
Z80,OOOTM CPU

Preliminary
Technical Manual .

September 1984

-

Z80,OOOTM CPU
Preliminary
Technical Manual

7-i1APW
Zilog

Copyright 1984 by Zilog, Inc. All rights reserved. No part of this
publication may be reproduced withoutthe written permission of
Zilog, Inc.
The information in this publication is subject to change without
notice.

Table of Contents

Chapter 1. Z80,OOO CPU Overview

1.1 Introduction
1.2 Architecture

1.2.1 Registers
1.2.2 Address Spaces
1.2.3 Memory Management
1.2.4 Addressing Modes
1.2.5 Instruction Set
1.2.6 Normal and System
1.2.7 Exceptions

Modes of Operation

1.3 Extended Processing Architecture
1.4 Cache
1.5 External Interface
1.6 CPU Internal Organization
1.7 ZSOOO Compatibility
1.S Summary

Chapter 2. Data Fonaats and Registers

2.1 Introduction
2.2 Data Formats
2.3 General-Purpose Register File
2.4 Program Status Registers
2.5 Special-Purpose Control Registers

2.5.1 Program Status Area Pointer (PSAP)
2.5.2 Normal Stack Pointer (NSP)
2.5.3 Translation Table Descriptor Registers
2.5.4 Overflow Stack Pointer (OSP) •••••
2.5.5 Hardware Interface Control Register (HICR)
2.5.6 System Configuration Control Longword (SCCL)

2.6 Reserved Control Sits

Chapter ,. Address Representation and Modes of Operation

3.1 Introduction ••••••
3.2 Address Representation.
3.3 Normal and System Modes

Chapter 4. Address Spaces and tte.ory Management

4.1 Introduction
4.2 Address Spaces

4.2.1 Logical Memory Address Spaces
4.2.2 Logical I/O Address Space
4.2.3 Physical Address Spaces

1
1-1
1-1

1-1
1-1
1-2
1-3
1-3
1-3
1-3

1-4
1-4
1-4
1-5
1-6
1-6

2
2-1
2-1
2-1
2-2
2-3

2-3
2-3
2-4
2-4
2-4
2-4

2-4

3
3-1
3-1
3-2

4
4-1
4-1

4-1
4-3
4-3

iii

Table of Contents (Continued)

4.3 Memory Management •••••

4.3.1 Address Translation
4.3.2 Loading the TLB

4.3.2.1 Translation Table Descriptor Registers
4.3.2.2 Level-1 Table Entries
4.3.2.3 Level-2 Table Entries
4.3.2.4 Page Table Entries

4.3.3 Access Protection •••••
4.3.4 Address Translation Algorithm
4.3.5 Address Translation Exceptions
4.3.6 Memory Management Instructions

Chapter 5. Addressing Modes a:Id Address Calculations

5.1 Introduction ••••
5.2 Address Calculations

5.2.1 Compact Address Calculations
5.2.2 Segmented Address Calculations
5.2.3 Linear Address Calculations

5.3 Addressing Mode Descriptions •••

5.3.1 Compact Mode Descriptions and Examples

5.3.1.1 Register (R)
5.3.1.2 Immediate (1M)
5.3.1.3 Indirect Register (IR)
5.3.1.4 Direct Address (DA)
5.3.1.5 Index (X) ••••
5.3.1.6 Base Address (BA) •
5.3.1.7 Base Index (BX) ••
5.3.1.8 Relative Address (RA)
5.3.1.9 Relative Index (RX) •

5.3.2 Segmented and Linear Mode Descriptions and Examples

5.3.2.1 Register (R)
5.3.2.2 Immediate (1M)
5.3.2.3 Indirect Register (IR)
5.3.2.4 Direct Address (DA)
5.3.2.5 Index (X)
5.3.2.6 Base Address (BA)
5.3.2.7 Base Index (BX)
5.3.2.8 Relative Address (RA)
5.3.2.9 Relative Index (RX)

5.4 Extended Addressing Modes

iv

4-3 4
4-4
4-5

4-6
4-6
4-7
4-7

4-8
4-B
4-10
4-10

5
5-1
5-1

5-1
5-1
5-3

5-4

5-4

5-4
5-4
5-4
5-5
5-5
5-6
5-6
5-7
5-7

5-7

5-7
5-8
5-8
5-9
5-10
5-11
5-12
5-13
5-14

5-15

Chapter 6. Instruction Set

6.1 Introduction •••
6.2 Functional Summary

6.2.1 Load and Exchange Instructions
6.2.2 Arithmetic Instructions
6.2.3 Logical Instructions
6.2.4 Program Control Instructions
6.2.5 Bit Manipulation Instructions
6.2.6 Bit Field Instructions
6.2.7 Rotate and Shift Instructions
6.2.B Block Transfer and String Manipulation Instructions
6.2.9 Input/Output Instructions
6.2.10 CPU Control Instructions
6.2.11 Extended Instructions

6.3 Flags and Condition Codes
6.4 Notation and Binary Encoding

6.4.1 Assembler Language Syntax
6.4.2 Instruction Format
6.4.3 Extended Addressing Modes

6.4.3.1 Compact Mode
6.4.3.2 Segmented or Linear Mode

6.4.4 Unimplemented Instruction Encodings

6.5 ZBO,OOO Instruction Descriptions and Formats
6.6 EPA Instruction Templates

Chapter 7. Instruction Execution and Exceptions

7.1 Introduction •••••
7.2 Operating States •••
7.3 Instruction Execution

7.3.1 Instruction Ending •••••••
7.3.2 Effects of the Pipeline on Execution

7.4 Exceptions.

7.4.1
7.4.2
7.4.3
7.4.4

Reset
Bus Error •
Interrupts
Traps •

7.4.4.1 Extended Instruction Trap
7.4.4.2 Privileged Instruction Trap
7.4.4.3 System Call Trap ••••••

6
6-1
6-1

6-1
6-2
6-3
6-4
6-5
6-5
6-6
6-7
6-B
6-B
6-9

6-9
6-10

6-11
6-12
6-13

6-13
6-13

6-15

6-16
6-209

7
7-1
7-1
7-2

7-2
7-3

7-3

7-3
7-4
7-4
7-4

7-4
7-4
7-4

v

Table of Contents (Continued)

7.4.4.4 Address Translation Trap
7.4.4.5 Breakpoint Trap
7.4.4.6 Integer Arithmetic Error Trap
7.4.4.7 Conditional Trap ••••
7.4.4.8 Unimplemented Instruction Trap
7.4.4.9 Odd PC Trap ••••••••
7.4.4.10 Trace Trap ••••••••••

7.4.5 Changing Program Status
7.4.6 Exception Handlers
7.4.7 Priority of Exceptions

Chapter 8. External Interface

8.1 Introduction
8.2 Bus Operations
8.3 Multiprocessor Configurations
8.4 Cache •••••••••••
8.5 Pin Functions •••••••
B.6 Hardware Interface Control Register
8.7 Bus Timing
B.8 8us Transactions

B.8.1 Response
8.8.2 CPU-Memory Transactions

8.8.2.1 Single Memory Read and Write Transactions
8.8.2.2 8urst Memory Read and Write Transactions
8.8.2.3 Interlocked Memory Transactions

B.8.3 Input/Output Transactions
8.8.4 EPU Transactions

8.8.4.1 CPU-EPU Instruction Transactions
8.8.4.2 CPU-EPU Data Transactions
8.8.4.3 EPU-Memory Transactions

8.8.5 Interrupt Request and Acknowledge
8.8.6 Internal Operation and Halt Transactions
8.8.7 Bus Retry
8.B.B Bus Error

B.9 Bus Request and Acknowledge
8.10 Reset ••••••

Appendix A. ZOOOO C .. patibility

Appendix 8. MeIIory-Mapped I/O

Appendix C. Cache Control and ry TrlKlSactions

Appendix D. Progr_er' s Quick Reference Guide

vi

7-4 7 7-4
7-4
7-4
7-5
7-5
7-5
7-5
7-7
7-8

8
B-1
8-1
8-2
8-3
8-3
8-5
8-6
8-7

8-8
8-8

8-8
8-10
8-11

8-12
8-13

8-16
8-17
8-18

8-20
8-21
8-21
8-21

8-22
8-26

A-1

B-1

C-1

0-1

Appendix E. naing foraulae for Perfornlance Evaluation

Glossary

Index

List of Illustrations

figure 1-1. Memory Mapping
Figure 1-2. Functional Block Diagram

Figure 2-1. Data Formats
Figure 2-2. General-Purpose Registers
Figure 2-3. Program Status Registers
Figure 2-4. Special-Purpose Control Registers

Figure 3-1. Address Representation

Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-B.
Figure 4-9.

Address Spaces
Logical Memory Addresses in Compact Mode
Memory Address Space in Segmented Mode
Bytes, Words, and Longwords in Memory
Address Translation Using the TLB •
Logical Address Partition for Address Translation
Automatic Loading of the TLB Using Tables in Memory
Translation Table Descriptor
Translation Table Base Address

Figure 4-10. Table Entry Formats
Figure 4-11. Address Translation Trap Identifier Word

Figure 5-1. Addressing Modes
Figure 5-2. Segmented Addresses

Figure 6-1.

Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 7-4.
Figure 7-5.

Figure B-1.
Figure B-2.
Figure B-3.
Figure 8-4.
Figure B-5.

Bit Field

Operating States
Program Status Saved on System Stack
Program Status Area •
Program Status Saved on Overflow Stack
Exception Priority Flowchart

System Configuration
Multiprocessor Configurations
ZBO,OOO Pin Functions • •
Hardware Interface Control Register
Example of Memory Read Timing Showing Different
Bus Scale Factors

Figure 8-6. Single Memory Read Timing
Figure 8-7. Single Memory Read Timing (One Wait State)
Figure 8-B. Single Memory Write Timing
Figure B-9. Burst Transfer Protocol •

------~,-----

E-1

G-1

1-1

1-2
1-6

2-1
2-2
2-3
2-3

3-2

4-1
4-2
4-2
4-3
4-4
4-5
4-5
4-6
4-7
4-7
4-10

5-2
5-3

6-6

7-1
7-5
7-6
7-7
7-B

B-1
B-2
8-4
B-5

B-6
B-B
B-9
8-10
B-11

vii

Table of Contents (Continued)

Figure 8-10. Burst Memory Read Timing (One Wait State)
Figure 8-11. Burst Memory Write Timing.
Figure 8-12. I/O Read Timing • •
Figure 8-13. EPA Instruction Processing
Figure 8-14. CPU-EPU Instruction Transfer Timing
Figure 8-15. CPU-EPU Data Read Timing
Figure 8-16. CPU-EPU Data Write Timing •
Figure 8-17. EPU-Memory Single Write Timing
Figure B-18. Interrupt Response/Acknowledge Timing
Figure 8-19. Internal Operation and Halt Timing
Figure 8-20. Bus Error Identifier Word •
Figure 8-21. Local Bus Request Acknowledge Timing
Figure 8-22. Global Bus Request Timing • •
Figure 8-23. State Diagram for CPU Bus Request Protocol
Figure 8-24. Reset Timing

Figure C-1. Cache Organization

Figure E-1. Functional Block Diagram
Figure E-2. Instruction Pipeline

viii

8-12
8-13
8-14
8-15
8-16
8-17
8-18
8-19
8-20
8-21
8-21
8-22
8-23
8-24

\ . 8-27

C-1

E-1
E-2

1.1 INTRODUCTION

The zao,ooo CPU is an advanced 32-bit micro­
processor that integratea the architecture of a
mainframe computer into a single chip. A subset
of the zao,ooo architecture was originally imple­
mented in a 16-bit version, the zaooo~ micro­
processor. The zao,ooo bua structure permits the
use of zaooo family peripherals, such as the Za030
SCC and Za036 CIO. While maintaining compatibil­
ity with zaooo family software and hardware, the
zao,ooo CPU offers greater power and flexibility
in both its architecture and interface capabil­
ity. Operating systems and compilers are easily
developed in the zao,ooo CPU's sophisticated
environment, and the hardware interface provides
for connection in a wide variety of system config­
urations.

Memory management is integrated in the CPU, pro­
viding access to more than 4 billion bytes of log­
ical address space without external support com­
ponents. The zao,ooo CPU also includes a cache
memory, which complements the pipelined design to
achieve high performance with moderate memory
speeds.

This chapter presents an overview of the features
of the zao,ooo CPU that offer extraordinary
flexibility to microprocessor system designers in
tailoring the power of the CPU to their
specialized applications. The chapters that
follow describe these features in detail.

1.2 ARCHITECTURE

The CPU features a general-purpose register file
with sixteen 32-bit registers. The instruction
set offers a regular combination of nine general
addressing modes with operations on numerous data
types, including bits, bit fields, bytes (a bits),
words (16 bits) , long words (32 bits) , and
variable-length strings. The memory management,
exception handling, and system and normal mode
features support the development of reliable
software systems.

Chapter 1.
Z80,000 CPU Overview

1 .2.1 Registers

The zao,ooo CPU includes sixteen 32-bit general­
purpose registers. The registers can be used as
data accumulators, index values, or memory
pointers. Two of the registers, the Frame Pointer
and Stack Pointer, are used for procedure linkage
with the Call, Enter, Exit, and Return instruc­
tions.

The zao,ooo registers also include the 32-bit Pro­
gram Counter and 16-bit Flag and Control Word.
These two registers, together called the Program
Status, are automatically saved during trap and
interrupt processing. Nine other special-purpose
registers are used for memory management, system
configuration, and other CPU control.

1.2.2 Address Spaces

The CPU uses 32-bit logical addresses, permitting
direct access to 4G bytes of memory. The logical
addresses are translated by the memory management
mechanism to the physical addresses used to access
memory and peripherals.

The CPU supports three modes of address represen­
tation--compact, segmented, and linear--selected
by two control bits in the Flag and Control Word
register. Applications with an address space
smaller than 64K bytes can take advantage of the
dense code and efficient use of base registers
with the 16-bit compact addresses. Although pro­
grams executing in compact mode can only manipu­
late 16-bit addresses, the logical address is
extended to 32 bits by concatenating the 16 most­
significant bits of the Program Counter register.
Compact mode is equivalent to the laOOO non-seg­
mented mode.

Segmented mode supports two segment sizes--64K
bytes and 16M bytes. Up to 32,76a of the small
segments and 12a of the large segments are avail­
able. In segmented mode, address calculations do
not affect the segment number, only the offset

1-1

Z80,000 CPU Overview

wi thin the segment. Allocating individual
objects such as program modules, stacks, or large
data structures to separate segments allows appli­
cations to benefit from the logical structure of a
segmented memory space.

The 32-bit addresses in linear mode provide uni­
form and unstructured access to 4G bytes of mem­
ory. Some applications benefit from the flexibil­
ity of linear addressing by allocating objects to
arbitrary positions in the address space.

Memory management provides two valuable func­
tions--address translation and access protection.
Access protection ensures that proprietary por­
tions of memory, or those portions concerned with
operating system functions, are protected from
tampering. Address translation, the process of
mapping a program's logical addresses to the phys­
ical addresses used to access memory, streamlines
system performance, since the operating system can
relocate programs in memory, free from rigid con­
straints. By integrating memory management with
the processor in a single chip, the l80, 000 CPU
reduces parts-count and improves memory access
time.

Another memory management function, demand-paged
v irtual memory, a !lows programs to execute even
when only a portion of their memory requirements
is available in primary storage. The rest of the
program can be stored in secondary storage, typi­
cally on disk. Thus, virtual memory improves a

INVALID

INVALID

INVALID

INVALID

INVALID

LOGICAL ADDRESS SPACE

PAGE 3FFFFF"

PAGE 3FFFFE16

PAGE 3FFFFD"

PAGE 3FFFFC"

PAGE 4"

PAGE 316

PAGE 216

system's cost/performance by permitting programs
to execute with varying amounts of memory.

The CPU implements a paged translation mechanism
similar to that of most mainframe and super-mini­
computers. The operating system creates transla­
tion tables in memory, then loads pointers to the
tables in control registers. The CPU automatically
refers to the tables to perform address transla­
tion and access protection.

To manage the large logical address space, the
translation scheme divides it into fixed-size, 1K­
byte pages. Similarly, the physical address space
is divided into fixed-size frames, also 1K-bytes
each. The memory management mechanism maps a log­
ical page to an arbitrary physical frame (Figure
1-1). Since both the pages and frames are of
fixed and equal size, the operating system's mem­
ory allocation problem is simplified.

The CPU implements a Translation Lookaside Buffer
(TLB) to store the information needed to translate
the sixteen most recent! y used pages. When the
information needed to translate a page is missing
from the TLB, the CPU automatically translates the
address using the tables in memory, and then loads
the information into the TLB.

The memory management mechanism can be used to map
logical memory addresses to physical I/O
addresses. The use of memory-mapped I/O permits
protected access by application programs to
selected peripheral devices.

PHYSICAL ADDRESS SPACE

FRAME 3FFFFF'6

FRAME 3FFFFE'6

FRAME 3FFFFD'6

FRAME 3FFFFC'6

FRAME 316

FRAME 2,6

PAGE 116 FRAME 116

PAGE 016 FRAME 016

Figure 1-1. "'-try Happing

1 - 2 2324-002

1.2._ Addreaaing IbIea

The CPU locetes operands (the data manipulated by
inatructions) in regiaters, memory, peripheral
ports, or in the inatruction. The location of an
operand is specified by one of nine general
addresaing modes: Register, Immediate, Indirect
Register, Direct Address, Index, Baae Addresa,
Base Index, Relative Address, and Relative Index.
Instruction formats provide compact encodinga for
the most frequently used addressing modes.

1.2.5 Inatruction Set

The Z80,OOO CPU supports operations on nine data
types: bit, bit field, aigned integer, unaigned
integer, logical value, address, packed BCD inte­
ger, stack, and string. Integer and logical
values can be byte, word, or longword in size. In
addition, floating-point operations are imple­
mented through the Extended Processing Architec­
ture (EPA) facility by a coproceasor (ZB07D Arith­
metic Processing Unit) or by software emulation.

Several instructiona are provided for important
control structures. Conditional branches and
jumps support "if-then", "while", and "repeat"
constructions. The Decrement and Branch if Non­
Zero instruction can be used for loop control.
Call, Enter, Exit, and Return instructions perform
procedure linkage.

The regular combination of addressing modes,
operations, and data types offers a powerful
instruction set that is well-suited for compila­
tion of high-level languages such as C, Pascal,
and Ada.

1.2.6 NoftIal IDI 51st. Modes of Operation

The CPU has two modes of operation--normal and
system--used to isolate application programs from
senaitive portions of the operating system. The
mode is aelected by a bit in the Flag and Control
Word regiater.

Dnly programs in system mode are privileged to
execute I/O instructions and access control regis­
ters. The memory management mechanism allows sys­
tem mode programs to accesa regions of memory pro­
tected from normal mode access. Further protec­
tion is provided with separate stacks for system
and normal modes. Application programs use the

Z80,OOO CPU Overview

System Call instruction and trap to request ser­
vices from the operating system.

1.2.7 Exceptions

Exceptions are conditions or events that disrupt
the usual sequence of instructions. The Z80,OOO
CPU supports four types of exceptions: reset, bus
error, interrupts, and traps. A reset exception
initializes the CPU state in response to an exter­
nal request, typically part of a power-on
sequence. A bus error exception occurs when
external hardware indicates an irrecoverable
error, such as an uncorrectable memory error, on a
bus transaction. An interrupt is an asynchronous
event signalled externally, typically when a
peripheral device needs attention. A trap is a
condition detected by the CPU synChronously with
execution of an instruction.

When an exception occurs, the CPU saves the Pro­
gram Status registers of the executing process on
the system stack. Then new values for the Program
Status registers are read from a table in memory
(Program Status Area), thus passing control to an
exception handler.

The CPU provides a flexible interrupt structure
that includes three types of interrupts: nonmask­
able, vectored, and nonvectored. The nonmaskable
interrupt, which is of highest priority, is typi­
cally reserved for the most critical requirements,
such as sudden power failure. Both vectored and
nonvectored interrupts can be separately masked by
bits in the flag and Control Word register. Vec­
tored interrupts allow the CPU to branch to a
specific exception handler selected by a code read
from the peripheral. Nonvectored interrupts use a
common exception handler.

The CPU recognizes several trap conditions, all of
which can be used to improve software reliabil­
ity. The System Call trap provides controlled
access for application programs to operating sys­
tem functions. Traps for integer overflow, sub­
range out of bounds, and subscript out of bounds
catch common run-time errors. The Address Trans­
lation trap allows the operating system to imple­
ment access protection and virtual memory. Traps
for breakpoint and single instruction tracing are
used during software development. The Conditional
Trap instruction ia used for software definition
of exception conditions not recognized by the CPU
hardware.

1-3

180,000 CPU Overview

1.' EXTENDED PROCESSING ARCHITECTURE

The Extended Processing Architecture (EPA) fscil­
ity allows the operations defined in the 180,000
CPU architecture to be extended by software or
hsrdware. for example, floating-point operations
are supported by the 18070 Aritlvnetic Processing
Unit (APU) or by a software package that emulates
the APU.

When the CPU encounters an EPA instruction, it
checks a control bit in the flag and Control Word
regiater to determine whether the EPA facility is
enabled. If disabled, the CPU traps for software
emulation of the instruction. If enabled, the CPU
sends the instruction across the axternal inter­
face to an Extended Processing Unit (EPU). The
CPU then transfers the operands for the instruc­
tion to the EPU.

The data processing operations per formed by the
EPU are transparent to the CPU. In general, ths
EPU sxscutes complex opsrstions such as floating­
point aritlvnetic, decimal sritlvnetic, or signal
processing with special-purpose hardware.

1 •• CACHE

The 180,000 CPU contains an on-chip cache buffer
to store copies of memory locations that were
recently referred to. Most memory references are
either to a location that was referred to recently
(temporal locality) or to a nearby location
(spatial locality). Therefore, on most memory
fetches the CPU is able to find the required data
in the cache (a hit), thus avoiding a slower
access to external memory. Whsn the required data
is missing from the csche (a miss), the CPU
fetches the dsta from sxternal memory snd losds a
copy into the cache. The fetched data replaces
the least recently used dats in the cache.

The cache provides significant cost/performance
advantages by allowing the CPU to execute instruc-

1-4

tions at a faster rste than permitted by external
memory alone. The cache can be separately enabled
to store both instructions and data. The effec­
tiveness of the cache is enhanced by storing data
along with instructions, but an spplication can
cache instructions only. Cache replacement on a
misa can also be inhibited. This option can be
used to lock desired locations into the cache for
fast, on-chip access.

1.5 EXTERNAL INTERFACE

The 180,000 CPU offers a number of features for
interfacing to systems that span a wide range of
cost/performance requirements. The Hardware
Interface Control Register (HICR) specifies cer­
tain characteristics of the hardware configuration
surrounding tha CPU, including bua speed, memory
data path width, and number of automatic wait
states.

The system designer can fine-tune performance by
selecting not only the CPU clock rate and bus
speed (1/2 or 114 the CPU clock), but also the
acceaa time and date path width for the memory.
for two independent regions of memory the CPU can
be programmed for both the number of wait states
automatically inserted, and whether the data path
is 16 or 32 bits wide. With these options, a sys­
tem can essily sccommodate s slow, 16-bit-wide
bootstrap read-only memory (ROM) in one region and
fast, 32-bit-wide rendom access memory (RAM) in
the other. furthermore, the CPU supports an
optional burst transfer of several memory words
from consecutive locations. 8urst transfers can
increase memory bandwidth for interleaved and
"nibble-mode" memory systems.

The CPU provides support for four types of multi­
processor configurational coprocessor, slave
processor, tightly-coupled multiple CPUs, and
loosely-coupled multiple CPUs. Coprocessors, such
as the 18070 Arithmetic Processing Unit, work syn­
Chronously with the CPU to execute a single
instruction stream using the Extended Processing

Architecture facility. Slave processors, such as
the Z8016 DMA Transfer Controller, perform dedi­
cated functions asynchronously to the CPU. Tight­
ly-coupled multiple CPUs execute independent
instruction streams and generally communicate
through shared memory on a common bus. Two sep­
arate bus request protocols support slave process­
ing and tightly-coupled multiprocessors. Loosely­
coupled multiple CPUs generally communicate
through a multi-ported peripheral, auch as the
Z8038 fIfO I/O Interface Unit, using the interrupt
and I/O facilities of the Z80,000 CPU.

1.6 CPU INTERNAL ORGANIZATIIIt

figure 1-2 shows a block diagram of the Z80,000
CPU internal organization, including the following
major functional units and data paths:

• The external interface logic controls
transactions on the bus. Addresses and data
from the internal memory bus are transmitted
through the interface to the Z-BUS. The Z-BUS
is a time-multiplexed, address/data bus that
connects the components of a microprocessor
system.

• The cache stores copies of inetruction and data
memory locstione. Instructions are read from
the cache on the instruction bus. Data is read
from or written to the cache on the memory
bus.

• The Translation Lookaside Buffer (TLB) trans­
lates logical addresses calculated by the
address arithmetic unit to physical addresses
used to access the cache.

• The eddress arithmetic unit performs all
address calculations. This unit has a path to
the register file for reading base and index

Z80,000 CPU Overview

registers and another path to the instruction
bus for reading displacementa and direct
addresses. The result of the address calcula­
tion is transmitted to the TLB.

• The register file contains the sixtean general­
purposa longword registers, Program Status
registers, special-purpose control registers,
and several registers used to store values tem­
porarily during instruction execution. The
regiater file has one path to the address
arithmetic unit and two paths to the execution
arithmetic and logic unit.

• The execution arithmetic and logical unit cal­
culates the results of instruction execution,
such as add, eXClusive-or, and simple load.
This unit has two paths to the register file on
which two operands csn be read simultaneously
or ona can be written. One of the paths to the
register file is multiplexed with a path from
the memory bus.

• The instruction decode and control unit decodes
inatructions and controls the operation of the
other functional units. This unit has a path
from the instruction bus and two programmable
logic arrays for separate microcoded control of
the two arithmetic units. This unit also
controls the exception handling and loading of
the TLB.

All of the functional units and data paths listed
abova are 32 bits wide.

The operation of the CPU is highly pipe lined ao
that several instructions are simultaneously in
different stages of execution. Thus, the func­
tional units effectively operate in parallel with
one instruction being fetched while an address is
calculated for another instruction and results are
stored for a third instruction.

1-5

Z80,000 CPU Overview

r------

CACHE DATA

INSTRUCTION REGISTER

INSTRUCTION
DECODE

AND
CONTROL

UNIT

Z·BUS

-------,

MEMORY BUS

CACHE
ADDRESS TAGS

PHYSICAL PC

TRANSLATION
LOOKASIDE

BUFFER

REGISTER
FILE

EXECUTION ARITHMETIC
AND LOGIC UNIT

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I I L ________________ ~

Figure 1-2. Functional Block Diagr_

1.7 Z8000 COMPATIBILITY

The 180,000 CPU's instruction set encoding allows
it to directly execute Z8000 family software such
as compilers and the 1RTS~ real-time operating
system. Z8000 programs must not use the 18000
privileged instructions, address, and control
field encodings if they are to execute correctly
on the Z80,000 CPU, since the Z80,000 CPU uses
many of these reserved encodings to extend the
register file, address range, and instruction
functionali t y.

1-6

1.B SlMlARY

The Z80,000 CPU meets and surpasses the require­
ments of medium and high-end microprocessor sys­
tems. Software program development is easily
accomplished with the CPU's sophisticated archi­
tecture. The highly-pipelined design, on-chip
cache, and external interface support systems
ranging from dedicated controllers to mainframe
computers.

8225-001

2.1 INTRODUCTION

The zao,ooo CPU manipulates data located in regis­
ters, memory, and peripherals. The zao,ooo regis­
ter repertoire consists of the general-purpose
register file, the Program Counter, the Flag and
Control Word, and nine special-purpose control
registers. This chapter describes the format for
data and the use of registers. Chapter 4
describes the use of memory and peripharals.

7&543210

IIIIIIIIIBITSINABYTE

15 14 13 12 11 10 9 & 7 6 5 4 3 2 1 0

Chapter 2.
Data Formals and Registen

2.2 DATA FORMATS

The CPU manipulates bits, bytes (a bits), words
(16 bits), longwords (32 bits), and quadwords
(64 bits) of data. Within a byte, word, longword,
or quadword, the bits are numbered from right to
left, from least to most significant (Figure
2-1). This is consistent with the convention that
bit n corresponds to position 2n in the represen­
tation of binary numbers. (However, the bit num­
bering for bit field data, described in Section
6.2.6, is in the opposite direction from
Figure 2-1.)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 BITS IN A WORD

313029 210

11......1.1....1_1 ...I.� _____ --I~F_: _____ --'-1 1 1 1 BITS IN A LONGWORD

636261 210

IL....I.I....I-I...I.I---------I~'F_:--------...I.I....I-I ...1.1 1 BITS IN A QUADWORD

Figure 2-1.

2.3 GENERAL-ruRPOSE: REGISTER FILE

The general-purpose register file contains 64
bytes of storage (Figure 2-2). The first 16 bytes
(byte registers RLO, RHO, ••• , RL 7, RH7) can be used
as accumulstors for byte data. The first 16 words
(word registers RO,R1, ••• ,R15) csn be used as
sccumulators for word data, as index registers
(except RO), or for memory addresses in compact
mode (except RO) • Any long word register
(RRO,RR2, ••• ,RR30) can be used as an accumulator
for longword data and, in segmented or linear
mOde, as an inde)(register (e)(cept RRO) or for
memory addresses (e)(cept RRO). Quadword registers
(RQO,RQ4, ••• , RQ28) can be used as accumulators

8225-002

Data Fomata

for Multiply, Divide, and ElCtend Sign
instructions. Within quadword register RQn, RRn
contains the more significant longword. A 4-bit
field in instructions specifies which general­
purpose register to access. The register size is
determined by the instruction opcode.

The unique organization of the register file
allows bytes and words of data to be manipUlated
conveniently while leaving most of the registers
free to hold addresses, counters, or other
values. For example, four bytes in RHO, RLO, RH1,
and RL 1 can be packed into the single longword
register RRD and manipulated independently with
the e)(tensive byte-oriented instructions.

2-1

Data Formats and Registers

Two registers are dedicated for the Stack Pointer
and Frame Pointer used by Call, Enter, Exit, and
Return instructions. The Stack Pointer is also
used in processing exceptions and by the Interrupt
Return instruction. There are separate Stack
Pointers for system and normal modes of operation.

The registers used for the Stack Pointer and Frame
Pointer depend on the address representation
mode. In compact mode, R15 is the Stack Pointer
and R14 is the Frame Pointer. In segmented or
linear mode, RR14 is the Stack Pointer and RR12 is
the Frame Pointer. See Section 3.3 for more
details on modes of operation.

I RRO
ROO

RR2

I RR4
R04\ RR6

I RRB
ROB

RR10

I RR12
R012

RR14

R01S I RR16

\ RR1B

R020 I RR20
\ RR22

I RR24
R024

RR26

I RR2B
R02B

RR30

1 RHO

1 RH2

1 RH4

1 RH6

15

15

15

15

31

31

31

31

31

31

31

31

o 1 RLO

o 1 RL2

o 1 RL4

o 1 RL6

RB

Rl0

R12

R14

o 1

o 1

o 1

o 1

o 15

o 15

o 15

o 15

RHl o 1 RL 1 0

RH3 o 1 RL3 0

RH5 o 1 RL5 0

RH1 0 1 RL1 0

R9 0

Rll 0

R13 0

R15 0

0

0

0

0

0

0

0

0

RO, Rl

R2, R3

R4, R5

RB, R1

Figure 2-2. General-Purpose Registers

2._ PROGRAM STATUS REGISTERS

The Program Status registers are the Program
Counter (PC) and the Flag and Control Word (FCW)
(Figure 2-3). The PC contains the 32-bit address
of the instruction being executed. The 16-bit FCW
indicates operating modes, masks for traps and
interrupts, and flags set according to the result
of instructions.

The low-order byte of the FCW contains six flags,
described below, and the integer overflow mask.
Many instructions modify or use the flags.

Carry (C) indicates a carry out of the high-order
bit position during an operation.

Zero (Z) indicates that the result of an operation
is zero.

Sign (S) indicates whether the result of an
operation is negative or positive.

Parity/Overflow (PlY) indicates that the result of
a logical operation has even parity or that
overflow has occurred for arithmetic operations.

2-2

Dec:iJllal-Adjust (D) is used in BCD arithmetic to
indicate whether an addition or subtraction was
last executed.

Half Carry (H) is used in BCD ar i thmetic to con­
vert the result of a previous binary addition or
subtraction to a decimal result.

The C, l, S, and PlY flags can be manipulated
using the Complement Flag and Set Flag instruc­
tions. Section 6.3 provides more information
about the flags.

The Integer Overflow Enable (IV) bit is the mask
for an Integer Over flow trap. While this bit is
1, the Integer Overflow trap is enabled; while 0,
the integer overflow trap is disabled (see Section
7.4.4.6).

The low-order byte of the FCW can be accessed in
normal mode using the load Control Byte
instruction.

The high-order byte of the FCW contains eight con­
trol bits:

Extended/Cllllp8Ct Mode (Etc) and linear/5egalented
Mode {lIS} controls the mode of address represen­
tation. While E!C is 0, addresses are compact (16
bits). While E/e is 1, addresses are extended (32
bits) and are either segmented (LiS is 0) or
linear (lis is 1).

Syste.tNonial Mode (SIN) controls the operating
mode. While this bit is 1, the CPU is operating
in system mode; while 0, the CPU is operating in
normal mode.

Extended Processor Architecture Mode (EPA) con­
trols the Extended Processing Architecture facil­
ity. While this bit is 1, the CPU processes
extended processing instructions as if the system
contains Extended Processing Units, which serve as
co-processors to assist the CPU in executing
extended processor instructions. While this bit
is 0, the CPU traps extended processor instruc­
tions.

Vectored Interrupt Enable (VIE) and Nonvectored
Interrupt Enable (NVIE) determine when the CPU
recognizes vectored and nonvectored interrupts.
Vectored interrupts are enabled when VIE is 1;
nonvectored interrupts are enabled when NVIE is
1. These bits can be manipulated using the Enable
Interrupt and Disable Interrupt instructions.

Trace Pending (TP) and Trace Enable (T) are used
for instruction tracing. While T is 1, instruc­
tion tracing is enabled; while 0, instruction

2071·001

Data Formata and Reqisters

tracing is diaabled. TP is used with T to ensure
that exactly one trace trap occurs after each
instruction executed when tracing is enabled (see
Section 7.4.4.10).

can also be loaded using the Interrupt Return and
Load Program Status instructions. The FCW can be
accessed using the Load Control instruction.

2.5 SPECIIIL-PURPOSE CONTROl REGISTERS
During exception processing, the Program Status
registers are saved on the system stack and new
values for the registers are loaded from the Pro­
gram Status Area. The Program Status registers

The CPU includes nine special-purpose longword
registers (Figure 2-4). These are accessed using
the Load Control Long instruction.

31

15 8 7 0

IElCIs/NIEPAIVIE~VI~ usl TPI Tic I z I s IPNI D I H IIV 10 I

-
'---

I~
TRACE (T)

TRACE PENDING (TP)

LlNEARISEGMENTED MODE (US)

NONVECTORED INTERRUPT ENAB

INTEGER OVERFLOW ENABLE (IV)

HALF CARRY (H)

DECIMAL-ADJUST (D)

PARITY/OVERFLOW (PlY)

SIGN(S)

ZERO(Z)

CARRY(C)

LE (NVIE)

IE) VECTORED INTERRUPT ENABLE (V

EXTENDED PROCESSOR ARCHITE CTURE (EPA)

SYSTEM/NORMAL MODE (s/N)

EXTENDED/COMPACT MODE (ElC)

FLAG AND CONTROL WORD (FCW)

PROGRAM COUNTER (PC)

Figure 2-3. Progr_ Status Registers

HARDWARE INTERFACE CONTROL RIIGISTER (HICR)

Figure 2-4. Special-Purpoae Cootrol Registers

2.5.1 Progr_ Status Area Pointer (PSAP) 2.5.2 Nor.al Stack Pointer (NSP)

The Program Stet us Area Pointer contains the phys­
ical, base address of the Program Status Area.
The Program Status Area contains the Program
Status information (PC and FCW) fetched during
exception processing. Refer to Chapter 7 for more
information about the Program Status Area. The
longword PSAP can be accessed using the Load Con­
trol Long instruction; both the low-order word and
high-order word of the PSAP can be accessed using
the Load Control instruction.

The Normal Stack Pointer contains the· Stack
Pointer used in normal mode. System mode programs
csn access normal mode register RR14 using the
Load Control Long instruction and normal mode reg­
isters R14 and R15 using the Load Control instruc­
tion.

207Hl02,003
2-~

Data Formats and R~qisters

2.5.' Tr.-Jalation Tabla Descriptor Registera

The translation table descriptor ragistera--System
Inatruction Translation Table Deacriptor (SITTD),
System Data Translation Table Descriptor (SDTTD),
Normal Inatruction Translation Table Descriptor
(NITTD), and Normal Data Translation Table
Descriptor (NDTTD)--contain the physical addresses
of the translation tables used by the memory man­
agement mechanism. These registers also contain
other fields that control the memory management
mechanism (see Section 4.3.2.1).

2.5." Overflow Stack Pointer (OSP)

The Overflow Stack Pointer (OSP) contains the
physical address of the Stack Overflow Area. The
Stack Overflow Area is used when an address trans­
lation error occurs during exception processing
(see Section 7.4.5).

2.5.5 Hardware Interface Control Register (HICH)

The Hardware Interface Control register contains
fielda controlling the external interface of the
CPU, including bus speed, data path width, and
automatic wait states. (See Section 8.6).

2.5.6 Syat .. Configuration Control longNDrd
(SCCl)

Ths System Configuration Control Longword contains
control bits for the addresa translation mecha­
nism, cache mechanism, and exception processing.
These bits are as follows:

Syeta. Addreaa Tr_lation (SX) .-Jd Nol'll8l. lIddreaa
Tr_lation (NX) control the address trsnslstion
mechanism for system space snd normsl space refer­
ences. While either of these bits is 1, the

2-4

translation mechanism is enabled for references in
the corresponding apace; while either bit is 0,
the translatIon mechanism is disabled for refer­
ences in the corresponding spsce.

Cache Replac_t (CH) controls the cache replace­
ment algorithm. While this bit is 1, the cache
replacement algorithm is enabled; while 0, the
cache replacement algorithm is disabled. Most
applications leave the replacement algorithm
enabled. Some applications, however, selectively
enable and disable the replacement algorithm to
lock specific locations into the cache. Refer to
Appendix C for more information.

Cache Instruction (CI) .-Jd ClIChe Data (m) control
the cachs mechanism for instruction and data
references. While either of these bits is 1, the
cache mechanism is enabled for the corresponding
references; while either bit is 0, the cache mech­
anism is disabled for the corresponding refer­
ences. Refer to Appendix C for more information.

Exception linear/5egEnted IIIOde (Xl/S) controls
whether linear or segmented mode of address repre­
sentation is used during exception processing.
While this bit is 1, linear mode is used; while 0,
segmented mode is used (see Section 7.4.5.)

2.6 RESE:RVm CllfJID. BITS

Some of the bits in the FeW and control register
formats shown in Figures 2-3 and 2-4 are marked
"0". These bits are reserved for future defini­
tion. When the control register is read, these
bits return O. When ths control register is
written, these bits must be O. Although the CPU
does not check thst the reserved bits written to
the control register are 0, functions may be
defined for these bits in the future.

3.1 INTRODUCTION

The CPU has three modes of address represent a­
tion--compact, segmented and linear--and two modes
of operation--normal and system.

3.2 IIOORESS REPRESENTATION

As shown in Figure 3-1, the CPU has three modes of
address representation: compact, segmented, and
linear. The mode is selected by two control bits
in the Flag and Control Word register (see Table
3-1). The Extended/Compact (E!C) bit selects
whether compact addresses (16 bits) or extended
addresses (32 bits) are used. For extended
addresses, the Linear/Segmented (L/S) bit selects
whether linear or segmented addresses are used.
These modes affect only the representation for
logical memory addresses, not logical I/O
addresses.

The Load Address instruction can be used to mani­
pulate addresses in any mode of representation.
The address calculation performed by this instruc­
tion is the same as the addressing used to access
an operand.

In compact mode, addresses are 16 bits. Address
calculations using compact addresses involve all
16 bits. Compact mode is more efficient and con­
sumes less program space for applications requir­
ing less than 64K bytes of program and less than
64K bytes of data. This efficiency is due to
shorter instructions in compact mode, and the fact
that addresses in the register file use word
rather than longword registers. Applications
requiring more than 64K bytes of either program or
data should use segmented or linear mode.

Table 3-1. Addr8118 Rep~atioo

Control Bits in FCW
Elf lIS

o
o

o
1
o

Compact
Reserved
Segmented
Linear

Chapter 3.
Address Bepresentation and
Modes of Operation

Segmented mode supports two segment sizes--64K
bytes and 16M bytes. The most-significant bit of
the 32-bit address selects either a 15-bit segment
number with a 16-bit segment offset (MSB = 0) or a
7-bit segment number with 24-bit segment offsat
(MSB = 1). Thus, the address space includes
32,768 of the smaller segments and 128 of the
larger segments. In segmented mode, address cal­
culations involve only the segment offset; the
segment number is unaffected.

Many applications benefit from the logical struc­
ture of segmentation by allocating individual
objects,'such as program modules, stacks, or large
data structures, to separate segments.

In linear mode, addresses are 32 bits. Address
calculations using linear addresses involve all 32
bits. In linear mode, the address space of 4G
bytes is uniform and unstructured. Some applica­
tions benefit from the flexibility of linear
addressing by allocating objects to arbitrary
positions in the address space.

In compact mode, addresses stored in the register
file use word registers; in segmented or linear
mode, addresses use longword registers. When an
address is specified in a register for Indirect,
Base Address, and Base Index addressing modes, or
for the destination of a Load Address instruction,
the address register specified by the instruction
is a word register in compact mode and a long word
register in segmented or linear mode. Similarly,
references to the Program Counter in compact mode
use only the low-order word of the PC, while in
segmented or linear mode, the entire long word PC
is used. In compact mode, tha Stack Pointer is
R15 and the Frame Pointer is R14. In segmented or
linear mode the Stack Pointer is RR14 and the
Frame Pointer is RR12.

Some addressing modes generally available in seg­
mented or linear mode are restricted in compact
mode. Refer to Chapter 5 for more information
about the effect of the address representation
mode on addressing modes and address calculation.

In compact mode, addresses encoded in instructions
occupy one word; in segmented or linear mode,
addresses in instructions occupy one or two

3-1

Address Representation and Modes of Operation

15

(A) COMPACT ADDRESSES

16 15

SEGMENT OFFSET ,
(I) 84K BYTE SEGMENT SIZE

31 30

SEGMENT ,
24 23

OFFSET

(II) IBM BYTE SEGMENT SIZE

(B) SEGMENTED ADDRESSES

31

(C) LINEAR ADDRESSES

rigure 3-1. Address Representatioos

words. Refer to Chapter 6 for more information
about the effect of the segmentation mode on
instruction representation and execution.

3.3 NORIW. AN) SYSTEM MmES

The CPU has two modes of operation, normal and
system, selected by the SIN bit in the Flag and
Control Word register. System mode (S/N = 1) is
more privileged than normal mode (S/N = 0). These
modes affect CPU operation in three areas: privi­
leged instructions, Stack Pointers, and memory
management.

All inatructions can be executed in system mode.
Some inetructions, such as those performing I/O

operations or accessing control registers, can
only be executed in system mode, and are called
privileged instructions. When a program operating
in normal mode attempts to execute a privileged
instruction, an exception occurs. The privileged
instructions are identified in the instruction set
description in Chapter 6.

The Stack Pointer registers are distinct for nor­
mal and system modes. In normal mode, a reference
to the Stack Pointer register accesses the Normal
Stack Pointer. In system moda, a reference to the
Stack Pointer register references the System Stack
Pointer. In compact system mode, referencea to
R14 use normal mode R14. Table 3-2 shows the reg­
isters sccessed in the different modes.

Table 3-2. Registers Referenced by Access to R14 and R15

Register Systllll Mode NorllSl Mode
Referenced by

Instructioo Segmented Compact Segmented Compsct
or Linear or Linear

R14 System R14 Normal R14 Normal R14 Normal R14
R15 System R15 System R15 Normal R15 Normal R15
RR14 System R14 Normal R14 Normal R14 Normal R14

System R15 System R15 Normal R15 Normal R15

3-2 2071-004

In normal mode, the System Stack Pointer is not
accessible. In system mode, the Normal Stack
Pointer is accessed using the Load Control or Load
Control Long instruction.

Memory address spaces are distinct for normal and
system modes. Different translation tables are
used for translating normal and system mode
addresses, although the tables can optionally be
merged. The access protection performed by the
memory management mechanism allows access by sys­
tem programs to memory locations that are prohib­
ited from access by normal mode programs.

The CPU can change its operating mode whenever the
feW is loaded by a Load Control instruction, Load

Address Representation and ~Modes of Operation

Program Status instruction, Interrupt Return
instruction, or during exception processing. The
distinction between normal and system modes allows
the construction of a protected operating system.
The operating system kernel runs in system mode to
manage the computer system resources--CPU, memory,
and peripherals. Application programs run in nor­
mal mode, where they are prohibited from interfer­
ing with other application programs or the operat­
ing system. When application programs require a
service that only the operating system can per­
form, the System Call instruction is executed.
System Call causes a trap to the operating system,
passing an identifier for the particular service
requested.

3-3

4.1 INTRODUCTION

The CPU refers to memory and peripherals to fetch
instructions, fetch and store operands, process
exceptions, and perform memory management. The
CPU uses addresses to specify the location for
memory and peripheral references. Logical
addresses, which are the addresses manipulated by
programs, are distinguished from physical
addresses, which are the addresses the CPU pre­
sents to memory and peripherals. This chapter
describes the types of logical addresses and the
procedure for mapping logical to physical
addresses. Chapter B describes the way the CPU
refers to memory and peripherals using physical
addresses.

4.2 ADDR£SS SPACES

The CPU supports several distinct spaces for logi­
cal and physical addresses (Figure 4-1). Logical

MEMORY

SYSTEM
INSTRUCTION

SYSTEM
DATA

NORMAL
INSTRUCTION

NORMAL
DATA

1/0

Chapter 4.
Address Spaces and Memory
Management

addresses are in one of four memory address spaces
or in I/O address space. Physical addresses are
in memory or I/O address space.

4.2.1 logical Memory Address Spaces

Logical memory addresses are in system instruction
space, system data space, normal instruction
space, or normal data space. When the CPU is in
system mode, one of the two system address spaces
is used for a memory reference. In normal mode,
one of the two normal address spaces is used.
Instruction address space is used for instruction
fetches, immediate mode operand fetches, and
fetches or stores of operands specified using
Relative Address or Relative Index addressing
modes. Data address space is used for references
to fetch or store operands in memory, other than
those specified using Immediate, Relative, or
Relative Index addressing modes. Refer to Chapter
5 for a description of addressing modes.

LOGICAL ADDRESS SPACE TRANSLATION. PHYSICAL ADDRESS SPACE

r igure 4-1. Address Spaces

8225-003 4-1

Address Spaces and Memory Management

Logical addresses in the memory spaces are 32
bits. Each address specifies the location of a
byte in memory. In compact mode, only the low­
order 16 bits of the logical address can be
directly manipulated; the high-order 16 bits of
the logical address are the high-order 16 bits of
the PC (Figure 4-2). In segmented mode, the lower
hal f of each address space contains 32,768 small
segments of maximum size 64K bytes, and the upper
half contains 128 large segments of maximum size
16M bytes (Figure 4-3). Each segment can be
viewed as a contiguous string of bytes at consecu­
tive offsets. In linear mode, the entire address
space is a contiguous str ing of bytes at consecu­
tive addresses.

PROGRAM COUNTER
31 16 15

I

~
I

Words and long words in memory are addressed using
the lowest address of any byte in the word or
longword. This is the left-most, highest-order,
most-significant byte of the word or longword
(Figure 4-4).

Word and long word operands located in memory can
be at even or odd addresses. Performance is
improved when word operands are located at even
addresses and longword operands are located at
addresses that are a multiple of four. Instruc­
tion words must be located at even addresses.
When an attempt is made to execute an instruction
at an odd address, an odd PC trap occurs.

COMPACT ADDRESS
15

I

16 15 /
I

LOGICAL ADDRESS

figure 11-2.
logical MeIIory Addresses in C .. pact Mode

SMALL SEGMENT 0 I 64K BYTES

31 30 16 15

10 I
SMALL SEGMENT 1 64K BYTES

SEGMENT OFFSET

SMALL SEGMENT
64K BYTES

32767

LARGE SEGMENT 0 I 16M BYTES

31 30 2423

111
LARGE SEGMENT 1 16M BYTES

SEGMENT OFFSET

LARGE SEGMENT 16M BYTES
127

figure 11-3.
Me.»ry Address Space in 5eg11ented Mode

4-2 8225-004,005

Address Spaces and Memory Management

7 a

L.I....I.....L..~~ I BYTE . "!, I •

ADDR."n

15

I WORD
I I I I I I I I I I I I

ADDRElln ADDRElln+1

31 0

I I LONGWORD
I

ADDR."n ADDRU'n+1 ADDRU'n+1 ADDR."n+a

figure ___ •

Bytes, Worde, .-xl LlJI1!IImrda in tte.ory

_.2.2 Logical I/O Addrees Space

Al though logical I/O addresses are 32 bits, only
the 16 low-order bits of a logical I/O address can
be manipulated; the CPU always forces the 16 high­
order bits to O.

Unlike logical memory address spaces, logical I/O
address space is not viewed as a string of bytes
at consecutive addresses. Rather, the address is
simply used to locate a byte, word, or longword
peripheral port. The byte port located at address
n does not have to be contiguous with the byte
port located at address n+1, nor must it be the
more significant byte of the word port located at
address n. Logical I/O addresses can be either
even or odd.

Physical addresses are in physical memory space or
physical I/O space. The two physical address
spaces are distinguished by different status and
timing on the external interface (see Chapter 8).
Also, copies of physical memory locations can be
stored in the cache, but copies of physical I/o
locations cannot. Physical addresses in both
spaces are 32 bits. (Note that the external
interface provides information distinguishing
between memory references for instructions and
data, and between system and normal modes. This
information should not be used, however, to sep­
arate physical memory addresses into different
spaces when the cache mechanism is enabled,
because the cache does not distinguish separate
physical memory address spaces.)

The CPU maps logic a 1 addresses to physical
addresses. Addresses in logical I/O space map to
identical addresses in physical I/O space.
Addresses in logical memory spaces map to
addresses in physical memory space or physical I/O

8225-006

space. The process of translating logical memory
addresses is described in the following section.

The CPU featurea a memory management mechanism
that translates logical memory addresses to physi­
cal addresses and protecta for execute, read, and
write accesses. The memory msnagement mechanism
serves four functions: relocation, protection,
sharing, and virtual memory.

Relocation maps a logical address to a potentially
different physicsl address. This allows multiple
processes to use the sarne logical addresses for
distinct physical memory locations. Paged address
translation divides the logical address spaces
into fixed-size units, called pages, and the phys­
ical address spaces into fixed-size units, called
frames. A logical page can be mapped to an arbi­
trary phyaical frame. Because the pages and
frames are of fixed and equal size, memory alloca­
tion is simplified.

Protection limits the type of access a process can
make to a logical address. A segment or individ­
ual page can be protected against instruction
fetches, operand fetches, or operand stores in
either normal or system mode. The protection fea­
turea of the CPU provide security for aensitive
data or programs, auch aa proprietary code
modules, that should not be copied or modified.
The CPU also allows protected access by applica­
tion programs to selected peripherals (memory­
mapped I/O).

Sharing of phyaical memory by multiple processes
is supported by relocation and protection. Logi­
cal addresses for several processes can map to the
same physical address. The access protection
attributes for each process may differ.

4-3

Address Spaces and Memory ManaQement

Virtual _Dry means that the range of logical
addresses used by a process can be larger than the
allocated physical memory. When a reference is
made to a logical address that is not mapped to a
physical address, an exception occurs. 'After the
missing page is transferred from secondary storage
to main memory, the process can simply be
restarted. The CPU provides information about
pages that have been referred to or modified,
thus helping the operating system allocate memory
efficiently.

•• 3.1 Address Translation

The page size used by the CPU .is 1K bytes. The
translation process involves mapping a logical
page, which is specified by the 22 most-signifi­
cant bits of the logical address, to a physical
frame, which is specified by the 22 most-signifi­
cant bits of the physical address. The 10 least­
significant address bits, which specify the byte
within a page or frame, are identical for the log­
ical and physical address. A logical page can
generally map to an arbitrary physical frame,
except for a restriction that applies only when
physical memory modules with different data path
widths are used and operands can be located across
consecutive logical pages. Refer to section 8.6
for more information.

The CPU contains a Translation Lookaside Buffer

31

LOGICAL ADDRESS
I

PAGE ADDRESS

ATION TRANSL
LOOKA
BUFFER

SIDE

""" >-
LOGICAL PAGE
ADDRESS TAGS

31

PHYSICA LADDRESS I

The memory management mechanism is selectively
controlled for references in system or normal
spaces by two bits in the System Configuration
Control Longword register (SX and NX). When the
memory management mechanism is disabled, the phys­
ical address used for the reference, which is in
physical memory space, is identical to the logical
address and all accesses are permitted. The fol­
lowing sections describe address translation and
access protection when the memory management mech­
anism is enabled.

(TLB) that stores the translation information for
the 16 most recently used pages in a fully
associative memory. For each memory reference,
the logical page address is compared wi th the
address tags in the TLB (Figure 4-5). If a match­
ing address tag is found, the corresponding frame
address is read from the TLB and used to complete
the translation. When information needed to
translate the page is missing from the TLB, the
CPU automatically refers to tables in memory to
perform the translation. The CPU then loads the
missing translation information into the TLB,
replacing the TLB entry of the least recently
referenced page.

Thus, the TLB acts as a buffer for the most
recently used page descriptors. This buffer is
automatically maintained by on-chip hardware.*

10 9

\ PAGE OFFSET I

\

PHYSICAL
FRAME

ADDRESSES

~,l. 10 9 ... 7' 0

FRAME ADDRESS \FRAMEOFFSETI

figure "'5. Address Translatim Using the TLB

The address tags in the TLB are extended from 22
to 24 bits. The extra bits identify the memory
address space for the page. Thus, references to
pages with the same page number but in different
address spaces are translated differently. The
frame addresses in the TLBs are also augmented
with the access protection code and the
Non-Cacheable and Modification bits from the page
table entry.

4-4

*The number of entries, degree of associativity,
and replacement algorithm described for the TLB
design in this section are speci fic to the first
implementation of the Z8D,DDD CPU architecture and
may differ in future products implementing the
same architecture. Differences in the character­
istics can impact systems performance, but have no
effect on the function of software or the external
interface.

2071-005

4.'.2 Loading the 11.B

To load the TlB with the information needed to
translate a page address, the CPU automatically
fetches entries from up to three levels of tables
in physical memory. Figure 4-6 shows the
partition of a logical address into an B-bit

31 24 23 16 15

Address Spaces and Memory Management

level-1 field (l1), sn B-bit level-2 field (l2), a
6-bit page number field (P), and a 1O-bit page
offset field (P-OFFSET). When loading the TlB,
the l1, l2, and P fields are used as indexes into
the different translation table levels. (Figure
4-7).

10 8

, I , L2 P·OFFSET
, ! , I , Ll I , , I ,

Figure 4-6.
Logical Address Partition for Address Tr_Iation

-$- -e--
TABLE DESCRIPTOR

REGISTERS

I
LOGICAL A

LEVEL 1
TABLE

31 I
DDRESS l L1

LEVEL 2
TABLE

24 23 16 151109

I LO pip-OFFSET

l
TRANSLATION LOGICAL PAGE
LOOKASIDE ADDRESS TAGS
BUPPER

PAGE TABLE

0 31

I I FRAME ADDRESS

PHYSICAL
FRAME

ADDRESSES

109 0

I ATTRIBUTES I PAGE TABLE
ENTRY

Figure 4-7. Auta.atic Loading of the 11.B
Using Tables in tte.ory

When the address space is not fully used, the
first-level and second-level translation tables
can be selectively skipped to reduce the storage
for tables and the number of memory references
required to autoload the TlB. The level-1 tables
can be akipped when an address space of 16M bytes
is sufficient. The level-2 tables can be skipped
for compatibility with ZBOOO segmented addresses.
Both level-1 and level-2 tables can be skipped for
compact addresses. When a level of tables is
skipped, the corresponding field of the logical
address is ignored.

8225-007, 2071-006

When the address spaces are not separated, it is
also possible to reduce storage for tables by
loading identical values into the translation
table descriptor registers. The same tables would
then be used to translate addresses in different
spaces. The following sections describe the for­
mats of the translation table descriptors and
entries and explain the translation algorithm.

4-5

Address Spaces and Memory Management

4.J.2.1 Tr_lation Table Descriptor Registers.
There is a translation table descriptor register
for each of the four logical memory address
spaces: System Instruction Translation Table
Descriptor (SITTD), System Data Translation
Table Descriptor (SDTTD), Normal Instruction

31 30

I I I !

Translation Table Descriptor (NITTD), and Normal
Data Translation Table Descriptor (NDTTD). The
translation table descriptor registers are
accessed using the Load Control Long instruction.
Figure 4-8 shows the format of a translation table
descriptor.

I I I I I I I
TABLE FORMAT (TF)

TABLE SIZE (SIZ)

PROTECTION (PROT)

'---------------------- ~:~~ tJ~TE~ TABLE

00 THREE LEVELS

Table Format
(TF)

01 SKIP LEVEL 2 TABLES
10 SKIP LEVEL 1 TABLES

GROWTH DIRECTION (G)

11 SKIP LEVEL 1 AND LEVEL 2 TABLES

TABLE SIZE VALID TABLE ENTRIES
(SIZ) 0=0 0= 1

00 o TO 63 o TO 255

01 o TO 127 64 TO 255

10 o TO 191 128 TO 255

11 o TO 255 192 TO 255

Figure 4-8. Translation Table Descriptor

The Table For_t field (TF) specifies the struc­
ture of the translation tables. The table format
can be a full three levels, two levels with either
level-1 tables or level-2 tables skipped, or one
level with both level-1 and level-2 tables
skipped.

Next level Table Base (NlTB) specifies 23 bita of
the base address in physical memory of the next
level table. The full 32-bit address is formed by
extending NL TB with one high-order 0 and eight
low-order Os (Figure 4-9).

Growth Direction (G) specifies the growth direc­
tion of the next level table from low address to
high address (G=O) or from high address to low
address (G=1). The reverse growth direction (G=1)
is used for downward-growing stacks.

The Table Size field (SIl), in conjunction with
the Growth Direction fie ld, specifies the valid
portion of the next level table in increments of
256 bytes. When only part of a table contains
valid entries, storage for many invalid entries
can be eliminated through use of the SIZ field.

4-6

When the next level table is a page table, then
the G and SIZ fields must be 0 because a page
table always has 64 entries.

Protection (PROT) specifies the access protection
code (see Table 4-1).

4.3.2.2 level-l Table Entries. The L1 field of
the logical address selects one of up to 256
entries in the level-1 table. Figure 4-10 shows
the format of a level-1 table entry.

Valid (V) determines the validity of the G, NLTB,
and SIZ fields. If the V bit is 1, the fields are
valid; otherwise, the fields are invalid. The
PROT field is always valid.

Growth direction (G), Next Level Table Base
(Nlm) , Table Size (SIl), and Protection (PROT)
have the same meaning as in the translation table
descriptor registers.

Bit 0 of the level-1 table entry is reserved and
must be O. This bit is ignored by the translation
mechanism.

2071.(J()7

Address Spaces and Memory Management

31 30

I I !

31 30

NLTB

T
, ,

8 7

! I !

8 7

, I TRANSLATION TABLE
DESCRIPTOR OR ENTRY

I ~ 0 0 0 0 0 0 0 I TRANSLATION TABLE
!.!'!!" , • BASE ADDRESS

Figure __ 9. Translation Table Base Address

3130 87 0

I I ! ! I I I I /01

I
-r '-- VALID (V)

L- TABLE SIZE (SIZ)

L-_____ PROTECTION (PROT)

'--------------------- ~m ~~~TE~ TABLE
L. _________________________________ GROWTH DIRECTION (G)

31 30

31 30

LEVEL 1 TABLE ENTRY

8 7

! ! I I)

! !

'-- VALID (V)

1-______ PROTECTION (PROT)

'--------------------- NEXT LEVEL TABLE
BASE (NLTB)

LEVEL 2 TABLE ENTRY

10 9 8 7

, I I I " I
I I I L':: ::.~:~~ ,.
~ MODIFICATION (M)

NONCACHEABLE (NC)

PROTECTION (PROT)

'---------- UNUSED

'---------------------- FRAME ADDRESS (FA)
L---------------------------------IIO

PAGE TABLE ENTRY

figure __ 10. Table £ntry forllllts

4.3.2.3 level-2 Table £ntries. The L2 field of
the logical address selects one of up to 256
entries in the level-2 table. Figure 4-10 shows
the format of a level-2 segment table entry.

4.3.2.4 Page Table Entries. The P field of the
logical address selects one of 64 entries in the
page table. Figure 4-10 shows the format of a
page table entry.

Valid (V) determines the validity of the NUB
field. If the V bit is 1, the field is valid;
otherwise the field is invalid. The PROT field is
always valid.

Next level Table Base (NlTB) and Protection
(PROT) have the same meaning as in the translation
table descriptor registers.

Bits 0, 2, 3 and 31 of the level-2 table entry are
reserved and must be O.

Valid (V) determines the validity of the I/O, FA,
Ne, M, and R fields. If the V bit is 1, the
fields are valid; otherwise, the fields are
invalid. The PROT field is always valid.

I/O determines whether the address of the frame is
in physical memory space or physica 1 I/O space.
When I/O is 0, the frame is in memory space; when
1, the frame is in I/O space.

2071-008 4-7

Address Spaces and~Memory Management

Fra.e Address (FA) specifies the physical address
of the frame corresponding to the logical page.
The address is formed by appending ten low-order
as to the I/O bit and the FA field.

Non-Cacheable (NC) is used to maintain the integ­
rity of the cache. If the NC bit is 1, copies of
memory locations in this frame cannot be stored in
the cache; otherwise, copies of memory locations
in this page can be stored in the cache. For
example, the NC bit can be set for a page shared
by multiple processes with write access in a sys­
tem containing multip Ie CPUs. The NC bit has
meaning only when the frame is in physical memory;
I/O locations are never stored in the cache. See
Appendix C for more information.

Modification (M) and Reference (R) bits are used
by software to implement virtual memory
replacement algorithms. The CPU sets the R bit of
the page table entry when the page is first
referred to, either for fetching or storing
information. The CPU sets the M bit of the page
table entry when an operand is first stored to the
page. The CPU refers to translation tables in
memory to set the M bit on the first store to the
page, even if the translation information for the
page is present in the TLB because of a previous
fetch from the page. The CPU uses inter locked
memory references (see Section B.8.2.3) to set the
Rand M bits in the page table entry, allowing
page tables to be shared between tightly-coupled
multiprocessors.

Protection (PROT) specifies the access protection
code described below.

Bits 8 and 9 of the page table entry are available
for use by software; the bits are ignored by the
translation mechanism.

4.'.' Access Protection

The memory management mechanism enforces access
protection for segments and pages using informa­
tion encoded in the PROT field of translation
table descriptors and table entries. The CPU
checks three types of access operations: execute,
read and write. Execute access is required for
instruction fetches, including Immediate mode
operand fetches. Read access is required for
operand fetches other than Immediate mode. Write
access is required for operand stores. The CPU
allows different access rights for normal and
system mode programs. Table 4-1 shows the
interpretation for the PROT code.

4-8

Table 4-1.
Protection Field Encoding

Encoding Systt. Noral

0000 NA NA
0001 RE NA
0010 RE E
0011 RE RE

0100 E NA
0101 E E
0110 R NA
0111 R R

1000 Next Next
1001 RW NA
1010 RW R
1011 RW RW

1100 RWE NA
1101 RWE E
1110 RWE RE
1111 RWE RWE

NA - no access is permitted
R - read access is permitted
W - write access is permitted
E - execute access is permitted
Next - Use the protection field of the

next level translation table; for
page table entries, a PROT field of
1000 indicates no access is permitted.

Dur ing the translation process, a PROT field is
encountered at each level. The first PROT field
with value other than 1000 is selected; the other
PROT fields are ignored. If all PROT fields up to
and including the page table entry are 1000, no
access is permitted.

4.3.4 Address Translation Algorithl

The CPU executes the following ~lgorithm to trans­
late a logical address using the tables in memory
when loading a missing entry into the TL8 or set­
ting the M bit on the first store to a page.

Step 1. Translation Table Descriptor Processing.
One of the four translation table descriptor reg­
isters is selected according to the logical
address space.

Address Spaces and Memory Manaqement

If the PROT field of the segment table descriptor
is 1000, the intended access operation is not
checked. Otherwise, if the intended access opera­
tion is not permitted by the PROT field, an
Address Translation trap (access protection viola­
tion) occurs.

The G, NLTB, and SIZ fields are passed to the next
step of the address translation algorithm.

If the TF field is 00 or 01, then go to Step 2; if
the TF field is 10, then go to Step 3; otherwise,
go to Step 4.

Step 2. level-1 Table Entry Processing. The
L 1 field of the logical address is checked with
the G and SIZ fields from Step 1. If G is 0 and
L 1 is greater then 64 x (SIZ+1) -1 or if G is 1
and L 1 is less then 64 x SIZ, an Address Trans­
lation trap (invalid table entry) occurs.

The address of the level-1 table is formed by
extending the NUB fie Id from Step 1 with one
high-order 0 and eight low-order Os. The physical
address of the level-1 table entry is calculated
by adding 4 x L 1 to the address of the level-1
table. The addition is a 32-bit unsigned arith­
metic operation, ignoring the carry from the most­
significant bit position.

The selected level-1 table entry is fetched from
memory. I f the intended access operation was
checked at Step 1 or the PROT field of the table
entry is 1000, the intended access operation is
not checked at this step. Otherwise, if the
intended access operation is not permitted by the
PROT field, an Address Translation trap (access
protection violation) occurs.

If the V bit of the table entry is 0, an Address
Translation trap (invalid table entry) occurs.

The G, NUB and SIZ fields of the table entry are
passed to the ne.xt step of the address translation
process.

If the TF field of the segment table descriptor is
00, then go to Step 3; otherwise go to Step 4.

