
...... 





INTERLISP REFERENCE MANUAL 

BY WARREN TEITELMAN 

contributions by: 

A.K.HARTLEY 
J. W. GOODWIN 

BOLT BERANEK & NEWMAN 

D. G. BOBROW 
P. C. JACKSON 
L. M. MASINTER 

XEROX PALO ALTO RESEARCH CENTER 

XEROX 
PALO ALTO RESEARCH CENTER 
3180 PORTER DRIVE/PALO ALTO/CALIFORNIA 94304 



BOLT BERANEK & NEWMAN Copyr;1:ht /') 1974 XEROX CORPORATION 



Acknowledgements and .Background 

INTERLISP (formerly BBN LISP) has evolved from a succession of LISP systems 

that began with a LISP designed and implemented for the DEC PDP-1 by D. G. 

Bobrow and D. L. Murphyt at Bolt, Beranek and Newman in 1966, and documented by 

D. G. Bobrow. An upwards compatible version of this LISP was implemented for 

the SDS 940 in 1967, by Bobrow and Murphy. This system contained the seeds for 

many of the capabilities and features of the current system: a compatible 

compiler and interpreter, 2 uniform error handling, an on-line LISP oriented 

ed1tor,3 sophisticated debugging facilities,4 etc. 940 LISP was also the first 

LISP system to demonstrate the feasibility of using software paging techniques 

and a large virtual memory in conjunction with a list-processing system [Bob2]. 

DWIH, the Do-What-I-r1ean error correction facility. was introduced into the 

system in 1968 by W. Teitelman [Tei2]. who was also responsible for 

documentation for the 940 LISP system. 

1~~--~~~---~~---~----------~------------------------------~------------------~-D. G. Bobrow is currently at Xerox Palo Alto Research Center (PARe), D. L. 

2 

3 

4 

Murphy is with Digital Equipment Corp. 

The preliminary version of the compiler was written by L. P. Deutsch. now 
at Xerox PARCo This was considerably modified and extended by D. L. Murphy 
before producing the final working version. 

The original idea of a LISP oriented structure editor belongs to L. P. 
Deutsch. The editor in its current form was written by W. Teitelman, now 
of Xerox PARC., 

Designed and implemented by W.· Teitelman. 

i 



In 1970. an upwards compatible version of 940 LISP called BBN LISp6 was 

designed for the PDP-tO by D. G. Bobrow, D. L. Murphy, A. K. Hartley, and W. 

Teitelman, and implemented by Hartley with assistance from Murphy. A. K. 

Hartley was also responsible for modifying the 940 LISP compiler to generate 

code for the PDP-tO. BBN-LISP ran under TENEX, a sophisticated time sharing 

system for the PDP-l0 designed and implemented by D. G. Bobrow, J. D. 

Burchfiel, D. L. Murphy, T. _ R. Strollo, and R. S. Tomlinson.[Bob1] With 

hardware paging and Z56K of virtual memory provided by TENEX, it became 

practical to provide extensive and sophisticated interactive user support 

facilities, such as the progranuner's assistant [Tei4], CLISP [Tei5], and a more 

sophisticated DWIM. all of whic:h were designed and· developed by W. Teitelman. 

In 1971, th~ block compiler was designed and implemented by D. G. Bobrow. The 

BBN-LISP Manual [Te,3] was written by.W. Teitelman, with contributions from A. 

K.. Hartley and from J. W. Goctdwin, who also wrote TRANSOR and the special 

arithmetic functions, as well a!) a number of other utility functions. The name 

of the system was changed from BBN-LISP to INTERLISP in 1973, when the 

maintenance and develop~ent of the sys~em evolved into a joint effort between 

Bolt Beranek and Newman, and Xerox Palo Alto Research Center. The INTERLISP 

reference manual was written by W. Teitelman, with contrlbutions from A. K. 

Hartley, J. W. Goodwin, and D. G. Bobrow. The cover was designed by 

Alice R. Fikes. 

INTERLISP is currently the LISP' system used at Bolt Beranek and Newman, Xerox 

Palo Alto Research Center, Stanford Research Instit.ute Artificial Intelligence 

Center. Information Sciences Ir.sti tute, and the Dendral Project at Stanford 

University. in addition to being available at Computer Corporation of America 

i--------------------------------------------------~-------------~-------------The design, construction and documentation for BBN LISP was sponsored by 
the Information Proces~ing Techniques Section of the Advanced Research 
Project Agency, as was all of the subsequent work on the system that was 
performed at BSN. Since March 1972, the contributions made to the 
development of the system by W. Teitelman, including the preparation of 
this manual, were sponsored by Xerox Palo Alto Research Center. 

ii 



and Case Institute of Technology. The total user conununity now comprises 

approximately one hundred users. 

INTERLISP is a continuously evolving system, both in response to complaints, 

suggestions, and requests of the many users scattered throughout the ARPA 

network, as well as the long range goals of the individuals primarily 

responsible for the system, which are currently: 

Person 
w. Te itcTman 
Xerox Palo Alto 

Research Center 
3180 Porter Dr. 
Palo Alto, Calif. 94304 

A. K. Hartley 
Bolt Beranek & Newman 
50 Moulton St. 
Cambridge, Mass. 02138 

J. W. Goodwin 
Bolt Beranek & Newman 
50 Moulton St. 
Cambridge, Mass. 02138 

Responsible for 
User facilities: i.e~, pretty­
print, editor, break and trace, 
adVising. printstructure, DWU1, 
CLISP, programmer's assistant. 

Basic System: i.e., interpreter, 
input-output, garbage collector; plus 
all SUBRS, i.e. hand-coded machine language 
functions such as PRINT, CONS, PROO, GO, 
etc.; plus compiler. 

Special Arithmotic Functions: e.g. 
LOG, SIN, SQRT, etc.; plus functions 
for accessing TENEX capabilities 
such as SUBSYS, FILDIR, et al.; 
plus TRANSOR as well as various 
utility functions such as LOADFNS, 
SORT, etc. (as indicated in the text 
of this manual). 

* 

The preparation of this manual has involved the efforts of several persons at 

Xerox PARC, whom I specifically want to mention. and to express my appreciation 

for their support through this arduous, and at times seemingly endless task. 

Thank you Suzan (Jerome), Janet (Farness), Peter (Deutsch), Bob (Walker), and 

Larry (Tesler). I couldn't have done it without you~ 

ii1 

Warren Teitelman 
Palo Alto 
December, 1973. 





TABLE OF CONTENTS 

SECTION 1: Introduction 

SECTION 2: Using INTERLISP 

Using the INTERLISP Manual •••.•.• ~ •••••.••• ~...... 1 
Using the INTERLISP System on Tenex •.•••..•••••••• 4 

SECTION 3: Data types, Storage Allocation, and Garbage 
Collection 

Data Ty·p,es ••••••••••••••••••••••••••••••••• ~ ••••.•• 
Literal Atoms ...•••...••..•..••..••••••••..•• 
Pnames ..•.•. , ••.•••••••••••••••• ' ••••••••••••• 
Numerical Atoms ...•......•.....•...•••••••..• 
L i s .. t s ..... ~ .............•.................... 
Arrays ', .. " ....... ~ .. ' ......................... . 
St.r·ings .••.•••••••••••••••••.•••••••••••••••• 

Storage Allocation and Garbage Collection ••••.•.•. 
Shared INTERLISP .................................. . 

SECTION 4: Function Types and Impltcit PROGN 

Exprs .......... ~ ....•.••..• *' ••••••••••••••••••••••• 
Compiled Functions ••••..•.••.••.••••..•••••••••••• 
Function Type ...•..•• , •.••••••••••.•••••••••••.•. "c' •.••••• 
PROGN •••••••••••••••• • ". ~ •••••••••••••••••••••••••• 
Implicit PROGN .. ~ ................................ . 

SECTION 5: Primi~ive Functions and Predicates 

1 
2 
4 
4 
7 
8 
9 

11 
14 

1 
2 
3 
4 
4 

Primitive Functions ..•.••.•••••••••.•••••••••••••• 1 
RESETVAR and RESETFORM .•..••..•••••••••••••••••••. 9 
Predicates and Logical Connectives .••.•••••••••••• 11 

SECTION 6: 'List Manipulation and Concatenation 

SECTION 7: Property Lists and Hash Links 

Property Lists ..•.......••••••••••.••.•••.••••••••• 1 
Hash Links ....... ~ .. ~ .............. ~... •.. .. . . . . •. • 4 

llash Overfiow' • • . • . . • • • • . • • • • • • • • • • • • • • • • • • • • • 7 

i 



TABLE OF CONTENTS (cont.) 

SECTION 8: Function Definition and Evaluation 

SECTION 9: The INTERLISP Editor 

Introduction ............•.•••••••••.•••••••••••••• 
Commands for the New User .•....•..•.••...•.•••• \ •.• 
Attention Changing Commands •••••..•••••••••••••••• 

Local Attention Changing Commands •••••••••••• 
Commands Tha t Search ....•....•.••••.••••••••• 

Search Algorithm .........•••......•.•.•. 
Search Commands' ......••.•.•••••••••••••• 
Location Specification •...•.•••••••••••• 

Commands That Save and Restoro the 
Edit Chain ••••••• 111 •••••••••••••••••••••••• 

Commands That ~lodify Structure •.......•...•••••••. 
Implementation of Structure Modification 

Commands ••••••••••••••••••• III .•••••••••••••• 

The A, B, : Commands ...••.....•..•.••.••••••• 
Form Oriented Editing and tho Role of UP ••••••• 
Extract and Embed •......••••..••••••.•••••••• 
l'he MOVE Command •••••••••••••••••••••• " •••••• 
Commands That "Move Parentheses" •...••••••••• 
TO and THRU •••••••••••••••••••••••••••••••••• 
The R Command ..........••• -••••••••••••••••••• 

Commands That Print ......•••.•.••••••••••••••••••• 
Conunands That Evaluate •.•••.•••••••••••••••••••••• 
Commands Tha t Tes t ..•.•.••••.••..•••.•••..•.•••••• 
~Iacros ...••••.••..•••••••••••••••.•••••••••••••••• 
Niscellaneous Commands •.•••....••••.••••.••.•••••• 
UNDO •••••••••••••••••••••••••••••••••••••••••••••• 
EDITDEFAUL T ••••••••••••••••••••••••••••••••••••••• 
Editor functions 

SECTION 10: Atom, String, Array, and Storage Manipulation 

1 
10 
15 
15 
21 
23 
25 
28 

34 
36 

37 
39 
43 
45 
48 
51 
54 
57 
60 
62 
64 
67 
70 
78' 
80 
83 

Pnames and Atom Manipulation ..••...••.•.••••••••.• 1 
String functions ..........••.•....••••.••••..•.••• 5 

Searching Strings ........•...••.......••••.•• 8 
String Storage ...•..•.••••.•.•••••••••.•.•••• 11 

Array Functions ......••....••.••••••••••••••.••••• 12 
Storage Functions ....•••...•....••.•••••..•.•••••• 14 

SECTION 11: Functions with Functional Arguments 

SECTION 12: Variable Bindings and Pushdown List Functions 

The Pushdown List and the Interpreter •.•.•••••.••• 3 
The Pushdown List and Compiled Functions •••••••••• 5 
Pushdown List functions ..•..•.....••••••••••••••.• 6 
The Pushdown List and Funarg •••••••••••••••••••••• 11 

i1 



TABLE OF CONTENTS (corit~) 

SECTION 13: Arithmetic:Ftinctions 

General Comments 
Integer Arithmetic 
Floating Point Arithmetic ••••••••••••••••••••••••• 
Mixed Arithmetic 
Special Functions ................................. 
Reusing Boxed Numbers - SETN .•••••••••.••••••••••• 
Box and Unbox, •• o' •••••••••••••••••••••••••••• ' •••••• 

SECTION 14: Input/Output Functions 

F iles ....... . . " .................................. . 
Addressable Files .••••••••••••••••••••••••••• 
JFN Functions 

Input Functions 
Output Functions 

Printlevel ............................. 
Input/Output Control Functions .~ .••••.•••••.•••••. 

Line-buffering and CONTROL ••••••••••••••••••• 
Special Functions 
Symbolic File Input ••••...•••.•••••••••••••••••••• 
Symbolic File Output 

PRETTYPRINT 
Comment Feature ......... ' .................... . 
PRETTYDEF ... ' ................................. . 
Special PRETTYPRINT Controls ••••••••••••••••• 

File Package ...................................... 
SECTION 15: Debugging - The Break Package 

Debugging Facilities 
BREAK 1 ........•..•.. 

Break Commands 
Brkcoms ..... . ...................................... Brkfile 
Breakmacros ..... ' ............. '.' ............. . 

Break Functions 
BREAKIN 

................................... 

SECTION 16: Error Handling 

Unbound Atoms and Undefined Functions ••••••••••••• 
Teletype Initiated Breaks .••.•....•• , •••••••••••••• 

Control U •.•••. 
Control B ..... . . .......................... . 
Control E 

Other Types of Errors ....•...•.••.••••..•••••••••• 
Breakcheck - When to Break' ••.••••••••••••••••••••• 
Error Types 

Error Handling by Error Type ••••••••••••••••• 
Error Functions 

iii 

1 
2 
6 
7 
8 

10 
12 

1 
5 
8 

10 
18 
19 
21 
23 
26 
27 
29 
29 
30 
31 
38 
44 

1 
'4 
7 

14 
15 
15 
16 
19 

1 
2 
Z 
3 
3 
4 
4 
7 

10 
12 



TABLE OF CONTENTS (cont.) 

SECTION 17: Automatic Error Corr l9ction - Tho DWIM Facility 

Introduction 
Interaction wi th DWIM ......•....•...•.•..•..••.•.• 

Spellirig Correction Protocol .•...•••..••••••• 
Parentheses Errors Protocol •.••••...•.••••.••• 

Spelling Correction .... ~ .......••.••••.•..•••••••• 
Spelling Lists 

Error Correction 
Unbound Atoms 

••••••••••••••••••••• I." ••••• .............................. 
Undefined Car of Form .....•..••••.••..••••.•• 
Undefined Function in Apply ...•••..•••••••••• 

DW I ~IUSERFN 
Spelling Corrector Algorithm .••.••.••••••.•••••• ~. 
DWI~1 Functions ........................... ., ...... ~ .. 

SECTION 18: The Compiler and Assembler 

The Compiler ..... . . ............................. . 
Compiler Questions 
Nlambdas ......... . 
Globalvars ....................................... . 
Compiler Functions 

RECONPILE 
Open Functions 
Compiler Macros 
FUNCTION and F~nctlonal Arguments ..•.•..••••..•••• 
Block Compiling 

Specvars 
Localfreevars 
Retfns 
Blkapplyfns 
Blklibrary 

Linked Function Calls 
Relinking 

The Block Compiler 
BLOCKCONPILE 

............................. 

Block D~clarations ..•..•.••••.•••••.•..•... 
BtO~lPL ..................................... . 
I1RECOMPILE 

Compiler Structure 
ASSEMBLE ...... . 
l.AP 
Us ing ASSE~IBLE 
Miscellaneous .............•.•.•. o •• o •••••••••••••• 

Compiler Printout and Error Messages ••.••••••••••• 

SECTION 19: Advising 

Implementation of Advising ••.••••••••••••••••••••• 
Advise Functions ..•..•.• 0 ••••••••••••• 0 ••••••••••• 

iv 

1 
5 
5 
7 

10 
11 
14 
16 
17 
18 
19 
20 
23 

1 
3 
5 
6 
7 

10 
13 
14 
16 
17 
18 
18 
20 
20 
21 
21 
25 
26 
27 
28 
30 
31 
34 
35 
40 
46 
41 
48 

2 
5 



TABLE OF CONTENTS (~ont.) 

SECTION 20: Printstructure and Interscope 

Printstructure ...•....••.•.•.••••...••...•.....•.• 1 
Intcrscope ............................................ 10 

SECTION 21: Miscellaneous 

Measuring Functions •..•.. ~........................ 1 
BR EAK rlQWN. • •••••••••••••••••• ,..................... 5 
E D I T A ••••••• ;'. • ~" • • • • • • • • • • ~. • • • • • • • • • • .'. • • • • • • • • • • • 8 

Input Protocol ...•..........•....•..•..••••.• 10 
F.DITA commands and variables ................• 12 

Interfork Communication .•.........•.•.•••••.•.•••• 17 
Subsys .................• " ............•....•..••.• ,.. 18 
Miscellaneous TENEX Functions ......••... ~......... 21 
Printing Reentrant and Circular List Structures 24 

SECTION 22: The Programmer's Assistant and LISPX 

Introduction .......•...•.•.•...•••.•••.•••....•••. 1 
Overview ........ ,", ...... ., .... '...................... 6 
Event Specification ...........•••.....•. ~......... 11 
History, Commands ................•...•..••••••.•.•• 14 

Implementation of REDO, USE, and FIX .•......• 17 
History Commands Applied to History Commands. 19 
HistorY Commands That Fail................... 20 
~lore History Commands •.........•....••.•...•• 21 

Miscellaneous Features and Commands .....••..•.•••. 28 
Undoi.ng ...... : ...............................•..... ,..... 38 

Testmode .........•...•••..•....••••••••••.•.•• 41 
Undoing out of order ...........•.....•...•.•• 42 
SAVESET .................. '. • . . . . . . • . .• . . . . . . . . 43 

Format and Use of the History List .•....•.•••.•... 44 
LISPX and READLINE •........••..•..•.•..•.•.•..••.. 47 
Functions ................•..•.••••...••.•••••.•.•• 48 
Tho Editor and the Assistant ..•••.•••••...•.•..•.• ~1 
Statistics ........... ....... e·....................... 63 
Greeting and Use~ Initialization ..••.••••.•••.•••• 64 

v 



TABLE Of CONTENTS (cont.) 

SECTION 23: CLISp·- Conversational LISP 

Introduction 
CLISP Syntax ...•.............•..•.........••...••• 
Infix Operators ...........•.•.......•..•..•..••••• 
Prefix Operators ..•........•..•......••••...•..••. 
Constructing l.ists - the <.> Operators ..••..•••••• 
IF, TIIEN. ELSE 
Iterative Statements ..........•..•••.....••.•••••. 

Errors in Iterative Statements .•.•.....•.••.• 
Defining New Iterative Statement Operators 

CLISP Translations .....•••••..••.•..••.•.••••••••.• 
Declarations .............••••••••.••.•••.•.•••.•.• 

Local Declarations ..•...•••.•..•....•.••...• 
The Pnttern Match Compiler ..•••••..•••••••••••.••• 

Element Patterns ..•..•...•••.•••.....•••••.... 
Segment Patterns ••..•••..•....••.•.•••••.•.•• 
Assignments ..•.•.•.•••..••••••.••.••••.••.••• 
Place-markers ...••.•••..•••••••••••••••••.••• 
I~cplacements .•...•••.•..•.••...••.••.•.•••••• 
Reconstruction ....•••••.••••••..••••••.•••••• 

Record Package ........•.•.••...•..••••..•••••••••. 
Record Declarations ...•........••••....••...• 
CREATE 
Implementation ....• ~ .•..•.••..•...••...•••... 

CLISPIFY 
•••••••••••• tI •••••••••••••• It ••••••• : •••••••• DWHtIFY 

Compiling CLISP ................................... 
Operation 
CLISP 
CLISP 
CLISP 

Interaction with User .•••..• ~ .•.•..••••••••• 
Internal Conventions ....•••..•.••.••.••.•••• 
Functions and Variables .•••.•.•.••.••••••••• 

APPENDIX 1: TRANSOR 

Introduction 
Using TRANSOR 
The Translation Notes 
TRANSORSET 
Controlling the sweep 

APPENDIX 2: INTERLISP Interpreter 

APPENDIX 3: Control Characters 

MASTER INDEX 

vi 

1 
9 

10 
13 
16 
17 
18 
27 
28 
30 
33 
35 
36 
39 
41 
43 
44 
44 
46 
48 
51 
55 
57 
58 
61 
63 
64 
67 
68 
71 

1 
3 
4 
8 

14 



SECTION 1 

INTRODUCTION 

This document is a reference manual for INTERLISP, a LISP system currently 

implemen,ted on the DEC POP-tO under the BBN TENEX time sharing system.[Bob1] 

INTERLISpl is designed to provi~ethe user access to the large virtual memory 

allowed by TENEX, with a relatively small penalty in speed (using special 

paging techniques described in [BobZ]). Additional data types have been added,' 

including strings, arrays, and hash association tables (hash links) (Sections 7 

and 10). The system includes a compatible compiler (Section 18) and 

interpreter. Machine code can be intermixed with INTERLISP expressions via the 

assemble directive of the compiler. The compiler also contains a facility for 

"block compilation" which allows a group of functions to be compiled as a unit, 

suppressing internal names. Each successive level of computation, from 

interpreted through compiled, to block-compiled provides. greater speed at a 

cost of debugging ease . . 

INTERLISP ~as been designed to be a good on-line interactive system. Some of 

the features provided include elaborate debugging facilities with tracing and 

conditional breakpoints (Section 15), and a sophisticated LISP oriented editor­

wi thin the system (Section 9). Utilization of a uniform error processing 

through user accessible routines (Section 16) has allowed the implementation of 

DWIM, a !!o-~at-! -~ean facility, which automatically corrects many types of. 

errors without losing the context of computation (Section 17). The CLISP 

1.1 



facility (Section 23) extends the LISP syntax by enabling ALGOL-like infix 

operators such as +, -, -, /, =, ., AND, OR, etc., as well as IF-THEN-ELSE 

statements and FOR-WHILE-DO stiltements. CLISP expressions are automatically 

converted to equivalent LISP for'ms when they are first encountered,. CLISP also 

includes list construction operutors, as well as a LISP oriented pattern match 

compiler. 

A novel and useful facility lof the INTERLISP system is the programmer's 

assistant (Section 22), which monitors and records all user inputs. The user 

can instruct the progranuner I s ,assistant to repeat a particular operation or 

sequence of operations, with po~.sible modifications, or to UNDO the effects of 

specified operations. The goal of the programmer's assistant, OWIH, CLISP. 

etc. is to provide a programming environment which will "cooperate" with the 

user in the development of his programs, and free him to concentrate more fully 

on the conceptual difficulties and creative aspects of the problem he is trying 

to solve. 

To aid in converting to INTERL ISP programs written in other LISP dialects, 

e.g., LISP 1.5, Stanford LISP, I~e, have implemented TRANSOR, a subsystem which 

accepts transformations (or can operate from previously defined 

transformations), and applies these transformations to source programs written 

in another LISP dialect, producing object programs which will run on INTERLISP 

(Appendix 1). In addition, TRANSOR alerts the programmer to problem areas that 

(may) need further attention. TRANSOR was used extensively in converting from 

940 LISP to BBN-LISP on the PDP-l0. A set of transformations is available for 

converting from Stanford LISP and LISP 1.5 to INTERLISP. 

A complete format directed list processing system FLIP [Teil], is available for 

use within INTERLISP. 

Although we have tried to be as clear and complete as possible, this document 

1.2 



is not designed to be an introduction to LISP~ Therefore, some parts may only 

be clear to people who have had some experience with other LISP systems. A 

good introduction to LISP has been written by Clark Weissman [Weil]. Although 

not completely accurate with respect to INTERLISP. the differences are small 

enough to be mastered by use of this manual and on-line interaction. Another 

useful introduction is given by Berkeley [Bert] in the collection of Berkeley 

and Bobrow [Ber2]. 

Changes to this manual will be issued by replacing sections or pages, and 

reissuing the index and table of contents at periodic intervals. In addition, 

the manual will be maintained on-line, and up to date versions of any or all 

chapters will be available in the form of TENEX files from W. Teitelman at 

Xerox PARC. 

1.3 



Bibliography 

[Bert] 

[Ber2] 

[Bobl] 

[Bob2] 

[ Bob3] 

[Meel] 

[Murl] 

[8mi1] 

[Teit] 

[Tei2] 

[ Tei3] 

[Tei4 ] 

[Tei5 ] 

[Weil] 

Berkeley. E.C .• "LISP, A Simple Introduction" in Berkeley. E.C. and 
Bobrow, D.G. [Ber2]. 

Berkeley, E.C., and Bobrow, D.G. (editors), The Programming Language 
LISP, its Operatiol!! and Applications, MIT Press, 1966e 

Bobrow, D. G., Burchfiel, J. D., Murphy, D. L., and Tomlinson, R. 8. 
nTENEX, a Paged Time Sharing System for the PDP-I0", 
Communications of :the ACM, March, 1972. 

Bobrow, D.G., and Murphy, D.L. "The Structure of a LISP System Using 
Two Level Storage", Communications of the ACM, VIS 3, March 1967. 

Bobrow, D.G., and Wegbreit, B. "A Model and Stack Implementation for 
Mul tiple EnvironmEmts" (to be published), Third International 
Joint Conference ~!! Artificial Intelligence, August 1973. 

McCarthy, J. et ale LI;SP 1.5 Programmer's Manual, MIT Press, 1966. 

Murphy, .D.L. "Stora"e Organization and Management in TENEX", 
Proceedings of Fal~ Joint Computer Conference, December 1972. 

8mi th, D. "MLISP" Art;ificial Intelligence Memo No. 135 Stanford 
University, October 1970. 

Teitelman, W. FLIP, A format Directed List Processor in LISP, BBN 
Report, 196-:;-:- -

Teitelman, W. "Toward a Programming Laboratory" in Walker, D. (ed.) 
International Joint Conference on Artificial Intelligence, May 
1969. ---

Teitelman, W., Bobrow, D.G., Hartley. A.K. Murphy, D.L. BBN-LISP 
TENEX Reference Manual, Bolt Beranek and Newman, July 1971, first 
revision, Febru8r~1972, second revision August 19,72. 

Teitelman, W. "Automatl!d Programmering - The Programmer's Assistant", 
Proceedings of the Fall Joint Computer Conference, December 1972. 

Teitelman, W. "CLISP - Conversational LISP"~ Third International 
Joint Conference ~l Artificial Intelligence, August 1973. 

Weissman, C. LISP 1.5 ~rimer, Dickenson Press (1967). 

1.4 



SECTION 2 

USING INTERLISP 

2.1' Using the INTERLISP'Manual ..; ~:Format, Notation, and Conventions 

The INTERLISP manual is divided' into separa'te more or less independent 

sections. Each section· ig paginated ,independently, to facilitate issuing 

updates 'of sections. Each sec'tion "cont'ains an index to ' keywords, functions, 

and variables contained in that section. In addition, there is a composite 

index for the entire manual, plus several appendices and a table of contents. 

Throughout the manual~ terminology'and conventions will be offset from the text 

and typed in italics, ·frequently at the beginning of a section. For example, 

one such notational ~onvention is: 

The' names of functions and ,,«riables are written in lOUler case and underlined 
when theu appear in the text. Meta-LISP notation is used Jor describing Jonms. 

Examples: member[x;y] is equivalent t'o (MEMBER X Y), 'member[car[x];FOO] is 

equivalent to (MEMBER (CAR X) (QUOTE FOO». Note that. in meta-LISP notation 

lower case variables are evaluated, upper case quoted. 

. notation is used to, distinguish between £!!!!:! and lli.!.: 

e.g., if !=(A B C). (FOO x) is (FOO (A B C», whereas(FOO • x) 

is (FOO A B C). In other words, ! is cadr of (FOO x) but cdr of (FOO • x). 

Similarly, l is caddr of, (FOO x'Y)','but cddr of (FOO x • y). Note that this 

2.1 



convention is in fact followed by the read program, 

i.e., (FOO . (A B C» and (FOO A B C) read in as equal structures. 

Other important conventions art: 

TRUE in INTERLISP means not NIL. 

The purpose of this is to allo,~ a single function to be used both for the 

computation of some quantity, and as a test for a condition. For example, the 

value of member[x;y] is either NIL. or the tail of 1.. beginning with !. 

Similarly, the value of !!.!: is the' value of its first TRUE, i.e.,. non-NIL, 

expression, and the. value of !Jrld is either NIL, or the value of its last 

expression. 

Although most lists terminate in NIL. the occasional list that ends in an atom, 

e.g •• (A B . C) or worse, a nUlmer or string, could cause bizarre effects. 

Accordingly. we have made the fol.lowing implementation decision: 

All junction.s that iterate throl!lgh a li.st. e.g •• member. length. mapc t etc. 
terminate bll an nli.s.tp checlc.. 1'ather than the conventional nuLl-checlt, a.s a 
.sajetll precaution again.st encouTiltering dat.a tupes which might cause infinite 
cd r L oop.s. e. g .• s tri ngs. number~;. arraus. 

Thus, member[x;(A B . C)]=member[x;(A B)] 

reverse[(A B . C)]=reverse[(A B)] 

append[(A B • C);y]=append[(A B);y] 

For users with an application requiring extreme efficiency,1 we have provided 

fast versions of memb, last, n1;h, !!!!!£. and length which compile open and 

i---~-~-I~--;;;;;-~;~-~~--;;;~;;;d'-~~-~~;~--;~;-~~;;;~~;~~~:-~~--;;;;;;-;;~~~;;; 
about 12, although both gener'ate only one word of code. 

2.2 



terminate on NIL checks. and therefore may'cause infinite cdr loops if given 

poorly formed arguments. However. to help detect these situations, fmemb, 

flast ~ fnth, fassoC, and 'flength 'all generate errors when interpreted if their 

argument ends 1n a non-list other'than NIL, e.g. BAD ARGUMENT - FLAST. 

Most Junctions that set sustem parameters. e.g .• printleueZ. linelenath, radix, 
etc .• return as their ualue the old setting. 1/ giuen NIL as an argument. theu 
return the current ualue without changing it. 

All SUBRS, i. e., hand coded junctions. such as read, print, eu'al, ~, etc., 
have 'argument names' (U V W) as described under arglist, Section 8. Howeuer, 
Jor tutorial purposes ,more suggestille names are used in the descriptions 01 
these Junctions, in the text. 

Most Junctions whose names end in ! are predicates. e.g. numberp, tailp. exprp, 
most JUri,cttons whose names' end in !l. are nZambda's. t.e., do not require quoting 
their arguments, e.g., setg, define,. nlsetg . 

•• ~ is equal to 1/." means equal(x,IIJ is true. as opposed to"! t's !!l. to 1/." 
meaning eq(x,uJ is true. i.e .• !. and II. are the same identical tiSP pointer. 

When neru literal atoms are created (bu the read program. pack. or mitatom). theu 
are provided with a junction dejinition cell initialized to NI£ (Section 8), a 
ualue cell initialized to the atom NOBIND (Section 16), and a propertll list 
initialized to NIL (Section 7). The junction dejinition cell is accessed bll 
the functions getd and putd described" in Section 8. The ualue cell oj an atom 
is car oj the atom. and its propertu list is cdr 0/ the atom. In particular, 
£l!!. oj NI£ and cdr oj NI£ are alwalls NIL. and thesustem will resist attempts 
to change them. 

The term lis t rejersto anu structure created bU one or more con.se.s • i.e. it 
doe.s not hcive to end in NIL. For example, (A . B) is a list. The Junction 
listp, Section 6. is used to test lor li.sts. Note that not being a list does 
not nece.ssarily impZu an atom. e.g .• strings' and aTraus are not lists. nor are 
theyatom.s. See Section 10. 

Many .sy.stem Junctions haue extra optional arguments jor internal use that are 
not de.scribed in the writeups. For example, readline is' described as a 
Junction oJ no arguments. but arglist(READLINE} returns (LINE LISPXFLG). In 
such cases, the user should just ignore the extra arguments. . 

INTERLISP departs from LISP 1.5 and, other LISP dialects in that car oj a Jorm 

is neuer evaluated~ In other words, if £!!. of a form is not an atom with a 

function definition, and not a function object, i.'e. a list ~ of which is 

LAMBDA, NLAMBDA, or FUNARG, an error is generated. ~ or !ru!.!I* (section 8) 

must be used if the name of a function is to be computed as for example, when 

functional arguments are applied. 

2.3 



2.2 Using the INTERLISP System on TENEX - An Overview 

Call INTERLISP by typing LISP followed by a carriage return. INTERLISP will 

type an identifying message, the date, and a greeting, followed by a '~'. This 

prompt character indicates that the user is Rtalking toR the top level 

INTERLISP executive, called !!'y'algt, (for historical reasons), just as I@' 

indicates the user is talking to TENEX. evalgt 'calls lispx which accepts 

inputs in ei ther eval or !..I!.l!.!I format: if just one expression is typed on a 

line, it is evaluated; if two 4~xpressions are typed. the first is .!.I!.P1I-ed to 

the second. eval and !..I!.l!.!I art. described in section 8. In both cases. the 

value is typed, followed by ~ indicating INTERLISP is ready for another input. 

INTERLISP is normally exited via the fUnction LOGOUT. i.e.. the user types 

LOGOUT( ). However. typing contr"ol-C at any point in the computation returns 

control immediately to TENEX. The user can then continue his program with no 

ill effects with the TENEX CONTINUE comand, even if he interrupted it during a 

garbage collection. Or he can reenter his program at evalqt with the TENEX 

REENTER command. The latter is DEFINITELY not advisable !l the Control-C ~ 

typed during !! garbage collec1~ion. Typing control-D at any point during a 

computation will return control to evalgt. If typed during a garbage 

collection, the garbage collection will first be completed, and then control 

will be returned to INTERLIiSP' s top level, otherwise, control returns 

immediately. 

When typing to the INTERLISP read program, typing a control-Q will cause 

INTERLISP to print 'II' and clear the input buffer, i.a., erase the entire line 

up to the last carriage return. Typing control-A erases the last character 

typed in, echoing a \ and the erased character. Control-A will not back up 

beyond the last carriage return. ControI-O can be used to tmmedtatelu clear 

2.4 



the output buffer, and rubout to immediatel,l clear the input buffer. 2 In 

addi tion, typing, control-U (in most cases) will cause the INTERLISP editor 

(Section 9) to be called on the, expression being read, when the read 1s 

completed. Appendix 3 contains a list of all control characters, and a 

reference to that part of the manual where they are described. 

Since the INTERLISP read program is normally line-buffered to make possible the 

action of control-Q,a the user must type • carriage return b.fore any 

characters are delivered to the function requesting input, e.g., 

.. E T.> 
T 

4 

However, the read program automatic.llll supplies (and prints) this carriage 

return when a matching right parenthesis is typed, .aking it unnecessary for 

the user to do so, e.g., 

"CONS(A B) 
(A • B) 

The INTERLISP read program treats square brackets as 'super-parentheses' ': a 

right square bracket automatically supplies enough right parentheses to match 

back to the last left square bracket (in the expression being read), or if none 

has appeared, to match the first left parentheses, 

e. g. , (A (B (C]= (A (B (C»), 

(A [B (C (0] E)·(A (8 (C (0») E). 

2--~-~-----------~---------------~--~-~--------------------------~------------~ The action of control-Q takes place when it is read. If the user has 

8 

" 

'typed ahead' several inputs, control-Q will only affect at most the last 
line of input. Rubout however will clear the entire input buffer as soon 
as it is typed, i.e., even during a garbage collection. 

Except following control[T], see Section 14. 

'.,' is used throughout the manual to denote carriage-return. 

2.5 



% is the universal escape character for read. 

a syntactic delimiter, precede it by X, e.g. 

more details. 

Thus to input an atom containing 

ABX (C or xx. See Section 14 for 

Most of the "basics" of on-lillie use of INTERLISP, e.g. defining functions, 

error handling, editing, saving your work, etc., are illustrated in the 

following brief console session. Underlined characters were typed by the user. 

1. The user callslNTERLISP from TENEX, INTERLISP prints a date, and a 

greeting. The prompt character ~ indicates the user is at the top level of 

INTERLISP •. 

2. The user deC·ines a functi')n, fact, for computing factorial of n. In 

INTERLISP, functions are defined via DEFINE or DEFINEQ, (Section 8). 

Functions may independently evaluate arguments, or not evaluate them, and 

spread their arguments, or not spread them (Section 4). The function fact 

shown here is an example of an everyday run-of .. the-mill function of one 

argument, which is evaluated. 

3. The user "looks" at the lFunction definition. Function definitions in 

INTERLISP are stored in a special cell called the function definition cell, 

which is associated with the name of the function (Section 8). This cell 

is accessible via the two functions, getd and putd, ('def~ne and defineq use 

putd). Note that the u~)er typed an input consisting of a single 

expression, i.e. (GETD (QUOTE FACT», which was therefore interpreted as a 

form for eval. The user could also have typed GETD(FACT). 

4. The user runs his function. Two errors occur and corrections are offered 

by DWI" (Section 17). In each case, the user indicates his approval, DWI" 

makes the correction, i.e. actually changes. the definition of fact, and 

then continues the computation. 

2.6 



@LISP,> 

INTERLISP-I0 11-17-73 ••• 

GOOD EVENING. 
~OEFINEQ«FACT (LAMBOOA (N) (COHO «EO N 0) NIL) Z 
(T (ITIMES H (FACTT (SUBI H] 
(fACT) 
~(GETO (QUOTE FACT» 3 
(LAMBOOA (H) (CONO «EQ H 0) NIL) (T (ITIHES N (FACTT (SU81 N»»» 
~FACT(3) . . 4 
LAMBOOA [IN FACT] -> LAMBDA? !ESl 
FACTT [IN FACT] -> FACT? !ESl 

NON-NUMERIC ARG 
NIL 
IN ITIHES 

(BROKEN) 
:BT,> 
ITIMES 
CONO 
FACT 
CONO 
FACT 
CONO 
FACT 
**TOP** 

:N,> 
1-
:EOITF(FACT) 
EDIT 
*(R NIL 1) 
*OK,> 
FACT 
:RETURN 1.> 
'BREAK' = 1 
6 
~PP FACT,> 

(FACT 
[LAMBDA (N) 

(CONO 

FACT 

« EQ NO) 
1 ) 

(T (ITIMES N (FACT (SUBI N]) 

~PRETTYOEF«FACT) FACT) 
FACT. ,I 

2.7 

5 

, 

1 

8 

9 
10 

11 

12 

13 
14 



5. An error occurs that OWl" cannot handle. and the system goes into a break. 

At this point. the user can type in expressions to be eval-ed or apply-ad 

exactly as at the top level. The prompt character ':' indicates that the 

user is in a break. i.e. that the conte~t of hi$ c~mputation is available. 

In other words. the system is actually "within" or "below" the call to 

itimes in which the error occurred. 

6. The user types in the break command, BT, which calls (or a backtrace to be 

printed. In INTERLISP, interpreted and compil~d code (see Section 18 for 

discussion of the compiler) are completely compatible, and in both cases, 

the name of the function that was called, as well as the names and values 

of its arguments are stored on the stack. The stack can be searched and/or 

modified in various ways (see Section 12). 

Break commands are discusse:d in Section 15, which also explains how the 

user can "break" a particular function, i.e. specify that the system go 

into a "break H whenever a 'certain function or functions are called. At 

that point the user can c!xamine the state of the computation. This 

facility is very useful for debugging. 

7. The user asks for the value of the variable rr. i.e. the most recent value, 

or binding. The interpretEtr will search the stack for the most recent 

binding, and failing to find one, will obtain the top level value from the 

atom's value cell, which is £![ of the atom (Section 3). If there are no 

bindings, and the value cell contains the atom NOBINO, an unbound atom 

error is generated (Section 16). 

8. The user realizes his error. and calls the editor to fix it. (Note that 

the system is ~till in the break.) The editor is described at length and in 

detail in Section 9. It is an extremely useful facility of· INTERLISP. 

Section 9 begins with a simple introduction designed for the new user. 

2.8 



9. The user instructs the editor to replace all NIL's (in this case there is 

only one) by 1. The editor physically changes the expression it is 

operating on so when the user exits from the editor, his function, as it 

is now being interpreted. has been changed. 

10. The user exits from the editor and returns to the break. 

11. The user specifies the value to be used by itimes in place of NIL by using 

the break command RETURN. This causes the computation to continue, and 6 is 

ultimately returned as the value of'the original input, fact(3). 

12. The user prettyprints (Section 14) fact, i.e. asks it be printed with 

appropriate indentations to indicate structure. Prettyprint also provides 

a comment facility. Note that both tbe changes made to fact by the editor 

and those made by DWIM are in evidence. 

13. The user writes his function on a file by using prettydef (Section 14), 

creating a TENEX file, FACT.;l, which when loaded into INTERLISP at a later 

date via the function load (Section 14), will cause fact to be defined as 

it currently is. There is also a facility in INTERLISP for saving and 

restoring an entire core image via the functions Sysout and sysin 

(Section 14). 

14. The user logs out, returning control to TENEX. However, he can still 

continue his session by re-entering INTERLIBP via the TENEX REENTER or 

CONTINUE command. 

2.9 



Index for Section 2 

APPLY[FN;ARGS] SUBR 
apply format 
APPLY*[FN;ARG1; .•. ;ARGn] SUBR* 
ARGlIST[X] ....................•••••.••••••••••• 
back trace ................................... . 
BAD ARGUMENT 
BAD ARGUMENT 
BAD ARGUMENT 
BAD ARGUMENT 

FASSOC (error message) 
FLAST (error message) 
FLENGTH (error message) 
FMEHB (error message) 

BAD ARGUMENT FNTH (error Illessage) 
BT (break command) 
CONTINUE (tenex command) 
CONTROL[U] SUBR 
control characters 
control-A 
control-C 
control-D 
control-O 
control-Q 

· ..................................... . 
· ..................................... . 

control-U 
debugging 

· ..................................... . OEFINE[X] 
OEFINEQ[X] NL* 
dot notation 
DWIM 
EQ[X;Y] SUBR 
eQ 
EQUAL[X;Y] · .................................... . 
equal 
escape character 
EVAL[X] SUBR 
eval format 
EVALQT 

••••• ' •••••••• I •••••••••••••••••••••• 

FASSOC[X;Y] .......... ' .......................... . ........................................... files 
FLAST[X] 
FLENGTH[X] 
FMEMB[X;Y] 

........................................ 
FNTH[X:N] · ..................................... . 
function definition cell 
functional arguments 
garbage collection .......... ' ................... . .................................... GETD[X] SUBR 
line-buffering 
LINELENGTH[N] SUBR 
LISTP[X] SUBR 
lists 
lOAO[FILE;LDFLG;PRINTFLG] 

....................... 
lOGOUT[] SUBR ••••••• II ••••••••••••••••••••••••••• 

NlISTP[X] · ..................................... . 
NOBINO · ............................... ' ...... . · .................................... . null-check 
predicates 
PRETTYDEF 
PRETTYPRINT 
PRINTlEVEl[N] SUBR 

· .................................... . · ..................................... . ..................................... .............................. 

INI)EX.2.1 

Page 
Numbers 

2.3-4 
2.4 
2.3 
2.3 
2.8 
2.3 
2.3 
2.3 
2.3 
2.3 
2.8 

·2.4,9 
2.5 
2.4-5 
2.4 
2.4 
2.4 
2.4 
2.4 
2.5 
2.8 
2.6 
2.6 
2.1 
2.6 
2.3 
2.3 
2.3 
2.3 
2.6 
2.4,6 
2.4 
2.4 
2.3 
2.9 
2.3 
2.3 
2.3 
2.3 
2.3,6 
2.3 
2.4 
2.3,6 
2.5 
2.3 
2.3 
2.3 
2.9 
2.4 
2.2 
2.3,8 
2.2 
2.3 
2.9 
2.9 
2.3 



prompt character 
property list 
pushdown list 
PUTD[X;Y] SUBR 
RADIX[N] SUBR ................................... 
REENTER (tenex command) 
RETURN (break command) 
rubout 

......................... 
square brackets 
SYSIN[FILE] SUBR 
SYSOUT[FILE] EXPR 
TENEX 

................................. ................................ 
true ......... " ................................. . 
(U V W) (value of ARGlIST) 
U.B.A. (error message) 

...................... 
•••• ill ••••••••••••••••••••••••••••••••• value cell 

variable bindings ............................... 
~ (carriage-return) 
II (typed by system) 
X (escape characterl 

notation 
(typed by system) 

\ (typed by system) 
] 
~ (typed by system) 

•••••••• 0 ••••• _ ••••••••••••• 

.............................. 
••••••••• 0 ••••••••••••••••••• 

INDEX.2.2 

Page 
Numbers 

2.4.6,8 
2.3 
2.8 
2.3,6 
2.3 
2.4,9 
2.9 
2.5 
2.5 
2.9 
2.9 
2.4,6,9 
2.2 
2.3 
2.8 
2.3 
2.8 
2.5 
2.4 
2.6 
2.1 
2.8 
2.4 
2.5 
2.4,6 





SECTION 3 

DATA TYPES, STORAGE ALLOCATION, AND GARBAGE COLLECTION1 

INTERLISP operates ;in an 18-bitaddress spaci. This address space is divided 

into 512 word pages with a limit of 512 pages, or 262,144 words, but only that 

portion of address space. currlntly in use actually exists on a·ny storage 

medium. INTERLISP itself· and>. all data storage are containld within this 

address space. . A pointe... to a data Ile.entsuch as a nullber, atOll,·etc., is 

simply thl addrlss of the data'll,.ent in this 18-bit'address spaci • 

. 3.1 Data Types 

The data types of INTERLISP are lists, atoms, pnames, arrays, large and small 

integers, floating point numbers, string .. ~haracters .and string pointers. 

Compiled code and hash arrays are currently included with arrays. 

In the descriptions of the various data types given below, for each data type, 

first the input syntax and output format are described, that is, what. input 

sequence will cause the INTERLISP read program to construct an Illment of that 

type, and how the INTERLISP print program will print such an Ilemlnt. Next, 

those functions that construct aliments of that data type are given. Note that 

some data types cannot be input, thlY can only be constructed, e.g. arrays. 

Finally, the format in which an Il •• lnt of that data type i·5 stor.d in ••• ory 

is described. 

i---------------------------------------------------~--------------------------This section was written by A. K. Hartley. 

3.1 



3.1.1 Literal Atoms 

A literal atom is input as any string of non-delimiting characters that cannot 

be interpreted as a number. The syntatic characters that delimit atoms are 

space, end-of-line,2 line-feed, ,~ ( ) • ] and [. However, these characters may 

be included in atoms by precedin" them with the escape character X. 

Literal atoms are printed by print and prinZ as a sequence of characters ,with 

xes inserted before all delimitilllg characters (so that the atom will read back 

in properly). Literal atoms are printed by print asa sequence of characters 

wi thout these extra X' s. For example, the atom consisting of the five 

characters A, B, C, (, and 0 will be printed as ABCX(D by print and ABC(D by 

prinl. The extra X t 5 are an art1lfact of the print program; they are not stored 

in the atom's pname. 

Li teral atoms can be constructed by pack, mkatom, and gensym (which uses. 

mkatom) • 

Literal atoms are unique. In other words, if two literal atoms have the same 

pname, i.e. print the same, they will allDalls be the same identical atom, that" 

is, they will always have the same address in memory. or equivalently, they 

will always be !!l.a Thus if ~lck or mkatom is given a list of characters 

corresponding to ~ literal atom that already exists, they return a pointer to 

that atom, and do not make a new atom. Similarly, if the read program is given 

as input of a sequence of char'acters for which an atom already exists. it 

returns a pointer to that atom. 

j--------------_________________ O ___________________ ~ _________________________ _ 

An end-of-line character is transmitted by TENEX when it sees a 
carriage-return. 

8 Note that this is not true for strings, large integers, floating point 
numbers, and lists, i.e. the~, all can print the same without being g. 

3.2 



A literal atom is a 3 word (36 bits) datum containing: 

WORD I: PROPERTY LIS T TOP LEVEL BINDING 
(CDR) (CAR) 

0 17 18 35 

WORD 2: FUNCTION CALLING I NSTRUCTIO N 

0 35 

WORD 3: PNAME I RESERVED FOR FUNCTIONS I 
ON FILES 

0 17 18 35 

FIGURE 3-1 

Car of a literal atom, i.e. the right half of word 1, contains its top level 

binding, initially the atom NOBIND. Cdr of the atom is a poi'nter to, its 

property list, initially NIL. 

Word Z. the function definition cell. is a full 36 bit word, containing an 

instruction to be executed for calling the function associated with that atom, 

if any. The left half differs for different function types (i.e., EXPR, SUBR, 

or compiled code); the right half is a pointer to the function definition.4 

The pname cell, the left half of the third word, contains a pointer to the 

pname of the atom. The remaining half word is reserved for an extension of 

INTERLISP to permit storing function definitions on tiles. 

a-------------------------------------------------------~----------------------This use of a full word saves some time in function calls trom compiled 
code in that we do not need to look up the type of the function definition 
at call time. 

3.3 



3.1.2 Pnames 

The pnames of atoms, 6 pointed to in the third word of the atom, comprise 

another data type with storage assigned as it is needed. This data type only 

occurs as a component of an atom or 'a string. It does not appear, for example, 

as an element of a list. 

Pnames have no input syntax or, output format as they cannot be directly 

referenced by user programs. 

A pname is a sequence of 7 bit characters packed 5 to a word, beginning at a 

word boundary. The first chara«:ter of a pname contains its length; thus the 

maximum length of a pname is 126 characters. 

3.1.3 Numerical Atoms 

Numerical atoms. or simply numbBrs, do not have property lists, value cells, 

functions definition cells. or e'xplicit pnames. There are currently two types 

of numbers in INTERLISP: integer:s, and floating pOint numbers_ 

Integers 

The input syntax for an integel'" is an optional sign (+ or -) followed by a 

6-~-----~-----------~--------------------------------- -------------------------
All INTERLISP pointers have pnames, since we define a pname Simply to be 
how that pointer is printed. However, only literal atoms and strings have 
their pnames explicitly st()red. Thus, the use of the term pname in a 
discussion of data types 01" storage, allocation means pnames of atoms or 
strings, and refers to a sequence of characters stored in a certain part of 
INTERLISP's memory_ 

3.4 



sequence of digits, followed by an optional Q.8 If the Q is present, the digits 

are interpreted in octal, otherwise in decimal, e.g. 77Q and 63 both correspond 

to the same integers, and in fact are indistinguishable internally since no 

record is kept of how integers were created. 

The setting of radix (Section 14), determines how integers are printed: signed 

or unsigned, octal or decimal. 

Integers are created by pack and mkatom when given a sequence of characters 

observing the above syntax, e.g. (PACK (LIST 1 2 (QUOTE Q») • 10. Integers 

are also created as a result of arithmetic operations, as described in Section 

13. 

An integer is stored in one 36 bit word: thus its magnitude must be less than 

2t35. 7 To avoid h~ving to store (and hence garbage collect) the values of small 

integers. a few pages of address space, overlapping the INTERLISP machine 

language code, are reserved for their representation. The small number pointe .. 

ttself, minus a constant, is the value of the number. Currently the range of 

'small' integers is -1536 thru +1535. The predicate smallp is used to test 

whether an integer is IsmaIl'. 

While small integers have a unique representation, large integers do not. In 

other words, two large integers may have the same value. but not the same' 

address in memory. and therefore not be!!. For this reason the function ~ 

(or equal) should be used to test equality of large integers. 

6---~-------~~-----------------------------------------------------------------and terminated by a delimiting character. Note that 50 .. 8 data types ar. 

7 

self-delimiting, e.g. lists. 

If the sequence of digits used to create the integer is too large, the high 
order portion is discarded. (The handling of overflow as a result of 
arithmetic operations is discussed in Section 13.) 

3.5 



Floating Point Numbers 

A floating point number is input as a signed integer, followed by a decimal 

point, followed by another sequence of digits called the fraction, followed by 

an exponent (represented by E followed by a signed integer). B Both signs are 

optional, and either the fraction following the decimal point, or the integer 

preceding the decimal point may be omitted. One or the other of the decimal 

point or exponent may also be om:l.tted, but at least one of them must be present 

to distinguish a floating poin1; number from an integer. For example, the 

following will be recognized as floating point numbers: 

5. 5.00 5.01. .3 5E2 5.1E2 

5E-3 -5.2E+6 

Floating point numbers are pril1lted using the facilities provided by TENEX. 

INTERLISP calls the floating point number to string conversion routines9 using 

the format control specified by the function fltfmt (Section 14); fltfmt· is 

initialized to T. or free fOMllat. For example, the above floating point 

numbers would be printed free format as: 

5.0 5.0 5.01 .3 500.0 510.0 

.0051 -5.2E6 

Floating point numbers are also c:reated by pack and mkatom, and as a result of 

arithmetic operations as described in section 13. 

A floating point number is storedl in one 36 bit word in standard POP-tO format. 

The range is ±2.94E-39 thru ±1.69E38 (or 2t-128 thru 2tI27). 

8---~------------------------------------------------- -------------------------and terminate~ by a delimiter. 

9 Addi tional information concerning these conversions may be obtained from 
the TENEX JSYS Manual. 

3.6 



3.1.4 Lists 

The input syntax for a list is • sequence <at l.ast one)IO of INTERLIBP data 

elements, e.g. literal atoms numbers, other lists, etc. enclosed 1n 

parentheses or brackets. A bracket can be used to terminate leveral 115 ts, 

e.g. (A (8 (Cl, as described in Section 2. 

If there are two or more elements in a list, the final element can be preceded 

by a • (del imi ted on both sides), indicating that cdr of the final node in the 

list is to be the element ianediately following the ., e.g. (A. B) or 

(A 8 C . D), otherwise cdr of the last node in a list will be NIL.II Note that 

the input sequence (A 8 e . NIL) is thus equivalent to (A 8 e), and that (A B • 

(C D» is thus equivalent to (A B eO). Note however that (A B • C D) will 

create a list containing the five literal atoms A B • C and O. 

Lists are constructed by ~he primitive functions ~ and list. 

Lists are printed by printing a left parenthesis, and then printing the first 

element of the list,12 then printing a space, then printing the second element, 

etc. until the final node is reached. Lists are considered to terminate when 

cdr of some node is not a list. If cdr of this terminal node is NIL (the usual 

case), £!r of the terminal node is printed followed by a right parenthesis. If 

cdr of the terminal node is not. NIL, ~ of the terminal node is printed, 

io-----~--~--~~--------------------------------------- -------------------------() is read as the atom NIL. 

11 

12 

Note that in INTERLISP terminology, a list does not have to end in NIL, it 
is simply a structure composed of one or more conses. 

The individual elements of a list are _ printed ,using prin2 if ,the list 1s 
being printed by print or prinZ, and by print if the list is being printed 
by print. 

3.7 



followed by a space, a period, another space, cdr of the terminal node, and 

then the right parenthesis. Noto that a list input as (A Be. NIL) will print 

as (A B e), and a li,st input as (A B • (C 0» will print as (A B CO). Note 

also that printlevel affects the printing of lists to teletype, and that 

carriage returns may be inserted where dictated by linelength, as described in 

Section 14. 

A list is stored as a chain of list nodes. A list node is stored in one 36 bit 

word, the right half containing !:!!: of the list (a pOinter to the first element 

of the list), and the left half containing cdr of the list (a pointer to the 

next node of the list). 

3.1.5 Arrays 

An array in INTERLISP is a onn dimensional block of contiguous storage of 

arbitrary length. Arrays do not have input syntax; they can only be created by 

the function array. Arrays are, printed by both print, prin2, and print, as I 

followed by the address of the array pOinter (in octal). Array elements can be 

referenced by the functions elt and eltd, and set by the functions seta and 

setd, as described in Section to '. 

Arrays are partitioned into four sections:' a header, a section containing 

unboxed numbers, a section containing INTERLISP pointers, and a section 

containing relocation information. The last three sections can each be of 

arbitrary length (including 0); the header is two words long and contains the 

length of the other sections as indic.ted in the diagram below . The unboxed 

number region of an array is used to store 36 bit quantities that are not 

INTERLISP pointers, and therefore not to be chased from during garbage 

collections, e.g. machine instruc:tions. The relocation informaion is used when 

the array contains the definiticllO of a compiled function, and specifies which 

3.8 



locations in the unboxed region of the array must be changed if the array is 

moved during a garbage collection. 

The format of an array is as follows: 

HEADER WORD 0 

WORD 

FIRST DATA WORD 

The header contains: 

word 0 right 

word 1 

left 

right 

left 

3.1.6 Strings 

ADDRESS OF RELOCATION 
INFORMATION LENGTH 

USED BY GARBAGE ADDRESS OF POINTERS 
COLLECTOR 

NON-POINTERS 

POINTERS 

RELOCATION 
INFORMATION 

FIGURE 3-2 

length of entire block=ARRAVSIZE+2. 

address of relocation information relative to word 0 of 
block () 0 if relocation information exists, negative 
if array is a hash array, 0 if ordinary array). 

address of pOinters relative to word 0 of block. 

used by garbage collector. 

The input syntax for a string is a •• followed by a sequence of any characters. 

except • and X. terminated by a·. • and " may be included in a string by 

preceding them with the escape character ". 

3.9 



Strings are printed by print and prin2 with initial and final ... 5, and ", s 

inserted where necessary for it to read back in properly. Strings are printed 

by print without the delimiting ··s and extra X·s. 

Strings are created by mkstring, substring, and concat. 

Internally a string is stored in two parts; a string pointer and the sequence 

of characters. The INTERLISP pointer to a string is the address of the string 

pointer. The string pointer, in turn, contains the character position at which 

the string characters begin, and the number of characters. String pointers and 

string characters are two separate data types,18 and several strin~ pointers 

may reference the same character's. This method of storing strings permits the 

creation of a substring by creating a new string pointer, thus avoiding copying 

of the characters. For more details, see Section 10. 

String characters are 7 bit bytus packed 5 to a word. The format of a string 

pointer is: 

1# OF CHARACTERS 15 ii- ADDRESS OF STRING + CHARACTER 
POSITION 

o 14 15 35 

FIGURE 3-3 

The maximum length of a string is 32K (K-l024) characters. 

3.10 



3.2 Storage Allocation and Garbage Collection 

In the following discussion, we will speak of a quantity of memory being 

assigned to a particular data type, meaning that the space is reserved for 

storage of elements of that type. Allocation will refer to the process used 

to obtain from the already assigned storage a particular location for storing 

one data element. 

A small amount of storage is assigned to each data type when' INTERLISP is 

started~ additional storage is assigned only during 'a garbage coileetton. 

The page is the smallest unit of memory that may be aSSigned for use by a 

particular data type. For each page of memory there is a one word entry in a 

type table. The entry contains the data type residing on the page as well as 

other information about the page. The type of a pointer is determined by 

examining the appropriate entry in the type table. 

Storage is allocated as is needed by the functions which create new data 

elements, such as cons, pack, mkstring. For example, when a large integer is 

created by iplus, the integer is stored in the next available location in the 

space assigned to integers. If there is no available location, a garbage 

collection is initiated, which may result in more storage being assigned. 

The storage allocation and garbage collection methods differ for the various 

data types. The major distinction is between the types with elements ot fixed 

length and the types with elements of arbitrary length. List node.s, atoms, 

large integers. floating point numbers, and string pointers are fixed length; 

all occupy 1 word except atoms which use 3 words. Arrays, pnames, and strings 

(string characters) are variable length. 

Elements of fixed length types are stored so that they do not overlap page 

3.11 



boundaries. Thus the pages as.signed to a fixed length type need not be 

adjacent. If more space is needed, any empty page will be used. The method of 

allocating storage for these typas employs a free-list of available locations; 

that is~ each available locatictn contains a pOinter to the next available 

location. A new element is stored at the first location on the free-list, and 

the free-list pointer is uPdated. 14 

Elements of variable length data types are allowed to overlap page boundaries. 

Consequently all pages assigned to a particular variable length type must be 

contiguous. Space for a new eleillent is allocated following the last space used 

in the assigned block of contiguous storage. 

When INTERLISP is first called, n few pages of memory are assigned to each data 

type. When the allocation routill1e for a type determines that no more space is 

available in the assigned storage for that type, a garbage collection is 

initiated. The garbage collector determines what data is currently in use and 

reclaims that which is no longor in use. A garbage collection may also be 

initiated by the user with the fu~ction reclaim (Section 10). 

Data in use (also called active data) is any data that can be 'reached' from 

the currently running program (i.e., variable bindings and functions in 

execution) or from atoms. To find the active data the garbage collector 

I chases' all pointers, beginnin" with the contents of the push-down lists and 

the components (i.e., E!!:. cdr, ,and function defin_ition cell) of all atoms with 

at ·least one non-trivial component. 

14---------------------------------------------------------------.-------------The allocation routine for list nodes is more complicated. Each page 
containing list nod.es has 81 separate free list. First a page is chosen 
(see CONS for details), then the free list for that page is used. Lists 
are the only data type which operate this way. 

3.12 



When a previously unmarked datum is encountered, it is marked, and all pointers 

contained in it are chased. PI,ost data types are marked using bit tables; that 

is tables containing one bit for each datum. Arrays, however, are marked using 

a half-word in the array header. 

When the mark and chase process is completed, unmarked (and therefore unused) 

space is reclaimed. Elements of fixed length typos that are no longor active 

are reclaimed by adding their locations to tho fr.e-list for that type. This 

free list allocation method permits reclaiming space without .oving any data, 

thereby avoiding the time consuming process of updating all pOinters to moved 

data. To reclaim unused space in a blo~k of storage aSSigned to a variable 

length type, the active elements are compacted toward the beginning ,of the 

storage block, and then a scan of ,all active data that can contain pointers to 

the moved data 1s performed to update the pOinters. 

Whenever a garbage collection of any type is initiated,16 unused space for all 

fixed length types is reclaimed since the additional cost is slight. However, 

space for a variable length type is reclaimed only when that type initiated the 

garbage collection. 

If the amount of storage reclaimed for the type that initiated the garbage 

collection is less than the minimum free storage requirement for ,that type, the 

garbage collector will assign enough additional storage to satisfy the minimum 

free storage requirement. The minimum free storage requirement for each data 

may be set with the function minfs (Section 10). The garbage collector aSSigns 

additional storage to fixed length types by finding empty pages, and adding the 

appropriate size elements from each page to the free list. Assigning 

i6-~----~----~----~--------------~--~-------------------------------------~---~ The 'type of a garbage collection' or the 'type that initiated a garbage 
collection' means either the type that ran out of space and called the 
garbage collector, or the argument to reclaim. 

3.13 



additional storage to a variable length type involves f,nding empty pages and 

moving data so that the empty Il)ages are at the end of the block of storage 

assigned to that type. 

In addition to increasing the storage assigned to the type initiating a garbage 

collection, the garbage collector will attempt to minimize garbage collecti~ns 

by assigning more storage to other fixed length types according to tha 

following algorithm. 16 If the amount of active data of a type has increased 

since the last garbage collection by more than 1/4 of the minfs value for that 

type, storage is increased (if necessary), to attain the mi·nfs value.· If 

active data has increased by less than 1/4 of the minfs value, available 

storage is, increased to 1/2 minfs. If there has been no increase, no more 

storage is added. For example, if the minfs setting is 2000 words, the number 

of active words has increased Il)y 700, and after all unused words have been 

collected there are 1000 words available, 1024 additional words (two pages) 

will be assigned to bring the tCttal to 2024 words available. If the number of 

active words had increased by only 300, and there were 500 words available, 512 

additional words would be aSSigned. 

3.3 Shared INTERLISP 

The INTERLISP system initially obtained by the user is shared; that is, all 

active users of INTERLISP are 8;ctually using the same pages of memory. As a 

user adds to the system, private pages are added to his memory. Similarly, if 

the user changes anything· in the original shared INTERLISP, for example, by 

advising a system function, a private copy of the changed page is created. 

i6---~-------------------------------------------------------~.----------------We may experiment with different algorithms. 

3.14 



In addition to the swapping time saved by having several users accessing the 

same memory, the sharing mechanism permits a large saving in garbage collection 

time, since we do not have to garbage collect any data in the shared system, 

and thus do not need to chase from any pointers on shared pages during garbage 

collections. 

This reduction in garbage collection time is possible because the shared system 

usually is not modified very much by the user. If the shared system is changed 

extensively. the savings in time will vanish, because once a page that was 

initially shared is made private, ~very pointer on it must be assumed active, 

because it may be pointed to by something in the shared system. Since every 

pointer on an initially shared but now private page can also point to prtuate 

data, they must always be chased. 

A user may create his own shared system with the function makesys. If several 
, 

people are using the same system, making the system 'be shared will result in a 

savings in swapping time. Similarly. if a system islarga and seldo. modified, 

making it be shared will result in a reduction of garbage collection time, and 

may therefore be worthwhile even if the system is only being used by one ,user. 

makesys[file] creates a saved ,file in which all pages in this 

system, including private user pages, are made 

read execute, i.e. shared. This system can then 

be run via the T£N£X command RUN, or GET and 

START. 

For example, new INTERLISP systems are brought up by loading the appropriate 

compiled files and then performing makesys[LISP.SAV].17 

j7----~--------~---------------------------------------------~-----------------makesys is also advised to set the Variable makesysdate to (DATE), i.e. the 
time and date the system was made. 

3.15 



Index fo:r Section 3 

ARRAY[N;P;V] SUBR 
array header 
array pointer 

.................................... 
arrays ... '.' .................................... . 
atoms 
carriage-return 
compacting 

................................. 
CONCAT[Xl;XZ: .•• ;Xn] SUBR­
CONS[X:Y] SUBR 

...................... 
data types 
E (in a floating point number) 
ELT[A;N] SUBR 
ELTD[A;N] BUBR 
end-of-line 

· ................................ . · .................................... . 
EQP[X:Y] SUBR · ................................. . ................................. escape character 
floating point numbers ...... ' ................... . 
FLTFMT[N] BUBR · ................................ . 
free-list · ................................. . 
function definition cell 
garbage collection .............................. 
GENSYM[CHAR] 
hash arrays 
integers 

.... -............................... . · ................. , ................. . 
large integers 
line-feed ........................... ' ...... " .... . 
LINELENGTH[N] SUBR 
LIST[Xl;XZ; •.• ;Xn] SUBR­
list nodes 
lists 
literal atoms 
HAKESYS[FILE] EXPR 

......................... 

HAKESYSDATE (system variable/parameter) 
MINFS[N;TYP],BUBR 
MKATOH[X] SUBR 
MKSTRING[X] BUBR 
NOBIND 

· ................................ . 

........................................... octal 
PACK[X] SUBR 
page 
pname cell ................................. 
pnames ....................................... 
pointer ................. . , .................. . 
PRIN1[X:FILE] SUBR 
PRIN2[X;FILE] SUBR 
PRINT[X:FILE] BUBR 
PRINTLEVEL[N] SUBR 
private pages 
property list 
Q (following a number) 
RADIX[N] SUBR 
RECLAIM[N] BUBR 

• •••••••••• c' ••••••••••••••••••••••• 

relocation information (in arrays) 
RUN (tenex command) 
SETA[A;N;V] 
SETD[A:N:V] 

· ............. ' ...................... . 
• •••••••••••• t, ••••••••••••••••••••••• 

UIDEX.3.1 

Page 
Numbers 

3.8 
3.8 
3.8 
3.1,8,11,13 
3.1,11 
3.2 
3.13 
3.10 
3.7,11 
3.1-11 
3.6 
3.8 
3.8 
3.2 
3.5 
3.2 
3.1,4,6,11 
3.6 
3.12-13 
3.3 
3.11-14 
3.2 
3.1 
3.4 
3.1.5.11 
3.2 
3.8 
3.7 
3.8,11 
3.1,7 
3.2-3 
3.15 
3.15 
3.13-14 
3.2,5-6 
3.10-11 
3.3 
3.5,8 
3.2,5-6,11 
3.11 
3.3 
3.1-4,11 
3.1 
3.2,8,10 
3.2,8,10 
3.2,8.10 
3.8 
3.15 
3.3 
3.5 
3.5 
3.12-13 
3.8 

, 3.15 
3.8 
3.8 



shared pages 
shared system 

.................................... ................................... 
sharing ......................................... 
small integers .................................. 
SMALLP[N] ....................................... 
space ........................................ .............................. storage allocation 
string characters 
string pointers ................................. 

•••••••••••••• ,. •••••• " ••••••••••••• '0 •••••• strings 
SUBSTRING[X;N.M] BUBR ................... " ....... . 
TENEX ....................................... " .... 
unboxed numbers (in arrays) ..................... 
" , 
" ( 
( ) 
) 

[ 
] 

• ••••••••••••••••••••••••••••••••••••••••••• 4' •• 

(followed by a number) ........................ 
(escape char.cter) .. ., ........................ . · ............................................. . .............................................. · .............................................. . · ............................................. . 
(in a floating point number) 

• • • • !i • • • • • • • • • • • • • · .......................... ~ .................. . · ....................... ~ ..................... . 

INDEX.3.2 

Page 
Nullbers 

3.15 
3.15 
3.15 
3.1,5 
3.5 
3.2 
3.11 
3.1,10-11 
3.1,10-11 
3.10 
3.10 
3.2,6,15 
3.8 
3.2,10 
3.8 
3.2,10 
3.2 
3.7 
3.2 
3.7 
3.6 
3.2 
3.2 





SECTION. 4 

FUNCTION TYPES AND IMPLICIT PROGN 

In INTERLISP. each function may independently have: 

a. its arguments evaluated or not evaluated; 

b. a fixed number of arguments or an indefinite number of arguments; 

c. be defined by an INTERLISP expression, by built-in machine code, or by 

compiled machine code. 

Hence there are twelve function types (2 x 2 x 3). 

4.1 Exprs 

Functions defined by INTERLISP expressions are called exprs~ Exprs must begin 

with either LAMBDA or NlAHBDA,l indicating whether the arguments to the 

function are to be evaluated or not evaluated, respectively. Following the 

LAMBDA or NlAHBDA in the expr is the 'argument list', which is either 

(1) a list of literal atoms or NIL (fixed number of arguments); or 

(2) any literal atom other than NIL. (indefinite number of arg~ments). 

Case (1) corresponds to a function with a fixed number of arguments. Each atom 

1n the list is the name of an argument for the function defined by this 

1--------------------~-----------------~---------------------------------------Where unambiguous, the term expr is used to refer to either the function, 
or its definition. 

4.1 



expression. When the function j,s called. its arguments will be evaluated or 

not evaluated, as dictated by ,,,hether the definition begins with LAMBDA or 

NLAMBOA, and then paired with t,hese argument names. 2 This process is called 

"spreading" the arguments, and the function is called a spread-LAMBDA or a 

spread-NLAMBOA. 

Case (2) corresponds to a func'tion with an indeJini te number of arguments. 

Such a function is called a nospread function. If its definition begins with 

NLAMBDA, the atom which constitutes its argument list is bound to the list of 

arguments to the function (unevaluated). For example, if FOO is defined by 

(NLAMBDA X --). when (FOO THIS [S A TEST) is evaluated. X will be bound to 

(THIS IS A TEST). 

If a nospread function begins with a LAMBDA. indicating its arguments are to be 

evaluated, each of its rr arguments are evaluated and their values stored on the 

pushdown list. The atom following the LAMBDA is then bound to the number of 

arguments which have been evaluated. For, example, if FOO is defined by 

(LAMBDA X --) when (FOO A B C) is evaluated, A. B, and C are evaluated and X is 

bound to 3. A built-in functi(Jtn, arg[atmjm], is available for computing the 

value of the mth argument for the lambda-atom variable!!m. arg is described 

in section 8. 

4.2 Compiled Functions 

functions defined by expressions. can be compiled by the INTERLISP comp1ler,as 

2---~~~;-~~~~-";h;-f~~~~i~~-~~~~!if--C-a-n--;;;~~;;;-;;i;~;;d-~-r~~~~~-t-s--~;-~;ii~~~ 
eval. In fact, since the function type can specify only that all arguments 
arc to be evaluated or none are to be evaluated, if it is desirable to 
write a function which only evaluates some of its arguments, e.g. setq. the 
function is defined as an nlambda, i.e. no arguments are evaluated 1n'the 
process of calling the function, and then included 1n the definition itself 
are the appropriate calls tOI eval. 

4.2 



described in section 18, -The Compiler and Assembler-. Functions may also be 

written directly in machine code using the ASSEMBLE directive of the compiler. 

Functions created by the compiler, whether from S-exp~essionsor ASSEMBLE 

directives, are referred to as compiled functions. 

4.3 Function Type 

The function ~ returns the function type of its argument. The value of 

fntyp is one of the following 12 types: 

EXPR 

FEXPR 

EXPR* 

FEXPR* 

CEXPR 

CFEXPR 

CEXPR· 

CFEXPR* 

SUBR 

FSUBR 

SUBR* 

FSUBR* 

The types in the first column are all defined by expressions. The types in the 

second column are compiled versions of the types in the first column, as 

indicated by the prefix £. In the third column are the parall~l types for 

built-in subroutines. Functions of types in the first two rows have a fixed 

number of arguments, i. e., are spread functions. functions in the third and 

fourth rows have an indefinite number of arguments, as indicated by the 

suffix * The prefix .E indicates no evaluation of arguments. Thus, for 

example, a CFEXPR* is a compiled form of a nospread-NLAMBDA. 

A ~tandard feature of the INTERLISP ~ystem is that no error occurs il a spread 
lunction is called .uith too many or too lew arguments. If a function is called 
with too manu argument~, the extra arguments are evaluated but ignored. II a 
Junction is, called with too jew arguments. the unsupplied ones will be 
del'iu.ered a~ NIL. In fact, the Junction itsellcannot dts.tingutsh between 
being gillen NIL as an argument. and not being given that argument, e.g., 
(FOO) and (FOO NIL) are exactlu the same Jor spread Junctions. 

4.'3 



4.4 Progn 

progn is a function of an arbi t .. "ary number of arguments. 2!:!!.m!. evaluates the 

arguments in order and returns the value of the last, i.e., it is an extension 

of the function ~ of LISP I.S. Both cond and lambda/nlambda expressions 

have been generalized to permit 'implicit progns' as described below. 

4.5 Implicit Progn 

The conditional expression has bl~en generalized so that each clause may contain 

n forms (n 2. 1) wh ich are interplreted as rollows: 

(CONO 
(PI Ell EIZ E13) 
(P2 E21 E22) 
(P3) 
(P4 E41» 

[1] 

will be taken as equivalent to (in LISP 1.5): 

(COND 
(PI (PROGN Ell E12 E13» 
(P2 (PROGN EZI E22» 
(P3 P3) [2] 
(P4 E41) 
(T NIL» 

Note however that P3 is evalua1;ed only once in [1], while it is evaluated a 

second time if the expression is written as in [2]. Thus a clause in a cond 

wi th only a predicate and no following expression causes the value of the 

predicate itself, if non-NIL, to be returned. Note also that NIL is returned 

if all the predicates have valul~ NIL, i.e., the ~ 'falls off the end'. No 

error is generated. 

LAMBDA and NLAHBDA expressions also allow implicit 2!:!!.m!.'Sj thus for example: 

4.4 



(LAMBDA (V1 V2) (F1 V1) (F2 V2) NIL) 

is interpreted as: 

(LAMBDA (VI V2) (PROGN (F1 V1) (F2 V2) NIL» 

The value of the last expression,following LAMBDA (or NLAHBDA) is returned as 

the value of the entire expression. In this example, the function would a.lways 

return NIL. 

4.5 



Index for Section 4 

ARG[VAR;H] FSUBR 
argument evaluation 
argument list •••••••••••• II' •••••••••••••••••••••• 

ASSEMBLE 
CEXPR (function type) 
CEXPR* (function type) 
CFEXPR (function type) 
CFEXPR* (function type) 
compil~d functions 
compiler 

•• ,I •••••••••••••••••••••• 

COND[Cl;C2; .•• ;Cn] FSUBR* 
EVAL[X] SUBR 

n I ••• " •••••••••••••••••• ' 

EXPR (function type) 
EXPR* (function type) •••• 4) •••••••••••••••••••••• 

exprs 
FEXPR (function type) 
FEXPR* (function type) 
fixed number of arguments 
FNTYP[X] 
FSUBR (function type) 
FSUBR* (function type) 
function types 
implicit progn 
incorrect number of arguments 
indefinite number of arguments 
LAMBDA 
NLAMBDA 
nospread functions 
PROGN[Xl;XZ; •.. ;Xn] FSUBR* 
pushdown list 
spread functions 

............ , ..... 

spreading arguments 
SUBR (function type) 
SUBR* (function type) 

•••••• ·t I ••••••••••••••••••••• 

too few arguments 
too many arguments .............................. 

INI1EX.4.1 

Page 
Numbers 

4.2 
4.1-2 
4.1 
4.3 
4.3 
4.3 
4.3 
4.3 
4.2 
4.3 
4.4 
4.2 
4.3 
4.3 
4.1 
4.3 
4.3 
4.1 
4.3 
4.3 
4.3 
4.1-3 
4.4 
4.3 
4.2 
4.1-2,4 
4.1-2,4 
4.2 
4.4 
4.2 
4.2 
4.2 
4.3 
4.3 
4.3 
4.3-



SECTION 5 

PRI"ITIVE FUNCTIONS AND· PREDICATES 

5.1 Primitive Functions 

car[x] 

cdr[x] 

caar[x] = car[car[x]] 

cadr[x] = car[cdr[x]] 

cddddr[x] = 
cdr[cdr[cdr[cdr[x]]]] 

cons[x;y] 

£!! gives the first element of a list !, or the 

left element of a dotted pair!. For literal 

atom, value is top level binding (value) of the 

atom. For all other nonlists, e.g. strings, 

arrays, and numbers, the value is undefined, i.e., 

it is the right 18 bits of !. 

cdr gives the rest of a list (all but the first 

element). This is also the right member of a 

dotted pair. If! is a literal atom, cdr[!] gives 

the property list of!. Property lists are 

usually NIL unless modified by the user. The 

value of cdr is undefined for other nonlists, 1.e. 

it is the left 18 bits of !. 

All 30 combinations of nested £!!! 

and cdrs up to ~ deep are included 

in the system. All are compiled 

open by the compiler. 

~ constructs a dotted pair of ! and I. If I 1s 

a list, ! becomes the first element of that list. 

5.1 



conS[XiY] 1s placed 

To minimize drum accesses the following algorithm 

is used for finding a page on which to put the 

constructed INTERLISP word. 

1) on the page with ~ ir ~ is a list and there is room: 

otherwise 

2) on the page with! if ! is a list and there is room; 

otherwise 

3) on the same page as the la~t £2ll! if there is room; 

otherwise 

4) on any page 1111. th a &pec1.l1.ed m1.nimum of storage, presently. 16 LISP 

words. 

conscount[] 

rplacd[x:y] 

value is the number of £2!!.!es since this INTERLISP 

was, started up. 

Plelces the pointer ~ in the decrement, i.e. cdr,· 

of the cell pOinted to by!. Thus it physically 

changes the internal list structure of !, as 

opposed to £2!!.! which creates a new list element. 

The only way to get a circular list is by using 

~.acd to place a pointer to the beginning of a 

list in a spot at the end of the list. 

ThEa value of rplacd is!. An attempt to rplacd 

NIl. will cause an error, ATTEMPT TO RPlAC NIL, 

(e'tcept for rplacd[Nll:NIL]). For! a literal 

atc)m, rplacd[x;y] will make ~ be the property list 

of!. For all other non-lists, rplacd should be 

USftd with care: it will simply store l in the left 

18 bits of !. 

5.2 



rplaca[x,y] similar to rplacd, but replaces the address 

pointer of !. i.e., f!!:. with~. The value of 

rplaca is!. An attempt to rplaca NIL will cause 

an error, ATTEMPT TO RPlAC NIL, (except for 

rplaca[NIl;NIl]). For ! a literal atom, 

rplaca[x;y] will make ~ be the top level value for 

!. For all other non-lists, rplaca should be used 

with care: it will simply store ~ in the right 18 

bits of !. 

Convention, Naming a Junction by preJixing an existing Junction name with l 
usual ill indicates that the new function is a las t tiers ion oJ the 
old, i.e •• one which has the same definition but compiles open and 
runs mithout anu 'sa/etu' error checls. 

frplacd[x;y] 

frplaca[x;y] 

quote[x] 

kwote[x] 

Has the same definition as rplacd but compiles 

open as one instruction. Note that no checks are 

made on !, so that a compiled frplacd can clobber 

NIL, producing strange and wondrous effects. 

Similar to frplacd. 

This is a function that prevents its arguments 

from being evaluated. Its value is ! itself, e.g. 

(QUOTE FOO) is FOO.l 

(LIST (QUOTE QUOTE) x). 

if !=A, and ~=B, then 

(KWOTE (CONS x y»= (QUOTE (A . B». 

1------------------------------------------------------------------------------Since giVing quote more than one argument. e.g. (QUOlE EXPR (CONS X Y», is 
almost always a parentheses error, and one that would otherwise go 
undetected, quote itself generates an error in this case, 
PARENTHESIS ERROR. 

5.3 



The conditional function of INTERLISP, cond, ta~es 

an indefinite number of arguments £l'£Z' £k' 

called clauses. Each clause £i is a list (!11 

!ni) of n 2 1 items. where the first element is 

the predicate, and the rest of the elements the 

consequents. The operation of cond can be 

paraphrased as 

ELSEIF e1Z THEN eZl 

IF ell THEN eZl ••• en1 
en2 ELSEIF e13 

The clauses are considered in sequence as follows: 

the first expressi,on 11i of the.' clause 2i is 

evaluated and its value is classified as false 

(equal to NIL) or true (not equal to NIL). If the 

value of !li is !r!!, the expressions !Zi !ni 

that follow in clause £i are evaluated in 

sequence, and the value of the conditional is the 

value of !ni' the last expression in the clause. 

In particular, if n=l, i.e., if there is only one 

expression in the clause £i' the value of the 

conditional is the value of 11i- (which 1s 

evaluated only once). 

If !li is false, then the remainder of clause £i 
is ignored, and the next clause £1+1 is 

considered. If no !li is true for any clause, the 

value of the conditional expression is NIL. 

selects a form or sequence of forms based on the 

value of its first argument!. Each li is a list 

of the form (!i !li 12i ••• !ki) where !i is the 

selection key. The operation of selectg' can be 

paraphrased as: 

5.4 



IF !I:S1 THEN eli 

ElSEIF '!-SZ THEN 

eki 

ELSE z. 

If !i is an atom, the value of ! is tested to see 

if it is !.!l to !i (not evaluated). If so, the 

expressions e1i ••• eki are evaluated in sequence, 

and the value of the selectq is the value of the , 

last expression evaluated. i.e. !ki. 

If !i is a list, the value of ! is compared with 

each element (not evaluated) of !i' and if ~ is ~ 

to anyone of them, then e1i to eki are evaluated 

in turn as above. 

If li is not selected in one of the two ways 

described, li+l is tested, etc., until all the X's 

have been tested. If none is selected, the value 

of the selectq is the value of !. ! must be 

present. 

An example of the form of a selectg is: 

[SElECTO (CAR X) 
(0 (PRINT FOO) 

(FIE X» 
«A E IOU) 

(VOWEL X» 
(COND 

«NUll X) 
NIL) 

(T (QUOTE STOP] 

which has two cases, 0 and (A E IOU) and a 

default condition which is a condo 

selectq compiles open, and is therefore very fast; 

5.5 



however, it will not work if the value of ! is a 

lis't, a large integer, or floating point number, 

sintee selectq uses ~ for all comparisons. 

evaluates its arguments in order, that is, first 

~1' then !Z' etc, and returns the value of its 

first argument !1' e.g. (PROGt X (SETO X V»~ sets 

! to I. and returns !IS original value. 

proSl!l evaluates each of its arguments in order. 

and returns the value of its last argument as its 

value. ~ is used to specify more than one 

computation where the syntax allows only one, e.g. 

(SELECTQ .•• (PROGN ••• » allows evaluation of 

several expressions as the default condition for a 

selectg. 

This function allows the user to write an ALGOL­

lik.e program containing INTERLISP expressions 

(f(]lrms) to be executed. The first argument, args, 

is a list of local variables (must be NIL if no 

var'iables are used). Each atom in ergs is treated 

as the name of a local variable and bound to NIL. 

!..!ll! can also contain lists of the form 

(at~om form). In this case, atom is the name of 

thEt variable and is bound to the value of form. 

The evaluation ,akes place before any of the 

bindings are performed, e.g. , 

(PROG «X Y) (Y X» ••• ) will bind! to the value 

of l and I to the (original) value of !. 

5.6 



go[x] 

return[x] 

The rest of the ~ is a sequence of non-atomic 

statements (forms) and atomic symbols used as 

labels for ~. The forms are evaluated 

sequentially; the labels serve only as markers. 

The two special functions ~ and return alter this 

flow of control as described below. The value of 

the 2!3!1l is usually specified by the function 

return. If no return is executed, i.e., if the 

prog ·falls off the end,· the value of the ~ 1s 

undefined, 1.e. garbage. 

~ is the function used to cause a transfer in a 

2!3!1l. (GO L) will cause the ,program to continue 

at the label L. A ~ can be used at any level in 

a~. If the label is not found, DQ will search 

higher progs within the same Junction, e.g. 

(PROG -- A -- (PROG (GO A»). Ir the label 1s 

not found in the function in which the ~ 

appears, an error is generated, UNDEFINED OR 

ILLEGAL GO. 

A return is the normal exit for a 1!.!:.!!.9.. Its 

argument is evaluated and is the value of the 2rQD 

in which it appears. 

If a iQ or return is executed in an interpreted function which is not a ~, 
the f£ or return will be executed in the last interpreted ~ entered i/ anu, 
otherwise cause an error. 

~ or return inside of a compiled Junction that is not a l!2l is not allowed. 
and wilt cause an error at compile time. 

As a corollary, ~ or return in a functional argument, e.g. to mapc, will not 

5.7 



work compiled. Also, since plsetg's and ersetg's compile as separate 

functions, a aQ or return cannot be used inside of a compiled nlsetq or ersetq 

if the corresponding ~ is out~.ide, i.e. above, the nlsetg or ersetq. 

set[x;y] 

setq[x;y] 

setqq[x;y] 

'Thi~~ function sets! to l:. Its value is l:. If! 

is not a Ii teral atom, causes an error, 

ARG NOT ATOM - SET. If ! ,is NIL. causes an error, 

ATTEMPT TO SET NIL. Note that set is a nonnal 

lambda-spread function. i. e. , its arguments are 

evaluated before it is called. Thus. if the value 

of ! is ~, and the value of l: is ~, then set[x;y] 

would result in ~ having value ~, and ~ being. 

retll1rned as the value of set. 

An nlambda version of set: the first argument is 

not evaluated, the second is. 2 Thus if the value 

of X is C and the value of Y 15 B, (SETQ X Y) 

would result in X (not C) being set to B, and B 

being returned. If! 15 not a literal atom, an 

error is generated, ARG NOT ATOM - SET. If ! 15 

NIL, the error ATTEMPT TO SET NIL is generated. 

Like setg except that neither argument 15 

evaluated, e.g. (SETQQ X (A B C» 

(A B C). 

sets to 

2------------------------------------------------------------------------------Since setq is an nlambda, n~~tther argument is evaluated during the calling 
process. However, setg its.elf calls eval on its second argument. Note 
that as a result, typing (SETO var form) and SETO(var form) to lispx 15 
equi,valent: 1n both cases yar is not evaluated, and form is. 

5.8 



rpaq[x;y] 

rpaqq[x;y] 

like setg, except always works on top level 

binding of !, i.e. on the value cell. ~ 

derives its name from !.21ac! guote, since it is 

essentially an nlambda version of rplaca, e. g. 

(RPAQ FOO form) 1s equivalent to 

(RPLACA (QUOTE FOO) form). 

like ~ for top level bindings. 

~ and ~ are used by pret tydef (Section 14). Both!J!!9. and rpaqq 

generate errors if ! is not atomic. Both are affected by the value of dfnflg 

(Section 8). If dfnfla = ALLPROP (and the value of ! is other than NOBIND), 

instead of setting !. the corresponding value is stored on the property list of 

~ under the property VALUE. 

Resetvar and Resetform 

resetvar[var:new-value:from] The effect of resetvar is the same as 

(PROG «var new-value» (RETURN form», except 

that resetvar is designed to work on GLOBAL 

variables, i.e. variables that must be reset, not 

rebound (see section 18). resetvar resets the 

variable (using frplaca), and then res tares its 

value after evaluating form. The evaluation of 

form is errorset protected so that the value is 

restored even if an error occurs. 8 resetvar also 

adds the old value of, Y!!.!:. to a global list, so 

3~~~--~~~--------------------------------------------- -------------------------In this case, after restoring the value, resetv8r propagates, the error 
backwards by calling error!. 

5.9 



that if the user types Control-D (or Control-C 

followed by REENTER) while form is being 

evaluated, the variable will be restored by the 

top level INTERLISP executive. The value of 

~9tvar is the value returned by form. resetvar 

comipiles open. 

For example, the editor Icalls lispx to execute editor history 

commands' by performing (RESETVA~~ LISPXHISTORY EDITHISTORY (LISPX --», thereby 

making lispx work on edithistory instead of lispxhistory. 

The behavior of. many system func'tions is affected by calling certain functions. 

as opposed to resetting variable,s, e.g. printlevel, linelength, input, output, 

radix, ~, etc. The functiClln resetform enables a program to treat these 

functions much like variables, and temporarily change their "setting". 

resetform[forml;form2] nlambda, nospread. form1 is evaluated, then form2 

is evaluated, then form1 is 'restored', e.g. 

(RESETFORH (RADIX 8) (FOO» will evaluate (FOO) 

while radix is 8, and then restore the original 

set'ting of radix. 

forlnlmust return as its value its ·previous 

setting- so that its effects can be undone by 

applying £![ of form1 to this value. 

resetform is errorset protected like resetvar, and 

alslt) records its information on a global list so 

tha't after control-D (or control-C REENTER), forml 

1s properly restored. 

5.10 



The valul of rlsetform is the value returned by 

~. resetform compiles open. 

5.Z Predicates and Logical Connectives 

atom[x] 

litatom[x] 

numberp[x] 

is T '1f ! i.s an atoll: NIL otherwise. 

is T if ! is a literal atoM, i •••• an atom and not 

a number, NIL otherwise. 

is ! it ! is a numb.r, NIL otherwis •• 

Conuention, Function~ that end in I!. are u&uall,l predicates. i.e. thell te&t lor 
some condition. 

stringp[x] 

arrayp[x] 

listp[x] 

is ! if ! is a string, NIL otherwis •• 4 

is ! if ! is an array, NIL otherwise. 

is ! if ! is a list-structure, i.e., on. created 

by one or more conses; NIL otherwise. 

Note that arrall~ and strtngs are not atoms, but are also not lists, i.e. both 
atom and listp lI(llreturn Nl£ "hen ,if/en an arrall or a string. 

nlistp[x] not[listp[x]] 

eq[x;y] The value of !! is T, if ! and l are pointers to 

a---;:;-:;~;;-;;;;;;-;;;;;;;;;:-;;;-;;;;;:;-;;:--------------------------------

5.11 



neq[x;y] 

null[x] 

not[x] 

eqp[x;y] 

equal[x;y] 

the same structure in memory, and NIL otherwise~ 

!!l is compiled open by the compiler as a 36 bit 

compare of pointers. Its value is not guaranteed 

T for equal numbers which are not small integers. 

See !!l2. 

The value of neg is T, if ! is not !i to l' and 

NIL otherwise. 

581013 as null, that is eq[x,NIL]. 

The value of !!II!. is T if ! and l. areg, i.e. 

pointers to the same structure in memory. or if ! 

and l are numbers and are equal. Its value is NIL 

othlarwise •6 

The value of this function is T if ! and l print 

id8lrltically; the value of egual is NIL otherwise. 

Not,! that! and l do not have to be !!I. 

Takl!s an indefinite number of arguments '( inc~uding 

0). If all of its arguments have non-null value, 

its value is the value of its, last argument, 

othl9rwise NIL. E.g. and[x;member[x;y]] will have 

as its value either NIL or a tail of l. and[]=T. 

Evaluation stops at the first argument whose value 

is I~IL. 

6---F~;-~~h;;-~~;.b;;-f~~~~i~~;:-;;;;-s;~~i;;-i3:--------------------------------

S.12 



Takes an indefinite number of arguments (including 

0). Its value is that of the first argument whose 

value is not NIL. otherwise NIL if all arguments 

have value NIL. E.g. or[x;numberp[y]] has its 

value !. !. or NIL. or[]=NIL. Evaluation stops at 

the first argument whose value is not NIL. 

every[everyx:everyfnl:everyfn2] Is T if the result of applying everyfn1 

to each element in every! is true. otherwise NIL. 

E.g., every[(X Y Z): ATOM]-T. 

everx operates by computing 

everyfnl[car[everyx]].8 If this yields NIL, every 

immediately returns NIL. Otherwise,every computes 

everyfn2[everyx], or cdr[everyx] if everyfn2=Nll, 

and uses this as the 'new' everxx. and the process 

continues. e.g. every[x:ATOM;CDDR] is trUe if 

every other element of ! is atomic. 

every compiles open. 

some[somex;somefnl:somefn2] value is the tail of ~ beginning with the 

first element that satisfies somefn 1, i. e., for 

which somefn1 applied to that element is, true. 

Value is NIL if no such element exists. 

E • 9 •• somer x ; (LAMBDA (Z) (EQUAL Z Y»] is 

equivalent to member[y;x]. operates 

6---~---------~--------------------------------------- -------------------------. Actually. everyfnl[car[everyx];everyx] is computed, so for example everyfn1 
can look at the next element Il)n everyx if necessary. 

5.13 



analagously to every. At each stage, 

somefnl[car[somex];somex] is computed, and if this 

is lIlot NIL, ~ is returned as the value of 

!Q!!!!~. Otherwise, somefn2[somex] is computed, or 

cdr[somex] if somefn2=NIl, and used for the next 

somE~ compiles open. 

notany[somex;somefnl.somefnZ] SUle as not[some[somex;somefnl;somefn2]] 

notevery[everyx;everyfnl;everyfn4~] not[every[everyx;everyfnl;everyfn2]] 

memb[x;y] 

fmemb[x;y] 

member[x;y] 

Det.,rmines if ! is a member of the list l' i ~e., 

if 1there is an element of f.. !II to~. If so, its 

value is the tail of the list l starting with that 

elel~ent. If not, its value is NIL. 

Fas1~ version of memb that compiles open as a five 

ins1~ruction loop, terminating on a NULL check. 

Inturpreted, gives an error, 

BAD ARGUMENT - FMEMB, if l ends in a non-list 

oth.!r than NIL. 

Identical to memb except that it uses equal 

ins1~ead of !!l' to check membership of ! in f... 

The reason Jor the exis tence oj J~oth memb and member is that !l!l compi les as one 
instruction but equal requires cr Junction call. and is there/ore considerablu 
more expensiue . . Whereuer possij1ie. the user should Ulrite (and use) functions 
that use!! instead 0/ equal. 

5.14 



tailp[x;y] 

assoc[x;y] 

fassoc[x;y] 

sassoc[x;y] 

Is !, if ! is • list and a tail of I, 1.e., ! is 

!.i to so.. numb.r of cdrs ~ 07 of I, NIL 

otherwise. 

I is a list of lists (usually dotted pairs). The 

value of !!!2£ is the first sublist of I whose £!r 

is !9. to!. If such a list is not found, the 

value is NIL. Example: 

assoc[B;«A. 1) (8 • 2) (C . 3»]. (B .2). 

Fast version of !.!!Q£ ,that compiles open as a 6 

instruction loop, terminating on a NULL check. 

Interpreted, fassoe gives an error if I ends in a 

non-list other than NIL, BAD ARGUMENT - FASSOC. 

Same as !!!2i but uses equal instead of !i. 

7-~------~~---~------~-------------~----------------------------.---------------If ! is !i to some number of cdrs 2 1 of I, we say! is • proper tail. 

5.15 



Index for Section 5 

ALLPROP 
AND[Xl;X2; ... ;Xn] FSUBRR 
ARG NOT ATOM - SET (error message) 
ARRAYP[X] SUBR 
arrays 
ASSOC[X;Y] 
ATOM[X] SUBR 

· .................................. . · .................................. . 
ATTEMPT TO RPLAC NIL (error message) 
ATTEMPT TO SET NIL (error mess~ge) 
BAD ARGUMENT FASSOC (error message) 
BAD ARGUMENT FHEHB (error message) 
CAR[X] SUBR 
CDR[X] SUBR · ................................... . 
COND[Cl;C2; ... ;Cn] FSUBRR 
cond clause 
CONS[X;Y] SUBR 
cons algorithm 
CONSCOUNT[N] SUBR 

· ................................... . 
.................................. 

control-D · ..................................... . 
DFNFLG (system variable/par,illlleter) 
dotted pair •................ ~ .................. . 
EQ[X;Y] SUBR 
EQP[X;Y] SUBR 
EQUAL[X;Y] 
ERROR![] SUBR 

· ................................... . 
ERRORSET[U;V] SUBR 
ERSETQ[ERSETX] NL 
EVERY[EVERYX;EVERYFNl;EVERYfNZ] 

............................... · ............................. . 
false · .................................... . · ........................... " .. '.' .... . FASSOC[X;Y] 
FMEMB[X;Y] 
FRPLACA[X;Y] SUBR 
FRPLACO[X,Y] SUBR 
GCGAG[MESSAGE] SUBR 
global variables 

· .................................... . · ............................. . · ............................. . ............................. ................................ 
GO[X] FSUBRtIt 
ILLEGAL RETURN (error message) 
INPUT[FILE] SUBR 
KWOTE[X] ........................................ .................................. large integers 
LINELENGTH[N] SUBR .............................. 
lISTP[X] SUBR · ................................. . · .................................. . lists 
LITATOM[X] SUBR 
literal atoms 
local variables 

................................. · ................................. . ................................. 
MEMB[X;Y] 
MEMBER[X;Y] 

· ..................................... . · ................................... . · .................................... . NEQ[ X; Y] 
NLISTP[X] 
NLSETQ[NLSETX] NL 

· ..................................... . · ............................. . .......................................... NOBINO 
NOT[X] SUBR · ................................... . 
NOTANY[ SOMEX ;SOMEFNI ;SOMEFN;Z] 
NOTEVERY[EVERYX;EVERYFNl;EVERYFNZ] 
NULl[X] SUBR · .................................. . 

INI()EX. 5.1 

Page 
Numbers 

5.9 
5.12 
5.8-9 
5.11 
5.11 
5.15 
5.11 
5.2-3 
5.8 
5.15 
5.14 
5.1 
5.1 
5.4 
5.4 
5.1 
5.2 
5.2 
5.10 
5.9 
5.1 
5.11 
5.12 
5.12 
5.9 
5.9 
5.8 
5.13 
5.4 
5.15 
5.14 
5.3 
5.3 
5.10 
5.9 
5.7 
5.7 
5.10 
5.3 
5.12 
5.10 
5.11 
5.11 
5.11 
5.11 
5.6 
5.14 
5.14 
5.12 
5.11 
5.8 
5.9 
5.12 
5.14 
5.14 
5.12 



NUMBERP[X] SUBR ................................. 
numbers 
OR[Xl;X2: ... ;Xn] FSUBR* 
OUTPUT[FILE] SUBR 
PARENTHESIS ERROR (error message) 
predicates 
PRETTVDEF 
PRINTlEVEl[N] SUBR 
PROG[ARGS;El;E2; •.. ;En] FSUBR~ .................. 
PROG label ...................................... 
PROGl[Xl:XZ: ... ;Xn] SUBR 
PROGN[Xl;X2: ... ;Xn] FSUBR* 
proper tail 
QUOTE[X] Nt* 
RADIX[N] SUBR 

............................... ............................... 
......................... REENTER (tenex command) 

RESETFORH[RESETX;RESETY;RESETZ] NL 
RESETVAR[RESETX;RESETY:RESETZ] NL 

.............. 
.................................. RETURN[X] SUBR 

RPAQ[RPAQX:RPAQY] NL 
RPAQQ[X;Y] Nt 
RPLACA[X;Y] SUBR · .............................. . · .............................. . RPLACD[X;Y] BUBR 
SASSOC[XSAS;YSAS] 
SElECTQ[X;Yl;YZ; ... ;Yn:Z] NL* 
SET[X;Y] SUBR · .............................. . SETQ[X;Y] FSUBR* 
SETQQ[XSET;YSET] NL 
small integers 
SOHE[SOMEX;SOMEFN1:SOMEFNZ] 
STRINGP[X] SUBR ................................. 
strings 
tail of a list 
TAIlP[X;Y] 
top level value 
true .................................. 
UNDEFINED OR ILLEGAL GO (error message) 
(UNDEFINED TAG) (error message) 
VALUE (property name) ............................ 
value cell •• e 6 ., ••••••••••••••••••••••••••••••••• 

INDEX.S.2 

Page 
Numbers 

5.11 
5.11 
5.13 
5.10 
5.3 
5.11 
5.9 
5.10 
5.6 
5.1 
5.6 
5.6 
5.15 
5.3 
5.10 
5.10 
5.10 
5.9 
5.1 
5.9 
5.9 
5.3 
5.2 
5.15 
5.4-5 
5.8 
5.8 
5.8 
5.12 
5.13 
5.11 
5.11 
5.15 
5.15 
5.1,3,9 
5.4 
5.1 
5.1 
5.9 
5.1,9 





SECTION 6 

LIST KANIPULATION AND CONCATENATION 

laabda-nospread f~nctlon. Its value is • list of 

the values of. its arguments. 

Copies the top level of the list !1 and appends 

this to a copy of top level list !2 appended to 

••• appended to !n' e.g. 

append[(A B) (C D E) (F G)] = (A BCD E F G). 

Note that only the first n-1 lists are copied. 

However n-1 is treated specially; i.e. append[x] 

can be used to copy the top level of • single 

li5t.1 

The following examples illustrate the treatment of 

non-lists. 

append[(A B C);D] • (A 8 C • D) 

append[A;(B CD)] • (8 C D) 

append[(A Be. D):(E F G)] • (A BeE F Q) 

append[(A B C • D)] • (A B C • D) 

i---~---------------------------------·----------------------------------------To copy • l1st to all levels, use £!!J!l. 

6.1 



nconcl[lst;x] 

tconc[ptr:x] 

Retlllrns same value as append' but actually modifies 

the list structure of xl··· Xn-l.· 

Performs nconc[lst;list[x]]. The £2n! will be on 

the same page as 1st. 

!E!.!lS is useful for building a list by adding 

elements one at a time at the end. i.e. its role 

is similar to that of neonel. However. unlike 

~ncl, teone does not have to search to the end 

of the list each time it is called. It does this 

by keeping a pointer to the end of the lis~~eing 

assembled, and updating this pointer after each 

call. The savings can be considerable for long 

lists. The cost is the extra word required for 

storing both,the list being assembled, and the end 

of the list. ptr is that word: car[ ptr] is the 

list being assembled, cdr[ptr] is last [car[ptr]]. 

The value of tcone is ptr, with the appropriate 

modifications to £![ and cdr. Example: 

~(RPTQ 5 (SETQ FOO TCONC FOO RPTN») 
«5 4 3 2 1) 1) 

tco~ can be initialized in two ways. If ptr is 

NIL, tcone w11l make up a ptr. In this case, the 

program must set some variable to the value of the 

first call to .1£2!!£. After that, it 15 

unnecessary to reset ptr since ~ physically 

changes it. Thus: 

~(SET FOO (TCONC NIL 1» 
«1) 1) 
~(RPTQ 4 (TCONe FOO RPTN» 
«1 4 3 2 1) 1) 

6.2 



lconc[ptr;x] 

attach[x;y] 

If ptris initially (NIL), the value of teone 1s 

the sam. as for ptr-NIL, but ~ changes ptr, 

8.g. 

~(SETQ FOO (CONS» 
(NIL) 
~(RPTQ 5 (TCONe FOO RPTN» 
«5 4 3 2 1) 1) 

The latter method allows the program to 

initialize, and then call ~ without having to 

perfona setg on its value. 

Where ~ is used to add elements at the end of 

a list, leone is used for building a list by 

adding lists at the end, i.e. it is similar to 

~ instead of neonel. e.g. 

~(SETQ FOO (CONS» 
(NIL) 
~(LCONC FOO (LIST 1 2» 
«1 2) 2) 
~(LCONe FOO (LIST 3 4 5» 
«12 3 4 5) 5) 
~(leONe FOO NIL) 
«1 2 3 4 5) 5) 

Note that 

~(TCONC) FOO NIL) 
«1 2 3 4 5 NIL) NIL) 
~(TeONe FOO (LIST 3 4 5» 
«1 2 3 4 5 NIL (3 4 5» (3 4 5» 

leone uses the same pointer conventions as teonc 

for eliminating searching to the end of the list, 

so that the same pointer can be given to tcanc and 

leone interchangeably. 

Value is equal to cons[x;y], but attaches ~ to the 

front of l by doing an rplaea and rplacd, 1.e. 

the value of attach is !i to l' which 1t 

6.3 



remove[x;l] 

phy~.ically changes.. l must be a list, or an error' 

is "enerated, ILLEGAL ARG. 

Reme.ves all occurrences of ! from list 1, giving a 

~~ of ! with all elements equal to ! removed. 

Conpention, Naming a function bU prefixing an existin, Junction' .ith ~ 
frequentlu indicates the ne. Junction il a de&tructt~e per&ioft 0/ 

. the .old one, i.e. it does not male aiil 11811 &tracture bat 
cannibalizel itl ar,lJlment(I). 

dremove[x;l] 

copy[x] 

reverse[l] 

dreverse[l] 

Simj~lar to removt, but uses !9. instead of equal. 

and actually modifies the list 1 wben re.oving !. 

and thus does not use any additional storage. 

More efficient than remove. 

Makels a copy of the list!. Tbe value of ~ is 

the copied list. All levels of ! are cOPied,2 

dOWfJ to non-lists, so that if ! contains arrays 

and strings, the copy of ! will contain the same 

arrllYS and strings, not copies. £2I!.l is recursive 

in t;he ~ direction only, so that very long lists 

can be copied. 

RevElrses (and copies) the top level of a list, 

e.g, reverse[(AB (C D»] • «C D) B A). If ! is 

not a list, value il !. 

Vallile is same as that of reverse. but dreverse 

6.4 



subst[x,y;z] 

dsubst[x;y,z] 

Isubst[x,Y,z] 

esubst[x:y;z:flg] 

destroys the original list ! and thus does not use 

any additional storage. 

reverse. 

"ore .fficient than 

Value is the result of substituting the 8-

expression ! for all occurrences of the S­

expression I in the S-expression z. Substitution 

occurs whenever l is equal to ~ of some 

subexpression of 1, or when l is both atomic and 

not NIL and !i to cdr of some subexpression of ~. 

For example: 

subst[A;B:(C B (X • B»] = (C A (X • A» 

subst[A,(8 e);«B C) 0 8 e)l • (A 0 Be), 

not (A 0 • A). 

The value of subst is a copy of ! wi·th the 

appropriate changes. Furthermore, if ! is a list, 

it is copied at each substitution. 

Similar to subst, but uses !i and does not copy A, 

but changes the list structure 1 itself. Like 

subst, dsubst substitutes with a copy of!. "ore 

.fficient than subst. 

Like subst except ! is substituted as a segment, 

e . g • Isubs t[ (A B); Y: (X y Z)] is (X A B Z). Note 

that if ! is NIL, produces a copy of ! with all. 

l's deleted. 

Similar to dsubst, but first checks to see if ~ 

actually appears in I. If not, calla error' where 

.6.5 



sublis[alst;expr;flg] 

subpair[old,new;expr:flg] 

f.!s::T means print a message of the form ~ 1 This 

funlction is actually an implementation of the 

edl'tor' 5 R command (see Section D), so that l can 

use 6, •• , or alt-mod~s as with the R' command. 

als'~ is a list of pairs: 

«u1 • vi) (Uz · vZ) ••• (Un • vn» with each u1 

atolDic. 

The value of sublis[alst;expr;flg] is the result 

of substituting each ! for the corresponding y in 

exP'C.3 Example: 

sublis[«A • X) (C • Y»;(A BCD)] = (X B Y 0) 

New structure is created only if needed, or if 

f.!Il::T, e.g. if f!Sl=NIL and there are no 

sub:sti tutions, value 1s !! to expr. 

Sim:ilar to sublis, except that elements of !!!!!are 

sub:stituted for corresponding atoms of ~ in 

explC. Example: 

subpair[(A C);(X Y):(A B CO)] • (X B Y 0) 

As with sublis, new structure is created only if 

needed, or if f.!saT, e.g. if !!a-NIL and there are 

no :substitutions, the value is !J. to expr. 

If ~)ld ends in an atom other than NIL, the rest of 

the elements on n!! are substituted for that atom. 

For example, 1f olda(A B • C) and ~.(U V X Y Z), 

6.6 



U is s~bstituted for A, V for 8, and (X Y Z) for 

C. Similarly, if old itself is an atom (other than 

NIL), the entire list D!! is substituted for it. 

Note that subst. dsubst. lsubst. andesubst all substitute copies 0/ the· 
appropriate ex.pression. IIIhereas subpair and sublis substitute the identical 
~tructure (unless lll,T). 

last[x] 

flast[x] 

nleft[ l;n; tail] 

lastn[ I ;n] 

Value is a pOinter to the last node in the list ~, 

e.g. if !=(A 8 C) then last[x] == (C). If 

!=(A 8 • C) last[x] • (8 • C). Value is NIL if ~ 

is not a list. 

Fast version of last that compiles open as a 5 

instruction loop, terminating on a null-check. 

Interpreted, generates an error, BAD ARGUMENT -

FlAST, if ! ends in other than NIL. 

Tail is a tail of 1 or NIL. The value of nleft is 

the tail of 1 that contains n more elements than 

tail,4 e.g., if !=(A 8 C DE), nleft[x;2]=(D E), 

nleft[x; 1 :cddr[x]]=(8 C DE). Thus nleft can be 

used to work backwards through a list. Value is 

NIL if ! does not contain !!. more elements than 

!!li. 

Value is cons[x:y] where I is the last n elements 

of 1, and! is the initial segment, e.g. 

lastn[(A BCD E):2]=«A B C) D E) 

4------------------------------------------------------------~---------------~-If tail is not.NIl, but not a tail of 1, the result is the same as if tail 
were NIL, i.e. nleft operates by scanning 1 looking for tail, not by 
computing the lengths of 1 and tail. - --

6.7 



nth[x:n] 

fnth[x;n] 

length[x] 

flength[x] 

count[x] 

lastn[(A B):2]-(NIL A B). 

Value is NIL if ! is not a list containing at 

lea~.t n elements. 

Value is the tail of ! beginning with the !!;th 

elelllent, e.g. if n=2, value is cdr[x]. if n=3, 

cddl~[x], etc. If nal, value is 1S. if naO, . for 

consistency, value is cons[NIL:x]. If! has fewer 

than !!. elements.. value is NIL, •• g. 

nth[(A B);3]-NIL, as is nth[(A • 8);3] Note that 

nthl~ (A • B):2 ]=8. 

fas't version of nth that compiles open as a 3 

ins·truction loop, terminating on a null-check. 

Int l9rpreted, generates an error, BAD ARGUMENT -

FNTH, if ! ends 1n other than NIL. 

Valllle 1s the length of the list ! where length is 

defined as the number of cdrs required to reach a 

non-list. e.g. 

length[(A 8 C)] = 3 

length[(A B C • D)] • 3 

length[A] = 0 

fast version of length that compiles open as a 4 

instruction loop., terminating on a null-check. 

Interpreted, generates an error, BAD ARGUMENT -

FLENGTH, if ! ends in other than NIL. 

Value is the number of list words in the structure 

6.8 



Idiff[x;y;z] 

!. Thus, ~ is like a length that goes to all 

levels. Count of a non-list is O. 

l must be a.tail of !. i.e. !! to the result of 

applying some number of cdrs to ! .. Idiff[x;y] 

gives a list of all elements in ! up to l. i.e., 

the list difference of ! and l. Thus 

Idiff[x;member[FOO;x]] gives all elements in ! up 

to the first FOO. 

Note that the value 01 !!!ll1. is . altlalls neUl I ist structure unless I/.,M1L. tn 
which case the value is!. it.sell. 

intersection[x;y] 

union[x:y] 

If ! is not NIL the value of ldiff is effectively 

nconc[z;ldiff[x;y]]. i.e .. the list difference is 

added at the end of !. 

If l is not a tail of !, generates an error. 

lDIFF: NOT A TAIL. ldiff terminates on a 

null-check. 

Value is a list whose elements are members of both 

lists ! and l. Note that intersection[xix] gives 

a list of all members of ! without any 

duplications. 

Value is a (new) list consisting of all elements 

included on either of the two original lists. It 

6.9 



sort[data;comparefnlB 

is more efficient to make! be the shorter list.6 

dat! is a list of items to be sorted using 

comlparefn, a predicate function of two arguments 

whicch can compare any two items on 1l!!!. and return' 

T if the first one belongs before the second. If 

comlParefn is NIL, alphorder is used. thus 

sort[datal will alphabetize a list. If comparefn 

is T, £!rlS of items are given to alphorder; thus 

sor't[a-list;T] will a~phabetize by the £!t of each 

itelD. sort[x;IlESSPl will sort a list of 

integers. 

The value of sort is the sorted list. The sort is 

des'tructive and uses no extra storage. . The value 

returned is !!l to data but elements have been 

SWitched around. Interrupting with control D~ E, 

or IB may cause loss of data, but control H may be 

used at any time, and sort will break at a clean 

sta'te from which t or control characters are safe. 

The algorithm has been optimized· wi th respect to 

the number of compares. 

Note, 1./ compare/n(a,b/ ' compal'e/R(b,a/, then the orderin, 01 ! alld Il. ",all or 
mag not be pre&erued. 

tJ Sort, merge, and alphorder W4are written by J.W. Goodwin. 

6.10 



For example, if (FOO • FIE) appears bef~re (FOO • FUM) in !, sort[x:T] mayor 

may not reverse the order of these two elements. Of course, the user can 

always specify a more precise comparefn. 

merge[a;b:comparefn] 

alphorder[a;b] 

! and ~ are lists which have previously been 

sorted using sort and comparefn. Value is a 

destructive merging of the two lists. It does not 

matter 'which list is longer. After ~erging both ~ 

and !! are equal to the merged list. (In fact, 

cdr[a) is !! to cdr[b]) merge may be aborted after 

control H. 

A predicate function of two arguments, for 

alphabetizing. Returns T if its arguments are in 

order, i.e. if ~ does not belong before ~. 

Numbers come before literal atoms, and are ordered 

by magnitude (using greaterp). Literal atoms and 

strings are ordered by comparing the (ASCII) 

character codes in their pnames. Thus 

alphorder[23;123] is T, whereas 

alphorder[A23;AI23] is NIL, because the character 

code for the digit 2 is greater than the code for 

1. 

Atoms and strings are ordered before all other 

data types. If neither ! nor k ara atoms or 

strings, the value of alphorder is T, 1. a. 1n 

order. 

Note, alphorder does no unpacks. chcons. conses or nthchars. It is .sefleral 
times Jaster Jor alphabettzin, than anl/thtn, that can be ",rttten using 
the.se other functions. 

6.11 



cplists[x:y] COmll)areS ! and l and prints their differences, 

i.8. cpl1sts 1s essentially a SRCCO" for list 

structures. 



Index for Section 6 

AlPHORDER[A;B] 
APPEND[l] * 
ATTACH[X;Y] ...................................... 
ATTEMPT TO RPlAC NIL (error message) 
BAD ARGUMENT FlAST (error message) 
BAD ARGUMENT FlENGTH (error message) 
BAD ARGUMENT FNTH (error message) 
copy · ....................................... . 
COPY[X] · ....................................... . 
COUNT[X] 
CPlISTS[X;Y] 
destructive functions 
OREMOVE[X;L] 

........................................ · .................................. . 
OREVERSE[L] 
OSUBST[X;Y;Z] ................................... .................................... ERROR![] SUBR 
ESUBST[X;Y;Z;ERRORFLG;CHARFLG] 
FLAST[X] 
FlENGTH[X] 
FNTH[X;N] 

........................................ 
....................................... 

ILLEGAL ARG (error message) 
INTERSECTION[X;Y] ............................... 

· ....................................... . lAST[X] 
lASTN[l;N] 
LCONC[PTR;X] 
lOIFF[X;Y;Z] 
LOIFF: NOT A TAIL (error message) 
lENGTH[X] ....................................... 
lIST[Xl;XZ; ... ;Xn] SUBR* ........................ 
list manipulation and concatenation 
lSUBS T[ X; Y ; Z ] 
MERGE[A;B;COHPAREFN] 
NCONC[Xl;XZ •...• Xn] SUBR* 
NCONC1[lST;X] 
NLEFT[L;N;TAIL] ................................. 
NTH[X;N] 
null-check ...................................... 
R (edit command) ..................................... REHOVE[X;L] 
REVERSE[L] 
SORT[DATA;COHPAREFN] 
SRCCOM ........................... SUBlIS[ALST;EXPR;FLG] 
SUBPAIR[OLO;NEW;EXPR;FLG] 
SUBST[X;Y;Z] 
TCONC[PTR;X] 
UNION[X,Y] 

· .................................. . · .................................. . ...................................... 

INDEX.6.1 

Page 
Numbers 

6.11 
6.1 
6.3 
6.4 
6.7 
6.8 
6.8 
6.1,4-&,7 
6.4 
6.8 
6.12 
6.4-5 
6.4 
6.4 
6.5,7 
6.5 
6.5,7 
6.7 
6.8 
6.8 
6.4 
6.9 
6.7 
6.7 
6.3 
6.9 
6.9 
6.8 
6.1 
6.1-12 
6.5,7 
6.11 
6.2-3 
6.2-3 
6.7 
6.8 
6~7-9 
6.6 
6.4 
6.4 
6.10 
6.12 
6.6-7 
6.6-7 
6.5,7 
6.2-3 
6.9 





SECTION 7 

PROPERTY LISTS AND HASH LINKS 

7.1 Property Lists 

Property lists are entities associated with literal atoms. and are stored on 
£.dr oj the atom. Property lists are conuentionallll lists of the form (property 
value property value ... property ualue) although the user can store anything 
he 'lJishes in cdr of a literal atom. Howeuer, the functions which manipulate 
prc,>perty listsobserue this conue~tion by cl/cling down the property lists two 
cdrs at a time. Nost of these Junctions also generate an error. ARG NOT ATOM, 
i! given an argument which is not a literal atom, i.e., thell cannot be used 
directly on lists. 

The term 'property name' or ' property' is used for the propertll indicators 
appearing in the odd positions, and the term 'property ualue' or 'ualue oj a 
property' or simply 'ualue' lor the ualues appearing in the euen positions. 
Sometimes the phrase 'to store on the property --' is used, meaning to place 
the indicated tnformation on the property list under the property name --. 

Properties are usuallY atoms. although no checks are made to eliminate use oj 
non-atoms in an odd position. However, the property list searching functions 
all use g. 

Property List Functions 

put[atm;prop;val] 

addprop[atm,prop;new;flg] 

puts on the property list of atm, the property 

~ with value val. val replaces any previous 

value for the property ~ on this property list. 

Generates an error, ARG NOT ATOM, if atm is not a 

literal atom. Value is val. 

~ the value n!! to the list which is the value 

of property ~ on property list of atm. If fIg 

is T. !!!!! is consed onto the front of value of 

7.1 



remprop[atm;prop] 

changeprop[x;propl;prop2] 

get[x;y] 

~, otherwise it is ~ed on the end (nconct). 

If atm does not have a property 2rQ2. the effect 

is the same as put[atm;prop;list[new]], for 

exaunple, if addprop[FOO;PROP;FIE] is followed by 

addprop[FOO;PROP;FUM], getp[FOO;PROP] will 

be (FIE FUM). The value of add prop is the (new) 

property value. If atm is not a literal atom, 

generates an error, ARG NOT ATOM. 

removes all occurrences of the property 2r22 (and 

its value) from the property list of atm. Value 

is ~ if any were found, oth,erwise NIL. If !!!!! 

is not a literal atom, generates an error, 

ARG NOT ATOM. 

Changes name of property ~ to ~ on 

property list or !, (but does not arrect the value 

or the property). Value is !. unless ~ is not 

round, in which case, the vaiue is NIL. If ! is 

not a literal atom, generates an error, 

ARG NOT ATOM. 

Gets th. item arter the atom l on list!. If l is 

not on the list !, value is NIL. For example, 

get[A B C D):B].C. 

Note, since i!! terminates on a non-list, get[atom,anuthing] is NIL. 

Thererore, to search a property 1 is t, Il!!I!. shou ld 

be used, or get applied to cdr(atom]. 

7.2 



getp[atm;prop] gets the property value for ~ from the property 

list of!!m. The value of S!12 is NIL if atm is 

not a literal atom, or irQ2 if not found. 

Note, the ualue of 2!!! mau al80 be NIL, iJ there i8 an ~ccurrence oj ~ but 
the corre8ponding propertu ualue i8 NIL. 

getlis[x;props] 

deflist[l;prop] 

Note: Since ~ searches a list two items at a 

time, the same object can be used as both a 

property name and a property value, e.g., if the 

property list of atm is (PROP1 A PROP2 B A C), 

then getp[atmjA] • C. Note however that 

get[cdr[atm];A] • PROP2. 

searches the property list of !. and returns the 

property list as of the first property on props 

that it finds e.g., if the property list of ! is 

(PROP1 A PROP3 B A C), 

getlis[xj(PROPZ PROP3)]=(PROP3 B A C) 

Value is NIL if no element on ~ is found. ! 

can also be a list itself, in which case it is 

searched as above. 

is used to put values under the same property name 

on the property lists of several atoms. ! is a 

list of two-element lists. The first element of 

each is a literal atom, and the second element is 

the property value for the property ~. The 

value of deflist is NIL. 

Note, Manu atom8 in the8U8tem fllreadu haue propertu li8t8, with properties 
used bU the compiler. the brealtpacltalle. DWIH, etc. Be careful not to 
clobber such sU8tem propertie8. The ualue oj 8U8'prop8 gilles the complete 
li8t of the propertu names used bU the 8ustem. 

7.3 



7.2 Hash Links 

The description of the hash link facility in INTERLISP is included in the 

chapter on property lists because of the similarities in the ways the two 

features are used. A property list provides a way of associating information 

with a particular atom. A hash link is an association between any INTERLISP 

pointe~ (atoms, numbers, arrays II strings, lists, et al) called the hash-item, 

and any other INTERLISP pointer called the hash-value. Property lists are 

stored in cdr of the atom. Hash links are implemented by computing an address, 

called the hash-address, in a specified array. called the hash-array, and 

storing the hash-value and the hash-item into the cell with that address. The 

contents of that cell, i.e. the hash-value and hash-item, is then called the 

hash-link. 1 

Since the hash-array is obviously much smaller than the total number of 

. possible hash-items,2 the hash-address computed from item may already contain a 

hash-link. If this link is fro[[l item, 3 the new hash-value simply replaces the 

old' hash-value. Otherwise, ano1;her hash-address (in the same hash-array) must 

be computed, etc. until an empty cell is found, 4 or a cell containing a 

hash-link from item. 

When a hash link for item is being retrieved, the hash-address is computed 

i--~-~--~~~--~--~-~-~-----------'------·----~--------- ----------------------~-~-
The term hash link (unhyphenated) refers to the process of associating 

2 

3 

4 

information this way. or thEI 'association' as an abstract concept. 

which 1s the total number of INTERLISP pointers, i.e., 256K. 

~ is used for comparing itE~ with the hash-item in the cell. 

After a certain number of iterations (the exact algorithm is complicated), 
the hash-array is considered to be full, and the array is either enlarged, 
or an error is generated, as described below in the discussion of overflow. 

7.4 



using the same algorithm as that employed for making the hash link. If the 

corresponding cell is empty, there is no hash link for item. If it contains a 

hash-link from item, the hash-value is returned. 

hash-address must be computed, and so forth. 6 

Otherwise, another 

Note that more than one hash link can be associated with a given hash-item by 

using more than one hash-array. 

Hash Link Functions 

In the description of the functions below, the argument array has one of three 

forms: (1) NIL, in which case the hash-array provided by the system, 

syshasharray. is used;6 (2) a hash-array created by the function harray, or 

created 'from an ordinary array using clrhash as described below; or (3) a list 

~ of which is a hash-array. The latter form is used for specifying what is 

to be done on overflow, as described below. 

harray[n] creates a hash-array of size n,. equivalent to 

clrhash[array[n]]. 

clrhash[array] sets all elements of array to 0 and sets left half 

of first word of header to -1. Value is array. 

puthash[item;val;array] puts into array a hash-link from item to val. 

6--~---------------------------------------------------------------------------For reasonable operation, the hash array should be ten to twenty percent 

6 

larger than the maximum number of hash links to be made to it. 

syshasharray is not used by the system, it is provided solely for the 
user's benefit. It is initially 512 words large, and is automatically 
enlarged by 50" whenever it is 'full'. See page 7.7. 

7.5 



gethash[item;array] 

rehash[oldar:newar] 

maphash[array:maphfn] 

dmphash[arrayname] 

Replaces previous link from same item, if any. If 

val=NIL any old link is removed, (hence a 

hash-value or NIL is not allowed). Value is ~. 

finds hash-link from item in array. and returns 

the hash-value. Value is NIL if no link exists. 

gethash compiles open. 

hashes all items and. values in oldar into newar. 

The two arrays do not. have to be (and usually 

aren't) the same size. Value is ~. 

maphfn is a function of two arguments. For each 

hash-link in array, maphfn will be applied to the 

has,h-value and hash-item, e.g. 

maphash[a;(LAHBDA(X Y) (AND(LISTP Y) (PRINT X»)] 

will print the hash-value for al~ hash-links from 

1 is,ts. The value of maphash is array. 

Nla~da-nospread that prints on the primary output 

file a loadable form which will restore what is in 

thEI hash-array specified by arrayname, e. g. 

(E (DHPHASH SYSHASHARRAY» as a prettydef command 

will dump the system hash-array. 

Note, all g identitie~ except G/tom~ and ~mall integer~ are Lost bU dumping and 
l oading becau~e read wi II create new ~tructure for each item. Thus if 
two li~t~ contaiRan !!l. substructure, when theu are dumped and Loa~ed 
baclc. in. the corre~pondinQ' ~ub~tructure~ while equal are no Longer g. 

7~-~---------------------------·'-----------------------------------~-----------circlprint and circlmaker (Section 21) provide a way of dumping and 
reloading structures contaill'ling !!l substructures so that these identities 
are preserved. 

7.6 



Hash Overflow 

By using an array argument of a special form. the user can provide for 

automatic enlargement of a hash-array when it overflows, i.e., is full and an 

attempt is made to store a hash link into it. The array argument is either of 

the form (hash-array. n), II a PQsitive integer; or (hash-array. f), f a 

floating point number; or (hash-array) 0 In the first case. a new hash-array is 
created with rr more cells than the current hash-array. In the second case, the 

new hash array will be f times the size of the current hash-array. The third 

case, (hash-array), is equivalent to (hash-array. 1.5). In each case, the old 

hash-array is rplacaed into the dotted pair, and the computation continues. 

If . a hash-array overflows, and the array argument used was not one of these 

three forms, the error HASH TABLE FULL is generated, which will either cause a 

break or unwind to the last errorset. as per treatment of errors described in 

Section 16. 

The system hash array. syshasharray, is automatically enlarged by 1.5 when it 

is full. 

7.7 



Index for Section 7 

....................... AOOPROP[ATH;PROP;NEW;FlG] 
ARG NOT ATOM (error message) 
CHANGEPROP[X;PROP1;PROP2] 
CIRClMAKER[L] 
CIRCLPRINT[L;PRINTFLG;RLKNT] 
CLRHASH[ARRAY] SUBR · ................... -............ . OEFtIST[L;PROP] 
OMPHASH[L] NLtfr 
ERRORSET[U;V] SUBR 
GET[X;Y] 
GETHASH[ITEM;ARRAY] SUBR 
GETLIS[X;PROPS] 
GETP[ATM;PROP] 
HARRAY[lEN] 
hash link functions 

· .................................... . hash links 
hash overflow 
HASH TABLE FULL (error message) 
hash-address 
hash-array 
hash-item 

.................................... · .................................... . 
hash-link ....................................... · .................................... . hash-value 
MAPHASH[ARRAY;HAPHFN] 
property 
property list 
property name 
'property value 

· ............................... . 
• •••••••••••••• '* ••••••••••••••••• 

............................... PUT[ATH;PROP;VAL] 
PUTHASH[ITEH;VAL;ARRAY] SUBR 
REHASIf[OLOAR;NEWAR] SUBR 
REMPROP[ATH;PROP] 
SYSHASHARRAY (system variable/parameter) 
SYSPROPS (system variable/parameter) ............ 
value of a property ......... ~ .................. . 

INDEX.7.1 

Page 
Numbers 

7.1 
7.1-2 
7.2 
7.6 
7.6 
7.5 
7.3 
7.6 
7.7 
7.2 
7.6 
7.3 
7.3 
7.5 
7.5-6 
7.4-6 
7.7 
7.7 
7.4 
7.4-5,7 
7.4-6 
7.4-6 
7.4-6 
7.6 
7.1 
7.1-3 
7.1,3 
7.1,3 
7.1-2 
7.5 
7.6 
7.2 
7.5,7 
7.3 
7.1 



SECTION 8 

FUNCTION DEFINITION AND EVALUATION 

General Comments 

A function defini tion in INTERLISP is stored in a special cell called the 

function definition cell, which is associated with each literal atom. This 

cell is directly accessible via the two functions putd, which puts a gefinition 

in the cell, and getd which gets the ~.finition from the cell. In addition, 

the funct;i.on ~ returns the function type, i.e., EXPR, EXPR* FSUBR* as 

described in Section 4. ~,ccodep, and subrp, are true if the function is 

an expr, compiled function, or subr respectively; argtype returns 

0, 1, 2, or 3, depending on whether the function is a spread or nospread (i.e., 

its fntyp ends in *), or evaluate or no-evaluate (i.e., its ~ begins with F 

or CF); arglist returns the list of arguments; and nargs returns the number of 

arguments. ~,exprp, ccodep, subrp. argtype, arglist, and nargs can be 

given either a literal atom, in which case they obtain the function definition 

from the atom's definition cell, or a function definition itself. 

Subrs 

Because subrs,l are called in a special way, their definitions are stored 

i------------------------------------------------------------------------------Basic functions, handcoded in machine language, e.g. cons, car, cond. The 
terms subr includes spread/nospread, Ival/noeval functions,-r7e.~e four 
(ntype s SUBR, FSUBR, SUBR·, and FSUBR •• 

8.1 



differently than those of compiled or interpreted functions. In the right half 

of the definition cell is the address of the first instruction of the subr. and 

in the left half its argtype: 0, I, 2, or 3. getd of a subr returns a dotted 

pair of argtype and addr~ss. Note that this is not the same word as appears in 

the definition cell. but a new ~ffi!; i.e •• each getd of a subr performs a £Qn!. 

Similarly. putd of a definition 'of the form (number. address). where number = 
0, 1, 2, or 3, and address is in the appropriate range, stores the definition 

as a subr, i. e., takes the £.2!l!. apart and stores £!!: in the left half of the 

defini tion cell and cdr in the rJLght half. 

Validity of Definitions 

Al though the function definition c'ell is intended for function definitions, 

putd and getd do not make thorough checks on the validity of definitions that 

"look like" exprs, compiled code, or subrs. Thus if putd is given an array 

pointer, it treats it as compiled code, and Simply stores,the array pOinter in 

the definition cell. getd will then return the array pointer. Similarly. a 

call to that function will simply transfer to what would normally be the entry 
\ 

point for the function, and plroduce random results if the array were not 

compiled function. 

Similarly. if putd is given a dCltted pair of the form (number 0 address) where 

number is O. 1, 2, or 3, and address falls in the subr range. putd assumes it 

is a subr and stores it away as described earlier. getd would then return £2.!l! 

of the left and right half, i.e 0, a dotted pair equal (but not!.9.) to the 

expression originally given put!!. Similarly, a call to this function would 

transfer to the corresponding address. 

Finally, if putd is given any other list, it simply stores it away. A call to 

this function would then go through the interpreter as described in the 

appendix. 

8.2 



Note that putd does not actually check to see if the s-expression is valid 

defin it ion. i. e., begins with LAMBDA or NlAMBDA. Simi larly. m.r.J! is true if a 

definition is a list and not of the form (number. address), number = 

0, 1, 2, or 3 and address a subr address; subrp is true if it is of this form. 

arglist and nargs work correspondingly. 

Only fntyp and argtype check function definitions further than that described 

above: both argtype and ~ return NIL when ~ is true but £!!: of the 

definition is not LAMBDA or NLAMBDA.2 In other words, if the user uses putd to 

put (A Be) in a function definition cell. getd will return this value, the 

editor and prettyprint will both treat it as a definition, exprp will return T. 

ccodep and subrp NIL, arglist B, and nargs 1. 

getd[x] gets the function gefinition of~. Value 1s the 

definition. 3 Value is NIL if ~ is not a literal 

atom, or 'has no definition. 

fgetd[x] fast version of getd that compiles open as 

car[vag[addl[loc[x]]]]. Interpreted. generates an 

error, BAD ARGUMENT - FGETD, if .! is not a literal 

atom.4 

2---~~;;;-;~~~~~~~;-~;~;-d~~~;;;~~-~;i~;-~~-~;~;~;;-;~d-~~~~~O;;-;~d-~;~~;-~~;; 

8 

4 

check. The compiler and interpreter also take different actions for 
LAMBDAs and NlAMBDAs, and therefore generate errors if the definition is 
neither. 

Note that getd of a subr performs a £Q!!!, as described on page 8.2. See 
footnote on fgetd below. 

Fgetd is intended primarily to check whether a function ha~ a definition, 
rather than to obtain the definition. Therefore, for subrs, fgetd returns 
just the address of the function definition, not the dotted pair returned 
by get~, page 8.2, thereby saving the cons. 

8.3 



putd[x;y] 

putdq[x;y] 

movd[from.to;copyflg] 

put:s the !!efinition ~ into !'S function cell. 

Value is~. Generates an error, ILLEGAL ARG -

PUTD, if ! is not a literal atom, or 'J. is a 

string. number. or literal atom other than NIL. 

nlalmbda version of putd; both arguments are 

considered quoted. Value is !. 

Moves the definition of from to !2, i.e., 

redefines to. If copyflg=T, a £22'i. of the 

definition of from is used. copyflg=T is only 

meaningful forexprs, although movd works for 

compiled functions and subrs as well. The value 

of .movd is to. 

Note, ~. subrp. ccodep. exprp. aratupe. nargs. and argltst all can be gtuen 
etther the name 0/ a function. or a deftnttton. 

fntyp[fn] Value is NIL if fn is not a function definition or 

the name of a defined function. Otherwise fnt'J.P 

returns one of the following as defined 1n the 

section on function types: 

EXPR CEXPR SUBR 

FEXPR CFEXPR .FSUBR 

EXPR* CEXPR* SUBR* 

FEXPR* CFEXPR* FSUBR* 

The prefix r indicates unevaluated arguments, the 

prefix £ indicates compiled code; and the suffix • 

indicates an indefinite number of arguments. 

8.4 



subrp[fn] 

ccodep[fn] 

exprp[fn] 

argtype[fn] 

~ returns FUNARG if fn is a funarg expression. 

See Section 11. 

is true if an~ only if fntyp[fn] is either SUBR, 

FSUBR, ·SUBR". ,or FSUBR-, i. e.. the third column of 

fntyp's. 

is true if and only if fntyp[fn] is either CEXPR, 

CFEXPR, CEXPRft,or CFEXPR*, i.e., second column of 

fntyp's. 

is true if fntyp[fn] is either EXPR, FEXPR, EXPR*, 

or FEXPR*, i.e. , first column of fntyp' s. 

However, exprp[ fn] is also true if fn is (has) a 

list definition that is not a SUBR, but does not 

begin with either LAMBDA or NLAMBDA. In other 

words" exprp is not quite as selective as fntyp. 

fn is the name of a function or its definition. 

The value of argtype is the argtype of fn, i.e., 

0, 1 p 2, or 3, or NIL if fn is not a function. 

The interpretation of the argtype is:, 

o eval/spread function 
(EXPR, CEXPR, SUBR) 

1 no-eval/spread functions 
(FEXPR, CFEXPR, FSUBR) 

2 eval/nospread functions 
(EXPR*, CEXPR*, SUBR*) 

3 no-eval/nospread functions 
(FEXPR*, CFEXPR*, FSUBR*) 

i.e., argtyp~ corresponds to the roUls of fntyps. 

8.5 



nargs[fn] value is the number of arguments of fn, or NIL if 

fn is not a function. 6 nargs uses exprp, not 

fnty~, so that nargs[(A (B C) 0)]-2. Note that if 

fn 1s a SUBR or FSUBR, nargs • 3, regardless of 

the number of arguments logically needed/used by 

the routine. If fn is a nospread function, 

nars,s = 1. 

arglist[fn] ,value is the 'argument list' for fn. Note that 

the 'argument list' is an atom for nospread 

functions. Since NIL is a possible value, for 

arglist, an error is generated", 

ARG:S NOT AVAILABLE, if fn is not a function. 6 

If fn is a SUBR· or FSUBR, the value of arglist is (U V W), if a SUBR- or 

FSUBR-, the value is U. This is merely a • feature , of arglist, subrs do not 

actually store the names U, V, or W on the stack. However. if the user breaks 

or traces a SUBR (Section 15), these will be the argumen't names used when an 

equivalent EXPR definition is constructed. 

define[x] The argument of define is a list. Each element of 

the list is itself a list either of the form (name' 

definition) or (name arguments ••• ). In the 

second case, following 'arguments' Is the body of 

the definition. As an example, consider the 

6-------------~------------------------------------------------------~---------1.e., if ~, ccodep, and subrp are all NIL. 

6 If fn is a compiled function, the argument list is constructed, 1.e. each 
call to arglist requires making a new list. for interpreted functions, the 
argument list is simply cadr of getd. 

8.6 



following two' equivalent expressions for defining 

the function null. 

1) (NULL (LAMBDA (X) (EQ X NIL») 

2) (NULL (X) (EQ X NIL» 

define will generate an error on encountering an atom where a defining list is 

expected. If dfnflg=NIL. an attempt to redefine a function fn will cause 

define to print the message (fn REDEFINED) and to save the old definition of fn 

using savedef before redefining it. If dfnflg=T. the function is Simply 

redefined. If dfnflg=PROP or ALLPROP, the n~w definition is stored on the 

property list under the property EXPR. (ALLPROP affects the operation of rpaqq 

and ~. section 5). dfnflg is initially NIL. 

dfnflg is reset by load to enable various ways of handling the defining of 

functions and setting of variables when loading a file. For most applications, 

the user will not reset dfnflg directly himself. 

Note, define will operate correctlu if the Junction is alreadu deJined and 
broken. aduised. or broken-in. 

savedef[fn] 

nlambda nospread version of define. i.e., takes an 

indefinite number of arguments which are not 

evaluated. Each Xi must be a list, of the form 

described in define. defineg calls define, so 

dfnfig affects its operation the same as define. 

Saves the definition of tn on its property list 

under property EXPR, CODE, or SUBR depending on 

its!n!l2. Value is the property name used. If 

getd[fn] is non-NIL, but fntyp[fn] is NIL, saves 

on property name LIST. This situation can arise 

8,.7 



unsavedef[fn;prop] 

when a function is redefined which was originally' 

defined with LAMBDA misspelled or omitted. 

If l:n- is a list, savedef operates on each function 

in the list, and its value is a list of the 

individual values. 

Res1~ores the definition of fn from' its property 

lis1~ under property ~ (see savedef above). 

Value is ~. If nothing saved under J!.!:.Qj!. and 

fn jls defined, returns (prop NOT FOUND r, otherwise 

genorates an error, NOT A FUNCTION. 

If ,~ is not given, i.e. NIL, unsavedef looks 

undor EXPR, CODE, and SUBR, in that order. The 

value of unsavedef is the property name, or if 

nothing is found and fn is a function, the value 

is (NOTHING FOUND); otherwise generates an error, 

NOT A FUNCTION. 

If ,dfnflg=NIL, the current definition of fn. if 

any., is saved using savedef. Thus one can use 
I 

unsilvedef to switch back and forth between two 

defj,ni tions of the same function, keeping one on 

its property list and the other in the function 

deftnition cell. 

If fn is a list, unsavedef operates on each 

func:tion of the list, and its value is a list of 

the individual values. 

8.8 



eval[x]7 eval evaluates the expression ~ and returns this 

va lue i . e. eva 1 provides a way of call ing the 

e[x] 

interpreter. Note that eval is itself a lambda 

type function, so its argument is the first 

evaluated, e.g., 

~SET(FOO (ADD1 3» 
(ADD1 3) 
... (EVAL FOO) 
4 
"'EVAL(FOO) or (EVAL (QUOTE FOO» 
(ADD1 3) 

nlambda nospread version of eval. Thus it 

eliminates the extra pair of parentheses for the 

list of arguments for eval. i.e., e x is 

equivalent to eval[x]. Note however that in 

INTERLISP, the user can type just ! to get ! 

evaluated. (See Section 3.) 

apply[fn;args] ~ applies the function fn to the arguments 

aras. The individual elements of args are not 

evaluated by ~, fn is simply called with args 

as its argument list.8 Thus for the purposes of 

~, nlambda's and lambda's are treated the 

same. However like eval, ~ is a lambda 

function so its arguments are evaluated before it 

is called e.g., 

7------------------------------------------------------------------------------eval is a 5ubr 50 that the 'name' ! does not actually appear on the stack. 

8 Note that fn may still explicitly evaluate one or more of its arguments 
itself, as in the case of setq. Thus 
(APPLY (QUOTE SETQ) (QUOTE (FOO (ADD1 3»» will set FOO to 4, whereas 
(APPLY (QUOTE SET) (QUOTE (FOO (ADD1 3»» will set FOO to the expression 
(ADD1 3). . 

8.9 



evala[x;a] 

rpt[rptnjrptf] 

.. SET(FOOI 3) 
3 
.. SET(FOOl 4) 
4 
.. (APPLY (QUOTE IPLUS) (LIST FOOl FOOl] 
7 

Here, fool and fo02 were evaluated when the second 

argument to ~ was evaluated. Compare with: 

.. SET(FOOl (ADDl Z» 
(ADDl 2) 
.. SET(FOOl (SUB1 5» 
(SUBl 5) 
.. (APPLY (QUOTE IPLUS) (LIST FOOl FOOZ] 

NON-NUMERIC ARG 
(AD01 Z) 

equi.valent to apply[fnjlist[arg1; ••• ;argn ]] For 

example, if fn is the name of a functional 

argument to be applied to ! and X. one can write 

(APPLY* FN X Y), which is equivalent to 

(APPLY FN (LIST X Y». Note that (FN X Y) 

spe(:ifies a call to the function FN itself. and 

will cause an error if FN is not defined. (See 

Sec1~ion 16.) FN will not be evaluated. 

Simulates a-list evaluation as in LISP 1.5. ~ is a 

forl1la, ! is a list of dotted pairs of variable name 

and value. ! is 'spread' on the stack, and then ~ 

is evaluated, i.e. t any variables appearing free 

in ~~, ~hat also appears as E![ of an element of .! 

will be given the value in the cdr of that 

elelllent. 

Evaluates the expression rptf rptntimes. At any 

POillt. rptn is the number of evaluations yet to 

8.10 



take place. Returns the value of the last 

evaluation. If rptn ~ 0, rptf is not evaluated, 

and the value of rpt is NIL. 

Note, !21 is a lambda function. so both its arguments are eualuated be/ore ~ 
is called. For most applications. the user will probablu lDant to use 
!P.!:.!I. • 

rptq[rptn;rptf] 

arg[var;m] 

nlambda version of rpt:' rptn is evaluated, rptf is 

not, e.g. (RPTQ 10 (READ» will perform ten calls 

to read. ~ compiles open. 

Used to access the individual arguments of a 

lambda nospread function. arg is an nlambda 

function used like .!!! y!.!: is the name of' the 

atomic argument list to a lambda-nospread 

function, and is not evaluated; m is the number of 

the desired argument, and is evaluated. For 

example, consider the following definition of 

iplus in terms of plus. 

[LAMBDA X 
(PROG «M 0) 

(N 0» 
LP (COND 

«EQ N X) 
(RETURN H») 

(SETQ N (ADOl N» 
[SETQ M (PLUS M (ARG X N») 
(GO LP] 

The value of arg is undefined for m less than or 

equal to 0 or greater than the ualue of y!!:. 9 

Lower numbered arguments appear earlier in the 

form, e.g. for (IPLUS A B C), 

8.11 



setarg[var;m;x] 

arg[X;l]=the value of A, 

arg[Xi2]cthe value of B, and 

arg[X;3]=the value of C. 

Note that the lambda variable should never be 

reset. However, individual arguments can be reset 

using setarg described below. 

set~ to ~ the mth argument for the lambda nospread 

fun'ction whose argument list is Y.ill:. Y1!.!: is 

considered quoted, m and! are evaluated; e.g. in 

the previous example, (SETARG X (ADD1 N)(HINUS H» 

would be an example of the correct form for 

set,arg. 

8.12 



Index for Section 8 

a-list ........................ 
ADVISED (property name) 
ALLpROP ......................................... 
APPLY[FN;ARGS] SUBR 
APPLY-[FN;ARG1; ... ;ARGn] SUBR-
ARG[VAR;M] fSUBR • II •••••••••••••••••••••••••••••• 

ARGLIST[X] · ............................... . 
ARGS NOT AVAILABLE (error message) ................................ ARGTYPE[FN] SUBR 
argument list · ................................. . 
BAD ARGUMENT - FGETD (error message) ............ · ........................ . BROKEN (property name) 
BROKEN-IN (property name) ....................... 
CCODEP[FN] SUBR · ............................... . · ......................... . · ........................ . · ........................ . ......................... · ........................... . 

CEXPR (function type) 
CEXPR* (function type) 
CFEXPR (function type) 
CFEXPR- (function type) 
CODE (property name) 
DE FIN E [ X ] •••••••• ' ••••••••••••••••••••••••••••••• 
DEFINEQ[X] NL* • ••••• II ••••••••••••••••••••••••••• 

OFNFLG (system variable/parameter) .............. 
E[XEEEE] NL* 
EVAL[X] SUBR 
EVALA[X;A] SUBR 

· ................................ . 
· ................................ . 

EXPR (property name) 
EXPR (function type) 
EXPR* (function type) 

· .......................... . · ..................... " .... . · ......................... . 
EXPRP[FN] SUBR · ................................ . 
FEXPR (function type) 
FEXPR- (function type) 
FGETD[X] 
FNTYP[ X] 

........................................ · ......................... . 
FSUBR (function type) 
FSUBR- (function type) 
FUNARG (function type) 

· ........................ . 
function definition and .evaluation 
function definition cell 

............. " 
functional argument · ............................. . 
GETD[X] SUBR · ........................... . 
ILLEGAL ARG - PUTD (~rror message) 
INCORRECT DEFINING FORM (error message) 
interpreter ..................................... 
LAMBDA ...................................... 
LIST (property name) 
MOVD[FROM;TO;COPYFLG] 
NARGS[X] 
NLAMBDA • ................... 0 ••••••••• 

nospread ........................................ 
NOT A FUNCTION (error message) .................. 
(NOT FOUNO) 
(NOTHING FOUND) 
PROP[X;Y] 
PUTD[X;Y] SUBR 
PUTDQ[X;Y] NL 

· ............................... . · ...................... " ........ . · ................................. . · ................................ . · ................................. . 
REDEFINED (typed by system) ..................... 

