





INTERLISP REFERENCE MANUAL

BY WARREN TEITELMAN

contributions by:

A. K. HARTLEY

J. W. GOODWIN
BOLT BERANEK & NEWMAN

D. G. BOBROW
P. C. JACKSON
L. M. MASINTER
XEROX PALO ALTO RESEARCH CENTER

XEROX

PALO ALTO RESEARCH CENTER

3180 PORTER DRIVE/PALO ALTO/CALIFORNIA 94304



BOLT BERANEK & NEWMAN Copyright ) 1974 XEROX CORPORATION



Acknowledgements and Background

INTERLISP (formerly BBN LISP) has evolved from a succession of LISP systems

that began with a LISP designed and implemented for the DEC PDP-1 by D. G.

1

Bobrow and D. L. Murphy® at Bolt, Beranek and Newman in 1966, and documented by

D. G. Bobrow. An upwards compatible version of this LISP was implemented for
the SDS 940‘in 1967, by Bobrow and Murphy. This system contained the seeds for
many of the capabilities and features of the current system: a compatible

compiler and interpreter.z

3

uniform error handling, an on-line LISP oriented
editor,Y sophisticated debugging facilities.4 etc. 940 LISP was also the first
LISP system to demonstrate the feasibility of usihg software paging techniqugs
and a large virtual memeory in conjunction with a lisi-processing system [Bob2].
DWIM, the Do-What-I-Mean error.correction facility, was introduced into the
system in 1968 by W. Teitelman [Tei2], who was also responsible for

documentation for the 940 LISP system.

1 D. G. Bobrow is currently at Xerox Pale Alto Research Center (PARC). D. L.
Murphy is with Digital Equipment Corp.

2 The preliminary version of the compiler was written by L. P. Deutsch, now
at Xerox PARC. This was considerably modified and extended by D. L. Murphy
before producing the final working version.

3 The original idea of a LISP oriented structure editor belongs to L. P.
Deutsch. The editor in its current form was written by W. Teitelman, now
of Xerox PARC.

4

Designed and implemented by W. Teitelman.



In 1970, an upwards compatible version of 940 LISP called BBN LISP6 was
designed for the PDP-10 by D. G. Bobrow, D. L. Murphy, A. K. Hartley, and W.
Teitelman, and implemented by Hartley with assistance from Murphy. A. K.
Hartley was also responsible for modifying'the 940 LISP compiler to generate
code fpr the PDP-10. BBN-LISP ran under TENEX, a sophisticated time sharing
system for the PDP-10 désigned and implemented by D. G. Bobrow, J. D.
Burchfiel, D. L. Murph&. T. R. Strollo, and R. S. Tomlinson.[Bobi] With
hardware paging and 256K of virtual memory provided by TENEX. it‘ became
practical to provide extensive ‘and sophisticated interactive user support
facilities, such as the programmer's assistant [Tei4], CLISP [Tei5], aqd a more
sophisticated DWIM, all of wﬁich were designed and developed by w{ Teitelman.
In 1971, the block coﬁpiler was designed and implemented by D. G. Bobrow. The
BBN-LISP Manual [Tei3] was written by W. Teitelman, with contributions from A.
K. Hartley and from J. W. Goodwin, who also wrote TRANSOR and the special
arithmetic functions, as well as a number of other utility functions. The name
of the system was changed from BBN-LISP to INTERLISP in 1973, when the
maintenance and development of the system evolved into a joint effort between
Bolt Beranek and Néwman. and Xerox Palo Alto Research Center. The INTERLISP
reference manual was written by W. Teitelman, with contfibutions from A. K.
Hartley, J. W. Goodwin, and D. G. Bobrow. The cover 'was designed by
Alice R. Fikes.

INTERLISP is currently the LISP system used at Bolt Beranek and Newman, Xerox
Palo Alto Research Center, Stanford Research Institute Artificial Intelligence
Center, Information Sciences Institute, and the Dendral Project at Stanford

University, in addition to being available at Computer Corporation of America

P R et e e T P T T P R R LR R L X R ittt uhaiind

The design, construction and documentation for BBN LISP was sponsored by
the Information Processing Techniques Section of the Advanced Research
Project Agency, as was all of the subsequent work on the system that was
performed at BBN. Since March 1972, the contributions made to the
development of the system by W. Teitelman, including the preparation of
this manual, were sponsored by Xerox Pale Alto Research Center.

ii



and Case Institute of Technology. The‘ total user community now comprises

approximately one hundred users.

INTERLISP is a continuously evolving system, both in response to complaints,
suggestions, and requests of the many users scattered throughout the ARPA
network, as well as the 1long range goals of the individuals primarily

responsible for the system, which are currently:

Person Responsible for
W. Teitelman User Facilities: i.e., pretty-
Xerox Palo Alto print, editor, break and trace,
Research Center advising, printstructure, DWIM,
3180 Porter Dr. CLISP, programmer's assistant.

Palo Alto, Calif. 94304

A. K. Hartley Basic System: 1i.e., interpreter,

Bolt Beranek & Newman input-output, garbage collector; plus
50 Moulton St. all SUBRS, i.e. hand-coded machine language

Cambridge, Mass. 02138 functions such as PRINT, CONS, PROG, GO,
etc.; plus compiler.

J. W. Goodwin Special Arithmetic Functions: e.g.
Bolt Beranek & Newman LOG, SIN, SQRT, etc.; plus functions
50 Moulton St. for accessing TENEX capabilities

Cambridge, Mass. 02138 such as SUBSYS, FILDIR, et al.;
plus TRANSOR as well as various
utility functions such as LOADFNS,
SORT, etc. (as indicated in the text
of this manual).

The preparation of this manual has involved the efforts of several persons at
Xerox PARC, whom I specifically want to mention, and to express my appreciation
for their support through this arduous, and at times seemingly endless task.
Thank you Suzan (Jerome), Janet (Fafness). Peter (Deutsch), Bob (Walker), and

Larry (Tesler). I couldn't have done it without you.

Warren Teitelman
Palo Alto
December, 1973.

\

iii






TABLE OF CONTENTS

SECTION 1: Introduction

SECTION 2: Using INTERLISP"

Using the INTERLISP Manual .......c.oeeveeveeencsns 1
Using the INTERLISP System on Tenex .....cceececens 4

SECTION 3: Data types, Storabe Ailobatiﬁn; énd Gérbage
Collection

Data Types ........ Mt eesessecasareerstesaseste s bes
Literal Atoms ..... ceeevens Cereectesscaneraana
PRAmMeS .. tvvvenvreeeoscevssesossanncsssonsssas
Numerical Atoms ..... Ceessraavaaanas veeseanans
LIStS .ouevitninennnenonerosnrcsosessssnannnne
L N
SEPiNgS tvieveervsesssossosssssessossosssesssscas

Storage Allocation and Garbage Collection .........

Shared INTERLISP .....ovieevreinnnroscecnsennonanas

PN T-Re- NI N

=

SECTION 4: Function Types and Implicit PROGN

EXprs ......ovu.. i rereneseensans Ceseceeerresaseanns 1
Compiled FUNCEIONS it eveeevontonsrossosnssancsnness 2
FUNCLIion TYPe +.vverervnorntsversonncesasasnsasnessss 3
PROGN ...ievvrvenene teseeeecesesecsattseneseerrraas z

IMPLACIE PROGN «1vnennnnnnnnnnnnnnnnsnnnneeeneeeees

SECTION §: Primitive Functions and Predicates
Primitive FUNCEtiONS ....vvevvvunnerseravocsnnanonne. 1

RESEWAR and RESETFORM . 0 00 0 ® 6 & 0 0 0 0 5 0 0 40N s 0 9
Predicates and Logical Connectives ....ccoceveveses i1

SECTION 6: List Manipulation and Concatenation

SECTION 7: Property Lists and Hash Links

Property Lists ;Q L I BN 0’ . P 4 ¢ e DN . ® 9 0 0 00 H 0NNl
Hash Links L I ) 0 . . l LN 3 Q T 6 0 8 0 0 0 8P P GGG NSNS e
Hash Overflow ......vieeeereecsccoscessasoncans

N B



TABLE OF CONTENTS (cont.)

SECTION 8: Function Definition and Evaluation

SECTION 9: The INTERLISP Editor

Introduction ............ S
Commands for the New User ............ Ceressesanvas
Attention Changing Commands ......veovesvocovcssnas

Local Attention Changing Commands ......c0000e

Commands That Search ......... cesessesesrnsaen
Search Algorithm ....cceeeeesoncsns cresee
Search Commands ......... Ceeeresecerseanse
Location Specification ...... cesesesasnee
Commands That Save and Restore the

Edit Chain .....ccvieenee cecsreesann cesrevan
Commands That Modify Structure ..... cesentene cneee

Implementation of Structure Modification
Commands ........ tere et escsnnssitesesensans

The A, B, : CommandS ..ccevvverssoncstrscvconas

Form Oriented Editing and the Role of UP .......

Extract and Embed ...vvviirvevicrnnnsonnnncnpos
The MOVE Command ....ccoeeveveee teeecsecncesas

Commands That "Move Parentheses" ..... ceese

Commands That Evaluate ...ccocevecevsoasosacens
Commands That Test .....vceeveeennccans teveaseas
Macros ...... . Cetcesesecsseacssessas e sonnea

TO and THRU .....coc0veun ceseerercssesseasecae
TheRCOnlmand L 2 I I L B L B B R B BN LINC I I I I I B N N B N B B
Commands That Print .....cece0ee ceesesacerroerenanes

..

Miscellaneous Commands ......... Cescaessesassananan

.

UNDO ---------------- LI R I R O I A BN Y A S RS SR N R R Y A )

EDITDEFAULT .......... ceeeeres edrectrensresnas

Editor Functions ...... sessenes Cesressssectseseansns

SECTION 10: Atom, String, Array, and Storage Manipulation

Pnames and Atom Manipulation ........... sesssene

String Functions .......... cecesreseaeas cecesetscsns
Searching Strings .....cccveeressnenscacanscss

String Storage .....ccc00 cestesececreeescnnse

Array Functions ........ Ceteesesensevesorrraenennan
Storage Functions ......cevevenneaes Cesesscacnsanans

SECTION 11: Functions with Functional Arguments

SECTION 12: Variable Bindings and Pushdown List Functions

The Pushdown List and the Interpreter .........

o

The Pushdown List and Compiled Functions ..........

Pushdown List Functions ......c.c00e. cresivtecanna
The Pushdown List and Funarg ...eoeececscececves

ii

o

m-rnWw



TABLE OF CONTENTS (cont

SECTION 13: Arithmetic Functions

General Comments ....cvevesvencrnsoes
Integer Arithmetic .....ccvevieeneess
Floating Point Arlthmetic B
Mixed Arithmetic ....cccevteveerennns
Special Functions ...coovvevenvovenes
Reusing Boxed Numbers - SETN ........
Box and UnboX .ivveiiveccssnsrannacee

SECTION 14: Input/Output'Functidns

Files ......... cersesee tevaeeseser e
‘ Addressable Files ..ceevevvennns
JFN Functions .....cceecee ceeses
Input Functions .....eveveeencocnnnns
OQutput FUnctions .....cvevseecennnnss
Printlevel ....cicvevvverenesncs
Input/Output Control Functions ......
Line-buffering and CONTROL .....
Special FUNCLions .....cveevecnceanns
Symbolic File Input ,.....co00000000.
Symbolic File Output .....cocvevvanse

PRETTYPRINT ...iveiineinrnnennennn.

Comment Feature ....veceveanvese
PRETTYDEF v iivvvvvnnns eressrens
Special PRETTYPRINT Controls eee
File Package ...ivireceecocnnscsncnns

SECTION 15: Debugging - The Break Package

Debugging Facilities ...eevveeveenans
BREAK1 . ......cciveen. ceereens cecvena
Break Commands ....eooeeevrovnns
Brkcoms ......ccceeercncene ceesas
Brkfile ..ceviveveevecnnsosnnosnsan
BreakmacCros ...ccceeeevossoccocns
Break Functions .......eevveevecencns
BREAKIN ......... cesicserenesaee

SECTION 16: Error- Handling

Unbound Atoms and Undefined Functions
Teletype Initiated Breaks ...coveeenn
Control H ...ciivivecenncnnnene
Control B ...veveveeee cesesersne
Control E ... iiverenennsonncnos
Other Types of Errors ....ccceeee ceee
Breakcheck - When to Break ..........
Error Types ...icieivviconennaes cesens
Error Handllng by Error Type ...
Error FUnCtions .....cicceevsvsonscns

S idd

:)

Ce s s e e s s e

e s e s 0 ec s 00

CRCIC A NI B B 2 )

e eee v e s es e

e s e e sl

se 0000000 s 00

e e s s e e e
LR NN I R N S N A A )
oooooooooooooo
es e s s 0P e
s P 000 s e s
LR BN I N I ]
v s ec e r et
Se e s 0 ecs 0000000
e 0 e v s s s
S ee000 00000000
"eeev s a0 s
onoaoocoo.-o.o-
LR A B A A N R )
DRI E Y NI SR B YA ]
LR N R A N N N N

LI AR B NI N RO R

se s st s et

LI BRI BN B BN Y
\

Se v o v e 0
Ce s s s s taresne
LRI U R RN B B ]

LECECA IR B S B RC RN A Y

o s 00080008000
s e e s 0 s e 0
o0 s 00000
e oss 0B 00000
LRI R R A B B IR A )
se v e s s
e e e v e LI Y
e e s 000000000
e e s e vt

“o e s 0000 Ve

NOQNON -

-

NONALDWWNN-

-



TABLE OF CONTENTS (cont.)

SECTION 17: Automatic Error Correction - The DWIM Facility

Introduction ....... e ceeteseseser e s esassasassnnoe
Interaction with DWIM ... .. iiiererenessenennane
Spelling Correction Protocol .......ccseeeuase
Parentheses Errors Protocol .....cccveveennose

Spelling Correction .....ceeecveeacecsacscnccasssas,:

Spelling LiStS L R N I A I I A I A N I A I N AN A A

Error Correction .....eeeeevececooscassvessansocancae

Unbound AtOmMS . ...c.ovievcenvacsssavsosnsssnsens
Undefined Car of Form ..... cececesssrrecacanen
Undefined Function in Apply «.ivivveevensosses
DWIMUSERFN ...... e e ecesecsesseucsessecstestrcananns
Spelling Corrector Algorithm ....cvevenncessennscss
DWIM FUNCtIOoNS ....icveeevenvencsvsoccenccsonnssdos

SECTION 18: The Compiler and Assembler

The Compiller ....ieceesreersosasssscoseasnsssssnesne
Compiler Questions ...... Wt sesaeseseeseatsses e s
Nlambdas ....iiiieeereonetcsnecnsosstsoccsosvesassnas
Globalvars .....ccev0ee estessearsrreassaereseersane
Compiler FUNCEIONS ...viieeerenccsnnansnsasonsnnsns

RECOMPILE ..vviieeevereviensanrosssennsosnnensans
Open FUNCLIONS ...t iievranerevanrosassesstscaasnces
Compiler MACroS ....vcuieeeeenvosrssssssnsssssssssna

FUNCTION and Functional Arguments .......c.oeoccoeee .

BloCK ComMPiliNg ..veveveceonsonnscasouressrssenoces
SPOCVArS vttt evronsosossssssosossssasssssasesas
Localfreevars ...iveeereoveosrosvansnssssonans
Retfns ......c.... Cecacessesesacscsssassnasena
BlKapplyfns ..ivviiiesersosesnconsaranssosnnns
Blklibrary ..... et srecaeerrsssesesassessesnas

Linked Function Calls .....civeevencecensscnoosoonse
Relinking ........ tieeesesescesescsarassssaons

The Block Compiler .....cccesveoosscecnososssscnsons
BLOCKCOMPILE . ..iiieveniecenanensroncannccans
Block Declarations .......c.coeeieenviicnacecanse
BCOMPL ..... G ecseesessiresrtet it saneasessaanas
BRECOMPILE ..vvvieenncennaasossnsanoossonncnes

Compiler SELrUCLUre ....ciieserocascoacncsossncnsannse

ASSEMBLE . .iietietrerseneesaossssosnsnsssessosansanns

LAP ... ... e vt eeseetsetsanar et trer st sereenns

Using ASSEMBLE ......ciiiiieerecsocasoesscnanacanns

Miscellaneous .....cceviesncreansososasessoncsancsos

Compiler Printout and Error Messages ....ceeeesvoee

SECTION 19: Advising

Implementation of Advis:ing L0 I I I B BN 2 BB B O B B BN
Advise Functions LA IR B SR B B I B I I I I B B I I B )

iv



TABLE OF CONTENTS (cont.)

SECTION 20: Printstructure and Interscope

Printstructure ...vceiveieeeiesvosencrosnnossoacocsons
Interscope ..... et eerere st ereecta e ienrersenaer s

SECTION 21: Miscellaneous

Measuring FUnctions ......iceeevecveseoennacisosnns
BREAKDOWN it iiiiiiteeiresverncsaosnnnsssvossocssse
EDITA it iiiiintiatiorineosniesnssosasessasosnanans

Input Protocol ....ccviiiinerrenoronesonnssnnons

EDITA commands and variables ......... ceeene .o
Interfork Communication ....iieeeceervvenrsoannsnasie
Subsys .......... Ceivesetesecicanenar e sesaes
Miscellaneous TENEX Functlons N
Printing Reentrant and Circular List Structures ...

SECTION 22: The Programmer's Assistant and LISPX

INtroduction ....ivetivencenoroerosessssvsonononnas
overview ......c.cveee.e ceenes Veeetrssescsatsananes .o
Event Specification ......cieceeiverevenrsranncenas
"History Commands ....veeveverenvnsssosoonosssoonsnns
Implementation of REDO, USE, and FIX .........
History Commands Applied to History Commands .
History Commands That Fail ....cevevvnnennnees
More History Commands ......cccovvvevvnconsces
Miscellaneous Features and Commands ......oceeeesee
Undoing .......cccvnnn P

Testmode . ..viviieearesrvnrsossnoeseasssssnasos

Undoing out of order .....cvcvvvetnvoncescncses

SAVESET . ...ttt ennnenees Ceeretsetsecseeanne
Format and Use of the History List ........cceveves
LISPX and READLINE ...ttt virvernnenceveronsoneans
FUNCLIONS ittt innesossnssoesnsscsssssossssnnse
The Editor and the Assistant ........cieevenevrnnns
N o T o P
Greeting and User Initialization ......ccccnvvcneee



TABLE OF CONTENTS (cont.)

SECTION 23: CLISP - Conversational LISP

Introduction .....iveivviennnavrsaossocscnssossnovsnnne
CLISP SyntaX ...ceeceeecesrcssacsascossancsasaessnscse
INFixX Operators . ..civeiieraestanscsecerosscssnsossces
Prefix Operators ....iceeeeseecsessssnsesessssanses
Constructing Lists - the <,> Operators ....ceeeevee
IF, THEN, ELSE ............ Cresestcrenereseeneranan
Iterative Statements .....cveveeerrecosccosscsosnsenes
Errors in Iterative Statements ........ccv000.
Defining New Iterative Statement Operators ...
CLISP Translations ....ceeeevevecscesacanccoansonnas
Declarations .....icvveeerecateoassososassnnsnasonae
Local Declarations .......ccievvevvcecnnncnas
The Pattern Match Compiler ....vveeievroveonsncncns
Element Patterns ..voeeveecrovernsocevnsecsocans
Segment Patterns ..veiieecieravrcrccosnsssanne
ASSIgNmMENtsS ...t iireerccerrsssessrsocossvonse
Place-markers ....veciessecersevonsersonsosssns
Replacements ....oveveereceresdasnrvensanncnss
Reconstruction ....eveeeveessrecervccocsnedans

Record Package ......icieeiesvseeansossosencenvonnnss.

Record Declarations .......ccceeevevccenaccnes
CREATE ..... et et eeeresieieensesacserneesesssans
Implementation .....ccccevieecrccenasanccansas
CLISPIFY ..... T T
DWIMIFY i iieiiviivresoreneosonreseseosveosssnosse

Compiling CLISP ...uiuvinuinrininnernconsnneasannns

Operation ...ieiieeieieeacscscrssrsonsocsosocassssvecs
CLISP Interaction with User ....eveiveeveecccossons
CLISP Internal Conventions ....ceeecevecvconsercacne
CLISP Functions and Variables ....ccveeeecvsnveesnn

APPENDIX 1: TRANSOR

Introduction ......... cteessessesecerat s seraaenas
Using TRANSOR ittt inettnesonrosesosassosnssannss
The Translation Notes .....eceevrecerersorcenccecnes
TRANSORSET s iiviiiinvresreecnncsovsavonssossocssocans
Controlling the SWEED ....cceeenveronrsasscsconcsse

APPENDIX 2: INTERLISP Interpreter
APPENDIX 3: Control Characters

MASTER INDEX

vi

page

- e-Rr-NA NN



" SECTION 1
INTRODUCTION

This document is a reference manual for INTERLISP, ,’a LISP system currently
1mpiemen_ted on the DEC PDP-10 undar the _'BBN TENEX time sharing system.[Bobi]
INTERLISPI 1s designed to provide the user Access to the large virtual memory
allowed by TENEX, with a relatively small penalty in speed (using special
paging techniduas described in [BopZ]).v Additional data types have been added,
including stringé; arrays, and hash association tables (hash links) (Sections 7
and 10). The system includes a compatible compiler (Section 18) and
interprete(r. Machine code can be intermixed with INTERLISP expressions via the
assemble directive of the compiler. The compiler also contains a facility for
"block compilation® which allows a group of functions to be compiled as a unit,
suppressing internal names. Each successive level of computation, from
interpreted through compiied. to block-compiled provides‘ greater speed at a

cost of debugging ease.

INTERLISP has beeh designed to be a gooﬂ on~-line 1nteract1v9 system. Some of
the features provided 1nc1ude eiaﬁorato debugging facilities with tracing and
conditional breakpoints‘ {Section 15l). and a sophisticated LISP oriented editor
within the system (Section‘ 9). 'Ut>iiiza‘tion of a uniform error processing
through user accessible routines V(’Section 16) has allowed the implementation of
DWIM, a Do-What-I-Mean facility, which automtically cofrects many types of .
errors without llosing the context of computation (Section 17). The CLISP

[y

INTERLISP (formerly BBN LISP) is the most recent incarnation in a
succession of LISP systems. See Acknowledgements at front of manual.

1.1



facility (Section 23) extends the LISP syntax by enabling ALGOL-1ike infix
operators such as +, -, %, /, =, «, AND, OR, etc., as well as IF-THEN-ELSE
statements and FOR-WHILE-DO statements. CLISP expressions are automatically
converted to equivalent LISP forms when they are first encountered. CLISP also
includes list construction operators, as well as a LISP oriented pattern match

compiler.

A novel and useful facility of the INTERLISP system is the programmer's
assistant (Section 22), which monitors and records all user inputs. The user
can instruct the programmer's assistant to repeat a particuiar operation or;
sequence of operations, with possible modifications, or to UNDO the effects of
specified operations. The goal of the programmer's assistant, DWIH; CLISP,
etc. is to provide a programming environment which will "cboperate" with the
user in the development of his programs, and free him to concentrate more fully
on the conceptual difficulties and creative aspects of the problem he is ﬁrying

to solve.

To aid in converting to INTERLISP programs written in other LISP dialects,
e.g., LISP 1.5, Stanford LISP, we have implemented TRANSOR, a subsystem which
accepts transformations (or can operate from previously defined
transformations), and applies these transformations to source prograﬁs written
in another LISP dialect, producing object programs which will run on INTERLISP
(Appendix 1). In addition, TRANSOR alerts the programmer to pfoblem areas that
(may) need further attention. TRANSOR was used extensively in converting from
940 LISP to BBN-LISP on the PDP-10. A set of transformations is available for
converting from Stanford LISP and LISP 1.5 to INTERLISP. |

A complete format directed list processing system FLIP [Teil], is available for
use within INTERLISP. |

Although we have tried to be as clear and complete as possible, this document

1.2



is not designed to be an introduction to LISP. Therefore, some parts may only
be clear to people who have had sdme ‘experience with other LISP systems. A
good introduction to LISP has been written by Clark Weissman [Weii]. Although
not completely accurate with respect to INTERLISP, the differences are small
enough to be mastelrod by use of this manual and on-line interaction. Another
useful introduction is given by Berkeley [Bérl] in the collection of Berkeley
and Bobrow [Ber2]. '

Chgnges to this manual will be issued by replacing sections or pages, and
reissuing the in.dex and table'of _contents at periodic intervals. In addition,
the manual will be maintained on-line, ’an'd up to date versions of» any 6r all
chapters will be available in the form of TENEX files from W’. Teitelman at
Xerox PARC. | |

103



Bibliography

[Beri]
[Ber2]

[Bobt]

[Bob2]
[Bob3]
[McC1]
[(Murt]
tSmil]
[Teil]

[Tei2]
[Tei3]

[Teid]
[Tei5]

‘[weill

- Berkeley, E.C., "LISP, A Simple Introduction" in Berkeley, E.C. and
Bobrow, D.G. [Ber2].

Berkeley, E.C., and Bobrow, D.G. (editors), The Programming Language
LISP, its Operation and Applications, MIT Press, 1966.

Bobrow, D. G., Burchfiel, J. D., Murphy, D. L., and Tomlinson, R. S.
"TENEX, a Paged Time Sharing System for the PDP-10",
Communications of the ACM, March, 1972.

Bobrow, D.G., and Murphy, D.L. "The Structure of a LISP System Using
Two Level Storage®, Communications of the ACM, V15 3, March 1967.

Bobrow, D.G., and Wegbreit, B. "A Model and Stack Implementation for
Multiple Environments® (to be published), Third International
Joint Conference on Artificial Intelligence, August 1973.

McCarthy, J. et al. LISP 1.5 Programmer's Manual, MIT Press, 1966.

Murphy, . D.L. "Storage Organization and Management in TENEX",
Proceedings of Fall Joint Computer Conference, December 1972.

Smith, D. "MLISP" Artificial Intelligence Memo No. 138 Stanford
University, October 1970.

Teitelman, W. FLIP, A Format Directed List Processor in LISP, BBN
Report, 1967.

Teitelman, W. "Toward a Programming Laboratory"” in Walker, D. (ed.)
International Joint Conference on Artificial Intelligence, May
1969.

Teitelman, W., Bobrow, D.G., Hartley, A.K. Murphy, D.L. BBN-LISP
TENEX Reference Manual, Bolt Beranek and Newman, July 1971, first
revision February 1972, second revision August 1972.

Teitelman, W. "Automated Programmering - The Programmer's Assistant",
Proceedings of the Fall Joint Computer Conference, December 1972.

Teitelman, W. "CLISP - Conversational LISP", Third International
Joint Conference on Artificial Intelligence, August 1973.

Weissman, C. LISP 1.5 Primer, Dickenson Press (1967).

1.4



SECTION 2
USING INTERLISP

2.1 Using the INTERLISP Manual - Format, Notation, and Conventions

The INTERLISP manual is divided into separate more or less independent
sections. Each section is paginated independently, to facilitate bissuing
updates of sections. Each section ‘contains an index to key words, functions,
and variables contained in that section. In addition, there is a composite

index for the entire manual, plus several appendices and a table of contents.

Throughout the manual, terminology and conventions will be offset from the text
and typed in italics, frequently at the beginning of a section. For example,

one such notational convention is:

The names of functions and variables are written in lower case and underlined
when they appear in the text. Meta-LISP notation is used for describding forms.

" Examples: 'member[x;y] is equivalent to (MEMBER X Y), member[car[x];FO0] is
equivalent to (MEMBER (CAR X) (QUOTE FOO)){ Note that. in meta-LISP notation

lower case variables are evaluated, upper case quoted.

. notation is used to. distinguish betiveen cons and list.

e.g., if x=(A B C), (FOO x) is (FOO (A B C)), whereas (FOO . x)
is (FOO A B C). In other words, x is cadr of (FOO x) but cdr of (FOO . x).
Similarly, y is caddr pfj(FOO'x{y);bbut'cddr of (FOO x . y). Note that this

2.1



convention is in  fact followed by the read program,

i.e., (FOO . (A B C)) and (FOO A B C) read in as equal structures.

Other important conventions are:

TRUE in INTERLISP means not NIL.

The purpose of this is to allow a single function‘to be used both for the
computation of some quantity, and as a test for a condition. For exaﬁple. the
value of member[x;y] is either NIL, or the tail of y beginning with Xx.
Similarly, the value of or is the value of its first TRUE, i.e., non-NIL,
expression, and the. value of and is either NIL, or the value of its last

expression.

Although most lists terminate in NIL, the occasional list that ends in an atom,
e.g., (AB . C) or worse, a number or string, could cause bizarre effects.

Accordingly, we have made the following implementation decision:

All functions that iterate through a list, e.g., member, length, mapc, etc.
terminate by an nlistp check, rather than the conventional null-check, as «a
safety precaution against encountering data types which might cause itnfinite
cdr loops, e.g., strings, numbers, arrays.

Thus, member[x;(A B . C)J=member[x;(A B)]
reverse[(A B . C)J=reverse[(A B)]
append[ (A B . C);yJ=append[ (A B);y]

1

For users with an application requiring extreme efficiency,” we have provided

fast versions of memb, last, nth, assoc, and length which compile open and

1 A NIL check can be executed in only one instruction, an plistp requires
about 12, although both generate only one word of code.

z‘z



terminate on NIL checks, and therefore may cause infinite cdr loops if given
poorly formed arguments. However, to help detect these situations, fmemb,

flast, fnth, fassoc, and flength all generate errors when interpreted if their

argument endsvin a non-list other than NIL, e.g. BAD ARGUMENT - FLAST.

~

Most fuhctions that set system parameters, e.g., printlevel, linelength, radix,
etc., return as their value the old setting. If given NIL as an argument, they
return the current value without changing it. -

All SUBRS, i.e., hand coded functions, such as read, print, eval, cons, etc.,
have ‘'argument names' (U V W) as described under arglist, Section 8. However,
Jor tutorial purposes, more suggestive names are used itn the descriptions of
these functions in the text.

Most functions whose names end in p are predicates. e.g. numberp, tailp, exprp;
most functions whose names end in ¢ are nlambda’'s, i.e., do not require quoting
their arguments, e.g., setq, defineq, alsetq.

"x is equal to y" means equal[x;y] is true, as opposed to " x is eq to y”
meaning eq[x:;y] is true, i.e., x and y are the same identical LISP pointer.

When new literal atoms are created (by the read program, pack, or mkatom), they
are provided with a function definition cell initialized to NIL (Section 8), a
value cell initialized to the atom NOBIND (Section 16), and a property list
initialized to NIL (Section 7). The function definition cell 1s accessed by
the functions getd and putd described in Section 8. The value cell of an atom
is car of the atom, and its property list is cdr of the atom. In particular,
car “of NIL and cdr of NIL are lwaz NIL, and the system will resist attempts

to change them.

The term list refers to any structure created by one or more conses, i.e. it
does not have to end in NIL. For example, (A . B) 1s a list. The function
listp, Section 6§, is used to test for lists. Note that not being a list does
not necessarily imply an atom, e.g., strings and arrays are not lists, nor are
they atoms. See Section 10.

Many system functions have extra optional arguments for internal use that are
not described tn the writeups. For example, readline is described as «a

Junction of no arguments, but arglist[READLINE] returns (LINE LISPXFLG). In
such cases, the user should just ignore the extra arguments.

INTERLISP departé from LISP 1.5 and other LISP dialects in that car of a form
is never evaluated: In otheréwords. if car of a form is not an atom with a
function definition, and not a function object, i.e. a list car of which is
LAMBDA, NLAMBDA, or FUNARG, an error is generated. apply or apply* (section 8)
must be used if the name of a function is to be cdmputed.as for example, when

functional arguments are applied.

2.3



2.2 Using the INTERLISP System on TENEX - An Overview

Call INTERLISP by typing LISP followed by a carriage return. INTERLISP will
type an identifying message, the date, and a greeting, followed by a '«'. This
prompt character indicates that the user is "talking to" the top 1level
INTERLISP executive, called evalqt, (for historical reasons), 4just as '@
indicates the user is talking to TENEX. evalqt calls lispx which accepts

inputs in either eval or apply format: if just one expression is typed on a

line, it is evaluated; if two expressions are typed, the first is apply-ed to
the second. eval and apply are described in section 8. In both cases, the

value is typed, followed by « indicating INTERLISP is ready for another input.

INTERLISP is normally exited via the function LOGOUT, i.e., the user types
LOGOUT(). However, typing control-C at any point in the computation returns
control immediately to TENEX. The user can then continue his program with no
111 effects with the TENEX CONTINUE command, even if he interrupted it during a
garbage collection. Or he can reenter his program at evalqt with the TENEX
REENTER command. The latter is DEFINITELY not advisable if the Control-C was

typed during a garbage collection. Typing control-D at any point during a

computation will return control to evalqgt. If typed during a garbage
collection, the garbage collection will first be completed, and ther control
will be rét.urned to INTERLISP's top level, otherwise, control returns

immediately.

When typing to the INTERLISP read program, typing a control-Q will cause
INTERLISP to print '##' and clear the input buffer, i.e., erase the entire line
up to the last carriage return. Typing control-A erases the last character
typed in, echoing a \ and the erased character. Control-A will not back up

beyond the last carriage return. Control-0 can be used to immediately clear

204 :



2 In

the output buffer, and rubout to immediately cléar the input buffer.
addition, typing control-U (in most cases) will cause the INTERLISP editor
(Section 9) to be called on the -expression being read, when the read is
completed. Appendix 3 contains a list of all control characters, and a

reference to that part of the manual where they are described.

Since the INTERLISP read program is normally linq-bufféred to make possible the
action of control-Q.3 the user must typs a carriage return before any
characters are delivered to the function requesting input, e.g.,

“E T) 4
T

However, the read program automaticelly supplies (and prints) this carriage
return when a matching right parenthesis is typed, making it unnecessary for
the user to do so, e.g.,

«~CONS(A B)

(A . B)
The INTERLISP read program treats square brackets as ‘supeor-parentheses': a
right square bracket automatically supplies enough right parentheses to match
back to the last left square bracket (in the expression being read), or if none
has appeafed. to match the first left parentheses,
e.g., (A (B (CJ=(A (B (C))),

(A [B (C (D] E)=(A (B (C (D))) E).

T D R e W e EE S6 G R U D D R e e e S e W S W S R D D WD P A K N P e e e ey P Y TR Y T L R XX

2 The action of control-Q takes place when it is read. If the user has
‘*typed ahead' several inputs, control-Q will only affect at most the last
line of input. Rubout however will clear the entire input buffer as soon
as it is typed, i.e., even during a garbage collection.

S Except following contrbl[T], see Section 14.

4

'2' is used throughout the manual to denote carriage-return.

2.5



% is the universal escape character for read. Thus to input an atom containing
a syntactic delimiter, precede it by %, e.g. AB% (C or %X. See Section 14 for

more details.

Most of the "basics" of on-line use of INTERLISP, e.g. defining functions,
error handling, editing, saving your work, etc., are illustrated in the

following brief console session. Underlined characters were typed by the user.

1. The user calls INTERLISP from TENEX, INTERLISP prints a date, and a
greeting. The prompt character « indicates the user is at the top level of

INTERLISP.

2. . The user defines a function, fact, for computing factorial of n. In
INTERLISP, functions are defined via DEFINE or DEFINEQ, (Section 8).
Functions may independently evaluate arguments, or not evaluate them, and
spread their'arguments. or not spread them (Section 4). The function fact
shown here is an example of an everyday run-of-the-mill function of one

argument, which is evaluated.

3. The user "looks" at the function definition. Function definitions in
INTERLISP are stored in a special cell called the function definition cell,
which is associated with the name of the function (Section 8). This cell

is accessible via the two functions, getd and putd, (define and defineq use
putd). Note that the user typed an input consisting of a single
expression, i.e. (GETD (QUOTE FACT)), which was therefore interpreted as a
form for eval. The user could also have typed GETD(FACT).

4. The user runs his function. Two errors occur and corrections are offered
by DWIM (Section 17). In each case, the user indicates his approval, DWIM
makes the correction, i.e. actually changes. the definition of fact, and

then continues the computation.

2.6



OLISPy 1
INTERLISP-10 11-17-73 oo

GOOD EVENING.

«DEFINEQ((FACT (LAMBDDA (N) (COND ((EQ N O) NIL) 2

(T (ITIMES N (FACTT (SUB1 N]

(FACT)

«(GETD_(QUOTE FACT)) 3
(LAMBDDA (N) (COND ((EQ N 0) NIL) ) (ITIHES N (FACTT (SUBI N))))))
«FACT(3)

LAMBDDA [IN FACT] -> LAMBDA ? YES)

FACTT [IN FACT] -> FACT ? YES)

NON-NUMERIC ARG 5
NIL :
IN ITIMES

(BROKEN) 6
18Ty

ITIMES

COND

FACT

COND

FACT

COND

FACT

*l‘l‘opt*

:RETURN 1> ' 11
'*BREAK' = 1
6

«PP _FACT) 12

(FACT
[ LAMBDA (N)
(COND
((EQ N 0)
1)

(T (ITIMES N (FACT (SUB1 N])
FACT 13
«PRETTYDEF({FACT) FACT) 14
FACT. ;1

2.7



An error occurs that DWIM cannot handle, and the system goes into a break.
At this point, the user can type in expressions to be eval-ed or apply-ed
exactly as at the top level. The prompt character ':' indicates that the
user is in a break, 1i.e. that thé conte*t of his cdmputétion is available.
In other words, the system is actually "within" or *below" the call to

itimes in which the error occurred.

The user types in the break command, BT, which calls for a backtrace to be
printed. In INTERLISP, interpreted and compiled code (see Section 18 for
discussion of the compiler) are completely compatible, and in both cases,
the name of the function that was called, as well as the names and values
of its arguments are stored on the stack. The stack can be searched and/or

modified in various ways (see Section 12).

Break commands are discussed in Section 15, which also explains how the
user can "break" a particular function, i.e. specify that the system go
into a "break" whenever a certain function or functions are called. At
that point the user can aexamine the state of the computation. This

facility is very useful for debugging.

The user asks for the value of the vériable n, i.e. the most recent value,
or binding. The interpreter will search the stack for the most recent
binding, and failing to find one, will obtain the top level value from the
atom's value cell, which is car of the atom (Section 3). If there are no
bindings, and the value cell contains the atom NOBIND, an unbound atom

error is generated (Section 16).

The user realizes his error, and calls the editor to fix it. (Note that
the system is still in the break.) The editor is described at length and in
detail in Section 9. It is an extremely useful facility of  INTERLISP.

Section 9 begins with a simple introduction designed for the new user.

2.8



10.

11.

12.

13.

14.

The user instructs the editor to replace all NIL's (in this case there is
only one) by 1. The editor physically changes the expression it is
operating on so when the user exits from the editor, his function, as it

is now being interpreted, has been changed.

The user exits from the editor and returns to the break.

The user specifies the value to be used by itimes in place of NIL by using
the break command RETURN.( This causes the computation to continue, and 6 is

ultimately returned as the value of" the original input, fact(3).

The user prettyprints (Section 14) fact, i.e. asks it be printed with

appropriate indentations to indicate structure. Prettyprint also provides '

a comment facility. Note that both the changes made to fact by the editor

and those made by DWIM are in evidence. .

The user writes his function on a file by using prettydef (Section 14),
creating a TENEX file, FACT.;1, which when loaded into INTERLISP at a later
date via the function load (Section 14), will cause fact to be defined as
it currently is.. There .1s also a facility in INTERLISP for saving and

restoring an -entire core image via the functions sysout and sysin
(Section 14). ‘

The user logs out, returning control to TENEX. However, he can still

continue his session by re-entering INTERLISP via the TENEX REENTER or
CONTINUE command.

2.9



Index for Section 2

Page

=
[
g
-]
-
(7]

APPLY[FN;ARGS] SUBR ...... heesesssevaes ceeesenes .
apply format .......c000. 1 essesesssesssessensnne
APPLY*[FN;ARG1;...;ARGNR] SUBR® ... iccvevneacana
ARGLISTIX] .svevvreeroosasess tteescecvesossocecsae
backtrace ....iiiiiciencenitansoons cevesarenseene
BAD ARGUMENT FASSOC (erroir message) ..ccececcee
BAD ARGUMENT - FLAST (error message) .......ocees
BAD ARGUMENT - FLENGTH (error message) ....coceee
BAD ARGUMENT - FMEMB (error messSage) ...cceccceves
BAD ARGUMENT - FNTH (error message) ...ceecesscee
BT (break command) ......civeevcvvasenoscossssons
CONTINUE (tenex command) ....cccocceevenccoccosone
CONTROL[U] SUBR ..cvvvnns ereecessesersesersnoves
control characters ......cieececenesccccccoancecs
CONErol=A . ierrevecnnsennsvossssssnosessssssssss
control-C ........... ceecereesetessssearsessestnt
COI\tl"Ol-D coocotooot|nolo.'0000.00.0‘05000000!0'0!
CONtrol-0 . ..iiiieeroeesonoroscosorososssoroncsason
CONLIrol-Q ...iiiieeeasereenssocsocssconsosossnscans
CONtrol-U . iiietreenentorosesssnosasssacsssssas
debugging ...ciievticnncervrrscccctsrorecveronnnes
DEFINE[X] .iiinreevereeennnossncnorsoscscostsssne
DEFINEQIX] NL® ...t iiernnreonososveseoscsvosssas
dot NOtAtionN ...iiieiirertnvaroneanesroccocnrrans
DWIM ... iiiereecncccnnne tesesesessessesescrsnne
EQLX;Y] SUBR .eveveeevns teteesnervecrrserreesvons

1 ¢+ 1
]
F-3

. -
(<.} o

.

eq aaaaaaaa €0 0 0 0G0 NLLELEPILLIEERGEIEPIIEIEIOIOOBOIENINOPIEOOLEOS
EQUAL[X;Y] ooooo '."0;0l""l.l.'.ll't!.l'.......
Bqual ........ PP AL I EIPIICOIEIIRIROECEIIOIOIEOIOEOIOIIOGEOEOETOIEEOEES

. s

€SCape Character .....cocernscanosessscsnsrnossnse
EVAL[X] SUBR ...ccveven R Y
eval format ...cccceeivresrvessventossososcocasons
EVALQT ... ..cieeerenenanns tetesesssvsanetoenecens
FASSOC[X;Y] LR I I I R A I BRI IR I A R I I I S B RS B A S N I I AN )
files ...t eiernanncrnans ceseaas Cetecsessercanans
FLAST[X] .0 6000000080080 000000000005000080008000000
FLENGTH[X] ...... tesieseseteecsness sttt seseatns
FMEMBEX Y]  civenenveocvosossasssnssnsossssensssss
FNTH[X;N] 9 0 F 00000 PRIV ENINLIELIOCEOEOIOIIOIEOIENILOIOON
function definition cell ......cieevvceccncevcans
functional arguments ..... Cessstsanssersnressacne
garbage collection ....cicceccetriitctcccrconnnne
GETD[X] SUBR ..vivversesnnnnssancensosecsnosssoens
line-buffering ........... ceesesecsecsssseans cees
LINELENGTH[N] SUBR ....ccc.e. seeesetseserrresnens
LISTP[X] SUBR ...iveiennoceneas teesescsesassceanes
1iStS .. iieriennnens Seetesessesserssssrtesenasc o
LOAD[FILE;LDFLG;PRINTFLG]) ...... ecesessesersecnes
LOGOUT[ ] SUBR ....ccvee cesseseseeerssessssecentee
NLISTPIX] tititiieoeesessasacesosoanonsosnsessans
NOBIND i .iiiererenssnceroeosscsconnosasosovnsossoe
null-check ...ivceeceee e e sssessenesnseressre s e e
predicates ....... sesesesesteasesnsesessssesevses
PRETTYDEF ....cc.c.. testeersersescensetrrennnoens
PRETTYPRINT  ...iieveveceosnoocscosososoonocoonoonoss
PRINTLEVEL[N] SUBR ........ seevesressevncssrnnane

-]

-]

-]

-
-4

INDEX.2.1



prompt character

property list
pushdown list
PUTD[ X;Y] SUBR
RADIX[N] SUBR
REENTER (tenex command)

RETURN (break command)

rubout

square brackets
SYSIN[FILE] SUBR
SYSOUT[LFILE] EXPR

TENEX
true

\
1 ...

(typed t;y éystem)

ooooooo

.o

LRI I I

eeses vt

P e GO OO ELOEVYIOEOLOEPOIOLESILILOEOBPIOEOLEED OO

LRI ]

L A R R N R A N A N R ]

® 00 P 0t 00O I ORI ELLOLIOEEISIOVIOEOEOGEEOETOETEO

4t 0000 PV PLIRENRNSIIEOEBRSOEROOESISIOE

LRI 2K BN IO A B R I A I B I B )

LRI IR N AR I B I I I B R A

S S0V s L EPTOIRNOEPEOEIPIOEIEOIOIEIOEOEOIETYOLEEOETOLES

LRI IR 2 BN BRI I B IO B IR B R B R B B B B B A 2

" e v eoe e

(U V W) (value of ARGLIST)
U.B.A. (error message)
value cell ..
variable bindings
> (carriage-return)
## (typed by system)
% (escape character)
. notation
: (typed by system)
(typed by system)

ee v e

® 09 NP IR OO EILOENPIENEB IO LOELO O

e e e s sr s e

#0000 0000 NROIOEGIOEOIRSEOEOEDPTISTDS

CECECIE B RN B B )

CECRC R IR S SR )

s 00

Ge e v 0 o000 cesv s

LRI A N SR B I I B R I IR A B )

LR I R R A I A I R I I A I ]

LR RN B IR N B B N B B U A A S O

o0

#0000 PIOGOEENOIOIOEESEIEDNILELPOEIDOEES

CIE A IR IR B I AR B SR IR R IR B R A N B

200 LI DPOINOPPIIEIPSIOEOLIQLINIESENOIYS

"0 e0 B OOV RLRIOLEEOIICEIEOEOENOEOLETOEDS

INDEX.2.2

000000 000s0000s0I VIR BLOELILIOELIOLS

e 8PP L EIONSIEOIENITOEOEOIEIIIOEOELEPOEIODS

5 8 86000 0P0000000000eINEIINGLOEEN GG

® e e 0P VLGN EEOLENNOCSISEIOEIEOOEOESTRISIOTN

Page
Numbers

(-
®

rV

PN B RO RN BWRWNDOONNOdWWDWS
- - -
o © o
-
©

NNNNDNNNNDNNNNNNNNNNNDNNNDNNNNDNDND

-
(-






SECTION 3
DATA TYPES, STORAGE ALLOCATION, AND GARBAGE COLLECTION!

INTERLISP operates ‘in aﬁ 18-bit address space. This address space is divided
into 512 word pages with a limit of 512 pages, or 262,144 words, but only that
bortion of address space: currently in use actually exists on any storage
medium. INTERLISP itself and- all data storage are contained within this
address space.,rﬁ pointer to a data element 5ucﬁ as a number, atom, etc., is

simply the address of the data slement in this 18-bit address spacs.

-3.1 Data Types

The data types of INTERLISP are lists, atoms, pnames, arrays, large and small
integers, floating point numbers, string characters .and string pointers.

Compiled coede and hashbarrays are currently included with arrays.

In the descriptions of the various‘daya type# given below, for each data type,
first the input syntax and outputvfornat are dosbribed. that is, what input
sequence will cause tho INTERLISP read program to construct an nlcment of that
type, and how the INTERLISP print program will print such an element. Next,
those functions that construct elements of that data type are qivon. Note that
some data types cannot be input, they can only be constructed, e.g. arrays.
Finally, the format in which an element of that data type is stored in memory
is described. ‘ ' B

---------------------------- AL LR PR R LI LI LR L R L L L L R X X X )

1 This section was written by A. K. Hartley.

3.1



3.1.1 Literal Atoms

A literal atom is input as any string of non-delimiting characters that cannot
be interpreted as a number. The syntatic characters that delimit atoms are
space, ond-of—line.z line-feed, % ( ) * ] and [. However, these characters may

be included in atoms by preceding them with the escape character ¥%.

Literal atoms are printed by print and prin2 as a sequence of characters with

%'s inserted before all delimiting characters (so that the atom will read back
in properly). Literal atoms are printed by prinl as a sequence of characters
without tﬁese extra X%'s. For example, the atom consisting pf the five
characters A, B.'C. (, and D will be printed as ABCX(D by print and ABC(D by
prinl. The extra X's are an artifact of the print program; they are not stored

in the atom's pname.

Literal atoms can be constructed by pack, mkatom, and gensym (which uses.

mkatom).

Literal atoms are unique. In other words, if two literal atoms have the same
pname, i.e. print the same, they will always be the same identical atom, that’
is, they will always have the same address in memory, or equivalently, they

will always be gg.3 Thus 1if pack or mkatom is given a 1list of characters

corresponding to a literal atom that already exists, they return a pointer to
that atom, and do not make a new atom. Similarly, if the read program is given
as input of a sequence of characters for which an atom already exists, it

returns a pointer to that atom.

[l ettt dededtdll el d LA AL E LT R LT X R PR R R T N N

2 An end-of-line character is traﬁsmitted by TENEX when 1t sees a
carriage-return.

Note that this is not true for strings, large integers, floating point
numbers, and lists, i.e. they all can print the same without being eq.

