
Z8 PLZ/ASM

Assembly Language
Programming Manual

December 1980

18 PLI/ASII

Assembly Language
ProgralDlDing lIanual

December 1980

Copyright 1980 by Zilog, Inc. All rights reserved. No part
of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, elec­
tronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of Zilog.

Zilog assumes no responsibility for the use of any qircuitry
other than circuitry embodied in a Zilog product. No other
circuit patent licenses are implied.

Preface

This reference manual describes assembly language programming for
Zilog's Z8 single-chip microcomputer. The first three sections
of the manual focus on Z8 design features and the
assembly-language instruction set. Sections 4 and 5 provide
additional information needed to build a source program,
including the use of high-level PLZ statements.

This manual is one in a series describing the Z8. You will need
several other manuals to develop, debug, and run Z8
assembly-language programs. Programs are developed on either
Zilog's microcomputer system (MCZ) or the Zilog development
system (ZDS) using the software capabilities of the RIO operating
system. The manuals needed to use the operating system are:

Z80 RIO Operating System User's Manual, 03-0072-01

Z80 RIO Text Editor User's Manual, 03-0074-00

The Z8 assembler produces relocatable object modules. Operation
of the assembler and object module linkage and relocation are
described in the:

Z8 PLZ/ASM Assembler User Guide, 03-3048-02

PLZ Linker User Guide, 03-3098-02

Finally, while this programming manual includes an overview of
the Z8 architecture, you will need the following manual for
detailed hardware and configuration information:

Z8 Microcomputer Technical Manual, 03-3047-02

iii

SECTION 1

SECTION 2

Contents

ARCHITECTURAL OVERVIEW

1.1
1.2

1.3

1.4
1.5
1.6

1.7

Introduction
Memory Segments

1. 2. 1
1. 2. 2
1. 2. 3
1. 2. 4

Program Memory ••••••••.•.•••
External Data Memory ••••••••
Register Memory •••••••••••••
Da ta Leng ths •••••••••••••

Input/Output

1. 3.1 Port 1
1. 3. 2 Port 0
1. 3. 3 Port 2
1. 3. 4 Port 3

Interrupts
Timers/Counters ••••••••••••••••••••
Status Flags and Program Controls

1. 6.1
1. 6.2
1. 6.3
1. 6.4
1. 6. 5
1. 6. 6

Carry Flag
Zero Flag
Sign Flag •••••••••••
Overflow Flag •••••••
Decimal Adjust Flag
Ha 1 f Ca r r y Fl ag

Stack Memory

Z8 ASSEMBLER CONVENTIONS

2.1
2.2

2.3

Assembler Overview •••••••••••••••••••••••••••
Assembly Language Statement Format ••••••

2.2.1
2.2.2
2.2.3
2.2.4

Program Labels and
Instruction •••••••
Operand Field
Comments ••••••

Identifiers

Arithmetic Operands

2.3.1

2.3.2
2.3.3
2.3.4

Run-Time Versus Assembly-Time
Ari thmetic •••••
Constants
Data variables
Expressions and Operators

v

1-1
1-2

1-3
1-3
1-3
1-7

1-8

1-8
1-8
l-lC
l-lC

l-lC
1-1]
1-1~

1-1;
1-1:
1-1:
1-11
1-11
1-11

I-I!

2-1
2-1

2-2
2-3
2-3
2-5

2-5

2-6
2-7
2-8
2-9

CONTENTS (cont.)

SECTION 2 Z8 ASSEMBLER CONVENTIONS (cont.)

2.4 Z8 Addressing Modes ••.•••••••••..••.••.•••••• 2-13

2.4.1
2.4.2
2.4.3
2.4.4
2 •. 4.5
2.4.6
2.4.7

Reg ister Address •••••••.•••••••••••••• 2-13
Indirect-Register Address ••••••••••••• 2-15
Indexed Address •••••••.•••.••••••••••• 2-16
Direct Address •••••••••••••••••••••••• 2-17
Relative Address •••••••••••••••••••••• 2-17
Immediate Data ••••••••••••.••••••••••• 2-18
A Note on the Register Pointer •••••••• 2-19

SECTION 3 ASSEMBLY-LANGUAGE INSTRUCTION SET

3.1 Functional Summary •..••.•••...•.••...•..•.... 3-1
3 • 2 No tat ion•... 3 - 3
3.3 Assembly-Language Instructions ••••••••••••••• 3-5

SECTION 4 STRUCTURING A Z8 PROGRAM

4.1 Introduction ••••••••••••••••••••••.•••••••••• 4-1
4.2 Program Structure ••••••••••••••••••••.•.••••• 4-1

4.3

4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6

Modules
Procedures •••.•.••••••••••••••••••••••
DO Loops •.•••••••••••.••••••••••••••••
IF Statements •••••••••••••••••...•••••
Scope•...•.•........•....•........
Summary

4-1
4-2
4-3
4-4
4-5
4-6

Relocatabil i ty 4-8

4.3.1
4.3.2
4.3.3

Sections , 4-8
Location Counter Control •••.•••...•.•. 4-10
Modes of Arithmetic Expressions ••••••• 4-10

SECTION 5 PLZ/ASM HIGH-LEVEL STATEMENTS

5.1 Z8 Source Program Statements •••••••••••.••••• 5-1
5.2 Pr09ram Structuring Statements ••••••••••••.•• 5-2

5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6

Module Declaration ••.•.•••••.•••.•••.•
Procedure Declaration ••••.••••••••••••
DO Statement •.•.••••••••••••••••••••••
IF S tat em e n t
IF-CASE Statement
Jump Opt imi zation ••••••••••.••••••••••

vi

5-2
5-2
5-4
5-5
5-7
5-8

CONTENTS (cont.)

SECTION 5 PLZ/ASM HIGH-LEVEL STATEMENTS (cont.)

5.3 Defining Data 5-9

5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6

Constant Definition •.•••••••••••••.••• 5-10
Data Types •••.••••••••••••.••••••••••• 5-11
Type Definition •••.••••••••.•••••••••• 5-14
Variable Declaration ••••••••••••••.••• 5-14
Label Declaration •••.•••••.••••••••••• 5-19
SIZEOF Operator •••••••••.••••••••••••• 5-20

APPENDIX A ASSEMBLY-LANGUAGE INSTRUCTION SUMMARY

APPENDIX B HIGH-LEVEL STATEMENT SUMMARY

APPENDIX C ASSEMBLER DIRECTIVES AND PSEUDO INSTRUCTIONS

C.l Assembler Directives •.•••••.•••.•.•••••••.•• C-l
C.2 Pseudo Instructions •••••.•..••.•.••••...•••• C-4
C.3 Conditional Assembly ••••••••••••.••••••••••• C-4

APPENDIX D RESERVED WORDS AND SPECIAL CHARACTERS

D.l Reserved Words •••••••••••••.••.•.••••••••••• D-l
D.2 Special Characters ••••••••••••••••••••.••••• D-2

APPENDIX E ASCII CHARACTER SET

INDEX

vi i

Figure

1-1
1-2
1-3
1-4
1-5
1-6

LIST OF ILLUSTRATIONS

Z8 Memory Segments •.•••••••••••••••••••••••••••••
Working-Reg ister Groups ••••••••••••••••••••••••••
Control Reg isters
Data Lengths •.•.•••••.••••••••••••••••••••••.••••
Z8 Architecture Diagram ••••••••••••••••••••••••••
Z8 Pin Functions and Assignments •••••••••••••••••

viii

1-2
1-4
1-6
1-7
1-9
1-9

1.1 Introduction

Section 1
Architectural Overview

Zilog's Z8 microcomputer introduces a new generation of
single-chip architecture. Compared to earlier single-chip
microcomputers, the Z8 offers faster execution, more efficient
use of memory, more sophisticated interrupt, input/output (I/O),
and bit-manipulation capabilities, and easier system expansion.
Under program control, the Z8 configuration can be tailored to
the needs of its user. It can serve as an I/O-intensive
microcomputer, as an intelligent peripheral controller within a
larger system, or as a memory-intensive microprocessor.

The Z8's features include a powerful repertoire of 43
instructions, similar in form to the instruction sets of the Z80
and Z8000 microprocessor families. The efficiency of these
instructions and of the Z8's internal register-addressing scheme
not only speeds program execution, but also packs more program
into the Z8 chip than would be possible with comparable
microcomputers. This is, of course, extremely important for
single-chip devices where on-chip memory space is limited.

Real-time control applications, for which the Z8 is particularly
suited, require fast instruction execution and fast interrupt
response. Operating from an 8 MHz clock source (internal 4 MHz
clock rate), the Z8 executes most instructions in 1.5 to 2.5
microseconds (6 to 10 machine cycles). The longest instruction
takes 5 microseconds (20 cycles).

The following summarizes the main features of the Z8:

• 40-pin package, offering more I/O program control
than previously available in single-chip
microcomputers;

• On-chip, 2K-byte, read-only (ROM) program memory with
possible expansion by 62K of external program memory;

• On-chip, 144-byte, random-access (RAM) register memory,
including 4 I/O ports and 16 control registers;

• Possible 62K bytes external data memory;

• Six maskable and prioritized interrupts;

• Two on-chip interval timers, also programmable as event
counters;

1-1

• Independent on-chip UART with hardware parity
generator and checker;

• On-chip clock for internal timing.

The remainder of this section describes in more detail those Z8
features of primary interest to assembly-language programmers.
See the Z8 Technical Manual for detailed architectural and
configuration information.

1.2 Memory Segments

As shown in Figure 1-1, the 28 has three separate memory segments
for storing program instructions and data.

• Program memory (chip resident or external)
• Data memory (external)
• Register memory (chip resident)

The latter includes I/O registers, control and status registers,
and general purpose data registers •

r---------,65535

EXTERNAL
ROM OR RAM

r--------t~g:~
ON·CHIP

ROM

PROGRAM MEMORY

...--------,65535

EXTERNAL
RAM

1--------1~~!~
NOT

ADDRESSABLE

DATA MEMORY

CONTROL AND
STATUS REGISTERS

NOT
IMPLEMENTED

GENERAL
REGISTERS

110 PORT
REGISTERS

REGISTER MEMORY
(ON·CHIP RAM)

Figure 1-1. Z8 Memory Segments

1-2

255

240

127

The Z8 hardware environment must be specifically configured to
access external program or data memory. Both segments can be
accessed by 16-bit addresses.

1.2.1 Program Memory

The first 2048 bytes of program memory consist of on-chip
programmable storage addressed by the program counter. For
addresses 2048 or greater, the Z8 automatically executes external
program memory fetches (provided the Z8 is configured
accordingly). The first example below jumps to address 1500 if
the Zero flag (Z) is set. The second calls a procedure whose
starting address is location 20000 in external program memory.

JP Z,1500
CALL 20000

The first 12 bytes of program memory are reserved for the Z8's
interrupt mechanism. Addresses 0-11 contain six l6-bit addresses
corresponding to the six possible interrupts available on the Z8,
IRQO through IRQ5, respectively. When an interrupt occurs,
control passes to the address corresponding to that particular
interrupt. A system reset forces the program counter to 12, the
first address available for the user program. See the discussion
of interrupts in Section 1.4.

1.2.2 External Data Memory

A Z8 system can directly access as much as 62K bytes of external
data memory. This segment is addressed beginning with data
address 2048. External I/O is also mapped into this segment.

1.2.3 Register Memory

Register memory includes 124 general-purpose registers, 4 I/O
ports, and 16 status and control registers. The I/O port and
control registers are-rncluded in register memory to allow any Z8
instruction to process I/O or control information directly, thus
eliminating the need for special I/O or control instructions.
The Z8 instruction set permits direct access to any of these 144
registers. Each of the 124 general-purpose registers can
function as an accumulator, an address pointer, or an index
register.

1-3

Z8 instructions can access registers directly or indirectly using
an 8-bit address field. The Z8 also allows 4-bit addressing of
registers, which generally saves bytes, and speeds program
execution and task switching. In this 4-bit addressing mode, the
register file is divided into 9 working-register groups, each
occupying 16 contiguous register locations (Figure 1-2). A
register pointer (one of the control registers) addresses the
starting location of the currently active working-register group.

(DEC)

255

240

128

112

6

0

4

8

2

6

0

(HEX)

F
CONTROL REGISTERS

,....------------F
UNUSED

r------------- 8

7

6

5

4

3

2

1

0

Figure 1-2. Working-Register Groups

1-4

NOTE: Changing the value of the register pointer is an easy way
to save the 16 currently-active working registers (as
during interrupt processing). Reserving one or more
working-register groups for the use of interrupt-handling
routines is a recommended programming practice.

In the following example, the Set Register Pointer (SRP)
instruction sets the register pointer to 240, the starting
address of the control register group. The following Load (LD)
instruction initializes register 252 to ten.

SRP #240
LD R12, #10

!Register Pointer contains FO (hex)!
!Working register 12 occupies register
location 252!

Because of their special significance, the I/O port registers
(0-3) and control registers (240-255) are referenced later in
this section. The control registers are particularly pervasive
in all Z8 operations, since they are used in the handling of I/O,
interrupts, the timer/counter, program control flags, and the
program stack, as well as to point to the current
working-register group. To provide a quick reference in the
following sections, the control registers are listed in Figure
1-3. They are described in bit-level detail in the Z8 Technical
Manual. Z8 instructions can reference control registers by
number or by their predefined symbolic identifiers shown in the
following figure.

NOTE

Register memory addresses 128-239 do not
exist and should not be specified in Z8
instructions. The result of accessing these
locations is undefined.

1-5

LOCATION

255

254

253

252

251

250

249

248

247

246

245

244

243

242

241

240

127

STACK POINTER (BITS 7-0)

STACK POINTER (BITS 15-8)

REGISTER POINTER

PROGRAM CONTROL FLAGS

INTERRUPT MASK REGISTER

INTERRUPT REOUEST REGISTER

INTERRUPT PRIORITY REGISTER

PORTS 0-1 MODE

PORT 3 MODE

PORT 2 MODE

TO PRESCALER LOAD

TIMER/COUNTER 0 LOAD

T1 PRESCALER LOAD

TIMER/COUNTER 1 LOAD

TIMER MODE

SERIAL I/O

NOT
IMPLEMENTED

GENERAL·PURPOSE
REGISTERS

PORT 3

PORT 2

PORT 1

PORTO

IDENTIFIERS

SPL

SPH

RP

FLAGS

IMR

IRO

IPR

P01M

P3M

P2M

PREO

TO

PRE1

T1

TMR

SIO

P3

P2

P1

PO

Figure 1-3. Control Registers

1-6

1.2.4 Data Lengths

Z8 instructions can operate on individual bits, 4-bit Binary
Coded Decimal (BCD) digits or nibbles, 8-bit bytes, or 16-bit
words (Figure 1-4). Bits can be set, reset, or tested. Nibbles
are used in BCD arithmetic operations. Bytes are used for
character or small integer values (in the range 0 to 255 if
unsigned, or in the range -128 to 127 if signed). Words are used
for larger integer values (in the range 0 to 65535 if unsigned,
or in the range -32768 to 32767 if signed).

The basic data element of the Z8 is the byte. Memory locations
(whether they reside in program, data, or register memory
segments) are ordinarily accessed eight bits at a time.
Increment Word (INCW) and Decrement Word (DECW) are the only
instructions that operate on 16-bit words.

78543210

I I I I I I I I BITS IN A BYTE

UPPER LOWER NIBBLES IN A BYTE
! , I I I !

BYTE

UPPER BYTE LOWER BYTE WORD
, , ! ! , , , I

Figure 1-4. Data Lengths

1-7

1.3 Input/Output

Thirty-two of the 28's 40 lines are dedicated to input and
output. These 32 lines are grouped into 4 ports of 8 lines each
and can be configured as input, output, or address/data. Under
software control, the ports can be programmed to provide timing,
interrupt requests, status signals, and serial or parallel I/O
features with or without handshake.

In the following explanation of the various port functions, Port
1 is described before Port 0 for convenience. The 28
architecture diagrams (Figures 1-5 and 1-6) show the I/O lines
and signals referenced. Although they are pictured separately in
Figure 1-5, remember that from a programming standpoint the I/O
ports, timers, interrupt controls, flags, and register pointer
are all manipulated through register memory.

1.3.1 Port 1

Port 1 can be programmed as a byte I/O port or as an address/data
port for interfacing to external memory. Associated with Port 1
are the Address Strobe (AS), Data Strobe (OS) and Read/Write
(R/W) timing signals. Under program control, two lines from Port
3 (lines P33 and P34) can be used with Port 1 as the handshake
control lines (OAVI and ROYl) or as a Port 1 interrupt request
input (IRQl) and an external data memory access (OM) status
output.

If external data memory is to be accessed, Port 1 is programmed
as an address/data port through which the external address and
data are passed. In this case, the lower eight bits of the
address (AO-A7) are multiplexed with data bits (00-07). If an
address longer than eight bits is required, the additional
address bits (A8-A15) originate from Port O.

1. 3. 2 Port 0

Port 0 can be programmed to be either an I/O port or an address
output for external memory. Depending on the size of the
address, Port 0 provides either bits 8-11 or bits 8-15 of the
address. (Port 1 provides bits 0-7). If the address is 12 bits
or less, the upper four bits (nibble) of Port 0 can be programmed
independently as I/O while the lower nibble is used for
addressing. When Port 0 is used in the I/O mode, two lines from
Port 3 (lines P32 and P35) can be used for the handshake controls
DAVO and ROYO.

1-8

OUTPUT INPUT XTAL AS DS R/W RESET

UO ADDRESS OR 1/0 ADDRESSIDATA OR 1/0
(BIT PROGRAMMABLE) (NIBBLE PROGRAMMABLE) (BYTE PROGRAMMABLE)

Figure 1-5. Z8 Architecture Diagram

RESET +5V - +5V P3,

n·'"1 R/W GND -AND XTAL2 P3,
CONTROL os XTALl

"'-}CLOCK XTAL1 P2,
AS XTAL2

P20 .- P3, P2, --- POo
P2, - P30 P2,- PO, RESET P2.- PO, P2, .-

R/W PORTO PORT 2 P2,

(NIBBLE- PO, P2, ---- (BIT PRO· DS P2,
PROGRAMMABLE)- PO • P2. ---- GRAMMABLE)

110 OR AD8-AD 15 110 AS P2,
.....- PO, ZB P2, --- P35 P20 --- PO, MCU P2, ---- GND P3, --- PO, P2, ---- P3, P3. --- Pl 0 P30 -P3, - POo Pl, --- Pl,

PO, Pl, --- Pl, P3, -- PORT 3
PO, P1 5 PORT 1 P3,

(FOUR INPUT;
(BYTE --- Pl, - FOUR OUTPUT). PO, Pl.

PROGRAMMABLE) --- Pl. P3. -- SERIAL AND
1/0 OR ADo-AD7 PARALLEL 110 PO. Pl, --- P1 5 P35 -- AND CONTROL

Pl, P3, -- P05 Pl, --- Pl, P3, -- PO, Pl,-
PO, Pl 0

Figure 1-6. Z8 Pin Functions and Assignments

1-9

1.3.3 Port 2

Port 2 can be programmed for input or output on a line-by-line
(bitwise) basis. As in the case of Ports 0 and 1, two lines from
Port 3 (lines P31 and P36) can be programmed as the handshake
control lines DAV2 and RDY2. The output buffers of Port 2 have a
programmable option for inhibiting the active pull-ups to provide
open-drain type outputs.

1.3.4 Port 3

Port 3 can be programmed for I/O and/or as a control port. In
I/O mode, the direction of the eight lines is fixed as four in
and four out. The control functions of Port 3 are handshake,
interrupt request, timer in and out, and status out.

Two lines of Port 3 can be programmed as a serial input and a
serial output interface. Each line has an 8-bit serial/ parallel
register associated with it. Serial I/O uses an asynchronous
format with the bit rate controlled by the internal timer.
Interrupts are generated when a character is received or
transmi tted.

1.4 Interrupts

rhe Z8 allows six different interrupts from eight possible
,ources -- the four input lines of Port 3, serial in and out, and
:he two timers (TO and Tl, discussed in Section 1.5).

3ix bits in the Interrupt-Mask control register can enable/
lisable the six interrupts IRQO-IRQ5 individually. When more
:han one interrupt is pending, priorities are resolved by a
)riority encoder, controlled by the Interrupt-Priority control
:egister.

~terrupt requests are stored in an Interrupt-Request control
"egister, which can also be used for polling. When an interrupt
"equest is granted, the Z8 enters an "interrupt machine cycle"
:hat globally disables all other interrupts, saves the program
:ounter (address of the next program instruction to be executed)
lnd status flags, and finally branches to the vector location for
~e interrupt. It is only at this point that control passes to
.he interrupt-handling procedure for the interrupt.

lefore the Z8 can recognize interrupts following RESET, some
nitialization tasks must be performed. RESET causes the
nterrupt Request Register (IRQO - IRQ5) to be cleared and held
o zero, and interrupts to be globally disabled (bit 7 of the
nterrupt Mask Register = 0). The initialization routine should
onfigure the Z8 interrupt requests to be enabled/disabled (via

1-10

the IMR) as required by the target application, and prioritized
for vectored interrupts (via the Interrupt Priority Register).
Because RESET holds the IRQ register to zero, one final step is
required before interrupts can function, even in polled mode.
Specifically, interrupts must be globally enabled via the EI
instruction; simply setting bit 7 of IMR is not sufficient.
Subsequent to this EI, interrupts can be enabled either by IMR
register manipulation or by use of the EI instruction, with
equivalent effects.

Additionally interrupts must be disabled by executing a DI
instruction before the IPR or IMR control registers can be
modified. Interrupts can then be enabled by executing an EI
instruction.

1.5 Timers/Counters

The Z8 has two 8-bit counters (TO and Tl), each driven by its own
6-bit prescaler. The prescalers can be driven, in turn, by
either an internal (TO and Tl) or external (Tl only) clock
source. TO and Tl can operate independently of the processor
instruction sequence and, consequently, can unburden the program
from time-critical operations like event counting or elapsed-time
calculation.

Each prescaler can be programmed to divide the input frequency of
its clock source by any number from 1 to 64. The prescaler
drives its counter, which decrements a value (0 through 255)
stored in the timer register. When the timer register reaches
end-of-count, a timer interrupt request--IRQ4 (TO) or IRQ5
(Tl)--is generated.

Under program control, counters/prescalers can be started,
stopped, restarted to continue counting, or restarted from the
initial value of the counters. The counters can also be
programmed to stop on reaching end-of-count, or to automatically
reload the initial counter value and continue counting. Elther
counter can be read at any time without disturbing its value or
count mode.

The clock source for the Tl counter/prescaler can be either the
microprocessor clock or an external timer input. Under program
control, the external timer input can function as an external
clock (maximum frequency 1 MHz), a trigger input that can be
retriggerable or not, or as a gate input for the internal clock.

1-11

)ne line of Port 3 also serves as a timer output through which
ro, Tl, or the internal clock can be output. The timer output
:oggles whenever an end-of-count occurs. If the timer is
)rogrammed to reload the count value and continue at
!nd-of-count, this line produces a 50% duty cycle. The counters
:an be cascaded by feeding the timer input line with the timer
)utput.

l.6 Status Flags and Program Controls

rhe ability to test data and make decisions based on the result
s especially important in single-chip microcomputers. Programs
lritten for these computers tend to be dominated by control
nstructions (conditional and unconditional jumps, calls, etc.)

