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BACKGROUND AND AbKNOWLEDGEMENT S

1 A BRIEF HISTORY OF INTERLISP

Interlisp began with an implementation of the Lisp programming language for the PDP-1 at Bolt, Beranek
and Newman in 1966. It was followed in 1967 by 940 Lisp, an upward compatible implementation for
the SDS-940 computer. 940 Lisp was the first Lisp system to demonstrate the feasibility of using software
paging techniques and a large virtual memory in conjunction with a list-processing system [Bobrow &
Murphy, 1967]. 940 Lisp was patterned after the Lisp 1.5 implementation for CTSS at MIT, with several
new facilities added to take advantage of its timeshared, on-line environment. DWIM, the Do-What-I-
Mean error correction facility, was introduced into this system in 1968 by Warren Teitelman [Teitelman,
1969]. '

The SDS-940 computer- was soon outgrown, and in 1970 BBN-Lisp, an upward compatible Lisp system
for the PDP-10, was implemented under the Tenex operating system. With the hardware paging and
256K of virtual memory provided by Tenex, it was practical to provide more extensive and sophisticated
user support facilities, and a library of such facilities began to evolve. In 1972, the name of the system was
changed to Interlisp, and its development became a joint effort of the Xerox Palo Alto Research Center
and Bolt, Beranek and Newman. The next few years saw a period of rapid growth and development of
the language, the system and the user support facilities, including the record package, the file package,
and Masterscope. This growth was paralleled by a corresponding increase in the size and diversity of the
Interlisp user community.

In 1974, an implementation of Interlisp was begun for the Xerox Alto, an experimental microprogrammed
personal computer [Thacker et al., 1979]. AltoLisp [Deutsch, 1973] introduced the idea of providing a
specialized, microcoded instruction set that modelled the basic operations of Lisp more closely than a
general-purpose instruction set could — and as such was the first true “Lisp machine”. AltoLisp also
served as a departure point for Interlisp-D, the implementation of Interlisp for the Xerox 1100 Series of
single-user computers, which was begun in 1979 [Sheil & Masinter, 1983].

In 1976, partially as a result of the AltoLisp effort, a specification for the Interlisp *“virtual machine”
was published [Moore, 1976]. This attempted to specify a small set of “primitive” operations which
would support all of the higher level user facilities, which were nearly all written in Lisp. Although
incomplete and written at a level which preserved too many of the details of the Tenex operating system,
this document proved to be a watershed in the development of Interlisp, since it gave a clear definition
of a (relatively) small kernel whose implementation would suffice to port Interlisp to a new environment.
This was decisive in enabling the subsequent implementations and preserving the considerable investment
that had been made in developing Interlisp’s sophisticated user programming tools.

Most recently, the implementation of Interlisp on personal workstations (such as Interlisp-D) has extended
Interlisp in major ways. Most striking has been the incorporation of interactive graphics and local area
network facilities. Not only have these extensions expanded the range of applications for which Interlisp is
being used (to include interactive interface design, network protocol experimentation and the development
of specialized workstations, among others) but the personal machine capabilities have had a major impact
on the Interlisp programming system itself. Whereas the original Interlisp user interface assumed a very
limited (teletype) channel to the user, the use of interactive graphics and the “mouse” pointing device has
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Interlisp Implementations

radically expanded the bandwidth of communication between the user and the machine. This has enabled
completely new styles of interaction with the user (e.g., the use of multiple windows to provide several
different interaction channels w1th the user) and these have provided both new programming tools and
new ways of viewing and using the existing ones. In addition, the increased use of local area networks
(such as the Ethernet) has expanded the horizon of the Interlisp user beyond the local machine to a
whole community of machines, processes and services. Large portions of this manual are devoted to
documenting the enhanced environment that has resulted from these developments.

2 INTERLISP IMPLEMENTATIONS

Development of Interlisp-10 was, until approximately 1978, funded by the Advanced Research Projects
Administration of the Department of Defence (DARPA). Subsequent developments, which have
emphasized the personal workstation facilities, have been sponsored by the Xerox Corporanon with
some contributions from members of the Interlisp user community.

Interlisp is currently implemented on a number of different machines. - Each' distinct Interlisp
implementation is denoted by a suffix: Interlisp-10 is the implementation for the DEC PDP-10 family of
machines running either the TENEX or TOPS-20 operating systems. Interlisp-D is the implementation
for the Xerox 1100 series of machines (1100, 1108, 1132). Interlisp-VAX is the implementation for
the DEC VAX family, under either the VMS or UNIX operating systems. Interlisp-Jericho is the
implementation for the BBN Jericho, a internal research computer built by Bolt, Beranek and Newman.
Other implementations of Interlisp. have been reported (e.g. Interlisp-370, Interlisp-B5700), but are not
widely used or actively rnamtauied.

This manual is a reference manual for all Interlisp implementations. Where necessary, notes indicate
when features are only avaxlable in certain implementations. For some implementations, there is also a
companion “Users Guide” whxdh documents features which are completely unique to that machine; for
example, how to turn on the sYstem logging on, and unique facilities which link Interlisp to the host
environment or operating system.

3  ACKNOWLEDGEMENTS

The Interlisp system is the work of many people ~ after nearly twenty years, too many even to list, much
less detail their contributions. Nevertheless, some individuals cannot go unacknowledged:

Warren Teitelman, more than anyone else, made Interlisp “happen”. Warren designed and
implemented large parts of several generations of Interlisp, including the initial versions of most
of the user facilities, coordinated the system development and assembled and edited the first
four editions of the Interlisp reference manual.

Dan Bobrow was a principal designer of Interlisp’s predecessors, has contributed to the
implementation of several generations of Interlisp, and (in collaboration with others) made
major advances in the underlying architecture, including the spaghetti stack, the transaction
garbage collector, and the block compiler.
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Larry Masinter is the principal architect of the current Interlisp system, has contributed
extensively to several implementations, and has designed and developed major extensions to
both the Interlisp language and the programming environment.

Ron Kaplan has decisively shaped many of the programming language extensions and user
faciliies of Interlisp, has played a key role in two implementations and has contributed
extensively to the design and content of the Interlisp reference manual.

Peter Deutsch designed the AltoLisp implementation of Interlisp which developed several key
design insights on which the current generation of personal machine implementations depend.

Alice Hartley and Daryle Lewis were key contributors to implementations of Interlisp at Boit,
Beranek and Newmann.

No matter where one ends this list, one is tempted to continue. Many others who contributed to particular
implementations or revisions are acknowledged in the documentation for those systems. Following that
tradition, this manual, which was prepared primarily to document the extensions implemented by the
Interlisp-D group at Xerox, Palo Alto, acknowledges, in addition to those listed above, the work of

Dick Burton who designed and implemented most of the interactive display facilities

Bill van Melle who designed and implemented the local area network facilities and multiple
process extensions

and the contributions of Beau Sheil, Alah Bell, Steve Purcell, Steve Gadol, Jonl White, Don Charnley,
Willie Sue Haugeland and the many others who have helped and contributed to the development of
Interlisp-D.

Like Interlisp itself, the Interlisp Reference Manual is the work of many people, some of whom are
acknowledged above. This edition was designed, edited and produced by Michael Sannella of the
Interlisp-D group at Xerox, Palo Alto. It is a substantial revision of the previous edition [Teitelman et
al.,, 1978] — it has been completely reorganized, updated in most sections, and extended with a large
amount of new material, In addition to material taken from the previous edition, this edition contains
major extensions contributed by members of the Interlisp-D group and contributions from other Interlisp
developers at the Information Sciences Institute of the University of Southern California and Bolt Beranek

and Newman.

Interlisp is not designed by a formal committee. It grows and changes in response to the needs of those
who use it. Contributions and discussion from the user community remain, as they have always been,
warmly welcome.
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CHAPTER 1

INTRODUCTION

Interlisp is a programming system. A programming system consists of a programming /anguage, a large
number of predefined programs (or functions, to use the Lisp terminology) that can be used either
as direct user commands or as subroutines in user programs, and an environment that supports the
programmer by providing a variety of specialized programming tools. The language and predefined
functions of Interlisp are rich, but similar to those of other modern programming languages. The Interlisp
programming environment, on the other hand, is very distinctive. Its most salient characteristic is an
integrated set of programming tools which know enough about Interlisp programming so that they can act
as semi-autonomous, intelligent “assistants” to the programmer. In addition, the environment provides a
completely self-contained world for creating, debugging and maintaining Interlisp programs.

This manual describes all three components of the Interlisp system. There are discussions about the
content and structure of the language, about the pieces of the system that can be incorporated into user
programs, and about the environment. The line between user code and the environment is thin and
changing. Most users extend the environment with some special features of their own. Because Interlisp
is so easily extended, the system has grown over time to incorporate many different ideas about effective
and useful ways to program. This gradual accumulation over many years has resulted in a rich and diverse
" system. That is the reason this manual is so large:

Whereas the rest of this manual describes the individual pieces of the Interlisp system, this chapter attempts
to describe the whole system—Ilanguage, environment, tools, and the otherwise unstated philosophies that
tie it all together. It is intended to give a global view of Interlisp to readers approaching it for the first
time.

1.1 INTERLISP AS A PROGRAMMING LANGUAGE

This manual does not contain an introduction to programming in Lisp. Sadly, primers and teaching
materials for Lisp are few and quickly become dated. [Winston & Horn, 1981} discuss Lisp and its
applications, but focus on MacLisp, with only a limited section on Interlisp in an appendix. [Siklossy,
1976] and [Weissman, 1967] are both sound, but a little dated. In this section, we simply highlight a few
key points about Lisp on which much of the later material depends.

The Lisp family of languages (e.g., Interlisp, UCI Lisp [Meehan, 1979], FranzLisp [Foderaro, 1979],
MacLisp [Moon, 1974}, Lisp Machine Lisp [Weinreb & Moon, 1979], etc.) shares a common structure
in which large programs (or functions) are built up by composing the results of smaller ones. Although
Interlisp, like most modern Lisps, allows programming in almost any style one can imagine, the natural
style of Lisp is functional and recursive, in that each function computes its result by selecting from or
building upon the values given to it and then passing that result back to its caller (rather than by producing
“side-effects” on external data structures, for example). A great many applications can be written in Lisp
in this purely functional style, which is encouraged by the simplicity with which Lisp functlons can be
composed together.
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Interlisp as an Interactive Environment

Lisp is also a list-manipulation language. The essential primitive data objects of any Lisp are ‘“atoms”
(symbols or identifiers) and “lists” (sequences of atoms or lists), rather than the “characters” or “numbers”
of more conventional programming languages (although these are also present in all modern Lisps). Each
Lisp dialect has a set of operations that act on atoms and lists, and these operations comprise the core of
the language.

Invisible in the programs, but essential to the Lisp style of programming, is an automatic memory
management system (an “allocator” and a “garbage collector”). Allocation of new storage occurs
automatically whenever a new data object is created. Conversely, that storage is automatically reclaimed
for reuse when no other object makes reference to it. Automatic allocation and deallocation of memory
is essential for rapid, large scale program development because it frees the programmer from the task
of maintaining the details of memory administration, which change constantly during rapid program
evolution.

A key property of Lisp is that it can represent- Lisp function definitions as pieces of Lisp list data.
Each subfunction “call” (or function application) is written as a list in which the function is written first,
followed by its arguments. Thus, (PLUS 1 2) is a list structure representation of the expression 1 +
2. Each program can be written as a list of such function applications. This representation of program as
data allows one to apply the same operations to programs that one uses to manipulate data, which makes
it very straightforward to write Lisp programs which look at and change other Lisp programs. This, in
turn, makes it easy to develop programming tools and translators, which was essential in enabling the
development of the Interlisp environment.

One result of this ability to have one program examine another is that one can extend the Lisp programming
language itself. If some desired programming idiom is not supported, it can be added simply by defining
a function that translates the desired expression into simpler Lisp. Interlisp provides extensive facilities
for users to make this type of language extension. In addition, the CLISP (Conversational LISP) package
provides definitions for several commonly used programming constructs (if ... then ... else, for and
do loops, etc.) that make many programs easier to express. Using this ability to extend itself, Interlisp has
incorporated many of the constructs that have been developed in other modern programming languages.

1.2 INTERLISP AS AN INTERACTIVE ENVIRONMENT

Interlisp programs should not be thought of as autonomous, external files of source code. All Interlisp
programming takes place within the Interlisp environment, which is a completely self-sufficient environment
for developing and using Interlisp programs. Not only does the environment contain the obvious
programming facilities (e.g., program editors, compilers, debuggers, etc.), but it also contains a variety of
tools which assist the user by “keeping track”™ of what happens, so the user doesn’t have to. For example,
the Interlisp file package notices when programs or data have been changed, so that the system will
know what needs to be saved at the end of the session. The “residential” style, where one stays within
the environment throughout the development, from initial program definition through final debugging, is
essential for these tools to operate. Furthermore, this same environment is available to support the final
production version, some parts providing run time support and other parts ignored until the need arises
for further debugging or development.

For terminal interaction with the user, Interlisp provides a “Read-Eval-Print” loop. That is, whatever the
user types in is READ by the system, executed (or “EVAL”-uated) and the result is PRINT-ed onto the
terminal. (This interaction is also recorded by the programmer’s assistant, described below, so the user
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can ask to do an action again, or even to undo the effects of a previous action.) Although each interactive
terminal listener (or “executive”) defines a few specialized commands, most of the interaction will consist
of simple evaluations of ordinary Lisp expressions. Thus, instead of specialized terminal commands for

perat.wns like manipulating the user’s files, actions like this are carried out simply by typing the same
expressions that one would use to accomplish them inside a Lisp program. This creates a very rich, simple
and uniform set of interactive commands, since any Lisp expression can be typed at a command executive
and evaluated immediately.

In normal use, one writes a program (or rather, “defines a function”) simply by typing in an expression
that invokes the “function defining” function (DEF INEQ), giving it the name of the function being defined
and its new definition. The newly defined function can be executed immediately, simply by using it in
a Lisp expression. Although most Interlisp code is normally run compiled (for reasons of efficiency),
the initial versions of most programs, and all of the user’s terminal interactions, will be run interpreted.
Eventually, as a function gets larger or is used in many places, it becomes more effective to compile it.
Usually, by that stage, the function has been storéd on a file and the whole file (which may contain many
functions) is compiled at once. DEFINEQ, the compiler (COMPILE), and the interpreter (EVAL), are all
themselves Lisp functions that use the ability to tréat other Lisp expressions and programs as data.

In addition to these basic programmmg tools, Interlisp also prov1des a wide variety of programming
support mechamsms

Structure editor Since Interlisp programs are represented as list structure, Interlisp provides an editor
which allows one to change the list structure of a function’s definition directly.

Pretty-printer The pretty printer is a funcmon that prints Lisp function-definitions so that thexr
- : syntactic structure is dlsplayed by the indentation and fonts used.

Break Package When errors occur, the break package is called, allowing the user to examine and
modify the context at the point of the error. Often, this enables execution to
continue without starting over from the beginning. Within a break, the full power
of Interlisp is available to the user. Thus, the broken function can be edited, data
structures can be inspected and changed, other computations carried out, and so
on. All of this occurs in the context of the suspended computation, which will
remain available to be resumed.

DWIM The “Do What I Mean” package automatically fixes the user’s misspellings and
erTors in typing.

Programmer’s Assistant ,
. Interlisp keeps track of the user’s actions during a session and allows each one to

be replayed, undone, or altered.

Masterscope Masterscope is a program analysis and management tool which can analyze users’
functions and build (and automatically maintain) a data base of the results.
This allows the user to ask questions like “WHO CALLS ARCTAN” or “WHO
USES COEF1 FREELY” or to request systematic changes like “EDIT WHERE ANY
(function) FETCHES ANY FIELD OF (the data structure) FOOQ”.

Record/Datatype Package

Interlisp allows a programmer to define new data structures. This enables one to
separate the issues of data access from the details of how the data is actually stored.
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File Package Files in Interlisp are managed by the system, removing the problem of ensuring
timely file updates from the user. The file package can be modified and extended
to accomodate new types of data.

Performance Analysis )
These tools allow statistics on program operation to be collected and analyzed.

These facilities are tightly integrated, so they know about and use each other, just as they can be used
by user programs. For example, Masterscope uses the structural editor to make systematic changes. By
combining the program analysis features of Masterscope with the features of the structural editor, large
scale system changes can be made with a single command. For example, when the lowest-level interface
of the Interlisp-D I/0 system was changed to a new format, the entire edit was made by a single call
to Masterscope of the form EDIT WHERE ANY CALLS '(BIN BOUT --.). [Burton et al., 1980] This
caused Masterscope to invoke the editor at each point in the system where any of the functions in the list
"(BIN BOUT -...) were called. This ensured that no functions used in input or output were overlooked
during the modification. '

The new, personal machine implementations of Interlisp, such as Interlisp-D, also provide some new user
facilities, and some new, interactive graphic interfaces to some of the older Interlisp programming tools:

Multiple Processes . The multiple and independent processes allowed in Interlisp-D simplify problems
which require logically separate pieces of code to operate in parrallel.

Windows The ability to have multiple, independent windows on the display allows many
' , different processes or activities to be active on. the screen at once. :

Inspector The inspector is a display tool for examining complex data structures encountered
during debugging.

The figure found at the beginning of this chapter shows a standard user display within Interlisp-D. One
window displays a list of messages available for browsing, using an experimental mail reading system.
This operates in parallel with the user’s other activities, continually monitoring the remote mail server
and watching for any new messages. The “DEdit” window is editing an Interlisp function. The “Chat”
window offers a direct connection to a remote machine (this one is a remote file server). There are two
nested break windows showing; the environment of an interrupted evaluation. And in the lower right,
there is a Masterscope display showing all the possible execution paths to some function.

Some of the newer implementations of Interlisp have embedded within them an entire operating system
written in Interlisp. For the most part, that is of no concern to the user (although it is nice to know that one
can write programs of this complexity and performance within Interlisp!). However, some of the facilities
provided by this low level code allow the use of Interlisp for applications that would previously have
been forced into a relatively impoverished system programming environment. In particular, Interlisp-D
provides complete facilities fori experimenting with distributed machines and services on a local area
network, plus access to all the services that such networks provide (e.g., mail, printing, filing, etc.).

1.3 INTERLISP PHILOSOPHY

The extensive environmental support that the Interlisp system provides has developed over the years
in order to support a particular style of programming called “exploratory programming” [Sheil, 1983].
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For many complex programming problems, the task of program creation is not simply one of writing a
program to fulfill pre-identified specifications. Instead, it is a matter of exploring the problem (trying
out various solutions expressed as partial programs) until one finds a good solution (or sometimes, any
solution at ail!). Such programs are by their very nature evolutionary; they are transformed over time
from one realization into another in response to a growing understanding of the problem. This point of
view has lead to an emphasis on having the tools available to analyze, alter, and test programs easily.
One important aspect of this is that the tools be designed to work together in an integrated fashion, so
that knowledge about the user’s programs, once gained, is available throughout the environment.

The development of programming tools to support exploratory programming is itself an exploration.
Noone knows all the tools that will eventually be found useful, and not all programmers want all of the
tools to behave the same way. In response to this diversity, Interlisp has been shaped, by its implementors
and by its users, to be easily extensible in several different ways. First, there are many places in the system
where its behavior can be adjusted by the user. One way that this can be done is by changing the value
of various “flags” or variables whose values dare examined by system code to enable or suppress certain
behavior. The other is where the user can provide functions or other behavioral specifications of what is to
happen in certain contexts. For example, the format used for each type of list structure when it is printed
by the pretty-printer is determined by specifications that are found on the list PRETTYPRINTMACROS.
Thus, this format can be changed for a given type simply by putting a printing specification for it on that
list.

Another way in which users can effect Interlisp’s behavior is by redefining or changing system functions.
The “Advise” capability, for instance, permits the user to modify the operation of virtually any function
in the system by wrapping user code “around” the selected function. (This same philosophy extends
to the. break package and tracing, so almost any function in the system can be broken or traced.)
Experimentation is thus encouraged and actively facilitated, which allows the user to find useful pieces of '
the Interlisp system which can be configured to assist with application development. This is even easier
in systems like Interlisp-D, where the entire system is implemented in Interlisp, since there are extremely
few places where the system’s behavior depends on anything outside of Interlisp (such as a low level
system implementation language).

While these techniques provide a fair amount of tailorability, the price paid is that Interlisp presents an
overall appearance of complexity. There are many flags, parameters and controls that affect the behavior
one sees. Because of this complexity, Interlisp tends to be more comfortable for experts, rather than
casual users. Beginning users of Interlisp should depend on the default settings of parameters until they
learn what dimensions of flexibility are available. At that point, they can begin to “tune” the system to
their preferences.

The various implementations of Interlisp share not only this general philosophy, but a philosophy about
each other also. Interlisp is available in highly compatible versions across several machines. The
community of Interlisp implementors is committed to maintain this level of compatibility. One testimony
to this is the existence of pieces of very old code in modern versions of Interlisp that have been inherited
from the original BBN-Lisp system nearly 15 years ago. Many of the function definitions in the core of
the system have not changed since 1977, over many different versions of Interlisp.

Appropriately enough, even Interlisp’s underlying philosophy was itself discovered during Interlisp’s
development, rather than laid out beforehand. The Interlisp environment and its interactive style were
first analyzed in Sandewall’s excellent paper [Sandewall, 1978]. The notion of “exploratory programming”
and the genesis of the Interlisp programming tools in terms of the characteristic demands of this style of
programming was developed in [Sheil, 1983]. The evolution and structure of the Interlisp programming
environment are discussed in greater depth in [Teitelman & Masinter, 1981].
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14 HOW TO USE THIS MANUAL

This document is a reference manual, not a primer. We have tried to provide a manual that is complete,
and that allows Interlisp users to find particular items as easily as possible. Sometimes, these goals have
been achieved at the expense of simplicity. For example, many functions have a number of arguments
that are rarely used. In the interest of providing a complete reference, these arguments are fully explained,
even though they would normally be defaulted. There is a lot of information in this manual that is only
of interest to experts. ,

Users should not try to read straight through this manual, like a novel. In general, the chapters are
organized with overview explanations and the most useful functions at the beginning of the chapter, and
implementation details towards the end. If you are interested in becoming acquainted with Interlisp using
this manual, the best way would be to skim through the whole book, reading the beginning of each

chapter.
A few notes about the notational conventions used in this manual:

Lisp object notation: All Interlisp objects in this manual are printed in the same font: Functions
(AND, PLUS, DEFINEQ, LOAD); Variables (MAX.INTEGER, FILELST, DFNFLG); and arbitrary Interlisp
expressions: (PLUS 2 3), (PROG ((A 1)) ---), etc.

Case is significant: An important piece of information, often missed by newcomers to Interlisp, is that
upper and lower case is sz'gmficant The variable FOO is not the same as the variable foo, which is not the
same as the variable Foo. By convention, most Interlisp system functions and variables are all-uppercase,
but users are free to use upper and lower case for their own functions and variables as they wish.!

This manual contains a large number of descriptions of functions, variables, commands, etc, which are
printed in the following standard format:

(FOO BAR BAz —) [Function]
This is a description for the function named F00. FOO has two arguments, BAR and
BAz. Somie system functions have extra optional arguments that are not docurnented
and should not be used. These extra arguments are indicated by “—

The descriptor [Function] indicates that this is a function, rather than a [Variable],
[Prog. Asst. Command], etc.. For function definitions only, this can also indicate
the function “type”: [NLambda Function], [NoSpread Function], or [NLambda
NoSpread Function], which describes whether the function takes a fixed or variable
number of arguments, and whether the arguments are evaluated or not.

'One exception to the case-significance rule is provided by the Interlisp CLISP facility, which allows
iterative statement operators and record operations to be typed in either all-uppercase or all-lowercase
letters: (for X from 1 to § ---) is the same as (FOR X FROM 1 TO 5 -..). The few situations
whefg this is the case are explicitly mentioned in the manual. Generally, one should assume that case is
significant.
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CHAPTER 2

DATA TYPES

Interlisp is a system for the manipulation of various kinds of data; it provides a large set of built-in data
types, which may be used to represent a variety of abstract objects, and the user can also define new data
types which can be used exactly like built-in data types.

Each data type in Interlisp has an associated “type name,” a litatom.! Some of the type names of built-in
data types are: LITATOM, LISTP, STRINGP, ARRAYP, STACKP, SMALLP, FIXP, and FLOATP. For user
data types (page 3.14), the type name is specified when the data type is created.

