
. ;~
en·vos
~

~I~y

A,fificiallnfelligence
. SysfenJs

. Lisp Library Packages

~
en·vos

LISP LIBRARY MODULES

300006
Medley Release 1.0
September 1988

Address comments to:
ENVOS
User Documentation
1157 San Antonio Rd.
Mountain View, CA 94043
41 5-966-6200

LISP LIBRARY MODULES

Medley Release 1.0

300006

SEPTEMBER 1988

Copyright © 1988 by ENVOS Corporation.

All rights reserved.

Envos is a trademark of Envos Corporation.

Xerox@) is a registered trademark of Xerox Corporation.

Sun@) is a registered trademark of Sun Microsystems Inc.

DEC, VAX, VMS, and VT100 are registered trademarks of Digital
Equipment Corporation.

UNIX is a registered trademark of AT&T Bell Laboratories.

Copyright protection includes material generated from the
software programs displayed on the screen, such as icons, screen
display looks, and the like.

The information in this document is subject to change without
notice and should not be construed as a commitment by ENVOS
Corporation. While every effort has been made to ensure the
accuracy of this document, ENVOS Corporation assumes no
responsibility for any errors that may appear.

Text was written and produced with ENVOS formatting tools using
Xerox printers to produce text masters. The typeface is Modern.

TABLE OF CONTENTS

PREFACE vii

INTRODUCTION ix

4045XLPstream 1

Browser 13

Cash-File 17

Centronics 19

CharCodeTables 21

Chat 25

CmlFloatArra~ 35

Co~~Files 39

DataBaseFns 43

DEdit 47

EditBitMa~ 59

EtherRecords 67

FileBrowser 69

FontSam~le 97

FTPServer 99

FX-80Driver 101

GChax 109

Gra~her 117

Gra~hZoom 131

Hash 133

Hash-File 139

HRuie 147

Kermit and Modem 151

Ke~board Editor 157

MasterSco~e 165

Match 193

MatMult 203

MiniServe 209

NSMaintain 213

Press 223

ReadNumber 225

RS232 229

SameDir 241

S~~ 243

LISP LIBRARY MODULES, MEDLEY RELEASE, TABLE OF CONTENTS iii

TABLE OF CONTENTS

SysEdit 251

TableBrowser 253

TCP-IP 263

TeleRaid 291

TExec 301

TextModules 305

Virtual Keyboards 319

Where-Is 325

INDEX INDEX-1

iv LISP LIBRARY MODULES, MEDLEY RELEASE, TABLE OF CONTENTS

LIST OF FIGURES

Figure Page

1. FX-SO ~rinter drivers 101

2. FX-SO DIP switch settings 102

3. Hash File Format 141

4. Horizontal rules 149

5. Built-u~ rules 149

6. Character Disela~ 159

7. Character Sets 160

S. Virtual ke~board dis~la~ window 163

9. Ke~board la~out dis~la~ 321

LISP LIBRARY MODULES, MEDLEY RELEASE, LIST OF FIGURES v

LIST OF FIGURES

[This page intentionally left blank]

vi LISP LIBRARY MODULES, MEDLEY RELEASE, LIST OF FIGURES

Organization of This Manual

Conventions

PREFACE

The Lisp Library Modules manual describes the library modules.
These modules can be loaded into your sysout to provide
additional functionality to your Lisp environment.

For ease of reference, the library modules appear in alphabetical
order by their software module name. This makes it easy to find
the instructions and description of a particular module without
having to consult the index or table of contents:

Each module includes a general description of the module; the
requirements to run the module; installation instructions; user
interface description; functions that are part of the module;
information on implementation of the module; any limitations;
and examples where appropriate.

The descriptions of many library modules are related to
functions, variables and concepts documented in the Interlisp-D
Reference Manual, or IRM. Because of the extensive changes to
the IRM in this release, any advice to "see the IRM" means that
you should also check the Lisp Release Notes for the latest,
most accurate information.

Conventions used in the Lisp Library Modules manual include
the following:

Names of Interlisp functions, macros and variables are shown in
UPPERCASE; their arguments are in ITALICS.

Names of Common Lisp functions, macros and variables are
shown in lowercase; their arguments are in italics.

A backslash (\) character preceeding a function or variable
name signifies that it is a property of the system.

Examples are shown in terminal 10.

Messages displayed in the prompt window are shown in bold.

Revision bars in the right margin indicate information that has
been added or modified since the last release.

References to the Interlisp-D Reference Manual, or IRM, are
used throughout this manual.

LISP LIBRARY MODULES, MEDLEY RELEASE, PREFACE VII

PREFACE

References

viii

We recommend that you use the Lisp Library Modules manual
with the following publications:

Interlisp-D Reference Manual, Volumes I through III, Koto
Release, 1985.

Common Lisp, the Language, by Guy L. Steele Jr., Digital Press,
1984.

Common Lisp Implementation Notes, Lyric Release, 1987.

Kermit: A File Transfer Protocol, by F. DaCruz, Digital Press,
1987.

Lisp Documentation Tools, (includes "A User's Guide to TEdit"
and I'A User's Guide to Sketch "), Lyric Release, 1987.

Lisp Release Notes, Medley Release, 1988.

Medley 1.0-5 User's Guide, Medley Release, 1988.

LISP LIBRARY MODULES, MEDLEY RELEASE, PREFACE

What You Should Look For

INTRODUCTION

This information pertains to the library modules as a whole, as
well as the interaction among modules, and contains changes
that have occurred in the library modules since the Lyric release.
Medley changes are indicated with revision bars in the right
margin.

In general:

• There are several new modules and enhancements to existing
modules.

• Several modules have been taken out of the Lisp Library
Modules, and put into the LispUsers' Modules.

• Several modules have been taken out of the LispUsers'
Modules, and put into the Lisp Library Modules.

Before running the modules, pay particular attention to the file
dependencies section below. Most modules call other files,
which then must be accessible to the system, and often you'll
also need files that are not loaded automatically.

Load the library modules with the FILESLOAD function, using
the module's name without an extension. Most modules on the
distribution contain the extensions .LCOM or .DFASL in their
names to designate their compiled form. The exceptions are
ETHERRECORDS and SYSEDIT, which are currently distributed in
source form. We have attempted to include the correct
extension in the descriptions of each module contained in this
manual. However, (FI LESLOAD ...) normally loads the correct
files, regardless of their form.

Modules that are New, Moved, or Replaced

Modules Moved from the Library to LispUsers

Big
BitMapFns
BusExtender

BusMaster
CirciPrint

CheckSet
CompileBang
Color
C150Stream
DECL
Dlnfo

LISP LIBRARY MODULES, MEDLEY RELEASE, INTRODUCTION IX

INTRODUCTION

FileCache

HelpSys

Iris

LambdaTran

PCallStats

ReadAIS

Modules Moved from LispUsers to the Library

Cash-File

Hash-File

SysEdit

TableBrowser

Modules Moved to Their Own Manuals

TEdit
Sketch

CML, CMLArray, CMLArraylnspector (part of Xerox Common Lisp)

Modules Moved From the Sysout Into the Library

DEdit
Masterscope

Match

Press

Modules Moved From the Library Into the Sysout

Modules Replaced

New Modules

x

IconW
FreeMenu

Old: FX-80stream, FastFX-80stream, FXprinter
New: FX-80Printer

Old: Wherels
New: Where-Is

SysEdit

TableBrowser

TextModules

LISP LIBRARY MODULES, MEDLEY RELEASE, INTRODUCTION

Details of Changes

4045XLPStream

Cash-File

Centronics

Chat

CopyFiles

DataBaseFns

INTRODUCTION

The following modules were significantly changed or added to
the library with the Medley Release.

Enabled its graphics capabilities; added 1108 cable/connector
pin-outs.

A new function has been added to allow owners of the
international 4045 (non-USA model) to use the 4045XLPStream
software.

(4045XLP.CHANGE.MODE mode) [Function]

This function changes the internal parameters of the software to
allow printing on A4 paper with the international fonts. Mode is
a string, either "USA" or "INTERNATIONAL", with the default
being II USA". Do not use this function unless you have the
international font set and A4 paper tray on a non-USA 4045. A4
page size is 2475 pixels wide by 3525 pixels high in portrait, and
3525 x 2475 in landscape mode.

The new library module Cash-File was formerly in LispUsers.
Cash-File is a front end to Hash-File which uses a hash table to
cache accesses to hash files. This can provide a significant
performace improvement in applications which access a small
number of keys repeatedly. For example, the Where-Is library
module uses this module to achieve acceptable interactive
performance.

Added cable/connector pin-out.

Added information about EMACS.

When told to copy to a non-existent NS subdirectory, it now asks
if it should create it.

Clarifications in the documentation of LOADDBFLG and
SAVEDBFLG are included in Medley.

LISP LIBRARY MODULES, MEDLEY RELEASE, INTRODUCTION xi

INTRODUCTION

EditBitMap

FileBrowser

xii

Added a description of its user interface.

Added enhanced features to Load, Compile, Edit; it now
preserves path name of source files when copying to another
machine or user, sorts files by attributes, and prints hard copies
of directory listings.

The FB command now ignores the package of the attributes you
optionally specify, so you can easily use it from a non-Interlisp
exec.

The enclosing *'s are now included with the names of the
variables *EDITMODE* and *DEFAULT-CLEANUP-COMPILER* .

In addition to having outstanding problems fixed, FileBrowser
has several new features and NS enhancements.

New features:

• There is an Abort button available during any operation of
indefinite duration.

• You can scroll or reshape a FileBrowser that is "busy", e.g,
while doing a Recompute.

• The browser title includes a timestamp of when the browser
contents were last Recom puted.

• There is a new subcommand of See, "FileBrowse", which
opens a FileBrowser on the selected subdirectory. This
replaces the odd functionality of the old See/Edit commands
that assumed that any file with null name and extension must
be a directory; those commands now always treat the
selection as a file. FileBrowse is mainly useful in the following
situations:

- When browsing NS directories with depth set finite, or
when browsing the top level of a server, which is
automatically depth 1.

When browsing on Unix, a device that gives lisp no
indication of whether a filename is a directory or not.

• There is a subcommand of Recompute, "Set Depth" that can
be used to set the enumeration depth for future recomputes
and recursive FileBrowses. You can also set the depth in an FB
command by appending :DEPTH n to the command line, e.g.,
FB "{Pogo:}<Carstairs> " :DEPTH 1.

The depth counts levels of directories below the last directory
in the pattern not containing a wildcard; depth 1 means just
the immediate descendants of that directory. Depth is
ignored for nontrivial patterns, i.e., anything but "*.*".

LISP LIBRARY MODULES, MEDLEY RELEASE, INTRODUCTION

FTPServer

FX-80Driver

GCHax

Grapher

INTRODUCTION

• Another new subcommand of Recompute, "Shape to Fit",
widens or narrows the browser so that all fields, and no more,
are visible but not wider than the screen.

• Directory items are now displayed like files, e.g., you'll see a
single line

Lisp>

rather than the double line

< Carstai rs > Lisp>

NIL

In addition, the "page" count for a directory item is now the
total page size of the directory subtree rooted there.

• FileBrowser consumes somewhat less storage now, and there
have been some performance improvements, especially for
very large browsers.

FTPServer now supports DELFILE.

The Medley Release fixes several bugs in Lisp's handling of PUP
FTP connections relating to password handling and filename
recognition.

New software, new text, and 1108/1186 cable/connector pin-outs
have been added.

Comments are now printed in a compressed font.

Documentation contains a new description of the STORAGE
function.

Grapher can now print graphs larger than one page. The
variable GRAPH/HARDCOPY/FORMAT is used to control the
format of the graph when printing to paper. See the function
HARDCOPYGRAPH and the variable
GRAPH/HARDCOPY/FORMAT in the documentation for Grapher
for more information.

A new GRAPH. PROPS field has been added to Graph record,
which produces a list in property-list format, and is accessed by
the function GRAPHERPROP.

LISP LIBRARY MODULES, MEDLEY RELEASE, INTRODUCTION xiii

INTRODUCTION

Hash

Hash-File

Kermit

MasterScope

NSMaintain

RS232

Spy

xiv

Hash is provided for backwards compatability. New applications
should use the Medley library module Hash-File instead of this
module.

Hash-File is a new library module, upgraded from LispUsers.
Hash-File is similar to but not compatible with the Lyric library
module, Hash. Hash-File is modeled after the Common Lisp hash
table facility, and Hash was modeled after the Interlisp hash
array facility.

Reference to an excellent text/reference book has been added.

Break when graying a browser has been fixed.

In Medley, MasterScope .LCOM files have been changed to
.dfasl file extensions. MasterScope now recognizes Common
Lisp structures.

The module NSMaintain has been completely revised and has all
new documentation. Most commands auto-complete on one or
two keystrokes. The Change Password command works again,
and there are several new commands for listing objects in the
Clearinghouse data base and for manipulating the access lists of
groups. There is a more rational set of default inputs offered for
most commands, and better feedback is given as to whether a
command succeeded or failed.

The RS232.TRACE function is now documented in the Medley
release.

This version of Spy library module works better with Common
Lisp and incorporates several new features:

• Enters the pending mode when you bring up the Spy menu by
pressing the left or middle button while the control key is
down. Any action invoked from the menu is deferred until
you next press the left or middle mouse button. For example,
you can delete several nodes and then do one update.

• Keeps track of non-symbol frame names.

• Shows the package prefix of symbols in the display.

LISP LIBRARY MODULES, MEDLEY RELEASE, INTRODUCTION

TableBrowser

INTRODUCTION

• Invokes "Merge" menu item from a node menu allowing for a
node to merge with its caller.

• Updates SPY.NOMERGEFNS to correspond more closely to
"system" functions in Medley.

• Knows about the Medley interpreter.

• New functions TB.UNSELECT.ITEM and
TB.UNSELECT.ALL.ITEMS fill an inadvertant void in the Lyric
version.

• Several off-by-ones in the display algorithms have been fixed.

• Performance on large browsers is improved.

• Clarification of TBAFTERCLOSEFN documentation is included
in the Medley release.

• New options to TB.MAKE.BROWSER:

- The option LlNESPERITEM, previously documented but not
implemented, is now supported. Alternatively, you can
specify explicitly the height of items by giving the options
ITEMHEIGHT (total height of each item) and/or BASELINE
(the height of the "baseline" relative to the bottom of the
item; zero if you don't set it). The BASELINE is used for two
things: (1) the ypos of the window is set there when the
browser's print function is called, and (2) selection and
deletion marks are centered between the baseline and the
top of the item. Specifying LlNESPERITEM is a shorthand
for setting ITEMHEIGHT to fontheight*#lines and BASELINE
to fontheight*(#lines-1) + fontdescent (i.e., font's baseline
for the first line of the item), so that the selection marker,
deletion lines, and positioning for printing all point at the
first line of a multi-line item. One further difference: If you
change the font of the browser, TableBrowser will
recompute the height and baseline parameters if you
specified LlNESPERITEM, but not if you specified
ITEMHEIGHT.

You can specify an auxiliary window that is to be
horizontally scrolled in parallel with the main window by
giving the window as the HEADINGWINDOW option. The
WIDTH of the window's EXTENT property is maintained in
synch with main window. You still need to create the
auxiliary window, attach it where you want it and supply it
with a REPAINTFN. This is how FileBrowser implements its
header line consisting of "Name" and the attribute names.

- The option LlNETHICKNESS specifies how thick to draw
deletion lines. It defaults to TB.DELETEDLINEHEIGHT,
initially 1. Making it the height of an item gives an
alternative "total blackout" method of deletion.

LISP LIBRARY MODULES, MEDLEY RELEASE, INTRODUCTION xv

INTRODUCTION

TCP-IP

TExec

TextModules

xvi

Added revised/expanded installation procedure.

DIR to VMS via TCP now works.

TCP Chat hosts can now be lowercase.

(TCPFTP.SERVER) now spawns process and runs in it.

TCP-IP to a Sun returns the top-level directory.

TCPFTP.DEFAULT.FILETYPES now contains correct entries for
LCOM, Icom, DFASL, and dfasl.

Files loaded by the high-level modules TCPFTP, TCPFTPSRV,
TCPCHAT, and TCPTFTP automatically load their dependencies.
If you load files by hand, you must also load their dependencies
first. See the section "File Dependencies, II or the TCP-IP
documentation for more information.

There is a new flag:

TCP.ALWA YS.READ.HOSTS.FILE [Variable]

This flag is initially T. Setting it to NIL will cause the system to
parse the hosts. txt file only when the filename (stored in the
configuration file) is different from the previously read filename,
or the write date of the file has changed. The hosts.txt file will
always be read at least once when loading the software into a
clean sysout.

If you change your IP.INIT file while TCP-IP is running, you will be
prompted to confirm Restarting Tep. In most cases, you should
confi rm the restart.

A TEXEC executive window no longer has GET in the menu of
possible actions, since GETting text into an executive window
makes no sense.

TextModules is a new library module with the Medley release. It
can be used to import and export textfiles and File Manager files.
It can bring portable Common Lisp sources into the File Manager
without losing any of their contents, and create new textfiles
based on the File Manager's description of the textfile contents.

LISP LIBRARY MODULES, MEDLEY RELEASE, INTRODUCTION

Virtual Keyboards

Where-Is

File Dependencies

LIBRARY MODULE

INTRODUCTION

The Standard-Russian virtual keyboard now has uppercase Be (..
.) and Ve (...) in the right places.

Loading Virtual Keyboards now adds the item KEYBOARD to the
default window menu as well as the background menu.
Selecting this item from the default window menu allows you to
specify a keyboard for an individual window.

Where-Is is a new library module, upgraded from LispUsers. This
module replaces the Lyric library module Where Is. This is a new
implementation of a facility similar to but not compatible with
the Lyric library module Wherels. Where-Is indexes all definers,
but Wherels only indexed Interlisp FNS definitions.

Some modules require that another module be loaded into the
sysout in order to run. Automatic dependencies are
implemented in the source code, so that the module will load the
files it depends on. Contingent dependencies are those files
that you may need to load via commands typed into the
executive window.

Some modules also depend of specific FONT files. As of this
writing the best advice we can give to help you avoid difficulty is
that you should make sure all your English font files are loaded
in an accessible directory and that your
DISPLA YFONTDIRECTORIES and INTERPRESSFONTDIRECTORIES
variables are set accordingly.

AUTOMATIC DEPENDENCIES
(not including system files)

CONTINGENT DEPENDENCIES
(of module)

4045XLPSTREAM

BROWSER
GRAPHER

CASH-FILE
HASH-FILE

CHAT

DMCHAT
CHA TTERMINAL

LISP LIBRARY MODULES, MEDLEY RELEASE, INTRODUCTION

DLRS232C or DL TTY or CENTRONICS

MASTERSCOPE

PU PCHA T or NSCHA T or RS232CHA T or

TTYCHAT

and
DMCHAT (default) or
TCPCHAT or VTCHAT or TEDITCHAT

and the corresponding explicit dependencies:

xvii

INTRODUCTION

xviii

DATABASEFNS

DEDIT

DEDITPP

EDITBITMAP

READNUMBER

FILEBROWSER

TABLEBROWSER

FONTSAMPLE

FX-80DRIVER

GRAPHZOOM

GRAPHER

HRULE

KERMIT

KERMITMENU

KERMIT

KEYBOARDEDITOR

VI RTUALKEYBOARDS

see below

MASTERSCOPE

MSPARSE

MSANALYZE

MSCOMMON

MS-PACKAGE

PUPCHAT

CHAT

RS232CHAT

DLRS232C

CHAT

TTYCHAT

DLTTY

see "RS232C" below

see" RS232C" below

RS232CHAT

see above

CHAT

DMCHAT

CHATTERMINAL

TCPCHAT

see "TCP-IP" below

VTCHAT

VT100KP

MASTERSCOPE

SCALEBITMAP

Pri nter d ri vers, fonts

TEDIT, SEDIT, DEDIT

FONTSHEETx.IP

DLRS232C or DL TTY

IMAGEOBJ

EDITBITMAP

TEDIT

CHAT

RS232 or TCP protocols

BROWSER, DATABASEFNS, a Lisp editor

LISP LIBRARY MODULES, MEDLEY RELEASE, INTRODUCTION

MINISERVE

NSMAINTAIN

DES

PRESS
PUPPRINT

RS232

RS232 port:

TTY port:

Spy

SYSEDIT

TCP-IP

DLRS232C

DOVERS232C

RS232CMENU

DLRS232C

DLTTY

TTYCHAT

see above

RS232CHAT

see above

DOVERS232C

see above

DLRS232C

see above

see CHAT above

RS232CMENU

see above

GRAPHER

READNUMBER

IMAGEOBJ

EDITBITMAP

see above

EXPORTS.ALL
CMLARRAY-SUPPORT

TCP
TCPLLlP see below

TCPCHAT

TCP see above

CHAT see above

TCPCONFIG

TCPDEBUG
TCP see above

TCPFTP

TCPNAMES

LISP LIBRARY MODULES, MEDLEY RELEASE, INTRODUCTION

INTRODUCTION

NS or PUP or XNS

FONT.WIDTHS

KERMIT

MASTERSCOPE

xix

INTRODUCTION

TELERAID

TEXEC

TCP see above

TCPFTPSRV

TCPFTP see below

TCPHTE

TCPLLAR

TCPLLlCMP

TCPLLlP

TCPHTE

TCPLLlCMP

TCPLLAR

TCPNAMES

TCPTFTP

TCPU DP see below

TCPUDP

TCPLLlP see above

REMOTEVMEM

READSYS

RDSYS

VMEM

TEDIT

VIRTUALKEYBOARDS

WHERE-IS

DANDELION KEYBOARDS or

DAYBREAKKEYBOARDS or

DORADOKEYBOARDS or

DOVEKEYBOARDS

HASH-FILE

Add itional Notes

xx

DEdit is not error-protected. Doing a i in a DEdit break window
closes the DEdit window, too ...