INDEX.8.1 

Page 
Numbers 

8.10 
8.7 
8.7 
8.9 
8.10 
8.11 
8.1,3-4,6 
8.6 
8.1-5 
8.1 
8.3 
8.7 
8.7 
8.1,3-5 
8.4-5 
8.4-5 
8.4-5 
8.4-5 
8.7-8 
8.6-7 
8.7 
8.7-8 
8.9 
8.9 
8.10 
8.7-8 
8.4-6 
8.4-5 
8.1,3-6 
8.4-5 
8.4-5 
8.3 
8.1,3-7 
8.4-6 
8.4-6 
8.5 
8.1-12 
8.1-2 
8.10 
8.1-3,7 
8.4 
8.7 
8.9 
8.3,5,8 
8.7 
8.4 
8.1,3-4,6 
8.3,5 
8.1 
8.8 
8.8 
8.8 
8.7 
8.1-4 
8.4 
8.7 



RPT[RPTN;RPTF] 
RPTQ[RPTN;RPTF] NL 
SAVEDEF[X] 
SETARG[VAR;H~X] fSUBR 
spread 
SURR (function type) 
SUBR (property name) 
SUBR* (function type) 
5UBRP[FN] SUBR 
subrs 
U (value of ARGLIST) 

... " ......... ~ ............. . .... ' ...................... . 
•• " ••••••• 4t ••••••••••••••• 

(U V W) (value of ARGLIST) 
UNSAVEOEF[X;TYP] 

UIDEX.8.Z 

Page 
Numbers 

8.10-11 
8.11 
8.7-8 
8.12 
8.1 
8.4-6 
8.7-8 
8.4-6 
8.1,3-5 
8.1 
8.6 
8.6 
8.8 



SECTION 9 

THE INTERLISP EDITORt 

The INTERLISP editor allows rapid, convenient modification of list structures. 

"ost often it is used to edit function definitions, (often while the function 

itself is running) via the function editf, e.g., EDITF(FOO). However, the 

editor can also be used to edit the value of a variable, via !!!!!y, to edit a 

property list, via editp, or to edit an arbitrary expression, via~. It is 

an important feature which allows good on-line interaction in the INTERLISP 

system. 

This chapter begins with a lengthy introduction intended for the new user. The 

reference portion begins on page 9.15. 

9~1 Introduction 

Let us introduce some of the basic,editor commands, and give a flavor for the 

edi tor's language structure by guiding the reader through a hypothetical 

editing session. Suppose we are editing the following incorrect definition of 

append: 

i-----~---------·------------------------·------------ -----------.-.-----.-.----The editor was written by and is the responsibility of W. Teitelman. 

0.1 



(LAMBDA (X) 
Y 
(COND 

«NUL X) 
Z) 

(T (CONS (CAR]I 
(APPEND (CDR X Y] 

We call the editor via the funct;ion edi tf: 

"EDITF(APPEND) 
EDIT 
* 

The editor responds by typing EOIT followed bY., which is the editor's prompt 

character, i.e., it signifies that the editor is ready to accept commands.2 

At any given moment, the editor's attention is centered on some substructure of 

the expression being edited. This substructure is called the current 

expre$$ion, and it is what the user sees when he gives the editor the command 

P, for print. Initially, the c:urrent expression ·is the top level one, i.e., 

the entire expression being edi t,ed. Thus: 

.p 
(LAMBDA (X) Y (COND & &» 
* 

Note that the editor prints tho current expression as though pr1ntlevel were 

set to 2, i.e., sublists of Slliblists are printed as &. The command ? will 

print the current expression as though printlevel were 1000. 

*7 
(LAMBDA (X) Y (COND «NUL X) Z) (T (CONS (CAR) (APPEND (COR X V»~»~»~ 
* 

and the command PP will prettyprint the current expression. 

2-------------------~-------------~----------------------------------------~~--In other words. all lines beginning with • were typed by the user, the rest 
by the editor. 

9.2 



A positive integer is interpre,ted by the editor as a cODlDand to descend into 

the correspondingly numbered element of the current expression. Thus: 

*2 
*p 
(X) 
* 

A negative integer has a similar effect, but counting begins from the end of 

the current expression and proceeds backward, i.e •• -1 refers to the last 

element in the current expression, -2 the next to the last, etc. For either 

positive integer or negative integer, if there 1s no such element, an error 

occurs,3 the editor types the faulty cODlDand followed by a 1, and then another 

* The current expre&&ion i& neller changed when a co.and cau&e.s fin error. 

Thus: 

*p 
(X) 
*2 

2 1 
*1 
*p 
X 
• 

A phrase of the form 'the current expression is changed' or 'the current 
expression becomes' refers to a shift in the editor's attention, not to a 
modification of the structure being edited. 

When the user changes the current expression by descending into 'it, the old 

current expression is not lost. Instead, the editor actually operates by 

a~~-----~----------------------------~---------------- -------------------------'Editor errors' are not of the flavor described in Section 16. i.e., they 
never cause breaks or even go through the error machinery but are direct 
calls to error! indicating that a coaunand is in some way faulty. What 
happens next depends on the context in which the command was being 
executed. For example, there are conditional commands which branch on 
errors. In most situations, though, an error will cause the editor to type 
the faul ty command followed by a 1 and wait for more input. Note that 
typing control-E while a cOllUDand is being executed aborts the cOlIIDand 
exactly as though it had caused an error. 

9.3 



maintaining a chain of expressions leading to the current one. The current 

expression is simply the last link in the chain. Descending adds the indicated 

subexpression onto the end of the chain, thereby making it be the current 

expression. The command 0 is used to ascend the chain; it removes the last 

link of the chain. thereby making the preutou8 link be the current expression. 

Thus: 

-p 
X 
-0 P 
(X) 
-0 -1 P 
(CONO (& Z) (T &») 

-
Note the use of several conunand~» on a single line in the previous output. The 

editor operates in a line buffered mode, the same as evalqt. Thus no command 

is actually seen by the editor', or executed, until the line is terminated, 

either by a carriage return, or a matching right parenthesis. The user can 

thus use control-A and control-'l! for line-editing edit comands. the same as he 

does for inputs to evalqt. 

In our edi ting session, we will make the following corrections to append: 

delete Y from where it appears, add Y to the end of the argument list,4 change 

NUL to NUll, change Z to Y, add Z after CAR, and insert a right parenthesis 

following CDR X. 

first we will delete Y. By now we have forgotten where we are in the function 

defini"tion, but we want to be at the ·top· so we use the cormnand· t, which 

ascends through the entire chain of expressions to the top level expression, 

4---T~;~;-~~~-~;;;;~~~~~-~~~id-~;-~~~~~h-~f-;;-~~;-~;;;;~~~~:-~:;::-HOV~-Y-f;~~ 
its current position to a ne'w position, and 1n fact there is a MOVE command 
in the edi tor. However, f(Jr the purposes of this introduction, we will 
confine ourselves to the simpler edit commands. 

9.4 



which then becomes the current expression, i.8., t re.ov •• all links except the 

first one. 

*t P 
(LAMBDA (X) Y (COHO 6 6» 
* 

Note that if we are already at the toP. t has no .ffect, i ••.• it is • NOP • 

. However, 0 would generate an error. In other words. t ••• ns -go to the top,­

while 0 means wascend one link.-

The basic structure modification commands in the editor are: 

(n) n ~ 1 deletes the corresponding 

element from the current expression. 

(n 8 1 ••• em) n ,m ~ 1 replaces the nth ele.ant in the current 

expression with 

(~n 8 1 ••• 8m) n ,m ~ 1 insertse1 ••• e. before the nth element 

in the current expression. 

Thus: 

*p 
(LAMBDA (X) Y (COHO 6 6» 
*(3) 
*(2 (X V»~ 
*p 
(LAMBDA (X Y) (COHO 6 6» 
* 

All structure modification done bU the editor i, de,tructiue. t.e .• the editor 
uses rplaca and rplacd to phustcaLLu chaR,e the ,tructure it .a, ,tuen. 

Nota that all three of the above co .. ands perfoMD their operation with respect 

9.5 



to the nth element from the front of the current expressioni the sign of ! is 

used to specify whether the operation is replacement or insertion. Thus. there 

is no way to specify deletion or' replacement of the nth element from the end of 

the current expression, or insertion before the nth element from the end 

without counting .out that elelmant's position from the front of the list. 

Similarly. because we cannot specify insertion after a particular element, we 

cannot attach something at the end of the current expression using the above 

commands. Instead, we use thEI command N (for !!£2!!£). Thus we could have 

performed the above changes instead by: 

*p 
(LAMBDA (X) Y (COND 6 6» 
lIr(3) 
lIrZ (N Y) 
*p 
(X Y) 
lIrt P 
lIr (LAMBDA (X Y) (CCJND & &» 
* 

Now we are ready to change NUL to NULL. Rather than specify the sequence of 

descent commands necessary to re!ach NUL, and then replace it with NUll, e.g., 3 

Z 1 (1 NULL), we will use F. the! find cODlDand, to find NUL: 

*p 
(LAMBDA (X Y) (COHD 6 6» 
*F NUL 
*p 
(NUL X) 
*(1 NULL) 
*0 p 
« NULL X) Z) 
* 

Note that F is special in that it corresponds to two inputs. In other words, F 

says to the edt tor, "treat your' next conunand as an expression to be searched 

for." The search is carried out in printout order in the current expression. 

If the target expression is not found there, F automatically ascends and 

searches those portions of the higher expressions that would appear after (in a 

printout) the current expression. If the search is successful, the new current 

9.6 



expression will be the structure where the expressi,on was found, 6 and the chain 

will be the same as one resulting from the appropriate sequence of ascent and 

descent commands. If the search is not successful, an error occurs, and 

neither the current expression nor the chain is changed:B 

"P 
«NULL X) Z) 
"F COND P 

COND ? 
"P 
"«NULL X) Z) .. 

Here the search failed to find a £!!!!!! following the current expression, 

al though of course a cond does appear earlier in the structure. This last 

example illustrates another facet of the error recovery mechanism: to avoid 

further confusion when an error occurs, all commands on the line beuond the one 

which caused the ,error (and all comands that may have been typed ahead while 

the editor was computing) are forgotten.? 

We could also have used the R command (for replace) to change NUL to NULL. A 

command of the form (R e1 e2) will replace all occurr~nces of e 1 in the current 

expression by e2 • There must be at'least one such occurrence or the R command 

w111 generate an error. Let us use the R command to change all Z'. (even 

though there is only one) 1n append to Y: 

6~----~~~-~~--~-------·------------------------------------~---------.---------If the search is for an atom, e.g., F NUL, the current expression will be 

6 

? 

the structure containing the atom. 

F is never a NOP, i . e., if successful, the current expression after the 
search will never be the same as the current expression before the search. 
Thus F expr repeated without intervening commands that change the edit 
chain can be used to find successive instances of expr. 

i. e. the input burfer is cleared (and saved) (see clearbuf, Section 14). 
I t can be res tored, and the type-ahead recovered via the co_and SBUFS 
(alt-mode BUFS). described in Section 22. 

9.7 



*t (R Z Y) 
*F Z 

Z ? 
*PP 

[LAMBDA (X Y) 
(COND 

«NULL X) 
Y) 

(T (CONS (CAR) 
(APPEND (CDR X Y] 

* 

The next task is to change (CAR) to (CAR X). We could do this by 

(R (CAR) (CAR X», or by: 

*F CAR 
*(N X) 
*p 
(CAR X) 
* 

The expression we now want to change is the next expression after the current 

expression, i.e., we are currently looking at (CAR X) in (CONS (CAR X) (APPEND 

(COR X V»~). We could get to the append expression by typing 0 and then 3 or 

-1, or we can use the connand N)I:, which does both operations: 

*p 
(CAR X) 
*NX P 
(APPEND (CDR X V») 
* 

Finally, to change (APPEND (COR X V»~ to (APPEND (COR X) V), we could perform 

(2 (COR X) V), or (2 (COR X» and (N Y). or 2 and (3), deleting the V, and then 

o (N V). However, if Y were a complex expression, we would not want to have to 

retype it. Instead, we could IJse a command which effectively -inserts and/or 

removes left and right parentheses. There are six of these comMands: 

BI,BO,LI,LO,RI, and RO, for !!oth in, I!oth 2,ut, left in, left 2,ut, right in, and 

r.ight .Q.ut. Of course, we will ,always have the same number of left .parentheses 

as right parentheses, because 1~he parentheses are just a notational guide to 

9.8 



structure that is provided by our print program.8 Thus, left in, left out, 

right in, and right out actually do not insert or remove just one parenthesis, 

but this is very suggestive of what actually happens. 

In this case, we would like a right parenthesis to appear following X in (CDR X 

Y) • Therefore, we use the co_and (RI Z Z), which means insert a' right 

parentheses after the second element in the second element (of the current 

expression): 

*p 
(APPEND (CDR X V»~ 
*(RI 2 2) 
*p 
(APPEND (CDR X) Y) 
* 

We have now finished our editing,and can exit from the editor, to test append, 

or we could test it while still inside of the editor, by using the E command: 

*E APPEND«A B) (C 0 E» 
(A BCD E) 
* 

The E command causes, the next input to be given to evalgt. If there is another 

input following it, as in the above example, the first will be applied (apply) 

to the second. Otherwise, the input is evaluated (eval). 

We prettyprint append, and leave the editor. 

8-----------------~--~---------------------------------------------------------Herein lies one of the principal advantages of a LISP oriented editor over 
a text editor: unbalanced parentheses errors are not possible. 

9.9 



*PP 
[LAMBDA (X Y) 

(CONO 
«NULL X) 

Y) 

*OK 
APPEND 

(T (CONS (C#~R X) 
(APPEND (CDR X) Y] 

9.2 Commands for the New User 

As mentioned earlier, the INTERL.ISP manual is intended primarily 8S a reference 

manual, and the remainder of this chapter is organized and presented 

accordingly. While the commands. introduced in the previous scenario constitute 

a complete set, i.e., the user could perform any and all editing operations 

using just those commands, therel are many situations in which knowing the right 

command(s) can save the user considerable effort. We include here as part of 

the introduction a list of those commands which are not only frequently 

applicable but also easy to us.e. They are not presented in any particular 

order, and are all discussed in detail in the reference portion of the chapter. 

UNDO 

BK 

BF 

undoes the last modification to the structure 

being edited, e.g., if the user deletes the wrong 

element, UNDO will restore it. The availability 

of UNDO should give the user confidence to 

experiment with any and all editing coaunands, no 

matter how complex, because he can always reverse 

the effect of the command. 

like NX, except makes the expression immediately 

be/ore the current expression become current. 

~ackwards find. Like F, except searches 

backwards, i.e., 1n inverse print order. 

9.10 



\ 

\P 

Restores the current expression to the expression 

before the last ·big jump·, e.g., a find command, 

an t, or another \. For example, if the user 

types F CONO, and then F CAR, \ would take him 

back to the CONO. Another \ would take him back to 

the CAR. 

like \ except it restores the edit chain to its 

state as of the last print, either by P, 1, or PP. 

If the edit chain has not been changed since the 

last print, \P restores it to its state as of the 

printing before that one, i.e., two chains are 

always saved. 

Thus if the user types P followed by 3 2 1 P, \P will take him back to the 

first P, i.e., would be equivalent to 0 0 O. Another \P would then take him 

back to the second P. Thus the user can use \P to flip back and forth between 

two current expressions. 

The search expression given to the F or BF command 

need not be a literal S-expression. Instead, it 

can be a pattern. The symbol Be can be used 

anywhere within this pattern to ma.tch with any 

single element of a list, and -- can be used to 

match with any .segment. of a list. Thus, in the 

incorr~ct definition of append used earlier, 

F (NUL Be) cou Id have been used to find (NUL X), 

and F (CDR _a) or F (CDR Be A), but not F (CDR 6), 

to find (CDR X V). 

Note that at and -- can be nested arbitrarily ~eeply in the pattern. For 

9.11 



example. if there are many plac:es where the variable X is set, F SETQ may not 

find the desired expression, nor may F (SETQ X &). It may be necessary to use 

F (SETQ X (LIST --». However, the usual technique in such a case is to pick 

out a unique atom which occurs I~rior to the desired expression, and perform two 

F commands. This -homing in- l)rOCeSS seems to be more convenient than ultra­

precise specification of the pattern. 

5 (alt-mode) $ 1s equivalent to -- at the character level, e.g. 

VERS will match with VERYLONGATOH t as will SATOM, 

SLC)NGS. (but not SLONG) and SVSNSMS. $ can be 

ne~'ted inside of a patt~rn, e.g., 

F ~[SETQ VERS (CONS --». 

If the search is successful, the editor will print 

= :followed by the atom which matched with the $-

atom, e.g., 

-F (SETQ VERS &) 
=VERYLONGATOH 

-
Frequently the user will want to replace the entire current expression. or 

insert something before it. In order to do this using a command of the form (n 

e 1 em) or (-n e 1 .•. em)' the user must be above the current expression. 

In other words, he would have to perform a 0 followed by a conunand with the 

appropriate number. However, if he has reached the current expression via an F 

command, he may not know what that number is. In this case, the user would 

like a command whose effect w()uld be to modify the edit chain so that the 

current expression became tht! first element in a new, higher current 

expression. Then he could perform the desired operation via (1 e 1 ••• em) or 

(-1 e 1 •.• em). UP is provided for this purpose. 

9.12 



UP 

(8 e 1 ••• em) 

(A e 1 .•• em) 

after UP operates, the old current expression is 

the first element of the new current expression. 

Note that if the current expression happens to be 

the first element in the next higher expression, 

then UP is exactly the same as O. Otherwise, UP 

modifies the edit chain so that the new current 

expression is a tail9 of the next higher. 

expression: 

*F APPEND P 
(APPEND (CDR X) Y) 
*Up p 
.•. (APPEND & V»~ 
·0 P 
(CONS (CAR X) (APPEND & V»~ 
• 

The ••• is used by the editor to indicate that the 

current expression is a tat 1 of the next h1gher 

expression as opposed to being an element (1 •••• a 

member) of the next higher expression. Not.: if 

the current expression is alreadu a tail. UP has 

no effect. 

inserts e1 ••• em before the current expression. 

i.e., does an UP and then a-I. 

inserts e1 ••• em after the current expression, 

i.e., does an UP and then either a (-2 8 1 ••• e.) 

or an (N e1 ••• em)' if the current expression is 

the last one 1n the next higher expression. 

9~-----~--------·--------------------------------------------------------------Throughout this chapter 'tail' means 'proper tail' (see Section 5). 

9.13 



(: 8 1 ••• em) 

DELETE 

reJl,laces current expression by e1 ••• 8m, i.8., 

does an UP and then a (1 e1 ••• em). 

deletes current expression: equivalent to (:). 

Earlier. we introduced the RI co_and in the append example. The rest of the 

conunands in this family: BI, BO" lI, lO, and RO, perform similar functions and 

are useful in certain situations.. In addition, the commands HBO and XTR can be 

used to combine the effects of several commands of the BI-BO family. HBO is 

used to embed the current expression in a larger expression. For example, if 

the current expression is (PRINT bigexpression), and the user wants to replace 

it by (CONO (FlG (PRINT bigexpression»), he could accomplish this by (LI 1), 

(-1 FLG). (LI 1), and (-1 CONO) •. or by a single HBO command, page 9.47. 

XTR is used to extract an expres,sion from the current expression. For example, 

extracting the PRINT expression from the above CONO could be accomplished by 

( 1), (LO 1), (1). and (LO 1) (.r by a single XTR command. The new user is 

encouraged to include XTR and MBO in his repertoire as soon as he is familiar 

with the more basic commands. 

This ends the introductory material. 

9.14 



9.3 Attention Changing Commands 

Commands to the edi tor fall into t~ree classes: commands that change the 

current expression (i.e., change the edit chain) thereby ·shifting the editor's 

attention,· commands that modify the structure being edited, and miscellaneous 

commands, e.g., exiting from the editor. printing. evaluating expressions. etc. 

Within the context of commands that shift the editor's attention, we can 

distinguish among (1) those comands whose operation depends only on the 

structure of the edit chain, e.g., 0, UP, NX; (2) those which depend on the 

contents of the structure, i.e., commands that search: and (3) those commands 

which simply restore the edit chain to some previous state, e.g., \, \P. (1) 

and (Z) can also be thought of a$ local, small steps versus open ended, big 

jumps. Commands of type (1) are discussed on page 9.15-21. type (2) on page 

9.21-34, and type (3) on page 9.34-36. 

9.3.1 Local Attention-Changing Commands 

UP (1) If a P command would cause the editor to type 

before typing the current expression, i.e. the 

current expression is a tail of the next higher 

expression, UP has no effect: otherwise 

(2) UP modifies the edit chain so that the old 

current expression (l.e., the one at the time UP 

was called) is the first element in the new 

current expression. 10 

io------------------~--~----·----------------------·---------------------------If the current expression is the first element in the next higher 
expression UP simply does a o. Otherwise UP adds the corresponding tail to 
the edit chain. 

9.15 



Examples: The current expression in each case is 

(CONO «NUll X) (RETURN V»~). 

1. *1 P 
CONO 
·UP P 
(CONO (Be Be» 

z. *-1 P 
«NUll X) (RETURN V»~ 
·UP P 

«NUll X) (RETURN V»~ 
*up P 
... «NUll X) (RETURN V»~) 

3. *F NULL P 
(NULL X) 
·UP P 
«NULL X) (RETURN V»~ 
*UP P 
... «NULL X) (RETURN V»~) 

The execution of UP is' straightforward, except in those cases where the current 

expression appears more than onl:e in the next higher expression. For example, 

if the current expression is j(A NIL B NIL C NIL) and the user performs 4 

followed by UP. the current eXlpression should then be ••• NIL C NIL). UP can 

determine which tail is the corlrect one because the commands that descend save 

the last ta i I on an internal editor variable t las tail. Thus after the 4 

command is executed, lastail 1s (NIL C NIL). When UP is called, it first 

determines if the current expression is a tail of the next higher expression. 

If it is, UP is finished. Otherwise, UP computes 

memb[current-expression;next-higher-expression] to obtain a tail beginning with 

the current expression .11 If 1there are no other instances of the current 

expression in the next higher expression t this tail is the correct one. 

ii------------------------------------------------------------------------~----The current expression should alwall$ be either a t'ail or an element of the 
next higher expression. If it is neither, for example the user has 
directly (and incorrectly) manipulated the edit chain, UP generates an 
error. 

9.16 



Otherwise UP uses lastailto select the correct tail. t2 

n (n ~ 1) adds the ~th element of the current expression to 

the front of the edit chain, thereby making it be 

the new current expression. Sets lastail for use 

by UP. Generates an error if the current 

expression is not a list that contains at least ~ 

elements. 

-n (n ~ 1) adds the ~th ele.ment from the end of the current 

expression to the front of the edit chain, thereby 

making it be the new current expression. Sets 

lastail for use by UP. Generates an error if the 

current expression is not a list that contains at . 

least ~ elements. 

o Sets edit chain to cdr of edit chain, thereby 

making the next higher expression be the new 

current expression. Generates an error if there 

is no higher expression, i.e. cdr of edit chain is 

NIL. 

Note that 0 usually corresponds to going back to the next higher left 

12-----------------------------------------------------------------------------Occasionally the user can get the edit chain into a state where lastail 
cannot resolve the ambiguity, for example if there were two non-atomic 
structures in the same expression that were g, and the user descended more 
than one level into one of them and then tri.d to come back out using UP. 
In this case, UP prints LOCATION UNCERTAIN and generates an error. Of 
course, we could have solved this problem completely 1n our implementation 
by saving at each descent both elements and tails. However, this would be 
a costly solution to a situation that arises infrequently, and when it 
does. has no detrimental effects. The lastail solution is cheap and 
resolves 99X of the ambiguities. 

9.17 



parenthesis, but not always. for example, if the current expression 15 

(A BCD E F B), and the user p~trforms: 

*3 UP P 
... C D E F G) 
*3 UP P 
••• E F G) 
*0 P 
.•• C 0 E F G) 

If the intention is to go back to the next higher left parenthesis, regardless 

of any intervening tails, the c(IDlDand 10 can be used .13 

10 

t 

NX 

Bt( 

dOEIS repeated 0' s until it reaches a point where 

the current expression is not a tail of the next 

hl"her expression, i.e .• always goes back to the 

next higher left parenthesis. 

sets edit chain to last of edit chain, thereby 

malting the top level expression be the current 

expression. Never generates an error. 

effectively does an UP followed by a 2,14 thereby 

mak.lng the current expression be the next 

eXlllression. Generates an error if the current 

eXlllression is the last one in a list. (However, 

tNX described below will handle this case.) 

makes the current expression be the previou~ 

i3~~--------------------------------------------------------------------------~ !O is pronounced bang-zero. 

14 Both NX and BK operate by performing a ! 0 followed by an appropriate 
number, i.e. there won't be an extra tail above the new current expression, 
as there would be if NX operated by performing an UP followed by a 2. 

9.18 



expression ,in the next higher expression. 

Generates an error if the current expression 1s 

the first expression in a list. 

For example, if the current expression is (CONO «NULL X) (RETURN V»~): 

(NX n) n ~ 1 

(BK n) n 2 1 

*F RETURN P 
(RETURN Y) 
*BK P 
(NULL X) 

equivalent to !!. NX commands, except if an error 

occurs, the edit chain is not changed. 

equivalent to !!. Bk commands. except if an error 

occurs, the edit chain is not changed. 

Note: (NX -n) is equivalent to (Bk n), and vice versa. 

!NX makes current expression be the next expression at 

a higher level, i.e., goes through any number of 

right' parentheses to get to the next expression. 

9.19 



for example: 

frPP 
(PROG «L L) 

(UF L» 
lP (CONO 

*F COR P 
(COR L) 
*NX 

NX ? 
*!NX P 
(ERROR!) 
*!NX P 

«NULL (SETO L (CDR L») 
(ERROR!» 

([NUll (COR (FHEHB (CAR L) 
(CADR l] 

(GO LP») 
(EOITCOM (QUOTE NX» 
(SETQ UNFIND UF) 
(RETURN L» 

«NULL &) (GO LP» 
*!NX P 
(EDITCOH (QUOTE NX» 
* 

!NX operates by doing O's until it reaches a stage where the current expression 

is not the last expression in the next higher expression, and then does a NX. 

Thus ! NX always goes through at least one unmatched right parenthesis, and the 

new current expression is alwaYli on a different level, i.e. , fNX and NX always 

produce different results. For example using the previous current expression: 

(NTH n) n I- 0 

*F CAR P 
(CAR L) 
*!NX P 
(GO LP) 
*\P p 
(CAR L) 
frNX P 
(CAOR l) 
* 

equivalent to ! followed by UP, i~e.t causes the 

list starting with the !th element of the current 

eX~tress ion ( or !!. th from the end 1 f n < 0) to 

9.20 



become the current expression .16 Causes an error 

if current expression does not have at least !!. 

elements. 

A generalized form of NTH using location specifications is described on page 

9.3Z. 

9.3.2 Commands That Search 

All of the editor conunands that search uS,e the same pattern matching routine. 16 

We will therefore begin our discussion of searching by describing the pattern 

match mechanism. A pattern pat matches with! if: 

1. pat is !! to !. 

Z. pat is &. 

3. pat is a number and !.9..2 to !. 

4. pat is a string and strequal[pat;x] is true. 

5. If car[pat] is the atom *ANY*, cdr[pat] is a list of patterns and 

pat matches ! if and only if one of the patterns on cdr[pat] 

matches x. 

6a. If pat is a literal atom or string containing one or more alt­

modes, each $ can match an indeCini te number (including 0) of 

contiguous characters in a literal atom or string, e.g. 

VERS matches both VERYlONGATOH and 

"VERYLONGSTRING· as do SLONGS (but not 

SLONG), and SVSLSTS. 

i6-~--~----~------------------------------------------------------------------~ (NTH 1) is a NOP t as is (NTH -n) where n is the length of the current 

16 

expression. 

This routine is available to the user directly, and is described on page 
9.88. 

9.21 



6b. If pat is a liter'al atom or string ending in troo alt-modes, pat 

matches with the first atom or string that is ·close· to pat. in 

the sen se used by the spe 11 ing correc tor ( Sec t ion 17). E • g • 

CONSSSS matches with CONS, CNONCSS with NCONC or NCONC1. 

The pattern matching routine always types a message of the form 

=x to inform the user of the object matched by a pattern of type 

6a or 6b, 17 e. g. I=VERVLONGATOH. 

7. If carr pat] is th4' atom --. pat matches! if 

a. cdr[pat]=NIL" i.e. pat=(--), e.g. 

(A _e) matches (A) (A 8 C) and (A . 8) 

In other words, -- can match any tail of a lis~. 

b. cdr[pat] matches with some tail of !, 

e.g. (A (&» will match with (A B C (D», 

but not (A 8 C D). or (A 8 C (D) E). However, 

note that (A -- (&) _e) will match with 

(A B C (D) E). 

In other words, -- can match any interior segment of a list. 

8. If car[pat] is thu atom •• , pat matches! if and only if cdr[pat] 

is !9. to !.18 

9. Otherwise if ! is a list, pat matches! if car[pat] 

matches car[x]. and cdr[pat] matches cdr[x]. 

When the edi tor is searching. t;he pattern matching routine is called to match 

with element.s in the structure,. unless the pattern begins with •••• in which 

case cdr of the pattern is matched against proper tails in the structure. Thus 

if the current expression is (A B C (8 C». 

17-----------------------------··-----------------------------------------------unless editquietflg=T. 

18· Pattern 8 is for use by plr"ograms that call the editor as a subroutine, 
since any non-atomic expres~iion in 8 command tllped in by the user obviously 
cannot be !!.!l to already eXi!.ting structure. 

9.22 



*F (8 --) 
*p (8 C) 
*0 F ( ••• 8 --) 
*p , 
••• 8 C (8 C» 

Matching is also attempted with atomic ta1ls (except for NIL). Thus 

*p 
(A (8 • C» 
*F C 
*p 

C) 

Although the current expression is the atom C after the (inal command, it is 

printed as ... • C) to alert the user to ,the fact that C is a tat I, not an 

element. Note that the pattern C will match with either instance of C in 

(A C (8 . C». whereas ( •••• C) will match only the second C. The pattern NIL 

will only match with NIL as an element, i.e. it will not match in (A I), evan 

though .cddr of (A B) is NIL. However, ( •••• NIL) (or equivalently ( ••• » may 

be used to specify a NIL totl, e.g. ( •••• NIL) will match with £sl!: of the 

third subexpression of «A. B)(C • D) (E». 

Search Algorithm 

Searching begins with the current expression and proceeds in print order. 

Searching usually means find the next instance of this pattern, and 

consequently a match is not attempted that would leave the edit chain 

unchanged. 19 At each step, the pattern is matched against the next element in 

the expression currently being searched, unless the pattern begins with in 

which case it is matched against the next tail of the expression. 

19----------~--------------~----------------------------~---------~-----~------However, there is a version of the find command which can succeed and leave 
the current expression unchanged (see page 9.26). 

9.23 



If the match is not successful, the search operation is recursive first in the 

car direction and then in the cdr direction, i.e. , if the element under 

examination is a list, the search descends into that list before attempting to 

match with other elements (or tlllils) at the same level.20 

However. at no point is the totiill recursive depth of the search (sum of number 

of cars and cdrs descended int(.) allowed to exceed the value of the variable 

maxlevel. At that point. the search of that element or tail is abandoned, 

exactly as though the element or tail had been completely searched without 

finding a match. and the search continues with the element or tail for which 

the recursive depth is below maxlevel. This feature is designed to enable the 

user to search circular list structures (by setting maxlevel small). as well as 

protecting him from accidentally encountering a circular list structure 1n the 

course of normal editing. maxlevel is initially set to 300.21 

If . a successful match is not found in the current expression, the search 

automatically ascends to the ne,ct higher expression,22 and continues searching 

there on the next expression after the expression it just finished searching. 

If there is none, it ascends again, etc. This process continues until the 

entire edit chain has been sear'ched, at which point the search fails, and an 

error is generated. If the search fails (or, what is equivalent, is aborted by 

control-E), the edit chain is not changed (nor are any conses performed). 

I f the search is successful, i. e., an expression is found that the pattern 

20-----------------------------------------------------------------------------There is also a version of the find convnand (see page 9 .27) which only 

21 

22 

attempts matches at the top level of the current expression, i.e., does not 
descend into elements, or ascend to higher expressions. 

maxlevel can also be set to I~Il, which is equivalent to infinity. 

See footnote on page g. 24. 

9.24 



matches, the edit chain is set to the value it would have had had the user 

reached that expression via a sequence of integer commands. 

If the expression that matched was a list, it will be the final link in the 

edit chain, i.e., the new current expression. If the expression that matched 

is not a list, e.g., is an atolD, the current expression will be the tail 

beginning with that atom,23 i.e., that atom will be the first element in the 

new current expression. In other words, the search effectively does an Up.24 

Search Commands 

All of the commands below set lastail for use by UP, set un find for use by \ 

(page 9.35), and do not change the edit chain or perform any conses if they 

are unsuccessful or aborted. 

F pattern i.e., two commands: the F informs the editor that 

the next command is to be interpreted as a 

pattern. This is the most common and useful fonm 

of the find command. If successful, the edit 

chain always changes, i.e., F pattern means find 

the next instance of pattern. 

If lDemb[pattern;current-expression] is true, F 

does not proceed with a full recursive search. If 

the value of the memb is NIL. F invokes the search 

algorithm described earlier. 

23~--------~---~-~-------------~---~-~--------______ M- -------------------------
Unless the atom is a tail, e.g. B in (A • B). In this c~se. the current 
expression will be B, but will print as •••• B). 

24, Un less upfindflg=NIl (initially set to T) • For discussion, see page 
9.43-44. 

9.25 



Thus if the current expression 1s 

(PROG NIL lP (COND (-- (GO lPl»)) ... LPI ... ), F lPl will find the prog label, 

not the lPl inside of the GO expression, even though the latter appears first 

(in print order) in the current expression. Note .that 1 (making the atom PROG 

be the current expression), followed by F lPl would find the first lPl. 

(F pattern N) 

(F pattern T) 

sante as F pat tern, i. e., finds the !!ext instance 

of pattern, except the memb check of F pattern is 

not; performed. 

Similar to F pattern, except may succeed without 

chalnging edit chain, and does not perform the memb 

che'ck. 

Thus if the current expression is (COND •• ). F COND will look for the next 

CONO, but (F CONO T) will 'stay here'. 

(F pattern n) n ~ 1 Finds the !!th place that pattern matches. 

Equivalent to (F pattern T) followed by 

(F pattern N) repeated n-l times. Each time 

pattern successfully matches, !! is decremented by 

1. and the search continues, until!!. reaches o. 

Note that the pattern does not have to match with 

!!. i.dentical expressions; it just has to match !!. 

times. Thus if the current expression is 

(FOOl FOOZ FOO3), (F FOOS 3) will find FOOl. 

If the pattern does not match successfully ~ 

times, an error is generated and the edit chain is 

unchanged (even if the pattern matched n-l times). 

9.26 



(F pattern) or 

(F pattern NIL) 

only matches with elements at the 

top level of the current expression, i. e. , the 

search will not descend into the current 

expression, nor will it go outside of the current 

expression. "ay succeed without changing edt t 

chain. 

For example, if the current expression is 

(PROG NIL (SETQ X (CONO & &» (CONO 6) ••• ), F CONO will find the COHO inside 

the SETQ, whereas (F (CONO --» will find the top level CONo, i.8., the second 

one. 

(FS pattern1 ••• patternn) equivalent to F pattern t followed by F 

pattern2 followed by F patternn, so that if F 

patternm fails, edit chain is left at place 

patternm_1 matched. 

(F- expression x) equivalent to (F (_. expressioQ) x), i.e., 

searches for a structure !.!I to expression, see 

page 9.22. 

(ORF pattern1 ••• patternn) equivalent to (F (-ANY· pattern 1 ••• patternn ) H), 

i.e., searches for an expression that is matched 

by either pattern1, pattern2, ••• or patternn • 

See page 9.21. 

BF pattern ~ackwards find. Searches in reverse print order, 

beginning with expression immediately before the 

current expression (unless the current expression 

is the top level expression, in which case BF 

searches the entire expression, in reverse order). 

9.27 



SF uses the same pattern match routine as F, and 

maxlevel and upfindflg have the same effect, but 

the searching begins at the end of each list, and 

des'cends into each element before attempting to 

match that element. If unsuccessful, the search 

continues with the next previous element, etc., 

until the front of the list is reached, at which 

point BF ascends and backs up, etc. 

For example, if the current expression is 

(PROG NIL (SETQ .X (SETQ Y (LIST Z») (CONO «SETQ W --) --» --), F LIST 

followed by SF SETQ will leave the current expression as (SETQ Y (LIST Z)), as 

will F CONO followed by BF SETQ. 

(BF pattern T) sealrch always includes current expression, i. e. , 

starts at the end of current expression and works 

bac:kward, then ascends and backs up, etc. 

Thus in the previous example, where F CONO followeBF SETQ found 

(SETQ Y (LIST Z», F CONO follellwed by (BF SETQ T) would find the . (SETQ W --) 

expression. 

(BF pattern) sarne as BF pattern. 
(BF pattern NIL) 

Location Specification 

Many of the more sophisticated commands described later in this chapter use a 

more general method of specifying position called a location specification. A 

location specification is a Ijtst of edit commands that are executed in the 

normal fashion with two excepti.ons. First, all commands not recognized by the 

9.28 



editor are interpreted as though they had been preceded by F.26 For example, 

the location specification (CONO Z 3) specifies the 3rd element in the first 

clause of the next COND.28 

Secondly, if an error occurs while evaluating one of the co_ands in the 

location specification, and the edit chain had been changed. i.e., was not the 

same as it was at the beginni~g of that execution of the location 

specification. the location operation· will continue. In other words, the 

location operation keeps going unless it reaches a state where it detects that 

it is I looping', at which point it gives up. Thus, if (CONO Z 3) is being 

located, and the first clause of the next CONO contained only two elements, the 

execution of the command 3 would cause an error. The search would then 

continue by looking for the next CONO. However, if a point were reached where 

there were no further COHOs, then the first command, COHO, would cause the 

error; the edit chain would not have been changed, and so the entire location 

operation would fail, and cause an error. 

The IF conunand in conjunction with the II function provide a way of using 

arbitrary predicates applied to elements in the current expression. IF and II 

will be described 1n detail later in the chapter, along with examples 

illustrating their use in location speCifications. 

Throughout this chapter, the meta-symbol , is used to denote a location 

specification. Thus' is a list of commands interpreted as described above. , 

can also be atomic, in which case it is interpreted as list[@]. 

26-----------------------------------------------------------------------------Normally such commands would cause errors. 

26 Note that the user could always write F COHO followed by 2 and 3 for 
(COHO Z 3) if he were not sure whether or not COHO was the name of an 
atomic command. 

9.29 



(lC • (f) 

(lCl • @) 

(2ND • (f) 

(3RD • (f) 

( .. pattern) 

pr<Jvides a way of explicitly invoking the location 

operation, e.g. (lC COND 2 3) will perform the the 

search described above. 

SallIe as lC except the search is confined to the 

current expression, i.e., the edit chain is 

rebound during the search so that it looks as 

though the editor were called on just the current 

expression. For example, to find a COHO 

cOJiltaining a RETURN, one might use the location 

spElcirication (COND (lCl RETURN) \) where the \ 

wotllid reverse the effects of the lCl cODUDand, and 

make the final current expression be the CONO. 

Sante as (lC. I) followed by another (lC • @) 

except that if the first succeeds and second 

fails, no change is made to the edit chain. 

Siaui lar to 2ND. 

ascends the edit chain looking for a link which 

matches pattern. In other words. it keeps doing 

O's until it gets to a specified point. If 

pattern is atomic, it is matched with the first 

element of each link, otherwise with the entire 

link.2? 

27-----------------------------------------------------------------------------If pattern is of the form (IF expression), expression is evaluated at each 
link, and if its value is NIL, or the evaluation causes an error, the 
ascent continues. 

9.30 



for example: 

*pp 
[PROG NIL 

. (CONO 

*F CADR 
*(~ CONO) 
*p 

[(NUll (SETO l (COR l») 
(COHO 

(FlG (RETURN l] 
([NULL (CDR (FHEHB (CAR l) 

(CADR l]] 

(CONO (6 6) (6 6» 
* 

Note that this command differs from BF in that it does not search tn&tde ot 

each link, it simply ascends. Thus in the above example, F CAOR followed by 

BF CONO would find (CONO (FlG (RETURN l»)~ not the higher COHO. 

(BELOW com x) 

. (BELOW com) 

If no match is found, an error 1s generated, and 

the edit chain is unchanged. 

ascends the edit chain looking for a link 

specified by ~, and stops ~8 links below 
29 that, i.e. BELOW keeps doing O's until it gets 

to a specified point, and then backs off! O's. 

same as (BELOW com 1). 

For example. (BELOW COHO) will cause the cond clause containing the current 

expression to become the new current expression. Thus if the current 

expression is as shown above, F CADR followed by (BELOW COND) will make the new 

29 Only links that are elements are counted, not tails. 

9.31 



expression be ([NULL (COR (FHEtIB (CAR L) (CAOR l] (GO lP», and is therefore 

equivalent to 0 0 0 o. 

The BELOW command is useful for locating a substructure by specifying something 

it contains. For example, SUPI_ose the user is editing a list of lists, and 

wants to find a sublist that contains a FOO (at any depth). He simply executes 

F FOO (BELOW \). 

(NEX x) sUle as (BELOW x) followed by NX. 

For example, i ( the user is deel) inside of a SElECTQ clause, he can advance to 

the next clause with (NEX SElECTQ). 

NEX sanlle as (NEX .. ). 

The atomic (orm of NEX is us,.ful if the user will be performing repeated 

executions of (NEX x). By simply MARKing (see page 9.34) the. chain 

corresponding to ~, he can use HEX to step through the sublists. 

(NTH x) generalized NTH command. Effectively performs 

(lC:l • x), followed by (BELOW \), followed by UP. 

In other words, NTH locates ~!, using a search restricted to the current 

express ion, and then backs up to the current level, where the new current 

expression is the tail whose first element contains, however deeply, the 

expression that was the terminus, of the location operation. For example: 

*p 
(PROG (& &) lP (COHO & &) (EOITCOM &) (SETQ UNFINO UF) (RETURN l» 
*(NTH UF) 
*p 

(SETQ UHFIND UF) (RETURN L» 
• 

9.32 



If the search is unsuccessful, NTH generates an 

error and the edit chain is not changed. 

Note that (NTH n) is just a special case of (NTH x), and in fact, no special 

check is made for! a number; both commands are executed identically. 

(pattern •• • )80 e.g., (COND •• RETURN). Finds a cond that 

contains a return, at any depth. Equivalent to 

(but more efficient than) (F pattern N), (LCL • ') 

followed by (~ pattern). 

For example, if the current expression is 

(PROG NIL [COND «NUll l) (CONO (FlG (RETURN l] --), then (COND •• RETURN) will 

make ,(CONO (FlG (RETURN l») be the current expression. Note that it is the 

innermost CONO that is found, because this is the first CONO encountered when 

ascending from the RETURN. In other words, (pattern •• ') is not .'.a1l8 
equivalent to (F pattern N), followed by (lCL • ') followed by \. 

Note that @ is a' location specification, not just, a pattern. Thus 

(RETURN •• CONO 2 3) can be used to find the RETURN which contains a COHO 

whose first clause contains (at least) three elements. Note also that since' 

permits any edit command, the user can write commands of the form 

(COHO •• (RETURN •• CONO», which will locate the first CONO that contains a 

RETURN that contains a CONO. 

ao-~--·--------~--~----~----~------------------------- -------------------------An infix command, •••• is not a meta-symbol, it t, the name of the command. 
@ is cddr of the command. 

9.33 



9.3.3 Commands That Save and Restore The Edit Chain 

Several facilities are available for saving the current edit chain and later 

retrieving it: HARK, which marks the current chain for future reference, ~,al 

which returns to the last mark without destroying it, and ~, which returns to 

the last mark and also erases it. 

MARK adds the current edit chain to the front of the 

li:st marklst. 

.. makes the new· edit chain be (CAR MARKLST) • 

Generates an error if marklst is NIL, i.e., no 

HAnKs have been performed, or all have been 

ereased. 

silllilar to .. but also erases the MARK, 1.e., 

per"forms (SETQ MARKLST (CDR MARkLST». 

Note that if the user has two chains marked, and wishes to return to the first 

chain, he must perform ...... which removes the second mark, and then". However, 

the second mark is then no longer accessible. If the user wants 'to be able to 

return to either of two (or mora) chains, he can use the following g~neralized 

MARK: 

(MARK atom) sets atom to the current edit chain, 

(\ atom) makes the current edit chain become the value of 

atol!!!. 

31-----------------------------------------------------------------------------An atomic cODlRand; do not cOlrlfuse .. with the list co_and ( .. pattern). 

9.34 



If the user did not prepare in advance for returning to a particular edit 

chain. he may still be able to return to that chain with a single command by 

using \or \P. 

\ makes the edit chain be the value of unfind. 

Generates an error if unfind=NIl. 

unfind is set to the current edit chain by each command that makes a -big 

jump" • i. e.. a command' that usually performs more than a single ascent or 

descent, namely t, ~, ~. INX. all commands that involve a search, 8.g., F, le, 

~ •• BELOW, at al and \ and \P themselves.32 

For example. if the user types F COND, and then F CAR. \ would take him back to 

the CONDo Another \ would take him back to the CAR, etc. 

\P restores the edit chain to its state as of the 

last print operation, i.e. P, ?, or PP. If the 

edit chain has not changed since the last 

printing, \P restores it to its state as of the 

printing before that one, 'i.e.. two chains are 

always saved. 

For example, if the user types P followed by 3 ZIP, \P will return to the 

first P, i.e., would be equivalent to 0 0 0.33 Another \P would then take him 

back to the secondP, i.e., the user could use \P to flip back and forth 

between the two edit chains. 

32----------~-----~----------------------------------- -------------------------
Except that unfind is not reset when the current edit chain is the top 

88 

level expression. since this could always be returned to via the t command. 

Note that if the user had typed P followed by f CONO, he could use either \ 
or \P to return to the p. i.e., the action of \ and \P are independent. 

9.35 



(S var • 8) 8e1~s !!! (using setq) to the current expression 

af1ter performing (LC • ') • Edit chain is not 

chunged. 

Thus (S FOO) will set foo to the current expression, (5 FOO -1 1) will set foo 

to the first element in the last element of the current expression. 

This ends the section on ·Atten1;ion Changing CODDands"· 

9.4 Conunands That Modify Structure 

Th9 basic structure modification cOUlDands in the editor are: 

(n) 

(n 9 1 ••• em) 

(-n 9 1 " •• em) 

(N 9 1 " •• em) 

As mentioned earlier: 

n 2~ 1 deletes the corresponding element from the 

current expression. 

n ,m, ~ 1 replaces the !!,th element in the current 

expression with e1 ••• em" 

n ,m ~ 1 inserts e1 ••• em before the nth element 

1n the current expression. 

m ~ 1 attaches e1 ••• em at the end of the current 

expression. 

all structure modification done bU the editor is destructiue. i.e. the editor 
uses rplaca and rplacd to phusicl'Il'U change the structure it Ulas IItuen. 

However, all structure modification 1s undoable, see UNDO page 9.78. 

9.36 



All of the above commands generate errors if the current expression is, not a 

list, or in the case of the first three commands, if the list contains fewer 

than rr elements. In addition, the command (I), i.e. delete the first element, 

will cause an error if there is only one element, since deleting the first 

element must be done by replacing it with the second element, and then deleting 

the second element. Or •. to look at it another way, deleting the first element 

when there is only one element would require changing a list to an atom (i.e. 

to NIL) which cannot be done.34 

9.4.1 Implementation of Structure Modification Commands 

Note, Since all commands that insert, replace. delete or attach structure use 
the same low leuel editor Junctton$, the remarl$ made here are valid lor 
all structure changing commands. 

For all replacement, insertion, and attaching at the end of a list, unless the 

command was typed in directly to the editor,36 copies of the corresponding 

structure are used, because of the possibility that the exact same command, 

(i.e. same list struct'ure) might be used again. Thus if a program constructs 

the command (1 (A B e» e.g. via (LIST 1 FOO), and gives this command to the 

editor, the (A 8 C) used for the replacement will not be !! to foo. 38 

34-----------------------------------------------------------------------------However, the command DELETE will work even if there is only one element in 

86 

36 

the current expression, since it will ascend to a point where it can do the 
deletion. 

Some editor commands take as arguments a list of edit commands, e.g. 
(LP F FOO (1 (CAR FOO»). In this case, the command (1 (CAR FOO» is not 
considered to have been "typed inw even though the LP command itself may 
have been typed in. Similarly, commands originating from macros, or 
commands given to the editor as arguments to editf, editv, et ai, e.g. 
EOITF(FOO F CONO (N --» are not considered type~ --

The 'user can circumvent this by using the I command, which computes the 
structure to be used. In the above example, the form of the command would 
be (I 1 FOO), which would replace the first element with the value of foo 
itself. See page 9 .62. 

9.37 



The rest of this section is included for applications wherein the editor is 

used to modify a, data structure, and pointers into that data structure are 

stored elsewhere. In these cases, the actual mechanics of structure 

modification must be known in order to predict the effect that various commands 

may have on these outside pointers. For example, if the value of faa is cdr of 

the current expression, what will the commands (2), (3), (2 X Y Z), (-2 X Y Z), 

etc. do to foo? 

Deletion of the first element in the current expression is performed by 

replacing it wi th the second element and deleting the second element by 

patching around it. Deletion of any other element is done by patching around 

it, i.e., the previous tail is altered. Thus if foo. is !..!l to the current 

express ion wh ich is (A 8 CO). and fie is cdr: of foo. after executing the 

command (1), foo will be (B C D) (which 1s equal but not ~ to fie). However, 

under the same initial conditions, after executing (2) fie will be unchanged, 

1.e., fie will still be (8 C 0) even though the current expression and faa are 

now (A C 0).37 

Both replacement and insertion lire accomplished by smashing both £!!: and cdr of 

the corresponding tail. Thus II if foo were !.9. to the current expression, 

(A B CO). after (1 X Y Z), foo would be (X Y Z BCD). Similarly, if faa were 

!..!l to the current expreSSion, (A B CO), then after (-1 X Y Z), foo would be 

(X Y Z ABC 0). 

The N command is accomplished by smashing the last cdr of the current 

37-----------------------------··-----------------------------------------------A general solution of the problem just isn't possible, as it would require 
being able to make two lists ~ to each other that were originally 
different. Thus if fie is CG~ of the current expression, and fum is cddr 
of the current expression, performing (2) would have to make fie be !.!l to 
fum if all subsequent operations were to update both fie and fum correctly. 
Think about it. 

9.38 



expression a la~. Thus if foo were !9. to any tail of the current 

expression. after executing an N command, the corresponding expressions would 

also appear at the end of foo. 

In summary, the only situation in which an edit operation will not change an 

external pointer occurs when the external pointer is to a proper tatl of the 

data str.ucture, i.e., to cdr of some node in the structure, and the operation 

is deletion. If all external pointers are to elements of the structure, i.e., 

to £!! of some node, or if only insertions, replacements, or attachments are 

performed, the edit operation will at.aus have the same effect on an external 

pointer as it does on the current expression. 

9.4.2 The A, 8, and Commands 

In the (n). (n e 1 ••. em)' and (-n e1 '.0 em) cODUDands, the sign of the 

integer is used t9 indicate the operation. As a result, there is no direct way 

to express insertion after a particular element, (hence the necessity for a 

separate N command). Similarly, the user cannot specify deletion or 

replacement of the nth element from the end of a list without first converting 

n to the corresponding positive integer. Accordingly, we have: 

(B e 1 • o. em) inserts e 1 ••• em !!efore the current expression. 

Equivalent to UP followed by (-1 e1 ••• em)' 

For example. to insert FOO before the last element in the current expression, 

perform -1 and then (B FOO). 

(A e 1 ••• em) inserts 8, em !fter the current expression. 

Equivalent to UP followed by (-2 e1 ••• em) or 

(N e1 ••• em) whichever is appropriate. 

9.39 



(: e 1 •.• em) 

DELETE, •• or (:) 

replaces the current expression b~ e1 ••• em. 

Equivalent to UP followed by (1 e1 ••• em). 

deletes the current expression. 

DELETE first tries to delete the current expression by performing an UP and 

then a (1). This works in most cases. However, if after performing UP, the 

new current expression contains only one element, the command (1) will not 

work. Therefore, DELETE starts over and performs a 8K, followed by' UP, 

followed by (2). For ttxample, if the current expression Is 

(COND « MEM8 X Y» (T Y», and the user performs -1, and then DELETE, the 

BK-UP-(Z) method is used, and the new current expression will be 

( (MEMO X Y») 

However, if the next higher expression contains only one element, 8K will not 

work. So in this case, DELETIE performs UP, followed by (: NIL), i.e., it 

repl aces the higher expression by NIL. For example, if the current expression 

is (COND «MEMO X V»~ (T V»~ and the user performs F MEMO and then DELETE, the 

new current expression will be ..•• NIL (T V»~ and the original expression would 

now be (COND NIL (T V»~. The rationale behind this is that deleting (MEMB X Y) 

from «MEM8 X V»~ changes a list of one element to a list of no elements, I.e., 

() or NIL. 

If the current expression is a 'tail, then a, A, :, and DELETE all work exactly 

the same as though the current expression were the first element in that tail. 

Thus if the current expression were ••. (PRINT Y) (PRINT Z», (B (PRINT X» 

would insert (PRINT X) before (PRINT V), leaving the current expression 

••• (PRINT X) (PRINT Y) (PRINT 2:». 

9.40 



The following forms of the A, B, and commands incorporate a location 

specification: 

(INSERT e1 ••• em BEFORE. 1)38 Similar to (lC .'),39 followed by (B 

e1 ••• em)· 

*p 
(PROG (& & X) ··COMMENT •• (SELECTQ AT" & NIL) (OR 6 6) (PRINt 6 T) 
(PRINt & T) (SETQ X & 

*(INSERT LABEL BEFORE PRIN1) 
*p 
(PROG (& & X) **COMMENT •• (SELECTQ ATM & NIL) (OR 6 6) LABEL 
(PRINt & T) ( 
• 40 

Current edit chain is not changed, but unfind is 

set to the edit chain after the B was performed, 

i. e. \ will make the edit chain be that chain 

where the insertion was performed. 

(INSERT e1 ••• em AFTER. @) Similar to INSERT BEFORE except uses A instead of 

B. 

(INSERT e1 ..• em FOR. I) similar to INSERT BEFORE except uses for B. 

38-~--------~----------------------------------------- -------------------------i.e. @ 1s cdr[member[BEFORE;command]] 

39 except that if @ causes an error, the location process does not continue as 
described on page 9.29. For example if @=(CONO 3) and the next CONO does 
not have a 3rd element, the search stops and the INSERT fails. Note that 
the user can always write (LC COND 3) if he intends the search to continue. 

40 Sudden termination of output followed by a blank line return indicates 
printing was aborted by control-E. 

9.41 



(REPLACE @ WITH e1 ••• em)41 Hel'"e ,42 is the .segment of the command between 

REI)LACE and WITH. Same as 

em FOR • '). 

Example: (REPLACE CONO -1 WITH (T (RETURN L») 

S8Il18 as REPLACE WITH. 

(DELETE • @) dOE!S a (LC • ,,)48 followed by DELETE. Current 

edjlt chain is not changed,44 but unfind is set to 

thEI edt t chain after the DELETE was perrormed. 

Example: (DELETE -I), (DELETE COHO 3) 

Note, iJ @ is NIL (i.e. emptu) , the corre.sponding operation i.s per/onmed here 
(on the current edit chaim). 

For example, (REPLACE WITH (CAR X» is equivalent to (: (CAR X». For added 

readability, HERE is also permi,tted, e.g. (INSERT (PRIN,T X) BEFORE HERE) will 

insert (PRINT X). before the current expression (but not change the edit 

chain). 

41-----------------------------------------------------------------------------
BY can be used for WITH. 

42 

43 

44 

See footnote on page 9.41. 

See footnote on page 9.41. 

Unless the current expression is no longer a part of the expression being 
edi ted. e . g. if the current expression is •.. C) and the user performs 
(DELETE I), the tail, (C), will have been cut off. Similarly, if the 
current expression is (CDR Y) and the user performs (REPLACE WITH (CAR X». 

9.42 



Note, @ does not have to speci/U a Location within the current expre$sion, t.e. 
it is perfectlu legal to ascend to INSERT, REPLACE, or DELETE 

For example, (INSERT (RETURN) AFTER t PROG -1) will go to the top, find the 

first PROG, and insert a (RETURN) at its end, and not change the current edit 

chain '. 

The A, B, and : commands, commands, (and consequently INSERT, REPLACE, and 

CHANGE), all make special checks in e1 thru em for expressions of the form (II 

• coms). In this cas,e, the expression used for inserting or replacing is a 

copu of the current expression after executing ~, a list' of edit commands.46 

For example, (INSERT (II F COND -1 -1) AFTER 3)48 will make a copy of the last 

form 1n the last clause of the next cond. and insert it after the third element 

of the c,urrent expression. 

9.4.3 Form Oriented Editing and the Role of UP 

The UP that is performed before A, B, and : commands41 makes these operations 

form-oriented. For example. if the user types F SETQ, and then DELETE, or 

simply (DELETE SETQ), he will delete the entire SETQ expression, whereas 

(DELETE X) if X is a variable. deletes just the variable X. In both cases, the 

operation is performed on the corresponding /onm, and in both cases is probably 

what the user intended. Similarly, if the user types 

(INSERT (RETURN Y) BEFORE SETQ). he means before the SETQ 'expression. not 

46---------------------------------------------------- ------------------------~ 
The execution of ~ does not change the current edit chain. 

46 

47 

Not (INSERT F COND -1 (II -1) AFTER 3), which inserts four elements after 
the third element, namely F, COND, -1, and a copy of the last element in 
the current expression. 

and therefore in INSERT, CHANGE. REPLACE, and DELETE cOlIIDands after the 
location portion of the operation has been performed. 

9.43 



before the atom SETQ.48 A consequent of this procedure is that a pattern of the 

form (SETQ Y --) can be viewed as simply an elaboration and further refinement 

of the pattern SETQ. Thus (INSERT (RETURN Y) BEFORE SETQ) and 

(INSERT (RETURN Y) BEFORE (SETQ Y --» perform the same operation49 and, in 

fact, this is one of the motivations behind making the current expression after 

F SETQ, and F (SETQ Y --) be this same. 

Occasionally. however, a user may have a data structure in which no special 

significance or meaning is attached to the position of an atom in a list, as 

INTERLISP attaches to atoms '~hat appear as £!!: of a list, versus those 

appearing elsewhere in a list. In general, the user may not even lnow whether 

a particular atom is at the head of a list or not. Thus, when he writes 

(INSERT expression BEFORE FOO)' he means before the atom FOO, whether, or not it 

is £!.!: of a list. By setting the variable upfindflg to NIL,60 the user can 

suppress the implicit UP that follows searches for atoms, and thus achieve the 

desired effect. With upfindflg::NIL, following F FOO, for example, the current 

expression will be the atom FOO. In this case, the A, B, and : operations will 

operate with respect to the at,om FOO. If the user intends the operation to 

rerer to the list which FOO heads, he simply uses instead the pattern (fOO --). 

~i-----------------------------------------------------------------------------There is some ambiguity 1n (INSERT expr AFTER functionname), as the user 

49 

60 

might mean make expr be the function's first argument. Similarly, the user 
cannot write (REPLACE SETQ WITH SETQQ) meaning change the name of the 
function. The user must in these cases write (INSERT expr AfTER 
functioname I), and (REPLACE SETQ 1 WITH SETQQ). 

assuming the next SETQ is of the form (SETQ Y --). 

Initially, and usually, set to T. 

9.44 



9.4.4 Extract and Embed 

Extraction involves replacing the c~rrent expression with one of its 

subexpressions (from any depth). 

(XTR . I) replaces the original current expression with the 

expression that is current after performing 

(LeL •• ).61 

For example, if the current expression is (CONO «NULL X) (PRINT V»~), 

(XTR PRINT), or (XTR Z Z) will replace the cond by the print. 

If the current expression after (Lel • ") is a 

tatl of a higher expression, its first element is 

used. 

For example, if the current expression is (CONO «NULL X) Y) (T Z», then 

(XTR Y) will replace the cond with Y, even though the current expression after 

performing (LCL Y) is •.. V). 

If the extracted expression is a list, then after 

XTR has finished, the current expression will be 

that list. 

Thus. in the first example, the current expression after the XTR would be 

(PRINT V). 

6i-----~-------~--~----------------------------------- -------------------------See footnote on page 9.41. 

9.45 



If the extracted expression is not a list, the new 

current expression will be a tail whose first 

element is that non-list. 

Thus, in the second example. the current expression after the XTR would be 

.•• Y followed by whatever followed the COND. 

If the current expression initl~aLlu is a tail, extraction works exactly the 

same as though the current expression were the first element 1n that tail. 

Thus if the current expression is .•• (COND «NULL X) (PRINT V»~) (RETURN Z», 

then (XTR PRINT) will replace the cond by the print, leaving (PRINT Y) as the 

current expression. 

The extract convnand can also inc'orporate a location specification: 

(EXTRACT '1 FROM • '2)62 Performs (lC • '2)63 and then (XTR • @1). Current 

edi't chain 1s not changed, but unfind is set to 

the edit chain after the XTR was performed. 

Example: If the current expression 1s (PRINT (COND «NUll X) Y) (T Z») then 

following (EXTRACT Y FROM COND), the current expression will be (PRINT Y). 

, (EXTRACT 2 -1 FROM COND), (EXTRACT Y fROM 2), (EXTRACT 2 -1 fROM 2) will all 

produce the same result. 

62" -- - .... - -- ----- .. - .. -----.. -------... -----------------_ .. ---------------------.• - - - - -
@1 1s the ~ellment between EXlrRACT and FROM. 

63 See footnote on page 9.41. 

9.46 



• • • 

While extracting replaces the current expression by a subexpression, embedding 

replaces the current expression with one containing it as a subexpression. 

HOD substi tutes64 the current expression for all 

instances of the atom * in e1 ••• em' and replaces 

the current expression with the result of that 

substitution. 

Examples: If the current expression is (PRINT V), 

(MOD (CONO «NULL X) *) «NULL (CAR V»~ * (GO LP»» would replace (PRINT Y) 

with (COND «NULL X) (PRINT V»~ «NULL (CAR V»~ (PRINT Y) (GO LP»). 

If the current expression is (RETURN X), (HBD (PRINT Y) (AND FLG *» would 

replace: it with the tlllO expressions (PRINT Y) and (AND FLG (RETURN X» i.e., if 

the (RETURN X) appeared in the cond clause (T (RETURN X», after the MBD, the 

clause would be (T (PRINT Y) (AND FLG (RETURN X»). 

If· does not appear in e 1 .•• em' the MBD is 

interpreted as (HOD (e1 ••• em .». 

Examples: If the current expression is (PRINT V), then (H8D SETQ X) will 

rep lace it wi th (SETQ X (PRINT Y». I f the current expression is (PRINT Y), 

(HOD RETURN) will replace it with (RETURN (PRINT V»~. 

MBO leaves the edi t chain so that the larger expression is the new current 

expression. 

64~---------~--~-------------------------------------~-~--------------~---~-~~-as with subst, a fresh copy is used for each substitution. 

9.47 



If the current expression tntttlJLLU is a tail, embedding works exactly the same 

as though the current expression were the first element in that tail. Thus if 

the current expression were (PRINT Y) (PRINT Z», (MBO SETQ X) would 
/ 

replace (PRINT Y) with (SETQ X (PRINT V»~. 

The embed command can also incol'"p'orate a location specification: 

(EMBED @ IN . x)66 dOt!S (LC •• )68 and then (MBD . x). Edit chain 15 

not changed, but unfind is set to the edit chain 

after 'the "BD was performed. 

Example: (EMBED PRINT IN SETQ X), (EMBED 3 Z IN RETURN), 

(EHBED COND 3 1 IN (OR • (NULL X»). 

WITH can be used for IN, and SURROUND can be used for EMBED, e.g., (SURROUND 

NUHBERP WITH (AND • (HINUSP X»). 

9.4.5 The MOVE Command 

The HOVE command allows the user' to specify (1) the expression to be moved, (2) 

the place it is to be moved to, and (3) the operation to be performed there, 

e.g., insert it before, insert it after, replace, etc. 

whetre £!!!!! is BEFORE, AFTER, or the name of a list 

65-----------------------------------------------------------------------------@ is the segment between EMBED and IN. 

66 See footnote on page 9.41. 

67 @1 is the segment between MOIVE and TO. 

9.48 



command, e. g. , :, N, etc. performs (lC • (1)' 68 

and obtains the current expression there (or its 

first element, if it is • tail), which we will 

call expr: HOVE then goes back to the original 

edit chain, performs (lC. '2) followed by 

(com expr), 69 then goes back to "1 and deletes 

expr. Edit chain is not changed. Unfind 1s set 

to edit chain after (com expr) was performed. 

For example, if the current expression is (A B CO), (HOVE 2 TO AFTER 4) will 

make the new current expression be (A COB). Note that 4 was executed as of 

the original edit chain, and that the second element had not yet been 

removed. 60 

As the following examples taken from actual editing will show, the HOVE command 

is an extremely versatile and powerful feature of the editor. 

'II? 
(PROG «L l» (EOlOC (COOR C» (RETURN (CAR L») 
*(HOVE 3 TO : CAR) 
'II? 
(PROG «L L» (RETURN (EOlOC (COOR C»» 
* 
'liP 

(SELECTQ OBJPR & &) (RETURN &) LP2 (CONO & &» 
*(HOVE Z TO N 1) 
'liP ... (SElECTQ OBJPR & & &) lPZ (COHO & &» 
* 

68----------~---------------------------~-------------------------------------~ see footnote on page 9.41. 

69 

60 

Setting an internal flag so expr 1s not copied. 

If @2 specifies a location inside 01 the expression to be moued. a message 
is printed and an error is generated, e.g. (HOVE Z TO AFTER X), where X is 
contained inside of the second element. 

9.49 



*p 
(OR (EQ X LASTAIL) (NOT &) (AND & & i»~ 
*(MOVE 4 TO AFTER (BELOW CONO» 
*p 
(OR (EQ X LASTAIL) (NOT &» 
*\ p 

(Be Be) (AND & Be &) (T Be &» 
* 

*p 
«NULL X) **COMMENT** (CONO & i») 
*(-3 (GO NXT] 
*(MOVE 4 TO N (~ PROG» 
*p 
«NULL X) **COMMENT** (GO NXT» 
*\ p 
(PROG (Be) **COMMENT** (CONO & Be &) (COND & & &) (CONO & i»~ 
*(INSERT NXT BEFORE -1) 
*p 
(PROG (&) **COMMENT** (COND & & &,) (COND & & &) NXT (CONO & &» 

Note that in the last example, the user could have added the prog label NXT and 

moved the cond in one operation by performing (MOVE 4 TO N ( .. PROG) (N NXT». 

Similarly, in the next example, in the course of specifying @2' the location 

where the expression was to be iDloved to, the user also perrorms a structure 

modification, via (N (T», thus creating the structure that will receive the 

expression being moved. 

*p 
«COR &) **COMMENT** (SETQ CL &) (EOITSMASH CL , i»~ 
*HOVE 4 TO N 0 (N (T» -1] 
*p 
«COR Be) **COMMENT** (SETQ CL &» 
*\ P 
*(T (EOITSMASH Cl & i»~ 
* 

If @2 is NIL, or (HERE), the curr'ent position specifies where the operation is 

to take place. In this case, !!!!find is set to where the expression that was 

moved was originally located, i.e. '1. For example: 

*p 
(TENEX) 
*(HOVE t F APPLY TO N HERE) 
*p 
(TENEX (APPLY & i»~ 
• 

9.50 



*p 
(PROG (& 8c 8c ATM INO VAL) (OR Be Be) ··COMMENT·· (OR Be .) (PRINt 6 T) ( 
PRINt & T) (SETQ INO 

81 

*(HOVE * TO BEFORE HERE) 
*p \ 
(PROG (& 8c Be ATM INO VAL) (OR Be Be) (OR 8r 6). (PRINt 8r 

*p 
(T (PRINt C-EXP T» 
*(MOVE t BFPRINl TO N HERE) 
*p 
(T (PRINt C-EXP T) (PRINt & T» 

* 

Finally, if @1 is NIL, the HOVE command allows the user to specify where the 

current expression is to be moved to: In this case, the edit chain is changed, 

and 1s the chain where the current expression was moved to; unfind is set to 

where it was. 

*p 
(SElECTQ OBJPR (8c) (PROGN & &» 
*(HOVE TO BEFORE lOOP) 
*p 
••• (SElECTQ OBJPR & &) lOOP (FRPlACA DFPRP &) (FRPlACD DFPRP 
Be) (SElECTQ 
* 

9.4.6 Commands That -Hove Parentheses· 

The commands presented in this section permit modification of the list 

structure itself, as opposed to modifying components thereof. Their effect can 

be described as inserting or removing a single left or right parenthesis, or 

pair of left and right parentheses. Of course, there will always be the same 

number of left parentheses as right parentheses in any list structure, since 

the parentheses are just a notational guide to the structure provided by print. 

Thus, no command can insert or remove just one parenthesis, but this is 

suggestive of what actually happens. 

6i----~----------~-~--·-·~--~------------------------- -------------------------
Sudden termination of output followed by a blank line indicates printing 
was aborted by control-E. 

9.51 



In all six commands, ~ and m are used to specify an element of a list, usually 

of the current expression. In practice, ~ and !!! are usually positive or 

negative integers with the obyjlous interpretation. However, all six comands 

use the generalized NTH conunandl, page 9.32, to find their element(s), so that 

nth element means the first elll!ment of the tail found by performing (NTH n)~ 

In other words, if the current oxpression is 

(LIST (CAR X) (SETQ Y (CONS W Z;l», then (01 Z CONS), (01 X -1), and (BI X Z) 

all specify the exact same opertltion. 

All six commands generate an e,oror if the element is not found, i.e. the NTH 

fails. All are undoable. 

(BI n m) !!oth 1n, inserts a left parentheses before the !!,th 

element and after the mth element in the current 

expression. Generates an error if the !!!th elemerit 

is not contained in the ~th tail, i.e., the !!!th 

ele!ment must be -to the right- of the !!th element. 

Example: If the current expression is (A 0 (C 0 E) F G). then (BI 2 4) will 

modify it to be (A (B (C 0 E) F) G). 

(BI n) sam,e as (Bl n n). 

Example: If the current expres;slon is (A B (C 0 E) F G), then (Bl -2) will 

modify it to be (A 8 (C 0 E) (F) G). 

(80 n) !!oth !!ut. Removes both parentheses from the !!th 

element. Generates an error if !!,th element is not 

a list. 

Example: If the current expre~~sion is (A B (C D E) F G), then (80 D) will 

modify it to be (A BCD E F G). 

9.52 



(LI n) left in, inserts a left parenthesis befora the rrth 

element (and a matching right parenthesis at the 

end of the current expression), i.e. equivalent 

to (BI n -1). 

Example: if the current expression· is (A B (C 0 E) F G), then (LI 2) will 

modify it to be (A (B (C 0 E) F G». 

(LO n) left ~ut, removes a left parenthesis from the nth 

element. All elements lolloUltn, the !!th element 

are delet~d. Generates an error if nthelament 1s 

not a list. 

Example: If the, current expression is (A B (C D E) F G), then (LO 3) w1ll 

modify it to be (A BCD E). 

(RI n m) right in, inserts a right parenthesis after the 

mth element of the nth element. The rest of the 

!lth element is brought up to the level of the 

current expression. 

Example: If the current expression is (A .(B C 0 E) F G), (RI Z Z) will modify 

it to be (A (8 C) D E F G). Another way of thinking about RI is to read it as 

"move the right parenthesis at the end of the nth element in to after its mth 

element." 

(RO n) right ~ut, removes the right parenthesis from the 

!lth element, moving it to the end of the c'urrent 

expression. All elements following the !!th 

element are moved inside' of the rrth element. 

Generates an error if nth element is not a list. 

9.53 



Example: If the current expression is (A B (C D E) F G), (RO 3) will modify it 

to be (A B (C D E F G». Another way of thinking about RO is to read it as 

Mmove the right parenthesis at the end of the llth element out to the end of 

the current expression.-

9.4.7 TO and THRU 

EXTRACT, EMBED, DELETE, REPlACIE, and HOVE can be made to operate on several 

contiguous elements, i.e •• a slBgment of a list, by using in their respective 

location specifications the TO IJr THRU co_and. 

d04!s a (LC • '1)' followed by an UP. and then a 

(B:£ 1 '2)' thereby grouping the segment into a 

single element, and finally does a 1, making the 

final current expression be that element. 

For example, if the current expression is (A (B (C D) (E) (F G H) I) J K), 

following (C THRU G), the current expression will be «C D) (E) (F G H». 

SaDie as THRU except last element not included, 

i.e., after the BI, an (RI 1 -2) is performed. 

If both @1 and @2 are numbers, and '2 is greater than @1' then @2 counts from 

the beginning of the current e,cpression, the same as '1. In other words, if 

the current expression is (A II C D E F G), (3 THRU 5) means (C THRU E) not 

(C THRU G). In this case, the c(]lrresponding BI conunand is (BI 1 '2-'1+1). 

THRU and TO are not very useful commands by themselves; they are intended to be 

used in conjunction with EXTRACT, EHBED, DELETE, REPLACE, and HOVE. After THRU 

and TO have operated, they set. an internal editor flag informing the above 

9.54 



commands that the element they are operating on is actually a segment, and that 

the extra pair of parentheses should be removed when the 'operation is complete. 
I 

Thus: 

*p 
(PROG (Be Be ATM IND VAL WORD) (PRINt 6 T) .(PRINl & T) (SETQ IND &) (SETQ VAL 6) 
**COMMENT** (SETQQ 

*(MOVE (3 THRU 4) TO BEFORE 7) 
*p 
(PROG (& & ATM IND VAL WORD) (SETQ INO 6) (SETQ VAL &) (PRINl 6 T) (PRIN1 6 T) 
**COMMENT** 

* 

*p 
(* FAIL RETURN FROM EDITOR. USER SHOUUO. NOTE THE VALUES OF SOURCEXPR AND 
CURRENTFORH. CURRENTFORH IS THE LAST FORM IN SOURCEXPR WHICH WILL HAVE BEEN 
TRANSLATED, AND IT CAUSED THE ERROR.) 
*(DELETE (USER THRU CURRS» 
=CURRENTFORM. 
*p \ 
(* FAIL RETURN FROM EDITOR. CURRENTFORM IS 

* 

LP (SELECTO Be Be & & NIL) (SETQ Y 6) OUT (SETQ FLG Be) (RETURN V»~ 
*(MOVE (1 TO OUT) TO N HERE] 
*p ... OUT (SETQ FLG &) (RETURN Y) LP (SELECTQ 6 6 6 6 NIL) (SETQ Y Be» 
* 

*pp 
[PROG (RF TEMPI TEMPZ). 

(COND 
«NOT (MEMB REMARG LISTING» 

(SETQ TEMPI (ASSOC REMARG NAMEOREMARKS» •• COMMENT.· 
(SETQ TEMPZ (CADR TEMPt» 
(GO SKIP» 

(T **COMMENT** 
(SETQ TEMPt REMARG») 

(NeONe1 LISTING REMARG) 
(COND 

«NOT (SETQ TEMPZ (SASSOC 

*(EXTRACT (SETQ THRU CADR) FROM COND) 
*p 
(PROG (RF TEMPI TEMPZ) (SETQ TEMPt 6) **COMMENT*. (SETQ TEMP2 Be) 
(NCONCt LISTING REMARG) (COND Be Be 

• 

9.55 



TO and THRU can also be used dir'ectly with XTR. 82 Thus in the previous example, 

if the current expression had blBen the COND, e.g. the user had first performed 

F CONO, he could have used (XTR (SETQ THRU CADR» to perform the extraction. 

Examples: 

*p 

both same as ('1 THRU -i), i.e., from '1 through 

th~ end of the list. 

(VALUE (RPLACA DEPRP &) (RPLACD &) (RPLACA VARSWORD 6) (RETURN),) 
*(HOVE (2 TO) TO,N (~ PROG» 
*(N (GO VAR» 
*p 
(VALUE (GO VAR» 

*p 
(T **COMMENT** (COND &) **COHHEN:T·. (EDITSMASH CL & &) (COND &» 
*(-3 (GO REPLACE» 
*(MOVE (COND TO) TO N t PROG (N REPLACE» 
*p 
(T **COMMENT·* (GO REPLACE» 
*\ P 
(PROG (&) .*COMMENT** (COND 6 & Be) (COND 6 & &) DELETE (COHO 6 6) 
REPLACE (COND &) •• COMMENT*. (EDITSHASH CL 6 6) (CONO 6» 

* 

62---------------------------------------------------- ----------------~---------
Because XTR involves a location speCification while A, B, :, and MBO do 
not. 

9.56 



.pp 
[LAMBDA (CLAUSALA X) 

(PROG (A 0) 
(SETQ A CLAUSALA) 

LP (CONO 
«NULL A) 

(RETURN») 
(SEReH X A) . 
(RUMARK (COR A» 
(NOTICECL (CAR A» 
(SETQ A (COR A» 
(GO LP] 

*(EXTRACT (SERCH THRU NOTS) FROM PROG) 
=NOTICECL 
*p 
(LAMBDA (CLAUSALA X) (SERCH X A) (RUHARK &) (NOTICECL &» 
·(EMBEO (SERCH TO) IN (HAP CLAUSALA (FUNCTION (LAM8DA (A) .] 
.pp 

• 

. [LAMBDA (CLAUSALA X) 
(HAP CLAUSALA (FUNCTION (LAMBDA (A) 

(SERCH X A) 
(RUHARK (COR A» 
(NOTICECL (CAR A] 

9.4.8 The R Command 

(R x y) replaces all instances of ! by "I. in the current 

expression, e.g., (R CAAOR CADAR). Generates an 

error if there is not at least one instance. 

The R command operates in conjunction with the search mechanism of the editor. 

The search proceeds as described on page 9.23-25, and! can employ any of the 

patterns on page 9.21-23. Each time! matches an element of the structure, the 

element is replaced by (a copy of) "t.: each time ! matches 8 tail of the 

structure, the tail is replaced by (a copy of) "I.. 

For example, if the current expression is (A (8 C) (8 • C», 

(R C 0) will change it to (A (8 D) (8 • D». 

(R (... • C) 0) to (A (8 C) (8 • D». 

(R C (D E» to (A (8 (D E» (B DE». and 

(R (... • NIL) D) to (A (8 C • D) ( B • C) • D). 

9.57 



If ! is an atom or string containing alt-modes, alt-modes appearing in ~ stand 

for the characters matched by 'the corresponding alt-mode in!. For example, 

(R FOOS FIES) means for all atoms or strings that begin with Foo, replace the 

characters 'Foo' by 'FIE' .63 Applied to the list 

(FOO FOOZ XFOO1), (R FOOS FIES) would produce (FIE FIEZ XFOO1), and 

(R SFOOS SFIES) would produce (FIE FIEZ XFIE1). ,Similarly, (R 50S SAS) will 

change (LIST (CADR X) (CADDR Y)l to (LIST (CAAR X) (CAADR».84 

The user will be informed of all such alt-mode replacements by a message of the 

form x->y, e.g. CADR->CAAR. 

Note that the S feature can be used to delete or add characters, as well as 

replace them. For example, (R $1 $) will delete the terminating l's from,all 

literal atoms and strings. Similarly, if an alt-mode in ! does not have a mate 

in ~, the characters matched by the S are effectively deleted. For example, 

(R $1$ $) will change AND/OR to ANO. 66 l can also be a list containing 

alt-modes, e.g. (R 11 (CAR I>:~ will change FOOl to (CAR FOO), FIE1 to 

(CAR FIE). 

If ! does not contain alt-modes, , appearing in I refers to the entire 

83 - -i; -; -;; ;~~~; -; -~ ~~i~~: -; ~ -~j.-li-~~- -r-;p-l-a~-e-d- -b-;-; -;;;;;; ~ - -;;;;; -;h;; -i; -~;;; 
not- matter whether ! or l themselves are strings, i.e. 

64 

(R SOS SAS), (R "SOS" SAS), (R SDS "SAS"), and (R "SOS" "SAS·) are 
equivalent. Note also thillt x will never match with a number, i.e. 
(R S1 SZ) will not change 11 to-12. 

Note that CAOOR was not changed to CAAAR, i.e. (R SDS SAS) does not mean 
replace every D with A, but replace the first 0 in every atom or string by 
A. If the user wanted to replace every 0 by A, he could perform 
(LP (R SOS SAS». 

66 However, there is no similar operation for changing ANDIOR to OR, since the 
first $ in l always corresponds to the first I in !, the second I in ~ to 
the second 1n !, etc. 

9.58 



expression matched by!. e.g. (R LONGATOH 'S) changes LONGATOH to 'lONGATOM, 

(R (SETQ X &) (PRINT S» changes every (SETQ X &) to (PRINT (SETQ X &».88 

Since (R $x! $y$) is a frequently used operation for replacing ~haracters, the 

following command is provided: 

CRC x y) equivalent to (R $xI $y$) 

Rand RC change all instances of ! to l. The commands Rl and Ret are available 

for changing just one, (i.e. the first) instance of ! to l. 

(Rt x y) find the first instance of ! and replace it by ~. 

(Rei x y) (Rl IxI Iy$). 

In addition. while Rand RC only operate within the current expression, Rt and 

RCt will continue searching, a la the F command, until they find an instance of 

!, even if the search carries them beyond the current expression. 

(SW n m) switches the nth and mth elements of the current 

expression. 

for example, if the current expression is 

(LIST (CONS (CAR X) (CAR V»~ (CONS (CDR X) (CDR V»~), 

(SW 2 3) will modify it to be 

(LIST (CONS (COR X) (COR V»~ (CONS (CAR X) (CAR V»~). The relative order of !!. 

and m is not important, i.e., (SW 3 2) and (SW Z 3) are equivalent. 

66---~--------------------------------------------------~----------------------If x is a pattern containing an alt-mode pattern somewhere within it, the 
characters matched by the alt-modes are not available. and for the purposes 
of replacement, the effect is the same as though x did not contain any alt­
modes. For example, if the user types (R (CAR FS) (PRINT S», the second I 
will refer to the entire expression matched by (CAR FS). 

9.59 



SW' uses the generalized NTH conunand to find the 

~th and mth elements, a la the DI-DO commands. 

Thus in the previous example, (SW CAR CDR) would produce the same result. 

9.5 Commands That Print 

PP prettyprints the current expression. 

P prints the current expression as though printlevel 

were set to 2. 

(P m) 

(P 0) 

(P m n) 

(P 0 n) 

? 

prints mth element of current expression as though 

~lntlevel were set to 2. 

SalDe as P 

pr:lnts mth element of current expression as though 

ID[lntlevel were set to ft. 

prints current expression as though pr1ntlevel 

we."e set to !!. 

sBllle as (P 0 100) 

Both (P m) and (P m n) use the generalized NTH command to obtain the 

corresponding element, so that !! does not have to be a number, e.g. (P COHD 3) 

will work. PP causes all comllu!nts to be printed as --COMMENT-- (see Section 

9.60 



14) . P and ?print as .-COMMENT-. only those comments that are (top level) 

elements of the current expression.81 

PP* prettyprints current expression, including 

comments. 

PP* is equivalent to PP except that it first reset~ .*comment*·flg to NIL (see 

Section 14). In fact, it is defined as (KESETVAR *-COMMENT**FLG NIL PP), see 

page 9.77. 

PPV prettyprints current expression as a variable, 

i.e. no special treatment for LAMBDA, CONO, SETQ, 

etc., or for CLISP. 

PPT prettyprints current expression, printing eLISP 

translations, if any. 

a~-----------------------------------------------------------------------------Lower expressions are not really seen by the editor; the printing command 
simply sets printlevel .n~ calls print. 

9.61 



9.6 Commands That Evaluate 

E o1;,ill "he" tllped in,68 causes the editor to call 

li.spx giving it the next input as argument. B9 

Example: *E BREAK(FIE FUM) 
(FIE FUM) 
*E (FOO) 

(FIE BROKEN) 

(E x) evaluates !. i.e.. performs eval[x]. and prints 

the result on the teletype. 

(E x T) s~me as (E .x) but does not print. 

The (E x) and (E x T) commands are mainly intended for use by macros and 

subroutine calls to the editor'; the user would probably type in a form for 

evaluation using the more convenient format of the (atomic) E cODlDand .• 

Example: (I 3 (GETD (QUOTE Foo») will replace the 3rd element of the current 

expression with the definition or roo. 70 (I N Foo (CAR FIE» will attach the 

69 

70 

1 ispx is used by evalqt Bind break for processing teletype inputs. If 
nothing else is typed on the same line, lispx evaluates its argument. 
Otherwise, lispx applies it to the next input. In both cases, lispx prints 
the result. See above example, and Sections 2 and 22. 

The I command sets an internal flag to indicate to the structure 
modi fica tion cODlDands not tell copy expression( s) when inserting, replacing, 
or attaching. 

9.62 



value of foo and £!r of the value of fie to' the end of the current expression. 

(I F= FOO T) will search for an expression ~ to the value of foo. 

If £ is not an atom, £ is evalu~ted also. 

Example: ,(I (CONO «NULL FLG) (QUOTE -1» (T-1» FOO), if !.!a is NIL, ~nserts 

the value of foo before the first el~ment of .the current expression, otherwise 

replaces the first element by the value of foo. 

is an NLAHBDA. NOSPREAD function (not a command). 

Its value is what the current expression would be 

after executing the edit commands com! ••• comn 
starti~g from the present edit chain. Generates 

an error if any of com1 thru comn cause errors. 

The current edit chain is never changed.?1 

Ex~mple: (I R(QUOTE X) (II (CONS •• Z») replaces all XiS in the current 

expression by the first ~ containing a Z. 

The I command is not very convenient for computing an entire edit command for 

execution. since it computes the comand name and its arguments separately. 

Also, the I command cannot be used to compute an atomic commande, The following 

two commands provide more general ways of computing commands. 

(COMS Xl ••• "n) Each Xi is evaluated and its value is executed as 

a cODlDand. 

7i----------~~-----~---~---------------------------·-- ---------~---------------Recall that A, 0, :, INSERT, REPLACE, and CHANGE mate special checks for II 
forms in the expressions used for inserting or replacing, and use a copy of 
II form instead (see page 9.43). Thus, (INSERT (II 3 2) AFTER 1) is 
equivalent to (I INSERT (COPY (II 3 2» (QUOTE AFTER) 1). 

9.63 



For example, (COMS (CONO (X (LIST 1 X»» will replace the first element of the 

current expression with the value of ! if non-NIL, otherwise do nothing.?2 

executes com •••• comn " 

COHSQ is mainly useful in conjunction with the COMS command. For example, 

suppose the user wishes to comlllUte an entire list of comands for evaluation, 

as opposed to computing each c,olIIDand one at 8 time as does' the COPIS cOlIIDand. 

He would then write (COMS (CONS (QUOTE COMSQ) x» where x computed the list of 

commands" e.g •• (COMS (CONS (QUI)TE COMSQ) (GETP FOO (QUOTE COMMANDS»».'" 

9.7 Conunands That Test 

(IF x) generates an error unless the value of eval[x] is 

true, i.e., if eval[x] causes an error or 

eval[x]=NIl, IF will ~ause an error. 

For some editor' commands, the occurrence of an error has a well defined 

mean ing, i. e ., they use errors 1;0 branch on, as cond uses NIL and non-NIL. For 

example, an error condition in 8 location specification may simply mean -not 

this one, try the next.- Thus the location specification 

(IPlUS (E (OR (NUHBERP (II 3» (ERRORI» T» specifies the first IPlUS whose 

second argument is a number. The IF comand, by equating NIL to error ~ 

provides a more natural way of accomplishing the same result. Thus, an 

equivalent location specification is (IPLUS (IF (NUMBERP (II 3»». 

9.64 



The IF command can also be used to select between two alternate lists of 

commands for execution. 

(IF x coms1 comsZ) If eval[x] is true, execute coms1; if eval[x] 

causes an error or is equal to' NIL, execute 

comsz·73 

for example, the command (IF (READP T) NIL (P» will print the current 

expression provided the input buffer is empty. 

IF can also be written as: 

(IF x coms t ) if eval[xl' is true, execute coms t ; otherwise 

generate an error. 

(LP • coms) repeatedly executes ~, a list of commands, 

until an error occurs. 

For example, (lP F PRINT (N T» will attach a T at the end of every print 

expression. (lP F PRINT (IF (II 3) NIL «N T»» will attach a T at the end of 

each print expression which does not already have a second argument. 14 

When an error occurs. lP prints n OCCURRENCES. 

73----~-~--~--~-------------------------------------~---------------~----------Thus IF is equivalent to (COMS (CONS (QUOTE COHSQ) (COND 

74 

( (CAR (NlSETQ (EVAl X») COMS!) 
(T COMSZ»». 

i. e . the form (II 3) wi 11 cause an error if the edit conunand 3 causes an 
error, thereby selecting «N T» as the list of ,commands to be executed. 
The IF could also be written as (IF (CDDR (II» NIL «N T»). 

9.65 



(lPQ . coms) 

whElre n is the number of times ~ was 

successfully executed. The edit chain is left a~ 

of the last complete successful execution of ~. 

SaDie as LP but does not print the message 

n C-CCURRENCES. 

In order to prevent non-terminating loops, both lP and lPQ terminate when the 

number of iterations reaches m1Clxloop , initially set to 30. 76, Since the . ed;1t 

chain 15 left as of the last successful completion of the loop, the user can 

simply continue the LP cODlDand ",ith REDO (Section ZZ). 

(SHOW • x) 

(EXAM • x) 

(ORR coms l .•• comsnl 

! 1,5 a list of patterns. SHOW does a LPQ printing 

all instances of the indicated expression(s), 

e.Ql. (SHOW FOO (SETQ FIE 6» will print all FOO's 

andl all (SETQ FIE 6)' s. Generates an error if 

there aren't any instances of the expression(s). 

lik.e SHOW except calls the editor recursively 

(via the TTY: cODlDand described on page 9.70) on 

each instance of the indicated espressfon( s) so 

that the user can examine and/or change them. 

ORR begins by executing coms l , a list of, commands. 

If no error occurs, ORR is finished. Otherwise, 

ORR restores the edit chain to its original value, 

and continues by executing comsZ' etc. If none of 

the cODlDand lists execute without errors, i.e., 

9.66 



the ORR -drops off the end-, ORR generates an 

error. Otherwise, the edit chain is left as of 

the completion. of the first cOPlDand list which 

executes without an error. 76 

For example, (ORR (NX) (!NX) NIL) will perform a NX, if possible, otherwise a 

!NX, if possible, otherwise do nothing. Si.ilarly, DELETE could be written as 

(ORR (UP (1» (BK UP (2» (UP (: NIL»). 

9.8 Macros 

Many of the more sophisticated branching commands in the editor, such as ORR, 

IF, etc., are most often used in tonjunction with edit macros. The macro 

feature permits the user to define new commands and thereby expand the editor's 

repertoire. 77 Macros are defined by using the'" command., 

(M c • coms) For £ an atom, M defines £ as an atomic command. 78 

Executing £ is then the same as executing the list 

of commands £2m!. 

For example, (M BP BK UP P) will define BP as an atomic command which does 

three things. a BK, and UP. and a P. "acros can use commands defined by macros 

76 - -~ i~ --;; --~ --~;;.;;~~--;;;;--i-; --p-e-r-f~~-t-I-y- --l~~~-{,-- ~~d--~~i i --;i~;;; --;;;~~~; 
successfully. Thus, making the last 'argument' to ORR be NIL will insure 
that the ORR never causes an error. Any other atoll is treated as (atom) t 
i.e., the above example could be written as (OR NX !NX NIL). 

77 However built in commands always take precedence over macros, i.e. t the 
editor's repertoire can be expanded. but not redefined. 

78 If a macro is redefined, its new definition replaces its old. 

g.67 



as well as built in conunands in their definitions. For example, suppose Z is 

defined by (M l -1 (IF (READP 'f) NIL (P»), i.e. l does a -1, and then if 

nothing has been typed, a P. Now we can define zz by 

(M II -1 l), and ZZZ by (M III -1 -1 Z) or (" Zll -1 ll). 

Macros can also define list commands, i.e., commands that take arguments. 

(M (c) (arg t ••• argn ) • coms) ~ an atom. "defines ~ as a list command. 

EXEtcuting (c e 1 ••• en) is then performed by 

substituting e1 for arg l , ... en for argn 

thr'oughout £Q!!!!, and then executing £Q!!!!. 

For example, we could define ill more general BP by (M (BP) (N) (BK N) UP P). 

Thus. (BP 3) would perform (BK 31), followed by an UP, followed by a P. 

A list command can be defined via a macro so as to take a fixed or indefinite 

number of 'arguments', as with spread vs. nospread functions. The form given 

above specified a macro with a fixed number of arguments, as indicated by its 

argument list. If the 'argunlant list' is atomic, the command takes an 

indefinite number of argumants.?~ 

(M (c) arg . coms) ~, arg both atoms, defines ~ as a list cOlIIDand. 

Executing (c e1 en) is performed by 

substituting (e1 en) , i.e. , cdr of the 

command. for arg throughout £Q!!!, and then 

executing ~. 

For example, the command 2ND, page 9.30. can be defined as a macro by 

( " ( 2ND) X (ORR « lC • X) (LC • X»». 

9.68 



Note that for all editor commands, 'built in' conunands as well as commands 

defined by macros, atomic definitions and list definitions are completelu 

independent. In other words, the existence of an atomic definition for £ in no 

way affects the treatment of £ when it appears as £!r of a list command, and 

the existence of a list definition for £ in no way affects the treatment of £ 

when it appears as an atom. In particular, £ can be used as the name of either 

an atomic command, or a list command, or both. In the latter case, two 

entirely different definitions can be used. 

Note also that once £ is defined as an atomic command via a macro definition, 

it will not be searched for when used in a location specification,. unless it is 

preceded by an F. Thus (INSERT -- BEFORE BP) would not search for BP, but 

ins tead perform a BK. and UP, and a P, and then do the insertion. The 

corresponding also holds true for list commands. 

Occasionally. the user will want to employ the S command in a mac~o to save 

some temporary result. For example, the SW command could be defined as: 

(H (SW) (N H) (NTH N) (S FOO 1) HARK 0 (NTH M) (S FIE 1) 
(I 1 FOO) ~ (I 1 FIE» 80 

Since this version of SW sets foo and fie, using SW may have undesirable side 

effects, especially when the editor was called from deep in a computation, we 

would have to be careful to make up unique names for dummy variables used in 

edi t macros, which is bothersome. Furthermore, it would be impossible to 

define a command that called itself recursively while setting free variables. 

The BIND command solves both problems. 

80-----------------------------------------------------------------------------A more elegant definition would be: 
(H (SW) (N H) (NTH N) HARK 0 (NTH H) (S FIE 1) (I 1 (II .. 1» 
..... < I 1 FIE», but this would still use one free variable. 

9.69 



(BIND . coms) b1.nds three dummy variables 11, 12, 13, 

(1ni tialized to NIL), and then executes the edit 

cOlIIDands £Q.!!!!. Note that these bindings are only 

in effect while the commands are being executed, 

and that BIND can be used recursively; it will 

rebind '1, 12, and '3 each time it is invoked. 81 

Thus we could now write SW safely as: 

(M (SW (N M) (BIND (NTH N) (5 '1 1) HARK 0 (NTH H) (5 12 1) 
(I 1 11) ~ (I 1 12»». 

User macros are stored on a lisit usermacros. The prettydef command USERHACROS 

(Section 14), is available for dumping all or selected user macros. 

9.9 Miscellaneous Commands 

NIL 

TTY: 

unless preceded by F or 8F, is always a NOP. Thus 

extra right parentheses or square brackets at the 

ends of commands are ignored. 

calls the editor recursively. The user can then 

tYJ,e in commands, and have them executed. The 

TT": comand is completed when the user exits from 

thet lower editor. (see OK and STOP below). 

The TTY: conunand is extremely u~.eful. It enables. the user to set up a complex 

operation, and perform interactive attention-changing commands part way through 

8i-~~------------------------------------------------- -------------------------
BIND is implemented by (PltOG (II 12 13) (EOITCOMS (COR COM») where com 
corresponds to the BIND command, and editcoms 15 an internal editor 
function which executes a list of comands. 

9.70 



it. For example the command (MOVE 3 TO AFTER CONO 3 P TTY:) allows the user to 

interact, in effect, within the MOVE command. Thus he can verify for himself 

that the correct location has been found, or complete the specification ·by 

hand. It In effect, TTY: says • I 'Ii tell you what you should do when you get 

there.· 

The TTY: command operates by printing TTY: and then calling the editor. The 

initial edit chain in the lower editor is the one that existed in the higher 

editor at the time the TTY: command was entered. Until the user exits from the 

lower editor, any attention changing commands he executes only affect the lower 

editor's edit chain. 82 When the TTY: command finishes, the lower editor's edit 

chain becomes the edit chain of the higher editor. 

OK 

STOP 

exits from the editor 

exits from the editor with an error. Mainly for 

use in conjunction with TTY: co_ands that the 

user wants to abort. 

Since all of the commands in the editor are errorset protected, the user must 

exit from the editor via a command.83 STOP provides a way of distinguishing 

between a successful and unsuccessful (from the user's standpoint) ed'iting 

session. For example, if the user, is executing (MOVE 3 TO AFTER COHD TTY:), 

and he exits from the lower editor with an OK, the HOVE cOlIIDand will then 

82-~--~-------------·--------~------------------------ -------------------------
Of course, if the user performs any structure modification commands while 

83 

under a TTY: conunand, these will modify the structure in both editors, 
since it is the same structure. 

Or by typing a control-D. STOP is preferred even if the user is editing at 
the evalgt level, as it will perform the necessary 'wrapup' to insure that 
the changes made while editing will be undoable (see Section 22). 

9.71 



complete its operation. If the user wants to abort the MOVE command, he must 

make the TTY: command generat'B an error. He does this by exiting from the 

lower editor with a STOP command. In this case, the higher editor's edit chain 

will not be changed by the TTY: command. 

SAVE exits from the editor and saves the 'state of the 

edi t I on the property list of the function or 

variable being edited under the property 

EDIT-SAVE. If the editor is called again on the 

same structure, the editing is effectively 

·continued,· i.e., the edit chain, mark list, 

value of un find and undolst are restored. 

For example: 

*p 
(NUll X) 
*F COND P 
(COND (& &) (T &» 
*SAVE 
FOO 

. 
"'EOITF(FOO) 
EDIT 
*p 
(COND (& &) (T &:~) 
*\ p 
(NUll X) 
* 

SAVE is necessary only if the user is editing many different expressions; an 

exit from the editor via OK alwlsys saves the state of the edit of that call to 

the editor.84 Whenever the editctr is entered, it checks to see if it is editing 

the same expression as the last one edited. In this case, it restores the mark 

84-------~----------~------------·--------------------------------------------~ on the property list of the atom EDIT, under the property name lASTVALUE. 
OK also remprops EDIT-SAVE frOID the property list of the function or 
variable being edited. 

9.72 



list, the undolst, and sets un find to bl the edit chain as of the previous exit 

from the editor. For example: 

"EDITF(FOO) 
EDIT 
*p 
(LAMBDA (X) (PROG6 6 lP ••• 6» 

~P 

(COND 6 Be) 
*OK 
FOO 

. 
"EOITF(FOO) 
EDIT 
*p 
(LAMBDA (X) 
*\ p 
(COND '" &) 
* 

any nu.olr of lispx inputs 
except for calls to the editor 

(PROG Be • lP 6 •• 6» 

Furthermore, as a result of the history f.ature (section 22), if the editor 1s 

called on the same express~on within a certain nuaber of lispx inputs,86 the 

stata of the edit of that expression is restored, regardless of how •• ny other 

expressions .ay have been edited in the •• anti.,. 

86-~---~~--~-~------------------------------~-----·~-------------------~-------Namely, the size of the history list. initially 30, but it can be increased 
by the user. 

9.73 



for example: 

"EDITF(FOO) 
EDIT 
• 

• p 
(COND (3& 3&) (6 3&) ( 3& ) (T 6» 
·OK 
FOO .. 

. 
"EDITF(FOO) 
EDIT 
.\ P 

less than 30 lispx input,. including editing 

(COND (Be Be) (3& Be) (Be) (1 Be» 
• 

Thus the user can always contJlnue editing,' including undoing changes from a 

previous editing session, if 

RAISE 

LOWER 

(1) No other expressions have been edited since that seS5ion;86 or 

(2) That session was ~sufficientIY' recent; or 

(3) It was ended with a SAVE cOllllland. 

• • • 

is an edit macro derine~ as UP followed by 

(I 1 (U-CASE (II 1»), i. e • it raises to upper-

case the current expression, or if a tail, the 

first element of the current expression. 

Similar to RAISE, except uses I-case. 

86------------------------------·-----------------------------------------------Since saving takes place at ext t time, intervening calls that were abo .... 'ted 
via control-D or eXited via . STOP will not afrect the editor' s memory of 
this last session. 

9.74 



CAP First does a RAISE. and then lowers all but the 

first character. i.e. the first character 1s left 

capitalized. 

Note: RAISE, LOWEll. and CAP .re all NOPs if the corresponding atom or string t& 
alreadu in that state. 

(RAISE x) 

(LOWER x) 

equivalent to (I R (L-CASE x) x), i.e. changes 

every lower-case x to upper-case in the current 

expression. 

similar to RAISE, except performs (I R x (L-

CASE x». 

Note in both (RAISE x) and (LOWER x), ! is typed in in upper case. 

REPACK 

For example: 

Permits the 'editing' of an atom or string. 

*p 
-THIS IS A LOGN STRING-) 

REPACK 
*EOIT 
P 
(T HIS X I S X A X LOG N % S T R 1 N G) 
Jr(SW G N) 
*OK 
-THIS IS A LONG STRING­
l1li 

87 

REPACK operates by calling the editor recursively on unpack of the current 

i~------------------~----------------------------------------------------------Note that this could also have been accomplished by (R SGNS SNGS) or s1mply 
(RC GN HG). 

9.75 



expression, or if it is a list, on unpack of its first element. If the lower 

editor is exited successfully, i.e. via OK as opposed to STOP, the list of 

atoms is made into a single atom or string, which replaces the atom or string 

being 'repacked.' The new atom or string is always printed. 

(REPACK @) 

(; • x) 

JOINe 

does (LC 

(REPACK THISS). 

') followed by REPACK, e.g. 

! is the text of a comment. ; ascends the edit 

chl!in looking for a • safe' place to insert the 

cOIJwent, e. g. • in a cond clause. after a I!.!:2.S 

stlstement, etc., and inserts (* • x) alter that 

po:Lnt, if possible, otherwise before. For 

eX«UDple, if the current expression is 

(FACT (SUB1 N)) in 

[COND 
( (ZEROP N) 1) 
(T (ITIHES N (FACT (SUBI N] 

(; CALL FACT RECURSIVELY) would insert 

(* CALL FACT RECURSIVELY) 

eX~lression. 88 

be/ore the itimes 

; does not change the edit chain, but unfind is 

set to where the comment was actually inserted. 

is used to join two neighboring COND's together, 

e.g. (CONO clausel clauseZ) followed by 

88-----------------------------------------------------------------------------If inserted after the i tirr!!.!,. the comment would then be (incorrectly) 
retu.rned as t. he value of the cond. However. if the cond was itself a 2!:QD. 
statement, and hence its value was not being used, the comment coula-bi 
(and would be) inserted after the itimes expression. 

9.76 



CL 

ow 

(CONO clause3 clause4) becomes 

(CONO clause l clauseZ clause3 clause4). JOINC 

does an (F CONO T) first so that you don't have to 

be at the first COND. 

spli ts one CONO into two. ! specifies the last 

clause in the first COND, e.g. (SPLITC 3) splits 

(CONO clause l clauseZ clausel clause4) into 

(CONO clause l clauseZ) (CONO clausel clause4 ). 

Uses generalized NTH command, so that ! does not 

have ,to be a number, e.g.,the user can say, 

(SPLITC RETU~N). meaning split after the clause 

containing RETURN. SPLITC also does an (F COHO T) 

first. 

Clispifies current expression. See Section 23. 

Owimifies current expression. See Section 17 and 

23. 

(RESETVAR var for. • coms) executes ~ while Y!r is reset to the value of 

form, and then restores !!!., i • e • effect 1 ve ly 

calls the function resetvar (Section 5). 

9.77 



9.10 UNDO 

Each conunand that causes struc1~ure modification automatically adds an entry to 

the front of undolst that contains the information required to restore all 

pointers that were changed by that command. 

UNDO undoes the last, i.e. most recent, structure 

modification cODlDand that has not yet been 

undone,89 and prints the name of that command, 

e.!~., "SO UNDONE. The edit chain is then exactlll 

Whist it was before the·' undone' coaunand had been 

pelr-formed.90 If there are no cODlDands to undo, 

UNI)O types NOTHING SAVED. 

I UNDO undoes all modifications performed during this 

edjLting session, i.e. this call to the editor. 

As each command is undone, its name is printed a 

la UNDO. If there is nothing to be undone, IUNDO 

pr:l.nts NOTHING SAVED. 

89-----------------------------------------------------------------------------Since UNDO and 'UNDO cause structure modification, they also add an entry 

90 

to undolst. However, UNDO ~nd !UNDO entries are skipped by UNDO, e.g., if 
the user performs an INSERT, and then an MBD, the first UNDO will undo the 
MBD, and the second will undo the INSERT. However, the user can also 
specify precisely which cflmmands he wants undone by identifying the. 
corresponding entry on the history list as described in Section 22. In 
this case, he can undo an UNDO command, e.g. by typing UNDO UNDO, or undo a 
!UNDO command, or undo a command other than that most recently performed. 

Undoing an event containing an I. E. or S command will also undo the side 
effects of the evaluation(s), e.g. undoing (I 3 (/NCONC FOa FIE» will not 
only restore the 3rd element but also restore FOO. Similarly, undoing an B 
command will undo the set. See discussion of UNDO in Section 22. (Note 
that if the I command was typed directly to the editor, INCONC would 
automatically be substituted for NCONC as described in Bection 22.) 

9.78 



Whenever the user conttnue$ an editing session 8S described on page 9.12-14, 

the undo information of the previous session is protected by inserting a 

special blip, called an undo-block, on the front of undolst. This undo-block 

will terminate the operation of a IUNDO, thereby confining its effect to the 

current session, ~nd will si.ilarly prevent an UNDO command from operating on 

cOmMands executed in the ,revious session. 

Thus, if the user enters the editor continuing a session, and immediately 

executes an UNDO or IUNDO, the editor will type BLOCKED instead of 

NOTHING SAVED. Si.ilarly, if the user executes several cormnands and then undoes 

them all, another UNDO or IUNDO will also cause BLOCKED to be typed. 

UNBLOCK 

TEST 

re.oves an undo-block. If executed at a non­

blocked state, i.e. if UNDO or IUNDO could 

operate, types NOT BLOCKED. 

adds an undo-block at the front of undolst. 

Note that TEST together with fUNDO provide a 'tentative' mode for editing, i.e. 

the user can perfor. a number of changes, and then undo all of thelll with a 

Single !UNDO command. 

9.79 



9.11 Editdefault 

Whenever a command is not recol}nized, i.e.; is not "built' in' or defined as a 

macro, the editor calls an in1;ernal function, editdefault,,"t'o'-determine what 

action to take. 91 If a location specification is being \ executed, an 'internal 

flag informs edi tderault to treat the command as though it bad 'bean'prec'eded by 

an F. 

If the command is a list, an attempt is made to perform spelling correction on 

car of the command92 using editcomsl,: a list of' all !ist edit corntnand~. 93 If 

spelling correction is successful,94 the correct coimnand name is' 'rplacaed into 

the command. and the editor continues by executing the command. 

In other words, if the user types (lP F ~RINT (HBBD AND (NUll FlG»)), only one 

spelling correction will be necessary to change HBBD to MBD. If spelling 

correction is not successful, an error is generated. 

If the command is atomic, the pl~ocedure followed is a little more elaborate. 

9j------------------------------·-----------------------------------------------Since ed i tdefau 1 t is part of the edit block. the user cannot advise or 

92 

93 

94 

redefine it as a means of alJlgmenting or extending the editor. However, the 
user can accomplish this via edituserfn. If the value of the variable 
edituserfn is T, editdefault calls the function edituserfn giving it the 
command as an argument. If edituserfn returns a non-NIL value, its value 
1s interpreted as a singlEt command and executed. Otherwise, the error 
correction procedure described below is performed. 

unless dwimflg:NIl. See Sect.1on 17 for discussion of spelling correction. 

When a macro is defined vi.. the H conunand, the command name is added to 
edi tcomsa or editcomsl. depending on whether it is an atomic or list 
command. The prettydef cO~land USERHACROS (Section 14), is aware of this, 
and provides for restoring !ditcomsa and editcomsl. . 

Throughout this discussion. if the command was not typed in directly, the 
user will be asked to approve the spelling correction. See Section 17. 

9.80 



1) If the command is one of the list commands, i.e., a member of editcomsl, 

and there is additional input on the same teletype line. treat the entire 

line as a single list command. 96 Thus, the user may omit parentheses for 

any list command typed in at the top level (provided the command 1s not 

also an atomic command, e.g. NX, BK). For example, 

*p 
(COND (& &) (T &» 
*XTR 3 Z] 
·HOVE TO AFTER lP 
* 

If the command is on the list editcomsl but no additional input 1s on the 

teletype line, an erro~ is generated, e.g • 

• p 
(COND (& &) (T &» 
*MOVE 

MOVE? 
• 

If the command is on editcomsl, and not typed in directly, e.g. it appears 

as one of the commands in a lP command, the procedure is similar. with the 

rest of the command stream at that level, being treated as 

"the teletype line", e.g. 

(lP F (COND (T &» XTR 2 2).98 

Z) If the command was typed in and the first character in the command is an 8, 

96-----------------------------------------------------------------------------The line is read using readline (Section 14). Thus the line can be 

96 

terminated by a square bracket, or by a carriage return not preceded by a 
space. 

Note that if the command is being executed in location context, editdefault 
does not get this far, e.g. (HOVE TO AFTER COND XTR 3) will search for XTR, 
not execute tt. However, (HOVE TO AFTER COND (XTR 3» wll1 work. 

9.81 



treat the 8 as a mistyped left parenthesis, and and the rest of the line as 

the arguments to the command, e.g., 

-p 
(COND (& Be) (T 8:» 
-8-2 (Y (RETURN Z») 
=(-2 
-p 
(COND (Y Be) (Be Be) (T Be» 

3 ) I f the command was typed il1l, is the name of a function. arid is followed by 

NIL or a list £!r of which is not an edit command, assume the user forgot 

to type E and means to apply the function to its arguments, type -E and the 

function name, and perform the indicated computation, e.g. 

-BREAk(FOO) 
=E BREAK 
(FOO) 
• 

4) If the last character in the cODlDand is P, and the first n-l characters 

comprise a number, assume that the user intended two cODlDands, e.g., 

-p 
(COND (& 8r) (T 8r Jt ) 
-OP 
=0 P 
(5ETO X (COND Be &» 

5) Attempt spelling correction using editcomsa, and if successful,97 execute 

the corrected command. 

6) Otherwise, if there is additional input on the same line, or cODlDand 

stream, spelling correct using editcomsl, e.g., 

~~--;;;-;;;;;;;;-;;-;;;;-;:;;:-------------------------------------------------

9.82 



*HBBO SETQ X 
=HBD .. 

7) Otherwise, generate an error. 

9.12 Editor Functions 

edite[expr;coms;atm] 

editl[l;coms;atm:mess] 

edits an expression. Its value is the last 

element of editl[list[expr]:coms;atm]. Generates 

an error if expris not a list. 

edIt198 i$ the edItor. Its first argum~nt is the 

edit chain, and its value is an edit chatn, namely 

the value of ! at the time editl is exited.
gg 

~ is an optional list of commands. for 

interactive editing, coms is NIL. In this case, 

editl types EDIT and then waits for input from 

teletype. tOO Exit occurs only via an OK, STOP, or 

SAVE cOlIIDand. 

If £em! is not NIL, no message is typed, and each 

98-----------------------------------------------------------------------------edit-e", not edit-one. 

99 ! is a specvar, and so can be examined or set by edit conunands. for 
example, t is equivalent to (E (5ETO l (LAST L» T). However, the user 
should only manipulate or examine I directly as a last resort, and then 
with caution. -

100 If mess is not NIL, editl types it instead of EDIT. For example, the TTY: 
command is essentially (SETQ l (EDITl l NIL NIL (QUOTE TTY:»). 

9.83 



mmnber of £!!!!!!. is treated as a command and 

e"ecuted. If an error occurs in the execution of 

one of the commands, no error message is printed, 

the rest of the commands are ignored, and e'ditl 

e)tits with an error, i.e. the effect is the same 

a!; though a STOP command had been executed. If 

all comands execute successfully, editl returns' 

the current value of !. 

at,!! is optional. On calls from edi tf, it is the ' 

name of the function being edited; on calls from 

editv, the name of the var'iable, and calls from 

ed!!2, the atom whose property list is being 

edited. The property list of atm is used by the 

SAVE command for saving the state of the edt t. 

Thus SAVE 'will not save anything if !!!!!=NIL, 1.e. 

wh'sn editing arbitrary expressions via edi te or 

editl directly. 

editIO[l,coms;messieditlflg].fO.f like editl except does not rebind or 

editf[x] 

initialize the editor's various state variables, 

such as lastail, unfind, undolst, marklst, etc. 

nli~bda. nospread function for editing a function. 

car[x] is the name of the function,cdr[x] an 

opt;ional list of cODUDands. For the' rest of 'the 

dislcussion, fn is car[x], and £!!!!.! is cdr[x]. 

The value of editf is fn. 

9.84 



(1) In the most common case, fn is an expr, and !.!!!!!. simply ,performs 

putd[fn;edite[getd[fn];coms.fn]]. 

(2) If fn is not an expr, but has an EXPR property, edi tf prints PROP, and 

performs edite[getp[fn;EXPR];coms:fn]. If edite returns (i.e. if the 

editing is not terminated by a STOP), and some changes were made, editf 

performs unsavedef[fn], prints UNSAVED, and then does putd[fn;value-of­

edite]. 

(3) If fn is neither an expr nor has an EXPR property, but its top level value 

is a list, editf assumes the user meant to call editv, prints =EDITV, calls 

edi tv and returns. Similarly, if fn has a non-NIL property list, editf 

prints =EDITP, calls editp and returns. 

(4) If fn is neither a, function, nor has an EXPR property, nor a top level 

value that is a list, nor a non-NIL property list, editf attempts spelling 

correction using the spelling list userwords, 102 and if successful, goes 

back to (1). 

Otherwise, editf generates an fn NOT EDITABLE error. 

If editf ultimately succeeds in finding a function to edit, i.e. does not exit 

by calling editv or editp, editf calls the function addspell after editing has 

been completed. lOa Addspell 'notices' fn, i.e. sets lastword to fn, and adds fn 

102----------------------------------------------------------------------------Unless dwimflg=NIL. Spelling correction is performed using the function 
misspelled? If fn=NIL, misspelled? returns the last 'word' referenced, 
e.g. by defineq, editf, prettyprint etc. Thus if the user defines foo and 
then types editf[], the editor will assume he meant foo, type -FOO, and 
then type EDIT. See Section 17. -

108 Unless dwimflg=NIl. addspell is described in Section 17. 

9.85 



to the appropriate spelling lists. If any changes were made, editf also calls 

newfile? which performs the updating for the file package as described in 

Section 14. 

ed1tv[editvx] nlambda, nospread function, similar to editf, for 

editing yalues. car[editvx] specifies the value, 

cdr[editvx] is an optional list of co_ands. 

If car[editvx] is a list, it JLS evaluated and its value given to edite, e.g. 

EOITV«COR (ASSOC (QUOTE FOO) D'ICTIONARY»». In this case, the value of editv 

1s T. 

However. for most applications, car[editvx] is a variable name, i.e. atomic, as 

in EOITV(FOO). If the value of this variable is NOBIND, editv checks to see if 

it 1s the name of a function, and if so, assumes the user meant to call editf, 

prints =EOITF, calls edi tf and returns. Otherwise, editv attempts spelling 

correction using the list ~ords.l04 Then editv will call edite on the value 

of car[editvx] (or the corrected spelling thereof). Thus, if the value of foo 

is NIL, and the user performs I(EOITV FOO), no spelling correction will occur, 

since foo is the name of a variable in the user's system, i.e. it has a value. 

However,. edite will generate alll error, since foo's value is not a list, and 

hence not editable. If the use." performs (EOITV FOOO), where the value of fooo 

is NOBINO, and foo is on the user's spelling list, the spelling corrector will 

correct FOOO to FOO. Then edi tEt will be called on the value or foo. Note that 

this may still result in an errctr if the value of faa is not a list. 

When (if) edite returns, editv sets the variable to the value returned, and 

calls addspeIl and newrile? 

104------------------·---------------------------------------------------------
Unless dwimflg=NIL. Misspelled? is also called if carr edi tvx] is NIL, so 
that EOITV() will edit lastword. 

9.86 



The value of editv is the name of the variable whose value was edited. 

editp[x] _ 

editfns[x] 

nlambda, nospread function, similar to editf for 

editing I!roperty lists. If the property list of 

car[x] is NIL, editp attempts spelling correction 

using userwords. Then editp calls edite on the 

property list of car[x], (or the corrected 

spelling thereof). When (if) ~ returns, editp 

rplacd's car[x] with the value returned, and calls 

addspell. 

The value of editp is the atom whose property list 

was edited. 

nlambda, nospread function, used to perform the 

same editing operations· on several functions. 

car[x] is evaluated to obtain a list of functions. 

cdr[x] is a list of edit commands. editfns maps 

down the list of functions, prints the name of 

each function, and calls the editor (via editf) on 

that function. 106 

For example, EDITFNS(FOOFNS (R FIE FUM» will change every FIE to FUM in each 

of the functions on foofns. 

The call to the editor is errorset protected, so 

i06-~:;:-~h;-~;ri~i~i~~-~r-;~i~f~;-~i;h~-b;~-----------------------------------
[MAPe (EVAL (CAR X» (FUNCTION (LAMBDA (Y) 

(APPLY (QUOTE EDITF) 
(CONS (PRINT Y T) (CDR Xl 

9.87 



that if the editing of one function causes an 

error, editfns will proceed to the next 

function. 108 

Thus in the above example, if (me of the functions did not contain a FIE, the R 

command would cause an errOlr, but editing would continue with the next 

function. 

edit4e[pat;x;changeflg] 

The value of editfns is NIL. 

i!. the pattern match routine. Its value is T if 

~!-matches!. See page 9.21-23 for definition of 

'nlatch I .107 

Note: before each search operation in the editor begins, the entire pattern is 

scanned for atoms or strings containing alt-modes. These are replaced by 

patterns of the form' (CONS (QUOTE $) (UNPACK atom/string» for 6a, and 

(CONS (QUOTE SS) (CONS (NCHARS atom/string) (UNPACK atom/string»), for 6b. 108 

Thus from the standpoint of !!lit4e, pattern type 6a is indicated by car[pat] 

being the atom $ ($ is alt-mode) and pattern type 6b by car[pat] being the atom 

$S (double alt-mode). 

106----------------------------------------------------------------------------In particular. if an error occurred while editing a function via its EXPR 
property. the function would not be unsaved. In other words, in the above 
example, only those functions which contained a FIE. i.e. only those 
actually changed. would be unsaved. 

107 changeflg is for internal use by the editor. 

108 In latter case, atom/string corresponds to the atom or string up to but not 
including the final two-alt-modes. In both cases, dunpack is used wherever 
possible. 

9.88 



Therefore, if the user wishes to call edit4e directly. he must first convert 

any patterns which contain atoms or strings ending in alt-modes to the form 

recognized by edit4e. This is done with the function editfpat. 

editfpat[pat;flg] makes a copy of pat with all patterns of type 6 

converted to the form expected by edit4e. 109 

editfindp[x:pat;flg] allows a program to use the edit find command as a 

pure predicate from outside the editor. ~ is an 

expression, pat a pattern. The value of editfindp 

is T if the command F pat would succeed, NIL 

otherwise. editfindp calls editfpat to convert 

pat to the form expected by edit4e. unless flg=T. 

Thus, if the program is applying editfindp to 

several different expressions using the same 

pattern, it will be more efficient to call 

editfpat once, and then call editfindp with the 

converted pattern and !!saT. 

esubst[x:y;z;errorflg;charflg] equivalent to performing (R y x)110 with ~ as 

the current expression, i. e. the order of 

arguments is the same as for subst. Note that ~ 

and/or ! can employ alt-modes. The value of 

esubst is the modified!. ~enerates an errorttt 

tID unless charflg=T. in which case it is equivalent to (RC y x). See page 
9.59. 

111 of the type that never causes a break. 

9.89 



changename[fn;from;to] 

if I not found in!. If errorflg-T. also prfnts 

an error message of thefonl y 1. 

eSlubst is always undoable. 

rel)laces all occurrences of from by to, in the 

de1finition of fn. If fn is an expr, changename 

performs nlsetq[ esubst[ to; from;getdt tn]]]. If fn 

is compiled, changename searches the literals of 

(and all of its compiler generated 

subfunctions). replacing each occurrence of from 

with to. 112 

The' value of changename is fn if at least one 

instance of from was found, otherwise NIL. 

changename is used by break and advise for changing calls to fnl to calls to 

fnt-IN-rnZ. 

editracefn[com] is available to help the user debug complex edit 

maClros, or subroutine calls to the editor. If 

editracefn is set to T, the function editracefn is 

called whenever a command that was not typed in by 

the user is about to be executed, giving it that 

comrlland as its argument. However. the TRACE and 

BRE~'" options described below are probably 

sufficient for most applications. 

ii2----------------------------------------------------------------------------Will succeed even if from i~; called from fn via a linked call. In this 
case, the call will also be relinked to calr-to instead. 

9.90 



If edi tracefn is set to TRACE, the name of the 

cOlIIDand and the current expression are printed. 

If editracefn=BREAK, the same information is 

printed, and the editor goes into a break. The 

user can then examine the state of the editor. 

editracefn is initially NIL. 

9.91 



Index for Section 0 

(A el ... em) (edit conunand) ......••..••..•••••• 
AOOSP£LL[X;SPlS'T;N] ..•... _~ ••..••••••••••••••••• 
AFTER (in INSERT command) (in editor) ••••••.•••• 
AFTER (in MOVE command) (1n editor) ............ . 
(B 01 ... em) (edit command) .•..•••••••••••••••• 
BEFORE (in INSERT command) (in editor) •••••••••• 
BEFORE (in MOVE command) (in editor) .•.•••.••••• 
(BELOW com x) (edit command) ................... . 
(BELOW com) (edit command) .••.•••••••••••••••••• 
BF (edit conunand) ....•.••••••••••••••••••••.•••• 
(BF pattern T) (edit command) .•.•••••••••••••••• 
(BI n m) (edit command) ..•••..•••••••••••••••••• 
(BI n) (edit command) .•...••.••••••••••••••••••• 
(BIND. corns) (edit command) ••••.••••••••.•••••• 
BK (edit command) ............•.•••••••••.••..••• 
(BK n) (n a number, edit command) •••.••...•.•••• 
BLOCKED (typed by editor) •....••••••.•••••.•.••• 
(BO n) (edit command) ...........••••...••••••••• 
BY (in REPLACE command) (in editor) ••••••••••••• 
CAN'T - AT TOP (typed by editor) .••••.•••.•••••• 
CAP (edi t command) ........•.•.•••••••••••••••.•• 
(CHANGE @ TO ... ) (edit command) ••••..•.•.••.••. 
CUANGENAHE[ FN; FROM; TO] •....••••••••••••••••••••• 
C L (e d i t comma n d ) . . . . . . . . . . . . • • • • . . . . . • • • • • • • • . • 
commands that move parenthe:ses (in editor) ••••.• 
(COMS xl ... xn) (edit command) •.•••••••.•.••••• 
(COMSQ . corns) (edit command) ••••••••••••••••••• 
continuing an edit session •..••••••••••••••••••• 
control-D ...................................... . 
control-E ...................................... . 
current expression (in editor) •••••••••••••••••• 
DELETE (edit command) .....•..•••.••••••••••••••• 
( DE LE TE . @) (ed i t command) ...•.•••••••••.•••••• 
DESTINATION IS INSIDE EXPRESSION BEING HOVED 

(typed by editor) .......•••.•••.••••••••••• 
OW (edit command) ................................ . 
DWIHFLG (system variable/parameter) ••••••••••••• 
E (edi t command) .................................. . 
(E x T) (edi t command) ..•...•••••••••••••••••••• 
(E x) (edit command) ...••.•.••••••••.••••••••••• 
EOIT (typed by editor) .••.•.•••••••••••••••••••• 
edi t chain ............... t •••••••••••••••••••••• 

edit commands that search .......•••••.••.•••••.• 
ed it commands that test .....••.•.•.••.•••••••••• 
edit macros ...................................... . 
EDIT-SAVE (property name) ~ ...•••.•••••••••••.•.• 
EOIT4E[PAT:X;CHANGEFLG] .....••....•.••••••••••••• 
EOITCOMSA (editor variable/parameter) .••••••..•• 
EOITCOMSL (edi tor variable/I)arameter) ••••••••.•• 
EOITOEFAULT (in editor) ......•..•...•....•..••.•. 
EOITE[EXPR;COHS;ATH] ...•. ~ ••••••••••..••.••••••• 
EOITF[X] NL* .............. , .••••••••.•.••••..••••• 
EOITFINDP[X;PAT;FlG] ....• ~ ••••••.••••••••••••••• 
EOITFNS[X] NL •........•.•.••••••.••••••••••••••• 
EOITFPAT[PAT;FLG] .•...•.• u •••••••••••• ~ ••••••••• 
editing compiled functions ••••••••••••••••••.••• 

IN[)EX.9.1 

Page 
Numbers 

9.13,39-40 
9.85-87 
9.41 
9.48 
9.13,30"40 
9.41 
9.48 
9.31 
9:31 
9.10.28 
9.28 
9.8,52 
9.52 
9.70 
9.10,18-19 
9.19 
9.79 
9.8,52 
9.42 
9.5,17 
9.75 
9.4'2 
9.90 
9.77 
9.51-54 
9.63 
9.64 
9.72-74 
9.71 
9.3 
9.2,4,8.11-15,23 
9.14,37,40,42 
9.42 

9.49 
9.77 
9.80,85"86 
9.9,62 
9.62 
9.62 
9.83 
9.4,7.11~13,15,23 
9.21-33 
9.64 
9.67-70 
9.72 
9.88 
9.80,82 
9.80-82 
9.80-83 
9.1,83,86-87 
9.1,84-86 
9.89 
9.87-88 
9.69 
9.90 



EOITL[L;COMS;ATM;MESS] .........•.•...••......... 
EOITLO[L;COMS;MESS;EDITLFLG] ..........•..•.•.•.. 
EOITP[X] Nt* ...••.•......•.•••••••••.••••••••••• 
EOITQUIETFLG (e~itor variable/parameter) •••.••.• 
EDITRACEFN ...................................... . 
EOITUSERFN •...••.•..• 0 •••••••••••••••••••••••••• 

EOITV[EOITVX] Nt- ...•.•.•••••••••••••••••••••••• 
(EMBED @ IN ... ) (edit command) •.••••••••••••••• 
errors (in editor) ..••.•.•••••••••••.••••••••••• 
ESUBST[X;Y;Z;ERRORFLG;CHARFLG] ..••....••••.•.••• 
( EXAM . x) (ed i t command) ••••.•••••••••••••••••• 
EXPR (property name) ........•....•.•••••.••••••• 
(EXTRACT @1 from. @2) (edit cODlDand) •••••.••••• 
F (edit command) .........••..•••.•••.••••••••••• 
F pattern (edit command) ....••••••••••••••••..•• 
(F pattern N) (edit command) .•...•.•••••••.•••.• 
(F pattern n) (n a number. edit command) ••.••••• 
(F pattern T) (edit command) .•.•••.•••.••••••••• 
(F pattern) (edit command) •••••••••••••••••••••• 
(F= ... ) (edit command) ..•.......•••••.••••.•••• 
FOR (in INSERT command) (in editor) •••..••.•.••• 
FROM (in EXTRACT command) (in editor) ••••••••••• 
(FS ... ) (edit command) ..•..•••••••••••••••••••• 
generalized NTH command (in editor) ••••••••••••• 
HERE (in edit command) ..... ~ ...•••••..••••••••.• 
history list ................................... . 
(I c xl ... xn) (edit command) .•.••..•.•.•..•.•. 
(If x coms1 coms2) (edit command) •••.•••••..•.•• 
(IF x coms1) (edit command) .•.....•••.••.•..•..• 
(If x) (edit command) .......•....••••••••••..•.•. 
implementation of structure modification commands 

(in edito.r) ...........••...•.•••••.••.•.••. 
IN (in EHBED command) (in editor) ••••••••••••••• 
(INSERT ... AFTER. @) (edit command) ••••••..••• 
(INSERT ... BEFORE . @) (edit command) ..••.••••• 
(INSERT ... FOR. @) (edit command) •••••••.•.••• 
JOINC (edit command) ....•...•••••••••••••••••••• 
L-CASE[X;FLG] .....................•••.........•. 
LASTAIL (editor variable/parameter) ••••••••••••• 
LASTVALUE (property name) .........••.••.••.•.... 
LASTWORO (system variable/parameter) •••••••••••• 
(LC . @) (edit command) .....•....••...••••••..•• 
(LCL . @) (edit command) •.•..•••.•••.•••••••••.• 
(LI n) (edit command) .....•..•••.••••.••••.••••• 
lISPX .......................................... . 
(LO n) (edit command) .....•...•...•..••••••.••.• 
location specification (in editor) ••••••••..•••. 
LOCATION UNCERTAIN (typed by editor) •••••.••.••• 
LOWER (edit command) ....•..••••••••••••••••••••• 
(LOWER x) (edit command) ...•.•••..••..•••.•••••. 
(LP . corns) (edi t command) •.......•......•.•••.• 
(LPQ . coms) (edit command) .••••.••••.•••..••••• 
(H (c) (argl .•. argn) • corns) (edit command) 
(M (c) arg .. corns) .. 0' •.•••••••••••••••••••••••••• 
(H c . corns) (edit command) ••••••••••••••••••••• 
macros (in editor) •..••••••••••••••••••••••••••• 
HARK (edt t conunand) ••.••••••••••.••••••••••••••• 

Page 
Numbers 

9.83-84 
9.84 
9.1,85,87 
9.22 
9.90-91 
9.80 
9.1,85-86 
9.48 
9.3 
9.89 
9.66 
9.85,88 
9.46 
9.6,25-26 
9.25 
9.26 
9.26 
9.26 
9.27 
9.27 
9.41 
9.46 
9.27 
9.32,52,60 
9.42 
9.73,78 
9.62 
9.65 
9.65 
9.64 

9.37-39 
9.48 
9.41 
9.41 
9.41 
9.76 
9.74 
9.16-17,25,84 
9.72 
9.85-86 
9.30 
9.30 
9.8.53 
9.62,73 
9.8,53 
9.28-29,64 
9.17 
9.74 
9.75 
9.65-66 
9.66 
9.68 
9.68 
9.67 
9.67-70 
9.34 



(HARK a tom) (edi t conunand) •••••••••••••••••••••• 
HARKLST (editor variable/parameter) ••••••••••••• 
HAXLEVEl (editor variable/parameter) •••••••••••• 
HAXLOOP (editor variable/parameter) ••••••••••••• 
HAXLOOP EXCEEDED (typed by editor) •••••••••••••• 
(HBD 01 ... em) (edit conunilnd) •••••••••••••••••• 
(MOVE @1 TO com • @2) (edi 1~ command) ••••••••••• 0 

n (n a number, edit command) •••••••••••••••••••• 
(N el •.. em) (edit command) •••••••••••••••••••• 
(n e 1 ... em) (n a number, edt t command) ••• 0 •••• 

(n) (n a number ted! t commclnd) ••••••••••••••• 0 •• 

NEWFILE?[NAME;VARSFLG] ....•••••.•••••••••••••••• 
NEX (edit command) ..••••.••••• 0 •••••••••••••• 0 •• 

(NEX x) (edit command) ••.••••••• ~ ••••••••••••••• 
NIL (edit command) .•••••.••••••••••••••••••••••• 
NOBIN[) .....•.......•.•.. ' .•.••••••••••••••••.•••• 
NOT BLOCKED (typed by editor) ••••••••••••••••••• 
NOT CHANGED, 50 NOT UNSAVEO (typed by editor) 
NOT EDITABLE (error message) •••••••••••••••••••• 
NOTHING SAVED (typed by editor) ••••••••••••••••• 
(NTH n) (n a number, edit c:ommand) •••••••••••••• 
(NTH x) (edit command) ••. ) ••••••••••••••••••••••• 
NX (edt t command) •...•••. , ••••••••••••••••••••••• 
(NX n) (n a number, edi t command) ••••••••• 0 ••••• 

OCCURRENCES (typed by editor) •••••••••••••• ~ •••• 
0'< (edit cornrnand) ....................... 0 •••••••• 

(ORF ... ) (edit command) ........................ . 
(ORR ... ) (edi t command) ........................ . 
P (edt t command) •••••••• t •••••••••••••••••••••••• 

(P m n) (edi t command) •• II ••••••••••••••••••••••• 

(P m) (edit conunand) •••• t •••••••••••••••••••••••• 

(pattern .• @) (edit command) ••••••••••••••••••• 
pattern match (in editor) ••••••••••••••••••••••• 
PP (edi t command) •••••••..••••••••••••••••••••••• 
ppliII: (edi t command) ••••••..••••••••••••••••••••••• 
PPT (edit command) .••••••.••••••••••••••••••••••• 
PPV (edit command) ••••••..••••••••••••••••••••••• 
prom p t c h a rae t e r •••.•••••.••••••••••••••••••••••• 
PROP (typed by cd! tor) •••.•••••••••••••••••••••• 0 

(R x y) (edi t command) ........................... . 
(Rt x y) (edit command) • t· •••••••••••••••••••••• 0 

RAISE (edit command) ••••.••••••••••••••••••••••• 
(RAISE X) (edit command) .•••••••• 0 •••••••••••••• 

(RC x y) (edit command) •.••••••••••••••••••••••• 
(Ret x y) (edit command) •••••••••••••••••••••••• 
REAOL INE[ LINE; LISPXFLG] .....•.••••••••••••••••.• 
REPACK (edit command) ••••••••••••••••••••••••••• 
(REPACK @) (edit conunand) ••••••••••••••••••••••• 
(REPLACE @ WITH ... ) (edit command) ••••••••••••• 
RESETVAR[RESETX;RE5ETY;RESETZ] NL •.•.•••••.••••• 
(RESE TVAR var form . corns) (ed! t cOlilDand) ••••••• 
(RI n m) (edi t command) ••••••••••••••••••••••••• 
(RO n) (edit command) ••••••••••••••••••••••••••• 
(5 var . @) (edit command) ••• 0 •••••••••••••••••• 

SAVE (edi t command) ••••••••••••••••••••••••••••• 
search algorithm (in editor) •••••••••••••••••••• 
(SHOW. x) (edit command) ••••••••••••••••••••••• 

INDEX.9.l 

Page 
Numbers 

9.34 
9.34,84 
9.24,28 
9.66 
9.66 
9.47 
9.48 
9.3.17 
9.36 
9.5,36 
9.5,36 
9.86 
9.32 
9.32 
9.64,70 
9.86 
9.79 
9.85 
9.83,85 
9.78 
9.20 
9 .. 32-33 
9.8,18-t9 
9.19 
9.65 
9.71,76,83 
9.27 
9.66 
9.2,60 
9.60 
9.60 
9.33 
9.21-23,88-89 
9.2,60 
9.61 
9.61 
9.61 
9.2 
9.85 
9.7,57 
9.59 
9.74 
9.75 
9.59 
9.59 
9.81 
9.75 
9.76 
9.42 
9.77 
9.77 
9.8,53 
9.8.53 
9.36 
9.72,74,83-84 
9.23-25 
9.66 



spelling correction ....•..••••••••••.•••••••..•• 
(SPLITC x) (edit command) ..•.•...••••.•••••••.•• 
STOP (edit command) ....•...•.••.••...•.••••.•••• 
structur~ modification commands (in editor) 
(SURROUND @ IN •.. ) (edit command) •..••••..•.••• 
(SW n m) (edit command) .••••••••••••••••••.••••• 
teletype ........... ............................. . 
TEST (edit command) .••••••••••••.••••••••••••••• 
THRU (edi t command) •.••.••.•..•••••••.•••.•••••• 
TO (edit command) .•••••••••••••••••••••••••••••• 
TTY: (edit command) ...••...••••..••••••.•••••••• 
TTY: (typed by editor) •.•••••••••••••••••••••••• 
U-CASE[ X] .............••.••••••••••••••••••••••• 
UNBLOCK (edit command) .•••.••.•••••••••••••••••• 
UNDO (edit command) ....•..••••••••••.••••.•••.•• 
undoing (in editor) ....••.••.••.•••••••••••••••• 
UNOOLST (editor variable/parameter) ••••••••••••• 
UNDONE (typed by editor) .•.•.••••••••••••••••••• 
UNFIND (editor variable/parameter) •••••••••••••• 

UNSAVEO (typed by editor) .•••••••••••••••••••••• 
UP (cdi t command) .......•.•.•.•••••••••••••••••• 
UPFINDFLG (editor variable/parameter) ••••••••••• 
USERMACROS (editor variable/parameter) ••.•..•••. 
USERMACROS (.pret tydef command) .....•.•.•••.•.••• 
USERWOROS (system variable/parameter) ••.••.••.•• 
WITH (in REPLACE command) (in editor) •.•••••• 0 •• 

WITH (in SURROUND command) (in editor) .•••..•••. 
(XTR . @) (edit command) .•.•••••••••.••••••••••• 
o (edit conunand) .........•.•.•.•••••.•.•••••..•• 
! 0 (edi t comm<and) .•.••.••••••••.••••.••••••••••• 
!NX «edit command) < .......•••••.•••••.••••••••.•• 
!UNDO (edit command) ......•.••••.••••.••.••••••• 
II[COMS] NL*. • ••••••••••••••••••••••••••••••••••• 
" (in INSERT. REPLACE, and ,CHANGE commands) 
S (alt-mode) (in edit pattern) ....••••.•••.••••• 
S (elt-mode. in R command) (in editor) •••••••••• 
SS (two alt-modes) (in edit pattern) ..•••••••••• 
SBUFS (alt-modeBUFS) (prog. asst~ command) .•.••• 
& (in edit pattern) .•••.•••••••••••••• ~ •••••.••• 
& (typed by editor) .. < ...••.••••••••••••••••.•.•• 
- (typed by editor) .........•••••••••..••••••••• 
* (in HBO command) (in editor) •..••••.•..•••••.• 
-*COMMENT** (typed by editor) •.•.•.•..•••••••••• 
**COMMENT**FLG (prettydef variable/parameter) 
*ANY* (in edit pattern) .....••••...•....••..•••• 
-- (in edit pattern) .•....•••••••••••••••••••••• 
-) (typed by editor) .•...•.•••••.•••.•••••••.•.• 
-n (n' a number. edi t command) •••.•..••.••••••.•.• 
(-n e1 ... em) (n a number, edit cOlIIDand) ••••••• 
•. (edi t conunand) ...•••••••••••••••••••••••••••• 
... (in edit pattern) ........ 0 •••••••••••••••••• 

•.. «typed by editor) ...•.•••••••••••••••••.•••• 
(2ND. @) (edit command) ..•••••••••••.••••••.••• 
(3RD • @) (edit command) •.••.••••••••••••••••••• 
8 (instead of left parenthesis) ••••••••••••••••• 
(: el .•• em) (edit command) ••••••••••••••.••••• 

INDEX.9.4 

Page 
Numbers 

9.82.86 
9.77 
9.71-72,76,83-85 
9.36-60 
9.48 
9.59-60 
9.61 
9.79 
9.54-57 
9.54-57 
9.66,70-72 
9.71 
9.74 
9.79 
9.10,78 
9.10,36,78-79 
9.72,78-79,84 
9.78 
9.25,35,41-42.46.48-51. 

72-73,76,84 
9.85 
9.12,15-16,25,43 
9.25,28,44 
9.70 
9.70,80' 
9.85-87 
9.42 
9.48 
9.45 
9.4-5,17 
9.18 
9.19-20 
9.78 
9.29,63 
9.43 
9.12,21 
9.58 
9.22 
9.7 
9.11,21 
9.2 
9.2 
9.47 
9.60 
9.61 
9.21 
9.11,22 
9.58 
9.3,17 
9.5,36 
9.33 
9.22-23 
9.13,15 < 

9.30 
9.30 
9.82 
9.14,40 



(; . x) (ed i t command) ••.•.....•••••••••••..•..• 
= (typed by edi tor) ...••..••••••••••.••••••••••• 
== (in edit pattern) .••..•••.•..••••.••••••••••• 
=E (typed by editor) ..••.••••••••••••••••••••••• 
=EOITF (typed by editor) ........................ . 
=EDITP (typed by editor) .••••••••••••••••••••••• 
=EDITV (typed by editor) ..•.••••.•••••••••••••.• 
? (edit command) ..................••.••...•.•..• 
? (typed by editor) ...•..•..•.••••.••••.•••••••• 
@ (location specification) (in editor) •••••••••• 
(@1 THRU @Z) (edit command) ••••••••••••••••.•••• 
(@l THRU) (edit command) .••••••••••••••••••••••• 
(@1 TO @Z) (edit command) ••••••••••••••••••••••• 
(@1 TO) (edit command) ••.••••••••••••••••••••••• 
\ (edi t command) .•.•••••.••••••••••••••••••••••• 
(\ a tom) (ed i t command) •.••••••••••••••••••••••• 
\P (edi t command) .••.••••••••••••••••••••••••••• 
t (edit command) •.••..•..••••••••••••••••••••••• 
.. (edi t command) •••..••. I· ••••••••••••••••••••••• 

( .. pattern) (edit command) •••••••••••••••••••••• 
.... (edi t cOlDIDand) •••••••.••••••••••••••••••••••• 

INIDEX.9.S 

Page 
Numbers 

9.76 
9.12 
9.22 
9.82 
9.86 
9.85 
9.85 
9.2,60 
9.3 
9.29 
9.54 
9.56 
9.54 
9.56 
9.11.34-35,41 
9.34 
9.11,35,61 
9.4,18 
9.34 
9.30 
9.34 



SECTION 10 

ATOM, STRING, ARRAY, AND STORAGE MANIPULATION 

10.1 Pnames and Atom Manipulation 

The term 'print name' (of an atom) in LISP 1.5 referred to the characters that 

were output whenever the atom was printed. Since these characters were stored 

on the atom's property list under the property PNAME, pname was used 

interchangeably with 'print name'. In INTERLISP, all pointers have pnames, 

although only literal atoms and strings have their pname explicitly stored. 

The pname oJ a pointer are those character, that are output when the pointer is 
printed using print. 

e.g., the pname of the atom ABCX(Ot consists of the five characters ABC(D. The 

pname of the list (A B C) consists of the seven characters (A B C) (two of the 

characters are spaces). 

Sometimes we will have occasion to refer to the prin2-pname. 

The prin2-pname are those character, output .hen the corre,ponding pointer is 
printed using prin2. 

Thus the prinZ-pname of the atom ABCX(O is the six characters ABCI(D. Note that 

the pname of numbers depends on the setting of radix. 

1------------------------------------------------------------------------~-----X is the escape character. See Sections 2 and 14. 

10.1 



pack[x] If ~ is a list of atoms, the value of pack is a 

sin!"le atom whose pname is the concatenation of 

the pnames of the atoms in !, e.g. 

pack[(A BC OEF G)]=ABCDEFG. 

If the pname of the value of pack[x] is the same 

as that of a number, pack[x] will be that number, 

e.g. pack[(l 3.4)]=13.4, 

pack[(1 E -2)]-.01. 

Although ! is usually a list of atoma, it can be a 

lis't of arbitrary INTERLISP pointers. The value 

of jpack is still a single atom whose pname is the 

saml3 as the concatenation of the pnamss of all the 

pointers in !, e.g. 

pack[«A B)·CO-)] • X(AX BX)CO. 

In other words, mapc[x;prinl] and prin1[pack[x]] 

alw4lYs produce e"actlu the same output. In fact. 

pacl~ actually operates by calling prin1 to convert 

the pointers to a stream of characters (without 

printing) and then makes an atom out of the 

result. 

Note: atom.s are re.stricted to ( 99 characters. Attempting to create a larger 
atom et ther uta pack. or bjl tuptng one in (or readtng Irom a Ii le) uri. l L 
cause an error. ATOM TOO L()NG. 

unpack[x;flg] The value of unpack is the pname of ! as a list of 

characters (atoms),2 e.g. 

2--------------------------------·----------------------------------------------There are no special 'character-atoms' in INTERLISP, i.e. an atom· 
consisting of a single chara(:ter is the same as any other atom. 

10.2 



unpack[ABC] = (A B C) 

unpack[-ABC(O-] = (A B C X( D) 

In other words prin1[x] and mapc[unpack[x];prinl] 

produce the same output. 

If flgaT, the prinZ-pname of ! is used, e.g. 

unpack[-ABC(O-.T]- (X- ABC X( 0 X-). 

Note, unpac![x] per/oTims ! co_ses, where! is the number 0/ characters in the 
pname oJ !.. 

dunpack[Xiscratchlistiflg] a destructive version of unpack that does not 

perform any conses but instead uses scratchlist to 

make a list equal to unpack[x;tlg]. If the 'p-name 

is too long to fit in scratchlist, dunpack calls 

unpack and returns unpack[xiflg]. Gives an error 

if scratchlist is not a list. 

nchars[Xiflg] 

nthchar[Xiniflg] 

number of characters in pname of !.3 If flg=1, the 

prinZ-pnama is used. 

nchars[-ABC-iT]=5. 

E.g. nchars[-ABC-]-3, 

Value is nth character of pname of!. Equivalent 

to car[nth[unpack[x;flg];n]] but faster and does 

no conses. n can be negative, in which case 

counts frOID end of pname, e • 9 • -1 refers to the 

3---;~;h-~;h~h~;-~~~-~-;h~~-;-;;;~-;~~h-f;;;;;-~~-~~j~~~~--;h;;-;;;;;;;;-h;~;-;; 
internal representation of their pname, i.e. literal atoms and strings, 
than they do on numbers and lists, as they do not have to siDIulate 
printing. 

10.3 



packc[x] 

eheon[x;flg] 

chcon1[x] 

deheon[x;seratchlist;flg] 

character[n] 

fcharacter[n] 

gensym[char] 

las1t character, -2 next to last, et~. If!!. is 

gre~lter than the number of characters in the 

pnarlle, or less than minus that number, or 0, the 

value of nthchar is NIL. 

lik4! pack except! is a list of (ASCI I) character 

eod4!s, e. g • packer (70 79 79) }=FOO. 

liku unpack, except returns the _ pname of ! as a 

lis1~ of (ASCII) character codes, e.g. 

chcon[FOO] • (70 79 79). If flg-r, the prinZ-pname 

is used. 

returns character code of first character. of pname 

of ~$, e.g. chconl[FOO] = 70. Thus chcon[x] could 

be '~itten as mapcar[unpack[x];chconl]. 

similar to dun pack 

II i3 an ASCII character code. Value is the ato~ 

havlng the corresponding single character as its 
4 pn aft!,! , 8. g. character[ 70] • F. Thus, unpack[ x] 

could be written as mapcar[chcon[x];character]. 

fast version of character that compiles open. 