(DATATYPES —) [Function]
Returns a list of all type names currently defined.

(TYPENAME DATUM) - : : [Function]
Returns the type name for the data type of DATUM.

(TYPENAMEP DATUM TYPENAME) [Function]
Returns T if bATUM is an object with type name equal to TYPENAME, otherwise
NIL

_Note TYPENAME and TYPENAMEP dlstmgulsh the loglcal data types ARRAYP, CCODEP and HARRAYP,
even though they may be implemented as ARRAYPs in some Interlisp implementations.

2.1 DATA TYPE PREDICATES

Interlisp provides seperate functions for testing whether objects are of certain commonly-used types:

(LITATOM x) [Function]
Returns T if x is a litatom, NIL otherwise. Note that a number is not a litatom.

(SMALLP x) [Function]
Returns x if x is a small integer; NIL otherwise. (Note that the range of small
integers is implementation-dependent. See page 2.36.)

(FIXP x) ' [Function]
Returns x if x is a small or large integer (between MIN.FIXP and MAX.FIXP);
NIL otherwise.

(FLOATP x) A . [Function]
Returns x if x is a floating point number; NIL otherwise.

UIn Interlisp-10, each data type also has an associated “type number.” See page 22.2.
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(NUMBERP Xx) . [Function]
Returns x if x is a number of any type (FIXP or FLOATP), NIL otherwise.

(ATOM x) [Function]
Returns T if x is an atom (i.e. a litatom or a number); NIL otherwise.

Warning: (ATOM x) is NIL if x is an array, string, etc. In many dialects of Lisp,
the function ATOM is defined equivalent to the Interlisp function NLISTP.

(LISTP x) [Function]
Returns x if x is a list cell, e.g., something created by CONS; NIL otherwise.

(NLISTP x) [Function]
(NOT (LISTP X)). Returns T if x is not a list cell, NIL otherwise.

(STRINGP x) [Function]
Returns x if x is a string, NIL otherwise.

(ARRAYP Xx) , [Function]
Returns x if x is an array, NIL otherwise. :

Note: In some implementations of Interlisp, ARRAYP may also return x if it is of
type CCODEP or HARRAYP.

(HARRAYP Xx) [Function]

Returns x if x is a hash array, NIL otherwise.

Note: The empty list, ( )4 or NIL, is considered to be a litatom, rather than a list. Therefore, (LITATOM
NIL) = (ATOM NIL) = Tand (LISTP NIL) = NIL. Care should be taken when using these functions
if the object may be the empty list NIL.

2.2 DATA TYPE EQUALITY

A common operation when dealing with data objects is to test whether two objects are equal. In some
cases, such as when comparing two small integers, equality can be easily determined. However, sometimes
there is more than one type of equality. For instance, given two lists, one can ask whether they are
exactly the same object, or whether they are two distinct lists which contain the same elements. Confusion
between these two types of equality is often the source of program errors. Interlisp supplies an extensive
set of functions for testing equality:

(EQ x Y) [Function]

Returns T if x and Y are identical pointers; NIL otherwise. EQ should not be used
to compare two numbers, unless they are small integers; use EQP instead.

(NEQ x Y) . [Function]
(NOT (EQ x Y))

2.2



DATA TYPES

(NULL x) ‘ [Function]

(NOT x) (EQ x NIL) [Function]
b’y

(EQP x Y) - [Function]

Returns T if x and v are EQ, or if x and Y are numbers and are equal in value;
NIL otherwise. For more discussion of EQP and other number functions, see page
2.36.

Note: EQP also can be used to compare stack pointers (page 7.3) and compiled
code (page 5.8).

(EQUAL x Y) [Function]
EQUAL returns T if x and v are (1) EQ; or (2) EQP, i.e.,, numbers with equal value;

-- or (3) STREQUAL, i.e., strings containing the same sequence of characters; or (4)

lists and CAR of x is EQUAL to CAR of v, and CDR of x is EQUAL to CDR of Y.

EQUAL returns NIL otherwise. Note that EQUAL can be significantly slower than

EQ.

A loose description of EQUAL might be to say that x and v are EQUAL if they
print out the same way.

(EQUALALL x Y) [Function]
: Like EQUAL, except it descends into the contents of arrays, hash arrays, user data
types, etc. Two non-EQ arrays may be EQUALALL if their respective componants

are EQUALALL. ' : '

2.3 “FAST” AND “DESTRUCTIVE” FUNCTIONS

Among the functions used for manipulating objects of various data types, there are a number of functions
which have “fast” and “destructive” versions. The user should be aware of what these functions do, and
when they should be used. .

“Fast” functions: By convention, a function named by prefixing an existing function name with F indicates
that the new function is a “fast” version of the old. These usually have the same definitions as the slower
versions, but they compile open and run without any “safety” error checks. For example, FNTH runs
faster than NTH, however, it does not make as many checks (for lists ending with anything but NIL,
etc). If these functions are given arguments that are not in the form that they expect, their behavior is
unpredictable; they may run forever, or cause a system error. In general, the user should only use “fast”
functions in code that has already been completely debugged, to speed it up.

“Destructive” functions: By convention, a function named by prefixing an existing function with D
indicates the new function is a “destructive” version of the old one, which does not make any new
structure but cannibalizes its argument(s). For example, REMOVE returns a copy of a list with a particular
element removed, but DREMOVE actually changes the list structure of the list. (Unfortunately, not all
destructive functions follow this naming convention: the destructive version of APPEND is NCONC.) The
user should be careful when using destructive functions that they do not inadvertantly change data
structures.
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24 LITATOMS

A “litatom” (for “literal atom”) is an object which conceptually consists of a print name, a value, a
function definition, and a property list. In some Lisp dialects, litatoms are also known as “symbols.”

A litatom is read as any string of non-delimiting characters that cannot be interpreted as a number.
The syntatic characters that delimit litatoms are called separator or break characters (see page 6.32) and
normally are space, end-of-line, line-feed, ( (left paren), ) (right paren), " (double quote), [ (left bracket),
and ] (right bracket). However, any character may be included in a litatom by preceding it with the
escape character %. Here are some examples of litatoms:

A wxyz 23SKIDDOO %] 3.1415+17

Long% Litatom% With% Embedded% Spaces

Litatoms are printed by PRINT and PRIN2 as a sequence of characters with %’s inserted before all
delimiting characters (so that the litatom will read back in properly). Litatoms are printed by PRIN1 as a
sequence of characters without these extra %’s. For example, the litatom consisting of the five characters
A, B, C, (, and D will be printed as ABC%(D by PRINT and ABC(D by PRINI.

Litatoms can also be constructed by PACK, PACK®*, SUBATOM, MKATOM, and GENSYM (which uses
MKATOM).

Litatoms are unique. In other words, if two litatoms print the same, they will a/ways be EQ. Note that
this is not true for strings, large integers, floating point numbers, and lists; they all can print the same
without being EQ. Thus if PACK or MKATOM is given a list of characters corresponding to a litatom that
already exists, they return a pointer to that litatom, and do not make a new litatom. Similarly, if the read
program is given as input a sequence of characters for which ‘a litatom already exists, it returns a pointer
to that litatom. Note: Interlisp is different from other Lisp dialects which allow “uninterned” litatoms.

Note: Litatoms are limited to 255 characters in Interlisp-D; 127 characters in Interlisp-10. Attempting to
create a larger litatom either via PACK or by typing one in (or reading from a file) will cause an error,
ATOM TOOQ LONG.

24.1 Using Litatoms as Variables

Litatoms are commonly used as variables. Each litatom has a “top level” variable binding, which can
be an arbitrary Interlisp object. Litatoms may also be given special variable bindings within PROGs or
function calls, which only exist for the duration of the function. When a litatom is evaluated, the “current”
variable binding is returned. This is the most recent special variable binding, or the top level binding if
the litatom has not been rebound. SETQ is used to change the current binding. For more information
on variable bindings in Interlisp, see page 7.1.

Note: The compiler (page 12.1) treats variables somewhat differently than the interpreter, and the user
has to be aware of these differences when writing functions that will be compiled. For example, variable
references in compiled code are not checked for NOBIND, so compiled code will not generate unbound
atom errors. In general, it is better to debug interpreted code, before compiling it for speed. The compiler
offers some facilities to increase the efficiency of variable use in compiled functions. Global variables
(page 12.3) can be defined so that the entire stack is not searched at each variable reference. Local
variables (page 12.4) allow compiled functions to access variable bindings which are not on the stack,
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which reduces variable conflicts, and also makes variable lookup faster.

By convention, a litatom whose top level binding is to the litatom NOBIND is considered to have no top
level binding. If a litatom has no local variable bindings, and its top level value is NOBIND, attempting
to evaluate it will cause an unbound atom error.

The two litatoms T and NIL always evaluate to themselves. Attempting to change the binding of T or
NIL with the functions below will generate the error ATTEMPT TO SET T or ATTEMPT TO SET NIL.

The following functions (except BOUNDP) will also generate the error ARG NOT LITATOM, if not given
a litatom.

(BOUNDP vAR) [Function]
Returns T if vAR has a specml variable bmdmg (even if bound to NOBIND), or
if vAR has a top level value other than NOBIND; otherwise NIL. In other words,
if x is a litatom, (EVAL x) will cause an UNBOUND ATOM error if and only if

(BOUNDP x) returns NIL.

(SET VAR VALUE) » o ‘ [Function]
' " Sets the “current” variable binding of VAR to VALUE, and returns VALUE.

Note that SET is a normal lambda spread function, so both VAR and VALUE are
evaluated before it is called. Thus, if the value of X is B, and the value of Y is C,
then (SET X Y) would result in B being set to C, and C being returned as the
value of SET.

(SETQ VAR VALUE) [NLambda NoSpread Function]
Nlambda version of SET; VAR is not evaluated, VALUE is.2 Thus if the value of X
is B and the value of Y is C, (SETQ X Y) would result in X (not B) being set to
C, and C being returned.

(SETQQ VAR VALUE) | [NLambda Function]
Like SETQ except that neither argument is evaluated, e.g., (SETQQ X (A B C))
sets X to (A B C).

(GETTOPVAL VAR) [Function]
Returns the top level value of VAR (even if NOBIND), regardless of any intervening

local bindings.

(SETTOPVAL VAR VALUE) : [Function]
Sets the top level value of VAR to VALUE, regardless of any intervening bindings,

and returns VALUE.

A major difference between various Interlisp implementations is the way that variable bindings are
implemented. Interlisp-10 and Interlisp-Jerico use what is called “shallow” binding. Interlisp-D and
Interlisp-VAX use what is called “deep” binding.

2Since SETQ is an nlambda, neither argument is evaluated during the calling process. However, SETQ itself
calls EVAL on its second argument. Note that as a result, typing (SETQ VAR FORM) and SETQ(VAR
FORM) to the Interlisp executive is equivalent: in both cases VAR is not evaluated, and FORM is.
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In a deep binding system, a variable is bound by saving on the stack the variable’s new value. When a
variable is accessed, its value is found by searching the stack for the most recent binding. If the variable is
not found on the stack, the top level binding is retrieved from a *“value cell” associated with the variable.

In a “shallow” binding system, a variable is bound by saving on the stack the variable name and the
variable’s old value and putting the new value in the variable’s value cell. When a variable is accessed,

its value is always found in its value cell.

GETTOPVAL and SETTOPVAL are less efficient in a shallow binding system, because they have to search
the stack for rebindings; it is more economical to simply rebind variables. In a deep binding system,
GETTOPVAL and SETTOPVAL are very efficient since they do not have to search the stack, but can simply
access the value cell directly.

GETATOMVAL and SETATOMVAL can be used to access a variable’s value cell, in either a shallow or deep
binding system.

(GETATOMVAL VAR) [Function]
Returns the value in the value cell of vAR. In a shallow binding system, this is the

same as (EVAL ATM), or simply VAR. In a deep binding system, this is the same
as (GETTOPVAL VAR).

(SETATOMVAL ATM VALUE) | [Function]
Sets the value cell of VAR to VALUE. In a shallow binding system, this is the same

as SET; in a deep binding system, this is the same as SETTOPVAL.
24.2 Function Definition Cells

Each litatom has a function definition cell, which is accessed when a litatom is used as a function. The
mechanism for accessing and setting the function definition cell of a litatom is described on page 5.8.

243 Property Lists

Each litatom has a property list, which allows a set of named objects to be associated with the litatom. A
property list associates a name, known as a “property name” or “property”, with an abitrary object, the
“property value” or simply “value”. Sometimes the phrase “to store on the property X" is used, meaning
to place the indicated information on a property list under the property name X.

Property names are usually litatoms or numbers, although no checks are made. However, the standard
property list functions all use EQ to search for property names, so they may not work with non-atomic
property names. Note that the same object can be used as both a property name and a property value.

Note: Many litatoms in the system already have property lists, with properties used by the compiler, the
break package, DWIM, etc. Be careful not to clobber such system properties. The variable SYSPROPS is
a list of property names used by the system.

The functions below are used to manipulate the propert lists of litatoms. Except when indicated, they
generate the error ARG NOT LITATOM, if given an object that is not a litatom.
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(GETPROP ATM PROP) [Function]
Returns the property value for PROP from the property hst of ATM. Returns NIL if
ATM is not a litatom, or PROP is not found. Note that GETPROP also returns NIL
if there is an occurrence of PROP but the corresponding property value is NIL;
this can be a source of program errors.

Note: GETPROP used to be called GETP.

(PUTPROP ATM PROP VAL) ’ [Function]
Puts the property PROP with value VAL on the property list of ATM. VAL replaces
any previous value for the property PROP on this property list. Returns vaL.

(ADDPROP ATM PROP NEW FLG) [Function]
Adds the value NEw to the list which is the value of property PROP on the property
- list of AT™. If FLG is T, NEW is CONSed onto the front of the property value of
PROP, otherwise it is NCONCed on the end (using NCONC1). If aTMm does not
have a property PROP, or the value is not a list, then the effect is the same as
(PUTPROP at™ PrOP (LIST NEW)). ADDPROP returns the (new) property

value. Example: .

« (PUTPROP 'POCKET 'CONTENTS NIL)

NIL

« (ADDPROP 'POCKET 'CONTENTS 'COMB)
(COMB)

"« (ADDPROP 'POCKET 'CONTENTS 'WALLET)
(COMB WALLET)

(REMPROP ATM PROP) [Function]
Removes all occurrences of the property PROP (and its value) from the property
list of AT™M. Returns PROP if any were found, otherwise NIL.

(REMPROPLIST ATM PROPS) [Function]
Removes all occurrences of all properties on the list PROPS (and their corresponding
property values) from the property list of ATM. Returns NIL.

(CHANGEPROP x PROP! PROP2) [Function]
Changes the property name of property PROP1 to PROP2 on the property list of
X, (but does not affect the value of the property). Returns x, unless PROP1 is not
found, in which case it returns NIL.

(PROPNAMES ATM) [Function]
Returns a list of the property names on the property list of ATM.

(DEFLIST L PROP) [Function]
Used to put values under the same property name on the property lists of several
litatoms. L is a list of two-element lists. The first element of each is a litatom, and
the second element is the property value for the property PROP. Returns NIL. For
example,

(DEFLIST "( (FOO MA) (BAR CA) (BAZ RI) ) 'STATE)
puts MA on FOO’s STATE property, CA on BAR’s STATE property, and RI on BAZ’s

2.7



Print Names

STATE property.
Property lists are conventionally implemented as lists of the form
(NAME; VALUE; NAME, VALUEg ---)

although the user can store anything as the property list of a litatom. However, the functions which
manipulate property lists observe this convention by searching down the property lists two CDRs at a time.
Most of these functions also generate an error, ARG NOT LITATOM, if given an argument which is not a
litatom, so they cannot be used: directly on lists. (LISTPUT, LISTPUT1, LISTGET, and LISTGET1 are
functions similar to PUTPROP and GETPROP that work directly on lists. See page 2.26.) The property
lists of litatoms can be directly accessed with the following functions:

(GETPROPLIST ATM) [Function]
Returns the property list of ATM.

(SETPROPLIST ATM LST) ' [Function]
If AT™M is a non-NIL litatom, sets the property list of ATM to be LST, and returns LST

as its value. If ATM is NIL, generates the error, ATTEMPT TO RPLAC NIL (unless
LST is also NIL).

(GETLIS x PROPS) ~ [Function]
Searches the property list of x, and returns the property list as of the first property
on PROPS that it finds. For example,

« (GETPROPLIST 'X)

(PROP1 A PROP3 B A C)

« (GETLIS 'X '(PROP2 PROP3))
(PROP3 B A C)

Returns NIL if no element on PROPS is found. x can also be a list itself, in which
case it is searched as described above. If x is not a litatom or a list, returns NIL.

2.4.4 Print Names

Each litatom has a print name, a string of characters that uniquely identifies that litatom. The term
“print name” has been extended, however, to refer to the characters that are output when any object is
printed. In Interlisp, all objects have print names, although only litatoms and strings have their print name
explicitly stored. This section describes a set of functions which can be used to access and manipulate the
print names of any object, though they are primarily used with the print names of litatoms.

The print name of an object is those characters that are output when the object is printed using PRIN1,
e.g., the print name of the litatom ABC%(D consists of the five characters ABC(D. The print name of the
list (A B C) consists of the seven characters (A B C) (two of the characters are spaces).

Sometimes we will have occasion to refer to a “PRIN2-name.” The PRIN2-name of an object is those
characters output when the object is printed using PRIN2. Thus the PRIN2-name of the litatom ABC%(D
is the six characters ABC%(D. Note that the PRIN2-name depends on what readtable is being used (see
page 6.32), since this determines where %’s will be inserted. Many of the functions below allow either
print names or PRIN2-names to be used, as specified by FL¢ and RDTBL arguments. If FLG is NIL, print
names are used. Otherwise, PRIN2-names are used, computed with respect to the readtable RDTBL (or
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the current readtable, if RDTBL = NIL).

Note: The print name of an integer depends on the setting of RADIX (page 6.19). The functions described
in this section (UNPACK, NCHARS, etc.) define the print name of an integer as though the radix was 10,
so that (PACK (UNPACK 'X9)) will always be X9 (and not sometimes X11) regardless of the setting
of RADIX. However, integers will still be printed by PRIN1 using the current radix. The user can force
these functions to use print names in the current radix by changing the setting of the variable PRXFLG

(see page 6.20).
(MKATOM x)

(SUBATOM x N M)

(PACK x)

(PACK* x, x, ---

[Function]
Creates and returns an atom whose print name is the same as that of the string x
or, if x isn’t a string, the same as that of (MKSTRING x). Examples:

(MKATOM '(A B C)) => %(A% B% C%)
(MKATOM "1.5") => 1.5

Note that the last example returns a number, not a litatom. It is a deeply-ingrained
feature of Interlisp that no litatom can have the print name of a number.

: N [Function]
Equivalent to (MKATOM (SUBSTRING x N M)), but does not make a string
pointer (see page 2.29). Returns an atom made from the Nth through mth characters
of the print name of x. If ¥ or M are negative, they specify positions counting
backwards from the end of the print name. Examples:

(SUBATOM "FOO1.5BAR" 4 6) => 1.5
(SUBATOM '(A B C) 2 -2) => A% B% C

[Function]
If x is a list of atoms, PACK returns a single atom whose print name is the
concatenation of the print names of the atoms in x. If the concatenated print name
is the same as that of a number, PACK will return that number. For example,

(PACK '(A BC DEF G)) => ABCDEFG
(PACK '(1 3.4)) => 13.4
(PACK '(1 E -2)) => .01

Although x is usually a list of atoms, it can be a list of arbitrary Interlisp objects.
The value of PACK is still a single atom whose print name is the concatenation of
the print names of all the elements of X, e.g.,

(PACK '((A B) "CD")) => %(A% B%)CD

If x is not a list or NIL, PACK generates an error, ILLEGAL ARG.

Xn) [NoSpread Function]

Nospread version of PACK that takes an arbitrary number of arguments, instead of
a list. Examples:,
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(PACK* 'A 'BC 'DEF 'G) => ABCDEFG
(PACK* 1 3.4) => 13.4

(UNPACK x FLG RDTBL) - [Function]
Returns the print name of x as a list of single-characters atoms, e.g.,

(UNPACK 'ABC5D) => (A B C 5 D)

(UNPACK "ABC(D") => (A B C %( D)

If FLG=T, the PRIN2-name of x is used (computed with respect to RDTBL), €.g.,
(UNPACK "ABC(D" T) => (%" ABC %( D %")

(UNPACK 'ABC%(D" T) => (A B C %% %( D)

Note: (UNPACK x) performs N CONSes, where N is the number of characters in
the print name of x.

(DUNPACK X SCRATCHLIST FLG RDTBL) "[Function]
A destructive version of UNPACK that does not perform any CONSes but instead
reuses the list SCRATCHLIST. If the print name is too long to fit in SCRATCHLIST,
DUNPACK will extend it. If SCRATCHLIST is not a list, DUNPACK returns (UNPACK

X FLG RDTBL).

(NCHARS X FLG RDTBL) : [Function]
) Returns the number of characters in the print name of x. If FLG=T, the PRIN2-

name is used. For example,
(NCHARS "ABC") => 3
(NCHARS "ABC" T) => 5

(NTHCHAR X N FLG RDTBL) [Function]
Returns the Nth character of the print name of X as an atom. N can be negative,
in which case it counts from the end of the print name, e.g., -1 refers to the last
character, -2 next to last, etc. If N is greater than the number of characters in

the print name, or less than minus that number, or 0, NTHCHAR returns NIL.
Examples:

(NTHCHAR 'ABC 2) => B
(NTHCHAR 15.6 2) => 5
(NTHCHAR 'ABC%(D -3 T) => %%
(NTHCHAR "ABC" 2) => B
(NTHCHAR "ABC" 2 T) => A

Note: NTHCHAR and NCHARS work much faster on objects that actually have an internal representation
of their print name, i.e., litatoms and strings, than they do on numbers and lists, as they do not have to
simulate printing.
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(U-CASE x)

(U-CASEP Xx)

(GENSYM CHAR)

GENNUM
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[Function]
Returns a lower case version of x. If FLG is T, the first letter is capitalized. If x is
a string, the value of L-CASE is also a string. If x is a list, L-CASE returns a new
list in which L-CASE is computed for each corresponding element and non-NIL
tail of the original list. Examples:

(L-CASE 'FO0) => foo
(L-CASE 'FOO T) => Foo
(L-CASE "FILE NOT FOUND" T) => "File not found"

(L-CASE '(JANUARY FEBRUARY (MARCH "APRIL")) T)
=> '(January February (March "April"))

[Function]
Similar to L-CASE, except returns the upper case version of x.

[Function]
Returns T if x contains no lower case letters; NIL otherwise.

[Function]

Returns a litatom of the form Xnnnn, where X=CHAR (or A if cHAR is NIL) and
nnnn is an integer. Thus, the first one generated is A0001, the second A0002, etc.
GENSYM provides a way of generating litatoms for various uses within the system.

[Variable]
The value of GENNUM, initially 10000, determines the next GENSYM, e.g., if
GENNUM is set to 10023, (GENSYM) =A0024.

The term “gensym” is used to indicate a litatom that was produced by the function GENSYM. Litatoms
generated by GENSYM are the same as any other litatoms: they have property lists, and can be given
function definitions. Note that the litatoms are not guaranteed to be new. For example, if the user has
previously created A0012, either by typing it in, or via PACK or GENSYM itself, when GENNUM gets to
10011, the next litatom returned by GENSYM will be the A0012 already in existence.

(MAPATOMS FN)

[Function]
Applies FN (a function or lambda expression) to every litatom in the system.
Returns NIL .

For example,

(MAPATOMS (FUNCTION (LAMBDA(X)
(if (GETD X) then (PRINT X)]

will print every litatorn with a function definition.

Note: In some implementations of Interlisp, unused litatoms may be garbage
collected, which can effect the action of MAPATOMS.
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2.4.5 - Character Code Functions

Characters may be represented in two ways: as single-character atoms, or as integer character codes.? In
many situations, it is more efficient to use character codes, so Interlisp provides parallel functions for both

representations.