3.2



A literal atom is a 3‘ word (36 bits) datum containing:

. PROPERTY CisT TOP LEVEL BINDING
WORD I (CDR) - (CAR)
0 7 18 35
WORD 2: FUNCTION CALLING INSTRUCTION
0 35
. ' TRESERVED FOR FUNCTIONS
WORD 3: PNAME D FoR EJ
0 7 18 35
FIGURE 3-1

Car of a literal atom, i.e. the right half of word 1, contains its top level
binding, initially the atom NOBIND. Cdr of the atom is a pointer to its
property list, initially NIL.

Word 2, the function definition cell, is a full 36 bit word, containing an
instruction to be executed for calling the function assoclated with that atom,
if any. The left half differs for different function types (i.e., EXPR, SUBR,

or compiled code); the right half is a pointer to the function definition.4

The pname cell, the left half of the third word, contains a pointer to the
pname of the atom. The remaining half word is reserved for an extension of

INTERLISP to permit storing function definitions on files.

LRI R R R R N L L L] LEX TR P T L T R T Y R Y il il

4 This use of a full word saves some time in function calls from compiled
code in that we do not need to look up the type of the function definition
at call time.

3.3



3.1.2 Pnames

The pnames of atoms.6

pointed to in the third word of the atom, comprise
another data type with storage assigned as it is needed. This data type only
occurs as a component of an atom or a string. It does not appear, for example,

as an element of a list.

Pnames have no input syntax or output format as they cannot be directly

referenced by user programs.

A pname is a sequence of 7 bit characters packed 5 to a word, beginning at a
wofd boundary. The first character of a pname contains its length; thus the

maximum length of a pname is 126 characters.

3.1.3 Numerical Atoms

Numerical atoms, or simply numbers, do not have property lists, value cells,
functions definition cells, or explicit pnames. There are currently two types

of numbers in INTERLISP: integers, and floating point numbers.

Integers

The input syntax for an integer is an optional sign (+ or -) followed by a

P R R E R N T R P R R R R Y R L P R R R R R R R R L RN X ]

All INTERLISP pointers have pnames, since we define a pname simply to be
how that pointer is printed. However, only literal atoms and strings have
their pnames explicitly stored. Thus, the use of the term pname in a
discussion of data types or storage allocation means pnames of atoms or
strings, and refers to a sequence of characters stored in a certain part of
INTERLISP's memory.

3’4



sequence of digits, followed by an optional Q.a If the Q is present, the digits
are interpreted in octal, otherwise in decimal, e.g. 77Q and 63 both correspond
to the same integers, and in fact are indistinguishable internally since no

record is kept of how integers were created.

The setting of radix (Section 14), determines how integers are printed: signed

or unsigned, octal or decimal.

Integers are created by pack and mkatom when given a sequence of characters

observing the above syntax, e.g. (PACK (LIST 1 2 (QUOTE Q))) = 10. Integers
are also created as a result of arithmetic operations, as described in Section

13.

An integer is stored in.one 36 bit word; thus its magnitude must be less than
2435.7 To avoid having to store (and hence garbage collect) the values of small
integers, a few pages of address space, overlapping the INTERLISP machine
language code, are reserved for their representation. The small number pointer
itself, minus a constant, is the value of the number. Currently the range of
‘small' integersbis -1536 thru +1535. The predicate smallp is used to test

whether an integer is 'small'.

While small integers have a unique representation, large integers do not. In
other words, two large integers may have the same value, but not the same
address in memory, and therefore not be eq. For this reason the function eqp

(or equal) should be used to test equality of large intedors.

and terminated by a delimiting character. Note that some data types are
self-delimiting, e.g. lists.

If the sequence of digits used to create the integer is too large, the high
order portion is discarded. (The handling of overflow as a result of
arithmetic operations is discussed in Section 13.)

3.8



Floating Point Numbers

A floating point number is input as a signed integer, followed by a decimal
point, followed by another sequence of digits called the fraction, followed by
an exponent (represented by E followed by a signed 1nteger).8 Both'signs are
optional, and either the fraction following the decimal point, or the integer
preceding the decimal point may be omitted. One or the other of the decimal
point or exponent may also be omitted, but at least one of them must be present
to distinguish a floating point number from an integer. For example, the
following will be recognized as floating point numbers:
5. 5.00 5.01 .3 SE2 5.1E2
5E-3 -5.2E+6

Floating point numbers are primtgd using the facilities provided by TENEX.

INTERLISP calls the floating point number to string conversion rout1n059

using
the format control specified by the function fltfmt (Section 14). fltfmt is
initialized to T, or free format. For example, the above floating point
numbers would be printed free format as:

5.0 5.0 5.01 .3 500.0 510.0

00§ -5.2E6

Floating point numbers are also created by pack and mkatom, and as a result of

arithmetic operations as described in section 13.
A floating point number is stored in one 36 bit word in standard PDP~-10 format.

The range is +2.94E-39 thru +1.69E38 (or 2t-128 thru 2t127).

and terminated by a delimiter.

Additional information concerning these conversibns may be obtained from
the TENEX JSYS Manual.

3.6



3.1.4 Lists

The input syntax for a list is a sequence (at least ono)IO of INTERLISP data
elements; e.g. 1literal atoms numbers, other 1lists, etc. enclosed in
parentheses or brackets. A bracket cdn be used to terminate several lists,

e.g. (A (B (C], as described in Section 2.

If there are two or more elements in a list, the final element can be preceded
by a . (delimited on both sides), indicating that cdr of the final node in the
list is to be the element immediately following the ., e.g. (A . B) or
(A B C . D), otherwise cdr of the last node in a list will bs NIL.!! Note that
the input sequence (A B C . NIL) is thus equivalent to (A B C), and that (A B .
(C D)) is thus equivalent to (A B C D). Note however that (A B . C D) will

create a list containing the five literal atoms A B . C and D.

Lists are constructed by the primitive functions cons and list.

Lists are printed by printing a left parenthesis, and then printing the first
element of the 1ist,12 then printing a space, then printing the second element,
etc. until the final node is reached. Lists are considered to terminate when
cdr of some node is not a 1list. If cdr of this terminal node is NIL (the usual
case), car of the terminal node is printed followed by a right parenthesis. If

cdr of the terminal node is not NIL, car of the terminal node is printed,

10 () 1s‘read as the atom NIL.

11 Note that in INTERLISP terminology, a list does not have to end in NIL, it
is simply a structure composed of one or more conses.

12

The individual elements of a 1list are,prlnted using prin2 if the list is
being printed by print or prin2, and by prini if the list is being printed

by print.

3.7



followed by a space, a period, another space, cdr of the terminal node, and
then the right parenthesis. Note that a list input as (A B C . NIL) will print
as (A B C), and a list input as (A B . (C D)) willlprint as (A B C D). Note
also that printlevel affects the printing of 1lists to teletype, and that
carriage returns may be inserted where dictated by linelength, as described in
Section 14. | .

A list is stored as a chain of list nodes. A list node is stored in one 36 bit
word, the right half containing car of the list (a pointer to the first element
of the 1list), and the left half containing cdr of the list (a bointer to the
next node of the'list). |

3.1.5 Arrays

An array in INTERLISP is a one dimensional block of contiguous storage of
arbitrary length. Arrays do not have input syntax; they can only be created by
the function array. Arrays are printed by both print, prin2, and gglg_} as #
followed by the address of the array pointer (in octal). Array elements can be
referenced by the functions elt and eltd, and set by the functions seta and

setd, as described in Section 10.

Arrays are partitioned into four sections: a header, a section containing
unboxed numbers, a section containing INTERLISP pointers, and a 'sectibn
containing relocation information. The last three sections can each be of
arbitrary length (including 0); the header is two words long and contains the
length of the other sections as indicated in the diagram below. The unboxed
number region of an array 1s used to store 36 bit quantities that are not
INTERLISP pointers, and therefore not to be chased from during garbage
collections, e.g. machine instructions. The relocation informaion is used when‘

the array contains the definition of a compiled function, and specifies which

3.8



locations in the unboxed region of the &rray must be changed if the array is

moved during a garbage collection.

The format of an array is as follows:

HEADER WORD O

WORD |

FIRST DATA WORD

The header contains:

word 0 right -
left Co-

word 1 right -
left -

3.1.6_ Strings

ADDRESS OF RELOCATION
INFORMATION LENGTH
USED BY GARBAGE ADDRESS OF POINTERS
COLLECTOR '

-NON-POINTERS

POINTERS

RELOCATION
INFORMATION

FIGURE 3-2

length of entire block=ARRAYSIZE+2.

address of relocation information relative to word 0 of
block (> 0 if relocation information exists, negative
if array is a hash array, 0 if ordinary array).

address of pointers relative to word 0 of block.

used by garbage collector.

The input syntax for a string is a ", followed by a sequence of any characters .

except " and %, terminated by a ". " and % may be included in a string by

preceding them with the escape character X%. '

3.9



Strings are printed by print and prin2 with initial and final "'s, and X%'s

inserted where necessary for it to read back in properly. Strings are printed

by prini without the delimiting "'s and extra X's.

Strings are created by mkstring, substring, and concat.

Internally a string is stored in two parts; a string pointer and the sequence
of characters. The INTERLISP pointer to a string 1# the address of the string
pointer. The string pointer, in turn, contains the character position at which
the string characters begin, and the number of characters. String pointers and

string characters are two separate data ';ypes,l3

and several string pointers
may reference the same characters. This method of storing strings permits the
creation of a substring by creating a new string pointer, thus avoiding copying

of the characters. For more details, see Section 10.

String characters are 7 bit bytes packed 5 to a word. The format of a string

pointer is:

# OF CHARACTERS |5 ™ ADDRESS OF STRING + CHARACTER
POSITION

(0] 14 15 35

FIGURE 3-3

The maximum length of a string is 32K (K=1624) characters.

- - W D L R D P D R R P TP W R D D D N G S P Y D D P P T D D G R AR AP R AR R D P e R e e e e W D OB D b G e o

3.10



3.2 Storage Allocation and Garbage Collection

In the following discussion, we will speak of a quantity of memory being
assigned to a particular data typé. meaning that the space is reserved for
storage of elements of that type. Allocation will refer to the process used
to obtain from the already assigned storage a particular location for storing

one data element,

A small amount of storage is assigned to each data type when ' INTERLISP is

started; additional storage is assigned only during a garbage collection.

The page is the smallest unit of memory that may be assigned for use by a
particular data type. For each page of memory there is a one word entry in a
type table. The entry contains the data type residing on the page as well as
other information about the page. The type of a pointer is determined by

examining thé appropriate entry in the type table.

Storage is allocated as is needed by the functions which create new data

elements, such as cons, pack, mkstring. For example, when a large integer is

created by iplus, the integer is stored in the next available location in the
space assigned to integers. If there is no available locatioh, a garbage

collection is initiated, which may result in more storage being assigned.

The storage allocation and garbage collection methods differ for the various
data types. The major distinction is between the types with elements of fixed
length and the types with elements of arbitrary length. List nodes, atoms,
large integers, floating point numbers, and string pointers are fixed length;
all occupy 1 word except atoms which use 3 words. Arrays, pnames, and strings

(string characters) are variable length.

Elements of fixed length types are stored so that they do not overlap page

3.11



boundaries. Thus the pages assigned to a fixed length type need not be
adjacent. If more space is needed, any empty page will be used. The method of
allocating storage for these types employs a free-list of available locations;
that is, each. available location contains a pointer to the next available
location. A new element is stored at the first location on the free-list, and

the free-list pointer is updated.14

Elements of variable length data types are allowed to overlap page boundaries.
Consequently all pages assigned to a particular variable length type must be
contiguous. Space for a new element is allocated following the ldst space used

in the assigned block of contiguous storage.

When INTERLISP is first called, a few pages of memory are assigned to each dgta
type. When the ailocation routine for a type determines that no more space is
available in the assigned storage for that type, a garbage collection is
initiated. The garbage collector determines what data is currently in use and
reclaims that which is no longer in use. A garbage collection may also be

initiated by the user with the fuqction reclaim (Section 10).

Data in use (also called active data) is any data that‘can be ‘reached' from
the currently running program (i.e., variable bindings and functions in
execution) or from atoms. To find the active data the garbage collector
‘chases' all pointers, beginning with the contents of the push-down lists and
the components (i.e., car, cdr, and function definition cell) of all atoms with

at least one non-trivial component.

- W W TP TP W P D W D TP R N e S R D W W e W W D W SR S N R G R AR YR D WD W G R P e R P D R AP G R P P TR e IR 4D S Y W PP S R P P P W S W e e

The allocation routine for 1list nodes is more complicated. Each page
containing list nodes has & separate free list. First a page 1is chosen
(see CONS for details), then the free list for that page is used. Lists
are the only data type which operate this way.

3.12



When a previously unmarked datum is éncountered. it is marked, and all pointers
contained in it are chased. Most data types are marked using bit tables; that
is tables containing one bit fbr each datum. Arrays, however, are marked using

a half-word in the array header.

When the mark and chase process is completed, unmarked (and thqroforo unused)
space 1is reclaimed; Elements of fixed léngth types that are no longer active
are reclaimed by adding their locations to the free-list for that type. This
free list allocation method permits reclaiming space without moving any data,
thereby avoiding the time consuming process of updating all pointers to moved
data. To reclaim unused space in a block of storage assigned to a variable
length type, the active elements are compagted toward the beginning of the
storage block, and then a scan of‘all active data that can contain pointers to
the moved data is performed to update the pointers.

16 unused space fof all

Whenever a garbage collection of any type is initiated,
fixed length types is reclaimed since the additional cost is slight. However,
space for a variable length type.is reclaimed only when that type initiated the

garbage collection.

If the amount of storage reclaimed for the type that initiated the garbage
collection is less than the minimum free storage requirement for that type, the
garbage collector will assign enough additional storage to satisfy the minimum
free storage requirement. The minimum free storage requirement for each data
may be set with the function minfs (Section 10). The garbage collector assigns
additional storage to fixed length types by finding empty pages, and adding the

appropriate size elements from each page to the free 1list. Assigning

collection' means either the type that ran out of space and called the
garbage collector, or the argument to reclaim.

3.13



additional storage. to a variable length type involves finding empty pages and
moving data so that the empty pages are at the end of the block of storage

assigned to that type.

In addition to increasing the storage assigned to the type initiating a garbage
collection, the garbage collector will attempt to minimize garbage‘collectibns
by assigning more $torage to other fixed length types according to the
following algorit.hm.t6 If the amount of active data of a type has increased
since the last garbage collection by more than 1/4 of the minfs value for that
type, storage is increased (if necessary), to attain the minfs value. If
active data has increased by less than 1/4 of the minfs value, available
storage 1is increased to 1/2 minfs. If there has been no increase, no more
storage is added. For example, if the minfs setting is 2000 words, the number
of active words has increased by 700, and after all unused words have been
collected there are 1000 words available, 1024 additional words (two pages)
will be assigned to bring the total to 2024 words available. If the number of
active words had increased by only 300, and there were 500 words available, 512

additional words would be assigned.

3.3 Shared INTERLISP

The INTERLISP system initially obtained by the user is shared; that is, ali
active users of INTERLISP are actually using the same pages of memory. ASs a
user adds to the system, pri#ata pages are added to his memory. Similarly, if
the user changes anything: in the original shared INTERLISP, for example, by

advising a system function, a private copy of the changed page is created.

16 We may experiment with different algorithms.

3.14



In addition to the swapping time saved by having spvornl users accessing the
same memory, the sharing mechanism permits a large saving in garbage collection
time, since we do not have to garbage collect any data in the shared system,
and thus do not need to chase from any pointers on shared pages during garbage

collections.

This reduction in garbage collection time is possible because the shared system
usually is not modified very much by the user. If the shared system is changed
extensively, the savings in time will vanish, because once a page that was
initially sharednis made private, every pointer on it must be assumed active,
because it may be pointed to by something in the shared system. Since every
pointer on an initially shared but now private page can also point to private

data, they must always be chased.

A user may create his own shared system with the function makesys. If several
people are using the same system, making the system be shared will result in a
savings in swapping time. Similarly, if a system is 1arg§ aﬁd seldom modified,
making it be shared will fesult in a reduction of garbage collection time, and

may therefore be worthwhile even if the system is only being used by one user.

makesys[file] ' creates a saved file in which all pages in this
system, including private user pages, are made
read exechte. i.e. shared. This System can then
be run via the TENEX command RUN, or GET and
START.

For example, new INTERLISP systems are brought up by loading the appropriate
compiled files and then performing_makesys[LISP.SAV].I7

makesys is also advised to set the variable makesysdate to (DATE), i.e. the
time and date the system was made.

3.15



Index for Section 3

ARRAY[N;p;V] SUBR ® 5 890600V LNLOENIINILEOIIERLOEOCIEOIRNOCEITGPOEDS

array header 60 sV OO OSSN NIIOIINOISIOITITS

array pointer .....ccccecerctcrccttetcrosscscsccs
arrays . s 0 !l lllllllllllllll T O % 0P PSP ON PSRN N e
atoms 0000000000000 ® 0 9 5 0 0 B 0 0 S 0S8N O A SN eENN e

carriage-return ® & 0 6 80 PSP O PR EO R ODN DN DS
compacting ......... ceteseveonansas

e e s e e 00

er se 0000 s0 0

CONCAT[XI;XZ;...;XH] SUBR. e s eNerses st st e

CONS[X;Y] SUBR ...... creesseneenave
data types ..... setestesessssavenens
E (in a floating point number) ....
ELT[A;N] SUBR .s.icevvevenncovcnnnns
ELTDLA;N] SUBR ..cveveonrovvsovsnes
end-of-line ......cveieiensrnnnnnss

se e s 000

s s 00 e s

eecesos s s es oo

s s 000 e0 0000

aevevsevesveen

LI R S A A RN S A Y )

EQP[X;Y] SUBR e s e e e *e v e essINeEENPOCIENPLOEOLERITOEOSIOLEOTDS

escape character ....cccocevecesree

sco s e e

floating point numbers .....cccevvescecrcvsvroces

FLTFMTIN] SUBR ..vceevvcevssosocscs
free-list ....... eseesssesvsesesenns
function definition cell ..........
garbage collection ......ccvcenvene
GENSYMICHAR] ...ovevrenevvoccoonnns
hash arrays ..cccercovcecsesscccsons
integers .....ccceccevee cessescenses
large integers ....ccccccccccscnanse
line-feed ............ cesesessaanase
LINELENGTH[N] SUBR ...cvevecesovnen
LISTEX1;:X2;...:Xn] SUBR® ..cvvenens
list nodes ...cceeeerncccsncassnnan
11StS  tiieeiieconsnrssnsesnosesnsvas
literal atoms ..... ceensescssessnnnn
MAKESYS[FILE] EXPR .....ccv0s ceseae

se0 0000000004

e evesosrv s

e e 006000l

e vosc e r v

0 s000000 0000

ee s 00 s e s

LR A I A N )

€S 00 v 000 et

e 0000060000000

9s e s s v om0

MAKESYSDATE (system variablelparameter) cesaccnne

MINFS[N;TYP] SUBR ...vvervvanscsess

s 0000 P00

MKATOM[X] SUBR @8 9880000 EEPL0CEEILIOIVLIOISIBOENOELIOEOIOETNTDOEDIOE

MKSTRING[X] SUBR L L U B B B B B B B N AN

L N I R A A I I )

NOBIND R N R R R R A A A I I I I B R N B ] v es 0 es st rs s e

octal L L I I O B N B DR DR I B B BB B BN BRI AR B AN
PACK[X] SUBR ......ccvnennn ceceesas
page ..... ® 6 5 00 S 08BN O GO E OSSN

pname cell ..... cesecesvrsssssnsnas
pnames ® & 8 % 8 5 % 00 00BN OO N ST O AEB eSS
pointer ......... tesesesvsacacaanss
PRINI[IX;FILE] SUBR ..vevvvonennonos
PRINZEX;FILE] SUBR ..vvvevvecncvons
PRINTIX;FILE] SUBR ...cvevvvononnne
PRINTLEVEL[N] SUBR ..... veseessacns
private pages ........ teesccncsnsen
property list ...ciciiececroercsnes
Q (following a number) ........cce.
RADIX[N] SUBR ....... Cevetrenenenne
RECLAIMIN] SUBR .¢.vevecncecsnsonsne
relocation information (in arrays)

RUN (tenex command) .....cecoceceee
SETA[A;N;V] s PP ss GBI LEVTOIDRNOEOIS

LICRURE B RE K BRI N )

e e eece s
s 000000000000
eeceves e
e co0ess s
e e eesev oo
e s s 0000000000
eeoess et oers e
s e s oo sev s oo

v e s 00000009000
e eveceseencson
s s s s 0P
e s s e e s v

SETD[A;N;VJ 6 0 29 0 000N ENILOLOSOENOCIETRENIIESIPIOEOIOSIEOES

INDEX.3.1

. . . . e« o o o @ o o o
PR NN ION =R N = OO
te OW =~ =
- -
i pub -

»4,6,11

N
'

i
]
- -
- w

* e e

e 8 & e & e o e &

> ® w [
™ &
- - - -
A A e
[N - %] ()

1< ]

.

N
]

[y

(2

. . .
(>}

@O—-@:-h(n'clw;*c‘lNE\:Nt-—-;»:-;\).cvsw—-Nuu»Nn-m\lON».b»Nv-a@



shared pages ..

shared system ..

sharing

small integers

SMALLP[N]
space ..

storage allocation ..
string characters

S e v s e 0LLeLReLrENOONOLGERNOOEODL

LR A I R R I I I A I N R R A N N A N N ]

SOV PN OIELIELNGOICNTOIOIOEOEOIBTOEIOIOETOSLS

® 00 P 00 P LI EINILEPICOILIOINIOISIIIOEOLIOEOCELILOEEOEDS

® 6 0 0 0005000 LLILNCNIENLSeORONLOIELEPOELIOELEINESEDS

oooooooo

string pointers

strings

DR I N

® e BV EENOVGNLERICINNOGELOBLIBRNOGEOISEOIPROETCTES

LRI AR I I I I BB B AU B R A A I I B A A )

LRI U B IR 2 IR U BE B RE B BN B 2R BB BE K BB AE Y B N ¥

5 5 60000 ehLPLNLEIPEPIIRLIEOGEIBIIOIOETDLE

s e v e

SUBSTRING[ X;N;M] SUBR

TENEX ....

60 050600 OIRNRCEILIEIESTOLIEOLOEIOLIEOETPTTS

C N R I NI I I I A A A R N A N N N Y

5 6V I PSRN IPOEENPIOIOEIIEOILTSIEOIENRIROIOES

unboxed numbers (in Arrays) ..ccceeccccssceccancs
L]

L A R N R N R N R R R R R N NN I N NN S S A

# (followed by a number)
% (escape character)

* 808w

e e 0000

ed T e ¢ swrN~

) eeenn

seoses e

ve s e e e

s e e 00 e

LRI R IR AR A BU Y BE B RE IR BN A I IR N BB Y

LRI BRI B BB B A I A A N I I I

oooooo Geecovseorsesosers e

P e PN LI LEIGIENOCREOIIICEOIENOLEOIOBROIOLORLREOEOEODLIOLOYS

LRI BB I R BN R I R O R R N 2N BN B R IR BB NN B BB AN 4

INDEX.3.2

(in a floating point number)

® 2 05 00 PPN LI NPERIL OO RPN NPOEIIBOIELELIOIOEELEOIPLEES

@0 s s 000000009

LA A A I B IR I B IR I N S B I B BN B B B BB BN B I B IS I 2K K BB B B )

Page
Numbers

0-11
0-11

[T

NNGQNNNN.ONON-—t—»-NQ
- OO« -
-]
-
(S ]

3

.

-
S (s
Qo

WDWWWWWWLWRWWWWWWWwwWwww

e & o o o o






SECTION. 4
FUNCTION TYPES AND IMPLICIT PROGN

In INTERLISP, each function may independently have:
a. 1its arguments evaluated or not evaluated;
b. a fixed number of arguments or an indefinite number of arguments.
c. be defined by an INTERLISP expression, by built~in machine code, or by

compiled machine code.

Hence there are twelve function types (2 x 2 x 3).

4.1 Exprs

Functions defined by INTERLISP expressions are called exprs. Exprs must begin

with either LAMBDA or NLAMBDA.I indicating whether the arguments to the
function are to be evaluated or not evaluated, respectively. Folldwing the

LAMBDA or NLAMBDA in the expr is the 'argument list', which is either

(1) a list of literal atoms or NIL (fixed number of arguments); or

(2) any literal atom other than NIL, (indefinite number of arguments).

Case (1) corresponds to a function with a fixed number of arguments. Each atom

in the 1list is the name of an argument for the function defined by this

Where unambiguous. the term expr is used to refer to either the function,
or its definition.

4.1



expression. When the function is called; its arguments will be evaluated or
not evaluated, as dictated by whether the definition begins with LAMBDA or
NLAMBDA, and then paired with these argument names.z This process is called
"spreading" the arguments, and the function is called a spread-LAMBDA or a

spread-NLAMBDA.

Case (2) corresponds to a function with an {ndefinite number of arguments.
Such a function is called a nospread function. If its definition begins with
NLAMBDA, the atom which constitutes its argument list is bound to the list of
arguments to the function (unevaluated). For example, if FOO is defined by
(NLAMBDA X =--), when (FOO THIS IS A TEST) is evaluated, X will be bound to
(THIS IS A TEST).

If a nospread function begins with a LAMBDA, indicating its arguments are to be
evaluated, each of its n arguments are evaluated and their values stored on the
pushdown list. The atom folloﬁing the LAMBDA is then bouﬁd to the nuﬁber of
arguments wﬁich have been evaluated. For example, if FOO is defined by
(LAMBDA X --) when (FOO A B C) is evaluated, A, B, and C are evaluated and X is
bound to 3. A built-in functimn.‘arg[atm;m]. is available for computing the

value of the mth argument for the lambda-atom variable atm. arg is described

in section 8.

4.2 Compiled Functions

Functions defined by expressions can be compiled by the INTERLISP compiler,  as

Note that the function itself can evaluate selected arguments by calling
eval. In fact, since the function type can specify only that all arguments
are to be evaluated or none are to be evaluated, if it is desirable to
write a function which only evaluates some of its arguments, e.g. setq, the
function is defined as an nlambda, i.e. no arguments are evaluated in the
process of calling the function, and then included in the definition itself
are the appropriate calls to eval.

4.2



described in section 18, "The Compiler and Assembler®. Functions may glso be
written directly in machine code using the ASSEMBLE directive of the compiler.
Functions created by the compiler, whether from s-exprgssions or ASSEMB_LE

directives, are referred to as compiled functions.

4.3 Fun‘ction Type

The function fntyp returns the function type of its argument. The value of

fntyp is one of the following 12 types:

EXPR CEXPR SUBR
FEXPR CFEXPR FSUBR
EXPR* CEXPR* SUBR*

FEXPR® CFEXPR® FSUBR*

The types in the first column are all defined by expressions. T_he types in the
second column are compiled versions of the types in. the first co‘lumn., as
indicated by the prefix C. In the third column are the parallgl_ types for
built-in subroutines. Functions of types in the first two rows have a fixed
number of arguments, i.e., are spread functions. Functions in the thirdy and
fourth rows have an indefinite numbef of arguments, as indicated by thé
suffix ", The prefix F 1ndicates no evaluation of arguments. Th_us. for_'

exaniple, a CFEXPR* is a compiled form of a nospread-NLAMBDA.

A standard feature of the INTERLISP system is that no error occurs if a spread
Junction is called with too many or too few arguments. If a function is called
with too many arguments, the extra arguments are evaluated but ignored. 1If a
Junction 1is -called with too few arguments, the unsupplied ones will be
delivered as NIL. In fact, the Jfunction 1itself cannot distinguish between
being given NIL as an argument, and not being given that argument, e.g.,
(F00) and (FOO NIL) are exactly the same for spread functions.

4.3



4.4 Progn

progn is a function of an arbitrary number of arguments. progn evaluates the

arguments in order and returns the value of the last, i.e., it is an extension

of the function prog2 of LISP 1.5. Both cond and lambda/nlambda expressions

have been generalized to permit 'implicit progns' as described below.

4.5 Implicit Progn

The conditional expression has been generalized so that each clause may contain

n forms (n > 1) which are interpreted as follows:

(COND
(P1 E11 E12 E13)
(P2 E21 E22) (1]
(P3)
(P4 E41))

will be taken as equivalent to (in LISP 1.5):

(COND

(P1 (PROGN E11 E12 E13))

(P2 (PROGN E21 E22))

(P3 P3) [2]

(P4 EA1)

(T NIL))
Note however that P3 is evaluated only once in [1], while it is evaluated a
second time if the expression is written as in [2]. Thus a clause in a cond
with only a predicate and no following expression causes the value of the -
predicate itself..if non-NIL, to be returned. Note also that NIL is returned
if all the predicates have valua NIL, i.e., the cond 'falls off the end'. No

error is generated.

LAMBDA and NLAMBDA expressions also allow implicit progn's; thus for example:

4.4



(LAMBDA (V1 V2) (F1 V1) (F2 v2) NIL)
is intorpreted as:
(LAMBDA (V1 V2) (PROGN (F1 V1) (FZ'VZ) NIL))
The value of the last expression_foilowing LAMBDA (or NFAQBDA) 1; returned as

the value of the entire expression. In this example, the fdnction wogld'always

return NIL.

4.5



Index for Section 4

Page
Numbers

ARG[LVAR;M] FSUBR ...eveesvcscccossocsscssscssonne
argument evaluation .....ccecvevoccrcrrccnsecscns
argument list ...... e caescsesseresressensacss e
ASSEMBLE ....ccovevens teecusaesesneccasererenrasns
CEXPR (function type) ...cveceasesvcscsanscassnne
CEXPR® (function type) .e.veevcarecocossoccsssons
CFEXPR (function type) ...vecevscecocscocveccrnns
CFEXPR® (function tyPe) .ciciceoceccocncsnsososss
compiled functions ......... ceceseesrescersernesee
compiler ....iieeicniccnnes enhessssaensssseseresesan
COND[C1;C2;...;Cn] FSUBR® . ..vesvcnvronnssnssnnna
EVAL[X] SUBR ....... Ceeesrvrreteeestessurtoansenna
EXPR (function type) ....civeerecrcnsvcsncnconcan
EXPR® (function type) .ceeosrevvvesscccessososnsa
EXPrS  ciivvecne eeeceanenron Ceseseeseerrscesenuos
FEXPR (function type) ..ccocecececcosccsoccacncoe
FEXPR* (function type) ..... censereesressessanaue
fixed number of arguments ....ccevesvccconcsvccnons
FNTYP[X] o"aolll-...'!lU'l.ll".......'....'..OQ.OO
FSUBR (function type) ......vececees cesestesessane
FSUBR* (function type) ..c.ccveccsovevenssasocnee
function types .......cve. heseseesnsescessscsnnens
implicit progn .....ciieiinrreestscssccnscsascones
incorrect number of arguments ......cccccecsccncs
indefinite number of arguments ........cc00r0000
LAMBDA . ..cvveeicvvervennns Veesessesesnssrseernnus
NLAMBDA ........00.. ceecseseceesescscsarsctrorenas
nospread functions .....cciccveccecsvcsoncccrrens
PROGN[ X1;X2;...:Xn] FSUBRY ...iveeeeeconorsvssans
pushdown list .....ccieneererocossacscsnsrssensescs
spread functionsS ...ccceeercvacveccasrsvoccccocnce
spreading arguments ...cccseesncnsasensrssesannea
SUBR (function type) ..... eesesescasrnssssscsessa
SUBR* (function type) .....ceecensecoccssnnscnsses
too few arguments ..... ceereeeseststesencstarsans
too many argumonts S 0 0 0 0 0 0 DO PP OO DO NSO OE NS ENDE B

- 0N
9
N

e & e o

¢« e s e o

.

o e o & & e o

8
(78]

LK
NN
N - -
L -3

e o e o o

[ - O O N - N A - G S i - - A Y - W N R )
WWWWNNNDBDNR R NWBRBRWWRWWRWWEWWNDLWNWWWWWer

INDEX.4.1



SECTION §

PRfHITIVE FUNCTIONS AND.PREDICATES

5.1 Primitive Functions

car[x]

cdrix]

caar(x] = car[car[x]]
cadr{x] = carfcdr{x]]
cddddr{x] =

cdr{cdrlcdrlcdr{x3]1]

cons[x;y]

car gives the first element of a list X, or the
left element of a dotted pair X. For literal
atom, value is top level binding (value) of the
atom. For all other nonlists, e.g. strings,

arrays, and numbers, the value is undefined, i.e.,

-1t is the right 18 bits of Xx.

cdr gives the rest of a list (all but the first
element). This is also the right member of a
dotted pair. If x is a literal atom, cdr[x] gives
the proberty list of x. Property lists are
usually NIL. unless modified by the user. The
value of cdr is undefined for other nonlists, i.e.

it is the left 18 bits of X.

All 30 combinations of nested cars
and cdrs up to 4 deep are included
in the system. All are compiled

open by the compiler.

cons constructs a dotted pair of X and y. If y is

a list, x becomes the first element of that list.

5.1



cons[x;y] is placed

To minimize drum accesses the following algorithm
is used for finding a page on which to put the
constructed INTERLISP word.

1) on the page with y if y is a list and there is room;

otherwise

2) on the page with x if x is a list and there is room;

otherwise

3) on the same page as the last cons if there is room;

otherwise

4) on any page with a specified minimum of storage, presently 16 LISP

words.

conscount[ ]

rplacd[x;y]

value is the number of conses since this INTERLISP

was started up.

Places the pointer y in the decrement, i.e. cdr,
of the cell pointed to by x. Thus it physically
changes the internal 1list structure of x, as
opposed to cons which creates a new list element.
The only way to get a circular list is by using
rplacd to place a pointer to the beginning of a
list in a spot at the end of the list.

The value of rplacd is x. An attempﬁ to rplacd
NIl will cause an error, ATTEMPT T0 RPLAC NIL,
(except for rplacd[NIL;NIL]). For x a literal
atom, rplacd(x;y] will make y be the property list
of x. For all other non-lists, rplacd should be
used with care: it will simply store y in the left
18 bits of x.

5.2



rplacalx;y] similar to rplacd, but replaces the address
' pointer of x, i.e., car, with y. The value of
rplaca is x. An attempt to rplaca NIL will cause
an error, ATTEMPT TO RPLAC NIL, (except for
rplaca[NIL;NIL]). For x a literal atom,
rplaca(x;y] will make y be the top level value for
X. For all other non-lists, gﬁ;ggg should be used
with care: it will simply store y in the right 18
bits of Xx.

Conventton: Naming a function by prefixing an existing function name with [
usually indicates that the new function is a fast version of the
old, i.e., one which has the same definition but compiles open and
runs without any ‘'safety’ error checks.

frplacd{x;y] Has the same definition as rplacd but compiles
open as one instruction. Note that no checks are
made on X, so that a compiled frplacd can clobber

NIL, producing strange and wondrous effects.

frplacal[x;y] Similar to frplacd.
quote[ x] " This 1s a function that prevents its arguments

from being evaluated. Its value is x itself, e.g.

(QUOTE F00) is Foo0.!

kwote[x] ‘ ’(LIST (QUOTE QUOTE) x),
if x=A, and y=8, then
(KWOTE (CONS x y))= (QUOTE (A . B)).

Dkl I Y R R L L Y L L Y PR Y T Y Y P Y PR Y TR R Py

Since giving quote more than one argument, e.g. (QUOTE EXPR (CONS X Y)), is

almost always a parentheses error, and one that would otherwise go

undetected, quote itself generates an error in this case,
. PARENTHESIS ERROR.

5.3



cond[cl;cz;...;ck]

selectalX;y i¥yi...:¥,:2]

The conditional function of INTERLISP, cond, takes
an indefinite number of arguments c,,C,, ... Cy,
called clauses. Each clause c; is a list ‘911 oo
e,4) of n 21 items, where the first element is
the predicate, and the rest of the.elements the
consequents. The operation of cond can be
paraphrased ‘as IF ey THEN @54 ... €4
ELSEIF ey, THEN e,, ... €., ELSEIF e44 ...

The clauses are considered in sequence as follows:
the first expression €44 of the:clause ¢y 1is
evaluated and its‘ Nvalue is classified as false
(equal to NIL) or true (not equal to NIL). If the
value of e,, is true, the expressions g, .. eni
that follow in clause c; are evaluated in
sequence, and the value of the conditional is the
value of eni’ the last expression in the clause.
In particular, if gél. i.e., if there is only one
expression in the clause c;, the value of the
conditional is the value of gli'b (which is

evaluated only once).

If e,y is false, then the remainder of clause ¢,
is ignored, and the next clause Cist is
considered. If no €44 is true for any clause, the

value of the conditional expressidn is NIL.

selects a form or sequence of forms based on the
value of its first argument x. Each y, is a list
selection key. The operation of selectq can be

paraphrased as:

5.4



IF x=s; THEN e, ... e,
ELSEIF x=s, THEN ... ELSE z.

If S is an atom, the value of x is tested to see
if it is eq to 5 (not evaluated). If so, the
expressions eli'... e 4 are evaluated in sequence,
and the value of the selectq is the value of the

last expression evaluated, i.e. R

If LN is a list, the value of x is compared with
each element (not evaluated) of 5., and if x is eq
to any one of them, then ey to e,y are evaluated

in turn as above.

If y; is not selected in one of the two ways
described, y, , is tested, etc., until all the y's
have been tested. If none is selected, the valuo'
of the selectq is the value of 2. 2z must be

present.

An example of the form of a selectq is:

[SELECTQ (CAR X)
(Q (PRINT FOO)
(FIE X))
((AEIOU)
(VOWEL X))
(COND
((NULL X)
NIL)
(T (QUOTE STOP]

which has two cases, Q and (AE I OU) and a

default condition which is a cond.

selectq compiles open, and is therefore very fast;

5.5



progi{x,ix,3...ix,]

prognlx, iXy i...iX,]

prog[args;eigez;...;on]

however, it will not work if the value of X is a
list, a large integer, or floating point number,

since selectq uses eq for all comparisons.

evaluates its arguments in order, that is, first
X4» then x,, etc, and returns the value of its
first argument Xqs ©.9. (PROG1 X (SETQ X Y)) sets

X to y, and returns x's original value.

progn evaluates each of its arguments in order,
and returns the value of its last argument as its
value. progn is used to specify more than one
computation where the syntax allows only one, e.g.
(SELECTQ ... (PROGN ...)) allows evaluation of

several expressions as the default condition for a

selectg.

This function allows the user to write an ALGOL-
like program containing INTERLISP expressions
(forms) to be executed. The first argument, args,
is a list of local variables (must be NIL if no
variables are used). Each atom in args is treated
as the name of a local variable and bound to NIL.
args can also cpntain lists of the form
(atom form). In this case, atom is the name of
the variable and 1is bound to the value of form.
The evaluation takes place before any of the
bindings are performed, e.g.,
(PROG ((X Y) (Y X)) ...) will bind x to the value
of y and y to the (original) value of x.

5.6



go[x]

return[x]

The rest of the prog is a sequence of non-atomic
statements (forms) and atomic symbols used as
labels for go. The forms are evaluated
sequentially; the labels serve only as markers.
The two special functions go and return alter this
flow of control as described below. The value of
the prog is usually specified by the function
return. If no return is executed, i.e., if the

prog "falls off the end,” the value of the prog is

~ undefined, i.e. garbage.

go is the function used to cause a transfer in a
prog. (GO L) will cause the program to continue
at the label L. A go can be used at any level in
a prog. If the label is not found, go will search
higher progs within the same function, e.g.
(PROG == A == (PROG -- (GO A))). If the label is
not found in the function in which the éggg
appears, an error 1is generated, UNDEFINED OR_
ILLEGAL €0.

A return is the normal exit for a prog. Its
argument is evaluated and is the valup of the grdg

in which it appears.

If a go or return is executed in an interpreted function which is not a prog,
the go or return will be executed in the last interpreted prog entered if any,

otherwise cause an error.

go or return inside of a compiled function that is not a prog is not allowed,
and will cause an error at compile time.

As a corollary, gg or return in a functional argument, e.g. to mapc, will not

5.7



work compiled.

since pnlsetq's and ersetq's compile as separate

functions, a go or return caennot be used inside of a compiled nlsetq or ersetq

if the corresponding prog is outside, i.e. above, the nlsetq or ersetq.

set[x;y]

setqlx;y]

setqqlx;y]

process.
that as a result,
eguivalent:

‘This function sets x to y. Its value is y. If x

is not a 1literal atom, causes an error,
ARG NOT ATOM - SET. If x .is NIL, causes an error,
ATTEMPT TO SET NIL. Note that set is a normal
lambda-spread function, i.e., 1ts arguments are
evaluated before it is called. Thus, if the value
of x is ¢, and the value of y is b, then set[x;y]
would result in ‘9_ h‘aving value b, and b being

returned as the value of set.

An nlambda version of set: the first argument is
not evaluated, the second is.z Thus if the value
of X is C and the value of Y is B, (SETQ X Y)
would result in X (not C) being set to B, and B
being returned. If x is not a iiteral atom, an
error is generated, ARG NOT ATOM - SET. If X is
NIL, the error ATTEMPT TO SET NIL is generated.

Like setq except that neither argument is
evaluated, ¢.g. (SETQQ X (A B C)) sets p.d to
(ABC).

LA R R R Y L L R

Since setq is an nlambda, neither argument is evaluated during the calling
setq itself calls eval on its second argument. Note
typing (SETQ var form) and SETQ(var form) to lispx is
in both cases var is not evaluated, and form is.

5.8



rpaqlx;y] like setq, except always works on top 1level
' binding of x, i.e. on the value cell. rpaq
derives its name from rplaca quote, since it is
essentially an nlambda version of rplaca, e.g.
(RPAQ FOO form) is equivalent to

(RPLACA (QUOTE FOO) form).

rpaqqlx;y] like setqq for top level bindings.

rpaq and rpaqq are used by prettydef (Section 14). Both rpaq and rpaqq
generate errors if x is not atomic. Both are affected by the value of dfnflg
(Section 8). If dfnflg = ALLPROP (and the value of x is other than NOBIND),
1nst§ad of setting X, the corresponding value is stored on the property list of

X under the property VALUE.

Resetvar and Resetform

resetvar{var;new-value;from] The effect of resetvar is the same as
(PROG ((var new-yalue)) (RETURN form)), except
that resetvar is designed to work on GLOBAL
variables, i.e. variables that must be reset, not
rebound (see section 18). resetvar resets the
variable (using frplaca), and then restores its
value after evaluating form. The evaluation of

form 1s errorset protected so that the value is
3

raestored even if an error occurs.” resetvar also

adds the old value of var to a global list, so

In this case, after restoring the value, resetvar propagates the error
backwards by calling error!.

5.9



that if the user types Control-D (or Control-C

followed by REENTER) while form is being
evaluated, the variable will be restored by the
top level INTERLISP executive. The value of

resgtvar is the value returned by form. resetvar

compiles open.

For example, the editor calls lispx to execute editor history

commands by performing (RESETVAR LISPXHISTORY EDITHISTORY (LISPX ~--)), thareby"'

making lispx work on edithistory instead of lispxhistorx.

The behavior of many system functions is affected by Callingicertain funétiods.

as opposed to resetting variables, e.g. printlevel, vlineleng_g. input. ouipﬁt;

radix, gcgag, etc. The function resetform enables a program to treat these

functions much like variables, and temporarily change their 'setting”

resetform{ formi;form2] nlambda, nospread. formi is evaluated, then ﬁggmg
is evaluated, then forml is 'restored', e.g.
(RESETFORM (RADIX 8) (F00)) will evaluate (FOO)
while radix is 8, and then restore the original

setting of radix.

formi must return as 1its value 1its "previous
setting® so that its effects can be undone by

applying car of formi to this value.

resatform is errorset protected like resetvar, and
also records its information on a global list so
- that after control-D (or control-C REENTER), formi

is properly restored.

§5.10



The value of resetform is the value returned by

form2. reseitqgg compiles open.

5.2 Predicates and Logical Connectives
atom{ x] ' - is T if x is an atom; NIL otherwise.

litatom[x] is T if x is a literal atom, i.e., an atom and not

a number, NIL otherwise.
numberp[x] : is x if x is a number, NIL otherwise.

Convention: Functions that end in p are usually predicates, i.e. they test for
some condition.

stringp(x] is x if x is a string, NIL otherwise.¥
arrayplx] is x if x is an array, NIL otherwise.
listp(x] is x if x is a list-structure, i.e., one created

by one or more conses; NIL otherwise.

Note thdt arrays and strings are not atoms, but are also not lists, 1.e. both
atom and listp will return NIL when giver an array or a string.

nlistp[x] 4 not[listp{x]]

eqix;y] The value of eq is T, if x and y are pointers to

meseesceceseconeweew XX T PR P L L L L LR P L L R R L Y Y ) XL LT T ) Coommse-

For other string functions, see Section 10.

5.11



neqlx;y]

nullfx]
not{x]

eqplx;y]

equal[x;y]

and[xl;xz;..

ixn]

the same structure in memory, and NIL otherwise.
eq is compiled opén by the compiler as a 36 bit
compare of pointers. Its value is not guaranteed

T for equal numbers which are not small integers.

See eqp.

The value of neq is T, if x is not eq to y, and
NIL otherwise.

eqlx;NIL]
sam3 as null, that is eq[x;NIL].

The value of eqp is T if X and y are eq, i.e.
pointers to the same structure in memory, or if X
and y are numbers and are equal. Its value is NIL

oth@rwiso.s

The value of this function is T if X and y print
identically; the value of equal is NIL otherwise.
Note that x and y do not have to be eq.

Takes an indefinite number of arguments (including
0). If all of its arguments have non-null value,
its value 1is the value of its 1last argument,
otherwise NIL. E.g. and[x;member[x;y]] will have
as its value either NIL or a tail of y. and[]=T.
Evaluation stops at the first argument whose value

is NIL.

s For other number functions. see Section 13.

5.12



or{XyiXyi...iX,]

Takes an indefinite number of arguments (including
0). Its value is that of the first argument whose
value is not NIL, otherwise NIL if all arguments
havé value NIL. E.g. or[x;numberp[y]] has its
value X, ¥y, or NIL. or[]J=NIL. Evaluation stops at

the first argument whose value is not NIL.

every[everyx;everyfni;:everyfn2] Is T if the result of applying everyfni

some[ somex;somefni;somefn2]

to each element in everyx is true, otherwise NILf
E.g., every[(X Y Z); ATOM]=T.

every operates by computing
everyfnl[car[everyx]].s If this yields NIL, every
immediately returns NIL. Otherwise, every computes
everyfn2[everyx], or cdr[everyx] if everyfn2=NIL,
and uses this as the 'mew' everyx, and the process
continues, e.g. _every[x;ATON;CDDR] is true if

every other element of x is atomic.
every compiles open.

value is the tail of somex beginning with the
first element that satisfies somefni, i.e., for
which somefni applied to that element 1is true.
Value is NIL if no such element exists.

E.g., some[x;(LAMBDA (Z) (EQUAL Z Y))] is

equivalent to member{y;x]. some operates

0 Gh 5 U D W e e s R e e e e e

Actually, everyfni[car[everyx];everyx] is computed, so for example everyfnt

can look at the next element on everyx if necessary.

5.13



analagously to every. .At each stage,
somefnif car{ somex];somex] is computed, and if this
is mot NIL, somex is returned as the value of
some. Otherwise, somefn2[somex] is computed, or
cdr[ somex] if somefn2=NIL, and used for the next

Somex.

some complles open.
notany[ somex;somefni, somefn2] same_as.not[some[somex;somefnl;somefnZ]]
notevery[everyx;everyfhl;everyfnﬂ] not[ every[ everyx;everyfni;everyfn2]]

memb[ x;y] Determines if x is a member of the list y, 1i.e.,
if there is an element of y eg to x. If so, its
value is the tail of the list y starting with that

-element. If not, its value is NIL.

fmemb{x;y] Fast version of memb that compiles open as a five
instruction loop, terminating on a NULL check.
Interpreted, fmemb gives an error,
BAD ARGUMENT - FMEMB, 1if y ends in a non-list
other than NIL.

member[x;y] Identical to memb except that it wuses equal

instead of eq.to check membership of x in y.

The reason for the existence of bhoth memb and member is that eq compiles as one
instruction but equal requires o function call, and is therefore considerably

more expensive. Wherever possible, the user should write (and use) functions
that use eq instead of equal.

5.14



tailp(x;y] Is x, if x is a list and a tail of y, i.e., X is
eq to some number of cdrs > o7 of Yy, NIL

otherwise.

assoc[x;y] y is a list of lists (usually dotted pairs). The
value of assoc is the first sublist of y whose car
is eq to x. If such a list is not found, the
value is NIL. Example:

assoc[B;((A . 1) (B . 2) (C . 3))] = (B . 2).
fassoc[x;y] Fast version of assoc that compiles open as a 6

instruction 1loop, terminating on a NULL check.

Interpreted, fassoc gives an error if y ends in a

non-list other than NIL, BAD ARGUMENT - FASSOC.

sassoc[x;y] Same as assoc but uses equal instead of eq.

If X is eq to some number of cdrs > 1 of y, we say x is a proper tail.