Genelrates a new atom of the form xnnnn, where 

!=ch!£ (or A if char is NIL) in which each of the 

--------------------------------------------------------------.----~----~------4 See footnote 2. . 

10.4 



~IS is a digit •. Thus, the first one generated is 

AOOG 1, the second A0002, etc. g.ensYJD provides a 

way of generating new atoms for various uses 

within the system. The value or gennum, initially 

10000, determines the next gensym, e.g. ir gennum 

is set to 10023, gensym[]=A0024. 

The term gensum is used to indicate an. atom that was produced bll the Junction 
gensym. Atoms generated bl/ gensgm GTe the same as anll other l (tera l atoms, 
they have property lists. and can be ,ipen function definitions. Note that the 
atoms are not guaranteed to be new. 

For example, if the user has previously created A0012, either by typing 1t in, 

or via pack or gensym itself, when gennum gets to 10011, the next value 

returned by gensym will be the A0012 already in existence. 

mapatoms[fn] 

10.2 String Functions 

stringp[x] 

strequal[x;y] 

mkstring[x] 

rstring[] 

Applies fn to every literal atom in the system, 

e.g. mapatoms[(LAHBOA(X)(ANO(SUBRP X)(PRINT X»)] 

will print every~. Value of mapatoms is NIL. 

Is ! if ! a string, NIL otherwise. Note: if ! is 

a string, nlistp[x] is T, but atom[x] is NIL. 

Is ! if ! and l are both strings and equal, i.e. 

print the same, otherwise NIL. Equal uses 

strequal. Note that strings may be equal without 

being !I. 

Value is string corresponding to prin1 of !. 

Reads a string - see Section 14. 

10.5 



substring[x:n:m] 

gnc[x] 

Value is the substring of ! consisting of the rrth 

thru mth characters of x. If m is NIL. the -, 
substring is the nth character of ! thru the end 

of ~~. !l and m cen be negative numbers, as with 

nthc:har. Returns NIL if the substring is not well 

defi.ned, e.g. !l or m > nchars[x] or 

< minus[nchars[x]] or ! corresponds to a character 

in ! to the righ~ of the character indicated by m. 

If ! is not a string, equivalent to 

subs,tring[mkstring[x];n ;m], except substring does 

not have to actually make the string if .! is a 

litelrel atom.6 For example, 

substring[CA B C);4;6]-WB C·. 

Bet !ext £haracter of string!. Returns the next 

char'acter of the string, Cas an atom), and removes 

the character from the string. Returns NIL if .! 

is the null string. If! isn't a string, a string 

is made. Used for sequential access to characters 

of a. string. 

Note that if ! is a substring of I. gnc[x] does 

not remove the character from I. i.e. pnc doesn't 

physically change the string of characters. just 

the pointer end the byte count. B 

6---------------------------------~--------------------------------------------See string storage section that follows. 

6 See string storage section that follows. 

10.6 



glc[x] 

rplstring[x;n;y] 

mkatom[x] 

sets last !;,haracter of string!. Above remarks 

about pnc also supply to glc. 

lambda nospread function. Concatenates (copies 

of) any number of strings. The arguments are 

transformed to strings if they aren' t strings. 

Value is the new string, e.g. 

concat[ -ABC- ;OEF; -GHI-] = -ABCOEFGHI-. The value 

of concat[l is the null string, --

Re!!ace characters of string ! beginning at 

character n with string l. n may be positive or 

negative. ! and l are converted to strings if 

they aren't already. Characters are smashed into 

(converted)!. Returns new!. Error if there is 

not enough room in ! for l' i.e. the new string 

would be longer than the original.' Note that if ! 

is a substring of !. ! will also be modified by 

the action of rplstring. 

Creates an atom whose pname is the same as that of 

the string ! or ,if ! isn't a string. the same as 

that of mkstring[xl, e.g. mkatom[(A B C)l is the 

atom X(AX ax ex). If atom would have ) 99 

characters, causes an error, ATOM TOO LONG. 

7------------------------------------------------------------------------------If l was not a string, ! will already have been partially modified since 
rplstring does not know whether l will 'fit' without actually attempting 
the transfer. 

10.7 



Searching Strings 

strpos is a function for searching one string looking for another. Roughly it 

corresponds to member, except that it returns a character position number 

instead of a tail. This number can then be given to substring or utilized in 

other calls to strpos. 

strpos[x;y;start;skip;~nchor;tail] 

! and I are both strings (or else they are 

converted automatically). Searches I beginning at 

cha."acter number start, (or else 1 if sta~rt is 

NIL) and looks for a sequence of characters equal 

to!. If a match is round, the corresponding 

chal"acter position is returned, otherwise NIL, 

e.g., , 

strpos[-ABC-,-XYZABCDEF-]=4 

strpos[-ABC·,·XYZABCDEF-;5]=NIl 

strpos[·ABC·,·XYZABCDEFABC-;5]=10 

ski)! can be used to specify a character in ~ that 

matches any character in I, e.g. 

strpos[·A&C'-;-XYZABCDEF·;Nll;&]=4 

If anchor is T, strpos compares ! with the 

chal~acters beginning at position start, or 1. If 

that comparison fails, strpos returns NIL without 

seal~ching any further down I. Thus it can be used 

to compare one string with some portion of another 

string, e.g. 

strpos[-ABC·;·XYZABCDEF·;NIl;NIl;T]=NIl 

strpos[·ABC·;·XYZABCDEF·;4;NIL;Tl=4 

10.8 



Finally, if tail is T. the value returned by 

strpos if successful is not the starting position 

of the sequence of characters corresponding to !, 

but the position of the first. charac ter after 

that, i.e. starting point plus nchars[x] e.g. 

strpos[-ABC-i-XYZABCOEFABC-;NIl;NIliNIliT]-7. 

Note that strpos[-A-;-A-;NIL;NIL;NIL;T]-2, even 

though -A- has only one character. 

Example Problem 

Given the strings !, l' and !, write a function ~ that will make a string 

corresponding to that portion of ! between and e.g. 

Solution: 

(FOO 
[LAMBDA (X Y Z) 

(AND (SETQ Y (STRPOS Y X NIL NIL NIL T» 
(SETQ Z (STRPOS Z X V»~ 
(SUBSTRING X Y (SUB1 Z]) 

strposl[a;str;start;neg] str is a string (or else it is converted 

automatically to a string), ! is a list of 

characters or character codes.8 strposl searches 

str beginning at character number start (or else 1 

if .!1!.!::!=NIl) for one of the characters in~. If 

one is found, strposl returns as its value the 

8---------~--------------------------------------------------------------------If any element of a is a number, it is assumed to be a character code. 
Otherwise, it is converted to a character code via chconl. Therefore, it 
is more efficient to call strposl with! a list of character codes. 

10.9 



cor'responding character position, otherwise NIL. 

E.gl., strposl[(A B C);-XYZBCO·]=4. If neg=T, 

str'posl searches for a character not on !, e.g., 

strposl[(A B C); ·ABCOEF·:NIL;T]=4. 

If ! is an array, it is treated as a bit table. 

Thel bits of (EL TAl) correspond to character 

codes 0 to 43Q, of (ELT A 2) to codes 44Q to 107Q, 

etc:. Thus an array whose 'first element was 17Q 

wOUild be equivalent to a list (400 410 420 430) or 

(1_. I I- I). 

If ~ is not a bit table (array), strposl first converts it to a bit table using 

makebittable described below. If strposl is to be called frequently with the 

same list of characters, a cons,iderable savings can be achieved by converting 

the list to a bit table once, and then passing the bit table to strpos~ as its 

first argument. 

makebittable[l:neg;a] makes a bit table suitable for use by strposl. ! 

andl neg are as for strposl. If! is not an array 

with at least 4 elements, makebittable will create 

an array and return that as its value. Otherwise 

it uses (and changes) !. 

Note: if neg=T. strposl must call makebittable whether ! is a list or an 

array. To obtain bit table a/fficiency with neg=T, makebi ttable should be 

called with neg=1, to construct the -inverted- table, and the resulting table 

(array) should be given to strpc,sI with neg-NIL. 

10.10 



String Storage 

A string is stored in 2 parts; the characters of the string, and a pOinter to 

the characters. The pointer, or 'string pointer', indicates the b,te at which 

the string beg,ins and the length of the string. It occupies one word of 

storage. The characters of the string are stored five characters to a word in 

a portion of the INTERLISP address space devoted exclusively to storing 

characters. 

Since the internal pname of literal atoms also consists of a pOinter to the 

beginning of a string of characters and a byte count, conversion between 

literal atoms and strings does not require any additional storage for the 

characters of the pname, although one cell is required for the string pointer. 9 

When the conversion is done internally, e.g. as in substring, strpos, or 

strposl, no additional storage is required for using literal atoms instead of 

strings. 

The use of storage by the basic string functions is given below: 

mkstring[x] x string 

x literal atom 

other 

substring[x;n:m] ! string 

x literal atom 

other 

no space 

new pOinter 

new characters and pointer 

new pointer 

new pOinter 

new characters and pointer 

9-~---~--~---------------~---------------------------- -------------------------Except when the string is to be smashed by rplstring. In this case, its 
characters must be copied to avoid smashing the pname of the atom. 
rplstring automatically performs this operation. 

10.11 



gnc[x] and glc[x] x string 

other 

no space, pointer is modified 

like mkstrina. but doesn '·t make much 

sense 

args, any type new characters for whole new 

string, one new pointer 

rplstring[x:n:y] x string no new space unless characters are in 

pname space (as result of 

mkstring[ atom]) in which case 1f is 

quietly copied to string space 

x other new pointer and characters 

y any type type of y doesn't matter 

10.3 Array Functions 

Space for arrays and compiled code are both allocated out of a common array 

space. . Arrays of pointers and unboxed numbers may be manipulated by the 

following functions: 

array[n:p:v] This function allocates a block of n+Z words, of 

which the first two are header information. The 

nex1; pin are cells which will contain unboxed 

numbers, and are initialized to unboxed o. . The 

last n-p 2 0 cells will contain pointers 

ini1~ialized with y, i.e., both £!!: and cdr are 

avajLlable for storing information, and each 

ini1~ially contain y. If ~ is NIL, 0 is used 

(i.EI., an array containing all INTERLISP 

poilllters) • The value of array is the array, also 

10.12 



called an array pOinter. If sufficient space is 

not available for the array, a garbage collection 

of array space, GC: 1, is initiated. If this is 

unsuccessful in obtaining sufficient space, an 

error is generated, ARRAYS FULL. 

Array-pointers print as In, _here n is the octal representation 0/ the pointer. 
Note that In _tll be read a$ a lit~ral atom. and not an array pointer. 

arraysize[a] Returns the size of array I. Generates an error, 

ARG NOT ARRAY, if I is not an array_ 

arrayp[x] Value is ! if ! is an array pointer otherwise NIL. 

No check is made to ensure that ! actually 

addresses the beginning of an array. 

elt[a.n] Value is nth element of the array 110 elt 

generates an error, ARG NOT ARRAY, if ! is not the 

beginning of an array.l1 If n corresponds to the 

unboxed region of !, the value of elt is the full 

36 bit word, as a boxed integer. If n corresponds 

to the potnter region of !, the value of elt is 

the ~ half of the corresponding element. 

seta[a;n:v] sets the nth element of the array I_ Generates an 

io------------~---------------~---~------------------- -------------------------elt[a;l] is the first element of the array (actually corresponds to the 3rd 

11 

cell because of the 2 word header). 

arrayp is true for pointers into the middle of arrays, but elt and seta 
must be given a pointer to the beginning of an array, i.e.,~ value of 
array. 

10.13 



error, ARG NOT ARRAY, if! is not the beginning 

of an array. If ~ corresponds to the unboxed 

regjion of !, y must be a number, and is unboxed 

and stored as a full 36 bit word into the nth 

elenlent of!. If!! corresponds to the pointer 

region of !, y replaces the £!! half of the nth 

elenlent. The value of seta is y. 

Note that seta and el t are a llDall.!; i""erse operations. 

eltd[a;n] 

setd[a;n;v] 

samel as 81 t for unboxed region of a, but returns 
cdr half of nth element, if.!! corresponds to the 
pointer regionlOf !. 

samel as seta for unboxed region of a, but sets cdr 
half' of nth element, if n corresponds to tiii 
poinlter region of!. The value of ~ is .!. 

In ,other words, eltd and setd are! always inverse operations. 

10.4 Storage Functions 

reclaim[n] Initiates a garbage collection of type n. Value 
of r~eclaim is number of words available "(for that 
typi) after the ~ollection. 

Garbage collections. IDhether inuoled directlll bll the user or indirectlll bll need 
Jor storage. do not confine their actil/itll solelll to the data tllpe lor which 
thell were called. but automaticallll collect some or all 0/ the other tllpes (see 
Section 8). 

ntyp[x] Value is type number. for the data type of 

INTERLISP pointer !, e.g. ntyp[(A • B)] is 8, the 

type number for lists.. Thus GC: 8 indicates a 

garbage collection of list words. 

10.14 



typep[x;n] 

gcgag[message] 

type number 

arrays, compiled code 1 
stack positionsi 2 
list words· 8 
atoms . 12 
floating point numbers 16 
large integers 18 
small integers 20 
string pointers 24 
pname storage 28 
string storage 30 

eq[ntyp[x];n] 

message is a string or atom to be printed (using 

print) wherever a garbage collection is begun. If 

message=T, its 'standard setting, GC: is printed, 

followed by the type number. When the garbage. 

collection is c!:omplete. two numbers are printed 

the number of words collected for that type, and 

the total number or words available for that type, 

i.e. allocated :but not necessarily currently in 

use (see minfs ~elow). --, 

Example: 

"'RECLAIM( 18) 

GC: 18 
511, 3071 FREE WORDS 
3071 
"'RECLAIM(12) 

GC: 12. 
1020, 1020 FREE WORDS 
1020 

If message=NIL, no garbage collection message is 

printed, either on entering or leaving the garbage 

collector. Value of i£H!i is old setting. 

10.18 



minfs[njtyp] 8ets the minimum amount of free storage which will 

be maintained by the garbage collector for data 

types of type number!IR. If,p after any garbage 

collection tor that type, fewer than II free words 

are pre$ent. sufficient storage will be added (in 

512 word chunks) to rai~e the level to n. 

If !IR=NIl, 8 is used, i.e. th~ minfs.refers to 

lis·t words. 

If l~.NIl, minfs returns the current !!!!!!f! setting 

for the corresponding type. 

A minfs setting can also be changed dynamically, even during a garbage 

collection, by typing control-8 followed by a number, followed by a perio,d. 12 

If the control-S was typed durirng a garbage collection, the number is the new 

minfs setting for the type beinlg collected, otherwise for type 8, i.e. list 

words. 

Note, A garbage collection oJ a 'related' tupe mall also cause more storage to 
be assigned to that tllpe. See discussion oJ garbage collector algorithm. 
Section 8. 

storage[flg] Prints amount ot storage (by type number) used by 

and assigned to the user, e.g. 

12-----------------------------------------------------------------------------When the control-S is typed, INTERLISP immediately clears and saves the 
input buffer, rings the bell, and waits for input, which is terminated by 
any non-number. The input buffer is then restored, and the program 
continues. If the input was terminated by other than a period, it is 
ignored. 

10.16 



gctrp[n] 

"STORAGE() 

TYPE USED 
1 80072 
8 7970 
12 7032 
16 0 
18 1124 
24 118 
28 4226 
30 573 
SUM 101115 

ASSIGNED 
87552 
9216 
7680 
512 
2560 
512 
4608 
1024 
113664 

If f1g=T. includes storage used by and assigned to 

the system. Value is NIL. 

sarbage£ollection tra~. Causes a (simulated) 

control-H interrupt when the number of free list 

words (type 8) remaining equals !!, i.e. when a 

garbage collection would occur in n more conses. 

The message GCTRP is printed, the function 

interrupt (Section 16) is called. and a break 

occurs. Note that by advising (Section 19) 

interrupt the user can program the handling of a 

1lillI!. instead of going into a break. 18 

Value of 1lillI!. is its last setting. 

gctrp[ -1] will I disable' a previous Qctrp since 

there are never -1 free list words. qctrp is 

initialized this way. 

ii-----------------------------------------------------------------------------For Ilf!!:..2 interrupts, interrupt is called with intype (its third argument) 
equal to 3. If the user does not want to go into a break, the advice 
should still allow interrupt to be entered, but first set intype to -1. 
This will cause interrupt to -quietly· go away by calling the function that 
was interrupted. The advice should not exit interrupt via return, as in 
this case the function that was about to be called when the interrupt 
occurred would not be called. 

10.17 



conscount[n] 

closer[a.x] 

openr[a] 

gct,rp[] returns number of list words left, i.e. 

nun~er of conses until next type 8 garbage 

collection, see Section 21. 

conscount[ ] returns 

INT'ERLISP started up. 

conscount to !!. 

number of conses since 

If !! is not NIL, resets 

Stores ! into memory location ! . Both ~ and !! 

must be numbers. 

Value is the number in memory location .!, i. e. 

boxed. 

10.18 



Index for Section 10 

AOOOn (gensym) · ................................ . 
ARG NOT ARRAY (error message) · ............................. . · ............................... . ARRAY[N;P;V] SUBR 
array functions 
array header 
ARRAYP[X] SUBR 

· .................................. . 
ARRAYS FULL (error message) ..................... 
ARRAYSIZE[A] · .................................. . 
ATOM TOO LONG (error message) 
bell (typed by system) .......................... 
CHARACTER[N] SUBR 
character atoms 

· ............................. . · ............................... . · ............................... . · ............................. . character codes 
CHCON[X;FLG] SUBR 
CHCON1[X] SUBR 
ClOSER[A;X] SUBR 

· ................................ . ................................ · ............................... . compiled code 
CONCAT[Xl;X2: .•• ;Xn] SUBR­
CONSCOUNT[N] SUBR · ............................. . 
control-H ....................................... ....................................... control-S 
DCHCON[X;SCRATCHlIST;FlG] 
DUNPACK[X;SCRATCHLIST;FLG] 
ElT[A;N] SUBR · ................................ . ELTO[A;N] SUBR 
FCHARACTER[N] SUBR 
garbage collection 

.............................. .............................. 
GC:, (typed by system) ••••••••••••••••••••••••••• 
GC: ,1 (typed by system) 
GC: 8 (typed by system) 
GCGAG[MESSAGE] SUBR 

......................... 
GCTRP[N] SUBR · ................................. . 
GENNUM (system variable/parameter) 
GENSYM[CHAR] · .................................. . 
GlC[X] SUBR ..................................... 
GNC[X] SUBR ..................................... 

· .................................. . input buffer 
INTERRUPT[INTFN.INTARGS;INTYPE] ................. · ................................. . literal atoms 
MAKEBITTABLE[L;NEG;A] · ............................. . · ............................. . · ................................ . 
MAPATOMS[FN] SUBR 
MINFS[N;TYP] StlBR 
MKATOM[X] SUBR 
MKSTRING[X] SUBR 
NCHARS[X] SUBR 
NTHCHAR[X;N] SUBR 

................................ · ..................... ' ............ . · ........... ' .................. . 
NTYP[X] SUBR 
null string 
OPENR[A] SUBR 
PACK[X] SUBR 
PACKC[X] SUBR 

· .................................. . 
· ................................. . · .................................. . · ................................. . .......................................... pnames 

prin2-pnames 
print name 
RAOIX[N] SUBR 
RECLAIM[N] SUBR 

· ................................... . ...................................... · ................................. . · ............................... . 

INDEX.10.1 

Page 
Numbers 

10.5 
10.13-14 
10.12 
10.12-14 
10.12 
10.13 
10.13 
10.13 
10.2,7 
10.16 
10.4 
10.2 
10.4 
10.4 
10.4 
10.18 
10.12· 
10.7,12 
10.18 
10.17 
10.16 
10.4 
10.3 
10.13 
10.14 
10.4 
10.13-18 
10.15 
10.13 
10.14 
10.15 
10.17 
10.5 
10.4-5 
10.7,12 
10.6,12 
10.16 
10.17 
10.11 
10.10 
10.5 
10.16 
10.7 
10.5,11 
10.3 
10.3 
10.14 
10.6-7 
10.18 
10.2 
10.4 
10.1-4,11 
10.1,3-4 
10.1 
10.1 
10.14 



RPlSTRING[X;N;Y] SUBR 
RSTRING[] SUBR 
searching strings 
SETA[A;N;V] 
SETO[A;N;V] 
STORAGE[FlG] 
STREQUAl[X;Y] 
string characters 

... , ................................. . .................................... 
string functions 
string pointers 
string storage 
STRINGP[X] SUBR 
STRPOS[X;V;START;SKIP;ANCHOR;TAIL] 
STRPOSl[A;STR;START;NEG] 
SUBSTRING[X:N;H] SUBR 
type numbers 
TVPEP[X;N] 
unboxed numbers (in arrays) 
UNPACK[X;FLG] SUBR 
I (followed by a number) 

..................... 

IND:EX.I0 .2 

Page 
Numbers 

10.7,12 
10.5 
10.8-10 
10.13 
10.14 
10.16 
10.5 
10.11 
10.5-10 
10.6,11 
10.11-12 
10.5 
10.8-9 
10.9-10 
10.6,11 
10.14 
10.15 
10.12 
10.2-3 
10.13 



SECTION 11 

FUNCTIONS WITH FUNCTIONAL ARGUMENTS 

As in' all LISP 1.5 Systems, arguments can be passed which can then be used as 

functions. However, since £!! of a form is neuer evaluated, !22!l or· apply· 

must be used to call the function specified by the value of the functional 

argument •. 

Functions which use functional arguments should use variables with obscure 

names to avoid possible conflict with variables that are used by the functional 

argument. for example, all system functions standardly use variable names 

consisti,ng of the function name concatenated with! or fn, e.g. mapx. Note 

that by specifying the free variables used in a functional argument as the 

second argument to function, thereby using the INTERLISP FUNARG feature, the 

user can be sure of no clash. 

function[x;y] is an nlambda function. If l=NIL, the value of 

function is identical to quote, for example, 

(HAPC LST (FUNCTION PRINT» will cause mapc to be 

called with two arguments the value of 1st and 

PRINT. Similarly, 

(HAPCAR LST (FUNCTION(LAHBDA(Z) (LIST (CAR Z»») 

will cause mapcar to be called with the value of 

1st and (LAMBDA (Z) (LIST (CAR Z»). When 

compiled, function will cause code to be ~omplled 

for !; guote will not. Thus 

11.1 



map[mapx;mapfnl;mapfriZ] 

(MAPCAR LST (QUOTE (LAMBDA --») will cause mapcar 

to be called with the value of 1st and the 

expression (LAMBDA --). The functional argument 

will therefore still be interpreted. The 

corresponding expression using function will cause 

a dummy function to be created with definition 

(LAMBDA --)_ and then compiled. mapcar would then 

be Icalled with the value of 1st and the name of 

the dummy function. See Section 18. 

If l is not NIL_ it is a list of variables that 

are (presumably) used freely by!. In this case, 

the value of function is an expression of the form 

(FUMARG x array), where array contains the 

variable bindings for those variables on ~. 

Funa~ is described on page 11.5-7. 

If ~lapfnZ is NIL, map applies the function mapfnt 

to :.uccessive tails of the list mapx. That is, 

first it computes mapfnl[mapx], and then 

mapf'nl[cdr[mapx]]. etc., until mapx is exhausted. 1 

If mapfnZ is provided, mapfnZ[mapx] is used 

instead of cdr[mapx] for the next call for mapfnt_ 

e.g., if mapfnZ were cddr, alternate elements of 

the list would be skipped. 

The value of map is NIL. map compiles open. 

i--------~--------------------·-------·-·------------- ------------~~-------~--~ i.e." becomes a non-list. 

11.2 



mapc[mapx;mapfnl;mapfn2] Identical to map. except that mapfnl[car[mapx]] is 

computed at each iteration instead of 

mapfnl[mapx]. i.e., mapc works on elements, map on 

tails. The value of mapc is NIL. mapc compiles 

open. 

maplist[mapx;mapfnl ;mapfn2] successively computes the same values that map 

would compute; and returns a list consisting of 

those values. maplist compiles open. 

mapcar[mapx;mapfnl:mapfn2] computes the same values that mapc would compute, 

and returns a list consisting of those values, 

e.g. mapcar[x;FNTYP] is a list of fntyps for each 

element on!. mapcar compiles open. 

mapcon[mapx;mapfnl :mapfn2] Computes the same values as map and maplist but 

nconcs these values to form a list which it 

returns. mapcon compiles open. 

mapconc[mapx;mapfnl:mapfn2] Computes the same values as mapc and mapcar, but 

nconcsthe values to form a list which it returns. 

mapconc compiles open. 

Note that mapcar creates a new list which is a mapping of the old list in that 

each element of the new list is the result of applying a function to the 

corresponding element on the original list. mapconc is used when there are a 

variable number of elements (including none) to be inserted at each iteration, 

e.g. mapconc[X:(LAMBDA (Y) (AND Y (LIST V»~)] will make a list consisting of ! 

with all NILs removed, mapconc[X;(LAHBDA (Y) (AND (LISTP Y) V»~] will make a 

linear list consisting of all the lists on !, e.g. if applied to 

11.3 



«A B) C (0 E F) (G) H I) will yield (A B 0 E F G)~2 

subset[mapxjmapfnl ;mapfn2J applies mapfnl to elements of mapx and returns a 

list of those elements for which this application 

is non-NIL, e.g., 

subset[(A B 3 C 4);NUMBERP] = (3 4). 

map'fn2 plays the same role as' wi th map, mapc, et 

ale subset compiles open. 

map2c[mapx;mapy;mapfnl,mapfnZ] Identical to mapc except mapfnl is a function 

of two arguments, and mapfn1[car[mapx]:car[mapy]l 

is computed at each interation. 3 Terminates when 

etther mapx or ~ are exhausted. 

map2car[mapx;mapy;mapfnl;mapfn2] Identical to mapcar except mapfn1 is a 

func:tion of two arguments and 

mapfnl[car[mapx];car[mapy]] is used to assemble 

the new list. Terminates when either mapx or m!2l 

is ttxhausted. 

Note: CLISP (Section 23) provides a more general and complete facility for 

expressing iterative statements, e.g. (FOR X IN Y COLLECT (CAOR X) WHEN 

(NUMBERP (CAR X» UNTIL (NULL X»). 

2--------------------------------'----------------------------------------------Note that since !!l.i!pconc uses !!.£Q.!!£ to string the corresponding lists 

a 

together, in this example, 'the original list will be clobbered, i.e. it 
would now be «A B 0 E f G) C (0 E F G) (G) H I). If this is an undesirable 
side effect, the functional argument to mapconc should return instead 8 top 
level copy, e.g. in this case, use (AND (lISTP Y) (APPEND V»~. 

mapfn2 is still a function clfone argument, and is applied twice on each 
iteration; mapfn2[mapx] gives the new mapx, mapfnZ[mapy] the new~. cdr 
is used if mapfn2 is not supplied, i.e., 1s NIL. 

11.4 



maprint[lst:file;left:right;sepiPfn:lispxprintflg] 

is a ge·nerel printing function. It cycles through 

1st applying pfn (or print if pfn not given) to 

each element of 1st. Between each application, 

maprint performs prinl of sep, or • • if sep=NIL. 

If left is given, it is printed (using print) 

initially; if right is given it is printed (using 

prinl) at the end. 
, 

For example, maprint[x;NIL;X(;X)] is equivalent to 

prin1 for lists. To print a list with commas 

between each element and a final '.' one could use 

maprint[x;T;NIL;X.;%,]. 

If lispxprintflg • T, lispxprinl is used for prinl 

(see Section 22). 

Mapdl,searchpdl See Section 12. 

mapatoms See Section 5. 

every, some, notevery, notany See Section 5. 

Funarg 

function is a function of two arguments, 2f' a function. and I a list of 

variables used freely by!. If I is not NIL, the ualue of function is an 

expression of the form (FUNARG x array), where array contains the bindings of 

the variables on l at the time the call to function was evaluated. funarg is 

not a function itself. Like LAPlBDA and NLAHBDA. it has meaning and is 

specially recognized by INTERLISP only in the context of applying a function to 

arguments. In other words, the expression (FUNARG x array) 15 used exactly 

11.5 



like a function. 4 When a funarg is applied, the stack is modified so that th~ 

bindings contained in the arra3' will be in rorce when !, the runction. 1s 

called. 6 

For example, suppose a program wished to compute (FOO X (FUNCTION FIE», and 

fie used land! as free variabJles. If foorebound land z, fie would obtain 

the rebound values when it was applied from inside of foo. By evaluating 

instead (FOO X (FUNCTION FIE (Y Z»), foo· would be called with 

(FUNARG FIE array) as its second/argument, where arral contained the bindings 

of ~. and! (at the time foo was c:alled). Thus when fie was applied from inside 

of foo, it would 'see' the original values of land !. 

However, funarg is more than ~Iust a way of circumventing the clashing of 

variables. For examp.le, a funarQ expression can be returned as the value of a 

computation, and then used 'hlgher up', e.g., when the bindings of the 

variables contained in array: werli! no longer on the stack. Furthermore, if the 

function in a funarg expression .sets any of the variables contained in the 

array, the array itself (and only the array) w1ll be changed. . For example, 

suppose foo is defined as 

(LAMBDA (LST FN) (PROG (Y Z) (SElQ Y 8c) (SETQ Z 8c) ••• (HAPC LIST FN) ••• » 

and (FOO X (FUNCTION FIE (Y Z» )is evaluated. If one application of fie (by 

the mapc in foo) changes ~ and !, then the next application of fie will obtain 

the changed va lues of land ! retsu 1 ting from the previous appl ica tion of fie, 

since both applications of fie come from the exact same funarg object, and 

hence use the exact same array. The bindings of land! bound inside of foo, 

and the bindings of 1.. and ! abofJe foo would not be affected. In other. words, 

4------------------------------------------------------------------------------LAMBDA, NLAMBDA, and FUNARG expressions are sometimes called • function 

6 

objects' to distinguish them from functions, i.e., literal atoms which have 
f~nction definitions. 

The implementation of funarg is described in Section 12. 

11.6 



the variable bindings contained in array are a part of the function object, 

i.e., the funarg carries its environment with it. 

Thus by creating. a funarg expression with function, a program can create a 

function object which has updateable binding( s) associated with the object 

which last between calls to it, but are only accessible through that instance 

of the function. For example, using the funarg device, a program could 

maintain two different instances of the same random number generator in 

different states, and run them independently. 

Example 

If foo is defined as (LAMBDA (X) (CONO «ZEROP A) X) (T (MINUS X») and fie as 

(LAMBDA NIL (PROG (A) (SETQ A 2) (RETURN (FUNCTION FOO»». then if we perform 

(SETQ A 0), (SETQ FUM (FIE», the value of f!!!!! is FOO, and the value of 

(APPLY* FUM 3) is 3, because the value of A at the time faa is called is O. 

However if fie were defined instead as 

(LAMBDA NIL (PROG (A) (SETQ A Z) (RETURN (FUNC.TION FOO (A»»), the value of 

fum would be (FUNARG FOO array) and so the value of (APPLY* FUM 3) would be -3, 

because the value of A seen by foo is the value A had when the funarg was 

created inside of fie, i.e. 2. 

11.7 



Index for Section 11 

APPLY[FN;ARGS] SUBR .......•••••.••••••.••••.••.• 
APPLY*[FN;ARG1; ... ;ARGn] SUBR* ••••••••••••••.••• 
CLISP ........................................... . 
F UNARG .......................................... . 
FUNCTION[EXP;VLIST] NL •....••.•••••••••••••.•••• 
func~tion objects ..•.•..•.. , ••.••••••••••••••••• 0 •• 

fune tiona 1 argumen ts ....•.•••••••••••••••••••••• 
MAP[ MAPX; MAPFN 1 ; MAPFN2 ] .. 0' •••••••••••••••••••••• 

MAP2C[MAPX;MAPV;MAPFN1;MAPFNZ] .••••••••••••••••• 
MAP2CAR[MAPX;MAPY;MAPFNl;MAPFN2] •. ~ •••••.•.•.••• 
MAPC[MAPX;MAPFN1;MAPFN2] .Q •••••••••••••••••••••• 

MAPCAR[MAPX;MAPFN1;MAPFN2] .•.••.•••••••••....••• 
MAPCON[MAPX;MAPFN1;MAPFN2] ...•.••.•.•..•.•...••• 
MAPCONC[MAPX;MAPFN1;MAPFN2] •..•••••.•••••.•••••• 
MAPLIST[MAPX;MAPFN1;MAPFN2] ~ .••.•.••..••.•.•...• 
MAPRINT[LST;FILE;LEFT;RIGHT;SEP;PFN;LSPXPRNTFLG] •• 
SUBSET[MAPX;MAPFNl;MAPFNZ] ••.••••••.•••••••••.•• 
variable bindings .•••••••.•••••••••••••••••••••• 

INDIEX .11.1 

Page 
Numbers 

11.1 
11 • 1 
11.4 
11.1-2,5-7 
11.1-2,5,7 
11.6 
11. 1 
11.2 
11.4 
11.4 
11.3 
11.3 
11.3 
11.3 
11.3 
11.5 
11.4 
11.5-7 



SECTION 12 

VARIABLE BINDINGS AND PUSH DOWN LIST FUNCTIONS 

A number of schemes have been used in different implementations of LISP tor 

storing the values of variables. These include: 

1. Storing values on an association list paired with the variable names. 

2. Storing values on the property list of the atom which is the name or 

the.variable. 

3. Storing values in a special value cell associated with the atom name, 

putting old values on a pushdown list, and restoring these values when 

exiting from a function. 

4. Storing values on a pushdown list. 

The first three schemes all have the property that values ar. scattered 

throughout list structure space, and, in general, in a paging environment would 

require references to many pages to determine the value of a variable. This 

would be very undesirable in our system. In order to avoid this scattering, 

and possibly excessive druM references, we utilize a variation on the fourth 

standard scheme, usually only used for transmitting values of arguments to 

compiled functions; that is, we place these values on the pushdown list. 1 But 

12.1 



since we use an interpreter as WEill as a compiler, the variable names must also 

be kept. The pushdown list thus contains pairs, each consisting of a variable 

name and its value. Each pair occupies one word or • slot • on the pushdown 

1 ist, with the name in the left; half, 1.e. cdr, and the value 1n the right 

half, i.e. car. The interpreter gets the value of a variable by searching back 

up the pushdown list looking for a· 'slot' for which cdr 1s the name of the 

variable. car is then its value. 

One advantage of this scheme is that the current top of the pushdown stack is 

usually in core, and thus drum references are rarely required to find the value 

of a variable. Free variables work automatically in a way similar to the 

association list scheme. 

An additional advantage of this s.cheme is that it is completely compatible with 

compiled functions which pick up their arguments on the pushdown list from 

known positions, instead of doing a search. To keep complete compatibility. 
- , 

our compiled functions put the rliames of their arguments on the pushdown list, 

although they do not use them to reference variables. Thus, free variables can 

be used between compiled and interpreted functions with no special declarations 

necessary. The names on the pushdown list are also very useful in debugging, 

fo~ they make possible a comple'te symbolic back trace in case of error. Thus 

this technique, for a small extra overhead, minimizes drum references, provides 

symbolic debugging information, and allows completely free mixing of compiled 

and interpreted routines. 

There are three pushdown lists used in INTERLISP: the first is called the 

parameter pushdown list. and contains pairs of variable names and values t and 

temporary storage of pointers; tille second is called the control pushdown list, 

and contains function returns and other control information; and the third is 

called the number stack and is used for storing temporary partial results of 

numeric operations. 

12.2 



However, it is more convenient for the use~ to consider the push-down list as a 

single "list" containing the names of functions that have been entered but. not 

yet eXited. and the names and values of the corresponding variables. The 

multiplicity of pushdown lists in the actual implementation is for efficiency 

of operation only. 

The Push-Down List and the Interpreter 

In addition to the names and values of arguments for functions. information 

regarding partially-evaluated expressions is kept on the push-down list. For 

example, consider the following definition of the function, fact (intentionally 

faulty) : 

(FACT 
[LAMBDA (N) 

(CONO 
«ZEROP N) 

L) 
(T (ITIMES N (FACT (SUBI N]) 

In evaluating the form (FACT 1), as soon as fact is entered, the interpreter 

begins evaluating the implicit ~ following the LAMBDA (see Section 4). The 

first function entered in this process is cond. cond begins to process its 

list of clauses. After calling zerop and getting a NIL value, cond proceeds to 

the next clause and evaluates T. Since T is true, the evaluation of the 

impliCit ~ that is the consequent of the T clause is begun (see Section 4). 

This requires calling the function itimes. However before itimes can be 

called, its arguments must be evaluated. The first argument is evaluated by 

searching the stack for th~ last binding of N; the second involves a recursive 

call to fact, and another implicit ~, etc. 

Note that at each stage of this process, some portion of an expression has been 

evaluated, and another is awaiting evaluation. The output below illustrates 

12.3 



this by showing the state of the push-down list at the point in the computation 

of (FACT 1) when the unbound atoDIi L is reached • 

.. FACT(I) 
U.S.A. 
(L BROKEN) 
:BTV! 

-FORM* (BREAKI L T L NIL 134047) 
10 (L) 

10 «(ZEROP N) L) (T (ITIHES N (FACT (SUBI N»») 1 
CONO 

*FORM* (CONO «ZEROP N) L) (T (ITIHES N (FACT (SUBl N»») 
10 «CONO «ZEROP N) L) (T (ll'IHES N (FACT (SUBl N»»» 2 

N 0 
FACT 

*FORM* (FACT (SUBI N» 
#2 ITIHES 
10 «FACT (SUBI N») 3 
#0 1 4 
*FORM* (ITIHES N (FACT (SUBI N») 
10 « ITIHES N (FACT (SUB1 N»» 5 

10 «(ZEROP N) L) (T (ITIHES N (FACT (SUBl N»») 6 
CONO 

*FORM* (CONO «ZEROP N) L) (T (ITIHES N (FACT (SUBI N»») 
10 (CONO «ZEROP N) L) (T (ITIHES N (FACT (SUBl N»»» 7 

N 1 
FACT 

Internal calls to eval, e.g., from cond and the interpreter, are marked on the 

push-down list by a special mark called an oval-blip. eval-blips are indicated 

by the appearance of (VAG 64) in the left-half, i.e. the variable name 

position, for that slot. They are printed by the backtrace as *FORM*. The 

genealogy of *FORM*'s is thus a history of the computation. Other temporary 

information is frequently recorded on the push-down list in slots for which the 

'variable name I is (VAG 0), which prints as 10. In this example, this 

information consists of (1) the tail of a list of cond clauses, (2) the tail of 

an implicit J!!:QIl!!. i.e., the de,'inition ot fact, (3) the tail of an argument 

12.4 



list, (4) the value of a previously Qvaluated argument, (5) the tail of a cond 

clause whose predicate evaluated to true, and (6) and (7) same as (1) and (2). 

Note that a function is not actually entered and does not appear on the stack, 

until its arguments have been evaluated.2 Also note that the 10 'bindings' 

comprise the actual working storage. In other words, in the above example, if 

a (lower) function changed the value of the binding at (1) (not recommended) 

the cond would continue interpreting the new binding as a list of ~ clauses. 

Similarly, if (4) were changed, the new value would be given to itimes as its 

first argument after its second argument had been evaluated. and itimes was 

actually called. 

The Pushdown List and Compiled Functions 

Calls to compiled functions, and the bindings of their arguments. i. e. names 

and values, are handled in the same way as ,for interpreted functions (hence the 

compatibility between interpreted and compiled functions). However, compiled 

functions treat free variables in a special way that interpreted functions do 

not. Interpreted functions "look up" free variables when the variable is 

encountered, and may look up the same variable many times. However, compiled 

functions look up each free variable only once.3 Whenever a compiled function 

is entered, the pushdown list is scanned and the most recent binding for each 

free variable used in the function is found (or if there is no binding, the 

value cell is obtained) and stored in the right half of a slot on the stack (an 

unboxed 0 is stored in the left half to distingUish this 'binding' from 

2~----------------~----------------------------------------------------~~------except for functions which do not have their arguments evaluated (although 

8 

they themselves may call eval, e.g. cond). 

A list of all free variables is generated at compile time, and is in fact 
obtainable from the compiled definition. See Section 18. 

12.5 



ordinary bindings). Thus, following the bindings of their arguments, compiled 

functions store on the pushdown list pointers to the bindings for each (ree 

variable used in the function. 

In addi tion to the pointers tOI free variable bindings, compiled functions 

differ from interpreted functions in the way they treat locally bound 

variables t i. e. J!!:.Q.Il! and open la.mbdas. Whereas in interpreted functions progs 

and open lambdas are called in the ordinary way as functions, in compilation, 

progs and open lambdas disappear, although the variables bound by them are 

stored on the stack in the conventional manner so that functions called from 

inside them can reference the variables. These variables appear on the stack 

following the argum~nts to the compiled function (if any) and the (ree variable 

pointers (if any). The only way to determine dynamically what variables are 

bound locally by a compiled function is to search the stack from the first slot 

beyond the la.st argument to the 1:unction (which can be found with stknargs and 

stkarg described below), to the slot corresponding to the Itr.st argument of the 

next function. Any slots encoun1~ered that contain literal atoms in their left 

half are local bindings. 

Pushdown List Functions 

NOTE: Unless otherwise stated, for all pushdown list functions, pos is a 

position on the control stack. If pos is a literal atom other than NIL, 

(STKPOS pos 1) is used. In this case, if pos is not found, i.e., stkpos 

returns NIL, an ILLEGAL STACK ARG error is generated. 

stkpos[fn;n;pos] Searlches the control stack starting at pos for the 

~th occurrence of fn. Returns control stack 

12.6 



stknth[n,pos] 

fstknth[n;pos] 

stkname[pos] 

position of that fn if found,4 els.NIL. If ~ is 

po.itive, searches backward (normal usage). If n 
is negative, searches forward, i.e., down the 

control stack. For eXUlple, stkpos[FOO;-2;FIE] 

finds second call to FOO after (below) the last 

call to FIE. If !!. is NIL, 1 is used. 'If pos is 

NIL, the search starts at the current position. 

stkpos[] gives the current position. 

Value is the stack position (control stack) of the 

!!th function call relative to position pos. If 

pos is NIL, the top of stack is assumed for n > 0, 

and the current position is assumed for n < 0, 

i.e., stknth[-l] is the call before stknth, 

stknth[1] is the call to evalgt at the top level. 

Value of stknth is NIL if there is no such call -

e.g., stknth[10000] or stknth[-10;stknth[5]]. 

version of stknth that compiles open. 

Value is the name of the function at control stack 

posi tion pos. In this case, pos must be a real 

stack position, not an atom. 

In summary, stkpos converts. function names to stack positions, stknth converts 

numbers to stack positions, and stkname converts positions to function names. 

4--------~-----~·------------------------------------------------------~-----~-A staek position is·a pointer to the ~orresponding slot on the control or 
parameter stack, i.e., the address of that cell. It prints as an unboxed 
number, 8.g.,.132002, and its type is 2 (Section 10). 

12.7 



Information about the variables bound at a· particular function call can be 

obtained using the following func:tions.: 

stknargs[pos] 

stkarg[n;pos] 

fstkarg[n;pos] 

Value is the number of ar:-guments bound by the 

func:tion at position pOSe 

Value is a pOinter to the !!.th argument (named or 

not)I6 of the function at position pos, i.e., the 

value is a parameter stack position. ~ of this 

pointer gives the value of the binding, cdr the 

namE~. !l=1 corresponds to the first argument at 

pos .. !! can be 0 or negative, i.e., stkarg[OjFOO] 

is IS pointer to the slot immediately before the 

fir!.t argument to FOO, 5tkarg[ -1 .FOO] the one 

before that, etc. 

ver$ion of stkars that compiles open. 

Note that the user can change (set) the value of a particular binding by 

performing an rplaca on the value of stkarA. Similarly, rplacd changes (sets) 

the name. 

The value of stkarg is a posit:lon (slot) on the parameter stack. There is 

currently no analogue to stknth for the parameter stack. However, the 

parameter stack is a contiguous block of memory, so to obtain the slot previous 

to a given slot, perform vag[subi[loc[slot]]]; to obtain the next slot perform 

vag[addl[loc[slot]]]. i.e. 

6--~------------~--~-~----------~---------------------------~------------------Subrs do not store the names of their arguments. . 

12.8 



stkarg[2;pos] • vag[.dd1[loc[stk.rg[1;pos]]]].~ 

As an example of the use of stknargs and stkarg: 

variables[pos] returns list of variables bound at pOSe 

can be defined by: 

(VARIABLES 
[LAMBDA (POS) 

(PROG (N l) 
(SETQ N (STkNARGS POS» 

LP (COND 
«ZEROP N) 

(RETURN L») 
(SETQ L (CONS (CDR (STKARG N POS» 

l» 
(SETQ N (SUBt N» 
(GO lP]) 

The counterpart of variables is also available. 

stkargs[pos] Returns list of values of variables bound at pOSe 

The next three functions, sttscan, evalv, and stkeval all involve searching the 

parameter pushdown stack. For all three functions, pos may be a position on 

the control stack, i.e., a value of stkpos or stknth. 7 In this case, the ,search 

starts at stkarg[stknargs[pos]jPos] i.e., it will include the arguments to the 

function at pos but not any locally bound, variables. pos may also be a 

posi tion on the parameter stack, in which case the search starts with, and 

includes that position. Finally, pos can be NIL, in which case the search 

starts with the current position on the parameter stack. 

6----------~--------------------------------------------------~-----------~----See Section 13 for discussion of vag and loco 

7 or a function name, which is equivalent t~ stkpos[pos;l] , as described 
earlier. 



stkscan[var;pos] 

evalv[var,pos] 

stkeval[pos;form] 

Sear-ches backward on the parameter stack from' pos 

for a binding of yare Value is the slot for that 

binding if found, i.e., a parameter stack 

position, otherwise y!!: itself (so that in the 

casu of literal atoms, £!!: of stkscan is always 

the value of !!!). 

car[ stkscan[var; pos]], i. e. , returns the value of 

the atom!!!: as of position pOSe 

is a more general evalv. It is equivalent to 

evaJl[form] at position pas, i.e., all uartabLe& 

evaJluated in form, will be evaluated as of pos. B 

Finally, we have two functions which clear the stacks: 

retfrom[pos;value] clears the stack back to the function at position 

pos I' and effects a return from that function with 

vall!! as its value. 

reteval[pos;form] clears the stack back to the function at position 

pos.. t.hen evaluates form and returns with its 

value to the next higher functio~. 

words, reteval[pos,form] is equivalent to 

ret1:rom[pos ;stkeval[ pas; form]]. 9 

In other 

8---~~~;~;;:-;~;-;~~~~;~~;-;~-;~;:;-;~;~-;;;~;;;~;i,i;-;;;;;;~~;-;~;-;;;~;:-::;:: 

9 

stkpos, stknth, retfrom, etc., 'see' the stack as it currently is. (8ee 
page 12.11-13 for descri~ti n of how stkeval is implemented.) 

Provided form does not in'folve any stack functions, as explained in 
footnote 8-.-

12.10 



We also have: 

mapdl[mapdlfn:mapdlpos] starts at position mapdlpos (current if NIL), and 

applies mapdlfn to the function !!!!!!! at each 

pushdown position, i.e., to stkname[mapdlpos] 

until the top of stack is reached. Value is NIL. 

mapdlpos is updated at each iteration. 

For example. mapdl[(LAHBOA (X) (ANO' (EXPRP X) (PRINT X»)] will print all exprs 

on the push-down list. 

mapdl[(LAHBOA (X) (CONO «GREATERP (STKNARG HAPOLPOS) 2) (PRINT X] will print 

all functions of more than two arguments. 

searchpd1[srchfn:srchpos] 

The Pushdown List and Funaro 

searches the pushdown list starting at position 

srchpos (current if NIL) until it finds a position 

for which srchfn applied to the n!m! of the 

function called at that position is not NIL. Value 

is (NAME • position) if such a position is found, 

otherwise NIL. srchpos is updated at each 

iteration. 

The linear scan up ,the parameter stack for a variable bind,ing can be 

interrupted by a special mark called a skip-blip appearing on the stack in a 

name position (See Figure 12-1). In the value position is a pointer to the 

posi tion on the stack where the search is to be continued. This is what is 

used to ,make stkeval. page 12.10 work. It is also used by the funarg device 

(Section 11). 

When a funarg is applied, INTERLISP puts a skip-blip on the parameter stack 

12.11 



wi th a pointer to the funarg array, and another skip-blip at the top of the 

funarg array pointing back to tho stack. The effect is to make the stack look 

like it has a patch. The names sind values stored in the funarg, array, will, thus 

be seen before those higher on title stack. Similarly, setting a variable whose 

binding ,is contained in the fUflarg array will change only the array. Note 

however that as a consequence 01: this implementation, the &ame instance 0/ fI 

lunar, object cannoet be u&ed, rectJ'r.sil1el,l. 

12.12 



PARAMETER 
STACK 

• 
• 
• 

NM VAL 
NM VAL 

• 
• 
• 

NM VAL 
NM VAL 
SKIP 
NM VAL 
NM VAL 

• 
• 
• 
• 

STKEVAL 

.-

r+ 

f.4--

USE OF 'SKIPBLIPS' 

ARGUMENTS 
TO STKEVAL 

BEGIN 
EVALUATION OF 
FORM 

PARAMETER 
STACK 

NM 
NM 
SKIP 

• 
• 
• 

NM VA 
NM. VAL 

• 
• 
• 

FUNARG 

FIGURE 12-1 

12.13 

FUNARG 
ARRAY 



Index for Section 12 

association list 
back trace ................ t •••••••••••••••••••••• 

control pushdown list 
debugging 
eval-blip 
EVALV[VAR;POS] 
free variables ...••...•.•....•••••••••••••••••••• 
free variables and compiled functions ••••••••••• 
FSTKARG[N;POS] BUBR 
FSTKNTH[N;POS] BUBR 
FUNARG ••••••••••••••••••• ot •••••••• ,* •••.•••• ~ •••••• 

ILLEGAL STACK ARG (error m~ssage)' ~ •••••••••••••• 
locally bound variables 
MAPOL[MAPOLFN;MAPOLPOS] 
number stack .........•••• ~.~ •••• i ••••••••••••••• 
parameter pushdown list •• 0 •••••••• ' •••••••••••••• 

pushdown 1 is t ............ , .••...••.....•.......•. 
pushdown list functions .. 0 •••••••••••••••••••••• 

RETEVAL[POS;FORM] BUBR 
RETFROM[POS;VALUE] BUBR 
searching the pushdown list 
SEARCHeOL[SRCHFN;SRCHPOS] 
skip .. blip •••••••••••••••• t1 ••••• ' ••••••••••••••••• 

slot (on pushdown list) 
stack position 

•• " • '. '0' •••••••••••••••••• 

STKARG[ N; POS] SUBR ••• ' •••• It •••••••••••••••••••••• .............. ' ......... ., ........... . STKARGS[POS] 
STKEVAL[POS;FORM] SUBR 
STKNAME[POS] SUBR 
STKNARGS[POS] SUBR 

• ,. • 'I •••••••••••••••••••••• 

STKNTH[N;POS] BUBR 
STKPOS[FN;N;POS] 
STKSCAN[VAR;POS] SUBR 
value cell ............... f· •••••••••••••••••••••• 
variable bindings ....•••• ~ •••••••••••••••••••••• 
VARIABlES[POS] 
10 
-FORM- •••••••••••••••••••••••••• e .••••••••••••••• 

INDEX.12.1 

Page 
Numbers 

12.1-2 
12.2,4 
12.2 
12.2 
12.4 
12.10 
12.2,5 
12.5 
12.8 
12.7 
12.11-12 
12.6 
12.6 
12.11 
12.2 
12.2,8-9,11 
12.1-13 
12.6-11 
12.10 
12.10 
12.6,9 

·12.11 
12.11 
12.2,6,8,10 
12.6-7,9-10 
12.8-9 
12.9 
12'.10-11 
12.7 
12.8 
12.7-9 
12.6-7,9 
12.10 
12.1 
12.1-6 
12.9 
12.4-5 
12.4 



SECTION 13 

NUftBERS AND ARITHftETIC FUNCTIONS 

13.0 General Comments 

There are three different types of numbers in INTERLISP: small integers, large 

integers, and floating point numbers. 1 Since a large integer or floating point 

number can be (in value)' any 36 bit quantity (and vico versa), it 1s necessary 

to distinguish between those 36 bit quantities that represent large integers or 

floating point numbers, and other INTERLISP pointers. We do this by -boxing­

the number, which is sort of like a special ·cons·: when a large integer or 

floating pOint number is created (via an arithmetic operation or by read), 

INTERLISP gets a new word from -number storage· and puts the large integer or 

floating point number into that word. INTERLISP then passes around the pointer 

to that word, i.e., the -boxed number-, rather than the actual 36 bit quantity 

i tse If. Then when a numeric function needs the actual numeric quantity, 1 t 

performs the extra level of addressing to obtain the -value- of the number. 

This latter process is called ·unboxing-. Note that unboxing does not use any 

storage, but that each boxing operation uses one new word of number storage. 

Thus, if a computation creates many large integers or floating point numbers, 

i.e., does lots of boxes, it may cause a garbage collection of large integer 

space, GC: 18, or of floating point number space, GC: 16. 

1----------~---~-~----------~--------~------~-----------------------------~----Floating point numbers are created by the read program when a • or an E 
appears in a number, e. g. 1000 is an integer, 1000. a floating point 
number, as are lE3 and I.E3. Note that 10000, 1000F, and IE30 are perfectly 
legal literal atoms. 

13.1 



13.1 I~teger Arithmetic 

Small Integers 

Small integers are those integers for which smallp is true, currently integers 

whose absolute value is less thalll 1536. Small integers are boxed by offsetting 

them by a constant so that they overlay an area of INTERLISP's address space 

that does not correspond to any [NTERLISP data typo. 'Thus boxing small numbers 

does not use any storage, and furthermore, each small number has a unique 

representation, so that ~ may be used to check equality. Note that ~ should 

not be used for large in'tegers or floating point numbers, e. g. , 

eq[2000;addl[1999]] is NIL! ~ or equal must bo used instead. 

Integer Functions 

All of the functions described below work on integers. Unless specified 

otherwise, i f given a floating I.oint number, they first convert the number to 

an integer by truncating the fractional bit~, e.g., iplus[2.3;3.8]=5; if given 

a non-numeric argument, they generate an error, NON-NUMERIC ARG. 

It is important to use the integer arithmetic functions, whenever pOSSible, in 

place of the more general arithmetic functions which allow mixed floating point 

and integer arithmetic, e.g., ~lus vs plUS, igreaterp vs greaterp, because the 

integer functions compile o'pen, and therefore run faster than the general 

ari thmetic functions. and because the compiler is ·smart· about eliminating 

unnecessary boxing and unboxlng. Thus, the expression 

(IPLUS (IQUOTIENT (ITIHES N 100) H) (ITIMES X Y» will compile to perform only 

one box, the outer one, and the expression 

(IGREATERP (IPLUS X Y) (IDIFFEREHCE A B» will compile to do no boxing at all. 

13.2 



Note that the POP-1Q 1$ a 36 bit machine. so that all integers are between 

-2t35 and 2t35-1.2 Adding two integers which produce a result outside this 

range causes overflow, e.g., 2t34 + 2t34. 

The procedure on overflow is to return the largest possible integer, i ••• 

2t35 - 1.3 

iminus[x] 

idifference[XjY] 

add1[x] 

sub1[x] 

iquotient[x;y] 

iremainder[x;y] 

igreaterp[x;y] 

Xi + Xz + ••• + "n 

- x 

x - Y 

x + 1 

x .;. 1 

the product of !l'!Z' ••• !" 

x/y truncated, e.g., iquotient[3:Z]-1, 

iquotient[-3,Z]--1 

the remainder when ! is divided by l' e.g., 

iremainder [3:2]-1 

T if x > y: NIL otherwise 

2------------------------------------------------------------------------------Approximately 34 billion 

3 If the overflow occurs by trying to create a negative number of too large a 
magnitude, -2t35 is used inst.ad of 2t35-1. 

13.3 



ilessp[x;y] T is x < y; NIL otherwise 

zerop[x] defined as eq[x;O]. 

Note that zerop should not be u.sed for floating point numbers because 'it uses 
~. Use eqp(x,O] instead. 

minusp[x] 

eqp[n;m] 

smallp[n] 

fixp[x] 

fix[x] 

T jLf ! is ne,gative; NIL otherwise. Does not 

con'vert ! to an integer, but simply checks sign 

bit. 

T jLf !! and m are !,g. or equal numbers, NIL 

othf3rwise. (!!9. may be used if !!. and m are known 

to Ibe small integers.) ~ does not convert !!. and 

m to integers, e.g., eqp[ZOOO;ZOOO.3]=NIL, but it 

can be used to compare an integer and a floating 
\ 

point number, e.g., eqp[ZOOO;ZOOO.O]=T. !!9.2 does 

not generate an error if !! or m are not numbers. 

T if !! 15 a small integer, else NIL. smallp does 

not generate an error if !! is not a number. 

! if ! is an integer, else NIL. Does not generate 

an ttrror i r ! is not a number. 

Converts ! to an integer by truncating fractional 

bits, e.g., flx[Z.3] = Z, fix[-1.7] = -1. If ~ is 

alrElady an integer, fix[x]=x and doesn't use any 

stor'age .4 

4-------------------------------------------------------------------------------Since FIX is also a lispx leommand (Section ZZ), typing FIX directly to 
1 ispx wi 11 not cause the func:tion fix to be called. 

13.4 



lsh[n;m] 

rsh[n;m] 

llsh[n:m] 

lrsh[n:m] 

lambda no-spread, value is logical and of all its 

arguments, as an integer, e.g., 10gand[7;5;6]-4. 

lambda no-spread, value is the logical ~ of all 

its arguments, as an integer, e.g., 

logor[ 1;3 ;9]-11. 

lambda no-spread, value is the logical exclusive 

~ of its arguments, as an integer, e.g., 

10gxor[II;5] • 14, 

10gxor[11;5;9] • 10gxor[14;9] • 7. 

(arithmetic) left shift, value is n*Ztm,i.e., ~ is 

shifted left !!! places. !1 can be positive or 

negative. If! is negative, ~ is shifted ri,ht -m 
places. 

(arithmetic) right shift, value is n*Zt-m, i.e., ~ 

is shifted right m places. !1 can be positive or 

negative. If!!! is negative, !1 is le/t -! places. 

logical left !hift. On PDP-10, !!!h is equivalent 

to Ish. 

!ogica~ right !hift. 

The difference between a logical and arithmetic right shift lies in the 

treatment of the sign bit for negative numbers. For arithmetic right shifting 

of negative numbers, the sign bit is propagated, i.e., the value is a negative 

number. For logical right shift, zeroes are propagated. Note that shifting 

(arithmetic) a negative number 'all the way' to the right yields -1, not O. 

13.5 



13.2 Floating Point Arithmetic 

All of the functions described below work on floating point numbers. Unless 

specified otherwise, if given an integer, they first convert the number to a 

floating point number, e.g., fIJlus[I;2.3] = fplus[I.0;2.3] • 3.3; it' given a 

non-numeric argument, they generate an error, NON-NUMERIC ARG. 

The largest floating point number is 1.7014118£38, the smallest positive (non­

zero) floating point number is 1.4693679E-39. The procedure on overflow is the 

same as for integer arithmetic. For underflow, i.e. trying to create a number 

of too small a magnitude. the value will be o. 

fminus[x] 

fquotient[x;y] 

fremainder[x;y] 

minusp[x] 

eqp[x;y] 

fgtp[x:y] 

- x 

X * x. • x 1 Z • • • n 

x/y 

the remainder when ! is divided by l. e.g., 

fremainder[I.0:3.0]= 3.72529£-9. 

T if ! is negative; NIL otherwise. Wdrks for both 

integers and floating point numbers. 

T i1F ! and l are g, or equal numbers. 8ee 

discussion page 13.4. 

T if x ) y, NIL otherwise. 

13.6 



floatp[x] is ! if ! is a floating point number; NIL 

otherwise. Does lIot give an error if ! is not a 

number~ 

Note that il numberp(x} is true. thell either /txp(x} or Iloatp(x] is true. 

float[x] Converts ! to a floating point number, e.g., 

flo.t[O] • 0.0. 

13.3 Mixed Arithmetic 

The functions in this section are 'contagious floating point ,arithmetic' 

functions, i.e., if any of the arguments are ,floating point numbers, they act 

exactly like floating point functions, and float all arguments, and return a 

floating point number as their value. Otherwise, they act like the integer 

functions. If given a non-numeric argument, they generate an error, 

NON-NUMERIC ARG. 

minus[x] 

difference[x;y] 

quotient[x;y] 

remainder[x;y] 

- x 

x - y 

if ! and I are both integers, 
\ 

value is 

iquotient[xiY], otherwise fquotient[x;y]. 

if ! and I are both integers, value is 

iremainder[x;y], otherwise fremainder[xiY]. 

13.7 



greaterp[x:y] 

lessp[ x ;.Y] 

abs[x] 

13.4 Special Functions 

T if x > y, NIL otherwise. 

T if x < Y. NIL otherwise. 

! if x > O. otherwise -x. !!!! uses greaterp and 

minl~, (not igreaterp and iminus). 

These functions are all "borrowI9d" from the FORTRAN library and handcoded in 

INTERLISP via ASSEMBLE by J. W. Goodwin. They utilize a power series expansion 

and their values are (supposed to be) 27 bits accurate, e.g., 5in[30]-.5 

exactly. 

expt[m:n] 

sqrt[n] 

log[x] 

antilog[x] 

value is mtn. If!!! is an integer and !!. is a 

positive integer. value "is an integer, e.G, 

exp1~[3;4].81, otherwise the value is a floating 

point number. If!!! is negative and !!. fractional, 

an error is generated. 

value is a square root of !! as a floating point 

number. !! may be fixed or floating point. 

Generates an error if !! is negative. sqrt[n] is 

about twice as fast as expt[n;.5] 

valllie is natural logari thm of ! as a floating 

pOint number. ! can be integer or floating pOint. 

value is floating point number whose logarithm 1s 

!. ! can be integer or floa.ting point, 8.g., 

antilog[l] - e • 2.71828 ••• 

13.8 



sin[x;radiansflg] 

cos[x;radiansflg] 

tan[x:radiansflg] 

arcsin[x:radiansflg] 

arccos[x,radiansflg] 

arctan[x;radiansflg] 

rand[lower:upper] 

! in degrees unless radlansflg=T. Value 1s s1ne of 

! as a floating point number. 

Similar to sln. 

Similar to sin. 

! is a number between -1 and 1 (or an error is 

generated). The value of arcsin is a floating 

point number, and is in degrees unless 

radiansflg=T. In other words, if 

arcsin[x;radiansflg]-! then sin[z;radiansflg]=!. 

The range of the value of arcsin is -90 to +90 for 

degrees, -n/2 to n/2 for radians. 

Similar to arcsin. Range is 0 to 180, 0 to ft. 

Similar to arcsin. Range is 0 to 180, 0 to n. 

Valu~ is a pseudo-random number between lower and 

upper inclusive, i.e. rand can be used to generate 

a sequence of random numbers. If both limits are 

integers, the value of rand is an integer, 

otherwise it is a floating point number. The 

algorithm is completely deterministic, i.e. given 

the same initial state, rand produces the same 

sequence of values. The internal state of rand is 

ini tialized using the function randset described 

below, and is stored on the free variable 

randstate. 

13.9 



randset[x] Val1IJe is internal state of rand after randset has 

finished operating, as a dotted pair of two 

int'Bgers. If ~=NIL, value is current state. If 

~=T, rands tate is initialized using the clocks. 

Othl9rwise. ! is interpreted as a previous internal 

sta·teti.e. a value of randset, and 1s used to 

reslBt randstate. For example, 

1. (SETO OLDSTATE (RANOSET» 

2. Use rand to generate some random numbers. 

3. (RAHDSET OLDSTATE) 

4. rand will generate same sequence as in Z. 

13.5 Reusing Boxed Numbers - SETH 

rplaca and rplacd provide a way of cannibalizing list structure for reuse in 

order to avoid making new structure and causing garbage collections. 6 This 

section describes an analogous function for large integers and floa~ing point 

numbers, setn. setn is used like setq, i.e., its first argument is considered 

as quoted, its second is evaluated. If the current value of the variable being 

set is a large integer or floa1~ing point number, the new value is deposited 

into that word in number storage., i.e., no new storage is used. 8 If the current 

value is not a large integer or' floating point number, e.g., it can be NIL, 

setn operates exactly like setg, i.e., the large integer or floating point 

number is boxed, and the variable is set. This eliminates initialization of 

the variable. 

6-------------------------------··---~---------------- --------------------------
This technique is frowned upon except in well-defined, localized situations 

6 

where efficiency is paramount. 

The second argument to setn must always be a number or a NON-NUMERIC ARG 
error is generated. 

13.10 



setn will work interpretively, i.e., reuse a word in number storage, but will 

not yield any savings of storage because the boxing of the second argument will 

still take place, when it is evaluated. The elimination of a box is achieved 

only when the call to setn is compiled, since !!!n compiles open, and does not 

perform the box if the old value of the variable can be reused. 

Caveats concerning use of SETH 

There are three situations to watch· out for when using!!!n- The first occurs 

when the same variable is being used for floating point numbers and large 

integers. If the current value of the variable is a floating point number, and 

it is reset to a large integer, via !!!rr. the large integer is Simply deposited 

into a word in floating point number storage, and hence will be interpreted as 

a floating point number. Thus. 

"(SETQ FOO 2.3) 
2.3 
,,(SETH FOO 10000) 
2. 189529E-43 

Similarly. if the current value is a large integer, and the new value is a 

floating point number. equally strange results occur. 

The second situation occurs when a !!!! variable is reset from a large integer 

to a small integer. In this case, the small integer is simply deposited into 

large integer storage. It will then print correctly, and function 

arithmetically correctly, but it is not a small integer. and hence will not be 

~ to another integer of the sam. value, I.g., 

13.11 



.. (5ETQ FOO 10000) 
10000 
.. ( SETN F4)() 1) 
1 
.. (IPlUS FOO 5) 
6 
"(EQ Foo 1) 
NIL 
"(5MALLP FOO) 
NIL 

In particular, note that zerop WJl1l return NIL even if the variable is equal to 

O. Thus a program which begins with FOO set to a large integer and counts it 

down by (SETH FOO (SUBI FOO» mu~.t terminate with (fQP FOO 0), not (ZEROP FOO). 

Finally, the third situation to IIlatch out for occurs when you want to save the 

current value of a setn variable for later use. For example, if FOO is being 

used by setn, and the user wants to save its current value on FIE, 

(SETQ FOO FIE) is not surficent, since the next setn on Foo will also change 

FIE, because its changes the wQlrd in number storage pointed to by FOO, and 

hence pointed to by FIE. The number must be copied, e.g. , 

(SETQ FIE (IPlUS FOO», which sets FIE to a new word in number storage. 

setn[var;x] 

13.6 Box and Unbox 

nlarrtbda function like setq. y.!.!: is quoted, ! is 

evaluated, and its value must be a number. y!.!: 

will be set to this number. If the current value 

of Y!r is a large integer or floating point 

number, that word in number storage is 

cannibalized. The value of setn is the (new) 

value of !!!.. 

Some applications may require that a user program explicitly perform the boxing 

and unboxing operations that ar"e usually implicit (and invisible) to most 

13.12 



programs. The functions that perfona these operations are loc and vag 

respectively. For exam'ple, if • user program executes a TENEX J8YB using the 

ASSEMBLE directive. the value of the ASSEMBLE expression will have to be boxed 

to be used arithmetically, e.g., (IPlUS X (lOC (ASSEMBLE --») .. It must be 

emphasized that 

Arbi trarll unboxed numbers should not be passed around flS ordtnflrll l1.lue.t 
because they can cau.se trouble lor the garbage collector. 

For example, suppose the value of 2S were 150000, and you created (VAG X), and 

this just happened to be an address on the free storage list] The next garbage 

collection could be disastrous. For this reason t the function vag must be ~sed 

with extreme caution when its argument's range is not known. 

One place where vag is safe to use is for performing computations on stack 

positions, which are simply addre.s.ses of the corresponding positions (cells) on 

the stack. To treat these addresses as -"umbers, the program must first box 

them. Conversely, to convert numbers to corresponding stack positions, the 

program must unbox them. Thus, suppose ! were the value of stkarg, i.e. II ~ 

corresponds to a position on the parameter stack. To obtain the next position 

on the stack, the program must compute (VAG (ADD1 (lOC X»). Thus if ~ were 

132002,7 (lOC X) would be 3Z00ZQ,8 (ADD1 (LOC X» would be 32003Q, 

and (VAG (ADD1 (lOC X») would be 13Z003. 

Note that rather than starting with a number, and unboxing it to obtain its 

numeric quantity, here we started with an address, i.e., a 36 bit quantity, and 

7---~----------------------------··---·-------------------------.-----------~--An INTERLISP pointer (address) which does not correspond to the address of 

B 

a list structure, or an atom, or a number, or a string, is printed· as In, g 
given in octal. 

Q following a number means the numeric quantity is expressed in octal. 

13.13 



wishing to treat it as a number" boxed it. For example, loc of an atom, e.g., 

(LOC (QUOTE FOO», treats the atom as a 36 bit quantity. and makes a number out 

of it. If the address of the a1tom FOO were 125000, (LaC (QUOTE fOO» would be 

125000, i.e. the location of f~). It is for this reason that the box operation 

is called loc, which is short for location. 9 

Note that FOO does not print as 1364110 (125000 in octal) because the print 

routine recognizes that it is nn atom, and therefore prints it in a special 

way, i.e. by printing the individual characters that comprise it. Thus 

(VAG 125000) would print as fOO, and Ulould be in fact fOO. 

loc[x] Plaktas a number out of !, i. e. , returns the 

location of !. 

vag[x] The inverse of loco ! must be a number; the value 

of ~~ is the unbox of !. 

The compiler eliminates Iltxtra vag's and loc's for example 

(IPLUS X (LOC (ASSEMBLE --») will not box the value of the ASSEMBLE, and then 

unbox it for the addition. 

9------~-~--------~------------------------~-------------------------------~~-~ vag is an abbreviation of Y,!lue set. 

13.14 



Index for Section 13 

ABS[X] 
AOOl[X] 
ANTILOG[X] 
ARCCOS[X;RADIANSFLG] 
ARCCOS: ARG NOT IN RANGE (error message) 
ARCSIN[X;RADIANSFLG] 
ARCSIN: ARG NOT IN RANGE (error message) 
ARCTAN[X.RADIANSFLG] 
arithmetic functions 

........ 
ASSEMBLE ......................................... 
box 
boxed numbers ........................................... boxing 
COS[X;RAOIANSFLG] 
OIFFERENCE[X;Y] 
EQP[X;Y] SUBR 
EQUAL[X;Y] 
EXPT[M;N] 
FGTP[X;Y] SUBR 
FIX[X] 
FIXP[X] 
FlOAT[X] 

.. ' .............................. . · ................................. . 
~ .................................... . 

.................................. 
............... -......................... . 

floating point arithmetic 
floating point numbers 
FlOATP[X] SUBR 
FHINUS[X] •••• s ••••••••••• , ••••••••••••••••••• 

FPlUS[Xl;X2; ... ;Xn] SUBR* 
FQUOTIENT[X;Y] SUBR 
FREHAINOER[X;Y] SUBR 
FTIHES[Xl;X2; ... ;Xn] SUBR* 
GC: 16 (typed by system) 
GC: 18 (typed by system) 
GREATERP[X;Y] SUBR 
IOIFFERENCE[X;Y] 
IGREATERP[X;Y] SUBR 
IlESSP[X;Y] 

........................ ......................... 

ILLEGAL EXPONENTIATION: (error message) 
IMINUS[X] •••••••••••••••••••••••••••••••••••• ,,'. .............................. integer arithmetic 
IPlUS[Xl;X2; ... ;Xn] SUBR* 
IQUOTIENT[X;Y] SUBR 
IREMAINOER[X;Y] SUBR 
ITIHES[Xl;X2; ..• ;Xn] SUBR* 
large integers 
lESSP[X;Y] 

....................... 

LLSH[N;H] SUBR 
lOC[X] SUBR 

.................................. 
LOG[X] ............................. ' ........ . 
lOGANO[Xl;X2; .•. ;Xn] SUBR* 
LOGOR[Xl,X2; .•• ;Xn] SUBR* 
lOGXOR[Xl;X2; ..• ;Xn] SUBR* 
LRSH[N;H] 

....................... 
· ........ " ........................ . LSH[N,H] SUBR 

HINUS[X] SUBR 
HINUSP[X] SUBR 
mixed arithmetic 

· ................................. . 
................................ 

INDEX .'13.1 

Page 
Numbers 

13.8 
13.3 
13.8 
13.9 
13.9 
13.9 
13.9 
13.9 
13.Z-10 
13.13 
13.14 
13.1 
13.1-Z,10-12 
13.9 
13.7 
13.Z,4,6 
13.2 
13.8 
13.6 
13.4 
13.4 
13.7 
13.6-7 
13.1-2,4,10 
13.7 
13.6 
13.6 
13.6 
13.6 
13.6 
13.1 
13.1 
13.8 
13.3 
13.3 
13.4 
13.8 
13.3 
13.Z-5 
13.3 
13.3 
13.3 
13.3 
13.1-2,10 
13.8 
13.5 
13.13-14 
13.8 
13.5 
13.5 
13.5 
13.5 
13.5 
13.7 
13.4,6 
13.7-8 



NON-NUMERIC ARG (error message) 
numbers 
octal 
overflow 
PlUS[Xl;X2; ... ;Xn] SUBR* 
Q (following a numb~r) 
QUOTIENT[X;Y] SUBR 
RAND[lOWER;UPPER] 
random numbers 
RANDSET[X] 
RANDS TATE 
REMAINDER[X;Yl SUBR 
RSU[N;M] 
SETN[VAR;X] NL 
SIN[X;RADIANSFlG] 
small integers 
SMAllP[N] 
SQRT[N] 

• < ••••••• 

SQRT OF NEGATIVE VALUE (error message) 
SUBl[X] 
TAN[X;RADIANSFlG] 
TENEX ................................ 
TIMES[Xl;XZ; ... ;Xn] SUBR* 
unboxed numbers 
unboxing 
VAG[X] SUBR 
ZEROP[X] ...................................... 
I (followed by a number) 

INOEX.13.Z 

Page 
Numbers 

13.2,6-7 
13.1-14 
13.13 
13.3,6 
13.7 
13.13 
13.7 
13.9 
13.9 
13.10 
13.9-10 
13.7 
13.5 
13.10-12 
13.9 
13.1-2 
13.2,4 
13.8 
13.8 
13.3 
13.9 
13.13 
13.7 
13.13 
13.1-2,12 
13.13-14 
13.4 
13.13 



14.'1 Files 

SECTION 14 

INPUT/OUTPUT FUNCTIONS 

All input/output functions in INTERLISP can specify their' source/destination 

file with an optional extra argument which is the name of the file. This file 

must be opened as specified below. If the extra argument is not given (has 

value NIL) •. the file specified as ·primary· for input (output) is used. 

Normally these are both T. for teletype input and output. However, the primary 

input/output file may be changed by 

input[file]l 

output[file] 

Sets fIle as the primary input file. Its value is 

the name of the old primary input file. 

input[] returns current primary input file, which 

is not changed. 

Same as input except operates on primary output 

file. 

Anll file which i& made primarll mu&t haue been preuiou&l,l opened lor 
input/output, except lor the file T, .hich i& al.all& open. 

1---~-------------------------------------------------------------~------------The argument name file is used for tutorial purposes only. The arguments to all subrs are U.~and W as described in arg1ist, Section 8. 

14.1 



infile[ r'ile] Opens file for input, and sets it as the primary 

input file. 2 The value of infile is the previous 

prililary input ·file. If file is already open, same 

as input[file]. Generates a FILE WON'T OPEN error 

if file won't open, e.g., file is already open for 

outl,ut. 

outfile[file] Opens file for output, and sets it as the primary 

output f11~.3 The value of outfile is the previous 

priulary output file. If file is already open, 

samEI as output[file]. Generates a FILE WON'T OPEN 

errcJr if file won't open, e.g., if file is already 

open for input. 

For all input/output functions, file follows the TENEX conventions for file 

names, i.e. file can be prefixed by a directory name enclosed in angle 

brackets, can contain alt-modes or control-F's, and can include suffixes and/or 

version numbers. Consistent with TENEX, when a file is opened for input and no 

version number is given, the highest version number is used. Similarly. when a 

file is opened for output and no version number is given, a new file is created 

with a version number one highelr than the highest one currently in use with 

that file name. 

Regardless of the file name given to the INTERLISP function that opened the 

2-----~-----------------------------------------------------------~------------To open fi Ie without changing the primary input file, perform 

8 

input[infile[file]]. 

To open file without ch,snging the primary output file, perform 
output[outfile[f1le]]. 

14.2 



file, INTERLISP maintains only full -TENEX file names4 in its internal table of 

open files and any function whose value is a file name always returns a full 

file name, e.g. openp[FOO]=FOO.;3. Whenever a file argument is given to an ilo 

function, INTERLISP first checks to see if the file is in its internal table. 

If not, INTERLISP executes the appropriate TENEX JSYS to -recognize- the file. 

If TENEX does not successfully recognize the file, a FILE NOT FOUND error is 

generated. 6 If TENEX does recognize the file, it returns to INTERLISP the full 

file name. Then, INTERLISP can continue with the indicated operation. If the 

file is being opened, INTERLISP opens the file and stores its (full) name in 

the file table. If it is being closed, or written to or read from, INTERLISP 

checks its internal table to make sure the file is open, and then executes the 

corresponding operation. 

Note that each time a tull file name is not used, INTERLISP must call TENEX to 

recognize the name. Thus if repeated operations are to be performed, it is 

considerably more efficient to obtain the full file name once, e.g. via infilep 

or outfllep. Also. note that recognition by TENEX is performed on the user's 

entire directory. Thus, even if only one file is open, say FOO.;I, FS 

(F altmode) will not be recognized if the user's directory also contains the 

file FIE.: 1. Similarly, it is possible for a file name that was previously 

recognized to become ambiguous. for example, a program performs infile[FOO], 

opening FOO.: 1, and reads several expressions from FOO. Then the user types 

control-C, creates a FOO.:2 and reenters his program. Now a call to read 

giving it Foo as its file argument will generate a FILE NOT OPEN error, because 

TENEX will recognize FOO. as FOO.:Z. 

6 except for infilep, outfilep and openp, which in this case return NIL. 

14.3 



infilep[file] Ret;urns full file name of file if recognized by 

TE~JEX. NIL otherwise. The full file name will 

cOl1ltain a directory field only if the directory 

differs from the currently attached directory. 

Recognition is in input context, i.e. if no 

ver'sion number is given, the highest version 

nuaber is returned. 

in/tlep and outlilep do not open anu lile&. or change the primaru Itle&, theu 
are pure predicate&. 

outfilep[file] 

closef[flle] 

closeall[ ] 

openp[file;type] 

Similar to infilep, except recognition is in 

output context, i.e. if no version number is 

given, a version number one higher than the 

highest version number is returned. 

Closes file. Generates an error, FILE NOT OPEN, 

if file not open. If file is NIL, it attempts to 

close the primary input file if other than 

teletype. Failing that, it attempts to close the 

pr~mary output file if other than teletype. 

Failing both, it returns NIL. If it closes any 

file, it returns the name of that file. If it 

closes either of the primary files, it resets tha~ 

prilDary file to teletype. 

Closes all open files (except T). Value is a list 

of the.files closed. 

If ~~=NIL, value is file (full name) if ~ is 

open either for reading or for writing. Otherwise 

value is NIL. 

14.4 



Addressable files 

If !lI!.! is INPUT or OUTPUT, value is file if open 

for corresponding type, otherwise NIL. If !l2! is 

BOTH, value is file if open for both input and 

output, (See iot11e, page 14.6) otherwise NIL. 

Note: the value of .2J!!!!.I! is NIL if file 1s not 

recognized, 1.8 • .2J!!!!.I! does not generate an error. 

openp[] returns a list of all files open for input 

or output, excluding T. 

For most applications, files are read starting at their beginning and 

proceeding sequentially, i.e. the next character read is the one immediately 

following the last character read. Similarly; files are written sequentially. 

A program need not be aware of the fact that there is a file pointer associated 
, 

with each file that points to the location where the next character is to be 

read from or written to, and that this file ~ointer is automatically advanced 

after each input or output operation. Th~s section describes a function which 

can be used to reposttton the file pointer, thereby allowing a program to treat 

a file as a large block of auxiliary storage which can be access randomly.B For 

example, one application might involve writing an expression at the be,tnntn, 

of the file, and then reading an expression from a specified point in its 

6-·-----~--------------------------------------------------------~--------------Random access means that any location is as quickly accessible as any 
other. For example, an array is randomly accessible, but a list is not, 
since in order to get to the n!h element you have to sequence through the 
first n-1 elements. 

14.6 



mtddle.? 

A file used in this fashion is. much like an array in that it has a certain 

number of addressable locations that characters can be put into or taken from. 

However, unlike arrays, files can be enlarged. For example, if the file 

pointer is positioned at the end of a file and anything is written, the file 

"grows." It is also possible tIC) position the file pointer beuond the end of 

file and then to write.8 In this case, the file is enlarged, and a "hole" is 

created, which can later be wr'itten into. Note that this enlargement only 

takes place at the end of a file: it is not possible to make more room in the 

middle of a file. In other words, if expression A begins at positon 1000, and 

expression B at 1100, and the program attempts to overwrite A with expression 

C, which is 200 characters long, part of B will be clobbered. 

1ofile[file] Opens file for both input and output. Value is 

fil!. Does not change either primary input or 

primary output. If no version number is given, 

default is same as for infile, i.e. highest 

version number. 

sfptr[file;address] ~ets file ~oin!e! for file to address. 9 Value is 

7---~h~;--;;;;;;~;;;-~~~~i~--;;;~1;;;--;h~-f1i~--b;-~~~~--~~;--;;;h-~~~~~--;~d 

8 

9 

output. This can be achie'ved via the function iorile described below. 
However, random file input lor output can be performed on files that have 
been opened in the usual way by infile or outfile. 

If the program attempts to read beyond the end of file, an END OF FILE 
error occurs. 

TENEX uses byte addressing; the address of a character (byte) is the number 
of characters (bytes) that precede it in the file, i.e., 0 is the address 
of the beginning of the file. However, the user should be careful about 
computing the space needed for an expression, since end-of-line is 
represented as two characters in a file, but nchars only counts it as one. 

14.6 



old setting. address--1 corresponds to the end of 

file. 10 

If address-NIL, sfptr returns the current value of 

file pointer without changing it. 

fi1epos[x;file:start;end;skip;tail]11 Searches f!!! for! a lastrpos (Sec'tion 

10). Search begins at start (or if start=NIL, 

the current position of file pointer), and goes to 

end (or if !.rul=NIl, to the and of file). Value is 

address of start of match, or NIL if not found. 

skip can be used to specify a character which 

matches any character in the file. If tail is T, 

and the search is successful, the value is the 

address of the first character alter the sequence 

of characters corresponding to !, instead of the 

starting address of the sequence. In either case, 

the file is left so that the next i/o operation 

begins _at the address returned as the value of 

filepos. 

1j------~----------------~~----------------------------------------------------Note: if a file is opened for output only, either by outfile, or 

t1 

openf[ file; 100000q] (see page 14.8), TENEX assumes that one intends to 
write a new or different file, even if a version number was specified and 
the corresponding file already exists. Thus, sfptr[file;-1] will set the 
fi Ie pointer to O. If a file is opened for both reading and writing, 
either by iofile or openf[file:300000q]. TENEX assumes that there might be 
material on the file that the user intends to read. Thus, the initial file 
pointer is the beginning of the file, but srptr[file;-l] will set it to the 
end of the file. Note that one can also open a file for appending by 
openf[file;20000q]. In this case, the file pointer right after opening is 
set to the end of the existing file. Thus, a write will automatically add 
material at the end of the file, and an sfptr 1s unnecessary. ' 

filepos was written by J.W. Goodwin. 

14.7 



Openf 

openf[file;x] opens file. ! is a number whose bits specify the 

aCCIBSS and mode for file, i . e. ! corresponds to 

the second argument to the TENEX JSYS OPENF (see 

JSY.s Manual). Value is full name of file. 

openf permits opening a file fc.r read, write, execute, or append, etc. and 

allows specification of byte size, i.e. a byte size of 36 enables reading and 

writing of full words. openf does not affect the primary input or output file 

set tings, and does not check wh4!ther the file is already open - i. e. the same 

file can be opened more than once, possibly for different purposes. 12 openp 

will work for files opened with !!)penf. 

The first argument to openf can also be a number, which is then interpreted as 

JfN. This results in a more eff'1cient call to openf. and can be signficant if 

the user is making frequent call:s to openf, e.g. switching byte sizes. 

JfN functions"3 

JFN stands for Job file !lumber. It is an integral part of the TENEX file 

system and is described in [Plur't], and in somewhat more detail in the TENEX 

JSYS manual. The following function can be used to obtain the JfN for an 

already opened file. 

opnJfn[ file] returns the JFN for fi Ie. If file not open, 

generates a FILE NOT OPEN error. 

i2---------------------~--------··-----------------------------~-----~----------The -thawed- bit in'! permits opening a file that is already open. 

13 The JFN functions were writt4!n by J.W. Goodwin. 

14.8 



Example:, to write a byte on a file 

[DEFINEQ (BOUT 
(LAMBDA (FILE BYTE) 
(LOC (ASSEMBLE NIL 

(CQ (VAG BYTE» 
(PUSH NP • 1) 
(CQ (VAG (OPNJFN FILE») 
(POP NP • 2) 
(JSYS 51Q) 
(HOVE 1 • 2)] 

or to read a byte from a f1le 

[DEFINEQ (BIN 
(LAMBDA (FILE) 

(LOC (ASSEMBLE NIL 
(CQ (VAG (OPNJFN FILE») 
(JSVS 50Q) , 
(HOVE 1 • 2] 

Making BIN and BOUT substitution laacros can save boxing and unboxing in 

compiled code. 

The following functions are available for direct manipulation of JFN's: 

gtjfn[file;ext;v;flags] 

rljfn[ jfn] 

jfns[jfnjac3] 

sets up a 'long' call to GTJFN (see JSYS manual). 

file is a file name possibly containing control-F 

and/or alt-mode. ext is the default extension, y 

the default version (overriden if f1le specifies 

extension/version, e.g. FOO.COM;2). flags 1s as 

described on page 17, section 2 of JSYS manual. 

f!!! and ext may be strings or atoms; y and flags 

must be numbers. ' Value is JFN, or NIL on errors. 

releases jfn. rljfn[-l] releases all JFN's which 

do not specify open files. Value of rljfn is T. 

converts jfn (a slDall number) to a fl1e name. ac3 

14.9 



14.2 Input Functions 

is either NIL, ,meanlngformat the file name as 

would openp or other INTERLISP file funct1.ons, or 

else is a number, meaning formata<;cordingto,JSYS 

manual. The value of jfnsis atomic e~c,ept where 

enough options are specified by ac3 to exceed atom 

size (2 100·~hara~ters). In this case, the value 

is returned as a string. 

Most of the /unctions described below have an (optional) (!rgument l.1!!!.. which 
s peciJi es the name 0/ the Ji leon which the operat ton' is to talc.6; pl ace. If 
that argument is NILi theprtmarll input/ile will beus'ed. 

Note, in all INTERLISP sumbolic files, end-of-line is indicated by the 
characters carriage-return and line-feed in that order. Accordinglu, on input 
from Jiles, INT¥JfI$Pwill s~,tp all ltne-feedswhich immediate"lll /ollow' 
carriage-returns'. On input /rom teletllpe, INTERLISP will echo a line-feed 
whenever a carriage-return ts input. 

For all input functions except ~adc and peelc, when reading /rom the teletype, 
control-A erases the last character tllped in, echoing a \ and the erased 
character. Control-A will not baclc.up bellong the last carriage return. ,. Typing 
control-Q causes INTERLISP to print II and clear the input buller. i.e. erase 
the entire line bacl to the last carriage-return. When reading from a Itle. 
and an end oj file is encounte'red. all input functions close the lile and 
generate an,error, END OF FILE. 

read[file;flg] Re~ds one S-expression from file. Atoms are 

deltmited by parentheses, brackets, double quotes, 

spaces, and carriage~returns. To input an atom 

whic:h contains one of these syntactic delimiters, 

prec:eded the delimiter by the escape character X, 

e.g. AB,(C, is the atom AB(C, XX is the atom X. 

i~-------------------------------------------------------------~--------------~ Actually. INTERLISP skips the next character after a carriage-return 
without looking at it at all. 

: 'J ">r 

14.10 



Strings are delimited by double quotes. To input 

a string containing a double qUote or a I, precede 

it by X. e.g. "ABX"C" is the string AB"C. Note 

that I can always be typed even if next character 

is not 'special', e.g, "AlBIC is read as ABC. 

If an atom is interpretable as a number, read will 

create a number, e.g. lE3 reads as a floating 

point number. 103 as a literal atom, 1.0 as a 

number. 1,0 as a literal atom, etc. 'Note that an 

integer can be input in octal by terminating it 

with a 0, e.g. 170 and 15 read in as the same 

integer. The setting of radix. page 14.22, 

deteMmines how integers are printed. i.e. with or 

without 0'5. 

When reading f[tfm the teletllpe, all input is line-buffered to enable the action 
of control-Q. Thus no characters are actuallll .seen bll the program until a 
carriage-return i.s typed. However. for reading bll read or uread. when a 
matching right parenthe.si.s i.s encountered. 'he effect i.s the .same-GS though a 
carriage return were tllped. i.e. the characters are tran.smitted. To indicate 
thts, INTERLlSP alsoprtnt.s a carriage-return Line-feed on the teletllpe. 

ratom[f1Ie] 

flg=T suppresses the carriage-return normally 

typed by read following a matching right 

parenthesis. (However. the characters are still 

given, to read - 1.e. the user does not have to 

type the carriage return himself.) 

Reads 1n one atom from file. Separation of atoms 

16-~-----~---------------------------------------------------------------------Unless control[T] has been performed (page 14.24). 

14.11 



is defined by action of setsepr and setbrk 

described below. X is also an escape character 

for ratom, and the remarks concerning control-A, 

control-Q, and line-buffering also apply. 

If the characters comprising the atom WOUld' 

nonnally be interpreted as a number by read, that 

number is also returned by ~. Note however 

tha't ratom takes no speCial action for • whether 

or not it is a break character, 1.e. ratom never 

makllts a string. 

The purpose oj ratom. rstring. setbrk. and setsepr is to allow the user to 
wri te his own read program wi t~lout hailing to resort to reading character bll 
character and then calling pac!!:. to male atoms. The function uread (page 
14.16) is auailable if the user wants to handle input as read does, i.e. same 
action on parentheses, double quotes. square brackets :---etot. spaces, and 
carriage-return. but in addition, to spLit atoms that contain certain 
characters, as specified bU setbJ~l and setsepr. 

rstring[file] Reads in one string from file, terminated by next 

break or separator character. Control-A, control· 

Q. nnd I have the same effect as with ratom. 

Note that the brealt. or separatol' character that terminates a call to ratom or 
rstrtng is not read bll that call" but remains in the buffer to become the first 
character seen bll the next readilt, function that is called. 

ratoms[a;file] 

setsepr[lst;flg] 

setbrk[lst;flg] 

Calls ratom repeatedly until the atom ! is read. 

Returns a list of atoms read. not including !. 

Set separator characters. Value is NIL. 

Set brea! characters. Value is NIL. 

14.12 



For both setsepr and setbrk", 1st is a list of character codes, fIg determines 

the action of setsepr/setbrk as follows: 

NIL clear out old tables and reset. 

o clear out only those character"s in 1st -

i.e. this provides an unsetsepr and unsetbrk. 

1 add characters i.~ 1st to corresponding 'table. 

Characters specified by setbrk will delimit atoms, and be returned as separate 

atoms themselves by ratom. 18 Characters specified by setsepr will be ignored 

and serve only to separate atoms. For example, if $ was a break character and 

] a separator character, the input stream ABC]]DEFSGH]SS would be read by 6 

calls to ratom returning respectively ABC, DEF, $, GH, S, S. 

Note that the action of X is not affected by setsepr or setbrk. To defeat the 

action of X use escaper]. as described below. 

The elements of 1st may also be characters e.g. setbrk[ (X( X» 1 has the same 

effect as setbrk[(40 41)]. Note however that the 'characters' 1,2 ••• 9,0 will 

be interpreted as character code$ because they are numbers. 

Initially, the break characters are"[ ] ( ) and • and the separator characters 

are space, tab, carriage-return, line-feed, end-of-line, and form-feed. (Note 

that • is not a break or separator character.) setbrk[ T] sets the break 

characters to their initial ~ett1ngs, and setsepr[T] does the same for the 

separator characters. 

getsepr[] Value 1s a list of separator character codes. 

i6--~-~--~----------~----------·---------------------- -------------------------but have no effect whatsoever on the action of read. 

14.13 



getbrk[] 

escape[flg] 

ratest[x] 

readc[file] 

Value is a list of break character codes. 

If flg=NIl, makes X act like every other 

chalracter. Normal setting is escaper T]. 

The value of escape is the previous setting. 

If !. T, ratest returns T if a separator was 

enc4)untered immediately prior to the last atom 

read by ratom, NIL otherwise. 

If ! • NIL, ratest returns T if last atom read by 

rat~ or read was a break character, NIL 

othurwise. 

If !. 1, ratest returns T if last atom read 

(by read or ratom) contained a X (as an escape 

cha."acter, e. g., X[ or XAXBXC), NIL otherwise. 

Reads the next character, including ", ", etc. 

Value is the character. Action of readc is 

subJect to line-buffering, i. e. readc will not 

return a value until the line has been terminated 

even if a character has been typed. Thus, 

control-A and contro1-Q will have their usual 

effElct. If control[ T] has been executed (page 

14 • ~~4) , defeating 1 ine-buffering, readc wi 11 

return a value as soon as a character is typed. 

In addition, if control-A or control-Q are typed, 

reac~ will return them as values. 

14.14 



peekc[filejflg] 

lastc[file] 

uread[filejflg] 

Value is the next character, but does not actually 

read it, i.e. remove it from the buffer. If ' 

!!a-NIL, peekc is not subject to line-buffering, 

i.e. it returns a value as soon as a character has 

been typed. If!!H-T, peeke waits until the line 

has been terminated before returning its value. 

This means that control-A and control-Q will be 

able.to perform their usual editing functions. 

Value is l!!! ~haracter read from file. 

(for !!ser read).. Same as read except it uses 

separator and break characters set by setsepr and 

setbrk. This function is useful for reading in 

list structure in the normal way, while splitting 

atoms containing special characters. Thus with 

space a separator character, and break characters 

of ( ) • and • the input stream (IT'S EASY.) is 

read by ~ as the list (IT • S EASY X.) 

Note that ( ) [ ] and • must be included in the 

break characters if uread is to take special 

action on them, i.e. assemble lists and make 

strings. 

flg=T suppresses carriage-return normally typed 

following a matching right parentheses. See page 

14.11. 

14.15 



Notel read. ratom. ratoms. peelt.(~. reade, and uread all wait lor input if there 
is none. The onlll wall to te&t whether or not there i& input ioS to use 
readp. 

readp[file] 

readline[]17 

Value is T if there is anything in the input 

buffer of file, NIL otherwise (not particularly 

meaningful for. file other than T). Note that 

because of line-buffering, readp may return T, 

indicating there is input in the buffer, but read 

may still have to wait. 

rea~s a line from the teletype, returning it as a 

list. If readp[T]. is NIL, readline·retU~n~ NIL~ 

Othlsrwise it reads expressions, using read, 1.8 

until it encounters either: 

(1) a carriage-return (typed by the user) that is 

not preceded by any spaces, e.g. 

ABC,) 

and readline returns (A B C) 

(2) a list terminating in a 1]1, in which case 

the list is included in the value ·of 

re4dline, e.g. A B (C D] and readline returns 

(A B (C D». 

17-----------------------------------------------------------------------------Readline actually has two ar"guments for use by the system, but the user 
should consider it as a function of no arguments. 

1.8 Actually, readline performs (APPLY. LISPXREADFN T), as described in Section 
22. lispxreadfn is initially READ. 

14.16 



(3) an unmatched right parentheses or right 

square bracket, which is not included 'in the 

value'of readline, e.g. 

ABC] 

and readline returns (A B C). 

In the case that one or more spaces precede a carriage-return, or a list is 

terminated with a ')', readline will type t 

19 next line. e.g. 

• and continue reading on the 

ABC .~ 
••• (O-E F) 
••• (X Y Z] 

and readline returns (A B C (D E F) (X Y Z». 

skread[ file :rereadstringtO is a ,!!ip .!:!!!! function. It moves the file 

pointer for !!!! ahead as if one call to read had 

been performed, without paying the storage and 

compute cost to really read in the structure. 

rereadstring is for the case where the user has 

already performed some ~'s and ratom's before 

deciding to skip this expression. In this case, 

rereadstring should be the material already read 

(as a 5 tr1ng) , and skread operates as though it 

19-~--~------------------------------------------·-----------------------------If the user then types another carriage return, the line will terminate 
e.g. 

. .. ~ 
and readline returns (A B C) 

20 skread was written by J.W. Goodwin. 

14.17 



14.3 Output Functions 

had seen ,that material first, thus getting its 

paren-count, double-quote count, etc. set up 

ThEI value of" skread is X) if the #irst thing 

enc:ountered was a closing paren: Xl if the read 

ter'mina,ted on an unbalanced 'Xl,' i;.e'~ 'one) 'which 

also would ,have ,closed. ,any extant open, left 

par'ens; otherwise the, value of skread is NIL. 

Most of the lunctton$ de$crtbed below haue an (opttonal) argument,lile' 'which 
specifies the name oj the Ii le on which the operation is to tale place. 11 
that argument is NIL, the primaru output lile will be used. 

Note: in all INTERLIS," svmbojti,c, Jile$, end-ol-line t~ indicated bli the 
characters carriage-return andline-/eed in that order. Unle$s otherwise 
stated t carriage-return oppeartng ill the description oJ an output Junction 
means carriage-return and line-feed. 

prin1[x;file] 

prin2[x;file] 

prilnts ! on file. 

prilllts ! on file with X' sand •• s inserted where 

reqillired for it to read back in properly by read. 

Both print and prin2 print lists as well as atoms and strings; prin1 is usually 

used only for explicitly printing formatting characters, e.g. 

(PRINt (QUOTE X[» might, ,be used to print a left square bra'cket (the X would 
~ , . 

not be printed by print). prin~~ is used for printing S-expressions which can 
!,~. 

then be read back into INTERLISI) with read i.e. regular INTERLISP formatting 

characters in atoms will be preceded by X's, e.g. the atom '(}Iis printed as 

X(X) by prinZ. If radix=8, prin~ prints a g after integers but print does not 

(but both print the integer in octal). 

14.18 



prin3[x;file] 

print[x:file] 

Prints! with X's and ·'5 inserted where required 

for it to read back in properly by uread, i.e. 

uses slparator and break characters specified by 

setbrk and setsepr to determine when to insert 

X's. 

Prints the S-expression ! using prinZ: followed by 

a carriage~return line-feed. Its value is ~. 

For all printing Junctions. pointers other than lists. strings, atoms, or 
numbers, are printed as IN, where N is the octal representation 0/ the address 
oj the pointer (regardless oJ rad(x). Note that this UI1,ll not read back in 
correctlu. i.e .• it will read in as the atom 'IN'. 

spaces[njfile] Prints n spaces; its value is NIL. 

terpri[file] Prints a carriage-return; its value is NIL. 

Printlevel 

The print functions print, print, prin2, and prin3 are all affected by a level 

parameter set by 

printlevel[n] Sets print level to !l, value is . old setting. 

Initial value is tOOO. printlevel[] gives current 

setting. 

The variable !l controls the number of unpaired left parentheses which will be 

printed •. Below that· level. all lists will be printed as 6. 

Suppose! = (A (B C (0 (E F) G) H) K). Then if !l :I 2, print[x] would print 

(A (B C & H) K). and if !l e 3. (A (B C (D 6 G) H) K), and if !l • 0, just &. 

14.19 



If printlevel is negattue. the action is similar except that a carriage-return 

is inserted between all occurrences of right parenthesis immediately followed 

by a left p~rent~esis. 

The printlevel setting can be changed dynamica,lly, even while INTERLISP is 

printing, by typing control-P f'ollowed by a number, i.e. a string of digits, 

followed by a period or exclamat:iop pOint.21 Theprintlevel will immediately be 

set to this number. 22 If. the print r out1:ne, is currently deeper than the new 

level, all unfinished lists above that level will be terminated by ---)-. 

Thus, if a circular or long list of atoms, is, being printed out,' typing 

control-PO. will cause, the list,' to: be terminated. 

If a period is used to terminate the printlevel setting, the printlevel will be 

returned to its previous settinu after this printout. If an exclamation point 

is used, the change 15 permanent and the printlevel is not restored (until it 

is changed again)~ 

. Note, prtntleuel onlll alleets t~tletllpe output. Output to all other liles, ercts 
as though leuel is tn/intte. 

2i-----~------------~--------------------------------- -------------------------
As soon as control-P is typed, INTERLISP clears and saves the input buffer, 

22 

clears the output burfer, rings the bell indicating it has seen the 
control-P, and then waits f(]lr input which is terminated by any non-number. 
The input buffer is then restored and the program c,ontinues. If the input 
was terminated by other than a period or an exclamation point. 1 t 15 
ignored and printing will continue, except ,that cha~acters cleared from the 
output buffer will have been lost. . 

Another way of -turning Oflf- output is to type control-O, which simply 
clears the output buffer, thereby effectively skipping the next (up to) 64 , 
character~. 

14.20 



14.4 Input/Output Contrel Functions 

clearbuf[file;flg] 

linbuf[flg] 

sysbuf[flg] 

Clears the input buffer for file. If file is T 

and fig is T, contents of INTERLISP's line buffer 

and the system buffer are saved (and can be 

obtained via linbuf and sysout described below). 

When either control-D, control-E, control-H, 

control-P, or control-S is typed, INTERLISP 

automatically does a clearbuf[T;T]. (For control-P 

and control-S, INTERLISP restores the buffer after 

the interaction. See Appendix 3.) 

if fI9=T, value is INTERLISP' 5 line buffer (as a 

string) that was saved at last clearbuf[T;T]. If 

flg=NIl, clears this internal buffer. 

same as linbuf for system buffer. 

If both the system buffer and INTERLISP' s line buffer are empty, the internal 

buffers associated with linbuf and sysbuf are not changed by a clearbuf[T;T]. 

bklinbuf[x] 

bksysbuf[x] 

! is a string. bklinbuf sets INTERLISP' s line 

buffer to!. If greater than 160 characters, 

first 160 taken. 

! is a string. bksysbuf sets system buffer to !. 

The effect is the same as though the user typed !. 

bklinbuf, bksysbuf. linbuf, and sysbuf provide a way of 'undoing' a clearbuf. 

Thus if the user wants to ·peek· at various characters in the buffer, he could 

perform clearbuf[T;T], examine the buffers via linbuf and sysbuf, and then put 

them back. 

14.21 



radix[n] 

fltfmt[n] 

line1ength[n] 

Resets output radi~3to I n I w!.th sign in~lc.tor 

the' sign of n. For example, -9 will print as 

shown wi ttl, the following radic~s':~ , 

radix printing 

10 -9 

-10 68719476727 

i.e. (2t36-9) 

8 -llQ 

-8 777777777767Q 

Value of radix is its last setting. radix[] gives 

current setting without changing it. 

setting is 10. 

Initial 

Sets floating format control to rr (See TENEX JSYB 

manual for interpretation of !l) • fltfmt[T] 

spel:ifies free format (see Section 3). Value of 

fl tlrmt is last setting. fltfmt[ l returns current 

set1~ing without changing it. Ini tia1setting is 

T. 

Sets the lengt~ of the print line for all files. 

Value is the former setting of the line length. 

Whenever printing an atom would go beuond the 

length of the, line, a carriage~return 1s 

autclmatically inserted first. llnelength[ ] 

returns current setting. Initial setting is 72. 

23-----------------------------------------------------------------------------Currently, there is no input radix. 

14.22 



position[file] Gives the column number the next character will be 

read from or printed to, e.g. after a 

carriage-return, position-O. Note that 

position[file] is not the same as sfptr[file] 

which gives the position in the" lile, not on the 

line. 

Line-buffering and CONTROL 

In INTERLISP's normal state, characters typed on the teletype (this section 

does not apply in any way to input from a tile) are transferred to a line 

buffer. Characters are transmitted from the line buffer to whatever input 

function initiated the request (i.e., ~f ~, ~, rstring, or readc)24 

onlll when a carriage-return is typed.26 Until this time, the user can delete 

characters one at a time from the input buffer by typing control-A. The 

characters are echoed preceded by a \. Or, the user can delete the entire line 

buffer back to the last carriage-return by typing control-Q, in which case 

INTERLISP echoes 11.26 (If no characters are in the buffer and either control-A 

or control-Q is typed, INTERLISP echoes II.) 

Note that this line editing is not performed by read or ratom, but by 

INTERLISP, i.e. it does not matter (nor is it necessarily known) which function 

24----------------------------~----------------------- -------------------------peekc is an exception; it returns the character immediately. 

26 

26 

As mentioned earlier, for calls from read or uread, the characters are also 
transmitted whenever the parentheses count reaches o. In this case, if the 
second argument to read or uread is NIL, "INTERLISP also outputs a carriage-
return line-feed. - --

Typing rubout clears the entire input buffer at the time it is tllped, 
whereas the action of control-A and control-Q occurs at the time they are 
read. Rubout can thus be used to clear type-ahead. 

14.23 



will ultimately proce$,s the characters. only that they are still in, the 

INTERLISP input buffer., Note also that it is~the function that is currentlu 

.requesting input t~a,~.,:~~t.ermines whether parentheses counting is observed, e.g. 

if the user exec,u,tes (.P~OGN (RATOM)' (READ» and, types in A (8 C D) he will have 
,', ',t".,·., '" ' 

to type in the carriage-return t:ollowing ,the right parenthesis before any 

action is taken, whereas if he types (PROGN (READ) (READ» he would not. 

However, once a carriage-return has been typed, the entire line is 'available' 

even if not all of it is processed by the function initiating the request for 

input, i.e. if any characters are 'left over', they ~illb~ returned 

immediately on the next request for input. For example, 

(PROGN (RATOf1) (READC» - followed byA B carriage-return will perform both 

operations. 

Turning-off Line-buffering 

The function control is .vailable to defeat this ,11ne-buffering. After 

control[T~, characters are returned to ,the, calling function without line­

buffering as de~cribed below. The function that initiates the request for 

input determines how the line is treated: 

1. read/urea,d 

if the expre,ssion being typed:ls a lis.t, the effect 15 the same as though 

control were NIL, i.e. line-buffering until carriage-return or, matching 

parentheses. If the expression being typed is not a list, it is returned as 

soon as a break or separator chclracter is encountered,,27 ,g. g • (READ) followed 

_ • ,. ,1 27--" - - - - _.- -'c~ - -:.~ -."., - _ .. - -.'- -.-:---- .,- - --. - -- -- --,- ~ ... - -.----- - .. - -:- ... -1;"""-'-." -,~- - - ~ - .... - - _ ... 
An exception to the above occurs when the break or separator chara'cter is a 
(,If, or [,'since returning Cit this 'point would leave the line buffer in a 
"funny" state. Thus if control is T and (READ) is followed by 'A8C(', the 
A8C will not be read until a carriage-return or matching parentheses 1s 
encountered. In this .. case, the user could,con~trol-Q the entire:" line, since 
all of t'lle 'c'haracters are still ,in the buffer., 

14.24 



by ABC space will immediately return ABC. Control-A and control-Q editing are 

available on those characters still in the buffer. Thus, if a program is 

performing several reads under control[T], and-the user types NOW IS THE TIME 

followed by control-Q, he will delete only TIME since the rest of the line has 

already been transm!~ed to read and processed. 

2. ratom 

characters are returned as soon as a br~ak' or separator character is 

encountered. Before then, control-A and control-Qmay be used as with read, 

e.g. (RATOH) followed by ABCeontrol-Aspace will return AB. (RATOH) followed by 

(control-A will return ( and type II indicating that control-A was attempted 

wi th nothing in tJle buffer, since the ( is a break character and would 

therefore already have been read. 

3. reade/peeke 

the character is returned immediately; no line editing is possible. In 

particu lar. (READC) followed by control-A will read the control-A, (READe) 

followed by X will read the X. 

control[u] !!=T eliminates INTERLISP's normal line-

buffering. 

u=NIl restores line-buffering (normal). 

u=O eliminates echo of character being 

deleted by control-A. 

u=1 restores echo (normal). 

The value of control when !!=T or NIL is its 

previous line-buffering setting, i.e. T or NIL. 

When !:!,=O or 1, its value is 1 ts previous echo 

setting, 1.e. 0 or 1. 

14.25 



14.5 Special Functions 

sysout[file] Sa,'es the user' s private memory on file. Also' 

sa,'es the .stacks, so that if a program performs a 

sys;out.. the subsequent sysin will continue from 

thalt point. e. g. 

(PR,OGN (SYSOUT (QUOTE FOO» (PRINT (QUOTE HELLO») 

will . cause HELLO ,to ,be' printed after 

(SY'SIN (QUOTE FOO» The value of sysout is file 

( full name). A value of NIL indicates the sysout 

was unsuccessf,ul, i.e., either· disk' or computer 

error, or user's directory was full. 

SlIsout does not saue the state 0/ anu open Jtles. 

Whenever the INTERLISP sustem iJ; reassembled and/or reloaded, old svsout Jiles 
are not compatible. 

sysin[file] restores the state' of INTERLISP from a Sysout 

fille. Value is list[file]. If sysin returns NIL, 

thelre was a problem in reading the file. If the 

file. was not found or is incompatible (see note 

abo've), generates an error, FILE NOT COMPATIBLE. 

Stncesystn conttnues tmmedtatelll where susout Le/t all, the onlu wall for a 
program to determine whether it is just cominll back. Jrom a svsin or from a 
svsout is to test the ualue 0/ ~lsout. 

For example, (CONO «lISTP (SYS()UT (QUOTE FOO») (PRINT (QUOTE HELLO»» will 

cause HEllO to be printed follclwing the sysin, but not when the sysout was 

performed. 

14.26 



14.6 Symbolic File Input 

load[file;ldflg:printflg] Reads successive S-expressions from file and 

evaluates each as it is read, until it reads 

either NIL. or the single atom STOP. Value is file 

(full name). 

If printflgaT. load prints "the value of each 8-

expression: otherwise it does not. ldflg affects 

the operation of define, defineg, ~. and rpaqq. 

While load is operating, dfnflg (Section 8) is 

reset to Idflg.28 Thus, if ldflg=NIl, and a 

function is redefined, a message is printed and 

the old definition saved. If ldflg=T, the old 

definition is simply overwritten. If Idflg=PROP, 

the function definitions are stored on the 

property lists under the property EXPR. If 

ldflg=AllPROP, not only function definitions but 

also variables set by ~ and ~ are stored on 

proper~y lists.29 

10adfns[fns;file:ldf19]30 permits selective loading of function definitions. 

fns is a list of function names, a single function 

name, or T, meaning all functions (but no 

28---~~----------~------------------------------------ -------------------------
Using resetvar (Section 5). dfnflg cannot simply be rebound because it 1s 

29 

80 

a GLOBAL variable. See Section 18. 

except when the variable has value NOBIND, in which case it is set to the 
indicated value regardless of dfnrls. 

loadfns was written by J.W. Goodwin. 

14.27 



readfile[file] 

var'iabl9s, property values, etc.) .' file can be 

either a compiled or symbolic file, i.e., any file 

thillt can be loaded by load. file is "opene"d and 

sCt:lnned ill the manner of load, and every function 

definition found for a function on fns is 

I081ded .31 . The interpretation of ldflg is the same 

as for load. 

loadfns uses skread (page 14.17) and lcskip (a 

subfunction of recompile) to skip over undesired 

moterial on the file, and so it is very efficient. 

The value of loadfns is a list of those functions 

loaded plus a list of those functions not found 

(if any) headed by the atom NOTFOUND:. e.g., 

(FOO FIE (NOTFOUND: FUM». 

Reads successive 8-expressions from file using 

r!!~ until the single atom STOP is read, or an end 

of file encountered. Value is a list of these 8-

exp.ressions. 

~i---------------------------·--"-------------------~--~~----~-----------------If a compiled definition is loaded, so are all compiler generated 
subfunctions. Note however if fns specifies entries to a block (see 
Section 18) the user must al~.o specify the block itself. 

, 14.28 



14.7 Symbolic File Output 

writefile[x;file:dateflg] Writes successive S-expressions from ! on file. 

If ! is atomic, its value is used. If file is not 

open, it is opened. If the first expression on ! 

is the type produced by printdate, or if date fig 

is T, • new date expression is written. If file 

is a list, car[file] is used and the file is left 

opened. Otherwise, when ! is finished, a STOP is 

printed on file and it is closed. Value is file. 

pp[x] nlambda, nospread function that performs output[T] 

and then calls prettyprint: PP FOO is equivalent 

to PRETTVPRINT«FOO»; PP(FOO FIE) o~ (PP FOO FIE) 

is equivalent to PRETTVPRINT«FOO FIE». 

Primary output file is restored after printing. 

prettyprint[lst]32 33 1st is a list of functions (if atomic, its value 

is used). The definitions of the functions are 

printed in a pretty format on the primary output 

file. For example, 

(FACTORIAL 
[LAMBDA (N) 

(COND 
«ZEROP N) 

1) 
(T (ITIMES N (FACTORIAL (SUB1 N]) 

82-----------------------------------------------------------------------------The prettyprint package was written by W. Teitelman. 

83 prettyprint has a second argument that is T when called from prettydef. In 
this case, whenever prettyprint starts a new function, it prints (on the 
teletype) the name of that function if more than 30 seconds, (real time) 
have elapsed since the last time it printed the name ot a functione 

14.29 



Note: prettyprint will operate correctly on fugctions that are broken, 

broken-i~, advised, or have been compiled with their definitions saved on their 

property lists - it prints the: original, pristine' detini tion, but does not 

change the current state of the function. If prettyprint is given an atom 

which is not the name ofa function, but has a value, it will prettyprint the 

value. 34 Otherwise,prettyprint~. will perform spelling correction. 

fails, prettyprint returns (atom NOT PRINTABLE). 

Comment Feature 

If all 

A facility for annotating INTERLISP, functions is provided in prettyprint. Any 

S-expression beginning with a is interpreted as a comment and printed in the 

right margin. Example: 

(FACTORIAL 
[LAMBDA (N) 

(COND 
«ZEROP N) 

1) 
(T 

(a COMPUTES NI) 

(a 0!-1) 

(. RECURSIVE DEFINITION: 
Nt.NaN-11) 

(ITIHES N (FACTORIAL (SUB1 N]) 

These comments act~ally form a peart of the function definition. Accordingly,. 

is defined as an NlAHBDA NOSPREAD function that returns its argument, i.e. it 

is equivalent to quote. When running an interpreted function, a is entered the 

same as any other INTERLISP function. Therefore, cO,mments should only be 

placed where they will not harm the computation, i.e. where a quoted expression 

could be placed. For example, wr"i ting 

(ITIHES N (FACTORIAL (SUB1 N» (~ RECURSIVE DEFINITION» in the above function 

would cause an error when ITIMES attempted to multiply N, N-lt, and RECURSIVE. 

34 - - - - - - - - - - - -.~ , ... - - - - - - - ~ ~ - •.• - - - .' - - - -_ .. - - - - - -.- - - ... - - - - - - - -." - - - - - - - - - - - - - - ... -- - - - - -
except when prettyprint is c~llled from prettydef. 

14.30 



For compilation purposes, " is defined as a macro which compiles into no 

instructions. Thus, if you compile a function with comments, and load the 

compiled definition into another system, the extra atom and list structures 

storage required by the comments will be eliminated. This is the way the 

comment feature is intended to be used. For more options, see end of this 

section. 

Comments are designed mainly for documenting listings. Thus when 

prettypr1nt1ng to the teletype, comments are suppressed and printed as the 

string **COMMENT-*.36 

Prettydef 

prettydef[prettyfns;prettyfile;prettycoms]36 Used to make symbolic files 

that are suitable for loading which contain 

function definitions, variable settings, property 

lists, et aI, in a prettyprint format. 

The arguments are interpreted as follows: 

prettyfns Is a list of function names. 

The functions on the list are prettyprinted 

surrounded by a (DEFINEQ ••• ) so that they can be 

36-----------------------------------------------------------------------------The value of **comment**flg determines the action. If IIrlircomment**flg is 

36 

NIL, the comment is printed. Otherwise, the value of IIrlircomment**flg is 
printed. **comment-.flg is initially set to " **COMMENT** ". The function 
~ is provided to prettyprint functions, including their comments, to the 
teletype. ~ operates exactly like .I!I!. except it firs,t sets "*comment**flg 
to NIL. 

prettydef actually has two additional arguments for use by the system. 

14.31 



prettyfile 

loaded with' load. If pre'ttYfns is atomic' (the 

preferred usage hi tstop level value is used as 

the list of function names, and an'.!J!.!9.!l 87 will 

alsl!) be written which will' set that atom to the 

lis't of functions when the file is' loaded. A 

~~t expression will also be written which 

inft!)rms the user of the named atom or list of 

funlctions when the file is subsequently loaded. . 

is 'the name of the file on which the out'put is to 

be ,,,ritten. 

The following options exist: 

prettyfile=NIL 

The primary output file is used. 

prettyfile atomic 

The file is opened if not already open, 

and becomes primary output file. File 

is closed at end of prettydef and 

primary output file is restored. 

prettyfile a list 

Car of the list is assumed to be the 

file name, and is opened if not already 

open. The file is left open at end of 

prettydef. 

37-----------------------------------------------------------------------------rpaqq and !:J!!.q are like se1~ and setq, except they set the top level 
value. See Section 5. 

14.32 



prettycoms Is a list of commands interpreted as described 

below. If prettycoms is atomic (the preferred 

usage), its top level value is used and an rpaqq 

is written which will set that atom to the list of 

commands when the file is subsequently loaded, 

exactly as with prettyfns. 

These commands are used to save on the output file top level bindings of 

variables, property lists of atoms, miscellaneous I~TERLISP forms to be 

evaluated upon loading. arrays, and advised functions. It also provides for 

evaluation of forms at ouput time. 

The interpretation of each command in the command list is as follows: 

1. if atomic, an ~ is written which will restore the top level value of 

this atom when th~ file is loaded. 

Z. (PROP propname atom1 ••• atomn) an appropriate deflist will be written 

I which will restore the value of propname for each atom! when the file is 

loaded. If propname=All, the values of all user properties (on the 

property list of each atomi ) are saved.a8 If propname is a li'st, deflist's 

will be written for each property on that list. 

3. (ARRAY atom1 ••• atomn), each atom following ARRAY should have an array as 

its value. An appropriate expression Will be written which will set the 

atom to an array of exactly the same size, type, and contents upon loading. 

38-----------------------------------------------------------------------------sysprops is a list of properties used by system functions. Only properties 
not on that list are dumped when the ALL option is used. 

14.33 



4. (P .•• ), each S-expression following P will be printed on the output file, 

and consequently evaluated when the file is loaded. 

5. (E .,.. ), each form following E will be evaluated at output time, i.8., 

when prettydef reaches this command. 

6. (FNS fn 1 ... fnm), a defineq is written with the definitions of fn l ••• fnm 

exactly as though (fn 1 ••• fnm) where the first argument to pr~ttydef. For 

example, suppose the user ,,,anted to set some variables or perform some 

computations in a file be/ore defining functions, he would then write the 

definitions using the FNS command instead of the first argument to 

prettydef. 

7. (VARS var1 .. '. varn ), for eilch var i , an expression will be written which 

wi 11 set its top level valUEt when the file is loaded. If Y!!:.i is atomic, 

Y!!.i will be set to the tO~I-level value it had at the time the file was 

prettydefed. i.e. (RPAQQ vari top-level-value) is written. If Y!!:i is 

non-atomic, it is int,erpreted as (var form). e.g. 

(FOO (APPEND FIE FUM» or (F~)() (QUOTE (FOOl FOOZ FOO3»). In this case the 

expression (RPAQ var form) is written. 

8. (ADVISE fn l .•• fnm), for each fnn • an appropriate expression will be' 

wri tten which will reinstate the function to· its advised state when the 

file is loaded. 

9. (ADVICE fn 1 ... fnm,), for E!ach fn i , will write a deflist which will put 

the advice back on the property list of the function. The user can then 

use readvise to reactivate the advice. See Section 19. 

10. (BLOCKS block1 ... blockn ) for each blocki , a declare expression will be 

wri tten which the block comp:lle functions interpret as block declarations. 

See Section 18. 

14.34 



11. (COMS com1 ... comn) , each of the commands com t ~ •• comn will be 

interpreted as a prettydef command. 

12. (AOOVARS (var t • lstt) ... (varn • lstn» For each vari , the effect is the 

same as (RPAQ var i (UNION lsti vari », i.e. each element of lst i not a 

member of var i (at load time) is added to it. Y!!!i can initially be 

NOBINO, in which case it is first set to NIL. 

13. (USERMACROS atomt ... atomn), each atomi is the name of a user edit macro. 

USERMACROS writes expressions for adding the definitions to usermacros and 

the names to the appropriate spelling lists. (USERHACROS) will save all 

user edit macros. 

14. (IFPROP propname atom t ••• atomn) same as PROP command, except that only 

non-NIL property values are saved. For example, if FOOl has property PROPt 

and PROPl, FOOl has PROP3, and FOO3" has property PROP1 and PROP3, 

(IFPROP (PROPIPROPl PROP3) FOOl FOOl FOO3) will save only those 5 property 

values. 

15. (COHPROP propname atom, •.. atomn) same as PROP command, except that the 

corresponding deflist expression will also be evaluated when the file is 

compiled. Useful fot outputting MACROs. 

16. (COHPROP* propname atom, ..• atomn) , same as COMPROP except that the 

corresponding deflist expressions are not copied to the compiled file by 

tcompl, bcompl. recompile, or brecompile. 

17. (PO ... ), like P except that the corresponding S-expressions are also 

printed as DECLARE expressions, and thus will be evaluated when the file is 

compiled. In other words, (PO (OEFLIST (QUOTE --) (QUOTE propname» 1s 

essentially equivalent to (COHPROP propname --). 

14.35 



In each of the commands described above, if the atom * follows the command 

type, the form following the *, i.e., ~ of the command, is evaluated and 

its value used in executing the command, e.g., (FNS * (APPEND FNSI fNS2».89 

Note that (COMS * form) provide,s a way of computing what should be done by 

prettydef. 

New prettydef conunands can be defined via prettymacros (see page 14.40). If 

prettydef is given a command not one of the above, and not defined Qn 

pret tymacros, it attempts spelling correction40 using prettycomsplst as a 

spelling list. If successful, the corrected version of prettycoms is written 

(again) on the output file. 41 If unsuccessful, prettydef generates an error, 

BAD PRETTYCOH. 

39-------------------------------'----------------------------------------------Except for the PROP, IFPROP, COMPROP, and COMPROP* commands, in which case 

40 

41 

the * must follow the property name, e.g., (PROP MACRO * FOOHACROS). 

unless dwimflg=NIl. See Section 17. 

since at this point, the uncorrected prettycoms would already have been 
printed on the output file. When the file is loaded, this will result in 
prettycoms being reset, and a message printed, e.g. (FOOVARS RESET). The 
value of FOOVARS would then be the corrected version. 

14.36 



Example: 

~SET(FOOFNS (FOOl FOOZ F003» 
~SET(FOOVARS(FIE (PROP MACRO FOOt FOO2) (P (MOVD (QUOTE FOOl) 

(QUOTE FIE1] 
~PRETTYOEF(FOOFNS Foo FOOVARS) 

would create a file FOO containing 

1. A message which prints the time and date the file was made (done 

automatically) 

2. OEFINEQ followed by the definitions of FOOl, FOO2. and FOOl 

3. (PRINT (QUOTE FOOFNS) T) 

4. (RPAQQ FOOFNS (FOOt Foo3 FOOl» 

5. (PRINT (QUOTE FooVARS) T) 

6. (RPAQQ FOOVARS (FIE ... ) 

7. (RPAQQ FIE value of fie) 

8. (OEFLIST (QUOTE «FOOl propvalue) (FOO2 propvalue») '(QUOTE MACRO» 

9. (MOVO (QUOTE FOOl) (QUOTE FIE1» 

10. STOP 

printfns[x] 

printdate[ffle;changes] 

tab[pos;minspaces;file] 

~ is a list of functions. printfns prints defineq 

and prettyprints the functions. Used by 

prettydef, i.e. command (FNS • FOO) is equivalent 

to command (E (PRINTFNS FOO». 

prints the expression at beginning of prettydefed 

files that upon loading types the time and date 

the file was made, and stores this time and date 

on the property list' of file under the property 

FILEDATE. changes is for use by the file package. 

performs appropriate number of spaces to move to 

14.l7 



endfile[file] 

printdef[expr;left;def] 

Special Prettyprint Controls 

I 
position pos. minspaces indicates the minimum 

number of spaces to be printed by tab, i.e., it is 

intended to be small number (if NIL, 1 is used). 

Thus, if position + minspaces is greater than pos, 

tab does a terpri and then spaces[pos]. 

Prints STOP on file and closes it. 

prints the expression expr on the primary output 

fil '9 in a pretty format. left is the left hand 

margin (linelength determines the right hand 

margin). 2 is used if left=NIL. 

defllT means expr is a function definition, or a 

piece of one, i.e. prettyprint is essentially 

printdef[getd[fn];NIL;T]. If def=NIL, no special 

action will be taken for LAMBDA's, PROG's, CONO's, 

cOlDlllents, CLISP, etc. der is NIL when prettydef 

calls prettyprint to print variables and property 

lis1;S, and when printdef is called from the editor 

via the command PPV. 

All variables described below, i.e., Irpars. firstcol, et aI, are globalvars. 

see Section 18. Therefore, if they are to be changed, they must be reset, not 

rebound. 

Irpars controls the number of right parentheses necessary 

for square bracketing to occur. If Irpars-NIL, no 

brackets are used. Irpars is initialized to 4. 

14.38 



linelength[n] 

firstcol 

prettylcom 

widepaper[flg] 

commentflg 

prettyflg 

determines the position of the right margin for 

prettyprint. 

is the starting column for comments. Initial 

setting is 48. Comments run between firstcol and 

line length. If a word in a comment ends with a 

, • I and is not on the list abbrevlst, and the 

position is greater than halfway between firstcol 

and linelength, the next word in the comment 

begins on a new line. Also, if a list is 

encoun~ered in a comment, and the position is 

greater than halfway. the list begins on a new 

line. 

If a. comment is bigger (using count) than 

pretty~com in size, it is printed starting at 

column 10, instead of firstcol. prettylcom is 

initialized to 14 (arrived at empirically). 

widepaper[ T] sets linelength to 120, firstcol to 

80 and prettylcom to 28. This is a useful setting 

for prettyprinting files to be listed on wide 

paper. w1depaper[] restores these parameters to 

their 1ni tial values. The value of widepaper is 

its previous setting. 

If £!! of an expression is ~ to commentflg, the 

expression is treated as a comment. commentflg is 

initialized to ,. 

If pre·ttyflg is NIL, printdef uses prin2 instead 

14.39 



clispifyprettyflg 

prettymacros 

(* E x) 

of prettyprinting. This is useful for producing a 

fast symbolic dump (e.g. when TENEX is very slow.) 

Note that the file loads the same as if it were 

prettyprinted. prettyflg is initially set to T. 

if T, causes prettyprint to clispify each function 

definition before printing. See Section 23. 

clispifyprettyflg is initially NIL. 

Is an assoc-type list for defining substitution 

macros for prettydef. If (FOO (X Y) • coms) 

app1aars on prettymacros, then (FOO A B) appearing 

in the third argument to prettydef will cause A to 

be substituted for X and B for Y throughout £2!!!!. 

( i.11t ., cddr of the, macro) • and then £2!!!! treated 

as 41 list of commands for prettydef. 

A comment of this form causes ~ to be evaluated at 

pre1~typrint time, e.g., (- E (RADIX 8» as a 

com~ent in a function. containing octal numbers can 

be used to change the radix to produce more 

readable printout. The comment is also printed. 

Converting Conunents to Lower CasEI 

This section is for users operating on terminals without lower case who 

nevertheless would like their cOlnments to be converted to lower case ror more 

readable line-printer listings. Users with lower-case terminals can skip to 

the File Package sections (as they can type comments directly in lower case). 

14.40 



If the second atom in a comment 15 XX, the text of 

the comment is converted to lower case so that it 

looks like English instead of LISP (see next 

page) • 

The output on the next page illustrates the, result of a lower casing operation. 

Before this function 'was prettydefed, all comments consisted of upper case 

atoms, e.g., the first comment was (* XX INTERPRETS A SINGLE COMMAND). Note 

that comments are converted onlu when they are actually writte.n to a file by 

prettydef. 

The algorithm for conversion to lower case is the following: If the first 

character in an atom is t, do not change the atom (but remove the t). If the 

first character is Xt convert the atom to lower' case. 42 If the atom43 is an 

INTERLISP word,44 do not change it. Otherwise, convert the atom to lower case. 

Conversion only affects the upper case alphabet, i.e., atoms already converted 

to lower case are not changed if the comment is converted again. When 

converting., the first character in the comment and the first character 

following each period are left capitalized. After conversion, the comment is 

physically modified to be the lower case text .minus the XX flag, so that 

conversion is thus only performed once (unless the user edits the comment 

inserting additional upper case text and another XX flag). 

42--U;;;-;~;~-~;;;-ii-;;-i-i;-~h;-;;~;;;-~h;;;~;;;:-----------------.-----------

48 

44 

minus any trailing punctuation marks. 

i.e., is a bound or free variable for the function containing the comment, 
or has a top level value, or is a defined function, or has a non-NIL 
property list. 

14.41 



(BREAKCOM 
[LAMBDA (BRKCOH BRKFLG} (~ Interprets a 

single command.) 
(PROG (BRKZ) 

TOP (SELECTQ 
BRKCOH 
[t (RETEVAL (QUOTE BREAK1) 

( QUOTE It ERROR] ] 
(GO (~ Evaluate BRKEXP 

(OK 

unless already evaluated, 
print value, and exit.) 

(BREAKCOHI BRKE)(P BRKCOM NIL BRKVALUE) 
(BREAKEXIT» 

c. Evaluate BRKEXP, 
unless already evaluated, 
do NOT print value, 
and exit.) 

C BREAKCOH 1 BRKE)(P BRKCOM BRKVALUE BRKVALUE) 
(BREAKEXIT T» 

(tWGO (* Same as GO except 
never saves evaluation 
on his tory. ) 

.( BREAKCOM t. BRKE)tP BRKCOM T BRKVALUE) 
(B~EAKEXIT» . 

(RETURN 

(~ User will type in expression to be evaluated and 
returned as value of BREAK. Otherwise same as GO.) 

(BREAKC0t11 [SETQBRKZ (COND 

(BREAKEXIT» 

(BRKCOHS (CAR BRKCOHS» 
(T (LISPXREAD T] 

(QUOTE RETURN) 
NIL NIL (LIST (QUOTE RETURN) 

BRKZ» 

(EVAL (* Evaluate BRKEXP but 
do not exit from BREAK.) 

(BREAKCOHI BRKEXP BRKCOM) 
(COND 

(BRKFLG (BREAKZ) 
(PRINt BRKFN T) 
(PRINt (QUOTE • EVALUATED 

T») 
(SETO 'VALUE (CAR BRKVALUE» 

(. For user's benefit.) 
) 

14.42 



lease 1st 

ucaselst 

abbrevlst 

l-case[x;flg] 

u-case[x] 

Words on lcaselst will always be converted to 

lower case. lcaselst is initialized to contain 

words which are INTERLISP functions but also 

appear frequently in comments as English words. 

e.g. AND, EVERY, GET, GO, LAST, LENGTH, LIST, etc. 

Thus, in the example on the previous page, not was 

written as tHOT, and GO as tGO in order that they 

might be left in upper case. 

words on ucaselst (that do not appear on lcaselst) 

will be left . in upper case. ucaselst is 

initialized to NIL. 

abbrevlst is used to distinguish between 

abbreviations and words that end in periods. 

Normally, words that end in periods and occur more 

than halfway to the right margin cause carriage 

returns. Furthermore, during conversion to 

lowercase, words ending in periods, except for 

those on abbrevlst, cause the first character in 

the next word to be capitalized. abbrevlst is 

initialized· to the upper and lower case forms of 

ETC. I.E. and E.G. 

value is lower case version of!. If fIg is T, 

the first letter is capitalized, e~g. 

l-case[FOO;T] = Foo, l-case[FOO] = foo. If! is a 

string, the value of I-case is also a ~tring, e.g. 

l-case[-FILE NOT FOUND-:T] • -File not found-. 

Similar to I-case 

14.43 



14.8 File Package46 

This section describes a set of functions and conventions for facilitating the 

bookkeeping involved with working in a large system consisting of many symbolic 

files and their compiled counter'parts. The file package keeps track of which 

files have been in somo way modified and need to be dumped, which files havo 

been dumped, but still need to be listed and/or recompiled. The functions 

described below comprise a coherent package for eliminating this burden from 

the user. They require that for each file, the first argument to prettydet, 

(if any), be an atom of the forllll fileFNS.and the third argument, (if any). be 

fileVARS where file is 

prettydef[FOOFNS;FOO;FOOVARS].46 

the name of the . file, e.g. 

The functions load, editf, edit~!, tcompl, recompile, bcompl, brecompile, and 

DWIM interact with the function:s and global variables in the file package as 

follows. Whenever load is callEld, its argument is added to the list filelst, 

and the property FILE, value {fileFNS fileVARS). is added to the property list 

of the file name. 47 This property value is used to determine whether or not the 

file has been modified since thEt last time it was loaded or dumped. Whenever 

the user calls editf and change.s a function,. filelst is searched to find the 

45------------------------------··------------------------~---------------------The file package was written by W. Teitelman. It can be disabled by 

46 

47 

setting filepkgflg to NIL. 

file can contain a suffix and/or version number, e.g. 
PRETTYOEF(FOOFNS FOO.TEH;3 F(~VARS) is acceptable. The essential point is 
that the FNS and VARS be computable from the name of the file. 

The name added to filelst has the version number and directory field 
removed, if any. fileFNS and fileVARS are constructed using only the name 
field, i.e., if the user porforms load[<TEITELMAN)FOO. TEH;Z], FOO. TEM is 
added to filelst, and (FOOFNS FOOVARS) put on the property list of fOO.TEM. 
If the file was originally made under a different name, filefNS and 
fileVARS are computed from the original name (which is obtained trom the 
expression that printdate puts at the beginning of the file). 

14.44 



files48 containing this function, i.e. the files for which the function was 

ei ther a member of fileFNS, or appeared in a FNS command on fileVARS. When 

(if) such files are found, the name of the function is added, using /nconc, to 

the value of the property FILE for each file. Thus if the user loads the file 

FOO containing definitions for FOOl, FOO2,and FOO3, and then edits FOOZ, 

getp[FOO;FILE] will be (FOOFNS FOOVARS FOOZ) following the edit.' A similar 

update takes place for calls to editv. 

Whenever the user dumps a file using makefile (described below), the flle is 

added to filelst (if not already there) and its FILE property ls reinitialized 

to (fileFNS fileVARS), indicating that the file is up to date. In addition, 

the file is added to the list notlistedfiles and notcompiledfiles. Whenever 

the user lists a file using listfiles, it is removed from notlistedfiles. 

Similarly, whenever a file is compiled by tcompl, recompile, bcompl, or 

brecompile, the file is removed from notcompiledfiles. Thus at each point, the 

state of all files can be determined. This information is available to the 

user via the function files? Similarly, the user can see whether and how each 

particular file has been modified, dump all files that have been modified, list 

all files that have been dumped but not listed, recompile all files that have 

been dumped but not recompiled, or any combination of any or all of the above 

by using one of the'function described below. 

48~-------------~------------------------------------- -------------------------If the user has manyfiles"with complex prettydef commands, this procedure 
could be time consuming. Therefore, in the interests of efficiency. what 
really happens is the function name is simply consed onto the front of the 
list changedfnslst, and variable names are con sed onto changedvarslst., 
Whenever the user calls files? cleanup, makefiles, or any other operation 
that actually looks at the FILE property, the function updatefiles is 
called which scans changedfnslst and changedvarslst and moves the 
function/variable names to the appropriate property lists. The user can 
explici tly perform this updating process by calling updatefiles. 
pret tytype Is t, page 14.50, provides a way of informing updatefiles about 
user-defined types in addition to functions or variables. 

14.45 



makefile[file;options] adds file to filelst if not already there. Calls 

prettYdef[fileFNS;file;fileVARS;NIL;changes],49 

and then adds file to notlistedfiles, 

notcompiledfiles. 60 options is a list of options 

or a single option interpreted as follows: 

FAST perform prettydef with prettyf.!a=NIl 

RC call recompile after prettydef or 
brecompile if there are any g}ock 
declarations specified in fileVARS. 

C calls tcompl after prettydef or bcompl 
if there are any block declarations 
specified in fileVARS. 

CLISPIFY perform prettydef with 
clispifyprettyflg=T, causing clispify 
(see Section 23) to be called on each 
function def5~ition before it is 
prettyprinted. 

NOCLISP performs prettydef with prettytranflg=T, 
causing CLISP translations to be 
printed, if any, in place of the 
corresponding CLISP expression, e.g. 
iterative statement. 

49------------------------------·-----------------------------------------------fileFNS and fileVARS are constructed from the name field only, e.g. 

60 

61 

62 

makefile[FOO.TEM] will work. changes is cddr of the FILE property, i.e. 
those i terns that have been changed since the last makefile. prettydef 
merges those changes with those handled in previous calls to makefile, and 
stores the result on the property FILEDATE in the form 
(datel date2 changes), WherE} datel is the date of the file that was 
originally loaded, date2 thEI date of the latest version (i.e. this one), 
and changes (the union of) all items that differ in the two files. 
printdate also includes this information in the expression printed at the 
beginning of the file. 

except for files that do not contain any function definitions or those that 
have on their property list the property FILETYPE with value DON'TCOMPIlE. 
Such files are not compiled even when options specifies C or RC, nor are 
they added to notcompiledfiles. 

Including any generated via the COMS command or via a prettymacro. 

Another way to accomplish this is to put on the property list of the file 
under the property FILETYPE the value CLISP. In this case, the compiler 
will also know to dwimify the functions before compiling. 

14.46 



LIST calls listfiles on file. 

For the three compile options, if F or ST is the next option, it will be given 

to the compiler as the answer to the compilerts question LISTING?, e.g. 

makefile[FOO;(C F.LIST)] will dump FOO, then tcompl or bcompl it without. 

redefining any functions, and finally list the file. 

The user can indicate that file must be' block compiled with other files by 

putting a list of those files on the property list of each file under the 

property FILEGROUP:. For example, EDIT and WEOIT are one such group, DWIM. 

FIX, CLISP, and DWIPlIFY another. If file has a FILEGROUP; property. the 

compiler will not be. called until all files on this property have been dumped 

that need to be. In the case of recompiling, brecompile will be called with 

coreflg=T only if all or the files in the group are currently in core. 

makefiles[opt10ns;files] For each f1le on files that has been changed,63 

performs makefile[file;options], If files = NIL, 

filelst 1s used, e.g. makefiles[ LIST] w1ll make 

and list all files. 64. Value is a list of all files 

that are made. 

listfiles[files] nlambda, nospread function. Uses bksysbuf to load 

system buffer appropriately to list each file on 

files, (if NIL, notlistedfiles is used) followed 

63------------~-----------------~---------------------------.------------------except if the file is a compiled file, a message is printed and the 

64 

makefile not performed. For example, if the user loads FOO.COM and then 
edits FOOVARS, when makefiles is called, the message 
"FOO.COM IS A COMPILED FILE AND CANNOT BE DUMPED.- is printed. 

In this case, if any functions have been defined or changed that are not 
contained in one of the files on f!lelst, a message is printed alerting the 
user. 

14.47 



compilefiles[files] 

files?[ ] 

cleanup[files] 

by a QUIT command, then calls a lower EXEC via 

subsys (section 21). The EXEC will then read from 

the system buffer, list the files, and QUIT back 

to the program. 

Each file listed is removed from notlistedfiles if 

the listing is completed, e.g. if the user 

control-Cis to stop the listing and QUITS. 

nlambda, nospread function. Executes the RC 

option of makefile for each member of files. (If 

fil!!=NIL, notcompiledfiles is used.) 

Prints on terminal the names ~f those files that 

have been modified but not dumped, dumped but not 

listed, dumped but not compiled, plus the names of 

those functions (if any) that are not contained in 

any file. 

nlaJmbda, nospread. Dumps, lists, and recompiles 

(or brecompiles) any and all files on files 

requiring the corresponding operation. If 

fil l9S = NIL, filelst is used. Value is NIL. 

Note, if both a compiled and slImbolic version 01 the same66 lile appear on 
/ilelst. the compiled file is ignored bll male/iles. Jiles?, and cleanup. 

whereis[x] ~ is either the name of a function or variable. 

65------------------------------·-----------------------------------------------
i . e. the compi led file has at COM suffix and its fns and vars are the same 
as those of another (symbolit:) file on filelst. - --

14.48 



whereis sweeps through all the files o~ sysfiles 

and filelst looking for files that define or set 

~. and prints the names of all such files found. 

whereis knows about and expands all prettydef 

commands and prettymacros. 

Note that whereisrequires that the /iieFNS and lileVARS oJ the Jtles be 
available. However. the sllstem ItleFNS and lileVARS are clobbered to 

'save space. To get them bacl. load the Jile <LISP>FNSIVARS. 

filefnslst[file] 

newfile2[name;coms;type] 

returns a list of the functions in file, i. e. 

specified by fileFNS and fileVARS. fllefnslst 

knows about prettymacros. 

£Q!!!! is a list of prettydef commands, ~ is 

usually FNS or VARS but may be BLOCKS, ARRAYS, 

etc. or the name of any other prettydef command. 

If n!!!=NIL, newfile2 returns a list of all 

elements of type!l2!. (filefnslst and bcompl and 

brecompile use this option.) 

If !!.!!!!!=T, newfile2 returns T if there are anll 

elements- of type!l2!. (makefile uses this option 

to determine whether the file contains any FNS, 

and therefore should be compiled, and if so, 

whether it contains any BLOCKS, to determine 

whether to call bcompl/brecompile or 

tcompl/recompile.) 

Otherwise, newfile2 returns T if n!m! is 

-contained- in~. (whereis uses newfl1e2 in 

this way.) 

14.49 



• • • 

If the user often employs prett~macros, their expansion by the various parts of 

the system that need to interr'ogate files can result in a large number of 

conses and garbage collections. If the user could inform the file package as 

to what his various prettymacros: actually produce, this expansion would not be 

necessary. For example, the user may have a macro called GRAMMARS which dumps 

various property list but no functions. Thus, the file package could ignore 

this conunand when seeking information about FNS. The user can supply this 

information by putting on the pr'operty list of the prettymacro, e.g. GRAMMARS, 

under the property PRETTYTYPE, 4)6 a function (or LAMBDA expression) of two 

arguments, com and ~, where ~ is a prettydef command, and ~ is FNS, 

VARS, BLOCKS. etc. The resul t of applying the function to these arguments 

should be a list of those elements of type 1l2! contained in £2m. For example, 

the function corresponding to GRAMMARS might be 

( LAMBDA( COM TYPE)( AND (EQ (CAR C()M) TYPE)( EQ TYPE (QUOTE GRAMMARS» (CO'R COM». 67 

Currently, the file package knows about two "types": functions and variables. 

As described in footnote on pa.ge 14.45, whenver a function or variable is 

changed, it is added to changedfnslst or changedvarslst respectively. 

Updatefiles operates by mapping down filelst and using newfile2 to determine if 

the corresponding file contain:s any of the functions on changedfnslst or 

changedvarslst. The user can tell the file package about other types by adding 

appropriate entries to prettytypelst. Each element of prettytypelst is a list 

of the form (name-of-changedlist, type string), where string is optional. For 

56------------------------------··----------------------------------------------If noth ing appears on property PRETTYTYPE, the command is expanded as 

67 

before. 

Note that since the function is given the entire command as an argument, 
the same function could be used for several different types. 

14.50 



example, prettytypelst is initially «CHANGEDFNSlST FNS -functions-) 

(CHANGEOVARSlST VARS».68 If the user adds (CHANGEDGRAMlST GRAMMARS) to 

prettytypelst, then updatefiles will know to move elements on changedgramlst to 

the FILE property'for the files that contain them.69 

68-----------------------------------------------------------------------------If string is supplied, files? will inform the user if any elements remain 

69 

on the changed list after updatefiles has completed. Similarly, makefiles 
will warn the user that some elements of this type are not going to be 
dumped in the event that it could not find the file to which they belonged. 

It is the user I s responsibility to see that elements are added to the 
changed list in the first place. 

14.51 



Index for Section 14 

ABBREVlST (prettydef variable/parameter) ••...... 
address~ab 1 e files ..........•.••..•.•.•••..••••.• 
ADDVARS (prettydef command) ......••••••••••••.•• 
ADVICE (prettydef command) ••.•...•.•.••.••.••••• 
ADVISE (prettydef command) .........•.•••.•••••.• 
ALL (use in prettydef PROP command) ••••••••••••• 
AllPROP (as argument to load) •..•...••••••••••.• 
ARRAY (prettydef command) ...•.•......•••.•.••••• 
BAD PRETTYCOH (prettydef error message) ••••••••• 
BCOHPl[FIlES;CFIlE;NOBlOCKSFLG] ••..••.••••.•.••. 
bell (typed by system) •.•.••.•••.•••••••••.•••.• 
BKlINBUf[X] SUBR ........••.••.••••.••.•••.•.•••. 
BKSYSBUF[X] SUBR ............•••.•.••..••••.•.••• 
block declarations ......•.•.•••.•.••.••.....•••• 
BLOCKS (prettydef command) .•....•.•..•.•..•.•••• 
break characters .......•.••..••.......•••••.•••• 
BRECOMPILE[FILES;CFILE;FNS;COREFLG;NOBLOCKSFLG] 
C (makefi 1e option) ......••.....••••.••..••••..• 
carriage-return .......•..•.•......••.•.•...•.••• 
CHANGEOFNSLST (file package variable/parameter) • 
CHANGEOVARSlST (file package variable/parameter) .. 
CLEANUP[FIlES] NL- ........•......••••••.••..••.• 
CLEARBUF[FILE;FLG] SUBR ••••••••••••••••••••••••• 
CLISP .111 ••••••••••••••••••••••••••••••••••••••••• 

ClISPIFY[X;l] ..............•.•..•••••••.••..•••• 
ClISPIFY (makefile option) •..•.•..•••••••••••.•• 
ClISPIFYPRETTYFLG (prettydef variable/parameter) .• 
CLOSEAll[] SUBR ...........•.•.•••••••••.••..•.•• 
CLOSEF[FILE] SUBR .............•.•••.••.•••.••••• 
COMHENTFLG (prettydef variable/parameter) •.••••. 
comments (in listings) ...••.•.•..•.•.••••••••••. 
COMPllEFIlES[FIlES] NL- ••••••••••••••••••••••••• 
COMPROP (prettydef command) •....•••••••.•••••••• 
COHPROP* (prettydef command) ••••.••••.••••..••.• 
COMS (prettydef command) •.....••.•••••.•.•.•••.• 
CONTROl[U] SUBR ......•..•...•••••••••.•.••..••.• 
control-A ...................................... . 
control-D ...................................... . 
control-E .......... s •••••••• I1 ................... . 

control-F ........................................ . 
control-H ....................................... . 
control-O ........................................ . 
control-P ....................................... . 
control-Q ....................................... . 
control-S .................. III .................... . 