Ind by test and mask instructions.

:ontrol register 252 contains six flags for the use of the Z8
Irocessor and programmer.

Carry (C)
Zero (Z)
Sign (S)
Overflow (V)
Decimal Adjust (D)
Half Carry (H)

he half carry and decimal adjust flags are used only by the Z8.
he other flags can be used by the programmer with the Jump (JP)
nd Jump Relative (JR) instructions to provide a repertoire of 19
onditional tests.

xamples:

JP NC, SUBTOT

JR OV, $+50

.6.1 Carry Flag

!Jump to routine named
SUBTOT if carry is not set!

!Jump 50 bytes ahead in program
if overflow has occurred!

he carry flag (C) is affected by Addition (ADD, ADC),
ubtraction (SUB, SBC), Compare (CP), Decimal Adjust (DA), Rotate
RL, RLC, RR, RRC), Swap (SWAP), and the Interrupt Return (IRET)
nstructions. When set, it generally indicates a carry out of
1e bit 7 position of a register being used as an accumulator.
Jr example, adding two 8-bit numbers as in the following
1structions would cause a carry out of bit 7 and set the carry
lag.

1-12

+

LD 20, #225
ADD 20, #64

!Load value 225 into location 20!
!Add 64 to contents of location 201

Bit 7 6 5 4 3 2 1 0

225
64

289

1
o

[
1 1 0 0 0 0 1
100 0 0 0 0
0100001

= carry flag

The carry flag can be set to one by the Set Carry Flag (SCF)
instruction, cleared to zero by the Reset Carry Flag (RCF)
instruction, and complemented (changed to 0 if 1, and vice-versa)
by the Complement Carry Flag (CCF) instruction.

1.6.2 Zero Flag

The zero flag is affected by the same instructions as the carry
flag plus the Logical (AND, OR, XOR, COM), Increment and
Decrement (INC, INCW, DEC, DECW) , and Test (TCM, TM)
instructions. In general, the zero flag is set when the
"accumulator" register's contents following one of the above
operations is zero.

DEC 20
JP Z,1500

1.6.3 Sign Flag

!Decrement location 20 contents!
!Jump to program location 1500
if location 20 is zero after
decrementing!

The sign flag is affected by the same instructions as the zero
flag. The sign flag is set to one when bit 7 of the register
used as an accumulator in these operations contains a one (a
negative number in twos complement representation) following the
operation.

LD 20, SUBI

SUB 20, SUB2
JP MI, NEG

!Load value of variable named
SUBI into location 20!

!Subtract value of SUB2!
! If S=l (result is "minus"),

jump to location labeled NEG!

1-13

1.6.4 Overflow Flag

The overflow flag is affected by the same instructions as the
zero and sign flags. When set, the overflow flag indicates that
a twos-complement number in a result register is in error since
it has exceeded the largest (+127) or is less than the smallest
(-128) number than can be represented in twos-complement
notation. Consider the following, as an example:

Bit 7 6 5 4 3 2 1 0

120
+ 105

225

o 1 1 1 1 000
o 1 1 0 1 0 0 1

[
101100001

= carry flag

The result in this case (-95) is incorrect. In this case, the
Jverflow flag would be set.

SUB 20, 21

JR ov, $-50

!Subtract location 21's contents from
location 20's!

!Jump back 50 bytes in program
if overflow has occurred!

1.6.5 Decimal Adjust Flag

rhe decimal adjust flag is used for BCD arithmetic. Since the
31gorithm for correcting BCD operations is different for addition
3nd subtraction, this flag is used to specify what type of
lnstruction was executed last so that the subsequent Decimal
~djust (DA) operation can do its function correctly. The decimal
~djust flag cannot normally be used as a test condition by the
)rogrammer.

L.6.6 Half Carry Flag

rhe half carry flag indicates a carry out of, or a borrow into
lit 3 as the result of adding or subtracting two 8-bit bytes,
!ach representing two BCD digits. The half carry flag is used by
:he Decimal Adjust (DA) instruction to convert the binary result
)f a previous addition or subtraction into the correct decimal
:BCD) result. As in the case of the decimal-adjust flag, this
:lag is not normally accessed by the user.

1-14

1.7 Stack Memory

To support the power of its interrupt capability, the Z8 has a
flexible stack scheme and a fast "context-switching" mechanism.
Context switching refers to the saving and restoration of working
registers, the program counter, flags, and other pertinent
information when an interrupt occurs.

Under program control, the Z8 can use an internal (register
memory) or external (data memory) stack, limited in size only by
the available memory space. An 8-bit or l6-bit stack pointer
occupies control register 255 or the control register pair
254-255.

CALL instructions use the stack to store the program counter
before branching to a procedure. Interrupts automatically save
the program counter and flag register. The RET instruction
restores the program counter from the stack upon return from a
procedure, while IRET also restores the flag register upon return
from an interrupt procedure. In addition, the Z8 has PUSH and
POP instructions that can save and restore any register of the
register file.

1-15

Section 2
Z8 Assembler Conventions

2.1 Assembler Overview

The Z8 microcomputer is programmed in a symbolic assembly
language (PLZ/ASM). This marks a significant improvement over
coding in binary notation. The operation codes for
assembly-language statements are easily memorized (DEC for
decrement and DECW for decrement word). In addition, meaningful
symbolic names can be assigned to program addresses and data
(MULTIPLY ROUTINE as the label of the first statement in a
multiply procedure) .

A Z8 source module consists of PLZ/ASM assembly language
statements. These statements are then translated by the Z8
assembler into an object module that can either be separately
executed by the Z8 microcomputer, or can be linked with other
object modules to form a complete program. Because the assembler
has some high-level features, a source module can also include
PLZ constructs such as DO and IF statements. The user can also
embed assembler directives, which control the operation of the
assembler, in the source module. High-level statements and
assembler directives are discussed in Sections 4 and 5.

Depending on the assembler directives used, addresses within an
object module or program can be absolute (meaning addresses in
the source program correspond exactly to Z8 program memory
addresses) or relocatable (meaning addresses can be assigned
relative to some base address at a later time). Object modules
should be made relocatable wherever possible so they can be
linked with other object modules, and so that object programs can
be loaded anywhere in memory. It also allows the creation of
libraries of commonly used procedures (including math or
input/output routines) that can be linked selectively into
several programs as desired.

Operation of the assembler, module linkage, address relocation,
and program execution are discussed in the Z8 PLZ/ASM Assembler
User Guide.

2.2 Assembly Language Statement Format

The most fundamental component of a PLZ/ASM program is the
assemblY-language statement consisting of an instruction and its
operands. The instruction describes an action to be taken; the
operands supply the data to be acted upon.

2-1

An assembly language statement can actually include four fields:

• Statement labels

• An instruction

• Operands

• Comments

The statement label and comment fields are always optional. The
statement has zero, one, or two operands, depending on the
instruction selected. The following statements have the same
effect in a Z8 program, but the second is much more descriptive
(and consequently more helpful in program debugging) •

Label

INITTl:

Instruction

LD
LD

Operand (s)

Tl, #255
Tl, #255

Comment

! Load Timer 1
initial value!

Each of the elements of a PLZ/ASM program must be separated from
other elements by one or more delimiters. A delimiter is one of
the characters: space (blank), comma, semicolon, tab, carriage
return, line feed, or form feed. Note that carriage return is
treated the same as any other delimiter, so that a single
statement may span several lines, or several statements may
appear on a single line. The delimiter used in a specific
situation is up to the programmer. For the sake of illustration,
this manual uses blanks to separate statement fields and commas
to separate operands.

2.2.1 Program Labels and Identifiers

Any assembly-language (or high-level) statement in a Z8 program
can be preceded by any number of labels. Any statement
referenced by another statement must be labeled. A label
consists of an identifier followed by a colon (:) in the form:

labell: labe12: ••• labeln: statement

A PLZ/ASM identifier can contain up to 127 characters, of which
the first must be a letter. The remaining characters can be
letters, digits, or the special character underscore ().
Letters can be capitalized or lower-cased, but each time an
identifier is used, it must be written in exactly the same way.
The following are valid identifiers:

2-2

START UP ROUTINE
Program Initialization
A -
Loop 12
Nl -
sort

In addition to their statement-labeling function, identifiers
serve as symbolic names for constants (Section 2.3.2), data
variables (Section 2.3.3), and procedures (Section 5.2.2).
Certain identifiers serve as PLZ/ASM keywords and should not be
used as programmer-defined identifiers (see Appendix D).

An identifier can be associated with only one item within the
scope of its definition. Section 4.2.5 explains the scope of
identifiers, including the scope of labels. For the moment, we
can say that labels are accessible within the module in which
they are defined, and are not accessible outside that module
unless specifically declared to be GLOBAL or EXTERNAL.

2.2.2 Instruction

The instruction is the assembly-language mnemonic describing a
specific action to be taken.

LD R5, RIO !Load register 5 from register 10!

SRP #%10 !Set Register Pointer to 10 (hex)!

The instruction must be separated from its operands by a
delimiter.

2.2.3 Operand Field

Depending on the instruction specified, this field can have zero,
one, or two operands. If two operands are needed, they must be
separated by a delimiter.

CCF !No operand!

SRP #%10 lOne operand!

ADD R6, #210 ! Two operands!

Operands supply the information the instruction needs to carry
out its action. An operand can be:

2-3

• Data to be processed (immediate data);

• The address of a location from which data is to be taken
(source address);

• The address of a location where data is to be put
(destination address);

• The address of a program location to which program
control is to be passed;

• A condition code, used to direct the flow of program
control.

When these operand types are combined, the possible orderings are
as follows:

Instruction Destination, Immediate

Instruction Destination, Source

Instruction Condition Code, Program Location

Immediate data can be in the form of a constant, an address, or
an expression (constants and/or addresses combined by operators) •
Each of these forms is described in Section 2.3.

LD RO, #K

LD RO, #COUNTER

ADD RO, #(CON/3 + 5)

!Load constant K into reg 01

lLoad address of COUNTER into
reg 01

!Add value of expression
(CON/3 + 5) to contents of
reg 01

2-4

Source, destination, and program addresses can also take several
forms. PLZ/ASM addressing modes are described in Section 2.4.
Some examples are:

LD RO, @R5

LD 55, VARI

JP Z, LOOPI

JP NZ, LOOPI + 5

!Load value whose address is in
register 5 into register O!

!Load value located at address
labeled VARI into register
file location 55!

!Jump to program address
labeled LOOPI if zero flag (Z)
is set!

!Otherwise, jump to location
five bytes after LOOPI!

Condition codes are listed in Section 3.2. They are used only by
the Jump (JP) and Jump Relative (JR) instructions.

2.2.4 Comments

Comments are used to document program code as a guide to program
logic and to simplify present or future program debugging.
Comments can be inserted anywhere a program delimiter can appear.
Comments are bounded by exclamation points (!) and can contain
any characters except the exclamation point itself.

!Module 3, Changed 7-25-78!

RES R13, 13 !Turn off "convert" flag!

A single comment can cross line boundaries; that is, carriage
returns can occur within a comment.

Comments can also start with II. This type of comment does not
need a closing symbol; the carriage return, <CR>, at the end of
the line on which this comment appears terminates the comment.

IIModule 3, Changed 7-25-78 <CR>

RES R13, #3 IITurn off "convert" flag <CR>

2.3 Arithmetic Operands

Constants and data variables are types of operands that can be
used in assembly-time arithmetic expressions, or singly as
operands for a Z8 instruction. This section describes the
differences between assembly-time and run-time arithmetic,

2-5

defines constants and data variables, and explains how
expressions are formed using operators.

2.3.1 Run-TilDe Versus Assembly-Time Arithmetic

Arithmetic is performed in two ways in an assembly-language
program. Run-time arithmetic is done while the program is
actually executlng.

SUB RIO, R12 !Subtract the contents of reg 12
from the contents of reg 10!

Assembly-time arithmetic is done by the assembler when the
program is assembled and involves the evaluation of arithmetic
expressions in operands, such as the following:

LD RO, *(22/7 + X)

JP Z, LOOPI + 12

ADD R2, @HOLDREG-l

Assembly-time arithmetic is more limited than run-time arithmetic
in such areas as signed versus unsigned arithmetic and the range
of values permitted.

Only unsigned arithmetic is allowed in assembly-time expression
evaluation. Run-time arithmetic uses both signed and unsigned
modes, as determined from the assembly-language instruction
specified and the meaning attached to operands by the programmer.

All assembly-time arithmetic is computed using 16-bit arithmetic,
"modulo 65536". Values greater than or equal to 65536 are
divided by 65536 and the remainder of the division is used as the
result. If the result of assembly-time arithmetic is to be
stored in a single byte location, the resulting value must be
representable in 8 bits; that is, the range 0 to 255 (or -128 to
127 if signed representation is intended).

LD RIO, tX+22

JP X+22

!Result of (X+22) must be in
range -128 to 255!

!Modulo 65536. Result is the
address 22 bytes beyond X!

2-6

2.3.2 Constants

A constant value is one that does not change throughout the
program. Constants can be expressed as numbers, as character
sequences, or as a symbolic name representing a constant value.

Numbers can be written in decimal, hexadecimal, binary, or octal
notation. The latter three are preceded by a percent sign (%)
and, in the case of binary and octal, by a base specifier
enclosed in parentheses. If a number has no prefix, decimal is
assumed.

10
%10
%AFOF
% (2) 10110010
%(8)70

decimal
hexadecimal
hexadecimal
binary
octal

A character sequence is a sequence of one or more characters
enclosed in single quote marks. Any ASCII character (except a
percent sign or single quote) can be included in the character
sequence. Since constants are represented as 32-bit values, only
the first four characters in a string literal, used as a
constant, are meaningful, for example, 'ABCD = ABCDE'.

'A'
'This is a character sequence'

A character can also be represented in a character sequence in
the form "%hh," where "hh" is the hexadecimal equivalent of the
ASCII code for the character. (See Appendix E for the ASCII
character set and its hexadecimal equivalents.)

'Here is an ESC character: %lB'

For convenience, certain ASCII characters have been assigned
shorter, more mnemonic codes as follows:

Example:

%L or %l Linefeed
%T or %t Tab
%R or %r Ca r ria g e Re t urn
%P or %p Page (Form Feed)
%% Percent Sign
%Q or %q Single Quote

'First line%rSecond line%r'
'Quote%Qinside a quote%Q'

A constant can be assigned a symbolic name by a constant
definition (CONSTANT) statement. A symbolic identifier, once

2-7

associated with a constant value, retains that value through the
entire program module.

Constant symbols are defined by the CONSTANT statement in the
form shown below. Identifiers follow the rules outlined in
Section 2.2.1. The special character pair ":=" can be read "is
defined as".

CONSTANT
REC LENGTH : = 64
BUFFER LENGTH := 4*REC LENGTH
SEMICOLON := '. , ,
BIGNUMBER := 65000
smallnumber := -1

Certain constants are predefined by the assembler and should not
be used for programmer-defined constant symbols (see Appendix D).

2.3.3 Data Variables

A data variable can be thought of as a container that can hold
different values from time to time. An 8-bit (BYTE or
SHORT INTEGER) variable can hold values in the range 0 to 255 if
unsigned, or -128 to 127 if signed twos-complement representation
is intended. Similarly, a 16-bit (WORD or INTEGER) variable can
hold values in the range 0 to 65535 if unsigned, or -32768 to
32767 if signed.

NOTE

BYTE and WORD variables should be used for unsigned values,
and SHORT INTEGER and INTEGER variables should be used for
signed values; there are no restrictions on whether a
particular variable is signed or unsigned. Therefore, BYTE
and SHORT INTEGER are treated as equivalent, as are WORD
and INTEGER; the appropriate interpretation is made by the
programmer.

A data variable name can be associated with either a register or
data memory location; the value of the variable is the contents
of that location at the time the variable is referenced. A data
variable name is a symbolic identifier and follows the rules for
identifiers in Section 2.2.1.

LD R5, MPLIER

ADD R5, 3 + SUBTOTAL

!Load the value contained in the
location symbolized by MPLIER!

!Add the value contained in the
location 3 bytes after the
location named SUBTOTAL to the
contents of reg 5!

2-8

If a data variable operand is preceded by i, it is treated as
immediate data and the value used is the data address associated
with the variable, not the contents of the location. For
example, suppose register 50 has the symbolic name COUNTER and
contains the bit pattern 11111111 (decimal 255).

LD Tl, COUNTER 1255 is loaded into Timer 11

LD Tl, iCOUNTER 150 is loaded into Timer 11

LD Tl, COUNTER - 5 lContents of reg 45 are loaded
into Timer 11

LD Tl, iCOUNTER - 5 145 is loaded into Timer 11

Every data variable name has a type and scope associated with it,
as well as a value. The type and scope (and, optionally, the
initial value) are defined in a variable declaration statement
like the following:

INTERNAL
SWITCHI BYTE

In this example, INTERNAL is the scope of the variable SWITCHl,
and BYTE is its type.

Variable declaration is the subject of Section 5.3.4. For the
purposes of this section, variables can have GLOBAL, EXTERNAL,
INTERNAL, or LOCAL scope. They can be one of the simple types,
BYTE or SHORT INTEGER (for 8-bit values) or WORD or INTEGER (for
16-bit values). They can also be one of the structured types,
ARRAY or RECORD.

2.3.4 Expressions and Operators

Expressions are formed using arithmetic, logical, shift, and
relational operators in combination with constants and variables.
These operators allow both unary (one-operand) and binary
(two-operand) expressions, as shown below.

Arithmetic Operators

The arithmetic operators are as follows:

Operator Operation

+ Unary plus, binary addition

Unary minus, binary subtraction

* Unsigned multiplication

2-9

Operator Operation

/ Unsigned division

MOD Unsigned modulus

The division operator (/) truncates any remainder. The MOD
operator returns the remainder from dividing its operands.

17/4 = 4

17 MOD 4 = 1

If zero is specified as the right operand for either of these
division operators, the result is undefined.

Examples:

ADD R5, #-3

ADD R5, #K + (5*3)

!A minus 3 is added to
reg 5!

!Value of constant K + 15 is
added to reg 5!

Once again, expressions containing these operators are evaluated
at assembly time and, consequently, the arithmetic performed is
unsigned. Signed arithmetic can still be done at run time,
however. Signed multiplication, for example, can be done by
looping through a series of Shift and Add instructions.

Logical Operators

The logical operators are as follows:

Operator Operation

LNOT (Unary) Logical complement

LAND Log ical AND

LOR Log ical OR

LXOR Logical EXCLUSIVE OR

LNOT simply complements the bit pattern of its (single) operand.
All one bits are changed to zero and vice-versa.

LD P2M, LNOT MASK IReverse the bits in the
mask used to program Port 2!

2-10

The effect of LAND, LOR, and LXOR can be seen from the following
examples. Assume two constants A and B have the bit patterns
11110000 and 01010101, respectively. The expressions:

A LAND B
A LOR B
A LXOR B

will result in the following evaluations of the operands:

LAND 11110000
01010101
01010000

LOR 11110000
01010101
11110101

LXOR 11110000
01010101
10100101

LAND sets a one bit whenever both ANDed bits are one; LOR sets a
one bit whenever either ORed bit is one; LXOR sets a one bit when
the two EXCLUSIVE-ORed bits are different.

The assembly-time logical operations performed by LNOT, LAND,
LOR, and LX OR can also be done at run time by the Z8 instructions
COM, AND, OR, and XOR. The assembly-time operations require less
code and register manipulation. The run-time operations allow
greater flexibility, however. For example, they can operate on
registers (variables) whose contents are not known at assembly
time, as well as on known constant values.

Shift Operators

The shift operators are as follows:

SHR
SHL

Logical shift right
Logical shift left

When used in expressions, the shift operators have the form

d operator n

where lid" is the data to be shifted and "n" specifies the number
of bits to be shifted. Vacated bits are replaced with zeros.
For example, if the constant PRODUCT is equal to 10110011, the
statement

LD RO, #(PRODUCT SHL 2)

would load the value 11001100 into working register O.

If the second operand supplied is negative (that is, if the sign
bit is set), it has the effect of reversing the direction of the
shift.

ADD PRODUCT, # (MPLIER SHR -1)

2-11

!MPLIER is shifted left
one bit position!

Relational Operators

The relational operators are as follows:

< Less than
<= Less than or equal

Equal
<> Not equal
>= Greater than or equal
> Greater than

These six relational operators return a logical TRUE value (all
ones) if the comparison of the two operands is true, and return a
logical FALSE value (all zeros) otherwise. The operators assume
both operands are unsigned.

LD RO,i(1=2)
LD RO,i(2+2) < 5

!Reg 0 is loaded with zeros!
!Reg 0 is loaded with ones!

Precedence of Operators. Expressions are generally evaluated
left to right with operators having the highest precedence
evaluated first. If two operators have equal precedence, the
leftmost is evaluated first.

The following lists the PLZ/ASM operators in order of
precedence:

1. Unary operators: +; -, LNOT

2. Multiply/Divide/Shift/AND: *, / , MOD, SHR, SHL, LAND

3. Add/Subtract/OR/XOR: +, -, LOR, LXOR

4. Relational operators: <, <=, =, <>, >=, >

Parentheses can be used to change the normal order of precedence.
Items enclosed in parentheses are evaluated first. If
parentheses are nested, the innermost are evaluated first.

20/5 - 12/3 = 0

20/(5 - 12/3) = 20

Modes of Arithmetic Expressions. All arithmetic expressions have
a mode associated with them: absolute, relocatable, or external.
These modes are defined in detail in Section 4.3.3.

2-12

2.4 Z8 Addressing Modes

With the exception of immediate data and condition codes, all
assembly-language operands are expressed as addresses: register
addresses, program memory addresses, and external data memory
addresses. The various address modes recognized by the Z8
assembler are as follows:

• Register
• Indirect Register
• Indexed Address
• Direct Address
• Relative Address
• Immediate

Special characters are used in operands to identify certain of
these address modes. The characters are:

• "R" preced ing a working-reg ister number;

• "RR" preceding a working-register pair;

• "@" preceding an indirect-register reference;

• "I" preceding immediate data;

• "()" used to enclose the index register part of
an indexed address;

• "$" signifying the current program counter location,
usually used in relative addressing.

The use of these characters is shown in the following sections.

Not every address mode can be used by every instruction. The
individual instruction descriptions in Section 3 describe which
address modes can be used for each instruction.

2.4.1 Register Address

In register addressing mode, the operand value is the contents of
the specified register.

register

~_in __ s_t_r_u_c __ t_i_o_n~~------~~~:I operand

The register can be addressed in either of two ways. The address
can be:

2-13

• an 8-bit address in the range 0-127, 240-255, or

• a 4-bit working-register address.

The full 8-bit address is indicated in the operand field by
supplying an expression (see Section 2.3.4) which evaluates to
either the number of the register or a variable name associated
with a register. Neither of these has a special-character
prefix.

LD 55, UF3

LD FLAGS, iZEROS

ADD 120, SUBTOTAL

Working-Register Address

!Load register 55 with the
hexadecimal value F3!

!Load register named FLAGS
(i.e., reg 252) with the value
of the constant named ZEROS!

!Add contents of register named
SUBTOTAL to register l20!