5.15



Index for Section 5

Page
Numbers

ALLPROP .. iiiiiitieiinennnnnns cesesersrresccnsnnse 5.9
AND[X1;X2;...;Xn] FSUBRX ... .iiivevvnsocnsscccocons 5.12
ARG NOT ATOM - SET (error mesSage) ..ccceeevesons 5.8-9
ARRAYP[X] SUBR ........cc... cecescesssssesssesnras 5.11
BITAYS  tictvesuntsessssesvsosrnssoossossssvesssossoossse 5.11
ASSOCIX:Y] cevvenveeen et sessreeccesesssessaveons 5.15
ATOMIX] SUBR ...vivevncercnnnass cecesecscssvseras 5.11
ATTEMPT TO RPLAC NIL (error MeSSAYL) +evvveevsons 5.2-3
ATTEMPT TO SET NIL (error message) ..ccececesecsse
BAD ARGUMENT - FASSOC (error message) ....ccceeee
BAD ARGUMENT - FMEMB (error messSage) .....ccccocees
CAR[X] SUBR ..... Pe e et s sertreteevseteesss s sernass
CDR(X] SUBR L LI I I I I I B B B B B B B B I B B N R R R B R B R R N B Y A )
COND[C1;C2;...3Cn] FSUBR® ....iiieeeeeconnconcnnas
CONd ClAaUSE .iuiveveeoensoeovessssoososcosennossse
CONS[X;Y] SUBR ...... P
cons algorithm ......ocovevecvoernrooreessnoansas
CONSCOUNTIN] SUBR ... vvetcvceececnovevecannanscnss
CONtrol=-D ...ttt icirievnrorernsoscossroncncesenoss
DFNFLG (system variable/parameter) ..........ce..
dotted pair .....cccv0erenee sesecssesessesscenens
EQEX;Y] SUBR i iiiveeevovesosoconosnsoessossononoes
EQP[X;Y] SUBR ...eevveeees Cieecsveseceanentrseuns
EQUALIX;Y] ceviveiereeeens Precerssesstcnrensranaeae
ERROR![ ] SUBR ....... st esesrseeretsssvsteserrance
ERRORSET[U;V] SUBR ..iivivvevicovovovcconcsconconsns
ERSETQ[ERSETX] NL ..... Csessesseseetseansseeerens
EVERY[EVERYX; EVERYFNI tEVERYFN2] cievevevevvenenos
false ........... s cessserserestseeeseesers s nes
FASSOCEX;Y] teviinnenrasosessovcoasvoconensonsosns
FMEMB[X;Y] -------- -ooo---ot.ooooo‘oacooooocu'ottc
FRPLACA[X;Y] SUBR ......... Pessscsssesessssoseane
FRPLACDEX;Y] SUBR ..cvevreenees teesnsavressrcesens
GCGAG[MESSAGE] SUBR . ..vecvecvocrcssscenorssonons
global variables ......... ecessesscsvsssereannns
GO[X] FSUBR® ., .......... sesesssessesssestscncnees
ILLEGAL RETURN (error message) ...cceecoeresessas
INPUT[FILE] SUBR ..... Ceeetetsteeseensases s
KWOTE[X] .+eveeveeces Se et sesecnesssareessssennsane
large integers ........... sesrestsesascstsrreanes
LINELENGTHIN] SUBR ...vevvicrecocssoocsoscncsocsns
LISTP[X] SUBR .......... teessssecteeeetsaessssans
lists ....... Ceesesaerese e tesesssbsanosseserenee
LITATOMIX] SUBR +evvvvevvovecoooncooossesronsnnas
literal QtOmMS . ...ceieevvensoscsocosncnsonnasnans
local variables ......... cerevnenn Cerescesevseens
MEMBLX;Y] .evevveneenns evseseerssssasassssenness aee
MEMBERLX;Y] t.vvvvvrecennnans
NEQLX;Y) ..coevn... $savnconssssansessnsnes ceervee
NLISTPLX] .ievveeencnnsonns teestesesresearsssseas
NLSETQINLSETX] NL .....cc..... teesscascoenne ceesae
NOBIND ....cciieveeecennnnns sesesesetetsnanae cev e
NOTLEX] SUBR  .....vrenrnnnnn Seteresscescsssesascans
NOTANY[ SOMEX ; SOMEFN1;SOMEFN2] ..vvevevernnncnnnne
NOTEVERY[EVERYX;;EVERYFN1;EVERYFN2] ...cevvevvcnsns
NULLEX] SUBR tivveiettenecsoensnceccosasncsannnas

&= oy

e o e e o o

« o a e o

0N O = o

o o o W

e O N

e e o o

-0

e o o o s & o

b h h et (O OO h md bk ek ) bk peh b ek peh b ) e N NI RO et D G0 bt e B e DO O ek bk ek e (O A NI OO e D DD ek ek e e (D

NbH SN

INDEX.5.1



Page
Numbers

NUMBERPIX] SUBR ....cveevvveveevsossnncannoeosssne 5.11
numMbers ......ciceenecnnns tetsscesnescansrenrvonn 5.11
OR[X1;:X2;...;Xn] FSUBR® ., ...veeeevvsocnnssosnonns 5.13
OQUTPUTLFILE] SUBR .....c0v. cetecsserscresaosranns 5.10
PARENTHESIS ERROR (error message) ...cceceoeeovsss
predicates .........cicecenns cesena ceseeesssesnes
PRETTYDEF ....cieveveennenes cetesscescsscsssanses
PRINTLEVELLN] SUBR i ivevescinvacassosncsssennssos
PROG[ARGS;EI;EZ;...;En] FSUBRR  .ivevennsoonconnea
PROG label ....cccvevees cetecstsessesncsuvsssr e
PROGI[ X1;:X2;:... Xn] SUBR tcvivecessoscesenacsanse
PROGN[XI;XZ;....XH] FSUBR® . ..cieceevoresvnvsnonsce
proper tail .....iiiiiiertcerccrtccsreserscccannes
QUOTELX] NLX ittt treenesaaasssocossvsanesonesns
RADIX[N] SUBR ......0vee ceeteraeteseeveerserenene
REENTER (tenex command) ...icveecsocssvssssonssos
RESETFORM[ RESETX;RESETY;RESETZI NL  cvvvcercrsnass
RESETVAR[RESETX;;RESETY;RESETZI NL  cevveevvsvcnnee
RETURN[ X] SUBR ...... Ceecseseseresnsvestssrsroure
RPAQLRPAQX;RPAQY] NL  t.iiviveroncceccnonesscncans
RPAQQ[X;Y] NL ........ cersescesessacrsssensssnone
RPLACA[X;Y] SUBR 20 8 2000008000000 0000 0800000l
RPLACO[X;Y] SUBR ® SNSRI EE VNN RO NO NGO
SASSOCIXSAS;YSAS] ..t iieveeesocoscrssscsnsasescnos
SELECTQIX;Y1:;Y2;...3Yn;Z] NL® .. vveieecvenoonnnne
SETIX;Y] SUBR  .icuieecreescoesesossonsocoscsnonasss
SETQ[X;Y] FSUBR* eI ELEPI IO EOELNLIEBIELIOENIOEIDNCEOIENTOIODS
SETQQ[ XSET;YSET] NL ........ Ceeeceseettrenesensane
small integers ..... cesesesntsresesesesrsessnensen
SOME[ SOMEX ; SOMEFN1 ;SOMEFN2] ccvvvevevccocrrcvenea
STRINGPIX] SUBR .ivvereeovnecssosscsssocosasncssse
SEriNgS . .iiiieveereoosrceosescssssosassoneocnssne
tail Of a list PP 00 P IEILEEEOLIEGOEROIOESIOEOIOIOROIOROOBGREGEPROOGE
TAILPIX;Y] cieeeeeeennene ceeceseesscserenonenvsae
top level value ....iveceovesarivncnotrsanasecanee
true es s ieencsersecesnn tesc0 s s e vsessssretress bt
UNDEFINED OR ILLEGAL GO (error message) .........
(UNDEFINED TAG) (error message) ceseessecreneneae
VALUE (property RABmMe) ....eocecseesvcccoccssncossss
value cell S © 00 4 0 OO P H LTI EOOROENG OO O SN PEENEEINN

o
w
[

© o e o s e o e
ba e h W DD RO
(5} o

[N - X

' O3
[

- AGCIE = WN

.« ¢ e

GQUuouaOoUuOooaoaoueaoaouaaoaaaaaaoaaaoaaaat

ﬂ@ﬂ\l:bﬂnﬂnnmﬂmwaéthQO\lto

s e o @

.o
©o

INDEX.5.2






list[xigxz;...;xn]"

t

append(x,;X5;:...ix,]
/

SECTION 6

LIST MANIPULATION AND CONCATENATION

lambda-nospread function. Its value is a list of

the values of its arguments.

Copies the top level of the list x, and appends
this to a copy of ﬁop level list X appended to
.+« appended to X, ©.0.

append[(A B) (C DE) (FG)] =(ABCDEFG).
Note that only the first n-1 lists are copied.
However n=zi is treated specialiy; i.e. append[x]
can bé used to copy the top level of a single
list. |

The following examples illustrate the treatment of

non-lists.

append[{(A B C);D] = (AB C . D)

append[A;(B C D)] = (B C D)

append((AB C . D);(EF 6)] = (ABCEF @)
append[{AB C . D)]=(ABC . D)

To copy a list to all levels, use copy.

6.1



nconcl Xy ;iXys ..., ]

nconciflst;x]

teconc[ptr;x]

Returns same value as append but actually modifies

the list structure of Xy ooe Xpoge

Performs nconc[lst;list[x]]. The cons will be on

the same page as 1st.

tconc is useful for building a 1list by adding
elements one at a time at the end, i.e. its role
is similar to that of nconci. However, unlike

nconci, tconc does not have to search to the end

of the list each time it is called. It does this
by keeping a pointer to the end of the list being
assembled, and updating this pointer'after each
call. The savings can be considerable for 1long
lists. The cost is the extra word required for
storing both the list being assembled, and the end
of the list. ptr is that word: car[ptr] is the
list being assembled, cdr[ptr] is last [car{ptr]].
The value of tconc is ptr, with the appropriate
modifications to car and cdr. Example:

«(RPTQ 5 (SETQ FOO TCONC FOO RPTN)))
((54321)1)

tconc can be initialized in two ways. If ptr is
NIL, tconc will make up a ptr. In this case, the
program must set some variable to the value of the
first call to tconc. After that, it 1is

unnecessary to reset ptr since tconc physically

changes it. Thus:

?2§§rigoo (TCONC NIL 1))
«(RPTQ 4 (TCONC FOO RPTN))
((14321)1)

6.2



lconcptr;x]

attachx;y]

If ptr is initially (NIL), the value of tconc is
the same as for ptrsNIL, but tconc changes ptr,
e.g.

«(SETQ FOO (CONS))

(NIL)

«(RPTQ 5 (TCONC FOO RPTN))

((54321)1)

The latter method allows the program to
initialize, and then call tconc without having to

perform setq on its value.

Where tconc is used to add elements at the end of
a list, lconc is used for buildinh a list by
adding lists at the end, i.e. it is similar to

nconc instead of nconci, e.g.

- «(SETQ FOO (CONS))

(NIL)

+(LCONC FOO (LIST 1 2))
((12) 2)

«(LCONC FOO (LIST 3 4 5))
((1.2345)5)

+(LCONC FOO NIL)
((12345)5)

Note that

«~(TCONC) FOO NIL)

((1 234 5 NIL) NIL)

+(TCONC FOO (LIST 3 4 5))
((12345NIL(345)) (345))

lconc uses the same pointer conventions as tconc

for eliminating searching to the end of the list,

. s$0 that the same pointer can be givén to tconc and

lconc interchangeably.
Value is equal to cons[x;y]l, but attaches x to the

front of y by doing an rplaca and rplacd, i.e.
the value of attach is eq to y, which it

6.3



remove[x;1]

Convention:

physically changes. y must be a list, or an error

is generated, ILLEGAL ARG.

Removes all occurrences of x from list 1, giving a

copy of 1 with all elements equal to x removed.

Naming a Jfunction by prefixing an existing function with d

Jrequently indicates the new function is a destructive version of

‘the old one,
cannibalizes 1ts argument(s).

dremove(x;1]

copy[x]

reverse[1l]

dreverse[1l]

2

i.e. 1t does not make any new structure but

Similar to remove, but uses eg instead of equal,
and actually modifies the 1ist 1 when removing X,
and thus does not use any additional storage.

More efficient than remove.

Makes a copy of the list x. The value of copy is
the copied 1list. All levels of x are copied.z
down to non-lists, so that if x contains arrays
and strings, the copy of x will contain thi same
arrays ind strinqs. not copies. Copy is recursive
in the car direction only, so that very long lists

can bé copied.
Reverses (and copies) the top level of a list,
e.g. reverse[(A'B (CD))] = ((CD)BA). If x is

not a list, value is X.

Value is same as that of reverse, but dreverse

To copy just the top level of x, do append[x].

6.4



subst[x;y;:z]

dsubst[x;y;z]

lsubstix;y;z]

esubst[x;y;:;z;flg]

destroys the original list 1 and thus does not use
any additional storage. More efficient than

reverse.

Value is the result of substituting the S-
expression x for all occurrences of the §-
expression y in the S-expression z. Substitution
occurs whenever y is equal to car of some
subexpression of 2z, or when y is both atomic and
not NIL and eq to cdr of some Subexprossion of 2.

For example:

subst[A;B;(C B (X . B))] = (C A (X . A))
subst[A;(B C);((BC)DBC)]=(ADBC),
not (A D . A).

The value of subst is a copy of z with the
appropriate changes. Furthermore, if x is a list,

it is copied at each substitution.

Similar to subst, but uses eq and does not copy z,
but changes the 1ist structure z itself. Like

subst, dsubst substitutes with a copy of x. More

efficient than subst.

Like subst except x is substituted as a segment,
e.g. lsubst[(AB);Y;(XY Z)] is (XA B Z). Note
that if x is NIL, produces a copy of z with all

Y's deleted. |

smilar to dsubst, but first checks to see if y

nctudlly appears in 2. If not, calls error! where

6-5



flg=T means print a message of the form x ? This
function 1is actually an implementation of the
editor's R command (see Section 9), so that y can

use &, --, or alt-modes as with the R command.

sublisfalst;expr;flg] alst is a list of pairs:
((ug . ve) (uy o vy) oo (u, v“))_ with each u,

atonic.

The value of sublis[alst;expr;flg] is the re;ult
of substituting each v for the corresponding uy in
9525.3 Example:

sublis[((A . X) (C . Y));(ABCD)]=(XBYD)
New structure is created only if needed, or if
flg=T, e.g. 1if flg=NIL and there are no
substitutions, value is eq to expr.

subpair{old;new;expr;flg] Similar to sublis, except that elements of new are
substituted for correspdnding atoms of old 1in
expr. Example: .
subpair{(A C);(X Y);(AB CD)] = (XB YD)
As with sublis, new structure is created only if.
needed, or if flg=T, e.g. if flgs=NIL and there are

no substitutions, the value is eq to expr.

If old ends in an atom other than NIL, the rest of
the elements on new are substituted for that atom.

For example, if o0lds(A B . C) and news(U V X Y Z),

3 To remember the order on alst, think of it as old to new, i.e. uy = vy

6.6



Note that subst,

U is substituted for A, V for B, and (X Y Z) for
C. Similarly, if old itself is an atom (other than
NIL), the entire list new is substituted for it.

lsubst, and esubst all substitute copies of the

appropriate expression, whereas subpair and sublis substitute the identical

structure (unless [flg-T).

last{x]

flast[x]

nleft{l;n;tail]

lastn[1l;n]

were NIL,

i.e.

Value is a pointer to the last node in thé list x,
e.g. if x=(A B C) then 1last[x] = (C). If
x=(A B . C) last[x] = (B . C). Value is NIL if x
is not a list.

Fast version of last that compiles open as a 5
instruction loop, terminating on a null-check.
Interpretgd, generates an error, BAD ARGUMENT -
FLAST, if x ends in other than NIL.

Tail is a tail of 1 or NIL. The value of nleft is
the tail of 1 that contains n hore elements than
tail,? e.g., if x=(A B C D E), nleft[x;2]=(D E),
nleft[x;1;cddr[x]]J=(B C D E). Thus nleft can be
used to work backwards through a list. Value is
NIL if 1 does not contain n more ele@ents than

tatl.

Value 1is cons[x;y] whare'x is the last n elements
of 1, and x is the initial segment, e.g.
lastn[(A B CDE);2]=((ABC)DE)

If tail is not NIL, but not a tail of 1, the result is the same as if tail

nleft operates by scanning 1 looking for tail, not by
computing the lengths of 1

1l and tail.

6.7



nth[#;n]

fnth{x;n]

length[x]

flength[x]

count[x]

lastn[ (A B);2]=(NIL A B).

Value is NIL if 1 is not a 1list containing at

least n elements.

Value is the tail of x beginning with the nth
element, e.g. if n=2, value is cdr[x], if n=3,
cddr[x], etc. If n=i, value is x, if n=0, for
consistency, value is cons[NIL;x]. If x has fewer
than n  elements,  value is  NIL, e.g.
nth{ (A B);3])=NIL, as is nth[(A . B);3] Note that
nth{ (A . B);2]=B.

Fast version of nth that compiles open as a 3
instruction loop, terminating on a null-check.
Interpreted, generates an error, BAD ARGUMENT -
FNTH, if x ends in other than NIL.

Value is the length of the list x where length is
defined as the number of c¢drs required to reach a
non-list, e.g.

length[(A B C)] = 3

length{(AB C . D)] = 3

length{A]l = 0

Fast version of length that compiles open as a 4
instruction vloop, terminating on a null-check.
Interpreted, generates an error, BAD ARGUMENT -~
FLENGTH, if x ends in other than NIL.

-

Value is the number of list words in the structure

6.8



1diff[x;y:z]

X. Thus, count is like a length that goes to all

levels. Count of a non-list is 0.

y must be a tail of x, i.e. eq to the result of
applying some number of cdrs to x. 1diff(x;y]
gives a list of all elements in X up to y, i.e.,
the list difference of x and Y. Thus

1diff{x;member[FOO;x]] gives all elements in X up
to the first FOO. |

Note that the value of ldiff is always new list structure unless ysNIL, 1in
which case the value is x itself.

intersection{x;y]

union{x;y]

If 2 1s not NIL the value of ldiff is effectively
nconc[z;1diff{x;y]1], i.e. the list difference 1is
added at the end of z.

If y is not a tail of X, generates an error,
LDIFF: NOT A TAIL. 1diff terminates on a

null-check.

Value is a list whose elements are members of both
lists x and y. Note that intersection[x;x] gives
a 1list of all members of Xx without any

duplications.

Value is a (new) list consisting of all elements

included on either of the two original lists. It

6.9



is more efficient to make x be the shorter 1ist.5

sort[data;comparefn]® data is a 1list of items to be sorted using

comparefn, a predicate function of two arguments
which can compare any two items on data and return’
T if the first one belongs before the second. If
comparefn is NIL, alphorder 1is wused; thus
sort[data] will alphabetize a list.A If comparefn
is T, car's of items are given to alphorder; thus ‘
sort[a-1ist;T] will alphabetize by the car of each
item.  sort[x;ILESSP] will sort a 1list ‘of

integers.

The value of sort is the sorted list. The sort is
destructive and uses no extra storage. ' The value
returned is eq to data but elements have been
switched around. Interrupting with control D, E,
or B may cause loss of data, but control H may be
used at any time, and sort will break at a clean
state from which t or control characters are safe.
The algorithm has been optimized with respect to

the number of compares.

Note: 1if comparefnl[a;b] = compgrefn[b;a]. then the ordering of a and b may or

]

may not be preserved.

The value of union is y with all elements of x not in y consed on the front
of it. Therefore, if an element appears twice in y, it will appear twice
in union[x;y]. Also, since union[(A);(A A)] = (A A), while
union[ (A A);(A)] = (A), union is non-commutative.

Sort, merge, and alphorder were written by J.W. Goodwin.

6.10



For example, 1if (FOO . FIE) appears before‘(FOO . FUM) in x, sort[x;T] may or
may not reverse the order of these two elements. Of course, the user can

always specify a more precise comparefn.

merge[ a;b;comparefn] a and b are lists which have previously been
sorted using sort and comparefn. Value is a
destructive merging of the two lists. It does not
matter which 1list is longer. After merging both g
and b are equal to the merged list. (In fact,
cdr[a) is eq to cdr[b]) merge may be aborted after

control H.

alphorder[a;b] A predicate function of‘ two arguments, for
alphabetizing. Returns T if its arguments are in
order, i.e. 1if b does not belong before a.
Numbers come before literal atoms, and are ordered
by magnitude (using greaterp). Literal atoms and
strings are ordered by comparing the (ASCII)
character codes in  their  pnames. Thus
alphorder[23;123] is T, whereas
alphorder[A23;A123] is NIL, because the character
code for the digit 2 is greater than the code for
i.

Atoms and strings are ordered before all other
data types. If neither a nor b are atoms or
strings, the value of alphorder is T, i.e. in

order.

Note: alphorder does no unpacks, chcons, conses or nthchars. It is several
: times faster for alphabetizing than anything that can be written using
these other functions. .

6.11



cplists{x;y]) compares X and y and prints their differences,
1.9. cplists is essentially a SRCCOM for 1list

structures.

6.12



Index

ALPHORDER[A;B] .........
APPEND[L] * .......cc.ee
ATTACH[X;Y] eeens ceaee
ATTEMPT TO RPLAC NIL (err
BAD ARGUMENT = FLAST (err
BAD ARGUMENT - FLENGTH (e
BAD ARGUMENT - FNTH (erro
COPY oo ceasesetenacna
COPY[X] * 80000000000
COUNT[X] ..... cesane o
CPLISTSIX;Y] ceveeeecnes
destructive functions ..
DREMOVEL X;L]) .vcveennee
DREVERSE[L] ¢vvvvrneeaes
DSUBSTLX;Y;2] ..... ceees
ERROR![ ] SUBR ....ovvvee

ESUBST[x;Y:Z;ERRoRFLG;cHARFLG] LB B BRI IR B B Y I B AR BN BN

FLASTIX] .cvoevrenevcnense
FLENGTH[IX]) .ceeeenn.. cee
FNTHEXNT coiiienecennes
ILLEGAL ARG (error massag
INTERSECTIONLX;Y] ......

LASTEX) everininnnennn. .o

LASTNLL;N] coovveeinnee.
LCONC[PTR;X] ...........
LDIFFLX;Y;Z) ........ ces

LDIFF: NOT A TAIL (error message) .....ccecevceee

LENGTH[X] ........ ceea
LISTEX1;X2;...3X%Xn] SUBR'
list manipulation and con
LSUBSTEX;Y3Z] covvevenns
MERGE[A;B;COMPAREFN] ...
NCONC[X1:;X2;...:Xn] SUBR*

NCONCI[LST;X] ...... ceses

NLEFTLL:N;TAIL] ........
NTHLX;N] ........ cresene
null-check ....cveevenses
R (edit command) .......
REMOVELX;L] «vvevevnnnns
REVERSE[L] ...cvivennnne
SORTLDATA; COMPAREFN]
SRCCOM ... iiiivnnnnns e
SUBLIS[ALST; EXPR FLG] .o
SUBPAIR[OLD;NEW; EXPR +FLG])
SUBSTEX;Y3Z] ceeevrecans
TCONCIPTR;X] .vcevveceos
UNION[X:;Y] .ceceevecnnnns

"L e PP RGCEOIEOOIENQLEIOELEOIEOIEOIEOIEERLTOETS

LR BC I BN I I A A I R A I I O SR N Y ]

S0 s 0G0 00O IGOLOIROSEOOEOEOLAOGIEOEOSIETDSDRE

for Section 6

Page

" &

® 5 6 4606000050000 OOse el
OF MESSAGe) .c.vevccanse
OrF MOSSATE) .ecevvecccns
rror message) .....ve0..
r mesSsSage) ..ccevcevccee

6 08800000 CICOEISISIELOGIOIEOIOEEOCSETEILE

»
L]
Lo
-
-

e * & e o e o o »

S0 0 LPCEOOICIEOLIOEBIOLOEOLIOIOCELIEOILPETPOEES

LECEUEEC I N SE A A N R R A B A Y A A )

1N
.o

DRI I S I S R I A B R A B I N A A A N A )

de e et IPIILIIRLEEPIROIOLEOIOEROE

LG IR BRI A SN B B IR R I I A A )

-
~ -

LRI R R R R A A R A N N A}

P00 0 cesbecs oD st ORPNLILIISIOITOES

CICRCRC BN IR AR B AR Y A A I I R I IR S A S A Y ]

R RN N N I N A

.

B) ceiiiesesececvesraees

e s 80000000000t 0PENLOS

®d0s 0000000t bevees N

6 e s 0060080000000 00000

LICRCEC I B B BRI AR I A A A A N B A B AP AN Y

LRI I LI I B U NI SN I R )

LRI R S Y SRS I I I Y B B A B A Y BN N A )
CACEC A IR U A T B A I I A I A B I Y )

catenation ......cc0000.

O 0 OO OV PIEOEPINEPIONPNOELOEOEIEOELESONN

]
N

-

LR S N NS B B R AN A I IR AN B Y Y

e e s 000000t es00r0 00

1
W N

G000 G000t LIIsELENOIOITIREIDLE

000 v LN PGP IOLIIOGIOCEOLIOGIOECOREES

[
©

S e NP EOIRLOLRIOIELISEOLOLIORNLEOEOOLEES

e e s cs s e o0tV et

e PN GO EIOOIIOIEILIROIONROLEOIPLEODN

e ® & e ‘8 ® o o

LIRS AT B I B R O B I AR IR BB B I I )

LI IR R AR AR S A IR I S BT A B A R )

S8 00 000D EOOIIESISIOEOIIOIOIEOIOETOLEOSLS

e Ve sEPSINIRPOIOIEOEBEOLEOEOIITOOINOETISLYS

© 8000000000008 0000000s00

¢ & e o

ONUAN = = DOEANBINNNE, N POOWNNODLDRONARTNLL LR BB WR -

o v e e NP PIOELOPIPVIEOENIOIVTEOINOIOELPOLEOLEDOLELDS

- X- X~ X- K- ¥- K- ¥ ¥- ¥ ¥ W- ¥- X- X ¥ N N ¥ RN N R N - N N ¥ N N N N- N W N N N R N N N R R R R K- R

000 s 00ss 90NN CLLGICSISIRIIPLTES

INDEX.6.1






- SECTION 7
PROPERTY LISTS AND HASH LINKS

7.1 Property Lists

Property lists are entities associated with literal atoms, and are stored on
cdr of the atom. Property lists are conventionally lists of the form (property
value property value ... property value) although the user can store anything
he wishes in cdr of a literal atom. However, the functions which manipulate
property lists observe this convention by cycling down the property lists two
cdrs at a time. Most of these functions also generate an error, ARG NOT ATOM,
if given an argument which is not a literal atom, i.e., they cannot be used
directly on lists.

The term 'property name' or 'property' 1is used for the property indicators
appearing in the odd positions, and the term 'property value' or 'value of «a
property’ or simply ‘'value' Jfor the values appearing in the even positions.
Sometimes the phrase 'to store on the property -~-' is used, meaning to place
the indicated information on the property list under the property name --.

Properties are usually atoms, although no checks are made to eliminate use of

non~-atoms in an odd position. However, the properiy list searching functions
all use eq.

Property List Functions

put{atm;prop;val] puts on the property list of atm, the property
| prop with valvue val. val replaces any previous

value for the property prop on this property list.

Generates an error, ARG NOT ATOM, if atm is not a

literal atom. Value is val.
addpropl[atm;prop;new;flg] adds the value new to the list which is the value

of property prop on property list of atm. If flg

is T, new is consed onto the front of value of

7.1



prop, otherwise it is nconced on the end (nconct).
If atm does not have a property prop, the effect
is the same as put[atm;prop;list[new]], for
example, if addprop[FOO;PROP;FIE] is followed by
addprop[ FOO; PROP;FUM], getp[FOO;PROP] will
be (FIE FUM). The value of addprop is the (new)
property value. If atm is not a literal atom,

generates an error, ARG NOT ATOM.

remproplatm;prop] removes all occurrences of the property g:gg (and
its value) from the property list of atm. Value
is prop if any were found, otherwise NIL. If atm
is not a 1literal atom, generates an error;

ARG NOT ATOM.

changeprop[ x;propi;prop2] Changes name of property propl to prop2 on
property list of x, (but does not affect the value
of the property). Value is x, unless propi is not
found, in which case, the value is NiL. If x is
not a 1literal atom, generates ah error,

ARG NOT ATOM.

get{x;y] Gets the item after the atom y on list Xx. I y is
not on thevlist X, value is NIL. For example,
get[A B C D);B]=C.

Note: since get terminates on a non-list, get{atom;anything] is NIL.

Therefore, to search a property list, getp should
be used, or get applied to cdr[atom].

7.2



getp[atm;prop]

gets the property value for prop from the property
list of atm. The value of getp is NIL if atm is

not & literal atom, or prop 1f not found.

Note: the value of getp may also be NIL, if there is an occurrence of prop but
the corresponding property value is NIL.

getlis[x;props]

deflist{1l;prop]

Note: Since getp searches a list two items at a
tiﬁe; the same object can be used as both a
property name and a property value, e.g., if the
property list of atm is (PROP1 A PROPZ B A C),
then - getp[atm;A] = C. Note however that
get[cdr[atm];A] = PROP2,

searches the property list of X, and returns the
propertyilist as of the firstlproperty on props
that it finds e.g., if the property list of x is
(PROP1 A PROP3 B A C);

getlis[x;(PROP2 PROP3)]¥(PROP3 B AC)

Value is NIL if no element on props is found. X
can also hé a list itself, in which case it is

searched as above.

is used to put values under the same property name
on the property lists of several atoms. 1l is a
list of two-element lists. The first element of
each is a literal atom, and the second element is
the property value for the property prop. The
value of deflist is NIL.

Note: Many atoms in the system already have property lists, with properties

used by the compiler,

the break package, DWIM, etc. Be careful not to

clobber such system properties. The value of sysprops gives the complete
list of the property names used by the system.

7.3



7.2 Hash Links

The description of the hash 1link facility in INTERLISP is included in the
chapter on property lists because of the similarities in the ways the two
features are used. A property list provides a way of associating information
with a particular atom. A hash link is an association between ahy INTERLISP
pointer (atoms, numbers, arrays, strings, lists, et al) called the hash-item,
and any other INTERLISP pointer called the hash-value. Property lists are
stored in cdr of the atom. Hash links are implemented by computing an address,
called the hash-éddress. in a specified array, called the hash-array, and
 storing the hash-value and the hash-item into the cell with that address. The
contents of that cell. i.e. the hash-value and hash-item, 1s then called the

hash-link.l

Since the hash-array 1is obviously much smaller than the total number of
~possible hash-items,Z the hash-address computed from item may already contain a
hash-link. If this link is from ;329,3 the new hash-value simply replaces the
old hash-value. Otherwise, another hash-address (in the same hash-array) must
be computed, etc, until an empty cell is found.4 or a cell containing a

hash-1link from item.

When a hash link for item is being retrieved, the hash-address 1is computed

1 The term hash 1link (unhyphenated) refers to the process of associating
information this way, or the 'gssociation' as an abstract concept.

2 which is the total number of INTERLISP pointers, i.e., 256K.

3 eq is used for comparing item with the hash-item in the cell.

4 After a certain number of iterations (the exact algorithm islcomplicated),

the hash-array is considered to be full, and the array is either enlarged,
or an error 1s generated, as described below in the discussion of overflow.

7.4



using the same algorithm as that employed for making the hash link. If the
corresponding cell is empty, there is no hash link for item. If it contaihs a
hash-link from item, the hash-value 1is returned. Otherwise, another

hash-address must be computed, and so forth.5

Note that more than one hash link can be associated with a given hash-item by

using more than one hash-array.

Hash_Link Functions

In the description of the functions below, the argument array has one of three
forms: (1) NIL, in which case the hash-array provided by the system,

syshasharray, is used;6 (2) a hash-array created by the function harray, or

created from an ordinary array using clrhash as described below; or (3) a list
car of which is a hash-array. The latter form is used for specifying what is

to be done on overflow, as described below.

harrayin] ~ creates a hash-array of size n, equivalent to
clrhash[array[nl].
clrhash[array] ‘ sets all elements of array to 0 and sets left half

of first word of header to -1. Value is array.

puthash{item;val;array] puts into array a hash-link from item to val.

e G e R RN D R R S B W R R G AT P NN S SN SR D WD D P N P D D U P W D G 0 D AP N D D W TR W AR D W A D e e Y D Y e D S W R D e e e

For reasonable operation, the hash array should be ten to twenty percent
larger than the maximum number of hash links to be made to it.

syshasharray is not used by the system, it is provided solely for the
user's benefit. It 1is ipitially 512 words large, and 1is automatically
enlarged by 50% whenever it is 'full'. See page 7.7.

7.8



gethash[item;array]

rehash{oldar;newar]

maphash[ array;maphfn]

dmphash[ arrayname ]

Replaces previous link from same item, if any. If
val=NIL any old 1link is removed, (hence a

hash-value of NIL is not allowed). Value is val.

finds hash-link from item in array, and returns

the hash-value. Value is NIL if no link exists.

gethash compiles open.

hashes all items and values in oldar into newar.
The two arrays do not have to be (and usually

aren't) the same size. Value is newar.

maphfn is a function of two arguments. For each
hash-link in array, maphfn will be applied to the
hash-value and hash-item, e.g.
maphash{a; (LAMBDA(X Y) (AND(LISTP Y) (PRINT X)))]
will print the hash-value for all hash-links from

lists. The value of maphash is array.

Nlambda-nospread that prints on the primary output
file a loadable form which will restore what is in
the hash-array specified by arrayname, e.g.
(E (DMPHASH SYSHASHARRAY)) as a prettydef command

will dump the system hash-array.

Note: all eq identities except atoms and small integers are lost by dumping and
loading because read will create new structure for each item. Thus if
two lists contain an eq substructure, when they are dumped and loaged
back in, the corresponding substructures while equal are no longer eq.

reloading structures containing eq substructures so that these identities:

are preserved.

7.6



Hash Overflow

By wusing an array argument of a special form, the user can provide for
automatic enlargement of a hash-array when it overflows, i.e., is full and an
attempt is made to store a hash link into it. The array argument is either of
the form (hash-array . n), n a positive integer; or (hash-array . f), f a
floating point number; or (hash-array). In the first case, a new hash-array is
created with n more cells than the current hash-array. In the second case, the
new hash array will be f times the size of the current hash-array. The third
case, (hash-array), is equivalent to (hash-array . 1.5). In each case, the old

hash-array is rplacaed into the dotted pair, and the computation continues.

If a hash-array overflows, and the array argument used was not one of these
three forms, the error HASH TABLE FULL is generated, which will either cause a
break or unwind to the last errorset, as per treatment of errors described in

Section 16.

The system hash array, syshasharray, is automatically enlarged by 1.5 when it
is full.

7.7



Index for'Section 7

Page
Numbers

ADDPROP[ATM;PROP;NEW;FLG] .eeveeceevccossvoscnsee
ARG NOT ATOM (error message) ...... cecsassanenaes
CHANGEPROPL X;PROP1;PROP2] +eveencsococsanonconnoss
CIRCLMAKER[L] ...cceene Cetcresenesenessesasesanes
CIRCLPRINTLL;PRINTFLG;RLKNT] .iivvenvvncoancvnnns
CLRHASH[ ARRAY] SUBR ..... ceceecssresesesasssesans
DEFLISTLIL;PROP] .ivvirveerevscossonasossssasessose
DMPHASH[L] NLx ., ..... et eeretessasenrsaseeer e
ERRORSET[U;V] SUBR ......... teesesesrscannesensns
GET[X;:Y) ...... cesssn etessosesessssssesesesssons
GETHASHL ITEM;ARRAY] SUBR ..vvevevevcessonssnsoaase
GETLIS[X;FROPS] R N A R I R I A N A A A S I A A S A S AT
GETPLATMPROP]  tiiireiieennnenencanensesanaannnns
HARRAY[LEN] .. ..cccireeecnee ceeevecsoccssesonernas
hash link functions ......vceeeveoovensscessnsnns
hash links ......... seseseessceassenccssetboanne e
hash overflow ....iiieeeoccenocccsoscssassnsossans
HASH TABLE FULL (error message) .....cccceeceseee
hash'addl"ess 5 2 0 0 0P OV PN ELIOERNENVRNSOEOIEIVROELEOILOEOESSY

J
[N

*® e e s e o

1
[ X~

e & s e & e ® s e o

R OONONMPErr R ek, ek, LA2ALNNDARWWANNIOWOARNINN -

hash-array ..cccceces. reesestettssssesesenesroannt .4-5,7
hash-item .....c00c0.. Pesessecesrrscttatnrtetanan .4-6
hash-link .....cccecees etetecacsesnscessancerrans .4-6
hash=value ....cciiienrsconssssvocerssssssocscncs .4-6
MAPHASH[ ARRAY;MAPHFN] .......cccve.. “esececsesven .
Property  ....iceccccenss teetsessassasetecerenren

property list ............ Ceservessariverevernoes -3
property name ........ s essisseseercevenese s e 3
‘property value ......... tetesesncscvrsrstoetresonne »3
PUT[ATM;PROP;VAL] .....c.n. csesesrsescesnooronene -2

PUTHASHL ITEM;VAL;ARRAY] SUBR ..cececcerncnonnanoes
REHASH[OLDAR;NEWAR] SUBR .eiveeecencconcocecsones
REMPROP[ATM;PROP] ......... ceesesesastseerersesns
SYSHASHARRAY (system variable/parameter) ........
SYSPROPS (system variable/parameter) .....coccaees
value of a property ....ceceececesccccsevcoscsccncs

NN NN NN NN NNSNSNNNNSNSNNSNNNNNNNNNNNNNNNNSN
-
~

e @ e o & ® ¢ e & e o

INDEX.7.1



SECTION 8
FUNCTION DEFINITION AND EVALUATION

General Comments

A fhnction definition in INTERLISP is stored in a special cell called the
function definition cell, which is associated with each literal atom. This
cell is directly accessible via the two functions putd, which puts a definition
in the cell, and getd which gets the definition from the cell. In addition,
the function fntyp returns the function type, i.e., EXPR, EXPR®* ... FSUBR* as

described in Section 4. Exprp, ccodep, and subrp are true if the function is

an expr, compiled function, or subr respectively; argtype returns
0, 1, 2, or 3, depending on whether the function is a spread or nospread (i.e.,
its fatyp ends in *), or evaluate or no-evaluate (i.e., its fntyp begins with F

or CF); arglist returns the list of arguments; and nargs returns the number of

arguments. fntyp, éxprp, ccodep, subrp, argtype, arglist, and nargs can be
given either a literal atom, in which case they obtain the function definition

from the atom's definition cell, or a function definition itself.

Subrs

1

Because subrs,® are called in a special way, their definitions are stored

T e e e e ER e S e SR B N HB TP R D D e TP R EB GP B ML P IR e W e e e D e G TR D Y G W WS W AN Y O G T T P AR Uh L G e T S T W G D D S e D AL W S e D R G W D e e e

Basic functions, handcoded in machine language, e.g. cons, car, cond. The
terms subr includes spread/nospread, eval/noeval functions, i.e. the four
fntyp's SUBR, FSUBR, SUBR*, and FSUBR*.

B.l



differently than those of compiled or interpreted functions. In the right halfy
of the definition cell is the address of the first instruction of the subr, and
1nAtho left half its argtxg': 0, 1, 2, or 3. getd of a subr returns a dotted
pair of argtype and address. Note that this is not the same word as appears in
the definition cell, but a new cons; i.e., each getd of a subr performs a cons.
Similarly, putd of a definition of the form (number . address), where number =
0, 1, 2, or 3, and address 1s in the appropriate range, stores the definition

as a subr, i.e., takes the cons apart and stores car in the left half of the

definition cell and cdr in the right half.

Validity of Definitions

Although the function definition cell is intended for function definitions,
putd and getd do not make thorough checks on the validity of definitions that
"look 1like" exprs, compiled code, or subrs. Thus if putd is given an array
pointer, it treats it as compiled code, and simply stores the array pointer in
the definition cell. getd will then return the array pointer. Similarly, a
call to that functidn will simply transfer to what would normally be the entry
point for the function, and produce random results if the array were not

compiled function.

Similarly, if putd is given a dotted pair of the form (number . address) where
number is 0, 1, 2, or 3, and address falls in the subr range, putd assumes it
is a subr and stores it away as described earlier. getd would then return cons
of the left and right half, i.e., a dotted pair equal (but not eq) to the
expression originally given putd. Similarly, a call to this function would

transfer to the corresponding address.

Finally, if putd is given any other list, it simply stores it away. A call to
this function would then go through the interpreter as described in the

appendix.

8.2



Note that putd does not actually check to see if the s-expression is vélid
definition, i.e., begins with LAMBDA or NLAMBDA. Similarly, exprp is true if a
definition is a 1list and not of the form (number . address), number =
0, 1, 2, or 3 and address a subr address; subrp 1sbtrue if it is of this form.

arglist and nargs work correspondingly.

Only fntyp and argtype check function definitions further than that described
above: both argtype and fntyp return NIL when exprp is true but car of the
definition is not LAMBDA or NLAMBDA.2 In other words, if the user qses putd to
put (A B C) in a function definition cell, getd will return this value, the
editor and prettyprint will both treat it as ; definition, exprp will return T,

ccodep and subrp NIL, arglist B, and pargs 1.

getd[x] gets the function definition of Xx. Value is the
definition.® value is NIL if x 1is not a literal

atom, or ‘has no definition.

fgetd[x] fast version of getd that compiles open as
car[vag[addi[loc[x]]]]. Interpreted, generates an
error, BAD ARGUMENT - FGETD, if X is not a literal

atom.?

e e e e e G S W . A NS S G WS W GBS W G R TR P e R R S W W G AN D G P S O AP N R KSR A N S S P R R LS G R Y PSS UP SR e G e T G P P S G5 G WS P G W G W e e e e

2 These functions have different value on LAMBDAs and NLAMBDAs and hence must
check. The compiler and interpreter also take different actions for
LAMBDAs and NLAMBDAs, and therefore generate errors if the definition is
neither.

3 Note that getd of a subr performs a cons, as described on page 8.2. See
footnote on fgetd below.

q

Fgetd is intended primarily to check whether a function has a definition,
rather than to obtain the definition. Therefore, for subrs, fgetd returns
Just the address of the function definition, not the dotted pair returned
by getd, page 8.2, thereby saving the cons.

8.3



putd[x;y]

putdqlx;y]

movd[ from;to;copyflg]

puts the definition y into Xx's function cell.
Value is y. Generates an error, ILLEGAL ARG -
PUTD, if x is not a literal atom, or y is a

string, number, or literal atom other than NIL.

nlambda version of putd; both arguments are

considered quoted. Value is X.

Moves the definition of from to ¢to, i.e.,
redefines to. If copyflg=T, a copy of the
definition of from is used. copyflg=T is only
meaningful for exprs, although movd works for -
compiled functions and subrs as wdll. 'The value

of movd is to.

Note: fntyp, subrp, ccodep, exprp, argtype, nargs, and arglist all can be gtven
either the name of a function, or a definition.

fntyp[fn]

Value is NIL if fn is not a function definition or
the name of a defined function. Otherwise fntyp
returns one of the following as defined in the

section on function types:

EXPR CEXPR SUBR

FEXPR CFEXPR FSUBR
EXPR* CEXPR* SUBR*
FEXPR*® CFEXPR*  FSUBR®

The prefix F indicates unevaluated arguments, the

prefix C indicates compiled code; and the suffix *

indicates an indefinite number of arguments.

8.4



subrp[fn]

ccodep[fn]

exprplfn]

argtype{fn]

fatyp returns FUNARG if fn is a funarg expression.

See Section 11.

is true if and only if fntyp[fn] is either SUBR,
FSUBR, SUBR®, or FSUBR®, i.e., the third column of
fatyp's.

is true if and only if fntyp[fn] is either CEXPR,
CFEXPR, CEXPR=, or CFEXPR*, i.e., second column of
fntyp's.

is true if fntyp{fn] is either EXPR, FEXPR, EXPR%,
or FEXPR®, 1i.e., first column of fntyp's.
Howgver. exprp[fn] is also true if fn is (has) a

list definition that is not a SUBR, but does not

- begin with either LAMBDA or NLAMBDA. In other

words, exprp is not quite as selective as fntyp.

gg is the name of a function or its definition.
The value of argtype is the argtype of fn, i.e.,
0, 1, 2, or 3, or NIL if fn is not a function.
The interpretation of the argtype is:
0 eval/spread function

(EXPR, CEXPR, SUBR)

i no-eval/spread functions
(FEXPR, CFEXPR, FSUBR)

2 eval/nospread funcﬁions
(EXPR®, CEXPR®, SUBRX)

3 no-eval/nospread functions
(FEXPR®*, CFEXPR®, FSUBR%)

i.e., argtype corrasponds to the rows of fntyps.

8.5



nargs[fn]

arglist[fn]

value is the number of arguments of fn, or NIL if

fn is not a function.®

nargs uses exprp, not
fntyp, so that nargs[(A (B C) D)J=2. Note that if
fn is a SUBR or FSUBR, nargs = 3, regardless of
the number of arguments logically needed/used by
the routine. If fn is a nospread function,

nargs = 1.

.value is the ‘'argument list' for fn. Note that

the ‘argument 1list' 1is an atom for nospread
functions. Since NIL is a possible value for
arglist, an error is generated,

ARGS NOT AVAILABLE, if fn is not a function.®

If fn is a SUBR -or FSUBR, thé value of arglist is (U V W), if a SUBR* or

FSUBR*, the value is U.

This is merely a 'feature' of arglist, subrs do not

actually store the names U, V, or W on the stack. However, if the user breaks

or traces a SUBR (Section 15), these will be the argument names used when an

equivalent EXPR definition is constructed.

define[x]

5

6

The argument of define is a list. Each element of
the list is itself a list either of the form (name
definition) or (name arguménts ces)e In the
second case, following 'arguments' is the body of

the definition. As an eoxample, consider the

i.e., if exprp, ccodep, and subrp are all NIL.

If fn is a compiled function, the argument list is constructed, i1.e. each

call to arglist requires making a new list., For interpreted functions, the
argument list is simply cadr of getd.

8.6



following two equivalent expressions for defining
the function null.

1) (NULL (LAMBDA (X) (EQ X NIL)))

2) (NULL (X) (EQ X NIL))

define will generate an error on encountering an atom where a defining list is
expected. If dfnflg=NIL, an attempt to redefine a function fn will cause
define to print the message (fn REDEFINED) and to save the old definipion of fn
using savedef before redefining it. If dfnflg=T, the function is simply
redefined. If dfnflg=PROP or ALLPROP, the new definition is stored on the
property list under the property EXPR. (ALLPROP affects the operation of rpaqq
and gé_g. section 5). dfnflg is initially NIL.

dfnflg is reset by load to enable various ways of handling the defining of
functions and setting of variables‘when loading a file. For most applications,

the user will not reset dfnflg directly himself.

Note: define will operate correctly if the function is already defined and
broken, advised, or broken-in.

defineq[xl;xi;...;xn] nlambda nospread veréion of define, i.e., takes an
indefinite number of arguments which are not
evaluated. Each x4 must be a list, of the form

.described in define. defineq calls define, so

dfnflg affects its operation the same as define.

savedef[fn] Saves the definition of fn on its property list
' ” under prbperty EXPR, CODE, or SUBR depending on

its fntyp. Value is the property name used. If

getd[fn] is non-NIL, but fntyp[fn] is NIL, saves

on property name LIST. This situation can arise

8.7



unsavedef[fn;prop]

when a function is redefined which was originally’

defined with LAMBDA misspelled or omitted.

If fn-is a list, savedef operates on each function
in the 1list, and its value is a 1list of the

individual values.

Restores the definition of’fﬂ from its property
list under property prop (see savedef above).
Vélue is prop. If nothing saQed under prop, and
fn is defined, returns (prop NOT FOUND)} otherwise

genorates an error, NOT A FUNCTION.

If prop is not given, i.e. NIL.‘unsavedef looks
under EXPR, CODE, and SUBR, in that order. The
value of unsavedef is the bropertylnamé. of if
nothing is found and fn is a function, the value
is (NOTHING FOUND); otherwise generates an error,
NOT A FUNCTION.

If dfnflg=NIL, the current definition of fn, if
any, 1s saved using savedef. Thus one can use
unsavedef to switch back and forth/between two
definitions of the same function, keeping one on
its property list and the other in the function
definition cell.

If fn 1is a 1list, unsavedef operates on each
function of the list, and its value is a list of

the individual values.