In addition, the modules work under all Lisp environments
(lnterlisp-D, Common Lisp, Xerox Common Lisp). However,
many of the functions and variables used within the modules are
those of Interlisp-D, and therefore you'll have to make sure that,
when you are not in Interlisp, you use the IL: prefix (see the
Release Notes for more details).

LISP LIBRARY MODULES, MEDLEY RELEASE, INTRODUCTION

Koto CML Library Module

INTRODUCTION

If you have files that used the Koto CML library module, with its
package-style symbol naming conventions, you will need to
convert them to use the correct symbols in Lyric and Medley. The
procedure is briefly as follows: see the Lyric Common Lisp
Implementation Notes, chapter 11, II Reader compatibility
feature" for complete details on this mechanism:

First, set the global variable
LlTATOM-PACKAGE-CONVERSION-ENABLED to T. Then for each
of your files, do

(LOAD file 'PROP)

(MAKEFILE file 'NEW)

Afterwards be sure to set the global variable
LlTATOM-PACKAGE-CONVERSION-ENABLED back to NIL.

LISP LIBRARY MODULES, MEDLEY RELEASE, INTRODUCTION xxi

INTRODUCTION

[This page intentionally left blank]

xxii LISP LIBRARY MODULES, MEDLEY RELEASE, INTRODUCTION

Requirements

Hardware

4045XLPSTREAM

4045XLPStream implements an image stream for the Xerox 4045
Laser CP, a 300 dot per inch laser printer.

The printer can emulate one of two printers, the Xerox 2700-11
laser printer or the Xerox/Diablo 630; the software can produce
output for either.

The page size of the 4045 is 2550 pixels wide by 3300 pixels long
in portrait mode, and 3300 x 2550 in landscape mode.

There are two communications ports on a workstation that are
used most often for printing purposes; the RS232C port and the
TTY port. They both use the RS232C standards for data
communications, but they differ in that the RS232C port is
buffered and, as such, is the preferred port for printing.
Depending on the workstation and its options, there may also be
a Centronics port available on a system.

4045XLPStream uses one of the corresponding printer (port)
driver modules. Output may be sent directly to the 4045 printer
via one of these modules, or to a file for printing later.

The 4045XLPStream software has been designed primarily for
the RS232 port.

Non-USA model 4045's are supported. See the section "Using
the 4045 as a Default Printing Host," for details.

The 1108 or 1109 must have the E-30 option kit installed to be
able to use the RS232 port. (If the machine has a port labeled
"RS232C" then it has the E-30 kit installed.) The TTY port is
labeled "Printer."

On the 1186 the RS232 port is labeled DTE/COMM (it is on the C4
printed circuit board of the workstation), and the TTY port is
labeled DCE/Printer on the same board.

The Centronics port is available only on the 1109 (an 1108 with
the CPE-FP upgrade).

You'll also need an RS232 or a TTY cable to connect your
computer to the printer.

4045 PROM and Software Compatibility

630 emulation mode will only work with version 2.1 or higher of
the 4045 PROMs. The version of the PROMs in your 4045 can be
found by looking at the first number of the Revision number
found on the upper-left corner of the configuration sheet.

To receive the latest version of the PROMs, contact the local
Xerox Service Representative.

LISP LIBRARY MODULES, MEDLEY RELEASE, 4045XLPSTREAM

4045XLPSTREAM

Software

Installation

Software

4045 Emulation Mode Selection

4045 Port Selection

2

To get the version number of the software, evaluate the variable
4045XLPSTREAM.VERSION and record the value for future
reference.

Make sure the communications module you wish to use is in the
currently connected directory, or in one of the subdirectories
specified in DIRECTORIES:

RS232 port uses DLRS232C. LCOM
TTY port uses DL TTY. LCOM

Centronics port uses CENTRONICS.LCOM

Load the required .LCOM modules from the library.
4045XLPSTREAM.DFASL should be loaded in the Interlisp
Executive. All functions referenced in this document are
therefore I L: FN if you are not usi ng the Interl isp Executive.

If you plan to use TEd it, load it BEFORE loading 4045XLPStream,
as 4045XLPStream redefines a TEdit function.

Note: Loading 4045XLPStream changes your
DEFAULTPRINTINGHOST and DEFAULTPRINTERTYPE to
set the 4045 as the default printer. This allows you to use
the default hardcopy functions for printing.

The 4045 printer can normally emulate one of two printers: the
Xerox 2700-11 laser printer or the Xerox/Diablo 630.

Switch A-2 of the configuration cartridge determines the
emulation mode:

On = 630
Off = 2700

Make sure this is the same as the software parameter setting (see
below).

Set the switches on the 4045 configuration cartridge according
to the port you are using. The Xerox 4045 Laser CP User Manual
gives details about switch settings.

LISP LIBRARY MODULES, MEDLEY RELEASE, 4045XLPSTREAM

4045 Port Initialization

4045XLPSTREAM

If you are usi ng the RS232 or TTY port, set the switches as
follows:

Bank A: switches 1,5,6 on

Bank C: switches 1,4,5 on
Bank B: switches 1,2,3,4,6 on

Bank D: switch 4 on

If the Centronics port is being used, set switch A-1 off.

Upon loading the software, you are prompted for the port you
wish to use for printing. The allowable responses are

R RS232

T TTY

C Centronics

S Server (in which the 4045 is connected to another 1108/86
and the current machine is printing to it via Ethernet), and

D The default port. The software then automatically loads the
correct communications module for the port selected.

For more information on setting the default port, see the notes
under "4045XLPStream Options" below.

Note: If you select option S (server), you must set the port by
calling

(4045XLP.SET.PARAMETERS '«PORT. SERVERPORT»
where sERVERPORT is the port number of the server. See
"Printing Using FTPserver," below.

Using the 4045 as a Default Printing Host

Printing Source or TEdit Files

Two system functions are available for sending files to a printer,
L1STFILES and SEND.FILE.TO.PRINTER.

L1STFILES (FILE1 FILE2 FlLE3 etc.) can be used to send a number of
files to be printed. As shown here, all files would be sent to the
default printer. As described in the IRM, this function calls
SEND.FILE.TO.PRINTER for each of the files indicated in its list of
arguments, and therefore each argument FILEx in the list can
include values to set the various print options.

(SEND.FILE.TO.PRINTER FILE HOST OPTIONS)

FILE is a Source or Tedit file.

HOST is '.4045XLP.

LISP LIBRARY MODULES, MEDLEY RELEASE, 4045XLPSTREAM 3

404SXLPSTREAM

Printing Windows

OPTIONS is an A-list of print options: #COPIES,
DOCUMENT.NAME, and BREAK.PAGE, which prints a job
description page between jobs.

EXAMPLES:

(SEND.FILE.TO.PRINTER 'MySourceorTEditFile)

Will send the file MySourceorTEditFile to the default printer
(404Sxlp after loading this module).

(SEND.FILE.TO.PRINTER 'MySourceorTEditFile NIL
'(BREAK.PAGE T»

Will send the file MySourceorTEditFile to the printer and
specifically print a job description page.

(SEND.FILE.TO.PRINTER 'MySourceorTEditFile NIL '(#COPIES
2 DOCUMENT.NAME "Another Wonderfully Printed Document
from the 4045"»

Wi II pri nt two copi es of the fi I e on the pri nter attached to the
default port with the name given.

Select HARDCOPY from the right-button menu of the selected
window.

Note: If the 404SXLP is not the default printer, slide off to the
right of the HARDCOPY and select TO A PRINTER, then
choose 404SXLP. You will only need to do this if
DEFAULTPRINTINGHOST has been changed after loading
this module.

Creating 4045XLP Master Files

4

404SXLP master files are files similar to Interpress master files in
that they can be pri nted without further formatti ng. They can
come from windows, bitmaps, and TEditiSketch files. To create a
404SXLP master from a window (including TEdit and Sketch
windows), select HARDCOPY from the background menu, slide
off to the right and select TO A FILE, and enter the name you
wish for the master file with an extension of .404SXLP.

To create a 404SXLP master file for a bitmap, follow these steps:

(SETQ FOO (OPENIMAGESTREAM 'MYMASTERFILE.4045XLP»

(BITBLT MYBITMAP 0 0 FOO 0 0)

(CLOSEF FOO)

The file MYMASTERFILE.404SXLP can be printed at any time.

Printing a master file is easy. Evaluate

(SEND.FILE.TO.PRINTER 'MYMASTERFILE.4045XLP '4045XLP)

and it is printed without the delay for formatting.

LISP LIBRARY MODULES, MEDLEY RELEASE, 4045XLPSTREAM

Printing via FTPserver

4045XLPSTREAM

The 4045XLPStream software has been designed to use the
FTPserver module to print from remote machines on a local 4045
printer.

In the following example, server is the workstation physically
connected to the 4045 and has the PUP Host Number 0#20#;
client is connected to server by Ethernet. Both client and server
have 4045XLPSTREAM.DFASL loaded.

Note: FTPServer and MiniServe implement simple PUP
protocols on the network; they are described elsewhere
in this manual.

To get the PUP host number of server, evaluate (PORTSTRING
(ETHERHOSTNUMBER» on server. If the number has not been set
yet, the system will prompt you to enter it. Enter an octal
number (1-376) that is given to you by your system administrator.

Load FTPSERVER.LCOM onto the server machine. Evaluate
(FTPSERVER) on server to start the FTP Watcher process.

From the client you may use the server either as the default
printing port, or to copy files to it.

Example:

To make server be the default printer for client, on the client
machine evaluate

(4045XLP.SET.PARAMETERS (LIST (CONS 'PORT. {ON20N}
LPT:.4045XLP»)

Now, any HARDCOPY will automatically be sent and then
printed on server without any user intervention.

You can also manually copy master files to the server machine:

(COPYFILE 'FOO.4045XLP '{ON20N}LPT:.4045XLP)

This will copy the 4045XLP master file to the server machine and
automatically print it without any user intervention on the server
machine.

Alternatively, when you select HARDCOPY - TO A FILE from the
background (right-button) menu, you can enter
{0#20#}LPT:.4045XLP, and the file will print immediately after
formatti ng.

Changing Modes for International4045s

A function allows owners of the international 4045 (non-USA
model) to use the 4045xlpstream software.

(4045XLP.CHANGE.MODE mode) [Function]

This function changes the internal parameters of the software to
allow printing on A4 paper with the international fonts. Mode is
a string, either "USA" or "INTERNATIONAL", with the default
bei ng "USA". Do not use this function unless you have the
international font set and A4 paper tray on a non-USA 4045. A4

LISP LIBRARY MODULES, MEDLEY RELEASE, 4045XLPSTREAM 5

4045XLPSTREAM

page size is 2475 pixels wide by 3525 pixels high in portrait, and
3525 x 2475 in landscape mode.

4045XLPStream Options

4045 Parameter Names and Values

4045XLPStream software implements an image stream interface
to the 4045 laser printer. Users do not have to open a stream for
the default printing code to work. The default printing code
automatically opens the stream and closes it. The methods to
access this stream are shown below. For more information on
using image streams, see the IRM.

There are several options of 4045XLPStream that may be set by
the user. Most users will not need to change from the default
values. The variable options are stored in the variable
4045XLP.DEFAULTS, which is an instance of the
4045XLP.PARAMETERS record. The following functions will
directly modify 4045XLP.DEFAU L TS, and thus the option settings.

The following is a list of legal parameter names and values:

SLUG Either an integer 0-255, or NIL; default is NIL. This controls the
i mage to be pri nted when the stream code sees a character it
cannot print. NIL indicates print a slug (black box), a number
indicates print the corresponding character.

LANGUAGE Must be either 630 or 2700, default is 2700. This controls the
default mode of the stream code. Must be set to the same value
as the pri nter.

The 4045 can implement either 2700 protocols or 630 emulation
modes. The mode may also be set when opening the stream by
using the MODE option. Make sure switch A-2 on the printer's
configuration cartridge corresponds to the mode the software is
using.

PORT Must be a valid port for use in printing; default is {RS232}.
Controls the default printing port.

Note: May be set to a network address for remote printing. See
"Printing Using FTPServer" for more information.

MESSAGESTREAM A window, stream or NIL; default is the prompt window.
Controls where messages are sent during the printing process. If
it is a window or a stream, messages about the status of the job
during printing will be printed to the destination given here.
Otherwise the messages are suppressed.

PRINTERRORS A flag, T or NIL; default is NIL. Controls the collection and
printing of any printing errors encountered. If it is T, a summary
page listing any problems found will be printed at the end of a
job.

PRINTHEADER Either a string, T or NIL; default is NIL. Controls the printing of a
header page describing the job being printed. T indicates print

6 LISP LIBRARY MODULES, MEDLEY RELEASE, 4045XLPSTREAM

Set Parameters

Get Parameters

4045XLPSTREAM

the page, NIL indicates not to print the page. If it is a string, it
indicates to use this string as the title of the header page.

WINDOWTITLE Either a string or NIL; default is NIL Controls the default title for
windows that are printed using the default hardcopy method. If
it is a string, the title used will be this string; otherwise "Window
Image" will be used as the title.

LANDSCAPE Either T or NIL; default is NIL Controls the default paper
orientation of the stream. T indicates landscape (sideways), NIL
indicates portrait orientation.

The orientation may also be changed when opening the stream
by using the LANDSCAPE or PORTRAIT options.

Note: If the variable 4045XLP.DEFAULTS is non-NIL before
loading 4045XLPStream, the default values will not be
initialized to the above settings.

Note: Programmer's note: you can set the default values for all
these items by setting 4045XLP.DEFAULTS to an instance
of the 4045XLP.PARAMETERS record before loading this
module.

(4045XLP.SET.PARAMETERS PARAMETERS) [Function]

Will set any valid parameter for the 4045. PARAMETERS should
be an A-list of the form

«PARAMETER. VALUE) (PARAMETER. VALUE) ...)

For example, to set the default printing port and the default
mode, while leaving all other values as they were, you would
evaluate:

(4045XLP.SET.PARAMETERS (LIST (CONS PORT '{TTY}) (CONS
LANGUAGE 630»)

(4045XLP.GET.PARAMETERS PARAMETERS) [Function]

Will return the value of any of the parameters listed.

PARAMETERS should be a list of the values you wish to check. If
PARAMETERS is NIL, it will return the current settings of all the
options.

For example,

(4045XLP.GET.PARAMETERS '(SLUG LANGUAGE PORT»

Will return a list similar to the following (depending on the
current settings):

«SLUG NIL) (LANGUAGE 2700) (PORT {RS232}»

LISP LIBRARY MODULES, MEDLEY RELEASE, 4045XLPSTREAM 7

4045XLPSTREAM

Get, Set Parameters via Inspector Window

Examples

Opening a 4045 Stream

8

An alternate way of showing and changing the parameters for
the stream is to call (INSPECT 4045XLP.DEFAULTS) and select AS
AN A-LIST from the pop-up menu. This will produce an inspector
window with the parameter name on the left and its value on
the right. To set a parameter, select it in the inspector window
using the left mouse button, then press the middle button and
select SET. A window will prompt you for the new value of the
parameter selected.

4045 image streams are created by the OPENIMAGESTREAM
function.

(SETQ 4045STREAM (OPENIMAGESTREAM '{CENTRONICS}.4045XLP»

Creates a stream to the 4045 connected to the workstation's
Centronics port.

(SETQ 4045STREAM (OPENIMAGESTREAM '{RS232} '4045XLP»

Creates a stream to the 4045 connected to the workstation's
RS232 port.

(SETQ 4045STREAM (OPENIMAGESTREAM '{RS232}.4045XLP»

Creates a stream to the 4045 connected to the workstation's
RS232 port. Notice that the type need only be included as an
extension to the port name.

(SETQ 4045STREAM (OPENIMAGESTREAM NIL NIL '(MODE 630»)

Creates a stream to the default printer (4045) connected to the
default port specifically in 630 mode.

(SETQ 4045STREAM (OPENIMAGESTREAM NIL '4045XLP '(MODE
2700»)

Creates a stream to the 4045 connected to the workstation's
default port specifically in 2700 mode.

(SETQ 4045STREAM (OPENIMAGESTREAM NIL NIL '(LANDSCAPE
T»)

Creates a stream to the defaultprinter (4045) connected to the
workstation's default port in LANDSCAPE orientation.

(SETQ 4045STREAM (OPENIMAGESTREAM NIL NIL '(PORTAIT T»)

Creates a stream to the default printer on the default port in
portrait mode.

Note: You must close the stream to make it print. Make sure to
close all streams to the 4045 that you open.

LISP LIBRARY MODULES, MEDLEY RELEASE, 4045XLPSTREAM

Using a 4045XLP Stream

Resetting 4045XLPStream

Limitations

4045 Fonts

4045XLPSTREAM

In the above cases, we set the variable 4045STREAM to a 4045
image stream. Once we have done that, the image stream can
thereafter be used as the destination of any graphics operation.
Here are some examples of operations that may be performed
on a 4045XLP image stream:

(BITBLT (WHICHW) NIL NIL 4045STREAM 0 0)

Will place an image of the window, in which the cursor is, at
position (0,0) on the 4045's page.

(DRAWLINE 500 500 3000 500 30 NIL 4045STREAM)

Will draw a line 30 spots (1/10 inch) wide from position (500,500)
to position (3000,500).

(DSPNEWPAGE 4045STREAM)

Will cause the current page to be printed and a new one to be
started.

Note: This will not have any immediate effect unless you are
forcing output immediately to the port. This is
unadvisable as it will not allow other tasks to complete
until the current stream is closed.

(PRINTOUT 4045STREAM "Hello world" T)

Will print the string "Hello world" on the 4045's page, followed
by a carriage-return/line-feed.

(CLOSEF 4045STREAM)

Closes the open 4045 image stream and sends the last page to
the printer. Make sure you close all open 4045 image streams! If
the output was to the default printer and default port,
evaluating this will cause the file to be printed.

Occasionally, the 4045XLPStream software may become frozen.
If this happens, evaluate the function (4045XLP.RESET) which
will reset the stream software.

Note: Use this function only when you are positive that nothing
else is printing or hardcopying, as it may damage the
state of the last job sent.

The current version of 4045XLPStream does not use fonts other
than Titan 10. Documents will print in Titan 10 and Titan 10
Bold only. Source files print in landscape mode, and regular
printing in landscape mode is supported.

LISP LIBRARY MODULES, MEDLEY RELEASE, 4045XLPSTREAM 9

4045XLPSTREAM

Multiple Streams

Printing Speed

Scale factors

Notecards

TEdit

10

Do not open multiple streams to the communications ports. It
could cause a fatal crash of the port that is connected to the 4045
(ie. for every OPENIMAGESTREAM you did, do a CLOSEF).

Using the TTY port for printing large bitmaps or SKETCHs is slow
due to the nature of the port.

SCALEDBITBL T on the 4045 supports scale factors of 1, 2, and 4
only. Since the display screen has a resolution of 72 dots per inch
and the printer's resolution is 300, a scale factor of 4 means that
the bitmap has the same size on the paper as it has on the screen.
Scale factors of 2 and 1 make the printed image proportionally
smaller (i.e., 1/2 and 1/4 size, respectively).

If you are usi ng NoteCards, load
NOTECARDS-4045XLPPATCH.LCOM.

Be sure to load TEdit before 4045XLPStream, as there i~ one TEdit
function that is redefined by 4045XLPStream.

The LANDSCAPE function in the TEdit Page Layout Menu does
not work with this version of software. If you want to print a
TEdit document in landscape, proceed as follows:

Change the TEdit margins. To do this, open a Tedit window, GET
the file, and bring up the Page Layout Menu. Change the
Margins fields to LEFT: 4.5, RIGHT: -10.0, TOP: 19.0, BOTTOM:
3.2 and apply this to all pages (First & Default, Other Left and
Other Right).

PUT the modified-for-Iandscape file and call it
LANDSCAPEFILE.TEDIT.