DECLARE " ......................................... . 
DEFLIST[l;PROP] ...........•...•.••• ~ •••••.••.... 
DFNFLG (system variable/parameter) ••..••.•.••.•• 
OW 1M •...• It •••••••••••••••••••••••••••••••••••••• 

DWIMIFY[X;L] ........•....••••••••••••••••••• II ••• 

E (prettydef command) .......•••••••••••..••.••.• 
E (in a floating point number) •...••..•••.••.•.. 
E (u s e inc omme n t s ) . . • . . . • • • • • • • • . • • • • . • • • • . . . • • 
EDITF[X] NL* ......................... : ...•......• 
EDITV[EOITVX] NL- ••••••••••••••••••••••••••••••• 
END OF FILE (error message) .••••••••.••••••••.•• 

INDEX.14.1 

Page 
Numbers 

14.39,43 
14.5 
14.~5 
14.34 
14.34 
14.33 
14.27 
14.33 
14.36 
14.44,46 
14.20 
14.21 
14.21.47 
14.34 
14.34 
14 . 1 2 -15 , 19, 24 
14.44.46-48 
14.46 
14.10-11,13,15-19,23 
14.45,50 
14.45,50 
14.45,48 
14.21 
14.46 
14.40,46 
14.46 
14.40,46 
14.4 
14.4 
14.39 
14.30-31,40 
14.48 
14.35 
14.35 
14.35 
14.11,14,23 
14.10,12,14-15,23,25 
14.21 
14.21 
14.2 
14.21 
14.20 
14.20-21 
14.10-12,14-15,23,25 
14.21 
14.34-35 
14.33 
14.27 
14.44 

,14.46 
14.34 
14.11 
14.40 
14.44 
14.44 
14.6,10 



end-of -1 ina .................................... . 
ENOFILE[Y] •...•.. "' •••••••••••••••••.•••••••••••• 
ESCAPE[FLG] SUBR ..•....•.••...•..•••••••..••. ~ •. 
escape character .•.•.•• ~ •••••••••••••••••••••••• 
EXPR (property name) •••••••••••••••••••••••••••• 
FAST (makefile option) •••••••••••••••••••••••••• 
fast symbolic dump .•....•••••••••••••••••••••••• 
FILE (property name) .•.••••••••••••••••••••••••• 
f1 Ie names ..............................•....... 
FILE NOT COMPATIBLE (error message) ••••••••••••• 
FILE NOT FOUND (error message) •••.•••••.•••••••• 
FILE NOT OPEN (error message) ••••••••••••••••••• 
file package .•..•...••.•••.••••••••••••••••••••• 
file pointer ..... III •••••••••••••••••••••••••••••• 

FILE WON'T OPEN (error message) .•••••••••••••••• 
FIlECREATED ....• ,. ....••..••• ,. ••••••••••••••• eo •• 

FILEOATE (property name) .••••••• o.~ ............ . 
fileFNS .............. 41 •••••••••••••••••••••••••• 

FILEFNSLST[FILE] .........••..••..•••..•••••••.•• 
FILEGROUP (property name) .•........••.•••••••••• 
FILELST (file package variable/parameter) ••.•••• 
FILEPKGFLG (file package variable/parameter) 
FILEPOS[X;FILE;START;END;SKIP;TAIL] ••••••••••••• 
files .......... " ............................... . 
FIlES?[ ] ....................................... . 
FILETYPE (property name) •••.••••.•••.••••••••••• 
fileVARS ....................................... . 
FIRSTCOL (prettydef variable/parameter) ••••••••• 
floating point numbers •••••••••••••..••.•••••••• 
FLTFMT[N] SUBR ... ~ .•..••••• ~ •••••••.•••••.•.•••• 
FNS (prettydef command) .•••••••••••••••••••••••• 
form - r e e d . . . . • . • • • . • . . • . • • • • • • • • • • • • • e • • • • • • • • e • 

GETBRK[] SUBR .• ~ ........••..•.•..••••••..••..••• 
GETSEPR[] SUBR .......•..••.••••••...••.••••••••• 
GLOBALVARS (system variable/parameter) •••••••••• 
GTJFN[FILE;EXT;V;FLAGS] ..•..••.•••••.•••.•••...• 
IF PROP (prettydef command) •••••••••••••••••••••• 
INFILE[FILE] SUBR ...•.•.••••••••.••.•••••••••••• 
INFILEP[FILE] BUBR ..•...••..•••••••••••.••••..•• 
INPUT[FILE] SUBR ...•.•..••..••.••.•.••••••.••••. 
input buffer ................. 0 •••••••••••••••••• 

input functions ...••...••.•••••••••••••••••••••• 
input/output ................................... . 
input/output control functions ••.••••••••••••••• 
IOFILE[FILE] SUBR ....•.•••.••.••.••..••.••••.•.• 
IS A COMPILED FILE AND CANNOT BE DUMPED. 

(error message) ••.••••.••••••••••••••••••.• 
JF N .•.•••••••••••••••••••••••••••••••••••••••••• 
JFNS[ JFN ;AC3] .•.•••.••••••••••• <It •••••••••••••••• 

JS YS ............................................ . 
L - CAS E [ X ; F l G ] •••••••••••••••••••• " •••••••••••••• 
LASTC[FILE] SUBR ..•..•....••••.•.•.•.••••••••••• 
lCASELSl (prettydef variable/parameter) ••••••••• 
LINBUF[FLG] BUBR ••.•..•••••••••••••••••••••••••• 
1 ine buffer ••••••••••••••.••••••••••••••••••••••• 
line-buffering ••••••••• 0 •••••••••••••••••••••••• 

1 ine-feed ................................... " .. . 

INDEX. 14 .2 

Page 
Numbers 

14.6,10,13,18 
14.38 
14.13-14 
14.10 
14.27 
14.46 
14.40 
14.44-45 
14.2-3 
14.26 
14.3 
14.3-4,8 
14.44-51 
14.5-7 
14.2 
14.37,44 
14.37,46 
14.44,49 
14.49 
14.47 
14.44-50 
14.44 
14.7 
14.1-10 
14.45,48,5i 
14.46 
14.44,49 
14.39 
14.11 
14.22 
14.34 
14.13 
14.14 
14.13 
14.27,38 
14.9 
14.35-36 
14.2,6 
14.3-4 
14.1 
14.16,20-21,23-24 
14.10-18 
14.1-51 
14.21-25 
14.6-7 

14.47 
14.8-10 
14.9 
14.8-10,22 
14.43 
14.15 
14.43 
14.21 
14.21,23 
14.11-12,14-16,23 
14.10,13,18 



LINELENGTU[N] SUBR .............•.••...........•. 
LISPXREAOFN (prog. asst. variable/parameter) 
LIST (makefile option) ..•••••••.••••.•.•••••••.• 
LISTFILES[FILES] NL- ...••.••••••••••••••.•.••••• 
1 i t era 1 a toms ..........• 'I' ••••••••••••••••••••••• 
LOAD[FIlE;LOFLG;PRINTFLG] ..••••••••.•....•.••••• 
LOAOFNS[FNS;FILE;LDFLG] ....•••••••••••••....••.• 
lower case ......... of •••• t •••••••••••••••••••••••• 

lower case comments ............................. . 
MAKEFIlE[FILE ;OPTIONS] .......................... . 
MAKEFILES[OPTIONS;FILES] ~ ..••.•..••••••.•••.•••• 

,margins (for prettyprint) ••.•••.•••••••••.••.••. 
NCHARS[ X] SUBR .................................. . 
NEWFILE2[NAME;COHS;TYPE;UPOATEFLG] ••..•.•.••.•.. 
NOBIND .................... , ••••••••••••••••••••••• 
NOCLISP (makefile option) •••••••••••••••••••.••• 
(NOT PRINTABLE) ......•.. t' ....................... . 

NOTCOMPILEDFILES (file package variable/parameter) 
NOTLISTEDFILES (file package variable/parameter) •. 
number s ...........•......••••••..•••.••• " ..•.••. 
octal .......................................... . 
OPENF[FIlE:X] SUBR .....•.•.•••••••••.•..••.••••. 
ope n i n~g f i 1 e s ....•...•••.••••••••••••••••.•••••• 
OPENP[ FILE; TYPE] SUBR .. " •••••••••••••••••••••••• 
OPNJFN[FILE] SUBR ..•..••.••••••.••••••.••••..•.• 
OUTFILE[FILE] SUBR ...•...••.••.••.••••.••.•••.•. 
OUTFILEP[FILE] SUBR .......•.••...•••.••.•••••••• 
OUTPUT[FILE] SUBR ..••.•••••••••••••••••••••••.•• 
output buffer .................................. . 
output functions .....•....••••••••••••••••••••.. 
P (pret tydef command) ••...•••••••••••••••••••••. 
parentheses counting (by READ) ...•••.•...••.. ~ •. 
PO (prettydef command) ..••.••••••.•••••.••••.••• 
PEEKC[FILE] SUBR .........•.••.•...•••••.•••••••• 
POSITION[FILE] SUBR .......•.••••.•••..•••••.•••• 
p p [ X] N L * . . . ·s • • • • • • • • • • • • • • • • • • • • • • It • • • • • • • • • • • • 

PP-[X] NL- .................•......••......••.•.. 
PPV (edit command) ..........•...•..•..•...•••••. 
PRETTYCOMSPLST (prettydef variable/parameter) 
PRETTYOEF[PRETTYFNS:PRETTYFILE;PRETTYCOMS; 

RECOMPILEFLG;CHANGES] ••.•.•..••••••.•.• 
pre t tydef commands .........•.•...•.....••••.•••• 
PRETTYFLG (prettydef variable/parameter) .•..•••. 
PRETTYLCOM (prettydef variable/parameter) ..•••.• 
PRETTYHACROS (prettydef variable/parameter) 
PRETTYPRINT[FNS;PRETTYDEFlG] .•••.•••.••••.•••••• 
PRETTYTRANFLG (clisp variable/parameter) ..••..•• 
PRETTYTYPE (property name) ...•...•.•.•.•.......• 
PRETTYTYPELST (file package variable/parameter) 
primary input file ...•..•••••••••••••.....•.•... 
primary output file .•••.•••.•••••••.••.••....•.. 
PRINl[X;FILE] SUBR ......••••..•...•.••.•.•.•.•.• 
PRIN2[X;FILE] SUBR .....•...•.•••••••...•.•••.••• 
PRIN3[X;FILE] SUBR ......•••.•.••••.•..•••••••••• 
PRINT[X;FILE] SUBR .........•.•••..•••...•.•.••.• 
PRINTOATE[FILE;CHANGES] .....•.••.•••••••.•.•••.• 
PRINTOEF[EXPR;lEFT;OEF] .•.•..•.••••••••••••••••• 

INI>EX .14.3 

Page 
NumbRrs 

14.22,39 
14.16 
14.47 
14.45,47 
14.11 

,14.27,44 
14.27-28 
14.43 
14.40-43 
14.45-48 
14.45,47-48,~1 
14.38 
14.6 
14.49-50 
14.27 
14.46 
14.30 
14.45-46,48 
14.45-48 
14.11-12 
14.11,18 
14.8 
14.1 
14.3-5,8 
14.8 
14.2,6-7 
14.3-4 
14.1 
14.20 
14.18-20 ' 
14.34 
14.11,23-24 
14.35 
14.15.25 
14.23 
14.29 
14.31 
14.38 
14.36 

14.31-38,40,44,46 
14.33-37 
14.39-40,46 
14.39 
14.36,40,49-50 
14.29 
14.46 
14.50 
14.45,50 
14.1-2,4,10 
14.1,4,18 
14.18-19 
14.18-19 
14.19 
14.19 
14.29,37,44,46 
14.38-39 



PRINTFNS[X] .•.........•••.••.••••••••.••••••••.. 
pr in t leve 1 ........................... . , ......... . 
PRINTLEVEL[N] SUBR .•...•.•••.••.••• 0 •••••••••••• 

PROP (prettydef command) •••••••••••••••••••••••• 
Q (following a number) •••••••••••••••••••••••••• 
QUIT (tenex command) •.•••••••••••••••••••••••••• 
RADIX[N] SUBR .••.••..••..••.••••••••.••••..•••.• 
RATEST[X] SUBR •.•.••.•..•••••.••••.••.••.•••.••• 
RATOM[FILE] SUBR ..•.•.•..•.•••••••....•••.•....• 
RATOMS[A;FN] •••••••••••••••••••••••••••••••••••• 
RC (makefile option) .•••••••••••••••••••• ~ •••••• 
READ[FILE;FLG) SUBR ••••••••••••••••••••••••••••• 
READC[FILE] SUBR .•...•..•.•••••••••.••...•.•••.. 
READFILE[FILE] ..........•••••••.•••••••••••••••• 
READLINE[LINE;LISPXFLG] .•..••.•.••••.••••.•••• ~. 
READP[FILE] SUBR ...•....•..••••.••••..••.••••••• 
READVISE[X] NL* ...........•..•..•••.•....•...••• 
RECOMPILE[PFILE;CFILE;FNS;COREFLG] .•••••••.••••• 
(REDEFINED) (typed by system) ••••••••••••••••••• 
RLJFN[ JFN] ........•••••..••.•••••••.• • ~ .•...•.... 
RPAQ[RPAQX;RPAQY] NL •.•.•.••.••••••••••.•...•••. 
RPAQQ[X;Y] NL ......•••..•.•.•••.•••..•.••.•••... 
RSTRING[] SUBR ....•••••••••••••••••••••..•.••••• 
rubout .......................... 0 ••••••••••••••• 

searching files ...•....••••••••••••••.••••.•.••• 
separator characters ..•••••• ~ ••••••••••••••••••• 
SETBRK[LST;FLG] SUBR ..•.••••• 0 •••••••••••••••••• 

SETSEPR[LST;FLG] SUBR ..•••••..••••••.•••••.•.•.. 
SFPTR[FILE;ADORESS] SUBR .•••.•••.•••..••.•••.... 
SKREAD[FILE;REREADSTRING] .•..•....•....•.•..•.•• 
space ...........•..•••...•••••.•••••..•••••••••• 
SPACES[N;FILE] SUBR ......•..••.....••.•••••••.•• 
square brackets (inserted by prettyprint) ••••••• 
STOP (at the end of a file) ••••••••••••••••••••• 
strings ................................... $ ••••• 

STRPOS[X;Y;START;SKIP;ANCHOR;TAIL] ••.•.••...•••. 
SUBSYS[FILE/FORK;INCOHFILE:OUTCOHFILE; 

ENTRYPOINTFLG] ••...•••.•••••••••••••••.•.• 
symbol ic fi Ie input •.•.•.•••••.••••••••••••••..• 
symbolic file output .••.••.••••••••••••••••••••• 
SYSBUF[FLG] SUBR .......••••.•••.••••.•••••••..•• 
SYSFILES (system variable/parameter) .••••••••••• 
SYSIN[FILE] SUBR ........•.•.•...•.•••••••••••••• 
S YSOUT[ FILE] EXPR •.•.•.....•.•...•...••.•••••••. 
SYSPROPS (prettydef variable/parameter) .•••••••• 
tab ............... , . ............................ . 
TAB[POS;MINSPACES;fILE] •••••••.••••••••••••.••.• 
TCOMPL[FILES] .•...•.••...•.•..•••••..•••••••••.• 
teletype ....................................... . 

••••••••••••••••••••••••••••••••••• e •••••• 

TENEX ...•••••.•••••••••••••••••••••••••••••••••• 
TERPRI[FILE] SUBR .......•....•.......•....•..... 
U - CASE[ X] ..•••..•...••••.••••••••••••••••••••••• 
UCASELST (prettydef variable/parameter) ••••••••• 
UPDATEFILES[] •.••. ~ .••••...•••••.••••••••••••••• 
UREAD[FILE;FLG] SUBR .....•••.••••.•.•••••••••••• 
USERMACROS (editor variable/parameter) •••••••••• 

INDEX. 14 .4 

Page 
Numbers 

14.37 
14.19-20 
14.19 
14.33,36 
14.11,18,22 
14.48 
14.11,18,22 
14.14 
14.11-13,25 
14.12 
14.46 
14.10-11,24 
14.14,25 
14.28 
14.16-17 
14.16 
14.34 
14.44,46,48 
14.27 
14.9 
14.27,32 
14.27,32-33 
14.12 
14.23 
14.7 
14.12-15,19,24 
14.12-13,15,19 
14.12-13,15,19 
14.6-7.23 
14.17-18,28 
14.13 
14.19 
14.38 
14.27-29,38 
\ 14.11 
14.7 

14.48 
14.27-28 
14.29-38 
14.21 
14.49 
14~26 
14.21,26 
14.33 
14.13 
14.37 
14.44,46 
14.1,4,10-11,16,20,23, 

31 
14.2-4,6-8,40 
14.19 
14.43 
14.43 
14.45,50-51 
14.11-12,15,24 
14.35 



USERMACROS (prettydef cOllumlnd) •••••••••••••••••• 
VARS (prettydef command) ....•.••.••.•.••••.••••. 
version numbers ......••••••••••••••••••••••••••• 
WHEREI-S[X] •••••••••••••••••••••••••••••••••••••• 
WIDEPAPER[FLG] .........••...•.•.••••..•..•••...• 
WRITEFIlE[X;FILE;OATEFLG] ......•..••............ 
II 

* (followed by a number) .•••••••••••••.••••••••• 
1# (typed by system) ..•..••••••••••••••••••••••• 
IRPARS (prettydef variable/parameter) •••••••••.• 
S (alt-mode) ................... 46 •••••••••••••••• 

" (escape character) ...•.••••••••••••••••••••••• 
" (use 1n comments) ...•...•.•••••••••••.•••.••••• 
"" (use 1 n commen ts) .•...•••.•••••••••.••••••••• 
& (typed by system) .......••.••.•••.••.•...••••• 
( 
) 
lIr (u 5 e . inc omme n t 5 ) •••••..••••••••••••••••••••••• 
lIr (use in prettydef command) .•.....•••..•.•••••• 
lIrllrCOMMENT-* (typed by system) •.•••.••••.••.•.•.• 
lIr*COMMENT**FlG (prettydef variable/parameter) 
-- (typed by system) .........•••••••.•••.••••••• 

... (typed by system) 
[ 
[,] (inserted by prettypr1nt) •••••••.••.•.•••••• 
\ (typed by system) .•..• ~ •••••••••••••••••••••••. 
] ••••••••••••••••••••••• 4' ••••••••••••••••••••••• 

t (use in comments) 

INDEX. 14 .5 

Page 
Numbers 

14.35 
14.34 
14.2 
14.48 
14.39 
14.29 
14.11-14,19 
14.19 
14.10,23,25 
14.38 
14.2 
14.10-14,18-19,25 
14.41 
14.41 
14.19 
14.13 
14.13 
14.30,39 
14.36 
14.31 
14.31 
14.20 
14.13 
14.17 
14.13 
14.38 
14.10,23 
14.13,16 
14.41 



SECTION 15 

DEBUGGING - THE BREAK PACKAG£l 

15.1 Debugging Facilities 

Debugging a collection of LISP functions involves isolating problems within 

particular functions and/or determining when and where incorrect data are being 

generated and transmitted. In the INTERLISP system, there are three facilities 

which allow the user to (temporarily) modify selected function definitions so 

that he can follow the flow of control in his programs, and obtain this 

debugging information. These three facilities together are called the break 

package. All three redefine functions in terms of a system function, break1 

described below. 

Break modifies the definition of its argument, a function fn·, so that if a 

break· condition (defined by the user) is satisfied, the process is halted 

temporarily on a call to fn. The user can then interrogate the state of the 

machine, perform any computation •. and continue or return from the call. 

Trace modifies a definition of a function fn so that whenever fn is. called, its 

arguments (or some other values specified by the user) are printed. When the 

value of fn is computed it is printed also. (l.!:!£! is a special case of 

break) . 

i---T~;-b;;;k-~;~k;;;-;;;-;;i;;;~-b;-W:-T;i;;i;;~:-----------------------------

15.1 



Breakin allows the user to insert a breakpoint inside an expression defining a 

function. When the breakpoint i.s reached and if a break condition (defined by 

the user) is satisfied, a temporary halt occurs and the user can again 

investigate the state of the computation. 

The following two examples illustrate these facilities. In the first example, 

the user traces the function fa'ctorial. trace redefines factorial so that it 

calls break1 in such a way that it prints some information, in this case the 

arguments and value of factorial .• and then go~s on with the computation. When 

an error occurs on the fifth recursion. break1 reverts to interactive mode, and 

a full break occurs. The situaltion is then' the same as though the user had 

originally performed"BREAK(FACTORIAL) instead of TRACE(FACTORIAl), and the user 

can evaluate various' INTERLISP forms and direct the course of the computation. 

In this case, the user examines the variable rr, and instructs break1 to return 

1 as the value of this cell to factorial. The rest of the tracing proceeds 

without inCident. The user would then presumably edit factorial to change l to 

1 • 

In the second example, the user has constructed a non-recursive definition of 

factorial. He usesbreakin to insert a call to break1 just after the PROG 

label lOOP. This break is to occur only on the last two iterations, i.e., when 

!! is less than 2. When the brElak occurs, the user looks at the value of !!.. 

mistakenly typing NN. However, the break is maintained and no damage is done. 

After examining !!. and m the user allows the computation to continue by typing 

OK. A second break occurs after the next iteration, this time with N=O. When 

this break is released, the function factorial returns its value of 120. 

15.2 



.. pp FACTORIAL 

(FACTORIAL 
[LAMBDA (N) 

(COND 
«ZEROP N 

L) 
(T (ITIHES N (FACTORIAL (SUB1.N]) 

FACTORIAL 
"TRACE(FACTORIAl) 
(FACTORIAL) 
"FACTORIAl(4) 

FACTORIAL: 
N = 4 

FACTORIAL: 
N = 3 

FACTORIAL: 
N = 2 

U.B.A. 
L 

FACTORIAL: 
N :: 1 

FACTORIAL: 
N :: 0 

(FACTORIAL BROKEN) 
:N 
o 
:RETURN 1 

FACTORIAL :: 1 
FACTORIAL III 1 

FACTORIAL = 2 
FACTORIAL = 6 

FACTORIAL :: 24 
24 .. 

15.3 



... pp FACTORIAL 

(FACTORIAL 
[LAMBDA (N) 

(PROG «M 1» 
LOOP(COND 

«lEROP N) 

FACTORIAL 

(RETURN H») 
(SETQ M (ITIMES H N» 
(SETQ N (SUBt N» 
(GO LOOP]) 

"'BREAKIN(FACTORIAL (AFTER LOOP) (ILESSP N 2] 
SEARCHING ... 
FACTORIAL 
"'FACTORIAL(5) 

«FACTORIAL) BROKEN) 
:NN 
U.B.A. 
NN 
(FACTORIAL BROKEN AFTER LOOP) 
:N 
1 
:M 
120 
:OK 
(FACTORIAL) 

«FACTORIAL) BROKEN) 
:N 
o 
:OK 
(FACTORIAL) 
120 ... 

15.2 Break1 

The basic function of the break package· is break1. Whenever INTERLISP types a 

message of the form (- BROKEN) followed by':' the user is then 'talking to' 

break1, and we say he is 'in a break.' break1 allows the user to interrogate 

the state of the world and affect the course of the computatiori. It uses the 

prompt character ':' to indicate it is ready to accept input(s) for evaluation, 

in the same way as evalqt uses ' .. '. The user may type in an expression for 

evaluation as with evalqt, and the value will be printed out, followed by 

another:. Or the user can type in one of the commands specifically recognized 

by break1 described below. 

15.4 



Since break1 puts all of the power of INTERLISP at the user's command, he can 

do anything he can do at evalqt. For example, he can insert new breaks on 

subordinate functions simply by typing: 

(BREAK fnt fn2 .•• ) 

or he can remove old breaks and traces if too much information is being 

supplied: 

(UNBREAK fnJ fn4 ••• ) 

He can edit functions, including the one currently broken: 

EDITF(fn) 

For example. the user might evaluate an expression. see that the value was 

incorrect, call the editor, change the function. and evaluate the expression 

again, all without leaving the break. 

Similarly, the user can prettyprint functions, define new· functions or redefine 

old ones, load a file, compile functions, time a computation, etc .. In short, 

anything that he can do at the top level can be done while inside of the break. 

In addition the user can examine the pushdown list, via the functions described 

in Section 1.2, and even force a return back to some higher function via the 

function retfrom or reteval. 

It is important to emphasize that once a break occurs, the user is in complete 

control of the flow of the computation, and the computation will not proceed 

wi thout specific instruction from him. If the user types in an expression 

whose evaluation causes an error, the break is maintained. Similarly if the 

15.5 



user aborts a computation2 in.ltiated from within the break, the break is 

maintained. Only if the user !Qives one of the coounands that exi ts from the 

break, or evaluates a form which does a retfrom or reteval back out of break1, 

will the computation continue. 3 

Note that break1 is just another INTERLISP function, not a special system 

feature like the interpreter or the garbage collector. It has arguments which 

are explained later, and return!) a value, the same as cons or cond or ~ or 

any other function. The value returned by break1 is called 'the value of the 

break.' The user can specify th:ls 'value explicitly by using the RETURN conunand 

described below. But in most cases, the value of a is given implicitly, via a 

GO or OK conunand. and is the result of evaluating I the break expression,' 

brkexp. which is one of the arguments to break1. 

The break expression is an exprossion equivalent to the computation that wo~ld 

have taken place had no break occurred. For example, if the user breaks on the 

function FOO, the break express.1on is the body of' the definition of FOO. When 

the user types OK or GO, the body of FOO is evaluated, and its value returned 

as the value of the break, i.e. to whatever function called FOO. The effect is 

the same as though no break had occurred. In other words, one can th ink of 

break1 as a fancy eval, which p4!rmits interaction before and after evaluation. 

The break expression then corresponds to the argument to eval. 

2------------------------------------------------------------------------------By typing control-E, see Section 16. 

3 Except that break 1 does n01~ 'turn otf' control-D, i.e. a control-D will 
force an immediate return back to the top level. 

15.6 



Break Conunands 

GO 

OK 

EVAL 

RETURN form 
or 

RETURN fn[args] 

t 

!EVAL 

!OK 

!GO 

Releases the break and allows the computation to 
proceed. break t evaluates brkexp, its firs t 
argument, prints the value of the break. brkexp 
is set up by the function that created the call to 
break1. For break or trace, brkexp is equivalent 
to the body of the definition of the broken 
function. For breakin, using BEFORE or AFTER. 
brkexp is NIL. For breakin AROUND, brkexp is the 
indicated expression. See breakin, page 15.19. 

Same as GO except the value of brkexp is not 
printed. 

Same as GO or OK except that the break is 
maintained after the evaluation. The user can 
then interrogate the value of the break which is 
bound on the variable ! value. and continue wi th 
the break. Typing GO or OK following EVAL will 
not cause reevaluation but another EVAL will. 
EVAL is a useful command when the user is not sure 
whether or not the break will produce the correct 
value and wishes to be able to do something about 
it if it is wrong. 

The value of the indicated computation is returned 
as the value of the break. 
for example. one might use the EVAL command and 
follow this with RETURN (REVERSE !VALUE). 

Calls error! and aborts the break. i.e. makes it 
"go away' without returning a value. This is a 
useful way to unwind to a higher level break. All 
other errors, including those encountered while 
executing the GO, OK, EVAL, and RETURN commands, 
maintain the break. 

function is first unbroken, then evaluated. and 
then rebroken. Very useful for dealing with 
recursive functions. 

Function is first unbroken, evaluated, rebroken, 
and then exited, 1.e. !OK is equivalent to !EVAL 
followed by OK. 

function is first unbroken, evaluated, rebroken, 
and exited with value typed, i.e., 'EVAL followed 
by GO. 

15.7 



UB 

@ 

unbreaks brkfn, e.g. 

(FOO BROKEN' 
:un 
FOOl 

and FOO is now unbroken 

resets the variable lastpos, which establishes a 
context for the commands ?=, ARGS, BT, BTV, BTV*, 
and EDIT, and IN? described below. lastpos is the 
position of a function calIon the push-down 
stack. It is initialized to the function just 
before the call to breakl, i.e. stknth[-I;BREAK1] 

@ 1~reats the rest of the teletype line as its 
argument( s) . It first resets las tpos ,to 
stknth[-1;BREAK1] and then for each atom on the 
line. , searches backward, for a call to that 
atom. The following atoms are treated specially: 

,(!) do not reset las tpos to 
stknth[-l;BREAKl] but leave ,it as it 
was, and continue searching from that 
point. 

numbers if negative, move lastpos back that 
number of calls, if positive, forward, 
i.e. reset lastpos to stknth[n;lastpos] 

.. search 'forward for next atom 

I the next atom is, a number and can be 
used to specify more than one call e.g. 
@ FOO I 3 is equivalent to 
@ FOO FOO FOO 

Example: 

if the push-down stack looks like 

BREAK1 (13) 
FOO (12) 
SETQ (11) 
COND (10) 
PROG (9) 
FIE (8) 
COND (7) 
FIE (6) 
COND (5) 
FIE (4) 
COND (3) 
PROG (2) 
FUM (1) 

then @ FIE COND will set lastpos to the position 
corresponding to (7); @ @ COND will then set 
lastpos to (5); @ FUM .. FIE to (4); and 
@ FIE I 3 -1 to (3). 

If , cannot successfully complete a search, it 

15.8 



1= 

BT 

types (fn. NOT FOUND), where fn is the name of the 
function for which it was searching. 

When @ finishes, it types the name of the function 
at lastpos, i.e. stkname[lastpos] 

@ can be used on brkcoms. In this case, the next 
command on brkcoms is treated the same as the rest 
of the ,teletype line. 

This is a multi-purpose command. Its most common 
use is' to interrogate the value( 5) of the 
arguments of the broken function, e.g. if FOO has 
three arguments (X Y Z), then typing 1- to a break 
on FOO, will produce: ' 

: 1= 
X = value of X 
Y =. value of Y 
Z • value of Z 

1= operates on the rest of the teletype line as 
its arguments. If the line is empty. as in the 
above case, it prints all of the arguments. If 
the user types 1= X (CAR V), he will see the value 
of X, and .the value of (CAR Y). The difference 
between using 1= and typing X and (CAR Y) directly 
to break1 is that 7= evaluates its inputs as of 
lastpos, i.e. it uses stkeval. This provides a 
way of examing variables or performing 
computations as oJ a particular point on the 
.stacl. For example, @ FOO I 2 followed by 1= X 
will allow the user to examine the value of X in 
the previous call to FOO, etc. 

1= also recognizes numbers as refering to the 
correspondingly numbered argument, i • e. it uses 
stkarg in this case. Thus 

:@ FIE 
FIE 
:1= Z 

will print the name and value of the second 
argument of FIE. 

7= can also be used on brkcoms, in which case the 
next command on brkcoms is treated as the rest of 
the teletype line. For example, if brkcoms 1s 
(EVAL 1= (X Y) GO), brkexp will be evaluated, the 
values of X and Y printed, and then the function 
exited with its value being printed. 

Prints a backtrace of Junctton names only starting 
at lastpos. (See discussion of @ above) The 
several nested calls in system packages such as 
break, edit,and the top level executive appear as 
the single entries ·-BREAK··, •• EDITOR •• , and 
·-TOP*. respectively. 

15.9 



BTV 

BTV* 

BTV! 

Prints a back trace of function names wt th 
variables beginning at lastpos. 

Same as BTV except also prints arguments of 
internal calls to eva!. (See Section 12) 

Same as BTV except prints el1eruthtng on stack. 
(See Section 12). 

BT, BTV, BTV*, and BTV! all permit an optional functional argument which is a 

predicate that chooses functions to be skipped on the backtrace, e.g., BT SUBRP 

will skip all SUBRs. BTV (lAMB04A (X) (NOT (MEMS X FOOFNS») will skip all but 

those functions on FOOFNS. If used as a brkcom the functional argument is no 

longer optional, i.e. the next brkcom must either be the functional argument, 

or NIL if no functional argument is to be applied. 

For BT, BTV, BTV*, and BTV!, if control-P is used to change a printlevel during 

the backtrace. the printlevel will be restored after the backtrace is 

completed. 

ARGS Prints the names of the variables bound at 
lastpos, i.e. variables[lastpos] (Section 12). 
For most cases. these are the arguments to the 
func:tion entered at that posi tion. i. e. 
arglist[stkname[lastpos]]. 

The following two conunands are for use only with unbound atoms or undefined 

function breaks (see Section 16). 

= form, = fn[args] only for the break follo,ing an unbound atom 
error. Sets the atom to the value of the form, or 
function and arguments, exits from the break 
returning that value, and continues the 
computation, e.g. 

U.B.A. 
(FOO BROKEN) 
:= (COpy FIE) 

sets; FOO and goes on. 

15.10 



-> expr for use either with unbound atom error, or 
undefined function error. Rep\rces the expression 
containing the error with expr (not the value of 
expr) e.g •• 

EDIT 

U.D.F. 
(FOOl BROKEN) 
:-> FOO 

changes the FOOl to FOO and continues the 
computation. 

expr need not be atomic, e.g. 

U.B.A. 
(FOO BROKEN)· 
:-> (QUOTE Foo) 

For U.D.F. breaks. the user can specify a function 
and initial arguments, e.g. 

U.D.F. 
(MEHBERX BROKEN) 
:-> MEMBER X 

Note that in the case of a U.D.F. error occurring 
immediately following a call to ~, e.g. 
(APPLY X Y) where the value of x is FOO and FOO is 
undefined, or a U.B.A. error immediately following 
a call to eval, e.g. (EVAL X), where the value of 
x is FOO--and FOO is unbound, there is no 
expression containing the offending atom. In-this 
case, - > cannot operate, so ? is printed and no 
action taken. 

designed for use in conjunction with breaks caused 
by errors. Facilitates editing the expression 
causing the break: 

NON-NUMERIC ARG 
NIL 
(IPLUS BROKEN) 
:EOIT 
IN Foo .•• 
(IPLUS X Z) 
EDIT 
~(3 Y) 
*OK 
FOO 

and user can continue by typing OK, EVAl, etc. 

4--~·--~-----~---~--~·~~-------------------~---------------------------------~--> does not change just brkexp; it changes the function or expression 
containing the erroneous form. In other words, the user does not have to 
perform any additional editing. 

15.11 



This command is very simple conct!ptually, but complicated in its implementation 

by all of the exceptional cases involving inteactions with compiled functions, 

breaks on user functions, error breaks, breaks within breaks, et a1. 

Therefore, we shall give the following simplified explanation which will 

account for 90% of the situations arising in actual usage. For those others, 

EDIT will print an appropriate failure message and return to the break. 

EDIT begins by searching up the stack beginning at lastpos (set by @ command, 

initially position of the break) looking for a form, i.e. an internal call to 

eval. Then EDIT continues from that pOint looking for a call 'to an interpreted 

function, or to eval. It then calls the editor on either the EXPR or the 

argument to eval in such a way as. to look for an expression !!l to the form that 

it first found. It then prints the form, and permits interactive editing to 

begin. Note that the user can then type successive O's to the editor to see 

the chain of superforms for this computation. 

If the user exits from the edit with an OK, the break expression is reset, if 

possible, so that the user can continue with the computation by simply typing 

OK. 6 However, in some situation~, the break expression cannot be reset. For 

example, if a compiled function FOO incorrectly called putd and caused the 

error ARG NOT ATOM followed by a break on putd, EDIT might be able to find the 

form headed' by FOO, and also find that form in some higher interpreted 

function. But after the user cor'rected the problem in the FOO-form, if any, he 

would still not have in any way informed EDIT what to do about the immediate 

problem, i.e. the incorrect call to putd. However, if FOO were tnterpreted 

EDIT would find the putd form j~tself, so that when the user corrected that 

form, EDIT could use the new corrected form to reset the break expression .. The 

two cases are shown below: 

6------------------------------------------------------------------------------Evaluating the new brkexp will involve reevaluating the form that causes 
the break, e.g. if (PUTD (QUOTE (FOO» big-computation) were handled by 
EDIT, big-computation would be reevaluated. 

15.12 



IN? 

ARG NOT ATOM 
(FUM) 
(PUTD BROKEN) 
:EOIT 
IN FIE ... 
(FOO X) 
EDIT 
"(2 (CAR X» 
"OK 
NOTE: BRKEXP NOT CHANGED 
FIE 
:?= 
U = (FUM) 
:(SETQ U (CAR U» 
FUM 
:OK 
PUTO 

ARG NOT ATOM 
(PUlO BROKEN) 
:EOIT 
IN FOO .•• 
(PUTD X) 
EDIT 
* (Z (CAR X» 
*OK 
FOO 
:OK 
PUTO 

similar to EDIT, but just prints parent form, and 
superform, but does not call editor, e.g. 

ATTEMPT TO RPLAC NIL 
T 
(RPLACO BROKEN) 
:IN? 
FOO: (RPLACD X Z) 

Although EDIT and IN? were designed for error breaks, they can also be useful· 

for user breaks. For example, if upon reaching a break on his function FOO, 

the user determines that there is a problem in the call to FOO, he can edit the 

ca~ling form and reset the break expression with one operation by using EDIT. 

The following two protocol's with and without the use of EDIT, illustrate this: 

15.13 



(FOO BROKEN) 
:1= 
X = (A B C) 
Y == 0 
:8T 

FOO 
SETQ 
COND find which function 
PROG FOO is called! from 
FIE 

:EOITF(FIE) 
EDIT 
-F FOO P 

(aborted with tE) 

(FOO V U) edit it 
-(SW 2 3) 
*OK 
FIE 
:(SETQ Y X) reset X and Y 
(A'B C) 
: (SETQQ X 0) 
o 
:1= 
X = 0 
Y = (A B C) check them 
:OK 
FOO 

!Jrkcoms 

(FOO BROKEN) 
:1= 
X = (A B C) 
Y = 0 
:EOIT 
IN FIE ... 
(FOO V U) 
EDIT 
*(SW 2 3) 
*OK 
FIE 
:OK 
FOO 

8 

The fourth argument to break1 is brkcoms. a list of break commands that break1 

interprets and executes as though they were teletype input. One can think of 

brkcorns as another input file which always has priority over the teletype. 

Whenever brkcoms=NIL, break! Ireads its next command from the teletype. 

Whenever brkcoms is not NIL, break1 takes as its next convnand car[brkcorns] and 

sets brkcoms to cdr[brkcoms]. For example, suppose the user wished to see the 

value of the variable x after ,8 function was evaluated. He would set up a 

break wi th brkcoms= (EVAL (PRINT X) OK), which would have the desired effect. 

The function trace uses brkcoms: it sets up a break with two commands; the 

first one prints the arguments oj: the function, or whatever the user specifies, 

6-------------------------------··----------------------------------------------
~ and ~ have not been changed, but brkexp has. See previous footnote. 

15.14 



and the second is the command GO, which causes the function to be evaluated and 

its value printed. 

If brkcoms is not NIL, the value of 8 break command is not printed. If you 

desire to see a value, you must print it yourself, as in the above example with 

the command (PRINT X). 

Motel whenever an error occurs. brkcoms is set to NIL, and a lulL interactive 
break. occurs. 

Brkfile 

The break package has a facility for redirecting ouput to a file. The variable 

brkfile should be set to the name of the file, and the file must be opened. 

All output resulting from brkcoms will be output to brkfile, e.g. output due to 

TRACE. Output due to user typein is not affected. and will always go to the 

terminal. brkfile is initially T. 

Breakmacros 

Whenever an atomic command is given break1 that it does not recognize, either 

via brkcoms or the teletype, it searches the list breakmacros for the command. 

The form of breakmacros is ( .•. (macro command1 commandZ ••• commandn ) •.• ). 

If the command is defined as a macro, break1 simply appends its definition, 

which is a sequence of commands, to the front of brkcoms, and goes on. If the 

command is not contained in breakmacros. it is treated as a function or 

variable as before. 

Example: the command· ARGS could be defined by including on breakmacros: 

(ARGS (PRINT (VARIABLES lASTPOS T»). 

15.15 



15.3 Break Functions 

break1[brkexp;brkwhen;brkfn;brkcoms;brktype] 

is an nlambda. brkwhen determines whether a break 

is to occur. If its value is NIL, brkexp is 

evaluated and returned as the value of break1. 

Otherwise a break occurs and an identifying 

mes,sage is printod using brkfn. Commands are then 

taken from brkcoms or the teletype and 

interpreted. The commands, GO, !GO, OK, !OK, 

RETURN and t, are the only ways to leave breakl. 

The command EVAL causes brkexp to be evaluated, 

and saves the value on the variable 'value. Other 

commands can be defined for break1 via 

breakmacros. brktype is NIL for user breaks. 

INTERRUPT for control-H breaks, and ERRORX for 

err'or breaks. 

For error breaks. the input buffer is cleared and saved. (For control-H 

breaks, the input buffer was cleared at the time the control-H was typed, see 

Section 16.) In both cases, if the break returns a value, i.e., is not aborted 

via t or control-D, the input buffer will be restored (see Section 14). 

breakO[fn;when;coms] set~i up a break on the function fn by redefining 

fn as a call to break1 with brkexp an equivalent 

deflni tion of fn, and when. fn, and corns, as 

brk~,hen. brkfn. brkcoms. Puts property BROKEN on 

property list of fn wi th value a gensym defined 

with the original definition. Puts property 

BRKINFO on property list of fn with value (BREAKO 

when coms) (For use in conjunction with rebreak). 

15.16 



Adds fn to the front of the list brokenfns. Value 

is fn. 

If fn is non-atomic and of the form (fnl IN fn2), 

breakO first calls a function which changes the 

name of fnt wherever it appears inside of fn2 to 

that of a new function, rnt-IN-fn2, which it 

initially defines as fnt. Then breakO proceeds to 

break on fnl-IN-fn2 exactly as described above. 

This procedure is useful for breaking on a 

function that is called from many places, but 

where one is only interested in the call from a 

specific function, e.g. (RPlACA IN FOO), 

(PRINT IN FIE), etc. It is similar to breakin 

described below, but can be performed euen when 

FN2 is compiled or blockcompiled, whereas breakin 

only works on interpreted functions. 

If fnt is not found in fn2, breakO returns the 

value (fnl NOT FOUND IN fn2). 

If fn t is found in fn2, in addition to breaking 

fnt-IN-fn2 and adding fnt-IN-fn2 to the list 

brokenfns, breakO adds fnt ,to the property value 

for the property NAMESCHANGED on the property list 

of ~ and adds the property ALIAS with the value 

(fn2. fnl) to the property list of rnt-IN-fn2. 

This will enable unbreak to recognize what changes 

have been made and restore the function fn2 to its 

original state. 

15.17 



break[x] 

trace[x] 

If fn is nonatomic and not of the above form, 

bre,akO is called for each member of fn using the 

sam!9 values for when, ~, and file specified in 

this call to breakO. This distributivity permits 

the user to specify complicated break conditions 

on several functions without excessive retyping, 

e. g. , 

breakO[(FOOt «PRINT PRINt) IN (F002 FOOl»); 
(NEQ X T);(EVAL 1= (Y Z) OK)] 

will break on FOOt, PRINT-IN-FOO2, PRINT-IN-F003, 

PRINt-IN-F002 and PRINt-IN-FOO3. 

If In is non-atomic, the value of breakO is a list 

of the individual values. 

is a nospread nlambda. for each atomic argument, 

it performs breakO[atom;T]. for each list, it 

performs apply[BREAKO;list]. For example, 

breilk[FOOl (FOO2 (GREATERP N 5) (EVAL»] is 

equ:lvalent to breakO[FOO1,T] and 

breiikO[ FOOl; (GREATERP N 5); (EVAL)] 

is a nospread nlambda. For each atomic argument, 

it performs breakO[atom;T;(TRACE 1= NIL GO)]? For 

each list argument, £!.!: is the function to be 

traced, and cdr the forms the user wishes to see, 

i.e. trace performs: 

breakO[car[list];T;list[TRACE;1=; cdr[list],GO]] 

7-------------------------------··----------------------------------------------The flag TRACE is checked for in breakt and causes the message 'function :' 
to be printed instead of (function BROKEN). 

15.18 



for example, TRACE(FOOI (FOOl Y» will cause both 

FOOl and FOOl to be traced. All the arguments of 

FOOl will be printed. only the value of Y will be 

printed for FOO2. In the special case that the 

user wants to see onlu the value, he can perform 

TRACE«fn». This sets up a break with commands 

(TRACE 1- (NIL) GO). 

Note: the user can always call breakO himself to oetain combination of options 

of break1 not directly available with break and trice. These two functions 

merely provide convenient ways of calling breakO, and will serve for most uses. 

Breakin 

Breakin enables the user to insert a break. i.e. a call to break1, at a 

specified location in an interpreted function. For example, if !.2.!! calls fie, 

inserting a break in !22 before the call to fie is similar to breaking fie. 

However. break in can be used to insert breaks before or after prog labels, 

particular SETQ expressions, or even the evaluation of a variable. This is 

because breakin operates by calling the editor and actually inserting a call to 

break1 at a specified point inside of the function. 

The user specifies where the break is to be inserted by a sequence of editor 

commands. These commands are preceded by BEFORE, AFTER, or AROUND, which 

break in uses to determine what to do once the editor has found the specified 

point, i.e. put the call to break! BEFORE that point, AFTER that point, or 

AROUND that point. For example, (BEFORE COHD) will insert a break before the 

first occurrence of cond, (AFTER COHO Z 1) will insert a break after the 

predicate in the first ~ clause, (AFTER BF (SETQ X &» after the la&t place 

X is set. Note that (BEfORE TTY:) or (AFTER TTY:) permit "the user to type in 

cOlMlands to the editor. locate the correct pOint, and verify it for himself 

15.19 



breakin[fn;where;when;coms] breakin is an nlambda. when and £Qm! are similar 

to when and ~ for breakO, except that if when 

is NIL, T is used. where specifies where in the 

definition of 'fn the call to breakl is to be 

inserted. (8ee earlier discussion). 

unbreak[x] 

If fn is a compiled function, break in returns 

(fn UNBREAKABLE) as its value. 

If fn is int'erpreted, breakin types SEARCHING ..• 

while it calls the editor. If the location 

specified by where is not found, break in types 

(NOT FOUND) and exits. If it is found, breakin 

adds the property BROKEN-IN with, value T, and the 

property BRKINFO with value (where when coms) to 

the property list of fn. and adds fn to the front 

of the list brokenfns. 

Multiple break points, can be inserted with a 

single call to breakin by using a list of the form 

( (BEFORE ••• ) (AROUND ••• ) ) for where. I t is 

also possible to call break or trace on a function 

which has been modified by breakin, and conversely 

to break in a function which has been redefined by 

a call ,to break or trace. 

unbreak 1s a nospread nlambda. It takes an 

indefinite number of functions modified by break, 

trace, or breakin and restores them to their' 

original state by calling unbreakO. Value is list 

of values of unbreakO. 

15.21 



unbreakO[fn] 

unbreakin[fn] 

rebreak[x] 

unbreak[] will unbreak all functions on brokenfns, 

in reverse order. It first sets brkinfolst to 

NIL" 

unbr'eak[ T] unbreaks just the first function on 

bro~~en fns, 

fun(:tion. 

i. e., the most recently broken 

res1~ores fn to its original state. If fn was not 

broken, value is (NOT BROKEN) and no changes are 

mado. If fn was modified by breakin, unbreakin is 

called to edit it back to its original state. If 

fn 'tas created from (fnl IN fn2), i.e. if it has a 

property ALIAS, the function in which fn appears 

is restored to its original state. All dununy 

functions that were created by the break are 

eliminated. Adds property value of BRKINFO to 

(front of) brkinfolst. 

Note: unbreakO[(fnl IN fn2)] is allowed: unbreakO 

will operate on fnl-IN-fn2 instead. 

performs the appropriate editing operations to 

eliminate all changes made by break in . fn may be 

either the name or definition of a function. 

Value 15 fn. Unbreakin is automatically called by 

unbl~eak if fn has property BROKEN-IN with value T 

on its property list. 

is an nlambda, nospread function for rebreaking 

functions that were previously broken without 

15.22 



changename[fn;from;to] 

virginfn[fn;flg] 

having to respecify the break information. For 

each function on !, rebreak searches brkinfolst 

for break(s) and performs the corresponding 

operation. Value is a list of values 

corresponding to calls to breakO or breakin. If 

no information is found for a' particular function, 

value is (fn - NO BREAK INFORMATION SAVED). 

rebreak[] rebreaks everything on brkinfolst, i.e., 

rebreak[] is the inverse of unbreak[]. 

rebreak[T] rebreaks just the first break on 

brkinfolst, i.e., the function most recently 

unbroken. 

changes all occurrences of from to ~ in fn. fn 

may be compiled or blockcompiled. Value is fn if 

from was found, otherwise NIL. Does not perform 

any modifications of property lists. Note that 

from and to do not have to be functions, e.g. they 

can be names of variables, or any other literals. 

is the function that knows how to restore 

functions to their original state regardless of 

any amount of breaks, breakins, ,advising, 

compiling and saving exprs, etc. It is used by 

prettyprint, define, and the compiler. If 

f.!a=NIL, as. for prettyprint, it does not modify 

the definition of fn in the process of producing 8 

·clean· version of the definition, i.e. it works 

on a copy. If f1s.=T as for the compiler and 

15.23 



define, it physically restores the function to its 

original state. and prints the changes it is 

malting t e. g. fOO UNBROKEN, FOO UNADVISED, FOO 

NAMES RESTORED, etc. Value is the virgin function 

definition. 

baktrace[posl;pos2:skipfn:varsflg:-form-flg:a11f1g] prints back trace from 

~~ to pos2. If skipfn is not NIL, and 

sktpfn[ stkname[ pos]] is T. pos is skipped 

(including all variables). 

var-sflg=T for back trace a la BTV 

var'sflg=T, -form-flg=T - BTV-

~sf1g=T. a11flg=T - BTV! 

15.24 



Index for Section 15 

AFTER (as argument to break1n) ••.••••••••.•••.•• 
ALIAS (property name) ..•.••.••••.•••.••••••.••.•• 
ARGLIST[X] .........• e ••••••••••••••••••••••••••• 

ARGS (break command) .•.....••••••••••••••••••••. 
AROUND (as argument to break1n) ••.••••••••.••.•• 
back trace II •••••••••••••••••••••••••••••••••••••• 

BAKTRACE[FROM;TO;SKIPFN;VARSFLG~·FORM·FlG;ALLFLG]. 
BEFORE (as argument to breakin) ..•.•.••••••••.••• 
BREAK[ X] NL* . lit •••••••••••••••••••••••••••••••••• 

break conunands ........•..•••••..••••.••.•••••••• 
break expression •..... ~ .•••..••.•••• ~ ••••••••••• 
BREAK INSERTED AFTER ~typed by break1n) ••••.•••• 
break package ............•..•••••••••••••••••••• 
BREAKO[FN;WHEN;COMS;BRKFN;TAIL] ...•.•••.••••.•.• 
BREAKl[BRKEXP;BRKWHEN;BRKFN;BRKCOHS;BRKTVPE] NL 
BREAKIN[FN;WHERE;WHEN;BRKCOMS] NL ••.••••..••.••• 
BREAKMACROS (break variable/par~eter) •••••••••• 
breakpoint ....... ~ ..... It •••••••••••••••••••••••• 

BRKCOMS (break variable/parameter) •••••••••.•••• 
BRKEXP (break variable/parameter) •••••••••••••.• 
BRKFILE (break variable/parameter) ••••••••••.••• 
BRKFN (break variable/parameter) ••••.•••••••••••• 
BRK INFO (property name) ......• : ..••.•••••••••.••. 
BRKINFOLST (break variable/parameter) •••••••.••• 
BRKTVPE (break variable/parameter) •••••••••••••. 
BRKWHEN (break variable/parameter) •••••••••••••• 
BROKEN (typed by system) ..•.•••.•••••••••••••••• 
BROKEN-IN (property name) •.•••••.••••••••••••••• 
BROKENFNS (break variable/parameter) ••••.••••••• 
B T (break command) ...••••••••••••••••••••••••••• 
BTV (break command) ..••••••••••••••••.•••••••••• 
B TV! (break command) •••••.••••••••••••••••••••.• 
BTV· (break command) •..•..•.•••••.•••.•••••••••• 
CHANGENAME[FN;FROH;TO] .••••••.••••.•••••••••..•• 
control-D ...................................... . 
control-E s •••••••••••••••••••••••••••••••••••••• 

control-H ... 0 •••••••••••••••• 1' •••••••••••••••••• 

control-P ............ 00 •••••••••••••••••••••••••• 

debugging .................•................ e •••• 

EDIT (break con:unand) ..•.•••....••••••••••.••••.• 
editing compiled functions ••••.•.••••••••••••.•• 
ERROR! [] SUBR ••••••••••••••••••••• ,. ••••••••••••• 
EVAL (break command) ............................ . 
EVALQT[ CHAR] ..........•...•....••••.•••••••••••• 
(fn - NO BREAK INFORMATION SAVED) •••.••••••..••• 
( fn 1 IN fn2) .. 0 •• " •••••••••••••••••••••••••••••• 

( fn 1 NOT FOUND IN fn2) •••.•••• 0 ••••••••• eo •••••• 

fnl-IN-fn2 .................. III ••••••••••••••••••• 

GENSYM[CHAR]' •••..••••••••••••••••••••••••••••••• 
GO (break command) ...•..•.•.•••••••••••••••••••• 
IN? (break conunand) .....•...•••••••••••••••••••• 
input buffer ............................ 0 ••••••• 

LASTPOS (break variable/parameter) •••••••••••••• 
NAMES RESTORED (typed by system) •••••.•••••••••• 
NAMESCHANGEO (property name) ..••••••••••••.••••• 
NOBREAKS (break variable/parameter) ••••••••••••• 

INDEJ('15.1 

Page 
Numbers 

15.7,19-20 
15.17,22 
15.10 
15.8,10 
15.7,19-20 
15.9-10,24 
15.24 
15.7,19-20 
15.1,7,18-19,21 
15.7-14 
15.6,12 
15.20 
15.1-24 
15.16-19,21,23 
15.1-2,4,16,18-19,21 
15.2,7,17,19,21-23 
15.15,,16 
15.2 
15.9,14-16 
15.6-7,9,11-12,14,16 
15.15 
15.8,16 
15.16,21-22 
15.22-23 
15.16 
15.16 
15.4,16 
15.21-22 
15.17,21-22 
15.8~9 
15.8,10 
15.10 
15.8,10 
15.23 
15.6,16 
15.6,20 
15.16 
15.10 
15.1 
15.8,11-13 
15.23 
15.7 
15.7,14,16.20 
15.5 
15.23 
15.17,22 
15.17 
15.17,22 
15.16 
15.6-7,15-16 
15.8,13 
15.16 
15.8-10,12 
15.24 
15.17 
15.20 



( NO T B R OK EN) •••••.•••••••••••••••••••••••••••••• 
(NOT FOUND) (typed by break) •••••••••••••••••••• 
(NOT FOUND) (typed by break1n) •••••••••••••••••• 
NOTE: BRKfXP NOT CHANGED. I( typed by break) •••••• 
OK (break command) •••••••••••••••••••••••••••••• 
prompt character •••••••••••••••••••••••••••••••• 
REBREAK[ X] NL* ••••••••••.••••••••••••••••••••••• 
RETEVAl[POS;FORM] SUBR ••.••••••••••••••••••••••• 
RETFROM[POS;VAlUE] SUBR ••••••••••••••••••••••••• 
RE TURN (break command) .......................... . 
SEARCHING .•• (typed by break1n) ••••••••••••••••• 
STKARG[N;POS] SUBR •••••••••••••••••••••••••••••• 
STKEVAl[POS;FORM] SUBR •••••••••••••••••••••••••• 
STOP (edit conunand) ••••••••••••••••••••••••••••• 
TRACE[ X] NL* ...••.....•...••••••••••.•••.•.••••• 
Try: (edit cornrnand) ••••••••••••••••••••••••••••• 
U.B.A. breaks ................................... . 
U.O.F. breaks ........•..•••..•••••••.•••••.•.••• 
UB (break command) •••••••••••••••••••••••••••••• 
UNADVISED (typed by system) ••••••••••••••••••••• 
UNBREAK[X] NL* •••••••••••••••••••••••••••••••••• 
UNBREAKO[ FN; TAIL] ••••••••••••••••••••••••••••••• 
(UNBREAKABLE) ••••••••••••••••••••••••••••••••••• 
UNBREAK IN[ FN] ••••••••••••••••••••••••••••••••••• 
UNBROKEN (typed by system) •••••••••••••••••••••• 
value of a break •••••••••••••••••••••••••••••••• 
VARIABlES[POS] •••••••••••••••••••••••••••••••••• 
VIRGINfN[FN;FlG] .••••••••••••••••••••••••••••••• 
'EVAL (break command) ••••••••••••••••••••••••••• 
! GO (break command) ••••••••••••••••••••••••••••• 
! OK (break corrunand) ••••••••••••••••••••••••••••• 
!VAlUE (break variable/parameter) ••••••••••••••• 
*·BREAK*· (in backtrace) •••••••••••••••••••••••• 
--EDITOR·· (in backtrace) ••••••••••••••••••••••• 
--TOp·· (in backtrace) •••••••••••••••••••••••••• 
-) (break command) •••••••••••••••••••••••••••••• 
: (typed by sys tern) ••••••••••••••••••••••••••••• 
= (break command) •••••••• ' .•••••••••••••••••••••• 
1= (break command) •••••••. , •••••••••••••••••••••• 
@ (break command) ............................... . 
t (break conunand) ••••••••..•••••••••••••••••••••• 
~ (typed by system) ••••••••••••••••••••••••••••• 

INDEX.15.2 

Page 
Numbers 

15.22 
15.9 
15.20-21 
15.12 
15.6-7,12,14,16 
15.4 
15.16,22-23 
15.5 
15.5 
15.6-7,16 
15.21 
15.9 
15.9 
15.20 
15.1,7,14,18-19,21 
15.19-20 
15.10 
15.11 
15.8 
15.24 
15.17,21-22 
15.22 
15.21 
15.22 
15.24 
15.6 
15.10 
15.23 
15.7 
15.7,16 
15.7,16 
15.7,16 
15.9 
15.9 
15.9 
15.11 
15.4 
15.10 
15.8-9 
15.8-9,12 
15.7,16 
15.4 



SECTION 16 

ERROR HANDLING 

16.1 Unbound Atoms and Underi~ed Functions 

Whenever the interpreter encounters an atomic form with no binding on the push­

down list, and whose value contains the atom NOBIND. 1 the interpreter calls 

the function faul teval. Similarly, fauI"teval is called when a list is 

encountered, £!r of which is not the name of a function or a function object.2 

The value returned by faulteval is used by the interpreter exactly as though it 

were the value of the form. 

faulteval is defined to print either U.S.A., for yn~ound !tom, or U.D.F., for 

yn!!efined function, and then to call break1 giving it the offending form as 

brkexp.8 Once inside the break, the user can set the atom, define the function, 

return a specified value for the form using the RETURN command, etc., or abort 

i---~---------------·--~--~---------------------------------~------------------All atoms are initialized (when they are created by the read program) with 

2 

8 

their value cells (car of the atom) NOSIND, their function cells NIL, and 
their property lists (cdr of the atom) NIL. 

See Appendix 2 for complete description of INTERLISP interpreter. 

If DWIM is enabled (and a break is going to occur), faulteval also prints 
the offending form (in the case of a U.S .A., the parent form) and the name 
of the function which contains the form. For example,' if FOO contains 
(CONS X FIE) and FIE is unbound, faulteval prints: 
U.B.A. FIE [in FOO] in (CONS X FIE). Note that if DWI" is not enabled, the 
user can obtain this information after he is inside the break'via the IN? 
command. 

16.1 



the break using the t command., If the break is exited with a value, the 

computation will proceed exactly as though no error had occurred.4 

The decision over whether or nlot to indu.ce a break depends on the depth of 

computation. and the amount of time invested in the computation. The actual 

algorithm is described in detail below i~ the section on breakcheck. Suffice 

it to say that the parameters affecting this decision have been adjusted 

empirically so that trivial type-in errors do not cause breaks, but deep errors 

do. 

16.2 Teletype Initiated Breaks 

Control-H 

Section 15 on the break package described how the user could cause a break when 

a specified function was entered. The user can also indicate his desire to go 

into a break at any time while a program is running by typing control-H. 6 At 

the next point a function is about to be entered, the function interrupt is 

called instead. interrupt types INTERRUPTED BEFORE followed by the function 

4------------------------------------------------------------------------------A similar procedure is follo'wed whenever ~ or apply· are called with an 

6 

undefined function. i.e. OnE! whose ~ is NIL. In this case, faul tapply 
1s called giving it the function as its first argument and the list of 
arguments to the function as its second argument. The value returned by 
faul taJ~I!_~ is used as the value of ~ or !Q~. faultapply is defined 
to print U.D.F. and then call break1 giving it 
(APPLY (QUOTE fn) QUOTE args» as brkexp. Once inside the break, the user 
can define the function, return a specified value, etc. If the break is 
exi ted wi th a value, the computation will proceed exactly as though no 
error had occurred. faultapi2!I is also called for undefined function calls 
from compiled code. 

As soon as control-H is typed, INTERLISP clears and saves the input buffer, 
and then rings the bell, indicating that it is now safe to type ahead to 
the upcoming break. If the break returns a value, i.e., is not aborted via 
t or control-D, the contents of the input buffer before the control-H was 
typed will be restored. 

16.2 



name, constructs an appropriate break expression, and then calls break1. The 

user can then examin~ the state of the computation, and continue by typing OK, 

GO or EVAl, and/or retfrom back to some previous point, exactly as with a user 

break. Control-H breaks are thus always 'safe'. Note that control-H breaks 

are not affected by the depth or time of the computation. However, they onlu 

occur when a function is called, since it is only at this time that the system 

is in a ·clean· enough state to allow the user to interact. Thus, if a 

compiled program is looping without calling any functions, or is in a 1/0 wait, 

control-H will not affect it. Control-B, however, will. 

Control-B 

Control-B is a stronger interruption than control-H. It effectively generates 

an inunediate error. This error is treated like any other error except that it 

always causes a break, regardless of the depth or time of the computation. 6 

Thus if the function FOO is looping internally, typing control-B will cause the 

computation to be stopped, the stack unwound to the point at which FOO was 

called, and then cause a break. Note that the internal variables of FOO are 

not available in this break, and Similarly, FOO may have already produced some 

changes in the environment before the control-B was typed. Therefore whenever 

pOSSible, it is better to use control-H instead of control-B. 

Control-E 

If the user wishes to abort a computation, without causing a break, he should 

type control-E. Control-E does not go through the normal error machinery of 

scanning the stack, calling breakcheck, printing a message, etc. as described 

below, but simply types a carriage-return and unwinds. 

a------------------------------------------------------------------------------However, setting helpflag to N~L will suppress the break. See discussion 
of breakcheck below. 

16.3 



16.3 Other Types of Errors 

In addition to U.B.A. and U.O.F. errors, there are currently 28 other error 

typei 1n INTERLISP, e.g. P-STACK OVERFLOW, NON-NUMERIC ARG, FILE NOT OPEN, 

etc. A complete list 1s given later in this section. When an error occurs, 

the decision about whether or not to break is handled by breakcheck and is the 

same as with U.B.A. and U.O.F. errors. If a break is to occur, the exact 

action that follows depends on the type of error. For example, if a break is 

to occur following evaluation of (RPlACA NIL (ADDI 5» (which causes an 

ATTEMPT TO RPlAC NIL error), the message printed will be (RPlACA BROKEN), 

brkexp will be (RPlACA U V W), U will be bound to NIL, V to 6, and W to NIL, 

and the stack will look like the user had broken on rplaca himself. Following 

a NON-NUMERIC ARG error. the sy:stem will type IN followed by the name of the 

most recently entered function, and then (BROKEN). The system will then 

effectively be in a break inside of this function. brkexp will be a call to 

ERROR so that if the user types OK or EVAl or GO, a ? will be printed and the 

break maintained. However, if the break is exited with a value via the RETURN 

command,7 the computation will p."oceed exactly as though no error had occurred. 

16.4 Breakcheck - When to Break 

The decision as to whether or not to induce a break when an error occurs is 

handled by the function breakcheck.8 The user can suppress all error breaks by 

setting the variable helpflag to NIL (initially set to T). If helpflag=T, the 

decision is affected by two factors: the length of time spent in the 

7--------------------------------·----------------------------------.-----------Presumably the value will be a number, or the error will occur again. 

8 Breakcheck is not actually available to the user for adVising or breaking 
since the error package is block-compiled. 

16.4 



computation, and the depth of the computation at the time of the error. 9 If the 

time is greater than helptime or the depth is greater than helpdepth, 

breakcheck returns T, meaning a break will occur. 

Since a function is not actually entered until its arguments are evaluated,10 

the depth of a computation is defined to be the sum of the number of function 

calls plus the number of internal calls to eval. Thus if the user types in the 

expression [MAPC FOO (FUNCTION (LAMBDA (X) (COND «NOT (MEMBX FIE» (PRINT Xl 

for evaluation, and FIE is not bound~ at the point of the U.B.A. FIE error, two 

functions, mapc and cond, have been entered, and there are three internal calls 

to corresponding to the evaluation of the forms 

(CONO «NOT (MEMB X FIE» (PRINT X»), (NOT (MEMB X FIE»,· and (MEMB X FIE).ll 

The depth is thus 5. 

breakcheck begins by searching back up the parameter stack looking for an 

errorset. 12 At the same time, it counts the number of internal calls to eval, 

as indicated by pseudo-variable bindings called eval-blips. See Section 12. 

As soon as (if) the number of eval-blips exceeds helpdepth, breakcheck can stop 

searching for errorset and return T, since the position of the errorset is only 

needed when a break is not going to occur. ' Otherwise, breakcheck continues 

9--~-----------------~-------------------------------- -------------------------Except that control-B errors always break. 

10 

11 

12 

Unless of course the function does not have its arguments evaluated, i.e. 
is an FEXPR, FEXPR*, CFEXPR, CFEXPR*, FSUBR or FSUBR*. 

for complete discussion of the stack and the interpreter, see Section 12. 

errorsets are simply markers on the stack indicating how far back unwinding 
is to take place when an error occurs, i.e. they segment the stack into 
sections such as that if an error occurs in any section, control returns to 
the point at which the last errorset was entered, from which NIL is 
returned as the 'value of the errorset. See page 16.14. 

16.5 



search ing un til either an errorset is found13 or the top of the stack is 

reached. Breakcheck then complet~s the depth check by counting the number of 

function calls between the error and the last errorset, Qr the top of the 

stack. If the number of calls I)lus the number of eval-blips (already counted) 

is greater than or equal to helpdepth, initially set to 9,14 breakcheck returns 

T. Otherwise, it records the position of the last errors~t, and the value of 

errorset • s second argument, which is used in deciding whether to print the 

error messaga, and returns NIL. 

breakcheck next measures the length of time spent in the computation by 

subtracting the value of the variable helpclock from the value of (CLOCK 2).16 

If the difference is greater than helptime milliseconds, initially set to 1000,' 

then a break wi 11 occur, i. e. , breakcheck returns T, otherwise NIL. The 

variable helpclock is rebound to the current value of (CLOCK Z) for each 

computation typed in to lispx or to a break. 

The time cri terion for breaking can be suppressed by .setting helptime to NIL 

(or a very big number), or by binding helpclock to NIL. Note thats'etting 

helpclock to NIL will not have any effect because helpclock is rebound by lispx 

and by break. 

If breakcheck is NIL, i.e., a break is not going to occur, then if an errorset 

was found, NIL is returned (via retfrom) as the value of the errorset, after 

first printing the error message if the errorset's second argument was TRUE~ 

ij--------------------------------------------------------~--------------------
If the second argument to the errorset is INTERNAL, the errorset is ignored 

14 

16 

and searching continues. See discussion of errorset, page 16.14. 

Arrived at empirically, tak9s into account the overhead due to lispx or 
break. 

Whose value is number of milliseconds of compute t'ime. See Section 21. 

16.6 



If there was no errorset, the message is printed, and control returns to 

evalgt. This procedure is followed for all types of errors. 

Note that for all error breaks for which a break occurs, break1 will clear and 

save the input buffer. If the break returns a value, i.e., is not aborted via 

t or control-D, the input buffer will be restored as described in Section 15. 

16.5 Error Types 

There are currently twenty-ei~ht error types in the INTERLISP system. They are 

listed below by error number. The error is set internally by the code that 

detects the error before it calls the error handling functions. It is also the 

value returned by errorn if called subsequent to that type of error, and is 

used by errormess for printing the error message. 

Most error types will print the offending expression following the message, 

e . g., NON-NUMERIC ARG NIL is very common. Error type 18 (control-B) always 

causes a break (unles~ helpflag ,is NIL). All other errors cause breaks if 

breakcheck returns T. 

o NONXMEM 

1 

2 P-STACK OVERFLOW 

reference to ~-e!istent ~ory. 

indicates system is very sick. 

Currently not used. 

Usually 

. occurs when computation is too deep, either with 

respect to number of function calls, or number of 

variable bindings. Usually because of a non­

tenm1nating recursive computation, i.e. a bug. 

16.7 



3 

4 

ILLEGAL RETURN 

ILLEGAL ARG - PUTD 

call to return when not inside of an interpreted 

pr(]i1. 

second argument to putd (the definition) is not 

NIL, a list, or a pointer to compiled code. 

5 ARG NOT ATOM - SET first argument to set, setg, or !!1gg (name of the 

variable) is not a literal atom. 

6 ATTEMPT TO SET NIL via set or setq 

7 ATTEMPT TO RPlAC NIL attempt either to rplaca or to rplacd NIL with 

something other than NIL. 

8 UNDEFINED OR ILLEGAL GO DQ 'when not inside of a ~, or 9Q to nonexistent 

label. 

9 FILE WON'T OPEN From infile or outfile, Section 14. 

10 NON-NUMERIC ARG a numeric function e.g. iplus, itimes, igreaterp, 

exp l9cted a number. 

11 ATOM TOO LONG > 100 characters. 

12 ATOM HASH TABLE FULL no .'"oom for any more (new) atoms. 

13 FILE NOT OPEN frollil an 1/0 function, e.g. read, print, closer. 

14 ARG NOT ATOM 

15 TOO MANY FILES OPEN l 16 1~cluding teletype. 

16.8 



16 END OF FILE 

17 ERROR 

18 BREAK 

19 ILLEGAL STACK ARG 

20 FAULT IN EVAL 

21 ARRAYS FULL 

22 DIRECTORY FULL 

23 FILE NOT FOUND 

from an input function, e.g. read, readc, ratom. 

Note: the file will then be closed. 

call to !!.!:!!!:. 

control-B was typed. 

a stack function expected a stack position and was 

gi,ven something else. This might occur if the 

arguments to a stack function are reversed. Also 

occurs if user specified a stack position with a 

function name, and that function was not found on 

the stack. See Section 12. 

artifact of bootstrap. Never occurs after 

faulteval has been defined as described earlier. , 

system will first initiate a GC: 1, and if no 

array space is reclaimed, will then generate this. 

error. 

no new files can be created until user deletes 

some old ones and expunges. 

file name does not correspond to a file in the 

corresponding directory. Can also occur if file 

name is ambiguous. 

24 FILE INCOMPATIBLE - SYSIN from sysin, Section 14. 

25 UNUSUAL CDR ARG LIST a form ends in a non-list other than NIL, e.o. 

(CONS T • 3). 

16.9 



26 HASH TABLE FULL 

27 ILLEGAL ARG 

28 ARG NOT ARRAY 

seel hash link f.unctions, Section 7. 

Catch-all error. Currently used by evala, arg, 

funarg, allocate, rplstring, and sfptr. 

elt or seta given an argument that is not a 

pointer to the beginning of an array. 

29 ILLEGAL OR IMPOSSIBLE BLOCK 

30 

31 LISTS fULL 

from getblk or relblk. See Section 21. 

currently not used. 

following a GC: 8, if a sufficient amount of list 

words have not been collected, and there is no un­

allocated space left in the system, this error is 

generated. 

Many system functions, e.g. define, arglist, advise, !.Qjz, expt, etc, also 

generate errors with appropriate messages by calling ~ (see page 16.12) 

which causes an error of type 16. 

Error handling by error type 

Occasionally the, user may want to treat certain error types different than 

others, e.g. always break. never break, or perhaps take some corrective action. 

This can be accomplished via errortypelst. errortypelst is a list of elements 

of the form (n expression). where n is one of the 28 error numbers. After 

breakcheck has been completed, but before any other action is taken, 

errortypelst is searched for an element with the same error number as that 

16.10 



causing the error. If one is found, and the evaluation of the corresponding 

expression produces a non-NIL value. the value is substituted for the offender, 

and the function causing the error is reeentered. 

for this application, the following three variables may be useful: 

errormess 

errorpos 

breakchk 

~ is the error number, cadr the ·offender· e.g. 

(10 NIL) corresponds to NON-NUMERIC ARG NIL error. 

position of the function in which the error 

occurred, e.g. stkname[errorpos] might be IPLUS, 

RPLACA, INFILE. etc. 

va lue of breakcheck p i. e • T means a break will 

occur. NIL means one will not. 

for example, putting 

[10 (AND (NULL (CADR ERRORHESS» 
(SELECTQ (STKNAME ERRORPOS) . 

«IPLUS ADDl SUB1) 0) 
(ITIHE5 1) 
(PROGN (SETQ BREAKCHK T) NIL] 

on errortypelst would specify that whenever a NON-NUMERIC ARG - NIL error 

occurred. and the function in question was IPLU5. ADD1, or SUB1. 0 should be 

used for the NIL. If the function was ITIHES, 1 should be used. Otherwise, 

always break. Note that the latter case is achieved not by the value returned, 

but by the effect of the evaluation. i.e. setting BREAKCHK to T. Similarly, 

(16 (SETQ BREAKCHK HIL.» would prevent END OF FILE errors from ever. breaking. 

16.11 



16.6 Error Functions 

errorx[erxm] is the entry to the error routines. 'If erxm=NIl, 

errorn[] is used to determine the error-message. 

Otherwise, seterrorn[erxm] is ,performed, • setting I 

the error type and argument. Thus following 

either err~rx[(10 T)] or (PLUS T), errorn[] is 

(10 T)~ errorx calls breakcheck, and either 

induces a break or prints the message and unwinds 

to the last errorset. Note that errorx'can be 

called by any program to intentionally induce an 

error of 

applications, 

useful. 

any ~ype. However, for most 

the function error will be more \--

error[messl ;mess2;nobreak] The message that is (will be) printed is mess1 

(using prinl), followed by a space if messl is an 

atolD, otherwise a carriage return., Then mess2 is 

prilllted, using print if mess2 is a string, 

othtsrwise print. e. g.. errore "NON-NUMERIC ARG·; T] 

will print 

NON,·NUMERIC ARG 
T 

and error[FOO;"NOT A FUNCTION"] will pri,nt 

FOO NOT A FUNCTION. ,( If both mess 1 and mess2 are 

NIl~ the message is simply ERROR.) 

If nobreak=T, ~ prints its message and then 

calJLs error! . Otherwise it calls 

err()rx[(17 (mess1 • mess2»], i.e. generates an 

error of type 17, in which case the decision as to 

16.12 



help[mess1;mess2] 

errort[]16 

reset[ ] 

errorn[] 

errormess[u] 

whether or not to break, and whether or not to 

print a message, is handled as per any other 

error'. 

prints mess1 and mess2 a la !!.!:.Q!:. and then calls 

break1. If both mess1 and mess2 are NJl, HElPf is 

used for the message. help is a convenient way to 

program a default condition, or to terminate some 

protion of a program which theoretically the 

computation is never supposed to reach. 

programmable control-E, i.e., immediately returns 

from last errorset or resets. 

Programmable control-D, 1. e. immediately returns 

to the top level. 

returns information about the last error in the 

form (n x) where rr is the error type number and ~ 

is the expression which was (would have been) 

printed out after the error message. Thus 

following (PLUS T), errorn[] is (10 T). 

prints message corresponding to an errorn that 

yielded y. For example, errormess[ (10 T)] would 

print 

NON-NUMERIC ARG 
T 

i6----~--~---------------------------------------------------------------------Pronounced -error-bang-. 

16.13 



errorset[u;v]17 

ersetq[ersetx] 

nlsetq[nlsetx] 

performs eval[u 1. Note that errorset is a lembda-

type of function, and that its arguments are 

evaluated be/ore it 1s entered, i.e. errorset[x] 

means eval is called with the ualue of!. In most 

cases, ersetg and n lsetg (deScrib'd' below') are 

more useful. If no error occurs in the evaluation 

of y, the value of errorset is a list containing 

one element, the value of eval[u]. If an error 

did occur, the value of errorset is NIL. 

The argument y controls the printing of error 

mes.sages if an error occurs. If yeT ,the error 

message is printed; if y=NIL it is not. 

If y=INTERNAl, the errorset is ignored' for the 

pUrjl)ose of deciding whether or not to break or 

print a message. However, the errorset is in 

effect for the purpose of flow of control,-i.e. if 

an error occurs, this errorset returns NIL. 

nlalnbda, performs errorset[ersetx;t], i.e. 

. (ER:5ETQ (FOO» is equivalent to 

(ERI~ORSET (QUOTE (FOO» T). 

nlmnbda, performs errorset[nlsetx;NIL]. ----

j~----------------------~-----------------~----------------------.-----~-------errorset is a subr, so the names ·u· and ·v· don't actually appear on the 
stack nor wil~ they affect the evaluation. 

16.14 



Index for Section 16 

APPLY[FN;ARGS] SUBR ..........•••.•••••••••..•.•• 
APPLY~[FN;ARGl; ... ;ARGn] SUBR- ..••••••••...••••• 
ARG[VAR;M] FSUBR ............•...•••••••••••••... 
ARG NOT ARRAY (error message) •••••••••••••••.••• 
ARG NOT ATOM (error message) .................... . 
ARG NOT ATOM - SET (error message) ••••••••••.••• 
ARRAYS FULL (error message) .....•••••••••••••••• 
ATOM HASH TABLE FUll (error message) •••••••••••• 
ATOM TOO LONG (error message) •..•••••••••••••••• 
ATTEMPT TO RPlAC NIL (error message) •••••••••••• 
ATTEMPT TO SET NIL (error message) ••••••.••••••• 
bell (typed by system) ..•..••..•••••••••.••••••• 
BREAK (error message) ..•.•.•.••.•••••••••••••••• 
BREAKl[BRKEXP;BRKWHEN;BRKFN;BRKCOHS;BRKTYPE] NL 
BREAKCHECK ••.• e, •••••••••••••••••••••••••••••••••• 

BRKEXP (break variable/parameter) ••••••••••...•• 
(BROKEN) (typed by system) •••••••••••••••••••••. 
control-B •..••.•.•..••• It •••••••••••••••••••••••• 

control-D ••..••• 0 •••••••• " ••••••••••••••••••••••• 

control-E .•.......•••..•.•••••• o ••••••••••••• ~ •• 

control-H ...........••....•••••••••••••••••••••• 
DIRECTORY FULL (error message) •••••••••••••••••• 
OWIH ••••••••• '." •••••••••••••••••••••••••••••••••• 
ElT[A;N] SUBR ••••••••••••••••••••••••••••••••••• 
END OF FILE (error message) •.•••••••.•••••..•••• 
ERROR[MESSl;MESS2;NOBREAK] •••..••••••.••••..•••• 
ERROR (error message) .•••.•••••••••••••••••••..• 
error handling •....•••••.•••••••••••••••••.••••• 
error number •••••••.•.••••••••••••••••••••••••.• 
error types ..••....•••••••.••••••••••••••••••••• 
ERROR' [] SUBR ••••••••••••••••••••••••••••••••••• 
ERRORMESS[ U] •••••••••••••••••• ., 0 ................ . 

ERRORN[] SUBR .......•.•.••••••••••.•.•••••.••••• 
ERRORSET[U;V] SUBR .......•.••.••.•....••.•••..•. 
ERRORTYPElST (system variable/parameter) ••••.•.• 
ERRORX[ERXH] ...........•..••..•.•••..••.••.•.•.. 
ERSETQ[ERSETX] NL ...•••••••••••••••••••••••••••• 
EVAl (break cominand) ••••.•••••••••••••••••••.••• 
EVAl[X] SUBR •• · •••••••••• 0 ....................... . 

eval-blip .....•..•..••...••••••••••••••••••••••• 
EVALA[ X ; A] SUBR ..............•..•..•...•••.•.•.• 
FAULT IN EVAL (error message) ••.••••••••••••.••• 
FAUlTAPPLY[FAUlTFN;FAUlTARGS] •••••.•..•.••.••••. 
FAUlTEVAl[FAULTX] NL~ .......••••.••.•••••.••.•.• 
FILE INCOMPATIBLE - SYSIN (error message) ••••••. 
FILE NOT rOUND (error message) •••••••••••••••••• 
FILE NOT OPEN (error message) •••••••••••••• e •••• 

FILE WON'T OPEN (error message) ••••••••••••••.•. 
FUNARG ••••••••••••••••••••••••• G •••••••••••••••• 

function definition cell ..•..•••••••••••••••.••• 
function objects •.•••••••.•••••.••••.••••••••.•• 
GC: 1 (typed by system) •.••••••••••••••••••••••• 
GETBlK[N] SUBR ....•••...•.•.•••.••••.•••••.•• ~ •• 
GO (break command) ..••.•..••••••••••.•••••••.••• 
HASH TABLE FUll (error message) •••••.••••••••••• 
HElP[HESS1;HESS2] ~ •...•••••••••••••••••••••••••• 

INDEX.16.1 

Page 
Numbers 

16.2 
16.2 
16.10 
16.10 

'16.8 
16.8 
16.9 
16.8 
16.8 
16.8 
16.8 
16.2 
16.9 
16.1-3,7,13 
16.2-7,10,12 
16.1-2,4 
16.4 
16.3,5,7,9 
16.2,7,13 
16.3,13 
16.2"'3 
16.9 
16.1 
16.10 
16.9 
16.6,9-10,12 
16.9 
16.1-14 
16.7 
16.7 
16.12-13 
16.7,13 
16.7,13 
16.5-6,12-14 
16.10-11 
16.12 
16.14 
16.3-4 
16.14 
16.5 
16.10 
16.9 
16.2 
16.1,9 
16.9 
16.9 
16.8 
16.8 
16.10 
16.1 
16.1 
16.9 
16.10 
16.3-4 
16.10 
16.13 



HELP! (typed by system) .........•..••••••.••..•• 
HELPCLOCK (system variable/parameter) ••.•..•.•.. 
HELPDEPTH (system variable/parameter) •••• ~ •...•. 
HELPFLAG (system variable/parameter) .••.••.•.••. 
HELPTIME (system variable/lparameter) ....••....•• 
ILLEGAL ARG (error message) ....••••...•••.•..••• 
ILLEGAL ARG - PUTD (error message) ••.•••.••.•.•• 
ILLEGAL OR IMPOSSIBLE BLOCK (error message) 
ILLEGAL RETURN (error message) .•••••.•••••.••••• 
ILLEGAL STACK ARG (error message) •••••••••••..•• 
IN (typed by system) ..•..•.•••.••••..••••••••••• 
IN? (break command) ..........•.•.•••.••••.•.•••• 
input buffer ...................................... . 
interpreter ............. ' ....................... . 
INTERRUPT[INTFN;INTARGS;INTYPE] •••••.•••••.••••• 
INTERRUPTED BEFORE (typed by system) ..•.••..•••• 
LISTS FULL (error message) ...••••••••••••••••••. 
NLSETQ[NLSETX] NL ....... n ••••••••••••••••••••••• 

NOBIND .....•..•.......•. 0 ••••••••••••••••••••••• 

NON-NUMERIC ARG (error message) ••••..•••.•.•••.• 
NONXMEM (error message) ..•.••.•••••••••••••••••• 
OK (break command) ........••..••••••.••....•..•• 
P-STACK OVERFLOW (error message) ••••.••••••••••• 
property 1 is t ............ . ' ... .; .................. . 
RELBLK[ADDRESS;N] SUBR ..•.•.••..••••.•••.••••••• 
RESE T[] SUBR ..........•...••.•••••.•.•••.•••...• 
RETFROM[POSjVALUE] SUBR ...•.•••.••••.••••••••.•• 
RE TURN (break command) .•..••••••••••••.•..•••••• 
RPLSTRING[X;N;Y] SUBR •.•..•.•.••••••••••••.••••• 
SETA[A;N;V] ...........••••••.••• 6 ••••••••••••••• 

SFPTR[FILE;ADDRESS] SUBR ...•....••.•••.••••••••• 
SYSIN[FILE] SUBR ..........••.•••••••••.••••••••• 
teletype initiated breaks .•.....•••....•••.•.••. 
TOO MANY FILES OPEN (error message) •..••••••.••• 
U.B.A. (error message) .•.....•..••.•.••••••••••. 
U .0. F. (error message) •.•.•••.••.•••••••••.••••• 
unbound atom ............•..•..•.•..••••••••••.•• 
und~fin~d function .......••.•..••.•..•.••••....• 
UNDEFINED OR ILLEGAL GO (error message) •.••.•••. 
UNUSUAL CDR ARG LIST (error message) ..•.••••..•. 
value cell ...... ., .............................. . 
value of a break ...........••..••.•••••.•.•.•••. 
7 (typed by system) ..••.•.••••••••••.•••••••.••• 
t (break command) ..•..•.••••••••••••.••••••••••• 

INI>EX.16.2 

Page 
Numbers 

16.13 
16.6 
16.5-6 
16.3-4,7 
16.5-6 
16.10 
16.8 
16.10 
16.8 
16.9 
16.4 
16.1 
16.2,7 
16.1 
16.2 
16.2 
16.10 
16.14 
16.1 
16.4,8 
16.7 
16.3-4 
16.7 
16.1 
16.10 
16.13 
16.6 
16.1,4 
16.10 
16.10 
16.10 
16.9 
16.2-3 
16.8 

'16.1,4 
16.1-2,4 
16.1 
16.1 
16.8 
16.9 
16.1 
16.2 
16.4 
16.2,7 



SECTION 17 

AUTOKATIC ERROR CORRECTION - THE OWl" FACILITY t 

17.1 Introduction 

A surprisingly large percentage of the errors made by INTERLISP users are of 

the type that could be corrected by another LISP programmer without any 

information ~bout the purpose of the program or expression in question, e.g. 

misspellings, certain kinds of parentheses errors, etc. To correct these types 

of errors we have implemented in INTERLISP a OWIM facility, short for DO-What-

I-Mean. DWIM is called automatically whenever an error2 occurs in the 

evaluation of an INTERLISP expression. OWl" then proceeds to try to correct 

the mistake using the current context of computation plus information about 

what the user had previously been doing, (and what mistakes he had been making) 

as guides to the remedy of the error. If DWI" is able to make the correction, 

the computation continues as though no error had occurred. Otherwise, the 

procedure is the same as though DWI" had not intervened: a break occurs, or an 

unwind to the last errorset, as 'described in Section 16. The following 

protocol illustrates the operation of OWl". 

i-~------------~---~~~--~-~---~-~-~-------------------~---~~-------------------OWl" was designed and implemented by W. Tei telman ~ It ,is discussed in 

2 

[Tei2]. 

Currently, DWIPI only operates on unbound atoms and undefined function 
errors. 

17.1 



Example 

The user defines 8 function f8C'~ of one argument,!. The value of fact(n] is 

to be n factorial. 

~OEFINEQ«fACT (LAMBDA (N) (COND 
«ZEROP N9 1) «T (ITIHES N (fACT 8SUBl N] 
(fACT) 
~ 

Note that the definition of fa4::t contains several mistakes! Itimes and fact 

have been misspelled; the 9 in 1~9 was intended to be a right parenthesis, but 

the shift key was not depressed; similarly, the 8 in 8SUBl was intended to be a 

left parenthesis; and finally, there is an extra left parenthesis in (ront of 

th~ T that begins the final clause in the conditional. 

~PRETTYPRINT«fACCT] 
=PRETTYPRINT 
=FACT 

- (fACT 
[LAMBDA (N) 

(CONO 
«ZEROP N9 1) 

«T (ITIM5 H (FACCT 8SUBl H]) 
(FACT) .. 

[1] 
[2] 
[3] 

After defining fact, the uselr wishes to look at its definition using 

PRETTYPRINT, which he unfortunately misspells.[ 1] Since there is no function 

PRE TTYPRINT in the system, aU. D. F. error occurs. and DWI" is called. DWIPI 

invokes its spelling corrector, which searches a list of functions frequently 

used (by this user) for the best possible match. Finding one that is extremely 

close, DWIr1 proceeds on the a!isumption that PRETTYPRINT meant PRETTYPRINT, 

notifies the user of this, [2] and calls prettyprint. 

At this point, PRETTYPRINT would normally print (fACCT HOT PRIHTABlE) and exit, 

since facet has no definition. Note that this is not an INTERLISP error 

17.2 



condition. so that OWl" would not be called as described above. However, it is 

obviously not what the user meant. 

This sort of mistake is corrected by having prettyprint itself explicitly 

invoke the spelling corrector portion of DWI" whenever given a function with no 

expr definition. Thus with the aid of DWI". prettyprint is able to determine 

that the user wants to see the definition of the function fact.[3] and proceeds 

accordingly. 

"FACT(3] 
N9 [IN FACT] -> N )? YES 
[IN FACT] (CONO «T --») -> 

(CONO (T --» 
ITIM5 [IN FACT] -) ITIHES 
FACCT [IN FACT] -> FACT 
85U81 [IN FACT] -> (SUBt? YES 
6 
.. pp FACT 

(FACT 
[LAMBDA (N) 

(CONO 
«ZEROP N) 

1) 
(T (lTMES N (FACT (SUB1 N]) 

FACT .. 

[4] 

[5] 

[6] 

The user now calls his function fact.[4] During its execution, five errors 

occur, and DWIM is called five times.[5] At each point, the error is corrected, 

a message printed describing the action taken, and the computation allowed to 

continue as i fno error had occurred 4 Following the last correction, 6 is 

printed, the value of fact(3). Finally, the user prettyprints the new, now 

correct, definition of fact.[6] 

In this particular example, the user was shown operating in TRUSTING mode, 

which gives DWIM carte blanche for most corrections. The user can also operate 

in CAUTIOUS mode, in which case DWI" will inform him of intended corrections 

before they are made, and allow the user to approve or disapprove of them. For 

17.3 



most corrections, if the user does not respond in a specified interval of time, 

DWIM automatically proceeds with the correction, so that the user need 

intervene only when he does not approve. Sample output is given below. Note 

that the user responded to the first, second, and fifth questions; DWI" 

responded for him on the third and fourth. 

"FACT(3) 
N9 [IN FACT] -) N )? YES 
U.D.F. T [IN FACT] FIX? YES 
[IN FACT] (COND «T --») -> 

(COND (T --» 
ITIMS [IN.FACT] -> ITIHES? ... YES 
FACCT [IN FACT] -> FACT? •• oYES 
8SUBl [IN FACT] -> (SUB1? NO 
U.B.A. 
(8SUBI BROKEN) 

[1] 
[2] 

[3] 
[4] 
[5] 

We have put a great deal of ef'fort into making DWI" t smart t, and experience 

with perhaps fifty different users indicates we have been very successful; DWIH 

seldom fails to correct an err'or the user feels it should have, and almost 

never mistakenly corrects an error. However, it is important to note that even 

when OWIH is wrong, no harm is done: 3 since an error had occurred, the user 

wou ld have had to intervene anyway if DWI" took no action. Thus, if DWI". 

mistakenly corrects an error, the user Simply interrupts or aborts the 

computation. UNDOes the DWU1 change using UNDO described in Section 22, and 

makes the correction he would have had to make without DWl". It is this benign 

quality of DWIM that makes it a valuable part of INTERLISP. 

a------------------------------------------------------------------------------Except perhaps if DWIM's correction mistakenly caused a destructive 
computation to be initiated, and information was lost before the user could 
interrupt. We have not yet had such an incident occur. 

17.4 



17.2 Interaction with OWl" 

DWIM is enabled by performing either OWIH[C], for CAUTIOUS mode, or DWIH[T] for 

TRUSTING mode. 4 In addition to setting dwimflg to T and redefining faulteval 

and faultapply as described on page 17.14, DWIH[C] sets approveflg to T, while 

OWIH[T] sets approveflg to NIL. The setting of approve fIg determines whether 

or not the user wishes to be asked for approval before a correction that will 

modify the definition of one of his functions. In CAUTIOUS mode, i.e. 

approveflg=T. OWl" will ask for approval; in TRUSTING mode. OWIMwill not. for 

corrections to expressions typed in by the user for immediate execution,6 OWl" 

always acts as though approveflg were NIL, i.e. no approval necessary. 8 In 

either case, DWI" always informs the user of its action as described below. 

Spelling Correction Protocol 

The protocol used by OWIM for spelling corrections is as follows: If the 

correction occurs in type-in. print = followed by the correct spelling, 

followed by a carriage-return, and then continue, e.g. 

4-~-------~--~--~-----------~-~-----~--~-------------- -------------------------
INTERLISP arrives with DWIM enabled in CAUTIOUS mode. OWl" can be disabled 

6 

6 

by executing OWIH[] or by setting dwimflg to NIL. See page 17.23. 

Typed into lispx. lispx is used by evalqt and break, as well as for 
process ing the editor's E command. Functions that call the spelling 
corrector directly. such as editdefault (Section 9), specify whether or not 
the correction is to be handled as type-in. For example, in the case of 
editdcfault, commands typed directly to the editor are treated as type-in, 
so that corrections to them will never require approval. Conunands given as 
an argument to the editor, or resulting from macro expansions, or from IF, 
LP, ORR conunands etc. are not treated as type-in, and thus approval will be 
requested if approveflg=T. 

For certain types of corrections, e. g. run-on spelling corrections, 8-9 
errors t etc., dwim always asks for approval, regardless of the setting of 
approveflg. 

17 .. 5 



user types: 
DWIr .. types: 

.. (5ETQ IFOO (NCOCH FIE FUM» 
eNCONC 

I f the correction does not occur in type-in, print the incorrect spelling., 

followed by [IN function-name], e). and then the correct spelling. e.g. 

7 ITIMS [IN FACT] -> ITIHES as s;hown on page 17.3. Then, if approveflg=NIL. 

print a carriage return, make the correction and continue. Otherwise, print a 

few spaces and a ? and then wait for approval. 8 The user then has six options. 

He can: 

1. Type Y; OWl" types ES, and proceeds with the correction. 

2. Type Hi OWl" types 0, and does not make the correction. 

3. Type t; DWH1 does not :make the correction, and furthermore guarantees 
that the error will not cause a break. See footnote on page 17.15. 

4. Type control-E; for error correction, this has the same effect as 
typing H. 

5. Do nothing i 1.n which celse OWIP1 will wait a specified interval, 9 and if 
the use~ohas not responded, DWI" will type followed by the default 
answer. 

6. Type space or carriage-return; in which case DWI" will ~ait 
indefinitely. This option is intended for those cases where the user 
wants to think about his answer, and wants to insure that DWI" does 
not get 'impatient' and answer for him. 

7------------------------------------------------------------------------------The appearance of -) is t(t call attention to the fact that the user's 

8 

9 

10 

function will be or has been changed. 

Whenever an interaction is about to take place and the user has typed 
ahead, DWJr1 types severa I be lIs to warn the user to stop typing, then 
clears and saves the input buffers, restoring them after the interaction is 
complete. Thus if the user has typed ahead before a DWI" interaction. DWI" 
will not confuse his type ahead with the answer to its question, nor will 
his type ahead be lost. 

Equal to dwimwai t seconds. DWI" operates by dismissing for 500 
milliseconds, then checking to see if anything has been typed. If not, it 
dismisses again, etc. until dwimwait seconds have elapsed. Thus', there 
will be a delay of at most liZ second before OWl" responds to the user's 
answer. 

The default is always YES unless otherwise stated. 

17.6 



The procedure for spelling correction on other than INTERLISP errors is 

analogous. If the correction is being handled as type-in, DWI" 

prints = followed' by the correct spelling, and returns it to the function that 

called DWI". e.g. cFACT as shown on page 17.2. Otherwise, DWIPI prints the 

incorrect spelling, followed by the correct spelling. Then if approveflg=NIL, 

DWU1 prints a carriage-return and returns the correct spelling. Otherwise, 

DWI" prints a few spaces and a ? and then waits for approval. The user can 

then respond with Y. N, control-E, space, carriage return, or do nothing as 
described. 

Note that since the spelling corrector its~lf is not errorset protected, typing 

N and typing control-E may have different effects when the spelli~g corrector 

is - called directly.11 The former simply instructs the 'spelling corrector to 

return NIL. and lets the calling function decide what to do next; the latter 

causes an error which unwinds to the last errorset, however far back that may 

be. 

Parentheses Errors Protocol 

As illustrated earlier on page 17.3, OWIPI will correct errors conSisting of 

typing 8 for left parenthesis and 9 for right parenthesis. In these cases, the 

interaction with the user is similar to that for spelling correction. Ir the 

error occurs in type-in, DWI" types = followed by the correction, e.g. 

user types: 
DWH1 types: 
lispx types: 

~(SETQ FOO aCONS FIE FUM] 
= ( CONS 
(A B C 0) 

Otherwise, OWl" prints the offending atom, [IN function-namel, ->, the proposed 

1j-------------------------·---------------------------------------------------The OWl" error correction routines are errorset protection. 

17.7 



correction, a few spaces and a " and then waits for approval, e.g. 

N9 [IN FACT] -> N ) , as shown on page 17.3. The user then has the same six 

options as for spelling correct,ion .12 If the user types Y, DWI" then operates 

exactly the same as when approveflg=NIl. i.e. makes the correction and prints 

its message. 

U.D.F. T Errors Protocol 

DWH1 corrects certain types of parentheses errors involving a T clause in a 

conditional, namely errors of the form: 

1. (CONO _e) (T _e), i.e. the T clause appears outside and immediately 

following the CONO; 

2. (CONO -- (-- & (T _e»~)"~ i.e. the T clause appears inside a previous 

clause; and 

3. (CONO -- «l --»), i.e. the T clause has an extra pair of parentheses 

around it. 13 

If the error occurs in type-i.n, DWIPI Simply types T FIXED and makes the 

correction. Otherwise if approveflg=NIL, DWIPI makes the correction, and prints 

a message consisting of [IN function-namel, followed by one of the above 

incorrect forms of CONo, followed by e). then on the next line the 

corresponding correct form of the CONO, e.g. 

12-----------------------------------------------------------------------------except the waiting time is 3*dwimwait seconds. 

13 For U.O.F. T errors that are not one of these three types, DWI" takes no 
corrective action at all, i.e. the error will occur. 

17.8 



[IN FACT] (CONO 
(COND 

as shown on page 17.3. 

«T _e»~) -> 
(T _e»~ 

If approveflg=T, ownl prints U.D.F. T, followed by [IN function-name], several 

spaces, and then FIX? and waits for approval. The user then has the same 

options as for spelling corrections and parenthesis errors. If the user types 

Y or defaults, OWl" then proceeds exactly the same as when approveflg=NIL, i.e. 

makes the correction and prints its message, as shown on page 17.4. 

Having made the correction, OWl" must then decide how to· proceed with the 

computation. In ca·se 1, (COND --) (T --), DWI" cannot know whether the last 

clause of the CONo before the T clause succeeded or not, i.e. if the T clause 

had been inside of the CONO, would it have been entered? Therefore DWI" asks 

the user 'CONTINUE WITH T CLAUSE' (with a default of YES). If the user types 

N, DWI" continues with the form after the CONo, i.e. the form that originally 

followed the T clause. 

In case 2, (CONo -- (-- & (T --»), OWl" has a different problem. After moving 

the T clause to its proper place, OWl" must return as the value of the COND, 

the value of the expression corresponding to &. Since this value is no longer 

around, .DWI" asks the user, 'OK TO REEVALUATE' and then prints the expression 

corresponding to &. If the user types Y, or defaults, OWIPI continues by 

reevaluating &, otherwise OWU1 aborts, and a U.O.F. T error will then occur 

(even though the CONO has in fact been fixed).14 

14----------------------------------------------------_____ u __________________ _ 

If OWIM can determine for itself that the form can safely be reevaluated, 
it does not consult the user before reevaluating. OWl" can do this if the 
form is atomic, or car of the form is 8 member of the list okreevalst, and 
each of the arguments can safely be reevaluated, e.g. 
(SETQ X (CONS (IPlUS. Y Z) W» is safe to reevaluate because SETQ, CONS, and 
IPLUS are all on okreevalst. 

17.9 



In case 3. (CONO -- «T --»), there is no problem with continuation, so no 

further interaction is necessary. 

17.3 Spelling Correction 

The spelling corrector is given as arguments a misspelled word (word means 

literal atom), a spelling list (a list of words), and a number: ~, splst, 

and reI respectively. Its task is to find that word on splst which is closest 

to xword, in the sense describEtd below. This word is called a re~pelltnf1 of 

xword. reI specifies the minimum 'closeness' between xword and a respelling. 

If the spelling corrector cannot. find a word on splst closer to xword than reI, 

or if it finds two or more words. equally close, its value is NIL, otherwise its 

value is the respelling. 16 

The exact algorithm for comput:Lng the spelling metric is described later on 

page 17.20, but briefly 'closeness' is inversely proportional to the number of 

disagreements between the two words, and directly proportional to the length of 

the longer word, e.g. PRTTYPRNT is 'closer' to PRETTYPRINT than CS is to CONS 

even though both pairs of words have the same number of disagreements. The 

spelling corrector operates b:..- proceeding down splst, and computing the 

closeness between each word andl xword, and keeping a list of those that are 

closest. Certain differences b~tween words are not counted as disagreements, 

for example a single transposit.ion, e.g. CONS to CNOS, or a doubled letter, 

e.g. CONS to CONSS. etc. In the event that the spelling corrector finds a word 

on splst with no disagreements, it will stop searching and return this word as 

the respelling. Otherwise, the spelling corrector continues through the entire 

i~-----------------------------------------------------------------------------The spelling corrector can also be given an optional functional argument, 
fn, to be used for selecting out a subset of splst, i.e. only those members 
of splst that satisfy fn will be considered as possible respellings. 

17.10 



spelling list. Then if it has found one and only one 'closest' word, it 

returns this word as the respelling. For example, if xword is VONS, the 

spelling corrector will probably return CONS as the respelling. However, if 

xword is CONZ, the spelling corrector will not be able to return a respelling, 

since CONZ is equally close to both CONS and CONO. If the spelling corrector 

finds an acceptable respelling, it interacts with the user as described 

earlier. 

In the special case that the misspelled word contains one or more al t-modes, 

the spelling corrector operates somewhat differently. Instead of trying to 

find the closest word as above, the spelling corrector searches for those words 

on splst that match xword, where an alt-mode can match any number of characters 

(including 0). e.g. FOOl matches Foot and FOO, but not NEWFOO. SFOOS matches 

all three. In this case, the entire spelling list is always searched, and if 

more than one respelling is found, the spelling corrector prints AMBIGUOUS, and 

returns NIL. For example, CONS would be ambiguous if both CONS and CONO were 

on the spelling list. If t~e spelling corrector finds one and only one 

respelling, it interacts with the user as described earlier. 

For both spelling correction and spelling completion, regardless of whether or 

not the user approves of the spelling corrector's choice, the respelling is 

moved to the front of splst. Bince many respellings are of the type wit~ no 

disagreements, this procedure has the effect of considerably reducing the time 

required to correct the spelling of frequently misspelled words. 

Spelling Lists 

Although any list of atoms can be used as a spelling list p e.g. editcomsa, 

brokenfns. filelst, etc •• four lists are maintained espeCially for spelling 

17.11 



correction: spellings1, spellin,~, spellings3, and userwords. 18 

Spellings1 is a list of functions used for spelling correction when an input is 

typed in apply format, and the function is undefined, e.g. EOTIF(FOO). 

Spellings1 is initialized to cClntain defineq, break, makefile, editf, tcompl, 

load, etc. Whenever lispx is gliven an input in apply 'format, i.e. a function 

and arguments, the name of the function is added to spellingsl. 17 For eX¥lple, 

typing CALLS(EOITF) will cause CALLS to be added to spellings1. Thus if the 

user typed CALLS(EOITF) and later typed CALLLS(EDITV), since spellings1 would 

then contain CAllS, DWI" would be sUt:cessful in correcting CALLlS to CALLS. 18 

Spellings2 is a list of functions used for spelling correction for all other 

undefined functions. It is initialized to contain functions such as add1, 

!!1!pend, cond, cons, JlQ, list, nc~, print, 1!.!:.QJl. return, setq, etc. Whenever 

lispx is given a non-atomic 1rorm, the name of the function is added to 

spe 11 1n9s2. for example. typing (RETFROM (STKPOS (QUOTE FOO) Z» to a break 

would add retfrom to spellings2. Function names are also add~d to spellings2 

by define, defineq, load (when loading compiled code)e unsavedef, editf, and 

prettyprint. 

Spellings3 is a list of words used for spelling correction on all unbound 

atoms. Spellings3 is initialized to editmacros, breakmacros. brokenfns, and 

advisedfns. Whenever lispx is gliven an atom to evaluate, the name of the atom 

---------------------~----------------------~--------------------------------~-16 

17 

18 

All of the remarks on maintaining spelling lists apply onill when DWIPI is 
enabled, as indicated by dwimflg=T. 

Only if the function has a d~finition. 

If CALllS(EDITV) were typedl before CALLS had been 'seen' and added to 
spellings1. the correction would not succeed. However, the alternative to 
using spelling lists is to soarch the entire oblist, a procedure that would 
make spelling correction intolerably slow. 

17.12 



is added to spellings3. 19 Atoms are also added to spellings3 whenever they are 

edited by editv, and whenever they are set via ~ or~. For example, 

when a file is loaded. all of the variables set in the file are added to 

spellings3. Atoms are also added to spellings3 when they are set by a lispx 

input, e.g. typing (SETQ FOO (REVERSE (SETQ FIE --») will add both FOO and FIE 

to spellings3. 

Userwords is a list containing both functions and variables that the user has 

referred to e.g. by breaking or editing. Userwords is used for spelling 

correction by arglist, unsavedef. prettyprint, break, editf. advise, etc. 

Userwords is initially NIL. Function names are added to it by define, defineq, 

load, (when loading compiled code, or loading exprs to property lists) 

unsavedef, editf, editv, editp, prettyprint, etc. Variable names are added to 

userwords at the same time as they are added to spellings3. In addition, the 

variable lastword is always set to the last word added to userwords, i.e. the 

last function or variable referred to by the user, and the respelling of NIL is 

defined to be the value of lastword. Thus, if the user has just defined a 

function, he can then edit it by simply typing EDITf(~, or prettyprint it by 

typing PP(). 

Each of the above four spelling lists are divided into two sections separated 

by a NIL. The first section contains the 'permanent' words; the second section 

contains the temporary words. New words are added to the corresponding 

spelling list at the front of its 'temporary section.20 (If the word is already 

in the temporary section, it is moved to the front of that section; if the word 

is in the permanent section. no action is taken.) If the length of the 

19-----------------------------------------------------------------------------
Onl~ if the atom has a value other than NOBINO. 

20 Except that functions added to spellings1 or spellingsZ by lis~ are always 
added to the end of the permanent section. 

17.13 



temporary sect ion then exceeds a specified number, the las t (oldes t) word in 

the temporary section is for~otten, i.e. deleted. This procedure prevents the 

spelling lists from becoming cluttered ~ith unimportant words that are no 

longer being used, and thereby slowing down spelling correction time. Since 

the spelling corrector moves each word selected as a resp~lling to the front of 

its spelling list, the word is thereby moved into the permanent section. Thus 

once a word is mispelled and c:orrected, it is considered important and will 

never be forgotten. 

The maximum length of the temporary section for spellingsl, spellings2, 

spellings3 and userwords is gi'ven by the value of #spellings1, #spellings2, 

Ispellings3, and luserwords, initialized to 30, 30, 30, and 60 respectively. 

Using these values, the average length of time to search a spelling list for 

one word is about 4 milliseconds.21 

17.4 Error Correction 

As described in Section 16, whenever the interpreter encounters an atomic form 

wi th no binding, or a non-atomic form £.!!: of which is not a function or 

function object, it calls the function faulteval. Similarly, when applY is 

given an undefined function, :it calls faultapply. When DWI" is enabled, 

faulteval and faultapply are redefined to first call dwimblock, a part of the 

DWIl'I package. If the user abclrts by typing control-E, or if he indicates 

disapproval of Dwnl' s intended .:orrection by answering N as described on page 

21------------------------------·-----------------------------------------------If the word is at the front of the spelling list, the time required is only 
1 millisecond. If the word is not on the spelling list, i.e. the entire 
list must be searched, the time is proportional to the length of the list; 
to search a spelling list of length 60 takes about 7 milliseconds. 

17.14 



17.6, or if DWI" cannot decide how to fix the error, dwimblock returns NIL.22 

In this case, faulteval and faultapply proceed exactly as described in Section 

16, by printing a U.B.A. or U.D.F. message, and going into a break if the 

reqUirements of breakcheck are met, otherwise unwinding to the last errorset. 

If DWI" can (and is allowed to) correct the error, dwimblock exits by 

performing reteval of the corrected form. as of the posi tion of the call to 

faulteval or faultapply. Thus in the example at the beginning of the chapter, 

when DWI" determined that ITIHS was ITIHES misspelled, DWI" called reteval with 

( IT IMES N (FACeT 8SUB 1 N». Since the interpreter uses the value returned by 

faulteval exactly as though it were the value of the erroneous fOnD, the 

computation will thus proceed exactly as though no error had occurred. 

In addition to continuing the computation, DWI" also repairs the cause or the 

error whenever possible.23 Thus 1n the above example, DWI" also changed (with 

rplaca) the expression (ITIHS N (FACeT 8SUBl N» that caused the error. 

Error correction in DWI" is divided into three categories: unbound atoms, 

undefined cars of form, and undefined function in!!llix. Assuming that the 

user approves if he is asked, the action taken by DWI" for the various types of 

errors in each of these categories is summarized below. The protocol of DWIM'$ 

interaction with the user has been described earlier. 

22------------------------------------·----------------------------------------If the user answers with t, (see page 17.6) dwimblock is exited by 

23 

performing reteval[FAULTEVAL;(ERRORt)]. i.e. an error is generated at the 
position of the call to faulteval. 

If the user's program had computed the form and called eval, e.g. performed 
(EVAl (LIST X V»~ and the value of x was a miss'pel1ed function; it would 
not be possible to repair the cause of the error, a1 though DWI" could 
correct the misspelling each time it occurred. 

17.15 



Unbound Atoms 

1. If the first character of the unbound atom is " OWIPI assumes that the user 
(intentionally) typed latolD for (QUOTE atom) and makes the appropriate 
change. No message is typed, and no approval requested. 

If the unbound atom is just • itself, OWIH assumes the user wants the next 
expression Quoted, e.g. (CONS X '(A B C» will be changed to 
(CONS X (QUOTE (A B C»). A.gain no message will be printed or approval 
asked. (If no expression follows the " OWIPI gives up.) 

2. If CLISP (Section 23) is enabled, and the atom is part of a CLISP 
construct, the CLISP transformation is performed and the result returned, 
e.g. N-l is transformed to (SUB1 N). 

3. If the atom contains an 8, OWIH assumes the 8 was intended to be a left 
parenthesis, and calls thE! editor to make appropriate repairs on the 
expression containing the atom. OWIH assumes that the user did not notice 
the mistake, i.e. that the entire expression was affected by the missing 
left parenthesis. For example, if the user types 
(SETQ X (LIST (CONS 8CAR Y) (COR Z» V), the expression will be changed to 
(SETQ X (lIST (CONS (CAR Y) (COR Z» Y». 
The 8 docs not have to be t.he first character of the atom, e.g. DWI" will 
handle (CONS X8CAR Y) correctly. 

4. If the atom contains a 9, OWIPI assumes the 9 was intended to be a right 
parenthesis and operates as in number 3. 

5. I f the a tom begins with a 7, the 7 is treated as a', e. g. 7FOO becomes 
'FOO, and then (QUOTE FOO). 

6. I r the atom is an edi t command (a member of edi tcomsa), and the error 
occurred in type-in. the f!ffect is the same as though the user typed 
[OITF(). followed by the atom, i.e. ' OWIPI assumes the user wants to be in 
the editor editing the la~.t thing he referred to. Thus, if the user 
defines the function foo and then types P, he will see =FOO, followed by 
EDIT, followed by thepril1ltout associated with the execution of the P 
command. followed by *, at w'hich point he can continue editing foo. 

7. If dwimuserfn=T. OWIM calls dwimuserfn, and if it returns a non-NIL value, 
DWH1 returns this value. dw'imuserfn is discussed below. 

8. If the unbound atoms occurs in a function, OWIPI attempts spelling 
correction using as a spelling list the list of lambda and prog variables 
of the function. 

9. If the unbound atom occurred in a type-in to a break, DWI" attempts 
spe lling correction using 'the lambda and prog variables of the broken 
function. 

10. Otherwise, DWI" attempts spelling correction using spellings3. 

If all fail, DWIM gives up. 

17.16 



Undefined car of Form 

1. If car of the form is T, DWIM assumes a misplaced T clause and operates as 
described on page 17.B. 

2. I f car of the form is F IL, OWIM chcanges the F Il to 
FUNCTION(LAMBOA,e.g. (F/L (Y) (PRINT (CAR V») is changed to 
(FUNCTION (LAMBDA (V) (PRINT (CAR V»~). No message is printed and no 
approval requested. If the user omits the variable list, DWI" supplies 
(X), e.g. (F/L (PRINT (CAR X») becomes 
(FUNCTION (LAMBDA (X) (PRINT (CAR X»». DWIM determines that the user has 
supplied the variable list when more than one expression follows FIL, £!r 
of the first expression is not the name of a fUnction. and every element in 
the first expression is atomic. for example, OWl" will supply (X) when 
correcting (F/L (PRINT (CDR X» (PRINT (CAR X»). 

3. If car of the form is If, if, or one of the ClISP iterative statement 
opera tors. e. g. FOR, WHILE. 00 at ai, the indicated transformation is 
performed, and the result returned as the corrected form. 

4. I f car of the form has a function definition. OWIH attempts spelling 
correction on ~ of the definition using the spelling list 
(LAMBDA NLAMBDA). 

5. If car of the form has an EXPR property, OWl" prints car of the form, 
followed by 'UNSAVED', performs an unsavedef. and continuos. No approval 
is requested. 

6. If car of the form has a property FILEDEF, the definition is to be found on 
a fi Ie. If the value of the property is atomic, the entire file is to be 
loaded. I f a 1 is t, car is the name of the fi Ie and cdr the re levan t 
functions, and loadfns will be used. OWl" first checks to-$ee if the file 
appears in tbe attached directory, <NEWlISP>'s directory. or <LISP)'s 
directory, and if found, types "SHALL I LOAD" followed by the file name or 
list of functions. If the user approves, DWIH loads the function(s) or 
file, and continues the computation. edita. breakdown, circlmaker, 
cplists, and the pattern match compiler and-record capability of CLISP' are 
implemented in this fashion. 

7. If CLISP is enabled, and car of the form is part of a CLISP construct, the 
indicated transformatior.- is performed. e.g. (N~N-l) becomes 
(SETQ N (SUB1 N». 

8. If car of the form contains an 8, DWIM assumes a left parenthesis. was 
intended e.g. (CONSBCAR X). 

9. If car of the form contains a 9, DWIM assumes a right parenthesis was 
intended. 

10. If car of the form is a list, DWIM attempts spelling correction on caer of 
the form using spelling list (LAMBDA NLAHBOA). If successful, DWI" retUrns 
the corrected expression itself. 

11. If car of the form is a small number, and the error occurred in type-in, 
OWl" assumes the form is really an edit command and operates ss described 
in case 6 of unbound atoms. 

12. If car of the form is an edit command (a member of editcomsl), DWI" 
operates as in 11. 

13. If dwimuserfn=T, dwimuserfn is called, and if it returns a non-NIL value, 
DWIH returns this value. 

17.17 



14. If the error occurs in a function, or in a type-in while in a break, OWIM 
checks to see if the last character in car of the form is one of the lambda 
or prog variables, and if the first n-l characters are the name of a 
defined function, and if so makes the corresponding change, e.g. 
(MEMBERX Y) will be changed to (MEMBER X V). The protocol followed will be 
the same as for that of 51)elling correction, e.g. if approveflg=T, DWI" 
will type MEMBERX [IN FOO] •. ) MEMBER X? 

15. Otherwise, OWl" attempts spelling correction using spellings2 as the 
spelling list. 

If all fail, OWl" gives up. 

Undefined Function in Apply 

1. If the function has a definition, OWIPI attempts spelling correction on ~ 
of the definition using the spelling list (LAMBDA NLAHBDA). 

2. If the function has an EXPR property, DWIM prints its name followed by 
'UNSAVED', performs an unsavedef and continues. No approval is requested. 

3. I f the function has a property FILEDEF. DWI" proceeds as in case 6 of 
undefined car of form. 

4. If the error resulted from type-in, and CLISP is enabled, and the function 
name contains a CllSP operator, OWl" performs the indicated transformation, 
e.g. the user types Foo.-(APPEND FIE FUM). 

5. If the function name contains an 8, DWI" assumes a left parenthesis was 
intended, e.g. EDIT8FOO]. 

6. If the 'function' is a list, DWI" attempts spelling correction on £..!!: of 
the list using the spelling list (LAMBDA NLAMBDA). 

7. If the function is a number and the error occurred in type-in, OWl" assumes 
the function is an edit cornmand. and operates as described in case 6 of 
unbound atoms, e.g. the us~r types (on one line) 3 -1 P. 

8. If the function is the name of an edit command (on either editcomsa or 
editcomsl), OWl" operates as in 7, e.g. user types F CONDo 

9. If dwimuserfn=T, dwimuserfn is called, and if it returns a non-NIL value, 
this value is treated as the form used to continue the computation. 

10. Otherwise DWI" attempts spelling correction using sl!ellingsl as the 
spelling list, 

11 • Otherwise OWl" attempts spelling correction using sl!ellings2 as the 
spelling list. 

If all fail, DWI" gives up. 

17.18 



17.5 DWIMUSERFN 

Dwimuserfn provides a convenient way of adding to the transformattons that OWl" 

performs. e. g. • the user might want to change atoms of the form SX to 

(OA4LOOKUP X). The user defines dwimuserfn as a function of no arguments, and 

then enables it by setting dwimuserfn to T. DWI" will call dwimuserfn before 

attempting spelling correction, but after performing its ,other transformations, 

e.g. FIL, 8, 9, CLISP, etc. If dwimuserfn returns a non-NIL value, this value 

is treated as a form to be evaluated and returned as the value of faulteval or 

faultapply. Otherwise, if dwimuserfn returns NIL, DWIH proceeds as when 

dwimuserfn is not enabled, and attempts spelling correction. Note that in the 

event that dwimuserfn is to handle the correction, it is also responsible for 

any modifications to the original expression, i.e. DWI" simply takes its value 

and returns it. 

In order for dwimuserfn to be able to function. it needs to know various things 

about the context of the error. Therefore, several of DWIM's internal 

variables have been made SPECVARS (See Section 18) and are therefore -visible­

to dwimuserfn. Below are a list of those variables that may be useful. 

faultx for unbound atoms and undefined car of form, 
faultx is the atom or form. for undefined 
functions in .!.2P.!X. faul tx is the name of the 
function. 

faultargs for undefined functions in !J?.l!.!I,faultargs is the 
list of arguments. 

faultapplyflg Is T for undefined functions in!2J!!x. (Since 
faultargs may be NIL, faultapplyflg is necessary 
to distinguish between unbound atoms and undefined 
function in !I!J!!l. since faultx is atomic in both 
cases) . 

tail for unbound errors, tail is the tail car of which 
is the unbound atom.--rbus dwimuserfn-cin replace 
the atom by another expression by performing 
(/RPlACA TAIL expr) 

parent for unbound atom errors. parent is the form in 
which the unbound atom appears, i.e. tail is a 
tail of parent. 

17.19 



type-in? 

faultfn 

dwimifyflg 

expr 

true if error occurred in type-in. 

name of function in which error occurred. 
(f,aultfn is TYPE-IN when the error occurred in 
ty~e-in, and EVAl or APPLY when the error occurred 
under an explicit call to EVAL or APPLY). 

true if error was encountered during dwimifying as 
oPlilosed to during running the program. 

de1rinition of faultfn, or argument to eval, i.e. 
th4! superform in which the error occurs. 

17.6 Spelling Corrector Algorithm 

The basic philosophy of DWI" ~tpelling correction is to count the number of 

disagreements between two words, and use this number divided by the length of 

the longer of the two words as a measure of their relative disagreement. One 

minus this number is then the relative agreement or closeness. For example, 

CONS and CONX differ only in their last character. Such substitution errors 

count as one disagreement, so that the two words are in 75% agreement. Most 

calls to the spelling corrector specify rel:70,24 so that a single substitution 

error is permitted in words of four characters or longer. However, spelling 

correction on shorter words is possible since certain types of differences such 

as single transpositions are n(llt counted as disagreements. for example, AND 

and HAD have a relative agreement of 100. 

The central function of the spelling corrector is chooz. chooz takes as 

arguments: a word, a spelling list, a minimum relative agreement, and an 

optional functional argument, ~ord, splst, reI, and fn respectively.26 

24-------~----------------------··--~-------~-----------------------------------
Integers between 0 and 100 eire used instead of numbers between 0 and 1 in 
order to avoid floating point arithmetic. 

26 fn=NIl is equivalent to fn=(I.AMBDA NIL T). 

17.20 



chooz proceeds down splst examining each word. Words not satisfying fn, or 

those obviously too long or too short to be sufficiently close to xword are 

immediately rejected. For example, if rel=70, and ~ is 5 characters long, 

words longer than 7 characters will be rejected.26 

If tword, the current word on splst, is not rejected, chooz computes the number 

of disagreements between it and xword by calling a subfunctioll,,~. 

skor operates by scanning both words from left to right one character at a 

time.27 Characters are considered to agree if they are. the same characters; or , 

appear on the same teletype key (i.e. a shift mistake), for example, - agrees 

with :, 1 with !,28 etc.; or if the character in xword is a lower case version 

of the character in tword. Characters that agree are discarded, and the , 
skoring continues on the rest of the characters in xword and tword. 

If the first character in xword and tword do ·not agree, skor checks to see if 

either character is the same as one previously encountered, and not accounted-

for at that time. (In other words, transpositions are not handled by 

lookahead, but by l oolebacle.) A displacement of two or fewer positions is 

26-----------------------------------------------------------------------------Special treatment is necessary for words shorter than xword, since doubled 

27 

28 

letters are not counted as disagreements. For exampl~ONNSSS and CONS 
have a relative agreement of 100. (Certain teletype diseases actually 
produce this sort of stuttering.) chooz handles this by counting the number 
of doubled characters in xword before it begins scanning splst, and taking 
this into account when deciding whether to reject shorter words. 

skor actually operates on the list of character codes for each word. This 
list is computed by chooz before calling skor using dchcon, 5.0 that no 
storage is used by the entire spelling correction process. 

For users on model 33 teletypes, as indicated by the value of model33flg 
being T, @ and P appear on the same key, as do land /, Nand l, and 0 and 
~, and DWIM will proceed accordingly. The initial value for model33flg is 
T, except that various sites override this by use of the username-greeting 
feature described in Section 22. 

17.21 



counted as a tranposition; a displacement by more than two positions is couhted 

as a disagreement. In either case, both characters are now. considered as 

accounted for and are discarded~ and skoring continuas. 

If the first character in xword and tword do not agree, and neither are equal 

to previously unaccounted-for characters, and tword has more characters 

remaining than xword. skor remOI.,es and saves the first character of tword, and 

continues by comparing the res 1t of tword with xword as described above. If 

tword has the same or fewer characters remaining than xword, the procedure is 

the same except that the character is removed from xword. 29 Inthls case, a 

special check is first made to see if that character is equal to the preuious 

character in xword, or to the next character in xword, i.e. a double character 

typo, and if so, the character is considered accounted-for, and not counted as 

a disagreement. 30 

When skor has fin ished processing both xword and tword in this fashion. the 

value of skor is the number of unaccounted-for characters, plus the number of 

disagreements, plus the number of tranpositions, with two qualifications: (1) 

if both xword and tword have a character unaccounted-for in the same pO'sition, 

the two characters are counted only once, i.e. substitution errors count as 

only one disagreement, not two; and (2) if there are no unaccounted-for 

characters and no disagreements, transpositions are not counted. Thispermits 

spelling correction on very short words, such as edit commands, e.g. 

80 In th is case. the 'length' clf xword is also decremented. Otherwise making 
xword sufficiently long by adding double characters would make it be 
arbitrarily close to tword, '9.g. XXXXXX would correct to PP. 

17.22 



XRT->XTR. 31 

17.7 DWI" Functions 

dwim[x] If ~=NIL, disables DWI"; value is NIL. If !=C, 

enables DWIM in cautious mode; value is CAUTIOUS. 

If !=T. enables DWnl in trusting mode; value is 

TRUSTING. For all other values of !. generates an 

error. 

dwimify[x] ! is a (orm or the name of a function. dwimify 

performs all corrections and transformations that 

ow 

would occur if ! were actually run. dwimify is 

undoable. 

edit macro. dwimifies current expression. 

addspell[x;splst;n] Adds ! to one of the four spelling lists as 

follows: 32 

if splst=NIL. adds ! to userwords and to 

spellings2. Used by def1neq. 

81-----------------------------------·-----------------------------------------Transpositions are also not counted when fastypeflg=T, for example, IPULX 

32 

and IPLUS will be in 80X agreement with fastypeflg=T, only 60X with 
fastypeflg=NIL. The rationale behind this is that transpositions are much 
more common for fast typists, and should not be counted as disagreements, 
whereas more deliberate typists are not as likely to combine tranpositions 
and other mistakes in a single word, and therefore can use more 
conservative metric~ fastypeflg is initially NIL. 

If ?f is already on the spelling list, and in its temporary section, 
addspell moves! to the front of that section. See page 17.13 for complete 
description of algorithm for maintaining spelling lists • 

. 17.23 



If splst=O, adds! to userwords. Used by load 

wh~m loading exprs to property 1 is ts. 

If splst.t, adds ! to spellingsl (at end of 

per'manent section). Used by lispx. 

if splst=2, adds ! to spellingsZ (at end of 

permanent section). Used by lispx. 

If splst=3, adds! to userwords and spellings3. 

llist can also be a spelling list, in which case !!. 

is the (optional) length of the temporary section. 

addspell sets lastword to ! whensplst.NtL, 0 or' 

3. 

If ! is not a literal atom, addspell takes no 

action. 

misspelled?[xword; rei ;splst; fig; 'tail; fn] 

If xword=NIL or alt-mode, misspelled? 

prints = followed by the value of lastword, and 

returns this as the respelling, without asking for 

app.-oval. Otherwise, misspelled? checks to see if 

~'d is really misspelled, i.e. if fn applied to 

~~ is true, or xword is already contained on 

spls~. In this case, misspelled? simply returns 

~~. Otherwise misspelled? computes and returns 

fix,s.pell[xword ;rel ;splst: fIg; tail ;fn]. 

17.24 



fixspall[xword;rel;splst;flg;tail;fn]33 

The value of fixspell is either the respelling of 

xword or NIL. fixspell performs all of the 

interactions described earlier, including 

requesting user approval if necessary. 

If xword=NIL or :I (al t-mode) t the respelling is 

the value of lastword. and no approval is 

requested. 

If !!i=NIL, the correction is handled in type-in 

mode, i.e. approval is never requested p and xword 

is not typed. If !!.U=T, xword 15 typed (before 

the .) and approval 15 requested if approveflgaT. 

If tail is not NIL, and the correction is 

successful, £!t of tail \ is replaced by the 

respelling (using Irplaca). In addition, fixspell 

will correct misspellings caused by running two 

words together. 34 In this case, £!! of tai I is 

replaced by the two words, and the value of 

fixspell is the first one. For example, if 

fixspell is called to correct the edit cOlIIDand 

(HOVE TO AFTERCOND 3 Z) with tail=(AFTERCOND 3 Z), 

1!il wou ld be changed to (AFTER COHD Z 3). and 

33---~---~-·----------------------~-----------~---------~-------------------~--fixspell has some additional arguments, for internal use by DWI". 

34 In this case, user approval is always requested., In addition, if the first 
word contains either fewer than 3 characters, or fawer characters than the 
second word, the default will be N. 

17.25 



fixspell would return. ~FTER (subject to user 

apl)roval where necessary). 36 

flJcspell generates an error if xword is already on 

!l!Jls t . 

The time required for a call to fixspell with a spelling list of length 60 when 

the entire list must be searched is .5 seconds. If fixspell determines that 

the first word on the spellingl list is the respelling and does not need to 

search any further, the time required is .02 seconds. In other words, the time 

required is proportional to the number of words with which xword is compared, 

with the time for one comparisol1l, i.e. one call skor. being roughly .01 seconds 

(varies slightly with the number' of characters in the words being compared.) 

The function chooz is provided for users desiring spelling correction without 

any output or interaction: 

chooz[xword;rel;sPlst;tail;tieflg;fnl38 The value of chooz is the 

cor'rected spelling of xword37 or NIL; chooz 

per·forms no interaction and no output. If 

tief!D=T and a tie occurs, i.e. more than one word 

on splst is found with the same closeness, chooz 

returns the first word. If tieflg=NIL, and a tie 

occurs, chooz returns NIL. 

a5-----------------~---------------------------------- -------------------------If tail=T, fixspell will also perform run-on corrections, returning a 
dotted pair of the two words in the event the correction is of this type. 

36 chooz has some additional arguments, for internal use by DWI". 

87 chooz does not perform spelling completion, only spelling correction. 

17.26 



If tail is not NIL, chooz will correct a 

misspelling ccmsisting of running two words 

together, e. g. (BREAKFOO) for (BREAK FOO). The 

value of chooz in this case is a dotted pair" of 

the two words, e.g. (BREAK. FOO). Both DWI" and 

the editor use this option. 

fncheck[fn;no~essflg;spellflg] The task of fncheck is to check whether fn is 

the name of a function and if not, to correct its 

spelling.a8 If fn is the name of a function or 

spelling correction is successful, fncheck adds 

the (corrected) name of the function to userwords 

using addspell. and returns it as its value. 

nomessflg informs fncheck whether or not the 

calling function wants to handle the unsuccessful 

case: if nomessflg is T. fncheck simply returns 

NIL, otherwise it prints fn NOT A FUNCTION and 

generates a non-breaking error. 

fncheck calls misspelled? to perform spelling 

correction, so that if fn=NIL, the value of 

lastword will be returned. spelIflg corresponds 

to misspelled?' s fourth argument, flo:. If 

spellflo=T. approval will be asked if DWI" was 

enabled in CAUTIOUS mode, i.e. if approveflg-T. 

38----~-~------~-------·-~--------------------~---------------~----~-----------Since fncheck is called by many low level functions such as arglist, 
unsavedef, etc.. spelling correction only takes place when dwimflg=T. so 
that these functions can operate in a small INTERLISP system which does not 
contain OWl". 

17.27 



fncheck is currently used by argl1st, unsavedef, prettypr1nt, breakO, breakin, 

chngnm, advisf!, printstructur'~. firstfn, lastfn, calls, and edita. For 

example, breakO calls fncheck with nomessflg-T since if fncheck cannot produce 

a function, breakO wants to define a dummy one. printstructure however calls 

fncheck with nomessflg=NIL, since it cannot operate without a function. 

Many other system functions call misspelled? or rixspell directly. For 

example. breakl calls fixspell on unrecognized atomic inputs before attem~tin~ 

to evaluate them, using as a spelling list a list of all break commands. 

Similarly. lispx calls fixspell on atomic inputs using a list of all lispx 

commands. When unbreak is given the name of 8 function that is not broken, it 

calls fixspell with two different spelling lists, first with brokenfns, and if 

that fails. with userwords. !!!Iakefile calls m'isspelled? using filelst as a 

spelling list. Finally. load, bcompl, brecompile, tcompl, and recompile all 

call misspelled? if their input file(s) won't open. 

17.28 



Index for Section 17 

AOOSPELL[X;SPLST;N] .......•..•.•••••••••••..••.• 
alt-mode (in s~elling correction) •••.••••••••••• 
AMBIGUOUS (typed by dwim) •.•••••••••.••••••••••• 
approval (of dwim corrections) ••.•••.•••••.••••• 
APPROVEFLG (dwim variable/parameter) ••.••••••••• 
be 11 (typed by dwim) .....••....•..••.•••.••.•••• 
BREAK1[BRKEXP;BRKWHEN;BRKFN;BRKCOMS;BRKTVPE] NL 
BREAKCHECK ............................. " ••••••••••• 
BROKENFNS (break variable/parameter) .••••••••••• 
CAUTIOUS (OWIM mode) ....•..••.•.••...••••••••••• 
CHOOZ[XWORO;REL;SPLST;TAIl;TIEFLG;FN;NOBLS~CLST] •• 
CLISP ......•........... ' ...•..••.....•.•..••••.•• 
CONTINUE WITH T CLAUSE (typed by dwim) •••••.•••• 
control"E ................... _ .............•...... 
OW (error message) ....•.••••••••.•••••.••••••••• 
DWIM[X] ......................................... . 
OW 1M •••.•••••••••••••••••••••••••••••••••••••••• 
OWIM interaction with user •••.•••••••••••••••••• 
DWIH variables .. I .••••••••••••••••••••••••••••••• 

OWIMFLG (dwim variable/parameter) ••••••••••••••• 
OWIMIFV[X;L] ...•.............•..•.••.•••••••••.• 
OWIMUSERFN (dwim variable/parameter) ••.••••••••• 
OWIMWAIT (dwim variable/parameter) •••••••••••••• 
EOITCOMSA (editor variable/parameter) •••••••.••• 
EOITCOMSl (editor variable/parameter) •••.••••••• 
EDITDEFAUL T ....•.. flo ••••••••••••••••••••••••••••• 

error correction ....•.••.••••••••••••••••••••••• 
ERRORSET[U;V] SUBR •.•.••••••.••••.•••••••••••••• 
EXPR (property name) ..•.•.••.••••••••••••••••••• 
F I L ••••••••••••••••••••••••••••••••••••••••••••• 
FASTVPEFLG (dwim variable/parameter) .••••••••••• 
FAULTAPPLY[FAULTFN;FAUlTARGS] •.••.••••.•••••.••• 
F AUL TEVAL[ F AUL TX] NL* ...•.•.••••••.••.••••.•.••• 
FIlEOEF (property name) ..•...•.........••••••••• 
FILELST (file package variable/parameter) ••••••• 
FIXSPELl[XWORO;REL;SPLST;FLG;TAIL;FNjCLST; 

APPROVALFlG] ......•...••.•.••••••••••.•• 
FNCHECK[FN;NOMESSFLG;SPELlFLG;PROPFLG] ••••••.••• 
LASTWORO (dwim variable/parameter) ••••••••.••••• 
L ISPX ............... " .................•••••.••••. 
MAKEFILE[FILE ;OPTIONS] .........•••••.••••••••••. 
MISSPELLEO?(XWORO;REL;SPLST;FLG;TAIL;FN] •••••••• 
MOOEL33FLG (dwim variable/parameter) ••••••• 00 ••• 

OK TO REEVALUATE (typed by dwim) •••••••••••••••• 
OKREEVALST (dwim variable/parameter) •••••••••••• 
RETEVAL[POS;FORM] SUBR ...••••••••••••••••••••••• 
run-on spelling corrections •••••.••••••••••••••• 
SHALL I LOAD (typed by dwim) •••••••••••••••••••• 
SKOR •..........•..••••.••••••••••••••••••••••••• 
spelling completion ...•. e ••••••••••••••••••••••• 

spelling correction protocol •••••••••••••••••••• 
spelling corrector •.•••.•••.•••••••••••••••••••• 
spelling lists ...............•..•.••••••••••.••• 
SPELLINGSl (dwim variable/parameter) •••••••••••• 
SPELLINGSZ (dwim variable/parameter) •••••••••••• 
SPELLINGS3 (dwim variable/parameter) •••••••••••• 

INDEX.17.1 

Page 
Numbers 

17.23-24,27 
17.11,25 
17.11 
17.3,5,25 
17.5,18,25,27 
17.6 
17.28 
17 .. 15 
17.28 
17.3,5,23,27 
17.20-21,26 
17.16-18 
17.9 
17.6-7,14 
17.23 
17.5,23 
17.1-28 
17.5 
17.19 
17.5,12,21 
17.23 
17.16-19 
17.6,8 
17.16,18 
17.17-18 
17.5 
17.1-28 
17.15 
17.17-18 
17.17 
17.23 
17.5,14-15,19 
17.5,14-15,19 
17.17-18 
17.28 

17.25-26,28 
17.27 
17.13,24-25,21 
17.5,12 .. 13,28 
17.28 
'17.24,27 .. 28 
17.21 
17.9 
17.9 
17.15 
17.5,25-27 
17.17 
17.21-22 
17.11 
17.5-7 
17.2,10,20,26 
17.11-14 
17.12-14,18,24 
17.12-14,18,23-24 
17.12,14,16,24 



T FIXEO (typod by dwim) ..•.••.•••••..••••.•••••• 
TRUSTING (OWIH mode) ..•.•.•..•••••••••.••.•••••• 
U.S.A. (error message) ..•.•••••.••••.••••••••.•• 
U.O.F. (error message) ....•••...••••••••••••.••• 
U.O.F. T (typed by dwim) •.•.•.•.••••••••••.••.•• 
U.O.F. T FIX? (typed by dwim) •..•.••.••••••••••• 
unbound a tom .........•..•..••••.•••••••••••••••.• 
undefined function .......•.•..•.••••.• ' •••••••••• 
UNDO (prog. asst. command) .••••••••••••••••••••• 
UNSAVEO (typed by dwim) ...••••••.•.••••••••••••• 
UNSAVEOEF[ X; TYP] ...................•••••••.••••• 
USERWOROS (dwim variable/parameter) •..••••••••.• 
ISPELLINGSI (dwim variable/parameter) .•••••••••• 
ISPELLINGS2 (dwim variable/parameter) •••.••••••• 
ISPELLINGS3 (dwim variable/parameter) •••••••.••• 
IUSERWOROS (dwlm variable/parameter) •••••••••••• 
S (alt-mode) (in spelling correction) •••.•••.••. 
• • •••••••••••••••••••••• It ••••••••••••••••••••••• 

-) (typed by dwim) ....•...•••••••.••.••••••••..• 
. .. (typed by dwim) ............................. . 
7 (instead of I) ........ u ••• j9 ••••••••••••••••••• 

8 (instead of left parenthes1s) .•••••••••••••••• 
9 (instead of right parenthesis) ••••••••.••••••• 
= (typed by dwim) •••••••. ' ••••••••••••••••••••••• 
? (typed by dwim) ...••••.••••.•••••••••••••••••• 

INOEX.17.2 

Page 
Numbers 

17.8 
17.3,5,23 
17.15 
17.2,15 
17.8 
17.8 
17.14-18 
17.14-18 
17.4 
17.17-18 
17.17-18 
17.13-14,23,27-28 
17.14 
17.14 
17.14 
17.14 
17.11,25 
17.16 
17.3-4,6-7 
17.4,6 
17.16 
17.2,7,16-18 
17.2,7,16-17 
17.5,7 
17,.6-7 



SECTION 18 

THE COMPILER AND ASSEMBLER1 

18.1 The Compiler 

The compiler is available in the standard INTERLISP system. It may be used to 

compile individual functions as requested or all function definitions in a 

standard format LOAD file. The resulting code may be stored as it is compiled, 

so as to be available for immediate use, or it may be written onto a file for 

subsequent loading. The compiler also provides a means of specifying sequences 

of machine instructions via ASSEMBLE. 

The most common way to use the compiler is to compile from a symbolic 

(prettydef) fi.le, producing a corresponding file which contains a set of 

functions in compiled form which can be quickly loaded. An alternate way of 

using the compiler is to compile from functions already defined in the user's 

INTERLISP system. In this case, the user has the option of specifying whether 

the code 1s to be saved on a tile for subsequent loading, or the functions 

redefined, or both. In either case, the compiler will ask the user certain 

questions concerning the' compilation. The first question is: 

1------------------------------------------------------------------------------The compiler itself,' i.e. the part that actually generates code, was 
written and documented by. and is the responsibility of A.K. Hartley. The 
user interfaces, i.e. tcompl,. recompile, bcompl, and brecompile, were 
written by W. Teitelman. 

18.1 



LISTING? 

The answer to this question controls the generation of a listing and is 

explained in full below. However. for most applications, the user will want to 

answer this Question with either ST or E. which will also specify an answer to 

the rest of the questions which would othe,rwise be asked. ST means the user 

wants the compiler to STore the new definitions; E means the user is only 

interested in compiling to a Eile. and no storing of definitions is perfonmed. 

In both cases, the compiler will then ask the user one more question: 

OUTPUT FILE: 

to which the user can answer: 

Example: 

N or NIL 

File name 

no output file. 

file is opened if not already opened. and compiled code 

is written on the file. 

~COMPILE«FACT FACTI FACTZ» 
LISTING? 5T 
OUTPUT FILE: FACT.COM 
(FACT COMPILING) 

(FACT REDEFINED)2 

(FACT2 REDEFINED) 
(FACT FACTI FACT2) 

j------~----------------------------------------------------~------------------compi ler output and error messages are explained on 'page 18.48-52. 

18.2 



This process caused the functions FACT. FACTI, and FACiz to be compiled, 

redefined, and the compiled definitions also written on the file FACT.COM for 

subsequent loading. 

18.2 Compiler Questions 

The compiler uses the free variables Iaprlg, strf, svflg, lcfil and Istfil 

which determines various modes of operation. These variables are set by the 

answers to the 'compset' questions. When any of the top level compiling 

functions are called, the function compset is called which asks a number of 

questions. Those that can be answered 'yes' or 'no' can be answered with YES, 

V, or T f~r YES; and NO, N, or NIL for NO. The questions are: 

1. LISTING? 

The answer to this question controls the generation of a listing. Possible 

answers are: 

1 Prints output of pass 1. the LAP macro code.8 

2 Prints output of pass 2, the machine code. 

YES Prints output of both passes. 

NO Prints no listings. 

The variable lapflgis set to the answer. If the answer is affirmative, 

compset will type FILE: to allow the user to indicate where the output is to be 

written. The variable 1stfil is set to the answer. 

3---------~--------~--------------------~------------- -------------------------
The LAP and machine code are usually not of interest but can be helpful in 
debugging macros. 

18.3 



There are three other possible answers to LISTING? - each of which specifies a 

complete mode for compiling. They are: 

S Same as last setting. 

F Compile to [ile (no definition of functions). 

ST STore new definitions. 

Implici t in these three are the answers to the questions on disposition of 

compiled code and expr's, so questions Z and 3 would not be asked if 1 were 

answered with S, F. or ST. 

z. REDEFINE? 

YES Causes each function to be redefined as it is compiled. The 

compiled code is stored and the function definition changed. 

The variable strf is set to T. 

NO Causes function definitions to remain unchanged. The variable 

strf is set to NIL. 

The answer ST for the first question implies YES for this question, F implies 

NO, and S makes no change. 

3. SAVE EXPRS? 

I f answered YES, svflg is set to T, and the exprs are saved on the property 

1 is t of the function name. Otherwise they are discarded. The answer Sf for 

the first question implies YES for this question, F impl~es NO, and S makes no' 

change. 

18.4 



4. OUTPUT FILE: 

If the compiled definitions are to be written for later loading, you should 

provide the name of a file on which you wish to save the code that is 

generated. If you answer T or TTY:, the output will be typed on the teletype 

(not particularly useful). If you answer N, NO, or NIL, output will not be 

done. If the file named is already open, it will continue to be used. The 

free variable lcfil is set to the name of the file. 

18.3 Nlambdas 

When compiling the call to a function, the compiler must prepare the arguments 

to the function 1n one of three ways: 

1. Evaluated (SUBR, SUBR*, EXPR, EXPR*. CEXPR, CEXPR*) 

2. Unevaluated, spread (FSUBR. FEXPR, CFEXPR) 

3. Unevaluated. not spread (FSUBR*, FEXPR*, CFEXPR*) 

In attempting to determine which of these three is appropriate, the compiler 

will first look for a definition among the functions in the file that is being 

compiled. If the function is not contained there, the compiler will look for 

other information which can be supplied by the user by including nlambda 

nospread functions on the list nlama (for nlambda !toms), and including nlambda 

spread functions on the list nlaml (for nlambda list), and including lambda 

functions on the list lams.4 If the function is not contained in the file,6 or 

4-~----------------------------------------------------------~---~----~--------Including functions on lams is only necessary to override in-core nlambda 

6 

defini tions, since in the absence of other information, the compiler 
assumes the function is a lambda. 

The function can be defined anywhere in any of the files given as arguments 
to bcompl, tcompl. brecompile or recompile. 

18.5 



on the list nlama, nlaml, or lams, the compiler will look for a current 

definition. If the function is defined, its function type is assumed to be the 

desired type. If it is not defined, the compiler assumes that the function 1s 

of type I, i.e. its arguments are to be evaluated.6 7 In other words, if there 

are type 2 or 3 functions callod from the functions being compiled, and they 

are only defined in a separate file, they must be included on nlama or nlaml, 

or the compiler will incorrectly assume that their arguments are to be 

evaluated, and compile the calling function correspondingly. Note that this is 

only necessary if the compiler does not 'know' about the function. If the 

function 1s defined at compile time, or is handled via a macro, or is contained 

in the same group of files as the functions that call it, the compiler will 

automatically handle calls to that function correctly. 

18.4 Globalvars 

Another top level free variable that affects compilations is globalvars. Any 

variables that appear on the list globalvars, and are used freely in a compiled 

function, are always accessed 1through their value cell. In other words, a 

reference to the value of this variable is equivalent to 

(CAR (QUOTE variable», regardless of whether or not it appears on the stack, 

~-----------------------------~---------------------------------~~-------~-----Before making this assumption, if the value of compileuserfn is not NIL, 

7 

the compiler calls (the value of) compileuserfn giving it as arguments cdr 
of the form and the form itself, i.e. the compiler does 
(APPlY~ COMPIlEUSERFN (COR form) form). If a non-NIL value is returned, it 
is compiled instead of form. If NIL is returned, the compiler compiles the 
original expression as a call to a lambda-spread that is not yet defined. 
CLISP (Section 23) uses compileuserfn to tell the compiler how to compile 
iterative statements, IF-THEN-ElSE statements, and pattern match 
constructs. 

The names of functions 50 treated are added to the list alams 
(for assumed lamdas). alams is not used by the compiler; it is maintained 
for the user's benefit,~ so that the user can check to see whether any 
incorrect assumptions were made. 

18.6 



i.e., the stack is not even searched ror this variable when the compiled 

function is entered. Similarly, (SETQ variable value) is equivalent to 

(RPLACA (QUOTE variable) value); i.e., it sets the top-level value. 