8.8



eval[x]7 eval evaluates the expression x and returns this
value 1i.e. eval provides a way of calling the
interpreter. Note that eval is itself a lambda
type function, so its argument is the first
evaluated, e.g.,
«SET(FOO (ADD1 3))

. (ADD1 3)

«(EVAL F0O)
4

«EVAL(FOO) or (EVAL (QUOTE FO00))
(ADD1 3) :

e[x] ‘ nlambda nospread version of eval. Thus it
eliminates the extra pair of parentheses for the
list of arguments for eval. i.e., e x 1is
equivalent to eval[x]. Note however that in
INTERLISP, the user can type Jjust x to get Xx

evaluated. (See Section 3.)

applylfn;args] apply applies the function fn to the arguments
args. The indi?idual elements of args are not
evaluated by apply, fn is simply called with args
as its argument list.8 Thus for the purposes of

apply, nlambda's and lambda's are treated the

same. However 1like eval, apply is a lambda
function so its arguments are evaluated before it

is called o.g.,

R e TR Gn AB R AR R R D AL SR P SR TP S G M W T T G e WS D G G EP T S W S Y G S R W N G R R O WP SR G R W e S MR GB AR e S A N P D e e S5 D ED WS e e s e e

eval is a subr so that the 'name' x does not actually abpear on the stack.

Note that fn may still explicitly evaluate one or more of its arguments
itself, as in the case of setq. Thus
(APPLY (QUOTE SETQ) (QUOTE (FOO (ADD!1 3)))) will set FOO to 4, whereas

gAPPLY (QUOTE SET) (QUOTE (FOO (ADD1 3)))) will set FOO to the expression
ADD1 3).

8.9



apply*[fn;argl;...;argn]

evala[x;a]

rptlrptn;rptf]

«SET(FO01 3)

3

«SET(FO02 4)

4

«(APPLY (QUOTE IPLUS) (LIST FOO1 FOO02]
7

Here, fool and foo2 were evaluated when the second

argument to apply was evaluated. Compare with:

«SET(FO01 (ADD1 2))

(ADD1 2)

«SET(FO02 (SUBt 5))

(SuB1 5)

«(APPLY (QUOTE IPLUS) (LIST FOO1 FO002]

NON-NUMERIC ARG
(ADD1 2)

equivalent to apply[fn;listlarg,;...;arg ]] For
example, if fn 1is the name of a functional
argument to be applied to x and y, one can write
(APPLY* FN X Y), which is equivalent to
(APPLY FN (LIST X ¥)).  Note  that  (FN X Y)
specifies a call to the function FN itself, and
will cause an error if FN is not defined. (See

Section 16.) _FN will not be evaluated.

Simulates a-list evaluation as in LISP 1.5. x is a
form, a is a list of dotted pairs of variable name
and value. a is 'spread' on the stack, and then x
is evaluated, i.e., any variables appearing free
in x, that also appears as car of an element of a
will be given the value in the cdr of that

element.

Evaluates the expression rptf rptn times. At any

point, rptn is the number of evaluations yet to

8.10



take place. Returns the value of the last
evaluation. If rptn € 0, rptf is not evaluated,
and the value of rpt is NIL.

Note: rpt is a lambda function, so both its arguments are evaluated before rpt
is called. For most applications, the user will probably want to use

rptq.
rptqlrptn;rptf] nlambda version of rpt: rptn is evaluated, rptf is
not, e.g. (RPTQ 10 (READ)) will perform ten calls
to read. rptq compiles open.
arg[var;m] Used to access the individual arguments of a

lambda nospread function. arg is an nlambda
function used like set var is the name of "the
atomic argument list to a lambda-nospread
function, and is not evaluated; m is the number of
the desired argument, and 1is evaluated. For
example, consider the following definition of

iplus in terms of plus.

[LAMBDA X
(PROG ((M 0)
(N 0))
LP (COND
((EQ N X)
(RETURN M)))
(SETQ N (ADD1 N))
[SETQ M (PLUS M (ARG X N)))
(GO LP]

The value of arg is undefined for m less than or
equal to 0 or greater than the value of var.g
Lower numbered arguments appear earlier in the

form, e.g. for (IPLUS A B C),

For lambda nospread functions, the lambda variable is bound to the number
of arguments actually given to the function. See Section 4.

8.11



setarg{var;m;x]

arg[X;1]=the value of A,
arg[X;2J=the value of B, and

arg[X;3]=the value of C.

Note that the lambhbda variable should never be
reset. However, individual arguments can be reset

using setarg described below.

sets to x the mth argument for the lambda nospread
function whose argument 1list is var. var is
considered quoted, m and x are evaluated; e.g. in
the previous example, (SETARG X (ADD1 N)(MINUS M))

would be an example of the correct form for

setarg.

8.12



a-list
ALLPROP

Index for Section 8

---------------

ADVISED (property name)

-------

APPLY[ FN;ARGS ] SUBR

APPLY*[FN;ARG1;...
ARG[ VAR ;M] FSUBR
ARGLIST[X]

ARGTYPE[FN] SUBR
argument list

:ARGn ] SUBR*

ooooooooo

P eV N PGV ELOILOILEIOEINRIRPLOIEOIEROIOEGOGETS

S e e s 0000 b0 000t

LRI IR A I K I I B B B BB BN B N A I )

LRI B I B IR B AR S R N K]

Cs R e e e

.
s s 0000000

ooooooooo e

ooooo

--------

ARGS NOT AVAILABLE (error message)

s v s e

LR R B A L)

ee s e 0000000

o

¢tV e GeEsLITVILIOEOIEVOEOIOLIERIROEOLELEIPOLETETTDS

oooooooooo

Ses e enes e

«e e

BAD ARGUMENT - FGETD (error message)

BROKEN (property name)

BROKEN=-IN (property name)

CCODEP[FN

CEXPR (function type)

] SUBR

s e o

CEXPR* (function type) ...

CFEXPR (function type)
CFEXPR*® (function type)
CODE (property name) ...

DEFINE[X]
DEFINEQ[ X

1 NL*

*ses e

L B A BN

sos e v e

LU I R A BRI B R S SRR U

* s e e e0v 0

$ e e eI eV OIIOIERNTOIEPIIOCIEITOLEIPIOIOTEOEIOITOLTGSE

AL R IR IR B N I A B I BN B R A O I O Y B N )

e e v

LR R R R A I I I A S A A A A A X

CEC R I B U A B IR Y B I S AU N N )

LRI I I N I I I I B B B B S N R A N )

.00000'0."0‘0.0!0"0.

cseer s

DFNFLG (system variablelparameter)
E[ XEEEE] NLx ..
EVAL[ X] SUBR

EVALA[LX;A

EXPRP[FN]

FGETD[ X]
FNTYP[X]

] SUBR

EXPR (property name) ..
EXPR (function type)
EXPR* (function type)

SUBR

e e c 0 00

oooooo

ccccccc

LRI NI )

c o e v 00 e So e e v es e

LRCEC R A A I I I B I B I I I N A A )

eas v e e

LU L I R I I I AR A I I I I B BN A XY

o e 0

LECEE R IR N I A I BT BB B B B S B I B A )

LA BRI BRI B BN B I I B B B K RS A

te e

CRCRCRC U I N I A B IR Y IE I I B Y B R A )

PP EP IO ICETCEEOIOIIIEOIESTOTS

FEXPR (function type) ...
FEXPR* (function type) ..

LRCI )

LEE A A R 2 I B A I A A B A A I A RN )

ooooooooooo

FSUBR (function type)
FSUBR* (function type)
FUNARG (function type)

function definition and .evaluation
function definition cell .

functional argument ..

GETD[ X] SUBR .
ILLEGAL ARG - PUTD (error message)

LECECAE B IR B I X A B0 BB B BN B I A BN AN 3

ooooooooooo

* 000

e a0 e

LRI AN I A A S A BRI Y

L R I IR I Y A

LY

INCORRECT DEFINING FORM (error message)

interpreter

-LAMBDA

S0 00t e POIRNEELIOERIOEEIEOIOIOEDOEOIEOS

es e s 0000

L

®s 00000 s

se0 020000
®e s e esnerecev e

LEC IS I Y 22X B U B B I Y

LR A R )

* e e e “ s o

LIST (property name)

MOVD[ FROM; TO; COPYFLG] .....

NARGSI X ]
NLAMBDA
nospread

NOT A FUNCTION (error message)

s e e

®os 00000000

LB I B S BB I A I B I I )

..0.'..'....

e s e s

.......

s e 00

ceeeo v

(NOT FOUND)

(NOTHING FOUND) . ..

PROP[X;Y]

PUTD[X;Y] SUBR
PUTDQI X:Y] NL
REDEFINED (typed by system)

ooooooo

LI

-----------

oooooooo

LR I S R AN I R I I R I A Y )

LI I I R A B A AR I A A SN A BN B A A )

LKA AU R B A B R R A B B A B R )

*es 000

®ce s o o0 000

"e

® 0000000000000 00 0000000000

ooooooooo

INDEX.8.1

e s evo e

LRI IR I R A Y 3 B A B B B

Page
Numbers

1 R 1 . -0 (=
2] &
(=)

.

o

[
[]
(-

P .
(]
~

AW UL

qaL%@@@LwL$qwo§$LéLLbb$»waaabaunwovwmvnabanwqw»»m»»ﬂcvvu
1 t 8 1 -
W N
N

-
~

0!(:) (3]
L3 @
[-)]

.

PRI RIRRIEPOETIITIROERIRIRNRIRRIRITREROIOIRIRIIPOONRIRRIORRIIRRIOIOIITO®
]
»



Page
Numbers

]
ey
-

.

RPT{RPTN;RPTF] ........ cevans teeeterseonen vesssen
RPTQ[RPTN;RPTF] NL ......iveeen sesene sesesvernsene
SAVEDEF[X] .cevenn. et esruedtera e naverrreeerran
SETARG[VAR;M;X] FSUBR .....00cen. teveeenee veevene
spread .. ....icci et e0tursronan crecssnes veseesn
SUBR (function type) ...... e ecsrseritessesasana
SUBR (property name) .....ccec. cecesecernsereanns
SUBR® (function type) .....eeeveeee ceencessaraans
SUBRP[FN] SUBR ......vveene et eerestecsacasernanne
subrs ..... S e et esvas et ananast et bctasasas s Rt b
U (value of ARGLIST) ....... teeseceesecsesastrerun
(U V W) (value of ARGLIST) .ceveceecscevcacssocoss
UNSAVEDEFIX;TYP] .ciiveeennes ceceens Cveccsseaneens

- ———
N =D

ORI O®
1
WO

« s

AN I L

INDEX.8.2



SECTION 9
THE INTERLISP EDITOR?

The INTERLISP editor allows rapid, convenient modification of 1list structures.
Most often it 1# used to edit function definitions, (often while the function
itself is running) via the function editf, e.g., EDITF(FOO). However, the
editor can also be used to edit the value of a variable, via editv, to edit a
property list, via gg;gg; or to edit an arbitrary expression, via edite. It is
an important feature which allows good on-line interaction in the INTERLISP

system.

This chapter begins with a lengthy introduction intended for the new user. The

reference portion begins on page 9.15.

9.1 Introduction

Let us introduce some of the basic editor commands, and give a flavor for the
editor's language structure by guiding the reader through a hypothetical

editing session. Suppose we are editing the following incorrect definition of

append:

The editor was written by and is the responsibility of W. Teitelman.

9.1



[LAMBDA (X)
Y
(COND
((NUL X)
Z)

(T (CONS (CAR)
(APPEND (CDR X Y]

We call the editor via the function editf:

~EDITF(APPEND)
EDIT
®

The editor responds by typing EDIT followed by %, which is the editor's prompt

character, i.e., it signifies that the editor is ready to accept commands.3

At any given moment, the editor's attention is centered on some substructure of
the expression being edited. This substructure 1s called the current
expression, and it is what the user sees when he gives the editor the command
P, for print. Initially, the current expression is the top vlovel one, i.e.,
the entire expression being edited. Thus:

xp
(LAMBDA (X) Y (COND & &))
x

Note that the editor prints the current expression as though printlevel were
set to 2, i.e., sublists of sublists are printed as &. The command ? will

print the current expression as though printlevel were 1000.

*x?
£LAMBDA (X) Y (COND ((NUL X) Z) (T (CONS (CAR) (APPEND (CDR X Y))))))

and the command PP will prettyprint the current expression.

2 In other words, all lines beginning with * were typed by the user, the rest
by the editor.

9.2



A positive integer is interpreted by the editor as a command to descend into

the correspondingly numbered element of the current expression. Thus:

2
*p
(X)
=

A negative integer has a similar effect, but counting begins from the end of
the current expression and proceeds backward, i.e., -1 refers to the last
element in the cﬁrrent expression, -2 the next to the last, etc. For either

positive integer or negative integer, if there 1s no such element, an error

occurs.a the editor types the faulty command followed by a ?, and then another

*, The current ‘expre.sston is never changed abheu a command causes an error.

Thus:

A phrase of the form 'the current expression is changed' or ‘'the current
expression becomes' refers to a shift in the editor's attention, not to a
modification of the structure being edited.

When the user changes the current expression by descending into it, the old

current expression is not lost. Instead, the editor actually operates by

- - T P e T N > T R D En S R W WP WS TR R W S5 G2 G SR A e S S R GRS WS W Gm R WD NS W AR MR O e Y X L X E R R R K

s "Editor errors' are not of the flavor described in Section 16, i.e., they
never cause breaks or even go through the error machinery but are direct
calls to error! indicating that a command is in some way faulty. What
happens next depends on the context in which the command was being
executed. For example, there are conditioral commands which branch on
errors. In most situations, though, an error will cause the editor to type
the faulty command followed by a ? and wait for more input. Note that
typing control-E while a command is being executed aborts the command
exactly as though it had caused an error.

9.3



maintaining a chain of expressions leading to the current one. The current
expression is simply the last link in the chain. Descending‘adds the indicated
subexpression onto the end of the chain, thereby making it be the current
expression. The command 0 is used to ascend the chain; it removes the last
link 6f the chain, thereby making the previous link be the current expression.
Thus:

®xp

X

*0 P

(X)

*0 -1 P
(COND (& Z) (T &))
®

Note the use of several commands on a single line in the previous output. The
editor operates in a line buffered mode, the same as evalgqt. Thus no command
is actually seen by the editor, or executed, until the line is terminated,
either by a carriage return, or a matching right parenthesis. The user can
thus use control-A and control-Q for line-editing edit commands, the same as he

does for inputs to evalqt.

In our editing session, we will make the following corrections to append:

delete Y from where it appears, add Y to the end of the argument list.4

change
NUL to NULL, change Z to Y, add Z after CAR, and insert a right parenthesis

following CDR X.

First we will delete Y. By now we have forgotten where we are in the function
definition, but we want to be at the "top" so we use the command ¢, which

ascends through the entire chain of expressions to the top level expression,

These two operations could be though of as one operation, i.e., MOVE Y from
its current position to a new position, and in fact there is a MOVE command
in the editor. However, for the purposes of this introduction, we will
confine ourselves to the simpler edit commands.

9.4



which then becomes the current expression, i.e., * removes all links except the

first one.

xe p
(LAMBDA (X) Y (COND & &))
”

Note that if we are already at the top, t has no effect, i.e., it is a NOP.
‘However, 0 would generate an error. In other words, t means "go to the top,"

while 0 means "“ascend one link."
The basic structure_modification commands in the editor are:

(n) ' n > 1 deletes the corresponding

element from the current expression.

(ne; ... e n,m > 1 replaces the nth element in the current
expression with
el LI ] eml
(rn ey ... ep) n,m > 1 inserts e; ... e, before the nth element

in the current expression.

Thus:
®p
(LAMBDA (X) Y (COND & &))
*(3)
(2 (X Y))
®p

(LAMBDA (X Y) (COND & &))
=®
All structure modificatior done by the editor is destructive, t.e., the editor

uses rplaca and rplacd to physically change the structure it was gtven.

Note that all three of the above commands perform their operation with rospect'

9.5



to the nth element from the front of the current expression; the sign of n is
used to specify whether the operation is replacement or insertion. Thus, there
is no way to specify deletion or replacement of the nth element from tﬁe end of
the current expression, or insertion before the nth element from the end
without counting out that element's position from the front of the list.
Similarly, because we cannot specify insertion after a particular element, we
cannot attach something at the end of the current expression using the above
commands. Instead, we use the command N (for nconc). Thus we could have
performed the above changes instead by:

xp
(LAMBDA (X) Y (COND & &))

*(LAMBDA (X Y) (COND & &))
®

Now we are ready to change NUL to NULL. Rather than specify the sequence of
descent commands necessary to reach KUL, and then replace it with NULL, e.g., 3
2 1 (1 NULL), we will use F, the find command, to find NUL:

xp

(LAMBDA (X Y) (COND & &))

*F NUL

*p

(NUL X)

x(1 NULL)

"0 P
((NULL X) Z)
®x

Note that F is special in that it corresponds to two inputs. In other words, F
says to the editor, "treat your next command as an expression to be searched
for." The search 1s.carried out in printout order in the current expression.
If the target expression 1s not found there, F automatically ascends and
searches those portions of the higher expressions that would appear after (in a

printout) the current expression. If the search is successful, the new current

9.6



expression will be the structure where the expression was found.5 and the chain
will be the same as one resulting from the abpropriate sequence of ascent and
descent commands. If the search is not successful, an error occurs, and

neither the current expression nor the chain is chunaod:a

*p

((NULL X) Z)
*F COND P
COND ?

*p

:((NULL X) Z)

Here the search failed to find a cond following the current expression,
although of course a cond does appear earlier in the structure. This last
example illustrates another facet of the error recovery mechanism: to avoid
further confusion when an error occurs, all commands on the line beyond the one
which caused the error (and all commands that may have been typed ahead while

the editor was computing) are forgotten.7

We could also have used the R command (for replace) to change NUL to NULL. A
command of the form (R e, e,) will replace all occurrences of e, in the current
expression by e,. There must be at least one such occurrence or the R command
will generate an error. Let us use the R command to change all Z's (even

though there is only one) in append to Y:

P e L L L L T R Y T T e Y T Y T P T PR Y PR P L R R L L X

6 If the search is for an atom, e.g., F NUL, the current expression will be
the structure containing the atom.

6 F is never a NOP, i.e., if successful, the current expression after the
search will never be the same as the current expression before the search.
Thus F expr repeated without intervening commands that change the edit
chain can be used to find successive instances of expr.

7

i.e. the input buffer is cleared (and saved) (see clearbuf, Section 14).
It can be restored, and the type-ahead recovered via the command S$SBUFS
(alt-mode BUFS), described in Section 22.

9.7



x¢t (RZ2Y)
xF 72
27
=pp
[LAMBDA (X Y)
{COND
((NULL X)
Y)
(T (CONS (CAR)
(APPEND (CDR X Y]

The next task is to change (CAR) to (CAR X). We could do this by
(R (CAR) (CAR X)), or by:

*F CAR

*(N X)

*p
(CAR X)
x

The expression we now want to change is the next expression after the current
expression, i.e., we are currently looking at (CAR X) in (CONS (CAR X) (APPEND
(COR X Y))). We could get to the append expression by typing 0 and then 3 or
-1, or we can use the command NX, which does both operations:

xp

(CAR X)

ANX P
(APPEND (CDR X Y))
x

Finally, to change (APPEND (CDR X Y)) to (APPEND (CDR X) Y), we could perform
(2 (CDR X) Y), or (2 (CDR X)) and (N Y), or 2 and (3), deleting the Y, and then
0 (N Y). However, 1f Y were a complex expression, we would not want to have to
retype it. Instead, we could use a command which effectively inserts and/or
removes left and right parentheses. There are six of these commands:
8I1,80,LI,LO,RI, and RO, for both in, both out, left in, left out, right in, and
right out. Of course, we will always have the same number of left parenthesss

as right parentheses, because the parentheses are just a notational guide to

9.8



structure that is provided by our print program.8 Thus, left 1in, left out,
right in, and right out actually do not insert or remove just one parenthesis,

but this is very suggestive of what actually happens.

In this case, we would like a right parenthesis to appear following X in (CDR X
Y). Therefore, we use the command (RI 2 2), which means insert a right

parentheses after the second element in the second element (of the current

expression):
®p
(APPEND (CDR X Y))
®(RI 2 2)
®xp

(APPEND (CDR X) Y)
®

We have now finished our editing, and can exit from the editor, to test append,

or we could test it while still inside of the editor, by using the E cqmmand:

ND((A 8) (C D E))
D E)

%~
>rn

The E command causes the next input to be given to evalqt. If there is another
input following it, as in the above example, the first will bé~appli§d (apply)

to the second. Otherwise, the input is evaluated (eval).

We prettyprint append, and leave the editor.

8 Herein lies one of the principal advantages of a LISP oriented editor over
a text editor: unbalanced parentheses errors are not possible.

9.9



xpp
[LAMBDA (X Y)
( COND
((NULL X)
Y)
(T (CONS (CAR X)
(APPEND (CDR X) Y]
%0K
APPEND

-

9.2 Commands for the New User

As mentioned earlier, the INTERLISP manual is intended primafily as a reference
manual, and the remainder of this chapter 1is organized and presented
accordingly. While the commands introduced in the previous scenario constitutq
a complete set, i.e., the user could perform any and all editing operations
using just those commands, there are many situations in which knowing the right
command(s) can save the user considerable effort. We include here as part of
the introduction a 1list of those commands which are not only frequently
applicable but also easy to use. They are not presented in any particular

order, and are all discussed in detail in the reference portion of the chapter.

UNDO undoes the last modification to the structure
being edited, e.g., if the user deletes the wrong
element, UNDO will restore it. The availability
of UNDO should give the user confidence to
experiment with any and all editing commands, no
matter how complex, because he can always reverse

the effect of the command.

BK like NX, except makes the expression immediately

before the current expression become current.

BF backwards find. Like F, except searches

backwards, i1.e., in inverse print order.

9.10



\ » Restores the current expression to the expression
before the last "big jump®, e.g., a find command, -
an t, or another \. For example,‘ if the user
types F COND, and then F CAR, \ would take him
back to the COND. Another \ would take him back to
the CAR.

\P ' like \ except it restores the edit chain to its
' state as of the last print, either by P, ?, or PP.

If the edit chain has not been changed since the

last print, \P restores it to its state as of the

printing befors that one, i.e., two chains are

always saved.

Thus if the user types P followed by 3 2 1 P, \P will take him back to the
first P, i.e., would be equivalent to 0 ¢ 0. Another \P would then take him
back to the second P. Thus the user can use \P to flip back and forth between

two current expressions.

&, = _ The search expression given to the F or BF commanvd
need not be a literal S-expression. Instead, it
can be a pattern. The symbol & can be used
anywhere within this pattern to match with any
single element of a list, and -- can be used to
match with any segment of a list. Thus, in the
incorréct definition of append used earlier,
F (NUL &) could have been used to find (NUL X),
and F (COR --) or F (COR & &), but not F (COR &),
to find (CDR X Y).

Note that & and -- can be nested arbitrarily deeply in the pattern. For

9.11



example, if there are many places where the variable X is set, F SETQ may not
find the desired expression, nor may F (SETQ X &). It may be necessary to use
F (SETQ X (LIST --)). However, the usual technique in such a case is to pick
out a unique atom which occurs prior to the desired expression, and perform two
F commands. This "homing in" process seems to be more convenient than ultra-

precise specification of the pattern.

$ (alt-mode) $ is equivalent to -- at the character level, e.g.
VERS will match with VERYLONGATOM, as will SATOM,
SLONGS, (but not SLONG) and SVSNSMS. $ can be
nested inside of ‘a pattern, e.g.,

F (SETQ VERS (CONS --)).

If the search is successful, the editor will print
= followed by the atom which matched with the $-
atom, e.g.,

*F (SETQ VERS &)
=VERYLONGATOM
]

Frequently the user will want to replace the entire current expression, or
insert something before it. In order to do this using a command of the form (n
ey .- °m) or (-n 8y .. em). the user must be above the current expression.
In other words, he would have to perform a 0 followed by a command with the
appropriate number. However, 1if he has reached the current expression via an F
command, he may not know what that number is. In this case, the user would
like a command whose effect would be to modify the edit chain so that the
current expression became the first element in a new, higher current
expression. Then he could perform the desired operation via (1 ey ... °m) or

(-1 ey ... © UP is provided for this purpose.

m)’

9.12



up after UP operates, the old current expression is
the first element of the new current expression.
Note that if ﬁhe current expression happens to be
the fifst element in the next higher expression,
then UP 1sboxact1y the same as 0. Otherwise, UP
modifies the edit chain so that the new current

expression is a tail® of the next higher

expression:
*F APPEND P
(APPEND (CDR X) Y)
*UP P
... (APPEND & Y))
x0 P

(CONS (CAR X) (APPEND & Y))
x

The ... is used by the editor to indicate that the
current expression is a tail of the next higher
expreésion as opposed to being an element (i.e., a
member) of the next higher expression. Note: if
the current expression is dlready a tail. UP has
no effect.

(B e, ... e inserts e, ... e, before the current expression,

n
i.e., does an UP and then a -1.

(A 8y «-- em) inserts ey ... @ aftgr the current oxprassion;

m
i.e., does an UP and then either a (-2 9 .- °m)
- or an (N 8y «.o °m)’ if the current expression is

the last one in the next higher expression.

Throughout this chapter 'tail' means 'proper tail’ (see Section 8).

9.13



(: 8y ... @) replaces current expression by e, ... oy, 1.0,
does an UP and then a (1 ey ... em).
DELETE deletes current expression; equivalent to (:).

Earlier, we introduced the RI command in the append example. The rest of the
commands in this family: B8I, BO, LI, LO, and RO, perform similar functions andv
are useful in certain situations. In addition, the commands ﬁBD and XTR can be
used to combine the effects of several commands of the BI-BO family. MBD is
used to embed the current expression in a larger expression. For example, if
the current expression is (PRINT bigexpression), and the user wants to replace
it by (COND (FLG (PRINT bigexpression))), he could accomplish this by (LI 1),
(-1 FLG), (LI 1), and (-1 COND), or by a single MBD command, page 9.47.

XTR is used to extract an expression from the current expression. For example,
extracting the PRINT expression froﬁ the above COND could be accomplished by
(1), (Lo 1), (1), and (LO 1) or by a single XTR command. The new user 1is
encouraged to include XTR and MBD in his repertoire as soon as he is familiar

with the more basic commands.

This ends the introductory material.

9.14



9.3 Attention Changing Commands

Commands to the editor fall into three classes: commands that change the
current expression (i.e., change the edit chain) thereby "shifting the editor's
attention," commands that modify the structure being edited, and miscellaneous

commands, e.g., exiting from the editor, printing, evaluating expressions, etc.

Within the context of commands that shift the editor's attention, we can
distinguish among (1) those commands whose operation depends only on the
structure of the edit chain, e.g., 0, UP, NX; (2) those which depend on the
contents of the structure, i.e., commands that search; and (3) those commands
which simply restore the edit chain to some previous state, e.g., \, \P. (1)
and (2) can also be thought of as local, small steps versus open ended, big
Jumps. Commands of type (1) are discussed on page 9.15-21, type (2) on page
9.21-34, and type (3) on page 9.34-36. |

9.3.1 Local Attention-Changing Commands

ue (1) If a P command would cause the editor to type
' ... before typing the current expression, i.e. the
current expression is a tail of the next higher
expression, UP has no effect; otherwise
(2) UP modifies the edit chain so that the old
current expression (i.e., the one at the time UP
was called) is the first element in the new

current expression‘Io

If the current expression is the first element in the next higher
expression UP simply does a 0. Otherwise UP adds the corresponding tail to
the edit chain.

9.18



Examples: The current expression in each case is

(COND ((NULL X) (RETURN Y))).

1. =1p
COND
*yp P
(COND (& &))

2. 21 p
((NULL X) (RETURN Y))
xUp P
... ((NULL X) (RETURN Y))
=yp P
. ((NULL X} (RETURN Y)))

3. X*F NULL P

(NULL X)

xUp p

((NULL X) (RETURN Y))
*up P

.. (CNULL X) (RETURN Y)))

The execution of UP is straightforward, except in those cases where the current
expression appears more than once in the next higher expression. For example,
if the current expression is (A NIL B NIL C NIL) and the user perfofms 4
followed by UP, the current expression should then be ... NIL C NIL). UP can
determine which tail is the correct one because the commands that descend save
the 1last tail on an internal editor variable, lastail. Thus after the 4
command is executed, lastail 1is (NIL C NIL). When UP is called, it first
determines if the current expression is a tail of the next higher expression.
If it is, UP is finished. Otherwise, UP computes

memb{ current-expression;next-higher-expression] to obtain a tail beginning with

the current expression. there are no other instances of the current

expression in the next higher expression, this tail is the correct one.

e A e e - - W e e R D D TR S S S D e D e S e D SR G G s S SR P WD R S WD S P S W P A M S W SR R A e e A

The current expression should always be either a tail or an element of the
next higher expression. If it is neither, for example the user has

directly (and incorrectly) manipulated the edit chain, UP generates an
error.

9.16



Otherwise UP uses lastail to select the correct tail.f2

n(n>1) adds the nth element of the current expression to

the front of the edit chain, thereby making it be
the new current expression. Sets lastail for use
by UP. - Generates an error 1if the current
expression is not a list that contains at least n

elements.

-n (n 2 1) adds the nth element from the end of the current

expression to the front of the edit chain, thereby
making it be the new current expression. Sets
lastail for use by UP. Generates an error if the
current expression is not a iist that contains at

least n elements.

Sets edit chain to cdr of edit chain, thereby
making the next higher expression be the new
current expression. Generates an error 1f.theré
is no higher expression, i.e. cdr of edit chain is
NIL.

Note that O wusually corresponds to going back to the next higher left

W e T S e AR N b T N G D e TN R S Ge 5 D WD S Ge D Gk SN WD e R N e 4GP C5 R ED R R S e D GS G W P M N R D N TR A W P e N G e W e e e

Occasionally the user can get the edit chain into a state where lastail
cannot resolve the ambiguity, for example if there were two non-atomic
structures in the same expression that were eq, and the user descended more
than one level into one of them and then tried to come back out using UP.
In this case, UP prints LOCATION UNCERTAIN and generates an error. Of
course, we could have solved this problem completely in our implementation
by saving at each descent both elements and tails. However, this would be
a costly solution to a situation that arises infrequently, and when it
does, has no detrimental effects. The lastail solution is cheap and
resolves 99% of the ambiguities.

9.17



parenthesis,

but not always. For example, 1if the current expression 1is

(ABCDEFB), and the user parforms:

*3 uUp P
... CDEFG)
x3 UP P
... EFB)
*0 P
.. CDEFEG)

If the intention is to go back to the next higher left parenthesis, regardless

of any'intervening tails, the command !0 can be used.13

10

NX

BK

does repeated 0's until it reaches a point where
the current expression is not a tail of the next
higher expression, i.e., always goes back to the

next higher left parenthesis.

sets edit chain to last of edit chain, thereby
making the top level expression be the current

expression. Never generates an error.

effectively does an UP followed by a 2,14 thereby
making the current expression be the next
expression. Generates an error if the current
expression is the last one in a list. (However,

INX described below will handle this case.)

makes the current expression be the previous

- D S R S R e W Y R W P D S W D D P D T D D D NS R D D T D U s e R R R S WS P R e M R D S G SN e e R D TR IR G W

10 is pronounced bang-zero.

Both NX and BK operate by performing a !0 followed by an appropriate

number, 1.e. there won't be an extra tail above the new current expression,
as there would be if NX operated by performing an UP followed by a 2.

9.18



expression 1in the next higher expression.
Generates an error if the current expression is

the first expression in a list.

For example, if the current expression is (COND ((NULL X) (RETURN Y))):

*F RETURN P
(RETURN Y)
*BK P
(NULL X)
(NXn)n31 ' equivalent to n NX commands, except if an error
occurs, the edit chain is not changed.
(BK n) n > 1 equivalent to n BK commands, except if an error
occurs, the edit chain is not changed.
Note: (NX -n) is equivalent to (BK n), and vice versa.
INX makes current expression be the next expression at

a higher level, i.e., goes through any number of

right parentheses to get to the next expression.



For example:

xpp
(PROG ((L L)
(UF L))
LP (COND
((NULL (SETQ L (COR L)))
(ERROR!'))
([NULL (CDR (FMEMB (CAR L)
(CADR L]
(GO LP)))
(EDITCOM (QUOTE NX))
(SETQ UNFIND UF)
(RETURN L))
*F COR P
(COR L)
*NX

NX 7

*INX P

(ERROR!)

XINX P

((NULL &) (GO LP))
®INX P

(EDITCOM (QUOTE NX))
x

INX operates by doing 0's until it reaches a stage where the current expression
is not the last expression in the next higher expression, and then does a NX.
Thus !NX always goes through at least one unmatched right parenthesis, and the
new current expression is always on a different level, i.e., !NX and NX always

produce different results. For example using the previous current expression:

*F CAR P
(CAR L)
*INX P
(GO LP)
=\p P
(CAR L)
*NX P
(CADR L)
®

(NTHn) n ¢ 0 equivalent to n followed by UP, i.e., causes the
list starting with the nth element of the current

expression (or nth from the end if n < 0) to

9.20



become the current expression.15 Causes an error
if current 6xprassion does not have at least n

elements.

A generalized form of NTH using location specifications is described on page

9.32.

9.3.2 Commands That Search

All of the editor commands that search use the same pattern matching routine.

16

We will therefore begin our discussion of searching by describing the pattern

match mechanism. A pattern pat matches with x if:

1.
2.
3.
4.
5.

6a.

(NTH 1) is a NOP, as is (NTH -n) where n is the length of the current

pat is eq to x.

pat is &.

pat is a number and egp to X.

pat is a string and strequal[pat;x] is true.

If car[pat] is the atom ®ANY®, cdr[pat]) is a list of patterns and
pat matches x if and only if one of the patterns on cdr{pat]
matches x.

If pat is a literal atom or string containing one or more alt- '
modes, each 8 can match an indefinite number (including 0) of
contiguous characters in a literal atom or string, e.g.

VERS matches both VERYLONGATOM and

"VERYLONGSTRING" as do SLONGS (but not

SLONG), and $SVSLSTS.

expression.

16
9.88.

This routine is available to the user directly, and is described on page

9.21



6b.

If pat is a literal atom or string ending in two alt-modes, pat
matches with the first atom or string that i; "close" to pat, in
the sense used by the spelling corrector (Section 17). E.g.
CONSSSS matches with CONS, CNONCS3 with NCONC or NCONC1.
The pattern matching routine always types a message of the form
=x to inform the user of the object matched by a pattern 6f type
6a or 6b,?7 e.g. =VERYLONGATOM.
If car[pat] is the atom --, pat matches x if
a. cdr[pat]=NIL, i.e. pat=(--), e.g.

(A --) matches (A) (A B C) and (A . B)

In other words, -- can match any tail of a list.
b. cdr[pat] matches with some tail of x,

e.g. (A -- (&)) will match with (A B8 C (D)),

but not (A B C D), or (AB C (D) E). However,

note that (A -- (&) --) will match with

(ABC (D) E).

In other words, -- can match any interior segment of a list.
If car[pat] is the atom =a, pat matches x if and only if cdr{pat]
is eq to 5.18
Otherwise if x is a list, pat matches x if car[pat]

matches car[x], and cdr{pat] matches cdr[x].

When the editor is searching, the pattern matching routine is called to match

with elements in the structure, unless the pattern begins with ..., in which

case cdr of the pattern is matched against proper tails in the structure. Thus

if the current expression is (A B C (8 C)),

unless editquietflg=T.

Pattern 8 is for use by programs that call the editor as a subroutine,

since any non-atomic expression in a command typed in by the user obviously
cannot be eq to already existing structure.

9.22



*F (B --)

xp (B C)
.0 F (u.c B .')
p

... BC (BC))

Matching is also attempted with atomic tails (except for NIL). Thus

*p
(A (B . C))
*F C .
np

ver . C)

Although the current expression is the atom C after the final command, it is
printed as ... . C) to alert the user to the fact that C is a tail, not an
element. Note that the pattern C will match with either instance of C in
(AC (B . C)), whereas (... . C) will match only the second C. The pattern NIL
will only match with NIL as an element, i.e. it will not match in (A B), even
though cddr of (A B) is NIL. However, {... . NIL) (or equivalently (...)) may
be used to specify a NIL tail, e.g. (... . NIL) will match with cdr of the
third subexpression of {(A . B8) (C . D) (E)).

Search Algorithm

Searching bégins. with the current expression and proceeds in print order.
Searching usually means find the next instance of this pattern, and
consequently a match is not attempted that would leave the edit chain
unchanged.IQ At each step, the pattern is matched against the next element in
the expression currently being sqarched. unless the pattern begins with ... in

which case it is matched against the next tail of the expression.

------------------------------- L T R L R Y L R e P L P L L XY

19 However, there is a version of the find command which can succeed and leave
the current expression unchanged (see page 9.26).

9.23



If the match is not successful, the search operation is recursive first in the
car direction and then in the cdr direction, i.e., if the element under
examination is a list, the search descends into that list before attempting to

match with other elements (or tails) at the same level.za

However, at no point is the total recursive depth of the search (sum of number
of cars and cdrs descended into) allowed to exceed the value of the variable
maxlevel. At that point, the search of that element or tail is abandoned,
exactly as though the element or tail had been completely searched without
finding a match, and the search continues with the element or tail for which
the recursive depth is below maxlevel. This feature is designed to enable the
user to search circular list structures (by setting maxlevel small), as well as
protecting him from accidentally encodntering a circular list structure in the

course of normal editing. maxlevel is initially set to 300.21

If a successful match is not found in the current expression, the search

automatically ascends to the next higher expression,zz

and continues searching
there on the next expression after the expression it just finished searching.
If there is none, it ascends again, etc. This process continues until the
entire edit chain has been searched, at which point the search fails, and an
error 1s generated. If the search fails (or, what is equivalent, is aborted by

control-E), the edit chain is not changed (nor are any conses performed).

If the search is successful, i.e., an expression is found that the pattern

There is also a version of the find command (see page 9.27) which only
attempts matches at the top level of the current expression, i.e., does not
descend into elements, or ascend to higher expressions.

maxlevel can also be set to NIL, which is equivalent to infinity.

22 See footnote on page 9.24.

9.24



matches, the edit chain is set to the value it would have had had the user

reached that expression via a sequence of integer commands.

If the expression that matched was a list, it will be the final link in the
edit chain, i.e., the new current expression. If the expression that matched
is not a list, e.g..‘ is an atom, the current expression will be the tail
beginning with that atom.23 i.e., that atom will be the first element in the

new current expression. In other words, the search effectively does an UP.24

Search Commands

All of the commands below set lastail for use by UP, set unfind for use by \
(page 9.35), and de not change the edit chain or perform any conses if they

are unsuccessful or aborted.

F pattern i.e., two commands: the F informs the editor that
| the next command is to be interpreted as a

pattern. This is the most common and useful form

of the find command. If successful, the edit

chain always changes, i.e., F pattern means find

the next instance of pattern.

If mamb[pattern;current-expréssion] is true, F
does not proceed with a full recursive search. If
the value of the memb is NIL, F invokes the search
algorithm described earlier.

Unless the atom is a tall, e.g. B in (A . B). In this case, the current
expression will be B, but will print as ... . B).

4. Unless upfindflg=NIL (initially set to T). For discussion, see page

9.43-44.

9.25



Thus if the current expression is

(PROG NIL LP (COND (-- (GO LP1))) ... LP1 ...), F LP1 will find the prog label,
not the LP!1 inside of the GO expression, even though the latter appears first
(in print order) in the current expression. Note that 1 (making the‘atom PROG
- be the current expression), followed by F LP1 would find the first LP1.

(F pattern N) same as F pattern, i.e., finds the geXt instance
of pattern, except the memb check of F pattern is

not performed.

(F pattern T) Similar to F pattern, except may succeed without
changing edit chain, and does not perform the memb

check.

Thus if the current expression is (COND ..), F COND will look for the next
COND, but (F COND T) will 'stay here'.

(F pattern n) n > 1 Finds the nth place that pattern matches.
Equivalent to (F pattern T) followed by
(F pattern N) repeated n-1 times. - Each time
pattern successfully matches, n is decremented by
1, and the search continues, until n reaches 0.
Note that the pattern does not have to match with
n identical expressions; it just has to match n
times. Thus 1if the current expression 1is
(FOO1 FO02 FOO03), (F FOOS 3) will find FOO3.

If the pattern does not match successfully g‘
times, an error is generated and the edit chain is

unchanged (even if the pattern matched n-1 times).

9.26



(F pattern) or
(F pattern NIL)

only matches with elements at the

top level of the current expression, i.e., the
search will not descend into the current
expression, nor will it go outside df the current
expression. May succeed without changing edit

chain.

For example, if the current expression is

(PROG NIL (SETQ X (COND & &)) (COND &) ...), F COND will find the COND inside

the SETQ, whereas (F (COND --)) will find the top level COND, i.e., the second

one.

(FS pattorn1 e patternn)

(F= expression x)

(ORF pattern1 ces patternn)

BF pattern

equivalent to F pattarnl followed Dby F
patternz ... followed by F patternn, so that if F
patternm fails, edit chain is left at place

pattern,_, matched.

equivalent to (F (== . expression) x), 1i.e.,
searches for a struéture eq to expression, see

page 9.22.

equivalent to (F (®ANY® pattern1 e patternn) N),
i.e., searches for an expression that 13 matched
by either pattern,, pattern,, ... or pattern,.
See page 9.21.

backwards find. Searches in reverse print order,
beginning with expression immediately before the

current expression (unless the current expression

is the top 1level expression, in which case BF

searches the entire expression, in reverse order).

9.27



BF uses the same pattern match routine‘as:F. and

maxlevel and upfindflg have the same effect, but

the searching begins at the end of each list, and
descends into each element before attempting to
match that element. If unsuccessful, the search
continues with the next previous element, etc.,
until the front of the list is reached, at which

point BF ascends and backs up, etc.

For example, if the current expression is

(PROG NIL (SETQ X (SETQ Y (LIST Z))) (COND ((SETQ W =--) =--)) =--), F LIST
followed by BF SETQ will leave the current expression as (SETQ Y (LIST Z)), as
will F COND followed by BF SETQ.

(BF pattern T) search always includes current expression, i.e.,
starts at the end of current expression and works

backward, then ascends and backs up, etc.

Thus in the previous example, where F COND followeBF SETQ found
(SETQ Y (LIST Z)), F COND followed by (BF SETQ T) would find the (SETQ W --)

expression.

(BF pattern) same as BF pattern.
(BF pattern NIL)

Location Specification

Many of the more sophisticated commands described later in this chapter use a

more general method of specifying position called a location specification. A

location specification is a list of edit commands that are executed in the

normal fashion with two exceptions. First, all commands not recognized by the

9.28



editor are interpreted as though they had been preceded by F.25 For example,
the location specification (COND 2 3) specifies the 3rd element in the first
clause of the next COND.za

Secondly, if an error occurs while evaluating one of the commands in the
location specification, and the edit chain had been changed, i.e., was not the
.same as it was at the beginning of that execution of the location
specification, the location operation "will cpntinue. In other words, the
location operation keeps going unless it reaches a state where it detects that
it is 'looping', at which point it give$ up. Thus, if (COND 2 3) is being
located, and the first clause of the next COND contained only two elements, the
execution of the command 3 would cause an error. The search would then
continue by looking for the next COND. However, if a poinﬁ were reached where
there were no further CONDs, then the first command, COND, would cause the
error; the edit chain would not have been changed, and so the entire location

operation would fail, and cause an error.

The IF command in conjunction with the ## function provide a way of using
arbitrary predicates applied to elements in the current expression. 1IF and #
will be described in detail 1later in the chapter, along with examples

illustrating their use in location specifications.

Throughout this chapter, the meta-symbol @ is used to denote a location
specification. Thus @ is a list of commands interpreted as described above. @

can also be atomic, in which case it is interpreted as list{@].

- . an R S e e - D e SR W R D W R W S G D S D R R R R W P R R R P TR U R R P R D D ER S R R D A3 G T R P R D W e D SR Y R N N R R R e e e e

Normally such commands would cause errors.

Note that the user could always write F COND followed by 2 and 3 for
(COND 2 3) if he were not sure whether or not COND was the name of an
atomic command.

9.29



(LC . Q) provides a way of explicitly invoking the location
operation, e.g. (LC COND 2 3) will perform the the

search described above.

(LCL . ®) Same as LC except the search is confined to the
current expression, 1.e., the edit chain {is
rebound during the search so that it looks as
though the editor were called on just the current
expression. For example, to find a COND
containing a RETURN, one might use the location
specification (COND (LCL RETURN) \) where the \
would reverse the effects of the LCL command, and

make the final current expression be the COND.

(2ND . @) Same as (LC . @) followed by another (LC . @)
except that if the first succeeds and second

fails, no change is made to the edit chain.

(3RD . ©9) Similar to 2ND.

(+~ pattern) ascends the edit chain looking for a link which
matches pattern. In other words, it keeps doing
0's until it gets to a specified point. If
pattern is atomic, it is matched with the first
element of each 1link, otherwise with the entire

link.27

If pattern is of the form (IF expression), expression is evaluated at each
link, and if its value is NIL, or the evaluation causes an error, the
ascent continues.

9.30



For example:

*pp
[PROG NIL
" (COND |
[(NULL (SETQ L (COR L)))
(COND
~ (FLG (RETURN L]
([NULL (CDR (FMEMB (CAR L)
(CADR L3
*F CADR
*(« COND)
p

SCOND (& &) (& &))

Note that this command differs from BF in that it does not search inside of
each 1link, it simply ascends. Thus in the above example, F CADR followed by
BF COND would find (COND (FLG (RETURN L))), not the higher COND.

If no match is found, an error is generated, and

the edit chain is unchanged.

(BELOW com x) ascends the edit chain 1looking for a 1link
specified by com, and stops 528 links below
that.29 i.e. BELOW keeps doing 0's until it gets

to a specified point, and then backs off x 0's.
(BELOW com) same as (BELOW com 1).
For example, (BELOW COND) will cause the cond clause containing the current

expression to become the new current expression. Thus 1if the current

expression is as shown above, F CADR followed by (BELOW COND) will make the new

------------------------- g g g S e N e I T L T

X 1s evaluated, e.g., (BELOW com (IPLUS X Y).

29 Only links that are elements are counted, not tails.

9.31



expression be ([NULL (CDR (FMEMB (CAR L) (CADR L] (60 LP)), and is therefore

equivalent to 0 0 0 0.

The BELOW command is useful for locating a substructure by specifying something
it contains. For example, suppose the user is editing avlist of lists, and
wants to find a sublist that contains a FOO (at any depth). He simply executes
F FOO (BELOW \).

(NEX x) same as (BELOW x) followed by NX.

For example, if the user is deep inside of a SELECTQ clause, he can advance to

the next clause with (NEX SELECTQ).
NEX same as (NEX ).

The atomic form of NEX 1is useful if the user will be performing repeated
executions of (NEX x). By simply MARKing (see page 9.34) the . chain

corresponding to X, he can use NEX to step through the sublists.

{NTH x) generalized NTH command. Effectively performs‘
(LCL . x), followed by (BELOW \), followed by UP.

In other words, NTH locates X, using a search restricted to the current
expression, and then backs up to the current level, where the new current
expression is the tail whose first element contains, however deeply, the

expression that was the terminus of the location operation. For example:

xp )

(PROG (& &) LP (COND & &) (EDITCOM &) (SETQ UNFIND UF) (RETURN L))
*(NTH UF)

xp

<+« (SETQ UNFIND UF) (RETURN L))

9.32



If the search is unsuccessful, NTH generates an

error and the edit chain is not changed.

Note that (NTH n) is just a special case of (NTH x), and in fact, no special

check is made for X a number; both commands are executed identically.

(pattern .. @)3¢ e.g., (COND .. RETURN). Finds a cond that
contains a return, at any depth. Equivalent to
(but more efficient than) (F pattern N), (LCL . @)
followed by (+ pattern).

For example, if the current expression is

(PROG NIL [COND ((NULL L) (COND (FLG (RETURN L] --), then (COND .. RETURN) will
make (COND (FLG (RETURN L))) be the current expression. Note that it is the
innermost COND that is found, because this is the first COND encountered when
ascending from the RET_URN. In other words, (pattern .. @) is not always
equivalent to (F pattern N), follpwed by (LCL . @) followed by \.

Note that @ 1is a location specification, not just. a pattern. Thus
(RETURN .. COND 2 3) can be used to find the RETURN which contains a COND
whose first clause contains (at least) three elements. Note also that since @
permits any edit command, the user can write commands of the form

(COND (RETURN .. COND)), which will locate the first COND that contains a
RETURN that contains a COND. |

A S G A e > D S TS Ry R G U5 Sh W D W €S D T D D OV TR D D R W R LI PR R R R Y Y 4 X ¥ 1

30 An infix command, '..' is not a meta-symbol, it is the name of the command.
@ is cddr of the command.

- 9.33



9.3.3 Commands That Save and Restore The Edit Chain

Several facilities are available for saving the current edit chain and later
retrieving it: MARK, which marks the current chain for future reference, ~,31
which returns to the last mark without destroying it, and «~, which returns to

the last mark and also erases it.

MARK adds the current edit chain to the front of the
1list marklst.

- makes the new edit chain be (CAR MARKLST).
Generates an error if marklst is NIL, i.e., no
MARKs have been performed, or all have been

erased.

-~ similar to < but also erases the MARK, 1i.e.,

performs (SETQ MARKLST (CDR MARKLST)).

Note that if the user has two chains marked, and wishes to return to the first
chain, he must perform <+, which removes the second mark, and then «. However,
the second mark is then no longer accessible. If the user wants to be able to

return to either of two (or more) chains, he can use the following generalized

MARK :
(MARK atom) sets atom to the current edit chain,
(\ atom) makes the current edit chain become the value of

atom.