Open an image stream to the printer in landscape mode by
evaluating

(SETQ MYSTREAM (OPENIMAGESTREAM NIL NIL '(LANDSCAPE T»

Do the actual hardcopy by evaluating

(TEDIT.HARDCOPY (OPENTEXTSTREAM 'LANDSCAPEFILE.TEDIT)
MYSTREAM NIL NIL NIL '(LANDSCAPE T»

After all this is done (there will be a message in the prompt
window II Formatting for print ... xx pgs done. "), you must close
the printer file before it will print, so evaluate

(CLOSEF MYSTREAM).

LISP LIBRARY MODU LES, MEDLEY RELEASE, 4045XLPSTREAM

SingleFilelndex

Sketch

4045XLPSTREAM

If you are using SingleFilelndex, when calling the
SINGLEFILEINDEX function, just specify {Ipt} as the destination
file, instead of {lpt}.4045xlp.

The current version of this module does not support the printing
of documents created with the REVERSE feature in Sketch
(black/white inversion). There will be a printed output, but not a
correct one.

Also, it will not bury a black box by means of a white one; that is,
BURY will not erase bits.

LISP LIBRARY MODULES, MEDLEY RELEASE, 4045XLPSTREAM 11

4045XLPSTREAM

[This page intentionally left blank]

12 LISP LIBRARY MODULES, MEDLEY RELEASE, 4045XLPSTREAM

BROWSER

Browser modifies the SHOW PATHS command of MasterScope so
that the output of the command is displayed as an undirected
graph.

Browser makes it easier to use the MasterScope SHOW PATHS
command by making it easier to read its results. This is how
SHOW PATHS looks before Browser is loaded:

Exec (XCL)
.:.,.J.

S()t- FIX
so ... ~"o. SHOW PATHS FROM \FORMATUNE

1.\FORMATLINE apply
2. \SETUPGETCH \TEDIT.TEXTBIN.STRINGSETUP AOOBA:3E
':'. I I

\TEOIT.TEXTBIN.FILE8ETUP
UNFOLD

4. I UNFOLD
\TEDIT.REOPEN.STREAM
FOLOLO

5.
E; •
7.
.:.
'.',
9.
Hi.
11.
12.
1:3.
14.
15.
16.
17.
13.
19.
20.
21.

.ED IT8ETA
SELCHARQ

I
I
I
\8ETUPGETCH {::}
\CHTOPCNO \EOITELT
I GETBASEPTR
I \AOOBASE2
\EOITELT
GEHoASEPTR

t,IOO

\AOOBASE2
\TEOIT.APPLY.PARASTYLES apply
I \TEOIT.CHECK
\TEDIT.APPLY.STYLE8 apply

\TEOIT. CHECf\:

{a}

This shows that FORMATLINE calls SETUPGETCH, which calls
EDITEL T, etc.

And this is how SHOW PATHS looks after Browser is loaded:

PATHS FROM \FORMATLINE

ri " ~ l

"'/

/, \/IlIOBASEZI / l \ TEO IT. UN Ivl.l IF'r'. GHAALOOK:;
,':l, fiETBASEP1r: I ... / .. <> \WIN .
h/ \EOlTELTj ./ .. .;.-< ... \SF'lITF'IECEI

/
~llll'" . It/· ~J"... I' • - ..

,./, \f:HTnpr-N(l1 l.;/ . ..- ~..-" ·,.A[)OE;,u,::;E:::
~:,?;,.:>:.,<Tr.[i IT:' IN:;ERT, F' lEGES 4-~ IlElI:ASEPTF: I

'~/:"~.·~/ \~;::::.::-~ \EO lTEL TI
IJ' y .. -'. I-'~ ' ~~ _____ ---'

I
I;...... i->-.. ~- \(;HTOPr.NO

II ~~\<'. \ TED IT. 0 IFFU~;E. PAAALOO~:B I
\FORl'\Ii.ll TNE ". y' \\" \ INSEF:Tf' IEeE I

......... ". . \~. PIJ1B~,EE;""'T'E
..... TEO IT. N:;,GHAA. RUN', "WU1BASEFAT

... ... •• , TEO IT. OR IGINAL. WINDOW. nTI.E
'I ,I
\ I ./ \EO !T:;;ETAI /::.~

I, / <,/> \INSERTf'IEe~
" I ./ .. / " ,il{JOE;ASE~1 "'.
\ i I... _ . ____ i .rf;;------ '0 -.

This shows that FORMATLINE calls TEDIT.NSCHAR.RUN, which
calls EDITEL T, etc. (on another part of the calling tree),

This window can be shaped and scrolled to see more of the
result.

LISP LIBRARY MODULES, MEDLEY RELEASE, BROWSER 13

BROWSER

Requirements

Installation

User Interface

Functions

14

MASTERSCOPE, GRAPHER

Load BROWSER.LCOM and the other required modules from the
library.

Browser creates a new window for each SHOW PATHS command,
but will reuse a window if that window has an earlier instance of
the same SHOW PATHS command displayed in it.

The windows can be reshaped and scrolled with the normal
window menu commands (which pop up when the right button
is pressed in the window title bar).

The windows are active in the sense that nodes in the graph (i.e.,
functions) can be selected for printing or editing by using the
mouse. Clicking with the left button over the name of a
function causes that function to be pretty-printed in the Browser
printout window.

Selecting the same function again will describe the function,
using the MasterScope DESCRIBE command, in the Browser
describe window.

Selecting a function with the middle button will call the editor
on that function.

The Browser graph is not updated automatically when you edit a
function; you must give the SHOW PATHS command again to see
the changes.

(BROWSER T) turns the Browser on.

The Browser calls LA YOUTFOREST (in Grapher) to generate a
graph showing the calling hierarchy.

The format is controlled by the two variables BROWSERFORMAT
and BROWSERBOXING (which are set initially to display
horizontally and to box functions that occur more than once in
the graph).

SHOWGRAPH displays the graph.

LISP LIBRARY MODULES, MEDLEY RELEASE, BROWSER

Limitations

Examples

BROWSER

The Browser modification to MasterScope can be undone by
calling (BROWSER NIL), restoring the teletype-oriented output
of SHOW PATHS.

Browser works only with MasterScope.

Type the following into an Interlisp Exec ·window:

.ANALYZE ANY ON MY-MODULE

.SHOW PATHS FROM MY-FUNCTION

LISP LIBRARY MODULES, MEDLEY RELEASE, BROWSER 15

BROWSER

[This page intentionally left blank]

16 LISP LIBRARY MODULES, MEDLEY RELEASE, BROWSER

Installation

Functions

CASH-FILE

Cash-File is a front end to Hash-File which uses a hash table to
cache accesses to hash files. This can provide a significant
performance improvement in applications which access a small
number of keys repeatedly. For example, the Where-Is library
module uses this module to achieve acceptable interactive
performance.

Cash-File is similar to but not compatible with the LispUsers'
module, HASHBU FFER.

All of the code for Cash-File is in a package called Cash-File.
Througout this document Lisp symbols are printed as though in
a package which uses the packages Cash-File, Hash-File, and Lisp.

Load CASH-FILE.DFASL and HASH-FILE.DFASL from the library.

The functional interface is designed to closely resemble that of
Hash-File, which was in turn designed to resemble the Common
Lisp hash table facility.

(make-cash-file file-name size cache-size) [Function]

Creates and returns an empty cash file in file-name. Size is
passed as the size argument to make-hash-file, while
cache-size is passed as the size argument to make-hash-tabl e
and determines the maximum number of entries that will be
cached.

(get -cash-fi I e key cash-file &optional default) [Function]

Just like get-hash-file and gethash. Retrieves the value
stored under key in cash-file or default if there is none. Also
returns a second value which is true if a value was found for key.

A setf method is also defined for get-cash-fi 1 e.

(open-cash-file file-name cache-size &keydirection) [Function]

Open the existing hash file in file-name in direction (: input or
: i 0). Cache-size is passed as the size argument to
make-hash-table and determines the maximum number of
entries which will ever be cached.

(rem-cash-file key cash-file) [Function]

Like rem-hash-fileand remhash. Deletes key from the hash
file and the cache. Returns true if and only if there was a value
stored under key.

LISP LIBRARY MODULES, MEDLEY RELEASE, CASH-FILE 17

CASH-FILE

(cash-file-p object) [Function]

Returns true if and only if object is a cash file.

(cash-file-p object) == (typep object' cash-file)

(cash-file-hash-file cash-file) [Function]

Returns the hash file object which cash-file is a front end to.

There are no cash file specific equivalents for
close-hash-file, map-hash-file and hash-file-count.
For these use the hash file functions on the
cash-file-hash-file.

Implementation Notes

Limitations

18

A queue is maintained to enable cache deletion when the cache
is full. This queue is implemented as a list. Each time a key is
accessed, it is moved to the head of the queue. The last element
of the queue is deleted when a new key is accessed and the
queue is full.

The cache time is not constant but grows linearly with the size of
the cache. For this reason, huge caches are not recommended.

LISP LIBRARY MODULES, MEDLEY RELEASE, CASH-FILE

Req u irements

Installation

User Interface

Functions

CENTRONICS

The Centronics module implements a stream interface to an
industry-standard Centronics printer port. This port is designed
to drive Centronics-compatible devices, typically printers. The
module allows you to send bytes over the parallel port, and
notifies you of any device error conditions.

The Centronics port is found on the Xerox 1109, which is an 1108
equipped with the Extended Processor board (marked CPE FP). It
is the upper of the two connectors on the board.

The Centronics cable from the port to the printer should be
wired as shown in the Introduction of this manual.

CENTRONICS.LCOM implements a general byte output stream. It
is typically used in conjunction with a printer driver module, such
as 4045XLPStream, though it can also run by itself.

Load CENTRONICS.LCOM from the library.

(CENTRONICS.RESET) [Function]

The only user-callable function in the module, it initializes the
parallel port and any attached device. It should be called after
the printer is powered on.

Opening a Centronics Stream

To open a stream to the Centronics port, evaluate a form similar
to the following:

(SETQ CENTRONICS.STREAM (OPENSTREAM '{CENTRONICS}
'OUTPUT»

All bytes BOUTed to CENTRONICS.STREAM will be sent to the
attached printer. You may only have one stream open to the
parallel port at one time; attempts to open others will yield an
error.

LISP LIBRARY MODULES, MEDLEY RELEASE, CENTRONICS 19

CENTRONICS

Device Errors

Limitations

20

When a device error is detected (e.g., printer offline, out of
paper, etc.), a break window will pop up.

After resetting the device, type RETURN (the word, not the key)
to continue. Type STOP to abort.

The port is available on Xerox 1109 workstations only.

LISP LIBRARY MODULES, MEDLEY RELEASE, CENTRONICS

Xerox character Codes

CHARCODET ABLES

CharCodeTables prints character code charts for a given font,
showing the characters that exist in a printer in that font. It is
useful for illustrating the characters that are available to the user
of an application.

Each table is a grid, specific to a font and to the printer to which
the output is sent. Across the top are the high-order 8 bits of the
character code; down the left are the low-order 8 bits. At 255 of
the 256 intersections, a character is printed (code 377 is
reserved).

If a particular character doesn't exist on the printer, a black
rectangle is shown in its stead.

The tables are printed two to a page, in landscape form. To
avoid problems with printer limitations, a group of charts is
broken into documents no longer than five pages each for actual
printing.

The Xerox Character Code Standard specifies a 16-bit character
code space containing all the characters in a given font.

For example, there are over 60,000 possible characters in the font
Modern 10 Bold; however, many of those character codes
haven't yet been assigned. Moreover, a given printer may not
have all the characters for a given font that the standard calls for.

The character code space is divided into 255 character sets
(numbered 0-376 octal) of 255 characters each (codes 0-377
octal). Character code 377 is reserved as the character-set
switching marker in the Xerox file representation of the
characters, thereby rendering character set 377 unavailable as
well.

Generally, each character set or range of character sets is
reserved for a particular use or language. Character set 0, for
example, contains the ASCII characters in its lower half, and a
variety of common international and commercial symbols in its
upper half (corresponding to the 8-bit ISO 6937 standard).
Character set 46 is reserved for the Greek alphabet and
Greek-specific punctuation marks.

Code assignments are described in detail in:

Xerox System Integration Standard Character Code Standard,
XNSS 058605, May 1986, version XC1-2-2-0.

LISP LIBRARY MODULES, MEDLEY RELEASE, CHARCODETABLES 21

CHARCODETABLES

Requirements

Installation

Functions

22

The variable INTERPRESSFONTDIRECTORIES must be set to a list
of directories which contain font metric files. These files have
names of the form

{ERIS}<LISP)FONTS)MODERN08-BIR-C#.WD

where B = bold, I = italic, and # represents the character set
number in octal.

Load CHARCODETABLES.LCOM from the library.

(SHOWCSETLIST CSETS FOND [Function]

Prints code tables for the character sets in the list CSETS, for the
given font specification FONT.

CSETS is a list of one or more numbers that identify the character
sets; FONT is the name of a font.

(SHOWCSETRANG E FIRSTCSET LASTCSET FOND [Function]

Prints code tables for the character sets from FIRSTCSETthrough
LASTCSETforthe given FONT.

(SHOWCOMMONCSETS FOND [Function]

Prints code tables for the most common character sets in the
given FONT.

(These are character set 0, Greek, Cyrillic, Katakana, Hiragana,
and various special symbols)

(SHOWCSET FOND [Function]

Prints code tables for every character set defined in the Xerox
Character Code Standard.

LISP LIBRARY MODULES, MEDLEY RELEASE, CHARCODETABLES

Limitations

Examples

This module works only with Interpress fonts.

(SHOWCSETLIST '(0 238 239) '(MODERN10»
or

(SHOWCSETLIST '(0 #0356 #0357) '(MODERN10»

CHARCODETABLES

Prints the code tables for character sets 0, 356 and 357 (octal)
that correspond to the Modern 1 O-poi nt font.

(SHOWCSETRANGE 24 26 '(MODERN 10 ITALIC»
or

(SHOWCSETRANGE #030 #032 '(MODERN 10 ITALIC»

Prints the code tables for character sets 30 and 32 (octal) and the
Modern 10 italic font.

Note: When typing the character set number, remember that
the character sets are identified by octal numbers.
Therefore you must type either the decimal equivalent of
that octal number (e.g., to represent 41 octal, type 33) or
the octal number directly, typed as #041 (where 0 is the
letter 0).

LISP LIBRARY MODULES, MEDLEY RELEASE, CHARCODETABLES 23

CHARCODETABLES

[This page intentionally left blank]

24 LISP LIBRARY MODULES, MEDLEY RELEASE, CHARCODETABLES

Requirements

CHAT

Chat is a remote terminal facility that allows you to communicate
with other machines while inside Lisp. Chat sets up a Chat
connection to a remote machine, so that everything you type is
sent to the remote machine, and everything the remote machine
prints is displayed in a Chat window.

Chat is an extensible terminal emulation facility. Its core supplies
both terminal- and network-protocol- independent
functionality; new terminal types and new Chat protocols, based
on this core, can be added to Chat at any time. You can choose
any terminal type to be used with any network protocol type.

There are currently terminal emulators for the following
terminals:

Datamedia 2500

DEC VT100

TEd it (this is actually a TEdit-based Chat window,
supporting scrolling and copy-select operations as in
standard TEdit).

A number of different network protocol interfaces can be used
with Chat. The following protocols are available:

PUP Chat,

NS Chat (using the GAP protocol),

TCP (ARPANET) TELNET,

RS232 Chat (usi ng either the RS232 or TTY ports of the 1108
and 1186 processors).

Each of these is available by loading the corresponding module.

DMCHAT

CHATTERMINAL

One of the network protocols: PUPCHAT or NSCHAT or
RS232CHAT or TTYCHAT or TCPCHAT. .

One of the terminal emulators: DMCHAT or VTCHAT or
TEDITCHAT.

The applicable file dependencies enumerated in the Introduction
of this manual.

LISP LIBRARY MODULES, MEDLEY RELEASE, CHAT 25

CHAT

Installation

User Interface

Opening a Chat Connection

Load CHAT.LCOM from the library.

In addition, you must load at least one of the Chat network
protocol modules.

If you want a terminal emulator different from the default
DM2500, you must also load it.

Chat prompts for a new window for each new connection. It
saves the first window to reuse once the connection in that
window is closed (other windows just go away when their
connections are closed).

Multiple, simultaneous Chat connections are possible. To switch
between typing to different Chat connections, simply press the
left button within the Chat window you want to use.

The simplest way to open a Chat connection is to select the CHAT
option of the right-button (background) menu. The first time
you do this, you will be prompted in the system's prompt
window for the name of a host to which to connect.
Subsequently, you will be prompted with a menu of all hosts to
which you have opened Chat connections; the last entry in this
menu will be OTHER, and provides a way for you to connect to
new Chat hosts.

The other method of opening a Chat connection is to call the
CHAT function directly:

(CHAT HOST LOGOPTION INITSTREAM WINDOW) [Function]

Opens a Chat connection to HOST, or to the value of
DEFAULTCHATHOST. If HOST requires login, Chat supplies a
login sequence.

You may alternatively specify one of the following values for
LOGOPTlON:

Login Always perform a login.

Attach Always perform an attach (this is likely to be useful only when
opening Chat connections to hosts running the Tops-20 or Tenex
operating systems). This will fail if you do not have exactly one
detached job.

None Do not attempt to log in or attach.

26 LISP LIBRARY MODULES, MEDLEY RELEASE, CHAT

Chat Menu

CHAT

Note: It is important that you supply information about the
types of hosts to which you chat by setting the variable
NETWORKOSTYPES (see IRM) or DEFAUL T.OSTYPE (see
Lisp Release Notes), as CHAT uses that information to
determine whether and how to log in. An incorrect login
sequence can inadvertantly expose your password.

If INITSTREAM is supplied, it is either a string or the name of a file
whose contents will be read as type-in. When the stringlfile is
exhausted, input is taken from the keyboard.

If WINDOW is supplied, it is the window to use for the
connection; otherwise, you are prompted for a window.

While Chat is in control, all lisp interrupts are turned off, so that
control characters can be transmitted to the remote host. Chat
does not turn off interrupt characters until after creating the
Chat window, so you can abort the call to Chat by typing
control-E while specifying the Chat window region.

If you press the left button in an Executive window, the system's
focus-of-attention will be switched to that window. At the same
time, keyboard interrupts, such as control-E, will be reenabled.
Whenever you select an open Chat window, the
focus-of-attention will be returned to the Chat window, and
keyboard interrupts will be disabled.

Commands can be given to an active Chat connection by pressing
the middle mouse button in the Chat window to get a command
menu.

Note: The left mouse button, when pressed inside an active
Chat window, holds output as long as the button is
down. Holding down the middle button coincidentally
does this too, but not on purpose; since the menu
handler does not yield control to other processes, it is
possible to kill the connection by keeping the menu up
too long.

CLOSE Closes this connection. Once the connection is closed, control is
handed over to the main lisp Executive window. Closes the Chat
window unless it is the primary Chat window.

SUSPEND Same as CLOSE, but always leaves the window open.

NEW Closes the current connection and prompts for a new host to
which to open a connection in the same window.

FREEZE Holds type-out from this Chat window. Pressing a mouse button
in the window in any way releases the hold. This is most useful if
you want to switch to another, overlapping window and there is
type-out in this window that would compete for screen space.

DRIBBLE Opens a typescript file for this Chat connection (closing any
previous dribble file for the window). You are prompted for a
file name. If you want to close an open dribble file (without
opening a new one), just type a carriage return.

LISP LIBRARY MODULES, MEDLEY RELEASE, CHAT 27

CHAT

INPUT Prompts for a file from which to take input. When the end of the
file is reached, input reverts to the keyboard.

CLEAR Clears the window and resets the simulated terminal to its
default state. This is useful if undesired terminal commands
have been received from the remote host that place the
simulated terminal into an indeterminate state.

EMACS Turns on or off the Chat EMACS feature, which provides a
convenient way to use the workstation's mouse to move the
cursor on the remote machine when using the EMACS text
editor. When this feature is turned on, pressing the left mouse
button in the Chat window causes a sequence of commands to
be sent to the remote machine that will cause EMACS to move its
cursor to the mouse location.

Use of this feature assumes you' know the keystrokes to perform
cursor-moving commands; see CHAT.EMACSCOMMANDS if your
EMACS does not use the standard ones. Also, it assumes that you
are pointing where there is actually text in your document (not
white space beyond the end of a line) and that there are no tabs
in your text; otherwise, the cursor position may not be where
you expect.

RECONNECT In an inactive Chat window, pressing the middle mouse button
brings up a menu of one item, RECONNECT, whose selection
reopens a connection to the same host as was last in the window.
This is the primary motivation for the SUSPEND menu command.

