B s

280,000 CPU
' Preliminary
| Technical Manual -
. |
' September 1984
_ - TR

Z80,000™ CPU
Preliminary
Technical Manual

"y
l’-'l-..

TLAP O
Z11AAr

Zilog

Copyright 1984 by Zilog, Inc. All rights reserved. No part of this
publication may be reproduced without the written permission of
Zilog, Inc.

The information in this publication is subject to change without
notice.

Table of Contents

Chapter 1. 780,000 CPU Overview l
1.1 INtroduction o o o v v o o o ¢ o s e o s s 6 e s s s s e e e e e e e e e A=
1.2 Architecture « « ¢« ¢ ¢ ¢ v ¢ o o ¢ 4 ¢t e e e s e 0 e e e e e e e s e e 1

1.2.1 ReQiSters & ¢ ¢ v ¢ o o o o o o o o o s s s o o o o s o o0 oo 1
12,2 AdAress SpaceS « « o « o « 2 o o o o o o o o o s o s o e e 0 s e 1
1.2.3 Memory Management . . ¢ ¢ v ¢ ¢ s 0 b s a0 e e e e 0 e 000]
1.2.4 Addressing ModeS . ¢ « o« ¢ ¢ o o o o o o o s o o s o o o s o o oo 13
1.2.5 Instruction Set . . & ¢ v ¢ vt v it it e e e e e e e e e e e 1
1.2.6 Normal and System Modes of Operation . . « « & ¢ v ¢ ¢ ¢ ¢ ¢ o o o o 1
1.2.7 Exceptions « v v v o v o s ¢ o o o o o 0 ot s e 0 s n e s e e 1

1.3 Extended Processing Architecture @ ¢ v v v v v v v v v v oo 14
L 0F- 1o 1 T R
1.5 External Interface . ¢ ¢ & ¢ ¢ ¢ ¢ ¢ o 0 e 6 o e e o e 0 s s e e e e 1-4
1.6 CPU Internal Organization . « ¢« & v ¢ ¢ ¢« ¢t o v ¢ ¢ o o o o o o o o o s o s 15
1.7 78000 Compatibility .+ ¢ & v ¢ ¢ o o ¢ ¢ o o o o o o o o o o o o o o o o oo 126
TeB SUMMATY & 4 o ¢ ¢ o o o o o o o o s o o s s s o o o o s s s s e o o000 16

Chapter 2. Data Formats and Registers 2

2.1 Introduction & o ¢ 4 v b 4 4 e e e s e 6 s e e s e e e s e e e e e e s 21
2.2 DataFormats « ¢ v v ¢ ¢ v v 0 ettt et e e e e e e e e e e e e e e 2-1
2.3 General-Purpose Register File . . &« ¢ & ¢ ¢ ¢ ¢ o o ¢ 6o o 0 0 o 0 o o o oo 2-1
2.4 Program Status Registers . . « ¢« ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ v 4 4 b b e b e 00 s e 0. 22
2.5 2-3

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

Special-Purpose Control Registers

Program Status Area Pointer (PSAP) . ¢ ¢ v ¢ ¢ ¢ 4 ¢ o o ¢ o o o o o 2-3
Normal Stack Pointer (NSP) . ¢ & & v ¢ o ¢ o o ¢ ¢ o o o o o o o o o 2-3
Translation Table Descriptor Registers . . « « « ¢« ¢ ¢ ¢ v ¢ ¢ o o o« 2-4
Overflow Stack Pointer (OSP) '+ v ¢ & ¢ o ¢ o o o o o o o s o o o o o 24
Hardware Interface Control Register (HICR) . « ¢ & v ¢ o ¢ o o o o o 2-4

.5
.5.
.5.
.5,
.5,
.5.6 System Configuration Control Longword (SCCL) . . v ¢ & o & o ¢ & « o 24

N NDNNNN
NV Es WN =

2.6 Reserved Control BitS . ¢ & 4 ¢ 4 o ¢ 4 ¢ o o o o o o o s o o o o o o o oo 2=4

Chapter 3. Address Representation and Modes of Operation 3
3.7 INtroduction ¢ o ¢ o o ¢ o o o 6 o o o 6 o 6 s o e o s s s 6 s s s e e s o
3.2 Address Representation « . ¢« ¢ ¢« ¢ ¢ ¢ ¢ ¢ o v ot b e 0 b e 0 s 00 e o0
3.3 Normal and System Modes . ¢ ¢ ¢« ¢ ¢ ¢ ¢ v 4 4 et et e e e o0 b0 e e s

\N\'N\'l
-

Chapter 4. Address Spaces and Memory Management 4

4.7 Introduction ¢ ¢ o ¢ o ¢ o 6 b o b e et e b b e e e s s e e e e e e e e e b1
4.2 ADAress SPACeS .« ¢« o« o ¢ o ¢ 4 4 4 4 4 o 6 s e s e e s s e e e e e e s e b1

4.2.1 Logical Memory Address SPaces .« . « v o o o o o o o o o o o o o o o o 41
4.2,2 Logical I/0 ADAress SPACE .« « « o o o « o o o o o o o o o o o o o o o 4-3
4.2.3 Physical AdAress Spaces . « o o 4 « ¢ ¢ 4 4 o o o o e s e e s e e .. 43

iii

Table of Contents (Continued)
|

4.3 Memory Management « ¢« ¢« ¢ v ¢ ¢ ¢ ¢ ¢ 4 o o 4 o 6 b o e o o 0 s e s s e e o s 4=3 4
4.3.1 Address Translation « o o o o o o o o o o s o s s s s s s s s 0 0 s+ 4=
4.3.2 Loading the TLB . . & ¢ ¢ o v v 4 v o o o o o v o o s o s s o oo 4=5
4.3.2.1 Translation Table Descriptor Registers 4-6
4.3.2.2 Level-1 Table Entries « + + v o o o o o o o o o o o o o « o « U4-6
4.3.2.3 Level-2 Table Entries + « ¢ v v « o o o o ¢ o o s o o o o o o 47
4.3.2.4 Page Table ENtri€S .+ & o ¢ ¢« o o o ¢ ¢ o o o o o o o o o« o o 4=7

4.3.3 Access Protection « « v o o ¢ 4 o 4 o o s s o s s s s o s s s e e . . G-8

4.3.4 Address Translation ALQOTithm « « v v ¢ o ¢ ¢ 4o o ¢ o o o ¢ o o o o . 4-8
4.3.5 Address Translation EXceptions « « o ¢ o ¢ ¢ o ¢ o ¢ o ¢ o o s o o o « 4-10
4.3.6 Memory Management Instructions . .« « « & v ¢ ¢ ¢ ¢ v o ¢ s v s v oo . 4-10
Chapter 5. Addressing Modes and Address Calculations 5

501 Introduction . & & o v v v i b o b 4 b e e e s s s e e e s e e e e e e s s 51
5.2 Address CalculationS . ¢ v « ¢ ¢ o o o o o o o o o ¢ o ¢ s o o s s 0 0 s s 51

5.2,1 Compact Address Calculations « « « « v o ¢ o o o o o o ¢ o ¢ ¢ o o o o 5=1
5.2.2 Segmented Address Calculations . o « v o o ¢ o « ¢ o o o o o ¢ s o o o 5=1
5.2.3 Linear Address Calculations . . ¢« ¢ « ¢« ¢ ¢ ¢ ¢ o o o ¢ ¢ ¢ s « o o o 53

5.3 Addressing Mode Descriptions .« ¢« « ¢ ¢ o ¢ o ¢ o ¢ o o s o o o o s o o oo 5-4
5.3.1 Compact Mode Descriptions and Examples « « « o« ¢« ¢ o o o o o o s o & « 5=4

Register (R) & v ¢ v ¢ v ¢ o ¢ ¢ o o ot o e o s o o s oo. 5-4
Immediate (IM) & & v o ¢ 4 o o o ¢ o o o ¢ s o o o o o o o« o 5=4
Indirect Register (IR) .+ v v v ¢ ¢ ¢ o o o o o o s o o o s o 5-4
Direct Address (DA) « v v v 4 ¢ ¢ + ¢ o o o s s o o o o o s 5=5
Index (X) o ¢ o ¢ o ¢ o o e o o o o o s e o s s s s a s osa 55
Base Address (BA) = & « o o o o ¢ ¢ o o o s o s s ¢ a s a o o 5=6
Base Index (BX) « o ¢ ¢ ¢ ¢ ¢ o o o s o o ¢ s o s o s e o o+ 56
Relative Address (RA) « « o o« ¢ ¢ ¢ o o o ¢ o o o ¢ o s o o o 5=7
Relative Index (RX) o o« ¢ ¢ v o o o o o o ¢ o o o o o o o o o 5=7

.
D
.

.
D
.

o
.
.

D

CELEURVEV RV RV B R
[V VT W I WIEW
LLLLnLnuny
VoUauwerwn o

5.3.2 Segmented and Linear Mode Descriptions and Examples . . « « « « o« o o 5-7

Register (R) & o o ¢ ¢ o o ¢ ¢ ¢ ¢ ¢ ¢ o o o s e o o o o oo 5=7
Immediate (IM) & ¢ o 4 ¢ ¢ ¢ ¢ o o ¢ ¢ ¢ o s o o o s e o o s 5=-8
Indirect Register (IR) « & o v v ¢ o ¢ ¢ o o s e s o s o s o 5-8
Direct Address (DA) ¢ ¢« ¢« ¢ o o ¢ ¢ ¢ o o s o ¢ o o s o o o o 5-9
Index (X) e e e e s e e s e s s s e s e e e e 5-10
Base Address (BA) & 4 & 4 o 4 ¢ o o s s o 0 s s s 0 s s 0o 51
Base Index (BX) + v o ¢ o o o o o o o s o o s o o s o s o+ 5212
Relative Address (RA) & ¢ ¢ ¢ & ¢ ¢ o o o o o o o s o s o o 5-13
Relative Index (RX) & ¢ ¢ v v ¢ ¢ v o o v o o o o o o oo 5-14

.
.
.

o
.
.

.
.
B

Vi oot
\AV‘\"\NL\A\N\A\JJ
NNNN;\)NNNN
\OQ\IO\:"J—‘\AN—\

D
.

5.4 Extended Addressing Modes . . ¢ & ¢ o ¢ ¢ s o ¢ 6 o 0 s o 0 0 e s s e e s 5=15

iv

Chapter 6. Instruction Set 6

6.1 Introduction « « & ¢ ¢ ¢ v 4 o o et b e b b e b e e e e s e e s e s e 6-1
6.2 Functional SUMMATY « ¢ & ¢ o« o o o o o o o o o o o o o o o o o o s o o o+ 6=1

1 Load and Exchange Instructions .« . « ¢ ¢« ¢ ¢ ¢ ¢ ¢ o ¢ o ¢ o s o o s 6-1
2 Arithmetic Instructions . . ¢ ¢ ¢ v v ¢t v v v vttt e e e e e .. 6-2
.3 Logical Instructions . « ¢« ¢« ¢ ¢ v v ¢t v o o o o o e e e e e 0 0. 63
4 Program Control Instructions . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ s s o o ¢« o s o s o 6-8
6.2.5 Bit Manipulation Instructions « « ¢« ¢ ¢ ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ 6o o o s s o« o« 6=5
6.2.6 Bit Field Instructions .« « ¢ ¢ ¢« ¢« ¢ ¢« ¢ o ¢ o ¢ o o o s o s o o o s 6=5
6.2.7 Rotate and Shift Instructions . . « ¢ &« ¢ ¢ 4 ¢ ¢ ¢ s ¢ o o s ¢« s s o« 6=6
6.2.8 Block Transfer and String Manipulation Instructions « . . . 6-7
6.2.9 Input/Output Instructions . « « v v o ¢ v ¢ ¢ o ¢ ¢ o o o o o o s o o 6-8
6.2.10 CPU Control INStructionS « ¢ ¢ ¢ o« o ¢ v o o o o o o o o s o o o o o« 6-8
6.2.11 Extended Instructions « « v ¢« ¢ v ¢ ¢ ¢ ¢ ¢ 4 ¢ o o 0 0 e 0 0 e 0. 6-9

6.3 Flags and Condition Codes . « ¢ ¢ & ¢ ¢ ¢ o o ¢ o o o o o o o o o s o o o o 6=9
6.4 Notation and Binary Encoding « « o o « ¢ 4 ¢ ¢ ¢ ¢ 4 ¢ ¢ o e s o s e s . s . 6-10

6.4.1 Assembler Language SyntaX « « « ¢« ¢ ¢ ¢ ¢ s s o 0 o s e e e 0 e e . 6-11
6.4.2 Instruction Format . . ¢« & ¢ ¢ o v ¢ ¢ o v 0 ¢ 6 o v o o o 0 0 e 0. 6-12
6.4.3 Extended Addressing Modes . « « ¢« ¢ ¢ ¢ ¢ o ¢ ¢ ¢ s o o o o s o o s o 6-13

6.4,3.1 Compact Mode « « & & o ¢ o o o o o o o o o o« o s o o s s o o 6-13
6.4.3.2 Segmented or Linear Mode 6-13

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

6.4.4 Unimplemented Instruction Encodings . « « « ¢ ¢« ¢ ¢ ¢« ¢« ¢ o ¢ o o o« o« 6-15

6.5 780,000 Instruction Descriptions and Formats . « « & ¢ ¢« ¢« ¢« ¢« ¢ ¢ ¢ ¢ o« o« . 6-16
6.6 EPA Instruction Templates . ¢« « ¢ ¢ o ¢ ¢ ¢ o ¢ o o o o o o o o o o o o o » 6-209

Chapter 7. Instruction Execution and Exceptions 1!'

Introduction ¢« « & ¢ ¢ o ¢ 6 4 6 o 4 i b e e s b e e s e e e e e e e T4
Operating States « o & v v ¢ o ¢ 4 o ¢ o ¢ o o o o o o s s s 0o 0o s 00 0. 1-1

7.
7.
7.3 Instruction Execution . .« ¢ ¢ ¢ o ¢ o ¢ o 6 ¢ 0 o o 6 o o 0 o o 0 0 0 e 0. 1-2

W N -

7.3.1 Instruction Ending .« & o v ¢ v o ¢ o o ¢ o o 4 o o 0 o o 0 s 0 e 0. 12
7.3.2 Effects of the Pipeline on Execution . « ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ 0 ¢ o o o o 71-3

Tl EXCEPLIONS & o v o ¢ o o o o o o o o o o o o o o o o o o s s s o 6 o o o0 1-3

T T - T T £5
TeBe2 BUSELTOT & o o o o o o o o o o o s o o o 6 o s s s s s o a8 o000 1-4
TeB.3 INEITUPES ¢ ¢ o ¢ ¢ ¢ o o o o o o o o o o s o o o o s e s s oo 1-4
TeBeh TrBPS o o o ¢ o o o o o 5 o o o o o o o o o s s s o o s s o o s oo 1-4

7.4.4.1 Extended Instruction Trap . « ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o s o o o T-4
7.4.4.2 Privileged Instruction Trap .+ « ¢« o « ¢« s o o o o o s o o o 1-4
7.4.4.3 System Call TT@P « & v ¢ o o o o o o o o o o o s o o o o« o 1-4

Table of Contents (Continued)

7.4.4,4 Address Translation Tr8P « o o o o ¢ o o o o o o o o o o o o 1-4 7
7.4.4.5 Breakpoint Trap . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o ¢ ¢ o o o s s o o o oo 1-4
7.4.4.6 Integer Arithmetic Error Trap .+ o « o o o o o o o o o o s o 1-4
7.4.4.7 Conditional Trap « « v o o o o o o o o o o o o o o o s o oo 1-4
7.4.4.8 Unimplemented Instruction Trap « « « « ¢ ¢ ¢ ¢ ¢ ¢ o o ¢ o o 7=5
7.4.4.9 Odd PC TTAP & & ¢ ¢ ¢ o ¢ o o o s o o o o o 0 o o o 0 00+ 1=5
7.4,8,10 Trace TL8P o « o o o o o o o o o o o o o o o o o s o o o oo 1=5
7.4.5 Changing Program Status . ¢ « ¢ o o ¢ o o ¢ ¢ o s o o o o ¢ s o o o o 1-5
7.4.6 Exception Handlers . o ¢ ¢ o o ¢ o o s o o s ¢ o o s o o o 0 o o oo 1-7
7.4.7 Priority of Exceptions o ¢« « o ¢« o o o ¢ ¢ ¢ o ¢ o s o 0 s 0 0 00 0. 1-8

Chapter 8. External Interface 8

B.1 INtroduction & ¢ o ¢ ¢ ¢ ¢ o o 4 s 4 6 s s e s 6 s s e e s 6 e s s e s e e 81
8.2 Bus Operations © 6 o 6 o 6 8 s s 6 s s o 8 s 6 s e 6 s s e s s s e e e e e B-1
8.3 Multiprocessor Configurations . « o ¢« o ¢ ¢ o o ¢ o o o o o s o o s o s o o B8=2
B4 CAChE 4 o ¢ o o ¢ o o o o o o o o o s o o o s o o6 6 6 06 06 0606 06090000 83
B.5 PINFUNCLIONS & o o ¢ o o ¢ ¢ o o o o ¢ o o o 6 ¢ ¢ 6 6 s o o 0600000+ 0 B3
8.6 Hardware Interface Control Register « « o« ¢« o « ¢ ¢ ¢ s « ¢ o o ¢ o ¢ o o s & B85
Be7 BUS TIMING ¢ o & ¢ o o o o o o o o o o o o o s s o 0 s s s 0 06 060000004 86
8.8 Bus Transactions « o« o o o o o o ¢ o o o s o o s o s 6 o 6 06 s 0 0 0 00 o 87

B.8.1 RESPONSE ¢ & o ¢ o o o o o o o o o o o o s o s s s o o s s 0 s 0 0+ o+ B8-8
8.8.2 CPU-Memory Transactions . « « « o o o o o o o s o s o s o o o s s « » 8-8

8.8.2.1 Single Memory Read and Write Transactions B8-8
8.8.2.2 Burst Memory Read and Write Transactions« 8-10
8.8.2.3 Interlocked Memory Transactions « « o« o o o o o o o o » » « 8=11

8.8.3 Input/Output Transactions S - 2 4
8.8.4 EPU TransactionsS « . ¢ o« o o o o o o ¢ o o o o s o o s o 0o o s 00+ B8-13

8.8.4.1 CPU-EPU Instruction Transactions . . « « o « o o o o o o « « B8-16
8.8.4.2 CPU-EPU Data Transactions . . ¢ ¢ o ¢ ¢ o o s o o s o & o o 8-17
8.8.4.3 EPU-Memory Transactions . « ¢« ¢ ¢ ¢ o o ¢ o o ¢ o o o o o o B8-18

8.8.5 Interrupt Request and Acknowledge . . . o ¢ ¢ ¢« ¢ o ¢ s o ¢ ¢« s o « » B8-20
8.8.6 Internal Operation and Halt Transactions . « « o o ¢ ¢ o o ¢ o s s o « 8=21
B.8.7 BUS REETY & ¢ o ¢ o o o o o o o o o o o s o o 5 o 06 8 o 0 s o0 0+ 0 821
8.8, BUSEITOT &« v ¢ o ¢ o o ¢ o o o o o o o o o s o o s o s o s o0 0o s+ 821

8.9 Bus Request and Acknowledge « « « ¢ « o ¢ o ¢ o ¢ o o ¢ o o o o o s o o o o B8-22
B.TORESEL & & & ¢ ¢ ¢ o o o o o o s o o o o 6 s o e s s s e e s e 0 s s e s B-26

Appendix A. 78000 Compatibility . . . ¢ ¢ ¢ ¢ ¢ ¢ o ¢ o o ¢ s o ¢ s o o o 6 s ¢+ A1
Appendix B, Memory-Mapped I/0 . . ¢ ¢ o o ¢ o ¢ o s o o o ¢ s o o s o s o o oo+ B
Appendix C. Cache Control and Memory Transactions S

Appendix D. Programmer's Quick Reference Guide ¢« ¢ ¢ ¢« ¢ o ¢ s o o o« o« D=1

vi

Appendix E. Timing Formulae for Performance Evaluation + « « ¢« « + « » E-1

GIOSSATY & o ¢ o ¢ ¢ o o o o o o o ¢ o s s s o o o o o s o6 6 o 0 e 9000000 G1

INEX o & o ¢ ¢ o o o o o o o o o 6 o o s o o o o o s o s s o s s s e e s e I

List of Illustrations

Figure 1-1. Memory Mapping . « ¢ ¢ ¢ ¢ o ¢ ¢ o o o o o o o o o o o o o o o s oo 1=2
Figure 1-2. Functional Block Diagram . . « ¢« « « o ¢ o o o o o o o o o s o o s « 1-6

Figure 2-1. DataFormats . . . & ¢ ¢ ¢ ¢ v ¢ 4 4 0 4 0 0 6 o o o o o o oo oo 2-1
Figure 2-2. General-Purpose Registers . « « « v v ¢ ¢ ¢ ¢ 4 ¢ ¢ o ¢ o o o o o o o 2=2
Figure 2-3. Program Status Registers« ¢« ¢ ¢ ¢ v ¢ v v v ¢ v v v o v o oo 253
Figure 2-4. Special-Purpose Control Registers « « v « ¢ o ¢« o ¢ ¢ o o o o o o o o 2-3

Figure 3-1. Address Representation . . « & ¢ v ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o o o o o 3=2

Figure 4-1. Address Spaces . . « o v o o o o o o ¢ o o o o s o o o o o o o o o+ 41
Figure 4-2. Logical Memory Addresses in Compact Mode « ¢« ¢ ¢ ¢ ¢« o o« « o 4-2
Figure 4-3. Memory Address Space in Segmented Mode . . . « ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o 4-2
Figure 4-4. Bytes, Words, and Longwords in Memory e e e e e s e e e s . 43
Figure 4-5. Address Translation Using the TLB & & & & ¢ ¢ 4 ¢ ¢ ¢ ¢ ¢ o o o o « o 4-4
Figure 4-6. Logical Address Partition for Address Translation 4-5
Figure 4-7. Automatic Loading of the TLB Using Tables in Memory . . « « « ¢« « « . 4-5
Figure 4-8. Translation Table DescTiptor . « v & ¢ ¢ 4 ¢ 4 ¢ ¢ o o o o o o o o o 4-6
Figure 4-9. Translation Table Base AAATESS « « « + « o ¢ o o o o o o o o o o » o 4-7
Figure 4-10. Table Entry FOormats « « « ¢ ¢« o ¢ ¢ o ¢ o o ¢ o o o o o o o o &« ... 47
Figure 4-11. Address Translation Trap Identifier Word ¢« . ¢ ¢« o « « . 4-10

.
.
.
.
.
.
.

Figure 5-1. Addressing Modes . .« &« ¢ ¢ ¢ ¢ v o 4 ¢ o o 4 o o o o o o o o o o o 5=2
Figure 5-2. Segmented ADATESSES ¢« o o + o o o o o o o o o o o o s s o o o o o o o 53

Figure 6-1. Bit Field « « ¢ v ¢ ¢ ¢ ¢ ¢ ¢ e ¢t o ¢ o o e s o o o o o o s s s o s+ 6-6

Figure 7-1. Operating States . . « ¢ ¢ ¢ ¢ 4 o ¢ o o s o ¢ o o o o s s o s o o 1-1
Figure 7-2. Program Status Saved on System Stack . « ¢ ¢« o ¢ ¢« ¢+ o ¢ ¢« o o o o o 755
Figure 7-3. Program Status AT€8 . « ¢ ¢« ¢ & 4 ¢ o ¢ o ¢ o o o o s o o o o o o o+ 1-6
Figure 7-4. Program Status Saved on Overflow Stack . . ¢« ¢ ¢ ¢« ¢ o ¢ o o o o o o 7-7
Figure 7-5. Exception Priority Flowchart . . . ¢« ¢« v ¢ ¢ ¢ ¢ ¢ ¢ ¢ v o o o o o o 7-8

Figure 8-1. System Configuration . . . ¢ ¢ ¢ v ¢ ¢ ¢ o o s o o o o o s o o o o « 8-

Figure 8-2. Multiprocessor Configurations . « « « ¢« ¢ ¢ ¢« ¢ ¢ ¢ ¢ ¢ o ¢ ¢ o o o o B8-2

Figure 8-3. 780,000 Pin FUNCtionS « « & & o o o o o o o o o o s o s o o o o o « « B8-4

Figure 8-4. Hardware Interface Control Register . . « « ¢ ¢« ¢ ¢ ¢ s ¢ o ¢ o o« « o« 8-5
Figure 8-5. Example of Memory Read Timing Showing Different

Bus Scale Factors . .« « ¢ ¢ v v ¢ ¢ ¢ v e s o s s o s e s s e e .. B-6

Figure B-6. Single Memory Read Timing « « o & o « o o o o o o o« o o o s « s« o « « 8-8

Figure 8-7. Single Memory Read Timing (One Wait State) B8-9

8-1

8-1

o

Figure 8-8. Single Memory Write Timing .« « ¢ o« ¢ ¢ ¢ ¢ o o o ¢ o o ¢ o o o o o o
Figure B-9. Burst Transfer Protocol « ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o ¢ ¢ o o o o o o o o

s

vii

Table of Contents (Continued)

Figure 8-10, Burst Memory Read Timing (One Wait State) « « « o ¢ ¢« o ¢ o ¢ o o « o« 8=-12
Figure 8-11, Burst Memory Write Timing . « o ¢ o & ¢ o o o ¢ o o ¢ o o o s o o o « B8-13
Figure 8-12, I/O Read TiMiNg « ¢ « « o & o « o o o o o o o o o s o o s o o s o o« 8=14
Figure 8-13. EPA Instruction Processing . . « « « « « o « o o « « e« o o s s o« + « 8-15
Figure 8-14. CPU-EPU Instruction Transfer Timing « « « ¢« ¢ « ¢« ¢ ¢ ¢ ¢ ¢« ¢ o« « « » B8-16
Figure 8-15. CPU-EPU Data Read Timing . « « o« « o ¢ o o o o s o s o o o« o o o « o 8=17
Figure 8-16. CPU-EPU Data Write Timing . . « « « ¢ ¢ ¢« o ¢ o ¢ ¢ ¢ ¢ ¢ ¢« o« s o« « « B8-18
Figure 8-17. EPU-Memory Single Write Timing . « « ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢« ¢ ¢ ¢« ¢« o « o« o 8-19
Figure 8-18, Interrupt Response/Acknowledge Timing « « « « « o o o o o o o o o o » 8=20
Figure 8-19. Internal Operation and Halt Timing . « « ¢ ¢« & ¢ ¢« ¢ ¢ ¢ ¢ o o o« « o 821
Figure 8-20. Bus Error Identifier Word . « « v « ¢ ¢ ¢« ¢ o o o o o ¢ s o s s « « » 8=21
Figure 8-21. Local Bus Request Acknowledge Timing .« « ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o & « « o B8-22
Figure 8-22. Global Bus Request Timing « « ¢« « ¢« ¢ ¢ ¢ ¢« ¢ o ¢ o ¢ o o o o o o o o B8-23
Figure 8-23. State Diagram for CPU Bus Request Protocol ¢ . ¢+ .+ « . . B8-24
Figure 8-24, Reset Timing .« o« « ¢ & o o o o o o s o o o o o s o o o s o 8-27

Figure C-1. Cache Organization . . « ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o ¢ ¢ s ¢ o ¢« s o o o+ C-1

Figure E-1. Functional Block Diagram . . & o« ¢ ¢ ¢ ¢ o ¢ o o o o o s o o o o o o
Figure E-2. Instruction Pipeline .+ « ¢ ¢ ¢ o o o ¢ ¢ o o o o e o o o o s o o o«

I""ll"'l
N -

viii

Chapter 1.
Z80,000 CPU Overview

1.1 INTRODUCTION

The 780,000 CPU is an advanced 32-bit micro-
processor that integrates the architecture of a
mainframe computer into a single chip. A subset
of the 780,000 architecture was originally imple-
mented in a 16-bit version, the Z8000™ micro-
processor. The 780,000 bus structure permits the
use of 78000 family peripherals, such as the 78030
SCC and 78036 CIO. While maintaining compatibil-
ity with 78000 family software and hardware, the
780,000 CPU offers greater power and flexibility
in both its architecture and interface capabil-
ity. Operating systems and compilers are easily
developed in the 780,000 CPU's sophisticated
environment, and the hardware interface provides
for connection in a wide variety of system config-
urations.

Memory management is integrated in the CPU, pro-
viding access to more than 4 billion bytes of log-
ical address space without external support com-
ponents. The 780,000 CPU also includes a cache
memory, which complements the pipelined design to
achieve high performance with moderate memory
speeds.

This chapter presents an overview of the features
of the 780,000 CPU that offer extraordinary
flexibility to microprocessor system designers in
tailoring the power of the CPU to their
specialized applications. The chapters that
follow describe these features in detail.

1.2 ARCHITECTURE

The CPU features a general-purpose register file
with sixteen 32-bit registers. The instruction
set offers a regular combination of nine general
addressing modes with operations on numerous data
types, including bits, bit fields, bytes (8 bits),
words (16 bits), longwords (32 bits), and
variable-length strings. The memory management,
exception handling, and system and normal mode
features support the development of reliable
software systems.

1.2.1 Registers

The 280,000 CPU includes sixteen 32-bit general-
purpose registers. The registers can be used as
data accumulators, index values, or memory
pointers. Two of the registers, the Frame Pointer
and Stack Pointer, are used for procedure linkage
with the Call, Enter, Exit, and Return instruc-
tions.

The 280,000 registers also include the 32-bit Pro-
gram Counter and 16-bit Flag and Control Word.
These two registers, together called the Program
Status, are automatically saved during trap and
interrupt processing. Nine other special-purpose
registers are used for memory management, system
configuration, and other CPU control.

1.2.2 Address Spaces

The CPU uses 32-bit logical addresses, permitting
direct access to 4G bytes of memory. The logical
addresses are translated by the memory management
mechanism to the physical addresses used to access
memory and peripherals.

The CPU supports three modes of address represen-
tation--compact, segmented, and linear--selected
by two control bits in the Flag and Control Word
register. Applications with an address space
smaller than 64K bytes can take advantage of the
dense code and efficient use of base registers
with the 16-bit compact addresses. Although pro-
grams executing in compact mode can only manipu-
late 16-bit addresses, the logical address is
extended to 32 bits by concatenating the 16 most-
significant bits of the Program Counter register.
Compact mode is equivalent to the 78000 non-seg-
mented mode.

Segmented mode supports two segment sizes--64K
bytes and 16M bytes. Up to 32,768 of the small
segments and 128 of the large segments are avail-
able. In segmented mode, address calculations do
not affect the segment number, only the offset

780,000 CPU Overview

within the segment. Allocating individual
objects such as program modules, stacks, or large
data structures to separate segments allows appli-
cations to benefit from the logical structure of a
segmented memory space.

The 32-bit addresses in linear mode provide uni-
form and unstructured access to 4G bytes of mem-
ory. Some applications benefit from the flexibil-
ity of linear addressing by allocating objects to
arbitrary positions in the address space.

1.2.3 Memory Management

Memdry management provides two valuable func-
tions--address translation and access protection.
Access protection ensures that proprietary por-
tions of memory, or those portions concerned with
operating system functions, are protected from
tampering. Address translation, the process of
mapping a program's logical addresses to the phys-
ical addresses used to access memory, streamlines
system performance, since the operating system can
relocate programs in memory, free from rigid con-
straints. By integrating memory management with
the processor in a single chip, the 280,000 CPU
reduces parts-count and improves memory access
time.

Another memory management function, demand-paged
virtual memory, allows programs to execute even
when only a portion of their memory requirements
is available in primary storage. The rest of the
program can be stored in secondary storage, typi-
cally on disk. Thus, virtual memory improves a

system's cost/performance by permitting programs
to execute with varying amounts of memory.

The CPU implements a paged translation mechanism
similar to that of most mainframe and super-mini-
computers. The operating system creates transla-
tion tables in memory, then loads pointers to the
tables in control registers. The CPU automatically
refers to the tables to perform address transla-
tion and access protection.

To manage the large logical address space, the
translation scheme divides it into fixed-size, 1K-
byte pages. Similarly, the physical address space
is divided into fixed-size frames, also 1K-bytes
each. The memory management mechanism maps a log-
ical page to an arbitrary physical frame (Figure
1-1). Since both the pages and frames are of
fixed and equal size, the operating system's mem-
ory allocation problem is simplified.

The CPU implements a Translation Lookaside Buffer
(TLB) to store the information needed to translate
the sixteen most recently used pages. When the
information needed to translate a page is missing
from the TLB, the CPU automatically translates the
address using the tables in memory, and then loads
the information into the TLB.

The memory management mechanism can be used to map

logical memory addresses to physical 1/0
addresses. The use of memory-mapped I1/0 permits
protected access by application programs to

selected peripheral devices.

LOGICAL ADDRESS SPACE PHYSICAL ADDRESS SPACE
INVALID <— PAGE 3FFFFF1g FRAME 3FFFFFqg
INVALID -] PAGE 3FFFFEs5 FRAME SFFFFEqg
PAGE 3FFFFD1g FRAME 3FFFFD1g
INVALID <—— PAGE 3FFFFC1g | FRAME 3FFFFCyg
1 1
] 1 1 1
1 1 1 1
| 1 i i
1 ! 1 i
| 1
INVALID <—— PAGE 445
PAGE 316 FRAME 316
INVALID <— PAGE 215 7\ FRAME 215
PAGE 116 A FRAME 116
PAGE 016 FRAME 046

Figure 1-1.

Memory Mapping

2324-002

280,000 CPU Overview

1.2.4 Addressing Modes

The CPU locates operands (the data manipulated by
instructions) in registers, memory, peripheral
ports, or in the instruction. The location of an
operand is specified by one of nine general
addressing modes: Register, Immediate, Indirect
Register, Direct Address, Index, Base Address,
Base Index, Relative Address, and Relative Index.
Instruction formats provide compact encodings for
the most frequently used addressing modes.

1.2.5 Instruction Set

The 780,000 CPU supports operations on nine data
types: bit, bit field, signed integer, unsigned
integer, logical value, address, packed BCD inte-
ger, stack, and string. Integer and logical
values can be byte, word, or longword in size. In
addition, floating-point operations are imple-
mented through the Extended Processing Architec-
ture (EPA) facility by a coprocessor (28070 Arith-
metic Processing Unit) or by software emulation.

Several instructions are provided for important
control structures. Conditional branches and
jumps support "if-then", "while", and 'repeat"
constructions. The Decrement and Branch if Non-
Zero instruction can be used for loop control.
Call, Enter, Exit, and Return instructions perform
procedure linkage.

The regular combination of addressing modes,
operations, and data types offers a powerful
instruction set that is well-suited for compila-
tion of high-level languages such as C, Pascal,
and Ada.

1.2.6 Normsl and System Modes of Operation

The CPU has two modes of operation--normal and
system--used to isolate application programs from
sensitive portions of the operating system. The
mode is selected by a bit in the Flag and Control
Word register.

Only programs in system mode are privileged to
execute I/0 instructions and access control regis-
ters. The memory management mechanism allows sys-
tem mode programs to access regions of memory pro-
tected from normal mode access. Further protec-
tion is provided with separate stacks for system
and normal modes. Application programs use the

System Call instruction and trap to request ser-
vices from the operating system.

1.2.7 Exceptions

Exceptions are conditions or events that disrupt
the usual sequence of instructions. The 280,000
CPU supports four types of exceptions: reset, bus
error, interrupts, and traps. A reset exception
initializes the CPU state in response to an exter-
nal request, typically part of a power-on
sequence. A bus error exception occurs when
external hardware indicates an irrecoverable
error, such as an uncorrectable memory error, on a
bus transaction. An interrupt is an asynchronous
event signalled externally, typically when a
peripheral device needs attention. A trap is a
condition detected by the CPU synchronously with
execution of an instruction.

When an exception occurs, the CPU saves the Pro-
gram Status registers of the executing process on
the system stack. Then new values for the Program
Status registers are read from a table in memory
(Program Status Area), thus passing control to an
exception handler.

The CPU provides a flexible interrupt structure
that includes three types of interrupts: nonmask-
able, vectored, and nonvectored. The nonmaskable
interrupt, which is of highest priority, is typi-
cally reserved for the most critical requirements,
such as sudden power failure. Both vectored and
nonvectored interrupts can be separately masked by
bits in the Flag and Control Word register. Vec-
tored interrupts allow the CPU to branch to a
specific exception handler selected by a code read
from the peripheral. Nonvectored interrupts use a
common exception handler.

The CPU recognizes several trap conditions, all of
which can be used to improve software reliabil-
ity. The System Call trap provides controlled
access for application programs to operating sys-
tem functions. Traps for integer overflow, sub-
range out of bounds, and subscript out of bounds
catch common run-time errors. The Address Trans-
lation trap allows the operating system to imple-
ment access protection and virtual memory. Traps
for breakpoint and single instruction tracing are
used during software development. The Conditional
Trap instruction is used for software definition
of exception conditions not recognized by the CPU
hardware.

1-3

780,000 CPU Overview

1.3 EXTENDED PROCESSING ARCHITECTURE

The Extended Processing Architecture (EPA) facil-
ity allows the operations defined in the 780,000
CPU architecture to be extended by software or
hardware. For example, floating-point operations
are supported by the 28070 Arithmetic Processing
Unit (APU) or by a software package that emulates
the APU.

When the CPU encounters an EPA instruction, it
checks a control bit in the Flag and Control Word
register to determine whether the EPA facility is
enabled. If disabled, the CPU traps for software
emulation of the instruction. If enabled, the CPU
sends the instruction across the external inter-
face to an Extended Processing Unit (EPU). The
CPU then transfers the operands for the instruc-
tion to the EPU.

The data processing operations performed by the
EPU are transparent to the CPU. In general, the
EPU executes complex operations such as floating-
point arithmetic, decimal arithmetic, or signal
processing with special-purpose hardware.

1.4 CACHE

The 280,000 CPU contains an on-chip cache buffer
to store copies of memory locations that were
recently referred to. Most memory references are
either to a location that was referred to recently
(temporal locality) or to a nearby location
(spatial locality). Therefore, on most memory
fetches the CPU is able to find the required data
in the cache (a hit), thus avoiding a slower
access to external memory. When the required data
is missing from the cache (a miss), the CPU
fetches the data from external memory and loads a
copy into the cache. The fetched data replaces
the least recently used data in the cache.

The cache provides significant cost/performance
advantages by allowing the CPU to execute instruc-

tions at a faster rate than permitted by external
memory alone. The cache can be separately enabled
to store both instructions and data. The effec-
tiveness of the cache is enhanced by storing data
along with instructions, but an application can
cache instructions only. Cache replacement on a
miss can also be inhibited. This option can be
used to lock desired locations into the cache for
fast, on-chip access.

1.5 EXTERNAL INTERFACE

The 280,000 CPU offers a number of features for
interfacing to systems that span a wide range of
cost/performance requirements. The Hardware
Interface Control Register (HICR) specifies cer-
tain characteristics of the hardware configuration
surrounding the CPU, including bus speed, memory
data path width, and number of automatic wait
states.

The system designer can fine-tune performance by
selecting not only the CPU clock rate and bus
speed (1/2 or 1/4 the CPU clock), but also the
access time and data path width for the memory.
For two independent regions of memory the CPU can
be programmed for both the number of wait states
automatically inserted, and whether the data path
is 16 or 32 bits wide. With these options, a sys-
tem can easily accommodate a slow, 16-bit-wide
bootstrap read-only memory (ROM) in one region and
fast, 32-bit-wide random access memory (RAM) in
the other. Furthermore, the CPU supports an
optional burst transfer of several memory words
from consecutive locations. Burst transfers can
increase memory bandwidth for interleaved and
"nibble-mode" memory systems.

The CPU provides support for four types of multi-
processor configurations: coprocessor, slave
processor, tightly-coupled multiple CPUs, and
loosely-coupled multiple CPUs. Coprocessors, such
as the 28070 Arithmetic Processing Unit, work syn-
chronously with the CPU to execute a single
instruction stream using the Extended Processing

1-4

780,000 CPU Overview

Architecture facility. Slave processors, such as
the 28016 DMA Transfer Controller, perform dedi-
cated functions asynchronously to the CPU. Tight-
ly-coupled multiple CPUs execute independent
instruction streams and generally communicate
through shared memory on a common bus. Two sep-
arate bus request protocols support slave process-
ing and tightly-coupled multiprocessors. Loosely-
coupled multiple CPUs generally communicate
through a multi-ported peripheral, such as the
28038 FIFO 1/0 Interface Unit, using the interrupt
and 1/0 facilities of the 280,000 CPU.

1.6 CPU INTERNAL ORGANIZATION

Figure 1-2 shows a block diagram of the 280,000
CPU internal organization, including the following
major functional units and data paths:

e The external interface logic controls
transactions on the bus. Addresses and data
from the internal memory bus are transmitted
through the interface to the Z-BUS. The Z-BUS
is a time-multiplexed, address/data bus that
connects the components of a microprocessor
system.

e The cache stores copies of instruction and data
memory locations. Instructions are read from
the cache on the instruction bus. Data is read
from or written to the cache on the memory
bus.

e The Translation Lookaside Buffer (TLB) trans-
lates logical addresses calculated by the
address arithmetic unit to physical addresses
used to access the cache.

e The address arithmetic wunit performs all
address calculations. This unit has a path to
the register file for reading base and index

registers and another path to the instruction
bus for reading displacements and direct
addresses. The result of the address calcula-
tion is transmitted to the TLB.

e The register file contains the sixteen general-
purpose longword registers, Program Status
registers, special-purpose control registers,
and several registers used to store values tem-
porarily during instruction execution. The
register file has one path to the address
arithmetic unit and two paths to the execution
arithmetic and logic unit.

e The execution arithmetic and logical unit cal-
culates the results of instruction execution,
such as add, exclusive-or, and simple load.
This unit has two paths to the register file on
which two operands can be read simultaneously
or one can be written. One of the paths to the
register file is multiplexed with a path from
the memory bus.

o The instruction decode and control unit decodes
instructions and controls the operation of the
other functional units. This unit has a path
from the instruction bus and two programmable
logic arrays for separate microcoded control of
the two arithmetic units. This unit also
controls the exception handling and loading of
the TLB. .

All of the functional units and data paths listed
above are 32 bits wide.

The operation of the CPU is highly pipelined so
that several instructions are simultaneously in
different stages of execution. Thus, the Ffunc-
tional units effectively operate in parallel with
one instruction being fetched while an address is
calculated for another instruction and results are
stored for a third instruction.

1-5

280,000 CPU Overview

Z-BUS

el

r_ ______ EXTERNAL

INTERFACE

i

MEMORY BUS
CACHE
CACHE DATA ADDRESS TAGS
INSTRUCTION REGISTER PHYSICAL PC
INSTRUCTION BUS TRANSLATION
LOOKASIDE
BUFFER

ADDRESS ARITHMETIC
UNIT

INSTRUCTION
DECODE

AND
CONTROL
UNIT

REGISTER
FILE

IS

EXECUTION ARITHMETIC

AND LOGIC UNIT

Figure 1-2. Functional Block Diagram

1.7 78000 COMPATIBILITY

The 780,000 CPU's instruction set encoding allows
it to directly execute Z8000 family software such
as compilers and the ZRTS™ real-time operating
system. 78000 programs must not use the Z8000
privileged instructions, address, and control
field encodings if they are to execute correctly
on the 780,000 CPU, since the 280,000 CPU uses
many of these reserved encodings to extend the
register file, address range, and instruction
functionality.

1.8 SUMMARY

The 780,000 CPU meets and surpasses the require-
ments of medium and high-end microprocessor sys-
tems. Software program development is easily
accomplished with the CPU's sophisticated archi-
tecture. The highly-pipelined design, on-chip
cache, and external interface support systems
ranging from dedicated controllers to mainframe
computers.

8225-001

Chapter 2.
Data Formats and Registers

2.1 INTRODUCTION

The 280,000 CPU manipulates data located in regis-
ters, memory, and peripherals. The 280,000 regis-
ter repertoire consists of the general-purpose
register file, the Program Counter, the Flag and
Control Word, and nine special-purpose control
registers. This chapter describes the format for
data and the use of registers. Chapter 4
describes the use of memory and peripherals.

7 6 5 4 32 1 0
BITS IN A BYTE

15 14 13 1211 10 9 8 7 6 5 4 3 2

2.2 DATA FORMATS

The CPU manipulates bits, bytes (8 bits), words
(16 bits), longwords (32 bits), and quadwords
(64 bits) of data., Within a byte, word, longword,
or quadword, the bits are numbered from right to
left, from least to most significant (Figure
2-1). This is consistent with the convention that
bit n corresponds to position 2" in the represen-
tation of binary numbers. (However, the bit num-
bering for bit field data, described in Section
6.2.6, 1is in the opposite direction from
Figure 2-1.)

u[lll—lll—llllll']BlrsmAwonn

I I I I BITS IN A QUADWORD

31 30 29 . 21 0
[l l T ‘; I LL] BITS IN A LONGWORD
63 62 61 . 2 1 0
HER o
77
Figure 2-1. Data Formats

2.3 GENERAL-PURPOSE REGISTER FILE

The general-purpose register file contains 64
bytes of storage (Figure 2-2). The first 16 bytes
(byte registers RLO,RHO,...,RL7,RH7) can be used
as accumulators for byte data. The first 16 words
(word registers RO,R1,...,R15) can be used as
accumulators for word data, as index registers
(except RO), or for memory addresses in compact
mode (except RO). Any longword register
(RRO,RR2,...,RR30) can be used as an accumulator
for longword data and, in segmented or linear
mode, as an index register (except RRO) or for
memory addresses (except RRO). Quadword registers
(RQO,RQ4, ..., RQ28) can be used as accumulators

for Multiply, Divide, and Extend Sign
instructions. Within quadword register RQn, RRn
contains the more significant longword. A 4-bit
field in instructions specifies which general-
purpose register to access. The register size is
determined by the instruction opcode.

The unique organization of the register file
allows bytes and words of data to be manipulated
conveniently while leaving most of the registers
free to hold addresses, counters, or other
values. For example, four bytes in RHO, RLO, RH1,
and RL1 can be packed into the single longword
register RRO and manipulated independently with
the extensive byte-oriented instructions.

8225-002

Data Formats and Registers

Two registers are dedicated for the Stack Pointer
and Frame Pointer used by Call, Enter, Exit, and
Return instructions. The Stack Pointer is also
used in processing exceptions and by the Interrupt
Return instruction. There are separate Stack
Pointers for system and normal modes of operation.

The registers used for the Stack Pointer and Frame
Pointer depend on the address representation
mode. In compact mode, R15 is the Stack Pointer
and R14 is the Frame Pointer. In segmented or
linear mode, RR14 is the Stack Pointer and RR12 is
the Frame Pointer. See Section 3.3 for more
details on modes of operation.

RRO |7 RHO 0|7 RLO 7 RH1 0|7 RL1 0] RO,R1
Rao RR2 §7 RH2 07 RL2 7 RH3 0|7 RL3 R2,R3
RR4 |7 RH4 0]7 RL4 7 RH5 0|7 RLS R4, RS
Ras RR6 |7 RH6 0|7 RL6 7 RH7 0|7 RL7 R6, R7

RR10 | 15 R10
RR12 } 15 R12
RR14 | 15 R14

o|lo|oleo|o|e|e|e

e, e, e, e, e, e, e, s,

4

Bl

=

o

@

-
olo|o|o|o|o|ololo|o|oloo]|e]e

Figure 2-2. General-Purpose Registers

2.4 PROGRAM STATUS REGISTERS

The Program Status registers are the Program
Counter (PC) and the Flag and Control Word (FCW)
(Figure 2-3). The PC contains the 32-bit address
of the instruction being executed. The 16-bit FCW
indicates operating modes, masks for traps and
interrupts, and flags set according to the result
of instructions.

The low-order byte of the FCW contains six flags,
described below, and the integer overflow mask.
Many instructions modify or use the flags.

Carry (C) indicates a carry out of the high-order
bit position during an operation.

Zero (Z) indicates that the result of an operation
is zero.

Sign (S) indicates whether the result of an
operation is negative or positive.

Parity/Overflow (P/V) indicates that the result of
a logical operation has even parity or that
overflow has occurred for arithmetic operations.

Decimal-Adjust (D) is used in BCD arithmetic to
indicate whether an addition or subtraction was
last executed.

Half Carry (H) is used in BCD arithmetic to con-
vert the result of a previous binary addition or
subtraction to a decimal result.

The C, 2, S, and P/V flags can be manipulated
using the Complement Flag and Set Flag instruc-
tions. Section 6.3 provides more information
about the flags.

The Integer Overflow Enable (IV) bit is the mask
for an Integer Overflow trap. While this bit is
1, the Integer Overflow trap is enabled; while 0,
the integer overflow trap is disabled (see Section
7.4.4.6).

The low-order byte of the FCW can be accessed in
normal mode wusing the Load Control Byte
instruction.

The high-order byte of the FCW contains eight con-
trol bits:

Extended/Compact Mode (E/C) and Linear/Segmented
Mode (L/S) controls the mode of address represen-
tation. While E/C is 0, addresses are compact (16
bits). While E/T is 1, addresses are extended (32
bits) and are either segmented (L/S is 0) or
linear (L/S is 1).

System/Normal Mode (S/N) controls the operating
mode. While this bit is 1, the CPU is operating
in system mode; while 0, the CPU is operating in
normal mode.

Extended Processor Architecture Mode (EPA) con-
trols the Extended Processing Architecture facil-
ity. While this bit is 1, the CPU processes
extended processing instructions as if the system
contains Extended Processing Units, which serve as
co-processors to assist the CPU in executing
extended processor instructions. While this bit
is 0, the CPU traps extended processor instruc-
tions.

Vectored Interrupt Enable (VIE) and Nonvectored
Interrupt Enable (NVIE) determine when the CPU
recognizes vectored and nonvectored interrupts.
Vectored interrupts are enabled when VIE is 13
nonvectored interrupts are enabled when NVIE is
1. These bits can be manipulated using the Enable
Interrupt and Disable Interrupt instructions.

Trace Pending (TP) and Trace Enable (T) are used
for instruction tracing. While T is 1, instruc-
tion tracing is enabled; while 0, instruction

2-2

2071-001

Data Formats and Registers

tracing is disabled. TP is used with T to ensure can also be loaded using the Interrupt Return and
that exactly one trace trap occurs after each Load Program Status instructions. The FCW can be
instruction executed when tracing is enabled (see accessed using the Load Control instruction.

Section 7.4.4.10).

2.5 SPECIAL-PURPOSE CONTROL REGISTERS
During exception processing, the Program Status

registers are saved on the system stack and new The CPU includes nine special-purpose longword
values for the registers are loaded from the Pro- registers (Figure 2-4). These are accessed using
gram Status Area. The Program Status registers the Load Control Long instruction.

i:/ElsmlEPAlwehwq u§] TP] :]::—[z l s IPN] D I H I [\ I oi

|— INTEGER OVERFLOW ENABLE (IV)
HALF CARRY (H)

DECIMAL—ADJUST (D)
PARITY/OVERFLOW (PIV)
SIGN (S)

ZERO (9

CARRY (C)

TRACE (T)

L TRACE PENDING (TP)

LINEAR/SEGMENTED MODE (LiS)
NONVECTORED INTERRUPT ENABLE (NVIE)
VECTORED INTERRUPT ENABLE (VIE)
EXTENDED PROCESSOR ARCHITECTURE (EPA)
SYSTEMINORMAL MODE (SiN)

EXTENDED/COMPACT MODE (E/C)

FLAG AND CONTROL WORD (FCW)

IIIIIII|LL|IIllllllllglllllJJJALAlII

PROGRAM COUNTER (PC)

Figure 2-3. Program Status Registers

31 24 23 16 15 8 7 0
I LAD [GEI I l 0 l q IACK.W2]q 1ACK.W1 l oI 110+.W —[s—[1I00.W I l MW I | Mo.W I
1 1 1 1 1 1 1 L 1 1 1 1 1 1 L

MASR EPUO L Mo.DP

HARDWARE INTERFACE CONTROL REGISTER (HICR)

Figure 2-4. Special-Purpose Control Registers’

2.5.1 Program Status Area Pointer (PSAP) 2.5.2 Normal Stack Pointer (NSP)

The Program Status Area Pointer contains the phys- The Normal Stack Pointer contains the Stack
ical, base address of the Program Status Area. Pointer used in normal mode. System mode programs
The Program Status Area contains the Program can access normal mode register RR14 using the
Status information (PC and FCW) fetched during Load Control Long instruction and normal mode reg-
exception processing. Refer to Chapter 7 for more isters R14 and R15 using the toad Control instruc-
information about the Program Status Area. The tion.

longword PSAP can be accessed using the Load Con-
trol Long instruction; both the low-order word and
high-order word of the PSAP can be accessed using
the Load Control instruction.

2071-002, 003

2-3

Data Formats and Registers

2.5.3 Translation Table Descriptor Registers

The translation table descriptor registers--System
Instruction Translation Table Descriptor (SITTD),
System Data Translation Table Descriptor (SDTTD),
Normal Instruction Translation Table Descriptor
(NITTD), and Normal Data Translation Table
Descriptor (NDTTD)--contain the physical addresses
of the translation tables used by the memory man-
agement mechanism. These registers also contain
other fields that control the memory management
mechanism (see Section 4.3.2.1).

2.5.4 Overflow Stack Pointer (OSP)

The Overflow Stack Pointer (0SP) contains the
physical address of the Stack Overflow Area. The
Stack Overflow Area is used when an address trans-
lation error occurs during exception processing
(see Section 7.4.5).

2.5.5 Hardware Interface Control Register (HICR)

The Hardware Interface Control register contains
fields controlling the external interface of the
CPU, including bus speed, data path width, and
automatic wait states. (See Section 8.6).

2.5.6 System Configuration Control Longword
(sccL)

The System Configuration Control Longword contains
control bits for the address translation mecha-
nism, cache mechanism, and exception processing.
These bits are as follows:

System Address Translation (SX) and Normal Address
Translation (NX) control the address translation
mechanism for system space and normal space refer-
ences. While either of these bits is 1, the

translation mechanism is enabled for references in
the corresponding space; while either bit is 0,
the translation mechanism is disabled for refer-
ences in the corresponding space.

Cache Replacement (CR) controls the cache replace-
ment algorithm. While this bit is 1, the cache
replacement algorithm is enabled; while 0, the
cache replacement algorithm is disabled. Most
applications leave the replacement algorithm
enabled. Some applications, however, selectively
enable and disable the replacement algorithm to
lock specific locations into the cache. Refer to
Appendix C for more information.

Cache Instruction (CI) and Cache Data (CD) control
the cache mechanism for instruction and data
references. While either of these bits is 1, the
cache mechanism is enabled for the corresponding
references; while either bit is 0, the cache mech-
anism is disabled for the corresponding refer-
ences. Refer to Appendix C for more information.

Exception Linear/Segmented mode (XL/S) controls
whether linear or segmented mode of address repre-
sentation is used during exception processing.
While this bit is 1, linear mode is used; while O,
segmented mode is used (see Section 7.4.5.)

2.6 RESERVED CONTROL BITS

Some of the bits in the FCW and control register
formats shown in Figures 2-3 and 2-4 are marked
"0". These bits are reserved for future defini-
tion. When the control register is read, these
bits return O. When the control register is
written, these bits must be 0. Although the CPU
does not check that the reserved bits written to
the control register are 0, functions may be
defined for these bits in the future.

Chapter 3.
Address Representation and
Modes of Operation

3.1 INTRODUCTION

The CPU has three modes of address representa-
tion--compact, segmented and linear--and two modes
of operation--normal and system.

3.2 ADDRESS REPRESENTATION

As shown in Figure 3-1, the CPU has three modes of
address representation: compact, segmented, and
linear. The mode is selected by two control bits
in the Flag and Control Word register (see Table
3-1). The Extended/Compact (E/C) bit selects
whether compact addresses (16 bits) or extended
addresses (32 bits) are used. For extended
addresses, the Linear/Segmented (L/3) bit selects
whether linear or segmented addresses are used.
These modes affect only the representation for
logical memory addresses, not logical 1/0
addresses.

The Load Address instruction can be used to mani-
pulate addresses in any mode of representation.
The address calculation performed by this instruc-
tion is the same as the addressing used to access
an operand.

In compact mode, addresses are 16 bits. Address
calculations using compact addresses involve all
16 bits. Compact mode is more efficient and con-
sumes less program space for applications requir-
ing less than 64K bytes of program and less than
64K bytes of data. This efficiency is due to
shorter instructions in compact mode, and the fact
that addresses in the register file use word
rather than longword registers. Applications
requiring more than 64K bytes of either program or
data should use segmented or linear mode.

Table 3-1. Address Representation

Control Bits in FCW

E/C L/S Representation
0 0 Compact
0 1 Reserved
1 0 Segmented
1 1 Linear

Segmented mode supports two segment sizes--64K
bytes and 16M bytes. The most-significant bit of
the 32-bit address selects either a 15-bit segment
number with a 16-bit segment offset (MSB = 0) or a
7-bit segment number with 24-bit segment offset
(MSB = 1). Thus, the address space includes
32,768 of the smaller segments and 128 of the
larger segments. In segmented mode, address cal-
culations involve only the segment offset; the
segment number is unaffected.

Many applications benefit from the logical struc-
ture of segmentation by allocating individual
objects, such as program modules, stacks, or large
data structures, to separate segments.

In linear mode, addresses are 32 bits. Address
calculations using linear addresses involve all 32
bits. In linear mode, the address space of 4G
bytes is uniform and unstructured. Some applica-
tions benefit from the flexibility of linear
addressing by allocating objects to arbitrary
positions in the address space.

In compact mode, addresses stored in the register
file use word registers; in segmented or linear
mode, addresses use longword registers. When an
address is specified in a register for Indirect,
Base Address, and Base Index addressing modes, or
for the destination of a Load Address instruction,
the address register specified by the instruction
is a word register in compact mode and a longword
register in segmented or linear mode. Similarly,
references to the Program Counter in compact mode
use only the low-order word of the PC, while in
segmented or linear mode, the entire longword PC
is used. In compact mode, the Stack Pointer is
R15 and the Frame Pointer is R14. In segmented or
linear mode the Stack Pointer is RR14 and the
Frame Pointer is RR12.

Some addressing modes generally available in seg-
mented or linear mode are restricted in compact
mode. Refer to Chapter 5 for more information
about the effect of the address representation
mode on addressing modes and address calculation.

In compact mode, addresses encoded in instructions
occupy one word; in segmented or linear mode,
addresses in instructions occupy one or two

Address Representation and Modes of Operation

(A) COMPACT ADDRESSES

31 30

16 15 0

l ° l | 1 | I — ALSEIGMELN.r 1 | il 1 1 1 TAI_[l 1

OFFSET
1 1 il

(1) 64K BYTE SEGMENT SIZE

31 24 28

30
[,

| OFFSET
B SN I T TN U TN NN TR W U U TN UM SN WS S U WS SN WA T S|

(ii) 16M BYTE SEGMENT SIZE

(B) SEGMENTED ADDRESSES

31

lJIALlLlJ;lJ;ll||||||||||||l||l|l

(C) LINEAR ADDRESSES

Figure 3-1.

Address Representations

words. Refer to Chapter 6 for more information
about the effect of the segmentation mode on
instruction representation and execution.

3.3 NORMAL AND SYSTEM MODES

The CPU has two modes of operation, normal and
system, selected by the S/N bit in the Flag and
Control Word register. System mode (S/N = 1) is
more privileged than normal mode (S/N = 0). These
modes affect CPU operation in three areas: privi-
leged instructions, Stack Pointers, and memory
management .

All instructions can be executed in system mode.
Some instructions, such as those performing 1/0

operations or accessing control registers, can
only be executed in system mode, and are called
privileged instructions. When a program operating
in normal mode attempts to execute a privileged
instruction, an exception occurs. The privileged
instructions are identified in the instruction set
description in Chapter 6.

The Stack Pointer registers are distinct for nor-
mal and system modes. In normal mode, a reference
to the Stack Pointer register accesses the Normal
Stack Pointer. In system mode, a reference to the
Stack Pointer register references the System Stack
Pointer. In compact system mode, references to
R14 use normal mode R14. Table 3-2 shows the reg-
isters accessed in the different modes.

Table 3-2. Registers Referenced by Access to R14 and R15
Register System Mode Normal Mode
Refer: d by
Instruction Segmented Compact Segmented Compact
or Linear or Linear
R14 System R14 Normal R14 Normal R14 Normal R14
R15 System R15 System R15 Normal R15 Normal R15
RR14 System R14 Normal R14 Normal R14 Normal R14
System R15 System R15 Normal R15 Normal R15

2071-004

Address Representation and Modes of Operation

In normal mode, the System Stack Pointer is not
accessible., In system mode, the Normal Stack
Pointer is accessed using the Load Control or Load
Control Long instruction.

Memory address spaces are distinct for normal and
system modes. Different translation tables are
used for translating normal and system mode
addresses, although the tables can optionally be
merged. The access protection performed by the
memory management mechanism allows access by sys-
tem programs to memory locations that are prohib-
ited from access by normal mode programs.

The CPU can change its operating mode whenever the
FCW is loaded by a Load Control instruction, Load

Program Status instruction, Interrupt Return
instruction, or during exception processing. The
distinction between normal and system modes allows
the construction of a protected operating system.
The operating system kernel runs in system mode to
manage the computer system resources--CPU, memory,
and peripherals. Application programs run in nor-
mal mode, where they are prohibited from interfer-
ing with other application programs or the operat-
ing system. When application programs require a
service that only the operating system can per-
form, the System Call instruction is executed.
System Call causes a trap to the operating system,
passing an identifier for the particular service
requested.

3-3

Chapter 4.
Address Spaces and Memory
Management

4.1 INTRODUCTION

The CPU refers to memory and peripherals to fetch
instructions, fetch and store operands, process
exceptions, and perform memory management. The
CPU uses addresses to specify the location for
memory and peripheral references. Logical
addresses, which are the addresses manipulated by
programs, are distinguished from physical
addresses, which are the addresses the CPU pre-
sents to memory and peripherals. This chapter
describes the types of logical addresses and the
procedure for mapping logical to physical
addresses. Chapter 8 describes the way the CPU
refers to memory and peripherals using physical
addresses.

4.2 ADDRESS SPACES

The CPU supports several distinct spaces for logi-

cal and physical addresses (Figure 4-1). Logical

MEMORY

SYSTEM
INSTRUCTION

SYSTEM
DATA

NORMAL
INSTRUCTION

NORMAL
DATA

o

LOGICAL ADDRESS SPACE

Figure 4-1.

addresses are in one of four memory address spaces
or in I/0 address space. Physical addresses are
in memory or 1/0 address space.

4.2.1 Logical Memory Address Spaces

Logical memory addresses are in system instruction
space, system data space, normal instruction
space, or normal data space. When the CPU is in
system mode, one of the two system address spaces
is used for a memory reference. In normal mode,
one of the two normal address spaces is used.
Instruction address space is used for instruction
fetches, immediate mode operand fetches, and
fetches or stores of operands specified using
Relative Address or Relative Index addressing
modes. Data address space is used for references
to fetch or store operands in memory, other than
those specified using Immediate, Relative, or
Relative Index addressing modes. Refer to Chapter
5 for a description of addressing modes.

MEMORY

o

TRANSLATION

PHYSICAL ADDRESS SPACE

Address Spaces

8225-003

Address Spaces and Memory Management

Logical addresses in the memory spaces are 32
bits. Each address specifies the location of a
byte in memory. In compact mode, only the low-
order 16 bits of the logical address can be
directly manipulated; the high-order 16 bits of
the logical address are the high-order 16 bits of
the PC (Figure 4-2). In segmented mode, the lower
half of each address space contains 32,768 small
segments of maximum size 64K bytes, and the upper
half contains 128 large segments of maximum size
16M bytes (Figure 4-3). Each segment can be
viewed as a contiguous string of bytes at consecu-
tive offsets. In linear mode, the entire address
space is a contiguous string of bytes at consecu-
tive addresses.

PROGRAM COUNTER
31 16 15

Words and longwords in memory are addressed using
the lowest address of any byte in the word or
longword. This is the left-most, highest-order,
most-significant byte of the word or longword
(Figure 4-4).

Word and longword operands located in memory can
be at even or odd addresses. Performance is
improved when word operands are located at even
addresses and longword operands are located at
addresses that are a multiple of four. Instruc-
tion words must be located at even addresses.
When an attempt is made to execute an instruction
at an odd address, an odd PC trap occurs.

COMPACT ADDRESS
0 15 0

= =
[31 16]15 i)l

LOGICAL ADDRESS

Figure 4-2.
Logical Memory Addresses in Compact Mode

SMALL SEGMENT 0 64K BYTES

31 30 16 15 0
SMALL SEGMENT 1 64K BYTES
[o] seament | OFFSET :
SMALL SEGMENT
phi 64K BYTES
(LARGE SEGMENT 0 16M BYTES
31 30 24 23
LARGE SEGMENT 1 16M BYTES
[1 l SEGMENT OFFSET —l {
 LARGE SEGMENT 16M BYTES
Figure 4-3.

Memory Address Space in Segmented Mode

8225-004, 005

Address Spaces and Memory Management

) J LONGWORD

7 0
BYTE
ADDRESS n
15 0
| [l WORD
L I i 1 1 I I I Il ' 1 1 1 1
ADDRESS n ADDRESS n+1
31 0
IlllllllllllllllllllllllIlllll
ADDRESS n ADDRESS n+ 1 ADDRESS n+2 ADDRESS n+3

Figure 4-4.
Bytes, Words, and Longwords in Memory

4.2.2 Logical 1/0 Address Space

Although logical I/0 addresses are 32 bits, only
the 16 low-order bits of a logical 1/0 address can
be manipulated; the CPU always forces the 16 high-
order bits to 0.

Unlike logical memory address spaces, logical 1/0
address space is not viewed as a string of bytes
at consecutive addresses. Rather, the address is
simply used to locate a byte, word, or longword
peripheral port. The byte port located at address
n does not have to be contiguous with the byte
port located at address n+1, nor must it be the
more significant byte of the word port located at
address n. Logical I1/0 addresses can be either
even or odd.

4.2.3 Physical Address Spaces

Physical addresses are in physical memory space or
physical I/0 space. The two physical address
spaces are distinguished by different status and
timing on the external interface (see Chapter 8).
Also, copies of physical memory locations can be
stored in the cache, but copies of physical I/0
locations cannot. Physical addresses in both
spaces are 32 bits. (Note that the external
interface provides information distinguishing
between memory references for instructions and
data, and between system and normal modes. This
information should not be used, however, to sep-
arate physical memory addresses into different
spaces when the cache mechanism is enabled,
because the cache does not distinguish separate
physical memory address spaces.)

The CPU maps logical addresses to physical

addresses. Addresses in logical 1/0 space map to
identical addresses in physical 1/0 space.
Addresses in logical memory spaces map to

addresses in physical memory space or physical 1/0

space. The process of translating logical memory
addresses is described in the following section.

4.3 MEMORY MANAGEMENT

The CPU features a memory management mechanism
that translates logical memory addresses to physi-
cal addresses and protects for execute, read, and
write accesses. The memory management mechanism
serves four functions: relocation, protection,
sharing, and virtual memory.

Relocation maps a logical address to a potentially
different physical address. This allows multiple
processes to use the same logical addresses for
distinct physical memory locations. Paged address
translation divides the logical address spaces
into fixed-size units, called pages, and the phys-
ical address spaces into fixed-size units, called
frames. A logical page can be mapped to an arbi-
trary physical frame. Because the pages and
frames are of fixed and equal size, memory alloca-
tion is simplified.

Protection limits the type of access a process can
make to a logical address. A segment or individ-
ual page can be protected against instruction
fetches, operand fetches, or operand stores in
either normal or system mode. The protection fea-
tures of the CPU provide security for sensitive
data or programs, such as proprietary code
modules, that should not be copied or modified.
The CPU also allows protected access by applice-
tion programs to selected peripherals (memory-
mapped 1/0).

Sharing of physical memory by multiple processes
is supported by relocation and protection. Logi-
cal addresses for several processes can map to the
same physical address. The access protection
attributes for each process may differ.

8225-006

4-3

Address Spaces and Memory Management

Virtual memory means that the range of logical
addresses used by a process can be larger than the
allocated physical memory. When a reference is
made to a logical address that is not mapped to a
physical address, an exception occurs. 'After the
missing page is transferred from secondary storage
to main memory, the process can simply be
restarted. The CPU provides information about
pages that have been referred to or modified,
thus helping the operating system allocate memory
efficiently.

