are operations that access
and modify the CPU’s internal registers.

4. Memory processing depends fundamentally on the specific architecture. In the
simplest case of a register machine that is not multi-programmed, memory man-
agement is rudimentary. The program is loaded and immediately starts executing;
it remains in memory until it terminates. To increase computation speed, all mod-
ern architectures use more sophisticated memory management techniques. In the
first place, there are levels of memory intermediate between registers and main
memory (i.e., cache memory), whose management needs special data structures
and algorithms. Second, some form of multi-programming is almost always im-
plemented (the execution of a program can be suspended to give the CPU to
other programs, so as to optimise the management of resources). As a general
rule, these techniques (which are used by operating systems) usually require spe-
cialised hardware support to manage the presence of more than one program in
memory at any time (for example, dynamic address relocation).

All the techniques so far described need specific memory-management data
structures and operations to be provided by the hardware. In addition, there are
other types of machine that correspond to less conventional architectures. In the
case of a machine which uses a (hardware) stack instead of registers, there is the
stack data structure together with the push and pop operations.

The interpreter for the hardware machine is implemented as a set of physical
devices which comprise the Control Unit and which support execution of the so-
called fetch-decode-execute cycle. using the sequence control operations. This cycle
is analogous to that in the generic interpreter such as the one depicted in Fig. 1.2. It
consists of the following phases.

In the fetch phase, the next instruction to be executed is retrieved from mem-
ory. This is the instruction whose address is held in the PC register (the PC register
is automatically incremented after the instruction has been fetched). The instruc-
tion, which, it should be recalled, is formed of an operation code and perhaps some
operands, is then stored in a special register, called the instruction register.

In the decode phase, the instruction stored in the instruction register is decoded
using special logic circuits. This allows the correct interpretation of both the instruc-
tion’s operation code and the addressing modes of its operands. The operands are
then retrieved by data transfer operations using the address modes specified in the
instruction .

Finally, in the execute phase, the primitive hardware operation is actually exe-
cuted, for example using the circuits of the ALU if the operation is an arithmetic or
logical one. If there is a result, it is stored in the way specified by the addressing
mode and the operation code currently held in the instruction register. Storage is
performed by means of data-transfer operations. At this point, the instruction’s exe-
cution is complete and is followed by the next phase, in which the next instruction is
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fetched and the cycle continues (provided the instruction just executed is not a stop
instruction).

It should be noted that, even if only conceptually, the hardware machine distin-
guishes data from instructions. At the physical level, there is no distinction between
them, given that they are both represented internally in terms of bits. The distinction
mainly derives from the state of the CPU. In the fetch state, every word fetched from
memory is considered an instruction, while in the execute phase, it is considered to
be data. It should be observed that, finally, an accurate description of the operation
of the physical machine would require the introduction of other states in addition
to fetch, decode and execute. Our description only aims to show how the general
concept of an interpreter is instantiated by a physical machine.

1.2 Implementation of a Language

We have seen that an abstract machine, ML , is by definition a device which allows
the execution of programs written in L . An abstract machine therefore corresponds
uniquely to a language, its machine language. Conversely, given a programming
language, L , there are many (an infinite number) of abstract machines that have
L as their machine language. These machines differ from each other in the way in
which the interpreter is implemented and in the data structures that they use; they
all agree, though, on the language they interpret—L .

To implement a programming language L means implementing an abstract ma-
chine which has L as its machine language. Before seeing which implementation
techniques are used for current programming languages, we will first see what the
various theoretical possibilities for an abstract machine are.

1.2.1 Implementation of an Abstract Machine

Any implementation of an abstract machine, ML must sooner or later use some
kind of physical device (mechanical, electronic, biological, etc.) to execute the in-
structions of L . The use of such a device, nevertheless, can be explicit or implicit.
In fact, in addition to the “physical” implementation (in hardware) of ML ’s con-
structs, we can even think instead of an implementation (in software or firmware)
at levels intermediate between ML and the underlying physical device. We can
therefore reduce the various options for implementing an abstract machine to the
following three cases and to combinations of them:

• implementation in hardware;
• simulation using software;
• simulation (emulation) using firmware.
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Microprogramming

Microprogramming techniques were introduced in the 1960s with the aim of pro-
viding a whole range of different computers, ranging from the slowest and most
economical to those with the greatest speed and price, with the same instruction
set and, therefore, the same assembly language (the IBM 360 was the most famous
computer on which microprogramming was used). The machine language of micro-
programmed machines is at an extremely low level and consists of microinstruc-
tions which specify simple operations for the transfer of data between registers, to
and from main memory and perhaps also passage through the logic circuits that
implement arithmetic operations. Each instruction in the language which is to be
implemented (that is, in the machine language that the user of the machine sees) is
simulated using a specific set of microinstructions. These microinstructions, which
encode the operation, together with a particular set of microinstructions implement-
ing the interpretation cycle, constitute a microprogram which is stored in special
read-only memory (which requires special equipment to write). This microprogram
implements the interpreter for the (assembly) language common to different com-
puters, each of which has different hardware. The most sophisticated (and costly)
physical machines are built using more powerful hardware hence they can imple-
ment an instruction by using fewer simulation steps than the less costly models, so
they run at a greater speed.

Some terminology needs to be introduced: the term used for simulation using
micro-programming, is emulation; the level at which microprogramming occurs is
called firmware.

Let us, finally, observe that a microprogrammable machine constitutes a single,
simple example of a hierarchy composed of two abstract machines. At the higher
level, the assembly machine is constructed on top of what we have called the mi-
croprogrammed machine. The assembly language interpreter is implemented in the
language of the lower level (as microinstructions), which is, in its turn, interpreted
directly by the microprogrammed physical machine. We will discuss this situation
in more depth in Sect. 1.3.

Implementation in Hardware

The direct implementation of ML in hardware is always possible in principle and
is conceptually fairly simple. It is, in fact, a matter of using physical devices such as
memory, arithmetic and logic circuits, buses, etc., to implement a physical machine
whose machine language coincides with L . To do this, it is sufficient to imple-
ment in the hardware the data structures and algorithms constituting the abstract
machine.2

2Chapter 3 will tackle the question of why this can always be done for programming languages.
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The implementation of a machine ML in hardware has the advantage that the
execution of programs in L will be fast because they will be directly executed by
the hardware. This advantage, nevertheless, is compensated for by various disad-
vantages which predominate when L is a generic high-level language. Indeed, the
constructs of a high-level language, L , are relatively complicated and very far from
the elementary functions provided at the level of the electronic circuit. An imple-
mentation of ML requires, therefore, a more complicated design for the physical
machine that we want to implement. Moreover, in practice, such a machine, once
implemented, would be almost impossible to modify. In would not be possible to
implement on it any future modifications to L without incurring prohibitive costs.
For these reasons,in practice, when implementing ML , in hardware, only low-level
languages are used because their constructs are very close to the operations that can
be naturally defined using just physical devices. It is possible, though, to imple-
ment “dedicated” languages developed for special applications directly in hardware
where enormous execution speeds are necessary. This is the case, for example, for
some special languages used in real-time systems.

The fact remains that there are many cases in which the structure of a high-
level language’s abstract machine has influenced the implementation of a hardware
architecture, not in the sense of a direct implementation of the abstract machine in
hardware, but in the choice of primitive operations and data structures which permit
simpler and more efficient implementation of the high-level language’s interpreter.
This is the case, for example with the architecture of the B5500, a computer from
the 1960s which was influenced by the structure of the Algol language.

Simulation Using Software

The second possibility for implementing an abstract machine consists of implement-
ing the data structures and algorithms required by ML using programs written in
another language, L ′, which, we can assume, has already been implemented. Us-
ing language L ′’s machine, M ′

L ′ , we can, indeed, implement the machine ML

using appropriate programs written in L ′ which interpret the constructs of L by
simulating the functionality of ML .

In this case, we will have the greatest flexibility because we can easily change the
programs implementing the constructs of ML . We will nevertheless see a perfor-
mance that is lower than in the previous case because the implementation of ML

uses another abstract machine M ′
L ′ , which, in its turn, must be implemented in

hardware, software or firmware, adding an extra level of interpretation.

Emulation Using Firmware

Finally, the third possibility is intermediate between hardware and software imple-
mentation. It consists of simulation (in this case, it is also called emulation) of the
data structures and algorithms for ML in microcode (which we briefly introduced
in the box on page 10).
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Partial Functions

A function f : A → B is a correspondence between elements of A and elements of
B such that, for every element a of A, there exists one and only one element of B .
We will call it f (a).

A partial function, f : A → B , is also a correspondence between the two sets
A and B , but can be undefined for some elements of A. More formally: it is a
relation between A and B such that, for every a ∈ A, if there exists a corresponding
element b ∈ B , it is unique and is written f (a). The notion of partial function, for
us, is important because, in a natural fashion, programs define partial functions. For
example, the following program (written in a language with obvious syntax and
semantics and whose core will however be defined in Fig. 2.11):

read(x);
if (x == 1) then print(x);

else while (true) do skip
computes the partial function:

f (n) =
{

1 if x = 1
undefined otherwise

Conceptually, this solution is similar to simulation in software. In both cases,
ML is simulated using appropriate programs that are executed by a physical ma-
chine. Nevertheless, in the case of firmware emulation, these programs are micro-
programs instead of programs in a high-level language.

As we saw in the box, microprograms use a special, very low-level language
(with extremely simple primitive operations) which are stored in a special read-only
memory instead of in main memory, so they can be executed by the physical ma-
chine at high speed. For this reason, this implementation of an abstract machine
allows us to obtain an execution speed that is higher than that obtainable from soft-
ware simulation, even if it is not as fast as the equivalent hardware solution. On
the other hand, the flexibility of this solution is lower than that of software simula-
tion, since, while it is easy to modify a program written in a high-level language,
modification of microcode is relatively complicated and requires special hardware
to re-write the memory in which the microcode is stored. The situation is anyway
better than in the hardware implementation case, given that microprograms can be
modified.

Clearly, for this solution to be possible, the physical machine on which it is used
must be microprogrammable.

Summarising, the implementation of ML in hardware affords the greatest speed
but no flexibility. Implementation in software affords the highest flexibility and least
speed, while the one using firmware is intermediate between the two.
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1.2.2 Implementation: The Ideal Case

Let us consider a generic language, L , which we want to implement, or rather, for
which an abstract machine, ML is required. Assuming that we can exclude, for the
reasons just given, direct implementation in hardware of ML , we can assume that,
for our implementation of ML , we have available an abstract machine, M oL o,
which we will call the host machine, which is already implemented (we do not care
how) and which therefore allows us to use the constructs of its machine language
L o directly.

Intuitively, the implementation of L on the host machine M oL o takes place
using a “translation” from L to L o. Nevertheless, we can distinguish two con-
ceptually very different modes of implementation, depending on whether there is
an “implicit” translation (implemented by the simulation of ML ’s constructs by
programs written in L o) or an explicit translation from programs in L to cor-
responding programs in L o. We will now consider these two ways in their ideal
forms. We will call these ideal forms:

1. purely interpreted implementation, and
2. purely compiled implementation.

Notation

Below, as previously mentioned, we use the subscript L to indicate that a particular
construct (machine, interpreter, program, etc.) refers to language L . We will use
the superscript L to indicate that a program is written in language L . We will use
ProgL to denote the set of all possible programs that can be written in language
L , while D denotes the set of input and output data (and, for simplicity of treatment,
we make no distinction between the two).

A program written in L can be seen as a partial function (see the box):

PL : D → D

such that

PL (Input) = Output

if the execution of PL on input data Input terminates and produces Output as its
result. The function is not defined if the execution of PL on its input data, Input,
does not terminate.3

3It should be noted that there is no loss of generality in considering only one input datum, given
that it can stand for a set of data.
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Fig. 1.4 Purely interpreted implementation

Purely interpreted implementation In a purely interpreted implementation
(shown in Fig. 1.4), the interpreter for ML is implemented using a set of instruc-
tions in L o. That is, a program is implemented in L o which interprets all of L ’s
instructions; this is an interpreter. We will call it I L o

L .
Once such interpreter is implemented, executing a program PL (written in lan-

guage L ) on specified input data D ∈ D , we need only execute the program I L o
L

on machine M oL o, with PL and D as input data. More precisely, we can give
the following definition.

Definition 1.3 (Interpreter) An interpreter for language L , written in language
L o, is a program which implements a partial function:

I L o
L : (ProgL × D) → D such that I L o

L (PL , Input) = PL (Input) (1.1)

The fact that a program can be considered as input datum for another program
should not be surprising, given that, as already stated, a program is only a set of
instructions which, in the final analysis, are represented by a certain set of symbols
(and therefore by bit sequences).

In the purely interpreted implementation of L , therefore, programs in L are
not explicitly translated. There is only a “decoding” procedure. In order to execute
an instruction of L , the interpreter I L o

L uses a set of instructions in L o which
corresponds to an instruction in language L . Such decoding is not a real translation
because the code corresponding to an instruction of L is executed, not output, by
the interpreter.

It should be noted that we have deliberately not specified the nature of the ma-
chine M oL o. The language L o can therefore be a high-level language, a low-level
language or even one firmware.

Purely compiled implementation With purely compiled implementation, as
shown in Fig. 1.5, the implementation of L takes place by explicitly translating
programs written in L to programs written in L o. The translation is performed
by a special program called compiler; it is denoted by CL ,L o. In this case, the
language L is usually called the source language, while language L o is called
the object language. To execute a program PL (written in language L ) on input
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Fig. 1.5 Pure compiled implementation

data D, we must first execute CL ,L o and give it PL as input. This will produce
a compiled program PcL o as its output (written in L o). At this point, we can
execute PcL o on the machine M oL o supplying it with input data D to obtain the
desired result.

Definition 1.4 (Compiler) A compiler from L to L o is a program which imple-
ments a function:

CL ,L o : ProgL → ProgL o

such that, given a program PL , if

CL ,L o(P
L ) = PcL o, (1.2)

then, for every Input∈ D4:

PL (Input) = PcL o(Input) (1.3)

Note that, unlike pure interpretation, the translation phase described in (1.2)
(called compilation) is separate from the execution phase, which is, on the other
hand, handled by (1.3). Compilation indeed produces a program as output. This
program can be executed at any time we want. It should be noted that if M oL o is
the only machine available to us, and therefore if L o is the only language that we
can use, the compiler will also be a program written in L o. This is not necessary,
however, for the compiler could in fact be executed on another abstract machine
altogether and this, latter, machine could execute a different language, even though
it produces executable code for M oL o.

4It should be noted that, for simplicity, we assume that the data upon which programs operate are
the same for source and object languages. If were not the case, the data would also have to be
translated in an appropriate manner.
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Comparing the Two Techniques

Having presented the purely interpreted and purely compiled implementation tech-
niques, we will now discuss the advantages and disadvantages of these two ap-
proaches.

As far as the purely interpreted implementation is concerned, the main disadvan-
tage is its low efficiency. In fact, given that there is no translation phase, in order to
execute the program PL , the interpreter I L o

L must perform a decoding of L ’s
constructs while it executes. Hence, as part of the time required for the execution
of PL , it is also necessary to add in the time required to perform decoding. For
example, if the language L contains the iterative construct for and if this construct
is not present in language L o, to execute a command such as:

P1: for (I = 1, I<=n, I=I+1) C;

the interpreter I L o
L must decode this command at runtime and, in its place, execute

a series of operations implementing the loop. This might look something like the
following code fragment:

P2:
R1 = 1
R2 = n

L1: if R1 > R2 then goto L2
translation of C
...
R1 = R1 + 1
goto L1

L2: ...

It is important to repeat that, as shown in (1.1), the interpreter does not generate
code. The code shown immediately above is not explicitly produced by the inter-
preter but only describes the operations that the interpreter must execute at runtime
once it has decoded the for command.

It can also be seen that for every occurrence of the same command in a program
written in L , the interpreter must perform a separate decoding steep; this does
not improve performance. In our example, the command C inside the loop must be
decoded n times, clearly with consequent inefficiency.

As often happens, the disadvantages in terms of efficiency are compensated for
by advantages in terms of flexibility. Indeed, interpreting the constructs of the pro-
gram that we want to execute at runtime allows direct interaction with whatever is
running the program. This is particularly important, for example, because it makes
defining program debugging tools relatively easy. In general, moreover, the devel-
opment of an interpreter is simpler than the development of a compiler; for this
reason, interpretative solutions are preferred when it is necessary to implement a
new language within a short time. It should be noted, finally, that an interpretative
implementation allows a considerable reduction in memory usage, given that the



1.2 Implementation of a Language 17

program is stored only in its source version (that is, in the language L ) and no new
code is produced, even if this consideration is not particularly important today.

The advantages and disadvantages of the compilational and interpretative ap-
proaches to languages are dual to each other.

The translation of the source program, PL , to an object program, PcL o, oc-
curs separately from the latter’s execution. If we neglect the time taken for compi-
lation, therefore, the execution of PcL o will turn out to be more efficient than an
interpretive implementation because the former does not have the overhead of the
instruction decoding phase. In our first example, the program fragment P1 will be
translated into fragment P2 by the compiler. Later, when necessary, P2 will exe-
cuted without having to decode the for instruction again. Furthermore, unlike in
the case of an interpreter, decoding an instruction of language L is performed once
by the compiler, independent of the number of times this instruction occurs at run-
time. In our example, the command C is decoded and translated once only at compile
time and the code produced by this is executed n times at runtime. In Sect. 2.4, we
will describe the structure of a compiler, together with the optimisations that can be
applied to the code it produces.

One of the major disadvantages of the compilation approach is that it loses all
information about the structure of the source program. This loss makes runtime in-
teraction with the program more difficult. For example, when an error occurs at
runtime, it can be difficult to determine which source-program command caused it,
given that the command will have been compiled into a sequence of object-language
instructions. In such a case, it can be difficult, therefore, to implement debugging
tools; more generally, there is less flexibility than afforded by the interpretative ap-
proach.

1.2.3 Implementation: The Real Case and The Intermediate
Machine

Burly purely compiled and interpreted implementations can be considered as the
two extreme cases of what happens in practice when a programming language is
implemented. In fact, in real language implementations, both elements are almost
always present. As far as the interpreted implementation is concerned, we immedi-
ately observe that every “real” interpreter operates on an internal representation of
a program which is always different from the external one. The translation from the
external notation of L to its internal representation is performed using real trans-
lation (compilation, in our terminology) from L to an intermediate language. The
intermediate language is the one that is interpreted. Analogously, in every compiling
implementation, some particularly complex constructs are simulated. For example,
some instructions for input/output could be translated into the physical machine’s
language but would require a few hundred instructions, so it is preferable to trans-
late them into calls to some appropriate program (or directly to operating system
operations), which simulates at runtime (and therefore interprets) the high-level in-
structions.
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Can interpreter and compiler always be implemented?

At this point, the reader could ask if the implementation of an interpreter or a com-
piler will always be possible. Or rather, given the language, L , that we want to
implement, how can we be sure that it is possible to implement a particular program
I L o

L in language L o which performs the interpretation of all the constructs of L ?
How, furthermore, can we be sure that it is possible to translate programs of L into
programs in L o using a suitable program, CL ,L o?

The precise answer to this question requires notions from computability theory
which will be introduced in Chap. 3. For the time being, we can only answer that the
existence of the interpreter and compiler is guaranteed, provided that the language,
L o, that we are using for the implementation is sufficiently expressive with respect
to the language, L , that we want to implement. As we will see, every language
in common use, and therefore also our L o, have the same (maximum) expressive
power and this coincides with a particular abstract model of computation that we
will call Turing Machine. This means that every possible algorithm that can be for-
mulated can be implemented by a program written in L o. Given that the interpreter
for L is no more than a particular algorithm that can execute the instructions of
L , there is clearly no theoretical difficulty in implementing the interpreter I L o

L .
As far as the compiler is concerned, assuming that it, too, is to be written in L o,
the argument is similar. Given that L is no more expressive than L o, it must be
possible to translate programs in L into ones in L o in a way that preserves their
meaning. Furthermore, given that, by assumption, L o permits the implementation
of any algorithm, it will also permit the implementation of the particular compiling
program CL ,L o that implements the translation.

Fig. 1.6 Implementation: the real case with intermediate machine

The real situation for the implementation of a high-level language is therefore
that shown in Fig. 1.6. Let us assume, as above, that we have a language L that has
to be implemented and assume also that a host machine M oL o exists which has
already been constructed. Between the machine ML that we want to implement and
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the host machine, there exists a further level characterised by its own language, L i

and by its associated abstract machine, M iL i , which we will call, the intermediate
language and intermediate machine, respectively.

As shown in Fig. 1.6, we have both a compiler CL ,L i which translates L to L i

and an interpreter I L o
L i

which runs on the machine M oL o (which simulates the
machine M iL i ). In order to execute a generic program, PL , the program must
first be translated by the compiler into an intermediate language program, PiL i .
Next, this program is executed by the interpreter I L o

L i
. It should be noted that, in

the figure, we have written “interpreter or runtime support (RTS)” because it is not
always necessary to implement the entire interpreter I L o

L i
. In the case in which the

intermediate language and the host machine language are not too distant, it might be
enough to use the host machine’s interpreter, extended by suitable programs, which
are referred to as its runtime support, to simulate the intermediate machine.

Depending on the distance between the intermediate level and the source or host
level, we will have different types of implementation. Summarising this, we can
identify the following cases:

1. ML = M iL i : purely interpreted implementation.
2. ML �= M iL i �= M oL o.

(a) If the interpreter of the intermediate machine is substantially different from
the interpreter for M oL o, we will say that we have an implementation of an
interpretative type.

(b) If the interpreter of the intermediate machine is substantially the same as the
interpreter for M oL o (of which it extends some of its functionality), we will
say that we have a implementation of a compiled type.

3. M iL i = M oL o, we have a purely compiled implementation.

The first and last cases correspond to the limit cases already encountered in the
previous section. These are the cases in which the intermediate machines coincide,
respectively, with the machine for the language to be implemented and with the host
machine.

On the other hand, in the case in which the intermediate machine is present, we
have an interpreted type of implementation when the interpreter for the intermedi-
ate machine is substantially different from the interpreter for M oL o. In this case,
therefore, the interpreter I L o

L i
must be implemented using language L o. The dif-

ference between this solution and the purely interpreted one lies in the fact that not
all constructs of L need be simulated. For some constructs there are directly corre-
sponding ones in the host machine’s language, when they are translated from L to
the intermediate language L i, so no simulation is required. Moreover the distance
between M iL i and M oL o is such that the constructs for which this happens are
few in number and therefore the interpreter for the intermediate machine must have
many of its components simulated.

In the compiled implementation, on the other hand, the intermediate language is
closer to the host machine and the interpreter substantially shares it. In this case,
then, the intermediate machine, M iL i , will be implemented using the functional-
ity of M oL o, suitably extended to handle those source language constructs of L
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which, when also translated into the intermediate language L i, do not have an im-
mediate equivalent on the host machine. This is the case, for example, in the case
of some I/O operations that are, even when compiled, usually simulated by suitable
programs written in L o. The set of such programs, which extend the functional-
ity of the host machine and which simulate at runtime some of the functionality of
the language L i, and therefore also of the language L , constitute the so-called
run-time support for L .

As can be gathered from this discussion, the distinction between the interme-
diate cases is not clear. There exists a whole spectrum of implementation types
ranging from that in which everything is simulated to the case in which everything
is, instead, translated into the host machine language. What to simulate and what
to translate depends a great deal on the language in question and on the available
host machine. It is clear that, in principle, one would tend to interpret those lan-
guage constructs which are furthest from the host machine language and to compile
the rest. Furthermore, as usual, compiled solutions are preferred in cases where in-
creased execution efficiency of programs is desired, while the interpreted approach
will be increasingly preferred when greater flexibility is required.

It should also be noted that the intermediate machine, even if it is always present
in principle, is not often actually present. The exceptions are cases of languages
which have formally stated definitions of their intermediate machines, together with
their associated languages (which is principally done for portability reasons). The
compiled implementation of a language on a new hardware platform is a rather big
task requiring considerable effort. The interpretive implementation is less demand-
ing but does requires some effort and often poses efficiency problems. Often, it
is desired to implement a language on many different platforms, for example when
sending programs across a network so that they can be executed on remote machines
(as happens with so-called aplets). In this case, it is extremely convenient first to
compile the programs to an intermediate language and then implement (interpret)
the intermediate language on the various platforms. Clearly, the implementation of
the intermediate code is much easier than implementing the source code, given that
compilation has already been carried out. This solution to the portability of imple-
mentations was adopted for the first time on a large scale by the Pascal language,
which was defined together with an intermediate machine (with its own language,
P-code) which was designed specifically for this purpose. A similar solution was
used by the Java language, whose intermediate machine (called the JVM—Java Vir-
tual Machine) has as its machine language the so-called Java Byte Code. It is now
implemented on every type of computer.

As the last note, let us emphasise the fact, which should be clear from what we
have said so far, that one should not talk about an “interpreted language” or a “com-
piled language”, because each language can be implemented using either of these
techniques. One should, instead, talk of interpretative or compiled implementations
of a language.
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Fig. 1.7 The three levels of a
microprogrammed computer

1.3 Hierarchies of Abstract Machines

On the basis of what we have seen, a microprogrammed computer, on which a
high-level programming language is implemented, can be represented as shown in
Fig. 1.7. Each level implements an abstract machine with its own language and its
own functionality.

This schema can be extended to an arbitrary number of levels and a hierarchy
is thus produced, even if it is not always explicit. This hierarchy is largely used
in software design. In other words, hierarchies of abstract machines are often used
in which every machine exploits the functionality of the level immediately below
and adds new functionality of its own for the level immediately above. There are
many examples of hierarchies of this type. For example, there is the simple activity
of programming. When we write a program P in a language, L , in essence, we
are doing no more than defining a new language, LP (and therefore a new abstract
machine) composed of the (new) functionalities that P provides to the user through
its interface. Such a program can therefore be used by another program, which will
define new functionalities and therefore a new language and so on. It can be noted
that, broadly speaking, we can also speak of abstract machines when dealing with
a set of commands, which, strictly speaking, do not constitute a real programming
language. This is the case with a program, with the functionality of an operating
system, or with the functionality of a middleware level in a computer network.

In the general case, therefore, we can imagine a hierarchy of machines ML 0,
ML 1, . . . ,ML n. The generic machine, ML i is implemented by exploiting the
functionality (that is the language) of the machine immediately below (ML i−1). At
the same time, ML i provides its own language Li to the machine above ML i+1,
which, by exploiting that language, uses the new functionality that ML i provides
with respect to the lower levels. Often, such a hierarchy also has the task of masking
lower levels. ML i cannot directly access the resources provided by the machines
below it but can only make use of whatever language Li−1 provides.

The structuring of a software system in terms of layers of abstract machines
is useful for controlling the system’s complexity and, in particular, allows for a
degree of independence between the various layers, in the sense that any internal
modification to the functionality of a layer does not have (or should not have) any
influence on the other layers. For example, if we use a high-level language, L ,
which uses an operating system’s file-handling mechanisms, any modification to
these mechanisms (while the interface remains the same) does not have any impact
on programs written in L .
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Fig. 1.8 A hierarchy of
abstract machines

A canonical example of a hierarchy of this kind in a context that is seemingly
distant from programming languages is the hierarchy5 of communications protocols
in a network of computers, such as, for example, the ISO/OSI standard.

In a context closer to the subject of this book, we can consider the example shown
in Fig. 1.8.

At the lowest level, we have a hardware computer, implemented using physical
electronic devices (at least, at present; in the future, the possibility of biological
devices will be something that must be actively considered). Above this level, we
could have the level of an abstract, microprogrammed machine. Immediately above
(or directly above the hardware if the firmware level is not present), there is the ab-
stract machine provided by the operating system which is implemented by programs
written in machine language. Such a machine can be, in turn, seen as a hierarchy of
many layers (kernel, memory manager, peripheral manager, file system, command-
language interpreter) which implement functionalities that are progressively more
remote from the physical machine: starting with the nucleus, which interacts with
the hardware and manages process state changes, to the command interpreter (or
shell) which allows users to interact with the operating system. In its complexity,
therefore, the operating system on one hand extends the functionality of the physical
machine, providing functionalities not present on the physical machine (for exam-
ple, primitives that operate on files) to higher levels. On the other hand, it masks
some hardware primitives (for example, primitives for handling I/O) in which the
higher levels in the hierarchy have no interest in seeing directly. The abstract ma-
chine provided by the operating system forms the host machine on which a high-
level programming language is implemented using the methods that we discussed in
previous sections. It normally uses an intermediate machine, which, in the diagram
(Fig. 1.8), is the Java Virtual machine and its bytecode language. The level provided
by the abstract machine for the high-level language that we have implemented (Java

5In the literature on networks, one often speaks of a stack rather than, more correctly, of a hierarchy.
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Program Transformation and Partial Evaluation

In addition to “translation” of programs from one language to another, as is done
by a compiler, there are numerous transformation techniques involving only one
language that operate upon programs. These techniques are principally defined with
the aim of improving performance. Partial evaluation is one of these techniques
and consists of evaluating a program against an input so as to produce a program
that is specialised with respect to this input and which is more efficient than the
original program. For example, assume we have a program P(X,Y ) which, after
processing the data X, performs operations on the data in Y depending upon the
result of working on X. If the data, X, input to the program are always the same, we
can transform this program to P ′(Y ), where the computations using X have already
been performed (prior to runtime) and thereby obtain a faster program.

More formally, a partial evaluator for the language L is a program which
implements the function:

PevalL : (ProgL × D) → ProgL

which has the following characteristics. Given a generic program, P , written in L ,
taking two arguments, the result of partially evaluating P with respect to one of its
first input D1 is:

PevalL (P,D1) = P ′

where the program P ′ (the result of the partial evaluation) accepts a single argument
and is such that, for any input data, Y , we have:

IL (P, (D1, Y )) = IL (P ′, Y )

where IL is the language interpreter.

in this case) is not normally the last level of the hierarchy. At this point, in fact,
we could have one or more applications which together provide new services. For
example, we can have a “web machine” level in which the functions required to
process Web communications (communications protocols, HTML code display, ap-
plet running, etc.) are implemented. Above this, we might find the “Web Service”
level providing the functions required to make web services interact, both in terms
of interaction protocols as well as of the behaviour of the processes involved. At
this level, truly new languages can be implemented that define the behaviour of
so-called “business processes” based on Web services (an example is the Business
Process Execution Language). Finally, at the top level, we find a specific applica-
tion, in our case electronic commerce, which, while providing highly specific and
restricted functionality, can also be seen in terms of a final abstract machine.
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1.4 Chapter Summary

The chapter has introduced the concepts of abstract machine and the principle meth-
ods for implementing a programming language. In particular, we have seen:

• The abstract machine: an abstract formalisation for a generic executor of algo-
rithms, formalised in terms of a specific programming language.

• The interpreter: an essential component of the abstract machine which charac-
terises its behaviour, relating in operational terms the language of the abstract
machine to the embedding physical world.

• The machine language: the language of a generic abstract machine.
• Different language typologies: characterised by their distance from the physical

machine.
• The implementation of a language: in its different forms, from purely interpreted

to purely compiled; the concept of compiler is particularly important here.
• The concept of intermediate language: essential in the real implementation of any

language; there are some famous examples (P-code machine for Pascal and the
Java Virtual Machine).

• Hierarchies of abstract machines: abstract machines can be hierarchically com-
posed and many software systems can be seen in such terms.

1.5 Bibliographic Notes

The concept of abstract machine is present in many different contexts, from pro-
gramming languages to operating systems, even if at times it is used in a much more
informal manner than in this chapter. In some cases, it is also called a virtual ma-
chine, as for example in [5], which, however, presents an approach similar to that
adopted here.

The descriptions of hardware machines that we have used can be found in any
textbook on computer architecture, for example [6].

The intermediate machine was introduced in the first implementations of Pascal,
for example [4]. For more recent uses of intermediate machine for Java implemen-
tations, the reader should consult some of the many texts on the JVM, for example,
[3].

Finally, as far as compilation is concerned, a classic text is [1], while [2] is a
more recent book with a more up-to-date treatment.

1.6 Exercises

1. Give three examples, in different contexts, of abstract machines.
2. Describe the functioning of the interpreter for a generic abstract machine.
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3. Describe the differences between the interpretative and compiled implementa-
tions of a programming language, emphasising the advantages and disadvan-
tages.

4. Assume you have available an already-implemented abstract machine, C, how
could you use it to implement an abstract machine for another language, L?

5. What are the advantages in using an intermediate machine for the implementa-
tion of a language?

6. The first Pascal environments included:

• A Pascal compiler, written in Pascal, which produced P-code (code for the
intermediate machine);

• The same compiler, translated into P-code;
• An interpreter for P-code written in Pascal.

To implement the Pascal language in an interpretative way on a new host ma-
chine means (manually) translating the P-code interpreter into the language on
the host machine. Given such an interpretative implementation, how can one ob-
tain a compiled implementation for the same host machine, minimising the effort
required? (Hint: think about a modification to the compiler for Pascal also written
in Pascal.)

7. Consider an interpreter, I L
L 1(X,Y ), written in language L , for a different lan-

guage, L 1, where X is the program to be interpreted and Y is its input data.
Consider a program P written in L 1. What is obtained by evaluating

PevalL (I L
L 1,P )

i.e., from the partial evaluation of I L
L 1 with respect to P ? (This transformation

is known as Futamura’s first projection.)
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Chapter 2
How to Describe a Programming Language

A programming language is an artificial formalism in which algorithms can be ex-
pressed. For all its artificiality, though, this formalism remains a language. Its study
can make good use of the many concepts and tools developed in the last century in
linguistics (which studies both natural and artificial languages). Without going into
great detail, this chapter poses the problem of what it means to “give” (define or un-
derstand) a programming language and which tools can be used in this undertaking.

2.1 Levels of Description

In a study which has now become a classic in linguistics, Morris [6] studied the
various levels at which a description of a language can occur. He identified three
major areas: grammar, semantics and pragmatics.

Grammar is that part of the description of the language which answers the ques-
tion: which phrases are correct? Once the alphabet of a language has been defined
as a first step (in the case of natural language, for example, the Latin alphabet of 22
or 26 letters, the Cyrillic alphabet, etc.), the lexical component, which uses this al-
phabet, identifies the sequence of symbols constituting the words (or tokens) of the
language defined. When alphabet and words have been defined, the syntax describes
which sequences of words constitute legal phrases. Syntax is therefore a relation be-
tween signs. Between all possible sequences of words (over a given alphabet), the
syntax chooses a subset of sequences to form phrases of the language proper.1

1In linguistics, obviously, things are more complicated. In addition to the lexical and the syntactic
levels, there is also a morphological level which is distinct from the two previous ones. At the
morphological level, the different forms assumed by words (or phrases) as a function of their
grammatical function are defined. For example in the lexicon (that is, the dictionary, the thesaurus
of the language in question), we find the word “bear” with the associated lexical value given by
the image of the animal that everybody knows. At the morphological level, on the other hand, the
word is the convertible into the root “bear” and the morpheme “-s” which signals the plural. The
natural language’s phonetic aspects are also present but they are of no interest to us here.

M. Gabbrielli, S. Martini, Programming Languages: Principles and Paradigms,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-84882-914-5_2, © Springer-Verlag London Limited 2010
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Semantics is that part of the description of the language which seeks to answer
the question “what does a correct phrase mean?” Semantics, therefore, attributes a
significance to every correct phrase. In the case of natural languages, the process of
attribution of meaning can be very complex; in the case of artificial languages the
situation is rather simpler. It is not difficult to assume, in this case, that semantics
is a relation between signs (correct sentences) and meanings (autonomous entities
existing independently of the signs that are used to describe them). For example,
the meaning of a certain program could be the mathematical function computed by
that program. The semantic description of that language will be constructed using
techniques allowing us, when given a program, to fix the function the program com-
putes.

It is at the third level that the principal actor makes its appearance on the scene,
the person who uses a certain language. Pragmatics is that part of a language de-
scription which asks itself “how do we use a meaningful sentence?” Sentences with
the same meaning can be used in different ways by different users. Different linguis-
tic contexts can require the use of different sentences; some are more elegant, some
are antiquated, or more dialect-based than others. Understanding these linguistic
mechanisms is no less important than knowing the syntax and semantics.

In the case of programming languages, we can add a fourth level to the three
classical ones: the implementation level. Given that the languages that interest us
are procedural languages (that is, languages whose correct phrases specify actions),
it remains for us to describe “how to execute a correct sentence, in such a way that
we respect the semantics”. A knowledge of the semantics is, in general, enough for
the language user, but the software designer (and more importantly the language
designer) is also interested in the process with which operative phrases implement
the state under consideration. It is precisely this which is described by the language
implementation.

We can give a fairly rudimentary example which we hope will serve our pur-
poses. Let us consider the natural language used to express recipes in cooking. The
syntax determines the correct sentences with which a recipe is expressed. The se-
mantics is about explaining “what is” a recipe, independent of its (specific) execu-
tion. Pragmatics studies how a cook (“that cook”) interprets the various sentences of
the recipe. In the end, the implementation describes the way (where, and with what
ingredients) the kitchen recipe transforms into the dish that the semantics prescribes.

In the next sections, we analyse the role performed by the four levels when they
are applied to programming languages.

2.2 Grammar and Syntax

We have already said that the grammar of a language first establishes the alphabet
and lexicon. Then by means of a syntax, it defines those sequences of symbols corre-
sponding to well-formed phrases and sentences (or to “sentences” in short). Clearly,
at least from the viewpoint of natural language, the definition of the (finite) alphabet
is immediate. Even the lexicon can be defined, at least to a first approximation, in
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a simple fashion. We will be content, for the time being, with a finite vocabulary;
we can simply list the words of interest to us. This is certainly what happens with
natural languages, given that dictionaries are finite volumes!2

How do we describe the syntax? In a natural language, it is the same natural
language which is used, in general, to describe its own syntax (classical examples
are grammar textbooks for various languages). Also a syntax for a programming
language is often described using natural language, particularly for the older lan-
guages. Natural language, though, often introduces ambiguity in its syntactic de-
scription and, in particular, it is of no use in the process of translating (compiling) a
program in a high-level language into another (generally, at a lower level) language.

Linguistics, on the other hand, through the work in the 1950s of the American
linguist Noam Chomsky, has developed techniques to describe syntactic phenom-
ena in a formal manner. This description uses formalisms designed specifically to
limit the ambiguity that is always present in natural language. These techniques,
known as generative grammar, are not of much use in describing the syntax of natu-
ral languages (which are too complex and highly sophisticated). Instead, they are a
fundamental tool for describing the syntax of programming languages (and particu-
larly their compilation, as we will briefly see in Sect. 2.4).

Example 2.1 We will describe a simple language. It is the language of palindromic
strings, composed of the symbols a and b.3 Let us therefore begin by fixing the
alphabet, A = {a, b}. We must now select, from all strings over A (that is finite
sequences of elements of A), the palindromic strings. The simplest way to do this is
to observe that there is a simple recursive definition of a palindromic string. Indeed,
we can say (this is the basis of the induction) that a and b are palindromic strings.
If, then, s is any string that we know already to be palindromic, then so are asa and
bsb (this is the induction step).

It is not difficult to convince ourselves that this definition captures all and only
the palindromic strings of odd length over A. It remains to account for even-length
strings, such as abba. To include these as well, we add the fact that the empty string
(that is the string which contains no symbol from the alphabet) is also a palindromic
string to the base case of the inductive definition. Now our definition categorises all
and only the palindromic strings over the alphabet A. If a string really is a palin-
dromic string, for example aabaa, or abba, there exists a sequence of applications
of the inductive rule just mentioned which will construct it. On the other hand, if a
string is not a palindromic string (for example aabab), there is no way to construct
it inductively using the rules just introduced.

Context-Free Grammars, which we introduce in the next section, are a notation
for the concise and precise expression of recursive definitions of strings such as

2In programming languages, the lexicon can also be formed from an infinite set of words. We will
see below how this is possible.
3A string is palindromic if it is identical to its mirror image. That is, the string is the same when
read from left to right or right to left. A famous example in Latin is, ignoring spaces, the riddle “in
girum imus nocte et consumimur igni”.
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the one we have just seen. The inductive definition of palindromic strings can be
expressed in grammatical form as:

P →
P → a
P → b
P → aP a
P → bP b

In these rules, P stands for “any palindromic string”, while the arrow → is read
as “can be”. The first three lines will be immediately recognised as the basis of the
inductive definition, while the last two form the induction step.

2.2.1 Context-Free Grammars

The example just given is an example of a context-free grammar, a fundamental
device for the description of programming languages. We begin by introducing a
little notation and terminology. Having fixed a finite (or denumerable) set A, which
we call the alphabet, we denote by A∗ the set of all finite strings over A (that is
finite length sequences of elements of A; the ∗ operator is called Kleene’s star). Let
us immediately observe that, according to the definition, the sequence of length zero
also belongs to A∗—this is the empty string, denoted by ε.

A formal language over the alphabet A is nothing more than a subset of A∗.
A formal grammar serves to identify a certain subset of strings from all those possi-
ble over a given alphabet.4

Definition 2.1 (Context-Free Grammar) A context-free grammar is a quadruple
(NT, T ,R,S) where:

1. NT is a finite set of symbols (non-terminal symbols, or variables, or syntactic
categories).

2. T is a finite set of symbols (terminal symbols).
3. R is a finite set of productions (or rules), each of which is composed of an ex-

pression of the form:

V → w

where V (the head of the production) is a single non-terminal symbol and w (the
body) is a string composed of zero or more terminal or non-terminal symbols
(that is w is a string over T ∪ NT).

4In formal languages, a sequence of terminal symbols which appears in a language is usually called
a “word” of the language. We do not use this terminology; instead we speak of strings, to avoid
ambiguity with words and phrases of a language (natural or artificial), in the sense in which they
are normally understood.
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4. S is an element of NT (the initial symbol).

According to this definition, therefore, the grammar in the example shown in
Example 2.1 is composed of the quadruple ({P }, {a, b},R,P ), where R is the set
of productions used in the example.

Let us observe that, according to the definition, a production can have an empty
body, that is, it can be composed of the null symbol, or, more properly, can be
formed from the empty string, ε. We will see in a later section how a given grammar
defines a language over the alphabet formed from its terminal symbols. Let us begin
however with an example.

Example 2.2 Let us see a simple grammar that describes arithmetic expressions
(over the operators +, ∗, −, both unary and binary). The atomic elements of these
expressions are simple identifiers formed from finite sequences of the symbols a

and b.
We define the grammar G = ({E,I }, {a,b,+,∗,−, (, )},R,E), where R is the

following set of productions:

1. E → I

2. E → E + E

3. E → E ∗ E

4. E → E − E

5. E → −E

6. E → (E)

7. I → a
8. I → b
9. I → Ia

10. I → Ib

Unlike the grammar in Example 2.1, this one has more than one non-terminal sym-
bol corresponding, in an informal way, to an expression (E) or to an identifier (I ).
Note, once more, how the productions are a synthetic way to express recursive def-
initions. In this case, we are dealing with two definitions (which have been graphi-
cally separated), of which one (the one for E) uses in its base case the non-terminal
symbol inductively defined using the other recursive definition.

BNF In the context of programming languages, context-free grammars were used
for the first time in the definition of the language Algol60. In the report that intro-
duced Algol60, the grammar that defines the language is described using a notation
that is slightly different from the one we have just introduced. This notation, (con-
sidered, among other things, to be usable with a reduced character set, that does
not include arrow, cursives, upper case, etc.) goes under the name of Backus Naur
normal form (BNF), named after two authoritative members of the Algol committee
(John Backus who had previously directed the Fortran project and had written the
compiler for it—the first high-level language, and Peter Naur). In BNF:
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Fig. 2.1 A derivation of the
string ab ∗ (a + b)

E ⇒3 E ∗ E

⇒1 I ∗ E

⇒10 Ib ∗ E

⇒7 ab ∗ E

⇒6 ab ∗ (E)

⇒2 ab ∗ (E + E)

⇒1 ab ∗ (I + E)

⇒7 ab ∗ (a + E)

⇒1 ab ∗ (a + I )

⇒8 ab ∗ (a + b)

• The arrow “→” is replaced by “::=”.
• The non-terminal symbols are written between angle brackets (for example 〈Exp〉

and 〈Ide〉 could be the two non-terminal symbols of the grammar of Example 2.2).
• Productions with the same head are grouped into a single block using vertical bar

(“|”) to separate the productions. In Example 2.2, the productions for E could
therefore be expressed as follows:

〈E〉 ::= 〈I 〉 | 〈E〉 + 〈E〉 | 〈E〉 ∗ 〈E〉 | 〈E〉 − 〈E〉 | −〈E〉 | (〈E〉).

Moreover, some notations mix symbols (for example, use of the vertical bar, the
arrow and non-terminal symbols written in italic upper case).

Derivations and languages A grammar inductively defines a set of strings. We
can make explicit the operative aspect of this inductive definition using the concept
of derivation.

Example 2.3 We can ensure that the string ab ∗ (a + b) is correct according to
the grammar of Example 2.2, reading the productions as “rewriting rules”, and by
repeatedly applying them. We use a bigger arrow (“⇒”) to denote the operation of
string rewriting. We can then proceed as follows. We start with the initial symbol,
E, and rewrite it using a production (which we are allowed to select). Let us, for
example, use production (3), and we obtain the rewriting E ⇒ E ∗ E. Now we
concentrate on the right-hand side of this production. We have two E’s that can be
rewritten (expanded) independently of each other. Let us take the one on the left
and apply production (1) to obtain E ∗ E ⇒ I ∗ E. We can now choose whether we
expand I or E (or the other way round). Figure 2.1 shows the rewriting that we have
just started, developed until the string ab∗ (a+b) has been derived. The production
used is represented by each ⇒s’ subscript.

We can capitalise on this example in the following definition.

Definition 2.2 (Derivation) Having fixed a grammar, G = (NT, T ,R,S), and as-
signed two strings, v and w over NT ∪ T , we say that w is immediately derived
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Fig. 2.2 A derivation tree for
the string ab ∗ (a + b)

E ⇒3 E ∗ E

⇒6 E ∗ (E)

⇒2 E ∗ (E + E)

⇒1 E ∗ (E + I )

⇒8 E ∗ (E + b)

⇒1 E ∗ (I + b)

⇒7 E ∗ (a + b)

⇒1 I ∗ (a + b)

⇒10 Ib ∗ (a + b)

⇒7 ab ∗ (a + b)

from v (or: v is rewritten in a single step into w), if w is obtained from v by sub-
stituting the body of a production of R whose head is V for a non-terminal symbol,
V , in v. In this case, we will write v ⇒ w.

We say that w is derived from v (or: v is rewritten to w) and we write v ⇒∗ w, if
there exists a finite (possibly empty) sequence of immediate derivations v ⇒ w0 ⇒
w1 ⇒ ·· · ⇒ w.

Using the notation just introduced, and using the grammar for expressions that
we have used so far we can write, for example E ∗ E ⇒∗ ab ∗ (a + I ). Particularly
interesting are those derivations where on the left of the ⇒∗ symbol there is the
grammar’s initial symbol and on the right is a string solely composed of terminal
symbols. In a certain sense, these are maximal derivations which cannot be extended
(by rewriting a non-terminal) either on the left or right. Following the intuition that
has led us to the introduction of grammars, these derivations are the ones that give
us the correct strings as far as the grammar is concerned.

Definition 2.3 (Generated Language) The language generated by a grammar G =
(NT, T ,R,S) is the set L (G) = {w ∈ T ∗ |S ⇒∗ w}.

Note that this definition, in accordance with everything we said at the start of
Sect. 2.2.1, defines precisely a language over T ∗.

Derivation Trees The derivation of a string is a sequential process. In it, there are
steps that must be performed in a certain order. For example, in Fig. 2.1, it is clear
that the first ⇒10 must follow the first ⇒3 because production (10) rewrites the non-
terminal symbol I which does not exist in the initial string (which is composed of
only the initial symbol E) which is introduced by production (3). But there are some
steps whose order could be exchanged. In the derivation in Fig. 2.1, for example,
each time that it is necessary to rewrite a non-terminal symbol, the leftmost is always
chosen. We could imagine, on the other hand, concentrating first on the rightmost
non-terminal symbol, thereby obtaining the derivation shown in Fig. 2.2.

The two derivations that we have given for the string ab ∗ (a + b) are, in a highly
intuitive way, equivalent. Both reconstruct the structure of the string in the same
way (in terms of non-terminal and terminal strings), while they differ only in the
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Fig. 2.3 A derivation tree for
the string ab ∗ (a + b)

order with which the productions are applied. This fact is made explicit in Fig. 2.3
which represents the derivation of the string ab ∗ (a + b) in the form of a tree.

Definition 2.4 Given a grammar, G = (NT, T ,R,S), a derivation tree (or parse
tree) is an ordered tree in which:

1. Each node is labelled with a symbol in NT ∪ T ∪ {ε}.
2. The root is labelled with S.
3. Each interior node is labelled with a symbol in NT .
4. If a certain node has the label A ∈ NT and its children are m1, . . . ,mk labelled

respectively with X1, . . . ,Xk , where Xi ∈ NT ∪ T for all i ∈ [1, k], then A →
X1 . . .Xk is a production of R.

5. If a node has label ε, then that node is the unique child. If A is its parent, A → ε

is a production in R.

It is easy to see that, a derivation tree can be obtained from any derivation. It is
enough to start at the root (labelled with the initial symbol) and successively adding
a level of children corresponding to the production used during the derivation. By
applying this procedure to the derivation of Fig. 2.1, the derivation tree of Fig. 2.3
is obtained. Let us now apply this construction procedure to the derivation tree in
Fig. 2.2. Again, the tree in Fig. 2.3 is obtained. The two derivations result in the
same tree, and this fact corresponds to the intuition that the two derivations were
substantially equivalent.

Derivation trees are one of the most important techniques in the analysis of pro-
gramming language syntax. The structure of the derivation tree indeed expresses,
by means of its subtrees, the logical structure that the grammar assigns to the string.
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Trees

The concept of tree is of considerable importance in Computer Science and is also
used a great deal in common language (think of a genealogical tree, for example).
A tree is an information structure that can be defined in different ways and that exists
in different “spaces”. For our purposes, we are interested only in ordered, rooted
trees (or simply trees) which we can define as follows. A (rooted, ordered) tree is
a finite set of elements called nodes, such that if it is not empty, a particular node
is called the root and the remaining nodes, if they exist, are partitioned between the
elements of an (ordered) n-tuple 〈S1, S2, . . . , Sn〉, n ≥ 0, where each Si , i ∈ [1,N ]
is a tree.

Intuitively, therefore, a tree allows us to group nodes into levels where, at level
0, we have the root, at level 1 we have the roots of the trees S1, S2, . . . , Sn and so
on.

Another (equivalent) definition of tree is often used. It is probably more signif-
icant for the reader who is familiar with genealogical trees, botanical classifications,
taxonomies, etc. According to this definition, a tree is a particular case of a graph: a
(rooted, ordered) tree is therefore a pair T = (N,A), where N is a finite set of nodes
and A is a set of ordered pairs of nodes, called arcs, such that:

• The number of arcs is equal to one less than the number of nodes.
• T is connected, that is, for each pair of nodes, n,m ∈ N , there exists a sequence of

distinct nodes n0, n1, . . . , nk such that n0 = n and nk = m and the pair (ni, ni+1)

is an arc, for i = 0, . . . , k − 1.
• A (unique) node, r , is said to be the root and the nodes are ordered by level

according to the following inductive definition. The root is at level 0; if a node n

is at level i, and there exists the arc (n,m) ∈ A then node m is at level i + 1.
• Given a node, n, the nodes m such that there exists an arc (n,m) ∈ A are said to

be the children of n (and n is said to be their parent); for every node n ∈ N , a
total order is established on the set of all the children of n.

Using a curious mix of botanical, mathematical and “familiar” terms, nodes
with the same parent are said to be siblings while nodes without children are said to
be leaves. The root is the only node without a parent.

For example, the tree in Fig. 2.4 corresponds to the following derivation:

E ⇒2 E + E

⇒3 E ∗ E + E

⇒1 I ∗ E + E

⇒7 a ∗ E + E

⇒1 a ∗ I + E

⇒8 a ∗ b + E

⇒1 a ∗ b + I

⇒7 a ∗ b + a
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Fig. 2.4 A derivation tree for
the string a ∗ b + a

Fig. 2.5 Another derivation
tree for the string a ∗ b + a

In the tree in Fig. 2.4, we can see that the subexpression a ∗ b appears as a left child
of a sum. This expresses the fact that the string a∗b+a must be interpreted as “first
multiply a by b and add the result to a”, given that in order to compute the sum, the
operand present in the left subtree is needed.

Ambiguity Let us consider the following derivation (again using the grammar of
Example 2.2):

E ⇒3 E ∗ E

⇒1 I ∗ E

⇒7 a ∗ E

⇒2 a ∗ E + E

⇒1 a ∗ I + E

⇒8 a ∗ b + E

⇒1 a ∗ b + I

⇒7 a ∗ b + a

If we construct the corresponding derivation tree, we obtain the tree in Fig. 2.5.
Comparing the trees in Figs. 2.4 and 2.5, it can be seen that we have two different
trees producing the same string. Reading the leaves of the two trees from left to
right, in both cases, we obtain the string a ∗ b + a. Let us observe, however, that
the two trees are radically different. The second assigns a structure to the same
string that is quite different (and therefore reveals a different precedence implicit in
the arithmetic operators). If we want to use derivation trees to describe the logical
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structure of a string, we are in a bad position. The grammar of Example 2.2 is
incapable of assigning a unique structure to the string in question. According to
how the derivation is constructed, the precedence of the two arithmetic operators
differs. Let us now see a formal definition of these concepts.

First, let us be clear about what it means to read or visit the leaves of a tree
“from left to right”. Visiting a tree consists of following a path through the tree’s
nodes so that each node is visited exactly once. There are different ways to visit
nodes (depth-, breadth-first and symmetric), which, when applied to the same tree,
produce different sequences of nodes. If only the leaves are considered, however,
each and every one of these methods produces the same result for which we can use
the following definitions:

Definition 2.5 Let T = (N,A), be a non-empty, ordered tree with root r . The result
of the left-to-right traversal of T is the sequence of nodes (leaves) obtained by the
following recursive definition:

• If r has no children, the result of the traversal is r .
• If r has k children, m1, . . . ,mk , let T1, . . . , Tk be the subtrees of T such that

Ti has mi as its root (Ti therefore contains mi and all of that part of T which is
underneath this node). The result of the traversal is the sequence of nodes obtained
by visiting T1 to Tk in turn, from left to right.

A this point, we can say what it means for a string to admit a derivation tree.

Definition 2.6 We say that a string of characters admits a derivation tree T if it is
the result of a left-to-right traversal of T .

Finally, we can give the definition that interests us.

Definition 2.7 (Ambiguity) A grammar, G, is ambiguous if there exists at least one
string of L (G) which admits more than one derivation tree.

We remark that ambiguity comes not from the existence of many derivations for
the same string (a common and innocuous property) but from the fact that (at least)
one string has more than one derivation tree.

An ambiguous grammar is useless as description of a programming language
because it cannot be used to translate (compile) a program in a unique fashion.
Fortunately, given an ambiguous grammar it is often possible to transform it into
another, unambiguous, grammar that generates the same language.5 Techniques for
grammar disambiguation are outside the scope of this book. By way of example,
Fig. 2.6 shows an unambiguous grammar whose generated language coincides with
the one in Example 2.2.

5There exist pathological cases of languages which are generated only by ambiguous grammars.
These languages have no relevance to programming languages.
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Fig. 2.6 An unambiguous
grammar for the language of
expressions

G′ = ({E,T ,A, I }, {a,b,+,∗,−, (, )},R′,E)

E → T | T + E | T − E

T → A | A ∗ T

A → I | −A | (E)

I → a | b | Ia | Ib

We have a grammar which interprets the structure of an expression according
to the usual concept of arithmetic operator precedence. Unary minus (“-”) has the
highest precedence, followed by ∗, followed in their turn by + and binary − (which
have the same precedence). The grammar interprets, then, a sequence of operators
at the same level of precedence by association to the right. For example, the string
a + b + a will be assigned the same structure as the string a + (b + a). The absence
of ambiguity is paid for by increased complexity. There are more non-terminals and
the intuitive interpretation of the grammar is therefore more difficult.

The need to provide unambiguous grammars explains the contortions that appear
in the definitions of some programming languages. For example, Fig. 2.7 shows an
extract of the official grammar for Java’s conditional command (its if) (the non-
terminal symbols are printed in italic, while the terminal symbols in this extract are
if, else and brackets).

This grammar is interesting for two reasons. First, note that what are formally
considered single symbols (terminal or non-terminal) in context-free grammars are
here represented by words composed of a number of characters. For example, if
represents a single terminal symbol and, analogously, IfThenElseStatement repre-
sents a non-terminal symbol.

This happens because, in the definition of a programming language, it is prefer-
ential to use meaningful words (if, then, else) which can, up to certain limits,
suggest an intuitive meaning, rather than symbols which would be harder to under-
stand by the language user. In other words, as we will better see in the next chap-
ters, that the use of (meaningful) symbolic names definitely makes programming
easier. Analogously, for non-terminal symbols, they make the grammar easier to
understand. It is definitely better to use names such as Statement rather than single
symbols.

The second interesting aspect of the grammar is its complex nature. This com-
plexity is necessary to resolve the ambiguity of strings (programs) such as the one
exemplified by the following skeleton program:

if (expression1) if (expression2) command1;
else command2;

Java, like a great many other programming languages allows conditional com-
mands both with an else branch and without it. When an if command without
else is combined with an if with an else branch (as in the case of the program
appearing above), it is necessary to determine which of the two ifs is the owner
of the single else. The grammar in Fig. 2.7 is an unambiguous one which makes
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Statement ::= . . . | IfThenStatement | IfThenElseStatement |
StatementWithoutTrailingSubstatement

StatementWithoutTrailingSubstatement ::= . . . | Block | EmptyStatement |
ReturnStatement

StatementNoShortIf ::= . . . | StatementWithoutTrailingSubstatement |
IfThenElseStatementNoShortIf

IfThenStatement ::= if ( Expression ) Statement
IfThenElseStatement ::=

if ( Expression ) StatementNoShortIf else Statement
IfThenElseStatementNoShortIf ::=

if ( Expression ) StatementNoShortIf else StatementNoShortIf

Fig. 2.7 Grammar for Java conditional commands

“an else clause belong to the innermost if to which it might possibly belong”
(from the Java definition [3]). In simple words, the else is paired with the second
if (the one which tests expression2). Intuitively, this happens because, once
an if command with an else is introduced by use of the non-terminal symbol
IfThenElseStatement, the command in the then branch will be unable to hold an if
command without an else, as can be seen by inspection of the rules which define
the non-terminal symbol StatementNoShortIf.

2.3 Contextual Syntactic Constraints

The syntactic correctness of a phrase of a programming language sometimes de-
pends on the context in which that phrase occurs. Let us consider, for example,
the assignment I = R+3;. Assuming that the productions in the grammar that are
used permit the correct derivation of this string, it might be, though, incorrect at the
exact point in the program at which it occurs. For example, if the language requires
the declaration of variables, it is necessary for programs to contain the declarations
of I and R before the assignment. If, then, the language is typed, it would not accept
the assignment if the type of the expression R+3 is not compatible6 with that of the
variable I.

Strings that are correct with respect to the grammar, therefore, can be legal only
in a given context. There are many examples of these contextual syntactic con-
straints:

• An identifier must be declared before use (Pascal, Java).
• The number of actual parameters to a function must be the same as the formal

parameters (C, Pascal, Java, etc.).

6All these concepts will be introduced below. For now, an intuitive understanding of these concepts
will suffice.
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• In the case of assignment, the type of an expression must be compatible with that
of the variable to which it is assigned (C, Pascal, Java, etc.).

• Assignments to the control variable of a for loop are not permitted (Pascal).
• Before using a variable, there must have been an assignment to it (Java).
• A method can be redefined (overridden) only by a method with the same signature

(Java) or with a compatible signature (Java5).
• . . .

These are, to be sure, syntactic constraints. However, their contextual nature
makes it impossible to describe them using a context-free grammar (the name of this
class of grammars was chosen purpose). A book on formal languages is required to
go into detail on these issues; here, it suffices to note that there exist other types
of grammar, called contextual grammars.7 These grammars permit the description
of cases such as this. These grammars are difficult to write, to process and, above
all, there are no automatic techniques for efficient generation of translators, such as
exist, on the other hand, for context-free grammars. This suggests, therefore, that
use of grammars should be limited to the non-contextual description of syntax and
then to express the additional contextual constraints using natural language or using
formal techniques such as transition systems (which we will see in Sect. 2.5 when
we consider semantics).

The term static semantic constraint is used in programming language jargon to
denote the contextual constraints that appear in the syntactic aspects of a language.
In the jargon, “syntax” in general means “describable using a context-free gram-
mar”, “static semantics” means “describable with verifiable contextual constraints
on a static basis using the program text”, while “dynamic semantics” (or simply
“semantics”) refers to everything that happens when a program is executed.

The distinction between context-free and context-dependent syntax (that is, static
semantics) is established precisely by the expressive power of context-free gram-
mars. The distinction between syntax and semantics is not always clear. Some cases
are clear. Let us assume, for example, that we have a language whose definition es-
tablishes that should a division by 0 happen during execution, the abstract machine
for the language must report it with an explicit error. This is clearly a dynamic se-
mantic constraint. But let us assume, now, that the definition of another language is
specified as follows:

A program is syntactically incorrect when a division by 0 can happen.

The program in Fig. 2.8 would be syntactically incorrect in this hypothetical lan-
guage because there exists a sequence of executions (those in which the read com-
mand assigns the value 0 to A) which causes division by zero. Does the constraint
that we have stated above (which certainly cannot be expressed in a free grammar)
belong to static or dynamic semantics? It is clear that it refers to a dynamic event

7In extreme synthesis, in a contextual grammar, a production can take the form (which is more
general than in a context-free grammar) uAv → uwv, where u, v and w are strings over T ∪ NT .
Fundamental to this production, the non-terminal symbol A can be rewritten to w only if it appears
in a certain context (the one described by u and v).
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Fig. 2.8 A program that can
cause a division by 0

int A, B;
read(A);
B = 10/A;

Fig. 2.9 An abstract syntax
tree

(division by zero) but the constraint, to be meaningful (that is, that it really does
exclude some programs) would have to be detected statically (as we have done for
the simple program given above). A person can decide that it is syntactically incor-
rect without executing it but only from looking at the code and reasoning about it).
More important than its classification, is understanding whether we have a verifiable
constraint or not. Otherwise stated, is it really possible to implement an abstract ma-
chine for such a language, or does the very nature of the constraint imply that there
can exist no abstract machine which is able to check it in a static fashion for an
arbitrary program?

These are questions that we cannot immediately answer, even though they are
very important, because they concern what we can, and cannot, do with an ab-
stract machine. We will concern ourselves with these questions in the next chapter
(Chap. 3).

2.4 Compilers

The moment has arrived at which to see in outline how the syntactic description of a
language can be used automatically to translate a program. We know from Chap. 1
that such an automatic translator is called a compiler, whose general logical struc-
ture is shown in Fig. 2.10. It is characterised by a cascaded series of phases. The
various phases, starting with a string representing the program in the source lan-
guage, generate various internal intermediate representations until a string in the
object language is generated. Note that, as seen in the previous chapter, in this con-
text, “object language” does not necessarily equate to “machine code” or to “low-
level language”. It is merely a language towards which the translation is directed.
In what follows, we briefly describe the different phases of compilation. We do not
pretend to explain how to construct a compiler (see [1]), but just to fix some ideas
useful for our study of programming languages.

Lexical analysis The aim of lexical analysis is to read the symbols (characters)
forming the program sequentially from the input and to group these symbols into
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Fig. 2.10 Organisation of a
compiler

meaningful logical units, which we call tokens, (which are analogous, for our pro-
gramming language, to the words in the dictionary of a natural language). For ex-
ample, the lexical analyser of C or Java, when presented with the string x = 1
+ foo++; will produce 7 tokens: the identifier x, the assignment operator =, the
number 1, the addition operator +, the identifier foo, the auto increment operator
++ and finally the command termination token ;. Particularly important tokens are
the reserved words of the language (such as for, if, else, etc.), operators, open
and close brackets (such as { and } in C or Java, but also those such as begin
and end in Pascal). Lexical analysis (or scanning) is a very simple operation which
scans the input text of the source program from left to right, taking a single pass
to recognise tokens. No check is yet made on the sequence of tokens such as, for
example, checking that brackets are correctly balanced. As discussed in detail in
the box, the technical tool used for lexical analysis is a particular class of generative
grammars (regular grammars). The use of a grammar to describe the elements of the
lexicon is due both to the necessity of efficiently recognising these elements, and to
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Abstract and Concrete Syntax

The grammar of a programming language defines the language as a set of strings.
This set of strings corresponds in a natural way to the set of their derivation trees.
These trees are much more interesting than the strings. First, they abstract from the
specific lexical characteristic of the tokens. It can also happen that lexically different
structures can result in the same tree. The tree depicted in Fig. 2.9 could correspond
to the Pascal string:

if A=0 then X:=0 else X:=1

or to the Java string:

if (A==0) X=0; else X=1;

As we have already repeatedly observed, derivation trees are interesting be-
cause they express the canonical structure that can be assigned to the string.

Not all derivation trees correspond to legal programs. We know that static se-
mantic analysis has the task of selecting those trees satisfying the contextual con-
straints of the language. The set of trees resulting from this process constitutes the
abstract syntax of language. This is a much more convenient way of thinking of a
language if we are interested in its manipulation (and not merely in writing correct
programs in it).

the fact that, unlike the case of natural language lexicons, lexicons for programming
languages can be formed from an infinite set of words and therefore a simple list,
so the one used in a normal dictionary is inadequate (think, for example, of the pos-
sibility of defining identifiers as sequences of characters of arbitrary length starting
with a particular letter).

Syntactic analysis Once the list of tokens has been constructed, the syntactic anal-
yser (or parser) seeks to construct a derivation tree for this list. This is, clearly, a
derivation tree in the grammar of the language. Each leaf of this tree must corre-
spond to a token from the list obtained by the scanner. Moreover, these leaves, read
from left to right, must form a correct phrase (or a sequence of terminal symbols) in
the language. We already know that such trees represent the logical structure of the
program which will be employed by the successive phases of compilation.

It can happen that the parser is unable to construct a derivation tree. This hap-
pens when the input string is not correct with reference to the language’s grammar.
In such a case, the parser reports the errors it has encountered and compilation is
aborted. In reality, lexical and syntactic analysis are interleaved in a more direct
fashion than appears from these notes (in particular, the two phases are not sequen-
tial but the scanner produces a token for each invocation of the parser); more details
can be obtained from one of the many texts on compilers.
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Regular Grammars

The difference between lexical and syntactic analysis can be made precise using
a formal classification of grammars. If a grammar has all productions of the form
A → bB (or in the form A → Bb), where A and B are non-terminal symbols (B can
also be absent or coincide with A) and b is a single terminal symbol, the grammar
is said to be regular. In Example 2.2, the (sub-) grammar based on the non-terminal
symbol I is a regular grammar (while the subgrammar for E is not).

The expressive power of regular grammars is highly limited. In particular, using
a regular grammar, it is not possible to “count” an arbitrary number of characters.
As a consequence, it is not possible to express the balancing of syntactic structures
such as brackets using a regular grammar.

Technically, lexical analysis is the first phase of translation which checks that
the input string can be decomposed into tokens, each of which is described by a
regular grammar (in Example 2.2, lexical analysis would have recognised the se-
quences of a and b as instances of the non-terminal symbol I ).

Once the sequence of tokens has been obtained, syntactic analysis takes place
using a properly context-free grammar which uses the tokens produced by the pre-
ceding lexical analysis as its terminal symbols.

Semantic analysis The derivation tree (which represents the syntactic correctness
of the input string) is subjected to checks of the language’s various context-based
constraints. As we have seen, it is at this stage that declarations, types, number of
function parameters, etc., are processed. As these checks are performed, the deriva-
tion tree is augmented with the information derived from them and new structures
are generated. By way of an example, every token that corresponds to a variable
identifier will be associated with its type, the place of declaration and other useful
information (for example its scope, see Chap. 4). To avoid the useless duplication
of this information, it is, in general, collected into structures external to the deriva-
tion tree. Among these structures, the one in which information about identifiers
is collected is called the symbol table. The symbol table plays an essential role in
successive phases.

At the cost of boring the reader, so that we do not confuse it with what we call
semantics in Sect. 2.5, let us note that the term semantic analysis is an historical
relic and that it is concerned with context-based syntactic constraints.

Generation of intermediate forms An appropriate traversal of the augmented
derivation tree allows an initial phase of code generation. It is not yet possible to
generate code in the object language, given that there are many optimisations left to
do and they are independent of the specific object language. Moreover, a compiler
is often implemented to generate code for a whole series of object languages (for
example, machine code for different architectures), not just one. It is useful, there-
fore, to concentrate all choices relating to a specific language in a single phase and
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to generate code to an intermediate form, which is designed to be independent of
both the source and the object languages.

Code optimisation The code obtained from the preceding phases by repeatedly
traversing the derivation tree is fairly inefficient. There are many optimisations that
can be made before generating object code. Typical operations that can be performed
are:

• Removal of useless code (dead code removal). That is, removal of pieces of code
that can never be executed because there is no execution sequence that can reach
them.

• In-line expansion of function calls. Some function (procedure) calls can be sub-
stituted by the body of the associated function, making execution faster. It also
makes other optimisations possible.

• Subexpression factorisation. Some programs compute the same value more than
once. If, and when, this fact is discovered by the compiler, the value of the com-
mon subexpression can be calculated once only and then stored.

• Loop optimisations. Iterations are the places where the biggest optimisations can
be performed. Among these, the most common consists of removing from inside
a loop the computation of subexpressions whose value remains constant during
different iterations.

Code generation Starting with optimised intermediate form, the final object code
is generated. There follows, in general, a last phase of optimisation which depends
upon the specific characteristics of the object language. In a compiler that generates
machine code, an important part of this last phase is register assignment (decisions
as to which variables should be stored in which processor registers). This is a choice
of enormous importance for the efficiency of the final program.

2.5 Semantics

As is intuitively to be expected, the description of the semantics of a programming
language is somewhat more complex than its syntactic description. This complexity
is due both to technical problems, as well to the need to mediate between two op-
posing issues: the need for exactness as well as for flexibility. As far as exactness is
concerned, a precise and unambiguous description is required of what must be ex-
pected from every syntactically correct construct so that every user knows a priori
(that is before program execution), and in a manner independent of the architecture,
what will happen at runtime. This search for exactness, however, must not preclude
different implementations of the same language, all of which are correct with respect
to the semantics. The semantic specification must therefore also be flexible, that is,
it must not anticipate choices that are to be made when the language is implemented
(and which therefore do not play a part in the definition of the language itself).

It would not be difficult to achieve exactness at the expense of flexibility. It is
enough to give the semantics of a language using a specific compiler on a specific
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architecture. The official meaning of a program is given by its execution on this
architecture after translation using that compiler. Apart form the difficulty of speak-
ing in general about the semantics of the language’s constructs, this solution has no
flexibility. Although we have constructed what we claim to be a semantics, there ex-
ists only one implementation (the official one) and all the other implementations are
completely equivalent. But to what level of detail is the canonical implementation
normative? Is the computation time of a particular program part of its definition? Is
the reporting of errors? How can typically architecture-dependent input/output com-
mands be ported to a different architecture? When the implementation technology
of the physical machine changes, how is the semantics, which we have incautiously
defined in terms of a specific machine, affected?

One of the difficulties of semantic definition is really that of finding the happy
medium between exactness and flexibility, in such a way as to remove ambiguity,
still leaving room for implementation. This situation suggests using formal methods
to describe the semantics. Methods of this kind have existed for a long time for the
artificial languages of mathematical logic and they have been adapted by computer
scientists for their own ends. Yet, some semantic phenomena make formal descrip-
tion complex and not easily usable by anyone who does not have the appropriate
skills. It is for this reason that the majority of official programming language def-
initions use natural language for their semantic description. This does not detract
from the fact that formal methods for semantics are very often used in the prepara-
tory phases of the design of a programming language, or to describe some of its
particular characteristics, where it is paramount to avoid ambiguity at the cost of
simplicity.

Formal methods for semantics divide into two main families: denotational and
operational semantics.8 Denotational semantics is the application to programming
languages of techniques developed for the semantics of logico-mathematical lan-
guages. The meaning of a program is given by a function which expresses the in-
put/output behaviour of the program itself. The domain and codomain of this func-
tion are suitable mathematical structures, such as the environment and the memory
(store), that are internal to the language. Refined mathematical techniques (continu-
ity, fixed points, etc.) allow the appropriate treatment of phenomena such as iteration
and recursion (see [8]).

In the operational approach, on the other hand, there are no external entities (for
example, functions) associated with language constructs. Using appropriate meth-
ods, an operational semantics specifies the behaviour of the abstract machine. That
is, it formally defines the interpreter, making reference to an abstract formalism at a
much lower level. The various operational techniques differ (sometimes profoundly)
in their choice of formalism; some semantics use formal automata, others use sys-
tems of logico-mathematical rules, yet others prefer transition systems to specify
the state transformations induced by a program.

8For completeness, we should also talk about algebraic and axiomatic semantics, but simplicity
and conciseness require us to ignore them.
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Num ::= 1 | 2 | 3 | . . .
Var ::= X1 | X2 | X3 | . . .

AExp ::= Num | Var | (AExp + AExp) | (AExp − AExp)

BExp ::= tt | ff | (AExp == AExp) | ¬BExp | (BExp ∧ BExp)

Com ::= skip | Var := AExp | Com;Com |
if BExp then Com else Com | while BExp do Com

Fig. 2.11 Syntax of a simple imperative language

This is not a book in which an exhaustive treatment of these semantic techniques
can be given. We content ourselves with a simple example of techniques based on
transition systems to give a semantics for a rudimentary imperative language. This
technique, called SOS (Structured Operational Semantics, [7]), is highly versatile
and has been effectively used in giving the semantics to some languages including
Standard ML (an influential functional language).

Figure 2.11 shows the grammar of a simple language. For reasons of readability
(and so that we can obtain a concise semantics), we have a grammar with infinite
productions for the Num and Var non-terminal symbols. The explicit presence of
brackets around each binary operator application eliminates possible problems of
ambiguity.

We need to introduce some notation. We will use n to denote an arbitrary Num
(numeric constant); using X, we will denote an arbitrary Var (variable). We write a

for an arbitrary AExp (arithmetic expression). We use b to denote an arbitrary BExp
(boolean expression, where tt and ff denote the values true and false, respectively).
We write c for arbitrary Comm (commands). We use, when needed, subscripts to
distinguish between objects of the same syntactic category (for example, we will
write a1, a2, etc., for AExps).

State The semantics of a command in our language uses a simple memory model
which stores values of Var. In this model, a state is a finite sequence of pairs of
the form (X,n) which we can read as “in the current state, the variable X has the
value n” (in our little language, the value will always be an integer but we can easily
imagine more complex situations). Given a command c (that is a derivation tree
that is correct according to the grammar in Fig. 2.11), its reference state is given by
a sequence of pairs which includes all Vars which are named in c. We denote an
arbitrary state by σ or τ , with or without subscripts.

We need to define some operations on states: modification of an existing state
and the retrieval of a variable’s value in the current state. To this end, given a state,
σ , a Var X and a value v, we write σ [X ← v] to denote a new state that is the same
as σ but differs from it by associating X with the value v (and thereby losing any
previous association to X). Given a state, σ , and a variable, X, we write σ(X) for
the value that σ associates with X; this value is undefined if X does not appear in
the domain of σ (σ is therefore a partial function).
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Example 2.4 Let us fix σ = [(X,3), (Y,5)], we have σ [X ← 7] = [(X,7), (Y,5)].
We also have σ(Y ) = 5 and σ [X ← 7](X) = 7; σ(W) is undefined.

Transitions Structured operational semantics can be seen as an elegant way of
defining the functioning of an abstract machine without going into any details about
its implementation.9 This functioning is expressed in terms of the elementary com-
putational steps of the abstract machine. The formal way in which structured oper-
ational semantics defines the meaning of a program, c, is in terms of a transition
which expresses a step in the transformation (of the state and/or of the program
itself) induced by the execution of the command. The simplest form of transition
is:

〈c, σ 〉 → τ,

where c is a command, σ the starting state and τ the terminal state. The interpreta-
tion that we give to this notation is that if we start the execution of c in the state σ ,
the execution terminates (in a single step) with state τ . For example, the transition
which defines the skip command is

〈skip, σ 〉 → σ.

It can be seen that we have a command that does nothing. Starting in any state,
σ , skip terminates leaving the state unchanged.

In more complex cases, a terminal situation will be reached not in a single large
step, but rather in many little steps which progressively transform the state (starting
with σ ); the command, c, is progressively executed a part at a time until the whole
has been “consumed”. These little steps are expressed by transitions of the form:

〈c, σ 〉 → 〈c′, σ ′〉.
For example, one of the transitions which define the conditional command will be:

〈if tt then c1 else c2, σ 〉 → 〈c1, σ 〉,
This means that if the boolean condition is true, the command in the then branch

must be executed. Some transitions, finally, are conditional: if some command, c1,
has a transition, then the command c has another transition. Conditional transitions
take the form of a rule, expressed as a fraction:

〈c1, σ1〉 → 〈c′
1, σ

′
1〉 〈c2, σ2〉 → 〈c′

2, σ
′
2〉

〈c, σ 〉 → 〈c′, σ ′〉 .

We read this rule in the following way. If the command, c1, starting in state σ1,
can perform a computational step that transforms itself into command c′

1 in state

9Using terminology which we will use again in the final chapters of this book, we can say that it is
a declarative description of the language’s abstract machine.



2.5 Semantics 49

〈X,σ 〉 → 〈σ(X),σ 〉

〈(n + m),σ 〉 → 〈p,σ 〉 〈(n − m),σ 〉 → 〈p,σ 〉
where p = n + m where p = n − m e n ≥ m

〈a1, σ 〉 → 〈a′, σ 〉
〈(a1 + a2), σ 〉 → 〈(a′ + a2), σ 〉

〈a2, σ 〉 → 〈a′′, σ 〉
〈(a1 + a2), σ 〉 → 〈(a1 + a′′), σ 〉

〈a1, σ 〉 → 〈a′, σ 〉
〈(a1 − a2), σ 〉 → 〈(a′ − a2), σ 〉

〈a2, σ 〉 → 〈a′′, σ 〉
〈(a1 − a2), σ 〉 → 〈(a1 − a′′), σ 〉

Fig. 2.12 Semantics of arithmetic expressions

σ ′
1, and if the command c2, starting in σ2, can perform a computational step and

transform itself into the command c′
2 in state σ ′

2, then the command, c, starting in
the state σ can perform a computational step and transform itself into the command
c′ in state σ ′. It is clear that a specific rule will express a number of meaningful
relationships between c, c1 and c2 (and their respective states). In general, c1 and c2
will be subcommands of c.10

Expression semantics Figure 2.12 shows the rules for the semantics of arithmetic
expressions. The first three rules are terminal rules (that is, the computation to the
right of the arrow is in a form to which no more transitions can be applied). In order
of presentation, they define the semantics of a variable, of addition in the case in
which both of the summands are constants, of subtraction in the case in which both
its arguments are constants and its result is a natural number. Note that no semantics
is given for expressions such as 5 − 7. The second group of four rules is formed
of conditional rules. The first pair defines the semantics of sums and expresses the
fact that to calculate the value of a sum, it is necessary first to evaluate its two
arguments separately. Note how the semantics specifies no order of evaluation for
the arguments of an addition. Subtraction is handled in a similar fashion.

Figure 2.13 shows the semantics of logical expressions and adopts the same ideas
as for arithmetic expressions. Note that in this figure, bv denotes a boolean value (tt
or ff).

Command semantics It can be seen how the state, σ , always remains unaltered
during the evaluation of an expression and how it is only used to obtain the value
of a variable. This changes for the semantics of commands as shown in Fig. 2.14.
Note how the rules in the Figure are essentially of two types: those which, for every
command, express the actual computational step for that command (this holds for
rules (c1), (c2), (c4), (c6), (c7) and (c9)), as well as those which serve just to make

10It will not have escaped the attentive reader that what we have called conditional rules are, in
reality, inductive rules forming part of the definition of transition relations.
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〈(n == m),σ 〉 → 〈tt, σ 〉 〈(n == m),σ 〉 → 〈ff, σ 〉
if n = m if n 
= m

〈(bv1 ∧ bv2), σ 〉 → 〈bv,σ 〉
where bv is the and of bv1 and bv2

〈¬tt, σ 〉 → 〈ff, σ 〉 〈¬ff, σ 〉 → 〈tt, σ 〉

〈a1, σ 〉 → 〈a′, σ 〉
〈(a1 == a2), σ 〉 → 〈(a′ == a2), σ 〉

〈a2, σ 〉 → 〈a′′, σ 〉
〈(a1 == a2), σ 〉 → 〈(a1 == a′′), σ 〉

〈b1, σ 〉 → 〈b′, σ 〉
〈(b1 ∧ b2), σ 〉 → 〈(b′ ∧ b2), σ 〉

〈b2, σ 〉 → 〈b′′, σ 〉
〈(b1 ∧ b2), σ 〉 → 〈(b1 ∧ b′′), σ 〉

〈b,σ 〉 → 〈b′, σ 〉
〈¬b,σ 〉 → 〈¬b′, σ 〉

Fig. 2.13 Semantics of boolean expressions

〈skip, σ 〉 → σ (c1)

〈X := n,σ 〉 → σ [X ← n] (c2)

〈a,σ 〉 → 〈a′, σ 〉
〈X := a,σ 〉 → 〈X := a′, σ 〉 (c3)

〈c1, σ 〉 → σ ′

〈c1; c2, σ 〉 → 〈c2, σ
′〉 (c4)

〈c1, σ 〉 → 〈c′
1, σ

′〉
〈c1; c2, σ 〉 → 〈c′

1; c2, σ
′〉 (c5)

〈if tt then c1 else c2, σ 〉 → 〈c1, σ 〉 (c6)

〈if ff then c1 else c2, σ 〉 → 〈c2, σ 〉 (c7)

〈b,σ 〉 → 〈b′, σ 〉
〈if b then c1 else c2, σ 〉 → 〈if b′ then c1 else c2, σ 〉 (c8)

〈while b do c, σ 〉 → 〈if b then c;while b do c else skip, σ 〉 (c9)

Fig. 2.14 Semantics of commands

the computation of a subcommand (or of a subexpression) progress. The semantic
description of our language is now complete.

Computations A computation is a sequence of transitions which cannot be ex-
tended by another transition. Moreover, each transformation in a computation must
be described by some rule.
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Example 2.5 Let us consider the following program, c:

X := 1; while ¬(X == 0) do X := (X − 1)

Let us fix a state which includes all the variables mentioned in the program, for
example, σ = [(X,6)]. We can calculate the computation of c in σ as follows. To
abbreviate the notation, we write c′ to denote the iterative command while ¬(X ==
0) do X := (X − 1). It is not difficult to see that the computation generated by c is
the following:

〈c, σ 〉
→ 〈c′, σ [X ← 1]〉
→ 〈if ¬(X == 0) then X := (X − 1); c′ else skip, σ [X ← 1]〉
→ 〈if ¬(1 == 0) then X := (X − 1); c′ else skip, σ [X ← 1]〉
→ 〈if ¬ff then X := (X − 1); c′ else skip, σ [X ← 1]〉
→ 〈if tt then X := (X − 1); c′ else skip, σ [X ← 1]〉
→ 〈X := (X − 1); c′, σ [X ← 1]〉
→ 〈X := (1 − 1); c′, σ [X ← 1]〉
→ 〈X := 0; c′, σ [X ← 1]〉
→ 〈c′, σ [X ← 0]〉
→ 〈if ¬(X == 0) then X := (X − 1); c′ else skip, σ [X ← 0]〉
→ 〈if ¬(0 == 0) then X := (X − 1); c′ else skip, σ [X ← 0]〉
→ 〈if ¬tt then X := (X − 1); c′ else skip, σ [X ← 0]〉
→ 〈if ff then X := (X − 1); c′ else skip, σ [X ← 0]〉
→ 〈skip, σ [X ← 0]〉
→ σ [X ← 0]

The computation in the example just discussed is a terminated computation, in
the sense that, after a certain number of transitions, a situation is reached in which
no other transition is possible. It can be seen that, moreover, the definition of com-
putation that we have given above does not require that a computation be finite but
only that it cannot be extended. There is, therefore, the possibility that there are
infinite computations, as the following example demonstrates:

Example 2.6 Consider the following program, d :

X := 1; while (X == 1) do skip

Assume we are in the state τ = [(X,0)]. Let d ′ be the command while (X == 1)

do skip. We have:

〈d, τ 〉
→ 〈d ′, τ [X ← 1]〉
→ 〈if (X == 1) then skip ;d ′ else skip, τ [X ← 1]〉
→ 〈if (1 == 1) then skip ;d ′ else skip, τ [X ← 1]〉
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→ 〈if tt then skip ;d ′ else skip, τ [X ← 1]〉
→ 〈 skip ;d ′, τ [X ← 1]〉
→ 〈d ′, τ [X ← 1]〉
→ . . .

There exist, therefore, two fundamentally different types of computations: finite
ones (also called terminating) and divergent ones (that is, infinite ones which corre-
spond, intuitively, to looping programs).

2.6 Pragmatics

If a precise description of the syntax and semantics of a programming language is
(and must be) given, the same is not true of the pragmatics of the language. Let
us recall that, for our purposes, the pragmatics of a language answers the question
“what is the purpose of this construct?” or “what use is a certain command?” It is
clear, therefore, that the pragmatics of a programming language is not established
once and for all during its definition (that is, the definition of its syntax and seman-
tics). On the contrary, it evolves with the use of the language. All suggestions about
programming style are part of pragmatics. For example, there is the principle that
jumps (gotos) should be avoided at all possible times. The choice of the most ap-
propriate mode for passing parameters to a function is also a pragmatic question, as
is the choice between bounded and unbounded iteration.

In a sense, the pragmatics of a programming language coincides with software
engineering (the discipline which studies methods for the design and production of
software) and is not much studied there. For many other aspects, on the other hand,
clarifying the purpose and use of constructs is an essential part of the study of a
programming language. It is for this that we will often refer below to pragmatics,
possibly without making it explicit that we are so doing.

2.7 Implementation

The final level of programming language description will not be considered in this
book in details. As we amply saw in the previous chapter, implementing a language
means writing a compiler for it, as well as implementing an abstract machine for
the compiler’s object language; or to write an interpreter and implement the abstract
machine in the language in which the interpreter is written. Alternatively, as hap-
pens in practice, a mix of both techniques is employed. Once more, this is not a
book in which we can be exhaustive about these matters. But it would not be correct
to present the constructions of programming languages without some reference to
their implementation cost. Even without specifying the set of constructions in an in-
terpreter, for each construct, we should always ask: “How is it to be implemented?”,
“At what cost?” The answer to these questions will also help us better to understand
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the linguistic aspect (because a certain construct is formed in a certain way), as well
as the pragmatic one (how can a certain construct best be used).

2.8 Chapter Summary

The chapter introduced the fundamental techniques for the description and imple-
mentation of a programming language.

• The distinction between syntax, semantics, pragmatics and implementation. Each
of these disciplines describes a crucial aspect of the language.

• Context-free grammars. A formal method essential for the definition of a lan-
guage’s syntax.

• Derivation trees and ambiguity. Derivation trees represent the logical structure
of a string. The existence of a unique tree for every string permits a canonical
interpretation to be assigned to it.

• Static semantics. Not all syntactic aspects of a language are describable using
grammars: Static semantic checks are concerned with eliminating from legal pro-
grams those strings which, though correct as far as the grammar is concerned, do
not respect additional contextual constraints.

• The organisation of a compiler.
• Structured operational semantics. A formal method for describing the semantics

of programming languages based on transition systems.

2.9 Bibliographical Notes

The literature on the topics of this chapter is enormous, even considering only in-
troductory material. We limit ourselves to citing [4], the latest edition of a classic
text on formal languages used by generations of students. For compiler-construction
methods, we refer the reader to [1] and [2]. An introduction to operational seman-
tics is [5], which also deals with denotational semantics; at a more advanced level,
see [8], which also deals with denotational semantics.

2.10 Exercises

1. Consider the grammar G′′, obtained from that in Fig. 2.6 by substituting the
productions for the non-terminal symbol T with the following:

T → A | E ∗ T .

Show that G′′ is ambiguous.
2. Give the obvious ambiguous grammar for the conditional command if, then,

else.
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3. Using the grammar fragment in Fig. 2.7 as a reference point, construct a deriva-
tion tree for the string

if (expression1) if (expression2) command1
else command2

Assume that the following derivations exist:
Expression ⇒∗ expression1,
Expression ⇒∗ expression2,
StatementWithoutTrailingSubstatement ⇒∗ command,
StatementWithoutTrailingSubstatement ⇒∗ command.

4. Define a grammar that will generate all the pairs of balanced curly brackets
(braces).

5. Define a grammar that generates the language {anbm |n,m ≥ 1} using only pro-
ductions of the form N → tM or N → t , where N and M are any non-terminal
symbol and t is any terminal symbol. Try to give an intuitive explanation of why
there exists no grammar with these characteristics which generates the language
{anbn |n ≥ 1}.

6. Modify the rule of Fig. 2.12 so as to describe a right-to-left evaluation of arith-
metic expressions.

7. Calculate the computation of the command

X := 1; while ¬(X == 3) do X := (X + 1)

starting with a chosen state.
8. In Example 2.5, the last transition has as its right member only a state (and not

a pair composed of a command and a state). Is this always the case in a finite
computation? (Hint: consider the command X := 0; X := (X−1), starting with
any state whatsoever which includes X.)

9. State what the computation corresponding to the following command is:

X := 1; X := (X − 1); X := (X − 1); X := 5

10. Considering Exercises 8 and 9, state a criterion which allows the division of
finite computations into those which are correct and those which terminate be-
cause of an error.
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Chapter 3
Foundations

In this chapter, we will not be concerned with programming languages but with the
limits of the programs that we can write, asking whether there exist problems that no
program can solve. A motivation for this research is the question that we asked at the
end of Sect. 2.3: that is, is it possible to construct a static semantic analyser which
can verify constraints imposed by the programming language’s definition? We will
soon discover, however, that the answer to the question is rather more general and is,
in reality, a kind of absolute limit to what can (and cannot) be done with a computer.
Although the material in this chapter can appear abstract, our treatment is wholly
elementary.

3.1 The Halting Problem

In Sect. 2.3, we asked if there exists a static semantic analyser able to determine
whether a program can generate a division by zero error during execution. Instead
of tackling this problem, we will examine a larger problem, one that is also more in-
teresting. We will ask whether there exists a static analyser able to discover whether
a program, when provided with certain input data, will loop. There is no need to
emphasise the usefulness of a check of this kind. If we know, prior to execution,
that a given program will loop when presented with some input data, we will have a
way of showing automatically that it definitely contains an error.

A static analyser is nothing more than a program used as a subprogram of a
compiler. Let us, therefore, fix a programming language, L , in which we will write
programs. Given a program, P , and an input x, we write P(x) to denote the result
of the computing P on x. We should note that, in general, the program P might
not terminate on x because of a loop or of an infinite recursion. Writing P(x),
therefore, we do not necessarily indicate a computation that terminates. Without
loss of generality, we can now reformulate the question as:

Does there exist a program, H , that, having been given as input a program P (in the lan-
guage L ) and its input data x, will terminate and print “yes” if P (x) terminates, and ter-
minate and print “no” if P (x) loops?

M. Gabbrielli, S. Martini, Programming Languages: Principles and Paradigms,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-84882-914-5_3, © Springer-Verlag London Limited 2010
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We emphasise that H has two inputs. It must always terminate (we do not want
a compiler that loops!) and it must function on every program, P , written in L
and every input x. We can then assume, again without loss of generality, that H

is written in the language L , since L , to be interesting, must be in a language in
which it is possible to write all possible programs.1

We now show our hand. We want to show that there exists no program H with
the behaviour we have just discussed. We will argue by contradiction, assuming we
can have such an H , and from this we will derive a contradiction. The reasoning
might seem a little contorted at first sight but requires no advanced knowledge. The
argument, however, is subtle and elegant; the reader should read it more than once
and be sure of understanding the critical role of self application.

1. Let us assume, by contradiction, that we have a program H with the properties
stated above.

2. Using H , we can write a program K , with only one input (which will be another
program), with the following specification:

The program K , given P as input, terminates printing “yes” if H(P,P ) prints “no”; it
goes into a loop if H(P,P ) prints “yes”.

Writing the program K , given that H is available, is simple. We read the input P ,
call H as a subprogram, passing P as first and second parameter. We wait until
H terminates (this will certainly happen, given H ’s specification). If H(P,P )

terminates and prints “no” (we can assume that we can intercept this printing
and stop it from appearing on the output), K prints “yes”. If, on the other hand,
H(P,P ) prints “yes”, then K goes into an infinite loop programmed for the
purpose.

If we recall the specification of H , we can summarise the semantics of K as:

K(P ) =
{

“yes” if P(P ) does not terminate,

does not terminate if P(P ) does terminate.
(3.1)

At first sight the application of P to itself seems strange. There is no miracle. P

will receive an input consisting of a string representing the text of P .2

3. Let us now execute K on its own text. That is, we focus on K(K). What is its
behaviour? If we substitute K for P in (3.1), we obtain:

K(P ) =
{

“yes” if K(K) does not terminate,

does not terminate if K(K) does terminate.
(3.2)

4. Now let us observe that (3.2) is absurd! It says that K(K) terminates (printing
“yes”) when K(K) fails to terminate and that it does not terminate when K(K)

terminates.