Designating a register by a 4-bit working-register address,
rather than an 8-bit register address, often reduces the length
of an instruction and results in a shorter execution time. In
this case, the full address is formed by concatenating the 4-bit
field (address range 0-15) with the upper 4 bits of the Register
Pointer; thus the working-register set can be varied dynamically
simply by changing the value of the Register Pointer (control
register 253).

A working-register operand is indicated by a number in the range
0-15 preceded by the letter "R".

LD RO, R15

LD 53, R15

ADD R6, AUGEND

Register Pair Address

!Load the contents of working
register 15 into working register O!

!Load the contents of working register
15 into register 53!

!Add contents of register named
AUGEND to working register 6!

Registers can be used in pairs to designate l6-bit values or
memory addresses. A register pair can be specified as an
expression which evaluates to an even number in the range
0,2,4 ..• 126 or 240,242 ••• 254. It-can also be designated as the
variable name of an even-numbered register.

2-14

DECW 20 !Decrement contents of registers 20
and 21!

Working-Register Pair Address

Working-register pairs are indicated by an even number in the
range 0, 2, 4, 6, ••• 14. If the 10w-order(odd) byte of a pair
is specified, an error will result. In the case of a working
register pair, the register number is preceded by the letters
"RR." For example, RRO refers to RO and R1.

INCW RR10 !Increment contents of working
registers 10 and 11!

2.4.2 Indirect-Register Address

In indirect addressing, the value of the operand is not the
contents of a register. Instead, the register (register pair,
working register or working-register pair) contains the address
of the location whose contents are to be used as the operand
val ue •

reg ister (s)

instruction ~I address I-�--------I .. ~I operand

Depending on the instruction selected, the address may point to a
register, program memory, or external data memory location.
Register pairs or working-register pairs are used to hold the
16-bit addresses when accessing program or external data memory.
Pairs are indicated by an even number (see Section 2.4.1).

The indirect-register address mode may save space and improve
execution speed when data is accessed from consecutive locations.
This mode can also be used to simulate more complex addressing
modes, since addresses can be computed before the associated data
is accessed.

An indirect address can be an expression which evaluates to a
register number, the variable name of a register file location,
or a register-pair designator. It can also be a working-register
designator, or a working-register-pair designator. In all cases,
the register specification must be preceded by a commercial at
symbol (@).

2-15

JP @RRO

JP @20

LO @TOTALS, 30

LO @TOTALS, #30

2.4.3 Indexed Address

!Pass control (jump) to the
program memory location
addressed by working
register pair O-l!

!Jump to program location
addressed by register pair
20-21 !

!Load contents of register
30 into location addressed by
register named TOTALS!

!Load immediate value 30 into
location addressed by TOTALS!

An indexed address consists of a register address offset by the
contents of a designated working register (the index). This
offset is added to the register address and the resulting address
points to the location whose value is used by the instruction.
This address mode is used only by the Load (LO) instruction.

instruction

working
register

address I---------------I .. ~(+)---__ operand

The register address is specified as an expression which
evaluates to a register-file number or to the variable name of a
register file location. This address is followed by the index, a
working-register designator enclosed in parentheses.

LO RIO, TABLE (RO) !Load the contents of the
location addressed by TABLE
plus the contents of reg 0
into reg 10!

2-16

LD 240 (RO), RIO !Load the contents of reg 10 into
the control register whose
address is 240 plus the contents
of reg O!

Since the specified register address and working register
contents are both 8-bit values, the indexed-address mode can be
used for base addressing. The base address is loaded into the
working register and the offset (register address) then completes
the address field.

2.4.4 Direct Address

Direct-address mode is used only by the Jump (JP) and Call (CALL)
instructions to specify the destination where program control is
to be transferred. The address may be specified as an expression
which evaluates to a number or a program label.

instruction

address

CALL MATH ROUTINE

JP C,%2000

2.4.5 Relative Address

!Transfer control to the
procedure labeled MATH_ROUTINE!

!Jump to location 2000 (hex) if
the carry flag is set!

Relative-address mode is implied by its instruction. It is used
only by the Jump Relative (JR) and the Decrement and Jump If
Nonzero (DJNZ) instructions and is the only mode available to
these instructions. The operand, in this case, represents an
offset that is added to the contents of the program counter to
form the destination address (the program address where control
is to be transferred). The original contents of the program
counter is taken to be the address of the instruction byte
following the JR or DJNZ instruction, while the offset value is
an 8-bit signed value in the range -128 to 127.

2-17

instruction

prog ram
counter

r---------~.~I address

I
~O_f_f_s_e_t~r-------------------------~~~I~I address I

The offset value can be expressed in two ways. In the first
case, the programmer provides a specific offset in the form "$+n"
where n is a constant expression in the range +129, -126 and $
represents the contents of the program counter at the start of
the JR or DJNZ instruction (each instruction is two bytes in
length) •

JR OV, $+K !Add value of constant K to program
counter and jump to new location if
overflow has occurred!

In the second method, the assembler calculates the offset. The
programmer simply specifies an expression which evaluates to a
1umber or a program label as in direct addressing. The address
specified by the operana-must be in the same module and section
3S the JR or DJNZ instruction and must be within the offset range
(+127, -128).

JR OV, MATH ERROR

DJNZ R5, LOOP !Decrement reg 5 and jump to LOOP if
the result is not zero!

rhe Jump (JPR) control instruction causes the assembler to
)roduce a JR whenever possible. Refer to Section 5.2.6 for
ietailed information on the Jump optimization.

~.4.6 Immediate Data

[mmediate data is an address mode for the purposes of this
liscussion. The operand value used by the instruction in this
:ase is the value supplied in the operand field itself.

instruction

operand

2-18

Immediate address mode is often used to load registers with their
initial values. The Z8 is optimized for this function, providing
several short immediate data instructions to reduce the byte
count of programs.

Immediate data is preceded by the special character # and may be
a constant (including character constants and symbols
representing constants) or an expression as described in section
2.3.4. Remember, if a variable name is prefixed by #, the value
used is the address represented by the variable, not the contents
of the address. Immediate data values must be in the range -128
to 255 (that is, expressible in 8 bits), or an error message wi 11
be generated.

LD 100, #%12

LD COUNTER, #COUNT-50

LD POINTER, #ITEM

!Load l2(hex) into reg 100!

!Load register named
COUNTER with value of
constant COUNT-50!

!Load register named
POINTER with the value of the
address of variable ITEM!

Two special operators are provided to ease the manipulation of
16-bit addresses: the HI operator gives the high-order byte, and
LO gives the low-order byte of a l6-bit expression. Since HI and
LO can only be used where the immediate addressing mode is
applicable, the # character must precede them.

LD R6,#HI DLABEL

LD R7,#LO DLABEL

!Load bits 8-15 of l6-bit
address of DLABEL into reg 6!

!Load bits 0-7 of l6-bit
address of DLABEL into reg 7!

2.4.7 A Note on the Register Pointer

For the assembly-language programmer, dealing with working
registers is an automatic procedure. The assembler determines
the appropriate binary instruction code so that the specified
working-register address can be formed at run time using the
current value of the register pointer. The upper four bits of
the memory address are taken from the register pointer; the lower
four bits are taken from the instruction code, and together they
specify the designated working register.

When programming in binary code, an additional possibility
exists. When a full 8-bit register designator is required by the
instruction format (register or register-pair address modes), a
working register or working-register pair can be specified

2-19

without knowing the current value of the register pointer. If
the upper nibble of the register field is coded as a hexadecimal
E, the lower nibble is interpreted as a working-register (EO-EF
hex are not implemented register addresses). The final register
address is formed at run time by replacing E with the register
pointer value. This mechanism is handled automatically by the
assembler whenever a working register designator is used.

The working-register mechanism allows sections of code using
different register-pointer values to share a common procedure and
pass parameters to it via the working registers.

2-20

Section 3
Assembly Language Instruction Set

3.1 Functional Summary

PLZ/ASM instructions can be divided functionally into the
following eight groups:

• Load
• Arithmetic
• Log ical
• Program Control (Branch)
• Bit Manipulation (Test)
• Block Transfer
• Rotate and Shift
• CPU Control

The following summary shows the instructions belonging to each
group and the number of operands required for each, where "src"
is the source operand, "dst" is the destination operand, and "cc"
is a condition code.

Instruction

CLR
LD
LDC
LDE
POP
PUSH

Load Instructions

Operands

dst
dst,src
dst,src
dst,src
dst
src

Arithmetic Instructions

Instruction Operands

ADC dst ,src
ADD dst,src
CP dst,src
DA dst
DEC dst
DECW dst
INC dst
INCW dst
SBC dst,src
SUB dst,src

3-1

Name of Instruction

Clear
Load
Load Constant
Load External Data
Pop
Push

Name of Instruction

Add Wi th Carry
Add
Compare
Decimal Adjust
Decrement
Decrement Word
Increment
Increment Word
Subtract With Carry
Subtract

Instruction

AND
COM
OR
XOR

Instruction

CALL
DJNZ

IRET
JP
JR
RET

Instruction

TCM
TM

Instruction

LDCI
LDEI

Instruction

RL
RLC
RR
RRC
SRA
SWAP

Logical Instructions

Operands

dst,src
dst
dst,src
dst,src

Name of Instruction

Log ical And
Complement
Log ical Or
Logical Exclusive Or

Program-Control Instructions

Operands

dst
r ,dst

cc,dst
cc,dst

Name of Instruction

Call Procedure
Decrement and Jump
If Nonzero
Interrupt Return
Jump
Jump Relative
Return

Bit-Manipulation Instructions

Operands

dst,src
dst,src

Name of Instruction

Test Complement Under Mask
Test Under Mask

Block-Transfer Instruction

Operands

dst ,src
dst ,src

Name of Instruction

Load Constant Autoincrement
Load External Data
Autoincrement

Rotate and Shift Instructions

Operand Name of Instruction

dst Rotate Left
dst Rotate Left Through Carry
dst Rotate Right
dst Rotate Right Through Carry
dst Shift Right Arithmetic
dst Swap Nibbles

3-2

CPU Control Instructions

Instruction

CCF
DI
EI
NOP
RCF
SCF
SRP

3.2 Notation

Operand

src

Name of Instruction

Complement Carry Flag
Disable Interrupts
Enable Interrupts
No Operation
Reset Carry Flag
Set Carry Flag
Set Register Pointer

Operands and status flags are represented by a notational
shorthand in the detailed instruction descriptions that make up
the rest of this chapter. The notation for operands (condition
codes and address modes) and the actual operands they represent
are as follows:

Notation

cc

r

R

RR

Ir

IR

Irr

IRR

Address Mode

Condition Code

Working register
only

Register or
working register

Register pair or
working register
pair

Indirect working
register only

Indirect register
or working
register

Indirect working
register pair only

Indirect register
pair or working
register pair

Actual Operand/Range

See condition code list below

Rn, where n = 0-15

~=0-127, 240-255 or
Rn as defined above

~, where reg is an
even number in the range
above or a variable whose
address is even or RRp where
p = 0,2,4,6 ••• 14

@Rn, where n = 0-15

@re~, where reg is as
deflned above or
@Rn, as defined above

@RRp, where p = 0,2,4,
6 ••• 14

@reg, where reg is an
even number in the range
defined above, or a
variable whose address is
even or @RRp as defined above

3-3

Notation

x

DA

RA

1M

Address Mode

Indexed

Direct Address

Relati ve
Address

Immediate

Actual Operand/Range

reg(Rn), where reg
and Rn are as defined
abo e

Program label or expression

Program label or $ + or -
offset, where the location
addressed must be in the
range +127, -128 bytes
from the start of the
next instruction

#data, where data is an
expression

Status Flags are represented as follows:

C Carry flag
Z Zero flag
S Sign flag
V Overflow flag
D Decimal adjust flag
H Half carry flag

The condition codes and the flag settings they represent are:

Code

F
(blank)

Z
NZ
C
NC
PL
MI
NE
EQ
OV
NOV
GE

LT
GT
LE

Meaning

Al ways false
Always true
Zero
Not zero
Carry
No carry
Plus
Minus
Not equal
Equal
Overflow
No overflow
Greater than
or equal
Less than
Greater than
Less than or
equal

Flag Settings

Z 1
Z a
c 1
C a
S a
S 1
Z a
Z 1
V 1
V a
(S XOR V) = a

(S XOR V) = 1
(Z OR (S XOR V))
(Z OR (S XOR V))

3-4

a
1

Binary

0000
1000
0110
1110
0111
1111
1101
0101
1110
0110
0100
1100
1001

0001
1010
0010

Code Meaning Flag Settings Binary

UGE Unsigned greater c=o 1111
than or equal

ULT Unsigned less than C=l 0111
UGT Unsigned greater ((C=O) & (Z=O)) 1 1011

than
ULE Unsigned less than (C OR Z) = 1 0011

or equal

Note that some of the condition codes correspond to identical
flag settings: Z-EQ, NZ-NE, C-ULT, NC-UGE.

3.3 Assembly-Language Instructions

In the remainder of this section, Z8 assembly-language
instructions are described in detail in alphabetical order. Each
description includes:

• The name of the instruction
• The binary instruction formats
• The operation performed by the instruction
• The status flags affected by the instruction
• The number of machine cycles used to execute the

instruction
• The number of bytes used by the instruction
• A short example showing the use of the instruction

The description of each instruction's operation includes a
shorthand summary. In addition to symbols already listed above,
the following are also used in these summaries.

Symbol

SP
PC
FLAGS
RP
IMR

Meaning

Stack pointer (control registers 254-255)
Program counter
Flag register (control register 252)
Register pointer (control register 253)
Interrupt mask register (control
register 251)

Assignment of a value is indicated by the symbol "<_". For
example,

dst <- dst + src

indicates that the source data is added to the destination data
and the result is stored in the destination location. The form
addr(n) is used to refer to bit n of a given location. For
example, dst(7) refers to bit 7 of the destination byte.

3-5

3-6

ADC
Add With Carry

ADC dst,src

INSTRUCTION FORMATS: mode dst src

I ooolimodei Idst I src 0010 r r
0011 Ir r

I QOOlimOde I ~ ~ 0100 R R
0101 R IR

I ooolimode I ~ ~ 0110 R 1M
0111 IR 1M

OPERATION: dst (- dst+src+C

The source byte, along with the setting of the
carry flag, is added to the destination byte. The
result is stored in the destination location.

FLAGS: C: Set if there was a carry from the most significant
bit of the result; cleared otherwise

Z: Set if the result is zero; cleared otherwise
V: Set if arithmetic overflow occurred; cleared otherwis
S: Set if the result is less than zero; cleared otherwis
H: Set if a carry from the low-order nibble occurred
D: Always reset to zero

BYTES AND CYCLES:

EXAMPLE:

dst src

r r ,Ir
other combinations

2
3

cycles

6
10

If the register named SUM contains %16, the carry
flag is set to one, working register 10 contains
%20 (32 decimal), and register 32 contains %10,
the statement

ADC SUM,@RIO

will leave the value %27 in register SUM.

3-7

~DD
dd

ADD dst,src

INSTRUCTION FORMATS: mode dst src

10000 Imode I I dst I src I 0010 r r
0011 r Ir

10000 Imode II src dst 0100 R R
0101 R IR

10000 Imode I I dst src 0110 R IM
0111 IR IM

OPERATION: dst <- dst+src

The source byte is added to the destination byte
and the sum stored in the destination location.

FLAGS: C: Set if there was a carry from the most significant
bit of the result; cleared otherwise

Z: Set if the result is zero; cleared otherwise
V: Set if arithmetic overflow occurred; cleared

otherwise
S: Set if the result is less than zero; cleared

otherwise
H: Set if a carry from the low-order nibble occurred
D: Always reset to zero

BYTES AND CYCLES:

EXAMPLE:

dst src

r r , Ir
other combinations

bytes

2
3

cycles

6
10

If the register named SUM contains %44 and the
register named AUGEND contains %11, the statement

ADD SUM, AUGEND

will leave the value %55 in register SUM.

3-8

AND
Logical

AND dst,src

INSTRUCTION FORMATS: mode dst src

I olollmode II dst I src I 0010 r r
DOll r Ir

I 0101 1 mode I src dst 0100 R R
0101 R IR

10101lmode II dst I I src 0110 R 1M
Olll IR 1M

OPERATION: dst (- dst AND src

The source byte is logically ANDed with the
destination byte. The result is stored in the
destination location. The AND operation results
in a one bit being stored whenever the bits
matched in the two operands are both ones.

FLAGS: C: Unaffected
Z: Set if result is zero; cleared otherwise
V: Always reset to zero
S: Set if the result bit 7 is set; cleared otherwise
H: Unaffected
D: Unaffected

BYTES AND CYCLES:

EXAMPLE:

dst src

r r ,Ir
other combinations

2
3

cycles

6
10

If the source operand is the immediate value %7B
(01111011) and the register named TARGET contains
%C3 (llOOOOll), the statement

AND TARGET, #%7B

will leave the value %43 (01000011) in register
TARGET.

3-9

CALL
:a11 Procedure

CALL dst

INSTRUCTION FORMATS: dst

III 0 1 I 0110 I ,-I ___ ---"'d..::.s-'-t ___ ---' DA

1110110100 I 1 __ ds_t_--, IRR

OPERATION: SP <- SP-2
@SP <- PC
PC <- dst

FLAGS:

BYTES AND

EXAMPLE:

The current contents of the program counter (PC) are
pushed onto the top of stack. (The program counter
value used is the address of the first instruction
byte following the CALL instruction.) The specified
destination address is then loaded into the PC and
points to the first instruction of a procedure.

At the end of the procedure a RETurn instruction can
be used to return to the original program flow. RET
pops the top of the stack back into the PC.

No flags affected.

CYCLES:

dst bytes cycles

DA 3 20
IRR 2 20

If the contents of the program counter are %lA47 and
the contents of the stack pointer (control registers
254-5) are %3002, the statement

CALL %3521

causes the stack pointer to be decremented to %3000,
%lA4A (the address following the instruction) is
stored in external data memory %3000-%3001, and the
program counter is loaded with %3521. The program
counter now points to the address of the first
statement in the procedure to be executed.

3-10

CCF
Complement Carry Flag

CCF

INSTRUCTION FORMAT:

Illlo lUll I
OPERATION: C (- NOT C

The carry flag is complemented; if C=l, it is
changed to C=O, and vice-versa.

FLAGS: C: Complemented
No other flags affected

BYTES AND CYCLES:

EXAMPLE:

bytes

1

cycles

6

If the carry flag contains a zero, the statement

CCF

will change the zero to one.

3-11

:LR
::lear

CLR dst

INSTRUCTION FORMAT: mode dst

IIOlll mode I dst 0000
0001

R
IR

OPERATION: dst <- a

The destination location is cleared to zero.

FLAGS: No flags affected.

BYTES AND CYCLES:

dst cycles

R, IR 6

EXAMPLE: If working register 6 contains %AF, the statement

CLR R6

will leave the value a in that register.

3-12

COM
Complement

COM dst

INSTRUCTION FORMAT: mode dst

I aHa I mode I dst 0000
0001

R
IR

OPERATION: dst <- NOT dst

The contents of the destination location are
complemented (ones complement); all one bits
are changed to zero, and vice-versa.

FLAGS: C: Unaffected
Z: Set if result is zero; cleared otherwise
V: Always reset to zero
S: Set if result bit 7 is set; cleared otherwise
H: Unaffected
D: Unaffected

BYTES AND CYCLES:

EXAMPLE:

dst cycles

R,IR 2 6

If working register 8 contains %24 (00100100), the
statemeht

COM R8

will leave the value %DB (11011011) in that
register.

3-13

CP
Compare

CP dst,src

INSTRUCTION

1010 I mode I

1010 Imode I

1010 Imode I

OPERATION:

FORMATS: mode dst src

Idst I src I 0010 r r
001l r Ir

src dst 0100 R R
0101 R IR

dst src 0110 R IM
Olll IR IM

dst - src

The source byte is compared to (subtracted from) the
destination byte, and the appropriate flags set
accordingly. The contents of the destination byte
are unaffected by the comparison.

FLAGS: C: Cleared if there is a carry from the most significant
bit of the result; set otherwise, indicating a borrow

Z: Set if the result is zero; cleared otherwise
V: Set if arithmetic overflow occurred; cleared otherwise
S: Set if the result is negative; cleared otherwise
H: Unaffected
D: Unaffected

BYTES AND CYCLES:

EXAMPLE:

dst src

r r, Ir
other combinations

2
3

cycles

6
10

If the register named TEST contains %63, working
register 0 contains %30 (48 decimal), and register
48 contains %63, the statement

CP TEST, @RO

sets (only) the Z flag. If this statement is
.. followed by "JP EQ, true_routine", the jump
will be taken.

3-14

DA
Decimal Adjust

DA dst

INSTRUCTION FORMAT: mode dst

10100 I mode II L-_d_s_t_--, 0000
0001

R
IR

OPERATION: dst (- DA dst

The destination byte is adjusted to form two 4-bit
BCD digits following an addition or subtraction
operation. For addition (ADD, ADC), or subtraction
(SUB, SBC), the following table indicates the
operation performed:

Instruction Carry Bits 4-7 H Flag Bits 0-3 Number Carry

ADD
ADC

SUB
SBC

Before Value Before Value Added After
DA (Hex) DA (Hex) To Byte DA

0 0-9 0 0-9 00 0
0 0-8 0 A-F 06 0
0 0-9 1 0-3 06 0
0 A-F 0 0-9 60 1
0 9-F 0 A-F 66 1
0 A-F 1 0-3 66 1
1 0-2 0 0-9 60 1
1 0-2 0 A-F 66 1

0 0-9 0 0-9 00 0
0 0-8 1 6-F FA 0
1 7-F 0 0-9 AO 1
1 6-F 1 6-F 9A 1

The operation is undefined if the destination byte
was not the result of a valid addition or subtraction
of BCD digits.

FLAGS: C: Set if there was a carry from the most significant
bit; cleared otherwise (see table above)

Z: Set if the result is zero; cleared otherwise
V: Undefined
S: Set if the result bit 7 is set; cleared otherwise
H: Unaffected
D: Unaffected

3-15

DA
Decimal Adjust

BYTES AND CYCLES:

dst bytes

2

cycles

R,IR 8

EXAMPLE: If addition is performed using the BCD values 15 and
27, the result should be 42. The sum is incorrect,
however, when the binary representations are added in
the destination location using standard binary
arithmetic.

0101
0111

0001
+ 0010

0011 1100 = %3C

The DA statement adjusts this result so that the
correct BCD representation is obtained.

0011 1100
+ 0000 0110

0100 0010 42

3-16

DEC
Decremenj

DEC dst

INSTRUCTION FORMAT: mode dst

10000 Imode II L.. _d_s_t_ 0000
0001

R
IR

OPERATION: dst <- dst-l

FLAGS: C:
Z:
V:

S:
H:
D:

The destination byte's contents are decremented by one

Unaffected
Set if the result is zero; cleared otherwise
Set if arithmetic overflow occurred; cleared
otherwise
Set if the result is negative; cleared otherwise
Unaffected
Unaffected

BYTES AND CYCLES:

dst cycles

R, IR 6

EXAMPLE: If working register 10 contains %2A, the statement

DEC RIO

will leave the value %29 in that register.

3-17

DECW
Decrement Word

DECW dst

INSTRUCTION FORMAT: mode dst

11000 Imode I dst ~ 0000
0001

RR
IR

OPERATION: dst <- dst-l

The contents of the destination location (which must
be an even address) and the byte following that
location are treated as a single l6-bit value which
is decremented by one.