(PACKC x) [Fu'nction]
Similar to PACK except X is a list of character codes. For example,

(PACKC '(70 79 79)) => FOO

(CHCON x FLG RDTBL) [Function]
Like UNPACK, except returns the print name of x as a list of character codes. If

FLG=T, the PRIN2-name is used. For example,
(CHCON 'FO0) => (70 79 79)

(DCHCON X SCRATCHLIST FLG RDTBL) ‘ [Function]
Similar to DUNPACK. ' :

(NTHCHARCODE x N FLG RDTBL) [Function]
Similar to NTHCHAR, except returns the character code of the Nth character of the

print name of x. If N is negative, it is interpreted as a count backwards from the
end of x. If the absolute value of N is greater than the number of characters in X,
or 0, then the value of NTHCHARCODE is NIL. :

If FLG is T, then the PRIN2-name of x is used, computed with respect to the
readtable RDTBL

(CHCON1 Xx) [Function]
Returns the character code of the first character of the print name of x; equal to

(NTHCHARCODE x 1).

(CHARACTER N) [Function]
N is a character code. Returns the atom having the corresponding single character
as its print name.

(CHARACTER 70) => F

(FCHARACTER N) [Function]
Fast version of CHARACTER that compiles open.

The following function makes it possible to gain the efficiency that comes from dealing with character
codes without losing the symbolic advantages of character atoms:

(CHARCODE <) [NLambda Function]
Returns the character code structure specified by ¢ (unevaluated). If ¢ is a
1-character atom or string, the corresponding character code is simply returned.

3Interlisp-D uses an 8-bit character set, so the legal character codes range from 0 to 255. Interlisp-10 uses
standard 7-bit ASCII, so the range is 0-127.
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Thus, (CHARCODE A) is 65, (C'HARCODE 0) is 48. If ¢ is a list structure, the
value is a copy of ¢ with all the leaves replaced by the corresponding character
codes. For instance, (CHARCODE (A (B C))) => (65 (66 67))

CHARCODE permits easy specification of non-printable ASCII character codes: A
multi-character litatom or string whose first character is * is interpreted as the
control-character corresponding to its second character. Thus, (CHARCODE tA) is
1, the code for control-A.

Also, if a multi-character litatom or string begins with #, this signifies a “meta-
character”, with a code between 128 to 255. # and * may be combined, so
(CHARCODE #tA) is 129. (Note: Interlisp-10 cannot directly represent meta-
characters as character litatoms, because it only supports 7-bit characters.)

The following key litatoms are mapped into the indicated codes: CR (13), LF (10),
SPACE or SP (32), ESCAPE or ESC (27), BELL (7), BS (8), TAB (9), NULL (0), and
DEL (127). The litatom EOL maps into the appropriate End-Of-Line character code
in the different Interlisp implementations (31 in Interlisp-10, 13 in Interlisp-D, 10
in Interhsp VAX)

. Finally, CHARCODE maps NIL into NIL. Thls is included because some character-
code producing functions sometimes return NIL (e.g. NTHCHARCODE); a test for
that value can be included in a CHARCODE list along with true character-code

values.

Charcode of litatomic arguments can be used wherever a structure of character
codes would be appropriate. For example:

(FMEMB (NTHCHARCODE X 1) (CHARCODE (CR LF SPACE)))
(EQ (BIN FOO) (CHARCODE +C))

There is a macro for CHARCODE which causes the character-code structure to be
constructed at compile-time. Thus, the compiled code for these examples is exactly
as efficient as the less readable:

(FMEMB (NTHCHARCODE X 1) (QUOTE (13 10 32)))
(EQ (BIN FOO) 3)

(SELCHARQ E CLAUSE; --- CLAUSE) DEFAULT) [NLambda NoSpread Function]
Similar to SELECTQ (page 4.2), except that the selection keys are determined by
applying CHARCODE (instead of QUOTE) to the key-expressions. If the value of E is
a character code or NIL and it is EQ or MEMB to the result of applying CHARCODE
to the first element of a clause, the remaining forms of that clause are evaluated.
Otherwise, the default is evaluated.

Thus

(SELCHARQ (BIN FOO)
((SPACE TAB) (FUM))
((tD NIL) (BAR))

(a (BAZ))
(ZIP))
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is exactly equivalent to

(SELECTQ (BIN FO00)
((32 9) (FUM))
((4 NIL) (BAR))
(97 (BAZ))
(21IP))

Furthermore, SELCHARQ has a macro such that it always compiles as an equivalent
SELECTQ.

2.5 LISTS

One of the most useful datatypes in Interlisp is the list cell, a data structure which contains pointers to
two other objects, known as the CAR and the CDR of the list cell (after the accessing functions). Very
complicated structures can be built out of list cells, including lattices and trees, but list cells are most
frequently used for representing simple linear lists of objects.

The following functions are used to manipulate list cells:

(CONS x Y) [Function]
CONS is the primary list construction function. It creates and returns a new list
cell containing pointers to x and v. If v is a list, this returns a list with x added
at the beginning of v.

(CAR x) [Function]
Returns the first element of the list x. CAR of NIL is always NIL. For all other
nonlists (e.g., litatoms, numbers, strings, arrays), the value is undefined (and in
some implementations may generate an error).

(CDR x) [Function]
Returns all but the first element of the list x. CDR of NIL is always NIL. The value
of CDR is undefined for other nonlists.

Often, combinations of the CAR and CDR functions are used to extract various components of complex
list structures. Functions of the form C---R may be used for some of these combinations:

(CAAR X) > (CAR (CAR X))

(CADR X) > (CAR (CDR X))

(CDDDDOR X) ==> (CDR (CDR (CDR (CDR X))))
All 30 combinations of nested CARs and CDRs up to 4 deep are included in the system.

(RPLACD x Y) [Function]
Replaces the CDR of the list cell x with v. This physically changes the internal
structure of x, as opposed to CONS, which creates a new list cell. It is possible to
construct a circular list by using RPLACD to place a pointer to the beginning of a
list in- a spot at the end of the list.
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The value of RPLACD is x. An attempt to RPLACD NIL will cause an error,
ATTEMPT TO RPLAC NIL (except for (RPLACD NIL NIL)). An attempt to
RPLACD any other non-list will cause an error, ARG NOT LIST.

(RPLACA x Y) [Function}]
Similar to RPLACD, but replaces the CAR of x with v. The value of RPLACA is xX. An

attempt to RPLACA NIL will cause an error, ATTEMPT TO RPLAC NIL, (except
for (RPLACA NIL NIL)). An attempt to RPLACA any other non-list will cause
an error, ARG NOT LIST.

(RPLNODE x A D) ~ [Function]
Performs (RPLACA x A), (RPLACD x D), and returns X.

(RPLNODE2 x 1) [Function]
Performs (RPLACA x (CAR Y)), (RPLACD x (CDR Y)) and returns Xx.

(FRPLACD x Y) [Function]

(FRPLACA x Y) [Function]

(FRPLNODE x A D) _ [Function]

(FRPLNODE2 x Y) ' ' o o [Function]

Faster versions of RPLACD, etc.

Warning: In Interlisp-10 and Interlisp-VAX, these functions compile open with no
error checks on the type of x, so a compiled FRPLACD can produce unpredictable
effects.

Usually, single list cells are not manipulated in isolation, but in structures known as “lists”. By convention,
a list is represented by a list cell whose CAR is the first element of the list, and whose CDR is the rest of
the list (usually another list cell or the “empty list,” NIL). List elements may be any Interlisp objects,
including other lists.

The input syntax for a list is a sequence of Interlisp data objects (litatoms, numbers, other lists, etc.)
enclosed in parentheses or brackets. Note that () is read as the litatom NIL. A right bracket can be used
to match all left parenthesis back to the last left bracket, or terminate the lists, e.g. (A (B (C].

If there are two or more elements in a list, the final element can be preceded by a period delimited on
both sides, indicating that CDR of the final list cell in the list is to be the element immediately following
the period, eg. (A . B) or (A B C . D), otherwise CDR of the last list cell in a list will be NIL.
Note that a list does not have to end in NIL. It is simply a structure composed of one or more list cells.
The input sequence (A B C . NIL) isequivalentto (A B C), and (A B . (C D)) is equivalent to
(A B C D). Note however that (A B . C D) will create a list containing the five litatoms A, B, %.,
C, and D.

Lists are printed by printing a left parenthesis, and then printing the first element of the list, then printing
a space, then printing the second element, etc. until the final list cell is reached. The individual elements
of a list are printed by PRIN1 if the list is being printed by PRIN1, and by PRIN2 if the list is being
printed by PRINT or PRIN2. Lists are considered to terminate when CDR of some node is not a list. If
CDR of this terminal node is NIL (the usual case), CAR of the terminal node is printed followed by a
right parenthesis. If CDR of the terminal node is not NIL, CAR of the terminal node is printed, followed
by a space, a period, another space, CDR of the terminal node, and then the right parenthesis. Note that
a list input as (A B C . NIL) will print as (A B C), and a list input as (A B . (C D)) will print
as (A B C D). Note also that PRINTLEVEL affects the printing of lists (page 6.18), and that carriage
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returns may be inserted where dictated by LINELENGTH (page 6.8).

Note: One must be careful when testing the equality of list structures. EQ will be true only when the two
lists are the exact same list. For example,

« (SETQ A '(1 2))
(12)

« (SETQ B A)

(1 2)

« (EQ A B)

T

« (SETQ C '(1 2))
(1 2)

« (EQ A C)

NIL

« (EQUAL A C)

T

In the example above, the values of A and B are the exact same list, so they are EQ. However, the value
of C is a totally different list, although it happens to have the same elements. EQUAL should be used to
compare the elements of two lists. In general, one should notice whether list manipulation functions use
EQ or EQUAL for comparing lists. This is a frequent source of errors.

Interlisp provides an extensive set of list manipulation functions:
251 Creating Lists
(MKLIST x) [Function]

“Make List.” If x is a list or NIL, returns x; Otherwise, returns (LIST Xx).

(LIST x; X5 -+ Xy) [NoSpread Function]
Returns a list of its arguments, e.g.

(LIST 'A 'B '(C D)) => (A B (C D))

(APPEND x; X5 --- Xp) [NoSpread Function]
Copies the top level of the list x; and appends this to a copy of the top level of
the list X, appended to --- appended to Xy, €.8.,

(APPEND '(AB) '(CDE) '(FG)) => (ABCDEFG)

Note that only the first N-1 lists are copied. However N=1 is treated specially;
(APPEND X) copies the top level of a single list. To copy a list to all levels, use
COPY.

The following examples illustrate the treatment of non-lists:
(APPEND '(A B C) 'D) => (ABC . D)
(APPEND 'A '(B C D)) => (B C D)
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(ATTACH x L)

DATA TYPES

(APPEND '(ABC . D) '(EFG)) => (ABCEFG)
(APPEND (A B C . D)) => (ABC . D)

Xn) [NoSpread Function]
Returns the same value as APPEND, but actually modifies the list structure of X;
e Xpoge

Note that NCONC cannot change NIL to a list:

«(SETQ FOO NIL)
NIL

«(NCONC FOO '(A B C))
(A B C)

«F00

NIL

Although the value of the NCONC is (A B C), FOO has not been changed. The
“problem” is that while it is possible to alter list structure with RPLACA and
RPLACD, there is no way to change the non-list NIL to a list. .

[Function]
(NCONC LsT (LIST x))

: S [Function]
“Attaches” x to the front of L by doing a RPLACA and RPLACD. The value is
EQUAL to (CONS x L), but EQ to L, which it physically changes (except if L is
NIL). (ATTACH X NIL) is the same as (CONS X NIL). Otherwise, if L is not
a list, an error is generated, ARG NOT LIST.

2.5.2 Building Lists From Left to Right

(TCONC PTR X)

[Function]
TCONC is similar to NCONC1; it is useful for building a list by adding elements one
at a time at the end. Unlike NCONC1, TCONC does not have to search to the end
of the list each time it is called. Instead, it keeps a pointer to the end of the list
being assembled, and updates this pointer after each call. This can be considerably
faster for long lists. The cost is an extra list cell, PTR. (CAR PTR) is the list being
assembled, (COR pPTR) is (LAST (CAR PTR)). TCONC returns PTR, with its
CAR and CDR appropriately modified.

PTR can be initialized in two ways. If pTR is NIL, TCONC will create and return a
PTR. In this case, the program must set some variable to the value of the first call
to TCONC. After that, it is unnecessary to reset the variable, since TCONC physically
changes its value. Example:

«(SETQ FOO (TCONC NIL 1))

((1) 1) .
«(for I from 2 to 5 do (TCONC FOO I))
NIL
«F00
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((1 23 45)5)

If PTR is initially (NIL), the value of TCONC is the same as for PTR=NIL. but
TCONC changes PTR. This method allows the program to initialize the TCONC
variable before adding any elements to the list. Example:

«(SETQ FOO (CONS))

(NIL)

«(for I from 1 to 5 do (TCONC FOO I))
NIL

«F00

((1 23 45)5)

(LCONC PTR X) [Function]
Where TCONC is used to add elements at the end of a list, LCONC is used for

building a list by adding lists at the end, i.e., it is similar to NCONC instead of
NCONC1. Example:

«(SETQ FOO (CONS))

(NIL)
«(LCONC FOO '(1 2))
((12) 2)

«(LCONC FOO '(3 4 5))
((1 23 45)5)
«(LCONC FOO NIL)

((1 23 45)5)

LCONC uses the same pointer conventions as TCONC for eliminating searching to
the end of the list, so that the same pointer can be given to TCONC and LCONC
interchangeably. Therefore, continuing from above,

«(TCONC FOO NIL)
((1 2345 NIL) NIL)
«(TCONC FOO '(3 4 5))
((12345NIL (345)) (345))

The functions DOCOLLECT and ENDCOLLECT also permit building up lists from left-to-right like TCONC,
but without the overhead of an extra list cell. The list being maintained is kept as a circular list.
DOCOLLECT adds items; ENDCOLLECT replaces the tail with its second argument, and returns the full
list.

(DOCOLLECT ITEM LST) [Function]
“Adds” ITEM to the end of LsT. Returns the new circular list. Note that LsST is

modified, but it is not EQ to the new list. The new list should be stored and used
as LST to the next call to DOCOLLECT.

(ENDCOLLECT LST TALL) [Function]
Takes LsT, a list returned by DOCOLLECT, and returns it as a non-circular list,

adding TA@L as the terminating CDR.

Here is an example using DOCOLLECT and ENDCOLLECT. HPRINT is used to print the results because
they are circular lists. Notice that FOO has to be set to the value of DOCOLLECT as each element is
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«(SETQ FOO NIL]

NIL

DATA TYPES

«(HPRINT (SETQ FOO (DOCOLLECT 1 FO0O]

(1 . {1})

«(HPRINT (SETQ FOO (DOCOLLECT 2 FOO]

2 1 . {1})

«(HPRINT (SETQ FOO (DOCOLLECT 3 FOO]

+3 12 . {1})

«(HPRINT (SETQ FOO (DOCOLLECT 4 FOO]

(4123 . {1}

+(SETQ FOO (ENDCOLLECT FOO 6]

(123 4.5)

253 Copying Lists

(COPY x)

(COPYALL x)

(HCOPYALL x)

: [Function]
Creates and returns a copy of the list x. All levels of x are copied down to non-lists,
so that if x contains arrays and strings, the copy of x will contain the same arrays
and strings, not copies. COPY is recursive in the CAR direction only, so very long
lists can be copied.

Note: To copy just the top level of x, do (APPEND X).

[Function]
Like COPY except copies down to atoms. Arrays, hash-arrays, strings, user data
types, etc., are all copied. Analagous to EQUALALL (page 2.3). Note that this
will not work if given a data structure with circular pointers; in this case, use
HCOPYALL.

[Function]
Similar to COPYALL, except that it will work even if the data structure contains
circular pointers.

254 Extracting Tails of Lists

(TAILP X 7)

(NTH x N)

[Function]
Returns x, if x is a tail of the list v; otherwise NIL. x is a tail of Y if it is EQ to
0 or more CDRs of v.

Note: If x is EQ to 1 or more CDRs of v, x is called a “proper tail.”

[Function]
Returns the tail of x beginning with the Nth element. Returns NIL if x has fewer
than N elements. Examples: .

(NTH '(AB CD) 1) => (ABCD)
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(FNTH x N)

(LAST x)

(FLAST x)

(NLEFT = N TAL)

(LASTN L nN)

Extracting Tails of Lists

(NTH '(AB C D) 3) => (CD)

(NTH '(A B C D) 9) => NIL

(NTH '(A . B) 2) => B ‘

For consistency, if N=0, NTH returns (CONS NIL x):
(NTH "(A B) 0) => (NIL A B)

[Function]
Faster version of NTH that terminates on a null-check.

(Interlisp-10) Interpreted, generates an error, BAD ARGUMENT - FNTH; if x ends
in other than NIL.

[Function]
Returns the last list cell in the list x. Returns NIL if x is not a list. Examples:

(LAST "(A B C)) => (C)
(LAST '(AB . C)) => (B .C)
(LAST 'A) => NIL

Fastef version of LAST that terminates on a null-check.

(Interlisp-10) Interpreted, generates an error, BAD ARGUMENT - FLAST, if x ends
in other than NIL.

, [Function]
NLEFT returns the tail of L that contains N more elements than Tam. If L does
not contain N more elements than TAmL, NLEFT returns NIL. If Tamw is NIL or not
a tail of L, NLEFT returns the last N list cells in . NLEFT can be used to work
backwards through a list. Example:

«(SETQ FOO '(A B C D E))

(ABCDE)

«(NLEFT FOO 2)

(D E)

«(NLEFT FOO 1 (CDDR F00))
(B CDE)

«(NLEFT FOO 3 (CDDR F00))
NIL

[Function]
Returns (CONS X Y), where Y is the last N elements of L, and X is the initial
segment, e.g.,

(LASTN "(AB CDE) 2) => ((ABC)DE)
(LASTN '(A B) 2) => (NIL A B)
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Returns NIL if L is not a list containing at least N elements.

255  Counting List Cells

(LENGTH x)

(FLENGTH Xx)

(EQLENGTH x N)

" (COUNT x)

(COUNTDOWN x N)

' [Function]
Returns the length of the list X, where “length” is defined as r.he number of CDRs
required to reach a non-list. Examples:

(LENGTH '(A B C)) => 3
(LENGTH '(AB C . D)) => 3
(LENGTH 'A) => 0

[Function]
Faster version of LENGTH that terminates on a null-check.

(Interlisp-10) Interpreted, generates an error, BAD ARGUMENT - FLENGTH, if x
ends in other than NIL.

[Function]
Equivalent to (EQUAL (LENGTH x) N), but more efficient, because EQLENGTH
stops as soon as it knows that x is longer than N. Note that EQLENGTH is safe to
use on (possibly) circular lists, since it is “bounded” by N.

[Function]
Returns the number of list cells in the list x. Thus, COUNT is like a LENGTH that
goes to all levels. COUNT of a non-list is 0. Examples:

(COUNT '(A)) => 1
(COUNT '(A . B)) => 1
(COUNT '(A (B) C)) => 4

In this last example, the value is 4 because the list (A x C) uses 3 list cells for
any object x, and (B) uses another list cell.

[Function]
Counts the number of list cells in x, decrementing N for each one. Stops and
returns N when it finishes counting, or when N reaches 0. COUNTDOWN can be
used on circular structures since it is “bounded” by n. Examples:

(COUNTDOWN '(A) 100) => 99
(COUNTDOWN '(A . B) 100) => 99
(COUNTDOWN '(A (B) C) 100) => 06

(COUNTDOWN ' (DOCOLLECT 1 NIL) 100) => 0
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(EQUALN X Y DEPTH) [Function]

Similar to EQUAL, for use with (possibly) circular structures. Whenever the depth
of CAR recursion plus the depth of CDR recursion exceeds DEPTH, EQUALN does
not search further along that chain, and returns the litatom ?. If recursion never
exceeds DEPTH, EQUALN returns T if the expressions x and v are EQUAL; otherwise

NIL.

(EQUALN ' (((A)) B) '(((2)) B) 2)
(EQUALN " (((A)) B) '(((Z)) B) 3) => .NIL
(EQUALN ' (((A)) B) '(((A)) B) 3) => T

> 7

2.5.6 Logical Operations

(LDIFF x Y 2)

[Function]
Y must be a tail of x, i.e.,, EQ to the result of applying some number of CDRs to
X. (LDIFF x Y) returns a list of all elements in x up to Y.

If z is not NIL, the value of LDIFF is effectively (NCONC z (LDIFF x Y)),
i.e., the list difference is added at the end of z.

If v is not a tail of x, LDIFF generates an error, LDIFF: NOT A TAIL. LDIFF
terminates on a null-check, so it will go into an infinite loop if x is a circular list
and Y is not a tail.

Example:

«(SETQ FOO '(A B CDEF))
(ABCDEF)

+(CDDR FOQO0)

(C D.E F)

«(LDIFF FOO (CDDR F00))

(A B)

«(LDIFF FOO (CDDR FOOQ) '(1 2))
(12 AB)

«(LDIFF FOO '(C D E F))
LDIFF: not a tail
(CDEF)

Note that the value of LDIFF is always new list structure unless Y=NIL, in which
case the value is x itself.

(LDIFFERENCE X ) [Function]

“List Difference.” Returns a list of those elements in x that are not members of
Y.

*

(INTERSECTION X Y) [Function]

Returns a list whose elements are members of both lists x and v. Note that
(INTERSECTION X X) gives a list of all members of X without any duplications.

2.22



(UNION x Y)

DATA TYPES

[Function]
Returns a (new) list consisting of all elements included on either of the two original
lists. It is more efficient to make x be the shorter list.

The value of UNION is ¥ with all elements of X not in ¥ CONSed on the front of
it. Therefore, if an element appears twice in v, it will appear twice in (UNION x
Y). Since (UNION '(A) '(A A)) = (A A), while (UNION '(A A) '(A))
= (A), UNION is non-commutative.

2.5.7 Searching Lists

(MEMB X Y)

(FMEMB x )

(MEMBER x ¥)

(EQMEMB x Y)

[Function]
Determines if x is a member of the list v. If there is an element of v EQ to X,
returns the tail of v starting with that element. Otherwise, returns NIL. Examples:

(MEMB 'A '(A (W) C D)) => (A (W) C D)

~(MEMB 'C '(A (W) C D)) => (C D)

(MEMB 'W '(A (W) C D)) => NIL
(MEMB '(W) '(A (W) C D)) => NIL

: L AR [Function]
Faster version of 'MEMB that terminates on a null-check. ~

(Interlisp-10) Interpreted, FMEMB gives an error, BAD ARGUMENT - FMEMB, if v
ends in a non-list other than NIL.

[Function]
Identical to MEMB except that it uses EQUAL instead of EQ to check membership
of x in v. Examples:

(MEMBER 'C '(A (W) C D)) => (C D)
(MEMBER 'W '(A (W) C D)) => NIL
(MEMBER '(W) '(A (W) C D)) => ((W) C D)

[Function]
Returns T if either x is EQ to v, or else v is a list and x is an FMEMB of v.

2.5.8 Substitution Functions

(SUBST NEW OLD EXPR) [Function]

Returns the result of substituting NEw for all occurrences of oLD in the expression
EXPR. Substitution occurs whenever oLD is EQUAL to CAR of some subexpression
of ExPR, or when oLD is atomic and EQ to a non-NIL CDR of some subexpression
of ExPR. For example:
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(SUBST 'A 'B '(C B (X . B))) => (CA (X . A))

(SUBST 'A '(B C) '((B C) D B C))
=> (ADBC) not (AD . A)

SUBST returns a copy of EXPR with the appropriate changes. Furthermore, if NEW
is a list, it is copied at each substitution.

(DSUBST NEW OLD EXPR) [Function]
Similar to SUBST, except it does not copy EXPR, but changes the list structure

ExPR itself. Like SUBST, DSUBST substitutes with a copy of NEw. More efficient
than SUBST.

(LSUBST NEW OLD EXPR) [Function]
Like SUBST except NEW is substituted as a segment of the list ExPR rather than

as an element. For instance,
(LSUBST '(A B) 'Y '"(X Y Z)) => (X AB 2)

Note that if NEw is not a list, LSUBST returns a copy of ExPR with all oLD’s
deleted:

(LSUBST NIL 'Y '(X Y 2)) > (X 2)

(SUBLIS ALST EXPR FLG) ‘ ' : [Function].
: ALST is a list of pairs: o . :

((or.b, . NEW;) (OLD; . NEW,) (loLDN . NEWy))

Each oLD; is an atom. SUBLIS returns the result of substituting each NEw; for
the corresponding OLD; in EXFR, €.g.,

(SUBLIS '"((A . X) (C . Y)) '(ABCD)) => (XBYD)

If FLe=NIL, new structure is created only if needed, so if there are no substitutions,
the value is EQ to ExPR. If FLG=T, the value is always a copy of EXPR.