All system parameters, unless otherwise specified, are GLOBALVARS, i.e. are 

members of the list globalvars, e.g. brokenfns, editmacros, Irpars, dwimflg. et 

al. 8 Thus, rebinding these variables will not affect the behavior of the 

system: instead, the variables must be reset to their new values. and if they 

are to be res tored to their original values. reset again. For example, the 

user might write .•. (SETQ globalvar new-value) form (SETQ globalvar old-value). 

Note that in this case, if an error occurred during the evaluation of form, or 

a control-D was typed. the global variable would not be restored to its 

original value. The function resetvar (described in Section 5) provides a 

convenient way of resetting global variables in such 8 way that their values 

are restored even if an error occurred or control-D is typed. 

18.5 Compiler Functions 

Note: when a function is compiled from its in core definition, i.e.. via 

compile (and certain calls to re~ompile), as opposed to \compl (which uses the 

defini tions on a file), and the function has been modified by break, trace, 

breakin, or advise, it is restored to its original state, and a message printed 

out, e.g., FOO UNBROKEN. Then, if the function is not defined as an expr, its 

property list is searched for the property EXPR (see savedef, Section 8). If 

there is a property EXPR, its value is used for the compilation, otherwise, the 

compiler prints (fn NOT COHPILEABLE), and goes on to the next function. 

8------------------------------------------------------------------------------Since the stack does not have to be searched to find the values of these 
variables, a considerable savings in time is aChieved, especially for deep 
computations. 

18.7 



compile[x;flg] 

compilel[name;def] 

tcompl[f.tles] 

~ Jls a list of functions (if atomic, list[x] is 

use,d). compile first asks the standard compiler 

que!sti()ns, and then compiles each function on !. 

using its in-core definition. Value is !. 

If compiled definitions are being dumped to a 

file. the file is closed unless f!H=T. 

comlpiles def. redefining!!!!!!! if strf=T. 9 compile1 

is used by compile. tcompl, and recompile. If 

dwimifycompflg is T,· or def contains a CLISP 

declaration, def is dwimified before compiling. 

See Section 23. 

tcompl is used to 'compilefiles' t i.e., given a 

symbolic load file (e.g.. one created by 

prettydef) t it produces a file that contains the 

same S-expressions as the original symbolic file, 

except that every defineq is replaced by the 

corresponding compiled definitions. This 

'compiled' file can be loaded into any INTERLISP 

system with load. 

fil!! is a list of symbolic files to be compiled 

(if atomic, list[files] is used). tcompl asks the 

standard compiler questions, except for 

OUTPUT FILE: Instead, the output from the 

compilation of each symbolic file is written on a 

9------------------·-----------------~---------------------------------------~-strf is one of the variables set by compset, described earlier. 

18.8 



file of the same name suffixed with COM, e.g., 

tcompl[(SYMl SYMZ)] produces two files, SYM1.COM 

and SYMZ.COM. 10 

tcompl processes each file one at a time, reading 

in the entire file. Then, for each DEFINEQ, 

tcompl adds any NLAHBDA's in the DEFINEQ to nlama 

or nlaml,11 and adds lambdas to the list lams,12 

so that calls to these functions will be compiled 

correctly. Expressions beginning with DECLARE can 

be used to affect the compilation, e.g. set up 

MACROS. tcompl evaluates each expression in (cdr 

of) the DECLARE, presumably for effect .18 tcompl 

then compiles each function in the DEFINEQ's. 

finally, all other expressions in the file, e.g. 

RPAQO's, DEFLIST's, etc., are written onto the 

output f11e. 14 

io-----------------------------------------------------------------------------The file name is constructed from the name field only, e. g. 

11 

12 

13 

14 

tcompl[<BOBROW)FOO.TEM;3] produces Foo.COM on the connected directory. The 
version number will be the standard default. 

described earlier, page 18.5. 

n lama, nlaml, and lams are rebound to their top level values (using 
resetvar) by tcompl, recompile, bcompl, brecompile, compile, and 
blockcompile, so that any additions to these lists w~ile inside of these 
functions will not propagate outside. 

DECLARE is defined the same as QUOTE, so it will have no effect when the 
symbolic file is loaded. tcompl, recompile, bcompl, and brecompile also 
evaluate any OEFLIST expression that was output by a COHPROP or COHPROP* 
prettydef command (see Section 14). 

except for OEFLISTs output by a COHPROP* prettydef command. 

18.9 



The value of tcompl is a list of the names of the 

output files. All files are properly terminated 

and closed. 

Recompile 

The purpose of recompile is to allow the user to update a compiled file without 

recompiling every function in the file. Recompile does this by using the 

results of a previous compilation. It produces a compiled file similar to one 

that would have been produced by tcompl, but at a considerable savings in time 

by compiling selected functions and copying from an earlier tcompl or recompile 

file the compiled definitions for the remainder of the functions in the file. 

Even more savings can be achieved if the symbolic file being recompiled is 

currently in-core, i. e., was previously loaded, or was made from the user' s 

current system. In this case, recompile will not have to read in the file, but 

can work from the in-core definitions. 16 . 

If the functions to be recompiled are currently defined as exprs, then 

recompile can be called with just one argument, the symbolic file; the rest of 

the arguments will be set approplriately. In other words, the most common usage 

of recompile is in the following sequence, load[f1le;PROP], edit some functions 

(thus unsavedefing them), makefile[file], and recompile[file], producing a new 

compiled file exactly equivalent to tcompl[file]. The rest of the discussion 

of recompile explains nonstandard usages, e.g., the symbolic file has not been 

loaded, some of the functions that have been changed are cti~rently not unsaved, 

etc. 

16------------------------------·-----------------------------------------------This requires that the user observe the conventions of the 'file package' 
described in Section 14 when making the symbolic file, i. e. , he used 
makefile or else used prettydef with arguments of the form fileFNS, file, 
and fileVARS. 

18.10 



recompile[pfile;cf1le;fns;coreflg] pfl1e is the name of the ~retty file to 

be compiled, cfile is the name of the f,ompiled 

file containing compiled definitions that may be 

copied. fns is a list of the functions in pfile 

that are to be recompiled, i.e., they have been 

chariged (or defined for the first time) since 

cfile was made. Note thatpfile_ not fns, drives 

recompile, so that extra functions may appear on 

fns. If fns=T, all function in pfile currently 

defined as exprs (after unbreaking and unadvising) 

are recompiled. 

recompile asks the standard compiler questions, 

except for OUTPUT FILE: As with tcompl, the output 

automatically goes to pfile.COM. 16 recompile then 

reads in pfile. As with tcompl, for each DEFINEQ, 

the NlAMBOAs are added to n lama and n laml, and 

LAMBDAs are added to lams. Similarly, DECLAREs 

and DEFLISTs are treated the same as with tcompl. 

Then each function is compiled if it appears on 

fns. or fnsmT and the function is an expr. 

Otherwise, recompile reads from cfile until it 

finds the compiled version of the function it is 

working on, and then copies it (and all compiler 

generated subfunctions) to pfile.COM. Finally, 

all other expressions are written onto pfile.COM. 

18-----------------------------------------------------------------------------In general, all constructions of the form pfile.COM, pfileFNS, and 
pfileVARS are performed using the name field only. For example, if 
pfile=<BOBROW)FOO. TEM;3, pfile.COI1 means FOO.COM, pfileFNS means FOOFNS, 
etc. 

18.11 



Note that the user can thus mlodify an old compiled file so as ,to add new,;'~ 

functions by prettydefing the~!l in pfile and then including them on fns. 

Similarly, he can delete functions by Simply not prettydefing them, since if 

they do not appear in pfile, they will never be compiled or copied to 

pfile.COM. Note, however that the entire process depends on the order of those 

functions in cfile that are to be copied being the same as those in pfile. For 

example. if FOO appears before FIE in cfile, but the order is reversed in 

pfile, then when recompile attelDpts to copy FIE, it will skip over FOO. Then 

when it attempts to copy FOO, it will read to the end of cfile and not find it. 

In this case, it will generate an error FOO NOT FOUND. 

If the file pfile is in core, i.e., has· been 

loaded, or else was prettydefed from this system, 

the user can take 'advantage of this by calling 

recompile with coreflg=T. In this case, the 

procedure is the same as described above, but 

'fakes' reading instead 

det'srmining what is on pfile from pfilefns and 

I!filevars17 (recompile does read the date from 

~le, which it copies to the output file.) 

recompile will work correctly even for functions 

written via the third argument to prettydef using 

a F'.S command. (See Section 14). 

If cfile-NIL, pfile.COM is used for copying 

i7--- --.. -------- --- ---------------,---------------------------.".'----- .... .. "--' •.. ------
See footnote on page 18.11. !' , 

18.12 



Jrom. 18 In addition, if both fns and coreflg are 

NIL, they are set to T. This is the most common 

usage. 

The value of recompile is the new compiled file, 

pfile.COH. 

18.6 Open Functions 

When a function is called from a compiled function, a system routine is invoked 

that sets up the parameter and control push lists as necessary for variable 

bindings and return information. As a result, function calls can take up to 

350 microseconds per call. If the amount of time spent inside the function is 

small. this function calling time will be a significant percentage of the total 

time required to use the function. Therefore, many 'small' functions, e.g., 

~, cdr, ~, not, cons are always compiled 'open', i.e., they do not result in 

a function call. Other larger functions such as ~. selectq, mapc, etc. are 

compiled open because they are frequently used. It is useful to know exactly 

which functions are compiled open in order to determine where a program is 

spending its time. . Therefore below is 8 list of those functions which when 

compiled do not result in function calls. Note that the next section tells how 

the user can make other functions compile open via MACRO definitions. 19 

ls---------------------------------------------------- -------------------------In other words, if cfile, the file used for obtaining compiled definitions 

19 

to be copied, is N~file.COM is used, i.e., same name as output but a 
different version number (one less) than the output file. 

The user can also affect the compiled code via compileuserfn, described 1n 
footnote on page 18.6. 

18.13 



The following functions compile open: 

AC, ADOI. AND, APPLY., ARG. ARRAYP, ASSEMBLE, ATOM, BLKAPPLY, BLKAPPLY*, CAR, 

COR, CAAR, ... CDDDAR, CDDDOR, CLOSER, CONO, CONS, EQ, ERSETQ, EVERY, EVQ, 

FASSOC, FCHARACTER. FOIFFERENCE, FGTP, FIX, FIXP, FLAST, FLENGTH. FLOAT. 

FlOATP, FMEHB, FHINUS, FNTH, FPLUS, FQUOTIENT, FRPLACA, FRPLACD, FSTKARG, 

FSTKNTH, FTIMES, FUNCTION, GETHASH, GO, IDIFFERENCE, IGREATERP. ILESSP, IMINUS, 

IPLUS. IQUOTIENT, IREHAINDER. ITIHES, LIST, LISTP, LITATOH, LLSH, LOC, LOGAND, 

LOGOR, LOGXOR, LRSH, LSH, MAP, MAPC, HAPCAR, HAPCON, HAPCONC, HAPLIST, HINUSP, 

NEQ. NLISTP, NLSETQ, NOT, NOTEVERY, NOTANY, NULL, NUMBERP, OPENR. OR, PROG. 

PROGI. PROGN, RESETFORH, RESETVAR, RETURN, RPTQ, RSH, SELECTQ, SETARG. SETN, 

SETQ, SHAlLP, SOME. STRINGP. SUBJl. SUBSET. UNOONLSETQ. VAG, ZEROP , 

18.7 Compiler Macros 

The INTERLISP compiler includes ~l macro capability by which the user can affect 

the compiled code. Macros are defined by placing the macro definition on the' 

property list of the correspond=lng function under the property MACRO. 20 When . 
the compiler begins compiling a form, it retrieves a macro definition for car 

of ,the form, if any, and uses it to direct the compilation. 21 The three 

different types of macro definitions are given below. 

20-------------------"-------------------------------- -------------------------An expression of the form (DECLARE (DEFLIST ... (QUOTE MACRO») can be used 

21 

within a function to define & MACRO. DECLARE is defined the same as QUOTE 
and thus can be placed so las to have no effect on the running oftha 
function. 

The compiler has built into it how to compile certain basic functions such 
as car, I!!:Q.9. etc., so that these will not be affected by macro 
definitions. These functions are listed above. However, some of them are 
themselves implemented via macros, so that the user could change th~ way 
they compile. . 

18.14 



(1) Open macros - (LAMBDA ... ) or (NLAMBDA •.• ) 

A function can be made to compile open by giving it a macro definition of the 

form (LAMBDA ..• ) or (NLAMBOA ..• ), e.g., 

(LAMBDA (X) (COND «GREATERP X 0) X) (T (MINUS X»» for abs. The effect 1s 

the same as though the macro definition were written in place of the function 

wherever it appears in a function being compiled, i.e., it compiles as an open 

LAMBDA or NLAMBDA expression. This saves the time necessary to call the 

function at the price of more compiled code generated. 

(2) Computed macros - (atom expression) 

A macro definition beginning with an atom other than LAMBDA, NLAHBDA, or NIL, 

allows computation of the INTERLISP expression that is to be compiled in place 

of the f.orm. The atom which starts the macro definition is bound to cdr of the 

form being compiled. The expression following the atom is then evaluated, and 

the result of this evaluation is compiled in place of the form. For example, 

list could be compiled this way by giving it the macro definition: 

[X (LIST (QUOTE CONS) 
(CAR X) 
(AND (COR X) 

(CONS (QUOTE LIST) 
(CDR Xl 

This would cause (LIST X Y Z) to compile as (CONS X (CONS Y (CONS Z NIL»). 

Note the recursion in the macro expansion.22 Ersetq, nlsetq, map, mapc, mapcar, 

mapconc, and some. are compiled via macro definitions of this type. 

If the result of the evaluation is the atom INSTRUCTIONS, no code will be 

generated by the compiler. It is then assumed the evaluation was done for 

effect and the necessary code, if a~y. has been added. This is a way of giving 

direct instructions to the compiler if you understand it. 

" 22-----------------------------------------------------------------------------list is actually compiled more efficiently. 

18.15 



(3) Substitution macro - (NIL expression) or (list expression) 

Each argument in the form being compiled is substituted for the corresponding 

atom in car of the macro defini.tion, and the result of the substitution is 

compiled instead of the form, i.e., 

(SUBPAIR (CAR macrodef) (CDR form) (CADR macrodef». For example, the macro 

definition of addt is «X) (IPllJlS X 1». Thus" (ADDI (CAR V»~ is compiled as 

(IPLUS (CAR Y) 1). The function~; addl, subl, neg, nlistp, zerop. flength. 

fmemb. fassoc, flast, and fnth are all compiled open using substitution macros. 

Note that abs could be compiled open as shown earlier or via a substitution 

macro. A substitution macro, however, would cause (ABS (FOO X» to compile as 

(CONo «GREATERP (FOO X) 0) (FOO X» (T (MINUS (FOO X»» and co,nsequently 

(FOO X) would be evaluated three times. 

18.8 FUNCTION and Functional Arguments 

Expressions that begin with FUINCTION will always be compiled as separate 

functions23 named by attaching a gensym to the end of the name of the function 

in which they appear, e.g., FOOA0003.24 This gensYn! function will be called at 

run time. Thus if FOO is defined as 

(LAMBDA (X) ... (FOOl X (FUNCTION ••• » ••• ) and compiled, then when FOO is 

run, FOOl will be called with two arguments, X, and FOOAOOOn,26 and then FOOl 

will call FOOAOOOn each time it must use its functional argument. 

23-----------------------------------------------------------------------------except when they are compiled open, as 1s the case with most of the mapping 

24 

25 

functions. 

nlsetq and ersetq expressions also compile using gensym functions. As a 
result, a ~ or return cannot be used inside of a compiled nlsetg or ersetg 
if the corresponding ~ is outside, i.e. above the nlsetg or ersetq. 

or an appropriate funarg expression, see Section 11. 

18.16 



Note that a considerable saving-s in time could be achieved by defining FOOl as 

a computed macro of the form: 

(Z (LIST (SUBST (CADADR Z) (QUOTE FN) der) (CAR Z») 

where def is the definition of FOOl as a function of just its first argument 

and FN is the name used for its fUnctional argument in its defini tion. The 

expression compiled contains what was previously the functional argument to 

FOOl, as an open LAMBDA expression. Thus you save not only the function call 

to FOOl, but also each of the function calls to its functional argument. For 

example, if FOOl operates on a list of length ten, eleven function calls will 

be saved. Of course, this savings in time cost space, and the user must decide 

which is more important. 

18.9 Block Compiling 

Block compiling provides a way of compiling. several functions into a single 

block. Function calls between the component functions of the block are very 

fast, and the price of using a free variable, namely the time required to look 

up its value on the stack, is paid only once - when the block is entered. 

Thus, compiling a block consisting of just a single recursive function may be 

yield great savings if the function calls itself many times, e.g., equal, ~, 

and count are block compiled in INTERLISP. 

The output of a block compilation is a single, usually large, function. This 

function looks like any other compiled function; it can be broken, advised, 

• printstructured, etc. Calls from within the block to functions outside of the 

block look like regular function calls, except that they are usually linked 

(described below). A block can be entered via several different functions, 

18.17 



called entries. These must be specified when the block is compiled. 26 for 

example, the error block has three entries, errorx, interrupt, and faultl. 

Similarly. the compiler block has nine entries. 

Specvars 

One savings in block compiled fun'ctions results from not having to store on the 

stack the names of the variables bound within the block, since the block 

functions all 'know' where the variables are stored. However, if a variable 

bound in a block is to be referenced outside the block, it must be included on 

the list specvars.27 for example,. helpclock is on specvars, since it is rebound 

inside of lispxblock and editblock, but the error functions must be able to 

obtain its latest value. 

Localfreevars 

Localfreevars is a feature designed for those variables which are used freely 

by one or more of the block fUinctions, but which are always bound (by some 

other block function) before they ate referenced, i.e. their free values above 

the block are never used. Normally. when .. block is entered, all variables 

which are used freely by any function in the block are looked up and pointers 

to the bindings are stored on the stack. When any of' these variables are 

26-------------------------------'----------------------------------------------Actually the block is entered the same as every other function, i.e., at 

27 

the top. However. the entry functions call the main block with their name 
as one of its arguments, and the block dispatches on the name, and jumps to 
the portion of the block corresponding to that entry point. The effect 1s 
thus the same as though there were several different entry points. 

Arguments to the block that are referenced freely outside the block must 
also be SPECVARS if they are reset within the block, or else the new value 
will not be obtained. 

18.18 



rebound in the block, the old pointer is saved and a pointer to the new binding 

is stored in the original stack position. It frequently happens that variables 

used freely within a block are in fact always bound within the block prior to 

the free reference. The unnecessary lookup of the value of the free variable 

at the time of entry to the block can be avoided by putting the variable name 

on the list localfreevars. If a variable is on localfreevars, its value will 

not be looked up at the time of entry. When the variable is bound, the value 

will be stored in the proper stack position. Should the variable in fact be 

referenced before it is bound, the program will still work correctly. 

Invisible to the user, a rather time-comsuming process will take place. The 

reference will cause a trap which will invoke 'code to determine which variable 

was referenced and look up the value. future references to that variable 

during this call to the block will be, normal, i.e. will not cause a trap. 

trapcount[x] is a function to monitor the performance of block 

compiled code with respect to localfreevars. If x 

is NIL, trapcount returns the cumulative number of 

traps caused by localfreevars that were not bound 

before use. If! is a number t the trapcount is 

reset to that number. 

evq is another compiler artifice for free variables references. (EVQ X) has 

the effect of (EVAL (QUOTE X» without the call to eval (if X is an atom). evq 

is intended primarily for use in conjunction with localfreevars. For example, 

suppose a block consists of three functions, FOOt, FOOl, and F003, with FOOl 

and FOOl being entries, and FOOl using X freely, where X is bound in FOOl, but 

not in FOOl, i.e. FOOl rebinds X, but when entered via FOOZ, the user intends X 

to be used freely, and its higher value obtained. If X is on localfreevars, 

then each time the block, is entered via FOOZ, a trap will occur when F003 first 

references X. In order to avoid this, the user can insert (EVQ X) in FOOZ. 

This will circumvent the trap by explicitly invoking the routine that searches 

18.19 



back up the stack for the last binding of X. Thus, when used with 

localfreevars, evq does two things: it returns the value of its argument, and 

also stores that value in the binding slot for the variable so that no future. 

references to that variable (in this call) will cause traps. Since the time 

consumed by the trap can greatly exceed the time required for a variable 

lookup, using evq in these situations can result in a considerable savings. 

Retfns 

Another savings in block compilation arises from omitting most of the 

information on the stack about internal calls between functions in the block. 

However, if a function's name Inust be visible on the stack, e.g., if the 

function is to be returned frOID retfrom, it must be included on the list 

retfns. 

8lkapplyfns 

Normally, a call to ~ from inside a block would be the same as a call to 

any other function outside of the block. If the first argument to ~ turned 

out to be one of the entries to the block, the block would have to be 

reentered. blkapplyfns enables 8, program to compute the name of a function in 

the block to be called next, wi,thout the overhead of leavin'g the block and 

reentering it. This 1s done by including on the list blkapplyfns those 

functions which will be called im this fashion, and by using blkapply in place 

of apply, and bikapplyllil in plac'9 of applyllil. For example, the calls to the 

functions handling RI, RO, LI, LO, BI, and BO in the editor are handled this 

way. If blkapply or blkapply* is given a function not on blkapplyfns, the 

effect is the same as a call tOI ~ or apply* and no error is generated. 

Note howev~r, that blkapplyfns must be set at compile time, not run time, and 

furthermore, that all functions on blkapplyfns must be in the block, or an 

error 1s generated '(at compile time), NOT ON BLKFNS. 

18.20 



Blklibrary 

Compiling a function open via a macro provides a way of eliminating a function 

call. For block compiling, the same effect can be achieved by including the 

function in the block. A further advantage is that the code for this function 

will appear only once in the block, whereas when a function is compiled open, 

its code appears at each place where it is called. 

The block library feature provides a convenient way of including functions in a 

block. It is just a convenience since the user can always achieve the same 

effect by specifying the function(s) in question as one of the block functions, 

provided it has an expr definition at compile time. The block library feature 

simply eliminates the burden of supplying this definition. 

To use the block library feature, place the names of the functions of interest 

on the list blklibrary, and their EXPR definition on the property list of the 

function under the property !BLKLIBRARYOEF. When the block compiler compiles a 

form, it first check to see if the function being called is one of the block 

functions. If not, and the function is on blklibrary, its definition is 

obtained from the property ivalue of BLKLIBRARYOEF, and it is automatically 

included as part of the block. The functions !!!2£, equal, 9!!2, last, length, 

lispxmatch, memb, nconct. ~, nth, and Irplnode already have BlKlIBRARYDEF 

properties. 

18.10 linked Function Calls 

Conventional (non-linked) function calls from a compiled function go through 

the function definition cell,. i.e., the definition of the called function is 

obtained from its function definition cell at call time. Thus, when the user 

breaks, advises, or otherwise modifies the definition of the function FOO, 

18.21 



every function that subsequently calls it instead calls the modified function. 

For calls from the system funlctions, this is clearly not a feature. For 

example, the user may wish to break on basiC functions such as print, eval, 

rplaca, etc., which are used by the break package. In other words, we would 

like to guarantee that the system packages will survive through user 

modification (or destruction) of basic functions (unless the user specifically 

requests that the system packuges also be modified). This protection is 

achieved by linked function calls. 

For linked function calls, the definition of the called function is obtained at 

link. time, i.e., when the calling function is defined, and stored in the 

Ii teral table of the calling function. At call time, this definition is 

retrieved from where it was stored in the literal table, not from the function 

definition cell of the called function as it is for non-linked calls. These 

two different types of calls are illustrated in Figure 18-1. 

Note that while function call!; from block compiled functions are usuallu 

linked, and those from standardly compiled functions are usuallu non-linked, 

I inking function calls and blockcompiling are independent features of the 

INTERLISP compiler, i.e., linked function calls are possible. and frequently 

employed, from standardly compiled functions. 

18.22 



CALLING 
FUNCTION 

CALLING 
FUNCTION 

LINKED CALL 

NON-LINKED CALL 

DEFINITION 
CELL 

LINKED CALL 

NON-Lt'NKED 

DEFINITION 
CELL 

FIGURE 18-1 

18.23 

DEFINITION 

OLD 
DEFINITION 

NEW 
DEFINITION 



Note that normal function calls require only the called function's name in the 

literals of the compiled code, whereas a linked function call uses two literals 

and hence produces slightly larger compiled functions. 

The compiler t s decision as to ttrhether to link a particular function call is 

determined by the variables linkfns and nolinkfns as follows: 

(1) If the function appears on nolinkfns, the call is not linked; 

(2) If block compiling and 1;he function is one of the block functions, the 

call is internal as described earlier; 

(3) If the function appears on linkfns, the call is linked; 

(4) If nolinkfns~T, the call is not linked; 

(5) If block compiling, the call is linked; 

(6) If linkfns=T, the call is linked; 

(7) Otherwise the call is not linked. 

Note that ( 1 ) takes precedence: over (2), i. e. , if a function appears on 

nolinkfns, the call to it is not linked, even if it is one of the functions in 

the block. i.e., the call will go outside of the block. 

Nolinkfns is initialized to various system functions such as errorset, break1. 

etc. Linkfns is initialized 1~0 NIL. Thus if the user does' not specify 

otherwise, all calls from a block compiled function (except for those to 

functions on nolinkfns) will bu linked; all calls from standardly compiled 

functions will not be linked. However, when compiling system functions such as 

help, error, arglist, fn!l2, brElak1, et aI, linkfns is set to T so that even 

though these functions are not block compiled, all of their calls will be 

linked. 

If a function is not defined at link time, i.e., when an attempt is made to 

link to it, a message is printed, tn 1 NOT DEf INED WHEN LINK TRIED fROM fnZ. 

18.24 



When the function is later defined, the link can be completed by relinking the 

calling function using rei ink described below. Otherwise, if a function is run 

which attempts a linked call that was not completed, faultapply is called. If 

the function is now defined, i.e., it was defined at some point after the 

attempt ,was made to link to, it, faultapply will quietly perform the link and 

continue the call. Otherwise, it will print U.D.F. and proceed as described in 

Section 16. 

Linked function calls are printed on the back trace as ;fn; where fn is the name 

of the function. Note that this name does not actually appear on the stack, 

and that stkpos, retfrom, and the rest of the pushdown list functions (Section 

12) will not be able to find it. Functions which must be visible on the stack 

should not be linked to, i.e., include them on nolinkfns when compiling a 

function that would otherwise link its calls. 

printstructure, calls, brea~ on fnl-IN-fn2 and advise fnt-IN-fn2 all work 

correctly for linked functions calls, e.g., break[(FOO IN FIE)], where FOO is 

called from FIE via a linked function call. 

Relinking 

The function relink is available for relinking a compiled (unction, i.8., 

updating all of its linked c~lls so that they use the definition extant at the 

time of the relink operation. 

relink[ fn] fn is either WORLD, the name of a function, a list 

of functions, or an atom whose value is a list of 

functions. relink performs the corresponding 

relinking operations. relink[WORLD] is possible 

because laprd maintains on linkedfns a list of all 

18.25 



user functions containing any linked calls. 

!X.!linkedfns is a list of all system functions 

that have any linked calls. relink[WORLD] 

performs both relink[linkedfns] and 

relink[syslinkedfns]. 

The value of relink is fn. 

It is important to stress that linking takes place when a function is defined. 

Thus, if Foo calls FIE via a linked call, and a bug is found in FIE, changing 

F IE is not sufficient; FOO mus1~ be rei inked. Similarly. if FOOl, FOOl, and 

F003 are defined (in that order) in a file. and each call the others via linked 

calls, when a new version of the file is loaded, FOOl will be linked to the old 

FOOZ and FOOl, since those defilnitions will be extant at the time it is read 

and defined. Similarly, FOOl will link to the new FOOl and old FOO3. Only 

FOOl will link to the new FOOl and FOOl. The user would have to perform 

relink[FOOFNS] following the loa~. 

18.11 The Block Compiler 

There are three user level functions for blockcompiling, blockcompile, bcompl, 

and brecompile. corresponding to compile, tcompl, and recompile. All of them 

ultimately call the same low level functions 1n the compiler, i.e., there is no 

Iblockcompiler l per see Instead, when blockcompiling, a flag is set to enable 

special treatment for specvar!, retfns, blkapplyfns, and for determining 

whether or not to link a function call. Note that all of the previous remarks 

on macros, globalvars, compiler messages, etc .• all apply equally for block 

compiling. Using block declarations described below, the user can intermix in 

a single file functions compilEld normally, functions compiled normally with 

linked calls, and block compiled functions. 

18.26 



8lockcomplle 

blockcompile[blkname ;blkfns ;entrles; fig] . blkfns is a list of the functions 

comprising the block, blkname is the name of the 

block, entries a list of entries to the block, 

e.g. , 

.. SLOCKCOMPIlE(SUBPRBLOCK (SUBPAIR SUBLIS SUBPR) (SUBPAIR SUBLIS» 

Each of the entries must also be on blkfns or an 

error is generated, NOT ON BLKFNS.28 

If entries is NIL, list[blkname] is used, e.g., 

.BLOCKCOHPILE(COUNT (COUNT COUNT1» 

If blkfns is NIL, list[blkname] is used, e.g., 

.BLOCKCOHPILE(EQUAL) 

blockcompile asks the standard compiler questions 

and then begins, compiling. As with compile, if 

the compiled code is being written to a file, 'the 

file is closed unless f!D=T. The value of 

blockcompile is a list of the entries, or if 

entries=NIL, the value is blkname. 

The output of a call to blockcompile is one 

28-----------------------------------------------------------------------------If only one entry is specified, the block name can also be one of the 
blkfns, e.g. BLOCKCOMPILE(FOO (FOO FIE FUM) (FOO». However, if more than 
one entry is specified, an error will be· generated, 
CAN'T BE BOTH AN ENTRY AND THE BLOCK NAME. 

18.27 



Block Declarations 

function definition for bIkname, plus definitions 

for each of the functions on entries if any. 

These entry functions are very short functions 

whilch immediately call blkname. 

Since block compiling a file frequently involves giving the compiler a lot of 

information about the nature and structure of the compilation, e.g., block. 

functions, entries, specvars, linking, et ai, we have implemented a special 

prettydef command to facilitate this commmunication. The user includes in the 

third argument to prettydef a cOlDmand of the form 

(BLOCKS block1 .•. block2 ..• bll)ckn) where each block1 is a block declaration. 

bcompl and brecompile described below are sensitive to these declarations and 

take the appropriate action. 

The form of a block declaration is: 

(blkname blkfn 1 ••. blkfnm (var t • value) •.• (varn • value» 

blkfn 1 .... blkfnm are the functi.ons in the block and correspond to bIkfns in 

the call to blockcompile. The (var • value) expressions indicate the settings 

for variables affecting the compllatio~. 

As an example. the value of editblocks is shown below. It consists of three 

block declarations. editblock. editfindblock, and edit4~. 

18.28 



[RPAQQ EOITBLOCKS 
«EDITBLOCk EOITLO [OITLI UNOOEoITL EOITCOM EOITCOMA EoITCOHL 

EOITMAC EoITCOMS EoIT]UNDO UNoOEDITCOM 
UNDOEDITCOMI EoITSHASH EOITNCONe EoIT1F EDIT2F 
EOITNTH BPNT BPNTO BPNTI RI RO LI LO BI BO 
EOITOEFAULT #1 EOUP EoIT* EOOR EORPT EOLOC EOLOCL 
EDIT: EOITMBD EOITXTR EoITELT EOITCONT EOITSW 
EOITMV EoITTO EoITBELOW EoITRAN TAILP EoITSAVE 
EDITH (ENTRIES EOITLO II UNOOEOITL) 
(SPECVARS L COM LCFLG 11 #2 #3 LISPXBUFS 

**COMMENT**FLG PRETTYFLG UNOOlST 
UNoOLSTI ) 

(RETFNS EDITlO) 
(GLOBALVARS EOITCOMSA EOITCOMSL EOITOPS 

HISTORYCOMS EoITRACEFN) 
(BlKAPPLYFNS RI RO II lO BI BO EDIT: EOITMBO 

EOITMV EOITXTR) 
(BLKLIBRARY LENGTH NTH LAST) 
(NOlINKFNS EOITRACEFN» 

(EDITFINoBlOCk EDIT4E EOIT4El EOITOF EoIT4F EOITFPAT 
EOITFPATI EOIT4Fl EOIT4F2 EoIT4F3 EDITSMASH 
EOITFINoP EoITBF EoITBFl ESUBST 
(ENTRIES EoITOF EOIT4F EDITFPAT EOITFINDP 

EDITBF ESUBST» 
(EOIT4EBLOCK EOIT4E EOIT4El (ENTRIES EOIT4E EOIT4El] 

Whenever bcompl or brecompile encounter a block declaraction29 they rebind 

retfns, specvars, localfreevars. globalvars, blklibrary, nolinkfns, and linkfns 

to their top level value, bind blkapplyfns and entries to NIL, and bind blkname 

to the first element of the declaration. They then scan the rest of the 

declaration, gathering up all atoms, and setting f!! of each nonatomic element 

to cdr of the expression if atomi~, e.g., (LINKFNS . T). or else to union of 

cdr of the expressions with the current (rebound) value,aO e.g., 

(GLOBALVARS EDITCOHSA EDITCOHSL). When the declaration is exhausted, the block 

compiler is called and given blkname, the list of block functions. and entries. 

Note that since all compiler variables are rebound for each block declaration, 

ao Expressions of the form (var • form) will cause form to be evaluated and 
the resulting list used as described above, e.g. 
(GLOBAlVARS • HYGlOBAlVARS). 

18.29 



the declaration only has to set those variables it wants changed. Furthermore, 

setting a variable in one declaration has no effect on the variable's value for 

another declaration. 

After finishing all blocks. bcol~ and brecompile treat any functions in the 

file that did not appear in a block declaration in the same way as do tcompl 

and recompile. If the user wishes a function compiled separately as well as in 

a block, or if he wishes to compile some functions (not blockcompile), with 

some compiler variables changed. he can use a special pseudo-block declaration 

of the form (NIL fn 1 ... fnm (var1 • value) ••• (varn . value» which means 

compile fn t ... fnm after first setting var t •.. varn as described a~ove. For 

example, (NIL CGETD FNTYP ARGLIST NARGS NCONCI GENSY" (LINKFNS • T» 

appearing as a 'block declaration' will cause the six indicated functions to be 

compiled while linkfns=T so that all of their calls will be linked (except for 

those functions on nolinkfns). 

bcompl 

bcompl[filesjcf1le] fil.~ is a list of prettydefed files. (If atomic, 

list[files] is used.) bcompl differs from tcompl 

in that it compiles all of the files at once, 

instead of one at a time. This is to permit one 

block to contain functions in several files. 81 

Output is to cfile if given. otherwise to a file 

whose name is car[files] suffixed with COM82 e.g., 

bcolllpl[(EDIT WEDIT)] produces one file, EOIT.COH. 

32 See footnote on page 18.tt. 

18.30 



bcompl asks the standard compiler questions, 

except for OUTPUT FILE: then reads in all of the 

files. adds all nlambda functions in DEFINEQ's to 

nlama, nlaml. lambdas to lams, evaluates DECLARE 

expressions,33 and then processes the block 

declarations as described above. Finally, it 

compiles any (unctions not mentioned 1n one of the 

declarations and writes out all other expressions. 

The value of bcompl is the output file. 

Note that it is permissible to tcompl files set up 

for bcompl: the block declarations will simply 

have no effect. Similarly, you can bcompl a file 

that does not contain any block declarations and 

the result will be the same as having tcompled it. 

Brecompile 

The purpose of brecompile is to allow the user to update a compiled file 

without requiring an entire bcompl. As with recompile, the usual way to call 

brecompile involves specifying just its first argument, the symbolic file(s), 

as in the sequence of loading file( s) to PROP. editing selected definitions, 

makefiling, and then calling brecompile. In this case, brecompile recompiles 

all exprs and works from in-core definitions.34 Note that this assumes that 

88-----------------------------------------------------------------------------See footnote on page 18.9. 

34 Note that if any of the funct~ons in a block are recompiled, the entire 
block is recompiled. 

18.31 



each symbolic file was produced by makefile, i.e., the arguments to prettydef 

were fileFNS, file, and fileVARS, since brecompile uses fileFNS and file VARS 

to drive its operation. The J'est of the discussion below is for various 

nonstandard usages. 

brecompile[files,cfile;fns;coreflg] files is a list of symbolic files (if 

atomiC, list[files] is used). cfile is the 

compiled file corresponding to bcompl[files] or a 

pre"ious brecompile, i.e., it contains compiled 

definitions that may be copied. 

fns is a list of those functions to be recompiled, 

i . e .. , they have been changed (or defined for the 

fir!.t time) since cfile was made. If fnsaT, all 

functions defined as exprs (after unbreaking and 

unadvising) are recompiled. 

brec:ompile asks the standard compiler questions 

except for OUTPUT FILE: As with bcomp1, output 

aut(lmatically goes to file .COM, where file 1s the 

first file in files. 

If coreflg-NIL, brecompile proceeds to read in 

each file, collecting all definitions while making 

the appropriate additions to nlama, nlaml, and 

lams~, evaluating DECLARE expressions, 86 and 

collecting all block declarations, and other 

expr'essions which will later be copied to the 

output file. 

a6--~;;-;~;~~~~;-;~-~;;;-;8:9:--·--·-------------·---- -------------------------

18.32 



If coreflg=T, brecompile computes the block 

declarations from the fileVARS for each file in 

files. 36 · Similarly. fileFNS and fileVARS are used 

to determine what actually appears on the files. 

The only access to the files is to obtain the date 

for each file so that 1 t can be written onto the . 

output file. 

brecompile next processes each block declaration. 

If no functions in the block have been changed, 

the block is copied from cfile as with recompile. 

Otherwise, . the entire block is recompiled. For 

pseudo-block declarations of the form 

(NIL fnl ••• ), all variable assignments are made, 

but only those functions so indicated by fns are 

recompiled. 

As with recompile. the order in which functions 

appear on the file must not be changed unless all 

of the functions that are moved also recompiled. 

After completing the block declarations, 

brecompile processes all functions not appearing 

in a declaration, recompiling only those dictated 

by fns, and copying the compiled defini tions of 

the remaining from cfile. 

Finally, brecompile writes the portion of file.COM 

a6-----------------~-----~----~----------------------- -------------------------See footnote on page 18.11. 

18.33 



18.12 Compiler Structur& 

corresponding to the non-OEFINEQ expressions. If 

£.Q.reflg=NIL; brecomp1le simply wri tes out those 

eXI)ressions which it had previously collected. 

Otherwise, it uses fi leVARS to determine what is 

on each file and writes the corresponding 

expressions on to the output file. 

The value of brecompile is the output file. 

If cfile: NIL, file.COM is used. a? In addition, if 

fns~ and coreflg are both NIL, they are set to T. 

This is the standard usage desscribed earlier. 

The compiler has two principal passes. The first compiles its input ·into a 

macro assembly language called LAP. The second pass expands the LAP code, 

producing (numerical) machine language instructions. The output of the second 

pass is written on a file and/or stored in binary program space. 

Input to the compiler is usually 8 standard INTERLISP B-expression function 

definition. However. machine laillguage coding can be included within a func'tion 

by the use of one or more assemble forms. In other words, assemble allows the 

user to write protions of a function in LAP. Note that assemble is only a 

compiler directive; it has no independent definition. Therefore, functions 

which use assemble must be compiled in order to run. 

37---------------~--------------··--------------------------------------------~-See footnote on page 18.11. 

18.34 



18.13 Assemble 

The format of assemble is similar to that of PROG: (ASSEMBLE V SI S2 • • • SN)· 

V is a list of variables to be bound during the first pass of the compilation, 

not during the running of the object code. The assemble statements 51 ..• 5N 

are compiled sequentially, each resulting in one or more instructions of object 

code. When run, the value of the assemble 'form' is the contents of ACt at the 

end of the execution of the assemble instructions. Note that assemble may 

appear anywhere in an INTERLISP function. for example, one" may write: 

(IGREATERP (IQUOTIENT (LOC (ASSEMBLE NIL 

1000) 
4) 

to test if job runtime exceeds 4 seconds. 

Assemble Statements 

(MOVEI 1 , -5) 
(JSYS 13») 

If an assemble statement is an atom, it is treated as a label identifying the 

location of the next statement that will be assembled. 38 Such labels defi'ned in 

an assemble form are like ~ labels in that they may be referenced from the 

current and lower level nested ~ or assembles. 

If an assemble statement is not an atom, £!r of the statement must be an atom 

and one of the following: (1) a number; (2) a LAP op-def (i.e. has a property 

value OPO); (3) an assembler macro (i.e. has a property value AHAC); or (4) one 

of the special assemble instructions given below, e.g. C, CQ, etc. Anything 

else will cause the error message OPCOOE? - ASSEMBLE. 

18.35 



The types of assemble statements are described here in the order of priority 

used in the assemble processor: that is, if an atom has both properties OPO and 

AMAC, the OPO will be used. Similarly a special assemble instruction may be 

redefined via an AHAC. The following descriptions are of the first pass 

processing of assemble statements", The second pass processing is described in 

the section on LAP, page 18.40. 

(1) numbers - If car of an assemble statement is a number, the statement is not 

processed in the first pass. (See page 18.40.) 

(2) LAP op-defs - The property OPO is used for two different types of op-defs: 

PDP-l0 machine instructions, and LAP macros. If the OPO 

definition (i.e. the property value) is a number, the op-def is a 

machine instructi(m. When a machine instruction, e.g. HRRZ, 

appears as car of an assemble statement, the statement is not 

processed during the first pass but is passed to LAP. The forms 

and processing of machine instructions by LAP are described on 

page 18.41. 

If the OPO definition is not a number, then the op-def is a LAP 

macro. When a LAP macro is encountered in an assemble statement, 

its arguments are evaluated and processing of the statement with 

evaluated argument.s is left for the second pass and LAP. For 

example, LDV is a LAP macro, and (LDV (QUOTE X) ,SP) in assemble 

code results in (l.OV X N) in the LAP code, where N is the valu~ 

of SP. 

The form and proc:essing of LAP macros are described on page 

18.43. 

18.36 



(3) assemble macros - If E!!: of an assemble statement has a property AMAC. 

the statement is an assemble macro call. There are two types of 

assemble macros: lambda and substitution. If £!!: of the macro 

definition is the atom LAMBDA. the definition will be applied to 

the arguments of the call and the resulting list of statements 

will be assembled. For example. repeat could be a LAMBDA macro 

with two arguments, nand m. which expands into n occurrences of 

~. e.g. (REPEAT 3 (CARl» expands to «CARl) (CARl) (CARl». The 

definition (i.e. value of property AMAC) for repeat is: 

(LAMBDA (N M) 
(PROG (YY) 

A (COND 
«ILESSP N 1) 

(RETURN (CAR YY») 
(T (SETQ YY (TCONe YY M» 

(SETQ N (SUB1 N» 
(GO A»») 

If £!! of the macro definition is not the atom LAMBDA, it must be 

a list of dummy symbols. The arguments of the macro call will be 

substituted for corresponding appearances of the dummy symbols in 

cdr of the definition, and the resulting list of statements will 

be assembled. 89 For example, ubox could be a substitution macro 

which takes one argument, a number, and expands into instructions 

to compile the unboxed value of this number and put the result on 

the number stack. 

The definition of UBOX is: 

« E) 
(CQ (VAG E» 
(PUSH NP • 1» 

i~-----------------------------------------------------------------------------Note that assemble macros produce a list of statements to be assembled. 
whereas compiler macros produce a single expression. An assemble macro 
which computes a list of statements begins with LAMBDA and may be either 
spread or no-spread. The analogous compiler macro begins wi th an atom, 
(i.e. is always no-spread) and the LAMBDA is understood. 

18.37 



Thus (UBOX (A001 X»" expands to: 

«CQ (VAG (ADD1 X») 
(PUSH NP , 1» 

(4) special assemble statements -

(CQ sl s2 .•• ) CQ (compile quote) takes any number of arguments 

whitch are assumed to be reg!-llar 8-expressions and 

are compiled in the normal way. E.g. 

(CQ (CONO «NULL Y) (SETQ Y 1») 
(SETQ X (IPLUS Y Z») 

Note: to avoid confusion, it is best to have as much of a function a5 possible 

compiled in the normal way, e.lll. to load the value of ! to ACt, (CQ X) is 

preferred to (LOV (QUOTE X) SP). 

(C 51 52 ... ) 

(SETQ var) 

(FASTCALl fn) 

C (,£ompile) takes any number of arguments which 

are first evaluated, then compiled in the usual 

way. Both C and CQ permit the inclusion of 

regular compilation within an assemble form. 

E (:!valuate) takes any number of arguments which 

are evaluated in sequence. For example, (PSTEP) 

calls a function which increments the compiler 

varjLable SP. 

Compiles code to set the variable Y!!: to the 

contents of ACt. 

ComlJliles code to call fn. Fn must be one of the 

SUBR, 's that expects its arguments in the 

accumulators, and not on the push-down stack. 

18.38 



pt ... ) 

Currently, these are ~, and the boxing and 

unboxing routines.40 

Example: 

(CQ X) 
(LDV2 (QUOTE Y) SP 2) 
(FASTCALL CONS) 

and cons[x,y] will be in ACt. 

• is used to indicate a comment; the statement is 

ignored. 

COREVALS 

There are several locations in the basic machine code of INTERLISP which may be 

referenced from compiled code. The current value of each location is stored on 

the property 1 is t under the property COREVAL. 41 Since these locations may 

change 1n different reassemblies of INTERLISP, they are written symbolically on 

compiled code files, i.e. the name of the corresponding COREVAl is written, not 

its value. Some of the COREVALs used frequently in assemble are: 

CONS ' entry to function CONS 

LIST entry to function lIST 

KT contains (pointer to) atom T 

KNIL contains (pointer to) atom NIL 

MKN routine to box an integer 

HKFN routine to box floating number 

IUNBOX routine to unbox an integer 

40-----------------------------------------------------------------------------list may also be called with fastcall by placing its arguments on the 
pushdown stack, and the number of arguments in ACt. 

41 The value of corevals is a list of all atoms with COREVAl properties. 

18.39 



FUNBOX routine to unbox floating number 

The index registers used for the push-down stack pointers are also included as 

COREVAlS. These are not expected to change, and are not stored symbolically on 

compiled code files; however, they should be referenced symbolically in 

assemble code. They are: 

PP parameter stack 

CP control stack 

NP number stack 

18.14 LAP 

LAP (for hISP !ssembly frocess'or) expands the output of the first pass of 

compilation to produce numerical machine instructions. 

LAP Statements 

If a LAP statement 1s an atolln, it is treated as a label identifying the 

location of the next statement 1~o be processed. If a LAP statement is not an 

atom, £!r of it must be an atom and one of the following: (1) a number; (2) a 

machine instruction; or (3) a LAP macro. 

(1) numbers - If car of a LAP statement is a number, a location containing the 

number is produced in the object code. 

e.g. 

A 

(.ADO 1 , A (1» 

( 1 ) 
(4) 
(9) 

18.40 



Statements of this type are processed like machine instructions, 

with the initial number serving as a 36-bit op-code. 

(2) Machine Instructions - If f!! of a LAP statement has a numeric value for 

the property OPD,42 the statement is a machine instruction. The 

general form of a machine instruction is: 

43 

(opcode ac • , address (index» 

Opcode is any PDP-l0 instruction mnemonic or INTERLISP UUO. 48 

Ac, the accumulator field, is optional. However, if present, it 

must be followed by a comma. Ac is either a number or an atom 

wi th a COREVAl property. The low order 4 bits of the number or 

COREVAl are OR'd to the AC field of the instruction. 

~ may be used anywhere in the instruction to specify indirect 

addressing (bit 13 set in the instruction) e.g. (HRRZ 1 , @ • V). 

Address is the address field which may be any of the following: 

= constant Reference to an unboxed constant. A location 

containing the unboxed constant will be created in 

a region at the end of the function, and the 

address of the location containing the constant is 

The TENEX JSYS's are not defined, that is, one must write (JSYS 107) 
instead of (KFORK). 

18.41 



I pointer 

• 

placed in the address field of the current 

instruction. The constant may be a number e. g. 

(CAME 1 • D 3596); an atom with a property COREVAL 

(in which case the constant is the value· of the 

property. at LOAD time): any other atom which is 

treated as a label (~he constant is then the 

address of the labeled location) e. g. 

(HOVE 1 , = TABLE) is equivalent to 

(HOVEI·l ,TABLE): or an expression whose value is 

a number. 

The address is a reference to. a INTERLISP pointer, 

e.g. a list, number, string, etc. A location 

containing the pointer is assembled at the end of 

the function. and the current instruction will 

have the address of this location. E. g. 

(HRRZ 1 • -IS NOT DEFINED-) 

(HRRZ 1 • (NOT FOUND» 

Spe1cifies the current location in the compiled 

function: e.g. (JRST. Z) has the same effect as 

(SK:IPA) • 

literal atom If the atom has a property COREVAL, it is a 

number 

reforence to 

(SKIPA 1 • KNIL), 

a system location, 

and the address used 

e.g. 

is the 

value of the coreval. Otherwise the atom is a 

label referencing a location in the LAP code. e.g. 

(JRST A). 

The number is the address; e.g. 

18.42 



list 

(MOVSI 1 , 400000Q) 

(HLRZ Z , 1 (1» 

The form 1s evaluated, and its value is the 

address. 

Anything else in the address field causes an error message, e.g. 

(SKIPA 1 • KNILL) - LAPERROR. A number may follow the address 

field and will be added to it, e.g. (JRST A Z). 

Index is denoted by a list following the address field, i.e. the 

address field must be present if an index field is to be used. 

The index (£!r of the list) must be either a number. or an atom 

wi th a property COREVAL. e • 9 • (HRRZ 1 • 0 (1» or (AND" 1 • -

1 (NP» 

(3) LAP macros - If car of a LAP statement 1s the name of a LAP macro, i.e. 

has· the property OPO, the statement is a macro call. The 

arguments of the call follow the macro name: e.g. (LQZ FIE 3). 

LAP macro calls comprise most of the output or the first pass of 

the compiler, and may also be used in assemble. The definitions 

of these macros are stored on the property list under the 

property OPO, and like assembler macros, may be either lambda or 

substitution macros. In the first case, the macro definition is 

applied to the arguments of the call;44 in the second case, the 

arguments of the call are substituted for occurrences of the 

18.43 



dummy symbols in the definition. In both cases, the resulting 

list of statements is again processed, with macro expansion 

continuing till t~e level of machine instructions is reached. 

Some examples of LAP macros are shown in Figure 18-2. 

18.44 



(DEFLIST(QUOTE( 
(SVN «N P) (~ STORE VARIABLE NAME) 

(MOVE 1 • ' N) 
(HRLM 1 , P (PP»» 

(SV8 «N) (~ STORE VARIABLE NAME AND VALUE) 
(HRL 1 • • N) 
(PUSH PP • 1») 

(LQ «X) (~ LOAD QUOTE TO AC1) 
(HRRZ 1 , ' X») 

(LQ2 «X AC) (~ LOAD QUOTE TO AC) 
(HRRZ AC • • X») 

(LOV «A SP) C* LOAD LOCAL VARIABLE TO ACt) 
(HRRZ 1 , (VREF ASP»» 

(STV «A SP) (* SET LOCAL VARIABLE FROM ACt) 
(HRRM 1 • (VREF ASP»» 

(LOV2 «A SP AC) C* LOAD LOCAL VARIABLE TO AC) 
(HRRZ AC , (VREF ASP»» 

(LOF «A SP) (* LOAD FREE VARIABLE TO AC1) 
(HRRZ 1 , (FREF ASP»» 

(STF «A SP) (* SET FREE VARIABLE FROM ACt) 
(HRRM 1 , (FREF ASP»» 

(LOF2 «A SP) C* LOAD FREE VARIABLE TO AC) 
(HRRZ 2 , (FREF ASP»» 

( CAR 1 (N I L (* CAR OF AC 1 TO AC 1 ) 
(HRRZ 1 , 0 (1»» 

(CORI (NIL (* CDR OF ACt TO AC1) 
(HLRZ 1 , 0 (1»» 

(CARQ « V ) C * CAR QUOTE) 
(HRRZ 1 , @ , V») 

(CARQ2 «V AC) C* CAR QUOTE TO AC) 
(HRRZ AC , @ , V») 

(CAR2 «AC) (* CAR OF AC TO AC) 
(HRRZ AC , 0 (AC»» 

(RPQ «V) (* RPLACA QUOTE) 
(tlRRM 1 • @ • V) 

(CLL «NAM N) (* CALL FN WITH N ARGS GIVEN) 
(CCALl N , ' NAM») 

(LCLL «NAM N) (* LINKED CALL WITH N ARGS) 
(LNCALL N • (MKLCL HAM»» 

(STE «TY) (* SKIP IF TVPE EQUAL) 
( PS TE 1 TY») 

(STN «TY) (* SKIP IF TYPE HOT EQUAL) 
(PSTNI TV») 

(RET (NIL C* RETURN FROM FN) 
(POPJ CP.) 

(PUSHP (NIL CPUSH PP , 1») 
(PUSHQ «X) (* PUSH QUOTE) 

(PUSH PP • ' X») 
) )(QUOTE OPO» 

Figure 18-2 

Examples of LAP Macros 

18.45 



18.15 Using Assemble 

In order to use assemble, it is helpful to know the following things abou~ how 

compiled code is run. All variable bindings and temporary values are stored on 

the parameter pushdown stack. When a compiled function is entered, the 

parameter pushdown list contain!i. in ascending order of address: 

1. bindings of arguments to the function, where each binding occupies one 

word on the stack wi tltl the variable name in the left half and the 

value in the right half. 

l. pointers, to the most Irecent bindings of free variables used in the 

function. 

The parameter push-down list pointer. index register PP. pOints to the last 

free variable pointer on the stack. 

Temporary values, PROG and LAMBDA bindings, and the arguments to functions 

about to be called. are pushftd on the stack following the free variable 

pointers. The compiler uses the value of the variable SPto keep track of the 

number of stack positions in use beyond the last free variable pointer, so that 

1 t knows where to find the argulll1ents and free variable pointers. The function 

PSTEP adds 1 to SP, and PSTEPN(N) adds N to SP (N can be positive or negative). 

The parameter stack should only be used for storing pointers. In addition, 

anything in the left half of a word on the stack is assumed to be a variable 

name (see Section 12). To sto,"e unboxed numbers, use the number stack, NP. 

Numbers may be PUSH'ed and POP'ed on the number stack. 

18.46 



18.16 Miscellaneous 

The value of a function is always returned in AC1. Therefore, the pseudo-

function, ac, is available for obtaining the current contents of ACI. For 

example (CQ (FOO (AC») compiles a call to FOO with the current contents of ACt 

as argument, and is equivalent to: 

(PUSHP) 
(E (PSTEP» 
(CLl (QUOTE FOO) 1) 
(E (PSTEPN -1» 

In using aCt be sure that it appears as the first argument to be evaluated in 

the expression. For example: (CQ (IPLUS (LOC (AC» Z» 

* * * 

There are several ways to reference the values of variables in assemble code. 

For example: 

to put value of X in ACt: (CQ X) 

to put value 9f X in AC3: (lDVZ (QUOTE X) 59 3) 

to set X to contents of ACt: (SETQ X) 

to set X to contents of AC2: 

(E (STORIN (LIST (QUOTE HRRM) Z (QUOTE ,) 
(LIST (VARCOMP (QUOTE X» 

(QUOTE X) 

to box and unbox a number: 

(CQ (LOC (AC») 
(FASTCALl MKN) 
(FASTCALl MKFN) 
(CQ (VAG X» 
(FASTCALl IUNBOX) 
(FASTCAll FUNBOX) 

SP»» 

18.47 

box contents of ACt 
box contents of ACt 
floating box contents of Act 
unboxcd value of X to ACt 
unbox contents of ACt 
floating unbox of ACt 



To call a function directly, the arguments must be pushed on the parameter 

stack, and SP must be updated, and then the function called: e.g. 

(CQ (CAR X» 
(PUSHP) , 
(E (PSTEPf) 
(PUSHQ 3.14) 
(E (PSTEP» 
(Cll (QUOTE FUM) 2) 
(E (PSTEPN -2» 

and is equivalent to: 

(CQ (FUM (CAR X) 3.14» 

(- stack first argument) 

(- stack second argument) 
(- call FUM with Z arguments) 
(- adjust stack count) 

18.17 Compiler Printout and Error Messages 

For each function compiled, WhEtther from tcompl, recompile, or compile, the 

compiler prints: 

(fn COMPILING) 
(fn (arg l •.. argn ) (free l freen» 

The first message is printed when the compilation of fn begins. The second 

message is printed at the beginning of the second pass of the compilation of 

fn. (arg l ..• argn ) is the list of arguments to fn, and (free l ••• freen ) the 

list of free variables referenced or set in fn. 46 The appearance of non­

variables, e.g. function names, 'fords from a comment, etc. in (free l ••• freen ) 

is a good indication of parenthesis errors. 

If the compilation of fn causes the generation of one or more gensym functions 

(see page 18.16), compiler messages will be printed for these functions between 

the first message and the second message for fn, e.g. 

~i----------------------------·------------------------------------------------Does not 1nclud~ variables o~ globalvars, see page 18.6. 

18.48 



(FOO COMPILING) 
(FOOA0027 COMPILING) 
(FOOAOOZ7 NIL (X» 
(FOO 00 NIL) 

The compiler output for block compilation is similar to normal compilation. 

The pass one message. i.e. (fn compiling) is printed for each/unction in the 

block. Then a second pass message is printed for the entireblock.46 Then both 

messages are printed for each entru to the block. 

In addition to the above output. both recompile and brecompile print the name 

of each function that is being copied from the old compiled file to the new 

compiled file. The normal compiler messages are printed for each function that 

is actually compiled. 

Compiler Error Messages 

Messages describing errors in the function being compiled are also printed on 

the teletype. These messages are always preceded by ***** Unless otherwise 

indicated below, the compilation will continue. 

«form) - NON ATOMIC CAR OF FORM) 

If user intended to treat the value of form as a function, he should 

use applY.. form is compiled as if apply. had been used. See Section 

8. 

(fn - NO LONGER INTERPRETED AS FUNCTIONAL ARGUMENT) 

The compiler has assumed fn is the name of a function. If the user 

40-----------------------------------------------------------------------------The names of the arguments to the block are generated by suffixing ", and 
a number to the block name, e.g. 
(FOOBLOCK (FOOBLOCKIO FOOBLOCKll) free-variables). 

18.49 



intended to treat the ,lIalue of fn as a function, he must use applY·. 

See Section 8.41 

(tg - MULTIPLY DEFINED TAG) 

!.9 is a PROG label that is de'fined more than once in a single PROG. 

The second definition is ignored. 

(tg - UNDEFINED TAG) 

19. is,a PROG label that is referenced but not defined in a PROG. 

(tg - MULTIPLY DEFINED TAG, ASSEMBLE) 

19. is a label that is defined more than once in an assemble form. 

(tg - UNDEFINED TAG, ASSEMBLE) 

19. is a label that is referenced but not defined in an ASSEMBLE form. 

(tg - MULTIPLY DEFINED TAG, LAP) 

19. is a label that was ,encountered twice during the second pass of the 

compilation. If this error occurs with no indication of a multiply 

defined tag during pass one, the tag is in a LAP macro. 

(tg - UNDEFINED TAG, LAP) 

19. is a label that is referenced during the second pass of compilation 

and is not defined. LAP treats 111 as though it were a coreval, and 

continues the compilation. 

47------------------------------··----------------------------------------------This message is printed when fn is not defined, and is also a local 
variable of the function being compiled. Note that earlier versions of the 
INTERLISP compiler did treat fn as a functional argument, and compiled code 
to evaluate it. --

18.50 



(fn - USEO AS ARG TO NUMBER FN?) 

The value of a predicate, such as GREATERP or EQ, is used as an 

argument to a function that expects numbers, such as IPLUS. 

(x - IS GLOBAL) 

! is on globalvars. and is also rebound in the function being 

compi led, ei ther as an argument or as a local variable. The error 

message is to alert the user to the fact that other functions will not 

see this binding, since ! is always accessed directly through its 

value cell. 

(op - OPCOOE? - ASSEMBLE) 

QQ appears as f!! of an assemble statement, and is illegal. See page 

18.35-39 for legal assemble statements. 

(blkname - USEO BLKAPPLY WHEN NOT APPLICABLE) 

blkapply is used in the block blkname, but there are no blkapplyfns or 

entries declared for the block. 

(fn - ILLEGAL RETURN) 

return encountered when not in 1!!..QjJ. 

(tg - ILLEGAL GO) 

HQ encountered, when not in a ~. 

(fn NOT COHPILEABlE) 

An expr definition for fn could not be found. In this case, no code 

is produced for fn, and the compiler proceeds to the next function to 

be compiled, if any. 

fn NOT COMPILEABlE. 

18.51 



Same as above except generates an error, ther~by aborting all 

compi lation. For examJ.le, this error condition occurs if fn 1s one of 

the functions in a block. 

fn NOT FOUND. 

Occurs when recompil~ or brecompile try to copy the compiled 

definition of fn from cfil!. and cannot find it. See page 18.12. 

Generates an error. 

fn NOT ON BLKFNS. 

fn was specified as an entry to a block, or else was on blkapplyfns, 

but did not appear on the blkfns. Generates an error. 

fn CAN'T BE BOTH AN ENTRY AND THE BLOCK NAME. 

Generates an error.· 

(fn NOT IN FILE - USING DEFINITION IN CORE) 

on calls to bcompl and brecompile. 

18.52 



Index for Section 18 

AC (in a lap statement) ......••.••••.•.•••.•••.• 
AC (in an assemble statement) ••.••.•• ~ •..•....•• 
ACt •••••••••• " •••••••••••••••••••••••••••••••••• 
ALAMS (compiler variable/parameter) •.•••.•.••.•• 
AMAC (property name) ......•.•..••••••••••••••••• 
APPLY[FN;ARGS] SUBR ......•..••••••••.•••.•.••••. 
APPLY*[FN;ARG1; ... ;ARGn] 8UBR* •••••••••••••••••• 
ASSEMBLE ............................................ . 
ASSEMB lE macros .......•..••••••.•••••••••.•••••• 
ASSEMBLE statements ......•...••.••.••.•••••••••• 
BCOMPL[FILES;CFILE;NOBLOCKSFLG] .•••••••••••••••• 
BlKAPPLY[FN;ARGS] SUBR .........••••.•..••..••••• 
BLKAPPLY*[FNjARG1; ... :ARGn] SUBR- .•.•••••••••••• 
BLKAPPLYFNS (compiler variable/parameter) ••••..• 
BLKlIBRARY (compiler variable/parameter) •••..••• 
BLKLIBRARYDEF (property name) •••••.•.•••.•.•.••• 
block compiler •.......••..••••••••••.••••.••.••• 
block compiling ..•.........•...•.•.••..•••.•.••• 
block declarations ......•.•.••.......•.••••••••• 
hlock library ...................................... . 
BLOCKCOMPILE[BLKNAME;BLKFNS:ENTRIES;FLG] •••.•••• 
BLOCKS (prettydef command) •.•....•...•..•••••••• 
BRECOHPILE[FIlES;CFILE;FNS:COREFlG;NOBLOCKSFLG] 
C (in an assemble statement) ..•..••....••••••••• 
CAN'T BE BOTH AN ENTRY AND THE BLOCK NAME 

(compiler error message) •••••••••.•••••.••• 
CLISP ••.•••••••••••••••••••••••••••••••••••••••• 
COM (as suffix to file name) .••••••••••••••.•••• 
COM P I L E [ X ; F l G ] • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 0 • • • 

COMPILE1[FN;OEF] ...•....•••••.•••••••••••••.•••• 
comJ)11ed f1 Ie .•••.•.•••••••••••••••••••••••••••• 
compiler .......•••••.••••••••••••••••••••••••••• 
comp i 1 er error messages ..••....•.•••..•••.•.•.•• 
compiler functions ........••••..•••.••••••..•••• 
compiler macros ...........•..•.••••..••••••••••. 
compiler printout ....•.•...•..•..•.•......•....• 
compiler questions .•....••••.••••••..••.••..•..• 
compiler structure .•.....•.•.....•...•••...•.•.• 
COMPltEUSERFN (compiler variable/parameter) 
compiling files ........•.•••.••.••.•••••••••..•• 
compiling FUNCTION ........•••••••••••.••••.••••• 
compiling NLAMBDAs .......•••..•.•••..•.•.••...•• 
COMPROP (prettydef command) .••.•••••••••.•..•.•. 
COMPROP- (prettydef command) ••••••••.•.••••••••• 
COHPSET[FILE;FLG] .......•.•••••••••••.•••••••••• 
compu ted macros .............•...••••••..••••••.• 
control-D ......•.....••.•••••••••••••••••••••••• 
CORE Vl\l (property name) .....••.•..•••.•••.•••••• 
COREVAl_S •••••••••••••••••••••••••••••••••••••••• 
COREVl\lS (system variable/parameter) ...••..•.•.• 
CQ (in an assemble statement) ••.•..•..•......••. 
OECLARE[X] FSUBR .......•..••••••.•••.•...•...••• 
DECLARE ••••••••••••••••••••••••••••••••••••••••• 
DEFLIST[L;PROP] .••........••••••••.••••••••••••• 
OWIMIFYCOMPFLG (compiler variable/parameter) 
E (in an assemble statement) •••••••••••••••••••• 

INDEX.18.1 

Page 
Numbers 

18.41 
18.47 
18.35,38,47 
18.6 
18.35,37 
18.20 
18.20 
18.34-35,46 
18.37 
18.35-39 
18.26,28,30-32 
18.20 
18.20 
18.20,26,29 
18.21,29 
18.21 
18.26-34 
18.17-34 
18.28-32 
18.21 
18.26-28 
18.28-29 
18.26,28,30-34 
18.38 

18.27,52 
18.6,8 
18.9,11,30 
18.7-8 
18.8 
18.8,10 
18.1-52 
18.49-52 
'18.7-13,27,30 
18.14-16 
18.48-49 
18.3-5 
18.34 
18.6,13 
18.8.10,30 
18.16 
18.5-6 
18.9 
18.9 
18.3 
18.15 
18.7 
18.39,41-42 
18.39-40 
18.39 
18.38 
18.9 
18.9,11,14,29,31-32 
18.9 
18.8 
18.38 



ENTRIES (compiler variable/parameter) •.••••••••• 
entries (to a block) ....•..•..•.•••..••••••••••• 
ERSETQ[ERSETX] NL ...........•.•.•••••••••.••••.• 
E VQ[ X] .......................................... . 
EXPR (property name) .......•••.••••••••••••••••• 
F (response to compiler question) ••...•••••••••• 
FASTCALL (1n an assemble statement) .••••••••••.• 
FAULTAPPLY[FAULTFN;FAULTARGS] •••••••.••••.•••••• 
FILE: (compiler question) ••••••••••••••••••••••• 
FUNARG .......................................... . 
FUNCTION[EXP;VLIST] NL •••••••••••••••.•••••••••• 
function definition cell .•.••••••••••••••••••••• 
functional arguments ..•.•..••.•.••••.•••••••••.• 
GENSYM[CHAR] ..............•....•......••••.••••• 
global variables ..•.......•••.•••.•••••••••••••• 
GLOBALVARS (compiler variable/parameter) ••••••.• 
(ILLEGAL GO) (compiler error message) .••••.•.••• 
(ILLEGAL RETURN) (compiler error message) ••••••• 
INSTRUCTIONS (in compiler) ....••.••••••••••••••• 
(IS GLOBAL) (compiler error message) •..•.••••••. 
LAMS (compiler variable/parameter) •.••••••••••.• 
LAP ............................................. . 
LAP macros .•••..•.•••••••••••••••••••••••••••••• 
LAP,op-defs ..............•••..•...••.••••••••... 
LAP statements ................................. . 
LAPFLG (compiler variable/parameter) ••••••.•.••• 
lAPRD[ FN] ........................................... .. 
LCFIL (compiler variable/parameter) •.••••••••••• 
linked function calls .......•....•••.•••••••..•• 
LINKEDFNS (system variable/parameter) •••••.••••• 
LINKFNS (compiler variable/parameter) ••••••••••• 
LISTING? (compiler question) ...•..•••••••••••••• 
LOAD[ FILE; LDF LG; PR INTFLG] •..•••.•.••••••••.••••• 
LOCALFREEVARS (compiler variable/parameter) 
LSTFIL (compiler variable/parameter) •.•••••..••• 
machine instructions .....••••••••••••••••••••••• 
MACRO (property name) ••..••.••••••••••••••.••••• 
macros (in compiler) .•..••..•••••••••••••••••••• 
HAKEFILE[FILE:OPTIONS] .....•••••.••••••••••••••• 
(MULTIPLY DEFINED TAG) (compiler error message) 
(MULTIPLY DEFINED TAG t ASSEMBLE) 

(compiler error message) .••.•••.••.•••••••. 
(MULTIPLY DEFINED TAG t LAP) 

(compiler error message) .•..•.••••••••••••• 
NIL (use in block doclarations) •.•••.••••••••••• 
NLAMA (compiler variable/parameter) ...•••••••••• 
NLAML (compiler variable/parameter) ..•.••••••••• 
NLSETQ[NLSETX] NL .................••.....•...••• 
(NO LONGER INTERPRETED AS FUNCTIONAL ARGUMENT) 

(compiler error message) ..............•.••• 
NOLINKFNS (compiler variable/parameter) ...•...•. 
(NON ATOMIC CAR OF FORM) (compiler error message). 
NOT COMPILEABLE (compiler error message) ...•••.• 
(NOT COMPILEABLE) (compiler error message) •••••• 
(NOT DEFINED WHEN LINK TRIE() FROM) 

(typed by system) ... ~ ••••••.••••••••••••••• 
NOT FOUND (compiler error mossage) .•.••••.••••.• 

IN[)EX .18.2 

Page 
Numbers 

18.29 
18.18,27 
18.16 
18.19 
18.7,21 
18.2,4 
18.38 
18.25 
18.3 
18.16 
18.16 
18.21 
18.16 
18.16 
18.6-7 
18.6,29,48,51 
18.51 
18.51 
18.15 
18.51 
18.5,9,11,31-32 
18.3,34,40 
18.36,43 
18.35-36 
18.40-44 
18.3 
18.25 
18.3,5 
18.21-26 
18.25 
18.24,29-30 
18.2-3 
18.8 
18.19-20,29 
18.3 
18.1,40-41 
18.13-14 
18.14-16 
18.10,32 
18.50 

18.50 

18.50 
18.30 
18.5,9,11,31-32 
18.5,9,11,31-32 
18.16 

18.49 
18.24-25,29-30 
18.49 
18.51 
18.7,51 

18.24 
18.12,52 



(NOT IN FILE - USING DEFINITION IN CORE) . 
(compi ler error message) ........•.......••. 

NOT ON BlKFNS (compiler error message) .•.....•.• 
NP (in an assemble statement) .•••.•...••....•.•• 
number stack ..................•..•....•......••. 
OPCODE (in a lap statement) .•••..•••.••..•.••••• 
(OPCODE? - ASSEMBLE) (compiler error message) 
OPD (property name) .......•••.•••••••••.••.••••• 
open functions .............•..•••••.••••••••.•.• 
open macros ...... 'Ill •••••••••••••••••••••••••••••• 

OUTPUT FILE: (compiler question) •••••••••••••••• 
parameter pushdown list ........••••••••••..•.••• 
PP[ X] NL* .... III ..... 0 •••••••••••••••••••••••••••••• 

PSTEP (in an assemble statement) •••.•.•••..•.••• 
PSTEPN (in an assemble statement) •.•.••••••.•••• 
RECOMPILE[PFILE;CFILE;FNS;COREFLG] ••.••..•.••.•• 
REDEFINE? (compiler question) ...•••••.•....•.••• 
RELINK[FN;UNLINKFLG] ..........•••••...•..•.••••. 
relinking ....................................... . 
RESETVAR[RESETX;RESETY;RESETZ] Nt •••••••••••.•.• 
RETFNS (compiler variable/parameter) •••••••••••• 
S (response to compiler question) .•••••••••...•• 
SAVE EXPRS? (compiler question) •..•.••.•••.••.•. 
second pass (of the compiler) •..•.••••.••••.•••• 
SETQ (in an assemble statement) .••••.••••••••••• 
SP (in an assemble statement) ........••.•.•••••. 
SPECVARS (compiler variable/parameter) ..•••••.•• 
ST (response to compiler question) •...•.••.•••.• 
SlRF (compiler variable/parameter) ..•.••.•.•.... 
substitution macros ...............•..••••.••••.. 
SVFLG (compiler variable/parameter) .•••••••..•.• 
SYSLINKEDrNS (system variable/parameter) ••.•.••. 
lCOMPl[FILES] ..............•.......••..•....•.•. 
TRAPCOUNT[X] SUBR ............•...•.•.••••.••.••. 
UNfiROKEN (typed by comp 1 1 er ) ..........•••.•••..• 
(UNDEFINED TAG) (compiler error message) •••••••• 
(UNDEFINED TAG, ASSEMBLE) (compiler error message) 
(UNDEFINED TAG, LAP) (compiler error message) 
(USED AS ARG TO NUMBER FN?) 

(compiler error message) .•...•.••••...•••.• 
(USED BLKAPPLY WHEN NOT APPLICABLE) 

(compiler error message) •.....•••••.•.••..• 
WORLD (as argument to RELINK) .••••••••••••••.••• 
I (in a lap statement) ........••.............••• 
• (in a lap statement) .....•..••..••••.••••.•••• 
• (in an assemble statement) .......•.•..•.•••••• 
•• _-- (in compiler error messages) ..••••...•.••• 
= (in a lap statement) ........•..•••..•.•..•.... 
@ (in a lap statement) ...•••••..••••••••.••••••• 

INDEX.tS.3 

Page 
Numbers 

18.52 
18.20,27,52 
18.46 
18.46 
18.41 
18.35,51 
18.35-36,41,43 
18.13-14 
18.15 
18.2,5 
18.46 
18.46 
18.46 
18.46 
18.7-8,10,30,33 
18.4 
18.25-26 
18.25-26 
18.7 
18.20,26,29 
18.4 
18.4 
18.34 
18.38 
18.38,46 
18.18,26,29 
18.2,4 
18.3-4,8 
18.16 
18.3-4 
18.26 
18.7-10,30-31 
18.19 
18.7 
18.50 
18.50 
18.50 

18.51 

18.51 
18.25 
18.42 
18.42 
18.39 
18.49 
18.41 
18.41 





SECTION 191 

ADVISING 

The operation of advising gives the user a way of modifying a function without 

necessarily knowing how the function works or even what it does. Advising 

consists of modifying the inter/ace between functions as opposed to modifying. 

the function definition itself, as in editing. break, trace, and breakdown, 

are examples of the use of this technique: they each modify user functions by 

placing relevant computations between the function and the rest of the 

programming environment. 

The principal advantage of advising, aside from its convenience, is that it 

allows the user to treat functions, his or someone else's, as Mblack boxes,· 

and to modify them without concern for their contents or details of operations. 

For example, the user could modify sysout to set sysdate to the' time and date 

of creation by advise[SYSOUT;(SETQ SYSDATE (DATE»] 

As with break, adVising works equally well on compiled and interpreted 

functions. Similarly, it is possible to effect a modification which only 

operates when a function is called from some other specified function, i.e., to 

modify the interface between two particular functions, instead of the interface 

between one function and the rest of the world. This latter reature is 

especially useful for changing the internal workings of a system function. 

i------------------------------------------------------------------------------AdVising was developed and implemented by W. Teitelman. 

19.1 



For example, suppose the user wanted time (Section 21) to print the results of 

his measurements to the file FOO instead of the teletype. He could accomplish 

this by AOVISE«(PRINI PRINT SPACES) IN TIME) BEFORE (SETOQ U FOO» 

Note that advising prinl, prin1b or spaces directly would have affected all 

calls to these very frequently used function, whereas advising 

( ( PRIN 1 PRINT SPACES) IN TIME) flffects just those calls to 2rin 1, print, and 

spaces from time. 

Advice can also be specified to operate after a function has been evaluated. 

The value of the body of the original function can be obtained from the 

variable !value, as with break!. For example. suppose the user wanted to 

perform some computation follow'ing each sysin, e.g. check whether his files 

were up to date. He could then: 

AOVISE(SYSOUT AFTER (COHD «LISTP 'VALUE) __ »)2 

19.1 Implementation of Advising 

The structure of a function after it has been modified several times by advise 

is given in the following diagrcull: 

2------------------------------------------------------------------------------After the sysin. the sys tE!m will be as it was when the Sysout was 
performed, hence the advice must be to sysout, not sysin. See Section 14 
for complete discussion of ~'sout/sysin. 

19.2 



MODIFIED 
FUNCTION ADVICEN 

ENTER 

ORIGINAL 
FUNCTION 

FIGURE 19-1 

19.3 

ADVICE 
BEFORE 

ADVICE 
AFTER 



The corresponding INTERLISP definition is: 

(LAMBDA arguments (PROG (!VALUE) 
(SETQ !VALUE (PROG NIL 

advice1 

. 
advicen 
(RETURN form») 

advice1 

advicem 
(RETURN !VALUE») 

ADVICE 
BEfORE 

ADVICE 
AFTER 

where form is equivalent to the ,original definition. a 4 

Note that the structure of a f'unction modified by advise allows a piece of 

advice to bypass the original definition by using the function RETURN. For 

example. if (CONO «ATOM X) (RE:TURN Y») were one of the pieces of advice 

BEFORE a function, and this function was entered with! atomic, l would be 

returned as the value of the inner PROG, 'value would be set to l' and control 

passed to the advice, if any, to be executed AFTER the function. If this same 

piece of advice appeared AFTER the function, l would be returned as the value 

of the entire advised function. 

The advice (CONO «ATOH X) (SETe) !VALUE V»~) AFTER the function would have a 

similar effect, but the rest of the advice AFTER the function would still be 

executed. 

a-------------------------------·-----------------------------------------------Actually, advise uses its o"m versions of PROG, SETQ, and RETURN, (called 

4 

AOV-PROG, AOV-SETQ, and AD"-RETURN) in order to enable advising these 
functions. 

If fn was originally an EXPR" form is the body of the definition, otherwise 
a form using a gensyn! which 1s defined with the original definition. 

19.4 



19.2 Advise Functions 

Advise 

Advise is a function. of four arguments: fn, when, where, and what. .fl! is the 

function to be modified by advising, what is the modification, or piece of 

advice. when is either BEFORE or AFTER, and indicates whether the advice is to 

operate BEFORE or AFTER the body of the function definition is evaluated. 

where specifies exactly where in .the list of advice the new advice is to be 

placed, e.g .• FIRST, or (BEFORE PRINT) meaning before the advice containing 

print, or (AFTER 3) meaning after the third piece of advice, or even (: TTY:). 

If where is specified, advise first checks to see if it is one of LAST, BOTTOM, 

END. FIRST. or TOP, and operates accordingly. Otherwise, it constructs an 

appropriate edi t command and calls the editor to insert the advice at the 

corresponding location. 

Both when and where are optional arguments, in the sense that they can be 

omitted in the call to advise. In other words, advise can be thought of as a 

function of two arguments (fn;what], or a function of three arguments: 

[fnjwhen;what], or a function of four arguments: (fn;when;where;what]. Note 

that the advice is always the last argument. If when=NIl, BEFORE is used. If 

where=NIl, LAST is used. 

adviser fn ;when ;where ;what] fn is the function to be advised, when=BEFORE or 

AFTER, where specifies where in the advice list 

the advice is to be inserted, and what is the 

piece of advice. 

If fn is of the form (fnl IN fn2), fnt is changed 

to rnt-IN-fn2 throughout rn2, as with break, and 

19.5 



thEln fnl-IN-fn2 is used in place of fn. 6 

If fn is broken, it is unbroken before advising. 

If fn is not defined, an error is generated, 

NOT A FUNCTION. 

If fn is being advised for the first time, i.e. if 

getp[name,ADVISED]=NIl, a gensym is generated and 

stored on the property list of fn under the 

property ADVISED, and the gensym is defined with 

the original definition of fn. An appropriate S­

expression definition 1s then created for fn. 6 

Finally, f!! is added to the (front of) 

advisedfns. 7 

If ,fn has been advised before, it is moved to the 

front of advisedfns. 

The advice is inserted in fn t s definition either 

BEF.)RE or AFTER the original body function 

6-----------------~-------------··-------------·-------------------------------~ 
If rnt and/or fn2 are lists, they are distributed as shown 1n the example 

fJ 

7 

on page 19.2. 

Using private versions of PROG, SETQ, and RETURN, so that these functions 
can ~lso be advised. 

So that unadvise[T] always unadvises the last function advised. See page 
19.8. 

19.6 



depending on when.8 Within that context, its 

position is determined by where. If where=lAST, 

BOTTOM, END. or NIL, the advice is added following 

all other advice, if any. If where-FIRST or TOP, 

the advice is inserted as the first piece of 

advice~ Otherwise, where is treated 85 a command 

for the editor, a la breakin. e. g. (BEFORE 3). 

(AFTER PRINT) • 

Finally list[when;where:what] is added (by· 

add prop ) to the value of property ADVICE on the 

property list fn. 9 Note that this property value 

is a list of the advice in order of calls to 

advise, not necessarily in order of appearance of 

the advice in the definition of fn. 

The value of advise is fn. 

If fn is non-atomic, every function in fn is 

advised with the same values (but copies) for 

when, where, and what. In this case, the value of 

advise is a list of individual functions. 

Note: advised functions can be broken. (However if a function is broken at 

the time it is advised, it is first unbroken.) Similarly, advised functions can 

8----~--~~-------~~-----~~·--~----------------------------~-------------------~ A special case is when=BIND. Here the advice is treated as a list of PROG 

9 

variables to be bound. The variables are nconced to the PROG variable list 
containing !value. See page 19.4. 

So that a record of all the changes is available for subsequent use 1n 
readvising, see page 19.8. 

19.7 



be edited, including their advice. unadvise will still restore the function to 

its unadvised state, but any changes to the body of the definition will 

survive. Since the advice store'd on the property list is the same structure as 

the advice inserted in the fUl1lction, editing of advice can be performed on 

either the function's definition or its property list. 

unadvise[x] is a no-spread NlAMBDA a la unbreak. It takes an 

indefinite number of functions and restores them 

to their original unadvised state, including 

removing the properties added by advise. 10 

!!!!!dvise saves on the list advinfolst 9nough 

information to allow restoring a function to its 

advised state using readvise. advinfolst and 

readvise thus correspond to brkinfolst and 

unadvise[] unadvises all functions on 

advisedfns. 11 It first sets advinfolst to NIL. 

unadvise[ T] unadvises the first function of 

adv:Lsedfns, i. e. .. the most recently advised 

func:tion. 

readvise[x] is .1 no-spread NlAMBDA a la rebreak for restoring 

a function to its advised state without having to 

specify all the advise information. For each 

iO---------~---------------------,-----------------------------------------~----Except if 8 function also contains the property READVICE (see readvise 

11 

below), unadvise moves the current value of the property ADVICE to 
REAOVICE. 

In reverse order, so that the most recently advised function 1s unadvised 
last. 

19.8 



function on ~, readvise retrieves the advise 

information either from the property REAOVICE for 

that function. or from advinfols t, and performs 

the corresponding advise operation(s). In 

addi tion it stores this information on the 

property REAOVICE if not already there. If no 

information is found for a particular function, 

value is (fn - NO ADVICE SAVED). 

readvise[] readvises everything on advinfolst. 

readvise[T] readvises just the first function on 

advinfolst, i.e., the function most recently 

unadvised. 

The difference between advise, unadvise, and readvise versus preak. unbreak. 

and rebreak, is that if a function is not rebroken between successive 

unbreak[ ]. s, its break information is forgotten. However, once readvised, a 

function's advice is permanently saved on its property list (under REAOVICE); 

subsequent calls to unadvise will not remove it. In fact, calls to unadvise 

update the property READVICE with the current value of the property ADVICE, so 

that the sequence readvise, advise, unadvise causes the augmented advice to 

become permanent. Note that the sequence readvise, advise, readvise removes 

the 'intermediate advice' by restoring the function to its earlier state. 

advisedump[x;flg] Used by prettydef when given a command of the form 

(ADVISE --) or (ADVICE --). f!U=T corresponds to 

(ADVISE --), i.e. advisedump writes both a deflist 

and a readvise. f!a=NIL corresponds to (ADVICE -­

), i.e. only the deflist is written. In either 

case, advisedump copies the advise information to 

19.9 



the property READVICE, thereby making it 

• p4Jrmanent' as described above. 

19.10 



Index for Section 19 

AOV-PROG •••••••••••••••••••••••••••••••••••••••• 
ADV - RE TURN •••••••••••••••••••••••••••••••••••••• 
AOV-SETQ •••••••••••••••••••••••••••••• I-I •••••••• 

advice ......................................... . 
ADVICE (prettydef command) ••.••••••••••••••••••• 
ADVICE (property name) •.•••••••••••••••••••••••• 
ADVINFOLST (system variable/parameter) •••••••••• 
ADVISE[FN;WHEN;WHERE;WHAT] ••••••••••••••••••.••• 
ADVISE (prettydef command) ••••••.••.•••••••••••• 
ADVISED (property name) ....••••••••••••••••••••• 
ADVISEDFNS (system variable/parameter) ••••••••.• 
ADVISEOUMP[X;FlG] .•••..••..•••••••••••••••...••• 
advising ........... . ' ..................... I.' ••••• 
AFTER (as argument to advise) ••••••• ~ .•••••••••• 
BEFORE (as argum~ntto adv1se~ •••••••••••••••••• 
BIND (as argument to advise) •••••••••••••••••••• 
BOTTOM (as argument to advise) •• , ••••••••••••••• 
FIRST (as argument to advise) •.•••••••••••••••.• 
(fn1 IN fn2) .....................••............. 
fnl-IN-fn2 .....................•..•............. 
GENSYH[C~'AR] •••••••••••••••••••••••••••••••••••• 
LAST (as argument to advise) •••••••••••••••••••• 
NOT A FUNCTION (error message) •••••••••••••.•••• 
PRE TTYOEF •.•...•.•••.••••••••••••••••••••••••••• 
READVICE (property name) •••••••••••••••••••••••• 
REAOVISE[X] Nt* ..........••.•••••••••••••.••.••• 
TOP (as argument to advise) ••••••••••••••••••••• 
UNADVISE[X] Nt* .....••..•••.•••••••••••••••••••• 
UNBROKEN (typed "by advise) •••••••••••••••••••••• 
!VALUE (with advising) •••••••••••••••••••••••••• 

INDEX.19.1 

Page 
Numbers 

19.4,6 
19.4,6 
19.4,6 
19.2,4 
19.9 
19.7-9 
19.8-9 
19.4-5 
19.9 
19.6 
19.6,8 
19.9 
19.1-10 
19.2,4-6 
19.4-6 
19.7 
19.5,7 
19.5,7 
19.5 
19.5 
19.4,6 
19.5,7 
19.6 
19.9 
19.8-10 
19.8-9 
19.5,7 
19.6,8-9 
19.6 
,19.2,4 





'20.1 Printstructure1 

SECTION 20 

PRINTSTRUCTURE AND INTERSCOPE 

In trying to work with large programs, a user can lose track of the hierarchy 

which defines his program structure; it is often convenient to have a map to 

show which functions are called by each of the functions in a system. If fn is 

the name of the top level function called in your system, then typing in 

printstructure[fn] will cause a tree printout of the function-call structure of 

fn. To illustrate this in' more detail, we use the printstructure program 

itself as an example. 

j----------------------------------------------------- -------------------------A preliminary version of printstructure was written by D. 6. Bobrow. The 
current form of printstructure was written by W. Teitelman. 

20.1 



PRINTSlRUCTURE PRGETD 
PROGSTRUC PRGETD 

PRGSTRC NOTFN PRGETO 
PROGSTRUC 
PRGSTRCI PRNCONC 

CAlLS1 

PRNCONC 
PRGSTRC 
HAKELIST 
NOTFN 

PRGSTRCI 
PRGSTRC 

CALLSZ CALLS1 

TREEPRINT TREEPRINTl 
TREEPRINT 

VARPRINT VARPRINTI TREEPRINT1 

PRGETO 

VARPRINTZ ALLCALLS ALLCALLSI ALLCALLSI 
TREEPRINTI 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

PRINTSTRUCTURE [X,FILE: DONELST,N.TREELST.TREEFNS.LSTEH.X.V.Z. 
FN,TREE,PRDEPTH,LAST-PRINTSTRUCTURE] 

CALLED BY: 

PRGETO [X,FLG;;] 
CALLED BY: PRINTSTRUCTURE,PROGSTRUC,NOTFN,CALLSZ 

PROGSTRUC [FN.DEF; N,Y,Z,CALLSFLG,VARSFLG.VARS1,VARSZ,D,X; N,DONELST] 
CALLED BY: PRINSTRUCTURE,PRGSTRC 

PRGSTRC [X,HEAD,FLG; Y,TEH,X; VARSFLG,O,NOFNS,CALLSFLG,N,DONELST. 
TREEFNS,NOTRACEFNS,FN,VARS1,QUOTEFNS] 

CALLED BY: PROGSTRUC,PRGSTRCl,PRGSTRC 

NOTFN [FN; OEF; NOFNS,YESFNS,FIRSTLOC,LASTLOC] 
CALLED BY: PRGSTRC,CALLSI 

PRGSTRCI [L,HEAD,FLG; A,B; VARSl.VARSZ] 
CALLED BY: PRGSTRC.PRGSTRCI 

PRNCONC [X,Y; ; CALLSFLG] 
CALLED BY: PRGSTRCl~PRGSTRC 

CALLS1 [ADR,GENFLG,D; LIT,END,V1,VZ.LEFT,OPO.X,X; VARS1 ,VARSZ , 
VARSFLG] 

CALLED BY: PROGSTRUC,CALLSZ 

MAKELIST [N,ADR; L; ] 
CALLED BY: CALLS1 

Figure 20-1 

20.2 



The upper portion of this printout is the usual horizontal version of a tree. 

This tree is straighforwardly derived from the definitions of the functions: 

p!.Jnt~!ructure calls I!rgetd, progstruc, treeprint, and varprin t. progs true in 

turn calls prgetd, prgstrc and caiisi. prgstrc calls notfn, progstruc, 

~gstrcl. prnconc, and itself. prgstrcl calls prnconc, itself, and prgstrc. 

Note that a function whose substructure has already been shown is not expanded 

in its second occurrence in the tree. 

The lower portion of. the printout contains, for each function, information 

about the variables it uses, and a list of the functions that call it. For 

example, printstructure is a function of. two arguments, 1! and file. It binds 

eleven variables internally: donelst, rr. 
last-printstructure as free variables. 

tree, 2 and uses prdepth and 

It is not called by any of the 

functions in the tree. prgetd is a function of two arguments, ! and fla, binds 

no variables internally, uses no free variables, and is called by 

printstructure, progstruc, notfn and callsZ. 

I!!Jntstrllcture calls many other low-level functions such as getd, fi!!:, list, 

nconc, etc. in addi tion to the four functions appearing in the above output. 

The reason these do not appear in the output is that they were defined 

"uninteresting" by the user for the purposes of his analysis. Two functions, 

firstfn and lastfn, and two variables, yesfns and nofns are used for this 

purpose. Any function that appears on the list nofns is not of interest, any 

function appearing on yesfns is of interest. 

~sfns=T effectively puts all functions on yesfns. As for functions appearing 

on neither ~ofns or yesfns, all interpreted functions are deemed interesting, 

but only those compiled functions whose code lies in that portion of bpspace 

2------------------------------------------------------------------------------Variables are bound internally by either PROGs LAMBDA-expressions. 

20.3 



between the two 1 imi ts es tabl i:;hed by firs tfn and las tfn. For example. the 

above analysis was performed following firstfn[ PRINTSTRUCTURE] and 

lastfn[ALLCALLS1]. 

Three other variables, notracefns, quotefns, and prdepth also affect the action. 

of printstructure. functions that appear on the list notracefns will appear in 

the tree, assuming they are "interesting" functions as defined above. but their 

definitions will not be analyzed. 

functions that appear on guotefns are analyzed, assuming they are 

II interesting," but when they appear as f.!!: of a form, the rest of the fonn, 

i.e., the arguments, is not analyzed. For example, if the function I!!':.!..!!g were 

defined as (NLAMBOA (X) (MAPC X (FUNCTION PRIN1») and included on guotefns. 

and the form (PRINQ (NOW IS THE TIME» appeared in a function being analyzed, 

pring would appear in the tree and be analyzed but the 'form' (NOW IS THE TIME) 

would be skipped. The initial setting of quotefns is NLAMBOAs, which 

effectively includes all NLAMBOAs (functions with argtype 1 or 3) on guotefns, 

except for those functions which printstructure knows require evaluation. e.g., 

ersetq, nlsetq, Q!" and, etc. The arguments to these functions are always 

analyzed. 

Finally. prdepth is a cutoff depth for analysis. It is initially set to 7. 

printstructure has incorporated in it the necessary information for analyzing 

non-standard forms such as conc!, ~ and selectq. It is also capable of 

20.4 



analyzing compiled or interpreted functions equally well. 8 4 In the case of 

compiled functions, printstructure will automatically analyze any functions 

generated by the compiler, such as those caused by compiling forms beginning 

with ersetg, nlsetg, or function. 

If printstructure encounters a form beginning with two left parentheses in the 

course of analyzing an interpreted function (other than a CONO clause or open 

lambda expression) it notes the presence of a ~ossible £arentheses ~rror by the. 

abbreviation P.P.E., followed by the function in which the form appears, and 

the form itself, as in the example below. Note also that since printstructure 

detects functions that are not defined, (i.e., atoms appearing as CAR of 8 

form), printstructure is a useful tool for debugging. 

3------------------------------------------------------------------------------except there may be some confusion in analyzing compiled functions, if the 

4 

name of a variable and a function are the same. For this reason, it is 
best to printstructure the interpreted version of a function whenever 
possible. 

Printstructure knows about CLISP (Section 23) to the extent that if it 
encounters untranslated iterative statements or IF-THEN-ELSE statements, it 
will automatically dwimify them before analyZing them. 

20.5 



~pp FOO 

(FOO 
[LAMBDA (X) 

(COND 
( (CAR X) (FOO 1 X» 
(T «CONS X (CAR X]) 

FOO 
~PRINTSTRUCTURE(FOO) 

FOO FOOl 

++++++++++++++++++++++++++++++++.~++++++++++++++++++++++++++++++++++++++++++++ 

Foa [X: : ] 
CALLED BY: 

FOOl IS NOT DEFINED. 

P.P.E. IN FOO - «CONS X (CAR X»)) 

Figure 20-2 

Other Options 

printstructure is a function of three arguments, !, exprflg, and file. 

printstructure analyzes ~, sets the free variable last-printstructure to the 

results of its analysis, prints the result (in the format shown earlier) to 

fi Ie (which is opened if necessa.'"y and closed afterwards), and returns! as its 

value. Thus if the user did not want to see any output, he could call 

printstructure with file=NIL:. 6 and then process the result himself by using 

last-printstructure. 

printstructure always checks ftlr .EXPR properties on the property list of 

functions that are not defined. However, if exprflg=T, printstructure will 

prefer to analyze EXPR definitions whenever possible, i.e. if the function 

6------------------------------- .. --------------------- -~---------------~----~-~ 
NIL: is a TENEX output device that acts like a 'bottomless pit'. Note 
that file=NIL (not NIL:) means print the tree to primary output f11e. 

20.6 



definition call contains a compiled definition, and there is also an EXPR 

property, the latter will be analyzed. See footnote on page ZO.5. 

~ can be NIL, a list, a function, or an atom that evaluates to a list. If ~ is 

NIL, printstructure does not perform any analysis, but simply prints the result 

of the last analysis, i.e., that stored on last-printstructure. Thus the user 

can effectively redirect the output that is going to the terminal to a disc 

filo by aborting the printout, and then performing printstructure[NIL;file]. 

If ~ is a list, printstructure analyzes the first function on ~, and then 

analyzes the second function, unless it was already analyzed, then the third, 

etc., producing however many trees required. Thus, if the user wishes to 

analyze a collection of functions, e.g., breakfns, he can simply perform 

(PRINTSTRUCTURE BREAKFNS). 

If ~ is not a list, but is the name of a function, printstructure[x] is the 

same as printstructure[(x)]. Finally, if the value of ~ is a list of 

functions. pri!ltstructure will process that list as described above. 

Note that in the case that 2f is. a list, or evaluates to a list, subsequent 

functions are not separately analyzed if they have been encountered in the 

analysis of a function appearing earlier on the list. Thus, the ordering of x 

can be important. For example, if both FOO and FIE call FUM, 

printstructure[(FOO FIE FUM)], will produce a tree for FOO containing embedded 

in it the tree for FUM. FUM will not bo expanded in the tree for FIE, nor will 

it have a tree of its own. (Of course, if FOO also calls FIE, then FIE will 

not have a tree ei ther.) The convention of listing FUM can be used to force 

printstr~ucture to give FUM a tree of its own. Thus 

printstructurc[(FOO FIE (FUM»] will produce three trees, and neither of the 

calls to FUM from FOO or FIE will be expanded in their respective trees. Of 

course, in this example, the same effect could have been achieved by 

20.7 



reordering, i.e., printstructure[(FUM FOO FIE)]. However, if FOO, FIE, and 

FUM, all called each other, and yet the user wanted to see three separate 

trees, no ordering would suffice. Instead, the user would have to do 

printstructure[«FOO) (FIE) (FUM»]. 

The resul t of the analysis of J!.rilitstructure is in two parts: done 1st , a list 

summarizing the argument/variable information for each function appearing in 

the tree(s), and treelst, a list of the trees. last-printstructure is set to 

cons[donelst;treelst]. 

donelst is a list consisting, in alternation, of the functions appearing in any 

tree, and a variable list for 1~hat function. car of the variable list is a 

list of variables bound in the function, and cdr is a list of those variables 

used freely in the function. Thus the form of donelst for the earlier example 

would be: 

(PRINTSTRUCTURE «X FILE OONELST N TREELST TREEFNS L TEM X Y Z . 
FN TREE) PRDEPTH LAST-PRINTSTRUCTURE) PRGETO «X FLG» 
PROGSTRUC « FN OEF N Y Z CALLSFlG VARSFLG VARSI VARSZ 0 X) 
N OONELST) ... ALLCALLSI «FN TR A B») 

Possible parentheses errors art! indicated on donelst by a non-atomic form 

appearing where a function would normally occur, i.e., in an odd position. The 

non-atomic form is followed by the name of the function in which the P.P.E. 

occurred. 

20.8 



Printstructure Functions 

printstructure[x;exprflg;file] analyzes saves result on 

treeprint[x;n] 

varprint[donelst;treelst] 

allcalls[fn;treelst] 

firstfn[ fnJ 

lastfn[fn] 

last-printstructure, outputs trees and variable 

information to file, and returns ~ as its value. 

If exprflg=T, printstructure will prefer to 

analyze expr's. See page 20.6. 

prints a tree in the horizontal fashion Shown in 

the examples above. i.e .• printstructure performs 

(MAPC TREELST (FUNCTION TREEPRINT». 

prints the Mlower halfM of the printstructure 

output. 

uses treelst to produce a list of the functions 

that call fn. 

If fn=T, lower boundary is set to 0, i.e .• all 

subrs and all compiled functions will pass this 

test. If fn=NIL, lower boundary .set at end of 

bpspace, i.e., no compiled functions will pass 

this test. Otherwise fn is the name of a compiled 

function and the boundary is set at fn, i.e., all 

compiled functions defined earlier than fn are 

rejected. 

if fn=NIL, upp~r boundary set at end of bpspace, 

i.e., all compiled functions will pass this test. 

Otherwise boundary set at fn, i.e., all compiled 

functions defined later than fn are rejected. 

20.9 



Thus to accept all compiled functions, perform firstfn[T] and lastfn[NIl]: to 

reject all compiled functions, perform firstfn[]. 

calls[fn;exprflg;varsflg] 

vars[fn;exprflg] 

freevars[fn;exprflg] 

is a fast 'one-level' printstructure, i.e., it 

indicates what functions fn calls, but does not go 

further and analyze any of them. calls does not 

print a tree, but reports its findings by 

returning as its value a list of three elements: a 

list of all functions called by fn. a list of 

variables bound in fn, and a list of variables 

used freely in fn, e.g., 

calls[progstruc] = «PRGETD EXPRP PRGSTRC CCOOEP 
CALLSt ATTACH) (FN DEF N Y Z CALLSFLG VARSFLG 
VARSl VARS2 0 X) (N OONELST» 

fn can be a function name, a definition, or a 

fOrilD. Calls first does firstfn(T). lastfn() so 

that all subrs and compiled functions appear, 

exc'ept those on nofns. If varsflg is T, calls 

ignores functions and only looks at the variables 

(and therefore runs much faster). 

cdr[calls[fn;exprflg;T]] 

cadr[vars[fnjexprflg]] 

20.10 



While printstructure is a convenient tool for giving the user an overview of 

the structure of his programs, it is not well suited for determining the answer 

to particular Questions the user may have about his programs. For example, if 

Foo uses X freely, ~nd the user wants to.know where Xis bound 'above' FOO, he 

has to visually tr~ce back up the tree that is output by printstructure, and, 

at each point, look down at the lower portion of the printout and find whether 

the corresponding function binds X. For large systems, such a procedure can be 

quite tedious. Furthermore, printstructure does not even compute certain 

certain important types of information. for example, printstructure does not 

distinguish between functions that use a variable freely and those that set it 

(or smash it). 

Intersco~ is an extension of printstructure designed to resolve these 

shortcomings. Like printstructure, interscope analyses programs (functions), 

although it extracts considerably more information and relationships than does 

printstructure. However, instead of presenting the information it obtains in a 

predetermined format,intcrscope allows the user to ask it questions about the 

programs it has analysed, i.e. to interrogate its data base. These Questions 

can be input in English, and contain conjunctions, disjunctions, and negations 

of the many relationships between functions and variables that interscope knows 

about. The que·stions can be closed questions. e.g. "DOES FOO CALL FIE?", or 

open questions, "WHAT FUNCTIONS CAll FIE?". The answers to some questions are 

obtainable directly from the data base, e.g. "WHAT VARIABLES DOES FOO SET?" 

Other questions cause interscope to search its data base, e.g. 

"WHAT FUNCTIONS BIND VARIABLES THAT FOO SETS?". Figure 20-3 contains a sample 

session with interscope. 

6------------------------------------------------------------------------------Interscope was written by P. C. Jackson. 

20.11 



.. INTERSCOPE] 
Hello, shall I analyze a system? 

&~WTFIXFNS AND CLISPFNS. 
This may take a few minutes. 

GC: 8 
1233, 10431 FREE WORDS 
Shall I analyze another system? 

[1] 

&~NO [2] 
Ok, what would you like to know? 

&WHO CALLS RETOWIM? 
(WTFIX FIX89TYPEIN FIXAPPLY FIXATOM FIXCONTINUE CLISPATOM FIXT) 
&HOW IS CLISPATOM CALLED? . . 

I didn't understand that. [3] 
&WItAT FUNCTIONS CALL CLISPATOM? [4] 
(WTFIX FIXAPPLY FIXATOM) 
&WtlAT FREE VARIABLES DOES CLISPATOM USE? 
(ONLYSPELLFLG CllSPCHANGES ClISPFLGTYPE-IN? CLISPSTATS INFIXSTATS LST 
FAUlTXX CUCONLST FAULTX DWIMIFYFLG 89CHANGE' fAULTPOS) 
&WHO BINDS TAIL? 
(WTFIX RETDWIMI RETDWIM2 RETDWIM3 CLISPFUNCTION? CLISPATOMO CLISPATOMI 
CLISPATOMIA CLISPATOM2A DWIMIFYIA OWIMIFY2 DWIMIFYZA CLISPRESPELL) 
&WHO BINDS TAIL AND CALLS CLISPATOM SOMEHOW? 
(WTFIX OWIMIFY2) 
&WHAT VARS DOES HELPFIX CHANGE? 
(FORM lASTPOS NOCHANGEFLG HElPFIXTAIL FN TEM BRKEXP) 
&WtlAT fUNCTIONS CHANGE TUE VARIABLE TENTATIVE? 
(ClISPATOMl ClISPA10M2 CLISPATOM2C CLISPATOM2A CLISPATOMIA) 
&WtfO CHANGES TAIL? 
(FIXATOM HELPFIXl CLISPATOMI CLISPATOM2 OWIHIFY2) 
&WtlAT FNS USE TEM AS AN INTERANL VAR AND 
... ARE CALLED BY CLISPATOM INDIRECTLY? 
INTERANL=INTERNAL? Yes 
(RETOWIM RETDWIMI FIX89TYPEIN) 
&HOW DOES CLIAPTOM CALL LISTP? 
CLIAPTOM=CLISPATOM? Yes 
«ClISPATOM LISTP) (CLISPATOM *** RETDWIM *** LISTP) (CLISPATOM [5] 
FIX89 FIX89A LISTP» 
&SHOW ME THE PATHS FROM CLISPATOH TO LISTP. 
CLISPATOM LISTP 

RETDWIM lISTP [6] 
RETOWIMI lISTP 

FIX89TYPEIN RETOWIM ..• 
FIX89 FIX89A lISTP 

&DOES GETVARS SMASH ANY VARIABLES? 
(L) 
&SUOW ME HOW GETVARS SMASHES L. 

(NCONC L (AND (LISTP X) (MAPCAR & &») 
8cGOOOBYE. 

Goodbye. 

Figure 20-3 

20.12 



In order to answer Questions about programs, interscope must analyze them and 

build its data-base. When interscope is first called, it will ask the user 

what functions he wants analyzed. The user can respond to this Question by 

giving interscope either: 1) the name of the top level function called in his 

system, or 2) the name of a variable that evaluates to a list of top level 

functions, or 3) the list itself. All of the functions below each top level 

function will be analyzed, except those which are declared to be 

"uninteresting," as described below. Note that after interscope goes into 

question-answering mode,7 the user can instruct interscope to analyze 

additional functions, either in English input, e.g. "ANALYZE FOOFNS." or by 

calling the function lookat directly (page 20.17). 

The structure of interscope may be divided into three major subsystems: a 

top-Ieve 1 man i tor funct ion, an Engl ish preprocessor, and the funct ions wh ich 

build and search the data base. The monitor function is implemented via 

userexec (see Section 22), so that the features of the programmer's assistant 

are available from within interscope. 8 For example, the user can REDO or FIX 

interscope Questions, interrogate the history list for his session, or run 

7------------------------------------------------------------------------------
When i.~ltcr;;_c:ope is first called, and it has not previously analyzed any 

8 

functions, it is in analysis mode, as indicated by its greeting and prompt 
c h a r act e r (&+- ins tea d 0 f &) (s e e [1] in Fig lJ r e 20 - 3 ) . In t e r s c o~~ go e sin to 
question-answering mode when the user answers NO to the Question "Shall I 
anal ysc a (another) sys tern?" ([ 2] in Figure 20-3). The on ly di fference 
between analysis mode and Question-answering mode is that in analysis mode, 
t!~~~rs~.QI~.Q treats forms as indicating a list of functions to be analysed. 
wher'cas in question-answering mode, intcrscope simply passes forms back to 
]j_~p~ for evaluation. 

j~~~~QP~ assumes that any input line terminated by a punctuation mark is 
intpndcd for it to process. interscope will also attempt to process other 
input lines, i.e. those not ending in punctuation. However, if it is not 
abln to make sense of the input, interscope will assume that it was 
intended to be handled by lispx, and pass it back for evaluation. for 
example, if the user types "HAS THOU SLAIN THE JABBERWOCK?". interscope 
will respond "1 didn't understand that". but if the user omits the '?', the 
line will be given to lispx for evaluation and (probably) cause a 
U.O.F. HAS error. 

20.13 



programs from within interscope. 9 

The English preprocessor translates English qUestions,10 statements, and 

commands into INTERLISP forms appropriate for searching and ,building the 

interscope data base. Al though this preprocessor is fairly flexible and 

robust (e.g. includes spelling correction), it translates only a limited subset 

of English sentences, and replies -I didn't understand that." to anything 

outside this subset ([3] in Figure 20-3).11 When this happens, usually a simple 

rephrasing of the question will suffice to allow interscope to handle it ([4] 

in Figure 20-3). 

The interscope data-base can be accessed directly by the user via the functions 

described below. It should be noted that interscope actually creates two data 

bases, the first containing information about the elementary relations between 

the functions and variables in the user I s system, and the second containing 

information derived from the first, i.e. the paths by which one function calls 

another. The first data base is created when interscope analyzes a system (via 

the function lookat). The second data base is developed incrementally (by the 

function paths), depending on the ,questions asked by the user. Both data bases 

are stored on the property lists of the functions and variables which are 

analyzed. 

9-------------------------------·-----------------------------------------------Since the data base that interscope constructs is global (stored on 

10 

11 

property lists), the user can also exit from interscope, either by typing 
OK or GOODBYE, or via control-D, and then reenter interscope at some later 
point and continue asking questions,' without having to reanalyze his 
functions. 

The translation of the most recent input is always stored in the function 
definition cell of the atom MEANING. 

Whero possible, interscope will try to inform the user what part of the 
sentence it did not understand. 

20.14 



Interscope "understands" a wide variety of the elementary relations that exist 

between functions and variables, e.g. which functions bind, use, change, test, 

or smash a given variable, which functions may cause a given function to be 

called, either directly or indirectly,12 which variables are used as global or 

local free variables, either by a given function or by a group of functions, 

etc. 

Information about the function-call paths from one program to another is 

"generalized" when it is stored; e.g. at [5] in Figure 20-3, one of the paths 

by which CLISPATOM calls LISTP is given as (CLISPATOM *** RETOWIM *** LISTP), 

which means that there is more than one path from CLISPATOM to RETOWIM, and 

more than one path from RETOWIM to LISTP. 

The conventions used by interscope for recognizing functions that are 

"uninteresting" are the same as those used by printstructure (page 20.3), i.e. 

yesfns, nofns firstfn, and lastfn all have the same effect as for 

printstructure. 

Interscope Functions 

paths[x;y;type;mustiavoidionly] Value is a list of paths from ~ to ~, where 

each path is an ordered list of functions. *** is 

used to indicate multiple paths. For example, if 

FOO calls FIE, and FIE calls FUM directly as well 

as calling FIEl which calls FUM, then 

paths[FOO;FUM] returns «FOO FIE *** FUM». 

12-----------------------------------------------------------------------------e.g. if FOO calls FIE, and FIE calls FUM, then FOO calls FUM indirectly. 
I SOMEHOW I means directly or indirectly, e. g. 
"WHAT FUNCTIONS CALL FOO SOMEHOW?-

20.15 



~~, must, avoid, and only are optional. ~ can 

be either CALLS or CALLEOBY (NIL is equivalent to 

CAULS) • e.g. in the above example, 

paths[FUH;FOO;CALLEOBY] would return the same set 

of paths as paths[FOO;FUM], except each path would 

be in the reverse order. 

mus~, avoid. and only are used to select out 

certain types of paths. Each can be specified by 

an atom which evaluates to a list of functions, or 

a form which evaluates to such a list. If (the 

value of) must is non-NIL, each path is required 

to tJO through at least one of the members of must. 

If avoid is non-NIL. no path can go through any 

member of avoid. If only is non-NIL. no pa'th can 

go through any function which is not a member of 

onlX. i.e. each path can only go through functions 

on !>nly.13 

treepaths[x;y;type;must;avoid;only] Like paths, except prints paths as a' 

treo structure. as shown at [6] in Figure 20-3. 

~, must, avoid, and only have the same meaning 

as 'fith paths. 14 

13--~~~~~~----;-;----~;ii;~-----;~;----~~~i1;h----~~~~-;;----;;----~~~-----f~;~: 

14 

"WHAT ARE THE PATHS FROM x TO y?". Such questions can be modified with 
subordinate clauses to indicate values for must, avoid, and/or only, e.g. 
"WHAT ARE THE PATHS FROM FOO TO FIE WHICH ONLY GO THROUGH FOOFNS AND AVOID 
FIEFNS?" 

treepaths is called for Engli,sh inputs of the form "SHOW ME HOW x CALLS y", 
"DISPLAY THE PATHS FROM x TO y., etc. 

20.16 



lookat[x] Builds the initial data base describing the system 

~, where ~ is either the name of a function, the 

name of a variable which evaluates to a list of 

functions, o~ the list of functions itself. 

clumpget[object;relation;universe) Value is a list of objects (functions or 

variables) which have the indicated relation with 

respect to object, e.g. clumpget[FOO;CALLERS) 

returns a list of functions that call FOO, 

clumpget[X;SMASHERS) a list of functions that 

smash the variable X, etc. A complete list of the 

possible values for relation is given below. 16 · 

object can be a list of objects (or a variable 

which evaluates to a list of objects), in which 

case the value returned by clumpget is the list of 

all objects which have the indicated relation to 

anu of the members of object. 

Similarly. unive~ can be a list of objects (or a 

variable which evaluates to a list of objects}, in 

which case the value returned by clumpget is the 

list of all objects in universe which have the 

indicated relation to object (or any of the 

members of object), e.g. 

clumpget[X;SMASHERS;FOOFNS). 

i5--i;-~~~~~~~~--;;-;;;~~-;-~~;~~-~~~--;;;;;;;;-~~~~-~~-~~~~--;;;-;~~~~~;;~:-~~ 
will attempt spelling correction, and if that fails, generate an error. If 
given a valuo for object that it has not seen before, it will type "I don't 
know anything about object, shall I analyse a system?" and go into analysis 
mode. ' 

20.17 



Finally" universe can be a relation, which is 

equivalent to supplying clumpget[object;universe] 

in place of object, i.e. the value returned is the 

list of all objects which have the indicated 

relation to any of the members of the {set of all 

objects which bear the relationship universe to 

object} . For example, 

clumpget[FOO;CALLERS;CALLEOFNS] is a list of all 

functions that call any of the functions (CALLERS) 

that are directly called by FOO (CALLEOFNS). 

clumpget[FOO;FREEUSERS;LOCALVARS] is a list of 

functions that use freely any of the variables 

that are bound locally.by FOO. 

Currently. the following relations are implemented: 

CALLERS 

CALLEOFNS 

CALLCAUSERS 

CALLSCAUSEO 

ABOVE 

BELOW 

ARGS 

list of functions that directly call object. 

list of functions directly called by object. 

list of functions that call object, perhaps 

indirectly. In English: "WHO CALLS FOO SOMEHOW?". 

list of functions called by object, perhaps 

indirectly. 

SOMEHOW?" 

In English: "WHO DOES FOO CALL 

union of object with CALlCAUSERS. 

union of object with CALLSCAUSED. 

arguments of object. 

20.18 



ARGBINOERS 

LOCALVARS 

LOCALBINOERS 

FREEVARS 

FREEUSERS 

LOCALFREEVARS 

GLOBALFREEVARS 

ENTRYFNS 

list of functions that have object as an argument. 

list of variables that are locally bound in 

object, e.g. PROG vars. 

list of functions that bind object as a local 

variable. 

list of variables used freely by object. 

list of functions .that use object freely. 

list of variables that are used freely in object, 

but are bound in object before they are used, e.g. 

clumpget[FOOiLOCALFREEVARS;BELOW] gives a list of 

those variables used freely below FOO, but are 

bound above the place that they are used .16 In 

English: "WHAT ARE THE LOCAL fREE VARS (VARIABLES) 

BELOW FOO?" 

list of variables used freely in object without 

previously being bound in object. 

list of each function in object which is not 

called by any function in object other than 

itself, e.g. clumpget[fOOFNSjENTRYFNS]. 

16-----------------------------------------------------------------------------
Note that if .2.!Uect is the name of a function and universe is NIL, 
LOCALFREEVARS will always be NIL, and GLOBALFREEVARS the same as fREEVARS. 
It is only in connection with collections of functions that LOCAlFREEVARS 
and GLOBALFREEVARS become interesting. 

20.19 



SELFRECURSIVE list of function$ in ob~ect which call themselves 

directly. 

CAUSESELFCALL list of functions in object which could call 

themselves, perhaps indirectly. 

CAUSERECURSION list of functions in object which cause some 

function to call itself, perhaps indirectly. 

CHANGEVARS list of variables that are changed by object. 

where 'changed' means anu flavor of ass ignmen t, 

i.e. via SETO. SETQO. RPAO, SETN, or even an 

expression of the form (RPLACA (QUOTE atom) value) 

(or FRPLACA, IRPLACA, SAVESET, etc.)17 

CHANGERS list of functions that change object. 

Note: 'set' in English input means anu Ilauor 01 assignment, and translates the 
same as 'change'. 

SMASHVARS list of variables whose value are smashed by 

object, where 'smash' means the variable appears 

as the first argument to one of the list of 

functions on smasherslst. 18 

17-----------------------------------------------------------------------------c Il1!!!p~ wi 11 accept as rEtlations SETOVARS, SETQERS, SETVARS, SETTERS, 

18 

SETQQERS, SETQQVARS, etc., in case the user wants to distingUish between 
the various flavors of assi!Jnments. In English. "WHAT ARE THE SETQERS OF 
X1", etc. 

Initially (RPLACA RPLACD FRPLACA FRPLACD IRPLACA IRPLACD NCONC NCONCl 
INCONC INCONCI ATTACH IATTJ\CH RPLNODE IRPLNODE RPLNODE2 IRPLNODE2). As 
with assignments, clumpgct will accept as relations RPLACAERS, RPLACAVARS, 
RPLACOERS. RPLACDVARS. etc., in case the user wants to distinguish the 
different types of smashing. 

20.20 



SMASHERS 

TESTVARS 

TESTERS 

USEVARS 

USERS 

list of functions that smash object. 

list of variables that are tested by object, where 

'tested' means they appear as the first argument 

to one of the list of functions on testerslst, 

initially (ATOM lISTP NUMBERP NlISTP STRINGP EQ 

EQP EQUAL NUll). or anywhere in an AND or OR, or 

as the predicate in a COND clausei or as the first 

argument to SELECTQ. etc. 

list of functions that test object. 

list of variables that are used in object, where 

'used' means actually appear in the body of the 

function, i.e. if a variable is simply bound, but 

not actually used anywhere, it will not be 

included in the value of USEVARS. CHANGEVARS and 

TESTVARS are subsets of USEVARS. 

list of functions that use object. 

20.21 



Index for Section 20 

ALLCALLS[ FN: TREELST] ....••.•.••.•..•.•••••••..•. 
CALLS[FN;EXPRFLG;VARSFLG] .......••••••••.••••.•• 
CLISP .............................••••.•....•••. 
CLUMPGET[OBJECT;RELATION;UNIVERSE] .•.••..••••••• 
dobugging ...................................... . 
OONELST (printstructure variable/parameter) 
OWIMIFY[X;L] .......•.•...••.....•••••••••••• " ••• 
EXPR (property name) ............•..•..•..••..••• 
EXPRFLG (printstructure variable/parameter) 
FIRSTfN[FN] ...............•...•..•. 4 •••••••••••• 

FREEVARS[FN;EXPRFLG1 .........•.••..•..••.••.•.•. 
INTERSCOPE ......................•.......•.•.•..• 
IS NOT DEFINED (typed by PRINTSTRUCTURE) .•.••••. 
LAST-PRINTSTRUCTURE 

(printstructure variable/parameter) ....•.•. 
LASTFN[FN] ......................•.•....••.•.••.• 
LOOKA-T[ X] •••••••••••••••••••••••••• 6 •••••••••••• 

NIL: .........................................••. 
NOFNS (printstructure variable/parameter) .•.•.•• 
NOTRACEFNS (printstructure variable/parameter) 
P.P.E. (typed by PRINTSTRUCTURE) .........••....• 
PATHS[X;Y;TYPE;MUST;AVOID;ONLY] ........•...•..•. 
PROEPTH (printstructure variable/parameter) 
PRINTSTRUCTURE[X;EXPRFLG;FILE] ...........••..•.• 
QUOTEFNS (printstructure variable/parameter) 
TENE X .........•••..•.•.•..••.••••••••••••••••••• 
TREELST (printstructure variable/parameter) 
TREEPATHS[X;Y:TYPE;MUST;AVOID;ONLY] .....•••.•••• 
TREEPRINT[X;N] ...........••.......•••••.••.••••• 
VARPRINT[DONELST;TREELST] .........•.....••.••••. 
VARS[FN;EXPRFLG] ............••..•..•...••••••••• 
YESFNS (printstructure variable/parameter) ••• ~ •. 
*** (in interscope output) ....•..••••••••••••••• 
-*CUTOFF** (typed by PRINTSTRUCTURE) •••••••••••• 

INIlEX.20.1 

Page 
Numbers 

20.9 
20.10 
20.5 
20.17 
20.5 
-20.8 
20.5 
20.7 
20.6,9 
20.4,9 
20.10 
20.11-21 
20.5 

20.6,8-9 
20.4,9 
20.13,17 
20.6 
20.3 
20.4 
20.5,8 
20.14-15 
20.4 
20.1-10 
20.4 
20.6 
20.8 
20.16 
20.9 
20.9 
20.10 
20.3 
20.15 
20.4 



21.1 Measuring Functions 

time[timex;timen;timetyp] 

SECTION 21 

"ISCELLANEOUS 

is an nlambda function. It executes the 

computatiQn timex, and prints out the number of 

. conses and computation time. Garbage collection 

time 1s subtracted out. 

~TIHE«LOAD (QUOTE PRETTY) (QUOTE PROP] 
FILE CREATED 7-HAY-71 12:47:14 

GC: 8 
582, 10291 FREE WORDS 
PRETTYFNS 
PRETTYVARS 
3727 CONSES 
10.655 SECONDS 
PRETTY 

If timen is greater than 1 (timen=NIL equivalent 

to timen=1), time executes timex timen number of 

times and prints out number of conses/timen, and 

computation time/timen. This is useful for more 

accurate measurement on small computations,e.g. 

~TIHE«COPY (QUOTE (A B C») 10) 
30/10 = 3 CONSES 
.055/10 = .0055 SECONDS 
(A 8 C) 

21.1 



date[ac3] 

If ~timetype is 0, time measures and prints total 

real time as well as computation time, e.g. 

~TIME«LOAD (QUOTE PRETTY) (QUOTE PROP» 1 0] 
FILE CREATED 7-MAY-71 12:47:14 

CiC: 8 
!j8Z, 10291 FREE WORDS 
PRETTYFNS 
PRETTYVARS 
~~7Z7 CONSES 
:ll . 193 SECONDS 
27.378 SECONDS, REAL TIME 
PRETTY 

If ,timetyp • 3, time measures and prints garbage 

collection time as well as computation time, e.g. 

~TIME«LOAD (QUOTE PRETTY) (QUOTE PROP» 1 3] 
FILE CREATED 7-MAY-71 12:47:14 

(iC: 8 
582, 1091 FREE WORDS 
PRETTYFNS 
I)RETTYVARS 
:~ 7 Z 7 CONSES 
:lO.597 SECONDS 
1.487 SECONDS, GARBAGE COLLECTION TIME 
IJRETTY 

Ano1~her option is timetype=T, in which case time 

mea~.ures and prints the number of pagefaul ts. 

The value of time is the value of the last 

evaluation of timex. 

If !!c3=NIL, obtains date and time from TENEX and 

returns it as single string in format -dd-mm-yy 

hh:aw:ss-, where dd is day, mm is month, yy year, 

hh hours, mm minutes, 55 seconds, e. g. , 

-14-MAY-71 14:26:08-. 

21.2 



clock[n] 

dismiss[n] 

Other values of ac3 can be used to specify other 

formats, e.g. day of week, time zone, etce as 

described in TENEX JSYS Manual. 

for !!.=O current value of the time of day clock 

i.e., number of milliseconds since last 

system start up. 

for !!.=1 value of the time of day clock when the 

user started up this INTERLISP. 1.e., 

difference between clock[O] and clock[l] 

is number of milliseconds (real time) 

since this INTERLISP was started. 

for !!=2 number of milliseconds of compute time 

since user started up this INTERLISP 

(garbage collection time 1s subtracted 

ofr) . 

for !!=3 number of milliseconds of compute time 

spent in garbage collections (all 

types).l 

dismisses program for!!. milliseconds, during which 

time program is in a state similar to an 1/0 wait, 

i . e • , it uses no CPU time. Can be aborted by 

control-D, control-E, or control~B. 

21.3 



conscount[n] 

boxcount[type;n] 

gctrp[ ] 

pagefaults[] 

logout[ ] 

conscount[] returns the number of conses since 

IN1'ERLISP started up. If!l is not NIL, resets 

conscount to !!. 

number of boxing operations (see Section 13) since 

INl'ERLISP started up. If ~=NIL, returns number 

of large integer boxes; type-FLOATING, returns 

number of floating boxes. 2 If!l is not NIL, 

resets the corresponding counter to !l. 

number of conses to next GC: 8, i. e ., number of 

list words not in use. Note that an intervening 

GC of another type could collect as well as 

allocate additional list words. See Section 3. 

gctrp[n] can be used to cause an interrupt when 

value of gctrp[]-n, see Section 10. 

number of page faults since INTERLISP started up. 

returns to TENEX. a A subsequent CONTINUE command 

will enter the INTERLISP program, return NIL as 

the value of the call to logout, and continue the 

computation exactly as if nothing had happened, 

i.e., logout is a programmable control-C. As with 

control-C, a REENTER convnand following a logout 

will reenter INTERLISP at the top level. 

2--------~-----------~----------------------------------~----------------~-----These counters are directly accessible via the COREVAL$ IBOXCN and FBOXCN. 

8 If INTERLISP was started a~t a subsidiary fork (see subsys, page 21.18), 
con~rol is returned to the higher fork. 

21.4 



logout[] will not affect the state of &ny open 

files. 

21.2 Breakdown4 

Time gives analyses by computation 0 Breakdown is available to analyze the 

breakdown of computation time (or any other measureable quantity) function by 

function. The user calls breakdown g.iving it a list of functions of interest. 

These functions are modified so that they keep track of the "charge" assessed 

to them. The function results gives the analysis of the statistic requested as 

well as the number of calls to each function. Sample output is shown' below. 6 

~BREAKDOWN(SUPERPRINT SUB PRINT COMMENT!) 
(SUPERPRINT SUBPRINT COMMENT1) 
~.PRETTYOEF( (SUBPRINT) FOO) 
(SUBPRINT) 
... RESULTS() 
FUNCTIONS 
SUPERPRINT 
SUBPRINT 
COMMENTl 
TOTAL 
NIL 

TIME 
25.294 
32.96 
7.833 
66.087 

I CALLS 
458 
169 
12 
639 

The procedure used for measuring1s such that if one function calls other and 

both are 'broken down'. then the time (or whatever quantity is being measured) 

spent in the inner function is not charged to the outer function as well. 6 

4------------------------------------------------------------------------------breakdown was written by W. Teitelman. 

6 

6 

This is with an interpreted prettyprint. 

breakdown will not give accurate results if a function being measured 1s 
not returned from normally, e.g. a lower retfrom (or error) bypasses it. 
In this case, all of the time (or whatever quantity isbeing measured) 
between the time that function is entered and the time the next function 
being measured is entered will be charged to the first function. 

21.5 



To remove functions from those being monitored, simply unbreak the functions, 

thereby restoring them to their original state. To add functions, call 

breakdown on the new functions. This will not reset the counters for any 

functions not on the new list. IHowever breakdown[] can be used for zeroing th~ 

counters of all functions being monitored. 

To use breakdown for some other' statistic, before callin'g breakdown, set the 

variable brkdwntype to the qU8:,ntity of interest, e.g., TIME, CONSES, etc. 

Whenever breakdown is called with brkdwntype not NIL, breakdown performs the 

necessary changes to its internal state to conform to the new analysis. In 

particular, if this is the fir'st time an analysis is being run with this 

statistic, the compiler may be called to compile the measuring function.? When 

breakdown is through ini tializil1lg, it sets brkdwntype back to NIL. Subsequent 

calls to breakdown will measure the new statistic until brkdwntype is again set 

and a new breakdown performed. Sample output is shown below: 

~SET(BRKOWNTYPE CONSES) 
CONSES 
~BREAKOOWN(MATCH CONSTRUCT) 
(MATCH CONSTRUCT) 
~FLIP«A BCD E F G H C Z) ( •• S1 12 •• ) ( •• 13 •• » 
(A B 0 E F G H Z) 
~RESULTS() 
FUNCTIONS CONSES 1 CALLS 
HATCH 32 1 
CONSTRUCT 47 1 
TOTAL 79 2 
NIL 

The value of brkdwntype is uSied to search the list brkdwntypes for the 

information necessary to analY2:e this statistic. The entry on brkdwntypes 

corresponding to brkdwntype should be of the form (type form function), where 

form computes the statistic, and function (optional) converts the value of form 

to some more interesting quantity, e.g. 

7------~-~----------------------··-------------------------------------~--------The measuring functions for TIME and CONSES have already been compiled~ 

21.6 



(TIME (CLOCK 2) (LAMBDA (X) (FQUOTIENT X 1000»)8 measures computation time and 

reports the result in seconds instead of milliseconds. If brkdwntype is not 

defined on brkdwntypes, an error is generated. brkdwntypes currently contains 

entries ,for TIME, CONSES, PAGEFAULTS, BOXES, and FBOXES. 

More Accurate Measurement 

Occasionally, a function being analysed is sufficiently fast that the overhead 

involved in measuring it obscures the actual time spent in the function. If 

the user were using time, he would specify a value for timen greater than 1 to 

give greater accuracy. A similar option is available for breakdown. The user 

can specify that a function(s) be executed a multiple number of times for each 

measurement, and ~he average value reported, by including a number in the list 

of functions given to breakdown, e.g., BREAKDOWN(EDITCOM EDIT4F 10 EDIT4E EQP) 

means normal breakdown for editcom and edit4f but executes (the body of) edit4e 

and ~ 10 times each time they are called. Of course, the functions so 

measured must not cause any harmful side effects, since they are executed more 

than once for each call. The printout from results will look the same as 

though each function were run only once, except that the measurement will be 

more accurate. 

8-~~-----~----~--------------------------------------- -------------------------for more accurate measurement. the form for TIME 1s not (CLOCK Z) but 
(ASSEMBLE NIL (HOVEl 1 • -5) (JSYS 13) (SUB 1 , GCTIM». 

21.7 



21.3 Edita9 

Edi ta is an editor for arrays. However , its most frequent application is in 

edi ting compiled functions (whi'ch are also arrays in INTERLISP). and a great 

deal of effort in implementing !ldi ta, and most of its special features, are in 

this area. For example, edita knows the format and conventions of INTERLISP 

compiled code, and so, in addition to decoding instructions a la DDT,10 edita 

can fill in the appropriate C:OREVALS, symbolic names for index registers, 

references to literals, linked function calls, etc. The following output shows 

a sequence of instructions in a compiled function first as they would be 

printed by DDT, and second by edita. 

466716/ 
466717/ 
466720/ 
466721/ 
4667221 
4667231 
466724/ 
466725/ 
466726/ 
466727/ 
466730/ 
4667311 
4667321 
4667331 
466734/ 
466735/ 
4667361 
466737/ 
466740/ 
466741/ 
4667421 
466743/ 

PUSH 16,LISP&KNIL 
PUSH 16,LISP&KNIL 
HRRZ 1,-12(16) 
CAME l,LISP&KNIL 
JRST 466724 
HRRZ 1,@467575 
PUSH 16,1 
LISP&IOFIL,,467576 
-3,,-3 
HRRZ 1,-14(16) 
CAMN 1,467601 
JRST 466734 
CAME 1,467602 
JRST 466740 
PUSH 16,467603 
PUSH 16,467604 
LISP&FILEN,,467605 
JRST 467561 
CAME 1,467606 
JRST 466754 
HRRZ 1,@-12(16) 
PUSH 16,1 

3/ 
4/ 
51 
61 
71 
81 
91 
101 
111 
121 
13/ 
141 
151 
161 
171 
18/ 
191 
201 
211 
22/ 
23/ 
241 

PUSH PP,KNIL 
PUSH PP,KNIL 
HRRZ 1,-10(PP) 
CAME l,KNIL 
JRST 9 .11 

HRRZ 1,@'BRKFILE 
PUSH PP,l 
PBINo 'BRKZ 
'!"524291 
HRRZ 1,-12(PP) 
CAMN I, 'OK 
JRST 17 
CAME I, 'STOP 
JRST 21 
PUSH PP,'BREAKI 
PUSH PP,'(ERRORI) 
CCALL 2,'RETEVAL 
JRST 422 
CAME 1,'GO 
JRST 33 
HRRZ l,@-10(PP) 
PUSH PP,l 

i---------------------~--------------------------------------------------------edita was written byW. Teitelman. 

10 

11 

DDT is one of the oldest debugging systems still around. For users 
unfamiliar with it, let us simply say that edita was patterned after it 
because so many people are feLJDiliar with it. --

Note that edi ta prints the addresses of cells contained in the function 
relative to the origin of the, function. 

21.8 



Therefore, rather than presenting !Q!!! as an array editor with some extensions 

for editing compiled code, we prefer to consider it as a facility for editing 

compiled code, and point out that it can also be used for editing arbitrary 

arrays. 

Overview 

To the user, edita looks very much like DDT with INTERLISP extensions. It is a 

function of one argument, the name of the function to be edited. 12 Individual 

registers or cells in the function may be examined by typing their address 

followed by a slash,13 e.g. 

6/ HRRZ 1,-10(PP) 

The slash is really a command to edita to open the indicated register. 14 Only 

one register at a time can be open, and onlu open registers can be changed. To 

change the contents of a register, the user first opens it, types the new 

contents, and then closes the register with a carriage-return,16 e.g. 

13 

14 

15 

7/ CAMEt," CAMN 1,",) 

Underlined characters were typed by the user. edi ta uses its own read 
program, so that it is unnecessary to type a space before the slash or to 
type a carriage return after the slash. 

edt ta also converts absolute' addresses of cells within the function to 
relative address on input. Thus, if the definition of foo begin~ at 85660, 
typing 6/ is exactlu the same as typing 85666/. ---

Since carriage-return has a special meaning, edita indicates the balancing 
of parentheses by typing a space. 

21.9 



If the user closes a register without specifying the new contents, the contents 

are left unchanged. Similarly. if an error occurs or the user types control-E, 

the open register, if any, is closed without being changed. 

Input Protocol 

Edita processes all inputs not recognized as commands in the same way. If the 

input is the name of an instruction (i.e. an atom with a numeric OPD property), 

the corresponding number is added to the input value being assembled, 16 and a 

flag is set which specifies that th~ input context is that of an instruction. 

The general form of a machine instruction is (opcode ac , @ address (index» as 

described in Section 18. TherftJfore, in instruction context, edita evaluates 

all atoms (i f the atom has a COREVAL property, the value of the COREVAL is 

used), and then if the atom corresponds to an ac,17 shifts it left 23 bits and - \ 

adds it to the input value, otherwise adds it directly to the input value, but 

performs the arithmetic in the low 18 bits. 18 Lists are interpreted as 

specifying index registers, and the value of f.!!: of the list (again COREVALs 

are permitted) is shifted left j,8 bits. Examples: 

16------------------------------'-----------------------------------------------The input value is initially o. 

17 

18 

i.e. if a " I has not been seen, and the value of the atom is less than 16, 
and the low 18 bits of the input value are all zero. 

If the absolute value of 'the atom is greater than 1000000Q, full word 
ari thmetic is used. For e:lCample. the indirect, bit is handled by simply 
binding @ to 20000000Q. 

21.10 



PUSH PP, KNIL 
HRRZ 1,-10(PP) 
CAME 1, 'GO 
JRST 33 ORG 19 

The user can also specify the address of a literal via the • command, see page 

21.14. For example, if the' literal • UNBROKEN" is in cell 85672, 

HRRZ 1,'· UNBROKEN" is equivalent to HRRZ 1, 85672. 

When the input context is not that of an instruction, i.e. no OPO has been 

seen, all inputs are evaluated (the value of an atom with a COREVAl property is 

the COREVAL.) Then numeric values are simply added to the previous input value; 

non-numeric values become the input value.20 

The only exception to the entire procedure occurs when a register is open that 

is in the pointer region of the function, i.e. literal table. In this case, 

atomic inputs are not evaluated. For example, the user can change the literal 

FOO to fIE by simply opening that register and then typing fIE followed by 

carriage-return, e.g. 

FOO 

Note that this is equivalent to 'FOOl fOO (QUOTE FIE») 

19-----------------------------------------------------------------------------edi ta cannot in general know whether an address field in an instruction 

20 

that is typed in is relative or absolute. Therefore, the user must add 
ORG, the origin of the function, to the address field himself. Note that 
edita would print this instruction, JRST 53 ORG, as JRST 53. 

Presumably there is only one input in this case. 

21.11 



Edita Commands and Variables 

~ (carriage-return) 

ORG 

I 

tab (control-I) 

If a register is open and an input was t~¥ed, 
store the input in the register and close it. 

If a register is open and nothing was typed, close 
the register without changing it. 

If a register is not open and input was typed, 
type its value. 

Has the value of the address of the first 
instruction in the function. i.e. loc of getd of 
the function. 

Opens the register specified by the low ,18 bits of 
the quantity to the left of the /, and types its 
contents. If nothing has been typed, it uses the 
last thing typed by edita, e.g. 

351 JRST 53 L CAME 1, 'RETURN L RETURN 

If a register was open, / closes it without 
changing its contents. 

After a / command, edita returns to that state of 
no input having been typed. 

Same as carriage-return, followed by the address 
of the quantity to the left of the t'ab, e.g. 

351 JRST 53 tab 
53/ CAME 1,' RETURN 

Note that if a register was openl and input was typed, tab will change the open 
register before closing it, e.g. 

(period) 

351 JRST 53 
541 JRST 70 
351 JRST 54 

JRST 54 tab 
1. 

has the value of the address of the current (last) 
register examined. 

2i-----------------------------------------------------------------------------
If the register is in the unboxed region of the function, the unboxed value 
is stored in the register. 

21.12 



line-feed 

t 

SQ (alt-modeQ) 

LITS 

BOXED 

$ (dollar) 

= 

OK 

? 

addressl, address21 

same as carriage-return followed by (ADD1 .)1 i.e. 
closes any open register and opens the next 
register. 

same as'carriage-return followed by (SUB1 .)1 

has as its value the last quantity typed by edita 
e.g. 

351 JRST 53 ~ 
.1 JRST 54 

has as value the (relative) address of the first 
literal. 

same as LITS 

has as value the relative address of the last 
literal in the function. 

Sets radix to -8 and types the quantity to the 
left of the = sign, i. e. if anyth ing has been 
typed, types the input value, otherwise, types SQ, 
e.g. 

351 JRST 54 !254000241541Q JRST 54=254000000066Q 

Following =, radix is restored and edita returns 
to the no input state. 

leave edita 

return to I no input ' state. ? is a 'weak' 
control-E, i.e. it negates any input typed, but 
does not close any registers. 

prints22 the contents of registers address 1 
through address2. . is set to address2 after the 
completion. 

22-----------------------------------------------------------------------------output goes to file. initially set to T. The user can also set file (while 
in edita) to the-nime of a disc file to redirect the output. (The user is 
responsible for opening and closing file.) Note that file only affects 
output for the addressl, address21 command. --

21.13 



IX 

:atom 

corresponds to the I in LAP. The next expression 
is read, and if it is a small number, the 
appropriate offset is added to it. Otherwise, the 
literal table is searched for x, and the value of 
IX is the (absolute) address -of that cell. An 
err'or is generated if the literal is not found, 
i.e. I cannot be used to create literals. 

defines atom to an address 
(1) the value of SQ if a 
(2) the input if any 

otherwise 
(3) the value of ,.,.28 

For example:' 

register is open, 
input was typed, 

351 JRST 54 : FOO) 
:FIE.> 
FIEI JRST FOO ..:.!:35 

Edi ta keeps its symbol' tables on two free variables, usersyms and !mIst. 

Usersyms is a li·st of elements. of the form (name • value) and is used for 

encoding input. i.e., all variables on usersyms are bound to their 

corresponding values during evaluation of any expression inside edita. Symlst 

is a list of elements of the form (value • name) and is used for decodi ng 

addresses. Usersyms is initially NIL, while symlst is set to a list of all the 

corevals. Since the : command jildds the appropriate information to both these 

two lists, new definitions will remain in effect even if the user exits from 

edita and then reenters it later. 

Note that the user can effectiv1sly define symbols without using the command 

by appropriately binding usersym.! andlor symlst before calling edita. Also, he 

can thus use different symbol tables for different applications. 

SW (alt-modeW) search command. 

Searching consists of comparing the object of the search with the contents of 

each register, and printing thosa that match, e.g. 

23---------~-~------------------··--------------------------------------~-------Only the low 18 bits are used and converted to a relative address whenever 
possible. 

21.14 



HRRZ @ SW,.> 
81 HRRZ 1,@'BRKFILE 
23/ HRRZ 1,@-10(PP) 
281 HRRZ 1,@-lZ(PP) 

The SW command can be used to search either the unboxed portion of a function, 

i.e. instructions, or the pointer region, i.e. literals, depending on whether 

or not the object of the search is a number. If any input was typed before the 

SW. it will be the object of the search, otherwise the next expression is read 

and used as the object.24 The user can specify a starting point for the search 

by typing an address followed by a 't' before calling SW, e.g. 1, JRST SW. If 

no starting point is specified, the search will begin at 0 if the object is a 

number, otherwise at LITS, the address of the first literal.26 After the search 

is completed, , , . is set to the address of the last register that matched . 

If the search is operating in the unboxed portion of the function, only those 

fields (i.e. instruction, ac, indirect, index. and address) of the object that 

contain one bits are compared.26 For example, HRRZ @ SW will find all instances 

of HRRZ indirect, regardless of ac, index, and address fields. Similarly, 

'PRINT SW will find all instructions that reference the literal PRINT.21 

24-----------------------------------------------------------------------------Note that inputs typed before the SW will have been processed according to 

26 

26 

27 

the input protocol, i.o. evaluated; inputs typed after the SW will not. 
Therefore, the latter form 1s usually used to specify searching the 
literals, e.g. SW FOO is equivalent to (QUOTE FOO) SW. 

Thus the only way the user can search the pOinter region for a number is to 
specify the starting point via '.'. 

Alternately. the user can specify his own mask by setting the variable mask 
(while in edita), to the appropriate bit pattern. 

The user may need to establish instruction context for input without giving 
a specific instruction. For example, suppose the user wants to find all 
instructions with ac=1 and index=PP. In this case, the user can give & as 
a pseudO-instruction, e.g. type & I, (PP). 

21.15 



If the search is operating in the pointer region, a 'match' is as defined in 

the editor. For example, SW (8.:) will find all registers that contain a list 

consisting of a single expression. 

SC (alt-modee) 

Editing Arrays 

like SW except only prints the first match, then 
prints the number· of matches when the search 
finishes. 

Edita is called to edit a fun(:tion by giving it the name of the function. 

Edita can also be called to edit an array by giving it the array as its (irst 

argument,28 in which case the following differences are to be not~d: 

1. decoding - The contents of registers in the unboxed region are boxed 

and printed as numb4!rS, i. e. they are never interpreted as 

instructions, as when editing a function. 

2. addressing convention - Whereas 0 corresponds to the first instruction 

of a function, the first element of an array by convention is element 

number 1. 

3. input protocols - If a register is open, lists are evaluated, atoms 

are not evaluated (except for SO which is always evaluated). If no 

register is open, all inputs are evaluated, and if the value is a 

number, it is added to the 'input value'. 

4. left half - If the left half of an element in the pointer region of an 

array is not all 0'5 or NIL, it is printed followed by a ;~ e.g. 

21.16 



101 (A B) T 

Similarly, if a register is closed, either its left half, right half, 

or both halves can be changed, depending on the presence or absence, 

and position of the ; e.g. 

101 (A B) ; T ~ changes left 

.:l.. B T NIL~ changes right 

.:l.. B NIL A C') changes both 

.:l.. A . C , 

If ; is used in the unboxed portion of an array, an error will be 

generated. 

The SW command will look at both halves of elements in the pointer region, and 

match if either half matches. Note that SW A ; B is not allowed. 

This ends the section on edita. 

21.4 Interfork Communication 

The functions described below permit two forks (one or both of them INTERLISP) 

to have a common area of address space for communication by providing a means 

of assigning a block of storage guaranteed not to moue during garbage 

collectio'ns. 

getblk[n] Creates a block !!. pages in size (512 words per 

page). Value is the address of the first word in 

the block, which is a multiple of 512 s1.nee the 

block will always begin at a page boundary. If 

not enough pages are available, generates the 

error ILLEGAL OR IMPOSSIBLE BLOCK. 

21.17 



Note, the block can be used for storing unboxed numbers onlu. 

To store a number in the block, the following function could be used: 

[SETBLOCK (LAMBDA (START N X) (CLOSER (IPLUS (LOC START) N) X] 

Some boxing and unboxing can be avoided by making this function ~ompile open 

via a substitution macro. 

Note, getbllt. should be usedspaT'ingll/ since selleral unmollable regions 01 memorll 
ca,n make it difficult or impossible Jor the garbage collector to lind a 
contiguous region large enough for expanding arrag space. 

relblk[addressin] releases a block of storage beginning at address 

and extending for ! pages. Causes an error 

ILLEGAL OR IMPOSSIBLE BLOCK if any of the range 1s 

not a block. Value is address. 

21 .5 SUbsYS29 

This section describes a funct:Lon, subsys, which permits the user to run a 

TENEX subsystem, such as SNDMSG, SRCCOM, TECO, or even another INTERLISP, from 

inside of an INTERLISP without destroying the latter. In particular, 

SUBSYS(EXEC) will start up a luwer exec, which will print the TENEX herald, 

followed by @. The user can then d~ anything at this exec level that he can at 

the top level, without affecting his superior INTERLISP. For example, he can 

start another INTERLISP. perfonlD a sysin, run for a while. type a control-C 

returning him to the lower exec, RESET, do a SNDMSG, etc. The user exits from 

the lower exec via the command QILlIT, which will return control to subsys in the 

21.18 



higher INTERLISP. Thus with subsys. the user need not perform a sysout to save· 

the state of his INTERLISP in order to use a TENEX capability which would 

otherwise clobber the core image. Similarly. subsys provides a way of checking 

out a sysout file in a fresh INTERLISP without having to commandeer another 

teletype or detach a job. 

While subsys can be used to run any TENEX subsystem directly, without gOing 

through an intervening exec, this procedure is not recommended. The problem is 

that control-C always returns control to the next highest exec. Thus if the 

user is running an INTERLISP in which he performs SUBSYS(LISP), and then types 

control-C to the lower INTERLISP, control will be returned to the exec above 

the first INTERLISP. The natural REENTER command would then clear the lower 

INTERLISP,30 but any files opened by it would remain open (until the next 

@RESET) • I f the user elects to call a subsystem directly, he must therefore 

know how it is normally exited and always exit from it that way.81 

Starting a lower exec does not have this disadvantage, since it can onlu be 

exited via QUIT, i.e., the lower exec is effectively 'errorset protected' 

against control-C. 

subsys[file/forkjincomfile;outcomfilejentrypointflg] 

If file/fork=EXEC. starts up a lower exec, 

otherwise runs <SUBSYS)system, e.g. 

subsys[SNDMSG],subsys[TECO] etc. susbys[] is same 

as subsys[EXEC]. Control-C always returns control 

30~---------~~-~---~--------~------------------------- -------------------------
A CONTINUE command however will return to the subordinate program, i.e.' 