FLAGS: C: Unaffected
Z: Set if the result is zero; cleared, otherwise
V: Set if arithmetic overflow occurred; cleared

otherwise
S: Set if the result is negative; cleared otherwise
H: Unaffected
D: Unaffected

BYTES AND CYCLES:

EXAMPLE:

dst cycles

RR, IR 10

If working register 0 contains %30 (48 decimal) and
registers 48-49 contain the value %FAF3, the
statement

DECW @RO

will leave the value %FAF2 in registers 48 and 49.

3-18

DI
Disable Interrupts

DI

INSTRUCTION FORMAT:

11000 luul
OPERATION: IMR(7) <- 0

FLAGS:

Bit 7 of control register 251 (the Interrupt Mask
Register) is reset to O. All interrupts are
disabled, although they remain potentially enabled.

No flags affected

BYTES AND CYCLES:

EXAMPLE:

cycles

1 6

If control register 251 contains %8A (10001010,
that is, interrupts IRQl and IRQ3 are enabled),
the statement

DI

sets control register 251 to %OA and disables these
interrupts.

3-19

DJNZ
Decrement and Jump if Nonzero

DJNZ r, dst

INSTRUCTION FORMAT: dst

1 r 110 1 a I 1-1 _d_s t_---' 0000
to

1111

RA

OPERATION: r <- r-l

NOTE:

FLAGS:

If r <> 0, PC <- PC+dst

The working register being used as a counter is
decremented. If the contents of the register
are not zero after decrementing, the relative
address is added to the program counter (PC) and
control passes to the statement whose address is
now in the PC. The range of the relative address
is +127, -128, and the original value of the
program counter is taken to be the address of the
instruction byte following the DJNZ statement.
When the working-register counter reaches zero,
control falls through to the statement following
DJNZ.

The DJNZ instruction cannot be used on either I/O
ports or control registers. The result of such an
oppr~tinn iR undefined_

No flags affected

BYTES AND CYCLES:

EXAMPLE:

cycles

2 12 if jump taken
10 if jump not taken

DJNZ is typically used to control a "loop" of
instructions. In this example, 12 bytes are
moved from one buffer area in the register file
to another. The steps involved are:

1. Load 12 into the counter (working register 6)
2. Set up the loop to perform the moves
3. End the loop with DJNZ

3-20

LD R6, #12

LOOP: LD R9,OLDBUF (R6)

LD NEWBUF (R6), R9

DJNZ R6, LOOP

DJ~
Decrement and Jump if Nonz4

! Load Counter!

!Move one byte to!

!New location!

!Decrement and
!Loop until counter

3-21

O!

EI
Enable Interrupts

EI

INSTRUCTION FORMAT:

Iloolllllll
OPERATION: IMR(7) <- 1

FLAGS:

Bit 7 of control register 251 (the Interrupt Mask
Register) is set to 1. This allows any potentially
enabled interrupts to become enabled.

No flags affected

BYTES AND CYCLES:

EXAMPLE:

cycles

1 6

If control register 251 contains %OA (00001010. that
is, interrupts IRQl and IRQ3 potentially enabled) ,
the statement

EI

sets control reqister 251 to %8A (10001010) ann
enables these interrupts.

3-22

INC
Increment

INC dst

INSTRUCTION FORMAT: mode dst

I dstllllOI r

10010 Imode I dst 0000
0001

R
IR

OPERATION: dst <- dst+l

The destination byte's contents are incremented
by one.

FLAGS: C: Unaffected
Z: Set if result is zero: cleared otherwise
V: Set if arithmetic overflow occurred: cleared

otherwise
S: Set if result is negative: cleared otherwise
H: Unaffected
D: Unaffected

BYTES AND CYCLES:

EXAMPLE:

dst

r
R,IR

bytes

1
2

cycles

6
6

If working register 10 contains %2A, the statement

INC R10

will leave the value %2B in that register.

3-23

INCW
Increment Word

INCW dst

INSTRUCTION FORMAT: mode dst

dst 0000
0001

RR
IR

OPERATION: dst <- dst+l

FLAGS: C:
Z:
V:

S:
H:
D:

The contents of the destination location (which
must be an even address) and the byte following
that location are treated as a single 16-bit
value which is incremented by one.

Unaffected
Set if result is zero; cleared otherwise
Set if result is arithmetic overflow; cleared
otherwise
Set if result is negative; cleared otherwise
Unaffected
Unaffected

BYTES AND CYCLES:

EXAMPLE:

dst

RR, IR

bytes

2 10

If working-register pair 0-1 contains the value
%FAF3, the statement

INCW RRO

will leave the value %FAF4 in working-register
pair 0-1.

3-24

IRET
Interrupt Return

IRET

INSTRUCTION FORMAT:

1101111111 1
OPERATION: FLAGS (- @SP

SP (- SP+l
PC (- @SP

FLAGS:

SP (- SP+2
IMR(7) (- 1

This instruction is issued at the end of an interrupt
service routine. It restores the flag register
(control register 252) and the program counter. It
also reenables any interrupts that are potentially
enabled.

All flags are restored to original settings (before
interrupt occurred) •

BYTES AND CYCLES:

bytes

1

cycles

16

3-25

JP
Jump

JP cc ,dst

INSTRUCTION FORMATS:

Conditional cc dst

I cc Illo 1 I 1 ____ d_s_t_--' 0000
to llll

DA

Unconditional

I 001110000 I L-I _d_s_t_ IRR

OPERATION: If cc is true, PC (- dst

FLAGS:

A conditional jump transfers program control
to the designated location if the condition
specified by "cc" is true. See section 3.1
for a list of condition codes.

The unconditional jump simply replaces the
contents of the program counter with the contents
of the specified register pair. Control then
passes to the statement addressed by the program
counter.

No flaas affected

BYTES AND CYCLES:

EXAMPLE:

dst

DA

IRR

bytes

3

2

cycles

12 if jump taken
10 if jump not taken

8

If the carry flag is set, the statement

JP C, %1520

replaces the contents of the program counter with
%1520 and transfers control to that location. Had
the carry flag not been set, control would have
fallen through to the statement following the JP.

3-26

JR
Jump Relative

JR cc ,dst

INSTRUCTION FORMAT: cc dst

cc 110111 1 _d_s_t_ 0000
to

1111

RA

OPERATION: If cc is true, PC <- PC+dst

FLAGS:

If the condition specified by "cc" is true,
the relative address is added to the program
counter and control passes to the statement
whose address is now in the PC. (S~e Section
3.1 for a list of condition codes). The
range of the relative address is +127,-128,
and the original value of the program counter
is taken to be the address of the first
instruction byte following the JR statement.

No flags affected

BYTES AND CYCLES:

EXAMPLES:

cycles

12 if jump taken
10 if jump not taken

If the result of the last arithmetic operation
executed is negative, the following four
statements (which occupy a total of seven bytes)
are skipped with the statement

JR MI, $+9

If the result is not negative, execution continues
with the statement following the JR. A short form
of a jump to label LO is

JR La

where LO must be within the allowed range. The
condition code is "blank" in this case, and JR has
the effect of an unconditional JP instruction.

3-27

LD
Load

LD dst,src

INSTRUCTION FORMATS: mode dst src

I dst Imodel src 1100 r 1M
1000 r R

I sec I mode I I dst 1001 R* r

I mode I DOll I I dst I src 1110 r Ir
lll1 Ir r

11110 Imode I src dst 0100 R R
0101 R IR

11110 Imode I dst src 0110 R 1M
0111 IR 1M

11111101011 I src dst IR R

11100 10111 1 I dst x I src r X

11101 101111 I src x I dst X r

* In this instance only a full register address
can be used.

OPERATION: dst (- src

FLAGS:

BY'rES AND

The data specified or pointed to by the source
operand is loaded into the destination location.

No flags affected

CYCLES:

dst src bytes c;tcles

r Ir,IM,R 2 6
Ir, R r 2 6
r X 3 10
X r 3 10
other combinations 3 10

3-28

EXAMPLE:

LD
Load

If working register 0 contains %OB (11 decimal) and
working register 10 contains %83, the statement

LD 240(RO), RIO

will load the value %83 into register 251 (240 +
11). Since this is the interrupt mask register,
the Load statement has the effect of enabling
IRQO and IRQl. The contents of working register
10 are unaffected by the load.

3-29

LDe
Load Constant

LDC dst,src

INSTRUCTION FORMAT: dst src

11100 10010 I I dst src I
:===:=~ III 0 1 I 00 10 I 1 s_r_c--,-_d_s t 1

r Ir r

Irr r

OPERATION: dst <- src

FLAGS:

This instruction is used to load a byte constant
from program memory into a working register, or
vice-versa. The address of the program-memory
location is specified by a working-register pair.

No flags affected

BYTES AND CYCLES:

EXAMPLE:

cycles

2 12

If the working-register pair 6-7 contains %30A2 and
program-memory location %30A2 contains the value
%22, the statement

LDC R2, @RR6

will load the value %22 into working register 2.
The value of location %30A2 is unchanged by the
load.

3-30

LDCI
Load Constant Autoincrement

LOCI dst,src

INSTRUCTION FORMAT: dst src

1110010011 I I dst srcl
::::==!===! III 0 1 I 00 II I l s_r_c--,-_d_S t.....ll

Ir Irr

Irr Ir

OPERATION: dst <- src
r <- r+l
rr <- rr+l

FLAGS:

This instruction is used for block transfers of
data between program memory and register memory.
The address of the program-memory location is
specified by a working-register pair, and the
address of the register-memory location is
specified by a working-register. The contents
of the source location are loaded into the
destination location. Both addresses are then
incremented automatically.

No flags affected

BYTES ANO CYCLES:

EXAMPLE:

bytes

2

cycles

18

If the working-register pair 6-7 contains %30A2 and
program-memory locations %30A2 and %30A3 contain
%22BC, and if working register 2 contains %20 (32
decimal), the statement

LOCI @R2, @RR6

will load the value %22 into register 32. A second

LOCI @R2, @RR6

will load the value %BC into register 33.

3-31

LDE
Load External Data

LDE dst,src

INSTRUCTION

1100010010 1

11001100101

OPERATION:

FLAGS:

FORMAT: dst src

I dst src 1 r Irr

I src dstl Irr r

dst <- src

This instruction is used to load one byte from
external data memory into a working register or
vice-versa. The address of the external data­
memory location is specified by a working-register
pair.

No flags affected

BYTES AND CYCLES:

EXAMPLE:

bytes

2

cycles

12

If the working-register pair 6-7 contains %404A
and working register 2 contains %22, the statement

LDE @RR6, R2

will load the value %22 into external data-memory
location %404A.

3-32

LDEI
Load External Data Autoincrement

LDEI dst,src

INSTRUCTION FORMAT: dst src

11000 1001l I I dst src I ::=:=:::::::::!
IlOOllOOlll 1 s_r_c l_ds_t 1

Ir Ir r

Irr Ir

OPERATION: dst <- src
r <- r+l
rr <- rr+l

FLAGS:

This instruction is used for block transfers of
data between external data memory and register
memory. The address of the external data-memory
location is specified by a working-register pair,
and the address of the register-memory location
is specified by a working register. The contents
of the source location are loaded into the
destination location. Both addresses are then
incremented automatically.

No flags affected

BYTES AND CYCLES:

EXAMPLE:

bytes

2

cycles

18

If the working register pair 6-7 contains %404A,
working register 2 contains %22 (34 decimal), and
registers 34-35 contain %ABC3, the statement

LDEI @RR6, @R2

will load the value %AB into external data-memory
location %404A. A second

LDEI @RR6,@R2

will load the value %C3 into external location
%4 04B.

3-33

NOP
No Operation

NOP

INSTRUCTION FORMAT:

11111111111
OPERATION: No action is performed by this instruction. It is

typically used for timing delays.

FLAGS: No flags affected

BYTES AND CYCLES:

bytes

1

cycles

6

3-34

OR
Logical Or

OR dst,src

INSTRUC'rION FORMATS: mode dst src

I 0100 I mode II dst I src I 0010 r r
0011 Ir r

10100imodeil src II dst 0100 R R
0101 R IR

10100 Imode II dst II src 0110 R 1M
OlIn R 1M

OPERATION: dst <- dst OR src

The source byte is logically ORed with the
destination location. The OR operation
results in a one bit being stored whenever
either of the bits matched in the two operands
is one.

FLAGS: C: Unaffected
Z: Set if result is zero; cleared otherwise
V: Always reset to zero
S: Set if the result bit 7 is set; cleared otherwise
H: Unaffected
D: Unaffected

BYTES AND CYCLES:

EXAMPLE:

dst src

r r ,Ir
other combinations

2
3

6
10

If the source operand is the immediate value %7B
(01111011) and the register named TARGET contains
%C3 (11000011), the statement

OR TARGET,#%7B

will leave the value %FB (11111011) in register
TARGET.

3-35

POP
Pop

POP dst

INSTRUCTION FORMAT: mode dst

10101imodei dst 0000
0001

R
IR

OPERATION: dst <- @SP
SP <- SP+l

FLAGS:

The contents of the location addressed by the
stack pointer are loaded into the destination
location. The stack pointer is then incremented
automatically.

No flags affected

BYTES AND CYCLES:

EXAlIlPLE:

bytes

2 10

If the stack pointer (control registers 254-255)
contains %1000, external data-memory location %1000
contains %55, and working register 6 contains %22
(34 decimal), the statement

POP @R6

will load the value %55 into register 34. After
the POP operation, the stack pointer will contain
%1001.

3-36

PUSH src

INSTRUCTION

I a llli mode I

OPERATION:

FLAGS:

PUSH

FORMAT: mode src

src 0000 R
0001 IR

SP (- SP-l
@SP (- src

When the PUSH instruction is encountered, the
stack pointer is decremented immediately.
The contents of the source location are then
loaded into the location addressed by the
decremented stack pointer.

No flags affected

Push

BYTES AND CYCLES:

EXAMPLE:

src bytes cycles

R 2 10 (internal stack)
IR 2 12 (internal stack)
R 2 12 (external stack)
IR 2 14 (exte rnal stack)

If the stack pointer contains %1001, the statement

PUSH FLAGS

will store the contents of the register named FLAGS
in location %1000. After the PUSH operation, the
stack pointer will contain %1000.

3-37

ReF
:leset Carry Flag

RCF

INSTRUCTION FORMAT:

11100 11111 I
OPERATION: C <- a

The carry flag is reset to zero, regardless of
its previous content.

FLAGS: C: Reset to zero
No other flags affected

BYTES AND CYCLES:

cycles

1 6

3-38

REl
ReturIl

RET

INSTRUCTION FORMAT:

Ilololuul
OPERATION: PC <- @SP

SP <- SP+2

FLAGS:

This instruction is normally used to return to
the previously executing procedure at the end of
a procedure entered by a CALL statement. The
contents of the location addressed by the stack
pointer are popped into the program counter.
The next statement executed is that addressed by
the new contents of the PC.

No flags affected

BYTES AND CYCLES:

EXAMPLE:

bytes

1

cycles

14

If the program counter contains %35B4, the stack
pointer contains %2000, external data-memory
location %2000 contains %18, and location %2001
contains %B5, then the statement

RET

will leave the value %2002 in the stack pointer
and the program counter will contain %1885, the
address of the next instruction.

3-39

:lL
lotate Left

RL dst

INSTRUCTION FORMAT: mode dst

IlOOllmode I dst 0000
0001

R
IR

OPERATION: C <- dst(7)
dst(O) <- dst(7)
dst(n+l) <- dst(n) n=0-6

The contents of the destination byte are rotated
left one bit position. The initial value of bit 7
is moved to the bit 0 position and also replaces
the carry flag.

FLAGS: C: Set it there is a carry from the most significant
bit (i.e., bit 7 was 1);

Z: Set if the result is zero; cleared otherwise
V: Set if arithmetic overflow occurred; cleared

otherwise
S: Set if the result bit 7 is set; cleared otherwise
H: Unaffected
D: Unaffected

BYTES AND CYCLES:

EXAMPLE:

cycles

2 6

If the contents of the register named SHIFTER are
%88 (10001000), the statement

RL SHIFTER

will leave the value %11 (00010001) in that
register. The carry flag will be set to one.

3-40

RLC
Rotate Left Thl'ough Cal'l'Y

RLC dst

INSTRUCTION FORMAT: mode dst

I ooollmode II L... __ ds_t_....J 0000
0001

R
IR

OPERATION: dst(O) <- C
C <- dst(7)

FLAGS: C:

Z:
V:
S:
H:
D:

dst(n+l) <- dst(n) n=0-6

The contents of the destination byte with the
carry flag are rotated left one bit position.
The initial value of bit 7 replaces the carry
flag; the initial value of the carry flag
replaces bit O.

Set if there is a carry from the most significant
bit (i.e., bit 7 was 1)
Set if the result is zero; cleared otherwise
Set if arithmetic overflow occurred; cleared otherwis
Set if the result bit 7 is set; cleared otherwise
Unaffected
Unaffected

BYTES AND CYCLES:

EXAMPLE:

cycles

6

If the carry flag is reset (=0) and the register
named SHIFTER contains %8F (10001111), the
statement

RLC SHIFTER

will set the carry flag (=1) and SHIFTER will
contain %IE (00011110).

3-41

RR
iotate Right

RR dst

INSTRUCTION FORMAT: mode dst

1110 Imode I dst 0000
0001

R
IR

OPERATION: C <- dst(O)
dst(7) <- dst(O)
dst(n) <- dst(n+l) n=0-6

The contents of the destination byte are rotated
right one bit position. The initial value of bit
o is moved to bit 7 and also replaces the carry
flag.

?LAGS: C: Set if there is a carry from the least significant
bit (i.e., bit 0 was 1)

Z: Set if the result is zero; cleared otherwise
V: Set if arithmetic overflow occurred; cleared otherwise
S: Set if the result bit 7; cleared otherwise
H: Unaffected
D: Unaffected

3YTES AND CYCLES:

~XAMPLE :

cycles

2 6

If the contents of working register 6 are %31
(00110001), the statement

RR R6

will set the carry flag (=1) and leave the value
%98 (10011000) in working register 6. Since bit 7
now equals 1, the sign flag will be set also.

3-42

RRC
Rotate Right Through Carry

RRC dst

INSTRUCTION FORMAT: mode dst

Inoo I mode I dst 0000
0001

R
IR

OPERATION: dst(7) <- C
C <- dst (0)
dst(n) <- dst(n+l) n=0-6

The contents of the destination byte with the
carry flag are rotated right one bit position.
The initial value of bit 0 replaces the carry
flag: the initial value of the carry flag
replaces bit 7.

~_7 ----,°t--I ~.@}J
FLAGS: C: Set if there is a carry from the least significant

bit (Le. I bit 0 was 1)
Z: Set if the result is zero: cleared otherwise
V: Set if arithmetic overflow occurred: cleared otherwis
S: Set if the result bit 7 is set: cleared otherwise
H: Unaffected
D: Unaffected

BYTES AND CYCLES:

EXAMPLE:

cycles

2 6

If the contents of the register named SHIFTER are
%DD (11011101) and the carry flag is reset (=0) I

the statement

RRC SHIFTER

will set the carry flag (=1) and leave the value
%6E (01101110) in the register.

3-43

SBC
iubtract With Carry

SBC dst,src

INSTRUCTION

1001limOdeil

IOOllimOde II
loollimode II
OPERATION:

FORMATS: mode dst src

dst I src 0010 r r
DOll r Ir

src I I dst 0100 R R
0101 R IR

dst I I src 0110 R 1M
DIll IR 1M

dst <- dst-src-C

The source byte, along with the setting of the
carry flag, is subtracted from the destination
byte. The result is stored in the destination
location.

FLAGS: C: Cleared if there is a carry from the most significant
bit of the result; set otherwise, indicating a "borrow"

Z: Set if the result is zero; cleared otherwise
V: Set if arithmetic overflow occurred; reset otherwise
S: Set if the result is negative; cleared otherwise
H: Set if a carry from the low-order nibble occurred
D: Always set to one

BYTES AND CYCLES:

EXAMPLE:

dst src

r r ,Ir
other combinations

2
3

cycles

6
10

If the register named MINUEND contains %16, the
carry flag is set to one, working register 10
contains %20 (32 decimal), and register 32
contains %05, the statement

SBC MINUEND, @RIO

will leave the value %10 in register MINUEND.

3-44

SCI
Set Carry Flas

SCF

INSTRUCTION FORMAT:

IllOIllllll
OPERATION: C <- I

The carry flag is set to one, regardless of its
previous contents.

FLAGS: C: Set to one
No other flags affected

BYTES AND CYCLES:

bytes

I

cycles

6

3-45

SRA
;hift Right Arithmetic

SRA dst

INSTRUCTION FORMAT: mode dst

IllOllmodel dst 0000
0001

R
IR

OPERATION: dst(7) <- dst(7)
C <- dst(O)
dst(n) <~ dst(n+l) n=0-6

An arithmetic shift right one bit position is
performed on the destination byte. Bit 0 replaces
the carry flag. Bit 7 (the.sign bit) is unchanged,
but its value is also carried into bit position 6.

7 o

FLAGS: C: Set if there is a carry from the least significant
bit (Le., bit 0 was 1)

Z: Set if the result is zero; cleared otherwise
V: Always reset to zero
S: Set if the result is negative; cleared otherwise
H: Unaffected
D: Unaffected

BYTES AND CYCLES:

EXAMPLE:

cycles

6

If the register named SHIFTER cont.ains %B8
(10111000), the statement

SRA SHIFTER

will reset the carry flag (=0) and leave the value
%DC (11011100) in register SHIFTER. The sign flag
will be set also (bit 7=1).

3-46

8m
Set Register Point.

SRP src

INSTRUCTION FORMAT:

10011100011 1 __ sr_c_

src

.IM

OPERATION: RP <- src

FLAGS:

The specified value is loaded into bits 4-7
of the register pointer (control register 253).
Bits 0-3 of the register pointer are always
set to zero. The source data (with bits 0-3
forced to zero) is the starting address of a
working-register. The working-register group
starting addresses are:

Hex Decimal

%00 0
%10 16
%20 32
%30 48
%40 64
%50 80
%60 96
%70 112

%FO 240 (control registers)

Values in the range %80-EO are invalid. See
Figure 1-2.

No flags affected

BYTES AND CYCLES:

cycles

6

3-47

SRP
;et Register Pointer

EXAMPLE: Assume the register pointer currently addresses the
control register group and the program has just
entered an interrupt service routine. The
statement

SRP #%70

saves the contents of the control registers by
setting the register pointer to %70 (01110000), or
112 decimal. Any reference to working registers
in the interrupt routine will point to registers
112-127.

3-48

SUE
Subtracj

SUB dst,src

INSTRUCTION FORMATS: mode dst src

I 0010 I mode I I dst I src I 0010 r r
001l r Ir

10010 Imode II src dst 0100 R R
0101 R IR

10010 Imode II dst src 0110 R IM
0111 IR IM

OPERATION: dst (- dst - src

The source byte is subtracted from the destination
byte and the result is held in the destination
location.

FLAGS: C: Cleared if there is a carry from the most significant
bit of the result~ set otherwise, indicating a "borro~

Z: Set if the result is zero~ cleared otherwise
V: Set if arithmetic overflow occurred~ cleared

otherwise
S: Set if the result is less than zero~ cleared

otherwise
H: Set if a carry from the low-order nibble occurred
D: Always set to one

BYTES AND CYCLES:

EXAMPLE:

dst src

r r ,Ir
other combinations

2
3

cycles

6
10

If the register named MINUEND contains %29, the
statement

SUB MINUEND, #%11

will leave the value %18 in the register.