- - - > . e G = P e e P G S s D OP D M D D D N D D P B R M D N D e WD R T G Y P R P e P AP e S A AR R P R D R D TP SE M G A D WD e

31 An atomic command; do not confuse - with the list command (« pattern).

9.34



If the user did not prepare in advance for returning to a‘particular edit
chain, he may still be able to return to that chain with a single command by

using \ or \P.

\ makes the edit chain be the value of unfind.

Generates an error if unfind=NIL.

unfind is set to the current edit chain by each command that makes a "big
Jump", i.e., a command that usually performs more than a single ascent or
descent, namely ¢, «, «~, INX, all commands that involve a search, e.g., F, LC,

.., BELOW, et al and \ and \P themselves.32

For example, if the user types F COND, and then F CAR, \ would take him back to
the COND. Another \ would take him back to the CAR, etc.

\P restores the edit chain to its state as of the
last print operation, i.e. P, 7, or PP. If the
edit chain has not changéd since the last
printing, \P restores itbto its state as of the
printing before that one, ‘i.e., two chains are

always saved.

For example, if the user types P followed by 3 2 1 P, \P will return to the
first P, i.e., would be equivalent to 0 0 0.33 Another \P would then take him
back to the second P, i.e., the user could use \P to flip back and forth

between the two edit chains.

-------------------------------------- LI PR TR YL R T YR LY R Y R L X X X g

32 Except that unfind is not reset when the current edit chain is the top
level expression, since this could always be returned to via the t command.

33 Note that if the usér had typed P followed by F COND, he could use either \

or \P to return to the P, i.e., the action of \ and \P are independent.

9.35



(S var . @) Sets var (using setq) to the current expression
after performing (LC . ©). Edit chain is not

changed.

Thus (S FOO) will set foo to the current expression, (S FOO -1 1) will set foo

to the first element in the last element of the current expression.

This ends the section on "Attention Changing Commands."

9.4 Commands That Modify Structure

The basic structure modification commands in the editor are:

(n) n > 1 deletes the corresponding element from the

current expression.

n,m > 1 replaces the nth element in the current

expression with @y -« Op.

n,m > 1 inserts ey ... o before the nth element

in the current expression.

(Ney ... o) m > 1 attaches e, ... e, at the end of the current

expression.

As mentioned earlier:
all structure modification done by the editor is destructive, i.e. the editor

uses rplaca and rplacd to physically change the structure it was given.

However, all structure modification is undoable, see UNDO page 9.78.

9.36



All of the above commands generate errors if the current expression is not a
list, or in the case of the first three commands, if the list contains fewer
than n elements. In addition, the command (1), i.e. delete the first element,
will cause an error if there is only one element, since deleting the first
element must be done by replacing it with the second element, and then deleting
the second element. Or, to look at it another way, deleting the first element
when there is only one element would require changing a list to an atom (i.e.

to NIL) which cannot be done.34

9.4.1 Implementation of Structure Modification Commands

Note: Since all commands that insert, replace, delete or attach structure use
the same low level editor functions, the remarks made here are valid for
all structure changing commands.

For all replacement, insertion, and attaching at the end of a list, unless the

36

command was typed in directly to ﬁhe editor, copies of the corresponding

structure are used, because of the possibility that the exact same command,
(i.e. same list structure) might be used again. Thus if a program constructs

the command (1 (A B C)) e.g. via (LIST 1 FOO), and gives this command to the

editor, the (A B C) used for the replacement will not be eq to 199.36

However, the command DELETE will work even if there is only one element in
the current expression, since it will ascend to a point where it can do the
deletion.

36 Some editor commands take as arguments a list of edit commands, e.g.

(LP F FOO (1 (CAR FOO0))). In this case, the command (1 (CAR F00)) is not
considered to have been "typed in" even though the LP command itself may
have been typed in. Similarly, commands originating from macros, or
commands given to the editor as arguments to editf, editv, et al, e.g.
EDITF(FOO F COND (N --)) are not considered typed in.

36 The 'user can circumvent this by using the I command, which computes the

structure to be used. In the above example, the form of the command would
be (I 1 FOO), which would replace the first element with the value of foo
itself. See page 9.62.

9.37



The rest of this section 1is included for applications wherein the editor is
used to modify a data structure, and pointers into that data structure are
stored elsewhere. In these cases, the actual mechanics of structure
modification must be known in order to predict the effect that various commands
may have on these outside pointers. For example, if the value of foo is cdr of
the current expression, what will the commands (2), {(3), (2 XY Z), (-2 XY 2Z),

etc. do to foo?

Deletion of the first element in the current expression is performed by
replacing it with the second element and deleting the second element by
patching around it. Deletion of any other element is done by patching around
it, i.e., the previous tail is altered. Thus if foo .is eq to the current
expression which is (A 8 C D), and fie is cdr of foo, after executing the
command (1), foo will be (B C D) (which is equal but not eq to fie). However,
under the same initial conditions, after executing (2) fie will be unchanged,
i.e., fie will still be (B C D) even though the current expression and foo are

now (A C 0).37

Both replacement and insertion are accomplished by smashing both car and cdr of
the corresponding tail. Thus, if foo were eq to the current expression,
(ABCD), after (1 XY Z), foo would be (X Y Z B C D). Similarly, if foo were
eq to the current expression, (A B C D), then after (-1 X Y Z), foo would be
(X YZABCD).

The N command 1is accomplished by smashing the last cdr of the current

S G R G En e e S SR e G N e Ge R W SR R R R R G S U T TR W S Ch TR TR W R D R e TR Y G0 M T U e R D e T G R W We P ST P TR G S TN e G G N A e R W W e W

37 A general solution of the problem just isn't possible, as it would require
being able to make two 1lists eq to each other that were originally
different. Thus if fie is cc- of the current expression, and fum is cddr
of the current expression, performing (2) would have to make fie be eq q to
fum if all subsequent operations were to update both fie and fum correctly.
Think about it.

9.38



expression a la nconc. Thus if foo were eq to any tail of the current
expression, after executing an N command, the corresponding expressions would

also appear at the end of foo.

In summary, the only situation in which an edit operation will not change an
external pointer occurs when the external pointer is to a proper tail of the
data structure, i.e., to cdr of some node in the structure, and the operation
is deletion. If all external pointers are to elements of the structure, i.e.,
to car of some node, or if only insertions, replacemgnts. or attachments are
performed, the edit operation will always have the same effect on an external

pointer as it does on the current expression.

9.4.2 The A, B, and : Commands

In the (n), (n ey ... °m)’ and (-n ey oo em) commands, the sign of the
integer is used to indicate the operation. As a result, there is no direct way
to express insertion after a particular element, (hence the necessity for a
separate N command). Similarly, the wuser cannot specify deletion or
replacement of the nth element from the end of a list without first converting
n to the corresponding positive integer. Accordingly, we have:

(B €y ... @

inserts e, ... o before the current expression.

m) m

Equivalent to UP followed by (-1 8 - °m)'

For example, to insert FOO before the last element in the current expression,
perform -1 and then (B F00).

(Aey ... ep) inserts e, ... e, after the current expression.

m
Equivalent to UP followed by (-2 @ oo em) or

(N ey -.» °m) whichever is appropriate.

9.39



(: ey ... om) replaces the current expression by ey ... €.

Equivalent to UP followed by (1 8y ... °m)'
DELETE, :, or (:) deletes the current expression.

DELETE first tries to delete the current expression by performing an UP and
then a (1). This works in most cases. However, if after performiﬁg upP, the
new current expression contains only one element, the commaﬁd (l)‘willynot
work. Therefore, DELETE starts over and performs a BK, followed by UP,
followed by (2). For oxample, if the current expression is
(COND ((MEMB X Y)) (T Y)), and the user performs -1,> and then DELETE, the
BK-UP-(2) method is wused, and the new current expression will be ...

((MEMB X Y)))

However, 1if the next higher expression contains only one element, BK will not
work. So in this case, DELETE performs UP, followed by (: NIL), i.e., it
replaces the higher expression by NIL. For example, if the current expression
is (COND ((MEMB X Y)) (T Y)) and the user performs F MEMB and then DELETE, the
new current expression will be ... NIL (T Y)) and the original expression would
now be (COND NIL (7 Y)). The rationale behind this is that deleting (MEMB X Y)
from ((MEMB X Y)) changes a list of one element to a list of no elements, i.e.,

() or NfL.

If the current expression is a tail, then B, A, :, and DELETE all work exactly.
the same as though the current oxpression were the first element in that tail.
Thus 1if the current expression were ... (PRINT Y) (PRINT Z)), (B (PRINT X))
would insert (PRINT X) before (PRINT Y), leaving the current expression
..« (PRINT X) (PRINT Y) (PRINT 2)).

9.40



The following forms of the A, B, and : commands incorporate a location

specification:

(INSERT e, ... e BEFORE . @)% similar to (Lc .8)%? followed by (B

e ... em).

®p

(PROG (& & X) *XCOMMENT=® (SELECTQ ATH & NIL) (OR & &) (PRIN1 & T)
(PRIN1 & T) (SETQ X &

*( INSERT LABEL BEFORE PRIN1)

=p .

(PROG (& & X) *®COMMENT** (SELECTQ ATM & NIL) (OR & &) LABEL
(PRIN1 & T) ( 0

»

Current edit chain is not changed, but unfind is
set to the edit chain after the B was performed,
i.e. \ will make the edit chain be that chain

where the insertion was performed.

( INSERT @y «.. 8 AFTER . @) Similar to INSERT BEFORE except uses A instead of
8.

( INSERT ey ... ey FOR . ©) similar to INSERT BEFORE except uses : for B.

38 je.0@ is cdr[member[BEFORE command ] ]

39 except that if @ causes an error, the location process does not continue as

described on page 9.29. For example if @=(COND 3) and the next COND does
not have a 3rd element, the search stops and the INSERT fails. Note that
the user can always write (LC COND 3) if he intends the search to continue.

40 Sudden termination of output followed by a blank line return indicates

printing was aborted by control-E.

9.41



(REPLACE @ WITH ey ... em)41 Here @42 is the segment of the command between
REPLACE and WITH. Same as
( INSERT 8y .. O FOR . @).

Example: (REPLACE COND -1 WITH (T (RETURN L)))
(CHANGE @ TO ey ... e) Same as REPLACE WITH.

(DELETE . @) does a (LC . @)43 followed by ODELETE. Current
edit chain is not changed.44 but unfind is set to
the edit chain after the DELETE was performed.

Example: (DELETE -1), (DELETE COND 3)

Note: if @ is NIL (t.e. empty), the corresponding operation is performed here
(on the current edit chain).

For example, (REPLACE WITH (CAR X)) 1is equivalent to (: (CAR X)). For added
readability, HERE is also permitted, e.g. (INSERT (PRINT X) BEFORE HERE) will
insert (PRINT X). before the current expression (but not change the edit

chain).

41 BY can be used for WITH.

42 See footnote on page 9.41.

43 See footnote on page 9.41.

4« Unless the current expression is no longer a part of the expression being

edited, e.g. if the current expression is ... C) and the user performs
(DELETE 1), the tail, (C), will have been cut off. Similarly, if the
current expression is (CDR Y) and the user performs (REPLACE WITH (CAR X)).

9.42



Note: @ does not have to specify a location within the current expression, {.e.
it is perfectly legal to ascend to INSERT, REPLACE, or DELETE

For example, (INSERT (RETURN) AFTER t PROG -1) will go to the top, find the
first PROG, and insert a (RETURN) at its end, and not change the current edit

chain.

The A, B, and : commands, commands, (and consequently INSERT, REPLACE, and
CHANGE), all make special checks in ey thru e, for expressions of the form (##
. coms). In this case, the expression used for inserting or replacing is a
copy of the current expression after executing coms, a list of edit cqmmands.46
For example, (INSERT (## F COND -1 -1) AFTER 3)?° will make a copy of the last
form in the last clause of the next cond, and insert it after the third element

of the current expression.

9.4.3 Form Oriented Editing and the Role of UP

The UP that is performed before A, B, and : commands47

makes these operations
form-oriented. For example, if the user types F SETQ, and then DELETE, or
simply (DELETE SETQ), he will delete the entire SETQ expression, whereas
(DELETE X) if X is a variable, deletes just the variable X. In both cases, the
operation is performed on the corresponding form, and in both cases is probably
what the user intended. Similarly, if the user types

(INSERT (RETURN Y) BEFORE SETQ), he means before the SETQ expression, not

LA R R T Y Y RN L L] LA R E R R P R R E R R R P R L P P R X

45 The execution of coms does not change the current edit chain.

46 Not (INSERT F COND -1 (## -1) AFTER 3), which inserts four elements after
the third element, namely F, COND, -i, and a copy of the last element in
the current expression.

47

and therefore in INSERT, CHANGE, REPLACE, and DELETE commands after the
location portion of the operation has been performed.

9.43



before the atom SET0.48 A consequent of this procedure is that a pattern of the
form (SETQ Y --) can be viewed as simply an elaboration and further refinement
of the pattern SETQ. Thus (INSERT (RETURN Y) BEFORE SETQ) and
(INSERT (RETURN Y) BEFORE (SETQ Y --)) perform the same operation?’ and, in
fact, this is one of the motivations behind making the current expression after

F SETQ, and F (SETQ Y --) be ths same.

Occasionally, however, a user may have a data structure in which no special
significance or meaning is attached to the posltion of an atom in a list, as
INTERLISP attaches to atoms that appear as car of a list, versus those
appearing elsewhere in a list. In general, the user may not even iknow whether
a particular atom is at the head of a list or not. Thus, when he writes
( INSERT expression BEFORE FO0), he means before the atom FOO, whether or not it
is car of a list. By setting the variable upfindfig to NIL.60 the user can
suppress the implicit UP that follows searches for atoms, and thus achieve the
desired effect. With upfindflg=NIL, following F F0O, for example, the curfent
expression will be the atom F0O. In this case, the A, B, and : operations will
operate with respect to the atom FO0. If the user intends the operation to

refer to the list which FOO heads, he simply uses instead the pattern (FOO --).

- G o - - " - E. = = e S e S e e %S Em e EE e SR R e G5 A SR R D S G D .U ER K USRS A GV SN G MR HP G O R R AP AR 4P e o P R G P D N G e e A e W @ a

48 There is some ambiguity in (INSERT expr AFTER functionname), as the user
might mean make expr be the function's first argument. Similarly, the user
cannot write (REPLACE SETQ WITH SETQQ) meaning change the name of the
function. The wuser must in these cases write (INSERT expr AFTER
functioname 1), and (REPLACE SETQ 1 WITH SETQQ).

49 assuming the next SETQ is of the form (SETQ Y --).

60 Initially, and usually, set to T.

9.44



9.4.4 Extract and Embed

Extraction involves replacing the current expression with one of its

subexpressions (from any depth).

(XTR . @) replaces the original current expression with the
expression that 1is current after performing

(LcL . 9).%1

For example, 1if the current expression 1s (COND ((NULL X) (PRINT Y))),
(XTR PRINT), or (XTR 2 2) will replace the cond by the print.

If the current expression after (LCL . @) is a
tatl of a higher expression, its first element is

used.
For example, if the current expression is (COND ((NULL X) Y) (T Z)), then
(XTR Y) will replace the cond with Y, even though the current expression after
performing (LCL Y) is ... Y).

If the extracted expression is a list, then after

XTR has finished, the current expression will be

that 1list.

Thus, in the first example, the current expression after the XTR would be

(PRINT Y).

See footnote on page 9.41.

9.45



If the extracted expression is not a 1list, the new
current expression will be a tail whose first

element is that non-list.

Thus, in the second example, the current expression after the XTR would be

... Y followed by whatever followed the COND.

If the current expression initially is a tail, extraction works exactly the
same as though the current expression were the first element in that tail.
Thus 1if the current expression is ... (COND ((NULL X) (PRINT Y))) (RETURN 2)),
then (XTR PRINT) will replace the cond by the print, leaving (PRINT Y) as the

current expression.
The extract command can also incorporate a location specification:

(EXTRACT @, FROM . @,)52 Performs (LC . @,)% and then (XTR . @,). Current
edit chain is not changed, but unfind is set to

the edit chain after the XTR was performed.

Example: If the current expression is (PRINT (COND ((NULL X) Y) (T Z))) then
following (EXTRACT Y FROM COND), the current expression will be (PRINT Y).
"(EXTRACT 2 -1 FROM COND), (EXTRACT Y FROM 2), (EXTRACT 2 -1 FROM 2) will all

produce the same result.

62 @l is the segment between EXTRACT and FROM.

63 See footnote on page 9.41.

9.46



While extracting replaces the current expression by a subexpression, embedding
replaces the current expression with one containing it as a subexpression.

(MBD 8y ... @ MBD substitutess4 the current expression for all

o’
instances of the atom * in ey «-. €, and replaces
the current expression with the result of ihat

substitution.

Examples: If the current expression is (PRINT Y),
(MBD (COND ((NULL X) %) ((NULL (CAR Y)) = (GO LP)))) would replace (PRINT Y)
with (COND ((NULL X) (PRINT Y)) ((NULL (CAR Y)) (PRINT Y) (6O LP))).

If the current expression is (RETURN X), (MBD (PRINT Y) (AND FLG *)) would
replace it with the two expressions (PRINT Y) and (AND FLG (RETURN X)) i.e., if
the (RETURN X) appeared in the cond clause (T (RETURN X)), after the MBD, the
clause would be (T (PRINT Y) (AND FLG (RETURN X))).

If ® does not appear in ey ... @, the MBD is

interpreted as (MBD (e1 ces @ x)).
Examples: If the current expression 1s (PRINT Y), then (MBD SETQ X) will
replace it with (SETQ X (PRINT Y)). If the current expression is (PRINT Y),

(MBD RETURN) will replace it with (RETURN (PRINT Y)).

MBD leaves the edit chain so that the larger expression is the new current

expreaession.

------------------- R e L L L T T T Y PR R Y L T L X X LN

as with subst, a fresh copy is used for each substitution.

9.47



If the current expression initially is a tail, embedding works exactly the same
as though the current expression were the first element in that tail. Thus if
the current expression were ... (PRINT Y) (PRINT Z)), (MBD SETQ X) would

4

replace (PRINT Y) with (SETQ X {PRINT Y)).

The embed command can also incorporate a location specification:

(EMBED @ IN . x)5% does (LC . €)% and then (MBD . x). Edit chain is
not changed, but unfind is set to the edit chain

after the MBD was performed.

Example: (EMBED PRINT IN SETQ X), (EMBED 3 2 IN RETURN),
(EMBED COND 3 1 IN (OR * (NULL X))).

WITH can be used for IN, and SURROUND can be used for EMBED, e.g., (SURROUND
NUMBERP WITH (AND * (MINUSP X))).

9.4.5 The MOVE Command

The MOVE command allows the user to specify (1) the expression to be moved, (2)
the place it is to be moved to, and (3) the operation to be performed there,

e.g., insert it before, insert it after, replace, etc.

(MOVE @, 7O com . @2)67 where com is BEFORE, AFTER, or the name of a list

1

56 @ is the segment between EMBED and IN.
66 See footnote on page 9.41.

57 01 is the segment between MOVE and TO.

9.48



For example,

command, e.g., :, N, etc. performs (LC . 91).58
and obtains the current expression there (or its
first element, if it is a tail), which we will
call expr; MOVE then goes back to the original
edit chain, performs (LC . @Z) followed by
(com expr).59 then goes back to 01 and deletes
expr. Edit chain is not changed. Unfind is set

to edit chain after (com expr) was performed.

if the current expression is (A B C D), (MOVE 2 TO AFTER 4) will

make the new current expression be (A C D B). Note that 4 was executed as of

the original edit chain, and that the second element had not yet been

removed.

60

As the following examples taken from actual editing will show, the MOVE command

is an extremely versatile and powerful feature of the editor.

7

(PROG ((L L)) (EDLOC (CDDR C)) (RETURN (CAR L)))

*(MOVE 3 TO : CAR)

"7

iPROG ((L L)) (RETURN (EDLOC (CDDR C))))

xp

=p

(SELECTQ OBJPR & &) (RETURN &) LP2 (COND & &))

*(MOVE 2 TO N 1)

«+. (SELECTQ OBJPR & & &) LP2 (COND & &))

3

-------------------------------------------------------------- X R Y L g

see footnote on page 9.41.

68

59

60

Setting an internal flag so expr is not copied.

If @
is pfi

specifies a location inside of the expression to be moved, a message
nted and an error is generated, e.g. (MOVE 2 TO AFTER X), where X is

contained inside of the second element.

9.49



*p

(OR (EQ X LASTAIL) (NOT &) (AND & & &))
*(MOVE 4 TO AFTER (BELOW COND))

*xp

(OR (EQ X LASTAIL) (NOT &))

x\ p

. (& &) (AND & & &) (T & &))
®

*p ‘

((NULL X) **COMMENT** (COND & &))

*(-3 (GO NXT] :

*(MOVE 4 TO N (= PROG))

*p

((NULL X) ®**COMMENT** (GO NXT))

*\p

(PROG (&) **COMMENT** (COND & & &) (COND & & &) (COND & &))
*(INSERT NXT BEFORE -1)

*p

(PROG (&) **COMMENT®* (COND & & &) (COND & & &) NXT (COND & &))

Note that in the last example, the user could have added the prog label NXT and
moved the cond in one operation by performing (MOVE 4 TO N (~ PROG) (N NXT)).
Similarly, in the next example, in the course of spacifying @z, the location‘
where the expression was to be moved to, the user also performs a sfructure
modification, via (N (T)), thus creating the structure that will receive the

exprassion being moved.

*p

((COR &) **COMMENT** (SETQ CL &) (EDITSMASH CL & &))
*MOVE 4 TO N 0 (N (T)) -1]

xp

({CDR &) X*COMMENT** (SETQ CL &))

x\ P

*(T (EDITSMASH CL & &))

n

If @2 is NIL, or (HERE), the current position specifies where the operation is
to take place. In this case, unfind is set to where the expression that was

moved was originally located, i.e. 91. For example:

xp
( TENEX)

*(MOVE t F APPLY TO N HERE)
*xp

(TENEX (APPLY & &))

]

9.50



xp
(PROG (& & & ATM IND VAL) (OR & &)  A*COMMENT**  (OR & &) (PRIN1 & T) (
PRIN1 & T) (SETQ IND .

*(MOVE * TO BEFORE HERE)
xp
(PROG (& & & ATM IND VAL) (oa & &) (OR & &) (PRIN1 &

xp
(T (PRIN1 C-EXP T))

X(MOVE t BF PRIN1 TO N HERE)

xp

(T (PRIN1 C-EXP T) (PRIN1 & T))
. .

Finally, if @1 is NIL, the MOVE éommand allows the user to specify where the
current expression is to be moved to. In this case, the edit chain is changed,
and is the chain where the current expression was moved to; unfind is set to

where it was.

xp
(SELECTQ OBJPR (&) (PROGN & &))

*(MOVE TO BEFORE LOOP)

*p

... (SELECTQ OBJPR & &) LOOP (FRPLACA DFPRP &) (FRPLACD DFPRP
&) (SELECTQ

9.4.6 Commands That "Move Parentheses"

The commands presented in this section permit modification of the 1list
structure itself, as opposed to modifying components thereof. Their effect can
be described as inserting or removind a single left or right parenthesis, or
pair of left and right parenthese#. Of course, there will always be the same
number of left parentheses as right parentheses in any list structure, since
the parentheses are just a notational guide to the structure provided by print.
Thus, nb command can insert or remove just one parenthesis, but this 1is

suggestive of what actually happens.

61 Sudden termination of output followod by & blank line indicates printing
was aborted by control-E.

9.51



In all six commands, n and m are used to specify an element of a list, usually
of the current expression. In practice, n and m are usually positive or
negative integers with the obvious interpretation. However, all six commands
use the generalized NTH command, page 9.32, to find their element(s), so that
nth element means the first element of the tail found by performing (NTH n);
In other words, if the current 0xpressioﬁ is

(LIST (CAR X) (SETQ Y (CONS W Z))), then (BI 2 CONS), (BI X -1), and (BI X Z)

all specify the exact same operation.

All six commands generate an error if the element is not found, i.e. the NTH

fails. All are undoable.

(BI n m) both in, inserts a left parentheses before the nth
element and after the mth element in the current
e#mression. Generates an error if the mth element
is not contained in the nth tail, i.e., the mth

element must be "to the right" of the nth element.

Example: If the current expression is (A B (C D E) F 6), then (BI 2 4) will
modify it to be (A (B (C D E) F) G).

(BI n) same as (BI n n).

Example: If the current expression is (A8 (CDE) F &), then (BI -2) will
modify it to be (A B (C D E) (F) 6).

(BO n) both out. Removes both parentheses from the nth
element. Generates an error if nth element is not

a list.

Example: If the current expression is (A B (C D E) F G), then (8O D) will
modify it to be (AB CDE F G).

9.52



(LI n) o left in, inserts a left parenthesis before the nth
element (and a matching right parenthesis at the
end of the current expression), i.e. equivalent

to (BI n ~1).

Example: if the current expression is (A B (CDE) F 6), then (LI 2) will
modify it to be (A (B (C D E) F G)).

(LO n) left out, removes a left parenthesis from the nth
element. All elements following the nth element
are deleted. Generates an error if nth element is

not a list.

Example: If the current expression is (A B (CDE) F 6), then (LO 3) will
modify it to be (AB C D E).

(RI n m) right in, inserts a right parenthesis after the
mth element of the nth element. The rest of the
nth element is brought up to the level of the

current expression.

Example: If the current expression is (A (B CDE) F 6), (RI 2 2) will modify
it to be (A (B C) D E F G). Another way of thinking about RI is to read it as
"move the right parenthesis at the end of the nth element in to after its mth

element.”

(RC n) right out, removes the right parenthesis from the
nth element, moving it to the end of the current
expression. All elements following the nth
element are moved inside of the nth element.

Generates an error if nth element is not a list.

9.53



Example: If the current expression is (A B (C D E) F G), (RO 3) will modify it
to be (A B (C D E F G)). Another way of thinking about RO is to read it as
*move the right parenthesis at the end of the nth element out to the end of

the current expression.”

9.4.7 TO and THRU

EXTRACT, EMBED, DELETE, REPLACE, and MOVE can be made to operate on several

contiguous elements, 1.e., a sagment of a list, by using in their respective

location specifications the TO or THRU command.

(@l THRU @2) doaes a (LC . @1). followed by an UP, and then a
(Br i 02). thereby grouping the segment into a
single element, and finally does a 1, making the

final current expression be that element.

For example, if the current expression is (A (B (C D) (E) (F 6 H) I) J K),
following (C THRU G), the current expression will be ((C D) (E) (F 6 H)).

(@1 70 @Z) Same as THRU except last element not included.
i.e., after the BI, an (RI 1 -2) 1is performed.

If both @1 and @2 are numbers, and @2 is greater than @1. then @2 counts from
the beginning of the current expression, the same as 91. In other words, if
thé current expression is (AB CDEF G), (3 THRU 5) means (C THRU E) not
(C THRU G). In this case, the corresponding BI command is (BI 1 @2-01+1).

THRU and 710 are not very useful commands by themselves; they are intended to be

used in conjunction with EXTRACT, EMBED, DELETE, REPLACE, and MOVE. After THRU

and TO have operated, they set an internal editor flag informing the above

9.54



commands that the element they are operating on is actually a segment, and that
the extra pair of parentheses should be removed when the ‘'operation is complete.
1

Thus:

xp _
(PROG (& & ATM IND VAL WORD) (PRIN1 & T) (PRIN1 & T) (SETQ IND &) (SETQ VAL &)
**COMMENT®** (SETQQ

*(MOVE (3 THRU 4) TO BEFORE 7)

(PROG (& & ATM IND VAL WORD) (SETQ IND &) (SETQ VAL &) (PRIN1 & T) (PRIN1 & T)
RXCOMMENT®*

]

*p .

(* FAIL RETURN FROM EDITOR. USER SHOULD NOTE THE VALUES OF SOURCEXPR AND
CURRENTFORM. CURRENTFORM IS THE LAST FORM IN SOURCEXPR WHICH WILL HAVE BEEN
TRANSLATED, AND IT CAUSED THE ERROR.)

*(DELETE (USER THRU CURRS))

=CURRENTFORM.

P

(* FAIL RETURN FROM EDITOR CURRENTFORM IS

xp

... LP (SELECTO & & & & NIL) (SETQ Y &) OUT (SETQ FLG &) (RETURN Y))
*(MOVE (1 TO OUT) TO N HERE]

=p

... OUT (SETQ FLG &) (RETURN Y) LP (SELECTQ & & & & NIL) (SETQ Y &))

%pp
[PROG (RF TEMP1 TEMP2).
(COND
((NOT (MEMB REMARG LISTING))
(SETQ TEMP1 (ASSOC REMARG NAMEDREMARKS)) *XCOMMENT2%
(SETQ TEMP2 (CADR TEMP1))
(GO SKIP))
(T ®XCOMMENT*x
(SETQ TEMP1 REMARG)))
(NCONC1 LISTING REMARG)
(COND
((NOT (SETQ TEMP2 (SASSOC

* (EXTRACT (SETQ THRU CADR) FROM COND)
xp

(PROG (RF TEMP1 TEMP2) (SETQ TEMP1 &) ®**COMMENT#* (SETQ TEMP2 &)
(NCONC1 LISTING REMARG) (COND & &

9.55



TO and THRU can also be used directly with )(TR."‘2 Thus in the previous example,
if the current expression had besen the COND, e.g. the user had first performed

F COND, he could have used (XTR (SETQ THRU CADR)) to perform the extraction}

(Gl T0), (@1 THRU) both same as (91 THRU -1), i.e., from 91 through
the end of the list.

Examples:

xp
(VALUE (RPLACA DEPRP &) (RPLACD &) (RPLACA VARSWORD &) (RETURN))
*(MOVE (2 TO) TO N (~ PROG))

*(N (GO VAR))

(VALUE (GO VAR))

xp
(T *XCOMMENT** (COND &) **COMMENTA% (EDITSMASH CL & &) (COND &))
*(-3 (GO REPLACE))

*(MOVE (COND TO) TO N t+ PROG (N REPLACE))

*p

(T *XCOMMENT** (GO REPLACE))

x\ p

(PROG (&) **COMMENT** (COND & & &) (COND & & &) DELETE (COND & &)
REPLACE (COND &) ®*COMMENT%* (EDITSMASH CL & &) (COND &))

x

62 Because XTR involves a location specification while A, B, :, and MBD do
not.

9.56



%pp
[LAMBDA (CLAUSALA X)
(PROG (A D)
(SETQ A CLAUSALA)
LP  (COND
((NULL A)
(RETURN)))
(SERCH X A)
(RUMARK (CDR A))
(NOTICECL (CAR A))
(SETQ A (CDR A))
(60 LP]
* (EXTRACT (SERCH THRU NOTS) FROM PROG)
=NOTICECL
o
(LAMBDA (CLAUSALA X) (SERCH X A) (RUMARK &) (NOTICECL &))
*(EMBED (SERCH TO) IN (MAP CLAUSALA (FUNCTION (LAMBDA (A) %]
*pp
" [LAMBDA (CLAUSALA X)
(MAP CLAUSALA (FUNCTION (LAMBDA (A)
(SERCH X A)
(RUMARK (CDR A))
(NOTICECL (CAR A}

9.4.8 The R Command

(R x y) replaces all instances of x by y in the current
expression, e.g., (R CAADR CADAR). Generates an

error if there is not at least one instance.

The R command operates in conjunction with the search mechanism of the editor.
The search proceeds as described on page 9.23-25, and X can employ any of the
patterns bn page 9.21-23. Each time x matches an element of the structure, the
element is replaced by (a copy of) y; each time x matches a tail of the

structure, the tail is replaced by (a copy of) y.

For example, if the current expression is (A (B C) (8 . C)),
(R C D) will change it te (A (B8 D) (B . D)),

(R (... . C)D) to(A(BC)(B.D)),

(RC(DE)) to (A (B (DE)) (BDE)), and

(R (... .NIL)D) to (A(BC .D)(B.C).D).

9.57



If x is an atom or string containing alt-modes, alt-modes appearing in y stand
for the characters matched by the corresponding alt-mode in x. For example,
(R FOOS FIES) means for all atoms or strings that begin with F0O, replace the
characters 'FOO' by 'FIE'.G3 Applied to the list
(FOO FOO2 XF001), (R FOOS FIES) would produce (FIE FIE2 XFOO1), and
(R SFOOS SFIES) would produce (FIE FIE2 XFIE1). Similarly, (R SDS SAS) will
change (LIST (CADR X) (CADDR Y)) to (LIST (CAAR X) (CAADR)).64

The user will be informed of all such alt-mode replacements by a message of the

form x->y, e.g. CADR->CAAR.

Note that the $ feature can be used to delete or add characters, as well as
replace them. For example, (R $1 $) will delete the terminating 1's from. all
literal atoms and strings. Similarly, if an alt-mode in x does not have a mate
in y, the characters matched by the 3 are effectively deleted. For example,
(R /% $) will change AND/OR to AND .68 Yy can also be a 1list containing
alt-modes, e.g. (R $1 (CAR $)) will change FO01 to (CAR FOO), FIE1L to
(CAR FIE).

If x does not contain alt-modes, $ appearing in y refers to the entire

63 1 X matches a string, it will be replaced by a string. Note that it does
not matter whether x or y themselves are strings, i.e.
(R 3DS SAS), (R "SDS" 3AS), (R SD$ "SAS"), and (R "3DS" "3AS") are

equivalent. Note also that x will never match with a number, 1i.e.
(R $1 32) will not change 11 to 12.

64 pNote that CADDR was not changed to CAAAR, i.e. (R $D$ $AS) does not mean
replace every D with A, but replace the first D in every atom or string by
A. If the user wanted to replace every D by A, he could perform
(LP (R SDS 3AS)).

66 However, there is no similar operation for changing AND/OR to OR, since the

first $ in y always corresponds to the first $ in x, the second $ in y to
the second in x, etc.

9.58



expression matched by x, e.g. (R LONGATOM 'S$) changes LONGATOM to °'LONGATOM,
(R (SETQ X &) (PRINT $)) changes every (SETQ X &) to (PRINT (SETQ X &)).96

Since (R $x$ 3y3) is a frequently used operation for replacing characters, the

following command is provided:
(RC x ¥y) equivalent to (R $x$ $y$)

R and RC change all instances of x to y. The commands R1 and RC1 are available

for changing just one, (i.e. the first) instance of x to y.
(R1 x y) find the first instance of x and replace it by y.
(RC1 x y) | (R1 $x$ $y$).

In addition, while R and RC only operate within the current expression, R1i and
RC1 will continue searching, a la the F command, until they find an instance of

X, even if the search carries them beyond the current expression.

(SW n m) switches the nth and mth elements of the current

expression.

For example, if the current expression is

(LIST (CONS (CAR X) (CAR Y)) (CONS (CDR X) (CDR Y))),

(SW 2 3) will modify it to be ’

(LIST (CONS (CDR X) (CDR Y)) (CONS (CAR X) (CAR Y))). The relative order of n
and m is not important, i.e., {(SW 3 2) and (SW 2 3) are equivalent.

66 If x i1s a pattern containing an alt-mode pattern somewhere within it, the
characters matched by the alt-modes are not available, and for the purposes
of replacement, the effect is the same as though x did not contain any alt-
modes. For example, if the user types (R (CAR F$) (PRINT §)), the second $
will refer to the entire expression matched by (CAR FS$).

9.59



SW uses the generalized NTH command to find the

nth and mth elements, a la the BI-BO commands.

Thus in the previous example, (SW CAR CDR) would produce the same result.

9.5 Commands That Print

PP prettyprints the current expression.

p prints the current expression as though printievel

were set to 2.

(P m) prints mth element of current expression as though

printlevel were set to 2.
(P 0) same as P

(P mn) prints mth element of current expression as though

printlevel were set to n.

(P 0 n) prints current expression as though printlevel

were set to n.
? . same as (P 0 100)
Both (P m) and (P mn) use the generalized NTH command to obtain the

corresponding element, so that m does not have to be a number, e.g. (P COND 3)

will work. PP causes all comments to be printed as **COMMENT*®* (see. Section

9.60



14). P and ? print as **COMMENT*x only those comments that are\(top level)

elements of the current expression.67

ppx prettyprints current expression, including

comments.

PP* is equivalent to PP except that it first resets **comment**flg to NIL (see

Section 14). In fact, it is defined as (RESETVAR **COMMENT**FLG NIL PP), see

page 9.77.

PPV prettypfints current expression as a variable,
i.e. no special treatment for LAMBDA, COND, SETQ,
etc.;‘or for CLISP.

PPT ' prettyprints current expression, printing CLISP

transiations, if any.

All printing functions print to the}tplatype. regardless of the primary output
file. No printing function ever changes the edit chain. All record the
current edit chain for use by \P, page 9.35. All can be aborted with

control-E.

67 Lower expressions are not really seen by the editor; the printing command
simply sets printlevel and calls print.

9.61



9.6 Commands That Evaluate

E only when typed in,% causes the editor to call

lispx giving it the next input as argumont.og

Example: *E BREAK(FIE FUM)
(FIE FUM)
*E (FOO) ‘

(FIE BROKEN)

(E x) evaluates x, i.e., performs eval[x], and prints

the result on the teletype.
(ExT) same as (E x) but does not print.

The (E x) and (E x T) commands are mainly intended for use by macros and
subroutine calls to the editor; the user would probably type in a form for

evaluation using the more convenient format of the (atomic) E command.

(I c Xy oo xn) same as (C Yy .- yn) where y1=eva1[x1].

Example: (I 3 (GETD (QUOTE FOO))) will replace the 3rd element of the current
expression with the definition of foo.”? (I N FOO (CAR FIE)) will attach the

638 e.g, (INSERT D BEFORE E) will treat E as a pattern, and search for E.

69 lispx 1is used by evalqt and break for processing teletype inputs. If
nothing else is typed on the same line, lispx evaluates its argument.
Otherwise, lispx applies it to the next input. In both cases, lispx prints
the result. See above example, and Sections 2 and 22. _

70

The I command sets an internal flag to indicate to the structure
modification commands not to copy expression(s) when inserting, replacing,
or attaching.

9.62



value of foo and car of the value of fie to the end of the current“expression.

(I F= FOO T) will search for an oxpression eq to the value of foo.
If ¢ is not an atom, ¢ is evaluated also.

Example: (I (COND ((NULL FLG) (QUOTE -1)) (T-1)) FOO), if flg is NIL, inserts
the value of foo before the first element of the current expression, otherwise

replaces the first element by the value of foo.

#f[coml;comz; “on ;comn] is an NLAMBDA, NOSPREAD function (not a command).
Its value is what the current expression would be
after executing the edit commands comy ... com,

starting from the present edit chain. Generates

an error if any of com, thru com cause errors..

The current edit chain is never changed.71

Example: (I R (QUOTE X) (## (CONS .. Z))) replaces all X's in the current

expression by the first cons containing a Z.

The I command is not very convenient for computing an entire edit command for
execution, since it computes the command name and its arguments separately.
Also, the I command cannot be used to compute an atomic command. The following

two commands provide more general ways of computing commands.

(COMS Xg oo xn) Each x4 is evaluated and its value is executed as

a command.

Recall that A, B, :, INSERT, REPLACE, and CHANGE make special checks for #f
forms in the expressions used for inserting or replacing, and use a copy of
## form instead (see page 9.43). Thus, (INSERT (## 3 2) AFTER 1) is
equivalent to (I INSERT (COPY (## 3 2)) (QUOTE AFTER) 1).

9.63



For example, (COMS (COND (X (LIST 1 X)))) will replace the first element of the

current expression with the value of x if non-NIL, otherwise do ndthing.;’z

(COMSQ com, ... com,) exscutes com, ... com.

COMSQ is mainly useful in conjunction with the COMS cbﬁunand. if'or ;e‘xainpl.e,
suppose the user wishes to compute an entire list of commands for evaluatioh,
as opposed to computing each command one at a time as does the COMS comdhd.
He would then write (COMS (CONS (QUOTE COMSQ) x)) where x computed the list of
commands, e.g., (COMS (CONS (QUOTE COMSQ) (GETP FOO (QUOTE COMMANDS))))[ 

9.7 Commands That Test

(IF x) generates an error unless the value of eval[x] is
true, 1.e., 1if weval[x] causes an error or

eval[x)=NIL, IF will cause an error.

For some editor commands, the occurrence of an error has a well defined
meaning, i.e., they use errors to branch on, as cond uses NIL and non‘-NIL.‘ For
example, an error condition in a location specification may simply mean "not
this one, try the next." Thus the location specification' |

(IPLUS (E (OR (NUMBERP (## 3)) (ERROR!)) T)) specifies the first IPLUS whose
second argument is a number. The IF command, by equating NIL to effof,‘
provides a more natural way of accomplishing the same result. Thus, an

equivalent location specification is (IPLUS (IF (NUMBERP (#¢ 3)))).

72, because NIL as a command is a NOP, see page 9.70.

9.64



The IF command can also be used to select between two alternate 1lists of

commands for execution.

(IF x coms comsz) N If eval[{x] is true, execute coms, ; if eval[x]
causes an error or is equal to NIL, execute

73
coms, .

For example, the command (IF (READP T) NIL (P)) will print .the current

expression provided the input buffer is empty.
IF can also be written as:

(IF x coms,) if eval[x] is true, execute coms,; otherwise

generate an error.

(LP . coms) repeatedly executes coms, & list of commands,

until an error occurs.

For example, (LP F PRINT (N T)) will attach a T at the end of every print

expression. (LP F PRINT (IF (## 3) NIL ((N T)))) will attach a T at the end of

each print expression which does not already have a second argument.7!

When an error occurs, LP prints n OCCURRENCES.

73 Thus IF is equivalent to (COMS (CONS (QUOTE COMSQ) (COND
((CAR (NLSETQ (EVAL X))) COMS1)
(T COMS2)))). -

74 i.e. the form (## 3) will cause an error if the edit command 3 causes an

error, thereby selecting ((N T)) as the list of .commands to be executed.
The IF could also be written as (IF (CODR (##)) NIL ((N T))).

9.65



kLPQ . coms)

where n  is the number of times coms was
successfully executed. The edit chain is left as

of the last complete successful execution of coms.

same as LP but does not print the message

n OCCURRENCES.

In order to prevent non-terminating loops, both LP and LPQ terminate when the

number of iterations reaches maxloop, initially set to 30.7% Since the edit

chain is left as of the last successful completion of the loop, the user can

simply continue the LP command with REDO (Section 22).

(SHOW . x)

(EXAM . x)

{ORR coms

.o comsn)

X is a list of patterns. SHOW does a LPQ printing
all instances of the indicated expression(s),
e.g. (SHOW FOO (SETQ FIE &)) will print all FOO's
and all (SETQ FIE &)'s. Generates an error if

there aren't any instances of the expression(s).

like SHOW except calls the editor recursively
(via the TTY: command described on page 9.70) on
each instance of the indicated espression(s) so

that the user can examine and/or change them.

ORR begins by executing coms,, a list of commands.
If no error occurs, ORR is finished. Otherwise,
ORR restores the edit chain to its original value,
and continues by executing coms,, etc. If noné of

the command lists execute without errors, 1i.e.,

75

maxloop can also be set to NIL, which is equivalent to infinity.

9.66



the ORR *“drops off the end”, ORR generates an
error. Otherwise, the edit chain is left as of
the completion of the first command 1list which

executes without an cat'ror.?6

For example, (ORR (NX) (!NX) NIL) will perform a NX, if possible, otherwise a
INX, if possible, otherwise do nothing. Similarly, DELETE could be written as
(ORR (UP (1)) (BK UP (2)) (UP (: NIL))).

9.8 Macros

Many of the more sophisticated branching commands in the editor, such as ORR,
‘ IF, etc., are most often used in conjunction with edit macros. The macro
feature permits the user to define new commands and thereby expand the editor's

repertoire.77 Macros are defined by using the M command..
(M c . coms) ‘For ¢ an atom, M defines ¢ as an atomic command.78
Executing ¢ is then the same as executing the list

of commands coms.

For example, (M BP BK UP P) will define BP as an atomic command which does

three things, a BK, and UP, and a P. Macros can use commands defined by macros

76 NIL as a command 1list 1is perfectly legal, and will always execute
succassfully. Thus, making the last ‘argument' to ORR be NIL will insure
that the ORR never causes an error. Any other atom is treated as (atom),
i.e., the above example could be written as (OR NX INX NIL).

77 However built in commands always take precedence over macros, 1.e., the
editor's repertoire can be expanded, but not redefined.

78

If a macro is redefined, its new definition replaces its old.

9.67



as well as built in commands in their definitions. For example, suppose Z is
defined by (M Z -1 (IF (READP T) NIL (P))), i.e. Z does a -1, and then if
nothing has been typed, a P. Now we can define iz by
(M 22 -1 Z), and 2ZZ by (M 2ZZ -1 -1 1) or (M 227 -1 17). |

Macros can also define list commands, i.e., commands that take arguments.

(M (c) (arg1 .o argn) . coms) c an atom. M defines c as a list command.
Executing (c ey ... en) is then performed by

substituting ey for arg,, ... © for arg

throughout coms, and then executing coms.

For example, we could define a more general BP by (M (BP) (N) (BK N) UP P).
Thus, (BP 3) would perform (BK 3), folldwed by an UP, followed by a P.

A list command can be defined via a macro so as to take a fixed or indefinite
number of 'arguments', as with spread vs. nospread functions. The form given
above specified a macro with a fixed number of arguments, as indicated by its
argument 1list. If the ‘'argument 1list' is atomic, the command takes an
indefinite number of arguments.7p
(M (c) arg . coms) c, arg both atoms, defines ¢ as a list command.
Executing (cey ... ep) is performed | by
substituting (e1 N en), i.e., cdr of the
command, for arg throughout coms, and then

executing coms.

For example, the command 2ND, page 9.30, can be defined as a macro by

(M (2ND) X (ORR ((LC . X) (LC . X)))).

79 Note parallelism to EXPR's and EXPR®'s,

9.68



Note that for all editor commands, 'built in' commands as well as commands
defined by macros, atomic definitions and 1list definitions are completely
independent. In other words, the existence of an atomic definition for c in no
way affects the treatment of ¢ when it appears as car of a list command, and
the existence of a list definition for ¢ in no way affects the treatment of c
when it appears as an atom. In particular, ¢ can be used as the name of either
an atomic command, or a list command, or both. 1In the latter case, two

entirely different definitions can be used.

Note also that once ¢ is defined as an atomic command via a macro definition,
it will not be searched for when used in a location specification, unless it is
preceded by an F. Thus (INSERT -- BEFORE BP) would not search for BP, but
instead perform a BK, and UP, and a P, and thén do the insertion. The

corresponding also holds true for list commands.

Occasionally, the user will want to employ the S command in a macro to save
some temporary result. For example, the SW command could be defined as:

(M (SW) (N M) (NTH N) (S FOO 1) MARK 0 (NTH M) (S FIE 1) 80
(I 1 FOO) - (I 1 FIE))

Since this version of SW sets foo and fie, using SW may have undesirable side
effects, especially when the editor was called from deep in a computation, we
would have to be careful to make up unique names for dummy variables used in
edit macros, which is bothersome. Furthermore, it would be impossible to
define a command that called itself recursively while setting free variables.

The BIND command solves both problems.

80 A more elegant definition would be:
(M (SW) (N M) (NTH N) MARK 0 (NTH M) (S FIE 1) (I 1 (## «~ 1))
«+ (I 1 FIE)), but this would still use one free variable.

9.69



(BIND . coms) binds three dummy variables #1, #2, #3,
(initialized to NIL), and then executes the edit
commands coms. Note that these bindings are only
in effect while the commands are being executed,
and that BIND can be used recursively; it will
rebind #1, #2, and #3 each time it is invoked.3!

Thus we could now write SW safely as:

(M (SW (N M) (BIND (NTH N) (S f1 l) MARK 0 (NTH M) (S #2 1)
(I1#1) e« (I1+#2)))).

User macros are stored on a list usermacros. The prettydef command USERMACROS

(Section 14), is available for dumping all or selected user macros.

9.9 Miscellaneous Commands

NIL uniess preceded by F or BF, is always a NOP. Thus
extra right parentheses or square brackets at the

ends of commands are ignored.

TTY: calls thp editor recursively. The user can then
type in commands, and have them executed. The
TTY: command is completed when the user exits from

the lower editor. (see OK and STOP below).

The TTY: command is extremely useful. It enables the user to set up a‘complex

operation, and perform interactive attention-changing commands part way through

81 BIND is implemented by (PROG (#1 #2 #3) (EDITCOMS (CDR COM))) where com
corresponds to the BIND command, and editcoms is an internal editor
function which executes a list of commands.

9.70



it. For example the command (MOVE 3 TO AFTER COND 3 P TTY:) allows the user to
interact, in effect, within the MOVE command. Thus he can verify for himself
that the correct location has been found, or complete the specification "by
hand.” In effect, TTY: says "I'll tell you what you should do when you get

there."

The TTY: command operates by printing TTY: and then calling the editor. The
initial edit chain in the lower editor is the one that existed in the higher
editor at the time the TTY: command was entered. Until the user exits from the
lower editor, any attention changing commands he executes only affect the lower
editor's edit chain.82 When the TTY: command finishes, the lower aeditor's edit

chain becomes the edit chain of the higher editor.
OK : exits from the editor

STOP exits from the editor with an error. Mainly for
' use in conjunction with TT7Y: commands that the

user wants to abort.