Step 3. level-2 Table Processing. The L2 field
of the logical address is checked with the G and
SIZ field from the previous step. If G is 0 and
L2 is greater than 64 x (SIZ+1}-1 or if G is 1 and
L2 is less than 64 x SIZ, an Address Translation
trap (invalid table entry) occurs.

The address of the level-2 table is formed by
extending the NL TB fie ld from the previous step
with one high-order 0 and eight low-order Os. The
physical address of the level-2 table entry is
calculated by adding 4 x L2 to the address of the
level-2 table. The addition is a 32-bit unsigned
arithmetic operation, ignoring the carry from the
most-significant bit position.

The selected level-2 table entry is fetched from
memory. If the intended access operation was
checked at a previous step or the PROT field of
the table entry is 1000, the intended access
operation is not checked. Otherwise, if the
intended access operation is not permitted by the
PROT field, an Address Translation trap (access
protection violation) occurs.

If the V bit of the table entry is 0, an Address
Translation trap (invalid table entry) occurs.

The NL TB field of the table entry is passed to
Step 4.

Step II. Page Table Entry Processing. The
address of the page table is formed by extending
the NUB field from the previous step with one
high-order 0 and eight low-order Os. The physical
address of the page table entry is calculated by
adding 4 x P to the address of the page table.
The addition is a 32-bit unsigned arithmetic
operation, ignoring the carry from the most-sig­
nificant bit position.

The selected page table entry is fetched from mem­
ory. If the intended access operation was not
checked at a previous step, and the intended
access operation is not permitted by the PROT
field, an Address Translation trap (access protec­
tion violation) occurs.

If the V bit of the table entry is 0, an Address
Translation trap (invalid table entry) occurs.

If the R bit of the table entry is 0, the CPU sets
R to 1. If the M bit is 0 and the access opera­
tion is write, the CPU sets M to 1. If either the
R or M bit changes, the CPU writes the low-order
byte of the table entry back to memory; otherwise,
the table entry is unchanged.

Finally, the I/O, FA, NC, M, and selected PROT
fields are loaded into the TLB, along with the
associated logical page address.

4-9

Address Spaces and Memory Management

4.'.5 Address Translation Exceptions

The CPU detects two types of address translation
exception conditions: access protection violation
and invalid table entry. When either of the
exception conditions is detected, the CPU suspends
the instruction being executed and processes an
Address Translation trap. During trap processing
the CPU saves on the system stack the PC, the FCW,
an identifier word, and the logical address that
caused the trap. The saved PC value is the
address of the first word of the instruction that
caused the trap. The identifier word (Figure
4-11) indicates the type of exception and the

address space that caused the trap. When both
types of address translation exception are
detected, an access protection violation is indi­
cated.

When an Address Translation trap occurs, the CPU
saves the state of registers and memory so the
instruction can simply be restarted. The
instruction can be successfully completed by
eliminating the exception condition, popping the
violation address from the system stack, and
executing the Interrupt Return instruction. Refer
to Chapter 7 for more information about exception
processing.

15 3 2 0

10 ,0,0,0,0,0,0,0,0,0,0,0,01 I I L 00 NORMAL DATA SPACE
01 NORMAL INSTRUCTION SPACE
10 SYSTEM DATA SPACE
11 SYSTEM INSTRUCTION SPACE

o INVALID TABLE ENTRY
1 ACCESS PROTECTION VIOLATION

Figure 4-11.
Address Translation Trap Identifier Word

4.'.6 ~ry Manageaent Instructions

The CPU provides several privileged instructions
directly concerned with memory management. The
Load Normal instructions permit system mode pro­
grams to refer to normal address spaces. These
instructions check access rights using system mode
privilege.

The Load Physical address instructions translate a
logical address in any of the memory address
spaces and load the corresponding physical address
into a register. The CPU sets the flag bits in
the FCW to indicate the access rights and whether
the translation is valid. Although the CPU does
not refer to the location of the translated
address, the R bit in the page table entry is set
by this instruction.

4-10

Three types of instructions allow outdated infor­
mation to be eliminated from the TLB when the mem­
ory map is changed by altering one of the transla­
tion table descriptor registers or translation
table entries. When a page table entry is altered
(other than setting the R, M, or V bits), then one
of the Purge TLB Entry instructions can be used to
remove the translation information for the page
from the TlB. The Purge TLB Normal instruction
removes all normal space entries from the TLB.
This instruction is used when the normal space
memory map is changed, but the system space memory
map remains the same. For example, the operating
system executes the Purge TLB Normal instruction
when a process switch occurs as long as system and
normal address spaces are separate. The Purge TLB
instruction removes all entries from the TLB.

8225-009

5.1 INTRODUCTION

The CPU locates operands (the data manipulated by
instructions) in registers, memory, peripheral
ports, or in the instruction. Figure 5-1 shows
the nine addressing modes used to specify the
location of operands. Although most operations
can use any of the addressing modes, certain
operations, such as Load Control, allow only a
restricted set of addressing modes.

This chapter describes the addressing modes and
the way operand addresses are calculated. Exam­
ples are given for compact, segmented, and linear
modes of address representation. Chapter 6 pro­
v ides details about the encoding of addressing
modes and the addressing modes allowed for each
operation.

5.2 ADDR£SS CALCULATIONS

When an operand is in a logica 1 memory address
space, the "effective address" of the operand is
calculated using a base address, an optional index
value, and an optional displacement. The base
address is located in a general-purpose register,
the Program Counter (PC), or the instruction. The
index value is located in a word or longword reg­
ister. The displacement is located in the
instruction. The following sections describe the
calculations of effective addresses in compact,
segmented and linear modes.

When an operand is in logical I/O space, no
address calculation is necessary. The 16-bit
address of the I/O port is located in a word reg­
ister or in the instruction.

5.2.1 CoIIpact Address Calculations

In compact mode, addresses are 16 bits. The base
address for the effective address calculation is
located in either a word register other than RO,
the low-order word of the PC, or a word of the
instruction. When an index value is used, it is
located in a word register other than RD. The
displacement is encoded in 16 or fewer bits of the
instruction. When the displacement is encoded in
fewer than 16 bits, it is extended to 16 bits for

Chapter 5.
Addressing Modes and
Address Calculations

effective address calculation. Displacements are
generally extended by replicating the sign (most­
significant) bit in the high-order bit positions,
but for the Decrement and Jump if Not Zero (DJNl)
instruction, the displacement is extended with
Os. In compact mode, it is not possible to spec­
ify both an index value and a displacement for
effective address calculation.

The effective address is generally cslculated by
adding the base address to the optional index
value or displacement, but for the Call Relative
(CALR) and DJNZ instructions, the displacement is
subtracted from the base address. Addresses are
calculated using 16-bit arithmetic. Carry and
overflow from the most-significant bit position
are ignored. Thus, addresses wraparound with
address 0 appearing to follow address 65,535.

The following example shows an effective address

calculation with base address 123416 and index
value or displacement FEDC16. The effective
address is 111016

base address 1234

+ index value or FEDC
displacement
effective address 1110

5.2.2 Seg.ented Address Calculations

In segmented mode, addresses are 32 bits. The
base address for the effective address calculation
is located in either a longword register other
than RRO, in the PC, or in one or two words of the
instruction. (A concise representation of the
32-bit base address using a single instruction
word is available for some addresses. Refer to
Section 6.4.3.2 for more information.) When an
index value is used, it is located in a word reg­
ister other than RO or a longword register other
than RRO. An index value located in a word regis­
ter is extended to 32 bits for effective address
calculation by replicating the sign (most-signifi­
cant) bit in the high-order bit positions. The
displacement in an instruction is encoded in 32 or
fewer bits. When the displacement is encoded in
fewer than 32 bits, it is extended to 32 bits for
effective address calculation. Displacements are

5-1

Addressing Modes and Address Calculations

Addressing Mode Operand Addressing

R

Register

1M

Immediate

*IR

DA

*X

*BA

*BX

RA

*RX

Indirect
Register

Direct
Address

Index

Base
Address

Base
Index

Relative
Address

Relative
Index

In the Instruction In a Register In Memory

REGISTER NUMBER r-.I OPERAND

OPERAND

REGISTER NUMBER r-.[I =A~D~D~R~ES~S=}----__ ' ·[I~O~P~E~RA~N~DJ

ADDRESS . I OPERAND

t~~j--=='NDE=X :::::...h~0---Ir-----' • OPERAND

I BASE ADDRESS h
t~~~~=~~=====--:'0--1 OPERAND

REGISTER NUMBER

REGISTER NUMBER OPERAND

DISPLACEMENT

PC ADDRESS h
[~D~IS~PL~A~C~EM~E~N~TJ~~=====-.... ~~I OPERAND

*RO and RRO cannot be used for Indirect, Base, or Index registers

Figure 5-1. Addressing ItJdes

Operand Value

The contents of the
register

In the instruction

The contents of the
location whose
address is in the
register

The contents of the
location whose
address is in the
instruction

The contents of the
location whose
address is the address
in the instruction, plus
the contents of the
Index Register

The contents of the
location whose
address is the
contents of the Base
register, plus the
displacement in the
instruction

The contents of the
location whose
address is the
contents of the Base
register, plus the
contents of the Index
register, plus the
displacement in the
instruction

The contents of the
location whose
address is the
contents of the
Program Counter, plus
the displacement in
the instruction

The contents of the
location whose
address is the
contents of the
Program Counter, plus
the contents of the
Index register, plus the
displacement in the
instruction

5-2 2071·009

generally extended by replicating the sign (most­
significant) bit in the high-order bit positions,
but for the Decrement and Jump if Not Zero (DJNZ)
instruction, the displacement is extended with
Os.

1615

SEGMENT
(! t, ! I I ! , I, , ! ! !

OFFSET
! , ! , !

(I) 84K BYTE SEGMENT SIZE

3130 2423

I I
(II) IBM BYTE SEGMENT SIZE

Figure 5-2. Seglleflted Addresses

In segmented mode, the base address is composed of
a segment number and segment offset. Bit 31 of an
address distinguishes between two segment sizes
(Figure 5-2). When bit 31 of. the address is 0,
the segment number is 15 bits and the segment off­
set is 16 bits, providing a maximum segment size
of 64K bytes. Addresses for these small segments
are written using the notation «ssH segment num­
ber» segment_offset. For example, small segment
number five at offset 231A16 would be written
«ssH5» 231A16. When bit 31 of the address is 1,
the segment number is 7 bits and the segment off­
set is 24 bits, providing a maximum segment size
of 16M bytes. Addresses for these large segments
are written using the notation «IsH segment num­
ber» segment_offset.

The effective address is generally calculated by
adding the base address to the optional index
value and optional displacement, but for CALR and
DJNZ instructions, the displacement is subtracted
from the base address. Only the segment offset is
involved in address arithmetic. The segment size
and segment number of the effective address are
the same as the base address. The offset
calculation uses 16-bit arithmetic for the small
segments and 24-bit arithmetic for the large
segments. Carry and overflow from the most­
significant bit position are ignored. Thus,
addresses wraparound within a segment. This means
that, for the small segments, offset 0 appears to
follow offset 65,535. For the large segments,
offset 0 appears to follow offset 16,777,215.

The following example shows an effective address
calculation for a small segment with base address
«ssH2» 567816, index value OOOOBA9B16, and dis­
placement FFFFFFFF 16. The effective address is
«ssHZ» 110F16.

base address
+ index value
+ displacement

Segment Number
«ssHZ»

effective address «ssHZ»

8225-010

Segment Offset
5678

0000 BA98
FFFF FFFF

110F

Addressing Modes and Address Calculations

Another example shows an effective address calcu­
lation for a large segment with base address
«lsH3» 13579B16, index value FFFFFFEO, and dis­
placement OOOOOOOZ. The effective address is
«lsH3» 13577D16.

base address
+ index value
+ displacement

segment number
«lsI13»

effective address «lsH3»

segment offset
13579B

FF FFFFEO
00 OOOOOZ

13577D

5.2.3 linear Address Calculations

In linear mode, adc;lresses are 32 bits. The base
address for the effective address calculation is
located in either a longword register other than
RRO, in the PC, or in one or two words of the
instruction. (A concise representation of the
32-bit base address using a single instruction
word is available for some addresses. Refer to
Section 6.4.3. Z for more information.) When an
index value is used, it is located in a word
register other than RO or a longword register
other than RRO. An index value located in a word
register is extended to 3Z bits for effective
address calculation by replicating the sign
(most-significant) bit in the high-order bit
positions. The displacement in an instruction is
encoded in 32 or fewer bits. When the
displacement is encoded in fewer than 32 bits, it
is extended to 32 bits for effective address
calculation. Displacements are generally extended
by replicating the sign (most-significant) bit in
the high-order bit positions, but for the
Decrement and Jump if Not Zero (DJNZ) instruction,
the displacement is extended with Os.

The effective address is generally calculated by
adding the base address to the optional index
value and optional displacement, but for CALR
and DJNZ instructions the displacement is
subtracted from the base address. Addresses are
calculated using 3Z-bit arithmetic. Carry and
overflow from the most-significant bit position
are ignored. Thus, addresses wraparound with
address 0 appearing to follow address Z32-1.

The following example shows an effective address
calculation with base address 0100000016' index
value 0000006416 , and displacement FFFFFF9B16.
The effective addresa is 00FFFFFF16.

base address
+ index val ue
+ displacement

effective address

0100 0000
0000 0064
FFFF FF9B
OOFF FFFF

5-3

Addressing Modes and Address Calculations

5.' ADDRESSING MODE DESCRIPTIONS

The following sections describe the nine address­
ing modes. Each description explains how the
operand is located, shows the assembler language
syntax used, and works through an example. The
descriptions are grouped into two sections--one
for compact mode and the other for segmented and
linear modes. In the examples, hexadecimal nota­
tion is used for memory addresses and the contents
of register and memory locations. The % symbol

5.'.1.1 Register (R). F or Register addressing
mode, the operand is located in the specified gen­
eral-purpose register. Storing data in a register
allows shorter instructions and faster execution
than storing data in memory. The register size
(byte, word, long word , or quadword) is specified
by the instruction opcode.

INSTRUCTION REGISTER

I OPERATION I REGISTER ~I OPERAND'

THE OPERAND VALUE IS THE CONTENTS OF THE REGISTER.

5.'.1.2 I..adiate (1M). For Immediate addressing
mode, the operand is located in the instruction.
Because an immediate operand is part of an
instruction, it is located in one of the instruc­
tion memory address spaces. Small immediate
values are used frequently, so the instruction set
provides several concise encodings for these
cases.

INSTRUCTION

THE OPERAND VALUE IS IN THE INSTRUCTiON.

5.'.1.' Indirect Register (IR). For Indirect
Register addressing mode, the operand is located
at the address contained in the specified general­
purpose word register. Any word register other
than RO can be used. Depending on the instruction
opcode, the operand is located in one of the data
memory address spaces or in I/O address space.
Indirect Register mode has a short encoding and
can be used to simulate more complex addressing
modes by computing the address into a register.

1/0 oR
INSTRUCTION REGISTER DATA MEMORY

I OPERATION I REGISTER H ADDRESS ~I OPERAND I
THE OPERAND VALUE IS THE CoNTENTS of THE LOCATiON WHoSE ADDRESS
IS IN THE REGISTER.

5-4

precedes hexadecimal numbers in assembler language
text. When the examples refer to memory loca­
tions, logical addresses are used; the logical
addresses are translated to physical addresses if
memory management is enabled.

5.'.1 COIIpuct Mode Descriptions and Exa8ples

This section describes the addressing modes used
in the compact mode of operation.

Assembler language syntax:

RHn, RLn Byte register
Rn Word register
RRn Longword register
ROn Ouadword register

Example of R mode:

LOL RR20,RR22 I/Ioad the contents
I/of RR22 into RR20

Before Execution After Execution

Assembler language syntax:

#data

Example of 1M mode:

LOB RH2,#%55

Before Execution

RR21671s91121341

//load 5516 into RH2

After Execution

RR21ssls91121341

Assembler language syntax:
@Rn

Example of IR mode:

LO R2,@R5 //load R2 with the
I/data addressed
I/by the contents
Ilof R5

Before Execution
Data Memory

After Execution

Addressing Modes and Address Calculations

5.'.1._ Direct Address (DA). For Direct Addrees
addressing mode, the opersnd is located at the
address specified in the inetruction. Depending
on the instruction opcode, the operand is located
in one of the data memory address spaces or in I/O
address spsce.

1/0 OR
DATA MEMORY

I OPERAND I
THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS IN THE INSTRUCTION.

Assembler language syntax:

address Either memory or I/O

5.'.1.5 Index (X). For Index addressing mode the
operand is located at the address calculated by
adding the address specified in the instruction to
the index vslue contained in the specified gen­
eral-purposa word register. Any word register
other than RO can be used. The operand is located
in one of the data memory address spaces. Index
addressing mode can be used for random access to
tables or other complex data structures where the
address of the base of the table is known, but the
particular element index must be computed by the
program.

Assembler language syntax:

address(Rn)

INSTRUCTION REGISTER

Example of DA mode:

LDL RR30, %5E23 Ilload RR30 with the
I/Iongword whose
lIaddress is 5E2316

Before Execution

RR3016789A4381

After Execution

RR30 1020304051

Data Memory

Example of X mode:

LDL RR8, %231A(R7) IIload RR8 with the
IIlongword whose
lIaddress is 231A +
lithe value in R7

Before Execution

Address Calculation
231A

+OlFE
2518

After Execution

Data Memory

I ~PERATION I REGISTER H INDEX I-----I
t.==~A~D~D~RE~S~S~=j~-~====:~1

DATA
MEMORY

OPERAND

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
ADDRESS IN THE INSTRUCTION PLUS THE CONTENTS OF THE REGISTER.

5-5

Addressing Modes snd Address Cslculations

5.}.1.6 Base Addre8a (BA). For Bass Address
sddressing mode, the operand is locsted at the
address calculated by adding the displacement con­
tained in the instruction to the address contsined
in the specified general-purpose word register.
Any word register other than RO can be used. The
operand is located in one of the data memory
eddr-ess spaces. In compact mode, Base Address
addressing mode can only be used with Load and
Load Address instructions. This restriction is
not significant, however, becauee Index and Base
Address addressing modes perform equivalent
functions in compact mode.

Assembler language syntax:

Rn (disp)

INSTRUCTION REGISTER

Example of BA mode:

LDL R5(%18),RR2 //load RR2 into the
//Iongword whose
/laddress is the base
/laddress in

Before Execution

Address Calculation
20AA

+0018
2OC2
After Execution

DATA
MEMORY

OPERAND

/lR5 + 1816

Data Memory

Data Memory

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
CONTENTS OF THE REGISTER PLUS THE DISPLACEMENT IN THE INSTRUCTION.

5.}.1.7 Base Index (BX). For Base Index
sddressing mode, the operand is located at the
address cslculated by adding the index value con­
tained in the specified general-purpose word index
register to the base address contained in the
specified general-purpose word base register. Any
word register other than RO can be used for the
index register or base register. The operand is
located in one of the data memory address spaces.
Base Index addressing mode can be used to access
tables or other complex data .structures when the
base of the table and particular element index are
not known until the program is executed. In
compact mode, Base Index addressing mode can only
be used with Load and Load Address instructions.

Assembler language syntax:

Rn(Rm)

Example of BX mode:

LDL RR2,R5(R3) //load RR2 with the
//Iongword. whose
/laddress is the base
/laddress in R5 + the
/lvalue in R3

Before Execution

Address Calculation
1502

+FFFE
1"500

After Execution

Data Memory

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
CONTENTS OF THE BASE REGISTER PLUS THE CONTENTS OF THE INDEX REGISTER.

5-6

5.'.1.8 Relative Address (RA). for Relative
Address addressing mode, the operand is located at
the address calculated by adding the displacement
contained in the instruction to the low-order word
of the Program Counter. The value used for the PC
is the address of the instruction word following
the displacement. The operand is located in one
of the instruction memory address spaces. In
compact mode, Relative Address addressing mode can
only be used with Load, Load Address, Call, Jump,
and DJNI instructions.

Assembler language syntax:

address

Example of RA mode: (Note that the sym­
bol "$" is used for the address of the first
word of the current instruction.)

LDRL RR24,$ + %6 IIload RR24 with the
l!Iongword whose
lIaddress is the
lIaddress of the
lIfi rst word of
//the cu rrent
lIinstruction + 6

INSTRUCTION

OPERATION

DISPLACEMENT

PC

Addressing Modes and Address Calculations

Because the Program Counter will be
advanced to pOint to the next instruction when
the address calculation is performed, the
displacement in the instruction is actually + 2
(fou r less than the offset given by the
assembler language syntax).

Before Execution

Address Calculation
0204

+0002
0206

After Execution

INSTRUCTION
MEMORY

I OPERAND I

Instruction Memory

0200

0204

0208

Instruction --31 02 00 02

E8 02 FF FE

AB CO B001

.

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
CONTENTS OF PC PLUS THE DISPLACEMENT IN THE INSTRUCTION.

5.'.1.9 Relative Index (RX). Relative Index
addressing mode cannot be used in compact mode of
operation.

5.'.2 5egEnted and linear Mode Descriptions and
EXllllples

This section describes the addressing modes used
in segmented and linear modes of operation. The
description is identical for the two modes of
address representation except that separate
examples are given for address calculations.

5.'.2.1 Register (R). for Register addressing
mode, the operand is located in the specified gen­
eral-purpose register. Storing data in a register
allows shorter instructions and faster execution
than storing data in memory. The register size
(byte, word, longword, or quadword) is specified
by the instruction opcode.

INSTRUCTION REGISTER

I OPERATION I REGISTER ~I OPERAND I
THE OPERAND VALUE IS THE CONTENTS OF THE REGISTER.

Assembler language syntax:

RHn, RLn Byte register
Rn Word register
RRn Longword register
RQn Quadword register

Example of R mode:

LDL RR20, RR22 IIload the contents of
IIRR22 into RR20

Before Execution

A fter Execution

5-7

Addressing Modes and Address Calculations

5.}.2.2 I.-ediate (IN). For Immediate addressing
mode, the operand is located in the instruction.
Because an immediate operend is part of en
inetruction, it is located in one of the instruc­
tion memory address spaces. Small immediate
values are used frequently, so the instruction set
provides several concise encodings for these
cases.

INSTRUCTION

THE OPERAND VALUE IS IN THE INSTRUCTION.

5.}.2.} Indirect Register (IR). F or Indirect
Register addressing mode, the operand is located
at the address contained in the specified general­
purpose register. Depending on the instruction
opcode, the operand is located in one of the data
memory address spaces or in I/O address space.

INSTRUCTION REGISTER
UOOR

DATA MEMORY

I OPERATION I REGISTER H ADDRESS J--.I OPERAND I
THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS
IS IN THE REGISTER.

5-8

Example of segmented IR mode:

LD R2,@RR4 /lload R2 with the
/lword whose address
/lis in RR4

Before Execution

After Execution

Data Memory

~sslP2~ 170A Aol2310BloE

~sslP2~ 170E 1olD3123145

Assembler language syntax:

itdata

Example of 1M mode:

LDB RH2 it%55

Before Execution

RR21671s91121341

After Execution

RR21551s91121341

/lload 5516 into RH2

For memory addresses, any longword register other
than RRO can be specified; for I/O addresses any
word register other than RO can be specified.
Indirect Register mode has a short encoding and
can be used to simulate more complex addressing
modes by computing the address into a register.

Assembler language syntax:
@Rn 1/0 address
@RRn Memory address

Example of linear IR mode:

LD R2,@RR4 //load R2 with the
/lword whose address
/lis in RR4

Before Execution Data Memory

After Execution

5.'.2.. Direct Addre8B (DA). For Direct Address
addressing mode, the operand is located at the
address specified in the instruction. Depending

INSTRUCTION
I/O OR

DATA MEMORY

I OPERAND I
THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS IN THE INSTRUCTION.

Example of segmented DA mode:
LDL RR30,<llils#5~ %23

IIload RR30 with the
I/Iongword in large
IIsegment #5
lIat offset 2316

Before Execution

RR3016789A4381

Data Memory

After Execution

RR30 1020304051

<IIi Is#5~000020 021061C1102

<llils#5~000024 03104105100

Addressing Modes and Address Calculations

on the instruction opcode, the operand is located
in one of the dsta memory sddress spaces or in I/O
address space.

Assembler language syntax:
address Either memory or 1/0

Example of linear DA mode:

LDL RR30, %85000023

Before Execution

RR30 16789A4381

After Execution

RR30 1020304051

IIload RR30 with the
I/Iongword whose
lIaddress is
118500002316

Data Memory

5-9

Addressing Modes and Address Calculations

5.'.2.5 Index (X). for Index addressing mode,
the operand is located at the address calculated
by adding the address specified in the instruction
to the index value contained in the specified
general-purpose register. Any word register other
than RO or any longword register other than RRO

can be used. The operand is located in one of the
data memory address spaces. Index addressing mode
can be used for random access to tables or other
complex data structures where the address of the
base of the table is known, but the particular
element index must be computed by the program.

DATA
MEMORY

OPERAND

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
ADDRESS IN THE INSTRUCTION PLUS THE CONTENTS OF THE REGISTER.

5-10

Assembler language syntax:

address(Rn) Word index register
address(RRn) Longword index register

Example of segmented X mode:

LDL RRB. <Ilsslf5~ %231A(R7)

Before Execution

Address Calculation

<css*5~231A
+ 01FE
<css*5~2518

After Execution

//load RRB with the
IIlongword whose
lIaddress is small
IIsegment 5 at
lIoffset 231 A +
lithe value in R7

Data Memory

Example of linear X mode:

LDL RRB. %0005231A(R7)

Before Execution

Address Calculation

0005231A
+ 000001 FE

00052518

After Execution

IIload RRB with the
IIlongword whose
lIaddress is
II0005231A16 +
lithe value in R7

Data Memory

5.'.2.6 a.. Addreaa (BA). F or Base Address
addressing mode, the opersnd is located at the
address calculsted by adding the displacement
contained in the instruction to the addrese
contained in the specified general-purpoae
longword register. Any longword register other
than RRO can be used. The operand is located in

REGISTER

Addressing Modes and Address Cslculations

one of the data memory addreas spaces. Base
Address addressing mode can be used to access
records or other dsts structures where the dis­
placement of an element within the structure is
known before the program is executed, but the base
address of the particular structure is not known
until the program is executed.

DATA
MEMORY

OPERAND I
THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
CONTENTS OF THE REGISTER PLUS THE DISPLACEMENT IN THE INSTRUCTION.

Assembler language syntax:
RRn{disp)

Example of segmented BA mode:
LDL RR4{%18),RR2 //load RR2 into the

//Iongword whose
"address is the
"base address in
IIRR4 + 1816

Before Execution

Address Calculation
... lsf8~0020AA

+ 000018
... ls'8~OO2OC2

After Execution

Data Memory

Data Memory

Example of linear BA mode:

LDL RR4{%18),RR2 //load RR2 into the
//Iongword whose
"address is the
"base address in
"RR4 + 1816

Before Execution

Address Calculation

8800 20AA
+0000 0018

8800 20C2

After Execution

Data Memory

Data Memory

5-11

Addressing Modes and Address Calculations

5.1.2.7 Base Index (BX). For Base Index
addressing mode, the operand is located at the
address calculated by adding the displacement
contained in the instruction to both the index
value contained in the specified general-purpose
index register and the address contained in the
specified general-purpose base register. Any word
or longword register other than RO or RRO can be

used for the index register; any longword register
other than RRO can be used for the base register.
The operand is located in one of the data memory
address spaces. Base Index addressing mode can be
used to access tables or other complex data
structures when the base of the table and
particular element index are not known until the
program is executed.

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
CONTENTS OF THE BASE REGISTER, PLUS THE CONTENTS OF THE INDEX REGISTER,
PLUS THE DISPLACEMENT IN THE INSTRUCTION,

Assembler language syntax:

RRn (Rm)(disp) Word index register
RRn (RRm)(disp) Longword index register

The displacement can
be omitted when it is
zero.

Example of segmented BX mode:

LDL RR2,RR4 (R3)(1) IIload RR2 with the
l!Iongword whose
lIaddress is the base
lIaddress in RR4 + the
//index value in

Before Execution

Address Calculation
<l!ssII1~1502

+ FFFD
+ 0001

<l!ssll1 ~ 1500

After Execution

IIR3 + 1

Data Memory

<l!ssll1 ~ 1500
f-'--'--'---I

Data Memory

NOTE: The index value in R3 has been sign-extend­
ed to 32 bits.

5-12

Example of linear BX mode:

LDL RR2,RR4(R3)(1) IIload RR2 with the
IIlongword whose
lIaddress is the base
lIaddress in RR4 plus
lithe index value in
IIR3 + 1

Before Execution

Address Calculation

0001 1502
+ FFFF FFFD
+ 0000 0001

0001 1500

After Execution

Data Memory

0001 14FC 01101145145

0001 1500 BOIDEIF7132

Data Memory

5.1.2.8 Relative Address (RA). For Relative
Address addressing mode, the operand is located at
the address calculated by adding the displacement
contained in the instruction to the Program

INSTRUCTION PC

OPERATION

DISPLACEMENT

Addressing Modes and Address Cslculations

Counter. The value used for PC is the address of
the instruction word following the displacement.
The operand is located in one of the instruction
memory address spaces.

INSTRUCTION
MEMORY

I OPERAND I
THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
CONTENTS OF PC PLUS THE DISPLACEMENT IN THE INSTRUCTION.

Assembler language syntax:

<address>

Example of segmented RA mode:

LDL RR24.<$+6> I/Ioad RR24 with the
I/Iongword whose
I/address is the
I/address of the
lIfi rst word of the
I/current instruction
1/+ 6

Because the Program Counter will be ad­
vanced to point to the next instruction when
the address calculation is performed. the
displacement in the instruction is actually + 2
(four less than the offset given by the
assembler language syntax).

Before Execution

Address Calculation
~ssfO~0204

+ 0002
~ss#O~0206

After Execution

Instruction Memory

~ss#O~0202

~ss#O~0204

~ss#O~0208

.
Instruction

..--'-..

31 02 0002

E8 02 FF FE

AB CO Be 01

Note: Brackets «» enclosing the address can be
omitted for CALR, DJNZ, JR, and LDR inatructions.

Example of linear RA mode:

LDL RR24.<$+6> IIload RR24 with the
IIlongword whose
lIaddress is the
I/address of the
lIfi rst word of
lithe current
lIinstruction + 6

Because the Program Counter will be ad­
vanced to point to the next instruction when
the address calculation is performed. the
displacement in the instruction is actually + 2
(four less then the offset given by the
assembler language syntax).

Before Execution

Address Calculation

0000 0204
+0000 0002

0000 0206

After Execution

Instruction Memory

00000200

00000204

00000208

.
Instruction --31 02 0002

E802 FF FE

AB CO SO 01

.

5-13

Addressing Modes and Address Calculations

5.'.2.9 Relative Index (RX). for Relative Index
addressing mode, the operand is located at the
address calculated by adding the displacement
contained in the instruction to both the index
value contained in the specified general-purpose
register and the Program Counter. Any word or
long word register other than RO or RRO can be used

PC

for the index register. The value used for PC is
the address of the instruction word following the
disp lacement. The operand is located in one of
the program memory address spaces. Relative Index
addressing mode can be used to access tables of
constants.

ADDRESS

INDEX

INSTRUCTION
MEMORY

I OPERAND I

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
CONTENTS OF THE pc, PLUS THE CONTENTS OF THE INDEX REGISTER, PLUS THE
DISPLACEMENT IN THE INSTRUCTION.

Assembler language syntax:

< address> (Rn) Word index register
< address> (RRn) Longword index register

Example of segmented RX mode:
LDRL RR26, TABLE(RR28)

Before Execution

After Execution

!/load RR26 with the
//Iongword whose
//address is TABLE plus
lithe index value in
IIRR28. TABLE is a
Iisymbol for the begin­
lining of a table of
IIconstants at offset
1110016 in the same
IIsegment as the
lIinstruction

Instruction Memory

Note: Brackets enclosing the address «» can be
omitted for CALR, DJNZ, JR, and LDR instructions.

5-14

Example of linear RX mode:

LDL RR26, TABLE(RR28)

Before Execution

After Execution

IIload RR26 with the
//Iongword whose
//address is TABLE plus
lithe index value in
IIRR4. TABLE is a
//symbol for the begin­
lining of a table of
//constants beginning
//at address 00010100

Instruction Memory

5.~ EXTENDED ADDRESSING MODES

The instruction encodings for several of the
addressing modes use one or more extension words
following the opcode. Because the encoding of
this group of addressing modes is similar, they
are collectively given the name Extended Address­
ing Modes (EAM). The Extended Addressing Modes
for compact and segmented or linear mode are shown
in Table 5-1 below. Refer to Section 6.4.3 for
more information about Extended Addressing Modes.

Addressing Modes and Address Calculations

Table 5-1. Extended Addressing Modes

COIIpsct

Direct Address
Index

5egaented or linear

Direct Address
Index
Base Address
Base Index
Relative Address
Relative Index

5-15

6.1 INTRODUCTION

Chapter 6.
Instruction Set

EX
EXB

dst,src Exchange

This chapter describes the instruction set of the EXL
l80,000 CPU. An overview of the instruction set,
separated into functional groups, is presented
first. Next, fl ags and condition codes are dis-
cussed. Finally, a description is provided for
each instruction, including a summary of the oper­
ation, addressing modes, effect on flags, possible
exceptions, assembler language syntax, instruction
formats, and simple examples. The bit patterns
used to encode various instruction fields are also
described.

6.2 flN:TIONAl SlHfARY

This section presents a functional overview of the
instruction set. The instructions are separated
by function into eleven groups. Within each
group, the salient features are described, such as

LD
LDB
LDL

LDA

LDAR

LDK
LDKL

LDM

LDML

LDR

dst,src Load

dst,src Load Address

dst,src Load Address Relative

dst,src Load Constant

dst,src,num Load Multiple

mask,src Load Multiple Longwords
dst ,mask

dst,src Load Relative
available addressing modes, effect on flags, and LDRB
possible exceptions. The eleven functional groups LDRL
are:

• Load and Exchange

• Arithmetic

• Logical

• Program Control

• Bit Manipulation

• Bit Field

• Rotate and Shi ft

• Block Transfer and String Manipulation

• Input/Output

• CPU Control

• Extended Instructions

6.2.1 load and Exchange Instructions

Instruction Operand(s) Na.e of Instruction

CLR
CLRB
CLRL

CVT

CVTU

dst

dst,src

dst,src

Clear

Convert

Convert Unsigned

POP
POPL

PUSH
PUSHL

dst,src

dst,src

Pop

Push

The load and exchange instructions move data
between registers and memory. Among these
instructions, onl y Convert and Convert Unsigned
affect the flags.

The Load instructions transfer a byte, word, or
long word of data from the source operand to the
destination operand. A register can either be
loaded with an operand using any of the addressing
modes or a register or immediate value can be
loaded to a memory location. The Load Relative
instructions load a register to or from a memory
location specified with the Relative addressing
mode. Special compact encodings are provided for
the following frequent operations: (1) loading
any constant byte to a register; (2) loading a
small constant (0 to 15) word or long word to a
register (Load Constant); and (3) loading an
immediate value zero to a register or memory
location (Clear).

6-1

lBO,OOO Instruction Descriptions and Formats

The Exchange instructions swap the byte, word, or
longword contents of the source and destination
operands. The contents of a register can be
swapped with the contents of another register or
memory location.

The Convert and Convert Unsigned instructions are
used to move the byte, word, or longword source
operand to a different-sized destination operand.
The data can be moved in either direction between
a register and another register or memory loca­
tion. When the destination is longer than the
source, Convert per forms sign extension and Con­
vert Unsigned performs zero extension. If the
destination is shorter than the source, the
instructions set the V flag when the lost
information is significant. The Integer Overflow
trap occurs when the IV bit in FCW is 1 and the
Convert instruction sets the V flag.

The Load Multiple and Load Multiple Longwords
instructions provide efficient saving and restor­
ing of registers. They are most useful for moving
simple data types that are more than four bytes
long and for changing the process context at
interrupts. The Load Multiple instruction allows
any contiguous group of 1 to 16 word registers to
be loaded to or from consecutive memory loca­
tions. The Load Multiple Longwords instruction
allows up to 16 longword registers se lected by a
bit mask to be loaded to or from consecutive
memory locations.

Stack operations for words and long words are sup­
ported by the Push and Pop instructions. Any
general-purpose register other than RO or RRO can
be used as a stack pointer. The stack pointer is
automatically decremented for Push and incremented
for Pop. The source operand for Push and the
destination operand for Pop can be specified using
any of the addressing modes.

The Load Address instructions calculate the effec­
tive address of the source operand and load the
destination with that address. The destination is
a register and the source is specified with any of
the Extended Addressing Modes (EAM) (see Section
5.4). These instructions are useful for
manipUlating segmented addresses and managing
complex data structures.

6.2.2 Arithaetic Instructions

Instruction

ADC
ADCB
ADCL

6-2

Operand(s) N_ of Instruction

dst,src Add with Carry

ADD
ADDB
ADDL

CHK
CHKB
CHKL

CP
CPB
CPL

DAB

DEC
DECB

DECI
DECIB
DECL

DIV
DIVL

DIVU
DIVUL

EXTS
EXTSB
EXTSL

INC
INCB
INCL

INCI
INCIL

INDEX
INDEXL

MUll
MULTL

MULTU
MULTUL

NEG
NEGB
NEGL

SBC
SBCB
SBCL

SUB
SUBB
SUBL

TESTA
TESTAB
TESTAL

dst,src Add

dst,src Check

dst,src Compare

dst Decimal Adjust

dst,src Decrement

dst,src Decrement
Interlocked

dst,src Divide

dst,src Divide Unsigned

dst Extend Sign

dst,src Increment

dst,src Increment
Interlocked

dst,sub,src Index

' dst,src Multiply

dst,src Multiply Unsigned

dst Negate

dst,src Subtract with Carry

dst,src Subtract

dst Test Arithmetic

The arithmetic group consists of instructions for
performing integer arithmetic. The basic instruc­
tions operate on unsigned binary integers or
signed twos complement binary integers. Support
is provided for Binary Coded Decimal (BCD) arith­
metic and multiple precision arithmetic.

The arithmetic instructions generally affect the
C, Z, S, and V flags. The byte versions of
these instructions generally affect the D and H
flags as well. The V flag indicates arithmetic
overflow. The Integer Overflow Trap occurs when
the IV bit in the FCW is 1 and the V flag is set
after execution of an Add, Decrement, Decrement
Inter locked, Divide, Divide Unsigned, Increment,
Increment Interlocked, Negate, or Subtract
instruction.

Add, Subtract, Multiply, Multiply Unsigned,
Divide, and Divide Unsigned instructions operate
on a destination operand in a register and a
source operand specified by any addressing mode.
The result of the operation is stored in the
destination. Add and Subtract operate on bytes,
words, or longwords. The Multiply instructions
operate on words or long words and compute a
double-precision product. The Divide instructions
operate on words or longwords, using a
double-precision dividend.

The Increment and Decrement instructions add or
subtract a small constant (1 to 16) to or from the
destination operand. The result is stored in the
destination. The operand may be a byte, word, or
longword specified in a register or memory
location. Increment Interlocked and Decrement
Interlocked instructions are similar to Increment
and Decrement, but interlock protection is used to
fetch and store the destination operand in
memory. Interlock protection is important for
implementing critical counters referred to by
multiple processors.

The Negate instructions perform twos complement on

lBO,OOO Instruction Descriptions and Formats

BCD operations are supported with the Decimal
Adjust instruction. The DAB instruction is used
following the binary addition or subtraction of
bytes to adjust the destination operand, specified
in a register, for correct BCD representation.

Multiple precision arithmetic is supported with
the Add with Carry, Subtract with Carry, and
Extend Sign instructions. These instructions
operate on byte, word, or longword operands stored
only in registers. The Extend Sign instructions
compute a double-precision result.

The Check instructions are used to compare the
signed byte, word, or longword source operand
against lower and upper bounds. The source oper­
and is specified in a register, and the bounds are
specified as immediate values or in consecutive
memory locations. If the source is out of bounds,
a Bounds Check trap occurs.

The Index instruction is used either to compute an
index into a one-dimensional array, or as one step
in computing the index into a multiple-dimensional
array. The signed subscript is compared against
lower and upper bounds. If the subscript is out
of bounds, an Index Error Trap occurs; otherwise,
the lower bound is subtracted from the subscript,
and the difference is added to the destination.
The sum is then multiplied by the scale factor,
and the product is stored back into the destina­
tion, which is the calculated array offset. The
source and destination operands are specified in
registers. The bounds and scale factor are speci­
fied as immediate values or in consecutive memory
locations. All operands are the same size, either
word or longword.

6.2.l logical Instructions

Instruction Operand(s) N_ of Instruction

AND dst,src And
the destination operand in a register or memory ANDB
location. ANDL

The Compare instructions compare (subtract) the
source and destination operands and set the flags

COM
COMB

to reflect the result. The contents of a register COML
can be compared with an operand specified using
any addressing mode, and the contents of a memory OR
location can be compared with an immediate value. ORB
The Test Arithmetic instructions are special, ORL
compact encodings for comparing a register or
memory location with zero. TEST

TESTB
TESTL

dst Complement

dst,src Or

dst Test

6-3

l80,000 Instruction Oescriptions and Formats

XOR
XORB
XORl

dst,src Exclusive Or

The logical group consists of instructions for
performing logical operations on all bits of byte,
word, or longword operands; the instructions set
the land S flags according to the result. The
byte versions affect the P flag as well, setting
the P flag if the parity of the result is even.

The instructions And, Or, and Exclusive Or operate
on a destination operand in a register and a
source operand specified with any addressing
mode. The appropriate logical operation is
performed on bits of the operands, and the result
is stored back into the destination.

The Complement instruction complements the bits of
the destination operand; the result is stored back
into the destination. Tha operand is a byte, word
or longword specified in a register or memory
location.

The Test instruction performs a logical Or of the
destination operand and zero, and sets the flags
according to the result. The operand is a byte,
word, or longword specified in a register or
memory location.

6.2.4 Progr_ Control Instructions

Instructioo

BRKPT

CAll

CAlR

DJNl
DBJNl
DLJNl

ENTER

EXIT

JP

JR

RET

SC

TRAP

6-4

OperlDt(s)

dst

r,dst

mask,siz

cc,dst

cc,dst

cc

src

cc,src

N_ of Inatructioo

Breakpoint

Call

Call Relative

Decrement and Jump if
Not lero

Enter

Exit

Jump

Jump Relative

Return

System Call

Conditional Trap

This group consists of instructions that control
program flow for jumps, loops, procedure calls,
and exceptions. The instructions generally do not
affect the flags, except when new Program Status
is loaded for traps.

The Jump instruction loads the Program Counter
(PC) with the effective address of the destination
operand if the flags satisfy the specified condi­
tion. The destination is specified using any of
the memory addressing modes. The Jump Relative
instr uction is a special, compact encoding used
when the destination is within -254 to 256 bytes
of the instruction location.

The Call instruction is used for calling proce­
dures. The contents of the PC are pushed onto the
processor stack, and the effective address of the
destination operand is loaded into the PC. The
destination operand is specified using any of the
memory addressing modes. The Call Relative
instruction is a special, compact encoding used
when the destination operand is within -4092 to
4098 bytes of the instruction location.

The Enter instruction is executed at the beginning
of a procedure to establish the procedure's
environment. Enter adjusts the Frame Pointer and
Stack Pointer registers to allocate a new
activation record, which contains saved
general-purpose registers, the Frame Pointer, the
exception handler address, and local data. The
instruction contains a bit mask indicating which
general-purpose registers to save. The mask and
the value of the Integer Overflow Enable bit in
FCW are also saved in the activation record. The
Call and Enter instructions provide the essential
functions for linking procedures in high-level
languages such as C and Pascal.

Corresponding to Call and Enter instructions are
Return and Exit. Exit releases the activation
record by adjusting the Stack Pointer and restor­
ing the Frame Pointer. Exit also uses the mask
saved by Enter to restore the saved general-pur­
pose registers and Integer Overflow Enable bit.
The Return instruction pops a value from the proc­
essor stack into the PC if the flags satisfy the
specified condition.

The Decrement and Jump I f Not lero instructions
are used to control loops, such as those imple­
menting multiple-precision or decimal-string
arithmetic. The specified byte, word, or longword
register is decremented by one, and the result is
stored back into the register. If the result is
not zero, the PC is loaded with the effective
address of the destination. The destination may

be specified using Relative Address addressing
mode, at a location no more than 252 bytes (DJNl,
OBJNZ) or 250 bytes (DlJNl) before the
instruction.

The Breakpoint, System Call, and Conditional Trap
instructions are all used to generate traps. The
Breakpoint instruction is generally placed by a
debugger at the first word of an instruction where
a breakpoint is desired. The System Call instruc­
tion is used by programs operating in normal mode
to request service from the operating system; the
low-order byte of the instruction can be used to
indicate the particular service desired. The Con­
ditional Trap instruction generates a trap if the
flags satisfy the specified condition. This
instruction can be used for software detection of
run-time errors or other exceptions; a 4-bit field
in the instruction word can be used to identi fy
the cause of the trap. When one of these traps
occurs, the CPU pushes the Program Status regis­
ters and instruction word onto the system stack,
and loads new values into the Program Status reg­
isters from the Program Status Area. See Chapter
7 for more details about trap processing.

6.2.5 Bit Manipulation Instructions

Instruction Operand(s)

BIT dst,src
BITB
BITl

RES
RESB
RESl

SET
SETB
SETl

TSET
TSETB
TSETl

TCC
TCCB
TCCl

dst,src

dst,src

dst

cc,dst

N_ of Instruction

Bit Test

Reset Bit

Set Bit

Test and Set

Test Condition Code

The instructions in this group are used to manipu­
late an individual bit in a byte, word, or long­
word destination operand. Set Bit is used to set
a bit to 1; Reset Bit clears a bit to O. The bit
of the destination operand specified by the source
operand is set or cleared, and the result is
stored back into the destination. The Bit Test

lBO,OOO Instruction Descriptions and Formats

instruction tests the bit of the destination
specified by the source operand, and sets the l

flag to indicate the result. For "static"* bit
operations, the source operand is specified by an
immediate value and the destination operand may be
in a register or memory location. For "dynamic"
bit operations, the source and destination oper­
ands are in registers.

The Test Condition Code instruction sets the
least-significant bit of the byte, word, or long­
word destination register if the flags satisfy the
speci fied condition. This instruction is useful
for evaluating Boolean expressions.

The Test and Set instruction tests whether the
destination is negative, then sets all bits in the
destination to 1. Interlock protection is used to
fetch and store the destination operand in mem­
ory. Test and Set is used to access semaphores
protecting critical shared data structures in a
tightly-coupled multiprocessor system.

6.2.6 Bit field Instructions

N_of
Instruction Operand(s) Instruction

EXTR dst, src, pos, siz Extract field
EXTRU

INSRT dst, src, pos, siz Insert field

The instructions in this group are used to insert
and extract bit fields. A bit field is 1 to 32
contiguous bits that can cross byte boundaries.
One version of Extract (EXTR) is used to extract
and sign-extend a field into the destination long­
word register. Another version of Extract (EXTRU)
extracts and zero-extends the field. Insert is
used to insert a fie ld from the source long word
register.

A bit field is specified by three operands as fol­
lows: (Figure 6-1).

• The origin of the bit string is the most-sig­
nificant bit of a memory location or longword
register. The origin is specified by the
source operand for Extract and the destination
operand for Insert.

* The term "static" is used because the bit number
is an immediate value that cannot change.
"Dynamic" means the bit number is specified in
a register and can change.

6-5

zao,ooo Instruction Descriptions and Formats

... I I I I 1'1' I I ~I' I I~
IloRIGIN I I

INCREASING
ADDRESS ... -----

/-POSITION-/_SIZE-!

Figure 6-1. Bit Field

• The position of the field is the unsigned num­
ber of bits from the origin to the most-signif­
icant bit of the field. Position is messured
in the direction of decreasing significance
from the origin. The position of tha origin is
zero. The position is specified by an immediate
value (0 to 31) or in a word or longword regis­
ter. In the latter case the position may be
any positive value.

• The size of the field is the number of bits in
the field, between 0 and 31 inclusive, and
represents fields of 1 to 32 bits. The size is
specified by an immediate value or in a word or
longword register.

RRDB

SDA
SDAB
SDAl

SOL
SDlB
SDll

SlA
SLAB
SlAl

Sll
Slla

dst,src

dst,src

dst,src

dst,src

dst,src

Rotate Right Digit

Shift Dynamic
Arithmetic

Shift Dynamic logical

Shift left Arithmetic

Shift left logical

A bit field in memory must be contained entirely Slll
within four consecutive bytes (i.e., the position
modulo a plus the size operand must be less than
or equal to 31). A bit field in s long word regis­
ter must be entirely contsined within the register
(i.e., the position plus the size operand must be
less than or equal to 31).

Note that the direction of increasing bit number
for field position is opposite to Figure 2-1.

6.2.7 Rotate ... Shift Instructions

InstrllCtian Opersnd(s) N_ of InstrllCtion

Rl
RlB
Rll

RlC
RlCB
RlCl

RlOB

RR
RRB
RRl

RRC
RRCB
RRCl

6-6

dst,src

dst,src

dst,src

dst,src

dst,src

Rotate left

Rotate left through
Carry

Rotate left Digit

Rotate Right

Rotate Right through
Carry

SRA
SRAB
SRAl

SRl
SRlB
SRll

dst,src

dst,src

Shift Right Arithmetic

Shift Right logical

This group of instructions provides for rotating
and shifting of bytes, words, and longwords of
data located in general-purpose registers. The
Rotate and Shift instructions sffect the C, Z, S,
and P/V flags.

The Rotate instructions rotate the contente of the
destinstion register left or right by an amount
specified by the source operand. The source is an
immediate value of one or two. Rotation is per­
formed on the destinstion slone or, for mul tiple
precision arithmetic, on both the destination and
Csrry bit. The digit rot st ion instructions
RlDB snd RRDB are useful for msnipulsting BCD
data.

The Shift instructions shift the contents of the
destinstion register left or right by an amount
specified by the source operand. The value of the
source operand can be any amount between zero and
the number of bits in the destinstion. For
"static" shift operations, the source is specified

8225-011

by an immediate value; for "dynamic" shift
operations the source is specified in a register.
Both logical and arithmetic shifts are supported.
An Integer Overflow Trap occurs when the IV bit of
FCW is 1 and the V flag is set after execution of
an arithmetic shift instruction.

6.2.8 Block Transfer and String Manipulation
Instrt.K:tions

Instruction Operand(s) N_ of Instrt.K:tion

CPD dst,src,r,cc Compare and Decrement
CPDB
CPDL

CPDR
CPDRB
CPDRL

CPI
CPIB
CPIL

CPIR
CPIRB
CPIRL

CPSD
CPSDB
CPSDL

CPSDR
CPSDRB
CPSDRL

CPSI
CPSIB
CPSIL

CPSIR
CPSIRB
CPSIRL

LDD
LDDB
LDDL

LDDR
LDDRB
LDDRL

LDI
LDIB
LDIL

LDIR
LDIRB
LDIRL

dst,src,r,cc Compare, Decrement
and Repeat

dst,src,r,cc Compare and Increment

dst,src,r,cc Compare, Increment
and Repeat

dst,src,r,cc Compare String and
Decrement

dst,src,r,cc Compare String,
Decrement and Repeat

dst,src,r,cc Compare String and
Increment

dst,src,r,cc Compare String,
Increment and Repeat

dst,src,r Load and Decrement

dst,src,r

dst,src,r

dst,src,r

Load, Decrement and
Repeat

Load and Increment

Load, Increment and
Repeat

IBO,OOO Instruction Descriptions and Formats

TRDB dst,src,r Translate and
Decrement

TRDRB dst,src,r Translate, Decrement
and Repeat

TRIB dst,src,r Translate and
Increment

TRIRB dst,src,r Translate, Increment
and Repeat

TRTDB src1,src2,r Translate, Test and
Decrement

TRTDRB src1,src2,r Translate, Test,
Decrement, and Repeat

TRTIB src1,src2,r Translate, Test and
Increment

TRTIRB src1,src2,r Translate, Test,
Increment and Repeat

This group of instructions provides a full comple­
ment of string comparison, string translation, and
block transfer operations. A block can be moved
in memory, a string can be searched for a given
value, and two strings can be compared. These
instructions manipulate blocks or strings contain­
ing up to 65,536 bytes, words, or longwords. In
addition, a string containing up to 65,536 bytes
can be translated according to a table in memory,
or searched for a set of values specified by a
table in memory.

The block and string operands are speci fied using
Indirect Register addressing mode. When a string
is searched for a value, the value is located in a
register. The length of the block or string
is also located in a register.

All the block transfer and string manipulation
operations can proceed through the data in either
direction. Furthermore, the operations can be
repeated automatically while decrementing the
length register until it is zero, or they can
operate on a single element with the length regis­
ter decremented by one and the pointer registers
properly adjusted. The second form can be used
with other instructions in a loop to implement
more complex string operations.

These instructions set the P/V flag to indicate
whether the length register was decremented to
zero. The string Search and Compare instructions
set the C, Z, and S flags to indicate the result
of the comparison. The Translate and Test
instructions set the Z flag when one of the speci­
fied set of values is found. Otherwise, the flags
are unaffected.

The repetitive forms of these instructions are
interruptible after each iteration. Section 7.3.1
provides more information about interruptible
instructions.

6-7

l80,000 Instruction Descriptions and formats

6.2.9 Input/Output Instructions

Instruction Operand(s)

IN dst,src
IN8
INL

IND
INDB
INDL

INDR
INDRB
INDRL

INI
INIB
INIL

INIR
INIRB
INIRL

OlDR
OlDRB
OlDRL

OTIR
OTIRB
OTIRL

OUT
OUTB
OUTL

OUlD
OUlDB
OUlDL

OUT!
OUTIB
OUTIL

dst,src,r

dst,src,r

dst,src,r

dst,src,r

dst,src,r

dst,src,r

dst,src

dst,src,r

dst,src,r

N_ of Instruction

Input

Input and Decrement

Input,Decrement and
Repeat

Input and Increment

Input, Increment
Repeat

Output, Decrement
Repeat

Output, Increment
Repeat

Output

and

and

and

Output and Decrement

Output and Increment

The instructions in this group transfer data
between a peripheral port and a CPU register or
memory. All of these instructions are privileged.

A single byte, word, or longword of data can be
transferred between a peripheral port and a CPU
register with the Input and Output instructions.
The port address is specified using the Direct
Address or Indirect Register addressing modes.
The single transfer instructions do not affect the
flags.

6-8

The other instructions in the group are used to
transfer a block (up to 65,536 b"ytes, words, or
longwords of data) between a peripheral port and
memory. The port address and memory address are
speci fied using I ndirect Register addressing
mode. The length of the block is located in a
register. These instructions are similar to the
block move instructions described in Section 6.2.7
except that the port address remains unchanged
while the memory address is adjusted. The p/v
flag is set when the length register is decre­
mented to zero. The repetitive forms of these
instructions
iteration.

are interruptible after each

6.2.10 CPU Control Instructions

Instruction

COMFLG

DI

EI

HALT

IRET

LDCTL
LDCTLB
LDCTLL

LDND
LDNDB
LDNDL

LDNI
LDNIB
LDNIL

LDPND
LDPNI
LDPSD
LDPSI

LDPS

NOP

PC ACHE

PTLB

Operand(s) N_ of Instruction

flag Complement flag

int

int

dst,src

dst,src

dst,src

dst,src

src

Disable Interrupt

Enable Interrupt

Halt

Interrupt Return

Load Control Register

Load Normal Data

Load Normal
Instruction

Load Physical Address

Load Program Status

No Operation

Purge Cache

Purge TLB

PTLBEND
PTLBENI Purge TLB Entry
PTLBESD
PTLBESI

PfLBN Purge fLB Normal

RESFLG flag Reset Flag

SETFLG flag Set Flag

The instructions in this group perform privileged
operations necessary for the operating system to
control the CPU; only the No Operation and flag
manipulation (COMFLG, LDCTLB, RESFLG, SETFLG)
instructions can be executed in normal mode. The
only instructions that affect the flags are the
flag manipulation instructions, the instructions
that load the FCW (I RET , LDCTL, LDPS), and the
Load Physical Address instructions.

The Disable Interrupt and Enable Interrupt
instructions control the Vectored Interrupt and
Non-Vectored Interrupt enable bits in FCW. The
enable bits can be separately cleared or set.

The Halt instruction halts the CPU.

The Interrupt Return instruction is used to return
from an interrupt or trap handler. The Program
Status registers are loaded with values popped
from the system stack.

The Load Control instructions move data between a
control register and a general-purpose register.
The Load Program Status instruction loads the Pro­
gram Status registers (PC, FCW) from memory. The
memory location is specified using the IR or EAM
addressing modes.

Load Normal Data and Load Normal Instruction are
used in system mode to move data between a regis­
ter and a memory location in either of the normal
mode memory address spaces. The memory location
is specified using the IR or EAM addressing modes.

The Load Physical Address instructions load the
physical address of the source operand to the des­
tination register. The source operand is speci­
fied using the IR or EAM addressing modes. These
instructions set the flags to indicate the aCCesS
protection of the logical address and whether the
address translation was valid.

The Purge Cache instruction invalidates the
cache contents. The Purge TLB instruction invali­
dates all address translation table entries in the

ZBO,OOO Instruction Descriptions and Formats

fLB. Individual TLB entries can be invalidated
using the Purge TLB Entry instructions. All the
normal mode TLB entries can be invalidated using
the Purge TLB Normal instruction.

6.2.11 Extended Instructions

The ZBO,OOO architecture includes a powerful mech­
anism for extending the basic instruction set
through the use of coprocessors known as Extended
Processing Units (EPUs). For example, floating­
point arithmetic is supported by the ZB070 Arith­
metic Processing Unit. When an extended instruc­
tion is executed and the EPA bit in the FCW is 1,
the CPU transfers the instruction to the EPU. The
CPU also controls the transfer of data between the
EPU and either memory or the CPU. If the EPA bit
is 0, an Extended Instruction trap occurs to allow
software emulation in systems that lack an EPU.

The CPU supports four types of extended instruc­
tions: EPU internal operations that do not
require any data transfer; transfer of one to six­
teen words of data between the EPU and consecutive
word or longword general-purpose registers;
transfer of one byte of data between the EPU and
the flag byte of the FCW; and the transfer of one
to sixteen bytes or words of data between the EPU
and memory. The flags are affected only when the
flag byte is loaded.

6.3 fLAGS AN) CIJN)ITION COOES

The Program Status includes six processor flags as
follows: Carry (C), Zero (Z), Sign (S),
Parity/Overflow (P/V), Decimal Adjust (D), and
Half Carry (H). These flags are affected or
tested by most instructions. Arithmetic, logical,
and other instructions previously described modify
the flags to indicate the resu 1 t of the
operation. Among the instructions that test
whether or not the flags indicate a specified
condition are Jump, Return, and Test Condition
Code. For example, a Test instruction may be
followed by a Jump:

TEST R1 ! sets Z flag if R1 = O!
JR Z, DONE !go to DONE if Z flag is set!

DONE:

The program branches to DONE if the TEST
sets the Z flag, i.e., if R1 contains zero.

6-9

Z80,000 Instruction Descriptions and Formats

The Carry (C) flag is set to 1 following certain
operations when there ia a carry from or a borrow
into the high-order bit position of the result.

For example, adding the 8-bit numbers 225 and 64
causes a carry out of bit 7 and sets the Carry
flag:

Bit
7 6 5 II , 2 o

225 1
+ 64 0

o 0 0 0 1
o 0 0 0 0 0

289 0 0 0 0 0 0
Carry flag

The Carry flag is important for implementing
multiple-precision arithmetic (see the ADC, SBC
instructions). It is also involved in the Rotate
Left Through Carry (RLC) and Rotate Right Through
Carry (RRC) instructions. These instructions are
used to implement rotation or shifting of data.

The Zero (Z) flag is set to 1 when the result
of certain operations is zero. This flag is
useful to determine when a counter reaches zero.
In addition, the block compare instructions use
the Z flag to indicate when the speci fied
comparison condition is satisfied.

The Sign (5) flag is set to 1 when the result of
certain operations is negative (i.e., the
most-significant bit is 1).

The Overflow (V) flag is set to 1 when the result
of certain operations cannot be represented as a
twos camp lement number in the same precision as
the destination. In the example below for 8-bit
numbers, 120 is added to 105. The result, 225,
cannot be represented in 8 bits; it appears to be
-31. In such a case, the Overflow flag is set and
only the low-order bits of the result are stored
into the destination.

Bit
7 6 5 II , 2 0

120 0 1 0 0 0

+ 105 0 0 0 0

225 0 0 0 0
Overflow flag set

6-10

The Parity (P) flag is set to 1 when the result of
logical operations on bytes has even parity (i.e.,
the number of 1 bits is even). The Overflow and
Parity flags share the same bit in the FCW, hence
the bit is named p/v.

The Decimal Adjust (D) and Half-Carry (H) flags
are used for BCD arithmetic. Following the binary
addition of two bytes, the D flag is set and the H
flag indicates the carry from bit 3. Following
the binary subtraction of two bytes the 0 flag is
cleared and the H flag indicates the borrow from
bi t 3. Decimal ar i thmetic on BCD bytes is per­
formed by first adding or subtracting the operands
using binary arithmetic. Afterwards, the Decimal
Adjust instruction adjusts the result for correct
8CD representation.

The C, Z, 5, and p/V flags are also used to con­
trol the operation of conditional instructions
such as Jump. The operation of these instructions
depends on whether the four flags satisfy a
specified condition. Conditional instructions
contain a 4-bit field, called the condition code,
that specifies one of sixteen flag conditions to
test. Table 6-1 lists the flag condition tested
and the binary encodings for the condition codes.

6.11 NOTATION AND BINARY ENCODING

The rest of this chapter contains detailed
descriptions for each instruction, listed in
alphabetical order. This section describes the
notational conventions used in the instruction
descriptions and the binary encoding for some
common instruction fields (e.g., register des­
ignation fields). The bit patterns for other
instruction fieldS are shown explicitly in the
instruction format.

An instruction's descr iption begins with the
instruction mnemonic and instruction name in the
top part of the page. Privileged instructions are
also identified as such at the top of the page.

The assembler language syntax is then given in a
general form that covers all the variants of the
instruction and the order of source, destination
and other operands, along with a list of applic­
able addressing modes.

Example:

AN) dst, src
ANlB

ANll

dst: R
src: R, 1M, IR, EAM

ZBO,OOO Instruction Descriptions and Formata

Table 6-1. Condition Codes

Code MaMing

F Always false
T Always true
l Zero
NZ Not zero
C Carry
NC No carry
PL Plua
MI Minus
NE Not equal
EQ Equal
OV Overflow
NOV No overflow
PE Parity even
PO Parity odd
GE Greater than or equal
LT Less than
GT Greater than
LE Less than or equal
UGE Unsigned greater than or equal
ULT Unsigned leas than
UGT Unsignad greater than
ULE Unsigned leaa than or equal

Flag Setting

Z
Z = 0
C 1
C 0
5 0
5 =
Z = 0
Z =
V =
V = 0
P 1
P 0
(5 XOR V) = 0
(5 XOR V) = 1
(Z OR (5 XOR V»
(Z OR (5 XOR V»
C = 0
C = 1
«C = 0) AND (Z
(C OR Z) = 1

= 0
1

0»

Binary

0000
1000
0110
1110
0111
1111
1101
0101
1110
0110
0100
1100
0100
1100
1001
0001
1010
0010
1111
0111
1011
0011

Some condition codea correspond to identical flag settings: Z-EQ, NZ-NE,
C-ULT, NC-UGE, PE-OV, and PO-NOV. If no condition is specified, the default
condition is T (always true).

The operation of the instruction is presented
next, followed by a detailed discussion of the
instruction, including the effect of the instruc­
tion on the processor flags. Exceptions that can
occur for the instruction are listed next. Some
excaptions, such as the Address Translation trap,
can occur for any instruction. Only exceptions
specific to the instruction are listed.

Finally, s table is presented showing the assem­
bler language syntax and instruction format for
each addressing mode and operand size. An aesem­
bIer language example showing the use of the
instruction is also given.

6.4.1 AsaeIIbler Language Syntax

The syntax is shown for each operand size (byte,
word or longword). The invariant part of the
ayntax is given in upper case and muat appear as
shown. Lower case characters represent the
variable part of the syntax, for which suitable
values are substituted. The syntax is shown for
the most basic form of the instruction recognized
by the assembler. For example,

ADD Rd,ldata

repreaents a statement of the form ADO R3,135.
The assembler also accepts variations such as ADD
TOTAL, INEW-DELTA where TOTAL, NEW and DELTA have
been previously defined.

When the assembler syntax can be encoded in more
than one format (e.g., LOB RHO, 11), the assembler
generally uses the shortest encoding.

The following notation is used for regiaters:

Rbd,Rbs a byte register (RHO,RH1, ••• ,RH7,RLO,
RL1, ... ,RL7)

Rd,Rs
RRd,RRs

RQd

a word register (RO,R1, ••• ,R15)
a longword register
(RRO,RR2, ••• ,RR30)
a quad word register
(RQO,RQ4, ••• ,RQ2B)

The ending "s" or "d" for the register notation
indicates either a source or destination operand,
respectively. Addrees registers must be word reg­
isters in compact mode and longword registers in
segnented or linear mode, as exp lained in foot­
notes to applicable instructions.

Several addressing modes are combined together in
a group called Extended Addressing Modes (EAM).

6-11

ZBO,OOO Instruction Descriptions and Formats

The instruction encoding for these addressing
modes requires one or more extension words follow­
ing the opcode. In compact mode, the EAMs are
Direct Address and Index (Base Address and Index
addressing modes are equivalent in compact mode.)
In segmented or linear mode, the EAMs are Direct
Address, Index, Base Address, Base Index, Relative
Address, and Relative Index. Where the symbol
"eam" is found in the assembler syntax, any EAM
can be used. Refer to Section 5.3 for the
assembler syntax for particular addressing modes.

Conditional instructions specify a condition code,
indicated by "cc" in the assembler syntax.
Table 6-1 lists the assembler mnemonics for condi­
tion codes.

The assembler recognizes comments beginning with
"II" and continuing to the end of the line.

6.4.2 Instruction Foraat

The binary encoding of each instruction is given
as part of the instruction description. Some
fields in the instruction contain symbols whose
values are described below.

The symbol "W" is used for a single bit that dis­
tinguishes between the byte and word versions of

the instruction. The bit takes the value 0 for
byte versions and 1 for word versions.