The memory management mechanism is selectively
controlled for references in system or normal
spaces by two bits in the System Configuration
Control Longword register (SX and NX). When the
memory management mechanism is disabled, the phys-
ical address used for the reference, which is in
physical memory space, is identical to the logical
address and all accesses are permitted. The fol-
lowing sections describe address translation and
access protection when the memory management mech-
anism is enabled.

4.3.1 Address Translation

The page size used by the CPU is 1K bytes. The
translation process involves mapping a logical
page, which is specified by the 22 most-signifi-
cant bits of the logical address, to a physical
frame, which is specified by the 22 most-signifi-
cant bits of the physical address. The 10 least-
significant address bits, which specify the byte
within a page or frame, are identical for the log-
ical and physical address. A logical page can
generally map to an arbitrary physical frame,
except for a restriction that applies only when
physical memory modules with different data path
widths are used and operands can be located across
consecutive logical pages. Refer to section 8.6
for more information.

The CPU contains a Translation Lookaside Buffer

31

(TLB) that stores the translation information for
the 16 most recently used pages in a fully
associative memory. For each memory reference,
the logical page address is compared with the
address tags in the TLB (Figure 4-5). If a match-
ing address tag is found, the corresponding frame
address is read from the TLB and used to complete
the translation. When information needed to
translate the page is missing from the TLB, the
CPU automatically refers to tables in memory to
perform the translation. The CPU then loads the
missing translation information into the TLB,
replacing the TLB entry of the least recently
referenced page.

Thus, the TLB acts as a buffer for the most

recently used page descriptors. This buffer is
automatically maintained by on-chip hardware.*

109 0

LOGICAL ADDRESS |

PAGE ADDRESS

l PAGE OFFSETI

TRANSLATION |iocicaL page| PHYSICAL
LOOKASIDE |aDDRESS TAGS| , FRAME
BUFFER
31 ‘L l’ 10 9 0
PHYSICAL ADDRESS I FRAME ADDRESS FRAMEOFFSET'

Figure 4-5. Address

Translation Using the TLB

The address tags in the TLB are extended from 22
to 24 bits. The extra bits identify the memory
address space for the page. Thus, references to
pages with the same page number but in different
address spaces are translated differently. The
frame addresses in the TLBs are also augmented
with the access protection code and the
Non-Cacheable and Modification bits from the page
table entry.

*The number of entries, degree of associativity,
and replacement algorithm described for the TLB
design in this section are specific to the first
implementation of the 280,000 CPU architecture and
may differ in future products implementing the
same architecture. Differences in the character-
istics can impact systems performance, but have no
effect on the function of software or the external
interface.

2071-005

Address Spaces and Memory Management

4.3.2 Loading the TLB

To load the TLB with the information needed to
translate a page address, the CPU automatically
fetches entries from up to three levels of tables
in physical memory. Figure 4-6 shows the
partition of a logical address into an B8-bit

level-1 field (L1), an 8-bit level-2 field (L2), a
6-bit page number field (P), and a 10-bit page
offset field (P-OFFSET). When loading the TLB,
the L1, L2, and P fields are used as indexes into
the different translation table levels. (Figure
4-7).

31 24 23 16 15 10 9 0
l A 4 e Ll‘ ' L A I 1 1 L le L 1 1 —I ' L IP 4 1 I L " FI-OFIFSEIT L A]
Figure 4-6.

Logical Address Partition for Address Translation

o

©

TABLE DESCRIPTOR

REGISTERS LEVEL ¢

TABLE

31 l 24 23

LEVEL 2
TABLE

; ﬁl

PAGE TABLE

109

LOGICAL ADDRESS | L1

l P-OFFSET l

0
FRAME ADDRESS [lmmaurssJ PAGE TABLE

ENTRY

—

TRANSLATION
LOOKASIDE

LOGICAL PAGE
TAGS

PHYSICAL
FRAME

BUFFER

Figure 4-7.

Automatic Loading of the TLB

Using Tables in Memory

When the address space is not fully used, the
first-level and second-level translation tables
can be selectively skipped to reduce the storage
for tables and the number of memory references
required to autoload the TLB. The level-1 tables
can be skipped when an address space of 16M bytes
is sufficient. The level-2 tables can be skipped
for compatibility with Z8000 segmented addresses.
Both level-1 and level-2 tables can be skipped for
compact addresses. When a level of tables is
skipped, the corresponding field of the logical
address is ignored.

When the address spaces are not separated, it is
also possible to reduce storage for tables by
loading identical values into the translation
table descriptor registers. The same tables would
then be used to translate addresses in different
spaces. The following sections describe the for-
mats of the translation table descriptors and
entries and explain the translation algorithm.

8225-007, 2071-006

4-5

Address Spaces and Memory Management

4.3.2.1 Translation Table Descriptor Registers.
There is a translation table descriptor register
for each of the four logical memory address

spaces: System Instruction Translation Table

Descriptor (SITTD), System Data Translation

Table Descriptor (SDTTD), Normal Instruction
31 30

Translation Table Descriptor (NITTD), and Normal
Data Translation Table Descriptor (NDTTD). The
translation table descriptor registers are
accessed using the Load Control Long instruction.
Figure 4-8 shows the format of a translation table
descriptor.

| T TABLE FORMAT (TF)
TABLE SIZE (SI2)

e PROTECTION (PROT)

NEXT LEVEL TABLE
BASE (NLTB)

GROWTH DIRECTION (G)

Table Format

(TF)

00 THREE LEVELS
01 SKIP LEVEL 2 TABLES
10 SKIP LEVEL 1 TABLES

11 SKIP LEVEL 1 AND LEVEL 2 TABLES

TABLE SIZE
(s12)

00
01
10
"

VALID TABLE ENTRIES

G =0 G =1
0TO 63 0TO 255
0TO 127 64 TO 255
0TO 191 128 TO 255
0TO 255 192 TO 255

Figure 4-8. Translation Table Descriptor

The Table Format field (TF) specifies the struc-
ture of the translation tables. The table format
can be a full three levels, two levels with either
level-1 tables or level-2 tables skipped, or one
level with both level-1 and level-2 tables
skipped.

Next Level Table Base (NLTB) specifies 23 bits of
the base address in physical memory of the next
level table. The full 32-bit address is formed by
extending NLTB with one high-order 0 and eight
low-order Os (Figure 4-9).

Growth Direction (G) specifies the growth direc-
tion of the next level table from low address to
high address (G=0) or from high address to low
address (G=1). The reverse growth direction (G=1)
is used for downward-growing stacks.

The Table Size field (SIZ), in conjunction with
the Growth Direction field, specifies the valid
portion of the next level table in increments of
256 bytes. When only part of a table contains
valid entries, storage for many invalid entries
can be eliminated through use of the SIZ field.

When the next level table is a page table, then
the G and SIZ fields must be O because a page
table always has 64 entries.

Protection (PROT) specifies the access protection
code (see Table 4-1).

4.3.2.2 Level-1 Table Entries. The L1 field of
the logical address selects one of up to 256
entries in the level-1 table. Figure 4-10 shows
the format of a level-1 table entry.

Valid (V) determines the validity of the G, NLTB,
and SIZ fields. If the V bit is 1, the fields are
valid; otherwise, the fields are invalid. The
PROT field is always valid.

Growth direction (G), Next Level Table Base
(NLTB), Table Size (SIZ), and Protection (PROT)
have the same meaning as in the translation table
descriptor registers.

Bit 0 of the level-1 table entry is reserved and
must be 0. This bit is ignored by the translation
mechanism.

2071-007

Address Spaces and Memory Management

31 30 8 7 0
| | NLTB J TRANSLATION TABLE
ST S NN WU VNS T (NN TN N OO A T TN TN VAN TN SO NN SN JUN SN | NI TN B N | DESCRIPTOR OR ENTRY
31 30 8 7 0
TRANSLATION TABLE
hl N YO N TN T NN T SR WA TN NN S T TN WO S S T MO B W |°|°|010;°|°|°|o BASE ADDRESS

Figure 4-9. Translation Table Base Address

31 30 8 7

0
0
LJL]IIIIIIIIIllIIlIIJIIIIllllIlI—l
| ;VALID(V)
TABLE SIZE (SI2)
t——————————— PROTECTION (PROT)
NEXT LEVEL TABLE

BASE (NLTB)
GROWTH DIRECTION (G)

LEVEL 1 TABLE ENTRY

| L vaup v

PROTECTION (PROT)
NEXT LEVEL TABLE
BASE (NLTB)

| L Rrererence)
VALID (V)
MODIFICATION (M)

NONCACHEABLE (NC)
PROTECTION (PROT)
UNUSED

FRAME ADDRESS (FA)
o

PAGE TABLE ENTRY

Figure 4-10. Table Entry Formats

4.3.2.3 Level-2 Table Entries. The L2 field of 4.3.2.4 Page Table Entries. The P field of the

the logical address selects one of up to 256 logical address selects one of 64 entries in the
entries in the level-2 table. Figure 4-10 shows page table. Figure 4-10 shows the format of a
the format of a level-2 segment table entry. page table entry.

Valid (V) determines the validity of the NLTB Valid (V) determines the validity of the I1/0, FA,

field. If the V bit is 1, the field is valid; NC, M, and R fields. If the V bit is 1, the
otherwise the field is invalid. The PROT field is fields are valid; otherwise, the fields are
always valid. invalid. The PROT field is always valid.

Next Level Table Base (NLTB) and Protection I/0 determines whether the address of the frame is

(PROT) have the same meaning as in the translation in physical memory space or physical 1/0 space.

table descriptor registers. When 1/0 is 0, the frame is in memory space; when
1, the frame is in I/0 space.

Bits 0, 2, 3 and 31 of the level-2 table entry are

reserved and must be 0.

2071-008 4-7

Address Spaces and Memory Management

Frame Address (FA) specifies the physical address
of the frame corresponding to the logical page.
The address is formed by appending ten low-order
Os to the 1/0 bit and the FA field.

Non-Cacheable (NC) is used to maintain the integ-
rity of the cache. If the NC bit is 1, copies of
memory locations in this frame cannot be stored in
the cache; otherwise, copies of memory locations
in this page can be stored in the cache. For
example, the NC bit can be set for a page shared
by multiple processes with write access in a sys-
tem containing multiple CPUs. The NC bit has
meaning only when the frame is in physical memory;
1/0 locations are never stored in the cache. See
Appendix C for more information.

Modification (M) and Reference (R) bits are used
by software to implement virtual memory
replacement algorithms. The CPU sets the R bit of
the page table entry when the page is first
referred to, either for fetching or storing
information. The CPU sets the M bit of the page
table entry when an operand is first stored to the
page. The CPU refers to translation tables in
memory to set the M bit on the first store to the
page, even if the translation information for the
page is present in the TLB because of a previous
fetch from the page. The CPU uses interlocked
memory references (see Section 8.8.2.3) to set the
R and M bits in the page table entry, allowing
page tables to be shared between tightly-coupled
multiprocessors.

Protection (PROT) specifies the access protection
code described below.

Bits 8 and 9 of the page table entry are available
for use by software; the bits are ignored by the
translation mechanism.

4.3.3 Access Protection

The memory management mechanism enforces access
protection for segments and pages using informa-
tion encoded in the PROT field of translation
table descriptors and table entries. The CPU
checks three types of access operations: execute,
read and write. Execute access is required for
instruction fetches, including Immediate mode
operand fetches. Read access is required for
operand fetches other than Immediate mode. Write
access is required for operand stores. The CPU
allows different access rights for normal and
system mode programs. Table 4-1 shows the
interpretation for the PROT code.

Table 4-1.
Protection Field Encoding

Encoding System Normal
0000 NA NA
0001 RE NA
0010 RE E
0011 RE RE
0100 E NA
0101 E E
0110 R NA
0111 R R
1000 Next Next
1001 RW NA
1010 RW R
1011 RW RW
1100 RWE NA
1101 RWE E
1110 RWE RE
1M RWE RWE

NA - no access is permitted

R - read access is permitted

W - write access is permitted

E - execute access is permitted

Next - Use the protection field of the
next level translation table; for
page table entries, a PROT field of
1000 indicates no access is permitted.

During the translation process, a PROT field is
encountered at each level. The first PROT field
with value other than 1000 is selected; the other
PROT fields are ignored. If all PROT fields up to
and including the page table entry are 1000, no
access is permitted.

4.3.4 Address Translation Algorithm

The CPU executes the following algorithm to trans-
late a logical address using the tables in memory
when loading a missing entry into the TLB or set-
ting the M bit on the first store to a page.

Step 1. Translation Table Descriptor Processing.
One of the four translation table descriptor reg-
isters is selected according to the logical
address space.

Address Spaces and Memory Management

If the PROT field of the segment table descriptor
is 1000, the intended access operation is not
checked. Otherwise, if the intended access opera-
tion is not permitted by the PROT field, an
Address Translation trap (access protection viola-
tion) occurs.

The G, NLTB, and SIZ fields are passed to the next
step of the address translation algorithm.

If the TF field is 00 or 01, then go to Step 2; if
_the TF field is 10, then go to Step 3; otherwise,
go to Step 4.

Step 2. Level-1 Table Entry Processing. The
L1 field of the logical address is checked with
the G and SIZ fields from Step 1. If G is 0 and
L1 is greater then 64 x (SIZ+1) -1 or if G is 1
and L1 is less then 64 x SIZ, an Address Trans-
lation trap (invalid table entry) occurs.

The address of the level-1 table is formed by
extending the NLTB field from Step 1 with one
high-order 0 and eight low-order Os. The physical
address of the level-1 table entry is calculated
by adding 4 x L1 to the address of the level-1
table. The addition is a 32-bit unsigned arith-
metic operation, ignoring the carry from the most-
significant bit position.

The selected level-1 table entry is fetched from
memory. If the intended access operation was
checked at Step 1 or the PROT field of the table
entry is 1000, the intended access operation is
not checked at this step. Otherwise, if the
intended access operation is not permitted by the
PROT field, an Address Translation trap (access
protection violation) occurs.

If the V bit of the table entry is 0, an Address
Translation trap (invalid table entry) occurs.

The G, NLTB and SIZ fields of the table entry are
passed to the next step of the address translation
process.

If the TF field of the segment table descriptor is
00, then go to Step 3; otherwise go to Step 4.

Step 3. Level-2 Table Processing. The L2 field
of the logical address is checked with the G and
SIZ field from the previous step. If G is 0 and
L2 is greater than 64 x (SIZ+1)-1 or if G is 1 and
L2 is less than 64 x SIZ, an Address Translation
trap (invalid table entry) occurs.

The address of the level-2 table is formed by
extending the NLTB field from the previous step
with one high-order 0 and eight low-order Os. The
physical address of the level-2 table entry is
calculated by adding 4 x L2 to the address of the
level-2 table. The addition is a 32-bit unsigned
arithmetic operation, ignoring the carry from the
most-significant bit position.

The selected level-2 table entry is fetched from
memory. If the intended access operation was
checked at a previous step or the PROT field of
the table entry is 1000, the intended access
operation is not checked. Otherwise, if the
intended access operation is not permitted by the
PROT field, an Address Translation trap (access
protection violation) occurs.

If the V bit of the table entry is 0, an Address
Translation trap (invalid table entry) occurs.

The NLTB field of the table entry is passed to
Step 4.

Step 4. Page Table Entry Processing. The
address of the page table is formed by extending
the NLTB field from the previous step with one
high-order 0 and eight low-order Os. The physical
address of the page table entry is calculated by
adding 4 x P to the address of the page table.
The addition is a 32-bit unsigned arithmetic
operation, ignoring the carry from the most-sig-
nificant bit position.

The selected page table entry is fetched from mem-
ory. If the intended access operation was not
checked at a previous step, and the intended
access operation is not permitted by the PROT
field, an Address Translation trap (access protec-
tion violation) occurs.

If the V bit of the table entry is 0, an Address
Translation trap (invalid table entry) occurs.

If the R bit of the table entry is 0, the CPU sets
R to 1. If the M bit is 0 and the access opera-
tion is write, the CPU sets M to 1. If either the
R or M bit changes, the CPU writes the low-order
byte of the table entry back to memory; otherwise,
the table entry is unchanged.

Finally, the 1/0, FA, NC, M, and selected PROT
fields are loaded into the TLB, along with the
associated logical page address.

Address Spaces and Memory Management

4.3.5 Address Translation Exceptions

The CPU detects two types of address translation
exception conditions: access protection violation
and invalid table entry. When either of the
exception conditions is detected, the CPU suspends
the instruction being executed and processes an
Address Translation trap. During trap processing
the CPU saves on the system stack the PC, the FCW,
an identifier word, and the logical address that
caused the trap. The saved PC value is the
address of the first word of the instruction that
caused the trap. The identifier word (Figure
4-11) indicates the type of exception and the

15

3 2

address space that caused the trap. When both
types of address translation exception are
detected, an access protection violation is indi-
cated.

When an Address Translation trap occurs, the CPU
saves the state of registers and memory so the
instruction can simply be restarted. The
instruction can be successfully completed by
eliminating the exception condition, popping the
violation address from the system stack, and
executing the Interrupt Return instruction. Refer
to Chapter 7 for more information about exception
processing.

r; 00000000000 ol l l
11 1 | T S S T T Ll L

00 NORMAL DATA SPACE
01 NORMAL INSTRUCTION SPACE
10 SYSTEM DATA SPACE
11 SYSTEM INSTRUCTION SPACE

0 INVALID TABLE ENTRY
1 ACCESS PROTECTION VIOLATION

Figure 4-11.
Address Translation Trap Identifier Word

4.3.6 Memory Management Instructions

The CPU provides several privileged instructions
directly concerned with memory management. The
Load Normal instructions permit system mode pro-
grams to refer to normal address spaces. These
instructions check access rights using system mode
privilege.

The Load Physical address instructions translate a
logical address in any of the memory address
spaces and load the corresponding physical address
into a register. The CPU sets the flag bits in
the FCW to indicate the access rights and whether
the translation is valid. Although the CPU does
not refer to the location of the translated
address, the R bit in the page table entry is set
by this instruction.

Three types of instructions allow outdated infor-
mation to be eliminated from the TLB when the mem-
ory map is changed by altering one of the transla-
tion table descriptor registers or translation
table entries. When a page table entry is altered
(other than setting the R, M, or V bits), then one
of the Purge TLB Entry instructions can be used to
remove the translation information for the page
from the TLB. The Purge TLB Normal instruction
removes all normal space entries from the TLB.
This instruction is used when the normal space
memory map is changed, but the system space memory
map remains the same. For example, the operating
system executes the Purge TLB Normal instruction
when a process switch occurs as long as system and
normal address spaces are separate. The Purge TLB
instruction removes all entries from the TLB.

4-10

8225-009

Chapter 5.
Addressing Modes and
Address Calculations

5.1 INTRODUCTION

The CPU locates operands (the data manipulated by
instructions) in registers, memory, peripheral
ports, or in the instruction. Figure 5-1 shows
the nine addressing modes used to specify the
location of operands. Although most operations
can use any of the addressing modes, certain
operations, such as Load Control, allow only a
restricted set of addressing modes.

This chapter describes the addressing modes and
the way operand addresses are calculated. Exam-
ples are given for compact, segmented, and linear
modes of address representation. Chapter 6 pro-
vides details about the encoding of addressing
modes and the addressing modes allowed for each
operation.

5.2 ADDRESS CALCULATIONS

When an operand is in a logical memory address
space, the "effective address" of the operand is
calculated using a base address, an optional index
value, and an optional displacement. The base
address is located in a general-purpose register,
the Program Counter (PC), or the instruction. The
index value is located in a word or longword reg-
ister. The displacement is located in the
instruction. The following sections déscribe the
calculations of effective addresses in compact,
segmented and linear modes.

When an operand is in logical I1/0 space, no
address calculation is necessary. The 16-bit
address of the I/0 port is located in a word reg-
ister or in the instruction.

5.2.1 Compact Address Calculations

In compact mode, addresses are 16 bits. The base
address for the effective address calculation is
located in either a word register other than RO,
the low-order word of the PC, or a word of the
instruction. When an index value is used, it is
located in a word register other than RO. The
displacement is encoded in 16 or fewer bits of the
instruction. When the displacement is encoded in
fewer than 16 bits, it is extended to 16 bits for

effective address calculation. Displacements are
generally extended by replicating the sign (most-
significant) bit in the high-order bit positions,
but for the Decrement and Jump if Not Zero (DJINZ)
instruction, the displacement is extended with
Os. In compact mode, it is not possible to spec-
ify both an index value and a displacement for
effective address calculation.

The effective address is generally calculated by
adding the base address to the optional index
value or displacement, but for the Call Relative
(CALR) and DJINZ instructions, the displacement is
subtracted from the base address. Addresses are
calculated using 16-bit arithmetic. Carry and
overflow from the most-significant bit position
are ignored. Thus, addresses wraparound with
address 0 appearing to follow address 65,535.

The following example shows an effective address
calculation with base address 123416 and index
value or displacement FEDCq¢. The effective
address is 111044

base address 1234
+ index value or FEDC
displacement

= effective address 1110

5.2.2 Segmented Address Calculations

In segmented mode, addresses are 32 bits. The
base address for the effective address calculation
is located in either a longword register other
than RRO, in the PC, or in one or two words of the
instruction. (A concise representation of the
32-bit base address using a single instruction
word is available for some addresses. Refer to
Section 6.4.3.2 for more information.) When an
index value is used, it is located in a word reg-
ister other than RO or a longword register other
than RRO. An index value located in a word regis-
ter is extended to 32 bits for effective address
calculation by replicating the sign (most-signifi-
cant) bit in the high-order bit positions. The
displacement in an instruction is encoded in 32 or
fewer bits. When the displacement is encoded in
fewer than 32 bits, it is extended to 32 bits for
effective address calculation. Displacements are

Addressing Modes and Address Calculations

Addressing Mode

Operand Addressing

Operand Value

In the Instruction

In a Register

In Memory

Register

[REGISTER NUMBﬂ—-Dr OPERAND I

The contents of the
register

Immediate

OPERAND

In the instruction

*IR

Indirect
Register

The contents of the

.
]
°

ddi is in the

register

DA

Direct
Address

The contents of the

ddi is in the

instruction

*X

Index

REGISTER NUMBER

—P[INDEX

—

BASE

O[]

The contents of the
location whose
address is the address
in the instruction, plus
the contents of the
Index Register

*BA

Base
Address

REGISTER NUMBER

—] ease ADDEH

The contents of the
location whose
address is the

DISPLACEMENT

O—Loremaw |

of the Base
register, plus the
displacement in the
instruction

*BX

Base
Index

REGISTER NUMBER |—»-| BASE ADDRESS

The contents of the
location whose
address is the

t of the Base

REGISTER NUMBER }—»-|

INDEX

DISPLACEMENT

%l OPERAND I

register, plus the
contents of the Index
register, plus the
displacement in the
instruction

RA

Relative
Address

| DISPL II

+ OPERAND

The contents of the
location whose
address is the
contents of the
Program Counter, plus
the displacement in
the instruction

*RX

Relative
Index

PC ADDRESS

REGISTER NUMBER t——»- INDEX

The contents of the
location whose
address is the

F_\Q—-»I OPERAND I

DISPL

A

of the
Program Counter, plus
the contents of the
Index register, plus the
displacement in the
instruction

*R0 and RRO cannot be used for Indirect, Base, or Index registers

Figure 5-1.

Addressing Modes

2071-009

Addressing Modes and Address Calculations

generally extended by replicating the sign (most-
significant) bit in the high-order bit positions,
but for the Decrement and Jump if Not Zero (DJINZ)
instruction, the displacement is extended with
Os.

3130 16 15 0

|°| SEGMENT OFFSET ‘]
IS NN T T TR NN T T Y Y O Y |

T N T O T T T Y Y O

(1) 64K BYTE SEGMENT SIZE

3130 2423 0

|1| SEGMENT I OFFSET I
I - 0 VN TN N N TN O O S T N N T N T N _——

(i) 16M BYTE SEGMENT SIZE

Figure 5-2. Segmented Addresses

In segmented mode, the base address is composed of
a segment number and segment offset. Bit 31 of an
address distinguishes between two segment sizes
(Figure 5-2). When bit 31 of.the address is 0,
the segment number is 15 bits and the segment off-
set is 16 bits, providing a maximum segment size
of 64K bytes. Addresses for these small segments
are written using the notation <<ss# segment num-
ber>> segment_ offset. For example, small segment
number five at offset 231Aq4 would be written
<<ss#5>> 231A14. When bit 31 of the address is 1,
the segment number is 7 bits and the segment off-
set is 24 bits, providing a maximum segment size
of 16M bytes. Addresses for these large segments
are written using the notation <<ls# segment num-
ber>> segment_offset.

The effective address is generally calculated by
adding the base address to the optional index
value and optional displacement, but for CALR and
DINZ instructions, the displacement is subtracted
from the base address. Only the segment offset is
involved in address arithmetic. The segment size
and segment number of the effective address are
the same as the base address. The offset
calculation uses 16-bit arithmetic for the small
segments and 24-bit arithmetic for the large
segments. Carry and overflow from the most-
significant bit position are ignored. Thus,
addresses wraparound within a segment. This means
that, for the small segments, offset 0 appears to
follow offset 65,535. For the large segments,
offset 0O appears to follow offset 16,777,215.

The following example shows an effective address
calculation for a small segment with base address
<<ss#2>> 56784¢, index value 0000BA984¢, and dis-
placement FFFFFFFFqg. The effective address is
<Kss#2>> 110F 4.

Segment Number Segment Offset

Another example shows an effective address calcu-
lation for a large segment with base address
<<1s#3>> 13579B4¢4, index value FFFFFFEQ, and dis-
placement 00000002. The effective address is
<L1s#3>> 13577D4¢.

segment number segment offset

base address <Lssi#2>> 5678
+ index value 0000 BA98
+ displacement FFFF FFFF
= effective address <<ssi#2>> 110F

base address <L1si#3>> 135798
+ index value FF FFFFEO
+ displacement 00 000002
= effective address <<1si#3>> 135770

5.2.3 Linear Address Calculations

In linear mode, addresses are 32 bits. The base
address for the effective address calculation is
located in either a longword register other than
RRO, in the PC, or in one or two words of the
instruction. (A concise representation of the
32-bit base address using a single instruction
word is available for some addresses. Refer to
Section 6.4.3.2 for more information.) When an
index value is used, it is located in a word
register other than RO or a longword register
other than RRO. An index value located in a word
register is extended to 32 bits for effective
address calculation by replicating the sign
(most-significant) bit in the high-order bit
positions. The displacement in an instruction is
encoded in 32 or fewer bits. When the
displacement is encoded in fewer than 32 bits, it
is extended to 32 bits for effective address
calculation. Displacements are generally extended
by replicating the sign (most-significant) bit in
the high-order bit positions, but for the
Decrement and Jump if Not Zero (DINZ) instruction,
the displacement is extended with Os.

The effective address is generally calculated by
adding the base address to the optional index
value and optional displacement, but for CALR
and DINZ instructions the displacement is
subtracted from the base address. Addresses are
calculated using 32-bit arithmetic. Carry and
overflow from the most-significant bit position
are ignored. Thus, addresses wraparound with
address 0 appearing to follow address 232-1,

The following example shows an effective address
calculation with base address 0100000044, index
value 0000006444, and displacement FFFFFF9Bg.
The effective address is OOFFFFFF4.

base address 0100 0000
+ index value 0000 0064
+ displacement FFFF _FF98B
= effective address 00FF FFFF

8225-010

Addressing Modes and Address Calculations

5.3 ADDRESSING MODE DESCRIPTIONS

The following sections describe the nine address-
ing modes. Each description explains how the
operand is located, shows the assembler language
syntax used, and works through an example. The
descriptions are grouped into two sections--one
for compact mode and the other for segmented and
linear modes. In the examples, hexadecimal nota-
tion is used for memory addresses and the contents
of register and memory locations. The % symbol

precedes hexadecimal numbers in assembler language
text. When the examples refer to memory loca-
tions, logical addresses are used; the logical
addresses are translated to physical addresses if
memory management is enabled.

5.3.1 Compact Mode Descriptions and Examples

This section describes the addressing modes used
in the compact mode of operation.

5.3.1.1 Register (R). For Register addressing
mode, the operand is located in the specified gen-
eral-purpose register. Storing data in a register
allows shorter instructions and faster execution
than storing data in memory. The register size
(byte, word, longword, or quadword) is specified
by the instruction opcode.

INSTRUCTION REGISTER

| operann |

THE OPERAND VALUE IS THE CONTENTS OF THE REGISTER.

| oreramion | recister

Assembler language syntax:

RHn, RLn Byte register
Rn Word register
RRn Longword register
RQn Quadword register

Example of R mode:

LDL RR20,RR22 Iload the contents
llof RR22 into RR20

Before Execution After Execution

RR20]01234567 RR20 |A6B89A20
RR22 [A6B89A20 RR22 | A6B89A20

5.3.1.2 Immediate (IM). For Immediate addressing
mode, the operand is located in the instruction.
Because an immediate operand is part of an
instruction, it is located in one of the instruc-
tion memory address spaces. Small immediate
values are used frequently, so the instruction set
provides several concise encodings for these
cases.

INSTRUCTION

OPERATION

OPERAND

THE OPERAND VALUE IS IN THE INSTRUCTION.

Assembler language syntax:
#data
Example of IM mode:
LDB RH2,#%55 Ilload 5515 into RH2

After Execution

ERED

Before Execution

Rz 6732

5.3.1.3 Indirect Register (IR). For Indirect
Register addressing mode, the operand is located
at the address contained in the specified general-
purpose word register. Any word register other
than RO can be used. Depending on the instruction
opcode, the operand is located in one of the data
memory address spaces or in 1/0 address space.
Indirect Register mode has a short encoding and
can be used to simulate more complex addressing
modes by computing the address into a register.

1/0 OR
INSTRUCTION REGISTER DATA MEMORY

| operarion | reaisTer || avoress || orerano |

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS
IS IN THE REGISTER.

Assembler language syntax:

@Rn
Example of IR mode:
LD R2,@R5 Ilload R2 with the

/ldata addressed
Ilby the contents
/lof RS

Before Execution

RR2 [o3]oF|oofos Data Memory
RR4 [20{00[17}0A :

1708 |A0[23{0BJoE
After Execution 170G|10[Dq 2345
RrR2 [oB|oEoo]os :
RR4 [20[00]17(0A

5-4

Addressing Modes and Address Calculations

5.3.1.4 Direct Address (DA). For Direct Address
addressing mode, the operand is located at the
address specified in the instruction. Depending
on the instruction opcode, the operand is located
in one of the data memory address spaces or in 1/0
address space.

INSTRUCTION

/0 OR
OPERATION DATA MEMORY

ADDRESS —>I OPERANDI

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS IN THE INSTRUCTION.

Assembler language syntax:

address Either memory or 1/0

Example of DA mode:

LDL RR30, %5E23

Before Execution

After Execution

INload RR30 with the
/llongword whose
/laddress is 5E231g

Data Memory

.
.
.

5E20 |01los|c1|o2
sE24 [03]o4]os|oo

5.3.1.5 Index (X). For Index addressing mode the
operand is located at the address calculated by
adding the address specified in the instruction to
the index value contained in the specified gen-
eral-purpose word register. Any word register
other than RO can be used. The operand is located
in one of the data memory address spaces. Index
addressing mode can be used for random access to
tables or other complex data structures where the
address of the base of the table is known, but the
particular element index must be computed by the
program.

Assembler language syntax:
address(Rn)

INSTRUCTION

REGISTER

OPERATION | REGISTER —PI INDEX

Example of X mode:

LDL RR8,%231A(R7)

Before Execution

RR6 0oloofo1]FE
RR8 [203A4579

Address Calculation

231A
+01FE
2518

After Execution

RRe [oooo]o1]FE
RR8 [3DOE| 7ADA

DATA
MEMORY

ADDRESS

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
ADDRESS IN THE INSTRUCTION PLUS THE CONTENTS OF THE REGISTER.

+ OPERAND

/lload RR8 with the
Illongword whose
laddress is 231A +
Ilthe value in R7

Data Memory

.
.
.

2514 |F3|C2|57|1E
2518 |3D|OE|7A|DA

Addressing Modes and Address Calculations

5.3.1.6 Base Address (BA). For Base Address Example of BA mode:

addressing mode,

the operand is located at the
address calculated by adding the displacement con-
tained in the instruction to the address contained
in the specified general-purpose word register.

LDL R5(%18),RR2 //load RR2 into the
Illongword whose
/laddress is the base
/laddress in

Any word register other than RO can be used. The /IR5 + 181¢
operand is located in one of the data memory

address spaces. In compact mode, Base Address Before Execution Data Memory
addressing mode can only be used with Load and rr2 [oaloolisloo .

d Add i ions. Thi tricti i T
Loa {\d f-efss instructions is restriction is ara [38l00l20lAA 2000 [oAIBEIFSI0D
not significant, however, because Index and Base
Address addressing modes perform equivalent 20C4 [BA|DE|B0| D1
functions in compact mode. Address Calculation :

20AA
+0018
Assembler language syntax: 2002
Rn (disp) After Execution Data Memory
rr2 [0aJoof15[oo :
RR4 | 88(00[20|AA 20C0 |OA|BE|0A|00
20C4 |15(00(BO|D1
INSTRUCTION REGISTER
opsnmonl ReaisTeR | ADDRESS MORT
DISPLACEMENT +
THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
CONTENTS OF THE REGISTER PLUS THE DISPLACEMENT IN THE INSTRUCTION.
5.3.1.7 Base Index (BX). For Base Index Example of BX mode:

addressing mode,

Base Index addressing mode can be used to access RR2 |1F|3AIFFIFE :
tables or other complex data structures when the RR4 {03|00]15]02 14FC|01]01[4545
base of the table and particular element index are 1500 |Bo|DE|F7|32
not known until the program is executed. In R
compact mf)de, Base Index addressing mode cs'm only Address Calculation
be used with Load and Load Address instructions. 1502
+ FFFE
1500
Assembler language syntax:)
After Execution
Rn (Rm)
RR2 |BO|DE|F7{32
RR4 |03]00[15{02
INSTRUCTION REGISTER
opeRaTION | o INDEX | BASE ADDRESS DATA MEMORY

the operand is located at the
address calculated by adding the index value con-
tained in the specified general-purpose word index
register to the base address contained in the
specified general-purpose word base register. Any
word register other than RO can be used for the
index register or base register. The operand is
located in one of the data memory address spaces.

LDL RR2,R5(R3) /lload RR2 with the
/llongword-whose
/laddress is the base
/laddress in R5 + the
/Ivalue in R3

Before Execution Data Memory

REGISTER

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
CONTENTS OF THE BASE REGISTER PLUS THE CONTENTS OF THE INDEX REGISTER.

Addressing Modes and Address Calculations

5.3.1.8 Relative Address (RA). For Relative
Address addressing mode, the operand is located at
the address calculated by adding the displacement
contained in the instruction to the low-order word
of the Program Counter. The value used for the PC
is the address of the instruction word following
the displacement. The operand is located in one
of the instruction memory address spaces. In
compact mode, Relative Address addressing mode can
only be used with Load, Load Address, Call, Jump,
and DINZ instructions.

Assembler language syntax:
address

Example of RA mode: (Note that the sym-
bol “$" is used for the address of the first
word of the current instruction.)

LDRL RR24,$ + %6 //lload RR24 with the
Illongword whose
/laddress is the
/laddress of the
Iffirst word of
/lthe current
/linstruction + 6

INSTRUCTION PC

Because the Program Counter will be
advanced to point to the next instruction when
the address calculation is performed, the
displacement in the instruction is actually +2
(four less than the offset given by the
assembler language syntax).

Before Execution Instruction Memory

PC 0000 {0200 :
Instruction
RR24101234567 e e,
02003102 {00 [02
0204 |E8|02 |FF {FE
0208 | AB|CD|BDJ|01

Address Calculation

0204
+0002
0206

After Execution

pc|0000{ 0204
RR24 [FFFEABCD

INSTRUCTION
OPERATION | aooress MEMORY
DISPLACEMENT + OPERAND

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
CONTENTS OF PC PLUS THE DISPLACEMENT IN THE INSTRUCTION.

5.3.1.9 Relative Index (RX). Relative Index
addressing mode cannot be used in compact mode of
operation.

5.3.2 Segmented and Linear Mode Descriptions and
Examples

This section describes the addressing modes used
in segmented and linear modes of operation. The
description is identical for the two modes of
address representation except that separate
examples are given for address calculations.

5.3.2.1 Register (R). For Register addressing
mode, the operand is located in the specified gen-
eral-purpose register. Storing data in a register
allows shorter instructions and faster execution
than storing data in memory. The register size
(byte, word, longword, or quadword) is specified
by the instruction opcode.

INSTRUCTION REGISTER
IOPERATION I REGISTER H OPERAND I

THE OPERAND VALUE IS THE CONTENTS OF THE REGISTER.

Assembler language syntax:

RHn, RLn Byte register
Rn Word register
RRn Longword register
RQn Quadword register

Example of R mode:

LDL RR20, RR22 /load the contents of
//RR22 into RR20

Before Execution

RR20101234567
RR22 |A6B89A20

After Execution

RR20 |A6B89A20
RR22 |A6B89A20

5-7

Addressing Modes and Address Calculations

5.3.2.2 Immediate (IM). For Immediate addressing
mode, the operand is located in the instruction.
Because an immediate operand is part of an
instruction, it is located in one of the instruc-
tion memory address spaces. Small immediate
values are used frequently, so the instruction set
provides several concise encodings for these
cases.

INSTRUCTION

OPERATION

OPERAND

THE OPERAND VALUE IS IN THE INSTRUCTION.

Assembler language syntax:
#data
Example of IM mode:
LDB RH2 #%55 /lload 551¢ into RH2

Before Execution

are T2

After Execution

RR2 [s5a9]12}34]

5.3.2.3 Indirect Register (IR). For Indirect
Register addressing mode, the operand is located
at the address contained in the specified general-
purpose register. Depending on the instruction
opcode, the operand is located in one of the data
memory address spaces or in I/0 address space.

110 OR
INSTRUCTION REGISTER DATA MEMORY

FPERATIONI REGISTER '—»IJDDRESS I—-»I OPERAND I

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS
IS IN THE REGISTER.

Example of segmented IR mode:

LD R2,@RR4 /lload R2 with the
/lword whose address
/lis in RR4

Before Execution Data Memory

RR2 |03]oF{oojos :
RR4 [0ojo2[17Joc <ss#2> 1704 [a0]23[oBJoE
<ss#2> 170E [10[D3[23]45

After Execution

RR2 |oBloe]oolos
RR4 [00fo2{17]oc]

For memory addresses, any longword register other
than RRO can be specified; for 1/0 addresses any
word register other than RO can be specified.
Indirect Register mode has a short encoding and
can be used to simulate more complex addressing
modes by computing the address into a register.

Assembler language syntax:

@Rn 1/0 address
@RRn Memory address

Example of linear IR mode:

LD R2,2RR4 /lload R2 with the
/lword whose address
/lis in RR4

Before Execution Data Memory

RR2 [o3]oF|oojos :
RR4 |0oo217joc 0002 1704 |a0[23JoB|oE
0002 170E [10[D3[23}45

After Execution

RR2 [oBJoE]ooos
RR4 [0ofo2[17]oc

Addressing Modes and Address Calculations

5.3.2.4 Direct Address (DA). For Direct Address on the instruction opcode, the operand is located

addressing mode, the operand is located at the in one of the data memory address spaces or in 1/0
address specified in the instruction. Depending address space.
INSTRUCTION /0 OR Assembler language syntax:
OPERATION| DATA MEMORY address Either memory or 1/O
ADDRESS | OPERANDJ

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS IN THE INSTRUCTION.

Example of segmented DA mode: Example of linear DA mode:

LDL RR30, <Is#5> %23 LDL RR30, %85000023
/lload RR30 with the /Nload RR30 with the
/llongword in large /llongword whose
llsegment #5 /laddress is
Ilat offset 234¢ 1185000023 ¢

Before Execution Data Memory Before Execution Data Memory
<«Is#5>000020 [02]0s[C1]02 8500 0020 [02]os[c 102
<Is#53 000024 03!04 05{00 After Execution 8500 0024 [03]04]os (00

: :

After Execution

Addressing Modes and Address Calculations

5.3.2.5 Index (X). For Index addressing mode,
the operand is located at the address calculated
by adding the address specified in the instruction
to the index value contained in the specified
general-purpose register. Any word register other
than RO or any longword register other than RRO

INSTRUCTION

can be used. The operand is located in one of the
data memory address spaces. Index addressing mode
can be used for random access to tables or other
complex data structures where the address of the
base of the table is known, but the particular
element index must be computed by the program.

REGISTER

OPERATION | REGISTER

ADDRESS

INDEX MEMORV
OPEHAND

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
ADDRESS IN THE INSTRUCTION PLUS THE CONTENTS OF THE REGISTER.

Assembler language syntax:

address(Rn) Word index register
address(RRn) Longword index register

Example of segmented X mode:
LDL RR8, <ss#5» %231A(R7)

/lload RR8 with the
/Nlongword whose
/laddress is small
/lsegment 5 at
lloffset 231A +
Ilthe value in R7

Before Execution Data Memory

RRe [ooloolo1|FE :
RR8 203414579 <ss#5» 2514 |Fafcz[s7fiE
<ss#5> 2518 [3D|OE[7A|DA

Address Calculation

. <ss#5»231A
+ 01FE
<ss#5» 2518

After Execution

RRs |oojoolo1{FE
RR8 [3DOE[7ADA

Example of linear X mode:

LDL RR8, %0005231A(R7)
/lload RR8 with the
/llongword whose
/laddress is
//0005231A15 +
/lthe value in R7

Before Execution Data Memory

RR6 [oojoolo1FE :
RR8 [203A4579 0005 2514 |Falce[s7|re
0005 2518 [3D|OE|7A[DA

Address Calculation

0005 231A
+ 0000 O1FE
0005 2518

After Execution

RRe |oojooo1|FE

RR8 |3DOE(7ADA

5-10

Addressing Modes and Address Calculations

5.3.2.6 Base Address (BA). For Base Address
addressing mode, the operand is located at the
address calculated by adding the displacement
contained in the instruction to the address
contained in the specified general-purpose
longword register. Any longword register other
than RRO can be used. The operand is located in

INSTRUCTION

REGISTER

one of the data memory address spaces. Base
Address addressing mode can be used to access
records or other data structures where the dis-
placement of an element within the structure is
known before the program is executed, but the base
address of the particular structure is not known
until the program is executed.

OPERATION

DATA
REGISTER —»l ADDRESS MEMORY
DISPLACEMENT + OPERAND

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
CONTENTS OF THE REGISTER PLUS THE DISPLACEMENT IN THE INSTRUCTION.

Assembler language syntax:
RRn(disp)
Example of segmented BA mode:
LDL RR4(% 18),RR2 //load RR2 into the
/llongword whose
/laddress is the

/Ibase address in
/IRR4 + 1845

Before Execution Data Memory

RR2 [0AJoof15]00 :
RR4 [88]oof20) <Is#8> 2000 0A|BEF5|0D]
<Is#8% 20C4 |BA|DE BO|D1

Address Calculation
<Is#83» 0020AA

+ 000018
<Is#8>»0020C2

After Execution Data Memory

RR2 [oaJoo]ts|oo :
RRa4 |88]oof20]aA <Is#8> 200 [0A[BE[oajoo
«Is#8>20C4 [15]00]Bo[D1

Example of linear BA mode:

LDL RR4(%18),RR2 //lload RR2 into the
INongword whose
/laddress is the
Ilbase address in
/IRR4 + 1846

Before Execution Data Memory

RR2 |0Alo0|15]00 L

RR4 |88/00{20(AA 8800 20CO|0A|BE|F5/0D
8800 20C4|BA|DE|BO|D1

Address Calculation

8800 20AA
+0000 0018
8800 20C2

After Execution Data Memory

RR2 |0A{00{15(00 E
RR4 |88(00(20(AA 8800 20CO|0OA[BE[OA[00
8800 20C4[15/00|BO|D1

5-11

Addressing Modes and Address Calculations

5.3.2.7 Base Index (BX). For Base Index
addressing mode, the operand is located at the
address calculated by adding the displacement
contained in the instruction to both the index
value contained in the specified general-purpose
index register and the address contained in the
specified general-purpose base register. Any word
or longword register other than RO or RRO can be

used for the index register; any longword register
other than RRO can be used for the base register.
The operand is located in one of the data memory
address spaces. Base Index addressing mode can be
used to access tables or other complex data
structures when the base of the table and
particular element index are not known until the
program is executed.

REGISTER

DATA

REGISTER MEMORY

OPERATION I INDEX REG | BASE REG —*' ADDRESS

OPERAND

DISPLACEMENT

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
CONTENTS OF THE BASE REGISTER, PLUS THE CONTENTS OF THE INDEX REGISTER,

PLUS THE DISPLACEMENT IN THE INSTRUCTION.

Assembler language syntax:

RRn (Rm)(disp) Word index register

RRn (RRm)(disp) Longword index register
The displacement can
be omitted when it is
zero.

Example of segmented BX mode:

LDL RR2,RR4 (R3)(1) //load RR2 with the
/llongword whose
/laddress is the base
/laddress in RR4 + the
/lindex value in
IIR3 + 1

Before Execution Data Memory

RR2 [35[35]FF[FD :
RR4 [0olo1{15]02 <ss#1> 14FC |01]01]45[45
<ss#13> 1500 [BO[DE|F7[32

Address Calculation

<ss#1» 1502
+ FFFD
+ 0001

<ss#1> 1500

After Execution Data Memory

RR2 [BO|DE|F7(32
RR4|00(01[15]02

<ss#1> 14FC 010114545
<ss#1> 1500 |BO|DE|F7|32

NOTE: The index value in R3 has been sign-extend-
ed to 32 bits.

Example of linear BX mode:

LDL RR2,RR4(R3)(1) /lload RR2 with the
Illongword whose
/laddress is the base
/laddress in RR4 plus
Ilthe index value in
IIR3 + 1

Before Execution Data Memory

RR2 |35[35|FF|FD
RR4[00[01{15]|02

ces

0001 14FC|01[01[45[45
0001 1500 |BO|DE|F7|32
Address Calculation .

0001 1502
+ FFFF FFFD
+ 0000 0001

0001 1500

After Execution Data Memory

RrR2 [Bo|DE[F7[32 :
RR4|0oo1 15 [o2 0001 14FC|01]01]45[45
0001 1500 [B0|DE|F7[32

5-12

Addressing Modes and Address Calculations

5.3.2.8 Relative Address (RA). For Relative
Address addressing mode, the operand is located at
the address calculated by adding the displacement
contained in the instruction to the Program

INSTRUCTION PC

Counter. The value used for PC is the address of
the instruction word following the displacement.
The operand is located in one of the instruction
memory address spaces.

OPERATION

DISPLACEMENT

INSTRUCTION
| aooress MEMORY
+ OPERAND

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
CONTENTS OF PC PLUS THE DISPLACEMENT IN THE INSTRUCTION.

Assembler language syntax:
<address>
Example of segmented RA mode:

LDL RR24,<$+6> /lload RR24 with the
/llongword whose
/laddress is the
/laddress of the
Ilfirst word of the
Ilcurrent instruction
I+ 6

Because the Program Counter will be ad-
vanced to point to the next instruction when
the address calculation is performed, the
displacement in the instruction is actually +2
(four less than the offset given by the
assembler language syntax).

Before Execution Instruction Memory

pc |oooo 0200 o
Instruction
RR24 (01234567

<ss#0» 0202 | 3102 |00 02
<ss#0» 0204 | E8|02 |FF [FE
<ss#03» 0208 | AB|CD|BD|01

Address Calculation

<ss#0> 0204
+ 0002
<ss#0> 0206

After Execution

PC [0000{0204
RR24 [FFFEABCD

Note: Brackets (<>) enclosing the address can be
omitted for CALR, DINZ, JR, and LDR instructions.

Example of linear RA mode:

LDL RR24,<$+6> //load RR24 with the

INlongword whose

//address is the

//address of the

I/first word of

Ilthe current

Illinstruction + 6
Because the Program Counter will be ad-
vanced to point to the next instruction when
the address calculation is performed, the
displacement in the instruction is actually +2
(four less then the offset given by the
assembler language syntax).

Before Execution Instruction Memory

pc [0000]0200 L
Instruction
RR24[01234567 —_—
0000 0200|3102 o0 jo2
0000 0204 | €8[02 |FF [FE

0000 0208 |AB|CD|BD|01

Address Calculation

0000 0204
+0000 0002
0000 0206

After Execution
Pc{0000{0204
RR24 | FFEEABCD

5-13

Addressing Modes and Address Calculations

5.3.2.9 Relative Index (RX). For Relative Index
addressing mode, the operand is located at the
address calculated by adding the displacement
contained in the instruction to both the index
value contained in the specified general-purpose
register and the Program Counter. Any word or
longword register other than RO or RRO can be used

INSTRUCTION

PC

ADDRESS

for the index register. The value used for PC is
the address of the instruction word following the
displacement. The operand is located in one of
the program memory address spaces. Relative Index
addressing mode can be used to access tables of
constants.

INSTRUCTION
MEMORY

OPERATION REGISTER

OPERAND

DISPLACEMENT

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
CONTENTS OF THE PC, PLUS THE CONTENTS OF THE INDEX REGISTER, PLUS THE

DISPLACEMENT IN THE INSTRUCTION.

Assembler language syntax:

<address>(Rn) Word index register
< address> (RRn) Longword index register
Example of segmented RX mode:

LDRL RR26, TABLE(RR28)
/lload RR26 with the
/llongword whose
/laddress is TABLE plus
/lthe index value in
//IRR28. TABLE is a
/Isymbol for the begin-
/Ining of a table of
/llconstants at offset
/1001g in the same
/lsegment as the
/linstruction

Before Execution Instruction Memory

B101ABCD .
00000002 < ss#13» 0000 |59]27
<ss#1»0104 |01]23

RR26
RR28

27
28

18
18

After Execution

RR26
RR28

27180123
00000002

Note: Brackets enclosing the address (<>) can be
omitted for CALR, DINZ, JR, and LDR instructions.

Example of linear RX mode:

LDL RR26, TABLE(RR28)
/lload RR26 with the
/llongword whose
/laddress is TABLE plus
/lthe index value in
//RR4. TABLE is a
lIsymbol for the begin-
/Ining of a table of
/lconstants beginning
/lat address 00010100

Instruction Memory

B101ABCD .
00000002 0001 0100 |59|27|27
0001 0104 [01]23|28

Before Execution

RR26
RR428

18
18

vee

After Execution

RR26
RR28

27180123
00000002

5-14

Addressing Modes and Address Calculations

5.4 EXTENDED ADDRESSING MODES Table 5-1. Extended Addressing Modes
The instruction encodings for several of the Compact Segmented or Linear
addressing modes use one or more extension words

following the opcode. Because the encoding of Direct Address Direct Address

this group of addressing modes is similar, they Index Index

are collectively given the name Extended Address- Base Address

ing Modes (EAM). The Extended Addressing Modes Base Index

for compact and segmented or linear mode are shown Relative Address

in Table 5-1 below. Refer to Section 6.4.3 for Relative Index

more information about Extended Addressing Modes.

5-15

Chapter 6.
Instruction Set

6.1 INTRODUCTION

This chapter describes the instruction set of the
280,000 CPU. An overview of the instruction set,
separated into functional groups, is presented
first. Next, flags and condition codes are dis-
cussed. Finally, a description is provided for
each instruction, including a summary of the oper-
ation, addressing modes, effect on flags, possible
exceptions, assembler language syntax, instruction
formats, and simple examples. The bit patterns
used to encode various instruction fields are also
described.

6.2 FUNCTIONAL SUMMARY

This section presents a functional overview of the
instruction set. The instructions are separated
by function into eleven groups. Within each
group, the salient features are described, such as
available addressing modes, effect on flags, and
possible exceptions. The eleven functional groups
are:

Load and Exchange
Arithmetic

Logical

Program Control

Bit Manipulation

Bit Field

Rotate and Shift
Block Transfer .and String Manipulation
Input/Output

CPU Control

Extended Instructions

6.2.1 Load and Exchange Instructions

Instruction Operand(s) Name of Instruction
CLR dst Clear

CLRB

CLRL

CcvT dst,src Convert

CViu dst,src Convert Unsigned

EX dst,src Exchange

EXB

EXL

LD dst,src Load

LDB

LDL

LDA dst,src Load Address

LDAR dst,src Load Address Relative

LDK dst,src Load Constant

LDKL

LDM dst,src,num Load Multiple

LDML mask,src Load Multiple Longwords
dst ,mask

LDR dst,src Load Relative

LDRB

LDRL

POP dst,src Pop

POPL

PUSH dst,src Push

PUSHL

The load and exchange instructions move data
between registers and memory. Among these
instructions, only Convert and Convert Unsigned
affect the flags.

The Load instructions transfer a byte, word, or
longword of data from the source operand to the
destination operand. A register can either be
loaded with an operand using any of the addressing
modes or a register or immediate value can be
loaded to a memory location. The Load Relative
instructions load a register to or from a memory
location specified with the Relative addressing
mode. Special compact encodings are provided for
the following frequent operations: (1) loading
any constant byte to a register; (2) loading a
small constant (0 to 15) word or longword to a
register (Load Constant); and (3) loading an
immediate value zero to a register or memory
location (Clear).

280,000 Instruction Descriptions and Formats

The Exchange instructions swap the byte, word, or
longword contents of the source and destination
operands. The contents of a register can be
swapped with the contents of another register or
memory location.

The Convert and Convert Unsigned instructions are
used to move the byte, word, or longword source
operand to a different-sized destination operand.
The data can be moved in either direction between
a register and another register or memory loca-
tion. When the destination is longer than the
source, Convert performs sign extension and Con-
vert Unsigned performs zero extension. If the
destination is shorter than the source, the
instructions set the V flag when the lost
information is significant. The Integer Overflow
trap occurs when the IV bit in FCW is 1 and the
Convert instruction sets the V flag.

The Load Multiple and Load Multiple Longwords
instructions provide efficient saving and restor-
ing of registers. They are most useful for moving
simple data types that are more than four bytes
long and for changing the process context at
interrupts. The Load Multiple instruction allows
any contiguous group of 1 to 16 word registers to
be loaded to or from consecutive memory loca-
tions. The Load Multiple Longwords instruction
allows up to 16 longword registers selected by a
bit mask to be loaded to or from consecutive
memory locations.

Stack operations for words and longwords are sup-
ported by the Push and Pop instructions. Any
general-purpose register other than RO or RRO can
be used as a stack pointer. The stack pointer is
automatically decremented for Push and incremented
for Pop. The source operand for Push and the
destination operand for Pop can be specified using
any of the addressing modes.

The Load Address instructions calculate the effec-
tive address of the source operand and load the
destination with that address. The destination is
a register and the source is specified with any of
the Extended Addressing Modes (EAM) (see Section
5.4). These instructions are useful for
manipulating segmented addresses and managing
complex data structures.

6.2.2 Arithmetic Instructions

Instruction Operand(s) Name of Instruction
ADC dst,src Add with Carry

ADCB

ADCL

ADD
ADDB
ADDL

CHK
CHKB
CHKL

cp
cPB
CPL

DAB

DEC
DECB

DECI
DECIB
DECL

DIV
DIVL

DIVU
DIVUL

EXTS
EXTSB
EXTSL

INC
INCB
INCL

INCI
INCIL

INDEX
INDEXL

MULT
MULTL

MULTU
MULTUL

NEG
NEGB
NEGL

SBC
SBCB
SBCL

SuB
SUBB
SUBL

TESTA
TESTAB
TESTAL

dst,src

dst,src

dst,src

dst

dst,src

dst,src

dst,src

dst,src

dst

dst,src

dst,src

dst,sub,src

- dst,src

dst,src

dst

dst,src

dst,src

dst

Add

Check

Compare

Decimal Adjust

Decrement

Decrement
Interlocked

Divide

Divide Unsigned

Extend Sign

Increment

Increment
Interlocked
Index
Multiply

Multiply Unsigned

Negate

Subtract with Carry

Subtract

Test Arithmetic

280,000 Instruction Descriptions and Formats

The arithmetic group consists of instructions for
performing integer arithmetic. The basic instruc-
tions operate on unsigned binary integers or
signed twos complement binary integers. Support
is provided for Binary Coded Decimal (BCD) arith-
metic and multiple precision arithmetic.

The arithmetic instructions generally affect the
¢, Z, S, and V flags. The byte versions of
these instructions generally affect the D and H
flags as well. The V flag indicates arithmetic
overflow. The Integer Overflow Trap occurs when
the IV bit in the FCW is 1 and the V flag is set
after execution of an Add, Decrement, Decrement
Interlocked, Divide, Divide Unsigned, Increment,

Increment Interlocked, Negate, or Subtract
instruction.
Add, Subtract, Multiply, Multiply Unsigned,

Divide, and Divide Unsigned instructions operate
on a destination operand in a register and a
source operand specified by any addressing mode.
The result of the operation is stored in the
destination. Add and Subtract operate on bytes,
words, or longwords. The Multiply instructions
operate on words or longwords and compute a
double-precision product. The Divide instructions
operate on words or longwords, wusing a
double-precision dividend.

The Increment and Decrement instructions add or
subtract a small constant (1 to 16) to or from the
destination operand. The result is stored in the
destination. The operand may be a byte, word, or
longword specified in a register or memory
location. Increment Interlocked and Decrement
Interlocked instructions are similar to Increment
and Decrement, but interlock protection is used to
fetch and store the destination operand in
memory. Interlock protection is important for
implementing critical counters referred to by
multiple processors.

The Negate instructions perform twos complement on
the destination operand in a register or memory
location.

The Compare instructions compare (subtract) the
source and destination operands and set the flags
to reflect the result. The contents of a register
can be compared with an operand specified using
any addressing mode, and the contents of a memory
location can be compared with an immediate value.
The Test Arithmetic instructions are special,
compact encodings for comparing a register or
memory location with zero.

BCD operations are supported with the Decimal
Adjust instruction. The DAB instruction is used
following the binary addition or subtraction of
bytes to adjust the destination operand, specified
in a register, for correct BCD representation.

Multiple precision arithmetic is supported with
the Add with Carry, Subtract with Carry, and
Extend Sign instructions. These instructions
operate on byte, word, or longword operands stored
only in registers. The Extend Sign instructions
compute a double-precision result.

The Check instructions are used to compare the
signed byte, word, or longword source operand
against lower and upper bounds. The source oper-
and is specified in a register, and the bounds are
specified as immediate values or in consecutive
memory locations. If the source is out of bounds,
a Bounds Check trap occurs.

The Index instruction is used either to compute an
index into a one-dimensional array, or as one step
in computing the index into a multiple-dimensional
array. The signed subscript is compared against
lower and upper bounds. If the subscript is out
of bounds, an Index Error Trap occurs; otherwise,
the lower bound is subtracted from the subscript,
and the difference is added to the destination.
The sum is then multiplied by the scale factor,
and the product is stored back into the destina-
tion, which is the calculated array offset. The
source and destination operands are specified in
registers. The bounds and scale factor are speci-
fied as immediate values or in consecutive memory
locations. All operands are the same size, either
word or longword.

6.2.3 Logical Instructions

Instruction Operand(s) Name of Instruction
AND dst,src And
ANDB

ANDL

COM dst
coms
COML

Complement

OR dst,src Or
ORB
ORL

TEST dst Test
TESTB
TESTL

6-3

280,000 Instruction Descriptions and Formats

XOR dst,src
XORB
XORL

Exclusive Or

The logical group consists of instructions for
performing logical operations on all bits of byte,
word, or longword operands; the instructions set
the Z and S flags according to the result. The
byte versions affect the P flag as well, setting
the P flag if the parity of the result is even.

The instructions And, Or, and Exclusive Or operate
on a destination operand in a register and a
source operand specified with any addressing
mode. The appropriate logical operation is
performed on bits of the operands, and the result
is stored back into the destination.

The Complement instruction complements the bits of
the destination operand; the result is stored back
into the destination. The operand is a byte, word
or longword specified in a register or memory
location.

The Test instruction performs a logical Or of the
destination operand and zero, and sets the flags
according to the result. The operand is a byte,
word, or longword specified in a register or
memory location.

6.2.4 Program Control Instructions

Instruction Operand(s) Name of Instruction
BRKPT Breakpoint

CALL dst Call

CALR Call Relative

DINZ r,dst Decrement and Jump if
DBJINZ Not Zero

DLINZ

ENTER mask,8iz Enter

EXIT Exit

JpP cc,dst Jump

JR cc,dst Jump Relative

RET cc Return

SC srec System Call

TRAP cc,sre Conditional Trap

This group consists of instructions that control
program flow for jumps, loops, procedure calls,
and exceptions. The instructions generally do not
affect the flags, except when new Program Status
is loaded for traps.

The Jump instruction loads the Program Counter
(PC) with the effective address of the destination
operand if the flags satisfy the specified condi-
tion. The destination is specified using any of
the memory addressing modes. The Jump Relative
instruction is a special, compact encoding used
when the destination is within -254 to 256 bytes
of the instruction location.

The Call instruction is used for calling proce-
dures. The contents of the PC are pushed onto the
processor stack, and the effective address of the
destination operand is loaded into the PC. The
destination operand is specified using any of the
memory addressing modes. The Call Relative
ingtruction is a special, compact encoding used
when the destination operand is within -4092 to
4098 bytes of the instruction location.

The Enter instruction is executed at the beginning
of a procedure to establish the procedure's

environment. Enter adjusts the Frame Pointer and
Stack Pointer registers to allocate a new
activation record, which contains saved

general-purpose registers, the Frame Pointer, the
exception handler address, and local data. The
instruction contains a bit mask indicating which
general-purpose registers to save. The mask and
the value of the Integer Overflow Enable bit in
FCW are also saved in the activation record. The
Call and Enter instructions provide the essential
functions for linking procedures in high-level
languages such as C and Pascal.

Corresponding to Call and Enter instructions are
Return and Exit. Exit releases the activation
record by adjusting the Stack Pointer and restor-
ing the Frame Pointer. Exit also uses the mask
saved by Enter to restore the saved general-pur-
pose registers and Integer Overflow Enable bit.
The Return instruction pops a value from the proc-
essor stack into the PC if the flags satisfy the
specified condition.

The Decrement and Jump If Not Zero instructions
are used to control loops, such as those imple-
menting multiple-precision or decimal-string
arithmetic. The specified byte, word, or longword
register is decremented by one, and the result is
stored back into the register. If the result is
not zero, the PC is loaded with the effective
address of the destination. The destination may

6-4

280,000 Instruction Descriptions and Formats

be specified using Relative Address addressing
mode, at a location no more than 252 bytes (DINZ,
DBINZ) or 250 bytes (DLINZ) before the
instruction.

The Breakpoint, System Call, and Conditional Trap
instructions are all used to generate traps. The
Breakpoint instruction is generally placed by a
debugger at the first word of an instruction where
a breakpoint is desired. The System Call instruc-
tion is used by programs operating in normal mode
to request service from the operating system; the
low-order byte of the instruction can be used to
indicate the particular service desired. The Con-
ditional Trap instruction generates a trap if the
flags satisfy the specified condition. This
instruction can be used for software detection of
run-time errors or other exceptions; a 4-bit field
in the instruction word can be used to identify
the cause of the trap. When one of these traps
occurs, the CPU pushes the Program Status regis-
ters and instruction word onto the system stack,
and loads new values into the Program Status reg-
isters from the Program Status Area. See Chapter
7 for more details about trap processing.

6.2.5 Bit Manipulation Instructions

Instruction Operand(s) Name of Instruction
BIT dst,src
BITB
BITL

Bit Test

RES dst,src
RESB
RESL

Reset Bit

SET dst,src
SETB
SETL

Set Bit

TSET dst
TSETB
TSETL

Test and Set

TCC cc,dst
TccB
TCCL

Test Condition Code

The instructions in this group are used to manipu-
late an individual bit in a byte, word, or long-
word destination operand. Set Bit is used to set
a bit to 1; Reset Bit clears a bit to 0. The bit
of the destination operand specified by the source
operand is set or cleared, and the result is
stored back into the destination. The Bit Test

instruction tests the bit of the destination
specified by the source operand, and sets the Z
flag to indicate the result. For "static"* bit
operations, the source operand is specified by an
immediate value and the destination operand may be
in a register or memory location. For "dynamic"
bit operations, the source and destination oper-
ands are in registers.

The Test Condition Code instruction sets the
least-significant bit of the byte, word, or long-
word destination register if the flags satisfy the
specified condition. This instruction is useful
for evaluating Boolean expressions.

The Test and Set instruction tests whether the
destination is negative, then sets all bits in the
destination to 1. Interlock protection is used to
fetch and store the destination operand in mem-
ory. Test and Set is used to access semaphores
protecting critical shared data structures in a
tightly-coupled multiprocessor system.

6.2.6 Bit Field Instructions

Name of
Instruction Operand(s) Instruction
EXTR dst, src, pos, siz Extract Field
EXTRU
INSRT dst, src, pos, siz Insert Field

The instructions in this group are used to insert
and extract bit fields. A bit field is 1 to 32
contiguous bits that can cross byte boundaries.
One version of Extract (EXTR) is used to extract
and sign-extend a field into the destination long-
word register. Another version of Extract (EXTRU)
extracts and zero-extends the field. Insert is
used to insert a field from the source longword
register.

A bit field is specified by three operands as fol-
lows: (Figure 6-1).

e The origin of the bit string is the most-sig-
nificant bit of a memory location or longword
register. The origin is specified by the
source operand for Extract and the destination
operand for Insert.

* The term "static" is used because the bit number
is an immediate value that cannot change.
"Dynamic" means the bit number is specified in
a register and can change.

280,000 Instruction Descriptions and Formats

INCREASING
ADDRESS

£ Lo
I 77
I |

FARENNNNNN\H R

—

SIZE I

POSITION
| I

Figure 6-1.

Bit Field

e The position of the field is the unsigned num-
ber of bits from the origin to the most-signif-
icant bit of the field. Position is measured
in the direction of decreasing significance
from the origin. The position of the origin is
zero. The position is specified by an immediate
value (0 to 31) or in a word or longword regis-
ter. In the latter case the position may be
any positive value.

e The size of the field is the number of bits in
the field, between 0 and 31 inclusive, and
represents fields of 1 to 32 bits. The size is
specified by an immediate value or in a word or
longword register.

A bit field in memory must be contained entirely
within four consecutive bytes (i.e., the position
modulo 8 plus the size operand must be less than
or equal to 31). A bit field in a longword regis-
ter must be entirely contained within the register
(i.e., the position plus the size operand must be
less than or equal to 31).

Note that the direction of increasing bit number
for field position is opposite to Figure 2-1.

6.2.7 Rotate and Shift Instructions

Instruction Operand(s) Name of Instruction
RL dst,src Rotate Left

RLB

RLL

RLC dst,src Rotate Left through
RLCB Carry

RLCL

RLDB dst,src Rotate Left Digit
RR dst,src Rotate Right

RRB

RRL

RRC dst,src Rotate Right through
RRCB Carry

RRCL

RRDB dst,src Rotate Right Digit
SDA dst,src Shift Dynamic

SDAB Arithmetic

SDAL

SDL dst,src
SDLB
SDLL

Shift Dynamic Logical

SLA dst,src
SLAB
SLAL

Shift Left Arithmetic

SLL dst,src
SLLB
SLLL

Shift Left Logical

SRA dst,src
SRAB
SRAL

Shift Right Arithmetic

SRL dst,src
SRLB
SRLL

Shift Right Logical

This group of instructions provides for rotating
and shifting of bytes, words, and longwords of
data located in general-purpose registers. The
Rotate and Shift instructions affect the C, Z, S,
and P/V flags.

The Rotate instructions rotate the contents of the
destination register left or right by an amount
specified by the source operand. The source is an
immediate value of one or two. Rotation is per-
formed on the destination alone or, for multiple
precision arithmetic, on both the destination and
Carry bit. The digit rotation instructions
RLDB and RRDB are useful for manipulating BCD
data.