Since all of the commands in the editor are errorset protected, the user must
exit from the editor via a command.as‘STOP provides a way of distinguishing
between a successful and unsuccessful (from the user's standpoint) editing
session. For example, if the user.is_executing (MOVE 3 TO AFTER COND TTY:).

and he exits from the lower editor with an OK, the MOVE command will then

e WS RGeS W P R T W E W R Y P SN W TR TR P R P SR W W N Y SR TR WD W GRS R D YD TR R WD R G G WS TS WS A S TR W e e P P D R R D R TR R D WD R P W P

82 Of course, if the user performs any structure modifidation commands while
under a TTY: command, these will modify the structure in both editors,
since it is the same structure.

83 Or by typing a control-D. STOP is preferred even if the user is editing at

the evalqt level, as it will perform the necessary 'wrapup' to insure that
the changes made while editing will be undoable (see Section 22).

9.71



complete its operation. If the user wants to abort the MOVE command, he must
make the TTY: command generate an error. He does this by exiting from the
lower editor with a STOP command. In this case, the higher editor's edit chain

will not be changed by the TTY: command.

SAVE exits from the editor and saves the ‘'state of the
edit' on the property list of the function or
variable being edited wunder the property
EDIT-SAVE. If the editor is called agﬁin on the
same structure, the editing is effebtively
"continued,” 1i.e., the edit chain, mark 1list,

value of unfind and undolst are restored.

For example:

*p

(NULL X)

*F COND P

(COND (& &) (T &))
*SAVE

FOO

~EDITF(F00)

EDIT

*p

(COND (& &) (T &))
x\ p

\
(NULL X)
]

SAVE 1is necessary only if the user 1is editing many different expressions; an .
exit from the editor via OK always saves the state of the edit of that call to
the editor.84 Whenever the editor is entered, it checks to see if it is editing

the same expression és the last one edited. In this case, it restores the mark

84 on the property list of the atom EDIT, under the property name LASTVALUE.
OK also remprops EDIT-SAVE from the property list of the function or
variable being edited.

9.72



list, the undolst, and sets unfind to be the edit chain as of the previous exit

from the editor. For example:

«EDITF(FOO)

EDIT

xp

(LAMBDA (X) (PROG & & LP & & & &))

xp
(COND & &)
®0K
FOO
. any number of lispx inputs
. axcept for calls to the editor
«EDITF(FOO0)

EDIT
%xp :
(LAMBDA (X) (PROG & & LP & & & &))

*\ P
(COND & &)
®

Furthermore, as a result of the history feature (section 22), if the editor is
called on the same expression within a certain number of lispx inputs.86 the
state of the edit of that expression is restored, regardless of how many other

expressions may hlvé been edited in the meantime.

------------------- I Y R L R L R R L R A PR A R A R N R L R L L R R LR R R L A N

85 Namely. the size of the history list, 1n1tia11y 30, but it can be increased
by the user.

9.73



For example:

«EDITF(FOO)
EDIT
]

xp

(COND (& &) (& &) (&) (T &))

*0K

FOO :

- . less than 30 lispx inputs, including editing

«EDITF(FOO)

EDIT

®\ P

(COND (& &) (& &) (&) (T &))
x

Thus the user can always continue editing.'including‘hndoing changes from a

previous editing session, if

(1) No other expressions have been edited since that session;ao or
{2) That session was 'sufficiently' recent; or

(3) It was ended with a SAVE command.

RAISE is an edit macro defined as UP followed by
(I 1 (U-CASE (## 1))), 1i.e. it raises to upper-
case the current expression, or 1if a tail, the

first element of the current expression.

LOWER Similar to RAISE, except uses l-case. |

86 Since saving takes place at extt time, intervening calls that were aborted

via control-D or exited via STOP will not affect the editor's memory of
this last session.

9.74



CAP First does a RAISE, and then lowers all but the
first charactor. i.q. the first character is left

capitalized.

Note: RAISE, LOWER, and CAP are all ﬂOPs if the corresponding atom or string 1s
already in that state.

{RAISE x) equivalent to (I R (L-CASE x) x), 1.e. changes
every lower-case X to upper-case in the current

expression.

(LOWER x) _ similar to RAISE, except performs' (I Rx (L~
CASE x)).

Note in both (RAISE x) and (LOWER x), x is typed in in upper case.

REPACK Permits the 'editing' of an atom or string.

For example:

*p

... "THIS IS A LOGN STRING")

REPACK

*EDIT

P

(THISX IS% A% LOGNX STRING)
%(SW G N)

VK 87

"THIS IS A LONG STRING"

bl

REPACK operates by calling the editor recursively on unpack of the current

87  Note that this could also have been accomplished by (R SGNS SNGS) or simply
(RC GN NG).

9.75



expression, or if it is a list, on unpack of its first element. If the lower
editor 1is exited successfully, i.e. via OK as opposed to STOP, ths 1list of
atoms is made into a single atom or string, which replaces the atom or string

being ‘repacked.' The new atom or string is always printed.

(REPACK @) does (LC . @) followed by REPACK, e.g.
(REPACK THISS).

(; . x) x is the text of a comment. ; ascends the edit
chain looking for a ‘'safe' place to insert the
comment, e.g., in a cond clause, after a prog
statement, etc., and inserts (* . x) after that
point, if possible, otherwise before. For
example, if the current expression is
(FACT (SuB1 N)) in

[COND
((ZEROP N) 1)
(T (ITIMES N (FACT (SUB1 N]
(; CALL FACT RECURSIVELY) would insert
(* CALL FACT RECURSIVELY) before the itimes

exmression.88

; does not change the edit chain, but unfind is

set to where the comment was actually inserted.

JOINC is used to join two neighboring COND's together,

e.g. (COND clause1 clausoz) . followed by

T On = > W W G P T W AP R P D WP P W D R D D D e SR WP SR S ST S5 eGP WD W D D T D GRS R D N R N D G % A S G Y S WS R R W N

If inserted after the jitimes, the comment would then be (incorrectly)
returned as the value of the cond. However, if the cond was itself a pro
statement, and hence its value was not being used, the comment could be
(and would be) inserted after the itimes expression.

9.76



(SPLITC x)

CcL

DW .

(RESETVAR var fdrn . coms)

{COND clause3 clause4) becomes
(COND clauso1 clausez clause3 clause4). JOINC
does an (F COND T) first so that you don't have to
be at the first COND.

splits one COND into two. x specifies the last
clause in the first COND, e.g. (SPLITC 3) splits
(COND élause1 clausez clause3 clause4) into
{ COND clauso1 clausez) (COND clause3 clause4).
Uses qeneralizeq NTH command, so that X does not
have to be a number, e.g;.the user can say .
(SPLITC RETURN), meaning split after the clause
containing RETURN. SPLITC also does an (F COND T)
first.

Clispifies current expression. See Section 23.

Dwimifies current expression. Ses Section 17 and

23.
executes coms while var is reset to the value of

form, and then restores var, i.e. effectively

calls the function resetvar (Section §).

9.77



9.10 UNDO

Each command that causes structuré modification automatically adds an entry to

the front of undolst that contains the information required to restore all

pointers that were changed by that command.

UNDO undoes the 1last, 1.e. most recent, structure

modification command that has not yet been

undone.89

and prints the name of that command,
e.g., MBD UNDONE. The edit chain is then exactly
what it was before the ‘undone' command had been.
performed.?? If there are no commands to undo,

UNDO types NOTHING SAVED.

1UNDO undoes all modifications performed during this

90

editing session, i.e. this call to the editor.
As each command is undone, its name is printed a
la UNDO. If there is nothing to be undone, !UNDO
prints NOTHING SAVED. | |

Since UNDO and !UNDO cause structure modification, they also add an entry
to undolst. However, UNDO and 'UNDO entries are skipped by UNDO, e.g., if
the user performs an INSERT, and then an MBD, the first UNDO will undo the
MBD, and the second will undo the INSERT. However, the user can also
specify precisely which commands he wants undone by identifying the
corresponding entry on the history list as described in Section 22. In
this case, he can undo an UNDO command, e.g. by typing UNDO UNDO, or undo a
1UNDO command, or undo a command other than that most recently performed.

Undoing an event containing an I, E, or S command will also undo the side

- effects of the evaluation{s), e.g. undoing (I 3 (/NCONC FOO FIE)) will not

only restore the 3rd element but also restore FOO. Similarly, undoing an S
command will undo the set. See discussion of UNDO in Section 22. (Note
that if the I command was typed directly to the editor, /NCONC would
automatically be substituted for NCONC as described in Section 22.)

9.78



Whenever the user continues an editing session as described on page 9.72-74,
the undo information of ‘tho previous session is protected by inserting a
special blip, called an undo-block, on the front of undolst. This undo-block
will terminate the operation of a !UNDO, thereby confining its effect to the
current session, and will similarly prevent an UNDO command from operating on

commands executed in the previous session.

Thus, if the user enters the editor continuing a session, and immediately
executes an UNDO or !'UNDO, the editor will type BLOCKED instead of
NOTHING SAVED. Similarly, if the user executes several commands and then undoes

them all, another UNDO or !UNDO will also cause BLOCKED to be typed.

UNBLOCK removes an undo-block. If executed at a non-
blocked state, 1i.e. 1if UNDO or !UNDO could
operate, types NOT BLOCKED.

TEST adds an undo-block at the front of undolst.

Note that TEST together with !UNDO provide a 'tentative' mode for oditing, i.e.

the user can perform a number of changes, and then undo all of them with a

single !UNDO command.

9.79



9.11 Editdefault

Whenever a command is not recognized, 1i.e.,-1is not 'built in' or defined as a
macro, the editor calls an internal function, editdefault, 'to determine what
action to take.% If a location specification is béing, executed, an internal
flag informs editdefault to treat the command as though it had been preceded by

an F.

If the command is a list, an attempt is made to perform spelling correction on

492 93 1¢

car of the comman using editcomsl, 'a list of all list édit cbmﬁandé.

spelling correction is successful,® the correct command name is rplacaed into
the command, and the editor continues by executing the command.
In other words, if the user typas (LP F PRINT (MBBD AND (NULL FLG))), only one
spelling correction will be necessary to change MBBD to MBD. If spelling

correction is not successful, an error is generated.

If the command is atomic, the procedure followed is a little more elaborate.

------------------------------------------------------------- - - e ® - - -

91 Since editdefault is part of the edit block, the user cannot advise or
redefine it as a means of augmenting or extending the editor. However, the
user can accomplish this via edituserfn. If the value of the variable
edituserfn is T, editdefault calls the function edituserfn giving it the
command as an argument. If edituserfn returns a non-NIL value, its value
is interpreted as a single command and executed. Otherwise, the error
correction procedure described below is performed.

82 unless dwimflg=NIL. See Section 17 for discussion of spelling correction.

93 When a macro is defined via the M command, the command name is added to

editcomsa or editcomsl, depending on whether it is an atomic or 1list
command. The prettydef command USERMACROS (Section 14), is aware of this,
and provides for restoring editcomsa and editcomsl.

94 Throughout this discussion, if the command was not typed in directly, the

user will be asked to approve the spelling correction. See Section 17.

9.80



1)

2)

96

If the command is one of the list commands, i.e., a member of editcomsl,
and there is additional input on the same teletype line, treat the entire
line as a single 1list command.95 Thus, the user may omit parentheses for
any list command typed in at the top level (provided the command is not
also an atomic command, e.g. NX, BK). For example,

*p

(COND (& &) (T &))

3 2]

*XTR
*MOVE TO AFTER LP
x ,

If the command is on the list editcomsl but no additional input is on the
teletype line, an error is generated, e.g.

xp

(COND (& &) (T &))

*MOVE

MOVE?
®

If the command is on editcomsl, and rot typed in directly, e.g. it appears
as one of the commands in a LP command, the procedure is similar, with the
rest of the command stream at that 1level. being treated as

“the teletype line", e.g.

(LP F (COND (T &)) XTR 2 2).9¢

If the command was typed in and the first character in the command is an 8,

"> s e T e G W W R S U G TD G0 P D Y N G D ET R D G D R W LY AR G S G A D G SN e D R P D R G G SR D A SR N S e G e D R D P G e S s as W G S e G Ee v A

The 1line 1s read using readline (Section 14). Thus the 1l1line can be
terminated by a square bracket, or by a carriage return not preceded by a
space.

Note that if the command is being executed in location context, editdefault
does not get this far, e.g. (MOVE TO AFTER COND XTR 3) will search for XTR,
not execute it. However, (MOVE TO AFTER COND (XTR 3)) will work.

9.81



3)

4)

5)

6)

treat the 8 as a mistyped left parenthesis, and and the rest of the line as
the arguments to the command, e.g., ' k

xp

(COND (& &) (T &))

®8-2 (Y (RETURN Z)))

=(-2

xp
(COND (Y &) (& &) (T &))

If the command was typed in, is the name of a functioh, and is followed by
NIL or a list car of which is not an edit command, assume the user forgot
to type E and means to apply the function to its arguments, type =E and the
function name, and perform the indicated computation, e.g.

*BREAK(FO00)

=E BREAK
(FO0)
]

If the last character in the command is P, and the first n-i characters
comprise a number, assume that the user intended two commands. e.g.,

®p

(COND (& &) (T &))

0P

=0 P
(SETQ X (COND & &))

97

Attempt spelling correction using editcomsa, and if successful, execute

the corrected command.

Otherwise, if there is additional input on the same 1line, or command

stream, spelling correct using editcomsl, e.g.,

See footnote on page 9.81.

9.82



7)

*MBBD SETQ X
=MBD
%

Otherwise, generate an error.

9.12 Editor Functions

edite[ expr;coms:atm] edits an expression. Its value 1s the

last

element of editl{list[expr];coms;atm]. Generates

an error if expr is not a list.

editi[1l;coms;atm;mess] edit198 is the editor. Its first argument is the

edit chain, and its value is an edit chain, namely

the value of 1 at the time editl is exited.??

coms 1s an optional 1list of commands. For
1nteractivelediting, coms is NIL. In this case,
editl types EDIT and then waits for input from
teletype.loa Exit occurs only via an 0K, STOP, or
SAVE command.

If coms is not NIL, no message is typed, and each

P R R A e R R T R L L Y L R T F A P R R

100

edit-ell, not edit-one.

1 is a specvar, and so can be examined or set by edit commands. For
example, t 1is equivalent to (E (SETQ L (LAST L)) T). However, the user
should only manipulate or examine 1 directly as a last resort, and then
with caution.

If mess is not NIL, editl types it instead of EDIT. For example, the TTY:

command is essentially (SETQ L (EDITL L NIL NIL (QUOTE TTY:))).

9.83



member of coms is treated as a command and
executed. If an error occurs in the execution of
one of the commands, no error message is printed,
the rest of the commands are ignored, and editl
exits with an error, i.e. the effect is the same
as though a STOP command had been executed. If
all commands execute successfully, editl returns

the current value of 1.

atm is optional. On calls from editf, it is the
name of the function being edited; on calls from
editv, the name of the variable, and calls from
editp, the atom whose property 1list is being
edited. The property list of atm is used by the
SAVE command for saving the state of the edit.
Thus SAVE will not save anything if atm=NIL, i.e.
when editing arbitrary expressions via edite or

editl directly.

edith[l;coms;mess;oditlﬂg]w‘ like editl except does not rebind or

editf[x]

101

initialize the editor's various state variables,

such as lastail, unfind, undolst, marklst, etc.

nlambda, nospread function for editing a function.
car{x] 1is the name of the function,cdr{x] an
optional 1list of commands. For the rest of the

discussion, fn is car[x], and coms is cdr{x].

The value of editf is fn.

editlflg=T is for internal use by the editor.

9.84



(1) In the most common case, fn 1is an expr, and editf simply performs

putd[fn;edite[getd[fn];éoms;fn]].

(2) If fn is not an expr, but has an EXPR property, editf prints PROP, and
performs edite[getp[fn;EXPR];coms;fn]. If edite returns (i.e. 1f the
editing is not terminated by a STOP), and some changes were made, editf
performs unsavedef[fn], prints UNSAVED, and then does putd[fn;value-of-
edite]. |

(3) If fn is neither an expr nor has an EXPR property, but its top level value
is a list, editf assumes the user meant to call editv, prints =EDITV, calls
editv and returns. Similarly, if fn has a non-NIL property list, editf

prints =EDITP, calls editp and returns.

(4) If fn is neither a function, nor has an EXPR property, nor a top level
value that is a list, nor a non-NIL property list, editf attempts spelling

102

correction using the spelling list userwords, and 1f successful, goes

back to (1).
Otherwise, editf generates an fn NOT EDITABLE error.

If editf ultima;ely succeeds in finding a function to edit, i.e. does not exit

by calling editv or editp, editf calls the function addspell after editing has

been completed.loa Addspell 'notices' fn, i.e. sets lastword to fn, and adds fn

et L L L R A X

102 Unless dwimflg=NIL. Spelling correction is performed using the function
misspelled?. If fn=NIL, misspelled? returns the last ‘'word' referenced,
e.g. by defineq, editf, prettyprint etc. Thus if the user defines foo and
then types editf[], the editor will assume he meant foo, type =FO0, and
then type EDIT. See Section 17.

103 ypjess dwimflg=NIL. addspell is described in Section 17.

9.85



to the appropriate spelling lists. If any changes were made, editf alsp calls
newfile?, which performs the updating for the file package as described in
Section 14.

editv[editvx] nlambda, nospread function, similar to editf, for
editing values. car[editvx] specifies the value,

cdrfeditvx] is an Optionai list of command;.

If car[editvx] is a list, it is evaluated and its value given to edite, e.g.
EDITV((CDR (ASSOC (QUOTE FOO) DICTIONARY)))). In this case, the value of editv
is T.

However, for most applications, car[editvx] is a variable name, i.e. atomic. as
in EDITV(FOO). If the value of this variable is NOBIND, editv checks to see if
it is the name of a function, and if so, assumes the user meant to call ggigg.'
prints =EDITF, calls editf and returns. Otherwise, editv attempts spelling
correction using the list gggggggg§.104 Then editv will call edite on the value
of car[editvx] (or the corrected spelling thereof). Thus.lif the value of ggg
is NIL, and the user performs (EDITV F0O), no spelling correction will occur,
since foo is the name of a variable in the user's system, i.e. it has a value.
However, edite will generate an error, since foo's value is not a list, and
hence not editable. If the user performs (EDITV FO00), where the value of [ggg
is NOBIND, and foo is on the user's spelling list, the spelling corrector will
correct FOOO to FOO. Then edite will be called on the value of foo. Note thdt

this may still result in an error if the value of foo is not a list.

When (if) edite returns, editv sets the variable to the value returned, and

calls addspell and newfile?.

- . e T e W W WD e em D WP G A R T AR S D R M TR G WY W D N D S D W D e G T D TP G WS S Se e D B R D D G S N W s S WD G B U G e S G G A N M G S e R R e A

104 ynless dwimflg=NIL. Misspelled? is also called if car[editvx] is NIL, so
that EDITV() will edit lastword.

9.86



The value of editv is the name of the variable whose value was edited.

editp[x] .

editfns{x]

nlambda, nospread function, similar to editf for
editing property lists. If the property list of
car[x] is NIL, editp attempts spelling correction
using userwords. Then editp calls edite on the
property 1list of car[x], (or the corrected
spelling thereof). When (if) edite returns; editp

rplacd's car[x] with the value returned, and calls
addspell.

The value of editp is the atom whose property list

was edited.

nlambda, nospread function, used to perform the

same editing operations  on several functions.

. car[x] is evaluated to obtain a list of functions.

cdr{x] is a 1list of edit commands. editfns maps
down the 1list of functions, prints the name of
each function, and calls the editor (via editf) on

that function.106

For example, EDITFNS(FOOFNS (R FIE FUM)) will change every FIE to FUM in each

of the functions on foofns.

- e A=

The call to the editor is errorset protected, so

L P R P P R PR R R Y L Y P Y L L L L T2 L R g

105 § o. the definition of editfns might be:
[MAPC (EVAL (CAR X)) (FUNCTION (LAMBDA (Y)

(APPLY (QUOTE EDITF)
(CONS (PRINT Y T) (CDR X]

9.87



that if the editing of one function causes an
error, editfns will proceed to the next

function.‘oo

Thus in the above example, if one of the functions did not contain a FIE, the R
command would cause an error, but editing would continue with the next

function.

The value of editfns is NIL.

editde[ pat;x;changeflg] is the pattern match routine. Its value is T if
pat-matches x. See page 9.21-23 for definition of
'match'.ta?

Note: before each search operation in the editor begins, the entire pattern is
scanned for atoms or strings containing alt-modes. These are replaced by
patterns of the form (CONS (QUOTE $) (UNPACK atom/string)) for 6a, and
(CONS (QUOTE $3) (CONS (NCHARS atom/string) (UNPACK atom/string))), for 6b.108 -
Thus from the standpoint of editd4e, pattern type 6a is indicated by car[pat]
being the atom 8 ($ is alt-mode) and battern type 6b by car[pat] being the atom
$3% (double alt-mode).

106 In particular, if an error occurred while editing a function via its EXPR
property, the function would not be unsaved. In other words, in the above
example, only those functions which contained a FIE, i.e. only those
actually changed, would be unsaved.

107 changeflg is for internal use by the editor.

108 In latter case, atom/string corresponds to the atom or string up to but not
including the final two-alt-modes. In both cases, dunpack is used wherever
possible.

9.88



Therefore, if the user wishes to call editde directly, he must first convert
any patterns which contain atoms or strings ending in alt-modes to the form

recognized by editd4e. This is done with the function editfpat.

editfpat{pat;flg] makes a copy of pat with all patterns of type 6

converted to the form expected by edit4e.109

editfindp[x;pat;flg] allows a program to use the edit find command as a
pure predicate from outside the editor. X is an
éxpression. pat a pattern. The value of editfindp
is T if the command F pat would succeed, NIL
otherwise. editfindp calls editfpat to convert
pat to the form expected by editd4e, unless flg=T.
Thus, if the program is applying editfindp to
several different expressions using the same
pattern, it will be more efficient to call
editfpat once, and then call editfindp with the
converted pattern and flgs=T.

esubst[x;y;z;errorflg;charflg] equivalent to performing (R y x)IIo with z as
the current expression, i.e. the order of
arguments is the same as for subst. Note that y
and/or x can employ alt-modes. The value of

gsubst is the modified z. Generates an errorfll

D D e W P L R R D SR D S N D G S R D WP D S S S D AR UR W D G Y P P e N S Y R W R P P R TR O P D Be Gh S SR R ORGP D P D P R e

110 unless charflg=T, in which case it is equivalent to (RC y x). See page

9.59.

111 of the type that never causes a break.

9.89



changename[ fn;from;to]

changename is used by break
fni-IN-fne.

editracefn[com]

112

if y not found in z. If errorflgsT, also prints

an error message of the form y ?.
esubst is always undoable.

replaces all occurrences of from by to in the
definition of fn. If fn is an expr, changename
performs nlsetq[esubst[to;from;getd‘[fn]]j. If _t:g_
is compiled, changename searches the literals of
fon (and all of its <compiler generated
subfunctions), replacing each occurrence of from

with to.112

The value of changename is fn if at least one

instance of from was found, otherwise NIL.

and advise for changing calls to fni to calls to

is available to help the user debug compléx edit
macros, or subroutine calls to the editor. If
editracefn is set to T, the function editracefn is
called whenever a command that was not typed in by
the user is about to be executed, giving it that
command as its argument. However, the TRACE and
BREAK options described below are probably

sufficient for most applications.

Will succeed even if from is called from fn via a linked call. In this

case, the call will also be relinked to call to instead.

9.90



If editracefn is set to TRACE, the name of the
comnand and the current expression are printed.
If editracefn=BREAK, the same information 1is
printed, and the editor goes into a break. The

user can then examine the state of the editor.

editracefn is initially NIL.

9.91



Index for Section 9

Page
Numbers

(A el ... em) (edit command) ....... ceeseseaneane 9.13,39-4¢
ADDSPELLLX;SPLSTIN] v vniisvacansnnsosovossssansa 9.85-87
AFTER (in INSERT command) (in editor) ........... 9.41

AFTER (in MOVE command) (in editor) ............. 9.48

(B el ... em) (edit command) ........ cesereteenee 9.13,39-490
BEFORE (1in INSERT command) (in editor) .......... 9.41
BEFORE (1in MOVE command) (in editor) ............ 9.48

(BELOW com x) (edit command) .....cccoveeosonvone 9.31
(BELOW com) (edit command) ....ccceveevcascrcvcos 9.31
BF (edit command) .......ccineeeecnosconcccnnnnns 9.10,28
(BF pattern T) (edit command) ......ccce000eeeees 9.28
(BI n m) (edit command) .....ccoveeenvencovnveons 9.8,52
(BI n) (edit command) ......ccvvevevceseoscnsvasns 9.52
(BIND . coms) (edit command) ......ccocecvvevevcoss 9.70
BK (edit command) .............. crestcessenene .o 9.10,18-19
(BK n) (n a number, edit command) ......cceccccvee 9.19
BLOCKED (typed by editor) .....ccieevvevevsnareees 9.79
{BO n) (edit command) ............ ceesesecessnvas 9.8,52
BY (in REPLACE command) (in editor) ........scee. 9. 42
CAN'T - AT TOP (typed by editor) ...cccevevescecs
CAP (edit command) ............... cerertessenanaae
(CHANGE @ T0 ...} (edit command) ........ ciesanes
CHANGENAMELFN;FROM;TO] ....cvvevecenconnvoonsosnns
CL (edit command) .......ccicvvveccnncrcanocnonens
commands that move parentheses (in editor) ......
(COMS x1 ... xn) (edit command) ....ccoeee.. ceees
{COMSQ . coms) (edit command) ....cooeesvvvescnss
continuing an edit session ......cc0000000000000n
control-D ............. et cseesseessccssssacasnas
CO"trOlE lllllllllll ® 8 0 ¢ 8 08 260 0O OO P OSSN Y 6D
current expression (in editor) cteceteesacesenaee
DELETE (edit command) ......... cteertcsensssnsren
(DELETE . @) (edit command) ......... ceeerssenens
DESTINATION IS INSIDE EXPRESSION BEING MOVED
(typed by editor) ..... e eveen ceseceeersons
DW (edit command) .........ccc00uen cetesevennssna
DWIMFLG (system variabla/parametor) ctsecesrtanans
E (edit command) .......cciivenersnnsconcsvnsones
(E x T) (edit command) ...veveeeeeceaceoceancsone
(E x) (edit command) ........ tetesessressecrnnsas
EDIT (typed by editor) ....ccceeeeoveosescsasonce
edit chain ............ Crecesessacenecorsoeneas
edit commands that search heseeseesasasrasesesens
edit commands that test ........ccc0c.. ceeees oo
edit macros ............ ceisesrsesessesnser s
EDIT-SAVE (property name) .......... crecstestanne
EDITAE[PAT;X;CHANGEFLG] ..vveerrrennsnnnianacsnons
EDITCOMSA (editor variable/parameter) ...........
EDITCOMSL (editor variable/parameter) ...........
EDITDEFAULT (in editor) ........ tesesscnsetcacns .o
EDITE[EXPR;COMS;ATM]  .ivvvvetvencoonocesonnnnenes
EDITF{X] NL* .. ............ weeecenoe Cereseessaae
EDITFINDPLX;PAT;FLG] ...... Cetesasessassese e
EDITFNS[X] NL* .....ccvvnnn ctseeceatsesrsereevaas
EDITFPATIPAT;;FLG] ... eveccnosnesocnvonnnoness
editing compiled functions ......cccevcvecncvnces

-
~

. .

@@@@h‘“m@m@\lm@l\)bm@@@m\lb b)—le\]Nd‘lOﬁU’!\lO&_ﬁ\'m

QUOUNWY: =« OCOCOQRNNS
)
[+-]
N

&N&MTVONQ"
]

~ (4]

-3 o>

,11-15,23
40 42

- B

G-
‘Q@

O\l‘o N

,85-86
62

UNN'

.7 11-13,15,23

.-s
[}

~3 OJ
(-} w

[e-]
~N

-83
3,86-87
4-86

[ X--3]

]
[~
(-]

INDEX.9.1



Page
Numbers

EDITLLL;COMS;ATM;MESS] ...... Caeseecssrerscnrsenns 9.83-84
EDITLO[ L ;COMS;MESS;;EDITLFLG] ....... Ceeceneens . oo 9.84
EDITP[X] NL® ... .civrtecnnnn ceeeee cesessnee 9.1,85,87
EDITQUIETFLG (editor variable/parameter) ........ 9.22
EDITRACEFN .....cvivievenn essscesssssssentersesee 9.90-91
EDITUSERFN ....civieeveces Y 9.80
EDITVLEDITVX] NL® . ........ cceseccsesancrasenaene 9.1,85-86
(EMBED @ IN ...) (edit command) ....... veeveveene
errors (in editor) Cecessesusesrtesanasanseanrans
ESUBSTLX;Y;Z;ERRORFLG; CHARFLG] chevecseareccnenns
(EXAM . x) (edit command) et ecscesscsseernnansan
EXPR (property name) .......ccceeee. ceseeeno seens
(EXTRACT @1 from . @2) (edit command) ...........
F (edit command) ....... cecavans ciseeccesenestenns
F pattern (edit command) ...... ctveesrracnsasanns
(F pattern N) (edit command) ..... Ceeetserescens .
(F pattern n) (n a number, edit command) ........
(F pattern 7) (edit command) ......... P IR
(F pattern) (edit command) ....cicevvvecccoconnans
(F= ...) (edit command) .......covveeenee cesssens
FOR (1n INSERT command) (in editor) cevesceevenes
FROM (in EXTRACT command) (in editor) ...........
(FS ...) (edit command) .....cceeeessoncvonvenase
generalized NTH command (in editor) .............
HERE (in edit command) ......... teeessecvecscanes
history list ....... N Cetesecsectsesseasnneen
(I ¢ x1 ... xn) (edit command) ...cccceeecoosas ..
(IF x comsl coms2) (edit command) ......ccc0eees .
(IF x comsl) (edit command) ........ cecesecssonane
(IF x) (edit command) ..... Ceeseseerceseseeser e
implementation of structure modification commands
(in editor) .....cciivieevenncns ceeserenans .o
IN (in EMBED command) (in editor) .....evceeeesss
(INSERT ... AFTER . ©) (edit command) ...........
(INSERT ... BEFORE . @) (edit command) ..........
(INSERT ... FOR . @) (edit command) ......cccc0.e
JOINC (edit command) .......c000evaoneonncevennns
L-CASE[X;FLBY iviiriinennnnronneans reeeenes ceeas
LASTAIL (editor variable/parameter) ....ccceeceees
LASTVALUE (property name) .....ccccevevee ceceveas
LASTWORD (system variable/parameter) ............
(LC . @) (edit command) .......... vetescsvesenane
(LCL . @) (edit command) ..... cessescsesnsussanne
(LI n) (edit command) ......... cesesessessseranes
LISPX .. iiitiiiiirnonannons Ceeessessssectenenaas
(LO n) (edit command) ......ccc0eee cecesssesrnean
location specification (in editor) ..........0...
LOCATION UNCERTAIN (typed by editor) ............
LOWER (edit command) .......... cessescsans cereoan
(LOWER x) (edit command) .....cveecevenes ceesevens
(LP . coms) (edit command) .......ccoceveveeconss
(LPQ . coms) (edit command) ..cceoceeenevennvonons
(M (c) (argl ... argn) . coms) (edit command) ...
(M (C) arg .. COMS)  ..eeeereocenssoosssnssnonsonsnse
(M c . coms) (edit command) .......... ceeracsevee
macros (in editor) ...ccviviieereccensctcscnconanss
MARK (edit command) ........... ceseersreecscsnans

[ N R - [+~

o ®
®

N
L
N
(-]

. s e

-

.

»52,60
» 78

-39

« o o

-17,25,84

1
®
(-}

OOGN@-&O!—#H#GN -D-CJ!U!NNNN*J@U*\I\IG\@G\U!'

e O
NWwNw

N~
w

[~}
-
[

]
=]
-]

]
~
o

0‘00‘0@‘0@OOOO@QO@@O@O@@Q@O@O O@@@OO@OOQO@O@Q@@@‘O‘O‘O@@

BNNTATOTODL IR

INDEX.9.2



Page
Numbers

(MARK atom) (edit command) ...... cesesssssenasbas 9.34
MARKLST (editor variable/parameter) ....cceoseees 9.34,84
MAXLEVEL (editor variable/parameter) .....cccecee0. 9,24,28
MAXLOOP (editor variable/parameter) ....... cerena
MAXLOOP EXCEEDED (typed by editor) ..... ceessneas
(MBD e1 ... em) (edit command) ...... ceessesisens
(MOVE @i TO com . 02) (edit command) ........00..
n (n a number, edit command) .....ccciviiennrnnees
(N ol ... em) (edit command) ........... cevssanee
(n el ... em) (n a number, edit command) ........
{n) (n a number, edit command) ......... eteaneees
NEWFILE?[ NAME ; VARSFLG] ...... Cetsectatessasaenaen
NEX (edit command) ............ ceaenen cresssvssaa
(NEX x) (edit command) ....ccecevovencersoncosoos
NIL (edit command) .......cccoeaeneosnne Ceeerreens
NOBIND ............. veeesue sassssesersecsesrs e s
NOT BLOCKED (typed by editor) cecasanas . oo
NOT CHANGED, SO NOT UNSAVED (typed by editor) P
NOT EDITABLE (error message) ..oiieccrrcaccensons
NOTHING SAVED (typed by editor) ..... creeresraeas
(NTH n) (n a number, edit command) ......ce000000
(NTH x) (edit command) .......ceeeeevveescncevcocs
NX (edit command) ........c00cvues eseessasseensse
(NX n) (n a number, edit command) Ctteesesiecnone
OCCURRENCES (typed by @ditor) ...cceevvveccetsons 9. 65
OK (edit command) ............. ceesccos cesesense «ee  9.71,76,83
(ORF ...) {(edit command) ....covvesensnsavsnvvroes 9.27
(ORR ...) (edit command) .....ceceeeveennsvcocennos 9.66
P (edit command) ......ccceeesnnnrocccoravancasne 9.2,60
(P mn) (edit command) ........ sesescaas ceesenees 9.60
(P m) (edit command) ....c.n0ee ecesncsssoesesans
(pattern .. @) (edit command) ....cvcevveevecnnonns
pattern match (in editor) ........ ceseans ceseanns
PP (edit command) .......ccccveens cesiesecrsecans
PP* (edit command) ....... cereccnna tertecessennens
PPT {(edit command) ...... B
PPV (edit command) ........c00se Ceseecsseseressen
_ prompt character ..... tesieteateaeietiectestaeens
PROP (typed by editor) ...ceoveercescercccneseons
(R x y) (edit command) ....vveevvvvonerssvoocsosse
(R1 x y) (edit command) ....cceccvceves recesevecs
RAISE (edit command) ....c.oveseocenscsscnsnnnces
(RAISE X) (edit command) .......... e sseesnanes
(RC x ¥y) (edit command) ....vovvescvconossnsnnoes
(RCt x y) (edit command) .......... cetesrbsseneas
READLINE[ LINE;LISPXFLG] ..... Ceeccetsresesesraee
REPACK (edit command) .....cceveevonee ceeseeaeees
(REPACK @) (edit command) .....oivveevovccccccnss
(REPLACE @ WITH ...) (edit command) ...... crraees
RESETVAR[RESETX;RESETY;RESETZI NL ..vivvevereeeen
(RESETVAR var form . coms) (edit command)} .......
(RI n m) (edit command) ....ccvceevcvrvvononnoone
(RO n) (edit command) ....ccocveoesensocnosencnns
(S var . @) (edit command) ..cceeeceevescecoenceans
SAVE (edit command) ...... cecseeseseseserteenseb o
search algorithm (in editor) .....ccvcevececccses
(SHOW . x) (edit cOmmENE) ..eeeeeeveocsoncesecnns

o

(=4

RNOD
[
-

« s e

WRNNDRNDOWWRAND WWD DS

.

w W
[~ R~

-
-~
(-]

x
[2.]

« e @

QUL OVOVOVUVOLLOVLOOOOVWLOOYWY
NOBWLWAOOIDIRBNIND »~ O~

[ ~]

o)
1
W
w

@
.-A
o
-
=]
1)
g
0

3,88- 89

(3] e ob v DO
(3] QD i
~ SN

ONNWPONNEUNDNNNTAVONDDIONN WD
QWNI- ~ NNNON L OONS D

QLUVLOVOVULUVOODOVODOOOOVOOOOVLOYY

INDEX.9.3



Page

Numbers
spelling correction ......ciiieiierierirreiereene 9.82,86
(SPLITC x) (edit command) .......... Ceteeevensane 9.77
STOP (edit command) .......... st ecescesses 9.71-72,76,83-85
structure modification commands (1n editor) oo 9.36-60
(SURROUND @ IN ...) (edit command) ..... ceerasees 9.48
(SW n m) (edit command) i rssatsassesseeesesrnnns 9.59-60
teletype .......cc00.. s tiesevesscecs st esesennenee 9.61
TEST (edit command) Cieesessssesssasesarerereneee 9.79
THRU (edit command) ......ccevevee ceeereneseerane 9.54-57
TO (edit command) .....c.cieeeveccecccncncanreesoee 9.54-57
TTY: (edit command) .....cccaveeccrcescscnnnnonne 9.66,70-72
TTY: (typed by editor) ....cceeeeecesvversoseeese 9.71
U-CASE[X] ...cvvvnn. et easeistertasreneneee ceerene 9.74
UNBLOCK (edit command) .....cvceecececnsooccconas 9.79
UNDO (edit command) ....ceeeevecocosaronconsoesss 9.10,78
undoing (in editor) .........cc.. teesssescoareans 9.10,36,78- 79
UNDOLST (editor variable/parameter) I 9.72,78-79,84
UNDONE (typed by editor) ......coeeeenees ceesssos 9.78
UNFIND (editor variable/parameter) . 9.25,35,41-42,46,48-51,
.......................... e eeesesncevanns 72-73,76,84

UNSAVED (typed by editor) ...ccceeescenssnnssnes 9.85
UP (edit command) .......... Cecsacersesiareanreas 9.12,15-16,25,43
UPFINDFLG (editor variable/parameter) ......eeoees 9.25,28,44
USERMACROS (editor variable/parameter) .......... 9.70
USERMACROS (prettydef command) ......... N 9.70,80
USERWORDS (system variable/parameter) .......c... 9.85-87
WITH (in REPLACE command) (in editor) ......c.c.. 9.42
WITH (in SURROUND command) (in editor) ...... ceee 9.48
(XTR . @) (edit command) .....ceecveerevcennnnanns 9.45
0 (edit command) .....vcivevecnconassossoonnnonne 9.4-5,17
10 (edit command) ....cuivevvvvoccoscncossanssones 9.18
I'NX (edit command) ......... ceseee Cerecssenesenen 9.19-20
1UNDO (edit command) ....... ceeena cesesveeeevroee 9.78
#FLCOMS] NLx ....... Ceees creee cecsene 9.29,63
## (in INSERT, REPLACE, and CHANGE commands) oo 9.43
$ (alt-mode) (1n edit pattern) ..... tretesesseaas 9.12,21
$ (alt-mode, in R command) (in editor) .......... 9.58
33 (two alt-modes) (in edit pattern) ...... N 9.22
3BUFS (alt-modeBUFS) (prog. asst. command) ...... 9.7
& (in edit pattern) ......ccieeceencnsrrnsooncnons 9.11,21
& (typed by editor) ....c.iiivecirccenorctonansans 9.2
* (typed by editor) ......cevvececennnenss cerncne 9.2
® (in MBD command) (in editor) Ceretetrvereereona 9.47
RRCOMMENT**® (typed by editor) .......cceees PP 9.60
XXCOMMENT2®*FLG (prettydef variable/parameter) cee 9.61
*ANY® (in edit pattern) .......ccccececccecncen .o 9.21
-- (in edit pattern) ........ teetceeseveseteeenans 9.11,22
-> (typed by editor) ....... ctecacsascnae cressaas 9.58
-n (n° a number, edit command) ......... creesennae 9.3,17
(-n el ... em) (n a number, edit command) ..... .o 9.5,36

. (edit command) .....ceeeecoecoocssrtsoseresree 9,33
... (in edit pattern) ........ Ceeceacenenn ceceoe . 9.22-23
... (typed by editor) ..... D 9.13,13
(2ND . @) (edit coomand) ...cceeveceenn cececennes 9.30
(3RD . @) (edit command) .....ccoeveeveceronnnnas 9.30
8 (instead of left parenthesis) ...ccccevennancns 9.82

(: o1 ... em) (edit command) ......cccceeevcncnee 9.14,40

INDEX.9.4



Page
Numbers

. X) (edit command) ........ PN 9.76
(typed by editor) ...c.iceeeseerccoccoscosonssns 9.12

(in edit pattern) .....cecvecvens ceeeeee veeone

(typed by editor) ....ivevreernceccrsronssssnne
DITF (typed by editor) ......... cecresererenens
DITP (typed by editor) ....ccceveevcccnsnsonass
DITV (typed by editor) .......... ceesevserevens
? (edit command) ........ce00000000 tescesestaonne
? (typed by editor) ....... teeseesessesertessoenras
@ (location specification) (in editor) ..........
(@1 THRU @2) (edit command) «..vvececvecovesssnns
(@1 THRU) (edit command) ..c.veevcecccscorocannse
(@1 TO @02) (edit command) ....cecevveescnccoonnas
(@1 TO) (edit command) ...ceceevncecvoorsscsonone
\ (edit command) ......coievevecvcrcscncnscssasea
{\ atom) (edit command) ....coooecrnnrensencosnne
\P (edit command) ....cevieevevecrcscrcessscsasan
t (edit command) ........ Cetecesssesesasenannoane
+ (edit command) ...... Ceieeceseccsescssensoaanns
(=~ pattern) (edit command) ...c.ocevevccorsccanas
e (edit command) ......ccc0c0cs0v00000000ssnanse

i1~
-

otononon
mmmmu

PVOOUPOUVOOVLOOOVOOOVLOOUOUOLCYWY
wn
[=)]

INDEX.9.5



SECTION 10
ATOM, STRING, ARRAY, AND STORAGE MANIPULATION

10.1  Pnames and Atom Manipulation

The term 'print name' (of an atom) in LISP 1.5 referred to the characters that
were output whenever the atonm was printed. Since these characters were stored
on the atom's property list under the property PNAME, pname was used
interchangeably with ‘print name'. 1In INTERLISP, all pointers have pnames,
although only literal atoms and strings have their pname explicitly stored.

The pname of a pointer are those characters that are output when the pointer is
printed using print,

e.g., the pname of the atom ABC%(DI consists of the five characters ABC(D. The
pname of the list (A B C) consists of the seven characters (A B C) (two of the

characters are spaces).
Sometimes we will have occasion to refer to the prin2-pname.

The prin2-pname are those characters output when the corresponding pointer is
printed using prin2.

Thus the prin2-pname of the atom ABCX(D is the six characters ABC%(D. Note that

the pname of numbers depends on the setting of radix.

% is the escape character. See Sections 2 and 14.

10.1



pack[x] If x is a list of atoms, the value of pack is a
single atom whose pname is the concatenation of
the pnames of the atoms in X, e.a;
pack[ (A BC DEF G)]J=ABCDEFG.

If the pname of the value of pack[x] is the same
as that of a number, pack[x] will be that number,
e.g. pack[(1 3.4)]=13.4,

pack[(1 E -2)]=.01.

Although x is usually a list of atoms, it can be a
list of arbitrary INTERLISP pointers. The value
of pack is still a single atom whose pname is the
sama as the concatenation of the pnames of all the
pointers in x, e.g.

pack[ ((A B)"CD")] = %(AX B%)CD.

In other words, mapc[x;prini] and prini[pack[x]]
always produce exactly the same output. In fact,
pack actually operates by calling prini to convert
the pointers to a stream of characters {(without
printing) and then makes an atom out of the

result.

Note: atoms are restricted to < 99 characters. Attempting to create a larger
atom either via pack or by typing one in (or reading from a file) will
cause an error, ATOM TOO LONG.

unpack[x;flg] The value of unpack is the pname of x as a list of

characters (atoms).z e.g.

e P G e e e P > W R R S S W SR S e s W S S S R D D D P e G ey e R N S W D G S EP R D D S D e R e G S S SR A P W SR AP D D D D W

There are no special ‘'character-atoms' in INTERLISP, i1i.e. an atom
consisting of a single character is the same as any other atom.

10.2



unpack[ABC] = (A B C)
unpack[ "ABC(D"*] = (A B C %( D)
In other words prini[x] and mapc[unpack[x];prini]

produce the same output.

If flgs7, the prin2-pname of x 1is used, e.g.
unpack[ "ABC(DY;T]= (%" A B C %( D %").

Note: unpack[x] performs n conses, where n is the number of characters in the

pname of x.

dunpack[x;scratchlist;flg]

nchars{x;flg]

nthchar[x;n;flg]

a destructive version of unpack ‘that does not
perform any conses but instead uses scratchlist to
make a list equal to unpack[x;flg]. If the p-name

is too long to fit in scratchlist, dunpack calls

unpack and returns &npack[x:fla]. Gives an error

if scratchlist is not a list.

number of characters in pname of 5.3 If flg=T, the
prin2-pname is used. E.g. nchars[ "ABC" ]=3,
nchars[ "ABC";T]=5.

Value is nth character of pname of x. Equivalent
to car[nth[unpack[x;flg];n]] but faster and does
no conses. n can be negative, in which case

counts from end of pname, e.g. -1 refers to the

Both nthchar and nchars work much faster on objects that actually have an

internal representation of their pname, i.e. literal atoms and strings,
than they do on numbers and lists, as they do not have to simulate

printing.

10.3



packe[x]

chcon[x;flg]

chconi[x]

dchcon[ x;scratchlist;flg]

character[n]

fcharacter[n]

gensym[ char]

goTToTetsomese-eemesemcecee

See footnote 2.

last character, -2 next to last, etc. If n is
greater than the number of‘ characters in the
pname, or less than minus that number, or 0, the

value of nthchar is NIL.

like pack except x is a list of (ASCII) character
codas, e.g. packc[ (70 79 79)]=F00.

like unpack, except returns the:gname of X as a
list of (ASCII) character codes, e.g.
chcon[FOO] = (70 79 79). If flg=T, the prin2-pname

is used.

returns character code of first character of pname
of x, e.g. chconi[F00] = 70. Thus chcon[x] could

be written as mapcar[unpack[x];chcdnl].
similar to dunpack

n is an ASCII character code. Value is the atom
having the corresponding single character as its
pnamg,‘ e.g. character[70] = F. Thus, unpack[x]

could be written as mapcar[chcon[x];character].
fast version of character that compiles open.

Generates a new atom of the form xnnnn, where

x=char (or A if char is NIL) in which each of the

.................... N S L L L L T

10.4



n's is a digit. . Thus, the first one generated is
A0001, the second A0002, etc. gensym provides a
way of generating new atoms for various uses
within the system. The value of gennum, initially
10000, determines the next gensym, e.g. if gennum

is set to 10023, gensym[ ]=A0024. '

The term gensym is used to indicate an atom that was produced by the function
gensym. Atoms generated by gensym are the same as any other literal atoms:
they have property lists, and can be given function definitions. Note that the
atoms are not guaranteed to be new.

For example, if the user has previously created A0012, either by typing it in,

or via pack or gensym 1tself. when gennum gets to 10011, the next value

returned by gensym will be the A0012 already in existence.

mapatoms{fn]

10.2 String Functions

stringp[x]

strequal{x;y]

mkstring[x]

rstring[ ]

Applies fn to every literal atom in the system,
e.g. mapatoms[ (LAMBDA(X)(AND(SUBRP X)(PRINT X)))]

will print every subr. Value of mapatoms is NIL.

Is x if x a string, NIL otherwise. Note: if x is

a string, nlistp[x] is T, but atom[x] is NIL.

Is x if x and y are both strings and equal, i.e.
print the same, otherwise NIL. Equal uses
strequal. Note that strings may be equal without
being eq.

Value is string corresponding to prini of x.

Reads a string - see Section 14.

10.5



substring[x;n;m]

gnclx]

6

6

Value is the substring of x consisting of the nth
thru mth characters of x. If m is NIL, the
substring is the nth character of x thru the end
of x. n and m can be negative numbers, as with
nthchar. Returns NIL if the substring is not well
defined, e.g. n or m> nchars[x] or

< minus[{nchars[x]] or n corresponds to a character

in x to the right of the character indicated by m.

If x is not a string, equivalent to
substring[mkstring[x];n;m], except substring does
not have to actually make the string if x is a
literal atom.5 For example,

substring[(A 8 C);4;6]="B C",

get next character of string X. Returns the next
character of the string, (as an atom), and removes
the character from the string. Returns NIL if x
is the null string. If x isn't a string, a string
is made. Used for sequential access to characters

of a string.

Note that if x is a substring of y, gnc[x] does
not remove the character from y, i.e. gnc doesn't
physically change the string of characters, Jjust

the pointer and the byte count.a

See string storage section that follows.

See string storage section that follows.