Fields specifying registers are identified with
the same symbol (Rs, RRd, etc.) used in the
assembler language syntax. When the field cannot
take the value 0, a notation of the form "Rs;oiO" is
used. Table 6-2 shows the binary encoding for
register fields.

6-12

Code

0000
0001
0010
0011

0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Table 6-2.

Byte

RHO
RH1
RH2
RH3

RH4
RH5
RH6
RH7
RLO
RL1
RL2
RL3
RL4
RL5
RL6
RL7

Register Field Encoding

Word

RO
R1
R2
R3

R4
R5
R6
R7
RB
R9
R10
R11
R12
R13
R14
R15

long

RRO
RR16

Quad

RQO
RQ16

RR2 Unimplemented
RR1B Unimplemented

RR4
RR20
RR6
RR22
RRB
RR24

RQ4
RQ20

Unimplemented
Unimplemented

RQB
RQ24

RR10 Unimplemented
RR26 Unimplemented
RR12 RQ12
RR2B RQ2B
RR14 Unimplemented
RR30 Unimplemented

For bit field instructions, the position and size
operands are specified by a 6-bit field. The
operands can be immediate values or located in a
word or longword register. The format of the
field is shown below.

0 n n n n n 5-bit immediate value
(0 to 31)

0 r r r r word register
r r r r long word register

6.4.' Extended Addressing tbdea (EAM)

The format for instructions using an EAM includes
an opcode word containing a 4-bit field indicated
by "earn", followed by one, two, or three extension
words. An example is shown below.

Assembler Language Syntax

ADDL RRd,eam

6.4.'.1 COIIIpsct Mode. In compact mode, the
[AM format is used for Direct Address or Index
addressing modes. The opcode is followed by a
single extension word containing the base address

Addressing Modes

earn Mode

DA
X (word index)

6.4.'.2 ~ted or Linear Mode. In segmented
or linear mode, there are six [AM formats used for
Direct Address, Index, Base Address, Base Index,
Relative, and Relative Index addressing modes.
The six formats are distinguished by the encoding
of the most-significant bit and the four least­
significant bits of the first extension word. The
most frequently used formats require only a single
extension word, but formats with two and three
extension words are provided to access the entire

Addressing Modes

earn Mode
o RA

*0 SA

lBO,OOO Instruction Descriptions and Formats

The following sections describe the various encod­
ing possibilities for EAM. An EAM format
specifies the three components of an effective
address calculation: base address, index value,
and displacement. Refer to Section 5.2 for more
information about effective address calculations.

Instruction Format

o 1 10 1 0 1 1 0 I earn I RRd

1, 2 or 3 extension words

used in effective address calculation. The eam
field specifies a word index register (eam;lO) or
no index register (eam=O).

Instruction Format

1°:' ! .' : :
address space. The formats are described below.

The first format uses a single extension word to
specify Base Address or Relative Address address­
ing modes. The earn field specifies the base
address for the effective address calculation in a
longword register (eam;lO) or the Program Counter
(eam=D). The extension word encodes a displace­
ment in the range -B192 to B191 inclusive.

Instruction Format

6-U

lBO,OOO Instruction Descriptions and Formats

The second format uses a single extension word to
specify Base Address, Base Index, Relative
Address, or Relative Index addressing modes. The
earn field specifies the base address for the
effecti ve address calculation in a longword
register (eam;llO) or the Program Counter (eam=O).

Addressing Modes

eam x L Mode
0 ° 0 RA

° ° 1 unimplemented

° *0 0 RX (word index)

° *0 1 RX (long index)
*0 ° ° SA
*0 ° 1 unimplemented
*0 *0 ° SX (word index)
*0 *0 SX (long index)

The third format uses three extension words to
specify Base 'Address, Base Index, Relative
Address, or Relative Index addressing modes. The
encoding of the earn, x, and L fields is the same

Addressing Modes

eam x L Mode
0 ° ° RA
0 ° 1 unimplemented

° *0 ° RX (word index)
0 *0 1 RX (long index)

*0 ° ° SA
*0 ° 1 unimplemented
*0 *0 ° SX (word index)
*0 *0 SX (long index)

The fourth format uses three extension words to
specify Direct Address or Index addressing modes.
The base address used in the effective address
calculation is contained in the second and third
extension words. This format can be used to
speci fy any address. The x field specifies an

6-14

Addressing Modes

x L Mode
DA
unimplemented
X (word index)
X (long index)

The x field specifies an index register (x;llo) or
no index register. When an index register is
specified, the L field determines whether a long­
word (L=1) or word (L=O) register is used. The
extension word encodes a displacement in the range
-64 to 63 inclusive.

Instruction Format

01 1
eam

11 displacement x 1 0ILIO

as the previous format, but a 32-bit displacement
is contained in the second and third extension
words.

Instruction Format

01 1
eam

10000000 x 111LI0

displacement (high)

displacement (low)

index register (x ;II 0) or no index register
(x = 0). When an index register is specified, the
L field determines whether a longword (L = 1) or
word (L = 0) register is used. Note that the eam
field must be alIOs in this format.

Instruction Format

01\ 0000

10000000 x o 1\L\0

address (high)

address (low)

The fi fth format uses a single extension word to
speci fy Direct Address or Index sddressing modes.
The base sddress used in the effective address
calculation is encoded in the extension word. In
segmented mode, this format can be used to specify
addresses in a 64K-byte segment with the eight

Addressing Modes

earn Mode
o DA

*0 X (word index)

Encoded Address

The sixth format uses two extension words to
specify Direct Address or Index addressing modes.
The bass addrsss used in the effective addrees
calculation is encoded in the extension words. In
segmented mode, this format can be used to specify
addresses in a 64K byte segment with the eight

Addressing Modes

earn Mode
o DA

* 0 X (word index)

Encoded Address

6._._ Unillpl-':ed InBtructioo £ncodings

Section 6.5 lists all of the instruction encodings
for which the CPU's' operation is defined. Any
instruction encodings not listed are unimplemented
and must not be used. for most of the unimple­
mented instruction encodings, including all those
with first byte 3616 or 8f 16 and certsin Z8000
opcodes descr ibed in Appendix A, an st tempt to
execute the instruction causes an Unimplemented

01 1

01

01 1

11

Z80,000 Instruction Descriptions and formats

lesst-significant bits of the segment number and
eight most-significant bits of the offset equel to
O. In linear mode, the CPU similarly decodes the
address in the extension word, but this format is
less useful. The eam field specifies a word index
register (eam ~ 0) or no index register (eam = 0).

Instruction Format

earn 1

segment offset

offset
I I !

least-significant bits of the segment number equal
to O. In linear mode, the CPU similarly decodes
the address in the extension words, but this
format is less often used. The eam field
specifies a word index register (eam ~ 0) or no
index register (eam = 0).

Instruction Format

earn 1

segment 0000 0000

offset

offset
! , , , , , I ! , , , I ,

Instruction trap to occur. If a program
erroneously uses an unimplemented instruction thst
does not trap, the CPU's operation is not speci­
fied; however, the CPU never performs an operation
thst could not otherwise be performed by executing
a sequence of defined instructions. for example,
a progrsm executing in normal mode cannot gsin
access to privileged control registers or memory
locations by executing en instruction with an
unimplemented encoding.

6-15

6.5 Z80,OOO Instruction Descriptions and For.ats

ADC ADC
Add With Carry Add With Carry

Operation:

Flags:

Exceptions:

Addressing
Mode

R:

Example:

6-16

ADC dst, src
ADCB
ADCL

dst - dst + src + c

dst: R
src: R

The source operand, along with the setting of the C flag, is added to the destination
operand and the sum is stored in the destination. The contents of the source are not
affected. Twos complement addition is performed. In multiple precision arithmetic,
this instruction permits the carry from the addition of low-order operands to be car­
ried into the addition of high-order operands.

C: Set if there is a carry from the most-significant bit of the result; cleared
otherwise

Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands were of the same sign

and the result is of the opposite sign; cleared otherwise
D: ADC, ADCL-unaffected; ADCB-cleared
H: ADC, ADCL-unaffected; ADCB-set if there is a carry from the most-significant

bit of the low-order four bits of the result; cleared otherwise

None

Assembler Language
Syntax

ADC Rd, Rs
ADCB Rbd, Rbs

ADCL RRd, RRs

Instruction Format

Rd

01111010 00000010

1 011 1 0 1 0 1 RRs 1 RRd

Ouadword addition can be done with the following instruction sequence, assuming
ROO contains one operand and R04 contains the other operand:

ADDL RR2,RR6 /ladd low-order longwords
ADCL RRO,RR4 /ladd carry and high-order longwords

If RRO contains %00000000, RR2 contains % FFFFFFFF, RR4 contains %00004320
and RR6 contains %00000001, then executing the two instructions above leaves the
value %00004321 in RRO and %00000000 in RR2.

Operation:

Flags:

Exceptions:

Source
Addressing

Mode

R:

1M:

IR:

ADD dst, src
AD DB
ADDL

dst - dst + src

dst: R
src: R, 1M, IR, EAM

ADD
Add

The source operand is added to the destination operand and the sum is stored in
the destination. The contents of the source are not affected. Twos complement addi­
tion is performed.

c: Set if there is a carry from the most-significant bit of the result; cleared
otherwise

Z: Set if the result is zero; cleared otherwise
5: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands were of the same sign

and the result is of the opposite sign; cleared otherwise
D: ADD, ADDL-unaffected; ADDS-cleared
H: ADD, ADDL-unaffected; ADDS-set if there is a carry from the most-significant

bit of the low-order four bits of the result; cleared otherwise

Integer Overflow trap

Assembler Language
Syntax

ADD Rd, Rs
ADDS Rbd, Rbs

ADDL RRd, RRs

ADD Rd, Itdata

ADDS Rbd, Itdata

ADDL RRd, Itdata

ADD Rd, @RS1
ADDS Rbd, @RS1

ADDL RRd, @RS1

Instruction Format

Rd

11 0 I 0 1 0 1 1 0 I RRs RRd

o 0 I 0 0 0 0 0 1 I 0 0 0 0 I Rd

data

o 0 I 0 0 0 0 0 0 0 0 0 0 I Rbd

data data

00 I 0 1 0 1 1 0 I 0 000 I RRd

data (high)

data (low)

loolooooolwi Rs""O I Rd

6-17

Source
Addressing

Mode

EAM:

Example:

6·18

Assembler Language
Syntax

ADD

ADD Rd, eam
ADDS Rbd, eam

ADDL RRd, eam

R2, %1254

Before instruction execution:

1252

1254

1256

Memory

~
After instruction execution:

Memory

1252~
1254 0 6 4 4

1256

Instruction Format

o 1 I 0 0 0 0 0 I w I earn I Rd

1, 2, or 3 extension words

o 1 I 0 1 0 1 1 0 I earn I RRd

1, 2, or 3 extension words

lIadd the word at % 1254 to R2 in compact mode

R2

R2

Ie 3 6 51

Flags

CZS P/v D H

czspdh

Flags

C Z S P/v D H

0010dh

Note 1: Word register in compact mode, longword register in segmented or linear modes.

Operation:

Flags:

Exceptions:

Source
Addressing

Mode

R:

1M:

AND dst, src
ANDB
ANDL

dst - dst AND src

AND
And

dst: R
src: R, 1M, IR, EAM

A logical AND operation is performed between the corresponding bits of the source
and destination operands, and the result is stored in the destination. A 1 bit is stored
wherever the corresponding bits in the two operands are both 1 s; otherwise a 0 bit
is stored. The contents of the source are not affected.

C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the most-significant bit of the result is set; cleared otherwise
P: AND, ANDL- unaffected; ANDB - set if parity of the result is even; cleared

otherwise
D: Unaffected
H: Unaffected

None

Assembler Language
Syntax

AND Rd, Rs
ANDB Rbd, Rbs

ANDL RRd, RRs

AND Rd, #data

ANDB Rbd, #data

ANDL RRd, #data

Instruction Format

Rd

01111010 00000010

1 0 I 0 0 0 1 1 1 RRs I RRd

o oj 000111 I 0000 I Rd

data

o 0 I 0 0 0 1 1 0 0 00 0 I Rbd

data data

01111010 0000 0010

001000111 00001 RRd

data (high)

data (low)

6-19

Source
Addressing

Mode

IR:

EAM:

Example:

6·20

Assembler Language
Syntax

AND Rd. @Rs'
AN DB Rbd. @Rs'

ANDL RRd. @Rs'

AND Rd. earn
ANDB Rbd. earn

ANDL RRd. earn

ANDB RL3, II %CE

Before instruction execution:

RL3

11100111

After instruction execution:

RL3

11000110

Flags

CZSPNDH
czspdh

Flags

CZSPNDH

c011dh

Instruction Format

01111010 00000010

001 000111 Rs*O I RRd

o 1 10 0 0 1 11 W eam I Rd

1,2, or 3 extension words

0111101000000010

o 11 0 0 0 1 1 1 eam 1 RRd

1,2, or 3 extension words

Note t: Word register in compact mode. longword register in segmented or linear modes.

Operation:

Flags:

Exceptions:

BIT dst, src
BITB
BITL

Z - NOT dst <src>

dst: R, IR, EAM
src: 1M
or

dst: R
src: R

BIT
Bit Test

The specified bit within the destination operand is tested, and the Z flag is set to 1 if
the specified bit is 0; otherwise the Z flag is cleared to O. The contents of the
destination are not affected. The bit number (the source) can be specified either as
an immediate value (static), or as a word register that contains the value (dynamic).
In the dynamic case, the destination operand must be in a register, and the source
operand must be in a word register.

The bit number is a value from 0 to 7 for BITB, 0 to 15 for BIT, or 0 to 31 for BITL
with 0 indicating the least-significant bit. Only the lower three bits of the source
operand are used to specify the bit number for BITB, only the lower four bits are
used for BIT, and only the lower five bits are used for BITL.

c: Unaffected
Z: Set if specified bit is zero; cleared otherwise
S: Unaffected
V: Unaffected
0: Unaffected
H: Unaffected

None

Bit Test Static
Destination
Addressing

Mode

R:

IR:

EAM:

Assembler Language
Syntax

BIT Rd, #b
BITB Rbd, #b

BITL RRd, #b

BIT @Rdl, #b
BITB @Rd', #b

BITL @Rdl, #b

BIT eam, #b
BITB eam, #b

Instruction Format

b

01111010 0000 0010

101100111b RRd b

01111010 0000 0010

0011001 1 b Rd*O 1 b

01 11 001 11 Wi eam 1 b

1, 2,or 3 extension words

6-21

Bit Test Static (Continued)

Addressing
Mode

Assembler Language
Syntax

BITL earn, ffb

Instruction Format

01111010 00000010

o 1110 0 1 1 1 beam 1 b

1, 2, or 3 extension words

Bit Test Dynamic

Addressing
Mode

R:

Example:

6-22

Assembler Language
Syntax Instruction Format

BIT Rd, Rs
BITB Rbd, Rs

BITL RRd, Rs

001100111 w
00001 Rd

01111010

0011 001 1 1

00001 RRd

0000

0000

0000

0000

0000

If register RH2 contains % B2 (10110010), executing the instruction

BITB RH2, #0

leaves the Z flag set to 1.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

Rs

0000

0010

Rs

0000

Operation:

Flags:

Exceptions:

Addressing
Mode

BRKPT

SP-SP - 6
@sp-ps
SP- SP - 2
@ SP - instruction
PS - Breakpoint trap PS

BRKPT
Breakpoint

This is a one word instruction that causes a Breakpoint trap. This instruction can be
used by a software debugger to replace the first word of the instruction where a
breakpoint is set.

Flags loaded from Program Status Area

Breakpoint trap

Assembler Language
Syntax

BRKPT

Instruction Format

1011110 10 10000 000 1 1

6-23

CALL
Call

Operation:

Flags:

Exceptions:

Destination
Addressing

Mode

IR:

EAM:

Example:

6-24

CALL dst

Compact
tmp - EFFECTIVEJDDRESS (dst)
SP -SP - 2
@SP-PC

dst: IR, EAM

Segmented or Linear
tmp - EFFECTIVEJDDRESS (dst)
SP-SP - 4
@SP-PC

This instruction transfers control to a procedure or subroutine. The current contents
of the Program Counter (PC) are pushed onto the top of the processor stack. The
Stack Pointer (SP) pushed is R15 in compact mode, or RR14 in segmented or linear
mode. (The PC value used is the address of the first instruction word following the
CALL instruction.) The destination address, which pOints to the first instruction of the
called procedure, is then loaded into the PC. At the end of the called procedure, a
RET instruction can be used to return control to the instruction following CALL. RET
pops the top of the processor stack back into the PC.

No flags affected

None

Assembler Language
Syntax

CALL eam

Instruction Format

1001011111 I Rd*O 10 000 1

o 11 0 1 1 1 1 1 1 eam 10 0 0 0

1,2, or 3 extension words

In compact mode, if the contents of the PC are % 1 000 and the contents of the
Stack Pointer (R15) are % 3002, executing the instruction

CALL %2520

causes the SP to be decremented to % 3000, the value % 1004 (the address follow­
ing the CALL instruction with Direct Address mode specified) to be loaded into the
word at location %3000, and the PC to be loaded with the value %2520. The PC
now points to the address of the first instruction in the procedure to be executed.

Note 1: Word register in compact mode. longword register in segmented or linear modes.

Operation:

Flags:

Exceptions:

Destination
Addressing

Mode

RA:

Example:

CALR dst

Compact
SP- SP - 2
@SP-PC
PC - PC - (2 X displacement)

dst: RA

Segmented or Linear
SP- SP - 4
@SP-PC

CALR
Call Relative

PC - PC - (2 X displacement)

The current contents of the Program Counter (PC) are pushed onto the top of the
processor stack. The Stack Pointer (SP) used is R15 in compact mode, or RR14 in
segmented or linear mode. (The PC value used is the address of the first instruction
word following the CALR instruction.) The destination address, which points to the
first instruction of the called procedure, is calculated and then loaded into the PC.

At the end of the called procedure, a RET instruction can be used to return control
of the instruction following CALR. RET pops the top of the processor stack back into
the PC.

The destination address is calculated by subtracting twice the displacement in the
instruction from the current value of the PC. The displacement is a 12-bit signed
value in the range -2048 to 2047. Thus, the destination address must be in the
range -4092 to 4098 bytes from the start of the CALR instruction. The assembler
automatically calculates the displacement by subtracting the address given by the
programmer from the PC value of the following instruction and dividing the result by
two.

No flags affected

None

Assembler Language
Syntax

CALR address

Instruction Format

displacement

In linear mode, if the contents of the PC are %00001000 and the contents of the SP
(RR14) are % FFFF3002, executing the instruction

CALR PROC

causes the SP to be decremented to % FFFF3000, the value %00001002 (the ad­
dress following the CALR instruction) to be loaded into the longword location
% FFFF3000, and the PC to be loaded with the address of the first instruction in pro­
cedure PROC.

6-25

CHK
Check

Operation:

Flags:

Exceptions:

Source
Addressing

Mode

1M:

6-26

CHK dst, src
CHKB
CHKL

dst: R
src: 1M, IR, EAM

tmp - EFFECTIVE._ADDRESS (src)
lower - @tmp
if dst < lower then Bounds Check trap
tmp - tmp + (1 if CHKB; 2 if CHK; 4 if CHKL)
upper - @tmp
if dst > upper then Bounds Check trap

The destination is compared against the bounds specified by the source operand. If
the destination is less than the lower bound or greater than the upper bound, a
Bounds Check trap occurs. The destination and bounds are compared as signed in­
tegers. The contents of the source and destination are not affected.

The source specifies the lower bound. The upper bound is located at the next con­
secutive byte, word, or longword.

No flags affected.

Bounds Check trap

Assembler Language
Syntax

CHK Rd. #Iower. #upper

CHKB Rbd. #Iower. #upper

CHKL RRd. #Iower. #upper

Instruction Format

001001101 0000 1 01 0

00001 Rd 0000 0000

lower

upper

001 001 1 00 0000 1 01 0

00001 Rbd 0000 0000

lower upper

001001101 0000 1 01 1

00001 RRd 0000 0000

lower (high)

lower (low)

upper (high)

upper (low)

Source
Addressing

Mode

IR:

EAM:

Example:

Assembler Language
Syntax

CHK Rd, @RSI
CHKB Rbd, @RSI

CHKL RRd, @RSI

CHK Rd, earn
CHKB Rbd, earn

CHKL RRd, earn

If RR2 contains 11, executing the instruction

CHKL RR2, #0, #10

Instruction Format

001 0 01 10lw Rs*O 1 01 0

o 0 0 0 1 Rd 0 0 0 0 0 0 0 0

001 0011 01 Rs*O 1 01 1

o 0 0 01 RRd 0 0 0 0 0 0 0 0

o 1 I 0 0 1 1 olw eam 1 0 1 0

o 0 0 0 1 Rd 0 0 0 0 0 0 0 0

1,2, or 3 extension words

o 1 I 0 0 1 1 0 1 eam 1 0 1 1

o 0 0 0 I RRd 0 0 0 0 0 0 0 0

1, 2, or 3 extension words

causes a Bounds Check trap because the value in RR2 is greater than the upper
bound of 10.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-27

CLR
Clear

Operation:

Flags:

Exceptions:

Destination
Addressing

Mode

R:

IR:

EAM:

Example:

6-28

CLR dst
CLRB
CLRL

dst-o

The destination is cleared to O.

No flags affected.

None

Assembler Language
Syntax

CLR Rd
CLRB Rbd

CLRL RRd

CLR @Rd1

CLRB @Rd1

CLRL @Rd1

CLR eam
CLRB eam

CLRL eam

dst: R, IR, EAM

Instruction Format

11 01 0 1 1 1 00 1 RRd 10 1 0 0 I

100 1001 1 0 1 wi Rd '" 0 11 000 I

10 0 I 0 1 1 1 0 0 I Rd '" 0 I 0 1 0 0 I

01100110lwl eam 11000

1, 2, or 3 extension words

o 1 1 0 1 1 1 0 0 1 eam 1 0 1 0 0

1, 2, or 3 extension words

In linear mode, if the longword at location %OOOOABBA contains 13, executing the
instruction

CLRL %ABBA

leaves the value 0 in the longword at location %OOOOABBA.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

Operation:

Flags:

Exceptions:

Destination
Addressing

Mode

R:

IR:

EAM:

Example:

COM
Complement

COM dst
COMB
COML

dst - NOT dst

dst: R, IR, EAM

The contents of the destination are complemented (ones complement); all 1 bits are
changed to 0, and vice-versa.

C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the most-significant bit of the result is set; cleared otherwise
P: COM, COML-unaffected; COMB-set if parity of the result is even;

cleared otherwise
D: Unaffected
H: Unaffected

None

Assembler Language
Syntax

COM Rd
COMB Rbd

COML RRd

COM eam
COMB eam

COML eam

Instruction Format

11 0 I 0 1 1 1 0 0 I RRd I 0 0 0 0 1

10010011 0 I w I Rd '" 0 100001

10 0 I 0 1 1 1 00 I Rd '" 0 100 001

o 110 0 1 1 0 I w J earn I 0 0 0 0

1, 2, or 3 extension words

o 1 I 0 1 1 1 0 0 I earn I 0 0 0 0

1,2, or 3 extension words

If register R1 contains % 2552 (0010010101010010), executing the instruction

COM R1

leaves the value %DAAD (1101101010101101) in R1.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-29

COMFLG
Complement Flag

Operation:

Flags:

Exceptions:

Example:

6-30

COMFLG flag Flag: C, Z, S, P, V
FLAGS < 7:4 > - FLAGS < 7:4> XOR instruction<7:4>

Any combination of the C, Z, S, P or V flags can be complemented (each 1 bit is
changed to 0, and vice-versa). If the bit in the instruction corresponding to a flag is
1, the flag is complemented; if the bit is 0, the flag is unchanged. All other bits in
the Flags register are unaffected. Note that the P and V flags are represented by
the same bit. There can be one, two, three or four operands in the assembly
language statement, in any order.

C: Complemented if specified; unaffected otherwise
Z: Complemented if specified; unaffected otherwise
S: Complemented if specified; unaffected otherwise
P/V: Complemented if specified; unaffected otherwise
0: Unaffected
H: Unaffected

None

Assembler Language
Syntax

COMFLG flags

Instruction Format

1 0 0 0 1 1 0 1 Ie Z S PIVI 0 1 0 1 I

If the C, Z, and S flags are all clear (= 0), and the P flag is set (= 1), executing the
instruction

COMFLG P, S, Z, C

leaves the C, Z, and S flags set, and the P flag clear.

Operation:

Flags:

Exceptions:

CP dst, src
CPB
CPL

dst - src

dst: R
src: R, 1M, IR, EAM
or
dst: IR, EAM
src: 1M

CP
Compare

The source operand is compared to (subtracted from) the destination operand, and
the flags are set accordingly. The flags can then be used for arithmetic and logical
conditional jumps. Both operands are unaffected; the only action is the setting of
the flags. Subtraction is performed by adding the twos complement of the source
operand to the destination operand. There are two variants of this instruction: Com­
pare Register compares the contents of a register against an operand specified by
any of the basic addressing modes; Compare Immediate performs a comparison
between an operand in memory and an immediate value.

C: Cleared if there is carry from the most-significant bit of the result; set other-
wise, indicating a borrow

Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands were of opposite signs

and the sign of the result is the same as the sign of the source; cleared
otherwise

0: Unaffected
H: Unaffected

None

Compare Register

Source
Addressing

Mode

R:

1M:

Assembler Language
Syntax

CP Rd, Rs
CPB Rbd, Rbs

CPL RRd, RRs

CP Rd, #data

CPB Rbd, #data

CPL RRd, #data

Instruction Format

Rd

11010100001 RRs RRd

001 001011100001 Rd

data

o 0 I 0 0 1 0 1 0 0 0 0 0 I Rbd

data data

001 010000 10000 I RRd

data (high)

data (low)

6-31

Source
Addressing

Mode

IR:

EAM:

Assembler Language
Syntax

CP Rd, @RSl
CPS Rbd, @RSl

CPL RRd, @RSl

CP Rd, eam
CPS Rbd, eam

CPL RRd, eam

Compare Immediate
Destination Assembler Language Addressing Syntax Mode

IR: CP @Rdl, #data

CPS @Rd1, #data

CPL @Rd1, #data

EAM: CP eam, #data

CPS eam, #data

6-32

Instruction Format

I 0 0 1 0 0 1 0 11 w 1 Rs * 0 1 Rd

1001010000lRs"ooi RRd

o 110 0 1 0 1 wi eam J Rd

1,2, or 3 extension words

011010000 I eam J RRd

1, 2, or 3 extension words

Instruction Format

001001101 Rd * oj 0 001

data

001001100 Rd * oj 0001

data data

001001101 Rd"oO 1 0 0 11

data (high)

data (low)

011001101 eam J 0001

1,2, or 3 extension words

data

o 1 0 0 1 1 0 01 eam J 0 0 0 1

1 , 2, or 3 extension words

data J data

Destination
Addressing

Mode

Example:

Assembler Language
Syntax

CPL eam, #data

Instruction Format

o 11 0 0 1 1 0 1 1 earn 1 0 0 1 1

1, 2, or 3 extension words

data (high)

data (low)

In linear mode, if register RR4 contains %00000400, the byte at location
%00000400 contains 2, and the source operand is the immediate value 3, executing
the instruction

CPS @RR4,#3

leaves the C flag set, indicating a borrow, the S flag set, and the Z and V flags
cleared,

Note 1: Word register in compact mode, longword register in segmented or linear modes,

6-33

CPO
Compare and Decrement

Operation:

Flags:

Exceptions:

Source
Addressing

Mode

IR:

Example:

6-34

CPO dst, src, r, cc
CPOB
CPOL

dst - src

dst: R
src: IR

AUTOOECREMENT src (by 1 if CPOB; by 2 if CPO; by 4 if CPOL)
r- r - 1
This instruction is used to search a string of data for an element meeting the
specified condition. The contents of the location addressed by the source register
are compared to (subtracted from) the destination operand, and the Z flag is set to 1
if the condition code specified by "cc" is satisfied by the comparison; otherwise the
Z flag is cleared to O. See Section 6.3 for a list of condition codes. Both operands
are unaffected.

The source register is then decremented by one if CPOB, by two if CPO, or by four if
CPOL, thus moving the pOinter to the previous element in the string. The word
register specified by "r" (used as a counter) is then decremented by one. The
source, destination and count registers must be distinct and non-overlapping
registers.

C: Cleared if there is a carry from the most-significant bit of the result of the com­
parison; set otherwise, indicating a borrow

Z: Set if the condition code specified by cc is satisfied by the comparison; cleared
otherwise

S: Set if the result of the comparison is negative; cleared otherwise
V: Set if the result of decrementing r is zero; cleared otherwise
0: Unaffected
H: Unaffected

None

Assembler Language
Syntax Instruction Format

CPD Rd, @Rs', r, cc
CPDB Rbd, @Rs', r, cc

CPDL RRd, @Rsl, r, cc

1011101JW

ooooJ r

10111001

00001

Rs * 0 1000

Rd cc

Rs*O 1000

RRd cc

In linear mode, if register RHO contains % FF, register RR4 contains %00004001,
the byte at location %4001 contains %00, and register R3 contains 5, executing the
instruction

CPOB RHO, @RR4, R3, EQ

leaves the Z flag cleared since the result of the comparison was not "equal."
Register RR4 contains the value %00004000 and R3 contains 4. In compact mode,
a word register must be used instead of RR4.

Note': Word register in compact mode, longword register in segmented or linear modes.

Operation:

Flags:

Exceptions:

Source
Addressing

Mode

IR:

CPDR
Compare, Decrement and Repeat

CPDR dst, src, r, cc
CPDRB
CPDRL

repeat
dst - src

dst: R
src: IR

AUTODECREMENT src (by 1 if CPDRB; by 2 if CPDR; by 4 if CPDRL)
r - r - 1

until cc is satisfied or r = 0

This instruction is used to search a string of data for an element meeting the
specified condition. The contents of the location addressed by the source register
are compared to (subtracted from) the destination operand, and the Z flag is set to 1
if the condition code specified by "cc" is satisfied by the comparison; otherwise the
Z flag is cleared to O. See Section 6.3 for a list of condition codes. Both operands
are unaffected.

The source register is then decremented by one if CPDRB, by two if CPDR, or by
four if CPDRL, thus moving the pointer to the previous element in the string. The
word register specified by "r" (used as a counter) is then decremented by one. The
entire operation is repeated until either the condition is satisfied or the result of
decrementing r is zero. This instruction can search a string of length 1 to 65,536
data elements. The source, destination, and counter registers must be distinct and
non-overlapping registers.

This instruction can be interrupted after each execution of the basic operation.

C: Cleared if there is a carry from the most-significant bit of the result of the last
comparison; set otherwise, indicating a borrow

Z: Set if the condition code specified by cc is satisfied by the last comparison;
cleared otherwise

S: Set if the result of the last comparison is negative; cleared otherwise
V: Set if the result of decrementing r is zero; cleared otherwise
0: Unaffected
H: Unaffected

None

Assembler Language
Syntax

CPDR Rd, @RS1, r, cc
CPDRB Rbd, @Rsl, r, cc

CPDRL RRd, @RS1, r, cc

Instruction Format

10111011w Rs,;. 0 1100

00001 r Rd cc

10111001 Rs,;.O 1100

00001 r RRd cc

6-35

Example:

6·36

In compact mode, if the string of words starting at location %2000 contains the
values 0, 2, 4, 6 and 8, register R2 contains % 2008, R3 contains 5, and R8 contains
5, executing the instruction

CPDR R3, @R2, R8, GT

leaves the Z flag set, indicating the condition was satisfied. Register R2 contains the
value %2002, R3 still contains 5, and R8 contains 2. In segmented or linear mode, a
longword register must be used instead of R2.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

Operation:

Flags:

Exceptions:

Source
Addressing

Mode

IR:

CPI
Compare and Increment

CPI dst, src, r, cc
CPIB
CPIL

dst - src

dst: R
src: IR

AUTOINCREMENT src (by 1 if CPIB; by 2 if CPI; by 4 if CPIL)
r- r-1

This instruction is used to search a string of data for an element meeting the
specified condition. The contents of the location addressed by the source register
are compared to (subtracted from) the destination operand and the Z flag is set to 1
if the condition code specified by "cc" is satisfied by the comparison; otherwise the
Z flag is cleared to O. See Section 6.3 for a list of condition codes. Both operands
are unaffected.

The source register is then incremented by one if CPIB, by two if CPI or by four if
CPIL, thus moving the pOinter to the next element in the string. The word register
specified by "r" (used as a counter) is then decremented by one. The source,
destination, and counter registers must be distinct and non-overlapping registers.

C: Cleared if there is a carry from the most-significant bit of the result of the com­
parison; set otherwise, indicating a borrow

Z: Set if the condition code specified by cc is satisfied by the comparison; cleared
otherwise

S: Set if the result of the comparison is negative; cleared otherwise
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

None

Assembler Language
Syntax

CPI Rd, @Rsl, r, cc
CPIB Rbd, @Rsl, r, cc

CPIL RRd, @Rsl, r, cc

Instruction Format

10111011w R8;100 0000

0000 I Rd cc

1 01 1 1 001 Rs;loO 0000

00001 RRd cc

6-37

Example:

6-38

This instruction can be used in a "loop" of instructions that searches a string of
data for an element meeting the specified condition, but an intermediate operation
on each data element is required. In compact mode, executing the following se­
quence of instructions "scans while numeric," that is, a string is searched until
either an ASCII character outside the range "0" to "9" is found, or the end of the
string is reached. This involves a range check on each character (byte) in the string.
In segmented or linear mode, a longword register must be used instead of R1.

LOOP:

DONE:

LD R3, HSTRLEN //initialize counter
LDA R1,STRSTART //load start address
LDB RLO,H'9' //largest numeric char

CPB
JR
CPIB
JR
JR

@R1,H'0'
ULT,NONNUMERIC
RLO, @R1, R3, ULE
NZ, NONNUMERIC
NOV, LOOP

IItest char < '0'

//test char:5 '9'

IIrepeat until counter = 0

NONNUMERIC: IIhandle non-numeric char

Note 1: Word register in compact mode. longword register in segmented or linear modes.

Operation:

Flags:

Exceptions:

Source
Addressing

Mode

IR:

CPIR
Compare, Increment and Repeat

CPIR dst, src, r, cc
CPIRB
CPIRL

repeat
dst - src

dst: R
src: IR

AUTOINCREMENT src (by 1 if CPIRB; by 2 if CPIR; by 4 if CPIRL)
r-r - 1

until cc is satisfied or r = 0

This instruction is used to search a string of data for an element meeting the
specified condition. The contents of the location addressed by the source register
are compared to (subtracted from) the destination operand, and the Z flag is set to 1
if the condition code specified by "cc" is satisfied by the comparison; otherwise the
Z flag is cleared to O. See Section 6.3 for a list of condition codes. Both operands
are unaffected.

The source register is then incremented by one if CPIRB, by two if CPIR, or by four
if CPIRL, thus moving the pointer to the next element in the string. The word register
specified by "r" (used as a counter) is then decremented by one. The entire opera­
tion is repeated until either the condition is satisfied or the result of decrementing r
is zero. This instruction can search a string of length 1 to 65,536 data elements. The
source, destination, and counter registers must be distinct and non-overlapping
registers.

This instruction can be interrupted after each execution of the basic operation.

C: Cleared if there is a carry from the most-significant bit of the result of the last
comparison; set otherwise, indicating a borrow

Z: Set if the condition code specified by cc is satisfied by the last comparison;
cleared otherwise

S: Set if the result of the last comparison is negative; cleared otherwise
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

None

Assembler Language
Syntax

CPIR Rd, @RSI. r. cc
CPIRB Rbd,@Rsl, r, cc

CPIRL RRd, @Rsl, r, cc

Instruction Format

10111011W R ... O 0100

00001 r Rd cc

1 0111 001 Rs .. O 01 00

00001 r RRd cc

6-39

Example:

6·40

The following sequence of instructions (to be executed in compact mode) can be
used to search a string for an ASCII return character. The pOinter to the start of the
string is set, the string length is set, the character (byte) to be searched for is set,
and then the search is accomplished. Testing the Z flag determines whether the
character was found. In segmented or linear mode, a longword register must be
used instead of R1.

LOA
LD
LOB
CPIRB
JR

R1, STRSTART
R3,IISTRLEN
RLD, I %0
RLD, @R1, R3, EQ
Z, FOUND

"hex code for return is 0

Note 1: Word register in compact mode. longword register in segmented or linear modes.

Operation:

Flags:

Exceptions:

Addressing
Mode

IR:

CPSD
Compare String and Decrement

CPSD dst, src, r, cc
CPSDB
CPSDL

dst - src

dst: IR
src: IR

AUTODECREMENT dst and src (by 1 if CPSDB; by 2 if CPSD; by 4 if CPSDL)
r- r - 1

This instruction is used to compare two strings of data in order to test the specified
condition. The contents of the location addressed by the source register are com­
pared to (subtracted from) the contents of the location addressed by the destination
register. The Z flag is set to 1 if the condition code specified by "cc" is satisfied by
the comparison; otherwise the Z flag is cleared to O. See Section 6.3 for a list of
condition codes. Both operands are unaffected.

The source and destination registers are then decremented by one if CPSDB, by two
if CPSD or by four if CPSDL, thus moving the pointers to the previous elements in
the strings. The word register specified by "r" (used as a counter) is then
decremented by one. The source, destination and count register must be distinct,
non-overlapping registers.

C: Cleared if there is a carry from the most-significant bit of the result of the com­
parison; set otherwise, indicating a borrow.

Z: Set if the condition code specified by cc is satisfied by the comparison; cleared
otherwise

S: Set if the result of the comparison is negative; cleared otherwise.
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

None

Assembler Language
Syntax

CPSD @Rd1, @Rsl, r, cc
CPSDB @Rdl, @RS1, r, cc

CPSDL @Rdl, @RS1, r, cc

Instruction Format

10111011W Rs*O 1010

00001 r Rd*O cc

1 01 1 1 001 Rs*O 1 01 0

00001 r Rd*O cc

6-41

Example:

6-42

In linear mode, if register RR24 contains %00002000, the byte at location
%00002000 contains % FF, register RR26 contains %00003000, the byte at loca­
tion %00003000 contains %00, and register R4 contains 1, executing the instruc­
tion

CPSDB @RR24, @RR26, R4, UGE

leaves the Z flag set to 1 since the result of the comparison was "unsigned greater
than or equal", and the V flag set to 1 to indicate that the counter R4 now contains
O. RR24 contains %00001 FFF, and RR26 contains %00002FFF. In compact mode,
word registers must be used instead of RR24 and RR26.

Note 1: Word register in compact mode. longword register in segmented or linear modes.

Operation:

CPSDR
Compare String, Decrement and Repeat

CPSDR dst, src,r, cc
CPSDRB
CPSDRL

repeat
dst - src

dst: IR
src: IR

AUTODECREMENT dst and src (by 1 if CPSDRB; by 2 if CPSDR; by 4 if CPSDRL)
r- r - 1

until cc is satisfied or r = 0

This instruction is used to compare two strings of data until the specified condition
is true. The contents of the location addressed by the source register are compared
to (subtracted from) the contents of the location addressed by the destination
register. The Z flag is set to 1 if the condition code specified by "cc" is satisfied by
the comparison; otherwise the Z flag is cleared to O. See Section 6.3 for a list of
condition codes. Both operands are unaffected.

The source and destination registers are then decremented by one if CPSDRB, by
two if CPSDR, or by four if CPSDRL, thus moving the pointers to the previous
elements in the strings. The word register specified by "r" (used as a counter) is
then decremented by one. The entire operation is repeated until either the condition
is satisfied or the result of decrementing r is zero. This instruction can compare str­
ings of length 1 to 65,536 data elements. The source, destination, and counter
registers must be distinct and non-overlapping registers.

This instruction can be interrupted after each execution of the basic operation.

Flags: C: Cleared if there is a carry from the most-significant bit of the result of the last
comparison; set otherwise, indicating a borrow.

Z: Set if the condition code specified by cc is satisfied by the last comparison;
cleared otherwise

5: Set if the result of the last comparison is negative; cleared otherwise
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Exceptions: None

Addressing Assembler Language
Mode Syntax

IR: CPSDR @Rdl, @RS1, r,cc
CPSDRB @Rd1, @RS1, r, cc

CPSDRL @Rd1, @RS1, r, cc

___ ._.~_~~~.cc. -,~-~-------,-,

Instruction Format

10111011 w Rs*O 111 0

00001 Rd*O cc

10111001 Rs*O 1 1 1 0

0000 I r Rd*O cc

6-43

Example:

6-44

In compact mode, if the words from location % 1000 to % 1 006 contain the values 0,
2,4, and 6, the words from location %2000 to %2006 contain the values 0, 1, 1, 0,
register R13 contains % 1 006, register R14 contains % 2006, and register RO con­
tains 4, executing the instruction

CPSDR @R13, @R14, RO, EQ

leaves the Z flag set to 1 since the result of the comparison was "equal" (locations
% 1000 and %2000 both contain the value 0). The V flag is set to 1 indicating RO
was decremented to zero. R13 contains %OFFE, R14 contains % 1 FFE, and RO con­
tains O. In segmented or linear mode, longword registers must be used instead of
R13 and R14.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

Operation:

Flags:

Exceptions:

Addressing
Mode

IR:

CPSI
Compare String and Increment

CPSI dst, src, r, cc
CPSIB
CPSIL

dst - src

dst: IR
src: IR

AUTOINCREMENT dst and src (by 1 if CPSIB; by 2 if CPSI; by 4 if CPSIL)
r- r - 1

This instruction is used to compare two strings of data, in order to test the specified
condition. The contents of the location addressed by the source register are com­
pared to (subtracted from) the contents of the location addressed by the destination
register. The Z flag is set to 1 if the condition code specified by "cc" is satisfied by
the comparison; otherwise the Z flag is cleared to o. See Section 6.3 for a list of
condition codes. Both operands are unaffected.

The source and destination registers are then incremented by one if CPSIB, by two
if CPSI or by four if CPSIL, thus moving the pointers to the next elements in the
strings. The word register specified by "r" (used as a counter) is then decremented
by one. The source, destination and count register must be distinct, non-overlapping
registers.

C: Cleared if there is a carry from the most-significant bit of the result of the com­
parison; set otherwise, indicating a borrow

Z: Set if the condition code specified by cc is satisfied by the comparison;
cleared otherwise

S: Set if the result of the comparison is negative; cleared otherwise
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

None

Assembler Language
Syntax

CPSI @Rdl,@Rsl,r,cc
CPSIS @Rd1,@Rsl,r, cc

CPSIL @Rd1, @Rsl, r, cc

Instruction Format

10111011wRa;e.0 0010

00001 Rd;e.O cc

1 0 1 1 1 001 Ra;e.O 00 1 0

00001 r Rd;e.O cc

6-45

Example:

6-46

This instruction can be used in a "loop" of instructions that compares two strings
until the specified condition is true, but where an intermediate operation on each
data element is required. The following sequence of instructions (executed in com­
pact mode), attempts to match a given source string to the destination string which
is known to contain all upper-case characters. The match should succeed even if
the source string contains some lower-case characters. This involves a forced con­
version of the source string to upper-case (only ASCII alphabetic letters are as­
sumed) by resetting bit 5 of each character (byte) to 0 before comparison.

LDA R1,SRCSTART IIload start addresses
LDA R2,DSTSTART
LD R3,#STRLEN lIinitialize counter

LOOP:
RESS @R1,#5 //force upper-case
CPSIS @R1,@R2, R3, NE IIcompare until not equal
JR Z, NOTEOUAL lIexit loop if match fails
JR NOV, LOOP IIrepeat until counter = 0

DONE: IImatch succeeds

NOTEOUAL: IImatch fails

In segmented or linear mode, longword registers must be used instead of R1 and
R2.

Note 1: Word register in compact mode. longword register in segmented or linear modes.

Operation:

Flags:

Exceptions:

Addressing
Mode

IR:

CPSIR
Compare String, Increment and Repeat

CPSIR dst,src,r,cc
CPSIRB
CPSIRL

repeat
dst - src

dst: IR
src: IR

AUTOINCREMENT dst and src (by 1 if CPSIRB, by 2 if CPSIR; by 4 if CPSIRL)
r- r - 1

until cc is satisfied or r = 0

This instruction is used to compare two strings of data until the specified condition
is true. The contents of the location addressed by the source register are compared
to (subtracted from) the contents of the location addressed by the destination
register. The Z flag is set to 1 if the condition code specified by "cc" is satisfied by
the comparison; otherwise the Z flag is cleared to O. See Section 6.3 for a list of
condition codes. Both operands are unaffected.

The source and destination registers are then incremented by one if CPSIRB, by two
if CPSIR, or by four if CPSIRL, thus moving the pointers to the next elements in the
strings. The word register specified by "r" (used as a counter) is then decremented
by one. The entire operation is repeated until either the condition is satisfied or the
result of decrementing r is zero. This instruction can compare strings of length 1 to
65,536 data elements. The source, destination, and counter registers must be
distinct and non-overlapping registers.

This instruction can be interrupted after each execution of the basic operation.

C: Cleared if there is a carry from the most-significant bit of the result of the last
comparison; set otherwise, indicating a borrow.

Z: Set if the condition code specified by cc is satisfied by the last comparison;
cleared otherwise. .

S: Set if the result of the last comparison is negative; cleared otherwise
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

None

Assembler Language
Syntax

CPSIR @Rd1,@Rsl,r,cc
CPSIRB @Rdl,@Rsl,r,cc

CPSIRL @Rd1,@Rsl,r,cc

Instruction Format

10111011W Rs*O 0110

00001 Rd*O cc

1 01 1 1 001 Rs*O 01 1 0

0000\ r Rd*O cc

6-47

Example:

6-48

The CPSIR instruction can be used to compare text strings for lexicographic order.
(For most common character encodings - for example, ASCII and EBCDIC - lexi­
cographic order is the same as alphabetic order for alphabetic text strings that do
not contain blanks.)

Let S1 and S2 be text strings of lengths L 1 and L2. According to lexicographic
ordering, S1 is said to be "less than" or "before" S2 if either of the following is
true:

• At the first character position at which S1
and S2 contain different characters, the
character code for the S1 character is
less than the character code for the S2
character.

• S1 is shorter than S2 and is equal, char­
acter for character, to an initial substring
of S2.

For example, using the ASCII character code, the following strings are ascending
lexicographic order:

A
AA
ABC
ABCD
ABD

Assume that the address of S1 is in RR2, the address of S2 is in RR4, the lengths L 1
and L2 of S1 and S2 are in RO and R1, and the shorter of L 1 and L2 is in R6. The
following sequence of instructions (executed in segmented or linear mode) will
determine whether S1 is less than S2 in lexicographic order:

CPSIRB @RR2, @RR4, R6, NE IIscan to first unequal character
lithe following flags settings are possible:
Z = 0, V = 1: Strings are equal through L 1
character (Z = 0, V = 0 cannot occur).
Z = 1, V = 0 or 1: A character position was
found at which the strings are unequal.
C = 1 (S = 0 or 1): The character in the RR2
string was less (viewed as numbers from 0 to
255, not as numbers from -128 to + 127).
C = 0 (S = 0 or 1): The character in the RR2
string was not less

JR Z,CHALCOMPARE /lif Z = 1, compare the characters

CP RO,R1

JR L T, S1_IS_LESS
JR S1_NOT_LESS

CHALCOMPARE:
JR ULT, S1_IS_LESS

S1_NOT LESS:

lIotherwise, compare string lengths

IIULT is another name for C= 1

Note 1: Word register in compact mode, longword register in segmented or linear modes.

Operation:

Flags:

Exceptions:

CVTBW dst, src
CVTBL
CVTWB
CVTWL
CVTLB
CVTLW

dst - CONVERSION (src)

dst: R
src: R, IR, EAM
or
dst: IR, EAM
src: R

CVT
Convert

The contents of the source are converted to the size of the destination and then
stored into the destination. The contents of the source are not affected.

The source and destination are treated as signed integers. The size of the destina­
tion operand is indicated by the fourth letter of the opcode mnemonic (B, W, or L);
the size of the source operand is indicated by the last letter. For CVTWB, CVTLB,
and CVTLW the source is sign-extended to the size of the destination before storing.
For CVTBW, CVTBL, and CVTWL the source is truncated to the size of the destina­
tion, keeping the less-significant bits, before storing. If the source cannot be exactly
represented in the destination because of truncation, then the V flag is set to 1;
otherwise the V flag is cleared to O.

C: Cleared
Z: Set if the result is zero; cleared otherwise
S: Set if the most-significant bit of the result is set; cleared otherwise.
V: CVTBW, CVTBL-set if the source is not in the range -128 to 127; cleared

otherwise; CVTWL-set if the source is not in the range - 32768 to 32767;
cleared otherwise; CVTLB, CVTLW-cleared

0: Unaffected
H: Unaffected

Integer Overflow trap

Convert Register
Source

Addressing
Mode

R:

Assembler Language
Syntax

CVTBW Rbd, Rs

CVTBL Rbd. RRs

CVTWB Rd, Rbs

CVTWL Rd. RRs

Instruction Format

0111100000000001

1 0 11 0 0 0 0 1 Rs 1 Rbd

0111100000000001

1 0 I 0 1 0 1 0 0 RRs 1 Rbd

0111100000100001

1 011 0 0 0 0 0 Rbs I Rd

0111100000100001

1 0 I 0 1 0 1 0 0 RRs I Rd

6-49

Source Assembler Language Instruction Format Addressing Syntax Mode

CVTLB RRd. Rbs
01111000 00110001

101100000 Rbs 1 RRd

CVTLW RRd. Rs
01111000 00110001

101100001 Rs 1 RRd

IR: CVTBW Rbd. @RS1 01111000 00000011

001100001 Rs*O I Rbd

CVTBL Rbd. @RS1
01111000 00000011

001010100 RHO I Rbd

CVTWB Rd. @RS1
01111000 00100011

00J100000 RHO 1 Rd

CVTWL Rd. @ RS1
01111000 00100011

0010101 00 RHO 1 Rd

CVTLB RRd. @RS1
01111000 00110011

001100000 Rs*O 1 RRd

CVTLW RRd. @RS1
01111000 00110011

001100001 RHO 1 RRd

EAM: CVTBW Rbd. eam 01111000 00000011

011100001 earn 1 Rbd

1, 2, or 3 extension words

CVTBL Rbd. eam 01111000 00000011

011010100 earn 1 Rbd

1, 2, or 3 extension words

CVTWB Rd. eam 01111000 00100011

0111 00000 earn 1 Rd

1, 2, or 3 extension words

6-50

Source Assembler Language Instruction Format Addressing Syntax Mode

CVTWL Rd, eam 01111000 00100011

01J010100 eam 1 Rd

1, 2, or 3 extension words

CVTLB RRd, eam
01111000 00110011

011100000 eam 1 RRd

1,2, or 3 extension words

CVTLW RRd, eam 01111000 00110011

01]100001 eam 1 RRd

1, 2, or 3 extension words

Convert Memory

Destination Assembler Language Instruction Format Addressing Syntax Mode

IR: CVTBW @Rdl, Rs
01111000 00100101

001101110 Rd*O 1 Rs

CVTBL @Rd1, RRs
01111000 00110101

0011 01 1 1 0 Rd*O l RRs

CVTWB @Rd1, Rbs
01111000 0000 0101

001101111 Rd*O 1 Rbs

CVTWL @Rd1, RRs
01111000 00110101

001101111 Rd*O 1 RRs

CVTLB @Rdl, Rbs 01111000 00000101

001011101 Rd*01 Rbs

CVTLW @Rdl, Rs
01111000 0010 0101

001011101 Rd*Oj Rs

6-51

Destination
Addressing

Mode

EAM:

Example:

6·52

Assembler Language
Syntax

CVTBW earn, Rs

CVTBL earn, RRs

CVTWB earn, Rbs

CVTWL earn, RRs

CVTLB earn, Rbs

CVTLW earn, Rs

Instruction Format

0111100000100101

o 1 11 0 1 1 1 il earn 1 Rs

1, 2, or 3 extension words

0111100000110101

0111 01 1 1 0 earn 1 RRs

1, 2, or 3 extension words

01111000 00000101

o 1 11 0 1 1 1 1 earn 1 Rbs

1, 2, or 3 extension words

01111000 00110101

o 1 11 0 1 1 1 1 earn 1 RRs

1,2, or 3 extension words

01111000 0000 0101

o 1 1 0 1 1 1 0 1 earn 1 Rbs

1, 2, or 3 extension words

0111100000100101

o 1 1 0 1 1 1 0 1 earn 1 Rs

1, 2, or 3 extension words

If byte register RHO contains the value -100, executing the instruction

CVTLB RR4, RHO

loads - 100 into longword register RR4, The S flag is set and the C, Z, and V flags
are cleared.

Note 1: Word register In compact mode, longword register in segmented or linear modes.

Operation:

Flags:

Exceptions:

CVTUBW dst, src
CVTUBL
CVTUWB
CVTUWL
CVTULB
CVTULW

dst: R
src: R, IR, EAM
or
dst: IR, EAM
src: R

dst - UNSIGNED_CONVERSION (src)

CVTU
Convert Unsigned

The contents of the source are converted to the size of the destination and then
stored into the destination. The contents of the source are not affected.

The source and destination are treated as unsigned integers. The size of the
destination operand is indicated by the fifth letter of the opcode (B, W, or L); the
size of the source operand is indicated by the last letter. For CVTUWB, CVTULB,
and CVTULW the source is zero-extended to the size of the destination before stor­
ing. For CVTUBW, CVTUBL, and CVTUWL the source is truncated to the size of the
destination, keeping the less significant bits, before storing. If the source cannot be
exactly represented in the destination because of truncation then the V flag is set to
1; otherwise the V flag is cleared to O.

C: Cleared
Z: Set if the result is zero; cleared otherwise
S: Set if the most-significant bit of the result is set; cleared otherwise.
V: CVTUBW, CVTUBL-set if the source is greater than 255; cleared otherwise

CVTUWL-set if the source is greater than 65,535; cleared otherwise
CVTULB,CVTULW-cleared

D: Unaffected
H: Unaffected

None

Convert Register Unsigned
Source

Addressing
Mode

R:

Assembler Language
Syntax

CVTUBW RbeI, Rs

CVTUBL RbeI, RRs

CVTUWB Rd, Rbs

CVTUWL Rd, RRs

Instruction Format

01111000 0000 0000

1 0 11 0 0 0 0 1 Rs 1 Rbd

o 1 1 1 1 0 0 0 0 0 0 00 0 0 0

1 01 0 1 01 00 RRs 1 Rbd

0111100000100000

1 0 11 0 0 0 0 0 Rbs J Rd

0111100000100000

1 01 0 1 0 1 00 RRs 1 Rd

6-53

Source Assembler Language Instruction Format Addressing Syntax Mode

CVTU LB RRd, Rbs
01111000 0011 0000

1 011 0 0 0 0 0 I Rbs T RRd

CvrULW RRd, Rs
01111000 0011 0000

1011000011 Rs 1 RRd

IR: CvrUBW Rbd, @RSl
011110000000 0010

o 0 11 0 0 0 0 1 1 Rs;!o 0 1 Rbd

CVTUBL Rbd, @RSl
01111000 0000 0010

0010101001 Rs;!o01 Rbd

CVTUWB Rd, @RSl
01111000 0010 0010

00 r 1 000001 Rs;!oO 1 Rd

CvrUWL Rd, @RSl
01111000 0010 0010

0010101001 Rs;!oO 1 Rd

CvrULB RRd, @RSl
01111000 0011 0010

0011000001 Rs;!oO 1 RRd

CvrULW RRd, @RSl
01111000 0011 0010

0011 00001 I Rs;!oO I RRd

EAM: CVTUBW Rbd, earn 01111000 0000 0010

O. 1 11 0 0 0 0 1 1 earn 1 Rbd

1,2, or 3 extension words

CVTU BL Rbd, earn
01111000 0000 0010

o 1 I 0 1 0 1 0 0 I earn 1 Rbd

1,2, or 3 extension words

CVTUWB Rd, earn 01111000 0010 0010

o 1 11 0 0 0 0 0 1 eam 1 Rd

1, 2, or 3 extension words

,
6·54

Source Assembler Language Instruction Format Addressing Syntax Mode

CVTUWL Rd, earn
01111000 00100010

011010100 earn j Rd

1, 2, or 3 extension words

CVTU LB RRd, earn
01111000 001 1 001 0

0111 00000 earn 1 RRd

1, 2, or 3 extension words

CVTULW RRd, earn 01111000 001 1 0010

01\100001 earn I RRd

1,2, or 3 extension words

.
Convert Memory Unsigned

Destination Assembler Language Instruction Format Addressing Syntax Mode

IR: CVTU BW @Ad1, Rs
01111000 0010 0100

001101110 Rd*O 1 Rs

CVTU BL @ Rd1, RRs
01111000 00110100

001101110 Rd*O 1 RRs

CVTUWB @Rd1, Rbs
01111000 0000 0100

0011 01 1 1 1 Rd*Oj Rbs

CVTUWL @Rd1, RRs
01111000 00110100

0011 01 1 1 1 Rd*Oj RRs

CVTU LB @ Rd1, Rbs
01111000 00000100

o oj 0 1 1 1 0 1 Rd*O 1 Rbs

CVTULW @Rdl, Rs
01111000 00101100

001011101 Rd*O 1 Rs

6-55

Destination
Addressing

Mode

EAM:

Example:

6·56

Assembler Language
Syntax

CVTU BW eam, Rs

CVTUBL eam, RRs

CVTUWB eam, Rbs

CVTUWL eam, RRs

CVTU LB eam, Rbs

CVTU LW eam, Rs

Instruction Format

0111100000100100

o 1 11 0 1 1 1 0 eam I Rs

1,2, or 3 !,xtension words

0111100000110100

o 111 0 1 1 1 0 eam 1 RRs

1, 2, or 3 extension words

01 1 1 1 000 0000 0 1 00

o 111 0 1 1 1 1 eam 1 Rbs

1, 2, or 3 extension words

0111100000110100

o 1 11 0 1 1 1 1 eam I RRs

1,2, or 3 extension words

0111100000000100

o 1J 0 1 1 1 0 1 eam 1 Rbs

1, 2, or 3 extension words

0111100000100100

o 1 1 0 1 1 1 0 1 earn 1 Rs

1,2, or 3 extension words

If word register R1 contains the value %DF12, executing the instruction

CVTUBW RLD, R1

loads % 12 into byte register RLD. The V flag is set and the C, Z, and S flags are
cleared.

Note 1: Word register in compact mode. longword register in segmented or linear modes.

Operation:

Instruction

ADDB
ADCB

SUBB
SBCB

Flags:

Exceptions:

Addressing
Mode

R:

DAB
Decimal Adjust

DAB dst dst: R

dst - DECIMALADJUST (dst)

The destination byte is adjusted to form two 4-bit BCD digits following a binary addi­
tion or subtraction operation on two BCD encoded bytes. Following addition (ADDB,
ADCB) or subtraction (SUBB, SBCB), the table below indicates the operation
performed:

Carry
Before
DAB

0
0
0
0
0
0
1
1
1

0
0
1
1

Bits 4-7
Value
(Hex)

0-9
0-8
0-9
A-F
9-F
A-F
0-2
0-2
0-3

0-9
0-8
7-F
6-F

H Flag
Before
DAB

0
0
1
0
0
1
0
0
1

0
1
0
1

Bits 0-3 Number
Value Added
(Hex) To Byte

0-9 00
A-F 06
0-3 06
0-9 60
A-F 66
0-3 66
0-9 60
A-F 66
0-3 66

0-9 00
6-F FA
0-9 AO
6-F 9A

Carry
After
DAB

0
0
0
1
1
1
1
1
1

0
0
1
1

The operation is undefined if the destination byte was not the result of a binary addi­
tion or subtraction of BCD digits.

C: Set or cleared according to the table above
Z: Set if the result is zero; cleared otherwise
S: Set if the most-significant bit of the result is set; cleared otherwise
V: Unaffected
D: Unaffected
H: Unaffected

None

Assembler Language
Syntax

DAB Rbd

Instruction Format

11 011 1 0 0 0 0 1 Rbd 1 0 0 0 0 I

6-57

Example:

6-58

If addition is performed using the BCD values 15 and 27, the result should be 42.
The sum is incorrect, however, when the binary representations are added in the
destination location using standard binary arithmetic. As shown below, adding the
two numbers using binary arithmetic gives a result of %3C, leaving the C and H
flags clear.

0001 0101
+ 0010 0111

0011 1100 = % 3C

Executing the DAB instruction adjusts this result so that the correct BCD represen­
tation is obtained.

00111100
+ 0000 0110

0100 0010 = 42

Operation:

Flags:

Exceptions:

Destination
Addressing

Mode

R:

IR:

EAM:

DEC
Decrement

DEC dst, src
DECB
DECL

dst: R, IR, EAM
src: 1M

dst - dst - src (src = 1 to 16)

The source operand (a value from 1 to 16) is subtracted from the destination
operand and the result is stored in the destination. Subtraction is performed by ad­
ding the twos complement of the source operand to the destination operand. If the
source operand is omitted from the assembler language statement, the default value
is 1.

The value of the source field in the instruction is one less than the actual value of
the source operand. Thus, the coding in the instruction for the source ranges from 0
to 15, which corresponds to the source values 1 to 16.

C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands were of opposite sign

and the sign of the result is the same as the sign of the source; cleared
otherwise.

D: Unaffected
H: Unaffected

Integer Overflow trap

Assembler Language
Syntax

DEC Rd. In
DECB Rbd, In

DECL RRd, In

DEC @Rdl, In
DECB @Rdl, In

DECL @Rd1, In

DEC eam, In
DECB eam, In

DECL eam, In

Instruction Format

1101101011 wl Rd 1 n - 11

01111010 0000 0010

101101011 RRd 1 n - 1

1001101011 wl Rd*O 1 n -11

01111010 0000 0010

001101011 Rd*O 1 n - 1

01l10101JW eam 1 n - 1

1,2, or 3 extension words

01111010 0000 0010

011101011 eam 1 n - 1

1,2, or 3 extension words

6·59

Example:

6-60

If register RR10 contains %0000002A, executing the instruction
DECL RR10

leaves the value %00000029 in RR1O.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

Operation:

Flags:

Exceptions:

Destination
Addressing

Mode

IR:

EAM:

Example:

DECI
Decrement Interlocked

DECI dst, src
DECIB

dst - dst - src (src = 1 to 16)

dst: IR, EAM
src: 1M

The source operand (a value from 1 to 16) is subtracted from the destination
operand and the result is stored in the destination. Subtraction is performed by
adding the twos complement of the source operand to the destination operand. If
the source operand is omitted from the assembly language statement, the default
value is 1.

The value of the source field in the instruction is one less than the actual value of
the source operand. Thus, the coding in the instruction for the source ranges from 0
to 15, which corresponds to the source values 1 to 16.

This is an interlocked instruction. No other interlocked accesses are permitted to
the destination memory location between fetching and storing the result.

C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands were of opposite sign

and the sign of the result is the same as the sign of the source; cleared
otherwise.

D: Unaffected
H: Unaffected

Integer Overflow trap

Assembler Language
Syntax

DECI @Rdl, In
DECIB @Rd1, In

DECI eam, In
DECIB eam, In

Instruction Format

01111010 0000 0100

001101011w Rd'*0l n-1

01111010 00000100

a 111 0 1 0 11 W e8m 1 n - 1

1,2, or 3 extension 'words

This instruction can be used to allocate or release copies of a system resource in a
multiprocessor environment. For example, several processes running on different
processors can share use of a common page in memory. It is necessary to keep a
reference counter for the number of active processes using the shared page. When
one of these processes terminates, the reference counter is decremented. The DECI
instruction should be used so that one processor completes the fetch and store of
the counter in memory before any other processor accesses the counter.

DECI REFERENCLCOUNTER, #1 IIdecrement reference counter
for shared page

Note 1: Word register in compact mode. longword register in segmented or linear modes.

6-61

01 Privileged Instruction
Disable Interrupt

Operation:

Flags:

Exceptions:

Example:

6-62

Ollnt Int: VI, NVI

If instruction<O> = 0 then NVI- 0
If instruction < 1 > = 0 then VI - 0

Any combination of the Vectored Interrupt (VI) or Non-Vectored Interrupt (NVI) con­
trol bits in the Flag and Control Word (FCW) are cleared to 0 if the corresponding bit
in the instruction is 0, thus disabling the appropriate type of interrupt. If the cor­
responding bit in the instruction is 1, the control bit is not affected. All other bits in
the FCW are not affected. There may be zero, one or two operands in the assembly
language statement, in either order, specifying no source operand is equivalent to
specifying both VI and NVI.

No flags affected.

Privileged Instruction trap

Assembler Language
Syntax

DI in!

Instruction Format

I 01111100 10000001YI~1

If the NVI and VI control bits are set (1) in the FCW, executing the instruction

DI VI

leaves the NVI control bit in the FCW set to 1 and the VI control bit in the FCW
cleared to O.

Operation:

Flags:

Exceptions:

DIV
Divide

DIV dst, src
DIVL

dst: R
src: R, 1M, IR, EAM

Word: (dst is longword register, src is' word):
dst < 31 :0> is divided by src < 15:0 >
(dst<31:0> = quotient x src<15:0> + remainder)
dst < 15:0> - quotient
dst<31:16> - remainder

Longword: (dst is quadword register, src is longword):
dst < 63:0 > is divided by src < 31 :0 >
(dst<63:0> = quotient x src<31:0> + remainder)
dst < 31 :0> - quotient
dst < 63:32 > - remainder

The destination operand (dividend) is divided by the source operand (divisor). The
quotient is stored in the low-order half of the destination and the remainder is stored
in the high-order half of the destination. The contents of the source are not affected.
Both operands are treated as signed, twos complement integers. Division is per­
formed so that the remainder is of the same sign as the dividend except when the
remainder is 0 and the quotient sign is the exclusive OR of the signs of the dividend
and divisor except when the quotient is O. For DIV, the destination is a longword
register and the source is a word value; for DIVL, the destination is a quadword
register and the source is a longword value.

For proper instruction execution the "dst field" in the DIVL instruction encoding
must specify a valid code for a quadword register.

There are four possible outcomes of the signed divide instruction.

CASE 1. If the divisor is 0, then the destination register is unmodified, the V and Z
flags are set to 1, and the C and S flags are cleared to O.

CASE 2. If the quotient is less than _(216 - 1) or greater than (216 - 1) for DIV
or if the quotient is less than - (232 - 1) or greater than (232 - 1) for DIVL, then
the destination register is unmodified. The V flag is set to 1, and the C, Z, and S
flags are cleared to O.