The Shift instructions shift the contents of the
destination register left or right by an amount
specified by the source operand. The value of the
source operand can be any amount between zero and
the number of bits in the destination. For
"static" shift operations, the source is specified

6-6

8225-011

180,000 Instruction Descriptions and Formats

by an immediate value; for '"dynamic" shift
operations the source is specified in a register.
Both logical and arithmetic shifts are supported.
An Integer Overflow Trap occurs when the IV bit of
FCW is 1 and the V flag is set after execution of
an arithmetic shift instruction.

6.2.8 Block Transfer and String Manipulation
Instructions

Instruction Operand(s) Name of Instruction
CPD dst,src,r,cc Compare and Decrement
cpPDB

CPDL

CPDR dst,src,r,cc Compare, Decrement
CPDRB and Repeat

CPDRL

CPI dst,src,r,cc Compare and Increment
CPIB

CPIL

CPIR dst,src,r,cc Compare, Increment
CPIRB and Repeat

CPIRL

CPSD dst,src,r,cc Compare String and
CPSDB Decrement

CPSDL

CPSDR dst,src,r,cc Compare String,
CPSDRB Decrement and Repeat
CPSDRL

CPSI dst,src,r,cc Compare String and
CPSIB Increment

CPSIL

CPSIR dst,src,r,cc Compare String,
CPSIRB Increment and Repeat
CPSIRL

LDD dst,src,r Load and Decrement
LDDB

LDDL

LDDR dst,src,r Load, Decrement and
LDDRB Repeat

LDDRL

LDI dst,srec,r Load and Increment
LDIB

LDIL

LDIR dst,src,r Load, Increment and
LDIRB Repeat

LDIRL

TRDB dst,src,r Translate and
Decrement

TRDRB dst,src,r Translate, Decrement
and Repeat

TRIB dst,src,r Translate and
Increment

TRIRB dst,src,r Translate, Increment
and Repeat

TRTDB src1,8rc2,r Translate, Test and
Decrement

TRTDRB srcl,src2,r Translate, Test,
Decrement, and Repeat

TRTIB src1,src2,r Translate, Test and
Increment

TRTIRB srcl1,src2,r Translate, Test,

Increment and Repeat

This group of instructions provides a full comple-
ment of string comparison, string translation, and
block transfer operations. A block can be moved
in memory, a string can be searched for a given
value, and two strings can be compared. These
instructions manipulate blocks or strings contain-
ing up to 65,536 bytes, words, or longwords. In
addition, a string containing up to 65,536 bytes
can be translated according to a table in memory,
or searched for a set of values specified by a
table in memory.

The block and string operands are specified using
Indirect Register addressing mode. When a string
is searched for a value, the value is located in a
register. The length of the block or string
is also located in a register.

All the block transfer and string manipulation
operations can proceed through the data in either
direction. Furthermore, the operations can be
repeated automatically while decrementing the
length register until it is zero, or they can
operate on a single element with the length regis-
ter decremented by one and the pointer registers
properly adjusted. The second form can be used
with other instructions in a loop to implement
more complex string operations.

These instructions set the P/V flag to indicate
whether the length register was decremented to
zero. The string Search and Compare instructions
set the C, Z, and S flags to indicate the result
of the comparison. The Translate and Test
instructions set the Z flag when one of the speci-
fied set of values is found. Otherwise, the flags
are unaffected.

The repetitive forms of these instructions are
interruptible after each iteration. Section 7.3.1
provides more information about interruptible
instructions.

280,000 Instruction Descriptions and Formats

6.2.9 Input/Output Instructions

Instruction Operand(s) Name of Instruction

IN dst,src Input

INB

INL

IND dst,src,r Input and Decrement
INDB

INDL

INDR dst,src,r Input,Decrement and
INDRB Repeat

INDRL

INI dst,src,r Input and Increment
INIB

INIL

INIR dst,src,r Input, Increment and
INIRB Repeat

INIRL

OTDR dst,src,r Output, Decrement and
0OTDRB Repeat

OTDRL

OTIR dst,src,r Output, Increment and
OTIRB Repeat

OTIRL

ouT dst,src Output

ouTB

OUTL

ouTD dst,src,r Output and Decrement
0ouTDB

OouTDL

0ouTI dst,src,r Output and Increment
ouTIB

OUTIL

The instructions in this group transfer data
between a peripheral port and a CPU register or
memory. All of these instructions are privileged.

A single byte, word, or longword of data can be
transferred between a peripheral port and a CPU
register with the Input and Output instructions.
The port address is specified using the Direct
Address or Indirect Register addressing modes.
The single transfer instructions do not affect the
flags.

The other instructions in the group are used to
transfer a block (up to 65,536 bytes, words, or
longwords of data) between a peripheral port and
memory. The port address and memory address are
specified wusing Indirect Register addressing
mode. The length of the block is located in a
register. These instructions are similar to the
block move instructions described in Section 6.2.7
except that the port address remains unchanged
while the memory address is adjusted. The P/V
flag is set when the length register is decre-
mented to zero. The repetitive forms of these
instructions are interruptible after each
iteration.

6.2.10 CPU Control Instructions

Instruction Operand(s) Name of Instruction
COMFLG flag Complement Flag

DI int Disable Interrupt
EI int Enable Interrupt
HALT Halt

IRET Interrupt Return
LDCTL dst,src Load Control Register
LDCTLB

LDCTLL

LDND dst,src Load Normal Data
LDNDB

LDNDL

LDNI dst,src Load Normal

LDNIB Instruction

LDNIL

LDPND dst,src Load Physical Address
LDPNI

LDPSD

LDPSI

LDPS src Load Program Status
NOP No Operation

PCACHE Purge Cache

PTLB Purge TLB

280,000 Instruction Descriptions and Formats

PTLBEND

PTLBENI Purge TLB Entry
PTLBESD

PTLBESI

PTLBN Purge TLB Normal
RESFLG flag Reset Flag
SETFLG flag Set Flag

The instructions in this group perform privileged
operations necessary for the operating system to
control the CPU; only the No Operation and flag
manipulation (COMFLG, LDCTLB, RESFLG, SETFLG)
instructions can be executed in normal mode. The
only instructions that affect the flags are the
flag manipulation instructions, the instructions
that load the FCW (IRET, LDCTL, LDPS), and the
Load Physical Address instructions.

The Disable Interrupt and Enable Interrupt
instructions control the Vectored Interrupt and
Non-Vectored Interrupt enable bits in FCW. The
enable bits can be separately cleared or set.

The Halt instruction halts the CPU.

The Interrupt Return instruction is used to return
from an interrupt or trap handler. The Program
Status registers are loaded with values popped
from the system stack.

The Load Control instructions move data between a
control register and a general-purpose register.
The Load Program Status instruction loads the Pro-
gram Status registers (PC, FCW) from memory. The
memory location is specified using the IR or EAM
addressing modes.

Load Normal Data and Load Normal Instruction are
used in system mode to move data between a regis-
ter and a memory location in either of the normal
mode memory address spaces. The memory location
is specified using the IR or EAM addressing modes.

The Load Physical Address instructions load the
physical address of the source operand to the des-
tination register. The source operand is speci-
fied using the IR or EAM addressing modes. These
instructions set the flags to indicate the access
protection of the logical address and whether the
address translation was valid.

The Purge Cache instruction invalidates the
cache contents. The Purge TLB instruction invali-
dates all address translation table entries in the

TLB. Individual TLB entries can be invalidated
using the Purge TLB Entry instructions. All the
normal mode TLB entries can be invalidated using
the Purge TLB Normal instruction.

6.2.11 Extended Instructions

The 280,000 architecture includes a powerful mech-
anism for extending the basic instruction set
through the use of coprocessors known as Extended
Processing Units (EPUs). For example, floating-
point arithmetic is supported by the Z8070 Arith-
metic Processing Unit. When an extended instruc-
tion is executed and the EPA bit in the FCW is 1,
the CPU transfers the instruction to the EPU. The
CPU also controls the transfer of data between the
EPU and either memory or the CPU. If the EPA bit
is 0, an Extended Instruction trap occurs to allow
software emulation in systems that lack an EPU.

The CPU supports four types of extended instruc-
tions: EPU internal operations that do not
require any data transfer; transfer of one to six-
teen words of data between the EPU and consecutive
word or longword general-purpose registers;
transfer of one byte of data between the EPU and
the flag byte of the FCW; and the transfer of one
to sixteen bytes or words of data between the EPU
and memory. The flags are affected only when the
flag byte is loaded.

6.3 FLAGS AND CONDITION CODES

The Program Status includes six processor flags as
follows: Carry (C), Zero (Z), Sign (S),
Parity/Overflow (P/V), Decimal Adjust (D), and
Half Carry (H). These flags are affected or
tested by most instructions. Arithmetic, logical,
and other instructions previously described modify
the flags to indicate the result of the
operation. Among the instructions that test
whether or not the flags indicate a specified
condition are Jump, Return, and Test Condition
Code. For example, a Test instruction may be
followed by a Jump:

TEST R1 !sets Z flag if R1 = O!
JR Z, DONE !go to DONE if Z flag is set!
DONE:

The program branches to DONE if the TEST
sets the Z flag, i.e., if R1 contains zero.

6-9

280,000 Instruction Descriptions and Formats

The Carry (C) flag is set to 1 following certain
operations when there is a carry from or a borrow
into the high-order bit position of the result.

For example, adding the 8-bit numbers 225 and 64

causes a carry out of bit 7 and sets the Carry
flag:

225 1 1

-
o
o
o
o
-

289 0 0 1 0 0 0 O 1
Carry flag

-
"

The Carry flag is important for implementing
multiple-precision arithmetic (see the ADC, SBC
instructions). It is also involved in the Rotate
Left Through Carry (RLC) and Rotate Right Through
Carry (RRC) instructions. These instructions are
used to implement rotation or shifting of data.

The Zero (Z) flag is set to 1 when the result
of certain operations is zero. This flag is
useful to determine when a counter reaches zero.
In addition, the block compare instructions use
the Z flag to indicate when the specified
comparison condition is satisfied.

The Sign (S) flag is set to 1 when the result of
certain operations is negative (i.e., the
most-significant bit is 1).

The Overflow (V) flag is set to 1 when the result
of certain operations cannot be represented as a
twos complement number in the same precision as
the destination. In the example below for 8-bit
numbers, 120 is added to 105. The result, 225,
cannot be represented in 8 bits; it appears to be
-31. In such a case, the Overflow flag is set and
only the low-order bits of the result are stored
into the destination.

200 17 1 1 1 0 O
+105 0 1 1 0 1 0 0 1

22 1 1 1+ 0 0 O 0 1
1 = Overflow flag set

The Parity (P) flag is set to 1 when the result of
logical operations on bytes has even parity (i.e.,
the number of 1 bits is even). The Overflow and
Parity flags share the same bit in the FCW, hence
the bit is named P/V.

The Decimal Adjust (D) and Half-Carry (H) flags
are used for .BCD arithmetic. Following the binary
addition of two bytes, the D flag is set and the H
flag indicates the carry from bit 3. Following
the binary subtraction of two bytes the D flag is
cleared and the H flag indicates the borrow from
bit 3. Decimal arithmetic on BCD bytes is per-
formed by first adding or subtracting the operands
using binary arithmetic. Afterwards, the Decimal
Adjust instruction adjusts the result for correct
BCD representation.

The C, Z, S, and P/V flags are also used to con-
trol the operation of conditional instructions
such as Jump. The operation of these instructions
depends on whether the four flags satisfy a
specified condition. Conditional instructions
contain a 4-bit field, called the condition code,
that specifies one of sixteen flag conditions to
test. Table 6-1 lists the flag condition tested
and the binary encodings for the condition codes.

6.4 NOTATION AND BINARY ENCODING

The rest of this chapter contains detailed
descriptions for each instruction, listed in
alphabetical order. This section describes the
notational conventions used in the instruction
descriptions and the binary encoding for some
common instruction fields (e.g., register des-
ignation fields). The bit patterns for other
instruction fields are shown explicitly in the
instruction format.

An instruction's description begins with the
instruction mnemonic and instruction name in the
top part of the page. Privileged instructions are
also identified as such at the top of the page.

The assembler language syntax is then given in a
general form that covers all the variants of the
instruction and the order of source, destination
and other operands, along with a list of applic-
able addressing modes.

Example:
AND dst, src dst: R

ANDB src: R, IM, IR, EAM
ANDL

6-10

780,000 Instruction Descriptions and Formats

Table 6-1. Condition Codes
Code Meaning Flag Setting Binary
F Always false - 0000
T Always true - 1000
z Zero =1 0110
NZ Not zero Z2=0 1110
C Carry C=1 011
NC No carry cC=0 1M1
PL Plus S=0 1101
MI Minus S =1 0101
NE Not equal 2=0 1110
EQ Equal =1 0110
ov Overflow V=1 0100
NOV No overflow V=0 1100
PE Parity even P =1 0100
PO Parity odd P=0 1100
GE Greater than or equal (S XOR V) = 1001
LT Less than (S XOR V) =1 0001
GT Greater than (ZOR (SXORV)) =0 1010
LE Less than or equal (ZOR (S XORV)) =1 0010
UGE Unsigned greater than or equal C=0 1M
uLtY Unsigned less than C=1 01n
UGT Unsigned greater than ((C=0)AD (Z=0)) =1 101
ULE Unsigned less than or equal (COR Z2) =1 0011

Some condition codes correspond to identical flag settings: Z-EQ, NZ-NE,

C-ULT, NC-UGE, PE-OV, and PO-NOV.
condition is T (always true).

If no condition is specified, the default

The operation of the instruction is presented
next, followed by a detailed discussion of the
instruction, including the effect of the instruc-
tion on the processor flags. Exceptions that can
occur for the instruction are listed next. Some
exceptions, such as the Address Translation trap,
can occur for any instruction. Only exceptions
specific to the instruction are listed.

Finally, a table is presented showing the assem-
bler language syntax and instruction format for
each addressing mode and operand size. An assem-
bler language example showing the use of the
instruction is also given.

6.4.1 Assembler Language Syntax

The syntax is shown for each operand size (byte,
word or longword). The invariant part of the
syntax is given in upper case and must appear as
shown. Lower case characters represent the
variable part of the syntax, for which suitable
values are substituted. The syntax is shown for
the most basic form of the instruction recognized
by the assembler. For example,

ADD Rd,#data

represents a statement of the form ADD R3,#35.
The assembler also accepts variations such as ADD
TOTAL, #NEW-DELTA where TOTAL, NEW and DELTA have
been previously defined.

When the assembler syntax can be encoded in more
than one format (e.g., LDB RHO, #1), the assembler

generally uses the shortest encoding.

The following notation is used for registers:

Rbd,Rbs a byte register (RHO,RH1,...,RH7,RLO,
RL1,...,RL7)

Rd,Rs a word register (RO,R1,...,R15)

RRd,RRs a longword register
(RRO,RR2,...,RR30)

RQd a quadword register
(RQO,RQ4,...,RQ28)

The ending "s" or "d" for the register notation
indicates either a source or destination operand,
respectively. Address registers must be word reg-
isters in compact mode and longword registers in
segmented or linear mode, as explained in foot-
notes to applicable instructions.

Several addressing modes are combined together in
a group called Extended Addressing Modes (EAM).

6-11

280,000 Instruction Descriptions and Formats

The instruction encoding for these addressing
modes requires one or more extension words follow-
ing the opcode. In compact mode, the EAMs are
Direct Address and Index (Base Address and Index
addressing modes are equivalent in compact mode.)
In segmented or linear mode, the EAMs are Direct
Address, Index, Base Address, Base Index, Relative
Address, and Relative Index. Where the symbol
"eam" is found in the assembler syntax, any EAM
can be used. Refer to Section 5.3 for the
assembler syntax for particular addressing modes.

Conditional instructions specify a condition code,
indicated by "cc" in the assembler syntax.
Table 6-1 lists the assembler mnemonics for condi-
tion codes.

The assembler recognizes comments beginning with
"//" and continuing to the end of the line.

6.4.2 Instruction Format

The binary encoding of each instruction is given
as part of the instruction description. Some
fields in the instruction contain symbols whose
values are described below.

The symbol "W" is used for a single bit that dis-
tinguishes between the byte and word versions of
the instruction. The bit takes the value 0 for
byte versions and 1 for word versions.

Fields specifying registers are identified with
the same symbol (Rs, RRd, etc.) used in the
assembler language syntax. When the field cannot
take the value 0, a notation of the form "Rs#0" is
used. Table 6-2 shows the binary encoding for
register fields.

Table 6-2. Register Field Encoding

Code Byte Word Long Quad
0000 RHO RO RRO RQO

0001 RH1 R1 RR16 RQ16
0010 RH2 R2 RR2 Unimplemented
0011 RH3 R3 RR18 Unimplemented
0100 RH4 R4 RR4 RQ4

0101 RH5 RS RR20 RQ20
0110 RH6 R6 RR6 Unimplemented
0111 RH7 R7 RR22 Unimplemented
1000 RLO R8 RR8 RQ8

1001 RL1 R9 RR24 RQ24
1010 RL2 R10 RR10 Unimplemented
1011 RL3 R11 RR26 Unimplemented
1100 RL4 R12 RR12 RQ12
1101 RL5 R13 RR28 RQ28
1110 RL6 R14 RR14 Unimplemented
111 RL7 R15 RR30 Unimplemented

For bit field instructions, the position and size
operands are specified by a 6-bit field. The
operands can be immediate values or located in a
word or longword register. The format of the
field is shown below.

5-bit immediate value
(0 to 31)

word register

longword register

0 n A n n n

1 0 r r r r
1 1 r r r T

6-12

280,000 Instruction Descriptions and Formats

6.4.3 Extended Addressing Modes (EAM)

The format for instructions using an EAM includes
an opcode word containing a 4-bit field indicated
by "eam", followed by one, two, or three extension

The following sections describe the various encod-
ing possibilities for EAM. An EAM format
specifies the three components of an effective
address calculation: base address, index value,
and displacement. Refer to Section 5.2 for more

words. An example is shown below. information about effective address calculations.
Assembler Language Syntax Instruction Format
01 o1o11o| eam | RRd
ADDL RRd’eam Il { T T | L1 [|
1, 2 or 3 extension words
Lol L | —— Ll Ll L L L 1 1
6.4.3.1 Compact Mode. In compact mode, the used in effective address calculation. The eam

EAM format is used for Direct Address or Index
addressing modes. The opcode is followed by a
single extension word containing the base address

Addressing Modes

eam Mode
0 DA

#0 X (word index)

field specifies a word index register (eam#0) or
no index register (eam=0).

Instruction Format

or] | eam

address

6.4.3.2 Segmented or Linear Mode. In segmented
or linear mode, there are six EAM formats used for
Direct Address, Index, Base Address, Base Index,
Relative, and Relative Index addressing modes.
The six formats are distinguished by the encoding
of the most-significant bit and the four least-
significant bits of the first extension word. The
most frequently used formats require only a single
extension word, but formats with two and three
extension words are provided to access the entire

Addressing Modes

eam Mode
0 RA
#0 BA

address space. The formats are described below.
The first format uses a single extension word to
specify Base Address or Relative Address address-
ing modes. The eam field specifies the base
address for the effective address calculation in a
longword register (eam£0) or the Program Counter
(eam=0). The extension word encodes a displace-
ment in the range -8192 to 8191 inclusive.

Instruction Format

01 eam

1 displacement 1

I TS WO SO R NN WS Y N NN WO I |

280,000 Instruction Descriptions and Formats

The second format uses a single extension word to
specify Base Address, Base Index, Relative
Address, or Relative Index addressing modes. The
eam field specifies the base address for the
effective address calculation in a longword
register (eam#0) or the Program Counter (eam=0).

Addressing Modes

eam x L Mode
0 0 0 RA
0 0 1 unimplemented
0 #0 0 RX (word index)
0 #0 1 RX (long index)
#0 0 0 BA
#0 0 1 unimplemented
#0 #0 0 BX (word index)
#0 #0 1 BX (long index)

The x field specifies an index register (x#0) or
no index register. When an index register is
specified, the L field determines whether a long-
word (L=1) or word (L=0) register is used. The
extension word encodes a displacement in the range
-64 to 63 inclusive.

Instruction Format

01 eam
1 1

11 1 1
X 1 0|L[O
L

1| displacement
) N N T T |

The third format uses three extension words to
specify Base Address, Base Index, Relative
Address, or Relative Index addressing modes. The
encoding of the eam, x, and L fields is the same

Addressing Modes

eam x L Mode
0 0 0 RA
0 0 1 unimplemented
0 #0 0 RX (word index)
0 #0 1 RX (long index)
#0 0 0 BA
#0 0 1 unimplemented
#0 #0 O BX (word index)
#0 #0 1 BX (long index)

as the previous format, but a 32-bit displacement
is contained in the second and third extension
words.

Instruction Format

01 eam
1 i 1 1 1 1 1 1 1 1 1]
10000000 x 11||.|o
B S N | i T T 1
displacement (high)| .
displacement (low) .

The fourth format uses three extension words to
specify Direct Address or Index addressing modes.
The base address used in the effective address
calculation is contained in the second and third
extension words. This format can be used to
specify any address. The x field specifies an

Addressing Modes

x L Mode

00 DA

0 1 unimplemented
#0 O X (word index)
#0 1 X (long index)

index register (x # 0) or no index register
(x = 0). When an index register is specified, the
L field determines whether a longword (L = 1) or
word (L = 0) register is used. Note that the eam
field must be all Os in this format.

Instruction Format

01 0000
L 1l i1 i1l i1 1
10000000/ x o1|L|o
address (high)

L 1 1 1 L 1 - 1 11 1
address (low)
1 1 - 1 1 | - 1] 1 1

6-14

280,000 Instruction Descriptions and Formats

The fifth format uses a single extension word to
specify Direct Address or Index addressing modes.
The base address used in the effective address
calculation is encoded in the extension word. In
segmented mode, this format can be used to specify
addresses in a 64K-byte segment with the eight

Addressing Modes

least-significant bits of the segment number and
eight most-significant bits of the offset equal to
0. In linear mode, the CPU similarly decodes the
address in the extension word, but this format is
less useful. The eam field specifies a word index
register (eam # 0) or no index register (eam = 0).

Instruction Format

eam Mode 01 eam
0 DA I S T | [[t
#0 X (word index) 0 . slelgmentl off_se|i L

Encoded Address

\

IOI Isleglmlen.t' Iololololololololo

0000000 offset

i W W U N N T T T B |

]

The sixth format uses two extension words to
specify Direct Address or Index addressing modes.
The base address used in the effective address
calculation is encoded in the extension words. In
segmented mode, this format can be used to specify

least-significant bits of the segment number equal
to 0. In linear mode, the CPU similarly decodes
the address in the extension words, but this
format is 1less often used. The eam field
specifies a word index register (eam # 0) or no

addresses in a 64K byte segment with the eight index register (eam = 0).
Addressing Modes Instruction Format
eam _ Mode 01 eam
0 DA 1) 11 i | 1
#0 X (word index) 1| segment {0000 0000
offset
L Ll | Y N TN U IS Y (N N S 'l
Encoded Address '
0 segment 00000000 offset
L. beldd I W TN B BN G | L. Lok Ll Ll eddd. 11
6.4.4 Unimplemented Instruction Encodings Instruction trap to occur. If a program

Section 6.5 lists all of the instruction encodings
for which the CPU's operation is defined. Any
instruction encodings not listed are unimplemented
and must not be used. For most of the unimple-
mented instruction encodings, including all those
with first byte 3644 or BFqg and certain 28000
opcodes described in Appendix A, an attempt to
execute the instruction causes an Unimplemented

erroneously uses an unimplemented instruction that
does not trap, the CPU's operation is not speci-
fied; however, the CPU never performs an operation
that could not otherwise be performed by executing
a sequence of defined instructions. For example,
a program executing in normal mode cannot gain
access to privileged control registers or memory
locations by executing an instruction with an
unimplemented encoding.

6-15

6.5 780,000 Instruction Descriptions and Formats

ADC

ADC

Add With Carry Add With Carry
ADC dst, src dst: R
ADCB src: R
ADCL

Operation: dst < dst + src + ¢

The source operand, along with the setting of the C flag, is added to the destination
operand and the sum is stored in the destination. The contents of the source are not
affected. Twos complement addition is performed. In multiple precision arithmetic,
this instruction permits the carry from the addition of low-order operands to be car-
ried into the addition of high-order operands.

Flags: C: Set if there is a carry from the most-significant bit of the result; cleared
otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands were of the same sign
and the result is of the opposite sign; cleared otherwise
D: ADC, ADCL—unaffected; ADCB—cleared
H: ADC, ADCL—unaffected; ADCB—set if there is a carry from the most-significant
bit of the low-order four bits of the result; cleared otherwise
Exceptions: None
Addressing Assembler Language ;
Mode Syntax Instruction Format
R: ADC Rd, Rs
ADCB Rbd, Rbs [10]11010[w| Rs | Rd |
ADCL RRd, RRs 01111010 |0000 0010
10[110101] RRs | RRd
Example: Quadword addition can be done with the following instruction sequence, assuming

RQO contains one operand and RQ4 contains the other operand:

ADDL RR2,RR6 /ladd low-order longwords

ADCL RRO,RR4 /ladd carry and high-order longwords
If RRO contains % 00000000, RR2 contains % FFFFFFFF, RR4 contains % 00004320
and RR6 contains %00000001, then executing the two instructions above leaves the
value %00004321 in RRO and % 00000000 in RR2.

6-16

ADD

Add
ADD dst, src dst: R
ADDB src: R, IM, IR, EAM
ADDL
Operation: dst < dst + src
The source operand is added to the destination operand and the sum is stored in
the destination. The contents of the source are not affected. Twos complement addi-
tion is performed.
Flags: C: Set if there is a carry from the most-significant bit of the result; cleared
otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands were of the same sign
and the result is of the opposite sign; cleared otherwise
D: ADD, ADDL—unaffected; ADDB—cleared
H: ADD, ADDL—unaffected; ADDB—set if there is a carry from the most-significant
bit of the low-order four bits of the result; cleared otherwise
Exceptions: Integer Overflow trap
Source
Addressing Assembler Language Instruction Format
Syntax
Mode
R: ADD Rd, Rs
ADDB Rbd, Rbs I1 0|0000 OLW] Rs I Rd 1
ADDL RRd, RRs [10[010110 | RRs | RR4 |
IM: ADD Rd, #data 00[/000001 [0000] Rd
data
ADDS Rod, #data 00{ 000000 0000/ Rbd
data data
ADDL RRd, #data 00[010110]0000] RRd
data (high)
data (low)
IR: ADD Rd, @Rs!

ADDB Rbd, @Rs! [00fooooo[w[Rs#0 | Rd |

ADDL RRd, @Rs'
[o0[010110 [Rs+0| RRd |

6-17

Source

Assembler Language

Addressing Instruction Format
Mode Syntax
EAM: ADD Rd, eam
ADDB Rbd, eam 01/00000/W| eam | Rd
1, 2, or 3 extension words
ADDL RRd,
eam 01010110 | eam | RRd
1, 2, or 3 extension words
Example: ADD R2, %1254 /ladd the word at %1254 to R2 in compact mode
Before instruction execution:
Memory R2 Flags
1252 BD21 CZSPIVDH
1254 10 6 4 4 czspdh
1256
After instruction execution:
Memory R2 Flags
1252 CZSPIVDH
1254 |0 6 4 4 00104dh
1256

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-18

AND

And
AND dst, src dst: R
ANDB src: R, IM, IR, EAM
ANDL
Operation: dst < dst AND src
A logical AND operation is performed between the corresponding bits of the source
and destination operands, and the result is stored in the destination. A 1 bit is stored
wherever the corresponding bits in the two operands are both 1s; otherwise a 0 bit
is stored. The contents of the source are not affected.
Flags: C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the most-significant bit of the result is set; cleared otherwise
P: AND, ANDL— unaffected; ANDB — set if parity of the result is even; cleared
otherwise
D: Unaffected
H: Unaffected
Exceptions: None
Source
Addressing Assembsl;;t;inguage Instruction Format
Mode
R: AND Rd, Rs
ANDB Rbd, Rbs [10jooo11|w| Rrs | Ra |
ANDL RRd, RRs 011110100000 0010
10[0001 11| RRs J RRd
IM: AND Rd, #data 00/000111 [0000| Rd
data
ANDB Rbd, #data 00/000110[0000| Rbd
data data
ANDL RRd, #data 01111010|0000 0010
00{000111 oooﬂ RRd
data (high)
data (low)

6-19

Source
Addressing AssembsI%tI;inguage Instruction Format
Mode
IR: AND Rd, @Rs!
ANDB Rbd, @Rs! foo[o0011[w|Rsx0 | R |
@ 1
ANDL RRd, @Rs 01111010 (0000 0010
00[000111| Rs#0 | RRd
EAM: AND Rd, eam
ANDB Rbd, eam 01/00011|w| eam | Rd
1, 2, or 3 extension words
ANDL RRd,
eam 011110100000 0010
01/000111| eam | RRd
1, 2, or 3 extension words
Example: ANDB RL3, # %CE
Before instruction execution:
RL3 Flags
| 11100111 | CZSPIVDH
czspdh
After instruction execution:
RL3 Flags
| 11000110 | CZSPIVDH
c011dh

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-20

BIT

Bit Test
BIT dst, src dst: R, IR, EAM
BITB src: IM
BITL or
dst: R
src: R

Operation: Z < NOT dst <src>
The specified bit within the destination operand is tested, and the Z flag is set to 1 if
the specified bit is 0; otherwise the Z flag is cleared to 0. The contents of the
destination are not affected. The bit number (the source) can be specified either as
an immediate value (static), or as a word register that contains the value (dynamic).
In the dynamic case, the destination operand must be in a register, and the source
operand must be in a word register.
The bit number is a value from 0 to 7 for BITB, 0 to 15 for BIT, or 0 to 31 for BITL
with O indicating the least-significant bit. Only the lower three bits of the source
operand are used to specify the bit number for BITB, only the lower four bits are
used for BIT, and only the lower five bits are used for BITL.

Flags: C: Unaffected
Z: Set if specified bit is zero; cleared otherwise
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected

Exceptions: None

Bit Test Static

Destination
Addressing Assem!g;;tléinguage Instruction Format
Mode
R: BIT Rd, #b
BITB Rbd, #b [10]10011]w]| Rrd | b |
BITL RRd, #b 01111010 [0000[0010
10|10011|b RRd | b
IR: BIT @Rd', #b j
BITB @Rd', #b [oo[10011[w]Razo] b |
1
BITL @Rd', #o 011110100000 0010
oo[10011]b[Rax0| b
EAM: BIT eam, #b
BITB eam, #b o1J10011|w[eam [b
1, 2, or 3 extension words

6-21

Bit Test Static (Continued)

Adﬁ;l'gzzing AssembsI;;tI;inguage Instruction Format
BITL eam, #b

01111010 (0000 0010

01/10011[b[eam | b

1, 2, or 3 extension words

Bit Test Dynamic

Addressing Assembler Language

Mode Syntax Instruction Format
R: T R 00[10011{w|o000| Rs
0000| Rd [00000000
BITL RRd, Re 01111010 [0000[0010
00[100111[0000[Rs
0000| RRd [0000[0000
Example: If register RH2 contains % B2 (10110010), executing the instruction
BITB RH2, #0

leaves the Z flag set to 1.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-22

BRKPT

Breakpoint

Operation:

BRKPT

SP <+ SP-6

@ SP <« PS
SP<+SP-2

@ SP <« instruction

PS <+ Breakpoint trap PS

This is a one word instruction that causes a Breakpoint trap. This instruction can be
used by a software debugger to replace the first word of the instruction where a
breakpoint is set.

Flags:

Flags loaded from Program Status Area

Exceptions:

Breakpoint trap

Addressing
Mode

Assembler Language

Syntax Instruction Format

BRKPT
[01111010]0000 0001]

6-23

CALL

Call

CALL dst dst: IR, EAM

Operation: Compact Segmented or Linear
tmp <+ EFFECTIVE_ADDRESS (dst) tmp <+ EFFECTIVE__ADDRESS (dst)
SP<+SP - 2 SP <SP — 4
@SP < PC @SP < PC
This instruction transfers control to a procedure or subroutine. The current contents
of the Program Counter (PC) are pushed onto the top of the processor stack. The
Stack Pointer (SP) pushed is R15 in compact mode, or RR14 in segmented or linear
mode. (The PC value used is the address of the first instruction word following the
CALL instruction.) The destination address, which points to the first instruction of the
called procedure, is then loaded into the PC. At the end of the called procedure, a
RET instruction can be used to return control to the instruction following CALL. RET
pops the top of the processor stack back into the PC.

Flags: No flags affected

Exceptions: None

Destination Assembler Language .
Addressing S Instruction Format
yntax
Mode
IR: CALL ®Rd' [oo[011111 [Ra=0[0000]
EAM: CALL eam 01/011111 eam [0000
1, 2, or 3 extension words
Exémple: In compact mode, if the contents of the PC are % 1000 and the contents of the

Stack Pointer (R15) are %3002, executing the instruction
CALL %2520

causes the SP to be decremented to %3000, the value % 1004 (the address follow-
ing the CALL instruction with Direct Address mode specified) to be loaded into the
word at location %3000, and the PC to be loaded with the value %2520. The PC
now points to the address of the first instruction in the procedure to be executed.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-24

CALR

Call Relative

Operation:

CALR dst dst: RA

Compact Segmented or Linear

SP<+SP -2 SP<+SP - 4

@SP < PC @SpP <« PC

PC < PC — (2 x displacement) PC <= PC— (2 x displacement)

The current contents of the Program Counter (PC) are pushed onto the top of the
processor stack. The Stack Pointer (SP) used is R15 in compact mode, or RR14 in
segmented or linear mode. (The PC value used is the address of the first instruction
word following the CALR instruction.) The destination address, which points to the
first instruction of the called procedure, is calculated and then loaded into the PC.

At the end of the called procedure, a RET instruction can be used to return control
of the instruction following CALR. RET pops the top of the processor stack back into
the PC.

The destination address is calculated by subtracting twice the displacement in the
instruction from the current value of the PC. The displacement is a 12-bit signed
value in the range —2048 to 2047. Thus, the destination address must be in the
range —-4092 to 4098 bytes from the start of the CALR instruction. The assembler
automatically calculates the displacement by subtracting the address given by the
programmer from the PC value of the following instruction and dividing the resulit by
two.

Flags:

No flags affected

. Exceptions:

None

Destination
Addressing
Mode

Assembler Language

Syntax Instruction Format

RA:

CALR address [1 101 [displacement J

Example:

In linear mode, if the contents of the PC are % 00001000 and the contents of the SP
(RR14) are %FFFF3002, executing the instruction

CALR PROC

causes the SP to be decremented to % FFFF3000, the value %00001002 (the ad-
dress following the CALR instruction) to be loaded into the longword location

% FFFF3000, and the PC to be loaded with the address of the first instruction in pro-
cedure PROC.

6-25

CHK

Check
CHK dst, src dst: R
CHKB src: IM, IR, EAM
CHKL
Operation: tmp <+ EFFECTIVE_ADDRESS (src)
lower < @tmp
if dst < lower then Bounds Check trap
tmp <+ tmp + (1 if CHKB; 2 if CHK; 4 if CHKL)
upper < @tmp
if dst > upper then Bounds Check trap
The destination is compared against the bounds specified by the source operand. If
the destination is less than the lower bound or greater than the upper bound, a
Bounds Check trap occurs. The destination and bounds are compared as signed in-
tegers. The contents of the source and destination are not affected.
The source specifies the lower bound. The upper bound is located at the next con-
secutive byte, word, or longword.
Flags: No flags affected.
Exceptions: Bounds Check trap
Source
Addressing Assemtél%tlainguage Instruction Format
Mode
IM: CHK Rd, #lower, #upper 00[001101 0000l1010
0000 Rd [0000[{0000
lower
upper
CHKB Rbd, #lower, #upper 00|001100 00001010
0000| Rbd [0000[0000
lower upper
CHKL RRd, #lower, #upper 00|001101 000011011
0000| RRd [0000[0000
lower (high)
lower (low)
upper (high)
upper (low)

6-26

Source

N Assembler Lan .
Addressing sse bSynta?(guage Instruction Format
Mode
IR: CHK Rd, @Rs! 00[00110|w| Rs20[1010
CHKB Rbd, @Rs! :
0000| Rd [0000]0000
CHKL RRd, @Rs'
ooloo11o1 Rs#0 1011
ooool RRd (0000{0000
EAM: CHK Rd, eam
CHKB Rbd, eam 01[00110{w 1010
0000/ Rd [0000[0000
1, 2, or 3 extension words
CHKL RRd, eam
01/001101 1011
oooo| RRd (00000000
1, 2, or 3 extension words
Example: If RR2 contains 11, executing the instruction
CHKL RR2, #0, #10
causes a Bounds Check trap because the value in RR2 is greater than the upper
bound of 10.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-27

CLR

Clear
CLR dst dst: R, IR, EAM
CLRB
CLRL
Operation: dst<0
The destination is cleared to 0.
Flags: No flags affected.
Exceptions: None
Destination Assembler Language .
Addressing Syntax Instruction Format
Mode
R o [Fo[oorow] ns J1o00]
CLAL RRd [10]o11100] RRd [0100]
IR: CLR @Rd [oojoo110[w|[Rd=0[1000]
CLRB @Rd!
CLRL @Rd! f[oo]o11100]Rax0]0100]
EAM: CLR eam
SlRp o 01/00110{w| eam [1000
1, 2, or 3 extension words
CLRL eam 01[011100| eam [0100
1, 2, or 3 extension words
Example: In linear mode, if the longword at location % 0000ABBA contains 13, executing the
instruction

CLRL %ABBA
leaves the value 0 in the longword at location % 0000ABBA.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-28

COM

Complement
COM dst dst: R, IR, EAM
coMB
COML
Operation: dst <= NOT dst
The contents of the destination are complemented (ones complement); all 1 bits are
changed to 0, and vice-versa.
Flags: C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the most-significant bit of the result is set; cleared otherwise
P: COM, COML—unaffected; COMB—set if parity of the result is even;
cleared otherwise
D: Unaffected
H: Unaffected
Exceptions: None
Destination
Addressing Assemlg;;tlainguage Instruction Format
Mode
R: o o {1oloo110/w| Rd [0000]
COML RRd {10[o11100] RRd [0000]
IR: COM @Rd!
o foojoo110|w/Rd = 0[0000]
’
COML @Rd foolo11100]Rd+0[0000]
EAM: COM eam
Somsam o1|oo11o]wj eam]oooo
1, 2, or 3 extension words
COML eam 01/011100] eam [0000
1, 2, or 3 extension words
Example: If register R1 contains %2552 (0010010101010010), executing the instruction

COM R1
leaves the value % DAAD (1101101010101101) in R1.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-29

COMFLG

Complement Flag

COMFLG flag Flag:C, Z, S, P, V
FLAGS<7:4> <+ FLAGS<7:4> XOR instruction<7:4>

Operation: Any combination of the C, Z, S, P or V flags can be complemented (each 1 bit is
changed to 0, and vice-versa). If the bit in the instruction corresponding to a flag is
1, the flag is complemented; if the bit is 0, the flag is unchanged. All other bits in
the Flags register are unaffected. Note that the P and V flags are represented by
the same bit. There can be one, two, three or four operands in the assembly
language statement, in any order.

Flags: C: Complemented if specified; unaffected otherwise
Z: Complemented if specified; unaffected otherwise
S: Complemented if specified; unaffected otherwise
P/V: Complemented if specified; unaffected otherwise
D: Unaffected
H: Unaffected

Exceptions: None

Assembler Language

Syntax Instruction Format

COMFLG flags [10001101 [czsPvjo101]

Example: If the C, Z, and S flags are all clear (=0), and the P flag is set (= 1), executing the
instruction

COMFLG P,S,Z C
leaves the C, Z, and S flags set , and the P flag clear.

6-30

CP

Compare
CP dst, src dst: R
CPB src: R, IM, IR, EAM
CPL or
dst: IR, EAM
src: IM
Operation: dst — src
The source operand is compared to (subtracted from) the destination operand, and
the flags are set accordingly. The flags can then be used for arithmetic and logical
conditional jumps. Both operands are unaffected; the only action is the setting of
the flags. Subtraction is performed by adding the twos complement of the source
operand to the destination operand. There are two variants of this instruction: Com-
pare Register compares the contents of a register against an operand specified by
any of the basic addressing modes; Compare Immediate performs a comparison
between an operand in memory and an immediate value.
Flags: C: Cleared if there is carry from the most-significant bit of the result; set other-
wise, indicating a borrow
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands were of opposite signs
and the sign of the result is the same as the sign of the source; cleared
otherwise
D: Unaffected
H: Unaffected
Exceptions: None

Compare Register

Ad?l(r’:;:?ng Assem%ler Language Instruction Format
Mode yntax
Ri 8EBRgzbz,sts [10joot101[w] Rs | Rd |
CPL RRd, RRs {10] 010000 | RRs | RRd |
IM: CP Rd, #data

00/ 001011 [0000| Rd
data

CPB Rbd, #data 00/ 0010100000/ Rbd

data data

CPL RRd, #data 00/ 010000 /0000 RRd

data (high)

data (low)

6-31

Source
Addressing Assemlg%tlainguage Instruction Format
Mode
IR: CP Rd, @Rs!
P ok [oojoo101|w| Rs+0| Rd |
CPL RRd, @Rs' [00{ 010000 Rs=0]| RRd |
EAM: CP Rd, eam
CPB Rbd, eam °’|°°‘°’|WL “’“J Rd
1, 2, or 3 extension words
CPL RRd, eam 01010000 | eam | RRd
1, 2, or 3 extension words
Compare Immediate
Destination
Addressing Assemlgl;;tlainguage Instruction Format
Mode
IR: CP @Rd", #data oo[oo11o1[nd:o[ooo1
data
CPB @Rd", #data oo|oo11oo Rdaeo[oom
data data
CPL @Rd!, #data 00/001101|Rd=0 [0011
data (high)
data (low)
EAM: CP eam, #data 01/001101 | eam [0001

CPB eam, #data

1, 2, or 3 extension words

data

01{001100 | eam [0001

1, 2, or 3 extension words

data] data

6-32

Destination
Addressing

Assembler Language Instruction Format

Mode Syntax
CPL eam, #data 01/001101| eam J0011
1, 2, or 3 extension words
data (high)
data (low)
Example: In linear mode, if register RR4 contains % 00000400, the byte at location

% 00000400 contains 2, and the source operand is the immediate value 3, executing
the instruction
CPB @RR4,#3

leaves the C flag set, indicating a borrow, the S flag set, and the Z and V flags
cleared.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-33

CPD

Compare and Decrement

Operation:

CPD dst, src, 1, cc dst: R
CPDB src: IR
CPDL

dst — src

AUTODECREMENT src (by 1 if CPDB; by 2 if CPD; by 4 if CPDL)

rer—1

This instruction is used to search a string of data for an element meeting the
specified condition. The contents of the location addressed by the source register
are compared to (subtracted from) the destination operand, and the Z flag is sét to 1
if the condition code specified by ‘‘cc” is satisfied by the comparison; otherwise the
Z flag is cleared to 0. See Section 6.3 for a list of condition codes. Both operands
are unaffected.

The source register is then decremented by one if CPDB, by two if CPD, or by four if
CPDL, thus moving the pointer to the previous element in the string. The word
register specified by ‘‘r'’’ (used as a counter) is then decremented by one. The
source, destination and count registers must be distinct and non-overlapping
registers.

Flags: C: Cleared if there is a carry from the most-significant bit of the result of the com-
parison; set otherwise, indicating a borrow
Z: Set if the condition code specified by cc is satisfied by the comparison; cleared
otherwise
S: Set if the result of the comparison is negative; cleared otherwise
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected
Exceptions: None
Source
Addressing Assem%le;tl;inguage Instruction Format
Mode y
IR: CPD Rd, @Rs', r, cc
GPDB Rbd, @Rs!, 1. cc 1011101 |W|Rs = 0[{1000
0000| r Rd | cc
CPDL RRd, @Rs', 1, co 10111001 | Rs#0 (1000
0000{ r [RRd | cc
Example: In linear mode, if register RHO contains % FF, register RR4 contains % 00004001,

the byte at location %4001 contains %00, and register R3 contains 5, executing the
instruction

CPDB RHO, @RR4, R3, EQ
leaves the Z flag cleared since the result of the comparison was not ‘‘equal.”

Register RR4 contains the value %00004000 and R3 contains 4. In compact mode,
a word register must be used instead of RR4.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-34

CPDR

Compare, Decrement and Repeat

Operation:

CPDR dst, src, 1, cc dst: R
CPDRB src: IR
CPDRL

repeat
dst — src
AUTODECREMENT src (by 1 if CPDRB; by 2 if CPDR; by 4 if CPDRL)
rer—1

until cc is satisfiedorr = 0

This instruction is used to search a string of data for an element meeting the
specified condition. The contents of the location addressed by the source register
are compared to (subtracted from) the destination operand, and the Z flag is set to 1
if the condition code specified by ‘“cc’’ is satisfied by the comparison; otherwise the
Z flag is cleared to 0. See Section 6.3 for a list of condition codes. Both operands
are unaffected.

The source register is then decremented by one if CPDRB, by two if CPDR, or by
four if CPDRL, thus moving the pointer to the previous element in the string. The
word register specified by ‘‘r'’ (used as a counter) is then decremented by one. The
entire operation is repeated until either the condition is satisfied or the result of
decrementing r is zero. This instruction can search a string of length 1 to 65,536
data elements. The source, destination, and counter registers must be distinct and
non-overlapping registers.

This instruction can be interrupted after each execution of the basic operation.

Flags:

C: Cleared if there is a carry from the most-significant bit of the result of the last
comparison; set otherwise, indicating a borrow

Z: Set if the condition code specified by cc is satisfied by the last comparison;
cleared otherwise

S: Set if the result of the last comparison is negative; cleared otherwise

V: Set if the result of decrementing r is zero; cleared otherwise

D: Unaffected

H: Unaffected

Exceptions:

None

Source
Addressing
Mode

Assembler Language

Syntax Instruction Format

IR:

CPDR Rd, @Rs?, 1, cc
CPDRB Rbd, @Rs', 1, cc 1011101[W/Rs#0[1100

o000/ r Rd | cc

CPDRL RRd, @Rs', r, cc 10111001 | Rs#0 1100
ooool r | RRd | cc

6-35

Example: In compact mode, if the string of words starting at location %2000 contains the
values 0, 2, 4, 6 and 8, register R2 contains %2008, R3 contains 5, and R8 contains

5, executing the instruction
CPDR R3, @R2, R8, GT

leaves the Z flag set, indicating the condition was satisfied. Register R2 contains the
value %2002, R3 still contains 5, and R8 contains 2. In segmented or linear mode, a
longword register must be used instead of R2.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-36

CPI

Compare and Increment

CPl dst, src, 1, cc dst: R
CPIB src: IR
CPIL

Operation: dst — src
AUTOINCREMENT src (by 1 if CPIB; by 2 if CPI; by 4 if CPIL)
re1r- 1
This instruction is used to search a string of data for an element meeting the
specified condition. The contents of the location addressed by the source register
are compared to (subtracted from) the destination operand and the Z flag is set to 1
if the condition code specified by ““cc” is satisfied by the comparison; otherwise the
Z flag is cleared to 0. See Section 6.3 for a list of condition codes. Both operands
are unaffected.
The source register is then incremented by one if CPIB, by two if CPI or by four if
CPIL, thus moving the pointer to the next element in the string. The word register
specified by “‘r’’ (used as a counter) is then decremented by one. The source,
destination, and counter registers must be distinct and non-overlapping registers.

Flags: C: Cleared if there is a carry from the most-significant bit of the result of the com-

parison; set otherwise, indicating a borrow
Z: Set if the condition code specified by cc is satisfied by the comparison; cleared
otherwise

S: Set if the result of the comparison is negative; cleared otherwise
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Exceptions: None

Source
Addressing Assem%l;:;tlainguage Instruction Format
Mode
IR: CPI Rd, @Rs, 1, cc

1011101 |W[Rs = 0[0000

CPIB Rbd, @Rst, 1, cc
0000| r Rd | cc

RRd, @Rs', r, cc
CPIL S 10111001 | Rs#0[/0000

0000/ r |RRd [cc

6-37

Example:

This instruction can be used in a “‘loop’’ of instructions that searches a string of
data for an element meeting the specified condition, but an intermediate operation
on each data element is required. In compact mode, executing the following se-
quence of instructions ‘‘scans while numeric,” that is, a string is searched until
either an ASCII character outside the range ‘0" to ‘9" is found, or the end of the
string is reached. This involves a range check on each character (byte) in the string.
In segmented or linear mode, a longword register must be used instead of R1.

LD

LDA

LDB
LOOP:

DONE:

NONNUMERIC:

R3, #STRLEN
R1,STRSTART
RLO,#9’

@R1,#0’
ULT,NONNUMERIC
RLO, @R1, R3, ULE
NZ, NONNUMERIC
NOV, LOOP

/linitialize counter
/lload start address
/llargest numeric char
/itest char < ‘0’
/ltest char = ‘9’

/llrepeat until counter = 0

/lhandle non-numeric char

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-38

CPIR

Compare, Increment and Repeat

Operation:

CPIR dst, src, 1, cc dst: R
CPIRB src: IR
CPIRL
repeat

dst — src

AUTOINCREMENT src (by 1 if CPIRB; by 2 if CPIR; by 4 if CPIRL)
rer —1
until cc is satisfiedorr = 0

This instruction is used to search a string of data for an element meeting the
specified condition. The contents of the location addressed by the source register
are compared to (subtracted from) the destination operand, and the Z flag is set to 1
if the condition code specified by ‘‘cc” is satisfied by the comparison; otherwise the
Z flag is cleared to 0. See Section 6.3 for a list of condition codes. Both operands
are unaffected.

The source register is then incremented by one if CPIRB, by two if CPIR, or by four
if CPIRL, thus moving the pointer to the next element in the string. The word register
specified by ‘‘r’’ (used as a counter) is then decremented by one. The entire opera-
tion is repeated until either the condition is satisfied or the result of decrementing r
is zero. This instruction can search a string of length 1 to 65,536 data elements. The
source, destination, and counter registers must be distinct and non-overlapping
registers.

This instruction can be interrupted after each execution of the basic operation.

Flags: C: Cleared if there is a carry from the most-significant bit of the result of the last
comparison; set otherwise, indicating a borrow
Z: Set if the condition code specified by cc is satisfied by the last comparison;
cleared otherwise
S: Set if the result of the last comparison is negative; cleared otherwise
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected
Exceptions: None
Source
Addressing Assem%l;'rulainguage Instruction Format
Mode
IR: CPIR Rd, @Rs!, 1, cc

1o111o1]w Rs #0[0100

CPIRB Rbd,@Rs', 1, cc
o000/ r Rd | cc

@Rs!
CPIRL RRd, @Rs', 1, cc 10111001 | Rs#0 0100

0000/ r RRd | cc

6-39

Example:

The following sequence of instructions (to be executed in compact mode) can be
used to search a string for an ASCII return character. The pointer to the start of the
string is set, the string length is set, the character (byte) to be searched for is set,
and then the search is accomplished. Testing the Z flag determines whether the
character was found. In segmented or linear mode, a longword register must be
used instead of R1.

LDA R1, STRSTART

LD R3, #STRLEN

LDB RLO, # %D /Ihex code for return is D
CPIRB RLO, @R1, R3, EQ

JR Z, FOUND

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-40

CPSD

Compare String and Decrement

CPSD dst, src, 1, cc dst: IR
CPSDB src: IR
CPSDL

Operation: dst — src
AUTODECREMENT dst and src (by 1 if CPSDB; by 2 if CPSD; by 4 if CPSDL)
rer—1
This instruction is used to compare two strings of data in order to test the specified
condition. The contents of the location addressed by the source register are com-
pared to (subtracted from) the contents of the location addressed by the destination
register. The Z flag is set to 1 if the condition code specified by ‘‘cc” is satisfied by
the comparison; otherwise the Z flag is cleared to 0. See Section 6.3 for a list of
condition codes. Both operands are unaffected.
The source and destination registers are then decremented by one if CPSDB, by two
if CPSD or by four if CPSDL, thus moving the pointers to the previous elements in
the strings. The word register specified by ‘‘r’’ (used as a counter) is then
decremented by one. The source, destination and count register must be distinct,
non-overlapping registers.

Flags: C: Cleared if there is a carry from the most-significant bit of the result of the com-

parison; set otherwise, indicating a borrow.
Z: Set if the condition code specified by cc is satisfied by the comparison; cleared
otherwise

S: Set if the result of the comparison is negative; cleared otherwise.
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Exceptions: None

Addressing Assembler Language .
Mode Syntax Instruction Format
IR: CPSD @Rd!, @Rs!, r, cc

CreDB GRg!, RS T w0 1011101|W|Rs # 0{1010
0000 r |Rdz0| cc

@ 1 @ 1
CPSDL @Rd', @Rs, 1, cc 10111001 | Rs#0 /1010

0000 r |[Rdz0| cc

6-41

Example:

In linear mode, if register RR24 contains % 00002000, the byte at location
% 00002000 contains % FF, register RR26 contains % 00003000, the byte at loca-
tion % 00003000 contains %00, and register R4 contains 1, executing the instruc-
tion

CPSDB @RR24, @RR26, R4, UGE
leaves the Z flag set to 1 since the result of the comparison was ‘‘unsigned greater
than or equal’’, and the V flag set to 1 to indicate that the counter R4 now contains
0. RR24 contains %00001FFF, and RR26 contains %00002FFF. In compact mode,
word registers must be used instead of RR24 and RR26.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-42

CPSDR

Compare String, Decrement and Repeat

Operation:

CPSDR dst, src,r, cc dst: IR
CPSDRB src: IR
CPSDRL

repeat
dst — src
AUTODECREMENT dst and src (by 1 if CPSDRB; by 2 if CPSDR; by 4 if CPSDRL)
rer—1

until cc is satisfiedorr = 0

This instruction is used to compare two strings of data until the specified condition
is true. The contents of the location addressed by the source register are compared
to (subtracted from) the contents of the location addressed by the destination
register. The Z flag is set to 1 if the condition code specified by ‘‘cc” is satisfied by
the comparison; otherwise the Z flag is cleared to 0. See Section 6.3 for a list of
condition codes. Both operands are unaffected.

The source and destination registers are then decremented by one if CPSDRB, by
two if CPSDR, or by four if CPSDRL, thus moving the pointers to the previous
elements in the strings. The word register specified by ““r'’’ (used as a counter) is
then decremented by one. The entire operation is repeated until either the condition
is satisfied or the result of decrementing r is zero. This instruction can compare str-
ings of length 1 to 65,536 data elements. The source, destination, and counter
registers must be distinct and non-overlapping registers.

This instruction can be interrupted after each execution of the basic operation.

Flags:

C: Cleared if there is a carry from the most-significant bit of the result of the last
comparison; set otherwise, indicating a borrow.

Z: Set if the condition code specified by cc is satisfied by the last comparison;
cleared otherwise ,

S: Set if the result of the last comparison is negative; cleared otherwise

V: Set if the result of decrementing r is zero; cleared otherwise

D: Unaffected

_H: Unaffected

Exceptions:

None

Addressing
Mode

Assembler Language

Syntax Instruction Format

IR:

CPSDR @Rd!, @Rst, r,cc

GPSDRB @Rd!, @Rgh. T 6 1011101 |W| Rs#0 1110

oooo] r | Rdz0| cc

CPSDRL @Rd', @Rst, r, cc
10111001 | Rs#0 (1110

oooo| r [Rd%0| cc

Example: In compact mode, if the words from location % 1000 to % 1006 contain the values 0,
2, 4, and 6, the words from location %2000 to %2006 contain the values 0, 1, 1, O,
register R13 contains % 10086, register R14 contains %2006, and register RO con-
tains 4, executing the instruction

CPSDR @R13, @R14, RO, EQ
leaves the Z flag set to 1 since the result of the comparison was ‘‘equal’’ (locations
%1000 and %2000 both contain the value 0). The V flag is set to 1 indicating RO
was decremented to zero. R13 contains %O0FFE, R14 contains % 1FFE, and RO con-
tains 0. In segmented or linear mode, longword registers must be used instead of
R13 and R14.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-44

CPSI

Compare String and Increment

CPSI dst, src, 1, cc dst: IR
CPSIB src: IR
CPSIL

Operation: dst — src
AUTOINCREMENT dst and src (by 1 if CPSIB; by 2 if CPSI; by 4 if CPSIL)
rer—1
This instruction is used to compare two strings of data, in order to test the specified
condition. The contents of the location addressed by the source register are com-
pared to (subtracted from) the contents of the location addressed by the destination
register. The Z flag is set to 1 if the condition code specified by ‘‘cc’”’ is satisfied by
the comparison; otherwise the Z flag is cleared to 0. See Section 6.3 for a list of
condition codes. Both operands are unaffected.
The source and destination registers are then incremented by one if CPSIB, by two
if CPSI or by four if CPSIL, thus moving the pointers to the next elements in the
strings. The word register specified by ‘‘r”’ (used as a counter) is then decremented
by one. The source, destination and count register must be distinct, non-overlapping
registers.

Flags: C: Cleared if there is a carry from the most-significant bit of the result of the com-

parison; set otherwise, indicating a borrow
Z: Set if the condition code specified by cc is satisfied by the comparison;
cleared otherwise

S: Set if the result of the comparison is negative; cleared otherwise
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Exceptions: None

Adtlugz:mg Assem%l‘%tlainguage Instruction Format

CPSI @Rd!,@Rs!,r,cc
GPSIB @RJ!.@RI T oo 1011101|w|Rs = 0[0010

OOOOI r Rd # 0| cc

CPSIL @Rd!, @Rs!, 1, c 10111001 | Rs#0 [0010
0000| r [Rd#0| ec

6-45

Example: This instruction can be used in a ““loop” of instructions that compares two strings
until the specified condition is true, but where an intermediate operation on each
data element is required. The following sequence of instructions (executed in com-
pact mode), attempts to match a given source string to the destination string which
is known to contain all upper-case characters. The match should succeed even if
the source string contains some lower-case characters. This involves a forced con-
version of the source string to upper-case (only ASCII alphabetic letters are as-
sumed) by resetting bit 5 of each character (byte) to O before comparison.

LDA R1,SRCSTART /lload start addresses
LDA R2,DSTSTART
LD R3,#STRLEN /linitialize counter
LOOP:
RESB @R1,#5 /[force upper-case
CPSIB @R1,@R2, R3, NE /lcompare until not equal
JR Z, NOTEQUAL /lexit loop if match fails
JR NOV, LOOP /Irepeat until counter = 0
DONE: . /Imatch succeeds
NOTEQUAL: . /Imatch fails

In segmented or linear mode, longword registers must be used instead of R1 and
R2.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-46

CPSIR

Compare String, Increment and Repeat

Operation:

CPSIR dst,src,r,cc dst: IR
CPSIRB src: IR
CPSIRL ’

repeat
dst — src
AUTOINCREMENT dst and src (by 1 if CPSIRB, by 2 if CPSIR; by 4 if CPSIRL)
rergr—1

until cc is satisfied orr = 0

This instruction is used to compare two strings of data until the specified condition
is true. The contents of the location addressed by the source register are compared
to (subtracted from) the contents of the location addressed by the destination
register. The Z flag is set to 1 if the condition code specified by ‘‘cc’’ is satisfied by
the comparison; otherwise the Z flag is cleared to 0. See Section 6.3 for a list of
condition codes. Both operands are unaffected.

The source and destination registers are then incremented by one if CPSIRB, by two
if CPSIR, or by four if CPSIRL, thus moving the pointers to the next elements in the
strings. The word register specified by ‘‘r'’ (used as a counter) is then decremented
by one. The entire operation is repeated until either the condition is satisfied or the
result of decrementing r is zero. This instruction can compare strings of length 1 to
65,536 data elements. The source, destination, and counter registers must be
distinct and non-overlapping registers.

This instruction can be interrupted after each execution of the basic operation.

Flags:

: Cleared if there is a carry from the most-significant bit of the result of the last
comparison; set otherwise, indicating a borrow.

: Set if the condition code specified by cc is satisfied by the last comparison;

cleared otherwise.

: Set if the result of the last comparison is negative; cleared otherwise

: Set if the result of decrementing r is zero; cleared otherwise

: Unaffected

H: Unaffected

Oo<® N O

Exceptions:

None

Ad%gsézing Asseml;l;;tlaz;(nguage Instruction Format
IR: CPSIR @Rd',@Rs!,r,cc

1011101|W|Rs #0[0110

CPSIRB @Rd!,@Rs!,r,cc
oooo| r |Rd=0| cc

PSIRL @Rd",@Rs,r,
CPs shree 10111001 | Rs#0 (0110

0000 r |Rd#0| cc

6-47

Example:
The CPSIR instruction can be used to compare text strings for lexicographic order.
(For most common character encodings — for example, ASCIl and EBCDIC — lexi-
cographic order is the same as alphabetic order for alphabetic text strings that do
not contain blanks.)

Let S1 and S2 be text strings of lengths L1 and L2. According to lexicographic
ordering, S1 is said to be “less than’’ or ‘‘before’” S2 if either of the following is
true:

m At the first character position at which S1
and S2 contain different characters, the
character code for the S1 character is
less than the character code for the S2
character.

m S1 is shorter than S2 and is equal, char-
acter for character, to an initial substring
of S2.

For example, using the ASCII character code, the following strings are ascending

lexicographic order:

A

AA

ABC

ABCD

ABD

Assume that the address of S1 is in RR2, the address of S2 is in RR4, the lengths L1

and L2 of S1 and S2 are in RO and R1, and the shorter of L1 and L2 is in R6. The

following sequence of instructions (executed in segmented or linear mode) will

determine whether S1 is less than S2 in lexicographic order:

CPSIRB @RR2, @RR4, R6, NE lIscan to first unequal character
/Ithe following flags settings are possible:
Z = 0,V = 1. Strings are equal through L1
character (Z = 0, V = 0 cannot occur).
Z =1,V = 0 or 1: A character position was
found at which the strings are unequal.
C = 1 (S = 0 or 1): The character in the RR2
string was less (viewed as numbers from O to
255, not as numbers from -128 to + 127).
C = 0 (S = 0 or 1): The character in the RR2
string was not less

JR Z,CHAR_COMPARE [lif Z=1, compare the characters

CP RO,R1 /lotherwise, compare string lengths

JR LT, S1_IS__LESS
JR S1_NOT__LESS

CHAR_COMPARE:

JR ULT, S1_IS__LESS /IULT is another name for C=1
S1_NOT LESS:
S1__IS__LESS:

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-48

CVT

Convert

Operation:

dst: R

src: R, IR, EAM
or

dst: IR, EAM
src: R

CVTBW dst, src
CVTBL

CVTWB
CVTWL

CVTLB

CVTLW

dst < CONVERSION (src)

The contents of the source are converted to the size of the destination and then
stored into the destination. The contents of the source are not affected.

The source and destination are treated as signed integers. The size of the destina-
tion operand is indicated by the fourth letter of the opcode mnemonic (B, W, or L);
the size of the source operand is indicated by the last letter. For CVTWB, CVTLB,
and CVTLW the source is sign-extended to the size of the destination before storing.
For CVTBW, CVTBL, and CVTWL the source is truncated to the size of the destina-
tion, keeping the less-significant bits, before storing. If the source cannot be exactly
represented in the destination because of truncation, then the V flag is set to 1;
otherwise the V flag is cleared to 0.

Flags:

: Cleared

: Set if the result is zero; cleared otherwise

: Set if the most-significant bit of the result is set; cleared otherwise.

: CVTBW, CVTBL—set if the source is not in the range — 128 to 127; cleared
otherwise; CVTWL—set if the source is not in the range — 32768 to 32767;
cleared otherwise; CVTLB, CVTLW—cleared

D: Unaffected

H: Unaffected

<ONO

Exceptions:

Integer Overflow trap

Convert Register

Source
Addressing Assemlgl;a;tlainguage Instruction Format
Mode
R: CVTBW Rbd, Rs 01111000[000000 01
1o|1oooo1 Rs]Rbd
CVTBL Rod, RRs 01111000]000000 01
10{010100| RRs | Rbd
CVTWB Rd, Ros 01111000]00100001
10[100000 RbsT Rd
CVTWL Rd, RRs 01111000/00100001
10[010100| RRs | Rd

6-49

Source
Addressing Assemtgl;'rulainguage Instruction Format
Mode)
CVTLB RRd, Rbs 01111000|001100 01
10{100000| Rbs | RRd
CVTLW RRd, Rs 01111000/00110001
10{100001| Rs | RRd
IR: CVTBW Rbd, @Rs! 01111000]0000 0011
00{100001| Rs#0| Rbd
@ 1
CVTBL Rbd, @Rs 01111000[000000 11
00[010100| Rs#0| Rbd
1
CVTWB Rd, @Rs 01111000/00100011
0o[100000|Rs#0| Rd
CVTWL Rd, @Rs! 01111000({00100 011
00{010100[Rs#0| Rd
1
CVTLB RRd, @Rs 01111000|00110011
oﬂmoooo Rs#0 | RRd
1
CVILW RRd, @Rs 01111000]001100 11
00[100001| Rs+0| RRd
EAM: CVTBW Rbd, eam 01111000/00000011
01[100001| eam] Rbd
1, 2, or 3 extension words
CVTBL Rbd, eam 0111100000000 011
01010100 eam Rbd
1, 2, or 3 extension words
CVTWB Rd, eam 01111000/00100011
01/100000| eam | Rd
1, 2, or 3 extension words

6-50

Source
Addressing
Mode

Assembler Language
Syntax

Instruction Format

CVTWL Rd, eam

CVTLB RRd, eam

CVTLW RRd, eam

01111000 (00100011

01({010100| eam Rd

1, 2, or 3 extension words

011110000011 0011

o1]1ooooo eam | RRd

1, 2, or 3 extension words

011110000011 0011

01/100001| eam RRd

1, 2, or 3 extension words

Convert Memory

Destination
Addressing Assembslsrr‘tlainguage Instruction Format
Mode
IR: CVTBW @Rd?, Rs

CVTBL @Rd', RRs

CVTWB @Rd!, Rbs

CVTWL @Rd!, RRs

CVTLB @Rd!, Rbs

CVTLW @Rd', Rs

011110000010 0101

00{101110|Rd#0| Rs

01111000(0011 0101

00101110 Rd=0| RRs

011110000000 0101

00[101111| Rd#0| Rbs

01111000 (0011 0101

00{101111|Rd=0 | RRs

011110000000 0101

00{011101] Rd#0| Rbs

011110000010 0101

00/o11101]| Rd#0] Rs

Destination
Addressing Assem%l;lrﬂlainguage Instruction Format
Mode
EAM: CVTBW eam, Rs 01111000{0010 0101
01[{101110| eam Rs
1, 2, or 3 extension words
CVTBL eam, RRs 011110000011 0101
J01{101110] eam RRs
1, 2, or 3 extension words
CVTWB eam, Rbs 01111000|0000 0101
01/101111]| eam Rbs
1, 2, or 3 extension words
CVTWL eam, RRs 01111000(0011 0101
01/101111| eam | RRs
1, 2, or 3 extension words
CVTLB eam, Rbs 01111000|0000 0101
01{011101| eam | Rbs
1, 2, or 3 extension words
CVTLW eam, Rs 01111000[0010 0101
01[011101 eamJ Rs
1, 2, or 3 extension words
Example: If byte register RHO contains the value — 100, executing the instruction

CVTLB RR4, RHO

loads — 100 into longword register RR4. The S flag is set and the C, Z, and V flags
are cleared.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-52

CVTU

Convert Unsigned
CVTUBW dst, src dst: R
CVTUBL src: R, IR, EAM
CVTUWB or
CVTUWL dst: IR, EAM
CVTULB src: R
CVTULW
Operation: dst <= UNSIGNED__CONVERSION (src)

The contents of the source are converted to the size of the destination and then
stored into the destination. The contents of the source are not affected.

The source and destination are treated as unsigned integers. The size of the
destination operand is indicated by the fifth letter of the opcode (B, W, or L); the
size of the source operand is indicated by the last letter. For CVTUWB, CVTULB,
and CVTULW the source is zero-extended to the size of the destination before stor-
ing. For CVTUBW, CVTUBL, and CVTUWL the source is truncated to the size of the
destination, keeping the less significant bits, before storing. If the source cannot be
exactly represented in the destination because of truncation then the V flag is set to
1; othérwise the V flag is cleared to 0.

Flags: C: Cleared

Z: Set if the result is zero; cleared otherwise

S: Set if the most-significant bit of the result is set; cleared otherwise.