10.6



glclx]

concatlxyixy:...ix,]

rplstring[x;n;y]'

mkatom[ x]

gets last character of string x. Above remarks

about gnc also supply to glc.

lambda nospread function. Concatenates (copies
of) any number of strings. The arguments are ‘
transformed to strings if they aren't strings.
Value is the new string, e.g.

concat[ "ABC" ;DEF;"GHI"] = "ABCDEFGHI". The value

of concat[] is the null string, "".

Replace characters of string x beginning at
character n with string y. n may be positive or
negative, x Qnd y are converted to strings if
they aren't already. Characters are smashed into
(converted) x. Returns new g. Error if there is
not enough room in x for y, i.e. the new string
would be longer than the origina1;7 Note that if x
is a substring of z, z will also be modified by
the action of rplstring.

Creates an atom whose pname is the same as that of
the string x or if x isn't a string, the same as
that qf mkstring(x], e.g. mkatom[(A B C)] is the
atom X(AX BX CX). If atom would have > 99

characters, causes an error, ATOM TOO LONG.

If y was not a string, x will already have been partially modified since

rplstring does not know whether y will 'fit' without actually attempting

the transfer.

10.7



Searching Strings

strpos is a function for searching one string looking for another. Roughly it
corresponds to member, except that it returns a character position number
instead of a tail. This number can then be given to substring or utilized in
other calls to strpos.

strpos[x;y;start;skip;anchor;tail]
x and y are both strings (or else they are
converted automatically). Searches y beginning at
character number start, (or else 1 if start is
NIL) and looks for a sequence of characters equal
to x. If a match is found, the corresponding
character position 1s returned, 6therwise NIL,_
e.9.,
strpos[ "ABC", "XYZABCDEF*" J=4
strpos[ "ABC*, *"XYZABCDEF";5]=NIL
strpos[ "ABC","XYZABCDEFABC";5]=10

skip can be used to specify a character in X that
matches any character in y, e.g.

strpos[ *A&C&" ; "XYZABCDEF " ;NIL;&]=4

If anchor 1is T, strpos comparés X with the
characters beginning at position start, or 1. If
that comparison fails, strpos returns NIL without
searching any further down y. Thus it can be used
to compare one string with some bortion of another
string, e.g.

strpos["ABC"; "XYZABCDEF";NIL;NIL;TJ=NIL

strpos[ "ABC" ; "XYZABCDEF" ;4;NIL;T]=4

10.8



Finally, if tail 1is T, the value returned by

strpos if successful is not the starting position
of the sequence of characters corresponding to X,
but the position of the first character after
that, 1.e. starting point plus nchars[x] e.g.
strpos[ "ABC" ; "XYZABCDEFABC" ;NIL;NIL;NIL;T]=7.

Note that strpos["A";"A";NIL;NIL;NIL;T]=2, even

though "A" has only one character.

Example Problem

Given the strings x, y, and 2, write a function foo that will make a string
corresponding to that portion of X between Yy and 2, e.g.

fool "NOW IS THE TIME FOR ALL GOOD MEN®";“IS";"FOR"] is " THE TIME ".

Solution:

(FOO
[LAMBDA (X Y Z)
(AND (SETQ Y (STRPOS Y X NIL NIL NIL T))
(SETQ Z (STRPOS Z X Y))
(SUBSTRING X Y (SuBtl Z])

strposlfa;str;start;neg] - str is a string (or else itb is converted
automatically to a string), a is a 1list of

characters or character codes.8

strposl searches
' str beginning at character number start (or else 1
if start=NIL) for one of the characters in a. If

one 1s found, strposl returns as its value the

8 If any element of a is a number, it is assumed to be a character code.
Otherwise, it is converted to a character code via chconi. Therefore, it
is more efficient to call strposl with a a list of character codes.

10.9



corresponding character position, otherwise NIL.
E.g., strposl[(A B8 C);"XYZBCD"]=4. If neg=T,
strposl searches for a character not on a, e.g.,

strposl[(A B C); "ABCDEF";NIL;T]=4.

If a is an array, it is treated as a bit table.
The bits of (ELT A 1) corfespond to character
codes 0 to 43Q, of (ELT A 2) to codes 44Q to 107Q,

etc. Thus an array whose first element was 17Q

would be equivalent to a list (40Q 41Q 42Q 43Q) or

(% ! %" #).

If a is not a bit table (array), strposl first converts it to a bit table usingl
makebittable described below. If strposl is to be called frequently with the

same list of characters, a considerable savings can be achieved by converting
the list to a bit table once, and then passing the bit table to strposl as its

first argument.

makebittable[1;neg;a] makes a bit table suitable for use by strposl. 1
and neg are as for strposl. If a is not an array
with at least 4 elements, makebittable will create
an array and return that as its value. Otherwise

it uses (and changes) a.

Note: if neg=T, strposl must call makebittable whether a is a list or an
array. To obtain bit table efficiency with neg=T, makebittable should be
called with neg=T, to construct the "inverted" table, and the resulting table

(array) should be given to strposl with neg=NIL.

10.10



String Storage

A string is stored in 2 parts; the characters of the string, and a pointer to
the characters. The pointer, or 'string pointer', indicates the byte at which
the string begins and the length of the string. It occupies one word of
storage. The characters of the string are stored five characters to a word in
a portion of the INTERLISP address space devoted exclusively to storing

characters.

Since the internal pname of literal atoms also consists of a pointer to the
beginning of a string of characters and a byte count, conversion between
literal atoms and strings does not require any additional storage for the

characters of the pname, although one cell is required for the string pointer.9

When the conversion is done internally, e.g. as in substring, strpos, or

strposl, no additional storage is required for dsing literal atoms instead of

strings.

The use of storage by the basic string functions is given below:

mkstring(x] X string no space

X literal atom _ new pointer

other new characters and pointer
substring[x;n;m] X string new pointer

X literal atom new pointer

other new characters and pointer
e e A ST

Except when the string is to be smashed by rplstring. In this case, its
characters must be copied to avoid smashing the pname of the atom.
rplstring automatically performs this operation.

10.11



gnclx] and glc[x] x string

no space, pointer is modified

other like mkstring, but doesn't make much
sense
concat[xl;xz;...xn] args any type new characters for. whole new

rplstring(x;n;y] x string

x other

string, one new pointer

no new space unless characters are in

name space (as result of
mkstring[atom]) in which case x is
quietly copied to string space

- new pointer and characters

y any type type of y doesn't matter

10.3 Array Functions

Space for arrays and compiled code are both allocated out of a common array

space. Arrays of pointers and unboxed numbers may be manipulated by the

following functions:

array[n;p;v]

This function allocates a block of n+2 words, of
which the first two are header information. The .
next p { n are cells which will contain unboxed
numbers, and are initialized to unboxed 0. ' The
last n-p 20 cells will contain pointers
initialized with v, i.e., both car and cdr are
available for storing 1nfofmation, and each
initially contain v. If p is NIL, 0 is wused
(i.e., an array containing all INTERLISP

pointers). The value of array is the array, also

10.12



called an array pointer. If sufficient space is
not available for the array, a garbage collection
of array space, 6C: 1, is initiated. If this is
unsuccessful in obtaining sufficient space, an

error is generated, ARRAYS FULL.

Arfay-pointers print as #n, where n is the octal representation of the pointer.
Note that #n will be read as a literal atom, and not an array pointer.

arraysize[a]

arrayp[x]

elt[a;n]

setalfa;n;v]

o L L )

Returns the size of array a. Generates an error,

ARG NOT ARRAY, if a is not an array.

Value is x if x is an array pointer otherwise NIL.
No check is made to ensure that x actually

addresses the beginnina'of an array.

Value 1is nth element of the array 210 elt
generates an error, ARG NOT ARRAY, if a is not the

beginning of an nrray.”

If n corresponds to the
unboxed region of a, the value of elt is the full
36 bit word, as a boxed integer. If n corresponds
to the poinier region of a, the value of elt is

the car half of the corresponding element.

sets the pth element of the array a. Generates an

eltfa;1] is the first element of the array (actually corresponds to the 3rd

cell because of the 2 word header).

11

arrayp is true for pointers into the middle of arrays, but elt and seta

must be given a painter to the beginning of an array, i.e., a value of

array.

10.13



error, ARG NOT ARRAY, if a is not the beginning
of an array. If n corresponds to the unboxed
region of a, v must be a number, and is unboxed
and stored as a full 36 bit word into the nth
element of a. If n corresponds to the pointer
region of a, v replaces the car half of the nth

element. The value of seta is v.

Note that seta and elt are always inverse operations.

eltd[a;n] same as elt for unboxed region of a, but returns
cdr half of nth element, if n corresponds to the
pointer region of a.

setd(a;n;v] same as seta for unboxed region of a, but sets cdr
half of nth element, if n corresponds to the
pointer region of a. The value of setd is v.

In other words, eltd and setd are always inverse operations.

10.4 Storage Functions

reclaim{n] Initiates a garbage collection of type n. Value
of reclaim is number of words available (for that
type) after the collection.

Garbage collections, whether invoked directly by the user or indtrectly by need
Jor storage, do not confine their activity solely to the data type for which
they were called, but automatically collect some or all of the other types (see
Section 8).

ntyplx] Value 1is type number fof the data type of
INTERLISP pointer x, e.g. ntyp[(A . B)] is 8, the
type number for lists. Thus GC: 8 indicates a

garbage collection of list words.

10.14



typep[x;n]

gcgaglmessage ]

type

arrays, compiled code
stack positions

list words '

atoms :
floating point numbers
large integers

‘small integers

string pointers
pname storage
string storage

eq(ntyp[x];n]

message is a string or atom to be printed (using
prini) wherever: a garbage collection is begun.
messagesT, its standard setting, GC: is printed,

number

followed by the type number.

collection is éomplete. two numbers are printed
the number of words collected for that type, and
the total number of words available for that type,

i.e. allocated;but not necessarily currently in

use (see minfs #elow).

Example:
«RECLAIM(18)

GC: 18

511, 3071 FREE WORDS
3071 :
+«RECLAIM(12)

GC: 12
1020, 1020 FREE WORDS
1020

If messagesNIL, no garbage collection message is
printed, eithervon entering or leaving the garbage

collector. Value of gcgag is old setting.

10.18

When the garbage



minfs[n;typ] ¢ Sets the minimum amount of free storage which will
be maintained by the garbage collector for data
types of type number typ. If,. after any garbage
collection for that type, fewer’ than n free words
are present, sufficient storage will be added (in

512 word chunks) to raise the level to n.

If typsNIL, 8 is used, i.e. the minfs refers to

list words.

If paNIL, minfs returns the current minfs setting

for the corresponding type.

A minfs setting can also be changed dynamically, even during a garbage
collection, by typing control-S followed by a number, followed by a period.Iz
If the control-S was typed during a garbage collection, the number is the new

minfs’setting for the type being collected, otherwise for type 8, i.e. list

words.

Note: A garbage collection of a 'related’' type may also cause more storage to

be assigned to that type. See discussion of garbage collector algorithm,
Section 3.

storage[ flg] Prints amount of storage (by type number) used by

and assigned to the user, e.g.

- W Ve VD o - " S R S G G R D G W D P G R W G D D e P G D D S S S SR D N G D R R D G S G G S A R R S R N R AR S N e

12 When the control-S is typed, INTERLISP immediately clears and saves the
input buffer, rings the bell, and waits for input, which is terminated by
any non-number. The input buffer 1is then restored, and the program

continues. If the input was terminated by other than a period, 1t is
ignored.

10.16



getrpln]

P R R

equal to 3.

+«STORAGE()

TYPE USED ASSIGNED
1 80072 87552

8 7970 9216

12 7032 7680

i6 0 512

18 1124 2560

24 118 512

28 4226 4608

30 573 1024

SUM 101115 113664

If flg=T, includes storage used by and assigned to
the system. Value is NIL.

garbage collection trap. Causes a (simqlated)
controi-ﬂ interrupt when the number of free 1list
words (type 8) remaining equals n, i.e. when a
garbage collection would occur in n more conses.
The message GCTRP 1is printed, the function
interrupt (Section 16) 1is called, and a break
occurs. Note that by advising (Section 19)
interrupt the user can program the handling of a
getrp instead of going into a break.13

Value of gctrp is its last setting.
getrp[-1] will ‘disable' a previous gctrp since

there are never -1 free 1list words. getrp is

initialized this way.

e P e 5 e G B LE W D R R D S AR G SN W AP TD A5 S SR D A AT D D D D N M1 P W G W S D D Y S I D G5 e R R e e

For gctrp interrupts, interrupt is called with intype (its third argument)
If the user does not want to go into a break, the advice

should still allow interrupt to be entered, but first set intype to -1.
This will cause interrupt to "quietly" go away by calling the function that

was interrupted.

The advice should not exit interrupt via return, as in

this case the function that was about to be called when the interrupt
occurred would not be called.

10.17



conscount[n]

closer[a;x]

openr[a]

getrpl[] returns number of list words left, i.e.
number of conses until next type 8 garbage

collection, see Section 21.
conscount[] vreturns number of conses since
INTERLISP started up. If n is not NIL, resets

conscount to n.

Stores x into memory location a. Both x and a

must be numbers.

Value is the number in memory location a, 1i.e.

boxed.

10.18



AO0On (gensym)
ARG NOT ARRAY (error message)

ARRAY[N;P;V

array functions
array header ..
ARRAYP[ X] SUBR

Index for Section 10

J SUBR

------

e s e

LR

ARRAYS FULL (error message)

ARRAYSIZE[A

bell (typed
CHARACTER[LN

character atoms
character codes

CHCON[ X;FLG

CHCON1[X] SUBR ..

CLOSER[A;X]

compiled code ..
CONCAT[ X1:X2;...

CONSCOUNT[N
control-H
control-S

DCHCON[ X ; SCRATCHLIST:FLG ]

)

by system)
] SUBR

] SUBR..‘.‘

SUBR

v e oo

J SUBR

-----------

es e e

ATOM TOO LONG (error message)

e s es v

seses0 000

@es 0 s e

® 000G VLN LILEOIPIOELPNIOLEOIOGEOIOEOIEOEINCEOIEDOELN

se s 000000

S0 000 et N IELIOLOLISIOLITOCEIEOLIOEOEIEOEICOEOIECOEOLOS |

0B CLIOLOEOIPVPOIPINVIOEOIOEOIEITPTOIEEPRETOEEDL

LRI S B )

" e 000 ePLsPesLeVIOEIILOIEOEDPES

e000 0000

®s e v vves PR PLIEGILEOIECLEIBIIDOITIOLTS

evevsevs e

e veesPes RO LILIONERIOEOIOELIOLOLELEOES

¢ e

sesess s s oo

e 00PN LLREPREIEEOIELOIOOLIOIEBTOIOIEOPEOIDOLOIDNE

60 I PGP NIIEOEPIPLEIOIOIEONPLOIOCEOIEEOEOCPEIOEUTONEODP

cesesvenoe

e ee s PP eI REERILRNCEQROINIRIROGIOILOESIOTSGDS

LR R A I I A A R A R R N N

CECIC R SR I A IR BRI I A SR A A I N )

LA I RN B A A I N R R N A

;Xn] SUBR*

LRI I RS AT IY B

®esee0 00

S eV LI LIRPINIEOLIEIENISIOIRCEOECEOIOIEOLINPIIELEOLS

® e V00N 0B EBONIPIOENLGEOIGEIPIOEOLTOEYS

LR A A A A A A I R I I O B BN B Y A S N )

PP 000 0PNIPLIOIOIIPIOIILIOGEGEREON

DUNPACK[ X; SCRATCHLIST; ;FLG]

ELT[A;N] SUBR
ELTD[A;N] SUBR
FCHARACTER[N] SUBR
garbage collection ...

GC: (typed by system)
GC: .1 (typed by system)
GC: 8 (typed by system)
GCGAG[MESSAGE] SUBR .

GCTRP[N] SUBR

GLC[X] SUBR
GNC[X] SUBR

input buffer

------

-----------

Ss 00 ss 0000

s ee s 000 s Nttt

e s 00000

se e

0 60000000 0N PNLEOCIIOLEIBIIROIOGIOIOIENTTODS

® 00T ERNIOREOIOIIPIEOENROEOIOCIEOCEIOERNOEOETYS

e 0L PR LBNRLGIIBEOLIOELIEIOEOINNTDOEDS

000 0GB 0O CICEOENRIOIEOROEOEPIINROPLOECOCTOTYS

LRCEC IR I BRI I I I I B A B BN S I I )

PP es 00 eP sV eLENOOILIERNGIOIOITOLTE

CRCRCE IR IR IR ST IR B I BN R BE N B A B B I BE BN 3 B Y

GENNUM (system variable/parameter)
GENSYM[ CHAR ]

sesses et s
LR R I A A A A N A A I N IR I A A WS )

CIE I I I I I BN BB B R Y B I B B BE A B O I B N )

® 6000000000 s L0000 NGILRNIGIICEOLECEOEOIBIOIOIOEEOLDY

s e 000

MAKEBITTABLE[L;&EG;A]

MAPATOMS[FN
MINFS[N;TYP

MKATOM[ X] SUBR .

MKSTRING[X]

NCHARS[ X] SUBR

NTHCHAR[ X;N

NTYP[X] SUBR
null string '
OPENR[A] SUBR
PACK[ X] SUBR
PACKC[ X] SUBR

pnames

prin2-pnames

print name

RADIX[N] SUBR
RECLAIM[N] SUBR

] SUBR
] SUBR

SUBR
] SUBR ..

DR

INTERRUPTL INTFN; INTARGS ; INTYPE]
literal atoms

s 00 v

e PeePITCEIVIOEORLOEIOEBOITNTTSTOON

®es 000000

D N N N N S R R S S S S S S S S A Y

@600 0000000080000 00PN e0ee

* P 0P 0L LN ILIEEVIIEOIOLIEOIECEOIOEBIOEOEOIISIOETOLEDS

ooooooooo

e s e

CRCRCIE I R B B S A )

@0 e LRI OIEISOITEIPINPEOEOIEPRPIOIOIOLOROOSTTS

P00 LGNGO EEIRLOEONNLPIOIEENESIOIOIELILENPNOIEOEDS

*evececrse

L I I I I I I B A A I N A N AP A Y
....".»...'.'...‘.Q....""...

® S 20000000t er LN RSN RNRNEERRSEOERIOENIGOGTS

®ee e es v 00

® 04 PN LLELORNNILIEOEGLIOEOEIBGREIEGLLOEOGOIODLUEOLOLEOES

0P PG LV ee PPN OOEIOOIIROIECOCIEOEOEOPNOEOIOIEONOROLEEOEOIEEODS

® @G 00 00EGPIINRELOEERNLIOTICEOIOIEIOCTEOIOIECEIOIEBRIROIPOEEOTDS

® 900NN PN PLLILEILIELIERISIOEOIEOLOEOIEOEOIOENIOLEDOLOSE

® 0 0 00 LPCLLNOLPILICENINOOIOEGIOIBSIOENOEOIOIEOEOGTOTS

‘I..C.'O...0.lDI.......O...'.Q.C..O...

INDEX.10.1

® 02 000 ePePITRRETRIETCQIOEIEIVIOEITORNOIOEITTOEESE

90 000000000000 RNERIIGIREESIEIOEOPOIONITOIES

Page
Numbers

10.5
10.13-14
10.12
10.12-14
10.12
10.13
10.13
10.13
10.2,7
10.16
10.4
10.2
10.4
10.4
10.4
10.18
10.12
10.7,12
10.18
10.17
10.16
10.4
10.3
10.13
10.14
10.4
10.13-18
10.15
10.13
10.14
10.15
10.17
10.5
10.4-5
10.7,12
10.6,12
10.16
10.17
10.11
10.10
10.5
10.16
10.7
10.5,11
10.3
10.3
10.14
10.6-7
10.18
10.2
10.4
10.1-4,11
10.1,3-4
10.1
10.1
10.14



Page
Numbers

RPLSTRINGEX;N;Y] SUBR ....vvivrecvennevananansess 10.7,12
RSTRING[ ] SUBR ......cveveeecscocnccccaasacsneass 10.5
searching Strings ....cccceesecccscssssscnssessss 10.8-10
SETA[A;N;V] ..evveeee teevevecvecsseracoseranee . 10.13
SETDLA;N;V]  tieietenrvesessssonssssscessennnncees 10.14
STORAGE[FLG] ...... Cecceseescssrsesssersnesvescss 10.16
STREQUALLX;Y] ....c.n. teecesstesecsasescsssreccsss 10.5
string characters .......cccveeececsccscsnssessse 10,11
string functions ......... secvescesstsssassvecsess 10.5-10
string pointers ....... U 1+ IR § |
string storage ....... vevseescenssosseassnsasesenass 10.11-12
STRINGP[X] SUBR ......vcvee evescceseeverssssensss 10.5
STRPOS[X;Y;START;SKIP;ANCHOR;TAIL] ....ccc¢cee... 10.8-9
STRPOSLLA;STR;START;NEG] .cvcevveceossvvccncnsers 10,9-10
SUBSTRING[ X;N;M] SUBR ........... cebsereesrenaans 10.6,11
type numbers ............. cereecsensncesnsecsscsss 10.14
TYPEPIX;N] coivieinenvans cevesesesescessessccssees 10.15
unboxed numbers (in arrays) ..cccecescccesscceses 10,12
UNPACK[ X;FLG] SUBR ..... ceesrersvsevrssaveracssss 10.2-3
# (followed by a number) .....cceeevevensececesses 10.13

INDEX.10.2



SECTION 11
FUNCTIONS WITH FUNCTIONAL ARGUMENTS

As in all LISP 1.5 Systems, arguments can be passed which can then be used as
functions. However, since car of a form is never evaluated, apply or apply*
must be used to call the function specified by the value of the functional

argument.

Functidns which use functional arguments should use variables with obscure
names to avoid possible conflict with variables that are used by the functional
argument. For example, all system functions standardly use variable names
consisting of the function name concatenated with g or fn, e.g. mapx. Note
that by specifying the free variables used in a functional argument as the
second argument to .function. thereby using the INTERLISP FUNARG feature, the

user can be sure of no clash.

function[x;y] is an nlambda function. If y=NIL, the value of
function is identical to quote, for example,
(MAPC LST (FUNCTION PRINT)) will cause mapc to be
called with two arguments the value of 1st and
PRINT. Similarly,
(MAPCAR LST (FUNCTION(LAMBDA(Z) (LIST (CAR Z)))))
will cause mapcar to be called with the value of
1st and (LAMBDA (Z) (LIST (CAR 2))). When
compiled, function will cause code to be compiled

for x; quote will not. Thus

11.1



map[mapx;mapfni;mapfn2]

1

i.e., becomes a non-list.

(MAPCAR LST (QUOTE (LAMBDA --))) will cause mapcar
to be called with the value of 1st and the
expression (LAMBDA --). The functional argument
will therefore still be interpreted. The
corresponding expression using function will cause
a dummy function to be created with definition
(LAMBDA --), and then compiled. mapcar would then
be called with the value of 1st and the name of

the dummy function. See Section 18.

If y is not NIL, it is a list of variables’that
are (presumably) used freely by Xx. In‘this case,
the value of function 15 an expression of the form
(FUNARG x array), where égggx contains | the
variable bindings for those variables on y.

Funarg is described on page 11.5-7.

If mapfn2 is NIL, map applies the function mapfni
to successive tails of the list mapx. That is,
first it computes mapfni[mapx], and then
mapfni[cdr(mapx]], etc., until mapx is exhausted.l
If mapfn2 is provided, mapfn2[mapx] 1is wused
instead of cdr[mapx] for the next call for mapfnt,
e.g., if mapfn2 were cddr, alternate elements of
the 1list would be skipped.

The value of map is NIL. map compiles open.

11.2



mapc[mapx;mapfni;mapfne] Identical to map, except that mapfni[car[mapx]] is
computed at each iteration instead of
mapfni[mapx], i.e., mapc works on elements, map on
tails. The value of mapc is NIL. mapc compiles

open.

maplist[mapx;mapfni;mapfn2] successively computes the same values that map
would compute; and returns a list consisting of

those values. maplist compiles open.

mapcar[mapx;mapfni;mapfn2] computes the same values that mapc would compute,
and returns a list consistihg of those values,
e.g. mapcar[x;FNTYP] is a list of fntyps for each

element on X.  mapcar compiles open.
mapcon[mapx;mapfni;mapfn2] Computes the same values as map and maplist but
nconcs these values to form a 1list which it

returns. mapcon compiles open.

mapconc[mapx;mapfni;mapfn2] Computes the same values as mapc and mapcar, but

nconcs the values to form a list which it returns.

mapconc compiles open.

Note that mapcar creates a new list which is a mapping of the old list in that
each element of the new list is the result of applying a function to the
corresponding elementbon the original list. mapconc is used when there are a
variable number of elements (including none) to be inserted at each iteration,
e.g. mapconc[X;(LAMBDA (Y) (AND Y (LIST Y)))] will make a list consisting of x
with all NILs removed, mapconc[X;(LAMBDA (Y) (AND (LISTP Y) Y))] will make a

linear 1list consisting of all the 1lists on x, e.g. if applied to

11.3



((AB) C(DEF)(G)HI)will yield (ABDEF G);z

subset[mapx;mapfni;mapfn2]  applies mapfni to elements of mapx and returns a
list of those elements for which this application
is non-NIL, e.g.,
subset[ (A B 3 C 4);NUMBERP] = (3 4).
mapfn2 plays the same role as with map, mapc, et

al. subset compiles open.

map2c[mapx;mapy;mapfni;mapfn2] Identical to mapc except mapfni is a function
of two arguments, and mapfni[car[mapx];car[mapy]]
is computed at each interation.3 Terminates when

either mapx or mapy are exhausted.

map2car[{mapx;mapy;mapfni;mapfn2] Identical to mapcar except mapfni 1is a
function of two arguments and
mapfni[car[mapx];car[mapy]] is used to assemble
the new list. Terminates when either mapx or mapy
is exhausted.

Note: CLISP (Section 23) provides a more general and complete facility for
expressing iterative statements, e.g. (FOR X IN Y COLLECT (CADR X) WHEN
(NUMBERP (CAR X)) UNTIL (NULL X)).

e . e R G S e e W MR R SR e e W e TR e R e S S S S TR G s SR S e S N e TN SN A G e e G e PP S D Gy SR S R D e G e e

Note that since mapconc uses nconc to string the corresponding lists
together, in this example, the original list will be clobbered, i.e. it
would now be ((AB D EF G) C(DEF G) (G) HI). If this is an undesirable
-side effect, the functional argument to mapconc should return instead a top
level copy, e.g. in this case, use (AND (LISTP Y) (APPEND Y)).

mapfn2 is still a function of one argument, and is applied twice on each
iteration; mapfn2[mapx] gives the new mapx, mapfn2[mapy] the new mapy. cdr
is used if mapfn2 is not supplied, i.e., is NIL.

11.4



maprint{lst;file;left;right;sep;pfn;lispxprintflg]

is a general printing function. It cycles through
lﬁi apblying pfn (or prini if pfn not given) to
each element of ;ggQ Between each application,
maprint performs prinl of sep, or " * if sep=NIL.
If left is given, it is printed (using prini)
initialiy; if right is given it is printed (using
prinl) at the end.

Fo; example, maprint[x;NIL;%(;%)] is equivalent to
print for 1lists. To print a list with commas
between each element and a final '.' one could use

maprint[x; T;NIL;%.:%,].

If lispxprintflg = T, lispxprinl is used for prinl
(see Section 22).

Mapdl, searchpdl See Section 12.
mapatoms See Section 5.
‘avery, some, notevery, notany FSee Section §.
Funarg

function is a function of

variables uSed freely by x.

two arguments, x, a function, and y a 1list of

If y is not NIL, the value of function is an

expression of the form (FUNARG x array), where array contains the bindings of

the variables on y at the time the call to function was evaluated. funarg is

not a function itself. Like LAMBDA and NLAMBDA, it has meaning and 1is

specially recognized by INTERLISP only in the context of applying a function to

arguments. In other words,

the expression (FUNARG x array) is used exactly

11.5



4

like a function.”™ When a funarg is applied, the stack is modified so that the

bindings contained in the array will be in force when X, the function, is

called.®

For example, suppose a program wished to compute (FOO X (FUNCTION FIE)), and
fie used y and 2z as free variables. If foo rebound y and z, fie would obtain
the rebound values when it was applied from inside of foo.. By evaluating
in#tead (FOO X (FUNCTION FIE (Y Z))), foo.  would be called with
(FUNARG FIE array) as its second ardument. where array contained the bindings
of y and z (at the time foo was called). Thus when fie was applied from inside

of foo, it would 'see' the original values of y and z.

However, funarg is more than just a way of circumventing the clashing of
variables. For example, a funarg expression can be returned as the value of a
computation, and then used ‘'higher up', e.g., when the bindings of the
variables contained in array were no longer on the stack. Furthermore, if the
function in a funarg expression sets any of the variables contained in the
array, the array itself (and only the array) will be changed. For example,
suppose foo is defined as

(LAMBDA (LST FN) (PROG (Y Z) (SETQ Y &) (SETQ Z &) ... (MAPC LIST FN) ...))

and (FOO X (FUNCTION FIE (Y Z))) is evaluated. If one application of fie (by
the mapc in foo) changes y and 2z, then the next application of fie will obtain
the changed values of y and z resulting from the previous application of fie,
since both applications of fie come from the exact same funarg object, and
hence use the exact same array. The bindings of y and z bound inside of foo,

and the bindings of y and z above foo would not be affected. In other words,

N e ER en e e e e M R Re W G WS Be R TR W MR e R e R e W EE W R D G GR AR NP ER e G  ES RS G 5 D D D R D WD S G S UP e N S5 TR R P D D D e D P e e e

4 LAMBDA, NLAMBDA, and FUNARG expressions are sometimes called 'function
objects' to distinguish them from functions, i.e., literal atoms which have
function definitions.

5

The implementation of funarg is described in Section 12.



the variable bindings contained in array are a part of the function object,

i.e., the funarg carries its environment with it.

Thus by creating a funarg expression with function, a program can create a
function object which has updateable binding(s) associated with the object
which last between calls to it, bﬁt are only accessible through that instance
of the functibn. For example, us;ng the funarg device, a program could
maintain two different instances of the same random number generator in

different states, and run them independently.

Example

If foo is defined as (LAMBDA (X) (COND ((ZEROP A) X) (T (MINUS X))) and fie as
(LAMBDA NIL (PROG (A) (SETQ A 2) (RETURN (FUNCTIONkFOO)))). then if we perfornm
(SETQ A 0), (SETQ FUM (FIE)), the value of fum is FOO, and the value of
(APPLY® FUM 3) is 3, because the value of A at the time foo is called is 0.

However if fie were defined instead as

(LAMBDA NIL (PROG (A) (SETQ A 2) (RETURN (FUNCTION FOO (A))))), the value of
fum would be (FUNARG FOO array) and so the value.of (APPLY® FUM 3) would be -3,
because the value of A seen by foo is the value A had when the funarg was

created inside of fie, i.e. 2.

11.7



APPLY[FN;ARGS] SUBR
APPLY*[FN;ARG1;.
CLISP ...ieveernne
FUNARG ...........
FUNCTION[EXP;VLIST]
function objects .
functional argument
MAP[ MAPX;MAPFN1;MAP
MAP2C[ MAPX;MAPY ;MAP
MAP2CAR[ MAPX ;MAPY ;M
MAPC[ MAPX ;MAPFN1 ;MA
MAPCAR[MAPX;MAPFN1
MAPCON[MAPX ;MAPFN1
MAPCONC[ MAPX ;MAPFNI1;
MAPLIST{MAPX ;MAPFN1;
MAPRINT[LST;FILE;LE
SUBSET[MAPX: MAPFNI

variable bindings

Index for SGCfion 11

iARGNT SUBR® o onvernnreennnees
.ﬁl‘ ® B 6 5 0 6 0 00 86BN L BN NN

S L R A I R R I A I B A Y B A I IR B )

T PN
FNL;MAPFN2] cuveevenacnnencnns
ApFNI;MAPFNZJ LRCRE BRI R A I
PFN2} .... B R

;MAPFNZ] LK BB R I R I I I I B I BN BN IR IR )
SMAPEN2T L iiiviniennnns v

iMAPFNZ2]  oiiivevrenconsnnsenas
MAPFNZ2]  ooiiiiieiievennnnens
FT;RIGHT;SEP;PFN; LSPXPRNTFLG]..
MAPFNZ] seseseccesstacrsersnas

6000800000000 000000088800s000000

INDEX.11.1

~ Page
Numbers

11.5-7



SECTION 12
VARIABLE BINDINGS AND PUSH DOWN LIST FUNCTIONS

A number of schemes haye been used in different implementations of LISP for

storing the values of variables. These include:
1. Storing values on in association list paired with the variable names.

2. Storing values on the property list of the atom which is the name of

the variable.

3. Storing values in a special value cell associated with the atom name,
putting old values on a pushdown list, and restoring these values when

exiting from a function.
4. Storing values on a pushdown list.

The first three schemes all have the property that values are scattered
throughout list structure space, and, in general, in a paging environment would
require references to many pages to determine the value of a variable. This
would be very undesirable in our system. In order to avoid this scattering,
and possibly excessive drum references, we utilize a variation on the fourth
standafd scheme, usuélly 6n1y used for transmitting values of arguments to

compiled functions; that is, we place these values on the pushdown list.z But

Also called the stack.

12.1



since we use an interpreter as well as a compiler, the variable names must also
be kept. The pushdown list thus contains pairs, each consisting of a variable
name and 1its value. Each pair occupies one word or 'slot’' on the pushdown
list, with the name in the left half, i.e. cdr, and the value in the right
half, i.e. car. The interpreter gets the value of a variable by searching back
up the pushdown 1ist looking for a. 'slot' for which cdr is the name of the

variable. car is then its value.

One advantage of this scheme is that the current top of the pushdown stack is
usually in core, and thus drum references are rarely required to find the value
of a variable. Free variables work automatically in a way similar to the

association list scheme.

An additional advantage of this scheme is that it is combletely compatible with
compiled functions which pick up their arguments on the bushdown list from
known positions, instead of doing a search. To keep complete compatibility,
our compiled functions put the names of their arguménts on the pushdown list,
although they do not use them to reference variables. Thus, free variables can
be used between compiled and interpreted functions wiih no special declarations
necessary. The names on the pushdown list are also very useful in debugging,
for they make possible a complete symbolic backtrace in case of error. Thus
this technique, for a small extra overhead, minimizes drum references, provides

symbolic debugging information, and allows completely free mixing of compiled

and interpreted routines.

There are three pushdown lists used in INTERLISP: the first is called the
parameter pushdown liSt. and contains pairs of variable names and values, and
temporary storége of pointers; the second is called the control pushdown Iist.
and contains function feturns and other control information; and the third is

called the number stack and is used for storing temporary partial results of

numeric operations.

12.2



However, it 1s more convenient for the use¢ to consider the push-down list as a
single "list" containing the names of funckions that have been entered but not
yet exited, and the names and values of the corresponding variables. The
multiplicity of pushdown lists in the actual implementation is for efficiency

of operation only.

The Push-Down List and the Interpreter

In addition to the names and values of arguments for functions, information
regarding partially-evaluated expressions is kept on the push-down list. For
example, consider the following definition of the function fact (intentionally
faulty):

(FACT
[LAMBDA (N)
(COND
((ZEROP N)
L)
(T (ITIMES N (FACT (SuB1 NJ)

In evaluating the form (FACT 1), as soon as fact is entered, the interpreterA
begins evaluating the implicit progn followinﬁ the LAMBDA (see Section 4). The
first function entered in this process is cond. cond begins to process its
list of clauses. After calling zerop and getting a NIL value, cond proceeds to
the next clause and evaluates T. Since T 1is true, the evaluation of the
implicit progn that is the consequent of the T clause is begun (see Section 4).
This requires calling the function itimes. However before itimes can be
called, its arguments must be evaluated. The first argument is evaluated by
searching the stack for the last binding of N; the second involves a recursive

call to fact, and another implicit progn, etc.

Note that at each stage of this process, some portion of an expression has been

evaluated, and another is awaiting evaluation. The output below illustrates

12.3



this by showing the state of the push-down list at the point in the computation

of (FACT 1) when the unbound atom L is reached.

«FACT(1)
U.B.A.

(L BROKEN)
:BTV!

*FORM* (BREAK1 L T L NIL #34047)
#0 (L)

#0 (((ZEROP N) L) (T (ITIMES N (FACT (SUB1 N))))) 1
COND

*FORM® (COND ((ZEROP N; %

(T (ITIMES N (FACT (SUB1 N
#0 ((COND ((ZEROP N) L) (T (I )

) NN)

T (ITIMES N (FACT (SUB1 N))))))
N O

FACT

*FORM* (FACT (SUB1 N))

#2 ITIMES

#0 ((FACT (SuUB1 N)))

#0 1

*FORM* (ITIMES N (FACT (SuB1 N)))
#0 ((ITIMES N (FACT (SUB1 N))))

A G W

#0 (((ZEROP N) L) (T (ITIMES N (FACT (SUB1 N)))))
COND

*FORM* (COND ((ZEROP N)
#0 ((COND ((ZEROP N) L)

N1
FACT

L) (T (ITIMES N (FACT (SuB1 N
(T (I )

)))
TIMES N (FACT (SUB1 N))))))

))
))
RRTOPR®

Internal calls to eval, e.g., from cond and the interpreter, are marked on the
push-down list by a special mark called an eval-blip. eval-blips are indicated
by the appearance of (VAG 64) in the left-half, i.e. the variable name
position, for that slot. They are printed by the backtrace as *FORM*. The
genealogy of *FORM*'s is thus a history of the computation. Other temporary
information is frequently recorded on the push-down list in slots for which the
‘variable name' 1is (VAG 0), which prints as #0. In this example, this
information consists of (1) the tail of a list of cond clauses, (2) the tail of

an implicit progn, 1i.e., the definition of fact, (3) the tail of an argument

12.4



list, (4) the value of a previously cvaluated argument, (5) the tail of a cond

clause whose predicate evaluated to true, and (6) and (7) same as (1) and (2).

Note that a function is not actually entered and does not appear on the stack,
until its arguments have been evaluated.Z Also note that the #0 'bindings’'
comprise the actual working storage. In other words, in the above example, if
a (lower) function changed the value of the binding at (1) (not recommended)
the cond would continue interpreting the new binding as a list of cond 61auses.
Similarly, if (4) were changed, the new value would be given to itimes as its
first argument after its second argument had been evaluated, and itimes was

actually called.

The Pushdown List - and Compiled Functions

Calls to compiled functions, and the bindings of their arguments, i.e. names
and values, are handled in the same way as for interpreted functions (hence the
compatibility between interpreted and compiled functions). However, compiled
functions treat free variables in a Qpecial way that interpreted functions do
not. Interpfeted functions "look up® free variables when the variable is
encountered, and may loock up the same variable many times. However, compiled

functions look up each free variable only once.3

Whenever a compiled function
is entered, the pushdown list is scanned and the most recent binding for each
free variable used in the function is found (or if there is no binding, the
value cell is obtained) and stored in the right half of a slot on the stabk (an

unboxed 0 is stored in the left half to distinguish this 'binding' from

2 except for functions which do not have their arguments evaluated (although
they themselves may call eval, e.g. cond).
3

A list of all free variables is generated at compile time, and is in fact
obtainable from the compiled definition. See Section 18.

12.5



ordinary bindings). Thus, following the bindings of their arguments, compiled
functions store on the pushdown list pointers to the bindings for each free

variable used in the function.

In addition to the pointers to free variable bindings, compiled functions -
differ from interpreted fuﬁctions in the way they treat locally bound :
variables, i.e. progs and open lambdas. Whereas in interpreted functions progs
and open lambdas are called in the ordinary way as functions, in compilation,
progs and open lambdas disappear, although the variables bound by them are
stored on the stack in the conventional manner so that functions called from
inside them can reference the variables. These variables appear on the stack
following the arguments to the compiled function (if any) and the free variable
pointers (if any). The only way to determine dynamically what variables are
bound locally by a compiled function is to search the stack from the first slot
beyond the last argument to the function (which can be found with stknargs and
stkarg described below), to the slot corresponding to the first argument of the
next function. Any slots encountered that contain literal atoms in their left

half are local bindings.

Pushdown List Functions

NOTE: Unless otherwise stated, for all pushdown list functions, pos is a
position on the control stack. If pos is a literal atom other than NIL,
(STKPOS pos 1) is used. In this case, if pos is not found, i.e., stkpos
returns NIL, an ILLEGAL STACK ARG error is generated.

stkpos[fn;n;pos] Searches the control stack starting at pos for the

nth occurrence of fn. Returns control stack

12.6



stknth{n;pos]

fstknth[n;pos]

stkname[ pos]

position of that fn if found,? else NIL. If n is
positive, searches backward (normal usage). If n
is negative, searches forward, 1i.e., down the
control stack.’ For example, stkpos[F00;-2;FIE]
finds second call to FOO after (below) the last
call to FIE. If n is NIL, 1 is used. 'If pos is
NIL, the search starts at the current position.

stkpos[ ] gives the current position.

Value is the stack position (control stack) of the

nth function call relative to position pos. If

pos is NIL, the top of stack is assumed for n > O,

and the current position is assumed for n < O,
i.e., stknth[-1] is the call before stknth,
stknth[1] is the call to evalgt at the top level.
Value of stknth is NIL if there is no such call -
e.g., stknth[10000] or stknth[-10;stknth[5]].

version of stknth that compiles open.

Value is the name of the function at control stack

position pos. 1In this case, pos must be a real

stack position, not an atom.

In summary, stkpos converts function names to stack positions, stknth converts

numbers to stack positions, and stkname converts positions to function names.

- e - - - -

XL R R L L T P LR L R Y T Y Y Y L R T

A stack position is a pointer to the corresponding slot on the control or

parameter stack, i.e., the address of that cell. It prints as an unboxed
number, e.g.,. #32002, and its type is 2 (Section 10).

12.7



Information about the variables bound at a particular function call can be

obtained using the following functions:

stknargs[pos] ‘ Value is the number of arguments bound by the

function at position pos.

stkarg{n;pos] Value is a pointer to the nth argument (named or
not)s of the function at position pos, i.e., the

value is a parameter stack position. car of this
pointer gives the value of the binding, cdr the
name. n=i correspoﬁds to the first argument at
pos. n can be 0 or negative, i.e., stkarg[0;FO00]
is a pointer to the slot immediately before the
first argument to FO0O, stkarg[-1;F00] ‘the one

before that, etc.
fstkarg[n;pos] version of stkarg that compiles open.

Note that the user can change (set) the value of a particular binding by

performing an rplaca on the value of stkarg. Similarly, rplacd changes (sets)

the name.

The value of stkarg is a position (slot) on the parameter stack. There is
currently no analogue to stknth for the parameter stack. However, the
parametef stack is a contiguous block of memory, so to obtain the slot previous
to a given slot, perform vag[subif{loc[slot]]]; to obtain the nexf slot perform

vag[addi[loc[slot]]], i.e.

6 Subrs do not store the names of their arguments. :

12.8



stkarg[2;pos] = vag[addl[loc[stkarg(l;pos]]]].a
As an example of the use of stknargs and stkarg:
variables[pos] returns list of variables bound at pos.
can be defined by:

(VARIABLES
[ LAMBDA (POS)
(PROG (N L)
(SETQ N (STKNARGS POS))
LP (COND
: ((ZEROP N)
(RETURN L)))
(SETQ L (CONS (CDR (STKARG N POS))
L

))
(SETQ N (SuB1 N))
(60 LP])

The counterpart of variables is also available.
stkargs[pos] Returns 1list of values of variables bound at pos.

The next three functions, stkscan, evalv, and stkeval all involve searching the

parameter pushdown stack. For all three functions, pos may be a position on

the control stack, i.e., a value of stkpos or stknth.7 In this case, the search

starts at stkarg[stknargs[pos];pos] i.e., it will include the arguments to the
function at pos but not any locally bound variables. pos may also be a
position on the parameter stack, in which case the search starts with, and
includes that position. Finally, pos can be NIL, in which case the search
starts with the current position on the parameter stack.

------------------------------------ D OP e D D W S P G R D R D e e R S s e R S P P S A D S e

6  See Section 13 for discussion of vag and loc.

7 or‘ a function name, which 1s equivalent to stkpos[pos;1] as described

earlier.

12.9



stkscan[ var;pos] Searches backward on the parameter stack from pos
for a binding of var. Value is the slot for that
binding if found, 1i.e., a parameter stack
position, otherwise var itself (so that in the .
case of literal atoms, car of stkscan is always

the value of var).

evalv[var;pos] car[ stkscan[var;pos]],i.e., returns the value of

the atom var as of position pos.

stkeval[pos;form] is a more general evalv. It is equivalent to
eval[form] at position pos, i.e., all vartables

evaluated in form, will be evaluated as of gg_.s

Finally, we have two functions which clear the stacks:
, .
retfrom| pos;value] clears the stack back to the function at position
pos, and effects a return from that function with

value as its value.

reteval[pds;foru] clears the stack back to the function at position
| hggﬁ then evaluates form and returns with its
value to the next higher function. In other

words, reteval[pos,form] is equivalent to

retfrom[pos;stkeval[pos;form]].9

8 However, any functions in form that specifically reference the stack, e.g.,

stkpos, stknth, retfrom, etc., 'see' the stack as it currently is. (See
page 12.11-13 for descripti n of how stkeval is implemented.)

Provided form does not involve any stack functions, as explained in
footnote B.

12.10



We also have:

mapdl[mapdlfn;mapdlpos] starts at position mapdlpos (current if NIL), and
applies mapdifn to the function name at each
pushdown‘ position, 1i.e., to stkname[mapdlpos]
until the top of stack is reached. Value is NIL.

mapdlpos is updated at each iteration.

For example, mapdl[ (LAMBDA (X) (AND (EXPRP X) (PRINT X)))] will print all exprs
on the push-down list.
mapdl{ (LAMBDA (X) (COND ((GREATERP (STKNARG MAPDLPOS) 2) (PRINT X] will print

all functions of more than two arguments.

searchpdl{ srchfn;srchpos] searches the pushdown list starting at position
srchpos (current if NIL) until it finds a position
for which srchfn applied to the name of the
function called at that position is not NIL. Value
is (NAME . position) if such a position is found,
otherwise NIL. srchpos 1is wupdated at each

iteration.

The Pushdown List and Funarg

The 1linear scan up the parameter stack for a variable binding can be
interrupted by a special mark called a skip-blip appearinb on the stack in a
name position (See Figure 12-1). In the value position is a pointer to the
position on the stack where the search is to be continued. This is what is
used to make stkeval, page 12.10 work. It is also used by the funarg device
(Section 11).

When a funarg is applied, INTERLISP puts a skip-blip on the parameter stack

12.11



with a pointer to the funarg array, and another skip-blip at the top of the
funarg array pointing back to the stack. The effect is to make the stack look
like it has a patch. The names and values stored in the funarg array will thus
be seen before those higher on the stack. Similarly, setting a variable whose
binding is cbntained in the funarg afray will change only the array. Note
however that as a consequence of this implementation, the same instance of a

Junarg object cannot be used recursively.