CASE 3. If the quotient is greater than _(215 + 1) and less than (215) for DIV or if
the quotient is greater than -(231 + 1) and less than (231) for DIVL, then the quo­
tient and remainder are left in the destination register as defined above. The V and
C flags are cleared to 0 and the Sand Z flags are set according to the value of the
quotient.

CASE 4. If none of the above cases applies, then all of the remainder and all but
the Sign bit of the quotient are left in the destination register. The V and C flags are
set to 1, the Z flag is cleared to 0, and the S flag indicates the sign of the quotient.
In this case, the S flag can be replicated into the high-order half of the destination
to produce the twos complement representation of the quotient with the same preci­
sion as the original dividend.

c: For CASE 4 set; cleared otherwise
Z: Set if the quotient or divisor is zero; cleared otherwise
S: For CASE 1 and CASE 2 cleared; for CASE 3 and CASE 4 set if the quotient is

negative; cleared otherwise
V: For CASE 3 cleared; set otherwise
D: Unaffected
H: Unaffected

Integer Overflow trap

6-63

Source
Addressing

Mode

R:

1M:

IR:

EAM:

Example:

6-64

Assembler Language
Syntax

DIV RRd, Rs

DIVL RQd, RRs

DIV RRd, #data

DIVL RQd, #data

DIV RRd, @RS1

DIVL RQd, @RS1

DIV RRd, eam

DIVL RQd, eam

Instruction Format

1101 011011 I Rs RRd

11010110101 RRs RQd

o 0 I 0 1 1 0 1 1 I 0 0 0 oT RRd

data

001 011010 I 00001 RQd

data (high)

data (low)

10010110111Rs*01 RRd

10010110101 Rs*O I RQd

o 1T 0 1 1 0 1 1 I eam 1 RRd

1, 2, or 3 extension words

01 I 01 1 01 0 I eam T RQd

1, 2, or 3 extension words

If register AAO (composed of word registers AO and A1) contains %00000022 and
register A3 contains 6, executing the instruction

DIV AAO,A3

leaves the value %00040005 in AAO (A1 contains the quotient 5 and AO contains
the remainder 4).

Note 1: Word register in compact mode, longword register in segmented or linear modes.

Operation:

Flags:

Exceptions:

DIVU
Divide Unsigned

DIVU dst, src
DIVUL

dst: R
src: R, 1M, IR, EAM

Word: (dst is longword register, src is word):
dst < 31 :0> is divided by src < 15:0 >
(dst< 31:0> = quotient x src < 15:0> + remainder)
dst < 15:0> - quotient
dst<31:16> - remainder

Longword: (dst is quadword register, src is longword):
dst<63:0> is divided by src<31:0>
(dst< 63:0 > = quotient X src < 31 :0> + remainder)
dst < 31 :0 > - quotient
dst<63:32> - remainder

The destination operand (dividend) is divided by the source operand (divisor). The
quotient is stored in the low-order half of the destination and the remainder is stored
in the high-order half of the destination. The contents of the source are not affected.
Both operands are treated as unsigned integers. For DIVU, the destination is a
longword register and the source isa word value; for DIVUL, the destination is a
quadword register and the source is a longword value.

For proper instruction execution the "dst field" in the DIVUL instruction encoding
must specify a valid code for a quadword register.

There are three possible outcomes of the unsigned divide instruction.

CASE 1. If the divisor is 0, then the destination register is unmodified, the V and Z
flags are set to 1, and the C and S flags are cleared to O.

CASE 2. If the quotient is greater than (216 - 1) for DIVU or if the quotient is
greater than (232 - 1) for DIVUL, then the destination register is unmodified. The V
flag is set to 1, and the C, Z, and S flags are cleared to O.

CASE 3. If the quotient is less than 216 for DIVU, or if the quotient is less than 232

for DIVUL, then the quotient and remainder are left in the destination register as
. defined above. The V and C flags are cleared to 0 and the Sand Z flags are set ac­

cording to the value of the quotient, as described below.

c: Cleared
Z: Set if the quotient or divisor is zero; cleared otherwise
S: For CASE 1 and CASE 2 cleared; for CASE 3 set if the most-significant bit of the

result is set; cleared otherwise
V: For CASE 1 and CASE 2 set; cleared otherwise
0: Unaffected
H: Unaffected

Integer Overflow trap

6-65

Source
Addressing

Mode

R:

1M:

IR:

EAM:

Example:

6-66

Assembler Language
Syntax

DIVU RRd, Rs

DIVUL ROd, RRs

DIVU RRd, #data

DIVUL ROd, #data

DIVU RRd, @RSl

DIVUL ROd, @RSl

DIVU RRd, eam

DIVUL ROd, eam

Instruction Format

0111101000000011

1 01 0 1 1 0 1 1 Rs 1 RRd

0111101000000011

1 oj 0 1 1 0 1 0 RRs J ROd

0111101000000011

o 01 0 1 1 0 1 1 0 0 0 0 1 RRd

data

0111101000000011

o 0 1 0 1 1 0 1 0 0 0 0 0 1 ROd

data (high)

data (low)

01111010 00000011

001011011 Rs*O 1 RRd

01111010 0000 0011

001011010 Rs*O 1 ROd

01111010 00000011

011011011 eam 1 RRd

1,2, or 3 extension words

0111101000000011

o 1 1 0 1 1 0 1 0 eam 1 ROd

1,2, or 3 extension words

If longword register RRO (composed of word registers RO and R1) contains the value
%OOOOOFOO, executing the instruction

DIVU RRO,#%81

leaves the quotient %001 D in R1 and the remainder %0063 in RO.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

Operation:

Flags:

Exceptions:

Destination
Addressing

Mode

RA:

DJNZ cnt, dst
DBJNZ
DLJNZ

cnt - cnt - 1

DJNZ
Decrement and Jump if Not Zero

cnt: R
dst: RA

If cnt =1= 0 then PC - PC - (2 x displacement)

The counter ("cnt") is decremented. If the contents of the counter are not zero after
decrementing, the destination address is loaded into the Program Counter (PC).
Otherwise, when the counter reaches zero, control falls through to the instruction
following DJNZ, DBJNZ, or DLJNZ. This instruction provides a simple method of
loop control.

The destination address is calculated by subtracting twice the displacement in the
instruction from the updated value of the PC. The updated PC value is the address
of the instruction word following the DJNZ, DBJNZ, or DLJNZ instruction. The
displacement is a 7 -bit positive value in the range 0 to 127. Thus, the destination
address must be in the range -252 to 2 bytes from the start of the DJNZ or DBJNZ
instruction or - 250 to 4 bytes from the start of the DLJNZ instruction. The
assembler automatically calculates the displacement by subtracting the PC value of
the following instruction from the address given by the programmer and dividing the
result by two.

No flags affected

None

Assembler Language
Syntax

DJNZ Rcnt. address
DBJNZ Rbcnt. address

DWNZ RRcnt. address

Instruction Format

11 1 1 1 I Rent I wi disp

0111101000000010

1 1 1 1 1 RR ent 111 disp

6-67

Example:

6·68

DJNZ, DBJNZ and DLJNZ are typically used to control a "loop" of instructions. In
this example for compact mode, 100 bytes are moved from one buffer area to
another, and the Sign bit of each byte is cleared to o. Register RHO is used as the
counter.

LDB RHO,ft100 llinitalize counter
LD R1,ftSRCBUF IIload start address
LD R2,ftDSTBUF

LOOP:
LDB RLO,@R1 IIload source byte
RESB RLO,ft7 IImask off sign bit
LDB @R2, RLO IIstore into destination
INC R1 lIadvance pointers
INC R2
DBJNZ RHO, LOOP IIrepeat until counter = 0

NEXT:

In segmented or linear mode, longword registers must be used instead of R1 and
R2.

Operation:

Flags:

Exceptions:

Example:

Privileged Instruction EI
Enable Interrupts

EI int Int: VI, NVI

If instruction < 0> = 0 then NVI - 1
If instruction < 1 > = 0 then VI - 1

Any combination of the Vectored Interrupt (VI) or Non-Vectored Interrupt (NVI) con­
trol bits in the Flag and Control Word (FCW) are set to 1 if the corresponding bit in
the instruction is 0, thus enabling the appropriate type of interrupt. If the
corresponding bit in the instruction is 1, the control bit is not affected. No other bits
in the FCW are affected. There may be zero, one or two operands in the assembly
language statement, in either order, specifying no source operand is equivalent to
specifying both VI and NVI.

No flags affected

Privileged Instruction trap

Assembler Language
Syntax

EI in!

Instruction Format

10111110010000011ylxl

If the NVI control bit is set to 1 in the FCW, and the VI control bit is cleared 0, ex­
ecuting the instruction

EI VI

leaves both the NVI and VI control bits in the FCW set to 1.

6-69

ENTER
Enter

Operation:

6-70

ENTER mask, siz

tmp1 - mask
if FCW.EtC then n - 13

else n - 14
for i = n down to 8 do

mask: 1M
siz: 1M

if tmp1 < i> = 1 then push RR [2 X i -16]
for i = 7 down to a do

if tmp1 <i> =1 then push RR [2xi+16]
tmp2 - tmp1
tmp2 <15> - FCW.IV
if FCW.EtC then

push RR12
push tmp2
push a

else
push R14
push tmp2
push a

FP-SP
SP-SP + siz
FCW.IV- tmpl<15>

"segmented or linear mode
"compact mode
"save registers

"segmented or linear mode
"save FP
"save mask word
//initialize exception handler address
"(Iongword)
"compact mode
"save FP
"save mask word
"initialize exception handler address
"(word)
"allocate activation record
"reserve local storage

This instruction is executed upon entering a procedure to allocate and initialize an
activation record on the processor stack. The operation involves saving the
specified general-purpose registers, saving and adjusting the Frame Pointer (FP), in­
itializing the pointer to the procedure's exception handler, saving the current setting
of the Integer Overflow trap enable bit, initializing the Integer Overflow trap enable
bit, and reserving the local storage area.

The bits in the mask word operand (called the Enter Mask) correspond to general­
purpose longword registers, as shown in Figure 6-2. When a mask bit is set to 1, the
corresponding register is saved on the stack. Bit 15 of the Enter Mask corresponds
to the setting of FCW.IV, the Integer Overflow trap enable bit, after the Enter in­
struction is executed. The Enter Mask is used to construct the Exit Mask, which is
saved on the stack. The bits in the Exit Mask correspond to the longword registers
that have been saved and the setting of FCW.IV before the Enter instruction is ex­
ecuted.

The activation record format in compact mode is shown in Figure 6-3a. After the
saved PC, which has been pushed by the previous CALL or CALR instruction, the
specified general-purpose longword registers are pushed on the stack. Next, the
Frame Pointer (R14) is pushed on the stack, followed by the Exit Mask. Then a word
containing a is pushed on the stack to initialize the pointer to the exception handler
for the entered procedure. Finally, the size operand word is added to SP (R15), and
FP is left pointing to the exception handler address.

The activation record format in segmented or linear mode, shown in Figure 6-3b, is
similar. After the specified general-purpose longword registers are pushed onto the
stack, the Frame Pointer (RR12) is pushed, followed by the Exit Mask. Then a
longword containing a is pushed on the stack to initialize the exception handler
pOinter. Finally, the sign-extended size operand word is added to SP (RR14), and FP
is left pointing to the exception handler address.

IS

I I I I I I I I I I I I I I I

~
SAVE RRII
SAVE RRla

SAVE RRZO

SAVE RR22
SAVE RFI24
SAVE RR2I

SAVE RR2I

SAVE RR30
SAVE RAO

SAVE RRZ

SAVE RR4
SAVE RRI

SAVE RRe
SAVE RRIO

{ SAVE RRIZ (COMPACT MODE)

o (SEGMENTED OR LINEAR MODE)

{ NEW FCW.IV (ENTER MASK)

SAVED FCW.IV (EXIT MASKI

Figure 6·2. Enter Mask and Exit Mask Formats

LOW

ADD::::l~ll LOCAL
STORAGE

FP_

AREA

0

EXIT_MASK

SAVED FP

SAVED RRle

TO

SAVED RR30

SAVED RRO

TO

SAVED RRIZ

NEW
ACTIVATION

J~
SP'-.p SAVED PC --,

FP'_~
HIGH

ADDRESS Iword

CALLER'S
ACTIVATION

RECORD

---J

FP I, the Frame Pointer lUI' ENTER,
SP 10 Iho Stock Pointor ollar ENTER,
FP' 10 tho From. Polnl.r bofo .. ENTER,
SP' 10 tho Siock Polnt.r bolo .. ENTER

and ollor CALL or CALR.

Figure 6·3a. Activation Record Format
(Compact Mode)

8225·012,013,014

LOW

ADD:::!~ll LOCAL
STO AGE

FP-

R
AREA

0

0

EXIT_MASK

SAVED FP (HIGH)

SAVED FP (LOW)

SAVED RRla

TO

SAVEDRR30

SAVED RRO

TO

SAVED RRIO

SAVED PC (HIGH)

SAVED PC (LOW)

NEW
ACTIVATION

J"'
I

FP'_~
HIGH

ADDRESS tword -

CALLER'S
ACTIVATION

RECORD

..J

FP 10 th. From. Polntar all.r ENTER,
SP 10 th. Stack PoIntar altar ENTER,
FP' 10 Ih. From. Polntar bofor. ENTER,
SP' 10 th. Stack Polntar bofo .. ENTER

and ollor CALL or CALR.

Figure 6·3b. Activation Record Format
(Segmented or Linear Mode)

6·71

Flags:

Exceptions:

Addressing
Mode

1M:

Example:

6-72

No flags affected

None

Assembler Language
Syntax

ENTER*
enteC.,mask,*siZ

Executing the instruction
ENTER 1%05,1100

Instruction Format

011110101000010101

enter_mask

siz

saves registers RR16 and RR20 on the stack, clears Few. IV, and allocates an ac­
tivation record with 100 bytes of local storage.

Operation:

Flags:

Exceptions:

Source
Addressing

Mode

R:

IR:

EAM:

Example:

EX
Exchange

EX dst, src
EXB
EXL

tmp - src
src - dst
dst - tmp

dst: R
src: R, IR, EAM

The contents of the source operand are exchanged with the contents of the destina­
tion operand.

No flags affected

None

Assembler Language
Syntax

EX Rd, Rs
EXB Rbd, Rbs

EXL RRd, RRs

EX Rd, @Rs'
EXB Rbd, @Rs'

EXL RRd, @Rs'

EX Rd, eam
EXB Rbd, eam

EXL RRd, eam

Instruction Format

Rd

0111101000000010

1 oj 1 01 1 01 RRs 1 RRd

0111101000000010

001101101 Rs*ol RRd

o 1 11 0 1 1 01 W Rs * 0 1 Rd

address

0111101000000010

o 111 0 1 1 0 1 Rs 1 RRd

1, 2, or 3 extension words

If register RO contains 8 and register R5 contains 9, executing the instruction

EX RD,R5

leaves the values 9 in RO and 8 in R5.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-73

EXIT
Exit

Operation:

Flags:

Exceptions:

Example:

6-74

EXIT

if FCW.EtC then
SP - FP+4
pop tmp1
pop RR12
n -13

else
SP - FP+2
pop tmp1
pop R14
n-14

for i = 0 to 7 do

IIsegmented or linear mode
IIskip over exception handler
IIExit Mask
IIrestore FP

IIcompact mode
IIskip over exception handler
IIExit Mask
IIrestore FP

if tmp1 < i> = 1 then pop RR [2 x i + 16]
for i = 8 to n do

if tmp1 < I> = 1 then pop RR [2 x i - 16]
FCW.IV - tmp1 < 15>

This instruction removes an activation record created with the ENTER instruction.
(See the description of the ENTER instruction for more detailed Information about
the activation record and Exit Mask formats.)

In compact mode, first the value of the Frame Pointer (R14) is incremented by two
and loaded Into SP (R15), removing the local storage area and exception handler
pointer from the processor stack. Next, the Exit Mask and Frame Pointer are
popped from the stack. Then, the longword registers specified by the Exit Mask are
popped from the stack, and FCW.IV is loaded from bit 15 of the Exit Mask.

In segmented or linear mode, first the value of the Frame Pointer (RR12) is incre­
mented by four and loaded into SP(RR14), removing the local storage area and ex­
ception handler pointer from the processor stack. Next, the Exit Mask and Frame
Pointer are popped from the stack. Then, the longword registers specified by the Ex­
it Mask are popped from the stack, and FCW.IV is loaded from bit 15 of the Exit
Mask.

No flags affected

None

Assembler Language
Syntax

EXIT

Instruction Format

1011110101000001101

At the end of a procedure that has been called using CALL or CALR instructions and
that has been entered using the ENTER instruction, executing the instruction se­
quence

EXIT
RET

returns control to the caller at the instruction following the CALL and leaves the
caller's activation record on top of the stack.

Operation:

Flags:

Exceptions:

Source
Addressing

Mode

R:

IR:

EXTR
Extract Field

EXTR dst, src, pos, siz
EXTRU

dst - src (pos,siz)

dst: R
src: R, IR, EAM
pos: 1M, R
siz: 1M, R

This instruction is used to extract a bit field from memory or a longword register and
load it into a longword register. For a description of bit fields see Section 6.2.6.

The bits in the source field are loaded, right-justified, into the least-significant bits of
the destination longword register. For EXTR the remaining bits in the destination are
loaded with the most-significant bit of the field. For EXTRU the remaining bits in the
destination are cleared to O.

The position and size operands can be specified as immediate values in the range 0
to 31 or in a word or longword register. The assembler encodes each operand in a
6-bit field of the instruction with the following format:

o n n n n n 5-bit unsigned immediate value
1 0 word register contains value
1 1 longword register contains value

c: Cleared
Z: Set if the result is zero; cleared otherwise
S: Set if the most-significant bit of the result is set; cleared otherwise
V: Cleared
D: Unaffected
H: Unaffected

None

Assembler Language
Syntax

EXTR RRd,RRs,pos,siz

EXTRU RRd,RRs,pos,siz

EXTR RRd,@Rsl,pos,siz

EXTRU RRd, @Rsl,pos,siz

Instruction Format

1 01 0 1 1 1 0 0 1 RRs 11 0 1 0

RRd 1 siz 1 pos

1 01 0 1 1 1 0 0 1 RRs 11 0 1 1

RRd I siz I pos

o 01 0 1 1 1 0 0 1 Rs .. 0 11 0 1 0

RRd I siz I pos

o 01 0 1 1 1 0 0 1 Rs .. 0 11 0 1 1

RRd I siz I pos

6-75

Source
Addressing

Mode

EAIIII:

Example:

6-76

Assembler Language
Syntax

EXTR RRd,eam,pos,siz

EXTRU RRd,eam,pos,siz

Instruction Format

o 1J 0 1 1 1 00 1 earn 11 0 1 0

RRd 1 siz 1 pos

1, 2, or 3 extension words

o 11 0 1 1 1 001 earn 11 0 1 1

RRd 1 siz 1 pos

1, 2, or 3 extension words

If register RR4 contains %01200000 (00000001 001000000000000000000000),
executing the instruction

EXTR RR6,RR4,#7,#3

extracts the 4-bit field 1001 beginning at the 7th bit from the most-significant bit of
RR4 and leaves the sign-extended value % FFFFFFF9 in RR6. Note that the size
operand (#3) has a value one less than the number of bits in the field (4).

Note 1: Word register in compact mode, longword register in segmented or linear modes.

Operation:

Flags:

Exceptions:

Destination
Addressing

Mode

R:

Example:

EXTS
Extend Sign

EXTSB dst
EXTS
EXTSL

Byte

dst: R

if dst<7> = 0 then dst< 15:8> - 000 ... 000
else dst < 15:8> - 111 ... 111

Word
if dst< 15> = 0 then

Longword

dst<31:16> - 000 ... 000
else
dst < 31 : 16 > - 111 ... 111

if dst< 31> = 0 then
dst< 63:32 > - 000 ... 000
else
dst < 63:32 > - 111 ... 111

The Sign bit of the low-order half of the destination operand is copied into all bit
positions of the high-order half of the destination. For EXTSB the destination is a
word; for EXTS and EXTSL, the destination is a longword register.

This instruction is useful in multiple precision arithmetic or for conversion of small
signed operands to larger signed operands (for example, before a divide).

No flags affected

None

Assembler Language
Syntax Instruction Format

EXTSB Rd
1101110001 1 Rd

10000 1

EXTS RRd
110 11 10 0 0 1 1 RRd

11010 1

EXTSL ROd
1101110001 1 RQd

10111 1

If longword register RR2 (composed of word registers R2 and R3) contains
% 12345678, executing the instruction

EXTS RR2

leaves the value %00005678 in RR2 (because the sign bit of R3 was 0).

6-77

HALT
Halt

Operation:

Flags:

Exceptions:

6-78

Privileged Instruction

HALT

The CPU enters halted state (see Section 7.2), in which instruction execution
ceases. Only the occurrence of reset or an enabled interrupt causes the CPU to
leave halted state. After HALT is executed, the address of the instruction following
HALT is in the PC, which will be saved on the system stack during interrupt processing.

No flags affected

Privileged Instruction trap

Assembler Language
Syntax

HALT

Instruction Format

101111010 00000000

Operation

Flags:

Exceptions:

Source
Addressing

Mode

IR:

DA:

Example:

IN dst, src
INB
INL

dst - src

Privileged Instruction IN
Input

dst: R
src: IR, DA

The contents of the source operand, an input port, are loaded into the destination
register. 1/0 port addresses are 16 bits.

No flags affected

Privileged Instruction trap

Assembler Language
Syntax

IN Rd, @Rs
INS Rbd, @Rs

INL RRd, @Rs

IN Rd, port

INS Rbd, port

INL RRd, port

Instruction Format

01111010 00000010

0011 1 1 1 01 Rs*O 1 RRd

001111011W Rd 10100

port

0111101000000010

0011 1 1 0 1 1 RRd 1 0 1 00

port

If register R6 contains the 1/0 port address % 0123 and the port %0123 contains
% FF, executing the instruction

INB RH2, @R6

leaves the value % FF in register RH2.

6-79

INC
Increment

Operation:

Flags:

Exceptions:

Destination
Addressing

Mode

R:

IR:

EAM:

6-80

INC dst, src
INCB
INCL

dst: R, IR, EAM
src: 1M

dst - dst + src (src = 1 to 16)

The source operand (a value from 1 to 16) is added to the destination operand and
the sum is stored in the destination. Twos complement addition is performed. If the
source operand is omitted from the assembler language statement, the default value
is 1.

The value of the source field in the instruction is one less than the actual value of
the source operand. Thus, the coding in the instruction for the source ranges from
o to 15, which corresponds to the source values 1 to 16.

C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands were of the same sign

and the result is of the opposite sign; cleared otherwise
D: Unaffected
H: Unaffected

Integer Overflow trap

Assembler Language
Syntax

INC Rd, #n
INCB Rbd, #n

INCL RRd, #n

INC @Rd1, #n
INCB @Rdl, #n

INCL @Rdl, #n

INC earn, #n
INCB earn, #n

INCL earn, #n

Instruction Format

0111101000000010

1 0 11 0 1 0 0 1 RRd 1 n - 1

0111101000000010

001101001 Rd*O 1 n - 1

01 11 01 001 w 1 eam 1 n - 1

1, 2, or 3 extension words

0111101000000010

o 1 11 0 1 0 0 1 eam 1 n - 1

1,2, or 3 extension words

Example: If register RH2 contains %21, executing the instruction

INCB RH2,#6

leaves the value % 27 in RH2.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-81

INCI
Increment Interlocked

Operation:

Flags:

Exceptions:

Destination
Addressing

Mode

IR:

EAM:

Example:

6-82

INCI dst, src
INCIB

dst - dst + src (src = 1 to 16)

dst: IR, EAM
src: 1M

The source operand (a value from 1 to 16) is added to the destination operand and
the sum is stored in the destination. Twos complement addition is performed. If the
source operand is missing from the assembler language statement, the default
value is 1.

The value of the source field in the instruction is one less than the actual value of
the source operand. Thus, the coding in the instruction for the source ranges from a
to 15, which corresponds to the source values 1 to 16.

This is an interlocked instruction. No other interlocked accesses are permitted to
the destination memory location between fetching and storing the result.

C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands were of the same

sign, and the result is of the opposite sign; cleared otherwise
D: Unaffected
H: Unaffected

Integer Overflow trap

Assembler Language
Syntax

INCI @Rd1, ifn
INCIS @Rd1, ifn

INCI eam, ifn
INCIS eam, ifn

Instruction Format

01111010 00000100

00j10100\W Rd*O \ n-1

0111101000000100

0111 01 001 w earn 1 n -1

1, 2, or 3 extension words

This instruction can be used to allocate or release copies of a system resource in a
multiprocessor environment. For example, several processes running on different
processors can share use of a common page in memory. It is necessary to keep a
reference counter for the number of active processes using the shared page. When
a new process requires use of the page the reference counter is incremented. The
INCI instruction should be used so that one processor completes the fetch and store
of the counter in memory before any other processor accesses the counter.

INCI REFERENCLCOUNTER, #1 //increment reference counter
lIfor shared page

Note 1: Word register in compact mode, longword register in segmented or linear modes.

Operation:

Flags:

Exceptions:

Addressing
Mode

IR:

Example:

Privileged Instruction IND
Input and Decrement

INO dst, src, r
INOB
INOL

dst - src

dst: IR
src: IR

AUTOOECREMENT dst (by 1 if INOB; by 2 if INO; by 4 if INOL)
r- r - 1

This instruction is used for block input of strings of data. The contents of the 1/0
port addressed by the source word register are loaded into the memory location ad­
dressed by the destination register. 1/0 port addresses are 16 bits. The destination
register is then decremented by one if INOB, by two if INO, or by four if INOL, thus
moving the pointer to the previous element of the string in memory. The word
register specified by "r" (used as a counter) is then decremented by one. The ad­
dress of the 1/0 port in the source register is unchanged. The source, destination,
and counter registers must be distinct and non-overlapping registers.

c: Unaffected
Z: Unaffected
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
0: Unaffected
H: Unaffected

Privileged Instruction trap

Assembler Language
Syntax Instruction Format

INO @Rd1 @Rs r
INOB @Rdl, @RS, r

INOL @Rdl, @Rs, r

00111011 w
00001

01111010

00111011

0000 I r

Rs,o 0 1000

Rd,o 0 1000

0000 001 0

Rs,oO 1000

Rd,oO 1000

In linear mode, if register RR24 contains %00004000, register R6 contains the 1/0
port address %0228, the port %0228 contains %05B9, and register RO contains
%0016, executing the instruction

INO @RR24, @R6, RO

leaves the value %05B9 in location %00004000, the value %00003FFE in RR24,
and the value %0015 in RO. The V flag is cleared. Register R6 still contains the
value %0228. In compact mode, a word register must be used instead of RR24.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-83

INDEX
Index

Operation:

Flags:

Exceptions:

6·84

INDEX dst, sub, src
INDEXL

dst R
sub: R
src: IM,IR,EAM

tmp - EFFECTIVE_~A.DDRESS (src)
lower- @tmp
if sub < lower then Index Error trap
tmp - tmp + (2 if INDEX; 4 if INDEXL)
upper - @tmp
if sub> upper then Index Error trap
tmp - tmp + (2 if INDEX; 4 if INDEXL)
scale - @tmp
dst - (dst + (sub -lower)) x scale

This instruction is used to check an array subscript and calculate the corresponding
index value. For arrays with multiple dimensions, the instruction performs one step
of the index calculation, accumulating the index value in the destination.

The subscript is compared against the bounds specified by the source operand. If
the subscript is less than the lower bound or greater than the upper bound, then the
destination and flags are unaffected and an Index trap occurs. If the subscript is in
bounds, then the lower bound is subtracted from the subscript, the difference is ad­
ded to the destination, the sum is multiplied by the scale factor, and the product is
stored into the destination. The subscript, lower bound, upper bound, scale factor,
and destination are all the same size, either word or longword. The operands are
treated as signed integers. The contents of the subscript and source are not af­
fected.

The source operand specifies the lower bound. The upper bound and scale factor
are located at the next two consecutive words or longwords.

When the instruction is used appropriately, an Index trap occurs if the calculated in­
dex is outside the array. Hence, overflow is not detected during the index calcula­
tion. If overflow does occur during addition, only the less-significant word or
longword of the sum is stored into the destination. If overflow does occur during
multiplication, only the less-significant word or longword of the product is stored.

c: Unaffected if Index Error trap; cleared otherwise
Z: Unaffected if Index Error trap; else set if the result is zero; cleared

otherwise
S: Unaffected if Index Error trap; else set if the most-significant bit of the

result is set; cleared otherwise
V: Unaffected if Index Error trap; cleared otherwise
D: Unaffected
H: Unaffected

Index Error trap

Source Assembler Language Instruction Format Addressing Syntax Mode

1M: INDEX Rd, Rsub,
001001101 0000 1 1 1 0

Iflower,lfupper,
Ifscale 00001 Rsub Rd;OO 0000

lower

upper

scale

INDEXL RRd, RRsub,
00J001101 0000 1 1 1 1 Iflower,lfupper,

#Scale 00001 RRsub RRd;OO 0000

lower (high)

lower (low)

upper (high)

upper (low)

scale (high)

scale (low)

IR: INDEX Rd, Rsub, @Rs'
001 001 1 01 Rs;OO 1 1 1 0

00001 Rsub Rd;OO 0000

INDEXL RRd, RRsub, @Rs'
001001101 Rs;OO 1 1 1 1

00001 RRsub RRd;OO 0000

EAM: INDEX Rd, Rsub, eam OiI001101 eam 1 1 1 0

00001 Rsub Rd;OO 0000

1, 2, or 3 extension words

INDEXL RRd, RRsub, eam
0 11001101 eam 1 1 1 1

00001 RRsub RRd;OO 0000

1, 2, or 3 extension words

6-85

Example:

6-86

The subscript values for a two-dimensional array of records range from 10 to 20 and
from 1 to 100. Each record in the array is 12 bytes. The base address of the array is
contained in RR2. the first subscript value is contained in RR6. and the second
subscript value is in RR8. Executing the instruction sequence (in segmented or
linear mode)

CLRL RR4
INDEXL RR4.RR6.*10.fI20.*100

INDEXL RR4.RR8.*1.*100.*12
LDB RHO.RR2(RR4)

loads the first byte of the indexed record into RHO.

IIinitialize index register
IIcheck and accumulate first
IIsubscript
IIcalculate array index
//load first byte of record

Note 1: Word register In compact mode. longword register in segmented or linear modes.

Operation:

INOR dst, src, r
INORB
INORL

repeat
dst - src

Privileged Instruction IN DR

dst: IR
src: IR

Input, Decrement and Repeat

AUTOOECREMENT dst (by 1 if INORB; by 2 if INOR; by 4 if INORL)
r- r - 1

until r = 0

This instruction is used for block input of strings of data. The contents of the 1/0
port addressed by the source word register are loaded into the memory location ad­
dressed by the destination register. 1/0 port addresses are 16 bits. The destination
register is then decremented by one if INORB, by two if INOR, or by 4 if INORL,
thus moving the pointer to the previous element of the string in memory. The word
register specified by "r" (used as a counter) is then decremented by one. The ad­
dress of the 1/0 port in the source register is unchanged. The entire operation is
repeated until the result of decrementing r is zero. This instruction can input from 1
to 65,536 data elements. The source, destination, and counter registers must be
distinct, non-overlapping registers.

This instruction can be interrupted after each execution of the basic operation.

Flags: C: Unaffected
Z: Unaffected
5: Unaffected
V: Set
0: Unaffected
H: Unaffected

Exceptions: Privileged Instruction trap

Addressing Assembler Language
Mode Syntax

IR: IN DR @Rdl, @Rs, r
INDRB @Rdl, @Rs, r

INDRL @Rdl, @Rs, r

Instruction Format

00111011 w Rs * 0 1000

00001 r Rd * 0 0000

01111010 0000 0010

00111011 Rs*O 1000

00001 Rd*O 0000

6-87

Example:

6-88

In compact mode, if register R1 contains %202A, register R2 contains the 1/0 ad­
dress %OAFC, and register R3 contains 8, executing the instruction

INDRB @R1, @R2, R3

inputs 8 bytes from the 1/0 port %OAFC and leaves them in descending order from
%202A to %2023. Register R1 contains %2022, and R3 contains O. R2 is not af­
fected. The V flag is set. In segmented or linear mode, a longword register must be
used instead of R1.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

Operation:

Flags:

Exceptions:

Addressing
Mode

IR:

Example:

Privileged Instruction INI
Input and Increment

INI dst, src, r
INIB
INIL

dst - src

dst: IR
src: IR

AUTOINCREMENT dst (by 1 if INIB; by 2 if INI; by 4 if INIL)
r - r - 1

This instruction is used for block input of strings of data. The contents of the 1/0
port addressed by the source word register are loaded into the memory location ad­
dressed by the destination register. 1/0 port addresses are 16 bits. The destination
register is then incremented by one if INIB, by two if INI, or by four if INIL, thus
moving the pointer to the next element of the string in memory. The word register
specified by "r" (used as a counter) is then decremented by one. The address of
the 1/0 port in the source register is unchanged. The source, destination, and
counter registers must be distinct, non-overlapping registers.

c: Unaffected
Z: Unaffected
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
0: Unaffected
H: Unaffected

Privileged Instruction trap

.' Assembler Language
Syntax Instruction Format

INI @Rd1 @Rs r
INIB @Rdl, @Rs, r

INIL @Rdl, @Rs, r

00111011 w
00001

01111010

00111011

00001

Rs '* 0 0000

Rd,* 0 1000

0000 0010

Rs,*O 0000

Rd,*O 1000

In compact mode, if register R4 contains %4000, register R6 contains the 1/0 port
address %0229, the port %0229 contains %B9, and register RO contains %0016,
executing the instruction

INIB @R4, @R6, RO

leaves the value % B9 in location %4000, the value %4001 in R4, and the value
%0015 in RO. Register R6 still contains the value %0229. The V flag is cleared. In
segmented or linear mode, a longword register must be used instead of R4.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-89

I N I R Privileged Instruction
Input, Increment and Repeat

INIR dst, src, r
INIRB
INIRL

dst: IR
src: IR

Operation: repeat
dst - src
AUTOINCREMENT dst (by 1 if INIRB; by 2 if INIR; by 4 if INIRL)
r- r - 1

until r = 0

This instruction is used for block input of strings of data. The contents of the 110
port addressed by the source word register are loaded into the memory location ad­
dressed by the destination register. 110 port addresses are 16 bits. The destination
register is then incremented by one if INIRB, by two if INIR, or by four if INIRL, thus
moving the pointer to the next element in the string in memory. The word register
specified by "r" (used as a counter) is then decremented by one. The address of
the 110 port in the source register is unchanged. The entire operation is repeated
until the result of decrementing r is zero. This instruction can input from 1 to 65,536
data elements. The source, destination, and counter registers must be distinct, non­
overlapping registers.

This instruction can be interrupted after each execution of the basic operation.

Flags: C: Unaffected
Z: Unaffected
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

Exceptions: Privileged Instruction trap

Addressing Assembler Language

6-90

Mode Syntax

IR: INIR @Rd1 ,@Rs. r
INIRB @Rd1• @Rs. r

Instruction Format

00111011 w Rs * 0 0000

0000 I Rd * 0 0000

01111010 0000 0010

00111011 Rs*O 0000

00001 r Rd*O 0000

Example: In compact mode, if register R1 contains %2023, register R2 contains the 1/0 port
address %0551, and register R3 contains 8, executing the instruction

INIRB @R1,@R2,R3

inputs 8 bytes from port %0551 and leave them in ascending order from %2023 to
%202A. Register R1 contains %202B, and R3 contains O. R2 is not affected. The V
flag is set. In segmented or linear mode, a longword register must be used instead
of R1.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-91

INSRT
Insert Field

Operation:

Flags:

Exceptions:

Destination
Addressing

Mode

R:

IR:

EAM:

Example:

6-92

INSRT dst, src, pos, siz

dst (pos, siz) - src

dst: R, IR, EAM
src: R
pos: R, 1M
siz: R, 1M

This instruction is used to insert a bit field from a longword register into memory or
a longword register. For a description of bit fields, see Section 6.2.6.

The bits in the destination field are loaded from the least-significant bits of the
source register.

The position and size operands can be specified as immediate values in the range 0
to 31 or in a word or longword register. The assembler encodes each operand in a
6-bit field of the instruction with the following format:

o n n n n n 5-bit unsigned immediate value
1 0 r r r word register contains value
1 1 r r r longword register contains value

No flags affected

None

Assembler Language
Syntax

INSRT RRd,RRs,pos,siz

INSRT @Rd1,RRs,pos,siz

INSRT eam,RRs,pos,siz

Instruction Format

1 0 1 0 1 1 1 0 01 RRd 10 1 1 0

RRs 1 siz 1 pos

o 0 I 0 1 1 1 0 01 Rd"* 0 1 0 1 1 0

RRs 1 siz 1 pos

o 11 0 1 1 1 0 0 I earn I 0 1 1 0

RRs I siz I pos

1, 2, or 3 extension words

If register RR2 contains %0101012A (0000 0001 0000000100000001 00101010)
and register RR4 contains % FFFF FFFF, executing the instruction

INSRT RR4,RR2,#4,#6

inserts the 7-bit field 0101010 from the least-significant bits of RR2 into RR4 begin­
ning at the 4th from the most-significant bit, leaving % F55FFFFF
(1111 0101 0101 1111 1111 1111 1111 1111 in RR4. Note that the size operand (#6)
has a value one less than the number of bits in the field (7).

Note 1: Word register in compact mode. longword register in segmented or linear modes.

Operation:

Flags:

Exceptions:

Privileged Instruction IRET

IRET

sp-sp + 2
pop tmp
pop PC
if FCW.T then tmp<9> - 1
FCW- tmp

IIpop "identifier"
IIpop FCW

Interrupt Return

This instruction is used at the end of an exception handler routine to return to the
program at the point where the exception occurred. First, an "identifier" word
associated with the exception is popped from the stack. Then, the FCW and PC are
popped from the stack.

After IRET is executed, the Trace Pending bit (FCW.TP) is set if bit 9 is set in the
popped FCW or if the Trace Enable bit (FCW.T) was set before the instruction was
executed. This allows tracing of exception handler routines for single-step debug­
ging. This instruction may be executed in segmented or linear mode only; in com­
pact mode, execution of this instruction is undefined.

c: Loaded from system stack
Z: Loaded from system stack
S: Loaded from system stack
PN: Loaded from system stack
D: Loaded from system stack
H: Loaded from system stack

Privileged Instruction trap

Assembler Language
Syntax

IRET

Instruction Format

01111011 100000000 I

6-93

JP
Jump

Operation:

Flags:

Exceptions:

Destination
Addressing

Mode

IR:

EAM:

Example:

6-94

JP cc, dst dst: IR, EAM

If cc is satisfied, then PC - EFFECTIVE-ADDRESS (dst)

A conditional jump transfers program control to the destination address if the condi­
tion specified by "cc" is satisfied by the flags in the FCW. See Section 6.3 for a list
of condition codes. If the condition is satisfied, the Program Counter (PC) is loaded
with the destination address; otherwise, the instruction following the JP instruction is
executed. If no condition is specified, the jump is taken regardless of the flag set­
tings.

No flags affected

None

Assembler Language
Syntax

JP CC, @Rd1

JP CC, eam

Instruction Format

o 1 I 0 1 1 1 1 0 I earn I cc

1,2, or 3 extension words

If the C flag is set, executing the instruction (in compact mode)

JP C, %1520

replaces the contents of the PC with % 1520, thus transferring control to that loca­
tion.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

Operation:

Flags:

Exceptions:

Destination
Addressing

Mode

RA:

Example:

JR
Jump Relative

JR cc, dst dst: RA

if cc is satisfied then PC - PC + (2 x displacement)

A conditional jump transfers program control to the destination address if the condi­
tion specified by "cc" is satisfied by the flags in the FCW. See Section 6.3 for a list
of condition codes. If the condition is satisfied, the Program Counter (PC) is loaded
with the destination address; otherwise, the instruction following the JR instruction
is executed. If no condition is specified, the jump is taken regardless of the flag set­
tings.

The destination address is calculated by adding twice the displacement in the in­
struction to the updated value of the PC. The updated PC value is the address of the
instruction word following the JR instruction. The displacement is an 8-bit signed
value in the range -128 to 127. Thus, the destination address must be in the range
-254 to 256 bytes from the start of the JR instruction. The assembler automatically
calculates the displacement by subtracting the PC value of the following instruction
from the address given by the programmer and dividing the result by two.

No flags affected

None

Assembler Language
Syntax

JR ee, address

Instruction Format

11 1 1 0 I cc I displacement 1

If the result of the last arithmetic operation executed is negative, the next four in­
structions (which occupy a total of twelve bytes) are to be skipped. This can be
accomplished with the instruction

JR MI, $ +14

If the S flag is not set, execution continues with the instruction following the JR.
A byte-saving form of a jump to the label LAB is

JR LAB

where LAB must be within the allowed range. The condition code is omitted in this
case, indicating that the jump is always taken.

6-95

LD
Load

Operation:

Flags:

Exceptions:

LO dst, src
LOB
LOL

dst - src

dst: R
src: R, IR, BA, BX, EAM
or
dst: IR, BA, BX, EAM
src: R
or
dst: R, IR, EAM
src: 1M

The contents of the source are loaded into the destination. The contents of the
source are not affected.

There are three versions of the Load instruction: load into a register, load into
memory and load an immediate value .

. No flags affected

None

Load Register

Source
Addressing

Mode

R:

IR:

BA:

BX:

6-96

Assembler Language
Syntax

LD Rd, Rs
LDB Rbd, Rbs

LDL RRd, RRs

LD Rd, @RS1
LDB Rbd, @RS1

LDL RRd, @RS1

LD Rd, RS1(disp)
LDB Rbd, RS1(disp)

LDL RRd, RS1(disp)

LD Rd, RS1(Rx)
LDB Rbd, RS1(Rx)

LDL RRd, RS1(Rx)

Instruction Format

1101100001 w 1 Rs Rd

11010101001 RRs RRd

1001100001 w 1 Rso"O 1 Rd

10010101001 Rso"ol RRd

00111 Ooolwi Rso"O I Rd

displacement

001 1101 01 I Rso"O I RRd

displacement

o 111 1 0 0 0 1 w Rs * 0 1 Rd

0000 I Rxo"O 0000 0000

01111 01 0 1 Rso"O I RRd

0000 I Rxo"O 0000 0000

L ad Register (Continued) 0

Source
Addressing

Mode

EAM:

Load Memory
Destination
Addressing

Mode

IR:

BA:

BX:

EAM:

Assembler Language
Syntax

LD Rd, earn
LDB Rbd, earn

LDL RRd, earn

Assembler Language
Syntax

LD @Rd1, Rs
LDB @Rdl, Rbs

LDL @Rd1, RRs

LD Rd1(disp), Rs
LDB Rd1(disp), Rbs

LDL Rd1(disp), RRs

LD Rd1 (Rx), Rs
LDB Rd1(Rx), Rbs

LDL Rd1(Rx), RRs

LD earn, Rs
LDB earn, Rbs

LDL earn, RRs

Instruction Format

o 1110 0 0 0 1 w 1 eam 1 Rd

1, 2, or 3 extension words

o 11 0 1 0 1 0 0 J eam 1 RRd

1, 2, or 3 extension words

Instruction Format

1001101111w1Rd*01 Rs

10010111011 Rd*ol RRs

001110011 W Rd*O 1 Rs

displacement

o 011 1 0 1 1 1 Rd * 0 1 RRs

displacement

01110011W Rd*O 1 Rs

00001 Rx*O 00000000

01111 0111 Rd*O 1 RRs

00001 Rx*O 00000000

011101111W eam 1 Rs

1, 2, or 3 extension words

o 11 0 1 1 1 0 1 1 eam 1 RRs

1, 2, or 3 extension words

6-97

L oa dl mme d" te Value la
Destination Assembler Language Instruction Format Addressing Syntax Mode

R: LD Rd, #data 00 100001100001 Rd

data

LDB Rbd, #data2
00 100000 0000 I Rbd

data data

11100 I Rd I data 1

LDL RRd, #data
001010100 00001 RRd

data (high)

data (low)

IR: LD @Rd1, #data o 0 I 0 0 1 1 0 1 I Rd * 0 I 0 1 0 1

data

LDB @Rdl, #data
001001100 Rd*O 10101

data data

LDL @Rdl, #data
001001101 Rd*O 101 1 1

data (high)

data (low)

EAM: LD eam, #data
o 1 I 0 0 1 1 0 1 I earn ! 0 1 0 1

1, 2, or 3 extension words

data

LDB eam, #data
o 11 0 0 1 1 0 0 I earn I 0 1 0 1

1, 2, or 3 extension words

data I data

LDL eam, #data
o 1T 001 1 01 I earn 101 11

1, 2, or 3 extension words

data (high)

data (low)

6·98

Example: If register RHO contains %AB, executing the instruction
LD RL7, RHO

loads %AB into RL7.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

Note 2: As shown, the instruction set includes two formats for loading an immediate value into a byte register. The
assembler uses the format with one word.

6-99

LOA
Load Address

Operation:

Flags:

Exceptions:

Source
Addressing

Mode

BA:

BX:

EAM:

Examples:

6-100

LOA dst, src dst: R
src: BA, BX, EAM

dst .- EFFECTIV~OORESS (src)

The effective address of the source operand is calculated and loaded into the
destination. The contents of the source are not affected. The address calculation
follows the rules for address arithmetic in the current mode of address representa­
tion: compact, segmented or linear. The destination is a word register in compact
mode, and a longword register in segmented or linear mode.

No flags affected

None

Assembler Language
Syntax

LOA Rd', Rs' (disp)

LOA Rd', Rs' (Rx)

LOA Rd', eam

LOA R4,STRUCT

LOA RR2,RR4(8)

Instruction Format

0011 01 00 Rs ",,0 I Rd

displacement

011101 00 Rs""O I Rd

0000 I Rx""O 0000 0000

a 1 11 1 0 1 1 a earn 1 Rd

1,2, or 3 extension words

!lin compact mode, register R4 is loaded
IIwith the compact address of the location
IInamed STRUCT

!lin linear mode, if base register RR4
IIcontains %01000020, then register RR2 is loaded
IIwith the address %01000028

Note 1: Word register in compact mode, longword register in segmented or linear modes.

Operation:

Flags:

Exceptions:

Source
Addressing

Mode

RA:

Example:

LDAR
Load Address Relative

LDAR dst, src dst: R
src: RA

dst - EFFECTIVEjDDRESS (src)

The effective address of the source operand is calculated and loaded into the
destination. The contents of the source are not affected. The destination is a word
register in compact mode, and a longword register in segmented or linear mode.

The destination address is calculated by adding the displacement in the instruction
to the updated value of the Program Counter (PC). The updated PC value is the ad­
dress of the instruction word following the LDAR instruction. The displacement is a
16-bit signed value in the range -32768 to 32767 in the second word of the instruc­
tion. The addition is performed following the rules of address arithmetic in the cur­
rent mode of address representation: compact, segmented, or linear.

The assembler automatically calculates the displacement by subtracting the PC
value of the following instruction from the address given by the programmer.

No flags affected

None

Assembler Language
Syntax

LDAR Rdl, address

LDAR RR4, TABLE

Instruction Format

00 1 1 0 1 00 I 0 00 0 I Rd

displacement

/lin segmented mode, register RR4 is
//loaded with the segmented address of TABLE

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-101

LDCTL Privileged Instruction
Load Control

Operation:

Flags:

Exceptions:

LOCTL dst, src

dst - src

dst: CTLR
src: R
or
dst: R
src: CTLR

This instruction loads the contents of a general-purpose word register into a control
register, or loads the contents of a control register into a general-purpose word
register. The control register must be one of the following:

FCW
PSAPSEG
PSAPOFF
NSPSEG
NSPOFF

Flag and Control Word
Program Status Area Pointer-high word
Program Status Area Pointer-low word
Normal Stack Pointer-high word
Normal Stack Pointer-low word

When the destination register is FCW, the Trace Pending bit (FCW.TP) is set if bit 9
of the source operand is set or if the Trace Enable bit (FCW.T) is set before the in­
struction is executed. This allows tracing of system programs that may load the
FCW mistakenly.

No flags affected, except when the destination is the Flag and Control Word (LDCTL
FCW, Rs), in which case all the flags are loaded from the source register.

Privileged Instruction trap

Load Into Control Register

6-102

Assembler Language
Syntax

LDCTL FCW, Rs

LDCTL PSAPSEG, Rs

LDCTL PSAPOFF, Rs

LDCTL NSPSEG, Rs

LDCTL NSPOFF, Rs

Instruction Format

01111101 Rs
11010 1

01111101 Rs 1110 01

01111101 Rs
1 1101 1

01111101 Rs
1 1110 1

01111101 Rs 11 1 1 1 1

Load From Control Register

Assembler Language
Syntax

LDCTL Rd, FCW

LDCTL Rd, PSAPSEG

LDCTL Rd, PSAPOFF

LDCTL Rd, NSPSEG

LDCTL Rd, NSPOFF

Instruction Format

101111101 I Rd
10010 1

101111101 I Rd
10100 1

101111101 I Rd
1 0101 1

101111101 I Rd I 0110 1

1011111011 Rd I 0111 1

6-103

loellB
Load Control Byte

Operation:

Flags:

Exceptions:

6-104

LOCTLB dst, src

dst - src

dst: FLAGS
src: R
or
dst: R
src: FLAGS

This instruction loads the contents of a general-purpose byte register into the Flags
register, or loads the contents of the Flags register into a general-purpose byte
register. (The Flags register is the low-order byte of the Flag and Control Word
register.) Note that this is not a privileged instruction.

When the FLAGS register is the destination, all the flags are loaded from the
source. When the FLAGS register is the source, none of the flags are affected.

None

Assembler Language
Syntax

LDCTLB FLAGS, Rbs

LDCTLB Rbd, FLAGS

Instruction Format

10001100 Rbs \10011

1 0 0 0 1 1 0 0 Rbd \ 0 0 0 1 1

Operation:

Flags:

Exceptions:

Privileged Instruction LDCTLL
Load Control Longword

LDCTLL dst, src dst: CTLRL
src: R
or
dst: R
src: CTLRL

dst - src

This instruction loads the contents of a general-purpose longword register into a
control register, or loads the contents of a control register into a general-purpose
longword register. The control register must be one of the following:

SITID
SDTID
NITID
NDTID
SCCL
OSP
HICR
PSAP
NSP

System Instruction Translation Table Descriptor
System Data Translation Table Descriptor
Normal Instruction Translation Table Descriptor
Normal Data Translation Table Descriptor
System Configuration Control Longword
Overflow Stack Pointer
Hardware Interface Control Register
Program Status Area Pointer
Normal Stack Pointer

No flags affected

Privileged Instruction trap

Load Into Control Register

Assembler Language
Syntax

LDCTLL SITIO, RRs

LOCTLL SOTIO, RRs

LOCTLL NITIO, RRs

LOCTLL NOTIO, RRs

LOCTLL SCCL, RRs

LOCTLL asp, RRs

LOCTLL HICR, RRs

Instruction Format

1100111011 RRs
10000 1

1100111011 RRs
10001 1

1100111011 RRs
10010 1

1100111011 RRs
10011 1

1100111011 RRs
10100 1

1100111011 RRs 1111 0 1

1100111011 RRs 101 1 1 1

6-105
" .. _ ... - .~..".--.~.-.~ '" ·"'"·~···-'··E'"=-'"~"=""""'C __

Load Into Control Register (Continued)

Assembler Language
Syntax

LDCTLL PSAP. RRs

LDCTLL NSP. RRs

Load From Control Register

LDCTLL RRd. SITTD

LDCTLL RRd. SDTTD

LDCTLL RRd. NITTD

LDCTLL RRd. NDTTD

LDCTLL RRd. SCCL

LDCTLL RRd. asp

LDCTLL RRd. HICR

LDCTLL RRd. PSAP

LDCTLL RRd. NSP

6-106

Instruction Format

11 0 0 1 1 1 0 1 1 RRs 11 1 0 0 1

11 0 0 1 1 1 0 1 1 RRs 1 0 1 1 0 1

1100111111 RRd 100001

1100111111 RRd 100011

1100111111 RRd 100101

1100111111 RRd 100111

1100111111 RRd
10100 1

1100111111 RRd 11 1 1 0 1

1100111111 RRd 101 1 11

1100111111 RRd 11 100 I
1100111111 RRd

10110 1

Operation:

Flags:

Exceptions:

Addressing
Mode

IR:

LDD
Load and Decrement

LDD dst, src, r
LDDB
LDDL

dst - src

dst: IR
src: IR

AUTODECREMENT dst and src (by 1 if LDDB; by 2 if LDD; by 4 if LDDL)
r - r - 1

This instruction is used for block transfers of strings of data. The contents of the
location addressed by the source register are loaded into the location addressed by
the destination register. The source and destination registers are then decremented
by one if LDDB, by two if LDD or by four if LDDL, thus moving the pointers to the
previous elements in the strings. The word register specified by "r" (used as a
counter) is then decremented by one. The source destination, and counter registers
must be distinct and non-overlapping registers.

The effect of decrementing the pointers during the transfer is important if the
source and destination strings overlap with the source string starting at a lower
memory address. Placing the pOinters at the highest address of the strings and
decrementing the pointers ensures that the source string will be correctly copied in­
cluding the overlapping area. However, the destination address must not exceed the
source address by one for LDD, and by one, two, or three for LDDL; otherwise, the
CPU may not recover correctly from address translation exceptions.

c: Unaffected
Z: Unaffected
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

None

Assembler Language
Syntax Instruction Format

LDD @Rs\ @Rd\ r
LDDB @Rs\ @Rd1, r 10111011 w

00001

10111001

0.0001

Rs;tO 1001

Rd;tO 1000

Rs;tO 1001

Rd;tO 1000

6·107

Example:

6-108

In linear mode, if register RR20 contains %0000202A, register RR22 contains
%0000404A, the word at location %0000404A contains % FFFF, and register R3
contains 5, executing the instruction

LDD @RR20, @RR22, R3

leaves the value % FFFF at location %0000202A, the value %00002028 in RR20,
the value %00004048 in RR22, and the value 4 in R3. The V flag is cleared. In com­
pact mode, word registers must be used instead of RR20 and RR22.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

Operation:

Flags:

Exceptions:

Addressing
Mode

IR:

LDDR dst, src, r
LDDRB
LDDRL

repeat
dst - src

dst: IR
src: IR

LDDR
Load, Decrement and Repeat

AUTODECREMENT dst and src (by 1 if LDDRB; by 2 if LDDR; by 4 if LDDRL)
r - r - 1

until r = 0

This instruction is used for block transfers of strings of data. The contents of the
location addressed by the source register are loaded into the location addressed by
the destination register. The source and destination registers are then decremented
by one if LDDRB, by two if LDD, or by four if LDDL, thus moving the pointers to the
previous elements in the strings. The word register specified by "r" (used as a
counter) is then decremented by one. The entire operation is repeated until the
result of decrementing r is zero. This instruction can move from 1 to 65,536 data
elements. The source, destination, and counter registers must be distinct and non­
overlapping registers.

The effect of decrementing the pointers during the transfer is important if the
source and destination strings overlap with the source string starting at a lower
memory address. Placing the pointers at the highest address of the strings and
decrementing the pOinters ensures that the source string will be correctly copied in­
cluding the overlapping area. However, the destination address must not exceed the
source address by one for LDDR, and by one, two, or three for LDDRL; otherwise,
the CPU may not recover correctly from address translation exceptions.

This instruction can be interrupted after each execution of the basic operation.

c: Unaffected
Z: Unaffected
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

None

Assembler Language
Syntax

LDDR @Rdl, @Rs1, r
LDDRB @Rd1, @Rsl, r

Instruction Format

10111011w Rs*O 1001

00001 Rd*O 0000

10111001 Rs*O 1001

00001 Rd*O 0000

6-109

Example:

6-110

In compact mode, if register R1 contains %202A, register R2 contains %404A, the
words at locations %4040 through %404A all contain % FFFF, and register R3 con­
tains 6, executing the instruction

LDDR @R1, @R2, R3

leaves the value % FFFF in the words at locations % 2020 through % 202A, the
value %201 E in R1, the value %403E in R2, and 0 in R3. The V flag is set. In
segmented or linear mode, longword registers must be used instead of R1 and R2.

Note 1: Word register in compact mode. longword register in segmented or linear modes.

Operation:

LDI
Load and Increment

LOI dst, src, r
LOIB
LOlL

dst - src

dst: IR
src: IR

AUTOINCREMENT dst and src (by 1 if LOIS; by 2 if LOI; by 4 if LOlL)
r - r - 1

This instruction is used for block transfers of strings of data. The contents of the
location addressed by the source register are loaded into the location addressed by
the destination register. The source and destination registers are then incremented
by one if LOIS, by two if LOI, or by four if LOlL, thus moving the pointers to the next
elements in the strings. The word register specified by "r" (used as a counter) is
then decremented by one. The source, destination, and counter registers must be
distinct, non-overlapping registers.

The effect of incrementing the pointers during the transfer is important if the source
and destination strings overlap with the source string starting at a higher memory
address. Placing the pointers at the lowest address of the strings and incrementing
the pointers ensures that the source string will be correctly copied including the
overlapping area. However, the destination address must not exceed the source ad­
dress by one for LOI; and by one, two, or three for LOlL; otherwise, the CPU may
not recover correctly from address translation exceptions.

Flags: C: Unaffected
Z: Unaffected
S: Unaffected
V: Set if the result of decrementing r is zero, cleared otherwise
0: Unaffected
H: Unaffected

Exceptions: None

Addressing Assembler Language
Mode Syntax Instruction Format

IR: LDI @Rdl, @RS1, r
LDIB @Rdl, @RS1, r 10111011 w

00001

10111001

000 oj

Rs*O 0001

Rd*O 1000

Rs*O 0001

Rd*O 1000

6-111

Example:

6-112

This instruction can be used in a "loop" of instructions which transfers a string of
data from one location to another, but where an intermediate operation on each
data element is required. The following sequence transfers a string of 80 bytes, but
tests for a special value (%OD, an ASCII return character) which terminates the
loop if found. This example assumes compact mode. In segmented or linear mode,
longword registers must be used instead of R1 and R2.

LOOP:

DONE:

LD R3, #80
LDA R1, DSTSUF
LDA R2,SRCSUF

CPS
JR
LDIS
JR

@R2, #%OD
EO,DONE
@R1, @R2, R3
NOV, LOOP

lIinitialize counter
//load start addresses

IIcheck for return character
lIexit loop if found
/!transfer next byte
IIrepeat until counter = 0

Note 1: Word register in compact mode, longword register in segmented or linear modes.

Operation:

Flags:

Exceptions:

Addressing
Mode

IR:

LDIR
Load, Increment and Repeat

LDIR dst, src, r
LDIRB
LDIRL

repeat
dst - src

dst: IR
src: IR

AUTOINCREMENT dst and src (by 1 if LOIRB; by 2 if LOIR; by 4 if LOIRL)
r- r - 1

until r = 0

This instruction is used for block transfers of strings of data. The contents of the
location addressed by the source register are loaded into the location addressed by
the destination register. The source and destination registers are then incremented
by one if LOIRB, or by two if LOI, or by four if LOlL, thus moving the pOinters to the
next elements in the strings. The word register specified by "r" (used as a counter)
is then decremented by one. The entire operation is repeated until the result of
decrementing r is zero. This instruction can move from 1 to 65,536 data elements.
The source, destination, and counter registers must be distinct, non-overlapping
registers.

The effect of incrementing the pOinters during the transfer is important if the source
and destination strings overlap with the source string starting at a higher memory
address. Placing the pointers at the lowest address of the strings and incrementing
the pOinters ensures that the source string will be correctly copied including the
overlapping area. However, the destination address must not exceed the source ad­
dress by one for LOIR, and by one, two, or three for LOIRL; otherwise, the CPU may
not recover correctly from address translation exceptions.

This instruction can be interrupted after each execution of the basic operation.

c: Unaffected
Z: Unaffected
S: Unaffected
V: Set
0: Unaffected
H: Unaffected

None

Assembler Language
Syntax

LDIR @Rdl, @Rsl, r
LDIRB @Rd1, @Rsl, r

I.nstruction Format

10111011W Rs,.O 0001

00001 r Rd,. 0 0000

1 01 11 001 Rs,.O 0001

00001 r

6-113

Example:

6·114

The following sequence of instructions can be used in compact mode to copy a buf­
fer of 512 words (1024 bytes) from one area to another. The pointers to the start of
the source and destination are set, the number of words to transfer is set, and then
the transfer takes place.

LOA R1,OSTBUF
LOA R2,SRCBUF
LO R3, #512
LOIR @R1, @R2, R3

In segmented or linear mode, longword registers must be used instead of R1 and
R2.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

Operation:

Flags:

Exceptions:

Destination
Addressing

Mode

R:

Example:

LDK
Load Constant

LDK dst, src
LDKL

dst - src (src = 0 to 15)

dst: R
src: 1M

The source operand, a value from 0 to 15, is loaded into the destination register.

No flags affected

None

Assembler Language
Syntax

LDK Rd, #data

LDKL RRd, #data

Instruction Format

1 0 1 1 1 1 0 1 Rd I dala

I 0 0 1 1 1 0 0 0 I RRd data

To load register R3 with the constant 9, execute the instruction

LDK R3,#9

6-115

LDM
Load Multiple

Operation:

Flags:

Exceptions:

LDM dst, src, n

LDM dst, src

dst - src(n words)

dst: R
src: IR, EAM
or
dst: IR, EAM
src: R

dst: R
src: 1M

The contents of n (a value from 1 to 16) consecutive source words are loaded into
the destination. The contents of the source are not affected. The instruction can be
used to load multiple word registers either into or from memory. Registers are ac­
cessed in increasing order starting with the specified register; RO follows R15.

The value in the instruction field for the number of words loaded ("n") is one less
than the actual number of words. Thus, the coding in the instruction field ranges
from 0 to 15, which corresponds to loading 1 to 16 words.

The starting memory address is calculated once at the start of execution, and in­
cremented by two for each register loaded. If the original address calculation in­
volved a register, the register's value is not affected by incrementing the address
during execution. Similarly, modifying that register during a load from memory does
not affect the address used by this instruction.

No flags affected

None

Load Multiple-Registers From Memory

Source
Addressing

Mode

1M:

IR:

EAM:

6-116

Assembler Language
Syntax

LDM Rd, Idatao,
Idata1 .. · .,
Idatan_1

LDM Rd, @Rsl, In

LDM Rd, earn, In

Instruction Format

001011100 0000 0001

00001 Rd 0000 n-1

n words data

001011100 Rs*O 0001

00001 Rd 0000 n-1

011011100 eam 0001

00001 Rd 0000 n-1

1,2, or 3 extension words

Load Multiple-Memory From Registers
Destination
Addressing

Mode

IR:

EAM:

Example:

Assembler Language
Syntax

LDM @Rd1 , Rs, Un

LDM eam, Rs, Un

Instruction Format

o 0 I 0 1 1 1 0 0 Rd *' 0 1 0 0 1

o 0 0 0 I Rs 0 0 0 0 n - 1

o 1 I 0 1 1 1 0 0 earn 1 0 0 1

o 0 0 0 I Rs 0 0 0 0 n - 1

1,2, or 3 extension words

In compact mode, if register R5 contains 5, R6 contains %0100, and R7 contains 7,
executing the instruction

LDM @R6, R5, #3

leaves the values 5, %0100, and 7 at word locations %0100, %0102, and %0104,
respectively; none of the registers is affected. In segmented or linear mode, a
longword register must be used instead of R6.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-117

LDML
Load Multiple Longwords

Operation:

6-118

LDML mask, src

LDML dst, mask

src: 1M, IR, EAM
mask: 1M
or
dst: IR, EAM
mask: 1M

Load Multiple Longwords-Registers from Memory

tsrc - EFFECTIV~DDRESS (src)
for i = 0 to 7 do

if mask<i> = 1 then
RR [2 x i + 16]- @tsrc
tsrc - tsrc + 4

for i = 8 to 15 do
if mask<i> = 1 then

RR [2 x i -16]- @tsrc
tsrc - tsrc + 4

Load Multiple Longwords-Memory from Registers

tdst - EFFECTIV~DDRESS (dst)
for i = 0 to 7 do

if mask < i > = 1 then
@tdst- RR [2 x i+ 16]
tdst - ldst + 4

for i = 8 to 15 do
if mask < i > = 1 then

@tdst - RR [2 x i -16];
tdst - tdst + 4

This instruction can be used to load multiple longword registers either into or from
memory. Each bit in the mask operand that is set to 1 corresponds to a longword
register to be loaded. Bits 0 to 7 of the mask operand designate the longword
registers RR16 to RR30 respectively. Bits 8 to 15 of the mask operand designate the
longword registers RRO to RR14 respectively. The format of the mask operand is
shown in Figure 6-4.

15

L J

~

Figure 6·4. Mask Operand Format

LOAD RR16

LOAD RR18

LOAD RR20

LOAD RR22

LOAD RR24

LOAD RR26

LOAD RR28

LOAD RR30

LOAD RRO

LOAD RR2

LOAD RR4

LOAD RR6

LOAD RR8

LOAD RR10

LOAD RR12

LOAD RR14

8225-015

Flags:

Exceptions:

The starting memory address is calculated once at the start of execution and in­
cremented by four for each register loaded. If the original address calculation in­
volved a register, the register's value is not affected by incrementing the address
during execution. Similarly, modifying that register during a load from memory does
not affect the address used by this instruction.

No flags affected

None

Load Multiple Longwords- Registers From Memory

Source
Addressing

Mode

1M:

IR:

EAM:

Assembler Language
Syntax

LDML'mask, /ildalao,
/ildala1 , ... ,/ildalan_1

LDML /ilmask, @RS1

LDML, /ilmask, eam

Instruction Format

001 0111001000010101

mask

n longwords data

o 01 0 1 1 1 0 0 1 Rs * 0 1 0 1 0 1

mask

o 1 1 0 1 1 1 0 0 1 eam 1 0 1 0 1

mask

1, 2, or 3 extension words

Load Multiple Longwords-Memory from Registers

Destination
Addressing

Mode

IR:

EAM:

Example:

Assembler Language
Syntax

LDML @Rdl, /ilmask

LDML eam, /ilmask

Instruction Format

o 0 1 0 1 1 1 0 0 1 Rd * 0 J 1 1 0 1

mask

o 1 1 0 1 1 1 0 0 1 earn 11 1 0 1

mask

1, 2, or 3 extension words

In linear mode, if base register RR2 contains % 1000 and the longwords at location
% 1000 and % 1 002 contain 100 and 150 respectively, executing the instruction

LDML. #5, @RR2

loads 100 into RR16 and 150 into RR20.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6·119

LON Privileged Instruction
Load Normal

Operation:

Flags:

Exceptions:

LONO dst, src, n
LONOB
LONOL
LON I
LONIB
LONIL

dst - src

dst: R
src: IR, EAM
or
dst: IR, EAM
src: R

These instructions allow programs executing in system mode to reference informa­
tion in normal mode data and instruction memory address spaces. This is useful for
accessing system call parameters when system and normal mode address spaces
are separated. The LDND instructions reference normal data space and the LDNI
instructions reference normal instruction space. There are versions of the instruc­
tions to load from memory to a register and from a register to memory. When per­
forming the memory reference, the address translation mechanism uses the transla­
tion tables for normal data or instruction space, and checks the access permission
for system mode.