1Clarifying the sense of “all possible programs” is actually one of the aims of this chapter.
2If we had assumed that the input to P was a number, the string comprising the text of P can read
as a number: a number i, whose bits denote the individual characters in the text of P .
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5. Where does this contradiction come from? Not from K itself, which, as we have
seen, is a simple program which uses H . The contradiction arises from having to
assume the existence of a program with the properties of H . Therefore, H cannot
exist.

We have therefore proved that there exists no decision procedure (in the language
L ) capable of determining whether any another program in L terminates on an
arbitrary input. We use here decision procedure in the technical sense of a program
that: (i) works for arbitrary arguments; (ii) always terminates and (iii) determines
(by responding “yes” or “no”) those arguments which are solutions to the problem
and those which are not.

This result, one of fundamental importance in computing, is called the undecid-
ability of the halting problem. Many other interesting problems are undecidable in
the same way. We will discuss some in the next section after first having discussed
the characteristics of L from which the result derives. We can thus tackle the prob-
lem of the expressive power of programming languages.

3.2 Expressiveness of Programming Languages

At first sight, the result we obtained in the last section can appear fairly limited.
If we take a language different from L , perhaps the program H can exist without
generating a contradiction.

Upon reflection, though, we have not assumed much about L . We have used L
in an implicit way to define the program K , given H (that is, at Step 2 of the proof).
To be able truly to write K , the following conditions must be satisfied:

1. There must be some form of conditional available in L , so that the cases in the
definition of K can be distinguished;

2. It must be possible to define functions which do not terminate in L (we must
therefore have at our disposal some form of iteration or recursion).

At this level of detail, L is nothing special. What programming language does not
provide these constructs? If a language provides these constructs, it can be used in
place of L in the proof, showing that a program like H exists in no programming
language worth its salt.

The undecidability of the halting problem is not, therefore, a contingent fact, re-
lated to any particular programming language, nor is it the expression of our inabil-
ity as programmers. On the contrary, it is a limitation that is in some way absolute,
indissolubly linked to the intuitive concepts of program (algorithm) and with that
of programming language. It is a principle of nature, similar to the conservation of
energy or to the principles of thermodynamics. In nature, there exist more prob-
lems and functions than there are programs that we can write. There are problems
to which there correspond no program that is anything but insignificant; the halting
problem is definitely one of them.

Rather, as argued in Sect. 3.3, the problems for which there exists a program for
their solution constitute only a tiny part of the set of all possible problems.
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As with the halting problem, when we say that some problem is undecidable,
we mean that there exists no program such that: (i) it accepts arbitrary arguments;
(ii) it always terminates and (iii) it determines which arguments are solutions to the
problem and which are not. We will stray too far if we begin a proof of the undecid-
ability of any other important problems; the interested reader can consult any good
text on the theory of computability for them. We can however list some undecid-
able problems without attempting to explain all the terms used or to undertake any
proofs.

The following problems are undecidable:

• Determine whether a program computes a constant function;
• Determine whether two programs compute the same function;
• Determine whether a program terminates for every input;
• Determine whether a program diverges for every input;
• Determine whether a program, given an input, will produce an error during its

execution;
• Determine whether a program will cause a type error (see the box on page 204).

Undecidability results tell us that they do not exist general software tools which
will automatically establish significant properties of programs.

3.3 Formalisms for Computability

To make the discussion of L more precise, we need to fix a programming language
and show that the reasoning of the previous section applies to it. Historically, the
first language in which the impossibility of writing program H was shown was
the language of the Turing Machine. The Turing Machine language is a notation
which is, at first sight, highly rudimentary. It was introduced in the 1930s by the
mathematician Alan M. Turing. It is summarised in the Turing Machines box. It is
at first sight surprising that such a rudimentary formalism (there is no predefined
arithmetic; everything turns on the positioning of a finite number of symbols on
a tape) could be good enough to express computations as sophisticated as those
needed to write K on the basis of H . More surprising is the fact that there exists a
Turing Machine which can act as an interpreter for others; that is a machine which,
once an input has been written on its own tape, as well as the (appropriately coded)
description of a generic machine and an input for it, executes the computation which
that machine would perform on that input. This interpreter is, to all intents and
purposes, a (very simple) computer like those that we know today (program and
data in memory, fundamental cycle which interprets program instructions).

A function is computable in a language L if there exists a program in L which
computes it. More precisely, the (partial—see the box on page 12) function f : A →
B is computable if there exists a program P with the following properties: for each
element a ∈ A, whenever P is executed on an input a, which we write P(a), it
terminates providing as an output f (a) if f (a) is defined; the computation P(a)

does not terminate if f is undefined at a.
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Turing Machines

A Turing machine is composed of an infinite tape, divided into cells, each of which
stores a single symbol from a finite alphabet. A mobile head reads from and writes
to the tape. At any time, the head is positioned over a single cell. The machine is
controlled by a finite-state controller. At each step in the computation, the machine
reads a symbol from the tape and, according to the state of the machine and sym-
bol that it has read, the controller decides which symbol to substitute for it on the
tape and if the head is to move to the left or to the right; the controller therefore
enters another state (remember, there is a finite number of states). The controller of
a Turing machine can be seen as its associated program.

We might expect there to be fewer functions computed by a Turing Machine
than those which can be computed by a sophisticated, modern programming lan-
guage. In investigating this question, there have been many suggestions since the
1930s formalisms for expressing algorithms (programs), amongst which there are
the General Recursive Functions of Church-Gödel and Kleene (which make no ref-
erence to programming languages), the Lambda Calculus (which we will examine
in Chap. 11), and then all current programming languages. Indeed, all these for-
malisms and languages can be simulated by each other. That is, it is possible in
each of these formalisms to write an interpreter for any of the others. From this,
it follows that they are all equivalent in terms of the functions that they compute.
They all compute exactly the same functions as the Turing Machine. In principle,
therefore, every algorithm is expressible in any programming language. This is fre-
quently expressed by saying that all programming languages are Turing complete
(or Turing equivalent). The undecidability results can also be expressed by saying
that there exist functions which cannot be computed (with a Turing Machine, or, by
the above, in any programming language).

If all languages are equivalent with respect to the functions they compute, it
is clear that they are not equivalent as far as their flexibility of use, pragmatics,
abstraction principles and so on, are concerned. And often this complex of properties
is referred to as the expressiveness of a language.

While all these computability formalisms provide a definite result about equiv-
alence in terms of the functions that can be expressed, these same formalisms are
useless when discussing the expressiveness of languages. In fact, even now, there is
no agreement on how formally to tackle these aspects.

3.4 There are More Functions than Algorithms

In Sect. 3.1, we gave a specific example of a uncomputable function. We can give
another proof that there exist functions which cannot be computed using a simple
cardinality argument (though, unlike in Sect. 3.1, we will not produce a specific
example). That is, we show that, in nature, there are more functions than algorithms.
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First of all, let us consider any formal system which allows us to express algo-
rithms and which, for simplicity we can assume to be a programming language,
L , (this could, however, be generalised to a wider definition). It is easy enough
to see that the set of all possible (finite) programs that can be written in L is de-
numerable, that is, they can be put into one-one correspondence with the natural
numbers (which we denote by N). We can, in fact, first consider the set P1 contain-
ing all programs of length one (which contain a single character), then the set P2

containing all programs of length two, and so on. Every set, Pi , is finite and can be
ordered, for example lexicographically (first all programs which begin with a, then
all those which begin with b, and so on by succeeding characters). It is clear that
by doing this, by taking into account the ordering produced by the subscript in the
sets P1,P2, . . . , and then doing the same with the internal indices in each set, we
can count (or enumerate) all possible programs and therefore put them into one-one
correspondence with the natural numbers. In more formal terms, when this has been
done, we can say that the cardinality of the set of all programs writable in L is
equal to the cardinality of the naturals. Let us now consider the set F containing all
the functions N → {0,1}. An important theorem of Cantor states that this set is not
denumerable but has a cardinality which is strictly greater than that of N. Given that
every program expresses a unique function, the set N is too small to contain all the
functions in F as programs in L .

Let us see a direct proof of the fact that F is not denumerable. Let us assume that
F is denumerable, that is it is possible to write F = {fj }j∈N. Let us observe, first
of all, that we can put F into one-one correspondence with the set B of all the infi-
nite sequences of binary numbers. To each fj ∈ F , there corresponds the sequence
bj,1, bj,2, bj,3, . . . , where bj,i = fj (i), for i, j ∈ N. Therefore if F is denumerable,
so too is the set B. Since B is denumerable, we can enumerate its elements one af-
ter the other, listing, for each element (for every sequence), the binary digits which
comprise it. We can arrange such an enumeration in an infinite square matrix:

b1,1, b1,2, b1,3, . . .

b2,1, b2,2, b2,3, . . .

b3,1, b3,2, b3,3, . . .
...

where row j contains the sequence for the j th function. Writing b for the comple-
ment of the binary number b, let us now consider the sequence of binary numbers
b1,1, b2,2, b3,3, . . . . This sequence (since it is an infinite sequence of binary num-
bers) is certainly an element of B, however it does not appear in our matrix (and
therefore does not appear in our enumeration) for the reason that each line is dif-
ferent at at least one point. Along the diagonal, the sequence found in the matrix
has elements bj,j , while, by construction, the new sequence has the element bj,j in
position j .

We have therefore a contradiction: we had assumed that F = {fj }j∈N was an
enumeration of all functions (that is, of all sequences), while we have constructed
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Church’s Thesis

The proofs of equivalence of the various programming languages (and between the
various computability formalisms) are genuine theorems. Given the languages L
and L ′, write first in L the interpreter for L ′ and then write in L ′ the interpreter
for L . At this point L and L ′ are known to be equivalent. A proof of this type
has been effectively given for all existing languages, so they are therefore provably
equivalent. This argument would, in reality, leave open the door to the possibility
that sooner or later someone will be in a position to find an intuitively computable
function which is not associated with a program in any existing programming lan-
guage. All equivalence results proved over more than the last 70 years, however,
amount to convincing evidence that this is impossible. In the mid-1930s, Alonzo
Church proposed a principle (which since then has become known as Church’s, or
the Church-Turing, Thesis) that states exactly this impossibility. We can formulate
Church’s Thesis as: every intuitively computable function is computed by a Turing
Machine.

In contrast to the equivalence results, Church’s Thesis is not a theorem because
it refers to a concept (that of intuitive computability) which is not amenable to for-
mal reasoning. It is, rather, a philosophical principle which the computer science
community assumes with considerable strength to be true so that it will not even be
discredited by new computational paradigms, for example quantum computing.

a function (a sequence) which did not belong to the enumeration. Therefore the
cardinality of F is strictly greater than that of N.

It can be shown that F has the cardinality of the real numbers. This fact indicates
that the set of programs (which is denumerable) is much smaller than that of all
possible functions, and therefore of all possible problems.

3.5 Chapter Summary

The phenomenon of computation on which Computer Science is founded has its
roots in the theory of computability which studies the formalisms in which one can
express algorithms and their limits. The chapter has only presented the main result
of this theory. This is a fact of the greatest importance, one that every computer
scientist should know. The principal concepts which were introduced are:

• Undecidability: there exist many important properties of programs which cannot
be determined in a mechanical fashion by an algorithm; amongst these is the
halting problem.

• Computability: a function is computable when there exists a program which com-
putes it. The undecidability of the halting problem assures us that there exist
functions which are not computable.
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• Partiality: the functions expressed by a program can be undefined on some argu-
ments, corresponding to those data for which the program will fail to terminate.

• Turing Completeness: every general-purpose programming language computes
the same set of functions as those computed by a Turing Machine.

3.6 Bibliographical Notes

The original undecidability result is in the paper by A.M. Turing [3] which ought to
be necessary reading for every computer scientist with an interest in theory. More
can be found on the arguments of this chapter in any good textbook on computability
theory, among which, let us recommend [1], which we cited in Chap. 2, and the clas-
sic [2] which after more than 40 years continues to be one of the most authoritative
references.

3.7 Exercises

1. Proof that the restricted halting problem is undecidable. That is, determine
whether a program terminates when it is applied to itself. (Suggestion: if the
problem were decidable, the program which decides it would have to have the
same property as program K , which can be derived by contradiction in the usual
fashion.)

2. Show that the problem of verifying whether a program computes a constant func-
tion is undecidable. Hint: given a generic program P , consider the program QP ,
with a single input, specified as follows:

QP (y) =
{

1 if P(P ) terminates,

does not terminate otherwise.

(i) Write the program QP ;
(ii) assume now that P is a program such that P(P ) terminates. What is the

behaviour of QP , as y varies?
(iii) what is, on other hand, the behaviour of QP , as y varies, if P(P ) does not

terminate?
(iv) from (ii) and (iii), it can be obtained that QP computes the constant function

one if and only if P(P ) terminates;
(v) if it were now decidable whether a program computes a constant function,

the restricted halting problem would also be decidable, given that the trans-
formation that, given P , constructs QP is completely general.
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Chapter 4
Names and The Environment

The evolution of programming languages can be seen in large measure as a process
which has led, by means of appropriate abstraction mechanisms, to the definition of
formalisms that are increasingly distant from the physical machine. In this context,
names play a fundamental role. A name, indeed, is nothing more than a (possibly
meaningful) sequence of characters used to represent some other thing. They allow
the abstraction either of aspects of data, for example using a name to denote a loca-
tion in memory, or aspects of control, for example representing a set of commands
with a name. The correct handling of names requires precise semantic rules as well
as adequate implementation mechanisms.

In this chapter, we will analyse these rules. We will, in particular, look at the
concept of environment and the constructs used to organise it. We will also look at
visibility (or scope) rules. We leave until the next chapter treatment of the imple-
mentation of these concepts. Let us immediately observe how, in languages with
procedures, in order to define precisely the concept of environment one needs other
concepts, related to parameter passing. We will see these concepts in Chap. 7. In
the case of object-oriented languages, finally, there are other specific visibility rules
which we will consider in Chap. 10.

4.1 Names and Denotable Objects

When we declare a new variable in a program:

int fie;

or we define a new function:

int foo( ){
fie = 1;

}

M. Gabbrielli, S. Martini, Programming Languages: Principles and Paradigms,
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we introduce new names, such as fie and foo to represent an object (a variable
and a function in our example). The character sequence fie can be used every time
that we want to refer to the new variable, just as the character sequence foo allows
us to call the function that assigns to fie the value 1.

A name is therefore nothing more than a sequence of characters used to represent,
or denote, another object.1

In most languages, names are formed of identifiers, that is by alphanumeric to-
kens, moreover other symbols can also be names. For example, + and - are names
which denote, in general, primitive operations.

Even though it might seems obvious, it is important to emphasise that a name
and the object it denotes are not the same thing. A name, indeed, is just a character
string, while its denotation can be a complex objects such as a variable, a function,
a type, and so on. And in fact, a single object can have more than one name (in
this case, one speaks of aliasing), while a single name can denote different objects
at different times. When, therefore, we use, as we may, the phrase “the variable
fie” or the phrase “the function foo”, it should be remembered that the phrases
are abbreviations for “the variable with the name fie” and “the function with the
name foo”. More generally, in programming practice, when a name is used, it is
almost always meant to refer to the object that it denotes.

The use of names implements a first, elementary, data abstraction mechanism.
For example, when, in an imperative language, we define a name using a variable,
we are introducing a symbolic identifier for a memory location; therefore we are
abstracting from the low-level details of memory addresses. If, then, we use the
assignment command:

fie = 2;

the value 2 will be stored in the location reserved for the variable named fie. At
the programming level, the use of the name avoids the need to bother with whatever
this location is. The correspondence between name and memory location must be
guaranteed by the implementation. We will use the term environment to refer to that
part of the implementation responsible for the associations between names and the
objects that they denote. We will see better in Sect. 6.2.1 what exactly constitutes a
variable and how it can be associated with values.

Names are fundamental even for implementing a form of control abstraction.
A procedure2 is nothing more than a name associated with a set of commands, to-
gether with certain visibility rules which make available to the programmer its sole
interface (which is composed of the procedure’s name and possibly some parame-
ters). We will see the specifics of control abstraction in Chap. 7.

1Here and in the rest of this chapter, “object” is intended in a wide sense, with no reference to
technical terms used in the area of object-oriented languages.
2Here and elsewhere, we will use the generic term “procedure” for procedures as well as functions,
methods and subprograms. See also Sect. 7.1.
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4.1.1 Denotable Objects

The objects to which a name can be given are called denotable objects. Even if
there are considerable differences between programming languages, the following
is a non-exhaustive list of possible denotable objects:

• Objects whose names are defined by the user: variables, formal parameters, pro-
cedures (in the broad sense), user-defined types, labels, modules, user-defined
constants, exceptions.

• Objects whose names are defined by the programming language: primitive types,
primitive operations, predefined constants.

The association (or binding) between a name and an object it denotes can there-
fore be created at various times. Some names are associated with objects during the
design of a language, while other associations are introduced only when a program
is executed. Considering the entire process ranging from a programming language’s
definition to the execution of a specific program, we can identify the following
phases for the creation of bindings of names to objects:

Design of language In this phase, bindings between primitive constants, types and
operations of the language are defined (for example, + indicates addition, and int
denotes the type of integers, etc.).

Program writing Given that the programmer chooses names when they write a
program, we can consider this phase as one with the partial definition of some
bindings, later to be completed. The binding of an identifier to a variable, for ex-
ample, is defined in the program but is effectively created only when the space for
the variable is allocated in memory.

Compile time The compiler, translating the constructs of the high-level language
into machine code, allocates memory space for some of the data structures that
can be statically processed. For example, this is the case for the global variables of
a program. The connection between a variable’s identifier and the corresponding
memory location is formed at this time.

Runtime This term denotes the entire period of time between starting and termina-
tion of a program. All the associations that have not previously been created must
be formed at runtime. This is the case, for example, for bindings of variable iden-
tifiers to memory locations for the local variables in a recursive procedure, or for
pointer variables whose memory is allocated dynamically.

In the previous description we have ignored other important phases, such as link-
ing and loading in which other bindings (for example for external names referring
to objects in other modules). In practice, however, two principle phases are distin-
guished using the terms “static” and “dynamic”. The term “static” is used to refer
to everything that happens prior to execution, while “dynamic” refers to everything
that happens during execution. Thus, for example, static memory management is
performed by the compiler, while dynamic management is performed by appropri-
ate operations executed by the abstract machine at runtime.
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Fig. 4.1 A name denoting
different objects

{int fie;
fie = 2;

{char fie;
fie = a;
}

}

4.2 Environments and Blocks

Not all associations between names and denotable objects are fixed once and for
all at the start of program execution. Many can vary during execution. To be able
to understand how these associations behave, we need to introduce the concept of
environment.

Definition 4.1 (Environment) The set of associations between names and denotable
objects which exist at runtime at a specific point in the program and at a specific time
during execution, is called the (referencing) environment.

Usually, when we speak of environments, we refer only to associations that are
not established by the language definition. The environment is therefore that compo-
nent of the abstract machine which, for every name introduced by the programmer
and at every point in the program, allows the determination of what the correct as-
sociation is. Note that the environment does not exist at the level of the physical
machine. The presence of the environment constitutes one of the principle charac-
teristics of high-level languages which must be simulated in a suitable fashion by
each implementation of the language.

A declaration is a construct that allows the introduction of an association in the
environment. High-level languages often have explicit declarations, such as:

int x;
int f (){

return 0;
}
type T = int;

(the first is a declaration of a variable, the second of a function named f, the third
is declaration of a new type, T, which coincides with type int). Some languages
allow implicit declarations which introduce an association in the environment for a
name when it is first used. The denoted object’s type is deduced from the context in
which the name is used for the first time (or sometimes from the syntactic form of
the name).

As we will see in detail below, there are various degrees of freedom in associa-
tions between names and denotable objects. First of all, a single name can denote
different objects in different parts of the program. Consider, for example, the code
of Fig. 4.1. The outermost name fie denotes an integer variable, while the inner
one is of type character.
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It is also possible that a single object is denoted by more than one name in dif-
ferent environments. For example, if we pass a variable by reference to a procedure,
the variable is accessible using its name in the calling program and by means of the
name of the formal parameter in the body of the procedure (see Sect. 7.1.2). Alter-
natively, we can use pointers to create data structures in which the same object is
then accessible using different names.

While different names for the same object are used in different environments, no
particular problems arise. The situation is more complicated when a single object
is visible using different names in the same environment. This is called aliasing
and the different names for the same object called aliases. If the name of a variable
passed by reference to a procedure is also visible inside the same procedure, we have
a situation of aliasing. Other aliasing situations can easily occur using pointers. If X
and Y are variables of pointer type, the assignment X = Y allows us to access the
same location using both X and Y.

Let us consider, for example, the following fragment of C program where, as we
will do in the future, we assume that write(Z) is a procedure which allows us to
print the value of the integer variable Z:

int *X, *Y; // X,Y pointers to integers
X = (int *) malloc (sizeof (int));

// allocate heap memory
*X = 5; // * dereference
Y=X; // Y points to the same object as X
*Y=10;
write(*X);

The names X and Y denote two different variables, which, however, after the execu-
tion of the assignment command X = Y, allow to access the same memory location
(therefore, the next print command will output the value 10).

It is, finally, possible that a single name, in a single textual region of the program,
can denote different objects according to the execution flow of the program. The
situation is more common than it might seem at first sight. It is the case, for example,
for a recursive procedure declaring a local name. Other cases of this type, which are
more subtle, will be discussed below in this chapter when will discuss dynamic
scope (Sect. 4.3.2).

4.2.1 Blocks

Almost all important programming languages today permit the use of blocks, a
structuring method for programs introduced by ALGOL60. Block structuring is fun-
damental to the organisation of the environment.

Definition 4.2 (Block) A block is a textual region of the program, identified by a
start sign and an end sign, which can contain declarations local to that region (that
is, which appear within the region).
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The start- and end-block constructs vary according to the programming language:
begin ... end for languages in the ALGOL family, braces {...} for C and
Java, round brackets (...) for LISP and its dialects, let ... in ... end in
ML, etc. Moreover, the exact definition of block in the specific programming lan-
guage can differ slightly from the one given above. In some cases, for example, one
talks about block only when there are local declarations. Often, though, blocks have
another important function, that of grouping a series of commands into a syntactic
entity which can be considered as a single (composite) command. These distinc-
tions, however, are not relevant as far as we are concerned. We will, therefore, use
the definition given above and we distinguish two cases:

Block associated with a procedure This is a block associated with declarations
local to a procedure. It corresponds textually to the body of the procedure itself,
extended with the declarations of formal parameters.

In-line block This is a block which does not correspond to a declaration of pro-
cedure and which can appear (in general) in any position where a command can
appear.

4.2.2 Types of Environment

The environment changes during the execution of a program. However, the changes
occur generally at two precise times: on the entry and exit of a block. The block
can therefore be considered as the construct of least granularity to which a constant
environment can be associated.3

A block’s environment, meaning by this terminology the environment existing
when the block is executed, is initially composed of associations between names de-
clared locally to the block itself. In most languages allowing blocks, blocks can be
nested; that is, the definition of one block can be wholly included in that of another.
An example of nested anonymous blocks is shown in Fig. 4.1. The overlapping of
blocks so the last open block is not the first block to be closed is never permitted. In
other words a sequence of commands of the following kind is not permitted in any
language:

open block A;
open block B;

close block A;
close block B;

Different languages vary, then, in the type of nesting they permit. In C, for ex-
ample, blocks associated with procedures cannot be nested inside each other (that
is, there cannot be procedure declarations inside other procedures), while in Pascal
and Ada this restriction is not present.4

3Declarations in the block are evaluated when the block is entered and are visible throughout the
block. There exist many exceptions to this rule, some of which will be discussed below.
4The reasons for this restriction in C will be made clear in the next chapter when we will have
discussed techniques for implementing scope rules.
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Block nesting is an important mechanism for structuring the environment. There
are mechanisms that allow the declarations local to a block to be visible in blocks
nested inside it.

Remaining informal for the time being, we say that a declaration local to a block
is visible in another block when the association created by such a declaration is
present in the second block. Those mechanisms of the language which regulate how
and when the declaration is visible are called visibility rules. The canonical visibility
rule for languages with blocks is well known:

A declaration local to a block is visible in that block and in all blocks listed within it, unless
there is a new declaration of the same name in that same block. In this case, in the block
which contains the redefinition the new declaration hides the previous one.

In the case in which there is a redefinition, the visibility rule establishes that only
the last name declared will be visible in the internal block, while in the exterior
one there is a visibility hole. The association for the name declared in the external
block will be, in fact, deactivated for the whole of the interior block (containing
the new declaration) and will be reactivated on exit from the inner block. Note that
there is no visibility from the outside inwards. Every association introduced in the
environment local to a block is not active (or rather the name that it defines is not
visible) in an exterior block which contains the interior one. Analogously, if we have
two blocks at the same nesting level, or if neither of the two contains the other, a
name introduced locally in one block is not visible in the other.

The definition just given, although apparently precise, is insufficiently so to es-
tablish with precision what the environment will be at an arbitrary point in a pro-
gram. We will assume this rule for the rest of this section, while the next will be
concerned with stating the visibility rules correctly.

In general we can identify three components of an environment, as stated in the
following definition.

Definition 4.3 (Type of environment) The environment associated with a block is
formed of the following components:

Local environment This is composed of the set of associations for names declared
locally to the block. In the case in which the block is for a procedure, the local en-
vironment contains also the associations for the formal parameters, given that they
can be seen, as far as the environment is concerned, as locally declared variables.

Non-local environment This is the environment formed from the associations for
names which are visible from inside a block but which have not been declared
locally.

Global environment Finally, there is the environment formed from associations
created when the program’s execution began. It contains the associations for names
which can be used in all blocks forming the program.

The environment local to a block can be determined by considering only the dec-
larations present in the block. We must look outside the block to define the non-local
environment. The global environment is part of the non-local environment. Names
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Fig. 4.2 Nested blocks with
different environments

A:{int a =1;

B:{int b = 2;
int c = 2;

C:{int c =3;
int d;
d = a+b+c;
write(d)

}

D:{int e;
e = a+b+c;
write(e)

}
}

}

introduced in the local environment can be themselves present in the non-local en-
vironment. In such cases, the innermost (local) declaration hides the outermost one.

The visibility rules specify how names declared in external blocks are visible in
internal ones. In some cases, it is possible to import names from other, separately
defined modules. The associations for these names are part of the global environ-
ment.

We will now consider the example in Fig. 4.2, where, for ease of reference, we
assume that the blocks can be labelled (as before, we assume also that write(x)
allows us to print an integer value). The labels behave as comments as far as the
execution is concerned.

Let us assume that block A is the outermost. It corresponds to the main program.
The declaration of the variable a introduces an association in the global environ-
ment.

Inside block B two variables are declared locally (b and c). The environment for
B is therefore formed of the local environment, containing the association for the
two names (b and c) and from the global environment containing the association
for a.

Inside block C, 2 local variables (c and d) are declared. The environment of
C is therefore formed from the local environment, which contains the association
for the two names (c and d) and from the non-local environment containing the
same global environment as above, and also the association for the name b which
is inherited from the environment of block B. Note that the local declaration of c in
block C hides the declaration of c present in block B. The print command present in
block C will therefore print the value 6.

In block D, finally, we have a local environment containing the association for the
local name e, the usual global environment and the non-local environment, which,
in addition to the association for a contains the association for the names b and c
introduced in block B. Given that variable c has not been internally re-declared, in
this case, therefore, the variable declared in block B remains visible and the value
printed will be 5. Note that the association for the name d does not appear in the
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environment non-local to D, given that this name is introduced in an exterior block
which does not contain D. The visibility rules, indeed, allows only the inheritance
of names declared in exterior blocks from interior ones and not vice versa.

4.2.3 Operations on Environments

As we have seen, changes in the environment are produced at entry to and exit from
a block. In more detail, during the execution of the program, when a new block is
entered, the following modifications are made to the environment:

1. Associations between locally declared names and the corresponding denotable
objects are created.

2. Associations with names declared external to and redefined inside the block are
deactivated.

Also when the block is exited, the environment is modified as follows:

1. The associations for names declared locally to the block and the objects they
denote are destroyed .

2. The associations are reactivated between names that existed external to the block
and which were redefined inside it.

More generally, we can identify the following operations on names and on the
environment:

Creation of associations between names and denoted object (naming) This is
the elaboration of a declaration (or the connection of a formal to an actual param-
eter) when a new block containing local or parameter declarations is entered.

Reference to a denoted object via its name This is the use of the name (in an ex-
pression, in a command, or in any other context). The name is used to access the
denoted object.

Deactivation of association between name and denoted object This happens
when entering a block in which a new association for that name is created locally.
The old association is not destroyed but remains (inactive) in the environment. It
will be usable again when the block containing the new association is left.

Reactivation of an association between name and denoted object When leav-
ing block in which a new association for that name is created locally, reactivation
occurs. The previous association, which was deactivated on entry to the block, can
now be used.

Destruction of an association between name and denoted object (unnaming)
This is performed on local associations when the block in which these associa-
tions were created is exited. The association is removed from environment and can
no longer be used.

Let us explicitly note, however, that any environment contains both active and
inactive associations (they correspond to declarations that have been hidden by the



76 4 Names and The Environment

effects of the visibility rules). As far as denotable objects are concerned, the follow-
ing operations are permitted:

Creation of a denotable object This operation is performed while allocating the
storage necessary to contain the object. Sometimes, creation includes also the ini-
tialisation of the object.

Access to a denotable object Using the name, and hence the environment, we can
access the denotable object and thus access its value (for example, to read the
content of a variable). Let us observe that the set of rules which locate the environ-
ment has, as its aim, making the association between a name and the object which
it refers one-to-one (at a given point in the program and during a given execution).

Modification of a denotable object It is always possible to access the denotable
object via a name and then modify its value (for example, by assigning a value to
a variable).

Destruction of a denotable object An object can be destroyed by reallocating the
memory reserved for it.

In many languages, the operations of creating an association between the name
and a denotable object and that of creating a denotable object take place at the same
time. This is the case, for example, in a declaration of the form:

int x;

This declaration introduces into the environment a new association between the
name x and an integer variable. At the same time, it allocates the memory for the
variable.

Yet, this is not always the case and, in general, it is not stated that the lifetime of a
denotable object, that is the time between the creation of the object and its destruc-
tion, coincides with the lifetime of the association between name and object. Indeed,
a denotable object can have a lifetime that is greater than the association between a
name and the object itself, as the case in which a variable is passed to a procedure
by reference. The association between the formal parameter and associated variable
has a lifetime less than that of the variable itself. More generally, a situation of this
type occurs when a temporary name (for example, one local to a block) is introduced
for an object which already has a name.

Note that the situation we are considering is not that shown in Fig. 4.2. In this
case, indeed, the internal declaration of the variable, c, does not introduce a new
name for an existing object, but introduces a new object (a new variable).

Even if, at first sight, this seems odd, it can also be the case that the lifetime of
an association between name and a denoted object is greater than that of the object
itself. More precisely, it can be the case that a name allows access to an object
which no longer exists. Such an anomalous situation can occur, for example, if we
call by reference an existing object and then deallocate the memory for it before
the procedure terminates. The formal parameter to the procedure, in this case, will
denote an object which no longer exists. A situation of this type, in which it is
possible to access an object whose memory has been reallocated, is called a dangling
reference and is a symptom of an error. We will return to the problem dangling
references in Chap. 8, where we will present some methods to handle them.
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4.3 Scope Rules

We have seen how, on block entry and exit, the environment can change as a result
of the operations for the creation, destruction, activation and the deactivation of
associations. These changes are reasonably clear for local environments, but are less
clear where the non-local environment is concerned. The visibility rules stated in
the previous section indeed lend themselves to at least two different interpretations.
Consider for example the following program fragment:

A:{int x = 0;

void fie(){
x = 1;

}

B:{int x;
fie();

}

write(x);
}

Which value will be printed? To answer this question, the fundamental problem
is knowing which declaration of x refers to the non-local occurrence of this name
appearing in the assignment in procedure fie’s body. On the one hand, we can
reasonably think that the value 1 is printed, given that procedure fie is defined in
block A and, therefore, the x which appears in the body of the procedure could be
that defined on the first line of A. On the other hand, however, we can also reason as
follows. When we call procedure fie, we are in block B, so the x that we are using
in the assignment present in the body of the procedure is the one declared locally
to block B. This local variable is now no longer visible when we exit block B, so
write(x) refers to the variable x declared and initialised to 0 in block A and never
again modified. Therefore the procedure prints the value 0.

Before the reader tries to find possible tricks in the above reasoning, we must
assert that they are both legitimate. The result of the program fragment depends on
the scope rule being used, as will become clear at the end of the section. The visibil-
ity rule that we have stated above establishes that a “declaration local to a block is
visible in that block and all the blocks nested within it” but does not specify whether
this concept of nesting must be considered in a static (that is based on the text of
the program) or dynamic (that is based on the flow of execution) fashion. When
the visibility rules, also called scope rules, depend only on the syntactic structure
of the program, we will talk of a language with static or lexical scope. When it
is influenced also by the control flow at runtime, we are dealing with a language
with dynamic scope. In the following sections we will analyse these two concepts
in detail.
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4.3.1 Static Scope

In a language with static (or lexical) scope, the environment in force at any point
of the program and at any point during execution depends uniquely on the syntactic
structure of the program itself. Such an environment can then be determined com-
pletely by the compiler, hence the term “static”.

Obviously there can be different static scope rules. One of the simplest, for ex-
ample, is that of the first version of the Basic language which allowed a single global
environment in which it was possible to use only a small number of names (some
hundreds) and where declarations were not used.

Much more interesting is the static scope rule that is used in those block-
structured languages that allow nesting. This was introduced in ALGOL60 and is
retained, with few modifications, by many modern languages, including Ada, Pas-
cal and Java. The rule can be defined as follows:

Definition 4.4 (Static Scope) The static scope rule, or the rule of nearest nested
scope, is defined by the following three rules:

(i) The declarations local to a block define the local environment of that block. The
local declarations of a block include only those present in the block (usually
at the start of the block itself) and not those possibly present in blocks nested
inside the block in question.

(ii) If a name is used inside a block, the valid association for this name is the one
present in the environment local to the block, if it exists. If no association for
the name exists in the environment local to the block, the associations exist-
ing in the environment local to the block immediately containing the starting
block are considered. If the association is found in this block, it is the valid
one, otherwise the search continues with the blocks containing the one with
which we started, from the nearest to the furthest. If, during this search, the
outermost block is reached and it contains no association for the name, then
this association must be looked up in the language’s predefined environment.
If no association exists here, there is an error.

(iii) A block can be assigned a name, in which case the name is part of the lo-
cal environment of the block which immediately includes the block to which
the name has been assigned. This is the case also for blocks associated with
procedures.

It can be immediately seen that this definition corresponds to the informal visibil-
ity rules that we have already discussed, suitably completed by a static interpretation
of the concept of nesting.

Among the various details of the rule, the fact should not escape us that the
declaration of a procedure introduces an association for name of a procedures in
the environment local to the block containing the declaration (therefore, because of
nesting, the association is also visible in the block which constitutes the body of
the procedure, a fact which permits the definition of recursive procedures). The pro-
cedure’s formal parameters, moreover, are present only in the environment local to
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Fig. 4.3 An example of
static scope

{int x = 0;
void fie(int n){

x = n+1;
}
fie(3);
write(x);

{int x = 0;
fie(3);
write(x);
}

write(x);
}

the procedure and are not visible in the environment which contains the procedure’s
declaration.

In a language with static scope, we will call the scope of a declaration that portion
of the program in which the declaration is visible according to Definition 4.4.

We conclude our analysis of static scope by discussing the example in Fig. 4.3.
The first and third occurrences of write print the value 4, while the second prints
the value 0. Note that the formal parameter, n, is not visible outside of the body of
the procedure.

Static scope allows the determination of all the environments present in a pro-
gram simply by reading its text. This has two important consequences of a positive
nature. First, the programmer has a better understanding of the program, as far as
they can connect every occurrence of a name to its correct declaration by observing
the textual structure of the program and without having to simulate its execution.
Moreover, this connection can also be made by the compiler which can therefore
determine each and every use of a name. This makes it possible, at compile time,
to perform a great number of correctness tests using the information contained in
types; it can also perform considerable number of code optimisations. For exam-
ple, if the compiler knows (using declarations) that the variable x which occurs in
a block is an integer variable, it will signal an error in the case in which a character
is assigned to this variable. Similarly, if the compiler knows that the constant fie
is associated with the value 10, it can substitute the value 10 for every reference
to fie, so avoiding having to arrange for this operation to be performed at run-
time, therefore, it updates the code. If, instead, the correct declaration for x and for
fie can be determined only at execution time, it is clear that these checks and this
optimisation are not possible as compilation time.

Note that, even with the static scope rules, the compiler cannot know in general
which memory location will be assigned to the variable with name x nor what its
value might be, given that this information depends on the execution of the program.
When using the static scope rule, moreover, the compiler is in possession of some
important information about the storage of variables (in particular it knows the off-
sets relative to a fixed position, as we will see in detail in the next chapter), that
it uses to compile efficient accesses to variables. As we will see, this information
is not available using dynamic scope, which, therefore, leads to less efficient exe-
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Fig. 4.4 An example of
dynamic scope

{const x = 0;
void fie(){

write(x);
}
void foo(){

const x =1;
fie();

}
foo();
}

cution. For these reasons, most current languages (for example ALGOL, Pascal, C,
C++, Ada, scheme and Java) use some form of static scope.

4.3.2 Dynamic Scope

Dynamic scope was introduced in some languages, such as, for example, APL, LISP

(some versions), SNOBOL and PERL, mainly to simplify runtime environment
management. In fact it is true that static scope imposes a fairly complicated runtime
regime because the various non-local environments are involved in a way that does
not reflect the normal flow of activation and deactivation of blocks. We seek to un-
derstand the problem by considering the fragment of code in Fig. 4.4 and following
its execution. First, the outermost block is entered and the association between the
name x and the constant 0 is created, as well as that between the names fie, foo
and associated procedures (as we said above, this association can be performed by
the compiler). Next the call to the procedure foo is executed and control enters the
block associated with the procedure. In this block, the link between the name x and
the constant 1 is created; then the call to procedure fie is executed which causes
entry to a new block (the one for the latter procedure). It is at this point that the
command write(x) is executed and given that x is not a name local to the block
introduced by the procedure fie, the association for the name x must be looked
up in outer blocks. However, according to the rules of static scope, as presented in
the last section, the first external block in which to look for the association for x is
not the last block to be activated (it is the one for procedure foo in our example);
such an external block depends on the structure of the program. In this case, then,
the correct association for the name x used by fie is the one located in the first
block and consequently the value 0 is printed. The block belonging to procedure
foo, even if it contains a declaration for x and is still active, is not considered.

Generalising from the previous example, we can say that, under static scope,
the sequence of blocks that must be considered to resolve references to non-local
names is different from the sequence of blocks that is opened and exited during
the program’s normal flow of control. The opening and closing can be handled in a
natural manner using the LIFO (Last In First Out) discipline, that is using a stack.
The sequence of blocks that need examining to implement static scope depends on
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Fig. 4.5 Another example of
dynamic scope

{const x = 0;
void fie(){

write(x);
}
void foo(){

const x = 1;
{const x = 2;
}

foo();
}
foo();
}

the syntactic structure of the program and being able to handle it correctly at runtime
depends upon the use of additional data structures, as we will see in detail in the next
chapter.

To simplify the management of the runtime environment some languages use
then the dynamic scope rule. This rule determines the associations between names
and denoted objects using the backward execution of the program. In such lan-
guages, resolving non-local names requires only a stack dedicated to handling
blocks at runtime. In our example, this means that, when the command write(x)
is executed, the association for the name and x is sought in the second block (rela-
tive to procedure foo), rather than in the first block, because this is the last block,
different from the current one, in which we entered and from which we have not yet
exited. Given that in the second block, we find the declaration const x = 1, in
the case of dynamic scope the preceding program prints the value 1.

With more precision the dynamic scope rule, also called the rule of the most
recent association, can be defined as follows.

Definition 4.5 (Dynamic Scope) According to the rule of dynamic scope, the valid
association for a name X, at any point P of a program, is the most recent (in the
temporal sense) association created for X which is still active when control flow
arrives at P.

It is appropriate to observe that this rule does not contradict the informal visibility
rule that we stated in Sect. 4.2.2. A moment’s reflection shows, indeed, that the
dynamic scope rule expresses nothing other than the same visibility rule but the
concept of block nesting is understood in a dynamic sense.

Let us again note how the difference between static and dynamic scope enters
only into the determination of the environment which is currently not local and not
global. For the local and global environment, the two rules coincide.

Let us conclude by discussing the example in Fig. 4.5. In a language with dy-
namic scope, the code prints the value 1 because when the command write(x) is
executed, the last association created for x which is still active associates x with 1.
The association which associates x to 2, even if it is the most recent one to be
created, is no longer active when procedure fie is executed and is therefore not
considered.
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Note that dynamic scope allows the modification of the behaviour of procedure
or subprogram without using explicit parameters but only by redefining some of the
non-local variables used. To explain this point, assume that we have a procedure
visualise(text) which can visualise text in various colours, according to the
value of the non-local variable colour. If we assume that in the majority of cases,
the procedure visualises text in black, it is natural to assume that we do not wish to
introduce another parameter to the procedure in order to determine the colour. If the
language uses dynamic scope, in the case in which the procedure has to visualise a
text in red, it will be enough to introduce the declaration for the variable colour
before the call of the procedure. We can therefore write:

...
{var colour = red;
visualise(head);
}

Then the call to procedure visualise now will use the colour red, because of the
effect of dynamic scope.

This flexibility of dynamic scope, is, on the one hand, advantageous, yet, on the
other, it often makes programs more difficult to read, given that the same procedure
call, in conditions differing by only one non-local variable can produce different re-
sults. If the variable (colour in our example) is modified in an area of program that
is distant from the procedure call, understanding what has happened will probably
turn out to be difficult.

For this reason, as well as for low runtime efficiency, dynamic scope remains
little used in modern general-purpose languages, which instead use the static scope
rule.

4.3.3 Some Scope Problems

In this section, we will discuss some questions about static scope. The major dif-
ferences between the rules for static scope in various languages are based on where
declarations can be introduced and what will be the exact visibility of the local
variables. The scope rules just introduced, lend themselves to more than one inter-
pretation and, in some cases, they can also be the cause of anomalous behaviour. Let
us discuss here some different and important situations that can happen.

Let us, first, take the case of Pascal in which the static scope rule that we have
already seen is extended with the following additional rules:

1. Declarations can appear only at the start of a block.
2. The scope of a name extends from the start to the end of the block in which

the declaration of the name itself appears (excluding possible holes in scope)
independent of the position of that declaration.
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3. All names not predefined by the language must be declared before use.

It is an error therefore to write:

begin
const fie = value;
const value = 0;

...
end

This is because value is used before its definition. It could be assumed that such
a fragment might be correct if it were inserted into a block already containing a
definition of value. Also in this case, though, an error is produced. In fact, let us
write:

begin
const value = 1;
procedure foo;

const fie = value;
const value = 0;
...
begin
...
end

...
end

Now, the rules that we have seen tell us that the declaration of the procedure foo
introduces an internal block in which the local declaration of value (which initialises
to the constant to 0) covers the external declaration (which initialises the constant
to 1). Therefore the name value appearing in the declaration

const fie = value;

must refer to the declaration

const value = 0;

in the internal block. However this declaration occurs after the use of the name,
therefore contravening Rule 3. In such a case, therefore, the more correct behaviour
for a Pascal compiler is to raise a static semantic error as soon as it has analysed
the declaration of fie. Some compilers, though, assign to fie the value 1; this is
clearly incorrect for the reason that it violates the visibility rule.

To avoid this type of problem, some languages with static scope, such as C and
Ada, limit the scope of declarations to that portion of the block between the point
at which the declarations occur and the end of the book itself (excluding, as usual,
holes in scope).

In these languages, therefore, we do not encounter the above problem where the
name value appearing in the declaration
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Fig. 4.6 A list

const fie = value;

would refer to the declaration in the external block, given that the name internally
declared is no longer visible. However, also in these languages names must be de-
clared before being used. So also in this case the following declarations

const fie = value;
const value = 0;

produce an error if value is not declared in an external block.
Rule 3, which prescribes declaration before use, is particularly burdensome in

some cases. Indeed, it forbids the definition of recursive types or mutually recursive
procedures.

Let us assume, for example, that we want to define a data type like a list which,
as we know, is a variable-length data structure formed of a (possibly empty) ordered
sequence of elements of some type and in which it is possible to add or remove
elements. In a list, only the first element can be directly accessed (to access an
arbitrary element, it is necessary to traverse the list sequentially). A list, as shown in
Fig. 4.6, can be implemented using a sequence of elements, each of which is formed
of two fields: the first will contain the information we want to store (for example,
an integer); the second will contain a pointer to the next element of the list, if it
exists, otherwise it stores the value nil if the list has ended. We can access the list
using the pointer of the first element of the list (which is usually called the head). In
Pascal, we can define the list type as follows:

type list = ˆelement;
type element = record

information: integer;
successor: list
end

Here ˆT denotes the type of pointers to objects of type T. A value of type list is a
pointer to an arbitrary element of the list. The value of type element corresponds
to an element of the list, which is composed of an integer and by a field the type
list which allows it to connect to the next element. This declaration is incorrect
according to Rule 3. In fact, whatever the order of the declarations of list and el-
ement may be, it can be seen that we use a name which has not yet been defined.
This problem is resolved in Pascal by relaxing Rule 3. For data of a pointer type,
and only for them, is it permitted to refer to a name that has not yet been declared.
The declaration given above for list are therefore correct in Pascal.

In the case of C and Ada, on the other hand, the analogues of the previous dec-
larations are not permitted. To specify mutually recursive types, it is necessary to
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use incomplete declarations which introduce a name which will later be specified in
full. For example, in Ada we can write:

type element;
type list is access element;
type element is record

information: integer;
successor: list;
end record;

This solves the problem of using a name before its declaration.
The problem presents itself in the analogous case of the definition of mutually

recursive procedures. Here, Pascal uses incomplete definitions. If procedure fie is
to be defined in terms of procedure foo and vice versa, in Pascal, we must write:

procedure fie(A:integer); forward;
procedure foo(B: integer);

begin
...
fie(3);
...
end

procedure fie;
begin
...
foo(4);
...
end

In the case of function names, it is strange to observe that C, on the other hand,
allows the use of an identifier before its declaration. The declaration of mutually
recursive functions does not require any special treatment.

Rule 3 is relaxed in as many ways as there are programming languages. Java, for
example, allows a declaration to appear at any point in a block. If the declaration
is of a variable, the scope of the name being declared extends from the point of
declaration to the end of the block (excluding possible holes in scope). If, on the
other hand, the declaration refers to a member of a class (either a field or a method),
it is visible in all classes in which it appears, independent of the order in which the
declarations occur.

4.4 Chapter Summary

In this chapter we have seen the primary aspects of name handling in high-level
languages. The presence of the environment, that is of a set of associations between
names and the objects they represent, constitute one of the principal characteristics
that differentiate high-level from low-level languages. Given the lack of environ-
ment in low-level languages, name management, as well as that of the environment,
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is an important aspect in the implementation of a high-level language. We will see
implementation aspects of name management in the next chapter. Here we are in-
terested in those aspects which must be known to every user (programmer) of a
high-level language so that they fully understand the significance of names and,
therefore, of the behaviour of programs.

In particular, we have analysed the aspects that are listed below:

• The concept of denotable objects. These are the objects to which names can be
given. Denotable objects vary according to the language under consideration,
even if some categories of object (for example, variables) are fairly general.

• Environment. The set of associations existing at runtime between names and de-
notable objects.

• Blocks. In-line or associated with procedures, these are the fundamental construct
for structuring the environment and for the definition of visibility rules.

• Environment Types. These are the three components which at any time charac-
terise the overall environment: local environment, global environment and non-
local environment.

• Operations on Environments. Associations present in the environment in addition
to being created and destroyed, can also be deactivated, a re-activated and, clearly,
can be used.

• Scope Rules. Those rules which, in every language, determine the visibility of
names.

• Static Scope. The kind of scope rule typically used by the most important pro-
gramming languages.

• Dynamic Scope. The scope rule that is easiest to implement. Used today in few
languages.

In an informal fashion, we can say that the rules which define the environment are
composed of rules for visibility between blocks and of scope rules, which charac-
terise how the non-local environment is determined. In the presence of procedures,
the rules we have given are not yet sufficient to define the concept of environment.
We will return to this issue in Chap. 7 (in particular at the end of Sect. 7.2.1).

4.5 Bibliographical Notes

General texts on programming languages, such as for example [2, 3] and [4], treat
the problems seen in this chapter, even if they are almost always viewed in the con-
text of the implementation. For reasons of clarity of exposition, we have chosen to
consider in this chapter only the semantic rules for name handling and the environ-
ment, while we will consider their implementation in the next chapter.

For the rules used by individual languages, it is necessary to refer to the specific
manuals, some of which are mentioned in bibliographical notes for Chap. 13, even
if at times, as we have discussed in Sect. 4.3.3, not all the details are adequately
clarified.

The discussion in Sect. 4.3.3 draws on material from [1].
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4.6 Exercises

Exercises 6–13, while really being centred on issues relating to scope, presuppose
knowledge of parameter passing which we will discuss in Chap. 7.

1. Consider the following program fragment written in a pseudo-language which
uses static scope and where the primitive read(Y) allows the reading of the
variable Y from standard input.

...
int X = 0;
int Y;

void fie(){
X++;

}
void foo(){

X++;
fie();

}
read(Y);
if Y > 0{int X = 5;

foo();}
else foo();
write(X);

State what the printed values are.
2. Consider the following program fragment written in a pseudo-language that

uses dynamic scope.

...
int X;
X = 1;
int Y;
void fie() {

foo();
X = 0;

}
void foo(){

int X;
X = 5;

}
read(Y);
if Y > 0{int X;

X = 4;
fie();}

else fie();
write(X);

State which is (or are) the printed values.
3. Consider the following code fragment in which there are gaps indicated by (*)

and (**). Provide code to insert in these positions in such a way that:
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a. If the language being used employs static scope, the two calls to the proce-
dure foo assign the same value to x.

b. If the language being used employs dynamic scope, the two calls to the pro-
cedure foo assign different values to x.

The function foo must be appropriately declared at (*).

{int i;
(*)
for (i=0; i<=1; i++){

int x;
(**)
x= foo();
}

}

4. Provide an example of a denotable object whose life is longer than that of the
references (names, pointers, etc.) to it.

5. Provide an example of a connection between a name and a denotable object
whose life is longer than that of the object itself.

6. Say what will be printed by the following code fragment written in a pseudo-
language which uses static scope; the parameters are passed by a value.

{int x = 2;
int fie(int y){

x = x + y;
}

{int x = 5;
fie(x);
write(x);
}
write(x);

}

7. Say what is printed by the code in the previous exercise if it uses dynamic scope
and call by reference.

8. State what is printed by the following fragment of code written in a pseudo-
language which uses static scope and passes parameters by reference.

{int x = 2;
void fie(reference int y){

x = x + y;
y = y + 1;

}
{int x = 5;
int y = 5;
fie(x);
write(x);
}
write(x);

}
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9. State what will be printed by the following code fragment written in a pseudo-
language which uses static scope and passes its parameters by value (a com-
mand of the form foo(w++) passes the current value of w to foo and then
increments it by one).

{int x = 2;
void fie(value int y){

x = x + y;
}
{int x = 5;
fie(x++);
write(x);
}
write(x);

}

10. State what will be printed by the following fragment of code written in a
pseudo-language which uses static scope and call by name.

{int x = 2;
void fie(name int y){

x = x + y;
}
{int x = 5;

{int x = 7
}

fie(x++);
write(x);
}
write(x);

}

11. State what will be printed by the following code written in a pseudo-language
which uses dynamic scope and call by reference.

{int x = 1;
int y = 1;
void fie(reference int z){

z = x + y + z;
}
{int y = 3;
{int x = 3
}
fie(y);
write(y);

}
write(y);

}

12. State what will be printed by the following fragment of code written in a
pseudo-language which uses static scope and call by reference.
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{int x = 0;
int A(reference int y) {

int x =2;
y=y+1;
return B(y)+x;

}
int B(reference int y){

int C(reference int y){
int x = 3;
return A(y)+x+y;

}
if (y==1) return C(x)+y;
else return x+y;

}
write (A(x));

}

13. Consider the following fragment of code in a language with static scope and
parameter passing both by value and by name:

{int z= 0;
int Omega(){

return Omega();
}
int foo(int x, int y){

if (x==0) return x;
else return x+y;

}
write(foo(z, Omega()+z));

}

(i) State what will be the result of the execution of this fragment in the case in
which the parameters to foo are passed by name.

(ii) State what will be the result of the execution of this fragment in the case in
which the parameters to foo are passed by value.
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Chapter 5
Memory Management

An important component of an abstract machine’s interpreter is the one dealing
with memory management. If this component can be extremely simple in a physical
machine, memory management in an abstract machine for a high-level language is
fairly complicated and can employ a range of techniques. We will see both static and
dynamic management and will examine activation records, the system stack and the
heap. One section in particular is dedicated to the data structures and mechanisms
used to implement scope rules.

Conceptually, garbage-collection techniques, techniques for the automatic recov-
ery of memory allocated in a heap, are included in memory management. How-
ever, to make the presentation more coherent, these techniques will be explained in
Sect. 8.12, after having dealt with data types and pointers.

5.1 Techniques for Memory Management

As we said in Chap. 1, memory management is one of the functions of the interpreter
associated with an abstract machine. This functionality manages the allocation of
memory for programs and for data, that is determines how they must be arranged
in memory, how much time they may remain and which auxiliary structures are
required to fetch information from memory.

In the case of a low-level abstract machine, the hardware, for example, memory
management is very simple and can be entirely static. Before execution of the pro-
gram begins, machine language program and its associated data is loaded into an
appropriate area of memory, where it remains until its execution ends.

In the case of a high-level language, matters are, for various reasons, more com-
plicated. First of all, if the language permits recursion, static allocation is insuf-
ficient.1 In fact, while we can statically establish the maximum number of active
procedures at any point during execution in the case of languages without recursion,

1We will see below an exception to this general principle. This is the case of so-called tail recursion.
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when we have recursive procedures this is no longer true because the number of si-
multaneously active procedure calls can depend on the parameters of the procedures
or, generally, on information available only at runtime.

Example 5.1 Consider the following fragment:

int fib (int n) {
if (n == 0) return 1;
else if (n == 1) return 1;

else return fib(n-1) + fib(n-2);
}

which, if called with an argument n, computes (in a very inefficient way) the value
of the nth Fibonacci number. Let us recall that Fibonacci numbers are the terms
of the sequence2 defined inductively as follows: Fib(0) = Fib(1) = 1; Fib(n) =
Fib(n − 1) + Fib(n − 2), for n > 1. It is clear that the number of active calls to
Fib depends, other than on the point of execution, on the value of the argument, n.
Using a simple recurrence relation, it can be verified that the number, C(n), of
calls to Fib necessary to calculate the value of the term Fib(n) (and, therefore,
the simultaneously active calls) is exactly equal to this value. From a simple inspec-
tion of the code, indeed, it can be seen that C(n) = 1 for n = 0 and n = 1, while
C(n) = C(n−1)+C(n−2) for n > 1. It is known that the Fibonacci numbers grow
exponentially, so the number of calls to fib is of the order of O(2n).

Given that every procedure call requires its own memory space to store param-
eters, intermediate results, return addresses, and so on, in the presence of recursive
procedures, static allocation of memory is no longer sufficient and we have to allow
dynamic memory allocation and deallocation operations, which are performed dur-
ing the execution of the program. Such dynamic memory processing can be imple-
mented in a natural fashion using a stack for procedure (or in-line block) activations
since they follow a LIFO (Last In First Out) policy—the last procedure called (or
the last block entered) will be the first to be exited.

There are, however, other cases which require dynamic memory management for
which a stack is not enough. These are cases in which the language allows explicit
memory allocation and deallocation operations, as happens, for example, in C with
the malloc and free commands. In these cases, given that the allocation opera-
tion (malloc) and the one for deallocation (free) can be alternated in any order
whatsoever, it is not possible to use a stack to manage the memory and, as we will
better see as the chapter unfolds, a particular memory structure called a heap is used.

2The sequence takes the name of the Pisan mathematician of the same name, known also as
Leonardo da Pisa (ca., 1175–1250), who seems to have encountered the sequence by studying
the increase in a population of rabbits. For information on inductive definition, see the box on
page 153.
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5.2 Static Memory Management

Static memory management is performed by the complier before execution starts.
Statically allocated memory objects reside in a fixed zone of memory (which is
determined by the compiler) and they remain there for the entire duration of the
program’s execution. Typical elements for which it is possible statically to allocate
memory are global variables. These indeed can be stored in a memory area that is
fixed before execution begins because they are visible throughout the program. The
object code instructions produced by the compiler can be considered another kind
of static object, given that normally they do not change during the execution of the
program, so in this case also memory will be allocated by the compiler. Constants
are other elements that can be handled statically (in the case in which their values
do not depend on other values which are unknown at compile time). Finally, various
compiler-generated tables, necessary for the runtime support of the language (for
example, for handling names, for type checking, for garbage collection) are stored
in reserved areas allocated by the compiler.

In the case in which the language does not support recursion, as we have antic-
ipated, it is possible statically to handle the memory for other components of the
language. Substantially, this is done by statically associating an area of memory in
which is stored the information local to the procedure with each procedure (or sub-
routine)3 itself. This information is composed of local variables, possible parameters
of the procedure (containing both arguments and results), the return address (or the
address to which control must pass when the procedure terminates), possible tem-
porary values used in complex calculations and various pieces of “bookkeeping”
information (saved register values, information for debugging and so on).

The situation of a language with only static memory allocation is shown in
Fig. 5.1.

It will be noted that successive calls to the same procedure share the same mem-
ory areas. This is correct because, in the absence of recursion, there cannot be two
different calls to the same procedure that are active at the same time.

5.3 Dynamic Memory Management Using Stacks

Most modern programming languages allow block structuring of programs.4

Blocks, whether in-line or associated with procedures, are entered and left using
the LIFO scheme. When a block A is entered, and then a block B is entered, before
leaving A, it is necessary to leave B. It is therefore natural to manage the memory

3It would be more correct to speak of subroutines because this was the term used in languages that
used static memory allocation, such as, for example, the first versions of FORTRAN from the 1960s
and 70s.
4We will see below that important languages, such as C, though, do not offer the full potential
of this mechanism, in that they do not permit the declaration of local procedures and functions in
nested blocks.
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Fig. 5.1 Static memory
management

space required to store the information local to each block using a stack. We will
see an example.

Example 5.2 Let us consider the following program:

A:{int a = 1;
int b = 0;

B:{int c = 3;
int b = 3;
}

b=a+1;
}

At runtime, when block A is entered, a push operation allocates a space large
enough to hold the variables a and b, as shown in Fig. 5.2. When block B is entered,
we have to allocate a new space on the stack for the variables c and b (recall that
the inner variable b is different from the outer one) and therefore the situation, after
this second allocation, is that shown in Fig. 5.3. When block B exits, on the other
hand, it is necessary to perform a pop operation to deallocate the space that had
been reserved for the block from the stack. The situation after such a deallocation
and after the assignment is shown in Fig. 5.4. Analogously, when block A exits, it
will be necessary to perform another pop to deallocate the space for A as well.

The case of procedures is analogous and we consider it in Sect. 5.3.2.
The memory space, allocated on the stack, dedicated to an in-line block or to an

activation of a procedure is called the activation record, or frame. Note that an acti-
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Fig. 5.2 Allocation of an
activation record for block A
in Example 5.2

Fig. 5.3 Allocation of
activation records for
blocks A and B in
Example 5.2

Fig. 5.4 Organisation after
the execution of the
assignment in Example 5.2

vation record is associated with a specific activation of a procedure (one is created
when the procedure is called) and not with the declaration of a procedure. The val-
ues that must be stored in an activation record (local variables, temporary variables,
etc.) are indeed different for the different calls on the same procedure.

The stack on which activation records are stored is called the runtime (or system)
stack.
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Fig. 5.5 Organisation of an
activation record for an
in-line block

It should finally be noted, that to improve the use of runtime memory, dynamic
memory management is sometimes also used to implement languages that do not
support recursion. If the average number of simultaneously active calls to the same
procedure is less than the number of procedures declared in the program, using a
stack will save space, for there will be no need to allocate a memory area for each
declared procedure, as must be done in the case of entirely static management.

5.3.1 Activation Records for In-line Blocks

The structure of a generic activation record for an in-line block is shown in Fig. 5.5.
The various sectors of the activation record contain the following information:

Intermediate results When calculations must be performed, it can be necessary to
store intermediate results, even if the programmer does not assign an explicit name
to them. For example, the activation record for the block:

{int a =3;
b= (a+x)/ (x+y);}

could take the form shown in Fig. 5.6, where the intermediate results (a+x) and
(x+y) are explicitly stored before the division is performed. The need to store
intermediate results on the stack depends on the compiler being used and on the
architecture to which one is compiling. On many architectures they can be stored
in registers.

Local variables Local variables which are declared inside blocks, must be stored
in a memory space whose size will depend on the number and type of the vari-
ables. This information in general is recorded by the compiler which therefore will
be able to determine the size of this part of the activation record. In some cases,
however, there can be declarations which depend on values recorded only at run-
time (this is, for example, the case for dynamic arrays, which are present in some
languages, whose dimensions depend on variables which are only instantiated at
execution time). In these cases, the activation record also contains a variable-length
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Fig. 5.6 An activation record
with space for intermediate
results

part which is defined at runtime. We will examine this in detail in Chap. 8 when
discussing arrays.

Dynamic chain pointer This field stores a pointer to the previous activation record
on the stack (or to the last activation record created). This information is necessary
because, in general, activation records have different sizes. Some authors call this
pointer the dynamic link or control link. The set of links implemented by these
pointers is called the dynamic chain.

5.3.2 Activation Records for Procedures

The case of procedures and functions5 is analogous to that of in-line blocks but with
some additional complications due to the fact that, when a procedure is activated,
it is necessary to store a greater amount of information to manage correctly the
control flow. The structure of a generic activation record for a procedure is shown
in Fig. 5.7. Recall that a function, unlike a procedure, returns a value to the caller
when it terminates its execution. Activation records for the two cases are therefore
identical with the exception that, for functions, the activation record must also keep
tabs on the memory location in which the function stores its return value.

Let us now look in detail at the various fields of an activation record:

Intermediate results, local variables, dynamic chain pointer The same as for
in-line blocks.

Static chain pointer This stores the information needed to implement the static
scope rules described in Sect. 5.5.1.

Return address Contains the address of the first instruction to execute after the call
to the current procedure/function has terminated execution.

Returned result Present only in functions. Contains the address of the memory
location where the subprogram stores the value to be returned by the function when
it terminates. This memory location is inside the caller’s activation record.

Parameters The values of actual parameters used to call the procedure or function
are stored here.

The organisation of the different fields of the activation record varies from im-
plementation to implementation. The dynamic chain pointer and, in general, every

5Here and below, we will almost always use the terms “function” and “procedure” as synonyms.
Although there are is no agreement between authors, the term “procedure” should denote a sub-
program which does not directly return a value, while a function is a subprogram that returns one.
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Fig. 5.7 Structure of the
activation record for a
procedure

pointer to an activation record, points to a fixed (usually central) area of the activa-
tion record. The addresses of the different fields are obtained, therefore, by adding
a negative or positive offset to the value of the pointer.

Variable names are not normally stored in activation records and the compiler
substitutes references to local variables for addresses relative to a fixed position in
(i.e., an offset into) the activation record for the block in which the variables are
declared. This is possible because the position of a declaration inside a block is
fixed statically and the compiler can therefore associate every local variable with an
exact position inside the activation record.

In the case of references to non-local variables, also, as we will see when we dis-
cuss scope rules, it is possible to use mechanisms that avoid storing names and there-
fore avoid having to perform a runtime name-based search through the activation-
record stack in order to resolve a reference.

Finally, modern compilers often optimise the code they produce and save some
information in registers instead of in the activation record. For simplicity, in this
book, we will not consider these optimisations. In any case for greater clarity, in the
examples, we will assume that variable names are stored in activation records.

To conclude, let us note that all the observations that we have made about variable
names, their accessibility and storage in activation records, can be extended to other
kinds of denotable object.
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5.3.3 Stack Management

Figure 5.8 shows the structure of a system stack which we assume growing down-
wards (the direction of stack growth varies according to the implementation). As
shown in the figure, an external pointer to the stack points to the last activation
record on the stack (pointing to a predetermined area of the activation record which
is used as a base for calculating the offsets used to access local names). This pointer,
which we call the activation record pointer, is also called the frame or current envi-
ronment pointer (because environments are implemented using activation records).
In the figure, we have also indicated where the first free location is. This second
pointer, used in some implementations, can, in principle, also be omitted if the
activation-record pointer always points to a position that is at a pre-defined distance
from the start of the free area on the stack.

Activation records are stored on and removed from the stack at runtime. When a
block is entered or a procedure is called, the associated activation record is pushed
onto the stack; it is later removed from the stack when the block is exited or when
the procedure terminates.

The runtime management of the system stack is implemented by code fragments
which the compiler (or interpreter) inserts immediately before and after the call to a
procedure or before the start and after the end of a block.

Let us examine in detail what happens in the case of procedures, given that the
case of in-line blocks is only a simplification.

First of all, let us clarify the terminology that we are using. We use “caller” and
“callee” to indicate, respectively, the program or procedure that performs a call (of
a procedure) and the procedure that has been called.

Fig. 5.8 The stack of activation records



100 5 Memory Management

Stack management is performed both by the caller and by the callee. To do this,
as well as handling other control information, a piece of code called the calling
sequence is inserted into the caller to be executed, in part, immediately before the
procedure call. The remainder of this code is executed immediately after the call.
In addition, in the callee two pieces of code are added: a prologue, to be executed
immediately after the call, and an epilogue, which is executed when the procedure
ends execution. These three code fragments manage the different operations needed
to handle activation records and correctly implement a procedure call. The exact
division of what the caller and callee do depends, as usual, on the compiler and on
the specific implementation under consideration. Moreover, to optimise the size of
code produced, it is preferable that the larger part of the activity is given to the callee,
since the code is added only once (to the code associated with the declaration of the
call) instead of many times (to the code associated with different calls). Without
therefore further specifying the division of activities, they consist of the following
tasks:

Modification of program counter This is clearly necessary to pass control to the
called procedure. The old value (incremented) must be saved to maintain the return
address.

Allocation of stack space The space for the new activation record must be pre-
allocated and therefore the pointer to the first free location on the stack must be
updated as a consequence.

Modification of activation record pointer The pointer must point to the new acti-
vation record for the called procedure; the activation record will have been pushed
onto the stack.

Parameter passing This activity is usually performed by the caller, given that dif-
ferent calls of the same procedure can have different parameters.

Register save Values for control processing, typically stored in registers, must be
saved. This is the case, for example, with the old activation record pointer which
is saved as a pointer in the dynamic chain.

Execution of initialisation code Some languages require explicit constructs to ini-
tialise some items stored in the new activation record.

When control returns to the calling program, i.e. when the called procedure ter-
minates, the epilogue (in the called routine) and the calling sequence (in the caller)
must perform the following operations:

Update of program counter This is necessary to return control to the caller.
Value return The values of parameters which pass information from the caller to

the called procedure, or the value calculated by the function, must be stored in
appropriate locations usually present in the caller’s activation record and accessible
to the activation record of the called procedure.

Return of registers The value of previously saved registers must be restored. In
particular, the old value of the activation record pointer must be restored.

Execution of finalisation code Some languages require the execution of appropri-
ate finalisation code before any local objects can be destroyed.
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Deallocation of stack space The activation record of the procedure which has ter-
minated must be removed from the stack. The pointer to (the first free position on)
the stack must be modified as a result.

It should be noted that in the above description, we have omitted the handling of
the data structures necessary for the implementation of scope rules. This will be
considered in detail in Sect. 5.5 of this chapter.

5.4 Dynamic Management Using a Heap

In the case in which the language includes explicit commands for memory alloca-
tion, as for example do C and Pascal, management using just the stack is insufficient.
Consider for example the following C fragment:

int *p, *q; /* p,q NULL pointers to integers */
p = malloc (sizeof (int));

/* allocates the memory pointed to by p */
q = malloc (sizeof (int));

/* allocates the memory pointed to by q */
*p = 0; /* dereferences and assigns */
*q = 1; /* dereferences and assigns */
free(p); /* deallocates the memory pointed to by p */
free(q); /* deallocates the memory pointed to by q */

Given that the memory deallocation operations are performed in the same order
as allocations (first p, then q), the memory cannot be allocated in LIFO order.

To manage explicit memory allocations, which can happen at any time, a partic-
ular area of memory, called a heap, is used. Note that this term is used in computing
also to mean a particular type of data structure which is representable using a binary
tree or a vector, used to implement efficiently priorities (and used also in the “heap
sort” sorting algorithm, where the term “heap” was originally introduced). The def-
inition of heap that we use here has nothing to do with this data structure. In the
programming language jargon, a heap is simply an area of memory in which blocks
of memory can be allocated and deallocated relatively freely.

Heap management methods fall into two main categories according to whether
the memory blocks are considered to be of fixed or variable length.

5.4.1 Fixed-Length Blocks

In this case, the heap is divided into a certain number of elements, or blocks, of fairly
small fixed length, linked into a list structure called the free list, as shown in Fig. 5.9.
At runtime, when an operation requires the allocation of a memory block from the
heap (for example using the malloc command), the first element of the free list is
removed from the list, the pointer to this element is returned to the operation that
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Fig. 5.9 Free list in a heap
with fixed-size blocks

Fig. 5.10 Free list for heap
of fixed-size blocks after
allocation of some memory.
Grey blocks are allocated (in
use)

requested the memory and the pointer to the free list is updated so that it points to
the next element.

When memory is, on the other hand, freed or deallocated (for example using
free), the freed block is linked again to the head of the free list. The situation after
some memory allocations is shown in Fig. 5.10. Conceptually, therefore, manage-
ment of a heap with fixed-size blocks is simple, provided that it is known how to
identify and reclaim the memory that must be returned to the free list easily. These
operations of identification and recovery are not obvious, as we will see below.
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5.4.2 Variable-Length Blocks

In the case in which the language allows the runtime allocation of variable-length
memory spaces, for example to store an array of variable dimension, fixed-length
blocks are no longer adequate. In fact the memory to be allocated can have a size
greater than the fixed block size, and the storage of an array requires a contiguous
region of memory that cannot be allocated as a series of blocks. In such cases, a
heap-based management scheme using variable-length blocks is used.

This second type of management uses different techniques, mainly defined with
the aim of increasing memory occupation and execution speed for heap management
operations (recall that they are performed at runtime and therefore impact on the
execution time of the program). As usual, these two characteristics are difficult to
reconcile and good implementations tend towards a rational compromise.

In particular, as far as memory occupancy is concerned, it is a goal to avoid the
phenomenon of memory fragmentation. So-called internal fragmentation occurs
when a block of size strictly larger than the requested by the program is allocated.
The portion of unused memory internal to the block clearly will be wasted until
the block is returned to the free list. But this is not the most serious problem. In-
deed, so-called external fragmentation is worse. This occurs when the free list is
composed of blocks of a relatively small size and for which, even if the sum of the
total available free memory is enough, the free memory cannot be effectively used.
Figure 5.11 shows an example of this problem. If we have blocks of size x and y

(words or some other unit—it has no relevance here) on the free list and we re-
quest the allocation of a block of greater size, our request cannot be satisfied despite
the fact that the total amount of free memory is greater than the amount of mem-
ory that has been requested. The memory allocation techniques tend therefore to

Fig. 5.11 External fragmentation
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“compact” free memory, merging contiguous free blocks in such a way as to avoid
external fragmentation. To achieve this objective, merging operations can be called
which increase the load imposed by the management methods and therefore reduce
efficiency.

Single free list The first technique we examine deals with a single free list, ini-
tially composed of a single memory block containing the entire heap. It is indeed
convenient to seek to maintain blocks of largest possible size. It makes no sense,
therefore, initially to divide the heap into many small blocks as, on the other hand,
we did in the case of fixed-size blocks. When the allocation of a block of n words
of memory is requested, the first n words are allocated and the pointer to the start
of the head is incremented by n. Successive requests are handled in a similar way,
in which deallocated blocks are collected on a free list. When the end of the heap’s
memory space is reached, is necessary to reuse deallocated memory and this can be
done in the two following ways:

(i) Direct use of the free list In this case, a free list of blocks of variable size is
used. When the allocation of a memory block n words in length is requested,
the free list is searched for a block of size k words, where k is greater than
or equal to n. The requested memory is allocated inside this block. The unused
part of the block (of size k−n) if longer than some predefined threshold, is used
to form a new block that is inserted into the free list (internal fragmentation is
permitted below this threshold). The search for a block of sufficient size can be
performed using one of two methods. Using first fit, the search is for the first
block of sufficient size, while using best fit, the search is for a block whose size
is the least of those blocks of sufficient size. The first technique favours pro-
cessing time, while the second favours memory occupation. For both, however,
the cost of allocation is linear with respect to the number of blocks on the free
list. If the blocks are held in order of increasing block size, the two schemes
are the same, because the list is traversed until a large enough block is found.
Moreover, in this case, the cost of insertion of a block into the free list increases
(from constant to linear), because is necessary to find the right place to insert it.
Finally, when a deallocated block is returned to the free list, in order to reduce
external fragmentation, a check is make to determine whether the physically
adjacent blocks are free, in which case they are compacted into a single block.
This type of compaction is said to be partial because it compacts only adjacent
blocks.

(ii) Free memory compaction In this technique, when the end of the space initially
allocated to the heap is reached, all blocks that are still active are moved to the
end; they are the blocks that cannot be returned to the free list, leaving all the
free memory in a single contiguous block. At this point, the heap pointer is
updated so that it points to the start of the single block of free memory and
allocation starts all over again. Clearly, for this technique to work, the blocks
of allocated memory must be movable, something that is not always guaranteed
(consider blocks whose addresses are stored in pointers on the stack). Some
compaction techniques will be discussed in Sect. 8.12, when we discuss garbage
collection.
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Multiple free lists To reduce the block allocation cost, some heap management
techniques use different free lists for blocks of different sizes. When a block of
size n is requested, the list that contains blocks of size greater than or equal to n

is chosen and a block from this list is chosen (with some internal fragmentation if
the block has a size greater than n). The size of the blocks in this case, too, can be
static or dynamic and, in the case of dynamic sizes, two management methods are
commonly used: the buddy system and the Fibonacci heap. In the first, the size of
the blocks in the various free lists are powers of 2. If a block of size n is requested
and k is the least integer such that 2k ≥ n, then a block of size 2k is sought (in the
appropriate free list). If such a free block is found it is allocated, otherwise, a search
is performed in the next free list for a block of size 2k+1 and it is split into two parts.
One of the two blocks (which therefore has size 2k) is allocated, while the other is
inserted into the free list for blocks of size 2k . When a block resulting from a split is
returned to the free list, a search is performed for its “buddy”, that is the other half
that was produced by the split operation, and it is free, the two blocks are merged to
re-form the initial block of size 2k+1. The Fibonacci heap method is similar but uses
Fibonacci numbers instead of powers of 2 as block sizes. Given that the Fibonacci
sequence grows more slowly than the series 2n, this second method leads to less
internal fragmentation.

5.5 Implementation of Scope Rules

The possibility of denoting objects, even complex ones, by names with appropri-
ate visibility rules constitutes one of the most important aspects that differentiate
high-level languages from low-level ones. The implementation of environments and
scope rules discussed in Chap. 4 requires, therefore, suitable data structures. In this
section, we analyse these structures and their management.

Given that the activation record contains the memory space for local names, when
a reference to a non-local name is encountered, the activation records that are still
active must be examined (that is, the ones present on the stack) in order to find the
one that corresponds to the block where the name in question was declared; this will
be the block that contains the association for our name. The order in which to exam-
ine the activation records varies according to the kind of scope under consideration.

5.5.1 Static Scope: The Static Chain

If the static scope rule is employed, as we anticipated in Chap. 4, the order in which
activation records are consulted when resolving non-local references is not the one
defined by their position on the stack. In other words, the activation record directly
connected by the dynamic chain pointer is not necessarily the first activation record
in which to look in order to resolve a non-local reference; the first activation record
within which to look is defined by the textual structure of the program. Let us see
an example.
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Fig. 5.12 Activation stack with static chain (see Example 5.3)

Example 5.3 Consider the following code (as usual, for ease of reference, we have
labelled the blocks):

A:{int y=0;
B:{int x = 0;

void (int n){
x = n+1;
y = n+2;

}
C:{int x = 1;

fie(2);
write(x);
}

}
write(y);
}

After executing the call fie(2), the situation on the activation-record stack is
that shown in Fig. 5.12. The first activation record on the stack (the uppermost one
in the figure) is for the outermost block; the second is the one for block B; the third
is for C and finally the fourth is the activation record for the call to the procedure.
The non-local variable, x, used in procedure fie, as we know from the static scope
rule is not the one declared in block C but the one declared in block B. To be able
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Fig. 5.13 A block structure

to locate this information correctly at runtime, the activation record for the call to
the procedure is connected by a pointer, called the static chain pointer, to the record
for the block containing the declaration of the variable. This record is linked, in its
turn, by a static chain pointer to the record for block A, because this block, being
the first immediately external to B, is the first block to be examined when resolving
references non-local to B. When inside the call to procedure fie, the variables x
and y are used, to access the memory area in which they are stored the static chain
pointers are followed from fie’s activation record until first the record for B is
encountered (for x) and then that for A (when searching for y).

Generalising this example, we can say that, for the runtime management of static
scope, the activation of the generic block B is linked by the static chain pointer to the
record for the block immediately enclosing B (that is the nearest block that contains
B). It should be noted that in the case in which B is the block for a procedure call, the
block immediately enclosing B is the one containing the declaration of the procedure
itself. Moreover if B is active, that is if its activation record is on the stack, then also
the blocks enclosing B must be active and therefore can be located on the stack.

Hence, in addition to the dynamic chain, which is formed from the various
records present on the system stack (linked in the order of the stack itself), there
must exist a static chain, formed from the various static chain pointers used to rep-
resent the static nesting structure of the blocks within the program.

As an example, consider Fig. 5.13 which shows a generic structure of blocks
which results from nested procedures. Consider now the sequence of calls: A, B,
C, D, E, C, where it is intended that each call remains active when the next call
is made. The situation on the activation-record stack, with is various static chain
pointers, after such a sequence of calls is that shown in Fig. 5.14.

The runtime management of the static chain is one of the functions performed
by the calling sequence, prologue and epilogue code, as we saw above. Such a man-
agement of the static chain can be performed by the caller and the callee in various
ways. According to the most common approach, when a new block is entered, the
caller calculates the static chain pointer and then passes it to the called routine. This
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Fig. 5.14 Static chain for the
previous structure and the
sequence of calls A, B, C, D,
E, C

computation is fairly simple and can be easily understood by separating the two
cases:

The called routine is external to the caller In this case, by the visibility rules de-
fined by static scope, for the called routine to be visible, it must be located in an
outer block which includes the caller’s block. Therefore, the activation record for
such an outer block must already be stored on the stack. Assume that among the
caller and the called routines, there are k levels of nesting in the program’s block
structure; if the caller is located on nesting level n and the called routine is on level
m, we can assume therefore that k = n − m. This value of k can be determined by
the compiler, because it depends only on the static structure of the program and
therefore can be associated with the call in question. The caller can then calculate
the static chain pointer for the called procedure simply by dereferencing its own
static chain pointer k times (that is, it runs k steps along its own static chain).

Called inside calling routine In this case, the visibility rules ensure that the called
routine is declared in same the block in which the call occurs and therefore the
first block external to the called one is precisely that of the caller. The static chain
pointer of the called routine must point to the caller’s activation record. The caller
can simply pass to the called routine the pointer to its own activation record as a
pointer to the static chain.

Once the called routine has received the static chain pointer, it need only store it in
the appropriate place in its activation record, an operation that can be performed by
the prologue code. When a block exit occurs, the static chain requires no particular
management actions.

We have hinted at the fact that the compiler, in order to perform runtime static-
chain management, keeps track of the nesting level of procedure calls. This is done
using the symbol table, a sort of dictionary where, more generally, the compiler
stores all the names used in the program and all the information necessary to man-
age the objects denoted by the names (for example to determine the type) and to
implement the visibility rules.

In particular, a number is maintained that depends on the nesting level and indi-
cates the scope that contains the declaration of a name; this allows to associate to
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each name a number indicating the scope when the declaration for such a name is
made. Using this number, it is possible to calculate, at compile time, the distance be-
tween the scope of the call and that of the declaration which is necessary at runtime
to handle the static chain.

It should be noted that this distance is calculated statically and it also allows
the runtime resolution of non-local references without having to perform any name
searches in the activation record on the stack. Indeed, if we use a reference to the
non-local name, x, to find the activation record containing the memory space for x
it suffices to start at the activation record corresponding to the block that contains
the reference and follow the static chain for a number of links equal to the value
of the distance. Inside the activation record that is thus found, the memory location
for x is also fixed by the compiler and, therefore, at runtime, there is no need for a
search but only the static offset of x with respect to the activation record pointer is
needed.

However, it is clear that, in a static model, the compiler cannot completely resolve
a reference to a non-local name and it is always necessary to follow the static-chain
links at runtime. This is why, in general, it is not possible to know statically what
the number of activation records present on the stack is.

As a concrete example of what has just been said, consider the code in Exam-
ple 5.3. The compiler “knows” that to use variable y in procedure fie, it is nec-
essary to pass two external blocks (B and A) to arrive at the one containing the
declaration of the variable. It is enough, therefore, to store this value at compilation
time so that it can subsequently be known, at runtime, that to resolve the name y, it
is necessary to follow two pointers in the static chain. It is not necessary to store the
name y explicitly because its position inside the activation record for the block A is
fixed by the compiler. Analogously, the type information that we, for clarity, have
included in Fig. 5.12, is stored in the symbol table, and after appropriate compile-
time checks, can, in a large part, be omitted at runtime.

5.5.2 Static Scope: The Display

The implementation of static scope using the static chain has one inconvenient prop-
erty: if we have to use a non-local name declared in an enclosing block, k levels of
block away from the point at which we currently find ourselves, at runtime we have
to perform k memory accesses to follow the static chain to determine the activation
block that contains the memory location for the name of interest. This problem is
not all that severe, given that in real programs it is rare that more than 3 levels of
block and procedure nesting are required. The technique called the display, however,
allows the reduction of the number of accesses to a constant (2).

This technique uses a vector, called the display, containing as many elements
as there are levels of block nesting in the program, where the kth element of the
vector contains the pointer to the activation record at nesting level k that is cur-
rently active. When a reference is made to a non-local object, declared in an block
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Fig. 5.15 Display for the structure in Fig. 5.13 and the call sequence A, B, C, D, E, C

external to level k, the activation record containing this object can be retrieved sim-
ply by accessing the kth position in the vector and following the pointer stored
there.

Display processing is very simple, even if it is slightly more costly than static
chain handling; when an environment is entered or left, in addition to updating the
pointer stored in the vector, it is also necessary to save the old value. More precisely,
when a procedure is called (or an in-line block is entered) at level k, position k in the
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display will have to be updated with the value of the pointer to the activation record
for the call, because this has become the new active block at level k. Before this
update, however, it is necessary to save the preceding contents of the kth position of
the display, normally storing it in the activation record of the call.

The need to save the old display value can be better understood by examining the
following 2 possible cases:

The called routine is external to the caller Let use assume that the call is at nest-
ing level n and the called routine is at level m, with m < n. The called routine and
the caller therefore share the static structure up to level m − 1 and also the display
up to position m − 1. Display element m is updated with the pointer to the activa-
tion record of the called routine and until the called routine terminates, the active
display is the one formed of the first m elements. The old value contained in posi-
tion m must be saved because it points to the activation record of the block which
will be re-activated when the called routine terminates; thereafter, the display will
go back to being the one used before the call.

The called routine is located inside the caller The nesting depth reached this far
is incremented. If the caller is located at level n, caller and called routine share the
whole current display up to position n and it is necessary to add a new value at
position n + 1, so that it holds the pointer to the activation record for the caller.
When we have the first activation of a block at level n + 1, the old value stored
in the display is of no interest to us. However, in general, we cannot know if this
is the case. Indeed, we could have reached the current call by a series of previous
calls that also use level n + 1. In this case, as well, it will be necessary therefore to
store the old value in the display at position n + 1.

Both display update and the saving of the old value can be performed by the
called procedure. Figure 5.15 shows the handling of the display for the call sequence
A, B, C, D, E, C, using the block structure described in Fig. 5.13. The pointers on
the left of the stack denote storage of the old display value in the activation record
of the called routine, while the dotted pointer denotes a display pointer that is not
currently active.

5.5.3 Dynamic Scope: Association Lists and CRT

Conceptually, the implementation of the dynamic scope rule is much simpler than
the one for static scope. Indeed, given that non-local environments are considered in
the order in which they are activated at runtime, to resolve a non-local reference to
a name x, it suffices, at least in principle, to run backwards down the stack, starting
with the current activation record until the activation record is found in which the
name x is declared.

The various associations between names and the objects they denote which con-
stitute the various local environment can be stored directly in the activation record.
Let us consider, for example, the block structure shown in Fig. 5.16, where the
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Fig. 5.16 A block structure
with local declarations

Fig. 5.17 Environment for block D in Fig. 5.16 after the call sequence A, B, C, D, with dynamic
scope implemented using stored associations in the activation record. In grey: inactive associations

names denote local variable declarations (assuming the usual visibility rules). If we
execute the call sequence A, B, C, D (where, as usual, all the calls remain active)
when control reaches block D, we obtain the stack shown in Fig. 5.17 (the field
on the right of each name contains the information associated with the object de-
noted by its name). The environment (local or otherwise) of D is formed from all
the name-denoted object associations in which the information field is in white in
the figure. The association fields that are no longer active are shown in grey. An
association is not active either because the corresponding name is no longer visible
(this is the case for v) or because it has been redefined in an inner block (this is the
case for w and for the occurrences of x in A and B).

Other than direct storage in the activation record, name-object associations can
be stored separately in an association list, called an A-list, which is managed like a
stack. This solution is usually chosen for LISP implementations.
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Fig. 5.18 Environment for
block D in Fig. 5.16, after the
call sequence A, B, C, D,
with dynamic scope
implemented using an A-list

When the execution of a program enters a new environment, the new local as-
sociations are inserted into the A-list. When an environment is left, the local as-
sociations are removed from the A-list. The information about the denoted objects
will contain the location in memory where the object is actually stored, its type, a
flag which indicates whether the association for this object is active (there can also
be other information needed to make runtime semantic checks). Figure 5.18 shows
how dynamic scope is implemented for the example in Fig. 5.16 using an A-list (the
fields in grey are implemented using the flags described above and are omitted from
the figure). Both using A-list and using direct storage in the activation record, the
implementation of dynamic scope has two disadvantages.

First, names must be stored in structures present at runtime, unlike in the scheme
that we saw for static scope. In the case of the A-list, this is clear (it depends on
its definition). In the case, on the other hand, in which activation records are used
to implement local environments, the need to store names depends on the fact that
the same name, if declared in different blocks, can be stored in different positions
in different activation records. Given that we are using the dynamic scope rule, we
cannot statically determine which is the block (and therefore the activation record)
that can be used to resolve a non-local reference; we cannot know the position in the
activation record to access in order to search for the association belonging the name
that we are looking for. The only possibility is therefore explicitly to store the name
and perform a search (based on the name itself) at runtime.

The second disadvantage is due to the inefficiency of this runtime search. It can
often be the case that is necessary to scan almost all of the list (which is either
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an A-list or a stack of activation records) in the case reference is made to a name
declared in one of the first active blocks (as for “global” names).

Central Referencing environment Table (CRT) To restrict the effects of these
two disadvantages, at the cost of a greater inefficiency in the block entry and exit
operations, we can implement dynamic scope in a different way. This alternative
approach is based on the Central Referencing environment Table (CRT).

Using the CRT-based technique, environments are defined by arranging for all
the blocks in the program to refer to an single central table (the CRT). All the names
used in the program are stored in this table. For each name, there is a flag indicating
whether the association for the name is active or not, together with a value composed
of a pointer to information about the object associated with the name (memory lo-
cation, type, etc.). If we assume that all the identifiers used in the program are not
known at compile time, each name can be given a fixed position in the table. At
runtime, access to the table can, therefore, take place in constant time by adding the
memory address of the start of the table to an offset from the position of the name
of interest. When, on the other hand, all names are not known at compile time, the
search for a name’s position in the table can be make use of runtime hashing for ef-
ficiency. The block entry and exit operations now are, however, more complicated.
When entering block B from block A, the central table must be modified to describe
B’s new local environment, and, moreover, deactivated associations must be saved
so that they can be restored when block B exits and control returns to block A.
Usually a stack is the best data structure for storing such associations.

It should be observed that the associations for a block are not necessarily stored in
contiguous locations within the CRT. To perform the operations required of the CRT
on block entry and exit, it is necessary, therefore,to consider the individual elements
of the table. This can be done in a convenient fashion by associating with each entry
in the table (i.e., with every name present) a dedicated stack that contains the valid
associations at the top and, in successive locations, the associations for this name
that have been deactivated. This solution is shown in Fig. 5.19 (the second column
contains the flags).

Alternatively, we can use a single hidden stack separate from the central table
to store the deactivated associations for all names. In this case, for every name, the
second column of the table contains a flag which indicates whether the association
for this name is active or not, while the third column contains the reference to the
object denoted by the name in question. When an association is deactivated, it is
stored in the hidden stack to be removed when it becomes active again. Considering
the structure in Fig. 5.16 and the call sequence A, B, C, D, the development of the
CRT is shown in the upper part of Fig. 5.20; the lower portion of the Figure depicts
the evolution of the hidden stack.

Using the CRT, with or without the hidden stack. access to an association in the
environment requires one access to the table (either direct or by means of a hash
function) and one access to another memory area by means of the pointer stored in
the table. Therefore, no runtime search is required.
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Fig. 5.19 Environment for block D in Fig. 5.16 after the call sequence A, B, C, D, with dynamic
scope implemented using a CRT

Fig. 5.20 Environment for
block D of Fig. 5.16 after the
call sequence A, B, C, D, with
dynamic scope implemented
using a CRT and hidden stack

5.6 Chapter Summary

In this chapter, we have examined the main techniques for both static and dynamic
memory management, illustrating the reasons for dynamic memory management
using a stack and those that require the use of a heap. It remains to consider the
important exception to this: in the presence of a particular type of recursion (called
tail recursion) memory can be managed in a static fashion (this case will be given
detailed consideration in the next chapter).

We have illustrated in detail the following on stack-based management:

• The format of activation records for procedures and in-line blocks.
• How the stack is managed by particular code fragments which are inserted into

the code for the caller, as well as in the routine being called, and which act to
implement the various operations for activation record allocation, initialisation,
control field modification, value passing, return of results, and so on.

In the case of heap-based management, we saw:

• Some of the more common techniques for its handling, both for fixed- and
variable-sized blocks.

• The fragmentation problem and some methods which can be used to limit it.
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Finally, we discussed the specific data structures and algorithms used to imple-
ment the environment and, in particular, to implement scope rules. We examined the
following in detail:

• The static chain.
• The display.
• The association list.
• The central referencing table.

This has allowed us better to understand our hint in Chap. 4 that it is more difficult
to implement the static scope rules than those for dynamic scope. In the first case,
indeed, whether static chain pointers or the display is used, the compiler makes
use of appropriate information on the structure of declarations. This information is
gathered by the compiler using symbol tables and associated algorithms, such as, for
example, LeBlanc-Cook’s, whose details fall outside the scope of the current text.
In the case of dynamic scope, on the other hand, management can be, in principle,
performed entirely at runtime, even if auxiliary structures are often used to optimise
performance (for example the Central Referencing Table).

5.7 Bibliographic Notes

Static memory management is usually treated in textbooks on compilers, of which
the classic is [1]. Determination of the (static) scopes to associate with the names in
a symbol table can be done in a number of ways, among which one of the best known
is due to LeBlanc and Cook [2]. Techniques for heap management are discussed in
many texts, for example [4].

Stack-based management for procedures and for scope was introduced in AL-
GOL, whose implementation is described in [3].

For memory management in various programming languages, the reader should
refer to texts specific to each language, some which are cited at the end of Chap. 13.

5.8 Exercises

1. Using some pseudo-language, write a fragment of code such that the maximum
number of activation records present on the stack at runtime is not statically
determinable.

2. In some pseudo-language, write a recursive function such that the maximum
number of activation records present at runtime on the stack is statically deter-
minable. Can this example be generalised?

3. Consider the following code fragment:

A:{int X= 1;
....
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B:{ X = 3;
....

}

....
}

Assume that B is nested one level deeper that A. To resolve the reference to
X present in B , why is it not enough to consider the activation record which
immediate precedes that of B on the stack? Provide a counter-example filling the
spaces in the fragment with dots with appropriate code.

4. Consider the following program fragment written in a pseudo-language using
static scope:

void P1 {
void P2 { body-ofi-P2

}
void P3 {

void P4 { body-of-P4
}

body-of-P3
}

body-of-P1
}

Draw the activation record stack region that occurs between the static and dy-
namic chain pointers when the following sequence of calls, P1, P2, P3,P4,P2
has been made (is it understood that at this time they are all active: none has
returned).

5. Given the following code fragment in a pseudo-language with goto (see
Sect. 6.3.1), static scope and labelled nested blocks (indicated by A: { ...
}):

A: { int x = 5;
goto C;

B: {int x = 4;
goto E;
}

C: {int x = 3;
D: {int x = 2;
}

goto B;
E: {int x = 1; // (**)

}
}

}

The static chain is handled using a display. Draw a diagram showing the dis-
play and the stack when execution reaches the point indicated with the comment
(**). As far as the activation record is concerned, indicate what the only piece
of information required for display handling is.
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6. Is it easier to implement the static scope rule or the one for dynamic scope? Give
your reasons.