<EMULATOR>MODE The Chat menu also contains a command of this form for each
terminal emulator that you have loaded. The
<EMULATOR>MODE commands are intended to let you
dynamically switch between terminal emulators.

However, this feature is currently defective and should not be
used. You must also choose your emulator type, by setting
CHAT.DISPLAYTYPES, before opening the Chat connection.

Customizing Chat

CHAT.DISPLA YTYPES [Variable]

This variable contains a list that assigns the terminal emulators to
be used with the hosts. Each entry on the I ist is of the form:

«HostName>(TerminalTypeNumber>(TerminalEmulator»

HostName When Chat opens a connection, it scans CHAT.DISPLA YTYPES to
find an entry whose HostName field matches the name of the
Chat host. If no matching entry is found, it scans the list again,
looking for an entry whose HostName field is NIL.

TerminalTypeNumber Is only important when the Chat protocol in use is PUP Chat. This
number identifies the terminal type to the Chat host's operating
system. Currently, only Tops-20 and Tenex hosts make use of this
facility; if the Chat host does not support this feature, the
number in the TerminalTypeNumber field is ignored.

TerminalEmulator CHAT uses this field of the entry it finds to choose which terminal
type to emulate. Typical terminal emulator names are DM2S00,
VT100, and TEDIT.

28 LISP LIBRARY MODULES, MEDLEY RELEASE, CHAT

CHAT

CHAT. KEY ACTIONS [Variable]

This variable controls the remapping of the keyboard when the
system's focus-of-attention is an active Chat window. The
format of this list is:

«KEYNAME . ACTIONS) (KEYNAME . ACTIONS) ...)

For example, if you prefer the backspace key to send the rubout
character (octal 177), you would set CHAT.KEYACTIONS to be:

«8S (177Q 177Q NOlOCKSHIFT) . IGNORE»

The key actions are assigned when a Chat process is initiated; i.e.,
changing CHAT.KEYACTIONS will only affect new Chat
connections.

CHAT.INTERRUPTS [Variable]

A list of interrupts to pass to INTERRUPTCHAR to assign keyboard
interrupts; e.g., «177Q. HELP» will cause the DELETE character
(code 177) to run the HELP interrupt.

Like CHAT.KEYACTIONS, this variable will only affect new Chat
connections.

CHA T.ALLHOSTS [Variable]

A list of host names, as uppercase symbols, to which you desire to
chat. Chatting to a host not on the list adds it to the list. These
names are placed in the menu used by the background Chat
command prompts.

CLOSECHA TWINDOWFLG [Variable]

If true, every Chat window is closed on exit. If NIL, the initial
setting, then the primary Chat window is not closed.

DEFAU L TCHATHOST [Variable]

CHAT.FONT

The host to which CHAT connects when it is called with no HOST
argument.

[Variable]

If non-NIL, the font used to create Chat windows. If CHAT. FONT
is NIL, Chat windows are created with (DEFAULTFONT 'DISPLAY).

Note: Chat fonts must be fixed-width fonts (e.g., Gacha or
Terminal) to work well with the DM2500 and VT100
terminal emulators.

CHAT.WINDOW.SIZE [Variable]

This variable is either NIL or a dotted pair of (WIDTH. HEIGHT).
The value of the WIDTH field indicates the desired width of the
Chat window, in pixels. The value of the HEIGHT field indicates
the desired HEIGHT of the window, also in pixels.

CHAT.WINDOW.REGION [Variable]

This variable is either NIL or an instance of a REGION. When
CHAT.WINDOW.REGION is non-NIL, its value is used as the region
in which to create the first Chat window.

LISP LIBRARY MODULES, MEDLEY RELEASE, CHAT 29

CHAT

Network Protocols

PUP Chat

30

Subsequent windows are created by prompting for the position
of a window of CHAT.WINDOW.SIZE dimensions, or, if that
variable is NIL, for an arbitrary window region.

CHAT.TTY.PROCESS [Variable]

When you start up CHAT, it takes the TTY immediately if the
value is T. (The initial value is T.)

CHAT.EMACSCOMMANDS [Variable]

A list of five character codes; initially the value of (CHARCODE
(f U f P f N f F f A». These character codes are used by the
EMACS Argument command in changing the position of the
cursor:

CHAT.lN.EMACS?

Upone line
Down one line
Forward one character
Backward one character
Beginning of line.

[Variable]

The initial state of the EMACS feature when a Chat connection is
started. Initially NIL, meaning the feature is off.

CHAT. PROTOCOL TYPES [Variable]

Each Chat emulator (TTYCHAT, RS232CHAT, PUPCHAT ...) adds
an entry onto CHAT. PROTOCOL TYPES which recognizes host
names for the appropriate protocol.

For example, loading PUPCHAT adds an entry (PUP
PUPCHAT.HOST.FILTER) and TCPCHAT adds an entry (TCP
TCP.HOST.FILTER).

Site administrators of complex networks may want to reorganize
these entries when there are hosts which are running multiple
servers, each running different protocols.

For the most part, you should not notice too many differences in
the behavior of Chat when using one network protocol versus
another. The following are unique features of each of the Chat
network protocols.

PUP Chat is in the file PUPCHAT.LCOM. Implementations of PUP
Chat servers exist for Tops-20, Tenex, VAX/Unix, and VAXlVMS
operating systems. The PUP Chat protocol contains provisions
for automatically setting your terminal type, width, and height
whenever you establish a connection or reshape your Chat
window.

LISP LIBRARY MODULES, MEDLEY RELEASE, CHAT

NS Chat

Remote System Administration

Remote System Executive

Interactive Terminal Service

External Communication Service

CHAT

The NS Chat protocol (also known as GAP, or Gateway Access
Protocol) is used to communicate with hosts running GapTelnet
service, including VAX/Unix and the VAXNMS service XNS/DEC
VAX, and also with Xerox 8000-series network services such as
8040 print servers or 8030 file servers. This protocol is contained
on the file NSCHAT.LCOM. The NS Chat protocol differentiates
among a number of virtual terminal services. When you chat to
an NS host, the NS Chat module queries the Clearinghouse for
information about the specified host. This information permits
the NS Chat module to determine which of the following virtual
terminal services are appropriate for the host.

The NS Chat module uses a small set of heuristics to choose which
virtual terminal service to invoke, based on information returned
by the Clearinghouse. If the Clearinghouse information indicates
that only one service type is possible, NS Chat opens a connection
to the Chat host and invokes the proper virtual terminal service.

If the Clearinghouse returns information indicating that more
than one virtual terminal service is supported by the specified
host, you are prompted to choose a service from a menu of the
possible service types.

If NS Chat guesses an incorrect service type, or you choose an
incorrect service type, you will be prompted to choose a service
from a menu of all known virtual service types. If this fails, NS
Chat will abandon its attempts to connect to the specified host.

This service lets you log onto print servers and clearinghouse
servers, and issue appropriate commands. NS Chat will
automatically choose this service when the specified host is
registered in the Clearinghouse as any type of server machine.

This service is currently supported by VAXNMS systems running
XNS/DEC VAX, by Unix systems running GapTelnet service, by lisp
workstations running CHATSERVER from the library, and by XDE
workstati ons.

The ITS is a TTY-based interface to NS mail.

The External Communication Service (ECS) enables Chat
connections to external hosts accessible only by use of a modem.
When you open a Chat connection to an ECS, you will be
prompted for a telephone number; the ECS will dial that number
and complete the connection if a compatible modem answers.

ECS hosts typically support a variety of modem connection
characteristics (specific combinations of parity, character length,
baud rate, and flow control settings). Each connection type is

LISP LIBRARY MODULES, MEDLEY RELEASE, CHAT 31

CHAT

TCPChat

RS232 Chat

Terminal Emulators

DM2500 Chat

VT100 Chat

TEdit Chat

32

known by a different Chat host name; check with your system
administrator to determine the Chat host name you should use
to connect to a particular external host.

TCPCHAT.LCOM is the interface to the TCP-based TELNET
protocol, which is the protocol in use throughout the ARPANET.
It will load and initialize the TCP-IP module, if necessary. Users
are encouraged to read the TCP-IP module in this manual.

RS232 Chat is contained on the files RS232CHAT.LCOM and
TTYCHAT.LCOM. RS232 Chat enables use of the 1108, 1185, and
1186 RS232 ports; TTY Chat enables use of the 1108, 1185, and
1186 TTY ports. Users should read the RS232 module in this
manual.

The Datamedia 2500 terminal emulator is contained in
DMCHAT.LCOM. To use it, load DMCHAT.LCOM and add entries
to CHAT.DISPLAYTYPES in the form:

«HOSTNAME) <TERMINALTYPENUMBER) DM2500)

The VT100 emulator is contained in VTCHAT. To use it, load
VTCHAT.DFASL and add entries to CHAT.DISPLAYTYPES in the
form:

«HOSTNAME) <TERMINALTYPENUMBER) VT100)

Currently, the VT100 emulator does not emulate the following
features of the actual Digital VT100 terminal:

Dual-width and/or dual-height characters

Graphics character set

Remotely initiated switching between 80- and 132-column
mode.

TEdit Chat supplies a "glass TTY" terminal emulator with a TEdit
stream storing all characters received during the Chat session. As
a result, you can scroll back and forth through a transcript of
your session, and you can use the standard TEdit copy-select

LISP LIBRARY MODULES, MEDLEY RELEASE, CHAT

CHAT

command to copy blocks of characters from the Chat window to
another TEdit window, a Lisp Executive, etc.

To use TEdit Chat, load TEDITCHAT.LCOM, and add entries to
CHAT.DISPLAYTYPES in the form:

«HOSTNAME) <TERMINALTYPENUMBER) TEOIT).

Note that since TEdit already uses the middle mouse button, you
must click in the window's title bar in order to get the usual Chat
menu.

LISP LIBRARY MODULES, MEDLEY RELEASE, CHAT 33

CHAT

[This page intentionally left blank]

34 LISP LIBRARY MODULES, MEDLEY RELEASE, CHAT

Requirements

Installation

Functions

CMLFLOATARRAY

CmlFloatArray implements high-speed floating-point vector and
array operations. Although optimized for the case of arrays of
element-type single-float, the array operations are generic and
will operate on arrays of any element-type.

CmlFloatArray uses special purpose microcode that exploits the
full capabilities of the Weitek floating-point chip set, available
on 1109s, for doing arithmetic operations on floating-point
arrays. On machines without the Weitek floating-point chip set,
such as the 1186, these operations will still usually be more
efficient than the corresponding scalar implementation.

The functions described here operate on Common Lisp arrays,
and may be thought of as extensions of the general Common
Lisp sequence functions.

1186 or 1109 (1108 with the extended processor option) and the
Weitek floating-point chip set.

Load CMLFLOATARRAY.LCOM from the library.

(MAP-ARRAY RESUL T MAPFN ARRA Yl ARRA Y2 . .. ARRA YN) [Function]

MAP-ARRAY is a general mapping function over arrays and
scalars.

Arrays of dimension greater than one are treated as vectors in
row-major order; that is, an array A with dimension (2 2) is
treated as a vector of length 4 and elements '#(,(aref a 00), (aref
a 0 1), (aref a 1 0), (aref a 1 1». All array arguments must be
conformable; that is, of the same dimensions.

Scalars (non-arrays) are extended to the common dimension of
the other array arguments by copy-on (that is, a scalar is treated
as a vector of the appropriate length, each of whose elements is
the scalar).

For example, a call to MAP-ARRAY with two arrays of dimensions
(44) and one scalar and the function MAX as map function will
invoke MAX 16 times, with the scalar the third argument in each
call.

LISP LIBRARY MODULES, MEDLEY RELEASE, CMLFLOATARRAY 35

CMLFLOATARRAY

36

If RESUL T is NIL, the map is for effect only (i.e., no array result is
returned; MAP-ARRAY is of interest only due to a side effect).

If RESULT is a valid element-type, an array of the appropriate
dimensionality and element-type will be created to hold the map
results.

If RESUL T is an array, it must be conformable with the other array
arguments and it will be side effected by the mapping operation.

MAPFN is an arbitrary n-ary Lisp function; i.e., it takes as many
arguments as there are arrays passed to MAP-ARRAY. It is unary
(takes one argument) if one array is passed to MAP-ARRAY,
binary if two arrays are passed, etc.. In the case of unary or
binary operations, MAP-ARRAY recognizes certain functions and
executes the corresponding operation particularly efficiently.

If the single array argument is of element-type single-float and
the result array is of element-type single-float, the following
unary operations are recognized and executed in microcode:

- (MINUS)

ABS

TRUNCATE

FLOAT

Negates each element of the array argument.

Computes the absolute value of each element
of the array argument.

The single array argument must be of
element-type single-float, but the result array
may be any element-type which will
accomodate the integer results. Truncates
(converts to integer, rounding towards zero)
each element of the array argument.

The single array argument must be of
element-type (unsigned-byte 16), and the
result array may be of element-type
si ngl e-float.

Converts each element of the array argument
to a single precision floating point number.

If both arguments are of element-type single-float and the result
array is of element-type single-float, the following binary
operations are recognized and executed in microcode.

+ (PLUS)

(MINUS)

* (TIMES)

Computes the element-wise (element by
element) sum of the two arguments.

Computes the element-wise difference of the
two arguments.

Computes the element-wise product of the
two arguments.

I (QUOTIENT) Computes the element-wise quotient of the
two arguments.

(REDUCE-ARRAY REDUCTION-FUNCTION ARRA Y &OPTIONAL INITIAL-VALUE)

[Function]

REDUCE-ARRAY is similar to the sequence function REDUCE but
is generalized for arrays of arbitrary dimensionality; that is, the

LISP LIBRARY MODU LES, MEDLEY RELEASE, CMLFLOATARRA Y

Limitations

CMLFLOATARRA Y

binary mapping function is applied to each element of the single
array argument, each time being passed the result of the
previous application as well as the current array element. Arrays
of dimensionality greater than one are treated as vectors in
row-major order. The result of REDUCE-ARRAY is always a scalar.

If INITIAL-VALUE is provided, it is used as the starting value of the
reduction operation, otherwise the first element of ARRAY is the
starting value. In the degenerate case of arrays of size zero or
one, the use of INITIAL-VALUE parallels that of the sequence
function REDUCE. REDUCE-ARRAY recognizes certain mapping
functions and executes the corresponding operation particularly
effeciently.

If the single array argument is of element-type single-float, the
following reduction operations are recognized and Executed in
microcode.

+ (PLUS) Computes the sum of all the array elements.

* (TIMES) Computes the product of all the array
elements.

MIN

MAX

MIN-ABS

MAX-ABS

Returns the smallest array element.

Returns the largest array element.

Returns the smallest array element in absolute
value.

Returns the largest array element in absolute
value.

(EVALUATE-POLYNOMIAL X COEFFICIENTS) [Function]

This function calculates the value of a polynomial at the point X.
The polynomial is described by a vector of coefficients,
COEFFICIENTS, where COEFFICIENTS[O] corresponds to the
coefficent of highest degree. If COEFFICIENTS is a vector of
element-type single-float, then this operation is Executed in
microcode.

(FIND-ARRAY-ELEMENT-INDEX ELEMENTARRAY) [Function]

Returns the index of the first element of ARRAY that is EQL to
ELEMENT, or NIL if there is no such element.

This version of CmlFloatArray does not support the FFT
functionality of previous versions.

LISP LIBRARY MODULES, MEDLEY RELEASE, CMLFLOATARRAY 37

CMLFLOATARRAY

[This page intentionally left blank]

38 LISP LIBRARY MODULES, MEDLEY RELEASE, CMLFLOATARRAY

Installation

Function

COPYFllES

CopyFiles makes it easy to copy or move groups of files from one
place to another.

Load COPYFILES.LCOM from the library.

(COPYFI LES SOURCE DES TINA TlON OPTIONS) [Function]

Copies the files designated by SOURCE to the place designated
by DES TINA TlON.

SOURCE is a pattern such as given to DIRECTORY or DIR; it can
also be a list of file names.

DESTINATION is either a directory name or a file-name pattern,
with a one-to-one match of the wild card characters (*s) in
DESTINATION to *s in SOURCE. The number of *s in each source
pattern needs to match the number of *s in each destination
pattern. (See examples below.)

OPTIONS is a list (if you have only one and it is a symbol, you can
supply it as a symbol) that may include one or more of the
options specified below.

Note: If the destination is a non-existent NS subdirectory,
COPYFILES asks whether it should create it. If you answer
YES, then it creates the subdirectory. If you answer NO, it
aborts without processing any files.

OPTION: Conversation Mode

You can specify how verbose CopyFiles is about what it is doing:

QUIET Don't print anything while working.

(OUTPUT LlSTFILE) Print the name of each file that gets copied on LlSTFILE.
(OUTPUT T) is the default.

OPTION: Query Mode

TERSE Only print a period (.) for each file moved/copied.

You can specify whether CopyFiles should ask for confirmation
before each transfer.

ASK Ask each time before moving/copying a file (default is to not
ask).

LISP LIBRARY MODULES, MEDLEY RELEASE, COPYFILES 39

COPYFILES

(ASK N) Ask, with default to No after DWIMWAIT seconds.

(ASK Y) Ask, with default to Yes after DWIMWAIT seconds.

OPTION: Version Control

CopyFiles normally uses the Lisp function COPYFILE to create a
new file. It also usually copies only the highest version, and
creates a new version at the destination. Alternatively, you can
specify any of the following:

RENAME or MOVE Use RENAMEFILE instead of COPYFILE; i.e., the source is deleted
afterwards.

ALLVERSIONS Copy all versions and preserve version numbers.

REPLACE If a file by the same name exists on the destination, overwrite it
(don't create a new version).

Note: When * is used as the source version number, be sure to
specify ALLVERSIONS. This is important because some
devices list files by version number from highest to
lowest, while by default the version numbers at the
destination are assigned in ascending order. Hence, if
ALLVERSIONS is not specified, the versions may be
reversed, as can be verified by looking at the creation
dates.

OPTION: When To Copy

40

CopyFiles normally compares the creation dates of the file on the
source and any matching file on the destination to determine
whether it is necessary to copy. The following options are
mutually exclusive:

ALWAYS Always copy the file.

> Copy only when a file by the same name but an earlier creation
date exists on the destination.

>A Similar to >, but also copy if the file doesn't exist on the
destination; i.e., > ALWAYS.

Copy only when a file by the same name but a different creation
date exists on the destination.

#A Similar to #, but also copy if the file doesn't exist on the
destination, i.e., # ALWAYS.

= A Copy only if there isn't a file of the same name on the
destination.

Not all combinations of options make sense; for example,
ALLVERSIONS probably doesn't work right with any date
comparison algorithms.

LISP LIBRARY MODULES, MEDLEY RELEASE, COPYFILES

COPYFILES

The default setting is (>A); that is, copy the highest version if it
doesn't exist on the destination or if an older creation date
exists, and print out messages about all files considered.

OPTION: Clean-Up After Copying Files

Limitations

Examples

. Copyfiles can be instructed to delete some files after it has
finished copying.

PURGE This involves a separate pass (afterwards): any file on the
destination which doesn't have a counterpart on the source is
deleted.

PURGESOURCE Converse of PURGE (and used by it): if the file is on the source
and not on the destination, delete it.

The creation date comparison does not work when either the
source or the destination does not support creation dates. For
example, the TCP-IP protocol doesn't support any way to find out
the creation date of a remote file. For this reason, COPYFILES can
only be used in ALWAYS mode when using a TCP-IP protocol.

{COPYFILES '{ERIS}<USER>*.MAIL '{PHYLUM}<USER>OLD-*.MAIL)

will copy any mail file on {ERIS}< USER> to
{PHYLUM}<USER>, copying FOO.MAIL to OLD-FOO.MAIL.

{COPYFILES '{ERIS}<USER>*.MAIL '{PHYLUM}<USER>OLD-*.MAIL
'RENAME)

will use RENAMEFILE instead.

(COPYFILES '({DSK}TEST {DSK}WEST) '{PHYLUM}<MYDIR»

will copy the files TEST and WEST from {DSK} to
{PHYLUM}<MYDIR>.

(COPYFILES '{PHYLUM}<USER>*.AR '{PHYLEX:}<USER> '=A)

will copy all ARs on {PHYLUM}< USER> to the PHYLEX NS file
server; if any are already there, it won't bother copying them.

{COPYFILES '{PHYLUM}<USER>AR.INDEX '{DSK}AR.INDEX '(>A
REPLACE»

will copy the AR index to {DSK}, replacing any older version that
is al ready there.

LISP LIBRARY MODULES, MEDLEY RELEASE, COPYFILES 41

COPYFILES

LL'J

COPYFILES({DSK}*.; {FLOPPY})

will copy all files on {DSK} that have no file name extensions to
{FLOPPY}.

(COPYFILES '{ERIS}(USER> '{PHYLUM}(USER> '(IA PURGE»

will make {PHYLUM}<USER> look like {ERIS}<USER>,
bringing over any file that isn't already on {PHYLUM} and then
deleting the ones that were on {PHYLUM} and aren't on {ERIS}
anymore.