12.12



USE OF 'SKIPBLIPS'

SKIP A\

NM VA

VAL

NM_ | VAL |

NM VAL

PARAMETER PARAMETER
STACK STACK
o °
e ®
d °
NM | VAL | NM VAL |
NM | VAL NM T VAL
° SKIP
° NM VAL
° NM | VAL
NM | VAL |<| ARGUMENTS °
NM | VAL TO STKEVAL °
SKIP — °
NM | VAL |<— BEGIN
NM | VAL EVALUATION OF
° FORM
[ ]
[
[ ]
STKEVAL FUNARG
FIGURE 12-1I

12.13

FUNARG
ARRAY



Index for Section 12

Page
Numbers

association 1list ......... tecesesceasectcecnansses 12.1-2
backtrace ......ccc000. Ceereseceencssrencsssscess 12.2,4
control pushdown 1list ......cccccecencvccscencess 12.2
debugging ..... cevon cesseresecssacnenressnseasss 12.2
eval-blip ..... cesececanas P -
EVALVLVAR;POS] ...cceens cevesrsesesnsssnscasscess 12.10
free variables .........c000. tececsesscnesesseces 12.2,5
free variables and compiled functions ........... 12.5
FSTKARG[N;POS] SUBR .....cenceuue ceceseesesseecces 12.8
FSTKNTH[N;POS] SUBR ...... B 2 4
FUNARG .....veeniecnvense hesesesessescncsnescsss 12.11-12
ILLEGAL STACK ARG (error massage) P
locally bound variables ......cceeevecessscvsreece 12.6
MAPDLLMAPDLFN;MAPDLPOS] ...ccceevevvaccccveenesss 12.11
number stack ........... cesesesesivecssevessnssees 12.2
parameter pushdown list .....ccececeeeeeecceveesss 12.2,8-9,11
pushdown list ........ veeenessavecsecevsosevecsese 12.1-13
pushdown list functions .......ccccvenvcvncnes .. 12.6-11
RETEVAL[POS;FORM] SUBR +.icveevvcecscocoasscnsonsne 12.10
RETFROMLPOS;VALUE] SUBR ...cvecvcosaccanccnes veee 12.10
searching the pushdown list ........ seseescsnanss 12.6,9
SEARCHPDLL SRCHFN;SRCHPOS] .ivcvecsennnsnnanencees -12.11
Skip blip %84 E 0 00 IEEBRLIONOGIOOOERISEIOODVIOESIOIEIOEOLELOLEESGDS 12.11

slot (on pushdown list) ..... Ceessenccssaraane ve.. 12.2,6,8,10
~stack position ........ Cesiecasenas cesecenae veees 12.6-7,9-10
STKARGLN;POS] SUBR cevivervorsnsesvssesnsorsesoss 12.8<9
STKARGS[POS] ......... Ceesveseesestrsecnee reeesss 12.9
STKEVAL[POS;FORM] SUBR .icceecoovccesovsosionesnsses 12.10~-11
STKNAME[POS] SUBR ..vcvevececccacnscconscoseneces 12.7 *
STKNARGS[POS] SUBR .teievavesvsveacsscaassnosveaas. 12.8
STKNTH[N;POS] SUBR ....ce0e cttecrssccensronsnsees 12.7-9
STKPOS[FN;N;POS] ..... tececesssascarcesasscsccsens 12.6-7,9
STKSCAN[VAR;POS] SUBR cvveceocssserccsarnvssssosss 12.10
value cell ............. cecenens vesesssseseanss .. 12.1
variable bindings .....c.ccecetctcncstcssccccseecs 12,16
VARIABLES[POS] ..cccvvcnse Ceeces secesrececasraces 12.9

70 ...... ceerssessenes teeetereseverssesrsseccssses 12.4+5
XFORM® . ... icievnncas Cesscecsanssessescaccsceses 12.4

INDEX.12.1



SECTION 13
NUMBERS AND ARITHMETIC FUNCTIONS

13.0 General Comments

There are three different types of numbers in INTERLISP: small integers, large
integers, and floating point numbers.t Since a large integer or floating point
number can be (in value) any 36 bit quantity (and vice versa), it is necessary
to distinguish between those 36 bit quantities that represent large integers or
floating point numbers, and other INTERLISP pointers. We do this by "boxing®
the number, which is sort of like & special "cons®: when a large integer or
floating point number is created (via an arithmetic operation or by read),
INTERLISP gets a new word from "number storage" and puts the large integer or
floating point number into that word. INTERLISP then passes around the pointer
to that word, i.e., the "boxed number®, rather than the actual 36 bit quantity
itself. Then when a numeric function needs the actual numeric quantity, it
performs the extra level of addressing to obtain the "value" of the number.
This latter process is called "unboxing”. Note that unboxing does not use any
storage, but that each boxing operation uses one new word of number storage.
Thus, if a computation creates many large integers or floating point numbers,
i.e., does lots of boxes, it may cause a garbage collection of large integer

space, GC: 18, or of floating point number space, GC: 16.

A e e S G e s S G D @S B G R e S T T N G P D D R P P KD W WY R e N N S D e G N D B P T S W S P N A N G W G S D W e W S R R S e

1 Floating point numbers are created by the read program when a . or an E
appears in a number, e.g. 1000 is an integer, 1000. a floating point
number, as are 1E3 and 1.E3. Note that 10000, 1000F, and 1E3D are perfectly
legal literal atoms.

13.1



13.1 Integer Arithmetic

Small Integers

Small integers are those integers for which smallp is true, currently integers
whose absolute value is less than 1536. Small integers are boxed by offsetting
them by a constant so that they overlay an area of INTERLISP's address space
that does not correspond to any INTERLISP data type. Thus boxing small numbers
does not use any storage, and furthermore, each small number has a unique
representation, so that eq may be used to check equality. Note that eq should
not be wused for large integers or floating point numbers, e.g.,

eq[2000;add1[1999]] is NIL! eqp or equal must be used instead.

Ihteger Functions

All of the functions described below work on integers. Unless specified
otherwise, if given a floating point number, they first convert the number to
an 1nteger by truncating the fractional bits, e.g., iplus[2.3;3.8]=8; if given

a non-numeric argument, they generate an error, NON-NUMERIC ARG.

It is important to use the integer arithmetic functions, whenever possible, in
place of the more general arithmetic functions which allow mixed floating point

and integer arithmetic, e.g., iplus vs plus, igreaterp vs greaterp, because the

integer functions compile open, and therefore run faster than the general
arithmetic functions, and because the compiler is "smart® about eliminating
unnecessary boxing and unboxing. Thus, the expression

(IPLUS (IQUOTIENT (ITIMES N 100) M) (ITIMES X Y)) will compile to perform only
one box, the outer one, and the expression

(IGREATERP (IPLUS X Y) (IDIFFERENCE A B)) will compile to do no boxing at all.

13.2



Note that the PDP-10 is a 36 bit machine, so that all integers are between
-2t35 and 2135-1.2 Adding two integers which produce a result outside this

range causes overflow, e.g., 2134 + 2134,

The procedure on overflow is to return the largest possible integer, i.e.

2035 - 1.9

1p1us[x1:xa;...;xn] Xg + Xy # .00 X,

iminus[x] ‘ - X

idifferencel x;:y] XxX-Yy

addi[x] x+1

subifx] x -1

itimes[xl;xz;...;xn]- the product of X,,x,,...Xn

iquotient{x;y] x/y truncated, e¢.g., iquotient[3;2]={,
iquotient[-3,2]=-1

iremainder[x;y] the remainder when x 1is divided by Yy, e.g.,
iremainder [3;2]=1

igreaterp(x;y] T if X > y; NIL otherwise

gmmmmmmmmseeeeas ceecccccmccas ccesesressbnesmcscssrmnamsnenennanmnan- cememmmmcee

Approximately 34 billion

If the overflow occurs by trying to create a negative number of too large a
magnitude, -2¢35 is used instead of 2¢35-1.

13.3



ilesspx;y]

zerop[x]

T is x € y; NIL otherwise

defined as eq[x;0].

Note that zerop should not be used for floating point numbers because it uses

eq. Use eqp[x;0] instead.

minusp[x]

eqpln;m]

smallp[n]

fixp[x]

fix[x]

Ve e - e e e .

T if x is negative; NIL otherwise. Does not
convert x te an integer, but simply checks sign

bit.

T if n and m are eq, or equal numbers, NIL
otherwise. (eq may be used if n and m are known
to be small integers.) eqp does not convert n and
m to integers, e.g., eqp[2000;2000.3]=NIL, but it
can be used to compare an integer and a floating
point number, e.g., eqp[2006;2000.0]=T. eqp does

not generate an error if n or m are not numbers.

T if n is a small integer, else NIL. smallp does

not generate an error if n is not a number.

X if x is an integer, else NIL. Does not generate

an error if x is not a number.

Converts x to an integer by truncating fractional
bits, e.g., fix[2.3] = 2, fix[-1.7] = -1. 1If x is
already an integer, fix[x])=x and doesn't use any

storage.4

Since FIX 1is also a lispx command (Section 22), typing FIX directly to

lispx will not cause the function fix to be called.

13.4



logand[X,;ixXy;...;%,]

logor[xi;xa;...;xn]

logxor[xl;xz;...;xn]

ishin;m]

rshin;m]

11shin;m]

lrsh[n;m]

lambda no-spread, value is logical and of all its

arguments, as an integer, e.g., logand[7;5;6]=4.

lambda no-spread, value is the logical or of all
its  arguments, as an integer, e.g.,

logor(1;3;9]=11.

lambda no-spread, value is tﬁe logical exclusive
or of 1ts arguments, as an integer, e.g.,
logxor[11;5] = 14,

logxor{11:5;9] = logxor[14:9] = 7.

(arithmetic) left shift, value is n*2tm,i.e., n is
shifted left m places. n can be positive or
negative. If m is negative, n is shifted right -m

places.

(arithmetic) right shift, value is n*2t-m, i.e., n
is shifted right m places. n can be positive or
negative. If m is negative, n is left -m places.
logical left shift. On PDP-10, llsh is equivalent
to 1sh.

logical right shift.

The difference between a 1logical and arithmetic right shift 1lies in the

treatment of the sign bit for negative numbers. For arithmetic right shifting

of negative numbers, the sign bit is propagated, i.e., the value is a negative

number. For logical right shift, zeroes are propagated. Note that shifting

(arithmetic) a negative number 'all the way' to the right yields -1, not O.

13.5



13.2 Floating Point Arithmetic

All of the functions described below work on floating point numbers. Unless
specified otherwise, if given an integer, they first convert the number to a
floating point number, e.g., fplus[1;2.3] = fplus[1.0;2.3] = 3.3; if given a

non-numeric argument, they generate an error, NON-NUMERIC ARG.

The largest floating point number is 1.7014118E38, the smallest positive (non-
zero) floating point number is 1.4693679E-39. The procedure on overflow is the
same as for integer arithmetic. For underflow, i.e. trying to create a number

of too small a magnitude, the value will be 0.

fplus[xl;xz;...xn] X ¢ Xy + 000 4+ X,

fminus[x] - X

ftimes[xl;xz;...;xn] Xy & X, X L., ® X,

fquotient[x;y] x/y

fremainder{x;y] the remainder when x is divided by y, e.g.,

fremainder[1.0:3.0]= 3.72529E-9.

minusp[x] T if x is negative; NIL otherwise. Wérks for both

integers and floating point numbers.

aeqplx;y] T if X and y are eq, or equal numbers. See

discussion page 13.4.

fagtp[x;y] T if x > y, NIL otherwise.

13.6



floatp[x] is x if x is a floating point number; NIL
otherwise. Does not give an error if x is not a
number . "

Note that tf numberp[x] is true, then either fixp[x] or floatp[x] is true.

float{x] Converts x to a floating point number, e.g.,
float[0] = 0.0.

13.3 Mixed Arithmetic

The functions in this section are ‘contagious floating point arithmetic'
functions, i.e., if ény of the arguments are floating point numbers, they act
exactly like floating point functions, and float all arguments, and return a
floating point number as their value. Otherwise, they act like the integer
functions. If given a non-numeric argument, they generate an error,

NON-NUMERIC ARG.

plus[xl;xZ;...;xn] Xg# Xy ¢ .00 4 Xn

minus{x] - X

difference[x;y] X-y

times[xl;xz;...;xn] X *x, * .0 X,

quotientix;y] if x and y are both integers, value is

iquotient[x;y], otherwise fquotient[x;y].

remainder{x;y] " if x and y are both integers, value |is

iremainder[x;y], otherwise fremainder{x;y].

13.7



greaterp{x;y]

lessplx;y]

abs[x]

13.4 Special Functions

T if x > y, NIL otherwise.

T if x ¢ y, NIL otherwise.

x if x > 0, otherwise -x. abs uses greaterp and

minus, (not igreaterp and iminus).

These functions are all "borrowed" from the FORTRAN library and handcoded in

INTERLISP via ASSEMBLE by J. W. Goodwin. They utilize a power series expansion

and their values are (supposed to be) 27 bits accurate, e.g., sin[30]=.5

exactly.

expt{m;n]

sqrt{n]

log{x]

antilog{x]

value is mtn. If m is an integer and n is a
positive integer, value 'is an integer, e.g,
expt[3;4]=81, otherwise the value is a floating
point number. If m is negative and n fractional,

an error is generated.

value is a square root of n as a floating point
number. n may be fixed or floating point.
Generates an error if n is negative. sqrt[n] is

about twice as fast as expt[n;.5]

value 1is natural logarithm of X as a floating

point number. x can be integer or floating point.
value is floating point number whose logarithm is

X. X can be integer or floating point, e.g.,

antilog{i] = e = 2.71828...

13.8



sin{x;radiansflg]

cos{x;radiansflg]

tan{ x;radiansflg]

arcsin[x;radiansflg]

arccos[ x;radiansflg]

arctan[x;radiansflg]

rand[ lower ;upper]

in degrees unless radiansflgsT. Value is sind of

®

x as a floating point number.
Similar to sin.

Similar to sin.

x is a number between -1 and i1 (or an error 1is
generated). The value of arcsin is a floating
point number, and 1is in degrees unless
radiansflg=7. In other words, if
arcsin[x;radiansflg]sz then sin[z;radiansflg]=x.
The rénqo of the value of arcsin is -90 to +90 for

degrees, -n/2 to n/2 for radians.
Similar to arcsin. Range is 0 to 180, 0 to w.
Similar to arcsin. Range is 0 to 180, 0 to w.

Value is a pseudo-random number between lower and
upper inclusive, i.e. rand can be used to generate
a sequence of random numbers. If both limits are
integers, the value of rand is aﬁ integer,
otherwise it is a floating point number. The
algorithm is completely deterministic, i.e. given
the same initial state, rand produces the same
sequence of values. The internal state of rand is
initialized using the function randset described
below, and 1s stored on the free variable

randstate.

13.9



randset[x] Value is internal state of rand after randset has
finished operating, as a dotted pair of two
1nt@gers. If x=NIL, value is current state. If
x=T, randstate is initialized using the clocks.
Otherwise, x is interpreted as a previous internal
state, i.e. a value of randset, and is used to
reset randstate. For example,
1. (SETQ OLDSTATE (RANDSET))
2. Use rand to generate some random numbers.
3. (RANDSET OLDSTATE)

4. rand will generate same sequence as in 2.

13.5 Reusing Boxed Numbers - SETN

rplaca and rplacd provide a way of cannibalizing list structur§ for reuse in
order to avoid making new structure and causing garbage éollectidﬁs.s This
section describes an analogous function for large integers and floating point
numbers, setn. setn is used like setq, i.e., its first argumént is cbnsideréd.
as quoted, its second is evaluated. If the current value of the variable being
set is a large integer or floating point number, the new value is deposited
into that word in number storage, i.e., no new storage is used.o If the current
value is not a large integer or floating point number, e.g., it can be NIL,
setn operates exactly like setq, i.e., the large integer or floating point
number is boxed, and the variable is set. This eliminates initialization of

the variable.

This technique is frowned upon except in well-defined, localized situations
where efficiency is paramount.

The second argument to setn must always be a number or a NON-NUMERIC ARG
error is generated.

13.10



setn will work interpretively, i.e., reuse a word in number storage, but will
not yield any savings of storage because the boxing of the second argument will
still take place, when it is evaluated. The elimination of a box is achieved
only when the call to setn is compiled, since setn compiles open, and does not

perform the box if the old value of the variable can be reused.

Caveats concerning use of SETN

There are three situations to watch out for when using setn. The first occurs
when the same variable is being used for floating point numbers and large
integers. If the current value of thq variable is a floating point number, and
it is reset to a large integer, via setn, the large integer is simply deposited
into a word in floating point number storage, and hence will be interpreted as
a floating point number. Thus,

«(SETQ FOO 2.3)

2.3 :

«(SETN FOO 10000)

2.189529E-43
Similarly, if the current value is a large integer, and the new value is a

floating point number, equally strange results occur.

The second situation occurs when algggg variable is reset from a large integer
to a small integer. In this case, the small integer is simply deposited into
large integer storage. It will then print correctly, and function
arithmetically correctly, but it is not a small integer, and hence will not be

eq to another integer of the same value, eo.g.,

13.11



«(SETQ FOO 10000)

10000

«(SETN FOO 1)

1 ‘

«(IPLUS FOQ §5)

6

«(EQ FOO 1)

NIL

«(SMALLP FOO)

NIL
In particular, note that zerop will return NIL even if the variable is equal to
0. Thus a program which begins with FOO set to a large integer ahd counts it

down by (SETN FOO (SUB1 FOO)) must terminate with (EQP FOO 0), not (ZEROP FOO).

Finally, the third situation to watch out for occurs when you want to save the
current value of a setn variable for later use. For example, if FOO is being
used by setn, and the user wants to save its current value on FIE,
(SETQ FOO FIE) is not sufficent, since the next setn on FOO will also change
FIE, because its changes the word in number stdrage pointed to by FOO, and
hence pointed to by FIE. The number must be copied, e.g.,

(SETQ FIE (IPLUS FOO)), which sets FIE to a new word in number storage.

setn[var;x] nlambda function like setq. var is quoted, Xx is
evaluated, and its value must be a number. var
will be set to this number. If the current value
of var is a large integer or floating point
number, that word in number storage is
cannibalized. The value of setn is the (new)

value of var.

13.6 Box and Unbox

Some applications may require that a user program explicitly perform the boxing

and unboxing operations that are usually implicit (and invisible) to most

13.12



programs. The functions that perform these operations are loc and vag
respectively. For example, if a user program executes a TENEX JSYS using the
ASSEMBLE directive, the value of the ASSEMBLE expression will have to be boxed
to be used arithmetically, e.g., (IPLUS X (LOC (ASSEMBLE --))). It must be
emphasized that ‘ |

Arbitrary unboxed numbers should not be passed around as ordinary values
because they can cause trouble for the garbage collector.

For example, supposé the value of x were 150000, and you created (VAG X), and
this just happened to be an address on the free storage list] The next garbage
collection could be disastrous. For this reason, the function vag must be used

with extreme caution when its argument's range is not known. .

One place where vag is safe to use is for performing computations on stack
positions, which are simply addresses of the corresponding positions (cells) on
the stack. To treat these addresses lsfnumbers, the program must first box
them. Conversely, to convert numbers to corresponding stack positions, the
program must unbox them. Thus, suppose x were the value of stkarg, i.e., X
corresponds to a position on the barameter stack. To obtain the next peosition
on the stack, the program must compute (VAG (ADD1 (LOC X))). Thus if Xx were
#32002.7 (LOC X) would be 32002Q,8 (ADD1 (LOC X)) would be 32003Q,
and (VAG (ADD1 (LOC X))) would be #32003.

Note that rather than starting with a number, and unboxing it to obtain its

numeric quantity, here we started with an address, i.e., a 36 bit quantity, and

4 An INTERLISP pointer (address) which does not correspond to the address of
a list structure, or an atom, or a number, or a string, is printed as #n, n
given in octal.

8

Q following a number means the numeric quantity is expressed in octal.

13.13



wishing to treat it as a number, boxed it. For example, loc of an atom, e.g.,
(LOC (QUOTE FO0)), treats the atom as a 36 bit quantity, and makes a number out
of it. If the address of the atom FOO were 125000, (LOC (QUOTE FOO)) would be
125000, i.e. the location of FOO. It is for this reason that the box operation

is called loc, which is short for location.?

Note that FOO does not print as #364110 (125000 in octal) because the print
routine recognizes that it is an atom, and therefore prints it in a special
way, 1.e. by printing the individual characters that comprise 1it. Thus

(VAG 125000) would print as FOO, and would be in fact FOO.

loc[x] Makes a number out of x, i.e., returns the

location of x.

vag[x] The inverse of loc. X must be a number; the value

of vag is the unbox of x.
The compiler eliminates axtra vag's and loc's for example

(IPLUS X (LOC (ASSEMBLE --))) wiil not box the value of the ASSEMBLE, and then
unbox it for the addition.

vag is an abbreviation of value get.

13.14



Index for Section 13

Page
Numbers -

ABS[X] D O L I I R e I I I N I R A A N N N NN NN NN 13.8
ADDI[X] ..eeevennnn eesssersecserensnacsrsvsevevese 13.3
ANTILOGL[X] .......... ervesvssvesensasesesesssesss 13.8
ARCCOS[ X;RADIANSFLG] ...... tevsescseseacsssssessee 13.9
ARCCOS: ARG NOT IN RANGE (error message) ........ 13.9
ARCSIN[ X;RADIANSFLG] .veveeeveovsccnaccssacsesasss 13.9
ARCSIN: ARG NOT IN RANGE (error message) ........ 13.9
ARCTANL X;RADIANSFLG] +.eeveeevsnonvasscossnssarses 13.9
arithmetic functions .....ceveeccvevvccccscssosss 13.2-10
ASSEMBLE L2 I I I I I I I I I I I I Y I U R I B B B AN 13013
DOX i ittt iiiee i ecerercasevsacrevrcaserscsseeresss 13.14
boxed numbers ........ P I |
DOXINg ...ttt ctreersrtntenttovorccncsecnerss 13.1-2,10-12
COS[ X;RADIANSFLEG] .vivveeeevsscascasscssnsssensss 13.9
DIFFERENCELX:Y] cevveeececvescncsoccacsncocssnoee 13.7
EQP[X;Y] SUBR LR I R R N A R A I A I I N N B 1302.4'6
EQUALIX;Y] +evervencescsenvoanososooncscvssassvses 13.2
EXPT[M;N] LR R N I I I R A A B I A I R B I K I A S Y N ] 1308
FGTPEX;Y] SUBR ..veievesrvvesasncccsncnsensencsss 13.6
FIX[X] ..... PP < Y
FIXP[X] -oo-;oo¢~~o0‘1lo'onouol!tooc.0'-!.'00000‘00 1304
FLOATIX] . iiiiiitnenvesvrossorsvosnoososossensessaes 13.7
floating point arithmetic ....cvevevecvevvcccenes 13.6=7
floating point numbers ....ccceececececoccceccsaess 13.1-2,4,10
FLOATPLX] SUBR ...cecevecvaescsscsoencsconnssnsss 13.7
FMINUS[X] .ocieiinnnnnnnns cesssarssssssrecsessees 13.6
FPLUS[X1:X2;...:Xn] SUBR®  ..iieveeocsscscscasenees 13.6
FQUOTIENTIX;Y] SUBR  ..vivveececvercoscsossosennee 13.6
FREMAINDER[X;Y] SUBR .vvvevecnveesecscsveccaseonse 13.6
FTIMES[X1:;X2;...:Xn]) SUBRY ..ccvevveccoceccsoaeee 13.6
GC: 16 (typed by system) ...eveecrcecccesossessss 13.1
GC: 18 (typed by system) ..veecevevesvsocosaenses 13.1
GREATERPLX;Y] SUBR ..vveeesveosorsvcscossvssnsses 13.8
IDIFFERENCELX;Y] +cceeceecncooscovonssoncnssonses 13.3
IGREATERP[X:Y] SUBR ..viececccscsonssvonsovsnnnes 13.3
TLESSPEX;Y) vieeecenne T Y|
ILLEGAL EXPONENTIATION: (error message) ......... 13.8
IMINUS[X] ........ PP B 5 |
integer arithmetic .....ccvetveevescecscecccsoces 13.2-5
IPLUSEXL;;X2:...:Xn] SUBR® L .vievevvvsconesenecssss 13.3
JQUOTIENTEX;Y] SUBR  ...cceveosvncocnscossescnsass 13.3
IREMAINDER[X;Y] SUBR ..... T %)
ITIMES[X1;X2;...:Xn] SUBR* ...eveceevecennosecsas 13.3
large integers .......cccsvcccnnssoncsconassscesss 13.1-2,10
LESSPIX;Y] ceveeecenoese vevesevenssescsesssssesse 13.8
LLSH[N;M] SUBR ...... ceetevecesesessacsssvressenss 13.5
LOCEX] SUBR . iiiiiiiennereoescaonosoennes veeeeses 13.13-14
LOGLX] ciiieeeveeecnorsoovsosoncnsonossneonecssosee 13.8
LOGAND[X1;:;X2;...:Xn] SUBR® . ..icevevecnsansnoceees 13.8
LOGOR[ X1;X2;...3Xn] SUBRE ,.vivveervvonvonsosssess 13.5
LOGXOR[X1:X2;...:Xn] SUBR® ..veveceennsosansneess 13.5
LRSHEN;M] ..ceerervnceorescsrsvccssonsccsanscenseses 13.5
LSHEIN;M] SUBR +.vesveveovsssrsovcssssscscsonssescs 13.5
MINUSEX] SUBR  tievvvonvacesososorveoncsavesssones 13.7
MINUSPIX] SUBR ..vccevvsevencscnsssoncsnssocsoses 13.4,6
mixed arithmetic .......ccceecevececscececscrsses 13.7-8

INDEX.13.1



NON-NUMERIC ARG (error message)

numbers
octal
overflow

Q (following a number)
QUOTIENT[X;Y] SUBR
RAND[ LOWER ; UPPER]
random numbers

RANDSET[X]
RANDSTATE

REMAINDER[ X;Y] SUBR

RSHIN;M]

SETN[VAR;X] NL
SIN[X;RADIANSFLG]
small integers

SMALLP[N]
SQRT(N]

SuB1[{X]
TENEX
unboxing

VAGEX] SUBR
ZEROP[ X]

TAN[ X;RADIANSFLG] ......

TIMES[ X1:X2; .
unboxed numbers .

LR

.

;Xn] SUBR*

SQRT OF NEGATIVE VALUE (error message)

oooooo

LR SR B

s e o0

# (followed by a number)

------------------------

oooooooooooooooooooooo e e o000 0

LR I A A B A I A )

.

ss 000000000

oooooooooooooooooooooooooooooooooooooooo

PLUS[X1;X2;...

L R A I R R B A A B BB B SN R )

oooooo

LR R R A A I A N A A A B A A N A R X

® 00 e PP EEII LRSS IRNSIRNONOELIOERERENONDL
ooooooooooooo s essev s ss s 00

e o 0000 . te0 0000000000000

e e e t e 00 ececce e ces s ses 0000 s e s e
oooooooooo L R A R A N I RN B A B I R B A A ] .
ss e s Ve e v eos et
oooooooooooo S e e v s st s eee Nt es st et
----------- o se e e 20000 * v
ooooooooo e 00 ss00 0 st 0000000
oooooooo ee e s s se s s 00 0s e ..
ooooooooooooooo S e 0 e 0 a0 0000000t 000

R A A R R A N I N N NN R

o e

e s s 000 s

e s 0 s 000 et 0000 se0s s

..:Xn] SUBR*

LRI

I I I I A N A A N I R R A A Y

se e

D R I A R N R I I I A A I A A R A A N ]

LRI A S R S A N I IR R Y I

INDEX.13.2

Page
Numbers

13.2,6-7
13.1-14
13.13
13.3,6
13.7
13.13
13.7
13.9
13.9

. 13.10

13.9-10
13.7
13.5
13.10-12
13.9
13.1-2
13.2,4
13.8
13.8
13.3
13.9
13.13
13.7
13.13
13.1-2,12
13.13-14
13.4
13.13



SECTION 14
INPUT/OUTPUT FUNCTIONS

14.1 Files

All input/output functions in INTERLISP can specify their source/destination
file with an optional extra argument which is the name of the file; This file
must be opened as sﬁecified below. If the extra argument is not given (has
value NIL), the file specified as “primary” for input (output) is used.
Normally these are both T, for teletype input and output. However, the primary

input/output file may be changed by

input[file]; Sets file as the primary input file. Its value 1s
the name of the old primary 1nput file.

input[ ] returns current primary input file, which

is not changed.

output[filel ' Same as input except operates on primary output
file.

Any file which is made primary must have Dbeen previously opened Jor
input/output, except for the file T, which is always open.

1 The argument name file is used for tutorial purposes only. The arguments
to all subrs are U, V, and W as described in arglist, Section 8.

14.1



1nfile[file] Opens file for input, and sets it as the primary
input file.? The value of infile is the previous
primary input file. If file is already open, same
as input[file]. Generates a FILE WON'T OPEN error
if file won't open, e.g., file is already open for

output.

outfile[file] Opens file for output, and sets itbas ihe primary
output file.d The value of outfile is the previous
primary output file. If file is already open,
same as output[file]. Generates a FILE WON'T OPEN
error if file won't open, e.g., if file is already

open for input.

For all input/output functions, file follows the TENEX conventions for file
names, 1i.e. file can be prefixed by a directory name enclosed in angle
brackets, can contain alt-modes or control-F's, and can include suffixes and/or
version numbérs. Consistent with TENEX, when a file is opened for input and no
version number is given, the highest version number is used. Similarly, when a
file is opened for output and no vefsion number is given, a new file is created
with a version number one higher thah the highest one currently in use with

that file name.

Regardless of the file name given to the INTERLISP function that opened the

To open file without changing the primary input file, perform
inputf{infile[file]}].

To open file without chanqing the primary output file, perform
- output[outfile[file]].

14.2



file, INTERLISP maintains only full TENEX file names? in its internal table of ‘
open files and any function whose value is a file name always returns a full
file name, e.g. openp[FO0]}=F00.;3. Whenever a file argument is given to an i/o
function, INTERLISP first checks to see if the file is in its internal table.
If not, INTERLISP executes the appropriate TENEX JSYS to "recognize" the file.
If TENEX does not successfully recognize the file, a FILE NOT FOUND error is
generated.G'If TENEX does recognize the file, it returns to INTERLISP the full
file name. Then, INTERLISP can continue with the indicated operation. If the
file is being opened, INTERLISP opens the file and stores its (full) name in
the file table. If it is being closed, or Qritten to or read from, INTERLISP
checks its internal table to make sure the file is open, and then executes the

corresponding operation.

Note that each time a full file name is not used, INTERLISP must call TENEX to
recognize the name. Thus if repeated operations are to be performed, it is
considerably more efficient to obtain the full file name once, e.g. via infilep
or outfilep. Also, note that recognition by TENEX is performed on the user's
entire directory. Thus, even if only one file is open, say FO00.;1, F$
(F altmode) will not be recognized if the user's directory also contains the
file FIE.;1. Similarly, it is possible for a file name that was previously
recognized to become ambiguous. For example, a program performs infile[FO00],
opening F00.:;1, and reads several éxpressions from FOO. Then the user types
control-C, creates a F00.;2 and reenters his program. Now a call to read
giving it FOO as its file argument will generate a FILE NOT OPEN error, because
TENEX will recognize FOO as F00.;2.

- e R T A e D D WS e D S b G SR D M N A S W CEL T LR LY L EE T XY ¥4 LA L YR X X X

4 i.e. name, extension, and version, plus directory name if it differs from
connected directory.

6 except for infilep, outfilep and openp, which in this case return NIL.

14.3



infilep[file]

Returns full file name of file if recognized by
TENEX, NIL otherwise. The full file name will
contain a directory field only if the directory
differs from the currently attached directory.
Recognition 1is in input context, 1i.e. 1if no
version number is given, the highest version

number is returned.

infilep and outfilep do not open any files, or change the primary files; they

are pure predicates.

outfilep[file]

closef[file]

closeall[ ]

openp[file;type]

Similar to infilep, except recognition is in
output context, 1i.e. if no version number is
given, a version number one higher than the

highest version number is returned.

Closes file. Generates an error, FILE NOT OPEN,
if file not open. If file is NIL, it attempts to
close the primary input file if other than
teletype. Failing that, it attempts to close the
primary output file if other than teletype.
Failing both, it returns NIL. If it closes any
file, it returns the name of that file. If it
closes either of the primary files, it resets that
primary file to teletype.

Closes all open files (except T). Value is a list
of the files closed.

If type=NIL, value is file (full name) if file is
open either for reading or for writing. Otherwise

value is NIL.

14.4



If type is INPUT or OUTPUT, value is file if open
for corresponding type, otherwise NIL. If type is
BOTH, value is file if open for both input and
output, (See iofile, page 14.6) otherwise NIL.

Note: the value of openp is NIL if file is not

recognized, i.e. openp does not generate an error.

openp[ ] returns a list of all files open for input

or output, excluding T.

Addressable Files

For most applications, files are read _starting at their beginning and
proceeding sequentially, i.e. the next character read is the one immediately
following the last character read. Similarly, files are written sequentially.
A program need not be aware of the fact that there is a file pointer associated
with eéch f;le that points to the location where the next character is to be
read from or written to, and that this file pointer is automatically advanced
after each input or output operation. This section describes a function which
can be used to reposition the file pointer, thereby allowing a program to treat
a file as a large block of auxiliary storage which can be access randomly.a For
example, one application might involve writing an expression at the beginning

of the file, and then reading an expression from a specified point in its

Random access means that any loccation 1is as quickly accessible as any
other. For example, an array is randomly accessible, but a list is not,
since in order to get to the nth element you have to sequence through the
first n-1 elements.

14.8



middle.”

A file used in this fashion is much like an array in that it has a certain
number of addressable locations that characters can be put into or taken from.
However, unlike arrays, files can be venlarged. For example, 1f the file
pointer is positioned at the end of a file and anything is written, the file
"grows." It is also possible to position the file pointer beyond the end of
file and then to write.8 In this case, the file is enlarged, and a "“hole" is
created, which can later be writ;en into. Note that this enlargement only
takes place at the end of a file; it is not possible to make more room in the
middle of a file. In other words, if expression A begins at positon 1000, and
expression B at 1100, and the program attempts to overwrite A with expression

C, which is 200 characters long, part of B will be clobbered.

iofile[file] Opens file for both input and output, Value is
file. Does not change either primary input or
primary output. If no version number is given,
default is same as for infile, i.e. highest

version number.

sfptr(file;address] Sets file pointer for file to address.? value is

This particular example requires the file be open for both input and
output. This can be achieved via the function iofile described below.
However, random file input or output can be performed on files that have
been opened in the usual way by infile or outfile.

If the program attempts to read beyond the end of file, an END OF FILE
error occurs.

TENEX uses byte addressing; the address of a character (byte) is the number
of characters (bytes) that precede it in the file, i.e., 0 is the address
of the beginning of the file. However, the user should be careful about
computing the space needed for an expression, since end-of-line is
represented as two characters in a file, but nchars only counts it as one.

14.6



old setting. address=-1 corresponds to the end of
file.10

If address=NIL, sfptr returns the current value of
file pointer without Chanqina it.

filepos[x;file;start;ond;skip;tail]" Searches file for x a la strpos (Section

11

10). Search begins at start (or if start=NIL,
the current position of file pointer), and goes to
end (or if end=NIL, to the end of file). Value is
address of start of match, or NIL if not found.
skip can be used to specify a character which
‘matches any bharacter in the file. If tail is T,
andv the search is successful, the value is the
address of the first character after the sequence
of characters corresponding to x, instead of the
- starting address of the sequence. In either case,
the file is left so that the next i/o operation

begins at the address returned as the value of

filepos.

Note: if a file is opened for output only, either by outfile, or
openf{file;100000q] (see page 14.8), TENEX assumes that one intends to
write a new or different file, even if a version number was specified and
the corresponding file already exists. Thus, sfptr[file;-1] will set the
file pointer to 0., If a file is opened for both reading and writing,
either by iofile or openf[file;300000q], TENEX assumes that there might be
material on the file that the user intends to read. Thus, the initial file
pointer is the beginning of the file, but sfptr[file;-1] will set it to the
end of the file. Note that one can also open a file for appending by
openf[file;20000q]}. In this case, the file pointer right after opening is
set to the end of the existing file. Thus, a write will automatically add
material at the end of the file, and an sfptr is unnecessary.

filepos was written by J.W. Goodwin.

14.7



Openf

openf[file;x] opens file. x is a number whose bits specify the
access and mode for file, i.e. X corresponds to
the second argument to the TENEX JSYS OPENF (see:
JSYS Manual). Value is full name of file.

openf permits opening a file for read, write, execute, or append, etc. and
allows specification of byte size, i.e. a byte size of 36 enables reading and
writing of full words. openf does not affect the primary input or output file
settings, and does not check whether the file is already open - i.e. the same
file can be opened more than once, possibly for different purposes.Iz openp

will work for files opened with openf.
The first argument to openf can also be a number, which is then interpreted as

JFN. This results in a more efficient call to openf, and can bg signficant if
the user is making frequent calls to openf, e.g. switching byte sizes.

JFN Funct:ions“t3

JFN stands for job file number. It is an integral part of the TENEX file
system and is described in [Murl], and in somewhat more detail in the TENEX
JSYS manual. The following function can be used to obtain the JFN for an

already opened file.

opnjfnffile] returns the JFN for 'filew If file not open,
genorates a FILE NOT OPEN error.

- - - - W W W W W E e ---.--------------------------------------

12 The "thawed" bit in x permits opening a file that is already open.

13 The JFN functions were written by J.W. Goodwin.

14.8



Example: to write a byte on a file

[DEFINEQ (BOUT

(LAMBDA (FILE BYTE)
(LOC (ASSEMBLE NIL

(CQ (VAG BYTE))
(PUSH NP , 1)
(CQ (VAG (OPNJFN FILE)))

(POP NP , 2)
(JSYS 51Q)

(MOVE 1 , 2)]

or to read a byte from a file

[DEFINEQ (BIN
(LAMBDA (FILE)

(LOC (ASSEMBLE NIL
"~ (CQ (VAG (OPNJFN FILE)))

(JSYS 50Q)

(MOVE 1 , 2]

Making BIN and }BOUT ~substitution macros can save boxing and unboxing in

compiled code.

The following functions are available for direct manipulation of JFN's:

gtifnlfile;ext;v;flags]

rijfnf{ jfn]

Jfns[jfn;ac3]

sets up a 'long' call to GTJFN (see JSYS manual).
file is a file name possibly containing control-F
and/or alt-mode. ext is the default extension, v
the default verSion (overriden if file specifies
extension/version, e.g. F00.COM;2). flags is as
described on page 17, section 2 of JSYS manual.
file and ext may be strings or atoms; v and flags

must be numbers.  Value is JFN, or NIL on errors.

releases jfn. rljifn[-1] releasés all JFN's which
do not specify open files. Value of rljfn is T.

converts jfn (a small number) to a file name. ac3

14.9



is either NIL, meaning format ;he; file name as
would openp or other INTERLISP file functions, or
else is a number, meaning format-according to. JSYS
manual. The value of 1§g_ is atomic except where
enough options are specified by ac3 to exceed atom
size (2 100" characters). In this case, the value

is returned as a string.

14.2 Input Functions

Most of the functions described below have an (optional) argument [ile which
specifies the name of the file on which the operation is to take place. If
that argument is NIL, the primary input Jile will bg used

Note: 1in all INTERLISP symbolic files, end-of-line 1is 1indicated by the
characters carriage-return and line-feed in that order. Accordingly, on input
Jrom [files, INT@QLISP will skip all line-feeds which immediately Jfollow
carriage-returns. On input from teletype, INTERLISP will echo a line-feed
whenever a carriage-return is input :

For all input functions except readc and peekc, when reading from the teletype,
control-A erases the last character typed in. echoing a \ and the erdsed
character. Control-A will not backup beyong the last carriage return. -Typing
control-Q causes INTERLISP to print ## and clear the input buffer, i.e. erase
the entire line back to the last carriage-return. When reading from a file,
and an end of Jfile 1is encountered, all input functions close the Jfile and
generate an error, END OF FILE. S

read[fiig;flg] Reads one S-expression from file. Atoms are
| | delimited by parentheses. brackets, double quotes,
spaces, and carriage-returns. To input an atom

which contains one of these syntactic delimiters,

preceded thevdelimiter by the escape character X%,

e.g. ABX(C, is the atom AB(C, %X is the atom X.

----------------------------------------------- -----.---------------------a----

14 Actually, INTERLISP skips the next character after a carriage- return
without looking at it at all. e

14.10



String; are delimited by double quotes. To input
a string containing a double quote or a %, precede
it by %, e.g. "ABX"C" is the string AB*C. Note
that % can always be typed even if next character

is not 'special’, e.g. XA¥%BXC is read as ABC.

If an atom is interpretable as a number, read will
create a number, e.g. 1E3 reads as a floating
point number, 1D3 as a literal atom, 1.0 as a
number, 1,0 as a literal atom, etc. ' Note that an
integer can be input in octal by terminating it
‘ with a Q, e.g. 17Q and 15 read in as the same
integer. The setting of radix, page 14.22,
\ doteminés how integers are printed, i.e. with or

without Q's.

When reading ,&ré)m the teletype, all input is line-buffered to enable the action
of control-Q. Thus no characters are actually seen by the program until a
carriage-return is typed. However, for reading by read or uread, when a
matching right parenthesis is encountered, the effect is the same as though a
carriage return were typed, i.e. the characters are transmitted. To indicate
this, INTERLISP also prints a carriage-return line~feed on the teletype.

flg=T suppresses tﬁe carriage-return normally
typed by read following a matching right
parenthesis. (Howéver. the characters are still
giveh' to read - i.e. the user does not have to

type the carriage return himself.)

ratom[ file] ‘ Reads in one atom from file. Separation of atoms

15 ypless control(T] has been performed (page 14.24).

14.11



is defined by action of setsepr and setbrk
described below. % is also an escépe character
for ratom, and the. remarks concerning control-A,

control-Q, and line-buffering also apply.

If the characters comprising the atom would’
normally be interpreted as a number by tggg, that
number is also returned by ratom. Note however
that ratom takes no special action for " whether
or not it is a break character, i.e. ratom never

makes a string.

The purpose of ratom, rstring, setbrk, and setsepr is to allow the user to
write his own read program without having to resort to reading character by
character and then calling pack to make atoms. The function uread (page
14.15) is available if the user wants to handle input as read does, i.e. same
action on parentheses, double quotes, square brackets, dot, spaces, and
carriage-return, but 1in addition, to split atoms that contain certain
characters, as specified by setbrk and setsepr.

rstring[file] Reads in one string from file, terminated by next
break or separator character. - Control-A, control-~

Q, and % have the same effect as with ratom.

Note that the break or separator character that terminates a call to ratom or
rstring is not read by that call, but remains in the buffer to become the first
character seen by the next reading function that is called.

ratoms[a;file] Calls ratom repeatedly until the atom a is read.

Returns a list of atoms read, not including a.

setsepr[lst;flg] Set separator characters. Value is NIL.

setbrk[1st;flg] Set break characters. Value is NIL.

14.12



For both setsepr and setbrk,lst is a list of character codes, flg determines

the action of setsepr/setbrk as follows:

NIL clear out old tables and reset. .
0 clear out only those characters in lst -
i.e. this provides an unsetsepr and unsetbrk.

1 add characters im lst to corresponding ‘table.

Characters specified by setbrk will delimit atoms, and be returned as separate
atoms themselves by 59329.16 Characters specified by setsepr will be ignored
and serve only to separate atoms. For example, if & was a break character and
] a separator character, thé input stream ABCJJDEFSGH]SS would be read by 6

calls to ratom returning respectively ABC, DEF, $, GH, $, $.

Note that the action of ¥ is not affected by setsepr or setbrk. To defeat the

action of % use escape[ ], as described below.

The elements of 1st may also be characters e.g. setbrk[(%( ¥))] has the same
effect as setbrk[(40 41)]. Note however that the ‘'characters' 1,2...9,0 will

be interpreted as character codes because they are numbers.

Initially, the break characters are [ ] () and * and the separator characters
are space, tab, carriage-return, line-feed, end-of-line, and form-feed. (Note
that . is not a break or separator character.) setbrk[T] sets the break
characters to their initial settings, and setsepr[T] does the same for the

separator characters.

getsepr{ ] Value is a list of separator character codes.

16 but have no effect whatsoever on the action of read.

14.13



getbrk{ ]

escape[flg]

ratest[x]

readc[file]

Value is a list of break character codes.

If flg=NIL, makes % act 1like every other

character. Normal setting is escape[T].

The value of escape is the previous setting.

If x= 7T, ratest returns T if a separator was
encountered immediately prior to the last atom

read by ratom, NIL otherwise.

If x = NIL, ratest returns T if last atom read by
ratom or read was a break character, NIL

otherwise.

If x =1, ratest returns T if last atom read

(by read or ratom) contained a ¥ (as an escape

character, e.g., %[ or XA%BX%C), NIL otherwise.

Reads the next character, including %, ", etc.
Value is the character. Action of readc is
subject to line-buffering, i.e. readc will not
return a value until the line has been terminated
even if a character has been typed. Thus,
control-A and control-Q will have their wusual
effoect. If control[T] has been executed (page
14.24), defeating line-buffering, readc will
return a value as soon as a character 1is typed.
In addition, if control-A or control-Q are typed,

readc will return them as values.

14.14



peekc[file;flg]

lastc[file]

uread[file;flg]

Value is the next character, but does not actually
read it, 1.e. remove it from the buffer. If:
flg=NIL, peekc is not subjeét to line-buffering,
i.e. it returns a value as soon as a character has
been typed. If flg=T, peekc waits until the line
has been terminated before returning its value.
This means that control-A and control-Q will be

able to perform their usual editing functions.
Value is last character read from file.

(for gser read). Same as :ggg except it uses
separator and break characters set by setsepr and
setbrk. This function is useful for reading in
list structure in the normal way, while splitting
atoms containing special characters. Thus with
space a separator character, and break characters
of () . and ' the input stream (IT'S EASY.) is
read by uread as the list (IT ' S EASY %.)

Note that ( ) [ ] and ® must be included in the
break characters if uread is to take special
action on them, 1.e. assemble lists and make

strings.

flg=T suppresses carriage-return normally typed
following a matching right parentheses. See page
14.11.

14.15



Note: read, ratom, ratoms, peekc, readc, and uread all wait for input if there

is none. The only way to test whether or not there is input ts to use
readp. ‘

readp[file]

readline[

]17

Value is T if there is anything in the input
buffer of file, NIL otherwise (not particularly
meaningful for file other than T). Note that
because of line-buffering, readp may return T,
indicating there is input in the buffef. but read
may still have to wait.

reads a line from the teletype, returning it as a
list. If readp[T]. is NIL, readline retirns NIL.
Otherwise it reads expressions, using read.18

until it encounters either:

(1) a carriage-return (typed by the user) that is
not preceded by any spaces, e.g.
ABC

and readline returns (A B C)

(2) a list terminating in a ']', in which case
the 1ist is included in the value of
readline, e.g. A B (C D] and readline returns

(A B (CD)).

Readline actually has two arguments for use by the system, but the user
should consider it as a function of no arguments.

18

Actually, readline performs (APPLY®* LISPXREADFN T), as described in Section

22. lispxreadfn is initially READ.

14.16



(3) an unmatched right parentheses or right
square bracket, which is not included "in the
value'of readline, e.g.

ABC]

and readline returns (A B C).

In the case that one or more spaces precede a carriage-return, or a list is

terminated with a ')',

19

next line, e.g.

and readline returns (A B C (

skread[file;rereadstring ]20

been performed,

readline will type '...°

and continue reading on the

DEF)(XYZ)).

is a skip read function. It moves the file
pointer for file ahead as if one call to read had
without paying the storage and
éomputevcost to really read in the structure.
rereadstring is for the case where the user has
already performed some readc's and ratom's before
deciding to skip this expression.  In this case,
rereadstring should be the material already read

(as a string), and skread operates as though it

--------- D N S T W D D N R Y D R P D R D A P R D D P A D D D D D N P P D D D P G D SR D R e D D b D Y N D D Y D R S P D P D s S G e e e

another carriage return, the lina will terminate

19 If the user then types
e.g.
A B [
10-)
and readline returns (A B C)
20

skread was written by J.W. Goodwin.

14.17



had seen that material first, thus getting its
paren-count, double-quote count, etc. set up

prmporly, .

The value of skread is %) if the #irst thing
encountered was a closing paren; ¥X] if the read

terminated on an unbalanced %], i.e. ‘one ‘which
also would .have;)closed .any extant open: left

parens; otherwise the value of skread is NIL.

i4.3 Output Functions

Most of the functions described below have an (optional) argument file which
specifies the name of the file on which the operation ts to take place. If
that argument is NIL, the primary output file will be used.

Note: . in all INTERLISP symbolic . files, end-of-line 1is dindicated by the
characters carriage-return and line-feed in that order. Unless otherwise
stated, carriage-return appearing in the description of an output function
means carriage-return and line-feed.

prinl[x;file]v : prints x on file.
prinZ[x;filé] prints x on fiie with %'s and "'s inserted where

}eqmired for it to read back in properly by read.

Both prini and prin2 printllists as well as atoms and strings; prini is usually

used only for explicitly printing formatting characters, e.g.

(PRIN1 (QUOTE %[)) might be used to print a left square bracket (the % would

not be printed by prinl).‘Ap}inz'is used fo} printiths-é§pfessions which can
then be read back into INTERLISP with read i.e. redulaf INTERLISP formatting

characters in atoms will be preceded by %'s, e.g. the atom '()' is printed as

%(%) by prin2. If radix=8, prin2 prints a Q after integers but prini does not
(but both print the integer in octal).

14.18



prin3[x;file] | Prints x with X's and "'s 1nsertéd where required
for it to read back in properly by uread, 1i.e.
uses separator and break characters specified by
setbrk and setsepr to determine when to insert
%'s.

print[x;file] : Prints the S-expression x using prin2; followed by

a carriage-return line-feed. Its value is Xx.

For all printing functions, pointers other than lists, strings, atoms, or
numbers, are printed as #N, where N is the octal representation of the address
of the pointer (regardless of radix). Note that this will not read back in
correctly, i.e., it will read in as the atom '#¥'. .

spaces[n;file] Prints n spaces; its value is NIL.

terpri[file] Prints a carriage-return; its value is NIL.
Printlevel

The print functions print, prini, prin2, and prin3 are all affected by a level

parameter set by
printlevelln] Sets print level to n, value is old setting.
Initial value is 1000} printlevell ] gives current

setting.

The variable n controls the number of unpaired left parentheses which will be

printed. Below that level, all lists will be printed as &.

Suppose x = (A (B C (p (E F) G) H) K). Then if n = 2, print[x] would print
(A (B C & H) K), and if ne=3 (A(BC(D&G)H)K), and if p = 0, just &.

14.19



If printlevel is negative, the action is similar except that a carriage-return
is inserted betwéen all occurrences of right parenthesis immediately followed

by a left parenthesis.

The printlevel setting can be changed dynamically, even while INTERLISP is
printing, by typing control-P followed by a number, i.e. a string of digits,
followed by a period or exclamatiop point.ZI The printlevel will immediately: be
set to this number.zz If‘the print routine is currently deeper than the new
level, all unfinished lists above that level will be terminated by "--)".
Thus, if a circular or long list of atoms, 1is. being printed out,  typing

control-P0. will cause. ‘t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>