(DSUBLIS ALST EXPR FLG) , [Function]
Similar to SUBLIS, except it does not copy EXPR, but changes the list structure
EXPR itself.

(SUBPAIR OLD NEW EXPR FLG) [Function]

Similar to SUBLIS, except that elements of NEW are substituted for corresponding
atoms of OLD in EXPR, €.8.,

(SUBPAIR '"(AC) '(XY) '(ABCD)) = (XBYD)

As with SUBLIS, new structure is created only if needed, or if FLG=T, e.g., if
FLG=NIL and there are no substitutions, the value is EQ to EXPR.

If oLD ends in an atom other than NIL, the rest of the elements on NEw are
substituted for that atom. For example, if oLb=(A B . C) and NEW=(U V X
Y Z), U is substituted for A, V for B, and (X Y Z) for C. Similarly, if oLD itself
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is an atom (other than NIL), the entire list NEW is substituted for it. Examples:

(SUBPAIR '(AB . C) "(WXY'Z) '(CABBY)) => ((YZ)WX
X Y)

Note that SUBST, DSUBST, and LSUBST all substitute copies of the appropriate expression, whereas
SUBLIS, and DSUBLIS, and SUBPAIR substitute the identical structure (unless FLG=T). For example:

« (SETQ FOO '(A B))

(A B)

« (SETQ BAR '(X Y 2))

(XY 2)

« (DSUBLIS (LIST (CONS 'X F00)) BAR)
((AB) Y Z)

« (DSUBLIS (LIST (CONS 'Y F00)) BAR T)
((A B) (A B) Z)

« (EQ (CAR BAR) F00)

T

« (EQ (CADR BAR) F00)

NIL

2.5.9 Association Lists and Property Lists

: : ‘ , : [Function] -
ALST is a list of lists. ASSOC returns the first sublist of ALST whose CAR is EQ to
KEY. If such a list is not found; ASSOC returns NIL. Example:

(ASSOC 'B '((A . 1) (B . 2) (C . 3))) => (B . 2)

(ASSOC KEY ALST)

(FASSOC KEY ALST) : [Function]
Faster version of ASSOC that terminates on a null-check.

(Interlisp-10) Interpreted, FASSOC gives an error if ALST ends in a non-list other
than NIL, BAD ARGUMENT - FASSOC.

(SASSOC KEY ALST) [Function]
Same as ASSOC but uses EQUAL instead of EQ when searching for KEY.

(PUTASSOC KEY VAL ALST) [Function]
Searches ALsT for a sublist CAR of which is EQ to KEY. If one is found, the CDR is
replaced (using RPLACD) with vaL. If no such sublist is found, (CONS KEY VAL)
is added at the end of ALST. Returns vAL. If ALST is not a list, generates an error,
ARG NOT LIST.

Note that the argument order for ASSOC, PUTASSOC, etc. is different from that of LISTGET, LISTPUT,
etc.

(LISTGET LST PROP) [Function]
Similar to GETPROP (page 2.7) but works on lists using property list format.

~ Searches LST two elements at a time, by CDDR, looking for an element EQ to

PRoOP. If one is found, returns the next element of LST, otherwise NIL. Returns
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NIL if LsT is not a list. Example:

(LISTGET '(A 1 B 2 C 3) 'B) => 2
(LISTGET '(A 1 B 2 C 3) 'W) => NIL
(LISTPUT LST PROP VAL) [Function]

Similar to PUTPROP. Searches LST two elements at a time, by CDOR, looking for
an element EQ to PROP. If PROP is found, replaces the next element of LsT with
vAaL. Otherwise, PROP and VAL are added to the end of LsT. If LsT is a list with
an odd number of elements, or ends in a non-list other than NIL, PROP and vAL
are added at its beginning. Returns vaL. If LsT is not a list, generates an error,
ARG NOT LIST.

(LISTGET1 LST PROP) [Function]
Like LISTGET, but searches L.sT one CDR at a time, i.e., looks at each element.
Returns the next element after PROP. Examples:

(LISTGET1 '(A 1 B 2 C 3) 'B) => 2

(LISTGET1 '(A 1B 2¢C 3) '1) => B
(LISTGET1 '(A 1 B 2 C 3) 'W) => NIL
Note: LISTGET1 used to be called GET.

(LISTPUT1 LST PROP VAL) ' ) ~ [Function]
Like LISTPUT, except searches ST one CDR at a time. Returns the modified LsT.

Example:

«(SETQ FOO '(A 1 B 2))
(A 1B 2)

«(LISTPUT FOO 'B 3)

(A 1B 3)

+«(LISTPUT FOO 'C 4)
(A1B3C4)
«(LISTPUT FOO 1 'W)
(A1 W3C24)

«F00

(A1W3CA4)

Note that if LsT is not a list, no error is generated. However, since a non-list
. cannot be changed into a list, LST is not modified. In this case, the value of
LISTPUT1 should be saved. Example:

«(SETQ FOO NIL)

NIL

«(LISTPUT FOO 'A 5)
(A 5)

«FOO

NIL
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2.5.10 Other List Functions

(REMOVE x L)

(DREMOVE x L)

(REVERSE L)

(DREVERSE L)

2.6 STRINGS

[Function]
Removes all top-level occurrences of x from list L, returning a copy of L with all
elements EQUAL to x removed. Example: ’

(REMOVE 'A '(A B C (A) A)) => (B C (A))

(REMOVE '(A) '(A B C (A) A)) => (A B C A)

[Function]
Similar to REMOVE, but uses EQ instead of EQUAL, and actually modifies the list
L when removing x, and thus does not use any additional storage. More efficient
than REMOVE.

Note that DREMOVE cannot change a list to NIL:

«(SETQ FOO '(A))

(A) ,

«~(DREMOVE 'A FO0O0)
NIL

«F00

(A)

The DREMOVE above returns NIL, and does not perform any CONSes, but the value
of FOO is sull (A), because there is no way to change a list to a non-list. See
NCONC.

, [Function]
Reverses (and copies) the top level of a list, e.g.,
(REVERSE '(A B (C D))) => ((C D) B A)
If L is not a list, REVERSE just returns L.
[Function]

Value is the same as that of REVERSE, but DREVERSE destroys the original list
L and thus does not use any additional storage. More efficient than REVERSE.

A string is an object which represents a sequence of characters. Interlisp provides functions for creating
strings, concatenating strings, and creating sub-strings of a string.

The input syntax for a string is a double quote ("), followed by a sequence of any characters except
double quote and %, terminated by a double quote. The % and double quote characters may be included
in a string by preceding them with the escape character %.

Strings are printed by PRINT and PRIN2 with initial and final double quotes, and %s inserted where
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necessary for it to read back in properly. Strings are printed by PRIN1 without the delimiting double
quotes and extra %s.

A “null string” containing no characters is input as "". The null string is printed by PRINT and PRIN2
as "". (PRIN1 "") doesn’t print anything.

Strings are created by MKSTRING, ALLOCSTRING, SUBSTRING, and CONCAT.

Internally a string is stored in two parts; a “string pointer” and the sequence of characters. Several string
pointers may reference the same character sequence, so a substring can be made by creating a new string
pointer, without copying any characters. It is not possible to directly access a character sequence, so
functions that refer to “strings” actually manipulate string pointers. In most cases, the user does not have
to be aware of string pointers, but there are some situations where it is important to understand them. -
For example, suppose that x is a string pointer to a sequence of characters, and v is another string pointer
to a substring of X’s characters. If the characters of Y are modified (with RPLSTRING or RPLCHARCODE),
the corresponding characters of x will be modified too.

(STREQUAL x Y) [Function}
Returns T if x and v are both strings and they contain the same sequence of

characters, otherwise NIL. EQUAL uses STREQUAL. Note that strings may be
STREQUAL without being EQ. For instance,

(STREQUAL "ABC" "ABC") => T

(EQ "ABC" "ABC") => NIL

"STREQUAL returns T if x and v are the same string pointer, or two different sning
pointers which point to the same character sequence, or two string pointers which

point to different character sequences which contain the same characters. Only in
the first case would x and v be EQ.

(ALLOCSTRING N INITCHAR OLD) [Function]
Creates a string of length N charaters of INITCHAR (which can be either a character

code or something coercible to a character). If IN'TCHAR is NIL, it defaults to
character code 0. if oLD is supplied, it must be a string pointer, which is re-used.

(MKSTRING X FLG RDTBL) [Function]
If x is a string, returns x. Otherwise, creates and returns a string containing the
print name of x. Examples:

(MKSTRING "ABC") => "ABC"
(MKSTRING '(A B C)) => "(AB C)"

(MKSTRING NIL) => “NIL"

Note that the last example returns the string "NIL", not the atom NIL.

If FLG is T, then the PRIN2-name of x is used, computed with respect to the
readtable RDTBL. For example,

(MKSTRING "ABC" T) => "%"ABC%""
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M OLDPTR) [Function]
Returns the substring of x consisting of the Nth through mth ¢haracters of x. If M
is NIL, the substring contains the nth character thru the end of x. N and M can be
negative numbers, which are interpreted as counts back from the end of the string,
as with NTHCHAR (page 2.10). SUBSTRING returns NIL if the substring is not well
defined, e.g., N or M specify character positions outside of X, or N corresponds to
a character in x to the right of the character indicated by mM). Examples:

> "DEF"

(SUBSTRING "ABCDEFG" 4 6)
(SUBSTRING "ABCDEFG" 3 3) => "C"
(SUBSTRING "ABCDEFG" 3 NIL) => "CDEFG"
(SUBSTRING "ABCDEFG" 4 -2) => "DEF"
(SUBSTRING "ABCDEFG" 6 4) => NIL
(SUBSTRING "ABCDEFG" 4 9) => NIL

If x is not a string, it is converted to one. For example,
(SUBSTRING '(A B C) 46) => "BC"

SUBSTRING does not actually copy any characters, but simply creates a new string
pointer to the characters in x. If OLDPTR is a string pointer, it is modified and
returned.

[Function]
“Get Next Character.” Returns the next character of the string x (as an atom);
also removes the character from the string, by changing the string pointer. Returns
NIL if x is the null string. If x isn’t a string, a string is made. Used for sequential
access to characters of a string. Example:

«(SETQ FOO "ABCDEFG")
"ABCDEFG"

«(GNC F00)

A

«(GNC F00)

B

«FO0

"CDEFG"

Note that if A is a substring of B, (GNC A) does not remove the character from
B. GNC doesn’t physically change the string of characters, just the string pointer.

[Function]
“Get Last Character.” Returns the last character of the string x (as an atom); also
removes the character from the string. Similar to GNC. Example:

«(SETQ FOO "ABCDEFG")
"ABCDEFG"
«(GLC F00)
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G

«(GLC FO00)
F

«F00
"ABCDE"

(CONCAT x; X5 -+ Xp) . [NoSpread Function]
Returns a new string which is the concatenation of (copies of) its arguments. Any
arguments which are not strings are transformed to strings. Examples:

(CONCAT "ABC" 'DEF "GHI") => "ABCDEFGHI"
(CONCAT '(A B C) "ABC") => "(A B C)ABC"
(CONCAT) returns the null string, "".

(CONCATLIST x) [Function]
X is a list of strings and/or other objects. The objects are transformed to strings if
they aren’t strings. Returns a new string which is the concatenation of the strings.

Example:
(CONCATLIST '(A B (C D) "EF")) => "AB(C D)EF"

(RPLSTRING x N Y) [Function]
Replaces the characters of string x beginning at character position N with string
Y. x and Y are converted to strings if they aren’t already. n~ miay be positive or
negative, as with SUBSTRING. Characters are smashed into (converted) x. Returns
the string x. Examples:

(RPLSTRING "ABCDEF" -3 "END") => "ABCEND"
(RPLSTRING "ABCDEFGHIJK" 4 '(A B C)) => "ABC(A B C)K"

Generates an error if there is not enough room in x for v, i.e., the new string
would be longer than the original. If Y was not a string, x will already have been
modified since RPLSTRING does not know whether v will “fit” without actually
attempting the transfer.

Note that if x is a substring of Z, Z will also be modified by the action of
RPLSTRING. Example:

« (SETQ FOO "ABCDEFG")
"ABCDEFG"

« (SETQ BAR (SUBSTRING FOO 4 6)
"DEF"

< (RPLSTRING BAR 2 "XY")

"DXY"

« FOO

"ABCDXYG"

(RPLCHARCODE X N CHARCODE) ' [Function]

Replaces the nth character of the string x with the character code CHARCODE. N
may be positive or negative. Returns the new x. Similar to RPLSTRING. Example:
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(RPLCHARCODE. "ABCDE" 3 (CHARCODE F)) => "ABFDE"

(STRPOS PAT STRING START SKIP ANCHOR TAIL) ' : [Function]
STRPOS is a function for searching one string looking for another. PAT and
STRING are both strings (or else they are converted automatically). STRPOS
searches STRING beginning at character number START, (or 1 if START is NIL)
and looks for a sequence of characters equal to PAT. If a match is found, the
character position of the first matching character in STRING is returned, otherwise
NIL. Examples:.

(STRPOS "ABC" "XYZABCDEF") => 4
~ (STRPOS "ABC" "XYZABCDEF" 5) => NIL
(STRPOS "ABC" "XYZABCDEFABC" 5) => 10

SKIP can be used to specify a character in PAT that matches any character in
STRING. Examples: :

"

- (STRPOS "A&C&" "XYZABCDEF" NIL '&) > 4

(STRPOS "DEF&" "XYZABCDEF" NIL '&) > NIL

If ANcHOR is T, STRPOS compares PAT with the characters beginning at position
START (or 1 if START is NIL). If that comparison fails, STRPOS returns NIL
without searching any -further down STRING. Thus it can be used to compare one’
string-with some portion of another string. Examples:

(STRPOS "ABC" "XYZABCDEF" NIL NIL T) => NIL
(STRPOS "ABC" "XYZABCDEF" 4 NIL T) => 4

Finally, if TawL is T, the value returned by STRPOS if successful is not the starting
position of the sequence of characters corresponding to PAT, but the position of the
first character after that, i.e., the starting position plus (NCHARS PAT). Examples:

(STRPOS "ABC" "XYZABCDEFABC" NIL NIL NIL T) => 7
(STRPOS "A"™ "A" NIL NIL NIL T) => 2

If TAIL=NIL, STRPOS returns NIL, or a character position within STRING which
can be passed to SUBSTRING. In particular, (STRPOS "" "") => NIL.
However, if TalL. =T, STRPOS may return a character position outside of STRING.
For instance, note that the second example above returns 2, even though "A" has
only one character.

(STRPOSL A STR START NEG) [Function]
STR is a string (or else it is converted automatically to a string), A is a list
of characters or character codes. STRPOSL searches STR beginning at character
number START (or else 1 if START=NIL) for one of the characters in A. If one is
found, STRPOSL returns as its value the corresponding character position, otherwise
NIL. Example:
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(STRPOSL '(A B C) "XYZBCD") => 4
If NEc=T, STRPOSL searches for a character not on A. Example:
(STRPOSL '(A B C) "ABCDEF"™ NIL T) => 4

If any element of A is a number, it is assumed to be a character code. Otherwise,
it is converted to a character code via CHCON1. Therefore, it is more efficient to
call STRPOSL with A a list of character codes.

If A is a bit table, it is used to speéify the characters (see MAKEBITTABLE below)

STRPOSL uses a “bit table” data structure to search efficiently. If A is not a bit table, it is converted it to
a bit table using MAKEBITTABLE. If STRPOSL is to be called frequently with the same list of characters,
a considerable savings can be achieved by converting the list to a bit table once, and then passing the bit
table to STRPOSL as its first argument. ‘

(MAKEBITTABLE L NEG A) [Function]
Returns a bit table suxtable for use by STRPOSL. L is a list of characters or
character codes, NEG is the same as described for STRPOSL. If A is a bit table,
MAKEBITTABLE modifies and returns it. Otherwise, it will create a new bit table.

Note: if NEG=T, STRPOSL must call MAKEBITTABLE whether A is a list or a bit table. To obtain bit
table efficiency with NEG=T, MAKEBITTABLE should be called with NEG=T, and the result,mg “inverted”
bit table should be glven to STRPOSL w1t.h NEG NIL ‘

2.7 ARRAYS

An array in Interlisp is an object representing a one-dimensional vector of objects. Arrays do not have
input syntax; they can only be created by the function ARRAY. Arrays are printed by PRINT, PRINZ2,
and PRIN1 as # followed by an integer.

Note: Interlisp-10 and Interlisp-Vax provide a much more primitive version of arrays than other
implementations of Interlisp. See page 2.33.

(ARRAY SIZE TYPE INIT ORIG) [Function]
Creates and returns a new array capable of containing SIZE objects of type
TYPE. TYPE may be one of BIT, BYTE, WORD, FIXP, FLOATP, POINTER, or
DOUBLEPOQOINTER.* ARRAY also accepts any ‘“type” which is legal in DATATYPE
records (such as (BITS 7), FLAG, see page 3.7). (Note: DATATYPE types are
coerced into the next “enclosing” array type. Therefore, users should not rely on
truncation of values stored in arrays of these types.)

4For backward compatibility with Interlisp-10 arrays, TYPE can be NIL or 0 (meaning to create an array of
type DOUBLEPOINTER) or s1zE (meaning an array of type FIXP). For arrays of type DOUBLEPOINTER,
the functions ELTD and SETD are defined the same as in I[nterlisp-10 (page 2.34). For arrays of any
other type, ELTD and SETD are the same as ELT and SETD. Combined POINTER/FIXP arrays are not
supported. Interlisp-D users should avoid using Interlisp-10 arrays.

2.32



- DATA TYPES

INTT is the initial value in each element of the new array. If not specified, the array
elements will be initialized with 0 (for number arrays) or NIL (all other types).

Arrays can have either 0-origin or l-origin indexing, as specified by the oORIG
argument; if ORIG is not specified, the default is 1.

(ELT A N) [Function]
; Returns the nth element of the array A.

(SETA A N V) ' " [Function]
Sets the Nth element of the array A to v. SETA returns V.

(ARRAYTYP A) [Function]
Returns a value corresponding to the second argument to ARRAY.

Note: If ARRAY coerced the array type as described above, ARRAYTYP will return

i the new type.
(ARRAYSIZE A) ~ [Function]
' Returns the size of array A. Generates the error, ARG NOT ARRAY, if A is not an
array.
(ARRAYORIG 4) [Function]

Returns the origin of array A, which may be 0 or 1. Generates an error, ARG NOT
ARRAY, if A is not an array.

(COPYARRAY 4) [Function]
Returns a new array of the same size and type as A, and with the same contents
as A. Generates an ARG NOT ARRAY error, if A is not an array.

2.7.1 Interlisp-10 Arrays

Interlisp-10 and Interlisp-Vax have a more primitive array facility than the other implementations of
Interlisp. In Interlisp-10, arrays are partitioned into four sections: a header, a section containing unboxed
numbers, a section containing list cells (each with a CAR and CDR), and a section containing relocation
information. The last three sections can each be of arbitrary length (including 0); the header is two words
long and contains the length of the other sections. The unboxed number region of an array is used to
store 36 bit quantities that are not Interlisp pointers, and therefore are not to be chased during garbage
collections, e.g. machine instructions. The relocation informaion is used when the array contains the
definition of a compiled function, and specifies which locations in the unboxed region of the array must
be changed if the array is moved during a garbage collection.

ARRAY returns an “array pointer” to the beginning of the array, but it is also possible to create a pointer
into the middle of an array. ARRAYP will accept a pointer into the middle of an array, but ELT, SETA,
ELTD, and SETD generate an error, ARG NOT ARRAY, if A is not an array pointer to the beginning of
an array.

-

Array-pointers print as #NNNN, where NNNN is the octal representation of the pointer. Note that #NNNN
will be read as a literal atom, and not an array pointer.

The following functions are used to manipulate Interlisp-10 arrays:
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(ARRAY N P V)

(ELT A N)

(SETA A N V)

(ELTD A N)

(SETD A N V)

(ARRAYTYP 4)

(ARRAYP x)

(ARRAYBEG 4)

(ARRAYORIG A)

Interlisp-10 Arl:ays

[Function]
Allocates a block of N+2 words, of which the first two are header information.
The next P (< N) words contain unboxed numbers, and are initialized to unboxed
0. The last N-P (> 0) words are list cells; both CAR and CDR are available for
storing information, and each is initialized to v. If p is NIL, 0 is used (i.e., an array
containing all Interlisp pointers). ARRAY returns an “array pointer” to the array.

If sufficient space is not available for the array, a garbage collection of array space is
initiated. If this is unsuccessful in obtaining sufficient space, an error is generated,
ARRAYS FULL.

[Function]

Returns the Nth element of the array A. (ELT A 1) is the first element of the
array (actually corresponds to the 3rd cell because of the 2 word header).

If N corresponds to the unboxed number region of A, ELT returns the full 36 bit
word as a boxed integer. If N corresponds to the list cell region of A, ELT returns
the CAR of the corresponding element.

[Function]
Sets the Nth element of the array A to v. If N corresponds to the unboxed number
region of A, v must be a number, and is unboxed and stored as a full 36 bit word
into the nth element of A. If N corresponds to the list cell region of A, v replaces
the CAR of the Nth element. SETA returns V.

[Function]
Same as ELT for the unboxed number region of A, but returns the CDR of the nth
element, if N corresponds to the list cell region of A.

[Function]
Same as SETA for the unboxed number region of A, but sets the CDR half of the
Nth element, if N corresponds to the list cell region of A. SETD returns v.

[Function]
Returns the number of unboxed number words of array A. This value corresponds
to the second argument to ARRAY.

[Function]
Returns x if x is an array pointer, otherwise NIL. No check is made to ensure that
X actually addresses the beginning of an array.

[Function]
If A is a pointer into the middle of an array, returns the pointer to its beginning.
Otherwise returns NIL.

[Function]
Returns 1. A dummy function provided for compatibility with other Interlisp
arrays.
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2.8 HASH ARRAYS

Hash arrays provide a mechanism for associating arbitrary lisp objects (“hash keys) with other objects
(“hash values”), such that the hash value associated with a particular hash key can be quickly obtained.
A set of associations could be represented as a list or array of pairs, but these schemes are very inefficient
when the number of associations is large. There are functions for creating hash arrays, putting a hash
key/value pair in a hash array, and quickly retrieving the hash value associated with a given hash key.

Hash keys can be any lisp object, but is should be noted that the hash array functions use EQ for
comparing hash keys. Therefore, if non-atoms are used as hash keys, the exact same object (not a copy)
must be used to retrieve the hash value.

In the description of the functions below, the argument HARRAY has one of three forms: NIL, in which
case a hash array provided by the system, SYSHASHARRAY, is used; a hash-array created by the function
HARRAY; or a list, CAR of which is a hash array. The latter form is used for specifying what is to be
done on overflow, as described below.

(HARRAY LEN) , N ‘ _ [Function]
Creates a hash array containing at least LEN hash keys.

(HARRAYSIZE HARRAY) | [Function]
Returns the size of HARRAY; the number of hash keys it can hold before becoming
“ﬁlll”

(CLRHASH' HARRAY) - -~ | B ~ [Function]

Clears all hash keys/values from HARRAY. Returns HARRAY.

(PUTHASH KEY VAL HARRAY) [Function]
Associates the hash value vAL with the hash key KEY in HARRAY. Replaces the
previous hash value, if any. If vaL is NIL, any old association is removed (hence
a hash value of NIL is not allowed). If HARRAY is full when PUTHASH is called
with a key not already in the hash array, the function HASHOVERFLOW is called,
and the PUTHASH is done to the value returned (see below). Returns vAL.

(GETHASH KEY HARRAY) [Function]
Returns the hash value associated with the hash key KEY in HARRAY. Returns NIL,

if KkEY is not found.

(REHASH OLDHARRAY NEWHARRAY) [Function]
Hashes all hash keys and values in OLDHARRAY into NEWHARRAY. The two hash
arrays do not have to be (and usually aren’t) the same size. Returns NEWHARRAY.

(MAPHASH HARRAY MAPHFN) [Function]
MAPHFN is a function of two arguments. For each hash key in HARRAY, MAPHFN
will be applied to (1) the hash value, and (2) the hash key. For example,
[MAPHASH A

(FUNCTION (LAMBDA (VAL KEY)
(if (LISTP KEY) then (PRINT VAL)]

will print the hash value for all hash keys that are lists. MAPHASH returns HARRAY.
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(DMPHASH HARRAY; HARRAY, --- HARRAYY) [NLambda NoSpread Function]
Prints on the primary output file LOADable forms which will restore the hash-arrays
contained as the values of the atoms HARRAY;, HARRAY;, - - - HARRAY. Example:

. (DMPHASH SYSHASHARRAY) will dump the system hash-array.