LISP LIBRARY MODULES. MEDLEY RELEASE, COPYFILES

Requirements

Installation

DATABASEFNS

DataBaseFns makes the construction and maintenance of
MasterScope data bases essentially an automatic process.

DataBaseFns modifies the behavior of the Lisp functions
MAKEFILE, LOAD and LOADFROM, such that writing out a file
also updates and saves a MasterScope data base, and loading the
file also loads the data base for you to use.

For example,

(LOAD 'FILE1)

loads FILE1, then looks for the corresponding data base file
FILE 1. DATABASE. If the data base exists, it is also loaded. The
result is the same as if you had typed:

(LOAD 'FILE1)
.ANALYZE ALL ON FILEl

The data base will be maintained automatically for any file
(containing functions) whose file name has the property
DATABASE with value YES. Whenever such a file is dumped via
MAKEFILE, MasterScope will analyze any new or changed
functions on the file, and a data base for all of the functions on
the file will be written on a separate file whose name is of the
form FILE. DATABASE. Whenever a file that has a data base
property with value YES is loaded via LOAD or LOADFROM, then
the corresponding data base file, if any, is also loaded. The data
base will not be dumped or loaded if the value of the DATABASE
property for the file is NO. The DATABASE property is considered
to be NO if the file is loaded with LDFLG = SYSLOAD.

If you change some of the functions defined in FILE1, and
perhaps add new ones, then do:

(MAKEFILE 'FILE1)

Then FILE1 is written out. MasterScope analyzes all changed or
new functions and writes FILE1.DATABASE, which contains
MasterScope data for all functions on FILE1.

MASTERSCOPE

Load MASTERCOPE.DFASL from the library, then load
DATABASEFNS.LCOM.

LISP LIBRARY MODULES, MEDLEY RELEASE, DATABASEFNS 43

DATABASEFNS

User Interface

Functions

44

If DataBaseFns is loaded, the first LOAD of a file will ask if you
want to load the corresponding data base:

(LOAD 'FILEl)
Do you want to load the data base for FILE1?

And MAKEFILEing a new file will ask if you want to save the data
base:

(MAKEFILE 'FILEl)
Save the data base for FILE1?

LOADDBFLG

Once you tell the system YES or NO for a particular file, it will
remember and will not ask you again (until you load a new
sysout).

You can set up default answers to these questions by means of
the following variables:

[Variable]

This controls whether you are asked before the data base file is
loaded:

Yes Always try to load the data base when a file is loaded.

No Never try to load the data base when a file is loaded.

Ask (default) Ask whether to load the data base when a file is
loaded.

SAVEDBFLG [Variable]

This controls whether you are asked before the data base file is
saved:

Yes Always try to save the data base when a file is saved.

No Never try to save the data base when a file is saved.

Ask (default) Ask whether to save the data base when a file is saved.

(DUMPDB FILE PROPFLG) [Function]

Dumps a data base for FILE then sets the DATABASE property to
YES, so that data base maintenance for FILE will subsequently be
automatic.

(LOADDB FILE ASKFLG) [Function]

Loads the file FILE.DATABASE if one exists. After the data base is
loaded, the DATABASE property for FILE is set to YES, so that
maintenance will be thereafter automatic.

Data base files include the date and full file name of the file to
which they correspond. LOADDB will print out a warning

LISP IBRARY MODULES, MEDLEY RELEASE, DATABASEFNS

DATABASEFNS

message if it loads a data base that does not correspond to the
in-core version of the file, and will ask you if you approve.

Note: LOADDB is the only approved way of loading a data
base. Attempting to LOAD a data base file will cause an
error.

LISP LIBRARY MODULES, MEDLEY RELEASE, DATABASEFNS 45

DATABASEFNS

[This page intentionally left blank]

46 LISP IBRARY MODULES, MEDLEY RELEASE, DATABASEFNS

Description

History

DEdit

DEDIT

Many important objects such as function definitions, property
lists, and variable values are represented as list structures. There
are two list structure editors (SEdit in the system, and DEdit in the
library, for backward compatibility) to allow users to modify list
structures rapidly and conveniently.

The list structure editor is most often used to edit function
definitions. Editing function definitions in memory is a facility
not offered by many Lisp systems, where typically the user edits
external text files containing function definitions, then loads
them into the environment. In Lisp, function definitions are
edited in the environment, and written to an external file using
the file manager (see IRM), which provides tools for managing
the contents of a fi Ie.

Early implementations of Interlisp using primitive terminals
offered a teletype-oriented editor, which included a large set of
cryptic commands for printing different parts of a list structure,
searching a list, replacing elements, etc. The library includes an
extended, display-oriented version of the teletype list structure
editor, called DEdit.

The teletype editor is still available (see IRM), as it offers a facility
for doing complex modifications of program structure under
program control. DEdit also provides facilities for using the
teletype editor commands from within DEdit.

DEdit is a structure oriented, modeless, display based editor for
objects represented as list structures, such as functions, property
lists, data values, etc.

DEdit incorporates the interfaces of the teletype-oriented
Interlisp editor, so the two can be used interchangeably. In
addition, the full power of the teletype editor, and indeed the
fullinteriisp system is easily accessible from within DEdit.

DEdit is structure-oriented rather than character-oriented, to
facilitate selecting and operating on pieces of structure as
objects in their own right, rather than as collections of
characters. However, for the occasional situation when
character-oriented editing is appropriate, DEdit provides access
to the text editing facilities. DEdit is modeless, in that all
commands operate on previously selected arguments, rather
than causing the behavior of the interface to change during
argument specification.

LISP LIBRARY MODULES, MEDLEY RELEASE, DEDIT 47

DEDIT

Requirements

Installation

User Interface

DEdit Window

48

DEDITPP

Load DEDIT.LCOM from the library.

Loading DEdit makes it the default Lisp structure editor.

If another Lisp structure editor is already the default and you
want to make DEdit the default, call (EDITMODE 'DEDIT) after
loading DEdit.

DEdit is normally called using one of the DEdit functions. See
also "Advanced Features" below.

When DEdit is called for the first time, it prompts for an edit
window which is preserved and reused for later DEdits, and it
pretty-prints the expression to be edited therein.

Note: The DEdit pretty printer ignores user
PRETIYPRINTMACROS because they do not provide
enough structural information during printing to enable
selection.

The expression being edited can be scrolled by using the
standard scroll bar on the left edge of the window. DEdit adds a
command menu, which remains active throughout the edit, on
the right edge of the edit window. If you type anything, an edit
buffer window is positioned below the edit window. This is
illustrated in the figure below, which shows the definition of a
function called FACT. While DEdit is running, it yields control so
that background activities, such as mouse commands in other
windows, continue to be performed.

LISP LIBRARY MODULES, MEDLEY RELEASE, DEDIT

Selecting Objects and Lists

EdIt of functIon FACT

(LAMBDA (:.<) (* mjs " 7-0ct-85 16:04")
(if (LE88P ~.~ 2)

then 1
else (TI ME8 :);

ifiH!LJ!W_f}_:t __ lJl)))

EdIt buffer

(FACT {DIFFERENCE X

Selection in a DEdit window is as follows:

. .:l.fter'
Befot'e
Delete

Replace
Switch

o
<:) out
Uncfo
Find

S··.·vap
Rept'int

Edit
EditCom

Break
Eval
Exit

DEDIT

The left button selects the object being directly pointed at.

The middle button selects the containing list.

The right button extends the current selection to the lowest
common ancestor of that selection and the current
position.

The only things that may be pointed at are atomic objects
(symbols, numbers, etc) and parentheses, which are considered
to represent the list they delimit. White space cannot be selected
or edited.

When a selection is made, it is pushed on a selection stack, which
wi II be the source of operands for DEdit commands_ As each new
selection pushes down the selections made before it, this stack
can grow arbitrarily deep, so only the top two selections on the
stack are highlighted on the screen. This highlighting is done by
underscoring the topmost (most recent) selection with a solid
black line and the second topmost selection with a dashed line.
The patterns used were chosen so that their overlappings would
be both visible and distinct, since selecting a subpart of another
selection is quite common.

For example, in the next figure, the last selection is the list (FACT
(SUB 1 X», and the previous selection is the single symbol SUB 1:

LISP LIBRARY MODULES. MEDLEY RELEASE. DEDIT 49

DEDIT

Typing Characters to DEdit

Copy-Selection

50

DEdit of function FACT

(LAr~~,DA ex:) (* t11js II 7-0ct-:35 16:04")

(if (LESSP >~ 2)
then 1

else (T I r.1 E S >~
J FACT (" SUB1 ::(: Lt)))

Because you can invoke DEdit recursively, there may be several
DEdit windows active on the screen at once. This is often useful
when transferring material from one object to another (as when
reallocating functionality within a set of programs). Selections
may be made in any active DEdit window, in any order. When
there is more than one DEdit window, the edit command menu
(and the type-in buffer) will attach itself to the most recently
opened (or current) DEdit window.

Characters may be typed at the keyboard at any time. This will
create a type-in buffer window which will position itself under
the current DEdit window and do a LlSPXREAD (which must be
terminated by a right parenthesis or a return) from the
keyboard. During the read, any character editing subsystem
(such as TTYIN) that is loaded can be used to do character level
editing on the type-in. When the read is complete, the type-in
will become the current selection (top of stack) and be available
as an operand for the next command. Once the read is complete,
objects displayed in the type-in buffer can be selected from,
scrolled, or even edited, just like those in the main window.

You can also enter editing commands directly into the type-in
buffer. Typing control-Z will interpret the rest of the line as a
teletype editor command that will be interpreted when the line
is closed. Likewise, control-S OLD NEW will substitute NEW for
OLD, and control-F Xwill find the next occurrence of X.

Often, significant pieces of what you wish to type can be found
in an active DEdit window. To aid in transferring the keystrokes
that these objects represent into the type-in buffer, DEdit
supports copy-selection. Whenever a selection is made in the
DEdit window with either shift key or the COpy key down, the
selection made is not pushed on the selection stack, but is
instead unread into the keyboard input (and hence shows up in
the type-in buffer). A characteristically different highlighting is
used to indicate when copy selection (as opposed to normal
selection) is taking place.

Note: Copy-selection remains active even when DEdit is not.
Thus you can unread particularly choice pieces of text
from DEdit windows into an Exec window.

LISP LIBRARY MODULES, MEDLEY RELEASE, DEDIT

Entering DEdit Commands

DEdit Functions

DEDIT

A DEdit command is invoked by selecting an item from the DEdit
command menu. This can be done either directly, using the left
mouse button in the usual way, or by selecting a subcommand.
Subcommands are less frequently used commands than those on
the main edit command menu and are grouped together in
submenus under the main menu to which they are most closely
related.

For example, the teletype editor defines six commands for
adding and removing parentheses (defined in terms of
transformations on the underlying list structure). Of these six
commands, only two (inserting and removing parentheses as a
pair) are commonly used, so DEdit provides the other four as
subcommands of the common two.

The subcommands of a command are accessed by selecting the
command from the commands menu with the middle button.
This will bring up a menu of the subcommand options from
which a choice can be made. Subcommands are flagged in the
list below with the name of the top level command of which they
are options.

If you have a large DEdit window, or several DEdit windows
active at once, the edit command window may be far away from
the area of the screen in which you are operating. To solve this
problem, the DEdit command menu is in an attached window.
Whenever the tab key is pressed, the command window will
move over to the current cursor position and stay there as long as
either the tab key remains down or the cursor is in the command
window. Thus, you can pull the command window over, slide
the cursor into it and then release the tab key (or not) while you
make a command selection in the normal way. This eliminates a
great deal of mouse movement.

Whenever a change is made, the pretty-printer reprints until the
printing stablizes. As the standard pretty print algorithm is used,
and as it leaves no information behind on how it makes its
choices, this is a somewhat heuristic process. The REPRINT
command can be used to tidy the result up if it is not, in fact,
"pretty."

The functions used to start an editor are documented in the
"Ed it Interface" secti on of the Lisp Release Notes.

(RESETDEDIT) [Function]

Completely reinitializes DEdit. Closes all DEdit windows, so that
you must specify the window the next time DEdit is envoked.
RESETDEDIT is also used to make DEdit recognize the new values
of variables such as DEDITTYPEINCOMS (see" DEdit Parameters,"
below), when you change them.

LISP LIBRARY MODULES, MEDLEY RELEASE, DEDIT 51

DEDIT

DEdit Commands

AFTER

BEFORE

DELETE

REPLACE

SWITCH

o
(IN

) IN

OOUT

(OUT

) OUT

UNDO

52

All commands take their operands from the selection stack, and
may push a result back on the stack. In general, the rule is to
select target selections first and source selections second. Thus, a
REPLACE command is done by selecting the thing to be replaced,
selecting (or typing) the new material, and then selecting the
REPLACE command in the command menu.

Using TOP to denote the topmost (most recent) element of the
stack and NXTthe second element, the DEdit commands are:

[DEdit Command]

I nserts a copy of TOP after NXT.

[DEdit Command]

Inserts a copy of TOP before NXT.

[DEdit Command]

Deletes TOP from the structure being edited. (A copy of) TOP
remains on the stack and will appear, selected, in the edit buffer.

[DEdit Command]

Replaces NXTwith a copy of TOP obtained by substituting a copy
of NXT wherever the value of the atom EDITEMBEDTOKEN
(initially, the & character) appears in TOP. This provides a facility
like the MBD edit command in Lisp; see EXTRACT, EMBED and
IDIOMS below.

[DEdit Command]

Exchanges TOP and NXTin the structure being edited.

[DEdit Command]

[DEdit Command]

Subcommands of O. Inserts (before TOP (like the LI EDIT
command; see "Commands That Edit Parentheses," below).

[DEdit Command]

Subcommand of O. Inserts) after TOP (like the RI EDIT
command; see "Commands That Edit Parentheses," below).

[DEdit Command]

Removes parentheses from TOP.

[DEdit Command]

Subcommand of 0 OUT. Removes (from before TOP (like the LO
EDIT command; see "Commands That Edit Parentheses," below).

[DEdit Command]

Subcommand of () OUT. Removes) from after TOP (like the RO
EDIT command; see "Commands That Edit Parentheses, II below).

[DEdit Command]

Undoes last command.

LISP LIBRARY MODULES, MEDLEY RELEASE, DEDIT

!UNDO

?UNDO
&UNDO

FIND

SWAP

CENTER

CLEAR

COpy

POP

REPRINT

EDIT

DEDIT

[DEdit Command]

Subcommand of UNDO. Undoes all changes since the start of
this call on DEdit. This command can be undone.

[DEdit Command]
[DEdit Command]

Subcommands of UNDO that allow selective undoing of other
than the last command. Both of these commands bring up a
menu of all the commands issued during this call on DEdit.
When you select an item from this menu, the corresponding
command (and if &UNDO, all commands since that point) will be
undone.

[DEdit Command]

Selects, in place of TOP, the first place after TOP that matches
NXT. Uses the edit subystem's search routine, so supports the full
wildcarding conventions of EDIT.

[DEdit Command]

Exchanges TOP and NXT on the stack, i.e. the stack is changed,
the structure being edited isn't.

SWAP and its subcommands affect the stack and the selections,
rather than the structure being edited.

[DEdit Command]

Subcommand of SWAP. Scrolls until TOP is visible in its window.

[DEdit Command]

Subcommand of SWAP. Discards all selections (i.e., clears the
stack).

[DEdit Command]

Subcommand of SWAP. Puts a copy of TOP into the edit buffer
and makes it the new TOP.

[DEdit Command]

Subcommand of SWAP. Pops TOP off the selection stack.

[DEdit Command]

Repri nts TOP.

[DEdit Command]

Runs DEdit on the definition of the atom TOP (or CAR of list
TOP). Uses TYPESOF to determine what definitions exist for TOP
and, if there is more than one, asks you, via a menu, which one to
use. If TOP is defined and is a non-list, calls INSPECT on that
value. Edit also has a variety of subcommands which allow
choice of editor (DEdit, TTYEdit, etc.) and whether to invoke that
editor on the definition of TOP or the form itself.

Note: DEdit caches each subordinate edit window in the
window from which it was entered for as long as the
higher window is active. Thus, multiple DEdit commands

LISP LIBRARY MODULES, MEDLEY RELEASE, DEDIT 53

DEDIT

DEdit Parameters

54

EDITCOM

BREAK

EVAL

EXIT

OK

STOP

do not incur the cost of repeatedly allocating a new
window.

[DEdit Command]

Allows you to run arbitrary EDIT commands on the structure
being DEdited (there are far too many of these for them all to
appear on the main menu). TOP should be an EDIT command,
which will be applied to NXT as the current edit expression. On
return to DEdit, the (possibly changed) current EDIT expression
will be selected as the new TOP. Thus, selecting some expression,
typing (R FOO BAZ), and selecting EDITCOM will cause FOO to be
replaced with BAZ in the expression selected.

In addition, a variety of common EDIT commands are available as
subcommands of EDITCOM. Currently, these include? =, GETD,
CL, OW, REPACK, CAP, LOWER, and RAISE.

[DEdit Command]

Does a BREAKIN AROUND the current expression TOP. (See
BREAKIN function in IRM).

[DEdit Command]

Evaluates TOP, whose value is pushed onto the stack in place of
TOP, and which will therefore appear, selected, in the edit
buffer.

[DEdit Command]

Exits from DEdit (equivalent to Edit OK; see "Commands For
Leaving The Editor," below).

[DEdit Command]

[DEdit Command]

Subcommands of EXIT. OK exits without an error; STOP exits
with an error. Equivalent to the EDIT commands with the same
names.

There are several global variables that can be used to affect
various aspects of DEdit's operation.

EDITEMBEDTOKEN [Variable]

Initially &. Used in both DEdit and the teletype editor to indicate
the special atom used as the embed token.

DEDITLINGER [Variable]

Initially T. The default behavior of the topmost DEdit window is
to remain active on the screen when exited. This is occasionally
inconvenient for programs that call DEdit directly, so it can be
made to close automatically when exited by setting this variable
toNIL

LISP LIBRARY MODULES, MEDLEY RELEASE, DEDIT

DEDIT

DEDITTYPEINCOMS [Variable]

Defines the control characters recognized as commands during
DEdit type-in. The elements of this list are of the form (LETTER
COMMANDNAME FN), where

LETTER is the alphabetic character corresponding to the control
character desired (e.g., A for control-A),

COMMANDNAME is a symbol used both as a prompt and internal
tag,

FN is a function applied to the expressions typed as arguments to
the command.

See the current value of DEDITTYPEINCOMS for examples.
DEDITTYPEINCOMS is only accessed when DEdit is initialized, so
DEdit should be reinitialized with RESETDEDIT (see "Calling
DEdit," above) if it is changed.

DT.EDITMACROS [Variable]

Defines the behavior of the EDIT command when invoked on a
form that is not a list or symbol, thus telling DEdit how to edit
instances of certain datatypes. DT.EDITMACROS is an association
list keyed by datatype name; entries are of the form

(DATA TYPE MAKESOURCEFN INSTALLEDITFN).

When told to edit an object of type DATA TYPE, DEdit calls
MAKESOURCEFN with the object as its argument.

MAKESOURCEFN can either do the editing itself, in which case it
returns NIL, or else it destructures the object into an editable list
and returns that list.

In the latter case, DEdit is then invoked recursively on the list;
when that edit is finished, DEdit calls INSTALLEDITFN with two
arguments, the original object and the edited list. If
INSTALLEDITFN causes an error, the recursive DEdit is invoked
again, and the process repeats until the you either exit the lower
editor with STOP, or exit with an expression that INSTALLEDITFN
accepts.

For example, suppose the you have a datatype declared by
{DATA TYPE FOO (NAME AGE SEX». To make sure that instances
of FOO can be edited, an entry (FOO DESTRUCTUREFOO
INSTALLFOO) is added to DT.EDITMACROS, where the functions
are defi ned by

(DESTRUCTUREFOO (OBJECT)
(LIST (fetch NAME of OBJECT)

(fetch AGE of OBJECT)
(fetch SEX of OBJECT)))

(INSTALLFOO (OBJECT CONTENTS)
(if (EQLENGTH CONTENTS 3)

then (replace NAME of OBJECT with (CAR CONTENTS))
(replace AGE of OBJECT with (CADR CONTENTS))
(replace SEX of OBJECT with (CADDR CONTENTS))

else (ERROR "Wrong number of fields for FOO" CONTENTS)))

LISP LIBRARY MODULES, MEDLEY RELEASE, DEDIT 55

DEDIT

User Interface - Advanced Features

Multiple DEdit Commands

DEdit Idioms

56

It is occasionally useful to be able to give several commands at
once - either because you think of them as a unit or because the
intervening re-pretty-printing is distracting. The stack
architecture of DEdit makes such multiple commands easy to
construct. You just push whatever arguments are required for
the complete suite of commands you have in mind. Multiple
commands are specified by holding down the CONTROL key
during command selection. As long as the control key is down,
commands selected will not be executed, but merely saved on a
list. Finally, when a command is selected without the control key
down, the command sequence is terminated with that command
being the last one in the sequence.