V: CVTUBW, CVTUBL—set if the source is greater than 255; cleared otherwise
CVTUWL—set if the source is greater than 65,535; cleared otherwise
CVTULB,CVTULW—cleared

D: Unaffected

H: Unaffected

Exceptions: None

Convert Register Unsigned

Source Assembler Lan ’
guage .
Adﬂgzzlng Syntax Instruction Format
R: CVTUBW Rbd, Rs

011110000000 0000
10[100001| Rs | Rbd

CVTUBL Rbd, RRs 011110000000 0000

10{010100/ RRs | Rbd

CVTUWB Rd, Rbs 01111000/0010 0000
10{100000 Rbs | Rd
CVTUWL Rd, RRs 011110000010 0000

10]010100 RRs | Rd

Source
Addressing Assem%l;;tlainguage Instruction Format
Mode
CVIULB RRd, Rbs 01111000 0011 0000
10[100000| Rbs | RRd
CVTULW RRd, Rs 01111000 0011 0000
10{100001| Rs | RRd
IR: CVIUBW Rbd, @Rs' 01111000 0000 0010
00/100001|Rs=0| Rbd
CVTUBL Rbd, @Rs' 01111000 0000 0010
00{010100| Rs#0| Rbd
CVTUWE Rd, @Re! 01111000 0010 0010
00[100000] Rs0| Rd
CVTUWL Rd, @Rs' 01111000 0010 0010
00{010100| Rs#0| Rd
CVTULB RRd, @Rs! 01111000 0011 0010
00{100000| Rs#0| RRd
CVIULW RRd, @Rs! 01111000 0011 0010
oo|1oooo1[ns¢o| RRd
EAM: CVTUBW Rbd, eam 01111000 0000 0010
01[100001l eamJ Rbd
1, 2, or 3 extension words
CVTUBL Rbd, eam 01111000 0000 0010
01 o1o1oo| eam] Rbd
1, 2, or 3 extension words
CVTUWB Rd, eam 01111000 0010 0010
01 1oooooLeami Rd
1, 2, or 3 extension words

6-54

Source
Addressing
Mode

Assembler Language
Syntax

Instruction Format

CVTUWL Rd, eam

CVTULB RRd, eam

CVTULW RRd, eam

01111000

0010 0010

011010100

eam Rd

1, 2, or 3 extension words

01111000

0011 0010

01100000

eam [RRd

1, 2, or 3 extension words

01111000

0011 0010

011100001

eam RRd

1, 2, or 3 extension words

Convert Memory Unsigned

Destination
Addressing Assem%l;'r“g(nguage Instruction Format
Mode
IR: CVIUBW @Rd!, Rs 01111000]0010 0100
00{101110 Rd¢o| Rs
1
CVTUBL @Rd', RRs 01111000/0011 0100
00]101110 Rd4=0l RRs
1
CVIUWB @Rd', Ribs 011110000000 0100
00{101111] Rd=0| Rbs
CVIUWL @Rd', RRs 01111000]0011 0100
00{101111| Rd#0| RRs
CVTU @ 1
LB @Rd!, Ros 01111000 (0000 0100
00[011101]Rd#0| Rbs
|
CVIULW @Rd', Rs 01111000/0010 1100
0o0[0o11101|Rdz0| Rs

6-55

Destination
Addressing Assem%l;rl;tginguage Instruction Format
Mode
EAM: CVIUBW eam, Rs 01111000 (0010 0100
01[101110(eam [Rs
1, 2, or 3 extension words
CVTUBL eam, RRs 01111000(0011 0100
01[101110 eam RRs
'1, 2, or 3 extension words
CVIUWB eam, Rbs 011110000000 0100
01101111} eam Rbs
1, 2, or 3 extension wbrds
CVIUWL eam, RRs 01111000 |0011 0100
01[101111 eam RRs
1, 2, or 3 extension words
CVTULE eam, Rbs 01111000 0000 0100
01]011101| eam Rbs
1, 2, or 3 extension words
CVTULW eam, Rs 01111000 (0010 0100
01[o11101 eami Rs
1, 2, or 3 extension words
Example: If word register R1 contains the value %0F12, executing the instruction

CVTUBW RLO, Rt

loads %12 into byte register RLO. The V flag is set and the C, Z, and S flags are
cleared.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-56

DAB

Decimal Adjust
DAB dst dst: R
Operation: dst <= DECIMAL__ADJUST (dst)
The destination byte is adjusted to form two 4-bit BCD digits following a binary addi-
tion or subtraction operation on two BCD encoded bytes. Following addition (ADDB,
ADCB) or subtraction (SUBB, SBCB), the table below indicates the operation
performed:
Carry Bits4-7 H Flag Bits 0-3 Number Carry
Before Value Before Value Added After
Instruction DAB (Hex) DAB (Hex) To Byte DAB
0 0-9 0 09 00 0
0 0-8 0 A-F 06 0
ADDB 0 0-9 1 0-3 06 0
ADCB 0 A-F 0 0-9 60 1
0 9-F 0 A-F 66 1
0 A-F 1 0-3 66 1
1 0-2 0 0-9 60 1
1 0-2 0 A-F 66 1
1 0-3 1 0-3 66 1
SUBB 0 0-9 0 0-9 00 0
SBCB 0 0-8 1 6-F FA 0
1 7-F 0 09 A0 1
1 6-F 1 6-F 9A 1
The operation is undefined if the destination byte was not the result of a binary addi-
tion or subtraction of BCD digits.
Flags: C: Set or cleared according to the table above
Z: Set if the result is zero; cleared otherwise
S: Set if the most-significant bit of the result is set; cleared otherwise
V: Unaffected
D: Unaffected
H: Unaffected
Exceptions: None
Addressing Assembler Language .
Mode Syntax Instruction Format
R: DAB Rbd ~ |10[110000 | Rbd [0000]

Example:

If addition is performed using the BCD values 15 and 27, the result should be 42.
The sum is incorrect, however, when the binary representations are added in the
destination location using standard binary arithmetic. As shown below, adding the
two numbers using binary arithmetic gives a result of %3C, leaving the C and H
flags clear.

0001 0101
+ 0010 0111

0011 1100 = %3C

Executing the DAB instruction adjusts this result so that the correct BCD represen-
tation is obtained.

0011 1100
+ 0000 0110

0100 0010 = 42

6-58

DEC

Decrement
DEC dst, src dst: R, IR, EAM
DECB src: IM
DECL
Operation: dst < dst — src (src = 1 to 16)
The source operand (a value from 1 to 16) is subtracted from the destination
operand and the result is stored in the destination. Subtraction is performed by ad-
ding the twos complement of the source operand to the destination operand. If the
source operand is omitted from the assembler language statement, the default value
is 1.
The value of the source field in the instruction is one less than the actual value of
the source operand. Thus, the coding in the instruction for the source ranges from 0
to 15, which corresponds to the source values 1 to 16.
Flags: C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands were of opposite sign
and the sign of the result is the same as the sign of the source; cleared
otherwise.
D: Unaffected
H: Unaffected
Exceptions: Integer Overflow trap
Destination
Addressing Assemlg;rrﬂlainguage Instruction Format
Mode
R: DEC Rd, #n
DECB Rbd, #n [1o]10101[w] Rd [n-1]
DECL RRd, #n 011110100000 0010
10[101011| RRd [n -1
IR: DEC @Rd', #n
Dece oad! {oo[10101|w|Rd=0[n-1]
DECL @Rd", #n 011110100000 0010
00{101011 | Rd=0[n -1
EAM: DEC eam, #n -
DECgam. #n_ 01[10101|w| eam | n -1
1, 2, or 3 extension words
DECL eam, #n 01111010[0000 0010
01{101011] eam [n -1
1, 2, or 3 extension words

6-59

Example: If register RR10 contains %0000002A, executing the instruction
DECL RR10
leaves the value %00000029 in RR10.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-60

DECI

Decrement Interlocked

Operation:

DECI dst, src dst: IR, EAM
DECIB src: IM

dst < dst — src(src = 1 to 16)

The source operand (a value from 1 to 16) is subtracted from the destination
operand and the result is stored in the destination. Subtraction is performed by
adding the twos complement of the source operand to the destination operand. If
the source operand is omitted from the assembly language statement, the default
value is 1.

The value of the source field in the instruction is one less than the actual value of
the source operand. Thus, the coding in the instruction for the source ranges from 0
to 15, which corresponds to the source values 1 to 16.

This is an interlocked instruction. No other interlocked accesses are permitted to
the destination memory location between fetching and storing the resuit.

Flags:

C: Unaffected

Z: Set if the result is zero; cleared otherwise

S: Set if the result is negative; cleared otherwise

V: Set if arithmetic overflow occurs, that is, if the operands were of opposite sign
and the sign of the result is the same as the sign of the source; cleared
otherwise.

D: Unaffected

H: Unaffected

Exceptions:

Integer Overflow trap

Destination
Addressing
Mode

Assembler Language

Syntax Instruction Format

EAM:

DECI @Rd', #n

DECIB @Rd", #n 011110100000 0100

oo|1 o1o1Tw ndaaq n-1

DECI eam, #n

DECIB eam, #n 011110100000 0100

01|1o1o1|w eam l n-1

1, 2, or 3 extension words

Example:

This instruction can be used to allocate or release copies of a system resource in a
multiprocessor environment. For example, several processes running on different
processors can share use of a common page in memory. It is necessary to keep a
reference counter for the number of active processes using the shared page. When
one of these processes terminates, the reference counter is decremented. The DECI
instruction should be used so that one processor completes the fetch and store of
the counter in memory before any other processor accesses the counter.

DECI REFERENCE_COUNTER, #1 /ldecrement reference counter
for shared page

Note 1: Word register in compact mode, longword register in segmented or linear modes.

DI

Privileged Instruction

Disable Interrupt
DI Int Int: VI, NVI
Operation: If instruction< 0> = 0 then NVI -0

If instruction<1> = 0 then VI <0

Any combination of the Vectored Interrupt (VI) or Non-Vectored Interrupt (NVI) con-
trol bits in the Flag and Control Word (FCW) are cleared to 0 if the corresponding bit
in the instruction is 0, thus disabling the appropriate type of interrupt. If the cor-
responding bit in the instruction is 1, the control bit is not affected. All other bits in
the FCW are not affected. There may be zero, one or two operands in the assembly
language statement, in either order, specifying no source operand is equivalent to
specifying both VI and NVI.

Flags: No flags affected.
Exceptions: Privileged Instruction trap
Assem%l;e'r“tinguage Instruction Format
Dlint [o1111100 [000000]Y[}}
Example: If the NVI and VI control bits are set (1) in the FCW, executing the instruction

DI VI

leaves the NVI control bit in the FCW set to 1 and the VI control bit in the FCW
cleared to 0.

6-62

DIV

Divide

Operation:

DIV dst, src dst: R
DIVL src: R, IM, IR, EAM

Word: (dst is longword register, src is word):
dst<31:0> is divided by src<15:0>
(dst<31:0> = quotient X src<15:0> + remainder)
dst<15:0> < quotient
dst<31:16> <+ remainder

Longword: (dst is quadword register, src is longword):
dst<63:0> is divided by src<31:0>
(dst<63:0> = quotient X src<31:0> + remainder)
dst<31:0> < quotient
dst<63:32> < remainder

The destination operand (dividend) is divided by the source operand (divisor). The
quotient is stored in the low-order half of the destination and the remainder is stored
in the high-order half of the destination. The contents of the source are not affected.
Both operands are treated as signed, twos complement integers. Division is per-
formed so that the remainder is of the same sign as the dividend except when the
remainder is O and the quotient sign is the exclusive OR of the signs of the dividend
and divisor except when the quotient is 0. For DIV, the destination is a longword
register and the source is a word vaiue; for DIVL, the destination is a quadword
register and the source is a longword value.

For proper instruction execution the ‘‘dst field”” in the DIVL instruction encoding
must specify a valid code for a quadword register.

There are four possible outcomes of the signed divide instruction.

CASE 1. If the divisor is 0, then the destination register is unmodified, the V and Z
flags are set to 1, and the C and S flags are cleared to 0.

CASE 2. If the quotient is less than — (216 — 1) or greater than (216 — 1) for DIV
or if the quotient is less than —(232 — 1) or greater than (232 — 1) for DIVL, then
the destination register is unmodified. The V flag is set to 1, and the C, Z, and S
flags are cleared to 0.

CASE 3. If the quotient is greater than — (215 + 1) and less than (215) for DIV or if
the quotient is greater than — (231 + 1) and less than (231) for DIVL, then the quo-
tient and remainder are left in the destination register as defined above. The V and
C flags are cleared to 0 and the S and Z flags are set according to the value of the
quotient.

CASE 4. If none of the above cases applies, then all of the remainder and all but
the Sign bit of the quotient are left in the destination register. The V and C flags are
set to 1, the Z flag is cleared to 0, and the S flag indicates the sign of the quotient.
In this case, the S flag can be replicated into the high-order half of the destination
to produce the twos complement representation of the quotient with the same preci-
sion as the original dividend.

Flags:

C: For CASE 4 set; cleared otherwise

Z: Set if the quotient or divisor is zero; cleared otherwise

S: For CASE 1 and CASE 2 cleared; for CASE 3 and CASE 4 set if the quotient is
negative; cleared otherwise

V: For CASE 3 cleared; set otherwise

D: Unaffected

H: Unaffected

Exceptions:

Integer Overflow trap

Source

Assembler Language

Addressing Instruction Format
Mode Syntax
R: DIV RRd, Rs hﬂ‘”””r Rs l RRd1
DIVL RQd, RRs f10/011010] RRs | Rad |
IM: DIV RRd, #data 00|o11o11|oooo| RRd
data
DIVL RQd, #data 00/ 011010]0000| Rad
data (high)
data (low)
IR: DIV RRd, @Rs! [oo[011011 Rs#0 | RRa |
1
DIVL RQd, @Rs {ool 011010 | Rs=0| Raa |
EAM: DIV RRd, eam 01] 011011 | eam | RRd
1, 2, or 3 extension words
DIVL RQd, eam 01/ 011010 eam | RQd
1, 2, or 3 extension words
Example: If register RRO (composed of word registers RO and R1) contains % 00000022 and

register R3 contains 6, executing the instruction

DIV RRO,R3

leaves the value %00040005 in RRO (R1 contains the quotient 5 and RO contains

the remainder 4).

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-64

DIVU

Divide Unsigned
DIVU dst, src dst: R
DIVUL src: R, IM, IR, EAM
Operation: Word: (dst is longword register, src is word):
dst<31:0> is divided by src<15:0>
(dst<31:0> = quotient X src<15:0> + remainder)
dst<15:0> <« quotient
dst<31:16 > < remainder
Longword: (dst is quadword register, src is longword):
dst<63:0> is divided by src<31:0>
(dst<63:0> = quotient x src<31:0> + remainder)
dst<31:0> <+ quotient
dst<63:32> <+ remainder
The destination operand (dividend) is divided by the source operand (divisor). The
quotient is stored in the low-order half of the destination and the remainder is stored
in the high-order half of the destination. The contents of the source are not affected.
Both operands are treated as unsigned integers. For DIVU, the destination is a
longword register and the source is-a word value; for DIVUL, the destination is a
quadword register and the source is a longword value.
For proper instruction execution the ‘‘dst field”’ in the DIVUL instruction encoding
must specify a valid code for a quadword register.
There are three possible outcomes of the unsigned divide instruction.
CASE 1. If the divisor is 0, then the destination register is unmodified, the V and Z
flags are set to 1, and the C and S flags are cleared to 0.
CASE 2. If the quotient is greater than (216 — 1) for DIVU or if the quotient is
greater than (232 — 1) for DIVUL, then the destination register is unmodified. The V
flag is set to 1, and the C, Z, and S flags are cleared to 0.
CASE 3. If the quotient is less than 216 for DIVU, or if the quotient is less than 232
for DIVUL, then the quotient and remainder are left in the destination register as
. defined above. The V and C flags are cleared to 0 and the S and Z flags are set ac-
cording to the value of the quotient, as described below.
Flags: C: Cleared
Z: Set if the quotient or divisor is zero; cleared otherwise
S: For CASE 1 and CASE 2 cleared; for CASE 3 set if the most-significant bit of the
result is set; cleared otherwise
V: For CASE 1 and CASE 2 set; cleared otherwise
D: Unaffected
H: Unaffected
Exceptions: Integer Overflow trap

6-65

Source
Addressing Assem%l;;tlainguage Instruction Format
Mode
R:
DIVU RRd, Rs 01111010 |0000 0011
10{011011| Rs | RRd
DIVUL RQd, RRs 01111010 |0000 0011
10[011010| RRs | Rad
IM: DIVU RRd, #data 01111010]0000 0011
oofo11011{0000| RRd
data
DIVUL RQd, #dat
UL RQd, #data 01111010 (0000 0011
oojo11010[0000| Rad
data (high)
data (low)
: @Rs'
IR DIVU RRd, @Rs 011110100000 0011
00[{011011 | Rs#0| RRd
DIVUL RQd, @Rs! 01111010{0000 0011
00{011010] Rs#0 | RQd
EAM: DIVU RRd, eam 01111010{0000 0011
01(011011| eam | RRd
1, 2, or 3 extension words
DIVUL RQd, eam 011110100000 0011
01/011010/ eam | RQd
1, 2, or 3 extension words
Example: If longword register RRO (composed of word registers RO and R1) contains the value

% 00000F00, executing the instruction
DIVU RRO,#%81
leaves the quotient %001D in R1 and the remainder %0063 in RO.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-66

DJNZ

Decrement and Jump if Not Zero

Operation:

DJNZ cnt, dst cnt: R
DBJNZ dst: RA
DLJNZ

cnt<+cnt — 1
If cnt # 0 then PC <+ PC — (2 X displacement)

The counter (‘‘cnt”’) is decremented. If the contents of the counter are not zero after
decrementing, the destination address is loaded into the Program Counter (PC).
Otherwise, when the counter reaches zero, control falls through to the instruction
following DJNZ, DBJNZ, or DLJNZ. This instruction provides a simple method of
loop control.

The destination address is calculated by subtracting twice the displacement in the
instruction from the updated value of the PC. The updated PC value is the address
of the instruction word following the DJNZ, DBJNZ, or DLJNZ instruction. The
displacement is a 7-bit positive value in the range 0 to 127. Thus, the destination
address must be in the range -252 to 2 bytes from the start of the DUNZ or DBJNZ
instruction or — 250 to 4 bytes from the start of the DLJNZ instruction. The
assembler automatically calculates the displacement by subtracting the PC value of
the following instruction from the address given by the programmer and dividing the
result by two.

Flags:

No flags affected

Exceptions:

None

Destination
Addressing
Mode

Assembler Language

Syntax Instruction Format

RA:

DJNZ Rcnt, address
DBJUNZ Rbent, address [1111] Rent (W] disp |

DLJNZ RRcnt, address - 01111010 0000 0010
1111[RRent[1] disp

6-67

Example:

DJNZ, DBJNZ and DLJNZ are typically used to control a “‘loop” of instructions. In
this example for compact mode, 100 bytes are moved from one buffer area to
another, and the Sign bit of each byte is cleared to 0. Register RHO is used as the
counter.

LDB RHO,#100 /linitalize counter
LD R1,#SRCBUF llload start address
LD R2,#DSTBUF
LOOP:
LDB RLO,@R1 /lload source byte
RESB RLO,#7 /imask off sign bit
LDB @R2, RLO lIstore into destination
INC R1 /ladvance pointers
INC R2
DBJUNZ RHO, LOOP llrepeat until counter = 0
NEXT:

In segmented or linear mode, longword registers must be used instead of R1 and
R2.

6-68

Privileged Instruction El

Enable Interrupts
El int Int: VI, NVI
Operation: If instruction<0> = 0 then NVI <1
If instruction<1> = 0 then VI < 1
Any combination of the Vectored Interrupt (VI) or Non-Vectored Interrupt (NVI) con-
trol bits in the Flag and Control Word (FCW) are set to 1 if the corresponding bit in
the instruction is 0, thus enabling the appropriate type of interrupt. If the
corresponding bit in the instruction is 1, the control bit is not affected. No other bits
in the FCW are affected. There may be zero, one or two operands in the assembly
language statement, in either order, specifying no source operand is equivalent to
specifying both VI and NVI.
Flags: No flags affected
Exceptions: Privileged Instruction trap
Assembler Language .
Syntax Instruction Format
Etint ’ [o1111100 [000001[Y]Y]
Example: If the NVI control bit is set to 1 in the FCW, and the VI control bit is cleared 0, ex-

" ecuting the instruction

El VI
leaves both the NVI and VI control bits in the FCW set to 1.

6-69

ENTER

Enter
ENTER mask, siz mask: IM
siz. IM
Operation: tmp1 <+ mask
if FCW.E/C then n = 13 /lsegmented or linear mode
elsen<+ 14 /lcompact mode
for i=n down to 8 do /Isave registers

if tmp1 <i> =1 then push RR[2 X i— 16]
for i=7 down to 0 do
if tmp1 <i> =1 then push RR [2 X i+ 16]

tmp2 <+ tmp1
tmp2 <15> <+ FCW.IV
if FCW.E/C then /lsegmented or linear mode
push RR12 /Isave FP
push tmp2 . /lsave mask word
push O /linitialize exception handler address
/l(longword)
else /lcompact mode
push R14 llsave FP
push tmp2 /lsave mask word
push 0 /linitialize exception handler address
Il(word)
FP < SP /lallocate activation record
SP « SP + siz lIreserve local storage

FCW.IV <+ tmp1<15>

This instruction is executed upon entering a procedure to allocate and initialize an
activation record on the processor stack. The operation involves saving the
specified general-purpose registers, saving and adjusting the Frame Pointer (FP), in-
itializing the pointer to the procedure’s exception handler, saving the current setting
of the Integer Overflow trap enable bit, initializing the Integer Overflow trap enable
bit, and reserving the local storage area.

The bits in the mask word operand (called the Enter Mask) correspond to general-
purpose longword registers, as shown in Figure 6-2. When a mask bit is set to 1, the
corresponding register is saved on the stack. Bit 15 of the Enter Mask corresponds
to the setting of FCW.IV, the Integer Overflow trap enable bit, after the Enter in-
struction is executed. The Enter Mask is used to construct the Exit Mask, which is
saved on the stack. The bits in the Exit Mask correspond to the longword registers
that have been saved and the setting of FCW.IV before the Enter instruction is ex-
ecuted.

The activation record format in compact mode is shown in Figure 6-3a. After the
saved PC, which has been pushed by the previous CALL or CALR instruction, the
specified general-purpose longword registers are pushed on the stack. Next, the
Frame Pointer (R14) is pushed on the stack, followed by the Exit Mask. Then a word
containing 0 is pushed on the stack to initialize the pointer to the exception handler
for the entered procedure. Finally, the size operand word is added to SP (R15), and
FP is left pointing to the exception handler address.

The activation record format in segmented or linear mode, shown in Figure 6-3b, is
similar. After the specified general-purpose longword registers are pushed onto the
stack, the Frame Pointer (RR12) is pushed, followed by the Exit Mask. Then a
longword containing O is pushed on the stack to initialize the exception handler
pointer. Finally, the sign-extended size operand word is added to SP (RR14), and FP
is left pointing to the exception handler address.

6-70

llllllllllJllllJJ

L=

SAVE RR18
SAVE RR18
SAVE RR20
SAVE RR22
SAVE RR24
SAVE RR28
SAVE RR28
SAVE RR30
SAVE RRO

SAVE RR2

SAVE RR4

SAVE RR8
SAVE RR10

SAVE RR12 (COMPACT MODE)

0 (SEGMENTED OR

Figure 6-2. Enter Mask and Exit Mask Formats

LINEAR MODE)

[NEW FCW.IV (ENTER MASK)
\ SAVED FCW.IV (EXIT MASK)

LOwW
ADDRESS
SP—»|
AREA
FP=>| 0
EXIT_MASK
SAVED FP
SAVED RR16
L A

n To ‘\
SAVED RR12
SP'—> SAVED PC
o o
\ : \ :
FP'=>|
HIGH
ADDRESS [1word ——|

SAVED RRO

N T0 N
SAVED RR30

NEW
ACTIVATION
RECORD

T

CALLER'S
ACTIVATION
RECORD

FP is the Frame Pointer after ENTER,
SP Is the Stack Pointer after ENTER,
FP’ Is the Frame Pointer before ENTER,

SP’ Is the Stack Pointer before ENTER

and after CALL or CALR.

Figure 6-3a. Activation Record Format

(Compact Mode)

LOW
ADDRESS
SP—>|
d LOCAL d
QN STORAGE '\
AREA
FP—> 0
]
EXIT_MASK
SAVED FP (HIGH)
B -
SAVED FP (LOW)
SAVED RR16
\

SP'=»-] SAVED PC (HIGH)

FP'—

HIGH
ADDRESS

w 10 n

7L
77

T0
SAVED RR30
SAVED RRO

SAVED RR10

SAVED PC (LOW)

ry-

o

1word

NEW
ACTIVATION
RECORD

CALLER'S
ACTIVATION
RECORD

FP is the Frame Polinter after ENTER,

SP Is the Stack Pointer after ENTER,

FP’ Is the Frame Pointer before ENTER,

SP' Is the Stack Pointer before ENTER
and after CALL or CALR.

Figure 6-3b. Activation Record Format
(Segmented or Linear Mode)

8225-012,013,014

6-71

Flags: No flags affected

Exceptions: None
Addressing Assembler Language .
Mode Syntax Instruction Format
IM: Exlfi’:,,ask,#siz 01111010 /0000{0101
enter__mask
siz
Example: Executing the instruction

ENTER #%05, #100

saves registers RR16 and RR20 on the stack, clears FCW.IV, and allocates an ac-
tivation record with 100 bytes of local storage.

6-72

EX

Exchange
EX dst, src dst: R
EXB src: R, IR, EAM
EXL
Operation: tmp <« src
Src < dst
dst < tmp
The contents of the source operand are exchanged with the contents of the destina-
tion operand.
Flags: No flags affected
Exceptions: None
Source
Addressing Assembsls:“ginguage Instruction Format
Mode
R: EX Rd, Rs
EXB Rbd, Rbs [1oj10110jw| Rs | Rd |
EXL RRd, RRs 011110100000 0010
10[101101| RRs | RRd
IR: EX Rd, @Rs!
EXB Rbd. GRS’ [00[10110/w|[Rsx0 | Rd |
EXL RRd, @Rs' 011110100000 0010
00/101101 | Rs#0 | RRd
EAM: EX Rd, eam
B e 01[{10110|W| Rs#0 | Rd
address
EXL RRd, eam 01111010 (0000 0010
011101101 Rs | RRd
1, 2, or 3 extension words
Example: If register RO contains 8 and register R5 contains 9, executing the instruction

EX RO,R5
»Ieaves the values 9 in RO and 8 in R5.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

EXIT

Exit
EXIT
Operation: if FCW.E/C then lisegmented or linear mode
SP<+—FP+4 liskip over exception handler
pop tmp1 /IExit Mask
pop RR12 lirestore FP
n<13
else llcompact mode
SP «—FP+2 lIskip over exception handler
pop tmp1 I/Exit Mask
pop R14 lIrestore FP
ne14
fori=0to 7 do :
if tmp1<i> =1 then pop RR [2 X i+ 16]
fori=8tondo
if tmp1<i> =1 then pop RR [2 X i— 16]
FCW.IV <« tmp1< 15>
This instruction removes an activation record created with the ENTER instruction.
(See the description of the ENTER instruction for more detailed information about
the activation record and Exit Mask formats.)
In compact mode, first the value of the Frame Pointer (R14) is incremented by two
and loaded into SP (R15), removing the local storage area and exception handler
pointer from the processor stack. Next, the Exit Mask and Frame Pointer are
popped from the stack. Then, the longword registers specified by the Exit Mask are
popped from the stack, and FCW.IV is loaded from bit 15 of the Exit Mask.
In segmented or linear mode, first the value of the Frame Pointer (RR12) is incre-
mented by four and loaded into SP:(RR14), removing the local storage area and ex-
ception handler pointer from the processor stack. Next, the Exit Mask and Frame
Pointer are popped from the stack. Then, the longword registers specified by the Ex-
it Mask are popped from the stack, and FCW.IV is loaded from bit 15 of the Exit
Mask.
Flags: No flags affected
Exceptions: None
Assembsl;rulainguage Instruction Format
BT [o1111010] 0000 0110]
Example: At the end of a procedure that has been called using CALL or CALR instructions and

that has been entered using the ENTER instruction, executing the instruction se-
quence

EXIT

RET

returns control to the caller at the instruction following the CALL and leaves the
caller’s activation record on top of the stack.

6-74

EXTR

Extract Field
EXTR dst, src, pos, siz dst: R
EXTRU src: R, IR, EAM
pos: IM, R
siz: IM, R
Operation: dst <+ src (pos,siz)
This instruction is used to extract a bit field from memory or a longword register and
load it into a longword register. For a description of bit fields see Section 6.2.6.
The bits in the source field are loaded, right-justified, into the least-significant bits of
the destination longword register. For EXTR the remaining bits in the destination are
loaded with the most-significant bit of the field. For EXTRU the remaining bits in the
destination are cleared to 0.
The position and size operands can be specified as immediate values in the range 0
to 31 or in a word or longword register. The assembler encodes each operand in a
6-bit field of the instruction with the following format:
Onnnnn 5-bit unsigned immediate value
10rrrr word register contains value
11rrrr longword register contains value
Flags: C: Cleared
Z: Set if the result is zero; cleared otherwise
S: Set if the most-significant bit of the result is set; cleared otherwise
V: Cleared
D: Unaffected
H: Unaffected
Exceptions: None
Source
Addressing Assembslsrrnlainguage Instruction Format
Mode
R: EXTR RRd,RRs,pos,siz 10{011100| RRs [1010
RRd l siz I pos
EXTRU RRd,RRs,pos,siz 1°| 0111 00| RRs |1 011
RRd | siz | pos
IR: EXTR RRd,@Rs',pos,siz

oolo111oo|ns¢o|1o1o

RRd | siz | pos

EXTRU RRd, @Rs',pos,siz

oo|o111oolns¢o|1o11

RRd l siz | pos

6-75

Source

Assembler Language

Adﬂgz:ing Syntax Instruction Format
EAM: EXTR RRd,eam,pos,siz o1| 011100 | oam I 1010
RRd | siz I pos
1, 2, or 3 extension words
EXTRU RRd,eam,pos,siz 01{011100] eam [1011
RRd | siz l pos
1, 2, or 3 extension words
Example: If register RR4 contains % 01200000 (0000 0001 0010 0000 0000 0000 0000 0000),

executing the instruction

EXTR RR6,RR4,#7,#3

extracts the 4-bit field 1001 beginning at the 7th bit from the most-significant bit of
RR4 and leaves the sign-extended value %FFFFFFF9 in RR6. Note that the size

operand (#3) has a value one less than the number of bits in the field (4).

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-76

EXTS

Extend Sign
EXTSB dst dst: R
EXTS
EXTSL
Operation: Byte
if dst<7> = 0 then dst<15:8> < 000...000
else dst<15:8> <« 111...111
Word
if dst<15> = 0 then
dst<31:16> < 000...000
else
dst<31:16> <« 111...111
Longword
if dst<31> = 0 then
dst<63:32> < 000...000
else
dst<63:32> < 111...111
The Sign bit of the low-order half of the destination operand is copied into all bit
positions of the high-order half of the destination. For EXTSB the destination is a
word; for EXTS and EXTSL, the destination is a longword register.
This instruction is useful in multiple precision arithmetic or for conversion of small
signed operands to larger signed operands (for example, before a divide).
Flags: No flags affected
Exceptions: None
Destination
Addressing Assem%le;tlainguage Instruction Format
Mode y
R: EXTSB Rd [10[110001 | ra [0000]
EXTS RRd [10] 110001 [RRa [1010]
EXTSL RQd [10] 110001 [Rad [0111]
Example: If longword register RR2 (composed of word registers R2 and R3) contains

% 12345678, executing the instruction
EXTS RR2
leaves the value %00005678 in RR2 (because the sign bit of R3 was 0).

HALT

Privileged Instruction

Halt
HALT
Operation: The CPU enters halted state (see Section 7.2), in which instruction execution
ceases. Only the occurrence of reset or an enabled interrupt causes the CPU to
leave halted state. After HALT is executed, the address of the instruction following
HALT is in the PC, which will be saved on the system stack during interrupt processing.
Flags: No flags affected

Exceptions:

Privileged Instruction trap

Assembler Language

Syntax Instruction Format

HALT 01111010 | 00000000 |

6-78

IN

Privileged Instruction

Input
IN dst, src dst: R
INB src: IR, DA
INL
Operation dst < src
The contents of the source operand, an input port, are loaded into the destination
register. 1/0 port addresses are 16 bits.
Flags: No flags affected
Exceptions: Privileged Instruction trap
Source
Addressing Assemlg%tlainguage Instruction Format
Mode
IR: IN Rd, @Rs
INB Rbd, @Rs [oo[t1110/w][Rs0| Rd |
INL RRd, @Rs 01111010 (0000 0010
00[111101 | Rs+0 | RRd
DA: IN Rd, port 00[11101|w| Rd [0100
INB Rbd, port B
port
INL RRd, port 01111010 (0000 0010
00/111011| RRd [o1oo
port
Example: If register R6 contains the I/O port address %0123 and the port %0123 contains

"% FF, executing the instruction

INB RH2, @R6
leaves the value %FF in register RH2.

6-79

INC

Increment
INC dst, src dst: R, IR, EAM
INCB src: IM
INCL

Operation: dst < dst + src(src = 1 to 16)
The source operand (a value from 1 to 16) is added to the destination operand and
the sum is stored in the destination. Twos complement addition is performed. If the
source operand is omitted from the assembler language statement, the default value
is 1.
The value of the source field in the instruction is one less than the actual value of
the source operand. Thus, the coding in the instruction for the source ranges from
0 to 15, which corresponds to the source values 1 to 16.

Flags: C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands were of the same sign

and the result is of the opposite sign; cleared otherwise

D: Unaffected
H: Unaffected

Exceptions: Integer Overflow trap

Destination

Assembler Language

Instruction Format

Addressing
Mode Syntax
R: INC Rd, #n
INCB Rbd, #n [10/10100{w] Rd [n-1]
INCL RRd, #n 01111010 {0000 0010
10[101001] RRd [n -1
IR: INC @Rd?, #n
INCB @Rd!, #n foo[10100/w[Rd+0[n-1]
1
INCL @RdT, #n 01111010|0000 0010
00[101001 Rd#0 |n - 1
EAM: INC eam, #n _
N 01]10100/w| eam [n -1
1, 2, or 3 extension words
INCL eam, #n

011110100000 0010
o1J1o1oo1 eam |n -1

1, 2, or 3 extension words

6-80

Example: If register RH2 contains %21, executing the instruction
INCB RH2,#6
leaves the value %27 in RH2.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-81

INCI

Increment Interlocked

Operation:

INCI dst, src
INCIB

dst: IR, EAM
src: IM

dst < dst + src (src = 1to 16)

The source operand (a value from 1 to 16) is added to the destination operand and
the sum is stored in the destination. Twos complement addition is performed. If the
source operand is missing from the assembler language statement, the default
value is 1.

The value of the source field in the instruction is one less than the actual value of
the source operand. Thus, the coding in the instruction for the source ranges from 0
to 15, which corresponds to the source values 1 to 16.

This is an interlocked instruction. No other interlocked accesses are permitted to
the destination memory location between fetching and storing the resuit.

Flags:

C: Unaffected

Z: Set if the result is zero; cleared otherwise

S: Set if the result is negative; cleared otherwise

V: Set if arithmetic overflow occurs, that is, if both operands were of the same
sign, and the result is of the opposite sign; cleared otherwise

D: Unaffected

H: Unaffected

Exceptions:

Integer Overflow trap

Destination
Addressing
Mode

Assembler Language

Syntax Instruction Format

IR:

EAM:

INCI @Rd?, #n
INCIB @Rd', #n

INCI eam, #n
INCIB eam, #n

01111010

0000 0100

oo|1o1oo‘w

Rd¢0| n-1

01111010

0000 0100

o1l1o1oo[w

eam I n-1

1, 2, or 3 extension words

Example:

This instruction can be used to allocate or release copies of a system resource in a
multiprocessor environment. For example, several processes running on different
processors can share use of a common page in memory. It is necessary to keep a
reference counter for the number of active processes using the shared page. When
a new process requires use of the page the reference counter is incremented. The
INCI instruction should be used so that one processor completes the fetch and store
of the counter in memory before any other processor accesses the counter.

INCI REFERENCE_COUNTER, #1 /lincrement reference counter

/lfor shared page

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-82

Privileged Instruction IND
Input and Decrement

Operation:

IND dst, src, r dst: IR

INDB src: IR

INDL

dst < src

AUTODECREMENT dst (by 1 if INDB; by 2 if IND; by 4 if INDL)
rer—1

This instruction is used for block input of strings of data. The contents of the 1/O
port addressed by the source word register are loaded into the memory location ad-
dressed by the destination register. I/O port addresses are 16 bits. The destination
register is then decremented by one if INDB, by two if IND, or by four if INDL, thus
moving the pointer to the previous element of the string in memory. The word
register specified by *'r’’ (used as a counter) is then decremented by one. The ad-
dress of the I/O port in the source register is unchanged. The source, destination,
and counter registers must be distinct and non-overlapping registers.

Flags:

: Unaffected
Unaffected
: Unaffected
: Set if the result of decrementing r is zero; cleared otherwise
: Unaffected
: Unaffected

TO<ONO

Exceptions:

Privileged Instruction trap

Addressin Assembler .
Mode 9 sse té;antlainguage Instruction Format
IR: IND @Rd', @Rs,

INDB GRd", @RS T 0011101 |W|Rs0[1000

0000 r [Rd=0[1000

L @Rd', @Rs,

INDL @Rd", @Rs, r 01111010 |0000 0010

00111011 | Rs#0{1000

0000| r Rd=0 (1000

Example: In linear mode, if register RR24 contains % 00004000, register R6 contains the I/O

port address %0228, the port %0228 contains %05B9, and register RO contains
%0016, executing the instruction

IND @RR24, @R6, RO

leaves the value %05B9 in location %00004000, the value %00003FFE in RR24,
and the value %0015 in RO. The V flag is cleared. Register R6 still contains the
value %0228. In compact mode, a word register must be used instead of RR24.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

INDEX

Index
INDEX dst, sub, src dst: R
INDEXL sub: R
src: IM,IR,EAM
Operation: tmp < EFFECTIVE__ADDRESS (src)
lower < @tmp
if sub < lower then Index Error trap
tmp <« tmp + (2 if INDEX; 4 if INDEXL)
upper < @tmp
if sub > upper then Index Error trap
tmp <« tmp + (2 if INDEX; 4 if INDEXL)
scale «— @tmp
dst < (dst + (sub — lower)) x scale
This instruction is used to check an array subscript and calculate the corresponding
index value. For arrays with multiple dimensions, the instruction performs one step
of the index calculation, accumulating the index value in the destination.
The subscript is compared against the bounds specified by the source operand. If
the subscript is less than the lower bound or greater than the upper bound, then the
destination and flags are unaffected and an Index trap occurs. If the subscript is in
bounds, then the lower bound is subtracted from the subscript, the difference is ad-
ded to the destination, the sum is multiplied by the scale factor, and the product is
stored into the destination. The subscript, lower bound, upper bound, scale factor,
and destination are all the same size, either word or longword. The operands are
treated as signed integers. The contents of the subscript and source are not af-
fected.
The source operand specifies the lower bound. The upper bound and scale factor
are located at the next two consecutive words or longwords.
When the instruction is used appropriately, an Index trap occurs if the calculated in-
dex is outside the array. Hence, overflow is not detected during the index calcula-
tion. If overflow does occur during addition, only the less-significant word or
longword of the sum is stored into the destination. If overflow does occur during
multiplication, only the less-significant word or longword of the product is stored.
Flags: C: Unaffected if Index Error trap; cleared otherwise
Z: Unaffected if Index Error trap; else set if the result is zero; cleared
otherwise
S: Unaffected if Index Error trap; else set if the most-significant bit of the
result is set; cleared otherwise
V: Unaffected if Index Error trap; cleared otherwise
D: Unaffected
H: Unaffected
Exceptions: Index Error trap

6-84

Source
Addressing

Assembler Language

Instruction Format

Mode Syntax
IM: INDEX Rd, Rsub,
Hower fupper 00/001101/0000{1110
#scale ooool Rsub | Rd+0 (0000
lower
upper
scale
'%svxet?f:éefﬂsuu 00[001101]0000[1111
#scale OOOOIRRsub RRd=0/0000
lower (high)
lower (low)
upper (high)
upper (low)
scale (high)
scale (low)
IR: INDEX Rd, Rsub, @Rs! °°| 001101 | Rs20]1110
0000/ Rsub | Rd=0 [0000
INDEXL RRd, RRsub, @Rs?
su oo|0011o1 Rs#0 1111
0000|RRsub |RRd=0[{0000
EAM: INDEX Rd, Rsub, eam 0 1] 001101] eam |1110
oooo| Rsub | Rd=0 0000
1, 2, or 3 extension words
INDEXL RRd, RRsub, eam
01/001101| eam [1111
0000|RRsub |RRd=0[0000

1, 2, or 3 extension words

Example:

The subscript values for a two-dimensional array of records range from 10 to 20 and
from 1 to 100. Each record in the array is 12 bytes. The base address of the array is
contained in RR2, the first subscript value is contained in RR6, and the second
subscript value is in RR8. Executing the instruction sequence (in segmented or
linear mode)

CLRL RR4 llinitialize index register

INDEXL RR4,RR6,#10,#20,#100 /lcheck and accumulate first
/Isubscript

INDEXL RR4,RR8,#1,#100,#12 llcalculate array index

LDB RHO,RR2(RR4) Ilload first byte of record

loads the first byte of the indexed record into RHO.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-86

Privileged Instruction INDR
Input, Decrement and Repeat

INDR dst, src, r dst: IR
INDRB src: IR
INDRL
Operation: repeat
dst - src
AUTODECREMENT dst (by 1 if INDRB; by 2 if INDR; by 4 if INDRL)
rer—1
untilr =0
This instruction is used for block input of strings of data. The contents of the /O
port addressed by the source word register are loaded into the memory location ad-
dressed by the destination register. 1/0 port addresses are 16 bits. The destination
register is then decremented by one if INDRB, by two if INDR, or by 4 if INDRL,
thus moving the pointer to the previous element of the string in memory. The word
register specified by “‘r'’ (used as a counter) is then decremented by one. The ad-
dress of the /O port in the source register is unchanged. The entire operation is
repeated until the result of decrementing r is zero. This instruction can input from 1
to 65,536 data elements. The source, destination, and counter registers must be
distinct, non-overlapping registers.
This instruction can be interrupted after each execution of the basic operation.
Flags: C: Unaffected
Z: Unaffected
S: Unaffected
V: Set
D: Unaffected
H: Unaffected
Exceptions: Privileged Instruction trap
Addressing Assembler Lénguage :
Mode Syntax Instruction Format
IR: INDR @Rd', @Rs, r

INDRB @Rd", @Rs, 1 0011101|W|Rs # 01000
0000 r |Rd=0[0000

@Rg! @
INDRL @Rd’, @Rs, r 01111010[/0000 0010

00111011 [Rs#0 (1000
0000 r Rd#0 |0000

Example:

In compact mode, if register R1 contains %202A, register R2 contains the 1/O ad-
dress %0AFC, and register R3 contains 8, executing the instruction

INDRB @R1, @R2, R3

inputs 8 bytes from the I/O port %0AFC and leaves them in descending order from
%202A to %2023. Register R1 contains %2022, and R3 contains 0. R2 is not af-
fected. The V flag is set. In segmented or linear mode, a longword register must be
used instead of R1.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-88

Privileged Instruction INI
Input and Increment

INI dst, src, r dst: IR
INIB src: IR
INIL
Operation: dst < src
AUTOINCREMENT dst (by 1 if INIB; by 2 if INI; by 4 if INIL)
r<er—1
This instruction is used for block input of strings of data. The contents of the /O
port addressed by the source word register are loaded into the memory location ad-
dressed by the destination register. I/O port addresses are 16 bits. The destination
register is then incremented by one if INIB, by two if INI, or by four if INIL, thus
moving the pointer to the next element of the string in memory. The word register
specified by ““r”’ (used as a counter) is then decremented by one. The address of
the 1/0 port in the source register is unchanged. The source, destination, and
counter registers must be distinct, non-overlapping registers.
Flags: C: Unaffected
Z: Unaffected
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected
Exceptions: Privileged Instruction trap
Addressing Assembler Language : .
Mode Syntax Instruction Format
IR: INI @Rd', @Rs,
INIB @R, @RS, T 0011101 |W|Rs = 0/0000
0000] r [Rd=0[1000
INIL ®Rd", @Rs, r 011110100000 0010
00111011 | Rs#0[0000
0000| r Rd#0/1000
Example: In compact mode, if register R4 contains %4000, register R6 contains the I/O port

address %0229, the port %0229 contains % B9, and register RO contains %0016,
executing the instruction
INIB @R4, @Rg, RO

leaves the value %B9 in location %4000, the value %4001 in R4, and the value
%0015 in RO. Register R6 still contains the value %0229. The V flag is cleared. In
segmented or linear mode, a longword register must be used instead of R4.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-89

INIR

Privileged Instruction

Input, Increment and Repeat

INIR dst, src, r dst: IR
INIRB src: IR
INIRL
Operation: repeat

dst < src

AUTOINCREMENT dst (by 1 if INIRB; by 2 if INIR; by 4 if INIRL)

rer—1
untilr =0
This instruction is used for block input of strings of data. The contents of the 1/O
port addressed by the source word register are loaded into the memory location ad-
dressed by the destination register. 1/O port addresses are 16 bits. The destination
register is then incremented by one if INIRB, by two if INIR, or by four if INIRL, thus
moving the pointer to the next element in the string in memory. The word register
specified by ““r’’ (used as a counter) is then decremented by one. The address of
the 1/0 port in the source register is unchanged. The entire operation is repeated
until the result of decrementing r is zero. This instruction can input from 1 to 65,536
data elements. The source, destination, and counter registers must be distinct, non-
overlapping registers.
This instruction can be interrupted after each execution of the basic operation.

Flags: C: Unaffected

Z: Unaffected
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

Exceptions:

Privileged Instruction trap

Adﬂgﬁ:’"g Assemtg%tginguaga Instruction Format
IR: INIR @Rd',@Rs, r

0011101|W|Rs = 00000

INIRB @Rd', @R, r
oooo[r |Rd=0|0000

@Rd', @R
INIRL @Rd", @Rs, r 01111010 (0000 0010

00111011 | Rs#0 (0000
0000 r Rd#0 {0000

6-90

Example:

In compact mode, if register R1 contains %2023, register R2 contains the 1/O port
address %0551, and register R3 contains 8, executing the instruction

INIRB @R1, @R2, R3

inputs 8 bytes from port %0551 and leave them in ascending order from %2023 to
%202A. Register R1 contains %202B, and R3 contains 0. R2 is not affected. The V
flag is set. In segmented or linear mode, a longword register must be used instead

of R1.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-91

INSRT

Insert Field
INSRT dst, src, pos, siz dst: R, IR, EAM
src: R
pos: R, IM
siz. R, IM
Operation: dst (pos, siz) + src

This instruction is used to insert a bit field from a longword register into memory or
a longword register. For a description of bit fields, see Section 6.2.6.

The bits in the destination field are loaded from the least-significant bits of the
source register.

The position and size operands can be specified as immediate values in the range 0
to 31 or in a word or longword register. The assembler encodes each operand in a
6-bit field of the instruction with the following format:

Onnnnn 5-bit unsigned immediate value

10rrrr word register contains value
11rrorr longword register contains value
Flags: No flags affected
Exceptions: None
Destination
Addressing Asseml‘)sl‘%tlainguage Instruction Format
Mode
R: INSRT RRd,RRs,pos, siz 10[011100 | RRd 0110
RRs | siz | pos
IR: INSRT @Rd',RRs,pos,siz oo| 0111 oo| RA=0 [01 10
RRs I siz I pos
EAM: INSRT eam,RRs,pos,siz 01| 01110 Ol oam 101 10
RRs | siz I pos
1, 2, or 3 extension words
Example: If register RR2 contains %0101012A (0000 0001 0000 0001 0000 0001 0010 1010)

and register RR4 contains % FFFF FFFF, executing the instruction
INSRT RR4,RR2,#4,#6

inserts the 7-bit field 0101010 from the least-significant bits of RR2 into RR4 begin-
ning at the 4th from the most-significant bit, leaving % F55FFFFF

(11110101 0101 1111 1111 1111 1111 1111 in RR4. Note that the size operand (#6)
has a value one less than the number of bits in the field (7).

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-92

Privileged Instruction IRET
Interrupt Return

IRET

Operation: SP<+SP + 2 Illpop ‘‘identifier”’
pop tmp llpop FCW
pop PC
if FCW.T then tmp<9> < 1
FCW < tmp
This instruction is used at the end of an exception handler routine to return to the
program at the point where the exception occurred. First, an “identifier’” word
associated with the exception is popped from the stack. Then, the FCW and PC are
popped from the stack.
After IRET is executed, the Trace Pending bit (FCW.TP) is set if bit 9 is set in the
popped FCW or if the Trace Enable bit (FCW.T) was set before the instruction was
executed. This allows tracing of exception handler routines for single-step debug-
ging. This instruction may be executed in segmented or linear mode only; in com-
pact mode, execution of this instruction is undefined.

Flags: C: Loaded from system stack
Z: Loaded from system stack
S: Loaded from system stack
PIV: Loaded from system stack
D: Loaded from system stack
H: Loaded from system stack

Exceptions: Privileged Instruction trap

Assembler Language

Syntax Instruction Format

IRET 01111011 [00000000 |

6-93

JP

Jump
JP cc, dst dst: IR, EAM
Operation: If cc is satisfied, then PC <= EFFECTIVE_ADDRESS (dst)
A conditional jump transfers program control to the destination address if the condi-
tion specified by ““cc’’ is satisfied by the flags in the FCW. See Section 6.3 for a list
of condition codes. If the condition is satisfied, the Program Counter (PC) is loaded
with the destination address; otherwise, the instruction following the JP instruction is
executed. If no condition is specified, the jump is taken regardless of the flag set-
tings.
Flags: No flags affected
Exceptions: None
Destination
Addressing Assembsl;gtlaa’\(nguage Instruction Format
Mode
IR: JP cc, @Rd' {ool 011110 | Ra#0| cc |
EAM: JP cc, eam 011011110| eam I cc
1, 2, or 3 extension words
Example: If the C flag is set, executing the instruction (in compact mode)

JP C, %1520

replaces the contents of the PC with % 1520, thus transferring control to that loca-
tion.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-94

JR

Jump Relative

Operation:

JR cc, dst dst: RA

if cc is satisfied then PC == PC + (2 X displacement)

A conditional jump transfers program control to the destination address if the condi-
tion specified by ‘““cc” is satisfied by the flags in the FCW. See Section 6.3 for a list
of condition codes. If the condition is satisfied, the Program Counter (PC) is loaded
with the destination address; otherwise, the instruction following the JR instruction
is executed. If no condition is specified, the jump is taken regardless of the flag set-
tings.

The destination address is calculated by adding twice the displacement in the in-
struction to the updated value of the PC. The updated PC value is the address of the
instruction word following the JR instruction. The displacement is an 8-bit signed
value in the range -128 to 127. Thus, the destination address must be in the range
-254 to 256 bytes from the start of the JR instruction. The assembler automatically
calculates the displacement by subtracting the PC value of the following instruction
from the address given by the programmer and dividing the result by two.

Flags:

No flags affected

Exceptions:

None

Destination
Addressing Assem%lerr‘t:inguage Instruction Format
Mode y
RA: JR cc, address |1 110 I cc | displacement—l
Example: If the result of the last arithmetic operation executed is negative, the next four in-

structions (which occupy a total of twelve bytes) are to be skipped. This can be
accomplished with the instruction

JR ML$ +14
If the S flag is not set, execution continues with the instruction following the JR.
A byte-saving form of a jump to the label LAB is

JR LAB

where LAB must be within the allowed range. The condition code is omitted in this
case, indicating that the jump is always taken.

LD

Load
LD dst, src dst: R
LDB src: R, IR, BA, BX, EAM
LDL or
dst: IR, BA, BX, EAM
src: R
or
dst: R, IR, EAM
src: IM
Operation: dst < src
The contents of the source are loaded into the destination. The contents of the
source are not affected.
‘There are three versions of the Load instruction: load into a register, load into
memory and load an immediate value.
Flags: ‘No flags affected
Exceptions: None

Load Register

Source
Addressing Assem%l;ll;tlainguage Instruction Format
Mode
R: LD Rd, Rs
D P b [1o{to000{w| Rs | Rra |
LDL RRd, RRs [10] 010100 | RRs | RRd |
IR: LD Rd, @Rs! :
D8 od oRs! [ool1o0oo|w|Rs+0| Ra |
@ 1
LDL RRd, @Rs foo] 010100 Rs=0] rra |
BA: LD Rd, Rs'(disp) 00[11000|{W| Rs=0| Rd
LDB Rbd, Rs'(disp) o :
isplacemen
v
LDL RRd, Rs'(disp) 00[110101 | Rs#0 | RRd
displacement
BX: LD Rd, Rs'(Rx)
LDB Fba. Rer(hn) 01[11000|w| Rs+0| Rd
0000 | Rx+0 | 0000 0000
1
LDL RRd, Rs'(Rx) 01] 110101 | Rs#0 | RRd
0000| Rx+0| 0000 0000

6-96

Load Register (Continued)

Source
Addressing Assemlg;'r‘tginguage Instruction Format
Mode
EAM: LD Rd, eam
8 e 01{10000|W| eam | Rd
1, 2, or 3 extension words
LDL RRd, eam 01Lo1o1oo| eam | RRd
1, 2, or 3 extension words
Load Memory
Destination
Addressing Assem%l;'rﬂlainguage Instruction Format
Mode
IR: LD @Rd', Rs
LDB @Rd, Rbs [oo[10111]w]Rdx0] Rs |
LDL @Rd!, RRs
foo[011101 | Ra=0] RRs |
BA: LD Rd'(disp), Rs
LDB Rd'(disp), Rbs 00]11001|W| Rd=0| Rs
displacement
o
LDL Rd'(disp), RRs 00[110111 | Rd#0| RRs
displacement
BX: LD Rd'(Rx), Rs
D A s o1]11oo1]w Rd=0| Rs
0000 Rx#0 | 00000000
1
LDL Rdi(Rx), RRs 011 10111 | Rd#0 | RRs
oooo] Rx+0 | 0000 0000
EAM: LD eam, Rs
DB o Rbs 01[10111/w| eam | Rs
1, 2, or 3 extension words
LDL eam, RR
eam. R 01/011101 | eam | RRs
1, 2, or 3 extension words

6-97

Load Immediate Value

Destination
Assem
Addressing ss bSI;:“I;?(nguage Instruction Format
Mode
R: LD Rd, #data 00[100001 [0000| Rd
data
2
LDB Rbd, #data 00] 100000 [0000] Rbd
data data
{1100 Rd | data |
LDL R
Rd, #data 00{ 010100 [0000]| RRd
data (high)
data (low)
. 1
IR LD @Rd!, #data 00{ 001101 [Rd=0 0101
data
LDB @Rd', #data 00/ 001100 Rd=00101
data data
@Rd", #dat
LDL #data 00|001101|Rd¢0|0111
data (high)
data (low)
01/001101 | eam | 0101
EAM: LD eam, #data l .

LDB eam, #data

LDL eam, #data

1, 2, or 3 extension words

data

01/ 001100 eam [0101

1, 2, or 3 extension words

data | data

01 0011o1| eam |o111

1, 2, or 3 extension words
data (high)

data (low)

6-98

Example:

If register RHO contains %AB, executing the instruction
LD RL7, RHO
loads %AB into RL7.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

Note 2: As shown, the instruction set includes two formats for loading an immediate value into a byte register. The
assembler uses the format with one word.

6-99

LDA

Load Address
LDA dst, src dst: R
src: BA, BX, EAM
Operation: dst < EFFECTIVE_ADDRESS (src)

The effective address of the source operand is calculated and loaded into the
destination. The contents of the source are not affected. The address calculation
follows the rules for address arithmetic in the current mode of address representa-
tion: compact, segmented or linear. The destination is a word register in compact
mode, and a longword register in segmented or linear mode.

Flags: No flags affected
Exceptions: None
Source
Addressing Assembslerr“l;a’r(nguage Instruction Format
Mode y '
BA: 1 i
LDA Rd', Rs! (disp) 00110100 | Rs#0 | Rd
displacement
BX: LDA Rd!, Rs! (Rx) 01110100 Rs;eoLRd
0000 Rx=0 {0000 0000
EAM: LDA Rd', eam 01(110110 | eam | Rd
1, 2, or 3 extension words
Examples: LDA R4,STRUCT /lin compact mode, register R4 is loaded

/lwith the compact address of the location
/Inamed STRUCT

LDA RR2,RR4(8) /lin linear mode, if base register RR4
llcontains % 01000020, then register RR2 is loaded
/Iwith the address % 01000028

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-100

LDAR

Load Address Relative

Operation:

LDAR dst, src dst: R
src: RA

dst <= EFFECTIVE__ADDRESS (src)

The effective address of the source operand is calculated and loaded into the
destination. The contents of the source are not affected. The destination is a word
register in compact mode, and a longword register in segmented or linear mode.

The destination address is calculated by adding the displacement in the instruction
to the updated value of the Program Counter (PC). The updated PC value is the ad-

dress of the instruction word following the LDAR instruction. The displacement is a
16-bit signed value in the range -32768 to 32767 in the second word of the instruc-
tion. The addition is performed following the rules of address arithmetic in the cur-

rent mode of address representation: compact, segmented, or linear.

The assembler automatically calculates the displacement by subtracting the PC
value of the following instruction from the address given by the programmer.

Flags:

No flags affected

Exceptions:

None

Source
Addressing Assem%l;rr'tlaa)\(nguage Instruction Format
Mode
RA: LDAR Rd!, address 00110100 IOOOOTRd
displacement
Example: LDAR RR4, TABLE /llin segmented mode, register RR4 is

/lloaded with the segmented address of TABLE

Note 1: Word register in compact mode, longword register in segmented or linear modes.

LDCTL Privileged Instruction
Load Control

LDCTL dst, src dst: CTLR
src: R
or
dst: R
src: CTLR
Operation: dst < src

This instruction loads the contents of a general-purpose word register into a control
register, or loads the contents of a control register into a general-purpose word
register. The control register must be one of the following:

FCW Flag and Control Word

PSAPSEG Program Status Area Pointer—high word
PSAPOFF Program Status Area Pointer—Ilow word
NSPSEG Normal Stack Pointer—high word
NSPOFF Normal Stack Pointer—Ilow word

When the destination register is FCW, the Trace Pending bit (FCW.TP) is set if bit 9
of the source operand is set or if the Trace Enable bit (FCW.T) is set before the in-
struction is executed. This allows tracing of system programs that may load the
FCW mistakenly.

Flags: No flags affected, except when the destination is the Flag and Control Word (LDCTL
FCW, Rs), in which case all the flags are loaded from the source register.

Exceptions: Privileged Instruction trap

Load Into Control Register

Assembler Language

Syntax Instruction Format

LDCTL FCW, Rs {o1111101 | Rs [1010]

LDCTL PSAPSEG, Rs [01111101| Rs [11oo|

LDCTL PSAPOFF, Rs [01111101[Rs |11o1|

LDCTL NSPSEG, Rs [o1111101] rs [1110]

LDCTL NSPOFF, Rs U”””‘I Rs [1111]

6-102

Load From Control Register

Assembler Language
Syntax

Instruction Format

LDCTL Rd, FCW

LDCTL Rd, PSAPSEG

LDCTL Rd, PSAPOFF

LDCTL Rd, NSPSEG

LDCTL Rd, NSPOFF

[erriver [Toorg]
[crriver [[oreg]
(oo [Joros]
(oo [v Jorro]
oo [Jorid]

6-103

LDCTLB

Load Control Byte

Operation:

LDCTLB dst, src

dst < src

dst: FLAGS
src: R

or

dst: R

src: FLAGS

This instruction loads the contents of a general-purpose byte register into the Flags
register, or loads the contents of the Flags register into a general-purpose byte
register. (The Flags register is the low-order byte of the Flag and Control Word
register.) Note that this is not a privileged instruction.

Flags:

When the FLAGS register is the destination, all the flags are loaded from the
source. When the FLAGS register is the source, none of the flags are affected.

Exceptions: -

None

Assembler Language
Syntax

Instruction Format

LDCTLB FLAGS, Rbs

LDCTLB Rbd, FLAGS

[10001100 | Rbs {1001]

| 10001100 | Rba [0001]

6-104

Privileged Instruction LDCTLL

Load Control Longword

LDCTLL dst, src dst: CTLRL
src: R
or
dst: R
src: CTLRL
Operation: dst < src
This instruction loads the contents of a general-purpose longword register into a
control register, or loads the contents of a control register into a general-purpose
longword register. The control register must be one of the following:
SITTD System Instruction Translation Table Descriptor
SDTTD System Data Translation Table Descriptor
NITTD Normal Instruction Translation Table Descriptor
NDTTD Normal Data Translation Table Descriptor
SCCL System Configuration Control Longword
OSP Overflow Stack Pointer
HICR Hardware Interface Control Register
PSAP Program Status Area Pointer
NSP Normal Stack Pointer
Flags: No flags affected
Exceptions: Privileged Instruction trap

Load Into Control Register

Assembler Language
Syntax

Instruction Format

LDCTLL SITTD, RRs

LDCTLL SDTTD, RRs

LDCTLL NITTD, RRs

LDCTLL NDTTD, RRs

LDCTLL SCCL, RRs

LDCTLL OSP, RRs

LDCTLL HICR, RRs

[10011101] RRs [0000]

10011101 RRs [0001]

[10011101] RRs [0010]

10011101 RRs [0011]

[10011101] RRs [0100]

[10011101] Rrs [1110]

[10011101] RRs [0111]

Load Into Control Register (Continued)

Assembler Language
Syntax

Instruction Format

LDCTLL PSAP, RRs

LDCTLL NSP, RRs

10011101] RRs [1100]

[10011101] RRs [0110]

Load From Control Register

LDCTLL RRd, SITTD

LDCTLL RRd, SDTTD

LDCTLL RRd, NITTD

LDCTLL RRd, NDTTD

LDCTLL RRd, SCCL

LDCTLL RRd, OSP

LDCTLL RRd, HICR

LDCTLL RRd, PSAP

LDCTLL RRd, NSP

[10011111] RRd [0000]

[10011111[RRd |ooo1|

r1oo11111| RRd [0010]

[10011111] R [0011]

[10011111] RrRa [0100]

[10011111] RRa [1110]

[10011111] RRd {0111]

{10011111] RRd [1100]

[10011111] RRa [0110]

6-106

LDD

Load and Decrement

Operation:

LDD dst, src, r dst: IR
LDDB src: IR

dst < src
AUTODECREMENT dst and src (by 1 if LDDB; by 2 if LDD; by 4 if LDDL)
rer—1

This instruction is used for block transfers of strings of data. The contents of the
location addressed by the source register are loaded into the location addressed by
the destination register. The source and destination registers are then decremented
by one if LDDB, by two if LDD or by four if LDDL, thus moving the pointers to the
previous elements in the strings. The word register specified by ‘‘r’’ (used as a
counter) is then decremented by one. The source destination, and counter registers
must be distinct and non-overlapping registers.

The effect of decrementing the pointers during the transfer is important if the
source and destination strings overlap with the source string starting at a lower
memory address. Placing the pointers at the highest address of the strings and
decrementing the pointers ensures that the source string will be correctly copied in-
cluding the overlapping area. However, the destination address must not exceed the
source address by one for LDD, and by one, two, or three for LDDL; otherwise, the
CPU may not recover correctly from address translation exceptions.

Flags:

: Unaffected
Unaffected
: Unaffected
: Set if the result of decrementing r is zero; cleared otherwise
: Unaffected
: Unaffected

TOSONO

Exceptions:

None

Addressing
Mode

Assembler Language

Syntax Instruction Format

IR:

LDD @Rs!, @Rd', r

LbDB GRe @Rq ¢ 1011101 |W| Rs#0 (1001

0000| r |Rdz0[1000

@Rrs! @Ryt
LDDL ®Rs’, @Rd’, r 10111001 |Rs=0{1001

o\oool r |Rd#0|1000

6-107

Example:

In linear mode, if register RR20 contains % 0000202A, register RR22 contains
%0000404A, the word at location %0000404A contains % FFFF, and register R3
contains 5, executing the instruction

LDD @RR20, @RR22, R3

leaves the value %FFFF at location %0000202A, the value %00002028 in RR20,
the value %00004048 in RR22, and the value 4 in R3. The V flag is cleared. In com-
pact mode, word registers must be used instead of RR20 and RR22.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-108

LDDR

Load, Decrement and Repeat

Operation:

LDDR dst, src, r dst: IR
LDDRB src: IR
LDDRL

repeat
dst < src
AUTODECREMENT dst and src (by 1 if LDDRB; by 2 if LDDR; by 4 if LDDRL)
rer—1

untilr =0

This instruction is used for block transfers of strings of data. The contents of the
location addressed by the source register are loaded into the location addressed by
the destination register. The source and destination registers are then decremented
by one if LDDRB, by two if LDD, or by four if LDDL, thus moving the pointers to the
previous elements in the strings. The word register specified by “‘r’’ (used as a
counter) is then decremented by one. The entire operation is repeated until the
result of decrementing r is zero. This instruction can move from 1 to 65,536 data
elements. The source, destination, and counter registers must be distinct and non-
overlapping registers.

The effect of decrementing the pointers during the transfer is important if the
source and destination strings overlap with the source string starting at a lower
memory address. Placing the pointers at the highest address of the strings and
decrementing the pointers ensures that the source string will be correctly copied in-
cluding the overlapping area. However, the destination address must not exceed the
source address by one for LDDR, and by one, two, or three for LDDRL; otherwise,
the CPU may not recover correctly from address translation exceptions.

This instruction can be interrupted after each execution of the basic operation.

Flags:

: Unaffected
Unaffected
: Unaffected
Set

: Unaffected
: Unaffected

IOSONO

Exceptions:

None

Addressing
Mode

Assembler Language

Syntax Instruction Format

1 1
LDDR @Rd', @Rs", r 1011101|W| Rs=0 [1001

LDDRB @Rd', @Rs', r
0000| r |Rd=0]0000

1 @Ral
LDDRL @Rd', @Rs', r 10111001 | Re#0 (1001

0000/ r [Rd+0 0000

Example:

In compact mode, if register R1 contains %202A, register R2 contains %404A, the
words at locations %4040 through %404A all contain % FFFF, and register R3 con-
tains 6, executing the instruction

LDDR @R1, @R2, R3
leaves the value % FFFF in the words at locations %2020 through %202A, the

value %201E in R1, the value %403E in R2, and 0 in R3. The V flag is set. In
segmented or linear mode, longword registers must be used instead of R1 and R2.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-110

LDI

Load and Increment

Operation:

LDI dst, src, r dst: IR
LDIB src: IR
LDIL

dst < src

AUTOINCREMENT dst and src (by 1 if LDIB; by 2 if LDI; by 4 if LDIL)

rer—1

This instruction is used for block transfers of strings of data. The contents of the
location addressed by the source register are loaded into the location addressed by
the destination register. The source and destination registers are then incremented
by one if LDIB, by two if LDI, or by four if LDIL, thus moving the pointers to the next
elements in the strings. The word register specified by ‘‘r’’ (used as a counter) is
then decremented by one. The source, destination, and counter registers must be
distinct, non-overlapping registers.

The effect of incrementing the pointers during the transfer is important if the source
and destination strings overlap with the source string starting at a higher memory
address. Placing the pointers at the lowest address of the strings and incrementing
the pointers ensures that the source string will be correctly copied including the
overlapping area. However, the destination address must not exceed the source ad-
dress by one for LDI; and by one, two, or three for LDIL; otherwise, the CPU may
not recover correctly from address translation exceptions.