7. Consider the following piece of code written in a pseudo-language using static
scope and call by reference (see Sect. 7.1.2):

{int x = 0;
int A(reference int y) {

int x =2;
y=y+1;
return B(y)+x;

}
int B(reference int y){

int C(reference int y){
int x = 3;
return A(y)+x+y;

}
if (y==1) return C(x)+y;
else return x+y;

}
write (A(x));
}

Assume that static scope is implemented using a display. Draw a diagram show-
ing the state of the display and the activation-record stack when control enters
the function A for the second time. For every activation record, just give value
for the field that saves the previous value of the display.
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Chapter 6
Control Structure

In this chapter, we will tackle the problem of managing sequence control, an im-
portant part in defining the execution of program instructions in a generic abstract
machine’s interpreter.

In low-level languages, sequence control is implemented in a very simple way,
just by updating the value of the PC (Program Counter) register. In high-level lan-
guages, however, there are special language-specific constructs which permit the
structuring of control and the implementation of mechanisms that are much more
abstract than those available on the physical machine. One thinks, for example, of
the simple evaluation of an arithmetic expression: even if we find them obvious and
natural, operations of this kind requires the use of control mechanisms that specify
the order in which operands are evaluated, and operator precedence, and so on.

In this chapter, we will consider the constructs used in programming languages
for the explicit or implicit specification of sequence control. We will first consider
expressions, spending some time on the syntactic aspects of the usual notation for
representing expressions, as well as the semantic aspects of their evaluation. We
will then move on to commands and, after discussing the concepts of variable and
assignment, we will see the main commands for sequence control present in mod-
ern languages, showing the difference between structured and unstructured control
and briefly illustrating the principles of structured programming. We will finally
examine some aspects that are significant to recursion and clarify an important ter-
minological distinction between imperative and declarative languages.

We will leave the examination of those constructs that allow the implementation
of mechanisms for control abstraction until the next chapter.

6.1 Expressions

Expressions, together with commands and declarations, are one of the basic compo-
nents of every programming language. We can say that expressions are the essential
component of every language because, although there exist declarative languages in
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which commands are absent, expressions, numeric or symbolic, are present in every
language.

First, let us try to clarify what sorts of object we are talking about.

Definition 6.1 (Expressions) An expressions is a syntactic entity whose evaluation
either produces a value or fails to terminate, in which case the expression is unde-
fined.

The essential characteristic of an expression, that which differentiates it from a
command, is therefore that its evaluation produces a value. Examples of numerical
expressions are familiar to all: 4+3*2, for example, is an expression whose evalu-
ation is obvious. Moreover, it can be seen that, even in such a simple case, in order
to obtain the correct result, we have made an implicit assumption (derived from the
mathematical convention) about operator precedence. This assumption, which tells
us that * has precedence over + (and that, therefore, the result of the evaluation
is 10 and not 14), specifies a control aspect for evaluation of expressions. We will
see below other more subtle aspects that can contribute to modify the result of the
evaluation of an expression.

Expressions can be non-numeric, for example in LISP, we can write (cons a
b) to denote an expression which, if it is evaluated, returns the so-called pair formed
by a and b.

6.1.1 Expression Syntax

In general, an expression is composed of a single entity (constant, variable, etc.) or
even of an operator (such as +, cons, etc.), applied to a number of arguments (or
operands) which are also expressions. We saw in Chap. 2 how expression syntax
can be precisely described by a context-free grammar and that an expression can
be represented by a derivation tree in which, in addition to syntax, there is also
semantic information relating to the evaluation of the expression. Tree structures are
also often used to represent an expression internally inside the computer. However,
if we want to use expressions in a conventional way in the text of a program, linear
notations allow us to write an expression as a sequence of symbols. Fundamentally,
the various notations differ from each other by how they represent the application
of an operator to its operands. We can distinguish three main types of notation.

Infix Notation In this notation, a binary operation symbol is placed between the
expressions representing its two operands. For example, we write x+y to denote
than the addition of x and y, or (x+y)*z to denote the multiplication by z of the
result of the addition of x and y. It can be seen that, in order to avoid ambiguity in
the application of operator to operands, brackets and precedence rules are required.
For operators other than binary ones, we must basically fall back on their repre-
sentation in terms of binary symbols, even if, in this case, this representation is not
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Lisp and S-expressions
The programming language LISP (an acronym of LISt Processor), which was devel-
oped at the beginning of the 1960s by John McCarthy and by a group of researchers
at MIT (Massachusetts Institute of Technology), is a language designed for sym-
bolic processing, which has been particularly important in Artificial Intelligence. In
particular, in the 1970s, the language Scheme was developed from a dialect of Lisp;
Scheme is still in use in academic circles.

A Lisp program is composed of sequences of expressions to be evaluated by
the language’s interpreter. Some expressions are used to define functions which are
then called in other expressions. Control is exercised using recursion (there is no
iterative construct).

As the very name of the language implies, a LISP program mainly handles ex-
pressions constructed from lists. The basic data structures in LISP, in fact, is the
dotted pair, or rather a pair of data items written with a dot separating the two com-
ponents: for example, (A.B). A pair like this is implemented as a cons cell, or
rather by the application of the cons operator to two arguments, as in (cons A
B). As well as atomic types (integers, floating point numbers, character strings),
the two arguments of cons can be other dotted pairs so this data structure allows
the implementation of symbolic expressions, so-called S-expressions. S-expressions
are binary trees which allow the representation of lists as a particular case. For ex-
ample, it is possible to construct the list A B C as (cons A (cons B (cons
C nil))), where nil is a particular value denoting the empty list. Among the
many interesting characteristics of LISP, programs and data are represented using
the same syntax and the same internal representation. This allows the evaluation of
data structures as if they were programs and to modify programs as if they were
data.

the most natural. A programming language which insists on infix notation even for
user-defined functions is Smalltalk, an object oriented language.

Infix notation is the one most commonly used in mathematics, and, as a conse-
quence is the one used by most programming languages, at least for binary operators
and for user syntax. Often, in fact, this notation is only an abbreviation or, as we say,
a syntactic sugar used to make code more readable. For example, in Ada, a + b is
an abbreviation for +(a,b), while in C++ the same expression is an abbreviation
for a.operator+(b).

Prefix Notation Prefix notation is another type of notation. It is also called prefix
Polish notation.1 The symbol which represents the operation precedes the symbols
representing the operands (written from left to right, in the same way as text). Thus,
to write the sum of x and y, we can write +(x,y), or, without using parentheses,

1This terminology derives from the fact that the Polish mathematician W. Łukasiewicz was the
person to make prefix notation without parentheses fashionable.
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+ x y, while if we want to write the application of the function f to the operands
a and b, we write f(a b) or fab.

It is important to note that when using this kind of notation, parentheses and oper-
ator precedence rules are of no relevance, provided that the arity (that is the number
of operands) of every operator is already known. In fact there is no ambiguity about
which operator to apply to any operands, because it is always the one immediately
preceding the operands. For example if we write:

*(+(a b)+(c d))

or even

* + a b + c d

we mean the expression represented by (a+b)*(c+d) in normal infix notation.
The majority of regular languages use prefix notation for unary operators (often

using parentheses to group arguments) and for user-defined functions. Some pro-
gramming languages even use prefix notation for binary operators. LISP represents
functions using a particular notation known as Cambridge Polish, which places op-
erators inside parentheses. In this notation, for example the last expression becomes:

(*(+ a b)(+ c d)).

Postfix Notation Postfix notation is also called Reverse Polish. It is similar to
the last notation but differs by placing the operator symbol after the operands. For
example, the last expression above when written in postfix notation is:

a b + c d + *.

Prefix notation is used in the intermediate code generated by some compilers. It
is also used in programming languages (for example Postscript).

In general, an advantage of Polish notation (prefix or otherwise) over infix is
that the former can be used in a uniform fashion to represent operators with any
number of operands. In infix notation, on the other had, representing operators with
more than two operands means that we have to introduce auxiliary operators. A sec-
ond advantage, already stated, is that there is the possibility of completely omitting
parentheses even if, for reasons of readability, both mathematical prefix notation
f(a b) and Cambridge Polish (f a b) use parentheses. A final advantage of
Polish notation, as we will see in the next subsection is that it makes the evalua-
tion of an expression extremely simple. For this reason, this notation became rather
successful during the 1970s and 80s when it was used for the first pocket-sized
calculators.
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6.1.2 Semantics of Expressions

According to the way in which an expression is represented, the way in which its se-
mantics is determined changes and so, consequently, does its method of evaluation.
In particular, in infix representation the absence of parentheses can cause ambigu-
ity problems if the precedence rules for different operators and the associativity of
every binary operator are not defined clearly. When considering the most common
programming languages, it is also necessary to consider the fact that expressions are
often represented internally in the form of a tree. In this section we will discuss these
problems, starting with the evaluation of expressions in each of the three notations
that we saw above.

Infix Notation: Precedence and Associativity When using infix notation, we pay
for the facility and naturalness of use with major complication in the evaluation
mechanism for expressions. First of all, if parentheses are not used systematically,
it is necessary to clarify the precedence of each operator.

If we write 4 + 3 * 5, for example, clearly we intend the value of 19 as the
result of the expression and not 35: mathematical convention, in fact, tells us that we
have to perform the multiplication first, and the addition next; that is, the expression
is to be read as 4 + (5 * 3) and not as (4 + 3) * 5. In the case of less fa-
miliar operators, present in programming languages, matters are considerably more
complex. If, for example, in Pascal one writes:

x=4 and y=5

where the and is the logical operator, contrary to what many will probably expect,
we will obtain an error (a static type error) because, according to Pascal’s prece-
dence rules, this expression can be interpreted as

x=(4 and y)=5

and not as

(x=4) and (y=5).

In order to avoid excessive use of parentheses (which, when in doubt it is good to
use), programming languages employ precedence rules to specify a hierarchy be-
tween the operators used in a language based upon the relative evaluation order.
Various languages differ considerably in their definition of such rules and the con-
ventions of mathematical notation are not always respected to the letter.

A second problem in expression evaluation concerns operator associativity. If we
write 15-5-3, we could intend it to be read as either (15-5)-3 or as 15-(5-3),
with clearly different results. In this case, too, mathematical convention says that the
usual interpretation is the first. In more formal terms, the operator “−” associates
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from left to right.2 In fact, the majority of arithmetic operators in programming
languages associate from left to right but there are exceptions. The exponentiation
operator, for example, often associates from right to left, as in mathematical nota-
tion. If we write 532

, or, using a notation more familiar to programmers, 5 ** 3

** 2, we mean 5(32), or 5 ** (3 ** 2), and not (53)2, or ((5 ** 3) **
2). Thus, when an operator is used, it is useful to include parentheses when in doubt
about precedence and associativity. In fact, there is no lack of special languages that
in this respect have rather counter-intuitive behaviour.

In APL, for example, the expression 15-5-3 is interpreted as 15 -(5 - 3)
rather than what we would ordinarily expect. The reason for this apparent strange-
ness is that in APL there are many new operators (defined to operate on matrices)
that do not have an immediate equivalents in other formalisms. Hence, it was de-
cided to abandon operator precedence and to evaluate all expressions from right to
left.

Even if there is no difficulty in conceiving of a direct algorithm to evaluate an
expression in infix notation, the implicit use of precedence and associativity rules,
together with the explicit presence of parentheses, complicates matters significantly.
In fact, it is not possible to evaluate an expression in a single left-to-right scan (or
one from right to left), given that in some cases we must first evaluate the rest of
the expression and then return to a sub-expression of interest. For example, in the
case of 5+3*2, when the scan from left to right arrives at +, we have to suspend the
evaluation of this operator but divert to the evaluation of 3*2 and then go back to
the evaluation of +.

Prefix Notation Expressions written in prefix Polish notation lend themselves to
a simple evaluation strategy which proceeds by simply walking the expression from
left to right using a stack to hold its components. It can be assumed that the se-
quence of symbols that forms the expression is syntactically correct and initially not
empty. The evaluation algorithm is described by the following steps, where we use
an ordinary stack (with the push and pop operations) and a counter C to store the
number of operands requested by the last operator that was read:

1. Read in a symbol from the expression and push it on the stack;
2. If the symbol just read is an operator, initialise the counter C with the number of

arguments of the operator and go to step 1.
3. If the symbol just read it is an operand, decrement C.
4. If C �= 0, go to 1.
5. If C = 0, execute the following operations:

(a) Apply the last operator stored on the stack to the operands just pushed onto
the stack, storing the results in R, eliminate operator and operands from the
stack and store the value of R on the stack.

(b) If there is no operator symbol in the stack go to 6.

2A binary operator, op, is said to be associative if x op (y op z) = (x op y) op z
holds; that is, whether it associates from the right to the left or left to right makes no difference.
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(c) Initialise the counter C to n − m, where n is the number of the argument of
the topmost operator on the stack, and m is number of operands present on
the stack above this operator.

(d) Go to 4.
6. If the sequence remaining to be read is not empty, go to 1.

The result of the evaluation is located on the stack when the algorithm finishes.
It should be noted that the evaluation of an expression using this algorithm assumes
that we know in advance the number of operands required by each operator. This
requires that we syntactically distinguish unary from binary operators. Furthermore,
it is generally necessary to check that the stack contains enough operands for the
application of the operator (Step 5.(c) in the algorithm above). This check is not
required when using postfix notation, as we see below.

Postfix Notation The evaluation of expression in Polish notation is even simpler.
In fact, we do not need to check that all the operands for the last operator have been
pushed onto the stack, since the operands are read (from left to right) before the
operators. The evaluation algorithm is then the following (as usual, we assume that
the symbol sequence is syntactically correct and is not empty):

1. Read the next symbol in the expression and push it on the stack.
2. If the symbol just read is an operator apply it to the operands immediately below

it on the stack, store the result in R, pop operator and operands from the stack
and push the value in R onto the stack.

3. If the sequence remaining to be read is not empty, go to 1.
4. If the symbol just read is an operand, go to 1.

This algorithm also requires us to know in advance the number of operands re-
quired by each operator.

6.1.3 Evaluation of Expressions

As we saw the start of the Chap. 2 and as we extensively discussed in that chapter,
expressions, like the other programming language constructs, can be conveniently
represented by trees. In particular, can be represented by a tree (called the expres-
sion’s syntax tree) in which:

• Every non-leaf node is labelled with an operator.
• Every subtree that has as root a child of a node N constitutes an operand for the

operator associated with N .
• Every leaf node is labelled with a constant, variable or other elementary operand.

Trees like this can be directly obtained from the derivation trees of an (unambigu-
ous) grammar for expressions by eliminating non-terminal symbols and by appro-
priate rearrangement of the nodes. It can be seen also that, given the tree representa-
tion, the linear infix, prefix and postfix representations can be obtained by traversing
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Fig. 6.1 An expression

the tree in a symmetric, prefix or postfix order, respectively. The representation of
expressions as trees clarifies (without needing parentheses) precedence and associa-
tivity of operators. The subtrees found lower in the tree constitute the operands and
therefore operators at lower levels must be evaluated before those higher in the tree.
For example the tree shown in Fig. 6.1 represents the expression:

(a+f(b))*(c+f(b))

This expression can be obtained (parentheses apart) from the symmetric-order
traversal of the tree (f is here an arbitrary unary operation).

For languages with a compilative implementation, as we have seen, the parser
implements syntactic analysis by constructing a derivation tree. In the specific case
of expressions then, infix representation in the source code is translated into a tree-
based representation. This representation is then used by successive phases of the
compilation procedure to generate the object code implementing runtime expres-
sions evaluation. This object code clearly depends on the type of machine for which
the compiler is constructed. In the case in which we have a traditional physical ma-
chine, for example, code of a traditional kind (i.e. in the form opcode operand1
operand2) is generated which uses registers as well as a temporary memory loca-
tions to store intermediate results of evaluation.

In some particular cases, on the other hand, object code can be represented using
a prefix or postfix form which is subsequently evaluated by a stack architecture.
This is the case for example in the executable code for many implementations of
SNOBOL4 programs.

In the case of languages with an interpretative implementation, it is also con-
venient to translate expressions, normally represented in the source code in infix
notation, into a tree representation which can then be directly evaluated using a
tree traversal. This is the case, for example, in interpreted implementations of LISP,
where the entire program is represented as a tree.

It is beyond the scope of the present text to go into details on mechanisms for
generating code or for evaluating expression in an interpreter. However, it is impor-
tant to clarify some difficult points which often cause ambiguity. For convenience,
we will fix on the evaluation of expressions represented in infix form. We will see
that what we have to say applies equally to the direct evaluation of expressions rep-
resented as a tree, as well as to code generation-mechanisms.
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Subexpression Evaluation Order Infix notation precedence and associativity
rules (or the structure, when expressions are represented as trees) do not hint at
the order to evaluate an operator’s operands (i.e., nodes at the same level). For ex-
ample, in the expression in Fig. 6.1, nothing tells us that it is necessary first to
evaluate either a+f(b) or c+f(b). There is also nothing explicit about whether
the evaluation of operands or operator should come first; nor, in general, whether
expressions which are mathematically equivalent can be inter-substituted without
modifying the result (for example, (a-b+c) and(a+c-b) could be considered
equivalent).

While in mathematical terms these differences are unimportant (the result does
not change), from our viewpoint these questions are extremely relevant and for the
following five reasons.

Side effects In imperative programming languages, expression evaluation can mod-
ify the value of any variables through so-called side effects. A side effect is an
action that influences the result (partial or final) of a computation without other-
wise explicitly returning a value in the context in which it is found. The possibility
of side effects renders the order of evaluation of operands relevant to the final re-
sult. In our example in Fig. 6.1, if the evaluation of the function f were to modify
the value of its operand through side effects, first executing a+f(b) rather than
c+f(b), could change the value produced by the evaluation (see Exercise 1). As
far as side effects are concerned, languages follow various approaches. On the one
hand, pure declarative languages do not permit side effects at all, while languages
which do allow them in some cases forbid the use in expressions of functions that
can cause side effects. In other, more common cases where the presence of side
effects is permitted, the order with which expressions are evaluated is, though,
clearly stated in the definition of the language. Java, for example, imposes left-to-
right evaluation of expressions (while C fixes no order at all).

Finite arithmetic Given the set of numbers represented in a computer is finite (see
also Sect. 8.3), reordering expressions can cause overflow problems. For example,
if a has, as its value, the maximum integer representable and b and c are positive
numbers such that b > c, right-to-left evaluation of (a-b+c) does not produce
overflow, while we have an overflow resulting from the evaluation from left to right
of (a+c-b). Moreover, when we do not have overflow, the limited precision of
computer arithmetic implies that changing the order of the operands can lead to
different results (this is particularly relevant in cases of floating point computation).

Undefined operands When the application of operator to operands is considered,
two evaluation strategies can be followed. The first, called eager evaluation, con-
sists of first evaluating all the operands and then applying the operator to the values
thus obtained. The strategy probably seems the most reasonable when reasoning
in terms of normal arithmetic operators. The expressions that we use in program-
ming languages, however, pose problems over and above those posed by arithmetic
expressions, because some can be defined even when some of the operands are
missing. Let us consider the example of a conditional expression of the form:
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a == 0 ? b : b/a

We can write this in C to denote the value of b/a when a is non-zero and b, other-
wise. This expression results from the application of a single operator (expressed
in infix notation using two binary operators ? and :) to three operands (the boolean
expression, a==0, and the two arithmetic expressions b and b/a). Clearly here we
cannot use eager evaluation for such conditional expressions because the expres-
sion b/a would have to be evaluated even when a is equal to zero and this would
produce an error.
In such a case, it is therefore better to use a lazy evaluation strategy which mainly
consists of not evaluating operands before the application of the operator, but in
passing the un-evaluated operands to the operator, which, when it is evaluated, will
decide which operands are required, and will only evaluate the ones it requires.
The lazy evaluation strategy, used in some declarative languages, is much more
expensive to implement than eager evaluation and for this reason, most languages
use eager evaluation (with the significant exception of conditional expressions as
we will see below). There are languages which use a mix of both the techniques
(ALGOL, for example). We will discuss the various strategies for evaluating ex-
pressions in greater detail when we consider functional languages in Chap. 11.

Short-circuit evaluation The problem detailed in the previous point presents itself
with particular clarity when evaluating Boolean expressions. For example, consider
the following expression (in C syntax):

a == 0 || b/a > 2

If the value of a is zero and both operands of || are evaluated at the same time,
it is clear that an error will result (in C, “||” denotes the logical operation of dis-
junction). To avoid this problem, and to improve the efficiency of the code, C, like
other languages uses a form of lazy evaluation, also called short-circuiting evalua-
tion, of boolean expressions. If the first operand of a disjunction has the value true
then the second is not evaluated, given that the overall result will certainly have
the value true. In such a case, the second expression is short-circuited in the sense
that we arrive at the final value before knowing the value of all of the operands.
Analogously, if the first operand of a conjunction has the value false, the second
is not evaluated, given that the overall result can have nothing other than the value
false.
It is opportune to recall that not all languages use this strategy for boolean ex-
pressions. Counting on the presence of a short-circuited evaluation, without being
certain that the language uses it, is dangerous. For example, we can write in Pascal

p := list;
while (p <> nil ) and (pˆ.value <> 3) do

p := pˆ.next;

The intention of this code is to traverse a list until we have arrived at the end or
until we have encountered the value 3. This is badly written code that can produce
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a runtime error. Pascal, in fact, does not use short-circuit evaluation. In the case in
which we have p = nil, the second operand of the conjunction (pˆ.value <>
3) yields an error when it dereferences a null pointer. Similar code, on the other
hand, mutatis mutandis, can be written in C without causing problems. In order
to avoid ambiguity, some languages (for example C and Ada), explicitly provide
different boolean operators for short-circuit evaluation. Finally, it should be noted
that this kind of evaluation can be simulated using a conditional command (see
Exercise 2).

Optimisation Frequently, the order evaluation of subexpressions influences the ef-
ficiency of the evaluation of an expression for reasons relating to the organisation
of the physical machine. For example, consider the following code:

a = vector[i];
b = a*a + c*d;

In the second expression, it is probably better first to evaluate c*d, given that the
value of a has to be read from memory (with the first instruction) and might not be
yet available; in such a case, the processor would have to wait before calculating a
* a. In some cases, the compiler can change the order of operands expressions to
obtain code that is more efficient but semantically equivalent.

The last point explains many of the semantic problems that appear while eval-
uating expressions. Given the importance of the efficiency of the object code pro-
duced by the compiler, it is given considerable liberty in the precise definition of
its expression evaluation method, without it being specified at the level of semantic
description of the language (as we have already said, Java is a rare exception). The
result of this kind of approach is that, sometimes, different implementations of the
same language produce different results for the same expression, or have errors at
runtime whose source is hard to determine.

Wishing to capitalise in a pragmatic prescription, given what has been said so far,
if we do not know the programming language well and the specific implementation
we are using, if we want to write correct code, it is wise to use all possible means
at our disposal to eliminate as many sources of ambiguity as possible in expres-
sion evaluation (such as brackets parentheses, specific boolean operations, auxiliary
variables in expressions, etc.).

6.2 The Concept of Command

If, as we were saying above, expressions are present in all programming languages,
the same is not true for commands. They are constructs that are typically present
(but not entirely restricted to them) in so-called imperative languages.

Definition 6.2 (Command) A command is a syntactic entity whose evaluation does
not necessarily return a value but can have a side effect.
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A command, or more generally, any other construct, has a side-effect if it influ-
ences the result of the computation but its evaluation returns no value to the context
in which it is located.

This point is fairly delicate and merits clarification with an example. If the
print command in a hypothetical programming language can print character
strings supplied as an argument, when the command print “pippo” is eval-
uated, we will not obtain a value but only a side-effect which is composed of the
characters “pippo” appearing on the output device.

The attentive reader will be aware that the definition of command, just as the
previous definition of expression, it is not very precise, given that we have referred
to an informal concept of evaluation (the one performed by the abstract machine of
the language to which the command or the expression belongs). It is clear that we
can always modify the interpreter so that we obtain some value as a result of the
evaluation of the command. This is what happens in some languages (for example
in C assignment also returns the value to the right of =, see Sect. 6.2.2).

A precise definition and, equally, an exact distinction, between expressions and
commands on the basis of their semantics is possible only in the setting of a formal
definition of the semantics of language. In such a context, the difference between
the two concepts derives from the fact that, once a starting state has been fixed,
the result of the evaluation of an expression is a value (together with possible side-
effects). On the other hand, the result of evaluating a command is a new state which
differs from the start state precisely in the modifications caused by the side-effects
of the command itself (and which are due principally to assignments). Command
is therefore a construct whose purpose is the modification of the state. The concept
of state can be defined in various ways; in Sect. 2.5, we saw a simple version, one
which took into account the value of all the variables present in the program.

If the aim of a command is to modify the state, it is clear that the assignment
command is the elementary construct in the computational mechanism for languages
with commands. Before dealing with them, however, it is necessary to clarify the
concept of variable.

6.2.1 The Variable

In mathematics, a variable is an unknown which can take on all the numerical values
in a predetermined set. Even if we keep this in mind, in programming languages, it
is necessary to specify this concept in more detail because, as we will see also in
Sects. 11.1 and 12.3, the imperative paradigm uses a model for variables which is
substantially different from that employed the in logic and functional programming
paradigms.

The classical imperative paradigm uses modifiable variables. According to this
model, the variable is seen as a sort of container, or location (clearly referring to
physical memory), to which a name can be given and which contains values (usually
of a homogeneous type, for example integers real, characters etc.). These values can
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Fig. 6.2 A modifiable
variable

be changed over time, by execution of assignment commands (whence comes the
adjective “modifiable”). This terminology might seem tautological to the average
computer person, who is almost always someone who knows an imperative language
and is therefore used to modifiable variables. The attentive reader, though, will have
noted that, in reality, variables are not always modifiable. In mathematics a variable
represents a value that is unknown but when such a value is defined the link thus
created cannot be modified later.

Modifiable variables are depicted in Fig. 6.2. The small box which represents
the variable with the name x can be re-filled with a value (in the figure, the value
is 3). It can be seen that the variable (the box) is different from the name x which
denotes it, even if it is common to say “the variable x” instead of “the variable with
the name x”.

Some imperative languages (particularly object-oriented ones) use a model that
is different from this one. According to this alternative model, a variable is not a
container for a value but is a reference to (that is a mechanism which allows access
to) a value which is typically stored in the heap. This is a new concept analogous to
that of the pointer (but does not permit the usual pointer-manipulation operations).
We will see this in the next section after we have introduced assignment commands.
This variable model is called, in [8], the “reference model”, while in [6], where
it is discussed in the context of the language CLU, is called the “object model”.
Henceforth, we will refer to this as the reference model of variables.

(Pure) functional languages, as we will see in more detail in Sect. 11.1, use a
concept of variable similar to the mathematical one: a variable is nothing more than
an identifier that stands for a value. Rather, it is often said that functional languages
“do not have variables”, meaning that (in their pure forms) they do not have any
modifiable variables.

Logic languages also use identifiers associated with values as variables and, as
with functional languages, once a link between a variable identifier and a value is
created, it can never be eliminated. There is however a mode in which the value
associated with a variable can be modified without altering the link, as will be seen
in Sect. 12.3.

6.2.2 Assignment

Assignment is the basic command that allows the modification of the values asso-
ciated with modifiable variables. It also modifies the state in imperative languages.
It is an apparently very simple command. However, as will be seen, in different
programming languages, there are various subtleties to be taken into account.

Let us first see the case that will probably be most familiar to the reader. This
is the case of an imperative language which uses modifiable variables and in which
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assignment is considered only as a command (and not also as an expression). One
example is Pascal, in which we can write

X := 2

to indicate that the variable X is assigned the value 2. The effect of such a command
is that, after its execution, the container associated with the variable (whose name
is) X will contain the value 2 in place of the value that was there before. It should be
noted that this is a side effect, given that the evaluation of the command does not on
its own, return any kind of value. Furthermore, every access to X in the rest of the
program will return the value 2 and not the one previously stored.

Consider now the following command:

X := X+1

The effect of this assignment, as we know, is that of assigning to the variable X its
previous value incremented by 1. Let us observe the different uses of the name, X,
of the variable in the two operands of the assignment operator. The X appearing to
the left of the := symbol is used to indicate the container (the location) inside which
the variable’s value can be found. The occurrence of the X on the right of the :=
denotes the value inside the container. This important distinction is formalised in
programming languages using two different sets of values: l-values are those values
that usually indicate locations and therefore are the values of expressions that can
be on the left of an assignment command. On the other hand, r-values are the values
that can be stored in locations, and therefore are the values of expressions that can
appear on the right of an assignment command. In general, therefore, the assignment
command has the syntax of a binary operator in infix form:

exp1 OpAss exp2

where OpAss indicates the symbol used in the particular language to denote assign-
ment (:= in Pascal, = in C, FORTRAN, SNOBOL and Java, ← in APL, etc.). The
meaning of such a command (in the case of modifiable variables) is as follows: com-
pute the l-value of exp1, determining, thereby, a container loc; compute the r-value
of exp2 and modify the contents of loc by substituting the value just calculated for
the one previously there.3 Which expressions denote (in the context on the left of
an assignment) an l-value depends on the programming language: the usual cases
are variables, array elements, record fields (note that, as a consequence, calculation
of an l-value can be arbitrarily complex because it could involve function calls, for
example when determining an array index).

In some languages, for example C, assignment is considered to be an operator
whose evaluation, in addition to producing a side effect, also returns the r-value thus
computed. Thus, if we write in C:

3Some languages, e.g., Java, allow the left-hand side to be evaluated before the right-hand side;
others (e.g., C), leave this decision to the implementer.
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x = 2;

the evaluation of such a command, in addition to assigning the value 2 to x, returns
the value 2. Therefore, in C, we can also write:

y = x = 2;

which should be interpreted as:

(y = (x = 2));

This command assigns the value 2 to x as well as to y. In C, as in other languages,
there are other assignment operators that can be used, either for increasing code
legibility or avoiding unforeseen side effects. Let us take up the example of incre-
menting a variable. Once again we have:

x = x+1;

This command, unless optimised by the compiler, requires, in principle, two ac-
cesses to the variable x: one to determine the l-value, and one to obtain the r-value.
If, from the efficiency viewpoint, this is not serious (and can be easily optimised by
the compiler), there is a question which is much more important and which is again
related to side-effects. Let us then consider the code:

b = 0;
a[f(3)] = a[f(3)]+1;

where a is a vector and f is a function defined as follows:

int f (int n){
if b == 0{

b=1;
return 1;
}

else return 2;
}

This function is defined in such a way that the non-local reference to b in the body
of f refers to the same variable b that is cleared in the previous fragment.

Given that f modifies the non-local variable b, it is clear that the assignment

a[f(3)] = a[f(3)]+1

does not have the effect of incrementing the value of the element a[f(3)] of the
array, as perhaps we wanted it to do. Instead, it has the effect of assigning the value
of a[1]+1 to a[2] whenever the evaluation of the left-hand component of the
assignment precedes the evaluation of the right-hand one. It should be noted, on the
other hand, that the compiler cannot optimise the computation of r-values, because
the programmer might have wanted this apparently anomalous behaviour.
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To avoid this problem we can clearly use an auxiliary variable and write:

int j = f(3);
a[j] = a[j]+1;

Doing this obscures the code and introduces a variable which expresses very little.
To avoid all of this, languages like C provide assignment operators which allow us
to write:

a[f(3)] += 1;

This add to the r-value of the expression present on the left the quantity present on
the right of the += operator, and then assigns the result to the location obtained as the
l-value of the expression on the left. There are many specific assignment commands
that are similar to this one. The following is an incomplete list of the assignment
commands in C, together with their descriptions:

• X = Y: assign the r-value of Y to the location obtained as the l-value of X and
return the r-value of X;

• X += Y (or X -= Y): increment (decrement) X by the quantity given by the
r-value of Y and return of the new r-value;

• ++X (or -X): increment (decrement) X by and return the new r-value of X;
• X++ (or X-): return the r-value of X and then increment (decrement) X.

We will now see how the reference model for variables differs from the traditional
modifiable-variable one. In a language which uses the reference model (for example,
CLU and, as we will see, in specific cases, Java) after an assignment of the form:

x=e

x becomes a reference to an object that is obtained from the evaluation of the ex-
pression e. Note that this does not copy the value of e into the location associated
with x. This difference becomes clear if we consider an assignment between two
variables using the reference model.

x=y

After such an assignment, x and y are two references to the same object. In the
case in which this object is modifiable (for example, record or array), a modification
performed using the variable x becomes visible through variable y and vice versa.
In this model, therefore, variables behave in a way similar to variables of a pointer
type in languages which have that type of data. As we will more clearly see in
Sect. 8.4.5, a value of a pointer type is no more than the location of some data item
(or, equivalently, its address in some area of memory). In many languages which
have pointer types, the values of such types can be explicitly manipulated (which
causes several problems as we will also see in Chap. 8). In the case of the reference
model, however, these values can be manipulated only implicitly using assignments
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Environment and Memory
In Chap. 2, we defined the semantics of a command by referring to a simple notion
of state, which we defined as a function associating with every variable present in
the program, the value it takes. This concept of state, although adequate for didactic
purposes in mini-languages, is not sufficient when we want to describe the semantics
of real programming languages which use modifiable variables and assignments. In
fact, we have already seen in Chap. 4 (and will see in more detail in the next two
chapters) that parameter-passing mechanisms as well as pointers can easily create
situations in which two different names, for example X and Y, refer to the same
variable, or rather the same location in memory. Such case of aliasing cannot be
described using a simple function State: Names → Values because with a simple
function it is not possible to express the fact that a modification of the value asso-
ciated with (the variable denoted by) X also reflects on the value associated with Y.
To correctly express the meaning of modifiable variables, we therefore use two sep-
arate functions. The first, called the environment, mostly corresponds to the concept
of environment introduced in Chap. 4: in other words, it is a function Environment:
Names → DenotableValues which maps names to the values they denote. The set
(or, as one says in semantics jargon, the domain) of names often coincides with that
of identifiers. The domain DenotableValues, instead, includes all values to which
a name can be given; what these values are depends on the programming language
but if the language provides modifiable variables then this domain certainly includes
memory locations.

The values associated with locations are, on the other hand, expressed by a
function Memory: Locations → StorableValues which (informally) associates every
location with the value stored in it. In this case also, what exactly is a storable value
depends on the specific language.

Therefore, when we say that “in the current state the variable X has the value 5”,
formally we mean to say that we have an environment ρ and a memory σ such
that σ(ρ(X)) = 5. Note that when a variable is understood to be an l-value, we
are interested only in the location denoted by the name and, therefore, only in the
environment is specified, while when we understand it as an r-value the store is also
used. For example given environment ρ, and a store σ , the effect of the command
X=Y is to produce a new state in which the value of ρ(σ (Y)) is associated with ρ(X).
Let us recall, for completeness, that a third value domain important in the language
semantics is formed from ExpressibleValues: these are those values which can be
the result of the evaluation of a complex expression.

between variables. Java (which does not have pointers) adopts the reference model
for variables for all class types, but uses the traditional modifiable-variable model
for primitive types (integers, reals floating point, booleans and characters).

Below, unless otherwise specified, when we talk about variables, we mean the
modifiable variable.
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6.3 Sequence Control Commands

Assignment is the basic command in imperative languages (and in “impure” declar-
ative languages); it expresses the elementary computation step. The remaining com-
mands serve to define sequence control, or rather serve to specify the order in which
state modifications produced by assignments, are to be performed. These other com-
mands can be divided into three categories:

Commands for explicit sequence control These are the sequential command and
goto. Let us consider, in addition, the composite command, which allows us to
consider a group of commands as a single one, as being in this category.

Conditional (or selection) commands These are the commands which allow the
specification of alternative paths that the competition can take. They depend on the
satisfaction of specific conditions.

Iterative commands These allow the repetition of a given command for a prede-
fined number of times, or until the satisfaction of specific conditions.

Let us consider these command typologies in detail.

6.3.1 Commands for Explicit Sequence Control

Sequential Command The sequential command, indicated in many languages by
a “;”, allows us directly to specify the sequential execution of two commands. If we
write:

C1 ; C2

the execution of C2 starts immediately after C1 terminates. In languages in which
the evaluation of a command also returns a value, the value returned by the evalua-
tion of the sequential command is that of the second argument.

Obviously we can write a sequence of commands such as:

C1 ; C2 ; ... ; Cn

with the implicit assumption that the operator “;” associates to the left.

Composite Command In modern imperative languages, as we have already seen
in Chap. 4, it is possible to group a sequence of commands into a composite com-
mand using appropriate delimiters such as those used by Algol:

begin
...
end

or those in C:

{
...
}
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Imperative and Declarative Languages

Denotable, storable and expressible values, even if they have a non-empty intersec-
tion, are conceptually distinct sets. In effect, many important differences between
various languages depend on how these domains are defined. For example, func-
tions are denotable but not expressible in Pascal, while they are expressible in Lisp
and ML. A particularly important difference between various languages concerns
the presence of storable value and the Memory semantic function which we saw in
the previous box. In fact, in a rather synthetic fashion, we can classify as imperative
those languages which have environments as well as memory functions; those lan-
guages which have only environments are declarative. Imperative languages, while
they are high-level languages, are inspired by the physical structure of the computer.
In them the concept of memory (or state) is interpreted as the set of associations be-
tween memory locations and values stored in those locations. A program, according
to this paradigm, is a set of imperative commands and computation consists of a
sequence of steps which modify the state, using as its elementary command the as-
signment. The terminology “imperative” here has to do with natural language: as
in an imperative phrase, we say “take that apple” to express a command, so with
an imperative command we can say “ assign to x the value 1”. Most programming
languages normally used belong to the imperative paradigm (Fortran, Algol, Pascal,
C, etc.).

Declarative languages were introduced with the aim of offering a higher level
programming paradigms, close to the notations of mathematics and logic, abstract-
ing from the characteristics of the physical machine on which the programs are
executed. In declarative languages (or at least in “pure” versions of them) there are
no commands to modify the state, given that there are neither modifiable variables
nor a semantic memory function. Programs are formed from a set of declarations
(from which the name is derived) of functions or relations which define new values.
According to the elementary mechanism used to specify the characteristics of the
result, declarative languages are divided into two classes: functional and logic pro-
gramming languages (the latter, also called logic languages for short). In the first
case, computation consists of the evaluation of functions defined by the program-
mer using rules of a mathematical kind (mostly composition and application). In
the second form of declarative language, on the other hand, computation is based
on first-order logical deduction. Let us recall that, in actuality, there exist “impure”
functional and logic languages that also have imperative characteristics (in particu-
lar, they include assignment). We will encounter both functional and logic languages
in two next chapters.

Such a composite command, also called a block, can be used in any context in
which a simple command is expected and therefore, in particular, can be used inside
another composite command to create a tree-like structure of arbitrary complexity.
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A Quibble about “;”

Being rigorous, the “;” used to separate commands is not always a sequential com-
mand. In C, C++ and Java, for example, it is a command terminator more than an
operator expressing concatenation. In fact, this can be easily seen when we deal with
the last command in a block. In these languages, the “;” is always required, even if
the command is not followed by another as in

{x=1;
x=x+1;
}

In languages like Pascal, on the other hand, “;” is really an operator that se-
quentialises commands. The same example as above can be written as:

begin
x:=1;
x:=x+1

end

To insert a “;” without there being a command to follow it is, however, a venial
programming sin which the compiler absolves by inserting an empty command be-
tween the “;” and the end. An empty command is denoted by nothing syntactically
and corresponds to no action.

Goto A unique place is occupied in the panorama of sequential control commands
by the goto. It was included in the first programming languages and continues to be
included in languages. It has 2 different forms (conditional or direct). This command
is directly inspired by jump instructions in assembler languages and therefore by the
sequence control of the hardware machine. The execution of the command

goto A

transfers control to the point in the program at which the label A occurs (different
languages differ in what exactly constitutes a label but these differences are not
relevant to us).

Despite its apparent simplicity and naturalness, the goto command has been at
the centre of a considerable debate since the start of the 1970s (see, for example, the
famous article by Dijkstra referred to in the bibliography), and, after about 30 years
of debate, we can say that it is the detractors who have beaten the supporters of this
command. To clarify the sense of this debate, let us, first of all, observe that the
goto is not essential to the expressiveness of a programming language. A theorem
due to Böhm and Jacopini in fact shows that any program can be translated into
an equivalent one which does not use the goto (the formulation of the theorem,
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obviously, is much more precise than our account). This result, moreover, does not
come down on one side or the other. If, on the one hand, we can assert that, in
principle, the goto is useless, on the other, it is possible to object (as has been
done) that even this result shows that it is permissible to use the goto in programs.
If just we wish to eliminate this command, in fact, it can be done using the Böhm
and Jacopini transformation (which, in particular, completely destroys the structure
of the reformulated program).

The nexus of the question really is not of a theoretical nature but of a pragmatic
one. Using goto, it is easily possible to write code which soon becomes incompre-
hensible and which still remains incomprehensible when all gotos are eliminated.
We can think, for example, of a program of some considerable size where we have
inserted jumps between points which are some of thousands of lines of code apart.
Or, we can think of a subprogram in which exits are made at different points based
on some condition and the exits are performed by gotos. These and other arbitrary
uses of this construct make the code hard to understand, and therefore hard to mod-
ify, correct and maintain; this has the obvious negative consequences in terms of
cost. To all of this, we can add the fact that the goto with its primitive method of
transferring control, does not accord well with other mechanisms present in high-
level languages. What happens, for example, if we jump inside of a block? When
and how is the activation record for this block initialised so that everything works
correctly?

If goto were used in an extremely controlled fashion, locally to small regions
of code, the majority of these disadvantages would disappear. However, the cases
in which it can be useful to use this command, such as exit from loops, return from
a subprograms, handling of exceptions, can, in modern programming languages, be
handled by specific, more appropriate, constructs. We can therefore assert that in
modern high-level languages, the goto is a construct whose use is disappearing.
Java is the first commercial language to have completely removed it from its set of
admissible commands.

Other sequence control commands If goto is dangerous in its general form,
there are local and limited uses which are useful in given circumstances. Many lan-
guages make available limited forms of jump to confront these pragmatic necessities
without having to make use of the brute force of a goto. Among these commands
(which take on different forms in different languages), we find constructs such as
break (for terminating the execution of a loop, of a case, or, in some languages,
of the current block), continue (for terminating the current iteration in an iter-
ative command and force the starting of the immediately following command) or
return (to terminate the evaluation of the function, returning control to the caller,
sometimes also passing a value).

Finally, a more elaborate sequence control can be implemented using exceptions.
We will deal with these in a more detailed fashion in Sect. 7.3 below.
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6.3.2 Conditional Commands

Conditional commands, or selection commands, express one alternative between
two or more possible continuations of the computation based on appropriate logical
conditions. We can divide conditional commands into two groups.

If The if command, originally introduced in the ALGOL60 language, is present
in almost all imperative languages and also in some declarative languages, in various
syntactic forms which, really, can be reduced to the form:

if Bexp then C1 else C2

where Bexp is a boolean expression, while C1 and C2 are commands. Informally,
the semantics of such a command expresses an alternative in the execution of the
computation, based on the evaluation of the expression Bexp. When this evaluation
returns true, the command C1 is executed, otherwise the command C2 is executed.
The command is often present in the form without the else branch:

if Bexp then C1

In this case, too, if the condition is false, the command C1 is not executed and
control passes to the command immediately after the conditional. As we saw in
Chap. 2, the presence of a branching if as in the command

if Bexp1 if Bexp2 then C1 else C2

causes problems of ambiguity, which can be resolved using a suitable grammar
which formally describes the rules adopted by the language (for example, the else
branch belongs to the innermost if; this is the rule in Java and it is used in almost
every language). To avoid problems of ambiguity, some languages use a “ termina-
tor” to indicate where the conditional command ends, as for example in:

if Bexp then C1 else C2 endif

Furthermore, in some cases, instead of using a list of nested if then elses,
use is made of an if equipped with more branches, analogous to the following:

if Bexp1 then C1
elseif Bexp2 then C2
...
elseif Bexpn then Cn
else Cn+1

endif
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The implementation of the conditional command poses no problems, and makes use
of instructions for test and jump that are found in the underlying physical machine.4

The evaluation of the boolean expression can use the shorter circuit technique that
we saw above.

Case The command is a specialisation of the if command, just discussed, with
more branches. In its simplest form it is written as follows:

case Exp of
label1: C1;
label2: C2;
...
labeln: Cn;

else Cn+1

where Exp is an expression whose value is of a type compatible with that of the
labels label1, ... , labeln, while C1, ... , Cn+1 are commands. Each label
is represented by one or more constants and the constant used in different labels
are different from each other. The type permitted for labels, as well as their form,
varies from language to language. In most cases, a discrete type is permitted (see
Sect. 8.3), including enumerations and intervals. So, for example, we can use the
constants 2 and 4 to denote a label, but in some languages we can also write 2,4 to
indicate either the value 2 or the value 4, or 2 .. 4 to indicate all values between
2 and 4 (inclusive).

The meaning of this command, as stated above, is analogous to that of a multi-
branch if. Once the expression Exp has been evaluated, the command which oc-
curs in the unique branch whose label includes the value to which Exp evaluated is
executed. The else branch is executed whenever there is no other branch whose
label satisfies the condition stated above.

It is clear that whatever can be done using a case can certainly be expressed
using a nested series of ifs. Even so, many languages include some form of case
in their commands, either to improve the readability of the code, or because it is
possible to compile a case much more efficiently than a long series of nested ifs.
A case is, in fact, implemented in assembly language using a vector of contiguous
cells called a jump table, in which each element of the table contains the address
of the first instruction of the corresponding command in the case’s branches. The
use of such a table is shown in Fig. 6.3, where, for simplicity, it is assumed that
the labels label1,.., labeln are the consecutive constants 0,1, . . . , n − 1. As
should be clear in the figure, the expression which appears as an argument to the
case is evaluated first of all. The value thus obtained is then used as an offset
(index) to compute the position in the jump table of the instruction which performs
the jump to the chosen branch. The extension of this mechanism to the general case
in which labels are sets or intervals as simple (see Exercise 3).

4At the assembly language level, and therefore in the language of the physical machine, there are
jump operations, conditional or not, analogous to the goto in high-level languages.
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Fig. 6.3 Implementation of
case

This implementation mechanism for case gives greater efficiency than a series
of nested ifs. Using a jump table, once the value of the expression is calculated,
two jump instructions are required to arrive at the code of the command to execute.
Using nested ifs, on the other hand, for n alternative branches (in the worst case of
an unbalanced if), it is necessary to evaluate O(n) conditions and perform O(n)

jumps before arriving at the command of interest. The disadvantage of using a jump
table is that, since it is a linear structure whose contiguous elements correspond
to successive label values, it can consume a lot of space when the label values are
dispersed over a fairly wide interval or when the individual labels are a type denoting
a wide interval. In this case alternative methods can be used for calculating the jump
address, such as sequential tests hashing or even methods based on binary search.

Different languages exhibit significant differences in their case commands. In
C, for example, the switch has the following syntax (also to be found in C++ and
in Java):

switch (Exp) body
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where body can be any command that all. In general, though, the body is formed
from a block in which some commands can be labelled; that is they are of the form:

case label : command

while the last command of the block is of the form:

default : command

When the expression Exp is evaluated and control is to be transferred to the
command whose label coincides with the resulting value, if there are no labels with
such a value, control passes to the command with the label default. If there is no
default command, control passes to the first command following the switch. It
can be seen that, once a the branch of the switch has been selected, control then
flows into the immediately following branches. To obtain a construct with semantics
analogous to that of the casewe discussed above, it is necessary to insert an explicit
control transfer at the end of the block, using a break:

switch (Exp){
case label1: C1 break;
case label2: C2 break;
...
case labeln: Cn break;
default: Cn+1 break;

}

It can be seen also that in a switch, the value returned by the evaluation of the
expression might not appear in any label, in which case the entire command has no
effect. Finally, lists or ranges of values are not permitted as labels. This however
is no real limitation, given that lists of values can be implemented using the fact
that control passes from one branch to its successor when break is omitted. If, for
example, we write:

switch (Exp){
case 1:
case 2: C2 break;
case 3: C3 break;
default: C4 break;

}

in the case in which the value of Exp is 1, given that the corresponding branch does
not contain a break command, control passes from the case 1 branch immedi-
ately to the case 2 branch and therefore it is as if we had used a list of values 1,2
for the label of C2.
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6.3.3 Iterative Commands

The commands that we have seen up to this point, excluding goto, only allow us to
express finite computations, whose maximum length is determined statically by the
length of the program text.5 A language which had only such commands would be
of highly limited expressiveness. It would certainly not be Turing complete (recall
Sect. 3.3), in that it would not permit the expression of all possible algorithms (con-
sider, for example, scanning a vector of n elements, where n is not known a priori).

In order to acquire the expressive power necessary to express all possible algo-
rithms in low-level languages, jump instructions allowing the repetition of groups of
instructions by jumping back to the start of the code are needed. In high-level lan-
guages, given that, as has been seen, it is desirable to avoid commands like goto,
two basic mechanisms are employed to achieve the same effect: structured iteration
and recursion. The first, which we consider in this section, is more familiar from
imperative languages (and they almost always allow recursion as well). Suitable lin-
guistic constructs (which we can regard as special versions of the jump command)
allow us compactly to implement loops in which commands are repeated or iterated.
At the linguistic level, it is possible to distinguish between unbounded iteration and
bounded iteration. In bounded iteration, repetition is implemented by constructs that
allow a determinate number of iterations. Unbounded iteration, on the other hand,
is implemented by constructs which continue until some condition becomes true.

Recursion which we will consider in the next section, allows, instead, the ex-
pression of loops in an implicit fashion, including the possibility that a function
(or procedure) can call itself, thereby repeating its own body an arbitrary number
of times. The use of recursion is more common in declarative languages (in many
functional and logic languages there does not, in fact, exist any iterative construct).

Unbounded iteration Unbounded iteration is logically controlled iteration. It is
implemented by linguistic constructs composed of two parts: a loop condition (or
guard) and a body, which is composed of a (possibly compound) command. When
executed, the body is repeatedly executed until the guard becomes false (or true,
according to the construct).

In its most common form, this type of iteration takes the form of the while
command, originally introduced in ALGOL:while

while (Bexp) do C

The meaning of this command is as follows: (1) the boolean expression Bexp is
evaluated; (2) if this evaluation returns the value true, execute the command C and
return to (1); otherwise the while command terminates.

In some languages there are also commands that test the condition after execution
of the command (which is therefore always executed at least once). This construct
is for example present in Pascal in the following form:

5It can easily be seen that the maximum length of the computation is a linear function of the length
of the program.
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repeat C until Bexp

This is no more than an abbreviation for:

C;
while not Bexp do C

(not Bexp here indicates the negation of the expression Bexp). In C an analogous
construct is do:

do C while (Bexp)

which corresponds to:

C;
while Bexp do C

(note that the guard is not negated as in the case of repeat.)
The while construct is simple to implement, given that it corresponds directly

to a loop that is implemented on the physical machine using a conditional jump in-
struction. This simplicity of implementation should not deceive us about the power
of this construct. Its addition to a programming language which contains only as-
signment and conditional commands immediately makes the language Turing com-
plete. Our mini-language from Chap. 2 is therefore Turing complete (or: it allows
the implementation of all computable functions). The same is not the case with
bounded iteration which we will now turn to.

Bounded iteration Bounded iteration (sometimes also called numerically con-
trolled iteration) is implemented by linguistic constructs that are more complex than
those used for unbounded iteration; their semantics is also more elaborate. These
forms are very different and not always “pure” as we will see shortly. The model
that we adopt in this discussion is that of ALGOL, which was then adopted by many
other languages of the same family (but not by C or Java).

Bounded iteration is implemented using some variant of the for command.
Without wishing to use any specific syntax, it can be described as:

for I = start to end by step do
body

where I is a variable, called the index, or counter, or control variable; start and
end are two expressions (for simplicity we can assume that they are of integer type
and, in general, they must be of a discreet type); step is a (compile-time) non-zero
integer constant; body is the command we want to repeat. This construct, in the
“pure” form we are describing, is subject to the important static semantic constraint
that the control variable can not be modified (either explicitly nor implicitly) during
the execution of the body.

The semantics of the bounded iteration construct can be described informally as
follows (assuming that step is positive):



146 6 Control Structure

1. The expression start is evaluated, as is end. The values are frozen and stored
in dedicated variables (which cannot be updated by the programmer). We denote
them, respectively, as start_save and end_save.

2. I is initialised with the value of start_save.
3. If the value of I is strictly greater than the value of end_save, execution of the

for command is terminated.
4. Execute body and increment I by the value of step.
5. Go to 3.

In the case in which step is negative, the test in step (3) determines whether I
is strictly less than end_save.

It is worth emphasising the importance of step (1) above and the constraint that
the control variable cannot be modified in the body. Their combined effect is to
determine the number of times and the body will be executed before the loop be-
gins execution. This number is given by the quantity, ic (iteration count), which is
defined as:

ic =
⌊
end− start+ step

step

⌋

if ic is positive, otherwise it is 0. It can be seen, finally, that there is no way of
producing an infinite cycle with this construct.

There are considerable differences, both syntactic and semantic, between the ver-
sions of this construct in different languages. First, not all languages require non-
modifiability of the control variable and/or the freezing of the control expressions.
Strictly speaking, such cases do not implement bounded iteration because they are
unable to compute ic once and once only. It is common, though, to continue speak-
ing of bounded iteration even when the language does not guarantee determinate-
ness, but this is obtained on any loop, by the programmer (modifying neither directly
nor indirectly the control variable and the start, end and step expressions). Also dif-
ferent other aspects constitute important differences between languages, of which
we mention four:

Number of iterations According to the semantics which we have just given, when
step is positive, if the value of start is initially (strictly) greater than the value
of end, body is not executed at all. Even this is not the case in all languages,
just the majority. Some languages execute the test in Step 3 after having executed
body.

Step The requirement that step is a (non-zero) constant is necessary for statically
determining its sign, so that the compiler can generate the appropriate code for the
test in step 3. Some languages (such as Pascal and Ada) use a special syntax to
indicate that step is negative, for example using downto or reverse in place
of to. Other languages, such as, for example, some versions of Fortran, do not
have a different syntax for the native step and their implementation of the for
directly uses the iteration counter rather than the test of I and end. The value ic is
computed and if this value is positive, it is used to control the loop, decrementing
it by 1 until it reaches the value 0. If, on the other hand, ic has a negative value or is
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equal to 0, the loop is never repeated. It is the use of this implementation technique
that suggests the name numerically controlled iteration.

Final index value The other subtle aspect concerns the value of the control vari-
able I after the end of the loop. In many languages, I is a variable that is also
visible outside of the loop. The most natural approach seems to be that of consid-
ering the value of I to be the last value assigned to it during execution of the for
construct itself (in the case in which the loop terminates normally and the step is
positive, the last value assigned to the index I is the first value greater than end).
This approach, though, can generate type ambiguities or errors. Let us assume, for
example, that I is declared as being of an interval type 1 .. 10 (from 1 to 10).
If we use a command:

for I = 1 to 10 by 1 do
body

The final value assigned to I would have to be the successor of 10, which is clearly
not an admissible value. An analogous problem occurs for integer values when
the calculation of I causes an overflow. To avoid this problem, some languages
(for example Fortran IV or Pascal) consider the value of I to be indeterminate on
termination of the loop (that is, the language definition does not specify what it
should be). In other words, each implementation of these languages is allowed to
behave how it wishes, with the imaginable consequence of the non-portability of
programs. Other languages (for example: AlgolW, Algol 68, Ada, and, in certain
circumstances, C++) cut the matter short, decreeing that the control variable is a
variable that is local to the for; hence it is not visible outside the loop. In this
case the header of the for implicitly declares the control variable with a type that
is determined from that one of start and end.

Jump into a loop The last point which merits attention concerns the possibility of
jumping into the middle of a for loop using a goto command. Most languages
forbid such jumps for clear semantic reasons, while there are fewer restrictions on
the possibility of using a goto for jumping out of a loop.

We have just considered a number of important aspects of the implementation
of for loops. Particular tricks can be used by the compiler to optimise the code
that is produced (for example, eliminating tests which involve constants) or by lim-
iting overflow situations which could occur when the incrementing the index I (by
inserting appropriate tests).

Expressiveness of bounded iteration Using bounded iteration, we can express
the repetition of a command for n times, where n it is an arbitrary value not known
when the program is written, but is fixed at when the iteration starts. It is clear
that this is something that cannot be expressed using only conditional commands
and assignment, because it is possible to repeat a command only by repeating the
command in the body of the program syntactically. Given that every program has
a finite length, we have a limit on the maximum number of repetitions that we can
include in a specific program.
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Despite this increase in expressive power, bounded iteration on its own is insuf-
ficient to make a programming language Turing complete. Think, for example, of a
simple function f which can be defined as follows:

f (x) =
{

x if x is even,
does not terminate if x is odd.

Certainly such a function is computable. Every programmer would know how to
implement it using a while or a goto or a recursive call so as to obtain a nonter-
minating computation. However such a function is not representable in a language
only having assignment, sequential command, if and bounded iteration, given that,
as can easily be verified in such a language, all programs terminate for every in-
put. In other words, in such a language, only total functions can be defined while
function f is partial.6 In order to obtain a language that is Turing complete, it is nec-
essary to include unbounded iteration. The complication of the informal semantics
of for is only apparent, and the easy translation into machine language of while
should not deceive us. In fact, from a formal viewpoint, while is semantically
more complicated than for. As we saw in Chap. 2, the semantics of the while
command is defined in terms of itself, something which, if at first sight it appears a
little strange, finds its formal justification in fix point techniques which are beyond
the scope of this text (and to which we will mention in the section on recursion,
below). Even if we have not formally defined the semantics of for, the reader can
convince themselves that this can be given in simpler terms (see Exercise 4). The
major complication in the semantics of while with respect to for corresponds to
the greater expressiveness of the first construct. It is in fact clear that every for
command can easily be translated into a while.

It can now be asked why a language provides a bounded iteration construct when
unbounded iteration constructs allow the same things to be done. The reply is prin-
cipally of a pragmatic nature. The for it is a much more compact form of iteration,
putting the three components of the iteration (initialisation, control and increment
of the control variable) on the same line makes understanding what the loop does a
lots easier; it can also prevent some common errors, such as forgetting the initialisa-
tion or increment of the control variable. The use of a for instead of a while can
therefore be an important way to improve understanding and, therefore testing and
maintenance of a program. There is also the implementation motive in some lan-
guages and on some architectures. A for a loop can often be compiled in a more
efficient way (and, in particular, be optimised better) than a while, particularly as
far as register allocation is concerned.

The for in C In C (and in its successors, among them Java), the for is far from
being, the in a general case, a bounded iteration construct. The general version is:

6In reality there are other total functions that are not definable using only assignment, sequential
composition, if and for. A famous example is the Ackerman function, for whose definition the
reader is referred to texts on computability theory for example [3].
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for (exp1; exp2; exp3)
body

Its semantics is the following:

1. Evaluate exp1;
2. Evaluate exp2; if it is zero, terminate execution of the for;
3. Execute body;
4. Evaluate exp3 and go to (2).

As can be seen, there is no way to freeze the value of the control expressions, nor
is there any ban on the possibility of modifying the value of index (which, in the
general case, need not even exist). It is clear how the semantics expresses the fact
that in C, for is, when all is said and done, an abbreviation for a while.

Making use of the fact that, in C, a command is also an expression, we obtain the
most usual form in which the for appears in C programs:

for (i = initial; i <= final; i += step){
body

}

This is an abbreviation (which is very important pragmatically) of:

i = initial;
while (i <= final){

body
i += step;

}

For-each One of the most common iterative constructions performs the sequential
scanning of all the elements of the data structure. A typical example is the following
which contains a function which computes the sum of the values in an array of
integers:

int sum(int[] A){
int acc = 0;
for(int i=0; i<length(A); i++)

acc += A[i];
return acc;

}

This function is full of details that the compiler knows: the first and last index of A,
the specific check for i reaching its limit. The more detail that has to be added in
a construct, the easier it is to make an error and much more difficult to understand
at a glance what the construct does. In the case of sum, what we want to express is
simply the application of the body to every element of A.

Hence, some languages use a special construct, called for-each, to perform this
kind of operation. The for-each has the following general syntax:

foreach (FormalParameter : Expression) Command
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The for-each construct expresses the application of Command (in which the For-
malParameter can clearly appear) to each element of Expression.

Using such a construct, the operation of summing a vector can be written as:

int sum(int[] A){
int acc = 0;
foreach(int e : A)

acc += e;
return acc;

}

Here, we can read the header for the for-each as “for every element e in A”. The
vector index, together with all of the vector’s limits, is hidden in a more synthetic
and elegant construct.

The use of the for-each construct is not limited to vectors, but can also be
applied to all collections over which the notion of iteration can be defined in a
natural way. In addition to enumerations and sets (which we will see in Chap. 8),
let us mention the particularly important case of languages which allow the user to
define types which are “ iterable”.

Among the more common languages, Java Version 5 supports the for-each
construct. The key word used is simply for7 but the syntax is different and allows
the construct to be disambiguated without problem. In Java the for-each (also called
enhanced for in the documentation) is applicable to all subtypes of the library type
Iterable.

6.4 Structured Programming

The rejection of the goto command of the 1970s was not an isolated phenomenon.
The goto’s rejection was due to its properties, yet it was only one issue among
many that contributed to a much wider debate which brought so-called structured
programming to the fore. This can be considered as the antecedent of modern pro-
gramming methodology. As the name itself suggests, it consists of a series of pre-
scriptions aimed at allowing the development of software that has a certain structure
in code and, correspondingly, in the flow of control. These prescriptions have both
a methodological nature, providing precise development methods for programs, and
a linguistic component, indicating appropriate typologies for the commands used
(in substance, all those seen here so far, with the exception of goto). Let us see
in more detail some salient points about structured programming and its associated
linguistic implications.

7The for-each construct has been added on the fly when the language was already distributed and
in use for some years. In a case like this, the modification of the set of reserved words is not a good
design decision. Old programs which used the new keyword would stop working.
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Top-down or hierarchical design of programs The program is developed by suc-
cessive refinements, starting from a first (fairly abstract) specification adding suc-
cessively extra detail at each step.

Code modularisation It is appropriate to group the commands which correspond
to the specific functions in the algorithm that is to be implemented. To do this, all
the linguistic mechanisms made available by the language are used; these range
from compound commands to constructs for abstraction, such as procedures, func-
tions, and real modules, where the language supports them.

Use of meaningful names The use of meaningful names for variables, as well as
for procedures, etc., greatly simplifies the process of understanding the code and
therefore eases making any changes required during maintenance. Even if this ap-
pears (and is) obvious, in practice it is too often ignored.

Extensive use of comments Comments are essential for understanding, testing,
verification, correction and modification of code. A program with no comments,
becomes rapidly incomprehensible, once it has reached a certain length.

Use of structured data types The use of appropriate datatypes, for example records,
to group and structure information, even if it is of an heterogeneous type, eases
both the design of code and its later maintenance. For example, if we can use the
single variable, of type student record, to store the information about family name,
registration number and a subscription year for a student, then the structure of the
program will be much clearer than it would be if one had to use four different
variables to hold the information about a single student.

Use of structured control constructs This, from a linguistic viewpoint, is the es-
sential aspect. To implement structured programming, it is necessary to use struc-
tured control constructs, or rather constructs which, typically, have a single entry
and a single exit point.

The last point is the one which interests us the most and merits extra study. The
essential idea behind structured control constructs is that, by having a single entry
and a single exit point, they allow structuring of the code in which the linear scan-
ning of the program text corresponds to execution flow. If command C2 textually
a follows command C1, at the (unique) exit of command C1, when C1 terminates,
control passes to the (unique) entry point of command C2. Each command inter-
nally can have complex structure: branching (as in an if) or loops (as in for) with
a non-linear control structure or internal jumps. The important thing is that each ele-
mentary component, externally, is visible in terms only of an entry point and an exit.
This property, which is fundamental for the understanding of code, is violated in the
presence of a command such as goto which allows jumps forward and backwards
in the program. In such a case, the code can rapidly reach a state which is called
“spaghetti code”, where the control flow between the various program components,
instead of being a simple graph with few the edges (which connect the output of a
command to the input of the following one), is described by a graph in which the
edges resemble a plate of spaghetti.

The control constructs seen so far, except the goto, are all structured and are
the ones left in the modern programming languages. From a theoretical position,
they allow programs for all computable functions to be written, as we have already
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observed. From the pragmatic point of view they are sufficient to express all types
of control flow present in real applications. In particular, the constructs that were
discussed at the end of Sect. 6.3.1 enable us to handle those cases in which we
have to exit from a loop, a procedure, or, in some way, interrupt processing before
“normal” termination occurs. All of these cases could be handled in a natural manner
using a goto. For example, if we wished to process all the elements of a file that
we have read from an external device, we could use code of the form:8

while true do{
read(X);
if X = end_of_file then goto end;
elaborate(X);

}
end: ...

It can be observed that this use of goto does not violate the single entry, single
exit principle because the jump only anticipates the exit, which happens at a single
point in the overall construct. The structured command break (or its analogues) is
the canonical form of this “jump to end of loop”. When written in place of goto
end, it makes the program clearer, and omits the label (the destination of the jump
implicit in the break is the unique exit from the construct).

Let us finally recall that structured programming constituted a first reply to the
demands of so-called programming in the large,9 given that it requires the decom-
position of a system of vast dimensions into different components, each of which is
assigned a certain level of independence. The amount of independence depends on
the abstraction mechanisms being used. For example, if procedures are used, com-
munication between the various components can happen only through parameters.
More significant answers to the needs of programming in the large cannot, though,
be given solely at the linguistic level of programming languages. Software engi-
neering has studied many methodologies for managing projects and implementing
big software systems. Some of these methodologies also have linguistic implica-
tions, which, however, cannot be completely accounted for in this book. The object-
oriented paradigm, together with some specification formalisms for object-oriented
projects (like UML), are some of the more recent replies to issues we consider in
this text.

6.5 Recursion

Recursion is another mechanism, an alternative to iteration, for obtaining Turing-
equivalent programming languages. In empirical terms, a function (or procedure)

8Wishing to avoid goto and using only while and if, we find that we have to write code that is
much less natural.
9This term denotes the implementation of large-scale software systems.
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Inductive Definitions

Using an axiomatic presentation due to Giuseppe Peano, the natural numbers (non-
negative integers) 0, 1, 2, 3, . . . , can be defined as the least set X, satisfying the
following rules:

1. 0 ∈ X

2. If n ∈ X, then n + 1 ∈ X,

where we assume as primitive the concept of 0 (zero), that of number (denoted by
n) and that of successor of n (written n + 1). This definition of the naturals clearly
provides an intuitive justification of the principle of induction, a fundamental tool
in mathematics and also, in some ways, in computer science. This principle can be
stated as follows. To prove that a property, P(n), is true for all natural numbers, it
is necessary to show that the following two conditions are satisfied:

1. P(0) is true;
2. For every natural, n, if P(n) is true, then so is P(n + 1).

In addition to the proof of properties, induction is a powerful tool for the defini-
tion of functions. In fact, it can be shown that if g : (N×X) → X is a total function,
N denotes natural numbers and a is an element of X, then there exists a unique
(total) function f : N → X, such that:

1. f (0) = a

2. f (a + 1) = g(n,f (n))

Such a pair of equations then provide an inductive definition of the function f .
What has so far been said about induction over the naturals can be generalised

to arbitrary sets over which a well-founded ordering relation < is defined, i.e. a
relation which does not admit infinite descending chains · · ·xm < · · · < x1 < x0. In
this case, the induction principle, called well-founded induction, can be expressed as
follows. Let < be a well-founded relation defined on a set A. To show that P(a) has
a value for every a belonging to A, it is necessary to show the following implication:

For all a ∈ A, if P(b) is true for every b < a, then P(a) is true.

that is recursive is a procedure in whose body a call to itself is included. One can
have indirect recursion as well (it is best called mutual recursion) when a procedure
P calls another procedure, Q, which, in its turn, calls P . In Chap. 5, we have already
seen the example of the recursive function fib which compute the nth value of the
Fibonacci function.

int fib (int n){
if (n == 0)

return 1;
else

if (n == 1)
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return 1;
else

return fib(n-1) + fib(n-2);
}

The fact that a function like fib can be defined in terms of itself can evoke some
doubt about the nature of the function being defined. In reality, recursive definition,
also called inductive definition, is fairly common in mathematics. As the box on
page 153 shows in more detail, the idea is that of describing the result of the ap-
plication of a function f to an argument X in terms of the application of f itself
to arguments which are “smaller” than X. The domain on which f is defined must
be such that it does not allow infinite chains of successively smaller elements, thus
ensuring that, after a finite number of applications of the function f , we arrive at a
terminal case, by the definition of which we can reconstruct the value of f applied
to X. For example, recalling that the factorial of a natural number, n, is given by
the product 1 · 2 · · ·n − 1 · n, we can inductively define the function computing the
factorial as follows:

factorial(0) = 1,

factorial(n + 1) = (n + 1) · factorial(n).

Here n is an arbitrary natural number. In an analogous fashion, we can define the
function which computes the nth term in the Fibonacci series, for which we have
first provided a recursive program.

If, then, inductive definitions in mathematics and recursive functions in program-
ming languages are similar, there is still a fundamental difference. In the case of
inductive definitions, not all possible definitions of function in terms of itself will
work. If for example we write:

foo(0) = 1,

foo(n) = foo(n) + 1 for n > 0

it is clear that no total function over the naturals will satisfy this equation, so we
cannot define such a function. If, on the other hand, we write:

fie(1) = fie(1)

the problem is now the opposite. Many functions satisfy these equations, so once
again this does not constitute a valid definition.

On the other hand it is perfectly legitimate to write the following function in any
programming language supporting recursion:

int foo1 (int n){
if (n == 0)

return 1;
else

return foo1(n) + 1;
}
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And also:

int fie1 (int n){
if (n == 1) return fie1(1);

}

These are functions which, in some case, do not terminate (when n > 0 for
foo1(n) and for n = 1 in the case of fie1(n)), but from the semantic view-
point there is no problem because, as we saw in Chap. 3, programs define partial
functions.

6.5.1 Tail Recursion

In Chap. 5, we saw how, in general, the presence of recursion in a programming
language makes it necessary to include dynamic memory management since it is
not possible statically to determine the maximum number of instances of a single
function that will be active at the same time (and, therefore, to determine the max-
imum number of activation records required). For example, we have seen that for
the call fib(n) in our Fibonacci function, this number is equal to the nth element
of the Fibonacci series, and obviously, n cannot be known as compilation time. If,
on the other hand, we more carefully consider the nature of the recursive calls, we
notice that in some cases we can avoid the allocation of new activation records for
successive calls of a single function, since we can always reuse the same memory
space. To understand this point let us look at two recursive functions which compute
the factorial of a natural number. The first is the usual:

int fact (int n){
if (n <= 1) return 1;
else

return n * fact(n-1);
}

The activation record for a call fib(n) is shown in a slightly simplified form
in Fig. 6.4. The field n contains the value of the actual parameter to the procedure;
the field Intermediate Result will contain the intermediate result produced by the
evaluation of fact(n-1); the field Result address, finally, contains the address
of the memory area in which the result must be returned (that is, the address the
Intermediate Result of the caller for all calls after the first). It is important to note
that the value of the Intermediate Result field present in the activation record of
fact(n), can be determined only when the reclusive call to fact(n-1) termi-
nates and the value of this field, as a result of the code of fact, is used in the com-
putation of n * fact(n-1) to obtain the value of fact(n). In other words,
when we have the call fact(n), before it can terminate, we must know the value
of fact(n-1); in its turn, for the call to fact(n-1) to terminate we have to
know the value of fact(n-2) and so on, recursively, right back to the terminal
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Fig. 6.4 Activation record
for the fact function

Fig. 6.5 Activation record
stack and for the call
fib(3) and the two
recursive calls fact(2) and
fact(3)

case fact(1). Therefore all activation records for the recursive calls fact(n),
fact(n-1), . . . ,fact(1), must reside at the same time on the stack, in distinct
memory areas.

Figure 6.5 shows the stack of activation records created by the call to fact(3),
as well as the by the following calls to fact(2) and fact(1). When we reach
the final case, the call to fact(1), terminates immediately and returns the value 1,
which, using the pointer contained in the Result Address of the activation record for
fact(1), will be returned to the Intermediate result field of the activation record
for fact(2), as is shown in Fig. 6.6. At this point, too, the call to fact(2) can
terminate, returning the value 2 · fact(1) = 2 · 1 to the call fact(3), as shown in
Fig. 6.7. Finally, too, the call to fact(3) will terminate, returning to the calling
program the value 3 · fact(2) = 3 · 2 = 6.

Consider now another function:

int factrc (int n, int res){
if (n <= 1)

return res;
else

return factrc(n-1, n * res)
}
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Fig. 6.6 Stack of activation
records after termination of
the call fact(2)

Fig. 6.7 Activation record
stack after the termination of
the call fact(2)

This, if called with factrc(n,1) also returns the factorial of n.
In this case, also, the initial call factrc(n,1) produces n − 1 following re-

cursive calls
factrc(n-1,n*1),
factrc(n-2,(n-1)*n*1),
. . . ,
factrc(1,2*...*(n-1)*n*1).
However, let us now observe that for n > 1, the value returned by the generic call

factrc(n,res) is exactly the same as the value returned by the next recursive
call factrc(n-1,n+res) without there being any additional computation. The
value finally returned from the initial call factrc(n,1) is therefore the same as
that returned by the last recursive call factrc(1,2*...*(n-1)*n*1) (and is
therefore n · (n − 1) · (n − 2) · · ·1), without there being any requirement to “climb
back up” the call chain using then the intermediate results to compute the final value,
as on the other hand happens in the case of fact.

From what has been said, it appears clear that, once factrc(n,res) has re-
cursively called factrc(n-1,n*res), there is no need to continue maintain-
ing the information present in the activation record for the call factrc(n,res),
given that all the information necessary to perform the calculation of the final result
is passed to factrc(n-1,n*res). This means that the activation record for the
recursive call factrc(n-1,n*res) can simply reuse the memory space allo-
cated to the activation record for factrc(n,res). So the consideration is valid
also for successive calls and, therefore, in short, the function factrc will need a
single memory area to allocate a single activation record, independent of the number
of recursive calls to be made. We have therefore obtained a recursive function for
which the memory can be allocated statically!

Recursion of the kind illustrated by the function factrc is said to be tail recur-
sion since the recursive call is, so to speak, the last thing that happens in the body
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of the procedure. After the recursive call, no other computation is performed. More
generally we can give the following definition.

Definition 6.3 (Tail recursion) Let f be a function which, in its body, contains a
call to a function g (different from f or equal to f ). The call of g is said to be a tail
call if the function f returns the value returned by g without having to perform any
other computation. We say that the function f is tail recursive if all the recursive
calls present in f are tail calls.

For example, in the function:

int f (int n){
if (n == 0)

return 1;
else

if (n == 1)
return f(0);

else
if (n == 2)

return f(n-1);
else

return f(1)*2;
}

The first two recursive calls are tail calls, the third is not a tail call. Therefore the
function f is not tail recursive.

Our interest in tail recursion lies in the possibility of implementing it using a sin-
gle activation record and therefore using constant memory space. Our investigation
of the factrc function, in fact, is completely general, and does not depend on the
specific form of this function; it depends only on the fact that we are dealing with a
tail recursive function. All of this, however, does not hold in the case in which we
also consider higher-order functions (i.e. when they are functions that are passed as
parameters), as we will see later in this section.

In general, it is always possible to transform a function which is not tail recursive
into an equivalent one which is, by complicating the function. The idea is that all the
computations which have to be made after the recursive call (and make the function
non-tail recursive) should, as far as possible, be performed before the call. The part
of the work which cannot be done before the recursive call (because, for example, it
uses its results) is “passed” with appropriate additional parameters, to the recursive
call itself. This technique is exactly the same as the one we used in the case of
the tail-recursive function factrc, where, instead of recursively calculating the
product n*fact(n-1) in the body of the call to fact(n-1), we have added a
parameter res which allows us to pass to the product n · (n − 1) · (n − 2) · · · j to
the generic recursive call factrc(j- 1,j* res). Therefore, in this case, the
calculation of the factorial is performed incrementally by the successive recursive
calls, in a way analogous to that performed by an iterative function such as the
following:
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int fact-it (int n, int res){
res=1;
for (i=n; i>=1; i--)

res = res*i;
}

In an analogous fashion to this, we can also transform the fib function into a
function with tail recursion fibrc, by addition of two additional parameters:

int fibrc (int n, int res1, int res2){
if (n == 0)

return res2;
else

if (n == 1)
return res2;

else
return fibrc(n-1,res2,res1+res2);

}

The call fibrc(n,1,1) returns the nth value in the Fibonacci series. Clearly,
both in the case of fibrc and in that of factrc, if we want to make the additional
parameters invisible, we can encapsulate the functions inside others which have only
the parameter n. For example the scope of the declaration of fibrc, we can define:

int fibrctrue (int n){
return fibrc(n,1,1);

}

The transformation of one function into an equivalent one with tail recursion can
be done automatically using a technique called continuation passing style, which
basically consists of representing, at all points in a program, that part of the program
that remain using a function called a continuation. If we want to convert a function
into a tail-recursive one, it suffices to use a continuation to represent everything
remains of the computation and passing this continuation to the recursive call. This
technique however does not always produce functions which can be executed with
constant memory requirement because the continuation, since it is a function, could
contain the variables which will be evaluated in the environment of the caller and
therefore require the caller’s activation record.

6.5.2 Recursion or Iteration?

Without going into detail on theoretical results (which are, in any case, extremely
important and interesting), let us recall that recursion and iteration (in its most gen-
eral form) are alternative methods for achieving the same expressive power. The use
of the one or the other is often due more to the predisposition of the programmer
than to the nature of the problem. For the elaboration of data using rigid structures
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(matrices, tables, etc.), as normally happens in numerical or data processing ap-
plications, it is often easier to use iterative constructs. When, on the other hand,
processing structures of a symbolic nature which naturally lend themselves to being
defined in a recursive manner (for example, lists, trees, etc.), it is often more natural
to use recursion.

Recursion is often considered much less efficient than iteration and therefore
declarative languages are thought much less efficient than imperative ones. The ar-
gument presented above about tail recursion make us understand that recursion is
not necessarily less efficient than iteration, both in terms of memory occupation and
in terms of execution time. Certainly naive implementations of recursive functions,
such as those often resulting from the direct translation of inductive definitions, can
be fairly inefficient. This is the case, for example, for our procedure fib(n) which
has execution time and memory occupation that are exponential in n. However, as
was seen, using recursive functions that are more “astute”, such as those with tail
recursion, we can obtain performance similar to that of the corresponding iterative
program. The function fibrc in fact uses a space of constant size and runs in time
linear in n.

Regarding then, the distinction between imperative and declarative languages,
things are more complex and will be analysed in the chapters dedicated to the func-
tional and logic programming paradigms.

6.6 Chapter Summary

In this chapter, we have analysed the components of high-level languages relating
to the control of execution flow in programs. We first considered expressions and
we have analysed:

• The types of syntax most used for their description (as trees, or in prefix, infix
and postfix linear form) and the related evaluation rules.

• Precedence and associativity rules required for infix notation.
• The problems generally related to the order of evaluation of the subexpressions

of an expression. For the semantics of expressions to be precisely defined, this
order must be precisely defined.

• Technical details on the evaluation (short-circuit, or lazy evaluation) used by some
languages and how they can be considered when defining the correct value of an
expression.

We then passed to commands, seeing:

• Assignment. This is the basic command in imperative languages. Even though it
is fairly simple, we had to clarify the notion of variable in order to understand its
semantics.

• Various commands which allow the management of control (conditionals and
iteration) in a structured fashion.

• The principles of structured programming, stopping to consider age-old questions
about the goto command.
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The last section, finally, dealt with recursion, a method that stands as an alterna-
tive to iteration for expressing algorithms. We concentrated on tail recursion, a form
of recursion that is particularly efficient both in space and time. This must clear up
the claim that recursion is a programming method that is necessarily less efficient
than iteration.

In the various boxes, we examined an historic theme that has been extremely
important in the development of modern programming languages, as well as a se-
mantic issue which precisely clarifies the difference that exists between imperative,
functional and logic programs.

We still have to deal with important matters concerning control abstraction (pro-
cedures, parameters and exceptions) but this will be the subject of the next chapter.

6.7 Bibliographical Notes

Many texts provide an overview of the various constructs present in programming
languages. Among these, the most complete are [7] and [8].

Two historical papers, of certain interest to those who want to know more about
the goto question are [4] (in which Böhm and Jacopinin’s theorem is proved) and
Dijkstra’s [5] (where the “dangerousness” of the jump command is discussed).

An interesting paper, even though not for immediate reading, which delves into
themes relating to inductive definitions is [2]. For an introduction to recursion and
induction that is more accessible, [9] is a very good book.

According to Abelson and Sussman [1], the term “syntactic sugar” is due to Peter
Landin, a pioneer in Computer Science who made fundamental contributions in the
area of programming language design.

6.8 Exercises

1. Define, in any programming language, a function, f , such that the evaluation of
the expression (a + f (b)) ∗ (c + f (b)) when performed from left-to-right has a
result that differs from that obtained by evaluating right-to-left.

2. Show how the if then else construct can be used to simulate short-circuit
evaluation of boolean expressions in a language which evaluates all operands
before applying boolean operators.

3. Consider the following case command:

case Exp of
1: C1;
2,3: C2;
4..6: C3;
7: C4
else: C5
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Provide an efficient pseudocode assembly program that corresponds to the trans-
lation of this command.

4. Define the operational semantics of the command

for I = start to end by step do body

using the techniques introduced in Chap. 3. Suggestion: using values of the ex-
pressions, start, end and step, the following can be computed before ex-
ecuting the for: the number, ic, of repetitions which must be performed (it is
assumed, as already stated in the chapter, that the possible modification of I,
start, end and step in the body of the for have no effect upon their eval-
uation). Once this value, n, has been computed, the for can be replaced by a
sequence of ic commands.

5. Consider the following function:

int ninetyone (int x){
if (x>100)
return x-10;

else
return ninetyone(ninetyone(x+11));

}

Is this tail recursive? Justify your answer.
6. The following code fragment is written in a pseudo-language which admits

bounded iteration (numerically controlled) expressed using the for construct.

z=1;
for i=1 to 5+z by 1 do{

write(i);
z++;

}
write(z);

What is printed by write?
7. Say what the following code block prints. This code is written in a language with

static scope and call by name. The definition of the language contains the follow-
ing phrase: “The evaluation of the expression E1 ◦ E2 where ◦ is any operator,
consists of (i) the evaluation of E1; (ii) then the evaluation of E2; (iii) finally, the
application of the operator ◦ to the two values previously obtained.”

{int x=5;
int P(name int m){

int x=2;
return m+x;

}
write(P(x++) + x);
}
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Chapter 7
Control Abstraction

The concept of abstraction is a recurrent theme in this text. Right from the first
chapter, we have encountered abstract machines and their hierarchies. For them,
we used the terms “abstract” rather than “physical”, denoting by abstract machine,
a set of algorithms and data structures not directly present in any specific physical
machine, but executable on it by means of interpretation. Moreover, the fact that
the concept of abstract machine, to some extent, hides the underlying machine is
fundamental.

“To abstract” means simply to hide something. Often, abstracting from some con-
crete data relating to some object, one succeeds in bringing out with more clarity
a concept common to that object. Each description of a phenomenon (natural, arti-
ficial, physical, etc.) is not based on the set of all data relating to the phenomenon
itself, otherwise it would be like a geographical map of scale 1:1, extremely precise
but useless. Every scientific discipline describes a certain phenomenon, concentrat-
ing only on some aspects, those which have been found to be the most relevant
to the agreed aims. It is for this reason that scientific language uses appropriate
mechanisms to express these “abstractions”. Programming languages, themselves
the abstractions of the physical machine, are no exception. Rather, expressiveness
depends in an essential way on the mechanisms of abstraction which the languages
provide. These mechanisms are the principal instruments available to the designer
and programmer for describing in an accurate, but also simple and suggestive, way
the complexity of the problems to be solved.

In a programming language, in general, two classes of abstraction mechanisms
are distinguished. That which provides control abstraction and that which provides
data abstraction. The former provides the programmer the ability to hide procedu-
ral data; the latter allow the definition and use of sophisticated data types without
referring to how such types will be implemented. In this chapter we will be con-
cerned with the mechanisms for control abstraction, while data abstraction will be
the subject of Chap. 9, after we have seen mechanisms for data structuring in the
next chapter.

M. Gabbrielli, S. Martini, Programming Languages: Principles and Paradigms,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-84882-914-5_7, © Springer-Verlag London Limited 2010

165



166 7 Control Abstraction

Fig. 7.1 Definition and use
of a function

int foo (int n, int a) {
int tmp=a;
if (tmp==0) return n;
else return n+1;

}
...
int x;
x = foo(3,0);
x = foo(x+1,1);

7.1 Subprograms

Every program of any complexity is composed of many components, each of which
serves to provide part of a global solution. The decomposition of a problem into
subproblems allows better management of complexity. A more restrictive problem
is easier to solve. The solution to the global problem is obtained by appropriate
composition of the solutions to these subproblems.

In order for all of this to be efficient, however, it is necessary that the program-
ming language provides linguistic support which facilitates and makes possible such
subdivisions and, therefore, re-composition. This linguistic support allows the ex-
pression of decomposition and re-composition directly in the language, transform-
ing these concepts from simple methodological suggestions into real and genuine
instruments for design and programming.

The key concept provided by all modern languages is that of the subprogram,
procedure, or function.1 A function is a piece of code identified by name, is given
a local environment of its own and is able to exchange information with the rest
of the code using parameters. This concept translates into two different linguistic
mechanisms. The first, definition (or declaration) of function, and its use (or call).
In Fig. 7.1, the first five lines constitute the definition of the function named foo,
whose local environment is composed from three names n, a and tmp.2 The first
line is the header, while the remaining lines constitute the body of the function. The
last two lines of Fig. 7.1 are the uses (or calls) of foo.

A function exchanges information with the rest of the program using three prin-
cipal mechanisms: parameters, return value, nonlocal environment.

Parameters We distinguish between formal parameters, which appear in the def-
inition of a function, and actual parameters, which appear, instead, in the call. The
formal parameters are always names which, as far as the environment is concerned,
behave as declarations local to the function itself. They behave, in particular, as
bound variables, in the sense that their consistent renaming has no effect on the

1These three terms assume different meanings in different languages. For example, “subprogram”
is usually the most general term. In languages of the Algol family and their descendants, a pro-
cedure is a subprogram which modifies the state, while a function is a subprogram that returns a
value. In this chapter, at least, we will use the three terms as synonyms.
2The name foo is part of the nonlocal environment of the function.
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Fig. 7.2 Renaming of formal
parameters

int foo (int m, int b){
int tmp=b;
if (tmp==0) return m;
else return m+1;

}

semantics of the function. For example, the function foo in Fig. 7.1 and that in
Fig. 7.2 are indistinguishable, even though the second has different names for its
formal parameters.

The number and type of actual and formal parameters must, in general, coincide,
although many type compatibility rules can be brought into play (see Sect. 8.7).
There is sometimes also the possibility of declaring functions with a variable num-
ber of parameters.

Return value Some functions exchange information with the rest of the program
by returning a value as a result of the function itself, as well as through the use of
parameters. Our function, foo, for example, returns an integer. The language makes
available, in this case, the mechanism which allows the “return of value” to be ex-
pressed (for example the return construct which has also the effect of terminat-
ing the execution of the current function). In some languages, the name “function”
is reserved for subprograms which return a value, while those subprograms which
interact with the caller just via parameters or the non-local environment are called
“procedures”.

In languages which derive their syntax from C, all subprograms are, linguisti-
cally, functions. If the result type of a function is void, the function returns no
meaningful value (the command to return such a value and to terminate execution is
return).

Nonlocal environment This is a less sophisticated mechanism with which a func-
tion can exchange information with the rest of the program. If the body of the func-
tion modifies a nonlocal variable, it is clear that such a modification is felt in all
parts of the program where this variable is visible.

7.1.1 Functional Abstraction

From a pragmatic viewpoint, subprograms are mechanisms which allow the soft-
ware designer to obtain functional abstraction. A software component is an entity
which provides services to its environment. The clients of such a component are not
interested how the services are provided, only how to use them. The possibility of
associating a function with every component allows separation of what the client
needs to know (expressed in the header of the function: its name, its parameters, its
result type, if present) from what it does not need to know (which is in the body).
We have real functional abstraction when the client does not depend on the body
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“Static” variables

In all we have said, we have always assumed that the local environment of a function
has the same lifetime as the function itself. In such a case, there is no primitive
mechanism which one instance of a function can use for communicating information
to another instance of the same function. The only way for this to happen is through
the use of a nonlocal variable.

In some languages, though, it is possible to arrange for that a variable (which
must be local to a function) to maintain its value between one invocation of the
function and another. In C, for example, this is achieved using the staticmodifier
(Fortran uses save, Algol own, etc.). A static variable allows programmers
to write functions with memory. The following function, for example, returns the
number of times it has been called:

int how_many_times(){
static int count;

/* C guarantees that static variables are
initialised to zero by the first
activation of the function */

return count++;
}

The declaration of a static variable introduces an association with unlimited
lifetime into the environment (in the lifetime of the program, clearly).

It should be observed that a static variable provides greater data abstraction
than a global variable. It is not, in fact, visible from outside the function. The visi-
bility mechanisms guarantee, therefore, that it is only modifiable inside the function
body.

of a function, only on its header. In this case, the substitution (for example for effi-
ciency reasons) of the body by another one with the same semantics is transparent
to the system software in its entirety. If a system is based on functional abstraction,
the three acts of specification, implementation and use of a function can occur inde-
pendent of one another without knowledge of the context in which the other actions
are performed.

Functional abstraction is a methodological principle, whose functions provide
linguistic support. It is clear that this is not a definitive support. It is necessary that
the programmer correctly uses these functions, for example by limiting the interac-
tions between function and call to parameter passing, because use of the nonlocal
environment to exchange information between functions and the rest of the pro-
gram destroys functional abstraction. On the other hand, functional abstraction is
increasingly guaranteed by greater limitation of interaction between components to
external behaviour, as expressed by function headers.



7.1 Subprograms 169

7.1.2 Parameter Passing

The way in which actual parameters are paired with formal parameters, and the
semantics which results from this, is called the parameter passing discipline. Ac-
cording to what is now traditional terminology, a specific mode is composed of the
kind of communication that it supports, together with the implementation that pro-
duces this form of communication. The mode is fixed when the function is defined
and can be different for each parameter; it is fixed for all calls of the function.

From a strictly semantic viewpoint, the classification of the type of communi-
cation permitted by a parameter is simple. From a subprogram’s viewpoint, three
parameter classes can be discerned:

• Input parameters.
• Output parameters.
• Input/output parameters.

A parameter is of input type if it allows communication which is only in the direc-
tion from the caller to the function (the “callee”). It is of output type if it permits
communication only in direction from the callee to the caller. Finally, it is input/out-
put when it permits bidirectional communication.

Note that this is a linguistic classification, part of the definition of the language; it
is not derived from the use to which parameters are put. An input/output parameter
remains that way even if it is used only in a unidirectional fashion (e.g., from caller
to callee).

It is clear that each of these types of communications can be obtained in different
ways. The specific implementation technique constitutes, exactly, the “call mode”,
which we will now subject to analysis, describing for each mode:

• What type of communication it allows.
• What form of actual parameter is permitted.
• The semantics of the mode.
• The canonical implementation.
• Its cost.

Of the modes that we will discuss, the first two (by value and by reference) are the
most important and are widely used. The others are little more than variations on
the theme of call by value. An exception is call by name, which we will discuss last.
Although call by name is now disused as a parameter-passing mechanism, neverthe-
less, it allows us to present a simple case of what it means to “pass an environment”
into a procedure.

Call by value Call by value is a mode that corresponds to an input parameter. The
local environment of the procedure is extended with an association between the for-
mal parameter and a new variable. The actual parameter can be an expression. When
called, the actual parameter is evaluated and its r-value obtained and associated with
the formal parameter. On termination of the procedure, the formal parameter is de-
stroyed, as is the local environment of the procedure itself. During the execution of
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Fig. 7.3 Passing by value int y = 1;
void foo (int x) {

x = x+1;
}

...
y = 1;
foo(y+1);

// here y = 1

the body, there is no link between the formal and the actual parameter. There is no
way of make use of a value parameter to transfer information from the callee to the
caller.

Figure 7.3 shows a simple example of passing by value. Like in C, C++, Pascal
and Java, when we do not explicitly indicate any parameter-passing method for a
formal parameter, it is to be understood that parameter is to be passed by value. The
variable y never changes its value (it always remains 1). During the execution of
foo, x assumes the initial value 2 by the effect of passing the parameter. It is then
incremented to 3, finally it is destroyed with the entire activation record for foo.

If we assume a stack-based allocation scheme, the formal parameter corresponds
to a location in the procedure’s activation record in which the value of the actual
parameter is stored during the calling sequence of the procedure.

Let us note how this is an expensive method when the value parameter is bound
to a large data structure. In such a case, the entire structure is copied to the formal.3

On the other hand, the cost of accessing the formal parameter is minimal, since it is
the same as the cost of accessing a local variable in the body.

Passing by value is a very simple mechanism with clear semantics. It is the de-
fault mechanism in many languages (e.g., Pascal) and is the only way to pass pa-
rameters in C and Java.

Call by reference Call by reference (also called by variable) implements a mech-
anism in which the parameter can be used for both input and output. The actual
parameter must be an expression with l-value (recall the definition of l-value on
page 132). At the point of call, the l-value of the actual parameter is evaluated and
the procedure’s local environment is extended with an association between the for-
mal parameter and the actual parameter’s l-value (therefore creating an aliasing sit-
uation). The most common case is that in which the actual parameter is a variable.
In this case, the formal and the actual are two names for the same variable. At the
end of the procedure, the connection between the formal parameter and the actual
parameter’s l-value is destroyed, as is the environment local to the procedure. It is
clear that call by reference allows bidirectional communication: each modification
of the formal parameter is a modification of the actual parameter.