You would rarely construct long sequences of commands in this
fashion, because the feedback of being able to inspect the
intermediate results is usually worthwhile. Typically, just two or
three step idioms are composed in this fashion.

As with any interactive system, there are certain common idioms
on which experienced users depend heavily. In the case of DEdit,
many of these idioms concern easy ways to achieve the effects of
specific commands from the Edit system, with which many users
are already familiar. The DEdit idioms described below are the
result of the experience of the early users of the system and are
by no means exhaustive. In addition to those that each user will
develop to fit his own particular style, there are many more to be
discovered and you are encouraged to share your discoveries.

Because of the novel argument specification technique (postfix;
target first) many of the DEdit idioms are very simple, but
opaque until you have absorbed the "target-source-command"
way of looking at the world. Thus, you select where type-in is to
go before touching the keyboard. After typing, the target will
be selected second and the type-in selected on top, so that an
AFTER, BEFORE or REPLACE will have the desired effect. If the
order is switched, the command will try to change the type-in
(which mayor may not succeed), or will require tiresome
swapping or reselection. Although this discipline seems strange
at first, it comes easily with practice.

Segment selection and manipulation are handled in DEdit by
first making them into a sublist, so they can be handled in the
usual way. Thus, if you want to remove the three elements
between A and E in the list (A BCD E), you select B, then D
(either order), then make them into a sublist with the 0
command. This will leave the sublist (B C D) selected, so a
subsequent DELETE will remove it. This can be issued as a single
"0; DELETE" command using multiple command selection as
described above, in which case the intermediate state of (A (B C
D) E) will not show on the screen.

LISP LIBRARY MODULES, MEDLEY RELEASE, DEDIT

DEDIT

Inserting a segment proceeds in a similar fashion. Once the
location of the insertion is selected, the segment to be inserted is
typed as a list (if it is a list of atoms, they can be typed without
parentheses and the READ will make them into a list, as you
would expect). Then, the command sequence "AFTER (or
BEFORE or REPLACE); () OUT" (given either as a multiple
command or as two separate commands) will insert the type-in
and splice it in by removing its parentheses.

Moving an expression to another place in the structure being
edited is easily accomplished by a DELETE followed by an INSERT.
Select the location where the moved expression is to go to; select
the expression to be moved; then give the command sequence
"DELETE; AFTER (or BEFORE or REPLACE)". The expression will
first be deleted into the edit buffer where it will remain selected.
The subsequent insertion will insert it back into the structure at
the selected location.

Embedding and extracting are done with the REPLACE
command. Extraction is simply a special case of replacing
something with a subpiece of itself:

Select the thing to be replaced.
Select the subpart that is to replace it.

REPLACE.

Embedding also uses Replace, in conjunction with the embed
token (the value of EDITEMBEDTOKEN, initially the single
character atom &). Thus, to embed some expression in a PROG,

Select the expression.
Type: (PROG VARSLST &)

REPLACE.

SWITCH can also be used to generate a whole variety of complex
moves and embeds.

For example, switching an expression with type-in not only
replaces that expression with the type-in, but provides a copy of
the expression in the buffer, from where it can be edited or
moved to somewhere else.

Finally, you can exploit the stack structure on selections to queue
multiple arguments for a sequence of commands. Thus, to
replace several expressions by one common replacement, select
each of the expressions to be replaced (any number), then the
replacing expression. Now hit the REPLACE command as many
times as there are replacements to be done. Each REPLACE will
pop one selection off the stack, leaving the most recently
replaced expression selected. As the latter is now a copy of the
original source, the next REPLACE will have the desired effect,
and so on.

LISP LIBRARY MODULES, MEDLEY RELEASE, DEDIT 57

DEDIT

Limitations

58

DEdit is not error-protected. If you select the up-arrow to close a
break window which resulted from using the EVAL command,
the DEdit window is also closed.

LISP LIBRARY MODULES, MEDLEY RELEASE, DEDIT

Requirements

Loading the Module

Backing Up Files

DISKBACKUP

The DISKBACKUP module provides a way to make a floppy-disk
backup copy of the files on a local hard-disk partition. Each file is
copied to the floppy disk, then compared with the original.

You will need an 1108/09 or an 1185/86 whose hard disk you wish
to back up. You will also need to load the library module
COPYFILES, or have it in a place where DISKBACKUP can find it to
load it.

You will need to have on hand enough pre-formatted floppy
disks to hold the entire partition that you intend to save. If you
plan to use new, unformatted floppies, please format them
before running BACKUP.

Load DISKBACKUP:DCOM; it will automatically load COPYFILES if
you haven't already loaded it.

The main function is

(BACKUP Vo/umeName) [Function]

VolumeName is the name of the logical volume on your hard
disk that you want to back up. For example, if you keep your
files on the LlSPFILES volume (as most people do), you will want
to type

(BACKUP'L1SPFILES).

You will be asked to load floppy disks as the program needs
them; after you load each floppy, you will be asked to confirm
with the left mouse button. Make sure each floppy is
write-enabled.

As each file is copied onto disk, a message is printed showing
progress. The "Verifying" message is printed while the copy is
being compared to the original; "Done" is printed when the
copy has been verified correct. If the file on the rigid disk has an
illegal creation date (e.g. date and time were not set when the

2

Troubleshooting

Restoring Files

file was created) then a default date will be used (1-Jan-87
12:00:00) and the message II illegal date" is displayed.

BACKUP first identifies all files. which are too large to b
contained on a single diskette. Such files are copied to diskettes
in HugePilot mode. You will be prompted to insert each diskette
during the copy operation. Be sure to write-enable the diskettes
before inserting them in the drive. When the copy operation for
each large file is complete, you will be prompted to place the
first floppy in the drive to start the verification step.

Once all large files have been copied and verified, BACKUP
proceeds to save files which are small enough to be contained on
a single diskette. As each diskette fills up, the system promps you
for the next. Each floppy is labelled Backup Floppy #N, N = 1, 2,
3 ...

If the verification step for any file should fail, a break window is
opened and an error message is displayed. At this point you
have two options: (1) abort the BACKUP process with i D and
start the disk backup operation from the beginning; or (2) note
the name of the file which failed the verification step (for later
copying) and up-arrow (i) out of the break, which resumes the
BACKUP orocess with the next file to be saved. The bad copy 0,+
the previous file is not deleted from the floppy. If verificatior1
fails, it is a good idea to run floppy diagnostics.

Warning: when the verification step fails, open input streams
exist for the two files being compared. They should be closed
before leaving the break.

Files saved with DISKBACKUP can be restored to the local file
system in Lyric by using either the COPYFILES.LCOM or
FILEBROWSER.LCOM Lyric Library Modules. Be sure the floppy
system is in the correct mode: PILOT or HUGEPILOT, before
copying them from floppy.

Requirements

Installation

User Interlace

EDIT.BITMAP

EDITBITMAP

EditBitMap provides an interface (EDIT.BITMAP) for creating and
editing bitmaps, which may exist as named files or as part of
another type of a file (for example, a document written in TEdit).

EditBitMap puts up a menu of bitmap-manipulation commands,
one of which is HAND.EDIT, which accesses EDITBM, the
Interlisp-D bitmap editor.

EditBitMap also works on cursors (produces new cursor) and
symbols (works on the value and resets the value with the result).

READNUMBER
SCALEBITMAP

Load EDITBITMAP.LCOM and the required .LCOM modules from
the library.

The user interface consists of a function (EDIT.BITMAP), a main
operation menu, and a three-part window for low-level pixel
editing.

There are two principal ways of entering the bitmap editor. If
the bitmap is an object in a document being edited, you can
enter the bitmap editor by pressing the left button over the
bitmap. If the bitmap is an object you are manipulating as part
of a program, you can call the function EDIT.BITMAP from the
Executive, passing it the bitmap (typically the value of some
variable).

In either case, EditBitMap presents its main menu, from which
you select the operation you desire. If the operation is "Hand
Edit", EditBitMap brings up a three-part window to show,
create, or edit a bitmap. The individual EditBitMap operations
can also be performed programmatically or from the Executive
(see "Functions").

The function EDIT.BITMAP is the principal way to create, view or
edit bitmaps stored as the values of variables (or other easily
accessible Lisp values):

LISP LIBRARY MODULES, MEDLEY RELEASE, EDITBITMAP 59

EDITBITMAP

Window

60

(EDIT. BITMAP BITMAP) [Function]

BITMAP may be a bitmap, a cursor, or a symbol. If BITMAP is a
bit map, then EDIT. BITMAP returns a new bitmap as the result of
the edit. If BITMAP is a cursor, then EDIT.BITMAP operates on its
bitmap and returns a new cursor. If BITMAP is a symbol, then
EDIT.BITMAP operates on the symbol's value (a bitmap or
cursor), and resets the symbol's value to the result of the edit.

EditBitMap brings up a main menu containing the following
items:

HAI'.JD. EDIT
FROlvl,SCREEN

TRI~'il
1t'·JVERT. HOR IZONT ALL"'.'"

IN\/ERT. VERTIC.!:..LLV
IH\/ERT.DI.t..GOI···J.l:..LLV'

ROT.l; TE. B I TM.t.. P. LEFT
ROT.!:..TE.BIn..··l.!:..P,R I(~HT

SHIFT.LEFT
:::,HIFT,RIC;HT
SHIFT,DO\·VN

:=;HIFT.UP
INTE R CH,!:.. NGE, BL ,!:..Cf<. ,l'·I·· ... H ITE

,i:..DD,BC'RDER
Ur'-JDO
C111IT

EditBitMap performs each command you select, until you select
QUIT, at which point it returns the final result of all the edits.
You can select UNDO to undo the most recent operation
(selecting it several times undoes several operations). If you
select HAND.EDIT, you enter the pixel editor EDITBM (see the
IRM). If you select FROM.SCREEN, EditBitMap prompts you for a
screen region from which to initialize a new bit map. The
remaining menu items are described under the corresponding
"Function" below.

The EditBitMap window consists of three parts. The main, lower
part is the region where the bitmap is displayed on a grid by
means of fat pixels. The smaller top part is a gray background
against which the middle-button submenu is displayed. The
small portion in the upper left corner displays a miniature picture
of the entire bitmap.

LISP ,LIBRARY MODULES, MEDLEY RELEASE, EDITBITMAP

Submenu

Mouse Buttons

EDITBITMAP

The EditBitMap submenu is displayed when you press the middle
button in the upper gray region of the window. It contains the
following items:

Paint
S~1ov· ~.sTile
(;rid On.lOff
(;ricf3ize +­

Reset
Clear

(:: ut':3or+­
OF.

Stop

These menu items are described in the system prompt window
when an item is selected.

Pressing the right button anywhere in the EditBitMap window
causes the usual window menu to be displayed.

Pressing the left or middle button in the upper left portion of the
window presents a MOVE icon.

itma.p Eaitor

Pressing on the MOVE icon presents a rectangle which can be
moved about in the subwindow. This rectangle indicates the
portion of the entire bitmap which will be displayed in the large,
bottom subwindow, as soon as the button is released.

Bitmap Eaitol'

(.........

~
::

Pressing the middle button in the upper, gray subwindow causes
the EditBitMap submenu to be displayed (see above).

Pressing the left button in the upper, gray subwindow highlights
a rectangle in the upper left subwindow, showing which portion
of the entire bitmap is displayed in the large lower subwindow.

Pressing the left button (or dragging the mouse with the left
button held down) in the large, lower portion of the window
changes the pixels; you are editing at the pixel level.

LISP LIBRARY MODULES, MEDLEY RELEASE, EDITBITMAP 61

EDITBITMAP

Editing an Existing Bitmap

Viewing an Existing Bitmap

Creating a New Bitmap

62

If you have a variable OLDNAME whose value is a bitmap, you
can make a modified version assigned to NEWNAME by typing to
the Executive window:

(SETQ NEWNAME (EDIT.BITMAP OLDNAME))

Or if you want to modify OLDNAME in place, pass the quoted
name itself:

(EDIT.BITMAP 'OLDNAME)

In either case, the main menu pops up on the screen. Select the
operations you wish to perform, including HAND. EDIT to edit at
the pixel level.

Edit the bitmap as needed.

Move the cursor into the gray upper region. Press the middle
button to get the submenu. Select OK.

In the main menu, select QUIT. The Executive window displays
the new bitmap address.

You can use the hand editor simply to view a bitmap. In this case
you don't need to include a SETQ to save the value. For example,
type

(EDIT.BITMAP BITMAPNAME)

Note: Any edits you might be tempted to make while viewing
the bitmap in this way will not be saved.

You can use any of the standard graphics interfaces documented
in the IRM to create a new bitmap. EditBitMap does provide one
convenient way to create a bitmap from a region of the screen.
In the Executive window, type

(SETQ NEWBITMAPNAME (EDIT.BITMAP))

Again the main menu pops up on the screen. Select
FROM.SCREEN. The cursor changes into the standard region
prompt, allowing you to select a region of the screen. Hold
down the left mouse button to mark one corner of the region,
and drag the mouse to the opposite corner. When you let go of
the mouse button, the contents of the screen region you selected
are used to initialize a new bitmap. You can then select any
other operations you wish to transform this initial image,
including HAND. EDIT if appropriate. When finished with all the
operations, select QUIT from the main menu. The variable
NEWBITMAPNAME is now set to the bitmap you have created.

If you want to create a bitmap completely from scratch using the
pixel editor, it is simplest to call it directly:

LISP LIBRARY MODULES, MEDLEY RELEASE, EDITBITMAP

EDITBITMAP

(SETQ NEWBITMAPNAME (EDITBM»

You will be prompted to supply the width and height of the new
bitmap in pixels. When you are finished editing, move the cursor
into the gray upper region, press the middle button to get the
submenu, and select OK.

If you want to perform further transformations on the new
bitmap, edit NEWBITMAPNAME as described above for existing
bitmaps.

Editing a Bitmap in a Document

Functions

To edit a bitmap that exists inside another file, such as a
document being edited in TEdit, press the left or middle button
anywhere inside the image of the bitmap. A modified version of
EditBitMap's main menu pops up containing the following
items:

-.. ~ ..
Ch'3.nge =;cale

H.:md Eclit
Trirn

Reflect Left·to.t;';.1ht
Reflect Top·to·t,ottorn

Reflect Diaqonally
Rotate C. eft .

Rotate Ri91'"It
E:o::pa.nd on Ri9[-lt
E::.::pancl on Left

E::-::pa.nd ':In Bottom
Expand on Top

::::v,,,itct-I Black. :3.. \·',ll'"lite
,':',clel Boreler

These menu items correspond exactly to the similarly-named
items in EditBitMap's regular menu, except that only one
operation is performed at a time (to repeat an operation, just
select it again with the mouse; to Undo, use TEd it's Undo
command). The menu also contains an additional item, CHANGE
SCALE, which allows you to change the scale at which the
bitmap's image appears in the document (on the screen and on
the printer). Scaling a bitmap changes only the size of its image;
it has no effect on its contents (even though on the screen you
may not always see it that way).

(EDIT.BITMAP BITMAP)

(See above)

(ADD.BORDER.TO.BITMAP BITMAP NBITS TEXTURE)

[Function]

[Function]

Returns a new bitmap that is BITMAP extended by NBITS in all
four directions, the border being filled in with TEXTURE.

(BIT.IN.COLUMN BITMAP COLUMN) [Function]

Returns T if any bit in column numbered COLUMN (left = 0) is
not 0, NIL otherwise.

LISP LIBRARY MODULES, MEDLEY RELEASE, EDITBITMAP 63

EDITBITMAP

64

(BIT. IN. ROW BITMAP ROW) [Function]

Returns T if any bit in row numbered ROW (bottom = 0) is not
zero, NIL otherwise.

(INVERT.BITMAP.BIW BITMAP) [Function]

Returns a new bitmap, which is BITMAP with all its bits inverted
(black for white).

(INVERT.BITMAP.DIAGONALL Y BITMAP) [Function]

Returns a new bitmap, which is BITMAP flipped about the X = Y
diagonal. (The resulting bitmap's width will be BITMAP's height.)

(INVERT.BITMAP.HORIZONTALLY BITMAP) [Function]

Returns a new bitmap, which is BITMAP flipped about its vertical
center line.

(INVERT.BITMAP.VERTICALLY BITMAP) [Function]

Returns a new bitmap, which is BITMAP flipped about its
horizontal center line.

(ROTATE.BITMAP.LEFT BITMAP) [Function]

Returns a new bitmap, which is BITMAP rotated 90 degrees
counterclockwise. (The resulting bitmap's width will be BITMAP's
height.)

(ROTATE.BITMAP.RIGHT BITMAP) [Function]

Returns a new bitmap, which is BITMAP rotated 90 degrees
clockwise. (The resulting bitmap's width will be BITMAP's
height.)

(SHIFT.BITMAP.DOWN BITMAP NBITS) [Function]

Returns a new bitmap, which is BITMAP extended by NBITS in the
upward direction, the new space being filled in with white.

(SHIFT.BITMAP.UP BITMAP NBITS) [Function]

Returns a new bitmap, which is BITMAP extended by NBITS in the
downwards direction, the new space being filled in with white.

(SHIFT.BITMAP.LEFT BITMAP NBITS) [Function]

Returns a new bitmap, which is BITMAP extended by NBITS to
the right, the new space being filled in with white.

(SHIFT.BITMAP.RIGHT BITMAP NBITS) [Function]

Returns a new bitmap, which is BITMAP extended by NBITS to
the left, the new space being filled in with white.

(TRIM.BITMAP BITMAP) [Function]

Returns a new bitmap, which is BITMAP trimmed at all four
edges of all completely white (0) col umns and rows.

(FROM.SCREEN.BITMAP NIL) [Function]

Prompts for a region on the screen and returns a copy of the
bitmap.

LISP LIBRARY MODULES, MEDLEY RELEASE, EDITBITMAP

Limitations

EDITBITMAP

(lNTERACT&SHIFT.BITMAP.LEFT BITMAP) [Function]

Prompts for number of bits to shift the BITMAP left and returns
the new bitmap.

(INTERACT&SHIFT.BITMAP.RIGHT BITMAP) [Function]

Prompts for number of bits to shift the BITMAP right and returns
the new bitmap.

(INTERACT&SHIFT.BITMAP.DOWN BITMAP) [Function]

Prompts for number of bits to shift the BITMAP down and
retu rns the new bitmap.

(lNTERACT&SHIFT.BITMAP.UP BITMAP) [Function]

Prompts for number of bits to shift the BITMAP up and returns
the new bitmap.

(INTERACT&ADD.BORDER.TO.BITMAP BITMAP) [Function]

Prompts for number of bits in the border and calls EDITSHADE to
interactively fill in the texture. Returns a new bitmap, which is a
bitmap extended in all four directions by the border being filled
in with the texture.

Note: If the interactive functions are called from the menus,
the prompt for the number of bits is in the form of a
ReadNumber window:

Number of bits to
shift the bitmap
left.:

o

clr
123
456
789

bs 0 ok

Selecting OK in the submenu does NOT save the edits made in
the bitmap. Edits are saved only if you specify a new bitmap
name before you begin editing an old one, or if you pass a
quoted name to EDIT.BITMAP.

LISP LIBRARY MODULES, MEDLEY RELEASE, EDITBITMAP 65

EDITBITMAP

[This page intentionally left blank]

66 LISP LIBRARY MODULES, MEDLEY RELEASE, EDITBITMAP

Installation

General Purpose Records

ETHERRECORDS

EtherRecords contains a collection of record definitions needed
for low-level Ethernet programming in Lisp.

Load ETHERRECORDS from the library.

ETHERPACKET [Data type]

SYSQUEUE

QABLEITEM

NS Records

XIP

ERRORXIP

\xIPOVLEN

A data type describing a level-zero Ethernet packet. Use a
BLOCKRECORD overlaying this record to define various level-one
packets (see PUP and XIP below for examples).

[Data type]

A data type implementing a low-level queue for Ethernet use.

[Record]

A record that overlays any data type whose first field is a pointer
used for linking items on a SYSQUEUE.

[Record]

A record overlaying ETHERPACKET describing the layout of a
standard Xerox Internet Packet.

[Record]

A record overlaying ETHERPACKET describing the layout of a
standard XNS error packet. The value of the ERRORXIPCODE
field of this record is the most interesting one for programmatic
handling of XIP errors. The variable XIPERRORCODES contains
constants defining most of the standard error codes.

[Constant]

A constant representing the number of bytes in a XIP exclusive of
the data portion; i.e., the LENGTH field ofaXIP is the byte length
of its data portion plus \xIPOVLEN.