Flags:

: Unaffected
Unaffected
: Unaffected
: Set if the result of decrementing r is zero, cleared otherwise
: Unaffected
: Unaffected

TO<ONO

Exceptions:

None

Adcnljggsémg Assem%l;;tlainguage Instruction Format
IR: LDI @Rd!, @Rs!, r 1011101|W| Rs#0 0001

LDIB @Rd', @Rs!, r

ooool r | Rd=0[1000

@Rd! @Rs!
LDIL @Rd, @Rs!, r 10111001 | Rs#0 |0001

0000/ r |Rd#0[1000

6-111

Example:

This instruction can be used in a “‘loop” of instructions which transfers a string of
data from one location to another, but where an intermediate operation on each
data element is required. The following sequence transfers a string of 80 bytes, but
tests for a special value (%0D, an ASCII return character) which terminates the
loop if found. This example assumes compact mode. In segmented or linear mode,
longword registers must be used instead of R1 and R2.

LD R3, #80 /linitialize counter

LDA R1, DSTBUF /lload start addresses

LDA R2, SRCBUF
LOOP:

CPB @R2, #%0D llcheck for return character

JR EQ, DONE Ilexit loop if found

LDIB @R1, @R2, R3 Iltransfer next byte

JR NOV, LOOP Illrepeat until counter = 0
DONE:

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-112

LDIR

Load, Increment and Repeat

Operation:

LDIR dst, src, r dst: IR
LDIRB src: IR
LDIRL

repeat
dst < src
AUTOINCREMENT dst and src (by 1 if LDIRB; by 2 if LDIR; by 4 if LDIRL)
rer—1

untilr = 0

This instruction is used for block transfers of strings of data. The contents of the
location addressed by the source register are loaded into the location addressed by
the destination register. The source and destination registers are then incremented
by one if LDIRB, or by two if LDI, or by four if LDIL, thus moving the pointers to the
next elements in the strings. The word register specified by ““r”’ (used as a counter)
is then decremented by one. The entire operation is repeated until the result of
decrementing r is zero. This instruction can move from 1 to 65,536 data elements.
The source, destination, and counter registers must be distinct, non-overlapping
registers.

The effect of incrementing the pointers during the transfer is important if the source
and destination strings overlap with the source string starting at a higher memory
address. Placing the pointers at the lowest address of the strings and incrementing
the pointers ensures that the source string will be correctly copied including the
overlapping area. However, the destination address must not exceed the source ad-
dress by one for LDIR, and by one, two, or three for LDIRL; otherwise, the CPU may
not recover correctly from address translation exceptions.

This instruction can be interrupted after each execution of the basic operation.

Flags:

: Unaffected
= Unaffected
: Unaffected
Set

: Unaffected
: Unaffected

TOSONO

Exceptions:

None

Adﬁgzsémg Assemtél;'rnlainguage Instruction Format
IR: LDIR @R, @Rs', r 1011101 W|Rs #0/0001

LDIRB @Rd', @Rs', r

0000 r [Ra=0[0000

@Rd! @Re!
LDIRL @Rd’, @Rs', r 10111001 [Rs#0 (0001

oooo] r | Rdz0|0000

6-113

Example:

The following sequence of instructions can be used in compact mode to copy a buf-
fer of 512 words (1024 bytes) from one area to another. The pointers to the start of
the source and destination are set, the number of words to transfer is set, and then
the transfer takes place.

LDA R1, DSTBUF
LDA R2, SRCBUF
LD R3, #512
LDIR @R1, @R2, R3

In segmented or linear mode, longword registers must be used instead of R1 and
R2.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-114

LDK

Load Constant

Operation:

LDK dst, src
LDKL

dst < src (src = 0 to 15)

dst: R
src: IM

The source operand, a value from 0 to 15, is loaded into the destination register.

Flags:

No flags affected

Exceptions:

None

Destination
Addressing Assem%l;:tla?(nguage Instruction Format
Mode
R: LDK R, #data [10111101 | Rd | data |
LDKL RRd, #data [00111000] RRd | data |
Example: To load register R3 with the constant 9, execute the instruction

LDK RS3,#9

LDM

Load Multiple
LDM dst, src, n dst: R
src: IR, EAM
or
dst: IR, EAM
src: R
LDM dst, src dst: R
src: IM
Operation: dst < src(n words)

The contents of n (a value from 1 to 16) consecutive source words are loaded into
the destination. The contents of the source are not affected. The instruction can be
used to load multiple word registers either into or from memory. Registers are ac-
cessed in increasing order starting with the specified register; RO follows R15.

The value in the instruction field for the number of words loaded (‘‘'n”’) is one less
than the actual number of words. Thus, the coding in the instruction field ranges
from 0 to 15, which corresponds to loading 1 to 16 words.

The starting memory address is calculated once at the start of execution, and in-
cremented by two for each register loaded. If the original address calculation in-
volved a register, the register’s value is not affected by incrementing the address
during execution. Similarly, modifying that register during a load from memory does
not affect the address used by this instruction.

Flags:

No flags affected

Exceptions:

None

Load Multiple—Registers From Memory

Source
Addressin Assembler Language Instruction Format
Syntax
Mode
IM: LDM Rd, #data
patay, 00/011100[0000[0001
#datan-1 oooo| Rd [0000| n-1
n words data
. 1
IR LDM Rd, @Rs!, #n 00/ 011100 | Rs%0 [0001
0000| Rd [0000| n-1
EAM: LDM Rd, eam, #n

01{011100 | eam |0001
ooool Rd |0000| n-1

1, 2, or 3 extension words

6-116

Load Multiple—Memory From Registers

Destination
Addressing Assemtélsrr'tlainguage Instruction Format
Mode
IR: LDM @Rd', Rs, #n 00/ 011100 [Rd#0[1001
0000/ Rs [0000| n-1
EAM: LDM eam, Rs, #n 01|01”00 eam 11001
ooool Rs |0000| n-1
1, 2, or 3 extension words
Example: In compact mode, if register R5 contains 5, R6 contains %0100, and R7 contains 7,

executing the instruction
LDM @Re, R5, #3
leaves the values 5, %0100, and 7 at word locations %0100, %0102, and %0104,

respectively; none of the registers is affected. In segmented or linear mode, a
longword register must be used instead of R6.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

LDML

Load Multiple Longwords

Operation:

LDML mask, src src: IM, IR, EAM
mask: IM
or

LDML dst, mask dst: IR, EAM
mask: IM

Load Multiple Longwords—Registers from Memory

tsrc <= EFFECTIVE_ADDRESS (src)
fori = 0to7 do

if mask<i> = 1 then

RR[2 X i+ 16] = @tsrc

tsrc < tsrc + 4
fori = 8to15do

if mask<i> = 1 then

RR[2 X i—16] < @tsrc

tsrc < tsrc + 4

Load Multiple Longwords—Memory from Registers

tdst <= EFFECTIVE_ADDRESS (dst)
fori = 0to7 do

if mask<i> = 1 then

@tdst <= RR[2 x i+ 16]

idst <« idst + 4
fori = 8to 15 do

if mask<i> = 1 then

@tdst <= RR[2 x i—16];

tdst < tdst + 4

This instruction can be used to load multiple longword registers either into or from
memory. Each bit in the mask operand that is set to 1 corresponds to a longword
register to be loaded. Bits 0 to 7 of the mask operand designate the longword
registers RR16 to RR30 respectively. Bits 8 to 15 of the mask operand designate the
longword registers RRO to RR14 respectively. The format of the mask operand is
shown in Figure 6-4.

15 0

lllllllllllllllll

[— LOAD RR16
LOAD RR18
LOAD RR20
LOAD RR22
LOAD RR24
LOAD RR26
LOAD RR28
LOAD RR30
LOAD RRO
LOAD RR2
LOAD RR4
LOAD RRé
LOAD RR8
LOAD RR10
LOAD RR12
LOAD RR14

Figure 6-4. Mask Operand Format

6-118

8225-015

The starting memory address is calculated once at the start of execution and in-
cremented by four for each register loaded. If the original address calculation in-
volved a register, the register’s value is not affected by incrementing the address
during execution. Similarly, modifying that register during a load from memory does
not affect the address used by this instruction.

Flags: No flags affected

Exceptions: None

Load Multiple Longwords—Registers From Memory

Source
Addressing Assembsls:;tlainguage Instruction Format
Mode
IM: LDML #mask, #datag,
P 00 o111oo|oooo[o1o1
mask
n longwords data
IR: LDML #mask, @Rs' 00[011100|Rs#0 0101
h1ask
EAM: LDML, #mask, eam 01101 11 00[cam |° 101
mask
1, 2, or 3 extension words

Load Multiple Longwords—Memory from Registers

Destination

Assembler Language

Addressing Instruction Format
Mode Syntax
IR: LDML @Rd!, #mask 00{011100|Rd=0[1101
mask
EAM: LDML eam, #mask 01|011100l eam I1101
mask
1, 2, or 3 extension words
Example: In linear mode, if base register RR2 contains % 1000 and the longwords at location

% 1000 and %1002 contain 100 and 150 respectively, executing the instruction
LDML, #5, @RR2
loads 100 into RR16 and 150 into RR20.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-119

LDN

Privileged Instruction

Load Normal

Operation:

LDND dst, src, n dst: R
LDNDB src: IR, EAM
LDNDL or

LDNI dst: IR, EAM
LDNIB src: R
LDNIL

dst < src

These instructions allow programs executing in system mode to reference informa-
tion in normal mode data and instruction memory address spaces. This is useful for
accessing system call parameters when system and normal mode address spaces
are separated. The LDND instructions reference normal data space and the LDNI
instructions reference normal instruction space. There are versions of the instruc-
tions to load from memory to a register and from a register to memory. When per-
forming the memory reference, the address translation mechanism uses the transla-
tion tables for normal data or instruction space, and checks the access permission
for system mode.

Flags:

No flags affected

Exceptions:

Privileged Instruction trap

Load Register from Normal Space

Source
Addressing Assem%l;:'tl;?(nguage Instruction Format
Mode
IR: LDND Rd, @Rs!
L ONDB Hbd 8! 01111010 [0011]{0111
oo[1oooo|w Rs#0| Rd
LDNDL RRd, @Rs 01111010 0011|0111
oo|o1o1oo Rs=0 | RRd
LDNI Rd, @Rs!
LONIB Hb. @Rs" 01111010 00100111
00[10000(w| Rs=0| Rd
.
LONIL RRd, @Rs 01111010 |0010]0111
oo|o1o1oo Rs=0 | RRd

6-120

Load Register from Normal Space (Continued)

Source
Addressing Assembslsrr‘tlainguage Instruction Format
Mode
EAM: LDND Rd, eam
LDNDE Rba, eam 01111010]0011]{0111
01ft0o000/w| eam | Rd

LDNDL RRd, eam

LDNI Rd, eam
LDNIB Rbd, eam

LDNIL RRd, eam

1, 2, or 3 extension words

01111010

0011

0111

011010100

eam

RRd

1, 2, or 3 extension words

01111010

0010

0111

01[10000w

eam

Rd

1, 2, or 3 extension words

01111010

0010

0111

01/]010100

eam

RRd

1, 2, or 3 extension words

Load Normal Space from Regist

er

Destination

Assembler Language

Adc'aggséing Syntax Instruction Format
IR: LDND @Rd1, Rs

LDNDB @Rd, Rbs

LDNDL @Rd!, RRs

LDNI @Rd1, Rs
LDNIB @Rd!, Rbs

LDNIL @Rd', RRs

01111010

0011

0111

00|10111|W

Rd+0

Rs

01111010

0011

0111

oo|0111o1

Rd+0

Rs

01111010

0010

0111

0o0[10111w

Rd+0

Rs

01111010

0010

0111

00{011101

Rd=0

RRs

6-121

Load Normal Space from Register (Continued)

Destination
Addressing Assem%l;;tléinguage Instruction Format
Mode
EAM: LDND eam, Rs
LDNDB eam, Rbs o1111010{0011|0111
o111o111lw eam Rs

LDNDL eam, RRs

LDNI eam, Rs
LDNIB eam, Rbs

LDNIL eam, RRs

1, 2, or 3 extension w

ords

01111010

0011

0111

01Lo111o1

eam

RRs

1, 2, or 3 extension words

01111010

0010

0111

01|10111|W

eam

Rs

1, 2, or 3 extension words

01111010

0010

0111

01'011101
-

eam

RRs

1, 2, or 3 extension words

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-122

Privileged Instruction LDP
Load Physical Address

Operation:

LDPND dst, src dst: R
LDPNI src: IR, EAM
LDPSI

LDPSD

dst <= PHYSICAL__ADDRESS (src)

These instructions translate the logical address of the source operand to a physical
address, and store the result into the destination. Four versions of the instruction
are provided, one for each of the logical memory address spaces: normal mode in-
struction space (LDPNI), normal mode data space (LDPND), system mode instruc-
tion space (LDPSI), and system mode data space (LDPSD). The Z flag is set when
the translation is valid, and cleared otherwise.

The V and C flag settings indicate whether or not read and write accesses are per-
mitted to the source byte address. This feature is useful for verifying access rights
for addresses passed as system call parameters from normal to system mode. The
S flag is set when the access information reported in the V and C flags is valid, and
cleared otherwise. (During address translation, the PROT field specifying the access
rights may be valid although one of the translation table entries is invalid.) When ad-
dress translation is disabled, read and write accesses are permitted to all ad-
dresses.

Flags:

C: LDPND, LDPNI—set if write access is permitted for the source operand in
normal mode; cleared otherwise; LDPSI, LDPSD—set if write access is permitted
for the source operand in system mode; cleared otherwise

Z: Set if the translation is valid; cleared otherwise

S: Set if the protection information in flags C and V is valid; cleared otherwise

V: LDPND, LDPNI—set if read access is permitted for the source operand in
normal mode; cleared otherwise; LDPSI, LDPSD—set if read access is permitted
for the source operand in system mode; cleared otherwise

D: Unaffected

H: Unaffected

Exceptions:

Privileged Instruction trap

Source
Addressing Asseml)slirrltléinguage Instruction Format
Mode
IR: LDPND RRd, @Rs' 01111010 [0011(1101

00{110110|Rs=#0 | RRd

@ 1
LDPNI RRd, @Rs 01111010 00101101

00[110110|Rs#0| RRd

@ 1
LDPSD RRd, @Rs 01111010]0001]1101

00[110110 Rs#0| RRd

@Rs!
LDPSI RRd, @Rs 01111010 |0000|1101

00[110110| Rs#0| RRd

6-123

Source
Addressing
Mode

Assembler Language

Syntax

Instruction Format

EAM: -

LDPND RRd, eam

LDPNI RRd, eam

LDPSD RRd, eam

LDPSI RRd, eam

01111010

0011

1101

01[110110

eam

RRd

1, 2, or 3 extension words

01111010

0010

1101

01{110110

eam

RRd

1, 2, or 3 extension words

01111010

0001

1101

01/110110

RRd

1, 2, or 3 extension words

01111010

0000

1101

01(110110

RRd

1, 2, or 3 extension words

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-124

LDPS

Load Program Status

Privileged Instruction

LDPS src src: IR, EAM
Operation: tmp <= EFFECTIVE__ADDRESS (src)
if FCW.E/C then /lsegmented or linear mode
tmp 2 < @(tmp1 +2) lIfetch FCW
PC < @(tmp1 +4) lIfetch PC (longword)
else /lcompact mode
tmp 2 < @tmp1 /lfetch FCW
PC = @(tmp1 +2) /ifetch PC (low-order word)
if FCW.T then tmp2<9> <+ 1
FCW < tmp2
The contents of the source operand are loaded into the Program Status (PS)
registers, both the Flag and Control Word (FCW) and the Program Counter (PC). In
compact mode the source operand includes two words: the new FCW and the new
low-order word of PC. The high-order word of PC is unaffected. In segmented or
linear mode, the source operand includes four words: a reserved word (which must
contain 0), the new FCW, and the new PC longword
After LDPS is executed, the Trace Pending bit (FCW.TP) is set if bit 9 is set in the
source operand FCW or if the Trace Enable (FCW.T) bit was set before the instruc-
tion was executed. This allows the LDPS instruction to be traced for single-step
debugging.
SEQGMENTED
COMPACT LOW ADDRESS OR LINEAR
FCW 0
PC FCW
PC SEG. NO.
HIGH ADDRESS PC OFFSET
Flags: All flags are loaded from the source operand.
Exceptions: Privileged Instruction trap
Source
Addressing Assem%l;ll;tlainguage Instruction Format
Mode
IR: LDPS @Rs' fool 111001 [Rs=0]0000]
EAM: LDPS eam

01111001 | eam 0000

1, 2, or 3 extension words

6-125

Example: In compact mode, if register R3 contains %5000, location %5000 contains % 1800,
and location %5002 contains %A000, executing the instruction

LDPS @R3
leaves the value %A000 in the PC, and the FCW value is % 1800.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6126

LDR

Load Relative

LDR dst, src dst: R
LDRB src: RA
LDRL or
dst: RA
src: R
Operation: dst < src
The contents of the source operand are loaded into the destination. The contents of
the source are not affected. The effective address is calculated by adding the
displacement in the instruction to the updated value of the program counter (PC).
The updated PC value is the address of the instruction word following the LDR,
LDRB, or LDRL instruction. The displacement is a 16-bit signed value in the range
-32768 to 32767.
The assembler automatically calculates the displacement by subtracting the PC
value of the following instruction from the address given by the programmer.
Flags: No flags affected
Exceptions: None

Load Relative Register

Destination
Addressing Asseml:sl)e,;tlainguage Instruction Format
Mode
RA: LDR Rd, address

LDRB Rbd, address

LDRL RRd, address

0011000|W|0000| Rd

displacement

00110101 0000 | RRd

displacement

Load Relative Memory

Destination
Addressing Assembslg:ﬂlainguage Instruction Format
Mode
RA: LDR address, Rs
LDRB address, Rbs 0011001|w|0000] Rs
displacement
LDRL address, RRs 00110111 [0000] RRs
displacement
Example: LDRR2, DATA llregister R2 is loaded with the value in

Ilthe location named DATA

6-127

MULT

Multiply
MULT dst, src dst: R
MULTL src: R, IM, IR, EAM

Operation: Word (dst is longword register, src is word)
dst<31:0> <+ dst<15:0> X src<15:.0>
Longword (dst is quadword register, src is longword)
dst<63:0> <+ dst<31:0> X src<31:.0>
The low-order half of the destination operand (multiplicand) is multiplied by the
source operand (multiplier) and the product is stored in the destination. The con-
tents of the source are not affected. Both operands are treated as signed, twos
complement integers. For MULT, the destination is a longword register and the
source is a word value; for MULTL, the destination is a quadword register and the
source is a longword value.
For proper instruction execution, the *‘dst field”” in the MULTL instruction format en-
coding must specify a valid code for a quadword register. Otherwise, the result is
undefined.
The initial contents of the high-order half of the destination register do not affect the
operation of this instruction and are overwritten by the result. The C flag is set to in-
dicate that the upper half of the destination register is required to represent the
result; if the C flag is clear, the product can be correctly represented in the same
precision as the multiplicand, and the upper half of the destination merely holds a
sign extension.

Flags: C: MULT—set if product is less than —215 or greater than or equal to 215; cleared

otherwise; MULTL—set if product is less than -231 or greater than or equal to
-231: cleared otherwise

Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Cleared
D: Unaffected
H: Unaffected

Exceptions: None

Source
Addressing Assem%l;;tléinguage Instruction Format
Mode
R: MULT RRd, Rs [10]011001] Rs [RRa |
MULTL Rad, RRe [10[011000 | RRs | Rad |
IM: MULT RRd, #data

00/ 011001 |0000]| RRd
data

MULTL RQd, #data 00[011000 |0000]| Rad

data (high)

data (low)

6-128

Source
Addressing

Assembler Language

Instruction Format

ntax
Mode Synta
- @ 1
IR: MULT RRd, @Rs [o0/011001 | Rs+0| RRd |
1
MULTL RQg, @Rs [00[011000 [Rs=0] Rad |
EAM: MULT RRd, eam 01{011001 | eam | RRd
1, 2, or 3 extension words
MULTL RQd, eam 01/ 011000 eam | RQd
1, 2, or 3 extension words
Example: If register RQO (composed of longword registers RRO and RR2) contains

%2222222200000031 (RR2 contains decimal 49), executing the

instruction
MULT RQO,#10

leaves the value % 00000000000001EA (decimal 490) in RQO. The C, Z, S, and V

flags are cleared.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-129

MULTU

Multiply Unsigned

MULTU dst,src dst: R

MULTUL src: R, IM, IR, EAM
Operation: Word (dst is longword register, src is word)

dst<31:0> <+ dst<15:0> xsrc<15:0>
Longword (dst is quadword register, src is longword)
dst<63:0> <+ dst<31:0> xsrc<31:0>

The low-order half of the destination operand (multiplicand) is multiplied by the
source operand (multiplier) and the product is stored in the destination. The con-
tents of the source are not affected. Both operands are treated as unsigned in-
tegers. For MULTU, the destination is a longword register and the source is a word
value; for MULTUL, the destination is a quadword register and the source is a
longword value.

For proper instruction execution the ‘‘dst field”’ in the MULTUL instruction encoding
must specify a valid code for a quadword register. Otherwise, the result is
undefined.

The initial contents of the high-order half of the destination register do not affect the
operation of this instruction and are overwritten by the result. The C flag is set to in-
dicate that the upper half of the destination register is required to represent the
result; if the C flag is clear, the product can be correctly represented in the same
precision as the multiplicand, and the upper half of the destination merely holds 0.

Flags: C: MULTU—set if product is greater than or equal to 216; cleared otherwise;
MULTUL—set if product is greater than or equal to 232; cleared otherwise

Z: Set if the result is zero; cleared otherwise
S: Set if the most-significant bit of the result is set; cleared otherwise
V: Cleared
D: Unaffected
H: Unaffected
Exceptions: None
Source
Addressing Assembsls:;tlainguage Instruction Format
Mode
R: MULTU RRd, Rs

01111010 |0000 0011
1o|o11oo1 Rs | RRd

MULTUL RQd, RRs 01111010 (0000 0011

10/011000| RRs | Rad

6-130

Source
Addressing
Mode

Assembler Language
Syntax

Instruction Format

IR:

EAM:

MULTU RRd, #data

MULTUL RQd, #data

MULTU RRd, @Rs!

MULTUL RQd, @Rs'

MULTU RRd, eam

MULTUL RQd, eam

011110100000 0011

00L011001 0000| RRd

data

01111010 (0000 0011

00[0o11000[0000] Rad

data(high)

data(low)

01111010(0000 0011

00[011001| Rs+0 | RRd

01111010 (0000 0011

00[011000] Rs0 | Rad

011110100000 0011

01/011001| eam] RRd

1, 2, or 3 extension words

011110100000 0011

01/011000| eam LRQd

1, 2, or 3 extension words

Example:

If register RRO (composed of RO and R1) contains % ABCD FFFF (R1 contains
decimal 65,535), executing the instruction

MULTU RRO,#16

leaves the value % O0OFFFFO (decimal 1,048,560) in RRO. The C flag is set and the

Z, S, and V flags are cleared.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

NEG

Negate
NEG dst dst: R, IR, EAM
NEGB
NEGL
Operation: dst < —dst
The contents of the destination are negated, that is, replaced by twos comple-
ment values. Note that %8000 for NEG, %80 for NEGB, and %80000000 for NEGL
are replaced by themselves since in twos complement representation the negative
number with greatest magnitude has no positive counterpart; for these three cases,
the V flag is set.
Flags: C: Cleared if the result is zero; set otherwise, which indicates a borrow
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if the result is %8000 for NEG, %80 for NEGB, or %80000000 for NEGL
cleared otherwise
D: Unaffected
H: Unaffected
Exceptions: Integer Overflow trap
Destination
Addressing Assem%l%tlainguage Instruction Format
Mode
R: NEG Rd
NEGB Rbd [10Joo110lw| Rd [o010]
NEGL Rftd [1o[o11100] RRd [0010]
IR: NEah oo {ooloo110|w|Ra=0 |0010]
NEGL @Rd foo[o11100]Rd=0]0010]
EAM: Neagom 01/00110/w| eam [0010
1, 2, or 3 extension words
NEGL
eam tﬂ0111ooleam loo10
1, 2, or 3 extension words
Example: If register RR8 contains %0000051F, executing the instruction

NEGL RRS8
leaves the value % FFFFFAE1 in RR8.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-132

NOP

No Operation
NOP
Operation: No operation is performed.
Flags: No flags affected
Exceptions: None
Destination Assembler Language
Addressing Syntax guag Instruction Format
Mode y
NOP

[10001101 | 00000111 |

OR

Or
OR dst, src dst: R
ORB src: R, IM, IR, EAM
ORL

Operation: dst < dst OR src
The source operand is logically ORed with the destination operand and the result is
stored in the destination. A 1 bit is stored whenever either of the corresponding bits
in the two operands is 1; otherwise a 0 bit is stored. The contents of the source are
not affected.

Flags: C: Unaffected

Z: Set if the result is zero; cleared otherwise

S: Set if the most-significant bit of the result is set; cleared otherwise
P: OR, ORL—unaffected; ORB—set if parity of the result is even;
cleared otherwise
D: Unaffected
H: Unaffected

Exceptions: None
Source Assembler Language .
Addressing Syntax Instruction Format
Mode
R: ORRd, Rs
ORB Rbd, Rbs [10]oootolw] Rs | Rd |
ORL RRd, RRs 01111010/0000 0010
1ﬂooo1 01[RRs | RRd
IM: OR Rd, #data 00{000101{0000| Rd
data
ORB Rbd, #data 00{ 000100 |0000| Rd
data data
ORL RRd, #data 01111010/0000]/0010
00/000101|0000| RRd
data (high)
data (low)
IR: OR Rd, @Rs!
ORB Rbd, @Rs' F’°!°°°‘°IW| Rs+0 | Rd 1
ORL RRd, @Rs'

01111010 |0000]0010
oo|ooo1o1 Rs#0 | RRd

6-134

Source

Assembler Language

Addressing Instruction Format
Mode Syntax
EAM: OR Rd, eam
R e 01{00010|W| eam | Rd
1, 2, or 3 extension words
ORL RRd, eam 01111010 |0000 0010
01/000101| eam | RRd
1, 2, or 3 extension words
Example: If register RL3 contains % C3 (11000011) and the source operand is the immediate

value %7B (01111011), executing the instruction
ORB RL3,#%7B
leaves the value %FB (11111011) in RL3.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-

135

OTDR

Privileged Instruction

Output, Decrement and Repeat

OTDR dst, src, r dst: IR
OTDRB src: IR
OTDRL
Operation: repeat

dst < src

AUTODECREMENT src (by 1 if OTDRB; by 2 if OTDR; by 4 if OTDRL)

r<r-1
untilr =0
This instruction is used for block output of strings of data. The contents of the
memory location addressed by the source register are loaded into the 1/0O port ad-
dressed by the destination word register. /O port addresses are 16 bits. The source
register is then decremented by one if OTDRB, by two if OTDR, or by four if
OTDRL, thus moving the pointer to the previous element of the string in memory.
The word register specified by “‘r'’ (used as a counter) is then decremented by one.
The address of the I/O port in the destination register is unchanged. The entire
operation is repeated until the result of decrementing r is zero. This instruction can
output from 1 to 65,536 data elements. The source, destination, and counter
registers must be distinct, non-overlapping registers.
This instruction can be interrupted after each execution of the basic operation.

Flags: C: Unaffected

Z: Unaffected
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

Exceptions:

Privileged Instruction trap

Ad%gﬁi‘"g Assemlg;rr‘tlainguage Instruction Format
IR: OTDR @Rd,@Rs!, r

0011101|w| Rs=0 [1010

OTDRB @Rd,@Rs!, r :
oooo| r |Rd=o0[0000

@ @Rs!
OTDRL@RA,@Rs!, r 01111010 (0000[0010

00111011 | Rsx0|1010
0000 r Rd=0{0000

6-136

Example:

In linear mode, if register R11 contains %O0FFF, register RR22 contains
% 0000B006, and R13 contains 6, executing the instruction

OTDR @R11, @RR22, R13

outputs the string of words from locations %0000B006 to %0000AFFC (in descen-
ding order of address) to port %0FFF. RR22 contains %0000AFFA, and R13 con-
tains 0. R11 is not affected. The V flag is set. In compact mode, a word register
must be used instead of RR22.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-137

OTIR Privileged Instruction
Output, Increment and Repeat

OTIR dst, src, r dst: IR

OTIRB src: IR

OTIRL

Operation: repeat

dst < src
AUTOINCREMENT src (by 1 if OTIRB; by 2 if OTIR; by 4 if OTIRL)
rer—1

untilr =0

This instruction is used for block output of strings of data. The contents of the
memory location addressed by the source register are loaded into the /O port ad-
dressed by the destination word register. /O port addresses are 16 bits. The source
register is then incremented by one if OTIRB, by two if OTIR, or by four if OTIRL,
thus moving the pointer to the next element of the string in memory. The word
register specified by ““r’’ (used as a counter) is then decremented by one. The ad-
dress of the I/O port in the destination register is unchanged. The entire operation is
repeated until the result of decrementing r is zero. This instruction can output from
1 to 65,536 data elements. The source, destination, and counter registers must be
distinct, non-overlapping registers.

This instruction can be interrupted after each execution of the basic operation.

: Unaffected
Unaffected
» Unaffected
Set

: Unaffected
: Unaffected

Flags:

IO<ONO

Exceptions: Privileged Instruction trap

Addressing Assembler Language

Mode Syntax Instruction Format

IR: @Rd, @Rs!
T o, es 0011101|W|Rs #0[0010

oooo| r |Rd=0|0000

OTIRL @Rd, @Rs!, r 01111010 |0000 0010

00111011 | Rs#0(0010
0000 r Rd=0 (0000

6-138

Example: In compact mode, the following sequence of instructions can be used to output a
string of bytes to the specified 1/0 port. The pointers to the I/O port and the start of
the source string are set, the number of bytes to output is set, and then the output
is accomplished.

LD R1, #PORT
LDA R2, SRCBUF
LD R3, #LENGTH

OTIRB @R1, @R2, R3
In segmented or linear mode, a longword register must be used instead of R2.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

OUuT

Output

Privileged Instruction

Operation:

OUT dst, src dst: IR, DA
OuUTB src: R
OUTL

dst - src

The contents of the source register are loaded into the destination, an output port.
1/0 port addresses are 16 bits.

Flags: No flags affected.
Exceptions: Privileged Instruction trap
Destination
Addressin Assembler Language Instruction Format
9 Syntax
Mode
IR: OUT @Rd, Rs
OUTB @Rd, Rbs [oo11111]w/Rd#0] Rs |
OUTL @Rd.RRs 01111010 [0000 0010
vc}*.'.n*. 1 P.d#'.!TI BRe
DA: 88%"3’3}‘“;% 0011101|w| Rs [0110
port
OUTL port, RRs 01111010/0000[0010
ooL111o11 RRs (0110
port
Example: If register R6 contains %5252, executing the instruction

OUT %1120, R6
outputs the value %5252 to the port % 1120.

6-140

Privileged Instruction OuTD
Output and Decrement

OUTD dst, src, r dst: IR
OuTDB src: IR
OouTDL
Operation: dst < src
AUTODECREMENT src (by 1 if OUTDB; by 2 if OUTD; or by 4 if OUTDL)
rer—1
This instruction is used for block output of strings of data. The contents of the
memory location addressed by the source register are loaded into the 1/O port ad-
dressed by the destination word register. I/O port addresses are 16 bits. The source
register is then decremented by one if OUTDB, by two if OUTD, or by four if
OUTDL, thus moving the pointer to the previous element of the string in memory.
The word register specified by ‘‘r”’ (used as a counter) is then decremented by one.
The address of the 1/O port in the destination register is unchanged. The source,
destination, and counter registers must be distinct, non-overlapping registers.
Flags: C: Unaffected
Z: Unaffected
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected
Exceptions: Privileged Instruction trap
Addressing Assembler Language .
Mode Syntax Instruction Format
IR: OUTD @Rd, @Rs', r
SUTDE 6Rd. onet ¢ 0011101|W| Rs%0 [1010
0000| r |Rd#0[1000
OUTDL @R, @RsT, ¢ 01111010|0000 0010
00111011 | Rs#0 (1010
0000 r Rd#0 {1000
Example: In linear mode, if register R2 contains the 1/O port address %0030, register RR6

contains % 12005552, the word at memory location % 12005552 contains % 1234,
and register R8 contains % 1001, executing the instruction

OUTD @R2, @RRe6, R8
outputs the value % 1234 to port %0030 and leaves the value % 12005550 in RR8,

and % 1000 in R8. Register R2 is not affected. The V flag is cleared. In compact
mode, a word register must be used instead of RR6.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

OuUTI

Privileged Instruction

Output and Increment

OUTI dst, src, r dst: IR
ouTIB src: IR
OUTIL

Operation: dst <+ src
AUTOINCREMENT src (by 1 if OUTIB; by 2 if OUTI; by 4 if OUTIL)
rer—1
This instruction is used for block output of strings of data. The contents of the
memory location addressed by the source register are loaded into the 1/O port ad-
dressed by the destination word register. 1/0 port addresses are 16 bits. The source
register is then incremented by one if OUTIB, by two if OUTI, or by four if OUTIL,
thus moving the pointer to the next element of the string in memory. The word
register specified by ‘‘r”’ (used as a counter) is then decremented by one. The ad-
dress of the 1/0O port in the destination register is unchanged. The source, destina-
tion, and counter registers must be distinct, non-overlapping registers.

Flags: C: Unaffected
Z: Unaffected
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unattected

Exceptions: Privileged Instruction trap

Addressing Assembler Language Inst ion F
Mode Syntax nstruction Format

OUTI @Rd, @Rs', r

OUTIB @Rd, @Rs!, r 0011101|w Rs #0|0010

oooo[r |[Rd%0]|1000

TIL @ @Rs!
OUTIL @Rd, @Rs!, r 01111010 (0000 0010

00111011 | Rsx0{0010
0000 r Rd#0 (1000

6-142

Example: This instruction can be used in a “‘loop” of instructions that outputs a string of data,
but an intermediate operation on each element is required. The following sequence
outputs a string of 80 ASCII characters (bytes) with the most significant bit of each
byte set or reset to provide even parity for the entire byte. Bit 7 of each character is
initially 0. This example assumes compact mode. In segmented or linear mode, a
longword register must be used instead of R2.

LD R1, #PORT /Noad I/0 address

LDA R2, SRCSTART /lload start of string

LD R3, #80 /linitialize counter
LOOFP:

TESTB @R2 Iltest byte parity

JR PE, EVEN

SETB @R2, #7 IIforce even parity
EVEN:

ouTIB @R1, @R2, R3 lloutput next byte

JR NOV, LOOP llrepeat until counter = 0
DONE:

Note 1: Word register in compact mode, longword register in segmented or linear modes.

PCACHE Privileged Instruction

Purge Cache
PCACHE
Operation: " Purge all cache entries

All cache entries are invalidated. This instruction is executed when a memory loca-
tion that may have been copied into the cache has been modified by another pro-
cessor. For example, if a slave processor reads from a peripheral port to a memory
location that may be copied in the cache, the cache must be purged.

Flags: No flags affected

Exceptions: Privileged Instruction trap

Assembler Language

Syntax Instruction Format

PCACHE {o1111010]00001000]

6-144

POP

Pop

POP dst, src dst: R, IR, EAM
POPL src: IR

Operation: dst < src
AUTOINCREMENT src (by 2 if POP, by 4 if POPL)
The contents of the location addressed by the source register (used as a stack
pointer) are loaded into the destination. The source register is then incremented by
two if POP or by four if POPL, thus removing the top element from the stack by
changing the stack pointer. Any register except RO in compact mode or RRO in
segmented or linear mode can be used as a stack pointer.
If the destination is a register, the source and destination registers must be distinct
and non-overlapping. Similarly, if the destination is in memory, then the source and
destination operands must not overlap. Otherwise, the result of executing the in-
struction is undefined.

Flags: No flags affected

Exceptions: None

Destination

Assembler Language

Addressing Instruction Format
ntax
Mode Synta
R: POP Rd, @Rs! [10[010111[Rs % 0] Ra |
@Rs!
POPL RRd, f10[010101 |Rs < 0] RRd |
IR: POP @Rd', ®Rs! [oo] 010111 Rs=0]Rd = o]
1 1
POPL @Hd!, @Rs {00l 010101 | Rs#0 |Rd 20]
EAM: POP eam, @Rs' 01010111 | Rs%0 | eam
1, 2, or 3 extension words
@Rs!
POPL eam, @Rs o1|o1o1o1|Rs¢o| eam
1, 2, or 3 extension words
Example: In compact mode, if register R12 (used as a stack pointer) contains % 1000, the

word at location % 1000 contains %0055, and register R3 contains %0022, ex-
ecuting the instruction
POP R3, @R12

leaves the value %0055 in R3 and the value %1002 in R12. In segmented or linear
mode, a longword register must be used instead of R12.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-145

PTLB Privileged Instruction
Purge TLB

PTLB

Operation: Purge all TLB entries

All TLB entries are invalidated. This instruction is executed when system and normal
mode address spaces are merged and the operating system changes from execut-
ing one user process to another.

Flags: No flags affected

Exceptions: Privileged Instruction trap

Assembler Language ;
Syntax Instruction Format

PTLB [o1111010/0000]1010]

6-146

Privileged Instruction PTLBE
Purge TLB Entry

Operation:

PTLBEND src src. IR, EAM
PTLBENI
PTLBESD
PTLBESI

Purge the TLB entry for the effective address of src

If any TLB entry corresponds to the logical address of the source operand, that en-
try is invalidated. Four versions of the instruction are provided, one for each of the
logical memory address spaces: normal data space (PTLBEND), normal instruction
space (PTLBENI), system data space (PTLBESD), and system instruction space
(PTLBESI).

This instruction is executed when information is changed in the translation tables for
a page in one of the current address spaces. If the page is shared by current ad-
dress spaces (for example, instruction and data spaces are merged), the page must
be purged in each of the address spaces.

Flags:

No flags affected

Exceptions:

Privileged Instruction trap

Source
Addressing
Mode

Assembler Language

Syntax Instruction Format

PTLBEND @Rs!
L8 s 01111010|0011[1001

00| 000000 Rs=0 [0000

@ 1
PTLBENI @Rs 01111010]0010(1001

00{ 000000 Rs=0 (0000

@ 1
PTLBESD @Rs 01111010]0001]/1001

00/000000| Rs=0 [0000

)
PTLBESI @Rs 01111010 0000|1001

00{000000|Rs#0 0000

6-147

Source

Assembler Language

Addressing Instruction Format
Mode Syntax
EAM: PTLBEND eam 01111010 (0011|1001
01/000000| eam [0000
1, 2, or 3 extension words
PTLBENI eam

PTLBESD eam

PTLBESI eam

01111010

0010

1001

01000000

eam

0000

1, 2, or 3 extension words

01111010

0001

1001

01/000000

0000

1, 2, or 3 extension words

01111010

0000

1001

01/000000

eam

0000

1, 2, or 3 extension words

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-148

Privileged Instruction PTLBN
Purge TLB Normal Space

PTLBN

Operation: Purge Normal Space TLB entries

All TLB entries corresponding to pages in normal data or normal instruction address
spaces are invalidated. This instruction is executed when system and normal mode
address spaces are separated and the user operating system changes from one
process executing in normal mode to another.

Flags: No flags affected
Exceptions: Privileged Instruction trap
Assembler Language .
Syntax Instruction Format
PTLBN fo1111010]0000 1011]

6-149

PUSH

Push
PUSH dst, src dst: IR
PUSHL src: R, IM, IR, EAM
Operation: AUTODECREMENT dst (by 2 if PUSH, by 4 if PUSHL)
dst < src
The contents of the destination register (used as a stack pointer) are decremented
by two if PUSH or by four if PUSHL. Then the source operand is loaded into the
location addressed by the updated destination register, thus adding a new element
to the top of the stack by changing the stack pointer. Any register except RO in
compact mode or RRO in segmented or linear mode can be used as a stack pointer.
If the source is a register, then the source and destination registers must be distinct
and non-overlapping. Similarly, if the source is in memory, the source and destina-
tion operands must not overlap. Otherwise, the result of executing the instruction is
undefined.
Flags: No flags affected
Exceptions: None
Source
Addressing Asseml:c’l;.;tta)\(nguage Instruction Format
Mode
R: PUSH @Rd', Rs {10/ 010011 Rd20| Rs |
PUSHL @Rd', RRs [10[010001 [Rd+0] RRs |
IM: PUSH @Rd!, #aata 00001101 | Rd=0[1001
data
PUSHL @Rd', #data 0o[010001[Rd=0[0000
data (high)
data (low)
IR: PUSH @Rd!, @Rs! [oo] 010011 [Rd=0 | Rs=0]

PUSHL @Rd!, @Rs' foo/ 010001 | Rax0|Rsx0 |

6-150

Source Assembler Language

Addressing Instruction Format
Mode Syntax
EAM: PUSH @Rd!, eam 01010011 | Rd+0 | eam

1, 2, or 3 extension words

PUSHL @Rd', eam 01(010001 | Rd=0 | eam

1, 2, or 3 extension words

Example: In compact mode, if register R12 (a stack pointer) contains % 1002, the word at
location % 1000 contains %0055, and register R3 contains %0022, executing the

instruction
PUSH @R12, R3

leaves the value %0022 in location % 1000 and the value %1000 in R12. In
segmented or linear mode, a longword register must be used instead of R12.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

RES

Reset Bit
RES dst, src dst: R, IR, EAM
RESB src: IM
RESL or
dst: R
src: R
Operation: dst<src> <0
This instruction clears the specified bit within the destination operand to 0 without
affecting any other bits in the destination. The bit number (the source) can be
specified either as an immediate value (static), or as a word register that contains
the value (dynamic). In the dynamic case, the destination operand must be in a
register, and the source operand must be in a word register.
The bit number is a value from 0 to 7 for RESB, 0 to 15 for RES, or 0 to 31 for
RESL, with 0 indicating the least-significant bit. Only the lower three bits of the
source operand are used to specify the bit number for RESB, only the lower four
bits are used for RES, and only the lower five bits are used for RESL.
Flags: No flags affected
Exceptions: None

Reset Bit Static

Destination
Addressing Assemtg;rrnlainguage Instruction Format
Mode
R: RES Rd, #b
RESB Rbd, #b F°|1°°°11W| Rd I b |
RESL RRd, #b 011110100000 0010
10l10001lb RRdI b
IR: RES @Rd!, #b
HESs ot [oo[10001/w|[Rdx0| b |
RESL @Rd!
SL @Rd', #b 011110100000 0010
00[10001[b|Rd20| b
EAM: RES eam, #b
RESB eam, #b 01|10°°1lw] eam I b
1, 2, or 3 extension words
RESL eam, #b
eam 01111010|0000 0010
01J10001|b eam] b
1, 2, or 3 extension words

6-152

Reset Bit Dynamic

Assembler Language

Syntax Instruction Format
R: RES Rd, Rs
RESB Rbd, Rs 00l10001|w|0000| Rs

0000| Rd [0000[0000

RESL RRd, Rs 011110100000 0010
00[100011/0000| Rs
0000| RRd [0000[0000
Example: If register RL3 contains % B2 (10110010), executing the instruction
RESB RL3, #1

leaves the value %B0 (10110000) in RL3.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-153

RESFLG

Reset Flag
RESFLG flag flag:C, Z, S, P, V
Operation: FLAGS<7:4> < FLAGS<7:4> AND NOT instruction<7:4 >
Any combination of the C, Z, S, P or V flags can be cleared to 0. If the bit in the in-
struction corresponding to a flag is 1, the flag is cleared; if the bit is O, the flag is
unchanged. All other bits in the FLAGS register are unaffected. Note that the P and
V flags are represented by the same bit. There can be one, two, three, or four
operands in the assembly language statement, in any order.
Flags: C: Cleared if specified, unaffected otherwise
Z: Cleared if specified, unaffected otherwise
S: Cleared if specified, unaffected otherwise
PIV: Cleared if specified, unaffected otherwise
D: Unaffected
H: Unaffected
Exceptions: None
Assembler Language :
Syntax Instruction Format
RESFLG flags f1ooo1101]czspvo011]
Example: If the C, S, and V flags are set (1) and the Z flag is clear (0), executing the statement

RESFLG C, V
leaves the S flag set (1), and the C, Z, and V flags clear (0).

6-154

RET

Return

Operation:

RET cc

Compact Segmented or linear
if cc is satisfied then if cc is satisfied then
PC < @Sp PC < @gp
SP <+ SP + 2 SP<+SP + 4

This instruction is used to return at the end of a procedure called by executing
either a CALL or CALR instruction. If the condition specified by ‘‘cc’’ is satisfied by
the flags in the FCW, then the contents of the top of the processor Stack Pointer
are popped into the Program Counter (PC), thus returning control to the caller. See
Section 6.3 for a list of condition codes. The Stack Pointer used is R15 in compact
mode, or RR14 in segmented or linear mode. If the condition is not satisfied, then
the instruction following the RET instruction is executed. |f no condition is specified,
the return is taken regardless of the flag settings.

Flags:

No flags affected

Exceptions:

None

Assembler Language

Syntax Instruction Format

RET co {10/ 011110 |0000]| cc |

Example:

In compact mode, if the Program Counter contains %2550, the Stack Pointer (R15) -
contains %3000, location %3000 contains % 1004, and the Z flag is clear, ex-
ecuting the instruction

RET NZ

leaves the value %3002 in the Stack Pointer, and the Program Counter con-
tains% 1004 (the address of the next instruction to be executed).

6-155

RL

Rotate Left
RL dst, src dst: R
RLB src: IM
RLL

Operation: for i <1 to src do

C < dst <msb>

for j <= msb down to 1 do
dst<j> <+ dst<j-1>

dst <0> < C

31 . oJ

Longword: E]*J—I >]
15 OJ

word: [c]=H |

Byte: E|<J—|

The contents of the destination operand are rotated left one or two bit positions as
specified by the source operand. During rotation, the most-significant bit (msb) of
the destination operand is moved to the bit O position and also replaces the C flag.

If the source operand is omitted from the assembler language statement, the default

value is one.
Flags: C: Set if the last bit rotated from the most-significant bit position was 1; cleared
otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the most-significant bit of the result is set; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed
during rotation; cleared otherwise
D: Unaffected
H: Unaffected
Exceptions: None

Destination

Assembler Language

Addressing Instruction Format!
Mode Syntax
R: RL Rd, #n
RLB Rbd, #n [10]11001{w| Rd logls]of
RLL RRd, #n 01111010 | 00000010
10{ 110011] RRd o q[s]o

6-156

Example: If register RH5 contains %88 (10001000), executing the instruction
RLB RH5
leaves the value %11 (00010001) in RH5 and sets the C flag to 1.

Note 1: S = 0 for rotation by 1 bit; S = 1 for rotation by 2 bits.

6-157

RLC

Rotate Left through Carry

RLC dst, src dst: R
RLCB src: IM
RLCL
Operation: for i = 1 to src do
temp <+ C
C < dst<msb>
for j <= msb down to 1 do
dst<j> <+ dst<j -1>
dst<0> <+ temp
31 P 0 <—]
Longword: _E<_-L ol }
15 [] <_J
Word: el]
7 J
Byte: -]
The contents of the destination operand concatenated with the C flag are rotated
left one or two bit positions as specified by the source operand. During rotation, the
most-significant bit (msb) of the destination operand replaces the C flag and the
previous value of the C flag is moved to the bit O position of the destination.
If the source operand is omitted from the assembler language statement, the default
value is one.
Flags: C: Set if the last bit rotated from the most-significant bit position was 1; cleared
otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the most-significant bit of the result is set; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed
during rotation; cleared otherwise-
D: Unaffected
H: Unaffected
Exceptions: None
Destination
Addressing Assemlge;tlainguage Instruction Format!
Mode y
R: RLC Rd, #n
RLCB Rbd, #n [10]11001{w]| Ra [10]s]o]
RLCL RRd, #n
01111010 | 00000010
10[110011] RRd [10]s]o

6158

Example:

If the C flag is clear (0) and register RO contains % 800F (1000000000001111), ex-
ecuting the instruction

RLC RO,#2
leaves the value % 003D (0000000000111101) in RO and clears the C flag.

Note 1: S = 0 for rotation by 1 bit; S = 1 for rotation by 2 bits

RLDB

Rotate Left Digit

RLDB link, dst link: R
dst: R

Operation: temp<3:0> <+ link<3:0>
link<3:0> < dst<7:4>
dst<7:4> < dst<3:0>
dst<3:0> <+ temp<3.0>

43[0 7 43*0

link [7 | | | | dst
|

The low digit of the link byte register is concatenated to the destination byte
register. The resulting three-digit quantity is rotated to the left by one BCD digit (four
bits). The lower digit of the destination is moved to the upper digit of the destination;
the upper digit of the destination is moved to the lower digit of the link, and the
lower digit of the link is moved to the lower digit of the destination. The upper digit
of the link is unaffected.

In multiple-digit BCD arithmetic, this instruction can be used to shift a string of BCD
digits to the left, thus multiplying it by a power of ten. The link serves to transfer
digits between successive bytes of the string. This is analogous to the use of the C
flag in multiple precision shifting using the RLC instruction.

The destination and link registers must be distinct.

Flags: C: Unaffected
Z: Set if the link is zero after the operation; cleared otherwise
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected
Exceptions: None
Destination Assembler Language ;
Addressing Svnt Instruction Format
Mode yntax
R: RLDB Rol, Rbd [10[111110] Rba | RbI |

6-160

Example: If location 100 contains the BCD digits 0,1 (00000001), location 101 contains 2,3
(00100011), and location 102 contains 4,5 (01000101)

100

101 [2]¢]

102

executing the sequence of instructions in compact mode

LD

LDA
CLRB
LOOP:
LDB
RLDB
LDB
DEC
DJINZ

R3,#3

R2,102
RH1

RL1,@R2
RH1,RL1
@R2,RL1
R2

R3, LOOP

lIset loop counter for 3 bytes
11(6 digits)

lIset pointer to low-order digits
lizero-fill low-order digit

/lget next two digits

lIshift digits left one position
lireplace shifted digits
lladvance pointer

IIrepeat until counter is zero

leaves the digits 1,2 (00010010) in location 100, the digits 3,4 (00110100) in location
101, and the digits 5,0 (01010000) in location 102.

100 |]2]

101

102 |[s]o]

In segmented or linear mode, a longword register must be used instead of R2.

6-161

RR

Rotate Right
RR dst, src dst: R
RRB src: IM
RRL

Operation: for i« 1 tosrc do

C < dst<0>

for j = 1 to msb do
dst<j-1> <+ dst<j>

dst <msb> < C

31 . 0
Longword: = > 1—J—>E|
15 0
Word: I—~|]———»EI
L — 1.
Byte: [E]

The contents of the destination operand are rotated right one or two bit pcsitions as
specified by the source operand. During rotation, the least-significant bit of the
destination operand is moved to the most-significant bit (msb) and also replaces the
C flag.

If the source operand is omitted from the assembly language statement, the default
value is one.

Flags: C: Set if the last bit rotated from the least-significant bit position was 1; cleared
otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the most-significant bit of the result is set; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed
during rotation; cleared otherwise
D: Unaffected
H: Unaffected
Exceptions: None

Destination

Assembler Language

Addressing Instruction Format!
Mode Syntax
R: RR Rd, #n
RRB Rbd, #n [1o[11001]w] Rd Jo1/s]o|
RRL RRd, #n

01111010 | 00000010
10[110011 | RRd [o1/s]o

6-162

Example:

If register RL6 contains %31 (00110001), executing the instruction
RRB RL6
leaves the value %98 (10011000) in RL6 and sets the C flag to 1.

Note 1: S = 0 for rotation by 1 bit; S = 1 for rotation by 2 bits.

RRC
Rotate Right through Carry

RRC dst, src dst:
RRCB src: IM
RRCL
Operation: for i+ 1 to src do
temp <« C
C + dst<0>
for j < 1 to msb do
dst<j-1> <+ dst<j>
dst<msb> < temp
31 e 0
Longword: | il
15 0
Word: |
L 7 0
Byte: | -
The contents of the destination operand concatenated with the C flag are rotated
right one or two bit positions as specified by the source operand. During rotation,
the least-significant bit of the destination operand replaces the C flag and the
previous value of the C flag is moved to the most-significant bit (msb) position of the
destination.
If the source operand is omitted from the assembly language statement, the default
value is one.
Flags: C: Set if the last bit rotated from the least-significant bit position was 1; cleared
otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the most-significant bit of the result is set; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed

during rotation; cleared otherwise

D: Unaffected
H: Unaffected

Exceptions:

None

Destination
Addressing Asseml;l;;tLainguage Instruction Formatt
Mode
R: RRC Rd, #n
RRCB Rbd, #n [10[11001|w| Ra [11]s]o]
RRCL RRd, #n
01111010 | 00000010
10/ 110011 | RRd [11[s]o

6-164

Example: If the C flag is clear (0) and the register RO contains %00DD (0000000011011101),
executing the instruction
RRC RO,#2
leaves the value %8037 (1000000000110111) in RO and clears the C flag.

Note 1: S = O for rotation by 1 bit; S = 1 for rotation by 2 bits

6-165

RRDB
Rotate Right Digit

RRDB link, dst link: R
dst: R

Operation: temp <3:0> <+ link<3:0>
link<3:0> <+ dst<3:.0>
dst<3:0> <+ dst<7:4>
dst<7:4> <+ temp<3:.0>

7 43[0 7¢|43¢0
link: | | | l | dst:

The low digit of the link byte register is concatenated to the destination byte
register. The resulting three-digit quantity is rotated to the right by one BCD digit
(four bits). The lower digit of the destination is moved to the lower digit of the link,
the upper digit of the destination is moved to the lower digit of the destination, and
the lower digit of the link is moved to the upper digit of the destination. The upper
digit of the link is unaffected.

In multiple-digit BCD arithmetic, this instruction can be used to shift a string of BCD
digits to the right, thus dividing it by a power of ten. The link serves to transfer digits
between successive bytes of the string. This is analogous to the use of the C flag in
multiple precision shifting using the RRC instruction.

The destination and link registers must be distinct.

Flags: C: Unaffected
Z: Set if the link is zero after the operation; cleared otherwise
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected

Exceptions: None
Destination Assembler Language
Addressing Svyntax Instruction Format
Mode y
R: RRDB Rbl, Rbd

[10/111100] Rbd | RbI |

6-166

Example: If location 100 contains the BCD digits 1,2 (00010010), location 101 contains 3,4
(00110100), and location 102 contains 5,6 (01010110)

100 []2] 101 []]

102 |s]s]

executing the sequence of instructions in compact mode

LD R3,#3

LD R2,#100

CLRB RH1
LOOP:

LDB RL1,@R2

RRDB RH1,RL1

LDB @R2,RL1

INC R2

DJNZ R3,LOOP

lIset loop counter for 3 bytes (6
digits)

lIset pointer to high-order digits
lizero-fill high-order digit

llget next two digits

/Ishift digits right one position
lireplace shifted digits
/ladvance pointer

lirepeat until counter is zero

leaves the digits 0,1 (00000001) in location 100, the digits 2,3 (00100011) in location
101, and the digits 4,5 (01000101) in location 102. RH1 contains 6, the remainder

from dividing the string by 10.

100 [o]"] 101 [=]5]

102 [+]s]

In segmented or linear mode, a longword register must be used instead of R2.

SBC

Subtract with Carry
SBC dst, src dst: R
SBCB src: R
SBCL

Operation: dst < dst — src — C

The source operand, along with the setting of the C flag, is subtracted from the
destination operand and the result is stored in the destination. The contents of the
source are not affected. Subtraction is performed by adding the twos complement
of the source operand to the destination operand. In multiple precision arithmetic,
this instruction permits the “‘borrow’’ from the subtraction of low-order operands to
be borrowed from the subtraction of high-order operands.

Flags:

C: Cleared if there is a carry from the most-significant bit of the result; set
otherwise, indicating a borrow

Z: Set if the result is zero; cleared otherwise

S: Set if the result is negative; cleared otherwise

V: Set if arithmetic overflow occurs, that is, if the operands were of opposite signs
and the sign of the result is the same as the sign of the source; cleared
otherwise

D: SBC, SBCL—unaffected; SBCB—set

H: SBC, SBCL—unaffected; SBCB—cleared if there is a carry from the most-
significant bit of the low-order four bits of the result; set otherwise, indicating
a borrow

Exceptions:

None

Source
Addressing
Mode

Assembler Language

Syntax Instruction Format

R:

gggsﬂgbngbs |1°|”°“IWI Rs | Rd |

SBCL RRd, RRs 011110100000 0010
1o|11o111 RRs | RRd

Example:

Quadword subtraction can be done with the following instruction sequence, assum-
ing RQO contains one operand and RQ4 contains the other operand:

SUBL RR2,RR6 /Isubtract low-order longwords
SBCL RRO,RR4 IIsubtract borrow and high-order longwords

If RRO contains % 00000038, RR2 contains % 00004000, RR4 contains % 0000000A
and RR6 contains % FFFFF000, executing the two instructions above leaves the
value %0000002D in RRO and % 00005000 in RR2.

6-168

SC

System Call
SC src src: IM
Operation: SP<+SP -6
@SP < PS
SP«SP -2

@SP < instruction
PS <« System Call PS

This instruction causes a System Call trap for controlled access to operating system
software. The instruction word and the contents of the Program Status registers are
pushed onto the system stack. The source operand, which is contained in the se-
cond byte of the instruction, identifies the particular service requested from the
operating system. The source operand must be in the range from 0 to 255.

Flags: Flags loaded from Program Status Area
Exceptions: System Call trap
Source
Addressing AssembsI;rr“g?(nguage Instruction Format
Mode
IM: SC#n [o1111111 | n |

6-169

SDA

Shift Dynamic Arithmetic

SDA dst, src dst: R
SDAB src: R
SDAL

Operation: if src=0 11 left shift

for i < 1 to src do
C <« dst<msb>
for j < msb down to 1 do
dst<j> < dst<j-1>
dst<0> <0
else for i < 1 to -src do .1l right shift
C <« dst<0>
for j < 1 to msb do
dst<j-1> = dst<j>

Left Right
Byte: E<—-i o|<—o lil 0|—>E
15 0 15 (/]
Word: B‘-I Je—o l’ijl I"E

0 31 0

e re

Longword: |z|<—s|1 :,:_ fe—o l"_lll :,:. F’E

The destination operand is shifted left or right arithmetically the number of bit posi-
tions specified by the source operand, a word register. For right shifts, the most-
significant bit is replicated, and the C flag is loaded from the least-significant bit of
the destination. For left shifts, the least-significant bit is filled with 0 and the C flag
is loaded from the most-significant bit of the destination. A shift of zero positions
does not affect the destination; however, the flags are set according to the destina-
tion value.

The source operand must be in the range from -8 to 8 for SDAB, from -16 to 16 for
SDA or from -32 to 32 for SDAL. If its value is outside the specified range, the
operation is undefined. The source operand is represented as a 16-bit twos comple-
ment value. Positive values specify a left shift, while negative values specify a right
shift.

Flags: C: Set if the last bit shifted from the destination was 1; cleared if the last bit

shifted from the destination was 0 or zero shift was specified

Z: Set if the result is zero; cleared otherwise

S: Set if the result is negative; cleared otherwise

V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed
during shifting; cleared otherwise

D: Unaffected

H: Unaffected

Exceptions: Integer Overflow trap

6-170

Destination
Addressing Assemtg;rr‘tlainguage Instruction Format
Mode
R: SDA Rd, Rs 10/110011| Rd [1011
0000| Rs | 00000000
SDAB Rbd, Rs 10] 110010 Rbd [1011
0000| Rs | 00000000
SDAL RRd, Rs 10|110011 nnd|1111
oooo[Rs | 00000000
Example: If register R5 contains % C705 (1100011100000101) and register R1 contains —2

(%FFFE or 1111111111111110), executing the instruction

SDA R5,R1
performs an arithmetic right shift of two bit positions, leaves the value %F1C1
(1111000111000001) in R5, and clears the C flag.

6-171

SDL

Shift Dynamic Logical

SDL dst, src dst: R
SDLB src: R
SDLL

Operation: if src=0 Il left shift

for i <=1 to src do
C < dst<msb>
for j <= msb down to 1 do
dst<j> <« dst<j-1>
dst <0> <0
else for i < 1 to -src do /I right shift
C <« dst<0>
for j < 1 to msb do
dst<j-1> < dst<j>
dst<msb> <0

Left Right

Byte: E'_L i<— ° 0 —>|7 i-»E

0 15 0

15
Word: E*‘I |‘_° °—’| }"E

e 0

3 0 31
Longword: E*—{ - fe—o o= > |—>E

24 rls

The destination operand is shifted left or right logically the number of bit positions
specified by the source operand, a word register. For right shifts, the most-
significant bit is filled with 0 and the C flag is loaded from the least-significant bit of
the destination. For left shifts, the least-significant bit is filled with 0 and the C flag
is loaded from the most-significant bit of the destination. A shift of zero positions
does not affect the destination; however, the flags are set according to the destina-
tion value.

The source operand must be in the range from -8 to 8 for SDLB, from -16 to 16 for
SDL or from -32 to 32 for SDLL. If its value is outside the specified range, the
operation is undefined. The source operand is represented as a 16-bit twos comple-
ment value. Positive values specify a left shift, while negative values specify a right
shift.

Flags: C: Set if the last bit shifted from the destination was 1; cleared if the last bit
shifted from the destination was 0 or zero shift was specified

: Set if the result is zero; cleared otherwise

: Set if the most-significant bit of the result is set; cleared otherwise

: SDL, SDLL—unaffected; SDLB—set if parity of the result is even; cleared
otherwise

D: Unaffected

H: Unaffected

TON

Exceptions: None

6-172

Destination

Assembler Language

Instruction Format

Addressing
ntax
Mode Synta
R: SDL Rd, Rs 10/ 110011| Rd 0011
0000| Rs | 00000000
SDLB Rbd, Rs
10110010 | Rbd [0011
0000| Rs | 00000000
SDLL RRd, R
° 10[110011 nnd[mn
0000| Rs | 00000000
Example: If register RL5 contains % B3 (10110011) and register R1 contains 4

(0000000000000100), executing the instruction

SDLB RL5,R1

performs a logical left shift of four bit positions, leaves the value %30 (00110000) in

RL5, and sets the C flag.

6-173

SET

Set Bit
SET dst, src dst: R, IR, EAM
SETB src: IM
SETL or
dst: R
src: R
Operation: dst<src> <1
This instruction sets the specified bit within the destination operand to 1 without
affecting any other bits in the destination. The bit number (the source) can be
specified either as an immediate value (static), or as a word register that contains
the value (dynamic). In the dynamic case, the destination operand must be in a
register, and the source operand must be in a word register.
The bit number is a value from 0 to 7 for SETB, 0 to 15 for SET, or 0 to 31 for SETL
with 0 indicating the least-significant bit. Only the lower three bits of the source
operand are used to specify the bit number for SETB, only the lower four bits are
used for SET, and only the lower five bits are used for SETL.
Flags: No flags affected
Exceptions: None

Set Bit Static

Destination
h m .
Addressing Asse bSI;:“I;a;(nguage Instruction Format
Mode
R: SET Rd, #b
SETB Rbd, #b [10[10010[w| Ra | b |
SETL RRd, #0 01111010|0000 0010
1o|1oo1o|b RRdl b
IR: SET @Rd', #b
SET8 ORd" 3 [oo[10010[w|Rdx0| b |
1
SETL @Rd!, #b 01111010|0000 0010
oo|1oo1o|b Rd l b
EAM: SET eam, #b 1)1 1 m b
SETB eam, #b ° I 00 0]W| ea T
1, 2, or 3 extension words
SETL eam, #o 01111010(0000 0010
01[1001o|b eaml b

1, 2, or 3 extension words

6-174

Set Bit Dynamic

Addressing Assembler Language :
Mode Syntax Instruction Format
R: SET Rd, Rs

SETB Rba, Rs 00{10010|w|0000| Rs
ooooj Rd | 00000000

SETL RRd, Rs 01111010(0000 0010
00[100101[0000]| Rs
0000| RRd [0000(0000

Example: If register RL3 contains % B2 (10110010) and register R2 contains the value 6, ex-

ecuting the instruction
SETB RL3, R2
leaves the value %F2 (11110010) in RL3.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

SETFLG

Set Flag
SETFLG flag Flag:C, Z, S, P, V
Operation: FLAGS<7:4> < FLAGS<7:4> OR instruction<7:4>
Any combination of the C, Z, S, P or V flags can be set to 1. If the bit in the instruc-
tion corresponding to a flag is 1, the flag is set; if the bit is 0, the flag is unchanged.
All other bits in the Flags register are unaffected. Note that the P and V flags are
represented by the same bit. There can be one, two, three, or four operands in the
assembly language statement, in any order.
Flags: C: Set if specified; unaffected otherwise
Z: Set if specified; unaffected otherwise
S: Set if specified; unaffected otherwise
PIV: Set if specified; unaffected otherwise
D: Unaffected
H: Unaffected
Exceptions: None
Assembler Language :
Syntax Instruction Format
SETFLG flags [10001101 [czspv|oo01]
Example: If the C, Z, and S flags are all clear (0), and the P flag is set (1), executing the
instruction
SETFLG C

leaves the C and P flags set (1), and the Z and S flags clear (0).

6-176

SLA

Shift Left Arithmetic

SLA dst, src dst: R
SLAB src: IM
SLAL
Operation: for i < 1 to src do
C <+ dst <msb>
for j == msb down to 1 do
dst<j> <+ dst <j-1>
dst <0> <0
7 0
Byte: E<—{ Je—o
15 0
Word: E"‘F |<—°
31 e 0
Longword: <—{ -~ o
The destination operand is shifted left arithmetically the number of bit positions
specified by the source operand. The least-significant bit of the destination is filled
with 0 and the C flag is loaded from the most-significant bit of the destination. A
shift of zero position does not affect the destination; however, the flags are set ac-
cording to the destination value. This operation differs from Shift Left Logical in the
setting of the P/V flag and the detection of an Integer Overflow trap.
The source operand must be in the range from 0 to 8 for SLAB, from 0 to 16 for
SLA, or from 0 to 32 for SLAL. If its value is outside the specified range, the opera-
tion is undefined. The source operand is encoded as an 8- or 16-bit twos comple-
ment number contained in the second word of the instruction. If the source operand
is omitted from the assembly language statement, the default value is 1.
Flags: C: Set if the last bit shifted from the destination was 1; cleared if the last bit shifted
from the destination was 0 or zero shift was specified
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed
during shifting; cleared otherwise
D: Unaffected
H: Unaffected
Exceptions: Integer Overflow trap

6-177

Destination

Assembler Language

Addressing Instruction Format
Mode Syntax
R: SLA Rd, #b 10{110011] Rd |1001
b
SLAB Rbd, #b
10/110010 | Rbd [1001
0 b
SLAL RRd, #b 1o|11oo11| RRd |11o1
b
Example: If longword register RR2 contains % 1234ABCD, executing the instruction

SLAL RR2,#8

leaves the value %34ABCDO00 in RR2 and clears the C flag.

6-178

SLL

Shift Left Logical
SLL dst, src dst. R
SLLB src: IM
SLLL
Operation: for i<+ 1 to src do
C <+ dst<msb>
for j <= msb down to 1 do
dst<j > <+ dst <j-1>
dst <0> <0
7 0
Byte: E——l Je—o
15 0
Word: B«-[J=—o
31 . 0
Longword: E<—| . =0
The destination operand is shifted left logically the number of bit positions specified
by the source operand. The least-significant bit of the destination is filled with 0 and
the C flag is loaded from the most-significant bit of the destination. A shift of zero
position does not affect the destination; however, the flags are set according to the
destination value. This operation differs from Shift Left Arithmetic in the setting of
the P/V flag and the detection of an Integer Overflow trap.
The source operand must be in the range from 0 to 8 for SLLB, from 0 to 16 for
SLL, or from 0O to 32 for SLLL. If its value is outside the specified range, operation is
undefined. The source operand is encoded as an 8- or 16-bit twos complement
number contained in the second word of the instruction. If the source operand is
omitted from the assembly language statement, the default value is one.
Flags: C: Set if the last bit shifted from the destination was 1; cleared if the last bit
shifted from the destination was O or zero shift was specified
Z: Set if the result is zero; cleared otherwise
S: Set if the most-significant bit of the result is set; cleared otherwise
P: SLL, SLLL—unaffected; SLLB—set if parity of the result is even;
cleared otherwise
D: Unaffected
H: Unaffected
Exceptions: None

6-179

Destination
Addressing Assemtg;rr'tlainguage Instruction Format
Mode
R: SLL Rd, #o 10L11oo11| Rd |ooo1
b
SLLB Rod, #0 10/ 110010 | Rbd 0001
0
SLLL RRd, #o 1o|11oo11[and lo101
b
Example: If register R3 contains %4321 (0100001100100001), executing the instruction
SLL R3,#1

leaves the value %8642 (1000011001000010) in R3 and clears the C flag.