Note: all EQ identities except atoms and small integers are lost by dumping
and loading because READ will create new structure for each item. Thus if two
lists contain an EQ substructure, when they are dumped and loaded back in, the
corresponding substructures while EQUAL are no longer EQ. The HORRIBLEVARS
file package command (page 11.25) provides a way of dumping hash tables such
that these identities are preserved.

28.1 Hash Overflow

- When a hash array becomes full, attempting to add another hash key will cause the function
HASHOVERFLOW to be called. This will either automatically enlarge the hash array, or cause the error
HASH TABLE FULL. How hash overflow is handled is determined by the form that was passed to
PUTHASH:

HARRAY If a plain hash array is passed to a hash function, and it overflows, the error HASH
ARRAY FULL is generated.

" NIL ~ 'If a hash function is passed NIL as its HARRAY argument, the system hash array
a " - SYSHASHARRAY is used. This array is not used by the system, but is provided for -
the user. If SYSHASHARRAY overflows, it is automatically enlarged by 1.5.

(HARRAY . N) N is a positive integer. This form specifies that upon hash overflow, a new
hash-array is created with N more cells than the current hash-array.

(HARRAY . F) F is a floating point number. This form specifies that upon hash overflow, the new
' o hash array will be F times the size of the current hash-array.

(HARRAY . FN) FN is a function name or a lambda expression. This form specifies that upon hash
overflow, FN is called with (HARRAY . FN) as its argument. If FN returns a
number, the number will be the size of the new hash array. Otherwise, the new
size defaults to 1.5 times the size of the old hash array. FN could be used to print -
a message, or perform some monitor function.

( HARRAY) Equivalent to (HARRAY . 1.5).

If a list form is used, upon hash overflow the new hash-array is RPLACAed into the dotted pair, and
HASHOVERFLOW returns it.

2.9 NUMBERS AND ARITHMETIC FUNCTIONS

Numnterical atoms or simply numbers, do not have value cells, function definition cells, property lists,
or explicit print names. There are three different types of numbers in Interlisp: small integers, large
integers, and floating point numbers. Small integers are those integers that can be directly stored within a
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pointer value, The range of small integers is implementation-dependent. Since a large integer or floating
point number can be (in value) any full word quantity (and vice versa), it is necessary to distinguish
between those full word quantities that represent large integers or floating point numbers, and other
Interlisp pointers. We do this by “boxing” the number: When a large integer or floating point number is
created (via an arithmetic operation or by READ), Interlisp gets a new word from “number storage” and
puts the large integer or floating point number into that word. Interlisp then passes around the pointer to
that word, i.e., the “boxed number”, rather than the actual quantity itself. Then when a numeric function
needs the actual numeric quantity, it performs the extra level of addressing to obtain the “value” of the
number. This latter process is called “unboxing”. Note that unboxing does not use any storage, but that
each boxing operation uses one new word of number storage. Thus, if a computation creates many large
integers or floating point numbers, i.e., does lots of boxes, it may cause a garbage collection of large
integer space, or of floating point number space. Different implementations of Interlisp may use different
boxing strategies. Thus, while lots of arithmetic operations may lead to garbage collections, this is not
necessarily always the case.

The following functions can be used to distinguish the different types of numbers:

(SMALLP x) [Function]
Returns x, if x is a small integer; NIL otherwise. Does not generate an error if x

is not a number.

(FIXP x) [Function]
Returns x, if x is an mteger (between MIN.FIXP and MAX.FIXP); NIL otherwise.
Note that FIXP is true for both large and small integers. Does not generate an
error if x is not a number.

(FLOATP x) [Function]
Returns x if x is a floating point number; NIL otherwise. Does not give an error

if x is not a number.

(NUMBERP x) [Function]
Returns x, if x is a number of any type (FIXP or FLOATP); NIL otherwise. Does

not generate an error if x is not a number.

Note that if (NUMBERP x) is true, then either (FIXP x) or (FLOATP Xx) is
true.

Each small integer has a unique representation, so EQ may be used to check equality. Note that EQ
should not be used for large integers or floating point numbers, EQP, IEQP, or EQUAL must be used
instead.

(EQP x Y) [Function]
Returns T, if x and v are EQ, or equal numbers; NIL otherwise. Note that EQ
may be used if X and v are known to be small integers. EQP does not convert
X and v to integers, e.g., (EQP 2000 2000.3) => NIL, but it can be used
to compare an integer and a floating point number, e.g.,, (EQP 2000 2000.0)
=> T. EQP does not generate an error if X or Y are not numbers.

Note: EQP can also be used to compare stack pointers (page 7.3) and compiled
code objects (page 5.8).
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2.9.1 Integer Arithmetic

The input syntax for an integer is an optional sign (+ or -) followed by a sequence of digits, followed
by an optional Q, and terminated by a delimiting character. If the Q is present, the digits are interpreted
in octal, otherwise in decimal, e.g. 77Q and 63 both correspond to the same integers, and in fact are
indistinguishable internally since no record is kept of how integers were created.

The setting of RADIX (page 6.19), determines how integers are printed: signed or unsigned, octal or
decimal. :

Integers are created by PACK and MKATOM when given a sequence of characters observing the above
syntax, e.g. (PACK '(1 2 Q)) => 10. Integers are also created as a result of arithmetic operations.

The range of integers of various types is implementation-dependent. This information is accessable to the
user through the following variables:

MIN.SMALLP _ [Variable]
MAX.SMALLP [Variable]
The smallest/largest possible small integer. ,
MIN.FIXP [Variable]
MAX.FIXP [Variable]

The smallest/largest possible large integer.

MIN.INTEGER , _ , [Variable]
MAX.INTEGER : ’ [Variable]
The smallest/largest possible integer representable. Currently, these variables
are equal to MIN.FIXP and MAX.FIXP; they may be different in future
implementations with other methods for representing integers.

In Interlisp-D, the action taken on integer overflow is determined with the following function:

(OVERFLOW FLG) [Function]
Sets a flag that determines the system response to integer overflow; returns the
previous setting. If FLG=T, an error occurs on integer overflow. If FLG=NIL, the
largest (or smallest) integer is returned as the result of the overflowed computation.
If FLG=0, the result is returned modulo 2t32 (the default action).

All of the functions described below work on integers. Unless specified otherwise, if given a floating point
number, they first convert the number to an integer by truncating the fractional bits, e.g., (IPLUS 2.3
3.8) =5; if given a non-numeric argument, they generate an error, NON-NUMERIC ARG.

(IPLUS x; X, -+ Xp) [NoSpread Function]
Returns the sum x; + X3 + -+ + X5+ (IPLUS)=0.

(IMINUS x) _ [Function]
-X

(IDIFFERENCE x Y) ‘ [Function]
X-Y
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(ADD1 x) [Function]
x+1 '

(suB1 x) - : [Function]
x-1

(ITIMES x; X5 - Xpy) | ' - [NoSpread Function]

Returns the product x; * x; * --- * x» (ITIMES)=1.

(IQUOTIENT x Y) [Function]
x / v truncated. Examples:

(IQUOTIENT 3 2) => 1
(IQUOTIENT -3 2) => -1

(IREMAINDER x Y) [Function]
Returns the remainder when x is divided by v. Example:

(IREMAINDER 3 2) => '1-

(IMOD x Y) ‘ [Function]
Computes the integer modulus; this differs from IREMAINDER in that the result
is always a non-negative integer in the range [0, 7).

"(IGREATERP X Y) 3 B . . [Function] .
T, if x > v; NIL otherwise. ' :

(ILESSP x Y) : [Function]
T, if x < v; NIL otherwise.

(IGEQ x Y) [Function]
T, if x > v; NIL otherwise.

(ILEQ x Y) [Function]
T, if x < v; NIL otherwise.

(IMIN x; x5 -+ Xp) ‘ [NoSpread Function]
Returns the minimum of Xy, X,, - -, Xn. (IMIN) returns the largest possible large
integer, the value of MAX.FIXP.

(IMAX x; X5 .. Xy) [NoSpread Function]
Returns the maximum of x;, X,, ---, X5 (IMAX) returns the smallest possible

large integer, the value of MIN. FIXP.

(IEQP N M) [Function]
Returns T if ¥ and M are EQ or equal integers; NIL otherwise. Note that EQ
may be used if N and M are known to be small integers. IEQP converts N and M
to integers, e.g., (IEQP 2000 2000.3) => T. Causes NON-NUMERIC ARG
error if either N or M are not numbers.

(ZEROP x) [Function]
(EQ x 0).
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(MINUSP x)

(FIX x)

(GCD x Y)

Logical Arithmetic Functions

Note: ZEROP should not be used for floating point numbers because it uses EQ.
Use (EQP x 0) instead.

[Function]
Returns T if x is negatlve NIL otherwise. Does not convert X to an integer, but
simply checks the sign bit.

[Function]
If x is an integer, returns x. Otherwise, converts X to an integer by truncating
fractional bits, e.g., (FIX 2.3) => 2, (FIX -1.7) => -1,

Since FIX is also a programmer’s assistant command (page 8.10), typing FIX
directly to Interlisp will not cause the function FIX to be called.

[Function]
Returns the greatest common divisor of X and v, e.g., (GCD 72 64)=8.

29.2  Logical Arithmetic Functions

(LOGAND x; X,

(LOGOR Xl XZ R

(LOGXOR X; Xp ---

(LSH x N)

(RSH x N)

(LLSH x N)

) [NoSpread Function]

Returns the logical AND of all its arguments, as an integer. Example:

(LOGAND 7 5 6) => 4

Xy) A ’ ‘ o [NoSpread Function]
Returns the logical OR of all its arguments, as an integer. Example:

(LOGOR 1 3 9) => 11

XN) [NoSpread Function]
Returns the logical exclusive OR of its arguments, as an integer. Example:

(LOGXOR 11 5) => 14
(LOGXOR 11 5 9) <=> (LOGXOR 14 9) => 7

' [Functmn]
(arithmetic) “Left Shift.” Returns x shifted left ~ places with the sign bit
unaffected. x can be positive or negative. If N is negative, X is shifted right -N
places.

[Function]

(arithmetic) “Right Shift.” Returns x shifted right ~ places, with the sign bit
unaffected, and copies of the sign bit shifted into the leftmost bit. X can be
positive or negative. If N is negative, x is shifted left -N places.

Warning: Be careful if using RSH to simulate division; RSHing a negative number
is not generally equivalent to deviding by a power of two.

_ [Function]
“Logical Left Shift.”
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(LRSH x N) | [Function]
“Logical Right Shift.”

(INTEGERLENGTH N) ' [Function]
Returns the number of bits needed to represent N (coerced to a FIXP). This is
equivalent to: 1+ floor{log2[abs[n]]]. (INTEGERLENGTH 0) = 0.

(POWEROFTWOP N) [Function]
Returns non-NIL if N (coerced to a FIXP) is a power of two.

(EVENP x Y) | [NoSpread Function]
If v is not given, equivalent to (ZEROP (IMOD x 2)); otherwise equivalent to

(ZEROP (IMOD x Y)).

(0DDP x Y) [NoSpread Function]
Equivalent to (NOT (EVENP x Y)).

The difference between a logical and arithmetic right shift lies in the treatment of the sign bit. Logical
shifting treats it just like any other bit; arithmetic shifting will not change it, and will “propagate”
rightward when actually shifting rightwards. Note that shifting (arithmetic) a negative number “all the
way” to the right yields -1, not 0.

The following “logical” arithmetic functions are derived from Common Lisp, and have both macro
and function definitions (the macros are for speed in running of compiled code). The following code
equivalences. are primarily for definitional purposes, and should not .be considered an implementation
(especially since the real implementation tends to be faster and less “consy” than would be apparent from
the code here).

Note: The following logical functions are currently only implemented in Interlisp-D.

(LOGNOT N) [Function]
(LOGXOR N -1)

(BITTEST N MASK) [Function]
(NOT (ZEROP (LOGAND N MASK)))

(BITCLEAR N MASK) {Function]
(LOGAND N (LOGNOT MASK))

(BITSET N MASK) . {Function]
(LOGOR N MASK)

(MASK.1'S POSITION SIZE) [Function]
(LLSH (SuB1 (EXPT 2 s1ze))

POSITION)
(MASK.0'S POSITION SIZE) [Function]

(LOGNOT (MASK.1'S POSITION SIZE))
(LOADBYTE N POSITION SIZE) [Function]

(LOGAND (LRSH N POSITION)
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(MASK.1'S 0 s1ZE))
(DEPOSITBYTE N POSITION SIZE BYTE) [Function]

(LOGOR (BITCLEAR N (MASK.1'S POSITION SIZE))
(LLSH (LOGAND BYTE (MASK.1'S 0 sI1zZE))
POSITION) )

(ROT X N FIELDSIZE) [Function]
“Rotate bits in field”. This is a slight extension of the CommonLisp ROT function.

It performs a bitwise left-rotation of the integer x, by N places, within a field of
FIELDSIZE bits wide. Bits being shifted out of the position selected by (EXPT 2
(SUB1 rieELDsIZE)) will flow into the “units” position.

The optional argument FIELDSIZE defaults to the “cell” size (the integerlength of
the current maximum F IXP), and must either be a positive integer, or else be one
of the litatoms CELL or WORD. In the latter two cases the appropriate numerical
values are respectively substituted. A macro optimizes the case where FIELDSIZE is
WORD and N is 1.

The notions of position and size can be combined to make up a “byte specifier”, which is constructed by
the macro BYTE [note reversal of arguments as compare with above functions]:

(BYTE SIZE POSITION) [Macro]
~ Constructs and returns a “byte specifier” containing SIZE and POSITION.

(BYTESIZE BYTESPEC) - ' | " [Macro]
Returns the s1ze componant of the “byte specifier” BYTESPEC.

(BYTEPOSITION BYTESPEC) [Macro]
Returns the posITron componant of the “byte specifier” BYTESPEC.

(LDB BYTESPEC VAL) [Macro]

(LOADBYTE vaL
(BYTEPOSITION BYTESPEC)
(BYTESIZE BYTESPEC))

(DPB N BYTESPEC VAL) [Macro]

(DEPOSITBYTE vAL
(BYTEPOSITION BYTESPEC)
(BYTESIZE BYTESPEC)
N)

29.3 Floating Point Arithmetic

A floating point number is input as a signed integer, followed by a decimal point, followed by another
sequence of digits called the fraction, followed by an exponent (represented by E followed by a signed
integer) and terminated by a delimiter.
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Both signs are optional, and either the fraction following the decimal point, or the integer preceding the
decimal point may be omitted. One or the other of the decimal point or exponent may also be omitted,
but at least one of them must be present to distinguish a floating point number from an integer. For
example, the following will be recognized as floating point numbers:

5.  5.00 5.01 .3
5E2 5.1E2 5E-3  -5.2E+6

Floating point numbers are printed using the format control specified by the function FLTFMT (page
6.20). FLTFMT is initialized to T, or free format. For example, the above floating point numbers would
be printed free format as:

5.0 5.0 5.01 .3
500.0 510.0 .005 -5.2E6

6

Floating point numbers are created by the read program when a or an E appears in a number,
e.g., 1000 is an integer, 1000. a floating point number, as are 1E3 and 1.E3. Note that 1000D,
1000F, and 1E3D are perfectly legal literal atoms. Floating point numbers are also created by PACK and
MKATOM, and as a result of arithmetic operations. v

PRINTNUM (page 6.21) permits greater controls on the printed appearance of floating point numbers,
allowing such things as left-justification, suppression of trailing decimals, etc.

The floating point number range is stored in the following variables: .

MIN.FLOAT ; o co : - [Variable]
The smallest possible floating point number.

MAX.FLOAT [Variable]
The largest possible floating point number.

All of the functions described below work on floating point numbers. Unless specified otherwise, if given an
integer, they first convert the number to a floating point number, e.g., (FPLUS 1 2.3) <=> (FPLUS
1.0 2.3) => 3.3;if given a non-numeric argument, they generate an error, NON-NUMERIC ARG.

(FPLUS x; x5 --- Xp) [NoSpread Function]
X; + Xg + - + Xy

(FMINUS x) [Function]
- x .

(FDIFFERENCE x Y) [Function]
X-Y

(FTIMES x; X5 -+ Xp) [NoSpread Function]
XI*XZ*...*XN

(FQUOTIENT x v) : ~ [Function]
x/Y ’

(FREMAINDER x 7Y) [Function]

Returns the remainder when x is divided by y. Equivalent to:
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(FDiFFERENCE x (FTIMES v (FIX (FQUOTIENT x Y))))
Example:
(FREMAINDER 7.5 2.3) => 0.6

(MINUSP x) [Function]
T, if x is negative; NIL otherwise. Works for both integers and floating point
numbers.

(FGREATERP X Y) [Function]

T, if x> v, NIL otherwise.

(FLESSP x Y) [Function]
T, if x < v, NIL otherwise.

(FEQP x Y1) [Function]
Returns T if ¥ and M are equal floating point numbers; NIL otherwise. FEQP
converts N and M to floating point numbers.Causes NON-NUMERIC ARG error if
either N or M are not numbers.

(FMIN x; X5 -+ Xp) [NoSpread Function]

Returns the minimum of x;, X3, -+, Xy5. (FMIN) returns the largest possible

floating point number, the value of MAX . FLOAT.
(FMAX X, X, .. Xy) [NoSpread Function]
; : Returns the maximum of Xx;, X, :--, Xj. (FMAX) returns the smallest possible

floating point number, the value of MIN. FLOAT.

(FLOAT x) [Function]
Converts x to a floating point number. Example:

(FLOAT 0) => 0.0
2.9.4 Mixed Arithmetic

The functions in this section are “generic” floating point arithmetic functions. If any of the arguments
are floating point numbers, they act exactly like floating point functions, and float all arguments, and
return a floating point number as their value. Otherwise, they act like the integer functions. If given a
non-numeric argument, they generate an error, NON-NUMERIC ARG.

(PLUS x; x5 -+ Xp) [NoSpread Function]
X+ X+ - + X

(MINUS x) [Function]
-x

(DIFFERENCE X Y) ‘ ' [Function]
X-Y

2.44



DATA TYPES

(TIMES X; X -+ Xy) [NoSpread Function]
Xy "X %Xy

"(QUOTIENT x ¥) [Function]
If x and v are both integers, returns (IQUOTIENT x Y), otherwise (FQUOTIENT
X Y).

(REMAINDER x Y) _ [Function]
If x and v are both integers, returns ( IREMAINDER x Y), otherwise (FREMAINDER
X Y).

(GREATERP X Y) [Function]
T, if x > v, NIL otherwise.

(LESSP x Y) _ [Function]
T if x < v, NIL otherwise.

(GEQ x Y) [Function]

‘ T, if x > v, NIL otherwise. : _

(LEQ x Y) ’ [Function]
T, if x < v, NIL otherwise.

(MIN x; Xx; -+ Xp) [NoSpread Function]

' : , Returns the minimum of Xx; X, ---, Xy. (MIN) returns the value of
MAX.INTEGER. ’

(MAX x; X5 -+ Xp) [NoSpread Function]
Returns the maximum of X; X, -+, Xy. (MAX) returns the value of
MIN.INTEGER.

(ABS x) {Function]
x if x > 0, otherwise -x. ABS uses GREATERP and MINUS, (not IGREATERP and

IMINUS).
2.9.5 Special Functions

(EXPT M N) {Function]
Returns mtN. If M is an integer and N is a positive integer, returns an integer,
e.g, (EXPT 3 4) => 81, otherwise returns a floating point number. If M is
negative and N fractional, an error is generated, ILLEGAL EXPONENTIATION. If
N is floating and either too large or too small, an error is generated, VALUE OUT
OF RANGE EXPT.

(SQRT N) [Function]
Returns the square root of N as a floating point number. N may be fixed or floating
point. Generates an error if N is negative. '

(LOG x) , [Function]
Returns the natural logarithm of x as a floating point number. x can be integer
or floating point.
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(ANTILOG x) - [Function]
Returns the floating point number whose logarithm is x. X can be integer or floating

point. Example:
(ANTILOG 1) = e => 2.71828...

(SIN X RADIANSFLG) [Function]
Returns the sine of x as a floating pomt number. X is in degrees unless

RADIANSFLG=T.

(COS X RADIANSFLG) [Function]
Similar to SIN.
(TAN X RADIANSFLG) [Function]

Similar to SIN.

(ARCSIN X RADIANSFLG) [Function]
X is a number between -1 and 1 (or an error is generated). The value of ARCSIN is

a floating point number, and is in degrees unless RADIANSFLG=T. In other words,
if (ARCSIN x RADIANSFLG) =2z then (SIN Zz RADIANSFLG) =X. The range of
the value of ARCSIN is -90 to +90 for degrees, -r/2 to w/2 for radians.

(ARCCOS X RADIANSFLG) [Function]
Similar to ARCSIN. Range is 0 to 180, 0 to . v

(ARCTAN X RADIANSFLG) o : ' [Function]
Similar to ARCSIN. Range is 0 to 180, 0 to .

(ARCTAN2 Y X RADIANSFLG) [Function]
Computes (ARCTAN (FQUOTIENT Y X) RADIANSFLG), and returns a correspond-

ing value in the range -180 to 180 (or -r to =), i.e. the result is in the proper
quadrant as determined by the signs of x and v.

(RAND LOWER UPPER) [Function]
Returns a pseudo-random number between LOWER and UPPER inclusive, i.e.,

RAND can be used to generate a sequence of random numbers. If both limits are
integers, the value of RAND is an integer, otherwise it is a floating point number.
The algorithm is completely deterministic, i.e., given the same initial state, RAND
produces the same sequence of values. The internal state of RAND is initialized
using the function RANDSET described below.

(RANDSET x) [Function]
Returns the internal state of RAND. If x=NIL, just returns the current state. If
x=T, RAND is initialized using the clocks, and RANDSET returns the new state.
Otherwise, x is interpreted as a previous internal state, i.e., a value of RANDSET,
and is used to reset RAND. For example,

. « (SETQ OLDSTATE (RANDSET))
« (for X from 1 to 10 do (PRIN1 (RAND 1 10)))

2847592748NIL
« (RANDSET OLDSTATE)
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« (for X from 1 to 10 do (PRIN1 (RAND 1 10)))
2847592748NIL
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CHAPTER 3

THE RECORD PACKAGE

The advantages of “data abstraction” have long been known: more readable code, fewer bugs, the ability
. to change the data structure without having to make major modifications to the program, etc. The record
package encourages and facilitates this good programming practice by providing a uniform syntax for
creating, accessing and storing data into many different types of data structures (arrays, list structures,
association lists, etc.) as well as removing from the user the task of writing the various manipulation
routines. The user declares (once) the data structures used by his programs, and thereafter indicates
the manipulations of the data in a data-structure-independent manner. Using the declarations, the
record package automatically computes the corresponding Interlisp expressions necessary to accomplish
the indicated access/storage operations. If the data structure is changed by modifying the declarations,
the programs automatically adjust to the new conventions.

The user describes the format of a data structure (record) by making a “record declaration” (see page
3.5). The record declaration is a description of the record, associating names with its various parts, or
“fields”. For example, the record declaration (RECORD MSG (FROM TO . TEXT)) describes a data
structure called MSG, which contains three fields: FROM, TO, and TEXT. The user can reference these fields
by name, to retrieve their values or to store new values into them, by using the FETCH and REPLACE
operators (page 3.1). The CREATE operator (page 3.3) is used for creating new instances of a record, and
TYPE? (page 3.4) is used for testing whether an object is an instance of a particular record. (note: all
record operators can be in either upper or lower case.)

Records may be implemented in a variety of different ways, as determined by the first element (“record
type”) of the record declaration. RECORD (used to specify elements and tails of a list structure) is just
one of several record types currently implemented. The user can specify a property list format by using
the record type PROPRECORD, or that fields are to be associated with parts of a data structure via a
specified hash array by using the record type HASHLINK, or that an entirely new data type be allocated
(as described on page 3.14) by using the record-type DATATYPE.

The record package is implemented through the DWIM/CLISP facilities, so it contains features such as
spelling correction on field names, record types, etc. Record operations are translated using all CLISP
declarations in effect (standard/fast/undoable); it is also possible to declare local record declarations that
override global ones (see page 16.9).