No flags affected

Privileged Instruction trap

Load Register from Normal Space
Source

Addressing
Mode

IR:

6-120

Assembler Language
Syntax

LDND Rd, @RS1
LDNDB Rbd, @RS1

LDNDL RRd, @RS1

LDNI Rd, @RS1
LDNIB Rbd, @RS1

LDNIL RRd, @RS1

Instruction Format

01111010 001 1 01 1 1

00110000lw Rs*O Rd

01111010 0011 01 1 1

001010100 Rs*O RRd

01111010 0010 01 1 1

00110000lw Rs*O Rd

01111010 0010 01 1 1

001010100 Rs*O RRd

~-- ~--~----~-----~ ---

Load Register from Normal Space (Continued)

Source
Addressing

Mode

EAM:

Assembler Language
Syntax

LDND Rd, eam
LDNDB Rbd, eam

LDNDL RRd, eam

LDNI Rd, eam
LDNIB Rbd, eam

LDNIL RRd, eam

Load Normal Space from Register

Destination
Addressing

Mode

IR:

Assembler Language
Syntax

LDND @Rdl, Rs
LDNDB @Rd, Rbs

LDNDL @Rdl, RRs

LDNI @Rdl, Rs
LDNIB @Rdl, Rbs

LDNIL @Rdl, RRs

Instruction Format

0111101000110111

01110000lw earn Rd

1, 2, or 3 extension words

0111101000110111

o 1 1 0 1 0 1 0 0 earn RRd

1, 2, or 3 extension words

0111101000100111

o 111 0 0 0 otw earn Rd

1,2, or 3 extension words

0111101000100111

01101 01 00 earn RRd

1, 2, or 3 extension words

Instruction Format

01111010 001 1 o 111

001101111w Rd*O Rs

01111010 001 1 011 1

001 01 1 1 01 Rd*O Rs

01111010 0010 01 11

00110111jW Rd*O Rs

01111010 0010 011 1

001 01 1 1 01 Rd*O RRs

6-121

Load Normal Space from Register (Continued)

Destination
Addressing

Mode

EAM:

6-122

Assembler Language
Syntax

LDND eam, Rs
LDNDS eam, Rbs

LDNDL eam, RRs

LDNI eam, Rs
LDNIS eam, Rbs

LDNIL eam, RRs

Instruction Format

01111010 001 1 0111

011101111w earn Rs

1, 2, or 3 extension words

01111010 001 1 0111

011011101 earn RRs

1, 2, or 3 extension words

01111010 0010 0111

011101111w earn Rs

1,2, or 3 extension words

1,2, or 3 extension words

Note 1: Word register in compact mode, longword register in segmented or linear modes.

Operation:

Flags:

Exceptions:

Source
Addressing

Mode

IR:

Privileged Instruction L D P
Load Physical Address

LDPND dst, src
LDPNI
LDPSI
LDPSD

dst: R
src: IR, EAM

dst - PHYSICAL...ADDRESS (src)

These instructions translate the logical address of the source operand to a physical
address, and store the result into the destination. Four versions of the instruction
are provided, one for each of the logical memory address spaces: normal mode in­
struction space (LDPNI), normal mode data space (LDPND), system mode instruc­
tion space (LDPSI), and system mode data space (LDPSD). The Z flag is set when
the translation is valid, and cleared otherwise.

The V and C flag settings indicate whether or not read and write accesses are per­
mitted to the source byte address. This feature is useful for verifying access rights
for addresses passed as system call parameters from normal to system mode. The
S flag is set when the access information reported in the V and C flags is valid, and
cleared otherwise. (During address translation, the PROT field specifying the access
rights may be valid although one of the translation table entries is invalid.) When ad­
dress translation is disabled, read and write accesses are permitted to all ad­
dresses.

c: LDPND, LDPNI-set if write access is permitted for the source operand in
normal mode; cleared otherwise; LDPSI, LDPSD-set if write access is permitted
for the source operand in system mode; cleared otherwise

Z: Set if the translation is valid; cleared otherwise
S: Set if the protection information in flags C and V is valid; cleared otherwise
V: LDPND, LDPNI-set if read access is permitted for the source operand in

normal mode; cleared otherwise; LDPSI, LDPSD-set if read access is permitted
for the source operand in system mode; cleared otherwise

D: Unaffected
H: Unaffected

Privileged Instruction trap

Assembler Language
Syntax Instruction Format

LDPND RRd, @Rs' 01111010 0011 11 01

001110110 Rs*O RRd

LDPNI RRd, @Rs'
01111010 0010 11 01

001 11 0110 Rs*O RRd

LDPSD RRd, @Rs'
01111010 0001 11 01

001110110 Rs*O RRd

LDPSI RRd, @Rs'
01111010 0000 11 01

001110110 Rs*O RRd

6-123

Source Assembler Language Instruction Format Addressing Syntax Mode

EAM:·", LDPND RRd, earn
01111010 001 1 1101

011110110 earn RRd

1, 2, or 3 extension words

LDPNI RRd, earn
01111010 0010 1101

0111 1 01 1 0 earn RRd

1, 2, or 3 extension words

LDPSD RRd, earn
01111010 0001 1101

0~110110 earn RRd

1, 2, or 3 extension words

LDPSI RRd, earn
01111010 0000 1 1 01

011110110 earn RRd

1,2, or 3 extension words
-

I I
Note 1: Word register' in compact mode, longword register In segmented or linear modes.

6-124

Operation:

Flags:

Exceptions:

Source
Addressing

Mode

IR:

EAM:

Privileged Instruction LOPS
Load Program Status

LOPS src src: IR, EAM

tmp - EFFECTIVEJDDRESS (src)
if FCW.EtC then IIsegmented or linear mode
tmp 2 - @(tmp1 + 2) //fetch FCW
PC - @(tmp1 + 4) //fetch PC (Iongword)

else IIcompact mode
tmp 2 - @tmp1 //fetch FCW
PC - @(tmp1 + 2) //fetch PC (low-order word)

if FCW.T then tmp2<9> - 1
FCW- tmp2

The contents of the source operand are loaded into the Program Status (PS)
registers, both the Flag and Control Word (FCW) and the Program Counter (PC). In
compact mode the source operand includes two words: the new FCW and the new
low-order word of PC. The high-order word of PC is unaffected. In segmented or
linear mode, the source operand includes four words: a reserved word (which must
contain 0), the new FCW, and the new PC longword

After LDPS is executed, the Trace Pending bit (FCW.TP) is set if bit 9 is set in the
source operand FCW or if the Trace Enable (FCW.T) bit was set before the instruc­
tion was executed. This allows the LDPS instruction to be traced for single-step
debugging.

..OM.NT.D
COMPACT

LOW ADDRESS
OR LlN.AR

FCW 0

PC FCW

PCSEG. NO.

HIGH ADDRESS PC OFFSET

All flags are loaded from the source operand.

Privileged Instruction trap

Assembler Language
Syntax

LDPS @RS1

LDPS earn

Instruction Format

10011110011 Rs*O 100001

o 1J 1 1 1 0 0 1 J earn I 0 0 0 0

1,2, or 3 extension words

6-125

Example:

6-126

In compact mode, if register R3 contains %5000, location %5000 contains % 1800,
and location %5002 contains % AOOO, executing the instruction

LDPS @R3

leaves the value % AOOO in the PC, and the FCW value is % 1800.

Note 1: Word register in compact mode. longword register in segmented or linear modes.

Operation:

Flags:

Exceptions:

LOR dst, src
LORB
LORL

dst - src

dst: R
src: RA
or
dst: RA
src: R

LOR
Load Relative

The contents of the source operand are loaded into the destination. The contents of
the source are not affected. The effective address is calculated by adding the
displacement in the instruction to the updated value of the program counter (PC).
The updated PC value is the address of the instruction word following the LDR,
LDRB, or LDRL instruction. The displacement is a 16-bit signed value in the range
-32768 to 32767.

The assembler automatically calculates the displacement by subtracting the PC
value of the following instruction from the address given by the programmer.

No flags affected

None

Load Relative Register
Destination
Addressing

Mode

RA:

Assembler Language
Syntax

LOR Rd, address
LORB Rbd, address

LORL RRd, address

Load Relative Memory
Destination
Addressing

Mode

RA:

Example:

Assembler Language
Syntax

LOR address, Rs
LORB address, Rbs

LORL address, RRs

LDRR2, DATA

Instruction Format

0011000lwl00001 Rd

displacement

00110101100001 RRd

displacement

Instruction Format

00110011wlooooi Rs

dlsplacament

00110111100001 RRs

displacement

IIregister R2 is loaded with the value in
lithe location named DATA

6-127

MULT
Multiply

Operation:

Flags:

Exceptions:

Source
Addressing

Mode

R:

1M:

6-128

dst: R MULl dst, src
MULTL src: R, 1M, IR, EAM

Word (dst is longword register, src is word)
dst<31:0> - dst<15:0> X src<15:0>
Longword (dst is quadword register, src is longword)
dst<63:0> - dst<31:0> X src<31:0>

The low-order half of the destination operand (multiplicand) is multiplied by the
source operand (multiplier) and the product is stored in the destination. The con­
tents of the source are not affected. Both operands are treated as signed, twos
complement integers. For MULT, the destination is a longword register and the
source is a word value; for MULTL, the destination is a quadword register and the
source is a longword value.

For proper instruction execution, the "dst field" in the MULTL instruction format en­
coding must specify a valid code for a quadword register. Otherwise, the result is
undefined. .

The initial contents of the high-order half of the destination register do not affect the
operation of this instruction and are overwritten by the result. The C flag is set to in­
dicate that the upper half of the destination register is required to represent the
result; if the C flag is clear, the product can be correctly represented in the same
precision as the multiplicand, and the upper half of the destination merely holds a
sign extension.

c: MULT-set if product is less than _215 or greater than or equal to 215; cleared
otherwise; MULTL-set if product is less than -231 or greater than or equal to
-231 ; cleared otherwise

Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Cleared
D: Unaffected
H: Unaffected

None

Assembler Language
Syntax

MULT RRd, Rs

MULTL ROd, RRs

MULT RRd, #data

MULTL ROd, #data

Instruction Format

11010110011 Rs RRd

11 0 1 0 1 1 00 0 I RRs I RQd 1

o 0 I 0 1 1 0 0 1 I 0 0 0 0 I RRd

data

001 011000100001 RQd

data (high)

data (low)

Source
Addressing

Mode

IR:

EAM:

Example:

Assembler Language
Syntax

MULT RRd, @Rs'

MULTL ROd, @Rs'

MULT RRd, earn

MULTL ROd, earn

Instruction Format

1001 011001 I Rs*O I RRd

1001011000 I Rs*O I ROd

o 1 I 0 1 1 00 1 I earn I RRd

1, 2, or 3 extension words

o 11 0 1 1 000 I earn 1 ROd

1, 2, or 3 extension words

If register ROO (composed of longword registers RRO and RR2) contains
%2222222200000031 (RR2 contains decimal 49), executing the
instruction

MULT ROO,II10

leaves the value %00000000000001EA (decimal 490) in ROO. The C, Z, S, and V
flags are cleared.

Note': Word register in compact mode, longword register in segmented or linear modes.

6-129

MULTU
Multiply Unsigned

Operation:

Flags:

Exceptions:

Source
AddreSSing

Mode

R:

6-130

dst: R MUL TU dst,src
MULTUL src: R, 1M, IR, EAM

Word (dst is longword register, src is word)
dst<31:0> - dst<15:0> x src<15:0>
Longword (dst is quadword register, src is longword)
dst<63:0> - dst<31:0> x src<31:0>

The low-order half of the destination operand (multiplicand) is multiplied by the
source operand (multiplier) and the product is stored in the destination. The con­
tents of the source are not affected. Both operands are treated as unsigned in­
tegers. For MULTU, the destination is a longword register and the source is a word
value; for MULTUL, the destination is a quadword register and the source is a
longword value.

For proper instruction execution the "dst field" in the MULTUL instruction encoding
must specify a valid code for a quadword register. Otherwise, the result is
undefined.

The initial contents of the high-order half of the destination register do not affect the
operation of this instruction and are overwritten by the result. The C flag is set to in­
dicate that the upper half of the destination register is required to represent the
result; if the C flag is clear, the product can be correctly represented in the same
precision as the multiplicand, and the upper half of the destination merely holds o.

c: MULTU-set if product is greater than or equal to 216; cleared otherwise;
MULTUL-set if product is greater than or equal to 232 ; cleared otherwise

Z: Set if the result is zero; cleared otherwise
S: Set if the most-significant bit of the result is set; cleared otherwise
V: Cleared
D: Unaffected
H: Unaffected

None

Assembler Language
Syntax

MULTU RRd, Rs

MULTUL ROd, RRs

Instruction Format

0111101000000011

1 0 I 0 1 1 0 0 1 Rs I RRd

0111101000000011

1 oj 0 1 1 0 0 0 RRs l RQd

Source
Addressing

Mode

1M:

IR:

EAM:

Example:

Assembler Language
Syntax

MULTU RRd, Ifdata

MULTUL ROd, Ifdata

MULTU RRd, @Rs'

MULTUL ROd, @Rs'

MULTU RRd, eam

MULTUL ROd, eam

Instruction Format

0111101000000011

o 0 \ 0 1 1 0 0 1 0 0 0 0 \ RRd

data

0111101000000011

o 0 \ 0 1 1 0 0 0 0 0 0 0 \ RQd

data(high)

data(low)

01111010 0000 0011

00101 1001 Rs*O I RRd

01111010 0000 0011

001011000 RS*O\ RQd

01111010 0000 0011

01\011001 earn \ RRd

1, 2, or 3 extension words

0111101000000011

o 1\ 0 1 1 0 0 0 earn \ RQd

1, 2, or 3 extension words

If register RRO (composed of RO and R1) contains % ABCD FFFF (R1 contains
decimal 65,535), executing the instruction

MULTU RRO,#16

leaves the value % OOOFFFFO (decimal 1,048,560) in RRO. The C flag is set and the
Z, S, and V flags are cleared.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-131

NEG
Negate

Operation:

Flags:

Exceptions:

Destination
Addressing

Mode

R:

IR:

EAM:

Example:

6-132

NEG dst
NEGB
NEGL

dst - -dst

dst: R, IR, EAM

The contents of the destination are negated, that is, replaced by twos comple-
ment values. Note that %8000 for NEG, %80 for NEGB, and %80000000 for NEGL
are replaced by themselves since in twos complement representation the negative
number with greatest magnitude has no positive counterpart; for these three cases,
the V flag is set.

c: Cleared if the result is zero; set otherwise, which indicates a borrow
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if the result is %8000 for NEG, %80 for NEGB, or %80000000 for NEGL

cleared otherwise
0: Unaffected
H: Unaffected

Integer Overflow trap

Assembler Language
Syntax

NEG Rd
NEGB Rbd

NEGL RRd

NEG @Rd1

NEGB @Rd1

NEGL @Rd'

NEG eam
NEGB eam

NEGL eam

Instruction Format

11 0 I 011 1 00 I RRd 1001 01

10 0 I 0 1 1 1 0 0 I Rd *- 0 I 0 0 1 01

01J00110Jwl eam 10010

1,2, or 3 extension words

o 1 I 0 1 1 1 0 0 I eam 10 0 1 0

1, 2, or 3 extension words

If register RR8 contains %0000051 F, executing the instruction

NEGL RR8

leaves the value % FFFFFAE1 in RR8.

Note 1: Word register in compact mode. longword register in segmented or linear modes.

Operation:

Flags:

Exceptions:

Destination
Addressing

Mode

NOP

No operation is performed.

No flags affected

None

Assembler Language
Syntax

NOP

NOP
No Operation

Instruction Format

110001101 00000111

6-133

OR
Or

Operation:

Flags:

Exceptions:

Source
Addressing

Mode

R:

1M:

IR:

6-134

OR dst, src
ORB
ORL

dst - dst OR src

dst: R
src: R, 1M, IR, EAM

The source operand is logically ORed with the destination operand and the result is
stored in the destination. A 1 bit is stored whenever either of the corresponding bits
in the two operands is 1; otherwise a 0 bit is stored. The contents of the source are
not affected.

c: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the most-significant bit of the result is set; cleared otherwise
P: OR, ORL-unaffected; ORB-set if parity of the result is even;

cleared otherwise
0: Unaffected
H: Unaffected

None

4 ____ 1 __ I ___ ~~ __ _

.l"\l:>l:>IC'IIIUIIC'I L.ClII\:IUCI\:I"

Syntax

ORRd, Rs
ORB Rbd, Rbs

ORL RRd, RRs

OR Rd, 'data

ORB Rbd, 'data

ORL RRd, 'data

OR Rd, @RS1
ORB Rbd, @RS1

ORL RRd, @Rs'

Instruction Format

Rd

0111101000000010

1 0 I 0 0 0 1 0 1 RRs I RRd

o 0 1 0 0 0 1 0 1 1 0 0 0 0 -I Rd

data

001 000100 0000 I Rd

data data

01111010 0000 0010

001000101 0000 RRd

data (high)

data (low)

I 0 0 10 0 0 1 0 I w I RH 0 I . Rd

01111010 0000 0010

001000101 Rs*O RRd

Source
Addressing

Mode

EAM:

Example:

Assembler Language
Syntax

OR Rd, earn
ORB Rbd, earn

ORL RRd, earn

Instruction Format

o 1 10 0 0 1 01 w e8m 1 Rd

1, 2, or 3 extension words

01111010 00000010

o 11 0 0 0 1 0 1 e8m 1 RRd

1, 2, or 3 extension words

If register RL3 contains %C3 (11000011) and the source operand is the immediate
value % 7B (01111011), executing the instruction

ORB RL3,#%7B

leaves the value % FB (11111011) in RL3.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6·135

OTOR Privileged Instruction
Output, Decrement and Repeat

Operation:

Flags:

Exceptions:

Addressing
Mode

IR:

6-136

OTOR dst, src, r
OTORB
OTORL

repeat
dst - src

dst: IR
src: IR

AUTODECREMENT src (by 1 if OTDRB; by 2 if OTDR; by 4 if OTDRL)
r- r-1

until r = 0

This instruction is used for block output of strings of data. The contents of the
memory location addressed by the source register are loaded into the 1/0 port ad­
dressed by the destination word register. 1/0 port addresses are 16 bits. The source
register is then decremented by one if OTDRB, by two if OTDR , or by four if
OTDRL, thus moving the pointer to the previous element of the string in memory.
The word register specified by "r" (used as a counter) is then decremented by one.
The address of the 1/0 port in the destination register is unchanged. The entire
operation is repeated until the result of decrementing r is zero. This instruction can
output from 1 to 65,536 data elements. The source, destination, and counter
registers must be distinct, non-overlapping registers.

This instruction can be interrupted after each execution of the basic operation.

c: Unaffected
Z: Unaffected
S: Unaffected
V: Set
0: Unaffected
H: Unaffected

Privileged Instruction trap

Assembler Language
Syntax

OTDR @Rd,@Rsl, r
OTDRB @Rd,@Rs1, r

Instruction Format

00111011 w Rs*O 1010

00001 Rd * 0 0000

01111010 0000 0010

00111011 Rs*O 1010

00001 r Rd*O 0000

Example: In linear mode, if register R11 contains %OFFF, register RR22 contains
%00008006, and R13 contains 6, executing the instruction

OTDR @R11, @RR22, R13

outputs the string of words from locations %00008006 to %OOOOAFFC (in descen­
ding order of address) to port %OFFF. RR22 contains %OOOOAFFA, and R13 con­
tains O. R11 is not affected. The V flag is set. In compact mode, a word register
must be used instead of RR22.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-137

OTI R Privileged Instruction
Output, Increment and Repeat

Operation:

Flags:

Exceptions:

Addressing
Mode

IR:

6-138

OTIR dst, src, r
OTIRB
OTIRL

repeat
dst - src

dst: IR
src: IR

AUTOINCREMENT src (by 1 if OTIRB; by 2 if OTIR; by 4 if OTIRl)
r- r - 1

until r = 0

This instruction is used for block output of strings of data. The contents of the
memory location addressed by'the source register are loaded into the 1/0 port ad­
dressed by the destination word register. 110 port addresses are 16 bits. The source
register is then incremented by one if OTIRB, by two if OTIR, or by four if OTlRl,
thus moving the pointer to the next element of the string in memory. The word
register specified by "r" (used as a counter) is then decremented by one. The ad­
dress of the 1/0 port in the destination register is unchanged. The entire operation is
repeated until the result of decrementing r is zero. This instruction can output from
1 to 65,536 data elements. The source, destination, and counter registers must be
distinct, non-overlapping registers.

This instruction can be interrupted after each execution of the basic operation.

c: Unaffected
Z: Unaffected
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

Privileged Instruction trap

Assembler Language
Syntax

OTIR @Rd, @Rsl, r
OTIRB @Rd, @Rsl, r

OTiRL @Rd, @Rsl, r

Instruction Format

00111011W Rs*O 0010

00001 r Rd*O 0000

01111010 00000010

001 1 1 01 1 Rs*O 001 0

00001 Rd*O 0000

Example: In compact mode, the following sequence of instructions can be used to output a
string of bytes to the specified 1/0 port. The pointers to the 1/0 port and the start of
the source string are set, the number of bytes to output is set, and then the output
is accomplished.

LO R1, #PORT
LOA R2, SRCBUF
LO RS, #LENGTH
OTIRB @R1, @R2, R3

In segmented or linear mode, a longword register must be used instead of R2.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-139

OUT Privileged Instruction
Output

Operation:

Flags:

Exceptions:

Destination
Addressing

Mode

IR:

DA:

Example:

6-140

OUT dst, src dst IR, DA
OUTB src: R
OUTl

dst - src

The contents of the source register are loaded into the destination, an output port.
I/O port addresses are 16 bits.

No flags affected.

Privileged Instruction trap

Assembler Language
Syntax

OUT @Rd, Rs
OUTS @Rd, Rbs

OUTL @Rd,RRs

OUT port, Rs
OUTS port, Rbs

OUTL port, RRs

Instruction Format

I 0 0 1 1 1 1 1 I w I Rd *" 0 I Rs

101111010 1000000101
nnl •••••• tlA ... nl tltI~ I v v I I .. - ~ - I - I

o 0 1 1 1 0 1 I W Rs 0 1 1 0

port

0111101000000010

o 011 1 1 0 1 1 RRs 0 1 1 0

port

If register R6 contains % 5252, executing the instruction

OUT % 1120, R6

outputs the value % 5252 to the port % 1120.

Operation:

OUTO dst, src, r
OUTOB
OUTOL

dst - src

Privileged Instruction OUTD

dst: IR
src: IR

Output and Decrement

AUTODECREMENT src (by 1 if OUTDS; by 2 if OUTD; or by 4 if OUTDL)
r- r - 1

This instruction is used for block output of strings of data. The contents of the
memory location addressed by the source register are loaded into the 1/0 port ad­
dressed by the destination word register. 110 port addresses are 16 bits. The source
register is then decremented by one if OUTDS, by two if OUTD, or by four if
OUTDL, thus moving the pointer to the previous element of the string in memory.
The word register specified by "r" (used as a counter) is then decremented by one.
The address of the 1/0 port in the destination register is unchanged. The source,
destination, and counter registers must be distinct, non-overlapping registers.

Flags: C: Unaffected
Z: Unaffected
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
0: Unaffected
H: Unaffected

Exceptions: Privileged Instruction trap

Addressing Assembler Language Instruction Format Mode Syntax

IR: auTO @Rd, @Rsl, r
aUTOB @Rd, @Rsl, r 00111011 w Rs*O 1010

Example:

00001 r Rd*O 1000

aUTDL @Rd, @Rsl, r
01111010 0000 0010

00111011 Rs*O 1010

00001 r Rd*O 1000

In linear mode, if register R2 contains the 110 port address %0030, register RR6
contains % 12005552, the word at memory location % 12005552 contains % 1234,
and register RB contains % 1001, executing the instruction

OUTD @R2, @RR6, RB

outputs the value %1234 to port %0030 and leaves the value %12005550 in RR6,
and % 1000 in RB. Register R2 is not affected. The V flag is cleared. In compact
mode, a word register must be used instead of RR6.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-141

OUTI Privileged Instruction
Output and Increment

Operation:

Flags:

Exceptions:

Addressing
Mode

IR:

6-142

OUTI dst, src, r dst: IR
OUTIB src: IR
OUTll

dst - src
AUTOINCREMENT src (by 1 if OUTIS; by 2 if OUTI; by 4 if OUTIL)
r- r - 1

This instruction is used for block output of strings of data. The contents of the
memory location addressed by the source register are loaded into the 1/0 port ad­
dressed by the destination word register. 1/0 port addresses are 16 bits. The source
register is then incremented by one if OUTIS, by two if OUTI, or by four if OUTIL,
thus moving the pOinter to the next element of the string in memory. The word
register specified by "r" (used as a counter) is then decremented by one. The ad­
dress of the 110 port in the destination register is unchanged. The source, destina­
tion, and counter registers must be distinct, non-overlapping registers.

c: Unaffected
Z: Unaffected
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
0: Unaffected
H: Unatlected

Privileged Instruction trap

Assembler language
Syntax Instruction Format

OUTI @Rd. @Rsl, r
OUTIS @Rd. @Rsl, r

OUTIL @Rd. @Rsl, r

00111011 w
0000] r

01111010

00111011

0000]

Rs * 0 0010

Rd * 0 1000

0000 0010

Rs*O 0010

Rd*O 1000

Example: This instruction can be used in a "loop" of instructions that outputs a string of data,
but an intermediate operation on each element is required. The following sequence
outputs a string of 80 ASCII characters (bytes) with the most significant bit of each
byte set or reset to provide even parity for the entire byte. Sit 7 of each character is
initially O. This example assumes compact mode. In segmented or linear mode, a
longword register must be used instead of R2.

LD R1, #PORT
LDA R2,SRCSTART
LD R3, #80

LOOP:
TESTS @R2
JR PE, EVEN
SETS @R2, #7

EVEN:
OUTIS @R1, @R2, R3
JR NOV, LOOP

DONE:

//load I/O address
//load start of string
!!initialize counter

lItest byte parity

//force even parity

lIoutput next byte
IIrepeat until counter = 0

Note 1: Word register in compact mode. longword register in segmented or linear modes.

6·143

PCACHE Privileged Instruction
Purge Cache

Operation:

Flags:

Exceptions:

6-144

PCACHE

Purge all cache entries

All cache entries are invalidated. This instruction is executed when a memory loca­
tion that may have been copied into the cache has been modified by another pro­
cessor. For example, if a slave processor reads from a peripheral port to a memory
location that may be copied in the cache, the cache must be purged.

No flags affected

Privileged Instruction trap

Assembler Language
Syntax

PCACHE

Instruction Format

1011110101000010001

Operation:

Flags:

Exceptions:

Destination
Addressing

Mode

R:

IR:

EAM:

Example:

POP
Pop

POP dst, src
POPL

dst - src

dst: R, IR, EAM
src: IR

AUTOINCREMENT src (by 2 if POP, by 4 if POPL)

The contents of the location addressed by the source register (used as a stack
pointer) are loaded into the destination. The source register is then incremented by
two if POP or by four if POPL, thus removing the top element from the stack by
changing the stack pOinter. Any register except RO in compact mode or RRO in
segmented or linear mode can be used as a stack pointer.

If the destination is a register, the source and destination registers must be distinct
and non-overlapping. Similarly, if the destination is in memory, then the source and
destination operands must not overlap. Otherwise, the result of executing the in­
struction is undefined.

No flags affected

None

Assembler Language
Syntax

POP Rd, @Rs'

POPL RRd, @Rs'

POP @Rdl, @Rs'

POPL @Rdl, @Rs'

POP earn, @Rs'

POPL earn, @Rs'

Instruction Format

11 0 1 0 1 0 1 1 1 1 Rs *' 0 1 Rd

11 01 0 1 0 1 0 1 1 Rs '* 0 1 RRd

1 0 0 1 0 1 0 1 1 1 1 Rs *' 0 1 Rd *' 01

1001 01 0101 I Rs*,O I Rd *,01

011 01 01 11 1 Rs*,O I eam

1, 2, or 3 extension words

01101 0101 1 Rs*,O 1 eam

1, 2, or 3 extension words

In compact mode, if register R12 (used as a stack pointer) contains % 1000, the
word at location % 1000 contains %0055, and register R3 contains %0022, ex­
ecuting the instruction

POP R3, @R12

leaves the value %0055 in R3 and the value %1002 in R12. In segmented or linear
mode, a longword register must be used instead of R12.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-145

PTLB
PurgeTLB

Operation:

Flags:

Exceptions:

6-146

Privileged Instruction

PTLB

Purge all TLB entries

All TLB entries are invalidated. This instruction is executed when system and normal
mode address spaces are merged and the operating system changes from execut­
ing one user process to another.

No flags affected

Privileged Instruction trap

Assembler Language
Syntax

PTLB

Instruction Format

Operation:

Flags:

Exceptions:

Source
Addressing

Mode

IR:

PTLBEND src
PTLBENI
PTLBESD
PTLBESI

Privileged Instruction

src: IR, EAM

Purge the TLB entry for the effective address of src

PTLBE
Purge TLB Entry

If any TLB entry corresponds to the logical address of the source operand, that en­
try is invalidated. Four versions of the instruction are provided, one for each of the
logical memory address spaces: normal data space (PTLBEND), normal instruction
space (PTLBENI), system data space (PTLBESD), and system instruction space
(PTLBESI).

This instruction is executed when information is changed in the translation tables for
a page in one of the current address spaces. If the page is shared by current ad­
dress spaces (for example, instruction and data spaces are merged), the page must
be purged in each of the address spaces.

No flags affected

Privileged Instruction trap

Assembler Language
Syntax

PTLBEND @RSl

PTLBENI @RSl

PTLBESD @RSl

PTLBESI @RSl

Instruction Format

01111010 001 1 1001

001000000 Rs*O 0000

01111010 0010 1001

001000000 Rs*O 0000

01111010 0001 1 001

001000000 Rs*O 0000

01111010 0000 1001

001000000 Rs*O 0000

6-147

Source Assembler Language Instruction Format Addressing Syntax Mode

EAM: PTLBEND eam 01111010 0011 1 001

011000000 eam 0000

1, 2, or 3 extension words

PTLBENI eam
01111010 0010 1001

011000000 eam 0000

1, 2, or 3 extension words

PTLBESD eam
01111010 0001 1001

011000000 eam 0000

1, 2, or 3 extension words

PTLBESI eam 01111010 0000 1 001

011000000 eam 0000

1, 2, or 3 extension words

Note 1: Wora register in compact mode, longword register In segmented or linear modes.

6-148

Operation:

Flags:

Exceptions:

Privileged Instruction PTLB N
Purge TLB Normal Space

PTLBN

Purge Normal Space TLB entries

All TLB entries corresponding to pages in normal data or normal instruction address
spaces are invalidated. This instruction is executed when system and normal mode
address spaces are separated and the user operating system changes from one
process executing in normal mode to another.

No flags affected

Privileged Instruction trap

Assembler Language
Syntax

PTLBN

Instruction Format

1011110101000010111

6-149

PUSH
Push

Operation:

Flags:

Exceptions:

Source
Addressing

Mode

R:

1M:

IR:

6-150

PUSH dst, src
PUSHL

dst: IR
src: R, 1M, IR, EAM

AUTODECREMENT dst (by 2 if PUSH, by 4 if PUSHL)
dst - src

The contents of the destination register (used as a stack pointer) are decremented
by two if PUSH or by four if PUSHL. Then the source operand is loaded into the
location addressed by the updated destination register, thus adding a new element
to the top of the stack by changing the stack pOinter. Any register except RO in
compact mode or RRO in segmented or linear mode can be used as a stack pOinter.

If the source is a register, then the source and destination registers must be distinct
and non-overlapping. Similarly, if the source is in memory, the source and destina­
tion operands must not overlap. Otherwise, the result of executing the instruction is
undefined.

No flags affected

None

Assembler Language
Syntax

PUSH @Rd', Rs

PUSHL @Rd1, RRs

PUSH @Rd', Udala

PUSHL @Rd', Udala

PUSH @Rd', @RSl

PUSHL @Rdl, @Rs'

Instruction Format

11 0 I 01 0011 I Rd",O I Rs

11010100011Rd",01 RRs

o 0 1 0 0 1 1 0 1 1 Rd '" 0 11 0 0 1

data

001010001 I Rd",O 10000

data (high)

data (low)

I 0 0 I 0 1 0 0 1 1 I Rd '" 0 I Rs '" 0 I
1001010001 I Rd",O I Rs",O I

Source
Addressing

Mode

EAM:

Example:

--- ---------_._------

Assembler Language
Syntax

PUSH @ Rdl, eam

PUSHL @Rdl, eam

Instruction Format

0110100111 Rd*O 1 earn

1, 2, or 3 extension words

01 f 010001 1 Rd*O Team

1,2, or 3 extension words

In compact mode, if register R12 (a stack pointer) contains % 1 002, the word at
location % 1 000 contains % 0055, and register R3 contains % 0022, executing the
instruction

PUSH @R12, R3

leaves the value %0022 in location % 1000 and the value % 1000 in R12. In
segmented or linear mode, a longword register must be used instead of R12.

Note 1: Word register in compact mode. longword register in segmented or linear modes.

6·151

RES
Reset Bit

Operation:

Flags:

Exceptions:

RES dst, src
RESB
RESL

dst<src> - 0

dst: R, IR, EAM
src: 1M
or
dst: R
src: R

This instruction clears the specified bit within the destination operand to 0 without
affecting any other bits in the destination. The bit number (the source) can be
specified either as an immediate value (static), or as a word register that contains
the value (dynamic). In the dynamic case, the destination operand must be in a
register, and the source operand must be in a word register.

The bit number is a value from 0 to 7 for RESB, 0 to 15 for RES, or 0 to 31 for
RESL, with 0 indicating the least-significant bit. Only the lower three bits of the
source operand are used to specify the bit number for RESB, only the lower four
bits are used for RES, and only the lower five bits are used for RESL.

No flags affected

None

Reset Bit Static
Destination
Addressing

Mode

R:

IR:

EAM:

6-152

Assembler Language
Syntax

RES Rd, #b
RESB Rbd, #b

RESL RRd, #b

RES @Rdl, #b
RESB @Rd1, #b

RESL @Rd1, #b

RES eam, #b
RESB eam, #b

RESL eam, #b

Instruction Format

b

0111101000000010

1 011 0 0 0 1 1 b RRd 1 b

0111101000000010

00110001jb Rd*ol b

o 1 11 0 0 0 11 w 1 eam 1 b

1,2, or 3 extension words

01111010 00000010

01110001-jb eam 1 b

1,2, or 3 extension words

Reset Bit Dynamic

Assembler Language
Syntax Instruction Format

R:

Example:

RES Rd, Rs
RESB Rbd, Rs

RESL RRd, Rs

001100011 w
00001 Rd

01111010

001100011

0000 i RRd

0000

0000

0000

0000

0000

If register RL3 contains % B2 (10110010), executing the instruction

RESB RL3, #1

leaves the value % BO (10110000) in RL3.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

Rs

0000

0010

Rs

0000

6·153

RESFLG
Reset Flag

Operation:

Flags:

Exceptions:

Example:

6-154

RESFLG flag flag: C, Z, S, P, V

FLAGS < 7:4 > - FLAGS<7:4> AND NOT instruction<7:4>

Any combination of the C, Z, S, P or V flags can be cleared to O. If the bit in the in­
struction corresponding to a flag is 1, the flag is cleared; if the bit is 0, the flag is
unchanged. All other bits in the FLAGS register are unaffected. Note that the P and
V flags are represented by the same bit. There can be one, two, three, or four
operands in the assembly language statement, in any order.

c: Cleared if specified, unaffected otherwise
Z: Cleared if specified, unaffected otherwise
S: Cleared if specified, unaffected otherwise
PN: Cleared if specified, unaffected otherwise
0: Unaffected
H: Unaffected

None

Assembler Language
Syntax Instruction Format

RESFLG flags
11 0 I 0 0 1 1 0 1 Ie Z s PIVI 0 0 1 1 1

If the C, S, and V flags are set (1) and the Z flag is clear (0), executing the statement

RESFLG C, V

leaves the S flag set (1), and the C, Z, and V flags clear (0).

Operation:

Flags:

Exceptions:

Example:

RET cc

Compact
if cc is satisfied then

PC-@SP
SP- SP + 2

Segmented or linear
if cc is satisfied then

PC- @SP
SP- SP + 4

RET
Return

This instruction is used to return at the end of a procedure called by executing
either a CALL or CALR instruction. If the condition specified by "cc" is satisfied by
the flags in the FCW, then the contents of the top of the processor Stack Pointer
are popped into the Program Counter (PC), thus returning control to the caller. See
Section 6.3 for a list of condition codes. The Stack Pointer used is R15 in compact
mode, or RR14 in segmented or linear mode. If the condition is not satisfied, then
the instruction following the RET instruction is executed. If no condition is specified,
the return is taken regardless of the flag settings.

No flags affected

None

Assembler Language
Syntax

RETcc

Instruction Format

1101011110100001 cc

In compact mode, if the Program Counter contains %2550, the Stack Pointer (R15)
contains % 3000, location % 3000 contains % 1004, and the Z flag is clear, ex­
ecuting the instruction

RET NZ

leaves the value %3002 in the Stack Pointer, and the Program Counter con­
tains % 1 004 (the address of the next instruction to be executed).

6-155

RL
Rotate Left

Operation:

Flags:

Exceptions:

Destination
Addressing

Mode

R:

6-156

RL dst, src
RLB
RLL

for i - 1 to src do
C- dst <msb>
for j - msb down to 1 do

dst<j> - dst<j -1 >
dst <O>-C

dst: R
src: 1M

_ ~~31 ----r.F----..;,0~
Longword: 0-Y ____ ~~'I-: ___ !-l

Word:
~1_5 ------,0IJ

Byte: 0~.:.--7 ----;°IJ

The contents of the destination operand are rotated left one or two bit positions as
specified by the source operand. During rotation, the most-significant bit (msb) of
the destination operand is moved to the bit 0 position and also replaces the C flag.

If the source operand is omitted from the assembler language statement, the default
value is one.

c: Set if the last bit rotated from the most-significant bit position was 1; cleared
otherwise

Z: Set if the result is zero; cleared otherwise
5: Set if the most-significant bit of the result is set; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed

during rotation; cleared otherwise
D: Unaffected
H: Unaffected

None

Assembler Language
Syntax

RL Rd, In
RLB Rbd, In

RLL RRd, In

Instruction Format1

101111010 100000010

l1011100111 RRd 1001510

Example: If register RH5 contains % 88 (10001000), executing the instruction

RLB RH5

leaves the value % 11 (00010001) in RH5 and sets the C flag to 1.

Note 1: S = 0 for rotation by 1 bit; S = 1 for rotation by 2 bits.

6-157

RLC
Rotate Left through Carry

Operation:

Flags:

Exceptions:

Destination
Addressing

Mode

R:

6-158

RLC dst, src
RLCB
RLCL

for i - 1 to src do
temp- C
C- dst<msb>
for j - msb down to 1 do

dst<j> - dst<j -1 >
dst< 0 > - temp

dst: R
src: 1M

Longword:
~c 3~1 ________ ~~ ______ ,0~
LEJ--I __ ~:;'~_ I-l

Word: L{iH15 °IJ

Byte: LG-1r--7 --.......;,°IJ

The contents of the destination operand concatenated with the C flag are rotated
left one or two bit positions as specified by the source operand. During rotation, the
most-significant bit (msb) of the destination operand replaces the C flag and the
previous value of the C flag is moved to the bit 0 position of the destination.

If the source operand is omitted from the assembler language statement, the default
value is one.

C: Set if the last bit rotated from the most-significant bit position was 1; cleared
otherwise

Z: Set if the result is zero; cleared otherwise
5: Set if the most-significant bit of the result is set; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed

during rotation; cleared otherwise
D: Unaffected
H: Unaffected

None

Assembler Language
Syntax

RLC Rd, Ifn
RLCB Rbd, Ifn

RLCL RRd, Ifn

Instruction Format1

011110101000000101

1011100111 RRd 110lsl01

Example: If the C flag is clear (0) and register RO contains %800F (1000000000001111), ex­
ecuting the instruction

RLC RO,I2

leaves the value % 003D (0000000000111101) in RO and clears the C flag,

Note 1: S = 0 for rotation by 1 bit; S = 1 for rotation by 2 bits

6-159

RLDB
Rotate Left Digit

Operation:

Flags:

Exceptions:

Destination
Addressing

Mode

R:

6-160

RLDB link, dst

temp<3:0> -link<3:0>
Iink<3:0> - dst<7:4>
dst< 7:4 > - dst < 3:0 >
dst<3:0> - temp<3:0>

4 3

link

link: R
dst: R

4 3 : dst

t
The low digit of the lihk byte register is concatenated to the destination byte
register. The resulting three-digit quantity is rotated to the left by one BCD digit (four
bits). The lower digit of the destination is moved to the upper digit of the destination;
the upper digit of the destination is moved to the lower digit of the link, and the
lower digit of the link is moved to the lower digit of the destination. The upper digit
of the link is unaffected.

In multiple-digit BCD arithmetic, this instruction can be used to shift a string of BCD
digits to the left, thus multiplying it by a power of ten. The link serves to transfer
digits between successive bytes of the string. This is analogous to the use of the C
flag in multiple precision shifting using the RLC instruction.

The destination and link registers must be distinct.

c: Unaffected
Z: Set if the link is zero after the operation; cleared otherwise
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected

None

Assembler Language
Syntax

RLDB Rbi, Rbd

Instruction Format

1101111110 1 Rbd Rbi

Example: If location 100 contains the BCD digits 0,1 (00000001), location 101 contains 2,3
(00100011), and location 102 contains 4,5 (01000101)

100 rn 101 m 102 rn
executing the sequence of instructions in compact mode

LD R3,'3 "set loop counter for 3 bytes
"(6 digits)

LOOP:

LDA
CLRB

R2,102
RH1

"set pointer to low-order digits
"zero-fill low-order digit

LDB RL1,@R2 "get next two digits
RLDB RH1 ,RL 1 "shift digits left one position
LDB @R2,RL1 "replace shifted digits
DEC R2 "advance pointer
DJNZ R3, LOOP "repeat until counter is zero

leaves the digits 1,2 (00010010) in location 100, the digits 3,4 (00110100) in location
101, and the digits 5,0 (01010000) in location 102.

100 rn 101 ru 102 rn
In segmented or linear mode, a longword register must be used instead of R2.

6-161

RR
Rotate Right

Operation:

Flags:

Exceptions:

Destination
Addressing

Mode

R:

6-162

RR dst, src
RRB
RRL

for i - 1 to src do
C- dst<O>
for j - 1 to msb do

dst<j-1> - dst<j>
dst <msb> - C

dst: R
src: 1M

Longword:
L;1 o~

=1 =~~-f':;r-----,r0

Word: Lil~5 ------.;.,0;1.0

Byte: Lr--(-------'1°;l0

The contents of the destination operand are rotated right one or two bit positions as
specified by the source operand. During rotation, the least-significant bit of the
destination operand is moved to the most-significant bit (msb) and also replaces the
C flag.

If the source operand is omitted from the assembly language statement, the default
value is one.

c: Set if the last bit rotated from the least-significant bit position was 1; cleared
otherwise

Z: Set if the result is zero; cleared otherwise
5: Set if the most-significant bit of the result is set; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed

during rotation; cleared otherwise
D: Unaffected
H: Unaffected

None

Assembler Language
Syntax

RR Rd, In
RRB Rbd, In

RRL RRd, In

Instruction Format1

01111010 00000010

101110011 RRd 1011sl0

Example: If register RL6 contains %31 (00110001). executing the instruction

RRB RL6

leaves the value % 98 (10011000) in RL6 and sets the C flag to 1.

Note t: S = 0 for rotation by 1 bit; s = 1 for rotation by 2 bits.

6-163

RRC
Rotate Right through Carry

Operation:

Flags:

Exceptions:

Destination
Addressing

Mode

R:

6-164

RRC dst, src
RRCB
RRCL

for i - 1 to src do
temp- C
C - dskO>
for j - 1 to msb do

dskj-1> - dst<j>
dst < msb > - temp

dst: R
src: 1M

Longword: L 31 F--------',o~.c
r--I ----f.~'f_: __ ~

Word:

Byte:

~1,;;;....-5 -----=,o~0J

[r--(-----,o~0J

The contents of the destination operand concatenated with the C flag are rotated
right one or two bit positions as specified by the source operand. During rotation,
the least-significant bit of the destination operand replaces the C flag and the
previous value of the C flag is moved to the most-significant bit (msb) position of the
destination.

If the source operand is omitted from the assembly language statement, the default
value is one.

C: Set if the last bit rotated from the least-significant bit position was 1; cleared
otherwise

Z: Set if the result is zero; cleared otherwise
S: Set if the most-significant bit of the result is set; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed

during rotation; cleared otherwise
0: Unaffected
H: Unaffected

None

Assembler Language
Syntax

RRC Rd, {In
RRCB Rbd, {In

RRCL RRd, {In

Instruction Format1

01111010 00000010

101110011 RRd 1111sl0

Example: If the C flag is clear (0) and the register RO contains %OODD (0000000011011101),
executing the instruction

RRC RO,#2

leaves the value % 8037 (1000000000110111) in RO and clears the C flag.

Note 1: S ~ 0 for rotation by 1 bit; S ~ 1 for rotation by 2 bits

6-165

RRDB
Rotate Right Digit

Operation:

Flags:

Exceptions:

Destination
Addressing

Mode

R:

6-166

RRDB link, dst

temp <3:0> - link<3:0>
link<3:0> - dst<3:0>
dst<3:0> - dst<7:4>
dst<7:4> - temp<3:0>

4 3

link:

link: R
dst: R

7 t 4 3

dst:

The low digit of the link byte register is concatenated to the destination byte
register. The resulting three-digit quantity is rotated to the right by one BCD digit
(four bits). The lower digit of the destination is moved to the lower digit of the link,
the upper digit of the destination is moved to the lower digit of the destination, and
the lower digit of the link is moved to the upper digit of the destination. The upper
digit of the link is unaffected.

In multiple-digit BCD arithmetic, this instruction can be used to shift a string of BCD
digits to the right, thus dividing it by a power of ten. The link serves to transfer digits
between successive bytes of the string. This is analogous to the use of the C flag in
multiple precision shifting using the RRC instruction.

The destination and link registers must be distinct.

c: Unaffected
Z: Set if the link is zero after the operation; cleared otherwise
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected

None

Assembler Language
Syntax

RRDB Rbi, Rbd

Instruction Format

11 0 11 1 1 1 0 0 1 Rbd Rbi

Example: If location 100 contains the BCD digits 1,2 (00010010), location 101 contains 3,4
(00110100), and location 102 contains 5,6 (01010110)

100 rn 101 ru 102 rn
executing the sequence of instructions in compact mode

LD R3,'3 IIset loop counter for 3 bytes (6
digits)

LD R2,'100 IIset pointer to high-order digits
CLRB RH1 IIzero-fill high-order digit

LOOP:
LDB RL 1,@R2 IIget next two digits
RRDB RH1,RL1 IIshift digits right one position
LDB @R2,RL1 IIreplace shifted digits
INC R2 lIadvance pointer
DJNZ R3,LOOP IIrepeat until counter is zero

leaves the digits 0,1 (00000001) in location 100, the digits 2,3 (00100011) in location
101, and the digits 4,5 (01000101) in location 102. RH 1 contains 6, the remainder
from dividing the string by 10.

100 rn 101 GEl 102 rn
In segmented or linear mode, a longword register must be used instead of R2.

6-167

SBC
Subtract with Carry

Operation:

Flags:

Exceptions:

Source
Addressing

Mode

R:

Example:

6-168

SBC dst, src
SBCB
SBCL

dst - dst - src - C

dst: R
src: R

The source operand, along with the setting of the C flag, is subtracted from the
destination operand and the result is stored in the destination. The contents of the
source are not affected. Subtraction is performed by adding the twos complement
of the source operand to the destination operand. In multiple precision arithmetic,
this instruction permits the "borrow" from the subtraction of low-order operands to
be borrowed from the subtraction of high-order operands.

C: Cleared if there is a carry from the most-significant bit of the result; set
otherwise, indicating a borrow

Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands were of opposite signs

and the sign of the result is the same as the sign of the source; cleared
otherwise

D: SBC, SBCL-unaffected; SBCB-set
H: SBC, SBCL-unaffected; 8BCB-cleared if there is a carry from the most­

significant bit of the low-order four bits of the result; set otherwise, indicating
a borrow

None

Assembler Language
Syntax

SBC Rd, Rs
SBCB Rbd, Rbs

SBCL RRd, RRs

Instruction Format

01111010 00000010

1 011 1 0 1 1 1 RRs 1 RRd

Ouadword subtraction can be done with the following instruction sequence, assum­
ing ROO contains one operand and R04 contains the other operand:

SUBL RR2,RR6 IIsubtract low-order longwords
8BCL RRO,RR4 IIsubtract borrow and high-ord~r longwords

If RRO contains %00000038, RR2 contains %00004000, RR4 contains %OOOOOOOA
and RR6 contains % FFFFFOOO, executing the two instructions above leaves the
value %00000020 in RRO and %00005000 in RR2.

Operation:

Flags:

Exceptions:

Source
Addressing

Mode

1M:

SC src

SP-SP - 6
@SP-PS
SP- SP - 2
@SP - instruction
PS - System Call PS

SC
System Call

src: 1M

This instruction causes a System Call trap for controlled access to operating system
software. The instruction word and the contents of the Program Status registers are
pushed onto the system stack. The source operand, which is contained in the se­
cond byte of the instruction, identifies the particular service requested from the
operating system. The source operand must be in the range from 0 to 255.

Flags loaded from Program Status Area

System Call trap

Assembler Language
Syntax

SC fin

Instruction Format

101111111 n

6-169

SDA
Shift Dynamic Arithmetic

Operation:

SDA dst, src
SDAB
SDAL

dst: R
src: R

if src <:!: 0 /I left shift
for i - 1 to src do

C-dst<msb>
for j - msb down to 1 do

dst<j> - dst<j-1 >
dst<O> -0

else for i - 1 to -src do . /I right shift

Byte:

Word:

C-dst<O>
for j - 1 to msb do

dst<j -1> - dst<j>

Left
7

EH
15

EH
31

0

1_ 0

0

1_ 0

0

Right
7 0

c!J1 r£]
15 0

c!J1 r£]
31 0

Longword: EJ-I : 1"-0 c!J1 : H!l

Flags:

Exceptions:

6-170

The destination operand is shifted left or right arithmetically the number of bit posi­
tions specified by the source operand, a word register. For right shifts, the most­
significant bit is replicated, and the C flag is loaded from the least-significant bit of
the destination. For left shifts, the least-significant bit is filled with 0 and the C flag
is loaded from the most-significant bit of the destination. A shift of zero positions
does not affect the destination; however, the flags are set according to the destina­
tion value.

The source operand must be in the range from -8 to 8 for SDAB, from -16 to 16 for
SOA or from -32 to 32 for SOAL. If its value is outside the specified range, the
operation is undefined. The source operand is represented as a 16-bit twos comple­
ment value. Positive values specify a left shift, while negative values specify a right
shift.

c: Set if the last bit shifted from the destination was 1; cleared if the last bit
shifted from the destination was 0 or zero shift was specified

Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed

during shifting; cleared otherwise
0: Unaffected
H: Unaffected

Integer Overflow trap

Destination
Addressing

Mode

R:

Example:

Assembler Language
Syntax

SDA Rd. Rs

SDAB Rbd. Rs

SDAL RRd. Rs

Instruction Format

101110011 Rd 11011

00001 Rs 00000000

101110010 Rbd 11 011

00001 Rs 00000000

101110011 RRd 11111

00001 Rs 00000000

If register R5 contains%C705 (11000111 Q00001 01) and register R1 contains - 2
(% FFFE or 1111111111111110), executing the instruction

SDA R5,R1

performs an arithmetic right shift of two bit pOSitions, leaves the value % F1 C1
(1111000111000001) in R5, and clears the C flag.

6·171

SOL
Shift Dynamic Logical

Operation:

SOL dst, src
SOLB
SOLL

dst: R
src: R

if src;:: 0 /I left shift
for i - 1 to src do

C-dst<msb>
for j - msb down to 1 do

dst<j> - dst<j-1 >
dst <0> - 0

else for i - 1 to -src do /I right shift

Syte:

Word:

C -dst<O>
for j - 1 to msb do

dst<j -1> - dst<j>
dst<msb> - 0

Left
7

E:H
15

E:H
31

0

1-0
0

I~o

0

Right

7 0

0-1 ~
15 0

0_1 I-EJ
31 0

Longword: 0--1 ;; 1--0 0-1 : ~El

Flags:

Exceptions:

6-172

The destination operand is shifted left or right logically the number of bit pOSitions
specified by the source operand, a word register. For right shifts, the most­
significant bit is filled with 0 and the C flag is loaded from the least-significant bit of
the destination. For left shifts, the least-significant bit is filled with 0 and the C flag
is loaded from the most-significant bit of the destination. A shift of zero pOSitions
does not affect the destination; however, the flags are set according to the destina­
tion value.

The source operand must be in the range from -8 to 8 for SOLS, from -16 to 16 for
SOL or from -32 to 32 for SOLL.lf its value is outside the specified range, the
operation is undefined. The source operand is represented as a 16-bit twos comple­
ment value. Positive values specify a left shift, while negative values specify a right
shift.

c: Set if the last bit shifted from the destination was 1; cleared if the last bit
shifted from the destination was 0 or zero shift was specified

Z: Set if the result is zero; cleared otherwise
S: Set if the most-significant bit of the result is set; cleared otherwise
P: SOL, SOLL-unaffected; SOLS-set if parity of the result is even; cleared

otherwise
0: Unaffected
H: Unaffected

None

Destination
Addressing

Mode

R:

Example:

Assembler Language
Syntax

SOL Rd, Rs

SOLS Rbd, Rs

SOLL RRd, Rs

Instruction Format

10111 0011 Rd 10011

00001 Rs 00000000

101110010 Rbd 10011

00001 Rs 00000000

1 011 1 001 1 RRd I 011 1

o 0 0 01 Rs 0 0 0 0 0 0 0 0

If register AL5 contains % 83 (10110011) and register A1 contains 4
(0000000000000100), executing the instruction

SDL8 AL5,A1

performs a logical left shift of four bit positions, leaves the value %30 (00110000) in
AL5, and sets the C flag.

6·173

SET
Set Bit

Operation:

Flags:

Exceptions:

SET dst, src
SETB
SETL

dst<src> - 1

dst: R, IR, EAM
src: 1M
or
dst: R
src: R

This instruction sets the specified bit within the destination operand to 1 without
affecting any other bits in the destination. The bit number (the source) can be
specified either as an immediate value (static), or as a word register that contains
the value (dynamic). In the dynamic case, the destination operand must be in a
register, and the source operand must be in a word register.

The bit number is a value from 0 to 7 for SETB, 0 to 15 for SET, or 0 to 31 for SETL
with 0 indicating the least-significant bit. Only the lower three bits of the source
operand are used to specify the bit number for SETB, only the lower four bits are
used for SET, and only the lower five bits are used for SETL.

No flags affected

None

Set Bit Static
Destination
Addressing

Mode

R:

IR:

EAM:

6-174

Assembler Language
Syntax

SET Rd, #b
SETS Rbd, #b

SETL RRd, #b

SET @Rd1, #b
SETS @Rd1, #b

SETL @Rd1, #b

SET earn, #b
SETS eam, #b

SETL eam, #b

Instruction Format

0111101000000010

10110010lb RRd 1 b

0111101000000010

0011 001 Olb Rd T b

o 1 11 0 0 1 01 w 1 earn 1 b

1, 2, or 3 extension words

01111010 0000 0010

01110010lb earn I b

1, 2, or 3 extension words

Set Bit Dynamic

Addressing
Mode

R:

Example:

Assembler Language
Syntax

SET Rd, Rs
SETB Rbd, Rs

SETL RRd, Rs

Instruction Format

00110010Iw 0000 Rs

0000 I Rd 00000000

01111010 0000 0010

001100101 0000 Rs

00001 RRd 0000 0000

If register AL3 contains %B2 (10110010) and register A2 contains the value 6, ex­
ecuting the instruction

SETB AL3, A2

leaves the value % F2 (11110010) in AL3.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-175

SETFLG
Set Flag

Operation:

Flags:

Exceptions:

Example:

6-176

SETFLG flag Flag: C, Z, S, P, V

FLAGS < 7:4 > - FLAGS<7:4> OR instruction<7:4>

Any combination of the C, Z, S, P or V flags can be set to 1. If the bit in the instruc­
tion corresponding to a flag is 1, the flag is set; if the bit is 0, the flag is unchanged.
All other bits in the Flags register are unaffected. Note that the P and V flags are
represented by the same bit. There can be one, two, three, or four operands in the
assembly language statement, in any order.

c: Set if specified; unaffected otherwise
Z: Set if specified; unaffected otherwise
S: Set if specified; unaffected otherwise
PN: Set if specified; unaffected otherwise
0: Unaffected
H: Unaffected

None

Assembler Language
Syntax

SETFLG flags

Instruction Format

110001101 IczsPlV1 0001 1

If the C, Z, and S flags are all clear (0), and the P flag is set (1), executing the
instruction

SETFLG C

leaves the C and P flags set (1), and the Z and S flags clear (0).

Operation:

Flags:

Exceptions:

SLA
Shift Left Arithmetic

SLA dst, src
SLAB
SLAL

for i - 1 to src do
C- dst <msb>
for j - msb down to 1 do

dst<j> - dst <j-1 >
dst <0> - 0

dst: R
src: 1M

7 0

Byte: El-1 _____ l-o
~ 0

Word: EJ-IL. ________ I--o
~ 0

Longword: EJ--I ... __ ---,:,."..; __ ---'1-- 0

The destination operand is shifted left arithmetically the number of bit positions
specified by the source operand. The least-significant bit of the destination is filled
with 0 and the C flag is loaded from the most-significant bit of the destination. A
shift of zero position does not affect the destination; however, the flags are set ac­
cording to the destination value. This operation differs from Shift Left Logical in the
setting of the P/v flag and the detection of an Integer Overflow trap.

The source operand must be in the range from 0 to 8 for SLAB, from 0 to 16 for
SLA, or from 0 to 32 for SLAL. If its value is outside the specified range, the opera­
tion is undefined. The source operand is encoded as an 8- or 16-bit twos comple­
ment number contained in the second word of the instruction. If the source operand
is omitted from the assembly language statement, the default value is 1.

c: Set if the last bit shifted from the destination was 1; cleared if the last bit shifted
from the destination was 0 or zero shift was specified

Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed

during shifting; cleared otherwise
D: Unaffected
H: Unaffected

Integer Overflow trap

6-177

Destination
Addressing

Mode

R:

Example:

6-178

Assembler Language
Syntax

SLA Rd, #b

SLAB Rbd, #b

SLAL RRd, #b

Instruction Format

Rbd 11001

o b

10[110011 RRd 111 01

b

If longword register RR2 contains % 1234ABCD, executing the instruction

SLAL RR2,#8

leaves the value % 34ABCDOO in RR2 and clears the C flag,

Operation:

Flags:

Exceptions:

SLL
Shift Left Logical

SLL dst, src dst: R
SLLB src: 1M
SLLL

for i - 1 to src do
C- dst<msb>
for j - msb down to 1 do

dst<j > - dst <j-1 >
dst <0> - 0

7 0

Byte: EH 1-0

15 0

Word: E:H 1_ 0

31 : 0

Longword: EH 1--0

The destination operand is shifted left logically the number of bit positions specified
by the source operand. The least-significant bit of the destination is filled with 0 and
the C flag is loaded from the most-significant bit of the destination. A shift of zero
position does not affect the destination; however, the flags are set according to the
destination value. This operation differs from Shift Left Arithmetic in the setting of
the PIV flag and the detection of an Integer Overflow trap.

The source operand must be in the range from 0 to 8 for SLLB, from 0 to 16 for
SLL, or from 0 to 32 for SLLL. If its value is outside the specified range, operation is
undefined. The source operand is encoded as an 8- or 16-bit twos complement
number contained in the second word of the instruction. If the source operand is
omitted from the assembly language statement, the default value is one.

c: Set if the last bit shifted from the destination was 1; cleared if the last bit
shifted from the destination was 0 or zero shift was specified

Z: Set if the result is zero; cleared otherwise
S: Set if the most-significant bit of the result is set; cleared otherwise
P: SLL, SLLL-unaffected; SLLB-set if parity of the result is even;

cleared otherwise
0: Unaffected
H: Unaffected

None

6-179

Destination
Addressing

Mode

R:

Example:

6·180

Assembler Language
Syntax

SLL Rd, #b

SLLB Rbd, ffb

SLLL RRd, #b

Instruction Format

101110011 Rd 10001

b

1011 1 0010 Rbdloo01

0 b

101110011 RRd 10101

b

If register R3 contains %4321 (0100001100100001), executing the instruction

SLL R3,'1

leaves the value % 8642 (1000011001000010) in R3 and clears the C flag.

Operation:

Flags:

Exceptions:

SRA
Shift Right Arithmetic

SRA dst, src
SRAB
SRAL

dst: R
src: 1M

for i - 1 to src do
C - dst<O>
for j - 1 to msb do

dst<j-1> - dst<j>

7 0

Byte:

15 0

Word: c!J,..I-1 ___ ---II~EJ
~ 0

Longword:

The destination operand is shifted right arithmetically the number of bit positions
specified by the source operand. The most-significant bit of the destination is
replicated, and the C flag is loaded from the least-significant bit of the destination.

The source operand must be in the range from 1 to 8 for SRAB, from 1 to 16 for
SRA, or from 1 to 32 for SRAL. If its value is outside the specified range, the opera­
tion is undefined. The negative of the source operand is encoded as an 8- or 16-bit
twos complement number contained in the second word of the instruction. If the
source operand is omitted from the assembly language statement, the default value
is one.

c: Set if the last bit shifted from the destination was 1; cleared otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Cleared
D: Unaffected
H: Unaffected

None

6-181

Destination
Addressing

Mode

R:

Example:

6·182

Assembler Language
Syntax

SRA Rd, #b

SRAB Rbd, #b

SRAL RRd, #b

Instruction Format

101110010 Rbd 11001

o -b

1 0 /1 1 0 0 1 1 RRd /1 1 0 1

-b

If register RH6 contains %38 (00111011), executing the instruction

SRAB RH6,#2

leaves the value % OE (00001110) in RH6 and sets the C flag.

Operation:

Flags:

Exceptions:

SRL
Shift Right Logical

SRL dst, src
SRLB
SRLL

for i - 1 to src do
C - dskO>
for j - 1 to msb do

dst<j-1> - dst<j>
dst<msb> - 0

dst R
src: 1M

7 0

Byte: o __ I~ ____________ ~~
~ 0

Word: o_l~ ___________ 0
~ 0

Longword: 0_ 1 ----:f~.r------' 0

The destination operand is shifted right logically the number of bit positions
specified by the source operand. The most-significant bit of the destination is filled
with 0 and the C flag is loaded from the least-significant bit of the destination.

The source operand must be in the range from 1 to 8 for SRLB, from 1 to 16 for
SRL, or from 1 to 32 for SRL. If its value is outside the specified range, the opera­
tion is undefined. The negative of the source operand is encoded as an 8- or 16-bit
twos complement number contained in the second word of the instruction. If the
source operand is omitted from the assembly language statement, the default value
is one.

c: Set if the last bit shifted from the destination was 1; cleared otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the most-significant bit of the result is 1; cleared otherwise
P: SRL, SRLL-unaffected; SRLB-set if parity of the result is even;

cleared otherwise
0: Unaffected
H: Unaffected

None

6-183

Destination
Addressing

Mode

R:

Example:

6-184

Assembler Language
Syntax

SRL Rd, #b

SRLB Rbd, #b

SRLL RRd, #b

Instruction Format

1 0 11 1 0 0 1 1 Rd I 0 0 0 1

-b

1 0 11 1 0 0 1 0 Rbd 1 0 0 0 1

o -b

1 0 11 1 0 0 1 1 RRd 10 1 0 1

-b

If register RO contains % 1111 (0001000100010001), executing the instruction

SRL RO,#6

leaves the value %0044 (0000000001000100) in RO and clears the C flag.

Operation:

Flags:

Exceptions:

Source
Addressing

Mode

R:

1M:

IR:

SUB
Subtract

SUB dst, src
SUBB
SUBL

dst - dst - src

dst: A
src: A, 1M, lA, EAM

The source operand is subtracted from the destination operand and the result is
stored in the destination. The contents of the source are not affected. Subtraction is
performed by adding the twos complement of the source operand to the destination
operand.

c: Cleared if there is a carry from the most-significant bit; set otherwise, indicating
a borrow

Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands were of opposite signs

and the sign of the result is the same as the sign of the source;
cleared otherwise

0: SUB, SUBL-unaffected; SUBB-set
H: SUB, SUBL-unaffected; SUBB-cleared if there is a carry from the most­

significant bit of the low-order four bits of the result; set otherwise, indicating a
borrow

Integer Overflow trap

Assembler Language
Syntax

SUB Rd, Rs
SUBB Rbd, Rbs

SUBL RRd, RRs

SUB Rd, #data

SUBB Rbd, #data

SUBL RRd, #data

SUB Rd, @RS1
SUBB Rbd, @RS1

SUBL RRd, @RS1

Instruction Format

Rd

11 0 I 0 1 00 1 0 I RRs RRd

001000011100001 Rd

data

o 0 1 0 000 1 0 0 0 0 0 1 Rbd

data data

001010010100001 RRd

data (high)

data (low)

100100001lwi Rs;cO I Rd

100 I 01 0010 I Rs;cO I RRd

6-185

Source
Addressing

Mode

EAM:

Example:

6-186

Assembler Language
Syntax

SUB Rd, earn
SUBB Rbd, earn

SUBL RRd, earn

Instruction Format

o 1 1 0 0 0 0 11 w 1 eam 1 Rd

1,2, or 3 extension words

01\ 010010 \ eam \ RRd

1, 2, or 3 extension words

If register RO contains %0344, executing the instruction

SUB RO,ft%AA

leaves the value %029A in RO.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

Operation:

Flags:

Exceptions:

Destination
Addressing

Mode

R:

Example:

Tee
Test Condition Code

TCC cc, dst
TCCB
TCCL

if cc is satisfied then
dst<O> -1

dst: R

This instruction is used to create a Boolean data value based on the flags set by a
previous operation. The flags in the FeW are tested to see if the specified condition
is satisfied. If the condition is satisfied, then the least-significant bit of the destina­
tion is set. If the condition is not satisfied, bit 0 of the destination is unaffected. All
other bits in the destination are unaffected by this instruction.