6-180

SRA
Shift Right Arithmetic

SRA dst, src dst: R
SRAB src: IM
SRAL
Operation: for i < 1 to src do
C < dst<0>
for j <= 1 to msb do
dst<j-1> <+ dst<j>
7 0
Byte: ‘_3 [|_.E|
15]
Word: |—>_LI | |—>E
31 L. 0
Longword: I:[_l | C J—»B
The destination operand is shifted right arithmetically the number of bit positions
specified by the source operand. The most-significant bit of the destination is
replicated, and the C flag is loaded from the least-significant bit of the destination.
The source operand must be in the range from 1 to 8 for SRAB, from 1 to 16 for
SRA, or from 1 to 32 for SRAL. If its value is outside the specified range, the opera-
tion is undefined. The negative of the source operand is encoded as an 8- or 16-bit
twos complement number contained in the second word of the instruction. If the
source operand is omitted from the assembly language statement, the default value
is one.
Flags: C: Set if the last bit shifted from the destination was 1; cleared otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Cleared
D: Unaffected
H: Unaffected
Exceptions: None

6-181

Destination

Assembler Language

Addressing Instruction Format
Mode Syntax
R: SRA Rd, #o 10{110011] Rd |1001
-b
SRAB Rod, #b 10[110010 | Rbd [1001
0 -b
SRAL RRd, #b 10/ 110011 | RRd [1101
-b
Example: If register RH6 contains % 3B (00111011), executing the instruction

SRAB RH6,#2

leaves the value %O0E (00001110) in RH6 and sets the C flag.

6-182

SRL

Shift Right Logical
SRL dst, src dst. R
SRLB src: IM
SRLL
Operation: for i+ 1 to src do
C < dst<0>
for j == 1 to msb do
dst<j-1> <+ dstgj>
dst<msb> <« 0
7 []
Byte: o—| J-.B
15 [
Word: o—| J——[ﬂ
31 L 0
Longword: o—| ” |—>E
The destination operand is shifted right logically the number of bit positions
specified by the source operand. The most-significant bit of the destination is filled
with 0 and the C flag is loaded from the least-significant bit of the destination.
The source operand must be in the range from 1 to 8 for SRLB, from 1 to 16 for
SRL, or from 1 to 32 for SRL. If its value is outside the specified range, the opera-
tion is undefined. The negative of the source operand is encoded as an 8- or 16-bit
twos complement number contained in the second word of the instruction. If the
source operand is omitted from the assembly language statement, the default value
is one.
Flags: C: Set if the last bit shifted from the destination was 1; cleared otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the most-significant bit of the result is 1; cleared otherwise
P: SRL, SRLL—unaffected; SRLB—set if parity of the result is even;

cleared otherwise
D: Unaffected
H: Unaffected

Exceptions:

None

6-183

Destination
Addressing Assemtéls:‘tléinguage Instruction Format
Mode :
R: SRL Rd, #b 1oL11oo11| Rd10°°1
-b
SRLB Rbd, #b 1o|110010 nba]oom
0 -b
SRLL RRd, #b 10/ 110011 | RRd 0101
-b
Example: If register RO contains %1111 (0001000100010001), executing the instruction
SRL RO,#6

leaves the value %0044 (0000000001000100) in RO and clears the C flag.

6-184

SUB

Subtract
SUB dst, src dst: R
SUBB src: R, IM, IR, EAM
SUBL
Operation: dst - dst — src
The source operand is subtracted from the destination operand and the result is
stored in the destination. The contents of the source are not affected. Subtraction is
performed by adding the twos complement of the source operand to the destination
operand.
Flags: C: Cleared if there is a carry from the most-significant bit; set otherwise, indicating
a borrow
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands were of opposite signs
and the sign of the result is the same as the sign of the source;
cleared otherwise
D: SUB, SUBL—unaffected; SUBB—set
H: SUB, SUBL—unaffected; SUBB—cleared if there is a carry from the most-
significant bit of the low-order four bits of the result; set otherwise, indicating a
borrow
Exceptions: Integer Overflow trap
Source
Addressing Assem%l;:“léinguage Instruction Format
Mode
R: SUB Rd, Rs
SUBB Rbd, Rbs [10]oooo1[w] Rs | Rd |
SUBL RRd, RRs f10{010010] RRs | RRd |
IM: SUB Rd, #data 00[000011[0000] Rd
data
SUBB Rbd, #data 00{000010[0000| Rbd
data data
SUBL RRd, #data 00[010010 [0000| RRd
data (high)
data (low)
IR: SUB Rd, @Rs!

SUBB Rbd, @Rs!

SUBL RRd, @Rs!

{ooloooo1|w|Rs+0| Rd |

{oo[010010 Rs=0] RRd |

Source

Assembler Language

Addressing Instruction Format
Mode Syntax
EAM: SUB Rd, eam
1, 2, or 3 extension words
SUBL RRd, eam 01] 010010| eam | RRd
1, 2, or 3 extension words
Example: If register RO contains %0344, executing the instruction

SUB RO,#%AA

leaves the value %029A in RO.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-186

TCC

Test Condition Code

TCC cc, dst dst: R
TCCB
TCCL

Operation: if cc is satisfied then

dst<0> <« 1

This instruction is used to create a Boolean data value based on the flags set by a
previous operation. The flags in the FCW are tested to see if the specified condition
is satisfied. If the condition is satisfied, then the least-significant bit of the destina-
tion is set. If the condition is not satisfied, bit O of the destination is unaffected. All
other bits in the destination are unaffected by this instruction.

Flags: No flags affected

Exceptions: None

Destination
Addressing Assem%l;;tl;inguage Instruction Format
Mode
R: TCC cc, Rd
1008 o g [10{10111{w] Rd | cc |
TCCL, cc, RRd 01111010(0000/0010
10/101111] RRd | cc
Example: If register R1 contains 0, and the Z flag is set, executing the instruction

TCC EQ,R1
leaves the value 1 in R1.

TEST

Test
TEST dst dst: R, IR, EAM
TESTB
TESTL
Operation: dst OR 0
The destination operand is tested (logically ORed with zero), and the Z, S and P
flags are set according to the result. This operation differs from Test Arithmetic in
the setting of the C and P/V flags. The contents of the destination are not affected.
Flags: C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the most-significant bit of the result is set; cleared otherwise
P: TEST, TESTL—unaffected; TESTB—set if parity of the result is
even; cleared otherwise
D: Unaffected
H: Unaffected
Exceptions: None
Destination
Addressing Assem%l;;tlainguage Instruction Format
Mode
R: TEST Rd
LI [10{oo110{w| Rd [0100]
TESTL RRd f10/011100] RRa [1000]
IR: TEST @Rd!
TETE o foojoo110{w| Rd=0|0100]
TESTL @Rd! loo[011100 |Rd+0 [1000]
EAM: TEST eam
TEST eam 01/o0110/w| eam [0100
1, 2, or 3 extension words
TESTL eam 01/ 011100 eam [1000
1, 2, or 3 extension words
Example: If register R5 contains % FFFF (1111111111111111), executing the instruction
TEST R5 '

sets the S flag, clears the Z flag, and leaves the other flags unaffected.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-188

TESTA

Test Arithmetic

TESTA dst dst: R, IR, EAM
TESTAB
TESTAL

Operation: dst-0

Zero is compared to (subtracted from) the destination operand and the flags are set
according to the result. The contents of the destination are not affected. This opera-
tion differs from Test in the setting of the C and P/V flags. Test Arithmetic must be
used when an arithmetic condition (such as ‘‘greater than”’) is required.

Flags: C: Cleared
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Cleared
D: Unaffected
H: Unaffected
Exceptions: None
Destination
Addressing Assem%letr‘tlaa)\(nguage Instruction Format
Mode y
R: TESTA Rd
TESTAB Rbd [10joo110w| Rra [1100]
TESTAL RRd [10/o11100] RRd [1100]
IR: TESTA @Rd!
TESTAS o foofoo110{w|Rd=0[1100]
TESTAL @Rd' looJo11100|Rdz0[1100]
EAM: TESTA eam
T eaeam 01/00110/w| eam {1100
1, 2, or 3 extension words
TESTAL eam 01/011100] eam [1100
1, 2, or 3 extension words
Example: If register RO contains — 1 (%FFFF) executing the two instructions
TESTA RO

JR LE,NEG_OR_ZERO

transfers control to the instruction at label NEG_OR__ZERO. Note that using TEST instead
of TESTA would require two JR instructions for equivalent effect because conditions involving
the V flag cannot be used following TEST.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-189 -

TRAP

Conditional Trap
TRAP cc, src src: IM
Operation: if cc is satisfied then

SP < SP-6

@ SP - PS

SP <+ SP-2

@ SP < instruction

PS <+ Conditional Trap PS

If the condition specified by ‘““cc” is satisfied by the flags in the FCW, this instruc-
tion causes a Conditional trap. The instruction and the contents of the Program
Status registers are pushed onto the system stack. The source operand, which is
contained in bits 7 to 4 of the instruction, identifies the particular cause of the trap.
The source operand must be in the range from O to 15. This instruction is used for
the generation of exceptions detected by software, such as an overflow on decimal
arithmetic.

Flags: Flags loaded from Program Status Area
Exceptions: Conditional trap
Source
Addressing Assembsl;frr‘tlainguage Instruction Format
Mode
IM: TRAP cc, #n fo1111110] n | cc |

6-190

TRDB

Translate and Decrement

Operation:

TRDB dst, src, r dst: IR
src: IR

dst <+ src[dst]
AUTODECREMENT dst by 1
rer—1

This instruction is used to translate a string of bytes from one code to another. The
contents of the location addressed by the destination register (the ‘‘target byte’’) are
used as an unsigned index into a translation table whose base address is contained
in the source register. An effective address is calculated by adding the zero-
extended target byte to the translation table base address using the rules for ad-
dress arithmetic in the current mode of address representation: compact,
segmented, or linear. The effective address is the location of the translated value
used to replace the original contents of the target byte.

The destination register is then decremented by one, thus moving the pointer to the
previous element in the string. The word register specified by “‘r’’ (used as a
counter) is then decremented by one. The source register is unchanged. The
source, destination, and counter registers must be distinct, non-overlapping
registers. The translation table contains up to 256 bytes, one for each possible value
of the target byte. The size of the translation table may be reduced when it is known
that some target byte values will not occur.

Flags:

C: Unaffected
Z: Unaffected
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Exceptions:

None

Adﬂggﬁ'"g AssembsI;:;tI;inguage Instruction Format
. @ @
IR: TRDB @Rd', @Rs', r 10[111000 | Rd=0[1000
0000 r Rs+0{ 0000
Example: In linear mode, if register RR6 contains % 00004001, the byte at location

% 00004001 contains 3, register RR20 contains %00001000, the byte at location
% 00001003 contains %AA, and register R12 contains 2, executing the instruction

TRDB @RR6, @RR20, R12

leaves the value %AA in location %00004001, the value %00004000 in RR6, and
the value 1 in R12. RR20 is not affected. The V flag is cleared. In compact mode,
word registers must be used instead of RR6 and RR20.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-191

TRDRB

Translate, Decrement and Repeat

Operation:

TRDRB dst, src, r dst: IR
src: IR

repeat
dst <+ src [dst]
AUTODECREMENT dst by 1
r<r—1

untilr =0

This instruction is used to translate a string of bytes from one code to another. The
contents of the location addressed by the destination register (the ‘‘target byte”’) are
used as an unsigned index into a translation table whose base address is contained
in the source register. An effective address is calculated by adding the zero-
extended target byte to the translation table base address using the rules for ad-
dress arithmetic in the current mode of address representation: compact,
segmented, or linear. The effective address is the location of the translated value
used to replace the original contents of the target byte.

The destination register is the decremented by one, thus moving the pointer to the
previous element in the string. The word register specified by “‘r’”’ (used as a
counter) is then decremented by one. The source register is unchanged. The entire
operation is repeated until the result of decrementing r is zero. This instruction can
translate from 1 to 65,536 bytes. The source, destination, and counter registers
must be distinct and non-overlapping registers. The translation table contains up to
256 bytes, one for each possible value of the target byte. The size of the translation
table may be reduced when it is known that some target byte values will not occur.

This instruction can be interrupted after each execution of the basic operation.

Flags:

: Unaffected
Unaffected
: Unaffected
Set

: Unaffected
: Unaffected

TO<ONO

Exceptions:

None

Addressing

Mode

Assembler Language

Syntax Instruction Format

IR:

TRDRB @Rd', @Rs!, r 10[111000 [Rd=0[1100
0000 r |Rsz0[0000

6-192

Example:

In compact mode, if register R6 contains %4002, the bytes at locations %4000
through %4002 contain the values %00, %40, %80, respectively, register RS con-
tains % 1000, the translation table from location % 1000 through % 10FF contains O,
1,2, .., %7F, 0,1, 2, .., %7F (the second zero is located at % 1080), and register
R12 contains 3, executing the instruction

TRDRB @R6, @R9, R12

leaves the values %00, %40, %00 in byte locations %4000 through %4002,

respectively. Register R6 contains % 3FFF, and R12 contains 0. R9 is not affected.
The V flag is set. In segmented or linear mode, longword registers must be used in-
stead of R6 and R9.

%4000
%4001
%4002

%4000
%4001
%4002

BEFORE

00000000

01000000

10000000

AFTER

00000000

01000000

00000000

%1000
%1001
%1002

.

.

.
%107F
%1080
%1081
%1082

.

.

.

%10FF

00000000

00000001

00000010

01111111

00000000

00000001

00000010

01111111

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-193

TRIB

Translate and Increment

TRIB dst, src, r dst: IR
src: IR

Operation: dst <+ src[dst]
AUTOINCREMENT dst by 1
rer—1
This instruction is used to translate a string of bytes from one code to another. The
contents of the location addressed by the destination register (the ‘‘target byte’’) are
used as an unsigned index into a translation table whose base address is contained
in the source register. An effective address is calculated by adding the zero-
extended target byte to the translation table base address using the rules for ad-
dress arithmetic in the current mode of address representation: compact,
segmented, or linear. The effective address is the location of the translated value
used to replace the original contents of the target byte.
The destination register is then incremented by one, thus moving the pointer to the
next element in the string. The word register specified by ‘‘r”’ (used as a counter) is
then decremented by one. The source register is unchanged. The source, destina-
tion, and counter registers must be distinct and non-overlapping registers. The
translation table contains up to 256 bytes, one for each possible value of the target
byte. The size of the translation table may be reduced when it is known that some
target byte values will not occur.

Flags: C: Unaffected
Z: Unaffected
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Exceptions:

None

Addressing Assembler Language .
Mode Syntax Instruction Format
IR TRIB @Rd', @Rs', r

10/ 111000 | Rd=00000
0000 r [Rsz0[0000

6-194

Example:

This instruction can be used in a "‘loop’ of instructions that translate a string of
data from one code to another code, but an intermediate operation on each data
element is required. The following sequence translates a string of 1000 bytes to the
same string of bytes, with all ASCII “control characters’ (values less than 32)
translated to the ‘‘blank’ character (value = 32). A test, however, is made for the
special character “‘return’” (value = 13) which terminates the loop. The translation
table contains 256 bytes. The first 33 (0-32) entries all contain the value 32, and all
other entries contain their own index in the table, counting from zero. This example
assumes compact mode. In segmented or linear mode, longword registers must be
used instead of R4 and R5.

LD

LDA

LDA
LOOP:

DONE:

R3, #1000
R4, STRING
R5, TABLE

@R4, #13
EQ, DONE

@R4, @R5, R3

NOV, LOOP

TABLE +0
TABLE +1
TABLE +2

.

.

.
TABLE +32
TABLE +33
TABLE +34

o

.

K

TABLE +255

00100000

00100000

00100000

00100000

00100001

00100010

11111111

/linitialize counter
/lload start addresses

llcheck for return character
Ilexit loop if found
Iltranslate next byte
Ilrepeat until counter = 0

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-195

TRIRB

Translate, Increment and Repeat

TRIRB dst, src, r dst: IR
src: IR

Operation: repeat
dst < src[dst]
AUTOINCREMENT dst by 1
rer—1
untilr =0

This instruction is used to translate a string of bytes from one code to another. The
contents of the location addressed by the destination register (the ‘‘target byte’’) are
used as an unsigned index into a translation table whose base address is contained
in the source register. An effective address is calculated by adding the zero-
extended target byte to the translation table base address using the rules for ad-
dress arithmetic in the current mode of address representation: compact,
segmented, or linear. The effective address is the location of the translated value
used to replace the original contents of the target byte.

The destination register is then incremented by one, thus moving the pointer to the
next byte in the string. The word register specified by *‘r’’ (used as a counter) is
then decremented by one. The source register is unchanged. The entire operation is
repeated until the result of decrementing r is zero. This instruction can translate
from 1 to 65,536 bytes. The source, destination, and counter registers must be
distinct and non-overlapping registers. The translation table contains up to 256
bytes, one for each possible value of the target byte. The size of the translation
table may be reduced when it is known that some target byte values will not occur.

This instruction can be interrupted after each execution of the basic operation.

Flags: C: Unaffected
Z: Unaffected
S: Unaffected
V: Set
D: Unaffected
H: Unaffected
Exceptions: None
Addressing Assembler Language :
Mode Syntax Instruction Format
IR: TRIRB @Rd', @Rs!, r 10{ 111000 [Rd#0[0100
0000 r |Rs#0{0000

6-196

Example:

The following sequence of instructions can be used to translate a string of 80 bytes
from one code to another. The pointers to the string and the translation table are
set, the number of bytes to translate is set, and then the translation is accom-
plished. After executing the last instruction, the V flag is set. The example assumes
compact mode. In segmented or linear mode, longword registers must be used in-
stead of R4 and R5.

LDA R4, STRING
LDA R5, TABLE
LD RS, #80
TRIRB @R4, @R5, R3

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-197

TRTDB

Translate, Test and Decrement

Operation:

TRTDB srcl, src2, r src1: IR
src2: IR

RH1 < src2[src1]
AUTODECREMENT src1 by 1
rer—1

This instruction is used to scan a string of bytes, testing for bytes with special
values. The contents of the location addressed by the first source register (the
“target byte'’) are used as an unsigned index into a translation table whose base ad-
dress is contained in the second source register. An effective address is calculated
by adding the zero-extended target byte to the base address using the current mode
of address representation: compact, segmented, or linear. The effective address is
the location of the translated value that is loaded into register RH1. The setting of
the Z flag indicates whether or not the translated value is zero.

The first source register is then decremented by one, thus moving the pointer to the
previous byte in the string. The word register specified by *'r”’ (used as a counter) is
then decremented by one. The second source register is unchanged. The source
and counter registers must be distinct, non-overlapping registers. The translation
table contains up to 256 bytes, one for each possible value of the target byte. The
size of the translation table may be reduced when it is known that some target byte
values will not occur.

Flags:

: Unaffected

» Set if the translated value loaded into RH1 is zero; cleared otherwise
: Unaffected

: Set if the result of decrementing r is zero; cleared otherwise

: Unaffected

: Unaffected

ITO<ONO

Exceptions:

None

Addressing
Mode

Assembler Language

Syntax Instruction Format

IR:

TRTDB @Rs11, @Rs2, r 10{111000 | Rs120[1010

oooo| r [Rs2+0|0000

Example:

In compact mode, if register R6 contains %4001, the byte at location %4001 con-
tains 3, register R9 contains % 1000, the byte at location % 1003 contains %AA,
and register R12 contains 2, executing the instruction

TRTDB @Rs6, @R9, R12
leaves the value %AA in RH1, the value %4000 in R6, and the value 1 in R12.

Location %4001 and register R9 are not affected. The Z and V flags are cleared. In
segmented or linear mode, longword registers must be used instead of R6 and R9.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-198

TRTDRB

Translate, Test, Decrement and Repeat

Operation:

TRTDRB srci, src2, r src1: IR
src2: IR

repeat
RH1 <= src 2[src1]
AUTODECREMENT src1 by 1
rer—1

untii RH1 # 0orr =0

This instruction is used to scan a string of bytes, testing for bytes with special
values. The contents of the location addressed by the first source register (the
‘“target byte’’) are used as an unsigned index into a translation table whose base ad-
dress is contained in the second source register. An effective address is calculated
by adding the zero-extended target byte to the base address using the current mode
of address representation: compact segmented, or linear. The effective address is
the location of the translated value that is loaded into register RH1. The setting of
the Z flag indicates whether or not the translated value is zero.

The first source register is then decremented by one, thus moving the pointer to the
previous byte in the string. The word register specified by ‘‘r’’ (used as a counter) is
then decremented by one. The entire operation is repeated until either a non-zero
value is loaded into RH1 or the result of decrementing r is zero. This instruction can
translate and test from 1 to 65,536 bytes. The second source register is unchanged.
The source and counter registers must be distinct and non-overlapping registers.
The translation table contains up to 256 bytes, one for each possible value of the
target byte. The size of the translation table may be reduced when it is known that
some target byte values will not occur.

This instruction can be interrupted after each execution of the basic operation.

Flags:

: Unaffected

Set if the translated value loaded into RH1 is zero; cleared otherwise
: Unaffected

: Set if the result of decrementing r is zero; cleared otherwise

» Unaffected

: Unaffected

TO<ONO

Exceptions:

None

Addressing
Mode

Assembler Language

Syntax Instruction Format

TRTDRB @Rs1',@Rs2' r 10111000 |Retx0[1110
0000 r |Rs220[1110

6-199

Example:

In compact mode, if register R6 contains %4002, the bytes at locations % 4000
through %4002 contain the values %00, %40, %80, repectively, register R9 con-
tains % 1000, the translation table from location % 1000 through % 10FF contains 0,
1,2, .., %7F,0,1,2, .. %7F (the second zero is located at % 1080), and register
R12 contains 3, executing the instruction

TRTDRB @R6, @R9, R12

leaves the value %40 in RH1 (which was loaded from location % 1040). Register R6
contains %4000, and R12 contains 1. R9 is not affected. The Z and V flags are
cleared. In segmented or linear mode, longword registers must be used instead of
R6 and R9.

%1000 |00000000

%4000 J|00000000 %1001 00000001
%4001 01000000 %1002 |00000010
%4002 110000000 . .

%107F O 1111111
%1080 |00000000
%1081 | 00000001
%1082 | 00000010

. .

%10FF 01111111

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-200

TRTIB

Translate, Test and Increment

Operation:

TRTIB srct, src2, r src1: IR
src2: IR

RH1 < src2[srci]
AUTOINCREMENT src1 by 1
rer—1

This instruction is used to scan a string of bytes, testing for bytes with special
values. The contents of the location addressed by the first source register (the
‘‘target byte’’) are used as an unsigned index into a translation table whose base ad-
dress is contained in the second source register. An effective address is calculated
by adding the zero-extended target byte to the base address using the current mode
of address representation: compact, segmented, or linear. The effective address is
the location of the translated value that is loaded into register RH1. The setting of
the Z flag indicates whether or not the translated value is zero.

The first source register is then incremented by one, thus moving the pointer to the
next byte in the string. The word registers specified by “‘r'’ (used as a counter) is
then decremented by one. The second source register is unchanged. The source
and counter registers must be distinct and non-overlapping registers. The transiation
table contains up to 256 bytes, one for each possible value of the target byte. The
size of the translation table may be reduced when it is known that some target byte
values will not occur.

Flags:

C: Unaffected

Z: Set if the translated value loaded into RH1 is zero; cleared otherwise
S: Unaffected

V: Set if the result of decrementing r is zero; cleared otherwise

D: Unaffected

H: Unaffected

Exceptions:

None

Addressing Assembler Language .
Mode Syntax Instruction Format
IR: TRTIB @Rs11, @Rs2!, 1 10{111000 |Rs120[0010

0000 r [Rs220/0000

Example:

This instruction can be used in a ““loop” of instructions which transiate and test a
string of data, but an intermediate operation on each data element is required. The
following sequence outputs a string of 72 bytes, with each byte of the original string
translated from its 7-bit ASCII code to an 8-bit value with odd parity. Lower case
characters are translated to upper case, and any embedded control characters are
skipped over. The translation table contains 128 bytes, which assumes that the most
significant bit of each byte in the string to be translated is always zero. The first 32
entries and the 128th entry are zero, so that ASCIl control characters and the
‘‘delete’’ character (% 7F) are suppressed. The given instruction sequence is for
compact mode. In segmented or linear mode, longword registers must be used in-
stead of R3 and R4.

LD RS, #72 [linitialize counter
LDA R3, STRING /lload start address
LDA R4, TABLE
LOOP:
TRTIB @R3,@ R4, R5 /ltranslate and test next byte
JR Z, LOOP IIskip control character
OouTB PORTn, RH1 lloutput characters
JR NOV, LOOP [Irepeat until counter = 0
DONE:

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-202

TRTIRB

Translate, Test, Increment and Repeat

Operation:

TRTIRB src1, src2, r src1: IR
src2: IR

repeat
RH1 < src2[src1]
AUTOINCREMENT src1 by 1
r<er—1

untiiRH1 £ Qorr =0

This instruction is used to scan a string of bytes, testing for bytes with special
values. The contents of the location addressed by the first source register (the
‘‘target byte’’) are used as an unsigned index into a translation table whose base ad-
dress is contained in the second source register. An effective address is calculated
by adding the zero-extended target byte to the base address using the current mode
of address representation: compact, segmented, or linear. The effective address is
the location of the translated value that is loaded into register RH1. The setting of
the Z flag indicates whether or not the translated value is zero.

The first source register is then incremented by one, thus moving the pointer to the
next byte in the string. The word register specified by ‘‘r’’ (used as a counter) is
then decremented by one. The entire operation is repeated in until either a non-zero
value is loaded into RH1 or the result of decrementing r is zero. This instruction can
translate and test from 1 to 65,536 bytes. The second source register is unchanged.
The source and counter registers must be distinct and non-overlapping registers.
The translation table contains up to 256 bytes, one for each possible value of the
target byte. The size of the translation table may be reduced when it is known that
some target byte values will not occur.

This instruction can be interrupted after each execution of the basic operation.

Flags:

C: Unaffected

Z: Set if the translated value loaded into RH1 is zero; cleared otherwise
S: Unaffected

V: Set if the result of decrementing r is zero; cleared otherwise

D: Unaffected

H: Unaffected

Exceptions:

None

Addressing
Mode

Assembler Language

Syntax Instruction Format

TRTIRB @Rs1', @Rs21, r 10/111000 |Rstz0{0110

oooo[r |Rs2#0[1110

6-203

Example:

The following sequence of instructions can be used in compact mode to scan a
string of 80 bytes, testing for special characters as defined by corresponding non-
zero translation table entry values. The pointers to the string and translation table
are set, the number of bytes to scan is set, and then the translation and testing is
done. The Z and V flags can be tested after the operation to determine if a special
character was found and whether the end of the string has been reached. The
translation value loaded into RH1 can then be used to index another table, or to
select one of a set of sequences of instructions to execute. In segmented or linear
mode, longword registers must be used instead of R4 and R5.

LDA R4, STRING
LDA R5, TABLE
LD R6, #80
TRTIRB @R4, @R5, R6

JR NZ, SPECIAL
END_OF_STRING: .

SPECIAL:
JR OV,LAST__CHAR__SPECIAL

LAST__CHAR__SPECIAL:

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-204

TSET

Test and Set

Operation:

TSET dst
TSETB
TSETL

S < dst<msb>
dst < -1

dst: R, IR, EAM

This instruction tests the most-significant bit of the destination operand, copying its
value into the S flag, then sets the entire destination to all 1 bits. It provides a lock-
ing mechanism for synchronizing software processes that require exclusive access
to certain data or instructions at one time. No other interlocked accesses are per-
mitted to the destination memory location between fetching and storing the resulit.

Flags:

: Unaffected
Unaffected

: Unaffected
: Unaffected
: Unaffected

TOU<ONO

: Set if the most-significant bit of the destination was 1; cleared otherwise

Exceptions:

None

Destination

Assembler Language

Addressing Instruction Format
Mode Syntax
R: TSET Rd 11
T [10joo110{w| Ra [0110]
TSETL RRd 01111010 (0000[0010
10/001101] RRd [0110
IR: TSET @Rd"
LAl [00]o0110/w|Rd #0]0110]
TSETL @Rd' 01111010|0000[0010
00[001101|Rd200110
EAM: TSET eam
TSET eam 01/00110/w| eam [0110
1, 2, or 3 extension words
TSETL eam

01111010|0000/0010
01Loo11o1 eam |0110

1, 2, or 3 extension words

Example:

A simple mutually-exclusive critical region can be implemented by the following
sequence of statements:

ENTER:
TSET SEMAPHORE
JR MILENTER /lloop until resource con-
. /itrolled by SEMAPHORE
/lis available

llcritical region—only one software process
llexecutes this code at a time

CLR SEMAPHORE //release resource controlled
/lby SEMAPHORE

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-206

XOR

Exclusive Or

XOR dst, src dst: R
XORB src: R, IM, IR, EAM
XORL

Operation: dst <« dst XOR src
A logical XOR operation is performed between the corresponding bits of the source
and destination operands, and the result is stored in the destination. A 1 bit is stored
wherever the corresponding bits in the two operands differ; otherwise a 0 bit is
stored. The contents of the source are not affected.

Flags: C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the most-significant bit of the result is set; cleared otherwise
P: XOR, XORL—unaffected; XORB—set if parity of the result is even;

cleared otherwise
D: Unaffected
H: Unaffected
Source
Addressing AssembsI%tI;inguage Instruction Format
Mode
R: XOR Rd, Rs
XORB Rbd, Rbs [10Jootoolw] Rs | Rd |
XORL RRd, RRs 01111010|0000]/0010
10[001001| RRs | RRd
IM: XOR Rd, #data 00/001001/0000| Rd
data

RB Rod,
XORB Rbd, #data 00/ 0010000000/ Rbd

data data

XORL RRd, #data 01111010|0000|0010

00/001001(0000| RRd
data (high)

data (low)

6-207

Source
Addressing Assem%l;:rr“l;?(nguage Instruction Format
Mode
IR: XOR Rd, @Rs!
XORB Rbd, @Rs' |oo|oo1oo|w| Rs#0| Rd |
XORL RRd, @Rs!
s 01111010[0000(|0010
00[001001[Rs0| RRd
EAM: XOR Rd, eam
XORB Rbd, eam 01]00100[W| eam | Rd
1, 2, or 3 extension words
XORL RRd, eam 01111010[0000]/0010
o1| 001001| eam | RRd
1, 2, or 3 extension words
Example: If register RL3 contains %C3 (11000011) and the source operand is the immediate

value %7B (01111011), executing the instruction
XORB RL3,#%7B
leaves the value %B8 (10111000) in RLS.

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-208

6.6 EPA Instruction Templates

There are seven templates for EPA instructions.
If the Extended Processing Architecture enable bit
(EPA) in the Flag and Control Word is set when the
CPU encounters one of the instruction templates,
the CPU transfers the instruction and operands to
the EPU. The CPU merely transfers the operands to
the EPU, but does not process them in any way.

Each type of EPU has its own mnemonics, opcodes,
and exceptions to represent its particular data
processing operations. The shaded portions of the
instruction template shown below are ignored by
the CPU; they are used by an EPU to specify its
particular operations. The two least-significant
bits of the first word of the instruction tem-

that selects one of up to four possible EPUs in
the system. When an EPU detects an exception, it
signals the CPU through one of the interrupt
request pins. For examples of EPU mnemonics,
opcodes, and exceptions, see the 28070 Floating
Point Processor Technical Manual (Zilog document
03-8226-01).

The instruction templates shown below correspond
to the data transfer operations performed by the
CPU. Data can be transferred between an EPU and
memory, EPU and CPU general-purpose registers, or
between an EPU and the CPU flags byte register.
The last template is for EPU internal operations
that require no data transfers.

plates are reserved to encode an identifier field

Extended Instruction
Load Memory from EPU

Operation: Memory < EPU (n bytes or words)
The CPU calculates the effective address and generates transactions on the exter-
nal interface for an EPU to write n words or bytes of data to memory. The value in
the instruction field for the number of words or bytes loaded (“‘n’’) is one less than
the actual value of the source operand. Thus, the coding in the instruction field
ranges from 0 to 15, which corresponds to loading 1 to 16 words or bytes.
Flags: No flags affected.
Exceptions: Extended Instruction trap
Destination .
Addressing Operation Instruction Format
Mode
IR: ©@Rd! == EPU 00{00111|W|Rd=0 |11
n-1
EAM: EPU <= eam 01/00111|w| eam [11N\
n-1
1, 2, or 3 extension words

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-209

Extended Instruction
Load EPU from Memory

Operation: EPU < Memory (n bytes or words)

The CPU calculates the effective address and generates transactions on the exter-
nal interface to read n words or bytes of data from memory to an EPU. The value in
the instruction field for the number of words or bytes loaded (‘'n’’) is one less than
the actual value of the source operand. Thus, the coding in the instruction field
ranges from 0 to 15, which corresponds to loading 1 to 16 words or bytes. When Im-
mediate addressing mode is used for an odd number of bytes, an extra byte contain-
ing Os is included at the end of the instruction, making the instruction length an in-
tegral number of words.

Flags: No flags affected.
Exceptions: Extended Instruction trap
Source .
Addressing Operation Instruction Format
Mode
: EPU < # dat
M # data 00[00111/w[0000[01N\
n-1
n data words or bytes
IR: EPU < @Rs!
00{00111/W| Rs=0 [0 1
n-1
EAM: EPU <~ eam o1loo111 wl eam o1k
n-1
1, 2, or 3 extension words

Note 1: Word register in compact mode, longword register in segmented or linear modes.

6-210

Extended Instruction

Load CPU from EPU
Operation: CPU < EPU registers (n words)
The contents of n words are transferred from an EPU to consecutive CPU registers
starting with the specified destination register. The value in the instruction field for
the number of words loaded (‘‘n”’) is one less than the actual value of the source
operand. Thus, the coding in the instruction field ranges from 0 to 15, which cor-
responds to loading 1 to 16 words.
For the word operand version, the CPU word registers (RO - R15) are loaded. RO
follows R15 in consecutive order.
For the longword operand version, the CPU longword registers (RRO - RR30) are
loaded. RRO follows RR30 in consecutive order. If the number of loaded words is
odd, then the low-order halt of the last longword register loaded is undefined after
executing this instruction.
Flags: No flags affected.
Exceptions: Extended Instruction trap
Destination . .
Addressing Operation Instruction Format
Mode
R: Rd < EPU 10[001111 00
w dst n-1
RRd < EP
T ERU 10{ 001111 0 1
N\ RRd n-1

6-211

Extended Instruction
Load EPU from CPU

Operation:

EPU < CPU registers (n words)

The contents of n words are transferred to an EPU from consecutive CPU registers
starting with the specified source register. The value in the instruction field for the
number of words loaded (‘‘n”’) is one less than the actual value of the source
operand. Thus, the coding in the instruction field ranges from 0 to 15, which cor-
responds to loading 1 to 16 words.

For the word operand version, the EPU is loaded from CPU word registers (RO -
R15). RO follows R15 in consecutive order.

For the longword operand version, the EPU is loaded from CPU longword registers
(RRO - RR30). RRO follows RR30 in consecutive order. If the number of loaded
words is odd, then the low-order word of the last longword register is not involved in
the loading.

Flags: No flags affected.
Exceptions: Extended Instruction trap
Source]
Addressing Operation Instruction Format
Mode
R: EPU <~ Rs 10[001111 10
N src n-1
EPU <~ RRd 10[001111 11
] RRd n—1

6-212

Extended Instruction
Load FCW from EPU

Operation: Flags < EPU

The flags in the CPU’s Flag and Control Word are loaded with information from an
EPU. Only the flag bits are loaded; bits 0 and 1 of the Flag and Control Word are

unaffected.
Flags: Flags loaded from EPU.
Exceptions: Extended Instruction trap
Operation Instruction Format
FCW < EPU

10]001110 00

Noooo 0000

Extended Instruction Extended Instruction
Load EPU from FCW Load EPU from FCW

Operation: EPU <« Flags

The flag byte of the CPU’s Flag and Control Word is transferred to an EPU.

Flags: No flags affected.
Exceptions: Extended Instruction trap
Operation Instruction Format
EPU < FCW

10001110 10

N\ 0000 0000

6-213

Extended Instruction
Internal EPU Operation

Operation: Internal EPU Operation

This template is for an EPU internal operation, one which requires no data transfers.

Flags: No flags affected.

Exceptions: Extended Instruction trap

Instruction Format

10 001110§&\ 01

6-214

Chapter 7.
Instruction Execution and
Exceptions

7.1 INTRODUCTION

To execute an instruction, the CPU fetches the
instruction whose address is in the Program
Counter (PC), increments the PC by the length of
the instruction, and performs the operations
specified in Chapter 6 for the particular
instruction. Exceptions are conditions or events
that alter the sequence of instruction execution.
The CPU recognizes four types of exceptions:
reset, bus error, interrupts, and traps.

A reset exception occurs when the RESET line is
activated, Reset initializes the CPU. A bus
error exception occurs when external hardware
indicates an irrecoverable error during a data
transfer on the external interface. An interrupt
is an asynchronous event indicated when the NMI,
Vi, or NVI line is activated. Interrupts are
typically caused by peripheral devices that
require attention. A trap occurs synchronously
when a particular condition, such as integer
overflow, is detected by the CPU during
instruction execution.

When an exception occurs, the CPU stores the Pro-
gram Status on the system stack, fetches the new
Program Status from the Program Status Area, and
resumes executing instructions. This chapter
describes instruction execution and exception
processing.

7.2 OPERATING STATES

The CPU is always in one of four possible operat-
ing states regarding instruction execution and
exception processing: reset, exception process-
ing, instruction executing, or halted. Figure 7-1
shows the four states and the transitions between
them.

The CPU enters the reset state from any other
state when a reset request is signalled on the
RESET 1line. When RESET is released, the CPU
enters exception processing state. The reset
state is described in more detail in Section 8.10.

RESET LOW

RESET HIGH

PROGRAM STATUS
FETCH COMPLETED

EXCEPTION
PROCESSING

INSTRUCTION
EXECUTING

EXCEPTION

BUS
ERROR

HALT
INTERRUPT INSTRUCTION

-Figure 7-1. Operating States

In the exception processing state, the CPU is
either storing values from the Program Status reg-
isters to memory or fetching values from memory
for the Program Status registers. The storing and
fetching of Program Status is described in Section
7.4.5. From the exception processing state the
CPU normally enters the instruction executing
state; however, a bus error exception causes a
transition to the halted state.

In the instruction executing state, the CPU exe-
cutes instructions. When the Halt instruction is
executed, the CPU enters the halted state. If an
exception other than reset occurs, the CPU enters
the exception processing state.

In the halted state the CPU is halted; it is
neither executing instructions nor processing
exceptions. When an interrupt occurs, the CPU
enters the exception processing state.

8225-016

7-1

Instruction Execution and Exceptions

7.3 INSTRUCTION EXECUTION

Executing an instruction involves the following
operations:

Fetch the instruction

Increment PC

Fetch operands, if necessary
Calculate results

Store results and flags, if necessary

In concept, the CPU executes instructions by per-
forming all the operations listed above in strict
sequence for one instruction, and then beginning
execution of the next instruction. However, the
CPU checks for exceptions at several points during
instruction execution. An exception can alter the
operations for an instruction currently being exe-
cuted, as well as the sequence from one instruc-
tion to the next. Also, the CPU overlaps the
operations for executing several instructions in a
multiple-stage pipeline. That is, while the CPU
is calculating the results for one instruction, it
can be storing the results for the previous
instruction and fetching the operands for the next
instruction. The use of an instruction pipeline,
rather than completely executing each instruction
in strict sequence, enhances the performance of
the CPU.

This section describes the effects of exceptions
and the pipeline on instruction execution.
Section 7.3.1 explains how different exceptions
affect instruction execution, and Section 7.3.2
explains how the pipeline affects instruction
execution.

7.3.1 Instruction Ending

Instruction execution can end in any of five ways:
completion, suspension, suspension with PC modifi-
cation, termination, or partial completion. Gen-
erally, an instruction ends in completion; how-
ever, exceptions can cause a different
conclusion. Section 7.4 explains each exception
recognized by the CPU, and refers to the different
types of instruction endings described here.

When an instruction ends in completion, the CPU
has completely executed the instruction and all
previous instructions. Any result operands and
flags modified by the instruction have been
stored, and the PC holds the address of the next
instruction to execute. If an exception occurs
after an instruction ends in completion, the Pro-
gram Status saved on the system stack can be
restored wusing the Interrupt Return (IRET)
instruction. Execution will then resume with the

next instruction in sequence following the com-
pleted instruction.

When an instruction ends in suspension or suspen-
sion with PC modification, the CPU has not com-
pletely executed the instruction, but all previous
instructions have been completed. Any flags and
destination operands due to be stored by the
instruction may be modified; however, only modifi-
cations that allow the instruction to be completed
are possible. Also, an instruction that ends in
suspension or suspension with PC modification will
not have modified any control registers, memory
locations, or peripheral ports that are protected
from access in the current operating mode.

Examples:

1. An Add (ADDB) instruction modifies the flags,
but does not examine the flags. 1If an ADDB
instruction ends in suspension because of an
address translation exception, the flags may
be modified.

2. A Load (LD) instruction can store into a reg-
ister whose contents are required for an
effective address calculation, e.g., LDL RR2,
@RR2. If the LD instruction ends in suspen-
sion because of an address translation excep-
tion, the register contents are unmodified.

When an instruction ends in suspension, the PC
holds the address of the first word of the
instruction. When an instruction ends in suspen-
sion with PC modification, the PC holds the
address of the word following the first word of
the instruction.

An instruction ends in suspension, or suspension
with PC modification, when the CPU detects a trap
condition, such as an address translation excep-
tion or unimplemented instruction, before com-
pletely executing the instruction. An instruction
ending in suspension can be completed by eliminat-
ing the trap condition and restoring the Program
Status saved on the system stack using the IRET
instruction. An instruction ending in suspension
with PC modification can be completed by eliminat-
ing the trap condition, decrementing the PC value
stored on the system stack by two using the mode
of address representation in effect for the sus-
pended instruction, and restoring the Program
Status using the IRET instruction.

When an instruction ends in termination, the CPU
has not completely executed the instruction, but
all previous instructions have been completed.
Any flags and destination operands due to be
stored by the instruction may be modified; the

7-2

Instruction Execution and Exceptions

contents of PC are undefined. A terminated
instruction will not have modified any control
registers, memory locations, or peripheral ports
that are protected from access in the current
operating mode. It is not possible to complete an
instruction that ends in termination. Only reset
and bus error cause instruction termination.

Only interruptible instructions can end in partial
completion. Interruptible instructions are the
"repeat" versions of block transfer, string manip-
ulation, and input/output instructions (Sections
6.2.8 and 6.2.9). Interruptible instructions are
repeatedly executed until a specified data value
is found for one of the operands, or a counter
held in a register is decremented to zero. While
the CPU is executing an interruptible instruction,

if an Address Translation trap or interrupt
occurs; the instruction ends in partial
completion. Any flags and destination operands

due to be stored by the
modified; however, the values stored in the
counter and address registers allow the
instruction to be completed correctly when the
instruction is re-executed. The PC holds the
address of the first word of the instruction. An
instruction ending in partial completion can be
completed by eliminating the cause of the
exception and restoring the Program Status saved
on the system stack using the IRET instruction.

instruction may be

7.3.2 Effects of the Pipeline on Execution

The CPU executes several instructions simul-
taneously in a multiple-stage pipeline. In most
circumstances, the differences between pipelined
instruction execution and the complete execution
of each instruction in strict sequence cannot be
detected by software or hardware. However, the
few cases in which the effects of the pipeline can
be detected are described below.

The CPU can prefetch an instruction before com-
pleting all previous instructions. Consequently,
if an instruction stores to a location from which
a subsequent instruction is fetched (i.e., the
program modifies itself), the CPU can prefetch the
original contents of the memory location rather
than the modified contents. Thus, self-modifying
programs may not operate as intended. On the
external interface, instruction prefetching can
have the effect of fetching an instruction that is
not executed (e.g., if the previous instruction
causes a trap) or fetching an instruction before
the operands for a previous instruction are
fetched. Some privileged instructions (IRET,
LDCTL, LDCTLL, LDPS, PCACHE, PTLB, PTLBE, and
PTLBN) have the effect of serializing instruction

execution. The serializing instruction and all
previous instructions are completely executed,
including storing of all results and flags, before
fetching the next instruction. Thus, when a new
value is loaded into the FCW by a LDCTL
instruction, the address representation mode and
operating mode used to fetch and execute the next
instruction are determined by the new FCW value.

The CPU can also prefetch an operand for an
instruction before completing all previous
instructions. The effects of operand prefetching
cannot be detected by software because the CPU
only fetches an operand from a location after com-
pleting all previous instructions that modify the
location. On the external interface, operand pre-
fetching can have the effect of fetching an
operand for an instruction that is not executed,
for example, if the previous instruction causes a
trap. Operands in physical 1/0 space are not pre-
fetched, ensuring that the CPU only fetches data
from an input peripheral port for instructions
that are executed.

7.4 EXCEPTIONS

The CPU recognizes four types of exceptions:
reset, bus error, interrupts, and traps. In proc-
essing exceptions other than reset, the CPU saves
the Program Status and an identifier word on the
system stack. For some exceptions, the CPU saves
an additional longword parameter. Then the CPU
fetches a new Program Status from the Program
Status Area. The sections below describe the
cause of each exception, CPU response to excep-
tions, and priority among exceptions.

7.4.1 Reset

Reset occurs when the RESET line is Low. Reset
causes any instruction in execution to end in ter-
mination.

At reset the Translation and Cache Enable bits of
the System Configuration Control Longword register
(NX, SX, CI, and CD) are cleared to O. Some
fields of the Hardware Interface Control register
are initialized as described in Section 8.10.
When the RESET line is driven High, the CPU
fetches the FCW from physical memory address 2 and
the PC from physical memory address 4. Reset also
invalidates all entries in the cache and
the Translation Lookaside Buffer. After reset,
the contents of all CPU registers other than the
FCW, the PC, and the specified fields of SCCL and
HICR are undefined. Reset should be used to ini-
tialize the CPU at power-on.

7-3

Instruction Execution and Exceptions

7.4.2 Bus Error

Bus error is indicated by a device responding to a
data transfer transaction on the external inter-
face. A bus error causes any instruction in exe-
cution to end in termination. The identifier word
saved during bus error exception processing
reports the state of the CPU pins. The physical
address for the transaction is saved as a param-
eter on the system stack. Refer to Section 8.8.8
for more details about the bus error exception.

7.4.3 Interrupts

The CPU recognizes three kinds of interrupt sig-
nalled on separate pins: non-maskable, vectored,
and non-vectored. Non-maskable interrupts are
always enabled. Vectored and non-vectored inter-
rupts can be selectively enabled by bits VIE and
NVIE in the FCW. Vectored interrupts are enabled
when VIE is 1; non-vectored interrupts are enabled
when NVIE is 1.

An interrupt occurs when an enabled interrupt
request is signalled on a CPU pin. The CPU gener-
ates an interrupt acknowledge transaction on the
external interface to fetch the identifier word,
which is then saved on the system stack. For vec-
tored interrupts, the low-order byte of the iden-
tifier word is used to select a pointer to a par-
ticular interrupt handler routine. Refer to Sec-
tion 8.7.5 for more details about interrupt
request and acknowledge.

7.4.4 Traps
The CPU recognizes ten traps, described below.

7.4.4.1 Extended Instruction Trap. This trap
occurs when an Extended Processing Architecture
instruction is executed and the EPA bit of the FCW
is 0. The instruction ends in suspension with PC
modification. The identifier is the first word of
the instruction. This trap allows software to
simulate execution of the EPA instruction when no
EPU is in the system.

7.4.4.2 Privileged Instruction Trap. This trap
occurs when a program attempts to execute a
privileged instruction in normal mode; the
instruction ends in suspension with PC
modification. The identifier is the first word of
the instruction.

7.4.4.3 System Call Trap. This trap occurs when
a System Call instruction is executed. The

instruction ends in completion; the identifier is
the instruction word. This trap is used by pro-
grams executing in normal mode to request services
from the operating system. The low-order byte of
the instruction word indicates the particular ser-
vice requested.

7.4.4.4 Address Translation Trap. This trap
occurs when an address translation error is
detected, either an invalid table entry or an
access protection violation. The instruction
ends in suspension. The identifier word reports
the address space for the logical address and the
exception type (see Section 4.3.5 for more infor-
mation). The logical address that caused the
translation error is saved as a parameter on the
system stack.

7.4.4.5 Breakpoint Trap. This trap occurs when
the Breakpoint instruction is executed. The
instruction ends in completion; the identifier is
the instruction word.

7.4.4.6 Integer Arithmetic Error Trap. This
trap occurs when any of three error conditions is
detected during execution of integer arithmetic
instructions. The error conditions are integer
overflow, bounds check, and index error. Integer
overflow error is enabled by the IV bit in the
FCW. Integer overflow is detected when the IV bit
is 1 and the V flag is set by execution of ADD,
DEC, DECI, DIV, DIVU, INC, INCI, NEG, SUB, SDA,
SRA, SLA, CVT, or CVTU instructions. For DIV and
DIVU instructions, Integer Overflow error includes
the case of zero divisor. A bounds check error is
detected when a Check instruction is executed and
the destination operand is out of bounds. An
index error is detected when an Index instruction
is executed and the subscript is out of bounds.

The instruction ends in completion. The
identifier word indicates the type of error, as
shown in the following table.

Identifier Error
0 Integer Overflow
1 Bounds Check
2 Index Error

7.4.4.7 Conditional Trap. This trap occurs when
a Trap instruction is executed and the tested con-
dition is satisfied. The instruction ends in com-
pletion; the identifier is the instruction word.
This trap can be used for software detection of
run-time errors.

Instruction Execution and Exceptions

7.4.4.8 Unimplemented Instruction Trap. This
trap occurs when a program attempts to execute an
instruction with an unimplemented bit pattern.
The detected bit patterns include certain 78000
opcodes described in Appendix A and instructions
with first byte 3644, or BFqg. The instruction
ends in suspension with PC modification; the
identifier is the first word of the instruction.

7.4.4.9 0dd PC Trap. This trap occurs before
execution of an instruction when the PC contains
an odd address. The contents of the identifier
word are undefined.

7.4.4.10 Trace Trap. This trap occurs before an
instruction is executed when the TP bit in the FCW
is 1. The contents of the identifier word are
undefined.

Instruction tracing is enabled by the T bit in
FCW. Before each instruction is executed, T is
copied to TP, The use of two bits to control
instruction tracing ensures that, while tracing is
enabled, exactly one Trace trap is processed after
each instruction's execution, and after the
servicing of other traps and interrupts. Section
7.4.7 provides more information about the priority
for handling Trace traps and other exceptions.

The Trace trap handler should set the T bit to 1
and clear the TP bit to 0 in the FCW on the system
stack before executing IRET and returning to the
traced program. Note that the T bit in the FCW on
the system stack can be cleared when an IRET,
LDCTL, or LDPS instruction is traced.

7.4.5 Changing Program Status

To process all exceptions other than reset, the
CPU pushes the Program Status and an identifier
word on the system stack. An Address Translation
trap and bus error push an additional longword
parameter onto the system stack. The saved value
of the PC depends on the type of instruction end-
ing. As selected by the XL/S bit in the System
Configuration Control Longword (SCCL) register,
the CPU operates in either segmented system mode
(XL/S = 0) or linear system mode (XL/S = 1) while
saving the Program Status and other information;
but the saved value of the FCW indicates the mode
of operation when the exception occurred.
Figure 7-2 shows how the information is saved on
the stack.

LOW ADDRESS
SYSTEM SP
AFTER—>] PARAMETER (HIGH)
EXCEPTION
PARAMETER (LOW)
SYSTEM SP
AFTER—p- IDENTIFIER IDENTIFIER
EXCEPTION
FCW FCW
PC (HIGH) PC (HIGH)
PC (LOW) PC (LOW)
SYSTEM SP SYSTEM SP
BEFORE—»- BEFORE —|
EXCEPTION EXCEPTION
1 WORD <¢—— 1 WORD ——>
HIGH ADDRESS
WITHOUT PARAMETER WITH PARAMETER
Figure 7-2.

Program Status Saved on System Stack

8225-017

7-5

Instruction Execution and Exceptions

A new Program Status must be fetched from memory
to process any exception. For reset, the FCW is
fetched from physical address 2 and the PC is
fetched from physical address 4. Other exceptions
fetch the new Program Status from an entry in the
Program Status Area (PSA) (Figure 7-3). Bus
error, non-maskable interrupt, non-vectored inter-
rupt, and all traps have unique entries in the PSA

0

147 1 °
—
PROGRAM STATUS
AREA POINTER

8 RESERVED

FCW

PC (HIGH)

PC (LOW)

16 RESERVED

FCW

PC (HIGH)

PC (LOW)

88 RESERVED

FCW

PC (HIGH)

PC (LOW)

96 RESERVED

FCW

PC (HIGH)

PC (LOW)

104 RESERVED

FCW

PC (HIGH)

PC (LOW)

112 RESERVED

FCwW

PC (HIGH)

PC (LOW)

120 RESERVED

FCw

PCo (HIGH)

PCo (LOW)

PC1 (HIGH)

PC1 (LOW)

132 PC2 (HIGH)

PC2 (LOW)

1144 PC2s5 (HIGH)

PC2s5 (LOW)

Figure 7-3.

from which the new Program Status is fetched. For
vectored interrupts, the new value of the FCW is
loaded from displacement 122 in the PSA. The low-
order byte of the identifier word is used to
select the new value of the PC by indexing into a
table of 256 values beginning at displacement 124
in the PSA.

RESERVED

EXTENDED

INSTRUCTION

TRAP

PRIVILEGED

INSTRUCTION

TRAP
24-31 SYSTEM CALL TRAP
32-39 ADDRESS TRANSLATION TRAP
40-47 BREAKPOINT TRAP
48-55 INTEGER ARITHMETIC ERROR TRAP
56-63 CONDITIONAL TRAP
64-71 UNIMPLEMENTED INSTRUCTION TRAP
72:79 ODD PC TRAP
80-87 TRACE TRAP

SYSTEM STACK

OVERFLOW

BUS ERROR

NON-MASKABLE
INTERRUPT

NON-VECTORED
INTERRUPT

VECTORED
INTERRUPT

Program Status Area

7-6

8225-018

Instruction Execution and Exceptions

The effective address of an entry in the Program
Status Area is calculated by adding the displace-
ment shown in Figure 7-3 to the physical base
address held in the Program Status Area Pointer
register. The effective address calculation is
performed in segmented or linear mode, as selected
by the XL/S bit in the SCCL register. The result
is the physical address used to fetch the PSA
entry.

During exception processing, if an address trans-
lation error is detected while information is
being saved on the system stack, the System Stack
Pointer is restored to its value before the excep-
tion occurred and the overflow stack is used
instead. The top of the overflow stack is

OSsP
AFTER—] PSA DISPLACEMENT
EXCEPTION
UNDEFINED
UNDEFINED
IDENTIFIER
FCwW
PC (HIGH)
PC (LOW)
osP
BEFORE —»>|
EXCEPTION
1 WORD

WITHOUT PARAMETER

addressed by the Overflow Stack Pointer register
(0SP). The Program Status, identifier word, and
exception parameter (or an undefined longword if
there is no exception parameter) are pushed on the
overflow stack. A word containing the
displacement of the exception entry in the PSA is
also pushed onto the overflow stack. The new
Program Status is fetched from displacement 88 in
the PSA. Since the O0SP register contains a
physical address, an Address Translation trap
cannot occur when pushing information on the
overflow stack. The effective address calculation
for pushing onto the overflow stack is performed
in segmented or linear mode, as selected by the
XL/S bit in the SCCL register. Figure 7-4 shows
how information is saved on the overflow stack.

LOW ADDRESS
OSP
AFTER—3| PSA DISPLACEMENT
EXCEPTION
PARAMETER (HIGH)
PARAMETER (LOW)
IDENTIFIER
FCcw
PC (HIGH)
PC (LOW)
0sP
BEFORE —»
EXCEPTION
|<——1 WORD—>
HIGH ADDRESS

WITH PARAMETER

Figure 7-4.
Program Status Saved on Overflow Stack

7.4.6 Exception Handlers

After the new Program Status has been fetched, the
CPU begins executing instructions of the exception
handler routine whose address was loaded into the
PC. The new value of the FCW determines the
address representation mode (compact/segmented/
linear), operating mode (system/normal), and the
enabled interrupts and traps for the exception
handler. An interrupt handler can execute with
interrupts disabled until critical information has
been stored. The interrupt handler can then
enable interrupts, permitting nested interrupt
servicing.

The exception handler can examine the identifier
word and parameter (only bus error and Address
Translation trap have a parameter) for information
about the cause of the exception. After complet-
ing their service, handlers for traps and inter-
rupts execute the Interrupt Return instruction.
The Address Translation trap handler must pop the
longword violation address from the stack before
executing IRET. IRET restores the Program Status
from the system stack so instruction execution can
resume at the point where the exception occurred.
The handlers for Extended Instruction trap,
Privileged Instruction trap, and Unimplemented
Instruction trap must modify the PC value stored
on the stack before executing IRET.

8225019

Instruction Execution and Exceptions

7.4.7 Priority of Exceptions

It is possible for several exceptions to occur
simultaneously. The CPU checks for particular

ENABLED

INTERRUPT YES

exceptions at specific points during instruction
execution. (Figure 7-5.) If multiple exceptions
are detected, the CPU responds to the one with
highest priority.

BUS
RESET ERROR

R EOI%ESTS

FCwW -1 TP YES

oDD YES

FCWeTP < FCWeT
EXECUTE INSTRUCTION

l

EXTENDED
INSTRUCTION

R
PRIVILEGED INSTRUCTION
OR
UNIMPLEMENTED INSTRUCTION
OR

ADDRESS
TRANSLATION
ERROR

BREAK’:OINT
INTEGER ARITHMETIC
ERROR

FCWeTP =0

OR
SYSTEI\IIR CALL
CONDITIONAL

TR,AP

NO

PROCESS
EXCEPTION

Figure 7-5. Exception Priority Flowchart

7-8

8225-020

Instruction Execution and Exceptions

Whenever a reset exception is detected, the CPU
responds immediately; any instruction being exe-
cuted is terminated. Pending bus errors, traps,
and internally latched non-maskable interrupt
requests are eliminated.

If a bus error is detected and reset is not
requested, the CPU responds to the bus error
exception. Any instruction being executed is ter-
minated, and pending traps are eliminated.

Before executing an instruction, the CPU checks
for enabled interrupt requests. The CPU responds
to the highest priority enabled interrupt request,
if any. The priority of interrupts is, in
descending order, nonmaskable, vectored, and non-
vectored, If several devices are requesting the
same interrupt, priority among the devices must be
resolved externally, typically with a daisy
chain or interrupt priority controller. After
responding to an interrupt, the new value of FCW
is used to check again for enabled interrupt
requests before executing the first instruction of
the service routine.

If there are no enabled interrupt requests, the
CPU checks the TP bit in the FCW. If TP is set to
1, a Trace trap occurs. Otherwise, the CPU checks
whether the PC contains an odd address. If the
least-significant bit of PC is 1, an 0dd PC trap
occurs. Otherwise, the CPU copies T to TP and
begins executing the instruction.

During instruction execution, one of the following
trap conditions may be detected: Extended
Instruction trap, Privileged Instruction trap,
Unimplemented Instruction trap, or Address
Translation trap. If one of the conditions is
detected, instruction execution is suspended; TP
is cleared to 0; and the trap is processed.
Otherwise, instruction execution is completed.

After completion of the instruction, one of four
trap conditions may be detected: System Call
trap, Breakpoint trap, Integer Arithmetic Error
trap, or Conditional trap. If one of these trap
conditions is detected, the corresponding trap is
processed.

For interruptible instructions, the CPU checks for
address translation exceptions during each itera-
tion. If an address translation exception is
detected, instruction execution ends in partial
completion, TP is cleared to 0O, and the trap is
processed. If no address translation error has
been detected, the CPU checks for enabled inter-
rupt requests at the end of each iteration except
the last. If an interrupt request is pending, the
CPU clears TP to 0O and responds to the highest
priority request.

An interrupt can occur immediately after the
Enable Interrupt instruction is executed and
before the next instruction.

7-9

Chapter 8.
External Interface

8.1 INTRODUCTION

The CPU is only one component in a computer system
containing memory, peripherals, Extended Process-
ing Units (EPUs), DMA controllers, and other CPUs
(Figure 8-1). Zilog has established the Z-BUS
as a convention for the signals and timing used to

1L

interconnect components of a microprocessor sys-
tem. The 780,000 CPU is compatible with the
1-BUS, allowing the CPU to be easily connected
into a wide variety of system configurations.
This chapter describes the operation of the CPU
interface with other system components.

PERIPHERALS

1l

280,000

CPU Z-BUS

T

T 10

< OTHER
> INTERFACE CPU

MEMORY

Fl0

T

OTHI

R
PERIPHERAL

ER CPU

Figure 8-1. System Configuration

8.2 BUS OPERATIONS

Two kinds of bus operations are defined: transac-
tions and requests. At any one time, only one
device, known as the master, has control of the
bus. The master can initiate transactions on the
bus to transfer data to another device, known as
the responder. In some transactions, called
flyby, the master controls the transaction, but
another device transfers data with the responder.
The master can also initiate transactions that do
not transfer data. The CPU performs transactions
that transfer data to and from memory, periph-

erals, or EPUs. The CPU controls flyby transac-
tions that transfer data between an EPU and mem-
ory. The CPU also performs internal operation and
halt transactions, which do not transfer data.
Only the bus master can initiate transactions;
however, other devices can initiate requests. The
CPU responds to interrupt requests from periph-
erals by generating an interrupt acknowledge
transaction. The CPU responds to bus requests
from other potential bus masters, and can initiate
bus requests of its own, as described in Section
8.9. In addition, the CPU responds to reset
requests, which are used to initialize the CPU.

8225-021

External Interface

8.3 MULTIPROCESSOR CONFIGURATIONS

The CPU provides support for interconnection in
four types of multiprocessor configurations
(Figure B8-2): coprocessor, slave processor,
tightly-coupled multiple CPUs, and loosely-coupled
multiple CPUs.

Coprocessors, such as the Z8070 Arithmetic Proces-
sing Unit, work synchronously with the CPU to exe-
cute a single instruction stream using the
Extended Processing Architecture facility. The
EPUBSY and EPUABORT signals are dedicated for
connection with coprocessors, as described in
Section 8.8.4.

Slave processors, such as the 78016 DMA Transfer
Controller, perform dedicated functions asynchro-
nously to the CPU. The CPU and slave processor
share a local bus, of which the CPU is the default

cPU cpPu —
EPUBSY EPUABORT BUSACK BUSREQ
EPU DMA —
PERIPHERAL PERIPHERAL }—
MEMORY MEMORY

(A) COPROCESSOR (B) SLAVE PROCESSOR

(C) TIGHTLY-COUPLED MULTIPLE CPU

master, using the BUSREQ and BUSACK signals, as
described in Section 8.9.

Tightly-coupled, multiple CPUs execute independent
instruction streams and communicate through shared
memory located on a common (global) bus using the
GREQ and GACK signals, as described in Section
8.9. Each CPU is default master of its local bus,
but the global bus master is chosen by an external
arbiter. The CPU also provides special bus status
information for interlocked memory references
(Test and Set, Increment Interlocked, and Decre-
ment Interlocked instructions), which can be used
with multiple-ported memories.

Loosely-coupled, multiple CPUs generally communi-
cate through a multiple-ported peripheral, such as
the 28038 FIO I/0 Interface Unit. The 280,000
CPU's I/0 and interrupt facilities can support
loosely-coupled multiprocessing.

MEMORY |— MEMORY |—
LOCAL BUS

CPU F— cPU]

GRE —

° 9] Ly
GACK |GLOBAL BUS

ARBITER — MEMORY FIO

GACK

we| A9 T

cPU - cPU —
LOCAL BUS

MEMORY |— MEMORY }—-

(D) LOOSELY-COUPLED
MULTIPLE CPU

Figure 8-2.
Multiprocessor Configurations

8-2

2071-012

External Interface

8.4 CACHE

The CPU implements a cache mechanism that keeps
a copy of recently used memory locations on-chip.
These locations can contain both instructions and
data. On memory fetches, the CPU examines the
cache to determine if the addressed information is
stored there. If the information is in the cache
(a hit), then the CPU fetches the copy from the
cache, and no transaction is necessary on the
external interface. If the information is not in
the cache (a miss), then the CPU performs a memory
read transaction to fetch the missing information
and stores a copy of the information into the
cache, replacing the least recently used data in
the cache. Thus, the cache serves to reduce the
number of memory read transactions, providing a
substantial boost to performance.

Software can control the cache mechanism in
several ways. The System Configuration Control
Longword register contains separate control bits
(CI and CD) that enable the cache for instruction
and data references and another bit (CR) that
enables the cache replacement algorithm. In page
table entries, the NC bit can be set to disable
the use of the cache for selected pages. The
Purge Cache instruction can be executed to invali-
date the contents of the cache when a memory loca-
tion that may have been copied into the cache has
been modified by another processor. For example,
if a slave processor reads from a peripheral port
to a memory location that may be copied in the
cache, the cache must be purged. Similarly, if
two or more tightly-coupled CPUs can alternately
execute one process, the cache must be purged when
the operating system changes from executing one
user-process to another. Appendix C describes the
cache mechanism in more detail, including its
control and interaction with the external
interface.

8.5 PIN FUNCTIONS

The CPU interface includes 59 signal lines, and
four power supply connections (Figure 8-3). A
summary of the signal pin functions is given
below.

ADg-AD3q. Address/Data (Bidirectional, active
High, 3-state). These 32 lines are time-multi-
plexed to transfer address and data. At the
beginning of each transaction the lines are driven
with the 32-bit address. After the address has
been driven, the lines are used to transfer one or
more bytes, words, or longwords of data.

As. Address Strobe (Output, active Low,
3-state). The rising edge of AS indicates the
beginning of a transaction and shows that the
address, STg-ST3, R/W, BL/W, BW/L, N/5, and BRST
are valid.

BRST. Burst (Output, active Low, 3-state). A Low
on this line indicates that the CPU is performing
a burst transfer; that is, multiple Data Strobes
following a single Address Strobe.

BRSTA. Burst Acknowledge (Input, active Low). A
Low on this line indicates that the responding
device can support burst transfers.

BOSREG. Bus Request (Input, active Low). A Low
on this line indicates that a bus requester has
obtained or is trying to obtain control of the
local bus.

BOSACK. Bus Acknowledge (Output, active Low). A
Low on this 1line indicates that the CPU has
relinquished control of the local bus in response
to a bus request.

BL/N, BW/L. (Output,3-state). These two lines
specify the data transfer size.
BL/N BW/L Size

High High Byte
Low High Word
High Low Longword
Low Low Reserved

ClK. Clock (Input). This line is the clock used
to generate all CPU timing.

D5. Data Strobe (Output, active Low, 3-state).
DS is used for timing data transfers.

EPUBSY. EPU Busy (Input, active Low). A Low on
this line indicates that an EPU is busy. This
line is used to synchronize the operation of the
CPU with an EPU during execution of an EPA
instruction.

EPUABORT. EPU Abort (Output, active Low). A Low
on this line indicates that the CPU is aborting
execution of an EPA instruction, typically because
an Address Translation trap has occurred.

GACK. Global Acknowledge (Input, active Low). A
Low on this line indicates that the CPU has been
granted control of a global bus.

GREQ. Global Request (Output, active Low,
3-state). A Low on this line indicates that the
CPU has obtained or is trying to obtain control of
a global bus.

8-3

External Interface

TE. Input Enable (Output, active Low, 3-state).
A Low on this line can be used to enable buffers
on the AD lines to drive toward the CPU.

NMI. Non-Maskable Interrupt (Input, edge acti-
vated). A High-to-Low transition on this line
requests a non-maskable interrupt.