The file package includes a RECORDS file package command for dumping record declarations (page 11.25),
and FILES? and CLEANUP will inform the user about records that need to be dumped.
3.1 FETCH AND REPLACE

The fields of a record are accessed and changed with the FETCH and REPLACE operators. [f the record
MSG has the record declaration (RECORD MSG (FROM TO . TEXT)), and X is a MSG data structure,
(fetch FROM of X) will return the value of the FROM field of X, and (replace FROM of X with
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Y) will replace this field with the value of Y. In general, the value of a REPLACE operation is the same
as the value stored into the field.

Note that the form (fetch FROM of X) implicitly states that X is an instance of the record MSG, or
at least it should to be treated as such for this particular operation. In other words, the interpretation
of (fetch FROM of X) never depends on the value of X. Therefore, if X is not a MSG record, this
may produce incorrect results. The TYPE? record operation (page 3.4) may be used to test the types of

objects.

If there is another record declaration, (RECORD REPLY (TEXT . RESPONSE)), then (fetch TEXT
of X) is ambiguous, because X could be either a MSG or a REPLY record. In this case, an error will
occur, AMBIGUOUS RECORD FIELD. To clarify this, FETCH and REPLACE can take a list for their “field”
argument: (fetch (MSG TEXT) of X) will fetch the TEXT field of an MSG record.

Note that if a field has an identical interpretation in two declarations, e.g. if the field TEXT occurred in
the same location within the declarations of MSG and REPLY, then (fetch TEXT of X) would not be

considered ambiguous.

Another complication can occur if the fields of a record are themselves records. The fields of a record
‘can be further broken down into sub-fields by a “subdeclaration” within the record declaration (see page
3.10). For example,

(RECORD NODE (POSITION . LABEL) (RECORD POSITION (XLOC . YLOC)))

permits the user to access the ROSITION field with (fetch POSITION of X) or its subfield XLOC
with (fetch XLOC of X). .

The user may also elaborate a field by declaring that field name in a separate record declaration (as
opposed to an embedded subdeclaration). For instance, the TEXT field in the MSG and REPLY records
above may be subdivided with the seperate record declaration (RECORD TEXT (HEADER . TXT)).
Fields of subfields (to any level of nested subfields) are accessed by specifying the “data path” as a list
of record/field names, where there is some path from each record to the next in the list. For instance,
(fetch (MSG TEXT HEADER) of X) indicates that X is to be treated as a MSG record, its TEXT
field should be accessed, and its HEADER field should be accessed. Only as much of the data path as
is necessary to disambiguate it needs to be specified. In this case, (fetch (MSG HEADER) of X) is
sufficient. The record package interprets a data path by performing a tree search among all current record
declarations for a path from each name to the next, considering first local declarations (if any) and then
global ones. The central point of separate declarations is that the (sub)record is not tied to another record
(as with embedded declarations), and therefore can be used in many different contexts. If a data-path
rather than a single field is ambiguous, (e.g., if there were yet anothier declaration (RECORD TO (NAME
. HEADER)) and the user specified (fetch (MSG HEADER) of X)), the error AMBIGUOUS DATA
PATH is generated.

FETCH and REPLACE forms are translated using the CLISP declarations in effect. FFETCH and
FREPLACE are versions which insure fast CLISP declarations will be in effect, /REPLACE insures undoable
declarations.
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3.2 CREATE

Record operations can be applied to arbitrary structures, i.e., the user can explicitely creating a data
structure (using CONS, etc), and then manipulate it with FETCH and REPLACE. However, to be consistant
with the idea of data abstraction, new data should be created using the same declarations that define its
data paths. This can be done with an expression of the form:

" (CREATE RECORD-NAME . ASSIGNMENTS)

A CREATE expression translates into an appropriate Interlisp form using CONS, LIST, PUTHASH, ARRAY,
etc., that creates the new datum with the various fieids initialized to the appropriate values. ASSIGNMENTS
is optional and may contain expressions of the following form:

FIELD-NAME + FORM
Specifies initial value for FIELD-NAME.

USING FORM Speciﬁes that for all fields not explicitly given a value, the value of the corresponding
ﬁeld in FORM is to be used.

COPYING FORM Similar to USING except the corresponding values are copied (with COPYALL).

REUSING FORM Similar to USING, except that wherever possible, the correspondlng structure in
FORM is used.

. SMASHING FORM . A néw instance of the record ié'not created at all; rather, the value'of FORM s
used and smashed.

The record package goes to great pains to insure that the order of evaluation in the translation
is the same as that given in the original CREATE expression if the side effects of one expression
might affect the evaluation of another. For example, given the declaration (RECORD CONS (CAR .
CDR)), the expression {CREATE CONS CDRe«X CAR«Y) will translate to (CONS Y X), but (CREATE
CONS CDR«(F00) CAR«(FIE)) will translate to ((LAMBDA ($$1) (CONS (PROGN (SETQ $351
(FOO)) (FIE)) $3$1))) because FOO might set some variables used by FIE. :

Note that (CREATE RECORD REUSING FORM ...) does not itself do any destructive operations on
the value of ForM. The distinction between USING and REUSING is that (CREATE RECORD REUSING
FORM ...) will incorporate as much as possible of the old data structure into the new one being created,
while (CREATE RECORD USING FORM ...) will create a completely new data structure, with only
the contents of the fields re-used. For example, CREATE REUSING a PROPRECORD just CONSes the new
property names and values onto the list, while CREATE USING copies the top level of the list. Another
example of this distinction occurs when a field is elaborated by a subdeclaration: USING will create a
new instance of the sub-record, while REUSING will use the old contents of the field (unless some field
of the subdeclaration is assigned in the CREATE expression.)

If the value of a field is neither explicitly specified, nor implicitly specified via USING, COPYING or
REUSING, the default value in the declaration is used, if any, otherwise NIL. (Note: For BETWEEN fields
in DATATYPE records, N1 is used; for other non-pointer fields zero is used.) For example, following
(RECORD A (B C.D) D « 3),

(CREATE A B¢T) ==> (LIST T NIL 3)
(CREATE A BeT USING X) ==> (LIST T (CADR X) (CADDR X))
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(CREATE A B¢T COPYING X)) ==> [LIST T (COPYALL (CADR X)) (COPYALL (CADDR X]
(CREATE A BeT REUSING X) ==> (CONS T (CDR X))

33 TYPE?

The record package allows the user to test if a given datum “looks like” an instance of a record. This can
be done via an expression of the form

(TYPE? RECORD-NAME FORM)

TYPE? is mainly intended for records with a record type of BATATYPE or TYPERECORD. For DATATYPEs,
the TYPE? check is exact; i.e. the TYPE? expression will return non-NIL only if the value of FORM
is an instance of the record named by RECORD-NAME. For TYPERECORDs, the TYPE? expression will
check that the value of FORM is a list beginning with RECORD-NAME. For ARRAYRECORDs, it checks that
the value is an array of the correct size. For PROPRECORDs and ASSOCRECORDs, a TYPE? expression
will make sure that the value of FORM is a property/association list with property names among the
field-names of the declaration.

Attempting to execute a TYPE? expression for a record of type ACCESSFNS, HASHLINK or RECORD
~will cause an error, TYPE? NOT IMPLEMENTED FOR THIS RECORD. The user can (re)define  the
interpretation of TYPE? expressions for a particular declaration by mclusxon of an expressmn of the form
(TYPE? cowm) in the record declaration (see page 3.9).

34 WITH

Often it is necessary to manipulate the values of the fields of a particular record. The WITH construct can
be used to talk about the fields of a record as if they were variables within a lexical scope:

(WITH RECORD-NAME RECORD-INSTANCE FORM; --- FORMy)

RECORD-NAME is the name of a record, and RECORD-INSTANCE is an expression which evaluates to an
instance of that record. The expressions FORM, --- FORM; are evaluated so that references to variables
which are field-names of RECORD-NAME are unplemented via fetch and SETQs of those variables are
implemented via replace.

For example, given

(RECORD RECN (FLD1 FLDZN)
(SETQ INST (CREATE RECN FLD1 « 10 FLDZ « 20))

Then the construct »
(with RECN INST (SETQ FLD2 (PLUS FLD1 FLD2]

is equivalent to
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(replace FLD2 of INST with (PLUS (fetch FLD1 of INST) (fetch FLD2 of INST]

Note that the substitution is lexical: this operates by actually doing a substitution inside the forms.

35 RECORD‘DECLARATIQNS

.

A record is defined by evaluating a record declaration,! which is an expression of the form:
(RECORD-TYPE RECORD-NAME FIELDS . RECORD-TAIL)

RECORD-TYPE specifies the “type” of data being described by the record declaration, and thereby
implicitly specifies how the corresponding access/storage operations are performed. RECORD-TYPE
currently is either RECORD, TYPERECORD, ARRAYRECORD, ATOMRECORD, ASSOCRECORD, PROPRECORD,
DATATYPE, HASHLINK, ARRAYBLOCK or ACCESSFNS. RECORD and TYPERECORD are used to describe
list structures, DATATYPE to describe user data-types, ARRAYRECORD to describe arrays, ATOMRECORD
to describe (the property list of) litatoms, PROPRECORD to describe lists in property list format, and
ASSOCRECORD to describe association list format. HASHLINK can be used with any type of data: it
simply specifies the data path to be a hash-link. ACCESSFNS is also type-less; the user specifies the
data-paths in the record declaration itself, as described below.

RECORD-NAME is a litatom used to identify the record declaration for creating instances of the record
via CREATE, testing via TYPE?, and dumping to files via the RECORDS file package command (page
" 11.25). DATATYPE and TYPERECORD declarations also use RECORD-NAME to identify the data structure
(as described below).

FIELDS describes the structure of the record. Its exact interpretation varies with RECORD-TYPE:

RECORD [Record Type]
FIELDS is a list structure whose non-NIL literal atoms are taken as field-names
to be associated with the corresponding elements and tails of a list structure.
For example, with the record declaration (RECORD MSG (FROM TO . TEXT)),
(fetch FROM of X) translates as (CAR X).

NIL can be used as a place marker to fill an unnamed field, e.g., (A NIL B)
describes a three element list, with B corresponding to the third element. A number
may be used to indicate a sequence of NILs, e.g. (A 4 B) is interpreted as (A
NIL NIL NIL NIL B).

TYPERECORD [Record Type]
Similar to RECORD, except that RECORD-NAME is also used as an indicator in CAR
of the datum to signify what “type” of record it is. This type-field is used by
the record package in the translation of TYPE? expressions. CREATE will insert
an extra field containing RECORD-NAME at the beginning of the structure, and
the translation of the access and storage functions will take this extra field into

1L ocal record declarations are defined by including an expression of this form in the CLISP declaration
for that function, rather than evaluating the expression itself (see page 16.10).

3.5



ASSOCRECORD

PROPRECORD

Record Declarations

account. For example, for (TYPERECORD MSG (FROM TO . TEXT)), (fetch
FROM of X) translates as (CADR X), not (CAR X).

[Record Type]
FIELDS is a list of literal atoms. The fields are stored in association-list format:

((FIELDNAME,; . VALUE;) (FIELDNAME, . VALUE) --*)

Accessing is performed with ASSOC (or FASSOC, depending on current CLISP
declarations), storing with PUTASSOC. '

[Record Type]
FIELDS is a list of literal atoms. The fields are stored in “property list” format:

(FIELDNAME; VALUE; FIELDNAME,; VALUE, ---)

Accessing; is performed with LISTGET, storing with LISTPUT.

Both ASSOCRECORD and PROPRECORD are useful for defining data structures in which it is often the
case that many of the fields are NIL. A CREATE for these record types only stores those fields which are
non-NIL. Note, however, that with the record declaration (PROPRECORD FIE (H I J)) the expression
(CREATE FIE) would stll construct (H NIL), since a later operation of (replace J of X with
Y ) could not possibly change the instance of the record if it were NIL.

ARRAYRECORD

HASHL INK

ATOMRECORD

~ [Record Type]
FIELDS is a list of field-names that are associated with the corresponding elements
of an array. NIL can be used as a place marker for an unnamed field (element).
Positive integers can be used as abbreviation for the corresponding number of NILs.
For example, (ARRAYRECORD (ORG DEST NIL ID 3 TEXT)) describes an
eight element array, with ORG corresponding to the first element, ID to the fourth,
and TEXT to the eighth.

Note that ARRAYRECORD only creates arrays of pointers. Other kinds of arrays
must be implemented by the user with ACCESSFNS.

[Record Type]
FIELDS is either an atom FIELD-NAME, or a list ( FIELD-NAME HARRAYNAME
HARRAYSIZE). HARRAYNAME indicates the hash-array to be used; if not given,
SYSHASHARRAY is used. HARRAYSIZE is used for initializing the hash array: if
HARRAYNAME has not been initialized at the time of the declaration, it will be
set to (LIST (HARRAY (OR HARRAYSIZE 100))). HASHLINKs are useful as
subdeclarations to other records to add additional fields to already existing data-
structures.. For example, suppose that FOO is a record declared with (RECORD FOO
(A B C)). To add an aditional field BAR, without modifying the already-existing
data strutures, redeclare FOOQ with:

(RECORD FOO (A B C) (HASHLINK FOO (BAR BARHARRAY)))

Now, (fetch BAR of X) will translate into (GETHASH X BARHARRAY), hash-
ing off the existing /ist X.

[Record Type]
FIELDS is a list of property names, e.g.,, (ATOMRECORD (EXPR CODE MACRO
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BLKLIBRARYDEF)). Accessing is performed with GETPROP, storing with
PUTPROP. As with ACCESSFNS, CREATE is not initially defined for ATOMRECORD

records.

[Record Type]
Specifies that a new user data type with type name RECORD-NAME be allocated

via DECLAREDATATYPE (page 3.14). Unlike other record-types, the records of a

DATATYPE declaration are represented with a completely new Interlisp type, and
not in terms of other existing types.

FIELDS is a list of field specifications, where each specification is either a list
(FIELDNAME . FIELDTYPE), Or an atom FIELDNAME. If FIELDTYPE is omitted,
it defaults to POINTER. Options for FIELDTYPE are:

POINTER Field contains a pointér to any arbitrary Interlisp object.
BITS N Field contains an N-bit unsigned integer.

BETWEEN N; N; A generalization of BITS. Field may contain an integer
. X, such that x is greater than or equal to N, and less
than or equal to N, Enough bits are allocated to store a
number between 0 and N,-N4; Nj is appropriately added or

subtracted when the field is accessed or stored into.

INTEGER or FIXP  Field contains a full word signed integer (the size is

" implementation-dependent).

FLOATING or FLOATP
Field contains a full word floating point number.

FLAG ~Field is a one bit field that “contains” T or NIL.
For example, the declaration |

(DATATYPE FOO

((FLG BITS 12)

TEXT

(CNT BETWEEN 10 25)
HEAD

(DATE BITS 18)
(PRIO FLOATP)
(READ? FLAG)))

would define a data type FOOQ which occupies (in Interlisp-10) three words of storage
with two pointer fields (one word), a full word floating point number, fields for an
18, 12, and 4 bit unsigned integer, and a flag (one bit), with 1 bit left over. Fields
are allocated in such a way as to optimize the storage used and not necessarily in the
order specified. To store this information in a conventional RECORD list structure,
e.g.., (RECORD MSG (FLG TEXT CNT DATE PRIO . HEAD)), would take 5
words of list space and up to three number boxes (for FLG, DATE, and PRIO).

Since the user data type must be set up at run-time, the RECORDS file package
command will dump a DECLAREDATATYPE expression as well as the DATATYPE
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- declaration itself. The INITRECORDS file package command (page 11.25) will

dump only the DECLAREDATATYPE expression.

Note: DATATYPE declarations should be used with caution within local declarations,
since a new and different data type is allocated for each one with a different name.

‘ [Record Type]
(Not implemented in Interlisp-D) Similar to a DATATYPE declaration, except that
the objects it creates and manipulates are arrays. As with DATATYPE’s, the actual
order of the fields of the ARRAYBLOCK may be shuffled around in order to satisfy
garbage collector constraints.

For example,

(ARRAYBLOCK FOO
((F1 INTEGER)
(F2 FLOATING)
(F3 POINTER)
(F4 BETWEEN -30 -2)
(F5 BITS 12)
(F6 FLAG)))

[Record Type]

"FIELDS is a list of elements of the form (FIELD-NAME ACCESSDEF SETDEF),

i.e. for each fieldname, the user specifies how it is to be accessed and set.

" ACCESSDEF should be a function of one argument, the datum, and will be used

for accessing. SETDEF should be a function of two arguments, the datum and
the new value, and will be used for storing. SETDEF may be omitted, in which
case, no storing operations are allowed. ACCESSDEF and/or SETDEF may also be a
LAMBDA expression or a form written in terms of variables DATUM and (in SETDEF)
NEWVALUE. For example, given the declaration

[ACCESSFNS ((FIRSTCHAR (NTHCHAR DATUM 1)
(RPLSTRING DATUM 1 NEWVALUE))
(RESTCHARS (SUBSTRING DATUM 2]

(replace FIRSTCHAR of X with Y) would translate to (RPLSTRING X 1
Y). Since no seTDEF is given for the RESTCHARS field, attempting to perform
(replace RESTCHARS of X with Y) would generate an error, REPLACE
UNDEFINED FOR FIELD. Note that ACCESSFNS do not have a CREATE definition.
However, the user may supply one in the defaults and/or subdeclarations of the
declaration, as described below. Attempting to CREATE an ACCESSFNS record
without specifying a create definition will cause an error CREATE NOT DEFINED
FOR THIS RECORD.

ACCESSDEF and SETDEF can also be a property list which specify FAST, STANDARD
and UNDdABLE versions of the ACCESSFNS forms, e.g.

[ACCESSFNS LITATOM ((DEF (STANDARD GETD FAST FGETD)
(STANDARD PUTD UNDOABLE /PUTD]

means if FAST declaration is in effect, use FGETD for fetching, if UNDOABLE, use
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/PUTD for saving.

The ACCESSFNS facility allows the use of data-structures not specified by one of the built-in record
types. For example, one possible representation of a data-structure is to store the fields in parallel arrays,
especially if the number of instances required is known, and they do not need to be garbage collected.
Thus, to implement a data structure called LINK with two fields FROM and TO, one would have two
arrays FROMARRAY and TOARRAY. The representation of an “instance” of the record would be an integer
which is used to index into the arrays. This can be accomplished with the declaration:

[ACCESSFNS LINK
((FROM (ELT FROMARRAY DATUM)
(SETA FROMARRAY DATUM NEWVALUE))
(TO (ELT TOARRAY DATUM)
(SETA TOARRAY DATUM NEWVALUE)))
(CREATE (PROG1 (SETQ LINKCNT (ADD1 LINKCNT))
(SETA FROMARRAY LINKCNT FROM)
(SETA TOARRAY LINKCNT T0)))
(INIT (PROGN (SETQ FROMARRAY (ARRAY 100))
(SETQ FROMARRAY (ARRAY 100))]

To CREATE a new LINK, a counter is incremented and the new ¢lements stored (although the CREATE
form given the declaration should actually include a test for overflow).

RECORD-TAIL is optional. It may contain expressions of the form:

FIELD-NAME ¢ FORM :
Allows the user to specify within the record declaration the default value to be
stored in FIELD-NAME by a CREATE (if no value is given within the CREATE
expression itself). Note that FORM is evaluated at CREATE time, not when the
declaration is made.

(CREATE FORM) Defines the manner in which CREATE of this record should be performed. This
provides a way of specifying how ACCESSFNS should be created or overriding the
usual definition of CREATE. If FORM contains the field-names of the declaration as
variables, the forms given in the CREATE operation will be substituted in. If the
word DATUM appears in the create form, the original CREATE definition is inserted.
This effectively allows the user to “advise” the create.

Note: (CREATE rForM) may also be specified as “RECORD-NAME « FORM’, e.g.
C « (CONS A D). '

(INIT FORM) Specifies that FOrRM should be evaluated when the record is declared. ForM will
also be dumped by the INITRECORDS file package command (page 11.25).

For example, see the example of an ACCESSFNS record declaration above. In this
example, FROMARRAY and TOARRAY are initialized with an INIT form.

(TYPE? FORM) Defines the manner in which TYPE? expressions are to be translated. FORM may
either be an expression in terms of DATUM or a function of one argument.

Note: (TYPE? FORM) may also be specified as “RECORD-NAME @ FORM”, e.g8.
C @ LISTP.
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(SUBRECORD NAME . DEFAULTS)
NAME must be a field that appears in the current declaration and the name of

another record. This says that, for the purposes of translating CREATE expressions,
substitute the top-level declaration of NAME for the SUBRECORD form, adding on
any defaults specified.

For example: Given (RECORD B (E F G)), (RECORD A (B C D) (SUBRECORD
B)) would be treated like (RECORD A (B C D) (RECORD B (E F G))) for
the purposes of translating CREATE expressions.

a subdeclaration (i.e., a record declaration.)
The RECORD-NAME of a subdeclaration must be either the RECORD-NAME of its
immediately superior declaration or one of the superior’s field-names. Instead of
identifying the declaration as with top level declarations, the record-name of a
subdeclaration identifies the parent field or record that is being described by the
subdeclaration. Subdeclarations can be nested to an arbitrary depth.

Giving a subdeclaration (RECORD NAME; NAME,) is a simple way of defining a
synonym for the field NAME;. .

Note that, in a few cases, it makes sense for a given field to have more than one
subdeclaration. For example, in

(RECORD (A . B) (PROPRECORD B (FOO FIE FUM)) (HASHLINK B C))
B is elaborated by both a PROPRECORD and a HASHLINK. Similarly,
(RECORD (A B) (RECORD A (C D)) (RECORD A (FOO FIE)))

is also acceptable, and essentially “overlays™ (FOQO FIE) and (C D), i.e. (fetch
FOO of X) and (fetch C of X) would be equivalent. In such cases, the firs
subdeclaration is the one used by CREATE.

3.6 DEFINING NEW RECORD TYPES

In addition to the built-in record types, users can declare their own record types by performing the
following steps:

(1) Add the new record-type to the value of CLISPRECORDTYPES;.

(2) Perform (MOVD 'RECORD RECORD-TYPE), i.e. give the record-type the same definition as that of
the function RECORD;

(3) Put the name of a function which will return the translation on the property list of RECORD-TYPE, as
the value of the property USERRECORDTYPE. Whenever a record declaration of type RECORD-TYPE is
encountered, this function will be passed the record declaration as its argument, and should return a new
record declaration which the record package will then use in its place.
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3.7 RECORD MANIPULATION FUNCTIONS

The user may edit (or delete) global record declarations with the function:

(EDITREC NAME COM; --- COMy) [NLambda NoSpread Function]
Nospread nlambda function similar to EDITF or EDITV. EDITREC calls the editor
on a copy of all declarations in which NAME is the record-name or a field name.
On exit, it redeclares those that have changed and undeclares any that have been
deleted. If NAME is NIL, all declarations are edited.

COM, - -- COMy; are (optional) edit commands.

When the user redeclares a global record, the translations of all expressions involving that record or any
of its fields are automatically deleted from CLISPARRAY, and thus will be recomputed using the new
information. If the user changes a Jocal record declaration, or changes some other CLISP declaration, e.g.,
STANDARD to FAST, and wishes the new information to affect record expressions already translated, he
must make sure the corresponding translations are removed, usually either by CLISPIFYing or applying

~the !DW edit macro.

(RECLOOK RECORDNAME — — — —) : [Function]
Returns the entire declaration for the record named RECORDNAME; NIL if
no record declaration with name RECORDNAME. Note that the record package
maintains internal state about current record declarations, so performing destructive
,operauons (e.g: NCONC) on the value of RECLOOK may leave the record package
in an inconsistant state. To change a record declaration, use EDITREC.

(FIELDLOOK FIELDNAME) [Function]
Returns the list of declarations in which FIELDNAME is the name of a field.

(RECORDFIELDNAMES RECORDNAME) [Function]
‘ Returns the list of fields declared in record RECORDNAME. RECORDNAME may

either be a name or an entire declaration.

(RECORDACCESS FIELD DATUM DEC TYPE NEWVALUE) [Function]
TYPE is one of FETCH, REPLACE, FFETCH, FREPLACE, /REPLACE or their

lowercase equivalents. TYPE=NIL means FETCH. If TYPE corresponds to a fetch
operation, i.e. is FETCH, or FFETCH, RECORDACCESS performs ( TYPE FIELD
OF pATUM). If TYPE corresponds to a replace, RECORDACCESS performs ( TYPE
FIELD OF DATUM WITH NEWVALUE). DEC is an optional declaration; if given,
FIELD is interpreted as a field name of that declaration.