No flags affected

None

Assembler Language
Syntax

TCC CC, Rd
TCCB CC, Rbd

TCCl, CC, RRd

Instruction Format

01111010 00000010

1 011 0 1 1 1 1 RRd cc

If register R1 contains 0, and the Z flag is set, executing the instruction

Tee EQ,R1

leaves the value 1 in R1.

6-187

TEST
Test

Operation:

Flags:

Exceptions:

Destination
Addressing

Mode

R:

IR:

EAM:

Example:

6-188

TEST dst
TESTB
TESTL

dst OR 0

dst: R, IR, EAM

The destination operand is tested (logically ORed with zero), and the Z, Sand P
flags are set according to the result. This operation differs from Test Arithmetic in
the setting of the C and PN flags. The contents of the destination are not affected.

C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the most-significant bit of the result is set; cleared otherwise
P: TEST, TESTL-unaffected; TESTB-set if parity of the result is

even; cleared otherwise
D: Unaffected
H: Unaffected

None

Assembler Language
Syntax

TEST Rd
TESTB Rbd

TESTL RRd

TEST@Rd1
TESTB @Rd1

TESTL@Rd1

TEST earn
TESTB earn

TESTL earn

Instruction Format

1101001101wl Rd 101001

11 0 1 0 1 1 1 0 0 1 RRd 11 0 0 0 1

1001001101wl Rd*ol01001

1001 0 1 1 1 0 0 1 Rd * 0 11 00 0 1

0110011 olwl e8m 10100
1,2, or 3 extension words

o 1 1 0 1 1 1 0 0 188m 11 0 0 0
1, 2, or 3 extension words

If register R5 contains % FFFF (1111111111111111), executing the instruction

TEST R5

sets the S flag, clears the Z flag, and leaves the other flags unaffected.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

Operation:

Flags:

Exceptions:

Destination
Addressing

Mode

R:

IR:

EAM:

Example:

TESTA
Test Arithmetic

TI;STA dst
TESTAB
TESTAL

dst - 0

dst: R, IR, EAM

Zero is compared to (subtracted from) the destination operand and the flags are set
according to the result. The contents of the destination are not affected. This opera­
tion differs from Test in the setting of the C and P/v flags. Test Arithmetic must be
used when an arithmetic condition (such as "greater than") is required.

c: Cleared
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Cleared
D: Unaffected
H: Unaffected

None

Assembler Language
Syntax

TESTA Rd
TESTAB Rbd

TESTAL RRd

TESTA @Rd1

TESTAB @Rd1

TESTAL @Rd1

TESTA eam
TESTAB eam

TESTAL eam

Instruction Format

11 0 10 0 1 1 01 w 1 Rd 11 1 0 0 1

11 01 0 1 1 1 0 0 1 RRd 11 1 0 0 1

10 010 0 1 1 01 w 1 Rd '" 0 11 1 0 0 1

10 01 0 1 1 1 0 0 1 Rd '" 0 11 1 0 0 1

o 1100 1 1 0lwl eam 11 1 00

1, 2, or 3 extension words

o 11 0 1 1 1 0 0 1 eam 11 1 0 0

1,2, or 3 extension words

If register RO contains -1 (%FFFF) executing the ~o instructions

TESTARO '
JR LE, NEG_OR-2ERO

transfers control to the instruction at label NEG_OR-2ERO. Note that using TEST instead
of TESTA would require two JR instructions for equivalent effect because conditions involving
the V flag cannot be used following TEST

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-189·

TRAP
Conditional Trap

Operation:

Flags:

Exceptions:

Source
Addressing

Mode

1M:

6-190

TRAP cc, src

if cc is satisfied then
SP- SP-6
@ SP- PS
SP- SP-2
@ SP - instruction
PS - Conditional Trap PS

src: 1M

If the condition specified by "cc" is satisfied by the flags in the FCW, this instruc­
tion causes a Conditional trap. The instruction and the contents of the Program
Status registers are pushed onto the system stack. The source operand, which is
contained in bits 7 to 4 of the instruction, identifies the particular cause of the trap.
The source operand must be in the range from 0 to 15. This instruction is used for
the generation of exceptions detected by software, such as an overflow on decimal
arithmetic.

Flags loaded from Program Status Area

Conditional trap

Assembler Language
Syntax

TRAP ee, #n

Instruction Format

101111110 n cc

Operation:

Flags:

Exceptions:

Addressing
Mode

IR:

Example:

TROB
Translate and Decrement

TRDB dst, src, r

dst - src[dstJ
AUTODECREMENT dst by 1
r- r - 1

dst: IR
src: IR

This instruction is used to translate a string of bytes from one code to another. The
contents of the location addressed by the destination register (the "target byte") are
used as an unsigned index into a translation table whose base address is contained
in the source register. An effective address is calculated by adding the zero­
extended target byte to the translation table base address using the rules for ad­
dress arithmetic in the current mode of address representation: compact,
segmented, or linear. The effective address is the location of the translated value
used to replace the original contents of the target byte.

The destination register is then decremented by one, thus moving the pointer to the
previous element in the string. The word register specified by "r" (used as a
counter) is then decremented by one. The source register is unchanged. The
source, destination, and counter registers must be distinct, non-overlapping
registers. The translation table contains up to 256 bytes, one for each possible value
of the target byte. The size of the translation table may be reduced when it is known
that some target byte values will not occur.

c: Unaffected
Z: Unaffected
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
0: Unaffected
H: Unaffected

None

Assembler Language
Syntax Instruction Format

101111000 Rd,*O 1000

00001 Rs,*O 0000

In linear mode, if register RR6 contains %00004001, the byte at location
%00004001 contains 3, register RR20 contains %00001000, the byte at location
%00001003 contains %AA, and register R12 contains 2, executing the instruction

TRDB @RR6, @RR20, R12

leaves the value %AA in location %00004001, the value %00004000 in RR6, and
the value 1 in R12. RR20 is not affected. The V flag is cleared. In compact mode,
word registers must be used instead of RR6 and RR20.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-191

TRDRB
Translate, Decrement and Repeat

Operation:

Flags:

Exceptions:

Addressing
Mode

IR:

6-192

TRDRB dst, src, r

repeat
dst - src [dst]
AUTODECREMENT dst by 1
r - r - 1

until r = a

dst: IR
src: IR

This instruction is used to translate a string of bytes from one code to another. The
contents of the location addressed by the destination register (the "target byte") are
used as an unsigned index into a translation table whose base address is contained
in the source register. An effective address is calculated by adding the zero­
extended target byte to the translation table base address using the rules for ad­
dress arithmetic in the current mode of address representation: compact,
segmented, or linear. The effective address is the location of the translated value
used to replace the original contents of the target byte.

The destination register is the decremented by one, thus moving the pointer to the
previous element in the string. The word register specified by "r" (used as a
counter) is then decremented by one. The source register is unchanged. The entire
operation is repeated until the result of decrementing r is zero. This instruction can
translate from 1 to 65,536 bytes. The source, destination, and counter registers
must be distinct and non-overlapping registers. The translation table contains up to
256 bytes, one for each possible value of the target byte. The size of the translation
table may be reduced when it is known that some target byte values will not occur.

This instruction can be interrupted after each execution of the basic operation.

c: Unaffected
Z: Unaffected
S: Unaffected
V: Set
0: Unaffected
H: Unaffected

None

Assembler Language
Syntax

TRDRB @Rd1, @Rsl, r

Instruction Format

1 0 I 1 1 1 0 0 0 Rd * 0 1 1 0 0

0000 I r Rs*O 0000

Example: In compact mode, if register R6 contains %4002, the bytes at locations %4000
through %4002 contain the values %00, %40, %80, respectively, register R9 con­
tains % 1000, the translation table from location % 1000 through % 10FF contains 0,
1, 2, ... , % 7F, 0, 1, 2, ... , % 7F (the second zero is located at % 1 080), and register
R12 contains 3, executing the instruction

TRDRB @R6, @R9, R12

leaves the values %00, %40, %00 in byte locations %4000 through %4002,
respectively. Register R6 contains %3FFF, and R12 contains O. R9 is not affected.
The V flag is set. In segmented or linear mode, longword registers must be used in­
stead of R6 and R9.

BEFORE

%1000 00000000

'%4000 %1001 00000001

%4001 %1002 00000010

%4002 · · ·
AFTER %107F o 1 1 1 1 1 1 1

%1080 00000000

%4000 %1081 00000001

%4001 %1082 00000010

%4002 · · ·
%1QFF o 1 1 1 1 1 1 1

Note 1: Word register in compact mode. longword register in segmented or linear modes.

6-193

TRIB
Translate and Increment

Operation:

Flags:

Exceptions:

Addressing
Mode

IR:

6·194

TRIB dst, src, r

dst - src[dst]
AUTOINCREMENT dst by 1
r- r - 1

dst: IR
src: IR

This instruction is used to translate a string of bytes from one code to another. The
contents of the location addressed by the destination register (the "target byte") are
used as an unsigned index into a translation table whose base address is contained
in the source register. An effective address is calculated by adding the zero­
extended target byte to the translation table base address using the rules for ad­
dress arithmetic in the current mode of address representation: compact,
segmented, or linear. The effective address is the location of the translated value
used to replace the original contents of the target byte.

The destination register is then incremented by one, thus moving the pointer to the
next element in the string. The word register specified by "r" (used as a counter) is
then decremented by one. The source register is unchanged. The source, destina­
tion, and counter registers must be distinct and non-overlapping registers. The
translation table contains up to 256 bytes, one for each possible value of the target
byte. The size of the translation table may be reduced when it is known that some
target byte values will not occur.

c: Unaffected
Z: Unaffected
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

None

Assembler Language
Syntax

TRIB @Rd', @Rsl, r

Instruction Format

1 01111 000 Rd""O 0 0 0 0

0000\ r Rs""O 0000

Example: This instruction can be used in a "loop" of instructions that translate a string of
data from one code to another code, but an intermediate operation on each data
element is required. The following sequence translates a string of 1000 bytes to the
same string of bytes, with all ASCII "control characters" (values less than 32)
translated to the "blank" character (value = 32). A test, however, is made for the
special character" return" (value = 13) which terminates the loop. The translation
table contains 256 bytes. The first 33 (0-32) entries all contain the value 32, and all
other entries contain their own index in the table, counting from zero. This example
assumes compact mode. In segmented or linear mode, longword registers must be
used instead of R4 and R5.

LOOP:

DONE:

LD
LDA
LDA

CPB
JR
TRIB
JR

TABLE+O

TABLE + 1

TABLE + 2

R3, #1000
R4, STRING
R5, TABLE

@R4, #13
EQ,DONE
@R4, @R5, R3
NOV, LOOP

00100000

00100000

00100000

· · · TABLE+32

TABLE+33

TABLE + 34

00100000

00100001

00100010

· · · TABLE + 255 11111111

lIinitialize counter
IIload start addresses

IIcheck for return character
lIexit loop if found
IItranslate next byte
IIrepeat until counter = a

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-195

TRIRB
Translate, Increment and Repeat

Operation:

Flags:

Exceptions:

Addressing
Mode

IR:

6-196

TRIRB dst, src, r

repeat
dst - src[dst]
AUTOINCREMENT dst by 1
r- r - 1

until r = a

dst: IR
src: IR

This instruction is used to translate a string of bytes from one code to another. The
contents of the location addressed by the destination register (the "target byte") are
used as an unsigned index into a translation table whose base address is contained
in the source register. An effective address is calculated by adding the zero­
extended target byte to the translation table base address using the rules for ad­
dress arithmetic in the current mode of address representation: compact,
segmented, or linear. The effective address is the location of the translated value
used to replace the original contents of the target byte.

The destination register is then incremented by one, thus moving the pOinter to the
next byte in the string. The word register specified by "r" (used as a counter) is
then decremented by one. The source register is unchanged. The entire operation is
repeated until the result of decrementing r is zero. This instruction can translate
from 1 to 65,536 bytes. The source, destination, and counter registers must be
distinct and non-overlapping registers. The translation table contains up to 256
bytes, one for each possible value of the target byte. The size of the translation
table may be reduced when it is known that some target byte values will not occur.

This instruction can be interrupted after each execution of the basic operation.

c: Unaffected
Z: Unaffected
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

None

Assembler Language
Syntax Instruction Format

1 0 11 1 1 0 0 0 Rd '* 0 0 1 0 0

00 0 0 I r Rs '* 0 0000

Example: The following sequence of instructions can be used to translate a string of 80 bytes
from one code to another. The pointers to the string and the translation table are
set, the number of bytes to translate is set, and then the translation is accom­
plished. After executing the last instruction, the V flag is set. The example assumes
compact mode. In segmented or linear mode, longword registers must be used in­
stead of R4 and R5.

LOA R4, STRING
LOA R5, TABLE
LO R3, H80
TRIRB @R4, @R5, R3

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-197

TRTDB
Translate, Test and Decrement

Operation:

Flags:

Exceptions:

Addressing
Mode

IR:

Example:

6·198

TRTOB src1, src2, r

RH1 - src2[src1]
AUTODECREMENT src1 by 1
r - r - 1

src1: IR
src2: IR

This instruction is used to scan a string of bytes, testing for bytes with special
values. The contents of the location addressed by the first source register (the
"target byte") are used as an unsigned index into a translation table whose base ad·
dress is contained in the second source register. An effective address is calculated
by adding the zero·extended target byte to the base address using the current mode
of address representation: compact, segmented, or linear. The effective address is
the location of the translated value that is loaded into register RH 1. The setting of
the Z flag indicates whether or not the translated value is zero.

The first source register is then decremented by one, thus moving the pointer to the
previous byte in the string. The word register specified by "r" (used as a counter) is
then decremented by one. The second source register is unchanged. The source
and counter registers must be distinct, non·overlapping registers. The translation
table contains up to 256 bytes, one for each possible value of the target byte. The
size of the translation table may be reduced when it is known that some target byte
values will not occur.

c: Unaffected
Z: Set if the translated value loaded into RH 1 is zero; cleared otherwise
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
0: Unaffected
H: Unaffected

None

Assembler Language
Syntax

TRTDB @Rs1 1• @Rs21, r

Instruction Format

1 01111000 Rs1;<O 1 01 0

o 0 0 ° I Rs2;<O 00 0 0

In compact mode, if register R6 contains %4001, the byte at location %4001 con·
tains 3, register R9 contains % 1000, the byte at location % 1 003 contains %AA,
and register R12 contains 2, executing the instruction

TRTDB @R6, @R9, R12

leaves the value %AA in RH1, the value %4000 in R6, and the value 1 in R12.
Location %4001 and register R9 are not affected. The Z and V flags are cleared. In
segmented or linear mode, longword registers must be used instead of R6 and R9.

Note 1: Word register in compact mode. longword register in segmented or linear modes.

Operation:

Flags:

Exceptions:

Addressing
Mode

IR:

TRTDRB
Translate, Test, Decrement and Repeat

TRTDRB src1, src2, r

repeat
RH1 - src 2[src1]
AUTODECREMENT src1 by 1
r- r - 1

until RH1 "* 0 or r = 0

src1: IR
src2: IR

This instruction is used to scan a string of bytes, testing for bytes with special
values. The contents of the location addressed by the first source register (the
"target byte") are used as an unsigned index into a translation table whose base ad­
dress is contained in the second source register. An effective address is calculated
by adding the zero-extended target byte to the base address using the current mode
of address representation: compact segmented, or linear. The effective address is
the location of the translated value that is loaded into register RH1. The setting of
the Z flag indicates whether or not the translated value is zero.

The first source register is then decremented by one, thus moving the pOinter to the
previous byte in the string. The word register specified by "r" (used as a counter) is
then decremented by one. The entire operation is repeated until either a non-zero
value is loaded into RH1 or the result of decrementing r is zero. This instruction can
translate and test from 1 to 65,536 bytes. The second source register is unchanged.
The source and counter registers must be distinct and non-overlapping registers.
The translation table contains up to 256 bytes, one for each possible value of the
target byte. The size of the translation table may be reduced when it is known that
some target byte values will not occur.

This instruction can be interrupted after each execution of the basic operation.

c: Unaffected
Z: Set if the translated value loaded into RH1 is zero; cleared otherwise
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
0: Unaffected
H: Unaffected

None

Assembler Language
Syntax Instruction Format

1 0 11 1 1 0 0 0 Rs1*O 1 1 1 0

o 0 0 ° 1 r Rs2*O 1 1 1 0

6-199

Example:

6-200

In compact mode. if register R6 contains %4002. the bytes at locations %4000
through %4002 contain the values %00. %40. %80. repectively. register R9 con­
tains % 1000. the translation table from location % 1000 through % 10FF contains O.
1. 2• % 7F. O. 1. 2 % 7F (the second zero is located at % 1 080). and register
R12 contains 3. executing the instruction

TRTDRB @R6. @R9. R12

leaves the value %40 in RH1 (which was loaded from location % 1 040). Register R6
contains %4000. and R12 contains 1. R9 is not affected. The Z and V flags are
cleared. In segmented or linear mode. longword registers must be used instead of
R6 and R9.

%1000 00000000

%4000 %1001 00000001

%4001 %1002 00000010

%4002 · · ·
%107F o 1 1 1 1 1 1 1

%1080 00000000

%1081 00000001

%1082 00000010

· · ·
%10FF o 1 1 1 1 1 1 1

Note 1: Word register in compact mode. longword register in segmented or linear modes.

Operation:

Flags:

Exceptions:

Addressing
Mode

IR:

TRTIB
Translate, Test and Increment

TRTIB src1, src2, r

RH1 - src2[src1]
AUTOINCREMENT src1 by 1
r- r - 1

src1: IR
src2: IR

This instruction is used to scan a string of bytes, testing for bytes with special
values. The contents of the location addressed by the first source register (the
"target byte") are used as an unsigned index into a translation table whose base ad­
dress is contained in the second source register. An effective address is calculated
by adding the zero-extended target byte to the base address using the current mode
of address representation: compact, segmented, or linear. The effective address is
the location of the translated value that is loaded into register RH1. The setting of
the Z flag indicates whether or not the translated value is zero.

The first source register is then incremented by one, thus moving the pOinter to the
next byte in the string. The word registers specified by "r" (used as a counter) is
then decremented by one. The second source register is unchanged. The source
and counter registers must be distinct and non-overlapping registers. The translation
table contains up to 256 bytes, one for each possible value of the target byte. The
size of the translation table may be reduced when it is known that some target byte
values will not occur.

c: Unaffected
Z: Set if the translated value loaded into RH1 is zero; cleared otherwise
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

None

Assembler Language
Syntax

TRTIB @Rs11, @Rs21, r

Instruction Format

1 0 11 1 1 0 0 0 Rs1;OO 0 0 1 0

o 0 0 ° I r Rs2;OO 0 0 0 0

6-201

Example:

6-202

This instruction can be used in a "loop" of instructions which translate and test a
string of data, but an intermediate operation on each data .element is required. The
following sequence outputs a string of 72 bytes, with each byte of the original string
translated from its 7-bit ASCII code to an 8-bit value with odd parity. Lower case
characters are translated to upper case, and any embedded control characters are
skipped over. The translation table contains 128 bytes, which assumes that the most
significant bit of each byte in the string to be translated is always zero. The first 32
entries and the 128th entry are zero, so that ASCII control characters and the
"delete" character (% 7F) are suppressed. The given instruction sequence is for
compact mode. In segmented or linear mode, longword registers must be used in­
stead of R3 and R4.

LOOP:

DONE:

LD
LDA
LDA

TRTIB
JR
OUTB
JR

R5, 1172
RS., STRING
R4, TABLE

@R3,@ R4, R5
Z, LOOP
PORTn, RH1
NOV, LOOP

lIinitialize counter
//load start addr~ss

//translate and test next byte
IIskip control character
lIoutput characters
IIrepeat until counter = 0

Note 1: Word register in compact mode, longword register in segmented or linear modes.

Operation:

Flags:

Exceptions:

Addressing
Mode

IR:

TRTIRB
Translate, Test, Increment and Repeat

TRTIRB src1, src2, r

repeat
RH1 - src2[src1]
AUTOINCREMENT src1 by 1
r- r - 1

until RH1 '* 0 or r = 0

src1: IR
src2: IR

This instruction is used to scan a string of bytes, testing for bytes with special
values. The contents of the location addressed by the first source register (the
"target byte") are used as an unsigned index into a translation table whose base ad­
dress is contained in the second source register. An effective address is calculated
by adding the zero-extended target byte to the base address using the current mode
of address representation: compact, segmented, or linear. The effective address is
the location of the translated value that is loaded into register RH1. The setting of
the Z flag indicates whether or not the translated value is zero.

The first source register is then incremented by one, thus moving the pOinter to the
next byte in the string. The word register specified by "r" (used as a counter) is
then decremented by one. The entire operation is repeated in until either a non-zero
value is loaded into RH1 or the result of decrementing r is zero. This instruction can
translate and test from 1 to 65,536 bytes. The second source register is unchanged.
The source and counter registers must be distinct and non-overlapping registers.
The translation table contains up to 256 bytes, one for each possible value of the
target byte. The size of the translation table may be reduced when it is known that
some target byte values will not occur.
This instruction can be interrupted after each execution of the basic operation.

c: Unaffected
Z: Set if the translated value loaded into RH1 is zero; cleared otherwise
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

None

Assembler Language
Syntax

TRTIRB @Rs1'. @Rs2'. r

Instruction Format

10\111000 Rs1*0 0110

o 0 0 0 I r Rs2*0 1 1 1 0

6-203

Example:

6-204

The following sequence of instructions can be used in compact mode to scan a
string of 80 bytes, testing for special characters as defined by corresponding non­
zero translation table entry values. The pointers to the string and translation table
are set, the number of bytes to scan is set, and then the translation and testing is
done. The Z and V flags can be tested after the operation to determine if a special
character was found and whether the end of the string has been reached. The
translation value loaded into RH1 can then be used to index another table, or to
select one of a set of sequences of instructions to execute. In segmented or linear
mode, longword registers must be used instead of R4 and R5.

LDA R4, STRING
LDA R5, TABLE
LD R6, #80
TRTIRB @R4, @R5, R6
JR NZ, SPECIAL

END_OF _STRING:

SPECIAL:
JR

Note 1: Word register in compact mode, longword register in segmented or linear modes.

Operation:

Flags:

Exceptions:

Destination
Addressing

Mode

R:

IR:

EAM:

TSET dst
TSETB
TSETL

S - dst<msb>
dst --1

TSET
Test and Set

dst: R, IR, EAM

This instruction tests the most-significant bit of the destination operand, copying its
value into the S flag, then sets the entire destination to all 1 bits. It provides a lock­
ing mechanism for synchronizing software processes that require exclusive access
to certain data or instructions at one time. No other interlocked accesses are per­
mitted to the destination memory location between fetching and storing the result.

c: Unaffected
Z: Unaffected
S: Set if the most-significant bit of the destination was 1; cleared otherwise
V: Unaffected
D: Unaffected
H: Unaffected

None

Assembler Language
Syntax

TSET Rd
TSETB Rbd

TSETL RRd

TSET @Rd1

TSETB @Rd1

TSETL @Rd1

TSET eam
TSETB eam

TSETL eam

Instruction Format

0111101000000010

1 01 0 0 1 1 0 1 RRd 0 1 1 0

01111010 0000 0010

001001101 Rd*O 0110

01100110lw earn 0110

1, 2, or 3 extension words

0111101000000010

o 11 0 0 1 1 0 1 earn 0 1 1 0

1, 2, or 3 extension words

6-205

Example:

6·206

A simple mutually·exclusive critical region can be implemented by the following
sequence of statements:

ENTER:
TSET
JR

SEMAPHORE
MI,ENTER IIloop until resource con·

//trolled by SEMAPHORE
/lis available

IIcritical region-only one software process
lIexecutes this code at a time

CLR SEMAPHORE lire lease resource controlled
IIby SEMAPHORE

Note 1: Word register in compact mode, longword register in segmented or linear modes.

Operation:

Flags:

Source
Addressing

Mode

R:

1M:

XOR
Exclusive Or

XOR dst, src
XORB
XORL

dst - dst XOR src

dst: R
src: R, 1M, IR, EAM

A logical XOR operation is performed between the corresponding bits of the source
and destination operands, and the result is stored in the destination. A 1 bit is stored
wherever the corresponding bits in the two operands differ; otherwise a 0 bit is
stored. The contents of the source are not affected.

c: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the most-significant bit of the result is set; cleared otherwise
P: XOR, XORL-unaffected; XORB-set if parity of the result is even;

cleared otherwise
0: Unaffected
H: Unaffected

Assembler Language
Syntax

XOR Rd, Rs
XORB Rbd, Rbs

XORL RRd, RRs

XOR Rd, #data

XORB Rbd, #data

XORL RRd, #data

Instruction Format

110100100lwl Rs Rd

01111010 0000 0010

1 01 001 001 RRs RRd

001001001 0000 Rd

data

001001000 0000 Rbd

data data

0111101000000010

o 01 0 0 1 0 0 1 0 0 0 0 RRd

data (high)

data (low)

6-207

Source
Addressing

Mode

IR:

EAM:

Example:

6-208

Assembler Language
Syntax

XOR Rd, @RS1
XORB Rbd, @RS1

XORL RRd, @RS1

XOR Rd, eam
XORB Rbd, eam

XORL RRd, eam

Instruction Format

0111101000000010

o 01 0 0 1 0 0 1 Rs * 0 RRd

01100100lW earn Rd

1, 2, or 3 extension words

0111101000000010

o 11 00 1 0 0 1 earn RRd

1,2, or 3 extension words

If register RL3 contains %C3 (11000011) and the source operand is the immediate
value % 7B (01111011), executing the instruction

XORB RL3,#% 7B

leaves the value % B8 (10111000) in RL3.

Note 1: Word register in compact mode. longword register in segmented or linear modes.

6.6 EPA Instruction Teaplates

There are seven templates for EPA instructions.
If the Extended Processing Architecture enable bit
(EPA) in the Flag and Control Word is set when the
CPU encounters one of the instruction templates,
the CPU transfers the instruction and operands to
the EPU. The CPU merely transfers the operands to
the EPU, but does not process them in any way.

Each type of EPU has its own mnemonics, opcodes,
and exceptions to represent its particular data
processing operations. The shaded portions of the
instruction template shown below are ignored by
the CPU; they are used by an EPU to specify its
particular operations. The two least-significant
bits of the first word of the instruction tem­
plates are reserved to encode an identifier field

Operation: Memory - EPU (n bytes or words)

that selects one of up to four possible EPUs in
the system. When an EPU detects an exception, it
signals the CPU through one of the interrupt
request pins. For examples of EPU mnemonics,
opcodes, and exceptions, see the l8070 Floating
Point Processor Technical Manual (lilog document
03-8226-01).

The instruction templates shown below correspond
to the data transfer operations performed by the
CPU. Oat a can be transferred between an EPU and
memory, EPU and CPU general-purpose registers, or
between an EPU and the CPU flags byte register.
The last template is for EPU internal operations
that require no data transfers.

Extended Instruction
Load Memory from EPU

The CPU calculates the effective address and generates transactions on the exter­
nal interface for an EPU to write n words or bytes of data to memory. The value in
the instruction field for the number of words or bytes loaded ("n") is one less than
the actual value of the source operand. Thus, the coding in the instruction field
ranges from 0 to 15, which corresponds to loading 1 to 16 words or bytes.

Flags:

Exceptions:

Destination
Addressing

Mode

IR:

EAM:

No flags affected.

Extended Instruction trap

Operation Instruction Format

@Rd' - EPU

EPU - eam

1, 2, or 3 extension words

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-209

Extended Instruction
Load EPU from Memory

Operation:

Flags:

Exceptions:

Source
Addressing

Mode

1M:

IR:

EAM:

6-210

EPU - Memory (n bytes or words)

The CPU calculates the effective address and generates transactions on the exter­
nal interface to read n words or bytes of data from memory to an EPU. The value in
the instruction field for the number of words or bytes loaded ("n") is one less than
the actual value of the source operand. Thus, the coding in the instruction field
ranges from 0 to 15, which corresponds to loading 1 to 16 words or bytes. When Im­
mediate addressing mode is used for an odd number of bytes, an extra byte contain­
ing Os is included at the end of the instruction, making the instruction length an in­
tegral number of words.

No flags affected.

Extended Instruction trap

Operation Instruction Format

EPU - * data

EPU -@Rs1

EPU -eam

1, 2, or 3 extension words

Note 1: Word register in compact mode, longword register in segmented or linear modes.

Operation:

Flags:

Exceptions:

Destination
Addressing

Mode

R:

CPU - EPU registers (n words)

Extended Instruction
Load CPU from EPU

The contents of n words are transferred from an EPU to consecutive CPU registers
starting with the specified destination register. The value in the instruction field for
the number of words loaded ("n") is one less than the actual value of the source
operand. Thus, the coding in the instruction field ranges from D to 15, which cor­
responds to loading 1 to 16 words.

For the word operand version, the CPU word registers (RD - R15) are loaded. RD
follows R15 in consecutive order.

For the longword operand version, the CPU longword registers (RRD - RR3D) are
loaded. RRD follows RR3D in consecutive order. If the number of loaded words is
odd, then the low-order halt of the last longword register loaded is undefined after
executing this instruction.

No flags affected.

Extended Instruction trap

Operation Instruction Format

Rd- EPU

RRd - EPU

6-211

Extended Instruction
Load EPU from CPU

Operation:

Flags:

Exceptions:

Source
Addressing

Mode

R:

6-212

EPU -- CPU registers (n words)

The contents of n words are transferred to an EPU from consecutive CPU registers
starting with the specified source register. The value in the instruction field for the
number of words loaded ("n") is one less than the actual value of the source
operand. Thus, the coding in the instruction field ranges from 0 to 15, which cor­
responds to loading 1 to 16 words.

For the word operand version, the EPU is loaded from CPU word registers (RO -
R15). RO follows R15 in consecutive order.

For the longword operand version, the EPU is loaded from CPU longword registers
(RRO - RR30). RRO follows RR30 in consecutive order. If the number of loaded
words is odd, then the low-order word of the last longword register is not involved in
the loading.

No flags affected.

Extended Instruction trap

Operation Instruction Format

EPU -- Rs

EPU -- RRd

Operation:

Flags:

Exceptions:

Flags - EPU

Extended Instruction
Load FeW from EPU

The flags in the CPU's Flag and Control Word are loaded with information from an
EPU. Only the flag bits are loaded; bits a and 1 of the Flag and Control Word are
unaffected.

Flags loaded from EPU.

Extended Instruction trap

Operation Instruction Format

FCW- EPU

Extended Instruction
Load EPU from FeW

Extended Instruction
Load EPU from FeW

Operation: EPU - Flags

The flag byte of the CPU's Flag and Control Word is transferred to an EPU.

Flags: No flags affected.

Exceptions: Extended Instruction trap

Operation Instruction Format

EPU - FCW

6-213

Extended Instruction
Internal EPU Operation

Operation: Internal EPU Operation

This template is for an EPU internal operation, one which requires no data transfers.

Flags: No flags affected.

Exceptions: Extended Instruction trap

Instruction Format

6-214

7.1 INTROOUCTImI

To execute an instruction, the CPU fetches the
instruction whose address is in the Program
Counter (PC), increments the PC by the length of
the inatruction, and per forma the operationa
specified in Chapter 6 for the particular
instruction. Exceptions are conditions or events
thst slter the sequence of inatruction execution.
The CPU recognizea four types of exceptions:
reset, bus error, interrupts, and traps.

A reset exception occurs when the REm line is
activated. Reset initislizea the CPU. A bua
error exception occurs when externsl hardware
indicatea en irrecoverable error during s dsts
transfer on the external interfsce. An interrupt
is sn asynchronoua event indiceted when the NMi,
VI, or NVI line is sctivated. Interrupts are
typically caused by periphersl devices that
require attention. A trsp occurs synchronously
when a particular condition, such as integer
overflow, ia detected by the CPU during
instruction execution.

When en exception occurs, the CPU stores the Pro­
gram Status on the system stack, fetches the new
Program Ststus from the Program ststus Area, end
resumes executing instructions. This chspter
deacribes inetruction execution and exception
proceasing.

7.2 OPERATING STATES

The CPU is always in one of four possible operat­
ing states regarding instruction execution and
exception processing: reset, exception process­
ing, instruction exacuting, or hslted. figure 7-1
shows the four states and the trsnsitions between
them.

The CPU enters the reset state from any other
state when s reset request is signslled on the
RESET line. When RESET 1s relessed, the CPU
enters exception proceasing state. The reset
stste is described in more detail in Section 8.10.

8225-016

Chapter 7.
IlIItractloD Exec:ulioD and
Exceptio ..

Figure 7-1. Operating states

In the exception processing stste, the CPU is
either storing values from the Program Status reg­
isters to memory or fetching values from memory
for the Program Stetua regiaters. The storing end
fetching of Program Status is described in Section
7.4.5. from the exception processing state the
CPU normally enters the instruction executing
state; however, s bus error excaption causes a
transition to the halted state.

In the instruction executing state, the CPU exe­
cutes instructions. When the Halt instruction is
executed, the CPU enters the helted state. If sn
exception other than reset occurs, the CPU enters
the exception processing state.

In the halted state the CPU is halted; it is
neither executing instructions nor processing
exceptions. When an interrupt occurs, the CPU
enters the exception processing state.

7-1

Instruction Execution and Exceptions

7.3 INSTRUCTIIW EXEaJTIIW

Executing an instruction involves the following
operations:

• fetch the instruction
.• Increment PC
• fetch operands, if necessary
• Cslculate results
• store results and flags, if necessary

In concept, the CPU axecutes instructions by per­
forming all the operations listed above in strict
sequence for one instruction, and then beginning
execution of the next instruction. However, the
CPU checks for exceptions at several points during
instruction execution. An exception can alter the
operations for an instruction currently being exe­
cuted, as well as the sequence from one instruc­
tion to the next. Also, the CPU overlaps the
operations for executing several instructions in a
multiple-stage pipeline. That is, while the CPU
is calculating the results for one instruction, it
can be storing the results for the previous
instruction and fetching the opersnds for the next
instruction. The use of an instruction pipeline,
rather than completely executing each instruction
in strict sequence, enhances the performance of
the CPU.

This section describes the effects of exceptions
and the pipeline on instruction execution.
Section 7.3.1 explains how different exceptions
affect instruction execution, and Section 7.3.2
explains how the pipeline affects instruction
execution.

7.3.1 Instruction £nding

Instruction execution can end in any of five ways:
completion, suspension, suspension with PC modifi­
cation, termination, or partial completion. Gen­
erally, an instruction ends in completion; how­
ever, exceptions can csuse a different
conclusion. Section 7.4 explains each exception
recognized by the CPU, and refers to the different
types of inatruction endings described here.

When an instruction ends in completion, the CPU
has completely executed the instruction and all
pravious instructions. Any result operands and
flags modified by the instruction have been
stored, and the PC holds tha addrass of tha next
instruction to execute. If an axception occurs
aftar sn instruction ends in complation, the Pro­
gram Status saved on ~he systam stack can be
restored using the Interrupt Return (IRET)
instruction. Execution will then resume with the

7-2

next instruction in sequence following the com­
pleted instruction.

When an instruction ends in suspension or suspen­
sion with PC modification, the CPU has not com­
pletely executed the instruction, but all previous
instructions have been completed. Any flags and
destination operands due to be stored by the
instruction may be modified; however, only modifi­
cations that allow the instruction to be completed
are possible. Also, an instruction that ends in
suspension or suspension with PC modification will
not have modified any control registers, memory
locations, or peripheral ports that are protected
from access in the current operating mode.

Examples:

1. An Add (ADDB) instruction modifies the flags,
but does not examine the flags. If an ADDB
instruction ends in suspension because of an
address translation exception, the flags may
be modified.

2. A Load (LD) instruction can store into a reg­
ister whoee contents are required for an
effective address calculation, e.g., LDL RR2,
taRR2. I f the LD instruction ends in suspen­
sion because of an address translation excep­
tion, the register contents are unmodified.

When an instruction ends in suspension, the PC

holds the address of the first word of the
instruction. When an instruction ends in suspen­
sion with PC modification, the PC holds the
address of the word following the first word of
the instruction.

An instruction ends in suspension, or suspension
with PC modification, when the CPU detects a trap
condition, such as an address translation excep­
tion or unimplemented instruction, before com­
pletely executing the instruction. An instruction
ending in suspension can be completed by eliminat­
ing the trap condition and restoring the Program
Status saved on the system stack using the IRET
instruction. An instruction ending in suspension
with PC modification can be completed by eliminat­
ing the trap condition, decrementing the PC value
stored on the system stack by two using the mode
of address representation in effect for the sus­
pended instruction, and restoring the Program
Status using the IRET instruction.

When an instruction ends in termination, the CPU
has not completely executed the instruction, but
all previous instructions have been completed.
Any flags and destination operands due to be
stored by the instruction msy be modified; the

contents of PC are undefined. A terminated
instruction will not have modified any control
registers, memory locations, or peripheral ports
that are protected from access in the current
operating mode. It is not possible to complete an
instruction that ends in termination. Only reset
and bus error cause instruction termination.

Only interruptible instructions can end in partial
completion. Interruptible instructions are the
"repeat" versions of block transfer, string manip­
ulation, and input/output instructions (Sections
6.2.8 and 6.2.9). Interruptible instructions are
repeatedly executed until a specified data value
is found for one of the operands, or a counter
held in a register is decremented to zero. While
the CPU is executing an interruptible instruction,
if an Address Translation trap or interrupt
occurs; the instruction ends in partial
completion. Any flags and destination operands
due to be stored by the instruction may be
modified; however, the values stored in the
counter and address registers allow the
instruction to be completed correctly when the
instruction is re-executed. The PC holds the
address of the first word of the instruction. An
instruction ending in partial completion can be
completed by eliminating the cause of the
exception and restoring the Program Status saved
on the system stack using the IRET instruction.

7.3.2 Effects of the Pipeline on Execution

The CPU executes several instructions simul­
taneously in a multiple-stage pipeline. In most
circumstances, the differences between pipelined

instruction execution and the complete execution
of each instruction in strict sequence cannot be
detected by software or hardware. However, the
few cases in which the effects of the pipeline can
be detected are described below.

The CPU can prefetch an instruction before com­
pleting all previous instructions. Consequently,
if an instruction stores to a location from which
a subsequent instruction is fetched (i.e., the
program modifies itself), the CPU can prefetch the
original contents of the memory location rather
than the modified contents. Thus, self-modifying
programs may not operate as intended. On the
external interface, instruction prefetching can
have the effect of fetching an instruction that is
not executed (e.g., if the previous instruction
causes a trap) or fetching an instruction before
the operands for a previous instruction are
fetched. Some privileged instructions (IRET,
LDCTL, LDCTLL, LDPS, PCACHE, PTLB, PTLBE, and
PTL6N) have the effect of serializing instruction

Instruction Execution and Exceptions

execution. The ser ializing instruction and all
previous instructions are completely executed,
including storing of all results and flags, before
fetching the next instruction. Thus, when a new
value is loaded into the FCW by a LDCTL
instruction, the address representation mode and
operating mode used to fetch and execute the next
instruction are determined by the new FCW value.

The CPU can also pre fetch an operand for an
instruction before completing all previous
instructions. The effects of operand pre fetching
cannot be detected by software because the CPU
only fetches an operand from a location after com­
pleting all previous instructions that modify the
location. On the external interface, operand pre­
fetching can have the effect of fetching an
operand for an instruction that is not executed,
for example, if the previous instruction causes a
trap. Operands in physical I/O space are not pre­
fetched, ensuring that the CPU only fetches data
from an input peripheral port for instructions
that are executed.

7.~ EXCEPTIONS

The CPU recognizes four types of exceptions:
reset, bus error, interrupts, and traps. In proc­
essing exceptions other than reset, the CPU saves
the Program Status and an identifier word on the
system stack. For some exceptions, the CPU saves
an additional longword parameter. Then the CPU
fetches a new Program Status from the Program
Status Area. The sections below describe the
cause of each exception, CPU response to excep­
tions, and priority among exceptions.

7.~.1 Reset

Reset occurs when the RESET line is Low. Reset
causes any instruction in execution to end in ter­
mination.

At reset the Translation and Cache Enable bits of
the System Configuration Control Longword register
(NX, SX, CI, and CD) are cleared to O. Some
fields of the Hardware Interface Control register
are initialized as described in Section 6.10.
When the RESET line is driven High, the CPU
fetches the FCW from physical memory address 2 and
the PC from physical memory address 4. Reset also
invalidates all entries in the cache and
the Translation Lookaside Buffer. After reset,
the contents of all CPU registers other than the
FCW, the PC, and the specified fields of SCCL and
HICR are undefined. Reset should be used to ini­
tialize the CPU at power-on.

7-3

Instruction Exscution snd Exceptions

7.4.2 BuB Error

Bus error is indicstsd by s device ,responding to s
dsts trsnsfer transsction on the externsl inter­
face. A bus error ceuses any instruction in exe­
cution to end in tsrminstion. Tha idsntifier word
ssved during bua error exception processing
raporta the atate of the CPU pins. The physical
addresa for the trsnsaction ia saved as s param­
etar on the system stsck. Refer to Section 8.8.8
for more detsils about the bus error exception.

7.4.3 Interrupts

Ths CPU recognizes three kinds of interrupt sig­
nslled on separsts pinal non-masksble, vectored,
snd non-vectored. Non-mssksble interrupts sre
slwsys enabled. Vsctored and non-vectored inter­
rupta can be selectively enabled by bita VIE snd
NVIE in the FCW. Vectored interrupts are enebled
when VIE is 1; non-vectored interrupts are enabled
when NVIE ia 1.

An interrupt occurs when an enabled interrupt
request is signalled on a CPU pin. The CPU gener­
ates an interrupt acknowledge trsnsaction on tha
external intarface to fetch the idantifier word,
which is then savad on the system stack. For vec­
tored interrupts, the low-order byte of the iden­
tifier word is used to select a pointer to a par­
ticular interrupt handler routine. Refer to Sec­
tion 8.7.5 for more details about interrupt
request and acknowledge.,

7.4.4 Traps

The CPU recognizes ten traps, described below.

7.4.4.1 Extandad Instruction Trap. This trap
occurs when sn Extended Processing Architecturs
instruction is executed and the EPA bit of the FCW
is O. The instruction ends in auspension with PC
modification. The identifier is the first word of
the instruction. This trap sllows softwsre to
simulste execution of the EPA instruction when no
EPU is in the system.

7.4.4.2 Privileged Instruction Trap. This trap
occurs when s program attempts to execute a
privileged instruction in normal mode; the
instruction ends in suspension with PC
modificstion. The identifier is the first word of
the instruction.

7.4.4.3 Syat .. Call Trap. This trsp occurs when
a System Csll instruction is executed. The

7-4

instruction ends in completion; the identifier is
the instruction word. This trsp is used by pro­
grams executing in normsl mode to request services
from the opersting system. The low-order byts of
the instruction word indicstes the psrticular ser­
vice requested.

7.4.4.4 Addrees Tr-ration Trap. This trsp
occurs when sn sddress translstion error is
detected, either sn invalid table entry or sn
sccess protection violstion. The instruction
ends in suspension. The identifier word reports
the sddress space for the logicsl sddress and the
exception type (see Section 4.3.5 for more infor­
mstion). The logicsl sddress thst csused the
translstion error is ssved ss s psrameter on the
system stack.

7.4.4.5 Breakpoint Trap. This trsp occurs when
the Brsskpoint instruction is executed. The
instruction ends in completion; the identifier is
the instruction word.

7.4.4.6 Integer Arit'-tic Error Trap. This
trsp occurs when sny of three error conditions is
detected during execution of integer sritllnetic
instructions. The error conditions are integer
overflow, bounds check, snd index error. Integer
overflow error is enabled by the IV bit in the
FCW. Integer overflow is detected when the IV bit
is 1 snd the V flag is set by execution of ADD,
DEC, DECI, DIV, DIVU, INC, INCI, NEG, SUB, SDA,
SRA, SLA, CVT, or CVTU instructions. For DIV snd
DIVU instructions, Integer Overflow error includss
the csse of zero divisor. A bounds check error is
detected when s Check instruction is executed snd
the destinstion operend is out of bounds. An
index error is detected when an Index instruction
is executed snd the subscript is out of bounds.

The instruction ends in completion. The
identi fier word indicates the type of error, ss
shown in the following table.

Identifier

o

2

Error

Integer Overflow
Bounds Check
Index Error

7.4.4.7 Conditional Trap. This trsp occurs when
s Trap instruction is executed snd the tested con­
dition is sstisfied. The instruction ends in com­
pletion; the identifier is the instruction word.
This trsp can be used for softwsre detection of
run-time errors.

7 ••••• 8 Unillpl_ted Inatruction Trap. This
trap occurs when a program attempts to execute an
instruction with an unimplemented bit pattern.
The detected bit patterns include certain zaooo
opcodes described in Appendix A and instructions
with first byte 3616, or Bf 16. The instruction
ends 1n suspension with PC modificstion; the
identifier is the first word of the instruction.

7 ••••• 9 Odd PC Trap. This trap occurs befors
execution of an instruction when the PC contains
an odd address. The contents of the identifier
word are undefined.

7 ••••• 10 Trace Trap. This trap occurs before an
instruction ia executed when the TP bit in the fCW
ia 1. The contents of the identifier word are
undefined.

Instruction tracing is enabled by the T bit in
fCW. Before each instruction is executed, T is
copied to TP. The use of two bits to control
inatruction tracing enaures that, while tracing is
enabled, exactly one Trace trap is processed after
sach instruction's execution, and after the
servicing of other traps and interrupts. Section
7.4.7 provides more information about the priority
for handling Trace traps and other exceptions.

SYSTEM SP
AFTER_

EXCEPTION

SYSTEM SP
BEFORE_

EXCEPTION

IDENTIFIER

FCW

PC (HIGH)

PC (LOW)

_ 1 WORD_

WITHOUT PARAM.TER

Instruction Execution and Exceptions

The Trace trap handler should set the T bit to 1
and clear the TP bit to 0 in the fCW on the system
stack before executing IRET and returning to the
traced program. Note that the T bit in the fCW on
the system stack can be cleared when an IRET,
LOCTL, or LOPS instruction is traced.

7 ••• 5 Dwtging Progr_ status

To process all exceptions other than reset, the
CPU pushes the Progran Status and an identifier
word on the system stack. An Address Translstion
trap and bus error push an additional longword
parameter onto the system stack. The saved value
of the PC depends on the type of instruction end­
ing. As selected by the XL!S bit in the System
Configuration Control Longword (SCCL) register,
the CPU operates in either segmented system mode
(XL/S = 0) or linear system mode (XL!S = 1) while
saving the Program Status and other information;
but the saved value of the fCW indicates the mode
of operation when the exception occurred.
figure 7-2 shows how the information is saved on
the stack.

LOW ADDRESS

SYSTEM SP
AFTER_

EXCEPTION

SYSTEM SP
BEFORE_

EXCEPTION

HIGH ADDRESS

PARAMETER (HIGH)

PARAMETER (LOW)

IDENTIFIER

FCW

PC (HIGH)

PC (LOW)

_1 WORD _

Figure 7-2.
Progr_ status Saved on 51st- St.:k

8225-017 7-5

Instruction Execution snd Exceptions

A new Program status must be fetched from memory
to process any exception. For reset, the FeW is
fetched from physicsl address 2 and the PC is
fetched from physical address 4. Other exceptions
fetch the new Program status from an entry in the
Program status Area (PSA) (Figure 7-3). Bus
error, non-masksble interrupt, non-vectored inter­
rupt, snd all traps have unique entries in the PSA

L
0

PROGRAM STATUS
AREA POINTER

8 RESERVED

FCW

PC (HIGHI

PC (LOW)

18 RESERVED

FCW

PC (HIGH)

PC (LOW)

24

88 RESERVED

FCW

PC (HIGH)

PC (LOW)

96 RESERVED

FCW

PC (HIGH)

PC (LOW)

104 RESERVED

FCW

PC (HIGH)

PC (LOW)

112 RESERVED

FCW

PC (HIGH)

PC (LOW)

120 RESERVED

FCW

PCo(HIGH)

PCo(LOW)

PC, (HIGH)

PC, (LOW)

132 PC. (HIGH)

PC. (LOW)

· • •
1144 I pc... (HIGH)

L PC.,,(LOW)
I
I

from which the new Program status is fetched. For
vectored interrupts, ths new value of the FeW is
loaded from displacement 122 in the PSA. The low­
order byte of the identifier word is used to
select the new value of the PC by indexing into a
table of 256 values beginning at displacement 124
in the PSA.

} RESERVED

}
EXTENDED
INSTRUCTION
TRAP

}
PRIVILEGED
INSTRUCTION
TRAP

}

}

}

}

SYSTEM STACK
OVERI'LOW

BUS ERROR

NON·MASKABLE
INTERRUPT

NON. VECTORED
INTERRUPT

VECTORED
INTERRUPT

24-31 SYSTEM CALL TRAP
32-38 ADDRESS TRANSLATION TRAP
40-47 BREAKPOINT TRAP
48-55 INTEGER ARITHMETIC ERROR TRAP
66-83 CONDITIONAL TRAP
84-71 UNIMPLEMENTED INSTRUCTION TRAP
72·78 ODD PC TRAP
80-87 TRACE TRAP

Figure 7-3. Progr_ status Area

7-6 8225-018

The effective address of an entry in the Program
Status Area is calculated by adding the displace­
ment shown in Figure 7-3 to the physical base
address held in the Program Status Area Pointer
register. The effective address calculation is
performed in segmented or linear mode, as selected
by the XL/S bit in the SCCL register. The result
is the physical address used to fetch the PSA
entry.

During exception processing, if an address trans­
lation error is detected while information is
being saved on the system stack, the System Stack
Pointer is restored to its value before the excep­
tion occurred and the overflow stack is used
instead. The top of the overflow stack is

OSP
AFTER_

EXCEPTION

OSP
BEFORE_

EXCEPTION

PSA DISPLACEMENT

UNDEFINED

UNDEFINED

IDENTIFIER

FCW

PC (HIGH)

PC (LOW)

~1 WORD----+-

WITHOUT PARAMETER

Instruction Execution and Exceptions

addressed by the Overflow Stack Pointer register
(OSP). The Program Status, identifier word, and
exception parameter (or an undefined longword if
there is no exception parameter) are pushed on the
overflow stack. A word containing the
displacement of the exception entry in the PSA is
also pushed onto the overflow stack. The new
Program Status is fetched from displacement BB in
the PSA. Since the OSP register contains a
physical address, an Address Translation trap
cannot occur when pushing information on the
overflow stack. The effective address calculation
for pushing onto the overflow stack is performed
in segmented or linear mode, as selected by the
XL/S bit in the SCCL register. Figure 7-4 shows
how information is saved on the overflow stack.

LOW ADDRESS

OSP
AFTER_

EXCEPTION

OSP
BEFORE~

EXCEPTION

HIGH ADDRESS

PSA DISPLACEMENT

PARAMETER (HIGH)

PARAMETER (LOW)

IDENTIFIER

FCW

PC (HIGH)

PC (LOW)

~1WORD---"

WITH PARAMETER

Figure 7-4.
Progr_ Status Saved on Overflow Stack

7.4.6 Exception Handlers

After the new Program Status has been fetched, the
CPU begins executing instructions of the exception
handler routine whose address was loaded into the
PC. The new value of the FCW determines the
address representation mode (compact/segmented/
linear), operating mode (system/normal), and the
enabled interrupts and traps for the exception
handler. An interrupt handler can execute with
interrupts disabled until critical information has
been stored. The interrupt handler can then
enable interrupts, permitting nested interrupt
servicing.

8225'()19

The exception handler can examine the identifier
word and parameter (only bus error and Address
Translation trap have a parameter) for information
about the cause of the exception. After complet­
ing their service, handlers for traps and inter­
rupts execute the Interrupt Return instruction.
The Address Translation trap handler must pop the
long word violation address from the stack before
executing IRET. IRET restores the Program Status
from the system stack so instruction execution can
resume at the point where the exception occurred.
The handlers for Extended Instruction trap,
Privileged Instruction trap, and Unimplemented
Instruction trap must modify the PC value stored
on the stack before executing IRET.

7-7

Instruction Execution and Exceptions

7.4.7 Priority of Exceptions

It is possible for several exceptions to occur
simultaneously. The CPU checks for particular

YES

<PCW.TPYES
= 1
?

NO

<f>oDDYES
PC
?

NO

exceptions at specific points during instruction
execution. (Figure 7-5.) If multiple exceptions
are detected, the CPU responds to the one with
highest priority.

YES ~ >--..... FCW.TP O

~-.....

YES

PROCESS
EXCEPTION

Figure 7-5. Exception Priority FIOMChart

7-8 8225-020

Whenever a reset exception is detected, the CPU
responds immediately; any instruction being exe­
cuted is terminated. Pending bus errors, traps,
and internally latched non-maskable interrupt
requests are eliminated.

If a bus error is detected and reset is not
requested, the CPU responds to the bus error
exception. Any instruction being executed is ter­
minated, and pending traps are eliminated.

Before executing an instruction, the CPU checks
for enabled interrupt requests. The CPU responds
to the highest priority enabled interrupt request,
if any. The priority of interrupts is, in
descending order, nonmaskable, vectored, and non­
vectored. If several devices are requesting the
same interrupt, priority among the devices must be
resolved externally, typically with a daisy
chain or interrupt pr ior it y controller. After
responding to an interrupt, the new value of FCW
is used to check again for enabled interrupt
requests before executing the first instruction of
the service routine.

If there are no enabled interrupt requests, the
CPU checks the TP bit in the FCW. If TP is set to
1, a Trace trap occurs. Otherwise, the CPU checks
whether the PC contains an odd address. If the
least-signi ficant bit of PC is 1, an Odd PC trap
occurs. Otherwise, the CPU copies T to TP and
begins executing the instruction.

Instruction Execution and Exceptions

During instruction execution, one of the following
trap conditions may be detected: Extended
Instruction trap, Privileged Instruction trap,
Unimplemented Instruction trap, or Address
Translation trap. If one of the conditions is
detected, instruction execution is suspended; TP
is cleared to 0; and the trap is processed.
Otherwise, instruction execution is completed.

After completion of the instruction, one of four
trap conditions may be detected: System Call
trap, Breakpoint trap, Integer Arithmetic Error
trap, or Conditional trap. If one of these trap
conditions is detected, the corresponding trap is
processed.

For interruptible instructions, the CPU checks for
address translation exceptions during each itera­
tion. If an address translation exception is
detected, instruction execution ends in partial
completion, TP is cleared to 0, and the trap is
processed. I f no address translation error has
been detected, the CPU checks for enabled inter­
rupt requests at the end of each iteration except
the last. If an interrupt request is pending, the
CPU clears TP to 0 and responds to the highest
priority request.

An interrupt can
Enable Interrupt

occur immediately after
instruction is executed

before the next instruction.

the
and

7-9

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I

I
I
I
I

I
I

I

I
I
I
I

8.1 INTRODUCTION

The CPU is only one component in a computer system
containing memory, peripherals, Extended Process­
ing Units (EPUs), DMA controllers, and other CPUs
(Figure B-1). Zilog has established the Z-BUS
as a convention for the signals and timing used to

zao,ooo
CPU

~
~ 8 if

Chapter 8.
External Interface

interconnect components of a microprocessor sys­
tem. The ZBO,OOO CPU is compatible with the
Z-BUS, allowing the CPU to be easily connected
lnto a wide variety of system configurations.
This chapter describes the operation of the CPU
interface with other system components.

PERIPHERALS

U

OTHER
CPU

Figure 8-1. System Configuration

8.2 BUS OPERATIONS erals, or EPUs. The CPU controls flyby transac­
tions that transfer data between an EPU and mem-

Two kinds of bus operations are defined: trsnsac­
tions and requests. At anyone time, only one
device, known as the msster, has control of the
bus. The master can initiate transactiona on the
bus to transfer data to another device, known as
the responder. In some transactions, called
flyby, the master controls the transaction, but
another device transfers data with the responder.
The master can also initiate transactions that do
not transfer data. The CPU performs transactions
that transfer data to and from memory, periph-

8225'()21

ory. The CPU also performs internal operation and
halt transactions, which do not transfer data.
Only the bus master can initiate transactions;
however, other devices can initiate requests. The
CPU responds to interrupt requests from periph­
erals by generating an interrupt acknowledge
transaction. The CPU responds to bus requests
from other potential bus masters, and can initiate
bus requests of its own, ss described in Section
8.9. In addition, the CPU responds' to reset
requests, which are used to initialize the CPU.

B-1

External Interface

a.3 MUlTIPROCESSQR CONfIGURATIONS

The CPU provides support for interconnection in
four types of multiprocessor configurations
(FIgure a-2): coprocessor, slave processor,

tightly-coupled multiple CPUs, and loosely-coupled
multiple CPUs.

Coprocessors, such as the Za070 Arithmetic Proces­
sing Unit, work synchronously with the CPU to exe­
cute a single instruction stream using the
Extended Processing Architecture facility. The
~ and EPUABORT signals are dedicated for
connection with coprocessors, as described in
Section a.a.4.

Slave processors, such as the Za016 DMA Transfer
Controller, perform dedicated functions asynchro­
nously to the CPU. The CPU and slave processor
share a local bus, of which the CPU is the default

(AI COPROCESSOR (SI SLAVE PROCESSOR

master, using the ~ and ~ signals, as
described in Section a.9.

Tightly-coupled, multiple CPUs execute independent
instruction streams and communicate through shared
memory located on a cOnlnon (global) bus using the
1:'REtr and GArr signals, as described in Section
a.9. Each CPU is default master of its local bus,
but the global bus master is chosen by sn external
arbiter. The CPU also provides special bus status
information for interlocked memory references
(Test and Set, Increment Interlocked, and Decre­
ment Interlocked instructions), which can be used
with multiple-ported memories.

Loosely-coupled, multiple CPUs generally communi­
cate through a multiple-ported peripheral, such as
the Za03a FlO I/O Interface Unit. The zao,ooo
CPU's I/O and interrupt facilities can support
loosely-coupled multiprocessing.

LOCAL BUS

LOCAL BUS

(CI TIGHTLY·COUPLED MULTIPLE CPU (DI LOOSELY.COUPLED
MULTIPLE CPU

Figure 8-2.
Multiprocessor Configurations

a-2 2071·012

8.. CACI£

The CPU implements a cache mechanism that keeps
a copy of recently used memory locations on-chip.
These locations can contain both instructions and
data. On memory fetches, the CPU examines the
cache to determine if the addressed information is
stored there. If the information is in the cache
(a hit), then the CPU fetches the copy from the
cache, and no transaction is necessary on the
external interface. If the information is not in
the cache (a miss), then the CPU performs a memory
read transaction to fetch the missing information
and stores a copy of the information into the
cache, replacing the least recently used data in
the cache. Thus, the cache serves to reduce the
number of memory read transactions, providing a
substantial boost to performance.

Software can control the cache mechanism in
several ways. The System Configuration Control
Longword register contains separate control bits
(CI and CD) that enable the cache for instruction
and data references and another bit (CR) that
enables the cache replacement algorithm. In page
table entries, the NC bit can be set to disable
the use of the cache for selected pages. The
Purge Cache instruction can be executed to invali­
date the contents of the cache when a memory loca­
tion that may have been copied into the cache has
been modified by another processor. For example,
if a slave processor reads from a peripheral port
to a memory location that may be copied in the
cache, the cache must be purged. Similarly, if
two or more tightly-coupled CPUs can alternately
execute one process, the cache must be purged when
the operating system changes from executing one
user-process to another. Appendix C describes the
cache mechanism in more detail,
control and interaction with
interface.

8.5 PIN FUNCTIONS

including its
the external

The CPU interface includes 59 signal lines, and
four power supply connections (Figure B-3). A
summary of the signal pin functions is given
below.

ADo-AD,1. Address/l)ata (Bidirectional. active
High. :J-state). These 32 lines are time-multi­
plexed to transfer address and data. At the
beginning of each transaction the lines are driven
with the 32-bit address. After the address has
been driven, the lines are used to transfer one or
more bytes, words, or longwords of data.

External Interface

E". Address Strobe (Output. active low.
:J-state). The rising edge of AS" indicates the
beginning of a transaction and shows that the
address, STO-ST3' R/W, BL/W, BWI[, N/S", and mrnT
are valid.

lIST. Burst (Output. active low, :J-state). A Low
on this line indicates that the CPU is performing
a burst transfer; that is, multiple Data Strobes
following a single Address Strobe.

ETA. Burst Acknowledge (Input. active low). A
Low on this line indicates that the responding
device can support burst transfers.

'IIIJSRrlf. Bus Request (Input, active low). A Low
on this line indicates that a bus requester has
obtained or is trying to obtain control of the
local bus.

1IIlSD". Bus Acknowledge (Output, active low). A
Low on this line indicates that the CPU has
relinquished control of the local bus in response
to a bus request.

BlN, BW;r. (Output.:J-stste). These two lines
specify the data transfer size.

BlN BW;r Size

High High Byte
Low High Word
High Low Longword
Low Low Reserved

eLK. Clock (Input). This line is the clock used
to generate all CPU timing.

M". Data Strobe (Output. active low. :J-state).
~ is used for timing data transfers.

rPIIISV'. EPU Busy (Input. active low). A Low on
this line indicates that an EPU is busy. This
line is used to synchronize the operation of the
CPU with an EPU during execution of an EPA
instruction.

EPUABOR1. EPU Abort (Output, active low). A Low
on this line indicates that the CPU is aborting
execution of an EPA instruction, typically because
an Address Translation trap has occurred.

~. Global Acknowledge (Input, active low). A
Low on this line indicates that the CPU has been
granted control of a global bus.

mIN. Global Request (Output. active low.
:J-state). A Low on this line indicates that the
CPU has obtained or is trying to obtain control of
a global bus.

B-3

External Interface

Ir". Input Enable (Output, active low, 3-state).
A Low on this line can be used to enable buffers
on the AD lines to drive toward the CPU.

mtr. Non-Maskable Interrupt (Input, edge acti­
vated). A High-to-Low transition on this line
requests a non-maskable interrupt.

M. Non-Vectored Interrupt (Input, active low).
A Low on this line requests a non-vectored inter­
rupt.

N~. No1'llal/Syst_ Mode (Output, low = Syst_
Mode, 3-state). This line indicates whether the
CPU is operating in normal or system mode.

llr". Output Enable (Output, active low, 3-state).
A Low on this line can be used to enable buffers
on the AD lines to drive away from the CPU.

R/i. Read/Write (Output, low = Write, 3-state)
This line indicates the direction of data trans­
fer.

RESET

- NMI
INTERRUPT _Vi
REQUESTS - iWi

~. (Input, active low). A Low on this line
resets the CPU.

RSPn-RSP1. Response (Input). These lines encode
the response to transactions initiated by the
CPU. RSPO and RSP1 can be connected together for
Z-BUS wm timing.

RSPO RSP1 Response

High High Ready
Low High Bus Error
High Low Bus Retry
Low Low Wait

STn-ST3· Status (Output, active High, 3-state).
These lines encode the kind of transaction occur­
ring on the bus. (See Table B-1.)

vr. Vectored Interrupt (Input, active low). A
Low on this line requests a vectored interrupt.

AD~

AS
os

RIW

ADDRESS/DATA
BUS

zao,ooo BUW BUS STATUS
AND TIMING EXTENDED EPUBSY

CPU BWI[
PROCESSOR -CONTROL EPUABORT STATUS

NIS

LOCAL BUS BUSREQ RESPONSE -¥-
CONTROL BUSACK

OE BUFFER
GLOBAL BUS GREQ IE CONTROL

CONTROL - GACK

BRST BURST TRANSFER
BRSTA - CONTROL

+ 5 V GND CLOCK

Figure 8-3. Z80,OOO Pin Functions

8-4 2071-011

0.6 HARDWARE INTERfACE CONTROL REGISTER

The Hardware Interface Control register (HICR)
speci fies certain characteristics of the hardware
configuration surrounding the CPU, including bus
speed, memory data path width, and number of auto­
matic wait states. The physical memory address
space is divided into two sections, t'\) and M1'

External Interface

selected by bit 30 of the memory address. A typi­
cal system would locate slow, 16-bit wide boot­
strap ROM in MO and faster, 32-bit wide dynamiC
RAM in M1' The physical I/O address space is
similarly divided into two sections, 1/00 and
1/01' selected by bit 30 of the port address. The
fields of HICR (Figure 8-4) are described below.

figure 0-4. Hardware Interface Control Register

MO Wait Count (MO.W) specifies the number of
wait states automatically inserted by the CPU for
references to MO' If the value is 0, no wail
states are inserted. If the value is n)O, n wait
states are automatically inserted for memory read
and n-1 wait states are inserted for memory write.

"0 Data Path Width ("O.OP) specifies the data
path width for references to MO' While this bit
is 1, the data path width for MO is 16 bits;
otherwise, the data path width for MO is 32 bits.

H1 Wait Count (M1'W) specifies the number of
wait states automatically inserted by the CPU for
references to M1' If the value is 0, no wait
states are inserted. If the value is n)O, then n
wait states are automatically inserted for memory
read and n-1 wait states are inserted for memory
write.

H1 Data Path Width (M1'OP) specifies the data
path width for references to M1' While this bit
is 1, the data path width for M1 is 16 bits;
otherwise, the data path width for M1 is 32 bits.

1/00 Wait Count (I/OO'W) specifies the number
(0-7) of wait states automatically inserted by the
CPU for references to 1/00'

1/01 Wait Count (1/01'W) specifies the number
(0-7) of wait states automatically inserted by the
CPU for references to 1/01'

Interrupt Acknowledge Wait Count 1 (IACK.W1) spec­
ifies the number (0-7) of wait states automatical­
ly inserted by the CPU before 1)5 falls during
interrupt acknowledge transactions.

Interrupt Acknowledge Wait Count Z (IACK.WZ) spec­
ifies the number (0-7) of wait states automatical­
ly inserted by the CPU before 1)5 rises during
interrupt acknowledge transactions.