NVI. Non-Vectored Interrupt (Input, active Low).
A Low on this line requests a non-vectored inter-
rupt.

N/5. Normal/System Mode (Output, Low = System
Mode, 3-state).
CPU is operating in normal or system mode.

OE. Output Enable (Output, active Low, 3-state).
A Low on this line can be used to enable buffers
on the AD lines to drive away from the CPU.

R/M. Read/Write (Output, Low = Write, 3-state)
This line indicates the direction of data trans-
fer.

This line indicates whether the "

RESEY. (Input, active Low).
resets the CPU.

A Low on this line

RSPg-RSP;. Response (Input). These lines encode
the response to transactions initiated by the
CPU. RSPg and RSPy can be connected together for
Z-BUS WAIT timing.

RSPg RSPq Response
High High Ready
Low High Bus Error
High Low Bus Retry
Low Low Wait

STg-ST3. Status (Output, active High, 3-state).
These lines encode the kind of transaction occur-
ring on the bus. (See Table 8-1.)

VI. Vectored Interrupt (Input, active Low). A
Low on this line requests a vectored interrupt.

RESET ——>|RESET AD |« SS:RESSIDATA
——| NMi A |
INTERRUPT = ASfI—
REQUESTS g s —>
—| Wi RW ——>
280,000 BLW [——> | BUS STATUS
—_ cl AND TIMIN
EXTENDED »| EruEsY BWIL |f—> G
PROCESSOR | s
CONTROL | <———EPUABORT STATUS —7F—>
NIS 'T>
LOCAL BUS { —| BUSREQ RESPONSE
CONTROL | <«—] ausack
OF |——> } BUFFER
GLOBAL BUS [<—]GREQ [E}——» | CONTROL
CONTROL ——»| GACK)
BRST — | BURST TRANSFER
BRSTA |«—— | CONTROL
CLK

g‘t’z

GND CLOCK

+5V

Figure 8-3.

T

780,000 Pin Functions

2071-011

External Interface

8.6 HARDWARE INTERFACE CONTROL REGISTER

The Hardware Interface Control register (HICR)
specifies certain characteristics of the hardware
configuration surrounding the CPU, including bus
speed, memory data path width, and number of auto-
matic wait states. The physical memory address
space is divided into two sections, Mg and Mq,

31 24 23

selected by bit 30 of the memory address. A typi-
cal system would locate slow, 16-bit wide boot-
strap ROM in Mg and faster, 32-bit wide dynamic
RAM in Mq. The physical 1/0 address space is
similarly divided into two sections, 1/0g and
1/04, selected by bit 30 of the port address. The
fields of HICR (Figure 8-4) are described below.

16 15 8 7 0

I LAD
I 1 1

lGEl I Iolol IACK.W2 lol 1ACK.W1 [ol 110+.W lsl 1100.W I I MW I I Mo.W J
L 1 1 1 1 1 1 L L 1 1 1

MASR—/ \—EPUO

M1.DP Mo.DP

Figure 8-4. Hardware Interface Control Register

Mg Wait Count (Mg.W) specifies the number of
wait states automatically inserted by the CPU for
references to Mg. If the value is 0, no wait
states are inserted. If the value is n>0, n wait
states are automatically inserted for memory read
and n-1 wait states are inserted for memory write.

Mg Data Path Width (Mg.DP) specifies the data
path width for references to Mg. While this bit
is 1, the data path width for Mg is 16 bits;
otherwise, the data path width for Mg is 32 bits.

My Wait Count (Mq.W) specifies the number of
wait states automatically inserted by the CPU for
references to Mq. If the value is 0, no wait
states are inserted. If the value is n>0, then n
wait states are automatically inserted for memory
read and n-1 wait states are inserted for memory
write.

My Data Path Width (My.DP) specifies the data
path width for references to Mq. While this bit
is 1, the data path width for My is 16 bits;
otherwise, the data path width for Mg is 32 bits.

1/0g Wait Count (I/0g.W) specifies the number
(0-7) of wait states automatically inserted by the
CPU for references to 1/0g.

1/04 Wait Count (I/04.W) specifies the number
(0-7) of wait states automatically inserted by the
CPU for references to 1/01.

Interrupt Acknowledge Wait Count 1 (IACK.W1) spec-
ifies the number (0-7) of wait states automatical-
ly inserted by the CPU before DS falls during
interrupt acknowledge transactions.

Interrupt Acknowledge Wait Count 2 (IACK.W2) spec-
ifies the number (0-7) of wait states automatical-
ly inserted by the CPU before DS rises during
interrupt acknowledge transactions.

Speed (S) specifies the frequency of the bus clock
relative to the processor clock. If this bit is
1, the bus clock frequency is 1/2 the processor
clock frequency; otherwise, the bus clock fre-
quency is 1/4 the processor clock frequency. The
value of this bit is determined by hardware at
reset, and cannot be altered by software (see Sec-
tion 8.10).

EPU Overlap Mode (EPUO) and another field in an
EPU control register control the degree of overlap
for CPU and EPU operations. While this bit is 1,
overlap is enabled; otherwise, overlap is dis-
abled. While overlap is disabled, the EPU can use
the signal EPUBSY to stop the CPU from processing
instructions. There are several degrees of
overlap that affect performance, system debugging
and recovery from exceptions. Refer to Section
8.8.4 for more information.

Minimum Address Strobe Rate (MASR) controls an
option that ensures an Address Strobe is generated
at least once every 16 bus clock cycles. While
this bit is 1, the option is enabled; otherwise,
the option is disabled. While the MASR option is
enabled and the CPU has neither performed any
transactions, granted the local bus, nor requested
a global bus for 16 bus cycles, the CPU performs
an internal operation or halt transaction. If the
CPU is in halted state, a halt transaction is per-
formed; otherwise, an internal operation transac-
tion is performed. This function can be used for
refreshing pseudostatic RAMs. Also, some Z-BUS
peripherals require Address Strobe to generate
interrupt request timing.

Global Enable (GE) and Local Address (LAD) con-
trol the use of the global bus request protocol.
While GE is 1, the protocol is enabled; other-
wise, the protocol is disabled. The LAD field
selects 1 of 16 sections of the physical address
spaces used for references to the local bus;
references to other sections use the global bus.
See Section 8.9 for more information.

8225-022

External Interface

In systems that combine memories with different
widths, an individual operand must be located
entirely within physical memory modules of a
single width. Thus if an operand is located
across consecutive logical pages, including
operands for ENTER, EXIT, LDM, LDML, and EPA
instructions that may occupy several longwords,
then the two physical frames containing the
operand must both be in 16-bit memory modules or
32-bit memory modules.

8.7 BUS TIMING

The CPU performs transactions on the external
interface to transfer data for fetching in-

structions, fetching and storing operands,
processing exceptions, and performing memory
management . In addition, the CPU performs

internal operation and halt transactions, which do
not transfer data. Each transaction occurs during

a sequence of bus clock cycles, named Tq, Ty, etc.
The CPU has a single clock line, CLK, used to gen-
erate all timing. Internally, the CPU derives
another clock for bus timing by dividing CLK by 2
or 4. The scale factor for bus timing (2 or 4) is
selected at reset. In the AC timing characteris-
tics for the CPU (available in a separate data
sheet from Zilog), input setup and hold times and
output delays are specified with respect to a ris-
ing edge of CLK. When CPU output transitions
occur on different rising clock edges, the time
between the transitions is specified in terms of a
constant delay and a variable number of CLK
cycles. The number of CLK cycles depends on the
bus timing scale factor, type of transaction, and
number of wait states.

In the logical timing diagrams that follow, the
signal transitions on the bus are shown in rela-
tion to the bus clock, BCLK. The beginning of a
transaction, signified by a falling edge of A5,

s [1|

(A) BCLK = CLK = 2

LI
D € S - G y—
—

ADDRESS

w X

)—————_——_——_— DATA IN ————— —

= \

—

(B) BCLK =CLK +- 4

Figure 8-5.

Example of Memory Read Timing

Showing Different Bus Scale Factors

8-6

2071-013

External Interface

always occurs on a rising edge of BCLK. The BCLK
signal is derived internally to the CPU as de-
scribed above, and is not available on the pins.
BCLK can also be derived externally by dividing
CLK by the selected bus timing scale factor.
Section 8.10 discusses synchronization of the
internal and external bus clocks. The timing
diagrams in Figure 8-5 show example memory read
transactions with one wait state using the differ-
ent scale factors.

8.8 BUS TRANSACTIONS

All bus transactions begin with Address Strobe
(AS) first asserted* and then negated. On the
rising edge of A5, the lines for status (STg-ST3),
Read/Write (R/W), data transfer size (BW/C, BL/W),
and Normal/System (N/5) are valid. The status
lines indicate the type of transaction being
initiated (Table 8-1). The R/W line indicates
the direction of data transfer. The data transfer
size indicates whether a byte, word, or longword
of data is to be transferred. The N/S line
indicates the CPU's operating mode. The following

sections describe timing for the different
transactions.
Table 8-1. Status Codes

ST3-STg Definition

0000 Internal Operation

0001 CPU-EPU (data)

0010 1/0

0011 Halt

0100 CPU-EPU (Instruction)

0101 NMI' Acknowledge

0110 NVT Acknowledge

0111 VT Acknowledge

1000 Cacheable CPU-Memory (Data)

1001 Non-Cacheable CPU-Memory
(Data)

1010 Cacheable EPU-Memory

1011 Non-Cacheable EPU-Memory

1100 Cacheable CPU-Memory
(Instruction)

1101 Non-Cacheable CPU-Memory
(Instruction)

111 Reserved

1111 Interlocked CPU-Memory (Data)

*In the description of bus transactions, the term
"asserted" means an active signal and "negated"
means an inactive signal. A signal is either
active when High or when Low, as specified in the
pin function list.

On the rising edge of AS, the address on the AD
lines is also valid. Addresses are not required
for internal operation, bhalt, interrupt ac-
knowledge, and CPU-EPU data transactions; the AD
lines are driven but the address is undefined for
those transactions. The CPU uses Data Strobe (D5)
to time the data transfer, (Note that internal
operation and halt transactions do not transfer
data, and thus do not assert D5.) For write oper-
ations (R/W = Low), the CPU asserts D35 when valid
data is on the AD lines. For read operations (R/W
= High), the CPU makes the AD lines 3-state before
asserting DS so the addressed device can put its
data on the bus. The CPU samples the data in the
middle of a bus cycle while negating DS.

The AD lines can be used to transfer bytes, words,
or longwords of data. When reading from memory,
the CPU always reads a word or longword, depending
on the memory data path width, regardless of the
size of the information required. For read

transactions the three cases are handled as

follows:

e Byte transfers use ADg-ADy7; ADg-AD3q are
ignored.

e Word transfers use ADg-ADy5; AD4g-AD3q are
ignored.

e Longword transfers use ADg-AD3q.

For write transactions, the three

handled as follows:

cases are

s Byte transfers replicate the data on ADg-AD7,
ADg-ADq5, AD44-AD23, and ADg4-AD3q.

o Word transfers replicate the data on ADg-ADqs
and ADq4-AD3q.

e Longword transfers use ADg-AD3q.

The Input Enable (TE) and Output Enable (OF)
signals can be used to enable buffers on the
bidirectional AD lines. TE is asserted when the
buffers are to drive toward the CPU; OF is
asserted when the buffers are to drive away from
the CPU. Whenever the direction for the AD lines
changes, both TE and OF are negated for at least
one CLK cycle.

To transfer more than one data item, the CPU can
perform burst transactions. The data items are
transferred in the same direction, and are equal
in size. DS is used to time each transfer. The
CPU asserts Burst (BRST) to indicate a burst
transfer. The responding device asserts Burst
Acknowledge (BRSTA) if it is capable of supporting
burst tranfers. If BRSTA is not asserted, the CPU
transfers only a single data item.

8-7

External Interface

8.8.1 Response

Any time data is transferred, the responding
device returns a code on the Response lines
(RSPg-RSP4) to indicate ready, wait, bus error, or
bus retry. The response is sampled at a time
specific for each type of transaction, generally
before the AD lines are sampled for reads or DS is
negated for writes, and after automatic wait
states are inserted.

Ready indicates the completion of a successful
transfer.

Wait indicates that the responding device needs
more time to complete the transaction. The CPU
waits one bus cycle before sampling the response
again to accommodate slow memory or peripherals.
A simple system using only Z-BUS WAIT can be
implemented by connecting WAIT to both RSPy and
RSP,

Bus error indicates that a fatal error has
occurred during the transaction, e.g., bus timeout
for a nonexistent device. The CPU treats bus
error as an exception.

Bus retry indicates that the transaction should be
tried again, e.g., a transient parity error was
detected. The CPU negates DS and tries the trans-
action again.

The CPU can insert wait states automatically under
control of several fields in the Hardware Inter-
face Control register. If an automatic wait state
is programmed for a bus cycle, the CPU ignores the
response and wait is assumed. Thus, wait states
can be inserted automatically by the CPU or upon
request of the responding device. It must be
emphasized that the RSPg-RSP¢ lines are sampled
synchronously. Thus, they must meet the specified
setup and hold times for correct operation.

8.8.2 CPU-Memory Transactions

The CPU performs transactions with status 1000,
1001, 1100, 1101, or 1111 to read from and write
to memory. See Appendix C for more information
about the different status codes. The transac-
tions involve either a single data transfer or
multiple, burst data transfers.

8.8.2.1 Single Memory Read and Write Transac-
tions. Figure 8-6 shows timing for a single mem-
ory read transaction with no wait states. AS is

asserted during the first half of T1. The rising
edge of AS indicates that the address on ADD_AD31
and control signals STg-ST3, R/W, BW/T, BL/W, and
N/S are valid. The control signals remain valid
for the duration of the transaction. BRST is
negated during the transaction because only a sin-
gle data item is transferred. At the beginning of
T2, the CPU stops driving the address, asserts DS,
and prepares to receive data from memory. In the
middle of T2, RSP3-RSPy are sampled ready, the
input data is latched, and D5 is negated. The
signal OF is asserted during Tq; however, for two-
cycle read transactions, IE is not asserted. TIE
1s unasserted because there is no bus clock tran-
sition between the negation of OF at the end of T1
and the sampling of data in the middle of 72. The
two-cycle read transaction is a compatible
extension of the Z-BUS three-cycle read transac-
tion. Two-cycle read transactions are intended
for use with fast memories connected directly to
the CPU pins without buffers, such as an external
cache.

e Bl N
o Y e Y <
s\ \
. _/

=T\ /T

RIW _/ _
swit L X
\

NIS

BRST

BRSTA

*RSPo-RSP4 and data sampled.

Figure 8-6. Single Memory Read Timing

2071014

External Interface

The CPU can insert wait states in the middle of T2
1f RSPg-RSPq are sampled wait or if automatic wait
states are programmed in the appropriate field of
HICR. The duration of a wait state is one BCLK
cycle.

The timing for a single memory read transaction
with one wait state is shown in Figure 8-7. This
is not a true wait state because the CPU asserts
IE in the middle of T2 and continues until the
middle of T3. For memory read transactions longer
than two bus cycles, either because of wait states
or burst transfers, IE is asserted from the middle
of T2 until the end of data transfer. The signals
OF and IE can be used to control buffers on the AD
lines.

For memory read transactions, the data transfer
size is equal to the data path width specified in
HICR. The memory should transfer the aligned
longword addressed by ADp-AD3y (ignored ADg-ADq)

for a 32-bit data path, or the aligned word
addressed by AD1-AD3q (ignoring ADg) for a 16-bit
data path. The CPU selects the required bytes
from the transferred word or longword.

A single memory write transaction (Figure 8-8)
begins with AS to indicate that address and con-
trol signals are valid. At the beginning of T2
the CPU stops driving the address and starts driv-
ing the data. In the middle of 712, DS is
asserted. The CPU negates DS in the middle of
T3. OF is asserted beginning at T1 and continues
for the duration of the transaction. The CPU sam-
ples RSPg-RSPq4 in the middle of T3.

For memory write transactions, the data transfer
size is less than or equal to the data path width
specified in HICR. Bytes and words can be written
to a 16-bit memory; bytes, words, and longwords
can be written to a 32-bit memory. The CPU writes
bytes to any address, but words and longwords are

T

T2 i T3

BCLK ﬂ J

L1 L

AD x ADDRESS)- -———— DATA IN —_—

|<—wm smrs—»i

.3

OE

2l

|

_\
7

E
RIW

STo-STs
BWIL, BLIW X
NS

BRST

/?ﬁ/%/

BRSTA

*RSPo-RSP4 and data sampled.

Figure 8-7.
Single Memory Read Timing (One Wait State)

2071015

8-9

External Interface

always written to an aligned address; that is,
words are always written to an even address and
longwords are always written to an address that is
a multiple of four. When a program writes a word
or longword to an unaligned address, the CPU per-
forms two or more write transactions to aligned
addresses. For example, if the program writes a
word to an odd address, the CPU first writes the
more significant byte to the odd address, then it
writes the less significant byte to the successive
even address.

Single memory read and write timing are slightly
different from Z-BUS specifications. The minimum
read transaction is two bus cycles, and the
response is sampled at the end of the data trans-
fer. For the Z-BUS, the minimum read transaction
is three cycles, and the response is sampled one
cycle before the end of the data transfer. For
strict Z-BUS compatibility it is possible to pro-
gram one automatic wait state for memory read and
to delay the response using an external flipflop.

8.8.2.2 Burst Memory Read and Write Transac-
tions. Burst memory transactions use multiple
Data Strobes following a single Address Strobe to
transfer data at consecutive memory addresses.
The BRST and BRSTA signals control the burst
transaction. The CPU uses burst transactions to
prefetch the cache block for a cache miss on an
instruction fetch. The CPU also uses burst trans-
actions to fetch or store operands when more than
one transfer is necessary, as with unaligned oper-
ands, string instructions, Load Multiple instruc-
tions, and loading of Program Status.

If the memory does not support burst transfers,
the burst transfer protocol described below
(Figure 8-9) allows BRSTA to be tied High. The
CPU then separates the burst transaction into a
sequence of single transfers, but only a single
transfer is performed for a cache miss on an
instruction fetch.

T

BCLK __J | |

AD X ADDRESS X

DATA OUT

STo-ST3
BWIL, BLIW X
NIS

T\

BRST

(As

BRSTA
*RSPo-RSP; sampled.

Figure 8-8.

Single Memory Write Timing

8-10

2071-016

External Interface

ASSERT BRST

TRANSFER
ADDRESS

NEGATE BRST TRANSFER DATA

TRANSFER DATA

NEGATE BRST

[INCREMENT |
ADDRESS

Figure 8-9. Burst Transfer Protocol

At the beginning of a burst transaction, the CPU
asserts BRST along with other control signals. If
the CPU continues to assert BRST when DS falls,
this indicates to memory that the CPU can support
another data transfer following the one in
process. If the CPU negates BRST before D5 falls,
this indicates to memory that the current transfer
is the last in the transaction.

When BRSTA is asserted at the time the RSPg-RSPq
lines are sampled ready, this indicates to the CPU
that memory can support another data transfer fol-
lowing the one in process. When BRSTA is negated
at the time the RSPg-RSPq lines are sampled ready,
this indicates to the CPU that the current data
transfer is the last in the transaction. The
burst transaction can be terminated by either the

CPU or memory. If memory terminates the transfer
by negating BRSTA, the CPU responds by negating
BRST when DS is negated. (See the example for
burst memory read.) If the CPU terminates the
transfer by negating BRST before the falling edge
of D5, memory responds by negating BRSTA. (See
the example for burst memory write.) The CPU ter-
minates the burst transaction when all the
required data items have been transferred or after
reaching the end of an aligned, 16-byte block.

Figure 8-10 shows timing for a burst memory read
transaction with one wait state. In this example,
three data items are transferred, after which mem-
ory terminates the burst. 'BRST is asserted at the
beginning of T1; otherwise, the timing for the
first transfer is identical to a single memory
read. In the middle of T3, the CPU samples
RSPg-RSPy ready, latches the data, and samples
BRSTA active. During T4 the second data item is
transferred, accompanied by D5. The time for the
second and subsequent transfers can be extended
with wait states if RSPg-RSPy are sampled wait;
the CPU inserts automatic wait states only for the
first transfer. During T5 the third data item is
transferred. At the same time RSPy-RSPq are
sampled ready, the data is latched and BRSTA is
sampled inactive. Memory terminated the burst tr-
ansfer, and the CPU responds by negating BRST.

Figure 8-11 shows timing for a burst memory write
transaction with no wait states. In this example,
two data items are transferred, and the CPU ter-
minates the burst. BRST is asserted at the begin-
ning of T1; otherwise, the timing for the first
transfer is identical to a single memory write.
In the middle of T3, the CPU samples RSPg-RSP4
ready and BRSTA active. At the beginning of T4,
the CPU negates BRST, indicating that one more
data transfer will follow. During T4, the second
data item is transferred, accompanied by D5. The
time for the second and subsequent transfers can
be extended with wait states if RSPy-RSPq are sam-

_pled wait; the CPU inserts automatic wait states

only for the first transfer. Memory recognizes
that the CPU has terminated the burst transfer,
and responds by negating BRSTA before the end of
T4. Note that a memory system can be designed to
support burst transfers only for read transactions
through selective enabling of BRSTA.

8.8.2.3 Interlocked Memory Transactions. In
tightly-coupled multiprocessor configurations, the
CPU must at certain times inhibit other bus mas-
ters from referring to shared memory while the CPU
performs two or more interlocked transactions.
The CPU uses interlock protection for data refer-
ences associated with Test and Set, Decrement

2071017

8-11

External Interface

3 DATA TRANSFERS, MEMORY TERMINATES BURST

T

T3 | Ta | Ts I

SO B e R

S N R N P

[<€— WAIT STATE —-P‘

D N S— e T ST e e

= \

/N S

mw_/

STo-STa
BWIL, BLIW X

qfﬁ(?(

A\ [/

*RSPg ~ RSPy, BRSTA, and data sampled.

Figure 8-10. Burst Memory Read Timing (One Wait State)

Interlocked, and Increment Interlocked instruc-
tions. The CPU also uses interlock protection for
references to address translation table entries
when loading the Translation Lookaside Buffer.
The CPU indicates interlocked protection for a
sequence of memory references by using status 1111
for any of the memory transactions previously
described. While the CPU indicates status 1111,
the memory system must prevent interlocked refer-
ences to shared memory by other processors. Dur-
ing a sequence of interlocked memory transactions,
the CPU does not acknowledge local bus requests
nor does the CPU generate any bus transactions
with status other than 1111.

8.8.3 Input/Output Transactions

The CPU uses status 0010 to read from and write to
1/0 ports. 1/0 transactions are generated for 1/0
instructions and, when address translation is
enabled, by data references to pages with bit 31
of the page table entry set to 1.

The timing for 1/0 and memory transactions is very
similar. The major difference is that DS falls in
the middle of T2 for I/0 read timing, compared to
the beginning of T2 for memory read timing. This
allows peripheral devices more time for address
decoding. Another difference is that the data

8-12

2071018

External Interface

2 DATA TRANSFERS, CPU TERMINATES BURST

i T1 i T‘

Li " ‘i " _»|

BCLK I I I I

N U B M

AD X ADDRESS X

DATA OUT

X DATA OUT

As

DS

X
—

N/ 7

RIW

T\
=T\
-

STo-ST3
BWIL, BLIW

NIS x

Vi

BRSTA \

A4 /

*RSPo-RSPy, BRSTA sampled.

Figure 8-11. Burst Memory Write Timing

transfer size (byte, word, or longword) for 1/0
transactions is specified by the instruction, not
by HICR. The final difference is that the CPU
does not support burst 1/0 transactions. Figure
8-12 shows timing for an I1/0 read transaction.
1/0 write timing is the same as a single memory
write (Figure 8-8).

8.8.4 EPU Transactions

The CPU and EPU cooperate in the execution of EPA
instructions (Figure 8-13). When the CPU encoun-
ters an EPA instruction and the EPA bit in FCW is
1, the CPU broadcasts the first two words of the

instruction to the EPUs in the system using the
CPU-EPU instruction transfer transaction. All
EPUs in the system recognize the transaction, but
only one of four possible EPUs is selected by bits
16 and 17 of the EPU instruction. The CPU also
transfers the PC value for the instruction, which
the selected EPU saves for use in exception han-
dling. If data transfers are required to complete
the instruction, the CPU controls the data trans-
fer transactions while the EPU drives or receives
the data.

The EPUBSY signal, output from the EPU, is used to
synchronize the CPU and EPU in executing EPA
instructions. (When multiple EPUs are present in

2071-019

8-13

External Interface

Ty >

T2 T3

BCLK L

AD X ADDRESS)——————-—-C

STo-ST3
BWIL, BLIW X

NIS

BRST

BRSTA

*RSPo-RSP1 and data sampled.

Figure 8-12.

1/0 Read Timing

a system, the EPUBSY input to the CPU must be
driven by an external AND gate whose inputs are
the EPUBSY signals from the EPUs). The CPU must
sample EPUBSY inactive before initiating an EPU
instruction transfer. If data transfers are
required, the CPU must sample EPUBSY inactive
before initiating the first transfer.

While the CPU samples EPUBSY active, no transac-
tions are initiated; however, the CPU may grant
the local bus.

EPUBSY is also used to control the degree of over-
lap between CPU and EPU instruction execution.
Ordinarily, the CPU can continue processing other
instructions after performing the data transfers
associated with an EPA instruction and before the
EPU has completed executing the instruction. To
simplify debugging and recovery from exceptions,
overlap can be disabled under control of the EPUD
bit in HICR. When overlap is disabled (EPUO = 0),
the CPU samples EPUBSY in the middle of the bus

8-14

2071-020

External Interface

EPU IN NO

SYSTEM?

YES EPUBSY

ASSERTED?

EPU INSTRUCTION
TRANSACTION

EPU

DATA NO

EXTENDED
INSTRUCTION TRAP]

JRANSFERS,
?

EPUBSY
ASSERTED?

YES

EPU DATA
TRANSACTION(S)

L

EPUBUSY
NEGATED
OR
EPU OVERLAP
ENABLED

Figure 8-13. EPA Instruction Processing

cycle during which the last data transfer for an
EPA instruction occurs. If EPUBSY is asserted,
the CPU ceases processing instructions or inter-
rupts until EPUBSY is sampled inactive in the mid-
dle of a bus cycle. When overlap is enabled (EPUO
= 1), the CPU does not sample EPUBSY after the
last data transfer, but only samples EPUBSY before
initiating the next EPU instruction transfer.

While processing an EPA instruction and after the
instruction has been transferred to the selected
EPU, the CPU may detect an address translation
exception. In such an event, the CPU asserts
EPUABORT, informing the selected EPU to abort
execution of the instruction; at all other times,
the CPU negates EPUABORT. The CPU then saves the
address of the suspended EPA instruction on the
system stack during exception processing.

When CPU and EPU instruction processing overlap,
the CPU may complete all data transfers for an EPA
instruction (the queued instruction) before the
EPU completes execution of a previous EPA
instruction. If the EPU then detects an exception
during execution of the previous instruction, the
EPU does not execute the queued instruction. In
such a case, the address of the queued instruction
is in an EPU control register, and the CPU saves
the address of a subsequent instruction on the
gystem stack.

To simplify system hardware, the CPU and EPU AD
lines should be wired together with no buffers
between them. If the AD lines are separated by
buffers, external circuitry must generate TE and
OF timing for CPU-EPU data read and EPU-memory
write transactions.

2071-021

8-15

External Interface

T T2

AD

X OPCODE x PC

X

/ -

/"

STo-8Tg

BWIL, BLIW
NiS

BRST /

BRSTA /

tEPUBSY sampled.

*RSPo-RSP1 sampled; EPUBSY sampled if EPU internal operation.

Figure 8-14.
CPU-EPU Instruction Transfer Timing

8.8.4.1 CPU-EPU Instruction Transactions.
Figure 8-14 shows timing for a CPU-EPU instruction
transfer transaction with status 0100. The rising
edge of AS indicates that the AD lines and status
are valid. During T1, the AD lines are used to
transfer the opcode, i.e., the first two words of
the EPA instruction. At the beginning of T2 the
CPU stops driving the opcode, asserts D5, and
starts driving PC on the AD lines. In the middle
of T2, the CPU samples RSPy-RSPq ready and negates
D5. The data transfer size for the transaction is
longword.

The duration of a CPU-EPU instruction or data
transfer can be extended with wait states if
RSPg-RSPq are sampled wait. The 28070 APU,
however, does not require wait states, nor does it
drive RSPg-RSP1. Systems using the 78070 APU must
ensure that RSPg-RSPq are both High, indicating
ready, during CPU-EPU instruction and data
transactions.

8-16

2071-022

External Interface

BCLK I

At Y A A,
L1 1] L1 L |
AD X UnDEFINED)- - -(DATA IN x DATA IN)— —_—— —C

o _/

\

T/

RIW /

STo-STg
BWIL, BLIW X
NIS

BRST /

4dReNd

BRSTA /

1EPUBSY sampled.
*RSPo-RSP1 and data sampled.

Figure 8-15. CPU-EPU Data Read Timing

8.8.4.2 CPU-EPU Data Tramsactions. Transactions
to transfer data between the CPU and EPU use
status 0001. The EPA instruction opcode indicates
the number of words transferred. One or more
longwords of data are transferred until all words
have been transferred. If the 1last transfer
contains a single word, the data is on AD44-AD3q.
The CPU does not assert BRST and ignores BRSTA.

Figure 8-15 shows timing for a CPU-EPU data read
transaction. This example has two data transfers;
any number of data transfers between one and eight

is possible. The rising edge of AS indicates that
status and control signals are valid. The CPU
stops driving the AD lines at the end of T1; the
EPU begins driving them in the middle of T2. At
the beginning of T3, the CPU asserts D5. In the
middle of T3 the CPU samples RSPg-RSPq ready,
latches the data, and negates DS. The second
longword of data is transferred during T4. After
the last data transfer the CPU inserts an idle bus
cycle (T5 in the example) during which neither the
CPU nor EPU drive the AD lines.

2071-023

External Interface

i‘ Te i‘

e T

T2 i— T3 | Ts l
o I U R

AD

<

UNDEFINED X DATA OUT x DATA OUT X DATA OUT

X
\

Y

$To-ST3
BWIL, BLIW ><
NIS

BRST /

A N

BRSTA /

tEPUBSY sampled.
*RSPo-RSP1 sampled.

Figure 8-16.

CPU-EPU Data Write Timing

Figure 8-16 shows timing for a CPU-EPU data write
transaction. This example has three data trans-
fers; any number of data transfers between one and
eight is possible. Timing for the first transfer
is identical to the CPU-EPU instruction transfer
transaction. A second longword of data is trans-
ferred during T3, and the third longword is trans-
ferred during T4.

8.8.4.3 EPU-Memory Transactions. The CPU uses
status 1010 or 1011 for the EPU to read from and
write to memory using flyby transactions. The
timing is identical for EPU-memory read and
CPU-memory read. The EPU monitors the CPU timing
on the bus, and uses the two least significant
address bits on the first transfer, the data
transfer size, and the length of the operand from
the instruction to select the bytes it needs from
the AD lines.

8-18

2071-024

External Interface

» X o Y=

EPU DATA OUT

D

L

n__/

STo-STg
BWIL, BLIW X

N/S

BRST /

A SN

BRSTA ;

*EPUBSY sampled.
+ RSPo-RSPy I

EPUBSY if last

Figure 8-17. EPU-Memory Single Write Timing

The timing for an EPU-memory write transaction
differs slightly from a CPU-memory write transac-
tion. Two extra bus cycles are included to pass
the AD lines from CPU to EPU after the address
transfer and from EPU back to CPU after the last
data transfer. Figure 8-17 shows an example for a
single EPU-memory write transaction with no wait
states. The CPU stops driving the AD lines at the
end of T1; the EPU begins driving them in the mid-
dle of T2. DS is asserted in the middle of T3,
one bus cycle later than for CPU-memory write

timing. The CPU negates DS in the middle of T4.
The CPU can insert wait states in the middle of
T4. The EPU continues to drive the AD lines until
the end of T4. After the last data transfer the
CPU inserts an idle bus cycle (T5 in the example)
during which neither the CPU nor EPU drive the AD
lines. EPU-memory burst write transactions are
similarly extended by two bus cycles more than
CPU-memory burst write timing. One cycle is
ingerted before the first data transfer, and
another after the last data transfer.

2071-025

8-19

External Interface

"

BCLK | I | I
/
o
Vi, NVI \
_INTERNAL \
NMI LATCH s

~f~

o Y o)~ -C

$To-ST3
BWIL, BLIW
NS

X

BRST

s

BRSTA

*RSPo-RSP4 sampled.
+ RSPo-RSP4 and data sampled.

Figure 8-18.

Interrupt Request/Acknowledge Timing

8.8.5 Interrupt Request and Acknowledge

The CPU recognizes vectored, nonvectored, and non-
maskable interrupt requests. The decreasing
order of priority for interrupts is nonmaskable,
vectored, and nonvectored. NMI is edge sensitive;
when NMI is asserted, an internal latch is
loaded. VI and NVT are level sensitive.

The CPU samples VI, NVI, and the internal NMI
latch on the rising edge of CLK. The interrupt
request signals can be asynchronous to CLK; the
CPU synchronizes them internally.

After a request for an enabled interrupt is
asserted, the CPU begins an interrupt acknowledge
transaction. Figure 8-18 shows timing for an
interrupt acknowledge transaction, indicated by
status 0101, 0110, or 0111. The timing is similar
to a single 1/0 read. Wait states (either pro-
grammed for automatic insertion or externally gen-
erated) can be inserted before DS falls in the
middle of T2, and before DS rises in the middle of
13. 1Inserting wait states before DS falls allows
for delay in the interrupt priority daisy chain.

8-20

2071026

External Interface

A word of data is transferred on ADg-AD95. All of
the interrupts save the transferred word on
the system stack for processing the interrupt.
Vectored interrupt uses the low-order byte of the
word to select a unique PC value from the Program
Status Area.

8.8.6 Internal Operation and Halt Transactions

Figure 8-19 shows timing for internal operation
(status = 0000) and halt (status = 0011)
transactions. Unlike other bus transactions, data
is not transferred during these operations.
Nevertheless, the data transfer size for the
transaction indicates longword. The duration of
the transaction is two bus cycles.

T T2 ——bl

BCLK 1 I I_
AD X UNDEFINED K

= _/ \

-

VA

$To-ST3
BWIL, BLIW
NIS

N

BRST

BRSTA

Figure 8-19.
Internal Operation and Halt Timing

The CPU generates an internal operation transac-
tion after the end of a sequence of interlocked
memory transactions. The CPU generates a halt
transaction upon entering halted state (Section
7.2). When the Minimum Address Strobe Rate option
is enabled (the MASR bit in HICR is 1), the CPU
maintains a steady rate for Address Strobes by
generating halt transactions in halted state or
internal operation transactions otherwise.

8.8.7 Bus Retry

During transactions in which data is transferred,
the responding device can indicate bus retry on
RSPg-RSPq. When bus retry is sampled, the CPU
terminates the transaction in progress, negating
DS and BRST, then repeats the same transaction.
If bus retry is indicated during a burst transfer,
the retry transaction begins with the address for
the data transfer where bus retry was indicated.
The CPU does not acknowledge interrupts or bus
requests between the retry response and the retry
transaction.

8.8.8 Bus Error

During transactions in which data is transferred,
the responding device can indicate a bus error
exception on RSP3-RSPq. When bus error is sam-
pled, the CPU terminates the transaction in pro-
gress, negating D5 and BRGT . A bus error excep-
tion also causes termination of the instruction in
execution. In processing a bus error exception,
the CPU saves the Program Status, physical address
for the transaction, and a word identifying the
status and control signals used for the transac-
tion on the system stack, in that order (Figure
8-20). In the identifier word, High signals are
1, and Low signals are O.

15 8 7 0
oo oo oo o] o]] ooy
aTsT-/ swit
BLW

Figure 8-20. Bus Error Identifier Word

2071-027, 8225-023

8-21

External Interface

8.9 BUS REQUEST AND ACKNOWLEDGE

The CPU supports two types of bus request/
acknowledge sequences, local and global. Other
bus masters request the local bus from the CPU
using a handshake of BUSREQ and BUSACK. The CPU
requests a global bus from an external arbiter
using a handshake of GREQ and GACK.

To generate transactions on the local bus, a
potential bus master (such as a DMA controller)
must gain control of the bus by making a bus
request (Figure 8-21). A local bus request is
initiated by asserting BUSREQ. Several bus
requestors may be wired to the BUSREQ signal;
priorities are resolved externally to the CPU,
usually by a priority daisy chain.

The CPU samples BUSREQ on the rising edge of CLK.
BUSREQ can be asynchronous to CLK; the CPU
synchronizes it internally. After BUSREQ is
asserted, the CPU completes any transaction or
sequence of interlocked transactions in progress,
including possible retries. Next, the CPU
responds by asserting BUSACK and placing its
other output signals except EPUABORT in 3-state.
The EPUABORT signal remains valid while the CPU
has granted the local bus, and may be asserted if
an EPA instruction is in progress. Later, when
BUSREQ is negated, the CPU negates BUSACK and
begins driving all other output signals.

The CPU can initiate transactions with devices
located on a global bus shared with other CPUs.
At any time, only one of the CPUs can initiate
transactions on the global bus. Control of the
global bus is arbitrated by external circuitry.
Before initiating transactions on the global bus,
the CPU requests control of the global bus from
the arbiter using the protocol described below.

The CPU uses two fields of HICR to distinguish
between local and global bus transactions. The GE
bit enables use of the global bus. The 4-bit LAD
field specifies one of sixteen sections of the
physical address space used for local references.

Before every memory and I/0 bus transaction
(status codes 0010 and 1000 through 1111), the CPU
compares the LAD field with bits 26 to 29 of the
physical address. If the comparison is unequal
and GE is 1, then the transaction is a global bus
reference; otherwise the transaction is a local
bus reference. In a tightly-coupled multi-
processor system (Figure 8-2c), each of the local
and global memory locations and peripheral ports
can have a unique system address. Each CPU loads
a distinct value into LAD, identifying its local
addresses; the CPUs refer to global addresses and
local addresses of other CPUs using the global bus
request protocol.

= L0 LI LI LI

BUSREQ \
7 L

77

g4

BUSACK

N\

v/
—’f/
d

7L

. 77
AD)._
— L

7/

/L

As, Ds, i -
BRST,GREQ ____/
STo-ST3 <L
BWIL, BLIW ol
RIW, NIS vy
OE, IE 7/

e
7/
EPU ABORT \ / \ /

Figure 8-21.
Local Bus Request Acknowledge Timing

8-22

2071-028

External Interface

Figure B8-22 shows timing for the global bus
request/acknowledge protocol. Before initiating a
transaction on the global bus, the CPU drives the
address, STg-ST3, BRST, R/W, N/5, BL/W, and BW/C
valid at the beginning of a bus cycle. Then, in
the middle of the bus cycle, the CPU asserts
GREQ. When the global bus selected by the address
is available to the CPU, the arbiter asserts

GACK. The CPU samples GACK on the rising edge of
CLK. GACTK can be asynchronous to CLK; the CPU
synchronizes it internally. The CPU performs one
or more transactions on the global bus, then

negates GREQ. The arbiter responds by negating
GACK; the CPU can then initiate more transac-

tions.

BCLK _I

L I L LI

GREQ \
‘L

7 f

TN\

GACK

-t L 7L /L
7/ r Lo -7/
AD
o L vy -t L
7/ 7/ cds
Py £ r
EL AN
AS
e o et o h
~f /- ~ S —a
DS
oE _\ \
7 fm Py Y
7/ ~7/ 7/
e o 7L 7k
STo-ST3 7/ L 7/
BWIL, BLIW
3 ol fo Vg4 — e
NIS v/a 7/ cda
o o o —f o
KL 77 77
IE
rya L 7L
77 777 77
BRST \
— 4
v/ e
Y - ry
~7/ ~77 7/
BRSTA

Figure 8-22.

Global Bus Request Timing

2071-029

External Interface

Figure 8-23 shows a state diagram for the local
prevent asserted before GACK,

and global bus request protocols. To
deadlock between CPUs referring to each

waiting for GACK in State 2.
the CPU relinquishes the

If

SRE

is

other's global bus without performing any transactions.

local memories, a CPU can be preempted while it is

STATE 0
GREQ = H
BUSACK = H
(BUSREQ BUS = 25T
:::?:?(Eg I:) b (BUSREQ = H)*(GACK = H) e
— (NEED_GBUS = H)
A B| GACK = L c
STATE 1 ERROR
GREG = 3ST STATE2| emem .\
BUSACK = L BUSACK = H
BUS = 3sT BUS = 25T
(GACK = L) o
BUSREQ = H ° ‘ Ey (GACK = L)+(BUSREQ = H) F y (BUSREQ = L)
! — STATE 3| STATE 4
_GREQ = H GREQ =
BUSACK = H [——— BUSACK =
BUS = 25T | (GACK =L)¢ BUS = 25T
[(BUSREQ = L)
+(NEED_GBUS = L)
GlGAC_Knn ||GACK=H

ERROR

NOTES: Interface signals are High (H), Low (L), High or Low (2ST), or 3-stated (3ST).

NEED__GBUS Is an active High signal internal to the CPU.

Figure 8-23.

Request Protocol

State Diagram for CPU Bus

8-24

2071-030

External Interface

State 0

State 1

State 2

State 3

State 4

State Legend
The CPU controls the local bus and is
neither requesting nor controlling the

global bus.

The CPU can perform transactions on the
local bus.

The CPU has granted the local bus.
The CPU cannot perform transactions.

The CPU controls the local bus and is
requesting the global bus.

The CPU cannot perform transactions.

The CPU controls the local and global
buses.

The CPU can perform transactions on the
global bus.

The CPU controls the local bus and is
relinquishing control of the global bus.

The CPU cannot perform transactions.

Transition Legend
A local bus request occurs.

The global bus arbiter grants control of
the global bus when no global bus
request is pending. This is an error.
The CPU remains in State O.

The CPU requests the global bus in
response to the internally generated
signal NEED_GBUS.

The local bus master relinquishes the
bus.

The global bus arbiter grants the global
bus to the CPU while no local bus
request is pending.

The global bus arbiter grants the global
bus to the CPU while a local bus request
is pending. The CPU is preempted.

The global bus arbiter reclaims the glo-
bal bus before the CPU relinquishes the
global bus. This is an error. The
CPU's response to this error is
undefined.

The CPU relinquishes control of the glo-
bal bus when it no longer needs the glo-
bal bus or in response to a local bus
request.

The global bus arbiter reclaims the glo-
bal bus.

8-25

External Interface

8.10 RESET

Figure 8-24 shows Reset timing. After RESET is
asserted, the CPU responds as follows.

e AD lines are turned to input direction

e A5, BRST, BUSACK, D5, EPUABORY, GREQ, IE, and
OF are negated

® STg-ST3 are driven to 1111

e BW/C and BL/W are driven Low

e N/5 and R/W are undefined

If RESET is asserted while the CPU is asserting
BUSACK, the CPU first negates BUSACK, then the
other CPU output lines are removed from 3-state
and driven as described above. After RESET is
asserted, external circuitry can detect that the
CPU has responded to the reset request by sensing
BW/LC and BL/W Low. At power on, RESET should be
asserted until after power has stabilized.

During reset, bits SX, NX, CI, and CD of the SCCL
control register are cleared, disabling the
address translation and cache mechanisms. Bit GE
of HICR is also cleared, disabling the global bus
request protocol.

At the rising edge of RESET, the relationship
between bus timing, memory data path, and number
of automatic wait states is determined. If RSPg
is High at the rising edge of RESET, HICR is
initialized with Mg.DP = 1, Mg.W = 7, and S = 1.
This corresponds to a default configuration of
16-bit memory path, seven automatic wait states,
and bus clock scale factor 2. If RSPy is Low at
the rising edge of RESET, ADy-AD3 and ADqq are
latched into the corresponding bits of HICR, and
ADq5 must be High.

RESET need not be synchronous with CLK; however,
the CPU assumes that the last rising edge of CLK
on which RESET is asserted corresponds to a rising
edge of BCLK. Thus, if RESET is synchronized with
the rising edge of the external bus clock, the
internal and external bus clocks will be in phase
with respect to CLK. After RESEV is negated, the
CPU reads FCW from memory address 2 and PC from
address 4 using status 1101. If BUSREQ is asserted
before RESET is negated, the CPU acknowledges the
bus request before fetching the Program Status.

8-26

External Interface

e[L0 L LT LI L T L J L
N\, . T

/-
Vg4 et Lo f foe
I 17 LA
RSPo
7k /fm £ fom
~ff— 7/ —
SAMPLE

oy o L

~f— L
AD }_______{ DATA IN D————-f ADDRESS = 2

of L —— L

7/

7/

/4 . /
S/ Z 7

As /
/£

-//
/5 —/ /5
-+ / ~/f
DS /
/4
~//
o Py /
Z Z, —t
[3 /
”
—f
> P Py
_ Z, /a /f
iE
e
.
/4 Py Py

74/ 7/ s
RIW
of S Vg J
7/ —t/ 7
Vs rya /
_ Kdd 7/- -
NIS
wei £ fom Y

7, Z Zs
ALL HIGH
Py £ fme Py
Z S f— Z,
STo-ST3 / STATUS = 1101
75
~f/
_ —
BWIL, /= \
BLIW /4 e DY /
Z, // Z
74 Py Py
Zs L L
BRST / \
/4
L
P L .
-~ 7 -
EPU ABORT /
e

Figure 8-24. Reset Timing

2071-031 8-27

Z1lArr

7= 1 A

Appendix A.
28000 Compatibility

The 280,000 CPU is an upward-compatible extension
of Z8000 architecture and bus interface. All Z8000
normal mode software and most Z8000 system mode
software executes on the 280,000 CPU, provided
the software contains no timing dependencies, does
not modify itself, and does not use any of the
78000 reserved instruction, address, and control
field encodings.

A few of the Z8000 privileged instructions are not
implemented by the 280,000 CPU. The instructions
are LOCTL (refresh control register), the Multi-
Micro set (MBIT, MREQ, MRES, MSET), and the
Special I/0 instruction set (SIN, SINB, SIND,
SINDB, SINDR, SINDRB, SINI, SINIB, SINIR, SINIRB,
SOTDR, SOTDRB, SOTIR, SOTIRB, SOUT, SouTB, SOUTD,
SOUTDB, SOUTI, and SOUTIB). An Unimplemented
Instruction trap occurs when a program attempts
to execute one of these instructions.

The portions of a Z8000 operating system concern-
ing memory management and initialization of the
Program Status Area (PSA) must be modified to exe-
cute on the 780,000 CPU. The PSA for the 280,000
CPU is an extension of the Z8000's PSA, with more
entries for additional exceptions.

Memory management is integrated in the 280,000
CPU, while the Z8000 CPU implements memory manage-
ment in peripheral components (Z8010 Memory Man-
agement Unit and Z8015 Paged Memory Management
Unit). In addition, the 80,000 CPU does not sep-
arate stack and data address spaces as does the
Z8000 CPU. Any inconveniences caused by these

differences can be minimized by following the
guidelines in the application note "Memory Manage-
ment and the 280,000 32-bit Microprocessor" (Zilog
document number 00-2329-01).

The 280,000 CPU is compatible with the signals and
timing of the 16-bit Z-BUS, except for the Multi-
Micro resource request signals. The global bus
request protocol of the 780,000 CPU replaces the
Multi-Micro protocol. The 280,000 CPU also
improves the Z-BUS sampling of WAIT and permits
memory read transactions of two bus cycles dura-
tion, though strict Z-BUS compatibility can be
maintained by programming appropriate fields in
the Hardware Interface Control register. (For
strict Z-BUS compatibility, HICR fields Mg-DP,
Mg.W, Mq.DP, M{.W, 1/0g.W, and I1/04.W are 1;
IACK.W1 is 3; IACK.W2 is 2; and GE is 0.) For the
780,000 CPU, EPU-to-memory write transaction tim-
ing includes one cycle more than the Z-BUS speci-
fication; the additional cycle prevents a bus
clash between the CPU and EPU.

Aside from the Z-BUS signals and timing described
above, there are only the following few
differences between the 280,000 CPU and Z8000 CPU
pin signals. The 780,000 CPU does not implement
the 28000 CPU signals MREQ, S5TOP, ABORT, (Z8003
and 28004 only), SEGT (28001 only), and SAT (28003
only). Additionally, some of the status code
definitions have been changed to accommodate the
cache in the 280,000 CPU. The 280,000 CPU dues not
support refresh transactions.

A-1

Appendix B.
Memory-Mapped 1/0

The CPU's memory management mechanism can map log-
ical memory addresses to physical I/0 addresses by
setting bit 31 of a page table entry to 1. Mem-
ory-mapped I/0 can be used only for references to
the data memory logical address spaces with the
following instructions.

ADD DEC RES
AND EX SET
BIT INC SuB
CLR LD TEST
coM NEG TESTA
CP (not Immediate) OR XOR

Memory-mapped I/0 must not be used for instruction
address space references or for data references
with instructions other than those listed above.
I1f memory-mapped 1/0 is used in this prohibited
manner, the CPU may not be able to recover
correctly from an address translation exception
that is detected after the peripheral port has
been accessed, because the state of the peripheral
may have changed. In addition, instructions like
Decrement Interlocked and those for the Extended
Processing Architecture cannot use 1/0 status on
bus transactions.

B-1

Appendix C.
Cache Control and
Memory Transactions

The 780,000 CPU implements a cache mechanism that
keeps copies of frequently used memory locations
on-chip for fast access. The cache mechanism is
selectively enabled for instruction and data
references by bits CI and CD in the SCCL regis-
ter. The cache replacement algorithm is con-
trolled by the CR bit in the SCCL register. When
the replacement algorithm is enabled, (CR=1), the
cache stores a copy of the most recently used
memory locations; otherwise, the cache stores a
copy of fixed memory locations.

The cache contains 16 blocks of storage (Figure
C-1). Each block includes an address tag, which
stores the 28 most-significant bits of the physi-
cal memory address corresponding to the block, and
a bit specifying whether the address tag is
valid. Associated with the tag, the block also
stores eight data words and a bit for each word
specifying whether or not the word contains a
valid copy of the corresponding memory location.
The cache is fully associative, so that any memory
location can be assigned to any block. In all, the
cache provides 256 bytes of data storage.

ADDRESS TAG | 'LINCS,
LINES lcACHE DATA| VALIDITY LRU
A CTE 1S "MEmorY | BiTs F94] sTack
(16 % 28) 18 | (16x128) | (16x8) (16 x 4)
TAG
HIT 32
28 4
32
PHYSICAL DATA WORD
ADDRESS HIT

Figure C-1. Cache Organization

The Purge Cache (PCACHE) instruction invalidates
all of the address tags and data words.

On memory references for which the cache is
enabled, the cache is examined to determine
whether a copy of the addressed location's con-
tents is stored on-chip. . If the cache is not
enabled, the cache is bypassed. For instruction
fetches (including fetches of operands specified
by Immediate, Relative Address, or Relative Index
addressing mode), the cache is enabled when CI is
set to 1; if memory management is enabled, the NC
bit of the page table entry must also be 0. For
operand fetches, the cache is enabled when CD is
set to 1 and the reference is not interlocked
(i.e., not DECI, INCI, and TSET instructions); if
memory management is enabled, the NC bit of the
page table must also be 0. For operand stores, the
cache is always enabled. When the CPU fetches from
the Program Status Area during exception
processing or from the translation tables during
address translation, the cache is bypassed.

When the cache is enabled for a reference, bits 4
to 31 of the physical memory address are compared
to the tags in each cache block. The reference is
called either a "tag hit" if one of the valid tags
matches the address, or a "tag miss" if none of
the tags matches. When a tag hit occurs, bits 1 to
3 of the address select a data word in the block.
If the data word is valid, the reference is called
a "word hit"; otherwise, it is called a "word
miss." For an aligned longword reference, both
the high-order and low-order words, along with
their validity bits, are accessed simultaneously.

For instruction fetches, if the reference is a
word hit, the instruction word is simply read from
the cache. If the reference misses and the cache
is enabled for instructions, the instruction word
is fetched from memory using a burst transaction.
The CPU continues the burst transaction, reading
successive words as long as memory acknowledges
the burst or until the end of the block. If the
cache is bypassed, the instruction is fetched
using a single read operation.

2071-010

C-1

Cache Control and Memory Transactions

For operand fetches, if the reference is a word
hit, the data word is simply read from the cache.
Otherwise, if the reference misses or the cache is
bypassed, the data word is fetched from memory.
Only data fetches that involve more than one
transfer use burst transactions, such as those for
the following instructions: CPI(R), CPSI(R),
CHECK, EXIT, INDEX, IRET, LDI(R), LDM, LDML, LDPS,
OUTI(R), TRTI(R)B, and EPA instructions. Simi-
larly, burst transactions are used for fetching
unaligned operands and longword operands on a
16-bit memory data path. When an operand is
specified using Relative Address addressing mode,
the instruction transfer status (1100 or 1101) is
used except for EPA instructions, which use data
transfer status (1010 or 1011).

For operand stores and saving Program Status dur-
ing exception processing, if the reference is a
word hit, the data byte or word is written to the
cache; however, the data word is invalidated for
an EPA instruction. If the reference is a tag
miss or word miss, the cache is unaffected. The
data is written to memory regardless of whether
the cache hits or misses. This ensures that the
current value for a location is always stored in
memory. The CPU uses burst transactions only for
stores with Load Multiple and Load Multiple
longword registers, Enter, and EPA instructions.

Table C-1 summarizes the activity in the cache and
external interface described above. The status
codes distinguish cacheable and non-cacheable
references for use with an external cache.

When the CPU fetches from the PSA during exception
processing, a burst transaction with status 1101
is used. If the CPU stores to the overflow stack
during exception processing, a transaction with
status 1001 is used. When translation table
entries are fetched or stored (to update the M and
R bits) during address translation, the CPU uses
status 1111.

In addition to the address tags, data, and
validity bits, the cache contains a stack that
orders the blocks according to how recently they
have been used with the most recently used block
on the top of the stack. Whenever a reference is
a tag hit, the corresponding block moves to the
top of the stack, and the blocks that previous to
the reference had been more recently used move
down the stack. The bottom of the stack identifies
the least recently used (LRU) block.

If the cache replacement algorithm is enabled, the
contents of the cache change when a cache miss
occurs. For a tag miss, the CPU first replaces the
tag of the LRU block with the missing block's
address, and marks all the data words in the block
1nvalid. For either a tag miss or word miss, the
CPU loads the data fetched from memory into the
selected cache block and marks the corresponding
words valid.

When the cache replacement algorithm is disabled,
copies of fixed memory locations can be locked
into the cache for fast, on-chip access. To do
this, the cache 1is first enabled for block
replacement of data references only (CR=1, CD=1,
CI=0). Then the cache is purged and selected
blocks are read into the cache. Afterwards, the
replacement algorithm is disabled, and the cache
is enabled for instruction and data references
(CR=0, CD=1, CI=1).

The number of data words per block, number of
blocks, degree of associativity, and replacement
algorithm described for the cache design in this
appendix are specific to the first implementa-
tion of the 280,000 CPU architecture and may dif-
fer in future products implementing the same
architecture. Differences in these characteris-
tics can impact on system performance, but have no
effect on the function of software or the external
interface.

Cache Control and Memory Transactions

Table C-1. Cache and Bus Activity

) Cache Activity Bus Transaction
Reference Hit/Miss Data LRU (status)
Instruction Fetch
CI-NC hit no change update no
miss update update yes (1100)
CI-NC don't care no change - no change yes (1100)
NC don't care no change no change yes (1101)
Operand Fetch
CD-NC-TLOK hit no change update no
miss update update yes (1000, 1010, or 1100)
TD-NC-TLOK don't care no change no change yes (1000, 1010, or 1100)
NC-TLOK don't care no change no change yes (1001, 1011, or 1101)
ILOK don't care no change no change yes (1111)
Operand Store
NC-TCOK hit update update yes (1000, 1010, or 1100)
miss no change no change yes (1000, 1010, or 1100)
NC-TLOK hit update update yes (1001, 1011, or 1101)
miss no change no change yes (1001, 1011, or 1101)
ILOK hit update update yes (1111)
miss no change no change yes (1111)

Key: cD CD in SCCL
CI CI in SCCL
ILOK Interlocked reference required
NC NC in Page Table Entry

t o)
(O

Trrerd
N

_=,

(
(

N

N

UPPER NIBBLE (HEX), UPPER INSTRUCTION BYTE

Appendix D.

, -
Programmer’s Quick
-
Reference Guide
]
LOWER NIBBLE (HEX), LOWER INSTRUCTION BYTE
0 1 2 3 4 5 [7 8 9 A B (4 D E F
ADDB ADD suBB sus ORB OR ANDB AND XORB XOR CPB cP See See EXTEND | EXTEND

R~—IR R —IR R—IR R ~—IR R —IR R~—IR R~ IR R~ IR R ~—IR R~—IR R —IR R~—IR Table Table INST INST
R~—IM R ~—IM R—IM R~IM R ~—IM R~—IM R~—IM R~ IM R —IM R—IM R—IM R~—IM 1 1

CPL PUSHL | SuBL PUSH LoL POPL ADDL POP MULTL | MULT DIVL oiv See LoL JP CALL
R~MR | R—R | R~ | IR—IR | R—IR [IR—IR | R—=R | R—IR [R—IR | R—IR | R—IR | R—IR Table IR—R PC—IR | PC—IR
R—=IM | R—=IM | R—=IM [IR—=IM | R—IM R—IM R—IM | R—IM | R—IM | R—1IM 2

LDB Lo RESB RES SETB SET BITB BIT INCB INC DECB DEC EX8 EX LDB LD
Re~R | R—R | R=M | R—M[IR—=M|[R—M|IR—=M|R—=M|[R—=IM|[R—=IM[IR—IM|IR—IM R—IR R—IR IR—R IR—R

R—IM R~—IM R+—R R+~—R R~R R—R R—R R~—R

LDB Lo LoB LD LDA LoL UNIM LoL LDKL LDPS See See INB IN ouTe ouTt
R —BA R—BA | BA—R | BA—R | R—BA | R—BA BA —R R—IM IR Table Table R~IR R—IR IR—R IR—R
LDRB LDR LDRB LDR LDAR LDRL LDRL 3 3
Re—RA | R—RA | RA—R | RA=—R R~—RA | R—RA RA —R
ADDB ADD suss suB ORB OR ANDB AND XORB XOR cprB cP See See EXTEND | EXTEND

R+-EAM |R —EAM | R «—EAM | R — EAM | R «— EAM | R —~ EAM | R «— EAM [R «— EAM | R «~ EAM | R — EAM [R — EAM | R — EAM Table Table INST INST
1 1

CPL PUSHL | SUBL PUSH LoL POPL ADDL POP MULTL | MULT DivL DIV See LoL JP CALL
R+~ EAM [IR — EAM| R —EAM | IR ~— EAM [R «—~ EAM | IR — EAM| R —~ EAM [IR — EAM| R «—~EAM | R —EAM [R —EAM | R —EAM | Table | EAM—R | PC—EAM | PC—EAM
2

LDB LD RESB RES SETB SET BITB BIT INCB INC DECB DEC EXB EX LDB Lo
R — EAM | R «— EAM |EAM — IM|EAM — IM [EAM «— IM |EAM — IM|EAM «— IM [EAM «— IM [EAM «— IM [EAM — IM [EAM «— IM [EAM — IM| R—EAM | R—EAM | EAM—R | EAM=R

LbB See Lo L0 LDA oL LDA LDL CVT LDPS See See El See TRAP sC
R «— BX ‘l'u;h BX <R | BX—R | R—=BX | R—BX [R—EAM| BX—R | CVIU [PS —EAM Tu:h Tn;lo DI Table
7
ADDB ADD SuBB SUB ORB OR ANDB AND XORB XOR CPB cP See See EXTEND | EXTEND
R—R R—R R—R R—R R—R R—R R—R R—R R—R R—R R—R R—R Table Table INST. INST.
1 1
CPL PUSHL SuBL PUSH LDL POPL ADDL POP MULTL MULT DIVL DIV See LDCTLL RET LDCTLL

R—R IR—R R~R IR~R R—R R—IR R+—R R —IR R+~R R—R R—R R+—R Table |CTLRL-R| PC—(SP) (R~ CTLRL
2

LDB LD RESB RES SETB SET BITB BIT INCB INC DECB DEC EXB EX TCCB TCC
R R R—R Re—1IM R~—IM Re~IM R~—IM R~—IM R~IM R~—IM R~ IM Re—IM R~—IM R~R R«~R R R

DAB EXTS See See ADCB ADC SBCB SBC See See See See RRDB LDK RLDB UNIM
EXTSB Table Table R+—R R—R R—R R—R Table TI:IO Table Table R R—IM R
4 4 5 6 (]

LDB
Re—IM

CALR
PC «— RA

JR
PC — RA

DJINZ
DBJNZ
PC —RA

Notes:
1) Opcodes marked UNIM are unimplemented and must not be used. Attempting to execute an
unimplemented opcode causes an Unimplemented Instruction trap.
2) The ion of an i ion results in an E: ion trap if the EPA bit in
the FCW is 0; otherwise, the CPU sends the i ion to an EPU for i

Opcode Map

Programmer's Quick Reference Guide

LOWER NIBBLE (HEX), LOWER INSTRUCTION BYTE

oc oD 4c 4D 8c 8
comMB | cOM comB | com come | com
R IR EAM EAM R R
cPB cp cpB cp LDCTLB | SETFLG

R—IM IR—IM EAM+IM | EAM—IM R—FLGS
NEGB | NEG NEGB | NEG NEGB | NEG
IR IR EAM EAM R R
UNIM | CPL UNIM | cPL UNIM | RESFLG
IR—=IM EAM —IM
TESTB | TEST TESTB | TEST TESTB | TEST
IR IR EAM EAM R R
LDB LD LDB LD UNIM |COMFLG
IR—IM IR—IM EAM—IM | EAM —IM
TSETB | TSET TSETB | TSET TSETB | TSET
IR IR EAM EAM R R
UNIM | LDL unmM | Lo UNIM | NOP
IR—IM EAM—IR
CLRB | CLR CLRB | CLR CLRB | CLR
R R EAM EAM R R
UNIM | PUSH UNIM | UNIM LDCTLB | UNIM
IR—IM FLGS—R
CHKB | CHK CHKB | CHK UNIM | UNIM
R—IM R—IM R—EAM R—EAM
R—IR R—IR
UNIM | CHKL UNIM | CHKL UNIM | UNIM
R—IM R—EAM
R—IR
TESTAB | TESTA TESTAB | TESTA TESTAB | TESTA
IR IR EAM EAM R R
UNIM | uNIM UNIM | UNIM UNIM | UNIM
UNIM INDEX UNIM INDEX UNIM UNIM
R—IM R—EAM
R—IR
UNIM | INDEXL UNIM | INDEXL UNIM | UNIM
R—IM R—EAM
R—IR
Table 1. Upper Instruction Byte

LOWER NIBBLE (HEX), LOWER INSTRUCTION BYTE

1c 5C 9C
comL comL comL
0 IR EAM R
LDM LDM UNIM
1 R~—IR R—EAM
R~—IM
NEGL NEGL NEGL
2 R EAM R
UNIM UNIM UNIM
3
CLRL CLRL CLRL
4 IR EAM R
LDML LDML UNIM
5 IM—IR IM —EAM
IM —IM
INSRT INSRT INSRT
6 IR—R EAM —R R—R
UNIM UNIM UNIM
7
TESTL TESTL TESTL
8 R EAM R
LOM LDM UNIM
9 IR—R EAM —R
EXTR EXTR EXTR
A R—IR R—EAM R—R
EXTRU EXTRU EXTRU
B R—IR R—EAM R—R
TESTAL TESTAL TESTAL
c R EAM R
LDML LDML UNIM
D IR=IM EAM —IM
UNIM UNIM UNIM
E
UNIM UNIM UNIM
F
Table 2. Upper Instruction Byte

D-2

Upper Instruction Byte

Programmer's Quick Reference Guide

LOWER NIBBLE (HEX), LOWER INSTRUCTION BYTE

3A 3B
INIB IN
IR—IR IR—IR
INIRB INIR
IR—IR IR—=IR
UNIM UNIM
ouTis ouTl
IR—IR IR—IR
OTIRB OTIR
IR—IR IR—IR
UNIM UNIM
INB IN
R—DA | R—DA
UNIM UNIM
ouTe out
DA-=R | DA=R
UNIM UNIM
INDB IND
IR—IR IR—IR
INDRB INDR
IR—IR IR—IR
UNIM UNIM
OuTDB | OUTD
IR—IR IR —IR
OTDRB | OTDR
IR—IR IR—IR
UNIM UNIM
Table 3.

LOWER NIBBLE (HEX), LOWER INSTRUCTION BYTE

Upper Instruction Byte

B2 B3
RLB RL
(1o (16it)
Re—IM Re=IM
sSLLe SLL
R—IM R—IM
SRLB SRL
Re—=IM Re=IM

RLB RL
2 buts) (2 bits)
Re—IM Re—IM
soLe SOL
Re—iM R—IM

RRB RR
(1 oil) (1 o)
Re=IM R—IM
UNIM SLLL
R—IM
SRLL
Re—IM

RRB RR
(2 bits) (2 bits)
Re=IM Re—IM
UNIM SOLL
R—IM

RLCB RLC
(1 bit) (1 bty
R—IM R—IM
SLAB SLA
R—IM Re—IM
SRAB SRA
R—IM R—IM
RLCB RLC
(2 bits) (2 bits)
R—IM R—IM
SDAB SDA
R—R R—R
RRCB RRC
(1b1t) (1 bit)
ReIM Re=IM
UNIM SLAL
Re—IM
SRAL
Re=IM

RRCB RRC
(2 bits) (2 bits)
R—IM R—IM
UNIM SDAL
R—R

Table 4.

B8
TRIB
[IR—IR
UNIM
1
TRTIB
2 IR—IR
UNIM
3
TRIRB
) R—IR
UNIM
5
£
o TRTIRB
5 (] IR—IR
=
Q
]
=
I3 UNIM
z 7
«
3
] TRDB
8‘ 8 IR—IR
<
w
2
28 4 UNIM
z
«
E
S TRTDB
A IR—IR
UNIM
B
TRDRB
c IR—IR
UNIM
)]
TRTDRB
E IR=IR
UNIM
F
Table 5.

Upper Instruction Byte

LOWER NIBBLE (HEX), LOWER INSTRUCTION BYTE

BA BB B9
cPIB cPI CPIL
IR—IR IR—IR IR—IR
0
LDIB LDI LDIL
IR—IR IR—IR IR=IR
1 LDIRB | LDIR | LDIRL
IR=IR IR—IR IR—=IR
cPsIB | CPsI | CPSIL
IR—=IR IR—IR IR—IR
2
UNIM | UNIM | UNIM
3
CPIRB | CPIR | CPIRL
R—=IR R—IR R—IR
4
UNIM | UNIM | UNIM
5
CPSIRB | CPSIR | CPSIRL
IR=IR IR—IR IR—IR
]
UNIM | UNIM | uNim
7
cPDB | CPD | CPDL
R—IR R—IR R—IR
8
LDDB | LDD | LDDL
IR=IR IR—IR IR—IR
9 LDDRB | LDDR | LDDRL
IR=IR IR-IR IR—IR
cPSDB | CPSD | CPSDL
R—IR IR—IR IR—=IR
A
UNIM | uNim | uNim
B
CPDRB | CPDR | CPDRL
R—IR R—IR R—IR
c
UNIM | UNIM | uNIM
D
CPSDRB | CPSDR |CPSDRL
R—IR IR—IR IR=IR
3
UNIM | UNIM | UNIM
F
Table 6.

Upper Instruction Byte

Programmer's Quick Reference Guide

LOWER NIBBLE (HEX), LOWER INSTRUCTION BYTE

Upper Instruction Byte

7B 70
IRET UNIM
UNIM UNIM
UNIM LDCTL

R—FCW
UNIM UNIM
UNIM LDCTL
Re—
PSAPSEG
UNIM LDCTL
Re—
PSAPOFF
UNIM LDCTL
R —NSPSEG|
UNIM LDCTL
R —NSPOFF
UNIM UNIM
UNIM UNIM
UNIM LDCTL
FCW-R
UNIM UNIM
UNIM LDCTL
PSAPSEG
—R
UNIM LDCTL
PSAPOFF
~R
UNIM LDCTL
NSPSEG—R
UNIM LDCTL
INSPOFF —R
Table 7.