Note that RECORDACCESS is relatively inefficient, although it is better than
constructing the equivalent form and performing an EVAL. _

3.8 CHANGETRAN

A very common programming construction consists of assigning a new value to some datum that is a
function of the current value of that datum. Some examples of such read-modify-write sequences include:
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(SETQ X (IPLUS X 1)) : Incrementing a counter
(SETQ X (CONS Y X)) - Pushing an item on 'the front of a list
(PROG1 (CAR X) (SETQ X (CDR X))) Popping an item off a list

It is easier to express such computations when the datum in question is a simple variable as above than
when it is an element of some larger data structure. For example, if the datum to be modified was (CAR
X), the above examples would be:

(CAR (RPLACA X (IPLUS (CAR X) 1)))
(CAR (RPLACA X (CONS Y (CAR X)))

| (PROG1 (CAAR X) (RPLACA X (CDAR X)))

and if the datum was an element in an array, (ELT A N), the examples would be:
(SETA A N (IPLUS (ELT A N) 1)))

(SETA A N (CONS Y (ELT A N))))

(PROG1 (CAR (ELT A N)) (SETA A N (CDR (ELT A N))))

The difficulty in expressmg (and reading) modification idioms is in part due to the well-known assymmetry

of setting versus accessing operations on structures: RPLACA is used to smash what CAR would return,
SETA corresponds to ELT, and so on.

The “Changetran” facility is designed to provide a more satisfactory notation in which to express certain
common (but user-extensible) structure modification operations. Changetran defines a set of CLISP words
that encode the kind of modification that is to take place, e.g. pushing on a list, adding to a number,
etc. More important, the expression that indicates the datum whose value is to be modified needs to be
stated only once. Thus, the “change word” ADD is used to increase the value of a datum by the sum of
a set of numbers. Its arguments are an expression denoting the datum, and a set of items to be added to
its current value. The datum expression must be a variable or an accessing expression (envolving fetch,
CAR, LAST, ELT, etc) that can be translated to the appropriate setting expression.

For example, (ADD (CADDR X) (F00)) is equivalent to:

(CAR (RPLACA (CDDR X)
(PLUS (FOO) (CADDR X)))

[f the datum expression is a complicated form involving subsidiary function calls, such as (ELT (F00 X)
(FIE Y))), Changetran goes to some lengths to make sure that those subsidiary functions are evaluated
only once (it binds local variables to save the results), even though they logically appear in both the
setting and accessing parts of the translation. Thus, in thinking about both efficiency and possible side
effects, the user can rely on the fact that the forms will be evaluated only as often as they appear in the
expression.

For ADD and all other changewords, the lower-case version (add, etc.) may also be specified. Like other
CLISP words, change words are translated using all CLISP declarations in effect (see page 16.9).

The following is a list of those change words recognized by Changetran. Except for POP, the value of all

3.12



THE RECORD PACKAGE

built-in changeword forms is defined to be the new value of the datum.

(ADD DATUM ITEM; ITEMj ---) [Change Word]
Adds the specified items to the current value of the datum, stores the result back
in the datum location. The translation will use IPLUS, PLUS, or FPLUS according
to the CLISP declarations in effect.

(PUSH DATUM ITEM; ITEMg ---) [Change Word]
CONSes the items onto the front of the current value of the datum, and stores the

result back in the datum location. For example, (PUSH X A B) would translate
as (SETQ X (CONS A (CONS B X))).

(PUSHNEW DATUM ITEM) [Change Word]
Like PUSH (with only one item) except that the item is not added if it is already

FMEMB of the datum’s value.

Note that, whereas (CAR (PUSH X 'F00)) will always be FOO, (CAR (PUSHNEW .
X 'F00)) might be something else if FOO already existed in the middle of the
list.

(PUSHLIST DATUM ITEM; ITEMj ---) [Change Word]
Similar to PUSH, except that the items are APPENDed in front of the current value
of the datum. For example, (PUSHLIST X A B) would translate as (SETQ X

(APPEND A B X)).

(POP DATUM) ' ’ ' o [Change Word]
Returns CAR of the current value of the datum after storing its CDR into the datum.
The current value is computed only once even though it is referenced twice. Note
that this is the only built-in changeword for which the value of the form is not the '
new value of the datum.

(SWAP DATUM; DATUM,) [Change Word]
Sets DATUM; t0 DATUM, and vice versa.

(CHANGE DATUM FORM) [Change Word]
This is the most flexible of all change words, since it enables the user to provide an
arbitrary form describing what the new value should be, but it still highlights the
fact that structure modification is to occur, and still enables the datum expression
to appear only once. CHANGE sets DATUM (o the value of FORM*, where FORM* is
constructed from FORM by substituting the datum expression for every occurrence
of the litatom DATUM. For example, (CHANGE (CAR X) (ITIMES DATUM 5))
translates as (CAR (RPLACA X (ITIMES (CAR X) 5))).

CHANGE is useful for expressing modifications that are not built-in and are not
sufficiently common to justify defining a user-changeword. As for other changeword
expressions, the user need not repeat the datum-expression and need not worry
about multiple evaluation of the accessing form.

It is possible for the user to define new change words. To define a change word, say sub, that
subtracts items from the current value of the datum, the user must put the property CLISPWORD, value
(CHANGETRAN . sub) on both the upper and lower-case versions of sub:
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(PUTPROP 'SUB 'CLISPWORD '(CHANGETRAN . sub))
(PUTPROP 'sub 'CLISPWORD '(CHANGETRAN . sub))

Then, the user must put (on the lower-case version of sub only) the property CHANGEWORD, with value
FN. FN is a function that will be applied to a single argument, the whole sub form, and must return a
form that Changetran can translate into an appropriate expression. This form should be a list structure
with the atom DATUM used whehever the user wants an accessing expression for the current value of the
datum to appear. The form (DATUM« FORM) (note that DATUM« is a single atom) should occur once in
the expression; this specifies that an appropriate storing expression into the datum should occur at that
point. For example, sub could be defined with:

(PUTPROP 'sub 'CHANGEWORD
' (LAMBDA (FORM)
(LIST 'DATUMe
(LIST 'IDIFFERENCE
'DATUM _
(CONS 'IPLUS (CDDR FORM))))))

If the expression (sub (CAR X) A B) were encountered, the arguments to SUB would first be
dwimified, and then the CHANGEWORD function would be passed the list (sub (CAR X) A B), and
return (DATUM« (IDIFFERENCE DATUM (IPLUS A B))), which Changetran would convert to (CAR
(RPLACA X (IDIFFERENCE (CAR X) (IPLUS A B)))).

Note: The sub changeword as defined above will always use IDIFF ERENCE and IPLUS; add uses the
correct addition operation depending on the current CLISP declarations. '

39 USER DEFINED DATA TYPES

Note: The most convenient way to define new user data types is via DATATYPE record declarations (see
page 3.7).

In addition to built-in data-types such as atoms, lists, arrays, etc., Interlisp provides a way of defining
completely new classes of objects, with a fixed number of fields determined by the definition of the data
type. Facilities are provided for declaring the name and type of the fields for a given class, creating
objects of a given class, accessing and replacing the contents of each of the fields of such an object, as
well as interrogating such objects.

In order to define a new class of objects, the user must supply a name for the new data type and
specifications for each of its fields. Each field may contain either a pointer (i.e., any arbitrary Interlisp
datum), an integer, a floating point number, or an N-bit integer. This is done via the function
DECLAREDATATYPE:

(DECLAREDATATYPE TYPENAME FIELDSPECS) , [Function]
TYPENAME is a literal atom, which specifies the name of the data type. FIELDSPECS
is a list of “field specifications”. Each field specification may be one of the following:

POINTER Field may contain any Interlisp datum.

FIXP Field contains an integer.
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FLOATP ' Field contains a floating point number.
(BITS N) Field contains a non-negative integer less than 2N,

DECLAREDATATYPE returns a list of “field descriptors”, one for each element of
FIELDSPECS. A field descriptor contains information about where within the datum
the field is actually stored. .

If TYPENAME is already declared a datatype, it is re-declared. If FIELDSPECS is
NIL, TYPENAME is “undeclared”.

(FETCHFIELD DESCRIPTOR DATUM) [Function]
Returns the contents of the field described by DESCRIPTOR from DATUM.

DESCRIPTOR must be a “field descriptor” as returned by DECLAREDATATYPE.
If bATUM is not an instance of the datatype of which DESCRIPTOR is a descriptar,
causes error DATUM OF INCORRECT TYPE.

In Interlisp-10, if DESCRIPTOR is quoted, FETCHFIELD compiles open. This
capability is psed by the record pe}ckagc.

(REPLACEFIELD DESCRIPTOR DATUM NEWVALUE) [Function]
Store NEWVALUE into the field of bATuM described by DESCRIPTOR. DESCRIPTOR
must be a field descriptor as returned by DECLAREDATATYPE. If DATUM is not an
instance of the datatype of which DESCRIPTOR is a descriptor, causes error DATUM
OF INCORRECT TYPE. Value is NEWVALUE.

(NCREATE TYPENAME FROM) : [Function]
Creates and returns a new instance of datatype TYPENAME.

If FROM is also a datum of datatype TYPENAME, the fields of the new object are
initialized to the values of the corresponding fields in FROM.

NCREATE will not work for built-in datatypes, such as ARRAYP, STRINGP, etc. If
TYPENAME is not the type name of a previously declared user data type, generates
an error, ILLEGAL DATA TYPE.

(GETFIELDSPECS TYPENAME) [Function]
Returns a list which is EQUAL to the FIELDSPECS argument given to DECLAREDATATYPE

for TYPENAME; if TYPENAME is not a currently declared data-type, returns NIL.

(GETDESCRIPTORS TYPENAME) [Function]
Returns a list of field descriptors, EQUAL to the value of DECLAREDATATYPE for
TYPENAME.

(USERDATATYPES) [Function]

Returns list of names of currently declared user data types.

Note that the user can define how user data types are to be printed-via DEFPRINT (page 6.23), how they
are to be evaluated by the interpreter via DEFEVAL (page 5.11), and how they are to be compiled by the

compiler via COMPILETYPELST (page 12.9).

The DATATYPE facility in Interlisp-D is an extension of that found in Interlisp-10. Interlisp-D also
accepts BYTE, WORD, and SIGNEDWORD as datatype field descriptors equivalent to BITS 8, BITS 186,
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and BETWEEN -213 and 215-1 respectively. Interlisp-D will not move fields around in a user declaration
if they pack into words and pointers as specified. POINTER fields take 24 bits and must be 32-bit
right-justified. :

3.16



CHAPTER 4

CONDITIONALS AND ITERATIVE STATEMENTS

In order to do any but the simplest computations, it is necessary to test values and execute expressions
conditionally, and to execute expressions repeatedly. Interlisp supplies a large number of useful conditional
and iterative constructs.

(COND CLAUSE; CLAUSE; -+ CLAUSEg) [NLambda NoSpread Function]
The conditional function of Interlisp, COND, takes an indefinite number of
arguments, called clauses. Each CLAUSE; is a list of the form (pP; ¢;; .-+ Ciy),

where P; is the predicate, and ¢;; --- C;y are the consequents. The operation of
COND can be paraphrased as:

The clauses are considered in sequence as follows: the predicate P, of the clause
CLAUSE; is evaluated. If the value of p, is “true” (non-NIL), the consequents C;;

- C;y are evaluated in order, and the value of the COND is the value of ¢;p, the
last expression in the clause. If P, is “false” (EQ to NIL), then the remainder of
CLAUSE; is ignored, and the next clause, CLAUSE; ;, is considered. If no P, is true
for any clause, the value of the COND is NIL.

Note: If a clause has no consequents, and has the form (p;), then if p; evaluates
to non-NIL, it is returned as the value of the COND. It is only evaluated once.

Example:

+ (DEFINEQ (DOUBLE (X)
(COND ((NUMBERP X) (PLUS X X))

((STRINGP X) (CONCAT X X))
((ATOM X) (PACK* X X))
(T (PRINT "unknown") X)
( (HORRIBLE-ERROR))]

(DOUBLE)

+ (DOUBLE 5)

10

< (DOUBLE "FQO")

"FOOFOO"

< (DOUBLE 'BAR)

BARBAR _

« (DOUBLE '(A B C))

"unknown"

(A B C)

A few points about this example: Notice that 5 is both a number and an atom,
but it is “caught” by the NUMBERP clause before the ATOM clause. Also notice
the predicate T, which is always true. This is the normal way to indicate a COND
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clause which will always be executed (if none of the preceeding clauses are true).
(HORRIBLE-ERROR) will never be executed.

Note: The IF statement (page 4.4) provides an easier and more readable way of
coding conditional expressions than COND.

(AND x; x5 .-+ Xp) [NLambda NoSpread Function]
Takes an indefinite number of arguments (including zero), that are evaluated in
order. If any argument evaluates to NIL, AND immediately returns NIL (without
evaluating the remaining arguments). If all of the arguments evaluate to non-NIL,
the value of the last argument is returned. (AND) => T,

(OR x; X, --+ Xp) [NLambda NoSpread Function]
Takes an indefinite number of arguments (including zero), that are evaluated in
order. If any argument is non-NIL, the value of that argument is returned by OR
(without evaluating the remaining arguments). If all of the arguments evaluate to
NIL, NIL is returned. (OR) => NIL.

AND and OR can be used as simple logical connectives, but note that they may not evaluate all of their
arguments. This makes a difference if the evaluation of some of the arguments causes side-effects. Another
result of this implementation of AND and OR is that they can be used as simple conditional statements.
For example: (AND (LISTP x) (CDR x)) returns the value of (CDR x) if x is a list cell, otherwise
it returns NIL without evaluating (CDR Xx). In general, this use of AND and OR should be avoided in
favor of more explicit conditional statements in order to make programs more readable.

(SELECTQ X CLAUSE; CLAUSE, --- CLAUSEy DEFAULT) [NLambda NoSpread Function]
Selects a form or sequence of forms based on the value of its first argument X.
Each clause CLAUSE; is a list of the form (s; ¢;; --- C;y) Where s; is the selection

key. The operation of SELECTQ can be paraphrased as:
IF x = g, THEN c¢y; --- ¢;5 ELSEIF x = s, THEN -.. ELSE DEFAULT.

If s; is an atom, the value of x is tested to see if it is EQ to s; (which is not
evaluated). If so, the expressions ¢;; --- C;y are evaluated in sequence, and the
value of the SELECTQ is the value of the last expression evaluated, i.e., C;p-

If s; is a list, the value of x is compared with each element (not evaluated) of s;,
and if x is EQ to any one of them, then ¢;; --- C;y are evaluated as above.

If cLAUSE; is not selected in one of the two ways described, CLAUSE, 4 ; is tested,
etc., until all the clauses have been tested. If none is selected, DEFAULT is evaluated,
and its value is returned as the value of the SELECTQ. DEFAULT must be present.

An example of the form of a SELECTQ is:

[SELECTQ MONTH
(FEBRUARY (if (LEAPYEARP) then 29 else 28))
((APRIL JUNE SEPTEMBER NOVEMBER) 30)

31]

[f the value of MONTH is the litatom FEBRUARY, the SELECTQ returns 28 or 29
(depending on (LEAPYEARP)); otherwise if MONTH is APRIL, JUNE, SEPTEMBER,
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or NOVEMBER, the SELECTQ returns 30; otherwise it returns 31.

SELECTQ compiles open, and is therefore very fast; however, it will not work if
the value of x is a list, a large integer, or floating point number, since SELECTQ
uses EQ for all comparisons.

Note: The function SELCHARQ (page 2.13) is a version of SELECTQ that reco'gnizes CHARCODE litatoms.

(SELECTC X CLAUSE; CLAUSE, -+ CLAUSEyx DEFAULT) [NLambda NoSpread Function]

(PROG1 Xx; X3 ---

(PROG2 x; X5 -

(PROGN x; x5 ---

“SELECTQ-on-Constant.” Similar to SELECTQ except that the selection keys are
evaluated, and the result used as a SELECTQ-style selection key.

SELECTC is compiled as a SELECTQ, with the selection keys evaluated at compile-
time. Therefore, the selection keys act like compile-time constants (see page 12.5).
For example: .

[SELECTC NUM
( (for X from 1 to 9 collect (TIMES X X)) "SQUARE" )

" H I P " ]
compiles as:

[SELECTQ NUM
( (1 49 16 25 36 49 64 81) "SQUARE" )
"HIP"] : ’

Xn) ‘ [NLambda NoSpread Function]
Evaluates its arguments in order, and returns the value of its first argument x,. For
example, (PROG1 X (SETQ X Y)) sets X to Y, and returns X’s original value.

Xy) [Function]
Similar to PROG1. Evaluates its, arguments in order, and returns the value of its
second argument X,.

Xn) , [NLambda NoSpread Function]
PROGN evaluates each of its arguments in order, and returns the value of its last
argument. PROGN is used to specify more than one computation where the syntax
allows only one, e.g., (SELECTQ --- (PROGN --.)) allows evaluation of several
expressions as the default condition for a SELECTQ.

(PROG VARLST E; E; -+ Ep) [NLambda NoSpread Function]

This function allows the user to write an ALGOL-like program containing Interlisp
expressions (forms) to be executed. The first argument, VARLST, is a list of local
variables (must be NIL if no variables are used). Each atom in VARLST is treated
as the name of a local variable and bound to NIL. VARLST can also contain lists
of the form (atom form). In this case, atom is the name of the variable and is
bound to the value of form. The evaluation takes place before any of the bindings
are performed, e.g., (PROG ((X Y) (Y X)) --.) will bind local variable X to
the value of Y (evaluated outside the PROG) and local variable Y to the value of
X (outside the PROG). An attempt to use anything other than a literal atom as a
PROG variable will cause an error, ARG NOT LITATOM. An attempt to use NIL
or T as a PROG variable will cause an error, ATTEMPT TO BIND NIL OR T.
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The rest of the PROG is a sequence of non-atomic statements (forms) and litatoms
(labels). 'The forms are evaluated sequentially; the labels serve only as markers.
The two special functions GO and RETURN alter this flow of control as described
below. The value of the PROG is usually specified by the function RETURN. If no
RETURN is executed before the PROG “falls off the end,” the value of the PROG is
NIL. ’

(GO x) [NLambda NoSpread Function]
GO is used to cause a transfer in a PROG. (GO L) will cause the PROG to evaluate
forms starting at the label L (GO does not evaluate its argument). A GO can be
used at any level in a PROG. If the label is not found, GO will search higher progs
within the same function, e.g., (PROG --- A ... (PROG --- (GO A))). If the
label is not found in the function in which the PROG appears, an error is generated,
UNDEFINED OR ILLEGAL GO.

(RETURN x) [Function]
A RETURN is the normal exit for a PROG. Its argument is evaluated and is
immediately returned the value of the PROG in which it appears.

Note: If a GO or RETURN is executed in an interpreted function which is not a PROG, the GO or RETURN
_will be executed in the last interpreted PROG entered if any, otherwise cause an error.

GO or RETURN inside of a compiled function that is not a PROG is not allowed, and will cause an error
at compile time.

As a corollary, GO or RETURN in a functional argument, e.g., to SORT, will not work compiled. Also,
since NLSETQ’s and ERSETQ’s compile as separate functions, a GO or RETURN cannot be used inside of a
compiled NLSETQ or ERSETQ if the corresponding PROG is outside, i.e., above, the NLSETQ or ERSETQ.

4.1 THE IF STATEMENT

The IF statement provides a way of way of specifying conditional expressions that is much easier and
readable than using the COND function directly. CLISP translates expressions employing IF, THEN,
ELSEIF, or ELSE into equivalent COND expressions. In general, statements of the form:

(IF AAA THEN BBB ELSEIFiccc THEN ppp ELSE EEE)
are translated to: ' A

(COND (aaa BBB)
(ccc ppp)
(T EEE)} )

The segment between IF or EL§E IF and the next THEN corresponds to the predicate of a COND clause,
and the segment between THEN and the next ELSE or ELSEIF as the consequent(s). ELSE is the same as
ELSEIF T THEN. These words are spelling corrected using the spelling list CLISPIFWORDSPLST. Lower
case versions (if, then, elseif, e1se) may also be used.

If there is nothing following a THEN, or THEN is omitted entirely, then the résulting COND clause has a
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predicate but no consequent. For example, (IF X THEN ELSEIF -..) and (IF X ELSEIF ...) both
“translate to (COND (X) ---), which means that if X is not NIL, it is returned as the value of the COND.

CLISP considers IF, THEN, ELSE, and ELSEIF to have lower precedence than all infix and prefix
operators, as well as Interlisp forms, so it is sometimes possible to omit parentheses around predicate or
consequent forms. For example, (IF FOO X Y THEN --.) is equivalent to (IF (FOO X Y) THEN
---),and (IF X THEN FOO X Y ELSE .-.) asequivalentto (IF X THEN (FOO X Y) ELSE ---).
Essentially, CLISP determines whether the segment between THEN and the next ELSE or ELSEIF
corresponds to one form or several and acts accordingly, occasionally interacting with the user to resolve
ambiguous cases. Note that if FOO is bound as a variable, (IF FOO THEN -.-..) is translated as (COND"
(FOO --.)), so if a call to the function FOO is desired, use (IF (FOO) THEN --.).

4.2 THE ITERATIVE STATEMENT

The iterative statement (i.s.) in its various forms permits the user to specify complicated iterative

" statements in a straightforward and visible manner. Rather than the user having to perform the mental
transformations to an equivalent Interlisp form using PROG, MAPC, MAPCAR, etc., the system does it for
him. The goal was to provide a robust and tolerant facility which could “make sense” out of a wide class
of iterative statements. Accordingly, the user should not feel obliged to read and understand in detail the
description of each operator given below in order to use iterative statements,

An iterative statement is a form consisting of a number of special words (known as i.s. ‘operators or
i.s.oprs), followed by operands. Many i.s.oprs (FOR, DO, WHILE, etc.) are similar to iterative statements
in other programming languages; other i.s.oprs (COLLECT, JOIN, IN, etc.) specify useful operations in a
Lisp environment. Lower case versions of i.s.oprs (do, collect, etc.) can also be used. Here are some
examples of iterative statements:

+« (for X from 1 to 5 do (PRINT 'F00))

FOO

FOO

FOO

FOO

FOO

NIL

+« (for X from 2 to 10 by 2 collect (TIMES X X))
(4 16 36 64 100) ‘

« (for X in '(AB 1 C 6.5 NIL (45)) count (NUMBERP X))
2

[terative statements are implemented through CLISP, which translates the form into the appropriate
PROG, MAPCAR, etc. Iterative statement forms are translated using all CLISP declarations in effect
(standard/fast/undoable/ etc.); see page 16.9. Misspelled i.s.oprs are recognized and corrected using the
spelling list CLISPFORWORDSPLST. The order of appearance of operators is never important; CLISP
scans the entire statement before it begins to construct the equivalent Interlisp form. New i.s.oprs can be
defined as described on page 4.13. .

[f the user defines a function by the same name as an i.s.opr (WHILE, TO, etc.), the i.s.opr will no longer
have the CLISP interpretation when it appears as CAR of a form, although it will continue to be treated
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as an i.s.opr if it appears in the interior of an iterative statement. To alert the user, a warning message is
printed, e.g., (WHILE DEFINED, THEREFORE DISABLED IN CLISP).

4.2.1 Ls.types

The following i.s.oprs are examples of a certain kind of iterative statement operator called an i.s.type. The
i.s.type specifies what is to be done at each iteration. Its operand is called the “body” of the iterative
statement. Each iterative statement must have one and only one i.s.type.

DO FORM [L.S. Operator]
Specifies what is to be done at each iteration. DO with no other operator specifies
an infinite loop. If some explicit or implicit terminating condition is specified, the
value of the i.s. is NIL. Translates to MAPC or MAP whenever possible.

COLLECT FORM [1.S. Operator]
Specifies that the value of FORM at each iteration is to be collected in a list, which
is returned as the value of the is. when it terminates. Translates to MAPCAR,

MAPLIST or SUBSET whenever possible.

When COLLECT translates to a PROG (e.g., if UNTIL, WHILE, etc. appear in the
i.s.), the translation employs an open TCONC using two pointers similar to that
used by the compiler for compiling MAPCAR. To disable this translation, perform
(CLDISABLE 'FCOLLECT).