8225-022

Speed (S) specifies the frequency of the bus clock
relative to the processor clock. If this bit is
1, the bus clock frequency is 1/2 the processor
clock frequency; otherwise, the bus clock fre­
quency is 1/4 the processor clock frequency. The
value of this bit is determined by hardware at
reset, and cannot be altered by software (see Sec­
tion 8.10).

EPlI Overlap Hode (EPlIO) and another field in an
EPU control register control the degree of overlap
for CPU and EPU operations. While this bit is 1,
overlap is enabled; otherwise, overlap is dis­
abled. While overlap is disabled, the EPU can use
the signal ~ to stop the CPU from processing
instructions. There are several degrees of
overlap that affect performance, system debugging
and recovery from exceptions.
8.8.4 for more information.

Refer to Section

Mini_un Address Strobe Rate (MASH) controls an
option that ensures an Address Strobe is generated
at least once every 16 bus clock cycles. While
this bit is 1, the option is enabled; otherwise,
the option is disabled. While the MASR option is
enabled and the CPU has neither performed any
transactions, granted the local bus, nor requested
a global bus for 16 bus cycles, the CPU performs
an internal operation or halt transaction. If the
CPU is in halted state, a halt transaction is per­
formed; otherwise, an internal operation transac­
tion is performed. This function can be used for
refreshing pseudostatic RAMs. Also, some Z-8US
peripherals require Address Strobe to generate
interrupt request timing.

Global Enable (GE) and Local Address (LAD) con­
trol the use of the global bus request protocol.
Wh.ile GE is 1, the protocol is enabled; other­
wise, the protocol is dlsabled. The LAD field
selects 1 of 16 sectIons of the physical address
spaces used for references to the local bus;
references to other sections use the global bus.
See Section 8.9 for more informatIon.

8-5

External Interface

In systems that combine memories with different
widths, an individusl operand must be located
entirely within physical memory modules of a
single width. Thus if an operand is located
acrosa consecutive logical pages, including
operands for ENTER, EXIT, lDM, lDMl, and EPA
instructions that may occupy several longwords,
then the two physical frames containing the
operand must both be in 16-bit memory modules or
3Z-bit memory modules.

8.7 8US T1MIfG

The CPU psrforms trsnsactiona on the external
intsrface to trsnsfsr data for fetching in­
structions, fetching and storing operands,
processing exceptions, and performing memory
management. In addition, the CPU performs
internal operation and hslt transactions, which do
not transfer dats. Each transaction occurs during

CLK

BCLK

a sequence of bus clock cycles, named T1' TZ, etc.
The CPU has a single clock line, ClK, used to gen­
erate all timing. Internally, the CPU derives
another clock for bus timing by dividing CLK by.Z
or 4. The scale factor for bus timing (Z or 4) is
selected at reset. In the AC timing characteris­
tics for the CPU (available in a separate data
sheet from Zilogl, input setup and hold times and
output delays are specified with respect to a ris­
ing edge of ClK. When CPU output transitions
occur on different rising clock edges, the time
between the transitions is specified in terms of s
constant delay and a variable number of ClK
cycles. The number of ClK cycles dependa on the
bus timing scale factor, type of transaction, and
number of wait states.

In the logical timing diagrams that follow, the
signal transitions on the bus are shown in rela­
tion to the bus clock, BClK. The beginning of a
transaction, signified by a fslling edge of g,

AD ===:x ADDRESS }- - - - - - - < DATA IN }--

(A) ICLK = CLK + 2

CLK

BLCK .-J
AD ==:J<o-. ____ A_DD_R_E_SS ____ -J>--------------<\, __ D_A_T_A_IN __ ...,>- - - - - - -AI' ___ J

\ _________________________ -JI
(I) ICLK = CLK + 4

Figure 8-5. Exa.ple of Mamry Re.t Tilling
Showing Different Bus Scale ractors

8-6 2071'()13

always occurs on a rising edge of BCLK. The BCLK
signal is derived internally to the CPU as de­
scribed above, and is not available on the pins.
BCLK can also be derived externally by dividing
CLK by the selected bus timing scale factor.
Section 8.10 discusses synchronization of the
internal and external bus clocks. The timing
diagrams in Figure 8-5 show example memory read
transactions with one wait state using the differ­
ent scale factors.

8.8 BUS TRANSACTIONS

All bus transactions begin with Address Strobe
(m first asserted" and then negated. On the
rising edge of ~, the lines for status (STO-ST3),
Read/Write (R/W), data transfer size (BW/C, BL/W),
and Normal/System (Nm are valid. The status
lines indicate the type of transaction being
initiated (Table 8-1). The R/W line indicates
the direction of data transfer. The data transfer
size indicates whether a byte, word, or longword
of data is to be transferred. The N~ line
indicates the CPU's operating mode. The following
sections describe timing for the different
transactions.

ST,-STO

o 0 0 0
o 0 0 1
o 0 1 0
o 0 1 1
o 1 0 0
o 1 0 1
o 1 1 0
o 1 1 1
1 000

001

o 1 0
o 1 1
1 0 0

o 1

1 1 0
1 1 1

Table 8-1. Status Codes

Definitioo

Internal Operation
CPU-EPU (data)
I/O
Halt
CPU-EPU (Instruction)
mIT" Acknowledge
mY" Acknowledge
vr Acknowledge
Cacheable CPU-Memory (Oata)
Non-Cacheable CPU-Memory
(Data)
Cacheable EPU-Memory
Non-Cacheable EPU-Memory
Cacheable CPU-Memory
(Instruction)
Non-Cacheable CPU-Memory
(I nstruction)
Reserved
Interlocked CPU-Memory (Data)

"In the description of bus transactions, the term
"asserted" means an active signal and "negated"
means an inactive signal. A signal is either
active when High or when Low, as specified in the
pin function list.

External Inter face

On the rising edge of ~, the address on the AD
lines is also valid. Addresses are not required
for internal operation, halt, interrupt ac­
knowledge, and CPU-EPU data transactions; the AD
lines are driven but the address is undefined for
those transactions. The CPU uses Data Strobe (~
to time the data transfer. (Note that internal
operation and halt transactions do not transfer
data, and thus do not assert rnr.) For write oper­
ations (R/W = Low), the CPU asserts rnr when valid
data is on the AD lines. For read operations (R/W
= High), the CPU makes the AD lines 3-state before
asserting rnr so the addressed dev ice can put its
data on the bus. The CPU samples the data in the
middle of a bus cycle while negating rnr.

The AD lines can be used to transfer bytes, words,
or longwords of data. When reading from memory,
the CPU always reads a word or longword, depending
on the memory data path width, regardless of the
size of the information required. For read
transactions the three cases are handled as
follows:

• Byte transfers use ADO-AD7; AD8-AD31 are
ignored.

• Word transfers use ADO-AD15; AD16-AD31 are
ignored.

• Longword transfers use ADo-AD31'

For write transactions, the three cases are
handled as follows:

• Byte transfers replicate the data on ADO-AD7'
AD8-AD15' AD16-AD23, and AD24-AD31'

• Word transfers replicate the data on ADO-AD15
and AD16-AD31'

• Longword transfers use ADO-AD31'

The Input Enable (1!) and Output Enable (or)
signals can be used to enable buffers on the
bidirectional AD lines. Ir is asserted when the
buffers are to drive toward the CPU; tit is
asserted when the buffers are to drive away from
the CPU. Whenever the direction for the AD lines
changes, both Ir and tit are negated for at least
one CLK cycle.

To transfer more than one data item, the CPU can
perform burst transactions. The data items are
transferred in the same direction, and are equal
in size. rnr is used to time each transfer. The
CPU asserts Burst (~ to indicate a burst
transfer. The responding device asserts Burst
Acknowledge (~ if it is capable of supporting
burst tranfers. If ~ is not asserted, the CPU
transfers only a single data item.

8-7

External Interface

8.8.1 Response

Any time data is transferred, the responding
device returns a code on the Response lines

(RSPO-RSP1) to indicate ready, wait, bus error, or
bus retry. The response is sampled at a time
specif1c for each type of transaction, generally
before the AD lines are sampled for reads or OS is
negated for writes, and after automatic wait
states are inserted.

Ready indicates the completion of a successful
transfer.

Wait indicates that the responding device needs
more time to complete the transaction. The CPU
watts one bus cycle before sampling the response
again to accommodate slow memory or peripherals.
A simple system using only Z-BUS WAIT can be

implemented by connecting wAn to both RSPO and
RSP1·

Bus error indicates that a fatal error has
occurred during the transaction, e.g., bus tImeout
for a nonexistent dev ice. The CPU treats bus
error as an exception.

Bus retry indicates that the transaction should be
tried again, e.g., a transient parity error was
detected. The CPU negates OS and tries the trans­
action again.

The CPU can insert wait states automatically under
control of several fields in the Hardware Inter­
face Control register. If an automatic wait state
is programmed for a bus cycle, the CPU ignores the
response and wait is assumed. Thus, wait states
can be inserted automatically by the CPU or upon
request of the responding device. It must be
emphasized that the RSPO-RSPl lines are sampled
synchronously. Thus, they must meet the specified
setup and hold times for correct operation.

8.8.2 CPU-Memory Transactions

The CPU performs transactions with status 1000,
1001, 1100, 1101, or 1111 to read from and wnte
to memory. See Appendix C for more information
about the dl fferent status codes. The transac­
tions involve either a single data transfer or
multiple, burst data transfers.

8.8.2.1 Single HeIIory Read and Write Transac-
tions. Figure B-6 shows timing for a single mem­
ory read transaction with no wait states. AS is

B-B

asserted during the first half of Tl. The rising
edge of AS lndlcates that the address on ADO-AD31
and control signals STO-ST3' R/W, BW/L, BL/W, and
N/S are valid. The control signals remain valid
for the duratlon of the transaction. !iR5T is
negated during the transaction because only a sin­
gle data item is transferred. At the beginning of
T2, the CPU stops driving the address, asserts 05,
and prepares to receive data from memory. In the
middle of T2, RSPO-RSPl are sampled ready, the
input data is latched, and DS is negated. The
signal OE is asserted during Tl; however, for two­
cycle read transactions, IT is not asserted. rr
lS unasserted because there is no bus clock tran­
sition between the negation of DE at the end of Tl
and the sampling of data in the middle of T2. The
two-cycle read transactlon is a compatible
extension of the Z-BUS three-cycle read transac­
tlon. Two-cycle read transactions are intended
for use with fast memories connected dlrectly to
the CPU pins without buffers, such as an external
cache.

BCLK

AD =>< __ A_D_D_R_E_SS_--Jr -®- -C

v
I

IE

STo·STa =x)(
BW/L,BUW NIS . _____________ ~.

\

*RSPo-RSP1 and data sampled.

Figure 8-6. Single Memory Read TDing

2071-014

The CPU can insert wait states in the middle of T2
If RSPO-RSP1 are sampled wait or if automatic wait
states are programmed in the appropriate field of
HICR. The duration of a wait state is one BCLK
cycle.

The timing for a single memory read transaction
with one wait state is shown in Figure B-7. This
is not a true wait state because the CPU asserts
"IT" in the middle of T2 and continues untll the
middle of T3. For memory read transactions longer
than two bus cycles, either because of wait states
or burst transfers, Ir is asserted from the middle
of T2 until the end of data transfer. The signals
~ and Ircan be used to control buffers on the AD
lines.

For memory read transactions, the data transfer
size is equal to the data path width specified in
HICR. The memory should transfer the aligned
longword addressed by AD2-AD31 (ignored ADO-AD1)

BCLK

AD =::J(ADDRESS

External Interface

for a 32-bil: data path, or the aligned word
addressed by AD1-AD31 (ignoring ADD) for a 16-bit
data path. The CPU selects the required bytes
from the transferred word or longword.

A single memory write transaction (Figure B-B)
begins with ~ to indicate that address and con­
trol signals are valid. At the beginning of T2
the CPU stops driving the address and starts drlv­
.1ng the data. In the middle of T2, OS is
asserted. The CPU negates OS in the mIddle of
T3. ij[is asserted beginning at T1 and continues
for the duration of the transaction. The CPU sam­
ples RSPO-RSP1 in the middle of T3.

For memory write transactions, the data transfer
size is less than or equal to the data path width
specified in HICR. Bytes and words can be written
to a 16-bit memory; bytes, words, and longwords
can be written to a 32-bit memory. The CPU writes
bytes to any address, but words and longwords are

\ ____ -1

/

2071-015

\~_...J

STO-ST3 J
Bwii:, BL/V! MIS .~ __________________________________ __

BRSTA

*RSPo-RSP1 and data sampled.

Figure 8-7.
Single Memory Read Timing (One Wait State)

B-9

External Interface

always written to an aligned address; that is,
words are always written to an even address and
longwords are always written to an address that is
a multiple of four. When a program writes a word
or longword to an unaligned address, the CPU per­
forms two or more wri te transactions to aligned
addresses. For example, if the program writes s
word to an odd address, the CPU first writes the
more significsnt byte to the odd address, then it
writes the less significant byte to the successive
even address.

Singla memory read and write timing are slightly
different from Z-BUS specifications. The minimum
read transaction is two bus cycles, and the
rasponse is sampled at the end of the data trans­
fer. For the Z-BUS, the minimum read transaction
is three cycles, and the response is sampled one
cycle before the end of the data transfer. For
atrict Z-BUS compatibility it is possible to pro­
gram one automatic wait state for memory read and
to delay the response using an external flipflop.

BCLK

8.8.2.2
tions.

Burst MeIIIory Read and Write Transac­
Burst memory transactions use multiple

Data Strobes following a single Address Strobe to
transfer data at consecutive memory addresses.
The IMrr and ~ signals control the burst
transaction. The CPU uses burst transactions to
pre fetch the cache block for a cache miss on an
instruction fetch. The CPU slso uses burst trans­
actions to fetch or store operands when more than
one transfer ia necessary, as with unaligned oper­
ands, string instructions, load Multiple instruc­
tions, and loading of Program Status.

I f the memor y does not support burst trans fers,
the burst transfer protocol described below
(Figure 8-9) allows ~ to be tied High. The
CPU then separates the burst transaction into a
sequence of single transfers, but only a single
transfer is performed for a cache miss on an
instruction fetch.

AD ==:x: ADDRESS XI. _____ D_A_T_A_O_U_T _____ x=

\,--_......,f

STo-ST3 ==:x: >C
BW/L, BLli! NIS • _________________________________ .

RiW~ c

*RSPO-RSP1 sampled.

Figure 8-8. Single Me.ory Write Ti_ing

8-10 2071'()16

Figure 8-9. Burst Transfer Protocol

At the beginning of a burst trsnssction, the CPU
asserts ~ along with other control signals. If
the CPU continues to assert mrsT when [is" falls,
this indicates to memory that the CPU can support
another data transfer following the one in
process. If the CPU negates ~ before ~ falls,
this indicates to memory that the current transfer
is the last in the transaction.

When ~ is asserted at the time the RSPO-RSP1
lines are sampled ready, this indicates to the CPU
that memory can support another data transfer fol­
lowing the one in process. When ~ is negated
at the time the RSPO-RSP1 lines are sampled ready,
this indicates to the CPU that the current data
transfer is the last in the transaction. The
burst transaction can be term~nated by either the

2071'()17

External Interface

CPU or memory. If memory terminates the transfer
by neg at ing tiIiSTA, the CPU responds by negating
~ when [is" is negated. (See the example for
burst memory read.) I f the CPU terminates the
transfer by negating mrsT before the falling edge
of ~, memory responds by negating~. (See
the example for burst memory write.) The CPU ter­
minates the burst transaction when all the
required data .items have been transferred or after
reaching the end of an aligned, 16-byte block.

figure B-10 shows timing for a burst memory read
transaction with one wait state. In this example,
three data items are transferred, after which mem­
ory terminates the burst. 'mrST is asserted at the
beginning of T1; otherwise, the timing for the
first transfer is identical to a single memory
read. In the middle of n, the CPU samples
RSPO-RSP1 ready, latches the data, and samples
~ active. During T4 the second data item is
transferred, accompanied by~. The time for the
second and subsequent transfers can be extended
with wait states if RSPO-RSP1 are sampled wait;
the CPU inserts automatic wait states only for the
first transfer. During T5 the third data item is
transferred. At the same time RSPO-RSP1 are
sampled ready, the data is latched and ~ is
sampled inactive. Memory terminated the burst tr­
ansfer, and the CPU responds by negating mrsT.

Figure B-11 shows timing for a burst memory write
transaction with no wait states. In this example,
two data items are transferred, and the CPU ter­
minates the burst. mrsT is asserted at the begin­
ning of T1; otherwise, the timing for the first
transfer is identical to a single memory write.
In the middle of n, the CPU samples RSPO-RSP1
ready and ~ active. At the beginning of T4,
the CPU negates mrsT, indicating that one more
data transfer will follow. During T4, the second
data item is transferred, accompanied by~. The
time for the second and subsequent transfers can
be extended with wait states if RSPO-RSP1 are sam­
pled wait; the CPU inserts automatic wait states
only for the first transfer. Memory recognizes
that the CPU has terminated the burst transfer,
and responds by negating mTA before the end of
T4. Note that a memory system can be designed to
support burst transfers only for read transactions
through selective enabling of ~.

8.8.2.' Interlocked tte.lry Tr_actioos. In
tightly-coupled multlprocessor configurations, the
CPU must at certain times inhibit other bus mas­
ters from referring to shared memory while the CPU
performs two or more interlocked transactions.
The CPU uses interlock protection for data refer­
ences asaociated with Test and Set, Decrement

B-11

External Interface

3 DATA TRANSFERS, MEMORY TERMINATES BURST

BCLK

AD ==x: ADDRESS DATA IN X DATA IN X,-_D_AT_A_IN_..J>- --C

DE ___ \.L-_....II

\~--------------~

STO-SIJ.=:X
BwiL", BLly!

NIS ,~---

BRST ~~ __ -..J

\~------------~~--------~----~
·RSPo-RSP1, iFiSTA, and data sampled.

Figure 8-10. 8urst Memory Read Ti.ing (One Wait State)

Interlocked, and Increment Interlocked instruc­
tions. The CPU also uses interlock protection for
references to address translation table entries
when loading the Translation Lookaside Buffer.
The CPU indicates interlocked protection for a
sequence of memory references by using status 1111
for any of the memory transactions previously
described. While the CPU indicates status 1111,
the memory system must prevent interlocked refer­
ences to shared memory by other processors. Dur­
ing a sequence of interlocked memory tranaactions,
the CPU does not acknowledge local bus requests
nor does the CPU generate any bus transactions
with status other than 1111.

B-12

8.8.' Input/Output Transactions

The CPU uses status 0010 to read from and write to
I/O ports. I/O transactions are generated for I/O
instructions and, when address translation is
enabled, by data references to pages with bit 31
of the page table entry set to 1.

The timing for I/O and memory transactions 1S very
similar. The major difference is that DS falls in
the middle of T2 for I/O read timing, compared to
the beginning of T2 for memory read timing. This
allows peripheral dev ices more time for address
decoding. Another d~ fference is that the data

2071-018

External Interface

2 DATA TRANSFERS, CPU TERMINATES BURST

I-T1-I-T2-I-T3-I-T"

BCLK

AD ~~ __ A_DD_R_E_S_S __ -,)(~ __________ D_A_TA __ O_UT __________ J)(~ ___ D_A_TA __ O_UT ____ ~

IE

STo-ST. =x x= BWIL,BUW HIS , ___ ,

\ ___ -.l.\----'/~ _ __J7
*RSPo-RSP1. BRSTA sampled.

rigure 8-11. Burst ~ry Write Ti.ing

trsnsfer size (byte, word, or longword) for I/O
transactions is specified by the instruction, not
by HICR. The final difference is that the CPU
does not support burst I/O transactions. Figure
8-12 shows timing for an I/O read transaction.
I/O write timing is the same as a single memory
write (Figure 8-8).

8.8.4 EPU Transactions

The CPU and EPU cooperate in the execution of EPA
instructions (Figure 8-13). When the CPU encoun­
ters an EPA instruction and the EPA bit in FCW is
1, the CPU broadcasts the first two words of the

2071-019

instruction to the EPUs in the system using the
CPU-EPU instruction transfer transaction. All
EPUs in the system recognize the transaction, but
only one of four possible EPUs is selected by bits
16 and 17 of the EPU instruction. The CPU also
transfers the PC value for the instruction, which
the selected EPU saves for use in exception han­
dling. If data transfers are required to complete
the instruction, the CPU controls the data trans­
fer transactions while the EPU drives or receives
the data.

The ~ signal, output from the EPU, is used to
synchronize the CPU and EPU in executing EPA
instructions. (When multiple EPUs are present in

8-U

External Interface

8eLK

AD ==x ADDRESS }- - - - - - -< DATA IN }- - -C

I
if _---

STo-STa r------------------
8Wlr,8UW X NI. . ~. _____________________________ ___

*RSPo-RSP1 and data •• mpled.

Figure 8-12.

a system, the EJSDm input to the CPU must be
driven by an external AND gate whose inputs are
the EJSDm signals from the EPUs). The CPU must
sample EJSDm inactive before inItisting sn EPU
instruction transfer. If data transfers are
required, the CPU must ssmple EJSDm inactive
bsfore initisting the first transfer.

While the CPU samples EJSDm active, no transac­
tions are initiated; however, the CPU may grant
the locsl bus.

8-14

I/O Read Ti_ing

EJSDm is also used to control the degree of over­
Isp between CPU and EPU instruction execution.
Ordinsrily, the CPU can continue processing other
instructiona after performing the data transfers
associated with sn EPA instruction and before the
EPU has completed executing the instruction. To
simplify debugging snd recovery from exceptions,
overlap can be disabled under control of the EPUD
blt in HICR. When overlap is disabled (EPUO = D),
the CPU samples EJSDm in the middle of the bus

2071-020

External Interface

NO

YES

NO

YES

Fi!J.Ire 8-13. EPA Instruction Processing

cycle during which the last data transfer for an
EPA instruction occurs. If E'J5IJ'!lSV is asserted,
the CPU ceases processing instructions or inter­
rupts until ~ is sampled inactive in the mid­
dle of a bus cycle. When overlap is enabled (EPUO
= 1), the CPU does not sample ~ after the
last data transfer, but only samples ~ before
initiating the next EPU instruction transfer.

While processing an EPA instruction and after the
instruction has been transferred to the selected
EPU, the CPU may detect an address translation
exception.
EPOABORT,

In such an event, the CPU asserts
informing the selected EPU to abort

execution of the instruction; at all other times,
the CPU negates EPOABORT. The CPU then saves the
address of the suspended EPA instruction on the
system stack during exception processing.

2071-021

When CPU and EPU instruction processing over lap,
the CPU may complete all data transfers for an EPA
instruction (the queued instruction) before the
EPU completes execution of a previous EPA
instruction. If the EPU then detects an exception
during execution of the previous instruction, the
EPU does not execute the queued instruction. In
such a case, the address of the queued instruction
is in an EPU control register, and the CPU saves
the address of a subsequent instruction on the
system stack.

To simplify system hardware, the CPU and EPU AD
lines should be wired together with no buffers
between them. If the AD lines are separated by
buffers, external circuitry must generate rr and
nr timing for CPU-EPU data read and EPU-memory
write transactions.

8-15

Externel Interface

tEPUBSY IImpled. __
·RSPo-RSP1 'Impled; EPUBSY 'Impled If EPU Intemll operation.

Figure 8-1 ••
CPII-EPU Instruction Tr_fer Tilling

8.8 ••• 1 CPU-EPU Instructioo Tr..actiona.
Figure B-14 shows timing for a CPU-EPU instruction
transfer transaction with status 0100. The rising
edge of ~ indicates that the AD lines and status
are valid. During T1, the AD lines sre used to
transfer the opcode, i.e., the first two words of
the EPA instruction. At the beginning of T2 the
CPU stops driving the opcode, asserts ~, and
starts driving PC on the AD lines. In the middle
of T2, the CPU samples RSPO-RSP1 ready and negates
~. The data transfer size for the transaction is
longword.

B-16

The duration of a CPU-EPU instruction or data
transfer can be extended with wait statea if
RSPO-RSP1 are sampled wait. The ZB070 APU,
however, does not require wait states, nor does it
drive RSPO-RSP1' Systems using the ZB070 APU must
enaure that RSPO-RSP1 are both High, indicating
ready, during CPU-EPU instruction and dats
transections.

2071-022

External Interface

..... ___ D_A_T_A_IN ___ ...JX ... __ D_A_T_A_I_N_...I}- - - - - -C

'---_______________________________ K

fEPUBSY sampled.
-RSPo-RSP1 and data sampled.

Figure 8-15. CPU-EPU Data Read Tilling

8.8.4.2 CPU-EPU Data Transactions. Transactions
to transfer data between the CPU and EPU use
status 0001. The EPA instruction opcode indicates
the number of words transferred. One or more
longwords of data are transferred until all words
have been transferred. If the last transfer
contains a single word, the data is on AD16-AD31.
The CPU does not assert !iR'ST and ignores ti1i'Sfi\.

Figure B-15 shows timing for a CPU-EPU data read
transaction. This example has two data transfers;
any number of data transfers between one and eight

2071·023

is possible. The rising edge of ~ indicates that
status and control signals are valid. The CPU
stops driving the AD lines at the end of T1; the
EPU begins driving them in the middle of T2. At
the beginning of n, the CPU asserts~. In the
middle of T3 the CPU samples RSPO-RSP1 ready,
latches the data, and negates~. The second
longword of data is transferred during T4. After
the last data transfer the CPU inserts an idle bus
cycle (T5 in the example) during which neither the
CPU nor EPU drive the AD lines.

B-17

External Interface

BCLK

AD _________ .JX UNDEFINED X DATA OUT X DATA OUT X DATA OUT

DS /
------'

7
R/W \

S~o-S!1----------------~ X BW/L,BUW NIB ________ ~

tEPUBSY .ampled.
*RSPo-RSP1 'Impled.

7
7

\

r
)C

~

Figure 8-16. CPU-EPU Data Write Tiaing

Figure 8-16 ahows timing for a CPU-EPU data write
tranaaction. This example has three data trans­
fers; any number of data transfers between one and
eight is possible. Timing for the first transfer
is identical to the CPU-EPU instruction transfer
transaction.
fer red dur ing
fer red during

8-18

A second longword of data is trans­
T3, and the third longword is trans­
T4.

8.8.4.' E~ry Tr_actions. The CPU uses
status 1010 or 1011 for the EPU to read from and
write to memory using flyby transactions. The
timing is identical for EPU-memory read and
CPU-memory read. The EPU monitors the CPU timing
on the bus, and uses the two least significant
address bits on the first transfer, the data
transfer size, and the length of the operand from
the instruction to select the bytes it needs from
the AD lines.

2071-1)24

External Interface

~ ____________ E_P_U_D_A_TA __ O_UT ____________ -J)-- ---~

\...
\'------JI

[

[
~ ___ K

*EPUBSY sampled: __
+ RSPo-RSP1 sampled; EPUBSY sampled If last transaction.

Figure 8-17. EPU-Hemory Single Write Ti_ing

The timing for an [PU-memory write transaction
differs slightly from a CPU-memory write transac­
tion. Two extra bus cycles sre included to pass
the AD lines from CPU to [PU sfter the sddress
transfer and from [PU back to CPU after the last
data transfer. Figure 8-17 shows an example for a
single [PU-memory write transaction with no wait
states. The CPU stops driving the AD lines at the
end of T1; the [PU begins driving them in the mid­
dle of T2. l5S is asserted in the middle of T3,
one bus cycle later than for CPU-memory write

2071-025

timing. The CPU negates l5S in the middle of T4.
The CPU can insert wait states in the middle of
T4. The [PU continues to drive the AD 11nes until
the end of T4. After the last data transfer the
CPU inserts an idle bus cycle (T5 in the example)
during which neither the CPU nor [PU drive the AD
lines. [PU-memory burst write transactions are
similarly extended by two bus cycles more than
CPU-memory burst write timing. One cycle is
inserted before the first data transfer, and
another after the last data transfer.

8-19

External Interface

VI, NYI \ .. _________ _

INTERNAL
NMI LATCH \'----~"r

AD Y UNDEFINED r --(I-_____ .J

\ _--
I

\ __ -J

R/WJ
STO-S'!J.==X

BW/L, BUV! NIS .~ _____________________________ -.J

• RSPo-RSP1 sampled.
+ RSPo-RSP1 and data sampled.

Figure 8-18. Interrupt RecplSt/Acknowledge Tilling

8.8.5 Interrupt Request and Acknowledge After a request for an enabled interrupt is
asserted, the CPU begins an interrupt acknowledge

The CPU recognizes vectored, nonvectored, and non­
maskable interrupt requests. The decreasing
order of priority for interrupts is nonmaskable,
vectored, and nonvectored. ~ is edge sensitive;
when RRr is asserted, an internal latch is
loaded. vr and NVr are level sensitive.

The CPU samples vr, NVr, and the internal ~
latch on the rising edge of ClK. The interrupt
request signals can be asynchronous to ClK; the
CPU synchronIzes them internally.

8-20

transaction. figure 8-18 shows timing for an
interrupt acknowledge transaction, indicated by
status 0101, 0110, or 0111. The timing is similar
to a single I/O read. Wait states (either pro­
grammed for automatic insertion or externally gen­
erated) can be inserted before [)S" falls in the
middle of T2, and before [)S" rises in the middle of
T3. Inserting wait states before [)S" falls allows
for delay in the interrupt priority daisy chain.

2071-026

A word of data is transferred on ADo-AD15' All of
the interrupts save the transferred word on
the system stack for processing the interrupt.
Vectored interrupt uses the low-order byte of the
word to select a unique PC value from the Program
Status Area.

B.B.6 Internal Operatioo InI Halt Tr_-=tioos

Figure 8-19 showa hming for internal operat ion
(atatus = 0000) and halt (status = 0011)
transactions. Unlike other bus transactions, data
is not transferred during these operations.
Nevertheless, the data transfer size for the
transaction indicates longword. The duration of
the transaction is two bus cycles.

BeLl(

AD ~ __ U_N_D_EF_I_N_ED ~

c

'C
ITO-I!! J< V-

BwiL", B'i!,l .. _"--

'C

Figure B-19.
Internal Operatioo InI Halt Tilling

2071-027,8225-023

External Interface

The CPU generatas an internal operation transac­
tion after the end of a sequence of interlocked
memory transactions. The CPU generates a halt
trensaction upon entering halted state (Section
7.2). When the Minimum Address Strobe Rate option
is enabled (the MASR bit in HICR is 1), the CPU
maintains a steady rate for Address Strobes by
generating halt traneactions in halted state or
internal operation transactions otherwise.

B.B.7 Bus Ratry

During transactions in which data is transferred,
the responding device can ind.icate bus retry on

RSPO-RSP1 • When bus retry is sampled, the CPU
terminates the transaction in progre.ss, negating
g and BRS"f, then repeats the same tranaaction.
If bua retry ia indicated during a burat tranafer,
the retry transactIon begins with the address for
the data transfer where bus retry was indicated.
The CPU does not acknowledge interrupts or bus
requests between the retry response and the retry
transaction.

8.B.B Bus Error

During transactions in which data is transferred,
the responding device can indicate a bus error
exception on RSPo-RSP1' When bus error is sam­
pled, the CPU terminates the transaction in pro­
greaa, negating g and ~. A bus error excep­
tion also causes termination of the instruction in
execution. In processing a bus error exception,
the CPU savea the Program Statua, physical address
for the transaction, and a word identifying the
status and control aignals used for the transac­
tion on the system stack, in that order (Figure
8-20). In the identifier word, High aignals are
1, and Low signals are O.

16

Fi9lrB B-ZO. Bus Error Identifier Word

8-21

External Interface

8.9 BUS REQt£ST AN) ACKNOILEDGE

The CPU supports two types of bus request/
acknowledge sequences, local and global. Other
bus masters request the local bus from the CPU
using a handshake of ~ snd~. The CPU
requests a global bus from an external arbiter
using a handshake of ~ and Gm".

To generate transactions on the local bus, a
potential bus master (such as a DMA controller>
must gain control of the bus by making a bus
request (Figure B-21>. A local bus request is
initiated by asserting~. Several bus
requestors may be wired to the ~ signal;
priorities are resolved externally to the CPU,
usually by a priority daisy chain.

The CPU samples ~ on the rlslng edge of elK.
~ can be asynchronous to ClK; the CPU
synchronizes it internally. After ~ is
asserted, the CPU completes any transaction or
sequence of interlocked transactions in progress,
including possible retries. Next, the CPU
responds by asserting ~ and placing its
other output signals except EPUABORT in 3-state.
The EPUABORT signal remains valid while the CPU
has granted the local bus, and may be asserted if
an EPA inatruction is in progress. later, when
~ is negated, the CPU negates '!iirnAEI< and
begins driving all other output signals.

The CPU can initiate transactions with devicea
located on a global bus shared with other CPUs.
At any time, only one of the CPUs can initiate
transactions on the global bus. Control of the
global bus is arbitrated by external circuitry.
Before initiating tranaactions on the global bua,
the CPU requeats control of the global bus from
the arbiter using the protocol described below.

The CPU uses two fielda of HICR to distinguish
between local and global bus transactions. The GE
bit enables uae of the global bus. The 4-bit lAD
field specifies one of sixteen sections of the
physical address space uaed for local references.

Before every memory and I/O bus transsction
(status codes 0010 and 1000 through 1111), the CPU
compares the lAD field with bits 26 to 29 of the
physical address. If the comparison is unequal
and GE is 1, then the transaction is a global bus
reference; otherwise the transaction is a local
bus reference. In a tightly-coupled multi­
processor aystem (Figure B-2c), each of the local
and global memory locations and peripheral ports
can have a unique system address. Each CPU loads
a distinct value into lAD, identifying its local
addresses; the CPUs refer to global addresses and
local addresses of other CPUs using the global bua
request protocol.

BUSACK J)~'------~~~ ______________ ~ ~
- hF------ilt-f

AD : }-------:fr-----'~ ________ ~.~~----J
AS, OS, > \.------ ..,r--- --,~ 7 ----"

BRST, GiiEQ -------------1/

STO-ST3 _____________ ~-:

BW~W~~~ i;)-_____ -:fr _ -----f~
DE, ii 5:1,..------...#

Figure 8-21.
local Bus Request Acknowledge Ti_ing

B-22 2071.()28

figure B-22 shows timing for the global bus
request/ acknowledge protocol. Before init iat ing a
transaction on the global bus, the CPU drives the
address, STO-ST3' mtrr, R/W, N~, BL/W, and BW!L
valtd at the beginning of a bus cycle. Then, in
the m.iddle of the bus cycle, the CPU asserts
~. When the global bus selected by the address
is available to the CPU, the arbiter asserts

IJ
DS

OE\ ,..: ;;

~ STo-S!i. =x
Bwii:. BL/I!

NIS ;

,-);

IE

~: BRST \
J

,-
>J

BRSTA

Figure 8-22. Global

2071'()29

External Interface

ITAEK. The CPU samples ~ on the rislng edge of
eLK. ITAEK can be asynchronous to CLK; the CPU
synchronizes it internally. The CPU performs one
or more transactions on the global bus, then
negates GTltQ. The arbiter responds by negating
'GACl(; the CPU can then in it iate more transac­
ti.ons.

,-;; " ;;

,

8.-;)

,- f);)

-, :=x ;; ,
II ,

)

,-;J I,

:'J -IJ

'= ,
f'i; ;; II

Bus Request Timing

B-23

External Interface

Figure 8-23 shows a state diagram for the local
and global bus request protocols. To prevent
deadlock between CPUs referring to esch other I s
local memories, s CPU can be preempted while it is

waiting for mJ(in state 2. If BliS'RE[is
asserted before mJ(, the CPU relinquishes the
globs I bus without performing any transactions.

8-24

STATE 0

ClREQ = H
BUSACK = H

(BUSREQ • L). BUS = 2ST

(ClACK. H)
(BUSREQ = H).(ClACK = H).
(NEED_GBUS = H)

A l:!.ClACK = L C

STATE 1 ERROR

ClREQ = 3ST
STATE 2

ClREQ = L
BUSACK = L BUSACK = H
BUS - 3ST BUS = 2ST

(ClACK = L).
D E (GACK = L).(BUSREQ = H) F (BUSREQ = L)

BUSREQ = H
STATE 3 STATE 4

ClREQ = L H GREQ = H
BUSACK = H BUSACK = H
BUS = 2ST (GACK = L). BUS = 2ST

[(BUSREQ = L)
+ (NEED_ClBUS = L)]

~!OACK - H
I GACK = H

ERROR

NOTES: Inte"ace algnalo are High (H), Low (L), High or Low (2S1), or 3·otalod (3ST).

NEED_GBUS Is an ocllve High olgnal Intomal to the CPU.

Figure 8-23. State Diagr_ for CPU Bus
Reqwst Protocol

2071-030

State legend

State 0 The CPU controls the local bus and is
neither requesting nor controlling the
global bus.

State 1

State 2

State 3

State 4

The CPU can perform transactions on the
local bus.

The CPU has granted the local bus.

The CPU cannot perform transactions.

The CPU controls the local bus and is
requesting the global bus.

The CPU cannot perform transactions.

The CPU controls the local and global
buses.

The CPU can perform transactions on the
global bus.

The CPU controls the local bus and is
relinquishing control of the global bus.

The CPU cannot perform transactions.

A

B

C

D

E

F

G

H

External Interface

Transition legend

A local bus request occurs.

The global bus arbiter grants control of
the global bus when no global bus
request is pending. This is an error.
The CPU remains in State O.

The CPU requests
response to the
signal NEEO_GBUS.

the global bus in
internally generated

The local bus master relinquishes the
bus.

The global bus arbiter grants the global
bus to the CPU while no local bus
request is pending.

The global bus arbiter grants the global
bus to the CPU while a local bus request
is pending. The CPU is preempted.

The global bus arbiter reclaims the glo-
bal bus before the CPU relinquishes the
global bus. This is an error. The
CPU's response to this error is
undefined.

The CPU relinquishes control of the glo­
bal bus when it no longer needs the glo­
bal bus or in response to a local bus
request.

The global bus arbiter reclaims the glo­
bal bus.

B-25

External Interface

8.10 RESET

Figure 8-24 shows Reset timing. After ~ is
asserted, the CPU responds as follows.

• AD lines are turned to input direction
• ~,~,~,~, EPOABOR1, rn!E'Q', 'It, and

or- are negated
• STO-ST3 are driven to 1111
• BW!L and Bl/W are driven low
• N~ andR/W are undefined

If ~ is asserted while the CPU is asserting
~, the CPU first negates~, then the
other CPU output lines are removed from 3-state
and driven aa described above. After I!£'SET is
asserted, external circuitry can detect that the
CPU has responded to the reset request by sensing
BW!L and Bl/W low. At power on, I!£'SET should be
asserted until after power has stabilized.

During reset, bits SX, NX, CI, and CD of the SCCl
control register are cleared, disabling the
address translation and cache mechanisms. Bit GE
of HICR is also cleared, disabling the global bus
request protocol.

8-26

At the rising edge of I!£'SET, the relationship
between bus timing, memory data path, and number
of automatic wait atates is determined. If RSPO
is High at the rising edge of I!£'SET, HICR is
initialized with MD.DP = 1 t MO' W = 7, and S = 1.
This corresponds to a default configuration of
16-bit memory path, seven automatic wait states,
and bus clock scale factor 2. If RSPO is low at
the rising edge of I!£'SET, ADO-AD3 and AD11 are
latched into the corresponding bits of HICR, and
AD15 must be High.

I!£'SET need not be synchronous with elK; however,
the CPU assumes that the last rising edge of ClK
on which I!£'SET is asserted corresponds to a rising
edge of BClK. Thus, if I!£'SET is synchronized with
the rising edge of the external bus clock, the
internal and external bus clocks will be in phase
with respect to ClK. After REm- is negated, the
CPU resds FCW from memory address 2 and PC from
address 4 using status 1101. If ~ is asserted
before I!£'SET is negated, the CPU acknowledges the
bus request before fetching the Program Status.

External Interface

CLK~

BCLK~

RESET ~ ,

'------7,~----------------------------------7~-----------J
J

RSPo

AD

As

DS

DE

IE

R/W

Mis

STo-ST3

BwiL,
BLfW

BRST

EPUABORT

2071-031

----------~hF'----------------------------------{~------~

--------~h~'--------------------------~r------J

: ------{~--~r-------~~----_7~------~ "

:)
7

/;
)

:)

J

)

- - --f'r{ ADDRESS = 2

'~ r
' \.....J

'",,"
) '--

------~~---7~--------------~~------------~h~'-----:)

'c h

;'1

/f

s'l
ALL HIGH : , 11~101

: , ~~\~---------------~fl------------~" r==
: >

II II c=
::J J

----------~o-----~---------------------------;,hF--------------------_i.f;F'--------

Figure 8-24. Reset Timing

8-27

A

The zao,ooo CPU is an upward-compatible extension
of zaooo architecture and bus interface. All zaooo
normal mode software and most zaooo system mode
aoftware executes on the zao,ooo CPU, prov1ded
the software containa no timing dependenciea, does
not modi fy itself, and does not use any of the
zaooo reserved instruction, address, and control
field encodings.

A few of the zaooo privileged instructions ara not
implemented by the zao,ooo CPU. The instructions
are LDCTL (refresh control register), the Mult i­
MIcro set (MalT, MREQ, MRES, MSET), and the
Special I/O inatruction set (SIN, SINB, SIND,
SINDB, SINDR, SINDRB, SINI, SINIB, SINIR, SINIRB,
SOTDR, SOTDRB, SOTIR, SOTIRB, SOUT, SOUTB, SOUTD,
SOUTDB, SOUTI, and SOUTIB). An Unimplemented
Instruction trap occurs when a program attempts
to execute one of these instructions.

The portions of a zaooo operating system concern­
ing memory management and initialization of the
Program Status Area (PSA) must be modified to exe­
cute on the zao,ooo CPU. The PSA for the zao,ooo
CPU is an extension of the zaooo's PSA, with more
entries for additional exceptions.

Memory management is integrated in the zao,ooo
CPU, while the zaooo CPU implements memory manage­
ment in peripheral components (Za010 Memory Man­
agement Uni t and Za015 P aged Memory Management
Unit). In addition, the zao,ooo CPU does not sep­
arate stack and data address spaces as does the
zaooo CPU. Any inconveniences caused by these

AppeDdixA.
Z8OO0 Compatibility

differences can be minimized by following the
gUidelines in the application note "Memory Manage­
ment and the zao,ooo 32-bit Microprocessor" (Zilog
document number 00-2329-01).

The zao,ooo CPU ia compatible with the signals and
timing of the 16-bit Z-BUS, except for the Multi­
Micro resource request signals. The global bus
request protocol of the zao,ooo CPU replaces the
Multi-Micro protocol. The zao,ooo CPU also
improves the Z-BUS sampling of WlITT" and permits
memory read transact ions of two bus cycles dura­
tion, though strict Z-BUS compatibUity can be
msintained by programming appropriste fields in

the Hardware Interface Control register. (For

strict Z-BUS compstibility, HICR fields MQ.DP,
MO.W, M1.DP, M1.W, I/OO.W, and I!01.W are 1;
IACK.W1 is 3; IACK.W2 is 2; and GE is 0.) For the
zao,ooo CPU, EPU-to-memory write transaction tim­
ing includes one cycle more than the Z-BUS speci­
fication; the additional cyc le prevents a bus
clash between the CPU and EPU.

Aside from the Z-BUS signals and timing described
above, there are only the following few
differences between the zao,ooo CPU and zaooo CPU
pin signals. The zao,ooo CPU doea not implement
the zaooo CPU signals R'R'm", mJr, 1IM!Rr, (Za003
and Za004 only), ~ (Za001 only), and mIT" (Za003
only). Additionally, some of the status code
definitions have been changed to accommodate the
cache in the zao,ooo CPU. The zao,ooo CPU does not
aupport refresh transactions.

A-1

B

The CPU's memory management mechanism can map log­
ical memory addresses to physical I/O addresses by
setting bit 31 of a page table entry to 1. Mem­
ory-mapped I/O can be used only for references to
the data memory logical address spaces with the
following instructions.

ADO DEC RES
AND EX SET
BIT INC SUB
CLR LD TEST
COM NEG TESTA
CP (not Immediate) OR XOR

Appendix ••
Memory-Mapped 1/0

Memory-mapped I/O must not be used for instruction
address space references or for data references
with instructions other than those listed above.
I f memory-mapped I/O is used in this prohibited
manner, the CPU may not be able to recover
correctly from an address translation exception
that is detected after the peripheral port has
been accessed, because the state of the peripheral
may have changed. In addition, instructions like
Decrement Inter locked and those for the Extended
Processing Architecture cannot use I/O status on
bus transactions.

B-1

I
I

I

i
I
I
I

I
I
I
I

I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I

I
I
I
I

I
I

I
I
I
I

c

The Z80,000 CPU implements e cache mechanism that
keeps copies of frequently used memory locations
on-chip for fast access. The cache mechanism is
selectively enabled for instruction and data
referencea by bita CI and CO in the SCCL regis­
ter. The cache replacement algorithm is con­
trolled by the CR bit in the SCCL register. When
the replacement algorithm is enabled, (CR=1), the
cache stores a copy of the moat recently used
memory locations; otherwise, the cache stores a
copy of fixed memory locationa.

The cache contains 16 blocks of storage (Figure
C-1). Each block includes an address tag, which
stores the 28 most-significant bits of the physi­
cal memory address corresponding to the block, and
a bit specifying whether the address tag is
valid. Associated with the tsg, the block also
stores eight data words and a bit for each word
specifying whether or not the word contains a
valid copy of the corresponding memory location.
The cache is fully associative, so that any memory
location can be assigned to any block. In all, the
cache provides 256 bytes of data storage.

ADDRESS TAG
ASSOCIATIVE

MEMORY
(18d8)

2B

CACHE DATA VALIDITY
M~--I"I MEMORY BITS

(lax 128) (18x B)

TAG
HIT 32

32

PHYSICAL
ADDRESS

DATA WORD
HIT

Figure C-1. ClEhe Org.u.zetion

The Purge Cache (PCACHE) instruction invalidates
all of the address tags and data words.

2071'()10

Appendix C.
Cache Control and
Memory Transactions

On memory references for which the cache is
enabled, the cache is examined to determine
whether a copy of the addressed location's con­
tents is stored on-chip. If the cache is not
enabled, the cache is bypsssed. For instruction
fetches (including fetches of operands specified
by Immediate, Relative Address, or Relative Index
addressing mode), the cache is enabled when CI is
set to 1; if memory msnsgement is enabled, the NC
bit of the page table entry must also be O. For
operand fetches, the cache ia enabled when CD is
aet to 1 and the reference is not interlocked
(i.e., not DECI, INCI, and TSET instructions); if
memory management is enabled, the NC bit of the
page table must also be O. For operand stores, the
cache is always enabled. When the CPU fetches from
the Progrsm Status Area during exception
processing or from the translation tables during
address translation, the cache is bypassed.

When the cache is enabled for a reference, bits 4
to 31 of the physical memory address sre compared
to the tags in each cache block. The reference is
called either s "tag hit" if one of the vslid tags
matches the address, or a "tag miss" if none of
the tags matches. When a tag hit occurs, bits 1 to
3 of the address select s data word in the block.
If the data word is valid, the reference is called
a "word hit"; otherwise, it is cslled a "word
miss." For an aligned longword reference, both
the high-order and low-or dar words, along with
their validity bits, sre sccesssd simultaneously.

For instruction fetches, if the reference is s
word hit, the instruction word is simply read from
the csche. If the reference misses and the csche
is enabled for instructions, the instruction word
is fetched from memory using a burst trsnssction.
The CPU continues the burst transaction, reading
successive words as long aa memory acknowledges
the burst or until the end of the block. If the
cache is bypassed, the instruction is fetched
using a single read operation.

C-1

Cache Control and Memory Transactions

For operand fetches, if the reference is a word
hit, the data word is simply read from the cache.
Otherwise, if the reference misses or the cache is
bypassed, the data word is fetched from memory.
Only data fetches that involve more than one
transfer use burst transactions, such as those for
the following instructions: CPI(R), CPSI(R) ,
CHECK, EXIT, INDEX, IRET, LDI(R), LDM, LDML, LDPS,
OUTI (R), TRTI (R)B, and EPA instructions. Simi­
larly, burst transactions are used for fetching
unaligned operands and longword operands on a
16-bit memory data path. When an operand is
specified using ReI aU ve Address addressing mode,
the instruction transfer status (11DO or 1101) is
used except for EPA instructions, which use data
transfer status (1010 or 1011).

For operand stores and saving Program Status dur­
ing exception processing, if the reference is a
word hit, the data byte or word is written to the
cache; however, the data word is invalidated for
an EPA instruction. I f the reference is a tag
miss or word miss, the cache is unaffected. The
data is written to memory regardless of whether
the cache hits or misses. This ensures that the
current value for a location is always stored in
memory. The CPU uses burst transactions only for
stores with Load Multiple and Load Multiple
longword registers, Enter, and EPA instructions.

Table C-1 summarizes the activity in the cache and
external interface described above. The status
codes distinguish cacheable and non-cacheable
references for use with an external cache.

When the CPU fetches from the PSA during exception
processing, a burst transaction wi th status 1101
is used. If the CPU stores to the overflow stack
during exception processing, a transaction with
status 1001 is used. When translation table
entries are fetched or stored (to update the M and
R bits) during address translation, the CPU uses
status 1111.

C-2

In addition to the address tags, data, and
validity bits, the cache contains a stack that
orders the blocks according to how recently they
have been used with the most recently used block
on the top of the stack. Whenever a reference is
a tag hit, the corresponding block moves to the
top of the stack, and the blocks that previous to
the reference had been more recently used move
down the stack. The bottom of the stack identifies
the least recently used (LRU) block.

If the cache replacement algor1thm is enabled, the
contents of the cache change when a cache miss
occurs. For a tag miss, the CPU first replaces the
tag of the LRU block with the missing block's
address, and marks all the data words in the block
1nvalid. For either a tag miss or word miss, the
CPU loads the data fetched from memory into the
selected cache block and marks the corresponding
words valid.

When the cache replacement algorithm is disabled,
copies of fixed memory locat ions can be locked
into the cache for fast, on-chip access. To do
this, the cache .1S first enabled for block
replacement of data references only (CR=1, CD=1,
CI=O). Then the cache is purged and selected
blocks are read into the cache. Afterwards, the
replacement algorithm is disabled, and the cache
is enabled for instruct ion and data references
(CR=O, CD=1, CI=1).

The number of data words per block, number of
blocks, degree of associativity, and replacement
algorithm described for the cache design in this
appendix are specific to the first implementa­
tion of the ZBO,OOO CPU architecture and may dif­
fer in future products implementing the same
architecture. Dl fferences in these characteris­
tics can impact on system performance, but have no
effect on the function of software or the external
interface.

Cache Control and Memory Transactions

Table C-l. Cache and Bus Activity

Reference Hit/Miss

Instruction fetch

Cl°N'C

NC

Operand fetch

NCoIlOK

IlOK

Operand Store

NCoIlOK

IlOK

Key: CD

hit
miss

don't care

don't care

hit
miss

don't care

don't

don't

hit
miss

hit
miss

hit
miss

CD in SCCl

care

care

CI CI in SCCl

Cache Activity
Data lRU

no change
update

no change

no change

no change
update

no change

no change

no change

update
no change

update
no change

update
no change

update
update

no change

no change

update
update

no change

no change

no change

update
no change

update
no change

update
no change

IlOK Interlocked reference required
NC NC in Page Table Entry

Bus Transaction
(status)

no
yes (1100)

yes (1100)

yes (1101)

no
yes (1000, 1010, or 1100)

yes (1000, 1010, or 1100)

yes (1001, 1011, or 1101)

yes (1111)

yes (1000, 1010, or 1100)
yes (1000, 1010, or 1100)

yes (1001, 1011, or 1101)
yes (1001, 1011, or 1101)

yes (1111)
yes (1111)

C-3

D

w
~ ..
z
~
()

" a:
Iii
~
a:
w
" ;i
w
e
~ ..
!! z
a:
w
" A

B

C

D

AppendixD.
Programmer's Quick
Reference Guide

LOWER NIBBLE (HEX), LOWER INSTRUCTION BYTE

ADDB ADD SUBB SUB ORB OR ANDB AND XORB
A -IA R -IR A -IR A -lA R _fR A -IR R -IA R -IA R -IR
A -1M R -1M R -1M R -1M A -1M A -1M R -1M R -1M R -1M

CPL PUSHL SUBL PUSH LDL POPL ADDL POP MULTL
R -IR IA -IR R -IR IA -IR R - IR IR _IR A -IR IR -IR R -IR
R -1M IR -1M R -1M IR -1M R -1M R -1M A -1M

LDB LD RESB RES SETB SET BITB BIT INCB
R _IR R -IR IR -1M IR -1M IR -1M IA -1M IR -1M IA -1M IA _1M
R -1M A -1M A-A A _A A -A A-A A -A A-A

LDB LD LDB LD LDA LDL UNIM LDL LDKL
R -- BA A -SA BA -R SA _A A - SA A -SA SA-A R -1M
LoRB LDR LoRB LOR LoAR LDRL LDRL

R -RA A - AA AA -R AA -A R -RA R - RA RA R

AoDB ADD SUBB SUB ORB OR AN DB AND XORB
R -EAM R -EAM R -EAM R - EAM A _EAM A -EAM R - EAM A -EAM R _EAM

CPL PUSHL SUBL PUSH LDL POPL AoDL POP MULTL
R -EAM IR -EAM A -EAM IR -EAM A -EAM IA -EAM R EAM IR - EAM R EAM

LDB LD RESB RES SETB SET BITB BIT INCB
R -EAM R -EAM EAM -1M EAM -1M EAM -1M EAM -1M EAM -1M EAM -1M EAM -1M

LDB So. LDB LD LDA LDL LDA LDL CVT
R -ex rable ax -A ex -R R -ex R -ex R -EAM ex -A CVTU

7

ADDB ADD SUBB SUB ORB OR ANDB AND XORB
A-A A-A A-A A-A A-A A-A A-A A -A A -A

CPL PUSHL SUIL PUSH LDL POPL ADDL POP MULTL
R-A IA -A A-A IR -R R-A R _IR A-A R -IR A -A

LDB LD RESB RES SETB SET BITB BIT INCB
A -A A-A R -1M R -1M R -1M R -1M R -1M R -1M R _1M

DAB EXTS S" So. ADCB ADC SBCB SBC S ••
EXTSB rabla rable R-A R-A A-A A -A rable

A EXTSL • • 5
R

LDB
R -1M

CALR
PC _RA

JR
PC - RA

DJNZ
DBJNZ

PC -RA

Notes:

1) Opcodes marked UNIM are unimplemented and must not be used. Attempting to execute an
unimplemented opcode causes an Ummplemented Instruction trap.

2) The execul!on of an extended Instruction results in an Extended Instruction trap if the EPA bit in
the FCW is 0; otherwise, the CPU sends the instruction to an EPU for execution.

Opcode Hap

A

XOR CPB
A -IR R -IR
R -1M R -1M

MUll DIVL
R -IR A -IR
R -1M R -1M

INC DECB
IR -1M IR -1M

LDPS SH
IA rlbl'

3

XOR CPB
R - EAM R EAM

MULT DIVL
R -EAM R -EAM

INC DECB
EAM -1M EAM -1M

LDPS S.
PS - EAM Table

8

XOR CPB
A-A A-A

MULT D'VL
A-A A-A

INC DECB
R -1M R -1M

SH So.
Tabl. Table

6 6

C
CP SH

R-IR Table
A -1M 1

DIV S ••
A -IA rlble
A _1M 2

DEC EXB
IR -1M R-IR

So. INB
rable R-IR

3

CP S ••
R -EAM rabl,

1

olV S ••
R -EAM Table

2

DEC EXB
EAM -1M R-EAM

So. EI
Table DI

7

CP SH
A-A Tabl.

1

DIV S ••
R-R rabl.

2

DEC EXB
R-IM A-A

S •• RRDB
Table A

6

S •• EXTEND EXTEND
rable INST INST

1

LDL JP CALL
IR-R PC-IR PC-IR

EX LDB LD
R-lR IR_R IR-R

IN OUTB OUT
R-IR IR-R IR-R

SH EXTEND EXTEND
Tabl, INST INST

1

LDL JP CALL
EAM-A PC-EAM PC-EAM

EX LDB LD
R-EAM EAM-R EAM-R

S •• TRAP SC
Table

7

S •• EXTEND EXTEND
Table INST. INST.

1

LDCTLL RET LoCTLL
CTLRL - A PC-(SP) R - CTLRL

EX TCCB TCC
A-A A A

LDK RLDB UNIM
R-IM A

D-1

Programmer'a Quick Reference Guide

w

~ 5

~
g 8

~
~ 7

!.i 8
e
~
!!! z
fli
~ A

B

C

D

D-2

DC

COMB
IR

CPB
IR-IM

NEGB
IR

UNIM

TESTB
IR

lDB
IR-IM

TSErB
IR

UNIM

ClRB
IR

UNIM

CHKB
R-IM
A-IR

UNIM

TESfAB
IR

UNIM

UNIM

UNIM

OD 4C 4D 8C
COM COMB COM COMB

IR EAM EAM R

CP CPB CP LDCTlB
lA-1M EAM-IM EAM-IM R-FlGS

NEG NEGB NEG NEGB
IR EAM EAM R

CPL UNIM CPl UNIM
lA-1M EAM-IM

TEST TESTB TEST TESTB
IR EAM EAM R

LD lDB lD UNIM
IR-IM EAM-IM EAM-IM

TSET TSETB TSEr TSETB
IR EAM EAM R

lDL UNIM lDl UNIM
IR-IM EAM-IA

CLR ClRB ClR CLRB
IR EAM EAM R

PUSH UNIM UNIM lDCTLB
lA-1M FlGS-R

CHK CHKB CHK UNIM
A-1M R-EAM A-EAM
R-IA

CHKL UNIM CHKl UNIM
R-IM A-EAM
A-IR

TESTA TESTAB TESTA TESTAB
IR EAM EAM R

UNIM UNIM UNIM UNIM

INDEX UNIM INDEX UNIM
R-IM A-EAM
R-IA

INDEXL UNIM INDEXl UNIM
A-1M A-EAM
R-IR

Table 1. Upper Instruction Byte

8D lC 5C BC
COM COML COML COML

R IR EAM R

SETFLG lDM LDM UNIM
R-IR R-EAM
R-IM

NEG NEGl NEGl NEGL
R IR 'AM R

RESFlG UNIM UNIM UNIM

TEST ClRL ClRL CLRL
R IR 'AM R

w LDML LDMl UNIM
~ IM-lR IM-EAM .. 1M-1M
Z

COMFlG

0
INSRT INSRT INSRT t IR-R EAM-A R-R :>

TSET
R

a:

NOP ~ UNIM UNIM UNIM
a: w

CLR ~ TESTL TEsn TESTL
R sf 8 IR 'AM R

w e
UNIM ~ LDM LDM UNIM .. IA-R EAM-R ..

Z
a:

EXTR EXTR EXTR w

~ A A-IA A-EAM R-R

UNIM

UNIM EXTRU EXTRU EXTRU
B R-IR R-EAM R-R

TESTAL TESTAL TESTAL
C IR EAM R

TESTA
R

UNIM LDML lDML UNIM
D lA-1M EAM-IM

UNIM UNIM UNIM UNIM

UNIM UNIM UNIM UNIM

Table 2. Upper lnal:ructi ... Byte

Programmar'a Quick Reference Guide

SA 31 12 13 I. IA II 18
TRII
IA-IA

CPII CPI CPlL
lA-IF! IA-fR IA-IA

INIB INI
IR-IA IR-IR
INIRI INIR
IR-IA IA-II~

RLB RL
(1 bit) (I bill
A-1M A-1M

UNIM LDII LDI LDIL
IA-IA IA-IR IA-IA
LDIRI LDIR LDIRL

UNIM UNIM SLLI SLL
A-1M A-1M
SRLI SRL IA-IR IR-IA IR-IR

TRTII CPBII CPSI CPBIL
R-IM A-1M

IA-IA IR_IR IA-IA IR-IA OUTII OUTI
IA-IA IR-IA
OTIRI DTIR
IA_IR IA-IA

RLB RL
(2bl\sj (2bl\sJ
R-IM R_IM

UNIM UNIM UNIM UNIM
UNIM UNIM SDLI SDL

A-1M A-1M

TRIRI CPIRI CPIR CPIRL
IA-IA R-IA A-IA R-IR INI IN

A-DA R-DA
RRB RR
(1 bit) tiM)
A-1M A-1M

UNIM UNIM UNIM UNIM
UNIM UNIM UNIM SLLL

E TRTIRI E
~ IA-IA

I Ii ,.
II:

i UNIM II:
t;

II: ! .. II:

~
..

TRDI ~
15 IA-IR

C. 15 •
~ e
• UNIM

..
Ii

... .
iii Ii

0:

~
..

TRTDI ~ A IR-IA
A

CPSIRI CPBIR CPSIRL
tA-IR IR-IA IR-IA

UNIM UNIM UNIM

CPDI CPD CPDL
R-IA A-IR A_IA

LDDI LDD LDDL
IA-IA IA-IA IR-IA

LDDRI LDDR LDDRL
IA-IA IA-IA IA-IA

CPBDI CPSD CPSDL
IA-IA IR-fR IA-IR

OUTI OUT
DA-A DA-R

UNIM UNIM

INDI IND
IR-IA IA-IR
INDRI INDR
IA-IA IA-fR

UNIM UNIM

OUTDI OUTD
IR-IA IR-IR

OTDRI OTDR
A

E
z

~ ,.
II:
t;
!
iii
~
15 e
~
Ii
II: ..
~

A

R-IM
BRLL
A-1M

RRI RR
(2 bits) (2bIIS)

A-1M A-1M

UNIM SDLL
R-IM

RLCB RLC
(1 bill (\ bit)

A-1M R-IM

SLAI SLA
A-1M A-1M
SRAI 8HA
A-1M A-1M

RLCI RLC
(21)119) (2biIS)
A-1M A-1M

IR-IA IA-IA
UNIM UNIM UNIM UNIM

UNIM UNIM SDAI SDA I'
I R-R A-R

TRDRI CPDRI CPDR CPDRL
C IR-IA

C
A-fR R-IR R-IF~

C
RRCI RRC
(1 bill (1 bill

Table J. R-IM R-IM

UNIM
D

D

UNIM UNIM UNIM Upper Inatructioo Byte
D

UNIM SLAL
R-IM
BRAL
R-IM

TRTDRI CPBDRI CPBDR CPSDRL
IR-IA

E
IA-IA IR-IA IA-IR RRCB RRC

(2 bits) (2 bits)
R-IM R-IM

UNIM UNIM UNIM UNIM
UNIM SDAL

R-R

Table 5.
Upper Inatructioo Byte

Table 6.
~ Inatructioo Byte

Table 4.
Upper Instruction Byte

0-3

Programmer's Quick Reference Guide

78 70
IRET UNIM HALT Compact Segmented or Linear

Direct Address Direct Address
UNIM UNIM BREAK· Index Index

POINT Base Address
Base Index

ESC Relative Address
UNIM LDCTL

R-Few
LONG' Relative Index

ESC
UNSIGN'

UNIM UNIM Table 9. Extended Addressing Modes
ESC

INTERLOCK'

UNIM LOCTL
R-

PSAPSEG ~ .. ENTER

z

UNIM LDen
R-

0
t;
::>

EXIT

~ ..
z
0
;::
CJ

~
0-on
!!;

PSAPQFF

UNIM LOCTL
R-NSPSEG

UNIM Locn
R-NSPOFF

II:

Iii
!!;
II:
W

~
g
;;
w
~

LONI LDND

PCACHE

PTLBESI PTLBESO PTLBENI PTLSEND
II:
W
;0
g
>i w
;;

UNIM UNIM

ill z
II:
W
;0 A g

PTLS

~
ill

UNIM UNIM PTLBN

z
II:
W
;0
g

A

UNIM LDCTL
FCW_R

C

LOPSI LDPSD LDPNI LDPND
D

UNIM UNIM

UNIM LDCTL
PSAPSEG

-R C

UNIM LDCTL
PSAPOFF

-R D

Table 8. LOMer Instruction Byte

UNIM LDCTL
N8PSEG-R

UN 1M LOCTL
NSPQFF-R

Table 7.
Upper Instruction Byte

D-4

E

INTROOUCTION

The ZBO,OOO CPU, unlike the ZBOOO and other 16-bit
microprocessors, integrates a highly pipelined
design, cache memory, and memory management into a
single component. With the ear lier micro­
processors it is relatively simple to calculate
exact performance measurements for a benchmark
program or program workload mixture, as follows.
Each instruction (i) in the architecture is
characterized by its execution cycle count (ni)
and number of memory references (ri). From the
program workload, the frequency of execution for
each instruction (fi) can be determined. If W is
the number of wait states for the memory system,
then the average number of cycles to process an
instruction (Tr) can be determined from the
following formula.

TI = ~fi(ni + qW)
i

And, if Tc is the cycle time of the processor,
then the processor's performance (that is, the
processor's rate of executing instructions) is
given by the formula below.

performance = (TrTc)-1

Calculating the performance of the ZBO,OOO
processor involves a more complex formulation that
accounts for dependencies between instructions in
the pipeline and misses for the cache and
Translation lookaside Buffer (TlB). This appendix
contains the timing formulae used to analyze the
performance of the ZBO,OOO CPU, and also a
sufficiently detailed description of the
processor's implementation to calculate timing
parameters for a program workload.

Theory of Operation

Figure E-1 shows a block diagram of the ZBO,OOO
CPU's internal organization, including the
following major functional units and data paths:

• The external interface logic controls
transactions on the bus. Addresses and data
from the internal memory bus are transmitted

AppendixE.
Timing Formulae for
Performance Evaluation

through the interface to the Z-BUS. The Z-BUS
is a time-multiplexed, address/data bus that
connects the components of a microprocessor
system.

• The cache stores copies of instruction and data
memory locations. Instructions are read from
the cache on the instruction bus. Data is read
from or written to the cache on the memory bus.
The cache also includes a copy of the physical
Program Counter, so that the logical addresses
of instructions are translated only for
branches and when incrementing the Program
Counter across a page boundary.

• The Translation lookaside Buffer (TlB) trans­
lates logical addresses calculated by the
address arithmetic unit to physical addresses
used to access the cache.

• The address arithmetic unit performs all
address calculations. This unit has a path to
the register file for reading base and index
registers and another path to the instruction
bus for reading displacements and direct
addresses. The result of the address calcula­
tion is transmitted to the TlB.