3-49

SWAP
~wap Nibbles

SWAP dst

INSTRUCTION FORMAT: mode dst

Illlli mode I 1 __ ds_t_-, 0000
0001

R
IR

OPERATION: dst(0-3) <-> dst(4-7)

The contents of the lower four bits and upper
four bits of the destination byte are swapped.

7 o
I

C: Undefined
Z: Set if the result is zero: cleared otherwise
V: Undefined
S: Set if the result bit 7 is set: cleared otherwise
H: Unaffected
D: Unaffected

BYTES AND CYCLES:

EXAMPLE:

bytes

2

cycles

8

Suppose the register named BCD Operands contains
%B3 (10110011). The statement-

SWAP BCD_Operands

will leave the value %3B (00111011) in the
reg ister.

TCM dst,src

INSTRUCTION

lalla ImOde I

lalla ImOde I

lalla ImOde I

OPERATION:

TeM
Test Complement Under Mask

FORMATS: mode dst src

I dst I src I 0010 r r
OOll r Ir

src dst 0100 R R
0101 R IR

dst src OllO R IM
Olll IR IM

NOT dst AND src

This instruction tests selected bits in the
destination byte for a log ical "1" val ue. The bits
to be tested are specified by setting a one bit in
the corresponding position of the source byte (mask).
The TCM statement complements the destination byte,
which is then ANDed with the source mask •. The Zero
(Z) flag can then be checked to determine the result.
When the TCM operation is complete, the destination
location still contains its original value.

FLAGS: C: Unaffected
Z: Set if the result is zero; cleared otherwise
V: Always reset to zero
S: Set if the result bit 7 is set; cleared otherwise
H: Unaffected
D: Unaffected

BYTES AND CYCLES:

dst src

r r ,Ir
other combinations

3-51

2
3

cycles

6
10

TeM
Test Complement Under Mask

EXAMPLE: If the register named TESTER contains %F6
(11110110) and the register named MASK contains
%06 (00000110), that is, bits 1 and 2 are being
tested for a one value, the statement

TCM TESTER, MASK

will complement TESTER (to 00001001) and then do a
logical AND with register MASK, resulting in %00.
A subsequent test of the Z flag,

JP Z,plabel

will cause a transfer of program control. At the
end of this sequence, TESTER still contains %F6.

3-52

TM dst,src

INSTRUCTION

I Olllimode I
I Olllimode I
I Olllimode I
OPERATION:

TM
Test Under Mask

FORMATS: mode dst src

I dst I src I 0010 r r
DOll r Ir

src dst 0100 R R
0101 R IR

dst src 0110 R 1M
0111 IR 1M

dst AND src

This instruction tests selected bits in the
destination byte for a logical "0" value. The bits
to be tested are specified by setting a one bit in
the corresponding position of the source byte (mask),
which is ANDed with the destination byte. The Z
(zero) flag can be checked to determine the result.
When the TM operation is complete, the destination
location still contains its original value.

FLAGS: C: Unaffected
Z: Set if the result is zero; cleared otherwise
V: Always reset to zero
S: Set if the result bit 7 is set; cleared otherwise
H: Una ffected
D: Unaffected

BY'I'ES AND CYCLES:

dst src

r r, Ir
other combinations

3-53

2
3

6
10

TM
Test Under Mask

EXAMPLE: If the register named TESTER contains %F6
(11110110) and the register named MASK contains
%06 (00000110), that is, bits 1 and 2 are being
tested for a zero value, the statement

TM TESTER, MASK

will result in the value %06 (00000110). A
subsequent test for nonzero

JP NZ, p1abe1

will cause a transfer of program control. At the
end of this sequence, TESTER still contains %F6.

3-54

XOR dst,src

INSTRUCTION

II011l mode l

II011l mode I

110 11lmode I

OPERATION:

FLAGS: C:
Z:
V:
S:
H:
D:

XOR
Logical Exclusive Or

FORMATS: mode dst

I dst I src I 0010 r
0011 r

src dst 0100 R
0101 R

dst src 0110 R
0111 IR

dst (- dst XOR src

The source byte is logically EXCLUSIVE ORed
with the destination byte and the result
stored in the destination location. The
EXCLUSIVE OR operation results in a one bit
being stored whenever the two bits matched
in the operands are different.

Unaffected
Set if the result is zero; cleared otherwise
Always reset to zero

src

r
Ir

R
IR

1M
1M

Set if the result bit 7 is set; cleared otherwise
Unaffected
Unaffected

BYTES AND CYCLES:

EXAMPLE:

dst src

r r ,Ir
other combinations

2
3

cycles

6
10

If the source operand is the immediate value %7B
(01111011) and the register named TARGET contains
%C3 (11000011), the statement

XOR TARGET, *%7B

will leave the value %B8 (10111000) in the
reg ister.

3-55

4.1 Introduction

Section 4
Structuring A Z8 Program

This section introduces the high-level PLZ/ASM statements
described in Section 5. The structuring of programs and the
concepts of module linkage and relocation are discussed.

4.2 Program Structure

4.2.1 Modules

A Z8 PLZ/ASM program consists of one or more separately-coded and
assembled modules. These modules are combined into an executable
program using the module linkage and relocation facilities of an
operating system such as Z80 RIO. One of the modules should
include a main program; that is, a GLOBAL procedure whose name is
supplied to the linking facility as the program's entry point.

PLZ/ASM modules are made up of high-level and assembly-
language statements that either declare or define data or perform
some action. The assembly-language statements described in
Section 3 are action statements. In general, data definition
equates an identifier with a fixed value or type, whereas data
declaration equates an identifier with a variable and associates
a type with it.

Data, labels, or procedures can be shared between modules by
declaring them to be GLOBAL in one module and declaring them as
EXTERNAL in other modules that reference them. Data, labels, or
procedures declared as INTERNAL to a module may be referenced
only within that module. See Section 4.2.5 for more explanation
of the scope of these objects.

The following example is the skeleton of a module showing two
procedures, the second of which is a main program.

4-1

bubble sort MODULE

CONSTANT
fal se : = 0
true : = 1

EXTERNAL
list ARRAY [10 WORD]
limit BYTE

INTERNAL
sort

PROCEDURE

END sort

GLOBAL
main

PROCEDURE
ENTRY

LD 1 im it, #9
CALL sort
RET

END main

END bubble sort

4.2.2 Procedures

!Constant definition!

!External variables!
!Declared in another module!

!First procedure!
!Procedure name!

!End first procedure!

!Second procedure!

! End seC'ond proced ure!

I End of module!

A procedure declaration defines an executable portion of a module
(including both action and data statements). It also associates
an identifier with that block of code so that it can be activated
by the assembly-language CALL statement. (See the CALL sort
statement in the preceding example).

Every procedure declaration also has a scope associated with it.
It can be:

• GLOBAL (the procedure can be called from other
modules) ;

• INTERNAL (it can be called only within the
current module);

• EXTERNAL (it is called from the current module,
but is declared as GLOBAL in another module) .

4-2

A procedure declaration can include LOCAL variables or label
declarations as shown in the following example. LOCAL variables
and labels can be referenced only within the procedure in which
they are declared.

INTERNAL
sort

PROCEDURE
LOCAL

i, j BYTE
switch BYTE

ENTRY
DO

OD
END sort

!Procedure scope!
!Procedure name!

! i, j, and switch are!
!local variables!

!DO loop introduced!

! (action statements) !

! End DO loop!
!End of procedure!

Note in this example that the keyword ENTRY is used to separate
the declarations of LOCAL variables from the executable action
statements making up the body of the procedure. The example also
carries the previous bubble-sort module example to the first
inner level of detail--the procedure. At the same time it
introduces another program structuring element--the DO loop.

4.2.3 DO Loops

The description of the DJNZ instruction in Section 3 pointed out
that it is used primarily for loop control. DO loops perform a
similar function, but in a more structured, high-level manner.
The statements between the keywords DO and OD are executed
repeatedly until control is diverted through a loop control
statement (REPEAT, EXIT, or one of the assembly-language branch
statements). The EXIT statement causes execution to continue at
the first statement following the innermost DO loop containing
the EXIT, while the REPEAT statement causes execution to continue
at the first statement of the innermost DO loop containing the
REPEAT. --

A DO statement does not introduce a new scope. It contains only
action statements.

4-3

The following example enlarges upon the original bubble sort
skeleton and also introduces the IF statement.

SRP #%10
DO

LD switch, #false
CLR i
DO

CP i, limit
IF UGE THEN EXIT FI

INC i
OD

CPS switch, #false
IF • • . FI
OD

fUse reg. set %10 - %IF!

!Note nested DO loop!

!IF statement at inner level!

!End nested DO loopl

!IF statement at outer level!
!End DO loop!

Note in this example that DO loops can contain IF statements or
other DO loops. IF statements can also have DO loops or other IF
statements nested within them.

4.2.4 IF Statements

The general form of the IF statement is:

IF condition-code THEN actionl
ELSE action2

FI

The IF statement specifies that all statements between THEN and
ELSE (actionl) be executed if the condition specified is true.
Otherwise, the statements between ELSE and FI (action2) are
executed. The ELSE clause can be omitted, in which case no
action is performed when the specified condition is false. Like
the DO loop, the IF statement contains only executable
statements.

The condition codes specified are the same as for the
assembly-language JP and JR instructions (Section 3.2). As in
the case of DO loops versus the DJNZ instruction, one can set up
conditional statements using only assembly-language instructions,
but the high-level IF statement may lead to a more structured
program.

4-4

The following example shows a brief IF statement followed by a
longer one.

IF UGE THEN EXIT FI

IF UGT THEN
LD switch, lttrue
LD 1 ist (R2) , R6
LD list(R2), R4
LD 1 ist+l (R2) , R7
LD list(R3), R4
LD list+l (R3) , R5

FI

4.2.5 Scope

The scope of a variable, label, or procedure, refers to that
portion of the program in which the object is recognized and
handled in keeping with its declaration. When declaring an
object for use solely within the current module or procedure, its
use elsewhere is of no concern. Even though the same identifier
is used in another scope, it refers to a different object.

In general, a scope can be an entire executable program, a
module, or a procedure. An identifier is accessible in a scope S
if it is either

• Declared in S or in the module containing
S, or

• Declared EXTERNAL in the module containing S.

New identifiers are declared by their appearance in a variable,
procedure, constant, or type declaration, or by their use as a
label within the module. If a label identifier is not declared
explicitly, it is assumed to have an INTERNAL scope and thus is
accessible throughout the module in which it is defined. The
scope of a label identifier can be explicitly declared to be
either GLOBAL, INTERNAL, or LOCAL. In addition, a special form
of statement labels is discussed in Section 5.3.5, which always
have a LOCAL scope and therefore cannot be declared explicitly.

New identifiers introduced in a variable, procedure, or label
declaration are accessible only within the newly-established
scope as determined from the declaration class specified-GLOBAL,
EXTERNAL, INTERNAL or LOCAL. A new identifier cannot be the same
as an identifier already accessible in the current scope.

4-5

For variable and label declarations, GLOBAL specifies that the
variable is declared in the current module but can be used in
other modules. GLOBAL variables have a scope of the entire
executable program. EXTERNAL specifies that the variable is used
in the current module but declared as GLOBAL in another module.
INTERNAL specifies that the variable is declared in the current
module and is accessible only within the current module. LOCAL
specifies that the variable can be accessed only inside the
procedure in which it is declared. GLOBAL, EXTERNAL, and
INTERNAL can only be specified at the module level; LOCAL can
only be used at the procedure level.

For variables declared with type RECORD, the scope of a record
field is the module or procedure in which it is defined. Note
that this implies that record fields must have names that are
unique within their scope.

Procedure declarations must be either GLOBAL, EXTERNAL, or
INTERNAL, as defined for variables above. The name given to the
procedure as part of the procedure declaration is recognized in
the entire scope of the enclosing module.

Constant identifiers are defined using the CONSTANT class, and
can be defined only at the module level. The scope of a constant
identifier is the module scope, and it cannot be used outside the
module unless it is redefined.

Type identifiers are defined using the TYPE class. They can be
defined only at the module level and are recognized only within
the scope of the module.

An identifier used in a scope and not declared in that scope is
said to be free in that scope. Any identifier that is free in
the scope of a procedure must be declared in the enclosing
module. Procedures do not explicitly import variables into their
scope as modules do (via the EXTERNAL declaration) •

4.2.6 Summary

The preceding sections were intended only as an introduction to
program structuring. The detailed formats of the declarations
used to define the program structure are listed in Section 5.
Even without those details, however, the following module should
be comprehensible at this point. If any statement looks foreign,
reread the part of Section 3 or 4 that explains its operation,
with the exception of data types and their declarations which are
explained in Section 5.3.

4-6

An example of a complete bubble sort module for sorting a IO-word
array is as follows:

bubble sort MODULE

CONSTANT
false := 0
tr ue : = 1

EXTERNAL
list ARRAY [10 WORD]
limi t BYTE

!Module declaration!

!Constant declarations!

INTERNAL !Procedure declaration!
sort

PROCEDURE
LOCAL

i, j BYTE
switch BYTE

ENTRY
SRP fl:%10
DO

LD switch, tfalse
CLR i
DO

CP i, limit
IF UGE THEN EXIT FI
LD j, i
INC j
LD R2, i
ADD R2, R2
LD R4, list (R2)
LD R5, list+I(R2)
LD R3, j
ADD R3, R3
LD R 6 , lis t (R 3)
LD R7, list+I(R3)
CP R4, R6
IF EQ THEN CP R5, R7 FI
IF UGT THEN

FI

LD switch, ttrue
LD list(R2), R6
LD list+I(R2), R7
LD list(R3), R4
LD list+l(R3), R5

INC i
00
CP switch, tfalse
IF EQ THEN RET FI

00
END sort

4-7

!Local variable declaration~
!Pointers to array words!
!Loop control switch!
!Begin executable part!
!Use reg. set %10 - %IF!

!Initialize switch!
!Clear array Pointer!

! Done?!

!Initialize pointer j!
!j = i+l!
!IF list[i] > list [j]!
!Double for word index!
!Load array words!

!Compare words!

!Exchange to bubble largest
!number to top of array!

!End nested DO loop!
!Test switch!

!End outer DO loop!
!End of procedure!

GLOBAL
main

PROCEDURE
ENTRY

LD limit, #9
CALL sort
RET

END main
END bubble sort

4.3 Re1ocatabi1ity

!New procedure declaration!
!Program entry procedure!

!No LOCALS!
!Initialize loop control!
!Call sort procedure!

!End of main procedure!
!End of module!

The Z8 PLZ/ASM assembler produces relocatable object modules.
Essentially, this frees the programmer from memory management
concerns during program development (since object code can be
relocated in memory) and also allows programs to be developed in
nodules whose addresses are resolved automatically when the
nodules are linked.

~odular program development offers numerous advantages to the
jeveloper. Complex programs can be divided into several smaller
tasks and assigned to a development team, should schedule
:onstraints require quick completion. An entire program need not
Je delayed while one module is awaiting development, since
nodules can be separately tested and assembled. A change
~ffecting a single module will not have a ripple effect through
:he entire program and will require reassembly of the affected
nodule only. In short, several simple programs are generally
~asier to write, test, and debug than one large, complex program.

rhe relocatability feature of the Z8 assembler is supported by
:he $ABS, $REL, and $SECTION assembler directives. These
lirectives determine whether programs are assembled in
~elocatable mode or not, and where data and action statements are
:0 be loaded into memory. An operating system program called a
.inker relocates object modules and resolves intermodule
:eferences.

rhese assembler directives are summarized below. Other
lirectives are listed in Appendix C.

1.3.1 Sections

[n addition to the logical structuring provided by modules and
)rocedures, it is possible to divide a program into sections
Ihich can be mapped into various areas of memory when the program
.s linked or loaded for execution. For example, the programmer
:an choose to group a set of data structures and the procedures
iliich manipulate them together in the same module. But it can

4-8

also be desirable to physically separate the object code for the
procedures from the data in a system where read-only memory is
used for the procedures and read/write memory is used for the
data.

The assembler allows a program to be arbitrarily divided into
named sections. Each section must be allocated to either the
PROGRAM, DATA, or REGISTER address space. A single module can
contain several sections, each of which is allocated to a
different area in memory. Alternatively, the portions of a
single section can be spread through several modules and the
portions will be automatically combined into a single area by the
linker. Sections provide the programmer with complete control
over the mapping of a program into the address spaces of the 28
processor.

Usually the full generality of arbitrary sections is not needed
for a particular application. To simplify the programmer's job
and to allow labels to be declared without conflicts, the
assembly source code, by default, is sectioned into three areas:

• The PROGRAM section for program memory;

• The REGISTER section for register memory;

• The DATA section for external data memory.

The assembler maps all variable declaration into the register
section and all procedure declarations into the program section.
The $SECTION assembler directive can be used to override this
default, however, and cause the code following it to be mapped
into the memory area it designates. It has the format

$SECTION area

where area is either PROGRAM, REGISTER, or DATA.

The $SECTION assembler directive can also indicate user-defined
sections. This directive causes the code following it to be
associated with a symbolic identifier and to be mapped into one
of the memory areas. It has the format

$SECTION identifier area

To return to the default memory mapping scheme, use the $SDEFAULT
assembler directive.

NOTE: REGISTER memory cannot be initialized. This means that if
default memory allocation is used, initial values cannot
be provided as part of variable declarations (see Section

4-9

5.3.4). This also means that action statements cannot
appear in the register SECTION.

Regardless of how many times the $SECTION directive is
specified, the assembler produces one contiguous module
consisting of the number of user defined sections, and
possibly the three default sections (PROGRAM, REGISTER,
DATA) as well. The linker program then combines similar
sections from different modules and relocates them
according to their respective sections. The linker will
generate an error if two sections of the same name do not
associate with the same memory space.

4.3.2 Location Counter Control

The assembler keeps track of the location of the current
statement with a location counter, just as an executing program
does with its program counter. There is a location counter
associated with each section in a program. The counter value
represents a 16-bit offset that the current section. The offset
can be either an absolute value, or it can represent a
relocatable value which can be adjusted depending on where the
module's portion of the section is finally allocated at link or
load time. Relocatable and absolute portions of a section can be
specified in the same module or program.

If the $ABS assembler directive has been specified, the location
counter reflects the absolute location of the current statement;
if $REL has been specified, the counter reflects the relocatable
offset of the statement. If neither is specified, the counter
defaults to relocatable offset 0 at the beginning of a module.
The location counter symbol, $, may be used in any expression,
and represents the address of the first byte of the current
instruction.

For the majority of programming tasks, one need not specify
either $ABS or $REL in the source program. Program location can
be carried out more appropriately at link time or load time. If
one desires complete control over program location at assembly
time, however, the $ABS directive will force that part of the
program to reside at a specific location.

4.3.3 Modes of Arithmetic Expressions

All arithmetic expressions have one of three modes associated
with them: absolute, relocatable, or external.

4-10

An absolute expression consists of one or more constants,
constant identifiers, or absolute labels combined with arithmetic
or logical operators. The difference between two relocatable
expressions is also considered to be absolute.

JP IRQ VECTOR

ADD Rl, tK*3

!Where IRQ VECTOR is an absolute
label! -

!Where K is a constant identifier!

A relocatable expression is exactly one identifier subject to
relocation after assembly. The expression can be extended by
adding or subtracting an absolute expression. Plus and minus are
the only operators allowed, however.

JP Z, LOOP+2 !Where LOOP is a relocatable
label!

An external expression is exactly one external identifier,
possibly extended by adding or subtracting an absolute
expression. An external identifier is used in the current module
but defined in another module (Section 4.2.5). The value of an
external identifier is not known until the modules are linked.

LD Tl, timer count !External if timer count was
defined outside current module!

In the following summary, "AB" stands for an absolute value or
expression, "RE" stands for a relocatable value or expression,
and "EX" is an external identifier or expression. "operator" is
one of the standard arithmetic or logical operators (+, - *,
LOR, LAND, etc.).

"AB" is defined as one of the following:

• an absolute identifier
• AB "operator" AB
• +AB, -AB, or LNOT AB
• RE - RE

"RE" is defined as one of the following:

• a relocatable identifier
• RE + AB
• AB + RE
• RE - AB
• +RE

4-11

"EX" is defined as one of the following:

• an external identifier
• EX + AB
• AB + EX
• EX - AB
• +EX

:ertain mode combinations are not permitted in PLZ/ASM. For
~xample, a relocatable expression that does not result in simple
relocation is invalid. Simple relocation means that only a
;ingle relocation factor need be added to a relocatable value
Nhen the assembled program is relocated.

JP Z, LOOPI + 8

JP Z, LOOPI + LOOP2

!VALID relocation factor is
added only once!

!INVALID -- relocation factor
would have to be added twice!

[n general, the second example would be invalid no matter which
irithmetic or logical operator was used to combine LOOPI and
.OOP2. The one exception is subtraction. Suppose LOOP2 is the
.abel of the first statement following a procedure named LOOPI.
fue statement

LD R5, #(LOOP2 - LOOPl)

:ould be used to find the length of the LOOPI procedure. The
lifference between two relocatable labels that must be in the
;ame section is always absolute, regardless of where the module
s relocated.

~her invalid mode combinations are:

• A relocatable expression multiplied or divided
by an absolute expression:

JP Z, LOOPl*4 !INVALID!

• A relocatable expression subtracted from an
absolute expression (although the reverse is
allowed):

DJNZ R5, LOOPI - 8
DJNZ R5, 8 - LOOPI

!VALID!
!INVALID!

• An external expression combined with a relocatable
expression, and vice-versa:

ADD R6, EXTERNAL NUMB + LOOPI
JP Z, LOOPI - EXTERNAL NUMB

4-12

!INVALID!
!INVALID!

Section 5
PLZ/ ASM High-Level Statements

5.1 Z8 Source Program Statements

The majority of code in a Z8 PLZ/ASM program will normally be the
assembly-language instructions described in Section 3.
Typically, the source program will also include some high-level
statements and assembler directives.

High-level statements perform two basic functions:

• They introduce program structures (modules,
procedures, DO loops, and IF statements);

• They declare and define data.

Assembler directives control the mode of assembly (absolute or
relocatable), determine where object code is to be stored in
memory, and specify the form of assembler output. These
directives are embedded in the source program and are always
preceded by a dollar sign ($) (see Appendix C) •

In the descriptions of high-level statements in this section the
following notational conventions are used:

• Keywords are shown as all capital letters: MODULE

• Parameters shown in lowercase letters represent
items to be replaced by actual data or names:
module identifier

• Optional items are enclosed in square brackets:
[local_declaration]

• Possible repetition of an item is indicated by
appending a + (to signify one or more repetitions)
or an * (to signify zero or more repetitions) to the
item: declaration*

• Other special characters shown in statement and command
formats such as :=, (), and [] will be enclosed in
single quotes and must be written as shown. The
special symbol := means "is defined as" or "is
assigned".