31 

control-C followed by CONTINUE is safe at any level. 

INTERLISPis exited via the function logout, TECO via the command ;H, 
SNDMSG via control-Z. and EXEC via QUIT. 

21.19 



to next higher exec. Note that more than one 

INTERLISP can be stacked, but there is no 

backtrace to help you figure out where you are. 

inc'omfile and outcomfile provide a way of . 

specifying files for input and output. incomfile 

can also be a string, in which case a temporary 

file is evaluated, and the string printed on i~. 

entrypointflg may be START, REENTER, or CONTINUE. 

NIL is equivalent to START, except when file/fork 

is a handle (s~e below) in which case NIL is 

equivalent to CONTINUE. 

The value of subsys is a large integer which is a . handle to the lower fork. 

The lower fork is not reset unless the user specifically does so using kfork, 

described below. 32 If susbys is, given as its first argument the value of a 

previous call to subsYS,33, it continues the subsystem run by that call. For 

example, the user can do (SETQ SOURCES (SUBSYS TECO», load up the TECO with a 

big source file, massage the file, leave TECO with ;H, run INTERLISP for awhile 

(possibly including other calls ~to subsys) and then perform (SUBSYS SOURCES) to 

return to TECO, where he will find his file loaded and even the TECO pointer 

position preserved. 

82------------------------------·-----------------------------------------------The fork is also reset when the handle is no longer accessible, i.e., when 

33 

nothing in the INTERLISP system points to it. Note that the fork is 
accessible while the handle remains on the history list. 

Must be the exact same lar'ge number, i.e.!.9.. Note that if the user 
neglects to set a variable to the value of a call to subsys, (and has 
performed an intervening call so that sybsys[T] will not work), he can 
still continue this subsystem by obtaining the value of the call to subsys 
for the history list using the function valueof, described in Section 22. 

21.20 



Note that if the user starts a lower EXEC. in which he runs an INTERLISP, 

control-C's from the INTERLISP, then QUIT from the EXEC, if he subsequently 

continues this EXEC with subsys, he can reenter or continue the INTERLISP. 

Note also that calls to subsys can be stacked. For example, using subsys, the 

user can run a lower INTERLISP, and within that INTERLISP, yet another, etc., 

and ascend the chain of INTERLISPs using logout, and then descend back down 

again using subsys. 

For convenience, subsys[T] continues the last subsystem run. 

SNOMSG, LISP, TECO. and EXEC, are all LISPXMACROS which perform the 

corresponding calls to subsys. CONTIN is a LISPXMACRO which performs 

subsys[Tl, thereby continuing the last subsys. 

kfork[fork] accepts a value from subsys and kills it (RESET in 

TENEX terminology) • If subsys[fork] is 

subsequently performed, an error is generated. 

kfork[ T] kills all outstanding forks (from this 

INTERLISP). 

21.6 Miscellaneous Tenex Functions84 

fildir[filegroup] filegroup is a TENEX file group descriptor, i.e., 

it can contain $tars. fildir returns a list of 

the files which match filegroup, a 1a the TENEX 

DIRECTORY command, e.g. (FILDIR (QUOTE *.COM;O». 

--------------------------------~---~--~---------------~-------------~---------34 All of the functions 1n section 21.5, except for !:.!.!!.!, lowercase, and 
tenex, were written by J.W. Goodwin. 

21.21 



loadav[] returns TENEX current load average as a floating 

point number (this number is the first of the 

three printed by the TENEX SYSTAT command). 

getab[tablename;index;formatflg] tablename may be any of the tables mentioned 

with SYSGT and GETAB in JSYS manual; and can be an 

atom or string. 86 index is the index into the 

table and must be a number. getab returns the 

erstr[ern] 

raise[flg] 

value of that entry of that table as an integer 

unless formatflg=FLOATING, in which case the value 

1s returned as a floating point number. For 

exa;mple, loadav is defined simply as: 

(GETAB (QUOTE SYSTAT) 12 (QUOTE FLOATING». 

Similarly, the host number of the TENEX site you 

are logged in at may be obtained by 

(GETAB (QUOTE LHOSTN) 0). 

!!I!l is an error number from a JSYS fail return. 

~::NIL means most recent error. erstr returns 

the TENEX error diagnostic as a string 

(from (SYSTEH)ERROR.MNEMONICS). 

rai:se[] informs TENEX that it should not raise 

low.~r case input, i.e., it is equivalent to 

logout[] @NO RAISE, @CONTINUE. raise[T] informs 

TENEX that it should raise. raise[T] is the 

initial setting. The value of raise is the 

Zl.ZZ 



lowercase[flg] 

previous setting.36 

lowercase[ T] performs raiser 1, sets lcaseflg to 

!!a. and performs other internal modifications to 

inform DWI" and CLISP that the user is running on 

a lowercase terminal. lowefcase(] reverses the 

effect of 10wercase[T]. The value of lowercase is 

its previous setting. lowercase is undoable. 

lowercase[T] also sets mode133f1g to NIL (see Section 17). Note that the user 

can be running on a lowercase terminal and still find it desirable to set 

mode133flg to T if he thinks he is on a model 33, i.e. is used to running on 

one, and makes the typing errors associated with the keyboard layout on a model 

33. 

username[a] If !=NIL. returns login directory name; if ,!=T, 

returns connected directory name; if ! is a 

number, username returns the user name 

corresponding to that user number. In all cases, 

the value is a string. 

usernumber[a] If !=NIl, returns login user numb~r; if !=T, 

returns connected user number; if ! is a literal 

atom or" string, usernumber returns the number of 

the corresponding user, or NIL if no such user 

exists. 

-----------------~-----------------------------------------------~---------~---36 raise also sets raisef1g to f..!9 so that the system can determine the 
raise-nora1se state following sysin or reattaching to a detached job, and 
restore the desired state. 

21.23 



Note: greeting (see Section 22) sets the variable username to the login user 

name, and firstname to the name used in the greetin~. 

tenex[str] Starts up a lower EXEC (without a message) using 

subsys, and then unreads str, followed by -QUIT" 

(us~ing bksysbuf, described in Section 14). For 

exa~ple. the lISPXHACRO SY which does a SYSTAT is 

implemented simply as TENEX[-SY~·]. 

21.7 Printing Reentrant and Circular List Structures 

A reentrant list structure 1s one that contains more than one occurrence of the 

same (~) structure. For exam,.le, tconc (Section 6) makes uses of reentrant 

list structure so that it does not have to search for the end of the list each 

time it is called. Thus, if ! is a list of 3 elements, (A B C), being 

constructed by ~, the reentrant· list structure used by ~ for this 

purpose is: 

FIGURE 21-1 

21.24 



This structure would be printed by print as «A B C) C). Note that print would 

produce the same output for the non-reentrant structure: 

FIGURE 21-2 

In other words, print does not indicate the fact that portions of the structure 

in Figure 21-1 are identical. Similarly, if print is applied to a circular 

list structure (a special type of reentrant structure) it will never terminate. 

for example. if print is called on the structure: 

FI GURE 21-3 

it will print an endless sequence of left parentheses, and if applied to: 

FIGURE 21-4 

will print a left parenthesis followed by an endless sequence of A's. 

21.25 



The function circlprint described below produces output that will exactly 

describe the structure of any circular or reentrant list structure. 37 This 

output may be in ei ther singJle or double-line. formats. Below are a few 

examples of the expressions that circlprint would produce to describe the 

structures discussed above. 

expression in Figure 21-1: 

single-line: «A 8 *1* C) {t» 

double-line: «A B C) . (I}) 
1 

expression in Figure 21-3: 

single-line: 

double-line: 

(*1* (1» 

( {1) ) 
1 

expression in Figure 21-4: 

single-lin~: (*1* A . {1}) 

double-line: (A. {I}) 
1 

21.26 



The more complex structure: 

FIGURE 21-5 

is printed as follows: 

single-line: (*2* (*1* {I} *3* {Z} A *4* B . {3}) . {4}) 

double-line: «{t) {Z} A B. {3}) • (4}) 
2 1 3 4 

In both formats, the reentrant nodes in the list structure are labeled by 

numbers. (A reentrant node is one that has two or more pointers coming into 

it.) In the single-line format, the label is printed between asterisks at the 

beginning of the node (list or tail) that it identifies. In the double-line 

format, the label is printed below the beginning of the node it identifies. An 

occurrence of a reentrant node that has already been identified is indicated by 

printing its label in brackets. 

circlprint[list;printflg;rlknt] prints an expression describing list. If 

printflg=NIL, double-line format is used, 

otherwise Single-line format. circlprint first 

calls circlmark[listjrlknt], and then calls either 

rlprinl[list] or rlprin2[list], depending on the 

value of printflg (T or NIL, respectively). 

Finally, rlrestore[list] is called, which restores 

list to its unmarked state. Value is list. 

21.27 



circlmark[list;rlknt] 

rlprinl[list] 

rlprin2[list] 

rlrestore[list] 

marks each reentrant node in list with a unique 

number, starting at rlknt+l (or 1, if rlknt is 

NIl.). Value is (new) rlknt. 

Mar'king list physically alters it. However, the 

mar'king is performed undoably. In addition, list 

can always be restored by specifically calling 

rlrestore. 

prints an expression describing list in the 

single-line format. Does not restore list to its 

uncirclmarked state. list must previously have 

been circlmarked or an error is generated. 

same as rlprinl. except that 

describing list is printed in 

fonnat. 

the expressi0':l 

the double-line 

physically restores list to its original, unmarked 

sta'te. 

Note that the user can mark and print several structures which together share 

common substructures. e.g. sever'al property lists, by making several calls to 

circlmark, followed by calls to rlprinl or rlprin2, and finally to rlrestore. 

circlmaker[list] lis~ may contain labels and references following 

the convention used by circlprint for printing 

reentrant structures in Single line format, e.g. 

(-1* . {1}). circlmaker performs the necessary 

rpl&£!' sand rplacd' s to make list correspond to 

the indicated structure. Value is (altered) list. 

21.28 



circlmakerl[list] Does the work for circlmaker. Uses free variables 

labelst and reflst. labelst is a list of dotted 

pairs of labels and corresponding nodes. ref 1st 

is a list of nodes containing references to labels 

not yet seen. 

labelst and 

Circlmaker operates by initializing 

raflst to NIL, and then calling 

circlmakerl. It generates an error if ref 1st is 

not NIL when circlmakerl returns. The user can 

call circlmakerl directly to ·connect up· several 

structures that share common substructures, e.g. 

several property lists. 

21.29 



Index for Section 21 

BKSYSBUF[X] SUBR ..............•.•....•.••••••••• 
BOXCOUNl [ TYPE; N] SUBR .........•.•.•.•.•.••.••••• 
BOXED (ed i ta command/paramE!ter) ••..••.••.•.••••• 
BREAKOOWN[FNS] NL .........•....•.•...•.•••.•.••• 
BRKOWNTYPE (system variable/parameter) ••••.••••• 
BRKDWNTYPES (system variable/p~rameter) •..•••••• 
carriage-return (edita command/parameter) •••••.• 
CIRClMAKER[l] .................................... . 
CIRCLPRINT[l;PRINTFLG;RLKNT] •••••••••••••••••••• 
CLISP .................... _ ..••••.•••••.•••••••••• 
ClOCK[ N] SUBR ..........•..••.•..••••.••.•••••••• 
CONSCOUNT[N] SUBR ........•.•.••.••••..•••••....• 
CONT IN (prog. asst. command) •••.•••••••••••.•..• 
CONTINUE (tenex command) .••••••••••••••••••••.•• 
control-B .............................................. . 
control-C ............................................. .. 
control-D ... ~ .................................. . 
control-E .................................................... .. 
COREVAl (property name) •.••..•••••••.•••••••••.• 
DATE[] SUBR .............. ., ................................. .. 
DOT[] SUBR ...................••....•...•....••.. 
OISMISS[N] ...............•....•................• 
OW 1M •...•••••••••.•••••••••••••••••••••••••••••• 
EDITA[EDITARRY;COMS] ......•••...••.••..•.•..••.. 
e d i. tin gar ray s . . . . . . • . . . . . . • . • • . • • • . . • • • • . . • • . • • 
edi ting compi led code ••....••.•.••.•••••••.••..• 
eq ......................••.••••••••••••••••••••• 
ERSTR[ERN;ERRFlG] ...........•••.••...•.•.•.•.••• 
EXEC (prog. asst. command) •.••••••••••••.••••••• 
E XE C ............................................ . 
FIlDIR[FILEGROUP;FORMATFLG] ......•••••••••.••••• 
FILE (edita command/parameter) ...••••••••.•.•••• 
FIRSTNAHE (system variable/parameter) ••••••••••• 
fork handle ... til ••••••••••••••••••••••••••••••••• 

forks .......................................... . 
GC: 8 (typed by system) .••..••.•••••.•.•..•••••• 
GCTRP[ N] SUBR •••....•• 4 ••••••••••••••••••••••••• 

GETAB[TABLENAME;INDEX;FORMATFlG] ..••.•..••..••.. 
GETBlK[N] SUBR ...............•.......•..•••••.•• 
ILLEGAL OR IMPOSSIBLE BLOCK (error message) 
interfork communication ....•....••••.••..••.••.• 
JS YS ....•.••.•••••.••••••••••••••••••••••••••••• 
KFORK[ FORK] .......................••.•••.•.•.••• 
LCASEFLG (system variable/parameter) ••.••....••• 
line-feed (edita command/parameter) •..••.•....•• 
LISP (prog. ass t. command) ..................... . 
lISPXHACROS ....................•...•..•••.•..•.. 
LITS (edita command/parameter) ••.•.•••••.•..•..• 
lOAOAV[] ............•....••••••••••.•••.•••••••• 
LOGOUT[] SUBR ................•.................. 
lower case ..................................... . 
LOWERCASE[FlG] ..............•...•....•..•..•...• 
machine instructions ........•.•...•....•.•..•.•• 
MASK (edits command/parameter) ..••..••.••.•••.•• 
MODEL33FlG (system variable/parameter) •••••••.•• 
OK (edita command/parameter) ...••••••••••••••••• 

INI()EX.21.1 

Page 
Numbers 

21.24 
21.4 
21.13 
21.5-7 
21.6 
21.6-7 
21.9,12 
21.28 
21.26-27 
21.23 
21.3 
21.4 
21.21 
21.4,19 
21.3 
21.4,18-19 
21.3 
21.3,10 
21.3-4,10-11 
21.2 
21.8 
21.3 
21.23 
21.8-17 
21.8-17 
21.8-17 
21.24 
21.22 
21.21 
21.21.24 
21.21 
21.13 
21.24 
21.20 
21.17 
21.4 
21.4 
21.22 
21.17-18 
21.17-18 
21.17 
21.22 
21.20-21 
21.23 
21.13 
21.21 
21.21 
21.13 
21.22 
21.4-5.21 
21.23 
21.23 
21.10 
21.15 
21.23 
21.13 



OPO (property name) .........••••.•••••••••..•••. 
ORG (edita command/parameter) •••..••.....•..•.•. 
PAGEFAUL TS[] ....... ..•.•.•••••••••••••••••••••••. 
printing circular lists ....•.•••..•••.•••.••..•• 
QUIT (tenex command) ....•....•••••••••••.•••••.• 
RAJ SE[ F LG] EXPR ................••.•••••.•..••••. 
RAISEFLG (system variable/parameter) ..•••.•••••• 
REENTER (tenex command) .......•..•......• 0 •••••• 

RELBLK[AOORESS;N] SUBR •.....••..•.••.•...•.••.•• 
RESULTS[] ....................................... . 
running other subsystems from within INTERLISP 
SNOMSG (prog. asst. command) ..•...••.••••••.•.•• 
SUBSYS[FILE/FORK;INCOMFILE;OUTCOMFILE; 

ENTRYPOINTFLG] ......•.••••••••••••••.••••• 
SYMLST (edita command/parameter) •••..•••••.••... 
S YS TAT •..••..•.••..•••.••••••••••••••••••••••••• 
tab (edita command/parameter) •.•••••.••••.•••••• 
TEeo (prog. asst. command) •••.•.•••••••••.•••••• 
TENEX[ S TR ] ..................••..•.•....••......• 
TENEX ........................................... . 
TIME[TIMEX;TIMEN;TIMETYP] NL .•••••.••••••.•••••• 
UNBREAK[ X] NL* .•...•..••••••.••..••••••••••••.•• 
USE RNAMI:[ A] ...•.......••••.•..••••••••••••••.••• 
USERNAME (system variable/parameter) ...••...••.• 
USERNUMBER[A] ...................•••.•••••..•••.. 
USERSYMS (edita command/parameter) ....••••••.... 
VALUEOF[ X] NL* , ............•..•..••.•••••..•••••• 
$ (dollar) (edita command/parameter) .•.•••..•... 
$C (alt-modeC) (edita command/parameter) •.•••••• 
SQ (alt-modeQ) Cedita command/parameter), .•.••..• 
SW (alt-modeW) (edita command/parameter) •••.••.• 
• (cdita command/parameter) •••••••••. 8 •••••••••• 

, (edita command/parameter) .••••••••.•••••••.•.• 
. (edita command/parameter) ...•..••.••.•••...... 
I (edita command/parameter) •••••••••••.•••••••.• 

(edita command/parameter) •••.••••••.•.••••.•.• 
(edita command/parameter) .•.•••••...••.•.•..•. 

= (edita command/parameter) •••........•......... 
? (edita command/parameter) ••.••••••••••••••••.• 
@ (edita command/parameter) •••••••••••••••.••••• 
t (edita command/parameter) ••••••••••••••••••••• 

INDEX.21.2 

Page 
Numbers 

21.10-11 
21.12 
21.4 
21.24-29 
21.18-19,21 
21.22 
21.2.3 
21.4,19 
21.18 
21.5,7 
21.18 
21.21 

21.18-21 
21.14 
21.24 
21.12 
21.21 
21.24 
'21.2,4,18-19,21-22 
21.1-2 
21.6 
21.23 
21.24 
21.23 
21.14 
21.20 
21.13 
21.16 
21.13 
21.14-15,17 
21.11,14 
21.10 
21.12 
21.9,12 
21.14 
21.16 
21.13 
21.13 
21.10 
21.13 



SECTION 22 

THE PROGRAMMER'S ASSISTANT AND LISPX1 

22.1 Introduction 

This chapter describes one of the newer additions to INTERLISP: the 

programmer's assistant. The central idea of the programmer's assistant is that 

the user, rather than talking to a passive system which merely responds to each 

input and waits for the next, is instead addressing an active intermediary, 

namely his assistant. Normally. the assistant is invisible to the user, and 

simply carries out the user's requests. However, since the assistant remembers 

what the user has told him, the user can instruct him to repeat a particular 

operation or sequence of operations, with possible modifications,' or to undo 

the effect of certain specified operations. Like OWl", the programmer's 

assistant is not implemented as a single function or group of functions, but is 

instead dispersed throughout much of INTERLISP.2 Like DWIM, the programmer's 

assistant embodies a philosophy and approach to system design whose ultimate 

goal is to construct a programming environment which would "cooperate" with the 

user in the development of his programs, and free him to concentrate more fully 

on the conceptual difficulties and creative aspects of the problem he is trying 

to solve. 

i-------------------------------------------------~--- -------------------------The programmer's assistant was designed and implemented by W. Tei telman. 

2 

It is discussed in [Tei4]. 

Some of the features of the progranuner' s assistant have been described 
elsewhere, e.g. the UNDO command in the editor, the file package, etc. 

22.1 



Example 

The following dialogue. taken from an actual session at the console, gives the 

flavor of the programmer's assistant facility in INTERLISP. The user is about 

to edit a function loadf, which contains several constructs of the form 

(PUTO FN2 (GElD FN1». The user plans to replace each of these by equivalent 

MOVD expressions. 

"'EDIIF(LOADFF] 
=LOADF 
EDIl .. 
• pp 

[LAMBDA (X Y) 
[CONO 

«NULL (GElD (QUOTE READSAVE») 
(PUTD (QUOTE REAOSAVE) 

(GETD (QUOTE READ] 
(PUID (QUOTE READ) 

(GElD (QUOlE REED») 
(NLSETQ (SETQ X (LOAD X V»~) 
(@UTO (QUOTE REAO) 

(GElD (QUOTE READSAVE») 
X] 

*F PUlD (1 MOVD) 
*3 (XTRR 2) 
=XTR 
*OP 
=0 P 
(MOVD (QUOIE READSAVE) (QUOTE READ» 
*(SW 2 3) 
* 

[1] 

[2] 
[3] 

[4] 

[5] 

At [1], the user begins to edit ,loadf. 8 At [2] the user finds PUTD and replaces 

it by HOVD. He then shifts context to the third subexpression, [3]. extracts 

its second subexpression, and ascends one level [4] to print and result. The 

user now switches the second and third subexpression [5], thereby completing 

a-------------------------------··----------------------------------------------We prefer to consider the programmer's assistant as the moving force behind 
this type of spelling correction (even though the program that does the 
work is part of the DWIM package). Whereas correcting @PRINT to PRINT, or 
XIRR to XTR does not require any information about what thi~ user is doing, 
correcting LOADFF to lOADF clearly required notiCing when this user defined 
loadf. 

22.2 



the operation for this PUlD. Note that up to this point, the user has not 

directly addressed the assistant ... The user now requests that the assistant 

print out the operations that the user has performed, [6], and the user then 

instructs the assistant to REDO FROM F, [7]" meaning repeat the entire sequence 

of operations 15 through ZOo The user then prints the current expression, and 

observes that the second PUlO has now be~n su~cessfully transformed. 

*?? FROM F [6] 

15. *F PUlO, 
16. *(1 MOVD) 
17. *3 
18. *(XTR 2) 
19. *0 
20. *(SW 2 3) 

*REDO FROM F [7] 
*p 
(MOVD (QUOlE REED) (QUOTE READ» 
* 

The user now asks the assistant to replay the last three steps to him, [8]. 

Note that the entire REDO FROM F operation is now grouped together as a single 

unit, [9]. since it corresponded to a single user request. Therefore, the user 

can instruct the assistant to carry out the same operation again by simply 

saying REDO. This time a problem is encountered [10]. so the user asks the 

assistant what it was trying to do [11]. 

*1? FROM -3 [8] 

19. *0 
20. *(SW 2 3) 
21. REDO FROM F [9] 

*F PUlO 
*(1 MOVD) 
*3 
*(XlR 2) 
*0 
*(SW 2 3) 

*RE"OO 

PUTO ? [10] 

*?? -1 [11] 

22. REOO 

22.3 



~F PUlD 
~(1 MOVD) 
~3 

~(XTR Z) 
*0 

The user then realizes the problem 1s that the third PUTO is misspelled in the 

definition of LOADF (see page 22.2). He therefore instructs the assistant to 

USE @UTO FOR PUTD, [12], and the operation now concludes successfully. 

*USE @UTD FOR PUTD 
*p 
(MOVD (QUOTE READSAVE) (QUOTE READ» 
* t PP 

[LAMBDA (X Y) 
[COND 

*OK 
lOADF 

«NULL (GETD (QUOTE READSAVE») 
(MOVD (QUOTE READ) 

(QUOTE READSAVE] 
(MOVD (QUOTE REED) 

(QUOTE READ» 
(NLSETQ (SETQ X (LOAD X V»~) 
(MOVD (QUOTE READSAVE) 

(QUOTE READ» 
X] 

[12] 

An important point to note here is that while the user could have defined a 

macro to execute this operation, the operation is sufficiently complicated that 

he would want to tryout the :lndividual steps before attempting to combine 

them. At this point, he would already have executed the operation once. Then 

he would have to type in the steps again to define them as a macro, at which 

point the operation would only be repeated once more before failing. Then the 

user would have to repair the macro, or else change @UTO to PUTO by hand so 

that his macro would work correctly. It is far more natural to decide alter 

trying a series of operations whether or not one wants them repeated or 

forgotten. In addition, frequently the user will think that the operation(s) 

in question will never need be repeated, and only discover afterwards that he 

is mistaken, as occurs when the operation was incorrect, but salvageable: 

22.4 



*p 
(LAMBDA (STR FlGCQ VRB) *.COMMENT** (PROG & & LP1 & LPZ & &» 
*-1 -1 P 
(RETURN (COND &» 
*(-2 «EQ aa (QUOTE OUT» BB] [1] 
*p 
(RETURN (& B8) (COND &» [Z] 
*UNDO 
(-2 --) UNDONE 
*2 P 
(COND (EXPANS & & T» 
*REDO EQ 
*p 
(CONO (& B8). (EXPANS & & T) 
* 

Here the operation was correct, (1], but the context in which it was executed, 

(2], was wrong. 

This example also illustrates one of the most useful functions of the 

programmer's assistant: its UNDO capability. In most systems. if a user 

suspected that a disaster might result from a particular operation, e.g. an 

untested program running wild and chewing up a complex data structure, he would 

prepare for this contingency by saving the state of part or all of his 

environment before attempting the operation. If anything went wrong, he would 

then back up and start over. However. saving/dumping operations are usually 

expensive and time consuming, especially compared to a short computation, and 

are therefore not performed that frequently, and of course there is always the 

case when diaster strikes as a result of a 'debugged I or at least innocuous 

operation, as shown in the following example: 

~(MAPC ELTS (FUNCTION (LAMBDA (X) (REHPROP X (QUOTE HORPH] [1] 
NIL 
~UNDO [2] 
MAPC UNDONE. 
~USE ELEMENTS FOR ELTS (3] 
NIL .. 

The user types an expression which removes the property HORPH from every member 

of the list ELlS [1], and then realizes that he meant to remove that property 

22.5 



only from those members of the list ELEMENTS, a much shorter list. In other 

words, he has deleted a lot of information that he actually wants saved. He 

therefore simply reverses the effect of the MAPe by typing UNDO [2], and then 

does what he intended via the USE command [3]. 

22.2 Overview 

The programmer's assistant facility is built around a memory structure called 

the 'history list.' The history list is a list of the information associated· 

with each of the individual 'events' that have occurred in the system, where 

each even t corresponds to one user input. 4 For examPle,1 (XTR 2) ([ 3] on page 

22.·2) is a single event. while REDO FROM F ([7] on page 22.3) is also a single 

event. although the latter includes executing the operation (XTR 2). as well as 

several others. 

Associated with each event on the history list is its input and its value, plus 

other optional information such as side-effects. formatting information, etc. 

If the event corresponds to a history corrunand, e.g. REDO FROM F, the input 

corresponds to what the user would have had to type to execute the same 

operation(s), although the user's actual input, i.e. the history command, is 

saved in order to clarify the printout of that event ([9] on page 22.3). Note 

that if a history command event combines several events, it will h,ave more than 

one value: 

4-------------------------------··----------------------------------------------For various reasons, there are two history lists: one for the editor, and 
one for lispx. which proceSS'BS inputs to evalgt and break, see page 22.44. 

22.6 



~(LOb (ANTILOG 4» 
4.0 
~USE 4.0 40 400 FOR 4 
4.0 
40.0 
ARG NOT IN RANGE 
400 

~USE -40.0 -4.00007 -19. 
-40.0 
-4.00007 
-19.0 
~USE LOG ANTILOG FOR ANTILOG LOG IN -2 AND -1 
4.0 
40.0 
400.0 
4.00007 
19.0 
... 11 

4. USE LOG ANTILOG FOR ANTILOG LOG IN -2 -1 
~(ANTILOG (LOG 4.0» 
4.0 
~(ANTILOG (LOG 40» 
40.0 
~(ANTILOG (LOG 400» 
400.0 
~(ANTILOG (LOG -40.0» 
40.0 
~(ANTILOG (LOG -4.00007» 
4.00007 ' 
~(ANTILOG (LOG -19.0» 
19.0 

3. USE -40.0 -4.00007 -19.0 
~(LOG (ANTILOG -40.0» 
-40.0 
~(LOG (ANTILOG -4.00007» 
-4.00007 
~(LOG (ANTILOG -19.0» 
-19.0 

2. USE 4.0 40 400 FOR 4 
~(LOG (ANTILOG 4.0» 
4.0 
(LOG (ANTILOG 40.0) 
40.0 
~(LOG (ANTILOG 400» 

1. ~(LOG (ANTILOG 4» 
4.0 

As . new events occur, existing events are aged, and the oldest event is 

'forgotten.' For efficiency, the storage used to represent the forgotten event 

is cannibalized and reused in the representation of t~e new event, so the 

history list is actually a ring buffer. The size of this ring buffer is a 

22.7 



system parameter called the 'time-slice. ,6 Larger time-slices enable longer 

'memory spans,' but tie up correspondingly greater amounts of storage. Since 

the user seldom needs really 'ancient history,' and a NAME and RETRIEVE 

facility 1s provided for saving and remembering selected events, a relatively 

small time slice such as 30 events is more than adequate, although some users 

prefer to set the time slice as large as 100 events. 

Events on the history list can be referenced in a number of ways. The output 

on page 22.9 shows a printout of a history list with time-slice 16. The 

numbers printed at the left of the page are the event numbers. More recen~ 

events have higher numbers; the most recent event is event number 52, the 

oldest and about-to-be-forgotten event is number 37.6 At this point in time, 

the user can reference event number 51, RECOMPILE(EOIT), by its event number, 

51; its relative position, -2 (because it occurred two events back from the 

current time)~ or by a 'description' of its input, e.g. (RECOMPILE (EDIT», or 

(& (EDIT», or even just EDIT. As new events occur, existing events retain 

their absolute event numbers, although their relative positions charige. 

Similarly, descriptor references may require more precision to refer to an 

older event.' For example, the description RECOMPILE would have sufficed to 

refer to event 51 had event 52, also containing a RECOMPILE, not intervened. 

Event specification will be described in detail later. 

6-------------------------------··----------------------------------------------Initially 30 events. The time-slice can be changed with the function 

6 

changes I ice_, page 22.54. 

When the event number of the current event is 100, the next event will be 
given number 1. (If the tittle slice is greater than 100, the 'roll-over' 
occurs at the next highest hundred. so that at no time will two events ever 
have the same event number. for example, if the time slice is 150, event 
number 1 follows event number' 200.) 

22.8 



.. 11 

52. . .. HISl UNDO 
"RECOMPILE(HIST) 
HIS1.COM 
"RECOMPILE(UNOO) 
UNDO.COM 

51 ... RECOMPILE(EOIT) 
EOI1.COM 

50. "LOGOUT] 

49. "MAKEFIlES] 
(EDIl UNDO HIST) 

48 ... EDITF(UNDOLISPX) 
UNDOLISPX 

47. REDO GETD 
"GETO(FIE) 
(LAMBDA (X) (MAPC X (F/L (PRINT X»» 

46 ... UNDO 
" FIE 

45. "GETD(FIE) 
(LAMBDA (X) (MAPC X (FUNCTION (LAMBDA (X) (PRINT X»») 

44. "FIE] 
NIL 

43. "DEFINEQ«FIE (LAMBDA (X) (MAPC X (F/l (PRINT X»»» 
(FIE) 

42. REDO GETD 
"GETD(FIE) 
(LAMBDA (Y) Y) 

41 .... UNDO 
MOVO 

40. REDO GElD 
"GETD(FIE) 
(LAMBDA (X) X) 

39. "MOVD(FOO FIE) 
FIE 

38. "DEFINEQ«FOO (LAMBDA (X) X») 
(FOO) 

37. "GETO(FIE) 
(LAMBDA (Y) Y) 

The most common interaction with the programmer's assistant occurs at the top 

level evalqt, or in a break, where the user types in expressions for 

evaluation, and sees the values printed out. In this mode, the assistant acts 

much like a standard LISP evalqt, except that before attempting to evaluate an 

input, the assistant first stores it in a new entry on the history list. Thus 

if the operation is aborted or causes an error, the input is still saved and 

available for modification and/or reexecution. The assistant also notes new 

functions and variables to be added to its spelling lists to enable future 

corrections. Then the assistant executes the computation (i.e. evaluates the 

22.9 



form or applies the function to its arguments), saves the value in the entry on 

the history list corresponding to the input, and prints the result, followed by 

a prompt character to indicate it is again ready for input. 7 

If the input typed by the u~.er is recognized as a history command, the 

assistant takes special action. Commands such as UNDO, 77, NAME, and RETRIEVE 

are inunediately performed. Commands that involved reexecution of previous 

inputs, e.g. REDO and USE, are achieved by computing the corresponding input 

expression(s) and then unreading them. The effect of this unreading operation 

is to cause the assistant's input routine, lispxread, to act exactlt as though 

these expression were typed in by the user. Except for the fact that these 

inputs are not saved on new and separate entries on the history list, but 

associated wi th the history command that generated them, they are processed 

exactly as though they had been typed. 

The advantage of this implemontation is that it makes the programmer's· 

assistant a callable facility for other system packages as well as for users 

with their own private executives. For example. break\1 accept user inputs, 

recognizes and executes certain break commands and macros, and interpre'ts 

anything else as INTERLISP exp.'"essions for evaluation. To interface break1 

with the programmer's assistant required three small modifications to break1: 

( 1) input was to be obtained via lispxread instead of read; (2) instead of 

callingeval or ~ directly. break1 was to give those inputs it could not 

7-------------------------------··----------------------------------------------
The function that accepts a. user input, saves the input on the history 
list, performs the indicated computation or history command, and prints the 
result, is lispx. lispx is (:alled by evalqt and breakl, and in most cases, 
is synonymous wi th 'progranun,er' s assis tan t.· However, for various reasons, 
the editor saves its own inputs on a history list, carries out the 
reques ts, i. e. edit cornmand:s, and even handles undoing independently of 
lispx. The editor only calls lispx to execute a history command, such as 
REDO, USE, etc. Therefore we use the term assistant (loosely) when the 
discussion applies to features shared by evalqt, break and the editor, and 
the term lispx when we are di,scussing the specific function. 

22.10 



interpret to lispx, and (3) any commands or macros handled by breakl, i.e. not 

given to lispx, were to be stored on the history list by breakl by calling the 

function historysave, a part of the assistant package. 

Thus when the user typed in a break command, the command would be stored on the 

history list as a result of (3). If the user typed in an expression for 

evaluation, it would be evaluated as before, with the expression and its value 

both saved on the history list as a result of (2). Now if the user entered a 

break and typed three inputs: EVAL, (CAR 'VALUE), and OK, at the next break, he 

could achieve the same effect by typing REDO FROM EVAL. This would cause the 

assistant to unread the three expressions EVAL, (CAR lVALUE), and OK. Because 

of (1), the next 'input' seen by break! would then be EVAL. which break1would 

interpre't. Next would come (CAR ! VALUE). which would be given to lispx to 

evaluate, and then would come OK, which break1 would again process. Thus, by 

virtue of unreading, history operations will work even for those inputs not 

interpretable by lispx, in this case, EVAl and OK. 

The net effect of this implementation of the programmer' s assistant is to 

provide a facility which is easily inserted at many levels, and embodies a 

consistent set of commands and conventions for talking about past events. This 

gives the user the subjective feeling that a single agent is watching 

everything he does and says, and is always available to help. 

22.3 Event Sp~cification 

All history commands use the same conventions and syntax for indicating which 

event or events on the history list the command refers to, even though 

different commands may be concerned with different aspects of the corresponding 

event(s), e.g. side-effects, value, input, etc. Therefore, before discussing 

the various history commands in the next section, this section describes the· 

22.11 



types of event specifications currently implemented. All examples refer to the 

history list on page 22.9. 

An event address identifies one event on the history list. It consists of a 

sequence of 'commands' for moving an imaginary cursor up or down the his tory 

1 is t, much in the manner of the arguments to the @ corrunand in break (see 

Section 15). The event identified is the one 'under' the imaginary cursor when 

there are no more commands. (If any command fails, an error is generated and 

the history command is aborted.) 

The commands are interpreted as follows: 

n (n > 1) 

n (n .s -1) 

... atom 

... 

F 

= 

move forward n events, 1.e. in direction of 
inl:reasing event number. If given as the first 
'cc)lMland,' !1 specifies the event with event number 
n. 

move backward -n events. 

search backward for an event whose Junction 
matches atom (i.e. for ~ format only), e.g. 
whe!reas FIE would refer to event 17, .. FIE would 
refer to event 44. Similarly, EOS would specify 
event 51, whereas .. EOS event 48. 

search backward for an event whose input contains 
an expression that matches pat as described in 
Section 9. 

I 

next search is to go forward instead of backward, 
(if given as the first • command', next search 
begins with last, i.e. oldest, event on history 
1 is t), e. g. .. LAMBDA refers to event 38; 
HAKEFIlES .. RECOMPILE refers to event 51. 

next object is to be searched for, regardless of 
what it is, e.g. F -2 looks for an event 
containing a -2. 

next search is to look at uaLues, instead of 

8---~:;~-~~~~~=~~~;~-----------------------·-----------------------------------

9 i.e. anything else except for .. , -, and 
described above. 

22.12 

which are, interpreted as 



inputs, e.g. =UNDO refers to event 49; 45 = FIE 
refers to event 43; ~ = LAMBDA refers to event 37. 

specifies the event last located. 

Note: each search skips the current event, i.e. each command always moves the 

cursor. For example, if FOO refers to event !l. Foo FIE will refer to some 

event before event !l, even if there is a FIE in event !l. 

An event specification specifies. one or more events: 

FROM #1 THRU 12 
11 THRU 12 

FROM 11 TO 12 
11 TO 12 

FROM 11 

THRU 12 

TO 

#1 AND 12 AND ..• AND In 

empty 

the sequence of events from the 
eve2h wi th address (11 through event wi th address 
'2, e.g. FROM GETD THRU 49 specifies events 47, 
48, and 49. 11 can be more recent than 12, e.g. 
FROM 49 THRU GETP specifies events 49, 48, and 47 
(note reversal of order). 

Same as THRU but does not include event 12. 

Same as FROM 11 THRU -1, e.g. FROM 49 specifies 
events 49, 50, 51, and 52. 

Same as FROM -1 THRU '2, e.g. THRU 49 specifies 
even ts 52, 51, 50, and 49. Note reversal of 
order. 

Same as FROM -1 TO '2. 

i. e. a sequence of event addresses separated by 
AND's,.e.g. FROM 47 TO LOGOUT would be equivalent 
to 47 AND 48 AND MAKEFILES. 

i.e. nothing specified, same as -1, unless
11

1ast 
event was an UNDO, in which case same as -2. 

10-----------------------------------------------------------------------------i.e. the symbol #1 corresponds to all words between FROM and THRU in the 

11 

event specification, and #2 to all words from THRU to the end of the event 
specification. for example, in FROM Foo 2 THRU FIE -1, 11 is (FOO 2), and 
12 is (FIE -1). 

For example, if the user types (NCONC Foo FIE), he can then type UNDO, 
followed by USE NCONC1. 

22.13 



@ atom refers to the events named by atom, via the NAME 
conunand, page 22.25 e.g., if the user names a 
pclrticular event or events FOO, @ FOOspecifies 
those events. 

@@ ~ ~ is an event specification and interpreted as 
above, but with respect to the archived history 
list, as specified on page 22.27. 

22.4 History Commands 

All history cOl7D1land.s can be iTl'put a.s either lists, or a.s line.s (.see readltne 
Section 14. and also page 22.47). 

t is u.sed to denote an event .specification. Unle.ss specified otherwise, If 
omitted is the same as t z-l, e.g. REDO and REDO -1 are the same. 

REDO ~ 

USE vars FOR args IN t 

redoes the event or events specified by t, e. g. 
REDO FROM -3 redoes the last three events. 

SUbstitutes ill! for args in t. and redoes the 
re!'iult, e.g. 
USE LOG ANTILOG FOR ANTILOG LOG IN -2 AND -1. 
Substitution is done by esubst, Section 9, and is 
carried out as described below. 

USE vars 1 FOR args 1 AND •.. AND vars FOR argsn IN t 
Mor"e general form of USE command. See description 
of SUbstitution algorithm below. 

Every USE command involves thr,ee pieces of information: the variables to be 

substituted, the arguments to be substituted for, and an event specification, 

which defines the expression (input) in which the substitution takes place. 12 

If args are omitted, i.e. the form of the· command is USE vars IN ~, or just USE 

vars (which is equivalent to USE vars IN -1), and the ·event referred to was 

itself a USE conunand, the argument's and expression substituted into are the 

same as for the indicated USE cmnmand. In effect, this USE command is thus a 

i2------------------------------··----------------------------------------------The USE command is parsed by a small finite state parser to distinguish the 
variables and arguments. Fo." example, USE FOR FOR AND AND AND FOR FOR will 
be parsed correctly. 

22.14 



continuation of the previous USE command. For example, on page 22.7, when the 

user types (LOG (ANTILOG 4», followed by USE 4.0 40 400 FOR 4, followed by 

USE -40.0 -4.00007 -19., the latter command is equivalent to 

USE -40.0 -4.00007 -19. FOR 4 IN -2. 

If args are omitted and the event referred to was not a USE command, 

substitution is for the operator in that command, i.e. if a lispx input, the 

name of the function, if an edit command, the name of the command. For example 

ARGLIST(FF) followed by USE CALLS is equivalent to USE CALLS FOR ARGLIST. 

If ~ is omitted, but args are specified, the first member of args is used for 

~, e.g. USE PUlO FOR @UlD is equivalent to USE PUlD FOR @UTD IN F @UTO. 13 

If the USE command has the same number of expressions as arguments, the 

sUbstitution procedure is straightforward, 14 i.e. USE X Y FOR U V means 

substitute X for U and Y for V, and is equivalent to USE X FOR U AND Y FOR V. 

However. the USE command also permits distributive substitutions, i.e. 

substituting several expressions for the same argument. For example, 

USE ABC FOR X means first substitute A for X then substitute B for X (in a 

new copy of the expression), then substitute C for X. The effect is the same 

as three separate USE commands. Similarly, USE ABC FOR D AND X Y Z FOR W is 

equivalent to USE A FOR D AND X FOR W, followed by USE B FOR 0 AND Y FOR W, 

ia-----------------------------------------------------------------------------The F is inserted to handle correctly the case where the first member of 

14 

ar~ is a number. e.g. USE 4.0 4.0 400 FOR 4. Obviously the user means find 
the event containing a 4 and perform the indicated substitutions, whereas 
USE 4.0 40 400 FOR 4 IN 4 would mean perform the substitutions in event 
number 4. 

Except when one of the arguments and one of the variables are the same, 
e.g. USE X Y FOR Y X, or USE X FOR Y AND Y FOR X. This situation is noticed 
when parsIng the command, and-handled correctly: 

22.15 



followed by USE C FOR 0 AND Z FOR W. USE ABC FOR 0 AND X FOR y16 also 

corresponds to three substitions, the first with A for 0 and X for Y, the 

second with B for 0, and X for Y, and the third with C for 0, and again X for 

Y. However. USE ABC FOR 0 AND X Y FOR Z is ambiguous and will cause an 

error. Essentially, the USE cOltDmand operates by proceeding from left to right 

handling each 'AND' separately. Whenever the number of expressions exceeds the 

number of expressions available~ the expressions multiply.16 

FIX ~ puts the user in the editor looking at a copy of 
th{1 input( s) for ~, Whenever the user exits via. 
OK, the result is unread and reexecuted exactly as 
with REDO. 

FIX is provided for those cases when the modifications to the input(s) are not 

of the type that can be specifie!d by USE, i.e. not substitutions. For example: 

~(OEFINEQ FOO (LAMBDA (X) (FIXSPELL SPELlINGS2 X 70] 

INCORRECT DEFINING FORM 
FOO 

.. FIX 
EDIT 
.p 
(OEFINEQ FOO (LAMBDA & &» 
• (LI 2) 
OK 
(FOO) .. 

The user can also specify the edit command(s) to lispx, by typing - followed by 

the command(s) after the event ~ipecirication, e.g. FIX - (LI 2). In this case, 

the editor will not type EDIT, or wait for an OK after executing the commands. 

16 Thus USE ABC 0 FOR E F metans substitute A for E at the same time as 
subs ti tuting B for F, then in another copy of the indicated expression, 
substi tute C for E and 0 for F. Note that this is also equivalent to 
USE A C FOR E AND 8 0 FOR F. 

22.16 



Implementation of REDO, USE, and FIX 

The input portion of an event is' represented internally on the history list 

simply as a linear 'sequence of the expressions which were read. For example, 

an input in ~ format is a list Consisting of two expressions, an an input 

in eval format is a list of just one expression. 17 Thus if the user wishes to 

convert an input 'in ~ format to eval format, he simply moves the function 

name inside of the argument list: 

~MAPC(FOOFNS (F/l (AND (EXPRP X) (PRINT Xl 
NIL 
~EXPRP(F001) 
T 
~FIX MAPC 
EDIT 
-P 
(MAPC (FOOFNS &» 
-(BO 2) 
-elI 1) 
-P 
«MAPC FOOFNS &» 
OK 
FOOl 
FIE2 
FUM 
NIL ... 

By Simply converting the input from two expressions to one expression, the 

desired effect, that of mapping down the list that was the value of foofns, was 

achieved. 

REDO, USE, and FIX all operate by obtaining the input portion of the 

corresponding event, processing the input (except for REDO), and then storing 

17-----------------------------------------------------------------------------For inputs in eval format, i.e. single expressions, FIX calls the editor so 
that the current expression is that input, rather than the list consisting 
of that input - see the example on the preceding page. However, the entire 
list is actually being edited. Thus if the user typed t P in that example, 
he would see «DEFINEQ Foo &». 

22.17 



it on the history list as thl9 input portion of a new event. The history 

command completes operating by simply unreading the input. When the input is 

subsequently 'reread.', the evont which already contains the input will be 

retrieved and used for recording the value of the operation, saving side-

effects, etc., instead of creating a new event. Otherwise the input is treated 

exactly the same as if it had been typed in directly. 

If ~ specifies more than one event, the inputs for the correspondin~ events are 

simply concatenated into a linear sequence, with special markers representing 

carriage returns18 inserted between each input to indicate where new lines 

start. The result of this concatenation is then treated as the input referred 

to by i. For example, when the user typed REDO FROM F ([7] on page 22.3) the 

inputs for the corresponding six events were concatenated to produce 

(F PUTO 10 (1 MOVD) 10 3 10 (Xnt 2) 10 0 10 (SW 2 3». Similarly, if the user 

had typed USE @UTO FOR PUTO IN 15 THRU 20, (F PUTO #0 (1 MOVO) 10 3 10 (XTR 2) 

#0 0 10 (SW 2 3» would have b'ten constructed, and then @UTO substituted for 

PUTO throughout it. 

The same convention is used for representing multiple inputs when a USE command 

involves sequential SUbstitutions. For example, if the user types GETO(FOO) 

and then USE F IE ,FUM FOR FOO, the input sequence that will be constructed is· 

(GETO (FIE) #0 GETO (FUM», whic:h is the result of substituting FIE for FOO in 

(GE TO (FOO» concatenated with the resul t of subs ti tuting FUM for FOO in 

( GE TO (FOO». 

Once such a multiple input is constructed, it is treated exactly the same as a 

single input, i.e. the input sequence is recorded in a new event, and then 

18-----------------------------------------------------------------------------The value of (VAG 0) is currently used to represent a carriage return on 
the grounds that it cannot be typed in by the user, and thus cannot cause 
ambiguities. 

22.18 



unread, exactly as described above. When the inputs are 'reread,' the 'pseudo-

carriage-returns' are treated by lispxread and readline exactly as real 

carriage returns, i.e. they serve to distinguish between ~ and eval formats 

on inputs to lispx, and to delimit line commands to the editor. Note that once 

this multiple input has been entered as the input portion of a new event, that 

event can be treated exactly the same as one resulting from type in. In other 

words, no special checks have to be made when referencing an event, to see if 

it is simple or multiple. Thus, when the user types REDO following 

REDO FROM F, ([10] page 22.3) REDO does not even notice that the input 

retrieved from the previous event is(F PUlO 10 (SW 2 3» i.e. a multiple 

input, it simply records this input and unreads it. Similarly. when the user 

then types USE @UlO FOR PUlO on this multiple input, the USE command simply 

carries out the substitution, and the result is the same as though the user had 

typed USE @UlO FOR PUlO IN 15 lHRU 20. 

In sum. this implementation permits ~ to refer to a single simple event, or to 

several events, or to a single event originally constructed from several events 

(which may themselves have been multiple input events, etc.) without having to 

treat each case separately. 

History Commands Applied to History Commands 

Since history commands themselves do not appear in the input portion of events 

(although they are stored elsewhere in the event), they do not interfere with 

or affect the searching operations of event speCifications. In effect, history 

conunands are invisible to event specifications. 19 As a result, history conunands 

themselves cannot be recovered for execution in the normal way. For example, 

19-----------------------------------------------------------------------------With the exception described below under "History Commands that Fail". 

22.19 



if the user types USE ABC FOIl D and follows this with USE E FOR 0, he will 

not produce the effect of USE ABC fOR E (but instead will simply cause E to 

be substituted for D in the last event containing a 0). To produce this 

effect, i.e. USE ABC FOR E. the user should type USE D FOR E IN USE. The 

appearance of the word REDO, USIE or FIX in an event address specifies a search 

for the corresponding his toru c:onunand. (for example, the user can also type 

UNDO REDO.) It also specifies that the text of the history command itself be 

treated as though it were the input. - However, the user must remember that the 

context in tllhich a histoTII command i.s reexecuted is'that of the current 

historll. not the original Icontext. For example, if the user types 

USE FOO FOR FIE IN -1, and then later types REDO USE, the -1 will refer t'o the 

event before the REDO, not bofore the USE. Similarly, if the user types 

REDO REDO followed by REDO REDO, he would cause an infinite loop, except for 

the fact that a special check detects this type of situation. 

History Commands that fail 

The one exception to the statement that 'history commands are invisible to 

event specifications' occurs whelll a history command fails to produce any input. 

For example, suppose the user types USE LOG FOR ANTILOG AND ANTILOG FOR lOGG, 

causing lisp~ to respond LOGG 7. Since the USE command did not produce any 

input, the user can repair it by typing USE LOG FOR LOGG (i.e. does not have ,to 

specify IN USE). This latter USE command will invoke a search for LOGG, which 

will find the bad USE command. Jispx then performs the indicated substitution, 

and unreads USE lOG FOR ANTILOG AND ANTILOG FOR lOG. In turn, this USE command 

invokes a search for ANTILOG, which, because it wa.s not tllped in but reread. 

ignores the bad USE command which was found by the earlier search for LOGG, and 

which is still on the history li~it. In other words, historll conunands that fail 

to produce input are visible to searches ari.sing from event .specification.s 

typed in by the u.ser. but not to .secondarll event specification.s. 

22.20 



In addition, if the most recent event is a history conunand which failed to 

produce input, a secondary event specification will effectively back up the 

history list one event so that relative event numbers for that event 

specification will not count the bad history conunand. For example, suppose the 

user types USE lOG FOR ANTILOG AND ANTILOG FOR lOGG IN -2 AND -1, and after 

lispx types lOGG 1, the user types USE lOG FOR lOGG. He thus causes the command 

USE LOG FOR ANTILOG AND ANTILOG FOR lOG IN -2 AND -1 to be constructed and 

unread. In the normal case, -1 would refer to the last event, i.e. the 'bad' 

USE command, and -2 to the event before 1t. However, in this case, -1 refers 

to the event before the bad USE command, and the -2 to the event before that. 

In short, the caveat that "the user must remember that the context in which a 

h is tory conunand is reexe,cuted is that of the ~urrent history. not the original 

context" does not apply if the correction is performed immediately. 

More History Conunands 

RETRY t. 

... vars 

For example, EXPRP(FOO) 

similar to REDO except sets helpclock so that any 
errors' that occur while executing t. will cause 
breaks. 

similar to USE except substitutes for the (first) 
operand. 

followed by ••• FIE FUM is equivalent to 

USE FIE FUM FOR Foo. See also event 52 on page 22.9. 

17 t. prints history list. If t. 
the entire history list, 
recent events. Otherwise 
events specified in t. 
specified), e.g. 11 -1, 11 

is omi tted, 77 prints 
beginning with most 

11 prints only those 
(and in the order 
10 THRU 15, etc. 

71 commands are not entered on the history list, and so do not affect relative 

event numbers. In other words, an event specification of -1 typed following a 

17 command will refer to the event immediately preceding the 11 command. 

22.21 



11 will print the history command, if any, associated with each event as shown 

at [9] on page 22.3 and page 2~~.7. Note that these history conunands are not 

preceded by prompt characters, indicating they are not stored as input.20 

11 prints multiple input events under one event number (see page 22.7). 

Since events are initially stored on the history list with their value field 

equal to bell (control-G), if an operation fails to complete for any reason, 

e.g. causes an error, is aborted, etc., its 'value' will be bell. This is the 

explanation for the blank line in event 2, page 22.7, and event 50, page 22.9. 

17 is implemented via the function printhistory, page 22.60, which can also be 

called directly by the user. 

UNDO ~ 

* 

undoes the side effects of the specified events. 
For each event undone, UNDO prints a message: e.g. 
RPLACA UNDONE, REDO UNDONE etc. If nothing is 
undone because nothing was saved, UNDO types 
NOTHING SAVED. If nothing was undone because the 
event(s) were already undone, UNDO types 
ALREADY UNDONE. If t is empty, UNDO searches back 
for the last event that contained side effects, 
was not undone, and itself was not an UNDO 

20-----------------------------------------------------------------------------REDO, RETRY, USE, ... , and FIX commands, i.e. those commands that reexecute 
previous events, are not stored as inputs, because the input portion for 
these events are the expres.sions to be 'reread'. The history commands 
UNDO, NAME t RETRIEVE, BEFORE, and AFTER are recorded as inputs, and 11 
prints them exactly as they were typed. 

2Z.2Z 



conunand.21 22 

UNDO t. EaCh. xi refers to a message printed by DWIM in the 
event(s) specified by~. The side effects of the 
corresponding DWIM corrections, and only those 
side effects, are undone. 

For example, if the message PRINTT [IN FOO] -) PRINT were printed, 

UNDO : PRINTT or UNDO: PRINT would undo the correction. 23 

• • 

$ is a special form of the USE conunand for conveniently specifying character 

substitutions. In addition, it has a number of useful default options in 

connection with events that involve errors. 

:& x FOR y equivalent to USE Ix$ FOR $y$ 

For example, the user types MOVD(FOO FOOSAVE T), he can then type S FIE FOR FOO 

to perform MOVD(FIE FIESAVE T). Note that USE FIE FOR FOO would perform 

MOVD(FIE FOOSAVE T). 

21-----------------------------------------------------------------------------Note that the user can undo UNDO commands themselves by specifying the 

22 

23 

corresponding event address, e.g. UNDO -3 or UNDO UNDO~ 

UNDOing events in· the reverse order from which they were executed is 
guaranteed to restore all pointers correctly, e.g. to undo all effects of 
last five events, perform UNDO THRU -5, not UNDO FROM -5. Undoing out of 
order may have unforseen effects if the operations are dependent. For 
example, if the user performed (NCONC1 FOO FIE), followed by 
(NCONCI FOO FUM), and then undoes the (NCONC1 FOO FIE), he will also have 
undone the (NCONC 1 FOO FUM). I f he then undoes the (NCONC 1 FOO FUM), he 
will cause the FIE to reappear, by virtue of restoring FOO to its state 
before the execution of (NCONCI FOO FUM). For more details, see page 
22.42. 

Some portions of the messages printed by DWIM are strings, e.g. the message 
FOO UNSAVED is printed by printing FOO and then " UNSAVED". Therefore, if 
the user types UNDO : UNSAVED, the DWIM correction will not be found. He 
should ins teadtype UNDO :FOO or UNDO : SUNSAVEDS (al t-modeUNSAVEDal t­
mode, see R command in editor. section 9). 

ZZ.Z3 



An abbreviated form of , is available: 

$ y x sarne as 'x FOR y, i.e. yls are changed to XiS. 

can also be written as $ y TO x, $ Y = x, or 

$ y -) x. 

$ does event location the sarne as the USE command, i.e. if IN -- is not 

specified, it searches for l.24 

.. 
After $ finds the event, it llooks. to see if an error was involved in that 

event,25 and if the indicated 4::haracter substitution can be performed in the 

offender. If so, , assumes the substitution refers to the offender, performs 

the substitution, and then substitutes the result for the offender throughout. 

For example. the ·user types (PRETTYOEF FOOFNS IFOO FOOVARS) causing a 

U.S.A. FOOOVARS error message. The user can now type S 00 0, which will change 

FOOOVARS to FOOVARS. but not change FOOFNS or FOO. 

If an error did occur in the specified event, the user can also omit specifying 

~, in which case the offender is used. Thus, the user could have corrected the 

above example by simply typing S FOOVARS. 8imilarly, if the user types 

LOAD(PRSTRUC PROP), causing the error FILE NOT FOUND PRSTRUC, he can request 

the file to be loaded from LI8P~s directory by simply typing S (LISP)S. Since 

esubst is used for substituting, this is equivalent to performing 

(R PRSTRUC <LISP)S) on the Elvent, and therefore replaces PRSTRUC by 

<LISP)PRSTRUC (see Section 9). Note also the usefulness of , '$, meaning: put 

a I in front of the offender. 

24------------------------------'-----------------------------------------------However, unlike USE, , can only be used to specify one substitution at a 

26 

time. 

Whenever an error occurs, 'the object of the error message, called the 
offender, is automatically saved on that event's entry in the history list, 
under the property ERROR. 

22.24 



$ also works for events in the editor. for example, if the user types 

(MOVE CONO 33 2 TO BEFORE HERE), and editor types 33 1, the user can type $ 3, 

causing 3 to be substituted for 33 in the HOVE command. 

Finally, the user can omit both ~and I. This specifies that two alt-modes be 

packed onto the end of the offender, and the result substituted throughout the 

specified event. For example, suppose the user types to the editor 

(MOVE 3 2 TO AFTER CONDO 1), and gets the error message CONDO 1. because the 

find command failed to find CONDO. $ will cause the edit command 

(MOVE 3 2 TO AFTER CONDOSS 1) to be executed, which will search for an atom 

that is "close" to CONDO in the sense used by the spelling corrector (see 

pattern type 6b, Section 9).26 

Note that $ never ~earche~ for an error. Thus, if the user types 

LOAO(PRSTRUC PROP) causing a FILE NOT FOUND error, types ClOSEALL(), and then 

types S <lISP)S, I ispx will complain that there is no error in CLOSEALL(). In 

this case, the user would have to type S (LISP)S IN LOAD, or 

S PRS (LISP)PRS (which would cause' a search for PRS). 

Note also that $ operates on input, not on programs. If the user types FOO(), 

and within the call to FOO gets a U.D.F. CONDO error, he cannot repair this by 

S CONO. lispx will type CONDO NOT FOUND IN FOO(). 

* 

NAME atom t. 

* * 

saves the event( s) (including side effects) 
specified by t. on the property list of atom (under 
the property HISTORY) e.g. NAME FOO 10000RU 15. 
NAME commands are undoable. 

20---------------------------------------------------- -------------------------The same effect could be achieved by S CONO, which specifies substituting 
COND for CONDO, but not by S CONDOSS. Since the latter is equivalent to 
performing (R CONDO CONDOSS) on the event, which would result in 
CONOOCONOOCONOO being substituted for CONDO (as described in Section 9). 

22.25 



REtRIEVE atom Retrieves and reenters on the history list the 
events named by atom. Causes an error if atom was 
no1~ named by a NAME command. --

For example, if the user perfor'ms NAME FOO 10 THRU 15, and at some time later 

types RETRIEVE FOO, 6 new events will be recorded on the history list (whether 

or not the corresponding events have been forgotten yet). Note that RETRIEVE 

does not reexecute the events, it simply retrieves them. The user can then 

REDO, UNDO, FIX, etc. any or all of these events. Note that the user can 

combine the effects of a RETRIEVE and a subsequent history conunand in a single 

operation by using an event specification of the form @ atom, as described on 

page 22.14, e.g. REDO @ FOO i:» equivalent to RETRIEVE FOO, followed by an 

appropriate REDO. 27 Note that UNDO' FOO and 11 @ FOO are permitted. 

BEFORE atom undoes the effects of the events named by atom. 

AFTER atom undoes a BEFORE atom. 

BEFORE/AFTER provide a convenient way of flipping back and forth between two 

states, namely that state be/ore a specified event or events were executed, and 

that state after execution. For, example, if the user has a complex data 

structure which he wants to be able to interrogate before and after certain 

modifications, he can execute the modifications, name the corresponding events 

wi th the NAME command, and' then can turn these modifications off and on via 

BEFORE or AFTER corrunands. 28 Both BEFORE and AFTER are NOPs if the atom was 

27------------------------------------------------------------------------------
Actually, REDO @ FOO is bettor than RETRIEVE followed by REDO since in the 

28 

latter case, the corresponding events would be entered on the history list 
twice, once for the RETRIEVE and once for the REDO. 

The al ternative to BEFORE/A.FTER for repeated switching back and forth 
involves UNDO, UNDO of the UNDO, UNDO of that etc. At each stage, the user 
would have to locate the correct event to undo, and furthermore would run 
the risk of that event being 'forgotten' if he did not switch at least once 
per time-slice. 

22.26 



already in the corresponding state; both generate errors if ili.m was not named 

by a NAME command. 

Note: since UNDO, NAME, RETRIEVE, BEfORE, and AfTER are recorded as inputs they 

can be referenced by REDO, USE, etc. in the normal way. However, the user 

must again remember that the context in which the conunand is reexecuted is· 

different than the original context. For example, if the user types 

NAME FOO OEFINEQ THRU COMPILE, then types ••• fIE, the' input that will be 

reread will be NAME FIE DEFINEQ THRU COMPILE as was intended, but both OEFINEQ 

and COMPILE, will refer to the most recent event containing those atoms, namely 

the event consisting of NAME FOO DEFINEQ THRU COMPILE' 

ARCHIVE t. records the events specified by t. on a permanent 
history list. This history list can be referenced 
by preceding a standard event specification wi th 
@@, e.g. 1? @@ prints the archived history list, 
REDO @@ -1 will recover the cQrresponding event 
from the archived history list and redo it, etc. 

The user can also provide for automatic archiving of selected events by 

appropriately defining archivefn, as described on page 22.33. 

FORGET t. permanently erases the record of the side effects 
for the events specified by t.. If f, is omitted, 
forgets side effects for entire history list. 

FORGET is provided for users with space problems. For example, if the user has 

just performed sets, rplacas, rplacds, putd, remprops, etc. to release 

storage, the old pointers would not be garbage collected until the 

corresponding events age sufficiently to drop off the end of the history list 

and be forgotten. fORGET can be used t.o force immediate forgetting (of the 

side-effects only). fORGET is not undoable (obviously). 

22.27 



22.5 Miscellaneous Features and Commands 

TYPE-AHEAD is a command that allows the user to type-ahead an 

indefinite number of inputs. 

The assistant responds to TYPE-AHEAD with a prompt character of >. The user 

can now type in an indefinite number of lines of input, under errorset 

protection. The input lines are saved and unread when the user exits the type­

ahead loop with the conunand SGO (alt-modeGO). While in the type-ahead loop, 11 

can be used to print the type·-ahead. FIX to edi t the type-ahead, and SQ to 

erase the last input (may be used repeatedly). For example: 

22.28 



"'TYPE-AHEAD 
)SYSOUT(TEM) 
)MAKEFILE(EDIT) 
)BRECOMPILE«EDIT WEOIT» 
)F 
)$Q 
\\F 
)$Q 
\\BRECOMPILE 
)LOAD(WEDIT PROP) 
)BRECOMPILE«EDIT WEOIT» 
)F 

)MAKEFILE(BREAK) 
)LISTFILES(EDIT BREAK) 
>SYSOUT(CURRENT) 
>LOGOUT] 
>11 

)FIX 
EDIT 

)SYSOUT(TEM) 
)MAKEFILE(EOIT) 
)LOAD(WEOITPROP) 
)BRECOMPILE«EDIT WEOIT» 
)F . . 

)MAKEFILE(BREAK) 
)LISTFILES(EOIT BREAK) 
)SYSOUT(CURRENT) 
)LOGOUT] 

*(R BRECOMPILE BCOMPL) 
*p 
«LOGOUT) (SYSOUT &) (LISTFILES &) 
(LOAD &) (HAKEfIlE &) (SYSOUT&» 
*(OElETE LOAD) 
·OK 
)SGO 

29 

(HAKEFILE &) (F) (BCOHPL &) 

The TYPE-AHEAD conunand may be aborted by SSTOP; control-E simply aborts the 

current line of input. 

29-----------------------------------------------------------------------------Note that type-ahead can be addressed to the compiler, since it uses 
lispxread for input. Type-ahead can also be directed to the editor, but 
type-ahead to the editor and to .lispxcannot be intermixed. 

22.29 



* * * 

SBUFS (alt-modeBUFS) is a command for recovering the input buffers. 

Whenever an error occurs 1n e~:ecuting a lispx input or edit command, or a 

control-E or control-D 1s typed, the input buffers are saved and cleared. The 

SBUFS command is used to restore the input buffers, i.e. its effect is exactly 

the same as though the user had retyped what was 'lost.' For example: 

*(-2 (SETQ X (COND «NULL Z) (CONS 
*p 
(COND (& &) (T Be» 
*2 
*SBUFS 
(-2 (SETQ X (COND «NULL Z) (CONS 

(user typed control-E) 

and user can now finish typing the (-2 .. ) conunand. 

Note: the type-ahead does not have to have been seen by INTERLISP, i.e., 

echoed, since the system buffer is also saved. 

Input buffers are not saved on the history list, but on a free variable. Thus, 

only the contents of the input buffer as of the last clearbuf can ever be 

recovered. However, input buffers cleared at evalgt are saved independently 

from those cleared by break or the editor. The procedure followed when the 

user types SBUFS is to recover first from the local buffer, otherwise from the 

top level buffer. 30 Thus the user can lose input in the editor, go back to 

evalgt. lose input there. then go back into the editor, recover the editor'S 

30---------------------------------------------------- -------------------------The local buffer is stored on lispxbufs; the top level buffer on 
to~l is~)U fs. The forms of both buffers are (CONS (LINBUF) (SYSBUF» (see 
Section 14). Recovery of a buffer is destructive, i.e. SBUFS sets the 
corresponding variable to NIL. If the user types SBUFS when both lispxbufs 
and toplispxbufs are NIL, the message NOTHING SAVED is typed, and an error 
generated. 

22.30 



buffer, etc. Furthermore, a buffer cleared at the top can be recovered in a 

break, and vice versa. 

* * 

The following four corrunands, DO, !F. !E, and !N, are only recognized in the 

editor: 

00 com allows the user to supply the command name when it 
was omitted. (USE is used when a command name is 
incorrect). 

For example, suppose the user wants to perform 

(-2 (SETQ X (LIST Y Z») but instead types just (SETQ X (LIST Y Z». The 

editor will type SETQ 1, whereupon the user can type 00 -2. The effect is the 

same as though the user had typed FIX, followed by (LI 1), (-1 -2). and OK, 

i • e. the command (-2 (SETQ X (LIST Y Z») is executed. 00 also works if the 

last command is a line command. 

!F same as 00 F. 

In the case of IF, the previous command is always treated as though it were a 

line command, e.g. if the user types (SETQ X &) and then !F, the effect is the 

same as though he had typed F (SETQ X &), not (F (SETQ X &». 

!E 

!N 

same as DO E. Note !E works correctly for 
'commands' typed in eval or ~ format. 

same as 00 N. 

22.31 



• • 

control-U when typed in at any point during an input being 
read by lispxread, permits the user to edit the 
input before it is returned to the calling 
function. 

This feature is useful for correcting mistakes noticed in typing be/ore the 

input is executed, instead of waiting till after execution and then performing 

an UNDO and a FIX. For example t if the user types 

(OEFINEQ (FOO (lAMBDA (X) (FIXSPEll X and at that point notices the missing 

left parenthesis, instead of cClmpleting the input and allowing the error to 

occur, and then fixing the input, he can simply type control-U,31 finish typing 

normally, whereupon the editor is called on (FOO (LAMBDA (X) (FIXSPElLX -- 1, 

which the user can then repair, e.g. by typing ell 1). If the user exits from 

the edi tor via OK, the (corrected) expression will be returned to whoever 

called lispxread exactly as though it had been typed. 32 If the user exits via 

STOP, the expression is returned so that it can be stored on the history list. 

However it wi 11 not be executed. In other words, the effect is the same as 

though the user had typed control-E at exactly the right instant. 

ai------------------------------ q

--------------------- -------------------------Control-U can be typed at clOy point, even in the middle of an atom; it 
simply sets an internal flag checked by lispxread. 

82 Control-U also works for calls to readline, i.e., for line commands. 

22.32 



* 

valueof 

* * 

is an nlambda function for obtaining the value 95 
a particular event, e.g. (VAlUEOF -1), 
(VAlUEOF ~FOO -2). 

The value of an event consisting of several 
operations is a list of the values for each of the 
individual operations. 

Note: the value field of a historll entrll is initialized to bell (control-G). 
Thus a value oj bell indicates that the corresponding operation did not 
complete. i.e. was aborted or caused an error (or else returned bell). 

prompt#flg 

* 

archivefn 

*- * 

is a flag which when set to T causes the current 
event number to be printed before each ~,: and * 
prompt characters. See description of promptchar, 
page 22.51. 

promptlflg is initially NIL. 

allows the user to specify events to be 
automatically archived. 

When archivefn is set" to T, and an event is about to drop off the end of the 

history list and be forgotten, archivefn is called giving it as its first 

argumen~ the input portion of the event p and as its second argument, the entire 

88-----------------------------------------------------------------------------Al though the input for valueof is entered on the history list before 
valueof is called, valueof[-l] still refers to the value of the expression 
immediately before the valueof input, because valueof effectively backs the 
history list up one entry when it retrieves the specified event. 
Similarly. (VAlUEOF FOO) will find the first event before this one that 
contains a FOO. 

22.33 



event. 34 If archivefn returns T, the event is archived. For example, some 

users like to keep a record e)f all calls to load. Defining archivefn as: 

(LAMBDA (X Y) (EQ (CAR X) (QUOTE LOAD») will accomplish this. Note that 

archivefn must be both set and defined. archivefn is initially NIL and 

undefined. 

• • • 

lispxmacros provides a macro facility for lispx. 

lispxmacros allows the user to diefine his own lispx commands. It is a list of 

elements of the form (command def). Whenever command appears as the first 

expression on a line in a lispx input, the variable lispxline is bound to the 

rest of the line, the event :l.s recorded on the history list, and def is 

evaluated. Similarly. whenever command appears as car of a form in a lispx 

input. the variable lispxline is bound to cdr of the form, the event recorded, 

and def is evaluated. (See page 22.60 for an example of a lispxmacro). 

RETRIEVE, BEFORE, and AFTER are implemented as lispxmacros. In addition, LISP, 

SNDMSG, TECO, and EXEC are lisp~nacros which perform the corresponding calls to 

subsys (section 21), and CONTIN is a lispxmacro which performs (SUBSYS T). 

Finally, SY and DIR are lispxrnacros which perform the EXEC, SYSTAT, and 

DIRECTORY commands respectively. 

DIR *.SAV;*. 

OIR can be given arguments, e.g~, 

84------------------------------··----------------------------------------------
In case archivefn needs tOI examine the value of the event, its side 
effects, etc. See page 22.44 for discussion of the format of history 
lists. 

22.34 



* 

lispxuserfn 

* * 

provides a way for a user function to process 
selected inputs. 

When ~xlJserfn i.s set to T, it is applied36 to all inputs not recognized as 

one of the commands described above. If lispxuserfn decides to handle this 

input, it simply processes it (the event was already stored on the history list 

before lispxuserfn was called), sets lisp~value to the value for the event, and 

returns T. lis.~ will then know not to call eval or ~, and will Simply 

store lispxvalue into the value slot for the event, and print it. If 

lispxuserfn returns NIL, lispx proceeds by calling eval or ~ in the usual 

way. Thus by appropriately defining (and setting) lispxuserfn, the user can 

with a minimum of effort incorporate the features of the programmer's assistant 

into his own executive (actually it is the other way around). 

35-----------------------------------------------------------------------------Like archivefn, lispxuserfn must be both set and defined. 

22.35 



The following output illustrates such a coupling. 36 

**SETQ(ALTFORH (HAPCONC NA50IC (f/L (GETP X 'ALTFORH5] 
=NASOICT 

[1] 

(AL26 BE7 C056 C057 C060 C13 H3 MN54 NA22 5C46 534 T144) 
**(GIVEMELINE5CONTAININGC08ALT) . 
SAMPLE PHASE CONSTIT. CONTENT 
510002 OVERALL C056 40.0 

C13 8.8 
H3 314.0 
HN54 28 

**GETP(COBALT ALTFORHS) 

UNIT 
OPH/KG 
DEL 
DPH/KG 

(C056 C057 C060 C13 H3 MN54 NA22 5C46 534 T144) 
**UNOO MAPCONC 
SETQ UNDONE. 
**REOOGETP 
(C056 C057 C060) 
**REOO COBALT 
SAMPLE PHASE CONSTIT. 
510002 OVERALL C057 
S10003 OVERALL CO 

C056 
C057 
C060 

**USE MANGANESE FOR COBALT 

CONTENT 
40.0 
15.0 
14.1 
43.0 
43.0 
1.0 

UNIT 
DPM/KG 

DPM/KG 

[2 ] 
CITATION TAG 
070-237 0 
070-228 0 

[3] 

[4] 

[5] 

[6] 
CITATION TAG 
070-237 0 
070-203 0 
070-216 
070-237 0 
070-241 0 

The user is running under his o'm executive program which accepts requests in 

the form of sentences, which it first parses and then executes. The user first 

'innocently' computes a list of all ALTERNATIVE-FORMS for the elements in his 

system [1]. He then inputs a request in sentence format [2] expecting to see 

under the column CONSTIT. only cobalt, CO, or its alternate forms, C056, C057, 

or C060. Seeing C13. H3, and f1N54 , he aborts the output, and checks the 

property ALTFORH5 for COBALT [3]. The appearance of C13, H3, MN54, he aborts 

the output, and checks the property ALTFORHS for COBALT [3]. The appearance of 

C13, H3. MN54 et aI, remind him that the mapconc is destructive, and that in 

the process of making a list of the ALTFORMS. he has inadvertently· strung them 

all together. Recovering from this situation would require him to individually 

i~-----------------------------------------------------------------------------The output is from the Lunar Sciences Natural Language Information System 
being developed for the NASA Manned Spacecraft Center by William A. Woods 
of Bolt Beranek and Newman Inc., Cambridge, Mass. 

22.36 



examine and correct the ALTFORMs for each element in his dictionary. a tedious 

process. Instead, he can simply UNDO HAPCONC, [4] check to make sure the 

ALTFORM has been corrected [5], then redo his original request [6] and 

continue. The UNDO is possible because the first input was executed by lispx; 

the (GIVE ME LINES CONTAINING COBALT) is possible because the user defined 

lispxuserfn appropriately; and the REDO-and USE are possible because the 

(GIVE ME LINES CONTAINING COBALT) was stored on the history list before it was 

transmitted to lispxuserfn and the user's parsing program. 

lispxuserfn is a function of two arguments, ~ and line, where x is the first 

expression typed, and line the rest of the line, as read by readline (see page 

22.47). For example, if the user types FOO(A B C), ~=FOO, and line=«A Be»; 

if the user types (FOO A B C), ~=(FOO ABC), and line=NILj and if the user 

types FOO ABC, ~:FOO and line=(A B C). 

Thus in the above example, lispxuserfn would be defined as: 

[LAMBDA (X LINE) 
(COND 

«AND (NULL LINE) 
(lISTP X» 

(SETQ LISPXVAlUE (PARSE X» 
T] 

Note that since lispxuserfn 1s called for each input (except for p.a. 

commands). it can also be used to monitor some condition or gather statistics. 

* * 

In addition to saving inputs and values, lispx saves most system ,messages on 

the history list, e.g. FILE CREATED --, (fn REDEFINED), (var RESET), output of 

TIME, BREAKDOWN, STORAGE, DWIM messages, etc. When printhistory prints the 

event, this output 1s replicated. This facility is implemented via the 

functions lispxpr1nt, lispxprinl, lispxpr1n2, 11spxspaces, 11spxterpri, and 

22.37 



lispxtab. 37 In addition to performing the corresponding output operation, these 

functions store an appropriate expression on the history event under the 

property LISPXPRINT. 88 This expression is used by printhistory to reproduce the 

output. 

• * * 

In addition to the above features. lispx checks to see if car or cdr of NIL o~ 

car of T have been clobbered, B.nd if so, restores them and prints a message. 

Lispx also performs spelling corrections using lispxcoms, a list of its 

commands, as a spelling list whenever it is given an unbound atom or undefined 

function, i.e. before attempting to evaluate the input.89 

22 .. 6 Undoing 

The UNDO capability of the proglrammer's assistant 1s implemented by requiring 

that each operation that is to be undoable be responsible itself for saving on 

the history list enough information to enable .reversal of its side effects. In 

other words. the assistant does not I know' when it is about to perform a 

destructive operation, i.e. it is not constantly checking or anticipating. 

Instead, it simply executes operations, and any undoable changes that occur are 

87------------------------------'-------~---------------------------------------
In fact, all six of these functions have the same definition. When called, 

38 

39 

this function looks back on the stack to see what name it was called by, 
and determines what to do. Thus, if the user wanted to make any other 
output function, e.g. printdef, record its HOVD(LISPXPRINT LISPXPRINTOEF), 
and then use lispxpr1ntde[ for printdef. (This will work only for 
functions of three or fewer arguments.) 

unless lispxprintflg is NIL. 

lisp2S is also responslblefor rebinding helpclock, used by breakcheck, 
Section 16, for computing the amount of time spent in a computation, in 
order to determine whether to go into a break if and when an error occurs. 

22.38 



automatically saved· on the history list by the responsible function. 40 The 

operation of UNDOing, which involves recovering the saved information and 

performing the corresponding inverses, works the same way, so that the user can 

UNDO an UNDO, and UNDO that etc. 

At each point, until the user specifically requests an operation to be undone, 

the assistant does not know, or care, whether information has been saved to 

enable the undoing. Only when the user attempts to undo an operation does the 

ass is tant check to see whether any 'information has been saved. I f none has 

been saved, and the user has specifically named the event he wants undone, the 

assistant types NOTHING SAVED. (When the user simply types UNDO, the assistant 

searches for the last undoable event, ingnoring events already undone as well 

as UNDO operations themselves.) 

This implementation minimizes the overhead for undoing. Only those operations 

wh ich actually make changes are affected, and the overhead 1s small: two or 

three cells of storage for saving the information, and an extra function call. 

However, even this small price may be too expensive if the operation is 

sufficiently primitive and repetitive, i.e. if the extra overhead may seriously 

degrade the overall performance of the program.41 Hence not every destructive 

operation in a program should necessarily be undoable; the progranuner must be 

allowed to decide each case individ~ally. 

40---------------------------------------------------- -------------------------When the number of changes that have been saved exceeds the value of 

41 

#undosaves (initially set to 50), the user is asked if he wants to continue 
savin9lthe undo information for this event. The purpose of this feature is 
to· avoid tying up large Quantities of storage for operations that will 
never need to be undone. The interaction is handled by the same routines 
used by DWIM, so that the input buffers are first saved and cleared, the 
message typed, then the system waits dwimwait secon~s. and if there is no 
response, assumes the default answer. which in this case 1s NO. Finally 
the input buffers are restored. See page 22.56 for details. 

The rest of the discussion applies only to lispx; the editor handles 
undoing itself 1n a slightly different fashion. as described on page 
22.61. 

22.39 



Therefore for each primi tive dC3structive operation, we have implemented two 

separate functions, one which always saves information, i.e. is always 

undoable, and one which does n01~. e.g. Irplaca and rplaca, Iput and ru!!.42 In 

the various system packages, the appropriate function is used. For example, 

break uses Iputd and Iremprop so as to be undoable. and OWl" uses Irplaca and 

Irplacd, when it makes a correction.43 Similarly the user can simply use the 

corresponding I function if he wants to make a destructive operation in his own 

program undoable. When the I function is called, it will save the undo 

information in the current event on the history list. 

However, all operations that are tuped in to lispx are made undoable, simply by 

subs ti tuting the corresponding I funct'ion 44 for any destructive function 

through-out the input.46 For example, on page 22.8, when the user typed 

(MAPCONC NASOIC (F/L ... » it was (/MAPCONC NASOIC (F/L •.• » that was 

evaluated. Since the system cannot know whether efficiency and overhead are 

serious considerations for the execution of an expression in a user program, 

the user must decide, e.g. call Imapconc if he wants the operation undoable. 

42------------------------------'-----------------------------------------------The 'slash' functions eUI~rently implemented are laddprop, lattach, 

48 

44 

45 

/dre!!l~:Y.~' Idreverse, /dsubs~. Ileone, Imapeon, Imapcone, Imovd, Inconc, 
/~c~~£!, /put, Iputd, Iputdg, Iputhash, Iremprop, Irplaca, Irplacd, /set, 
/seta, /setd, and Itcone. Note that Isetq and /setqq are not included. If 
the user wants a set operatlon undoable in his program, he must see /set, 
or /rplaca. 

The effects of the following functions are always undoable (regardless of 
whether or not they are typ1ed in): define, defineq, defc (used to give a 
function a compi led code defini tion), deflist. load, savedef, unsavedef, 
broilk. unbreak, rebreak, trill, breakin, unbreak.Til""; changename, edi tfns, 
editf, editv, editp. edite, ~~ditl, esubst, advise, unadvise, readvise, plus 
any changes caused by DWIM. 

Since there is no Isetq, set~s appearing in type-in are handled specially 
by substituting a call to sa,.Y!!,.et, page 22.43. 

The subs ti tution is performc!d by the function lispx/, described on page 
22.58. 

22.40 



However, expressions that are typed-in rarely involve iterations or lengthy 

computations directlu. Therefore~ if all primitive destructive functions that 

are immediately contained in a type-in are made undoable, there will rarely be 

a significant loss of efficiency. Thus lispx scans all user input before 

eva lua ting it. and subs ti tutes the corresponding undoable function for all 

primitive destructive functions. Obviously with a more sophisticated analysis 

of both user input and user programs, the decision concerning which operations 

to make undoable could be better advised. However, we have found the 

configuration described here to be a very satisfactory one. The user pays a 

very small price for being able to undo what he 'types in, and if he wishes to 

protect himself from malfunctioning in his own programs, he can have his 

program specifically call undoable functions, or go into testmode as described 

next. 

Testmode 

Because of efficiency considerations, the user may not want certain functions 

undoable after his program becomes operational. However, while debugging he 

may find it desirable to protect himself against a program running wild, by 

making primitive destructive operations undoable. The function testmode 

provides this capability by temporarily making everything undoable. 

testmode[flg] testmode[ld redefines all primitive destructive 
functions with their corresponding undoable 
versions and sets testmodeflg to T. testmode[ ] 
restores the oriij~al defini tions, and sets 
testmodeflg to NIL. 

---------------------------------~~------~---------~--------~--------~---------46 

47 

i.e. the 'slash' functions; see footnote on page 22.40. 

testmode will have no effect on compiled mapconc's, since they compile open 
with frplacd's. 

22.41 



Note that setq' s are not undoab]le, even in testmode. To make the corresponding 

operation undoable in testmode, set or rplaca should be used. 

Undoing Out of Order 

Irplaca and Irplacd operate by saving the pointer that is to be changed and its 

original contents (i.e. Irplac,~ saves £!!: and Irplacd saves cdr). Undoing 

Irplaca and Irplacd simply re~.tores the pointer. Thus, if the user types 

(RPLACA Faa 1), followed by (RPLACA FOO Z), then undoes both events by undoing 

the most recent event first, then undoing the older event, FOO will be restored 

to its s ta te before either lli.aca operated. However if the user undoes the 

first event, then the second event, (CAR FOO) will be 1, since this is what was 

in car of FOO before (RPlACA FOO Z) was executed. Similarly, if the user 

performs' (NCONCI FOO 1) then (NCONC1 Foo 2), undoing just (NCONCI FOO 1) will 

remove both 1 and 2 from FOO. The problem in both cases is that the two 

operations are not 'independent.' In general, operations are always independent 

if they affect different list:; or different sublists of the same list. 48 

Undoing in reverse order of execution, or undoing independent operations, is 

always guaranteed to do the 'right' thing. However, undoing dependent 

operations out of order may not always have the predicted effect. 

48-----------------------------------------------------------------------------Property list operations, (i.e. put, addprop and remprop) are handled 
spec ia lly so that they are always independent, even when they affect the 
same property list. for example, if the user types PUT(FOO FIEI FUMl) then 
PUT(FOO FIE2 FUM2), then undoes the first event, the FIEZ property will 
remain, even though COR(FOO) may have been NIL at the time the first event 
was executed. 

22.42 



Saveset 

Sctq's are made undoable on type in by substituting a cal~ to savesct 

(described in detail on page 22.55), whenever setq is the name of the function 

to be appl ied, or car of the form to be evaluated. In addition to saving 

enough information on the history list to enable undoing, saveset operates in a 

manner analogous to savedef when it resets a top level value, i.e. when it 

changes a top level binding from a value other than NOBINO to a new value that 

is not equa! to the old one. In this case, saveset saves the old value of the 

variable being set on the variable's property list under the property VALUE, 

and prints the message (variable RESET). The old value can be restored via the 

function unset,49 which also saves the current value (but does not print a 

message). Thus unset can be used to flip back and forth between two values. 

~ and ~ are implemented via calls to·saveset. Thus old values will be 

saved and messages printed for any variables that are reset as the result of 

l~ading a file. 60 Calls to set and ill.qg, appearing in type in are also 

converted to appropriate calls to saveset. 

For top level variables. saveset also adds the variable to the appropriate 

spelling list, thereby noticing variables set in files via ~ or rpaqq, as 

well as those set via type in. 

~~---------------------~-------------------------------------------------------Of course, UNDO can be used as long as the event containing this call to 

50 

saveset is still active. Note however that the old value will remain on 
thEt-property list, and therefore be recoverable via unset, even after the 
original event has been forgotten. 

To complete the analogy with define, saveset will not save old values on 
property lists if dfnflg=T, e.g. when load is called with second argument 
T, (however. the call to saveset will still be undoable,) and when 
dfnflg=ALLPROP, the value is stored directly on the property list under 
property VALUE (the latter applies only to calls from ~ and ~). 

22.43 



22.7 Format and Use of the History List 

There are currently two histolry lists, lispxhistory and edithistory. Both 

history lists have the same format, and in fact, each use the same function, 

historysave, for recording events, and the same set of functions for 

implementing conunands that refer to the history list, e.g. historyfind, 

printhistory, undosave, etc. 61 

Each history list is a list of the form (! eventl size mod), where! 15 the 

list of events with the most recent event first, event# is the event number for 

the mos t recent event on !, ~iize is the size of the time-slice, i. e. the 

maximum length of !. and mod is the highest possible event number (see footnote 

on page 22.8) . lispxhistory and edithistory are both initialized to 

(NIL 0 30 100). Setting lispxhistory or edithistory to NIL is permitted, and 

simply disables all history features, i.e. lispxhistory and edithistory act 

like flags as well as repositories of events. 

Each individual event on ! is a list of the form (input id value • props), 

where input is the input sequence for the event, as described on page 22.17-19, 

id the prompt character, e.g. ~, :, .,62 and value is the value of the event, 

and is initialized to bell. 68 

51-----------------------------------------------------------------------------A third history list, archivelst, is used when events are archived, as 

62 

53 

described on page 22.27. It too uses the same format. 

id is one of the arguments to lispx and to historysave. A user can call 
1 ispx gi vi ng it any prompt character he wishes (except for It, since in 
certain cases, lispx must use the value of id to tell whether or not it was 
called from the editor.) For example, on page 22.36, the user's prompt, 
character was **. 

On edithistory. 
conunand. 

this field is used to save the side effects of each 

22.44 



I!..ro~ is a property list, i.e. of the form (property value property value --). 

props can be used to associate arbitrary information with a particular event. 

Currently, the properties SIDE, GROUP, HISTORY, PRINT, USE-ARGS, ••• ARGS, 

ERROR, and lISPXPRINT are being used. The value of property SIDE is a list of 

the side effects of the event. (See discussion of undosave, page 22.56, and 

undolispx, page 22.58). The HISTORY and GROUP properties are used for 

commands that reexecute previous events, i.e. REDO, RETRY, USE, ... , and FIX. 

The value of the HISTORY property is the history command itself, i.e. what the 

user actually typed, e.g. REDO FROM F, and is used by the 11 command for 

printing the event. The value of the property PRINT is also for use by the 11 

command. when special formatting is required, for example, in printing events 

corresponding to the break commands OK, GO, EVAl, and 1=_ USE-ARGS and •.• ARGS 

are used to save the arguments and expression for the corresponding history 

command. ERROR is used by the $ command. lISPXPRINT is used to record calls 

to lispxprint, lispxprinl. et aI, See page 22.37. 

When lispx is given an input, it calls historysave to record the input in a new 

event. 54 Normally, historysave returns as its value cddr of the new event, i.e. 

car of its value is the value field of the event. lispx binds lispxhist to the 

value of historysave, so that when the operation has completed, lispx knows 

where to store the value, namely in £!r of lispxhist. 65 lispxhist also provides 

access to the property list for the current event. For example, the I 

functions are all implemented to call undosave, which simply adds the 

corresponding information to lispxhist under the property SIDE, or if there is 

no property SIDE, creates one, and then adds the information. 

66 Note that by the time it completes, the operation may no longer correspond 
to the most recent event on the history list. For example, all inputs 
typed to a lower break will appear later on the history list. 

22.45 



After binding lispxhist, lispx ex~cutes the input, stores its value in car of 

lispxhist, prints the value, and returns. 

When the input is a REOO, RETRY, USE, •.• , or FIX command, the procedure is 

similar, except that the event is also given a GROUP property, initially NIL, 

and a HISTORY property, and lis~ simply un reads the input and returns. When 

the input is 'reread', it is historysave, not lispx, that notices this fact, 

and finds the event from which the input originally came. 66 historysave then 

adds a new (value . props) ent.ry to the GROUP property for this event, and 

returns this entry as the 'new (.vent. I lispx then proceeds exactly as when its 

input was typed directly, i.e. it binds lispxhist to the value of historysave, 

executes the input. stores the value in car of lispxhist. prints the value, and 

returns. In fact, lispx never notices whether it is working on freshly typed 

input, or input that was reread. Similarly, undosave will store undo 

information on lispxhist under the property SlOE the same as always, and does 

not know or care that lispxhi:st is not the entire event, but one of the 

elements of the GROUP property. Thus when the event is finished, its entry 

will look like: 

(input id value HISTORY command GROUP «value1 SIDE side1) 
(value2 SIDE side2) ... ) ) 67 

This implementation removes the burden from the function calling historysave of 

distinguishing between new input and·reexecution of input whose history entry 

60------------------------------··-------------------- --------------------------If t-istory~_ave cannot find the event, for example if ,a user program unreads 

67 

the input directly, and not via a history command, historysave proceeds as 
though the input were typed. 

In this case, the value field is not being used; valueof instead collects 
each of the values from the GROUP property, i.e. returns 
mapcar[get[event;GROUP];CAR]. Similarly, undo operates by collecting the 
SIDE properties from each of the elements of the GROUP property. and then 
undoing them in reverse order. 

22.46 



has already been set up.68 

22.8 lispx and readline 

lispx is called with the first expression typed on a line as its first 

argument, lispxx. 

If this is not a list, lispx olwollS does a readline, and treats lispxx plus, the 

line as the input for the event, and stores it accordingly on the history 

list. 69 Then it decides what to do with the input. i.e. if it is not recognized 

as a command, a lispxmacro, or is processed by lispxuserfn, call eval or 

apply.60 readline normally is terminated either by (1) a carriage return that 

is not preceeded by a space, or (2) a list that is terminated by a ], or (3) an 

unmatched ) or ], which is not included in the line. However, when called from 

lispx, readline operates differently in two respects: 

(1) If the line consists of a single ) or ], readlinereturns (NIL) 

instead of NIL, i.e. the) or lis included in the line. This permits 

the user to type FOO) or Foo], meaning call the function' FOO with no 

arguments, as opposed to FOO) (FOOcarriage-return). meaning evaluate 

the variable FOO. 

(2) If the first expression on the line is a list that is not preceded by 

58-----------------------------------------------------------------------------Although we have not yet done so, this implementation, i.e. keeping the 

69 

60 

various 'sub-events' separate with respect to values and properties, also 
permits constructing commands for operating on just one of the sub-events. 

If lispxx is a list car of which is LAMBDA or NLAMBDA, lispx calls 
lispxrcad to obtain the arguments. 

If the input consists of one expression, eval is called; if two, apply; if 
more than two, the entire line is treated as a single form and eval is 
called. 

22.47 



any spaces, the list terminates the line regardless of whether or not 

it is terminated by]. This permits the user to type EDITF(FOO) as a 

single input. 

Note that if any spaces are inserted between the atom and the left parentheses 

or . bracket, readl ine will assume that the list does not terminate the line. 

This is to enable the user to type a line command such as USE (FOO) FOR FOO. In 

this case, a carriage return wtll be typed after (FOO) followed by" It as 

described in Section 14. Thererore, if the user accidentially puts an extra 

space between a function and its arguments, he will have to complete the input 

with another carriage return. e.g .. 

.. EOITF_(FOO) 
•••. > 
EDI'T 
* 

22.9 Functions 

lispx[ lispxx; lispxid; lispxxmacro!;; lispxxuserfn ]81 

lispx is like eval/~. It carries out a single 

computation, and returns its value. The first 

argument, lispxx is the result of a single call to 

lispxread. lispx will call readline, if necessary 

as described on page 22.47. lispx prints the 

value of the computation, as well as saving the 

61------------------------------ .. ----------------------------------------------lispxid corresponds to id on page 22.44. Lispx also has a fifth argument, 
lispxflg, which is used by the E command in the editor. 

22.48 



input and value on lispxhistory.62 

If lispxx is a history command, lispx executes the 

command, and returns bell as its value. 

If the value of the fourth argument, lispxxmacros, 

is not NIL, it is used as the lispx macros, 

otherwise the top level value of lispxmacros is 

used. If the value of the fifth argument, 

lispxxuserfn, is not NIL, . it is used as 

lispxuserfn. In this case, it is not necessary to 

both set and define lispxuserfn as described on 

page 22.35. 

The overhead for a call to lispx is approximately 17 milliseconds, of which 12 

milliseconds are spent in maintaining the spelling lists. In other words, in 

INTERLISP, the user pays 17 more milliseconds for each eval or ~ input over 

a conventional LISP executive, in order to enable the features described in 

this chapter. 

userexec[lispxid;lispxxmacros;lispxxuserfn] 

repeatedly calls lispx under errorset protection 

specifying lispxxmacros and lispxxuserfn, and 

using lispxid (or .. if lispxid=NIL) as a prompt 

character. Userexec is exited via the lispxmacro 

OK, or else with a retfrom. 

62-----------------------------------------------------------------------------
Note that the history is not one of the arguments to lispx, i.e. the editor 
must bind (reset) lispxhistory to edithistory before calling lispx to carry 
out a history command. . 
Lispx will continue to operate as an eval/~ function if lispxhistory is 
NIL. Only those functions and commands that involve the history list will 
be affected. 

22.49 



lispxread[file] is a generalized read. If readbuf=NIL, lispxread 

per"forms read[ file], which it returns as its 

value. ( I f the user types control-U during the 

call to read, lispxread calls the editor and 

returns the edited value.) 

If readbuf is not NIL, lispxread 'reads' the next 

expression on readbuf, i.e. essentially returns 

(PROGl (CAR READBUF) 
(SETQ READBUF (CDR READBUF»).63 

readline, described in Section 14, also uses this generalized notion of 

reading. When readbuf is not 'UL, readline 'reads' expressions from readbuf 

until it e1 ther reaches the end of readbuf, or until it reads a (VAG 0). In 

both cases, it returns a list of the expressions it has 'read'. (The (VAG 0) 

is not included in the list.) 

When readbuf is not NIL, both lispxread and readline actually obtain their 

input by performing (APPLY* LISI~XREADFN FILE), where lispxreadfn is initially 

set to READ. Thus. if the user' wants lispx, the editor, break, et al to do 

their reading via a different input function, e.g. uread, he simply sets 

lispxreadfn to the name of that function (or an appropriate LAMBDA expression). 

lispxreadp[ fIg] is a generalized readp. If f~=T, lispxreadp 

returns T if there is any input waiting to be 

'read', a la lispxread. If f!.g=NIL, lispxreaQQ 

returns T only if there is any input waiting to be 

'read' on thts ltne. In both cases, leading spaces 

63--~~~~~~--~~~~--~;;~~~:~;;;~~~~;--;;~~;~;:--;;--;;~;;;;~~;~--b;--(VAG-O):--;;; 
ignored, i.e. skipped. Lispxread also sets rereadflg to NIL when it reads 
via read, and sets rereadflg to the value of readbuf when rereading. 

22.50 



lispxunread[lst] 

promptchar[id;flg;hist] 

are ignored, i.9. skipped over with reade, so that 

if only spaces have been typed. lispxreadp will 

return NIL. 

unreads 1st, a list of expressions to be read. If 

readbuf is not NIL. 1ispxunread attaches 1st at 

the front of readbuf, separating it from the rest 

of readbuf with a (VAG 0). The definition of 

lispxunread is: 

(LISPXUNREAD 
[LAMBDA (lST) 

(SETQ READBUF (COND 
«NULL READBUF) 

LST) 
(T (APPEND LST (CONS (VAG 0) 

READBUF]) 

prints the prompt character ide 

promptchar will not print anything when the next 

input will be 'rereado, i.e. readbuf is not NIL. 

promptchar will also not print when readp[ ]=T. 

unless f.!.9 is T. 

Thus the editor calls promptchar with flg=NIL so that extra ~'s are not printed 

when the user types several commands on one line. However, evalqt calls 

promptchar with f!9=T since it always wants the ~ printed (except when 

'rereading'). 

Finally. if prompt#flg is T and hist is not NIL, 

promptchar prints the current event number (of 

hist) before printing id. 

22.51 



lispxeval[lispxform;lispxid] eVilluates lispxform (using eval) the same as 

th(mgh it were typed in to 1 ispx, i • e . the event 

is recorded, and the evaluation is made undoable 

by substituting the slash functions for the 

corresponding destructive functions, as described 

on page 22.40. lispxeval returns the value of the 

form, but does not print it. 

historysave[history;id;inputl;input2;input3;props] 

records one event on history. If input1 is not 

NIl., the input is' of the form 

(inputl input2 • input3). If input1 is NIL, and 

input2 is not NIL, the input is of the form 

(input2 . input3). Otherwise, the input is just 

!ill!ut3. 

histor~save creates a new event with the 

corresponding input, id, value field initialized 

to bell, and I!!.f!J!! • If the histor~ has reached 

its full size, the last event is removed and 

canlnibalized. 

The value of historysave is cddr of the event. 

How1ever, if rereadflg is not NIL, and is a tail of 

the input of the most recent event on the history 

lis't, and this event contains a GROUP property, 

historysave does not create a new event, but 

simply adds a (bell. props) entry to the GROUP 

property and returns that entry. See discussion 

on I)age 22.46. 

22.52 



lispxfind[history;line,type;backup] 

line is an event specification, ~ specifies the 

format of the value to be returned by lispxfind, 

and can be either ENTRY, ENTRIES, COPY, COPIES, 

INPUT, or REDO. lispxfind parses line, and uses 

historyfind to find the corresponding events. 

lispxfind then assembles and returns the 

appropriate structure. 

lispxfind incorporates the following special features: 

(1) if backup=T, lispxfind interprets line in the context of the history list 

before the current event was added. This feature is used, for example, by 

valueof, so that (VALUEOf -1) will not refer to the valueof event itself; 

(2) if line=NIL and the last event is an UNDO, the next to the last event is 

taken. This permits the user to type UNDO followed by REDO or USE; 

(3) lispxfind recognizes @@, and substitutes archivelst for history (see page 

22.14); and 

(4) lispxfind recognizes @, and retrieves the corresponding event(s) from the 

property list of the atom following @ (see page 22.14). 

historyfind[lst;index;mod;x;y] 

searches 1st and returns the tails of 1st 

beginning with the event corresponding to x. 1st, 

index, and mod are as described on page 22.44. 

~ is an event address, as described on page 

22.11-14, e. g. (43), (-1), (fOO FIE), 

22.53 



(LOAD" FOO), etc.64 If historyflnd cannot find !, 

it generates an error. 

entry#[hist;x] hi~;t is a history list, i.e. of the form described 

on page 22.44. x is one of the events on hist, 

i. Et. (HEHB X (CAR HIST» is true. The value of 

en1;ryl is the event number for !. 

valueof[x] is an nlambda, nospread function for obtaining the 

value of the event speci fied by 2!, e. g. 

(VPILUEOF -1), (VALUEOF LOAD 1), etc. valueof 

ret.urns a list of the corresponding values if x 

specifies a multiple event. 

changeslice[n;history]66 changes time-slice for history to!!.. If history 

is NIL, changes both edithistory and lispxhisto~y. 

Note: the effect of increasing a time-slice is gradual: the history list is 

simply allowed to grow to the corresponding length before any events are 

forgotten. Decreastng a time-slice will immediately remove a sufficient number 

of the older events to bring the history list down to the proper size. 

However, changeslice is undoable, so that these events are (temporarily) 

recoverable. Thus if the user wants to recover the storage associated with 

these events without wai ting !! more events for the changeslice event to be 

forgotten, he must perform a FORGET command. 

64------------------------------~----------------------------------------------
If y.. is given, the event address is the list difference between x and X:, 

65 

e.g. ~=(FOO FIE AND \ -1), l=(AND \ -1) is equivalenf to 
~=(FOO FIE), y"=NIL. 

changeslice has a third argument used by the system for undoing a 
changeslice. 

22.54 



saveset[name;valuejtopflg;flg] 

an undoable set. (see page 22.43). savesct scans 

the pushdown list looking fpr the last binding of 

~, sets name to value, and returns value. 

I f the, binding changed was a top leve 1 binding, 

name is added to spellings3 (see Section 17). 

Furthermore. if the old value was not NOBIND, and 

was also not equal to the new value, saveset calls 

the file package to update the necessary file 

records. Then. if dfnflg is not equal to T, 

saveset prints (name RESET), and saves the old 

value on the property list of ~, under the 

property VALUE. If f1Jl=NOPRINT. saveset saves the 

old value, but does not print the message. This 

option is used by unset. 

If topflg=T, saveset operates as above except that 

it does not scan the pushdown list but goes right 

to name's value cell, e.g. rpaqq[x;y]' is simply 

saveset[x;y;T]. When topflg is T, and dfnflg is 

ALLPROP and the old value was not NOBINO, saveset 

simply stores value on the property list of ~ 

under the property VALUE. and returns value. This 

option is used for loading files without 

disturbing the current value of variables (see 

Section 14). 

If flg=NOSAVE, saveset does not save the old value 

on the property list, nor does it add name to 

spellings3. However, the call to saveset is still 

undoable. This option is used by Iset. 

22.55 



unset[name] if ~ does not contain a property VALUE, unset 

generates an error. Otherwise unset calls saveset 

with ~, the property value, topflg=T, and 

flg=NOPRINT. 

undosave[undoform]66 if lispxhist is not NIL (see discussion on page 

22.45), and get[lispxhist;SIOE] is not equal to 

NOSAVE, undosave adds undoform to the value of the 

property SIDE on lispxhist, creating a SIDE 

property if one does not already exist. The form 

of undoform is (fn . args), 67 i. e. undoform is 

undone by performing 

apply[car[undoform];cdr[undoform]]. For example~ 

if the definition of FOO is def, Iputd[FOO;newdef] 

will cause a call undo save with 

undoform =(/PUTO FOO def). 

car of the SIDE property is the number of 

'undosaves', i.e. length of cdr of the SIDE 

property. which is the list of undoforms. Each 

call to undosave increments this count, and adds 

undoform to the front of the list, i.e. just after 

the count. When the count reaches the value of 

lundosaves (initially 50),68 undosave prints a 

66-----------------------------------------------------------------------------Undosave has a second optional argument. histentry, which can be used to 

67 

68 

specify lispxhist directly. saving the time to look it up. If both 
histentry and lispxhist are NIL. undosave is a NOP. 

Except for Irplnode, as described below. 

lundosavcs=NIL is equivalent to #undosaves=infinity. 

Z2.56 



message asking the user if he wants to continue 

saving. If the user answers NO or defaults, 

undosave makes NOSAVE be the value of the property 

SIDE, which disables any further saving for th is 

event. If the user answers YES, undosave changes 

the count to -1, which is then never incremented, 

and continues saving. 69 

lrplnode[x;a;d] Undoably performs rplaca[x;a] and rplacd[x;d]. 

Value is ~. The principle advantage of Irplnode 

is that when ~ is a list, Irplnode saves its undo 

information as - cons[x;cons[car[x);cdr[x]]], 1.e. 

(x originalcar • originalcdr), and therefore 

requires only 3 cells of storage, instead of the 8 

that would be required for a Irplaca and a Irplacd 

that saved their information as described 

earlier. 70 

Irplnode has a BLKLIBRARYOEF~ 

nE~w/fn[ fn] After the user has defined Ifn, new/fn performs 

70 

the necessary housekeeping operations to make fn 

be undoable. 

Actually, Irplaca and Irplacd also use this format for saving their undo 
information when their first arguments are lists. However, if both a 
Irplaca and Irplacd are to be performed, it 1s still more efficient to use 
Irplnode (3 cells versus 6 cells). 

22.57 



For example, the user could define Iradix as 

(LAMBDA (X) (UNDOSAVE (LIST (QUOTE IRADIX) (RADIX X») and then perform 

new/fn[radix], and radix would then be undoable when typed in or in testmode. 

lispx/[x;fn;vars] 

undolispx[line] 

performs the substitution of I functions for 

destructive functions. If fn is not NIL, it is 

thEI name of a function, and ! is' its argument 

lis;t. If fn is NIL, ! is a form. In both cases, 

returns with the appropriate 

substitutions. Vars is a list of bound variables 

(optional). 

lis,pxl incorporates information about the syntax 

and semantics of INTERLISP expressions. For 

example, it does not bother to make undoable 

ope'rations involving variables bound in x. It 

also knows that substitution should not be 

per'formed inside of expressions f.!!.!: of which is 

QUOTE, OEFINEQ, BREAK, etc. 71 Similarly, 

substitution should be performed in the arguments 

for' functions like ma~c, !:.l!!9., etc., since these 

contain expressions that will be evaluated or 

applied. For example, if the user types 

mapc[(FOOl F002 F003);PUTO] the putd must be 

replaced by Iputd. 

lin! is an event specification. undolispx is the 

function that executes UNDO commands by calling 

undolispxl on the appropriate entry(s). 

~i-----------------------------------------------------------------------------Any member of the list nosubstfns. 

22.58 



undolispxl[event;flg] undoes pne event. The value of undolispxl is NIL 

if there is nothing to be undone. If the event is 

already undone, undolispxl prints ALREADY UNDONE 

and returns T.72 Otherwise, undolispxl undoes the 

event, prints a message, e.g. SETQ UNDONE, and 

returns T. 

Undoing an event consists of mapping down (cdr of) the property value for SIDE, 

and for each element, applying £!!r. to cdr, and then marking the event undone by 

attaching (with lattach) a NIL to the front of its SlOt property. Note that 

the undoing of each element on the SIDE property will usually cause undosaves 

to be added to the current lispxhist, thereby enabling the effects of 

undolispxl to be undone. 

undonlsetQ[form] is an nlambda. function similar to nlsetq. 

undonlsetq evaluates form, and if no error occurs 

during the evaluation, returns list[ eval[ form]] 

and passes the undo information from form (if any) 

upwards. 78 If an error does occur, the value of 

undonlsetq is NIL, and any changes made by I 

functions during the evaluation of form are 

undone. 

72--i;-;i~:~-~~~-~h;-;~;~~-~;-~i;;;~;-~~~~~;~-~;-~;-;~-~~~~-~~~~~~~-~~~~i~~~~~ 

73 

takes no action and returns NIL. Undolispx uses this option to search for 
tho last event to undo. Thus when line=NIL, undolispx simply searchos 
history until it finds an event for which undo.!gm returns T, i.s. 
undolis~x performs (SOME (COAR LISPXHISTORY) (F/L (UNDOLISPXl X T») 

Actually, undonlsetq does not rebind lispxhist, so that any undo 
information is stored directly on the history event, exactly as though 
thore were no undonlsetq. Instead, .undonlsetg simply marks the state of 
the undo information when it starts, so that if an error occurs, it can 
then know how much to undo. The purpose of this is so that if the user 
control-D's out of the undonlsetq, the event is still undoable. 

22.59 



undonlsetq compiles open. 

undonlse.!.g will operate even if lispxhistory or 

lispxhist are NIL, or if #undosaves is or has been 

exceeded for this event. 

Note that undonlsetq provides a limited form of backtracking. 

printhistory[history;line;skipfn;novalues] 

line is an event specification. printhistory 

prints the events on history specified by line, 

e.g. (-1 THRU -10). skipfn is an (optional) 

functional argument that is applied to each event 

before printing. If its value is true, the event 

is skipped, i.e. not printed. If novalues=T, or 

!!QYalues applied to the corresponding event is 

true, the value is not printed.?4 

For example, the following lispxmacto will define 11' as a command for printing 

the history list while skipping all 'large events' and not printing any values. 

(11' (PRINTHISTORY LISPXHISTORY LISPXLINE 
(FUNCTION (LAMBDA (X) 

(IGREATERP (COUNT (CAR X» 5») 
T) ) 

74------------------------------··----------------------------------------------For example, novalues is T when printing events on edithistory. 

22.60 



22.10 The Editor and the Assistant 

As mentioned earlier, all of the remarks concerning 'the assistant' apply 

equally well to us~r interactions with evalqt, break or the ed~tor. The 

differences between the editor's implementation of these features and that of 

Jispx are mostly obvious or inconsequential. However. for completeness, this 

section discusses the editor's implementation of the programmer's assistant. 

The edi tor uses promptchar to print its prompt character, and lispxread, 

1 ispxreadp, and readline for obtaining inputs. When the editor is given an 

input~ it calls historysave to record the input in a new event on its history 

list, edithistory.76 Edithistory follows the same conventions and format as 

lispxhistory. However, since edit commands have no value, the editor uses the 

value field for saving side effects, rather than storing them under the 

property SIDE. 

The editor processes DO, IE, IF, and IN commands itself, since lispx does not 

recognize these commands. The editor also processes UNDO itself, as described 

below. ,All other history commands76 are simply given to lispx for execution, 

after first binding (resetting) lispxhistory to edithistory. The editor also 

76-------------------------~---------------------------------------------------Except that the atomic commands OK, STOP, SAVE, P, 7, PP and E are not 

76 

recorded. In addi tion, number commands are grouped together in a single 
event. For example. 3 3 -1 is considered as one command for changing 
position. 

as indicated by their appearance on historycoms, a list of the history 
commands. editdefault interrogates historycoms before attempting spelling 
correction. (All of the commands on historycoms are also on editcomsa and 
cditcom~! so that they can be corrected if misspelled in the editor.) Thus 
if the user defines a lispxmacro and wishes it to operate in the editor as 
well, he need simply add it to historycoms. For example, RETRIEVE is 
implemented as a lispxmacro and works equally well in lispx and the editor. 

22.61 



calls lispx when given an E command as described in Section 9. 77 

The major implementation diffel-ence between the editor and lispx occurs in 

undoing. Edithistory is a list of only the last!!. commands, where!!. is the 

value of the time-slice. However the editor provides for undoing all changes 

made in a single editing session, even if that session consisted of more than !!. 

edit commands. Therefore, the 'editor saves undo information independently of 

the edithistory on a list call ~ndolst, (although it also stores each entry on 

undols t in the field of the corresponding event on edi this tory.) Thus, the 

commands UNDO, !UNDO, and UNBLOCK, are not dependent on edithistory,78 i.e. 

UNDO speci fies undoing the last command on undolst, even if that event no 

longer appears on edi th is tory. The only interaction between UNDO and the 

history list occurs when the user types UNDO followed by an event 

specification. In this case, the editor calls lispxfind to find the event, and 

then undoes the corresponding entry on undolst. Thus the user can only undo a 

~peciJied command within the scope of the edithistory. (Note that this is also 

the only way UNDO conunands themselves can be undone, that is, by using the 

history feature, to specify the corresponding event, e.g. UNDO UNDO.), 

The implementation of the actual undoing is similar to the way it is done 1n 

I ispx: each command that makes it change in the structure being edited does so 

via a function that records the change on a variable. After the command has 

completed, this variable contains a list of all the pointers that have been 

77------------------------------··----------------------------------------------In this case, the editor us.es the fifth argument to lispx, lispxflg, to 

78 

specify that any history cowaands are to be executed by a recursive call to 
lisp~, 'rather than by unreading. for example, if the user types E REDO in 
the edi tor, he wants the Itllst event on lispxhistory processed as lispx 
input, and not to be unread and processed by the editor. 

and in fact will work if edithistory=NIL, or even 1n a system which does 
not contain lispx at all. 

22.62 



changed and their original contents. Undoing that command simply involves 

mapping down that list and restoring the pointers. 

?oZ.11 Statistics 

The programmer' s ·assistant keeps various statistics about system usage, e.g. 

number of lispx inputs, number of undo saves, number of calls to editor, number 

of edit commands. number of p.a. commands. cpu time, console time, et al. 

Tbese can be viewed via the function lispxstats. 

lispxstats[] prints statistics. 

The us'er can' add his own statistics to the lis2x statisti.cs via the function 

addstnts 0 .. 

addstats[statlst] 

lispxwatch[stat;n] 

no spread, nlambda. StatIst is a list of elements 

of the form (statistic"name. message), e.g. 

(EOITCALLS CALLS TO EDITOR) (UNOOSTATS CHANGES 

UNDONE), etc. statistic-name is set to the cell 

in an unboxed array, where the corresponding 

statistic will be stored. This statistic can then 

be incremented by lispxwatch. 

increments stat by II (or 1 if rr=NIL). lispxwatch 

has a BlKlIBRARYOEF. 

The user can save his statistics for loading into a new system by performing 

MAKEFIlE(DUMPSTATS). After the file OUMPSTATS is loaded, the statistics printed 

by .t!~.?<stats will be the same as those that would be printed following the 

~~lkefi Ie. 

22.63 



22.12 Greeting and User Initialization 

Many of the features of INTERLISP are parameterized to allow the user to adjust 

the system to his or her own tastes. Among the more conunonly adjusted 

parameters are prompt#flg, dwirn\'j'ait, changeslice, #rpars, lowercase, archivefn, 

#undosaves, fltfrnt, etc. In addition, the user can modify the action of system 

functions in ways not specifically provided for by using advise (Section 19). 

In order to encourage this procedure, and to make it as painless and automatic 

as possible, the p.a. includes a facility for a user-defined profile. When 

INTERLISP is first run, a specially formatted file on the LISP file directory 

is indexed into using the user's usernumber as a key. The expressions (if any) 

found there are then evaluated, and the p.a. prints a greeting, e.g., 

"HELLO, WARREN." or "GOOD AFTERNOON, DANNY.", etc. 

Greeting (i.e., the initialization) is undoable, and is stored as a separate 

event on the history list. The user can also specifically invoke the greeting 

operation via the function greet~, for example, if he wishes to effect another 

user's initialization. 

greet[name;flg] performs greeting for user whose username is name, or 

if narnE~=NIL, for login name (see username and 

usernumber, Section 21), i.e. , when INTERLISP first 

starts up, it performs greet[]. Before greet performs 

the indicated initialization, it first undoes the 

effects of the previous greeting. 79 If f!1l=T. greet 

also re~.ets the counters for the various statistics 

reported by lispxstats (page 22.63). 

79------------------------------------------·----------------------------------The side effects of the greeting operation are stored on a global variable 
as well as the history list. thus ene,bling the previous greeting to be 
undone even if it is no longer on the history list. 

22.64 



~cet also sets the variable username to the name for which the greeting was 

performed. Sysin is advised to compare username with username[], and to print 

a message alerting the user if they are not the same. For example, if user 

HARTLEY performs a sysin of a sysout made by user GOODWIN, the following 

message is printed: 

.!...~plementation 

*~**ATTENTION USER HARTLEY: 
THIS SYSOUT IS INITIALIZED FOR USER8~OODWIN. 
TOREINITIALIZE,TYPEGREET() 

greet operates off the file <LISP>USERNAMEFILE. To change an existing 

initialization, or create a new one, a new <LISP>USERNAMEFILE must be written. 

This is accomplished by loading the file <LISP>USERNAMES, editing usernamelst, 

and then performing makeusernames[], which will create new versions of both 

USERNAHEFILE and USERNAMES. (Note that the person performing this operation 

must therefore either be connected to the LISP directory, or have write access 

to it.) 

llsernamelst is a list of elements of the form (username firstname T . forms), 

e. g., (TE ITELMAN WARREN T (CHANGESLICE 100) (SETQ DWIMWAIT 5». cadr of the 

list is used in the greeting message. cdddr is a list of forms that are 

evaluated. 

~sernamelst can be edited just like any other list, e.g., with editv. The file 

USERNAMEF ILE, created by makeusernames, contains usernamelst along wi th an 

index block which contains for each user on usernamelst the address in the file 

80--~~~~-~~~~~~~--;~~-~;--;:;;;;;s~-i-~;-~:~~~~~--;;;-~;~;;~i;-~;~:~~~:;--;;-~i~ 
(initially T). Alternatively, sysoutgag can be a list, in which case it is 
evaluated (if the user names are different), and thus the user can print 
his own message. 

22.65 



(i.e .. byte position) of the start of his entry. greet then simply does an 

sfptr and a read. 

If usernamelst contains an ele'ment for which the username is NIL, i.e.. an 

e lemen t of the form (NIL . forRls). this is interpreted to mean that forms are 

evaluated regardless of user name. This feature can be used to "patch" an 

INTERLISP system when a bug is found, or to change some default for INTERLISP' 

at a particular site, e.g., turn off DWIH, perform lowercase[T], etc. 
, 

Individual user initialization will still be performed following this system 

initialization. 

22.66 



Index for Section 22 

AOOSTATS[STATLST] NL* .....•..................••. 
AFTER (prog. asst. command) .....•............... 
ALL PROP .......................•••••...•......... 
ALREADY UNDONE (typed by system) •.......•...•... 
AND (in event specification) .•...••..••..•••.••. 
AND (in USE command) .......•....••.•...•...•..•• 
ARCH IVE (prog. asst. command) ...••.•..••..••..•• 
ARCHIVEFN (prog. asst. variable/parameter) .•...• 
ARCHIVELST (prog. asst. variable/parameter) 
backtracking ................................... . 
BEFORE (prog. ass t. command) •.•.•.•••••..•.•••.• 
boll (in history event) ......•.•..••..••••••.•.. 
BLKLIBRARYOEF (property name) ...••••••.•...••.•• 
C t I A N G [S LIe E [ N ; HIS TOR Y ; L ] ......•.••...•••.....•.• 
CLEARBUF[FILE;FLG] SUBR ...••..•..••..•.•...•...• 
CONTIN (prog. asst. command) ....•••...•..•.•.•.. 
CONTINUE SAVING? (typed by system) ••.•.•••.•..•. 
con t r 0 1 - 0 .". . • • • • '. . . . . • . .. . • • • • • • • • • • • • • • • • • • • • . • 
control-E .................................. *' •••• 

control-U ...................................... . 
DFNFLG (system variable/parameter) •.••••.•.••••. 
o IR (prog. ass t. command) .•••.••••.•.••••..•..•. 
DO (edit conunand) .........•..•..••••••••.•..•••• 
00 (prog. asst. conunand) .....•..••••.•••.•••.... 
OW 1M .............. It ............................... . 

DWIMWAIT (dwim variable/parameter) ••..•••.•••••• 
E (edit command) ....••..•.•..•••.•••.••.••..•••• 
EDITDEFAULT .•..••••••.•••.•••••.•••••••••••••.•• 
EDITHISTORY (editor variable/parameter) .••....•• 
ENTRYI[HISTiX] .............• ~ ••••••.•••••.•..•.. 
ERROR (property name) .......•••.••••••••••...••• 
ESUBST[X;Y;Z;ERRORFLG;CHARFlG] •••••...••..•.••.• 
ovent address ........•..•••..•••..••.•••.•..•... 
even t number .............••..•••..••.•••.•.••••• 
event specification ........•.••..•••.•.•...•.•.. 
EXEC (prog. asst. command) ..••••••.•.•••.....•.• 
F (in event address) ......•••.•.••••.•••.••••... 
F I X (prog. asst. command) .....•.•.••..•..•.•.•.. 
FOR (in USE command) ........•••.••.•.•.••.•..•.. 
FORGE T (prog. ass t. command) .•••••..••.••.....•. 
format and use of history list .......•...•.•...• 
FROM (in event specification) ..•..••......••.... 
GREET[NAME;FLG] ...................•..•..•..•.••. 
greeting and user initialization •..•...•••..•••. 
GROUP (pro~erty na~e) .........•......•..•..••.•. 
HElPCLOCK (system variable/parameter) .......... . 
HISTORY (property name) ..•...••..•.....••..•••.. 
h is tory commands ..........................•..... 
history commands applied to history commands 
history commands that fail ...••....•........•..• 
history list .................................... . 
HISTORYCOMS (editor variable/parameter) ........ . 
HISTORYFIND ...............•...•...•............. 
HISTORYSAVE[HISTORY;IDjINPUTl;INPUT2,INPUT3;PROPS] 
implementation of REDO, USE, and FIX .....•.••.•. 
IN (i n USE command) .....••••••••••••••••••.••••• 

INDEX.22.1 

Page 
Numbers 

22.63 
22.22,26,34 
22.55 
22.22,59 
22.13 
22.14 
22.27 
22.27,33-34 
22.44,53 
22.60 
22.22,26,34 
22.22,33,44,49,52 
22.57,63 
22.8,54 
22.30 
22.34 
22.39,57 
22.30 
22.30 
22.32,50 
22.43,55 
22.34 
22.31,61 
22.31 
22.23 
22.39 
22.62 
22.61 
22.44,49,60-62 
22.54 
22.24,45 
22.14 
22.12-13 
22.8,12,21,33,54 
22.11-14,19-21 
22.34 
22.12 
22.16"'17,22 
22.14 
,22.27,54 
22.44-47 
22.13 
22.64 
22.64 
22.45-46,52 
22.21,38 
22.45-46 
22.10-27 
22.19 
22.20 
22.6-14,44 
22.61 
22.53 
22.11,44-46,52,61 
22.17-19 
22.14 



IISP (prog. asst. conunand) ..•...............•.•• 
lISPX[lISPXX~lISPXID;lISPXXMACROS;LISPXXUSERFN; 

LISPXFLG] ........... ' ...•................•.. 

LISPX/[X;fN;VARS] ..........•......•..•..•..•..•• 
LISPXCOMS (prog. asst. variable/parameter) •.••.• 
L ISPXEVAL[ L ISPXFORM; LISPXIO] ................•..• 
LISPXFINO[HISTORY;lINE;TYPE;BACKUP;QUIETFLG] 
L ISPXtlIS T (prog. asst. varj.able/parameter) .••... 
LISPXHISTORY (prog. asst. ,'ariable/parameter) 
L ISPXtnS TORY (system variable/parameter) .••.•••• 
LISPXlINE (prog. asst. variable/parameter) ••••.• 
LISPXMACROS (prog. asst. variable/parameter) 
LISPXPRINT (property name) .....••••...•....••••• 
LISPXPRINT[X;Y;Z;NODOFLG] .........•..•........•. 
lISPXPRINTFlG (system variable/parameter) ..••••• 
LISPXREAD[FIlE] ......••.......•..•.•.•...••.•••. .......................................... 
L ISPXREADFN (prog. asst. vCllriable/parameter) 
LISPXREADP[FLG] .•........•..•.•.••.•..•.•••••••• 
LISPXSTATS[FLG] ............•..•...•....•.•.....• 
LISPXUNREAD[LST] ............•.•..•...••••.••.•.. 
LISPXUSERFN (prog. asst. variable/parameter) 
LISPXWATCH[STAT;N] .......•................•...•. 
MAKEUSERNAHES ................•••..••.•...••.•.•• 
NAME (prog. asst. conunand) ..•.•••••••.•....••.•• 
NEW IFN[ FN] ..............•..••••••.••...••••••••• 
NlSETQ[NLSETX] NL ..........•...••.••...•••.•.••. 
NO VALUE SAVED: (error message) .•.•...•.••.••••. 
NOBIND ................•••••.•••••.••..•.•••••••• 
NOS AVE •••••••••••••••••••••••••••••••••••••••••• 
NOSUBSTFNS (prog. asst. variable/parameter) 
NOTHING SAVED (typed by system) ..•.•..•..••••... 
PRINT (property name) .................•.•••...•. 
PRINTltISTORY[ HISTORY; LINE :SKIPFN jNOVALUES] •.•... 
programmer's assistant ......••.•.•....•.••.••... 
programmer's assistant and the editor ..•..•••••. 
programmer's assistant commands .•••...•.....••.. 
prompt character .....•.......•.•.••..•....•••.•• 
PROMPTIFlG (prog. asst. variable/parameter) 
PROM P T C H A R [ I 0 ; F L G ; HIS T ] . . . . . . . • . . . . . . . . • . . . . . . . . 
READBUF (prog. asst. variable/parameter) .•...••• 
READLINE[L.INE;LISPXFLG] ......•.••....•••••••.••• .......................................... 
REDO (prog. asst. command) .......•..•.•.•••••... 
REREAOFLG (prog. asst. variable/parameter) •.•••• 
RESET (typed by system) ..•..•.•••••..••••••..•.• 
restoring input buffers .....••.•.••••.....•..••• 
RETRIEVE (prog. asst. command) ••..••.•.•.••.•... 
RETRY (prog.· asst. conunand) .•••..••••••..•...... 
RPAQ[RPAQX;RPAQY] NL ..........••.•••..••........ 
RPAQQ[X;Y] NL ....................•••.•.••..••••• 
SAVESET[NAME;VALUE;TOPFLG:FLG] ...•••.••••..•..•• 
SIDE (property name) ..............••••••••.••••• 
SNOHSG (prog. asst. command) ...•.•••••••.••••••• 
SPELLINGS3 (dwim variable/parameter) •••••••••••• 

INOEX.22.2 

Page 
Numbers 

22.34 

22.10-11,15-16,19-20,29, 
34-35,37-38,40-41, 
44-49,52,61-62 

22.40,58 
22.38 
22.52 
22.53,62 
22.45-46,56,59-60 
22.44,49,60-61 
22.62 
22.34 
22.34,49 
22.38,45 
22.37,45 
22.38 
22.10,19,29,32,47-48,50, 

61 
22.50 
22.50,61 
22.63-64 
22.51 
22.35,37,47,49 
22.63 
22.65 
22.14,22,25-26 
22.57 
22.59 
22.56 
22.43,55 
22.56-57 
22.58 
22.22,39 
22.45 
22.22,37-38,60 
22.1-48 
22.61 
22.10-31 
22.10,33,51 
22.33,51 
22.33,51,61 
22.50-51 
22.14,19,32,37,47-48,50, 

61 
22.14,17,22 
22.50,52 
22.43,55 
22.30 
22.22,26,34 
22.21-22 
22.43 
22.43 
22.40,43,55 
22.45-46,56-57,59,61 
22.34 
22.55 



statistics ..................................... . 
SUBSYS[FILE/FORKjINCOMFIlEjOUTCOMFILE; 

ENTRYPOIN1FLG] .............•.•.•......•.•. 
SY (prog. asst. command) ..............•..•....•. 
SYSOUIGAG (system variable/parameter) .....•..•.• 
TECO (prog. ass t. command) ..•....••••.••.••.•.•• 
TESTMOOE[FlG] ..............................•.... 
TESTMODEFlG (prog. asst. variable/parameter) 
THRU (in event specification) •.•••.•.•••••.•.... 
time-slice (of history list) ..••••••••••.•...••• 
TO (in event specification) ...•..••..•.••....••. 
TYPE-AHEAD (prog. asst. command) .•••.•••..••..•• 
UNOO (prog. asst. command) .•.•...•••.•.••..••••. 
UNDO (ed it command) ....•.•.......•..••.......... 
lJ n (I 0 i. n 9 ..•....•..••••••••.•••••••••••••••••••••• 
undoing (in edi tor) .............••••...•......•. 
undoing DWIM corrections .....•••••.•..•.•.•...•• 
undoing out of order .........•.................. 
UNDOl ISPX[ LINE] •................•••....•..•..... 
UNOOlISPX1[EVENT;FlG;OWIMCHANGES] .•.....•.....•• 
UNOOLST (editor variable/parameter) ..........•.. 
UNOONE (typed by sys tern) ....••..•••..•••.•..•... 
UNDONLSEIQ[UNDOFORM;UNDOFN] NL ••.••••.••.••..•.. 
UNOOSAVE[UNOOFORM;HISTENTRY] ..•.••...•.•••.•.••• 
unrea{ling ....................................... . 
UNSE T[ NAME] ................................••... 
USE (prog. ass t. command) ....••..•••....••.••.•. 
USE-ARGS (property name) ...............•..•.••.. 
USfREXEC[lISPXIO;lISPXXMACROS;lISPXXUSERFN] 
USERNAME (prog. asst. variable/parameter) ....••• 
USfRNAMElST (prog. asst. variable/parameter) 
VALUE (property name) ....•.••••.•••..••..•.••.•• 
VALUEOF[X] NL" ............•••.••.•••..••..•..•.• 
!E (prog. asst. command) ..•.•••.••.••.•.....•.•. 
!E (edit command) ...........•.•.•........•.....• 
!F (prog. asst. command) ....•....••...•......... 
! F (c d i t comma n d) .....................•••.....•.. 
!N (prog. asst. command) .....•.....•...••.••.... 
! N (edi t command) ............•.•••.•....•..•••.. 
#0 (use in history commands) ..............•..... 
HUNDOSAVES (prog. asst. variable/parameter) 
S (a 1 t-mode) (prog. asst. command) ...........•.. 
SBUFS (alt-modeBUFS) (prog. asst. command) ..... . 
••• .... ATTENTION USER -- (typed by system) ....... . 
. .. (prog. ass t. command) •...•••••...•.•••...... 
. .. (typed by sys tem) .......•....••..•...•.•.... 
I functions .................................... . 
IRPLNODE[X;A;D] .............•.•..•..•.••••...•.• 
= (in event address) .....•...•....••............ 
?? (prog. ass t . command ) ...••.•..•.............. 
@ (in event specification) ..•...••.•..••..••.... 
@@ (in event specification) •••.••.••............ 
\ (in event address) ....•..••....•.•...••....... 
~ (in event address) ..••...•..••.•••.•.•.••••••. 

INDEX.22.3 

Page 
Numbers 

22.63 

22.34 
22.34 
22.65 
22.34 
22.41 
22.41 
22.13 
22.8,54 
22.13 
22.28-29 
22.13,22-23,43,58,61 
22.61 
22.5,38,55,62 
22.62 
22.23 
22.23,42 
22.58 
22.59 
22.62 
22.22,59 
22.59 
22.45-46,56 
22.10-11,18,51 
22.43,56 
22.14-15,17,22 
22.45 
22.49 
22.65 
22.65-66 
22.43,55-56 
22.33,46,54 
22.31 
22.31,61 
22.31 
22.31,61 
22.31 
22.31,61 
22.18,50-51 
22.39,56-57,60 
22.23-25 
22.30 
22.65 
22.21-22 
22.48 
22.40,57-58 
22.57 
22.12· 
22.21-22 
22.14,53 
22.14,27,53 
22.13 
22.12 





SECTION 231 

CLISP - CONVERSATIONAL LISP 

The syntax of LISP is very simple, in the sense that it can be described 

concisely. but not in the sense that LISP programs are easy to read or write! 

This simplicity of syntax is achieved by, and at the expense of, extensive use 

of explicit structuring, namely grouping through parenthesesization. Unlike 

many languages, there are no reserved words in LISP such as IF, THEN, AND, OR, 

FOR, DO, BEGIN, END, etc., nor reserved characters like +, ., -, /, =, ~, etc.2 

This eliminates entirely the need for parsers and precedence rules in the LISP 

interpreter and compiler, and thereby makes program manip~lation of LISP 

programs straightforward. In other words, a program that "looks at" other LISP 

programs does not need to incorporate a lot of syntactic information. For 

example, a .LISP interpreter can be written in one or two pages of LISP code 

([Meet], pp. 70-71). It is for this reason that LISP is by far the most 

suitable, and frequently used, progranuning language for writing programs that 

deal with other programs as data, e.g., programs that analyze, modify, or 

construct other pro~~ams. 

2 except for parentheses (and period), 
structure, and space and end-of-line, 
identifiers. 

23.1 

which 
which 

are 
are 

used 
used 

for 
for 

indicating 
delimiting 



However, it is precisely this same simplicity of syntax that makes LISP 

programs difficult to read and write (especially for beginners). 'Pushing 

down' is something programs do vel"y well, and people do poorly. As an example, 

consider the following two 'equivalent' sentences: 

"The rat that the cat that the dog that I owned chased caught ate the 
cheese." 

versus 

It I own the dog that chased the cat that caught the rat that ate the 
cheese." 

Natural language contains many linguistic devices such as that illustrated in· 

the second sentence above for minimizing embedding, because embedded sentences 

are more di ffi cuI t to grasp and understand than equivalent non-embedded ones 

(even if the latter sentences are somewhat longer). Similarly, most high level 

programming languages offer syntactic devices for reducing apparent depth and 

complexity of a program: the reserved words and infix operators used in ALGOL-

like languages simultaneously delimit operands and operations, and also convey 

meaning to the programmer. They are far more intuitive than parentheses. In 

fact. since LISP uses parentheses (i.e. lists) for almost all syntactic forms, 

there is vory little information contained in the parentheses for the person 

reading a LISP program, and so the parentheses tend mostly to be ignored: the 

meaning of a particular LISP expression for people is found almost entirely in 

the words, not in the structure. For example, the following expression 

(COND (EQ N 0) 1) (T TIMES N FACTORIAL «SUBl N») 

is recognizable as FACTORIAL evenl though there are five misplaced or missing 

parentheses. Grouping words together in parentheses is done more for LISP's 

benefi t, than for the programmer IS,. 

CLISP is designed to make INTERLISP programs easier to read and write by 

23.2 



permitting the user to employ various infix operators, If-THEN-ELSE statements, 

FOR-DO-WHILE-UNLESS-FROM-TO-etc. expressions, which are automatically converted 

to equivalent INTERLISP expressions when they are first interpreted. For 

example, FACTORIAL could be written in CLISP: 

(IF N=O THEN 1 ELSE N*(FACTORIAL N-l» 

Note that this expression would become a,n equivalent CONO after it had been 

interpreted once, so that programs that might have to analyze or otherwise 

process this expression could take advantage of the simple syntax. 

There have been similar efforts in other LISP systems, most notably the MLISP 

language at Stanford [Smit]. CLISP differs from these in that it does not 

attempt to replace the LISP syntax so much as to augment it. In fact, one of 

the principal criteria in the design of CLISP was that users be able to freely 

intermix LISP and CLISP without having to identify which is which. Users can 

write programs, or type in expressions for evaluation, . in LISP, CLISP, or a 

mixture of both. In this way, users do not have to learn a whole new language 

and syntax in order to be able to use selected facilities of CLISP when and 

where they find them useful. 

CLISP is implemented via the error correction machinery in INTERLISP (see 

Boction 17). Thus, any expression that is well-formed from INTERLISP's 

standpoint will never be seen by CLISP (i.e., if the user defined a function 

IF. he would effectively turn off that part of CLISP). This means that 

interpreted programs that do not use CLISP constructs do not pay for its 

availability by slower execution time. In fact. the INT~RLISP interpreter does 

not • know' about CLISP at all. It operates as before, and when an erroneous 

form is encountered, the interpreter calls an error routine which in turn 

invokes the Do-What-I-Mean (DWIM) analyzer which contains CLISP. If the 

expression in question turns out to be a CLISP construct, tho equivalent 

23.3 



INTERLISP form is returned to the interpreter. In addition, the original CLISP 

expression, is modified so that it becomes the correctly translated INTERLISP 

form. In this way, the analysis and translation are done only once. 

Integrating CLISP into the INTERLISP system (instead of, for example, 

implementing it as a separate preprocessor) makes possible Do-What-I-Mean 

features for CLISP constructs as well as for pure LISP expressions. for 

example, if the user has defined a function named GET-PARENT, CLISP would know 

not to attempt to interpret the form (GET-PARENT) as an arithmetic infix 

operation. (Actually, CLISP would never get to see this form, since it does 

not contain any errors.) If 'the user mistakenly writes (GET-PRAENT), CLISP 

would know he meant (GET-PARENT), and not (DIFFERENCE GET PRAENT), by using the 

information that PRAENT is not the name of a variable, and that GET-PARENT is 

the name of a user function whose spelling is "very close" to that of 

GET-PRAENT. Similarly, by using information about the program's environment not 

readily available to a preprocessor, CLISP can successfully resolve the 

following sorts of ambiguities: 

1) (LIST X-FACT N), where FACT is the name of a variable, 

(LIST (X-FACT) N). 

means 

2) (LIST X*FACT N), where FACT is not the name of a variable but instead is 

the name of a function, means (LIST X*(FACT N», i.e., N is FACT's 

argument. 

3) (LIST X*FACT(N», FACT the name of a function (and not the name of a 

variable), means (LIST X*(FACT N». 

4) cases (1),(2) and (3) with FACT misspelled! 

The first expression is correct both from the standpoint of CLISP syntax and 

23.4 



senlantics and the change would be made without the user being notified. In the 

other cases, the user would be informed or consul ted about what was taking 

place. For example, to take an extreme case, suppose the expression, 

(LIST X*FCCT N) were encountered, where there was both a function named FACT 

and a variable named FCT. The user would· first be asked if FCCT were a 

misspelling of FCT. If he said YES, the expression would be interpreted as 

(LIST (X*FCT) N).8 If he said NO, the user would be asked if FCCT were a 

misspelling of FACT, i.e., if he intended X*FCCT N to mean X*(FACT N). If he 

said YES to this Question, the indicated transformation would be performed. If 

he said NO, the system would then ask if X*FCCT should be treated as CLISP, 

since FCCT is not the name of a (bound) variable. 4 If he said YES, the 

expression would be transformed, if NO, it would be left alone, i.e., as 

(LIST X*FCCT N). Note that we have not even considered the case where X*FCCT is 

itself a misspelling of a variable name, e.g., a variable named XFCT (as with 

GET-PRAENT). This sort of transformation would be considered after the user 

said NO to X-FCCT N -) X*(FACT N). The graph of the possible interpretations 

for (LIST X*FCCT N) where FCT and XFCT are the names of variables, and FACT is 

the name of a function, is shown in Figure 23-1 below. 

a----------------------------------------------------- -------------------------
Through th is discussion, we speak of CLISP or DWIM ask.ing the user. 

4 

Actually, if the expression in question was typed in by the user for 
immediate execution, the user is simply informed of the transformation, on 
the grounds that the user would prefer an occasional misinterpretation 
rather than being continuously bothered, especially since he can always 
retype what he intended if a mistake occurs, and ask the pronrammer I s 
assistant to UNDO the effects of the mistaken operations if necessary. For 
trallsformations on expressions in user programs, the user can inform CLISP 
whether he wishes to operate in CAUTIOUS or TRUSTING mode. In the former 
case (most typical) the user will be asked to approve transformations, in 
the latter, CLISP will operate as it does on type-in, i.e., perform the 
transformation after informing the user. 

This question is important because many INTERLISP users already have 
pronrams that employ identifiers containing CLISP operators. Thus, if 
CLISP encounters the expression AlB in a context where either A or Bare 
not the names of variables, it will ask. the user if AlB is intended to be 
CLISP, in case the user really does have a free variable named AlB. 

23.5 



FCCT- > FCT ? 

FCCT N - > (FACT N)? 

2 
X* FCCT- > XFCT 

X*FCCT TREAT AS CLISP? 

4 5 

FIGURE 23-1 

23.6 



The final states for the various terminal nodes shown in the graph are: 

1: (LIST (TIMES X FCT) N) 

2: (LIST (TIMES X (FACT N») 

3: (LIST XFCT N) 

4: (LIST (TIMES X FCCT) N) 

5: (LIST X*FCCT N) 

CL ISP can also handle parentheses errors caused by typing 8 or 9 for f (f or 

, )' . (On most terminals, 8 and 9 are the lower case characters for '(' and 

• ) " i . e ., • (' and '8 t appear on the same key, as do ')' and '9'.) For 

example, if the user writes N*8FACTORIAL N-l, the parentheses error can be 

detected and fixed before the infix operator * is converted to the INTERLISP 

function TIMES. CLISP is able to distinguish this situation from cases like 

N*8*X meaning (TIMES N 8 X), or N*8X, where 8X is the name of a variable, again 

by using information about the programming environment. In fact, by 

integrating CLISP with DWIM, CLISP has been made sufficiently tolerant of 

errors that almost everything can be' misspelled! For example, CL ISP can 

successfully translate the definition of FACTORIAL: 

(IFF N=O THENNI ESlE N*8FACTTORIAlNN-l) 

to the corresponding COND, while making 5 spelling corrections and fixing the 

parenthesis error. 6 

This sort of robustness prevails throughout CLISP. For example, the iterative 

5'------------------------------------------------------------------------------
CLISP also contains a facility for converting from INTERLISP back to CLISP, 
so that after running the above incorrect definition of FACTORIAL, the user 
could I CLISPIFY' the now correct LISP version to obtain 
(IF N=O THEN 1 ELSE N*(FACTORIAl N-l». 

23.7 



statement permits the user to' say things like:6 

FOR OLD X FROM M TO N DO (PRINT X) WHILE (PRIMEP X) 

However, the user can also write OLD (X~M), (OLD X~M). (OLD (X~M», permute the 

order of the operators, e.g., DO PRINT X TO N FOR OLD X~H WHILE PRIMEP X, omit 

either or both sets of parentheses, misspell any or all of the operators FOR, 

OLD, FROM, TO, 00, or WHILE, or leave out the word DO entirely! And, of 

course, he can also misspell PRINT, PRIMEP, H or N!7 

CLISP is well integrated into the INTERLISP system. For example, the above 

iterative statoment translates into an equivalent INTERLISP form using PROG, 

CONO, GO, etc. 8 When the interpreter subsequently encounters this CLISP 

expression, it automatically obtains and evaluates the translation. 9 Similarly, 

the compi ler "knows" to compile the translated form. However, if the user 

PRETTYPRINTs his program, at the corresponding point in his function, 

PRETTYPRINT "knows" to print the original CLISP. Similarly. when the user 

edits his program, the editor keeps the translation invisible to the user. If 

6---~~~~--~~~;~~~~~~--;~~~~~--~;·--;;ii-~-;p;:~:~~~~.--~~~~~~--~~~~~~i~--;~;--~~; 

7 

8 

9 

operator OLD, which says X is to be the variable of iteration, i.e., the 
one to be stepped from N to M, but X is not to be rebound. Thus when this 
loop finishes execution, X will be equal to N+J. 

In this example, the only thing the user could not misspell is the first X, 
since it specifies the name of the variable of iteration. The other two 
instances of X could be misspelled. 

, (PROG NIL 
(SETQ X M) 

SSlP(CONO 
«OR (IGREATERP X N) 

(NOT (PRIMEP X») 
(RETURN») 

(PRINT X) 
(SETQ X (AODI X» 
(GO SSLP» 

See page 23.30, for discussion of how translations are stored. 

23.8 



the user modifies the CLISP, the translation is automatically discarded and 

recomputed the next time the expression is evaluated. 

In short, CLISP is not a language at all, but rather a system. It plays a role 

ilnalagous to that of the programmer's assistant (Section 22). Whereas the 

programmer' s assistant is an invisible intermediary agent between the user' s 

(:onsole requests and the INTERLISP executive, CLISP sits between the user's 

programs and the INTERLISP interpreter. 

Only a small effort has been devoted to defining the core syntax of CLISP. 

Instead, most of the effort has been concentrated on providing a facility which 

'makes sense' out of the input expressions using context information as well as 

built-in and acquired information about user and system programs. It has been 

said t.hat communication is based on the intention of the speaker to produce an 

effect in the recipient. CLISP operates under the assumption that what the 

user said was intended to represent a meaningful operation, and therefore tries 

very hard to make sense ou t of it. The moti vat ion beh ind CL I SP is not to 

provide the user with many different ways of saying the same thing, but to 

enable him to worry less about the slIntactic aspects of his cOrIUnunication with 

the sys tern. In other words, i t gives the user a' new degree of freedom by 

permitting him to concentrate more on the problem at hand, rather than on 

translation into a formal and unambiguous language. 

23.2 CLISP ~~I~.tax 

Throughout CLISP, a non-atomic form, i.e., a list, can always be substituted 

for a variable, and vice versa, without changing the interpretation. For 

example, if the value of (FOO X) is A, and the value of (FIE Y) is a, then 

(LIST (FOO X)+(FIE V»~ has the same value as (LIST A+8). Note that the first 

expression consists of a list of Jour elements: the atom 'LIST'. the list 

23.9 



'(FOO X)'. the atom '+'. and the list '(FIE X)', whereas the second expression, 

(LIST A+B), consists of a list of only two elements: the atom 'LIST' and the 

atom 'A+B' . Since (LIST (FOO X)+(FIE V»~ is indistinguishable from 

(LIS T (FOO X) + (F IE Y» because spaces before or after parentheses have no 

effect on the INTERLISP READ program,10 to be consistent, extra spaces have no 

effect on atomic operands either. In other words, CLISP will treat 

(LIST A+_B), (LIST A_+B), and (LIST A_+_B) the same as (LIST A+B). 

23.3 Infix Operators 

CLISP recognizes the arithmetic infix operators +, -, *, I, and t. These are 

converted to IPLUS, IDIFFERENCE (or in the case of unary minus, IMINUS), 

ITIMES, IQUOTIENT, and EXPT. ll The usual precedence rules apply (although these 

can be easily changed by the user),12 i.e., * has higher precedence than + so 

that A+B*C is the same as A+(B*C), and both * and I are lower than t so that 

2*Xt2 is the same as 2*(Xt2). Operators of the same precedence group from left 

to right, e. g.. AlBIC is equl.valent to (AlB) IC. Minus is binary whenever 

possible, i.e., except when it is the first operator in a list, as in (-A) or 

(-A), or when it immediately follows another operator, as in A*_B. la 14 

-------------------------------------------------------------------------------10 

11 

12 

13 

CLISP does not use its own special READ program because this would require 
the user to explicitly identify CLISP expressions, instead of being able to 
intermix INTERLISP and CLISP. 

The I in IPLUS denotes integer arithmetic, i.e., IPLUS converts its· 
arguments to integers, and returns an integer value. INTERLISP also 
cont.ains floating point arithmetic functions as well as mixed arithmetic 
functions (seo Section 13). CLISP contains a facility for declaring which 
type of arithmetic is to be used, either by making a global declaration, or 
by separate declarations about individual functions or variables. See 
section on declarations, page 23.33. 

The complete order of precedence for CLISP operators 
Figure 23-2, page 23.15. 

is given in 

There are some do-what-I-mean features associated with Unary minus, as 1n 
(LIST -X V). See section on operation, page 23.64. 

23.10 



Note that grouping fuith parentheses can always be used to override the normal 
precedence grouping. or when the user is not sure how a particular expression 
lui il parse. 