3The reader who knows C should not be misled. In a language with pointers, as we will discuss
below, often the passing of a complex structure consists of passing (by value) a pointer to the data
structure. In such a case, it is the pointer that is copied, not the data structure.
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Fig. 7.4 Passage by
reference

int y = 0;
void foo (reference int x) {

x = x+1;
}

y=0;
foo(y);

// here y = 1

Fig. 7.5 Another example of
passage by reference

int[] V = new V[10];
int i=0;
void foo (reference int x) {

x = x+1;
}

...
V[1] = 1;
foo(V[i+1]);

// here V[1] = 2

Figure 7.4 shows a simple example of call by reference (which we have notated
in the pseudocode with the reference modifier). During the execution of foo, x
is a name for y. Incrementing x in the body is, to all effects, the incrementing of y.
After the call, the value of y is therefore 1.

It can be seen that, as shown in Fig. 7.5, the actual parameter need not necessarily
be a variable but can be an expression whose l-value is determined at call time. In a
way similar to the first case, during the execution of foo, x is a name for v[1] and
the increment of x in the body, is an increment of v[1]. After the call, the value of
v[1] is, therefore, 2.

In the stack-based abstract machine model, each formal is associated with a loca-
tion in the procedure’s activation record. During the calling sequence, the l-value of
the actual is stored in the activation record. Access to the formal parameter occurs
via an indirection which uses this location.

This is a parameter passing mode of very low cost. At the point of call, only
an address need be stored; every reference to the formal is achieved by an indirect
access (implemented implicitly by the abstract machine) which can be implemented
at very low cost on many architectures.

Call by reference is a low-level operation. It is possible in Pascal (var modifier)
and in many other languages. It has been excluded from more modern languages.
In these languages, however, some form of bidirectional communication between
caller and callee can be obtained by exploiting the interaction between parame-
ter passing and other mechanisms (the most important being the model chosen for
variables) or the availability of pointers in the language. Two boxes show simple
examples in C (and C++) and Java. The moral of the examples is that in an impera-
tive language, passing by value is always accompanied by other mechanisms so that
procedures are really a versatile programming technique.

Call by constant We have already seen how call by value is expensive for large-
sized data. When, however, the formal parameter is not modified in the body of
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Call by reference in C

C admits only call by value but also allows the free manipulation of pointers and
addresses. Making use of this fact, it is not difficult to simulate call by reference.
Let us consider the problem of writing a simple function which swaps the values of
two integer variables which are passed to the function as parameters. With only call
by value, there is no way to do this. We can, though, combine call by value with
pointer manipulation, as in the following example:

void swap (int *a, int *b) {
int tmp = *a; *a=*b; *b=tmp;
}

int v1 = ...;
int v2 = ...;
swap(&v1, &v2);

The formal parameters to swap (both by value) are of type pointer to integer
(int *). The values of the actual parameters are the addresses (that is, the l-value)
of v1 and v2 (obtained using the operator &). In the body of swap, the use of the *
operator performs dereferencing of the parameters. For example, we can paraphrase
the meaning of *a = *b as: take the value contained in the location whose address
is contained in b and store it in the location whose address is stored in a. Our swap
therefore simulates call-by-reference.

the function, we can imagine maintaining the semantics of passing by value, imple-
menting it using call by reference. This is what constitutes the read-only parameter
method.

This is a method that establishes an input communication and in which arbitrary
expressions are permitted as actual parameters. The formal parameters passed by
this method are subject to the static constraint that they cannot be modified in the
body, either directly (by assignment) or indirectly (via calls to functions that modify
them). From a semantic viewpoint, call by constant coincides completely with call
by value, while the choice of implementation is left to the abstract machine. For
data of small sizes, call by constant can be implemented as call by value. For larger
structures, an implementation using a reference, without copy, will be chosen.

Call by constant is an optimum way to “annotate” a given parameter to a pro-
cedure. By reading the header, one immediately has information about the fact that
this parameter is input only. Furthermore, one can count on static semantic analysis
to verify that this annotation is really guaranteed.

Call by result Call by result is the exact dual of call by value. This a mode which
implements output-only communication. The procedure’s local environment is ex-
tended with an association between the formal parameter and a new variable. The
actual parameter must be an expression that evaluates to an l-value. When the proce-
dure terminates (normally), immediately before the destruction of the local environ-
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Bidirectional communication in Java

A function like swap (in the box “Call by reference in C”) cannot be written in
Java. However, we can make use of the fact that Java uses a reference-based model
for variables (of class type) to obtain some form of bidirectional communication.
Let us consider for example the following simple definition of a class:

class A {
int v;
}

We can certainly write a method which swaps the values of the field v in two
objects of class A:

void swap (A a, A b) {
int tmp = a.v; a.v= b.v; b.v=tmp;
}

In this case, what is passed (by value) to swap are two references to objects
of class A. Using the reference model for variables of class type, swap effectively
swaps the values of the two fields. It can be seen, however, that a true simulation of
call by reference is not possible, as it was with C.

ment, the current value of the formal parameter is assigned to the location obtained
using the l-value from the actual parameter. It should be clear that, as in call by
value, the following questions about evaluation order must be answered. If there
is more than one result parameter, in which order (for example, from left to right)
should the corresponding “backward assignment” from the actual to formal be per-
formed? Finally, when is the actual parameter’s l-value determined? It is reasonable
to determine it both when the function is called and when it terminates.4

It can be seen that, during the execution of the body, there is no link between
the formal and actual parameter. There is no way to make use of a result parameter
to transfer information from the caller to the callee. An example of call by result is
shown in Fig. 7.6. The implementation of call by result is analogous to call by value,
with which it shares its advantages and disadvantages. From a pragmatic viewpoint,
the by-result mode simplifies the design of functions which must return (that is
provide as result) more than one value, each in a different variable.

Call by value-result The combination of call by value and call by result produces
a method called call by value-result. This is a method that implements bidirectional
communication using the formal parameter as a variable local to the procedure.

4Construct an example which gives different results if the l-value of the actual is determined at call
time or when the procedure terminates.



174 7 Control Abstraction

Fig. 7.6 Call by result void foo (result int x) {x = 8;}
...
int y = 1;
foo(y);

// here y is 8

Fig. 7.7 Call by value-result void foo (valueresult int x){
x = x+1;

}
...
y = 8;
foo(y);

// here y is 9

Fig. 7.8 Call by value-result
is not call by reference

void foo (reference/valueresult int x,
reference/valueresult int y,
reference int z){

y = 2;
x = 4;
if (x == y) z = 1;

}
...
int a = 3;
int b = 0;
foo(a,a,b);

The actual parameter must be an expression that can yield an l-value. At the call,
the actual parameter is evaluated and the r-value thus obtained is assigned to the
formal parameter. At the end of the procedure, immediately before the destruction
of the local environment, the current value of the formal parameter is assigned to the
location corresponding to the actual parameter. An example of call by value-result
is shown in Fig. 7.7.

The canonical implementation of call by value-result is analogous to that of call
by value, even if some languages (Ada, for example) choose to implement it as call
by reference in the case of large-sized data, so that the problems of cost of call by
value can be avoided.

The implementation of call by value-result using a reference is, however, not
semantically correct. Consider, for a moment, the fragment in Fig. 7.8. At first sight,
the conditional command present in the body of foo seems useless, for x and y have
just received distinct values. The reality is that x and y have different values only in
the absence of aliasing. If, on the other hand, x and y are two different names for
the same variable, it is clear that the condition x == y is always true.

If, therefore, x and y are passed by value-result (there is no aliasing), the call
foo(a,a,b) terminates without the value of b being modified. If, on the other
hand, x and y are passed by reference (where there is aliasing), foo(a,a,b)
terminates by assigning the value 1 to b.
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Fig. 7.9 Which environment
should be used to evaluate
x+1 in the body of foo?

int x=0;
int foo (name int y){

int x = 2;
return x + y;

}
...
int a = foo(x+1);

Call by name Call by name, introduced in ALGOL60, is a semantically cleaner
way of passing parameters than by reference. It is no longer used by any major im-
perative language. However, it is a conceptually important method worth the effort
of studying in detail because of its properties and its implementation.

The problem that the designers of ALGOL60 set themselves was to give a precise
semantics. The semantics should specify in an elementary fashion what the effect of
a call to a function with specified parameters would be. The solution that they chose
was to define the semantics of function call using the so-called copy rule. Without
loss of generality, we will state it in the case of a function of one argument:

Let f be a function with a single formal parameter, x, and let a be an expression of a
type that is compatible with that of x. A call to f with an actual parameter a is semanti-
cally equivalent to the execution of the body of f in which all occurrences of the formal
parameter, x, have been replaced by a.

As can easily be seen, it is a very simple rule. It reduces the semantics of function
call to the syntactic operation of expanding the body of the function after a textual
substitution of the actual for the formal parameter. This notion of substitution, how-
ever, is not a simple concept because it must take into account the fact it might have
to deal with several different variables with the same name. Consider, for example,
the function in Fig. 7.9. If we blindly apply the copy rule, the call foo(x+1) re-
sults in the execution of return x+x+1. This command, executed in the local
environment of foo, returns the value 5. But it is clear that this is an incorrect ap-
plication of the copy rule because it makes the result of the function depend on what
the name of the local variable is. If the body of foo had been:

{int z=2; return z+y;}

the same call would result in the execution of return z+x+1, with the result 3.
In the first substitution that we suggested, we say that the actual parameter, x,

was captured by the local declaration. The substitution of which the copy rule talks
must therefore be a substitution that does not capture variables. It is not possible
to avoid having different variables with the same name, so we can obtain a non-
capturing substitution by requiring that the formal parameter, even after substitution,
is evaluated in the environment of the caller and not in that of the callee.

We can therefore define call by name as that method whose semantics is given
by the copy rule, where the concept of substitution is always understood without
capture. Equivalently, we can say that what is substituted is not merely the actual
parameter, but the actual parameter together with its own evaluation environment
which is fixed at the moment of call.
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Fig. 7.10 Side effects of call
by name

int i = 2;
int fie (name int y) {

return y+y;
}
...
int a = fie(i++);

// here i has value 4; a has value 5

void fiefoo (valueresult/name int x, valueresult/name int y) {
x = x+1;
y = 1;

}
...
int i = 1;
int[] A = new int[5];
A[1]=4;
fiefoo(i,A[i]);

Fig. 7.11 Call by name is not call by value-result

Note how the copy rule requires that the actual parameter must be evaluated
every time that the formal parameter is encountered during execution. Consider the
example of Fig. 7.10, where the construct i++ has the semantics of returning the
current value of the variable i and then incrementing the value of the variable by 1.

The copy rule requires that the i++ construct must be evaluated twice. Once for
every occurrence of the formal parameter y in fie. The first time, its evaluation
returns the value 2 and increments the value of i by one. The second time, it returns
the value 3 and increments i again.

The example we have just discussed shows how it is an error to consider call by
name as a complicated way of describing call by value-result. The two modes are
semantically different, as Fig. 7.11 shows.

Let us assume, first, that we are to execute fiefoo with parameters passed by
value-result. On termination, we will have A[1] with value 1 and i with value 2,
while the rest of the array A has not been touched. If, on the other hand, we execute
the same procedure with the two parameters passed by name, on termination, we will
have A[1] with value 4, i with value 2 and, what is more important, the element
A[2] will have been updated to the value 1. It can be seen that, in this case, value-
result and call by reference will have exhibited the same behaviour.

It remains to describe how call by name can be implemented. We have already
discussed the necessity for the caller to pass not only the textual expression form-
ing its actual parameter but also the environment in which this expression must be
evaluated. We call a pair, (expression, environment), in which the environment in-
cludes (at least) all the free variables in the expression a closure.5 We can therefore

5The term “closure” comes from mathematical logic. A formula is closed when it does not contain
free variables. A closure is a canonical method for transforming a piece of code containing nonlocal
(that is, “free”) variables in a completely specified code.



7.1 Subprograms 177

Fig. 7.12 Implementation of
call by name

say that, in the case of call by name, the caller passes a closure, formed from the
actual parameter (in the form of a textual expression) and the current environment.
When the callee encounters a reference to the formal parameter, it is resolved using
the evaluation of the first component of the closure in the environment given by the
second component. Figure 7.12 describes this situation in the particular case of an
abstract machine with a stack. In this case, a closure is a pair formed from two point-
ers: the first points to the code that evaluates the expression of the formal parameter,
the second is a pointer to the static chain, which indicates the block which forms the
local environment in which to evaluate the expression. When a procedure f with a
formal name parameter, x, is called with actual parameter a, the call constructs a
closure whose first component is a pointer to the code for a and whose second com-
ponent is a pointer to the (caller’s) actual activation record. It then binds this closure
(for example, using another pointer) to the formal parameter x which resides in the
called procedure’s activation record.

We can finally summarise what we know on call by name. It is a method which
supports input and output parameters. The formal parameter does not correspond
to a variable that is local to the procedure; the actual parameter can be an arbitrary
expression. It is possible that the actual and formal parameters can be aliased. The
actual parameter must evaluate to an l-value if the formal parameter appears on the
left of an assignment, The semantics of call by name was established by the copy
rule which allows the maintenance of a constant link between formal and actual pa-
rameters during execution. The canonical implementation uses a closure. The pro-
cedure’s local environment is extended with an association between the formal and
a closure, the latter being composed of the actual parameter and the environment
in which the call occurs. Every access to the formal parameter is performed via the
ex novo evaluation of the actual parameter in the environment stored in the closure.
This is a very expensive parameter-passing method, both because of the need to
pass a complex structure and, in particular, because of the repeated evaluation of the
actual parameter in an environment that is not the current one.
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Jensen’s Device

Call by name allows side effects to be exploited to obtaining elegant and compact
code, even though it often results in code that is difficult to understand and maintain.
This is the case with the so-called Jensen’s Device which makes use of pass by name
to pass a complex expression and, at the same time, a variable which appears in the
same expression, in such a way that modifications to variable change the value of
the expression. Let us consider the following example:

int summation (name int exp; name int i;
int start; int stop) {

int acc = 0;
for (i=start, i<= stop, i++)

acc = acc + exp;
return acc;

}
int x = ...;
...
int y = summation(2*x*x - 2*x + 1, x, 1, 10);

The side effects of passing a parameter by name are such that, in the body of the
loop in summation, the value of exp can depend upon the value of i. A moment’s
reflection shows that the call on the last line is equivalent to the calculation of the
sum:

y =
10∑

x=1

2x2 − 2x + 1.

Jensen’s Device allows call by name to be used as a way to derive powerful
and specialisable “higher-order” procedures at call time (in the case of the example,
by indicating the expression in which to calculate the sum).

7.2 Higher-Order Functions

A function is higher order when it accepts as parameters, or returns another func-
tion as its result. Although there is no unanimous agreement in the literature, we will
say that a programming language is higher-order when it allows functions either as
parameters or as results of other functions. Languages with functions as parame-
ters are fairly common. On the other hand, languages that allow functions to return
functions as a result are less common. This last type of operation, however, is one of
the fundamental mechanisms of functional programming languages (which we will
deal with extensively in Chap. 11). We will, in this section, discuss linguistic and
implementation problems in these two cases. We treat each of them separately.
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Fig. 7.13 Functional
parameters

{int x = 1;
int f(int y){

return x+y;
}
void g (int h(int b)){

int x = 2;
return h(3) + x;

}
...
{int x = 4;
int z = g(f);
}
}

7.2.1 Functions as Parameters

The general case, the one we want to analyse, is that of a language with functional
parameters, nested environments and the ability to define functions at every nesting
level.6 Let us consider the example shown in Fig. 7.13.

Using the notation void g (int h(int n)){ ... }, we mean, in our
pseudo-language, the declaration of the function g with a single formal parameter,
h, which, in its turn, is specified to be a function returning an int with its own for-
mal parameter of type int.7 The two key points of the example are: (i) the fact that
f is passed as an actual parameter to g and later called through the formal parameter
h; and (ii) the name x is defined more than once, so it is necessary to establish which
is the (nonlocal) environment in which f will be evaluated. Concerning this second
question, the reader will not be surprised if we observe that there are two possi-
bilities for selecting the nonlocal environment to use when executing a function f
invoked using a formal parameter h:

• Use the environment that is active at the time when the link between h and f is
created (which happens on line 11). We say, in this case, that the language uses a
deep binding policy.

• Use the environment that is active when the call of f using h occurs (which
happens on line 7). In this case, we say that the language uses a shallow binding
policy.8

Although the two alternatives for binding immediately recall the distinction be-
tween static and dynamic scope, we emphasise that the binding policy (in the case

6C allows functions as parameters, but it is possible to define a function only in the global envi-
ronment. With this limitation, the problem becomes considerably simplified (and this simplicity is
just one of the reasons why C does not allow nested functions).
7The name of the formal parameter of h (in this case n), is of no relevance and there is no way in
which the programmer can use it in the body of g.
8The terminology, however, is not uniform across the literature. In particular, the terms deep and
shallow binding are also used, in a special way, in the LISP community to indicate two different
implementation techniques for dynamic scope.
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of higher-order functions) should be considered independent of scope policy. All
common languages that use static scope also use deep binding (because the choice
of a shallow policy appears contradictory at the methodological level). The matter
is not as clear for languages with dynamic scope, among which there are languages
with deep as well as shallow binding.

Returning to the example of Fig. 7.13, the different scope and binding policies
yield the following behaviours:

• Under static scope and deep binding, the call h(3) returns 4 (and g returns 6).
The x in the body of f when it is called using h is the one in the outermost block;

• Under dynamic scope and deep binding, the call h(3) returns 7 (and g returns 9).
The x in the body of f when it is called using h is the one local to the block in
which the call g(f) occurs;

• Under dynamic scope and shallow binding, the call h(3) returns 5 (and g re-
turns 7). The x in the body of f at the moment of its call through h is the one
local to g.

Implementation of deep binding Shallow binding does not pose additional im-
plementation problems to the technique used to implement dynamic scope. It is
enough, at least conceptually, to look for every name’s last association in the en-
vironment. Things are different, though, for deep binding, which requires auxiliary
data structures in addition to the usual static and dynamic chains.

So as to fix our ideas, let us consider the case of a language with static scope and
deep binding (the case of dynamic scope is left to the reader, see Exercise 6). From
Sect. 5.5.1, we already know that to any direct invocation (one that is not of a call
to a formal parameter) of a function f, there is statically associated information (an
integer) which expresses the nesting level of the definition of f with respect to the
block in which the call occurs. This information is used dynamically by the abstract
machine to initialise the static chain pointer (that is, the nonlocal environment) in
the activation record for f. When, on the other hand, a function f is invoked using a
formal parameter, h, no information can be associated to the call because it is called
via a formal parameter. Indeed, in the course of different activations of the procedure
in which it is located, the formal can be associated with different functions (this is
the case, for example, with the call h(3) in Fig. 7.13).

In other words, it is clear that with deep binding, the information about the static
chain pointer must be determined at the moment the association between the formal
and actual parameters is created. With the formal h must be associated not only
the code for f but also the nonlocal environment in which the body of f is to be
evaluated. Such a nonlocal environment can be determined in a simple fashion: cor-
responding to a call of the form g(f) (the procedure g is called with the functional
actual parameter f), we can statically associate with the parameter f the information
about the nesting level of the definition of f within the block in which the call g(f)
occurs. When this call is performed, the abstract machine will use this information
to associate with the formal parameter corresponding to f both the code for f, and a
pointer to the activation record of the block inside which f is declared (this pointer
is determined using the same rules that were discussed in Sect. 5.5.1).
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Fig. 7.14 Closure and static
chain

The formal function parameter is therefore associated logically with a (text, en-
vironment) pair, represented at the implementation level by a pair (pointer to code,
pointer to an activation record). We have already seen when we discussed the imple-
mentation of call by name that such a data structure is called a closure. Therefore, a
closure is associated with the formal functional parameter. When the formal param-
eter is used to invoke a function (that is statically unknown), the abstract machine
finds in the first component of the pair the code to which to transfer control and as-
signs the content of the second component of the closure to the static chain pointer
of the activation record for the new invocation.

Figure 7.14 shows the situation on the activation stack for the code in Fig. 7.13
at the moment at which the function f is entered (it is called using h from the body
of g). When the function g is called with actual parameter f, a closure is linked to h.
f is declared at distance 1 from the place in which it appears as an actual parameter
(it is in fact declared inside the block which contains the one in which it appears as
an actual parameter). The second component of the closure is therefore determined
by 1 step along the static chain (obtaining a pointer to the outer block). When f is
called through the name h, the corresponding activation record is pushed onto the
stack. The value of the static chain pointer is taken from the second component of
the closure.

The reader will recall, once more, that the problems we are discussing appear
only when the language allows the definition of functions with nonlocal environ-
ments, that is allows the definition of functions inside nested blocks. In the contrary
case, for example in C, there is no nonlocal environment, so there is no need for
closures. To pass a function as a parameter, it is enough to pass a pointer to its code.
All nonlocal references in the body of the function will be resolved in the global
environment.

Binding policy and static scope We have already observed how all languages
with static scope use deep binding. At first sight it could rather seem that deep or
shallow binding make no difference in the case of static scope. After all, the nonlocal
environment of a function is determined from the (static) position of its declaration
and not by the way in which it is invoked. In the case in Fig. 7.13, it is the scope
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Fig. 7.15 The binding policy
is necessary for determining
the environment

{void foo (int f(), int x){
int fie(){

return x;
}
int z;
if (x==0) z=f();
else foo(fie,0);

}
int g(){

return 1;
}
foo(g,1);
}

Thunks

The parameter-passing rule required for functional parameters is similar to call by
name. In fact, a formal name parameter can be considered as a kind of functional
parameter (without arguments). Analogously, the corresponding actual parameter
can be considered as the definition of an anonymous argumentless function. During
execution of the body, every occurrence of the name parameter corresponds to an ex
novo evaluation of the actual parameter in the environment fixed at the moment the
association between the actual and formal name parameter is made. A process that
is analogous to a new call to the anonymous function corresponding to the actual
parameter.

In ALGOL60 jargon, the name thunk was used for a structure like this. A func-
tion without arguments and associated evaluation environment. In call by name,
therefore a connection between the formal parameter and a thunk is introduced.

(and not binding) rule that establishes that every invocation of f (whether direct,
using its name, or indirect, using a formal parameter) is evaluated in the outermost
nonlocal environment.

In general, however, it is not like this. The reason for this is that there can be
many activation records for the same function simultaneously present on the stack
(this clearly happens when we have recursive or mutually recursive functions). If
a procedure is passed out from one of these activations, it is possible to create a
situation in which the scope rules alone are not enough to determine which nonlocal
environment to use in invoking the functional parameter. As an example, we will
discuss the code in Fig. 7.15, which, as usual, we assume was written in a pseudo-
language with static scope.

The heart of the problem is the (nonlocal) reference to x inside fie. The scope
rules tell us that such an x refers to the formal parameter to foo (which, as it
happens, is the only x declared in the program). But when fie is called (using the
formal f), there are two active instances of foo (and therefore two instances of
its local environment). A first activation from the call foo(g,1), in which x is
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The environment in C

The structure of the environment in C is particularly simple. A C program consists,
in fact, of a sequence of variable and function declarations. The variables declared in
this way (which in C jargon are called external variables) are visible at any point in
the program. They are global variables, according to the terminology of Sect. 4.2.2.
Functions are structured internally as blocks, and in each block local variables can
be declared, but the definition of functions inside other functions is not permitted.

The environment of a function, therefore, is composed of a local and a global
part. Each reference to a nonlocal name is resolved in a unique fashion in the global
environment. With this simplified structure, environment handling is very simple.
The static chain does not have to be maintained and to pass a function as a parameter
to another function, it is sufficient to pass a pointer to its code.

For reasons of efficiency, furthermore, there is no management of in-line
blocks. Variables declared in any block in a function are allocated in the activation
record of the function.

Execution efficiency is one of the primary objectives for C. To avoid the cost
of activation record stacks, the compiler can choose to translate a function call using
the expansion of its body (in the case of a recursive function, the expansion happens
once only).

associated (to a location which contains) the value 1, and a second one from the
(recursive) call foo(fie, 0), in which x is associated with the value 0. It is
inside this second activation that the call to fie through f is made. The scope rules
say nothing about which of the instances of x should be used in the body of f. It is
at this point that the binding policy intervenes. Using deep binding, the environment
is established when the association between fie and f is created, that is when x is
associated with the value 1. The variable z will therefore be assigned the value 1.
To help in understanding this example, Fig. 7.16 shows the stack and the closures
when fie is executed.

In the case of shallow binding (which, let us repeat, is not used with static scope),
the environment would be determined at the time f is invoked and z would be
assigned the value 0.

What defines the environment Before closing this section, let us consider again
the problem encountered in Chap. 4, of which rules are used to determine the en-
vironment. We can finally complete the ingredients which contribute to the correct
determination of the evaluation environment for a block-structured language. The
following are necessary:

• Visibility rules, normally guaranteed by block structure.
• Exceptions to the visibility rules (which take into account, for example, redefini-

tions of names and the possibility or not of using a name before its declaration).
• Scope rules.
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Fig. 7.16 Activation stack for Fig. 7.15

• The rules for the parameter passing method.
• The binding policy.

7.2.2 Functions as Results

The possibility of generating functions as the results of other functions allows the
dynamic creation of functions at runtime. It is clear how, in general, a function
returned as a result cannot be represented at execution time by its code alone, it
will also be necessary to include the environment in which the function will be
evaluated. Let us consider a first simple example in Fig. 7.17. Let us fix, first of
all, the notation: by void->int we denote the type of the functions which take
no argument (void) and return a value of type integer (int). The second line
of the code is therefore the declaration of a function F which returns a function
of no arguments which also returns an integer (note that return g returns the
“function”, not its application). The first line after the body of F is the declaration of
the name gg with which the result of the evaluation of F is dynamically associated.

It should not be difficult to convince ourselves that the function gg returns the
successor of the value of x. Using the static scope regime, this x is fixed by the
structure of the program and not by the position of the call to gg, which could
appear in an environment in which another definition of the name x occurs.

We can, therefore, say that, in general, when a function returns a function as re-
sult, this result is a closure. In consequence, the abstract machine must be appropri-
ately modified to take into the account calls to closures. Analogous to what happens



7.2 Higher-Order Functions 185

Fig. 7.17 Functions as
results

{int x = 1;
void->int F () {

int g () {
return x+1;

}
return g;

}
void->int gg = F();
int z = gg();
}

Fig. 7.18 Functions as result
and stack discipline

void->int F () {
int x = 1;
int g () {

return x+1;
}
return g;

}
void->int gg = F();
int z = gg();

Fig. 7.19 Activation records
for Fig. 7.18

when a function is called via a formal parameter, when a function whose value is
obtained dynamically (like gg), the static chain pointer of its activation record is
determined using the associated closure (and not the canonical rules discussed in
Sect. 5.5.1, which would be of no help).

The general situation, moreover, is much more complex. If it is possible to re-
turn a function from the inside of a nested block, it is possible to arrange that its
evaluation environment will refer to a name that, according to stack discipline, is
going to be destroyed. Let us consider, indeed, the code in Fig. 7.18, where we
have moved the declaration of x to the inside of F. Figure 7.19 shows the activation
record arrangement when gg() is called.

When the result of F() is assigned to gg, the closure which forms its value
points to an environment containing the name x. But this environment is local to F
and will therefore be destroyed on its termination. How is it possible, then, to call
gg later than this without producing a dangling reference to x? The reply can only
be drastic: abandon stack discipline for activation records, so that they can then stay
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alive indefinitely, because they could constitute the environments for functions that
will be evaluated subsequently. In languages with the characteristics that we have
just discussed, local environments have an unlimited lifetime.

The most common solution in this case is to allocate all activation records in the
heap and to leave it to a garbage collector to deallocate them when it is discovered
that there are no references to the names they contain.

Every functional language is constructed around the possibility of returning func-
tions as results. They must therefore take this problem head on. On the contrary, re-
turning functions as results in imperative languages is rare; this is purely to maintain
a stack discipline for activation records. In imperative languages which do permit
functions as results, there are, generally, many restrictions aimed at guaranteeing
that it is never possible to create a reference to an environment that has become
deactivated (for example: no nested functions (C, C++), return only non-nested
functions (Modula-2, Modula-3), appropriately restrict the scope of those nested
functions that are returned (Ada), etc.).

7.3 Exceptions

An exception is an event that is checked during the execution of a program and
which must not (or cannot) be handled in the normal flow of control. Such events
could be checking that a dynamic semantic error has occurred (e.g., a division by
zero, overflow, etc.) or checking that a situation has occurred for which the program-
mer explicitly decides to terminate the current computation and transfer control to
another point in the program, often outside the currently executing block.

First-generation languages did not provide structures for handling such situa-
tions. They typically treat them by means of jumps (gotos). On the other hand,
many modern languages such as C++, Ada and Java have structural mechanisms
for exception handling which appear as real abstraction constructs. These constructs
allow the interruption of a computation and the shifting of control outside of the
current construct, block or procedure. Often, this mechanism also allows data to be
passed across the jump, resulting in a very flexible (and also often efficient) tool for
handling those cases of exceptional termination of a computation which the normal
control constructs (loops and conditionals) are unable to handle properly. Devised
for handling the unusual or exceptional cases which can present themselves in a pro-
gram, exceptions are also useful, as we will see, when giving compact and efficient
definitions of some ordinary algorithms.

The mechanisms for handling exceptional situations vary greatly from language
to language. We will restrict ourselves here to describing some common approaches
and we do not pretend to be exhaustive. In general, we can say that, in order to
correctly handle exceptions, a language must:

1. Specify which exceptions can be handled and how they can be defined.
2. Specify how an exception can be raised, that is which mechanisms cause the

exceptional termination of a computation.
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class EmptyExcp extends Throwable {int x=0;};

int average(int[] V) throws EmptyExcp(){
if (length(V)==0) throw new EmptyExcp();
else {int s=0; for (int i=0, i<length(V), i++) s=s+V[i];}
return s/length(V);

};
...
try{...

average(W);
...

}
catch (EmptyExcp e) {write(’Array empty); }

Fig. 7.20 Exception handling

3. Specify how an exception can be handled, that is what are the actions to per-
form to determine an exception has occurred and where to transfer control of
execution.

On the first point, we find both exceptions raised directly by the abstract machine
(when some dynamic semantic condition is violated) and exceptions defined by the
user. The latter can be values of a special type (as is the case in Ada and in ML), or
any value whatsoever (as in C++) or something in the middle (in Java, an exception
is an instance of some subclass of Throwable). When an exception is of any type
whatsoever, in general it can contain a dynamically generated value which is passed
to the handler.

Once an exception is defined, it can be raised implicitly if it is an abstract machine
exception, or explicitly by the programmer using an appropriate construct.

Finally, for point (3), the handling of an exception in general requires two differ-
ent constructs:

• A mechanism that defines a capsule around a portion of code (the protected
block), with the aim of intercepting the exceptions that are to be handled inside
the capsule itself.

• The definition of a handler for the exception, statically linked to the protected
block. Control is transferred to the handler when the capsule intercepts the ex-
ception.

Let us examine the example in Fig. 7.20 (written in the usual pseudo-language
inspired by Java and C++). The first line is the definition of the exception. In the
case we are considering, all instances of class EmptyExcp can be an exception.
To an approximation, we can imagine an instance of such a class as a record with a
single internal field, labelled by x. Passing an exception involves the creation of a
such a value and then raising the exception proper.

The second line is the definition of the average function. The keyword
throws introduces the list of exceptions that can be thrown in the body of the
function (in our case EmptyExcp). This clause (necessary in Java but optional in
C++) has an important function as documentation: it shows the clients of the func-



188 7 Control Abstraction

tion that, in addition to the integer result, it could result in anomalous termination
as signalled by the exception itself.

The construct that raises an exception is throw. A protected block is intro-
duced by the keyword try, while the handler is contained in a block introduced
by catch. The average function computes the arithmetic mean of the elements
of the vector V. In the case in which the vector is empty, the function, instead of re-
turning something arbitrary, raises an exception of class EmptyExcp. In checking
such an event, the language’s abstract machine interrupts the execution of the cur-
rent command (in this case, the conditional command) and propagates the exception.
All blocks entered during execution are exited until a try block trapping (catch)
this exception is found. In the case of Fig. 7.20, the average function would be
terminated, as would every block appearing between the only try present and the
call to average. When the exception is intercepted by a try, control passes to the
code in the catch block. If no explicit try trapping the exception is encountered,
it is captured by a default handler which then terminates execution of the program
and prints some error message or other.

The handler (the code in the catch) block is statically linked to the protected
block. When an exception is detected, execution of the handler replaces the part of
the protected block which has still to be executed. In particular, after execution of
the handler, control flows normally to the first instruction which follows the handler
itself.9

As far as these questions are strongly dependent on the language, let us make two
important observations:

1. An exception is not an anonymous event. It has a name (often, rather, as in our
case, it is a value in one of the language’s types) which is explicitly mentioned in
the throw construct and is used by constructs of the form try-catch to trap
a specific class of exception.

2. Although the example does not show it, the exception could include a value
which the construct that raised the exception passes in some way to the han-
dler as an argument on which to operate in order to react to the exception that
has just occurred (in our case, when it is raised, the value of the field x in the
exception could be modified).

It is easy to convince ourselves that the propagation of an exception is not a
simple jump. Let us assume that the exception is detected inside some procedure. If
the exception is not handled inside the currently executing procedure, it is necessary
to terminate the current procedure and to re-raise the exception at the point at which
the current procedure was invoked. If the exception is not handled by the caller
either, the exception is propagated along the procedure’s call chain until it reaches

9This way of working is, in the literature, called “handling with termination” (because the construct
where the exception is determined is terminated). Some older languages, PL/1 for example, (one
of the first languages to introduce exception-handling mechanisms) follow a different approach,
called “handling with resumption”. In this case, the handler can arrange that control returns to the
point where the exception was raised. The scheme with resumption can lead to flagging errors that
are very difficult to locate.
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Fig. 7.21 Exceptions
propagate along the dynamic
chain

{
void f() throws X {

throw new X();
}

void g (int sw) throws X {
if (sw == 0) {f();}
try {f();} catch (X e) {write("in g");}
}

...
try {g(1);}
catch (X e) {write("in main");}
}

Fig. 7.22 System stack for Fig. 7.21

a compatible handler or reaches the highest level which provides a default handler
(which results in an error termination).

A subtle aspect which is worth explicitly considering is that exceptions propa-
gate along the dynamic chain, even if the handler is statically associated with the
protected block. To illustrate this point, let us consider the code in Fig. 7.21, where
we have assumed that we have already declared an exception class X.

The exception X is raised inside two protected blocks. The outer try is the one in
the body of g. This is the one that traps the exception. The program prints the string
“in g”. Figure 7.22 shows the stack of activation records and handlers when the body
of function f is executed. Considering Fig. 7.21, note that, in the case in which
the argument of g in the protected block is a variable whose value is execution-
dependent, it is not statically determinable which will be the handler to invoke.

Summarising, an exception is handled by the last handler that has been placed on
the execution stack. This is a reasonable behaviour. The exception is trapped at the
closest possible point to the one at which it was detected.

Pragmatics We have discussed the use of exceptions in handling error cases.
There are ordinary cases, though, in which the cautious use of exceptions makes
for more elegant and efficient programs. We will limit ourselves to presenting one
example, that of walking a binary tree where it is desired to calculate the product of
the integers which label the nodes. The most obvious code is that shown in Fig. 7.23,
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type Node = {int key;
Node FS;
Node FD;
}

int mul (Node alb){
if (alb == null) {return 1;}
return alb.key * mul(alb.FS) * mul(alb.FD);

}

Fig. 7.23 Anticipated visit to a binary tree

int mulAus (Node alb) throws Zero{
if (alb == null) {return 1;}
if (alb.key == 0) {throw new Zero();}
return alb.key * mulAus(alb.FS) * mulAus(alb.FD);

}

int mulEff (Node alb){
try {return mulAus (alb);}
catch (Zero e) {return 0;};

}

Fig. 7.24 A more efficient traversal

where a depth-first search of the tree is used and it is assumed that the type Tree is
a structure (a record or a class) with three fields of which the first is an integer and
the others are of type Tree and which link the structure together. The generic null
value is represented by null.

The function mul correctly returns the product of the nodes, but is inefficient in
the cases of very large trees where there is significant chance that some nodes are
zero, given that in such a case the function could immediately terminate with the
result zero. We can make use of the exception mechanism to force this expected
termination without needing to produce the traversal code.

Figure 7.24 shows the function mulAus which raises an exception (of class
Zero, which we assume to be defined elsewhere) when it encounters a node la-
belled with zero. mullAus is called by mulEff10 inside to the protected block
which handles the exception returning zero.

7.3.1 Implementing Exceptions

The simplest and intuitive way in which an abstract machine can implement excep-
tions is one that uses the stack of activation records. When a block is entered at

10The function mulEff is the function “exported” to clients in this program. In jargon, we say
that mulEff is a wrapper of mulAus.
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runtime, a pointer to the corresponding handler (together with the type of exception
to which it refers) is inserted into the activation record (of the current procedure or of
the current anonymous block). When a normal exit is made from a protected block
(that is, because control transfers from it in the usual way and not through raising an
exception), the reference to the handler is removed from the stack. Finally, when an
exception is raised, the abstract machine looks for a handler for this exception in the
current activation record. If one is not found, it uses the information in the record to
reset the state of the machine, removes the record from the stack and rethrows the
exception. This is a conceptually very simple solution but it has a not insignificant
defect: each time that a protected block is entered, or is left, the abstract machine
must manipulate the stack. This implementation, therefore, requires explicit work
even in the normal (and more frequent) case in which the exception is not raised.

A more efficient runtime solution is obtained by anticipating a little of the work at
compile time. In the first place, each procedure is associated with a hidden protected
block formed from the entire procedure body and whose hidden handler is respon-
sible only for clearing up the state and for rethrowing the exception unchanged. The
compiler then prepares a table, EH, in which, for each protected block (including
the hidden ones) it inserts two addresses (ip, ig) which correspond to the start of
the protected block and the start of its handler. Let us assume that the start of the
handler coincides with the end of the protected block. The table, ordered by the first
component of the address, is passed to the abstract machine. When a protected block
is entered or exited normally, nothing need be done. When, on the other hand, an
exception is raised, a search is performed in the table for a pair of addresses (ip,
ig) such that ip is the greatest address present in EH for which ip ≤ pc ≤ ig, where
pc is the value of the program counter when the exception is detected. Since EH
is ordered, a binary search can be performed. The search locates a handler for the
exception (recall that a hidden handler is added to each procedure). If this handler
re-throws the exception (because it does not capture this exception or because it is
a hidden handler), the procedure starts again, with the current value of the program
counter (if it was a handler for another exception) or with the return address of the
procedure (if it was a hidden handler). This solution is more expensive than the
preceding one when an exception is detected, at least by a logarithmic factor in the
number of handlers (and procedures) present in the program (the reduction in per-
formance depends on the need to perform a search through a table every time; the
cost is logarithmic because a binary search is performed). On the other hand, it costs
nothing at protected block entry and exit, where the preceding solution imposed a
constant overhead on both of these operations. Since it is reasonable to assume that
the detection of an exception is a rarer event than simple entry to a protected block,
we have a solution that is on average more efficient than the preceding one.

7.4 Chapter Summary

The chapter has dealt with a central question for every programming language:
mechanisms for functional abstraction. It has discussed, in particular, two of the
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class X extends Exception {};
2class P{

void f() throws X{
4throw new X();

}
6}

8class Q{
class X extends Exception {};

10void g(){
P p = new P();

12try {p.f();} catch (X e){
System.out.println("in g");

14}
}

16}

Fig. 7.25 Static scope and exception names

Exceptions and Static Scope

Languages like Java and C++ combine static scope for name definitions (and there-
fore also for exception names) with the dynamic association of handlers with pro-
tected blocks, as we have just seen. Such a combination is sometimes the cause of
confusion, as the Java code in Fig. 7.25 shows. On a superficial reading, the code
seems syntactically correct. Moreover, it could be said that an invocation of g results
in the string “in g” being printed.

Yet, if the compilation of the code is attempted, the compiler finds two static
semantic errors around line 12: (i) the exception X which must be caught by the
corresponding catch is not raised in the try; (ii) the exception X, raised by f, is
not declared in the (absent) throws clause of g.

The fact is that exception names (X in this case) have normal static scope.
Method f raises the exception X declared on line 1; while the catch on line 12 traps
the exception X declared on line 9 (and which is more correctly denoted by Q.X,
since it is a nested class within Q). Just so as to avoid errors caused by situations of
this kind, Java imposes the requirement on every method that it must declare all the
exceptions that can be generated in its body in its throws clause.

The analogous situation can be reproduced in C++, mutatis mutandis. In C++,
however, the throws clause is optional. If we compile the C++ code corresponding
to that in Fig. 7.25, in which throws clauses are omitted, compilation terminates
properly. But clearly, an invocation of the method f throws an exception different
from that caught in the body of g. An invocation of g results in an exception X (of
the class declared on line 1) which is then propagated upwards.

most important linguistic mechanisms to support functional abstraction in a high-
level language: procedures and constructs for handling exceptions. The main con-
cepts introduced are:
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• Procedures: The concept of procedure, or function, or subprogram, constitutes
the fundamental unit of program modularisation. Communication between pro-
cedures is effected using return values, parameters and the nonlocal environment.

• Parameter passing method: From a semantic viewpoint, there are input, output
and input-output parameters. From an implementation viewpoint, there are dif-
ferent ways to pass a parameter:
– By value.
– By reference.
– By means of one of the variations on call by value: by result, by constant or by

value-result.
• Higher-order functions: Functions that take functions as arguments or return them

as results. The latter case, in particular, has a significant impact on the imple-
mentation of a language, forcing the stack discipline for activation records to be
abandoned.

• Binding policy: When functions are passed as arguments, the binding policy spec-
ifies the time at which the evaluation environment is determined. This can be
when the link between the procedure and the parameter is established (deep bind-
ing) or when the procedure is used via the parameter (shallow binding).

• Closures: Data structures composed of a piece of code and an evaluation environ-
ment, called closures, are a canonical model for implementing call by name and
all those situations in which a function must be passed as a parameter or returned
as a result.

• Exceptions: Exceptional conditions which can be detected and handled in high-
level languages using protected blocks and a handler. When an exception is de-
tected, the appropriate handler is found by ascending the dynamic chain.

7.5 Bibliographical Notes

All the principal modes for parameter passing originate in the work of the Algol
committee and were subsequently explored in other languages such as Algol-W and
Pascal. The original definition of Algol60 [1] is a milestone in programming lan-
guage design. The preparatory work on Algol-W can be seen in [10] and its mature
form in the reference manual [7]. Algol-W included call by name (as default), call
by value, by result and by value-result, as well as pointers and garbage collection.
Pascal, which adopts as default call by reference, was first defined in [9]; the refer-
ence manual for the ISO Standard is [4].

The problems with determining the environment in the case of higher-order func-
tions are often known as the funarg problem (the functional argument problem). The
downward funarg problem refers to the case of functions passed as arguments and
therefore to the necessity of handling deep binding. The upward funarg problem
refers to the case in which a function can be returned as a result [6]. The relations
between binding policy and scope rules are discussed in [8].
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One of the first languages with exceptions was PL/1 which used resumption han-
dling (see [5]). More modern handling with termination (which anticipates the static
link between protected blocks and handling) descends from Ada, which, in its turn,
was inspired by [3].

7.6 Exercises

1. On page 166, commenting on Fig. 7.1, it can be seen that the environment of
the function foo includes (as a nonlocal) the name foo. What purpose does
the presence of this name serve inside the block?

2. State what will be printed by the following code fragment written in a pseudo-
language permitting reference parameters (assume Y and J are passed by refer-
ence).

int X[10];
int i = 1;
X[0] = 0;
X[1] = 0;
X[2] = 0;
void foo (reference int Y,J){

X[J] = J+1;
write(Y);
J++;
X[J]=J;
write(Y);

}
foo(X[i],i);
write(X[i]);

3. State what will be printed by the following code fragment written in a pseudo-
language which allows value-result parameters:

int X = 2;
void foo (valueresult int Y){

Y++;
write(X);
Y++;

}
foo(X);
write(X);

4. The following code fragment, is to be handed to an interpreter for a pseudo-
language which permits constant parameters:

int X = 2;
void foo (constant int Y){

write(Y);
Y=Y+1;
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}
foo(X);
write(X);

What is the most probable behaviour of the interpreter?
5. Say what will be printed by the following code fragment which is written in a

pseudo-language allowing name parameters:

int X = 2;
void foo (name int Y){

X++;
write(Y);
X++;

}
foo(X+1);
write(X);

6. Based on the discussion of the implementation of deep binding using closures,
describe in detail the case of a language with dynamic scope.

7. Consider the following fragment in a language with exceptions and call by
value-result and call by reference:

{int y=0;
void f(int x){

x = x+1;
throw E;
x = x+1;

}
try{ f(y); } catch E {};
write(y);

}

State what is printed by the program when parameters are passed: (i) by value-
result; (ii) by reference.

8. In a pseudo-language with exceptions, consider the following block of code:

void ecc() throws X {
throw new X();

}
void g (int para) throws X {

if (para == 0) {ecc();}
try {ecc();} catch (X) {write(3);}

}
void main () {

try {g(1);} catch (X) {write(1);}
try {g(0);} catch (X) {write(0);}

}

Say what is printed when main() is executed.
9. The following is defined in a pseudo-language with exceptions:
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int f(int x){
if (x==0) return 1;
else if (x==1) throw E;

else if (x==2) return f(1);
else try {return f(x-1);} catch E {return x+1;}

}

What is the value that is returned by f(4)?
10. The description of the implementation of exceptions in Sect. 7.3.1 assumes that

the compiler has access (direct or through the linkage phase) to the entire code
of the program. Propose a modification to the implementation scheme based
on the handler table for a language in which separate compilation of program
fragments is possible (an example is Java, which allows separate compilation
of classes).
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Chapter 8
Structuring Data

Each programming language contains constructs and mechanisms for structuring
data. Instead of just the simple sequences of bits in the physical machine, a high-
level language provides complex, structured data which more easily lends itself to
describing the structure of the problems that are to be solved. These constructs and
mechanisms are formed from what is called the type system of a language. Far from
being an auxiliary aspect, types represent one of the salient characteristics of a pro-
gramming language and which substantially differentiate one language from an-
other.

In this chapter, we will examine type systems in the general sense, discussing
primitive types and the mechanisms used to define new ones. Central to our pre-
sentation will be the concept of type safety, which will be introduced in Sect. 8.2.
We will then tackle the questions of type equivalence and compatibility of types,
that is mechanisms which will allow us to use a value of some type in a context
requiring another type. We will then discuss polymorphism and overloading. We
will conclude the chapter with some questions about storage management (garbage
collection), which is not, strictly speaking, a topic about data types but which well
complements the examination of pointers which we must undertake.

8.1 Data Types

Data types are present in programming languages for at least three different reasons:

1. At the design level, as support for the conceptual organisation;
2. At the program level, as support for correctness;
3. At the translation level, as support for the implementation.

Before entering into detailed discussion of these aspects, which we will do in the
coming sections, we give a definition which, as is often the case with programming
languages, is not formally precise but suffices to explain the phenomena which we
intend studying.
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Definition 8.1 (Data Type) A data type is a homogeneous collection of values,
effectively presented, equipped with a set of operations which manipulate these val-
ues.

We will try to clarify the various terms used in the previous definition. A type is
a collection of values, like the integers, or an integral interval. The adjective “homo-
geneous”, for all its informality, suggests that these values must share any structural
property which makes them similar to each other. For example, let us take as an ex-
ample the integers between 5 and 10, inclusive, while we will not consider as a type
the collection composed of the integer number 2, the truth value true and the ra-
tional number 3/4. Next, such values “come with” the operations which manipulate
them. For example, together with the integers, we can consider the usual opera-
tions of addition, subtraction, multiplication and division; otherwise, also consider
the less common operations such as remainder after integer division and raising to
a power. According to our definition, the same set of values, equipped with two
distinct sets of operations, forms another data type. The final component of the defi-
nition is that it must be “effectively presented”, which refers to values. Since we are
speaking of languages for describing algorithms, we are interested in values which
it is possible to present (write, name) in a finite manner. Real numbers (the “true”
ones in mathematics, that is the only complete archimedian ordered field) are not
effectively presentable because there are real numbers with infinite decimal expan-
sion which cannot be obtained by means of any algorithm. Their approximations in
programming languages (real or float) are only subsets of the rationals.

8.1.1 Types as Support for Conceptual Organisation

The solution to every complex problem has a conceptual structure which often re-
flects that of the problem. The presence of different types allows the designer to use
the type that is most appropriate to each class of concept. For example, a program
handling hotel reservations, will handle concepts such as client, date, price, rooms,
etc. Each of these concepts can be described as a different type, with its own set
of operations. The designer can define new types and associate them with differ-
ent concepts, even if they are represented by the same values. For example, rooms
and prices could be both represented by integers within specified intervals, but their
representation as distinct types makes their conceptual difference explicit.

The use of distinct types can be seen both as a design and a documentation tool.
When reading a program, it is clear from the declaration of the type that a variable of
type “room” has a different role from that of a variable of type “price”. In this sense,
types are similar to comments, with the important difference that we are dealing with
effectively controllable comments, as we will see in the next section.
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8.1.2 Types for Correctness

Every programming language has its own type-checking rules which regulate the
use of types in a program. The most common example is that of an assignment;
for a command of the form x := exp; to be correct, the majority of languages
require that the type of exp coincides (or better, is compatible) with the (declared)
type of x. In a similar fashion, it is forbidden to add integers and records or to call
(that is, transfer control to) an object which is not a function or a procedure.

Such constraints are present in languages both to avoid runtime hardware errors
(for example, a call to an object that is not a function might cause an address error),
and, more likely, to avoid the kinds of logic error frequently hidden beneath type-
rule violations. The sum of an integer and a string rarely corresponds to anything
sensible.

Programming languages, then, assume that the violation of a type constraint cor-
responds to a possible semantic error (a design error). The crucial point is that many
languages determine that type constraints must all be satisfied before the execution
(or to code generation) of a program. This is the role of the type checker, a very im-
portant component of the static semantic checking phase of a compiler (Sect. 2.3).
We have talked about types as if they were effectively controlled comments, because
through them, the programmer communicates the legal ways with which the given
objects can be used; but (unlike comments), the compiler (or the language’s abstract
machine) detects and signals every attempted incorrect use of these objects.

It is clear that a program that is correct with respect to the type rules can still
be logically incorrect. Types ensure a minimal correctness, which, however, is of
considerable help during the development phase of a program. A fairly powerful
analogy is that of dimensional control in physics: when a physicist writes a for-
mula, before verifying its correctness using laws, they verify that the dimensions
are correct. If the formula is to express velocity, there must be distance over a time;
if there is an acceleration, there must be distance over time squared, and so on. If
the formula is dimensionally incorrect, no more time should be spent on it because
it is certainly incorrect. If, on the other hand, it is dimensionally correct, it might be
incorrect and must be handled semantically.

Sometimes, however, the type rules can appear too restrictive. A C programmer
is used to the free handling of pointers (which are, in C, actual memory locations)
and they can find the restrictions on performing arbitrary pointer arithmetic such
as those in languages like Java or Pascal unnecessarily restrictive. In this case, the
reply by the designers of these two languages is that the benefits of strict control
over types considerably outweighs the loss of expressiveness and conciseness.

A more apt example is that of a subprogram that sorts a vector. In many lan-
guages, because of the presence of types, it will be necessary to write one routine to
order an integer vector, another to order vectors of characters, and still another for
vectors of reals, and so on. All these functions are identical as far as algorithm goes
and differ only in the declaration of the types of the parameters and variables. The
way out, in this case, is to adopt more sophisticated typing rules, which, without
renouncing any control, allow one to write a single function which is parameterised



200 8 Structuring Data

by type. We will see below that languages which allow this kind of polymorphism
are becoming common.

Let us finally observe that the rules pertaining to types are not always sufficient
to guarantee that the constraints they express are satisfied. We give just a single ex-
ample here. In a language that permits the explicit deallocation of store in a heap,
it is possible that references (pointers) are generated that refer to memory that is
no longer allocated to the program (dangling references). An attempted access us-
ing such a reference is an error that can be classified as a type error, but it is not
guaranteed that it will be detected and reported by the abstract machine. Let us
therefore classify programming languages as existing somewhere between secure
and insecure with respect to types, according to how possible it is that there can
be type-constraint violations during program execution that go undetected by the
abstract machine.

8.1.3 Types and Implementation

The third principal motivation for the use of types in programming languages is that
they are important sources of information for the abstract machine. The first kind
of information, clearly, is about the amount of memory to be allocated to various
objects. The compiler can allocate one word for an integer, one byte for a boolean
value, n words for a vector of integers, and so on. When we have types, all of this
information is available statically and does not change during execution.

As a consequence of this kind of static allocation during compilation, it is pos-
sible to optimize the operations that access an object. In Sect. 5.3, we discussed
how access to an allocated variable in an activation record is performed using an
offset from the pointer to an activation record, without a runtime search by name.
This form of optimisation is possible because the information carried by types al-
lows the static determination of the allocation sizes for almost every object, even
for heap-allocated objects. We will soon see that a record is formed from a collec-
tion of fields, each of which is characterised by its own name and its own type. For
example, using the same notation as in C, the following declaration introduces the
Professor type, a record with two fields:

struct Professor{
char Name[20];
int Course_code;

}

If now we have a variable, p, of type Professor, we can access its fields using
either the name p.Name or the name p.Course_Code. However the object p is
allocated (in the heap or on the stack), access to its fields will always be possible
through the use of offsets from the start address of p in memory.
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8.2 Type Systems

Before going into the detailed treatment, in this section, we introduce a little termi-
nology which we will illustrate in detail in the following sections.

As argued in the previous section, every programming language has its own type
system, or rather the complex of information and rules which govern the types in
that language. More precisely, a type system consists of the following:1

1. The set of predefined types of the language.
2. The mechanisms which permit the definition of new types.
3. The mechanisms for the control of types, among which we distinguish the fol-

lowing:

• Equivalence rules which specify when two formally different types correspond
to the same type.

• Compatibility rules specifying when a value of a one type can be used in a
context in which a different type would be required.

• Rules and techniques for type inference which specify how the language as-
signs a type to a complex expression based on information about its compo-
nents.

4. The specification as to whether (or which) constraints are statically or dynami-
cally checked.

A type system (and, by extension, a language) is type safe2 when no program can
violate the distinctions between types defined in that language. In other words, a type
system is safe when no program, during its execution, can generate an unsignalled
error derived from a type violation. Once more, it is not always clear what a type
violation is, at least in general. We have already given many examples, such as
access to memory that is not allocated to the program, or the call of a non-functional
value. We will see below other examples of errors of this kind.

We have defined a type as a pair composed of a set of values and a set of oper-
ations. In any particular language, the values of a type can correspond to different
syntactic entities (constants, expressions, etc.). Having fixed a programming lan-
guage, we can classify its types according to how the values of a type can be manip-
ulated and the kinds of syntactic entity that corresponds to these values. Following
the classification that we have already seen in the box on page 135, we have values:

• Denotable, if they can be associated with a name.
• Expressible if they can be the result of a complex expression (that is different

from a simple name).
• Storable if they can be stored in a variable.

1“A type system is a tractable syntactic method for proving the absence of certain program behav-
iors by classifying phrases according to the kinds of values they compute” [13].
2Much of the literature uses the term strongly typed in place of type safe.
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Let us give some examples. The values of the type of functions from int to
int are denotable in almost all languages because a name can be given using a
declaration. For example:

int succ (int x){
return x+1;

}

This assigns a name succ to the function which computes the successor. Functional
values are not in general expressible in common imperative languages because there
are no complex expressions returning a function as the result of their evaluation.
In the same way, they are not, in general, storable values because it is not possi-
ble to assign a function to a variable. The situation is different in languages from
other paradigms, for example functional languages (Scheme, ML, Haskell, etc.) in
which functional values are both denotable, and expressible or, in some languages,
storable. Values of type integer are in general denotable (they can be associated with
constants), expressible, and storable.

8.2.1 Static and Dynamic Checking

A language has static typing if its checking of type constraints can be conducted
on the program text at compile time. Otherwise, it has dynamic typing (that is if
checking happens at runtime).

Dynamic type checking assumes that every object (value) have a runtime descrip-
tor specifying its type. The abstract machine is responsible for checking that every
operation is applied only to operands of the correct type. Often, this can be done
by making the compiler generate appropriate checking code that is executed before
each operation. It is not difficult to see that dynamic type checking locates type er-
rors but is not efficient, given that operations are intermixed with type checking. In
addition, a possible type error is revealed only during execution when the program
might be in operation with its end user.

In static type checking, on the other hand, checks are made during compilation. In
this scheme, checks are performed and reported to the programmer before the pro-
gram is sent to the user. When checking is completely static, moreover, the explicit
maintenance of type information at execution time is useless because correctness
is guaranteed statically for every execution sequence. Execution is therefore more
efficient, given that checks are not required at runtime. There is, clearly, a price to
pay. In the first place, the design of a statically-typed language is more complex than
that of a dynamic language, especially if, together with static checking, guaranteed
type safety is also desired. In the second place, compilation takes longer and is more
complex, a price that one pays willingly, given that compilation takes place only a
few times (with respect to the number of times that the program will be executed)
and, above all because type checking shortens the testing and debugging phases.
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There is, in the end, a third price to pay. This is less clear than the others but is
intimately connected with the nature of static type checking. Static types can decree
as erroneous, programs that, in reality, do not cause a runtime type error. By way of
a simple example, let us consider the following fragment in our pseudocode:

int x;
if (0==1) x = "pippo";
else x = 3+4;

The first branch of the conditional assigns the integer variable, x, to a value that is
incompatible with its type but the execution of the fragment causes no error because
the condition is never satisfied. However, every static type checker will signal that
this fragment is incorrect because the types of the two conditional branches are not
the same. Static checking is therefore more conservative than dynamic checking.
The motivation for this statement is found in the considerations of Chap. 3 on the
existence of undecidable problems. In addition to the halting problem, the problem
of determining whether a program causes a type error at execution time is undecid-
able (see the box on p. 204). It follows from this that there exists no static check
that can determine all and only those programs that produce errors at runtime. Static
typing therefore adopts a prudential position: that of excluding more programs than
strictly necessary with the justification that it can therefore guarantee correctness.

As we have already seen more than once in other contexts, static and dynamic
type checking represent the two extremes of a spectrum of solutions in which the
two methods coexist. Almost every high-level language combines static and dy-
namic type checks. We promise to return to this topic in due course; meanwhile
let us just give a simple example from Pascal, a language traditionally classified as
one that uses static type checking. Pascal allows the definition of interval types (see
Sect. 8.3.9). For example, 1..10 is the type of the integers between 1 and 10 (inclu-
sive). An expression of an interval type must be checked dynamically to guarantee
that its value is properly contained within the interval. More generally, if a language
with arrays want to check that the index of an array lies between the bounds of that
array, must perform checks at runtime.

8.3 Scalar Types

Scalar (or simple) types are those types whose values are not composed of aggrega-
tions of other values. In this section, we will undertake a quick review of the main
scalar types found in most common programming languages, while, in the next sec-
tion, we will be concerned with the types that result from aggregating different val-
ues. The details (which we will not give) clearly depend on specific languages. In
order to fix our notation, let us assume that we have in our pseudo-language the
following way of defining (or declaring) new types:

type newtype = expression;
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Type errors are undecidable

It is not difficult to prove that the problem of determining whether a program will
cause a type error during its execution is undecidable. Let us, in fact, make use of
what we already know, the undecidability of the halting problem.

Let us consider the following fragment, where P is an arbitrary program:

int x;
P;
x = "pippo";

Under what conditions will this fragment produce a type error as it runs? Only
if P terminates, in which case it will try to execute the assignment:

x = "pippo";

which clearly violates the type system. If, on the other hand, P does not terminate, it
will produce no error because control remains always inside P without ever reach-
ing the critical assignment. Therefore, the fragment generates a type error if and
only if P terminates. If there now existed a general method for deciding whether an
arbitrary program causes an type error while executing, we could apply this method
to our fragment. Such a method, though, would also be a method for deciding the
termination of the (arbitrary) program P, something we know to be impossible.

This introduces the name of the type, newtype, whose structure is given by ex-
pression. In C, we would write, for the same meaning:

typedef expression newtype;

8.3.1 Booleans

The type of logical values, or booleans, is composed of:

• Values: The two truth values, true and false.
• Operations: an appropriate selection from the main logical operations: conjunc-

tion (and), disjunction (or) and negation (not), equality, exclusive or, etc.

If present (C for example has no type constructed in this fashion), its values can
be stored, expressed and denoted. For reasons of addressing, the memory represen-
tation does not consist of a single bit but a byte (or possibly more if alignment is
required).

8.3.2 Characters

The character type is composed of:



8.3 Scalar Types 205

• Values: a set of character codes, fixed when the language is defined; the most
common of these are ASCII and UNICODE.

• Operations: strongly dependent upon the language; we always find equality, com-
parison and some way to move from a character to its successor (according to the
fixed encoding) and/or to its predecessor.

Values can be stored, expressed and denoted. The representation in store will consist
of a single byte (ASCII) or of two bytes (UNICODE).

8.3.3 Integers

The type of integer numbers is composed of:

• Values: A finite subset of the integers, usually fixed when the language is defined
(but there are cases in which it is determined by the abstract machine which can be
the cause of some portability problems). Due to representation issues, the interval
[−2t ,2t − 1] is commonly used.

• Operations: the comparisons and an appropriate selection of the main arithmetic
operators (addition, subtraction„ multiplication, integer division, remainder after
division, exponentiation, etc.).

The values can be stored, expressed and denoted. The representation in memory
consists of an even number of bytes (usually 2, 4, or 8), in two’s complement form.
(Some languages include support for arbitrary-length integers.)

8.3.4 Reals

The so-called real type (or floating point numbers) is composed of:

• Values: an appropriate subset of the rational numbers, usually fixed when the
language is defined (but there are case in which it is fixed by the specific abstract
machine, a matter that deeply affects portability); the structure (size, granularity,
etc.) of such a subset depends on the representation adopted.

• Operations: comparisons and an appropriate selection of the main numeric opera-
tions (addition, subtraction, multiplication, division, exponentiation, square roots,
etc.).

The values can be stored, expressed and denoted. The memory representation con-
sists of four, eight and also ten bytes, in floating point format as specified by the
IEEE 754 standard (for languages and architectures from 1985).

8.3.5 Fixed Point

The so-called fixed point type for reals is composed of:
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Empty or singleton

At first sight, one might be confused by the statement that void has one (a single)
element rather than none. Let us think a little. We are used to defining a function
which “returns nothing” as:

void f (...){...}

If void were the empty set, we could not write a function such as f. There ex-
ist no functions with an empty codomain, with the unique exception of the function
that is everywhere divergent. It is, instead, sensible to assume that in void, there is
a single element and that this (implicitly) is returned by f. Since such an element is
unique, we have no (and we must not have any) interest in explicitly saying what it
is.

• Values: an appropriate subset of the rational numbers, usually fixed when the
language is defined; the structure (size, granularity, etc.) of such a subset depends
on the representation adopted.

• Operations: comparisons and an appropriate selection of the main numeric opera-
tions (addition,subtraction, multiplication, division, exponentiation, extraction of
square roots, etc.).

The values can be stored, expressed and denoted. The representation in memory
consists of four or eight bytes. Values are represented in two’s complement, with
a fixed number of bits reserved for the decimal part. Reals in fixed point permit
compact representation over a wide interval with few precision places.

8.3.6 Complex

The so-called complex type is composed of:

• Values: an appropriate subset of the complex numbers, usually fixed by the defi-
nition of the language; the structure (size, granularity, etc.) of this subset depends
on the adopted representation.

• Operations: comparisons and an appropriate selection of the main numerical
operations (sum, subtraction, multiplication, division, exponentiation, taking of
square roots, etc.).

The values can be stored, expressed and denoted. The representation consists of
a pair of floating-point values.
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8.3.7 Void

In some languages, there exists a primitive type whose semantics is that of having a
single value. It is sometimes denoted void (even if, semantically, it would be better
to call it unit, given that it is not the empty set but a singleton):

• Values: only one, which can be written as ().
• Operations: none.

What is the purpose of a type of this kind? It is used to denote the type of opera-
tions that modify the state but return no value. For example, in some languages, (but
not in C or Java), assignments have type void.

8.3.8 Enumerations

In addition to the predefined types, such as those introduced above, we also find in
some languages different ways to define new types. Enumerations and intervals are
scalar types that are defined by the user.

An enumeration type consists of a fixed set of constants, each characterized by
its own name. In our pseudo-language, we could write the following definition

type Dwarf = {Bashful, Doc, Dopey, Grumpy, Happy, Sleepy, Sneezy};

which introduces a new type with the name Dwarf and is a set of seven elements,
each one denoted by its own name.

The operations available over an enumeration consist of comparisons and of a
mechanism to move from a value to its successor and/or predecessor value (this
should be compared with what was said about the character type; in Pascal, the
char type is, basically, a predefined enumeration).

From a pragmatic viewpoint, enumerations permit the creation of highly legible
programs insofar as the names for values constitute a fairly clear form of self docu-
mentation of the program. Type checking moreover can be exploited to check that a
variable of an enumeration type assumes only the correct values.

Introduced for the first time in Pascal, enumeration types are present in many
other languages; the box discusses those in C.

A value of an enumeration type is typically represented by a one-byte integer.
The individual values are represented by contiguous values, starting at zero. Some
languages (C and Ada for example) allow the programmer to choose the values
corresponding to the different elements of an enumeration.
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Enumerations in C

In C, our definition of Dwarf takes the form:

enum Dwarf {Bashful, Doc, Dopey, Grumpy, Happy, Sleepy, Sneezy};

Apart from notational variants, the essential point is that in C (but not in C++),
such a declaration is substantially equivalent to the following:

typedef int Dwarf;
const Dwarf Bashful=0, Doc=1, Dopey=2,

Grumpy=3, Happy=4, Sleepy=5, Sneezy=6;

The type equivalence rules for the language, in other words, allow an integer
to be used in place of a Dwarf and vice versa. Type checking does not distinguish
between the two types and, therefore, better documentation is all that is obtained
by the use of an enumeration; stronger type checking is not obtained. In languages
derived from Pascal, on the other hand, enumerations and integers are completely
different types.

8.3.9 Intervals

The values of an interval type form a contiguous subset of the values of another
scalar type (the base type of the interval). Two examples in Pascal (which was the
first language to introduce intervals as well as enumerations) are:

type Bingo = 1..90;
SomeDwarves = Grumpy..Sleepy;

In the first case, the Bingo type is an interval of 90 elements whose base type is
the integer type. The interval SomeDwarves is formed from the values Grumpy,
Happy and Sleepy and has Dwarf as its base type.

As in the case of enumerations, the advantage of using an interval type rather than
the corresponding base type is both that it is better for documentation and because it
provides a stronger type check. It can be seen that verifying that a value of a certain
expression really belongs to the interval must necessarily be made dynamically,
even in those languages whose type system is designed for the static checking of
type constraints.

As far as representation goes, a compiler can represent a value of an interval type
as a one- or two-byte integer according to the number of elements in the interval.
In reality, usually an abstract machine will represent the values of an interval in the
same way (and in the same number of bytes) in which the base type is represented.
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8.3.10 Ordered Types

The boolean, character, integer, enumeration and interval types are examples of or-
dered types (or discrete types). They are equipped with a well-defined concept of
total order and, above all, possess a concept of predecessor and successor for every
element, except for the extreme values. Ordered types are a natural choice for vector
indices and for control variables of definite iterations (see Sect. 6.3.3).

8.4 Composite Types

Non-scalar types are said to be composite since they are obtained by combining
other types using appropriate constructors. The most important and common com-
posite types are:

• Record (or structure), an collection of values in general of different type.
• Array (or vector), a collection of values of the same type.
• Set: subsets of a base type, generally ordinal types.
• Pointer: l-values which permit access to data of another type.
• Recursive types: types defined by recursion, using constants and constructors;

particular cases of recursive types are lists, trees, etc.

In the following subsections, we will analyse these types in the same order as in the
above list.

8.4.1 Records

A record is a collection formed from a finite number of (in general ordered) elements
called fields, which are distinguished by name. Each field can be of a type that is
different from the others (records are a heterogeneous data structure). In the major-
ity of imperative languages, each field behaves like a variable of the same type.3

The terminology is not, as usual, universal. In Pascal, one talks about records, in
C (C++, Algol68, etc.), one talks about structures (struct); in Java, they do not
exist because they are subsumed by the concept of class.

A simple example in our pseudo-language (which is inspired by C’s notation) is
the following:

type Student = struct{
int year;
float height;

};

3In many non-imperative languages, a record is, instead, a finite set of values each of which is
accessed by name. Ignoring the question of name-based access, a record type, in such a case, is the
cartesian product of the types of its fields.
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Fig. 8.1 Possible storage
arrangement for a record of
type Hall

Each record of type Student is composed of a pair whose first component is
an integer, while the second is a real (float).

The only operation usually permitted on a value of a record type is the selection
of a component, which can be obtained using the name of the fields. For example,
if s is a variable that refers to a Student, we can assign values to its fields as
follows:

s.year = 12345;
s.height = 1.85;

In many languages, records can be nested, that is the field of a record is permitted
to be of a record type.

type Hall = struct{
char name[5];
int capacity;
struct{

char department[10];
int telephone;

} manager;
};

The third field (manager) of a record of type Hall is a record with two fields
(whose type, anonymous, is therefore also a struct; the convention is observed
that the type occurs before the name being declared). The selection of fields is
performed by an obvious extension of the dot notation: if h refers to a Hall,
with h.manager.telephone, we can denote the second field of the third field
(manager) of h.

Equality of records is not always defined (Ada permits it but Pascal, C, C++ do
not). Similarly, assignment of entire records is not always permitted. In the case in
which these operations are not permitted, the language user must explicitly program
them, for example by comparing (or assigning) one field at a time.

The order of fields is, in general, significant and is reflected in the way in which
records are stored. The fields of a record are stored in contiguous locations, even if
reasons of alignment can insert a hole between one field and another. For example,
in a 32-bit architecture a record of type Hall could be represented by as shown
in Fig. 8.1. The name field is represented by 5 bytes. The following field, however,
being an integer, must be aligned on a word boundary and therefore between name



8.4 Composite Types 211

Fig. 8.2 A variant record in
C using union

struct Stud{
char name[6];
int reg_no;
int graduated;
union{

int lastyear;
struct{

int major;
int year;

} major_student;
} variantfields;

};

and capacity, 3 empty bytes must be left. A similar thing happens with fields
department and telephone. A record of type Hall is therefore represented
by 7 words each of 4 bytes, even though only 23 bytes are significant.4 To avoid
these problems, some languages do not ensure that the order of fields will be main-
tained by the abstract machine, thus allowing the compiler to re-organise fields in
order to minimise the number of holes required to enforce alignment. Our record of
type Hall could be represented in 6 words, with the waste of a single byte. This
is a good implementation if the language guarantees a significant level of abstrac-
tion between the user and the implementation. In some applications, on the other
hand, there is the need to allow users to manipulate the implementation of types.
Languages such as C allow designers to allow this kind of operation as well. In such
cases, the reorganisation of fields would not be a good design decision.

8.4.2 Variant Records and Unions

A particular form of record is that in which some fields are mutually exclusive.
We talk of variant record in this case. It is a feature that, with different names and
with different syntax and constraints, is provided by many languages (as we will
see very shortly, this is also the cause of much complication). In a way different
from our usual method of working (which uses one, neutral pseudo-language), we
will start with an example in Pascal, one of the languages in which the concept
of variant record is present in its clearest form (but is also accompanied by all of
the associated problems). In Pascal, we can declare a type Stud as follows (the
corresponding definition in C, which we will discuss next, is shown in Fig. 8.2):

type Stud = record
name : array [1..6] of char;
reg_no : integer;

4The presence of holes is often the reason for which some languages do not permit equality be-
tween entire records. A bit-by-bit comparison of two records would distinguish two records which
are in reality equal apart from the irrelevant information present in the holes.
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case graduated : boolean of
true: (lastyear : 2000..maxint);
false:(major : boolean;

year : (first,second,third)
)

end;

The first two fields of the record are a vector of 6 characters (name) and an inte-
ger reg_no. The third field, major is preceded by the reserved work case, which
is called the tag or discriminant of the variant record. A tag true indicates that the
record has another field: lastyear of interval type. A tag false indicates, on the
other hand, that the record has two more fields: major of type boolean and year
of an enumeration type. The two possibilities which appear between round brackets
are the variants of the record. In general, the tag can be of any ordinal type and can,
therefore, be followed by a number of variants equal in number to the cardinality of
this type.

From a semantic viewpoint, in a variant record, only one of the two variants is
significant, never both. Which of the two variants is significant is indicated by the
value of the tag. The tag and variants can be accessed as if they were any other field.
For example, if s is one Stud,

s.graduated := true

assigns a value to the tag, while

s.lastyear := s.lastyear+1

increments by one the first variant.
As far as representation in memory is concerned, all variants share the same re-

gion of memory, given that they cannot be active at the same time. In effect, memory
saving was one of the reasons for introduction of this data type, even if today this is
not so important. Figure 8.3 shows the way in which a Stud is allocated.

Unions in C The primitive concept of variant record is not present in C, where
we find instead the concept of union. A union is analogous to a record (struct) in
definition and in selection of its fields but with the fundamental difference that only
one of the fields of a union can be active at any particular time, given that the fields
(which can be of different types) share the same area of storage. It can thus be im-
mediately seen that Fig. 8.2 corresponds exactly to the variant record in Pascal that
we just discussed.5 The single difference (which, from the pragmatic viewpoint, is
considerable) is in the necessity in C to add an extra level of naming: the fourth field

5Let us observe that, from a notational viewpoint, the outermost struct (the one immediately
followed by the name Stud) is a definition of type (precisely the Stud type), while the innermost
struct (which has no name before the braces) is a type expression which determines the type of
the field major_student.
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Fig. 8.3 Possible storage
allocations for a variant
record

of the structure, named variantfields, is of union type and serves to enable ac-
cess to the real variants. Notice, moreover, that the second variant (which is a pair)
must be explicitly declared as a structure with its own name (major_student).
To access the major field, if s refers to a Stud, it is necessary to write

s.variantfields.major_student.major

which is certainly much more demanding than Pascal’s simple s.major.
From the linguistic viewpoint, however, the most revealing difference between

Pascal’s variant records and their simulation in C using unions is the fact that in C
the tag is completely unrelated to the union. As can be seen in Fig. 8.2, graduated
is a field like all the others and only the programmer’s discipline makes it significant
with respect to the fields of the union that follows it. The following fragment, for
example, is completely legal:

s.graduated = 0; // 0 = false: C has no primitive boolean type
s.variantfields.lastyear = 2001;
if (s.graduated) printf("%d", s.variantfields.lastyear);
else print("%d", s.variantfields.major_student.year);

Despite being syntactically legal, it is clear that this can pose some semantic
problems. The “tag” is false (to indicate that the second union component is active),
but a value is assigned to the union’s first field, yet then the second component is
accessed (for printing).

Variants and Security The above discussion of C unions might seem to sug-
gest that Pascal variant records are to be preferred to the “struct + union” solution
adopted for C. There is no doubt that Pascal is more elegant. By merging the two
concepts of record and union into the single concept of variant record, the language
defines a clearer mechanism, which is more compact and which, one would like to
say, is more secure. Unfortunately, this last adjective cannot be used in this context,
with reference to type safety; here, Pascal behaves exactly like C.
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The fact is that, in Pascal too, the language does not succeed in guaranteeing that
there is a formal, verified connection between the value of the tag and the meaning
of one of the variants which follow it. The crucial point is that the tag is accessible
through an ordinary assignment.

One might think of requiring that the abstract machine should check that every
access to a variant happens only if the tag has the correct value (signalling a dynamic
error otherwise). Apart from the fact that the language definition does not require
such checks, the problem is that this solution would catch some semantic errors but
not all. Let us assume, in fact, that we have the following declaration:

type Three = 1..3;
var tmp : record

case which : Three of
1 : (a : integer);
2 : (b : boolean);
3 : (c : char)

end

A hypothetical abstract machine checking the tag prior to access would be able to
signal (dynamically) the error in the following program (the error context is analo-
gous to that one we discussed for C above):

tmp.which := 1;
tmp.a := 123;
writeln(tmp.c); (* dynamic error *)

But the following fragment, on the other hand, would pass unnoticed by all
checks, despite the fact that it contains an access to the field c that has not yet
been assigned a meaningful value:

tmp.which := 1;
tmp.a := 123;
tmp.which := 3;
writeln(tmp.c); (* no error, but c not meaningful! *)

The situation is even worse, because the tag is not obligatory. The following
variant record definition is completely legal:

var tmp : record
case Three of

1 : (a : integer);
2 : (b : boolean);
3 : (c : char)

end

The variants are discriminated with respect to the type Three, but in this record,
no space is reserved to store the tag. In this case, even the limited form of access
check that we have just discussed turns out to be impossible.
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Secure union: Algol68

Is it possible to design secure variant records such that they do not threaten the very
roots of the language’s type system? The reply is certainly yes, provided we are
willing to pay the price both linguistically and in terms of efficiency. Let us discuss
here in summary form the Algol-68 solution which antedates Pascal’s design by
some years (Ada is another language with secure variants). Algol-68 allows the
definition of union types and requires the abstract machine to follow the evolution
of the type of any variable of union type. It does not require an explicit tag:

union (int, bool, char) tmp; # tmp of union type #
...
tmp := true; # now tmp is of type boolean #
...
tmp := 123; # now tmp is an integer #

For every variable of union type, the abstract machine maintains a hidden type
tag which is implicitly set when an assignment occurs. The crucial point is that a
union can be used only through a “conformity clause” (a case) which specifies what
to do with this variable in all cases. For example:

case tmp in
(int a) : a := a+1,
(bool b) : b := not b,
(char c) : print(c)

esac

A conformity clause is the only construct in the language that generate type
checks for dynamic types. Beyond the efficiency penalty, it is clear what the linguis-
tic burden of a similar solution would be.

The consequence of all this is that the presence of variant records destroys the
security of Pascal’s type system. One could then ask if it is worth the effort includ-
ing such a construct that is so expensive in terms of security in a language which
considers typing as one of its primary goals. The reply, given today’s climate, is neg-
ative: the saving in memory (as well as in conceptual elegance) that variant records
provide is not justified by the problems that they cause to the type system.6 Variant
records (or unions) are not present in Modula-3 or in Java.

6But it should be noted that Pascal is a language designed at the end of the sixties when the problem
of runtime central-memory occupancy was a central concern.
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8.4.3 Arrays

An array (or vector) is a finite collection of elements of the same type, indexed
by an interval of ordinal type.7 Each element behaves as if it were a variable of
the same type. The ordinal interval of the indices is the index type, or the type of
the array indices. The type of the elements is the component type, or even, with a
little imprecision, the array type. Since all elements are of the same type, arrays are
homogeneous data types.

Arrays are doubtless the most common composite type found in programming
languages; they first appeared in FORTRAN, the progenitor of all high-level lan-
guages. The syntax and various characteristics of arrays, however, vary considerably
from language to language. The fundamental ingredients of array declarations are
its name, its index type and the type of its elements. Let us begin with one of the
simplest examples we can produce in C:

int V[10];

The square brackets after the name of the variable indicate that we are dealing
with an array formed from 10 elements, each of which is a variable of type integer
(from now on, we will simply say: an array of 10 integers). The element type is
therefore int, while the index type is an interval of 10 elements; using the conven-
tion adopted in many languages (C, C++, Java, etc.), this interval starts at 0. In this
case, therefore, the index type is the interval 0 to 9. In general, we can assume that
a language allows the declaration of the index type to be an arbitrary interval of an
ordinal type, for example:

int W[21..30];
type Dwarf = {Bashful, Doc, Dopey, Grumpy, Happy, Sleepy,

Sneezy};
float Z[Dopey..Sneezy];

In the first declaration, W is an array of 10 integers, with integer indices from
21 to 30. The last line declares Z, an array of 4 reals, with indices taken from the
Dwarf type that run Dopey to Sneezy.

All languages permit the definition of multidimensional arrays, that is arrays in-
dexed by two or more indices:

int V[1..10,1..10];
char C[Dopey..Sleepy,0..10,1..10];

The array V is a 10 × 10 square integer matrix, with row and column indices
running from 1 to 10; C is a matrix whose elements are characters and whose bounds
are 4 × 11 × 10.

7From a semantic viewpoint, an array is a function which has, as domain, an interval for the indices
and, as codomain, a type for the array elements.
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Fig. 8.4 A slice through an array

In some languages, a multidimensional array can be obtained by declaring that
the type of the array elements is, at the same time, an array. A possible syntax in our
pseudo-language could be the following, so we can declare the above as:

int V[1..10][1..10];
char C[Dopey..Sleepy][0..10][1..10];

In some languages, the two models (multidimensional array and array of array)
are equivalent (one is an abbreviation for the other). This is the case in Pascal. In
other languages, only one of the two possibilities is admitted. In C, a multidimen-
sional array is an array of arrays and must be declared as such. Other languages,
finally, allow both models, but arrays of arrays support additional operations (slic-
ing, as will shortly be seen) that are only defined over multidimensional arrays.

Operations on Arrays The simplest operation permitted on an array is element
selection. It is performed using an index variable. The most common notation uses
square brackets: W[e] indicates the element of W corresponding to the index de-
noted by the value of the expression e. For multidimensional arrays, it is possible to
find C[Grumpy,1,2] or C[Grumpy][1][2], depending on whether the em-
phasis is on multidimensional or arrays of arrays.

Some languages, furthermore, allow operations on arrays in their entirety: assign-
ment, equality, comparisons and also arithmetic operations (performed, in general,
elementwise). In other languages, these global operations are just one particular case
of operations that allow the selection of interior parts of an array, which is operated
on in a global fashion. An array slice is a portion of an array composed of con-
tiguous elements. With the declarations above, V[3] could indicate the third row
of the matrix V, and C[Grumpy] the plane of the 3-dimensional matrix C which is
obtained by selecting only its first component (Fig. 8.4). Other languages may allow
the selection of more sophisticated slices: diagonals, frames, etc.

Checking The specification of the index type of an array is an integral of its def-
inition. Type checking in the language, therefore, would have to verify that every
access of an element of a vector really happens “between the bounds” of the array
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and that there is no attempt to access elements that do not exist. With the excep-
tion of some special cases, this check can occur only at runtime. A secure language,
therefore, will have to ensure that the compiler generates appropriate checks for
every access. Since this checking will affect the efficiency of the program, some
languages, while permitting such checks to be generated, allow their deactivation
(for example, Pascal).

Let us observe, by the way, that we are dealing with a of matter of not insignifi-
cant importance to the security of a system, understood not just as “type safety”, but
as “security” in a real sense. One of the most common attacks, which is also one of
the most serious for the security of a system, is called buffer overflow. A malicious
agent sends messages across the network with the aim of having them read into the
buffers of the destination. If the destination does not check that the length of mes-
sages does not exceed the capacity of the buffer, the malicious sender can write into
an area of memory that is not allocated to the buffers. If the buffer is allocated in
an activation record and the sender succeeds in writing into the area the activation
record reserves for saving the procedure’s return address, a “return” to any instruc-
tion can be made, in particular it can be made to jump to malicious code loaded by
the attacker on purpose (for example in the same buffer that caused the overflow).
In almost all cases, a buffer overflow attack can be stopped by an abstract machine
that checks that every access to an array happens “between the bounds”.

Storage and Calculation of Indices An array is usually stored as a contiguous
portion of memory (see Exercise 2 for a non-contiguous allocation technique). For
a single-dimensional array, allocation follows the order of the indices. In the case of
a multidimensional array, there are two alternative techniques, referred to as storage
in row order and in column order. In row order, two elements are contiguous when
they differ in their last index (except in the case of elements at the extremes of a
row, or on a plane, etc.). In column order, two elements are contiguous if they differ
in the first index (except in the case of extremal elements). Row order is a little
more common than column order; the fact that the elements of a row are stored
contiguously makes the selection of a row slice easier (this is the slicing operation
that is most often provided).

The two storing techniques are not equivalent as far as efficiency is concerned,
particularly when there is a cache. Programs that manipulate large multidimensional
arrays are often characterised by nested loops that run over such arrays. If the array
cannot be stored entirely in a cache, it is important that its elements are accessed
“along” the cache, such that the first miss brings into the cache the elements that
will be accessed immediately after. If the loop works by row, the cache must also
be loaded by row, that is, row order is more convenient; if the loop is columnwise,
column order should be preferred.

Once an array is stored in a contiguous fashion, the calculation of the address
corresponding to an arbitrary element is not difficult, even if it requires a little arith-
metic. Let us consider the generic array of n dimensions, with elements of type T.

T V[L1..U1]. . .[Ln..Un];
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Let Sn be the number of the addressable units (typically a byte) necessary to store
a single element of type T. Starting from this value, we can successively calculate a
series of values which express the quantity of memory required to store increasingly
larger slices of V. Let us assume we are working in row order, so we have:

Sn−1 = (Un − Ln + 1)Sn,

. . .

S1 = (U2 − L2 + 1)S2.

For example, for n = 3, S2 is the amount of memory required to store a row, while
S1 is the amount of memory required for an entire plane of V.

The address of element V[i1, . . . , in] is now obtained by adding to the first ad-
dress used to store V the quantity:

(i1 − L1)S1 + · · · + (in − Ln)Sn.

In the case in which the number of dimensions (that is, n), and the value of the Lj

and Uj are all known at compile time (that is the form of the array is static, see next
section), it is convenient to reformulate the addressing expression as:

i1S1 + · · · + inSn − (L1S1 + · · · + LnSn). (8.1)

Here, the second part (in parentheses), and a fortiori, all the Sj are constants that
can be determined at compile time. Making use of this formulation, an address is
calculated (dynamically) with n multiplications and n additions. The final subtrac-
tion disappears whenever all the Lj are zero (which explains why some languages
use zero as lower bound for indices).

Form of an Array: Where an Array is Allocated The shape of an array is de-
termined by the number of its dimensions and by the interval within which each of
them can vary. An important aspect of the definition of a language is the decision
about when the form of an array is fixed. Corresponding to the three principal cases,
we also have three different models for allocating arrays in memory:

• Static shape. Everything is decided at compile time; the array can be stored in
the activation record of the block in which its declaration appears (or in the static
memory allocated for globals, if used). Let us observe that in this case, the total
dimension required for an array is a constant that is known at compile time. The
offset from the address of the array’s start and the fixed point in the activation
record to which the activation record pointer points is also therefore a constant
(this was explained in Sect. 5.3.3). Access to an element of the array is differenti-
ated from access to an ordinary (scalar) variable only by the quantity determined
by (8.1).

• Shape fixed at declaration time. In this case, the shape is not defined at compile
time but is recorded and fixed when execution reaches the array declaration (for
example, the interval of the index depends on the value of a variable). In this case,
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Fig. 8.5 Structure of an activation record with a dope vector

too, the array can be allocated in the activation record of the block in which its
declaration appears, but the compiler has no way of knowing what the offset is
between the start of the array and the fixed point of the activation record to which
the frame pointer refers. This is an unpleasant position because it could have
repercussions for other, completely static, data structures. To avoid this problem,
an activation record is divided into two parts: one part for fixed-length data, and
the other for variable-length data. Access to all the data allocated in the fixed-
length part is performed in the usual fashion. On the other hand, when accessing
a variable-length data item, an indirection through a variable-length data descrip-
tor is performed. The descriptor is contained in the fixed-length part which is
accessed by offset and contains, amongst other things, a pointer to the start of the
data structure (in our case, an array). Figure 8.5 shows a scheme for allocation
inside an activation record for this. The descriptor for an array is known as a dope
vector. We will describe dope vectors in a little more detail in a short while.

• Dynamic shape. In this case, an array can change shape after its creation as a result
of the effects of execution. Stack allocation is no longer possible because the size
and structure of an activation record would have to be dynamically modified.
Dynamic arrays must therefore be allocated on the heap, while a pointer to the
start of the array remains stored in the fixed-length part of the activation record.

To conclude the argument, let us argue that, in addition to the static or dynamic
nature of the shape, the decision on allocation of an array must also take its lifetime
into account. An array allocated in an activation record has a lifetime limited to that
of the block in which it is declared. In languages that allow the creation of arrays
with unlimited lifetimes (for example, Java) they must be allocated on the heap.

Dope Vectors The descriptor of an array whose shape is not known statically (and
which can either be fixed at execution time or be completely dynamic) is called a
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Arrays in Java

In Java, an array is not created at the same time as the declaration of a variable of
array type. The declaration int[] v; introduces only the name v. It is not associ-
ated with any data structure (more precisely, this is the same as for any declaration
of a variable of class type). The data structure is created on the heap using the pre-
defined new operation: V = new int[10]; creates in the heap a new array of
10 integers and assigns a reference to them to the name v.

An array in Java is an object in the strict sense of the term as understood for
that language. It has unlimited lifetime.

dope vector. A dope vector, which is usually allocated in the fixed-length part of an
activation record contains the following components:

• A pointer to the first location at which the array is stored;
• All the dynamic information required to perform the calculation in expression

(8.1): the number of dimensions (also called the rank of the array), the value of
the lower limit of each dimension (the Lj ), the occupation of each dimension
(the Sj ).

If some of these values are known statically, they are not explicitly stored. The
dope vector is initialised when the array is created (using appropriate calculations
of the values Sj ). To access an element of the array, the dope vector is accessed (by
an offset from the frame pointer), expression (8.1) is computed and is added (via an
indirect access) to the address of the start of the array.

8.4.4 Sets

Some programming languages (in particular Pascal and its descendants) allow the
definition of set types, whose values are composed of subsets of a base type (or uni-
verse), usually restricted to an ordinal type. Based on Pascal’s syntax but adapting
it somewhat, we have:

set of char S;
set of Dwarf N;

We have a variable S which is a subset of the characters and a variable N which
will contain a subset of the type Dwarf, as defined on page 207. Languages allow-
ing sets provide appropriate syntax for assigning a specific subset to a variable, for
example:

N = (Grumpy, Sleepy);
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The possible operations on values of set type set are the membership test (the
test that an element belongs to a set) and the usual set-theoretic operations of union,
intersection and difference; complement is not always provided.

A set is usually represented as a bit vector (the characteristic vector of the set)
whose length is the same as the cardinality of the base type. For example, a subset of
char, in an implementation that uses the ASCII 7-bit code, would be represented
as 128 bits. If, in the characteristic vector, the j th bit is set, it indicates that the j th
element of the base type (in the standard enumeration) is in the set; otherwise, a bit
equal to zero indicates that the corresponding element is not in the set. Although
this representation permits the highly efficient execution of set-theoretic operations
(as bitwise operations on the physical machine), it is clear that it is completely in-
appropriate for subsets of types whose base type has a cardinality greater than a few
hundred. To obviate this problem, languages often limit the types that can be used
as base for set types. Or rather, they select other representations (for example, hash
tables), which will support the representation of the set in a more compact fashion,
even if this reduces the efficiency of the operations performed upon it.

8.4.5 Pointers

Some languages permit the direct manipulation of l-values. The corresponding type
is called a pointer type. In general, languages permit the definition of a pointer
type for every type: if T is a type, it is possible to define the type of “pointers to
(variables of type) T”. It should be noted that, in this context, we will be interested
in pointers as far as they are explicitly present in the language, in contrast to the
obvious presence of pointers in the abstract machine.

In a language with a reference model for variables, pointer types are not neces-
sary (or required). Every variable is always a reference, or rather it is considered
as an l-value, even if this value cannot explicitly be manipulated. In languages with
modifiable variables, on the other hand, pointers provide a way of referring to an
l-value without automatically dereferencing it. In such languages, one of main uses
for pointers is to construct values of recursive type (as linked structures) which are
not in general provided as primitives of the language itself.

In our pseudo-language, we use T* to indicate a pointer type to objects of type T
and therefore we declare a pointer as:8

T* p;

8The mother tongue C programmer would write the example with a different distribution of spaces:
T *p, which is read as *p is a pointer to T. In C, * is a modifier of the variable and not of the
type (which is apparent when you introduce two pointers in the same declaration: C requires int
*p, *q;, while we would write int* p,q; for uniformity with the other types). Although the
C approach seems simpler (particularly when considered with the dereferencing operator), it is
semantically more correct (and more uniform with respect to other languages) to see * as a type
modifier and not a variable modifier.
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The values of type T* are pointers (from an implementation viewpoint: ad-
dresses) to memory locations (that is modifiable variables) which contain values
of type T. It is not always the case such pointers can refer to arbitrary locations;
some languages require that pointers point only to objects allocated in the heap (this
is the case with Pascal, in its descendants and in some earlier versions of Ada). Other
languages, on the other hand, allow pointers also to point to locations on the system
stack or into the global area (this is the case with C++ and later versions of Ada).

There usually exists a canonical value, which is an element of type T*, for every
T, which indicates the null pointer, that is which points to no value. We write null
for this value. The operations permitted on values of pointer type are usually cre-
ation, equality (in particular, equality to null), dereferencing (access to the object
begin pointed to).

The commonest way of creating a value of pointer type is to use a predefined
construct or a library function which allocates an object of an appropriate type on
the heap and also returns a reference to the object. This is the purpose of malloc
in C:

int* p;
p = (int *) malloc (sizeof (int));

or of new in Pascal. For heap management in the presence of explicit allocation, we
refer to our discussion in Sect. 5.4.

In some languages, it is possible also to create pointers by applying special oper-
ators which return the storage address of an object stored in memory. Again we use
C as the model for our examples. C uses the & operator to obtain the address of an
entity:

float r = 3.1415;
float* q;
q = &r;

The pointer q now points to the location that contains the variable r. This is also an
example of a pointer pointing to a location on the stack and not in the heap.