5-1

For example:

CONSTANT
constant identifier' :=' constant_expression

RECORD '[' identifier+ type ']'

5.2 Program Structuring Statements

5.2.1 Module Declaration

A Z8 PLZ/ASM program module consists of a sequence of data and
procedure declarations. These declarations are bounded by the
module declaration statement and the end-of-module statement.
The format of a module declaration is:

where

Example:

module identifier MODULE
declaration*

END module identifier

module identifier

declaration

sine_computation MODULE

END sine_computation

5.2.2 Procedure Declaration

conforms to the rules for
identifiers (Section 2.2.1).

is a data or procedure
declaration (Sections 5.2.2
and 5. 3) •

A procedure declaration defines an executable part of a program
and associates an identifier with it so that it can be activated
by the assembly-language CALL statement.

The procedure heading specifies the identifier naming the
procedure. This identifier labels the first instruction in the
procedure, and can be used as any other program label. The scope
of the procedure identifier can be either GLOBAL, INTERNAL, or
EXTERNAL. If the procedure is declared EXTERNAL, then only the
procedure identifier is given, since the actual definition of the
procedure occurs in some other module. A procedure declaration
can also include local variable declarations. These variables

5-2

are recognized only within the procedure in which they are
declared.

The format of the procedure declaration is:

where

procedure identifier PROCEDURE
[LOCAL -

[variable identifier+ type]*]*
[ENTRY -

action statement*]
END procedure_identifier

identifier

type

action statement

conforms to the rules for
identifiers (Section 2.2.1).

is BYTE, SHORT INTEGER, INTEGER,
WORD, LONG, LONG INTEGER, LABEL,
ARRAY, RECORD or-a user defined
type (Sections 5.3.2 through 5.3.4).

is an assembly-language, DO, IF,
REPEAT, or EXIT statement.

The keyword ENTRY is used to separate the local variable
declarations from the executable part of the procedure, and must
be used whenever any action statements are specified.

Example:

EXTERNAL
print PROCEDURE

GLOBAL
suml BYTE

add routine PROCEDURE
LOCAL

sum BYTE
ENTRY

LD sum, addend
ADD sum, augend
SUB suml, sum
CALL print
RET

END add routine

Note that the RET instruction precedes the END statement. If RET
is not present, control will fall through to the statement
following the END statement, although future versions of the
assembler will not necessarily support this.

5-3

5.2.3 DO Statement

DO loops provide a framework for performing actions repetitively.
The statements between the DO and 00 keywords are executed
repeatedly until control is diverted through a loop control
statement.

The only way the execution flow of a DO loop can be diverted is
by encountering an assembly-language branch instruction (DJNZ,
JP, JR, CALL, CALR, RET, or IRET) or an EXIT or REPEAT statement
(descr ibed below) .

The format of the DO loop is:

where

[labell*
DO

action statement*
00

label

action statement

conforms to the rules for labels
(Sections 2.2.1 and 5.3.5) and is
used to identify the DO block for
use with multilevel EXIT and
REPEAT statements.

is an assembly-language, DO, IF,
REPEAT, or EXIT statement.

rhe assembler automatically inserts a single unconditional jump
instruction at the 00 keyword which branches back to the DO
<eyword. Either a JR or JP is generated depending on the range
)f the loop; JR is used whenever possible.

rhe EXIT statement causes execution to continue at the first
3tatement~ollowing the innermost 00 ••• 00 block containing the
~XIT. The EXIT statement may be further qualified by a label
lndicating a specific 00 .•. 00 block from which to exit. Its
Eormat is:

EXIT [FROM labell

... here
label conforms to the rules for labels

(Sections 2.2.1 and 5.3.5).

5-4

The assembler automatically inserts a single unconditional jump
to the instruction following the indicated 00 keyword. Either a
JR or JP is generated depending on the range of the EXIT, with a
JR used whenever possible.

The REPEAT statement causes execution to continue at the first
statement of the innermost 00 •.• 00 block containing the REPEAT.
It can also be qualified by a label indicating a specific 00 •.. 00
block to which execution is to proceed. Its format is:

REPEAT [FROM label]

where
label conforms to the rules for labels

(Sections 2.2.1 and 5.3.5).

The assembler automatically inserts a single unconditional jump
instruction at the REPEAT statement which branches to the
indicated DO keyword. Either a JR or JP is generated depending
on the range of the REPEAT, with a JR used whenever possible.

Example:

LOOP1: DO

00

ADD RO, @Rl
INC R5
CP R5, 'limitl
IF EQ THEN EXIT FI
DO

ADD R2, @R3
INC R6
CP R6, tlimit2
IF GT THEN REPEAT FROM LOOPl FI

00

5.2.4 IF Statement

The IF statement specifies that the statements between the
keywords THEN and ELSE (or between THEN and FI if the ELSE clause
is omitted) are to be executed if the specified condition code is
true. If the condition is false and the ELSE clause is present,
the statements between ELSE and FI are executed. If the
condition is false and the ELSE clause is omitted, execution
continues with the statement following Fl.

The format of the IF statement is:

5-5

where

IF condition code
THEN actionl statement*

[ELSE action2-statement*]
FI -

condition code

actionl statement

action2 statement

is F, Z, NZ, C, NC, PL, MI, EQ,
NE, OV, NOV, PE, PO, LE, LT,
GT, GE, ULE, ULT, UGT, or
UGE (Section 3.2.1).

is performed if condition code
is true and consists of zero
or more assembly-language, DO,
IF, REPEAT, or EXIT statements
or a combination of these
statements.

is performed if condition code
is false and consists of zero
or more assembly-language,
DO, IF, REPEAT, or EXIT
statements or a combination of
these statements.

The assembler automatically inserts a single conditional jump
instruction just before the THEN keyword, which branches to
either the ELSE clause, if present, or to the FI keyword if not.
The conditional jump has an opposite sense from the condition
code given; for instance, "IF OV THEN" generates a "JP NOV"
instruction. The opposing condition pairs are: Z-NZ, C-NC,
PL-MI, EQ-NE, OV-NOV, PE-PO, LE-GT, LT-GE, ULE-UGT, and ULT-UGE.
If the ELSE clause is present, a single unconditional jump is
inserted just before the ELSE clause which branches to the FI
keyword.

For each of the jump instructions, either a JR or JP is generated
depending on the range of the IF statement, with a JR used
whenever possible.

Example:

IF NZ THEN
LD counter, *1

FI

IF GT
THEN SCF RET
ELSE RCF RET

FI

5-6

5.2.5 IF-CASE Statement

The IF-CASE statement is an extension of the IF statement. It
allows the user to select from a series of actions depending on
the contents of a selector register. The case whose list
contains a match with the contents of the selector register is
performed. An ELSE clause can be used to specify alternative
statements to be executed if no match occurs. If no ELSE is
specified and no match occurs, the statement following the FI
keyword is executed next.

The IF-CASE statement has the format:

where

IF selector register
(CASE- expression+ THEN action statement*]+
(ELSE action_statement*]

FI

selector register

expression

action statement

is the designator for a
register (Section 2.4.2).

is any expression which is valid
as an operand in a Compare
instruction.

is an assembly language, DO, IF,
REPEAT, or EXIT statement.

The assembler automatically inserts a Compare instruction and a
conditional jump for each list element. For the last expression
in a CASE clause, a "jump NE" to the next CASE is generated (or
to the ELSE clause, if present, or if not present, to the FI
keyword for the last CASE). Either a JR or JP instruction is
used depending on the range of the CASE clause, with a JR used
whenever possible. When there is more than one expression in a
single CASE clause, all but the last expression generate a "JR
EQ" to the start of the action statements associated with the
CASE clause. Therefore, the number and size of expressions for a
single CASE clause must not exceed the range of the first JR
instruction for that clause.

Example:

IF R5

FI

CASE iI, R4 THEN CALL control 1
CASE i2, @R3 THEN CALL control gt 1
ELSE CALL control_gt_4 - -

5-7

5.2.6 Jump Optimization

\11 jumps produced by PLZ/ASM high level control structures are
)ptimized whenever possible. Jump optimization is explicitly
)rovided to the user via a JPR control instruction. The Jump
~elative optimization (JPR) control instruction has the following
:orm:

JPR [ccl <jpr_expr>

cc is any condition code that can be
used with a JP or JR instruction.

is a simple expression.

, jump relative optimization «jpr expr» expression is a
"elocatable expression containing exactly one relocatable value
<label» and has the following form:

rhere:

:xample:

<label> [('+'1'-') <const_expr>l

<const_expr>

<label>

Ll: LD RO, Rl
or

Ll PROCEDURE
ENTRY

END Ll

is a constant expression as defined
in Section 2.3.2.

is a procedure name or program
statement label.

'he destination of a JPR must be a program label with an optional
on stant added or subtracted to/from it. However, one particular
orm of <label> + <const expr> cannot be optimized. This form is
est explained by the following example:

5-8

Ll: JPR L2-300

L3: JPR L99

L2:

If L2-Ll is less than 300 bytes, the JPR at Ll is actually a
backward jump. The destination becomes further away if the JPR
at L3 is optimized. This case is very expensive to handle and is
rare enough not be be optimized.

JPRs are optimized upon the occurrence of one of the following
source conditions. If the target label has not occurred before
such a source condition, the JPR will produce a jump.

Source Conditions:

• A $ABS or $REL directive.

• Certain constant expressions cause jump optimization.
If a constant expression contains the difference between
two relocatable values «label> - <label» and if there is
a JPR that lies between the two labels, then jump
optimization will occur.

There are three conditions that must be met for Jump Relative
optimization (JPR) to produce a Jump Relative.

• The JPR and its destination must be in the same section.

• The jump and its target label must be in the same module.

• The target label has to be in the same addressing mode
(absolute or relocatable) as the jump. These addresses canr
have mixed modes.

5.3 Defining Data

Data (constants and variables) must be defined or declared so
that it can be referenced accordingly. In general, data
definition associates an identifier with a fixed value or type.
Data declaration introduces an identifier as the name of a
variable and associates a scope and type with it. The following
three statements are used to define and declare data:

5-9

• The constant-definition statement (CONSTANT), that
associates a constant identifier with a fixed value;

• The type-definition statement (TYPE), that associates
a type identifier with a fixed type;

• The variable declaration that associates a variable
identifier with a scope, type, and (optionally) an
ini tia1 val ue.

Constant identifiers are assumed to have INTERNAL scope.
Constants have no explicit type and are represented as 32-bit
val ues.

Type identifiers appearing in type-definitions are assumed to
have INTERNAL scope. No scope or initial value can be specified
in type-definition statements. They are used primarily to
categorize data or provide a template for structured data.

The variable declaration allows a variable identifier to be
associated with any specific scope, type, or initial value
(within the limits of the variable's scope).

5.3.1 Constant Definition

A constant definition associates an identifier with a constant
expression. Since this value must be determinable at assembly
time, any identifier appearing in the expression must be
previously defined.

Constant identifiers have no explicit type and are always
represented as 32-bit values. Constants are defined at the
module level, and therefore have a scope of the module in which
they are defined (INTERNAL). Constants to be used in other
modules must be redefined in those modules.

The format of the constant-definition statement is:

where

CONSTANT
[constant_identifier ':=' constant_expression]*

constant identifier

constant_expression

conforms to the rules for
identifiers (Section 2.2.1).

conforms to the rules for
constant expressions (Section
2.3.2).

5-10

Example:

CONSTANT
minus
count
NEG COUNT
A SYMB
MODULUS

5.3.2 Data Types

:= -1
:= 10
:= minus*count
: = 'A'
:= 256

Data types are associated with variables either to indicate the
size of the values the variables can represent or to identify a
name as a label. Simple data types indicate whether a variable
can hold an 8-bit or a 16-bit value; structured data types
provide a template of storage for collections of simple
variables. The label type is used to declare the scope of labels
explicitly. -----

Data types can be directly associated with variable identifiers
in variable declarations (Section 5.3.4), or they may be
associated with variables indirectly using a user-defined type
identifier to specify the type. The latter is an identifier that
has been previously associated with a type in a TYPE statement
(Section 5.3.3). In the following example, the variable CHAR is
associated with the simple type BYTE, allowing CHAR to be used as
a type identifier in subsequent type definitions:

TYPE
CHAR BYTE
letter CHAR
digit CHAR

Simple Types. The basic data type is either a standard simple
data type or a simple data type defined by the user in a type
definition (like CHAR in the example just given). The standard
data types are:

SHORT INTEGER or BYTE

INTEGER or WORD

An 8-bit quantity whose value
can be signed (-128 to +127)
or unsigned (0 to 255). This
value may also represent a
single character from the
ASCII character set.

A 16-bit quantity whose value
can be signed (-32768 to
+32767) or unsigned (0 to
65535) •

5-11

The values of simple variables (variables defined with simple
types) are interpreted as signed or unsigned depending on their
use in assembly-language instructions.

TYPE
CHAR BYTE
small value BYTE
large-value INTEGER
letter CHAR

Structured Types. Structured types are defined by indicating the
structuring method to be used and the types of all elements
within the selected structure. Two structuring methods are
available: ARRAY and RECORD.

Note that if an array or record has not been previously defined
in a program, only the array or record name can be used in an
instruction. Array subscripting and record field accessing are
not allowed unless the array or record has been previously
defined.

Array Structures. An array structure is a collection of variable
elements, each of which has the same type. When referenced, the
identifier associated with the ARRAY type refers to the entire
array structure. Arrays with N elements are indexed from 0 to
N-l; for example, a lO-element array has index 0 as the first
element and index 9 as the last element.

Individual elements within an array can be accessed in several
different ways. A particular element's address can be calculated
at run time, for instance, by specifying an indexed address mode.
At assembly time, a particular element's address can be specified
by an expression containing the array identifier and a fixed
offset, or by an array identifier followed by one or more
constant expressions enclosed within square brackets. In the
latter case, each constant expression represents an index for the
particular dimension of the array, and the assembler's
calculation of the desired element's address can involve an
implicit multiplication by the size of each dimension or by the
size (in bytes) of the element type (see Section 5.3.4).

5-12

Example:

TYPE
STRING ARRAY [26 BYTE]

INTERNAL
alpha STRING

!The array identifier "alpha" is defined as a 26-byte
array!

LD R5, jf:0
LD alpha(R5), jf:'A'
LD alpha+l, jf:'B'
LD alpha[2], jf:'C'
!The first element of array alpha now contains 'A', the
second element contains 'B', and the third element
contains 'C'!

Array definition and initialization are explained in detail in
Section 5.3.4.

Record Structures. A record structure is a collection of named
fields. Unlike array elements, record fields are not required to
have the same type. For example, a record structure named strobe
might have a BYTE field named pin and a SHORT INTEGER field named
vol tage.

TYPE
strobe RECORD [pin BYTE voltage SHORT_INTEGER]

INTERNAL
sl strobe

As this example indicates, a RECORD type definition specifies an
identifier and a type for each of its fields, as well as an
identifier for the record structure itself. Individual fields
can be referenced subsequently by specifying a record variable
name followed by a period (.) and the field name.

LDB RL5, sl.voltage

The scope of a record identifier is specified in the variable
declaration in which it is introduced (or it is implicitly
INTERNAL if introduced in a TYPE statement). The scope of record
field identifiers is the module or procedure in which they are
introduced; in other words, all field identifiers must be unique
in their entire scope. Record definition is explained in detail
in Section 5.3.4.

Label Type. An identifier with type LABEL can only be used as a
statement label. The LABEL type declaration is used primarily to
explicitly specify a label's scope. The scope of a label is

5-13

assumed to be the module in that it appears (that is, INTERNAL).
Therefore, statement labels. which are to be accessible throughout
the module need not be declared, although they can be explicitly
declared INTERNAL for documentation purposes. If a label is to
have GLOBAL, EXTERNAL, or LOCAL scope, however, it must be
declared explicitly in a label declaration statement.

GLOBAL
TRIG FUNCTION LABEL

Label declaration is explained in detail in Section 5.3.5.

5.3.3 Type Definition

The type-definition statement associates an identifier with a
fixed type. These identifiers are assumed to have a scope of the
current module (that is, INTERNAL scope) •

Types are used primarily to categorize data and informally
associate attributes or properties with the value of the data.
Types ARRAY and RECORD provide an abbreviated template for
structured data storage. Z8 PLZ/ASM allows arbitrary association
of types and data values with no type-compatibility restrictions.

The format of the type definition statement is:

where

TYPE
[type_identifier type] *

type_identifier

type

conforms to the rules for
identifiers (Section 2.2.1).

is BYTE, SHORT INTEGER,
INTEGER, WORD,-a previously defined
type identifier, or is an ARRAY or
RECORD type definition.

5-14

An EXTERNAL variable declaration cannot include an initial value.
The type of the variable can be any simple or structured type, or
a previously-specified type identifier. Consequently, the format
of the variable declaration in this case reduces to:

Example:

variable identifier+ type

EXTERNAL
counter WORD
input, output ARRAY [72 BYTE]
customer name STRING

Simple Variable Declaration. Simple variables are variables
whose type is BYTE, SHORT INTEGER, WORD, INTEGER, or a previously
specified simple type identifier (Section 5.3.2). Simple
variables that are GLOBAL, INTERNAL, or LOCAL can be given an
ini tia1 val ue.

Simple variables are initialized in one of two ways--with a
single constant expression, or with a list of constant
expressions enclosed in square brackets. In the first case, only
one variable can appear in the declaration and is initialized to
the constant value. If a list is supplied, the variables are
initialized in 1eft-to-right order from the initial-value list.
The initial-value list can have fewer items than the
variable-identifier list, but an error results if the
initial-value list is longer.

Example:

INTERNAL
HUE BYTE
limit WORD := %FFFF
total, subtotal BYTE := [0 •••]
A, B, G BYTE := ['A', 'B', 'G']
D, E, F BYTE := [0, 1]

!D=O, E=l, F is still undefined!

Array variable Declaration. An array variable is a variable with
the type ARRAY. An array variable declaration has the format:

or:

array identifier+ ARRAY' [' dimension+ type ']'
- [':=' initial_value]

array_identifier+ array_type [':=' initial_value]

5-15

where
array_identifier

dimension

type

initial value

conforms to the rules for
identifiers (Section 2.2.1).

specifies the number of
dimensions in the array
structure and the number of
elements in each dimension.
The dimension(s) must be one
or more constant expression(s)
(Section 2.3.2) or a single
asterisk (*), as detailed
below.

is BYTE, SHORT INTEGER, INTEGER,
WORD, a previously defined type
identifier, or is an ARRAY,
or RECORD type definition.

is a previously-defined ARRAY
type identifier.

is a bracketed list of constant
expressibns, or a character
sequence as detailed below.

Several array identifiers can appear in a single declaration,
and, optionally, can be initialized if they are declared GLOBAL,
INTERNAL, or LOCAL.

Array structures are initialized in left-to-right order from the
initial values supplied and in row-major sequence (that is, in
the sequence of ascending memory addresses). For example, a 3x3
matrix would be ordered in the following sequence:

[0,0] [0,1] [0,2] [1,0] [1,1] [1,2] [2,0] [2,1] [2,2]

Array structures are initialized by a bracketed list of constant
expressions. If the initial-value list contains N items, the
first N elements of the array structure are initialized (in
row-major sequence). The numbe~ of constants supplied cannot
exceed the number of elements in the array structure.

Example:

INTERNAL
matrix ARRAY [10 10 SHORT INTEGER]
list ARRAY [10 BYTE] :~ [0,1,0,0,1]
TABLE ARRAY [4 BYTE] := ['T', '0', 'D', 'S']
ONEDIMl,ONEDIM2 ARRAY [2 BYTE] := [[1. ••][2 •••]]

5-16

Normally, each dimension specified in the array declaration must
be a constant expression so that variable upper bounds are
prohibited. The sole exception is an array declaration
initializing a one-dimensional array structure. In this case, *
is specified as the dimension and the length of the list is
determined by the number of items in the initialization list.
When the * feature is used, array structures can be initialized
in two ways: with a bracketed list of constants as described
above, or with a character sequence (enclosed in single quote
marks). In the latter instance, the array elements must be type
BYTE, SHORT INTEGER, or a user-defined 8-bit type and each byte
is initialized to a single character value.

Example:

INTERNAL
list ARRAY [* BYTE]

!This array is only 5
example is 10 bytes,

:= [0,1,0,0,1]
bytes; "list" array in last
although only 5 are initialized!

TABLE ARRAY [* BYTE] := 'TODS'
!Compare to TABLE array in last example!

Record Variable Declaration. A record variable is a variable
whose type is RECORD. A record variable declaration specifies an
identifier for the record as a whole and an identifier and type
for each field within the record. A field type can be ARRAY or
RECORD, as well as a simple type.

A record variable declaration has the format:

or:

where:

record identifier+ RECORD' [' [field_identifier+ type] + ']
[':=' initial_value]

record identifier+ record type
- [' :=' initial_value]

identifier

type

record_type

initial value

conforms to the rules for iQentifiers
(Section 2.2.1).

is BYTE, SHORT INTEGER, WORD, INTEGER,
a previously-defined type identifier, or
is an ARRAY or RECORD type definition.

is a previously-defined RECORD type
identifier.

is a bracketed list of constant
expressions.

5-17

Several record identifiers can appear in a single declaration,
and, opionally, can be initialized if declared GLOBAL, INTERNAL,
or LOCAL. Each record field is initialized in left-to-right
order from the values given in the initial list. A list of N
values enclosed by square brackets may be given, with the first N
fields being initialized. Having more constants than the total
number of record fields is flagged as an error.

Example:

GLOBAL
person RECORD

MSG RECORD

[age, height, weight BYTE
birth RECORD [day, month, year BYTE]
salary WORD]

[length BYTE char ARRAY [50 BYTE]] :=[0[0]]
!length field and first byte of char array
are initialized to zero!

If an array or record appears within another array or record,
then this nesting is represented by enclosing each level of
initialization values within square brackets. Note that in this
case, the last record fields or array elements at each level do
not have to be specified. Furthermore, if more than one
structured variable identifier appears in a single declaration,
then the part of the initial value list corresponding to each
structured variable must also be enclosed by square brackets.

TYPE
PATIENT RECORD [ROOM WORD

BIRTH RECORD [DAY,MO,YR BYTE]
SEX BYTE]

INTERNAL
FEMALE ARRAY [100 PATIENT] :=[[?,[],'F'] ••.)

!only the SEX field of each record is initialized!

Memory Section Allocation. Variables can be assigned to the
DATA, REGISTER, or PROGRAM memory sections using the $SECTION
assembler directive. If $SECTION is not specified, variables are
assigned to REGISTER memory by default. REGISTER memory cannot
be initialized, however. Variables declared when the default is
in effect cannot be assigned initial values.

5.3.5 Label Declaration

The label declaration statement specifies that an identifier is
used in the program as a statement label. It cannot be used for
any other purpose within its defined scope. The format of the
label declaration is:

label declaration+ LABEL

5-18

where

label identifier conforms to the rules for
identifiers in Section 2.2.1.

Note that the colon (:) that follows a label identifier when it
appears in an executable statement (Section 2.2.1) is not
included when the label is identified in a label declaration
statement. Note also that labels cannot be given an initial
value (that is, the label declaration cannot be used to assign
absol ute addresses) •

A label can have GLOBAL, EXTERNAL, INTERNAL, or LOCAL scope
(Section 4.2.5). If a label is used in an executable statement
without being declared in a label declaration statement, it is
assumed to be INTERNAL to the module in which it appears. This
default scope can be overridden by explicitly declaring the scope
of the label.