(LISP also recognizes as infix operators =. GT, IT. GE, and lE,15 as well as 

various predicates, e.g., MEMBER, AND, OR, EQUAL, etc. t6 AND is higher than OR, 

B • g., (X OR Y AND Z) is the same as (X OR (Y AND Z», and both AND and OR are 

lower than the other infix operators, e. g., (X AND Y EQUAL Z) is the same as 

(X AND (Y EQUAL Z». All of the infix predicates have lower precedence than 

INTERLISP forms, i.e., (FOO X GT FIE Y) is the same as «FOO X) GT (FIE V»~, 

since it is far more common to apply a predicate to two forms, than to use a 

Boolean as an argument to a function, e.g. (FOO (X GT (FIE Y»). However. 

again, the user can easily change this. 

Note that only single character operators, e,g. +, ~, =, etc., can appear in 
the interior of an atom. All other operators must be set off f1~ identifiers 
loith spaces. For example. XlTY will not be recognized as CLISP. 

14-----------------------------------------------------------------------------
Note that + in front of a number will disappear when the number is read, 

15 

16 

17 

e.g .• (rOO x +2) is indistinguishable from (FOO X 2). This means that 
(FOO X +2) will not be interpreted as CLISP, or be converted to 
(FOO (IPLUS X 2», Similarly, (FOO X -2) will not be interpreted the same 
as (FOO X-2). To circumvent this, always type a space between the + or -
and a number if an infix operator is intended, e.g., write (FOO X + 2). 

Greater Th~n, Less Than, Greater than or Equal to, and Less than or Equal 
to, resjlccti ve-ly. GT. LT. GE, and LE -are all affected by the -'same 
doclar~ations as + and *, with the initial default to use IGREATERP and 
ILESSP. 

Currently the complete list is MEMBER, MEMB, FMEMB, IlESSP, IGREATERP, 
lESSP, GRfATERP, FGTP, EQ, NEQ, EQP, EQUAL, OR, and AND. New infix 
operators can be easily added. as described in the section on CLISP 
internal conventions, page 23.68. 

In some cases, OWH1 will be able to diagnose this situation as a run-on 
spoIling error, in which case after the atom is split apart, CLISP will be 
able to perform the indicated transformation. 

23.11 



* * 

is an infix operator used in CLISP for extracting substructures from lists,18 

e.g., X:3 specifies .the 3rd element of X, (FOO Y)::Z spe~ifies the second tail 

of (FOO V), i.e., (CDDR (FOO V»~, and Z:l:Z is the second element of the first 

element of Z, or (CADAR Z). Negative numbers may be used to indicate position 

counting from the end of a li.st, e.g., X:-l is the last element of X, or 

(CAR (LAST X», X::-l is the last tail, i.e., (LAST X).19 

* 

~ is used to indicate assignment, e.g., X~Y translates to (SETQ X y).20 21 In 

conjunction with: and ::, ~ can also be used to perform a more general type of 

assignment, namely one involving structure modification. For example, X:2~Y 

means make the second element of X be Y, in INTERLISP terms 

18------------------------------'-----------------------------------------------The rncord facility, page 23.48, provides another way of extracting 

19 

20 

21 

substructures by allowing the user to assign names to the various parts of 
the structure and then retrieve from or s tore into the corresponding 
structure by name. The pattern match facility, page 23.36, also can be 
used to extract substructure. : is also used to indicate both record and 
pattern match operations. 

The interpretation of negative numbers can be explained neatly in terms of 
edi t conunands: : -n returns what would be the current expression after 
execu t i ng the command -n. and :: -n returns what wou Id be the current 
expression after executing -n followed by UP. 

I f x does not have a value, and is not the name of one of the bound 
variables of the function in which it appears, spelling correction is 
attempted. However, since this may simply be a case of assigning an 
initial value to a new frelB variable, DWIM will always ask for approval 
before making the correction. 

Note that an atom of the form X~Y. appearing at the top level of a PROG, 
wi 11 not be recognized as an assignment statement because it will be 
interpreted as a PROG label by the INTERLISP interpreter,and therefore 
will not cause an error, so DWIM and CLISP will never get to see it. 
Instead, one must write (X~Y). 

23.12 



(RPlACA (CDR X) y).22 23 Negative numbers can also be used, e.g., X:_2~y.24 ~ 

is also used to indicate assignment in record operations, page 23.48, ftnd 

pattern match operations, page 23.36 . 

... has di fferent precedence on the left from on the right. On the left, .. is a 

"tight" operator, i.e., high precedence, so that A+B~C is the same as A+(B~C). 

On the right, .. has broader scope so that A~B+C is the same as A~(B+C). 

On typein, $~form (alt-mode~form) is equivalent to set the "last thing 

men t ioned" . 26 For example, inunediate1y after examining the value of 

LONGVARIABlENAME, the user could set it by typing $ .. followed by a form. 

23.4 Prefix Operators 

CLISP recognizes • and - as prefix operators. t means QUOTE when it is the 

first character in an identifier, and is ignored when it is used in the 

interior of an identifier. Thus, X='Y means (EQ X (OUOT£ V»~, but X=CAN'T 

means (EQ X CAN'T), not (EQ X CAN) followed by (QUOTE T). This enables users 

to have variable and function names with ' in them (so long as the • is not the 

first character). 

--------------------------------------------------------------------------------2~~ 

23 

24 

26 

Noto that the value of this operation is the value of rplaca, which is the 
corresponding node. 

The user can indicate he wants Irplaca and Irplacd used (undoable version 
of [Qlafa and [pIacd, see Section 22), or frplaca and frplacd (fast 
versions of rplaca and rplacd, see Section 5), by means of declarations 
(page 23.33). The initial default is for rplaca and rplacd. 

which translates to (RPlACA (NlEFT X 2) V). 

i.e. is equivalent to (SETQ lastword form). See Section 17. 

23.13 



Following I all operators are ignored for the rest of the identifier, e.g., 

'*A moans (QUOTE *A), and IX=Y means (QUOTE X=Y), not (EQ (QUOTE X) y).20 

On typein, 1$ (i.e. 'alt-mode) is equivalent to (QUOTE value-of-lastword) (see 

Section 17). For example, after calling prettyprint on LONGFUNCTION, the user 

could move its definition to FOO by typing (NOVO 'S 'FOO).27 

..... means NOT. - can negate a form, as in -(ASSOC X Y), or -X, or negate an 

infix operator, e.g., (A -GT a) 1s the same as (A LEQ a). Note that -A=a means 

(EQ (NOT A) B). 

--------------------------------------.---~----------------------------~-~-----26 

27 

To write (EQ (QUOTE X) V). one writes V=IX, or 'X_=V. 
where an extra space does make a difference. 

This is one place 

Not (MOVO $ 'FOO),. which would be equivalent to (MOVO LONGFUNCTION 'FOO), 
and would (probably) cause a U.B.A. LONGFUNCTION error, nor MOVO(S FOO), 
which would actually move the definition of S to FOO, since DWIM and the 
spelling corrector would never be invoked. 

23.14 



Order of Precedence of CLISP operators 

~ (left precedence) 

- (unary) • ..., 

t 

", I 

... , - (binar~y) 

~ (right precedence) 

:: 

INTERLISP forms 

LT, GT, EQUAL, MEMBER, etc. 

AND 

OR 

IF, THEN, ELSEIF, ELSE 

iterative statement operators 

Figure 23-2 

28 

29 

28--:-~~~-~-~~-;;e~~~~--1;i;-~~~-~~~h;-;;;~;~;~~;:-~~~~~-~:~~c:~--;;-;~;-;;~~-~; 
A+(U~(C+D». In other words, ~ has minimal scope on the left and maximal 
scope on the right. 

When - negates an operator, e.g., -=, -LT, the two operators are treated as 
a single operator whose precedence is that of the second operator. When­
noga tes a function. e. g., (-FOO X Y) ~ it negates the whole form, 1. e. , 
(-( FOO X Y». 

23.15 



23.~ Constructing Lists - the <,) operators30 

Angle brackets are used in CLISP to indicate list construction. The appearance 

of a '(I corresponds to a Ie' and indicates that a list is to be constructed 

containing all the elements up to the corresponding ')'. for example, (A B (e» 

translates to (LIST A B (LIST C». ! can be used to indicate that the next 

expression is to be inserted in the list as a segment, e.g., (A B e> 

translates to (CONS A (CONS B C) and (! A ! B C) to (APPEND A B (LIST'C». !! 

is used to indicate that the next expression is to be inserted as a segment, 

and furthermore, all list structure to its right in the angle brackets is to be 

physically attached to it, e.g., <!! A B) translates to (NCONCI A 8), and 

(!!A IB Ie) to (NCONC A (APPEND B c».31 32 Note that <, !, I I, and> need not 

be separate atoms, for exampl,e, <A B ! C) may be written equally well as 

< A B !C). Also, arbitrary INTERLISP or CLISP forms may be used within angle 

brackets. For example, one can write <FOO .. (FIE X) ! Y> which translates to 

(CONS (SETQ Faa (FIE X» V). CLISPIFY converts expressions in ~, list, 

~pend, nconc, nconc1, !nconc, and !nconc1 into equivalent CLISP expressions 

using <, >, !, and !t. 

Note: angle brackets differ from other CLISP operators in that they act more 

like brackets than operators. for example, (A B 'C) translates to 

(LIST A 8 (QUOTE C» even though following " all operators are ignored for the 

31 

32 

Not (NCONC (APPEND A B) C), which would have the same value, but would 
attach C to Bf and not attach either to A. 

The user can indicate !nconc or !nconc1 be used instead of ll£QQ£ and nconcl 
by declarations. 

23.16 



rest of the identifier:33 Note however that (A B '_C> D) i$ equivalent to 

(LIST A B (QUOTE C» 0). 

23.6 IF, THEN, ELSE 

CLISP translates expressions employing IFITHENIELSEIFIELSE into equivalent 

c:ondi tional expressions. The segment between IF I ELSEIF and the next THEN 

corresponds to the predicate of a COND clause, and the segment between THEN and 

the next ELSEIELSEIF as the consequent(s). ELSE is the same as ELSElf T THEN. 

IF, THEN, ELSE, and· ELSEIF are of lower precedence than all infix and prefix 

operators, as well as INTERLISP forms, so that parentheses can be omitted 

betweon IFIELSEIF, and THEN. For example, (IF FOO X Y THEN --) is equivalent 

to (IF (FOO X Y) THEN __ ).34 Simi larly , CL ISP treats (IF X THEN FOO X Y ELSE 

-,-) as equivalent to (IF X THEN (FOO X Y) ELSE --) because it does not 'make 

sense' to evaluate a variable for effect. In other words, even if FOO were 

also the name of a variable, (COND (X FOO X V»~ doesn't make sense. 

E.ssen tiaIly, CL ISP determines whether the segment between THEN and the next 

ELSEIELSEIF corresponds to one form or several and acts accordingly.36 Thus, 

(IF -- THEN (FOO X) Y ELSE --) corresponds to a clause with two consequents. 

Similarly, (IF -- THEN FO~X Y ELSE --) corresponds to a clause with two 

34 If FOO is the name of a variable, IF FOO THEN -- is translated as 
(COND (FOO --» even if FOO is also the name of a function. If the 
functional interpretation is intended, FOO should be ene losed in 
parentheses, e.g., IF (FOO) THEN --. Similary for IF -- THEN FOO ELSElf 

occasionally interacting with the user to resolve ambiguous cases. 

23.17 



consequents, and is equivalent ,to (IF -- THEN (FOo.-X) Y ELSE __ ).80 

23.7 Iterative Statements 

The following is an example of a CLISP iterative statement: 

(WHILE X"(REAI»-='STOP DO (PRINT (EVAL X») 

This statement says "READ an expression and set X to it. If X is not equal to 

the atom STOP, then evaluate X, print the result, and iterate."a7 

The i.s. (iterative statement) in its various forms permits the user to specify 

complicated iterative statements in a straightforward and visible manner. 

Rather than the user having to perform the mental transformations to an 

equivalent INTERLISP form using PROG, MAPC, MAPCAR, etc., the system does it 

for him. The goal was to provide a robust and tolerant facility which could 

"make sense" out of a wide clilss of iterative statements. Ac'cordingly, the 

user should not feel obliged to read and understand in detail the description 

of each operator given below in order to usc iterative statements. 

Currently, the following i. s. operators are implemented: FOR, BIND, OLD, IN, 

ON, FROM, TO, BY, WHEN, WHILE, UNTIL, UNLESS, COLLECT, JOIN, 00, SUM, COUNT, 

ALWAYS, NEVER, THEREIS, AS, FIRST, FINALLY, EACHTIME. Their function is 

36-----------------------------------------------------------------------------To write the equivalent of a singleton cond clause, i.e., a clause with a 

37 

predicate but no consequent, write either nothing following the THEN, or 
omit the THEN entirely, e.g., (IF (FOO X) THEN ELSEIF --) or 
(IF (FOO X) ELSEIF --), meaning if (FOO X) is not NIL, it is the value of 
tho condo 

Tho statement translates to: 
(PROG NIL SSLP (COND «EQ (SETQ X (READ» (QUOTE STOP» (RETURN») 
(PRINT (EVAL X» (GO SSLP» 

23.18 



explained below. New operators can be defined as described on page 23.28. 

Misspellings of operators are recognized and corrected. The order of 

appearance of operators is not impo~tant;38 CLISP scans the entire statement 

before it begins to construct the equivalent INTERLISP form. 

00 form specifies what is to be done at each iteration. 00 with no 

other operator specifies an infinite loop. If some explicit 

or implicit terminating condition is specified, the value of 

the i.s. is NIL. Translate to MAPC or MAP whenever 

possible. 

COLLECT form like DO, except specifies that the value of form at each 

iteration is to be collected in a list, which is returned as 

the value of the i.s. when it terminates. Translates to 

HAPCAR or HAPLIST whenever possible. 

J!OIN form like 00, except that the values are NCONCed. Translates to 

HAPCONC or HAPCON whenever Possible. 39 

SUM form like 00, except specifies that the values of form at each 

iteration be added together and returned as the value of the 

i.s., e.g. (FOR I FROM 1 TO 5 SUH 1'2) 

1+4+9+16+25. 40 

is equal to 

38---------------'--------------------------------------------------------------nWIM and CLISP are invoked on iterative statements because car of the i.s. 

39 

40 

is not tho namo of a function, and hence generates an erro~ If the user 
defines il function by the sarno name as an i.s. operator, e.g. WHILE, TO, 
etc., the operator will no longer have the CLISP interpretation when it 
appears as car of a form, al though it will continue to be treated as an 
i.s. operator if it appears in the interior of an i.s. 

INCONC, IHAPCONC, and IHAPCON are used when the declaration UNOOABLE is in 
effect. 

iplus, fplus, or ,Rlus will be used for the translation depending on the 
declarations in effect. 

23.19 



COUNT pred 

ALWAYS pred 

NEVER pred 

THEREIS pred 

1 ike DO, except counts number of times that pred is true, 

and returns that count as its value. 

like DO, except returns T if the value of pred is non-NIL 

for all i terclltions (returns NIL as soon as the value of pr'ed 

is NIL), e.g. (FOR X IN Y ALWAYS (ATOM X» is the same as 

(EVERY Y (FUNCTION ATOM». 

like ALWAYS, except returns T if the value of pred is neuer 

true, i.e. NEVER pred is the same as ALWAYS -pred. 

returns the first value of the i.v. for which pred is 

non - NIL, e . ~l • (FOR X IN Y THEREIS NUMBERP) returns the 

first number in v, and is equivalent to 

(CAR (SOME Y (FUNCTION NUMBERP»).41 

00. COLLECT, JOIN, SUM, ALWAYS, NEVER, and THEREIS are ,examples of a certain 

kind of i.s. operator called an i.s.type. The i.s.type specifies what is to be 

done at each iteration. Each i.s. must have one and only one i.s.type. The 

function i.s.type, page Z3.~8, provides a means of defining additional 

i.s.types. 

FOR var specifies the. variable of iteration, or i.v., which is used 

in conjunction with IN, ON, FROM, TO, and BY. The variable 

is rebound for the scope of the i.s., except when modified 

by OLD as described below. 

41-----------------------------------------------------------------------------THEREIS returns the i.v. instead of the tail (as does the function some) in 
order to provide an interpretation consistent with statements such as 
(FOR I FROM 1 TO 10 THEREIS _a), whore there is no tail. Note that 
(SOME Y (FUNCTION NUMBERP» is equivalent to 
(FOR X ON Y THEREIS (NUMBERP (CAR X»). 

23.20 



FOR vars 

OLD var 

BIND var. vars 

vars a list of variables, e.g., FOR (X Y 1) IN --. The first 

variab Ie is the i. v., the rest are dununy var iab les . See 

BIND below. 

indicates is not to be rebound, e. g. , 

(FOR OLD X FROM 1 TO N DO -- UNTIL --), 

used to specify dummy variables, e.g., FOR (X Y 1) IN is 

equivalent to FOR X BIND (Y 1) IN --. BIND can be used 

without FOR. For example, in the i.s. shown on page 23.18, 

X could be made local by wri ting 

(BIND X WHILE X~(READ)-='STOP ... ). 

Note: FOR, OLD, and BIND variables can be initialized by using ... , e.g., 

(FOR OLD (X~form) BIND (Y~form) ... ). 

IN form 

ON forom 

IN OLD var 

specifies that the i.s. is to iterate down a list with the 

i.v. being reset to the corresponding element at each 

iteration. for example, FOR X IN Y DO -- corresponds to 

(HAPC Y (FUNCTION -(LAMBDA (X) --»). If no i.v. has been 

specified, a dummy is supplied, e.g., IN Y COLLECT CADR is 

equivalent to (MAPCAR Y (FUNCTION CADR». 

same as IN except that the i. v. is reset to the 

corresponding tail at each iteration. Thus IN corresponds 

to HAPC, MAPCAR, and HAPCONe, while ON corresponds to MAP, 

MAPLIST, and HAPCON. 

specifies that the i.s. is to iterate down var:. with var 

itself being reset to the corresponding tail at each 

iteration, e.g., after (FOR X IN OLD L 00 -- UNTIL --) 

finishes, L will be some tail of its original value. 

23.21 



IN OLD (var .. form) same as IN OLD Y!!.!:. except var is first set to value of 

form. 

ON OLD var same as IN OLD var except tho i. v. is reset to the current 

value of var at each iteration, instead of to car[var]. 

ON OLD (var .. form) same as ON OLD Y!!:,. except Y!!: is first set to value of 

form. 

WHEN pred 

UNLESS pred 

WHILE pred 

UNTIL pred 

UNTIL n 

FROM form 

TO form 

provides a way of excepting certain iterations. For 

example, (FOR X IN V COLLECT X WHEN NUMBERP X) collects only 

the elements of Y that are numbers. 

same as WHEN except for the difference in Sign, i.e., WHEN Z 

is the same as UNLESS -Z. 

provides a way of terminating the i.s. WHILE pred evaluates 

pred before each iteration, and if the value is NIL, exits. 

Same as WHILE except for difference in sign, i. e. , 

WHILE PRED is equivalent to UNTIL -PRED. 

n a number, equivalent to UNTIL (i.v. GT n). 

is used to specify an ini tial value for a numerical i. v. 

The i.v. is automatically incremented by 1 after each 

iteration (unless BV is specified). If no i.v. has been 

specified, a dummy i.v. is supplied and initialized, e.g., 

(COLLECT SQRT FROM 2 TO 5) returns (1.414 1.732 2.0 2.236). 

is used to specify the final value for a numerical i.v. If 

Zl.ZZ 



FROM is not specified, the i.v. is initialized to 1. If no 

i.v. has been speCified, a dummy i.v. is supplied and 

initialized. If BY is not specified, the i.v. is 

automatically incremented by 1 after each iteration.42 When 

the i.v. is definitely being incremented, i.e. either BY is 

not specified, or its operand is a positive number, the 1.5. 

terminates when the i.v. exceeds the value of form (which is 

reevaluated each iteration) e.g .• (FOR X FROM 1 TO 10 ... _), 

is equivalent to (FOR X FROM 1 UNTIL (X GT 10) _e). 

Similarly, when the i.v. is definitely being decremented the 

i.s. terminates when the i.v. becomes less than the value of 

form (see description of BY). 

BY x (with INION) If IN or ON have been specified, the value of ~ determines 

the tai I for the next iteration, which 1n turn determines 

the value for the i. v. as described earl ier. i. e. the new 

i .v. is ~ of the tail for IN, the tail itself for ON. In 

conjunction with IN, the user can refer to the current tail 

within x by using the i. v., e.g. 

(FOR Z IN L BY (CDOR !) ... ). At translation time, the name 

of the internal variable which holds the value of the 

current tail is substituted for the i.v. throughout x. For 

example, (FOR X IN Y SY (CDR (MEMS 'FOO (COR X») COLLECT X) 

specifies that after each iteration, cdr of the current tail 

is to be searched for the atom FOO, and (cdr of) this latter 

tail to be used for the next iteration. 

42-----------------------------------------------------------------------------except when both the operands to TO and FROM are numbers, and TO's operand 
is less than FROM's operand, e.g. FROM 10 TO 1, in which case the i.v. is 
decremented by 1 after each iteration. In this case, the 1.5. terminates 
when the i.v. becomes less than the value of form. 

23.23 



BY x (without INION) If IN or ON have not been used, BY specifies how the 

i.v. itself is reset at each iteration. If FROM or TO have 

been specifiEtd, the i. v. is known to be numerical, so the 

new i. v. llS computed by adding the value of x 

(which is reevaluated each iteration) to the current value 

of the i.v., e.g., (FOR N FROM 1 TO 10 BY 2 COLLECT N) makes 

a list of the first five odd numbers. 

If ~ is a pClsitive number,43 the i.s. terminates when the 

value of the i. v. exceeds the value of' TO' s operand. If ~ 

is a negative number, the i.s. terminates when the value of 

the i.v. becomes less than TO's operand, e.g. 

(FOR I FROM N TO M BY -2 UNTIL (I LT M) ... ). Otherwise, 

the terminating condition for each iteration depends on the 

value of ~ for that iteration: if ~ < 0, the test is whether 

the i. v. is less than TO' 5 operand, if x > 0 the test is 

whether the i.v. exceeds TO's operand. otherwise if ~=O, the 

i.s. terminates unconditionally.44 

If FROM or TO have not been specified, the i.v. is simply 

reset to the value of x after each iteration, e.g. 

(FOR I FROM N BY 2 ... ) is equivalent to . 

(FOR I~N BY (IPLUS I 2) ... ). 

43-----------------------------------------------------------------------------x itself, not its value, ,,,hich in general CLISP would have no way of 

44 

knowing in advance. 

A temporary variable is used so that x is only evaluated once. However, 
codo for TO's operand appea."s twice in- the translation, even though it is 
evaluated only once. 

23.24 



FIRST form 

FINALLY form 

EACHTIME form 

AS var 

form is evaluated once before the first iteration, e.g. 

(FOR X Y Z IN L -- FIRST (FOO Y Z», and FOO could be used 

to initialize Y and Z •. 

form is evaluated after the i.s. terminates. 45 For example, 

(FOR X IN L BIND Y~O 00 (IF ATOM X THEN Y~Y+1) 

FINALLY (RETURN V»~ will return the number of atoms in L. 

form is evaluated at the beginning of each iteration before, 

and regardless of, any testing. For example, consider (FOR I 

FROM 1 TO N 00 (... (FOO I) ... ) UNLESS (... (FOO I) ..• ) 

UNTIL ( ... (FOO I) ••• ». The user might want to set a 

temporary variable to the value of (FOO I) in order to avoid 

computing it three times each iteration. However, wi thout 

knowing the translation, he would not know whether to put 

the assignment in the operand to 00, UNLESS, or UNTIL, i.e. 

which one would be executed first. He can avoid this 

problem by simply writing EACHTIME J~(FOO I). 

is used to specify an iterative statement involving more 

than one iterative variable, e.g. 

(FOR X IN Y AS U IN V 00 --) corresponds to maple. The i.s. 

terminates when any of the terminating conditions are met, 

e.g. (FOR X IN Y AS I FROM I TO 10 COLLECT X) makes a list 

of the first ten elements of Y, or however many elements 

there are on Y if less than 10. 

~i5--------------------------------~------------------ --------------------------Except in the case of termination due to the appearance of a RETURN in some 
operand. See page 23.26. Thus in (FOR X IN Y THEREIS NUMBERP FINALLY --) 
the FINALLY operand would be evaluated if Y were exhausted, but not if a 
number was found. 

23.25 



Miscellaneous 

The operand to AS. ~, specifies the new i. v. For the 

remainder of the i.s., or until another AS is encountered, 

all operators refer to the new i. v. For example. 

(FOR I FROM I TO Nt AS J FROM t TO N2 BY 2 

AS K FROM N3 TO 1 BY -1 --) terminates when I exceedsNl, or 

J exceeds N2, or K becomes less than 1. After each 

iteration, I is incremented by I, J by Z, and K by -1. 

1. Lowercase versions of all i.s. operators are equivalent to the uppercase, 

e • 9 ., (for X in Y ... ). 

2. Each 1.s. operator is of lower precedence than all INTERLISP forms, so 

parentheses around the operands can be omitted, and will be supplied where 

necessary, e.g., BIND (X Y Z) can be written BIND X Y Z, OLD (X ... form) as 

OLD X"'form, WHEN (NUMBERP X) as WHEN NUMBERP X. etc. 

3. RETURN or GO may be used in any operand. RETURN means return from the i.s. 

(with the indicated value), not from the function in which tho i.S appears. 

GO refers to a label elsewhere in the function in which the i.s. appears, 

except for (GO ITERATE), which means transfer control to the iterate 

portion of the loop, i.e. that part that resets the tail, increments the 

counter, or whatever, in preparation for the next iteration. The 

appropriate label will be substituted for ITERATE. 

4. In the case of FIRST, FINALLY, EACHTIME, or one of the i.s.types, e.g. 00, 

COLLECT, SUM, etc., the operand can consist of more than one form, e.g., 

COLLECT (PRINT X:l) X:2, in which case a PROGN is supplied. 

5. Each operand can be the name of a function, in which case it is applied to 

23.26 



the ( las t) 1. v. ,46 47 48 e. g. ; FOR X IN Y 00 PRINT WHEN NUMBERP, is the 

same as FOR X IN Y 00 (PRINT X) WHEN (NUMBERP X). Note that the 1. v. need 

not be explicitly specified, e.g., IN Y 00 PRINT WHEN NUMBERP will work. 

Errors in Iterative Statements 

An error will be generated and an appropriate diagnostic printed if any of the 

following conditions hold: 

1. Operator with null operand, i.e. two adjacent operators, as in FOR X IN Y 

UNTIL DO 

2. Operand consisting of more than one form (except as operand to FIRST. 

FINALLY, or one of the i.s.types), e.g., FOR X IN Y (PRINT X) COLLECT 

3. Same operator appears twice. 

4. Both IN and ON used on same i.v. 

5. FROM or TO used with IN or ON on same i.v. 

6. More than one i.s.type, e.g. a 00 and a SUM. 

In 3, 4, or 5, an error is not generated if an intervening AS occurs. 

If an error occurs. the i.s. is left unchanged. 

46-" F~~ -~~ ~ ~ ~~~)~~: .. -e-.-g-."-~~~"~~~~E~~:-~O-I~-,--;h";"i~~~~~~~-~~" ~"l~~-Y"S- -~;;~i;~ -~~ 

47 

the first i.v. in the i.s., whether explicity named or not. for example, 
(IN Y AS I FROM 1 TO 10 00 PRINT) prints elements on Y, not integers 
between 1 and 10. 

Note that this feature does not make much sense for FOR, OLD, BIND, IN, or 
ON, since they "operate- before the loop starts, when the i.v. may not even 
be bound. 

In the case of BY in conjunction wi th IN, the function 1s applied to the 
current tail e.g., FOR X IN Y BY COOR .•.• 1s the same as FOR X IN Y BY 
(COOR X) ... See page 23.23. 

23.27 



If no DO, COLLECT, JOIN or any of the other i.s.types are specified, CLISP will 

first attempt to find an operand, consisting of more than one form, e.g., 

FOR X IN Y i£!~JNT-1U WHEN ATOM X, and in this case will insert II 00 after tho 

first form. (In this case, condition 2 is not considered to be met, and an 

error is not generated.) I feL ISP cannot find such an operand, a warning 

message is printed: NO DO, COLLECT, OR JOIN: followed by the i.s. 

1.5. 15 still translated. e.'!}. (WHILE form) can be used to 

repeatedly until its value is NJl. 

However, the 

execute form 

Simi lar ly, 1 f no terminating t:ondi tion is detected, i . e. no IN, ON, WHILE, 

UNTIL, ,TO, or a RETURN or GO, a warning message is printed: 

POSSIBLE NON-TERMINATING ITERATIVE STATEMENT: followed by the 1.s. However, 

since the user may be planning to terminate the i.s. via an error. control-E, 

or a retfrom from a lower function. the i.s. is still translated. 

Defining New Iterative Statement Operators 

The i.s.type specifies what is to be done at each iteration, e.g. collecting 

values on a list, adding numbers. searching for a particular condition, etc. 

Each i.s. can have one and only one i.s.type. The function i.s.type provides a 

means of defining new i.s.types. 

i.s.type[namo;form;init;val] nar~ is the name of the i.s.type. 

form to be evaluated at each iteration. 

forD! is the 

In form SSVAL 

can be used to reference the value being assembled, 

I. V. to reference the current value of the 1. v., and 

BODY to reference the body of the s ta ternen t, i . e • 

name's operand. 

For example. for COLLECT, form would be (SETQ SSVAL (NCPNCl SSVAL BODY», for 

23.28 



SUM: (SSVAL~SSVAL+800y),49 for HEVER: (AND BODY (RETURN NIL», and for THEREIS: 

(AND BODY (RETURN I.V.». 

Examples: 

ini t specifies the initial value for SSVAL, e. g. for 

SUH, init is O. val specifies the value to be returned 

when the i.s. terminates. 

i.s.type is undoable. 

1) To define RCOLLECT, a version of COLLECT which uses cons instead of nconc1 

and then reverses the list of values: 

i.s.type[RCOLLECT;(SETQ SSVAL (CONS BODY SSVAl»;NIL;(DREVERSE SSVAl)] 

2) To define TCOLLECT, a version of COLLECT which uses tconc: 

i.s.type[TCOLLECTj(TCONC SSVAL BODY); (CONS); (CAR SSVAL)] 

3) To define PRODUCT: 

i.s.type[PRODUCT;(SSVAL~SSVAL*BOOY);l;SSVAL] 

i.s.type performs the appropriate modifications to the property list for ~, 

ilS well as for the lower case version of name, and also updates the appropriate 

spell-ing lists. 

!.s.type can also be used to define synonyms for all i.s. operators, (not just 

those that are i.s.types). by calling i.s.type with forman atom, e.g. 

i.s.type[WHERE;WHEN] makes WHERE be the same as WHEN. Similarly, following 

49--$$V~~:~~~Y-;~--~;;~-~~~~~~~--;i-(i;~US-SS~;L-B~~;):-~~--;h;;-~h~--C~;;~;-~; 
function used in the translation, i.e. iplus, fplus, or plus, will be 
determined by the declarations then in effect. 

23.29 



i.s.type[ISHIERE;THEREIS] one can write (ISTHERE ATOM IN V). and following 

i.s.type[FINO;FOR] and i.s.type[SUCHTHAT;THEREIS]. one can write 

(FINO X IN Y SUCH THAT X MEMBER Z).60 

This completes the description of iterative statements. 

23.8 CLISP Trunsl~tions 

The translation of infix operato~s and IFITHENIELSE statements are handled in 

CLISP by replacing the CLISP expr~ssion with the corresponding INTERLISP 

expression, and discarding the original CLISP, because (1) the CLISP expression 

is easily recomputable (by clis:.l!..!.!.l), 61 and (2) the INTERLISP expressions are 

simple and straightforward. In addition to saving the space required to retain 

both the CL ISP and the INTERL ISP. another reason for discarding the original 

CLISP is that it may contain errors that were corrected in the course of 

translation, e.g. the user writes FO~FOOO:l, N-8FOO X), etc. If the original 

CLISP were retained, either the user would have to go back and fix these errors 

by hand, thereby negating the advantage of having DWIM perform these 

corrections, or else DWIM would have to keep correcting these errors over and 

over. 

Where (1) or (2) are not the case, e.g. with iterative statements, pattern 

50-----------------------------·---------------------- --------------------------
In the current system, WHERE is synonymous with WHEN, SUCHTHAT and ISTHERE 

61 

with THERE IS, and FINO with FOR. 

Note that clispif~ is sufficiently fast that it is practical for the user 
to configur-c---fifsTNTERLISP system so that all expressions are automatically 
c~i~e!J~ed immediately before they are presented to him. For example, he 
can define an edit macro to use in place of P which calls clisp~ on the 
current expression before printing it. Similarly, he can inform prettyprint 
to call clispify on each expression before printing it, etc. 

23.30 



matches, record expressions, etc. 62 68 the original CLISP is retained (or a 

slightly modified vorsion thereof), and tho translation is stored elsewhere, 

usually in clisparra~, a hash array. The interpreter automatically checks 

this array using gethash when given a form car of which is not a function. 

Similarly, the compiler performs a gethash when given a form it does not 

recognize to see if it has a translation, which is then compiled instead of the 

form. Whenever the user changes a CLISP expresson by editing it, the editor 

automatically deletes its translation (if one exists), so that the next time it 

is evaluated or dwimified, the expression will be retranslated. The function 

~ and the edit commands PPT and CLISP: are available for examining 

translations, see page 23.15. Similarly, if prettytranflg is T, prettyprint 

will print the translations instead of the corresponding CLISP expression. 54 

If clisparray is NIL,66 translations are implemented instead by replacing the 

CLISP expression by an expression of the form 

(CLISPX_ translation. CLISP-expression),66 e.g. (FOR X IN Y COLLECT (CAR X» 

62--;~~-~~~~~i;:-;~~-;;~~;i~;~~~-~~-;:;~;-~;-(~~~~~-(~~~-(~~~~~~-;»):-~~~~~-~; 

63 

&:1 

66 

66 

difficult to read. Therefore, such expressions are handled by retaining the 
CLISP and storing the translation elsewhere, as described below. 

Tho handling of translations for IFITHENIELSE statements is determined by 
tho value of clispiftral}f!Q. If T, the translations are stored elsewhere, 
and the (modified) CLISP retained as described below. If NIL, the 
corresponding COND replaces the IFITHENIELSE expression. The initial value 
of clisp1ftranflg is NIL. 

Note that the user can always examine the translation himself by performing 
(GETHASU expression CLISPARRAY). 

cli~~arr~~ is initially NIL, and #clisparray is its size. The first time a 
translation is performed, a hash array of this size is created. Therefore 
to disable clisparra~, both it and #c11sparray should be set to NIL. 

CLISP% is an atom consisting of the six ch.aracters C, L, I, S, P, and 
space, which must be preceded by the escape character % in ordor for it to 
be included as a part of an identifier. The intent was to deliberately 
make this atom hard to type so as to make it unlikely that it would 
otherwise appear in a user's program or data, since the editor and 
prettyprint treat it very specially, as described above. 

23.31 



would be replaced by 

(CLISPX_ (MAPCAR Y (FUNCTION CAR» FOR X IN Y COLLECT (CAR X». Both the 

editor and prettyprint know about CLISPX_ expressions and treat them specially 

by suppressing the translations: Prettyprint prints just the CLISP 

(unless prettytranflg=T, as described below), while the editor makes the 

translation completely invisible, e.g. if the current expression were the above 

CLISPX expression, F MAPCAR would fail to find the MAPCAR, and (3 ON) would 

replace IN with ON, i.e. the editor operates as though both the ClISPX_ and the 

MAPCAR were not there. As with translations implemented via clisparray, if the 

CLISP expression is changed by editing it, the translation is automatically 

deleted. 

CLISPX expressions will interpret and compile correctly: CLISP%_ is defined as 

an nlambda nospread function with an appropriate compiler macro. Note that if 

the user sets ~lisparray to NIL p he can then break, trace, or advise ClISPX_ to 

monitor the evaluation of iter'ative statements, pattern matches, and record 

operations. This technique will work even if clisparray was not NIL at the time 

the expressions were originally translated, since setting clisparray to NIL 

will effectively delete the translations, thereby causirig the CLISP expressions 

to be retranslated when they are first encountered. Note that if the user only 

wishes to moni tor the CLISP in a certain function, he can accomplish this by 

embedding its definition in (RESETVAR CLISPARRAY NIL .). 

If a ClISP% expression is encountered and clisparray is not NIL, the 

translation is transferred to the hash array, and the ClISPY._ expression 

replaced by just the CLISP. Setting prettytranflg to ClISPY._ causes 

prott)':print to print CLISP expressions that have been translated in the form of 

(ClISP%_ translation . CLISP-expression), even if the translation is currently 

stored in clisparray. These two features together provide the user with a way 

of dumping CLISP expressions together with their translations so that when 

reloaded (and run or dwimified). the translations will automatically be 

transferred to clisparray. 

23.32 



In summary, if prettytranflg=NIL, only the CLISP is printed (used for producing 

listings). If prettytranflg=T, only the translation is printed (used for 

exporting programs to systems that do not provide CLISP. and to examine 

translations for debugging purposes).67 If prettytranflg=CLISPX_, an expression 

of the form (CLISPX_ translation. CLISP) is printed, (used for dumping both 

CLISP and translations). The preferred method of storing translations is in 

.clisparr.~~, so that if any ClISPX_ expressions are converted while clisparral 

is not NIL, they will automatically be converted so as to use clisparray. If 

!Clisparr~=NIl, they will be left alone, and furthermore, new translations will 

be implemented using CLISPX_ expressions. 

23.9 Declarations 

Declarations are used to affect the choice of INTERLISP function used as the 

translation of a particular operator. For example, A+8 can be translated as 

either (IPLUS A B). (FPLUS A B). or (PLUS A B), depending on the declaration in 

effect. Similarly . X:l~Y can mean (RPLACA X Y), (FRPLACA X V), or 

(,1RPlACA X V). and (!!A B> either (NCONCl A B) or (/NCONCl A B). The table 

below gives the declarations available in CLISP, and the INTERLISP functions 

they indicate. The choice oj Junction on all CLISP transformations are 

affcctcd by these declarations, i.e. iteraiue statements. pattern matche.s. 

record operations. as well as infix and preJix operators. 

The user can make (change) a global declaration by calling the function 

ClISPOEC and giving it as its argument a list of declarations, e.g., 

(CLISPO[C (QUOTE (FLOATING UNDOABLE»). Changing a global declaration does not 

affect the speed of subsequent CLISP transformations, since all CLISP 

67-----------------------------------------------------------------------------Noto tha t makeri Ie will reset prettytranflg to T, using resetvar, when 
called with the option NOCLISP. 

23.33 



transformation are table driven (i.e. property list), and global declarations 

arc accomplished by making the appropriate internal changes to CLISP at the 

time of tho declaration. If a function employs local declarations (described 

below), there will be a slight loss in efficiency owing to the fact that for 

each CLISP transformation, the declaration list must be searched for possibly 

relevant declarations. 

Declarations are implemented in the order that they are given, so that later 

declarations override earlier ones. for example, the declaration FAST 

specifies that FRPLACA, FRPLACD, FMEMB, and FLAST be used in place of RPLACA, 

RPLAcn, MEMB, and LAST; the declaration RPLACA specifies that RPLACA be used. 

Therefore, the declarations (FAST RPLACA RPLACD) will cause FMEMB, FLAST, 

RPLACA, and RPLACO to be used. 

Th~ initial global declaration is INTEGER and STANDARD. 

Table of Declarations 

Declaration 

INTEGER or FIXED 

FLOATING 

MIXED 

FAST 

UNDOABLE 

STANDARD 

RPLACA, RPLACD, 
/RPLACA, ... 

INTERLISP functions to be used 

IPLUS, IMINUS, IDIFFERENCE, ITIMES, lQUOTIENT, ILESSP, 
IGREATEFlP 

FPLUS, fMINUS, FDIFFERENCE, FTIMES, FQUOTIENT, LESSP, 
FGTP 

PLUS, I~INUS, DIFFERENCE, TIMES t QUOTIENT, LESSP. 
GREATER~t 

FRPLACA, FRPLACD, FMEMB, FLAST, FASSOC 

IRPLACA, IRPLACD, INCONC, INCONC1, IMAPCONC, IHAPCON 

RPLACA, RPLACO, HEMS, LAST, ASSOC, NCONC, NCONC1, 
MAPCONC, MAP CON 

corresponding function 

23.34 



Local Declarations 

The user can also make declarations affocting a selected function or functions 

by inserting an expression of the form (CLISP: . declarations) inunediately 

following the argument list, i.e<.; as CADDR.of the definition. Such local 

declarations take precedence over global declarations. Declarations affecting 

selected variables can be indicated by lists, where the first element is the 

name of a variable, and the rest of the list the declarations for that 

variable. For example, (CLISP: FLOATING (X INTEGER» specifies that in this 

function integer arithmetic be used for computations involving X, and floating 

arithmetic for all other computations. 58 The user can also make local record 

declarations by inserting a record declaration, e.g. (RECORD --), 

(ARRAYRECOR'D --). etc., 1n the local declaration list. Loca I record 

declarations override global record declarations for the function in which they 

appear. Local declarations can also be used to override the global setting of 

certain DWIM/CLISP parameters effective only for transformations within that 

function, by including in the local declaration an expression of the form 

(variable = value), e.g. (PATVARDEFAULT = QUOTE). 

The ClISP: eXJH"ession is converted to a comment of a special form recognized by 

CL I SP. Whenever a CLISP transformation that is affected by declarations is 

about to be performed in a function, this comment will be searched for a 

relevant declaration, and if one is found, the corresponding function will be 

used. Otherwise, if none are found, the global declaration(s) currently in 

effect will be used. 

6,8 - -: ~ ~~~ ~ ~;I~ ~: -~~~~~ .. -;;;;e"" ~~; - :~~~~b ~~ .. -i~~"e-l"f-"~;" ~~ - ~-p"e-;a-;d-." - -;~; - ;~;~~ i; ~ 
with the declaration (FLOATING (X INTEGER» in effect, (FOO X)+(FIE X) 
would translate to FPLUS, i.e., use floating arithmetic, even though X 
nppears somewhere inside of the operands, whereas X+(FIE X) would translate 
to IPLUS. I f there are declarations involving both operands, e. g. X+Y, 
with (X FLOATING) (Y INTEGER), whichever appears first in the declaration 
list will he used. 

23.35 



Local declarations are effective in the order that they are given, so that 

later declarations can be used to override earlier ones, e.g. 

(CLISP: FAST RPLACA RPLACO) specifies that fMEMB, fLAST, RPLACA, and RPLACO be 

used. An exception to this is that declarations for specific variables take 

precedence of general, function-wide declarations, regardless of the order of 

appearance, as in (CLISP: (X INTEGER) FLOATING). 

Cl ispi fy- also checks the declarations in effect before selecting an infix 

operator to ensure that the corresponding CLISP construct would in fact 

translate back to this form. For example, if a FLOATING declaration is in 

effect, clispify will convert (FPlUS X Y) to X+Y, but leave (IPLUS X Y) as ,is. 

Note that if (FPlUS X Y) is CLISPIFVed while a FLOATING declaration is under 

effect, and then the declaration is changed to INTEGER, when X+Y is translated 

back to INTERLISP, it will become (IPLUS X V). 

23.10 The Pattern Match Compilar69 

CLISP contains a fairly general pattern match facility. The purpose of this 

pattern match facility is to make more convenient the speCifying of certain 

tests that would otherwise be clumsy to write (and not as intelligible), by 

allowing the user to give instead a pattern which the datum is supposed to 

match. Essentially, the user writes "Does the (expression) X look like 

(the pattern) P?" For example, X:(& 'A -- 'B) asks whether the second element 

of X is an A, and the last element a B. The implementation of' the matching is 

performed by computing (once) 1~he equivalent INTERLISP expression which will 

perform the indicated operation, and substituting this for the pattern, and not 

by invoking each time a general purpose capability such as that found in FLIP 

~~--T------------------------------------------------------------------~--------he pattern match compiler was written by L. M. Masinter. 

23.36 



or PLANNER. for example, the translation of X:(& fA -- '8) is: 

(AND (EQ (CADR X) (QUOTE A» (EQ-(CAR (LAST X» (QUOTE B»).' Thus the CLISP 

pattern match facility is really a Pattern Compiler, and the emphasis in its 

design and implementation has been more on the efficiency of object code than 

on generality and sophistication of its matching capabilities. The goal was to 

provide a facility that could and would be used even where efficiency was 

paramount, e.g. in inner loops. As a result, the CLISP pattern match facility 

does not contain (yet) some of the more esoteric features of other pattern 

Inatch languages, such as repeated patterns, disjunctive and conjunctive 

patterns, recursion, etc. However, the user can be confident that what 

facilities it does provide will result in INTERLISP expressions comparable to 

those he would generate by hand. 60 

The syntax for pattern match expressions is form:pattern, where pattern is a 

list as described below. As with iterative statements, the translation of 

patterns, i.e., the corresponding INTERlISP expressions, are stored in 

flisparray, a hash array, as described on page 23.30. The original expression, 

form:pattern, is replaced by an expression of the form 

(MATCH form WITH pattern). CLISP also recognizes expressions input in this 

form. 

If form appears more than once in the translation, and it is not either a 

vari able. or an expression that is easy to (re )compute, such as (CAR Y). 

(CDDR Z), etc., a dummy variable will be generated and bound to the value of 

form so that .torm is not evaluated a multiple number of times. for example, 

the translation of (FOO X):(S 'A S) is simply (HEMB (QUOTE A) (FOO X», while 

the translation of (Foo X):('A '8 --) is: 

60---------------------------------------------------- -------------------------
Wherever possible, already existing INTERLISP functions are used in the 
translation, e.g., the translation of (S 'A S) uses HEHB, (S ('A S) S) uses 
ASSOC, etc. 

23.37 



[PROG (SS2) (RETURN 
(AND (EQ (CAR (SETQ SS2 (FOO X») 

(QUOTE A» 
(EQ (CADR SSZ) (QUOTE Bl. 

In the interests of efficiency, the pattern match compiler assumes that all 

lists end in NIL, i.e. there aro no LISTP checks inserted in the translation to 

check tails. For example, the translation of X:( 'A & --) is 

(AND (EO (CAR X) (QUOTE A» (COn X». which will match with (A B) as well as 

(A . B). Similarly. the pattern match compiler does not insert LISTP checks on 

elements, e.g. X:«'A --) --) translates simply as (EO (CAAR X) (OU01E A», and 

X: «S1 S1 --) --) as (CODAR X) .61 Note that the user can explicitly insert 

LISTP checks himself by using @. as described on page 23.40, e.g. 

X:«S1 S1 --)@lISTP --) translates as (AND (LISTP (CAR X» (CDDAR X». 

Pattern Elements 

A pattern consists of a list of pattern elements. Each pattern element is said 

to match either an element of a data structure or a segment. (cf. the editor's 

pattern matcher, "--" matches any arbitrary segment of a list, while & or a 

subpattern match only one element of a list.) Those patterns which may match a· 

segment of a list are called SEGMENT patterns; those that match a single 

element are called ELEMENT patterns. 

61------------------------------·-----------------------------------------------The insertion of LISTP checks for elements is controlled by the variable 
pi!_~LL~~p~h!:ck. When ~atlistpcheck is T, LISTP checks are inserted, e.g. 
X:« 'A --) --) translates as: 

(AND (LISTP X) (LISTP (CAR X» (EQ (CAAR X) (QUOTE A»). 
~atlistpcheck is initially NIL. Its value can be changed within a 
particular function by using a local declaration, as described on page 
23.35. 

23.38 



Element Patterns 

There are several types of element patterns, best given by their syntax: 

PATTERN 

51. or & 

'expression 

=form 

==form 

atom 

MEANING 

matches an arbitrary element of a list 

matches only an element which is equal to the given 

expression e.g., tA,62 t(A B). 

matches only an element which is equal to the value of form, 

e.g., =X, =(REVERSE V). 

same as =, but uses an ~ check instead of equal. 

treatment depends on setting of ~atvardefault. 

If ~atvardefault is ' or QUOTE, same as 'atom. 

If ~atvardefault is = or EQUAL, same as =atom. 

If ~atvardefault is == or EQ. same as ==atom . 

If ~atvardefault is .. or SETQ, same as atom .. &. 

~atvardefault is initially =.68 

Note: numbers and strings are always interpreted as though ~atvardefault were 

=, regardless of its setting. ~, memb, and assoc are used for comparisons 

involving small i~tegers. 

62-----------------------------------------------------------------------------
!,~q, mcmb, and assoc are automatically used in the translation when the 

63 

Quoted expression is atomic, otherwise equal, member, and sassoc. 

p-atvardefault can be changed within a particular function by using a local 
declaration, as described on page 23.35. 

23.39 



(pattern 1 ... patternn ) n ~ 1 matches a list which matches the given 

patterns, e.n., (& &), (-- 'A). 

element-pattorn@function-object matches an element if the element-pattern 

matches it, and the function-object (name of a functibn or a 

LAMBOA expression) applied to that element returns non-NIL, 

e.g. &@NUMBERP matches a number, ('A --)@FOO match~s a list 

whose first element is A, and for which FOO applied to that 

list is non-NIL. 64 

matches any arbitrary elemont. If the entire match 

succeeds, the element which matched the * will be returned 

as the value of the match. 

Note: normally. the pattern match compiler constructs an expression whose value 

is guaranteed to be non-NIL if tho match succeeds and NIL if .it fails. 

However, if a * appears in the pattern, the express·ion generated will either 

return NIL if the match fails, or whatever matched the - even though that may 

be NIL. For eXelmple, X:( 'A * --) translates as 

(AND (EQ (CAR X) (QUOTE A» (COR X) (CADR X». 

-element-pattern matches an element if the element is not matched by 

element-pattern, e.g. -'A, -=X, -(-- 'A --). 

64----------------------~------------------------------------------------------For 'simple' tests, the function-object is applied before a match is 
attempted with the pattern, e.g. «-- 'A --)@LISTP --) translates as 
(AND (LISTP (CAR X» (MEMB (QUOTE A) (CAR X»), not the other way around. 

23.40 



Segment Patterns 

$, or -- matches any segment of a list (including one of zero 

length) . 

The difference between $ and -- is in the type of search they generate. For 

example, X:(S 'A 'B S) translates as (EQ (eADR (MEMB (QUOTE A) X» (QUOTE B», 

whereas X:(-- 'A 'B S) translates as: [SOME X (FUNCTION (LAMBDA (SS2 SS1) 

(AND (EQ SS2 (QUOTE A» (EQ (eADR SSI) (QUOTE BJ. Thus, a paraphrase of 

(S 'A 'B S) would be II Is the element following the !tr~ t A a B 1", whereas a 

paraphrase of (-- 'A 'B $) would be -Is there anu A immediately followed by a 

B?" Note that the pattern employing $ will result in a more efficient search 

than tha t employing However. (S' A 'B S) wi 11 not rna tch wi th 

(X Y Z A M N 0 A B e). but (-- 'A 'B S) will. 

Essentially. once a pattern following a $ matches, the $ never resumes 

always continue 

if the pattern 

searching, whereas produces a translation that will 

searching until there is no possibility of success. However, 

match compilor can deduce from the pattern that continuing a search after a 

particular failure cannot possibly succeed, then the translations for both -­

nnd :& will be the same. For example. both X:(S 'A S3 $) and (-- 'A S3 --) 

translate as (eDDDR (MEMB (QUOTE A) X», because if there are not three 

(!lements following the first A, there certainly will not be three elements 

following subsequent A's, so there is no reason to continue searching, even for 

Similarly, (S 'A $ 'B S) and (-- 'A -- '8 --) are equivalent. 

S2, $3, etc. 

!element-pattern 

matches a segment of the given length. Note that $1 is not 

a segment pattern. 

matches any segment which the given element pattern would 

match as a list. For example, if the value of FOO is 

23.41 



(A B C) !=FOO will match the segment ... ABC etc. 

Note that !. is permissible and means Value-of-match~$, e.g. 

X:(S 'A ,.) translates to (COR (MEMB (QUOTE A) X». 

Note: since ! appearing in front of the last pattern specifies a match with 

some tail of the given expression, it also makes sense in this case for a ! to 

appear in front of a pattern that can only match with an atom, e.g., (S2 ! 'A) 

means match if cddr of the expression is the atom A. Similarly, X: ($ r"A) 

translates to (EQ (COR (LAST X» (QUOTE A». 

!atom treatment depends on setting of patvardefault. If 

patvardefault, is I or QUOTE, same as ! 'atom (see above 

discussion) . If patvardefault is = or EQUAL, same as 

!=atom. If patvardefault is == or EQ, same as !==atom. If 

patvardefault is ~ or SETQ, same as atom~$. 

The atom '.' is treated exactlu like! .66 In addition, if a 

pattern ends in an atom, the '.' is first changed to !. 

e.g., (S1 . A) and (S1 ! A) are equivalent, even though the 

atom I , . does not explicitly appear in the pattern. 

Segment-pattern@function-object matches a segment if the segment-pattern 

matches it, and the function object applied to the 

corresponding segment (as a list) returns non-NIL, e.g. 

~~-----------------------------------------------------------------------------
Wi th one exception. namely '.' preceding an assignment does not have the 
special interpretation tha'~ ! has proceding an 
23.43). For example, X:( 'A • FOO~'B) , 
(AND (EQ (CAR X) (QUOTE A» (EQ (CDR X) (QUOTE B» 
but X:( 'A ! FOO~'B) translates as: 

(AND (EQ (CAR X) (QUOTE A» 
(NULL (COOR X» 
(EQ (CAOR X) (QUOTE B» 
(SE TQ 8)0 (COR X»). 

23.42 

assignment (see page 
translates as: 

(SETQ Faa (COR X»), 



(S@COOR '0 S) matches (A B C 0 E) but not (A B 0 E), since 

CODR of (A B) is NIL. 

Note: an @ pattern applied to a segment will require computing the 

corresponding structure (with ldiff) each time the predicate is applied (except 

when tho segment in question is a tail of the list being matched). 

Assignments 

Any pat tern element may be preceded by a variable and a .... , meaning if the 

match succeeds (i.e., everything mat~hes). the variable given is to be set to 

what matc'fe~ that pattern element. For example, if X = (A B C 0 E), 

X,:(S2 Y"'S3) will set Y to (C 0 E). Assignments are not performed until the 

entire match has succeeded. Thus, assignments cannot be used to specify a 

search for an element found earlier in the match, e.g. X:(Y"SI =Y __ )66 will 

not match with 67 (A ABC ... ). This type of match is achieved by using 

place-markers, described below. 

If the variable is preceded by a !, ~he assignment is to the tail of the list 

as of that point in the pattern, i.e. that portion of the list matched by the 

remainder of the pattern. For example, if X is (A BCD E), X:(S !Y .. 'e '0 S) 

sets Y to (C 0 E), i.e. cddr of X. In other words, when precedes an 

assignment, it acts as a modifier to the .. , and has no effect whatsoever on the 

pattern itself, e.g. X:( 'A 'B) and X:('A !FOo..'B) match identically, and in 

the latter case. FOa will be set to CDR of X. 

60---------------------------------------------------- -------------------------The translation of this pattern is: 
(COND «ANO (CDR X) (EQUAL (CADR X) V»~ 

(SETQ Y (CAR X» 
T». 

The AND is because if Y is NIL, the pattern should match with (A NIL), but 
not with just (A). The T is because (CAR X) might be NIL. 

unless, of course, the value of Y was A before the match started. 

23.43 



Note: *~pattern-element and !*~pattern-element are acceptable, e.g~ 

X:(S tA *~( '8 --) --) translates as: 

[PROG (SS2) (RETURN 
(AND (EQ (CAAOR (SETQ SS2 (MEMB (QUOTE A) X») 

. ,(QUOTE B» 
(CADR SS2] 

Place-markers 

Variables of the form In, !l a number, are called place-markers, and are 

interpreted specially by the pattern match compiler. Place-markers are used in 

a pattern to mark or refer to a particular pattern element. Functionally. they 

are used like ordinary variable!s, i.e. they can be assigned values, . or used 

freely in forms appearing in the pattern, e.g. X:(#l~Sl =(ADDI II» will match 

the list (2 3). However, they are not really variables in the sense that they 

are not bound, nor can a function called from within the pattern expect to be 

able to obtain their values. For convenience" regardless of the setting of 

patvarderault, the first appearance of a defaulted, place-marker is interpreted 

as though patv~rdefault were ~. Thus the above pattern could have been written 

as X:(#l =(ADDI /1». Subsequent appearances of a place-marker are interpreted 

as though patvardefault were =. For example, X:(II #1 --) is equivalent to 

X:(#l~Sl =#1 --), and translates as (AND (CDR X) (EQUAL (CAR X) (CAOR X».68 

Replacements 

Any pattern element may be followed by a I~' and a form, meaning if the match 

succeeds, the part of the data that matched is to be replaced (e.g., with 

~~-----------------------------------------------------------------------------Just (EQUAL (CAR X) (CADR X»),would incorrectly match with (NIL). 

23.44 



RPlACA or RPLACO)69 with the value of <form>. For example, if X =(A B C 0 E), 

X:(S 'C Sl~Y SI) will replace the fourth element of X with the value of Y. As 

with assignments, replacements are not performed until after it is determined 

that the entire match will be successful. 

Replacements involving segments splice the corresponding structure into the 

list being matched, e.g. if X is (A B C 0 E F) and FOO is (1 2 3), after the 

pattern ('A $~FOO '0 S) is matched with X, X will be (A 1 Z 3 0 E F), and FOO 

will bo Qg to COR of ~, i.e. (1 2 3 0 E F). 

Note that ($ FOO~FIE $) is ambiguous, since it is not clear whether FOO or FIE 

is the pattern element, i.e. whether .. specifies assignment or replacement. 

For example, if patvardcfault is, =, this pattern can be interpreted as 

($ FOO~=FIE $), meaning search for the value of FIE, and if found set FOO to 

it, or ($ =FOO~FIE S) meaning search for the value of FOO, and if found, store 

the va lue of F IE into the corresponding posi tion. In such cases, the user 

should disambiguate by not using the patvardefault option, i.e. by specifying I 

or -. 

69-----------------------------------------------------------------------------
The user can indica te he wants Irplaca and Irplacd used, or frplaca and 
!£p~ncd, by means of declarations. The initial default is for rplaca and 
rplacd. 

23.45 



The user can specify a value for a pattern match operation other than what is 

returned by the match by writin!~ after the pattern => followed by another form, 

e.g. X:(FOO~S fA --) => (REVERSE FOO),70 which translates as: 

[PROG (SS2) (RETURN 
(COND «SETQ SS2 (MEMB (QUOTE A) X» 

(SETQ FOO (LDIFF X $2» 
(REVERSE FOO]. 

Place-markers 1n the pattern can be referred to from within form, e.g. the 

above could also have been wrjltten as X:(!ll 'A --)=>(REVERSE 'I). If -) is 

used in place of =>, the expression being matched is also physicallv changed to 

the value of form. For example. X:(II -'A !12) -> (CONS 11 12) would remove the 

second element from X. if it were equal to A. 

In general, forml:pattern->form2 is translated so as to compute form2 if the 

match is successful. and then smash its value into the first node of forml. 

However, whenever possible, the translation does not actually require form2 to 

be computed in its entirety, but instead the pattern match compiler uses forml 

as an indication of what should be done to forml. For example, 

X:(II 'A !12) -) (CONS #112) tr'anslates as: 

(AND (EQ (CADR X) (QUOTE A» (RPLACD X (CDDR X»). 

70--~~~---~;;;;;;;--~~~;~---;~--~~~i-;c~~---~;---;;--~~~;~~~~~~---~i--~~~---;~;~ 
(MATCH form1 WITH pattern => form2). CLISP also recognizes expressions 
input in this form. 

23.46 



Examples 

X:(-- 'A --) ma tches any arbi trary segmen t. 'A rna tches on ly an 

A, and the 2nd -- again matches an arbitrary segment; 

thus this translates to (MEMS (QUOTE A) X). 

X:(-- IA) Again, -- matches an arbitrary segment; however, since 

there is no after the lA, A must be the last element 

of x. Thus this translates to: 

(EQ (CAR (LAST X» (QUOTE A». 

x:( IA '8 -- IC $3 --) CAR of X must be A, and CADR must be 8, and there must 

be at least three elements after the first C, so the 

translation is: 

(AND (EQ (CAR X) (QUOTE A» 
(EQ (CADR X) (QUOTE B» 
(CODOR (MEMS (QUOTE C) (CODR X»» 

X:« 'A '8) 'e Y~Sl $) Since (IA 18) does not end in $ or 

be NIL. 

(COND 
«AND (EQ (CAAR X) (QUOTE A» 

(EQ (CADAR X) (QUOTE B» 
(NULL (CDDAR X» 
(EQ (CAOR X) (QUOTE C» 
(CDDR X» 

(SETQ Y (CADOR X» 
T) ) 

(COOAR X) must 

X:(#l IA $ '8 'C 11 $) #1 is implicitly assigned to the first element in the 

list. The $ searches for the first B following A. This 

B must be followed by a C, and the C by an expression 

equal to the first element. 

[PROG (SS2) (RETURN 
(AND (EQ (CADR X) (QUOTE A» 

(EQ [CADR (SETQ SS2 (MEMB (QUOTE B) (COOR X] 
(QUOTE C» 

(EQUAL (CAODR SSZ) (CAR X] 

23.47 



X:(#l 'A -- 'B IC 11 $) Similar to the pattern above, except that -- specifies 

a search for anu B followed by a C followed by the 

first element, so the translation is: 

[AND (EQ (CAOR X) (QUOTE A» 
(SOME (COOR X) (FUNCTION (LAMBDA (SS2 SS1) 

(AND (EQ SS2 (QUOTE B» 
(EQ (CAOR SS1) (QUOTE C» 
(EQUAL (CAODR SS1) (CAR X] 

This concludes the des~ription of the pattern match compiler. 

23.11 The Record Package71 

The advantages of "data-less" or data-structure .. independent programming have 

long been known: more readable code, fewer bugs, the ability to change the data 

structure without having to make major modifications to the program, etc. The 

record package in CLISP both encourages and facilitates this good programming 

practice by providing a uniform syntax for accessing and storing data into many 

different types of data structures, e.g., those employing arrays, list 

structures, atom property lists u hash links, etc., or any combination thereof, 

as well as removing from the user the task of writing the various access and 

storage routines themselves. The user declares (once) the data structure(s) 

used by his programs, and thereafter indicates the manipulations of the data in 

a data-structure-independent manner. The record package automatically computes 

from the declaration( s) the corresponding INTERLISP expressions necessary to 

accompl ish the indicated access/storage operations. The user can change his 

da ta structure simply by changing the corresponding declaration( s), and his 

program automatically (re)adjusts itself to the new conventions. 

71-----------------------------------------------------------------------------The record package was written by L. M. Masinter. 

23.48 



The user informs the record package about the format of his data structure by 

making a record declaration. A record declaration defines a record, i.e. a 

data structure. (Note that the record itself is an abstraction that exists 

only in the user's head.) The record declaration is essentially a template 

which describes the record, associating names with its various parts or fields. 

For example, the record declaration (RECORD MSG (10 (FROM TO) . TEXT» 

describes a data structure called MSG, which contains four fields: 10, FROM, 

TO, and TEXT. The user can then reference these fields by name, either to 

retrieve their contents, or to store new data into them, by using the 

operator followed by the field name. for example, for the above record 

declaration, X:FROM would be equivalent (and translate) to (CAADR X), and 

Y:TO~Z to (RPlACA (CDADR Y) Z).72 The fields of a record can be further broken 

down into subfields by additional declarations within the record, e.g. 

(RECORD MSG (10 (FROM TO) . TEXT) (RECORD TEXT (HEADER TXT») would permit the 

user to refer to TEXT, or to its subfields HEADER and TXT. 

Note that what the record declaration is really doing is specifying the 

data-paths of the structure, and thereby specifying how the corresponding 

access/storage operations are to be carried- out. For example, 

(RECORD MSG (10 (FROM TO) . TEXT) (RECORD TEXT (HEADER TXT») says the HEADER 

of a MSG is to be found as the first element of its TEXT, which is the second 

tail of the NSG itself. Hence, X:HEADER"string is achieved by performing 

(RPLACA (CDDR X) string). 

Note also that when the user writes X:HEADER, he is implicitly saying the X is 

an instance of the record MSG, or at least is to be treated as such for this 

particular operation. In other words, the interpretation of X:FORM ~evcr 

depends on the value Q[~. The record package (currently) does not provide any 

72-----------------------------------------------------------------------------or IRPLACA or FRPLACA, depending on the CLISP declaration in effect. 

23.49 



facility which uses run-time checks to detormine data paths, nor is there any 

error checking other than that provided by INTERLISP itself. For example, if X 

happened to be an array, X:HEADER would still compute (CAAOR X).73 

RECORD (used to specify elements and tails of a list structure) is just one of 

several record-types currently implemented. For example, the user can specify 

'optional' fields, i.e. property list format, by using the record type 

PROPRECORD, or fields to be associated with parts of the data structure via 

hash 1 inks, by using the reco,·d-type HASHRECORO, or even specify the access 

definitions in the record declaration himself, by using the record-type 

ACCESSFN. These are described in detail below. 

The record package also providl!s a facility for creating new data structures 

us ing a record declaration as a guide or template. Ini tial values for the 

various fields can be specified in the CREATE expression, or defaulted to 

values specified in the record declaration itself. Alternatively. CREATE can 

be instructed to use an existing datum as a model, i.e. to obtain the field 

values for the new datum from the corresponding fields of the existing datum, 

or even to actually use (cannibalize) the structure of the existing datum 

itself. 

As with all DWIMICLISP facJllities, the record package contains many 

do-what-I-mean features, spelling correction on field names, record types,' etc. 

In addition, the record package includes a RECORDS prettydef macro for dumping 

record declarations, as well ilS the appropriate modifications to the file 

package (Section 14), so that files? and cleanup will inform the user about 

records that need to be dumped. 

73-----------------------------------------------------------------------------tlowever, it is possible to make the interpretation of X:HEADER differ from 
that of Y:UEADER (regardless of the values of X and V), by using local 
rocord declarations, as described on page 23.35. Note that this 
distinction depends on a translation-time check, not run-time. 

23.50 



Record Declarations 

A record declaration is an expression of the form 

(record-type record-name fields. (defaults and/or subfields}) 

This expression is evaluated to effect the corresponding ·declaration. 74 

1. record-type specifies the "type" of data being described by the record 

declaration. and thereby implicitly specifies the data paths, i.e. how the 

corresponding access/storage operations are performed. record-type 

currently is either RECORD, TYPERECORO, ARRAYRECORO. ATOMRECORD, PROPRECORO. 

UASHRECORD t or ACCESSFN. 76 RECORD and TYPERECORD are used to describe list 

structures, ARRAYRECORD to describe arrays, ATOMRECORD to describe (the 

property list of) atoms, and PROPRECORD to describe lists that use property 

list format. HASHRECORD can be used with any type of data: since it simply 

specifies the data path to be a hash-link. ACCESSFN is also type-less; the 

user specifies the data-path(s) in the record declaration itself, as 

described below. 

2. record-name is a literal atom used to identify the record declaration for 

dumping to files via the RECORDS prettydef macro, and for creating instances 

of the record via CREATE. For most top-level declarations, record-name is 

optional, e.g. (RECORD (10 (FROM TO) . TEXT» is perfectly acceptable. 76 

74-----------------------------------------------------------------------------Local record declarations are performed by including an expression of this 

76 

form in the CLISP declaration for that function (page 23.35), rather than 
evaluating the expression itself. 

When user-defined data types are introduced to INTERLISP. a corresponding 
record-type will be added to the record package. 

If record-name is omitted, it simply means that the user cannot specify tho 
record by name, e.g. when calling CREATE, or when using the RECORDS 
prettydef command. 

23.51 



For TYPERECORO, record-name is obligatory and is used as an indicator in CAR 

of the datum to signify what "type" of record it is. CREATE will insert an 

extra field containing record-name at the beginning of the structure, and 

the translation of the aCCl9SS and storage functions will take this extra 

field into account. 77 

For subfiold declarations, record-name is also obligatory, and specifies the 

parent field that is being elaborated, as described below. 

3. fields describes the structure of the record. Its exact interpretation 

varies with the record-type: 

For RECORD, fields is a list whose non-NIL literal atoms are taken as 

field-names to be associated with the corresponding elements and 

tails of a list structure. NIL can be used as a place marker to fill 

an unnamed field, e.g. (A NIL B) describes a three element list, with 

B corresponding to the third element. 

For TYPERECORD, field! has the same meaning as for RECORD. However, 

since CAR of the datum contains an indicator signifying its "type," 

the translation of the access/storage functions differ from those of 

RECORD. For example, for (TYPERECORD MSG (10 (FROM TO) . TEXT», 

X:FROM translates as (CAAOOR X), not (CAAOR X). 

For ATOMRECORO, fiElids is a list of property names, e.g. 

(ATOMRECORO (EXPR CODE HACRO BLKLIBRARYDEF». Accessing will be 

performed with ~, storing with ~. 

77-----------------------------------------------------------------------------Note: th 1s type-field is not used by the record package. It is provided 
for the user's own applications. 

23.52 



For PROPRECORO, fields is also a list of property names. Accessing 

is performed with get, storing with putl. 78 For example, 

(RECORD ENTRY (INPUT VALUE 10 . PROPS) (PROPRECORO PROPS (HISTORY 

LISPXPRINT SIDE GROUP ERROR») could be used to describe an entry on 

the history list (see Section 22).79 

For HASHRECORD (or HASHLINK), fields is usually just field-name, i.e. 

an atom, and is the name by which the corresponding hash-value is 

referred to. For example, for (RECORD (A B . C) (HASHRECORD B FOO», 

X:FOO translates as (GETHASH (CADR X». If field-name is a list, it 

is interpreted as (field-name arrayname arraysize). In this case, 

arrayname indicates the hash-array to be used. For example, 

(HASHRECORO (ClISP CLISPARRAY» would permit the user to obtain the 

CLISP translation of X by simply writing X:ClISP. arraysize is used 

for initializing the hash array: if arrayname has not been 

initialized at the time of the declaration, it will be set to 

(UARRAY (OR arraysize 100». 

For ARRAYRECORO, fields is a list of field-names that are associated 

with the corresponding elements of the array. NIL can be used as a 

place marker for an unnamed field (element). Positive integers can be 

used as abbreviation for the corresponding number of NIls. For 

example, (ARRAYRECORD (ORG DEST NIL 10 3 TEXT» describes an eight 

78-----------------------------------------------------------------------------A new function (part of the record package), similar to ~, which tak.es a 

'7'9 

list as its first argument, searches the list looking for an occurrence of 
the given property name (its second argument). If found, it replaces the 
next element with the new property value (its third argument), otherwise 
adds the property name and property value to the list. 

Note that (ATOMRECORO (FOO FIE») is equivalent to (RECORD (VALUE . PROPS) 
(PROPRECORO PROPS (FOO FIE»), the difference being in the translations. 
In the first case, X:FIE translates as (GETP X (QUOTE FIE»,. in the second 
case, as (GET (CDR 'X) (QUOTE FIE». Note also that in the first case, if X 
is not a literal atom, INTERLISP (i.e. ~) will generate an error. 

23.53 



element array, with ORG corresponding to the first element, 10 to· 

the fourth, and TEXT to the eighth. 

For ACCESSFN (or ACCESSFNS), fields is a list of the form 

(field-name accessdefinition setdefinition), or a list of elements of 

this form. accessdefinition is a function of one argument, the datum, 

and will be used for· accessing. setdefinition is a function of two 

arguments, the datum and the new value, and is used for storing. 80 

For example, (HASHRECORO FOO) and (ACCESSFN (FOO GETHASH PUTHASH» 

are equivalent: in both cases, X:FOO translates as (GElHASH FOO). 

Similarly. (ACCESSFN (OEF GETD PUlO» would permit defining functions 

by writing fn:DEF~definition.81 

4. (defaults and/or subfields) is optional. It may contain expressions of the 

81 

form: 

(1) field-name ~ form - specifies the default value for field-name. 

Used by CREATE. 

(2) DEFAULT ~ form - specifies default value for every field not 

given a specific default via (1). 

(3) a subfield declaration - i.e. a record declaration of any of the 

above types. for subfield declarations, record-name is obligatory. 

Instead of identifying the declaration as with the case of top level 

declarations, record-name identifies the parent field or record that 

[ACCESSFN (DEF GElD (LAMBDA (FN OEF) (DEFINE (LIST (LIST FN OEF] would be 
preferable to using putd. 

23.54 



CREATE 

is being described by the subfield declaration. It must be either the 

record-name of the immediately superior declaration, or one of its 

field-names (or else an error is generated). 

Subfields can be nested to an arbitrary depth. 

Note that in some cases, it makes sense for a given field to have 

more than one subfield declaration. For example, in 

(RECORD (A . B) (PROPRECORD B (FOO FIE FUM» (HASHRECORD Be», B is 

elaborated by both a PROPRECORD and HASHRECORD. Similarly, 

(RECORD (A B) (RECORD A (C D» (RECORD A (FOO FIE») is also 

acceptable, and essentially "overlays" (FOO ~IE) and (C 0), i.e. 

X:FOO and X:C would be equivalent. In such cases, the first subfield 

declaration is the one used by CREATE, e.g. 

(RECORD X (A B) (RECORD A (C D» (RECORD A (FOO FIE FUM» ) will 

cause (CREATE X) to construct «NIL NIL) NIL), not 

«NIL NIL NIL) NIL). as would be the case if the subfield declaration 

(RECORD A (C 0» were removed. 

Record operations can be applied to arbitrary structures, i.e. structures 

created directly by user programs can be manipulated in' a data-independent 

manner using record declarations. However, to be completely data-independent, 

new data should be created using the same declarations that define its data 

pa ths. Th is can be done by means of an expression of the forom 

(CREATE record-name. {assignments).82 (assignments) is optional and may 

82-----------------------------------------------------------------------------CREATE is not defined as a function. Instead, DWIM calls the appropriate 
function in the record package giving it the entire CREATE expression as an 
argument. The translation of the CREATE expression, i. e. the INTERL ISP 
form which is evaluated to construct the datum, is then stored elsewhere, 
as with iterative statements and pattern matches. 

23.55 



contain expressions of the following form: 

(1) field-name ~ form 

(2) USING form 

(3) COPYING form 

(4) REUSING form 

specifies initial value for field-name. 

specifies that for all fields not given a 

value by (1), the value of the corresponding 

field in form is to be used. 

like USING except the corresponding values 

are copied (~). 

1 ike USING, except that wherever possible f 

the corresponding structure .in form is used 

(similar to operation of subpair and sublis). 

For example, following (RECORD FOO (A B C», 

(CREATE FOO A~T USING X) translates as (LIST T (CADR X) (CADDR X», 

(CREATE FOO A~T COPYING X» as {LIST T (COPY (CADR X» (COpy (CADDR X»). and 

(CREATE FOO A~T REUSING X) as (CONS T (CDR X». 

A CREATE expression translates into an appropriate INTERLISP form using cons, 

list, P.!!!, putl, puthash, set~, etc .. that creates the new datum with the 

various fields initialized to the appropriate values. If values are neither 

explicitly specified, nor implicitly specified via USING or COPYING, the 

23.56 



DEFAULT value in the declaration is used, if any,83 otherwise NIL. 84 

Implementation 

Record operations are implemented by replacing expressions of the form X:FOO by 

(FETCH FOO OF X), and X:FOO ... Y by (REPLACE FOO OF X WITH Y),85 and then storing 

the translation elsewhere, usually in a hash array. as described on page 23.30. 

Translations of CREATE expressions are also stored elswhere. 

The translation of each record operation is computed using information 

retrieved from the property list of the field name, under the property 

CLISPRECORDFIELD. Thus, (global) field names must be unique, i.e. cannot be 

the same as the name of any other field in any other record. Records can also 

be declared local to a particular function by using a CLISP declaration, as 

described on page 23.35. Local record declarations override global ones, and a 

local record can have a field name the same as that of a local record of 

another function, or the same as a field name of a global record. 

For both global and local records, the translation is computed using all CLISP 

declarat.ions in effect as described on page 23.33, e.g. if the declaration 

UNDOABlE in in effect, /RPLACA, /RPLACD, /PUTHASH, etc. will be used. 

83-----------------------------------------------------------------------------
For RECORD and TYPERECORD declarations with non-NIL defaults, all elements 

84 

85 

and named tails will be initialized; unnamed tails will not be initialized. 
For example, (RECORD FOO (A NIL B) OEFAULT ... T) will cause (CREATE FOO) to 
construct (T T T) not (T T T . T). Of course, 
(RECORD FOO (A B . C) DEFAULT ... T) will cause (CREATE FOO) to construct 
(T T . T) as expected. 

For PROPRfCORO, initialization is only performed where necessary. For 
example, (RECORD FOO (A B) (PROPRECORD (C ° E») would cause (CREATE FOO) 
to construct (NIL NIL). not (NIL (C NIL 0 NIL E NIL»). 
(RECORD fOO (A B) (PROPRECORO (C 0 E) OEFAULT ... T» however, will construct 
(NIL (C TOT E T». 

CLISP also recognizes expressions input in this form. 

23.57 



When the user redeclares a global record. the translations of all express ions 

involving that record are automatically delcted,80 and thus will be recomputed 

using the new information. If the user changes a local record declaration, or 

chnnges some other CLISP declaration, e.g. STANDARD to FAST. and wishes the new 

information to affect record expressions already translated, he must make sure 

the corresponding translations are removed, usually either by CLISPIFYING or 

changing the expression by editing it. 

23.12 ClISPIFY 

Clis.eify- converts INTERLISP expressions to CLISP. Note that the expression 

given to clis~~ need not have originally been input as CLISP, i.e., clispif~ 

can be used on functions that were written before CLISP was even implemented. 

Clispif:t is cognizant of declaration rules as well as all of the precedence 

rules. 87 For exampla, cllspify will convert (IPlUS A (ITIMES B C» into A+B*C, 

but (ITIMES A (IPlUS B C» into A*(B+C).88 Clispify converts calls to the six 

basic mapping functions, MAP, MAPC, 'MAPCAR, MAPlIST, MAPCONC., and MAPCON, into 

equivalent iterative statements. It also converts certain easily recognizable 

internal PROG loops to the corresponding i.s. For example, 

-------------------------------------------------------------------------------86 

87 

88 

from ~l~_~f!arra:i. If the user is not using this method for storing 
translations, i.e. is instend using the ClISPX method (page 23.31), those 
expressions already translated will remain as they are. (There is no 
practical way to locate them.) 

clis'pi(~ is table driven exactly the same as CLISP, so that if the user 
chnnges any precedence, or defines new operators, clispify "automatically" 
knows about it. 

~_~J_~ p_ i f)~ a 1 so knows how to hand Ie express ions cons is t ing of a mixture of 
INTERlISP and CL1SP, e.g. (IPlUS A a-C) is converted to A+B*C, but 
(ITIMES A B+C) to (A-(B+C). clispify handles such cases by first 
dwimJLling the expression. 

23.58 



... label (COND (pred ... forms ... (GO label») ..• 

becomes 

... label (WHILE pred 00 ... forms .•. ) ... 89 

Clisl~i~ is not destructive to the original INTERLISP expression, i.e. clispify 

produces a new expression wi thout changing the original. 90 Clispify will not 

convert expressions appearing as arguments to NLAMBOA functions. 91 

The value of various global parameters affect the operation of clispify: 

cl:flg 

The user can disable the : transformation by setting the variable cl: fIg to 

NIL. This will cause clispify not to transform expressions such as (CADR X) to 

X: 2. Note tha t clispi fy does not convert to : notation when the argument is 

not atomic or a simple list (a function name and one atomic argument), 

regardless of the setting of this flag. The initial value of cl:flg is T. 

clrcmparsflg 

Cltspify will remove· pal'"entheses in certain cases from simple forms, where 

'simple' means a function name and one or two atomic arguments. for example, 

(COND «ATOM X) --» will CLISPlfV to (IF ATOM X THEN ... ). However, if 

clre!!lparsflu is set to NIL, clispify will produce (IF (ATOM X) THEN --). Note 

89 - - ~ ii_~~1f~ -~~~ -~~~~~;~ -~ii- ~~;;;~~~;-;~;~;~;~~;-~~~~~-~~-~~i;;-~;~; -~~-~~i;~: 

90 

91 

reuardless of how complicated the translation was, because the original 
CLISP is saved. 

Tile new expression may however contain some 'pieces' of the original, since 
~lX~I~ify attempts to minim-ize the number of CONSes by not copying structure 
whenever possible. 

Excppt for those functions for which clis2ifl contains built in information 
abou t how they process their argumen ts, e. g. .2r.Q.1l, se lectq. function. 
p'rog~. ersetg, nlsetg, resetvar, resetform, etc. 

23.59 



that regardless of the settin~, of this flag, the expression can be input in 

either form. The initial value of clremparsflg is T. 

~sp'i (yJ?a~k fIJI 

clJsp'ify~ckflJl affects the treatment of infix operators with atomic operands. 

If clispifypackflg is T, clispify will pack these into single atoms, e.g., 

(IPLUS A (ITIMES B C» becomes A+B*C. If clispifypackflg is NIL, no packing is 

done, e.g., the above becomes jI'_+...;.B_*_C. The initial value of clispifypackflg 

is T. 

funnyatomlst 

Suppose tho user has variables named A, B, and A*B. If clispify were to· 

convert (ITIMES A B) to A*B, A*B would not translate back correctly to 

(ITIMES A B), since it would be the name of a variable, and therefore would not 

cause an error. The user can prevent this from happening by adding A*B to the 

list funnyatomlst. Then, (ITIMES A B) would clispify to A_*_B. 

Note that A*B' s appearance on funnyatomlst would not enable DWIM/CLISP to 

docode A*B+C as (IPLUS A*B.C); funnyatomlst is used only by clispifl. Thus, if 

an identifier contains a CLISP character, it should always be separated (with 

spaces) from other operators. For example, if X* is a variable, the user 

should write (SETQ X* form) in CLISP as x* "form, not X*"form. However, in 

general, it is best to auoid !!!.£ ~ identifiers containing ClISP character 

QP-~rato~~ as ~~/ch as possible. 

eli s p_lli~ r <!~~y. f1-9 

If T, causes I!Tettyprint to cli~ all expressions before printing them (but 

not to redofine any functions). clispifyprettyflg is temporarily reset to T, 

using res_etvar, when makefile is called with the option CLISPIFY, or when the 

file in question has property FILETYPE with value CLISP on its property list. 

clispifyprettY[!9 is initially NIL. 

23.60 



* * 

In addition to the above controls, disabling a CLISP operator (see cldisable, 

page 23.74) will also disable the corresponding CLISPlfY transformation. 

Thus, if ... is "turned off", A"'B will not transform to (SETQ A B), nor vice 

versa. 

23 • 13 Dw 1m i fy 

Dwimify is effectively a preprocessor for CLISP. Dwimify operates by scanning 

an expression as though it were being interpreted, and for each form that would 

generate an error, calling OWIM to 'fix' it. 92 Thus the user will see the same 

messages, and be asked for approval in the same situ~tions, as he would if the 

expression were actually run. If OWIM is unable to make a correction. no 

message is printed. the form is left as it was. and the analysis proceeds. 

Dwimify knows exactly how the interpreter works. It knows the syntax of progs, 

so lcct~, lambda expressions, setqs, et al. It knows that the argument of 

n lambdas are not evaluated. It also knows how· variables are bound. In the 

course of its analysis of a particular expression, dwimify builds a list of the 

bound variables from the LAMBDA expressions and PROGs that it encounters. It 

uses this list for spelling corrections. Owimify also knows not to try to 

'correct' var iables that are on this list since they would be bound if the 

expression were actually being run. However, note that dwimify cannot, a 

priori. know about variables that are used freely but would be bound in a 

higher function if the expression were evaluated in its normal context. 

Therefore, slwimi[l will try to 'correct' these variables. Similarly, dwimify 

92--~~~~---;~t~;;;--~~~~~~~~---;;;--~;;i~--;;~~;;~;~~;~~~;:---~~;--j~~~---~~i;; 
transformations, i.e., it does spelling correction, fixes 8-9 errors, 
handles FIL, etc. 

23.61 



will attempt to correct forms for which car is undefined, even when the form is 

not in error from the user's standpoint, but the corresponding function has 

simply not yet been defined. 

In most cases, an attempt to transform a form that is already as the user 

intended will have no effect (because there will be nothing to which that form 

could reasonably be transformed). However, in order to avoid needless calls to 

DWIM or to avoid possible confusion, the user can inform dwimify not to attempt 

corrections or transformations on certain functions or variables by adding· 

them to the list nofixfnslst or nofixvarslst respectively.98 

Dwimif~ and dwimifyfns (used to dwimify several functions) maintain two 

internal lists of those functions and variables for which corrections were 

unsu£cessfully attempted. These lists are initialized to nofixfnslst and 

nofixvarslst. Once an attempt is made to fix a particular function or 

variable, and the attempt fails, the function or variable is added to the 

corresponding 1 ist. so that on subsequent occurrences (wi thin this call to 

dNi~_~ or dWil1)ifyfns)' no atte!mpt at correction is made. For example. if FOO 

calls FIE several times, and FIE is undefined at the time FOO is dwimified, 

dNimi f;X wi 11 not bother wi th F IE after the first occurrence. In other words, 

once dwjmif~ "notices" a function or variable, it no longer attempts to correct 

it. 94 Moreover. once dwimify "notices" such functions or variables, it 

subsequently treats them the same as though they were actually defined or set. 

Not~ that these internal lists are local to each call to dwimi(Y and 

dwimifyfns, so that if a function containing FOOO, a misspelled call to FOO, is 

94 DwLmify and dwimifyfns also "notice" free variables that are set in the 
expression being processed. 

2.3.62 



dwt~ific.Q before FOO is defined or mentioned, if the function is dwimified 

again after FOO has been defined, the correction will be made. 

Note that the user can undo selected transformations performed by dwimify, as 

described in section 22. 

Compiling CLISP 

Since the compiler does not know about CLISP, in order to compile functions 

containing CLISP constructs, the definitions must first be dwimified. The user 

can automate this process in several ways: 

1) I f the variable dwimi fycompflg is T, the compiler will always dwimi fy 

expressions before compiling them. dwimifycompflg is initially NIL. 

2) If a file has the property FILETYPE with value CLISP on its property list, 

tco~Q!, bcompl. recomp'ile, and brecompile will operate as though dwimifycompflg 

is T and dwimify all expressions before cornpiling. 96 

3) If the function definition has a CLISP declaration (see page 23.33), 

including a null declaration, i.e., just (CLISP:), the definition will be 

automatically dwimified before compiling. 

Noto: tc_~mpl, t!.compl, recompile, and brecompile all scan the entire file before 

doing any compiling, and take note of the names of all functions that are 

defined in the file as well as the names of all variables that are set by 

adding them to nofixfnslst and noflxvarslst, respectively. Thus, if a function 

-------------------------------------------------------------------------------96 If the value of property FILETYPE is CLISP, makefile would have 
automatically clispified all functions before prettyprinting, as described 
in Section 14. 

23.63 



is not currently defined, but i.s defined in the file being compil~d, when 

dwimify is called before compiling, it will not attempt to correct the function 

when it appears as car of a fonm. 

Note: compilcuscrfn (Section 18) is defined to call dwimify on, iterative 

statcments, as well as IF-THEN statements. Thus, if the only CLISP constructs 

in a function appear inside of iterative statements or IF statements, the 

function does not have to be dwimified before compiling. 

23. 14 O~ration 

CLISP is a part of the basic INTERLISP system. Without any special 

preparations, the user can include CLISP constructs in programs, or type them 

in di rectly for evaluation (in eval or !I!.ill format), and when the "error" 

occurrs, and DWIM is called, it will destructively96 transform the CLISP to the 

equ iva lent INTERL ISP expression and evaluate the INTERL ISP expression. User 

approval is not requested, and no message is printed. 97 

However, if a CLISP construct contains an error, an appropriate diagnostic is 

generated, and the form is left unchanged. For example, if the user writes 

(LIST X+Y~), the error diagnostic HISSING OPERAND AT X+Y. IN (LIST X+Y·) would 

be generated. Similarly, if t.he user writes (LAST+EL X), CLISP knows that 

«IPLUS LAST EL) X) is not a valid INTERLISP expression, so the error 

diagnostic MISSING OPERATOR IN (LAST+EL X) is generat.ed. (For example, the 

user might have meant to say (LAST+EL~X).) NotQ that if LAST+EL were the name 

of a dofined function, CLISP would never see this form. 

96-----------------------------------------------------------------------------CLISP transformations, like all DWIM corrections, are undoable. 

97 This entire discussion also applies to CLISP transformation initiated by 
calls to DWIM from dWimify. 

23.64 



Since the bad CLISP transformation might not be CLISP at all, for example, it 

might be a misspelling of a user function or variable, DWIM holds all CLISP 

error messages until after trying other corrections. If one of these succeeds, 

the CLISP message is discarded. Otherwise, if all fail, the message is printed 

(bu t no chan~Je is made). 98 For example, suppose the user types (R/PLACA X Y). 

ClISP generates a diagnostic, since «IQUOTIENT R PLACA) X Y) is obviously not 

right. However, since R/PLACA spelling corrects to IRPLACA, this diagnostic is 

never printed. 

If a ClISP infix construct is well formed from a syntactic standpoint, but one 

or both of its operands are atomic and :not bound,9g it is possible that either 

the operand is misspelled, e.g., the user wro-te X+YY for X+Y, or that a CLISP 

transformation operation was not intended at all, but that the entire 

expression i.s a misspelling. For example, if the user has a variable named 

LAST-EL, and writes (LIST LAST-ELL). Therefore, eLISP computes, but does not 

actually perform, the indicated infix transformation. DWIM then continues, and 

if it is able to make another correction, does so, and ignores the CLISP 

interpretation. For example, with LAST-ELL, the transformation 

LAST-ELL -) LAST-EL would be found. 

If no other transformation is found, and DWIM is about to interpret a construct 

as CL ISP for which one of the operands is not bound, DWIM wi 11 ask the user 

whether ClISP was intended, in this case by printing 

------------------------------------------------------ --------------------~~---98 

99 

Except that ClISP error messages are not printed on type-in. 
typing X+~Y will just produce a U.B.A. X+-Y message. 

For example, 

For the purpose ofdwimifying" 'not bound' means no top level value, not 
on list of bound variables built up by dwimi~ during its analysis of the 
expression, and not on nofixvarslst, i.e., not previously seen. 

23.65 



LAST-ELL TREAT AS CLISP 7100 

The Silme sort of procedure is followed with 8 and 9 errors. For example, 

suppose the user writes F008-X whoro F008 is not bound. The CLISP 

transformation is noted, and DWIM proceeds. It next asks the user to approve 

FOOBlIrX -) FOO ( -x. (For example, this would make sense if the user has (or 

plans to define) a function named .X.) If he refuses, the user is asked 

whether r008 l1r X is to be treated as CLISP. Similarly, if F008 were the name of 

a variable, and the user writEls FOOOS-X, he will first be asked to approve 

F0008 l1r X -) FOOO ( XX,101 and if he refuses, then be offered the F0008 -> F008 

correction. 

CL ISP also contains prOVision :for correcting misspellings of infix operators 

(other than single characters), IF words, and i.s. operators. This is 

implemented in such a way tha1~ the user who does not misspell them is not· 

penalized. For example, if the user writes IF N=O THEN 1 ELSSE N1Ir(FACT N-l) 

CLISP does not operate by checking each word to see if it is a misspelling of 

IF, THEN, ELSE, or ELSEIF, since this would seriously degrade CLISP's 

performance on all IF statements. Instead, CLISP assumes that all of the IF 

words are spelled correctly, and transforms the expression to 

(COND «ZEROP N) 1 ELSSE N-(FACT N-l»). Later, after DWIM cannot find any 

other interpretation for ELSSE, and using the fact that this atom originally 

appeared in an IF statement, DWIM attempts spelling correction, using 

100----------------------------------------------------------------------------
If more than one infix operator was involved in the CLISP construct, e.g., 
X+Y+Z, or the operation was an assignment to a variable already noticed, or 
!I.-!'~"!!~'?.~lJ_~nfl_g is T (initi,ally NIL), the user will simply be informed of 
the correction. Otherwise, even if DWIM was enabled in TRUSTING mode, the 
user will be asked to approve the correction. 

101 The 8-9 transformation is tried before spelling correction since it is 
empirically more likely that an unbound atom or undefined function 
containing an 8 or a 9 is a parenthesis error, rather than a spelling 
error. 

23.66 



(IF THEN ELSE ELSEIF) for a spelling list. When this is successful, DWH1 

'fails I all the way back to the original IF statement, changes ELSSE to ELSE, 

and starts over. Misspellings of AND, OR, LT, GT, etc. are handled similarly. 

CLISP also contains many Do-What-I-Mean features besides spelling corrections. 

For example, the form (LIST +X Y) would generate a MISSING OPERATOR error. 

However. (LIST -X Y) makes sense, if the minus is unary, so DWIM offers this 

in terpr'ctation to the user. Another corrunon error, especially for new users, is 

to write (LIST X-FOO(Y» or (LIST X~FOO Y), where FOO is the name of a 

function, instead of (LIST X-(FOO V»~. Therefore, whenever an operand that is 

not bound is also the name of a function (or corrects to one), the above 

interpretations are offered. 

23.15 CLISP Interaction with User 

Syntactically and semantically well formed CLISP transformations are always 

performed without informing the user. Other CLISP transformations described in 

the previous section, e.g. misspellings of operands, infix operators, 

parentheses errors, unary minus - binary minus errors, all follow the same 

protocol as other DWIM transformations (Section 17). That is, if DWIM has been 

enabled in TRUSTING mode, or the transformation is in an expression typed in by 

the user for immediate execution, user approval is not requested, but the user 

is informod. 102 However, if the transformation involves a user program, and 

DWIM was enabled in CAUTIOUS mode, the user will be asked to approve. If he 

says NO. tho transformation is not performed. Thus, in the previous section, 

102--------------------------------------------------- -------------------------However, in certains-ituations, DWIM will ask for approval even if DWIM is 
onahlcd in TRUSTING mode. For example, the user will always be asked to 
approve a spelling correction that might also be interpreted as a CLISP 
transformation, as in LAST-ELL -> LAST-EL. 

23.67 



phrases such as "one of these (transformations) succeeds" and "the 

transformation LAST-ELL -) LAST-EL would be found" etc., all mean if the user 

is in CAUTIOUS mode and the error is in a program, the corresponding 

transformation will be performed only if the user approves (or defaults by not 

responding). If the user says NO. the procedure followed is the same as though 

the trans forma t ion had not been found. For example, if A-B appears in the 

func t ion FOO, and B is not bound (and no other transformations are found) the 

user would be asked 

A-B [IN FOO] TREAT AS CLISP ? 108 

If the user approved, A-a would bo transformed to (ITIMES A B), which would 

then cause aU. B.A. B error in the event that the program was being run 

(remember the entire discussion also applies to DWIMIFYing). If the user said 

NO, A-B would be left alone. 

23.16 CLISP Internal Conventions 

Note: the reader can skip this section and proceed to "Function and Variables" 

(page 23.71). unless he wants '~o add new operators, or modify the action of 

existing ones (other than by making declarations). 

CLISP is almost entirely table driven by property lists for the corresponding 

infix or prefix operators. Thus it is relatively easy to add new infix or 

prefix operators or· change old ones, simply by adding or changing selected 

property values. 104 

103-----------------------------·-----------------------------------------------
The waiting time on such interactions is three times as long as for Simple 
corrections, i.e., 3*dwimwai;. 

104 There is some built in information for handling minus, :, , <, >, and -, 
i.e., the user could not himself add such 'special' operators, although he 
can disable them. 

23.68 



CLISPTYPE 

UNARYOP 

Tho property value of the property CLISPTYPE is the 

precedence number of the operator: 106 higher values 

have higher precedence, i.e. are tighter. Note that 

the actual value is unimportant, only the value 

relative to other operators. For example, CLISPTYPE 

for . . , t, and * are 14, 6, and 4 respectively. 

Operators with the same precedence group left to right, 

e.g., / also has precedence 4, so A/B*C is (A/B)*C. 

An operator can have a different left and right 

precedence by making the value of CLISPTYPE be a dotted 

pair of two numbers, e.g., CLISPTYPE of ~ is (8 . -12). 

In this case, £!r is the left precedence, and cdr the 

right, i.e., ~ is used when comparing with operators 

on the left, and cdr with operators on the right. For 

example, A*B~C+D is parsed as A*(B~(C+D» because the 

left precedence of ~ is 8, which is higher than that of 

*, which is 4. The right precedence of ~ is -12, which 

is lower than that of +, which is 2. 

If the CLISPTYPE property for any infix operator is 

removed, the corresponding ClISP transformation is 

disabled, as well as the inverse ClISPIFY 

transformation. 

The value of property UNARYOP must be T for unary 

operators. The operand is always on the right, i. e. , 

unary operators are always prefix operators. 

106----------------------------------------------------------------------------Unless otherwise specified, the property is stored on the property 11st of 
tho operator. 

23.69 



BROAOSCOPE 

LISPFN 

SETFN 

CLISPINFIX 

The value of property BROADSCOPE is T if the operator 

has lower precedence than INTERL ISP forms, e. g., L T , 

EQUAL, AND, etc. For example, (Faa x AND Y) parses as 

«Faa X) AND V). If the BROADSCOPE property were 

removed from the property 1 is t of AND, (FOO X AND Y) 

would pa.rse as (Faa (X AND V»~. 

The value of the property LISPFN is the name of the 

function to which the infix operator translates. For 

example, the value of LISPFN for t is EXPT, for 

QUOTE, ,~tc. If the value of the property LISPFN is 

NIL, the infix operator itself is also the function 

e.g., AND, OR, EQUAL. 

If "Faa has a SETFN property FIE, then (FOO --)~X 

translat.es to (FIE -- X). For example, if the user 

makes ELT be an infix operator, e.g. II, by putting 

appropriate CLISPTYPE and LISPFN properties on the 

property list of I then he can also make II followed by 

~ translate to SETA, e.g. XIN .. Y to (SETA X N Y), by 

putting SETA on the property list of ELT under the 

property SETFN. Putting (ELT) (i.e. list[ElT]» on the" 

property list of SETA under property SETFN will enable 

SETA forms to CLISPIFY back to ELT's. 

The value of this property is the eLISP infix to 'be 

used in CLISPIFYing. This property is stored on the 

property list of the corresponding INTERLISP function, 

e.g., the value of property CLISPINFIX for EXPT 1s '. 

for QUOTE is • etc. 

23.70 



Global declarations operate by changing the corresponding lISPFN and ClISPINFIX 

properties. 

clispchars 

clispcharray 

clispinfixes 

is a list of single character operators that can appear 

in the interior of an atom. Currently these are: +, -

*, I, t, -, '. =, .. , :, <, and >. 

is a bit table of the characters on clispchurs used for 

calls to strposl (see Section 10). clispcharray is 

initialized by performing 

(SETQ ClISPCHARRAY (MAKEBITTABlE ClISPCHARS». 

is a list of infix operators used for spelling 

correction. 

As an example, suppose the user wants to make 1 be an infix character operator 

moaning OR. He performs: 

~(PUT (QUOTE I) (QUOTE ClISPTYPE) (GETP (QUOTE OR) (QUOTE ClISPTYPE») 
~PU1(1 LISPFN OR) 
~PUT(I BROAOSCOPE T) 
~PUT(OR CLISPINFIX I) 
~SETQ(CLISPCHARS (CONS (QUOTE I) ClISPCUARS» 
"SEIQ(CLISPCHARRAY (MAKEBITTABlE ClISPCHARS» 

23.17 (LISP Functions and Variables 

clispflg if set to NIL, disables all CLISP infix or prefix 

transformations (but does not affect IF/THEN/ELSE 

statements, or iterative statements). 

If clispflg=TYPE-IN, CLISP transformations are 

performed only on expressions that are typed in for 

evaluation, i.e. not on user programs. 

23.71 



clisparray 

nofixfnslst 

nofixvarslst 

nospellflg 

dwimify[x;l] 

If clisl~=T, CLISP transformations are performed on 

all expr'essions. 

The initial value for clispflg is T. clispifying 

anything will cause clispflg to be set to T. 

hash array used for storing translations. clisparray 

is checked by faulteval on erroneous forms before 

calling DWIM, and by the compiler. 

list of functions that dwimify will not try to correct. 

See page 23.62. 

list of variables that dwimify will not try to correct. 

See page 23.62. 

If nospellflg is T, 

spelling corrections. 

is NIL. 

dwimify will not perform any 

The initial value of nospellflg 

dwimifie,s ~, i.e., performs all corrections 'and 

transformations that would be performed if 2f were run. 

If x is an atom and! is NIL, ~ is treated as the name 

of a function, and its entire definition is dwimified. 

Otherwist3, if x is a list or 1 is not NIL, ~ is the 

expression to be dwimified. If 1 is not NIL, it is the 

edit push-down list leading to !, and is used for 

determining context, 1.e., what bound variables would 

be in effect when ~ was evaluated, whether 2f is a form 

23.72 



dwimifyfns[fns] 

dwimifycompflg 

clispdec[declst] 

clispify[x;l] 

or sequence of forms, e.g., a cond clause, etc. 108 

nlambda, nospread. Dwimifies each function on fns. If 

fns consists of only one element, the value of car[fns] 

is used, e.g., dwimifyfns[FOOFNS]. Every 30 seconds, 

dwimifyfns prints the name of the function it is 

processing, a la prettyprint. 

if T, dWimify is called before compiling an expression. 

See page 23.,63. 

puts into effect the declarations in declst. clispdec 

performs spelling corrections on words not recognized 

as declarations. clispdec is undoable. 

clispifies x. If ~ is an atom and ! is NIL, ~ is 

treated as the name of a function, and its definition 

(or EXPR property) is clispified. After clispify has 

fin ished, ~ is redefined (using IPUTO) wi th its new 

CLISP definition. The value of clispify is~. If ~ is 

atomic and not the, name of a function, spelling 

correction is attempted. If this fails, an error is 

generated. 

If ~ is a list, or ! is not NIL, ~ itself is the 

expression to be clispified. If I is not NIL. it is 

the edit push-down list leading to x and is used to 

100----------------------------------------------------------------------------If ~ is an iterative statement and! is NIL, dwimify will also print the 
translation, i.e. what is stored in the hash array. 

23.73 



clispifyfns[fns] 

cldisable[op] 

clispiftranflg 

cl:flg 

clremparsflg 

determine context as with dwimify, as well as to obtain 

the local declarations, if any. The value of clispify 

is the clispified version of x. 

See earlier section on CLISPIFY for more details. 

nlambda, nospread. Calls clispify on each member of 

fns under errorset protection. If fns consists of only 

one elE!ment, the value of car[fns] is used, e.g., 

clispifyfns[FOOFNS). Every 30 seconds, clispifyfns 

prints the name of the function it is working. a la 

prettyprint. Value is list of functions clispifyed. 

disables .QQ. e.g. cldisable[-) makes - be just another 

charactElr. cldisable can be used on all CLISP 

operators, e.g. infix operators, prefix operators, 

iterative statement operators, etc. cldisable is 

undoablEI. 

affects handling of translations of IFITHENIELSE 

statements. If T, the translations are stored 

elsewhere, and the (modified) CLISP retained. If NIL, 

the corresponding COND expression, replaces the CLISP. 

clispiftranflg is initially NIL. See page 23.30. 

affects clispify's handling of forms beginning with 

car, cdr~, ... cddddr. See page 23.59. 

affects clispify's removal of parentheses from "small" 

forms. See page 23.59. 

23.74 



clispifypackflg 

clisp1fyprettyflg 

prettytranfig 

PPT 

ClISP: 

fUIl,Il;ya tomls t 

if T, informs clispify to pack operator and atomic 

operands into single atoms; if NIL, no packing is done. 

See page 23.60. 

ifT,causesprettyprint to'CLISPIFY expressions before 

printing them. clispifyprettyflg is (temporarily) reset 

to T when makefile is called with the option CLISPIFY. 

clispifyprettyflg is ~nitiallY NIL. 

If T, causes prettyprint to print translations instead 

of CLISP expressions. This is useful for creating a 

file:for ~o~pilation, or tor exporting to a LISP system 

that does nbt have CLISP. prettytranflg is 

(temporarily) reset to T when makefile is called with 

the option NOCLISP. If prettytranflg is CLISP%_, both 

the CLISP' and translations are printed in appropriate 

form. For mo.re details, see page 23.32. prettytranflg 

is initially NIL. 

is both a function and an edit macro for prettyprinting 

translations. It' performs a -PP after first resetting 

prettytranflg to T~ thereby causing any trahslations to 

be printed instead of the corresponding CLISP. 

- edit macro th_tobtains the translation of the correct 

expression, if any, .' from clisparray, and calls edite on 

it. 

I ist oJ:' identifiers containing CLISP opera tors. Used 

by clispify to avoid accidentally constructing a user 

identifier, e.g.~ (ITIMES A B) should not become A*8 if 

A*B is the name of a PROG variable. See page 23.60. 

23.75 



CL 

ow 

edit macro~ Replaces current expression with 

CLISPlfYed current expression. Current expression can 

be an element or tail. 

edit macro. DWIMIfYs current expression, which can be 

an element (atom or list) or tail. 

Both Cl and OW can be called when the current expression is either an element ~ 

or a tail and will work properly. Both consult the declarations in the 

function being edited, if any, and both are undoable. 

lowercase[flg] If f!.9.::T, lowercase makes the necessary internal 

modifictlltions so that clispify will use lower case 

versions of AND, OR, IF, THEN, ELSE. ELSEIF, and all 

1. s. op1erators. This produces more readable output. 

Note that the user can always type in either upper or 

lower case (or a combination), regardless of the action 

of lower'case. 

If f.!9= IN IL , clispify will use uppercase· versions of 

AND, OR, et ale The value of lowercase is its previous 

'setting'. Loworcase is undoable . 

. lowercase also sets model33flg to null[flg], as well as 

performing raise[null[flg]]. mode133flg affects the 

operation of the spelling corrector to the extent that 

it says something about the layout of the keyboard (see 

Section 17). raise[T] is the same as th~ TENEX command 

RAISE, and informs TENEX to raise all lower case 

characters on input, i. e. convert them to uppercase. 

raiser] corresponds to NO RAISE. 

23.76 



Index for Section 23 

ACC[SSrN (record pilck~go) ......................• 
ALWAYS (clisp iterative statement operator) 
ARRAYRECORD (record package) ............•......• 
AS (clisp iterative statement operator) ........ . 
assignmonts (in pattern match compiler) .•......• 
assignments (in clisp) ...•.........•...•.•.•..•. 
ATONf~ECORD (record package) .............••.••••• 
BIND (clisp iterative statement operator) ....•.. 
BODY (use in iterative statement in clisp) •..... 
BROI\OSCOPf (property name) ....••......•......••• 
BY (clisp iterative statement operator) ...•..... 
CI\UTIOUS (OW1M mode) ........••..•.•.......•.•... 
CL (edit conunand) ........•...•...•••.•.•.•.•..•. 
CL:FLG (clisp variable/parameter) •.•..•.•.•.•••• 
CLDISABLE ...................• ' ..•••.....•.....••• 
CLISP ....................•....••.•.•.•.•..•.••.. 
CLISP interaction with user .•.•.•.••..••••.•.... 
CLISP internal conventions •......••..........•.. 
CLISP operation ....................•...........• 
CI,_ISP% •..•.•••••. e .............................. . 

CLISP: (edit command) ...•.••.•.••.••.••.•••..•.. 
CLISPI\RRI\Y (clisp variable/parameter) .••••.••.•• 
CLlSPCUI\RRAY (clisp variable/parameter) ••...•.•. 
CLISPCHI\RS (clisp variable/parameter) ...•••...•• 
CLISPDEC[DE.CLST] .................•.....••.•.•••• 
CLISPFLG (clisp variable/parameter) ...•••..••••• 
CLISPIFTRANFLG (clisp variable/parameter) ....•.. 
CLISPIFY[X;L] ..........•..•.....•....•..•..•••.• 
CLISPIFY (makefile option) ............•...••.••. 
CLISPIFVFNS[FNS] NLlIt ..................••••.....• 
CLISPIFYPACKFLG (clisp variable/parameter) .••... 
CLISPlrVPRETTYFLG (clisp variable/parameter) 
CLISP]NFIX (property name) ..................... . 
CLISPINFIXES (clisp variable/parameter) •..•..••• 
CLISPRECOr~DFIELD (property name) ......•...•...•. 
CLISPTYPE (property name) ..............•.....•.. 
CLREMPI\RSFLG (clisp variable/parameter) ........ . 
COLLECT (clisp iterative statement operator) 
COMPIl..EUSFRFN (use by clisp) ..••.••.......•••••. 
cOlnpiling CLISP .•••••••••••••••••••••••••••••••• 
constructing lists (i,n clisp) ..•.......•.•...... 
COPVING (record package) ..•...........•......•.. 
COllNT (clisp iterative statement operator) •..•.. 
CREATE (record package) ........................ . 
data-paths (in records in clisp) .......•.••...•. 
declarat.ions (in clisp) ..•........•.....••.••... 
defininfl new iterative statement operators •..... 
disabling a CLISP operator .................•.... 
00 (clisp iterative statement operator) ..••••... 
DW (edit conunand) ..............................• 
[lWIMIFY[X;L] .................•..........•....••. 
OWIMIFYCOMPFLG (clisp variable/parameter) ...... . 
DWIMIFYFNS[FNS] NL* ..........•...•...........•.. 
EACHTIME (clisp iterative statement operator) 
element patterns (in pattern match compiler) 
errors in iterative statements .•....••.•.••.•... 

INDEX.23.1 

Page 
Numbers 

23.54 
23.20 
23.53 
23.25-26 
23.43 
23.12 
23.52 
23.21 
23.28 
23.70 
23.22-24,27 
23.5,67 
23.76 
23.59,74 
23.74 
23.1-76 
23.67 
23.68 
23.64-67 
23.31-32,75 
23.31,75 
23.31,37,72,75 
23.71 
23.71 
23.33,73 
23.71 
23.31,74 
23.36,58,73-74 
23.60,75 
23.74 
23.60,75 
23.75 
23.70 
23.71 
23.57 
23.69 
23.59,74 
23.19 
23.64 
'23.63 
23.16 
23.56 
23.20 
23.50-51,55 
23.49 
23.13,16,33,45,63 
23.28 
23.61 
23.19 
23.76 
23.61-64,72-74 
23.63,73 
23.62,73 
23.25-26 
23.39-40 
23.27 



FETCH (usc in records in clisp) .•.............•. 
FIIETYPE (property name) ................•.•..•.. 
FINALLY (clisp iterative statement oporator) 
FIRST (clisp iterative statement operator) .....• 
FOR (clisp iterative statement operator) .••..... 
FROM (clisp iterative statement operator) .••.•.• 
FUNNYATOMLST (clisp variable/parameter) •...•.••. 
GE n~ASH[ ITEM; ARRAY] SLJBR .......••.....••••.••••• 
GO (usc in iterative statement in clisp) ••.•••.. 
HASHRECORD (record package) ••..•....•..•••••...• 
i.s.typc ...............................••.•.•..• 
I.S.TYP[[NAMEjFORM;INITjVAL] •...•..•.•..••.••••• 
IF-BIEN-ELSE statements .........•......••..••••. 
IN (clisp iterative statement operator) ••..••••• 
infix operators (in clisp) ..................••.• 
ITERATE (use in iterative statement in clisp) 
iterative statements (in clisp) ......•.....••..• 
JOIN (clisp iterative statement operator) •.••.•• 
lASTWORO (dwim variable/parameter) ...•.••••••••• 
LISPFN (property name) ............••....•....••• 
listp checks (in pattern match compiler) •....... 
local record declarations (in clisp) .•••....••.. 
LOWERCASftFLG] ....................••............ 
maknfile iHld clisp ................••.••.•.•.•••. 
MA1CH (lise in pattern match in clisp) .....•.•..• 
MISSING OPERAND (dwim error message) ....•.....•. 
MISSING OPERATOR (dwim error message) .•..•.....• 
MOOEL33fLG (dwim variable/parameter) ......••.... 
NEVER (clisp iterative statement operator) .•..•• 
NOCLISP (makefile option) .............•.••...••. 
NOFIXrNSLST (clisp variable/parameter) •.•.•••••• 
NOFIXVARSLST (clisp variablo/parameter) ..•••.••• 
NOSPELLFLG (clisp variable/parameter) ...•..•.••• 
OLD (clisp iterative statcmont operator) ...•••.• 
ON (clisp iterative statemcnt operator) .••...... 
order of precedence of CLISP operators .•....••.. 
PATLISTPCtlECK (in pattern match compiler) ...•••. 
pattern match compiler ........•.........••.•.••• 
PATVARDEFAULT (in pattern mdtch compiler) , ....... 
place-markers (in pattern match compiler) ~ .....• 
PPl (edit command) ....... , .....................•. 
precedence rules (for CLISP operators) ..•....•.. 
prefix operators (in clisp) ........•..........•. 
PRfTTYTRANFLG (clisp variable/paramoter) ...•.•.• 
PROPRECORD (record package) ........•...•••...... 
reconstruction (in pattern match compiler) ..•••. 
RECORD (record package) ...........••....•••..•.. 
record declarations (in clisp) ....•...••.••...•• 
record package (in clisp) ................•.•..•. 
RECOROS (prettydef macro) ...................••.. 
REPLACE (use in records in c:1 isp) ..........•.... 
replacements (in pattern match compiler) ..•.•... 
RE1URN (use in itcrative statement in clisp) 
REUSING (record package) .......•.......••..••.•. 
segment patterns (in pattern match compiler) 
SETFN (property namo) .....••••.•...•••..•••••••• 
SUM (clisp iterative statement operator) •••••••• 

INDEX.Z3.Z 

Page 
Numbers 

23.57 
23.60,63 
23.25-26 
23.25-26 
23.20-21 
23.22-24 
23.60,75 
23.31 
23.26 
23.53 
23.20 
23.28-29 
23.17 
23.21-23,27 
23.10-13 
23.26 
23.18-30 
23.19 
23.13 
23.70 
23.38 
23.35 
23.76 
23.33,75 
23.37 
23.64 
23.64 
23.76 
23.20 
23.33,75 
23.62-63,72 
23.62-63,65,72 
23',72 
23.8,21-22 
23.21,23 
23.15 
23.38 
23.36-48 
23.39,42,45 
23.44 
23.31,75 
23.10 
23.13 
23.31-32,75 
23.53 
23.46 
23.52 
23.35,51 
23.48-58 
23.50-51 
23.57 
23.45 
23.26 
23.56 
23.41-43 
23.70 
23.19 



TENEX ........................................... . 
lHFREIS (clisp iterative statement operator) 
TO (clisp iterative statement operator) ••••••••• 
translations (in clisp) ...•.••••.•••.••••••••••• 
TREAT AS CLISP ? (typed by dwim) .•••••.••••••••• 
TRFATASCLTSPFLG (clisp variable/parameter) ••••.• 
TRUSTING (OWIM mode) ....••••••••••••••••.••••••• 
TYPERECORO (record package) •.•••.••••••••••••••• 
UNARYOP (property name) ••••••.•••••••••••••••••• 
undoing DWIM corrections .•.•••••..••.••••••••••• 
UNLESS (clisp iterative statement operator) 
UNTIL (clisp iterative statement operator) •••••• 
USING (record package) ....•...••.•••.••••••••••• 
WHEN (clisp iterative statement operator) ••••••• 
WH[RE (clisp iterative statement operator) •••••• 
WHILE (clJsp iterative statement operator) •••••• 
- (in pattern match COml)iler) ••••••••.•••..••••• 
- (clisp operator) .......••••••••••••••••.•••••• 
! (in pattern match compiler) .••..•••••••••••••• 
! (use with <,> in clisp) .••..•••••••••.•••••••• 
!! (use with <.> in clisp) ..................... . 
in (n tl number, in pattern match compiler) •••••• 
S (alt-mode) (in clisp) ...•.••.••••••••••••••••• 
$ (dollar) (in pattern match compiler) •••••••••• 
SSVAL (use in iterative statement in clisp) 
$1 (in Ilattern match compiler) •••••• ' •••••••••••• 
SN (in pattern match compiler) ••.••••••••••••.•• 
& (in pattern match compiler) ••••••••••••••••••• 
I (in pattern match compiler) ••••••••••••••••••• 
• (clisp operator) ......•••••••••••••••••••••••• 
lit (i,n pnttern match compiler) •••.••••••••••••••• 
-- (in pattern match compiler) •••••••••••••••••• 
-> (in pattern match compiler) ••••••.••••.••••.• 
. (in pattern match compiler) .••••••••••••••.••• 
: (clisp operator) ...•...•••••••.••••••••••••••• 
<,> (usC! in clisp) •••••••••••••••••••••••••••••• 
= (in pattern match compiler) ••••••••••••••••••• 
== (in pattern match compiler) •••••••••••••••••• 
=> (in pattern match compiler) •..•••.••••••••••• 
@ (in pattern match compiler) .•••••••••••••••••• 
~ (in pattern match compiler) ••••••••••••••••••• 
~ operator (in cl isp) •••••••••••.••••••••••••••• 

INDEX.Z3.3 

Page 
Numbers 

23.76 
23.20 
23.22.24 
23.30,..33 
23.66 
23.66 
23.5,66-67 
23.52 
23.69 
23.63 
23.22 
23.22 
23.56 
23.22 
23.29 
23.22 
23.40 
23.14 
23.41-43 , 
23.16 
23.16 
23.44 
23.13-14 
23.41 
23.28 
23.39 
23.41 
23.39 
23.39 
23.13 
23.40 
23.41 
23.46 
23.42 
23.12 
23.16 
23.39 
23.39 
23.46 
23.40,42 
23.43 
23.12,15 



APPENDICES 

Appendix 1 

Transor 

Introduction 

transor is a LISP-to-LISP translator intended to help the user who has a 

program coded in one dialect of LISP and wishes to carry it over to another. 

The user loads transor along with a file of transformations. These 

transformations describe the differences between the two LISPs. expressed in 

terms of INTERL ISP editor commands needed to convert th,e old to new. i. e. to 

edit forms written in the source dialect to make them suitable for the target 

dialect. transor then sweeps through the user's program and applies the edit 

transf~rmations, producing an object file for the target system. In addition, 

transor produces a file of translation notes. which catalogs the major changes 

made in the code as well as the forms that require further attention by the 

user. Operationally. therefore, transor is a facility for conducting massive 

edits, and may be used for any purpose which that may suggest. 

Since theedi t transformations are fundamental to this process. let us begin 

wi th a defini tion and some examples. A transformation is a list of edit 

commands associated with a literal atom, usually a function name. transor 

conducts a sweep through the user's code, until it finds a form whose car is a 

literal atom which has a transformation. The sweep then pauses to let the 

editor execute the list of commands before going on. for example, suppose the 

order of arguments for the function tconc must be reversed for the target 

system. The transformation for tconc would then be: «SW Z 3». When the 

. AI.I 



sweep encounters the form (lCONC X (FOO», this transrormation would be 

retrieved and executed, converting the expression to (lCONe (FOO) X). Then the 

sweep would locate the next form, in this case (FOO), and any transformations 

for foo would be executed, etc. 

Most instances of tconc would be successfully translated by this 

transformation. However, if there were no second argument to tconc, e.g. the 

form to be translated was (TCONe X), the conunand (SW Z 3) would cause an error, 

which transor would catch. The sweep would go on as before, but a note would 

appear in the translation listing stating that the transformation for this 

particular form failed to work. The user would then have to compare the form 

and the commands, to figure out what caused the problem. One might, however,. 

anticipate this difficulty l~ith a more sophisticated transformation: 

«IF (II 3) «SW Z 3» «-2 NIL»», which tests for a third element and does 

(SW 2 3) or (-2 NIL) as appropriate. It should be obvious that the translation 

process is no more sophisticated than the transformations used. 

This documentation is divided into two main parts. The first describes how to 

use transor assuming that t,he user already has a complete set of 

transformations. The second documents transorset. an interactive routine for 

building up such sets. transorset contains conunands for writing and editing 

transformations. saving one's work on a file. testing transformations by 

translating sample forms, etc. 

Two transformations files pre:)ently exist for translating programs into 

INTERLISP. (LISP)SDS940.XF0Rl1S is for old BBN LISP (SDS 940) programs. and 

(LISP)LISP16.XFORPtS is for Stanford AI LISP 1.6 programs. A set for LISP 1.5 

is planned. 

AI.l 



Using Transor 

The first and most exasperating problem in carrying a program from one 

implementation to another is simply to get it to read in. For example, SRI 

LISP uses I exactly as INTERLISP uses X, i.e. as an escape character. The 

function prescan exists to help with these problems: the user uses prescan to 

perform an initial scan to dispose of these difficulties, rather than 

attempting to transor the foreign sourcefiles directly. 

prescan copies a file, performing character-for-character substitutions. It is 

hand-coded and is much faster than either readc's or text-editors. 

prescan[file;charlst] Makes a new version of file, performing 

substitutions. according to charlst. Each element 

of charlst must be a dot-pair of two character 

codes, (OLD. NEW). 

For example, SRI files are prescan'ed with charlst. «37 .47) (47 .37»), 

which exchanges slash (47) and percent-sign (37). 

The user should also make sure that the treatment of doublequotes by the source 

and target systems i. similar. In INTERLISP, an unmatched double-quote (unless 

protected by the escape character) will cause the rest of the filQ to read in 

as a string. 

Finally. the lack of a STOP at the end of a file is harmless, since transor 

will suppress END OF FILE errors and exit normally. 

Translating 

transor is the top-level function of the translator itself, and takes one 

AI.3 



argument, a file to be translated. The file is assumed to contain a sequence 

of forms, which are read in, translated, and output to a file called file.TRAN~ 

The translation notes are meamlihile output to file. LSTRAN. Thus the usual 

sequence for bring a foreign fil~ to INTERLISP is as follows: prescan the file; 

exami.ne code and transformations. making changes to the transformations if· 

needed; transor the file; and clean up remaining problems, guided by the notes. 

The user can now make 8 pretty file and proceed to exer~ise and check out his 

program. To export a fila, it is usually best to transor it, then presean It, 

and perform clean-up on the foreign system where the file can be loadeds 

transor[sourcefile] 

transorform[form] 

transorfns[fnlst] 

Translates sourcefile. Prettyprints translation 

on file.TRAN: translation listing on file.lSTRAN. 

Argument is a LISP form. Returns the 

(de~;truct1vely) translated form. The translation 

listing 15 dumped to the primary output file. 

Argument is 

intnrpreted 

a list of function names whose 

definitions are destructively 

translated. Listing to primary output fila. 

transform and transorfns can be used to translate expressions that 8re already 

in core. whp.reas transor itself (.nly works on files. 

The Translation Notes 

The translation notes are a catalog of changes made in the user's code, and of 

problems which require. or may rc!quire. further attention from the user.. This 

catalog consists of two cross-indexed sections: an index of forms and 8'n index 

of notes. The first tabulates all the notes applicable to any form, whereas 

Al.4 



the second tabulates all the forms to which anyone note applies. Forms appear 

in the index of forms in the order in which they were encountered, i.e. the 

order in which they appear on the source and output files. The index of notes 

shows the name of each note, the entry numbers where it was used, and its text, 

and is alphabetical by name. The following sample was made by translating a 

small test file written in SRI LISP. 

At.5 



LISTING FROM TRANSORING OF FILE TESTFILE.;5 
DONE ON I-NOV-71 20:10:47 . 

1. APPLY/EVAL at 
[DEFINEQ 

INDEX OF FORI1IS 

(FSET (LAMBDA '" 
(PROG ... 3 ... 

z. APPLY/EVAL at 
[DEFINEQ 

] 

(SETQ Z (CONO 
«ATOH (SETQ --» 

(COND 

--» 

«ATOM (SETQ Y (NLSETQ ·(EVAL W)·») 
--) 

--» 

(FSET (LAMBDA '" 
(PROG •.. 3 ... 

(SETQ Z (CONO 
«ATOM (SETQ --» 
, (COND 

--» 

«ATOM (SETQ --» 
-(EVAL (NCONS W»·) 

--» 
] 

3. MACHINE-CODE at 
[OEFINEQ 

(LtSSl (LAMBDA '" 
(PROG .•. 3 •.. 

(COND 
••• 2 ••• 
«NOT (EQUI~L (SETQ XZ ·(OPENR (MAKNUM Be -». 

) 

4. MACHINE-CODE at 
[OEFINEQ 

] 
--» 

(lESSl (LAMBDA & 
(PROG .•• 3 ... 

. (COND 
••• 2 ••• 

--» 

«NOT (EQUAL & (SETQ YZ 
-(OPENR (MAKNUM & --J).») 

--» -- ] 

INDEX OF NOTES 

APPlY/EVAl at I, 2. 
TRANSOR will translate the arguments of the APPLY or EVAL expression, but 

the user must make sure that the run-time evaluation of the arguments returns 8 
BBN-compatible expression. 
MACHINE-CODE at 3, 4. 

Expression dependent on machine-code. User must recode. 

Al.6 



The translation notes are generated by the transformations u5gd. and therefore 

reflect the judgment of their au.thor as to what should be included. 

Straightforward conversions are usually made without comment; for example, the 

OEFPROP's in this file were quietly changed to DEFINEQ's. transor found four 

noteworthy forms on the file, and printed an entry for each in the index of 

forms, consisting of an entry number, the name of the note, and a printout 

showing the· precise location of the form. The form appears 1n double-quotes 

and is the last thing printed. except for closing parentheses and dashes. An 

ampersand represents one non-atomic element not shown, and two or more elements 

not shown are represented as •.• n ••.• where n is the number of elements. Note 

that the printouts describe expressions on the output file rather than the 

source file: in the example, the DEFPROP's of SRI LISP have been replaced with 

OEFINEQ's. 

Errors and Messages 

transor records its progress through the source file by teletype printouts 

which identify each expression as it is read in. Progress within IRrge 

expressions, such as a long OEFINEQ, is reported every three minutes by a 

printout showing the location of tho sweep. 

If a transformation fails, transor prints a diagnostic to the teletype which 

identifies the faulty transformation, and resumes the sweep with the next form. 

The translation notes will identify the form which caused this failure, and the 

extent to which the form and its· arguments were compromised by the error. 

If the transformation for a common function fails repeatedly, the user can type 

control-H. When the system goes into a break, he can use tr8nsorset to repair 

the transformation, and even test it out (see TEST command, page Al.ll). He 

may then continue the main translation with OK. 

AI.7 



Transorset 

To use transorset t type transot"set() to INTERLISP. transorset wlll respond 

wi th a + sign tits prompt character, and awa1 t input. The user is now 1n an 

executive loop which is like ~'alqt with some extra context and capabilities 

intended to facilitate the writing of transformations. transorset will thus 

progress ~ and eval input, and execute history conunands just as evalqt 

would. Edit conunands, howevtBr,. are interpreted as additions to the 

transformation on which the user is currently working. transorset always saves 

on a variable named currentfn the name of the last fUnction whose 

transformation was altered or ex.uined by the user. currentfn thus represents 

the function whose transformation is currently being worked on. Whenever edit 

conunands are typed to the ~~ sign, transorset will add them to the 

transformation for currentfn. This is the basic mechanism for writing a 

transformation. In addition, tr'ansorset contains commands for printing out a 

transformation, editing a transformation, etc., which all assume that the 

conunand applies to currentfn 'J,f no function is specified. The following 

example illustrates this process .. 

AI.8 



"TRANSORSET() 
+FN TeONe [1] 
leONe 
+(SW 2 3) [2] 
+TEST (leONe A B) [3] 
P 
(TeONe B A) 
+TE5T (TeONe X) [4] 
TRANSLATION ERROR: FAULTY TRANSFORMATION 
TRANSFORMATION: «SW 2 3» [5] 
OBJECT FORM: (TCONe X) 

1. TRANSFORMATION ERROR AT [6] 
"(TeONe X)" 

(TeONe X) 
+(IF (II 3) «SW 2 3» «-2 NIL] [7] 
+SHOW 
TeONe 

[(SW 2 3) 
(IF (II 3) [8] 

( (SW 2 3» 
«-2 NIL] 

TeONe 
+ERASE [9] 
TeONe 
+REOO IF [ 10] 
+SHOW 
TeONe 

[ (IF (II 3) 

TeONe 
+TOST 

( (SW 2 3» 
«-2 NIL] 

=TEST [11] 
(TCONC NIL X) 
+ 

Al.9 



In this example, the user begins by using the FN conunand to set currentfn to 

lCONC [1]. He then adds to th~t (empty) transformation for ~ a command to 

switch the order of the arguments [2] and tests the transformation [3]. His 

second TEST [4] fails, causing an error diagnostic (5] and a translation note 

(6]. He writes a better command [7] but forgets that the original SW command 

15 still in the way (8]. He t.herefore deletes the entire transformation [9] 

and redoes the IF [10]. This tjlme, the TEST works [11]. 

Transorset Commands 

The following commands for manipulating transformations are all 11spxmacros 

which treat the rest of their input line as arguments. All are undoable. 

FN 

SHOW 

Resets currentfn to its argument, and returns the 

new value. In effect FH says you are done with 

thel old function (as least for the moment) and 

wis,h to work on another. If the new function 

already has a transformation, the· message 

(OLD TRANSFORMATIONS) is printed, and mny 

editcommands typed in will be added to the end of 

the! existing commands. FN followed by a carriage 

return will return the value of currentfn without 

changing it. 

Command to prettyprint a transformation. SHOW 

followed by a carriage return will show the 

transformation for currentfn, and return currentfn 

as its value. SHOW followed by one or more 

function names wlll show each one in turn, reset 

~rentrn to the last ono, and return the new 

value of currentfn. 

AI.IO 



EDIT 

ERASE 

TEST 

DUMP 

Command to edit a transformation. Similar to SHOW 

except that instead of prettyprinting the 

transformation, EDIT gives it to edite. The user 

can then work on the transformation until he 

leaves the editor with OK. 

Command to delete a transformation. Otherwise 

similar to SHOW. 

Command for checking out transformations. TEST 

takes one argument, a form for translation. The 

translation .notes, if any, are printed to the 

teletype, but in an abbreviated format which omits 

the index of notes. The value returned 1s the 

translated form. TEST saves a copy of its 

argument on the free variable testform, and if no 

argument is given, it uses tes tform, i. e. tries 

the previous test again. 

Command to save your work on a file. DUMP takes 

one argument, a filename. The argument is saved 

on the variable dumpfile, so that if no argument 

is provided, a new version of the previous file 

will be created. 

The DUMP command creates files by makefile. Normally fileFNS will be unbound, 

but the user may set it himself; functions called from a transformation by the 

E command may be saved in this way. DUMP makes sure that the necessary command 

is included on the fileVARS to save the user's transformations. The user may 

add anything else to his fileVARS that he wishes. When a transformation r11e 

is loaded, all previous transformations are erased unless the variable merge 1s 

set to T. 

Al.ll 



EXIT transorset returns NIL. 

The REMARK Feature 

The translation notes are generated by those transformations that are actually 

executed via an editmacro called REMARK. REMARK takes one argument, the name 

of a note. When the macro is executed, it saves the appropriate information 

for the translation notes, and! adds one entry to the index of forms. The 

location that is printed in tho index of forms is the editor's location when 

the REMARK macro is executed. 

To wri te a transformation which makes a new note, one must thererore do two 

things: define the note, i.e. choose a new name and associate it with the 

desired text; and call the new note ,with the REMARK macro, i.e. insert the edit 

command (REMARK name) in some transformation. The NOTe command, described 

below, is used to define a new note.' The call to the note may be added to a 

transformation like any other edit command. Once a note is defined, it may be 

called from as many different transformations as desired. 

The user can also specify a remark with a new text, without bothering to think 

of ,a name and perform a separa,te defining operation, by calling REMARK with 

more than one argument, e.g. (REMARK text-of-remark). This is interpreted to 

mean that the arguments are the text. transorset notices all such expressions 

as they are typed in, and handles naming automatically; a n~w name is 

generated1 and defined with thl! text provided, and the expression itself is 

edt ted to be (REMARK generated··name). The following example illustrates the 

use of REMARK. 

Al.12 



"'TRANSORSET() 
+NOTE GREATERP/LESSP (BBN'S GREATERP AND LESSP ONLY [1] 
TAKE TWO ARGUMENTS. WHEREAS SRI'S FUNCTIONS TAKE AN 
INDEFINITE NUMBER. AT THE PLACES NOTED HERE, THE SRI CODE 
USED MORE THAN TWO ARGUMENTS, AND THE USER HUST RECODE.] 
GREATERP/lESSP 
+FN GREATERP 
GREATERP 
+(IF (IGREATERP (LENGTH (11»3) NIL «REMARK GREATERP/LESSP] [1] 
+FN LESSP 
LESSP 
+REOO IF [3] 
+SHOW 
LESSP 

[(IF (IGREATERP (LENGTH (II» 
3) 

NIL 
«REMARK GREATERP/LESSP] 

LESSP 
+FN ASCII 
(OLD TRANSFORMATIONS) 
ASCII 
+(REHARK ALTHOUGH THE SRI FUNCTION ASCII IS IDENTICAL [4] 
TO THE BBN FUNCTION CHARACTER, THE USER MUST MAKE SURE THAT 
THE CHARACTER BEING CREATED SERVES THE SAME PURPOSE ON BOTH 
SYSTEMS, SINCE THE CONTROL CHARACTERS ARE ALL ASSIGNED 
DIFFRENTLY.] 
+SHOW [5] 
ASCII 

«1 CHARACTER) 
(REMARK ASCII:» 

ASCII 
+NOTE ASCII: [6] 
EDIT 
*NTH -2 
*p 
..• ASSIGNED DIFFRENTLY.) 
*(2 DIFFERENTLY.) 
OK 
ASCII: 
+ 

Al.13 



In this example, the user defin"s a note named GREATERP/lESSP by using the NOTE 

command [1], and wri tes. transfor'matlons which call this note whenever the sweep 

encounters a GREATERP or lESSP with more than two arguments [2-3]. Next, the 

implicit naming feature is ILl sed [4] to add a REMARK conunand to the 

transformation for ASCI I, which has already been partly written. The user 

realizes he mistyped part of thc! text, so he uses the SHOW command to find the 

name chosen for the note [5]. Then he uses the NOTE command on this name, 

ASCII:, to edit the note [6]. 

NOTE First argument is note name and must be a literal 

atom. If already defined, NOTE edits the old 

te~:t; otherwise it defines the name, reading the 

te~:t either from the rest of the input line or 

from the next line. The text may be given as a 

line or as a list. Value is name of note. 

The text is actually stored.2 a:!i a coment, i.e. a * and XX are added in front 

when the note is first defined. The text will therefore be lower-cased the 

first time the user DUMPs (see Section 14). 

OElNOTE 

Controlling the Sweep 

Deletes a note completely (although any calls to 

it remain in the transformations). 

transor' s sweep searches in print-order until it finds a form for which a 

transformation exists. The location is marked, and the transrormation is 

Al.14 



executed. The sweep then takes over again, beginning from the marked location, 

no matter where the last command of the transformation left the editor. User 

transformations can therefore move around freely to examine the context, 

without worrying about confusing the translator. However, there are many cases 

where the user wants his transformation to guide the sweep. usually in order to 

direct the processing of special forms and F£XPR's. For example, the 

transformation for QUOTE has only one objective: to tell the sweep to skip over 

the argument to QUOTE, which is (presumably) not a LISP form. NlAH is an 

editmacro to permit this. 

NLAH An atomic editmacro which sets a flag which causes 

the sweep to skip the arguments of the current 

form when the sweep resumes. 

Spec ial forms such as cond, J!.!:.Q1l, selectq, etc., present a more difficult 

problem. For example, (COND (A 8).) is processed just like (FOO (A 8»: i.e. 

after the transformation for cond finishes, the sweep will locate the "next 

form," (A 8), retrieve the transformation for the function A, if any, and 

execute it. Therefore, special forms must have transformations that preempt 

the sweep and direct the translation themselves. The following two atomic 

editmacros permit such transformations to process their forms, translating or 

skipping over arbitrary subexpressions as desired. 

DOTHIS· 

DOTHESE 

Translates the editor's current expression, 

treating it as a single form. 

Translates the editor's current expression, 

treating it as a list of forms. 

Ai.iS 



For example, a transformation for setq might be (3 DOTHIS). 3 This translates 

the second argument to a setg without translating the first. For cond, one 

might wri te (1 (LPQ NX DOTHESE», which locates each clause of the COHO in 

turn, and translates it as a list of forms, instead of as a' single fona. 

The user who is starting a completely new set of transformations must begin by 

writing transformations for all the special forms. To assist him in this and 

prevent oversights. the file (LISP)SPECIAL .XfORf1S contains a set of 

transformations for LISP speci8il forms, as well as some other transformations 

which should also be included. The user will probably have to revise these 

transformations substantially. since they merely perform sweep control for 

INTERLISP. i.e. they make no changes in the object code. They are provided 

chiefly as a checklist and tutorial device, since these transformations are 

both the first to be written and the most difficult, especially for users new 

to the INTERLISP editor. 

• • • 

When the sweep mechanism encounters a form which is not a list, or a form ~ 

of which is not an atom, it retrieves one of the following special 

transformations. 

NLISTPCOHS Global value is used as a transformation for any 

fOI~ which 15 not a list. 

For example, if the user wished to make sure that all strings were quoted, he 

might set nlistpcoms to. 

«IF (STRINGP (II» «ORR «~ QUOTE»«HBD QUOTE»» NIL». 

a-----~--~--~--------------·---····----------··------- --------------------------Recall that a transformatic,n is a list of edit commands. In this case, 
there are two commands, 3 al1ld DOTH IS. 

Al.16 



lAMBOACOHS Global value is used as a transformation (or any 

fonm, £!! of which is not an atom. 

These variables are ini tialized by (LISP)SPECIAL .XFORHS and are saved by the 

DUMP command. nlistpcoms is initially NIL. making it a NOP. lambdacoms is 

initialized to check first for open LAMBDA expressions, processing them without 

translation notes unless the expression is badly formed. Any other forms with 

a non-atomic ~ are simply treated as lists of forms and are always mentioned 

in the translation notes. The user can change or add to this algorithm simply 

by editing or resetting lambdacoms. 

Al.17 



Index for Section Al 

CURRENTFN (transor variable) •••••••••••••••••••• 
OELNOTE (transor command) ••••••••••••••••••••••• 
OOTHESE (transor command) .•••••••••••••••••••••• 
DOTHIS (transor command) o •••••••••••••••••••••••• 

DUMP (transorset command) •••.••••••••.••••..•••• 
EDIT (transorset command) ••••••••••••••••••••••• 
ERASE (transorset command) ••••••.••••••••••••••• 
EXIT (transorset command) ••••••••••••••••••••••• 
FN (transorset command) ......................... . 
lAMBOACOMS (transor command) •••••••••••••••••••• 
NLAM (transor command) •. " ••••••••••••••••••••••• 
NlISTPCOMS (transor conunand) •••••••••••••••••••• 
NOTE (transor command) .......................... . 
PRESCAN[FIlE;CHARLST] ........................... . 
REMARK (transor command) ........................ . 

. SHOW (transorset command) ••••••••••••••••••••••• 
TEST (transorset command) ••••••••••••••••••••••• 
translation notes ............................... . 
TRANSOR[SOURCEFIlE] ............................. . 
TRANSOR .•••••••••••••••• . t ••••••••••••••••••••••• 
t ran sor sweep ••••••••••• '0 ••••••••••••••••••••••• 

TRANSORF NS •••••••••••••• I' ••••••••••••••••••••••• 

TRANSORFORH ••••••••••••• ..••••••••••••••••••••••• 
TRANSORSET[] •••.•••••••• ~ ••••••••••••••••••••••• 

IN,DEX .Al.l 

Page 
Numbers 

AI.8 
At.t4 
'At.t5 
At.tS 
At.tt 
At.tt 
At.tt 
At.t2 
AI.tO 
At.t7 
AI.t5 
At.16 
AI.t2,14 
A1.3 
AI.12 
AI.tO 
Al.tt 
Al.4 
At.3-4 
At.t"17 
Al.14 
Al.4 
Al.4 
At.2,8 



Appendix 2 

The INTERLISP Interpreter 

The flow chart presented below describes the operation of the INTERLISP 

interpreter, and corresponds to the m-expression definition of the LISP 1.5 

interpreter to be found in the LISP t.5 manual, [tlcet]. Note that S!!: of a 

form must be a function; it cannot evaluate to a function. 

If car of a form is atomic, its function cell must contain 

(a) an S-expression of the form (LAMBDA ••• ) or (NlAMBDA ••• ); or 

(b) a pOinter to compiled code; or 

(c) a SUBR definition (see Section 8); 

Otherwise the form is considered faulty. 

If car of a form is an S-expression beginning with LAMBDA or NLAMBDA, the 

S-expression is the function. If £!!: of the form begins with FUNARG, the 

funarg mechanism is invoked (see Section 11). Otherwise the form is faulty. 

A2.1 



NO 

YES CALL 
EXPR 

YES CALL 

YES 

FEXPR 

CADR C 
IS FN, 

CAODR C 
SPECIFIES 
BINDINGS 

ENTER EVAL WITH ':-ORM 

NO 

SET C = CAR FORM 

SET D= 

CONTENTS OF 

DEFINITION CELL 

NO 

RETURN 
FAULTEVAL [FORM] 

FIGURE A2-1 

RETURN 
FAULTE VAL [FORM] 

YES CALL SUBR, 
COMPI LED CODE 1 

OR EXPR 

Note: variables c and ~ are for description only; they are not actually bound 
as variables. 

A2.2 



Appendix 3 

Control Characters 

Several teletype control 'characters are available to the user for communicating 
directly to INTERLISP, i.e., not through the read program. These characters 
are enabled by INTERLISP as interrupt characters;-$o that INTERLISP immediately 
'sees' the characters, and takes the corresponding action as soon as possible. 
For example, control characters are available for aborting or interrupting a 
computation, changing the printlevel, returning to TENEX, etc. This section 
summarizes the action of these characters, and references the appropriate 
section of the manual where a more complete description may be obtained. 

Control Characters Affecting the Flow of Computation 

1. control-H 

2. control-B 

3. control-E 

4. control-D 

5. control-C 

(interrupt) at next function call, INTERLISP goes into 
a break. Section 16. 

(break) computation is stopped, stack backed up to the 
last function call, and a break occurs. Section 16. 

(error) computation is stopped, stack backed up to the 
last errorset, and NIL returned as its value. Section 
16. 

(reset) computation is stopped, control returns to 
evalqt. 

(TENEX) computation is stopped, control returns to 
TENEX. Program can always be continued without any ill 
effect with TENEX CONTINUE command. 

If typed during a garbage collection the action of control-B, control-E, and 

control-D is postponed until the garbage collection is completed. 

Typing control-E and control-D causes INTERLISP to clear and save the input 

buffers. Their contents can usually be recovered via the SBUFS (alt-modeBUFS) 

command, as described in Section 22. 

1/0 Control Characters 

1. rubout clears teletype input buffer. For example, rubout 
would be used if the user typed ahead while in a 
garbage collection and then changed his mind. Section 
2. A bell is rung when the buffer has been cleared, so 
that the user will know when he may begin typing again. 

A3.1 



Note: 8 sudden burst of noise on a telephone line frequently causes INTERLISP 

to receive a rubout, since the code for rubout is 177Q, i.e. alII's. This 

causes INTERLISP to (mistakenly) clear the input buffer and ring a bell. If . , 

INTERLISP seems to be typing many spurious bells, it is a good indication that 

you have a bad connection. 

2. control-O 

3. control-P 

4. control-A, Q 

5. control-R 

Miscellaneous 

1. control-T 

2. control-S 

3. control-U 

clears teletype output buffer, Sections 2 and 14 .. 

changes printlevel. Section 14. 

line editing characters, Sections 2 and 14. 

causes INTERLISP to retype the input line, useful after 
several control-A's, e.g., 
user types: ~DEFINEQ«LAMDA\A\DBA\Acontrol-R 
INTERLlSP types: DEFINEQ«LAMB 

(time) prints total execution time for program, as well 
as its status, e.g., 

"'RECLAIM() 

GC: 8 
RUNNING AT 15272 USED 0:00:04.4 IN 0:00:39 
1933, 10109 FREE WORDS 
11)109 
... 10 WAIT AT 11623 USED 0:00:05.1 IN 0:00:49 

(storag4!) change minfs. Section 10. 

if typed in the middle of an expression that is being 
typed tlO evalqt, breakl or the editor, will cause the 
editor to be called on the expression when it is 
finished being read. See Section 22. 

A3.2 



Index for Section Al 

bell (typed by system) 
bells (typed by system) 
CONTINUE (tenex command) 
control characters 
control-B 
control-C 
control-D 
control-E 
control-O 
control-R 
control-T 
rubout 
SBUFS (alt-modeBUFS) (prog. asst. command) 

INDEX.A3.1 

Page 
Numbers 

AJ.t 
AJ.2 
AJ.l 
AJ.1-2 
AJ.l 
A3.1 
AJ.l 
AJ.l 
A3.2 
A3.2 
Al.2 
A3.1 
Al.1 





MASTER INDEX 

Names of functions are in upper case, followed by their arguments enclosed in 
square brackets [If e.g. ASSOC[X;Y]. The FNTYP for SUBRs is printed in full; 
for other functions. NL indicates an NlAMBDA function, and * a nospread 
function, e.g. lISTFIlES[FIlES] NL* indicates that lISTFILES is an NlAMBOA 
nospread function. Words in upper case not followed by square brackets are 
other INTERL ISP words (sys tem parameters, property names. messages, etc.). 
Words and phrases in lower case are not formal INTERLISP words but are general 
topic references. 

(A e1 ••• em) (edit command) ................... . 
a-] ist .............. " .......................... . 
1\000n (gcnsym) .........................•........ 
AOOREVlST (prettydef variable/parameter) .....•.. 
ABS[X] ..................•....................... 
AC (in a lap statement) ....•.•.........•..••...• 
AC (in an assemble statement) ..................• 
A C 1 ••• " " •••••••••••••••••••••••••••••••••••••••• 
ACCESSFN (record package) .~ ......•.............. 
AOOl[X] ..................•. , ..••.•..•..•••...•.•. 
AOOPROP(A1M;PROP;NEW;FLG] .••••••..•..•..••.•••.• 
addressable files .............•...........•..... 
AOnSPELL[X;SPLST;N] ••••••••••••••••••••••••••••• 
I\OOSTA1S[STATlST] NL* .............•......•...... 
AO[lVARS (pre t tydef command) ..........••......... 
ADV-PHOG ...•............•...•...•. .o ••••••••••••• 

A 0 V - f~ [ T lJ R N " • • • • • • • • • • • • • ., • • • • • • • • • • • • • • • • • • • • • • • 
ADV-S[ TO •••••••••••••••••••••••••••••••••••••••• 
acl\/i.cc .. II .......................... , ••••• " ............. . 

ADVICE (prettydef command) .............•........ 
ADVICE (property name) ......................... . 
ADVINfOLST (system variable/parameter) .........• 
ADVISE[rN;WIfEN;WHERE;WUAT] ...•••..••...••..•.... 
A()VISE (prettydef command) ..................... . 
ADVISED (Jlroperty name) ........•......•.•....... 
AOVISfOfNS (system variable/parameter) ......... . 
ADVIS[OllMP[X;FLG] .........•.••....••.••...•.•..• 
advising ....................................... . 
AFTER (prog. asst. command) .......•.....•....... 
AFTER (as argument to advise) .................. . 
AFTER (as argument to breakin) .........•........ 
AFTER (in INSERT command) (in editor) .......... . 
AFTER (in MOVE command) (in editor) ..........•.. 
ALAMS (compiler variable/parameter) •............ 
ALIAS (property name) ......•......•........•.... 
ALL (use in prettydef PROP command) .....•....•.. 