Dereferencing a pointer is often indicated by some operator, for example, the *
in C. Continuing the example above:

*p = 33;
r = *q + 1;

Here, the first line assigns the value 33 to the object pointed by p (which is in
the heap). The second line assigns to r the value 4.1415 (on the stack). It can be
seen that, as a side-effect, the second assignment also modifies the value pointed
by q (but not q itself). It can also be observed that the l-value/r-value distinction
for variables in an assignment still remains valid even for a dereferenced pointer.
When *p is on the left of an assignment, it indicates the l-value that is obtained by
dereferencing p (that is, the assignment will work on the address contained in the
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pointer); when *p is on the right of an assignment, it indicates the r-value of the
same location.

From the pragmatic viewpoint, pointers play a key role in the definition of so-
called recursive structures such as lists, trees, etc. Some languages directly allow
the definition of recursive types, as will be seen in Sect. 8.4.7. In languages with
pointers, recursive data structures can be defined in a natural fashion. For example,
the type for the lists of integers9 can be defined as:

type int_list = element*;
type element = struct {int val;

int_list next;};

It can be seen that, in order for such a definition to be legal in a hypothetical
language, problems related to the use of a name before its definition (which we
mentioned in Sect. 4.3.3) must be solved.

Pointer Arithmetic In C and in its descendants, in addition to the operations that
we have just discussed, it is possible to perform some arithmetic operations on point-
ers. It is possible to increment a pointer, subtract one pointer from another (so obtain
an offset constant), add an arbitrary value to a pointer. This complex of operations
goes under the name of pointer arithmetic. The semantics of these operations, al-
though denoted by the standard arithmetic operators, must be understood with ref-
erence to the pointer type on which they operate. By means of an example, let us
consider the following fragment:

int* p;
int* c;
p = (int *) malloc(sizeof(int));
c = (char *) malloc(sizeof(char));
p = p+1;
c = c+1;

If the two mallocs return addresses (i for p and j for c), at the end of
the fragment, the value of the two pointers is not i + 1 and j + 1, but, rather,
i+sizeof(int) and j + sizeof(char). And thus, analogously, for other in-
crement and decrement operations.

It should be clear that pointer arithmetic destroys every hope of type safety in a
language. There is no guarantee whatsoever that, at any time during the execution
of a program, a variable declared as a pointer to an object of type T will still point
to an area of store in which a value of type T is actually stored.

9As we saw in Sect. 4.3.3, a list is a variable-length data structure formed from a possibly empty
ordered sequence of elements of some type, in which it is possible to add or remove elements and
where only the first element can be directly accessed.
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Deallocation We have already seen that one of the most common methods for cre-
ating values of a pointer type is to use a function defined as standard in the language
to allocate an object on the heap and also return a pointer to it. The deallocation of
memory can be explicit or implicit.

In the case of implicit deallocation, the language does not provide the program-
mer with mechanisms to reclaim memory. The programmer continues to request al-
locations while there is still available heap. When the heap memory is full, however,
the computation need not abort: already allocated values might not be accessible so
they can be reused. Consider indeed the following fragment:

int* p = (int *) malloc(sizeof(int));
*p = 5;
p = null;

The last command, which assigns null to p, destroys the only pointer through which
this previously allocated area can be accessed. It is possible to equip the abstract
machine with a mechanism to recoup such pieces of memory. This technique, which
is called garbage collection, is a subject that has been studied a great deal when
implementing programming languages. We will examine it in Sect. 8.12.

In the case of explicit deallocation, the language makes available a mechanism
with which the programmer can release the memory referred to by a pointer. In C,
for example, if p points to an object on the heap that was previously allocated by
malloc, calling the function free on p, will deallocate the object pointed to by
p (the store will be put back on the free list if the technique described in Sect. 5.4
is used). It is good practice to assign the value null to p when this is done. It is a
semantic error (with unpredictable result) to invoke free on a pointer which does
not refer to an object allocated using malloc (this can happen if either pointer
arithmetic has been used or if the pointer was created using the operator &).10 As
we saw in Chap. 4, the most important problem that is raised by deallocation is that
it is possible to generate dangling references; that is pointers with a value other than
null which point to storage that is no longer allocated. The simplest example is
probably the following:

int* p;
int* q;
p = (int *) malloc(sizeof(int));
*p = 5;
q = p;
free(p);
p = null;
... //
... // series of commands not modifying p or q

10The point is that malloc does not only allocate the space required for the object required, but
also a descriptor to the data. The descriptor contains the size of the allocated block and possibly
other information. It is by accessing such data that free (which takes a single pointer as parame-
ter) can determine what is to be deallocated.
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Fig. 8.6 Dangling references

... //
print(*p); // error that may be trapped
print(*q); // error that cannot be trapped

Figure 8.6 shows the situation in memory as well as the pointers immediately
after lines 5 and 7. The pointer q has a value that is not null. It points to an area of
memory that could by now be allocated to other data. We can certainly assume that
the abstract machine checks and signals an error every time a pointer dereferences to
null (as on line 11),11 while the de-referencing of q in line 12 will not be signalled
and can be the cause of errors that are as devastating as they are difficult to find.

In languages which allow pointers to refer to objects on the stack, dangling ref-
erences can also be generated without explicit deallocation. It is sufficient to store
the address of a variable local to a function in a nonlocal environment.

{int* p;
void foo(){

int n;
p = &n;

}
...
foo();
... // here p is a dangling reference
}

If a language allows dangling references to happen, it is obvious that it cannot be
type safe. If a language does not allow pointers to data on the stack, dangling refer-
ences can be avoided by not having deallocation, both at the level of program design
(by using a language with implicit pointer deallocation and garbage collection), or
by deallocating nothing even if the programmer requests it: this is the case with
some early implementations of Pascal, where the deallocation function dispose
was implemented as a function with an empty body.

If, though, a language provides explicit deallocation, or pointers to the stack,
some techniques are discussed in Sect. 8.11 with which dangling pointers can be
rendered harmless, thereby restoring type safety.

11This can happen often without affecting efficiency, by making use of mechanisms for protecting
addresses on the underlying physical machine.
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Arrays and pointers in C

In C, arrays and pointers are considered under certain circumstances to be equiva-
lent. The declaration of an array introduces a name which can be used as a pointer
to the whole array. Conversely, if an integer pointer refers to an array, it can also be
used as the name of an array:

int V[10];
int* W;
W = V; // W points to the start of array V
V[1] = 5;
W[1] = 5;
*(W+1) = 5;
*(V+1) = 5;

The last four assignments in this example are all equivalent. They assign the
value 5 to the second element of the array pointed to by both V and W. (It can be
seen how pointer arithmetic is natural here.) In the case of a multidimensional array
(stored in row order), pointer arithmetic allows various combinations of operation.
In the scope of the declaration int Z[10][10], the following expressions are
equivalent: Z[i][j], (*(Z+1))[j]), *(Z[i]+j) and *(*(Z+i)+j).

The equivalence of arrays and pointers is essential when passing parameters.
It will be recalled that C has only call by value. When it passes a vector, it al-
ways passes a pointer (by value), never the array itself. The formal parameter can
be declared as an array (int A[]) or as a pointer (int *A). In the case of mul-
tidimensional arrays, it is required only to specify the number of elements of the
dimensions other than the first in the formal parameter (for example A[][10],
or even (*A)[10]). This information is necessary for the static generation of the
correct code for accessing elements of the vector.

Finally, C permits storage of multidimensional array as a vector of pointers to
arrays; for this organisation by row-pointer, see Exercise 2.

8.4.6 Recursive Types

A recursive type is a composite type in which a value of the type can contain a
(reference to a) value of the same type. In many languages recursive types can be
assimilated to (and in effect are) records in which a field is of the same type as the
record itself. The simplest example is perhaps that of a list of integers, which we
present in our pseudo-language (adapting Java’s notation):

type int_list = {int val;
int_list next;};

To end the recursion, the language can provide a special value, for example
null, which belongs to any (recursive) type and which we can imagine as having
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{2,{33,{1,{4,{3,{1,{21,null}}}}}}}

Fig. 8.7 A value of type int_list

type char_tree = {char val;
char_tree left;
char_tree right;};

{A,{B,{C,null,null},{D,{E,null,null},null}},{F,null,null}}

Fig. 8.8 Binary tree over char

the empty value. A value of type int_list is therefore a pair: the first element is
an integer, the second is a value of type int_list, and so on, until one of these
int_list values is null (see the example in Fig. 8.7).

Figure 8.8 shows the definition of a recursive type for binary trees of characters.
It also shows a value and the usual graphical representation for trees.

As can be seen from these very simple examples, the possibility of defining re-
cursive types makes the type system of a language flexible and powerful (see Exer-
cise 4). The operations permitted on the values of recursive types are the selection
of a component and equality test for null.

If the language admits modifiable variables (which is the case in all imperative
languages), it is also possible to construct circular values. In purely functional lan-
guages, the values of a recursive type are always in the form a tree.

Recursive types are usually represented as structures in the heap. A value of a
recursive type corresponds to a linked structure. Every element of the structure is
composed of a record in which the recursive reference is implemented as an address
to the next record (the one created in the previous recursive step). The representation
in the heap of a binary tree shown in Fig. 8.8 corresponds exactly to its graphical
representation.

The creation of values of a recursive type (so that they can be associated with
a name) is an operation which varies considerably from language to language. In
many functional languages, the values of a recursive type are expressible. There ex-
ist explicit syntactic constructs for designating their values. An example could be
the expression in Fig. 8.7 or in Fig. 8.8 (see, also, the box an ML). In imperative
languages, on the other hand, the values of recursive types are constructed by ex-
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plicit allocation of their components in the heap. To continue our analogy with Java,
we have a predefined constructor, new, which allows us to allocate instance of the
type in the heap:

int_list l = new int_list();

The part on the right of the assignment symbol creates on the heap a record of the
form specified by int_list and assigns the name l to a reference to this record.
At this point, its fields can be initialised. For example:

l.val = 2;
l.next = null;

It remains to discuss the management of the heap when there are values of recur-
sive type. They are in fact dynamically allocated (explicitly as in Java, or implicitly
as in ML) but languages which admit recursive types as primitive do not in general
permit explicit deallocation of the values thus created. As in the case of implicit
allocation that we discussed in the context of pointers, it is necessary to provide the
abstract machine with mechanisms for garbage collection in order to reclaim the
chunks of memory that can no longer be accessed.

8.4.7 Functions

Every high-level programming language supports the definition of functions (or pro-
cedures). Few traditional languages permit the denotation of function types (that is,
give them a name in the language). Let f be a function defined as:

T f(S s){...}

It has the type S -> T; more generally, a function with header

T f(S1 s1, ..., Sn sn){...}.

is of type S1 × · · ·×Sn->T.
The values of a functional type are therefore denotable in every language but

are rarely expressible (or storable). In addition to definition, the principal operation
permitted on a value of functional type is application, that is the invocation of a
function on some arguments (actual parameters).

In some languages, moreover, the type of functions has the same status of any
other type: it is possible to pass functions as arguments to other functions, and to
define functions which return functions as results. Such higher order languages be-
long, in particular, to the functional paradigm (which includes, to name but a few:
ML, Haskell, Scheme). In these languages, a function is not just a piece of code
equipped with its local environment, but may be handled like other data. We will
see in Chap. 11, the outline of a possible abstract machine for doing this.
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Recursive Types in ML

ML is an important functional language. It is equipped with an extended type sys-
tem. It is a type-safe language with many interesting properties. The language allows
the definition of explicitly recursive types using constructors, which are introduced
as part of the definition of the type. By way of an example, our definition of list of
integers can be written as (ignoring the fact that ML has lists as a predefined type):

datatype int_list = Null | CONS of int * int_list;

In this definition, Null and CONS are constructors, that is function symbols to
which there corresponds no code, but which serve only to construct, syntactically,
terms of the desired type (in this case int_list). The vertical line is read as
“or”. A value of type int_list is the constant Null, or is a pair (denoted
by the constructor CONS) composed of an int and an int_list. Therefore
CONS(2,Null) is a simple value of type int_list. Figure 8.9 shows the ML
expression which corresponds to the value in Fig. 8.7.

The language permits the definition of ill-founded recursive types. For example
the following definition introduces the type empty; it is so-called because it is
impossible to construct values of this type:

datatype empty = Void of empty;

Indeed, there is no basic constructor which will allow us to construct a value of type
empty without presupposing another such value.

CONS(2,CONS(33,CONS(1,CONS(4,CONS(3,CONS(1,CONS(21,Null)))))))

Fig. 8.9 A value of type int_list in ML

8.5 Equivalence

Having analysed the principal types that we find in programming languages, the time
has come to discuss the rules which govern the correctness of programs with respect
to types. The first class of these rules deals with the definition of when two types,
which are formally different, are to be considered interchangeable. The rules define
an equivalence relation between types. If two types are equivalent, every expression
or value of one type is also an expression or value of the other, and vice versa. In the
next section, we will discuss compatibility rules which specify when a value of one
type can be used in a context in which the value of another type would be expected
(but not conversely).

Let us recall that a type is defined in the following form (the details will vary
from language to language):

type newtype = expression;
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Relations of preorder and equivalence

A binary relation, ∗, on a set, D, is a subset of the cartesian product of D with itself:
∗ ⊆ D × D. We write c ∗ d for (c, d) ∈ ∗. A relation is reflexive when, for every
d ∈ D, it is true that d ∗ d . It is symmetric if, for all c, d ∈ D, if c ∗ d holds, then
also d ∗ c holds. It is transitive if, for every c, d, e ∈ D, if c ∗ d and d ∗ e, then c ∗ e.
It is antisymmetric if, for every c, d ∈ D, if c ∗ d and d ∗ c, then c coincides with d .

If a relation is reflexive and transitive, it is said to be a preorder. If a preorder
is also symmetric, it is an equivalence. If, on the other hand, a preorder is also
antisymmetric, it is a partial order.

Different languages interpret a definition like this in two different ways which
lead to two distinct rules for type equivalence:

• The definition of a type of can be opaque, in which case we have equivalence by
name.

• The definition of the type can be transparent, in which case we have structural
equivalence.

8.5.1 Equivalence by Name

If a language uses opaque type definitions, each new definition introduces a new type
which is different from every preceding one. In this case, then, we have equivalence
by name, as defined below.

Definition 8.2 (Equivalence by name) Two types are equivalent by name only if
they have the same name (so a type is equivalent only to itself).

By way of example, let us consider the following definitions of types:

type T1 = 1..10;
type T2 = 1..10;
type T3 = int;
type T4 = int;

Four distinct types are introduced. There is no equivalence between them.
However, equivalence by name is too restrictive. Some languages (Pascal for ex-

ample) adopt the rule of weak (or lax) equivalence by name. The simple renaming of
a type does not generate a new type but only an alias for the same one. In the exam-
ple above, using a weak equivalence by name, the types T3 and T4 are equivalent,
but types T1 and T2 remain distinct.

Under equivalence by name, each type has a unique definition which occurs at a
unique point in the program, a fact which simplifies maintenance. Despite its sim-
plicity, from the programming point of view, equivalence by name is the choice that
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Equivalence by Name in Pascal

An aspect of equivalence by name that is not always pleasant is that two expressions
of “anonymous” type correspond to two different types (because they do not have
names, they cannot have the same name!). In the two following Pascal declarations:

var V : array [1..10] of integer;
W : array [1..10] of integer;

V and W do not have the same type. The situation is particularly bad when we declare
a formal parameter to a procedure using an expression of anonymous type:

procedure f (Z : array [1..10] of integer);

In this example, neither V nor W can be passed as actual parameters to f because the
formal parameter Z is of a (third) type which is distinct from the two previous ones.

most respects the intentions of the designer. If the programmer has introduced two
different names for the same type, they will have their reasons which the language
respects by maintaining two different types.

Note that equivalence by name is defined with reference to a specific, fixed pro-
gram and it does not make sense to ask whether two types are equivalent by name
“in general”.

8.5.2 Structural Equivalence

A type definition is transparent when the name of the type is just an abbreviation for
the expression defining the type. In a language with transparent declarations, two
types are equivalent if they have the same structure, that is if, substituting names
for the relevant definitions, identical types are obtained. If a language uses trans-
parent type definitions, the equivalence between types that is obtained is said to be
structural equivalence.

We can give a more precise recursive definition of structural equivalence.

Definition 8.3 (Structural Equivalence) Structural equivalence of types is the (least)
equivalence relation satisfying the following properties:

• The name of a type is equivalent to itself;
• If a type T is introduced with the definition type T = expression, T is

equivalent to expression;
• If two types are constructed by applying the same type constructor to equivalent

types, then the two types are equivalent.

By way of example, consider the following definitions:
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type T1 = int;
type T2 = char;
type T3 = struct{

T1 a;
T2 b;

}
type T4 = struct{

int a;
char b;

}

T3 and T4 are structurally equivalent. Some aspects of the definition of equivalence
that we have given are deliberately vague or imprecise. For example, it is not clear
whether the three following types are equivalent:

type S = struct{
int a;
int b;

}
type T = struct{

int n;
int m;

}
type U = struct{

int m;
int n;

}

They result from the application of the same constructors, but they have been given
names (or field order) that are different. A further subtle question concerns structural
equivalence and recursive types:

type R1 = struct{
int a;
R2 p;

}
type R2 = struct{

int a;
R1 p;

}

Intuitively, we can think that R1 and R2 equivalent, but the type checker will
be unable to solve the mutual recursion involved in these definitions (showing the
equivalence between R1 and R2 requires a mathematical argument of some sophis-
tication).

Structural equivalence allows us to speak about equivalent types in general, not
just those in a specific program. In particular, two equivalent types can always be
substituted for each other in any context without altering the meaning of the program
in which the substitution occurs (this general property of substitution is often known
as referential transparency).
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It will come as no surprise to the reader to learn that existing languages almost
always use some form of combination or variant of the two equivalence rules that
we have just defined. We have already seen that Pascal uses (weak) equivalence by
name; Java uses equivalence by name, except for arrays, for which it uses structural
equivalence; C uses structural equivalence for arrays and for types defined using
typedef, but not when it involves records (structs) and unions, for which it
always uses equivalence by name; C++ uses equivalence by name (except when it
inherits from C); ML uses structural equivalence, except for types defined using
datatype; Modula-2 inherits from Pascal its use of equivalence by name, but
Modula-3 uses structural equivalence; and so on.

8.6 Compatibility and Conversion

The relation of compatibility between types, which is weaker than equivalence, al-
lows the use of one type in a context in which another has been requested.

Definition 8.4 (Compatibility) We say that type T is compatible with type S, if a
value of type T is permitted in any context in which a value of type S would be
admissible.

In many languages, it is the rule of compatibility (and not that of equivalence)
which controls the correctness of assignment (the type of the right-hand component
must be compatible with that of the left-hand one), parameter passing (the type of
the actual parameter must be compatible with that of the formal parameter), etc. It
is clear that two equivalent types are also compatible with each other but in general
the relation of compatibility is not symmetric: the canonical example is the com-
patibility that exists in many languages (but not in all: ML and Java, for example,
do not admit it) between int and float (but not vice versa). The compatibility
relation is therefore a pre-order (that is a reflexive and transitive relation) that is not
symmetric, but almost never an ordering (that is it is not symmetric, but not anti-
symmetric either). In fact, in a language which admits structural equivalence, two
types that are structurally equivalent are compatible but not equal.

The compatibility relation, more than that of equivalence, varies enormously be-
tween languages. Without pretending to be complete, let us list some of the possible
concepts that we can encounter in order of generality (that is, of the “generosity” of
the compatibility relation). A type T can be compatible with S when:

1. Types T and S are equivalent; it is the most restrictive version of compatibility.
2. The values of T form a subset of the values of S: this is a case of an interval type,

contained in its own base type (and therefore compatible with it).
3. All the operations on the values of S are also permitted on values of T. The sim-

plest example (which however the does not correspond to compatibility in any of
the principal commercial languages) is that of two record types. We assume that
we have declared
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type S = struct{
int a;

}
type T = struct{

int a;
char b;

}

The only possible operation on values of type S is the selection of a field with
name a; this also makes sense for values of type T. There is no inclusion relation
between values of T and those of S, but there is a canonical way to obtain a
value of S from a value of T: take the first component and forget the second.
This interpretation of compatibility leads to a particular notion of compatibility
based on the concept of subtype in object-oriented languages (we will discuss
this below in Sect. 10.2.4).

4. The values of T correspond in a canonical fashion to values of S. In addition
to the case outlined in the previous point, this is the case that we have already
mentioned of int being compatible with float. (This is not an instance of
point (2), above, because, as far as the implementation is concerned, the values
of the two types are distinct).

5. Values of T can be made to correspond with some values of S. Once the require-
ment of the canonicality of correspondence has been dropped, every type can
be made to be compatible with another defining a (conventional) way to trans-
form one value of T into one of S. Using this very broad notion of compatibility,
float can be made compatible with int by arbitrarily defining the conversion
procedure (for example, rounding, truncation, etc.).

In order to manage this collection of different interpretations as a unified whole,
we introduce the notion of type conversion. This notion will be stated in two distinct
ways:

• Implicit conversion (also called coercion or forced conversion). This is the case in
which the abstract machine inserts a conversion when there is no such indication
in the high-level language;

• Explicit conversion (or cast). This is when the conversion is indicated in the text
of the program.

Coercions In the presence of compatibility between the types T and S, the lan-
guage allows a value of type T to occur where a value of type S is expected. When
this happens, the compiler and/or abstract machines inserts a type conversion be-
tween T and S. We will call this a type coercion.

From a syntactic viewpoint, coercion has no significance other than annotating a
compatibility. From the implementation viewpoint, however, a coercion can corre-
spond to different things depending upon the notion of compatibility adopted:

1. Type T is compatible with S and have the same storage representation (at least
for values of T). In such a case, coercion remains a syntactic matter and causes
no code to be generated.
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Casts which do not modify representation

In some situations, especially in systems programming, it is useful to be able to
change the type of an object without changing its representation in memory. This
kind of conversion is obviously forbidden in type-safe languages, but is, though,
permitted in many languages (these are often said to be “unchecked” (ADA) or
“non-converting type casts”).

An example in C using the addressing (&) and de-reference (*) operators is:

int a = 233;
float b = *((float*) &a);

First of all, the address of the integer variable a is taken, then it is converted
explicitly into a pointer to a float using the cast (float *); finally, it is deref-
erenced and assigned to the real value b. The entire example is merely annotation for
the compiler which does not result in any action by the machine. The bits, which in
twos complement represents 233, are now interpreted as an the IEEE 754 represen-
tation for floating point numbers (provided that integer and float are represented
by the same number of bytes).

It is clear that a conversion which does not modify the stored representation
is always an extremely delicate operation, as well as being a potential source of
hard-to-fix errors.

2. Type T is compatible with S but there exists a canonical way to transform values
of T into values of S. In this case, the coercion is executed by the abstract ma-
chine, which applies precisely the canonical conversion. For example, in the case
of int and float, the abstract machine inserts code to transform (at runtime)
the representation in twos complement that is required for integers to that for
floating point.

3. The compatibility of T with S is based on an arbitrary correspondence between
values of T with those of S. In this case, too, the abstract machine inserts code
that performs the transformation. This is the case, also, of all those situations
where T and S have the same representation , but T is a superset of S. For ex-
ample, T is int and S is an integer interval12 (note that we are in the symmetric
case to the “canonic” case, considered in point 1, in which T ⊆ S). Coercion in
this case does not transform the representation but dynamically checks (at least
if the language is supposed to be type safe) that the value of T belong to S.

Languages with strong type checking tend to have few coercions (that is few
compatibilities) of the last kind. On the other hand, in a language like C, the type
system is designed to be by-passed and so permits numerous coercions (from char-

12Almost all languages with interval types allow this kind of compatibility for the obvious reason
of programming flexibility.
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acters to integers, from long reals to short, from long integers to short reals, and so
on).

Explicit Conversions Explicit conversions (or casts, using the name by which
they are known in C and in other languages) are annotations in the language which
specify that a value of one type must be converted to that of another type. In this
case, as well, such a conversion can be either just a syntactic marking or can cor-
respond to code that is executed by the abstract machine, using the scheme for co-
ercions that we have already discussed. In our pseudo-language, we will follow the
conventions of the C language family and will denote a cast using brackets:

S s = (S) t;

Here we are assigning a value t, having converted it into type S, to a variable of
type S. Not every explicit conversion is permitted, only those for which the language
knows how to implement the conversion. It is clear that we can insert a cast where a
compatibility exists. In this case explicit conversion is syntactically useless but must
be advised for documentation purposes. Languages with few compatibilities make
available, in general, many explicit conversions, which the programmer can use to
annotate the program where a change of type is necessary.

Generally, modern languages tend to prefer casts over coercions. They are more
useful as far as documentation is concerned; they do not depend upon the syntac-
tic context in which they appear, and, most importantly, they behave better in the
presence of overloading and polymorphism (which we will consider shortly).

8.7 Polymorphism

A type system in which any language object (value, function, etc.) has a unique type
is said to be monomorphic.13 Here we will be interested in the more general concept
given in the next definition.

Definition 8.5 A type system in which the same object can have more than one type
is said to be polymorphic.14 By analogy, we will say that the object is polymorphic
when the type system assigns more than one type to it.

Even the more conventional languages contain limited forms of polymorphism.
The name + in many languages is of type int×int→int, as well as of type
float×float→float. The value null has the type T* for every type T. The
function length (which returns the number of elements of an array) is of type
T[]→int for every type T. The list could be continued. In conventional languages,

13This is a word derived from the Greek and means “has only a single (mono) form (morphos)”
14“Which has many (poly) forms.”
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however, it is not in general permitted for the user to define polymorphic objects.
Let us take as an example, a language with a type system that is fairly inflexible (for
example, Pascal or Java but to some extent C also) and let us assume that we want
to write a function that sorts a vector of integers. The resulting function could have
the signature:

void int_sort(int A[])

If we now need to sort a vector of characters, we need to define another function

void char_sort (char C[])

which is wholly identical to the previous example except in the type annotations.
A polymorphic language would allow the definition of a single function

void sort(<T> A[])

where <T> denotes a generic type which will be specified at a later stage.
In this section, we will analyse the phenomenon of polymorphism. We will start

by distinguishing three different forms:

• Ad hoc polymorphism, also called overloading.
• Universal polymorphism, which can be further divided into:

– Parametric polymorphism, and
– Subtyping or inclusion polymorphism.

8.7.1 Overloading

Overloading, as its other name (ad hoc polymorphism) suggests, is really polymor-
phism in appearance only. A name is overloaded when it corresponds to more than
one object and context information must be used to determine which object is de-
noted by a specific instance of that name. The most common examples of this are:

• The use of the name + to indicate either integer or real addition (and sometimes
it also denotes concatenation of character sequences).

• The ability to define more than one function (or constructor) with the same name
but whose instances differ in the number or type of their parameters.

In the case of overloading, therefore, a single name corresponds to more than
one object (in fact, to a finite number of objects). If it is the name of a function,
it will be associated with different pieces of code. The ambiguity of the situation
is solved statically using type information that is present in the context. From the
conceptual viewpoint, we can imagine a kind of pre-analysis of the program which
solves cases of overloading by substituting a unambiguous name which uniquely
denotes a unique object for each symbol that is overloaded. Overloading is therefore
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Polymorphic types and universal quantification

Rather than writing a polymorphic type between angle brackets, a more uniform
notation (one which is more suggestive, as well as mathematically more accurate)
is that which uses universal quantification. Instead of <T> -> void, we write
∀T.T[]->void.

This is a notation that is well-suited to the description of all the variations on
polymorphism which have been proposed; in Sect. 8.7.3 (and again in Sect. 10.4.1)
it will be used to analyse subtype polymorphism.

a sort of abbreviation at the syntactic level. It vanishes as soon as we introduce
additional information.

Overloading should not be confused with coercion. They are two different mech-
anisms which solve different problems. On the other hand, in the presence of co-
ercions, it might be not at all clear how a case of overloading should be solved.
Consider for example the following expressions:

1 + 2
1.0 + 2.0
1 + 2.0
1.0 + 2

This quartet of expressions can be interpreted in several ways. First, + is overloaded
with four different meanings. Second, + is overloaded with two meanings (integer
and real) and coercion is inserted in the final two cases. Next, + merely denotes
real addition and in the other three cases, coercions are employed. It is up to the
definition of the language to determine which of these interpretations is correct.

8.7.2 Universal Parametric Polymorphism

We begin with a definition that is relatively imprecise but adequate for our needs.

Definition 8.6 A value exhibits universal parametric polymorphism (or parametric
polymorphism, more briefly) when it has is an infinite number of different types
which can be obtained by instantiating a single schema of general type.

A universal polymorphic function is therefore composed of a single piece of
code which operates uniformly on all the instances of its general type (because
information about the type is not exploited by the algorithm which the function
implements).

Among the examples that we discussed at the start of the section, there are some
that fall into this category: the value null, which belongs to every type T* (that is
to every type that can be obtained by substituting an actual type for T); the function
void sort(<T> A[]), which sorts an array of any type whatsoever.
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Before presenting more examples, we need to extend the notation. Following on
from what was suggested in Sect. 8.4.7, we can write the polymorphic type of sort
as <T>[]→void. In this notation, we use angle brackets to indicate that <T> is
not a usual type but a sort of parameter. By substituting any “concrete” type for the
parameter, we obtain a specific type for sort. Each way to substitute a type for <T>
corresponds to one of the infinite number of ways to apply the function: int[] -
> void, char[]-> void, etc. With this notation, the type of null should be
more correctly given as <T>*.

Let us give another example. A function which exchanges two variables of any
type. As with sort, if it is written in a language without polymorphism, we would
need a swap function for every possible variable type. Using universal polymor-
phism, and assuming that we have at our disposition call by reference, we can write:

void swap (reference <T> x, reference <T> y){
<T> tmp = x;
x = y;
y = tmp;
}

A polymorphic object can be instantiated to a specific type. The instantiation can
happen in many different ways, according to the specific mechanism(s) for polymor-
phism provided by the language. The simplest model is that in which instantiation
occurs automatically and is performed by the compiler or the abstract machine:

1int* k = null;
char v,w;

3int i,j;
...

5swap(v,w);
swap(i,j);

Without requiring additional annotations, on line 1, using information from the
context (the assignment is performed on the variable of type int*), the type checker
instantiates the type of null as int*. On line 5, swap is instantiated to character
and, on line 6, to integer.

Parametric polymorphism is general and flexible. It is present in programming
languages in two notationally different forms called explicit and implicit parametric
polymorphism.

Explicit polymorphism Explicit polymorphism is the kind we have discussed
thus far. In the program, there are explicit annotations (our <T>) which indicate
the types to be considered parameters. This is the kind of polymorphism present in
C++ (using the concept of “template”) and in Java (from version J2SE 5.0 using the
“generic” notion).

Implicit Polymorphism Other languages (in particular functional languages like
ML) adopt implicit parametric polymorphism, in which the programmer need not
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provide any type indications and instead the type checker (or rather, more properly,
the module performing type inference—see Sect. 8.9) tries to determine for each
object the most general type from which the other types can be obtained by instanti-
ation. The simplest example of a polymorphic function is that of the identity which,
using a notation as close as possible to that which we have used this far, can be
written as:

fun Ide(x){return x;}

We will use the word fun to indicate that we are defining a function. The rest
is totally analogous to the definitions we have already seen, except that there are
no type annotations, either for parameters or results. Type inference will assign to
the function Ide, the type <T>-><T>. If the actual parameter is of type X, the
result will be of type X, for any type X. The application of a polymorphic function
obviously takes place without type indication. Ide(3) will be correctly typed as a
value of type int, while Ide(true) be typed as bool.

Let us consider here a final example of implicit parametric polymorphism com-
bined with higher order:

fun Comp(f,g,x){return f(g(x));}

Comp applies the composition of its first two parameters (the functions) to the ar-
gument x. What is the type that can be inferred for Comp? Here is the most general
possible:

(<S>-><T>)× (<R>-><S>)× <R> -> <T>

The inferred type is perhaps more general than the reader would have thought.

8.7.3 Subtype Universal Polymorphism

Subtype polymorphism is typically present in object-oriented languages. It is a more
limited form of universal polymorphism than parametric polymorphism.

Indeed, here as well, a single object can be assigned an infinite number of dif-
ferent types. They are obtained by instantiating a single most general type. In this
case, too, since it is a case of true polymorphism (i.e., universally quantified poly-
morphism), there is (at least conceptually) a single algorithm which is uniform in
the type—that is, it does not depend upon the particular structure of the type—that
can be instantiated to each of the infinite number of possible types.

However, in the case of subtype polymorphism, not all of the possible instan-
tiations of the schema for the most general type are admissible. Instantiations are
limited by a notion of structural compatibility between types, that is, using the con-
cept of subtype.
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Templates in C++

Parametric polymorphism is obtained in C++ by means of templates. These are pro-
gram schemata which include parameters (of class or of type). The function swap
could take the following form:

template<typename T>
void swap (T& x, T& y){

T tmp = x;
x = y;
y = tmp;

}

The operator, &, attached to the type of a formal parameter indicates that the
parameter is passed by reference, a primitive parameter-passing mode in C++ (in
which it differs from C). The instantiation of a template is automatic. The call
swap(x,y) is instantiated to the common type of x and y.

To be more precise, let us assume that a subtype relation is defined over the
language’s types. We denote this relation by the symbol <:. Therefore, we read
C <: D as “C is a subtype of D”. For the time being, we can be content with
an abstract concept, but in Sect. 10.2.4, we will flesh out this concept in terms of
relations between classes in object-oriented languages.

Definition 8.7 A value exhibits subtype (or bounded) polymorphism when there is
an infinity of different types which can be obtained by instantiating a general type
scheme, substituting for a parameter the subtypes of an assigned type.

To express subtype polymorphism, it is useful to make use of the notation with
universal quantifiers that we introduced in the box on page 239. A polymorphic
function of type

∀T<:D.T-> void

can be applied to all the values of any subtype of D. Polymorphism therefore is not
general but is limited to subtypes of D.

8.7.4 Remarks on the Implementation

In this book, we cannot possibly explain the implementation of universal polymor-
phism in detail. We will limit ourselves to two paradigmatic examples of the prob-
lems which can be encountered.
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Implicit polymorphism in ML

The majority of compilers for ML are interactive. The user enters one expression
(or definition) at a time. First of all, the system verifies the correctness of the typing
of the input expression and then derives the most general type for it. If the types
are correct, the expression is evaluated and the result is displayed (in the case of a
definition, its evaluation will extend the environment with the new association). We
can define the identity function as:

- fun Ide(x) = x;
val Ide = fn : ’a -> ’a

In this example, the first line is what is entered by the user (“-” is the prompt),
while the following line is the system’s reply. The name Ide is added to the envi-
ronment and associated with a functional value of type ’a -> ’a. The identifiers
prefixed by ‘’’ are type variables in ML, that is they can be instantiated. We can
request the evaluation of Ide as follows:

- Ide(4);
val it = 4 : int
- Ide(true);
val it = true : bool

Now the functions:

- fun Comp(f,g,x) = f(g(x));
val Comp = fn : (’a->’b)*(’c->’a)*’c -> ’b
- fun swap(x,y) = let tmp = !x in

(x:=!y; y=tmp;);
val swap = fn : (’a ref)*(’a ref) -> unit

In the case of swap, type inference finds that the two arguments cannot be
generic values but variables (or references) of any type whatsoever (’a ref). The
exclamation mark, “!”, is the explicit dereferencing operator. The identifier, unit,
is the singleton type that is used for expressions with side effects.

- val v = ref 0;
val v = ref 0 : int ref
- val w = ref 2;
val w = ref 0 : int ref
- swap(v,w);
val it = () : unit
- !w;
val it = 0 : int

In the example, v and w are initialised, respectively, to a reference to 0 and 2.
Type inference correctly deduces that they must be variables of type int. After the
swap, the dereferencing of w obviously yields 0.



244 8 Structuring Data

The first way of handling polymorphism is that of solving it statically at link
time15 (this is the case with C++). When a polymorphic function is called in two
different instances, its code is instantiated in two different ways, one for each of the
different instances required. Taking again the concrete example of swap, there is a
local variable, tmp, which must be allocated in the activation record when swap
is called. But the space to allocate for tmp depends on its type which is not known
when the template for swap is originally compiled. At link time, though, polymor-
phic functions can be identified and their code is modified (instantiated) so as to take
into account the actual type(s) with which they are called. The resulting code can
then be linked. It can be seen that there can be many copies of the same template
(one per instantiation) in the executable code. On the other hand, the execution of a
template-using program is as efficient as a program that does not use them, because
that templates no longer exist at runtime.

In the case of other polymorphic languages (and ML is one of them), a single
version of the code for a polymorphic function is maintained. It is this single piece
of code that is executed when one of its instances is required. What is done about
the type-dependent information (in the case of swap, this is the amount of store to
allocate for tmp)? It is necessary to change the whole data representation. Instead
of directly allocating the data in the activation record, a pointer is maintained that
points to the actual data. The data also includes its own descriptors (representing
dimensions, structure, etc.). In the case of swap, when it is necessary to store a
value in tmp, a pointer to the variable x is accessed and its size (as recorded in the
descriptor) is accessed. At this point, the memory necessary for tmp is allocated
in the heap and a pointer to it is stored in the activation record. The flexibility,
uniformity and the conciseness of the code (there are no repeated instances of the
same function) are paid for by decreased efficiency—an indirect reference is always
required to access a piece of data. We will see more implementation details for
subtype polymorphism in Sect. 10.4 when considering object-oriented languages.

8.8 Type Checking and Inference

We have already seen how a language’s type checker is responsible for verifying
that a program respects the rules (in particular, the compatibility rules) imposed by
the type system. In the case of a language with static checking, the type checker is
one of the compiler’s modules; when type checking is dynamic, the type checker
is a module in the runtime system. To perform its task, the type checker must de-
termine the type of the expressions occurring in the program (for example, it must
determine whether the type of the expression on the right-hand side of an assign-
ment is compatible with the variable on the left-hand side). To do this, it uses the

15Some authors hold that in cases of this kind, we should talk of generics rather than polymor-
phism. We think, on the contrary, that the phenomenon of polymorphism is a syntactic phenomenon
of a language, that can be obtained through several different implementation approaches.
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type information that the programmer has explicitly placed at critical points in the
program (for example, declarations of local names, parameter declarations, explicit
conversions, etc.), as well as information that is implicit in the program text (for
example, the types of predefined constants, those of numerical constants and so on).

To determine the type of complex expressions, the type checker performs a sim-
ple traversal of the program’s abstract syntax tree (see the start of Sect. 6.1.3). Start-
ing at the leaves (which represent variables and constants whose types are known),
it moves upwards through the tree towards the root, computing the type of the com-
posite expressions on the basis of the information provided by the programmer and
the information it obtains from the type system (for example, the type system could
establish that + is an operator which, when applied to two expressions of type int,
permits an expression also of type int to be derived, while =, when applied to two
arguments of scalar type, gives an expression of type bool). In many cases, the in-
formation provided by the programmer can turn out to be redundant, for example:

int f(int n){return n+1;}

Starting with the fact that n is of type int, it can be easily inferred that the value
returned by the function must be of type int. The explicit specification given by the
programmer of the result type is a redundant specification that the language requires
as a last resort so that it can report possible logical errors.

Instead of the simple type checking method we have merely outlined, some lan-
guages use a more sophisticated procedure which we might call type inference. The
progenitor of this family of languages is ML (we have cited this language a number
of times above), whose type system is sophisticated and refined. Some ideas pre-
sented in work on ML have inspired the design of many different languages, even
those of a non-functional kind. In order to introduce the concept of inference in a
simplified form, we will again use the definition of function f. It is clear that also
the specification that the formal parameter, n, must be an int is redundant. This is
because the constant 1 is an integer and + takes two integers and returns an integer,
so n must be an integer. From a declaration of the form:

fun f(n){return n+1;}

it is certainly possible automatically to derive that f has type int -> int. Type
inference is exactly this process of the attribution of a type to an expression in which
explicit type declarations of its components do not occur. To perform this derivation,
the algorithm also works on a syntax tree, again starting at the leaves but, this time,
it must take into account the fact that it might not be immediately possible to deter-
mine a specific type for any atomic expression (n, in this case). In a case like this,
the inference algorithm assigns a type variable which it might indicate by ’a (using
ML notation). Climbing the tree again and using information present in the context,
some constraints for type-variables will be collected. In our case, from the type of 1
and from that of + (which comes from looking up the table of predefined symbols),
the constraint ’a = int is derived.
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This form of inference is more general and powerful than the simple type check-
ing algorithm used in languages like Pascal, C or Java. It is capable of determining
the most general type of a function, that is it can account for all the polymorphism
implicit in an expression. This is done as follows:

1. Assign a type to each node in the syntax tree. For predefined names and con-
stants, use the type stored in the symbol table. For new (i.e., programmer-defined)
identifiers, and for every composite expression (which are stored as the internal
nodes of the tree), use a type variable (one new variable for every expression or
name);

2. Rewalk the syntax tree, generating an (equality) constraint between types at every
internal node. For example, if we apply the function symbol, f, to which we have
previously assigned the type ’a to the argument v of type ’b, the constraint ’a
= ’b -> ’c will be generated to indicate that f must really be a function and
that its argument must be of the same type as v (’c is a new type variable).

3. Resolve the constraints thus gathered using the unification algorithm (a powerful,
but conceptually simple, instrument for symbolic manipulation which we will
discuss in the context of logic languages, in Sect. 12.3).

There are cases in which solving constraint equations does not remove all vari-
ables. If we apply the inference algorithm to

fun g(n){return n;}

we will obtain, as type, ’a -> ’a. We already know that this is not an error but
a positive characteristic: an expression whose most general type contains a type
variable is a polymorphic expression.

8.9 Safety: An Evaluation

We started our analysis of types in programming languages with the idea of safety
based on types. This same notion has guided us in our examination of the various
characteristics of type systems. The time has arrived to take into account what we
have understood, classifying programming languages according to their safeness.
Let us, then, distinguish between:

1. Non safe languages;
2. Locally safe languages;
3. Safe languages.

In the category of unsafe languages, we find all of those languages whose type
system is a more or less just a methodological suggestion to the programmer, in
the sense that the language allows the programmer to bypass type checking. Every
language that allows access to the representation of a data type belongs to this cat-
egory, as does every language that allows access to the value of a pointer (pointer
arithmetic, that is). C, C++ and all the languages of their family are unsafe.
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Locally unsafe languages are those languages whose type system is well regu-
lated and type checked but which contain some, limited, constructs which, when
used, allow insecure programs to be written. The languages Algol, Pascal, Ada and
many of their descendants belong to this category, provided that the abstract ma-
chine really checks types that need dynamic checking, such as checking the limits
of interval types (which, it should be recalled, can be used as an index type for ar-
rays). The unsafe part results from the presence of unions (uncontrolled variants)
and from the explicit deallocation of memory. Of these two constructs, it is the sec-
ond that has the greater impact in practice (it is much more common to encounter
programs which deallocate memory than those which make significant use of variant
records), but it is the former that is the more dangerous. As we will see in the next
section, it is possible to equip the abstract machine with appropriate mechanisms to
allow it to detect and prevent dangling pointers, even if, for reasons of efficiency,
they are almost never used. We have already seen different examples of type-system
violations which are possible when using variant records. We have postponed until
last the nastiest possibility: that variant records can be used to access and manipulate
the value of a pointer. In Pascal, we can write:16

var v : record
case bool of

true : (i:integer);
false : (p:ˆinteger)

end

Here, ˆinteger is the Pascal notation for the type of pointers to integers. It is
now possible to assign a pointer to the variant p, manipulate it as an integer using
the variant i and then use it again as a pointer.

Finally, we have safe languages for which a theorem guarantees that the execu-
tion of a typed program can never generate a hidden error “induced by the violation
of a type.” In this category are languages with dynamic type checking like Lisp and
Scheme, as well as languages with static checking such as ML, as well as languages
with static checking but with many checks also performed at runtime (as in Java).

8.10 Avoiding Dangling References

In this section, we will tackle the question of which mechanisms can be included in
an abstract machine that will dynamically prevent dereference of dangling pointers.
This is a problem we first discussed in Sect. 8.4.5. We will first present a radical
solution which works in the general case of pointers into the heap or into the stack.
We will then consider a somewhat less demanding mechanism that, however, works
only for pointers into a heap (and then under some probabilistic assumptions).

16In Pascal, pointers are allocated only on the heap by an allocation request (the new func-
tion).They can be assigned but there is no primitive method to access the value of a pointer.
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8.10.1 Tombstone

Using tombstones, an abstract machine can detect every attempt at dereferencing a
dangling reference. Every time an object is allocated in the heap (to be then accessed
by pointer), the abstract machine also allocates an extra word in memory. This word
is called the tombstone. In a similar fashion, a tombstone is allocated every time
that a stack-referencing pointer is allocated (that is, to a certain approximation, ev-
ery time that the “indirection-to” operator (&) is used). The tombstone is initialised
with the address of the allocated object and the pointer receives the address of the
tombstone. When a pointer is dereferenced, the abstract machine inserts a second
level of indirection, so that it first accesses the tombstone and then uses what it finds
there to access the object that is pointed to. When one pointer is assigned to another,
it is the contents of the pointer (and not the tombstone) that is modified. Figure 8.10
shows this operation graphically.

On deallocation of an object, or when an indirection on the stack becomes invalid
because it is part of an activation record that has been popped,17 the associated
tombstone becomes invalidated, and a special value is stored in it to signal that the
data to which the pointer refers is dead (this is where the name of this technique
derives from). An appropriate choice of such a value must be made so that every
attempt to access the contents of an invalid tombstone is captured by the address-
protection mechanism of the underlying physical machine.

Tombstones are allocated in a particular area of memory in the abstract machine
(this, appropriately enough, is called the cemetery). The cemetery can be managed
more efficiently than the heap because all tombstones are of the same size.

For all its simplicity, the tombstone mechanism imposes a heavy cost in
terms both of time and space. As far as time is concerned, we must consider
the time required for the creation of tombstones, that for their checking (which
can be reduced, as we have seen, if an underlying hardware protection mech-
anism can be used) and, most importantly, the cost of two levels of indirec-
tion. Tombstones are also expensive in terms of storage. They require a word
of memory for every object allocated on the heap; a word is also required ev-
ery time a pointer into the stack is created. If there are lots of allocations of
small objects, the percentage of memory required by tombstones can be sig-
nificant. Moreover, invalid tombstones always remain allocated, with the con-
sequence that they might exhaust the space available in the cemetery, even
though there might a great deal of space available on the heap. To prevent
this last problem, it is possible to reuse those tombstones that are no longer in
use (that is, those to which no pointer points) using a small reference-counting
garbage collector (Sect. 8.11.1); this further increases the time cost of the mecha-
nism.

17The operation can be quite opaque. Consider the case of a variable passed by reference to a
function. Inside the function, a pointer is created to point to the variable. The pointer will be
created using an associated tombstone. The tombstone must be invalidated when the lifetime of the
variable forming the actual parameter ends, not when the function terminates.
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Fig. 8.10 Tombstones

8.10.2 Locks and Keys

An alternative to the tombstone technique is called locks and keys. This solves the
problem of dangling references into a heap using a mechanism which does not suffer
from the accumulated problems of tombstones.

Every time an object is created on the heap, the object is associated with a lock
which is a word of memory in which an arbitrary value is stored. (Strictly speak-
ing, it should be a value that can be sequentially incremented every time an object
is allocated, but which avoids values such as 0 and 1, the code of frequently used
characters, and so on.) In this approach, a pointer is composed of a pair: the address
proper and a key (a word of memory that will be initialised with the value of the
lock corresponding to the object being pointed to). When one pointer is assigned to
another, the whole pair is assigned. Every time the pointer is dereferenced, the ab-
stract machine checks that the key opens the lock. In other words, it verifies that the
information contained in the key coincides with that in the lock. In the case in which
the values are not the same, an error is signalled. When an object is deallocated, its
lock is invalidated and some canonical value (for example, zero) is stored, so that
all the keys which previously opened it now cause an error (see Fig. 8.11). Clearly,
it can happen that the area of memory previously used as a key is reallocated (for
another lock or for some other structure). It is statistically highly improbable that an
error will be signalled as a result of randomly finding an ex-lock that has the same
value that it had prior to being clearing.

Locks and keys also have a non-negligible cost. In terms of space, they cost
even more than tombstones because it is necessary to associate an additional word
with each pointer. On the other hand, locks as well as keys are deallocated at the
same time as the object or the pointer of which they are a part. From an efficiency
viewpoint, it is necessary to take into account both the cost of creation, and, more
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Fig. 8.11 Locks and keys

importantly, the high cost of pointer assignment and of determining whether the key
opens a lock, something that happens every time a pointer is dereferenced.

8.11 Garbage Collection

In languages without explicit memory deallocation, it is necessary to equip the ab-
stract machine with a mechanism which could automatically reclaim the memory
allocated on the heap that is no longer used. This is done by a garbage collector,
introduced for the first time in LISP around 1960, and since then included in many
languages initially mostly functional, and later imperative. Java has a powerful and
efficient garbage collector.

From the logical point of view, the operation of a garbage collector consists of
two phases:

1. Distinguish those objects that are still alive from those no longer in use (garbage
detection);

2. Collect those objects known no longer to be in use, so that the program can reuse
them.

In practice these two phases are not always temporally separate, and the tech-
nique for reclaiming objects essentially depends on the one in which the objects no
longer in use are discovered. We will see, then, that the “no longer in use” concept
in a garbage collector is often a conservative approximation. For reasons of effi-
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ciency,18 not all the objects that can be used again are, in reality, determined by the
garbage collector to be so.

The educational aim of this text does not permit us to describe a garbage collector
for a real language, or to provide an exhaustive overview of the different techniques
available (there are bibliographic references to exhaustive treatments). We will limit
ourselves to presenting in some detail the main points in the light of the most com-
mon techniques. Real garbage collectors are variations on these techniques. In par-
ticular the collectors that are of greatest interest today are based upon some form of
incremental reclamation of memory and are beyond the scope of this book.

We can classify classical garbage collectors according to how they determine
whether an object is no longer in use. We will have, therefore, collectors based on
reference counting, as well as marking and copying. In the next few sections, we
will present these collectors. We will discuss these techniques in terms of pointers
and objects but the argument can equally be applied to languages without pointers
which use the reference variable model.

Finally, we will see that all the techniques that we consider need to be able to
recognize those fields inside an object that correspond to pointers. If objects are cre-
ated as instances of statically-defined types (so it is statically known where pointers
are inside instances), the compiler can generate a descriptor containing offsets to the
pointers in each type. Each object in the heap is associated with the type of which
it is an instance (for example, via a pointer to its type descriptor). When an object
is to be deallocated, the garbage collector accesses the type descriptor to access the
pointers inside the object. Similar techniques are used to recognise which words in
an activation record are pointers. If types are only known dynamically, descriptors
have to be completely dynamic and allocated together with the object.

8.11.1 Reference Counting

A simple way to tell whether an object is not in use is to determine whether there
are any pointers to it. This is the reference counting technique. It defines what is
probably the easiest way of implementing a garbage collector.

When an object is created on the heap, an integer is allocated at the same time.
This integer is the reference counter or reference count for the object. The reference
count is inaccessible to the programmer. For each object, the abstract machine must
ensure that the counter contains the number of pointers to this object that are still
active.

In order to do this, when an object is created (that is, a pointer for it is assigned
for the first time), its counter is initialised to 1. When we have a pointer assignment:

p = q;

18As well as decidability.
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Fig. 8.12 Reference counting

the counter belonging the object pointed to by q is incremented by one, while the
counter of object pointed to by p is decremented by one. When a local environ-
ment is exited, the counters of all the objects pointed to by pointers local to the
environment are decremented. Figure 8.12 shows operation of this technique in di-
agrammatic form.

When a counter returns to the value 0, its associated object can be deallocated
and returned to the free list. This object, moreover, might contain internal pointers,
so before returning the memory occupied by an object to the free list, the abstract
machine follows the pointers inside the object and decrements by one the counters
of the objects they point to, recursively collecting all the objects whose counter has
reached 0.

From the viewpoint of the abstract division into two phases of a garbage collector,
the update and checking of counters implement the garbage-detection phase. The
collection phase occurs when the counter reaches zero.

A clear advantage of this technique is that it is incremental because checking
and collection are interleaved with the normal operation of the program. With a few
adjustments, real-time systems (that is systems where there are absolute deadlines
to response time) can employ this technique.

The biggest defect, at least in principle, of this technique is in its inability to
deallocate circular structures. Figure 8.13 shows a case in which a circular struc-
ture has no more access paths. However it cannot be collected because, clearly, its
counters are not zero. It can be seen that the problem does not reside so much in the
algorithm, as in the definition of what a useless object is. It is clear that all objects
in a circular structure are not usable any more, but this is not at all captured by the
definition of not being pointed at.

Reference counting, despite its simplicity, is also fairly inefficient. Its cost is
proportional to the combined work performed by the program (and not to the size
of the heap or to the percentage of it in use or not in use at any time). One particular
case is that of updating the counters of parameters of pointer type which are passed
to functions that execute only for a short time. These counters are allocated and,
after a particularly short time, have their value returned to zero.
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Fig. 8.13 Circular structures
with reference counts

8.11.2 Mark and Sweep

The mark and sweep method takes its name from the way in which the two abstract
phases we mentioned at the start are implemented:

• Mark. To recognize that something is unused, all the objects in the heap are tra-
versed, marking each of them has “not in use”. Then, starting from the pointers
which are active and present on the stack (the root set), all the data structures
present in the heap are traversed recursively (the search is usually performed
depth-first) and every object that is encountered is marked as “in use”.

• Sweep. The heap is swept—all blocks marked “in use” are left alone, while those
marked “not in use” are returned to the free list.

It can be seen that to implement both phases, it is necessary to be able to recognize
allocated blocks in the heap. Descriptors might be necessary to give the size (and
organisation) of every allocated block.

Unlike the reference-counting garbage collector, a mark and sweep collector is
not incremental. It it will be invoked only when the free memory available in the
heap is close to being exhausted. The user of the program can therefore experience
a significant degradation in response time while waiting for the garbage collector to
finish.

The mark and sweep technique suffers from three main defects. In the first place,
and this is also true for reference counting, it is asymptotically the cause of external
fragmentation (see Sect. 5.4.2): live and no longer live objects are arbitrarily mixed
in the heap which can make allocating a large object difficult, even if many small
blocks are available. The second problem is efficiency. It requires time proportional
to the total length of the heap, independent of the percentages of used and free space.
The third problem relates to locality of reference. Objects that are “in use” remain
in their place, but it is possible that objects contiguous with them will be collected
and new objects allocated in their place. During execution, we find that objects with
very different ages appear next to each other. This, in general, drastically reduces
locality of reference, with the usual degradation in performance observed in systems
with memory hierarchies.
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Fig. 8.14 A stack is
necessary for depth-first
traversal

8.11.3 Interlude: Pointer Reversal

Without some precautions, every marking technique runs the risk of being com-
pletely unusable in a garbage collector. The collector, indeed, goes into action when
the memory is near to being exhausted, while the marking phase consists of the
recursive traversal of a graph, which requires the use of a stack to store the return
pointers.19 It is necessary, when marking a graph under these circumstances, to use
carefully the unused space present in pointers, using a technique called pointer re-
versal.

As shown in Fig. 8.14, when visiting a chained structure, it is necessary to mark
a node and recursively visit the substructures whose pointers are part of that node.
In this recursive scheme, it is necessary to store the addresses of blocks when they
are visited in a stack, so that they can be revisited when the end of the structure is
reached. In the Figure, using depth-first search, node E has been reached (marked
blocks are indicated with a tick). The stack contains nodes A, B and C. After vis-
iting E, it takes C from the stack and follows any pointers leading from this node;
since there are none, it takes B from the stack and follows the remaining pointer,
pushing B onto the stack, and visiting D. Using pointer reversal, this stack is stored
in the pointers that form the structure, as shown in Fig. 8.15. When the end of a
substructure is reached, (and a pop of the stack is required), the pointer is returned
to its original value, so that at the end of the visit, the structure is exactly the same as
it was at the start (apart from marking, clearly). In the figure, we are visiting node E.
It can be seen how the stack in Fig. 8.14 is stored in space internal to the structure
itself (pointers marked with a grey background). Only two pointers (p_prec and
p_curr) are required to perform the visit. After visiting E, using p_prec, the
structure is retraversed in a single step. Using the reversed pointer, we return to B,
resetting the correct value of the pointer in C using p_curr.

19In many abstract machines, stack and heap are implemented in a single area of memory, with
stack and heap growing in opposite directions starting from the two ends. In such a case, when
there is no space in the heap, there is no space for the stack.
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Fig. 8.15 Pointer reversal

8.11.4 Mark and Compact

To avoid the fragmentation caused by the mark and sweep technique, we can modify
the sweep phase and convert it into a compaction phase. Live objects are moved
so that they are contiguous and thereby leave a contiguous block of free memory.
Compaction can be performed by moving linearly across the heap, moving every
live block encountered and making it contiguous with the previous block. At the
end, all free blocks are contiguous, as are all unused blocks.

This is a technique which, like mark and sweep, requires more than one pass
over the heap (and the time required is therefore proportional to the heap size).
Compaction, on its own, requires two or three passes. The first is to compute the
new position to be taken by the live blocks; a second updates the internal pointers
and a third actually moves objects. It is, therefore, a technique that is substantially
more expensive than mark and sweep if there are many objects to be moved.

On the other hand, compaction has optimal effect on fragmentation and on local-
ity. It supports treating the free list as a single block. New objects are allocated from
the free list by a simple pointer subtraction.

8.11.5 Copy

In garbage collectors based on copy there is no phase during which the “garbage”
is marked. There is just the copying and compaction of live blocks. The lack of an
explicit mark phase and the completely different way space is handled make its costs
substantially different from those of algorithms based on marking.

In the simplest copy-base garbage collector (called a stop and copy collector),
the heap is divided into two equally-sized parts (two semi-spaces). During normal
execution, only one of the two semi-spaces is in use. Memory is allocated at one
end of the semi-space, while free memory consists of a unique contiguous block
which reduces its size every time there is an allocation (see Fig. 8.16). Allocation is
extremely efficient and there is no fragmentation.
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Fig. 8.16 Stop and copy before a call to the garbage collector

Fig. 8.17 Stop and copy after the execution of the garbage collector

When the memory in the semi-space is exhausted, the garbage collector is in-
voked. Starting with pointers in the stack (the root set), it begins visiting the chain
of structures held in the current semi-space (the fromspace), copying the structures
one by one into the other semi-space (the tospace), compacting them at one end of
the latter (see Fig. 8.17). At the end of this process, the role of the two semi-spaces
is swapped and execution returns to the user program.

The visit and copy of the live part can be executed in an efficient manner using
the simple technique known as Cheney’s algorithm (Fig. 8.18). Initially, all the ob-
jects which are immediately reachable from the root set are copied. This first set of
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Fig. 8.18 Cheney’s
algorithm

objects is copied in a contiguous fashion into the tospace; it is handled as if it were
a queue. Consider now the first of these objects, and add to the end of the queue
(that is, copy into the tospace) the objects pointed to by the pointers present in the
first object, while, at the same time, these pointers are modified. In this way, we
have copied into the tospace all the first object’s children. We keep processing the
queue until it remains empty. At this point, in the tospace we have a copy of the live
objects in the fromspace.20

20Some precautions must be taken to prevent objects accessible via multiple pointers being copied
more than once.
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A stop and copy garbage collector can be made arbitrarily efficient, provided
that there is enough memory for the two semi-spaces. In fact, the time required for
a stop and copy is proportional to the number of live objects present in the heap. It
is not unreasonable to assume that this quantity will be approximately constant at
any moment during the execution of the program. If we increase the memory for the
two semi-spaces, we will decrease the frequency with which the collector is called
and, therefore, the total cost of garbage collection.

8.12 Chapter Summary

This chapter has dealt with a crucial aspect in the definition of programming lan-
guages: the organisation of data in abstract structures called data types. The main
points can be summarised as follows.

• Definition of type as a set of values and operations and the role of types in design,
implementation and execution of programs.

• Type systems as the set of constructs and mechanisms that regulate and define the
use of types in a programming language.

• The distinction between dynamic and static type checking.
• The concept of type-safe systems, that is safe with respect to types.
• The primary scalar types, some of which are discrete types.
• The primary composite types, among which we have discussed records, variant

records and unions, arrays and pointers in detail. For each of these types, we have
also presented the primary storage techniques.

• The concept of type equivalence, distinguishing between equivalence by name
and structural equivalence.

• The concept of compatibility and the related concepts of coercion and conversion.
• The concept of overloading, when a single name denotes more than one object

and static disambiguation.
• The concept of universal polymorphism, when a single name denotes an object

that belongs to many different types, finally distinguishing between parametric
and subtype polymorphism.

• Type inference, that is mechanisms that allow the type of a complex expression to
be determined from the types of its elementary types.

• Techniques for runtime checking for dangling references: tombstones and locks
and keys.

• Techniques for garbage collection, that is the automatic recovery of memory,
briefly presenting collectors based on reference counters, mark and sweep, mark
and compact and copy.

Types are the core of a programming language. Many languages have similar
constructs for sequence control but are differentiated by their type systems. It is not
possible to understand the essential aspects of other programming paradigms, such
as object orientation, without a deep understanding of the questions addressed in
this chapter.



8.13 Bibliographic Notes 259

8.13 Bibliographic Notes

Ample treatments of programming language types can be found in [14] and the
rather older [4]. Review articles which introduce the mathematical formalisms nec-
essary for research in this area are [2, 11]. A larger treatment of the same arguments
is to be found in [13]. On overloading and polymorphism in type systems, a good,
clear review is [3] (which we have largely followed in this chapter).

Tombstones originally appeared in [8] (also see, by the same author, [9]). Fisher
and Leblanc [5] proposed locks and keys, as well as techniques so that an abstract
Pascal machine can make variant records secure.

The official definition of ALGOL68 (which is quite a read) is [15]. A more acces-
sible introduction can be found in [12]. The definition of ML can be found in [10],
while an introductory treatment of type inference is to be found in [1].

There is a large literature on garbage-collection techniques. A detailed descrip-
tion of a mark and sweep algorithm can be found in many algorithm books, for
example [6], while [16] is a good summary of classical techniques. For a book en-
tirely devoted to the problem, that contains pseudocode and a more-or-less complete
bibliography (up to the time of publication), [7] is suggested.

8.14 Exercises

1. Consider the declaration of the multi-dimensional array:

int A[10][10][10]

We know that an integer can be stored in 4 bytes. The array is stored in row
order, with increasing memory addresses (that is, if an element is at address i,
its successor is at i + 4, and so on). The element A[0][0][0] is stored at
address 0. State the address at which element A[2][2][5] is stored.

2. Instead of the contiguous multidimensional array allocation that we discussed
in Sect. 8.4.3, some languages allow (e.g., C), or adopt (Java), a different organ-
isation, called row-pointer. Let us deal with the case of a 2-dimensional array.
Instead of storing rows one after the other, every row is stored separately in
some region of memory (for example on the heap). Corresponding to the name
of the vector, a vector of pointers is allocated. Each of the pointers points to a
proper row of the array. (i) Give the formula for accessing an arbitrary element
A[i][j] of an array allocated using this scheme. (ii) Generalise this mem-
ory technique to arrays of more than 2 dimensions. (iii) Discuss the advantages
and disadvantages of this organisation in the general case. (iv) Discuss the ad-
vantages and disadvantages of this technique for the storage of 2-dimensional
arrays of characters (that is, arrays of strings).

3. Consider the following (Pascal) declarations:

type string = packed array [1..16] of char;
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type string_pointer = ˆstring;
type person = record

name : string;
case student: Boolean of

true: (year: integer);
false: (socialsecno: string_pointer)

end;

and assume that the variable C contains a pointer to the string “LANGUAGES”.
Describe the memory representation for the person record after each of the
following operations:

var pippo : person;
pippo.student := true;
pippo.year := 223344;
pippo.student := true;
pippo.socialsecno := C;

4. Show that the integer type can be defined as a recursive type starting with just
the value null. Then write a function that checks if two integers defined in this
way are equal.

5. Given the following type definitions in a programming language which uses
structural type equivalence:

type T1 = struct{
int a;
bool b;

};
type T2 = struct{

int a;
bool b;

}
type T3 = struct{

T2 u;
T1 v;

}
type T4 = struct{

T1 u;
T2 v;

}

In the scope of the declarations T3 a and T4 b, it is claimed that the as-
signment a = b is permitted. Justify your answer.

6. Which type is assigned to each of the following functions using polymorphic
type inference?

fun G(f,x){return f(f(x));}
fun H(t,x,y){if (t(x)) return x;

else return y;}
fun K(x,y){return x;}
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7. Using tombstones, it is necessary to invalidate a tombstone when its object is
no longer meaningful. The matter is clear if the object is on the heap and is
explicitly deallocated. It is less clear when the tombstone is associated with an
address on the stack. In this case, indeed, it is necessary for the abstract machine
to be able to determine all the tombstones that are potentially associated with
an activation record. Design a possible organisation which makes this opera-
tion reasonably efficient (recall that tombstones are not allocated in activation
records but in the cemetery).

8. Consider the following fragment in a pseudo-language with reference-based
variables and which uses locks and keys (C is a class whose structure is of no
importance):

C foo = new C(); // object OG1
C bar = new C(); // object OG2
C fie = foo;
bar = fie;

Give possible values after the execution of the fragment for all the keys and
all the locks involved.

9. Under the same assumptions as in Exercise 8, consider the following code frag-
ment in which free(p) denotes the explicit deallocation of the object referred
to by the pointer p:

class C { int n; C next;}
C foo = new C(); // object OG1
C bar = new C(); // object OG2
foo.next = bar;
bar.next = foo;
free(bar);

For all the pointers in the fragment, give possible key values. For each object
in the fragment, give possible lock values. In both cases, the values should be
those after execution of the fragment terminates. After execution of the frag-
ment, also execute the code foo.n = 1; foo.next = 0;. State what a
possible result of this execution might be.

10. Consider the following fragment which is written in a pseudo-language with
a reference-model for variables and a reference-counting garbage collector. If
OGG is an arbitrary object in the heap, indicate by OGG.cont its (hidden)
contents:

class C { int n; C next;}
C foo(){

C p = new C(); // object OGG1
p.next = new C(); // object OGG2
C q = new C(); // object OGG3
q.next = p.next;
return p.next;
}

C r = foo();
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State what are the values of the reference counters for the three objects after
execution of line 6 and then of line 9.

11. Under the same assumptions as in Exercise 10, state what the values of the
reference counters are for the two objects after the execution of the following
fragment. Which of the two can be returned to the free list?

C foo = new C(); // object OG1
C bar = new C(); // object OG2
C fie = foo;
bar = fie;

12. Under the same assumptions as in Exercise 10, state what the reference-counter
values for the three objects after execution of the following fragment are. Which
of them can be returned to the free list?

class C { int n; C next;}
C foo = new C(); // object OG1
bar = new C(); // object OG2
foo.next = bar;
bar = new C(); // object OG3
foo = bar;

13. Using your favourite programming language, define the data structures required
to represent a binary tree. Then write detailed code that performs a preorder
traversal of a tree without using the system stack and instead using the pointer-
reversal technique.
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Chapter 9
Data Abstraction

The physical machine manipulates data of only one type: bit strings. The types of a
high-level language impose an organisation on this undivided universe, giving each
value a sort of “wrapping”. Each value is wrapped in an encapsulation (its type)
which provides the operations that manipulate it. The type system for a language
establishes how transparent this encapsulation is. In type-safe languages, the en-
capsulation is completely opaque, in the sense that it does not allow access to the
representation (or better: every access can only take place using or by means of the
encapsulation itself).

The last chapter presented in detail many of the predefined types and the principal
mechanisms for defining new ones. The latter, however, are fairly limited: finite ho-
mogeneous aggregations (arrays) and heterogeneous ones (records), recursive types
and pointers. The operations possible on these composite types are predefined by
the language and the programmer is restricted to use them. It is clear that the pro-
grammer, using just the mechanisms we discussed in Chap. 8, cannot really define
a new type, when it is understood, using our definition, as a collection of (homoge-
neous and effectively presented) values equipped with a set of operations. The user
of a language can only make use of the existing capsules and only has highly limited
ways to define new types: there are few data abstraction mechanisms.

In this chapter, we will present some of the main ways in which a language can
provide more sophisticated mechanisms for defining abstractions over data. Among
these, we will discuss the so-called abstract data type, which in different forms is
provided by several languages. We then look at modules, a largely similar concept,
but which mainly applies to programming in the large. These abstraction mecha-
nisms also constitute an introduction to some themes that we will encounter again
with object-oriented programming. The key concepts that we will investigate in this
chapter are the separation between interface and implementation and the concepts
associated with information hiding.

9.1 Abstract Data Types

The introduction of a new type using the mechanisms discussed in the last chapter
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DOI 10.1007/978-1-84882-914-5_9, © Springer-Verlag London Limited 2010
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type Int_Stack = struct{
int P[100]; // the stack proper
int top; // first readable element

}
Int_Stack create_stack(){

Int_Stack s = new Int_Stack();
s.top = 0;
return s;

}
Int_Stack push(Int_Stack s, int k){

if (s.top == 100) error;
s.P[s.top] = k;
s.top = s.top + 1;
return s;

}
int top(Int_Stack s){

return s.P[s.top];
}
Int_Stack pop(Int_Stack s){

if (s.top == 0) error;
s.top = s.top - 1;
return s;

}
bool empty(Int_Stack s){

return (s.top == 0);
}

Fig. 9.1 Stack of integers

does not permit the user of a language to define types at the same level of abstraction
as that enjoyed by the predefined types in these languages.

By way of an example, Fig. 9.1 shows one possible definition in our pseudo-
language of the stack of integers data type. We assume a reference model for vari-
ables. When defining a type of this kind, it is probably intended that a stack of
integers will be a data structure that can be manipulated by the operations of cre-
ation, insertion, access to the top element, removal of the top element. However, the
language does not guarantee that these are the only ways in which a stack can be
manipulated. Even if we adopt a strict type equivalence by name discipline (so that
a stack is introduced by a declaration of the type Int_Stack) nothing prevents us
from directly accessing its representation as an array:

int second_from_top()(Int_Stack c){
return c.P[s.top - 1];
}

From a general viewpoint, therefore, while languages provide predefined data
abstractions (types) which hide implementations, the programmer cannot do this
for themselves. To avoid this problem, some programming languages allow the
definition of data abstractions which behave like predefined types as far as the
(in)accessibility of representations is concerned. This mechanism is called an ab-
stract data type (ADT). It is characterised by the following primary characteristics:
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1. A name for the type.
2. An implementation (or representation) for the type.
3. A set of names denoting operations for manipulating the values of the type, to-

gether with their types.
4. For every operation, an implementation that uses the representation provided in

point 2.
5. A security capsule which separates the name of the type and those of the opera-

tions from their implementations.

One possible notation for the stack of integers ADT in our pseudo-language could
be that depicted in Fig. 9.2.

1abstype Int_Stack{
type Int_Stack = struct{

3int P[100];
int n;

5int top;
}

7signature
Int_Stack create_stack();

9Int_Stack push(Int_Stack s, int k);
int top(Int_Stack s);

11Int_Stack pop(Int_Stack s);
bool empty(Int_Stack s);

13operations
Int_Stack create_stack(){

15Int_Stack s = new Int_Stack();
s.n = 0;

17s.top = 0;
return s;

19}
Int_Stack push(Int_Stack s, int k){

21if (s.n == 100) error;
s.n = s.n + 1;

23s.P[s.top] = k;
s.top = s.top + 1;

25return s;
}

27int top(Int_Stack s){
return s.P[s.top];

29}
Int_Stack pop(Int_Stack s){

31if (s.n == 0) error;
s.n = s.n - 1;

33s.top = s.top - 1;
return s;

35}
bool empty(Int_Stack s){

37return (s.n == 0);
}

39}

Fig. 9.2 ADT for stacks of integers
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A definition of this kind must be interpreted as follows. The first line intro-
duces the name of the abstract data type. Line 2 provides the representation (or
concrete type) for the abstract type Int_Stack. Lines 7 to 12 (introduced by
signature) define the names and types of the operations that can manipulate an
Int_Stack. The remaining lines (introduced by operations) provide the im-
plementation of the operations. The important point of this definition is that inside
the declaration of type, Int_Stack is a synonym for its concrete representation
(and therefore the operations manipulate a stack as a record containing an array
and two integer fields), while outside (and therefore in the rest of the program),
there is no relation between an Int_Stack and its concrete type. The only possi-
ble ways to manipulate an Int_Stack are provided by its operations. The func-
tion second_from_top(), which we defined above, is now impossible because
type checking does not permit the application of a field selector to an Int_Stack
(which is not a record outside of its definition.)

An ADT is an opaque capsule. On the outside surface, visible to anyone, we find
the name of the new type and the names and types of the operations. Inside, invisible
to the outside world, there are the implementations of the type and its operations.
Access to the inside is always controlled by the capsule which guarantees the con-
sistency of the information it encloses. This external surface of the capsule is called
the signature or interface of the ADT. On its inside is its implementation.

Abstract data types (in languages that support them, for example ML, and CLU1)
behave just like predefined types. It is possible to declare variables of an abstract
type and to use one abstract type in the definition of another, as has been done, by
way of example, in Fig. 9.3. The code in Fig. 9.3 implements (very inefficiently) a
variable of type integer using a stack. Inside the implementation of Int_Var, the
implementation of Int_Stack is invisible because it was completely encapsulated
when it was defined.

9.2 Information Hiding

The division between interface and implementation is of great importance for soft-
ware development methods because it allows the separation a component’s use from
its definition. We also saw this distinction when we looked at control abstraction.
A function abstracts (that is, hides) the code constituting its body (the implemen-
tation), while it reveals its interface, which is composed of its name and of the
number and types of its parameters (that is, its signature). Data abstraction gener-
alises this somewhat primitive form of abstraction. Not only is how an operation is
implemented hidden but so is the way in which the data is represented, so that the
language (with its type system) can guarantee that the abstraction cannot be vio-
lated. This phenomenon is called information hiding. One of the more interesting

1In object-oriented languages, we will see that it is possible to obtain the same abstraction goal
using a similar but more flexible method.
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Constructors, transformers and observers

In the definition of an abstract data type, T, the operations are conceptually divided
into three separate categories:

• Constructors. These are operations which construct a new value of type T, possi-
bly using values of other known types.

• Transformers or operators. These are operations that compute values of type T,
possibly using other values (of the same ADT or of other types). A fundamental
property of a transformer t of type S1 ×· · ·×Sk -> Y is that, for every argument
value, it must be the case that t(s1,. . .,sk) is a value constructable using only
constructors.

• Observers. These are operations that compute a value of a known type that is
different from T, using one or more values of type T.

An ADT without constructors is completely useless. There is no way to construct
a value. In general, an ADT must have at least one operation in each of the above
categories. It is not always easy to show that an operation is really a transformer (that
is, that each of its values is in reality a value that can be obtained from a sequence
of constructors).

In the integer stack example, create_stack and push are constructors,
pop is a transformer and top and empty are observers.

abstype Int_Var{
type Int_Var = Int_Stack;
signature

Int_Var create_var();
int deref(Int_Var v);
Int_Var assign(Int_Var v, int n);

operations
Int_Var create_var(){

return push(create_stack(),0);
}
int deref(Int_Var v){

return top(v);
}
Int_Var assign(Int_Var v, int n){

return push(pop(v),n);
}

}

Fig. 9.3 An ADT for an integer variable, implemented with a stack

consequences of information hiding is that, under certain conditions, it is possi-
ble to substitute the implementation of one ADT for that of another while keeping
the interface the same. In the stack example, we could opt to represent the con-
crete type as a linked list (ignoring deallocation) allocated in the heap. This is de-
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abstype Int_Stack{
type Int_Stack = struct{

int info;
Int_stack next;

}
signature

Int_Stack create_stack();
Int_Stack push(Int_Stack s, int k);
int top(Int_Stack s);
Int_Stack pop(Int_Stack s);
bool empty(Int_Stack s);

operations
Int_Stack create_stack(){

return null;
}
Int_Stack push(Int_Stack s, int k){

Int_Stack tmp = new Int_Stack(); // new element
tmp.info = k;
tmp.next = s; // chain on
return tmp;

}
int top(Int_Stack s){

return s.info;
}
Int_Stack pop(Int_Stack s){

return s.next;
}
bool empty(Int_Stack s){

return (s == null);
}

}

Fig. 9.4 Another definition of the Int_Stack ADT

fined as in Fig. 9.4. Under certain assumptions, by substituting the first definition
of Int_Stack by that in Fig. 9.4, there should be no observable effect on pro-
grams that use the abstract data type. These assumptions centre on what the clients
of the interface expect from the operations. Let us say that the description of the
semantics of the operations of an ADT is a specification, expressed not in terms
of concrete types but general abstract relations. One possible specification for our
ADT Int_Stack could be:

• create_stack creates an empty stack.
• push inserts an element into the stack.
• top returns the element at the top of the stack without modifying the stack itself.

The stack must not be empty.
• pop removes the top elements from the stack. The stack must not be empty.
• empty is true if and only if the stack is empty.

Every client that uses Int_Stack making use of this specification only, will see
no difference at all in the two definitions. This property has come to be called the
principle of representation independence.
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The specification of an abstract data type can be given in many different ways,
ranging from natural language (which we have done) to semi-formal schemata,
to completely formalised languages that can be manipulated by theorem provers.
A specification is a kind of contract between the ADT and its client. The ADT guar-
antees that the implementation of the operations (which are unknown to the client)
matches the specification; that is, all the properties stated in the specification are
satisfied by the implementation. When this happens, it is also said that the imple-
mentation is correct with respect to the specification.

9.2.1 Representation Independence

We can state the representation independence property as follows:

Two correct implementations of a single specification of an ADT are observationally indis-
tinguishable by the clients of these types.

If a type enjoys representation independence, it is possible to replace its implemen-
tation by an equivalent (e.g., more efficient) one without causing any (new) errors
in clients.

It should be clear that a considerable (and not at all obvious) part of representa-
tion independence consists of the guarantee that both implementations are correct
with respect to the same specification. This can be hard to show, particularly when
the specification is informal. There is, however, a weak version of the representation
independence property that concerns only correctness with respect to the signature.
In a type-safe language with abstract data types, the replacement of one ADT by
another with the same signature (but different implementation) does not cause type
errors. Under the assumptions we have made (of type safety and ADT), this property
is a theorem which can be proved by type inference. Languages like ML and CLU
enjoy this form of representation independence.

9.3 Modules

Abstract data types are mechanisms for programming in the small. They were de-
signed to encapsulate one type and its associated operations. It is much more com-
mon, however, for an abstraction to be composed of a number of inter-related types
(or data structures) of which it is desired to give clients a limited (that is, abstract)
view (not all the operations are revealed and there is concealment of the implemen-
tation). The linguistic mechanisms which implement this type of encapsulation are
called modules or packages. They belong to that part of a programming language
dealing with programming in the large, that is with the implementation of com-
plex systems using composition and assembly of simpler components. The module
mechanism allows the static partitioning of a program into separate parts, each of
which is equipped with data (types, variables, etc.) as well as with operations (func-
tions, code, etc.). A module groups together a number of declarations (of data and/or
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functions) as well as defining visibility rules for these declarations by means of
which a form of encapsulation and information hiding is implemented.

Considering semantic principles, there is not much of a difference between mod-
ules and ADTs, mostly the ability to define more than one type at a time (according
to the definitions we have given, an ADT is a particular case of a module). Prag-
matically, on the other hand, the module mechanism affords greater flexibility, both
in the ability to state how permeable its encapsulation is (indeed, it is possible to
indicate on an individual basis which operations are visible or to choose the level
of visibility), or in the possibility of defining generic (polymorphic) modules (re-
call Sect. 8.8). Finally, module constructs are often related to separate compilation
mechanisms for modules themselves.2

Even given the enormous variety among existing languages, we can state the
important linguistic characteristics of a module by discussing the example shown
in Fig. 9.5. It is expressed, as usual, in an suitable pseudo-language. First of all,
a module is divided, as is an ADT, into a public part (which is visible to all the
module’s clients) and a private part (which is invisible to the outside world). The
private part of a module can contain declarations that do not appear at all in the
public part (for example, the bookkeep function inside Queue). A module can
mention some of its own data structures in the public part, so that anyone can use
or modify them (the variable c in Buffer, for example). A client module can use
the public part of another module by importing it (the imports clause). In our
example, Buffer has an additional import clause in its private part.

We will not continue with this discussion, both because we would have to go into
the details of the mechanisms in a specific language, and because we will return
to many points when considering object-oriented programming. To conclude, let
us merely observe that the module mechanism is often associated with some form
of parametric polymorphism which requires link-time resolution. In our example,
we could have defined a buffer of type T, rather than a buffer of integer, making
the definition generic and then suitably instantiating it when it is used. Figure 9.6
shows the generic version of the buffer example. It can be seen how the buffer and
the code are both generic. When the private part of Buffer imports Queue, it
specifies that it must be instantiated to the same type (which is not specified) as
Buffer.

9.4 Chapter Summary

This short chapter has presented a first introduction to data abstraction, which turns
on the key concepts of interface, implementation, encapsulation, data hiding.

2Keep in mind that modules and separate compilation are independent aspects of a language. In
Java, for example, it is not the module (package, in Java terminology) which is the unit of compi-
lation, rather the class is.
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module Buffer imports Counter{
public

type Buf;
void insert(reference Buf f, int n);
int get(Buf b);
Count c; // how many times buffer has been used

private imports Queue{
type Buf = Queue;

void insert(reference Buf b, int n){
inqueue(b,n);
inc(c);

}
int get(Buf b){

return dequeue(b);
inc(c);

}
init_counter(c); // module initialisation part

}
module Counter{

public
type Count;
void init_counter(reference Count c);
int get(Count c);
void inc(reference Count c);

private
type Count = int;
void init_counter(reference Count c){

c=0;
}
int get(Count c){

return c;
}
void inc(reference Count c){

c = c+1;
}

}
module Queue{

public
type Queue;
inqueue(reference Queue q, int n);
int dequeue(reference Queue q);
...

private
void bookkeep(reference Queue q){

...
}
...

}

Fig. 9.5 Modules
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module Buffer<T> imports Counter{
public

type Buf;
void insert(reference Buf f, <T> n);
<T> get(Buf b);
Count c; // how many times buffer has been used

private imports Queue<T>{
type Buf = Queue;
void insert(reference Buf b, <T> n){

inqueue(b,n);
inc(c);
}

<T> get(Buf b){
return dequeue(b);
inc(c);
}

}
module Counter{

public
type Count;
void init_counter(reference Count c);
int get(Count c);
void inc(reference Count c);

private
type Count = int;
void init_counter(reference Count c){

c=0;
}

int get(Count c){
return c;
}

void inc(reference Count c){
c = c+1;
}

init_counter(c); // module initialisation
}
module Queue<S>{

public
type Queue;
inqueue(reference Queue q, <S> n);
<S> dequeue(reference Queue q);
...

private
void bookkeep(reference Queue q){

...
}

...
}

Fig. 9.6 Generic modules
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From a linguistic viewpoint, we have presented the following:

• Abstract data type mechanisms.
• Mechanisms to hide information and their consequences; that is, the Principle of

representation independence.
• Modules which apply the concepts of encapsulation to programming in the large.

All of these concepts are treated in more depth in texts on software engineering.
As far as this book is concerned, they are devices to help understanding object-
oriented programming which is the subject of the next chapter.

9.5 Bibliographical Notes

The concept of module probably appears for the first time in the Simula language [1,
4], the first object-oriented language (see Chap. 13). The development of modules in
programming languages is due to the work of Wirth [6], which includes the Modula
and Oberon [7] projects.

The concept of information hiding made its first appearance in the literature in
a classic paper by Parnas [5]. Abstract data types originate in the same context, as
a mechanism guaranteeing abstraction that is different from modules. Among the
languages that include ADTs, the most influential is certainly CLU [3] which is also
the basis for the book [2].

9.6 Exercises

1. Consider the following definition of an ADT in our pseudo-language:

abstype LittleUse{
type LittleUse = int;
signature

LittleUse prox(LittleUse x);
int get(LittleUse x);

operations
LittleUse prox(LittleUse x){

return x+1;
}

int get(LittleUse x){
return x;
}

}

Why this type is useless?
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Chapter 10
The Object-Oriented Paradigm

In this chapter, we present the important aspects of object-oriented languages, a
paradigm which has its roots in Simula (during the 60s) and Smalltalk (in the 70s).
It achieved enormous success, including commercial success, in the two following
decades (C++ and Java are only two of the most known languages among the many
that are in use today). “Object oriented” is by now an abused slogan, which can
be found applied to languages, to databases, operating systems, and so on. Here, we
attempt to present the linguistic aspects which concern objects and their use, making
the occasional reference to object-oriented design techniques (but we can only refer
the reader to the (extended) literature for details).

Even after restricting the subject, there are many ways to proceed to the con-
cepts that interest us. We will follow the approach we believe the simplest: we will
present objects as a way to gain data abstraction in a way that is flexible and exten-
sible. We will begin our study, then, by showing some limits to the techniques that
we introduced in Chap. 9. These limits will suggest to us some concepts, which, in
fact, form the basics of an object-oriented language. Having examined these char-
acteristic aspects in detail, we will study some extensions to linguistic solutions that
are available in commercial languages, referring, in particular, to the concepts of
subtype, polymorphism and genericity.

Following the style that we have maintained thus far in this text, we will seek
to remain independent of any specific programming language, even if this will not
always be possible. The language that will mostly inspire us will be Java, for its co-
herence of design, which will allow us to discuss some concepts (and not linguistic
details) in a clearer way and in a way that allows us to summarise the properties of
other languages.

10.1 The Limits of Abstract Data Types

Abstract data types are a mechanism that guarantees the encapsulation and hiding
of information in a clean and efficient manner. In particular, the have the excellent
characteristic of uniting in a single construct both data and the methods for legally
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manipulating it. This is a very important methodological principle, which is ob-
tained at the cost of a certain rigidity of use, which shows up when it is wanted to
extend or reuse an abstraction. We will discuss these problems using a simple and
certainly not realistic example, but one which exposes the most important questions.

So that we do not overload the notation with the call-by-reference, it is convenient
to use a language that uses a reference model for variables. The following ADR
implements a simple counter:

abstype Counter{
type Counter = int;
signature

void reset(Counter x);
int get(Counter x);
void inc(Counter x);

operations
void reset(Counter x){

x = 0;
}
int get(Counter c){

return x;
}
void inc(Counter c){

x = x+1;
}

}

The concrete representation of the Counter type is the integer type. The only
operations possible are zeroing of a counter, reading and incrementing its value.

We want now to define a counter that is enriched by some new operations. For
example, we want to take into account the number of calls the reset operation has
had in a given counter. We have a choice of 2 approaches: the first is that of defining
a completely new ADT which is similar in many respects to the one just defined
with the addition of new operations, as in:

abstype NewCounter1{
type NewCounter1 = struct{

int c;
int num_reset = 0;

}
signature

void reset(NewCounter1 x);
int get(NewCounter1 x);
void inc(NewCounter1 x);
int howmany_resets(NewCounter1 x);

operations
void reset(NewCounter1 x){

x.c = 0;
x.num_reset = x.num_reset+1;

}
int get(NewCounter1 x){

return x.c;
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}
void inc(NewCounter1 x){

x.c = x.c+1;
}
int howmany_resets(NewCounter1 x){

return x.num_reset;
}

}

This is a solution that is acceptable as far as encapsulation goes, but we were re-
quired to redefine the operations what we have already defined for a simple counter
(they are operations with the same name but with different argument types; names
are therefore overloaded which the compiler has to differentiate using the context).
In this academic example, we have only a few lines of code but the negative effect
on a real situation can be quite significant.1 More important again is what happens
when, for whatever reason, it is desired to change the implementation of a simple
counter. There being no relationship between Counter and NewCounter, mod-
ifications such as these are not felt by another counter: a NewCounter will still
continue to work perfectly. But if the modification were due to reasons of useful-
ness or efficiency (for example, we found an excellent new way to implement an
inc), such a modification must be performed by hand on the definition of a New-
Counter, with all the known problems that this brings (find all the places where a
variant of the old inc is used, do not introduce any syntactic errors, etc.).

The second possibility that we have is one that makes use of Counter to define
an enriched counter:

abstype NewCounter2{
type NewCounter2 = struct{

Counter c;
int num_reset = 0;

}
signature

void reset(NewCounter2 x);
int get(NewCounter2 x);
void inc(NewCounter2 x);
int howmany_resets(NewCounter2 x);

operations
void reset(NewCounter2 x){

reset(x.c);
x.num_reset = x.num_reset+1;

}
int get(NewCounter2 x){

return get(x.c);
}
void inc(NewCounter2 x){

inc(x.c);

1This is a negative effect not only on the writing of the program, but also in the size of the code
produced because there are two copies of each operation!
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}
int howmany_resets(NewCounter2 x){

return x.num_reset;
}

}

The solution is clearly better than the previous one. The operations that do not have
to be modified are only called from inside a NewCounter (with its usual name
overloading), so that the last problem mentioned above is solved. There remains the
task of performing the calls explicitly even for the operations (such as get and inc)
that have not been modified: it would be preferable to have an automatic mechanism
with which to inherit the implementations of these two operations from Counter.

There remain problems, though, of how to handle in a uniform fashion the values
of Counter and of NewCounter2. Let us assume, in fact, that are dealing with a
series of counters, some simple, some enriched, and that we want to reset them all
to their initial value. To fix ideas, we can imagine an array of counters; we want to
reset each element of this array to its initial value. A first problem arises immediately
when we try to work out what the type of this array is. If we declare it as:

Counter V[100];

we cannot store NewCounter2s there because the two types are distinct. The same
thing happens when the array is declared as being of type NewCounter2. To solve
the problem, we need a concept of compatibility between the 2 types. Let us remem-
ber that among the various forms of compatibility we discussed in Sect. 8.7, we find
the following:

T is compatible with S when all the operations over values of type S are also possible over
values of type T.

We have exactly a case of this kind: all the operations on a Counter are possible
also on a NewCounter2 (on which we can apply an additional operation). It is,
therefore, sensible to require that a hypothetical language should relax the rigidity
of ADTs, admitting this form of compatibility. Let us therefore assume that New-
Counter2 is compatible with Counter and is therefore permitted to have a vector
declared as Counter V[100] in which are stored simple and extended counters.
We now come to the main point, which is to reset the initial value of each one of
these counters. The obvious idea is:

for (int i=1; i<100; i=i+1)
reset(V[i]);

which does not pose type problems. Overloading is solved, interpreting the body as
a call to the reset operation on Counter. All goes well with the type checker,
but what can be said about the state of NewCounter2 stored in the array? We
will expect that their num_reset fields have been incremented by one, but this
is not the case because the reset operation defined in NewCounter2 has not
been executed, only the one defined in Counter. Compatibility has solved the
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problem of uniformly manipulating the values of the two types but in a certain sense
has destroyed encapsulation, allowing the application of an operation to a value of
type NewCounter2 which is not correct with reference to the ADT. A moment’s
reflection shows how the problem derives from the static solution to the overloading
of reset. If we could decide dynamically which reset to apply, depending upon
the “effective” type of the argument (that is on the type of the element stored in
the array before the coercion connected with compatibility is applied), this problem
would also be solved.

10.1.1 A First Review

Abstract data types guarantee the encapsulation and hiding of information but they
are rigid when used in a design with a degree of complexity. From what has just
been said, it is not unreasonable to foresee constructs such as:

• They permit the encapsulation and hiding of information.
• They are equipped with a mechanism which, under certain conditions, supports

the inheritance of the implementation of certain operations from other, analogous
constructs.

• They are framed in a notion of compatibility defined in terms of the operations
admissible for a certain construct.

• They allow the dynamic selection of operations as a function of the “effective
type” of the arguments to which they are applied.

These four requirements are satisfied by the object-oriented paradigm. Rather, we
can take them as essential characteristics of this paradigm which separates an object-
oriented language from one which is not. We will discuss them in detail after intro-
ducing some basic concepts and once the terminology has been fixed.

10.2 Fundamental Concepts

In this section, we will establish the fundamental concepts which organise the
object-oriented paradigm. We will begin by introducing some terminology and
macroscopic linguistic concepts (object, class, method, overriding, etc.), so that we
can return to the four aspects listed in Sect. 10.1.1. with the aim of discussing them
in more detail. We will take them in the following order:

1. Encapsulation and abstraction.
2. Subtypes, that is a compatibility relation based on the functionality of an object.
3. Inheritance, that is the possibility of reusing the implementation of a method

previously defined in another object or for another class.
4. Dynamic method selection.



282 10 The Object-Oriented Paradigm

Fig. 10.1 An object for a
counter

These are distinct mechanisms, each exhibited on its own by other paradigms. As
will be seen, it is their interaction that makes the object-oriented paradigm so attrac-
tive to software design, even of large systems.

10.2.1 Objects

The principal construct of object-oriented languages is (clearly) that of object.
A capsule containing both data and the operations that manipulate it and which
provides an interface for the outside world through which the object is accessible.
The methodological idea which objects share with ADT is that data should “remain
together” with the operations that manipulate it. There is, then, a big conceptual dif-
ference between them and ADTs (which is translated into a considerably different
notation). Although, in the definition of an ADT, data and operations are together,
when we declare a variable of an abstract type, that variable represents only the data
which can be manipulated using the operations. In our counters example, we can
declare a counter as Counter c and then increment it: inc(c). Each object, on
the other hand, is a container which (at least conceptually) encapsulates both data
and operations. A counter object, defined using the same model as the definition that
we have given for Counter could be represented as in Fig. 10.1.

The figure suggests that we may imagine an object as a record. Some fields cor-
respond to (modifiable) data, for example the c field; other fields correspond to the
operations that are allowed to manipulate the data (that is reset, get and inc).