LISP LIBRARY MODULES, MEDLEY RELEASE, ETHERRECORDS 67

ETHERRECORDS

PUP Records

68

\MAX.XIPDATALENGTH [Constant]

A constant, the maximum number of bytes permitted in a
standard XIP (546).

NSHOSTNUMBER [Record]

NSADDRESS

NSNAME

PUP

ERRORPUP

A record describing a 48-bit XNS host number.

[Data type]

A data type describing a complete XNS address: 32-bit network,
48-bit host, 16-bit socket.

[Data type]

A data type describing a standard three-part Clearinghouse
name.

[Record]

A record overlaying ETHERPACKET describing the layout of a
standard PUP (PARC Universal Packet).

[Record]

A record overlaying ETHERPACKET describing the layout of a
standard PUP error packet. The value of the ERRORPUPCODE
field of this record is the most interesting one for programmatic
handling of PUP errors. The variable PUPERRORCODES contains
constants defining most of the standard error codes.

PUPADDRESS [Record]

\PUPOVLEN

A record describing how to take a 16-bit PUP address apart into
8-bit network and host numbers.

[Constant]

A constant representing the number of bytes in a PUP exclusive
of the data portion; i.e., the LENGTH field of a PUP is the byte
length of its data portion plus \PUPOVLEN.

\MAX.PU PDATALENGTH [Constant]

A constant, the maximum number of bytes permitted in a
standard PUP (532).

\LOCALPUPADDRESS

\LOCALPUPHOSTNUMBER

\LOCALPU PN ETN U MB E R

[Macro]

[Macro]

[Macro]

These three macros return components of the PUP address of the
machine on which the code is running.
\LOCALPUPHOSTNUMBER and \LOCALPUPNETNUMBER return
the machine's 8-bit host and 8-bit net numbers, respectively;
\LOCALPUPADDRESS returns both as a 16-bit number, suitable as
a value of the PUPSOURCE field of the PUP record.

LISP LIBRARY MODULES, MEDLEY RELEASE, ETHERRECORDS

Requirements

Installation

User Interface

Starting FileBrowser

FILEBROWSER

FileBrowser provides a convenient user interface for
manipulating files stored on a workstation or file server. It
enables you to see, edit, delete, print, load, copy, move, rename,
compile, sort, and get several types of information about groups
of files. You can also customize FileBrowser by adding your own
commands.

TABLEBROWSER

In addition, the HARDCOPY commands require printer drivers
and fonts, and the EDIT command requires one or more editors
(TEd it, SEdit, DEdit).

Load FILEBROWSER.LCOM and the required .LCOM modules
from the library.

Once you have loaded FileBrowser, there are two ways to open a
browser on a set of files:

1. Select the FileBrowser command from the background menu,
in which case you are prompted for a file name pattern, or

2. Type the command FB FILEPATTERN in your Executive
window.

In either case, FileBrowser will prompt you to create a window by
presenting you with a dashed rectangle with the mouse cursor
and a small geometric design at the lower right corner.

1. Move your mouse until the upper left corner of the rectangle
is where you want it on the screen.

2. Hold down the left mouse button and move your mouse down
and to the right, thus expanding the window diagonally, until
the window is the right size.

3. Release the mouse button. This creates a window group on
your screen in the outlined area.

Next, if you did not specify a pattern by using the FB command,
FileBrowser prompts you for a file pattern. Type a pattern, as

LISP LIBRARY MODULES, MEDLEY RELEASE, FILEBROWSER 69

FILEBROWSER

described in the section "Specifying What Files to Browse,"
below.

FileBrowser enumerates the set of files matching the pattern you
requested to see. While the enumeration is in progress, the
RECOMPUTE command is grayed out. When the enumeration is
finished, you may select files and issue commands. You can
scroll the window at any time, even while the browser is busy.

If FileBrowser can't find any files matching the pattern you
specified, or you decide you specified the wrong pattern and
want to try again, you can specify a new file name pattern from
within the browser using the NEW PATTERN command; see
RECOMPUTE in the section "FileBrowser Commands," below.

You can have as many active FileBrowsers open at once as you
like.

Specifying What Files to Browse

70

A full file name in Lisp consists of a device or host (such as your
local disk, a file server, or a floppy disk), a principal directory and
zero or more subdirectories, a file name (possibly including an
extension), and a version number. These fields are put together
in the form

{HOST}<DIRECTORY>SUBDIRECTORY>FILENAME.EXTENSION;VERSION

A file name pattern, as specified to FileBrowser, consists of a file
name with one or more pieces omitted or filled with wild cards
(*). All the files matching the pattern are listed by FileBrowser.
Thus, you can browse all the files in a particular directory, all the
files in a subdirectory of that directory, all the files in a directory
with a particular extension, and so forth. The wild card * can be
used to stand for zero or more consecutive characters in the file
name. You can use as many wild cards in a pattern as you wish.

If you leave out some of the fields in a file name pattern, the
missing fields are defaulted by the system. Omitted fields in the
front of the pattern, i.e., the host, device, or directory fields, are
filled in by consulting your connected directory. Other omitted
fields are filled in with wild cards unless they are explicitly
omitted; i.e., the field is empty, but the preceding punctuation is
still present. In more detail, some of the cases are as follows:

If you leave out the name of the host/device, specifying
< DIRECTORY > FILENAME, FileBrowser will use the name of the
host/device for the directory to which you are currently
connected.

If you leave out both the device and directory names, specifying
FILENAME, FileBrowser will use the device and directory to which
you are currently connected.

If you do not specify a file name, FileBrowser lists all the files in
the specified directory (or the connected directory if you also
omitted the host and directory).

If you leave out the extension of a file name, FileBrowser lists all
the files with the specified file name and any extension. If you

LISP LIBRARY MODULES, MEDLEY RELEASE, FILEBROWSER

Examples

FILEBROWSER

omit the extension but include the period that usually precedes
the extension, FileBrowser lists only the files with the specified
name and no extension.

If you omit the version number of the file name, FileBrowser lists
all versions of the matching files. If you omit the version number
but include the semicolon that usually precedes the version,
FileBrowser lists only the highest version of the matching files.

Thus, the minimal pattern you can type is * (asterisk-enumerate
all files in the connected directory) or ; (semicolon-enumerate
just the highest version of all files). If you press the RETURN key
without giving a pattern, FileBrowser aborts the prompt for a
pattern, leaving you with an empty browser in which the only
things you can do are change some FileBrowser parameters (see
the subcommands of RECOMPUTE in the section II FileBrowser
Commands, II below) and then use the RECOMPUTE command to
be prompted for a pattern again.

The pattern * specifies all files in the connected directory. It is
equivalentto *.* or *.*;*.

The pattern <FOO>BAR specifies all files in directory FOO with
name BAR and any extension. It is equivalent to
<FOO>BAR.*;*.

The pattern <FOO>BAR. specifies all files in directory FOO with
name BAR and no extension. It is equivalent to < FOO > BAR.; *.

The pattern *.TEdit specifies all files in the connected directory
with the extension TEd it. It is equivalent to * .TEdit;*.

The pattern *.TEdit; specifies only the newest version of all files
in the connected directory with the extension .TEdit.

The pattern <FOO>A*E specifies all files in directory FOO
whose names begi n with A and end with E and have any
extension.

The pattern {TOAST} < FOO>*MY* specifies all files in directory
{TOAST} < FOO> whose names contain the substring MY and
any extension.

Using the FileBrowser Window

The FileBrowser window has six major subwindows, which from
top to bottom are as follows:

PROMPT window

This topmost subwindow is where FileBrowser prints messages
about what it is doing and receives input from you. Its contents
are cleared before every command.

TALLY wi ndow

This subwindow immediately below the prompt window keeps a
running tally of the total number of files listed in the window
and the number of files that you have marked for deletion. In
addition, if one of the attributes you are displaying is a size

LISP LIBRARY MODULES, MEDLEY RELEASE, FILEBROWSER 71

FILEBROWSER

72

attribute (Pages or Length, as in the INFO menu, described
below), this window maintains a tally of the total number of
pages in the files listed and the files marked for deletion.

This window also has a title bar across the top identifying the
pattern you specified and the time at which the directory
enumeration was performed.

The window is blank while the files are being enumerated.

4045XLPSTREAM.LCOM;1
BROI,',ISEF: . LCOM; 1
CENTRONICS.LCOM;l
CHARCODETABLES.LcOM;l
CHAT.LCOM;l
CHATTERMI~AL.LCOM;l
CMLFLOATARRAV.LCOM;l
COPVFILES.LCOM;l .
DATABASEFNS.LCOM;l

UI
:3 . :-
'-'

5~3

2~1

23
lEi
14

24-Apr'-87
2~3-No"l-8Ei
2~3-Nov-86
26-.J.:m-i37
27-No"l-86
~3-Apr-87

27-Nov-86
3-Dee-86

Hl:5~3:

17:22:
17:22:
22:28:
13:27:
lEi: 32:
15:21:
11:50:

38
1.!14
."':11: • .:..u EcHt
05 Loa.c~
14 PST Cornpile
31 POT Expun!;,te
53 PST Reeornpute
5~3 PST Sort

DEDIT.LCOM;l . ~36 29-No"l-86 17 . 31 : 5a PST
DEDITPP.LCOM;l
OES.LCOM;l
DLRS232C. LCOt.1; 1

:::il::l
29

10~3

16-Dee-86
22-0ee-86

3-Jun-87

17:56: 57 PST
11:41: 51 PST
10: 18: 1'3 PDT

BROWSER window

This is the principal subwindow, in which the files matching the
specified pattern are listed. Each file's name appears at the left,
and various attributes of the file are displayed in columns to the
right. A title bar across the top of the browser window identifies
the contents of each column (e.g., Name, Pages, Created). The
files are listed in alphabetical order, with multiple versions of the
same file listed in decreasing version order; i.e., the newest
version appears first. The width of the column listing the file
names is initially chosen to be appropriate for average-sized file
names. If the files you asked to browse have particularly long
names, then when FileBrowser has finished listing all the files it
may choose to redraw the browser window with the attribute
columns moved farther to the right to accommodate the longer
file names.

COMMAND menu

INFO menu

This menu appears vertically along the right side of FileBrowser
window (under a title bar "FB Commands") and lists the
commands that you may select to perform operations on the files
in the browser, or to change the appearance of the browser.
Most of the commands operate on the set of currently selected
files (see the section "Selecting Files" below). Some commands
have subcommands, as indicated by the small triangle alongside
them, which can be selected by holding down the left mouse
button and sliding the mouse to the right over the triangle.

An additional subwindow, the Info menu, is not normally
displayed. It is used to change the set of file information

LISP LIBRARY MODULES, MEDLEY RELEASE, FILEBROWSER

Selecting Files

SCROLL bar

FILEBROWSER

(attributes) displayed in the browser (see the section "Getting
Information About Files," below).

If there are more files in the listing than fit at one time in the
browser window, you can scroll the browser window to view
more files. Slide the mouse cursor out the left side of the
browser window to get the scroll bar and press the left mouse
button to scroll the region up and the right mouse button to
scroll it down. Pressing a mouse button when the cursor is near
the bottom of the scroll bar will scroll the region by larger
increments than when the cursor is at the top.

You can also press the middle mouse button in the scroll bar to
move the listing to the place that corresponds to that position in
the scroll bar. For example, pressing the middle mouse button
when the cursor is at the bottom of the scroll bar will display the
end of the listing. This quick-scrolling technique is called
thumbing. The gray box in the scroll region indicates where the
currently displayed contents are, relative to the entire contents
of the browser.

Similarly, if there is more attribute information than fits in the
browser window, you can scroll the browser window
horizontally to view the rest of the attribute information. To do
this, slide the mouse out the bottom of the browser window to
get the horizontal scroll bar. The left button scrolls to the left,
the right button to the right.

Most FileBrowser operations are performed by selecting a single
file or set of files, then giving a command that specifies what you
want to do with the selected files. The current selection is
indicated by a small triangle in the left margin of the browser
next to each selected file.

CEtHF:ON I CS LCOM;1 .=. 2 ~3 - No"",-gEi 17 :22 : ~!14 PST ::::ee ~l~· '-'
• CHARCODET AE~,LE::: LCOtI1; 1 a 2~3-Nov-:3Ei 17 : 22 : 28 PST Eclit ~~:: .
• CHAT LCOtI1; 1 5'3 2Ei-,Jan-;::7 '-::"1-.'. 2a : 135 PST LO~3cl ~~::. .;:,..:., .
• CHATTERMINAL LCOM; 1 2~~1 27 -No'",'-:::6 13 : '-""'jI .::.....' : 14 PST Cornpile ~~:: .

Ct~LFLOATARRAY ,LCOM; 1 23 ~3-Apr'-:::7 lEi : 32 : 31 PDT E::o::punl;,1e
COPYFILES LCOrn; 1 lEi '-:'"7 -Nov-:::Ei 11=: : 21 : 53 PST F:ecornpute }-.::.. .. .J

DA T Ae,A8EFN8 LCOM; 1 14 3-Dec-gEi 11 : 5~1 : 59 PST Sort
.DEDIT LCOM; 1 9Ei 2~3-Nov-gEi 17 : 31 : 58 PST
.DEDITPP, LCOM; 1 3~1 lEi-Dec-gEi 17 : 56 : 57 PST

DES, LCOr~; 1 2~3 22-Dec-g6 11 :41:51 PST

To select one file, point to any part of the line (which lists the file
name and its attributes) and press the left mouse button. If
other files are already selected, this unselects them; thus, a file
selected with the left mouse button is always the only selection.

To add a single file to the current selection, press the middle
mouse button at any place in the line. The file is selected
without unselecting any other file.

To remove a single file from the current selection, hold down the
control key and press the middle mouse button at any place in
the line. The file is unselected without affecting any other file.

LISP LIBRARY MODULES. MEDLEY RELEASE. FILEBROWSER "12

FILEBROWSER

Commands that Require Input

74

To extend the selection to include a group of contiguous files,
that is, to select all the files between a file and the nearest
already selected file, press the right mouse button on any part of
the line. You can only extend the selection from the first
selected file upward, or the last selected file downward. In
addition, files marked for deletion are not normally selected
when you extend.

If you want to include all files, both deleted and undeleted, hold
down the control key while extending the selection.

Some lines in a FileBrowser display are directory-only lines. These
lines are slightly indented and name the directory and
subdirectory to which the files listed below that line belong. You
cannot select in these lines, though you can copy-select them
(see the section "Copy-Selecting Files," below).

Some FileBrowser commands require input from you. For
example, the COpy command requires that you supply a
destination file name. When a command requires input,
FileBrowser prints a prompt message in its prompt window. This
is usually followed by a default answer. If you want the default
answer, you can just press the carriage return to finish the input.
If you want to specify a different answer, simply start typing it;
the default answer is erased and your answer replaces it.

Alternatively, you can modify the default answer by backspacing
over individual letters, or typing control-W to back up over
complete words. Typing control-Q erases the entire answer. You
can also use the mouse to edit your answer, using the same rules
as followed by the Executive (see the documentation of TTYIN).
Briefly, the left mouse button positions the caret at a character
boundary; the middle mouse button positions the caret at the
nearest word boundary; and the right mouse button deletes the
characters between the caret and the mouse.

When you have finished, position the caret at the end of your
answer, if it isn't there already, and press the carriage return.
You can also type control-X to finish your answer even if the
caret isn't at the end.

If you change your mind and want to abort the command, supply
an empty input; i.e., if there is an answer in progress, backspace
over it or type control-Q to erase it, then press the carriage
return. FileBrowser prints "aborted" and aborts the command.
In most situations, the control-E interrupt can also be used to
abort your answer.

While you are typing an answer, you can copy-select file names
out of the browser (or any other browser), as described below in
the section "Copy-Selecting Files". This can be useful, for
example, if you wish to rename a file to a similar name in the
same directory, or move a file into a subdirectory listed in the
browser.

LISP LIBRARY MODULES, MEDLEY RELEASE, FILEBROWSER

Aborting Commands

Quitting the FileBrowser

FILEBROWSER

During commands of indefinite duration, such as RECOMPUTE or
COPY, FileBrowser adds another command to the browser,
"Abort".

t:Olt l

Load).
Cornpile).
Expunl;)e

:::::F.:fi~:~it.~)):~it}:·
::::ort

--Abort--

Clicking on the Abort command will immediately abort the
current operation. Aborting some commands can take a little
while, as FileBrowser may need to do some cleaning up, so the
Abort command is greyed out during this time to show you that
it is doing something.

To quit a FileBrowser, simply close the browser window. If any
files have been deleted but not expunged, a small menu will pop
up listing two options: "Expunge Deleted Files" and "Don't
Expunge." If you choose" Expunge Deleted Files", the files will
be expunged before the window closes. If you choose the
"Don't Expunge" command, your deletions are ignored. If you
click outside the menu, no action is taken, and the Close
command is aborted.

e,F-:OI,',18ER . LCOM; 1
CENTRONIC8.LCOM;1

.OHAROODETABLES.LoOM,l -'

.OHAT.LOOM,l SO

C:opy
F:ena.rne

Harclcopy
:=:;ee
Eclit

.l:i-C' H-1H ""11M. THT-t=:E*fO: tM-HHt~~ AH::L-:-. I::-IL C=<t' CHlIt~H-, ±1----B2 11&-) ~'-f--1r+€t-";~-b---:1H::~·. L 0 ;Jcl
Ctl1LFLOA T AF-:F:tr,,"" . LeOt11; 1 23 ~3-Apr·-a7 if; (:c,rnpile
COPVFILE8.LCOM;1 16 27-Noy-86 15 Expunge
OATAe,A8EFN8. LCI~IM; 1 14 :3-0ec-8ti 11 F:ecornpute

• -IfO~E O~IHT-:-. -I--LI-TlC '-d-li-1t~1 ,41--·---~0 I-fooi-:: ---:.':"':~'J-1t~. C",""I .,o---:o8-h-E·......:1h71'. Sort
.0EOITPP.LCbM,1 30 16 0:0 86 17

If you have finished with FileBrowser only temporarily and want
to put it aside to work on later, you can shrink the browser (by
selecting the SHRINK command from the right-button
background menu). The browser shrinks to an icon which
displays the file pattern inside the browser. If any files are
marked for deletion, you will be prompted with the same menu
of EXPUNGE options as when you close a browser.

I I
._.

{EFilt·.f·(E:~:}

<LiSP)L:"l'i6>
Li t, r8.1'·{>*.

I(:on;;*

LISP LIBRARY MODULES, MEDLEY RELEASE, FILEBROWSER 75

FILEBROWSER

Copy-Selecting Files

Getting Hardcopy Directory Listings

FileBrowser Commands

DELETE, UNDELETE

76

You can copy-select file names from a FileBrowser into other
windows, such as Executive and TEd it windows, by holding down
the Copy (or Shift) key while selecting a name in the window.
The full name of the file is inserted as if you had typed it where
the input caret is flashing. You can also copy-select in a
directory-only line, in which case the full directory name is
inserted in your type-in.

Note: Most file names contain characters, in particular colon
and semi-colon, that have special meaning to the Lisp
reader. Thus, if your type-in point is in an Executive
window, you probably want to type a double-quote
character before and after the file name, so that the file
name is presented to Lisp as a string.

You can get a hardcopy listing of the directory displayed in a
FileBrowser by using the regular window Hardcopy command.
Press the right button in FileBrowser's prompt window or tally
window and select HARDCOPY from the menu. FileBrowser will
produce a hardcopy listing of the files and the attributes
displayed in the browser.

If the browser displays a large number of attributes, or your
default printer font is too large, the listing may not
accommodate all the attributes on one line, making the listing
less readable. You may want to make the listing with fewer
attributes, or use a smaller font for the listing (see description of
FB.HARDCOPY.FONT in the section "Customizing FileBrowser
and Using the Programmer Interface").

Removing a file from the file system using FileBrowser is a
two-step process. First, you mark the file or files for deletion.
Then you issue the Expunge command. Any time between the
deletion and the expunge you can change your mind and
undelete any of the files.

To mark a file or files for deletion, select them, then choose the
DELETE command. FileBrowser draws a line through the deleted
files. It also adjusts the numbers in the tally window to show
how many files are marked deleted and how many pages they
contain. It is thus easy to see how much file space you will regain
when you issue the EXPUNGE command.

LISP LIBRARY MODULES, MEDLEY RELEASE, FILEBROWSER

FILEBROWSER

CENTRONICS.LCOM;1 a 2'3-No··.··-i:i6 17
tOHAROOOETABLES.LoOM,l I] 20 Uo I '~E" 1:-"
tCHAT.LCOM,l so 2E· ,J 3fl '3:-" :::2
tCHATTERMIUAL.LCOM;l 20 27 No. .:.!? 13

CMLFLOATARRAY.LCOM;l 1"':'-::- ~3-Apr-;::7 16 ';:'.J

COPVFILES.LCOM;1 16 27-No··.··-;::6 15

H;;t.rclcoP:i }
:=::ee }-
Edit }

Loa.cl }
(::c,rnpile ~~.