INDEX.1 

Page 
Numbers 

9.13,39-40 
8.10 

10.5 
14.39,43 
13.8 
18.41 
18.47 
18.35,38,47 
23.54 
13.3 

7.1 
14.5 
9.85-87; 17.23-24,27 

22.63 
14.35 
19.4,6 
19.4,6 
19.4,6 
19.2,4 
14.34; 19.9 
19.7-9 
19.8-9 
19.4-5 
14.34; 19.9 
8.7; 19.6 

19.6,8 
19.9 
19.1-10 
22.22,26,34 
19.2,4-6 
15.7,19-20 
9.41 
9.48 

18.6 
15.17,22 
14.33 



ALLCALLS[FN;TREELST] .•....••••••••.•...•••.••••• 
Al_L.., PROP ••••••••••••••••••••••••••••••••••••••••• 
ALLPROP (us argument to load) .•••••••••••••••••• 
ALPHORDER[A;B] .............. , ..•.•••.•••••••••••• 
ALREADY UNDONE (typed by system) ••••••••••••••.• 
aIt-mode (in spelling corrElction) ........••.•.•• 
ALWAYS (clisp iterative statement operator) 
AMAC (property namo) ...............•.••••••••••• 
AMB I GUOUS (typed by dwim) ...................... . 
ANO[Xl;X2; ... ;Xn] FSUBR* .......••.••.•.••••••••• 
AND (in event specification) •••.••••••.•••.••••• 
AND (in USE command) ....•••.•••.••••••.••••••••• 
ANTILOG[X] ....•.......... ' .......•••••••••••..... 
APPEND[L] * ..................................... . 
APPLY[FN;ARGS] SUBR ....••••••••..••••••••••••••• 

l1Pllly format ............ c· ••••••••••••••••••••••• 

APPLYJIt[FN;ARG1; ... ;ARGn] BUBRIt .••••••••••••.•••• 

approval (of dwim corrections) ••••••••••••.••••• 
APPROVEFlG (dwim variable/parameter) .•••.••••••• 
ARCCOS[X;RADIANSFLG] ...............•..•••••.•••• 
ARCCOS: ARG NOT IN RANGE (error message) •••••••. 
ARCHIVE (prog. asst. corrunand) •........•.••..•••• 
ARCIIIVFFN (prog. asst. vartable/parameter) •.•.•• 
ARCliIVELST (prog. asst. variable/parameter) 
ARCSIN[X;RADIANSFLG] ..•..............•.•.•...•.. 
ARCSIN: ARG NOT IN RANGE (error message) ••••••.• 
ARCTAN[X;RADIANSFLG] ............•••••.•.•••••••• 
ARG[ VAR;M] FSUBR ......... ' ..•..•.••••••••••••••.• 
ARG NOT ARRAY (error message) ••••••..••••••••••• 
ARG NOT ATOM (error message) ....••••••••••••.••• 
ARG NOT ATOM - SET (error message) ..•••••.••.••• 
ARGLIST[X] ....•....•..••. , .•••••••••••••••••••••.• 
ARGS (break command) ...........•.••.•••••••••.••• 
ARGS NOT AVAILABLE (error message) .•...••..••••• 
ARGTYPE[FN] SUBR ......... ' .....•.•••.••••••••••.• 
argument evaluation .••.• ~ •...••••••••••••••••••. 
argument list .....•..•.•. ' •••.••.•••••••••••••.•• 
arithmetic functions ...............•.•••...•.... 
AROUND (as argument to breakin) .•••••••••••.•••• 
ARRAY[N;P;V] SUBR ........•......•..•••...••••••• 
ARRAY (prettydef conunand) ...................... . 
array func t ions ..............••••••••••••••••••• 
arr'ay header ...........•.••••••.•..•.••••••••••• 
nrrny pointer ....•...•.•..••••••••••••.••.•••••• 
ARRA YP[ X] SUBR ..•.........•••••••••••••••••••..• 
ARRAYRECORD (record packagEI) ..•••••.••••.•.•••.• 
arrays ......................................... . 
ARRAYS FULL (error message)1 ......••••••••.••.... 
ARRAYSIZ[[A] ...................•.•...••••••.••.. 
AS (clisp iterative statement operator) ••••••••• 
ASSEMO LE •....••...•.•••••••••••••••••••••••••••• .......................................... 
ASSEMlJLE macros ...•......•.•••••••••.•••••.••••• 
ASSEMULE statements ........••.••••••.••.•••.•••• 
assignments (in pattern match compiler) •.•.••••. 

Il\IDEX. Z 

Page 
Numbers 

20.9 
5.9; 8.7; 22.55 

14.27 
6.11 

22.22,59 
17.11,25 

.23.20 
18.35,37 
17.11 
5.12 

22.13 
22.14 
13.8 

6.1 ~ -2-0-3--4 8.9; 11.1, 
16.2; 18. 0 
2.4 
2.3; 8.10; 11.1; 16.2, 

18.20 
17.3,5,25 
17.5.18,25,27 
13.9 
13.9 
22.27 
22.27,33-34 
22.44,53 
13.9 
13.9 
13.9 
4.2; 8.11; 16.10 

10.13-14; 16.10 
7.1-2; 16.8 
5.8-9; 16.8 
2.3; 8.1,3-4,6; 15.10 

15.8,10 
8.6 
8.1-5 
4.1-2 
4.1; 8.1 

13.2-10 
15.7,19-20 
3.8; 10.12 

14.33 
10.12-14 
3.8; 10.12 
3.8 
5.11; 10.13 

23.53 
3.1,8,11,13; 5.11 

10.13; 16.9 
10.13 
23.25-26 
4.3; 13.13; 18.34-35, 

46 
18.37 
18.35-39 
23.43 



assignments· (in clisp) .•.....•••..••..••••..••.• 
ASSOC[X;Y] ...........•.••.•••••••••••.•••••••••• 
associ.ation list .......•...•.•...•.••.•...••••.•. 
A TO~1[ X] SUBR .....•.........•.•..••••..••.•.•••.• 
ATOM HASH TABLE FULL (error message) .....•.•.••. 
ATOM TOO LONG (error message) .••...•...•..•..•.. 
A TOMHECORD (record package) .....••••...•••.••••. 
a toms ..................................................... .. 
ATTACH[X;Y] ................•.•....••.••.••..•.•• 
ATTEMPT TO RPLAC NIL (error message) •.•••••••••• 
ATTEMPT TO SET NIL (error message) ••.••••••.••.• 
(B el ... em) (edit command) ....••••.•.•.•••.••• 
back trace ............................................ .. 

...................................................... 
back track i ng ......•.....•...••••.•••.•••••.•.••• 
BAD ARGlIMf NT - FASSOC (error message) •...•....•• 
BAD ARGUMENT· - FGETD (error message) ••••...•.••• 
BAO ARGUMENT - FLAST (error message) •.••..•••••• 
BAD ARGlIMrNT - FLENGTtt (error message) .••.••.••• 
BAll Af{GUME NT - FMEMB (error message) ..•••••••••• 
BAD ARGUMENT - FNTtt (error message) ..•••••••.••• 
BAD PRETTYCOM (prettydef error messago) .....•... 
BAKTRAC[[rROM;TO;SKIPFN;VARSFLG;~FORM~FLG;ALLFLG]. 
BCOMPL[FILES;CFILE;NOBLOCKSFLG] ••.•••••.•.•••••• 

............ of ............ " ..................... .. 

BEFORE (prog. asst. command) .....•.•....••.••••. 
BEFORE (a s ar gumen t to adv i se) .•..•..•..•••.•••• 
BEFORE (as argument to breakin) .•...•••.•••••••. 
BEFORE (in INSERT command) (in editor) •••••.•••• 
BEFORE (in MOVE command) (in editor) .••.••.••••• 
bell (typed by dwim) .••...•.•••.•..•.••.....•... 
bell (typed by system) ...••••••.••••.••••••••... 

..... " ....................................... . 
bell (in history event) ......•....••.••..•.•.••. 
bells (typed by system) .•.....•••.••.••..••.•... 
(BE LOW com x) (edi t command) .•...••••.•.....••.• 
(BELOW com) (edit command) ....••..••...••.•..•.• 
BF (ed i t command) ..........•••.•••.•.•••••.•.••• 
(BF pattern T) (edit command) •••.....•.•...••••• 
(BI n m) (edit command) ...•..•.•••••.•••••.•.••. 
(HI n) (edit command) .............•....•...•••.. 
BIND (clisp iterative statement operator) •••.•.. 
BIND (as argument to adviso) •.••.•.•.••..•.•••.• 
(BIND. corns) (edit command) ••••••.••••••••••••. 
BK (edi t command) .........•..•.•.••..•.....••••. 
(BK n) (n a number, edit command) •.•...•.•••••.• 
BKLINBUf·[X] SUBR •••••••••••••••••••••••.••••••••• 
BKS YSBUF [ X] SUUR ............•..•.•.•..••.•••.... 
BLKAPPLY[FN;ARGS] SUBR •••••••••••••••••••••••••• 
OLKAPPLy*rFN;ARGl; ... ;ARGn] SUBR~ ••...••.•..•••• 
RLKAPPLYFNS (compiler variable/parameter) •.....• 
BLKLll3RARY (compiler variable/parameter) •.•.•... 
ULKLIBRARYOEF (property name) •••.•••.••••••.•••• 
block compiler ........•...•.•••..••..••..••...•. 
block compiling ..........••..•..•••.••.••.•.•••. 
block declarations .....••.....•.•.••...•..•..•.• 
block library .................................. . 

INDEX.3 

Page 
Numbers 

23.12 
5.15 

12.1-2 
5.11 

16.8 
10.2,7; 16.8 
23.52 
3.1,11 
6.3 
5.2-3; 6.4; 16.8 
5.8; 16.8 
9.13,39-40 
2.8; 12.2,4; 15.9-10, 

24 
22.60 
2.3; 5.15 
8.3 
2.3; 6.7 
2.3; 6.8 
2.3; 5. 14 
2.3; 6.8 

14.36 
15.24 
14.44,46; 18.26,28, 

30-32 
22.22,26,34 
19.4-6 
15.7,19-20 
9.41 
9.48 

17.6 
10.16; 14.20; 16.2. 
A3.1 
22.22,33,44,49,52 
A3.2 

9.31 
9.31 
9.10,28 
9.28 
9.8,52 
9.52 

23.21 
19.7 
9.70 
9.10,18-19 
9.19 

14.21 
14 . 21 , 47: 21. 24 
18.20 
18.20 
18.20,26,29 
18.21,29 
18.21; 22.57,63 
18.26-34 
18.17-34 
14.34; 18.28-32 
18.21 



BLOCKCOMPJLE[BLKNAME;BLKFNS;ENTRIES;FLG] •••••••• 
BLOCKEO (typed by editor) ....••......•.•...••..• 
BLOCKS (prettydef command) ..•..........••...•.•. 
(BO n) (edit command) .........•..............•.. 
BODY (use in iterative statement in clisp) .•..•• 
BOTTOM (as argument to advise) ...•...•.........• 
box ......................................... " ... . 
BOXCOUNT[TYPE;N] SUBR .........••••....••........ 
BOXED (edita command/parameter) •.....•.•..••••.• 
boxed numbers ...............••••.....•..•..•.... 
boxing .......................................... . 
BREAK[ X] NL- .................................... . 
BREAK (error message) ......•••••.••...•••••••••• 
break characters ...........•••.•••..•••••••••••• 
break commands .....•....•••.•••••••••...•••••••• 
break expression .......•....•••.•••.••••.••••••• 
BREAK INSERTED AFTER (typed by break1n) .••••...• 
break package ..............•....••.•.•••..•...•• 
BREAKO[fN;WHEN;COMS;BRKFN,TAIL] .............••.• 
BREAKl[BRKEXP;BRKWUEN,BRKFN,BRKCOMS;BRKTYPE] NL ............................................. 
BREAKClfECK .••••••••••••••••••••••••••••••••••••• 
BREAKDOWN[FNS] NL .............•.........••..•••• 
BREAKIN[fN;WUERE;WtIEN;BRKCOMS] NL .•.•.••.••.•..• 
BREAKMACROS (break variable/parameter) ...•...••. 
breakpoint ..........................•..........• 
BRECOMPILE[FILES;CFILE;FNS;COREFLG;NOBLOCKSFLG] ........................................ 
BRKCOMS (break variable/parameter) ...•..••••••.. 
BRKOWNTYPE (system variable/parameter) •..•...•.• 
BRKDWNTYPES (system variable/parameter) ....•••.• 
BRKEXP (break variable/parameter) ....•..•..•...• 

ORKFILE (break variable/parameter) ...•••....•••• 
BRKfN (break variable/parameter) ........•..•.••• 
BRKINFO (property name) ...........••........•... 
BRKINFOLST (break variable/parameter) •.•.••..••• 
BRKTYPE (break variable/parameter) .....••..••.•• 
BRKWUEN (hreak variable/par,ameter) .•.•.•..•••..• 
BROAOSCOPE (property name) ....•••••.••.....•.••• 
BROKEN (property name) .......••...•..••....••••. 
BROKEN (typed by system) .........•••....•.••.... 
(BROKEN) (typed by system) ..••..•.•..•.•.•...••• 
BROKEN-IN (property name) .........••.•...•.••.•. 
BROKENFNS (break variable/parameter) ....•.••.•.• 
B T (break command) .................•..••.......• 
B TV (break command) ...............•..•.......•.• 
B TV! (break command) ...............•..•....•.... 
BTV· (breilk command) ...............•.•••••..••.• 
BY (clisp iterative statement operator) ........ . 
BY (in REPLACE command) (in editor) ...•..•.••..• 
C (in an ilssemble statement) •.........••. Of ••••• 

C (makefile option) ................•...•...•.•.• 
CALLS[FN;EXPRFLG;VARSFLG] .........•.••.••...•... 
CAN'T - AT TOP (typed by edito~) .......••••••••• 
CAN'T BE BOTH AN ENTRY AND THE BLOCK NAME 

(compiler error message) ..••••.•••••••.•••• 

IN[)EX.4 

Page 
Numbers 

18.26-28 
9.79 

14.34; 18.28-29 
9.8,52 

23.28 
19.5,7 
13.14 
21.4 
21.13 
13.1 
13.1-2,10-12 
15.1,7,18-19,21 
16.9 
14.12-15,19,24 
15.7-14 
15.6,12 
15.20 
15.1-24 
15.16-19,21,23 
15.1-2,4,16,18-19,21, 
16.1-3,7,13; 17.28 
16.2-7,10,12; 17.15 
21.5-7 
15.2,7,17,19,21-23 
15.15-16 
15.2 
14.44,46-48; 18.26,28, 

30-34 
15.9,14-16 
21.6 
21.6-7 
15.6-7,9,11-12,14,16, 
16.1-2,4 
15.15 
15.8,16 
15.16,21-22 
15.22-23 
15.16 
15.16 
23.70 
8.7 

15.4,16 
16.4 
8.7; 15.21-22 

15.17,21-22; 17.28 
2.8; 15.8-9 

15.8,10 
15.10 
15.8,10 
23.22-24,27 

9.42 
18.38 
14.46 
20.10 
9.5,17 

18.27,52 



CAP (ed i t command) ............•.....•...•..••..• 
CAR[ X] SUBR ..•..........•••......•.....•••...... 
carriage-r~eturn .....•......•..••.•.•..••••..••.• 

carriage-return (edita command/parameter') ••..... 
CAUTIOUS (OWIM mode) ..•.•....••...•...•.•...•••• 
CCOOEP[rNJ SUBR ......•..••.••.•••.••.••.••••..•• 
COR[X] SUBR ...•..........•••.•.........•.....••• 
CE XPR (fullc t i on type) ......•..•...•.....••.•.... 
CEXPR1Ir (function type) ............... O' ......... . 

CF[XPR (function type) ......................... . 
CFEXPR* (function type) .....•........•.....•...• 
(CHANGE @ TO ... ) (ed i t command) ............... . 
CHANGLOrNSLST (file package variable/parameter) • 
CtlANGEOVARSLST (file package variable/parameter) •. 
C •• ANGENAMF[FN;FROM;TO] .........................• 
CtfANGEPROP[X;PROP1;PROP2] •.•.••.••.......••.•••• 
CHANGESLICE[N;HISTORY;L] •.••.•••••••.•.•..•••••• 
CHARACTLR[N] SUBR ...........•••....... O' ••••••••• 

character atoms .•...•.........•••....•.....••••. 
charnc ter codes ....•........•••....••.•........• 
CHCON[ X ; F LG] SUBR ...•........••..•.....••.•••••• 
CIICON 1 [ X J SUBR ................................. . 
CtlOOZ[XWORD;REL;SPLST;TAILjTIEFLG;FN;NDBLS;CLST] .. 
CIRClMAKER[L] ' .............•..•.•.... O' ••••••••••• 

CIRCLPRIN1[L;PRINTFLG;RLKNT] , •••.•.••.....••..••. 
CL (cdi t command) .........••......•..•.......••. 
CL:FLG (clisp variable/parameter) ••..••••••.••.• 
C LD ISI\B LE ........ ' ......•..•...•.••••...•.•...•.• 
CLEANUP[FIlES] NL- .......••.•.••.•.........•.••. 
CLEARBUF[FILE;FLG] SUBR ••••••••••••••••••••••••• 
CLISP ......................................................................... .. 

CLISP interaction with user •••. , .•••.•.......•.. 
CLISP internal conventions ..•.•...••..•..•••••.. 
CLISP operation ..........••.......••.••.•.•..... 
CLISPO;( ...............•.....•...•.....•.•.•.•.••. 
CLISP: (edit command) ..............••.•••..•••.. 
CLISPARRAY (clisp variable/parameter) •••.••.•••• 
CLISPCHARRAY (c1i~p variable/parameter) ..•.•.•.. 
CLISPCHARS (clisp variable/parameter) ...••...... 
Cl.ISPDEC[nECLST] •••••••••••••••••••••••••••••••• 
ClISPFlG (clisp variable/parameter) ......•.....• 
CLISPIFTRANFlG (clisp variable/parameter) ••••••. 
CLISPIFY[X;L] .................... O' •••••••••••••• 

ClISPIFY (makefileoption) .............•..•..... 
CLISPIFYFNS[FNS] NL* ........................... . 
CLISPIFYPACKFLG (clisp variable/parameter) ...•.. 
CLISPIFYPRETIYFLG (clisp variable/parameter) 
CLISPIFYPRETTYFLG (prettydef variable/parameter) .. 
CLISPINF IX (property name) ..................... . 
CLISPINFIXES (clisp variable/parameter) •••..•••. 
CLISPRECORDFIELD (property name) ..••..••••.••••. 
CLISPTYPE (property name) •.....•••••.••.•.•••••• 
CLOCK[ N] SUBR ......•....••.••.•••••••.•... , ••••.. 

INDEX.S 

Page 
Numbers 

9.75 
5.1 
3.2; 14.10-11,13,15-19, 

23 
21.9,12 
17.3,5,23,27; 23.5,67 
8.1,3 .. 5 
5.1 
4.3; 8.4-5 
4.3; 8.4-5 
4.3; 8.4-5 
4.3; 8.4-5 
9.42 

14.45,50 
14.45,50 ' 
9.90; 15.23 
7.2 

22.8,54 
10.4 
10.2 
10.4 
10.4 
10.4 
17.20-21,26 
7.6; 21.28 
7.6; 21.26-27 
9.77; 23.76 

23.59,74 
23.74 
14.45,48 
14.21; 22.30 
11.4; 14.46; 18.6,8, 
21.23; 17.16-18, 
23.1-76; 20.5 
23.67 
23.68 
23.64-67 
23.31-32,75 
23.31,75 
23.31,37,72,75 
23.71 
23.71 
23.33,73 
23.71 
23.31,74 
14.40,46; 23.36,58, 

73-74 
14.46; 23.60,75 
23.74 
23.60,75 
23.75 
14.40,46 
23.70 
23.71 
23.57 
23.69 
21.3 



CLOSEALL[] SUBR .......••...••...•....•...•..•..• 
CLOSEF(FILE] SUBR ...............•......••..•.... 
CLOSER[A;X] SUBR ...................•.•••....•..• 
CLREMPARSfLG (clisp variable/parameter) ..•..•••. 
CLRJlASIt[ARRAY] SUBR .............•.•............• 
CLUMPGET[OBJECT;RELATION;UNIVERSE] ...•..•....•.. 
COPE (property name) ............•..........••.•• 
COLLECT (clisp iterative s~atement operator) 
COM (as suffix to file name) ............•....••. 
commands that move parentheses '(in editor) .•.••• 
COMMENTFLG (prettydcf variable/parameter) ..•...• 
comments (in listings) ....••••..•••..•••.•.•.•.• 
compilct inQ ...•.••.....••.••..•..•••...•••..••••. 
COM P J L E [ X ; F L G ] ..................•••...•....•...• 
COMPILEl(FN;DEF] ................••...••..•.•.•.. 
comp i 1 ed code ...•.....•.•.•••...•..•.••.••...•.• 
compi 1 cd fi Ie .................................. . 
compiled functions ...•.......••....•..•.•.••.•.• 
COMPILEFILES[FILES] NL* ....•..•........••...••.. 
C on1 J) i 1 cr ..•••••••.••••••• ' ••••••••••••••••••••••• 
compiler error messages ....•.....•....•..•...•.. 
compiler functions .......•.••....•••...•.••...•. 
compiler macros ..................•....•......•.• 
coolpiler printout ............................... . 
compi ler Questions ........ ' ..............••••.... 
compiler structure ...•.....•.............•...... 
COMPIlEUSERFN (compiler variable/parameter) 
COMPILEUSERFN (use by clisp) •..•.••••..••.••..•. 
compiling CLISP ......•..••...••..•••...•.••...•. 
compiling files ...........••..••.••..•..•..••..• 
compiling FUNCTION .......•••.•.•••••..•••••.•.•. 
compiling NLAMBDAs ...................•.•....•.•• 
CONPROP (pre t tydcf command) .•......••...•....•.. 
COMPROP* (pret tydef command) .....•...•..•....... 
COMPSET[FILE;FLG] ............••.•....••....•.... 
coolputed macros ..............•....•..•..•....... 
CONS (prettydef command) ...............•.•...•.. 
(COMS xl ..• xn) (edit command) ..•••...•.•••.••. 
(COMSQ . coms) (edit command) ....•••••..•...•.•• 
CONCAT[Xl;X2; ... ;Xn] SUBR* .•..••.••....•........ 
CONO[Cl;C2; ... ;Cn] fSUBR* ..••••.••.•..•..••....• 
concl clause ................•••••.•••...••••..••• 
CONS[X;Y] SUBR ................•.•.....•..••...•. 
cons alqorithm .................•.•.......•..•... 
CONSCOUNTrN] SUBR ...................•........... 
constructing lists (in clisp) ..................• 
CONTIN (prog. asst. command) .....•.............. 
CONTINUE (tenex command) ......•...•..•..•..••..• 
CONTINUE SAVING? (typed by system) .....•....•..• 
CONTINUE WITH T CLAUSE (typed by dwim) •....••... 
continuing an edit session ...................... . 
CONTROL[U] SUBR •••••••••••..••••••••••••••••••••• 
control characters ...•..•. ~ •.•....•....•....••.• 
control pushdown list ...•...••........••.•••..•. 
control-A ...................................... . 

control-B 

INDEX.6 

Page 
Numbers 

14.4 
14.4 
10.18 
23.59,74 

7.5 
20.17 
8.7-8 

23.19 
18.9,11,30 
9.51-54 

14.39 
14.30-31,40 
3.13 

18.7-8 
18.8 
10.12 
18.8,10 
4.2 

14.48 
4.3: 18.1-52 

'18.49..;52 
18.7-13,27,30 
18.14-16 
18.48-49 
18.3-5 
18.34 
18.6,13 
23.64 
23.63 
18.8,10,30 
18.16 
18.5-6 
14.35. 18.9 
14.35; 18.9 
18.3 
18.15 
14.35 
9.63 
9.64 
3.10; 10.7,12 
4.4; 5.4 
5.4 
3.7,11; 5.1 
5.2 
5 • 2; 1 0 . 18; 21. 4 

23.16 
21.21; 22.34 
2.4,9; 21.4,19; A3.t 

22.39,57 
17.9 
9.72-74 
2.5; 14.11,14,23 
2.4-5; A3.1-2 

12.2 
2.4; 14.10,12.14-15,23, 

25 
16.3,5,7,9; 21.3; A3.t 



control-C 
control-D 

control-E 

control-F 
control-H 

control-O 
control-P 
control-Q 

control-R 
control-S 
control-T 
control-U 

• ••••••••• If •••••••••••••••••••••••••••• 

• ............... If ••••••••••••••••••••••• 

· ....................................... . 
· ..... " ................................... . 
· ....................................... . 
· ....................................... . 
• •••••••••••••••••••••••••• If ••••••••••••• · ................ ' ..................... . · ....................................... . 
· ....................................... . 

· ..................................... . 
· ......................................... .. 

· ...................... -................ . 
COl) Y ............................................ . 
COPV[X] ..••••••••••••••••••••••••••••••••••••••• 
COPVING (record package) .•••••••.••..•••••.•.••. 
COREVAl (property name) ..•...••••••....••••••••• 

••••••••••••••••••••••••• It ••••••••••• 0 ••• " • 

COREVAlS •••••••••••••••••••••••••••••••••••••••• 
COREVAlS (system variable/parameter) ..•.•••..••. 
COSrX';RAOIANSFlG] ••••••••••••••••••••••••••••••• 
COllNT[X] •••••••••••••••••••••••••••••••••••••••• 
COUNT (cljsp iterative statement operator) .....• 
CPlISTS[X;V]' •••••••••••••••••••••••••••••••••••• 
CQ (in an assemble statement) ••.••••.••..•••.... 
CR[A1E (record package) .•.•.•••.•••••.•••••••••• 
ClirTent expression (in editor) ••.•.••..•.•....•. 
CURRENlfN (transor var i ab 1 e) .••.•.•••.•..•...•.• 
() il tnt Y 11 e s .. . . . . . . . . . . . . . . . . . It • • • • • • • • • • • • • • • • • • 

data-paths (in records in clisp) •••••.•.•••.••.• 
OAATE[] SUllR .............•..•..••.•....••......•. 
DCHCON[ X; SCRATCHLIST; FLG] ••••••••••••••••••••••• 
DDT [] S lJ R R • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
debugg i ng ••••••••••••••••••••••••••••••••••••••• 
dec 1 a r' a t ion s (i n c 1 i s P ) • • • • • • • • • • • • • • • • • • • • • • • • • 
OECLARE[X] FSUBR .....•.......•..•.•............• 
DECLARE ...••.••••.••••.•••••••••••••••••••••.••• 

OEFINE[X] ••••••••••••••••••••••••••••••••••••••• 
OErINf.Q[X] Nt* ..........................••..•.•. 
defininu new iterative statement operators ..•..• 
DEFLIS1[L:PROP] •••.••••••••••••••••••••••••••••• 
DELETE (edit command) ......•...•..............•• 
(OfLETE • @) (edit commilnd) ...•..••...•.....••.. 
DELNOTE (transor command) ..........•.......••..• 
DESTINATION IS INSIDE EXPRESSION BEING MOVED 

(typed by cdi tor) ...•....•.•..•.••.••..•... 
destructive functions .•.••..••..••.•.•.•.•..•••• 
OFNFLG (system variable/parameter) •..••.•....••. ............................................ 
DIFFERENCE[X;Y] 

INDEX.7 

Page 
Numbers 

2.4; 21.4,18-19; A3.l 
2.4: 5.10; 9.71; 14.21, 

15.6,16; 16.2,7,13, 
18.7; 21.3; 22.30, 
A3.1 
9.3; 14.21; 15.6,20, 

16.3,13; 21.3,10; 22.30, 
A3 . 1; 1 7 . 6 - 7 , 14 
14.2 
10.17; 14.21: 15.16, 
16.2-3 
2.4; 14.20; A3.2 

14.20-21; 15.10 
2.4; 14.10-12,14-15,23, 

25 
A3.2 
10.16; 14.21 
A3.2 

2.5; 22.32,50 
6.1,4-5,7 
6.4 

23.56 
18.39,41-42; 21.3-4, 

10-11 
18.39-40 
18.39 
13.9 
6.8 

23.20 
6.12 

18.38 
23.50-51,55 
9.2,4,8,11-15,23 

AI.8 
3.1-11 

23.49 
21.2 
10.4 
21.8 
2.8; 12.2; 15.1; 20.5 

23.13,16,33,45,63 
18.9 
14.34-35; 18.9,11,14,29, 

31-32 
2.6; 8.6-7 
2.6; 8.7 

23.28 
7.3; 14.33; 18.9 
9.14,37,40,42 

, 9.42 
Al.14 

9.49 
6.4-5 
5.9; 8.7-8: 14.27, 

22.43,55 
13.7 



OIR (prog. asst. command) ................•...... 
DIRECTORY FULL (error message) ••..•...••••... ~ •• 
disabling a CLISP operator ..••...........•..••.• 
DISMISS[N] ...........................•.....•...• 
OMPHASU[ L] NLJt ........•..................••..•.• 
00 (clisp iterative statement operator) .•••.•••• 
00 (edit command) ........•••....••...•••.•.••.•. 
DO (prog. asst. command) .....•.•...•.....••••.•• 
OONElST (printstructure variable/parameter) 
(lot notation ................................... . 
DOTHESE (transor command) •.......•••..••••...... 
DOTH IS (t ransor command) ..•••..•.••••••••.••••.. 
dotted pair .................................... . 
DREr10V[[ X; L] ..• II •••••••••••••••••••••••••••••••• 

DREVERSE[ L] ..................................... .. 
DStl[JST[X;Y;Z] ••••......••••••••••••.•••••••••••. 
DUMP (transors"et command) •.••.•.•••......••..•.• 
DUNPACK[X;SCRATCHLIST;FLG] .......••.••.•.•.•...• 
OW (edit command) ....•...•••.••.•••..•••.••..... 
OW (error message) .•.......•••...••••••••..•.••• 
OWIM[X] .....••......•.•••••••••••••••••••••••••• 
OW 1M •.•.•••••••••••••••••••••••••••••••••••••••• 

OWIM interaction with user .••••..•..•.•..••••... 
OWIM var i ab 1 es •...............•••••.•..•••.••••• 
DWIMFLG (dwim variable/parameter) .•••..•.•.••••• 
DWIMFLG (system variable/parameter) ..•••••••.••• 
DWIMIFY[X;L] .......•.•.....•.....•••.••••••••..• 

OWIMIFYCOMPFLG (clisp variable/parameter) ..•.... 
OWIMIFYCOf-1PFLG (compiler variable/parameter) 
DWIMIFYFNS[FNS] NL* ..................••.••...•• 8 

DWIMUSERFN (dwim variable/parameter) ....•...•... 
OWIMWAIT (dwim variable/parameter) .•.....•.•.••• 
E[ XEEE.E] NL* ........••.•••...•••.•••••.••••.•••• 
E (edi t cornmand) ..........••••••.••......•.••..• 
E (in an assemble statement) .................. .. 
E (pret tydef conunand) .......•.•...••.••..•.•.••. 
E (in a floating point numb1er) ................. . 
E (use in comments) ..•....•...........•...••...• 
(E x T) (edit command) ..•••..•••.•...•••.••.•... 
(E x) (edit command) .............•...•••..•.•••• 
EACHTIME (clisp iterative statement operator) 
EDIT (hreak command) ......•.•••••••...•.•.•.••.• 
EDIT (transorset command) ...•.••.•.•••••••••...• 
EDIT (typed by editor) ......•••....•.•••.•.••... 
cdi t ctlilin ........ ~ ............................ . 
od it conunilnds tha t search .••.•••••••.....••.•..• 
odit commilnds that test .....•..•.......••..•..•• 
e () i t rna c ro s ...•...••.•.••.•••••••• " ••••• " ••••••• 
EDIT-SAVE (property name) ....•.•.•••.••.•..••..• 
EOIT4E[PAT;X;CHANGEFLG] •• ' .•••••••••••••••••••••• 
EOITA[EDITARRY;COMS] .......•.......••....•.•.••• 
EDITCOMSA (editor variable/parameter) •.•.••.••.. 
EDITCOMSl (editor variable/I)arameter) •••••.•.••. 
EOITDEFAULT ...•......•.•• 0 •••••••••••••••••••••• 

EOITOEFAULT (in editor) ....••.•••••••••.••.••.•• 

INDEX.8 

Page 
Numbors 

22.34 
16.9 
23.61 
21.3 

7.6 
23.19 
22.31,61 
22.31 
20.8 
2.1 

Al.15 
A1.15 

5.1 
6.4 
6.4 
6.5,7 

Al.11 
10.3 
9.77; 23.76 

17.23 
17.5,23 
2.6; 14.44; 16.1~ 

21.23; 22.23; 17.1-28 
17.5 
17.19 
17.5,12,27 
9.80,85-86 

14.46; 17.23; 23.61-64, " 
72-74; 20.5 

23.63,73 
18.8 
23.62,73 
17.16-19 
22.39; 17.6,8 
8.9 
9.9.62; 22.62 

18.38 
14.34 
3.6; 14.11 

14.40 
9.62 
9.62 

23.25-26 
15.8,11-13 
Al.11 

9.83 
9.4,7,11-13,15,23 
9.21-33 
9.64 
9.67-70 
9.72 
9.88 

21.8-17 
9.80,82; 17.16,18 
9.80-82; 17.17-18 

22.61; 17.5 
9.80-83 



EDITE[EXPR;COMS;ATM] •••••••••••••••••••••••••••• 
EDITF[X] NL* •••••••••••••••••••••••••••••••••••• 
EOITFINOP[X;PAT;FLG] •••••••••••••••••••••••••••• 
EDITFNSrX] NL* •••••••••••••••••••••••••••••••••• 
EOITFPAT(PAT;FLG] ••••••••••••••••••••••••••••••• 
EDITtnSTORY (editor variable/parameter) ..•.•.•.. 
editing at~rays .......•..•••...••••••.•.••••••.•• 
editing compiled code ......•.........•.•........ 
editing compiled functions •..••.•••..••...••.•.• 
EDITL[L;COMS;ATM;MESS] •••••••••••••••••••••••••• 
EOITLO[L;COMS;MESS;EDITLFLG] •••••••••••••••••••• 
EDIIP[X] NL* •.•••••••••••••••••••••••••••••••••• 
EOITQUIETfLG (editor variable/parameter) .•••.•.• 
EOITRI\CEFN •••••••••••••••••••••••••••••••••••••• 
[[)ITUSEI~FN •••••••••••••••••••••••••••••••••••••• 
[ 0 I T V [ E [) I T V X] N L * . . . . . . . . . . . . . . . . . . . . . .' . . . . . . . . . 
elemcllt patterns (in pattern match compiler) 
EL1[A;N] f)UBR ••••••••••••••••••••••••••••••••••• 
ELTO[I\;N] SUfiR •••••••••••••••••••••••••••••••••• 
([,..1BEO @ IN ••• ) (edi t command) ...•........•.... 
END OF FILE (error message) ...••...••..•••....•• 
C 11 (I - 0 f - 1 i 11 e • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
ENDFILE[ Y:1 •••••••••••••••••••••••••••••••••••••• 
ENTRIES (compiler variable/parameter) ..•• ~ ••.••• 
entries (to a block) ........•.............•.••.. 
EN1RY#[UIST;X] •••••••••••••••••••••••••••••••••• 
[Q[X;Y] SlJBR •••••••••••••••••••••••••••••••••••• 
c q •.••• II ., •••••••••••••••••••••••• " •••••••••••••• 

EQP[X;Y] SUBR ••••••••••••••••••••••••••••••••••• 
EQlJAL[X;Y] ••••••••••••••••••••••••••••• " •••••••• 
e Q II ill ...................••....••.•....•.....• ' ... 
[RASE (t nUl sorsc t command) •.••••••.•..••.•.•.•.. 
E RROR[ Mr SS 1 : MESS2 ; NOBREAK ] •••••••••••••••••••••• 
ERROR (error message) ..•..••.....•••...•...••.•. 
ERROR (property name) •...•.....•...••••..••..••. 
error correction .....•...••••••••••.•.•..••••••. 
error handling .........................•..•..... 
error number ....................•....•••.•...... 
error types ........................ 0 ••••••••••••• 

ERROR! [] SUBR ••••••••••••••••••••••••••••••••••• 

ERRORNESS[ U] •••••••••••••••••••••••••••••••••••• 
ERRORN[] SUBR ••••••••••••••••••••••••••••••••••• 
e r' r' 0 r· s (i ned ito r ) . . . . . . . . . . . . . . • • . . . . . . . . . . . . • • 
errors in iterative statements .•..•..•••..•..•.. 
ERRORSE'l[lJ;V] SUBR •••••••••••••••••••••••••••••• 

ERRORIYPELST (system variable/parameter) ...•.•.. 
[RRORX[ f~RXM] •••••••••••••••••••••••••••••••••••• 
[RSE1Q[LRSETX] NL ••••••••••••••••••••••••••••••• 
ERSTR[ERN;ERRFLG] ••••••••••••••••••••••••••••••• 
ESCAPE[ FLG] SUBR •••••••••••••••••••••••••••••••• 
escape chilracte,r ............•••.•••..•.......•.. 
[SlIBS1(X;Y;Z;ERRORFLG;CHARFLG] •••••••••••••••••• 
EVAL[X] SUBR •••••••••••••••••••••••••••••••••••• 
EVAL (break command) ........••••..••...•.•...... 
eval format .••..••••.•..•••.••••••••••••• D •••••• 

INDEX.9 

Pago 
Numbors 

9.1,83,86-87 
9.1,84-86; 14.44 
9.89 
9.87-88 

. 9.89 
22.44,49,60-62 
21.8-17 
21.8-17 
9.90; 15.23 
9.83-84 
9.84 
9.1,85,87 
9.22 
9.90-91 
9.80 
9. 1 ,85-86; 14.44 

23.39-40 
3.8; 10.13; 16.10 
3.8; 10.14 
9.48 

14.6,10; 16.9 
3.2; 14.6,10,13,18 

14.38 
18.29 
18.18,27 
22.54 
2.3; 5.11 
2.3; 21.24 
3.5; 5.12; 13.2,4,6 
2.3; 5.12; 13.2 
2.3 

A1.11 
16.6,9-10,12 
16.9 
22.24,45 
17.1-28 
16.1-14 
16.7 
16.7 
5.9; 6.5; 15.7, 

16.12-13 
16.7,13 
16.7,13 
9.3 

23.27 
5.9; 7.7; 16.5-6,12-14, 

17.15 
16.10-11 
16.12 
5.8; 16.14; 18.16 

21.22 
14.13-14 
2.6; 3.2; 14.10 
6.5,7; 9.89; 22.14 
2.4,6; 4.2; 8.9; 16.14 

15.7,14,16,20; 16.3-4 
2.4 



cVill-blip ...................................... . 
EVALA[ X; A] SUBR ..•...••••••••••••.••..•••••.••.• 
EVI\LQT[ CHI\R] ..............••..•.............•..• 
[VALQT .......................................... . 
EVI\LV[VI\R;POS] ........••..••.••....•..•••.••••••• 
even t address .............••.•••.••••••.•••.•••• 
event numher .................•...•.•..•....••••• 
event specification .•....•.•.•••••••.••••••••••• 
EVERY[EVERYX;EVERYFNl;EVERYFNZ] •••••••.•..••••.. 
EVQ[X] ..................•••.•.•••••.•••••••••••• 
(EXAM. x) (edit command) .•••.••••••.••••.•••..• 
EXEC (prog. asst. command) ••••.•••.••••••••••••• 
E X[ C ..•.....•••..•...•..•••••••••••••••.••• to •••• 

EXIT (transorset command) .•...••..•..••••.•••••• 
EXPR (function type) ....•..••••..••••.•••••••••• 
EXPR (property name) .•..•...••••.....••••••••••• .............................................. 
EXPR* (function type) .....•......••..•.••.•.•••• 
EXPRFLG (printstructure variable/parameter) 
EXPRP[ FN] SUBR .....•...... J •••••••••••••••••••••• 

eXJ)rs ..................... It •••••••••••••••••••••• 
EXPT[M;N] .................•.........•••.•.••.••. 
(EXTRACT @1 from. @2) (edi1~ command) .••••..•..• 
F (edi t conunand) ................•.....•..•....... 
F (response to compiler question) •••.•••••••••.• 
F (in event Clddress) ......•....•....••••••••••.• 
F Pil t tern (edt t command) ..••••••••••..•.••.••.•• 
(F pattern N) (edit command) .•••.•.•.•••.•.••••• 
(F pattern n) (n a number, E!dit command) .••••••• 
(F pClttern T) (edit command) •.••.•••••••••••.••• 
(F pattern) (edit command) ..................... . 
F I L •.••. II ••••••••••••••••••••••••••••••••••••••• 

(F= •.• ) (edit command) •.•.••.•.••••••..••...... 
false ....................... , .................... . 
FI\SSOC[ X; Y] ..........•..•...•....•...••.••...••• 
FAST (makefile option) ......•.••••••.•.••••...•. 
fast symbolic dump ................••.••••••••.•• 
FI\STCI\LL (in an assemble statement) •.••..••....• 
FI\STYPEFlG (dwim variable/parameter) ...••.•....• 
FI\ULT IN EVAL (error message) •••••••.••••••..••• 
FI\ULTI\PPLY[FAULTFN;FAULTARGS] .••••••..•••.•..••. 

FI\ULTEVAL[FAUlTX] NL* ........•...............•.. 
rCltI\RI\CTER[N] SUBR ......•.....••...•..••••..•.•• 
FETCH (use in records in cllsp) ..•••...•••••••.• 
FEXPR (function type) ....•..••••.•..•••...•.••.• 
FEXPR* (function type) ....•••.•...••...••.•.••.. 
FGETO[ X] ......•........•••..•••• It ••••••••••••••• 

FGlP[X;Y] SUER ...........••..•••..•...•.••...•.• 
FILDIR[FILEGROUP;FORMATFLG] ....•...........•.••. 
F ILf (edi ta command/parametelr) ...•••...•..•..•.• 
FILE (property name) ....................•••••••• 
FILE INCOMPATIBLE - SYSIN (error message) •.••••• 
f i 1 e n arne s ...............................••..... 
FILE NOT COMPATIBLE (error message) ...•.••.••••• 
FILE NOT FOUND (error message) ...•••.•••.••••••• 
FILE NOT OPEN (error message) ••••••.•.•••••••••• 

INDEX .10 

Page 
Numbers 

12.4; 16.5 
8.10; 16.10 

15.5 
2.4 

12.10 
22.12-13 
22.8,12,21,33,54 
22.11-14,19-21 

5.13 
18.19 
9.66 

21.21; 22.34 
21.21,24 
A1.12 
4.3; 8.4-8 
9 . 85 , 88; 14. 2 7; 18. 7 • 

21; 17.17-18; 20.7 
4.3; 8.4-5 

20.6,9 
8.1,3-6 
4.1 

13.8 
9.46 
9.6,25-26 

18.2,4 
22.12 
9.25 
9.26 
9.26 
9.26 
9.27 

17.17 
9.27 

\ 5.4 
2.3; 5.15 

14.46 
14.40 
18.38 
17.23 
16.9 
16.2; 18.25; 17.5,14-15, 

19 
16.1,9; 17.5,14-15,19 
10.4 
23.57 
4.3; 8.4 .. 5 
4.3; 8.4-5 
8.3 

13.6 
21.21 
21.13 
14.44-45 
16.9 
14.2-3 
14.26 
14.3; 16.9 
14.3-4,8; 16.8 



file packilge ............. ......................... . 
file poillter ........... 0 •••••••••••••••••••••••• 

FILE WON'T OPEN (error message) ..•....•..•.••.•• 
FILE: (compiler question) .....••.•.•.••••..•.•.• 
FILECRFATFO .................................... . 
FILEOATE (property name) .•••.••••......•••.....• 
F ILEDEF (property name) ..•..•.•.•••..•••••.••.•. 
fileFNS ........................................ . 
FILEFNSLST[FIlE] ............................•... 
FIlEGROUP (property name) ....•..........•..•...• 
FILELST (file package variable/parameter) •...... 
FILEPKGFLG (file package variable/parameter) 
FJLEPOS[X;FIlE;START;END;SKIP;TAIL] ............ . 
files .......................................... . 
FII,ES?[] ....................................... . 
FILETYPE (property name) .....•..•.....•..•..••.. 
fileVARS ......................•....•.....•...... 
FINALLY (clisp iterative statement operator) 
FIRST (clisp iterative statement operator) .••... 
FIRST (as argument to advise) .................. . 
FIRSTCOl (prettydef variable/parameter) •...•.... 
FIRSTFN[FN] .............................•....... 
FIRSTNAME (system variable/parameter) •.....•..•. 
FIX[X] ......................................... . 
FIX (prog. ass t. command) .••.••••...••....•..... 
fixed number of arguments ...................... . 
FIXP[X] ...................................•..... 
FIXSPELL[XWORD;REL;SPLST;FLG;TAIL;FN;CLST; 

APPROVALFLG] ...........•......•.......•. 
FI_AST[XJ ........................................ . 
FLENGllf[X) ...................•....•....•........ 
FLOA1'[X] ................ 8 ••••••••••••••••••••••••• 

floating point arithmetic .••..•...•....•..••.•.• 
floating point numbers .......•.........••.....•. 

FLOATP[X) SUBR •••••••••••••••••••••••••••••••••• 
FllFM1[N] SUBR ................•................. 
F ~1 [ M 11 [ X ; Y J • • • . . . . .. . • . • • , • . • • . 0 • • • • • • • • • • • .. • • • • • • 

FMINUS[X] ....................•....•...•....•.... 
FN (tr'ansorset command) ........•..•.•••.•.••.••• 
(rn - NO BREAK INFORMATION SAVED) •.............. 
( r.1 1 I N ·r n 2 ) . .. .. II' • • .. .. • • • • • • .. • • • • • • • .. • • • • • • • • • .. • • • 

( fn 1 NOT fOUND IN fn2) •••••••••••••••••••••••••• 
f 11 1 - I N - f 11 2 . . . . .. . . . . . . . . . • • . . .. . . .. . . e • • • • • • • • • • • • • 

F NctIECK[ FN : NOMESSF LG; SPELLFLG; PROPFLG] ....•..... 
FNS (pr'ett.ydef command) .•.•.•••...•.....••.•••.. 
FN1H[X;N] ••••••••••••••••••••••••••••••••••••••• 
FNTYP[X] ....................................... . 
FOR (clisp iterative statement operator) .....•.. 
FOR (in INSERT command) (in editor) ..•...•...... 
FOR (i n USE command) .........•.•.••....••......• 
FORGET (prog. asst. conunand) ••.•.•.....•...•••.. 
fork hand] e ................•.•.•.••••.....•..•.. 
forks ................•....•...........•..•...... 
form- 'feed ......................................... . 
format and use of history list ••.•.•.•••.•••••.• 
FPlUS(Xl;X2; ... ;Xn] SUBR* .....••••••.•••••..•••. 

INDEX .11 

Page 
Numbers 

14.44-51 
14.5-7 
14.2; 16.8 
18.3 
14.37,44 
14.37,46 
17.17-18 
14.44,49 
14.49 
14.47 
14.44 -50; 17.28 
14.44 
14.7 
2.9; 14.1-10 

14.45,48,51 
14.46; 23.60,63 
14'.44,49 
23.25-26 
23.25-26 
19.5,7 
14.39 
20.4,9 
21.24 
13.4 
22.16-17,22 
4.1 

13.4 

17.25-26,28 
2.3; 6.7 
2.3; 6.8 

13.7 
13.6-7 
3.1,4,6,11; 13.1-2,4, 

10; 14.11 
, 13.7 

3.6; 14.22 
2.3; 5.14 

13.6 
AI.tO 
15.23 
15 . 17.22; 19.5 
15.17 
15.17.22; 19.5 
17.27 
14.34 
2.3; 6.8 
4.3; 8.1,3-7 

23.20-21 
9.41 

22.14 
22.27,54 
21.20 
21.17 
14.13 
22.44-47 
13.6 



FQUOTIENT[X;Y] SUBR ............................ . 
frce variables .....................•...•.......• 
free variables and compiled functions .......••.• 
free-list ...........•...................•••.•... 
FR[EVARS[FN;EXPRFLG] .........•................•. 
FRLMAINDER[X;Y] SUI3R ........•........•...•.....• 
FROM (clisp iterative statement operator) ..•••.• 
FROM (in event specification) .....•....•.....•.. 
FROM (in EXTRACT command) (in editor) •••.••••••• 
FRPLACA[X;Y] SUBR ............••..........•...•.. 
FRPLACD[X;Y] SUBR .....•....•.•....•....•.••...•. 
( F S ...) (e d i t c 0 mm and ) . '. . . • . • • • • • • • • • • • • • • • • • • • 
FSTKARG[N;POS] SUBR .......••.....•.•.•..••...••• 
FSTKNTH[N;POS] SUUR ............................. . 
FSUBR (function type) ........................... . 
FSUBR* (function type) ......•...••••..•..•.•••.• 
FTIMES[Xl;X2; ... ;Xn] SUBR* ....•...•........•.... 
FUNARG ..••. e •••••••••••• ,' ••••••••••••••••••••••• 

F UNARG (func t ion type) ...••••.•..•••.•••••.••••. 
FUNCTION[EXP;VLIST] NL ...............•..•...•••. 
function definition and eVCllluation •..••••••••••• 
function definition cell ......••..•.....••••...• 

function objects .............•...••...•.••••••.. 
function types ..........•....•.•.....•••.•••..•• 
functional arguments ......•...•..••...•••••••.•• 
rUNNYATOMlST (clisp variable/parameter) ••...•.•• 
garbage collection ........•••.....••.•.•..•.•••• 
GC: (typed by sys tom) ..•••••••••..••.•••••.••••• 
GC: 1 (typed by system) ..••.•.••.•.••.•..•..•••• 
GC: 16 (typed by system) .•..••.•.••••.••••••••.• 
GC: 18 (typed by system) ..••••.•......•.•••.••.• 
GC: 8 (typed by system) ....•.•.•••.•.•.•.••••.•• 
GCGAG[MESSAGE] SUBR ..............•..•...•....... 
GC"IRP[N] SUBR ....................•....•..•.•.••. 
generalized NTH command (in editor) •..•.•••••••• 
GENNUM (system variable/parameter) ••.•••.•..••.• 
GENSYM[CHI\R] ................................... . 

(;ET[X;Y] .••••••••••••••••••••••••••••••••••••••• 
GLTAD[lABlENAME;INDEX;FORMATFLG] ............... . 
G[lBlK[N] SUHR •••••••••••••••••••••••••••••••••• 
GE" BHK[] SUBR ....................•.....•....•... 
GE T O[ X] SlInR ................................•... 
GEllII\SU[IIEM;ARRAY] SUBR ................•....... 
GElLIS[X;PROPS] ••••.•••••••••••••••••••••••••••• 
G["lP[AIM;f'ROP] ..............••...............•.. 
GE TS[ PH[] SUnR ........................•......... 
GLC[X] SUBR ..................................... . 
ulobal vclriables .......................••...••.. 
GLOBI\LVI\RS (compiler variable/parameter) .•.••••. 
GI_OUALVI\RS (system variable/parameter) ..••..••.. 
GNC[ X] SUBR ••••••••••••••..•••••••••••••••••••••• 
GO[X] FSUBR* .................................... . 
GO (break. command) .............................. . 
GO (use in iterative statement in clisp) •••••••• 

INDEX .12 

Page 
Numbers 

13.6 
12.2,5 
12.5 
3.12-13 

20.10 
13.6 
23.22-24 
22.13 

9.46 
5.3 
5.3 
9.27 

12.8 
12.7 
4.3; 8.4-6 
4.3; 8.4-6 

13.6 
11.1-2,5-7; 12.11-12, 
16.10; 18.16 
8.5 

11.1-2,5,7; 18.16 
8.1-12 
2.3,6; 3.3;· 8.1-2, 

16.1; 18.21 
11.6; 16.1 
4.1-3 
2.3; 8.10; 11.1; 18.16 

23.
1
60,75 . 

2.4; 3.11-14; 10.13-18 
10.15 
10.13; 16.9 
13.1 
13.1 
10.14; 21.4 
5.10; 10.15 

10.17; 21.4 
9.32,52,60 

10.5 
3.2; 10.4-5; 15.16, 

18.16; 19.4,6 
7.2 

21.22 
16.10; 21.17-18 
14.14 
2.3,6; 8.1-3,7 
7.6; 23.31 
7.3 

'7.3 
14.13 
10.7,12 
5.9; 18.6-7 

18.6,29,48,51 
14.27.38 
10.6,12 
5.7 

15.6-7,15-16; 16.3-4 
23.26 



GR[AT[I~P[X;Y] SUBR •••••••••••••••••••••••••••••• 
GRfEl[ NAME ;FLG] ••••.•••••••••••••••••••••••••••• 
greeting and user initialization ..•..•.•...•..•• 
GROUP (property name) •....•...•..•••.•..••..••.. 
GTJFN[FILE;EXT;V;FLAGS] ••••••••••••••••••••••••• 
IfARRAY[l_EN] •...•••••••••••••••••••••.••••••••••• 
hush arrays .. e ••••••••••• e •••••••••••••••••••••• 

hash link functions ...........••••••..••••....•• 
hilSh lirlks ...................................... . 
hash overflow ......•..•......•••••.•••••.••..••• 
HASH 1l\BlE FULL (error message) .••••..••••.••••• 
hash-address .......•.....••.•••••..••.•..••.•...• 
hash-array ..................................... . 
h i1 S h - i t (1 m • • • • , • • • • • • • • • • • • • • • • • • • • .. • • • • • • • • • • • • • 
hilS 11 - 1 i 11 k .. . . . . . . . . . • • • . • • • • . • • • • • • • . • • • • • • . • • • • 
t1 a s I, - v it III e • If • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

tlASHRECORD (record package) ............•.•.•.... 
tl[I.P[MLSSl ;MESS2] .............................. . 
HELP! (typed by system) ............•..••...•...• 
tlLLPCLOCK (systcm variable/parameter) ..•.••.••.. 
HELPOEPTH (system variable/parameter) •......••.. 
tlELPFLAG (systcm variable/parameter) ..........•. 
HElPTIME (system variable/parameter) ......••..•. 
HERE (i n ed i t command) ....•................•.... 
.,ISIORY (property name) ................•........ 
his tory cnmmands ...........••................... 
history commands applied to history commands 
history commands that fail ...................•.. 
history list .................................... . 
HISTORYCOMS (editor variable/parameter) .....•..• 
.fISTORYFINO ..............................•...... 
HISTORYSAVE[HISTORY;IO;INPUT1;INPUT2jINPUT3;PROPS] 
(I c xl ... xn) (edit command) ..•••..•••.•.••••. 
i.s.tYllO ....................................... . 
I.S.TYPl[NI\ME;FORM;INITjVAL] ....•.••.•.•.•.•••.. 
IOIFFfHENCE[X;Y] •••••••••••••••••••••••••••••••• 
(IF x corns! coms2) (edit command) ...•.•..•....... 
(IF x comsl) (edit command) ..•...•••...••••.••.. 
(IF x) (edit command) .•...•...•••••.•••••••.••.. 
IF-THfN-fl_SE statements .......•••••••••••••••••• 
IFPROP (pr'cttydef command) •................••... 
IGREATERPIX;Y] SUBR ••••••••••••••••••••••••••••• 
ILlSSr[X;Y] ........................•............. 
ILLEGAL ARG (error message) ............•...•.... 
ILLEGAL ARG - PUTO (error message) ..........•... 
ILLEGAL EXPONENTIATION: (error message) ..•....•. 
(ILLEGAL GO) (compiler error message) .....•..... 
ILLEGAL OR IMPOSSIBLE BLOCK (error message) 
ILlEGAL RrTURN (error message) ................. . 
(ILL[GAL RETURN) (compiler error message) ...... . 
ILlEGAL STACK ARG (error message) ..•............ 
IMINUS[X] ...................................... . 
implcmontCltion of REDO, USE, and FIX ........... . 
implementation of structure modification commands 

(in editor) ..............•........•.•....•. 
implicit progn ..................•.....•.••....•. 
IN (clisp iterative statement operator) •••..•••. 

INDEX .13 

Page 
Numbers 

13.8 
22.64 
22.64 
22.45-46,52 
14.9 
7.5 
3.1 
7.5-6 
7.4-6 
7.7 
7.7; 16.10 
7.4 
7.4-5,7 
7.4-6 
7.4-6 
7.4-6 

23.53 
16.13 
16.13 
16.6; 22.21,38 
16.5-6 
16.3-4,7 
16.5-6 
9.42 

22.45-46 
22.10-27 
22.19 
22.20 
9.73,78; 22.6-14,44 

22.61 
22.53 
22.11,44-46,52,61 

9.62 
23.20 
23.28-29 
13.3 
9.65 
9.65 
9.64 

23.17 
14.35-36 
13.3 
13.4 
6.4; 16.10 
8.4; 16.8 

13.8 
18.51 
16.10; 21.17-18 
5.7; 16.8 

18.51 
12.6; 16.9 
13.3 
22.17-19 

9.37-39 
4.4 

23.21-23,27 



IN (typed by system) ............................ . 
IN (in [MBED command) (in (!ditor) ..•.....•.•.... 
IN (in USE command) ...... ' .............••....•... 
IN? (break command) ...... ' .........••.•.•....•..• 
INCORRECT DEFINING FORM (error message) ....•...• 
incorrect number of arguments ...........•....•.. 
indefinite number of arguments ••••.....•.......• 
INrILE[FILE] SUBR ...............••.•.....•••.... 
INFILEP[FIlE] SUBR ........•.•.•••••••••••••.•••. 
infix operators (in clisp) ............•••.••..•• 
INPUT[FILE] SUBR .............•...•••.••..•••...• 
input blJffer .................................... . 

••••••••••••••••••• II .................. . 

input functions ..•....•..••••• 8' ••••••••••••••• e 

input/output .................•.•...•.•.•........ 
input/output control functions .•••.•.••••••••.•• 
(INSERT ... AFTER. @) (edit command) •.••...•... 
(INSERT ... BEFORE. @) (edit command) .••••.•••. 
(INSERT ... FOR. @) (edit command) ......•...... 
INSTRUCTIONS (in compiler) •..••......••...•...•. 
integer ari thmetic .......••.••.•••••••...•••.••• 
ill t c 9 c r s ........................................... . 
interfork communication ..•...•.•••••.••••••••... 
interpreter ...... ~ ...•.•.••••••••••••••••.•••••• 
INTERRUPT[INTFN;INTARGS:INTYPE] .........•.••.•.. 
IN1ERRUPTED BEFORE (typed by system) ..•.••..••.• 
INTERSCOPE ~ ......•.•.•.••••••••••••••••••••••••• 
INTERSECTION[X;Y] .......•.•••..•.•.•..•.••...... 
IOFILE[FILE] SlJBR ......•••. 8 •••••••••••••••••••• 

IPlUS[Xl;X2; ... ;Xn] SUBR* ......•.•......•..••••. 
IQUOTIENT[X;Y] SUBR ........•.•••.••....•.•.•.•.• 
IREHAINOER[X;Y] SUBR •••••••••••••••••••••••••••• 
IS A COMPILED FILE AND CANNOT BE DUMPED. 

(error message) ...........•.....••••••••.•• 
(IS GLOBAL) (compiler error message) ...•...•..•. 
IS NOT OEfINEO (typed by PRINTSTRUCTURE) ....... . 
IT[RATE (use in iterative statement in clisp) 
iterative statf!ments (in cllsp) •••••.••••••••••• 
ITIHES[Xl;X2; ... ;Xn] SUBR* ....••..•............. 
\.1 F N ..... ., •• fJ ••••••••••••••••••••••••••••••••••••• 

,JF NS[ ,)F N ; ,\C3] ..•.•.•....•••..••••.•••••••••••••• 
JOIN (clisp iterative statement operator) ....•.. 
,)OINC (edi t command) ........••••.....•....•..... 
JSYS .~ ........ !I •••• I!'I •••••••••••••••••••••••••••••• 

KFORK( FORK] ••••••••••••••••••••••••••••••••••••• 
KWOTE[ X] •••••••••••••••••••••••••••••••••••••••• 
L-CASE[X;fLG] .....................•...•.......... 
LAMBDA ..•..•. " ..•.•• ., •... ' .•••••••••••••••••••••• 
LAt1130ACOMS (transor command) •••••••••••••••••••• 
LAMS (compillJr variable/parclmeter) •.••..•....•.• 
L,'P ...................... 11 ...................... . 

LAP macrt)S e ••• ., •••• C' ••••• II •••••••••••••••••••••• 

lo. . .1\ P n p - rJ e f s • " • • .. • • e _ • • ~. • e u • • • • .. • • • • • • • • • • • • • • • • ., 

l_A.r statements ...... e •••••.•••••••••• "" ••••••••••• 

lAPFLG (compiler variable/parameter) .•••..•••••. 
lAPRD[FN] .....• /I ••••••••• c .•••••••••••••••••••••• 

INDEX.14 

Page 
Numbers 

16.4 
9.48 

22.14 
15.8,13; 16.1 
8.7 
4.3 
4.2 

14.2,6 
14.3-4 
23.10-13 
5.10; 14.1 

10.16; 14.16,20-21, 
23-24: 15.16; 16.2, 
7 . 

14.10-18 
14.1-51 
14.21-25 
9.41 
9.41 
9.41 

18.15 
13.2-5 
3.4 

21.17 
8.9; 16.1 

10.17; 16.2 
16.2 
20.11-20 
6.9 

14.6-7 
13.3 
13.3 
13.3 

14.47 
18.51 
20.5 
2.1.26 
23.18-30 
13.3 
14.8-10 
14.9 
23.19 
9.76 

14.8-10,22; 21.22 
21.20-21 
5.3 
9.74; 14.43 
4.1-2,4; 8.3,5,8 

AI.17 
18.5,9,11,31-32 
18.3,34,40 
18.36,43 
18.35-36 
18.40-44 
18.3 
18.25 



largo integers .............. " .................. . 
...................................... 

l.AST[X] ........................................ . 
LAST (as argument to advise) ....••.•..•••••..... 
LAST-PRINTSTRUCTURE 

(printstructure variable/parameter) .......• 
LASTAll (editor variable/parameter) ..•••.•••.••. 
LAS Te[ FILE] SLJBR . . .............................•. 
LAS TFN[ FN] .....................• ',' .••............ 
LASTN[L;N] ..................................... . 
LASTPOS (hreak variable/parameter) .•.•.•.•..•... 
LASTVALUE (property name) ..............•..•.•... 
LASTWORD (dwim variable/parameter) ....••.•.•..•. 
lASTWORO (system variable/parameter) ....•....... 
(LC . @) (edit command) ........................ . 
LCASEFLG (system variable/parameter) .........•.• 
LCASELSl (prettydef variable/parameter) ......••. 
LCfIL (compiler variable/parameter) •...•.....•.. 
(l.eL . @) (edit command) ......•.•....•.......... 
LeONe[ PTR; X] ••••••••••••••••••••.•••••••••••••••• 
LOIFF[X;Y;Z] ....................•...........•... 
LOJFF: NOT A TAIL (error message) ....••...••.•.. 
LLNGTtt[X] .... 0 .••••••••••••••••••••••••••••••••••• 

Lf:SSP[X;Y] .. " ... ~ ..... ,. •..•.•.•.••......•.....•• 
(lI n) (edit command) ................•••..•..•.• 
lINBUf[FlG] SUBR •••••••••••••••••••••••••••••••• 
line buffer .............•.....•................. 
line-buffering .......•..•.....••...••••.••...••. 
1 i (1 0 - 'f e (1 d .. • . . • .. .. •. . .. . • • .. . • • • • • • • • • • • • • • • • • • • •. • • • 
line-feed (edita cornmand/par~meter) •...••.....•. 
LINELENGltt[N] SUBR •••••••••••••••••••••••••••••• 

.. . .. . .. . . .. . .. . .. . . .. .. . . . . . . . . . . . . . . . . . . . . . . . . 
1 inked func t ion calls ...........•....•.•...•.... 
LINKEDFNS (system variable/parameter) •.•........ 
LINKFNS (compilhr variable/parameter) ......•.•.. 
LISP (proq. asst. command) ......•••.....•......• 
LISPFN (property name) ........•................. 
LISPX[LISPXX;LISPXIO;LISPXXMACROS;LISPXXUSERFN; 

LISPXFLG] ................................. . 
.. " .............................. , ............. . 
• ............. " .................. " ..... t ..................................... " 

· ...................................... " ..................................... .. 
· ................................... , , .................... , .............. .. 

LISPX/[X;rN;VARS] .............................. . 
LIsrXCOMS (pron. asst. variable/parameter) ..... . 
LISPXEVAl[LISPXFORM;LISPXID] ................... . 
LISPXFINO[HISTORY;LINE;TYPE;BACKUP;QUIETFLG] 
LISPXItIST (prog. asst. variable/parametor) ..... . 
LISPXHISIORY (prog. asst. variable/parameter) 
LISPXHISTORY (system variable/parameter) ....... . 
LIsrXIINE (prog. asst. variable/paramoter) ..... . 
LISrXMI\CROS .................................... . 
LISrXMACROS (prog. asst. variable/parameter) 
lIsrXPRINl (property name) ....•..••.....••....•• 
LISPXPRINT[X;Y;Z;NbDOFLG] ....................•.. 
LISPXPRINIFLG (system variable/parameter) .•..... 
LISPXREAO[FIlE] .•.............•.........•.•..... 

......................................... 

INDEX .15 

Page 
Numbers 

3 . 1, 5 , 11; 5. 12, 
13.1-2,10 
6.7 

19.5,7 

20.6,8-9 
9.16-17,25,84 

14.15 
20.4,9 
6.7 

15.8-10,12 
9.72 

17.13,24-25,27; 23.13 
9.85-86 
9.30 

21.23' 
14.43 
18.3,5 
9.30 
6.3 
6.9 
6.9 
6.8 

13.8 
9.8,53 

14.21 
14.21,23 
2.5; 14.11-12,14-16,23 
3.2; 14.10,13,18 

21.13 
2.3; 3.8; 5.10; 14.22, 

39 . 
18.21-26 
18.25 
18.24,29-30 
21.21; 22.34 
23.70 

9.62,73; 22.10-11, 
15-16,19-20,29, 
34-35,37-38,40-41, 
44-49,52,61-62, 

17.5,12-13,28 
22.40,58 
22.38 
22.52 
22.53,62 
22.45-46,56,59-60 
22.44,49,60-61 
22.62 
22.34 
21.21 
22.34,49 
22.38,45 
22.37,45 
22.38 
22.10,19,29,32,47-48,50, 

61 



LISPXREAOFN (prog. asst. variable/parameter) 
LISPXREAOP[FLG] ..............•...........•.....• 
LISPXSTATS[FLG] ...................... ~ ........••• 
LISPXUNREAO[LST] ...............................• 
LISPXUSERrN (prog. asst. variable/parameter) 
LISPXWATCH[STAT;N] ..........•..............••••• 
LIST[Xl;X2; ... ;Xn] SUBR- ...•.........•....••••.. 
LIST (property name) ..........••••.•.....•...••. 
LIST (makcfile option) ........•....•.•••...••..• 
list manipulation and concatenation ..•...•.•..•. 
1 i s t 11 0 () C S • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

lISTFILES[FILES] NL- ..........•.•.••..••..•.••.• 
LISTING? (compiler question) .....••....•..•••... 
LISTP[X] SUBR ..............••....••....•.•.•.•.. 
listp checks (in pattern match compiler) •....••• 
lists ........................................... . 
LISTS FULL (error message) •..•..••.•.........••. 
LIT A TOM[ X] SUBR ..........•.....••.•...•.....•••• 
litornl atoms .................................. . 

LITS (cdita command/parame'~er) ....•...••.•....•• 
LLSH[N;M] SUBR .............•••...•••.•..•.•.•••• 
(LO n) (edit command) ........•...•.•...........• 
LOAD[FIlE;lDFLG;PRINTFLG] ........•.......•...... 
LOI\OI\Vr] .............•.• I ••••••••••••••••••••••• 

LOAOFNS[FNSjFILE;LDFLG] ..•...••.......•...••.••. 
L OC [ X] SU 13R .............. l •••••• " •••••••••••••••• 

local record declarations (in clisp) .....•.....• 
local vari abIes .......... , .............•..•.•.... 
LOCALFREEVARS (compiler variable/parameter) 
locally bound variables .....•.....••...•..•.•..• 
location specification (in editor) ••..•.....•••• 
LOCATION UNCERTAIN (typed by editor) ..•..•••..•. 
LOG[X] ......•.••.......• 11 ••••••••••••••••••••••• 

LOGAND[Xl;X2; ... ;Xn] SUBR- ...•...••..•••.•.••.•. 
LOGOR[Xl;X2; ... ;Xn] SUBR- .....•••...•.......•.•• 
LOGOUT[] SUBR •••..•..••• tJ ••••••••••••••••••••••• 

lOGXOR[Xl;X2; ... ;Xn] SUBR- ..•....•.•......•.•.•• 
L ... OOKA 1'[ X] •.••.•••••••••• t •••••••••••••••••••••••• 

LOWER (edi t command) .... " .•.•••....•.•••....•... 
lower case .............. . ' ...................... . 
lower casn comments ...........•...•........•.••.• 
(LOWER x) (edit command) .......•....•............ 
LOWERCASE[FLG] ........... ' .........••............ 
(LP . corns) (edi t command) •.•......•.•....••..•. 
(LPQ . corns) (edit command) .......•..•.......... 
lRSll[ N;M] ...................•..••.•............. 
LSH[ N;M ) SUBR ......................•........••.• 
LSTflL (compiler variable/parameter) ......•.•... 
LSUBST[X;Y;Z] ...............................•.•. 
(M (c) (argl ... argn) . corns) (edit conunand) 
(M (c) arq . corns) .....................••..•.... 
(M c . corns) (edit command) ..••......•.......•.• 
machine instructions ..........•.......•......... 
MACRO (property name) .......•.••.••......•.....• 
macros (in editor) .......•..••••••••.•.••••••..• 
macros (in compiler) ......•....••.••...•••....•. 

INDEX .16 

Page 
Numbers 

14 . 16; 22. 50 
22.50,61 
'22.63-64 
22.51 
22.35,37,47,49 
22.63 
3.7; 6.1 
8.7 

14.47 
6.1-12 
3.8,11 

14.45,47 
18.2-3 
2.3; 5.11 

23.38 
2.3; 3.1,7; 5.11 

16.10 
5.11 
3.2-3; 5.11; 10.11, 

14.11 
21.13 
13.5 
9.8,53 
2.9; 14.27,44; 18.8 

21.22 
14.27-28 
13.13-14 
23.35 
5.6 

18.19-20,29 
12.6 
9.28-29,64 
9.17 

13.8 
13.5 
13.5 
2.4; 21.4-5,21 

13.5 
20.13,17 
9.74 

14. 4 3; 21. 23 
14.40-43 
9.75 

21.23; 23.76 
9.65-66 
9.66 

13.5 
13.5 
18.3 
6.5,7 
9.68 
9.68 
9.67 

18.1,40-41; 21.10 
18.13-14 
9.67-70 

18.14-16 



MAKEBITTAnlE[L;NEG;A] 
MAKEFILE[FILE;OPTIONS] 

..... , ................................ . 
............................................................ 

nl a kef .i 1 e il n d c 1 i s p • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
HAKEFrl[SrOPTIONS;FILES] ...•.•••.......••..••••. 
MAKESYS[ FILE] EXPR .....•.............•.•.•..•... 
MAKFSVSOATE (system. variable/parameter) .•.•••.•• 
~1AK[US[RNAMES ...........•..••••..•.•.••.•.•..... 
HAP[MAPX;MAPFNl;MAPFN2] ........••.••..••..••••.• 
MAP2C[MAPX;MAPV;MAPFNl;MAPFN2] ••..•..•...••.••.. 
MAP2CAR[MAPX;MAPY;MAPFNl;MAPFN2] •.••.••••••.•.•• 
HAPATOMS[ r N] SUBR .....•..••..•...•••..•.•....... 
MAPC[MAPX;MAPFN1;MAPrN2] .•..•.•..••.••......•.•. 
MI\PCAR[MAPX;MAPFNI ;~1APFN2] •....•.............••• 
MAPCONlJ1APX ;MAPFNI ;MAPFN2] •..••.•..•.•.•...•...• 
MAPCONCrMAPX;MAPFNl;MAPFN2] .•.••..•.....•.•...•• 
MAPDl[MAPOLFN;MAPDLPOS] .....•.•....•..•••....... 
NAPHASlll. ARRAY; MAPHF N] .....•..•.•.............•.• 
MAPLIST[MAPX;MAPFNl;MAPFN2] ..••.•.•..•.......... 
HAPRINT[LST;FILE;LEFT;RIGHT;SEP;PFN;LSPXPRNTFLG] •. 
margins (for prettyprint) ..• ~ •••..•..••••••....• 
HAHK (ed i t command) ......•....•..••..•••..•••.•. 
(MARK tllom) (edit command) .•.....•••..•.•......• 
MARKLST (editor variable/parameter) •..••......•. 
MASK (edi ta command/parameter) ................. . 
MATCH (use in pattern match in clisp) •.•..•..... 
HAXLEVEL (editor variable/parameter) ...•.....••• 
HAXLOOr (editor variable/parameter) ..•••.••..••• 
MAXLOOr EXCEEDED (typed by editor) .•.•...•..•••. 
(NBD el ... em) (edit command) .•.......••....••. 
MFNB(X;YJ ................•........•.........••.. 
M [ ~1 B [ R [ X ; Y ] ••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
H 1 R G (. [ A ; B ; COM PAR E F N ] .......•.•.........••.•..••. 
MINfS[N:TVP] SUBR ••••••••••••••••••••••••••••••• 
MINUS[ X] SUBR .....................•............. 
MINUSP[X] SUlJR •••••••••••••••••••••••••••••••••• 
HISSING OPFRAND (dwim error message) ........... . 
MISSING OPERATOR (dwim error message) .•......... 
MlSSr[~I~EO?[XWORD;REl;SPLST;FlG;TAIl;FN] .....•.. 
nli.xcd ilr i t.hmetic ....•...... ~ .....••.....•....... 
HKI\TO~1[XJ SUBR •••••••••••••••••••••••••••••••••• 
~1KS TRI NG[ X] SUBR •••••••••••••••••••••••••••••••• 
MOOEL33FLG (dwim variable/parameter) .•.•••.•..•• 
MOO[L33fLG (system variable/parameter) ......... . 
MOVD[ fROM: TO; COPYFLG] .............•.•.•...•..•.• 
(MOVE @1 10 com. @2) (edit command) .. ' .......•.. 
(NlILTIPLY DEFIN[O TAG) (compiler error message) 
(MUL1IPLY DEfINED TAG, ASSEMBLE) 

(compiler error messago) .................. . 
(MULTIPLY DEFINED TAG, LAP) 

(comp i ler error messafje) .................. . 
n (n n number, edi t command) .........•.......... 
(N a1 ... em) (edit command) .......•..•..•...•.• 
(n 01 ... em) (n a number, edit command) .••••.•. 
(n) (n a number, edit command) ................ .. 
NA~1E (pron. ass t. command) ....••.•••.•.•.....••. 
NAMES RESTORED (typed by system) ..•..•.•••.•.••• 

INDEX-. 17 

Page 
Numbers 

10.10 
14.45-48; 18.10,32, 
17.28 
23.33,75 
14.45,47-48,51 
3.15 
3.15 

22.65 
11.2 
11.4 
11.4 
10.5 
11.3 
11.3 
11 .3 
11.3 
12.11 
7.6 

11.3 
11 .5 
14.38 
9.34 
9.34 
9.34,84 

21.15 
23.37 
9.24,28 
9.66 
9.66 
9.47 
5.14 

, 5.14 
6.11 
3.13-14; 10.16 

13.7 
13.4,6 
23.64 
23.64 
17.24,27-28 
13.7-8 
3.2,5-6; 10.7 
3.10-11; 10.5,11 

17.21; 23.76 
21.23 
8.4 
9.48 

18.50 

18.50 

18.~0 
9.3,17 
9.36 
9.5,36 
9.5,36 

22.14,22,25-26 
15.24 



NANESCHANGED (property namEl) ••••.•..•.•....•••.. 
NARGS[ X] ....•...•...•.••.••••••••••••••••••••••• 
NCIIARS[ X] SUBR •••••••••••••••••••••••••••••••••• 
NCONC[ Kl ; X2 ; .•. ; Xn] SUBR* ••••••••••••••••••••••• 
NCONC1[LST;X] ............•.....•.•••.••••••••••• 
NEQ[X:Y] .............•.........•..••..•..•.•••••• 
NEVER (clisp iterative statement operator) •••••• 
NEW/FN[fN] .................••.•..•••..••••••.••• 
NEWFILE2[NAME;COMS:TYPE;UPDATEFLG] •••••••••••••• 
NEWFILE?[NAME;VARSFLG] ...•.••....•••.••••••••••• 
NEX (ed i t command) .........•••••••••..•••••••••• 
(NEX x) (edit command) ......................... . 
NIL (edit command) ...........•••.•••.••••••••••• 
NIL (use in block declarations) ...•...•..•.••.•• 
NIL: ..•.••..•••.•••.•••••••••••••••••••••••••••• 
NLAM (transor command) .....••.••.•••••••••••.•.• 
NLAMA (compiler variable/pu.rameter) •.••.•••••••• 
N l_AMBOA ....•.•••••••••.••••••••••••••••••••••••• 
NLAML (compiler variable/pa.rameter) ..•.•••.•.•.• 
NLEFT[l;N;TAIL] ......•.•...••...••••..•••.••.••• 
NLISTP[X] .................••.•..•••....•••••.•.• 
NLISTPCOMS (transor command) .•••••.••...•••.•••• 
NLSETQ[NLSETX] NL .............................. . 

(NO LONGER INTERPRETED AS FUNCTIONAL ARGUMENT) 
(compiler error message) ••••••...••••.•.••• 

NO VALUE SAVED: (error message) ..••...•••••..••• 
Non IND .......................••...•.•.•.••••••.• 

NOBREAKS (hreak variable/parameter) •.•••••.••••• 
NOCLISP (makefile option) ........•...•••••.••••• 
NOFIXFNSlST (clisp variable/parameter) ••.•..•••• 
NOrIXVARSLST (clisp variable/parameter) .•.•••.•• 
. NOfNS (prjntstructure variable/parameter) •••.••• 
NOLINKFNS (compiler variable/parameter) .•.....•• 
(NON ATOMIC CAR OF FORM) (compiler error message). 
NON-NUMERIC ARG (error message) •...•.•.•.••.•••• 
NONXMEM (error message) ...•.••••••.••••••••••••• 
NOSAVE .....................••.......•..•.•••••.• 
NOSPEllflG (clisp variable/parameter) ..••••••.•. 
nO$prcad functions ..........••...••.•....••.•••• 
NOSUDSTfNS (prog. asst. variable/parameter) 
NO'1[X] sunR .....•..........••••••••••.••••••••.• 
NOT A F UNC T ION (error message) ......•..•••••.••• 
NOT BlOCKf 0 (typed by edi tor) .•.•.••.....••••••• 
(NOT BROKLN) ...............................••..• 
NOT CflANGFO, SO NOT UNSAVED (typed by editor) 
NOT COMPILEABlE (compiler error message) ••...••• 
(NOT COMP1LEABlE) (compiler error message) •••••• 
(NOT D[FINEO WtlEN LINK TRIED FROM) 

(typnd by sys tern) ......••.••.••....••.••..• 
NOT EO I TABl.E (error message) ....•..•.•••.•.••••• 
NOT FOUND (compiler error message) .•..•••.•.•••. 
(NOT FOUND) (typed by break) .............••.•..• 
(NOT FOUND) (typed by br-ea k 1 n ) ••.••..••••••.••.• 
(NOT FOUND) (value of unsavedef) ••...•••.••••••• 
(NOT IN FILE - USING DEFINITION IN CORE) 

(compiler error message) •.•...•..•...•••••• 

INDEX.18 

Page 
Numbers 

15.17 
8.1,3-4,6 

10.3; 14.6 
6.2-3 
6.2-3 
5.12 

23.20 
22.57 
14.49-50 
9.86 
9.32 
9.32 

,9.64,70 
18.30 
20.6 
Al.15 
18.5,9,11,31-32 
4.1-2,4; 8.3,5 

18.5,9,11,31-32 
6.7 
2.2: 5.11 

Al.16 
5.8: 16.14; 18.16, 

22.59 

18.49 
22.56 
2.3,8; 3.3; 5.9: 9.86, 

14.27; 16.1: 22.43,55 
15.20 
14.46; 23.33,75 
23.62-63,72 
23.62-63,65,72 
20.3 
18.24-25,29-30 
18.49 
13.2,6-7; 16.4,8 
16.7 
22.56-57 
23.72 
4.2; 8.1 

22.58 
5.12 
8.8: 19.6 
9.79 

15.22 
9.85 

18.51 
18.7,51 

18.24 
9.83,85 

18.12,52 
15.9 
15.20-21 
8.8 

18.52 



NOT ON RLKrNS (compiler error message) ......... . 
(NOT PR1NTI\BlE) ..••••••••••••••••••••••••••••••• 
NO'I\NYrSO~lFX;SOMErNl ;SOMEFN2] ••••••••••••••••••• 
NOTCOMPllfOFIlES (file package variable/parameter) 
NOTE (trnllsor command) ......................... . 
NOTE: BRKEXP NOT CHI\NGED. (typed by break) .....• 
NOTTVFRY[l VERYX;EVERYFNl ;EVERYFN2] ••• " ••••••••••• 
(NOTIIING rOUND) ••.•••••••••••••••••••••••••••••• 
NOTHING SI\VED (typed by edi tor) •.•.......•..•... 
NOTtlING SI\VED (typed by system) .•............•.. 
N01LISlFOFILES (file package variable/parameter) •. 
NOTRACErNS (printstructure variable/parameter) 
NP (in an assemble statement) .................. . 
NTII[X;N] .....................................•.. 
(NTH n) (n a number, edit command) ...•.•...•.... 
(NTH x) (edit conunand) ......................... . 
NTHCHI\R[X;N] SUBR ••••••••••••••••••••••••••••••• 
NTYP[ X] SUER •••••••••••••••••••••••••••••••••••• 
NlILl[XJ SliER •••••••••••••••••••••••••••••••••••• 
Ilull string .........••......•...•.......•....... 
nt.II-check .................. " .................. . 
number stack ..............••...........•..•.•..• 
NU~1BERr[ X J SUBR ••••••••••••••••••••••••••••••••• 
numbers ..................•...•..•.•..•.......... 

NX (edit command) ...............••..••.....•.... 
(NX n) (n a number. edit command) •......••..•••• 
OCCURRENCES (typed by editor) •..••••..••..•••... 
octrll .......................................... . 
OK (break command) ...... , .................•••.•.. 

OK (cd it command) ............•..•.....•...••.•.. 
OK (cdita command/parameter) ............••....•. 
OK TO REEVALUATE (typed by dwim) ........••...... 
OKREEVALST (dwim variable/parameter) ......•...•. 
OLD (clisp iterative statement operator) ...•.•.. 
ON (clisp iterative statement operator) ........ . 
OrCOOE (in a lap statement) ................•.... 
(OrCODE? - ASSEMBLE) (compilor error message) 
OPO (pr-opcrty name) .•.......•.••.......•..•..... 

open functions 
open macros ..................•.................• 
OPtNF[FIlL;X] SUBR •••••••••••••••••••••••••••••• 
openinq files .....................•...........•. 
OPfNP[FIlf;TYPE] SUBR .......................... . 
OPF NRf 1\] SUBR ••••••••••••••••••••••••••••••••••• 
OPN\.lrN[ rILE] SlIBR .•••••••••••••••••••••••••••••• 
OR[Xl;X?; ..• ;Xn] FSUnR* ••••••••••••••••••••••••• 
onler of precedence of eLISP operators .••.••.••• 
(ORF ... ) (cd it command) ....•.•...•....•..•...•. 
ORG (edi til command/parameter) ....•...•.•........ 
(ORR ... ) (edit command) •.....••....••...•...... 
Olll F ILE[ FILE] SUBR •••••••••••••••••••••••••••••• 
OUTFILEP[FILE] SUBR ••••••••••••••••••••••••••••• 
OUTPUT[FILE] SUBR ••••••••••••••••••••••••••••••• 
output buffer ........... III .......... " .................. .. 

INDEX .19 

Pago 
Numbers 

18.20,27,52 
14.30 
5.14 

14.45-46,48 
AI. 12,14 
15.12 
5.14 
8.8 
9.78 

22.22,39 
14.45-48 
20.4 
18.46 
6.B 
9.20 
9.32-33 

10.3 
10.14 
5.12 

10.6-7 
2.2; 6.7-9 

12.2; 18.46 
5.11 
5.11; 13.1-14, 

14.11-12 
9.8,18-19 
9.19 
9.65 
3.5,8; 13.13; 14.11,18 

15.6-7,12,14,16, 
16.3-4 
9.71,76,83 

21.13 
17.9 
17.9 
23.8,21-22 
23.21,23 
18.41 
18.35,51 
18.35-36,41,43, 
21.10-11 
18.13-14 
18.15 
14.8 
14.1 _ 
14.3-5,8 
10.18 
14.6 
5.13 

23.15 
9.27 

21.12 
9.66 

14.2,6-7 
14.3-4 
5.10; 14.1 

14.20 



OUTPUT FILE: (compiler question) •••.....•..•••.. 
output functions ........•.•.•.•.•••..•••.•••••.• 
overflow .... ". .................................. . 
P (edi t command) ..............••.••......••.•.•. 
P (prettydef command) ....••••.••.•••.....••••...• 
(P m n) (edi t command) ...........• a ••••••••••••• 

(P m) (cdi t command) ...............•.......•.... 
P-STACK OVERFLOW (error message) •.•...•......... 
P.P.E. (typed by PRINTSTRUCTURE) •.....•......... 
PACK[ X] SUBR .....................•......•...•... 
PACKC[X] SUBR ................•.•...•......•...•. 
pitge .. e •• ~ ••••••••••••••••••••• ,. •••••••••••••••• 

flAGEF AUL TS[ ] ....•. " ..•.• t ••••••••••••••••••••••• 

parameter pushdown list ......•..•.•.......•.•.•. 
parentheses counting (by READ) ....•..•..•..•••.• 
PAREN1UESIS ERROR (error message) ..•.........•.. 
PA THS[ X ; Y; TYPE; MUS T ; AVOID ; ONLY] ..........•.•.••. 
PATlISTPCHECK (in pattern match compilor) ..•.... 
(pattern .. @) (edit conunand) .•...•..••..•.•.... 
p«ttern m«tch (in editor) ...•••......•...•.•.••. 
pattern match compiler ........•..•.....•.••..••• 
PAIVAROEFAUlT (in pattern match compiler) •...... 
PO (pre t tyde f command) .•. J ••••••••••••••••••••••• 

PEEKC[FIlE] SUBR ..............•...•..•...•.•••.. 
place-markers (in pattern match compiler) .....•. 
PlUS[Xl;X2; ... ;Xn] SUBR* .........•....•...•.•..• 
pnilmc ccl_l .••••••••••••• u •••••••••••••• ' ••••••• e I 

I)oames .. 6 ••••• _ ••••••••• u ••••••••••••••••••••••• 

pointC'r ................. 0 •••• 11 •••••••••••••••••• 

POSITION[FILE] SUBR ......•••.••..••..•••••.•..•. 
PP[X] NL* .........••.••. 0 ••••••••••••••••••••••• 

PP (edit command) ............................... . 
PP-[X] NI~· ...... "' •••••••• " ••••••••••••••••••••••• 
PP* (cdi t cornmand) '4, ••• , .••••••••••••••••••••••• 

PPT (edit command) .............................. . 
PPV (edit conunand) ..........................•••.• 
PROEPTH (printstructure variable/parameter) 
precedence rules (for CLISP operators) •....•••.. 
predicatc~ fI ..... 'l •••••• o •• ' •••••• ct •••••••••••••••• 

prefix operat.ors (in clisp;, ...•....•.•••...••... 
PRESCAN[FILE;CHARlST] ...................••••.••• 
PRETTYCOMSPlST (prcttydef variable/parameter) 
PRETTYDEF[PRETTYFNS;PRETTYFILE;PRETTYCOMS; 

RECOMPILEfLG;CHANGES] ...•.•.•••••...•.• 

pre t tydc f commands .....................•........ 
PRETTYFLG (prettydef variable/parameter) .•..•... 
PRETTYlCOM (prcttydef vari&ble/parameter) ...•... 
PRETTYMACROS (prettydof variable/parameter) 
PRETTYPRINT[FNS;PRETTYOEFlG] ...........•.......• 
PRFTTYTRANFlG (c11s~ variable/parameter) .•.....• 
PRETTYIYPE (property name) .......•...•....•..•.. 
PR[TTYTYPELST (file package variable/parameter) 
primary i.nput file •..........•..••.•.......•.••. 
primary output file 4 •••••••••••••••••••••••••••• 

PRIN1[X;FILE] SUBR .........•.•••••••.....•.••..• 
PRIN2[X;FILE] SUBR ........•..•••..•..••.••...••• 

INDEX.20 

Page 
Numbers 

18.2,5 
14.18-20 
13.3,6 
9.2,60 

14.34 
9.60 
9.60 

16.7 
20.5,8 
3.2,5-6,11; 10.2 

10.4 
3.11 

21.4 
12.2,8-9,11; 18.46 
14.11,23-24 

. 5.3 
20.14-15 
23.38 
9.33 
9.21-23,88-89 

23.36-48 
23.39,42,45 
14.35 
14.15,25 
23.44 
13.7 
3.3 
3.1-4,11; 10.1-4,11 
3.1 

14.23 
14.29; 18.46 
9.2,60 

14.31 
9.61 
9.61; 23.31,75 
9.61; 14.38 

20.4 
23.10 
2.3; 5.11 

23.13 
Al.3 
14.36 

Z.9; 5.9; 14.31-38,40, 
44,46; 19.9 

14.33-37 
14.39-40,46 
14.39 
14.36~40,49-50 
2.9; 14.29 

14.46; 23.31-32,75 
14.50 
14.45,50 
14.1-2,4,10 
14.1,4,18 
3.2,8,10; 14.18-19 
3.2,8,10; 14.18-19 



prin2-pnames ..•.......•..•...•.............•.... 
PR I N3[ X; FILE] SUBR •••••••••••••••••••••••••••••• 
PRINT[X;FILE] SUBR •••••••••••••••••••••••••••••• 
PRINT (property name) •...•.•..•..•.••....•...... 
r) r i fl t 11 amo •••••••••••••••••••••••••••••••••••••• 
PRIN10A1E[FILE;CHANGES] ••••••••••••••••••••••••• 
PRINTDEF[LXPR;LEFT;DEF] ••••• ' •••••••••••••••••••• 
PRINTFNS[X] ••••••••••••••••••••••••••••••••••••• 
PRINTtIIS 1 ORY[ ttIS TORY; LINE; SKIPFN; NOVALUES] •••••• 
printing circular lists .•...••.•...•.....••••... 
printlovel ............................ , ......... . 
PRINTLEVEL[N] SUBR •••••••••••••••••••••••••••••• 
PRINlS1RUClURE[X;EXPRFLG;FILE] •••••••••••••••••• 
private pilges ............•..•••.•••••••.•.•••••• 
PROG[ARGS:El;E2;~ •• ;En] FSUBR- •••••••••••••••••• 
PROG label ..................•.•....•..•......... 
PROG1[Xl;X2; ••• ;Xn] SUBR •••••••••••••••••••••••• 
PROGN[Xl;X2; ••• ;Xn] FSUBR- •••••••••••••••••••••• 
programrner's assistant ...........•.....•...•.•.. 
pronramrncr's assistant and the editor ....•.•.... 
programmer's assistant corrunands .......•..•...•.. 
prom·pt character ........•...............••.•..•• .................................. 
PROMPT#FLG (prog. asst. variable/parameter) 
PROMPTCHAR[ID;FLG;HIST] ••••••••••••••••••••••••• 
PROP[X;Y] ••••••••••••••••••••••••••••••••••••••• 
PROP (prettydef corrunand) •••.•.••.•.•.••.••••.••. 
PROP (typed by editor) ....•.•.••••••.•.••....•.• 
prc)per tail .................................... . 
I) ro pe r t y ....................................... . 
p r () ~) e r t y 1 i st. . . . . .. . . . . . . • . . . . . • . . . • • • . • . • . . . • . • 
property name .........•.....••..•...•.•....•••.•. 
proper ty va lue ..............•••••.•••••.•••...••. 
PROPRECORO (record package) ....•.••.....•....... 
PS1EP (in nn assemble statement) ...•.•.......•.. 
PS1EPN (in an assemble statement) •.•...•.••..... 
Plishdown list ...........••..••...••......•...... 
pushdown list functions ...•..................... 
PUT[ATM;PROP;VAL] ••••••••••••••••••••••••••••••• 
PU1D[X;Y] SUBR •.•••••••••••••••••••••••••••••••• 
PUTDQ[X;Y] NL ••••••••••••••••••••••••••••••••••• 
PU1HASH[I1EM;VAL;ARRAY] SUBR •••••••••••••••••••• 
Q (follow·ing a number) •..••...•.•..•.••..•••.... 

QUIT (tencx command) .....................••..... 
QUOTE [ X] NL- ....••...•••••••••••••••••••.••••••• 
QUOTErNS (printstructure variable/parameter) 
QlJOTIENT[X;Y] SUBR •••••••••••••••••••••••••••••• 
R (c d i t co mm il n d ) • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
(R x y) (edit command) .....•••...•.•........••.. 
(R1 x y) (edit command) ••••••••••••••••••••••••• 
RADIX[ N] SUBR ••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••• It •••••••••• " ••••••• 

RAISE[ FLG] EXPR ••••••••••••••••••••••••••••••••• 
RA1SE (edit command) ....•.........•...•....•..•• 
(RAISE X) (edit command) ........................ . 
RAISEFLG (system variable/parameter) •••••••••••• 

INDEX.21 

Page 
Numbers 

10.1,3-4 
14.19 
3.2,8,10; 14.19 

22.45 
10.1 
14.29,37,44,46 
14.38-39 
14.37 
22.22,37-38,60 
21.24-29 
14. 19-20 
2.3; 3.8; 5.10; 14.19 

20.1-10 
3.15 
5.6 
5.7 
5.6 
4.4; 5.6 

22.1-48 
22.61 
22.10-31 
2.4,6,8; 9.2; 15.4, 

22.10,33,51 
22.33,51 
22.33,51,61 
8.7 

14.33,36 
9.85 
5.15 
7.1 
2.3; 3.3; 7.1-3; 16.1 
7.1,3 
7.1,3 

23.53 
18.46 
18.46 
2.8; 4.2; 12.1-13 

12.6-11 
7.1-2 
2.3,6; 8.1-4 
8.4 
7.5 
3.5; 13.13; 14.11,18, 

22 
,14.48; 21.18-19,21 

5.3 
20.4 
13.7 
6.6 
9.7,57 
9.59 
2.3; 3.5; 5.10; 10.1, 

14.11,18,22 
21.22 
9.74 
9.75 

21.23 



RAND[lOWER;UPPER] .•...••••••.•••.•••..••••...••• 
random numbers ......•...••..•.•.•..•..•.••..•.•. 
RANDSE T[ X] ..........•......••••..•.•...•...••..• 
RANDS TATE •.••••.••.••..••••••••••••••••••••••••• 
RATEST[X] SUBR ......•..••••••••.••.•••••••••.••• 
RATOM[FIlE] SUBR ......•..•..••....••.••.. ~ ...••• 
RAT OM S [ A ; F N ] ............••.•••.••....•.•••..•••• 
RC (makefile option) .....•••••..••.•..•••••••••• 
(Re x y) (edit command) ...•••••.••••.•••••••••.• 
(RCt x y) (edit command) ....................... . 
REI\O[FIlE;FlG] SUBR .......••..•.•.••..•....••••• 
REAOBUF (prog. asst. variable/parameter) •••.•••• 
REAOC[ FILE] SUBR ......•...•.•••.•....•••.•.••.•• 
READFIlE[FIlE] .......•...••.•••.••••.••••••..••• 
REAOlINE[lINE;lISPXFlG] .....•...•.••...•.••••.•. 

READP[FILE] SUBR .............•••••••.••.•.•..••. 
REI\OVIC[ (property name) ...•••..•.••.•..•..•••.• 
READVISE[ X] NL* •••••••••.••••••••••••••••••••••• 
REBREI\K[ X] NL* .......•.. t ••••••••••••••••••••••• 

REClAIM[ N ] SUBR ......... ' .....••.•....•..•••.••.• 
RECOMPIlE[PFIlE;CFIlE;FNS;COREFlG] ...••.••..•.•• 

reconstruction (in pattern match compiler) •••••• 
RECORO (record packago) .....••.••.••••.•••.••••• 
record declarations (in clisp) ••.•••..•....••..• 
rocord package (in clisp) .••••••••••.•••••.•••.• 
RECORDS (prettydef macro) ...................... . 
REOEFINE? (compiler question) ••••••••••••••••••. 
REDEFINED (typed by system) ••••.•••••.•••••••••• 
(REDEF INEO) (typed by systElm) •••••.•.••••••••••• 
REDO (prog. asst. command) •••••••••••••••••••••. 
RE[NTER (tenex command) •.•••.••••••••.•••••..••• 
REIiASII[Ol.DI\R;NEWI\R] SUBR ....•....•••.••••.••..•• 
RELBlK[I\OORESS;N] SUBR ....••••.•••.•..••••••..•• 
RELINK[FN;UNlINKFlG] ......•••••.•••••..•••••.••. 
reI i 11 kill 9 .. . . . . . . . . II • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

rolociltioll information (in arrays) .•.•••.••••••• 
REMAINOCR[X;Y] SUBR .•.•••.•••••••••••••••••••••• 
REMARK (trilnsor command) .••••.•.••••.•••..•..••. 
REMOVE[X;L] .........•••.•..••..•.••.••..••.•.••• 
REM PROP[ A 1M: PROP] .......••......••...•..••••.••• 
R[ PACK (cd it command) ............•.....••.•..... 
(REPI\CK @) (edit command) .......••...•••.•••.•.• 
REPLACE (use in records in clisp) .............. . 
(RE PLACE @ WI TH ... ) (edi t command) ...•.••.••••• 
roplaccmcnts (in pattern match compiler) .•..•.•. 
REREAOFlG (prog. asst. variable/parameter) .•.•.• 
RES[ T[] SUDR ..............•..•.....•..•..•..•..• 
RESETFORM[RESETX;RESETY;RESETZ] NL ••.•.••.•..•.• 
RESETVAR[RESETX;RESETY;RESETZ] NL .......••••.... 
(RESETVAR var form. corns) (edit command) •.•.••• 
restoring input buffers ....•..•..•.•..••••.•...• 
RESUL TS[ ] ...........•••••••••••••••••••••••••••• 
RE1EVAL[POS;FORM] SUBR ..•••.••.•..••.••••.••••.• 
RETFNS (compiler variable/parameter) •••••••••.•• 
RETFROM[POS;VAlUE] SUBR •••••.•.•••••••••••.••••• 

INOEX.22 

Page 
Numbers 

13.9 
13.9 
13.10 
13.9-10 
14.14 
14.11-13,25 
14.12 
14.46 
9.59 
9.59 

14.10-11,24 
22.50-51 
14.14,25 
14.28 
9.81; 14.16-17; 22.14, 

19,32,37,47-48,50,61 
14.16 
19.8-10 
14.34; 19.8-9 
15.16,22-23 
3.12-13; 10.14 

14.44,46,48; 18.7-8,10, 
30,33 

23.46 
23.52 
23.35,51 
23.48-58 
23.50-51 
18.4 
8.7 

14.27 
22.14,17,22 
2.4,9; 5.10; 21.4,19 
7.6 

16.10; 21.18 
18.25-26 
18.25-26 
3.8 

13.7 
At.1Z 

6.4 
7.2 
9.75 
9.76 

23.57 
9.42 

23.45 
22.50,52 
16.13; 22.43,55 
5.10 
5.9; 9.77; 18.7 
9.77 

22.30 
21.5,7 
12.10; 15.5; 17.15 
18.20,26,29 
12.10; 15.5; 16.6 



RE TR IEVE (prog. ass t. command) .•................ 
RETRY (prog. asst. command) .................... . 
RETURN[ X] SUBR ................................. . 
RE lURN (break command) ...................•...... 

... " ........................................... . 
RETURN (use in iterative statement in clisp) 
REUSING (record package) .••..•••••••.•.•.•.•..•• 
REVERSE[ L] •••••••••••••••••••••••••••••••••••••• 
(RI n m) (edit command) •.•••.••.••••••••••••.••• 
R l_ \] F N [ lJ r" N ] •• • • • • III • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

(RO n) (edit command) .•..•....•.••...•....•.•... 
RPAQ[RPAQX;RPAQY] NL ........................... . 
R PAQQ[ X ; Y] N L ••••••••••••••••••••••••••••••••••• 

................................................. 
RPLACA[X;Y] SUBR •••••••••••••••••••••••••••••••• 
RPLACO[X;Y] SUBR ....••...................•...... 
RPLS1RING[X;N;Y] SUBR ••••••••••••••••••••••••••• 
RPT[RrlTN;RPTF] ., ••••••••••••••••••••••••••••••••• 
RP1Q[RP1N;RPTF] NL .................•....•.....•• 
RSH[N;M] •••••••••••••••••••••••••••••••••••••••• 
RS1RING[] SUBR •••••••••••••••••••••••••••••••• 0. 
rlll")Ollt ." •••••••••••••••••••••••••••••••••••••••• 

RUN (tenex command) ........•.•••.•... 0 •••••••••• 

run-on spfliling corrections •••..•........•..•••• 
running other subsystems from within INTERLISP 
S (response to compiler question) .••..••••..•... 
(S var . @) (edit command) ...•••.•.•.•.••....... 
SASSOC[XSAS;YSAS] ••••••••••••••••••••••••••••••• 
SAVE (edi t command) .........•..••.••••••..••.••• 
SAVE [XPRS? (compiler question) •.•.•..••...•..•. 
SAVEOEF[ X] ••• 0 •••••••••••••••••••••••••••••••••• 

SAVESE T[ NN1E; VALUE; 10PFlG; FlG] •••••••••••••••••• 
search algorithm (in editor) .•••...............• 
searching files ............•............•.....•. 
sea " chi n H s t r i n 9 s . . . . . . . . . . . . • . . . . • . . . • . . • . . . . • . 
seeH'ching the pushdown list ...•.............••.. 
SEARCHING .• o (typed by breakin) ..•............•. 
S[ARCIIJ'OL[ SRCIIFN ;SRCHPOS] ••••••••••••••••••••••• 
second pass (of tho compiler) .................. . 
segment patterns (in pattern match compiler) 
S[I .. [CTQ[X;Yl;Y2; ••• jYn;Z] NLlIt ...•......•........ 
separator characters ..............•...•......... 
SE1~[ X: Y] ,~lJBR ••••••••••••••••••••••••••••••••••• 
SETA[A;N;V] ••.••••..•••••••••••••••••••••••••••••• 
SETARG[VARjMjX] FSUBR ....•..•..•••......••...... 
SEIBRK[LST;FLG]SUBR ....•..........•....•....... 
SETD[A;N;V] ••••••••••••••••••••••••••••••••••••• 
SE T f N (property name) ...........•............... 
SE1N[VAR;X] NL ................•..•.....•........ 
SEIQ[X;Y] FSUBRlIt ... 0 •••••••••••••••••••••••••••• 

5[1Q (in an tlsscmble statement) •••.•..•••..•...• 
Sf TOOl XSE T ; YSE T] NL .........•....•••............ 
SETSEPR[LST;FLG] SUnR ....................•...... 
SFPTR[FILE;ADDRESS] SUBR ......•.••••.....••.•••. 
SHALL 1 LOAD (typed by dwim) .•.•.....•••........ 
s h are d p a ~, e s . . . . . . . . . • . . • • . . . . . . . . . • • • . • • • . 0 • • • • 

shared system .• ~ .•••.••..••••••••.•••••••.•.•••. 

INDEX.23 

Page 
Numbers 

'22.22,26,34 
22.21-22 
5.7 
2.9: 15.6-7,16: 16.1. 

4 
23.26 
23.56 
6.4 
9.8,53 

14.9 
9.8,53 
5.9; 14.27,32; 22.43 
5.9; 14.27,32-33, 

22.43 
5.3 
5.2 

10.7,12; 16.10 
B.I0-ll 
8.11 

13.!) 
10.5; 14.12 
2.5; 14.23; A3. 1 
3.15 

17.5,25-27 
21.18 
18.4 
9.36 
5.15 
9.72,74,83-84 

18.4 
8.7-8 

22.40,43,55 
9.23-25 

14.7 
10.8-10 
12.6,9 
15.21 
12.11 
18.34 
23.41-43 
5.4-5 

14.12-15,19,24 
5.8 
3.8; 10.13; 16.10 
8.12 

14.12-13,15.19 
3.8; 10.14 

23.70 
13.10-12 
5.8 

18.38 
5.8 

14. 12 -13, 15, t 9 
14 .6 -7 , 23 ; 16. 10 
17.17 
3.15 
3.15 



shilring ......... tit ••••••• t •••••••••••••••••••••••• 

SHOW (transorset command) •...••.••••..•.. e •••••• 

(SHOW . x) (ed i t command) ...•...••.•.••••••.•••• 
SIDE (property name) ....•••••.•..••••.•••••••••• 
SIN[X;RAOIANSFLG] ..........•.•...•.•..•••.•...•. 
skip-blip ...................................... . 
SKOR ......•.•••. e ••••••••••••••••••••••••••••••• 

SKREAO[FIlE;REREADSTRING] ....••.••...•..•..•..•. 
slot (on pushdown list) •••••••••..••••••••••••.• 
small intf!gers ..........•••••.••.•••.••••••.•••• 
SMI\LlP[N] .. "" .... " ... " ........••• " .....•.•....••• 
SNDMSG (prog. asst. command) ................... . 
SOME[SOMEX;SOMEFN1;SOMEFN2] •.•.•.•.•..••...•.••. 
SORT[DATA;COMPAREFN] ........•.•...•.•.••.•..•••. 
sr (in an assemble statement) .•••.••..•••••••••• 
space . " . " .. " " " " " " ... " " . " •.•••.••.••. " " ••.•••••• flo 

SPAC[S[NjFILE] SUBR ..................•.......... 
SP[CVARS (compiler variable/parameter) ..••.••••• 
spelling completion ....•..•• ~ ••..••..••••••.•••. 
spelling correction ...•..•.••••••••••••.•••••..• 
spelling correction protocol .••..•••••..•...••.. 
spf!lling corrector .......•....•••.••.•.••••••••• 
s p e 11 in g 1 i s~t s .... ~ ................•............• 
SPELLINGSI (dwim variable/parameter) .•.••••••••• 
SPELlINGS2 (dwim variable/parameter) ....••...••• 
SPELLINGS) (dwim variable/parameter) .•..••...•.. 
(SPlITC x) (edit command) ...................... . 
spread functions .....••..•••.••••••••••••••••••• 
spreading arguments ..•......•..••..•.••...•••••• 
SQRT[N] ."." ........•.•...•••••.••••••••••.•••••• 
SQRT OF NEGATIVE VALUE (error message) •••••••••• 
S(lUarc brackets ...........•...•..•.••.•..••..••• 
square hrackets (inserted by prettyprint) •.•••.. 
SRCCOM ...•• " .......... " ••••• " ..................... . 
ST (response to compiler question) ••.••••••...•• 
stack pOSition .....••••.••••••••••••.•••••••.••• 
stntistics .. " .. " ............................... . 
SlKARG[NjPOS] SUUR •••••••••••••••••••••••••••••• 
STKARGS[POS] ...............................•..•• 
STK[VAl.[POS;fORM] SUBR .•..........•............• 
S Tt-.:NA~1Er POS] SUBR ••••••••••••••••••••••••••••••• 
STKNARGS[rOS] SUBR •••••••••••••••••••••••••••••• 
S TKNTJI[ N; POS] SUBR ••••••. , ••••••••••••••••••••••• 
S TK POS[ r N : N ; POS ] ................................ . 
STKSCAN(VAR;POS] SUBR ••••••••••••••••••••••••••• 
STOP (cd it command) ..... " ........•.•...••.....•. 

STOP (at the end of Q file) ...••••.•.•.••••••••• 
STORAGE[ F'LG] •• " •••••• " •• t, ••••••••••••••••••••••• 

storilge allocation .........•..•...•..•.•.....•.• 
STREQUAL[X;Y] .......••....••.•...•••...•.•..••.• 
STRF (compiler variable/parameter) ••.•..•••..••. 
string characters .........••••••••••.•••••.•.••. 
strinn functions ..............•.••••.•..•••..•.. 
stri.ng pointers ..........••..•••••••.•.••••••••• 
string storage ........•...•••.••.••••••••.•••••• 
STRINGP[X] SUBR .•............•...••••.••••...••• 

INDEX.24 

Page 
Numbers 

3.15 
Al.10 

9.66 
22.45-46,56-57,59,61 
13.9 
12.11 
17.21-22 
14. 17 -18,28 
12.2,6,8,10 
3.1,5; 5.12; 13.1-2 
3.5; 13.2,4 

21.21; 22.34 
5.13 
6.10 

18.38,46 
3.2; 14.13 

14.19 
18.18,26,29 
17.11 
9.82,86 

17.5-7 
17.2,10,20,26 
17.11-14 
17.12-14,18,24 
17.12-14,18,23-24 
22.55; 17.12,14,16,24 
9.77 
4.2; 8.1 
4.2 

'13.8 
13.8 
2.5 

14.38 
6.12 

18.2,4 
12.6-7,9-10 
22.63 
12.8-9; 15.9 
12.9 
12.10-11; 15.9 
12.7 
12.8 
12.7-9 
12.6-7,9 
12.10 
9.71-72,76,83-85, 

15.20 
14.27-29,38 
10.16 
3.11 

10.5 
18.3-4,8 
3.1,10-11; 10.11 

10.5-10 
3.1,10-11; 10.6,11 

10.11-12 
5.11; 10.5 



s t r i r1 9 s .•••••.•••.•••••••••••••••••••••••••••••• 
STRPOS[X;Y;START;SKIP;ANCHOR;TAIl] •••••••••••••• 
STRrOSl[A;STR;START;NEG] •••••••••••••••••••••••• 
str'ucture modification commands (in editor) 
SlIB1[X] •.••••••••••••••••••••••••••••• , •••••••••• 
SlJBLIS[ALST;EXPR;FLG] ••••••••••••••••••••••••••• 
SliBrAIR[OLO;NEW;EXPR;FlG] ••••••••••••••••••••••• 
SlJBR (function type) ...••.•...•...•..••.•••.•.•• 
SlIBRJ1t (function type) ....•.•..••••.•.•.••••••••• 
SUBRP[ FN ] SUBR •••••••••••••••••••••••••••••••••• 
S II Ll r'" s ••••••••••••••••••••••••••••••••••••••••••• 
SllBSET[ MArX ;MAPFNl ;MAPFN2] •••••••••••••••••••••• 
SUBST[X;Y;Z] ••••.•••••••••••••••••••••••••••••••• 
subs t i ttl t ion macros .....• II • ••••••••••••••••••••• 

SUBSTRING[X;N;M] SUOR ••••••••••••••••••••••••••• 
SUBSYS[FILE/FORK;INCOMFIlE;OUTCOMFIlE; 

ENTRYPOINTFlG] •••••••••••••••••••••••••••• 
S U~1 (c 1 i s pit era t i ve s tat erne n top era tor) ••••.••• 
(SURROUND @ IN ••• ) (edi t command) ............. . 
SVfLG (compiler varinble/parameter) •..••••.••••• 
(SW n m) (edit co~n~nd) ...•.••••••••.•..•••••••• 
SY (pron. asst. command) ••.•.••••••••••••••.•••• 
sYTllbolic file input ......•.•....•....•..••...•.. 
symholic file output ....•.••.•••••••.••••••••••. 
S YMLS T (cd i ta command/parameter) ...•..••.•...••. 
SYSBlJr[FLG] SUBR •••••••••••••••••••••••••••••••• 
SYSFIlES (system variable/parameter) ..•••.•••••. 
S YSIIASIII\RRAY (sys tern variable/parameter) •.••..•. 
S YS I Nr F I L [] SUBR •••••••••••••••••••••••••••••••• 
SYSlINKEOI"NS (system variable/parameter) ••.••••. 
SYSOlJT[ F I I.E] EXPR ••••••••••••••••••••••••••••••• 
SYSOUTGAG (system variable/parameter) ••••.•.••.• 
SYSPROPS (prettydef variable/parameter) ••...•••• 
SYSPROPS (system variable/parameter) ••••.••.•••• 
SYSTA1' ... 'I •••••••••••••••••••••••••••••••••••••• 

T FIXED (typed by dwim) ••.•.••••••••.••••.•••••• 
tat) ................... 'I •••••••••• " •••••••••••••• 

TAB[POS;MINSPACES;FIlE] ••••••••••••••••••••••••• 
tab .( cd i ta command/parameter) •••••••.••••••••••• 
tail of a list " It •••••••••••••••••••••••••••••••• 

TAILP[X;Y] ...................................... . 
TAN[X;RADIANSFlG] ••••••••••••••••••••••••••••••• 
TCOMrL[rIl~ES] ••••••••••••••••••••••••••••••••••• 
TCONC[P1R;X] •••••••••••••••••••••••••••••••••••• 
TECO (prog. asst. command) •...••••••.•.•.•..•... 
teletype .............•..••.•••.•.••...•••.•••••. 

toletype initiated breaks ... ~ •••••.•.••.••.•••.• 
TENEX[STR] •••••••••••••••••••••••••••••••••••••• 
lENEX ........................••...•..•.•.....•.. 

............................................. 
TERPRI[FILE] SUBR ••••••••••••••••••••••••••••••• 
TEST (edit command) ....•..••.•••.••....•...••... 
TEST (transorset command) •.•••••...•.••••••.•..• 
TESTMODL[FlG] ••••••••••••••••••••••••••••••••••• 

INDEX.25 

Page 
Numbers 

3.10; 5.11; 14.11 
10.8-9; 14.7 
10.9-10 
9.36-60 

13.3 
6.6-7 
6.6-7 
4.3; 8.4-8 
4.3: 8.4-6 
8.1,3-5 
8.1 

11.4 
6.5,7 

18.16 
3.10: 10.6,11 

14.48; 21.18-21; 22.34 
23.19 
9.48 

18.3-4 
9.59-60 

22.34 
14.27-28 
14.29-38 
21.14 
14.21 
14.49 
7.5,7 
2.9; 14.26; 16.9 

18.26 
2.9; 14.21,26 

22.65 
14.33 
7.3 

21.24 
17.8 
14.13 
14.37 
21.12 

5.15 
5.15 

13.9 
14.44,46; 18.7-10,30-31 
6.2-3 

21.21; 22.34 
9.61: 14.1,4,10-11,16, 

20,23,31 
16.2-3 
21.24 
2.4,6,9: 3.2,6,15, 

13.13; 14.2-4,6-8,40, 
21.2,4,18-19,21-22, 
23.76: 20.6 
14.19 
9.79 

Al.l1 
22.41 



TESTMODEFlG (prog. asst. vari~ble/parameter) 
THtREIS (clisp iterative statement operator) 
TJlRU (edi t commilnd) ............................. . 
THRU (in event specification) .••••••...•••.•..•. 
TIM[[TIMEX;TIMEN;TIMETYP] NL ................... . 
time-slice (of history list) ..•...•..•..•.•••.•. 
T IMES[ Xl; X2 ; ••• ; Xn] SUBR* ••••••••••••••••••••••• 
TO (clisp iterative statement operator) .•••••••• 
TO (edit command) ..........••••••••...••.•••••.• 
TO (in event specification) ..•...•••.•.•••...•.• 
too fe\~ arguments .......•••..••.••••...••••.....• 
too milny argumen ts ..••••..••.••..•••.••••••••••• 
TOO MANY FILES OPEN (error message) ••.•.•.••.•.• 
TOP (as argument to advise) •..•.••••.••....••..• 
top level value ...........••.••...••..•...•...•• 
TRACE[ X] NL* ..........•••..••••.••••.••...•••••• 
trc1lls1ation notes ....•••••.•.••.••••.••..•.••.•• 
t ,~ il n s 1 a t ion s (i n c lis p ) . . • • • • . • • • • • • . • • • . • . . • • • . 
TRANSOR[SOURCEFILE] ••••••••••••••••••••••••••••• 
TRI\NSOR .....•.•...•..•.••••••••••••••••••••••••• 
trilnsor s'aJeep ........•.••..•.••.•••.••••..••.••. 
TRANSORFNS •••••••••••••••••••••••••••••••••••••• 
TRANSORFORM ••••••••••••••••••••••••••••••••••••• 
TRANSORSET[ ] •••••••••••••••••••••••••••••••••••• 
TRAPCOUNT[ X] SUBR ••••••••••••••••••••••••••••••• 
TREAT AS CLISP ? (typed by dwim) .••......•..••.• 
TREATASCLISPFLG (clisp variable/parameter) .•••.. 
TR[ELST (printstructure variable/parameter) 
TREEPA TtfS[ X; Y; TYPE ;MUST jAVOID jONLY] ••••••••••••• 
TREEPRINT[X;N] •••••••••••••••••••••••••••••••••• 
t rlJ C .•.••••••••••••••••••••••••••••••••••••••••• 
TRUSTING (OWIM mode) ......••..••..•••..••••••••• 
TTY: (cd it command) ......••...••••••.•••.•.•..•• 
TTY: (typed by editor) ••••••..••••••.•.••.•••••• 
type numbers ..........•...•...•••..•...•.•...•.• 
TYPE -AHEAD (prog. ass t. conunand) ...•.•.••..••••• 
TYPEP[X;N] •••••••••••••••••••••••••••••••••••••• 
TYPERECORD (record package) •.••..•••..•••••••••• 
U (value of ARGLIST) ••••• ' ...................... . 
(U V W) (value of ARGLIST) •••••••••••••••••••••• 
u - CAS E [ X] •••••••••••••••• " •••••••••••••••••••••• 
U.B.A. (error message) .......................... . 
U.B.A. breaks •••••••••••• " •••••••••••••••••••••• 
U .0. F. (error message) .... ' ••.•••.•••..•....•••.. 
U.O.F. br~aks ••.•.•.••••• t· •••••••••••••••••••••• 

U .0. F. T (typed by dwim) ..•••••.••....•......... 
U.D.F. T FIX? (typed by dwim) •••.........•...... 
Ull (hreak command) ...•........••..............•. 
UCASElST (prettydef variable/parameter) .•..•.... 
UNADVISE[ X] NL* ••••••••••••••••••••••••••••••••• 
UNAOVISED (typed by system) •.••....•....••.....• 
UNARYOP (property name) .•••••.••.••...••••••••.. 
UNBLOCK (edi t command) ...••...••••••.••.•••...•. 
unllound a tom .................................... . 
u" h 0 xed n 1I rob e r s ••••••••••••••••••••••••••••••••• 
unboxed numbers (in arrays) •••...••......•..••.. 
unboxing ...... ,. ................................. . 

INDEX.26 

Page 
Numbers 

22.41 
23.20 

9.54-57 
22.13 
21.1-2 
22.8,54 
13.7 
23.22,24 

9.54-57 
22.13 
4.3 
4.3 

16.8 
19.5,7 
5.1,3,9 

15.1,7,14,18-19,21 
A1.4 
23.30-33 
Al.3-4 
Al.1-17 
Al.14 
Al.4 
Al.4 
Al.2,8 
18.19 
23.66 
23.66 
20.8 
20.16 
20.9 
2.2; 5.4 

17.3,5,23; 23.5,66-67 
9.66,70-72; 15.19-20 
9.71 

10.14 
22.28-29 
10.15 
23.52 
8.6 
2.3; 8.6 
9.74; 14.43 
2.8; 16.1,4; 17.15 

15.10 
16.1-2,4; 17.2,15 
15.11 
17.8 
17.8 
15.6 
14.43 
19.6,8-9 
15.24 
23.69 

9.79 
16.1; 17.14-18 
13.13 
3.8; 10.12 

13.1-2,12 



lINBREI\K[ X:I NL* .................................. . 
lINBREI\KO[FN;TAIl] ••••••••••••••••••••••••••••••• 
(llNBREI\KI\BL E) •••••••••••••••••••• " •••••••••••••• 
UNClREI\KIN[FN] ••••.•••••••••••••••••••••••••••••• 
UNBROKEN (typed by system) .....................• 
UNBROKEN (typed by advise) ...........•.........• 
UNBROKEN (typed by comp 11 er) .......•.•.•........ 
undefined function ....................•••.•••••• 
UNDEF IN[D OR I lLEGAL GO (error message) •••....•. 
(UNDEFINED TAG) (compiler error message) ....••.. 
(UNDEFINED TAG) (error message) ................ . 
(UNDEFINED TI\G, ASSEMBLE) (compiler error message) 
(UNDEFINED TAG, LAP) (compiler error message) 
UNDO (edi t command) .....•....•••.••...•......... 
UNOO (profj. asst. command) •••••••••••••••••••••• 

.......................... " ................... . 
II I'J (I () i 11 g . . . . . . . . . . . . . . . . • . • • • . • . • . • • . . • . • • • • • • . . . 
undoinn (in editor) .........•.•....•..•......... 
undoing DWHt corrections .•.........•............ 
undoing out of order ...............•.........•.. 
lJN[lOLISPX[ LIN[]' ••••••••••••••••••••••••••••••••• 
UNnOL ISPX 1 [EVENT; r=' LG; DWIMCHANGES] ••••••••••••••• 
UN[)OLST (editor vuritlhle/parameter) ..•..••..••.. 
UNDONE (typed by cdi tor) ..•..••••..............• 
UNOON[ (typed by system) .........•.............. 
UNOONl..SE TO[UNOOFORM; UNDOFN] NL •••••••••••••••••• 
UNIlOSI\VE[ONOOFORM;UISTENTRY] •••••••••••••••••.••• 
UNFIN() (editor variable/parameter) ••......•..... 

UNIONl.X;Y] •••••••••••••••••••••••••••••••••••••• 
UNLESS (clisp iterative statement operator) 
UNPI\CK[X;FLG] SUBR •••••••••••••••••••••••••••••• 
unreaciing ........................•• ' •.....•.••.•. 
UNSI\VED (typed by dwim) ........•..•..•...•...•.. 
UNSI\VED (typed by editor) ....•.....•.....•..•.•. 
lINSI\VEDLF[X;lYP] •••••••••••••••••••••••••••••••• 
lIN,SE T[ NI\f'1r ] .•••••••••••••••••••••••••••••••••••• 
UNlIL (clisp iterative statement operator) .•.... 
UNUSUl\l. CPR I\RG LIST (error message) ........••.. 
liP (eeli t command) ........•..•....•.........•..•. 
UPOI\TFFILES[] ••••••••••••••••••••••••••••••••••• 
lIPflNDFLG (editor variable/parameter) ....•....•. 
URFAO[FIL[;FLG] SUBR •••••••••••••••••••••••••••• 
USE (prog. asst. command) ...•......•.••.......•. 
USF -l\f~GS (property fwme) ...........••.•.•..••••. 
(USED I\S ARG TO NUMBER FN?) 

(compiler error messane) ......•.•...••.•.•• 
(USED BIKI\PPLY WHEN NOT APPLICABLE) 

(compiler error messane) ..................• 
USfREXf.C[I.ISPXID;LISPXXMI\CROS;LISPXXUSERFN] 
US[RMACROS (editor variable/parameter) .........• 
USI fH11\CROS (pre t tyde f command) .........•......•. 
lISLRNAf1C[I\] •••.••.•••••••••••••••••••••••••••••• 
USFRNAME (prog. asst. variable/parameter) ......• 
USlRNI\ME (system variable/paramoter) .......•.... 
USERNI\MflST (prog. asst. variable/parameter) 
USERNUMBER[ A] ••••••••••••••••••••••••••••••••••• 

INDEX.27 

Page 
Numbers 

15.17,21-22; 21.6 
15.22 
15.21 
15.22 
15.24 
19.6 
18.7 
16.1; 17.14-18 
5.7; 16.8 

18.50 
5.7 

18.50 
18.50 

, 9. 10,78; 22.61 
22.13,22-23,43,58,61, 
17.4 
22.5,38,55,62 
9.10,36,78-79; ~2.62 

22.23; 23.63 
22.23,42 
22.58 
22.59 
9.72,78-79,84; 22.62 
9.78 

22.22,59 
22.59 
22.45-46,56 
9.25,35,41-42,46,48-51. 

72-73,76,84 
6.9 

23.22 
10.2-3 
22.10-11,18,51 
17.17-18 
9.85 
8.8; 17.17-18 

22.43,56 
23.22 
16.9 
9.12,15-16,25,43 

14.45,50-51 
9.25,28,44 

14.11-12,15,24 
22.14-15,17,22 
22.45 

18.51 

18.51 
22.49 
9.70; 14.35 
9.70,80; 14.35 

21.23 
22.65 
21.24 
22.65-66 
21.23 



USERSYMS (edita command/parameter) ••••...•••.••• 
USERWOROS (dwim variable/parameter) •.•••••.••.•• 
USFRWOROS (system variable/parameter) •.•.•••••.• 
USING (record package) ....••••••••••••••..••••.• 
VAG[ X] SUBR ••••••••••••• " ••••••••••••••••••••••• 
VALUE (property namo) .•..•••••••••••••••••••••.• 
value cell .............. '1 ••••••••••••••••••••••• 

va] ue of a break .....•••. ' •••••••••••.••••••••••• 
valuo of a property .•••••••••••••••••••.•••••••• 
VALUEOF[ X] NLlt ••••••••••. ' ••••••••••••••••••••••• 
variable bindings .•.••••. ' •••••••••••••••••••.••• 
VARIABLESLPOS] •••••••••••••••••••••••••••••••••• 
VARPRIN1[OONELST;TREELST] ••••••••••••••••••••••• 
VARS[FN;EXPRFLG] •••••••• , ••••••••••••••••••••••• 
VARS (prottydof c·ommand) .•••••••••••••••.••••••• 
version numbers •......••••••••••••••.••••••••••• 
VIRGINFN[fN;FLG] •••••••••••••••••••••••••••••••• 
WHEN (clisp iterative statement operator) ••••••• 
WHERE (clisp iterative statement operator) •.••.• 
WlIEREIS[X] ....•.•.......••.••.•••••••••••••••••• 
WHILE (clisp iterative stat.ement operator) ••.••• 
WIDEPAP[R[FLG] •••••••••••••••••••••••••••••••••• 
WITH (in REPLACE command) (in editor) •..••••.•.• 
WI TH (i n SURROUND command) (in edi tor) .•..•••••• 
WOHLD (as argument to RELINlK) ••••••••••••••••••• 
WRITEF1LE[X;FILE;DA1[FlG] ••••••••••••••••••••••• 
(XTR • @) (edit command) .•..•.•••••.•••••••••••• 
YESFNS (printstructure variable/parameter) ••.••• 
ZEROP[X] .........•..•.•••.••••••••••••.••••••••• 
o (edi t command) .....•.•••••••••••••.•.•.••••••• 
~ (carr i age-return) .......•••••••••••••••••••••• 
- (in pattern match compiler) ................... . 
- (clisp operator) ....•••••••••••••••••••••••••• 

(in pattern match compiler) .................. . 
(use with <.> in clisp) ...................... . 

! (use with <,> in clisp) ..................... . 
o (edi t command) .....•••••••••••••••••••••••••• 
E (prog. ass t. command) .••..•••••••.••••••••••• 
E (edit command) ....•••••••••••••••••••••..•••• 
EVAL (hrp.ak command) .•••.••••••••••.••••••••••• 
F (prog. asst. command) ••••.••••••••••••••••.•• 
F (edit command) .....•••••••••••••.•••••••••••• 
GO (break command) •...•••••.••.•••..••••••••••• 

. N (prog. ass t. command) .•••••••••..•••••••••••. 
!N (edit command) ...•••••••••••.•••••••••••••••• 
! NX (edi t command) ..••.•••••••.••••••••••••••••• 
! OK (break command) •..••••••••.•••••.••••••••••• 
! UNDO (ed i t command) .••..•••.•••••••.••••••••••• 
!VALUE (break variable/parameter) •••.••••••••••• 
!VALUE (with advising) ••••••••••••••.••••••••••• .. . ............................................. . 
# (followed by a number) 

#I #[ COMS] NL* .................................... . 
HI (typed by system) ••..•••••••••••••••••••••••• 
II (in INSERT, REPLACE, and CHANGE commands) 

INDEX.28 

Page 
Numbers 

21.14 
17.13-14,23,27-28 
9.85-87 

23.56 
13.13-14 
5.9; 22.43,55-56 
2.3; 5.1,9; 12.1. 

16.1 
15.6; 16.2 

7 .1 
21.20; 22.33,46,54 
2.8; 11.5-7; 12.1-6 

12.9; 15.10 
20.9 
20.10 
14.34 
14.2 
15.23 
23.22 
23.29 
14.48 
23.22 
14.39 
9.42 
9.48 

18.25 
14.29 
9.45 

20.3 
13.4 
9.4-5,17 
2.5 

23.40 
23.14 
23.41-43 
23.16 
23.16 

9.18 
22.31 
22.31,61 
15.7 
22.31 
.22.31,61 
15.7,16 
22.31 
22.31,61 
9.19-20 

15.7,16 
9.78 

15.7,16 
19.2,4 
3.2,10; 14.11-14,19 
3.8; 10.13; 13.13, 

14.19 
9.29,63 
2.4; 14.10.23,25 
9.43 



:# 0 .......•.•.•.•.•.•..•.•••••••••••••••••••••••• 
#0 (use in history commands) ............••••.•.. 
#n (n a number, in pattern match compiler) .••••• 
HRPARS (prettydef variable/parameter) .....••..•. 
#SPELLINGSl (dwim variable/parameter) •.•••••••.• 
#SPELLINGS2 (dwim variable/parameter) •....••••.• 
#SPELLINGS3 (dwim variable/parameter) ..•••••.•.. 
#LJNOOSAVES (prog. asst. variable/parameter) 
#USERWORDS (dwim variable/parameter) ....•..•..•• 
$ (alt-mode) .................•....•.........•••• 
$ (alt-mode) (in edit pattern) ..••.•••.•••.••.•. 
$ (ill t-roorie) (prog. tlsst. corrunand) ....•••••••••• 
$ (alt-mode) (in clisp) ....•.•....••.•.•.•.•••.• 
$ (alt-mode) (in spelling correction) ..••..••.•• 
$ (alt-mode, in R command) (in editor) ••.•••..•. 
$ (dollar) (odita command/parameter) .•.•.••••.•. 
$ (dollar) (in pattern match compiler) ..••.•.... 
$$ (two alt-modes) (in edit pattern) ...•.••••.•• 
$SVAL (usc in iterative statement 1n clisp) 
$1 (in pattern match compiler) •.........•••..••. 
$BUFS (alt-modeBUFS) (prog. asst. command) .•..•. 
$C (a 1 t-modeC) (edi ta command/parameter) •.••.... 
$N (in pattern match compiler) ................ .. 
$Q (a 1 t -modeQ) (ed i ta command/parameter) •.•••••. 
SW (alt-modeW) (edita command/parameter) •.••.•.. 
% (escape character) •.••••....••••.•..•••••..••. 

% (usc in comments) 
%X (use in comments) 
& (in edit pattern) 
.& (in pattern match 
& (typed hy editor) 
& (typed hy system} 

compiler) 

• ••• ill •••••••••••••••••••••••••••••••••••••••••• 

, (cdita command/parameter) ••.•.•••...•••.•.•••. 
• (in a lap statement) .....••••..••..•.••••.•••• 
, (in pattern match compiler) .•.•.•.....•.••.••• 
I (clisp operator) ..••••.•.••.••••.....•••....•. 
( 
( ) 
) 

• ••••••••• " It ••••••••••••••••••••••••••• 0 ••••••• 

•••••••••• fro ••••••••••••••••••••••••••••••••••• 

· ......................... " ................... . 
1r (in a lap statement) ...•.•.•.........•••.....• 
JT( (in (tn assemble statement) ••...•••.••.•..••..• 
1r (in pattern match compiler) •...•.......•.....• 
_ (type(1 hy cd i tor) ..••..•..••••••••.••••••••••• 
JT( (in MUD command) (in editor) •...••..••••...••. 
_ (usc in comments) ........•..•....•...•••..•..• 
JT( (usc in prettydef command) .•••.••....•••.••... 
_JT(JT( (in interscope output) ...••..•••.....•...••• 
JT(JT(*** (in compiler error messages) ............. . 
1r1r*JT(*AlflNlION USER -- (typed by system) ....•..• 
**nREAK** (in backtrace) ..........•.....••...••• 
1r*COM~I[Nl*JT( (typed by editor) ••...••..••.....••. 
* * CO~I~I( N T * * (typed by sys tern) .....•.......•••••• 
1r*COMMENT**FlG (prettydef variable/parameter) 
JT(*CUTOFF*JT( (typed by PRINTSTRUCTURE) .••.••..•••• 
**EDITOR** (in backtrace) ..•••••.••••••••••.••.• 

INDEX.29 

Page 
Numbers 

12.4-5 
22.18,50-51 
23.44 
14.38 
17.14 
17.14 
17.14 
22.39,56-57,60 
17.14 
14.2 
9.12,21 

22.23-25 
23.13-14 
17.11,25 
9.58 

21.13 
23.41 
9.22 

23.28 
23.39 
9.7; 22.30; A3.1 

21.16 
23.41 
21.13 
21.14-15,17 
2.6; 3.2,10; 14.10-14, 

18-19,25 
14.41 
14.41 
9.11,21 

23.39 
9.2 

14.19 
17.16 
21.11,14 
18.42 
23.39 
23.13 
3.2; 14.13 
3.7 
3.2; 14.13 

18.42 
18.39 
23.40 
9.2 
9.47 

14.30,39 
14.36 
20.15 
18·49 
22.65 
15.9 
9.60 

14.31 
9.61; 14.31 

20.4 
15.9 



**TOp·· (in backtrace) ..••••••••.••••.•••••••••• 
*ANY* (in edit pattern) ...•••••••••••••••••••••• 
*FORM* ...................... tI ••••••••••••••••••••••• 

, (edita command/parametor) ••••••••••••••••••••• 
(in edi t pa t tern) ......•••••••••••••.•••••••• 
(in pattern match compiler) ••••••••.••••••••• 
(typed by sys tern) .••...••..••••••••••••••••••• 

-> (break command) ........••.•••.••••••••.••••••• 
-> (in pattern match compiler) •••••••••••••••••• 
-> (typed by dwim) ..•.....••••••••••••••••••••••• 
-> (typed by editor) ........••••••••••••••••••••• 
-n (n a number, edit command) .................. . 
(-n el ... em) (n a number, edit command) ••••••• 

................ ,; ............. I, ••••••••••••••••••••••• 

(edita command/parameter) ••••••••••••••••••••• 
• (in pattern match compiler) ••••••••••••••••••• 
· (in a floating point number) •••••••••••••••••• 
· notiltion ............... ' ...................... . 
.. (edi t command) .•.•••• , .••••••••••••••••••••••• 

(in edit pattern) ..•..•••••••.••••••••••.•••• 
( pr·og. ass t. command) •••••••••••.••••••••••• 

· .. (typed by dwim) ......••••••••••••••.•••.•••• 
· .. (typed by ed i tor) ..•.••••••••••••••••••.•••• 
· .. (typed by sys tern) •••.••.•••••..••••••••••••• 
/ (edita command/parameter) .•••••••••••••••••••• 
I functions ......................................... . 
/RPlNOOE[X;A;O] •..•.•••••••••••••••••••••••••••• 
(2ND. @) (edit command) ....................... . 
( 3 RD. @) (e d i t c omman d ) .••••••••••••••••••••••• 
7 (insteao of ') ........•..••••••••••••••••••••• 
8 (instead of left parenthesis) ................ . 
9 (i n s tea (I 0 f r 1 9 h t par e n t hi e s 1 s ) •••••••••••••••• 

( cd i ta command /parameter). ••••••••••••••••••••• 
(typed by sys tern) ..•.••.•••••••••••••••••••••• 
(clisp operator) ......•.••••••••••••••.••••••• 

(: el ... em) (edit command) •••.•••••••••••••••• 
; (cdita command/parameter) .••••••••.••••••••••• 
(; • x) (edit conunand) .••••••••••••••••••••••••• 
<.> (usn in clisp) ........•••••••••••••••••••••• 

(break command) .•..•...•••••••••••••••••.••••• 
= (ndita command/parameter) .................... . 
= (i n alii pst ate men t ) . . . . . . .. . . . . . . . . . . . . . . . . . . . 

(in pattern match compiler) ..•..•..••.••••••.• 
= (tYllCU t,y (Jwim) ........•.•.•.••....••.••.•...• 
= (tYIJe(1 hy eel i tor) ............•.•••.•.•.•.•••.. 
= (i n everl t address) ....•...•.••••••.••••.....•. 
-- (in edj t pattern) ......•.•••.••••••.••••••••• 
== (in pattern match compiler) ................ .. 
=> (in pattern match compiler) ................ .. 
=E (typed by editor) ....•.•.•••.••••••••••••.••• 
=fDITF (typed by editor) ••••••••.••••••••.•••••• 
=EDITP (typed by editor) •••••••••••••••••••••••• 
=EOITV (typed by editor) .••••••••••.•••••••••••• 
? (edi t command) .....••..•••••••••••.••••••••••• 
? (edi ta command/parameter) ••••••••••••••••••••• 
? (typed by dwim) ......••••••••••••••••••••••••• 
? (typed by editor) ••••••••••••••••••••••••••••• 

INDEX.30 

Page 
Numbers 

15.9 
9.21 

12.4 
21.10 
9.11,22 

23.41 
14.20 
15.11 
23.46 
17.3-4,6-7 
9.58 
9.3,17 
9.5,36 
3.7; 14.13 

21.12 
23.42 
3.6 
2.1 
9.33 
9.22-23 

22.21-22 
17.4,6 
9.13,15 

14.17; 22.48 
21.9,12 
22.40,57-58 
22.57 
9.30 
9.30 

17.16 
9.82; 17.2,7,16-18 

1 7 . 2 , 7 • 16 - 1 7· 
21.14 
2.8; 15.4 

23.12 
9.14,40 

21.16 
9.76 

23.16 
15.10 
21.13 
18.41 
23.39 
17.5,7 
9.12 

22.12 
9.22 

23.39 
23.46 
9.82 
9.86 
9.85 
9.85 
9.2,60 

21.13 
17.6-7 
9.3 



? (typod by systom) •.••••••••••••••••••••••••••• 
? = (b r~ e a k c 0 mm and ) • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
?? (prog. ass t. command) •••••••••••••••••••••••• 
@ (break command) .••.•••••••••••••••••• ~ •••••••• 
@ (odi til command/parameter) •••••••• -•••••••.••••• 
@ (in a lap statement) •••••••••••••••••••••••••• 
@ (in pattorn match compiler) ••••••••••••••••••• 
@ (in ovent specification) •••••••••••••••••••••• 
@ (location specification) (in editor) •••••••••• 
(@1 THRU @2) (edit command) ••••••••••••••••••••• 
(@1 TlIRU) (odit command) •• -•••••••••••••••••••••• 
(@1 TO @2) (edit command) ..................... .. 
( @ 1 TO) (ed i t command) •.•••••••••••••••••••••••• 
@@ (in event specification) ••••••••••••••••••••• 
[ .............................................. . 
[,] (inserted by prettyprint) ••••••••••••••••••• 
\ (e d i. t C ornrna n d ) ..•••••••••••••••••••••••••••••• 
\ (typed hy sys tern) ••••••••••••••••••••••••••••• 
\ (in event address) •••••••••••••••••••••••••••• 
(\ atom) (edit command) ........................ . 
\P (edit cOnuTlilnd) ••••••••••••••••••••••••••••••• 
] ........... ,. .............. ., ................... . 
t (hreak command) •••.••••••••••••••••••••••••••• 
t «1 d i t c (l rnrn and ) . . • . • • . • • • • • • • • • • • • • • • • • • • • • • • • • 
t (edita command/parameter) ••••••••••••••••••••• 
t (use in comments) ••••.•.•••••.••••••••••••.••• 
.... (edi t cnrnmflnd) .••••••.•••••••••••••••••••••••• 
~ (in pnttorn match compiler) ••••••••••••••••••• 
.... (typed by sys tern) ••••••••••••••••••••••••••••• 
.... (i n even t ilddrcss) •••••••••••••••••••••••••••• 
.... operator (in cl isp) ••••••••••••••••••••••••••• 
( .... pattnrn) (edit command) ..................... . 
........ (edit command) .•••••••••••••••••••••••••••••• 

INDEX.31 

Page 
Numbers 

16.4 
15.8-9 
22.21-22 
15.8-9,12 
21.10 
18.41 
23.40,42 
22.14,53 

9.29 
9.54 
9.56 
9.54 
9.56 

22.14,27,53 
3.2; 14.13 

14.38 
9.11,34-35,41 
2.4; 14.10,23 

22.13 
9.34 
9.11,35,61 
2.5; 3.2; 14.13,16 

15.7,16; 16.2,7 
9.4,18 

21.13 
14.41 
9.34 

'23.43 
2.4,6; 15.4 

22.12 
23.12,15 

9.30 
9.34 




	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	01-01
	01-02
	01-03
	01-04
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-idx-01
	02-idx-02
	02-idx-03
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-idx-01
	03-idx-02
	03-idx-03
	04-01
	04-02
	04-03
	04-04
	04-05
	04-idx-01
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-idx-01
	05-idx-02
	05-idx-03
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-idx-01
	06-idx-02
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-idx-01
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-idx-01
	08-idx-02
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-40
	09-41
	09-42
	09-43
	09-44
	09-45
	09-46
	09-47
	09-48
	09-49
	09-50
	09-51
	09-52
	09-53
	09-54
	09-55
	09-56
	09-57
	09-58
	09-59
	09-60
	09-61
	09-62
	09-63
	09-64
	09-65
	09-66
	09-67
	09-68
	09-69
	09-70
	09-71
	09-72
	09-73
	09-74
	09-75
	09-76
	09-77
	09-78
	09-79
	09-80
	09-81
	09-82
	09-83
	09-84
	09-85
	09-86
	09-87
	09-88
	09-89
	09-90
	09-91
	09-idx-01
	09-idx-02
	09-idx-03
	09-idx-04
	09-idx-05
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-idx-01
	10-idx-02
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-idx-01
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-idx-01
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-idx-01
	13-idx-02
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	14-21
	14-22
	14-23
	14-24
	14-25
	14-26
	14-27
	14-28
	14-29
	14-30
	14-31
	14-32
	14-33
	14-34
	14-35
	14-36
	14-37
	14-38
	14-39
	14-40
	14-41
	14-42
	14-43
	14-44
	14-45
	14-46
	14-47
	14-48
	14-49
	14-50
	14-51
	14-idx-01
	14-idx-02
	14-idx-03
	14-idx-04
	14-idx-05
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-21
	15-22
	15-23
	15-24
	15-idx-01
	15-idx-02
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	16-idx-01
	16-idx-02
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	17-11
	17-12
	17-13
	17-14
	17-15
	17-16
	17-17
	17-18
	17-19
	17-20
	17-21
	17-22
	17-23
	17-24
	17-25
	17-26
	17-27
	17-28
	17-idx-01
	17-idx-02
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	18-08
	18-09
	18-10
	18-11
	18-12
	18-13
	18-14
	18-15
	18-16
	18-17
	18-18
	18-19
	18-20
	18-21
	18-22
	18-23
	18-24
	18-25
	18-26
	18-27
	18-28
	18-29
	18-30
	18-31
	18-32
	18-33
	18-34
	18-35
	18-36
	18-37
	18-38
	18-39
	18-40
	18-41
	18-42
	18-43
	18-44
	18-45
	18-46
	18-47
	18-48
	18-49
	18-50
	18-51
	18-52
	18-idx-01
	18-idx-02
	18-idx-03
	18-idx-04
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	19-09
	19-10
	19-idx-01
	19-idx-02
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	20-09
	20-10
	20-11
	20-12
	20-13
	20-14
	20-15
	20-16
	20-17
	20-18
	20-19
	20-20
	20-idx-01
	20-idx-02
	21-01
	21-02
	21-03
	21-04
	21-05
	21-06
	21-07
	21-08
	21-09
	21-10
	21-11
	21-12
	21-13
	21-14
	21-15
	21-16
	21-17
	21-18
	21-19
	21-20
	21-21
	21-22
	21-23
	21-24
	21-25
	21-26
	21-27
	21-28
	21-29
	21-idx-01
	21-idx-02
	22-01
	22-02
	22-03
	22-04
	22-05
	22-06
	22-07
	22-08
	22-09
	22-10
	22-11
	22-12
	22-13
	22-14
	22-15
	22-16
	22-17
	22-18
	22-19
	22-20
	22-21
	22-22
	22-23
	22-24
	22-25
	22-26
	22-27
	22-28
	22-29
	22-30
	22-31
	22-32
	22-33
	22-34
	22-35
	22-36
	22-37
	22-38
	22-39
	22-40
	22-41
	22-42
	22-43
	22-44
	22-45
	22-46
	22-47
	22-48
	22-49
	22-50
	22-51
	22-52
	22-53
	22-54
	22-55
	22-56
	22-57
	22-58
	22-59
	22-60
	22-61
	22-62
	22-63
	22-64
	22-65
	22-66
	22-idx-01
	22-idx-02
	22-idx-03
	22-idx-04
	23-01
	23-02
	23-03
	23-04
	23-05
	23-06
	23-07
	23-08
	23-09
	23-10
	23-11
	23-12
	23-13
	23-14
	23-15
	23-16
	23-17
	23-18
	23-19
	23-20
	23-21
	23-22
	23-23
	23-24
	23-25
	23-26
	23-27
	23-28
	23-29
	23-30
	23-31
	23-32
	23-33
	23-34
	23-35
	23-36
	23-37
	23-38
	23-39
	23-40
	23-41
	23-42
	23-43
	23-44
	23-45
	23-46
	23-47
	23-48
	23-49
	23-50
	23-51
	23-52
	23-53
	23-54
	23-55
	23-56
	23-57
	23-58
	23-59
	23-60
	23-61
	23-62
	23-63
	23-64
	23-65
	23-66
	23-67
	23-68
	23-69
	23-70
	23-71
	23-72
	23-73
	23-74
	23-75
	23-76
	23-idx-01
	23-idx-02
	23-idx-03
	a1-01
	a1-02
	a1-03
	a1-04
	a1-05
	a1-06
	a1-07
	a1-08
	a1-09
	a1-10
	a1-11
	a1-12
	a1-13
	a1-14
	a1-15
	a1-16
	a1-17
	a1-idx-01
	a2-01
	a2-02
	a3-01
	a3-02
	a3-idx-01
	a3-idx-02
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	index-07
	index-08
	index-09
	index-10
	index-11
	index-12
	index-13
	index-14
	index-15
	index-16
	index-17
	index-18
	index-19
	index-20
	index-21
	index-22
	index-23
	index-24
	index-25
	index-26
	index-27
	index-28
	index-29
	index-30
	index-31
	index-32