The operations are called methods (or functional fields or member functions) and
can access the data items held in the object, which are called instance variables (or
data members or fields). The execution of an operation is performed by sending the
object a message which consists of the name of the method to execute, possibly
together with parameters.2 To represent such invocations, we use the Java and C++
notation which reinforces the analogy with records:

object.method(parameters)

2This is mostly Smalltalk terminology. C++ expresses the same thing by saying: calling the mem-
ber function of an object.



10.2 Fundamental Concepts 283

Below, we will often read the above notation as the “invocation of the method
method (with parameters parameters) on the object object” rather than “send-
ing the message method(parameters) to the object object” as would be
formally more precise.

An aspect that is not always clear is that the object receiving the message is, at
the same time, also a(n implicit) parameter to the invoked method. To increment a
counter object, o, which has the structure of Fig. 10.1, we will write o.inc() (“we
ask the object, o, to apply the message inc to itself”). Also, the data members are
accessible using the same mechanism (if they are not hidden by capsule, obviously).
If an object, o, has an instance variable, v, with o.v we request o for the value of v.
While the notation remains uniform, we note that accessing data is a mechanism
that is distinct from that of invoking a method. Invoking a method involves (or can
involve) the dynamic selection of the method that is to be executed, while access to
a data item is static, although there are exceptions to this.

The level of opacity of the capsule is defined when the object is itself created.
Data can be more or less directly accessible from the outside (for example, data
could be directly inaccessible, with the object, instead, providing “observers”—
recall the box on page 269), some operations can be visible everywhere, others
visible to some objects, while, finally, others are completely private, that is avail-
able only inside the object itself.

Together with objects, the languages of this paradigm also make available organ-
isational mechanisms for objects. These mechanisms permit the grouping of objects
with the same structure (or with similar structure). Although it is conceptually per-
mitted that every object truly contains its own data and methods, this would result
in enormous waste. In a single program, many objects would be used which are
differentiated between themselves only by the value of their data and not by their
structure or by their methods (for example, many counters, all analogous to the one
in Fig. 10.1). Without an organisational principle, which makes explicit the simi-
larity of all these objects, the program would loose expository clarity and would be
harder to document. Furthermore, from the implementation viewpoint, it is clear that
it would be appropriate for the code of each method to be stored only once, instead
of being copied inside each object with similar structure. To solve these problems,
every object-oriented language is based on some organisational principles. Among
these principles, the one that is by far the best known is that of classes, although
there is a whole family of object-oriented languages that lack classes (which we
will briefly describe in the box on page 286).

10.2.2 Classes

A class is a model for a set of objects. It establishes what its data will be (type to-
gether with their visibility) and fixes name, signature, visibility and implementation
for each of its methods. In a language with classes, every object belongs to (at least)
one class. For example, an object such as that in Fig. 10.1 could be an instance of
the following class:
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class Counter{
private int x;
public void reset(){

x = 0;
}
public int get(){

return x;
}
public void inc(){

x = x+1;
}

}

It can be seen that the class contains the implementation of three methods which
are declared public (visible to all), while the instance variable x is private
(inaccessible from outside the object itself but accessible in the implementation of
the methods of this class).

Objects are dynamically created by instantiation of their class. A specific object
is allocated whose structure is determined by its class. This operation differs in
fundamental ways from language to language and depends on the linguistic status
of classes. In Simula, a class is a procedure which returns a pointer to an activation
record containing local variables and function definitions (therefore, the objects that
are instances of a class are closures). In Smalltalk, a class is linguistically an object
which acts as a schema for the definition of the implementation of a set of objects.
In C++ and Java classes correspond to a type and all objects that instantiate a class
A are values of type A. Taking this viewpoint in Java, with its reference-based model
for variables, we can create a counter object:

Counter c = new Counter();

The name c, of type Counter, is bound to a new object which is an instance of
Counter. We can create a new object, distinct from the previous one but with the
same structure, and bind it to another name:

Counter d = new Counter();

To the right of the assignment symbol, we can see two distinct operations: the cre-
ation of the objects (allocation of the necessary storage, new constructor) and ini-
tialisation (invocation of the class’ constructor, represented by the name of the class
and parentheses—we will return to this shortly3).

We can certainly assume that the code for methods is stored one time only in its
class and that when an object needs to execute a specific method, this code would
be looked up in the class of which it is an instance. For this to happen, the method
code must correctly access the instance variables which are different for every object

3In C++, unlike Java, it is also possible to create an object without invoking its constructor; C++
in fact allows the creation of objects on the stack (see page 286).
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Fig. 10.2 The implementation of methods is inside classes

and are, therefore, not all stored together in the class but inside the instance (as is
shown graphically in Fig. 10.2). In the figure, the methods of class Counter refer
to its instance variables using the name this. We have already seen that when an
object receives a message requesting the execution of a method, the object itself is
an implicit method parameter. When a reference is made to an instance variable in
the body of a method, there is an implicit reference to the object currently executing
the method. From the linguistic viewpoint, the current object is usually denoted
by a unique name, usually self or this. For example, the definition of the inc
method could be written as follows. Here, the implicit reference to the current object
is made explicit:

public void inc(){
this.x = this.x+1;

}

In the case of a call to a method via this, the link between the method and the
code to which it is referring is dynamically determined. This is an important aspect
of this paradigm and we will discuss it in more detail in Sect. 10.2.6.

Some languages allow some variables and methods to be associated with classes
(and not to their instances). They are called class or static variables and methods.
Static variables are stored together in the class and static methods cannot, obviously,
refer to this in their body because that they have no current object.
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Languages based on Delegation

There also exist object-oriented languages that lack classes. In these languages,
which are based on delegation (or on prototypes), the organising principle (see the
end of Sect. 10.2.1) is not the class, but delegation; that is, the principle that one
object can ask another object (its parent) to execute a method for it. Among these
languages, the progenitor is Self which was developed at Xerox PARC and Stanford
towards the end of the 1980s. Other languages based upon delegation are Dylan, a
language for programming the Apple Newton PDA and on Javascript, which was
designed to be distributed in one of the early versions of Netscape.

The fields of an object can contain values (simple data or other objects) or
methods (that is, code), or references to other objects (the parent of the object). An
object is created from nothing, or more often, by copying (or cloning) another object
(which is called its prototype). Prototypes play the methodological role of classes.
They provide the model for the structuring and functioning for other objects but are
not special objects. Linguistically, they are ordinary objects, which, however, are
used not for computation, but as a model. When a prototype is cloned, the copy
maintains a reference to the prototype as its parent.

When an object receives a message but has no field of that name, it passes the
message to its parent, and the process repeats. When the message reaches an object
that understands it, the code associated with the method is executed. The language
ensures that the reference to self is correctly resolved as a reference to the object
that originally received the message. In general, data in the object is considered
equal to methods. Access to a data item corresponds to sending a message, which
the same object responds by returning the value of the field.

The delegation mechanism (and the unification of code and data) makes inheri-
tance more powerful. It is possible and natural to create objects which share portions
of data (in a language based on classes, this is possible only using static data asso-
ciated with classes; however, such a template is too “static” to be profitably used).
Moreover, an object can change the reference to its parent dynamically and thereby
change its own behaviour.

Objects in the heap and on the stack Every object-oriented language allows the
dynamic creation of objects. Where objects are created depends on the language.
The most common solution is to allocate objects in the heap and access them using
references (which will be real pointers in languages that permit them, but will be
variables if the language supports a reference model). Some languages allow explicit
allocation and deallocation of objects in the heap (C++ is one); others, probably the
majority, opt instead for a garbage collector.

The option of creating objects on the stack like ordinary variables is not very
common. C++ is one such language. When a declaration of a variable of class type
is elaborated, the creation and initialisation of an object of that type is performed.
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The object is assigned as a value to the variable.4 The two operations contributing
to the creation of an object (allocation and initialisation) occur implicitly in cases
where the constructor is not explicitly called. Some languages, finally, allow objects
to be created on the stack and left uninitialised.

In our pseudo-language, we assume that object creation occurs explicitly on the
heap and has a reference-variable model.

10.2.3 Encapsulation

Encapsulation and information hiding represent two of the cardinal points of data
abstraction. From the linguistic viewpoint, there is not much to add to what we have
already said. Every language allows the definition of objects by hiding some part of
them (either data or methods). In every class there are, therefore, at least two views:
private and public parts. In the private view, everything is visible: it is the level of
access possible inside the class itself (by its methods). In the public view, however,
only explicitly exported information is visible. We say that the public information
is the interface to a class, by analogy with ADTs.5

At this level no great difference appear between object-oriented programming
languages and the forms of data abstraction that we have already discussed. The
encapsulation possible with objects, however, is much more flexible and, more im-
portantly, extensible than is possible with ADTs. But this will become clear only at
the end of our examination of the concepts.

10.2.4 Subtypes

A class can be made to correspond, in a natural fashion, with the set of objects
which are instances of that class. This set of objects is the type associated with that
class. In typed languages, this relation is explicit. A class definition also introduces
the definition of a type whose values are the instances of that class. In typeless
languages (like Smalltalk), the correspondence is only conventional and implicit.

Among the types thus obtained, a compatibility relation is defined (Sect. 8.7)
in terms of the operations possible on values of the type. The type associated with
the class T is a subtype of S when every message understood (that is which can be
received without generating an error) from objects of S is also understood by the
objects of T. If an object is represented as a record containing data and functions,6

4Things are clearly different when a variable of type pointer-to-a-class type is declared. In this
case, no object is created (without an explicit request to do so).
5In different languages, the term “interface” means different things. Do not confuse, in particular,
our use of the term “interface” with what is meant by it in Java (where it is a particular language
construct, a sort of class in which the only components are names and method signatures but do
not contain their implementations).
6That is, as a closure.
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the subtype relation corresponds to the fact that T is a record type containing all
fields of S, as well, possibly, other fields. More precisely, taking account of the fact
that some fields of the two types could be private, we might say that T is a subtype
of S when the interface of S is a subset of the interface of T (note the inversion: a
subtype is obtained when we have a bigger interface).

Some languages (like C++ and Java) use a name-based equivalence for types (see
Sect. 8.6) which does not properly extend to a completely structural compatibility
relation. In such languages, it is not, therefore, the only structural property between
interfaces that defines the subtype relation, but it must be explicitly introduced by the
programmer. This is the role of the definition of subclasses, or derived classes, which
in our pseudo-language will be denoted using the neutral extending construct:7

class NamedCounter extending Counter{
private String name;
public void set_name(String n){

name = n;
}
public String get_name(){

return name;
}

}

The class NamedCounter is a subclass of Counter (which, in its turn is a
superclass of NamedCounter),8 that is the NamedCounter type is a subtype of
Counter. Instances of NamedCounter contain all the fields of Counter (even
its private fields, but they are inaccessible in the subclass), in addition to having
new fields introduced by the definition. In this way, structural compatibility can be
guaranteed (a subclass is explicitly derived from its superclass) but this is explicitly
stated in the program.

Redefinition of a method In the simple example of NamedCounter, subclasses
are limited to extending the interface of the superclass. A fundamental characteris-
tic of the subclass mechanism is ability of a subclass to modify the definition (the
implementation) of a method present in its superclass. This mechanism is called
method overriding.9 Our extended counters from Sect. 10.1 can be defined as a sub-
class of Counter as:

class NewCounter extending Counter{
private int num_reset = 0;
public void reset(){

7In place of extending, in C++, we write “: public”, while in Java extends or even im-
plements is used, depending upon whether a class or an interface is being extended.
8In C++, Counter is the base class and NamedCOunter is the derived class.
9Method overriding is a mechanism which interacts in a very subtle way with other aspects of the
object-oriented paradigm, in particular with the dynamic selection of methods; for the time being,
we will note only this possibility, returning to this question in due course.
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x = 0;
num_reset = num_reset + 1;

}
public int howmany_resets(){

return num_reset;
}

}

Class NewCounter simultaneously extends the interface of Counter with
new fields and redefines the reset method. A reset method sent to an instance
of NewCounter will cause the invocation of the new implementation.

Shadowing In addition to modifying the implementation of a method, a subclass
can also redefine an instance variable (or field) defined in a superclass. This mecha-
nism is called shadowing. For implementation reasons (to be seen below), shadow-
ing is significantly different from overriding. For the present, we merely note that,
in a subclass, an instance variable can be redefined with the same name and same
type as that in the superclass. We could, for example, modify our extended counters
using the following subclass of NewCounterwhere, for some (strange) reason, the
initial value of num_reset is initialised to 2 and is incremented by 2 each time:

class EvenNewCounter extending NewCounter{
private int num_reset = 2;
public void reset(){

x = 0;
num_reset = num_reset + 2;

}
public int howmany_resets(){

return num_reset;
}

}

Using the usual notion of visibility in block-structured languages, each reference to
num_reset inside EvenNewCounter refers to the local variable (initialised to
2) and not to the one declared in NewCounter. A reset message sent to an in-
stance of EvenNewCounter will cause the invocation of the new implementation
for reset which will use the new num_reset field. However, as we will see be-
low, there is a big difference, both at the semantic as well as at the implementation
levels, between overriding and shadowing.

Abstract classes For simplicity of exposition, we have introduced the type asso-
ciated with a class as the set of its instances. Many languages, however, permit the
definition of classes that cannot have instances because the class lacks the imple-
mentation of some method. In such classes, there is only the name and the type
(that is, the signature) of one or more methods—their implementation is omitted.
Classes of this type are called abstract classes. Abstract classes serve to provide in-
terfaces and can be given implementations in subclasses that redefines (in this case,
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Subtypes in Smalltalk?

Among the essential characteristics of the object-oriented paradigm, we have in-
cluded subtypes. On the other hand, there are object-oriented languages which do
not have types (at least do not have types over which we can perform any signifi-
cant checking). Smalltalk is one of these languages. How can we have subtypes in a
language without types?

When we gave the definition of subtype, we were careful to include the case
of Smalltalk as well of other untyped languages. Recall that T is a subtype of S
when the interface of S is a subset of the interface of T. That is, when we may
freely use an object of class T (that is without generating errors) in place of one of
class S. This operational definition, which is expressed in terms of the substitution
of objects, makes perfect sense even in an untyped context, once we associate the
set of its instances (its “type”) with the class T.

On the other hand, when in the language there is no linguistic notion of subtype,
it is only in the reflection of the designers that the presence of such a relationship
becomes clear. In particular, in Smalltalk the definition of a subclass does not gen-
erate a subtype because Smalltalk allows subclasses to remove methods from their
superclass.

define for the first time) the method lacking an implementation.10 Abstract classes
also correspond to types and the mechanism that provides implementations for their
methods also generates subtypes.

The subtype relation In general, languages ban cycles in the subtype relation
between classes, that is, we cannot have both A subtype B and B subtype A, unless A
and B coincide. The subtype relation is, therefore, a partial order. In many languages,
this relation has a maximal element: the type of which all other types defined by
classes are subtypes. We will denote such a type with the name Object. Messages
that an instance of Object accepts are fairly limited (it is an object of maximum
generality). We find in general a method for cloning which returns a copy of the
object, an equality method and a few others. Moreover, some of these methods could
be abstract in Object and therefore require redefinition before they can be used.

It can be seen that it is not guaranteed that, given a type A, there exists a unique
type B which is the immediate supertype of A. In the following example:

abstract class A{
public int f();

}

abstract class B{

10A method for which there is only a signature is, in Java, said to be an abstract method; in C++,
it is a pure virtual member function.
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public int g();
}

class C extending A,B{
private x = 0;
public int f(){

return x;
}
public int g(){

return x+1;
}

}

The type C is a subtype of A as well as of B and there is no other type included
between C and the other two. The subtype hierarchy is not a tree in general, but just
an acyclic oriented graph (see Fig. 10.3).

Constructors We have already seen that an object is a complex structure which
includes data and code all wrapped up together. The creation of an object is there-
fore also an operation of a certain complexity which consists of two distinct actions:
first the allocation of necessary memory (in the heap or on the stack) and the proper
initialisation of the object’s data. This last action is performed by the constructor of
the class. That is, by code associated with the class and which the language guar-
antees will execute at exactly the same time the instance is created. The constructor
mechanism is of some complexity because the data in an object consists not only of
that explicitly declared in the class whose instance is being created, but also the data
declared in its superclasses. In addition, more than one constructor is often permit-
ted for a class. We have, therefore, a series of questions about constructors which
can be summarised as the following:

• Constructor selection. When the language permits it, there is more than one con-
structor for a class, so how is the choice made as to which one to use when cre-
ating a specific object? In some languages (for example C++ and Java), the name
of the constructor is the same as the name of the class. Multiple constructors all
have the same name and must be distinguished either by their type or the number
of the arguments or both (they are therefore overloaded, with static resolution).
Since C++ permits the implicit creation of objects on the stack, there are spe-

Fig. 10.3 The subtype
relation is not a tree
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cific mechanisms for selecting the appropriate constructor to use in each case.11

Other languages allow the programmer to choose constructor names freely (but
the constructors remain syntactically distinct from ordinary methods) and require
that every creation operation (our new) is always associated with a constructor.

• Constructor chaining. How and when is the part of object that belongs to the
superclass initialised? Some languages limit themselves to executing the con-
structor of the class whose instance they are constructing. If the programmer in-
tends calling superclass constructors, it must be done explicitly. Other languages
(among them C++ and Java) guarantee, on the other hand, that when an object is
initialised, the constructor for its super class will be invoked (constructor chain-
ing) before any other operations are performed by the constructor specific to the
subclass. Once more, there are many issues which each language has to resolve.
Among these, the two most important are determining which superclass construc-
tor to invoke and how to determine its arguments.

10.2.5 Inheritance

We have seen that a subclass can redefine the methods of its superclass. But what
happens when the subclass does not redefine them? In such cases, the subclass inher-
its methods from the superclass, in the sense that the implementation of the method
in the superclass is made available to the subclass. For example, NewCounter in-
herits from Counter the data item x and methods inc and get (but not reset
which is redefined).

More generally (including in our definition, phenomena also present in class-less
object-oriented languages), we can characterise inheritance as a mechanism which
permits the definition of new objects based on the reuse of pre-existing ones.

Inheritance permits code reuse in an extendable context. By modifying the im-
plementation of a method, a class automatically makes the modification available to
all its subclasses, with no intervention required on the part of the programmer.

Is important to understand the difference between the relation of inheritance and
that of subtype. The concept of subtype has to do with the possibility of using an
object in another context. It is a relation between the interfaces of two classes. The
concept of inheritance has to do with the possibility of reusing the code which ma-
nipulates an object. It is a relation between the implementations of two classes.
We are dealing with two mechanisms which are completely independent, even if
they are often linguistically associated in several object-oriented languages. Both
C++ and Java have constructs which can simultaneously introduce both relations
between the two classes, but this does not mean that the concepts are the same. In
the literature, we sometimes see the distinction between implementation inheritance
(inheritance) and interface inheritance (our subtype relation).

Inheritance and visibility We have already seen that there are two views of each
class: the private and the public, with the latter shared between all the clients of

11The case of a constructor which takes a single object as the argument (a copy constructor in C++
jargon) is especially tricky and the source of many programming errors.
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the class. A subclass is a particular client of the superclass. It uses the methods of
the superclass to extend the functionality of the superclass, but sometimes it has
to access some non-public data. Many languages therefore introduce a third view
of a class: one for subclasses. Taking the term from C++, we can refer to it as the
protected view of a class.12

If the subclass has access to some details of the super class’ implementation, the
subclass depends in a much tighter way on the superclass. Every modification of
the superclass will require a modification of the subclass. From the pragmatic view-
point, this is reasonable only if the two classes are “close” to each other, for example
belonging to the same package. The stronger the pairing of the two classes, the more
the resulting system becomes difficult to modify and maintain. However, making
protected and public interfaces coincide can be too restrictive. We may think of a
class hierarchy providing data structures that gradually become more specialised.
Being able to access the representation of the data structures, the subclass will be
able to implement its own operations in a more efficient way.

Single and multiple inheritance In some languages, a class can inherit from a
single immediate superclass. The inheritance hierarchy is therefore a tree and we say
that the language has single (or simple) inheritance. Other languages, on the other
hand, allow a class to inherit methods from more than one immediate superclass; the
inheritance hierarchy in such a case is an acyclic oriented graph and the language
has multiple inheritance.

There are only a few languages which support multiple inheritance (among which
are C++ and Eiffel), because it presents problems that do not have an elegant solu-
tion at either the conceptual or implementation level. The fundamental problems
relate to name clashes. We have a name clash when a class C simultaneously inher-
its from A and B, which both provide implementation for methods with the same
signature. The following is a simple example:

class A{
int x;
int f(){

return x;
}

}
class B{

int y;
int f(){

return y;
}

}
class C extending A,B{

int h(){
return f();

}
}

12Java also has a protected visibility modifier, which is, though, more liberal than that in C++;
it grants visibility to an entire package and not just to classes.
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Inheritance and Subtypes in Java

The subtype relation is introduced in Java using either the extends clause (to
define subclasses) or the implements clause when a class is declared a subtype
of one or more interfaces (for Java, an interface is a kind of incomplete abstract
class in which only names and method signatures are included—they do not include
implementations). The inheritance relation is introduced with the extends clause
whenever the subclass does not redefine a method and therefore uses an implemen-
tation from the superclass. It should be noted there is never inheritance from an
interface because the interface has nothing to be inherited. The language constrains
every class to having a single immediate superclass (that is a single superclass can
be named in an extends), but allows that a single class (or interface) implements
more than one interface:

interface A{
int f();

}
interface B{

int g();
}
class C{

int x;
int h(){

return x+2;
}

}
class D extends C implements A,B{

int f(){
return x;

}
int g(){

return x+1;
}

}

Java therefore has single inheritance. The inheritance hierarchy is a tree organ-
ised by extends clauses. In addition, the inheritance relation is, in Java, always a
subhierarchy of the subtype hierarchy.

The situation of the example, when at the same time we have inheritance from
superclass and implementation of some abstract interface, is often called mix-in in-
heritance (because the names of the abstract methods in the interface are mixed
in with the inherited implementations). As usual, current terminology is often im-
precise and confuses subtypes with inheritance. In many manuals (and even in the
official definition of Java . . .), it is said that Java has single inheritance for classes,
but multiple inheritance for interfaces. According to our terminology there is no true
inheritance where interfaces are involved.
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Inheritance and Subtypes in C++

The C++ mechanisms that allow for the definition of the inheritance relation, and
those responsible for subtyping, are not independent. The definition of derived
classes (the C++ term for subclass) introduces the inheritance relation. It also in-
troduces a subtype relation when the derived class declares its base class (that is the
superclass) as public; when the base class is not public, the derived class inherits
from the base class but there is not subtype relation.

class A{
public:

void f(){...}
...

}
class B : public A{
public:

void g(){...}
...

}
class C : A{
public:

void h(){...}
...

}

Both classes B and C inherit from A but only B is a subtype of A.
Since the subtype relation follows that of subclass, with the tools seen so far,

we could not introduce an interface subtype, that is, a class derived from a base class
which provides no implementations but just fixes an interface. It is to this end that
C++ introduces the concept of abstract base class, in which some methods need
not have an implementation. In such cases, as with Java interfaces, we can have
subtypes without inheritance.

Which of the two methods named f is inherited in C? We can solve this problem
in three different ways, none of which is totally satisfactory:

1. Forbid name clashes syntactically.
2. Require that any conflict should be resolved by the programmer’s appropriately

qualifying every reference to a name that is in conflict. For example, the body of
h in class C, should be written as B::f() or as A::f(), which is the solution
adopted by C++.

3. Decide upon a convention for solving the conflict, for example favouring the
first-class named in the extending clause.

From the pragmatic point of view, it is possible to give examples of situations
in which any of these solutions is unnatural and counterintuitive. As far as explicit
solution is concerned, it can be seen that the conflict could observed not in C but in
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one of its subclasses (if f is not called inside C). The designer must therefore know
the class hierarchy with some precision. However it might be, in cases like this, it is
methodologically better to redefine f in C. For example:

class C extending A,B{
int f(){

return A::f();
}
int h(){

return this.f();
}

}

such that in the subclasses of C, there are no name clashes.
The most interesting problems of multiple inheritance are present in the so-called

diamond problem. This case arises when a class inherits from two superclasses, each
of which inherits from the same, single superclass. A simple situation of this kind
is the following (the diamond-shaped inheritance hierarchy is shown graphically in
Fig. 10.4).

class Top{
int w;
int f(){

return w;
}

}
class A extending Top{

int x;
int g(){

return w+x;
}

}
class B extending Top{

int y;
int f(){

return w+y;
}
int k(){

return y;
}

}
class Bottom extending A,B{

int z;
int h(){

return z;
}

}

In this case, as well, we have the usual problem of name conflict but it is crucially
the implementation question which is more relevant. That is, devise a technique
allowing the correct and efficient selection of the code for f when this method is
invoked on an instance of class Bottom. We will deal with this in Sect. 10.3.4.
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Fig. 10.4 The Diamond
problem for multiple
inheritance

In conclusion, multiple inheritance is a highly flexible tool for the combination
of abstractions corresponding to distinct functionalities. Some of the situations in
which it works are in reality better expressed using subtype relations (“inheriting”
from abstract classes). There are no simple, unequivocal, and elegant solutions to the
problems that multiple inheritance poses. The cost benefit balance between single
and multiple inheritance is equivocal.

10.2.6 Dynamic Method Lookup

Dynamic method lookup (or dispatch) is the heart of the object-oriented paradigm.
In this, the characteristics that have already been discussed combine to form a new
synthesis. In particular, dynamic method lookup allows compatibility of subtypes
and abstraction to coexist. This is, in particular, something that was seen to be prob-
lematic for abstract data types (page 281).

Conceptually, the mechanism is very simple. We have already seen that a method
defined for one object can be redefined (overridden) in objects that belong to sub-
types of the original object. Therefore when a method, m, is invoked on an object, o,
there can be many versions of m possible for o. The selection of which implemen-
tation for m is to be used in an invocation

o.m(parameters);

is a function of the type of the object receiving the message. Note that what is
relevant is the type of the object which receives the message, not the type of the
reference (or name) to that object (which is instead static information).

Let us give an example in our pseudo-language with classes. Figure 10.5 repeats
the counters discussed in Sects. 10.2.2 and 10.2.4. In the context of these class
declarations, we now execute the following fragment:

NewCounter n = new NewCounter();
Counter c;
c = n;
c.reset();



298 10 The Object-Oriented Paradigm

Fig. 10.5 Two classes for
counters

class Counter{
private int x;
public void reset(){

x = 0;
}
public int get(){

return x;
}
public void inc(){

x = x+1;
}

}
class NewCounter extending Counter{

private int num_reset = 0;
public void reset(){

x = 0;
num_reset = num_reset + 1;

}
public int howmany_resets(){

return num_reset;
}

}

The (static) type of the name c is Counter but it refers (dynamically) to an in-
stance of NewCounter. So it will be the reset method of NewCounter that is
invoked.

The canonical example is the one which (negatively) concluded Sect. 10.1. Both
Counter and NewCounter are stored in a data structure whose type is their su-
pertype:

Counter V[100];

Now we apply the reset method to each:

for (int i=1; i<100; i=i+1)
V[i].reset();

Dynamic lookup assures us that the correct method will be invoked on any counter.
In general, a compiler will be unable to decide what will be the type of the object
whose method will be invoked, hence the dynamicity of this mechanism.

The reader should have noted a certain analogy between overloading and dy-
namic method lookup. In both cases, the problem is the same: that of resolving an
ambiguous situation in which a single name can have more than one meaning. Under
overloading, though, the ambiguity is resolved statically, based on the type of the
names involved. In method lookup, on the other hand, the solution of the problem
is at runtime and makes use of the dynamic type of the object and not of its name.
It is not, however, a mistake to think of method lookup as a runtime overloading
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operation in which the object receiving the message is considered the first (implicit)
argument of the method whose name has to be resolved.13

Is important to observe explicitly that dynamic method lookup is at work even
when a method in an object invokes a method in the same object, as happens in the
next fragment:

class A{
int a = 0;
void f(){g();}
void g(){a=1;}

}
class B extending A{

int b = 0;
void g(){b=2;}

}

Let us now assume that we have an object b which is an instance of B and we
want to invoke on b the method f inherited by b from A. Now, f calls g: which
of the two implementations of g will be executed? Recall that the object which
receives the message is also an important parameter to the method. The call of g in
the body of f can be written more explicitly as this.g(), where, recall, this is
a reference to the current object. The current object is b and therefore the method
which will be invoked is that of class B. It can be seen that, in this way, a call to
a method such as this.g() in the body of f can refer to (implementations of)
methods that are not yet written and which will be available only later through the
class hierarchy. This mechanism, through which the name this becomes bound
dynamically to the current object, is called late binding of self (or of this).

Let us explicitly note that, unlike overriding, shadowing is a completely static
mechanism. Consider, for example, the code:

class A{
int a = 1;
int f(){return -a;}

}
class B extending A{

int a = 2;
int f(){return a;}

}

B obj_b = new B();
print(obj_b.f());
print(obj_b.a);

13The reader will not be surprised if, once more, object-oriented programming jargon contributes
to the confusion. It is not uncommon to hear (and to see written) that dynamic method lookup
permits polymorphism. In our terminology there is no polymorphism because we are not in the
presence of a single, uniform piece of code. It is possible to talk of polymorphism in object-oriented
programming but this has to do with subtypes. We will deal with this in Sect. 10.4.1.
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Dynamic Dispatch in C++

In languages like Java or Smalltalk, each method invocation happens using dynamic
dispatch. C++ has, as design goals, efficiency of execution and compatibility with
C, meaning by this that the use of a C construct in a C++ program must be efficient
as in C.

In C++, we have, therefore, static method dispatch (analogous to function call),
as well as a form of dynamic dispatch which is performed using virtual functions.
When a method (that is a member function in C++ terminology) is defined, it is
possible to specify whether it is a virtual function or not. Only the overriding of
virtual functions is permitted. Dynamic dispatch is performed on virtual member
functions.

Let us note, incidentally, that it is not forbidden to define, in some class, a
function of the same name and signature as a non-virtual function defined in the
superclass. In such a case, we do not have redefinition, but overloading, and this can
be resolved statically by the compiler using the type of the name used to refer to that
object. In the example that follows we declare a class A and a subclass B:

class A{
public:

void f(){printf("A");}
virtual void g(){printf("A");}

}
class B : public A{
public:

void f(){printf("B");}
virtual void g(){printf("B");}

}

If, now, we have a pointer a of type A*, which points to an instance of B,
invocation of the function a->f() prints A, while invocation of the virtual function
a->g() prints B.

A obj_a = obj_b;
print(obj_a.f());
print(obj_a.a);

where print denotes a method which outputs the integer value passed as an ar-
gument. The first two invocations of print produce the value 2 twice, as should
be obvious. The third call will also print the value 2, given that, as already seen
above, the method f has been redefined in class B. In fact the object created (with
new B()) is an instance of B, and hence every access to it, even those through a
variable of type A (as in the case of obj_a), uses the redefined method (which is
obviously using the redefined fields in class B). The last occurrence of print, in-
stead, produces the value 1. In this case, in fact, given that we are not dealing with
the invocation of a method but accessing a field, it is the type of the current reference
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Multimethod languages

In the languages we have considered so far, a method invocation has the form:

o.m(parameters);

Dynamic method lookup uses the run-time type of the object receiving the method,
while uses the static types of the parameters. In some other languages (for example,
CLOS), this asymmetry is removed. Methods are no longer associated with classes
but are global names. Each method name is overloaded by a number of implemen-
tations (which in this case are called multimethods) and the object on which the
method is invoked is passed to every multimethod. When invoking a multimethod,
the code that must be executed is chosen dynamically on the basis of the (dynamic)
type of both the receiver and all the arguments.

In these languages, we speak of multiple dispatch rather than single dispatch
in languages where there exists a privileged receiver.

In languages with multiple dispatch, the analogy between (multiple) dynamic
dispatch and “dynamic overloading” is more evident; multiple dispatch consists in
the (runtime) resolution of an overloading on the basis of dynamic type information.

which determines which field is to be considered. Given that obj_a is of type A,
when we write obj_a.a, the field in question is the one in class A (initialised to
one).

This distinction between overriding and shadowing, is explained at the imple-
mentation level using the fact that the instance object of class B also contains all the
fields of the superclasses of B, as we will make clear in the next section.

10.3 Implementation Aspects

Every language has its own implementation model which is optimised to the specific
features that the language provides. We can, however, indicate some common lines
which indicate the main problems and their solutions.

Objects An instance object of class A can be used as the value of any superclass
of A. particular, it is possible to access not just the instance variables (data fields)
explicitly defined in A, but also those defined in its superclasses. An object can be
represented as if it were a record, with as many fields as there are variables in the
class of which it is an instance, in addition to all those appearing in its superclasses.
In a case of shadowing, or rather when a name of an instance variable of the class
is used with the same type in a subclass, the object contains additional fields, each
one corresponding to a different declaration (often, the name used in the superclass
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Fig. 10.6 A simple implementation of inheritance

is not accessible in the subclass, if not using particular qualifications, for example
super). The representation also contains a pointer to the descriptor of the class of
which it is an instance.

In the case of a language with a static type system, this representation allows
the simple implementation of subtype compatibility (in the case of single inheri-
tance). For each instance variable, the offset from the start of the record is statically
recorded. If access to an instance object of a class is performed using a (static) ref-
erence having as type one of the superclasses of that object, static type checking
ensures that access can be made only to a field defined in the superclass, which is
allocated in the initial part of the record.

Classes and inheritance The representation of classes is the key to the object
orientation abstract machine. The simplest and most intuitive implementation is the
one which represents the class hierarchy using a linked list. Each element represents
a class and contains (pointers to) the implementation of the methods that are either
defined or redefined in that class. The elements are linked using a pointer which
points from the subclass to the immediate superclass. When a method m of an object
o which is an instance of a class C is invoked, the pointer stored in o is used to
access the descriptor of C and determine whether C contains an implementation of
m. If it does not, the pointer is set to the superclass and the procedure is repeated
(see Fig. 10.6). This approach is used in Smalltalk, although it is inefficient because
every method invocation requires a linear scan of the class hierarchy; the advantage
of the technique is its simplicity. We will shortly discuss more efficient implemen-
tations after we have seen how to access instance variables from within a method
invocation.
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Late binding of self A method is executed in a way similar to a function. An
activation record for the method’s local variables, parameters and all the other in-
formation is pushed onto the stack. Unlike a function, though, a method must also
access the instance variables of the object on which it is called; the identity of the ob-
ject is not known at compile time. However, the structure of such an object is known
(it depends on the class) and, therefore, the offset of every instance variable in an
object’s representation is statically known (subject to conditions depending upon
the language). A pointer to the object which received the method is also passed as a
parameter when a method is invoked. During execution of the body of the method,
this pointer is the method’s this. When the method is invoked on the same ob-
ject that invokes it, this still is passed as a parameter. During the execution of
the method, every access to an instance variable uses the offset from this pointer
(instead of having an offset from a pointer into the activation records, as is the case
for local variables of functions). From a logical point of view, we can assume that
the this pointer is passed through the activation record typically with all other pa-
rameters, but this would cause a doubly-indirect access for every instance variable
(one to access the pointer using the activation record pointer and one to access the
variable using this). More efficiently, the abstract machine will maintain the current
value of this in a register.

10.3.1 Single Inheritance

Under the hypothesis that the language have a static type system, the implementation
using linked lists can be replaced by another, more efficient one, in which method
selection requires constant time (rather than time linear in the depth of the class
hierarchy).

If types are static, the set of methods that any object can invoke is known at com-
pile time. The list of these methods is kept in the class descriptor. The list contains
not just the methods that are explicitly defined or redefined in the class but also
all the methods inherited from its superclasses.14 Following C++’s terminology, we
will use the term vtable (virtual function table) to refer to this data structure. Each
class definition has its own vtable and all instances of the same class share the same
vtable. When a subclass, B, of the class A is defined, B’s vtable is generated by
copying the one for A, replacing all the methods redefined in B and adding the new
methods that B defines at the bottom (this is shown in Fig. 10.7).

The fundamental property of this data structure is, that, if B is a subclass of A,
B’s vtable contains a copy of A’s vtable as its initial part; redefined methods are
appropriately modified. In this way, the method invocation costs only two indirect
accesses, the offset of every method in the vtable being statically known. It can be

14We are assuming that dynamic lookup applies to all methods. In cases like C++, where only
virtual methods can be redefined, the descriptor contains only the latter, while ordinary method
calls are treated like normal function calls.
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Fig. 10.7 Implementation of simple inheritance

seen that this implementation obviously takes into account the fact that it is possible
to access an object with a reference that belongs statically to one of its superclasses.
In the example in Fig. 10.7, when method f is invoked, the compiler computes an
offset that remains the same whether f is invoked on an object of class A or on
an object of class B. Different implementations of f defined in the two classes are
located at the same offset into the vtables of A and B.

On the whole, if we have a static reference pa of class A to some object of one of
its subclasses, we can compile a call to method f (which, we assume to be the nth
in A’s vtable) as follows (we have assumed that the address of a method occupies w

bytes):

R1 := pa // access the object
R2 := *(R1) // vtable
R3 := *(R2 + (n − 1) × w) // indirect to f
call *(R3) // call f

Ignoring support for multiple inheritance, this implementation scheme is almost
the same as used in C++.

Downcasting If a class’ vtable also contains the name of the class itself, the im-
plementation we have discussed allows downward casts in the class hierarchy. This
is called downcasting and is a fairly frequently used mechanism. It permits the spe-
cialisation of the type of object by running in the opposite direction to the subtype
hierarchy. A canonical example of the use of this mechanism is found in some li-
brary methods which are defined to be as general as possible. The class Object
might use the following signature to define a method for copying objects:

Object clone(){...}
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The semantics is that clone returns an exact copy of the object which invoked it
(same class, same values in its fields, etc.). If we have an object o of class A, an invo-
cation of o.clone() will return an instance of A, but the static type as determined
by the compiler for this expression is Object. In order to be able meaningfully to
use this new copy, we have to “force” it to type A, which we can indicate with a cast:

A a = (A) o.clone();

By this, we mean that the abstract machine checks that the dynamic type of the
object really is A (in the opposite case, we would have a runtime type error).15

10.3.2 The Problem of Fragile Base Class

In the case of simple inheritance, the implementation of the mechanism described
above is reasonably efficient, given that all the important information, except the
this pointer is statically determined. This staticity, though, can be shown to be the
source of problems in a context known as the fragile base class problem.

An object-oriented system is organised in terms of a very large number of classes
using an elaborate inheritance hierarchy. Often some of these general classes are
provided by libraries. Modifications to a class located very high in the hierarchy,
can be felt in its subclasses. Some superclasses can, therefore, behave in a “frag-
ile” manner because an apparently innocuous modification to the superclass can
cause the malfunctioning of subclasses. It is not possible to identify fragility by
analysing only the superclass. It is necessary to consider the entire inheritance hier-
archy, something which is often impossible because whoever wrote the superclass
generally does not have access to all subclasses. The problem can arise for a number
of reasons. Here, we will only distinguish two main cases:

• The problem is architectural. Some subclass exploit aspects of the superclass’ im-
plementation which have been modified in the new version. This is an extremely
important problem for software engineering. It can be limited by reducing the
inheritance relation in favour of the subtype relation.

• The problem is implementational. The malfunctioning of the subclass depends
only on how the abstract machine (and the compiler) has represented inheritance.
This case is sometimes referred to as the problem of fragile binary interface.

In this text, the first case is not our main interest; the second is. A typical case
shows up in the context of separate compilation where a method is added to a su-
perclass, even if the new method interacts with nothing else. Starting from the fol-
lowing:

15This is Java notation. C++ allows the same notation to be used but, for compatibility with C, it
accepts the expression at compile time without introducing dynamic checks. A cast with dynamic
checks would be written dynamic_cast<A*>(o) in C++.
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class Upper{
int x;
int f(){..}

}
class Lower extending Upper{

int y;
int g(){return y + f();}

}

the super class is modified as:

class Upper{
int x;
int h(){return x;}
int f(){..}

}

If inheritance is implemented as described in Sect. 10.3.2, the subclass Lower
(which is already compiled and linked to Super) ceases to function correctly be-
cause the offset used to access to method f has been changed, since it is determined
statically. To solve this problem it is necessary to recompile all the subclasses of the
modified classes, a solution which is not always easy to perform.

To obviate this question, it is necessary to compute dynamically the offset of
methods in the vtable (and also the offset of instance variables in the representation
of objects), in some reasonably efficient manner. The next section describes one
possible solution.

10.3.3 Dynamic Method Dispatch in the JVM

In this section we present a simple description of the technique used by the Java vir-
tual machine (JVM), the abstract machine which interprets the intermediate (byte-
code) language generated by the standard Java compiler. For reasons of space, we
cannot go into the details of the JVM’s architecture; we note that it is a stack-based
machine (it does not have user-accessible registers and all operation operands are
passed on a stack contained in the activation record of the function that is currently
being executed). The JVM has modules for checking operation security. We limit
ourselves to discussing the broad outlines of the implementation of inheritance and
method dispatching.

In Java, the compilation of each class produces a file which the abstract ma-
chine loads dynamically when the currently executing program refers to the class.
This file containing a table (the constant pool) for symbols used in the class itself.
The constant pool contains entries for instance variables, public and private meth-
ods, methods and fields of other classes used in the body of methods, names of
other classes mentioned in the body of the class etc. With each instance variable
and method name is recorded information such as the class where the names are
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defined and their type. Every time that the source code uses the name, the interme-
diate code of the JVM looks up the index of that name in the constant pool (to save
space—it does not look up the name itself). When, during execution, reference is
made to a name for the first time (using its index), it is resolved using the informa-
tion in the constant pool, the necessary classes (for example the one in which the
names are introduced) are loaded, visibility checks are performed (for example the
invoked method must really exist in the class referring to it, is not a private, etc.);
type checks are also performed. At this point, the abstract machines saves a pointer
to this information so that the next time the same name is used, it is not necessary
to perform resolution a second time.

The representation of methods in a class descriptor can be thought of as being
analogous to that in the vtable.16 The table for a subclass starts with a copy of the
one for its superclass, where redefined methods have their new definitions instead
of the old ones. Offsets, however, are not statically calculated. When a method is
to be executed, four main cases can be distinguished (which correspond for distinct
bytecode instructions):

1. The method is static. This is for a method associated with a class and not an
instance. No reference (explicit or implicit) can be made to this.

2. The method must be dispatched dynamically (a “virtual” method).
3. The method must be dispatched dynamically and is invoked using this (a “spe-

cial” method).
4. The method comes from an interface (that is from a completely abstract class

which provides no implementation—an “interface” method).

Ignoring the last case for the moment, the 3 other cases can be distinguished pri-
marily by the parameters passed to the method. In the first case, only the parameters
named in the call are passed. In the second case, a reference is passed to the object
on which the method is called. In case 3, a reference to this is passed. Let us
therefore assume that we can invoke method m on object o as:

o.m(parameter)

Using the reference to o, the abstract machine accesses the constant pool of its
class and extracts the name of m. At this point, it looks up this name in the class’
vtable and determines its offset. The offset is saved in case of a future use of the
same method on the same object.

However the same method could also be invoked on other objects, possibly be-
longing to subclasses of the one which o belongs to (e.g., a for loop in whose body
a call to m is repeated on all the objects in an array). To avoid calculating the offset
each time (which would be the same independent of the effective class of which the

16In reality, the specification of the JVM does not prescribe any particular representation and limits
itself to requiring that the search for the method to be executed is semantically equivalent to the
dynamic search for the method name in the list of subclasses described above. The most common
implementation, however, is of a table that is very similar to the vtable.
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method m is called on is an instance), the JVM interpreter uses a “code rewrite” tech-
nique. It substitutes for the standard lookup instruction generated by the compiler
an optimised form which takes as its argument the offset of the method in the vtable.
In order to fix ideas (and simplifying a great deal), when translating the invocation
of a virtual method m, the compiler might generate the byte code instruction:

invokevirtual index

where index is the index of the name m in the constant pool. During execution of
this instruction, the JVM interpreter calculates the offset d of m in its vtable and
replaces the instruction above with the following:

invokevirtual_quick d np

Here, np is the number of the parameters that m expects (and which will be found
on the stack that is part of its activation record). Every time that the flow of control
returns to this instruction, m is invoked without overhead.

There remains the case of the invocation of an interface method (that is, case 4
above). In this case, the offset might not be the same in 2 invocations of the same
method on objects in different classes. Consider the following situation (in which
we use Java syntax rather than pseudocode):

interface Interface{
void foo();

}
public class A implements Interface{

int x;
void foo(){...}

}
public class B implements Interface{

int y;
int fie(){...}
int foo(){...}

}

Both A and B implement Interface and therefore are its subtypes. The offset
of foo is different in the two classes, though. Consider our usual loop:

Interface V[10];
...
for (int i = 0; i<10; i=i+1)

V[i].foo();

At runtime, we do not know whether the objects contained in V will be instances of
A, B or some other class which implements Interface. The compiler could have
generated the JVM instruction for the body of loop:

invokeinterface index, 0
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(the 0 serves to fill a byte that will be used in the “quick” version). It would not be
correct directly to replace this instruction by a “quick” version which returns only
the offset because changing the object could also change the class of which it is an
instance. What we can do is to save the offset but we cannot destroy the original
name of the method; we thus rewrite the instruction as:

invokeinterface_quick nome_di_foo, d

Here name_of_foo is suitable information with which to reconstruct the name
and the signature of foo; d is the offset determined beforehand. When this instruc-
tion is executed again, the interpreter accesses the vtable using the offset d and
checks that there is a method with the requested name and signature. In the positive
case, it is invoked; in the negative case, it searches for the method by name in the
vtable, as it would were this the first time it had been seen, and determines a new
offset d′, then writes this value in the code in place of d.

10.3.4 Multiple Inheritance

The implementation of multiple inheritance poses interesting problems and imposes
a non-negligible overhead. The problems are of 2 orders: on the one hand, there is
the problem of identifying how it is possible to adapt the vtable technique to handle
method calls; on the other (and the problem is more interesting and also has an
impact on the language) there is the need to determine what to do with the data
present in the superclasses. This will lead to 2 different interpretations of multiple
inheritance, which we can refer to as replicated and shared inheritance. We will take
these problems successively.

Vtable Structure We will consider the example in Fig. 10.8. It is clear that is not
possible to organise the representation of an instance of C, nor a vtable for C in such
a way that the initial part coincides with the corresponding structure in both A and B.

In order to represent an instance of C, we may begin with the fields of A and
add then the fields of B. Finally, we need to list the fields specific to C (Fig. 10.9).
We know that, using the subtype relation, we can access an instance of C using
a static reference to any of the three types A, B and C. There are 2 distinct cases
corresponding to the 2 different views of an instance of C. If it is an access with a
static reference of type C or of type A, the technique described for simple inheritance
works perfectly (except that the static offsets of the real instance variables in C must
take into account the fact that the static variables belonging to B are in the middle).

When, on the other hand, an instance of C is seen as an object of B, it is necessary
to take into account the fact that the variables of B are not at the start of the record
but at a distance, d , from its start that is statically determined. When, therefore, we
access an instance of C through a reference with static type B, it is necessary to add
the constant, d , to the reference.
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Fig. 10.8 An example of
multiple inheritance

class A{
int x;
int f(){

return x;
}

}
class B{

int y;
int g(){

return y;
}
int h(){

return 2*y;
}

}
class C extending A,B{

int z;
int g(){

return x + y + z;
}
int k(){

return z;
}

}

Similar problems arise for the structure of the vtable. A vtable for C is divided
into two distinct parts: the first contains the methods of A (possibly as redefinitions)
and the methods really belonging to C. A second part comprises the methods of
B, possibly with their redefinitions. In the representation of an instance object of
C, there are two pointers to the vtable. Corresponding to the “view as A and C”, it
will have pointers to the vtable with methods from A and C. Corresponding to the
“view as B”, it will have pointers to the vtable with the methods of B (note that this
is a vtable for class C; the class B has another vtable, which is used for its own
instances. In general, every superclass of a class under multiple inheritance has its
own special part in the vtables of its subclasses). Invocation of a method belonging
to C, or which was redefined or inherited from A, follows the same rules as simple
inheritance. To invoke a method inherited (or redefined) from B, the compiler must
take into account that the pointer to the vtable for this method does not reside at
the beginning of the object but is displaced by d positions. In the example in the
figure, to call the method h of an instance of C seen as an object of type B (of which
we have therefore a static name, pb): add d to the reference pb; using an indirect
access, obtain the address of the start of the second vtable (that for B), then using the
appropriate static offset invoke method h. This call needs one additional operation
(the first add) in addition to that required for simple inheritance.

We have, however, neglected the binding for this. Which current-object refer-
ence should we pass to the methods of C? If we are dealing with methods in the
first vtable (to which access is performed using a this which points to the start
of the object, that is with the “A and B view”), it is necessary to pass the current
value of this. This would be wrong for methods in the second vtable (to which
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Fig. 10.9 Representation of
objects and vtables for
multiple inheritance

access is performed using the pointer to this plus the offset d), however. We must
distinguish two cases:

• The method is inherited from B (the case of h in the figure). In such a case, it is
necessary to pass the view of the object through which we have found vtable.

• The method is redefined in C (the case with g). In this case, the method might
refer to instance variables of A, and so it is necessary to pass it a view of the
superclass.

The situation is awkward because dynamic method lookup requires that this cor-
rection of the value of this is done at runtime. The simplest solution is to store this
correction in the vtable, together with the name of the method. When the method
is invoked, this correction will be added to the current value of this. In our ex-
ample, the corrections are shown in Fig. 10.9 next to the name of the associated
method. The correction is added to the view of the object through which the vtable
was found.

Overall, if we have a reference, pa, to a view of class C of some object, we can
compile a call to method h (which we can assume to be the nth in the vtable of B)
as follows (the address of a method and the correction each occupy w bytes):

R1 := pa // view A
R1 := R1 + d // view B
R2 := *(R1) // vtable for B
R3 := *(R2 + (n − 1) × 2 × w) // address of h
R2 := *(R2 + (n − 1) × 2 × w + w) // correction
this := R1 + R2
call *(R3) // call h

We have three instructions and an indirect access in addition to the sequence for
calling a method using single inheritance.

Replicated multiple inheritance The preceding subsection has dealt with the
case in which a class inherits from 2 superclasses. These superclasses, however,
can themselves inherit from a common superclass, producing a diamond, as we dis-
cussed in Sect. 10.2.5:
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class Top{
int w;
int f(){

return w;
}

}
class A extending Top{

int x;
int g(){

return w+x;
}

}
class B extending Top{

int y;
int f(){

return w+y;
}
int k(){

return y;
}

}
class Bottom extending A,B{

int z;
int h(){

return z;
}

}

The instances and the vtable for A have a initial part that is a copy of the structure
corresponding to Top. The same is the case for instances and the replicated vtable
for B. Under replicated multiple inheritance, Bottom is constructed using to the
approach we have already discussed, and therefore consists of two copies of the
instance variables and methods of Top, as shown in Fig. 10.10.

The implementation does not pose other problems in addition to those already
discussed. Name conflicts must be resolved explicitly (in particular it will not be
possible to invoke the method f of Top on an object of class Bottom, nor assign
an instance of Bottom to a static reference of type Top, because we would not
know which of the two copies of Top to choose).

Shared multiple inheritance Replicated multiple inheritance is not always the
conceptual solution which a software engineer has in mind when designing a di-
amond situation. When the class at the bottom of the diagram contains a single
copy of the class at the top, we speak of replicated multiple inheritance. In such a
case both A and B possess their own copy of Top, but Bottom has only one copy
of it.

C++ allows shared inheritance using virtual base classes. When a class is defined
as virtual, all of its subclasses always contain of a single copy of it, even if there
is more than one inheritance path, as there is in the case of the diamond. With this
mechanism, a class is declared virtual or nonvirtual once and for all. If we have a
non-virtual class and, later, we discover that we require inheritance with sharing,
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Fig. 10.10 Implementation of replicated multiple inheritance

there is nothing else to do but to rewrite the class and recompile the entire system.
Worse, a class is virtual for all its subclasses, even if in some cases we wish that it
were virtual for some and nonvirtual (that is replicated) for others. In such cases, it
is necessary to define two copies of the class, one virtual and the other non virtual.

With inheritance with sharing there is usually a name-conflict problem. The prob-
lem is solved in arbitrary ways by different languages. In C++, for example, in the
case of a virtual base class method that is redefined in a subclass, it is required that
there is always a redefinition that dominates all the others in the sense that it appears
in a class that is a subclass of all the other classes where this method is defined. In
our example, for method f, the dominant redefinition is the one in class B. It is
therefore the one inherited by Bottom. If both of the classes A and B redefine f,
the definitions of these classes would be illegal in C++ because there would not be
a dominant redefinition. Other languages allow inheriting classes to choose along
which path the method is to be inherited; alternatively, they permit a complete qual-
ification of names so as explicitly to choose the desired method. As usual, when
dealing with multiple inheritance, there is no elegant solution that is clearly better
than any other.

We now come to the implementation of the vtable for shared multiple inheritance.
In Fig. 10.11, the implementation used in C++ is depicted schematically. C++ is a
language in which a virtual class is shared by all of its subclasses. Since Bottom
contains a single copy of Top, it is no longer possible to represent sub- and super-
class in a contiguous way. To each class in the diamond there corresponds a specific
view of the object. Corresponding to each view, there is both a pointer to the cor-
responding vtable, and a pointer to the shared part of the object. Access to instance
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Fig. 10.11 Implementation of multiple inheritance with sharing

variables and methods of Bottom, A and B is the same as in the case of multiple
inheritance without sharing. To access instance variables, or to invoke a method of
Top, a preliminary indirect access instead is required (let us assume that f is the
nth method of the vtable for Top and every address is w bytes wide):

R1 := pa // view Bottom
R1 := *(R1 + w) // view Top
R2 := *(R1) // vtable for Top
R3 := *(R2 + (n − 1) × 2 × w) // address of f
R2 := *(R2 + (n − 1) × 2 × w + w) // correction
this := R1 + R2
call *(R3) // call h

The value necessary to correct the value of this is the difference between the view
of the class in which the method is declared and the view of the class in which it is
redefined.

Languages which allow more elaborate situations (for example, a single super-
class is replicated in some classes and shared in others) require more sophisticated
techniques that we cannot explain in this book.

10.4 Polymorphism and Generics

Having studied the characteristic aspects of the object-oriented paradigm and its
associated implementations, in this section we will discuss the concept of subtype,
in particular the relations between polymorphism and generics. We will begin the
discussion in a general fashion; later, we will go into detail on generics in Java
(which supports them in a very flexible manner).
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10.4.1 Subtype Polymorphism

We introduced the concept of polymorphism in Sect. 8.8, where we also distin-
guished between two radically different forms of it: overloading (or ad hoc poly-
morphism) and universal polymorphism (where a single value has an infinite num-
ber of different types obtained by instantiating a general type scheme). We have also
seen the concept of subtype polymorphism: a value exhibits subtype polymorphism
when it has an infinite number of different types which are obtained by instantiating
a general type scheme, substituting for some parameter the subtypes of an assigned
type.

When a language has a structural notion of compatibility between types, as a
relationship of some kind between classes, it is clear that there is a form of poly-
morphism, even though it is not as completely general as universal parametric poly-
morphism. For the subtype relation, each instance of a class A has, as type, all the
superclasses of A. This property is particularly interesting in the case of methods.
Let us consider a method (for simplicity we will restrict the discussion to a method
with a single argument):

B foo(A x){...}

By virtue of subtype compatibility, foo can receive as an argument a value of any
subclass of A. The code for foo does not need to be adapted to specific subclasses.
The structure of classes (and the associated implementations) ensure that an opera-
tion that can be performed on values of type A can also be performed on values of its
subclasses. The reader will certainly recognize polymorphism here. We are dealing
with subtype polymorphism because it is not completely general but is limited to
subtypes of A.

Using the symbol “<:” (introduced in Sect. 8.8) to denote the subtype relation,
we can read C<:D as “C sub D” (C is a subtype of D). We also use the concept of
universal quantification introduced in the box on page 239. With these notations, we
can write the type of method foo as:

∀T<:A.T->B

which expresses the fact that this method can be applied to a value of any subclass
whatsoever of A. This is a form of implicit subtype polymorphism because instanti-
ation occurs automatically when the method is applied to a value of the subclass.

In reality, the notation that we are using is much more expressive than the pseudo-
language that we have used so far. Let us consider a very simple method that returns
its argument, of class A:

A Ide(A x){return x;}

From the semantic viewpoint, we can say that Ide has the type:

∀T<:A.T->T
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Fig. 10.12 Stack class based
on Object

class Elem{
Object info;
Elem prox;

}
class Stack{

private Elem top = null; // empty stack
boolean isEmpty(){

return top==null;
}
void push (Object o){

Elem ne = new Elem();
ne.info = o;
ne.prox = top;
top = ne;

}
Object pop() {

Object tmp = top.info;
top = top.prox;
return tmp;

}
}

because it returns unaltered the object passed as its argument. However, assuming
that C<:A and that c is an instance of C, the following assignment would be rejected
by a static type checker:

C cc = Ide(c);

notwithstanding the fact that it is perfectly sensible from a semantic viewpoint. The
point is that common languages have a type system that is incapable of recognizing
that ∀T<:A.T->T is a correct typing for Ide (as the ML typing system would
do, see box on page 243), nor do they have a linguistic mechanism with which the
programmer can express that the result type of a method depends on the argument
type. However, this argument guarantees that the dynamic correction of a downcast:

C cc = (C) Ide(c);

will never cause runtime type errors.
The notation that we have used for types, in summary, allows us to express rela-

tionships between the type of the argument and the result type which are not possible
in our pseudo-language (nor in the fragment of C++ or Java that we have analysed
so far).

Before looking at a way in which the language can be extended, we give another,
more meaningful, example of this limited form of polymorphism which it is possi-
ble through the tools we have developed so far. We want to implement a stack of
elements represented as a linked list of elements. We do not immediately wish to
fix the type of the objects that will appear in the list, so we declare them to be of
type Object. Figure 10.12 shows one possible definition for a Stack class which
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contains generic elements. What interests us is that the pop method returns an Ob-
ject (and can do nothing else, given that we have not made any assumptions about
the type of the stack’s elements). Now we can use our stack, but we must exercise
some care. Let C be any class:

C c;
Stack s = new Stack();
s.push(new C());
c = s.pop(); // type error

The last line is incorrect because we are seeking to assign an Object to a vari-
able of type C. It is it is necessary to force the assignment with a (dynamically
checked) cast:

c = (C) s.pop(); // dynamic check

After these examples, we may recall what we said in Sect. 8.2.1: languages usu-
ally impose restrictions on the types which are stricter than those which are seman-
tically reasonable, so that they can guarantee efficient static checking. The next sec-
tion, however, will discuss language extensions which allow more powerful explicit
subtype polymorphism.

10.4.2 Generics in Java

In Sect. 8.7, we discussed the concept of the C++ template. A program fragment
where some types are indicated by parameters, which can then be appropriately in-
stantiated by “concrete” types. This leads to an interesting form of polymorphism.
Java introduces a similar concept (but with very different potential and implementa-
tion), giving it the name generic. This Java construct will be presented in this section
with the objective of discussing its relationship with subtyping.

In Java, type definitions can be generic (that is, classes and interfaces can be
generic), as well as methods. The syntax used is similar to that in C++ and uses angle
brackets to denote parameters. Figure 10.13 shows the generic version of Fig. 10.12.
The type <A> is the formal type parameter of the generic declaration and will have
to be a instantiated later. A specific version of Stack is obtained by specifying
which types must be substituted for A. For example stacks of strings or integers
(Integer is a class which allows us to see an integer as an object and is different
from the type int, which is formed of ordinary integers):

Stack<String> ss = new Stack<String>();
Stack<Integer> si = new Stack<Integer>();
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class Elem<A>{
A info;
Elem<A> prox;

}
class Stack<A>{

private Elem<A> top = null; // empty stack
boolean isEmpty(){

return top==null;
}
void push (A o){

Elem<A> ne = new Elem<A>();
ne.info = o;
ne.prox = top;
top = ne;

}
A pop() {

A tmp = top.info;
top = top.prox;
return tmp;

}
}

Fig. 10.13 Classes for a generic stack

Fig. 10.14 Generic pairs class Pair<A,B>{
private A a;
private B b;
Pair(A x, B y){ // constructor

a=x; b=y;
}

A First(){
return a;
}

B Second(){
return b;
}

}

The types which are supplied as the actual parameters must be class or array
types.17 The dynamic cast which had to be added in the non-generic version is now
no longer necessary:

Stack<String> ss = new Stack<String>();
ss.push(new String("pippo"));
String s = ss.pop();

Figure 10.14 shows another simple example, this time of pairs of elements of any
two types. A pair can obviously be instantiated by specific types:

17They must be reference types for implementation reasons that we have indicated on page 242.
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Integer i = new Integer(3);
String v = new String ("pippo");
Pair<Integer,String> c = new Pair<Integer,String>(3,v);
String w = c.Second();

Methods too can be generic. Let us assume, for example, that we wanted to define
a method for constructing diagonal pairs (that is with two identical components).
A first attempt might be one using the subtype polymorphism already present in the
language, so we define:

Pair<Object,Object> diagonal(Object x){
return new Pair<Object,Object>(x,x);

}

However, in a way similar to the pop method above, if we apply diagonal to
a string, the result is just a pair of Objects and not Strings:

Pair<Object,Object> co = diagonal(v);
Pair<String,String> cs = diagonal(v); // compilation error

It is necessary to parameterise the definition of diagonal, in particular the type
of its result, as a function of the type of the argument:

<T> Pair<T,T> diagonal(T x){
return new Pair<T,T>(x,x);
}

The first pair of angle brackets introduces a type variable, the (formal) parameter to
be used in the definition of the method. The reader will have recognized that <T>
is a universal quantifier written using a different notation. The definition states that
diagonal has type:

∀ T.T->Coppia<T,T>.

Our diagonal can also be used without explicit instantiation:

Pair<Integer,Integer> ci = diagonal(new Integer(4));
Pair<String,String> cs = diagonal(new String("pippo"));

The compiler performs a genuine type inference (Sect. 8.8), in general more com-
plex than the elementary one required in the example. In our case, it determines that
in the first call T must be replaced by Integer, while in the second, by String.

A very important aspect of the type parameters (either in the type or method
definition) is that they can have bounds. That is, they can specify that only a subtype
of some classes is permitted. Let us illustrate this feature using an example.

Assume we have available an interface for geometric shapes which can be drawn.
Then we have different specific classes which implements it:
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interface Shape{
void draw();

}
class Circle implements Shape{

...
public void draw(){....}

}
class Rhombus implements Shape{

...
public void draw(){....}

}

Let us now make use of a standard Java library (java.util). We have a list
of shapes, that is objects of type List<Shape> and want to invoke the design
method on each element of the list. The first idea will be to write18

void drawAll(List<Shape> forms){
for(Shape f : forms)

f.draw();
}

The definition is correct, but the method can be applied only to arguments which
are of type List<Shape> (and not, for example, to List<Rhombus>). The rea-
son is that the type List<Rhombus> is not a subtype of List<Shape>, for
reasons that we will discuss shortly in Sect. 10.4.4.19

To obviate the problem, we can make the definition of the drawAll method
parametric. Clearly, we cannot allow as arguments an arbitrary list because it must
have to be composed of elements on which to call the draw method. The language
allows us to specify this fact in the following way:

<T extends Shape> void drawAll(List<T> forms){
for(Shape f : forms)

f.draw();
}

In this case, the formal type parameter is not an arbitrary type, but a type which
extends Shape (here “extends” is used as a synonym of “is a subtype of”; by this,
Shape extends itself). Using our notation of universal quantification, the type of
drawAll becomes:

∀ T<:Shape.List<T> -> void

18The body the method is an example of a for-each (see Sect. 6.3.3), an iterative construct which
applies the body to all elements of the collection (list, array, etc.). In this case, for every f, in
forms, it calls the method draw.
19For the moment, the reader must content themselves by knowing that, if A<:B and Def-
Para<T> is any parametric type definition (like List<T>), DefPara<A> and DefPara<B>
are unrelated in the subtype hierarchy.



10.4 Polymorphism and Generics 321

Now drawAll can be called on a list whose elements belong to any subtype of
Shape (Shape is obviously a subtype of itself):

List<Rhombus> lr = ...;
List<Shape> lf = ...;
drawAll(lr);
drawAll(lf);

The bound mechanism for type variables is fairly sophisticated and flexible. In
particular, a type variable can appear in its own bound. We restrict ourselves to a
single example of this case, and we refer the reader to the bibliography for a deeper
discussion.20

The elements of a class are comparable if the class implements the Compara-
ble interface. We want to define a method which, given a list of elements of generic
type as its argument, returns the maximum element of this list. What is the signature
we can give to this max method? A first attempt is:

public static <T extends Comparable<T>>
T max(List<T> list)

This expresses the fact that the elements of the list must be comparable with
elements of the same type. We now try to use max. We have a type Foo which
allows us to compare objects:

class Foo implements Comparable<Object>{...}
List<Foo> cf = ....;

We now invoke max(cf): each element in cf (is a Foo and therefore) is com-
parable with any object, in particular with every Foo. But the compiler signals an
error, because Foo does not implement Comparable<Foo>. In reality it is suffi-
cient that Foo is comparable with one of its own supertypes:

public static <T extends Comparable<? super T>>
T max(List<T> list)

Now, under the same conditions as before, Max(cf) is correct because Foo
implements Comparable<Object>.

10.4.3 Implementation of Generics in Java

Unlike templates in C++, which are resolved at link time using code duplication
and specialisation, Java generics always exist in a single copy. In this way, the idea

20The possibility that a type variable appears in its own bound is known in the literature as F-
bounded polymorphism and is used in particular for typing binary methods, that is methods which
have a parameter of the same type as the object which receives the method.
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Wildcard

The drawAll method could be written in a more compact and elegant way using
wildcards. The “?” character (which is read “unknown”) stands for any type and
can be used in generic definitions. For example, a value of type List<?> is a list
of elements whose type is unknown. It might be thought that writing List<?>
is the same thing as writing List<Object> but this is not the case because
List<Object> is not a supertype, for example, of List<Integer>, while
List<?> is really the supertype of all types List<A> for all A.

Using wildcards, the method drawAll could be written:

void drawAll(List<? extends Shape> forms){
for(Shape f : forms)

f.draw();
}

In general, every wildcard can be always replaced by an explicit parameter. From the
pragmatic viewpoint, for code clarity, a wildcard will be used where the parameter
would be used only once (as in the case of drawAll), while an explicit parameter
should be used when the type variable is used more than once (as in the case of
diagonal, where the variable is used in the method’s result type).

If two wildcards appear in the same construct, they must be considered distinct
variables.

in parametric polymorphism that there exists a single value (a single class, a single
method, etc.) which belongs to many different types (and, in the case of methods,
works uniformly on different types) is respected by the implementation.

Generics are implemented by the compiler using an erasure mechanism. A pro-
gram which contains generics is first subjected to type checking. When this static
semantic checking has determined that everything is correct, the original pro-
gram is transformed into a similar one in which all generics have been removed.
All the information between angle brackets is eliminated (for example, every
List<Integer> becomes List). All the other uses of type variables are re-
placed by the upper limit of the same variable (in general, this means Object).
In the end, if, after these transformations, the cancelled program is incorrect with
respect to types, appropriate (dynamic) casts are inserted. With this procedure, the
use of generics does not worsen the code (in the majority of cases), either in terms
of size or execution time. Perhaps more important are the other two consequences
of this implementation:

• The underlying abstract machine (the JVM) requires no modification. The addi-
tion of generics does not imply modifications that need to be implemented on
different architectures, but is localised to the compiler.

• It is possible to mix generic and non-generic code in a relatively simple way and,
above all, in a way that is safe. Possible holes in the static type system that might
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be locally produced by the simultaneous use of generic and non-generic code will
be detected at runtime by the effect of the dynamic casts inserted by the compiler
during the erasure process.

10.4.4 Generics, Arrays and Subtype Hierarchy

We have already observed that in Java, a generic type definition DefPara<T>
does not preserve the subtype hierarchy. For any 2 types A and B, with A<:B, Def-
Para<A> and DefPara<B> are not related in the subtype hierarchy. We want now
to clarify some of the reasons for this choice and we will consider the contrasting
behaviour that Java exhibits for arrays: if A<:B, A[] is a subtype of B[]! After
all, arrays are a primitive form of generic construct (the unique construct “array”
is specialised to arrays of specific type). Why do the 2 mechanisms behave in such
different ways?

We begin by discussing why generic definitions do not preserve subtypes. Let us
consider the following fragment which uses the generic definitions from Fig. 10.13:

Stack<Integer> si = new Stack<Integer>();
Stack<Object> so = si; // Incorrect in Java

Let us assume, contrary to the facts, that generic definitions preserve types, that is
that Stack<Integer> <: Stack<Object>. The second line of the fragment
is now legal. We have two different references (and of different types) to a single
stack (integers). Let us continue our code:

so.push(new String("pluto"));
Integer i = si.pop(); // danger!

Under these hypotheses, both lines are type correct. Since so is a stack of Object,
we can store any object at all in it, for example a string. On the other hand, since si
is a stack of integers, by randomly selecting an element, an integer is obtained. But
this amounts to a clear violation of type security. Since the source of the problem is
that Stack<Integer> <: Stack<Object>, it is just this relation that must
be abandoned. The type Stack<Object> is therefore not the common supertype
of all specific stacks Stack<A>. On the other hand, the pragmatics suggests that
such a supertype must exist in the language, because otherwise too many program-
ming examples would be difficult, if not impossible, to write. It is for this reason
that the wildcard (“?”) was introduced. Stack<?> is the supertype of every spe-
cific stack.

The intuitive idea that A <: B implies that DefPara<A> <: DefPara<B>
is erroneous because it does not take into account the fact that collections can change
in time. Once a Stack<Integer> has become a Stack<Object>, it is no
longer possible to check statically that its modifications are consistent with its orig-
inal structure.
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Co- and Contravariant Functions

Let D be a set on which a pre-order, written as ≤ (recall the box on page 231), is
defined. A function f : D → D is covariant when f respects the pre-order, that
is x ≤ y implies that f (x) ≤ f (y). A function is contravariant, whenever the pre-
order is reversed, that is x ≤ y implies f (x) ≥ f (y).

If the relation is a partial order, the most common terminology in mathemat-
ics is that of a monotone increasing function (for covariant) and anti-monotone, or
monotone decreasing (for contravariant). In the context of types and subtypes, the
covariant-contravariant terminology is always used (it is taken from category the-
ory).

Now we come to the problem of arrays. If we substitute arrays for stacks in our
fragment of a few paragraphs ago, we obtain, mutatis mutandis:

Integer[] ai = new Integer[10];
Object[] ao = ai; // correct: Integer[] <: Object[]
ao[0] = new String("pluto"); // correct; error at runtime

The fragment is statically correct, because arrays in Java preserve subtypes (tech-
nically, it is said that they are a covariant construct), but the compiler, in order to
guarantee type security, is forced to insert dynamic type checks in cases like the last
line which, in the example, will cause a runtime error because we are trying to store
a string in a variable of type Integer.

Why then add covariant arrays to the language if they impose dynamic checks
which, however, remain counterintuitive in the light of the non-covariance of gener-
ics? The point is that covariant arrays allow some limited form of polymorphism.
Let us consider, for example, the problem of exchanging the first 2 elements of an
arbitrary array. A possible solution is:

public swap(Object[] vect){
if (vect.length > 1){

Object temp = vect[0];
vect[0] = vect[1];
vect[1] = temp;

}
}

The method swap can be called on an arbitrary arrays because of its covariance.
Covariant arrays were present in Java since the earliest days of the project, well

before designers considered the problem of generics. In retrospect however, in the
light of the introduction of generics, covariant arrays must be considered one of the
less successful aspects of the Java project.
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10.4.5 Covariant and Contravariant Overriding

Let us conclude the study of the subtype relation by discussing the types permitted
in the redefinition of methods. Java and C++ require that, when we have redefinition,
the arguments to the redefined method must be the same as those in the one being
redefined. Let us take up again our pseudo-language and let C be a fixed type. Given
a class such as:

class F{
C fie (A p) {...}

}

a subclass of F can redefine (overwrite) fie only with a method which takes as its
argument an A. If the types are different, as for example in:

class G extending F{
C fie (B p) {...}

}

we do not have redefinition, but only the definition of 2 overloaded methods.
The same does not happen to the result type of the method. Both C++ and Java21

allow the type of the result of the method redefined in subclass to be a subtype of the
corresponding type in the superclass. Let us assume that D is a subtype of C (D<:C):

class E extending F{
D fie (A p) {...}

}

In E (which is a subtype of F: E<:F) the method fie is redefined with respect
to F. The reader will have no difficulty convincing themselves on their own that
this extension is semantically legitimate and not the cause of type errors. We can
however help in this argument with some general considerations.

Supertypes and Views In a language with subtype polymorphism, a type of an
object can be interpreted as a particular view of the object, or, in a more colourful
way, as a disguise for the object. Figure 10.15 represents this idea graphically in the
case of two types G <: F (F is a class of objects which contains the methods c1

and c2; the objects of G respond to all the methods of F, plus c3 and c4).
If we apply this idea (which is informal, but which completely respects sub-

type semantics) to the redefinition of the method, we obtain the situation shown in
Fig. 10.16, where our method fie, which is defined in F with the signature fie:
A -> C, is redefined in a subclass with signature fie: A -> D. The figure im-
mediately reveals the observation that this is correct with respect to types exactly
when D<:C. In fact, the redefined fie produces a value of type D. If D<:C, this
value is also a value of C and therefore the types are respected.
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Fig. 10.15 An instance f of F and an instance g of G disguised as F

Fig. 10.16 Redefinition of a
method: covariance of the
results type

We can summarise the discussion with a general principle: with respect to the
result type of a method, overriding is semantically correct (and permitted in many
languages) when it is covariant. The result of the method that has been redefined in
a subclass, is a subtype of the result of the original method.

This reasoning, however, can be easily applied also to argument types of meth-
ods. The scheme in Fig. 10.16 can, in fact, be generalised to that in Fig. 10.17, where
method fie is redefined with the signature fie: H->D. Which relation must be
valid between H and A so that the situation is semantically correct? The figure gives
an immediate answer: it must be A<:H. With the respect to the argument type of
a method, overloading is semantically correct when it is contravariant. The argu-
ment of the redefined method in the subclass, is a supertype of the argument of the
original method.

From the semantic viewpoint therefore, the type of the methods S->T is a sub-
type of S′-> T′ (S->T<:S’->T’) whenever S<:S’ and T’<:T: the type of the
methods is covariant in the type of result and contravariant in the type of the argu-
ments.

21Up to version 4, Java requires also that result types of a redefined method must coincide with the
result type of the original method.
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Fig. 10.17 Redefinition of a
method: contravariance of
argument type

Although semantically correct, contravariant overriding (of method arguments)
is counterintuitive in some situations. The most important cases are those of binary
methods, that is, methods with a parameter of the same type as the object which re-
ceives the method. The typical case is that of an equivalence or comparison method.
Assuming we have a class such as the following:

class Point{
...
boolean eq(Point p){...}

}

and we wish now to specialise it into the subclass:

class ColoredPoint extending Point{
...
boolean eq(ColoredPoint p){...}

}

According to the contravariance rule, the ColoredPoint class is not a subclass
of Point because the argument of eq would be a subtype (and not a supertype) of
the type of the argument to eq in Point.

For these (and others) reasons, contravariant overriding is little used (one of the
few languages which use it is Emerald), while many of the most common languages
(with C++ and Java being the most common) require type identity for the argument.

There are however languages that would sacrifice static type security and only
use the rule of covariant overriding for method argument types (which is semanti-
cally incorrect). Among these are some fairly well-known language, such as Eiffel
and the language O2 (one of the most common object-oriented database systems).
The reason is assumed greater naturalness, especially for binary methods. Extended
experimentation with O2, amongst others, show that the semantic incorrectness of
type checking never causes problems in practice (that is in situations that are not
constructed ad hoc to violate the type system).
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10.5 Chapter Summary

The chapter has been a general but deep, examination of the object-oriented parad-
igm, introduced as a way of obtaining abstractions in the most flexible and extensible
way.

We have characterised the object-oriented paradigm when in the presence of:

• Encapsulation of data.
• A compatibility relation between types which we call subtype.
• A way to reuse code, which we refer to as inheritance and which can be divided

into single and multiple inheritance.
• Techniques for the dynamic dispatch of methods.

These four concepts were viewed principally in the context of languages based
on classes (even if we briefly looked at languages based on delegation). We then dis-
cussed the implementation of single and multiple inheritance and dynamic method
selection.

The chapter was concluded with a study of some aspects relevant to the type
systems in object oriented languages:

• Subtype polymorphism.
• Another form of parametric polymorphism which is possible when the language

admits generics (which we studied in Java).
• The problem of overriding of co- and contravariant methods.

The object-oriented paradigm, in addition to represent a specific class of lan-
guages, is also a general development method for system software codified by semi-
formal rules based on the organisation of concepts using objects and classes. Ob-
viously the 2 aspects, the linguistic and the methodological, are not completely
separate, given that the object-oriented development methodology finds its natu-
ral application in the use of object-oriented languages. However, within software
engineering, methodological aspects are usually treated in an autonomous fashion
without referring to any specific language. In this book, therefore, we did not go into
the methodological aspects of object-oriented programming (we refer the reader to
software engineering texts—see also the bibliographical notes below).

10.6 Bibliographical Notes

The first object-oriented language was Simula 67 [2, 9] which we cited in the pre-
vious chapter. It is Smalltalk (which explicitly depends on Simula), however, which
had the greatest influence on succeeding languages and introduced the anthropo-
morphic metaphor of messages sent to objects [5].

On C++ the canonical reference is [13]. The Java language definition can be
found in [6] and the most revealing text by its principal author [1]. An introduc-
tion to the Java Virtual Machine (and therefore to how the various mechanisms are
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implemented in Java) can be found in [8]; for the official specification of the JVM
see [7].

Our description of the implementation of multiple inheritance is based on that of
C++ [12]. The introduction of generics into Java is the result of much research work
into subtype polymorphism. An introduction to generics as they appear in Java is to
be found in [3], which we have closely followed in our presentation.

For the Self project, see the original article [14]; the retrospective [11] is a good
source of information about the criteria for an innovative programming language
project. For the diatribe on covariant and contravariant overriding, see [4].

Finally as far as object-oriented development methodologies are concerned, con-
sult any general text on software engineering, for example, the classic [10].

10.7 Exercises

1. Consider the classes in Fig. 10.8 and the final definition:

class E{
int v;
void n(){...}
}

class D extending E,C{
int w;
int g(){return x + y + v;} // redefinition with respect to C
void m(){...}

}

Draw the representation for an instance object of D, as well as the structure
of the vtable for such a class, indicating for each method the appropriate value
required to correct the value of this.

2. Given the definitions in our pseudo-language:

abstract class A {
int val = 1;
int foo (int x);

}
abstract class B extending A {

int val = 2;
}
class C extending B {

int n = 0;
int foo (int x){ return x+val+n;}

}
class D extending C {

int n;
D(int v){n=v;}
int foo (int x){return x+val+n;}

}
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Consider now the following program fragment

int u, v, w, z;
A a;
B b;
C c;
D d = new D(3);
a = d;
b = d;
c = d;
u = a.foo(1);
v = b.foo(1);
w = c.foo(1);
z = d.foo(1);

Give the values of u, v, w and z at the end of execution.
3. Given the following Java definitions:

interface A {
int val=1;
int foo (int x);

}
interface B {

int z=1;
int fie (int y);

}
class C implements A, B {

int val = 2;
int z =2;
int n = 0;
public int foo (int x){ return x+val+n;}
public int fie (int y){ return z+val+n;}

}
class D extends C {

int val=3;
int z=3;
int n=3;
public int foo (int x){return x+val+n;}
public int fie (int y){ return z+val+n;}

}

Consider now the following program fragment:

int u, v, w, z;
A a;
B b;
D d = new D();
a = d;
b = d;
System.out.println(u = a.foo(1));
System.out.println(v = b.fie(1));
System.out.println(w = d.foo(1));
System.out.println(z = d.fie(1));
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Give the values of u, v, w and z at the end of execution.
4. Is the following fragment of Java correct? In the positive case, the method fie

is redefined (overridden)? What does it print?

class A {
int x = 4;
int fie (A p) {return p.x;}

}

class B extends A{
int y = 6;
int fie (B p) {return p.x+p.y;}

}

public class binmeth {
public static void main (String [] args) {

B b = new B();
A a = new A();
int zz = a.fie(a)+ b.fie(a) ;
System.out.print(zz);

}
}
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Chapter 11
The Functional Paradigm

In this chapter, we present the main properties of functional programming. In func-
tional programming, computation proceeds by rewriting functions and not by mod-
ifying the state. The fundamental characteristic of the languages in this paradigm,
at least in their “pure” form, is precisely that of not possessing the concept of mem-
ory (and therefore side effect). Once an environment is fixed, an expression always
denotes the same value.

We will discuss the pure paradigm in the first sections, explaining the funda-
mental aspects. Functional programming languages, however, merge these “pure”
ingredients in a context that adds many other mechanisms; we will review them in
Sect. 11.3.

We will touch on the SECD machine, an abstract machine for higher-order func-
tional languages which constitutes the prototype of many real implementations.

We will, at this point, be in a position to discuss the reasons why the functional
programming paradigm is interesting with respect to ordinary imperative languages.

The chapter concludes with a more theoretical section which provides a succinct
introduction to the λ-calculus, a formal system for computability which inspires all
functional languages and which has, since the time of ALGOL and LISP, been a
constant model for the design of programming languages.

11.1 Computations without State

Though developed and abstract, all conventional languages base their computational
model on the transformation of the state. The heart of this model is the concept of
modifiable variable, that is, a container with a name to which, during the computa-
tion, can be assigned different values, while the same association is always main-
tained in the environment. Correspondingly, the principal construct in conventional
languages is assignment, which modifies the value contained in a variable (but does
not modify the association between the name of the variable and the location to
which it corresponds; it modifies the r-value but not the l-value, which is fixed once
and for all when the variable is declared).

M. Gabbrielli, S. Martini, Programming Languages: Principles and Paradigms,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-84882-914-5_11, © Springer-Verlag London Limited 2010
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Conventional languages differ in the their level of abstraction, their types, in the
constructs which allow the manipulation of variables, but they all share the same
computational model. This is an abstract view of the underlying, conventional phys-
ical machine. Computation proceeds by modifying values stored in locations. This
is an extremely important model. It is called the von Neumann Machine, named after
the Hungarian-American mathematician who, in the 1940s, saw that the Turing Ma-
chine (see box on page 61) could be engineered into a physical prototype, thereby
originating the modern computer.

This is not, however, the only possible model upon which to base a programming
language. It is possible to compute without using modifiable variables, that is with-
out referring to the concept of state. The computation proceeds not by modifying
the state but by rewriting expressions, that is by changes that take place only in the
environment and do not involve the concept of memory. If there are no modifiable
variables, there is no longer a need for assignment, that is the principal command
in conventional languages. The entire computation will be expressed in terms of the
sophisticated modification of the environment in which the possibility of manipu-
lating (higher-order, see Sect. 7.2) functions plays a fundamental role.

Without assignment, iteration also looses its real sense. A loop can only repeat-
edly modify the state until the values of certain variables satisfy a guard. The reader
already knows (see Chap. 6) that iterative and recursive constructs are two mecha-
nisms permitting infinitely long (and possibly divergent) computations. In the state-
less computational model, iteration disappears, recursion remains and becomes the
fundamental construct for sequence control.

Higher-order functions and recursion are the basic ingredients of this stateless
computational model. The programming languages which presuppose this model
are called functional languages and the paradigm that results from this is called the
functional programming paradigm.

This is a paradigm as old as the imperative one. Since the 1930s, beside the
Turing Machine, there has existed the λ-calculus, an abstract model for characteris-
ing computable functions that is based on exactly the concept we have been briefly
explaining. LISP was the first programming language explicitly inspired by the λ-
calculus and many others have followed in the intervening years (Scheme, ML, in
all its different dialects, Miranda, Haskell, to name only the most common). Among
these, only Miranda and Haskell are “purely functional”; the others also have im-
perative components (often to assist programmers accustomed to conventional lan-
guages) but the structure of these languages assign a subordinate role to them.

In this chapter, we undertake an introduction to the pure functional paradigm; it
is not a superficial one and we will discuss different general aspects of the paradigm.
To make the treatment more concrete, it is desirable to refer to a specific language
rather than to use a neutral pseudocode. ML has been chosen for this because,
through its coherence and elegance of design, it is the most suited of them all to
didactic presentation. It is not our aim to introduce the language (for which, the
reader should refer to the bibliography), but only to use the syntax in an instru-
mental fashion to discuss some general questions that apply also to other functional
languages.
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11.1.1 Expressions and Functions

In the usual mathematical practice, there is some ambiguity about when we are
defining a function and when we are applying it to a value. It is not uncommon to
encounter expressions of the kind:

Let f (x) = x2 be the function that associates with x its square. If now we have x = 2, it
follows that f (x) = 4.

The syntactic expression f (x) is used to denote two things that are quite different:
the first time, it serves to introduce the name, f , of a specific function; the second
time, it serves to denote the result of applying the function f to a specified value. In
mathematical practice, this ambiguity is completely innocuous because the context
helps us to distinguish which of the two uses is intended. The same does not hold for
an artificial language (such as a programming language) which describes functions.
Here, it is appropriate to distinguish the two cases.

When a mathematician asserts that they are defining the function, f (x), in real-
ity, they are defining the function f with one formal parameter, x, which serves to
indicate the transformation that f applies to its argument. To distinguish linguisti-
cally between the name and the “body” of the function, following ML syntax, we
can write:

val f = fn x => x*x;

The reserved word val introduces a declaration. The declaration is used to extend
the environment with a new association between a name and a value. In our case, the
name f is bound to the transformation of x into x ∗ x. In all functional languages,
functions are expressible values; that is, they can be the result of the evaluation of a
complex expression. In our case, the expression on the right of the = and introduced
by fn is an expression that denotes a function.

For the application of a function to an argument, we retain the traditional no-
tation, writing f(2) or (f 2), or f 2, for the expression that results from the
application of a function f to the argument 2. We can also use val to introduce
new names, as in:

val four = f 2;

The introduction of specific syntax for an expression which denotes a function
has an important consequence. It is possible to write (and possibly apply) a function
without having necessarily to assign it a name. For example, the expression

(fn y => y+1) (6);

has the value 7 which results from the application of the (anonymous) function fn
y => y+1 to the argument 6. To make the notation less imposing, we assume (as
does ML) that application can be denoted by simple juxtaposition (that is without
parentheses) and that is associates to the left (prefix notation). If g is the name of a
function,
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g a1 a2 ... ak

will mean:

(...((g a1) a2)... ak).

Nothing prevents one functional expression from appearing inside another, as in

val add = fn x => (fn y => y+x);

The value add is a function which, given an argument, x, returns an anonymous
function which, given an argument y, returns x+y. We can use add in many differ-
ent ways:

val three = add 1 2;
val addtwo = add 2;
val five = addtwo 3;

Note that, in particular, addtwo is a function which is obtained as the result of the
evaluation of another expression.

The notation which uses val and fn is important but is a little verbose. ML
also allows the use of a more compact notation which resembles the usual way
of defining functions in a programming language. The first function, f, which we
defined (the one which computes the square of its argument) could also be defined
as follows:

fun f x = x*x;

In general, a definition of the form:

fun F x1 x2 ... xn = body;

is only syntactic sugar (that is, in programming language jargon, only a nicer abbre-
viation) for:

val F = fn x1 => (fn x2 => ... (fn xn => body)...);

As a last example of functions which manipulate functions, this time in the form
of a formal parameter, consider the definition:

fun comp f g x = f(g(x));

This returns the function composed of its first two arguments (which are, in their
turn, functions).

Finally, every functional program permits the definition of recursive functions.
Assuming that we have available a conditional expression (which in ML is written
with the familiar if then else syntax), we can define the usual factorial as:

fun fatt n = if n=0 then 1 else n*fatt(n-1);
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11.1.2 Computation as Reduction

If we exclude arithmetic functions (which we can assume predefined with the usual
semantics) and the conditional expression, at the conceptual level, we can describe
the procedure used to transform a complex expression into its value (evaluation) as
the process of rewriting. We call this process reduction. In a complex expression, a
subexpression of the form “function applied to an argument” is textually replaced
by the body of the function in which the formal parameter is replaced, in its turn, by
the actual parameter.1 We can compute a simple expression using this computational
model (we use → to indicate a reduction step).

fact 3 → (fn n => if n=0 then 1 else n*fact(n-1)) 3
→ if 3=0 then 1 else 3*fact(3-1)
→ 3*fact(3-1)
→ 3*fact(2)
→ 3*((fn n => if n=0 then 1 else n*fact(n-1)) 2)
→ 3*(if 2=0 then 1 else 2*fact(2-1))
→ 3*(2*fact(2-1))
→ 3*(2*fact(1))
→ 3*(2*((fn n => if n=0 then 1 else n*fact(n-1)) 1))
→ 3*(2*(if 1=0 then 1 else 1*fact(1-1))
→ 3*(2*(1*fact(0))
→ 3*(2*(1*((fn n => if n=0 then 1 else n*fact(n-1)) 1)))
→ 3*(2*(1*(if 0=0 then 1 else n*fact(n-1))))
→ 3*(2*(1*1))
→ 6

Note how, with the exception of arithmetic calculations and the use of the condi-
tional expression, all of the rest of the computation proceeds by symbolic manipu-
lation of strings: no variables, no update of stacked variables. Figure 11.1 contains
another example of pure symbolic manipulation. (It is a complicated way to write
the identity function!) (While studying the figure, recall that fun is just an abbrevi-
ation for val ... fn.)

Finally, the reader will have no have difficulty in convincing themselves that,
given the definition

fun r x = r(r(x));

each computation which involves an evaluation of r resolves into an infinite rewrit-
ing. We say, in such a case, that the computation diverges and that the result is
undefined.

1The reader will certainly have recognised in this description the “copy rule” we already discussed
in the context of the by-name parameter passing. For the time being, we will be vague about the
exact semantics to assign to this process—all of Sect. 11.2 will be devoted to it.
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fun K x y = x;
fun S p q r = p r (q r);
val a = ...;

S K K a → (fn p => (fn q => (fn r => p r (q r)))) K K a
→ (fn q => (fn r => K r (q r))) K a
→ (fn r => K r (K r)) a
→ K a (K a)
→ (fn x => (fn y => x)) a (K a)
→ (fn y => a) (K a)
→ a

Fig. 11.1 Some definitions and a computation using rewriting

11.1.3 The Fundamental Ingredients

In these first subsections, we have introduced all the fundamental ingredients of
the pure functional paradigm. We can make this precise and summarise the main
concepts in the following way.

From the syntactic viewpoint, a language such as the one under consideration
has no commands (there being no state to modify using side effects) but only ex-
pressions. Apart from possible values and primitive operators for data (such as in-
teger, boolean, characters, etc.) and the conditional expression, the two principal
constructs for defining expressions are:

• Abstraction which, given any expression, exp and an identifier, x, allows the
construction of an expression fn x => exp denoting the function that trans-
forms the formal parameter x into exp (the expression exp is “abstracted” from
the specific value bound to x).

• The application of an expression, f_exp, to another expression, a_exp, which
we write f_exp a_exp, which denotes the application of the function (denoted
by) f_exp to the argument (denoted by) a_exp.

There are no constraints on the possibilities of passing functions as arguments
to other functions, or to returning functions as the results of other (higher-order)
functions. As a consequence, there is perfect homogeneity between programs and
data.

From the semantic viewpoint, a program consists of a series of value definitions,
each of which inserts a new association into the environment and can require the
evaluation of arbitrarily complex expressions. The presence of higher-order func-
tions and the possibility of defining recursive functions makes this definition mech-
anism flexible and powerful.

To a first approximation, the semantics of computation (evaluation) refers to no
linguistic aspects other than the ones introduced so far. It can be defined using sim-
ple symbolic rewriting of strings (reduction), which repeatedly uses two main op-
erations to simplify expressions until they reach a simple form which immediately
denotes a value. The first of these operations is the simple search through the en-
vironment. When an identifier is determined as being bound in an environment,
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replace the identifier by its definition. For example, in Fig. 11.1, we used this op-
eration for the first and the fifth reduction. In what follows this step will not be
explicitly considered again. We will consider a name as a simple abbreviation for
the value associated with it.

The second operation, which is more interesting, deals with a functional expres-
sion applied to an argument and uses a version of the copy rule (which in this context
is called the β-rule).

Definition 11.1

Redex A redex (which stands for a reducible expression) is an application of the
form ((fn x => body) arg).

Reductum The reductum of a redex ((fn x => body) arg) is the expres-
sion which is obtained by replacing in body each (free) occurrence of the formal
parameter, x, by a copy of arg (avoiding variable capture2, see p. 175).

β-rule An expression, exp, in which a redex appears as a subexpression is reduced
(or rewrites, simplifies) to exp1 (notation: exp → exp1), where exp1 is ob-
tained from exp by replacing the redex by its reductum.

From an implementation viewpoint, finally, every abstract machine for functional
languages adopts extensive garbage-collection mechanisms because, in the case in
which functions are returned as values by other functions, we know that the local
environment must be preserved for an unlimited period of time (see Sect. 7.2.2).

If these are the cardinal notions of a functional language, on a more attentive
reading, these few lines raise more problems than they solve. We undertake a deeper
analysis of these semantic concepts in the next section.

11.2 Evaluation

In the brief semantic description with which we concluded the last section, we did
not provide details about two fundamental aspects:

• What is the termination condition for reduction (that is what does “a simple form
which immediately denotes a value” mean?)

• What precise semantics must be given to the β-rule, not just concerning possible
variable capture (which we already described in the context of parameter passing)
but more importantly, the order to follow during rewriting should more than one
redex be present in the same expression.