Note that a label with LOCAL scope must be declared in the
procedure declaration before the ENTRY keyword; that is, before
the label is used or defined, whereas a label with GLOBAL,
EXTERNAL, or INTERNAL scope can be used before it is either
declared or defined. To allow the programmer to avoid
pre-declaring LOCAL labels, Z8 PLZ/ASM provides a special form of
statement labels which are always of LOCAL scope and cannot be
declared explicitly. The form of a special label is a dollar
sign ($) followed immediately by any valid decimal number, and it
can be used in the same manner as a regular statement label
identifier, except that its scope is always limited to the
procedure in which it is defined.

5-19

Example:

GLOBAL
STEP3 LABEL

processlO PROCEDURE
LOCAL

a,b,c BYTE
STEP2 LABEL

ENTRY
STEP1:

STEP2:

STEP3 :

$1:

END processlO

5.3.6 SIZEOF Operator

!Procedure has GLOBAL scope!

!STEPl has INTERNAL scope!

!STEP2 is LOCAL to
"processlO"!

!STEP3 has GLOBAL scope!

!$l is LOCAL to "processlO"!

Z8 PLZ/ASM includes a special unary operator, SIZEOF, which
operates on type identifiers, type reserved words, and variable
identifiers for structure types to determine the size (in bytes)
of a variable field. The SIZEOF operator does not work on
variable identifiers for simple types. In the following example,
the identifier to which the SIZEOF operator is being applied to,
has already been defined.

5-20

TYPE
char
dig it
matrix
patient

LD RO,
LD Rl,
LD Rl,

LD R2,
LD R3,

BYTE
char
ARRAY [10 10 WORD]
RECORD [height weight BYTE

room WORD]

ltSIZEOF digit
ltSIZEOF matrix
It(SIZEOF matrix/

SIZEOF WORD)
ltSIZEOF patient
ltSIZEOF patient.weight

!RO contains
!Rl contains

!Rl contains
!R2 contains
! R3 contains

The SIZEOF operator can also be used on identifiers that are
defined later in the program:

MSGLEN BYTE := SIZEOF MSG
MSG ARRAY[* BYTE] := 'Hello%r'

1 !
200!

100!
4!
1!

Below is a description of the restrictions on the SIZEOF operand
when it is not predefined.

Forward References

In PLZ/ASM, forward references can only be made to an identifier.
The identifier can represent a label, a data variable, or a
procedure name. Because array dimensions and record fields are
constant values, forward references cannot be made to subscripted
array variables or fields of record variables. For example:

LD RO, A[l]
LD RO, REC.Fl

are illegal unless the record or array is predefined.

The restriction applies to the SIZEOF operator as well. The
SIZEOF operator works on identifiers only and not on subscripted
array variables and fields of record variables, unless the array
or record is predefined. For example:

5-21

LD RO, *SIZEOF A !LEGAL!
LD RO, #SIZEOF REC !LEGAL!
LD RO, #SIZEOF A[I] !ILLEGAL!
LD RO, #SIZEOF REC.Fl !ILLEGAL!

A ARRAY [10 BYTE]
REC RECORD [Fl BYTE, F2 WORD]

LD RO, #SIZEOF A[I] !LEGAL!
LD RO, #SIZEOF REC.Fl !LEGAL!

5-22

Appendix A
Assembly Language Instruction Summary

This appendix provides a quick-reference summary of the Z8
PLZ/ASM assembly-language instruction set. For an expanded
explanation of any of these instructions, see Section 3.

In the instruction summary, addressing modes and status flags are
represented by the following notational shorthand:

Addressing Modes

Symbol

R

r

IR

Ir

RR

IRR

Irr

x

DA

RA

IM

Status Flags

Symbol

C
Z
S

Meaning

Register or working-register address

Working-register address only

Indirect-register or indirect
working-register address

Indirect working-register address only

Register pair or working-register pair
address

Indirect register pair or indirect
working-register pair address

Indirect working-register pair only

Indexed

Di rect Address

Relative address

Immed iate

Meaning Symbol

Carry flag
Zero flag
Sign flag

A-I

V
D
H

Meaning

Overflow flag
Decimal Adjust flag
Half Carry flag

Additional symbols used are:

Symbol

dst

src

cc

@

SP

PC

FLAGS

RP

IMR

Condition Codes

Code

F
(blank)
C
NC
Z
NZ
PL
MI
OV
NOV
EQ
NE
GE

LT
GT
LE
UGE

ULT
UGT
ULE

Meaning

Destination operand

Source operand

Condition code (see list below)

Indirect address prefix

Stack pointer

Program counter

Flag register (control register 252)

Register pointer (control register 253)

Interrupt mask register (control
register 251)

Meanin~ Fla~s Set

Always false
Always true
Carry C 1
No carry C 0
Zero Z 1
Not zero Z 0
Plus S 0
Minus S 1
Overflow V 1
No overflow V 0
Equal Z 1
Not equal Z 0
Greater than or (S XOR V)
equal
Less than (S XOR V)
Greater than (Z OR (S
Less than or equal (Z OR (S
Unsigned greater C 0
than or equal
Unsigned less than C 1

= 0

= 1
XOR V»
XOR V»

Unsigned greater than ((C=O) and (Z=O))
Unsigned less than
or equal (C or Z) = 1

A-2

0
1

1

The flags affected by each instruction are indicated by:

0: cleared to zero
1: set to one
*: set or cleared according to operation
_. unaffected
X: undefined

Assignment of a value is indicated by the symbol "(_". For
example,

dst (- dst + src

indicates that the source data is added to the destination data
and the result is stored in the destination location. The
notation "addr(n)" is used to refer to bit "nil of a given
location. For example,

dst(7)

refers to bit 7 of the destination operand.

A-3

Instruction and
Operation

ADC dst,src
dst<-dst+src+C

ADD dst,src
dst<-dst+src

AND dst,src
dst<-dst AND

CALL dst
SP<-SP-2
@SP<-PC
PC<-dst

CCF
C<-NOT C

CLR dst
dst<-O

src

Addr Modes
dst src

r
r
R
R
R
IR

r
r
R
R
R
1R

r
r
R
R
R
1R

DA
IRR

R
1R

r
lr
R
IR
1M
1M

r
1r
R
1R
1M
1M

r
1r
R
IR
1M
1M

Hex
Opcode

A-4

12
13
14
15
16
17

02
03
04
05
06
07

52
53
54
55
56
57

D6
D4

EF

BO
Bl

Flags Affected
Bytes Cycles C Z S V D H

2
2
3
3
3
3

2
2
3
3
3
3

2
2
3
3
3
3

3
2

1

2
2

6
6
10
10
10
10

6
6
10
10
10
10

6
6
10
10
10
10

20
20

6

6
6

* * * * o *

* * * * 0 *

- * * 0--

* - - - - -

Instruction and
Operation

COM dst
dst<-NOT dst

CP dst ,src
dst-src

DA dst
dst<-DA dst

DEC dst
dst<-dst-l

DECW ust
dst<-dst-l

DI
IMR(7)<-0

DJNZ r ,dst
r<-r-1
if r<>O

PC<-PC+dst
Range: +127,-128

EI
IMR(7)<-1

Addr Modes
dst src

R
IR

r
r
R
R
R
IR

R
IR

R
IR

RR
IR

RA

r
IR
R
IR
1M
1M

Hex
Opcode Bytes Cycles

Flags Affected
C X S V D H

60
61

A2
A3
A4
A5
A6
A7

40
41

00
01

80
81

SF

rA
r=O-F

9F

2
2

2
2
3
3
3
3

2
2

2
2

2
2

1

2

1

6
6

6
6
10
10
10
10

8
8

6
6

10
10

6

- * * 0 - -

* * * * - -

* * * X - -

- * * * - -

- * * * - -

12/10 - - - - - -
(taken/
not taken)

6

---~--------------------

A-5

Instruction and
Operation

Addr Modes
dst src

Hex
Opcode Bytes Cycles

Flags Affected
C X 5 V D H

--

INC dst
dst(-dst+l

INCW dst
dst<-dst+l

IRET
FLAGS<-@SP
5P<-SP+l
PC<-@SP
5P<-SP+2
IMR(7) <-1

J]!> cc,dst
if cc is true,

PC<-dsl

JR cc ,dst
if cc is true,

PC<-PC+dst
Range: +128,-127

LD dst,src
dst<-src

r

R
IR

RR
IR

DA

IRR

RA

r
r
R

r
X
r
Ir
R
R
R
IR
IR

1M
R
r

X
r
Ir
r
R
IR
1M
1M
R

rE
r=O-F

20
21

AO
Al

BF

cD
c=O-F

30

cB
c=O-F

rC
r8
r9
r=O-F
C7
D7
E3
F3
E4
E5
E6
E7
F5

A-6

1

2
2

2
2

1

3

2

2

2
2
2

3
3
2
2
3
3
3
3
3

6

6
6

10
10

16

12/10
(taken/

- * * * - -

- * * * - -

* * * * * *

- - - - - -
not taken)

8

12/10 - - - - - -
(taken/
not taken)

6 ------
6
6

10
10
6
6
10
10
10
10
10

Instruction and
Operation

Addr Modes
dst src

Hex
opcode Bytes Cycles

Flags Affected
C X S V D H

------~---

LDC dst,src
dst<-src

LDCI dst,src
dst<-src
r<-r+l
rr<-rr+l

LDE dst,src
dst<-src

LDEI dst,src
dst<-src
r<-r+l
rr<-rr+l

NOP

OR dst,src
dst<-dst OR

POP dst
dst<-@SP
SP<-SP+l

PUSH src
SP<-SP-l
@SP<-src

src

r
Irr

Ir
Ir r

r
Irr

Ir
Irr

r
r
R
R
R
IR

R
IR

Irr
r

Irr
Ir

Irr
r

Irr
Ir

r
Ir
R
IR
1M
1M

R

IR

A-7

C2
D2

C3
D3

82
92

83
93

42
43
44
45
46
47

50
51

70

71

2
2

2
2

2
2

2
2

FF

2
2
3
3
3
3

2
2

12
12

18
18

12
12

18
18

6

6
6
10
10
10
10

10
10

- * * 0 - -

2 10/12
(int/ext stac k)

2 12/14
(i nt/ext stac k)

Instruction and
Operation

Addr Modes
dst src

Hex
Opcode Bytes Cycles

Flags Affected
CXSVDH

--

RCF
C<-O

CF 1 6 0-- - - -

--

RET
PC<-@SP
SP<-SP+2

~ ... j--_0;J

SBC dst ,src
dst<-dst-src-C

R
1R

R
IR

R
1R

R
tR

r
r
R
R
R
1R

r
1r
R
1R
1M
1M

AF

90
91

10
11

EO
El

CO
Cl

32
33
34
35
36
37

A-8

1

2
2

2
2

2
2

2
2

2
2
3
3
3
3

14

6
6

6
6

6
6

6
6

6
6
10
10
10
10

* * * * - -

* * * * - -

* * * * - -

* * * * - -

* * * * 1 *

Instruction and
Operation

Addr Modes
dst src

Hex Flags Affected
Opcode Bytes Cycles C X S V D H

--
SCF
C<-l

SRA dst
7 0

SRP src
RP<-src

SUB dst ,src
dst<-dst-src

SWAP dst

~
TCM dst,src
(NOT dst)AND src

R
IR

r
r
R
R
R
IR

R
IR

r
r
R
R
R
IR

IM

r
Ir
R
IR
IM
IM

r
Ir
R
IR
IM
IM

DF

DO
Dl

31

22
23
24
25
26
27

FO
Fl

62
63
64
65
66
67

1

2
2

2

2
2
3
3
3
3

2
2

2
2
3
3
3
3

6

6
6

6

6
6
10
10
10
10

8
8

6
6
10
10
10
10

1 - - - - -

* * * 0 - -

* * * * 1 *

X * * X - -

- * * 0 - -

--
TM dst ,src r r 72 2 6 -·**0--
dst AND src r Ir 73 2 6

R R 74 3 10
R IR 75 3 10
R IM 76 3 10
IR IM 77 3 10

A-9

Instruction and
Operation

XOR dst,src
dst<-dst XOR src

Addr Modes
dst src

r r
r Ir
R R
R IR
R 1M
IR 1M

Hex Flags Affected
Opcode Bytes Cycles C X S V D H

B2 2 6 - * * 0 - -
B3 2 6
B4 3 10
B5 3 10
B6 3 10
B7 3 10

A-IO

Appendix B
High-Level Statement Summary

The following summarizes the high-level keywords and their uses.

ARRAY

BYTE

CASE

CONS'fANT

DO

ELSE

END

ENTRY

EXIT

EXTERNAL

FI

One of the two structured variable
types. Used in type definition and
variable declaration statements.

One of the simple variable types.
Used in type definition and variable
declaration statements.

Used in IF conditional-execution
statement. Instructions following
CASE definition are executed if one of
the specified values matches selector
register.

Introduces constant definition(s).

Introduces DO loop.

Used in IF conditional-execution
statement. Statements between ELSE
and FI are executed if the specified
condition is false.

Module or procedure terminator.

Marks beginning of action-statement
part of a procedure.

Loop control statement used to control
execution flow of a DO loop.

Specifies that variables and/or
procedures defined as GLOBAL in another
module will be used in the current
module.

IF statement terminator.

B-1

FROM

GLOBAL

IF

INTEGER

INTERNAL

JPR

LABEL

LOCAL

MODULE

OD

PROCEDURE

RECORD

REPEAT

SHORT INTEGER

THEN

Used in conjunction with EXIT and
REPEAT loop control statements.

Declares variables and/or procedures to
have a scope of the entire executable
program.

Introduces IF statement. Code following
IF-THEN is executed if the specified
condition is true.

One of the simple variable types.
Equivalent to WORD.

Declares variables and/or procedures to
have a scope of the current module only.

A control instruction for which the
assembler will produce a jump relative
instruction whenever possible.

Used to declare statement label scope
explicitly.

Declares variables to have a scope of
the current procedure only.

Introduces a module.

DO loop terminator.

Introduces a procedure.

One of the two structured variable
types. Used in type definition and
variable declaration statements.

LOOp control statement used to control
execution flow of a DO loop.

One of the simple variable types.
Equivalent to BYTE.

Used in IF conditional-execution block.
The statements between THEN and ELSE (or
THEN and FI if ELSE is omitted) are
executed if the specified condition is
true.

B-2

TYPE

WORD

Introduces type definitions.

One of the simple variable types. Used
in type definition and variable
declaration statements.

The remainder of this appendix contains the complete grammar for
Z8 PLZ/ASM. In this grammar:

a. Keywords are shown as all capital letters;

b. Required special characters are enclosed in single quotes;

c. Optional items are enclosed in square brackets;

d. Possible repetition of an item is shown by appending a "+" (to
signify one or more repetitions) or "*" (to signify zero or
more repetitions) to the item;

e. Parentheses are used to group items to be repeated;

f. A vertical bar "I" signifies an alternative follows.

8-3

PLZ/ASM GRAMMAR - MODULE SYNTAX

module

declarations

constants

types

globals

internals

externals

constant definition

expression

arithmetic_expression

term

factor

character constant

type_definition

=) module identifier MODULE
declarations*

END module identifier

=) constants
=) types
=) globals
=) internals
=) externals

=) CONSTANT
constant definition*

=) TYPE
type_definition*

=) GLOBAL
var_or_proc_declaration*

=) INTERNAL
var_or_proc_declaration*

=) EXTERNAL
restricted_var_or_proc_declaration*

=) constant identifier
':=' expression

=) arithmetic expression
[rel_op-arithmetic_expression]

=) term [add_op term]*

=) factor [mult_op factor]*

=) unary operator factor
=) '(' expression ')'
=) SIZEOF type identifier
=) constant identifier
=) label
=) variable
=) number
=) character_constant

=) character_sequence

=) type_identifier type

8-4

type

structured_type

field declaration

=> simple type
=> structured_type

=> BYTE
=> SHORT INTEGER
=) WORD
=> INTEGER
=> simple_type_identifier

=> array type
=> record_type

=> ARRAY' [' expression+ type ']'
=> array_type_identifier

=> RECORD' [' field declaration+ ']'
=> record_type_identifier

=> field_identifier+ type

var_or_proc_declaration => variable declaration
=> procedure_declaration

variable declaration => variable noinitial declaration
=> variable-initial declaration
=> label declaration

restricted_var_or_proc_declaration

=> identifier+ type
=> procedure_identifier PROCEDURE

variable noinitial declaration

=> identifier+ type

variable initial declaration

=> identifier simple type
':=' initial value

=> identifier identifier+ simple type
':=' '[' initial value* [': •• '] ']'

=> identifier structured type
':=' constructor -

=) identifier identifier+ structured type
':=' '[' constructor* [' •.. '] T],

=> identifier ARRAY '[' '*' simple type ']
':=' '[' initial value+ ']' -

=> identifier ARRAY' [T '*' simple type ']
':=' character_sequence -

B-5

constructor

initial_component

initial value

label declaration

variable

array_variable

array_designator

record variable

record_designator

procedure_declaration

locals

statement

loop_statement

label

=) '['initial_component* [' ••• '] ']'

=) initial value
=) constructor

=) expression
=) '?'

=) label identifier+ LABEL

=) identifier
=) array variable
=) record variable

=) array_designator '[' expression+ ']'

=) array identifier
=) record variable
=) array_variable

=) record_designator ' , field identifier

=) record identifier
=) array variable
=> record variable

=) procedure identifier
PROCEDURE-

locals*
[ENTRY

statement*]
END procedure_identifier

=) LOCAL
variable declaration*

=) [label ':'] statement
=) loop_statement
=) exit statement
=) repeat statement
=) if statement
=) select statement
=) assembler instruction

=) DO
statement*

00

=) label identifier
=) '$' decimal constant

B-6

exit statement

repeat_statement

if statement

select statement

selector_register

select element

unary_operator

assembler instruction

operation

operand

register

numbered_register

single_register

double_register

indirect register

=) EXIT [FROM label]

=) REPEAT [FROM label]

=) IF condition code THEN statement*
[ELSE statement*] FI

=) IF selector register
select-element+
[ELSE statement*] FI

=) register
=) indirect register

=) CASE expression+
THEN statement*

=) ,=, ,<)' I ,<, I ')'

=) ,+, I I LOR I LXOR

I <=, I ')='

=) '* I I I' LAND I MOD I SHL I SHR

=) ,+, ,_, LNOT

=) operation operand*

=) instruction
=) pseudo_instruction

=) register
=) indirect register
=) immediate
=) index
=) direct address
=) relative address
=) condition code

=) address designator
=) numbered_register

=) single register
=) double=register

=) RO I Rl I R2 I R3 I R4 I R5 I

R6 I R7 I R8 I R9 I R10 I Rll
R12 I R13 I R14 I R15

=) RRO
RR8

RR2 I RR4 I RR6 I

RR10 I RR12 I RR14

=) '@' register

8-7

immediate

index

direct address

relative address

address_designator

condition code

instruction

pseudo_instruction

=> '#' expression
=> '#' HI expression
=> '#' LO expression

=> address_designator' (' single_register ')'

=> address_designator

=> address_designator

=> expression

=> F I Z I NZ I EQ I NE I MI I PL I C I

NC I OV I NOV I LT I GE I LE I

GT I ULT I UGE I ULE I UGT

=> ADC I ADD I AND I CALL I CCF CLR I

COM I CP I DA I DEL I DELW I DI I

DJNZ I EJ I INC I INCW I IRET I JP I

JR I LD I LDC I LDCI I LDE I LDEI I

NOP I OR I POP I PUSH I RCF I RET I

RL I RLC I RR I RRC I SBC I SCF I

SRA I SRP I SWAP I SUB I TCM I TM XOR

=> ADCW I ADDW I ANDW I COMW
CPW I DWJNZ I JPR I LDCIW
LDEIW I LDEW I ORW I POPW
SBCW I SUBW I XORW

B-8

LDCW I
PUSHW I

PLZ/ASM GRAMMAR LEXICAL SYNTAX

PLZ text

id constant text

separator

module identifier

constant identifier

type_identifier

simple_type_identifier

field identifier

procedure_identifier

array_identifier

record identifier

label identifier

identifier

constant

delimi ter text

=) separator* [id constant teKt]
(separator+ Td_constant_text)*

=) identifier
=) PLZ word symbol
=) Z8 word symbol
=) Z8-extended word symbol
=) register word symbol
=) condition word symbol
=) constant - -
=) control_reg_word_symbol

=) delimiter text
=) special_symbol

=) identifier

=) identifier

=) identi fier

=) identifier

=) identifier

=) identifier

=) identifier

=) identifier

=) identifier

=) identifier

=) identifier

=) letter (letter

=) number
=) character_sequence

=) delimiter
=) comment

8-9

digit , ') *

number

decimal constant

hex constant

octal constant

binary_constant

character_sequence

special string_char

:omment

letter

:lin_digit

)ct_di,g i t

lig i t

;pecial_symbol

=> decimal constant
=> hex constant
=> octal constant
=> binary_constant

=> digit+

=> '% ' hex _digit+

=> ' % (8) , oct_digit+

=> ' % (2) , bin _digit+

=> ' " string_ text+

=> string char

' , ,

=> special_string_ text

=> any_character_except_%_or_'

=> '%' special string char
=> '%' hex_digIt hex_digit

=> 'R'
j r i

'L'
'1 '

'T'
't'

'P'
'p'

'Q'
'q'

=> 'I' any character except! 'I'

'% '

=> 'II' any character except carriage return
carriage-return - - -

=> 'A' 'B'
'a' 'b'

=> '0 ' '1 '

=> '0 ' '1 ' , 2'

'4 ' '5 ' '6 '

=> '0 ' '1 ' '2 '
'5 ' '6 ' '7 '

=> '0 ' '1 ' '2 '
'5 ' '6 ' '7 '
'A' 'B' 'c'
'a' 'b' 'c'

=> '+' '-' '* ,
, : ' , %'
, [, ,] , , (,
'=' ,< ' ,> '

B-IO

'Z'
, z'

'3 '
'7 '

'3 '
'8 '

'3 '
'8 '
'D'
'd'

'I'
':ff: ' ,) ,
'<='

I
I
I

I

'4 '
'9 '

'4 '
'9 '
'E' 'F'
'e' , f'

' : ='
'@'
'$,

' >='

delimiter

=) ARRAY I BYTE I CASE I CONSTANT I
DATA I DO I ELSE I END I ENTRY I
EXIT I EXTERNAL I FI I FROM I
GLOBAL I IF I INCLUDE I INTEGER I
INTERNAL I LAND I LNOT I LOCAL I
LOR I LOW I LXOR I MOD I MODULE I
OD I PROCEDURE I PROGRAM I RECORD
REGISTER I REPEAT I SHL I
SHORT INTEGER I SHR I THEN I TYPE
WORD -

=) ADC I ADD I AND I CALL I CCF I CLR I
COM I CP I DA I DEL I DELW I DI I
DJNZ I EJ I INC I INCW I IRET I JP I
JR I LD I LDC I LDCI I LDE I LDEI I
NOP I OR I POP I PUSH I RCF I RET I
RL I RLC I RR I RRC I SBC I SCF I
SRA I SRP I SWAP I SUB I TCM I TM
XOR

ADCW I ADDW I ANDW I BVAL I CLRW I
COMW I CPW I DWJNZ I JPR I LDCIW I
LDCW I LDEIW LDEW I ORW I POPW I
PUSHW I SBCW SUBW I WVAL I XORW

=) RO I Rl I R2 R3 I R4 I R5 I R6 I
R7 I R8 I R9 I RIO I Rll I R12 I
R13 I R14 I R15 I RRO I RR2 I RR4
RR6 I RR8 I RRIO I RR12 I RR14

SIO ITMR ITI I PREI I TO
IPRED I P2M I P3M I POIM
IIPR I IRQ I IMR I FLAGS
IRP I SP I SPH I SPL

=) F I Z I NZ I EQ I NE I MI I PL I C I
NC I OV I NOV I LT I GE I LE I
GT I ULT I UGE I ULE I UGT

=) ';' I space I ',' I
tab I formfeed I linefeed
carriage_return

B-ll

Appendix C
Assembler Directives and Pseudo Instructions

e.l Assembler Directives

The following is a summary of some of the assembler directives
used to control the operation of the ZS assembler.