JOIN FORM ‘ [1. S Operator]
Similar to COLLECT, except that the values of FORM at each iteration are NCONCed.
Translates to MAPCONC or MAPCON whenever possible. /NCONC, /MAPCONC, and
/MAPCON are used when the CLISP declaration UNDOABLE is in effect.

SUM FORM ' [I.S. Operator]
Specifies that the values of FORM at each iteration be added together and returned
as the value of the is., e.g, (FOR I FROM 1 TO 5 SUM I*2) is equal to
1+4+9+16+25. IPLUS, FPLUS, or PLUS will be used in the translation depending
on the CLISP declarations in effect.

COUNT FORM [L.S. Operator]
Counts the number of times that FORM is true, and returns that count as its value.

ALWAYS FORM ' [I.S. Operator]
Returns T if the value of FORM is non-NIL for all iterations. (Note: returns NIL

as soon as the value of FORM is NIL).

NEVER FORM [L.S. Operator]
Similar to ALWAYS, except returns T if the value of FORM is never true. (Note:
returns NIL as soon as the value of FORM is non-NIL).

The following i.s.types explicitly refer to the iteration variable (i.v.) of the iterative statement, which is a
variable set at each iteration. This is explained below under FOR.

THEREIS FORM [L.S. Operator]
Returns the first value of the i.v. for which FOrRM is non-NIL, e.g., (FOR X IN Y
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THEREIS (NUMBERP X)) returns the first number in Y. (Note: returns the value
of the i.v. as soon as the value of FORM is non-NIL).

. [L.S. Operator]
[I.S. Operator]

. Returns the value of the i.v. that provides the largest/smallest value of FORM.

$SEXTREME is always bound to the current greatest/smallest value, $$VAL to the
value of the i.v. from which it came.

4.2.2  Iteration Variable Ls.oprs

FOR VAR

FOR VARS

FOR OLD wvar

BIND VAR
BIND VARS

[L.S. Operator]
Specifies the iteration variable (i.v.) which is used in conjunction with IN, ON,

"FROM, TO, and BY. The variable is rebound within the i.s., so the value of the

variable outside the i.s. is not effected. Example:

« (SETQ X 55)

55 ;

« (for X from 1 to 5 collect (TIMES X X))
(1 4 9 16 25)

« X

55

: - [LS. Operator]
VARS a list of variables, e.g.,, (FOR (X Y Z) IN ...). The first variable is the
i.v., the rest are dummy variables. See BIND below.

[L.S. Operator]
Similar to FOR, except that VAR is not rebound within the i.s., so the value of the
i.v. outside of the iss. is changed. Example:

« (SETQ X 55)

55

« (for old X from 1 to 5 collect (TIMES X X))
(1 4 9 16 25)

« X

6

[I.S. Operator]
[1.S. Operator]
Used to specify dummy variables, which are bound locally within the i.s.

Note: FOR, FOR OLD, and BIND variables can be initialized by using the form vAR+FORM:

(FOR OLD (X«FORM) BIND (Y«FORM) --:)

IN FORM

[L.S. Operator]
Specifies that the i.s. is to iterate down a list with the i.v. being reset to the
corresponding element at each iteration. For example, (FOR X IN Y DO ...)
corresponds to (MAPC Y (FUNCTION (LAMBDA (X) ---))). If no iv. has
been specified, a dummy is supplied, e.g., (IN Y COLLECT CADR) is equivalent
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to (MAPCAR Y (FUNCTION CADR)).

ON FORM [L.S. Operator]
Same as IN except that the i.v. is reset to the corresponding tail at each iteration.
Thus IN corresponds to MAPC, MAPCAR, and MAPCONC, while ON corresponds to
MAP, MAPLIST, and MAPCON.

Note: for both IN and ON, FORM is evaluated before the main part of the is. is entered, i.e. outside of
the scope of any of the bound variables of the i.s. For example, (FOR X BIND (Y«'(1 2 3)) IN Y
-+) will map down the list which is the value of Y evaluated outside of the is., not (1 2 3).

IN OLD vAR [L.S. Operator]
Specifies that the i.s. is to iterate down VAR, with VAR itself being reset to the
orrespondmg tail at each iteration, e.g., after (FOR X IN OLD L DO --- UNTIL

-+) ﬁmshes L will be some tail of its original value. -

IN OLD ( VAR“FORM) [I.S. Operator]
Same as IN OLD VAR, except VAR is first set to value of FORM.

ON OLD vAR ' " [L.S. Operator]
Same as IN OLD VAR except the i.v. is reset to the current value of VAR at each

iteration, instead of to (CAR VAR).

ON OLD (VAR«FORM) [I.S. Operator]
Same as ON OLD VAR, except VAR is first set to value of FORM.

INSIDE FORM ' [I.S. Operator]
Similar to IN, except treats first non-list, non-NIL tail as the last element of the

iteration, e.g., INSIDE '(A B C D . E) iterates five times with the i.v. set to
E on the last iteration. INSIDE 'A is equivalent to INSIDE '(A), which will
iterate once.

FROM FORM [L.S. Operator]
Used to specify an initial value for a numerical i.v. The iv. is automatically
incremented by 1 after each iteration (unless BY is specified). If no i.v. has been
specified, a dummy i.v. is supplied and initialized, e.g., (FROM 2 TO 5 COLLECT
SQRT) returns (1.414 1.732 2.0 2.2386).

. TO FOrRM ‘ [L.S. Operator]
Used to specify the final value for a numerical i.v. If FROM is not specified, the
i.v. is initialized to 1. If no i.v. has been specified, a dummy i.v. is supplied
and initialized. If BY is not specified, the i.v. is automatically incremented by 1
after each iteration.! When the i.v. is definitely being incremented, i.e., either BY is
not specified, or its operand is a positive number, the i.s. terminates when the i.v.
exceeds the value of FOrRM e.g., (FOR X FROM 1 TO 10 --) is equivalent to
(FOR X FROM 1 UNTIL (X GT 10) --). Similarly, when the i.v. is definitely

lexcept when both the operands to TO and FROM are numbers, and TO’s operand is less than FROM's
operand, e.g., FROM 10 TO 1, in which case the i.v. is decremented by 1 after each iteration. In this
case, the i.s. terminates when the i.v. becomes /ess than the value of FORM.
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being decremented the is. terminates when the i.v. becomes /ess than the value of
FORM (see description of BY).

Note: FORM is evaluated only once, when the i.s. is first entered, and its value
bound to a temporary variable against which the i.v. is checked each interation. If
the user wishes to specify an i.s. in which the value of the boundary condition is
recomputed each iteration, he should use WHILE or UNTIL instead of TO.

BY rForMm (with IN/ON) [L.S. Operator]

If IN or ON have been specified, the value of FORM determines the tail for
the next iteration, which in turn determines the value for the i.v. as described
earlier, i.e., the new i.v. is CAR of the tail for IN, the tail itself for ON. In
conjunction with IN, the user can refer to the current tail within FORM by using
the i.v. or the operand for IN/ON, eg., (FOR Z IN L BY (CDDR Z) ---)
or (FOR Z IN L BY (CDDR L) ---). At translation time, the name of the
internal variable which holds the value of the current tail is substituted for the i.v.
throughout ForM. For example, (FOR X IN Y BY (CDR (MEMB 'FOO (CDR
X))) COLLECT X) specifies that after each iteration, CDR of the current tail is
to be searched for the atom FOOQ, and (CDR of) this latter tail to be used for the
next iteration.

BY ForM (without IN/ON) [L.S. Operator]

AS VAR

If IN or ON have not been used, BY specifies how the i.v. itself is reset at each
iteration. If FROM or TO have been specified, the i.v. is known to be numerical,
so the new i.v. is computed by adding the value of ForM (which is reevaluated -
each iteration) to the current value of the i.v., e.g, (FOR N FROM 1 TO 10 BY
2 COLLECT N) makes a list of the first five odd numbers.

If FORM is a positive number,? the i.s. terminates when the value of the i.v. exceeds
the value of TQ’s operand. If FORM is a negative number, the i.s. terminates when
the value of the i.v. becomes /ess than TO’s operand, e.g., (FOR I FROM N TO M
BY -2 UNTIL (I LT M) ...). Otherwise, the terminating condition for each
iteration depends on the value of FORM for that iteration: if FORMKO, the test is
whether the i.v. is less than TO’s operand, if FORM>Q the test is whether the i.v.
exceeds TO’s operand, otherwise if FORM =0, the i.s. terminates unconditionally.

If FROM or TO have not been specified and FORM is not a number, the i.v. is
simply reset to the value of FORM after each iteration, e.g., (FOR I FROM N BY
M ...) is equivalent to (FOR I«N BY (IPLUS I M) ...).

[L.S. Operator]
Used to specify an iterative statement involving more than one iterative variable,
eg., (FOR X IN Y AS U IN V DO --) corresponds to MAP2C. The i.s. ter-
minates when any of the terminating conditions are met, e.g., (FOR X IN Y AS
I FROM 1 TO 10 COLLECT X) makes a list of the first ten elements of Y, or
however many elements there are on Y if less than 10.

The operand to AS, VAR, specifies the new iv. For the remainder of the is.,
or until another AS is encountered, all operators refer to the new iv. For

2roRM itself, not its value, which in general CLISP would have no way of knowing in advance.
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example, (FOR I FROM 1 TO N1 AS J FROM 1 TO N2-BY 2 AS K FROM
N3 TO 1 BY -1 --) terminates when I exceeds N1, or J exceeds N2, or K
becomes less than 1. After each iteration, I is incremented by 1, J by 2, and K by
-1.

OUTOF FORM [L.S. Operator]
For use with generators (page 7.13). On each iteration, the i.v. is set to successive
values returned by the generator. The i.s. terminates when the generator runs out.

4.2.3 Condition f.s.oprs

WHEN FORM [I.S. Operator]
Provides a way of excepting certain iterations. For example, (FOR X IN Y
COLLECT X WHEN (NUMBERP X)) collects only the elements of Y that are

numbers.

UNLESS FORM ' [L.S. Operator]
Same as WHEN except for the difference in sign, i.e., WHEN Z is the same as UNLESS
(NOT Z).

WHILE FORM [L.S. Operator]

Provides a way of terminating the i.s. WHILE FORM evaluates FORM before each
iteration, and if the value is NIL, exits.

‘ UNTIL FORM | / [L.S. Operator]

Same as WHILE except for difference in sign, i.e., WHILE X is equivalent to UNTIL
(NOT X).
UNTIL N (N a number) [1.S. Operator]

Equivalent to UNTIL (Lv. GT N).

REPEATWHILE FORM [LS. Operator]
Same as WHILE except the test is performed after the evalution of the body, but

before the i.v. is reset for the next iteration.

REPEATUNTIL FORM [L.S. Operator]
Same as UNTIL, except the test is performed after the evaluation of the body.

REPEATUNTIL N (N a number) [I.S. Operator]
Equivalent to REPEATUNTIL (zv. GT N).
4.2.4 Other Ls.oprs

FIRST FORM [L.S. Operator]
FORM is evaluated once before the first iteradon, e.g.. (FOR X Y Z IN L FIRST
(FOO. Y Z) ---), and FOO could be used to initialize Y and Z.

FINALLY FORM [L.S. Operator]
FORM is evaluated after the is. terminates. For example,. (FOR X IN
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L BIND Y~0 DO (IF ATOM X THEN Y«Y+1) FINALLY (RETURN Y)) will
return the number of atoms in L.

EACHTIME FORM [L.S. Operator]
FORM is evaluated at the beginning of each iteration before, and regardless of, any.

testing. For example, consider,

(FOR I FROM 1 TO N
DO (--- (FOO I) ---)
UNLESS (--- (FOO I) ---)
UNTIL (--- (FOO I) ---))

The user might want to set a temporary variable to the value of (FOO I) in order
to avoid computing it three times each iteration. However, without knowing the
translation, he would not know whether to put the assignment in the operand to
DO, UNLESS, or UNTIL, i.e., which one would be executed first. He can avoid this
problem by simply writing EACHTIME (SETQ J (F0O0 I)).

DECLARE: DECL [I.S. Operator]
Inserts the form (DECLARE DECL) immediately following the PROG variable list in

the translation, or, in the case that the translation is a mapping function rather than
a PROG, immediately following the argument list of the lambda expression in the
translation. This can be used to declare variables bound in the iterative statement
to be compiled as local or special variables (see page 12.4). For example (FOR X
IN Y DECLARE: (LOCALVARS X) - ). Several DECLARE :s can apppear in
the same i.s.; the declarations are inserted in the order they appear.

DECLARE DECL [L1.S. Operator]
Same as DECLARE :.

Note that since DECLARE is also the name of a function, DECLARE cannot be used
as an i.s. operator when it appears as CAR of a form, i.e. as the first i.s. operator
in an iterative statement. However, dec1are (lower-case version) can be the first
i.s. operator.

ORIGINAL 1S5:OPR OPERAND [L.S. Operator]
1.s.oPR will be translated using its original, built-in interpretation, independent of

any user defined i.s. operators. See page 4.13.
There are also a number of i.s.oprs that make it easier to create iterative statements that use the clock,
looping for a given period of time. See Timers, page 14.11.

4.2.5 Miscellaneous

e Lowercase versions of all i.s. operators are equivalent to the uppercase, e.g., (for X in Y ...).

e Each i.s. operator is of lower precedence than all Interlisp forms, so parentheses around the operands
can be omitted, and will be supplied where necessary, ¢.g., BIND (X Y Z) can be written BIND X Y
Z, OLD (X«ForM) as OLD X«FORM, WHEN (NUMBERP X) as WHEN NUMBERP X, etc.

e RETURN or GO may be used in any operand. (In this case, the translation of the iterative statement will
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always be in the form of a PROG, never a mapping function.) RETURN means return from the i.s. (with
the indicated value), not from the function in which the i.s appears. GO refers to a label elsewhere in
the function in which the is. appears, except for the labels $SLP, $SITERATE, and $$0UT which are
reserved, as described below.

e In the case of FIRST, FINALLY, EACHTIME, DECLARE: or one of the i.s.types, e.g., Db, CbLLECT,
SUM, etc., the operand can consist of more than one form, e.g., COLLECT (PRINT X:1) X:2, in which
case a PROGN is supplied.

e Each operand can be the name of a function, in which case it is applied to the (last) i.v., e.g., (FOR X
IN Y DO PRINT WHEN NUMBERP) isthesameas (FOR X IN Y DO (PRINT X) WHEN (NUMBERP
X)). Note that the i.v. need not be explicitly specified, e.g., (IN Y DO PRINT WHEN NUMBERP) will

work.

For i.s.types, e.g., DO, COLLECT, JOIN, the function is always applied to the first i.v. in the i.s., whether
explicity named or not. For example, (IN Y AS I FROM 1 TO 10 DO PRINT) prints elements on
Y, not integers between 1 and 10.

Note that this feature does not make much sense for FOR, OLD, BIND, IN, or ON, since they ‘operate”
before the loop starts, when the i.v. may not even be bound.

In the case of BY in conjunction with IN, the function is applied to the current tai/ e.g., FOR X IN Y
BY CDDR ... is the same as FOR X IN Y BY (CDOR X)....

o While the exact form of the translation of an iterative statement depends on which operators are present,
‘a PROG will always be used whenever the i.s. specifies dummy variables, i.e., if-a BIND operator appears,

or there is more than one variable specified by a FOR operator, or a GO, RETURN, or a reference to the

variable $$VAL appears in any of the operands. When a PROG is used, the form of the translation is:

(PROG VARIABLES
{initialize}
$SLP {eachtime}
{test}
{body}
SSITERATE
{aftertest}
{update}
(GO $3LP)
$30UT {finalize}
(RETURN $8VAL))

where {test} corresponds to that portion of the loop that tests for termination and also for those
iterations for which {body} is not going to be executed, (as indicated by a WHEN or UNLESS); {body}
corresponds to the operand of the is.type, e.g., DO, COLLECT, etc.; {aftertest} corresponds to those
tests for termination specified by REPEATWHILE or REPEATUNTIL; and {update} corresponds to that
part that resets the tail, increments the counter, etc. in preparation for the next iteration. {initialize},
{finalize}, and {eachtime} correspond to the operands of FIRST, FINALLY, and EACHTIME, if
any.

Note that since {body} always appears at the top level of the PROG, the user can insert labels in {body},
and GO to them from within {body} or from other i.s. operands, e.g., (FOR X IN Y FIRST (GO A)
DO (FOO) A (FIE)). However, since {body} is dwimified as a list of forms, the label(s) should be
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added to the dummy variables for the iterative statement in order to prevent their being dwimified and
possibly “corrected”, e.g., (FOR X IN Y BIND A FIRST (GO A) DO (FOO0) A (FIE)). The user
can also GO to $SLP, SSITERATE, or $30UT, or explicitly set $SVAL.

4.2.6 Errors in Iterative Statements

An error will be generated and an appropriate diagnostic printed if any of the following conditions hold:
1. Operator with null operand, i.e., two adjacent operators, as in FOR X IN Y UNTIL DO --

2. Operand consisting of more than one form (except as operand to FIRST, FINALLY, or one of the
i.s.types), e.g., FOR X IN Y (PRINT X) COLLECT --.

3 IN, ON, FROM, TO, or BY appear twice in same i.s.

4. Both IN and ON used on same i.v.

5. FROM or TO used with IN or ON on same i.v.

6 More than one i.s.type, e.g., a DO and a SUM.

In 3, 4, or 5, an error is not generated if an intervening AS occurs.
If an €ITOT OCCuTS, the i.s. is left unchanged.

If no DO, COLLECT JOIN or any of the other i.s.types are specified, CLISP wxll first attempt to find an
operand consisting of more than one form, e.g.,, FOR X IN Y (PRINT X) WHEN ATOM X, and in this
case will insert a DO after the first form. (In this case, condition 2 is not considered to be met, and an
error is not generated.) If CLISP cannot find such an operand, and no WHILE or UNTIL appears in the
i.s., a warning message is printed: NO DO, COLLECT, OR JOIN: followed by the i.s.

Similarly, if no terminating condition is detected, i.e., no IN, ON, WHILE, UNTIL, TO, or a RETURN or GO,
a warning message is printed:3> POSSIBLE NON-TERMINATING ITERATIVE STATEMENT: followed
by the iterative statement. However, since the user may be planning to terminate the i.s. via an error,
control-E, or a RETFROM from a lower function, the i.s. is still translated.

4.2.7 Defining New Iterative Statement Operators

The following function is available for defining new or redefining existing iterative statement operators:

(I.5.0PR NAME FORM OTHERS EVALFLG) [Function]
NAME is the name of the new is.opr. If FOrRM is a list, NAME will be a new

i.s.type (see page 4.6), and FORM its body.
OTHERS is an (optional) list of additional i.s. operators and operands which will
be added to the i.s. at the place where NAME appears. If FORM is NIL, NAME is
a new i.s.opr defined entirely by OTHERS.

Sunless the value of CLISPI.S.GAG is T (initially NIL).
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In both FORM and OTHERS, the atom $SVAL can be used to reference the value to
be returned by the i.s., I.V-. to reference the current i.v., and BODY to reference
NAME's operand. In other words, the current iv. will be substituted for all
instances of I.V. and NAME’s operand will be substituted for all instances of
BODY throughout FORM and OTHERS.

If EvALFLG is T, FORM and OTHERS are evaluated at translation time, and their
values used as described above. LSTVARS is a list of dummy variable names
used by the iterative statement translator. If the user wishes to obtain a dummy
‘variable for use in translation, and be sure it does not clash with a dummy variable
already used by some other i.s. operators, he can use CAR of LSTVARS, and reset
LSTVAR$ to (COR LSTVARS).

If NAME was previously an i.s.opr and is being redefined, the message (NAME
REDEFINED) will be printed (unless DFNFLG=T), and all-expressions using the
i.s.opr NAME that have been translated will have their translations discarded.

For example, for COLLECT, ForM would be (SETQ $SVAL (NCONC1 $SVAL BODY) ).
For SUM, FOrRM would be ($$VAL<—$$VAL+BODY),4 OoTHERS would be (FIRST $$VAL«0).
For NEVER, FORM would be (IF BODY THEN $SVAL«NIL (GO $30UT))).S

For THERE IS, Form would be (IF BODY THEN SSVAL«I.V. (GO $SOUT)).

Examples:

To define RCOLLECT, a version of COLLECT which uses CONS instead of NCONC1 and then reverses the
list of values:

(I.S.OPR 'RCOLLECT
' ($SVAL+(CONS BODY $$VAL))
"(FINALLY (RETURN (DREVERSE $SVAL)))]

To define TCOLLECT, a versionf of COLLECT which uses TCONC:

(I.S.OPR 'TCOLLECT
*(TCONC $$VAL BODY)
'(FIRST $SVAL«~(CONS) FINALLY (RETURN (CAR $$VAL)))]

To define PRODUCT:

(I.S.OPR 'PRODUCT
' ($SVAL<SSVAL*BODY)
'(FIRST $$VAL«1)]

To define UPTO, a version of TO whose operand is evaluated only once:

*

t1$SVAL+BODY is used instead of (IPLUS $$VAL BODY) so that the choice of function used in the
translation, i.e., IPLUS, FPLUS,;or PLUS, will be determined by the declarations then in effect.

5(IF BODY THEN RETURN NIL) would exit from the is. immediately and therefore not execute the
operations specified via a FINALLY (if any).
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(I.S.OPR 'UPTO
NIL :
'*(BIND $$FO0+BODY TO $$F00)]

To redefine TO so that instead of recomputing FORM each iteration, a variable is bound to the value of
FORM, and then that variable is used:

(I.S.OPR 'TO
NIL
'(BIND $SEND FIRST $SEND«BODY ORIGINAL TO $SEND)]

Note the use of ORIGINAL to redefine TO in terms of its original definition. ORIGINAL is intended
for use in redefining built-in operators, since their definitions are not accessible, and hence not directly
modifiable. Thus if the operator had been defined by the user via I.S.0PR, ORIGINAL would not
obtain its original definition. In this case, one presumably would simply modify the i.s.opr definition.

I1.S.0PR can also be used to define synonyms for already defined i.s. operators by calling I.S.0PR
with FORM an atom, e.g., (I.S.0PR 'WHERE 'WHEN) makes WHERE be the same as WHEN. Similarly,
following (I.S.0PR 'ISTHERE 'THEREIS), one can write (ISTHERE ATOM IN Y), and following
(I.S.OPR 'FIND 'FOR) and (I.S.OPR 'SUCHTHAT 'THEREIS), one can write (FIND X IN'Y
SUCHTHAT X MEMBER Z). In the current system, WHERE is synonymous with WHEN, SUCHTHAT and
ISTHERE with THEREIS, FIND with FOR, and THRU with TO.

If ForM is the atom MODIF IER, then NAME is defined as an i.s.opr which can immediately follow another
is. operator (i.e., an error will not be generated, as described previously). NAME will not terminate the
scope of the previous operator, and- will be stripped off when DWIMIFY is called on its operand.” OLD
is an example of a MODIFIER type of operator. The MODIFIER feature allows the user to define is.
operators similar to OLD, for use in conjunction with some other user defined i.s.opr which will produce

the appropriate translation.

The file package command I.S.OPRS(page 11.25) will dump the definition of i..oprs. (I.S.0PRS
PRODUCT UPTO) as a file package command will print suitable expressions so that these iterative
statement operators will be (re)defined when the file is loaded.
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CHAPTER 5

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

The Interlisp programming system is designed to help the user define and debug functions. Developing
an applications program in Interlisp involves defining a number of functions in terms of the system
primitives and other user-defined functions. Once defined, the user’s functions may be referenced exactly
like Interlisp primitive functions, so the programming process can be viewed as extending the Interlisp
language to include the required functionality.

The user defines a function with a list expressions known as an EXPR. An EXPR specifies if the function
has a fixed or variable number of arguments, whether these arguments are evaluated or not, the function
argument names, and a series of forms which define the behavior of the function. For example:

(LAMBDA (X Y) (PRINT X) (PRINT Y))

A function defined with this EXPR would have two evaluated arguments, X and Y, and it would execute
(PRINT X) and (PRINT Y) when evaluated. Other types of EXPRs are described below.

A function is defined by putting an EXPR in the function definition cell of a litatom. There are a number
of functions for accessing and setting function deﬁmtlon cells but one usually deﬁnes a functwn with .
DEF INEQ (page 5.9).. For example: :

« (DEFINEQ (FOO (LAMBDA (X Y) (PRINT X) (PRINT Y))
(F00)

The expression above will define the function FOO to have the EXPR definition (LAMBDA (X Y) (PRINT
X) (PRINT Y)). After being defined, this function may be evaluated just l