2In the context of functional programming, identifiers bound to values are often referred to as
“variables”. The reader is by now experienced enough to allow us to continue with this traditional
use without being confused by the absence of modifiable variables in pure functional programming
languages.
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11.2.1 Values

A value is an expression which cannot be further rewritten. In a functional language,
there are values of two kinds: values of primitive type and functions. There is little
to say about values of simple types. If the language provides some primitive types
(integers, booleans, characters, etc.) is clear that a set of primitive values is asso-
ciated with each type thus defined and that these values do not admit evaluation
(for example, constants of type integer, boolean, characters, etc.). In the example of
the previous subsection, we terminated the evaluation of fact when we reached
primitive values of integer type: 3, 2, 1.

Functional values are more interesting. Let us consider the following definition:

val G = fn x => ((fn y => y+1) 2);

We have said that a definition entails the evaluation of the expression on the right
of the equality and the binding of the value thus derived to the name on the left of
the =. But, in this case, it is not immediately clear what the value to be associated
with G is. Do we have:

fn x => 3

in which we have rewritten the body of G by evaluating the redex it contains, or do
we have

fn x => ((fn y => y+1) 2)

in which there has been no evaluation in the body of G? The first case appears to
be the one that more respects the informal semantics that we gave at the end of
the last subsection. The second, on the other hand, is closer to the usual definition
of function in a conventional language, in which the body of a function is only
evaluated when it is called.

Although at first sight, this can appear strange, it is the second of the above that
is adopted for all functional languages in common use. Evaluation does not occur
“under” an abstraction. Every expression of the form

fn x => exp

represents a value, so redexes possibly contained in exp are never rewritten until
the expression is applied to some argument.

11.2.2 Capture-Free Substitution

To implement capture-free substitution, we saw in Chap. 7 that closures can be
used. This is, in effect, the mechanism also used by abstract machines for functional
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Fig. 11.2 An expression
with more than one redex

fun K x y = x;
fun r z = r(r(z));
fun D u = if u=0 then 1 else u;
fun succ v = v+1;

val v = K (D (succ 0)) (r 2);

languages (see Sect. 11.4). For the elementary description we are giving at present,
though, a syntactic convention suffices. In every expression, there are never two
formal parameters with the same name and the names of the possible variables that
are not formal parameters are all distinct from those of the formal parameters.

Using this convention, there will never be variable capture in the simple examples
that we consider.3

11.2.3 Evaluation Strategies

In Chap. 6, while discussing expressions, we saw how every language must fix a spe-
cific strategy (that is a fixed order) for the evaluation of expressions. The presence
of higher-order functions in functional languages makes this question even more
fundamental. To clarify the problem, consider the definitions in Fig. 11.2. Which
value is associated with v and how is it determined?

The β-rule on its own is not of much use because, in the right-hand part of the
definition of v, there are 4 redexes (after the expansion of the names with the values
associated with them by the definitions):

K (D (succ 0))
D (succ 0)
succ 0
r 2

Which of them is reduced first? Every commonly used language uses a leftmost
strategy which reduces the redexes starting with the one at the leftmost end. But
even having stipulated this, it is not clear which is the leftmost redex of

K (D (succ 0))
D (succ 0)
succ 0

because these three redexes are superimposed on each other. Having fixed a leftmost
evaluation order, we then find that we have three different strategies.

3In the more general case, if we do not want to bring into play the concept of closure, for the
correct description of computation using rewriting, it is necessary precisely to define the concepts
of bound and free variable and substitution, all concepts which we treat formally in Sect. 11.6.
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Evaluation by value In evaluation by value (which is also called applicative-order
evaluation or eager evaluation, or innermost evaluation), a redex is evaluated only
if the expression which constitutes its argument part is already a value.

More precisely, leftmost evaluation in applicative order works as follows.

1. Scan the expression to be evaluated from the left, choosing the first application
encountered. Let it be (f_exp a_exp).

2. First evaluate (recursively applying this method) f_exp until it has been reduced
to a value (of functional type) of the form (fn x => ...).

3. Then evaluate the argument part, a_exp, of the application, so that it is reduced
to a value, val.

4. Finally, reduce the redex ((fn x => ...)val) and goto to (1).

Considering Fig. 11.2, case (1) first chooses the application K (D (succ 0)).
Now some elementary applications of (1), (2) and (3) will serve to show that K, D
and succ are already values (recall that we are implying that a name is an abbre-
viation for the expression associated with it). The first redex to be reduced is then
succ 0 (that is, ((fn v => v + 1) 0)) which will be completely evaluated
and yields 1. Then the redex (D 1) (that is ((fn u => if u =0 then 1
else u) 1)) is reduced to give the value 1. Then (K 1) is evaluated to produce
the value (fun y ==> 1). At this point in the evaluation, the expression has
become

(fun y => 1) (r 2)

Since the functional part of this application is already a value, the strategy pre-
scribes that the argument (r 2) is evaluated. The evaluation leads to rewriting to
r (r 2), then to r (r (r 2)) and so on in a divergent computation.

No value is therefore associated with v because the computation diverges.

Evaluation by name In the evaluation by name strategy (which is also called
normal order or outermost), a redex is evaluated before its argument part.

More precisely, leftmost evaluation in normal order proceeds as follows.

1. Scan the expression to be evaluated from the left, choosing the first application
encountered. Let it be (f_exp a_exp).

2. First evaluate f_exp (recursively applying this method) until it has been reduced
to a value (of functional type) of the form (fn x => ...).

3. Reduce the redex ((fn x => ..)a_exp) using the β-rule and goto (1).

Considering Fig. 11.2, the first redex to be reduced is therefore:

K (D (succ 0))

It is rewritten to:

fn y => D (succ 0)



11.2 Evaluation 343

which is a functional value. The expression now is of the form:

(fn y => D (succ 0)) (r 2)

for which the strategy prescribes reducing the outermost redex, so we obtain:

D (succ 0)

Now reducing this expression, we obtain:

if (succ 0)=0 then 1 else (succ 0)

and then:

if 1=0 then 1 else (succ 0)

and finally

succ 0

from which we obtain the final value, 1, which is then associated with v.

Lazy evaluation In evaluation by name, a single redex might have to be evaluated
more than once because of some duplication that has occurred during rewriting. In
the example that we are discussing, the redex (succ 0) is duplicated because of
the function D and is reduced twice4 in the conditional expression that forms the
body of D. This is the price that must be paid for postponing the evaluation of an
argument until after the application of a function (and it is really this that allows
evaluation by name to obtain a value where evaluation by value would diverge).
But it is very expensive in terms of efficiency (when the duplicated redex requires a
significant amount of computation).

To obviate this problem and maintain the advantages of evaluation by name, the
lazy strategy proceeds like that by name but the first time that a “copy” of a redex is
encountered, its value is saved and will be used should any other copies of the same
redex be encountered.

The by-name and lazy strategies are examples of the call by need strategies in
which a redex is reduced only if it is required by the computation.

11.2.4 Comparison of the Strategies

In the last subsection, the by-name strategy produces a value when the by-value
strategy diverges. It is sensible to ask the question as to whether it can be the case
that the two strategies produce distinct values for the same expression.

4The purist does not speak of copies of redexes but will rather say that the redex (succ 0) has
given way to two residuals, each of which has been reduced independently of the other.
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An answer to this question is given by the following theorem which expresses
one of the most important characteristics of the pure functional paradigm. We say
that an expression in the language is closed if all of its variables are bound by some
fn. Let us recall, then, from Sect. 11.2.1, that by primitive value, we mean a value of
a primitive type (integer, boolean, character, etc.), excluding, therefore, functional
values.

Theorem 11.2 Let exp be a closed expression. If exp reduces to a primitive value,
val, using any of the three strategies of Sect. 11.2.3, then exp reduces to val
following the by-name strategy. If exp diverges using the by-name strategy, then it
also diverges under the other two strategies.

Let us note that the theorem excludes the case in which a (closed) expression
can yield a primitive value, val, in one strategy and yield another primitive value,
val2, using another strategy.5 Two strategies can therefore differ only by the fact
that one determines a value while the other diverges, as we saw in our example. We
cannot go into the details of how the theorem can be proved but it is important to
stress that the following basic property is fundamental to its validity:

Once any strategy has been fixed in a given environment, the evaluation of all occurrences
of a single expression always yields the same value

This property, which is immediately falsified when there are side effects, is taken
by many authors as the criterion for a pure functional language: a language is purely
functional if it satisfies this condition. This is a very important property which makes
it possible to reason about a functional program and to which we will return in
Sect. 11.5. Let us again note, before going on, that it is just by virtue of this property
that lazy evaluation is correct. The value obtained by the evaluation of an expression
does not change when another copy of the same expression is encountered (clearly,
in the meanwhile, the environment has not been changed).

In the light of the preceding theorem, it can be asked what interest there is in the
by-value strategy, given that by-name is the most general of all possible strategies.
Moreover, reasons of efficiency would seem to suggest that we only adopt call-by-
need strategies, given that it is not clear why useless redexes should be reduced, with
the consequent waste of computing time. The point is that the efficiency case is not
so simple. To implement a call-by-need strategy is, in general, more expensive that
a simple call-by-value strategy. The by-value strategy has efficient implementations

5The theorem is no longer valid if the hypothesis that the value is primitive is removed. Having
assumed that evaluation is not performed under abstraction, in fact, the two strategies can yield
(functional) values that are distinct. By way of an example, define I = fn x => x and P =
fn x => (fn y => y x). The term P (I I) reduces to fn y => y (I I) under the
by-name strategy, while, using the by-value strategy, it reduces to fn y => y I. This difference
is not very important in programming languages (where we mainly want to compute values of
primitive type). In Sect. 11.6, we will define an abstract calculus in which reduction also occurs
in the presence of abstractions. This calculus satisfies the confluence property (stronger and more
general than Theorem 11.2), which we will discuss on page 361.
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on conventional architectures, even if, sometimes, it performs unnecessary work
(every time that an argument that is not required in the body of the function is
evaluated, as happens with the second argument of the function K in Fig. 11.2). This
last case, moreover, can be treated in an efficient manner with abstract evaluation
strategies that attempt to identify useless arguments.

Among the functional languages that we have cited at the beginning of this chap-
ter, LISP, Scheme and ML use a by-value strategy (also because they include ma-
jor imperative aspects), while Miranda and Haskell (which are pure functional lan-
guages) use lazy evaluation.

11.3 Programming in a Functional Language

The mechanisms we described in the last section are sufficient to express pro-
grams for every computable function (they constitute, indeed, a Turing-complete
language). This is the nucleus of every functional language, which, however, is too
austere for us to be able to use as a real programming language. Every functional
language, therefore, embed this nucleus in a wider context which provides mech-
anisms of different kinds, each aiming to make programming simpler and more
expressive.

11.3.1 Local Environment

The mechanism of global definitions in the environment that we have used this far
has too little structure for a modern language. As in conventional languages, it is
appropriate to provide explicit mechanisms to introduce definitions with limited
scope, as for example:

let x = exp in exp1 end

This introduces the binding of x to the value of exp in a scope which includes
only exp1.

To tell the truth, the presence of functional expressions already introduces nested
scopes and associated environments which are composed of the formal parameters
of the function bound to the actual parameters. From the point of view of evaluation,
we can indeed consider the construct

let x = exp in exp1 end

as syntactic sugar for

(fn x => exp1) exp.

The use of local scopes is too important, however, and justifies the introduction
of special syntax for them.
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11.3.2 Interactiveness

Every functional language has an interactive environment. The language is used
by entering expressions which the abstract machine evaluate and whose value it
returns. Definitions are particular expressions which modify the global environment
(and may return a value).

This model immediately suggests interpreter based implementations, even if
there are efficient implementations that use compilation to generate compiled code
the first time a definition is stored in the environment.

11.3.3 Types

As in conventional languages, the type system is an aspect of primary importance in
functional languages, as well. Every functional language we have cited provides the
usual primitive types (integers, booleans, characters) with operations on their values.
With the exception of Scheme, which is a language with dynamic type checking, all
the others have elaborate static type systems. These type systems allows the defi-
nition of new types such as pairs, lists, “records” (that is tuples of labelled values).
For example, in ML, we can define a function add_p which takes as arguments a
pair of integers and returns their sum:

fun add_p (n1,n2) = n1+n2;

Note the fundamental difference between add_p and add which we defined on
page 336. add_p requires a pair of integers and it would make no sense to provide
just one value for n1 and none for n2. Instead, add it is a function which inputs
one number and returns a function that takes another number and returns the sum of
both.6

An important part of the type system in functional languages is that dedicated to
the types of functions, given that functions are denotable and expressible values (and
often also storable, if the language includes imperative aspects). In typed functional
languages, this also means that some functional expressions are illegal because they
cannot be typed. For example, the following higher-order function is illegal in a
typed language:

fun F f n = if n=0 then f(1) else f("pippo");

The reason for this is that the formal parameter, f, must simultaneously have types
int -> ’a and string -> ’a (where ’a denotes a type variable, that is a
generic type that is not yet instantiated).

6The passage from a function requiring, as argument, a pair (or, more generally, a tuple) to a unary
higher-order function, is called the curryfication of a function. The operation is named after Haskell
Curry, one of the founding fathers of the theory of the λ-calculus.
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Another illegal expression (because it violates typing) is self application:

fun Delta x = x x;

The expression, (x x), is illegal because there is no way to assign a unique and
consistent type to x. Given that it occurs on the left as an application, it must have
a type of the form ’a -> ’b. Since, then, it also appears as the argument to a
function (on the right of the application), it must have the type that the function
requires: therefore, x must be of the type ’a. Putting the two constraints together,
we have it that x must, at the same time, be of type ’a and of type ’a -> ’b and
there is no way to “unify” these two expressions.

In languages without a strong typing system, such as Scheme, the function
Delta is, instead, legal. In Scheme, we can also apply Delta to itself. The ex-
pression (obviously written in Scheme syntax)

(Delta Delta)

constitutes a simple example of a divergent program. The lack of a static type check
makes it possible in Scheme to write expressions such as:

(4 3)

Here, the aim is to apply the integer 4 to the integer 3. Since the left-hand part
of this application is not a function, the abstract machine will generate an error at
execution time.

In the case of ML, the most interesting aspect of its type system is its support for
polymorphism (see Sect. 8.8 and, in particular, the box on page 243).

11.3.4 Pattern Matching

One of the most annoying aspects of recursive functional programming is handling
terminal cases by means of explicit “if” expressions. Let us take, for example, the
(inefficient) function which returns the nth term of the Fibonacci series:

fun Fibo n = if n=0 then 1
else if n=1 then 1

else Fibo(n-1)+Fibo(n-2);

The mechanism of pattern matching present in some languages such as ML and
Haskell, allows us to give a definition (which is equivalent to the above) as follows:

fun Fibo 0 = 1
| Fibo 1 = 1
| Fibo n = Fibo(n-1)+Fibo(n-2);
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The “|” character is read “or”. Each branch of the definition corresponds to a dif-
ferent case of the function. The most interesting part of this definition is the formal
parameters. They are no longer constrained to be identifiers but can be patterns, that
is, expressions formed from variables (the last is an example), constants (in the other
cases) and other constructs that depend on the language’s type system (we will see
an example using lists below). A pattern is a kind of schema, a model against which
to match the actual parameter. When the function is applied to an actual parameter,
it is compared with the patterns (using the order in which they appear in the pro-
gram) and the body corresponding to the first pattern which matches with the actual
parameter is chosen.

The pattern-matching mechanism is particularly flexible when structured types
are used, for example lists. In ML syntax, a list is denoted by square brackets with
the elements separated by commas. For example

["one", "two", "three"]

is a list of three strings. The operator, :: denotes “cons” (that is the operator that
adds an element to the head of a list):

"zero"::["one", "two", "three"]

is an expression whose value is the list:

["zero", "one", "two", "three"].

Finally, nil is the empty list. Thus

"four"::nil

has value [“four”]. Using pattern matching, we can define a function which com-
putes the length of a generic list such as:

fun length nil = 0
| length e::rest = 1 + length(rest);

Note that the names used in the pattern are used as formal parameters to indicate
parts of the actual parameter. It should be clear the advantage in terms of conciseness
and clarity with respect to the usual definition:

fun length list = if list = nil then 0
else 1 + length(tl list);

This definition, moreover, requires the introduction of a selection function (which
we have written tl) to obtain the list that is obtained by removing the head element.
The selection operation is, on the other hand, implicit in pattern matching.

An important constraint is that a variable cannot appear twice in the same pattern.
For example, consider the following “definition” of a function which, applied to a
list, returns true if and only if the first two elements of the list are equal:
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fun Eq nil = false
| Eq [e] = false
| Eq x::x::rest = true
| Eq x::y::rest = false;

This definition is syntactically illegal because the third pattern contains the variable
x twice, where it is used to test the equality of the first two elements. The pattern-
matching mechanism is one way to check that the form of an actual parameter agrees
with a pattern, not that the values it contains bear certain relationships. Otherwise
stated, pattern matching is not unification, a much more general mechanism (and
more complex to implement) and which we will discuss in the context of the logic
programming paradigm (Chap. 12).7

11.3.5 Infinite Objects

In the presence of by-name or lazy strategies, it is possible to define and manipulate
streams, that is, data structures that are (potentially) infinite. In this section, we will
give a small example of how this can be done. We cannot give the example in ML
because it uses a by-value strategy. The example is possible, though, in Haskell. So
as not to load the reader with different syntax, we will write the terms with the same
concrete syntax as ML but with the stipulation that evaluation must be understood
as lazy.

First, we have to clarify the concept of value for data structures such as lists.
In a language that uses eager evaluation, a value of type T list is a list whose
elements are values of type T. In a lazy language, this is not a good notion of value
because it might require the evaluation of useless redexes, contrary to the call-by-
need philosophy. To see the reason, define the functions:

fun hd x::rest = x;
fun tl x::rest = rest;

The functions return, respectively, the first element (that is, the head) and the rest
(that is, the tail) of a non-empty list (in the case of the empty list, the abstract ma-
chine will generate an error when doing pattern matching).

Let us now consider the expression

hd [2, ((fn n=>n+1) 2)].

7The implementation of pattern matching is nothing other than the “obvious” translation into a
sequence of ifs. In the case of Eq, the third pattern would require checking the equality of two
elements of arbitrary type. If we have values for which the language does not define equality (as
happens, for example, for functional values), it would not be possible to implement an equality
test.
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To calculate its value (that is, 2), it is not necessary to reduce the redex that com-
prises the second element of the list because it will never be used in the body of
the hd function. For these reasons, in a by-need context, a value of type list is any
expression of the form:

exp1 :: exp2

where exp1 and exp2 can also contain redexes.
It is then possible to define a list by recursion, as for example:

val infinity2 = 2 :: infinity2;

The expression infinity2 corresponds to a potentially infinite list whose ele-
ments are all 2 (using eager evaluation, such a list would be divergent).

This value is perfectly manipulable under lazy evaluation. For example,

hd infinity2

is an expression whose evaluation terminates with the value 2. Another expression
with value 2 is

hd (tl (tl (tl infinity2))).

As a last example of a stream, the following function constructs an infinite list of
natural numbers starting with its argument, n:

fun numbersFrom n = n :: numbersFrom(n+1);

We can define a higher-order function that applies its functional argument to all
the elements of a list, as in:

fun map f nil = nil
| map f e::rest = f(e)::rest;

We can now produce the infinite list of all the squares starting from n*n:

fun squaresFrom n = map (fn y => y*y) (numbersFrom n);

11.3.6 Imperative Aspects

Many functional languages also include imperative mechanisms which introduce a
notion of state that can be modified by side effects.

In ML, there are real modifiable variables (called “reference cells”) with their
own types. For every type T in the language (including functional types, therefore),
the type T ref is defined and its values are modifiable variables that can contain
values of type T. A modifiable variable of type T, initialised to the value v (of
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Side effects in LISP

LISP, the first functional language, is based on a data structure called a dotted pair
(or cons cell, see the box on page 121). Dotted pairs are composed of two parts:
the car (for contents of the address register) and cdr (for contents of the decrement
register). An expression of the form:

(cons a b)

allocates a dotted pair and initialises it so that its car points to the value of a and its
cdr points to the value of b. The two components of a dotted pair can be selected
using the functions car and cdr. So,

(cdr (cons a b))

has the value b. These are characteristics that belong to the pure part of LISP.
LISP has, in addition, imperative mechanisms. For example, there are functions

such as (rplaca x a) and (rplacd x a) which, respectively, assign to the
car and assign to the cdr of the dotted pair x the value of a:

(cdr (rplacd (cons ’a ’b) ’c))

This has the value ’c. Other side-effecting functions are set and setq.

type T) is created by:

ref v

The usual constructs that associate names and values can also be used on values
of type T ref. For example:

val I = ref 4;

This creates a reference cell of type int ref, which is initialised to 4 and has
the name I. This is what, in imperative languages, we call “the modifiable variable
(with name) I.” Obviously, I is the name of the reference cell and not of the value
it contains (it is an l-value). To obtain its r-value, it is necessary to dereference it
explicitly using the ! operator:

val n = !I + 1;

The expression !I is of type int. In general, if V is an expression of type T
ref, !V is of type T. The line above associates the name n with the value 5. At risk
of being pedantic, let us observe that n is not a modifiable variable, it is an ordinary
name bound to a value in the environment.
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Reference cells can be modified using assignments:

I := !I + 1;

Note the difference with the definition of the value n given above. Here, we are
modifying (using a side effect) the r-value of a reference cell that already exists.
The type of an imperative construct of this kind is unit (recall Sect. 8.3.7).

The presence of modifiable variables clearly introduces the possibility of alias-
ing. Let us indeed consider the following definitions:

val I = ref 4;
val J = I;

The second line associates the value of the name I (that is the reference cell—the
l-value) with the name J. We here have a classic situation of aliasing: I and J are
different names for the same l-value. After execution of the fragment

I := 5;
val z = !J;

the name z is associated with the value 5.
The language definition does not specify how to implement an assignment be-

tween modifiable variables. From the examples given so far using integers, one
could imagine a traditional implementation with the r-value being copied from the
source to the destination of the assignment. However, values with quite different
memory sizes can be stored in reference cells. Let us consider, for example, modifi-
able variables that contain lists and strings:

val S = ref "pear";
val L = ref ["one", "two", "three"];

The name S is of type string ref, while L is of type (string list) ref.
The two modifiable variables associated with the names S and L can contain, re-
spectively, any string and any list. For example, we can perform two assignments:

S := "this is a string much longer than previously";
L := "zero" :: "four" :: "five" :: !L;

The new values of L and S require more memory than their previous values did.
It is not possible to implement these assignments using a simple (and traditional)
value copy. The abstract machine will, in this case, copy references (or pointers)
to these values. All of this is, though, completely invisible to the language user.
The implementation handles the two space requirements by allocating the necessary
memory for each case and then modifies the references.

As well as modifiable variables, ML also provides imperative control constructs,
such as sequential composition (;) and loops.
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It is appropriate to note that, in the presence of these imperative features, both
Theorem 11.2 and the property that we cited immediately after it do not apply. This
is particularly relevant in the case of a lazy evaluation strategy which would become
incorrect in the presence of side effects. It is for this reason that languages such as
Miranda and Haskell, which use lazy evaluation, do not admit side effects of any
kind (they are purely functional languages).

11.4 Implementation: The SECD Machine

The technology for implementing functional programming languages is today so-
phisticated and cannot be adequately described in this book. The techniques for
passing functions as parameters we described in Chap. 7 constitute the heart of
these implementations. In order to give more details on how to handle higher-order
functions, we will limit ourselves to summarising the SECD machine, a prototype
proposed in 1964 by Peter Landin for evaluation by value. Many other abstract ma-
chines have developed out of the SECD machine.

We will describe the SECD machine in an abstract manner, using a very simple,
purely functional language that uses only abstraction and application. The primitive
elements of the language are the names of constants and variables and some primi-
tive functions (for example, we could have constants 0, 1, true, etc. and primitive
functions succ and pred). The important part of the machine is not concerned
with these aspects of the language but with the presence of higher-order functions.
Let us assume, for simplicity, that we are only dealing with unary functions. Let us
assume that Var is a non-terminal from which can be derived a denumerable number
of names (of variables) and that Const and Fun are, respectively, the non-terminals
from which are derived the appropriate constants and primitive functions. We can
state the grammar of our example language as:

exp ::= Const | Var | Fun | (exp exp) | (fn Var => exp).

The SECD machine has four main components:

• A Stack to store the partial results which will be used during the computation.
• An Environment, that is a list of associations between names and values. We have

already noted that “there is no evaluation under an abstraction”. The value of an
abstraction is a closure, that is a pair formed of the abstraction and the environ-
ment in which the free variables in its body are to be evaluated. To simplify the
concept, let us assume that a closure is a triple composed of an environment, an
expression (which will always be derived from the body of an abstraction) and
from a variable (representing the variable that was bound in the abstraction). We
will therefore write a closure as cl(E, exp, x), which will represent the value in
the environment, E, of the abstraction (fn x => exp).

• A Control, represented by a stack of expressions to be evaluated. Among the ex-
pressions is also the special operator, @, which is read “app” and which indicates
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that an application should be executed (because the two expressions that com-
prise an application have already been evaluated and are stored in the next two
positions on the stack).

• A storage area called the Dump, that is a stack in which previous states of the ma-
chine have been saved when the computation was suspended to evaluate internal
redexes.

We write [a1, . . . , an] to denote the stack composed of the elements a1, . . . , an

with a1 at its top. [] is the empty stack. If P is a stack, top(P ) denotes the topmost
element, while tl(P ) denotes P with the top element removed.

A state of the machine is composed of a quadruple, (S,E,C,D). A dump is
always composed of a structure of the form:

(S1,E1,C1, (S2,E2,C2, (S3,E3,C3, []))).
This state of the dump has been obtained by first saving the state

(S3,E3,C3, [])
then the state

(S2,E2,C2, (S3,E3,C3, []))
which includes the previous dump, and so on.

To evaluate an expression, exp, the machine starts its operation in the state
([], [], [exp], []) and terminates when both the control, C, and the dump, D, are
empty.

The operation of the SECD is described by a transition function which allows it
to pass from one state to a succeeding one using the following rules. The machine
selects the rule according to the expression on the control list (imagine that control
is described using abstract syntax). Let us assume, therefore, that the machine finds
itself in the generic state, (S,E,C,D), then:

1. A constant, c (e.g., 1, 0, true), is on top of the control list, that is, there is an
expression that does not need to be evaluated. In this case, the new state of the
machine is (c :: S,E, tl(C),D) in which the (immediate) value of the expression
is pushed onto the stack and the expression just evaluated is removed from the
stack.

2. There is a variable, x, on the top of the control list. In this case, the value is
the one which the environment associates with x. Therefore, the new state of the
machine is (E(x) :: S,E, tl(C),D).

3. On the top of the control list, there is an application of the form (expf expa). In
this case, since the SECD implements eager evaluation, it is necessary to follow
the evaluation procedure we described in Sect. 11.2.3. The new state is there-
fore (S,E, expf :: expa :: @ :: tl(C),D) which expresses the fact that the next
expression to be evaluated is the functional part of the application (which will
have as its value a closure, as we will see), followed by the argument part of the
application, followed, finally, be the special expression, @, which will force the
real application of the function to its argument.



11.5 The Functional Paradigm: An Assessment 355

4. On the top of control list, there is an abstraction, (fn x => exp). We know that we
are already in the presence of a value which must however be “closed” with the
current environment. The new state of the machine is therefore (cl(E, exp, x) ::
S,E, tl(C),D).

5. The special value @ is on the top of the control list. We then know, by con-
struction, that on the stack there are two values that represent, respectively, an
argument (on the top of the stack) and a function to apply (the second element).
There are two subcases which depend on the function to be applied:

• The function is a primitive function, f , such as succ. The function must be di-
rectly applied to its argument and the new state of the machine is (f (top(S)) ::
tl(tl(S)),E, tl(C),D).

• The function on the top is a closure of the form cl(E1, exp, x). This is one of
the central points of the SECD machine; it brings the dump into play. It is nec-
essary to use the copy rule. The computation passes to exp in the environment
of the closure, E1, (and not in the current environment, E) modified by the
binding of the formal parameter. But the computation performed up to now
must not be forgotten. It is frozen on the dump. The new state of the machine
is therefore ([],E1[x ← top(S)], [exp], (tl(tl(S)),E, tl(C),D)).

6. The control list is empty. This can happen when the computation has terminated
(in which case, the dump is also empty). It can also happen when a computation
started by the previous rule (the one for applying a closure to a value) is finished.
In this second case (that is, non-empty dump of the form (S1,E1,C1,D1)), it is
necessary to resume the computation saved on the dump, restoring, at the same
time, the value just computed (which is on the top of the stack). The new state of
the machine is (top(S) :: S1,E1,C1,D1).

Figure 11.3 shows how the SECD machine computes the value of the expression
(F 3), where:

F = fn x => (sqrt ((fn y => (succ x)) x)).

The computation is shown as a table in which every row represents a transition
of the machine. The rule being used for the transition is indicated in the rightmost
column.

11.5 The Functional Paradigm: An Assessment

Having reached the end of our presentation on the functional paradigm, it is appro-
priate to ask ourselves wherein resides the interest in it and functional languages.
Such a question, in reality, must be asked on at least two different planes:

• That of practical programming.
• That of programming language design.

We will try to give an answer on these two levels but it is appropriate to divert our
attentions for an instant to clarify the context in which we can talk correctly about
“practical programming.”
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S E C D r
[] [] [(F 3)] []
[] [] [F,3,@] [] 3
[ch1] [] [3,@] [] 4

where ch1 = cl([], (sqrt ((fn y => (succ x)) x)), x)

[3, ch1] [] [@] [] 1
[] [x ← 3] [(sqrt ((fn y => (succ x)) x))] d1 5

where d1 = ([], [], [], [])4
[] [x ← 3] [sqrt, ((fn y => (succ x)) x),@] d1 3
[sqrt] [x ← 3] [((fn y => (succ x)) x),@] d1 1
[sqrt] [x ← 3] [(fn y => (succ x)), x,@,@] d1 1
[ch2, sqrt] [x ← 3] [x,@,@] d1 4

where ch2 = cl([x ← 3], (succ x), y)

[3, ch2, sqrt] [x ← 3] [@,@] d1 2
[] [x ← 3, y ← 3] [(succ x)] d2 5

where d2 = ([sqrt], [x ← 3], [@], d1)

[] [x ← 3, y ← 3] [succ, x,@] d2 3
[succ] [x ← 3, y ← 3] [x,@] d2 1
[3, succ] [x ← 3, y ← 3] [@] d2 2
[4] [x ← 3, y ← 3] [] d2 5
[4, sqrt] [x ← 3] [@] d1 6
[2] [x ← 3] [] d1 5
[2] [] [] [] 6

Fig. 11.3 A computation using the SECD machine

Program Correctness The computing beginner often holds that the design and
writing of an efficient program are the most important operations on which their
occupation is based. Software Engineering, however, has largely shown, both in
theory, as in ample experimental studies, that the most critical factors in a software
project are its correctness, readability, maintainability and its dependability. In eco-
nomic terms, these factors account for more than fifty percent of the total cost; in
social terms, software maintenance (which depends in a critical way on its readabil-
ity) can involve hundreds of different people over a period of tens of years. In ethical
terms, the life, or health, of many hundreds of people can depend on the reliability
and correctness of a software system.

In particular, the time is still far away when we will be able to produce software
with correctness guarantees comparable to those with which a civil engineer releases
their own products (bridges, columns, structures). The civil engineer, indeed, has at
his disposal a whole corpus of applied mathematics with which to “calculate” the
structures. If a bridge must take a certain load, be subjected to certain winds, can be
exposed to seismic events of given magnitude, etc., it must have given dimensions,
must be built using materials with certain characteristics, etc. These characteris-
tics are not determined by the designer’s taste but are calculated using appropriate
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mathematical techniques. The information-system designer is far from having at
their disposition a mathematics even remotely on a par with those available to the
building designer.

One of the reasons for the delay in being able to produce such a level of correct-
ness guarantee is that to reason about programs with side effects is particularly diffi-
cult and expensive in terms of computation time. On the contrary, there are standard
techniques, based on appropriate variants of induction, that allow reasoning about
side-effect free programs.

Here, then, is a first reason for the study of pure functional languages. If relia-
bility, readability, correctness are more important than efficiency, there is no doubt
that functional programming generates more readable software, whose correctness
is easier to establish and, therefore, is more reliable.

Program schemata Higher-order functions, which are commonly used in the
functional paradigm, have important pragmatic advantages. A typical way of us-
ing higher-order is that of exploiting it to define general programming schemata
from which specific programs can be obtained by instantiation. Let us consider, for
example, a simple program that adds the elements of a list of integers. We can write
this in ML as:

fun addl nil = 0
| addl n::rest = n + addl(rest);

If we now want the product of a list, we can write:

fun prodl nil = 1
| prodl n::rest = n * prodl(rest);

It is clear that these two programs are instances of a single program schema,
which is generally called fold:

fun fold f i nil = i
| fold f i n::rest = f(n, fold f i rest);

Here, f is the binary operation to be applied to successive elements of the list (+ or
∗), i is the value to use in the terminal case (the neutral element of the operation)
and the third parameter is the list over which to perform the iteration.

If we ignore the fact that + and ∗ are infix operators rather than prefix, we can
immediately see that we can define our two functions using fold:

val suml = fold + 0;
val prodl = fold * 1;

Here, the fact that the function is higher-order is used both to pass to fold the func-
tion to iterate over the list, and to make fold + 0 returns a function which re-
quires an argument of list type.

The extensive use of program schemata increases the modularity of code and
allows correctness proofs to be factored.
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Assessment The arguments we have adduced in favour of functional languages do
not just come from academic environments. Probably the most passionate defence
of the functional paradigm is that in John Backus’ 1977 Turing Award acceptance
lecture (the award was bestowed for his work on FORTRAN).

Anticipating the times, in some sense, Backus put the concepts of correctness and
readability at the centre of the process of software production, relegating efficiency
to second place. He also identified pure functional programming as the tool with
which to proceed in the direction he advocated. Today, we have machines that are
much more efficient than those of 1977 but we have not made the necessary progress
in the area of software correctness techniques.

No-one has however really experimented with large-scale purely functional pro-
grams in such a way that a real comparison with imperative programs can be made.
Significant experiments have been conducted at IBM using the FP language defined
by Backus, and in academic research centres using the language Haskell. All the
other functional languages in use have conspicuous imperative aspects which, al-
though used in ways and places very different from those of ordinary imperative
languages, dissipate the advantages of functional languages in terms of correctness
proofs (but not in terms of readability and schema reuse). In conclusion, we must
say that, from the practical point of programming (understood in the light of the
entire software production process), the superiority of one paradigm over the other
has yet to be shown.

It is on the second level, that of programming language design, that the studies
and experience with functional languages has had a significant impact. Many in-
dividual concepts and experiments in functional programming have later migrated
to other paradigms. Among these concepts, the best known to the reader is that of
type system. The concepts of generics, polymorphism, type safety, all originated in
functional languages (because is it simpler to study and to implement them in an
environment without side-effects).

11.6 Fundamentals: The λ-calculus

At the start of the chapter, we saw that the functional paradigm is inspired by a
foundation for computability theory, different to that based on Turing machines (but
equivalent to that as far as expressive power is concerned). In this section, we present
the important points of this formal system, which is called the λ-calculus.

The syntax of the λ-calculus is extremely austere and can be given in one line
using the following grammar, where X is a non-terminal which represents a generic
variable, M is the initial symbol, the dot and the two parentheses are terminal sym-
bols:

M ::= X | (MM) | (λX.M).

In addition, let us assume that we also have a denumerable set of terminal symbols
for variables which, for ease of notation, we will in general write using the last
lower-case letters of the alphabet: x, y, z, etc.
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The reader will recognise in these clauses both application and abstraction (writ-
ten using λ instead of fn) which we introduced informally in Sect. 11.1.3. We call
λ-terms (or, simply, terms) the strings of terminals which are derived from this gram-
mar.

Syntactic conventions, free and bound variables The “official” books on the
λ-calculus introduce many additional conventions to simplify the notation. For ex-
ample, application associates to the left, or:

M1M2 · · ·Mn stand for (· · · (M1M2) · · ·Mn).

The scope of a λ extends as far as possible to the right (that is, λx.xy stands for
(λx.(xy)) and not for ((λx.x).y). We will seek to use these conventions as little
as possible by using parentheses where necessary. We will also speak of subterms,
with the obvious meaning (for example, (xy) is a subterm of (λx.(xy)) but λx is
not).

The abstraction operator binds the variable upon which is acts,8 in the double
sense that, semantically, consistent renaming of the bound variable does not modify
the semantics of an expression and, syntactically, possible substitutions have no
effect on bound variables. We formalise these aspects in the following definitions.
First, we define, for an arbitrary expression, M , the set of its free variables, which
we denote by Fv(M), and of its bound variables Bv(M):

Fv(x) = {x} Bv(x) = ∅,

Fv(MN) = Fv(M) ∪ Fv(N) Bv(MN) = Bv(M) ∪ Bv(N),

Fv(λx.M) = Fv(M) − {x} Bv(λx.M) = Bv(M) ∪ {x}.

Substitution We can formally define the concept of substitution without variable
capture which constitutes the core of the copy rule. We define, therefore, the nota-
tion, M[N/x] which we read as the substitution of N for the free occurrences of x

in M :

x[N/x] = N,

y[N/x] = y when x �= y,

(M1M2)[N/x] = (M1[N/x]M2[N/x]),
(λy.M)[N/x] = (λy.M[N/x]) when x �= y e y �∈ Fv(N),

(λy.M)[N/x] = (λy.M) when x = y.

The definition is simple. Practically, to substitute N in place of x in M , we “push”
the substitution down towards the leaves of the syntax tree, that is to the variables,
and check if the leaf is labelled with x or with some other variable. But the definition
is subtle, since it avoids capture of the variables in N by some λ. This is the reason
why the last clause requires that y /∈ Fv(N). What happens if, on the other hand, y

is present in N? We can rename the variable bound by λ. As we said above, indeed,

8Remember what was said in Sect. 7.1 about formal parameters to procedures.
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it is not the name of the variable that counts when a λ is applied, but only the way
in which it is used. In other words, we will consider as equivalent two terms that
differ only by the names of their bound variables. For example, λx.x and λy.y, or
λx.λy.x and λv.λw.v.

Alpha equivalence The intuitive idea that two expressions are equivalent when
they differ only in the names of their free variables is formalised in the concept of
α-equivalence:

λx.M ≡α λy.M[y/x] y fresh

where by “y fresh”, we mean that y is a new variable not present in M .
Two terms that differ by just the replacement of some subterm of one term by an

α-equivalent subterm will be considered identical.

Computation: β reduction Computation proceeds by rewriting according to the
prescriptions of β-reduction:

(λx.M)N →β M[N/x].
More generally, we will say that M β-reduces to N (and we write M → N ) when
N is the result of the application of one step of β-reduction to some subterm of M .
A subterm of the form (λx.M)N is a redex whose reductum is M[N/x]. Note that
the concept of β-reduction is not deterministic. Whenever there exists more than
one redex in the same term, it is not prescribed which one will be chosen.

β-reduction is a relation that is not symmetric. In general, if M → N , it is not
the case that N → M ′. It is useful to introduce a symmetric relation which we call
β-equivalence, defined as the reflexive and transitive closure of β-reduction and
denoted by =β . Intuitively, M =β N means that M and N are connected through a
sequence of β-reductions (not necessarily all in the same direction).

Normal forms When a λ-term that does not contain a redex, β-reduction ter-
minates; such terms are called normal forms. For example, λx.λy.x is a normal
form, while the term λx.(λy.y)x) is not a normal form because it contains the redex
(λy.y)x. We have, then:

λx.(λy.y)x → λx.x

and λx.x is now a normal form.
Some terms have reductions that terminate (in a normal form). There are how-

ever also terms which reduce an infinite number of times without ever producing a
normal form, as for example:

(λx.xx)(λx.xx) → (xx)[(λx.xx)/x]
= (λx.xx)(λx.xx)

→ (λx.xx)(λx.xx)

→ . . . .
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Fig. 11.4 The confluence
property for λ-terms

Confluence A fundamental property of the λ-calculus is that its inherent non-
determinism has no dangerous effects. In any way we might choose the redex to
reduce inside a term, the final result (the normal form) of a sequence of reductions
is always the same. Stated in a more formal manner, we have the following property,
called confluence and graphically represented in Fig. 11.4.

If M reduces to N1 in a number of reduction steps, and M also reduces to N2 in a number
of reduction steps, then there exists a term, P , such that both N1 and N2 both reduce to P

in a number of steps.

An important consequence of this property is that if a term can be reduced to a
normal form, this normal form is unique and independent of the path followed to
reach it.

Fixpoint operators We have seen how the λ-calculus formalises many concepts
that we have seen in this chapter.9 We have not however introduced any mechanisms
for the definition of recursive functions. The λ-calculus has no notion of external or
global environment in which to assign names to terms, as happens when defining a
recursive function, for which naming seems to be a fundamental concept.

The point (surprising at first sight) is that the concepts of abstraction and local
environment (which is derived from the possibility of nested λ’s) are on their own
sufficient for the definition of recursion or, more precisely, fixed points.

Let us consider the following very simple recursive definition, which, for simplic-
ity, we write in a λ-calculus extended with integers and conditional expressions:10

Z = λn. if n = 0 then 0 else 1 + Z(n − 1). (11.1)

9We should rather say: formalises many of the concepts that we have seen in this book. The λ-
calculus was a fundamental inspiration to the design of programming languages starting with AL-
GOL and LISP. Concepts such as scope, local environment, call by name, to mention only the most
important, have been “imported” into programming languages on the basis of analogous concepts
in the λ-calculus.
10We use this extension only to simplify the presentation. In the λ-calculus, it is possible to codify
numbers and conditions using only variables, abstractions and applications.
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Our experience with programming languages suggests, perhaps, that we should
read this relation as a definition:

Z
def= λn. if n = 0 then 0 else 1 + Z(n − 1).

But this is not the only reading possible (in particular, it is not possible in the λ-
calculus, which has no concept of global environment to allow us to use the name of
a term inside an expression). A mathematician would probably read it as an equation
with unknown Z (recall the discussion on inductive definitions in Sect. 6.5). For this
very simple equation, it is clear that one solution (rather, in this case, the unique
solution) is the identity function:

Id(n) = n. (11.2)

What we are looking for is a general method which allows us to pass from an
equation such as (11.1) to an algorithm, that is to a λ-term, which is a solution to
this equation when the equality symbol is interpreted as β-equivalence:

Z =β λn. if n = 0 then 0 else 1 + Z(n − 1). (11.3)

Note that this is to ask more than simply provide an arbitrary function such as (11.2).
It requires a term which in the calculus satisfies (11.3).11

Let us consider, first, the function that is obtained from (11.3) by λ-abstracting
on the unknown function:

F
def= λf.λn. if n = 0 then 0 else 1 + f (n − 1).

Hence our problem is to find a suitable term g such that:

g =β F (g).

A term, g, which satisfies an equation of this type is called a fixed point of F .
Therefore our problem of finding a solution to (11.3) can be reformulated as a prob-
lem of finding the fixed point of some function.

We want now to show that the λ-calculus provides a general method “automati-
cally” to solve these equations. Let us, indeed, consider the following term, which
for convenience (and following tradition), we name Y :

Y
def= λf.(λx.f (xx))(λx.f (xx)).

This is a term which can be reduced an infinite number of times without reaching
normal form. But it can be put to good use. Let us indeed try to apply it to an

11The term λn.n is an algorithm for the only function which satisfies (11.1), but it is not a solution
of (11.3), which expresses a determinate behaviour through reduction.
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arbitrary term, M :

YM =β (λx.M(xx))(λx.M(xx))

=β M((λx.M(xx))(λx.M(xx)))

=β M(YM).

In the last step, we have used the fact that was established in the first line, that

YM =β (λx.M(xx))(λx.M(xx))

and we have then substituted equals for equals. YM is therefore a fixed point of M :
Y is a term in the calculus which can compute the fixed point of an arbitrary term.12

We say that Y is a fixpoint operator. It is then quite clear that Y provides solutions
to any recursive equation. In particular, it gives us a solution to (11.3):

Id
def= YF.

The term Id thus defined has a reduction behaviour which satisfies the relation with
which we started. It is instructive to try to apply this function to a specific argument
to see how the mechanism of fixed points is really capable of computing a recursive
function. For example:

Id 2
def= (YF ) 2

→ F(YF) 2

→ if 2 = 0 then 0 else 1 + ((YF )(2 − 1))

→ 1 + ((YF ) 1)

→ 1 + (F (YF) 1)

→ 1 + ((if 1 = 0 then 0 else 1 + ((YF )(1 − 1))))

→ 1 + (1 + ((YF ) 0))

→ 1 + (1 + (if 0 = 0 then 0 else 1 + ((YF ) (0 − 1))))

→ 1 + (1 + 0)

→ 2.

At each “recursive call”, YF provides a new copy of the body of the function which
is used on the next call.

What we have just seen is also true for the definition of recursive values which
are not functions. The stream that we defined in Sect. 11.3.5 as:

12This shows also that, in the λ-calculus, every term has always at least one fixed point, that
computed by Y .
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val infinity2 = 2 :: infinity2;

is nothing more than a fixed point:

infinity2
def= Y(λl. 2 :: l).

Observe that Y is a fixpoint operator with respect to β-equality.13 If, instead of
β-reduction, we use a different strategy, for example, the analogue of reduction by
value which we defined for functional languages, Y is no longer able to compute
fixed points. For reduction by value, another operator must be used, for example:

H
def= λg.((λf.ff )(λf.(g(λx.ff x)))).

For reasons of efficiency, implementations of functional programming languages do
not use fixpoint operators to implement recursion. However, fixpoint operators play
a role that is very important to the theory of these languages.

Expressiveness of the λ-calculus This very simple formal system, constructed
only from the concepts of application and abstraction, is not as rudimentary as it
seems, if it can express arbitrary recursions. Indeed, it is possible to show that the
λ-calculus is a Turing-complete formalism. In the first place, it is possible to encode
the natural numbers as λ-terms (a λ-term, n is associated with the number n) and,
then, show that to every computable function, f , there corresponds a λ-term Mf

which computes f : if f (n) = m, then Mf n → m.

11.7 Chapter Summary

In this chapter, we have presented the functional programming paradigm. In its pure
form, this is a computational model which does not contain the concept of modifi-
able variable. Computation proceeds by the rewriting of terms that denote functions.
The main concepts that we have discussed are:

• Abstraction. A mechanism for passing from one expression denoting a value to
one denoting a function.

• Application A mechanism dual to abstraction, by which a function is applied to
an argument.

• Computation by rewriting or reduction, in which an expression is repeatedly sim-
plified until a form that can not be further reduced is encountered.

• Redex. The syntactic structure which is simplified during reduction and is formed
from the application of an abstraction to an expression.

• The centrality of higher order in this mode of computation.

13Clearly it is not unique. For another operator slightly more complex than Y but which satisfies a
stronger relation, see Exercise 7.
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• The concept of value which corresponds to those syntactic forms not otherwise
reducible and where reduction therefore terminates.

• The different evaluation strategies: by value (or eager), by name, lazy.
• Some mechanisms that the most common functional languages add to the funda-

mental nucleus. Among these, recall: an interactive environment, a rich system of
types, pattern matching, imperative aspects such as variables and assignments.

• The SECD machine, a prototype abstract machine for higher-order functional lan-
guages using the by-value strategy.

• A comparison of the functional and imperative paradigms, centred on the notion
of program correctness.

• The λ-calculus, a simple and powerful formal system that constitutes the formal
nucleus of all functional languages.

11.8 Bibliographical Note

Reading the original article by John McCarthy on LISP is still didactically im-
portant [7]. An elementary introduction to programming using ML is to be found
in [11], while [4] is a more advanced text (which uses the Caml dialect); [9] is the
official definition of the language and it is useful to read it together with the com-
mentary [8].

The implementation of functional languages, with particular regard to lazy eval-
uation is dealt with in [10]. The SECD machine was introduced in the pioneering
work of Peter Landin [6].

John Backus’ lecture for the Turing Award [1] should be essential reading (at
least for its first part) for every student of programming languages.

The lambda calculus was introduced in the 1930s by Alonzo Church. An original
reference is [3]. The modern reference text is [2], even if [5] is a clearer and more
accessible introduction.

11.9 Exercises

1. Consider the following definitions in ML:

fun K x y = x;
fun I x = x;
fun Omega x = Omega x;

State what the result of evaluating the following expression will be.

K (I 3) (Omega 1).

What would be the result if ML adopted a lazy strategy?
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2. Write a function map which applies its first parameter (which will be a function)
to all the elements of a list passed as its second argument.

3. Describe formally the operation of the SECD machine, by giving a definition
using the structural operational semantics that we introduced in Sect. 2.5.

4. In λ-calculus, we define the code of a natural number, n, as:

n
def= λf.λx.f nx

def= λf.λx.f (f · · · (f x) · · ·),
where, in the body, there are n occurrences of f . Give the definition of a term,
prod such that:

prod n m → n ∗ m.

5. Apply the technique of calculating fixed points to solve the following equation
for the unknown fact:

fact =β λn. if n = 0 then 1 else n ∗ fact(n − 1)

and describe the reduction which computes the value of its solution applied to
argument 2.

6. Apply the technique of calculating fixed points to solve the following equation
for the unknown h:

h =β λx. if x > 100 then x − 10 else h(h(x + 11)).

Call the solution Ninetyone, then calculate Ninetyone(99).
7. Consider the λ-terms:

A = λx.λy.y(xxy),

� = AA.

Show that � is a fixed-point operator for which the relation:

�M → ·· · → M (�M).

is true. This relation is stronger than that satisfied by Y , for which only YM =β

M(YM) is true. The term, �, is called the Turing fixpoint operator.

References

1. J. Backus. Can programming be liberated from the von Neumann style? A functional style and
its algebra of programs. Commun. ACM, 21(8):613–641, 1978. doi:10.1145/359576.359579.

2. H. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Elsevier, Amsterdam, 1984.
3. A. Church. The Calculi of Lambda Conversion. Princeton Univ. Press, Princeton, 1941.
4. G. Cousineau and M. Mauny. The Functional Approach to Programming. Cambridge Univ.

Press, Cambridge, 1998.



References 367

5. R. Hindley and P. Seldin. Introduction to Combinators and Lambda-Calculus. Cambridge
Univ. Press, Cambridge, 1986.

6. P. J. Landin. The mechanical evaluation of expressions. The Computer Journal, 6(4):308–320,
1964. citeseer.ist.psu.edu/cardelli85understanding.html.

7. J. McCarthy. Recursive functions of symbolic expressions and their computation by machine,
part I. Commun. ACM, 3(4):184–195, 1960. doi:10.1145/367177.367199.

8. R. Milner and M. Tofte. Commentary on Standard ML. MIT Press, Cambridge, 1991.
9. R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML—Revised.

MIT Press, Cambridge, 1997.
10. S. Peyton-Jones. The Implementation of Functional Programming Languages. Prentice

Hall, New York, 1987. Online at http://research.microsoft.com/Users/simonpj/papers/slpj-
book-1987/index.htm.

11. J. D. Ullman. Elements of ML Programming. Prentice-Hall, Upper Saddle River, 1994.



Chapter 12
The Logic Programming Paradigm

In this chapter we analyse the other paradigm which, together with functional pro-
gramming, supports declarative programming. The logic programming paradigm in-
cludes both theoretical and fully implemented languages, of which the best known
is surely PROLOG. Even if there are big differences of a pragmatic and, for some, of
a theoretical nature between these languages, they all share the idea of interpreting
computation as logical deduction.

In this chapter, we will therefore examine these concepts while trying to limit the
theoretical part. We also adopt the approach that has characterised the rest of the text
while examining this paradigm. We do not mean therefore to teach programming in
PROLOG, even if we present various examples of real programs, but we do intend
to provide enough basis for understanding and, in a short time, mastering this and
other logic programming languages.

12.1 Deduction as Computation

A well-known slogan due to R. Kowalski, exactly captures the concepts that under-
pin the activity of programming: Algorithm = Logic + Control. According to this
“equation”, the specification of an algorithm, and therefore its formulation in pro-
gramming languages, can be separated into three parts. On the one side, the logic of
the solution is specified. That is, the “what” must be done is defined. On the other,
those aspects related to control are specified, and therefore the “how” of finding the
desired solution is clarified. The programmer who uses a traditional imperative lan-
guage must take account of both these components using the mechanisms which we
have variously analysed in the chapters that precede this one. Logic programming,
on the other hand, was originally defined with the idea of cleanly separating these
two aspects. The programmer is only required, at least in principle, to provide a log-
ical specification. Everything related to control is relegated to the abstract machine.
Using a computational mechanism based on a particular deduction rule (resolution),
the interpreter searches through the space of possible solutions for the one specified
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by the “logic”, defining in this way the sequence of operations necessary to reach
the final result.

The basis for this view of computation as logical deduction can be traced back to
the work of K. Gödel and J. Herbrand in the 1930s. In particular, Herbrand antici-
pated, even in an incompletely formal way, some ideas on the process of unification,
which, as we will see, forms the basic computational mechanism of logic program-
ming languages.

It was not until the 1960s that a formal definition (due to A. Robinson) of this
process appeared and only ten years later (in the early 1970s) it was realised that
formal automatic deduction of a particular kind could be interpreted as a com-
putational mechanism. The first programming languages in the logic program-
ming paradigm were created, among which PROLOG (the name is an acronym for
PROgramming in LOGic, for more information on the story of this language, see
Sect. 13.4).

Today there are many implemented versions of PROLOG and there exist various
other languages in this paradigm (as far as applications are concerned, those includ-
ing constraints are of particular interest). All of these languages (and PROLOG was
the first) allow the use of constructs permitting the specification of control for rea-
sons of efficiency. Since these constructs do not have a direct logical interpretation,
they make the semantics of the language more complicated, and cause the loss of
part of the purely declarative nature of the logic paradigm. This notwithstanding, we
are still dealing with logic programming languages, even including these “impure”
aspects, which require the programmer to do little more than formulate (or declare)
the specification of the problem to be solved. In some cases, the resulting programs
are really surprising in their brevity, simplicity and clarity, as we will see in the next
section.

Terminological Note Logic programming, which constitutes the theoretical for-
malism, is distinguished from PROLOG, a language which has different implemen-
tations and for which a standard has recently been defined. The concepts we intro-
duce below, if not otherwise stated, are valid for both formalisms. The important
differences will be explicitly pointed out. The programming examples which we in-
clude (usually in this font) are all PROLOG code which could be run on some
implementation of the language. The theoretical concepts, on the other hand, even
when they are valid for PROLOG, use mathematical concepts and are rendered in
italic characters. Moreover, we will follow the PROLOG convention that we always
write variables as strings of characters beginning with an upper-case letter. Finally
note that, as mentioned before, there exist several other languages, different from
PROLOG, in the logic programming paradigm. We call these logic programming
languages, or logic languages, for short.
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12.1.1 An Example

We try to substantiate what we said in the last section with an example which will
be fairly informal, at least for now, given that we have introduced neither the syntax
nor the semantics of logic languages.

Let us therefore consider the following problem. It is desired to arrange three 1s,
three 2s, . . . , three 9s in a list (which therefore will consist of 27 numbers) such that,
for each i ∈ [1,9], there are exactly i numbers between two successive occurrences
(in the list) numbered i. Therefore, for example, 1,2,1,8,2,4,6,2 could be a part
of the final solution, while 1,2,1,8,2,4,2,6 might not be one (because there is
only a single number between the last two occurrences of 2). The reader is invited
to try to write a program that solves this problem using their preferred imperative
programming language. This is not a difficult exercise but does requires some care,
because even if the “what” must be done is clear, the “how” of the desired solution is
not immediately clear. For example, in a very naive (and completely inefficient) way,
it might be thought that all possible permutations of a list of 27 numbers containing
three 1s, three 2s, three 3s, . . . , three 9s, could be generated and then checked to see
if one of them satisfies the required propriety. This solution, too, probably one of
the simplest, however, requires the specification in detail of the aspects of control
necessary to generate the permutations of a list.

Reasoning in a declarative fashion, on the other hand, we can proceed as fol-
lows. First, we need a list which we will call Ls. This list will have to contain 27
elements, something that we can specify using a unary predicate (that is, a relation
symbol)1 list_of_27. If we write list_of_27(Ls), we mean, therefore, to
say that Ls must be a list of 27 elements. In other words, list_of_27 defines
a relation formed of all possible lists of 27 elements. To achieve this aim, we can
define list_of_27 as follows:

list_of_27(Ls):-
Ls = [_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_].

where the part to the left of the :- symbol denotes what is being defined, while
the part to the right of :- indicates the definition. The = denotes an equality con-
cept whose definition is left to intuition, for the present (it is different, however,
from assignment). Anticipating the PROLOG notation for lists, here we write [X1,
X2, ...,Xn] to denote the list that contains the n variables X1, X2, . . . , Xn (see
Sect. 12.4.5 for more details about lists).

In order to satisfy our specification, the list, Ls, in addition to being composed of
27 elements, will have to contain a sublist2 in which the number 1 appears followed
by any other number, by another occurrence of the number 1, then another number
and finally a last occurrence of the number 1. Such a sublist can be specified as

1Recall that unary means that it has a single argument while n-ary means that there are n argu-
ments.
2Recall that Li is a sublist of Ls if Ls is obtained by concatenating a (possibly empty) list with
Li and with another list (itself also possibly empty).
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[1,X,1,Y,1]

where X and Y are variables. More efficiently, we can write:

[1,_,1,_,1]

where _ is the anonymous variable, that is a variable whose name is of no interest
and which is distinct from all other variables present, including all other anonymous
variables. Assuming that we have available a binary predicate sublist(X,Y)
whose meaning is that the first argument (X) is a sublist of the second (Y),3 our
requirement therefore can be expressed by writing:

sublist([1,_,1,_,1], Ls)

Moving on to number 2 and reasoning in a similar fashion, we obtain that the list
Ls must also contain the sublist:

[2,_,_,2,_,_2]

and therefore the following must also be true:

sublist([2,_,_,2,_,_,2], Ls)

We can repeat this reasoning as far as number 9, hence the sol program that we
want to produce can be described as follows:

1sol(Ls) :-
list_of_27(Ls),

3sublist([9,_,_,_,_,_,_,_,_,_,9,_,_,_,_,_,_,_,_,_,9], Ls),
sublist([8,_,_,_,_,_,_,_,_,8,_,_,_,_,_,_,_,_,8], Ls),

5sublist([7,_,_,_,_,_,_,_,7,_,_,_,_,_,_,_,7], Ls),
sublist([6,_,_,_,_,_,_,6,_,_,_,_,_,_,6], Ls),

7sublist([5,_,_,_,_,_,5,_,_,_,_,_,5], Ls),
sublist([4,_,_,_,_,4,_,_,_,_,4], Ls),

9sublist([3,_,_,_,3,_,_,_,3], Ls),
sublist([2,_,_,2,_,_,2], Ls),

11sublist([1,_,1,_,1], Ls).

13list_of_27(Ls):-
Ls = [_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_].

where, as before, the part to the right of the :- symbol is the definition of what lies
to its left. What we have written above says that to find a solution to our problem
(sol(Ls) in line 1), all the properties described in lines 2–11 must be satisfied.
The commas that separate the various predicates are to be interpreted as “and”, that
is as conjunctions in the logical sense. What we have provided therefore is nothing

3The definition of sublist is given in Sect. 12.4.5.
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more than a specification that, in substance, formally repeats the formulation of the
problem and which, as we will see below, can be interpreted in purely logical terms.

This declarative reading, for all of its elegance and compactness, would not be of
great of use as the solution to our problem if it were not accompanied by a procedu-
ral interpretation and must therefore be translated into a conventional programming
language. The important characteristics of the paradigm that we are considering is
precisely that the (logical) specifications we write are to all intents and purposes
executable programs. The code described above in lines 1–14 (plus the definition
of sublist in Sect. 12.4.5) is indeed a genuine PROLOG program that can be
evaluated by an interpreter to obtain the desired solution.

In other words, our specification can also be read in a procedural fashion, as fol-
lows. Line (1) contains the declaration of a procedure called sol; it has a single for-
mal parameter, Ls. The body of this procedure is defined by lines (2) to (11), where
we find the following ten procedure calls. On line (2), procedure list_of_27 is
called with actual parameter Ls which is defined as we have seen above and which
therefore instantiates4 its actual parameter into a list of 27 anonymous variables.
Therefore, on line (3), we have the call:

sublist([9,_,_,_,_,_,_,_,_,_,9,_,_,_,_,_,_,_,_,_,9], Ls)

We assume that this call arranges matters so that the list which appears as the
first parameter is a sublist of the list which is bound to the second parameter (Ls),
possibly by instantiating the variable Ls. Similarly for the other calls until line (11).
Parameter passing occurs in a way similar to call by name and, in PROLOG, the
order in which the different procedure calls appear in the text specifies the order
of evaluation (in the case of pure logic programs, on the other hand, no order is
specified).

Given the preceding definition of procedure sol, the call sol(Ls) returns Ls
instantiated with a solution to the problem, such as for example the following:

1,9,1,2,1,8,2,4,6,2,7,9,4,5,8,6,3,4,7,5,3,9,6,8,3,5,7.

Successive calls to the same procedure will allow us also to obtain the other
solutions to the problem.

With this procedural interpretation, one has therefore a true programming lan-
guage which allows us to express, in a compact and relatively simple fashion, pro-
grams that solve even very complex problems. For this power, the language pays the
penalty of efficiency. In the preceding program, despite its apparent simplicity, the
computation performed by the language’s abstract machine is very complex, given
that the interpreter must try the various combinations of possible sublists until it
finds the one that satisfies all the conditions. In these search processes, a backtrack-
ing mechanism is used. When the computation arrives at a point at which it cannot

4Even if the terminology is intuitively clear: by instantiation of a variable is meant substituting for
it a syntactic object. We will give a precise definition in Sect. 12.3.



374 12 The Logic Programming Paradigm

proceed, the computation that has been performed is undone so that a decision point
can be reached, if it exists, at which an alternative is chosen that is different form the
previous one (if this alternative does not exist, the computation terminates in fail-
ure). It is not difficult to see that, in general, this search process can have exponential
complexity.

12.2 Syntax

Logic programs are sets of logic formulæ of a particular form. We begin therefore
with some basic notions for defining the syntax.

The logic of interest here is first-order logic; it is also called predicate calculus.
The terminology refers to the fact that symbols are used to express (or, in a more
old-fashioned terminology, to “predicate”) properties of elements of a fixed domain
of discourse, D . More expressive logics (second, third, etc., order) also permit predi-
cates whose arguments are more complicated objects such as sets and functions over
D (second order), sets of functions (third order), etc., in addition to elements of D .

12.2.1 The Language of First-Order Logic

If we are to speak of predicate calculus (and therefore of logic programs), we have to
define the language. The language of first-order logic consists of three components:

1. An alphabet.
2. Terms defined over this alphabet.
3. Well-formed formulæ defined over this alphabet.

Let us look at the various components of this definition in the order in which they
appear above.

Alphabet The alphabet is usually a set5 of symbols. In this case, we consider the
set to be partitioned into two disjoint subsets: the set of logical symbols (common
to all first-order languages) and the set of non-logical (or extra-logical) symbols
(which are specific to a domain of interest). For example, all first-order languages
will use a (logical) symbol to denote conjunction. If we are considering orderings
on a set, we will probably also have the < symbol as one of the non-logical sym-
bols.

The set of logical symbols contains the following elements:

• The logical connectives ∧ (conjunction), ∨ (disjunction), ¬ (negation), → (im-
plication) and ↔ (logical equivalence).

• The propositional constants true and false.

5All the sets we consider below are finite or denumerable.
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• The quantifiers ∃ (exists) and ∀ (forall).
• Some punctuation symbols such as brackets “(” and “)” and comma “,”.
• An (denumerably) infinite set V of variables, written X, Y , Z, . . .

The non-logical (or extra-logical) symbols are defined by a signature with pred-
icates (�,�). This is a pair in which the first element, � is the function signature,
that is a set of function symbols, each considered with its own arity.6 The second
element of the pair, �, is the predicate signature, a set of predicate symbols together
with their arities. Functions of arity 0 are said to be constants and are denoted by the
letters a, b, c, . . . . Function symbols of positive arity are, as usual, denoted by f , g,
h, . . . , while predicate symbols are denoted by p, q , r , . . . . Let us assume that the
sets � and � have an empty intersection and are also disjoint from the other sets
of symbols listed above. The difference between function and predicate symbols is
that the former must be interpreted as functions, while the latter must be interpreted
as relations. This distinction will become clearer when we discuss formulæ.

Terms The concept of term, which is fundamental to mathematical logic and
Computer Science, is used implicitly in many contexts. For example, an arithmetic
expression is a term obtained by applying (arithmetic) operators to operands. Other
types of construct, too, such as strings, binary trees, lists, and so on, can be conve-
niently seen as terms which are obtained using appropriate constructors.

In the simplest case, a term is obtained by applying a function symbol to as
many variables and constants as required by its arity. For example, if a and b are
constants, X and Y are both variables and f and g have arity 2, then f (a, b) and
g(a,X) are terms. Nothing prevents the use of terms as the arguments to a function,
provided that the arity is always respected. We can, for example, write g(f (a, b),Y )

or g(f (a,f (X,Y )),X) and so on.
In the most general possible case, we can define terms as follows.

Definition 12.1 (Terms) The terms over a signature � (and over the set, V , of
variables) are defined inductively7 as follows:

• A variable (in V ) is a term.
• If f (in �) is a function symbol of arity n and t1, . . . , tn are terms, then

f (t1, . . . , tn) is a term.

As a particular case of the second point, a constant is a term. According to the
letter of the definition, a term which corresponds to a constant must be written with
parentheses: a(), b(), . . . . Let us establish, for ease of reading, that in the case of
function symbols of arity 0, parentheses are omitted. Terms without variables are
said to be ground terms. Terms are usually denoted by the letters s, t, u, . . . . Note
that predicates do not appear in terms; they appear in formulæ (to express the prop-
erties of terms).

6Recall that, as stated above, the arity denotes the number of arguments of a function or relation.
7See the box on page 153 for inductive definitions.
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Formulæ The well-formed formulæ (or formulæ for short) of the language allow
us to express the properties of terms which, from the semantic viewpoint, are prop-
erties of some particular domain of interest. For example, if we have the predicate
>, interpreting it in the usual fashion, writing > (3,2), we want to express the fact
that the term “3” corresponds to a value with is greater than that associated with the
term “2.” Predicates can then be used to construct complex expressions using logical
symbols. For example, the formula > (X,Y )∧ > (Y,Z) →> (X,Z) expresses the
transitivity of >; it asserts that if > (X,Y ) is true and > (Y,Z) is also true then, it
is the case that > (X,Z).

Wanting to define formulæ precisely, we have first atomic formulæ (or atoms),
constructed by the application of a predicate to the number of terms required by
its arity. For example, if p has arity 2, using two the terms introduced above, we
can write p(f (a, b), f (a,X)). Using logical connectives and quantification, we can
construct complex formulæ from atomic ones. As usual, we have an inductive defi-
nition (or, equivalently, a free grammar—see Exercise 1).

Definition 12.2 (Formulæ) The (well-formed) formulæ over the signature with
terms (�,�) are defined as follows:

1. If t1, . . . , tn are terms over the signature � and p ∈ � is a predicate symbol of
arity n, then p(t1, . . . , pn) is a formula.

2. true and false are formulæ.
3. If F and G are formulæ, then ¬F , (F ∧ G), (F ∨ G), (F → G) and (F ↔ G)

are formulæ.
4. If F is a formula and X is a variable, then ∀X.F and ∃X.F are formulæ.

12.2.2 Logic Programs

A formula of first-order logic can have a highly complex structure which often deter-
mines the effort required to find a proof. In automatic theorem proving, and also in
logic programming, particular classes of formulæ, called clauses, have been identi-
fied which lend themselves to more efficient manipulation, in particular using a spe-
cial inference rule called resolution. A restricted version of the concept of clause,
called definite clauses, as well as restricted forms of resolution (SLD resolution—
see page 392) are of interest to us. Using them, the procedure for seeking a proof
is not only particularly simple but also allows the explicit calculation of the values
of the variables necessary for the proof. These values can be considered as the re-
sult of the computation, giving way to an interesting model of computation based
on logical deduction. We will see this model in more detail below, for now we will
concentrate on syntactic aspects.

Definition 12.3 (Logic Program) Let H , A1, . . . ,An be atomic formulæ. A definite
clause (for us simply a “clause”) is a formula of the form:

H : −A1, . . . ,An.
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If n = 0, the clause is said to be a unit, or a fact, and the symbol : − is omitted
(but not the final full stop). A logic program is a set of clauses, while a pure PRO-
LOG program is a sequence of clauses. A query (or goal) is a sequence of atoms
A1, . . . ,An.

Let us clarify some points about this definition. First, the symbol : − which we
did not include in our alphabet, is simply a symbol denoting (reversed) implication
(←) and is the same as often encountered in real logic languages.8

The commas in a clause or in a query, from the logical viewpoint, should be
interpreted as logical conjunction. The notation “H : −A1, . . . ,An.” is therefore an
abbreviation for “H ← A1 ∧ · · · ∧An.” Note that the full stop is part of the notation
and is important because it tells a potential interpreter or compiler that the clause it
is working on has terminated.

The part on the left of : − is called the head of the clause, while that on the right
is called the body. A fact is therefore a clause with an empty body. A program is
a set of clauses in the case of the theoretical formalism. In the case of PROLOG,
on the other hand, a program is considered as a sequence because, as we will see,
the order of clauses is relevant. Here, we used the simplified terminology found in
many recent texts (for example, [1]). For more precise terminology, see the next
box. The set of clauses containing the predicate symbol p in their head is said to be
the definition of p. Variables occurring in the body of a clause and not in the head
are said to be local variables.

12.3 Theory of Unification

The fundamental computational mechanism in logic programming is the solution of
equations between terms using the unification procedure. In this procedure, substi-
tutions are computed so that variables and terms can be bound (or instantiated). The
composition of the different substitutions obtained in the course of a computation
provides the result of the calculation. Before seeing the computational model for
logic programming in detail, we must analyse unification in a little detail, a task we
undertake in this section.

12.3.1 The Logic Variable

Before going into detail on the process of unification, it is important to clarify that
the concept of variable we are considering is different from that seen in Sect. 6.2.1.
Here, we consider the so-called logic variable which, analogously to the variables

8: − is used for pragmatic reasons. When logic languages were being introduced, it was much
easier to type : − rather than a left arrow.
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Clauses

The reader familiar with first-order logic will have recognised the notion of clause
given in Definition 12.3 as being a particular case of the one used in logic. A clause,
in the general sense, is indeed a formula of the form:

∀X1, . . . ,Xm(L1 ∨ L2 ∨ · · · ∨ Ln)

where L1 . . .Ln are literals (atoms or negated atoms) and X1, . . . ,Xn are all the
variables that occur in L1 . . .Ln. For greater clarity, we separate the negated atoms
from the others and therefore we will see a clause as a formula of the form:

∀X1, . . . ,Xm(A1 ∨ A2 ∨ · · · ∨ Am,¬B1 ∨ ¬B2 ∨ · · · ∨ ¬Bk).

Using a known logical equivalence which allows implications to be written as dis-
junction, we can express this formula in the following special form (which is equiv-
alent to the previous one);

A1, . . .Am ← B1, . . . ,Bk. (12.1)

A program clause, also called a definite clauses, is a clause that has only one un-
negated atom. In the form shown in (12.3), a definite clause always has m = 1, which
is exactly the notion introduced in Definition 12.3. A fact is therefore a definite
clause containing no negated atoms. Finally, a negative clause, also called a query
or goal, is a clause of the form (12.3) in which m = 0.

which we have already spoken of, is an unknown which can assume values from
a predetermined set. In our case, this set is that of definite terms over the given
alphabet. This fact, together with the use to which logic variables are put in logic
programming, gives rise to three important differences between this concept and the
modifiable variables in imperative languages:

1. The logic variable can be bound only once, in the sense that if a variable is bound
to a term, this binding cannot be destroyed (but the term might be modified, as
will be explained below). For example, if we bind the variable X to the constant
a in a logic program, the binding cannot later be replaced by another which
binds X to the constant b. Clearly, this is possible in imperative languages using
assignment. The fact that the binding of a variable cannot be eliminated does not
mean, however, that it is impossible to modify the value of the variable. This
apparent contradiction merits more consideration; this is done in the next point.

2. The value of a logic variable can be partially defined (or can be undefined), to be
specified later. This is because a term that is bound to a variable can contain, in
its turn, other logic variables. For example, if the variable X is bound to the term
f (Y,Z), successive bindings of the variables Y and Z will also modify the value
of the variable X: if Y is bound to a and Z is bound to g(W), the value of X
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will become the term f (a,g(W)). The process could continue by modifying the
value of W . This mechanism for specifying the value of a variable by successive
approximations, so to speak, is typical of logic languages and is somewhat dif-
ferent from the corresponding one encountered in imperative languages, where a
value assigned to a value cannot be partially defined.

3. A third important difference concerns the bidirectional nature of bindings for
logic variables. If X is bound to the term f (Y ) and later we are able to bind X

to the term f (a), the effect so produced is that of binding the variable Y to the
constant a. This does not contradict the first point, given that the binding of X

to the term f (Y ) is not destroyed, but the value of f (Y ) is specified through
the binding of Y . Therefore, we can not only modify the value of a variable by
modifying the term to which it is bound, but we can also modify this term by
providing another binding for that variable. Clearly, this second binding must be
consistent with the first, that is if X is bound to the term f (Y ), we cannot try to
bind X to a term of the form g(Z).

The last point is fundamental. This is the point that allows us to use a single logic
program in quite different ways, as will be seen below. Essentially, we are talking
about a property that derives from the unification mechanism, which we will discuss
shortly. First, however, we must introduce the concept of substitution.

12.3.2 Substitution

The connection between variables and terms is made in terms of the concept of
substitution, which, as its name tells us, allows the “substitution” of a variable by a
term. A substitution, usually denoted by the greek letters ϑ , σ , ρ, . . . , can be defined
as follows.

Definition 12.4 (Substitution) A substitution is a function from variables to terms
such that the number of variables which are not mapped to themselves is finite. We
denote a substitution ϑ by the notation:

ϑ = {X1/t1, . . . ,Xn/tn}
where X1, . . . ,Xn are different variables, t1, . . . , tn are terms and where we assume
that ti is different from Xi , for i = 1, . . . , n.

In the preceding definition, a pair Xi/ti is said to be a binding. In the case in
which all the t1, . . . , tn are ground terms, then ϑ is said to be a ground substitution.
We write ε for the empty substitution. For ϑ represented as in Definition 12.4, we
define the domain, codomain and variables of a substitution as follows:

Domain(ϑ) = {X1, . . . ,Xn},
Codomain(ϑ) = {Y | Y a variable in ti , for some ti , 1 ≤ i ≤ n}.
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A substitution can be applied to a term, or, more generally, to any syntactic expres-
sion, to modify the value of the variables present in the domain of the substitution.
More precisely, if we consider an expression, E (which could be a term, a literal, a
conjunction of atoms, etc), the result of the application of ϑ = {X1/t1, . . . ,Xn/tn}
to E, denoted by Eϑ ,9 is obtained by simultaneously replacing every occurrence of
Xi in E by the corresponding ti , for all 1 ≤ i ≤ n. Therefore, for example, if we ap-
ply the substitution ϑ = {X/a,Y/f (W)} to the term g(X,W,Y ), we obtain the term
g(X,W,Y )ϑ , that is g(a,W,f (W)). Note that the application is simultaneous. For
example, if we apply the substitution σ = {Y/f (X),X/a} to the term g(X,Y ), we
obtain g(a,f (X)) (and not g(a,f (a))).

The composition, ϑσ , of two substitutions ϑ = {X1/t1, . . . ,Xn/tn} and σ =
{Y1/s1, . . . , Ym/sm} is defined as the substitution obtained by removing from the
set

{X1/t1σ, . . . ,Xn/tnσ,Y1/s1, . . . , Ym/sm}
the pairs Xi/tiσ such that Xi is equal to tiσ and the pairs Yi/si such that Yi ∈
{X1, . . . ,Xn}. Composition is associative and it is not difficult to see that, for any
expression, E, it is the case that E(ϑσ) = (Eϑ)σ . The effect of the application
of a composition is the same as it is obtained by successively applying the two
substitutions that we want to compose.

For example, composing

ϑ1 = {X/f (Y ),W/a,Z/X} and ϑ2 = {Y/b,W/b,X/Z}
we obtain the substitution

ϑ = ϑ1ϑ2 = {X/f (b),W/a,Y/b}.
If we apply the latter to the term g(X,Y,W), we obtain the term g(f (b), b, a).

The same term is obtained first by applying ϑ1 to g(X,Y,W), then applying ϑ2 to
the result. Note that, in the result ϑ of the composition, the Y in ϑ1 is instantiated
to b because of the binding occurring in ϑ2. The X occurring in Z/X is instantiated
to Z using the binding X/Z in ϑ2, after which the binding Z/Z is eliminated from
the resulting substitution (because it is the identity). The bindings W/b and X/Z

present in ϑ2 finally disappear from ϑ because both W and Z appear in the domain
(or, on the left of a binding) in ϑ1.

A particular type of substitution is formed from those which simply rename
their variables. For example, the substitution {X/W,W/X} does nothing more than
change the names of the variables X and W . Substitutions like this are called re-
namings and can be defined as follows.

9Note that there exist two opposing versions, both for the notation used for denoting substitutions
and for that one used for application of a substitution. The notation for substituting of a term
N in place of a variable X used on page 359 is N/X using the conventions adopted in functional
programming. Here, on the other hand, such a binding is written X/N (i.e., backwards). In general,
we will use the notation most commonly used in logic programming.
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Definition 12.5 (Renaming) A substitution ρ is a renaming if its inverse substitu-
tion ρ−1 exists and is such that ρρ−1 = ρ−1ρ = ε.

Note that the substitution {X/Y,W/Y } is not a renaming. Indeed, it not only
changes the names of the two variables, but also makes the two variables equal that
were previously distinct.

Finally, it will be useful to define a preorder, ≤, over substitutions, where ϑ ≤ σ

is read as: ϑ is more general than σ . Let us therefore define ϑ ≤ σ if (and only if)
there exists a substitution γ such that ϑγ = σ . Analogously, given two expressions,
t and t ′, we define t ≤ t ′ (t is more general t ′) if and only if there exists a ϑ such that
tϑ = t ′. The relation ≤ is a preorder and the equivalence induced by it10 is called
the variance; t and t ′ are therefore variants if t is an instance of t ′ and, conversely, t ′
is an instance of t . It is not difficult to see that this definition is equivalent to saying
that t and t ′ are variants if there exists a renaming ρ such that t is syntactically
identical to t ′ρ. These definitions can be extended to any expression in an obvious
fashion. Finally, if ϑ is a substitution that has as domain the set of variables V , and
W is a subset of V , the restriction of ϑ to the variables in W is the substitution
obtained by considering only the bindings for variables in W , that is the substitution
defined as follows:

{Y/t | Y ∈ W and Y/t ∈ ϑ}.
A comparison with the imperative paradigm can help in better understanding the
concepts under consideration. As we saw in Sect. 2.5, in the imperative paradigm,
the semantics can be expressed by referring to a concept of state that associates
every variable with a value.11 An expression containing variables is evaluated with
respect to a state to obtain a value that is completely defined.

In the logic paradigm, the association of values with variables is implemented
through substitutions. The application of a substitution to a term (or to a more com-
plex expression) can be seen as the evaluation of the terms, an evaluation that returns
another term, and therefore, in general, a partially defined value.

12.3.3 Most General Unifier

The basic computation mechanism for the logic paradigm is the evaluation of equa-
tions of the form s = t ,12 where s and t are terms and “=” is a predicate symbol

10Given a preorder, ≤, the equivalence relation induced by ≤ is defined as t = t ′ if and only if
t ≤ t ′ and t ′ ≤ t .
11Wishing to be precise, as we have seen in the box on page 135, in real languages, this association
is implemented using two functions, environment and memory. This however does not alter the
import of what we are saying.
12We draw attention to the notation that, as usual, overloads the “=” symbol. By writing ϑ =
{X1/t1, . . . ,Xn/tn}, we mean that ϑ is the substitution {X1/t1, . . . ,Xn/tn}, while writing s = t ,
we mean an equation.
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interpreted as syntactic equality over the set of all ground terms; this set is called
the Herbrand Universe.13 We will attempt better to clarify this equality.

If we write X = a in a logic program, we mean that the variable X must be bound
to the constant a. The substitution {X/a} therefore constitutes a solution to this
equation since, by applying the substitution to the equation, we obtain a = a which
is an equation that is clearly satisfied. The syntactic analogy with assignment in
imperative languages should not be allowed to deceive, for it deals with a completely
different concept. Indeed, unlike in an imperative language, here we can also write
a = X instead of X = a and the meaning does not change (the equality that we are
considering is symmetric, as are all equality relations). Also the analogy with the
equality of arithmetic expressions can be, in some ways, misleading, as illustrated
by the following example.

Let us assume that we have a binary function symbol + which, intuitively, ex-
presses the sum of two natural numbers, and consider the equation 3 = 2+1, where,
for simplicity, we use infix notation for + and we represent in the usual fashion the
natural numbers. Given that the equation 3 = 2 + 1 does not contain variables, it
can be either true (or, solved) or false (that is, insoluble). Contrary to what arith-
metic intuition would suggest to us, in a (pure) logic program this equation cannot
be solved. This is because, as we have said, the symbol = is interpreted as syntactic
equality over the set of ground terms (the Herbrand universe). It is clear that, from
the syntactic viewpoint, the constant 3 is different from the term 2+1 and since they
are treated as ground terms (that is completely instantiated terms) there is no way
that they can be made syntactically equal. Analogously, the equation f (X) = g(Y )

has no solutions (it is not solvable) because however the variables X and Y are in-
stantiated, we cannot make the two different function symbols, f and g, equal. Note
that the equation, f (X) = f (g(X)), also has no solutions, because the variable X

in the left-hand term must be instantiated with g(X) and therefore the possible solu-
tion must contain the substitution {X/g(X)}. The application of this substitution to
the term on the right would instantiate X, producing the term f (g(g(X))), so the X

in the right-hand term would have to be instantiated to g(g(X)) rather than to g(X)

and so on, without ever reaching a solution.14 In general, therefore, the equation
X = t cannot be solved if t contains the variable X (and is different from X).

If, on the other hand, we consider the equation f (X) = f (g(Y )), it is solvable;
one solution is the substitution ϑ = {X/g(Y )} because if this is applied to the two
terms in the equation, it makes them syntactically equal. Indeed, f (X)ϑ is identical
to f (g(Y )) which is identical to f (g(Y ))ϑ . In more formal terms, we can say that
the substitution ϑ unifies the two terms of the equation and it is therefore called
a unifier. Note that we have said “a solution” because there are many (an infinite
number) of substitutions that are unifiers of X and g(Y ). It is sufficient to instantiate
Y in the definition of ϑ . So, for example, the substitution {X/g(a),Y/a} is also an

13The symbol “=” is usually written in infix notation for increased readability. Different logic
languages can have different syntactic readings for it and use different equality symbols, each with
a different meaning. Here, we refer to “pure” logic programming.
14Note that by admitting infinite terms, we can find a solution, however.
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unifier, as are {X/g(f (Z)),Y/f (Z)}, {X/g(f (a)), Y/f (a)}, and so on. All these
substitutions are, however, less general than ϑ according to the preorder that we
defined above. Each of them, that is, can be obtained by composing ϑ with some
other, appropriate, substitution. For example, {X/g(a),Y/a} is equal to ϑ{Y/a} (we
denote the composition of substitutions with juxtaposition as already seen). In this
sense, we say that ϑ is the most general unifier (or m. g. u.) of X and g(Y ).

Before moving to general definitions, note one last important detail: the process
of solving an equation, and thus a unification, can create bidirectional bindings,
that is the direction in which the associations must be realised is not specified. For
example, a solution of the equation f (X,a) = f (b,Y ) is given by the substitution
{X/b,Y/a}, where a variable on the left and one on the right of the = symbol are
bound. Instead, in the equation, f (X,a) = f (Y, a), to find a solution, we can choose
whether to bind the variable on the left (using {X/Y }) or the one on the right (using
{Y/X}) or even both (using {X/Z,Y/Z}).

This aspect, to which we will return, is important because it allows the imple-
mentation of bidirectional parameter-passing mechanisms and, a unique character-
istic of the logic paradigm, to use the same program in different ways, turning input
arguments into outputs and vice versa, without modifying the program at all.

We now have the formal definition.

Definition 12.6 (M. g. u.) Given a set of equations E = {s1 = t1, . . . , sn = tn},
where s1, . . . , sn and t1, . . . , tn are terms, the substitution, ϑ , is a unifier for E if
the sequence (s1, . . . , sn)ϑ and (t1, . . . , tn)ϑ are syntactically identical. A unifier of
E is said to be the most general unifier (m. g. u.) if it is more general than any other
unifier of E; that is, for every other unifier, σ , of E, σ is equal to ϑτ for some
substitution, τ .

The preceding concept of unifier can be extended to other syntactic objects in an
obvious fashion. In particular, we say that ϑ is a unifier of two atoms p(s1, . . . , sn)

and p(t1, . . . , tn) if ϑ is a unifier of {s1 = t1, . . . , sn = tn}.

12.3.4 A Unification Algorithm

An important result, due to Robinson in 1965, shows that the problem of determin-
ing whether a set of equations of terms can be unified is decidable. The proof is
constructive, in the sense that it provides a unification algorithm which, for every
set of equations, produces their m. g. u. if the set is unifiable and returns a failure in
the opposite case.15

15Robinson’s original algorithm considers the unification of just two terms but this, obviously, is
not reductive given that the unification of {s1 = t1, . . . , sn = tn} can be seen as the unification of
f (s1, . . . , sn) and f (t1, . . . , tn).
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It can also be proved that a m. g. u. is unique up to renaming. The unification
algorithm which we will now see is not Robinson’s original but is Martelli and
Montanari’s from 1982 and it makes use of ideas present in Herbrand’s thesis of
1930.

Martelli and Montanari’s unification algorithm Given a set of equations

E = {s1 = t1, . . . , sn = tn},
the algorithm produces either failure or a set of equations of the following, so called,
solved form:

{X1 = r1, . . . ,Xm = rm},
where X1, . . . ,Xm are distinct variables which not appearing in the terms r1, . . . , rm.
The set of equations is equivalent to the starting set, E, and from it we can obtain
a m. g. u. for E simply interpreting every equality as a binding. Therefore, the
m. g. u. that we seek is the substitution:

{X1/r1, . . . ,Xm/rm}.
The algorithm is non-deterministic in the sense that when there are more possible

actions, one is chosen in an arbitrary fashion, with no priority between the various
actions.16 The algorithm is given by the following steps.

1. Nondeterministically select one equation from the set E.
2. According to the type of equation chosen, execute, if possible, one of the specific

operations as follows (where on the left of the “:” we indicate the type of equation
and, on the right, we have the associated action):
a. f (l1, . . . , lk) = f (m1, . . . ,mk): eliminate this equation from the set E and

add to E the equations l1 = m1, . . . , lk = mk .
b. f (l1, . . . , lk) = g(m1, . . . ,mk): it f is different from g, terminate with failure.
c. X = X: eliminate this equation from the set E.
d. X = t : if t does not contain the variable X and this variable appears in another

equation in the set E, apply the substitution {X/t} to all the other equations
in the set E.

e. X = t : if t contains the variable X, terminate with failure.
f. t = X: if t is not a variable, eliminate this equation from the set E and add to

E the equation X = t .
3. If none of the preceding operations is possible, terminate with success (E con-

tains the solved form). If, on the other hand, an operation different from termi-
nation with failure has been executed, go to (1).

This, as can be seen, is a very simple algorithm. We will discuss it in detail,
nonetheless.

16We will return to the non-determinism briefly when we discuss the operational semantics of logic
programs.
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The first case is one in which the two terms agree on the function symbol. In this
case, in order to unify the two terms, it is necessary to unify the arguments, so we
replace the original equation with the equations obtained by equating the arguments
in each position. Note that this case also includes equivalence between constants
of the form a = a (where a is a function symbol of arity 0) which are eliminated
without adding anything.

The second case produces a failure given that, when f and g are different, the
two terms cannot be unified (as we have already seen).

The equation X = X is eliminated using the identity substitution which therefore
produces no change in the other equations.

The fourth case is the most interesting. An equation X = t is already in solved
form (because, by assumption, t does not contain X). In other words, the substitution
{X/t} is the m. g. u. of this equation. For the effect of such an m. g. u. to be
combined with those produced by other equations, we must apply the substitution
{X/t} to all the other equations in the set E.

On the other hand, in the case in which t contains the variable X, as we have al-
ready seen, the equation has no solution and therefore the algorithm terminates with
failure. It is important to note that this check, called the occurs check, is removed
from many implementations of PROLOG for reasons of efficiency. Therefore, many
PROLOG implementations use an incorrect unification algorithm!

The last case, finally, serves only to obtain a result form in which the variables
appear on the left and the terms on the right of the = symbol.

It is easy to convince oneself that the algorithm terminates, given that the depth
of the input terms is finite. It is, moreover, possible to prove that the algorithm
produces an m. g. u. which is obtained by the interpretation as substitutions of the
final result form of the equations.

By a careful consideration of the algorithm, it can be seen that the computation
of the most general unifier occurs in an incremental fashion by solving ever simpler
equations until a result form is encountered. It is also possible to express this process
in terms of substitution compositions as happens in the operational model of logic
languages. We will exemplify this point with an example which also constitutes an
example of the application of the unification algorithm that we have just seen. To
simplify, we will always choose the leftmost equation (the final result, anyway, does
not depend upon such an assumption; any other selection rule would lead to the
same result up to renaming).

Let us consider the set of equations:

E = {f (X,b) = f (g(Y ),W),h(X,Y ) = h(Z,W)}.
Choosing the first equation on the left, using the operation described in (a), the set
E is transformed into:

E1 = {X = g(Y ), b = W,h(X,Y ) = h(Z,W)}.
Using operation (d), we therefore obtain:

E2 = {X = g(Y ), b = W, h(g(Y ),Y ) = h(Z,W)}.
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Using (f) and then (d) again on the second equation, we finally obtain:

E3 = {X = g(Y ), W = b, h(g(Y ),Y ) = h(Z,b)}.
This already contains the result of the first equation in the set E. In fact, the substi-
tution:

ϑ1 = {X/g(Y ),W/b}
is an m. g. u. for f (X,b) = f (g(Y ),W).

Continuing with the second equation from the original set, suitably instantiated
by the substitutions already computed, using operation (a), we obtain:

E4 = {X = g(Y ), W = b, g(Y ) = Z, Y = b};
then, by (f), we obtain:

E5 = {X = g(Y ), W = b, Z = g(Y ), Y = b}.
Finally, using (d) applied to the last equation, we have:

E4 = {X = g(b), W = b, Z = g(b), Y = b},
which constitutes the result form for the set E and therefore also provides the
m. g. u. of the initial set in the form of the substitution

ϑ = {X/g(b),W/b,Z/g(b),Y/b}.
There are two important observations to be made. First, note how the value of

some variables can be partially specified first, and then later refined. For example,
ϑ1 (m. g. u. of the first equation in E) tells us that X has g(Y ) as its value and only
by solving the second equation do we see that Y has b as its value. Therefore it can
be seen that g(b) is the value of X (as, indeed, it results in the final m. g. u.).

Moreover, we can see that if we consider {h(g(X),Y ) = h(Z,W)}ϑ1 (the second
equation in E instantiated using the m. g. u. of the first), we obtain the equation

h(g(Y ),Y ) = h(Z,b)

for which the substitution

ϑ2 = {Z = g(b),Y = b}
is a m. g. u. Using the definition of composition of substitutions, it is easy to check
that ϑ = ϑ1ϑ2. The m. g. u. of the set E can therefore be obtained by composing
the first equation’s m. g. u. with that of the second (to which the first m. g. u. has
already been applied). This, as we have already said, is what, indeed, normally hap-
pens in implementations of logic languages, where, instead of accumulating all the
equations and then solve them, an m. g. u. is computed on each step of the compu-
tation and is composed with the ones that were previously obtained.
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12.4 The Computational Model

The logic paradigm, implementing the idea of “computation as deduction”, uses a
computational model that is substantially different from all the others that we have
seen so far. Wishing to synthesise, we can identify the following main differences
from the other paradigms:

1. The only possible values, at least in the pure model, are terms over a given sig-
nature.

2. Programs can have a declarative reading which is entirely logical, or a procedural
reading of an operational kind.

3. Computation works by instantiating the variables appearing in terms (and there-
fore in goals) to other terms using the unification mechanism.

4. Control, which is entirely handled by the abstract machine (except for some pos-
sible annotations in PROLOG) is based on the process of automatic backtracking.

Below, we will try therefore to illustrate the computational model for the logic
paradigm by analysing these four points. We will explicitly discuss the differences
between logic programming and PROLOG.

12.4.1 The Herbrand Universe

In logic programming, terms are a fundamental element. The set of all possible
terms over a given signature is called the Herbrand Universe and is the domain over
which computation in logic programs is performed. It has some characteristics that
must be understood.

• The alphabet over which programs are defined is not fixed but can vary as far as
non-logical symbols are concerned.

• As a (partial) consequence of the previous point, unlike what happens in imper-
ative languages, no predefined meaning is assigned to the (non-logical) symbols
of the alphabet. For example, a program can use the + symbol to denote addi-
tion, while another program can use the same symbol to denote string concatena-
tion. The exceptions are the (binary) equality predicate and some other predefined
(“built-in”) symbols in PROLOG.17

• As a final consequence, no type system is present in logic languages (at least in
the classic formalism). The only type that is present is that of terms with which
we can represent arithmetic, list, expressions, etc.