These directives can be embedded in the source program, and
always start with a dollar sign ($), immediately followed by the
particular directive and then any operands. For example a
programmer may want to fix the address for a reset procedure:

$ABS 12

The assembler directives are:

$ABS [location]

$LISTON [option]
$LISTOFF [option]

Specifies that the object cOQe p~oduced
is to be absolute. II locatlon 1S
specified, the location counter will
begin assigning absolute addresses from
that location. Location must be a
constant expression. $ABS remains in
effect until a $REL directive is
encountered.

These two directives control listing
format. When used without options they
turn source line listing on or off.
The default listing mode is $LISTON.
Note that for every $LISTOFF an
accompanying $LISTON directive must be
used to resume listing source lines.
For example, two $LISTOFFs require
two $LISTONs to begin.

Several options can be used with these
directives. $TTY directs the assembler
to produce a narrower listing format
suitable for SO-column paper or CRT
screens. $LISTOFF $TTY is the default
and the standard full width line is
1 isted.

$BEX directs the format of the object
code. Turning this option off ($LISTOFF

C-l

$LISTON [optionj
$LISTOFF [option]

(cont.)

$BEX) causes the listing to contain only
one line of object code for every input
by suppressing any subsequent lines
of object code that may be produced.
Turning the $BEX option on, which is the
default, prints all the object code
produced.

Note that all listing directives appear
in the listing itself.

$PAGE Causes the listing to space to the next
top-of-page. The directive itself does
not appear in the listing.

$REL [location] Specifies that the object code produced
or is to be relocatable. If location

$REL [$ + value] is specified, it is an offset from the
beginning of the current section.
Location must be an absolute value or
an offset from the current location
counter. $REL remains in effect until
the $ABS directive is encountered.
$REL 0 is the default at the start of
module assembly.

$EVEN Aligns the current location of the
assembler to an even boundary.

$SDEFAULT Cancels the effect of the $SECTION
assembler directive and restores
default memory assignment. Data
declarations reside in the REGISTER
area and procedure declarations reside
in the PROGRAM area.

$SECTION [identifier] area

This directive causes the object code
produced to be associated with a symbolic
identifier and allocated to one of the
three memory spaces of the Z8, Program,
Register or Data. By default there are
three sections, one for each memory space,
called PROGRAM, REGISTER, and DATA.
Procedure declarations reside in the
PROGRAM section and data declarations
reside in the REGISTER section. The DATA
section is not used unless specified by
the user. These defaults can be overridden
by specifying $SECTION Area, which forces
default sections to contain different
portions of a program.

C-2

$SECTION [identifier] area
(cont.)

$DATA
and

$CODE

User-defined sections can be created by
specifying an identifier to be associated
with a section that is to be allocated to
a particular memory space. At link time
sections with the same name from different
modules are combined and errors occur if
they are not allocated to the same memory
space. The $SDEFAULT directive causes
default sectioning to resume.

$DATA instructs the assembler to allow
PLZ type data declarations inside of a
procedure. Inside a procedure,
everything between the $DATA and $CODE
is called a $DATA block. $DATA blocks
are only allowed inside procedures and
are terminated by a $CODE directive,
or the procedure END statement. The
$CODE directive causes the assembler
to return to processing instructions.
Procedure definitions are forbidden
inside $DATA blocks. Conversely, the
$CODE directive can be used to instruct
the assembler to allow machine
instructions without declaring a
procedure.

$CODE blocks are allowed only in data areas, not inside
procedures. They can consist only of instructions, high level
PLZ contructs or assembler directives. Procedure or data
declarations are not allowed inside $CODE blocks. Any $CODE
directive occurring within a procedure has no effect and is
ignored by the assembler. Any procedure definition occurring
within a $CODE block causes an assembler error. All $CODE blocks
must be terminated by a $DATA directive or the end of module
statement.

Neither type of block causes any automatic section changing.
However, $SECTION directives are allowed within the blocks.
$SECTION directives within a block only apply to the statements
within that block. When a block is terminated, the section
reverts back to the section in effect before the $CODE or $DATA
directive was encountered.

A $DATA block must have a declaration scope specified. That is,
the first statement (excluding assembler directives) after the
$DATA must be one of GLOBAL, INTERNAL, EXTERNAL, TYPE, or
CONSTANT. Note that when the block is terminated any data or
procedure declarations that follow will have the declaration
scope in effect before the block was entered. Local scope is not

C-3

Illowed within a $DATA block. However, an INTERNAL or CONSTANT
leclaration whose identifier is of the form used to denote local
.abels, will be local to the procedure that data block was
leclared in.

~he following example produces a table of values within a
lroced ure :

GLOBAL test PROCEDURE
Entry

$DATA
INTERNAL
t ARRAY [3 WORD] :=
y byte := 0

[LI, L2, L3] !Any data declaration here

$CODE !Return to instruction processing!

.2 Pseudo Instructions

he following two pseudo instructions can be placed within a
rocedure as a one-operand assembly-language instruction and
roduce an arbitrary byte or word value.

VAL expression

VAL expression

Defines a byte value to be located at the
current location counter. Can be used to
create Z8 instructions or data.

Defines a word value to be located at the
current location counter. Can be used to
create Z8 instructions or data •

• 3 Conditional Assembly

)nditional assembly allows the programmer to inhibit the
3sembly of portions of the source text provided certain
)nditions are satisfied. Conditional assembly is particularly
3eful when a program requires similar code sequences for
lightly different applications.

~ther than generating a multitude of programs to handle each
)plication, the application-dependent sections of code can be
lclosed by the conditional pseudo-ops within a single program.
{ changing the values of several symbols used to control the
>nditional assembly, the user can generate different object
ldules from subsequent assemblies of the same source.

C-4

The assembler directives that comprise conditional assembly are:

$IF <id> Begin conditional.

$FI End conditional.

$ELSE Reverse sense of conditional.

$THEN Optional, may follow "$IF <id>".

An example of correct usage of directives is as follows:

$IF <id> $THEN

$ELSE optional

$FI

<id>, explained fully below, determines whether the condition is
true or false. If the condition is true, the statements between
$THEN and $ELSE assemble, and those between $ELSE and $FI are
ignored. If the condition is false, the opposite occurs.

<id> can be a single identifier or a numeric constant.
Expressions are not allowed. <id> can be: 1) a constant; 2)
another identifier, such as a data item or label; or 3) an
undefined symbol.

The conditional is true for a nonzero constant or a defined
identifier; it is false for a zero constant or an undefined
symbol.

C-5

~n example of the usage of the directive $IF <id> is as follows:

PGM MODULE
CONSTANT

Z80PS := I

$IF Z80PS $THEN
CALL Z8PRINT
$ELSE
CALL Z80PRINT
$FI Z80PRINT

END PGM

Assemble for the Z8 version

n this case, the first call would assemble and the other would
e ignored.

NOTE

These directives should not be confused with
the IF/THEN/ELSE/FI higher level runtime
statements. Also, more than one $ELSE is
allowed for each $IF. Each $ELSE simply
reverses the meaning. Also note that nesting
of conditionals to any level is allowed.

C-6

Appendix D
Reserved Words and Special Characters

D.I Reserved Words

Certain special symbols are reserved for Z8 PLZ/ASM and can not
be redefined as symbols by the programmer. These are the names
of operators, condition codes, control register symbols, assembly
language instructions, high-level statement key, and assembler
directives. The specific reserved words are listed below.

NAMES OF OPERATORS:

HI LXOR
LAND MOD
LNOT SHL
LO SHR
LOR SIZEOF

CONDITION CODES:

C MI UGE
EQ NC UGT
F NE ULE
GE NOV ULT
GT NZ Z
LE OV
LT PL

CONTROL REGISTER SYMBOLS:

FLAGS PREl RP SPL
IMR POlM SIO TMR
IPR P2M SP TO
IRQ P3M SPH Tl
PREO

ASSEMBLY-LANGUAGE INSTRUCTIONS:

ADC DEC JR PUSH SCF
ADD DECW LD RCF SRA
AND DI LDC RET SRP
CALL DJNZ LDCI RL SWAP
CCF EI LDE RLC SUB
CLR INC LDEI RR TCM
COM INCW NOP RRC TM
CP IRET OR SBC XOR
DA JP POP

D-l

Nhen defining symbols, users should also avoid the forms Rn and
RRn, where n is a number from 0 to 15.

HIGH-LEVEL STATEMENT KEYWORDS:

r>..RRAY
3YTE
:ASE
:::ONSTANT
DO
::LSE

END
ENTRY
EXIT
EXTERNAL
FI
FROM

GLOBAL
IF
INTEGER
INTERNAL
JPR
LABEL

3EGMENT NAMES AND NUMBERS:

)ATA 2
?ROGRAM 0
~EGISTER 1

)SEUDO INSTRUCTIONS:

sVAL
'VAL

LOCAL
MODULE
OD
PROCEDURE
RECORD

lORDS RESERVED FOR FUTURE EXTENSIONS:

mcw CPW LDEW PUSHW
.DDW DWJNZ LDW SBCW
INDW LDCIW ORW SUBW
:LRW LDCW POPW XORW
:OMW LDEIW

).2 Special Characters

REPEAT
SHORT INTEGER
THEN
TYPE
WORD

'he list of special characters below includes delimiters and
:pecial symbols. The difference between them is that delimiters
lave no semantic significance (for example, two PLZ/ASM tokens
'an have any number of blanks separating them), whereas special
iymbols do have semantic meaning (for example, # is used to
ndicate an immediate value).

be class of delimiters includes the space (blank), tab, form
eed, line feed, carriage return, semicolon (;), and comma (,).
'he comment construct enclosed in exclamation points (!) is also
onsidered a delimiter.

D-2

The special symbols and their uses are as follows:

+ Binary addition; unary plus.

*

/

Binary subtraction; unary minus.

Unsigned multiplication; dimension specifier for
list (one-dimensional array) initialization.

Unsigned division.

Label terminator.

:= Constant and variable initialization.

% Nondecimal number base specifier; special character
specifier within quoted character sequence.

* Immediate data specifier.

@ Indirect address specifier.

$ Current contents of location counter; specifies
special LOCAL statement labels; precedes assembler
directives.

[] Enclose components of ARRAY or RECORD definition;
enclose index part of ARRAY reference; enclose
initialization values.

() Enclose expressions selectively; enclose octal or
binary number base indicator; enclose index part
of indexed address.

Separates RECORD name from field name in RECORD field
reference.

< "Less than" operator

> "Greater than" operator.

= "Equal" operator.

<> "Not equal" operator.

<= "Less than or equal" operator.

>= "Greater than or equal" operator.

D-3

Hex Dec Char

00 0 NUL
01 1 SOH
02 2 STX
03 3 ETX
04 4 EOT
05 5 ENQ
06 6 ACK
07 7 BEL

08 8 BS
09 9 HT
OA 10 LF
OB 11 VT
OC 12 FF
OD 13 CR
OE 14 SO
OF 15 SI

10 16 DLE
11 17 DCl
12 18 DC2
13 19 DC3
14 20 DC4
15 21 NAK
16 22 SYN
17 23 ETB

18, 24 CAN
19 25 EM
lA 26 SUB
IB 27 ESC
lC 28 FS
10 29 GS
IE 30 RS
IF 31 US

Appendix E
ASCII Character Set

Hex Dec Char Hex Dec Char

20 32 SP 40 64 @

21 33 ! 41 65 A
22 34 " 42 66 B
23 35 # 43 67 C
24 36 $ 44 68 D
25 37 % 45 69 E
26 38 & 46 70 F
27 39 47 71 G

28 40 (48 72 H
29 41) 49 73 I
2A 42 . 4A 74 J
2B 43 + 4B 75 K
2C 44 4C 76 L
2D 45 4D 77 M
2E 46 4E 78 N
2F 47 ! 4F 79 0

30 48 0 50 80 P
31 49 1 51 81 Q
32 50 2 52 82 R
33 51 3 53 83 S
34 52 4 54 84 T
35 53 5 55 85 U
36 54 6 56 86 V
37 55 7 57 87 W

38 56 8 58 88 X
39 57 9 59 89 Y
3A 58 : 5A 90 Z
3B 59 ; 5B 91 [
3C 60 < 5C 92 \
3D 61 = 5D 93 J
3E 62 > 5E 94 A

3F 63 ? 5F 95 -

E-l

Hex Dec Char

60 96
61 97 a
62 98 b
63 99 c
64 100 d
65 101 e
66 102 f
67 103 g

68 104 h
69 105 i

6A 106 j
6B 107 k
6C 108 1
6D 109 m
6E 110 n
6F 111 0

70 112 p
71 113 q
72 114 r

73 115 s
74 116 t

75 117 u
76 118 v

77 119 w

78 120 x
79 121 y
7A 122 z
7B 123 {
7C 124 I
7D 125 }
7E 126 'V

7F 127 DEL

Index

A

absolute, 2-1
ADC, 3-7
ADD, 3-8
Address, Register Pair, 2-14
Address, Working-Register,

2-14
Address, Working-Register

Pair, 2-15
addressing mode, direct, 2-17
addressing mode, immed iate,

2-18, A-I
addressing mode, jndexed,

2-16, 2-17, A-'l
Addressing mode,

indirect-register, 2-1, A-1
addressing mode, register,

2-13, A-1
addressing mode, relative,

2-17, A-1
AND, 3-9
arithmetic, assembly-time,

2-6
arithmetic, run-time, 2-6
ARRAY, 5-12, 5-13, 5-15,

5-16, 5"':17, 5-18, B-1
ASCII CHARACTER SET, D-1
assembler directives, 2-1,

C-l, C-5
assembly-language

instruction set, A-I
assembly-language statement,

2-1, 2-2, 4-1

c

CALL, 1-15, 3-10
carry flag, 1-12, 1-13
CCF, 3-11
character sequence, 2-7
CLR, 3-12
COM, 3-13
Comments, 2-5
condition code, 2-4
Conditional assembly, C-4
CONSTANT, 5-10

constant definition, 5-10
CONSTANT statement, 2-8
Constants, 2-5, 2-7, 5-10
Context switching, 1-15
control registers, 1-3, 1-5,

1-6
CP, 3-14

D

DA , 3 -1 5, 3 -1 6
Data declaration, 5-9
Data Lengths, 1-7
Da tam em 0 r y , 1-2, 1-3, 1-1 5 ,

4-9
Data types, 5-11
data variables, 2-5, 2-8
DEC, 3-17
decimal adjust flag,

1-12, 1-14
DECW, 1-7, 3-18
del imi ter, 2-2
destination address, 2-4
DI, 3-19
directives, 4-9, 5-1
DJNZ, 3-20, 3-21
DO Loop, 4-3, ~-4, 5-4, B-1

E

EI, 3-22
ELSE, B-1
ENTRY, 5-3, B-1
EXIT, ~-3, 5-4, B-1
expression, absolute, 4-11
expression, external, 4-11
expression, relocatab1e,

~-ll

Expressions, 2-9, 2-10
EXTERNAL, 4-6, B-1

Index-1

p

Flag Settings, 3-4, 3-5, A-2

G

general-purpose registers,
1-3

GLOBAL, 4-6, B-2

8

half carry flag, 1-12, 1-14
High~level statements, 2-2, 5-1

I

I/O port registers, 1-3, 1-8
Identifiers, 2-2, 2-3, 4-5,

4-6, 5-10
IF statement, 4-4, 4-5 1

5-5, B-2
IF-CASE statement, 5-7
immediate data, 2-4, 2-18,

2-19
INC, 3-23
INCW, 1-7, 3-24
instruction, 2-1, 2-3
Instructions, Arithmetic, 3-1
Instructions, Bit-

Manipulation, 3-2
Instructions, Block­

Transfer, 3-2
Instructions, CPU Control,

3-3
Instructions, Load, 3-1
Instructions, Logical, 3-2
Instructions, Program-

Control, 3-2
Instructions, Rotate and

Shift, 3-2
INTERNAL, 4-6
Interrupts, 1-10, 1-11
IRET, 1-15, 3-25

J

JP, 3-26
JPR, 5-8, 5-9, 8-2

Index-2

JR, 3-27
Jump Optimization, 5-8

keywords, B-1, D-2

L

LABEL, 5-13, 5-14, 5-18,
5-19, 5-20, B-2

LAND, 2-10, 2-11
LDC, 3-30
LDCI, 3-31
LDE, 3-32
LDEI, 3-33
LNOT, 2-10
Load, 2-16, 3-28, 3-29
LOR, 2-10, 2-11
LXOR, 2-10, 2-11

M

Memory Segmentes, 1-2
Modes, Addressing, A-I
mod ul es, 4:-1

)I

NOP, 3-34
Not.ation, 3-3

o

object module, 2-1
Operand Field, 2-3
operands, 2-1, 3-3
operator, division, 2-10
operator, MOD, 2-10
operators, arithmetic, 2-9
operators, logical, 2-10
operators, precedence, 2~12

operator~,relational, 2-12

operators, shift, 2-11
OR, 3-35
overflow flag, 1-14

p

PLZ/ASM, 2-1
PLZ/ASM GRAMMAR, B-4, B-9
PLZ/ASM instructions, 3-1
POP, 1-15, 3-36
Port 0, 1-8
Port 1, 1-8
Port 2, 1-10
Port 3, 1-10
procedure declaration, 4-2,

4-3, 5-2, 5-3
Program Labels, 2-2
Program memory, 1-2, 1-3,

4-9
Pseudo Instructions, C-4
PUSH, 1-15, 3-37

R

RCF, 3-38
RECORD, 4-6, 5-12, 5-13,

5-17, 5-18, B-2
Register memory, 1-2, 1-3,

1-15, 4-9 .
Relocatability, 4-8
relocatable, 2-1
REPEAT, 4-3, 5-5
Reserved Words, 0-1
RESET, 1-10, 1-11
RET, 1-15, 3-39
RL, 3-40
RLC, 3-41
RR, 3-42
RRC, 3-43

s

SBC, 3-44
SCF, 3-45
scope, 4-2, 4-5
sign flag I 1-13
SIZEOF Operator, 5-20, 5-21
source address, 2-4
source module, 2-1

Special Characters, 0-2
SRA, 3-46
SRP, 3-47, 3-48
Status Flags, 1-12, 3-4, A-I
SUB, 3-49
SWAP, 3-50

T

TCM, 3-51, 3-52
TM , 3 - 5 3, 3 - 5 4
TYPE, 5-10, 5-11, 5-14, B-3

x

XOR, 3-55

z

Z8 instructions, 1-7
Z8 microcomputer, 1-1
zero flag, 1-13

Index-3

Zilog

Title of Publication:

Document Number:

READER COMMENTS

Your comments concerning this publication are important to us.
Please take the time to complete this questionnaire and return it to
Zilog.

Your Hardware Model and Memory Size:

Describe your likes/dislikes concerning this document:

Technical Information: _________________________ _

Supporting Diagrams:

EaseofUse: _____________________________ ___

Your Name: ______________________________ ___

CompanyandAddress: _________________________ _

Your Position/Department: _________________________ _

03-3023-03

IIIIII
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 35, CAMPBELL, CA.

POSTAGE WILL BE PAID BY:

Zilog
1315 Dell Ave.
Campbell, California 95008
ATTENTION: Corporate Publications

No Postage
Necessary If
Mailed In The
United States

______ iIIIIIIIIIIII _________ _________ _____________ _

•

•

~

Zilog Sales Offices and Technical Centers

West Midwest
Sales & Technical Center Sales & Technical Center
lilog, Incorporated Zilog, Incorporated
1315 Dell Avenue 951 North Plum Grove Road
Campbell, CA 95008 Suite F
Phone: (408) 370·8120 Schaumburg, IL 60195
TWX: 910·338·7621 Phone: (312) 885·8080

Sales & Technical Center
TWX: 910·291 ·1064

Zilog , Incorporated Sales & Technical Center
18023 Sky Park Circle Zilog , Incorporated
Suite J 28349 Chagrin Blvd.
Irvine, CA 92714 Suite 109
Phone: (714) 549·2891 Woodmere, OH 44122
TWX: 910·595·2803 Phone: (216) 831·7040

Sa les & Technical Center
FAX: 216·831·2957

Zilog, Incorporated South
15643 Sherman Way
Su ite 430 Sales & Technical Center
Van Nuys, CA 91406 Zilog , Incorporated
Phone: (21 3) 989·7485 4851 Keller Springs Road,
TWX: 910·495·1765 Suite 211

Dallas, TX 75248
Sales & Technica l Center Phone: (214) 931 ·9090
Zilog , Incorporated TWX: 910·860·5850
1750 112th Ave. N.E.
Suite 0161 Zilog, Incorporated
Bellevue, WA 98004 7113 Burnet Rd.
Phone: (206) 454·5597 Suite 207

Austin, TX 78757
Phone: (512) 453·3216

Zilog, Inc, 1315 Dell Ave., Campbell, California 95008

03·3023·03

East
Sales & Technical Center
Zilog, Incorporated
Corpora te Place
99 South Bedford S1.
Burlington, MA 01803
Phone: (617) 273·4222
TWX: 710·332·1726

Sales & Technical Center
Zilog, Incorporated
240 Cedar Knolls Rd.
Cedar Knolls , NJ 07927
Phone: (201) 540·1671

Technical Center
Zilog , Incorporated
3300 Buckeye Rd.
Suite 401
Atlanta, GA 30341
Phone: (404) 451 ·8425

Sales & Techn ical Center
Zilog , Incorporated
1442 U.S. Hwy 19 South
Suite 135
Clearwater, FL 33516
Phone: (813) 535·5571

Zilog, I ncorpora ted
613·B Pitt S1.
Cornwall , Ontario
Canada K6J 3R8
Phone: (61 3) 938·1121

United Kingdom
Zilog (U .K.) Limited
Zilog House
43·53 Moorbridge Road
Maidenhead
Berkshire, SL6 8PL England
Phone: 0628·39200
Telex: 848609

France
Zilog, Incorporated
Cedex 31
92098 Pa ris La Defense
France
Phone: (1) 334·60·09
TWX: 611445F

West Germany
Zilog GmbH
Eschenstrasse 8
0·8028 TAUFKIRCHEN
Munich, West Germany
Phone: 89·612·6046
Telex : 529110 Zilog d.

Japan
Zilog, Japan K.K.
Konparu Bldg. 5F
2·8 Akasaka 4·Chome
Minato·Ku, Tokyo 107
Japan
Phone: (81) (03) 587 ·0528
Telex: 2422024 AlB: Zilog J

Telephone (408)370-8000 TWX 910-338·7621

Printed in USA