HALT
[
BREAK-
1 POINT
ESC
2 LONG'
ESC
3 UNSIGN?
ESC
4 INTERLOCK?|
w ENTER
S
@
3
5 EXIT
S 6
=
o0
z LONI | LDND
-4 7
S
S PCACHE
£ 8
3
w
z
w PTLBESI |PTLBESD | PTLBENI| PTLBEND
E
z
§ PTLB
Y
-
PTLBN
B
c
LDPSI | LDPSD | LDPNI | LDPND
D
E
F

Table 8. Lower Instruction Byte

Compact Segmented or Linear
Direct Address Direct Address
Index Index
Base Address
Base Index
Relative Address
Relative Index
Table 9. Extended Addressing Modes

D-4

Appendix E.
Timing Formulae for
Performance Evaluation

INTRODUCTION

The 780,000 CPU, unlike the Z8000 and other 16-bit
microprocessors, integrates a highly pipelined
design, cache memory, and memory management into a
single component. With the earlier micro-
processors it is relatively simple to calculate
exact performance measurements for a benchmark
program or program workload mixture, as follows.
Each instruction (i) in the architecture is
characterized by its execution cycle count (nj)
and number of memory references (rj). From the
program workload, the frequency of execution for
each instruction (fj) can be determined. If W is
the number of wait states for the memory system,
then the average number of cycles to process an
instruction (Ty) can be determined from the
following formula.

Tr= zfi(ni + riW)
1

And, if Tc is the cycle time of the processor,
then the processor's performance (that is, the
processor's rate of executing instructions) is
given by the formula below.

performance = (TyTp)~1

Calculating the performance of the 780,000
processor involves a more complex formulation that
accounts for dependencies between instructions in
the pipeline and misses for the cache and
Translation Lookaside Buffer (TLB). This appendix
contains the timing formulae used to analyze the
performance of the 780,000 CPU, and also a
sufficiently detailed description of the
processor's implementation to calculate timing
parameters for a program workload.

Theory of Operation

Figure E-1 shows a block diagram of the 280,000
CPU's internal organization, including the
following major functional units and data paths:

e The external interface logic controls
transactions on the bus. Addresses and data
from the internal memory bus are transmitted

through the interface to the Z-BUS. The Z-BUS
is a time-multiplexed, address/data bus that
connects the components of a microprocessor
system.

e The cache stores copies of instruction and data
memory locations. Instructions are read from
the cache on the instruction bus. Data is read
from or written to the cache on the memory bus.
The cache also includes a copy of the physical
Program Counter, so that the logical addresses
of instructions are translated only for
branches and when incrementing the Program
Counter across a page boundary.

e The Translation Lookaside Buffer (TLB) trans-
lates logical addresses calculated by the
address arithmetic unit to physical addresses
used to access the cache.

e The address arithmetic unit performs all
address calculations. This unit has a path to
the register file for reading base and index
registers and another path to the instruction
bus for reading displacements and direct
addresses. The result of the address calcula-
tion is transmitted to the TLB.

e The register file contains the sixteen general-
purpose longword registers, Program Status
registers, special-purpose control registers,
and several registers used to store values tem-
porarily during instruction execution. The
register file has one path to the address
arithmetic unit and two paths to the execution
arithmetic and logic unit.

o The execution arithmetic and logic unit cal-
culates the results of instruction execution,
such as add, exclusive-or, and simple load.
This unit has two paths to the register file on
which two operands can be read simultaneously
or one can be written. One of the paths to the
register file is multiplexed with a path from
the memory bus.

e The instruction decoding and control wunit
decodes instructions and controls the operation
of the other functional units. This unit has a
path from the instruction bus and two

E-1

Timing Formulae for Performance Evaluation

programmable logic arrays for separate All of the functional units and data paths listed
microcoded control of the two arithmetic above are 32 bits wide.
units. This wunit also controls exception

handling and TLB loading.

2.BUS

EXTERNAL
INTERFACE

£

MEMORY BUS

L

CACHE CACHE
DATA ADDRESS TAGS
INSTRUCTION REGISTER PHYSICAL PC
INSTRUCTION BUS TRANSLATION
LOOKASIDE
BUFFER

ADDRESS ARITHMETIC
UNIT

INSTRUCTION
DECODING

AND
CONTROL

UNIT REGISTER

FILE

[1=

EXECUTION ARITHMETIC
AND LOGIC UNIT

Figure E-1. Functional Block Diagram
INSTRUCTION FETCH INSTRUCTION DECODING ADDRESS CALCULATIONS OPERAND FETCH EXECUTION OPERAND STORE
ADDRESS ARITHMETIC
':%%ﬁ';ég CACHE INSTRUCTION CALCULATION CACHE TAG REGISTER READ FLAG SETTING
READ - - > L
INCREMENT TLB TAG COMPARE ALU CALCULATION CACHE DATA WRITE
MICROWORD COMPARE
%gg‘:g GENERATION CACHE DATA READ REGISTER WRITE MEMORY WRITE
TLB DATA READ
Figure E-2. Instruction Pipeline

Timing Formulae for Performance Evaluation

The operation of the CPU is highly pipelined so
that several instructions are simultaneously in
different stages of execution. Thus, the func-
tional units effectively operate in parallel with
one instruction being fetched while an address is
calculated for another instruction and results are
stored for a third instruction.

Figure E-2 shows the six-stage, synchronous pipe-
line. Instructions flow through each stage of the
pipeline in sequence. The various pipeline stages
can be working simultaneously on separate instruc-
tions or on separate portions of a single complex
instruction. Each pipeline stage operates in one
processor cycle, which is composed of two clock
cycles, called ¢1 and @2. Thus, a processor
cycle is 200 ns with a 10 MHz clock or 80 ns with
a 25 MHz clock.

The instruction-fetch stage increments the Program
Counter and initiates instructions fetched from
the cache. The instruction-decoding stage
receives and decodes instructions to set wup
control of the address-calculation stage.

The address-calculation stage can generally
calculate a memory address in one processor cycle,
except for Base Index, Relative, and Relative
Index addressing modes, which require multiple
cycles. After the logical effective address has
been calculated, the corresponding physical
address is provided by the TLB. The operand-fetch
stage fetches the data from the cache and latches
it into a holding register.

The execution stage performs data manipulations.
Byte, word, and longword results are generally
calculated in one processor cycle, but certain
instructions, such as multiply and block-move
operations, require multiple cycles. During the
execution stage, results are stored to registers.
Results are stored to the cache and external
memory during the operand-store stage. The flags
are also set during the operand-store stage.

The cache can handle two references during a
processor cycle. Instruction fetches use the 92,
clock cycle for tag comparison and ¢1 for data
access. Either an operand fetch or store can use
91 for tag comparison and ¢2 for data access.

The pipeline allows single instructions, like
register-to-register load and memory-to-register
add, to execute at a rate of one per processor
cycle. Thus, the peak performance of the CPU is
12.5 million instructions per second (MIPS) with a
25 MHz clock. In practice, the actual performance
is reduced to approximately one-third of the peak
because of delays due to the execution of

multiple-cycle instructions, interference between
instructions in the pipeline, and main memory
accesses for cache and TLB misses.

In order to calculate the processor's
performance it is helpful to separate the average
processing time for an instruction into four
components: execution delays, pipeline delays,
addressing delays, and memory delays. The
following sections describe the various delay
components.

Execution Time

The first component of instruction processing time
is the basic execution time: the time required to
execute an instruction assuming that there is no
interference from other instructions in the
pipeline and that all memory references hit in the
cache and TLB. An instruction's execution time is
determined by its operation, data type, and
addressing mode.

For most instructions, the execution delay can be
calculated by adding the number of cycles from
Table E-2 corresponding to the operation and data
type to the number of cycles from Table E-1
corresponding to the addressing mode. Use either
the source or destination addressing mode, as
listed with the instruction's format in section
6.5. For the remaining instructions, Table E-2
gives the execution delays for specific
combinations of operations, data types, and
addressing modes. The following example shows how
to use the tables.

An instruction that loads a longword from a
register to a register (e.g., LDL RR4, RR2), has
an execution time of 1 processor cycle: 1 for the
operation and 0 for the addressing mode. An
instruction that adds a longword immediate value
to a register (e.g., ADDL RRO, #100), has an
execution delay of 2 processor cycles: 1 for the
operation and 1 for the addressing mode. An
instruction that tests a bit of a byte in memory
specified by IR addressing mode (e.g., BITB @RR2,
#1), has an execution delay of 3 processor cycles:
the delay is listed in Table E-2 for the specific
operation and addressing mode.

Pipeline Delays

Pipeline delays result from interference between
instructions at different stages of the pipeline.
Pipeline delays occur when instructions contend
for the use of a bus or functional unit, and one

instruction must be delayed. There are two

E-3

Timing Formulae for Performance Evaluation

sources of pipeline delays:
and cache reference interlocks.

register interlocks

A register interlock occurs when an instruction
modifies a register that is required for an
address calculation by either of the two sub-
sequent instructions. In addition, the following
instructions, which may modify more than one
register, cause an interlock for any registers
used in subsequent address calculations: CPD(BL),
cPI(BL), CPSD(BL), CPSI(BL), DIVL, DIVUL, EXIT,
EXTSL, LDD(BL), LDI(BL), LDM registers from
memory, LDML registers from memory, MULTL, MULTUL,
and Load CPU from EPU. When the instruction that
modifies the register is followed immediately by

the interlocked address calculation, then the
pipeline delay is 2 processor cycles, otherwise
the interlock causes a pipeline delay of 1 pro-
cessor cycle. Register interlocks are detected
for the use of longword registers. Thus, with the
CPU's register file organization (see Figure 2-2),
if a byte or word within a longword register is
modified, then a subsequent address calculation
can be interlocked by using the longword register
itself or either of the word registers it
contains.

For example, the following instruction sequences
cause register interlock delays when executed (in
linear mode).

INCL RR2, #4
LDB RHO, @RR2

MULT RR24, #1000
LDL RRO, RR4
ADDL RRO, RR12 (RR24)(16)

//register interlock delay//
//for RR2 is 2 processor cycles//

//register interlock delay//
//for RR24//
//is 1 processor cycle//

Table E-1. Execution Times for General Addressing Modes

Address Representation

Addressing Mode Compact Segmented or Linear
R 0 0
IM (byte or word) 0 0
(longword) 1 1
IR 0 0
DA 4] 0 for 1 extension word
1 for 2 or 3 extension words
X 0 0 for 1 extension word
1 for 2 or 3 extension words
BA 0 0 for 1 extension word
1 for 3 extension words
BX 2 1 for 1 extension word
2 for 3 extension words
RA 1 1 for 1 or 3 extension words
RX Not 2 for 1 or 3 extension words
Available

E-4

Timing Formulae for Performance Evaluation

Table E-2. Execution Time for Instruction Operations
Addressing Execution
Operation Data Type Modes Time Notes
ADC B,W R 1
L R 2
ADD B,W,L See Table E-1 1
AND B,W See Table E-1 1
L See Table E-1 2
Bit R,EAM--See Table E-1 2
(Static) B,W
IR 3
R,EAM--See Table E-1 3
L
IR 4
Bit B,W R 4
(Dynamic)
L R 5
BRKPT - See Table E-5.
CALL See Table E-1 5
CALR RA 4
CHK B,W,L See Table E-1 8 Assumes trap not taken; see table
E-5 if trap taken.
CLR B,W,L See Table E-1 1
COM R 1
B,W,L
IR,EAM--See Table E-1 2
COMFLG 1
CP (Register) B,W,L See Table E-1 1
CP (Immediate) B,W See Table E-1 2
L See Table E-1 3
CPD B,W,L IR 7
CPDR B,W,L IR S5+4n n is number of iterations.
CPI B,W,L IR 7
CPIR B,W,L IR 5+4n n is number of iterations.

Timing Formulae for Performance Evaluation

Table E-2. Execution Time for Instruction Operations-Continued
Addressing Execution
Operation Data Type Modes Time Notes
CPSD B,W,L IR 8
CPSDR B,W,L IR 4+5n n is number of iterations.
CPSI B,W,L IR 8
CPSIR B,W,L IR 445n n is number of iterations.
CVT (register) All See Table E-1 6
CVT (memory) All See Table E-1 6
CVTU (register) All See Table E-1 6
CVTU (memory) All See Table E-1 6
DEC R 1
B,W
IR,EAM--See Table E-1 3
L R 2
IR,EAM-See Table E-1 4
DECI B,W See Table E-1 4 Cache bypassed for operand fetch,
treat like cache miss.
DI 3
DIV 5 Case 1
W See Table E-1 7 Case 2
25 Case 3 or 4
4 Case 1
L See Table E-1 [Case 2
38 Case 3 or 4
DIVU W 6 Case 1
See Table E-1 8 Case 2
26 Case 3 or 4
L 5 Case 1
See Table E-1 7 Case 2
39 Case 3

Timing Formulae for Performance Evaluation

Table E-2. Execution Time for Instruction Operations-Continued
Addressing Execution
Operation Data Type Modes Time Notes
DINZ 2 Not taken
B,W R
5 Taken
3 Not taken
L R
6 Taken
EI 3
ENTER 15+4n n is the number of registers
specified in enter mask.
EX B,W See Table E-1 3
L See Table E-1 4
EXIT 10+n n is the number of the registers
specified in exit mask.
EXTR R 6
IR,EAM--See Table E-1 1
EXTRU R 6
IR,EAM--See Table E-1 1
EXTS B R 3
W,L R 2
HALT 1
IN B,W IR 2
DA 1
Add access time for input port.
L IR 3
DA 2
INC B,W R 1
IR,EAM--See Table E-1 3
R 2
L
IR,EAM--See Table E-1 4
INCI B,W See Table E-1 4 Cache bypassed for operand fetch,

treat like cache miss.

Timing Formulae for Performance Evaluation

Table E-2. Execution Time for Instruction Operations-Continued
Addressing Execution
Operation Data Type Modes Time Notes
IND B,W IR 17 Assumes no I/0 wait states--I/0
wait states must be added.
L IR 12
INDEX W See Table E-1 19 Assumes trap not taken; see
Table E-5 if trap is taken.
L See Table E-1 27
INDR B,W IR 3+8n n is number of iterations. Assumes
no 1/0 wait states--1/0 wait states
L IR 448n must be added for each iteration.
INI B,W IR 11 Assumes no 1/0 wait states--1/0
wait states must be added.
L IR 12
INIR B,W IR 3+8n n is number of iterations. Assumes
no 1/0 wait states--1/0 wait states
L IR 4+8n must be added for each iteration.
INSRT R 17
IR,EAM--See Table E-1 18
IRET 12
JP 1 Not taken
See Table E-1
4 Taken
JR 1 Not taken
RA
4 Taken
LD (register) B,W,L See Table E-1 1
LD (memory) B,W,L See Table E-1 1
LD (immediate) B,W,L See Table E-1 3
LDA See Table E-1 1
LDAR 1
LDCTL 7 FCW
(into Control 3 NSP
register) 6 PSAP
LDCTL 1
(from Control
register)

E-8

Timing Formulae for Performance Evaluation

Table E-2. Execution Time for Instruction Operations-Continued
Addressing Execution
Operation Data Type Modes Time Notes
LDCTLB 1
LDCTLL 5 0SP, PSAP
(into Control 1 NSP
register) 7 SITTID, SDTTD, NITTD, NDTTD, SCCL, NSP
LDCTLL 1
(from Control
register)
LDD B,W,L IR 9
LDDR B,W,L IR 445n n is number of iterations.
LDI B,W,L IR 9
LDIR B,W,L IR 4+5n n is number of iterations.
LDK R 1
LDM W See Table E-1 6+n/2 n is even number of registers.
(registers from
memory) 6+(n+1)/2 n is odd number of registers.
LDM W See Table E-1 2n n is even number of registers.
(memory from See note 2.
registers)
2 + 2n n is odd number of registers.
LDML L M 9+n
(registers from n is number of registers specified
memory) IR,EAM--See Table E-1 7+n in mask operand.
LDML L See Table E-1 3+4n n is number of registers specified
(memory from in mask operand.
registers) See note 2.
LDN B,W,L See Table E-1 2
LDP See Table E-1 2
LDPS See Table E-1 1
LDR B,W,L 2
MULT W See Table E-1 15
L See Table E-1 24

Timing Formulae for Performance Evaluation

Table E-2. Execution Time for Instruction Operations-Continued
Addressing Execution
Operation Data Type Modes Time Notes
MULTU W See Table E-1 16
L See Table E-1 25
NEG B,W,L R 1
IR,EAM--See Table E-1 2
NOP 1
OR B,W See Table E-1 1
L See Table E-1 2
OTDR B,W IR 6
L IR 7
OTIR B,W, IR 6
L IR 7
out IR 2
B,W
DA 1
L IR 3
DA 2
ouTD B,W IR 2+4n n is number of iterations.
L IR 3+4n
OUTI B,W IR 2+4n n is number of iterations.
L IR 3+4n
PCACHE 6
POP B,W,L R 2
IR,EAM--See Table E-1 3
PTLB 6
PTLBE 6
PTLBN 6

Timing Formulae for Performance Evaluation

Table E-2. Execution Time for Instruction Operations-Continued

Addressing Execution
Operation Data Type Modes Time Notes
PUSH R 2
B,W,L
IR,EAM--See Table E-1 3
RES R 2
(Static)
B,W IR 4
EAM--See Table E-1 3
R 3
L IR 5
EAM--See Table E-1 4
RES (Dynamic) B,W R 4
L R 5
RESFLG 1
RET 6 Not taken
7 Taken
RL B,W R 2+n n = number of bits rotated.
L R 3+n
RLC B,W R 2+n n = number of bits rotated.
L R 3+n
RLDB R [3
RR B,W R 2+n n = number of bits rotated.
L R 3+n
RRC B,W R 2+n n = number of bits rotated.
L R 3+n
RRDB R 6
SBC B,W R 1
L R 2
SC - See Table E-5.

E-11

Timing Formulae for Performance Evaluation

Table E-2. Execution Time for Instruction Operations-Continued
Addressing Execution
Operation Data Type Modes Time Notes
SDA B,W,L R 8 Right shift
9 Left shift
SDL B,W,L R 4
SET B,W R 1
(Static)
IR 3
EAM--See Table E-1 2
L R 2
IR 4
EAM--See Table E-1 3
SET B,W R 3
(Dynamic)
L R 3
SETFLG 2
SLA B,W,L R 9
SLL B,W,L R 4
SRA B,W,L R 8
SRL B,W,L R 4
suB B,W,L See Table E-1 1
TCcC B,W R 1
L R 2
TEST B,W,L See Table E-1 1
TESTA B,W,L See Table E-1 1
TRAP 4 Assumes trap not taken; see Table E-5
if trap taken.
TRDB B IR 1
TRDRB B IR 4+7n n is number of iterations.
TRIB B IR 1"

Timing Formulae for Performance Evaluation

Table E-2. Execution Time for Instruction Operations-Continued
Addressing Execution
Operation Data Type Modes Time Notes
TRIRB B IR 4+7n n is number of iterations.
TRTDB B IR "
TRTDRB B IR 4+7n n is number of iterations.
TRTIB B IR 1"
TRTIRB B IR 4+7n n is number of iterations.
TSET B,W See Table E-1 2 Cache bypassed for operand fetch,
treat like cache miss.
L See Table E-1 3
XOR B,W See Table E-1 1
L See Table E-1 2
Load EPU from B,W See Table E-1 4 Bus-timing scale factor is 2. Cache
Memory1 bypassed for operand fetch, treat
like cache miss.

7 Bus-timing scale factor is 4. Cache
bypassed for operand fetch, treat
like cache miss.

Load Memory B,W See Table E-1 4 Bus-timing scale factor is 2. Add
from EPUT time to store operand, see memory
delays section.

7 Bus-timing scale factor is 4. Add
time to store operand, see memory
delays section.

Load CPU from W,L R 9+(n/2) Bus-timing scale factor is 2. n is
epu? even number of words transferred.
9+(n+1)/2 |Bus-timing scale factor is 2. n is
odd number of words transferred.
15+n Bus-timing scale factor is 4. n is
even number of words transferred.
16+n Bus-timing scale factor is 4. n is
odd number of words transferred.

Timing Formulae for Performance Evaluation

Table E-2. Execution Time for Instruction Operations-Continued

Addressing Execution
Operation Data Type Modes Time Notes
Load EPU from W,L R 8+(n/2) Bus-timing scale factor is 2. n is
cpul even number of words transferred.
8+(n+1/2) |Bus-timing scale factor is 2. n is
odd number of words transferred.
12+n Bus-timing scale factor is 4. n is
even number of words transferred.
13+n Bus-timing scale factor is 4. n is
odd number of words transferred.
Load FCW from 10 Bus-timing scale factor is 2.
epy’
17 Bus-timing scale factor is 4.
Load EPU from 9 Bus-timing scale factor is 2,
Few!
14 Bus-timing scale factor is 4.
Internal EPU 1 Bus-timing scale factor is 2.
operation1
2 Bus-timing scale factor is 4.

Note 1: The execution times reported for EPA instructions assume that the EPU does not force the CPU to

wait by asserting EPUBSY.

Refer to the 28070 APU Technical Manual (Zilog document number

03-8226-01) for more information about execution delays for particular EPA instructions and
consideration of instruction overlap between the CPU and EPU.

Note 2: Execution time for this instruction is less if burst transfers are supported for storing data

into memory. See memory delays section.

A cache reference interlock occurs when an
instruction modifies a memory location and either
of the following two instructions fetches an
operand from memory (including immediate mode
operands other than those specified by special,
compact encodings, like the source operands for
BIT, DEC, and LDK instructions). This interlock
is caused by contention for both the cache and
memory bus. When the instruction that modifies
memory is followed immediately by an instruction
that fetches an operand, the pipeline delay is 2
processor cycles; otherwise, the pipeline delay is
1 processor cycle.

For example, the following instruction sequences
cause cache reference interlocks when executed (in
linear mode).

LDL RR12(10), RRO //cache reference interlock//
ADDL RR2, @RR20 //delay is 2 processor cycles//

LDL RR12(10), RRO //cache reference interlock//
ADDL RR2, RR4 //delay is 1 processor cycle//
ADDL RR2, @RR20

E-14

Timing Formulae for Performance Evaluation

Addressing Delays

Addressing delays can occur when instructions or
operands are located across longword or page
bounderies. Unlike memory delays due to cache and
TLB misses, which are described in the next
section, addressing delays can be calculated from
knowledge of the CPU's operation alone, without
considering the memory system's latency and
bandwidth.

An addressing delay of 1 processor cycle occurs
when an operand that crosses a longword boundary
is fetched. That is, when a longword is fetched
from an address for which the two least
significant bits differ from 00 or a word is
fetched from an address for which the two least
gignificant bits are 11, This delay arises
because the CPU must make two memory references on
its 32-bit memory bus.

An addressing delay of 1 cycle also occurs when
the CPU branches to a two-word instruction that is
located at an odd-word address. Another ad-
dressing delay of 3 cycles occurs when the PC is
incremented across a page boundary during se-
quential instruction processing. The former delay
arises from a gap in filling the instruction
buffer, while the latter delay is caused by the
need to translate the new page address in the PC.

Memory Delays

Memory delays occur when the CPU must wait to
access external memory to service a cache or TLB
miss or to store an operand. The duration of such
delays depends on the memory system's data path
width (16 or 32 bits), its access time, and its
support for burst transfers. Thus, a micro-
processor system designer can trade cost for per-
formance by specifying these memory parameters as
well as the CPU's clock speed and the bus-timing
scale factor. In the description that follows,
the times for single memory-read and -write trans-
actions are represented by TR and Ty processor
cycles, respectively; the bus-timing scale factor
(2 or 4) is represented by S. Burst transfers are
assumed to take the same times (TR and Ty) for
the initial transfer and 1 bus clock cycle for
each subsequent transfer.

The memory delay for both instruction and operand
cache fetch misses is TR, For instruction cache
misses, burst transactions are used as follows:
The CPU reads the missing word or longword (de-
pending on the memory's data path width) and

requests the words or longwords that follow in the
16-byte cache block by signaling a burst trans-
fer. The burst transfer continues until either
the end of the 16-byte block is reached or the
memory system indicates that it cannot support
further transfers.

For operand fetch cache misses, burst transactions
are used when more than one transfer is antici-
pated within a 16-byte block. Specifically, burst
transfers are used to fetch operands for the
following instructions: CPI(R), CPSI(R), CHECK,
EXIT (registers only), INDEX, IRET, LDI(R), LDM,
LDML, LDPS, OUTI(R), TRTI(R)B, and EPA instruc-
tions. Burst transfers are also used to fetch
longword and unaligned word operands from a 16-bit
wide memory, plus unaligned word and longword
operands that cross an aligned longword boundary
for a 32-bit wide memory. The CPU issues bus
transactions until the entire operand has been
fetched. If more than one operand word (for
16-bit memory) or longword (for 32-bit memory)
remains to be transferred, the CPU transfers the
first word or longword and attempts to burst
transfer the remaining words or longwords until
either all transfers are complete, the end of a
16-byte block is reached, or the memory system
indicates that it cannot support further burst
transfers.

For example, assume that the CPU requires seven
longwords from memory location 8 to execute an
LDML instruction, that all the longwords are
missing from the cache, and that the memory system
is 32 bits and supports burst transfers of 16-byte
blocks. The CPU performs three bus transactions
to fetch the seven longwords. The first trans-
action is a burst transfer of the longwords at
locations 8 and 12, the second transaction is a
burst transfer of the four longwords beginning at
location 16, and the final transaction is a single
transfer of the longword at location 32.

For a burst transaction with a bus-timing scale
factor of 2, no memory delay in addition to Ty
is incurred for burst transactions except when
other transactions are ' pending, as described
below. With a bus-timing scale factor of 4, an
additional memory delay of 1 processor cycle is
incurred for each burst transfer.

The memory delay for a TLB miss depends on the
time to fetch an aligned longword from memory and
the number of translation table levels. The
formulae in Table E-3 give the number of processor
cycle delays for a TLB miss, where N represents
the number of table levels.

E-15

Timing Formulae for Performance Evaluation

Table E-3. TLB Miss Delay

Memory System TLB Miss Delay

16-bit, no burst
16-bit, burst
32-bit

11 + (5 + 2Tg+ 5/2) X N
1M1+ (5+ Tg +5/2) XN
1M1+ (5+Tg) XN

For example, assume that the time for a single
memory read transaction is 2 processor cycles, the
memory data path is 32 bits, and 2 levels of
translation tables are used. Then the memory
delay for a TLB miss is 25 processor cycles (25 =
11 + (5+2) X 2).

Besides cache and TLB misses, the CPU can also
experience memory delays if one bus transaction is
held pending while another is performed. In such
cases of bus contention, the CPU completes the
first transaction, then after 1 bus cycle delay,
initiates the pending transaction. Thus, addi-
tional cycles of delay occur if the servicing of a
cache miss must wait for the completion of a
previous burst memory-read transaction or a
memory-write transaction. (The servicing of a
cache miss may also be delayed by an EPA instruc-
tion transfer for a previous EPU internal oper-
ation instruction.) Similarly, additional delay
is incurred when the storing of an operand must
wait for the completion of a previous burst-memory
read transaction or a memory-write transaction.
In general, the delays due to bus contention
either between read transactions or between read
and write transactions can be ignored in calcu-
lating the CPU's performance; these delays have in
large part been counted by the cache misses and
cache interlocks previously described. Delays
caused by bus contention between write trans-
actions, though, must be considered, as explained
below.

Because the CPU buffers the data for only one
write transaction at a time, when an instruction
that stores an operand to memory is followed
shortly by another instruction that stores to
memory, the second instruction is delayed. If the
two store instructions are separated by A in-
structions, where the value of A for consecutive
instructions is 1, then the CPU is delayed by
Max(0, Ty + S/2 - A) processor cycles. For in-
stance, assume that the time for a single memory-
write transaction is 3 processor cycles and the
bus~timing scale factor is 2. Then the CPU is

delayed by 3 processor cycles when the second
store instruction immediately follows the first or
by 2 processor cycles if there is one non-store
instruction intervening between the two store in-
structions. If the store instructions are sepa-
rated by more than three instructions that do not
store, then there is no delay.

Two or three consecutive memory-write transactions
are required for an instruction that stores an
unaligned word or longword and also for an in-
struction that stores an aligned longword to a
16-bit memory. The memory delay in processor
cycles is shown for these cases in Table E-4.

Certain instructions, 1like LDIR and LDM, store
more than one operand to memory. The memory
delays for such instructions are included in their
execution times listed in Table E-2 based on the
following assumptions: the operands are aligned,
the memory is 32 bits wide, and Ty + S/2 is four
processor cycles. If Ty + S/2 exceeds four
processor cycles, then the excess must be counted
as a memory delay for every operand stored by the
instruction. Similarly, if operands are unaligned
or the memory is 16 bits wide, then an additional
memory delay must be counted for every stored
operand, as shown in Table E-4. For example, if
an LDIR instruction stores 3 aligned longwords to
a 16-bit memory, then the instrucion is delayed by
Ty + S/2 processor cycles for each of three
operands, or 3Ty + 3S/2 processor cycles.

The CPU attempts to use burst-write transactions
to store operands for ENTER (registers only), LDM,
LDML, and EPA instructions. In storing an operand
for these instructions, if the starting address is
not aligned to the size of the memory's width
(either 16 or 32 bits), the CPU issues one or two
single-write transactions to store the operand's
initial bytes wuntil an aligned address is
reached. Then, while one or more operand words
(for 16-bit memory) or longwords (for 32-bit
memory) remain to be transferred, the CPU
transfers the first word or longword and attempts
to burst transfer the remaining words or longwords
until all transfers are complete, the number of
remaining bytes is smaller than the memory's
width, the end of a 16-byte block is reached, or
the memory indicates that it cannot ‘support
further burst transfers. If any bytes remain to
be stored, the CPU issues one or two single-write
transactions to store the final bytes.

Timing Formulae for Performance Evaluation

For example,

Table E-4. Memory Delays for Storing Word and Longword Operands

Address Bits Bus Width Memory Delay
AqAg Data Type (bits) (Processor Cycles)
16 0
W
32 0
00
16 Ty + 5/2
L
32 0
16 Ty + S/2
W
32 Ty + 5/2
01
16 2T, + S
L
32 2T, + S
16 0
)
32 0
10
16 Ty + /2
L
32 Ty + S/2
16 Ty + S/2
W
32 Ty + 5/2
1
16 2T, + S
L
32 2y + S

assume the CPU is storing seven

longwords to memory location 13 to execute an
ENTER instruction and that the memory system is 32
bits and supports burst-write transfers of 16-byte

blocks.

to store the seven longwords:

1.
2.
3.

Store a single byte at location 13.

Store a word at location 14.

Burst transfer four longwords to store
location 16.

Burst transfer two longwords to store
location 32.

Store a single byte at location 40,

Then the CPU performs five transactions

at

at

Thus, using memory systems that support
burst-write transactions, the execution time for
ENTER, LDM, LDML, and EPA instructions are less
than the values shown in Table E-2. To calculate
the appropriate instruction execution time for
such systems, add the number of cycles to perform
the memory references (for LDM, LDML, and EPA
instructions if the last transaction is not a
burst transfer, count only one cycle for it) to 15
for ENTER, 3 for LDM, 6 for LDML, and 4 for EPA
instructions.

E-17

Timing Formulae for Performance Evaluation

Performance Calculation

In order to determine the CPU's performance for a
program workload, the average number of processor
cycles per instruction for execution (Tg),
pipeline (Tp), addressing (Tp), and memory
(TM) delays can be calculated by measuring the
frequency of occurence for the various delay
causes and using the formulae presented in
previous sections. The average number of
processor cycles per instruction (T;) can be
estimated by adding the individual delay
components as shown below.

Ty =Tg +Tp + Ta + Ty
Since two clock cycles are in every processor
cycle, the following formula gives the performance

of a CPU whose clock cycle time is Tp.

Performance = (2T1Tp)~"

Table E-5. Exception

Because certain details of the CPU's operation
have been omitted to simplify the description and
analysis presented in this appendix, the formula
above gives only an approximate prediction of the
processor's actual performance. In general, the
analysis is conservative; performance will
typically be better then predicted because the
simultaneous occurence of two or more delay
causes has been ignored. For example, the CPU can
handle a cache miss for one instruction while
executing another multiple-cycle instruction, like
DIV. But, the time during which the delay causes
are overlapping is counted twice because execution
and memory delays are separately calculated.
Nevertheless, the analysis described above is
extremely useful, though inexact, because it is
much simpler and faster than a register-transfer-
level simulation necessary for exact performance
calculations.

Processing Times

Exception Processing Delay Notes
Bus Error 29
Non-maskable interrupt 21
Vectored interrupt 26
Non-vectored interrupt 21
Extended Instruction trap 23
Privileged Instruction trap 23
System Call trap 22
Address Translation trap 24 Add 11 cycles if access protection violation
detected for translation table descriptor
register. Otherwise add number of cycles
given in Table E-3 to access levels of
translation table until exception detected.
Breakpoint 22
Integer Overflow trap 20
Bounds Check trap 26 Source operand below lower bound
’ 28 Source operand above upper bound
Index Error trap 26 Source operand below lower bound
28 Source operand above upper bound
Conditional trap 23
Unimplemented Instruction trap 23
PC trap 23
Trace trap 20

Note 1: For all exceptions, add the time to store Program Status registers onto the System
Stack and to load Program Status registers from the Program Status Area in external

memory.

Note 2: For Bus Error and Address Translation exceptions, also add the time to store the
violation longword address onto the System Stack.

Note 3: For interrupts, add the time for the Interrupt Acknowledge transaction.

E-18

Timing Formulae for Performance Evaluation

Exception Processing Delays

In addition to processing instructions, the CPU
must occasionally process exceptions. Table E-5
lists the delays incurred for processing various
types of exception. Calculating the delays
involves determining the time to store the Program
Status registers to memory and fetching new values
for the Program Status register from the Program
Status Area. For example, assume that the time
for a single memory-read transaction is 2 pro-
cessor cycles and the time for a single memory-
write transaction is 3 processor cycles, the
memory data path is 32 bits, and the bus-timing
scale factor is 2. Then the time to store and
fetch the Program Status is 13 processor cycles:
The 4 memory references require 3 processor cycles
each, and an idle bus cycle follows each of the
first 3 references. Thus, the delay for pro-
cessing a System Call trap is 35 processor cycles.

Example

This section describes an example of performance
evaluation for a workload containing fifteen
programs representative of 16-bit microprocessor
applications. The programs are all written in C
and run in normal compact mode under Zilog's ZEUS
version of the UNIX* operating system. Table E-6
lists the programs in the workload, which includes
five million executed instructions.

Table E-6. Program Workload Used for 280,000
CPU Performance Evaluation

Program Use
c1 C compiler parser
c2 C compiler code generator
c3 C compiler optimizer
c4 C compiler lister
cPpP C compiler preprocessor
DIFF File comparison
ED Line editor
GREP Pattern searching
LS File directory listing
NM Load module name listing
oD Octal dumping of core images
PR Format for line printer
SED Stream editor
SORT Sorting
VI Screen editor

*UNIX is a trademark of AT&T Bell Laboratories.
Zilog is licensed by AT&T Technologies, Inc.

In order to calculate the frequencies of the
various delay components, the programs were
interpreted by a software simulator for the CPU's
instruction set. The performance was then
determined for systems composed of a 12 MHz CPU
and each of three different memories that varied
in their data path size and support for burst
transfers.

The execution delay for the workload was
determined from the frequency distribution of
instruction. Table E-7 shows the ten most
commonly executed instructions and their
frequencies as a percentage of total
instructions. The average execution delay is 1.8
processor cycles per instruction.

Table E-7. Most Commonly
Executed Instructions

Instruction

Addressing Frequency
Opcode Mode (percent)
JR RA 19.0
LD(register) R 10.7
INC R 7.9
CP(register) M 4.7
LD(register) X 4.4
LDB(register) IR 4.1
DEC R 3.3
EXTSB R 3.2
LD(memory) X 2.1
LD(memory) IR 2.0

The average pipeline delay per instruction is 0.3
processor cycle. A register interlock occurs for
11% of instructions, causing 0.19 processor cycle
delay, and a cache reference interlock occurs for
6% of instructions, causing 0.11 processor cycle
delay.

Addressing delays are 0.03 processor cycles per
instruction. These delays result almost entirely
from branches to unaligned two-word instructions,
because the compiler positions operands at aligned
addresses and page-crossings rarely occur during
sequential instruction processing.

In calculating memory delays, three memory systems
were considered. The first memory has a 16-bit
data path, a cycle time of 2 processor cycles for
read and 3 processor cycles for write and no burst
transfers. The second and third memories have
32-bit data paths and cycle times of 2 processor
cycles for read and 3 processor cycles for write,
but the third supports burst transfers whereas the

E-19

Timing Formulae for Performance Evaluation

second does not. All three systems use a bus
clock scaled by a factor of 2 from the CPU's
clock.

To determine the average delay caused by cache
misses it is useful to compute the average number
of misses per instruction, p. To calculate M, it
is necessary to know the cache hit ratio (h),
which is the fraction of fetched words that are
located in the cache, and the average number of
fetched words per instruction. For this workload,
an average of 1.4 instruction words and 0.3 oper-
and word are fetched per instruction. Therefore,
the average number of cache misses per instruction
is given by u = 1.7 (1-h), and the average delay
per instruction due to cache misses is 2u. The
values of cache hit ratio, misses per instruction,
and delays per instruction are shown in Table E-8.

Table E-8. Cache and TLB Miss Delays
16-Bit 32-Bit 32-8Bit
Memory System No Burst No Burst Burst

Cache Performance

Calculating the average delay caused by TLB misses
is similar to cache misses, as described above,
but operand stores as well as fetches can cause
TLB misses. This is because the physical frame
address in the page table entry is needed to store
an operand. On an average, 0.15 operand word is
stored per instruction. The delay to service a
TLB miss for two-level translation tables can be
derived from the formulae previously given in the
section on memory delays: 31 processor cycles with
the 16-bit memory and 25 processor cycles with the
32-bit memory. The values of TLB hit ratio,
misses per instruction, and delays per instruction
are shown in Table E-8.

In addition, the delay caused by bus contention
amounts to 0.2 processor cycle per instruction for
all of the memory systems. In general, a 32-bit
memory would exhibit less bus contention than a
16-bit memory, but the memory systems show
negligible difference in bus contention for this

workload, which makes little use of longword
operands. (Fewer than 2% of memory operands are
longwords.)

The performance of a 25 MHz CPU with each of the
three memory systems is calculated by adding the
The results, summarized
in Table E-9 show the performance ranges from 3.1
to 5.0 million instructions per second (MIPS),
of instructions executed
repeatedly, it is possible to approaéh the maximum

Hit ratio 0.62 0.75 0.88 various delay components.
Misses per instruction 0.65 0.42 0.21
Delay per instruction 1.3 0.84 0.42

For short sequences

TLB Performance performance of 12.5 MIPS.
Hit Ratio 0.99 0.99 0.99
Misses per instruction 0.02 0.02 0.02
Delay per instruction 0.57 0.46 0.46

Table E-9. Processing Performance
Performance Ty =Tg+Tp+ Ty + Ty
Memory System (MIPS)* Processor Cycles Per Instruction

16-bit no-burst 3.1
32-bit no burst 3.7
32-bit burst 4.2
32-bit burst,

no translation 5.0

4,0 = 1.8 + 0.3 + 0.0+ 1.9
3.4 =1.8+0.,3+0.0+1.3
3.0 =1.8 + 0.3 + 0.0+ 0,90

2.5

1.8 + 0.3 + 0.0 + 0.4

* The analysis used in calculating the performance
is conservative; the delays are independently
calculated, but in practice the delays may often
overlap. Consequently the actual performance may
be better than the values shown in the table.

E-20

Glossary

access protection: A function of memory manage-
ment that controls read, write and execute access
to memory locations, protecting proprietary or
operating system memory areas from tampering by
unauthorized users. The CPU uses the protection
(PROT) field to determine access rights for a page
or segment.

access protection violation: An incorrect or for-
bidden attempt to access a memory location; for
example, an attempt to write to a read-only page.
An access violation causes the CPU to generate an
Address Translation trap.

activation record: A data structure containing
the local storage, saved register contents, and
exception handler address associated with the
invocation of a procedure. Activation records are
stored on the processor stack in a linked list. An
activation record is allocated when the Enter
instruction is executed at the beginning of a
procedure. The record is released when the Exit
instruction is executed at the end of a procedure.

addressing mode: The way in which the location of
an operand is specified. There are nine addressing
modes: Register, Immediate, Indirect Register,
Direct Address, Index, Base Address, Base Index,
Relative Address, and Relative Index.

address tag: The portion of certain associative
memories that is compared against a referenced
address to determine whether the matching value is
found. The address tag for a Translation Lookaside
Buffer entry is the logical page address; the
address tag for a cache block is the physical
memory address.

address translation: The process of mapping log-
ical addresses into physical addresses.

Address Translation trap: An exception that
occurs during address translation when either an
access protection violation or an invalid table
entry is detected. The instruction being executed
is suspended, and the PC, FCW, identifier word,
and the logical address that caused the trap are
saved on the system stack.

aligned address: An address that is a multiple of
an operand's size in bytes. Aligned word addresses
are a multiple of two; aligned longword addresses
are a multiple of four.

associative memory: A memory in which data is
accessed by specifying a value rather than a loca-
tion. The Translation Lookaside Buffer and cache
are associative memories.

autodecrement: The operation of decrementing an
address in a register by the operand's size in
bytes. The decrement amount is one for byte
operands, two for word operands, and four for
longword operands.

autoincrement: The operation of incrementing an
address in a register by the operand's size in
bytes. The increment amount is one for byte
operands, two for word operands, and four for
longword operands.

base address: The address used, along with an
index and/or displacement value, to calculate the
effective address of an operand. The base address
is located in a general-purpose register, the Pro-
gram Counter, or the instruction.

Base Address (BA) addressing mode: In this mode,
the displacement in the instruction is added to
the contents of the base register to obtain the
effective address.

Base Index (BX) addressing mode: In this mode,
the contents of the base register and index regis-
ter are added to the displacement in the instruc-
tion to obtain the effective address.

bit field: One to thirty-two contiguous bits that
can cross byte boundaries. A bit field is speci-
fied by its byte origin, its bit position from the
origin, and its size in bits. The instruction set
allows bit fields to be extracted from a longword
and inserted into a longword.

burst transaction: The transfer of several con-
secutive items of data (either words or longwords)
in one memory transaction.

Glossary

bus error: An exception that occurs when external
hardware identifies an irrecoverable error during
a data transfer on the external interface.

bus master: The device in control of the bus.

bus retry: A response to a data transfer transac-
tion that indicates the transaction must be tried
again because of some transient error condition.

byte: A data item containing 8 contiguous bits. A
byte is the basic data unit for addressing memory
and peripherals.

cache: An on-chip buffer that automatically
stores copies of recently used memory locations
(both instructions and data), allowing fast access
on memory fetches.

compact mode: A mode of address representation,
usually used for applications with small memory
requirements, in which 16-bit addresses are manip-
ulated; address calculations involve all 16 bits.
The logical address is extended to 32 bits by con-
catenating the 16 most-significant bits of the
Program Counter.

completion: An instruction ending in which the
current instruction has been completely executed.
This is the normal instruction ending, but
exceptions can cause a different ending.

coprocessor: A processor, such as a 78070 Arith-
metic Processing Unit, that works synchronously
with the CPU to execute a single instruction
stream using the Extended Processing Architecture
(EPA).

Direct Address (DA) addressing mode: In this
mode, the effective address is contained in the
instruction.

displacement: A constant value located in the
instruction that is used for calculating the
effective address of an operand.

dynamic operation: A bit manipulation operation
in which the source operand is located in a regis-
ter and therefore its value is changeable.

effective address: The logical memory address of
an operand, calculated by adding the base address,
an optional index value, and an optional displace-
ment .

EPU internal operation: An EPU-handled operation
that controls EPU operations but does not transfer
data.

exception: A condition or event that alters the
usual flow of instruction processing. The 780,000
CPU supports four types of exception: reset, bus
error, interrupts, and traps. When an exception
occurs, the CPU saves the Program Status on the
system stack and fetches a new Program Status from
the Program Status Area.

exception processing state: A CPU operating state
that results when an exception occurs, during
which the CPU stores values from the Program
Status registers to memory, and fetches values
from memory for the Program Status registers.

execute access: The type of memory access used by
the CPU for fetching instructions and immediate
mode operands.

Extended Addressing Mode (EAM): An addressing
mode in which one or more extension words follow
the opcode. In compact mode, EAMs are Direct
Address and Index. In segmented or linear mode,
EAMs are Direct Address, Index, Base Address, Base
Index, Relative Address and Relative Index.

Extended Processing Architecture (EPA): A CPU
facility controlled by the EPA bit in the Flag and
Control Word that allows the operations defined in
the architecture to be extended by hardware or
software. If enabled, the CPU transfers EPA
instructions to an Extended Processing Unit (EPU)
for execution; if disabled, the CPU traps EPA
instructions for software emulation.

Extended Processing Unit (EPU): An external
device, such as a Z8070 APU, that handles Extended
Processing Architecture instructions (such as
floating-point arithmetic).

Flag and Control Word (FCW) register: One of the
two Program Status registers, a 16-bit register
that contains the flags and bits that control the
operation of the CPU.

flyby transaction: A transaction controlled by
the bus master, but in which another device trans-
fers data to the responding device.

frame: A 1K-byte physical memory unit used by the
memory management mechanism to map 1K-byte logical
memory pages. A frame is specified by the 22 most-
significant bits of the physical address.

Frame Pointer (FP): The register that points to
the current activation record on the stack. In
compact mode, the FP is a word register, R14; in
segmented or linear mode, a longword register,
RR12.

Glossary

general-purpose registers: The 16 versatile reg-
isters that can be used as data accumulators,
index values, or memory pointers.

global bus: A bus shared by tightly-coupled,
multiple CPUs; the bus master is chosen by an
external arbiter device.

halted state: A CPU operating state that results
when a Halt instruction is executed or a bus error
exception occurs during exception processing.

Hardware Interface Control register (HICR): The
32-bit special-purpose register that specifies
certain characteristics of the hardware configura-
tion incorporating the CPU, such as bus speed,
memory data path width, and number of wait states.

hit: A hit occurs when an associative memory is
searched for a value and a match is found.

identifier word: A 16-bit code saved on the
system stack during exception processing that
provides information about the cause of the
exception.

Immediate (IM) addressing mode: In this mode, the
operand is contained in the instruction.

index: A value located in a register used for
calculating the effective address of an operand.
The index value usually specifies the calculated
offset of an operand from the origin of an array
or other data structure.

Index (X) addressing mode: In this mode, the
contents of an index register are added to a base
address contained in the instruction to obtain the
effective address.

Indirect Register (IR) addressing mode: In this
mode, the effective address is contained in a
register.

instruction executing state: A CPU operating
state in which the CPU executes instructions.

interrupt: An asynchronous exception that occurs
when the NMI, VI, or NVI 1line is activated,
usually when a peripheral device needs attention.

invalid table entry: A cause of an Address Trans-
lation trap that is detected during address trans-
lation if the CPU fetches a translation table
entry with a Valid bit of 0.

large segment: In the segmented mode, one of the
128 segments in the upper half of the memory
address space. Segments are 16M bytes in size or
smaller.

least recently used (LRU): The CPU records the
order of use for Translation Lookaside Buffer
entries and cache blocks. When a TLB miss or cache
tag miss occurs, the CPU replaces the least
recently used entry or block.

length counter: A register that contains the
value that is the length of a block or string of
data that is manipulated by instructions.

linear mode: A mode of address representation in
which 32-bit addresses are manipulated, providing
uniform and unstructured access to the 4G bytes of
memory. Address calculations involve all 32 bits.

local bus: The bus controlled by the CPU and
shared with slave processors.

logical address: The address manipulated by the
program. The memory management mechanism trans-
lates logical addresses to physical addresses.

longword:
bits.

A data item containing 32 contiguous

loosely-coupled CPUs: CPUs that execute indepen-
dent instruction streams and communicate through a
multi-ported peripheral, such as a Z8038 FIO 1/0
interface unit.

memory management: The process of translating
logical addresses into physical addresses, plus
certain protection functions. In the 780,000 CPU,
memory management is integrated into the chip.

memory-mapped I/0: A memory management feature
that allows logical memory addresses to be mapped
to physical 1/0 addresses. Memory mapped 1/0 pro-
vides protected access by application programs to
peripherals.

miss: A miss occurs when an associative memory
is searched for a value and no match is found.

nonmaskable interrupt: The highest priority
interrupt; cannot be disabled.

nonvectored interrupt: The lowest priority
interrupt, which does not use an identifier word
as a vector to an interrupt service routine; can
be disabled.

normal mode: A CPU mode of operation, generally
used for application programs, in which the S/N
flag in the FCW is 0. In this mode, the CPU can-
not execute privileged instructions or access pro-
tected memory locations.

G-3

Glossary

Normal Stack Pointer (NSP): The Stack Pointer
used while the CPU is in normal mode. System mode
programs can access the NSP with the Load Control
instruction.

overflow stack: The stack used for saving the
Program Status, identifier word, and exception
parameters when an address translation exception
occurs during exception processing.

Overflow Stack Pointer (OSP): The 32-bit regis-
ter that contains the physical address of the
overflow stack.

page: A 1K-byte logical memory unit mapped by
the memory management mechanism to a 1K-byte phys-
ical memory frame. A page is specified by the 22
most-significant bits of the logical address.

page table: The third level of translation
tables, containing the physical frame address used
during address translation.

paged translation: A method of address transla-
tion in which the logical and physical address
spaces are divided into fixed, equal-sized units
called pages and frames, respectively. During
address translation, a logical page is mapped to
an arbitrary physical frame.

partial completion: An instruction ending in
which the execution of an interruptible
instruction is disrupted before completion by a
trap or interrupt.

physical address: The 32-bit address required for
accessing memory and peripherals, obtained by the
CPU's address translation hardware.

pipeline: A computer design technique in which an
instruction is executed in a sequence of stages by
different functional units. The functional units
can be operating on several different instructions
simultaneously, similar to an automobile assembly
line.

prefetching: Ability of the CPU to fetch an
instruction or operand before the previous
instructions have been completed.

privileged instruction: An instruction that per-
forms I/0 operations, accesses control registers,
or performs some other operating system function.
Privileged instructions execute in system mode
only.

Program Counter (PC): One of the two Program
Status registers, a 32-bit register that contains
the address of the current instruction.

Program Status registers: The two registers (Pro-
gram Counter and Flag and Control Word) that con-
tain the Program Status. The Program Status is
automatically saved during exception processing.

Program Status Area (PSA): The area in memory
reserved for storing the Program Status of the
interrupt and trap service routines.

Program Status Area Pointer (PSAP): The 32-bit
register that contains the physical, base address
of the Program Status Area.

protection: See access protection.

protection (PROT) field: A 4-bit field contained
in the translation table descriptor registers and
translation table entries that specifies access
protection information for a logical address dur-
ing address translation.

quadword:
bits.

A data item containing 64 contiguous

read access: The type of memory access used by
the CPU for fetching data operands other than
those specified by Immediate mode.

Register (R) addressing mode: In this mode, the
operand is in a general-purpose register.

Relative Address (RA) addressing mode: In this
mode, the displacement in the instruction is added
to the contents of the Program Counter to obtain
the effective address.

Relative Index (RX) addressing mode: In this
mode, the contents of the Program Counter and
index register are added to the displacement in
the instruction to obtain the effective address.

relocation: The process of mapping a logical
address to a different physical address, so that
multiple processes can use the same logical
address for distinct physical memory locations.

reset: A CPU operating state or exception that
results when a reset request is signaled on the
RESET line. A reset initializes the Program Status
registers.

responder: The device to which bus transactions
transfer data.

result register: The register that holds the
result of an operation.

G-4

Glossary

segmented mode: A mode of address representation
that supports either 64K- or 16M-byte segments
with 32-bit addresses. The most-significant
address bit selects either a 15-bit segment number
with 16-bit offset, or a 7-bit segment number with
24-bit offset. Calculations affect only the offset
and not the segment number.

self-modifying program: A program that stores to
a location from which a subsequent instruction is
fetched.

slave processor: A processor, such as a Direct
Memory Access transfer controller, that performs
dedicated functions asynchronously to the CPU.

small segment: In the segmented mode, one of the
32,768 segments in the lower half of the memory
address space. Segments are 64K bytes or smaller.

spatial locality: The characteristic of program
behavior whereby consecutive memory references
often apply to closely located addresses.

special-purpose control registers: Nine registers
used for system configuration, memory management,
Program Status, and CPU control.

Stack Pointer (SP): A general-purpose register
indicating the top (lowest address) of the
processor stack used by Call, Enter, Exit, and
Return instructions for linking procedures. The SP
is a word register, R15, in compact mode, and a
longword register, RR14, in linear or segmented
mode. Normal and system modes of operation use
separate stack pointers, the Normal Stack Pointer
(NSP) and System Stack Pointer (SSP).

static operation: A bit manipulation operation in
which the source operand is an immediate value and
is therefore fixed (static).

suspension: An instruction ending in which the
the current instruction has not been completed
because a trap is detected during instruction
execution. The instruction can be completed by
eliminating the cause of the trap and starting the
instruction again.

suspension with PC modification: An instruction
ending similar to suspension, but the Program
Counter saved on the system stack during exception
processing must be decremented by two before
starting the instruction again.

System Configuration Control Longword register
(SCCL): The 32-bit special-purpose register that
contains control bits for address translation,
cache, and exception processing.

system mode: A CPU mode of operation, used for
operating system functions, in which the S/N flag
in the FCW is 1. In this mode, the CPU can exe-
cuted privileged (and all other) instructions.

System Stack Pointer (SSP): The Stack Pointer
used while the CPU is in system mode. Normal mode
programs cannot access the SSP.

tag hit: On a memory reference, a tag hit occurs
when the cache address tags are searched for the
referenced address and a match is found.

tag miss: On a memory reference, a tag miss
occurs when the cache address tags are searched
for the referenced address and no match is found.

temporal locality: The characteristic of program
behavior whereby memory references often apply to
a location that has been referred to recently.

termination: An instruction ending in which the
current instruction has not been completed and it
is not possible to complete the instruction by
starting it again.

tightly-coupled CPUs: CPUs that execute indepen-
dent instruction streams and communicate through
shared memory on a common (global) bus.

Translation Lookaside Buffer (TLB): An on-chip
memory that automatically stores translation
information for the most recently used memory
pages.

translation table: One of three levels of tables
selected by the page descriptor registers during
address translation. Each level corresponds to a
field in the logical page address.

translation table descriptor register: One of
four registers that contain the physical addresses
of the translation tables used by the memory
management mechanism during address translation.

translation table entry: An entry in one of the
three levels of translation tables. Entries in the
first two levels point to another level table.
Entries in the third level (page table) contain
the physical frame address used during
translation.

trap: An exception that occurs when certain con-
ditions, such as an access protection violation,
are detected during execution of an instruction.

Glossary

unaligned address: An address that is not a mul-
tiple of an operand's size in bytes. 0dd addresses
are unaligned for words and longwords; even
addresses that are not multiples of four are
unaligned for longwords.

vectored interrupt: An interrupt that uses the
low-order byte of the identifier word as a vector
to an interrupt service routine; can be disabled.

virtual memory: A memory management technique in
which the system's logical memory address space is
not necessarily the same as, and can be much
larger than, the available physical memory.

word: A data item containing sixteen contiguous
bits.

word hit: On a memory reference to the cache, a
tag hit occurs and a valid copy of the word is
stored in the cache.

word miss: On a memory reference to the cache, a
tag hit occurs but a valid copy of the word is not
stored in the cache.

write access: The type of memory access used by
the CPU for storing data operands.

G-6

Index

—A-

Access protection, 1:2, 4:8
Address calculations, 5:1,3
Addressing delays, E:15
Addressing modes, 4-14, 5:2

Base Address (BA), 5:6,10

Base Index (BX), 5:6,11

Direct Address (DA), 5:5,8

Extended, 5:14

Immediate (IM), 5:4,8

Index (X), 5:5,9

Indirect Register (IR), 5:4,8

Relative Address (RA), 5:7,12

Relative Index (RX), 5:7,13

used in compact mode, 5:4-7

used in segmented and linear modes, 5:7-12
Address representation, 1:1, 3:1-2

Compact mode, 1:1, 3:1-2

Linear mode, 1:2, 3:1-2

Segmented mode, 1:1-2, 3:1-2
Address spaces, 1:1, 4:1-3
Address translation, 1:2, 4:4
Address Translation trap, 7:4
Architecture, 1:1
Arithmetic instructions, 6:2-3
Assembler language syntax, 6:10-11

8-

Base Address (BA) addressing mode, 5:6,10
Base Index (BX) addressing mode, 5:6,11
Bit Field instructions, 6:5-6

Bit Manipulation instructions, 6:5

Block diagram of 280,000 CPU, 1:6

Block Transfer and String Manipulation
instructions, 6:7

Breakpoint trap, 7:4

Burst Memory Read and Write transaction, 8:10-11

Burst Memory Read timing, 8:12

Burst Memory Write timing, 8:13

Burst transfer protocol, 8:11

Bus acknowledge, 8:22-24

Bus error, 7:4, 8:21

Bus operations, 8:1

Bus request, 8:22-24

Bus Request Acknowledge timing, B8:22

Bus request protocol, 8:24

Bus retry, 8:21

Bus timing, 8:6-7

Bus transaction response, 8:8

Bus transactions, 8:7-21
Burst Memory Read and Write transaction, 8:10-11
CPU-EPU Data transactions, 8:17-18
CPU-EPU Instruction transactions, B8:16
CPU-Memory transactions, 8:8-12
EPU-Memory transactions, 8:18-19
EPU transactions, 8:13-15
Input/Output transactions, 8:12-13
Interlocked Memory transactions, 8:11-12
Single Memory Read and Write transactions,

8:8-10

Cache, 1:4, 8:3, C:1-3

Compact mode, 1:1, 3:1-2, 6:13
Compatibility with Z8000 CPU, 1:6, A:1
Condition codes, 6:9-10

Conditional trap, 7:4

Coprocessor, 1:4, 8:2

CPU Bus Request Protocol, 8:24

CPU Control instructions, 6:8-9
CPU-EPU Data Read timing, 8:17

CPU-EPU Data transactions, 8:17-18
CPU-EPU Data Write timing, 8:18
CPU-EPU Instruction transactions, 8:16
CPU-EPU Instruction Transfer timing, B:16
CPU internal organization, 1:5-6
CPU-Memory transactions, 8:8-12

Data formats, 2:1
Demand-paged virtual memory, 1:2
Direct Address (DA) addressing mode, 5:5,8

-
EPA, see Extended Processing Architecture

EPU-Memory Single Write timing, 8:19 EPU-Memory
transactions, 8:18-19

Index

-£- (Continued)

EPU transactions, 8:13-15
Exception handlers, 7:7
Exception processing delays, E:19-20
Exceptions, 1:3, 7:3-9

Bus error, 7:4

Interrupts, 7:4

Priority of, 7:8-9

Reset, 7:3

Traps, 7:4,5
Execution time, E:3
Extended addressing modes, 5:14, 6:13
Extended Instructions, 6:9
Extended Instruction trap, 7:4
Extended Processing Architecture (EPA), 1:3,4
External interface, 1:4, 8:1-27

-

Flag and Control Word register, 1:1, 2:2-3
Flags, 6:9-10

Floating-point operations, 1:3

Flyby transactions, 8:1

Frame pointer, 1:1, 2:2

-

General-purpose register file, 2:1-2
Global Bus Request timing, 8:23

H-

Hardware Interface Control register (HICR), 2:4,
8:5-6

—I-

Immediate (IM) addressing mode, 5:4,8
Index (X) addressing mode, 5:5,9
Indirect Register (IR) addressing mode, 5:4,8
Input/Output instructions, 6:8
Instruction execution, 7:2-3
Instruction format, 6:12
Instruction Set, 6:16-214

Arithmetic instructions, 6:2-3

Bit Field instructions, 6:5-6

Bit Manipulation instructions, 6:5

Block Transfer and String Manipulation

instructions, 6:7
CPU Control instructions, 6:8-9

Descriptions and formats, 6:16-214

Extended Instructions, 6:9

Flags and condition codes, 6:9-10

Input/Output instructions, 6:8

Load and Exchange instructions, 6:1-2

Logical instructions, 6:3-4

Notation and binary encoding used in, 6:10-12

Program Control instructions, 6:4-5
Integer Arithmetic Error trap, 7:4
Interlocked Memory transactions, 8:11-12
Internal Operation and Halt timing, 8:21
Internal Operation and Halt transactions, 8:21
Interrupt Request/Acknowledge timing, 8:20
Interrupt Request and Acknowledge, 8:20-21
Interrupts, 1:3, 7:4

Non-maskable, 1:3

Non-vectored, 1:3

Vectored, 1:3 1/0 Read timing, 8:14

4-

Linear mode, 1:2, 3:1-2, 6:13-15

Load and Exchange instructions, 6:1-2
Local Bus Request Acknowledge timing, 8:22
Logical instructions, 6:3-4

Logical 1/0 address spaces, 4:3

Logical memory address spaces, 4:1
Loosely-coupled multiple CPU, 1:5

Memory delays, E:15-18

Memory management, 1:2, 4:3

Memory-mapped 1/0, B:1

Multiprocessor Configurations, 1:4, 8:2
Coprocessor, 1:4 Slave processor, 1:5
Tightly-coupled multiple CPUs, 1:5
Loosely-coupled multiple CPUs, 1:5

—N-

Non-maskable interrupts, 7:4
Non-vectored interrupts, 7:4
Normal mode, 1:3, 3:2-3

Normal Stack Pointer, 2:3, 3:2

0dd PC trap, 7:5
Operating states, 7:1
Overflow Stack Pointer (0SP), 2:4

o o

Index

-

Physical address space, 4:3
Pin Functions, 8:3-4
Pipeline delays, E:3-4
Pipelined instruction execution, 7:3
Privileged Instruction trap, 7:4
Program Control instructions, 6:4-5
Program Counter, 1:1, 2:3
Program Status, 7:5-7
Program Status Area Pointer (PSAP), 2:3
Program Status registers, 1:1, 2:2-3
Program Counter, 1:1, 2:3
Flag and Control Word register, 1:1, 2:2-3

R~

Register (R) addressing mode, 5:4,7

Relative Address (RA) addressing mode, 5:7,12
Relative Index (RX) addressing mode, 5:7.13
Reserved control bits, 2:4

Reset, 8:26-27

-5-

Segmented mode, 1:1-2, 3:1-2, 6:13-15
Single Memory Read and Write transactions, 8:8-10
Single Memory Read timing, 8:8-9

Single Memory Write timing, 8:10

Slave processor, 1:5, 8:2

Special-purpose control registers, 2:3
Stack Pointer, 1:1, 2:2

System Call trap, 7:4

System Configuration Control Longword, 2:4
System mode, 1:3, 3:2-3

System Stack Pointer, 3:2

-T-

Table entry formats, 4:7
Tightly-coupled multiple CPU, 1:5
Timing formulae, Appendix E
TLB, see Translation Lookaside Buffer
Trace trap, 7:5
Translation Lookaside Buffer (TLB), 1:2, 4:4-5
Translation Table Descriptor registers, 2:4
Traps, 7:4-5
Address Translation trap, 7:4
Breakpoint trap, 7:4
Conditional trap, 7:4
Extended Instruction trap, 7:4
Integer Arithmetic Error trap, 7:4
0dd PC trap, 7:5
Privileged Instruction trap, 7:4
System Call trap, 7:4
Trace trap, 7:5
Unimplemented Instruction trap, 7:5

U-

Unimplemented Instruction trap, 7:5

v-

Vectored interrupts, 7:4

-7-

28000 CPU, compatibility with, 1:6, A:1
28070 Arithmetic Processing Unit, 1:3
780,000 CPU block diagram, 1:6

Zilog' READER COMMENTS

Your comments concerning this publication are important to us.
Please take the time to complete this questionnaire and return it to
Zilog.

Title of Publication:

Document Number:

Your Hardware Model and Memory Size:

Describe your likes/dislikes concerning this document:

Technical Information:

Supporting Diagrams:

Ease of Use:

Your Name:

Company and Address:

Your Position/Department:

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 35, CAMPBELL, CA.

POSTAGE WILL BE PAID BY:

Zilog

1315 Dell Ave.
Campbell, California 95008
ATTENTION: Corporate Publications

No Postage

Necessary If
Mailed In The
United States

Zilog Sales Offices and Technical Centers

West

Sales & Technical Center

Zilog, Incorporated

10340 Bubb Road

Cupertino, CA 95014

Phone: (408) 370-8120
(408) 370-8122 (G/S)

TWX: 910-338-2296

FAX: (408) 370-8016

Sales & Technical Center
Zilog, Incorporated
15643 Sherman Way
Suite 430

Van Nuys. CA 91406
Phone: (213) 989-7485
TWX: 910-495-1765

Sales & Technical Center
Zilog, Incorporated

125 Baker Ave.

Suite 180

Costa Mesa, CA 92626
Phone: (714) 261-1281

Sales & Technical Center
Zilog, Incorporated
1750 112th Ave. N.E.
Suite D161

Bellevue, WA 98004
Phone: (206) 454-5597

Technical Center
Zilog, Incorporated
2885 Aurora Ave

Suite 23

Boulder, CO 80303
Phone: (303) 440-3971

Midwest

Sales & Technical Center
Zilog, Incorporated

951 North Plum Grove Road
Suite F

Schaumburg, IL 60195
Phone: (312) 885-8080
TWX: 910-291-1064

Technical Center

Zilog, Incorporated
7101 York Ave., South
Edina, MN 55435
Phone: (612) 921-3369

Sales & Technical Center
Zilog, Incorporated
28349 Chagrin Blvd.
Suite 109

Woodmere, OH 44122
Phone: (216) 831-7040
FAX: 216-831-2957

South

Sales & Technical Center
Zilog, Incorporated

4851 Keller Springs Road,
Suite 211

Dallas, TX 75248

Phone: (214) 931-9090
TWX: 910-860-5850

Technical Center

Zilog, Incorporated
7113 Burnet Rd.

Suite 207

Austin, TX 78757
Phone: (512) 453-3216

Zilog, Inc. 1315 Dell Ave., Campbell, California 95008

East

Sales & Technical Center
Zilog, Incorporated
Corporate Place

99 South Bedford St.
Burlington, MA 01803
Phone: (617) 273-4222
TWX: 710-332-1726

Sales & Technical Center
Zilog, Incorporated

240 Cedar Knolls Rd
Cedar Knolls, NJ 07927
Phone: (201) 540-1671

Technical Center

Plaza Office Center

Suite 412

Route 73 and Fellowship Rd
Mt. Laurel, NJ 08054
Phone: (609) 778-8070

Technical Center

Zilog, Incorporated
3300 Buckeye Rd.
Suite 401

Atlanta, GA 30341
Phone: (404) 451-8425

Sales & Technical Center
Zilog, Incorporated

1301 Seminole Blvd.
Suite 103

Largo, FL 33540

Phone: (813) 585-2533
TWX: 810-866-9740

United Kingdom

Zilog (U.K.) Limited

Zilog House

43-53 Moorbridge Road
Maidenhead

Berkshire, SL6 8PL England
Phone: 0628-39200

Telex: 848609

France

Zilog, Incorporated
Cedex 31

92098 Paris La Defense
France

Phone: (1) 334-60-09
TWX: 611445F

West Germany

Zilog GmbH
Eschenstrasse 8
D-8028 TAUFKIRCHEN
Munich, West Germany
Phone: 89-612-6046
Telex: 529110 Zilog d.

Japan

Zilog, Japan K.K.

Konparu Bldg. 5F .

2-8 Akasaka 4-Chome
Minato-Ku, Tokyo 107
Japan 7
Phone: (81) (03) 587-0528
Telex: 2422024 A/B: Zilog J

Hong Kong

Zilog Asia Ltd.

22-26 Austin Ave.

Room 1009 Austin Tower
Tsimshatsui Kowloon
Hong Kong

Phone: (852) (3) 723-8979
Telex: 52102 ZILOG HK*

Telephone (408)370-8000 TWX 910-338-7621

03-8225-01

Printed in USA