From the theoretical stance, the fact that there are no types and that computation
occurs in the Herbrand Universe is not limiting, rather it permits the highly elegant
and, all considered, simple expression of the formal semantics of logic programs.
For example, with only two function symbols, 0 (constant zero) and s (successor,

17As well as predefined predicates in constraint languages, a topic we will not consider.
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of arity 1), we can express the natural numbers using the terms 0, s(0), s(s(0)),
s(s(s(0))), etc. With a little effort, we can express the normal arithmetic operations
in terms of this two-symbol representation.

From the practical view point, on the other hand, the lack of types is a serious
problem. In fact, in PROLOG, as in other, more recent, logic languages, some prim-
itive types have been introduced (for example, integers and associated arithmetic
operations). The languages of this paradigm are therefore always somewhat lacking
as far as types are concerned.

12.4.2 Declarative and Procedural Interpretation

As we have just hinted, a clause, and therefore a logic program, can have two dif-
ferent interpretations: one declarative and one procedural.

From the declarative viewpoint, a clause H : −A1, . . . ,An is a formula which,
basically, expresses the fact that if A1 and A2 and . . . and An are true, then H is also
true. A query (or goal) is also a formula for which we want to prove, provided that
it is appropriately instantiated, that it is a logical consequence of the program, and
is, therefore, true in all interpretations in which the program is true.18 This interpre-
tation can be developed using the methods of logic (in particular, some elementary
concepts of model theory) in such a way as to give a meaning to a program in purely
declarative terms without referring at all to a computational process. For this inter-
pretation, while interesting, we refer the reader to the specialist literature cited at
the end of the chapter.

The procedural interpretation, on the other hand, allows us to read a clause such
as:

H : −A1, . . . ,An

as follows. To prove H , it is necessary first to prove A1, . . . ,An, or rather to compute
H , it is necessary first to compute A1, . . . ,An. From this, we can view a predicate
as the name of a procedure, whose defining clauses constitute its body. In this inter-
pretation, we can read an atom in the body of a clause, or in a goal, as a procedure
call. A logic program is therefore a set of declarations and a goal is no more than the
equivalent of “main” in an imperative program, given that it contains all the calls to
the procedures that we want to evaluate. The comma in the body of clauses and in
goals, in PROLOG (but not in other pure logic programming languages), can be read
as the analogue of “;” in imperative languages.

Precise correspondence theorems allow us to reconcile the declarative and pro-
cedural views, proving that the two approaches are equivalent.

From a formal viewpoint, the procedural interpretation is supported by so-called
SLD resolution, a logical inference rule which we will discuss in the box on

18Here we will content ourselves with an intuitive idea of this concept. The interested reader can
consult any text on logic for more information.
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page 392. It is also possible to describe the procedural interpretation in a more in-
formal manner, using only the analogy with procedure calls and parameter passing
which we have just outlined. This is the approach we will use below.

12.4.3 Procedure Calls

Let us consider for now a simplified definition of clause in which we assume that,
in the head, all the arguments of the predicate are distinct variables. An arbitrary
clause of this type therefore has the form:

p(X1, . . . ,Xn) : −A1, . . . ,Am

and, as we have anticipated, it can be seen as the declaration of the procedure p

with n formal parameters, X1, . . . ,Xn. An atom q(t1, . . . , tn) can be seen as a call
to the procedure q with n actual parameters, t1, . . . , tn. In the definition of p, there-
fore, the body is formed from the calls to m procedures which constitute the atoms
A1, . . . ,Am.

In accordance with this view, and analogously to what happens in imperative
languages, the evaluation of the call p(t1, . . . , tn) causes the evaluation of the body
of the procedure after parameter passing has been performed. Parameter passing
uses a technique similar to call by name, replacing the formal parameter Xi with
the corresponding actual parameter ti . Moreover, given that the variables appearing
in the body of the procedure are to be considered as logical variables, they can be
considered to be distinct from all other variables. In block-structured languages, this
happens implicitly given that the body of the procedure is considered as a block with
its own local environment. Here, on the other hand, the concept of block is absent,
so, in order to avoid conflicts between variable names, we assume that, before using
a clause, all the variables appearing in it are systematically renamed (so that they do
not conflict with any others).

Using more precise terms, we can say that the evaluation of the call p(t1, . . . , tn),
with the definition of p seen above, causes the evaluation of the m calls:

(A1, . . . ,Am)ϑ

present in the body of p, appropriately instantiated by the substitution

ϑ = {X1/t1, . . . ,Xn/tn}
which performs parameter passing. In the case in which the body of the clause is
empty (or that m = 0), the procedure call terminates immediately. Otherwise, the
computation proceeds with the evaluation of the new calls. Using logic program-
ming terminology, this can be expressed by saying that the evaluation of the goal
p(t1, . . . , tn) produces the new goal:

(A1, . . . ,Am){X1/t1, . . . ,Xn/tn}
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which, in its turn, will have to be evaluated. When all the calls generated by this
process have been evaluated (provided there has been no failure), the computation
terminates with success and the final result is composed of the substitution that as-
sociates the values computed in the course of the computation with the variables
present in the initial call (X1, . . . ,Xn, in our case). This substitution is said to be
the answer computed by the initial goal in the given program. We will see a more
precise definition of this concept below. For now, we will see a simple example.
Let us consider the procedure list_of_2 defined below and identical to the pro-
cedure list_of_27 of Sect. 12.1.1, except for the lesser number of anonymous
variables:

1list_of_2(Ls):- Ls = [_,_].

The evaluation of the call list_of_2(LXs) causes the evaluation of the body
of the clause, but instantiated by the substitution {Ls/LXs}, that is:

LXs = [_,_]

This is a particular call because = is a predefined call which, as we saw in the
previous section, is interpreted as syntactic equality over the Herbrand Universe and,
operationally, corresponds to the unification operation. The previous call therefore
reduces to the attempt (performed by the language interpreter) to solve the equa-
tion using unification. In our case, clearly, this attempt succeeds and produces the
m. g. u. {LXs/[_,_]} which is the result of the computation. The previous substitu-
tion is therefore the answer computed by the goal list_of_2 in the logic program
defined by the single line (1) above.

Evaluation of a non-atomic goal The view presented in the previous subsection
must be generalised and made more precise to clarify the logic-programming com-
putational model. Below, in order to conform with current terminology, we will talk
of atomic goals and goals rather than procedure calls and sequences of calls. The
analogy with the conventional paradigm remains valid, though.

In the case in which a non-atomic goal must be evaluated, the computational
mechanism is analogous to the one seen above, except that now we must choose
one of the possible calls using some selection rule. While in the case of pure logic
programming no such rule is specified, PROLOG adopts the rule that the leftmost
atom is always chosen. It is however possible to prove that whatever rule is adopted,
the results that are computed are always the same (see also Exercises 13 and 14 at
the end of the chapter).

Assuming, for simplicity, that we adopt the PROLOG rule, we can describe the
progress of the evaluation process. Let

B1, . . . ,Bk

with k ≥ 1, be the goal to be evaluated. We distinguish the following cases according
to the form of the selected atom, B1:
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1. If B1 is an equation of the form s = t , try to compute a m. g. u. (using the
unification algorithm). There are two possibilities:
a. If the m. g. u. exists and is the substitution σ , then the result of the evaluation

is the goal:

(B2, . . . ,Bk)σ

obtained from the previous one by eliminating the chosen atom and applying
the m. g. u. thus computed. If k = 1 (and therefore (B2, . . . ,Bk)σ is empty),
the computation terminates in success.

b. If the m. g. u. does not exist (or the equation has no solutions), then we have
failure.

2. If, on the other hand, B1 has the form p(t1, . . . , tn), we have the following two
cases:
a. If, in the program, there exists a clause of the form:

p(X1, , . . . ,Xn) : −A1, . . . ,Am

(which we consider renamed to avoid variable capture), then the result of
evaluation is a new goal:

(A1, . . . ,Am)ϑ,B2, . . . ,Bk

where ϑ = {X1/t1, . . . ,Xn/tn}. If k = 1 (then we have an atomic goal) and
m = 0 (the body of the clause is empty), then the computation terminates with
success.

b. If, in the program, there exists no clause defining the predicate p, we have
failure.

To be able exactly to define the results of the computation (the answers computed),
we need to clarify some aspects of control, which we will do in Sect. 12.4.4.

Heads with arbitrary terms So far, we have assumed that the heads of clauses
contain just distinct variables. We have made this choice to preserve the similarity
with procedures in traditional languages. However, real logic programs also use
arbitrary terms as arguments to predicates in heads, as we have seen in the example
in Sect. 12.1.1. The box on page 392 provides the evaluation rule for such a general
case. Note, however, that our assumption is in no way limiting (apart, perhaps, from
textual convenience). Indeed, as seems clear from what was said in the box and from
the preceding treatment, a clause of the form:

p(t1, . . . , tn) : −A1, . . . ,Am

can be seen as an abbreviation of the clause:

p(X1, . . . ,Xn) : −X1 = t1, . . . ,Xn = tn,A1, . . . ,Am.

In the following examples, we will often use the notation with arbitrary terms in
heads.
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SLD Resolution

Definite clauses allow a natural procedural reading based on resolution, an inference
rule which is complete for sets of clauses and which was introduced by Robinson
and used in automated deduction. In logic programming, we have SLD resolution,
that is linear resolution guided by a clause selection rule (SLD is an acronym for
Selection rule-driven Linear resolution for Definite clauses).

This rule can be described as follows. Let G be the goal B1, . . . ,Bk and let C

be the (definite) clause H : −A1, . . . ,An. We say that G′ is derived from G and C

using ϑ or, equivalently, G′ is a resolvent of G and C if (and only if) the following
conditions are met:

1. Bm, with 1 ≤ m ≤ k, is a selected atom from those in G.
2. ϑ is the m. g. u. of Bm and H .
3. G′ is the goal (B1, . . . ,Bm−1,A1, . . . ,An,Bm+1, . . .Bk)ϑ .

Note that, unlike Sect. 12.4.3, here it is necessary also to apply ϑ to the other
atoms occurring in the goal G because the heads of the clauses contain arbitrary
terms and therefore ϑ could instantiate variables that are also in the goal.

Given a goal, G, and a logic program, P , an SLD derivation of P ∪ G consists
of a (possibly infinite) sequence of goals G0,G1,G2, . . . , of a sequence C1,C2, . . .

of clauses in P which have been renamed in such a way as to avoid variable capture
and a sequence ϑ1, ϑ2, . . . , of m. g. u. s such that G0 is G and, for i ≥ 1, every
Gi , is derived from Gi−1 and Ci using ϑi . An SLD refutation of P ∪ G is a finite
SLD derivation of P ∪ G which has the empty clause as the last resolvent of the
derivation. If ϑ1, ϑ2, . . . are the m. g. u. s used in the refutation of P ∪ G, we say
that the substitution ϑ1ϑ2 · · ·ϑn restricted to the variables occurring in G is the
answer substitution computed by P ∪ G (or for the goal G in the program P ).

Classic results, due to K. L. Clark, show that this rule is sound and complete
with respect to the traditional first-order logical interpretation.

Indeed, it can be proved that if ϑ is the answer substitution computed by the
goal G in program P , then Gϑ is a logical consequence of P (soundness). More-
over, if Gϑ is a logical consequence of P , then no matter which selection rule is
used, there exists a SLD refutation of P ∪G with computed answer σ such that Gσ

is more general than Gϑ (strong completeness).

12.4.4 Control: Non-determinism

In the evaluation of a goal, we have two degrees of freedom: the selection of the
atom to evaluate and the choice of the clause to apply.

For the first, we have said that we can fix a selection rule, without influencing the
final results of the computation that terminate in success.

For the selection of clauses, on the other hand, the matter is more delicate. Given
that a predicate can be defined by more than one clauses, and we have to use only
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one of them at a time, we could think about fixing some rule for choosing clauses,
analogous to the one used to choose atoms. The following reveals however a prob-
lem. Let us consider the following program, which we call Pa:

1p(X):- p(X).
2p(X):- X=a.

and let us assume that we choose clauses from top to bottom, following the textual
order of the program. It is easy to see that by adopting this rule, the evaluation of
p(Y) never terminates and therefore we do not have an answer computed by the
program. Indeed, using clause (1) and the substitution {X/Y }, the initial goal, after
one computation step, becomes the goal p(Y), which is again the starting goal. Ac-
cording to the clause-selection rule, we must choose clause (1) and apply it to this
(new) goal, and so on. It is however clear that using clause (2) we would immedi-
ately obtain a computation which terminates, producing the substitution {Y/a} as
result. Note that to fix another order, for example, from bottom to top, would not in
general solve this problem.

In the light of this example, let us carefully reconsider the evaluation rule for a
goal seen in the previous subsection and, in particular, let us fix on point 2(a), where
we wrote “if there exists a clause” without specifying how this can be chosen. By
doing this, we have therefore introduced into the computation model a form of non-
determinism: in the case in which there is more than one clause for the same pred-
icate, we can choose one in a non-deterministic fashion, without adopting any par-
ticular rule. This form of non-determinism is called “don’t know” non-determinism
because we do not know which the “right” clause will be that allows the termination
of the computation with success. The theoretical model of logic programming keeps
this non-determinism when it considers all possible choices of clause and therefore
all possible results of the various computations that are produced as a consequence
of this choice. The result of the evaluation of a goal G in the program P is therefore
a set of computed answers, where each of these answers is the substitution obtained
by the composition of all the m. g. u. s which are encountered in a specific compu-
tation (with specific choices of clauses), restricted to the variables present in G. For
a more precise definition of this idea, as well as of the whole process of evaluating
a goal, see the box on page 392.

Turning to our previous example, the only answer computed for the goal p(Y)
in program Pa is the substitution {Y/a} while, for the same program, the goal p(b)
has no computed answer given that all its computations either terminate with failure
(when the second clause is used) or do not terminate (when the first clause is used).

Backtracking in PROLOG When moving from the theoretical model to an im-
plemented language, such as PROLOG, non-determinism must, at some level, be
transformed into determinism, given that the physical computing machine is deter-
ministic. This can obviously be done in various ways, and in principle does not cause
loss of solutions. For example, we could think of starting k parallel computations
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when there are k possible clauses for a predicate19 and therefore consider the results
of all the possible computations.

In PROLOG, however, for reasons of simplicity and implementation efficiency,
the strategy we first saw is employed: clauses are used according to the textual or-
der in which they occur in the program (top-to-bottom). We saw in the previous
example that this strategy is incomplete, given that it does allow us to find all pos-
sible computed answers. This limit, however, is adjustable by the programmer who,
knowing this property of PROLOG, can order the clauses in the program in the most
convenient way (typically putting first those relating to terminal cases and then the
inductive steps). Note, though, that this trick, at least in principle, eliminates some
of the declarative nature of the language, because the programmer has specified an
aspect of control.

In addition to infinite computations, there is a second, more important aspect to
be considered by adopting the deterministic model of PROLOG and deals with the
handing of failures. Let us first see an example. Let us consider the program Pb:

1p(X):- X=f(a).
2p(X):- X=g(a).

Let us consider the evaluation of the goal p(g(Y)). By the PROLOG strategy,
clause (1) is chosen, which, using the substitution {X/g(Y )}, produces the new
goal g(Y) = f(a). This fails, given that the two terms in the equation cannot
be unified. Moreover, given that there is still one clause to use, it would not be ac-
ceptable to terminate the computation by returning a failure. “Backtracking” then
occurs, returning to the choice of the clause for p(g(Y)) and therefore continues
the computation by trying clause (2). In this way, the computation achieves success
with the computed answer {Y/a}.

In general, therefore, when arriving at a failure, the PROLOG abstract machine
“backtracks” to a previous choice point at which there are other choices; that is,
where there are other clauses to test. In this backtracking process, the bindings that
might have been computed in the previous computation must be undone. Once a
choice point has been reached, a new clause is tried and the computation continues
in the way we have seen. If the previous choice point contains no possibilities for
computations, an older choice point is sought and, if there are no more, the compu-
tation terminates in failure. Note that all of this is handled directly by the PROLOG

abstract machine and is completely invisible to the programmer (except the use of
particular constructs such as the cut which we will introduce in Sect. 12.5.1).

It is also easy to see how this procedure, which uses a search corresponding to
a depth-first search through a tree representing the possible computations, can be
computationally demanding. The solution to the problem seen in Sect. 12.1.1, for
example, requires extensive backtracking and is fairly wasteful in computation time.

Let us now see another example. Consider the program Pc:

19Clearly, on a machine with one processor, the k parallel computations must be appropriately
“scheduled” so they can be executed in a sequential manner, analogous to what happens with
processes in a multitasking operating system.



12.4 The Computational Model 395

1p(X):- X=f(Y), q(X).
2p(X):- X=g(Y), q(X).
3q(X):- X=g(a).
4q(X):- X=g(b).

Let us analyse the goal p(Z). Using clause (1), we obtain the goal Z=f(Y),q(Z).
The evaluation of the equation produces the m. g. u. {Z/f (Y )} and we obtain the
goal q(f(Y)). Using clause (3), we obtain the goal f(Y) = g(a), which fails.
At this point we must turn to the last choice point, that is to the point where the
choice of clause for the predicate q occurred. In this case, there are no bindings
to undo, and therefore we try clause (4), obtaining therefore the goal f(Y)=g(b)
which also fails. We return again to the choice point for q and we see that there are
no other possible clauses and therefore we return to the previous choice point (the
one for predicate p). Doing this, we have to undo the binding {Z/f (Y )} calculated
by clause (1) and therefore we return to the initial situation, where variable Z is
not instantiated. Using clause (2), we obtain the goal Z=g(Y),q(Z) and therefore
by the evaluation of the equation, we obtain the m.g.u. {Y/a} and the new goal
q(g(Y)). At this point, using clause (3), we obtain the goal g(Y)=g(a) which
succeeds and produces the m. g. u. {Y/a}. Given that there remain no more goals
to evaluate, the computation terminates with success. The result of the computation
is produced by composing the computed m. g. u. s {Z/g(Y )}{Y/a} and restricting
the substitution {Z/g(a), Y (a)} obtained by this composition to the single variable
present in the initial goal. Therefore, the computed answer obtained is {Z/g(a)}.
Note that there is another computed answer, {Z/g(b)}, which we can obtain using
clause (4) rather than (3). In PROLOG implementations, answers subsequent to the
first can be obtained using the “;” command. Finally, the reader can easily check that
the goal p(g(c)) in program Pc terminates with failure, a result that is obtained
after having proved all four of the possible clause combinations.

12.4.5 Some Examples

In this subsection, we will focus on the PROLOG language, and we will make use
of its syntax. The notation [h|t] is used to denote the list which has h as its head
and t as its tail. Let us remember that the head is the first element in the list, while
the tail is what remains of the list when the head has been removed. The empty
list is written [], while [a,b,c] is an abbreviation for [a | [b | [c |[]
]]] (the list composed of elements a, b and c). Note that in PROLOG, as in pure
logic programming language, there exists no list type, for which the binary function
symbol [|] can be used for terms that are not lists. For example, we can also write
[a | f(a)] which is not a list (because f(a) is not a list).

As the first example, let us consider the following program member which
checks whether an element belongs to a given list:

member(X, [X | Xs]).
member(X, [Y | Xs]) :- member(X, Xs).
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The declarative reading of the program is immediate: Clause (1) consists of the
terminal case in which the element that we are looking for (the first argument of
the member predicate) is the head of the list (the second argument to the member
predicate). Clause (2) instead provides the inductive case and tells us that X is an
element of the list [Y|Xs] if it is an element of the list Xs.

Formulated in this way, the member program is similar to the one that we could
write in any language that supports recursion. However, let us note that, unlike in
the imperative and functional paradigms, this program can be used in two different
ways.

The more conventional mode is the one in which it is used as a test. In a PROLOG

system, once the previous program has been input, we have:

?- member(hewey, [dewey, hewey, louie]).
Yes

where ?- is the abstract machine’s prompt, to which we have added the goal whose
evaluation we require. The next line contains the interpreter’s answer. In this case,
we have a simple “boolean” answer which expresses the existence of a successful
computation of our goal. Moreover, as we know, we can also use the program to
compute. For example, we can ask for the evaluation of:

?- member(X, [dewey, hewey, louie]).
X = dewey

The abstract machine returns {X/dewey} as the computed answer. We can also
obtain more answers using the “;” command. When there are no more answer, the
system replies “no”.

Finally, even if it is used in a rather unnatural fashion, we can use the first argu-
ment to instantiate the list that appears as the second argument. For example:

?- member(dewey, [X, hewey, louie]).
X = dewey

This possibility of using the same arguments as inputs or as outputs according to the
way in which they are instantiated is unique to the logic paradigm and is due to the
presence of unification in the computational model.

We can clarify this point further by considering the following append program
which allows us to concatenate lists:

1append([], Ys, Ys).
2append([X|Xs], Ys, [X|Zs]) :- append (Xs, Ys, Zs).

In this case, too, the declarative reading is immediate. If the first list is empty, the
results is the second list (clause(1)). Otherwise, (inductively), if Zs is the result of
the concatenation of Xs and Ys, the result of the concatenation of [X|Xs] and Ys
is obtained by adding X to the head of the list Zs, as indicated by [X|Zs].

The normal use of the this program is that illustrated by the following goal:
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?- append([dewey, hewey], [louie, donald], Zs).
Zs = [dewey, hewey, louie, donald]

Moreover, we can use append also to know how to subdivide a list into sublists,
something that is not possible in a functional or imperative program:

?- append(Xs, Ys, [dewey, hewey]).
Xs = []
Ys = [dewey, hewey];
Xs = [dewey]
Ys = [hewey];
Xs = [dewey, hewey]
Ys = [];
no

Here, as before, the “;” command causes the computation of new solutions.
As a third example, we give the definition of the sublist predicate (we used

this in Sect. 12.1.1). If Xs is a sublist of Ys, then there exist another two (possibly
empty) lists As and Bs such that Ys is the concatenation of As, Xs and Bs. We
note that this means that Xs is the suffix of a prefix of Ys. Hence using append,
we can define sublist as follows:

sublist(Xs, Ys) :- append(As, XsBs, Ys), append(Xs, Bs, XsBs).

This program, combined with the append program and the sequence pro-
gram of Sect. 12.1.1 allow us to solve the problem stated in Sect. 12.1.1. Note the
conciseness and simplicity of the resulting program. Clearly other definitions of
sublist are possible (see Exercise 8).

As a last example, let us consider a program that solves the classical problem
of the Towers of Hanoi. We have a tower (in Computer Science terms, we would
say a stack) composed of n perforated discs (of different diameters), arranged on a
pole in order of decreasing diameter and we have 2 free poles. The problem consists
of moving the tower to another pole, recreating the initial order of the discs. The
following rules apply. The disks can be moved only from one pole to another. Only
one disc at a time can be moved from one pole to another and the top disc must be
taken from a pole. A disc cannot be put onto a smaller disc.

According to legend, this problem was assigned by the Divinity to the monks of a
monastery near to Hanoi. There were three poles and 64 discs of gold. The solution
to the problem would have signalled the end of the world. Given that the optimal
solution requires time exponential in the number of discs, even if the legend comes
true, we can still remain calm for a while: 264 is a large enough number.

The following program solves the problem for an arbitrary number of disc, N,
and three poles called A, B and C. It uses the coding of the natural numbers in terms
of 0 and successor that we saw above.

hanoi(s(0), A, B, C [move(A,B)]).
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hanoi(s(N), A, B, C, Moves):-
hanoi(N, A, C, B, Moves1),
hanoi(N, C, B, A, Moves2),
append(Moves1, [move(A,B)|Moves2], Moves).

The call hanoi(n, A, B, C, Move), where n is a (term which repre-
sents a) natural number, solves the problem of moving the tower of discs from A
to B using C as an auxiliary pole. The solution is contained in the Move variable
which, when the computation terminates, is instantiated with the list containing
move which contribute to the solution. Every move is represented by a term of the
form move(X,Y) to indicate the move of the top disc of pole X to pole Y.

This amazingly simple program amply shows the power of logic programming
and also recursive reasoning. As usual, we give its logical interpretation. The first
clause is clear: if we have just one disc, all we have to do is to move it from A from
B. The reading of the second clause also is quite intuitive. If Moves1 is the list of
moves that solves the problem of moving a tower of N discs from A to C using B
as an auxiliary pole and Moves2 is the list of moves needed to move the tower of
N disc from C to B using A as an auxiliary pole, to solve our problem in the case
of N+1 (or s(N)) discs, clearly we would have to do the following: first, execute
all the moves in Moves1, then move from A to B (with the move move(A,B))
the N+1st disc in A which, being the largest, must be the last (at the bottom) in B
as well. Finally, execute all the moves in Moves2. This is exactly what is done by
the append predicate which therefore will use the variable Moves to provide the
solutions to this problem.

12.5 Extensions

Until now, we have seen pure logic programming and some, highly partial, aspects
of PROLOG. In this last section, we will briefly outline each of the numerous ex-
tensions to the pure formalism, each of which would require an entire chapter to do
it justice. In the bibliographical notes we have included some references for those
wishing to learn more.

12.5.1 Prolog

PROLOG is a language that is much richer than it might appear from what has been
said so far. Let us recall that, as already seen, this language differs from logic pro-
gramming in its adoption of precise rules for selecting the next atom to be rewritten
(left to right) and for selecting the next clause to use (top to bottom, according to
the program text).

In addition to these, there are other important differences with the theoretical
formalism. We will list some of these without pretending to be exhaustive.
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Arithmetic A real language cannot allow itself the luxury of using a completely
symbolic arithmetic in which natural numbers are represented as successors of zero
and there are no predefined operators.

In PROLOG, there exist therefore integers and reals (as floating point) as prede-
fined data structures and various operators for manipulating them. These include:

• The usual arithmetic operators +, −, ∗ and // (integer division).
• Arithmetic comparison operators such as <, <= >=, =:= (equal), = \ = (dif-

ferent).
• An evaluation operator called is.

Unlike other symbols (function and predicate) used in PROLOG, these symbols
use infix notation for ease of use. There are however numerous delicate aspects that
require a deep knowledge to avoid simple errors which the programmer used to
imperative languages can easily cause.

First, comparison operators always require that their operands are ground arith-
metic expressions (they cannot contain variables). Thus, while we have:20

?- 3*2 =:= 1+5
Yes
? 4 > 5+2
no

if we use terms that are not arithmetic expressions or which contain variables, error
will be signalled, as in:

?- 3 > a
error in arithmetic expression: a is not a number
?- X =:= 3+5
instantiation fault.

The last example is particularly disturbing. What we want to say is that the eval-
uation of the arithmetic expression 3+5 produces the value 8 which will therefore
be bound to the variable X. This cannot be done using =:=, as seen above, nor can
it be done using equality between terms as considered in the previous paragraph. If
we write X = 3+5, indeed, the effect is that of binding X to the term 3+5 (rather
than the value 8). To avoid this problem, the expression evaluation operator is is
introduced. This operator allows us to obtain the effect we desire; s is t indeed
unifies s with the value of the ground arithmetic expression t (if t is not a ground
arithmetic expression, we have an error). The following are some examples of the
use of is:

?- X is 3+5;
X = 8
?- 8 is 3 + 5

20As said above, the line with ?- returns the query that we want to evaluate and the following one
is the PROLOG interpreter’s reply.
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Yes
?- 6 is 3 * 3
no
?- X is Y* 2
error in arithmetic expression: Y*2 is not a number

The use of is, necessary to be able to evaluate an expression, makes the use of
arithmetic in PROLOG rather complicated. For example, given the following pro-
gram:

evaluate(0,0).
evaluate(s(X), Val+1) :- evaluate(X, Val)

The goal evaluate(s(s(s(0))), X) does not compute the value 3 for X, as
perhaps would have been expected but the term 0+1+1+1 (see Exercise 9 at the
end of this chapter, too).

Cut PROLOG provides various constructs for interaction with the abstract PRO-
LOG machine’s interpreter so that the normal flow of control can be modified.
Among these, one of the more important (and most discussed) is cut. This is an
argument-free predicate, written as an exclamation mark, which allows the program-
mer to eliminate some of the possible alternatives produced during evaluation, with
the aim of increasing execution efficiency. It is used when we are sure that, when
a condition is satisfied, the other clauses in the program are no longer useful. For
example, the following program computes the minimum of two values, if a compar-
ison condition is true, the other is necessarily false, so we can use ! to express the
fact that once the first clause has been used, there is no need to consider the second.

minimum(X, Y, X) :- X < Y, !.
minimum(X, Y, Y) :- X > Y.

Alternatively, if we are interested only in testing whether a value appears at least
once in a list, we can use the following modification to the member program:

member(X, [X | Xs]) :- !.
member(X, [Y | Xs]) :- member(X, Xs).

In general, the meaning of cut is the following. If we have n clauses to define the
predicate p

p(S1) :- A1.
...
p(Sk) :- B, !, C.
...
p(Sn) :- An.

if, during the evaluation of the goal p(t), we find the kth clause in the list being
used, we have the following cases:
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1. If an evaluation of B21 fails, then we proceed by trying the k + 1st clause.
2. If, instead, the evaluation of B succeeded, then ! is evaluated. It succeeds (it

always does) and the evaluation proceeds with C. In the case of backtracking,
however, all the alternative ways of computing B are eliminated, as well as are
eliminated all the alternatives provided by the clauses from the kth to the nth to
compute p(t).

There is no need to say that cut, in addition to not being easy to use, eliminates a
good part of the declarativeness of a program.

Disjunction If we want to express the disjunction of two goals, G1 and G2, that
is the fact that it is sufficient that at least one of the two succeeds, we can use two
clauses of the form:

p(X) :- G1.
p(X) :- G2.

with the goal p(X). The same effect can be obtained writing G1;G2, where we
have used the predefined predicate “;”, which represents disjunction.

If-then-else The traditional construct from imperative languages:

If B then C1 else C2

is provided in PROLOG as a built-in with syntax B -> C1;C2. The if then
else can be implemented using the cut as follows:

if_then_else(B, C1, C2) :- B, !, C1.
if_then_else(B, C1, C2) :- C2.

In effect, this is the internal definition of the B -> C1;C2 construct.

Negation Thus far, we have seen that in the body of a clause, only “positive”
atomic formulæ can be used; in other words, they cannot be negated.22 Often, how-
ever, it can also be useful to use negated atomic formulæ. For example, let us con-
sider the following program, flights:

direct_flight(bologna, paris).
2direct_flight(bologna, amsterdam).

direct_flight(paris, bombay).
4direct_flight(amsterdam, moscow).

flight(X, Y):- direct_flight(X, Y).
6flight(X, Y):- direct_flight(X, Z), flight(Z, Y).

21Here, B, just like Ai and C, is considered as an arbitrary goal and not necessarily an atomic one.
22Here, we refer, clearly, to the H : −A1, . . . ,An notation. If, instead, we consider a clause as a
disjunction of literals, the atoms in the body are negated, given that the preceding representation is
equivalent to ¬A1 ∨ · · · ∨ ¬An ∨ H .
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Here, we have a series of facts defining the direct_flight predicate, which
denotes the existence of a connection without stopover between two destinations.
Then, we have the flight predicate which defines a flight, possibly with interme-
diate stops, between two locations. This will be a direct flight (clause 5) or rather
a direct flight for a stopover different from the one that is the destination, followed
by a flight from this stopover to the destination (clause 6). With this program, we
can check the existence of a flight, or we can ask which destinations can be reached
from a given airport:

?- flight(bologna, bombay)
Yes
?- direct_flight(bologna, moscow)
no
?- flight(bologna, X)
X = paris

However, we fail to express the fact that there exists only non-direct flights be-
cause we do not know how to express the fact that there does not exist a direct flight.
To do this, we require negation. If we write:

indirect_flight(X, Y) :- flight(X, Y), not direct_flight(X, Y).

we mean to say that there exists an indirect flight between X and Y if there exists
a flight (between X and Y) and there exist no direct flight. With this definition, we
have:

?- indirect_flight(bologna, bombay)
Yes
?- indirect_flight(bologna, paris)
no

These results can be explained as follows. The PROLOG interpreter evaluates a
goal such as not G by trying to evaluate the un-negated goal G. If the evaluation
of this goal terminates (possibly after backtracking) with failure, then the goal not
G succeeds. If, on the other hand, the goal G has a computation that terminates with
success, then that of not G fails. Finally, if the evaluation of G does not terminate,
then not G fails to terminate. This type of negation is called “negation as fail-
ure”,23 in that, exactly, it interprets the negation of a goal in terms of failure of the
un-negated goal. Note that, because of infinite computations,24 this type of negation
differs from the negation in classical logic, given that the lack of success of G is not
equivalent to the success of the negated version not G. For example, neither the
goal p nor the goal not p succeed in the program p :- p.

23To be more precise, negation as failure, as defined in the theoretical model of logic programming,
has a behaviour that is slightly different from that described because of the incompleteness of the
PROLOG interpreter.
24And also non-ground goals, which we will not consider here.
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12.5.2 Logic Programming and Databases

The flight program above indirectly indicates a possible application of logic
programming in the context of databases.

A set of unit clauses, such as those defining the direct_flight predicate, is
indeed, to all effects, the explicit (or extensional) definition of the relation denoted
by this predicate. In this sense, this set of unit clauses can be seen as the analogue of
a relation in the relational database model. To express a query, while in the relational
model we would use relational algebra with the usual operations of selection, pro-
jection, join, etc., or more conveniently, a data manipulation language such as SQL,
in the logic paradigm we can use the usual computational mechanisms that we have
already seen. For example, to know if there exists a direct flight that arrives at Paris,
we can use the query direct_flight(X,paris). The predicates defined by
the non-unit clauses such as flight, define relations in an implicit (or intensional)
manner. They, indeed, allow us to compute new relations which are not explicitly
stored, through the mechanism of inference as we have seen. Using database termi-
nology, we will say that these predicates define “views” (or virtual relations).

Note, moreover, how in the flights program, function symbols are not used.
Indeed, if we want only to manipulate relations, as is the case in relational algebra,
function symbols are not needed.

These considerations were crystallised in the definition of Datalog, a logic lan-
guage for databases. In its simplest form, it is a simplified version of logic program-
ming in which:

1. There are no function symbols.
2. Extensional and intensional predicates are distinguished, as are comparison pred-

icates.
3. Extensional predicates cannot occur in the head of clauses with a non-empty

body.
4. If a variable occurs in the head, it must occur in the body of a clause.
5. A comparison predicate can occur only in the body of a clause. The variables

occurring in such a predicate must occur also in another atom in the body of the
same clause.

The last two conditions deal with the specific evaluation rule which Datalog
uses25 and will here will be ignored. The distinction between extensional and inten-
sional predicates corresponds to the intuitive idea that has already been discussed.
Extensional predicates, as condition (3) implies, can be defined only by facts.

The flights program can therefore be considered as a Datalog program, to all
intents and purposes.

The reader who knows SQL or relational algebra will have no difficulty in under-
standing how the presence of recursion increases the expressive power of Datalog
beyond that of these other formalisms. The same program, flights, provides us

25Datalog adopts a kind of bottom-up evaluation mechanism for goals. This differs from the top-
down one we saw for logic programming. The results obtained are, however, the same.
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with an example in this sense: the query flight(bologna, X) allows us to find
all the destinations that can be reached from Bologna with an arbitrary number of
intermediate stops. This query is not expressible in relational algebra or in SQL (at
least, in its initial version) since the number of joins that we must create depends on
the number of intermediate stops and, in general, not knowing how many of them
there are (we are making no assumptions about how relations are structured), we
cannot define such a number a priori.

12.5.3 Logic Programming with Constraints

To conclude, we will briefly discuss logic programming with constraints, or CLP

(Constraint Logic Programming), an extension of logic programming which adds
sophisticated constraint-satisfaction mechanisms to the mechanisms we have al-
ready seen. The resulting paradigm is certainly interesting for practical application
and is today used in different application areas.

A constraint is nothing more than a particular first-order logic formula (normally
we use a conjunction of atomic formulæ) which uses only predefined predicates. An
example of constraint has already been given: if we write in a logic programming:
X=t, Y= f(a), we have used constraints, where the predicate symbol, =, as we
know, is interpreted as syntactic equality over the Herbrand Universe,26 while the
comma indicates logical conjunction.

The idea of constraint logic programming is that of replacing the Herbrand Uni-
verse with another computational domain which usually is symbolic, but can also
be arithmetic in some cases. Such a domain is suitable for the specification of
the application area of interest. Constraints, rather than relations between ground
terms, define relations over the values in the new domain under consideration. Cor-
respondingly, the basic computational mechanism will no longer be the solution of
equations between terms (using unification) but will be composed of a constraint-
solving mechanism, that is an appropriate algorithm for determining solutions to
the constraints to be solved. For example, we could consider the real numbers as the
domain of computation, conjunctions of linear equations as constraints and use the
Gauss-Jordan method as the constraint solver.

The principal advantage of this approach is clear. We can integrate into the logic
paradigm (in a semantically clean fashion) very powerful computational mecha-
nisms that were developed in other contexts (such as linear programming, operation
research, etc.). Particularly interesting domains for the practical application of con-
straints are, as mentioned, the reals27 and, above all, finite domains in which vari-
ables can take a finite number of values. In this last case, we also speak of Constraint

26Recall that this is the set of ground terms.
27Clearly, as always, when dealing with computers, what is represented is, in effect, a subset of the
reals.
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Satisfaction Problem (CSP). There exist many specific algorithms for the solution
of this type of problems.

To obtain an idea of the possibilities of constraint logic programming, consider
the problem of defining the amount of the instalments of a loan. The variables in-
volved in this problem are the following: F is the requested financing, or the initial
sum loaned, NumR is the number of the instalment, Int is the amount of interest,
Rate is the amount of a single instalment and, finally, Deb is the remaining debt.
The relation between these variables is intuitively the following. In the case in which
there is no amount paid back (or that NumR = 0), clearly the debt is equal to the
initial financing:

Deb = Fin.

In the case of the payment of a single instalment, we have the following relation:

Deb = Fin + Fin*Int - Rate

Here, the remaining debt is the initial sum to which we have added the interest ac-
crued and have subtracted the amount repaid in an instalment. In the case of two
instalments, matters are more complicated because interest is calculated on the re-
maining debt and not on the initial sum. The remaining debt, then, becomes the new
financing. Using the NuFin1 and NuFin2 variables to indicate this new value of
financing, we then have therefore the relation:

NuFin1 = Fin + Fin*Int - Rate
NuFin2 = NuFin1 + Fin*Int - Rate
Deb = NuFin2

In the general case, we can reason recursively. We have therefore the following
constraint program, which we will call loan:

loan(Fin, NumR, Int, Rate, Deb):-
NumR = 0,
Deb = Fin.

loan(Fin, NumR, Int, Rate, Deb):-
NumR >= 1,
NuFin = Fin+Fin*Int-Rate,
NuNumR = NumR-1,
loan(NuFin, NuNumR, Int, Rate, Deb).

Understanding this program, given what we have already said, should not be too
difficult.

Such a program can be used, just like logic programs, in many ways. For exam-
ple, if we take out a loan of 1000 Euros and having paid 10 instalments of 150 Euros
each at 10% interest, we can use it to find out what the remaining debt is, The query
to solve this problem is:
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loan(1000, 10, 10/100, 150, Deb)

This is evaluated and produces the result Deb = 203.13.
We can also use the same program in an inverse fashion. That is, rather finding out

what the requested funding was, knowing that we have paid the same 10 instalments
at 150 Euros each, again at 10% interest, but with residual debt of 0. The goal in
this case is:

loan(Fin, 10, 10/100, 150, 0)

This yields the result Fin = 921.685.
Finally, we can also leave more than one variable in the goal, for example to

determine the relation that holds between financing, instalment and debt, knowing
that we pay 10 instalments at 10% interest. We can therefore formulate the query:

loan(Fin, 10, 10/100, Rate, Deb)

With appropriate assumptions on the constraint solver28 we obtain the result:

Fin = 0.3855 * Deb + 6.1446 * Rata.

That is, and this is unique to the various paradigms that we have seen so far, it allows
us to obtain a relation on the numerical domains as a result.

12.6 Advantages and Disadvantages of the Logic Paradigm

The few examples given in this chapter must however be sufficient to show that logic
languages require a programming style that is significantly different from that of
traditional languages and they also have a different expressive power. Clearly, given
that every language (or almost) which have been named in this text is a Turing-
complete formalism, it is not true that PROLOG or CLP or any other logic language
allows the “computation of more things” than a common imperative language. The
expressive power to which we refer is of a pragmatic kind, as we will make clearer
in this section.

First, it is worth repeating that logic languages, in a way analogous to functional
languages, allow us express solutions even to very complex problems in a “purely
declarative” way, and therefore in an extremely simple and compact way. In our
specific case, these aspects are further reinforced by three unique properties of the

28The loan program is written using the syntax of CLP(R). The adaptation to other CLP systems,
even if they are defined over the reals, can require fairly substantial modifications even if the basic
idea is always the same. In particular, the possibility of obtaining the results just discussed depends
a great deal on the power of the constraint solver adopted by the CLP language. The results given
here are derived from [9].
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logic paradigm: (i) the ability to use a program in more than one way by transform-
ing input arguments into outputs and viceversa; (ii) the possibility of obtaining a
complex relationship between variables as a result, which implicitly expresses an
infinite number of solutions (given by all the values of the variables that satisfy the
relation); (iii) the possibility of reading a program directly as a logical formula.

The first characteristic derives from the fact that the basic computational mecha-
nism, unification, is intrinsically bi-directional. This does not happen either with as-
signment in imperative languages, or with pattern matching in functional languages
because both of these mechanisms presuppose a direction in variable bindings. This
flexibility clearly allows us to use every program to its best, avoiding the duplication
of code for modifications that are often only of a syntactic nature.

The second property of the logic paradigm is clear in the case of constraint logic
languages, as we saw in the last program of the last section. This aspect is partic-
ularly important to all application areas in which a single solution, understood as
a set of specific values of interesting variables, either cannot be obtained (because
the data do not contain enough information), or is not interesting, or is particularly
difficult to obtain computationally.

The third aspect, finally, at least in principle, makes it easier to verify the cor-
rectness of logic programs than imperative ones, where a logical reading of pro-
grams is possible but requires much more expressive (and complicated) tools. As
already emphasised in Sect. 11.5, this aspect is essential to be able to obtain formal
correctness-verifying tools that are easily usable on programs of significant size.

These three aspects, which we can summarise in the principle of “computation
as deduction”, allow us to express in a very natural fashion forms of reasoning that
are typical of the problems that we encounter in artificial intelligence and knowl-
edge representation (for example, in the context of the Semantic Web). The fact (in
those languages that have been implemented) that control is handled entirely by the
abstract machine through backtracking, allows us, for example, extremely easily to
express problems that involve aspects of search in a space of solutions.

Logic languages can also profitably be used as tools for the rapid prototyping of
systems. Using PROLOG, it is possible to describe in a very short period and in a
compact way, even very complex systems, with the advantage, as far as specification
languages are concerned, that it can be executed.

The use of sophisticated constraint solvers and also optimisers (for example,
based on the Simplex algorithm) makes constraint logic programs competitive with
respect to other formalisms in many commercial applications where solutions to
combinatorial problems, solutions to optimisations and more generally solutions to
problems expressible as relations over appropriate domains are required. Examples
in this sense, include scheduling problems and electrical circuit diagnosis; com-
mercial mathematics and financial planning; civil engineering and others (for other
examples, the reader should consult the text cited in the Bibliographical Notes at the
end of this chapter).

Thus far, advantages. Beside them, however, we can record various negative as-
pects of logic languages, at least in the classical versions that currently exist.

First, as already noted in this chapter, the control mechanism based on backtrack-
ing is of limited efficiency. Various devices can be used to improve this aspect, be
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it at the level of constructs that can be used in programs, or at the implementation
level. For example, abstract machines specific to logic languages such as the WAM
(Warren Abstract Machine) have been defined and have been variously optimised.
However, the efficiency of a PROLOG program remains fairly limited.

The absence of types or modules is a second bad point, even if in this sense
some more recent languages have proposed partial solutions (for example, the logic
language, Mercury). From what was said in Chap. 8, it should be clear that the lack
of an adequate type system makes program correctness checking relatively difficult,
despite the possibility of declarative reading.

Also, the arithmetic constructs and, in general, built-ins in PROLOG certainly do
not facilitate the correctness of programs. This is because their use is not easy due
to various semantic subtleties. This is particularly evident in the control constructs,
which frequently force us to choose between a clear program that is not very efficient
and an efficient program that is, however, relatively hard to understand.

Finally, and for many reasons (not just a limited commercial interest), unfor-
tunately logic languages almost always have a programming environment that is
rather deficient, where there are few of the characteristics available, for example, in
the sophisticated environments for object-oriented programming.

12.7 Chapter Summary

In this chapter, we have presented the primary characteristics of the logic program-
ming paradigm, a relatively recent paradigm (which has developed since the mid-
1970s), which implements the old aspiration of seeing computation as a process that
is entirely governed by logical laws. With only one chapter available to us, we have
had to limit ourselves to introductory aspects, however what has been presented has
enough formal precision to illustrate the computational model for logic program-
ming languages. In particular, we have seen:

• Some syntactic concepts in first-order logic which are necessary for the definition
of clauses and therefore logic programs.

• The process of unification which comprises the basic computational mechanism.
This required a few concepts relating to terms and substitutions. We have also
seen a specific algorithm for unification.

• How computation in a logic language works using a rule of deduction called
SLD Resolution. In the text, we have chosen an approach that was inspired by a
procedural reading of the clauses that demonstrate the similarity with “normal”
procedures in imperative languages. Two boxes more formally introduced the
concepts.

After some examples, we saw some important extensions to the pure formalism,
in particular:

• Some specific characteristics of the PROLOG language. We did not cover meta-
programming, higher-order programming or constructs that manipulate the pro-
gram at runtime, all of which are very important.
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• The idea of the use of logic languages in connection with databases.
• Constraint logic languages (but only through a single example).

For more information on those aspects of PROLOG that we have omitted or for a
better introduction to Datalog or to constraint-logic languages, the reader is recom-
mended to the literature listed below.

12.8 Bibliographical Notes

Herbrand’s ideas on unification are in his doctoral dissertation from 1930 [6]. The
definition of the resolution rule and the first formalisation of the unification algo-
rithm are in A. Robinson’s work [11]. The unification algorithm that we have pre-
sented was introduced in [10]. Major details of theory of unification can be obtained
from various articles and texts, among which is [5].

The “historic” paper by R. Kowalski which introduced SLD Resolution and
therefore the theory of logic programming is [7]. K.L. Clark’s results on correct-
ness and completion are in [3].

There are many texts both on the theory of logic programming and on program-
ming in PROLOG. Among the former, there is the text by Lloyd [8] and the more
recent and detailed treatment by K. Apt [1]. For programming in PROLOG and for
numerous (non-trivial) examples of programming, we advise the reader to consult
the classic text by L. Sterling and E. Shapiro [12], from which we have taken the
program that solves the problem of the Towers of Hanoi; there is also the book by
H. Coelho and J.C. Cotta [4], from which we have taken the program in the example
presented in Sect. 12.1.1.

Finally, as for Datalog and, more generally, the use of logic programs with
databases, [2] can be consulted, while [9] provides a good introduction to languages
with constraints.

12.9 Exercises

1. State a context-free grammar which defines propositional formulæ (that is those
obtained by considering only predicates of arity 0 and without quantifiers).

2. Assume that we have to represent the natural numbers using 0 for zero and
s(n) for the successor of n. State what is the answer computer by the following
logic program for a generic goal p(s,t,X), where s and t are terms that
represent natural numbers:

p(0, X, X).
p(s(Y), X, s(Z)):- p(Y, X, Z).

3. State what are the answers computed by the following logic program for the
goal p(X):
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p(0).
p(s(X)):- q(X).
q(s(X):- p(X).

4. Given the following logic program:

member(X, [X| Xs]).
member(X, [Y| Xs]):- member(X, Xs).

State what is the result of evaluating the goal:

member(f(X), [1, f(2), 3] ).

5. Given the following PROLOG program (recall that X and Y are variables, while
a and b are constants):

p(b):- p(b).
p(X):- r(b).
p(a):- p(a).
r(Y).

State whether the goal p(a) terminates or not; justify your answer.
6. Consider the following logic program:

p(X):- q(a), r(Y).
q(b).
q(X):- p(X).
r(b).

State whether the goal p(b) terminates or not; justify your answer.
7. Assuming that the natural numbers are represented using 0 for zero and s(n)

for the successor of n and using a primitive write(x) that writes the term t,
write a logic program that prints all the natural numbers.

8. Define the sublist predicate in a direct fashion without using append.
9. Write in PROLOG a program that computes the length (understood as the num-

ber of elements) of a list and returns this value in numeric form. (Hint: consider
an inductive definition of length and use the is operator to increment the value
in the inductive case.)

10. List the principle differences between a logic program and a PROLOG program.
11. If in a logic program, the order of the atoms in the body of a clause is changed,

is the semantics of the program altered? Justify your answer.
12. If in PROLOG, the clause-selection rule were changed (for example, always

selecting the lowest instead of the highest) would it change the semantics of the
language? Justify your answer.

13. Give an example of a logic program, P , and of a goal, G, such that the evalua-
tion of G in P produces a different effect when two different selection rules are
used. (Suggestion: given that we have seen that for computed answers, there is
no difference in the use of different selection rules, consider what happens to
computations that do not terminate and that fail.)
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14. Informally describe a selection rule that allows us to obtain the least possible
number of computations that do not terminate. (Suggestion: computations that
do not terminate, by changing the selection rule, would become finite failures.
Consider a rule that guarantees that all atoms in the goal are evaluated.)
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Chapter 13
A Short Historical Perspective

Even if the first computers in the modern sense, and therefore the first programming
languages, appeared only at the end of the 1940s, since then many hundreds (if not
thousands) of languages have been defined. In the previous chapters of this book we
have sought to identify the most important design and implementation characteris-
tics that are common to large classes of contemporary languages.

In this last chapter, we seek to understand what were the reasons that lead, in
the last sixty years, to the affirmation of these characteristics and, therefore, to the
success of some languages and the disappearance of many others.

13.1 Beginnings

The first electronic computers appeared in the second half of the 1940s, a relatively
recent time when considered from the perspective of the history of science, a remote
one when the rate of development of information technology is considered. To real-
ize distance that separates us from the early history of computing, one should think
that the first computers were elephantine machines (length greater than 10 metres,
weight greater than 4 tons), so expensive that they could only be tackled by govern-
ment institutes or by large agencies and they had processing rates less than that of
an old programmable pocket calculator.

There is even now something of a debate about what must be considered the first
computer because this primacy depends on upon what is exactly meant by this term.
In computing circles, there is a certain agreement that a computer in the modern
sense must have the following properties: (i) it is electronic and digital; (ii) is able
to perform the four elementary arithmetic operations (iii) it is programmable; (iv)
it allows the storage of programs and data. If we consider this definition, probably
the first computer that was operational, with an adequate memory, was the EDSAC
designed and developed at the University of Cambridge by Maurice Wilkes’ group.
It went live in 1949 and it should be remembered that the EDSAC was influenced by
famous work by J. Mauchly and J.P. Eckert of the Moore School at the University of
Pennsylvania, who used some of J. von Neumann’s ideas; their device was described
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as a computer and was called EDVAC. The EDVAC had properties similar to those
enumerated above. However it was not constructed until 1951.

If instead we admit a more general definition of computer, then we can also con-
sider as the pretender to the title of first computer, ASCC/MARK I and ENIAC
(1946) which, however it may be, remain fundamental precursors. These machines
were able to execute sequences of arithmetic operations in a controlled fashion us-
ing a real program, even if it was not stored and was expressed using very rough
formalisms, using physical representations in some cases.

ASCC/MARK I (IBM Automatic Sequence Controlled Calculator or Harvard
Mark I) was constructed in 1944 by IBM with the cooperation of Harvard University
with H. Aiken as principal investigator. This machine, used by the U.S. Navy for
military tasks, was very rudimentary to our modern eyes. Indeed, it succeeded only
in carrying out the work of a few tens of people and required the use of punched
tapes and other external physical media to obtain its instructions and to transmit
data to the computation devices. Think, for example that a (decimal) constant of 23
figures was specified manually using 23 switches, each of which could occupy 10
positions corresponding to the 10 decimal figures!

ENIAC, on the other hand, was constructed in 1946 by J. Mauchly and J.P. Eckert
at the Moore School of the University of Pennsylvania and initially J. von Neumann
also worked on the design. ENIAC also did not have program storage and was pro-
grammed using physical devices, for example using electrical cables internal to the
machine to connect the different physical parts of the computer according to input
parameters. Furthermore, many consider this machine as the first real computer be-
cause, unlike ASCC/MARK I, ENIAC was many orders of magnitude faster than
humans at computing and was immediately recognised as a tool for fundamental
progress. Already in 1947, L.P. Tabor of the Moore School foresaw that the speed
of ENIAC and computers would allow “the solution of mathematical problems until
now never considered because of the enormous amount of computation required.”
ENIAC was used effectively for the complicated calculation of ballistic trajectories.

The limitations of these first machines were clearly due to their novelty. All of
the hardware technology (the electronic devices used in modern computers) was
still to be invented, as was Computer Science itself (it was just at its beginning).
The importance of the programming task and the development of linguistic tools
to support it were not yet recognised. In the first applications (which were often
military), the programming activity was seen as a phase additional to that of the
proper calculation. Even with the more general applications, such as those to which
EDSAC and other machines of this time were put, matters were not much better.
To program, one used a low-level machine language which described, using binary
code, the operations and calculation mechanisms of the machine itself. This was
machine language, composed of elementary instructions (for example, instructions
for adding, loading a value into a register, and so on) that could be immediately
executed by the processor. The process of coding was completely manual, there
being not even the concept of a symbolic assembly code. Machine languages are
also called first-generation languages (or 1GL).

Without reaching the limit cases of “physical” coding constants in MARK I, it
is clear that the use of such languages made the writing of programs more diffi-
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cult and the correction of such programs, once they had reached a certain size, was
impossible. It was soon realised that to exploit the full use of the power of the com-
puter, it was necessary to develop adequate formalisms that were far from machine
“languages” and closer to the user’s natural language.

A first step in this direction was the introduction of assembly languages. These
languages can be seen as symbolic representations of the machine language and,
indeed, there is a one-to-one correspondence between a large number of machine
language instructions and assembly language codes. Programs written in assembly
language are translated into programs written in machine language by a program
called an assembler. Every model of computer has its own assembly language, so
the portability of these programs is nearly impossible. Assembly languages are also
called second-generation languages (or 2GL).

The true jump in quality was achieved in the 1950s with the introduction of
high-level languages, also called third-generation languages (or 3GL). These were
designed as abstract languages which would ignore the physical characteristics of
the computer and were instead suited to express algorithms in a way that was rel-
atively easy for the human user. Among the first attempts in this sense were some
formalisms that permitted the use of symbolic notation to indicate arithmetic ex-
pressions. The expressions thus encoded could then be translated automatically into
instructions executable by the machine. From these attempts, as the name itself sug-
gests, the FORTRAN (FORmula TRANslation) language was born in 1957. FOR-
TRAN can, as we will see below, be considered in all respects to be the first true
high-level language.

From 1957 until today, many hundreds of programming languages have been im-
plemented and it is thought that there have been more than 100 in widespread use. In
addition to fashion, commercial (certainly the most important) and chance circum-
stances, in the development of high-level languages it is possible to recognise some
guiding lines and some developmental principles. In the remainder of this chapter,
we will therefore seek to delimit these principles in such a way as to provide a way
of orienting oneself when entering the modern “Babel” of programming languages.
We do not pretend to be exhaustive because a complete guide would require another
book.

13.2 Factors in the Development of Languages

High-level languages have always been designed with the aim of assisting the task
of programming computers. However, from the 1950s to the present, the importance
and the cost of the various components involved in the implementation of programs
has changed and therefore priorities when designing a language have completely
changed.

In the 1950s, the hardware was certainly the most expensive and important re-
source (consider that Thomas Watson, president of IBM, asserted in 1943 that there
would be a world-wide market for 5 computers!). The first high-level languages
were therefore designed with the aim of obtaining efficient programs which would
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use the potentiality of the hardware to the maximum. This attitude in the first lan-
guages is reflected by the presence of many constructs that were inspired directly by
the structure of the physical machine. For example, the “three-way jump” present
in FORTRAN directly derives from the corresponding instruction on the IBM 704.
The fact then that programming was very difficult and required very long times was
considered as a problem of secondary importance, which could be solved by means
of large amounts of human resources which were certainly less expensive than the
hardware.

Today, the situation is the direct opposite. Hardware is relatively cheap and effi-
cient and the preponderant costs of information-system development are linked to
the tasks performed by computing specialists. Furthermore, given the increasingly
critical application of computer systems (one thinks of applications in avionics or
nuclear power), there are considerations of correctness and security that were mini-
mal if not wholly absent 50 years ago. Modern languages are therefore designed tak-
ing into account first the improvement of various software project activities, while
the preoccupation with efficient use of the physical machine has dropped to second
place, except in some particular cases.

Clearly, we have not passed from the 1950s to the present with a single solution:
the development of programming languages has followed a long, continuous process
governed by a number of factors. Here, we can only see some of the most important:

Hardware The type and performance of available hardware devices clearly influ-
enced the languages that used it. We will see this point better in the next sections,
where we indicate, in various historical contexts, the influence of physical ma-
chines on the languages of their time.

Applications Applications of computers, initially solely of a numeric type, rapidly
extended to many different fields, including some that required the processing of
non-numeric information. New application fields can require languages with spe-
cific properties. For example, in Artificial Intelligence and knowledge processing
languages are needed that allow the manipulation of symbolic formalisms rather
than the solution of mathematical problems. As another example, computer games
are usually implemented using particular programming languages.

New Methodologies The development of new programming methodologies, par-
ticularly programming in the large, has influenced the development of new lan-
guages. A significant example in this sense is object-oriented programming.

Implementation The implementation of language constructs is significant for the
development of successive languages because it allows to understand the validity
of a construct to be taken into consideration as well as its practical use.

Theory Finally, the role of theoretical studies should not be forgotten. They play an
important role in selecting some typologies of structure and in particular in identi-
fying new technical tools to improve the programming activity. One can think of,
for example, what we have seen on the elimination of the goto and the introduc-
tion of refined type systems.

These factors, as well as others, are discovered during the lifecycle of a program-
ming language, which, for the most part, is relatively brief. Some languages are an
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exception and, either because of the quality of the original design or, more com-
monly, because of commercial motives, live for more than a decade. We will see
some below.

13.3 1950s and 60s

As we saw at the start of this chapter, the first computers, during the period from the
end of the 1940s to the start of the 1950s, can be considered as interesting precursors
from an historical viewpoint, but which are still very far from the modern computer,
in terms both of the languages they used as in the applications implemented on them.

Towards the end of the 1950s and in the 1960s, mainframes, the first true general-
purpose computers that could be used for many different applications, came to the
fore. These machines were, however, available only at a few major processing cen-
tres because of their enormous size and cost (they filled a room and cost millions
of Euros, in modern terms). They were usable only by specialised people. The IBM
360 is a famous mainframe example which has held on for many years in the largest
data centres.

The processing methods used by mainframes were called batch processing. In
this kind of system, programs were executed in a strictly sequential manner. The
entire computational resource of the computer was assigned to a program which
took a “batch” of data as input and produced, as output, another batch of data. When
a program terminated, the next program would execute. Data and program were
initially represented on punched cards which were read by suitable equipment. The
data structures mainly used for data input and output were files. Such systems did
not engage in much interaction with users. For example, when there was an error
during a run, the program had to be capable of re-establishing the correct state itself,
given that no external interactive intervention was possible.

The first high-level languages were developed for this type of processing system.
They were languages that offer few opportunities for interaction with the machine
and which were suited to writing monolithic programs to be executed from start to
finish without external interaction.

FORTRAN As has already been said, the first real high-level imperative language
can be considered to be FORTRAN, developed by John Backus’ group in 1957 and
designed for applications of a numerical-scientific type. At a time in which program-
ming was only done in assembly language and in which the biggest preoccupation
was with the efficiency of programs, high-level language design could not ignore the
performance of compiled code. Also the design of FORTRAN put performance first
and therefore the characteristics of a specific physical reference machine (the IBM
704) was considered in the design. However, unlike previous languages, FORTRAN

was already a high-level language in the modern sense in its first version. In fact,
this first version contained many constructs that were more or less independent of a
specific machine. In particular, it should be emphasised that FORTRAN was the first
programming language to allow the direct use of a symbolic arithmetic expression.
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A simple expression such as a * 2 + b that today we can use in (almost) any
high-level language, could not be used in a language prior to FORTRAN. After a
number of modifications and new versions (in particular, those in 1966, 1977 and
1990), FORTRAN has survived until today and is still used for some numerical appli-
cations. It is, though, a dated language whose survival is mainly linked to practical
matters such as the vast library of functions for scientific and engineering calcula-
tions. A FORTRAN program consists of a main routine and a series of subprograms
that can be separately compiled. It is not possible to define nested environments (it
is possible only in FORTRAN90 to define nested subprograms) and there are two
kinds of environment: the local and the global. This, as we know, greatly simplifies
the handling of names, as well as the environment. Memory, either for subprograms
or for main, is statically allocated and there is no dynamic memory management
(FORTRAN90 is again an exception by providing dynamic memory). The sequence
control commands in the first version referred directly to assembly language and
therefore goto was used a great deal. In successive versions more structured com-
mands (for example, if then else) were introduced. Parameter passing is by
reference or rather by value-result. Types are present in a highly limited way, includ-
ing only numeric (integer, real in single and double precision, complex), boolean,
array, string and file.

ALGOL ALGOL means, more than a language, a family of imperative languages
introduced at the end of the 1950s. These languages, even if they have not become
true commercial successes, were predominant in the academic world in the 1960s
and 70s and had a formidable impact on the design of all successive programming
languages. Many of the concepts and constructs that are found in modern languages
were introduced, or experimented with, for the first time in the languages of the
ALGOL family.

The progenitor was ALGOL58, designed in 1956 by a committee lead by Peter
Naur. The committee was the fusion of two previous groups, one European and one
American, each tasked with the definition of a new language. The name ALGOL

is an acronym for ALGOrithmic Language and clearly indicates the finality of the
language. Unlike FORTRAN, indeed, ALGOL was designed as a universal language,
suited to expressing algorithms in general, rather than for use in specific types of
application. There were various revisions to the language, all originating from the
collective work of an international committee (which had a turbulent life, particu-
larly towards the end). In 1960, ALGOL60 was defined. This is the version that is
perhaps the most important (it had a minor revision in 1962). Beginning in 1966,
dissenting from the majority of the committee, C.A.R. Hoare and N. Wirth started
the basic design of ALGOLW, later implemented in 1968 by Wirth and which con-
stitutes the progenitor of Pascal. The majority of the committee, instead, continued
their own work which led to the definition of ALGOL68.

ALGOL58 and, in particular, ALGOL60 greatly increased the machine-indepen-
dence of the language, making the notation used for programming closer to mathe-
matical notation and avoiding almost every reference to specific architectures, even
at the cost of some additional design complications. For example, the input and
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output operations, rather than being coded by suitable instructions in the language,
must be implemented by appropriate procedures that are defined specifically for the
devices that are being used at a particular installation.

ALGOL60 made at least three fundamental contributions to modern languages.
The first consists of the introduction of parameter passing by name, a mechanism,
as we have seen, that is complicated to implement (and for this reason later aban-
doned), but which has been of great importance for defining mechanisms that are
used in current languages for passing functions.

Another important innovation in ALGOL60 was the introduction of blocks and
therefore the ability of hierarchically structuring the environment.

At the syntactic level, though, thanks to the contribution of John Backus, AL-
GOL60 was the first language to use Chomsky’s generative grammars to express the
syntax of the language (in particular context-free grammars were used in the form
that we now know as Backus Naur Form or BNF). This novelty opened the way to
a whole new area of research that has been of extreme importance to the theory and
practice of compilers.

Among the other contributions of the languages in the ALGOL family to modern
languages, let us further note: recursion and dynamic memory management (but for
these features see also what we say below about LISP); type systems with the ability
to permit new user-defined types; finally, many structured commands for sequence
control in the form that we use today, (if then else, for and while from
ALGOL60 or case from ALGOL68).

LISP LISP (LISt Processor) was designed in 1960 by a group led by John Mc-
Carthy at MIT (Massachusetts Institute of Technology) and was one of the first
languages designed especially for non-numeric applications. As we have already
seen in the box on page 121, it is a language designed to manipulate symbolic ex-
pressions (called s-expressions) which are basically lists and which are typically
used in Artificial Intelligence. Among LISP applications were the first attempts to
implement programs for the automatic translation of texts.

Even if this is a non-standard language, developed and implemented over the
course of 30 years in many different versions and not much used commercially, it
is a very important language, in which various techniques have been developed that
are of interest to languages. In the academic world LISP still enjoys a following (the
Scheme language, currently used in many courses was born from a variant of LISP).
The first implementations of LISP were very inefficient, so much so that architec-
tures specially designed for LISP (so-called LISP machines) were constructed. Later,
the use of various tricks, and in particular the improvement of garbage-collection
techniques allowed efficient implementations even on traditional architectures.

LISP is a functional language which, as has been said, manipulates special data
structures. Every program consists of a sequence of expressions to be evaluated.
Some of these expressions can be function definitions that are to be used in other ex-
pressions. Typically, the language is implemented using an interpreter and programs
are evaluated in an interactive environment. Among the contributions of LISP, we
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can note: the introduction of higher-order programming, i.e. the possibility of con-
structing functions that accept as parameters and/or produce as the result of evalua-
tion other functions, as well as dynamic management of memory using a heap and a
garbage collector. Other specific properties of LISP have remained confined almost
exclusively to this language, such as, for example, the use of the dynamic scope rule
implemented using A-lists.

COBOL Like LISP, also this language was designed in the 60s and its name is
also an acronym: COBOL stands for COmmon Business Oriented Language. The
similarities between this language and LISP end there, however. COBOL was de-
signed with the aim of producing a language that was specific to commercial appli-
cations and whose syntax was as close as possible to the English language. After
various revisions of the initial language, which was designed by a team lead by
Grace Hopper at the US Department of Defense, the language became a standard in
1968 and, even if in revised and modified versions, is still in use today.

COBOL programs are composed of 4 “divisions”. In the “procedure division”,
the code for the algorithmic aspects of the program are written. In the “data divi-
sion”, the descriptions of the data are written. The “environment division” contains
the specification of the environment external to the program provided by the phys-
ical machine on which the language is implemented. Finally, there is the “identi-
fication division” which contains information used to identify the program (name,
author, etc.). This organisation has the aim of separating, even if in a very crude
fashion, data from the programs that use it, and separating machine-independent
and dependent aspects. These are highly rudimentary mechanisms that have been
superceded by linguistic devices that we have seen in modern languages (types, ab-
stract data types, objects, modules, intermediate code, etc.). Furthermore, this pro-
gram structure, together with a syntax that is close to natural language, also makes
simple programs quite long. Memory management is entirely static.

Simula Simula, another descendent of ALGOL60, is a textbook case of a tech-
nology that was too advanced for its time. Developed from 1962 at the Norwegian
Computing Centre by K. Nygaard and O.J. Dahl, Simula is an extension of ALGOL.
It was designed for discrete-event simulation applications, that is for the implemen-
tation of programs that simulate load and queue situations so that fundamental pa-
rameters can be measured (average waiting time, length of queue, etc.). In its most
important version, Simula67, the language introduced for the first time the con-
cepts of class, object, subtype and dynamic method dispatch. This is without doubt
the first object-oriented language and it had a considerable influence on its succes-
sors (Smalltalk and C++) even if the concept of “object” was a biological metaphor
which would only arrive with Smalltalk and its volcanic creator, Alan Kay.

From the linguistic viewpoint, Simula67 makes small modifications to the con-
structs that were present in ALGOL60 (the most import of which is the default mode
for passing parameters which is changed from name to value-result) but adds various
mechanisms, among which call-by-reference, pointers, coroutines (a mechanism for
defining concurrent procedures that is fairly close to the modern concept of thread),
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classes and objects. A class in Simula is a procedure which, when it terminates,
leaves its activation record on the stack and returns a pointer to it. An activation
record of this kind, which contains the variables declared local to the procedure
(today we would say: instance variables) and (pointers to) local functions (meth-
ods), is an object. Subtypes, dynamic dispatch and inheritance are already present
in Simula67, while later versions introduced abstraction mechanisms.

Simula has always had an big impact even outside the academic world. In 2003,
applications written in this language were still being cited.

13.4 The 1970s

Thanks to the advent of the microprocessor, the 1970s saw the rise of the minicom-
puter, computers of smaller size and power comparable to that of the older main-
frames.

From the software viewpoint, batch processing gave way to a more interactive ap-
proach in which the user, using a terminal, could interact directly with the execution
of the program. The characteristics of the languages developed in the mainframe
era were not really suited to interactive systems. For example, it became necessary
to be able to express operations for input and output (that were more sophisticated
than simply reading and writing files) using a program and therefore through the
constructs of the language. In interactive systems there are constraints on the re-
sponse time and therefore new languages included appropriate linguistic constructs
of a temporal nature (for example, timeout mechanisms). In general, “traditional”
high-level languages from the 1970s allow more direct interaction with the machine
that was impossible with the languages of the preceding generation.

Above, we said “traditional”, meaning by this the imperative languages inspired
by the classical computational model based on the modification of values stored
in memory locations. The 1970s however saw the birth of two new programming
paradigms: object-oriented programming and declarative programming. The second
can be more accurately divided into functional and logical approaches. We will see
below the more important languages of these years in the different paradigms.

C Among the new languages of the 1970s, the most important is probably C, a
language designed by Dennis Ritchie and Ken Thompson at AT&T Bell Laborato-
ries. Initially designed as a systems programming language for the Unix operating
system, C soon became a general purpose language, even if systems programming
remains one of its more important application areas. By way of an anecdote, let us
note that the name derives from the fact that the language in 1972 was the succes-
sor to a language called B, which in its turn was a reduced version of the system
language BCPL.

Compared with the languages in the ALGOL family, from which it inherited a
great deal, C offers more opportunities to access the low-level functionality of the
machine and to program interactive systems. For example, in C it is possible to
access directly the characters emitted by a terminal; it is also possible to use specific
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commands to process data in real time. C rapidly established itself, both for system
programming and as a language for general use, thanks to these characteristics, to
its compact syntax and to the possibility of translating its programs into efficient
machine code.

In the chapters above, we saw numerous references to C in connection with spe-
cific constructs or specific implementation characteristics; it would be useless to
repeat them all here. Let us recall just some of the important characteristics. We
have seen how C includes many arithmetic and assignment operators and how the
block structure of C considerably simplifies that found in languages of the ALGOL

family (basically, C does not allow nested functions). This allows a much simpler
handling of environments and, therefore, of the passing of functions as parameters.
The explicit presence of pointers that can be directly manipulated by the program
and the equivalence between them and arrays, if on one hand allows very powerful
operations, on the other cause insidious errors. This fact, together with the lack of
a strong type system, constitutes one of the critical points of the language. Indeed,
when one wants more reliability than efficiency, one can find valid alternatives in
other modern languages.

Pascal Pascal was developed around 1970 by Niklaus Wirth as a development
and simplification of ALGOLW and was the most used educational language right
up to the end of the 1980s. The name is in honour of the mathematician (as well as
physicist, philosopher and writer) Blaise Pascal, who, to help a father overloaded
by a difficult job as part of the administration of Normandy, in 1642 designed an
“arithmetic machine”, the precursor of mechanical calculating machines.

One of the main reasons for the success and fame of Pascal is that it was the first
language which, prefiguring Java and its bytecodes by nearly 20 years, introduced
the concept of intermediate code as an instrument for program portability. A Pascal
program was translated by the Pascal compiler (which was also written in Pascal)
into P-code. P-code was a language for an intermediate machine with a stack archi-
tecture which was then implemented in an interpretative way on the host machine.
In this way, to port Pascal to a different machine, it was only necessary to rewrite
the P-code interpreter. Pascal was also implemented in a compilative way that did
not use an intermediate machine thus allowing greater efficiency.

We have included many references to Pascal in this book and we do not mean
to summarise them in their entirety. Instead, we merely record some of the more
important properties in an attempt to compare them with C.

Pascal is a block-structured language in which it is possible to define functions
and blocks that can be nested with arbitrary complexity. This fact, if on the one hand
increases the structuring of code, complicates the handling of the environment and
the mechanisms for passing functions as parameters, as has already been observed.
Pascal (like C), uses the static scope rule and includes dynamic memory manage-
ment both using a stack (for activation records) and a heap (for explicitly allocated
memory). The Pascal type system is fairly extensive and supports abstraction mech-
anisms by allowing the user to define new types using the type primitive. The types
are for the most part checked statically by the compiler, even if some checks are ex-
ecuted at runtime. In Pascal, it is also possible to handle pointers explicitly, even if
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not all the operations (particularly the dangerous ones) provided by C are available.
For example, in Pascal, arrays and pointers are two different types. Perhaps, in the
search for a reliable type system, concerning arrays Pascal is too restrictive; indeed,
in Pascal, two array declarations that have different dimensions and contain objects
of the same type define two different types, a property which make general design
of array-manipulating procedures difficult. Another limit of the language, at least
in its original version, is the lack of separately compilable modules, although this
has been solved in many subsequent implementations which allow the definition of
external procedures.

Smalltalk A strong limitation of Pascal, like all “conventional” programming lan-
guages from the 1970s was in the lack of mechanisms to support the concept of
encapsulation and information hiding in a truly efficient manner. Indeed, even if in
Pascal it is possible to define new data types, there is no way to limit access to values
to a pre-determined set of operations in such a way as to guarantee abstraction over
the data.

Smalltalk presents a novel way to integrate in a programming language mecha-
nisms for encapsulation and information hiding using the concepts of class and ob-
ject (previously introduced by Simula) and precise visibility rules for classes (meth-
ods are public, instance variables are private). Developed during the 1970s by Alan
Kay at Xerox PARC (Palo Alto Research Center),1 Smalltalk is a unique language,
some of whose characteristics we saw in Chap. 10 and whose description would
require much more space than available here. It is also important for us to note
that, unlike some object-oriented languages that were introduced later (for exam-
ple, C++), Smalltalk was designed from the start to include as primitive the concept
of object rather than grafting it on to an existing language. This means that all the
mechanisms used in its implementation (procedure call, memory management, etc.)
were developed using this concept. Moreover, Smalltalk was designed not only to be
a language but also a sort of “total system” which included language, programming
environment and also a special dedicated machine for increased efficiency of pro-
gram execution. Indeed, given that the language’s type system is entirely dynamic,
the implementation of an efficient method lookup mechanism was quite difficult.
Very soon, however, implementations of Smalltalk were also proposed for conven-
tional machines with satisfactory results. A standard has never been defined for
Smalltalk and various, quite different, versions of the language exist today.

Declarative languages In Chap. 6, we saw, at least on the formal level, the dif-
ference between imperative and declarative programming. From the intuitive view-
point, the slogan of declarative programming, so to speak, is that the activity of

1In those years, Xerox PARC was a research centre of mythical proportions. In addition to
Smalltalk, the following were all PARC innovations: Ethernet; laser-printer technology (later de-
veloped by Adobe, a PARC spin-off); PostScript; the first personal computer (the Alto) for “office
automation”, equipped with a graphical user interface using the desktop metaphor; the remote
procedure call.
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programming should concentrate on what is to be done, leaving the language in-
terpreter to concentrate on how to reach the desired result. In imperative program-
ming, on the other hand, the programmer must specify both the what and the how.
Obviously this is an ideal vision. Leaving the interpreter to decide everything about
how the computation is to be undertaken (that is, substantially, memory manage-
ment and sequence control) without the programmer providing any indication in
this sense imposes a great penalty on program efficiency. In reality, therefore, to
the “pure” version of declarative languages, which conform to this vision, we need
to add “impure” versions which add constructs of an imperative nature to improve
the efficiency of programs and also to permit the use of commands (for example,
assignments) with which many traditional programmers are acquainted.

Declarative languages can be divided into functional and logic-programming lan-
guages. We will look at the two most important representatives of the two classes,
both of which were introduced in the 1970s.

ML ML was born as Meta Language (hence its name) for a semi-automatic sys-
tem for proving properties of programs and was developed by Robin Milner’s group
at Edinburgh, starting the middle of the 1970s. Very soon it became a true program-
ming language that could be used, in particular, for the manipulation of symbolic
information.

In ML, as in LISP, a program consists of a set of function definitions. Various
imperative constructs were added to the purely functional part of ML, in particular
assignment (which is limited to so-called “reference cells” which can be regarded
as modifiable variables which use the reference model).

The most important contribution of ML concerned types. The language was in-
deed provided with a safe type system that is static and extends the type system
of Pascal in various ways. First, the concept of type safety that we have already
encountered has a rigorous and very precise definition that excludes (in a provable
way) the possibility of unsignalled runtime errors that derive from type violations.
The ML type checker statically determines the type of every expression in a pro-
gram and there is no way to change this type. If the type checker determines that
an expression has an integer type, then we can be sure that every evaluation of this
expression that succeeds will yield an integer.

Moreover, the ML type system supports a type inference mechanism. The pro-
grammer can leave some information about types unspecified and the system, using
a form of logical inference, deduces the type of the identifiers from the way in which
they are used. Even if similar mechanisms were previously studied in the context
of the λ-calculus, ML was the first language to be equipped with a type-inference
mechanism.

Finally, ML support parametric polymorphism. That is, it supports the use of type
variables that can then be consistently instantiated by concrete types.

PROLOG PROLOG was defined in the 1970s as well. This was the first logic-
programming language and is still available today in various versions and imple-
mentations.
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If, as we have said, some ideas on logic programming can be traced back to the
work of Kurt Gödel and Jacques Herbrand, the first solid theoretical bases were
published by A. Robinson who, in the 1960s, made an essential contribution to the
theory of automatic deduction. Robinson indeed provided a formal definition of
the unification algorithm and defined resolution, a deduction mechanism that uses
unification and allows the proof of theorems in first-order logic.

Given its simplicity, resolution is perfect for implementing automatic theorem
provers (for first-order logic), but it does not provide a computational mechanism
such as that normally provided by a programming language. The proof of a theorem,
of itself, does not produce an observable result what could be seen as the result of a
computation. To obtain this computational vision of the activity of proof, 10 years
had to pass and a restricted version of resolution had to be developed. This version
is SLD resolution, proposed by Robert Kowalski in 1974. SLD resolution unlike
previous mechanisms for automated theorem proving, allows to prove a formula by
explicitly computing the values of the variables that make the formula itself true and
which, therefore, at the end of the proof, constitute the result of the computation. If
Kowalski defined the theoretical model, we must record that in reality the PROLOG

language was developed by Pierre Roussel and Alain Comerauer who, in 1970,
were working on a formalism for manipulating natural language based on automatic
theorem-proving mechanisms. These experiments led to the first implementation
of PROLOG in 1972 and then, after various interactions with Robert Kowalski, to
the 1973 version which is mostly the same as current versions. The ISO PROLOG

standard was defined in the 1990s.

13.5 The 1980s

The 1980s were dominated by the development of the personal computer or PC.
The first commercial PC can be considered to be the Apple II, produced by Apple
in 1978. Even if today, with the massive increase in the use of computing devices
in everyday life, the PC seems an indispensable tool, it should be noted that when
they first appeared, most people remained sceptical about their potential. It is suffi-
cient to observe that even in 1977, Ken Olson, the president of Digital Equipment
Corp. (a major producer of minicomputers at that time), stated that he did not see
any reason for anyone to want to have a computer in their home! This initial con-
fusion evaporated when, in 1981, IBM launched its first PC and Lotus created the
first electronic spreadsheet. This application made people immediately see the pos-
sibilities in this new technology which then went into general use in 1984. In that
year, Apple released onto the market the Macintosh, a computer that had the first
operating system with a graphical interface based on windows, icons and a mouse,
a system that was similar to the windowing interface that we use today. Later (in the
1990s), Microsoft also introduced its own windows system.

The PC has completely changed the role of programming languages. The de-
velopment of systems for personal use which provides easy-to-user graphical inter-
faces, has brought the need to develop easily interactive graphical systems that are
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needed to manage windowed interfaces. These system are produced using very large
and complex programs and therefore it is essential to be able to reuse already ex-
isting code (possibly produced by others). These systems have, therefore, provided
an application area that is ideal for object-oriented languages which, as we have
seen, provide natural mechanisms for code reuse and for organising vast and com-
plex systems. Indeed, the languages of the 1980s were conceived as object-oriented
languages which saw significant development during this period and their first large
commercial applications.

In this decade, the first embedded systems were also developed. These are sys-
tems composed of computers connected to physical devices which perform control
tasks (for example, motors, parts of industrial machinery, domestic electrical goods,
etc.). Embedded systems pose many problems, most of all relating to reliability and
correctness of programs. For a program that controls the engines of an aircraft, an
error must not, clearly, be handled in an interactive fashion by the programmer and
termination of the program is not an acceptable option. Moreover, embedded sys-
tems introduce other problems as far as response time is concerned; these problems
are tackled by so-called real-time programming languages.

C++ The first version of C++ was defined by Bjarne Stroustrup in 1986 at Bell
Laboratories of AT&T after a number of years of work (and after the definition of
various other languages) on finding out how to add classes and inheritance to the
C language without prejudicing efficiency and without compromising compatibility
with the existing C language. C had to remain a subset of C++ and as such had to
be acceptable to the C++ compiler. To these primary objectives, the improvement of
C’s type system was added.

We can say that these objectives were substantially achieved. Even if there are
some inconsistencies between C++ and C, the most C programs can be translated by
a C++ compiler. There was significant effort expended to obtain a language in which
those constructs that are not used by a program do not exert a negative influence on
the efficiency of the program itself. This means, in particular, that the C subset of
C++ must not feel, in any way, the presence of objects and the structures necessary
to handle them. C++ does not use any form of garbage collector so that it remains
compatible with C and is still as efficient.

In particular, the static type system was improved and, in C++, in particular, it
is possible to use a generic form of class, called a template, which supports a form
of parametric polymorphism. An important design decision was that of handling
C++ objects as a generalisation of the structures (struct) in C. The significance
of this is that objects can also be allocated in activation records on the stack and,
unlike Simula and Java, they can be manipulated directly rather than via pointers.
An assignment in C++ can then physically copy an object to the memory space that
was occupied by another object rather than just manipulating a pointer.

The lookup mechanism for methods in C++ is simpler and more efficient than
that in Smalltalk, given that in C++ information provided by the static type system
can be used (this does not exist in Smalltalk).
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Ada Byron Lovelace

The name of the Ada language is a tribute to Ada Byron, Countess of Lovelace
(1815–1852). Daughter of the poet Byron, she was one of the first female figures
in the story of automatic computing. She was a great supporter of Charles Babbage
(1792–1871), a mathematician at the University of Cambridge and modern calcu-
lating machine pioneer. Babbage designed two calculating machines (the “analytic”
and the “difference” engines) which were well ahead of their time and were of such
technical complexity that they could not be constructed. In 1842, the Italian mathe-
matician L. Menabrea published a memoire in French on Babbage’s analytic engine.
In 1843, Ada Lovelace translated this memoire into English, adding numerous notes
from which came a farseeing account of a calculating machine for general use which
would allow “the development and tabulation of any function . . . the machine [is]
the expression of every undefined function, capable of generality and complexity.”

Finally, C++ also allows the use of multiple inheritance, a construct that poses
various implementation problems. The standard version of C++ was approved in
1996.

Ada Another important language defined in the 1980s is Ada. The Ada definition
project was sponsored by the US Department of Defense. The Ada language was
defined in a slightly unusual way, starting with a competition between a number of
groups of designers, both academic and industrial, for the design of a new formal-
ism which would satisfy the requirements of the Department of Defense. The com-
petition was won by Jean Ichbiah in 1979 with a language based on Pascal which
included many new constructs required for programming real-time and embedded
systems, as well as other kinds of systems. Ichbiah’s proposal included abstract
data types, the concept of task, timing mechanisms and mechanisms for the concur-
rent execution of tasks. In particular, this last feature introduced problems that were
completely new to the commercial programming languages existing at that time.
The basic idea of the task is simple: if a task A calls a task B, task A continues to
be executed while B executes (in the case of normal subprograms or procedures,
on the other hand, the execution of A is suspended while B executes). This paral-
lel or, better, concurrent execution of two tasks poses problems of synchronisation,
communication and management that require appropriate linguistic constructs and
adequate implementation mechanisms. These problems, which are extremely com-
plex as well as important, are beyond the scope of this book where, by intention, we
limit ourselves to the sequential aspects of programming languages.

The standard version of Ada was defined in 1983, even if, because of checks
for conformance with the standard, the first translators appeared in 1986, perhaps a
unique occurrence in programming language history.

CLP In the 1980s, Constrain Logic Programming languages (CLP) were intro-
duced. These are languages that allow the manipulation of relations over appropri-
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ate domains (we have alluded to them in Chap. 12). The idea of adding to logic
programming classical mechanism for the solution of constraints was developed in-
dependently by three independent groups of researchers. Colmerauer and his group
in Marseille was the first to define a language with constraints in 1982. This lan-
guage was PROLOG II, an extension of PROLOG which allowed the use of equations
and inequalities over terms (rational trees, to be precise). Thereafter, in the middle
of the 1980s, the language was extended to PROLOG III which allowed generic
constraints over strings, booleans and reals (limited to linear equations). At Monash
University in Australia, the language CLP(R) was developed; it has constraints over
reals. Jaffar and Lasez defined the theoretical aspects of the CLP paradigm. In par-
ticular, it was shown how all the various logic languages with constraints could be
seen as specific instances of this paradigm and how the paradigm inherits all the
main results from logic programming. Finally, Dincbas, van Hentenryck and others
at ECRC in Monaco defined CHIP, an extension of PROLOG which allowed various
types of constraint, in particular constraints over finite domains.

13.6 1990s

During the 1990s, as we know, we saw the rise of the Internet and the World Wide
Web, two tools that have profoundly changed many aspects of computing and there-
fore of programming languages, as well. The possibility of connecting millions of
computing devices in a network, to share data and programs that reside on ma-
chines that are separated by thousands of kilometres, to transmit meaningful data
and access saved information using channels shared by thousands of users, has intro-
duced innumerable problems of efficiency, reliability, correctness and security that
involve the entire spectrum of levels present in an computer system: from the level
of communications protocol to the languages used for the final applications. From
the programming language viewpoint, the most relevant aspect of these years was
surely the definition of the Java language, which we have already seen in Chap. 10.
In the same decade, HTML (HyperText Markup Language) was defined by Tim
Berners-Lee in 1989, which is used for the definition of Web pages. Both HTML
and its development XML, a language for the representation of semi-structured data,
though important, are not discussed in this book because they are not programming
languages in the strict sense.

Java The object-oriented language Java was developed by a group (the Green
team) led by Jim Gosling at SUN. The initial project, started in 1990, had the aim
of defining a language, based on a new implementation of C++, to be used in small
computing devices with relatively limited power, connected to a network and to be
used linked to a television which was to provide the input/output peripheral. These
devices were to implement a kind of browser to be used for navigation through the
network, but without using all the technology necessary for this task. Indeed, the ini-
tial language, which was first available in a functioning version in 1992, was pretty
much ignored. In 1993, however, the release of Mosaic, the first Internet browser,
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immediately caught the Green team’s attention; they saw that the language they were
working on had great potential in the world of the Web. Indeed, the reduced com-
munications bandwidth of home computers and the large number of requests to the
servers that held especially popular Web pages made the use of the first browsers
punitive. These problems could be solved, at least partially, by sending little pro-
grams (the famed applet) across the network so that they execute on the user’s client
machine when it requests a particular service. In this way, the load on the server from
which the service is required is reduced. The language to be used to implement such
applets would, additionally, have to satisfy the following requirements:

Portability Clearly, when a program is sent to a remote machine, normally the
architecture of this machine is not known. It is necessary, therefore, that on every
machine that can act as a client, there must be an implementation of a version of the
language in which the applet is written, something that is not easy if the language
is particularly large or complicated.

Security Executing programs received remotely from the network requires precise
guarantees about the security and reliability of these programs.

Java was therefore designed by taking into account these two basic requirements,
in the context of the object-oriented paradigm.

The first problem was solved by definition of the Java Virtual Machine (JVM)
and its associated bytecode. A Java program is translated (compiled) into an inter-
mediate language, called bytecode, whose abstract machine is precisely the JVM.
This machine, which is simpler to implement than the entire Java machine, is im-
plemented in an interpretative mode on many different physical machines. The Java
program, which is translated to bytecodes, can therefore be sent over the network
to be locally executed on the user’s machine. The real applicability of this approach
was shown in 1994 when Sun developed the HotJava browser containing the JVM.
It was in 1995 that Java started its rapid expansion when the JVM was incorporated
in the Netscape browser (which, in its turn, was the reincarnation of Mosaic).

The security problem, on the other hand, was confronted by various techniques.
First, a type system guaranteeing type safety was used. The execution of a Java
program can not cause a runtime type error that has not been detected (at least
within the limits of the sequential subset of the language). Type safety is obtained
by type checking at three levels: the Java compiler, like those for other typed lan-
guages, does not permit the translation of programs that violate the Java type system;
the bytecodes that result from compilation are also checked by a type checker be-
fore execution and, finally, at runtime, the bytecode interpreter performs some type
checks which, by their nature, cannot be made statically (for example, array bounds
checks).

Another important design choice in Java, which is also related to improving the
reliability and simplicity of the language, is the avoidance of the explicit handling
of pointers and the presence of a garbage collector to recover memory that is not
in use. Thus, even if all Java objects are accessible using (an abstract version of)
pointers and memory is dynamically allocated, there is no “pointer” type. The pro-
grammer can manipulate references to objects only indirectly by using assignment
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and parameter passing where objects are involved. Let us recall, while we are on the
subject, that in Java, values of the basic types of integer, boolean and string are not
objects and that, while variables of these basic types use the value model, variables
representing objects use the reference model. Parameter passing is always by value
(where objects are passed, the value passed is a reference to the object, given that
variables in this case use the reference model). Java uses static scope.

In addition to dynamic method dispatch, which is typical of object-oriented lan-
guages, Java also allows the dynamic loading of classes. If, during execution, a
program invokes a method on a class that is not present and which, for example,
resides in a physically remote location on the network, the class can be dynamically
loaded into the Java virtual machine. This incremental approach allows programs to
start executing even though some of their components are still missing, something
which has been of practical use for browsers.

Finally, even if in this book we have not considered concurrency, we must record
that Java allows the concurrent execution of processes using threads. The synchro-
nisation and communication primitives necessary for the execution of concurrent
processes are an important part of Java’s design and contribute the portability of
the language because they make no reference to the system operations on a specific
machine.

All these security and reliability features in Java have a cost in terms of efficiency
The existence of runtime type checks, the bytecode interpreter, the garbage collector
and other aspects significantly influence the execution time of programs. However,
this inefficiency is not particularly important for the application domain typical of
Java programs. In particular, it is certain that the time spent waiting by a browser
for use of the network makes the execution times of Java applets negligible.

13.7 Chapter Summary

In this concluding chapter, we have sought to put the most important programming
languages defined up to the present into historical perspective. We have sought to
understand the reasons for various design decisions, the reasons for the success of
some languages and for the failure of others.

Clearly, an adequate treatment of these questions would require a new book
which would not be easy to write because, even if it is not difficult to locate the
documentation for different languages (even for extinct ones), determining the in-
fluences between one proposal and another is often extremely complicated.

Concerning the possible future (sequential) languages, Chaps. 10–12 contain in-
dications about paradigms in which research effort is currently being concentrated.
Probably the programming languages of the near future will develop in this context
by seeking to improve on the many weak points of current languages (some cues for
reflection in this sense are indicated in the text).

There are, then, other contexts from which it is possible to expect significant
progress. One, perhaps the most important, is concurrent languages, whose exclu-
sion from this book was explained in the introduction. But it is possible to expect
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important language developments even from sectors such as bio-informatics and
quantum computing. Even if Church’s Thesis seems destined to resist the stress
of these new areas, it is doubtless true that mechanisms for biological or quantum
computation will open paths that have so far been unexplored. Here, we are dealing
with developments that will require time; probably we will have to leave to others,
perhaps to one of the young readers of this text, the task of taking into account the
developments that are to come.

13.8 Bibliographical Notes

The bibliography for this chapter is, as can be predicted, endless. Every single pro-
gramming language has been the subject of numerous publications from manuals to
more theoretical treatments. For some of the main languages currently in use, we
note only [7] for C, [5, 8] for Java, [15] for C++, [9] for ML and [14] for PROLOG.

Wishing to limit ourselves to publications about programming languages in an
historical context, an excellent source of information is the proceedings of the con-
ference on the history of programming languages organised by the American Asso-
ciation for Computing Machinery (see for example two past editions of this, from
1978 [16] and from 1993 [1]). Almost all the languages mentioned in this chapter
are the object of an introductory note in these proceedings, the note being written by
the language designers themselves. Also, the Annals of the History of Computing
from the IEEE contain much interesting material. An historical account of software
of the 1950s and 60s is contained in [2].

There are also many books which provide an overview of various languages, for
example [6] and, for older languages, [11]. Some books, whose purpose is similar
to this one, are [13], [12] and the classic [10]. They also contain short descriptions
of the most important languages. In addition, there are various texts which present
the history of various aspects of the automatic computer, such as [17]. It can also be
interesting to consult monographs about the pioneers of the modern electronic com-
puter because, in addition to biographical aspects, they provide interesting points for
reflection on the difficulties encountered by those who, basically, invented a com-
pletely new discipline. A good example in this sense is [3].

Finally, to understand the different, often contrasting, viewpoints, of the protag-
onists of this story of programming languages, it is certainly useful to consult the
original articles which they have written. The article by Dijkstra [4] (which we have
already cited) and that by Wirth [18] are two of the many that are available.
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