• The register file contains the sixteen general­
purpose longword registers, Program Status
registers, special-purpose control registers,
and several registers used to store values tem­
porarily during instruction execution. The
register file has one path to the address
arithmetic unit and two paths to the execution
arithmetic and logic unit.

• The execution arithmetic and logic unit cal­
culates the results of instruction execution,
such as add, exclusive-or, and simple load.
This unit has two paths to the register file on
which two operands can be read simultaneously
or one can be written. One of the paths to the
register file is multiplexed with a path from
the memory bus.

• The instruction decoding and control unit
decodes instructions and controls the operation
of the other functional units. This unit has a
path from the instruction bus and two

E-1

Timing Formulae for Performance Evaluation

programmable logic arrays for
microcoded control of the two

separate
arithmetic
exception

All of the functional units and dats paths listed
above are 32 bits wide.

units. This unit also controls
handling and TlB loading.

r------

CACHE
DATA

INSTRUCTION REGISTER

INSTRUCTION
DECODING

AND
CONTROL

UNIT

Z·BUS

--------,

MEMORY BUS

CACHE
ADDRESS TAGS

TRANSLATION
LOOKASIDE

BUFFER

REGISTER
FILE

EXECUTION ARITHMETIC
AND LOGIC UNIT

L ________________ ~

Figure E-1. Functional Block Diegra.

INSTRUCTION FETCH INSTRUCTION DECODING ADDRESS CALCULATIONS OPERAND FETCH EXECUTION

PROGRAM CACHE INSTRUCTION
ADDRESS ARITHMETIC

COUNTER CALCULATION CACHE TAG REGISTER READ

INCREMENT - READ - - COMPARE -TLBTAG ALU CALCULATION

CACHE TAG
MICROWORD COMPARE CACHE DATA READ

COMPARE
GENERATION REGISTER WRllE

TLB DATA READ

Figure E-2. Instruction Pipeline

E-2

OPERAND STORE

FLAG SETTING - CACHE DATA WRITE

MEMORY WRITE

The operation of the CPU is highly pipe lined so
that several instructions are simultaneously in
different stages of execution. Thus, the func­
tional units effectively operate in parallel with
one instruction being fetched while an address is
calculated for another instruction and results are
stored for a third instruction.

Figure E-2 shows the six-stage, synchronous pipe­
line. Instructions flow through each stage of the
pipeline in sequence. The various pipeline stages
can be working simultaneously on separate instruc­
tions or on separate portions of a single complex
instruction. Each pipeline stage operates in one
processor cycle, which is composed of two clock
cycles, called \Il1 and \Il2. Thus, a processor
cycle is 200 ns with a 10 MHz clock or 80 ns with
a 25 MHz clock.

The instruction-fetch stage increments the Program
Counter and initiates instructions fetched from
the cache. The instruction-decoding stage
receives and decodes instructions to set up
control of the address-calculation stage.

The address-calculation stage can generally
calculate a memory address in one processor cycle,
except for Base Index, Relative, and Relative
Index addressing modes, which require multiple
cycles. After the logical effective address has
been calculated, the corresponding physical
address is provided by the TLB. The operand-fetch
stage fetches the data from the cache and latches
it into a holding register.

The execution stage performs data manipulations.
Byte, word, and longword results are generally
calculated in one processor cycle, but certain
instructions, such as multiply and block-move
operations, require multiple cycles. During the
execution stage, results are stored to registers.
Results are stored to the cache and external
memory during the operand-store stage. The flags
are also set during the operand-store stage.

The cache can handle two references during a
processor cycle. Instruction fetches use the \Il2,
clock cycle for tag comparison and 9'>1 for data
access. Either an operand fetch or store can use
\Il1 for tag comparison and \Il2 for data access.

The pipeline allows single instructions, like
register-to-register load and memory-to-register
add, to execute at a rate of one per processor
cycle. Thus, the peak performance of the CPU is
12.5 million instructions per second (MIPS) with a
25 MHz clock. In practice, the actual performance
is reduced to approximately one-third of the peak
because of delays due to the execution of

Timing Formulae for Performance Evaluation

multiple-cycle instructions, interference between
instructions in the pipeline, and main memory
accesses for cache and TLB misses.

In order to calculate the processor's
performance it is helpful to separate the average
processing
components:
addressing
following
components.

time for an instruction into four
execution delays, pipeline delays,

delays, and memory delays. The
sections describe the various delay

Execution Ti_

The first component of instruction processing time
is the basic execution time: the time reqUired to
execute an instruction assuming that there is no
interference from other instructions in the
pipeline and that all memory references hit in the
cache and TLB. An instruction's execution time is
determined by its operation, data type, and
addressing mode.

For most instructions, the execution delay can be
calculated by adding the number of cycles from
Table E-2 corresponding to the operation and data
type to the number of cycles from Table E-1
corresponding to the addressing mode. Use either
the source or destination addressing mode, as
listed with the instruction's format in section
6.5. For the remaining instructions, Table E-2
gives the execution delays for specific
combinations of operations, data types, and
addressing modes. The following example shows how
to use the tables.

An instruction that loads a longword from a
register to a register (e.g., LDL RR4, RR2), has
an execution time of 1 processor cycle: 1 for the
operation and 0 for the addressing mode. An
instruction that adds a longword immediate value
to a register (e.g., ADDL RRO, #100), has an
execution delay of 2 processor cycles: 1 for the
operation and 1 for the addressing mode. An
instruction that tests a bit of a byte in memory
specified by IR addressing mode (e.g., BITB ®RR2,
#1), has an execution delay of 3 processor cycles:
the delay is listed in Table E-2 for the specific
operation and addressing mode.

Pipeline Delays

Pipeline delays result from interference between
instructions at different stages of the pipeline.
Pipeline delays occur when instructions contend
for the use of a bus or functional unit, and one
instruction must be delayed. There are two

E-3

Timing Formulae for Performance Evaluation

sources of pipeline delays: register inter locks
and cache reference interlocks.

A register inter lock occurs when an instruction
modifies a register that is required for an
address calculation by either of the two sub­
sequent instructions. In addition, the following
instructions, which may modify more than one
register, cause an interlock for any registers
used in subsequent address calculations: CPD(BL),
CPI(BL) , CPSD(BL), CPSI(BL), DIVL, DIVUL, EXIT,
EXTSL, LDD(BL), LDI(BL) , LDM registers from
memory, LDML registers from memory, MULTL, MULTUL,
and Load CPU from EPU. When the instruction that
modifies the register is followed immediately by

I NCL RR2, 114
LDB RHO, ®RR2

MULT RR24, #1000
LDL RRO, RR4
ADDL RRO, RR12 (RR24)(16)

the interlocked address calculation, then the
pipeline delay is 2 processor cycles, otherwise
the inter lock causes a pipeline delay of 1 pro-
cessor cycle. Register inter locks are detected
for the use of longword registers. Thus, with the
CPU's register file organization (see Figure 2-2),
if a byte or word within a longword register is
modi fied, then a subsequent address calculation
can be interlocked by using the longword register
itsel f or either of the word registers it
contains.

For example, the following instruction sequences
cause register interlock delays when executed (in
linear mode).

//register interlock delay//
//for RR2 is 2 processor cycles//

//register interlock delay//
//for RR24//
//is 1 processor cycle//

Table E-1. Execution TiNeS for General Addressing HOdes

Address Representation
Addressing HOde COIIIpact SegIIIBIlted or Linear

R 0 0

1M (byte or word) 0 0
(longword) 1 1

IR 0 0

DA 0 0 for extension word
for 2 or 3 extension words

X 0 0 for 1 extension word
1 for 2 or 3 extension words

BA 0 0 for extension word
for 3 extension words

BX 2 for extension word
2 for 3 extension words

RA for or 3 extension words

RX Not 2 for or 3 extension words
Available

E-4

Timing Formulae for Performance Evaluation

Table E-2. Execution U., for Instruction Operations

Addressing Execution
Operation Data Type Modes n., Notes

ADC B,W R 1

L R 2

ADD B,W,L See Table E-1 1

AND B,W See Table E-1 1

L See Table E-1 2

Bit R,EAM--See Table E-1 2

(Static) B,W
IR 3

R,EAM--See Table E-1 3
L

IR 4

Bit B,W R 4
(Dynamic)

L R 5

BRKPT - See Table E-5.

CALL See Table E-1 5

CALR RA 4

CHK B,W,L See Table E-1 B Assumes trap not taken; see table
E-5 if trap taken.

CLR B,W,L See Table E-1 1

COM R 1
B,W,L

IR,EAM--See Table E-1 2

COMFLG 1

CP (Register) B,W,L See Table E-1 1

CP (Immediate) B,W See Table E-1 2

L See Table E-1 3

CPD B,W,L IR 7

CPDR B,W,L IR 5+4n n is number of iterations.

CPI B,W,L IR 7

CPIR B,W,L IR 5+4n n is number of iterations.

E-5

Timing Formulae for Performance Evaluation

Table E-2. Execution fi_ for Instruction ~erations-Continued

Addressing Execution
Operation Data Type Modes fi_ Notes

CPSD B,W,L IR 8

CPSDR 8,W,L IR 4+5n n is number of iterations.

CPSI B,W,L IR 8

CPSIR B,W,L IR 4+5n n is number of iterations.

CVT (register) All See Table E-1 6

CVT (memory) All See Table E-1 6

CVTU (register) All See Table E-1 6

CVTU (memory) All See Table E-1 6

DEC R 1
B,W

IR,EAM--See Table E-1 3

L R 2

IR,EAM-See Table E-1 4

DEcr B,W See Table E-1 4 Cache bypassed for operand fetch,
treat like cache miss.

DI 3

DIV 5 Case 1
W See Table E-1 7 Case 2

25 Case 3 or 4

4 Case 1
L See Table E-1 6 Case 2

38 Case 3 or 4

DIVU W 6 Case 1
See Table E-1 8 Case 2

26 Case 3 or 4

L 5 Case 1
See Table E-1 7 Case 2

39 Case 3

E-6

Timing Formulae for Performance Evaluation

Table E-2. Execution n_ for InstrtEtion ~erations...{;ontinued

Addressing Execution
Operation Data Type Modes n_ Notes

DJNZ 2 Not taken
B,W R

5 Taken

3 Not taken
L R

6 Taken

EI 3

ENTER 15+4n n is the number of registers
specified in enter mask.

EX B,W See Table E-1 3

L See Table E-1 4

EXIT 10+n n is the number of the registers
specified in exit mask.

EXTR R 6

I R, EAM--See Table E-1 11

EXTRU R 6

IR,EAM--See Table E-1 11

EXTS B R 3

W,L R 2

HALT 1

IN B,W IR 2

DA 1
Add access time for input port.

L IR 3

DA 2

INC B,W R 1

IR,EAM--See Table E-1 3

R 2
L

IR,EAM--See Table E-1 4

INCI B,W See Table E-1 4 Cache bypassed for operand fetch,
treat like cache miss.

E-7

Timing Formulae for Performance Evaluation

Tabla E-2. Execution Ti_ for Instruction Operatlons-Contlnued

Addressing Execution
Operation Data Type Modes TiE Notes

IND B,W IR 11 Assumes no I/O wait states--I/O
wsit states must be added.

L IR 12

INDEX W See Table E-1 19 Assumes trap not taken; see
Table E-5 if trap is taken.

L See Table E-1 27

INDR B,W IR 3+8n n is number of iterations. Assumes
no I/O wait states--I/O wait states

L IR 4+8n must be added for each iteration.

INI B,W IR 11 Assumes no I/O wait states--I/O
wait states must be added.

L IR 12

INIR B,W IR 3+8n n is number of iterations. Assumes
no I/O wait states--I/O wait states

L IR 4+Bn must be added for each iteration.

INSRT R 17

IR,EAM--See Table E-1 1B

IRET 12

JP 1 Not taken
See Table E-1

4 Taken

JR 1 Not taken
RA

4 Taken

LD (register) B,W,L See Table E-1 1

LD (memory) B,W,L See Table E-1 1

LD (immediate) B,W,L See Table E-1 3

LDA See Table E-1 1

LDAR 1

LDCTL 7 FCW
(into Control 3 NSP

register) 6 PSAP

LDCTL 1
(from Control

register)

E-B

Timing Formulae for Performance Evaluation

Table E-2. Execution Time for Instruction Operations-Continued

Addressing Execution
Operation Data Type Modes Ti_ Notes

LOCTLB 1

LOCTLL 5 asp, PSAP
(into Control 11 NSP

register) 7 SITTIO, SOTTO, NITTO, NOT TO, SCCL, NSP

LOCTLL 1
(from Control

register)

LOO B,W,L lR 9

LOOR B,W,L IR 4+5n n is number of iterations.

LOl B,W,L IR 9

LOIR B,W,L IR 4+5n n is number of iterations.

LOK fl 1

LOM W See Table E-1 6+n/2 n is even number of registers.
(registers from

memory) 6+(n+1)/2 n is odd number of registers.

LOM W See Table E-1 2n n is even number of registers.
(memory from See note 2.

registers)
2 + 2n n is odd number of registers.

LOML L 1M 9+n
(registers from n is number of registers specified

memory) lR,EAM--See Table E-1 7+n in mask operand.

LOML L See Table E-1 3+4n n is number of registers specified
(memory from in mask operand.

registers) See note 2.

LON B,W,L See Table E-1 2

LOP See Table E-1 2

LOPS See Table E-1 11

LOR B,W,L 2

MUll W See Table E-1 15

L See Table E-1 24

E-9

Timing Formulae for Performance Evaluation

Table E-2. Execution n_ for Instruction ~erations-Continued

Addressing Execution
Operation Data Type Modes Ii- Notes

MULTU W See Table E-1 16

L See Table E-1 25

NEG B,W,L R 1

IR,EAM--See Table E-1 2

NOP 1

OR B,W See Table E-1 1

L See Table E-1 2

OTDR B,W IR 6

L IR 7

OTIR B,W, IR 6

L IR 7

OUT IR 2
B,W

DA 1

L IR 3

DA 2

OUTD B,W IR 2+4n n is number of iterations.

L IR 3+4n

OUT! B,W IR 2+4n n is number of iterations.

L IR 3+4n

PCACHE 6

POP B,W,L R 2

IR,EAM--See Table E-1 3

PTLB 6

PTLBE 6

PTLBN 6

E-10

Timing Formulae for Performance Evaluation

Table E-2. Execution Ti.e for Instruction Operations-Continued

Addressing Execution
Operation Data Type Modes Ti.e Notes

PUSH R 2
B,W,L

IR,EAM--See Table E-1 3

RES R 2
(Static)

B,W IR 4

EAM--See Table E-1 3

R 3

L IR 5

EAM--See Table E-1 4

RES (Dynamic) B,W R 4

L R 5

RESFLG 1

RET 6 Not taken

7 Taken

RL B,W R 2+n n = number of bits rotated.

L R 3+n

RLC B,W R 2+n n = number of bits rotated.

L R 3+n

RLDB R 6

RR B,W R 2+n n = number of bits rotated.

L R 3+n

RRC B,W R 2+n n = number of bits rotated.

L R 3+n

RRDB R 6

SBC B,W R 1

L R 2

SC - See Table E-5.

E-11

Timing Formulae for Performance Evaluation

Table E-2. Execution Time for Instruction Operations-Continued

Addressing Execution

Operation Data Type Modes U_ Notes

SDA B,W,L R 8 Right shift

9 Left shift

SDL B,W,L R 4

SET B,W R 1
(Static)

IR 3

EAM--See Table E-1 2

L R 2

IR 4

EAM--See Table E-1 3

SET B,W R 3
(Dynamic)

L R 3

SETFLG 2

SLA B,W,L R 9

SLL B,W,L R 4

SRA B,W,L R 8

SRL B,W,L R 4

SUB B,W,L See Table E-1 1

Tee B,W R 1

L R 2

TEST B,W,L See Table E-1 1

TESTA B,W,L See Table E-1 1

TRAP 4 Assumes trap not taken; see Table E-5
if trap taken.

TRDB B IR 11

TRDRB B IR 4+7n n is number of iterations.

TRIB B IR 11

E-12

Timing Formulae for Performance Evaluation

Table E-2. Execution Ti_ for Instruction ~rations-Continued

Addressing Execution
Operation Data Type Hodes Ti_ Notes

TRIRB B IR 4+7n n is number of iterations.

TRTDB B IR 11

TRTDRB B IR 4+7n n is number of iterations.

TRUB B IR 11

TRURB B IR 4+7n n is number of iterations.

TSET B,W See Table E-1 2 Cache bypassed for operand fetch,
treat like cache miss.

L See Table E-1 3

XOR B,W See Table E-1 1

L See Table E-1 2

Load EPU from B,W See Table E-1 4 Bus-timing scale factor is 2. Cache
Memory1 bypassed for operand fetch, treat

like cache miss.

7 Bus-timing scale factor is 4. Cache
bypassed for operand fetch, treat
like cache miss.

Load Memory B,W See Table E-1 4 Bus-timing scale factor is 2. Add
from EPU1 time to store operand, see memory

delays section.

7 Bus-timing scale factor is 4. Add
time to store operand, see memory
delays section.

Losd CPU from W,L R 9+(n/2) Bus-timing scale factor is 2. n is
EPU1 even number of words transferred.

9+(n+1)/2 Bus-timing scale factor is 2. n is
odd number of words transferred.

15+n Bus-timing scale factor is 4. n is
even number of words transferred.

16+n Bus-timing scale factor is 4. n is
odd number of words transferred.

E-13

Timing Formulae for Performance Evaluation

Table £-2. Execution TDe for Instruction ~rations-Continued

Addressing Execution
Operation Data Type Hodes TiE Notes

Load EPU from W,L R 8+(n/2) Bus-timing scale factor is 2. n is
CPU1 even number of words transferred.

B+(n+1/2) Bus-timing scale factor is 2. n is
odd number of words transferred.

12+n Bus-timing scale factor is 4. n is
even number of words transferred.

13+n Bus-timing scale factor is 4. n is
odd number of words transferred.

Load FCW from 10 Bus-timing scale factor is 2.
EPU1

17 Bus-timing scale factor is 4.

Load EPU from 9 Bus-timing scale factor is 2.
FCW1

14 Bus-timing scale factor is 4.

Internal EPU 1 Bus-timing scale factor is 2.
operation 1

2 Bus-timing scale factor is 4.

Note 1: The execution times reported for EPA instructions assume that the EPU does not force the CPU to
wait by asserting EPUBSY. Refer to the Z8070 APU Technical Manual (Zilog document number
03-B226-01) for more information about execution delays for particular EPA instructions and
consideration of instruction overlap between the CPU and EPU.

Note 2: Execution time for this instruction is less if burst transfers are supported for storing data
into memory. See memory delays section.

A cache reference inter lock occurs when an
instruction modifies a memory location and either
of the following two instructions fetches an
operand from memory (including immediate mode
operands other thsn those speci fied by special,
compact encodings, like the source operands for
BIT, DEC, and LDK instructions). This inter lock
is caused by contention for both the cache and
memory bus. When the instruction that modifies
memory is followed immedistely by an instruction
that fetches an operand, the pipeline delsy is 2
processor cycles; otherwise, the pipeline delay is
1 processor cycle.

E-14

For example, the following instruction sequences
cause cache reference interlocks when executed (in
linear mode).

LDL RR12(10), RRO
ADDL RR2, OOR20

LDL RR12(10), RRO
ADDL RR2, RR4
ADDL RR2, @RR20

//cache reference interlock//
//delay is 2 processor cycles//

//cache reference interlock//
//delay is 1 processor cycle//

Addressing Delays

Addressing delays can occur when instructions or
operands are located across longword or page
bounderies. Unlike memory delays due to cache and
TLB misses, which are described in the next
section, addressing delays can be calculated from
knowledge of the CPU's operation alone, without
considering the memory system's latency and
bandwidth.

An addressing delay of 1 processor cycle occurs
when an operand that crosses a longword boundary
is fetched. That is, when a longword is fetched
from an address for which the two least
significant bits differ from 00 or a word is
fetched from an address for which the two least
significant bits are 11. This delay arises
because the CPU must make two memory references on
its 32-bit memory bus.

An addressing delay of 1 cycle also occurs when
the CPU branches to a two-word instruction that is
located at an odd-word address. Another ad-
dressing delay of 3 cycles occurs when the PC is
incremented across a page boundary during se­
quential instruction processing. The former delay
arises from a gap in filling the instruction
buffer, while the latter delay is caused by the
need to translate the new page address in the PC.

Memory Delays

Memory delays occur when the CPU must wait to
access external memory to service a cache or TLB
miss or to store an operand. The duration of such
delays depends on the memory system's data path
width (16 or 32 bits), its access time, and its
support for burst transfers. Thus, a micro­
processor system designer can trade cost for per­
formance by specifying these memory parameters as
well as the CPU's clock speed and the bus-timing
scale factor. In the description that follows,
the times for single memory-read and -write trans­
actions are represented by T Rand T W processor
cycles, respectively; the bus-timing scale factor
(2 or 4) is represented by S. Burst transfers are
assumed to take the same times (T Rand TW) for
the initial transfer and 1 bus clock cycle for
each subsequent transfer.

The memory delay for both instruction and operand
cache fetch misses is TR• for instruction cache
misses, burst transactions are used as follows:
The CPU reads the missing word or longword (de­
pending on the memory's data path width) and

Timing formulae for Performance Evaluation

requests the words or longwords that follow in the
16-byte cache block by signaling a burst trans­
fer. The burst transfer continues until either
the end of the 16-byte block is reached or the
memory system indicates that it cannot support
further transfers.

for operand fetch cache misses, burst transactions
are used when more than one transfer is antici­
pated within a 16-byte block. Specifically, burst
transfers are used to fetch operands for the
following instructions: CPI(R), CPSI(R), CHECK,
EXIT (registers only), INDEX, IRET, LDI(R), LDM,
LDML, LDPS, OUTI(R), TRTI(R)B, and EPA instruc­
tions. Burst transfers are also used to fetch
longword and unaligned word operands from a 16-bit
wide memory, plus unaligned word and longword
operands that cross an aligned longword boundary
for a 32-bit wide memory. The CPU issues bus
transactions until the entire operand has been
fetched. I f more than one operand word (for
16-bit memory) or longword (for 32-bit memory)
remains to be transferred, the CPU transfers the
first word or longword and attempts to burst
transfer the remaining words or longwords until
either all transfers are complete, the end of a
16-byte block is reached, or the memory system
indicates that it cannot support further burst
transfers.

for example, assume that the CPU requires seven
longwords from memory location 8 to execute an
LDML instruction, that all the longwords are

missing from the cache, and that the memory system
is 32 bits and supports burst transfers of 16-byte
blocks. The CPU performs three bus transactions
to fetch the seven longwords. The first trans­
action is a burst transfer of the longwords at
locations 8 and 12, the second transaction is a
burst transfer of the four longwords beginning at
location 16, and the final transaction is a single
transfer of the longword at location 32.

for a burst transaction with a bus-timing scale
factor of 2, no memory delay in addition to T R
is incurred for burst transactions except when
other transactions are pending, as described
below. With a bus-timing scale factor of 4, an
additional memory delay of 1 processor cycle is
incurred for each burst transfer.

The memory delay for a TLB miss depends on the
time to fetch an aligned longword from memory and
the number of translation table levels. The
formulae in Table E-3 give the number of processor
cycle delays for a TLB miss, where N represents
the number of table levels.

E-15

Timing Formulae for Performance Evaluation

Table E-3. TLB Hiss Delay

Me.ary Syst_ TlB Hiss Delay

16-bit, no burst 11 + (5 + 2TR+ 5/2) X N

16-bit, burst 11 + (5 + TR + 5/2) X N
32-bit 11 + (5 + TR) X N

For example, assume that the time for a single
memory read transaction is 2 processor cycles, the
memory data path is 32 bits, and 2 levels of
translation tables are used. Then the memory
delay for a TLB miss is 25 processor cycles (25 =
11 + (5 + 2) X 2).

Besides cache and TLB misses, the CPU can also
experience memory delays if one bus transaction is
held pending while another is performed. In such
cases of bus contention, the CPU completes the
first transaction, then after 1 bus cycle delay,
initiates the pending transaction. Thus, addi­
tional cycles of delay occur if the servicing of a
cache miss must wait for the completion of a
previous burst memory-read transaction or a
memory-write transaction. (The servicing of a
cache miss may also be delayed by an EPA instruc­
tion transfer for a previous EPU internal oper­
ation instruction.) Similar 1 y, additional delay
is incurred when the storing of an operand must
wait for the completion of a previous burst-memory
read transaction or a memory-write transaction.
In general, the delays due to bus contention
either between read transactions or between read
and write transactions can be ignored in calcu­
lating the CPU's performance; these delays have in
large part been counted by the cache misses and
cache interlocks previously described. Delays
caused by bus contention between write trans­
actions, though, must be considered, as explained
below.

Because the CPU buffers the data for only one
write transaction at a time, when an instruction
that stores an operand to memory is followed
shortly by another instruction that stores to
memory, the second instruction is delayed. If the
two store instructions are separated by 6. in­
structions, where the value of 6. for consecutive
instructions is 1, then the CPU is de layed by
Max(O, TW + 5/2 - 6.) processor cycles. For in­
stance, assume that the time for a single memory­
write transaction is 3 processor cycles and the
bus-timing scale factor is 2. Then the CPU is

E-16

delayed by 3 processor cycles when the second
store instruction immediately follows the first or
by 2 processor cycles if there is one non-store
instruction intervening between the two store in­
structions. If the store instructions are sepa­
rated by more than three instructions that do not
store, then there is no delay.

Two or three consecutive memory-write transactions
are required for an instruction that stores an
unaligned word or longword and also for an in­
struction that stores an aligned longword to a
16-bit memory. The memory delay in processor
cycles is shown for these cases in Table E-4.

Certain instructions, like LDIR and LDM, store
more than one operand to memory. The memory
delays for such instructions are included in their
execution times listed in Table E-2 based on the
following assumptions: the operands are aligned,
the memory is 32 bits wide, and TW + 5/2 is four
processor cycles. If TW + 5/2 exceeds four
processor cycles, then the excess must be counted
as a memory delay for every operand stored by the
instruction. Similarly, if operands are unaligned
or the memory is 16 bits wide, then an additional
memory delay must be counted for every stored
operand, as shown in Table E-4. For example, if
an LDIR instruction stores 3 aligned longwords to
a 16-bit memory, then the instrucion is delayed by
TW + 5/2 processor cycles for each of three
operands, or 3TW + 35/2 processor cycles.

The CPU attempts to use burst-write transactions
to store operands for ENTER (registers only), LDM,
LDML, and EPA instructions. In storing an operand
for these instructions, if the starting address is
not aligned to the size of the memory's width
(either 16 or 32 bits), the CPU issues one or two
single-wr He transactions to store the operand's
initial bytes until an aligned address is
reached. Then, while one or more operand words
(for 16-bit memory) or longwords (for 32-bit
memory) remain to be transferred, the CPU
transfers the first word or longword and attempts
to burst transfer the remaining words or longwords
until all transfers are complete, the number of
rema1n1ng bytes is smaller than the memory's
width, the end of a 16-byte block is reached, or
the memory indicates that it cannot support
further burst transfera. If any bytes remain to
be stored, the CPU issues one or two single-write
transactions to store the final bytes.

Timing Formulae for Performance Evaluation

Table E-'I. Me_ry Delays for Storing Word and lortgIIOrd Operanda

Address Bits
A,Ao Data Type

W

00

L

W

01

L

W

10

L

W

11

L

For example, assume the CPU is storing seven
longwords to memory location 13 to execute an
ENTER instruction and that the memory system is 32
bits and supports burst-write transfers of 16-byte
blocks. Then the CPU performs five transactions
to store the seven longwords:

1. Store a single byte at location 13.
2. Store a word at location 14.
3. Burst transfer four longwords to store at

location 16.
4. Burst transfer two longwords to store at

location 32.
5. 5tora a single byte at location 40.

Bus Width MeIIIory Delay
(bits) (Processor Cycles)

16 0

32 0

16 Tw + 5/2

32 0

16 Tw + 5/2

32 Tw + 5/2

16 2Tw + 5

32 2Tw + 5

16 0

32 0

16 Tw + 5/2

32 Tw + 5/2

16 Tw + 5/2

32 Tw + 5/2

16 2Tw + 5

32 2Tw + 5

Thus, using memory systems that support
burst-write transactions, the execution time for
ENTER, LDM, LDML, and EPA instructions are less
than the values shown in Table E-2. To calculate
the appropriate instruction execution time for
such systems, add the number of cycles to perform
the memory references (for LDM, LDML, and EPA
instructions if the last transaction is not a
burst transfer, count only one cycle for it) to 15
for ENTER, 3 for LDM, 6 for LDML, and 4 for EPA
instructions.

E-17

Timing formulae for Performance Evaluation

Perforaance Calculation

In order to determine the CPU's performance for a
program workload, the aversge number of processor
cycles per instruction for execution (T E),
pipeline (Tp), addressing (TA), and memory
(1M) delays can be calculated by measuring the
frequency of occurence for the various delay
causes and using the formulae presented in
previous sections. The average number of
processor cycles per instruction (TI) can be
estimated by adding the individual delay
components as shown below.

Since two clock cycles are in every processor
cycle, the following formula gives the performance
of a CPU whose clock cycle time is TC'

Performance = (2TITC)-1

Because certain details of the CPU's operation
have been omitted to simplify the description and
analysis presented in this appendix, the formula
above gives only an approximate prediction of the
processor's actual performance. In general, the
analysis is conservative; performance will
typically be better then predicted because the
simultaneous occurence of two or more delay
causes has been ignored. For example, the CPU can
handle a cache miss for one instruction· while
executing another multiple-cycle instruction, like
DIV. But, the time during which the delay causes
are overlapping is counted twice because execution
and memory delays are separately calculated.
Nevertheless, the analysis described above is
extremely useful, though inexact, because it is
much simpler and faster than a register-trans fer­
level simulation necessary for exact performance
calculations.

Table E-5. Exception Processing Ti_

E-18

Exception

Bus Error
Non-maskable interrupt
Vectored interrupt
Non-vectored interrupt
Extended Instruction trap
Privileged Instruction trap
System Cell trap
Address Translation trap

Breakpoint
Integer Overflow trap
Bounds Check trap

Index Error trap

Conditional trap

Processing Delay

29

21
26
21
23
23
22
24

22
2D
26
28
26
28
23

Unimplemented Instruction trap 23
PC trap 23
Trace trap 20

Notes

Add 11 cycles if sccess protection violation
detected for translation table descriptor
register. Otherwise add number of cycles
given in Table E-3 to access levels of
translation table until exception detected.

Source operand below lower bound
Source operand above upper bound
Source operand below lower bound
Source operand above upper bound

Note 1: For all exceptions, add the time to store Program Status registers onto the System
Stack and to load Program Status registers from the Program Status Area in external
memory.

Note 2: For Bus Error and Address Translation exceptions, also add the time to store the
violation longword address onto the System Stack.

Note 3: For interrupts, add the time for the Interrupt Acknowledge transaction.

Exceptioo Processing Delays

In addition to processing instructions, the CPU
must occasionally process exceptions. Table E-5
lists the delays incurred for processing various
types of exception. Calculating the delays
involves determining the time to store the Progrsm
Status registers to memory and fetching new values
for the Program Status register from the Program
Status Area. For example, assume that the time
for a single memory-read trensaction is 2 pro­
cessor cycles and the time for a single memory­
write transaction is 3 processor cycles, the
memory data path is 32 bits, and the bus-timing
scale factor is 2. Then the time to store and
fetch the Program Status is 13 processor cycles:
The 4 memory references require 3 processor cycles
each, and an idle bus cycle follows each of the
first 3 references. Thus, the delay for pro­
cessing a System Call trap is 35 processor cycles.

EXllllple

This section describes an example of performance
evaluation for a workload containing fifteen
programs representative of 16-bit microprocessor
applications. The programs are all written in C
and run in normal compact mode under Zilog's ZEUS
version of the UNIX* operating system. Table E-6
lists the programs in the workload, which includes
five million executed instructions.

Table E-6. Progr_ Workload Used for ZIIO,OOO
CPU Perfonance Evalu&tioo

Progr- Use

C1 C compiler parser
C2 C compiler code generator
C3 C compilsr optimizer
C4 C compiler lister
CPP C compiler preprocessor
DIFF File comparison
ED Line editor
GREP Pettern searching
LS File directory listing
NM Load module name listing
OD Octal dumping of core imagea
PR Format for line printer
SED Stream editor
SORT Sorting
VI Screen editor

*UNIX is a trademark of AT&T Bell Laboratories.
Zilog is licensed by AT&T Technologies, Inc.

Timing Formulae for Performance Evaluation

In order to calculate the frequencies of the
various delay components, the programs were
interpreted by a software simulator for the CPU's
instruction set. The performance was then
determined for systems composed of a 12 MHz CPU
and each of three different memories that varied
in their data path eize and support for burst
transfers.

The execution delay
determined from the
instruction. Table

for the
frequency
E-7 shows

workload was
distribution of

the ten most
cOlM1onl y executed instructions
frequencies as a percentage
instructions. The average execution
processor cycles per instruction.

and their
of total

delay is 1.8

Table E-7. Moat ~ly
Executed lnatructioos

Instructioo
Addressing Frequency

Opcode Mode (percent)

JR RA 19.0
LD(register) R 10.7
INC R 7.9
CP(register) 1M 4.7
LD(register) X 4.4
LDB(register) IR 4.1
DEC R 3.3
EXTSB R 3.2
LD(memory) X 2.1
LD(memory) IR 2.0

The average pipeline delay per instruction is 0.3
processor cycle. A register interlock occurs for
11% of instructions, causing 0.19 processor cycle
delay, and a cache reference inter lock occurs for
6% of instructions, causing 0.11 processor cycle
delay.

Addressing delays are 0.03 processor cycles per
instruction. These delays result almost entirely
from branches to unaligned two-word instructions,
because the compiler positions operands at aligned
addresses and page-crossings rarely occur during
sequential instruction processing.

In calculating memory delays, three memory systems
were considered. The first memory has a 16-bit
data path, a cycle time of 2 processor cycles for
read and 3 processor cycles for write and no burst
transfers. The second and third memories have
32-bit data paths and cycle times of 2 processor
cycles for read and 3 processor cycles for write,
but the third supports burst transfers whereas the

E-19

Timing Formulae for Performance Evaluation

second does not. All three systems use s bus
clock scaled by s fsctor of 2 from the CPU's
clock.

To determine the svarage delsy caused by cache
misses it is useful to compute the average number
of misses per instruction,~. To calculste ~, it
is necesssry to know the csche hit ratio (h),
which is the fraction of fetched words that are
located in the cache, and the average number of
fetched words per instruction. For this worklosd,
an aversge of 1.4 instruction words snd 0.3 oper­
and .word are fetched per instruction. Therefore,
the everage number of cache misses per instruction
is given by ~ = 1.7 (1-h), snd the average delay
per instruction due to cache misses is 2~. The
values of cache hit ratiO, misses per instruction,
and delays per instruction are shown in Table E-B.

Table [-8. Cache ... TlB Miss Delays

Me.ory Syst_
16-8it 32-8it 32-8it

No Burst No Burat Burst

Cache Perfo~

Hit rstio 0.62 0.75 O.BB
Misses per instruction 0.65 0.42 0.21
Delay per instruction 1.3 0.B4 0.42

nB Perfor.a1Ce

Hit Ratio 0.99 0.99 0.99
Misses per instruction 0.02 0.02 0.02
Delay per instruction 0.57 0.46 0.46

Cslculating the average delay caused by TLB misses
is similar to cache misses, as described above,
but operand stores as well as fetches can cause
TLB misses. This is because the physical frame
address in the page table entry is needed to atore
an operand. On an average, 0.15 operand word is
stored per instruction. The delay to service a
TLB miss for two-level translation tables can be
derived from the formulae previously given in the
section on memory delays: 31 processor cycles with
the 16-bit memory and 25 processor cycles with the
32-bit memory. The values of nB hit ratio,
misses per instruction, and delays per instruction
are shown in Table E-B.

In addition, the delay caused by bus contention
amounts to 0.2 procassor cycle per instruction for
all of the memory systems. In general, a 32-bit
memory would exhibit less bus contention then a
16-bit memory, but the memory systems show
negligible difference in bus contention for this
workload, which makes little use of longword
operands. (Fewer than 2~ of memory operands are
longwords.)

The performance of a 25 MHz CPU with each of the
three memory systems is calculated by adding the
various delay components. The reaults, summarized
in Table E-9 show the performance ranges from 3.1
to 5.0 million instructions per second (MIPS).
For short sequences of instructions executed
repeatedly, it is posaible to approach the maximum
performance of 12.5 MIPS.

Table [-9. Proceas1ng Perfontmce

MaDry Syst_

16-bit no-burst
32-bit no burst
32-bit burst
32-bit burst,

no translation

Perfor8alC8
(MIPS)"

3.1
3.7
4.2

5.0

* The analysis used in calculating the performance
is conservative; the delays are independently
calculated, but in practice the delays may often
overlap. Consequently the actual performance may
be better than the values shown in the table.

[-20

TI = T[+ Tp + TA + TN
Processor cyclea Per Instructioo

4.0 = 1.B + 0.3 + 0.0 + 1.9
3.4 1.B + 0.3 + 0.0 + 1.3
3.0 1.B + 0.3 + 0.0 + 0.90

2.5 = 1.8 + 0.3 + 0.0 + 0.4

G

access protection: A function of memory manage­
ment that controls read, write and execute access
to memory locations, protecting proprietary or
operating system memory areas from tampering by
unauthorized users. The CPU uses the protection
(PROT) field to determine access rights for a page
or segment.

access protection violation: An incorrect or for­
bidden attempt to access a memory location; for
example, an attempt to write to a read-only page.
An access violation causes the CPU to generate an
Address Translation trap.

activation record:
the local storage,
exception handler

A data structure containing
saved register contents, and
address associated with the

invocation of a procedure. Activation records are
stored on the processor stack in a linked list. An
activation record is allocated when the Enter
instruction is executed at the beginning of a
procedure. The record is released when the Exit
instruction is executed at the end of a procedure.

addressing mode: The way in which the location of
an operand is specified. There are nine addressing
modes: Register, Immediate, Indirect Register,
Direct Address, Index, Base Address, Base Index,
Relative Address, and Relative Index.

addreas tag: The portion of certain associative
memories that is compared against a referenced
address to determine whether the matching value is
found. The address tag for a Translation Lookaside
Buffer entry is the logical page address; the
address tag for a cache block is the physical
memory address.

address translation: The process of mapping log­
ical addresses into physical addresses.

Address Translation trap: An exception that
occurs during address translation when either an
access protection violation or an invalid table
entry is detected. The instruction being executed
is suspended, and the PC, FCW, identifier word,
and the logical address that caused the trap are
saved on the system stack.

Glossary

aligned address: An address that is a multiple of
an operand's size in bytes. Aligned word addresses
are a multiple of two; aligned longword addresses
are a multiple of four.

associative .e.ory: A memory in which data is
accessed by specifying a value rather than a loca­
tion. The Translation Lookaside Buffer and cache
are associative memories.

autodecr_ent: The operation of decrementing an
address in a register by the operand's size in
bytes. The decrement amount is one for byte
operands, two for word operands, and four for
longword operands.

autoincra.ent: The operation of incrementing an
address in a register by the operand's size in
bytes. The increment amount is one for byte
operands, two for word operands, and four for
longword operands.

base address: The address used, along with an
index and/or displacement value, to calculate the
effective address of an operand. The base address
is located in a general-purpose register, the Pro­
gram Counter, or the instruction.

Base Address (RA) addressing .ode: In this mode,
the displacement in the instruction is added to
the contents of the base register to obtain the
effective address.

Oase Index (OX) addresaing.ode: In this mode,
the contents of the base register and index regis­
ter are added to the displacement in the instruc­
tion to obtain the effective address.

bit field: One to thirty-two contiguous bits that
can cross byte boundaries. A bit field is speci­
fied by its byte origin, its bit position from the
origin, and its size in bits. The instruction set
allows bit fields to be extracted from a long word
and inserted into a longword.

burst transaction: The transfer of several con­
secutive items of data (either words or longwords)
in one memory transaction.

G-1

Glossary

bus error: An exception that occurs when external
hardware identifies an irrecoverable error during
a data transfer on the external interface.

bus .aster: The device in control of the bus.

bus retry: A response to a data transfer transac­
tion that indicates the transaction must be tried
again because of some transient error condition.

byte: A data item containing 8 contiguous bits. A
byte is the basic data unit for addressing memory
and peripherals.

cache: An on-chip buffer that automatically
stores copies of recently used memory locations
(both instructions and data), allowing fast access
on memory fetches.

CCllpset !lOde: A mode of address representation,
usually used for applications with small memory
requirements, in which 16-bit addresses are manip­
ulated; address calculations involve all 16 bits.
The logical address is extended to 32 bits by con­
catenating the 16 most-significant bits of the
Program Counter.

co.pletion: An instruction ending in which the
current instruction has been completely executed.
This is the normal instruction ending, but
exceptions can cause a different ending.

coprocessor: A processor, such as a Z8070 Arith­
metic Processing Unit, that works synchronously
with the CPU to execute a single instruction
stream using the Extended Processing Architecture
(EPA) •

Direct Address (DA) addressing lIIOde: In this
mode, the effective address is contained in the
instruction.

displaceEnt: A constant value located in the
instruction that is used for calculating the
effective address of an operand.

dyna.ic operation: A bit manipulation operation
in which the source operand is located in a regis­
ter and therefore its value is changeable.

effective address: The logical memory address of
an operand, calculated by adding the base address,
an optional index value, and an optional displace­
ment.

EPU internal operation: An EPU-handled operation
that controls EPU operations but does not transfer
data.

G-2

exception: A condition or event that alters the
usual flow of instruction processing. The Z80,OOO
CPU supports four types of exception: reset, bus
error, interrupts, and traps. When an exception
occurs, the CPU saves the Program Status on the
system stack and fetches a new Program Status from
the Program Status Area.

exception processing state: A CPU operating state
that results when an exception occurs, during
which the CPU stores values from the Program
Status registers to memory, and fetches values
from memory for the Program Status registers.

execute access: The type of memory access used by
the CPU for fetching instructions and immediate
mode operands.

Extended Addressing Mode (EAM): An addressing
mode in which one or more extension words follow
the opcode. In compact mode, EAMs are Direct
Address and Index. In segmented or linear mode,
EAMs are Direct Address, Index, Base Address, Base
Index, Relative Address and Relative Index.

Extended Processing Architecture (EPA): A CPU
facility controlled by the EPA bit in the Flag and
Control Word that allows the operations defined in
the architecture to be extended by hardware or
software. If enabled, the CPU transfers EPA
instructions to an Extended Processing Unit (EPU)
for execution; if disabled, the CPU traps EPA
instructions for software emulation.

Extended Processing Unit (EPU): An external
device, such as a Z8070 APU, that handles Extended
Processing Architecture instructions (such as
floating-point arithmetic).

Flag and Control Word (FOI) register: One of the
two Program Status registers, a 16-bit register
that contains the flags and bits that control the
operation of the CPU.

flyby transaction: A transaction controlled by
the bus master, but in which another device trans­
fers data to the responding device.

fra.e: A 1K-byte physical memory unit used by the
memory management mechanism to map 1K-byte logical
memory pages. A frame is speCified by the 22 most­
significant bits of the physical address.

Frame Pointer (FPh The register that points to
the current activation record on the stack. In
compact mode, the FP is a word register, R14; in
segmented or linear mode, a longword register,
RR12.

general-purpose registers: The 16 versatile reg­
isters that can be used as data accumulators,
index values, or memory pointers.

global bus: A bus shared by tightly-coupled,
multiple CPUs; the bus master is chosen by an
external arbiter device.

halted state: A CPU operating state that results
when a Halt instruction is executed or a bus error
exception occurs during exception processing.

Hardware Interface Control register (HICR): The
32-bit special-purpose register that specifies
certain characteristics of the hardware configura­
tion incorporating the CPU, such as bus speed,
memory data path width, and number of wait states.

hit: A hit occurs when an associative memory is
searched for a value and a match is found.

identifier word: A 16-bit code saved on the
system stack during exception processing that
provides information about the cause of the
exception.

I~iste (1M) addresaing 1IOde: In this mode, the
operand is contained in the instruction.

index: A value located in a register used for
calculating the effective address of an operand.
The index value usually specifies the calculated
offset of an operand from the origin of an array
or other data structure.

Index (X) addresaing lIOde: In this mode, the
contents of an index register are added to a base
address contained in the instruction to obtain the
effective address.

Indirect Register (IR) addresaing!lOde: In this
mode, the effective address is contained in a
register.

instruction executing atate: A CPU operating
state in which the CPU executes instructions.

interrupt: An asynchronous exception that occurs
when the NMI, VI, or NVI line is activated,
usually when a peripheral device needs attention.

invalid table entry: A cause of an Address Trans­
lation trap that is detected during address trans­
lation if the CPU fetches a translation table
entry with a Valid bit of O.

large~: In the segmented mode, one of the
128 segments in the upper half of the memory
address space. Segments are 16M bytes in size or
smaller.

Glossary

lesat recently used (LRU): The CPU records the
order of use for Translation Lookaside Buffer
entries and cache blocks. When a TLB miss or cache
tag miss occurs, the CPU replaces the least
recently used entry or block.

length counter: A register that contains the
value that is the length of a block or string of
data that is manipulated by instructions.

linear !lOde: A mode of address representation in
which 32-bit addresses are manipulated, prov iding
uniform and unstructured access to the 4G bytes of
memory. Address calculations involve all 32 bits.

local bus: The bus controlled by the CPU and
shared with slave processors.

logical address: The address manipulated by the
program. The memory management mechanism trans­
lates logical addresses to physical addresses.

longword: A data item containing 32 contiguous
bits.

loosely-coupled OPUs: CPUs that execute indepen­
dent instruction streams and communicate through a
multi-ported peripheral, such as a Z8038 flO I/O
interface unit.

_ry _anag_t: The process of translating
logical addresses into physical addresses, plus
certain protection functions. In the Z80,000 CPU,
memory management is integrated into the chip.

__ Y-llapped I/O: A memory management feature
that allows logical memory addresses to be mapped
to physical I/O addresses. Memory mapped I/O pro­
vides protected access by application programs to
peripherals.

_iss: A miss occurs when an associative memory
is searched for a value and no match is found.

The highest priority
interrupt; cannot be disabled.

nonvectored interrupt: The lowest priority
interrupt, which does not use an identifier word
as a vector to an interrupt service routine; can
be disabled.

nar.al !lOde: A CPU mode of operation, generally
used for application programs, in which the SIN
flag in the FCW is O. In this mode, the CPU can­
not execute privileged instructions or access pro­
tected memory locations.

G-3

Glosssry

Nomal Stack Pointer (NSP): The Stack Pointer
used while the CPU is in normal mode. System mode
programs can access the NSP with the Load Control
instruction.

overflow stack: The stack used for saving the
Program Status, identifier word, and exception
parameters when an address translation exception
occurs during exception processing.

Overflow Stack Pointer (OSP): The 32-bit regis­
ter that contains the physical address of the
overflow stack.

page: A 1K-byte logicsl memory unit mapped by
the memory management mechanism to a 1K-byte phys­
ical memory frame. A page is specified by the 22
most-significant bits of the logical address.

page table: The third level of translation
tables, containing the physical frame address used
during address translation.

paged translation: A method of address transla­
tion in which the logical and physical address
spsces are divided into fixed, equal-sized units
called pages and frsmes, respectively. During
address translation, a logical page is mapped to
an arbitrary physical frame.

partie! co.pletion: An
which the execution
instruction is disrupted
trap or interrupt.

instruction ending in
of an interruptible
before completion by a

physice! address: The 32-bit address required for
accessing memory and peripherals, obtained by the
CPU's address translation hardware.

plpaline: A computer design technique in which an
instruction is executed in a sequence of stages by
different functional units. The functional units
can be operating on several different instructions
simultaneously, similar to an automobile assembly
line.

prefetching: Ability of the CPU to fetch an
instruction or opersnd before the previous
instructions have been completed.

privileged instruction: An instruction that per­
forms I/O operations, accesses control registers,
or performs some other operating system function.
Privileged instructions execute in system mode
only.

Progr_ Coulter (PC): One of the two Program
Status registers, a 32-bit register that contains
the address of the current instruction.

G-4

Progr_ status registers: The two registers (Pro­
gram Counter and Flag and Control Word) that con­
tain the Program Status. The Program Status is
automatically saved during exception processing.

Progr_ Status Area (PSA): The area in memory
reserved for storing the Program Status of the
interrupt and trap service routines.

Progr_ Status Area Pointer (PSAP): The 32-bit
register thst contains the physical, base address
of the Program Status Area.

protection: See access protection.

protection (PROT) field: A 4-bit field contained
in the translation table descriptor registers and
translation table entries that specifies access
protection information for s logical address dur­
ing sddress translation.

quachlOrd: A data item containing 64 contiguous
bits.

read access: The type of memory access used by
the CPU for fetching data operands other than
those specified by Immediate mode.

Register (R) addressing.ode: In this mode, the
operand is in a general-purpose register.

Relative Address (RA) addressing.ode: In this
mode, the displacement in the instruction is added
to the contents of the Program Counter to obtain
the effective address.

Relative Index (RX) addressing IMIde: In this
mode, the contents of the Program Counter and
index register are added to the displacement in
the instruction to obtain the effective address.

relocation: The process of mapping a logical
address to a different physical address, so that
multiple processes can use the same logical
address for distinct physical memory locations.

reset: A CPU operating state or exception that
results when a reset request is signaled on the
RESET line. A reset initializes the Program Status
registers.

responder: The device to which bus transactions
transfer data.

result register: The register that holds the
result of an operation.

~ed .ade: A mode of address rsprssentation
that supports either 64K- or 16M-byte segments
with 32-bit addressss. The most-significant
address bit aelects either a 15-bit segment number
with 16-bit offset, or a 7-bit segment number with
24-bit offset. Calculations affect only the offset
snd not the segment number.

self....adUying progr_: A program that etorss to
a location from which a subsequent instruction is
fetched.

slave proceeaor: A processor, such as a Direct
Memory Accees tranefer controller, that performs
dedicated functions asynchronously to the CPU.

a.all~: In the segmented mode, one of the
32,768 segments in the lower half of the memory
address space. Segments are 64K bytes or smaller.

spatial locality: The characteristic of program
behavior whereby consecutive memory references
often apply to cloaely located addresses.

speeial-purpoaa control regieters: Nine registers
used for system configuration, memory management,
Program Status, and CPU control.

stlMlk Pointer (SP): A general-purpose register
indicating the top (lowest address) of the
processor stack used by Call, Enter, Exit, and
Return instructions for linking procedures. The SP
is a word register, R15, in compact mode, and a
longword register, RR14, in linear or segmented
mode. Normal and system modes of operation use
separate stack pointers, the Normal Stack Pointer
(NSP) and System Stack Pointer (SSP).

static operation: A bit manipulation operation in
which the source operand is an immadiate value and
is therefore fixed (static).

l1118p1111Bion: An instruction ending in which the
the current instruction has not been completed
because a trap is detected during instruction
execution. The instruction can be completed by
eliminating the cause of the trap and atarting the
instruction again.

auapension with PC .adification: An instruction
ending similar to suspension, but the Program
Counter saved on the system stack during exception
processing must be decremented by two before
starting the instruction again.

Syst. Configuration Control longIIord register
(SCCl): The 32-bit special-purpose register that
contains control bits for addrsss translation,
cache, and exception processing.

Glosssry

ayata..ada: A CPU mods of operation, used for
operating system functions, in which the sIN flag
in the FCW is 1. In this mode, the CPU can exe­
cuted privileged (and all other) instructions.

Syat. StlMlk Pointer (SSP): The Stack Pointer
ussd while the CPU is in system mode. Normal mode
programs cannot access the SSP.

tag hit: On a memory reference, a tag hit occurs
when the cache address tags are searched for the
refsrsnced address and a match is found.

tag 8iaa: On a memory rsfsrsnce, s tag miss
occurs when the cache address tags are searched
for the referenced address and no match is found.

te.poral locality: The chsracteristic of program
behavior whereby memory references often apply to
a location that has been referred to recently.

tanlination: An instruction ending in which the
current instruction has not bsen completed and it
is not possible to complete the instruction by
starting it again.

tightly-coupled CPOs: CPUs that execute indepen­
dent instruction streams and communicate through
shared memory on a common (globsl) bus.

Tr..J.ation LooIcaai.de Buffer (TLB): An on-chip
memory that automstically stores translation
information for the most rscently used memory
pages.

tr..J.ation table: One of three levels of tables
selectsd by the page descriptor registers during
address translation. Each lsvel corresponds to a
field in the logical page address.

tr..J.ation table descriptor reg1ater: One of
four registers that contain the physical addresses
of the translation tables used by the memory
management mechaniam during address translation.

tr..J.ation table entry: An entry in one of the
three levels of translation tables. Entries in the
first two levels point to another level table.
Entries in the third level (page table) contain
the physical frame addrsss used during
translation.

trap: An exception that occurs when certain con­
ditions, such as an access protection violation,
are detected during execution of an instruction.

G-5

Glossary

unaligned ~I An addrsas that is not a mul­
tipls of an opsrand's sizs in bytss. Odd addressss
ars unaligned for words and longwords; even
addreeses that are not multiples of four sre
unaligned for longwords.

vacI:ored interrupt: An interrupt that uses the
low-order byte of the identifier word as a vector
to an interrupt ssrvice routine; can be diaabled.

virtual ...ary: A memory managemant tachniqua in'
which the system's logical memory address spsee is
not necesaarily the same as, and can be much
larger than, the available physical memory.

G-6

wrd: A data item containing sixteen contiguous
bits.

wrd hit: On a memory reference to the cache, a
tag hit occurs and a valid copy of the word is
atored in the cache.

wrd .iaa: On a memory reference to the cache, a
tag hit occurs but a valid copy of the word ia not
atored in the cache.

writs acceaa: The type of memory acceas used by
the CPU for storing dsta operands.

I

-A-

Access protection, 1:2, 4:8
Address cslculations, 5:1,3
Addressing delsys, E:15
Addressing modes, 4-14, 5:2

Bsse Address (BA), 5:6,10
Bsse Index (BX), 5:6,11
Direct Address (DA), 5:5,8
Extended, 5:14
Immediste (1M), 5:4,8
Index (X), 5:5,9
Indirect Register (IR), 5:4,8
Relstive Address (RA), 5:7,12
Relative Index (RX), 5:7,13
used in compact mode, 5:4-7
used in segmented and linear modes, 5:7-12

Address representation, 1:1, 3:1-2
Compact mode, 1:1, 3:1-2
Linear mode, 1:2, 3:1-2
Segmented mode, 1:1-2, 3:1-2

Address spaces, 1:1, 4:1-3
Address trsnslation, 1:2, 4:4
Address Translstion trap, 7:4
Architecture, 1:1
Arithmetic instructions, 6:2-3
Assembler language syntex, 6:10-11

-8-

Base Address (BA) sddressing mode, 5:6,10
Bese Index (BX) addressing mode, 5:6,11
Bit field instructions, 6:5-6
Bit Manipulation instructions, 6:5
Block diagram of Z8D,OOO CPU, 1:6
Block Transfer and String Manipulstion
instructions, 6:7

Breakpoint trap, 7:4
Burst Memory Resd snd Write transaction, 8:10-11
Burst Memory Read timing, B:12
Burst Memory Write timing, B:13
Burst transfer protocol, 8:11
Bus acknowledge, B:22-24
Bus error, 7:4, 8:21
Bus operations, 8:1
Bus request, B:22-24
Bus Request Acknowledge timing, 8:22

Index

Bus request protocol, 8:24
Bus retry, 8:21
Bus timing, 8:6-7
Bus transaction response, 8:8
Bus transsctions, 8:7-21

Burst Memory Resd and Write trensaction, 8: 10-11
CPU-EPU Data trsnsactions, 8:17-18
CPU-EPU Instruction transactions, 8:16
CPU-Memory transactions, 8:8-12
EPU-Memory transactions, 8:18-19
EPU transactions, 8:13-15
Input/Output transactions, 8:12-13
Interlocked Memory transsctions, 8:11-12
Single Memory Read and Write trsnsactions,
8:8-10

-C-

Cache, 1:4, 8:3, C:1-3
Compact mode, 1:1, 3:1-2, 6:13
Compatibility with Z8000 CPU, 1:6, A:1
Condition codes, 6:9-10
Conditional trap, 7:4
Coprocessor, 1:4, 8:2
CPU Bus Request Protocol, 8:24
CPU Control instructions, 6:8-9
CPU-EPU Data Read timing, 8:17
CPU-EPU Data transactions, 8:17-18
CPU-EPU Data Write timing, 8:1B
CPU-EPU Instruction transactions, 8:16
CPU-EPU Instruction Transfer timing, 8:16
CPU internal organizatIon, 1: 5-6
CPU-Memory transactions, 8:8-12

-D-

Data formats, 2:1
Demand-paged virtual memory, 1:2
Direct Address (DA) addressing mode, 5:5,8

-E-

EPA, see Extended Processing Architecture
EPU-Memory Single Write timing, 8:19 EPU-Memory
transactions, 8:18-19

1-1

Index

-E- (Continued)

EPU transactions, 8:13-15
Exception handlera, 7:7
Exception processing delays, E:19-20
Exceptions, 1:3, 7:3-9

8us error, 7:4
Interrupts, 7:4
Priority of, 7:8-9
Reset, 7:3
Traps, 7:4,5

Execution time, E:3
Extended addressing modes, 5:14, 6:13
Extended Instructions, 6:9
Extended Instruction trap, 7:4
Extended Processing Architecture (EPA), 1:3,4
External interface, 1:4, 8:1-27

Flag and Control Word register, 1:1, 2:2-3
Flags, 6:9-10
Floating-point operations, 1:3
Flyby transactions, 8:1
Frame pOinter, 1:1, 2:2

General-purpose register file, 2:1-2
Global Bus Request timing, 8:23

Hardware Interface Control register (HICR), 2:4,
8:5-6

-1-

Immediate (1M) addressing mode, 5:4,8
Index (X) addressing mode, 5:5,9
Indirect Register (IR) addressing mode, 5:4,8
Input/Output instructions, 6:8
Instruction execution, 7:2-3
Instruction format, 6:12
Instruction Set, 6:16-214

Arithmetic instructions, 6:2-3
Bit Field instructions, 6:5-6
Bit Manipulation instructions, 6:5
Block Transfer and String Manipulation
instructions, 6:7

CPU Control instructions, 6:8-9

14

Descriptions and formats, 6:16-214
Extended Instructions, 6:9
Flags and condition codes, 6:9-10
Input/Output instructions, 6:8
load and Exchange inatructions, 6:1-2
logical instructions, 6:3-4
Notation and binary encoding used in, 6:10-12
Program Control instructions, 6:4-5

Integer Arithmetic Error trap, 7:4
Interlocked Memory transactions, 8:11-12
Internal Operation and Halt timing, 8:21
Internal Operation and Halt tranaactions, 8:21
Interrupt Request/Acknowledge timing, 8:20
Interrupt Request and Acknowledge, 8:20-21
Interrupts, 1:3, 7:4

Non-maskable, 1:3
Non-vectored, 1:3
Vectored, 1:3 I/O Read timing, 8:14

linear mode, 1:2, 3:1-2, 6:13-15
load and Exchange instructions, 6:1-2
local Bus Request Acknowledge timing, 8:22
logical instructions, 6:3-4
logical I/O address spacea, 4:3
logical memory address spaces, 4:1
loosely-coupled multiple CPU, 1:5

Memory dslays, E:15-18
Memory management, 1:2, 4:3
Memory-mapped I/O, B:1
Multiprocessor Configurations, 1:4, 8:2

Coprocessor, 1:4 Slave processor, 1:5
Tightly-coupled multiple CPUs, 1:5
loosely-coupled multiple CPUs, 1:5

Non-maskable interrupts, 7:4
Non-vectored interrupts, 7:4
Normal mode, 1:3, 3:2-3
Normal Stack Pointer, 2:3, 3:2

Odd PC trap, 7:5
Operating states, 7:1
Overflow Stack Pointer (OSP), 2:4

Physical address space, 4:3
Pin Functions, 8:3-4
Pipeline delays, E:3-4
Pipelined instruction execution, 7:3
Privileged Instruction trap, 7:4
Program Control instructions, 6:4-5
Program Counter, 1:1, 2:3
Program Status, 7:5-7
Program Status Area Pointer (PSAP), 2:3
Program Status registers, 1:1, 2:2-3

Program Counter, 1:1, 2:3
Flag and Control Word register, 1:1, 2:2-3

-R-

Register (R) addressing mode, 5:4,7
Relative Address (RA) addressing mode, 5:7,12
Relative Index (RX) addressing mode, 5:7.13
Reserved control bits, 2:4
Reset, 8:26-27

-5-

Segmented mode, 1:1-2, 3:1-2, 6:13-15
Single Memory Read and Write transactions, 8:8-10
Single Memory Read timing, 8:8-9
Single Memory Write timing, 8:10
Slave processor, 1:5, 8:2
Special-purpose control registers, 2:3
Stack POinter, 1:1, 2:2
System Call trap, 7:4
System Configuration Control Longword, 2:4
System mode, 1:3, 3:2-3
System Stack Pointer, 3:2

Index

-1-

Table entry formats, 4:7
Tightly-coupled multiple CPU, 1:5
Timing formulae, Appendix E
TLB, see Translation Lookaside Buffer
Trace trap, 7:5
Translation Lookaside Buffer (TLB), 1:2, 4:4-5
Translation Table Descriptor registers, 2:4
Traps, 7:4-5

Address Translation trap, 7:4
Breakpoint trap, 7:4
Conditional trap, 7:4
Extended Instruction trap, 7:4
Integer Arithmetic Error trap, 7:4
Odd PC trap, 7:5
Privileged Instruction trap, 7:4
System Call trap, 7:4
Trace trap, 7:5
Unimplemented Instruction trap, 7:5

-tI-

Unimplemented Instruction trap, 7:5

-y-

Vectored interrupts, 7:4

-z-

Z8000 CPU, compatibility with, 1:6, A:1
Z8070 Arithmetic Processing Unit, 1:3
Z80,OOO CPU block diagram, 1:6

1-3

Zilog

Title of Publication:

Document Number:

READER COMMENTS

Your comments concerning this publication are important to us.
Please take the time to complete this questionnaire and return it to
Zilog.

Your Hardware Model and Memory Size:

Describe your likes/dislikes concerning this document:

Technical Information: __________________________ _

Supporting Diagrams:

EaseofUse: ______________________________ __

Your Name:

Company and Address: _________________________ _

Your Position/Department: ________________________ _

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 35, CAMPBELL, CA.

POSTAGE WILL BE PAID BY:

Zilog
1315 Dell Ave.
Campbell, California 95008
ATTENTION: Corporate Publications

No Postage
Necessary If
Mailed In The
United States

Zilog Sales Offices and Technical Centers

West
Sales & Technical Center
Zllog. Incorporated
t 0340 Bubb Road
Cupertino. CA 95014
Phone (408) 370-8120

(408) 370-8122 (GIS)
TWX: 91.0-338-2296
FAX. (408) 370-8016

Sales & Technical Center
Zllog. Incorporated
15643 Sherman Way
SUite 430
Van Nuys. CA 91406
Phone: (213) 989-7485
TWX. 910-495-1765

Sales & Technical Center
ZlIog , Incorporated
125 Baker Ave .
SUite t80
Costa Mesa. CA 92626
Phone (714)261 -1281

Sales & Technical Center
Zllog . Incorporated
1750 112th Ave. N.E.
SUite 0161
Bellevue, WA 98004
Phone: (206) 454-5597

Technical Center
Zllog, Incorporated
2885 Aurora Ave.
SU ite 23
Boulder. CO 80303
Phone (303) 440-397 t

Midwest
Sales & Technical Center
Zilog. Incorporated
951 North Plum Grove Road
SUite F
Schaumburg , lL 60195
Phone: (312) 885-8080
TWX: 910-291 -1064

Technical Center
Zilog. Incorporated
7101 York Ave. , South
Edina, MN 55435
Phone: (612) 921 -3369

Sales & Technical Center
Zilog , Incorporated
28349 Chagrin Blvd.
SUite 109
Woodmere, OH 44122
Phone: (216) 831 -7040
FAX: 216-83 1-2957

South
Sales & Technical Center
Zllog , Incorporated
4851 Keller Springs Road .
Suite211
Dallas. TX 75248
Phone: (214) 931-9090
TWX: 910-860-5850

Technical Center
Zllog , Incorporated
7113 Burnet Rd .
SUite 207
Austin , TX 78757
Phone: (512) 453-3216

Zllog, Inc. 1315 Dell Ave., Campbell , California 95008

03-8225-01

East
Sales & Technical Center
Zllog , Incorporated
Corporate Place
99 South Bedford SI.
Burl ington, MA 01803
Phone: (617) 273-4222
TWX: 710-332-1726

Sales & Technical Center
ZlIog, Incorporated
240 Cedar Knolls Rd .
Cedar Knolls, NJ 07927
Phone: (201) 540-1671

Technical Center
Plaza Office Center
Suite412
Route 73 and Fellowship Rd.
MI. Laurel , NJ 08054
Phone: (609) 778-8070

Technical Center
Zllog , Incorporated
3300 Buckeye Rd.
SUite 401
Atlanta. GA 30341
Phone: (404) 451-8425

Sales & Technical Center
ZlIog , Incorporated
1301 Semlrtole Blvd.
SUite 103
Largo . FL 33540
Phone: (813) 585-2533
TWX: 810-866-9740

United Kingdom
Zllog (U.K.) Limited
Zilog House
43-53 Moorbridge Road
Maidenhead
Berkshire, SL6 8PL England
Phone: 0628-39200
Telex : 848609

France
ZlIog , Incorporated
Cedex 31
92098 Paris La Defense
France
Phone: (1) 334-60-09
TWX: 61 1445F

West Germany
ZllogGmbH
Eschenstrasse 8
0-8028 TAUFKIRCHEN
MUnich, West Germany
Phone: 89-612-6046
Telex: 529110 Zilog d .

Japan
Zllog , Japan K.K.
Konparu Bldg. 5F ,
2-8 Akasaka 4-Chome
Minato-Ku , Tokyo 107
Japan
Phone: (8 1) (03) 587-0528
Telex: 2422024 Al B: Zilog J

Hong Kong
Zllog ASia Ltd .
22-26 Austin Ave.
Room 1009 Austin Tower
TSlmshatsUi Kowloon
Hong Kong
Phone: (852) (3) 723-8979
Telex : 52102 ZILOG HK '

Telephone (408)370-8000 TWX 910-338-7621

Printed In USA