OATABASEFNS.LCbM;1 14 3-0ec-;::E; 11
tOEOIT. LCOM, 1 Of; :::0 Uo,' .:.!? 1:-"
t OED I TPP . LCI:1t1, 1

Expun'~ie
F:ecompute }.

t:It-i:++t-:-l::-~IH-3:---------H-I~...;..:+.I--N-i~~---=hj.:. ::;; ort
::'0 lE· Bcc .:.!? 1:-"

OES.LCOM;1 2~3 22-0ec-i:i6 11

To undelete a file or files (i.e., to remove the deletion mark),
select them, then choose the UNDELETE command. The lines
through the files are removed, and the tally of deleted files is
updated. The UNDELETE command has a single subcommand,
UNDELETE ALL FILES, which undeletes all the files in the browser,
independently of whether they are selected. This is useful if you
completely change your mind about deleting any files.

. .-
• - - - ,:. Unclelete .t..LL File::;

C:opy
F:enarne

Hardcopy"::·

The DELETE command has a useful subcommand, DELETE OLD
VERSIONS. When you have been editing a file in the text editor
and performing repeated PUT commands, or you the
programmer have done many MAKEFILEs of the same file,
multiple versions of the file accumulate, each more recent
version denoted by a higher version number. The DELETE OLD
VERSIONS command is used to delete excess versions of the files
displayed in the browser.

FB Command;:
Delete ~

Undelete
Copy

F:enarne
Hardcopy)·

Delete Selectecl File::;
). Delete CJld \ler::don:3

To use this command, press the mouse down on the DELETE
command and slide the cursor out to the right, choosing the
DELETE OLD VERSIONS command. Unlike the DELETE command
(or DELETE SELECTED FILES, the equivalent subcommand), the
DELETE OLD VERSIONS command operates on all the files in the
browser. FileBrowser prompts you for the number of versions of
each file that you wish to retain. It offers the default of one
version. You can accept the default or you can type a different
number of your choosing, followed by a carriage return.
FileBrowser then marks for deletion all but the most recent N
versions of all the files in the browser, where N is the number you
specified. Before issuing the EXPUNGE command, you can, if you
wish, scroll through the browser, undeleting any particular files
for which you wish to retain more versions than you specified.

The DELETE OLD VERSIONS command is sometimes useful even
when you are not planning to actually expunge the files. This is
because of the way extending the selection avoids deleted files
(see the section "Selecting Files," above).

LISP LIBRARY MODULES, MEDLEY RELEASE, FILEBROWSER 77

FILEBROWSER

COpy

78

For example, if you wanted to copy only the most recent version
of all the files in the browser to another location, you could do
the foil owi ng:

1. Use the DELETE OLD VERSIONS command, retaining just one
version. This marks deleted all files but the newest version of
each.

2. Go to the start of the browser and select the first file, then
scroll to the end of the browser and press the right mouse
button to extend the selection to the end of the browser. You
have selected exactly the newest version of each file.

3. Use the COpy command to copy those files.

4. Finally, use the UNDELETE ALL FILES command to undelete all
the old versions.

The COpy command is used to copy an entire file or set of files to
another file system location; for example, from your disk to a
file server. Select the file(s) you wish to copy, then select the
COpy command. FileBrowser prompts you to supply a
destination.

If you selected just one file, FileBrowser prints the old name and
offers a default, which consists of the same file name and either
the same directory that was last used in a COpy or RENAME in
this FileBrowser, or the connected directory if this is the first use
of COpy in this FileBrowser. You can accept the default or supply
your own destination file name. If you supply just a directory
specification, e.g., {SERVER}< DIRECTORY>, the file is copied to
that directory under its current name. If you supply a complete
name, the file is copied to that exact name.

OP',I fill? {ERIN £S}<LISP>L 'UC>LIBR,iIf;'{:·CHAT.LCOM.: 1 t.o n':·I .. .I fil.:·
.~r .. ~: {D8K}CHAT. LCO"1

CHARCOOETABLES.LCOM;l
CHAT.LCOM~l
CHATTERMI~AL.LCOM;l
CMLFLOATARRAV.LCOM;l
COPVFILES.LCOM;l

:3
59 26-Jan-:37 22
20 27-Nov-:36 13
23 ~3-Apr--:37 16
16 27-Nov-:36 15 Lo~.ci

Note: Unless you specify a version number in the destination
file name, the version number of the new file will be 1, or
one higher than the highest existing version of the file in
the destination directory, independent of the version
number of the old name.

Even files marked for deletion can be copied.

If you selected several files, FileBrowser notes how many files you
wish to copy and offers as a default destination the connected
directory. You can accept the default or supply a different

LISP LIBRARY MODULES, MEDLEY RELEASE, FILEBROWSER

FILEBROWSER

directory. All the files are copied to that directory under the
names they currently have.

You must supply a directory specification, e.g.,
{SERVER}<YOURDIRECTORY>, rather than a complete file
name, since you can't copy multiple files to the same name. If
you mistakenly type a file name, rather than a directory
specification, FileBrowserwil1 complain and abort the command.

If you want to copy files from different subdirectories,
FileBrowser will ask, via a message in its prompt window, if you
want to preserve the subdirectory structure at the destination. If
you answer YES, then the names at the destination will include
not just the root name of each source file, but also all the
subdirectory names below the greatest subdirectory prefix
common to all the selected files (this common prefix is displayed
as part of the question). If you answer NO, then the names at the
destination are formed solely from the root name of each file
(the name displayed in the browser), ignoring any directory
information each name might have. This can cause multiple files
with the same root name to be copied into the same destination
name (but with different version numbers, of course).

• hEF-:tI1 IT, LCOM; 1 a-,Jan-:37 19
.hERMITMENU,LCOM;l 17 ::::-.Jan-a7 1~3 H'3TCicopy
.hEVBOARDEDITOR,LcOM;l 56 a-,J.:sn-a7 19 .-. - -

·::,e~

.MASTERSCOPE,LCOM;l 124 ll-feb-:::7 15 Ec~it
• tl1A TCH , LCOM; 1 71 a-,Jan-c:7 H: LO'3.d
.MAH1ULT, LCOr.1; 1 35 22-Apr"-87 V:::1 Cornpile

MINISERVE,LCbM;l 10 17-Apr·-:::7 11 EXpUn!;le
.MSANALVZE,LCOM;l 4~:::1 10-Dec-ati lEi F:ecornpute).
• tI18PAR8E, LCO~1; 1 41 12-.Jan-:::7 17 Sort

NSCHAT.LCOM;l .:,.-::' 27 -No'",'-8ti 13 "_1"'-

NSMAINTAIN,LCOM;l 24 2a-,Jan-87 11
PRE88,LCOM;1 ::::£1 25-Mar·-87 11

When copying (or renaming) multiple versions of the same file,
FileBrowser does the copying in order of increasing version
number, so that the versions at the destination are in the same
relative order as at the source.

As each file is copied, FileBrowser prints a message giving the full
name of the new file. If a file with the chosen name already
exists, the new file's version number will be one higher;
otherwise it will be version 1 (one). The new file will have the
same creation date as the original file. If the destination file
happens to be one that matches the pattern of the files in the
browser, the new file is inserted in the appropriate place in the
browser display. However, if it matches the pattern of some
other FileBrowser, it is not inserted in that other browser's
display (in other words, FileBrowsers do not know about each
other). You would have to RECOMPUTE the destination
FileBrowser to see that the file was copied into it.

LISP LIBRARY MODULES, MEDLEY RELEASE, FILEBROWSER

FILEBROWSER

RENAME

HARDCOPY

80

The RENAME command is used for changing the name of a file or
group of files, or for moving a file or group of files to a different
directory.

The RENAME command is used in exactly the same way as the
COpy command. If you rename a single file, you can supply a
complete new name or just a directory; if you rename several
files, you must specify a directory. As each file is renamed,
FileBrowser prints a message giving the file's new name and
removes the file from the browser display. If the new name
belongs in the same browser, it is inserted in the appropriate
place. If for some reason a file could not be renamed, this is
noted in the FileBrowser prompt window. The reasons for the
failure of a renaming operation are roughly the same as for the
failure of an EXPUNGE; the file is open, or you do not have the
access rights needed to rename the file.

Note: If the destination of the rename is on a different file
system than the original file, changing its name is
equivalent to copying the file to its new name and then
deleting the original file.

You can print text files, TEd it files, Interpress or Press files, and
Lisp files from FileBrowser. Select the appropriate file or files,
then select the HARDCOPY command. The HARDCOPY
command will determine what type of file you are printing and
call the appropriate function for printing that file. Then the files
will be printed one at a time on your default printer. The
prompt window will display status messages telling you when
files are being printed and when they are done (if your printer is
one that provides this status service).

F8 Commands
Delete)-

Undelete i~
COP:l

F:ename
Hat·c~co

See
Edit

Load)-
Compile i~

You may specify printing to a file or to a printer other than the
default printer by means of a submenu from the HARDCOPY
command. This menu is the same as the one on the HARDCOPY
command in the background menu. Selecting TO A PRINTER
presents you with a choice of printers from a menu. Selecting TO
A FILE prompts you to supply a file name. If you selected a single
file, you must specify a single hardcopy file name (or accept the
offered default). If you selected multiple files, then you must
specify a pattern with a single asterisk somewhere in the "name"
field, for example, * .lNTERPRESS or Hardcopy-* .IP. The output
file names are c.onstructed by merging the pattern with each
selected file name. If the name includes an extension that
implies the type of print format (e.g., .IP or .INTERPRESS implies

LISP LIBRARY MODULES, MEDLEY RELEASE, FILEBROWSER

SEE

FILEBROWSER

the Interpress print format), then a file of the specified type is
made automatically. Otherwise, you are prompted to supply a
print format type.

Note: For files stored on servers not supporting random access,
FileBrowser is currently unable to determine that a file is
in TEdit format unless the file has the extension .TEDIT.
Therefore you should use TEdit to hardcopy TEd it files
with other extensions. Use FileBrowser's EDIT command
(to call TEdit), then the HARDCOPY command either
from the TEdit Expanded Menu or from the right-button
menu. As of the Lyric release, TEdit files written directly
to an NS file server are identifiable as TEd it files, so this
restriction does not apply to them.

Note: To obtain a hardcopy of the directory itself, use the
Hardcopy command from the right-button window
menu. See the section "Getting Hardcopy Directory
Listings" .

When you browse a directory you sometimes want to see a file
before printing or performing some other operation on it. To do
this, select the file, then select the SEE command from the
command menu. FileBrowser will prompt you to open a window
by presenting you with a dashed rectangle and printing a
message in the system prompt window. The window will be
blank until FileBrowser starts printing the contents of the file in
it.

There are actually four different SEE commands, as shown in the
submenu for the SEE command. The two FAST SEE commands
are provided to let you quickly see the contents of a file, but not
do anything fancy, such as scroll around at random in the file.
The slower SCROLLABLE & PRETTY command does let you scroll,
and if the file contains formatting information of a kind that
FileBrowser knows about (via the editors you have loaded), you
will see the file formatted. However, this command does much
more work, and may take a bit longer to show you even the first
line of the file. The FILEBROWSE command is for use on "files"
that are actually directories; it is described in the next section.

FB Commands

EcHt
LO'1d }.

(::'Jmpile).
Expun!Je

The two FAST SEE commands display the selected file in the
display window one windowfull at a time. When the file fills the
window, a small menu appears at the bottom-left corner of the
window (or top-left if your display window is at the bottom of
the screen) giving you the option of seeing more of the file or

LISP LIBRARY MODULES, MEDLEY RELEASE, FILEBROWSER 81

FILEBROWSER

82

aborting the SEE command. If you issued the SEE command with
more than one file selected, you also have the choice of aborting
just the display of this file or the entire SEE command.

vi ewin 9 {E R I S}<Lisp >Koto >Li sp u sel's>ACT IV ERE G IONS .;1

(FILECF~EATED " 5-.JUL-i34 17: 4i3: :34" {:iUHVX1}UI:iKU:<UUlPHIN.LI:iPU:i
ERS)ACTIVEREG.;B 7f333

changes to: (~NS ACTIVEREGIONS/MULTIPLEREGIONS? FINDACTIVEREGIO
N

ACTIVEREGIONS/DEFAULTHIGHLIGHTFN)
(VARS ACTIVEREGIONSFNS ACTIVEREGIO~SHIDDENFNS)

previoui date: "15-MAR-i34 0i3:4:3:50" {SDRVX1}DISKD:<DbLPHIN.LISP
USERS)ACTIVEREG.;5) **COMMENT**
(PRETTVCOMPRINT ~CtIVEREGIONSCOMS)
(F:PAQQ ACTIVEREGIONSCOMS (**COrMI1ENT**

(RECORDS ACTIVEREGION)
(FNS * ACTIVEREGIONSFNS) **COMMENT**
(FNS * ACTIVEREGIONSHIDbENFNS)))

COMMENT ...
[DECLARE: EVAL@COMPILE
(RECORD ACTIVEREGION (REGION HELPSTRING DOWNFN UPFN HIGHLIGHTFN LO
",Ill 13HTFN DATA»
]

r-. ... lore t···le::d File .6.bort

If you select More, the SEE command displays another windowful
of the file. If you select Next File, the SEE command closes this
file and goes on to display the next file in the current selection. If
you select Abort, the entire SEE command is aborted. You can
also abort the SEE command by closing the display window.

The next time you give a FAST SEE command, the same window
will be reused.

The only difference between the FAST SEE PRETTY and the FAST
SEE UNFORMATTED commands is the manner in which the
characters of the file are processed as they are displayed.

The pretty (formatted) version interprets certain control
characters found .in Lisp source files to be font change
commands, and interprets certain multibyte sequences as
representing characters in the Xerox extended character set (see
XSIS Character Code Standard, version XC1-2-2-0). It also
squeezes out blank lines and shrinks the indentation of indented
lines in order to better fit the text in a window that is generally
much narrower than the standard file width. The formatted
version is thus most appropriate for viewing source files and files
containing plain text.

The unformatted version of the SEE command does no special
processing on the characters whatsoever. It simply displays each
eight-bit byte as a single character, uninterpreted. This means
that bytes that do not represent normal pri nti ng characters may
be displayed as black boxes, in the form i x or #x, or as a flashing
of the window (for the byte that represents the ASCII "bell"
character). The Unformatted version is thus most appropriate
for viewing binary files that also contain text portions that might
be worth seeing; e.g., compiled files (those with extension
.MCOM) or Interpress masters (extension .IP or .INTERPRESS).

The SEE SCROLLABLE & PRETTY command views a file in a
different way. This command brings up a new read-only TEd it

LISP LIBRARY MODULES, MEDLEY RELEASE, FILEBROWSER

FILEBROWSE

EDIT

FILEBROWSER

window for viewing a file (only if TEd it is loaded in your system;
otherwise, SCROLLABLE & PRETTY reverts to FAST). You can scroll
and copy-select the file's contents at will, as with any TEdit
window. If the file is a Lisp source file, its contents are first
formatted into a TEd it document, so that all the font
information is retained. This formatting, however, can take a
long time for a large file. For other kinds of files, the SEE
SCROLLABLE & PRETTY command is exactly like viewing the file
in a regular TEdit window, except that you can't edit it. If you
want to edit a file, use the Edit command instead of the See
command.

You can keep the display window used by the SEE SCROLLABLE &
PRETTY command open as long as you like. The command uses a
different window for each file you select. Simply close the
window with the standard right-button window menu when you
are finished with it.

The FILEBROWSE command is a subcommand of SEE used to view
a subdirectory in its own FileBrowser window. The selected file
must be a (sub)directory. Subdirectory files appear in browsers
on XNS file servers when the depth is finite (see the SET DEPTH
command), and their names always end in "> ".

Name (depth 1) Pages Created
Copy

Rename
H.).t'dco _,'".'

E::o::am les>
Lisp

.t~.~i 1
t~ i sc
Star'

1:::!3 4-Feb-ai:i 12
1 15-Sep-a4 15

Eii35 26-r.ta~ ... -a7 11
1 17-.Ju l-a7 17

273 l-.Ju 1-i37 17
Eclit

Fast SEE P rett:i
~::. F'3.st SEE Unformattec~

::::;crolla.ble .::"(Pt'ettv
-:. - -

L 0 ac~ ;:::.

On Unix servers, subdirectories are not syntactically
distinguishable from ordinary files, nor is Lisp able to distinguish
them internally; you simply have to know. The FILEBROWSE
command prompts you for a region for a new FileBrowser
window group, in which it proceeds to enumerate the contents
of the selected subdirectory, to the same depth as the main
browser used, if any.

The EDIT command invokes an editor on the selected file. To
specify an editor explicitly, use one of the commands on the
submenu.

Harclcop':/ i:=-
See :,J--=-,...-....,

Edit
Loa.c!

Cornpile }

To start up a TEd it editor on a selected text file, select EDIT with
the left mouse button. If you have recently closed a TEdit
window, then TEdit will probably reuse that window; otherwise,
you will be prompted to create an editor window. TEd it only
remembers the most recently abandoned window, however, so if
you issue the EDIT command when you have several files

LISP LIBRARY MODULES, MEDLEY RELEASE, FILEBROWSER 83

FILEBROWSER

LOAD

84

selected, you will be prompted to create windows for all but the
first file.

The subcommand LISP EDIT is appropriate for Lisp source files
produced by the file manager. It calls the Lisp structure editor on
the file's coms. If the file is not yet known to the file manager,
you will be asked whether you want to load it first (using LOAD
PROP). If not, the operation is aborted. The editor used is the
default structure editor (SEdit or DEdit, depending on your
setting of *EDITMODE*).

If you select the main Edit command, without sliding off to the
submenu, then FileBrowser's default editor is called. This editor
is initially TEdit, but you can change the default behavior by
setting the variable FB.DEFAUL T.EDITOR (see the section
"Customizing FileBrowser and Using the Programmer Interface,"
below).

FileBrowser's LOAD command can be used to load both source
(interpreted) and compiled files into your workstation's virtual
memory. First select the file or files you want to load, then select
Load with the left mouse button.

A special display window is opened to give information about
the files as they are loaded. When the load is complete,
FileBrowser closes the load window.

TTY window for LOAD

{ERINYES}<LYRIC)LIBRARY>KEYBOAROEOITOR.LCOM;l
compiled on 8-Jan-87 19:03:57
File created 21-Sep-85 08:03:04
KEYBOAROEOITORCOMS

{ERINYES}<LYRIC)LIBRARY)VIRTUALKEYBOAROS.LCOM;l
compiled on 6-Jan-87 22:41:02
File created 5-Nov-86 16:55:40
VIRTUALKEYBOAROSCOMS

The LOAD command also has subcommands that enable you to
load files in different ways. These commands are described
briefly here; see the IRM for further details. Only the LOAD and
LOAD SYSLOAD commands are of interest to nonprogrammers.
All load commands are placed on the history list. With the
exception of LOAD SYSLOAD, all are undoable using Lisp history
list commands.

1_lncJelete ~.

Copy IL: LO.'::"D
Renarne CL: LO.~.D

Hardcopy ~~:; Loac~ PRC'P
See ~ LOr3.d SYSLOJ:..D
Edit :;; L().'::"DFROM

I Compile ~
Expunge

F:ecompute ~

LOADcor· ... 1P

LOAD (same as the Lisp LOAD command) loads the file with
LDFLG = NIL. If any functions or variables in the file redefine
ones that are already in memory, messages such as "(FOO
redefined)" are printed. This command is used for loading

LISP LIBRARY MODULES, MEDLEY RELEASE, FILEBROWSER

COMPILE

FILEBROWSER

source files that you as a programmer plan to make
modifications to, or for loading any file that you have doubts
about, in which case you might want to be able to undo the load.

CL: LOAD differs from IL: LOAD in that it calls the Common Lisp
LOAD function, rather than that of Interlisp. In the present
implementation, these two commands are essentially identical.

LOAD PROP loads the file(s) with LDFLG = PROP. Interlisp
functions are loaded onto property lists, rather than redefining
the functions already in memory. Common Lisp functions,
macros, etc. are loaded into a definitions table, again without
changing the definitions currently in effect. This command is
used for loading Lisp source files for which the compiled version
already exists in memory, but which you plan to edit.

LOAD SYSLOAD loads the file(s) with LDFLG = SYSLOAD.
Function and variable redefinitions occur quietly (i.e., without
printing (FOO redefined), (BAR reset), etc.). The file manager is
not informed of this file. This is the fastest loading command
and consumes the fewest resources, but it is not undoable. It is
the best way to load compiled (extensions LCOM or DFASL) files
that you are certain you want to load into your environment and
are not planning to edit.

LOADFROM calls the file manager's function LOADFROM. This
loads variables and other expressions but not Interlisp functions,
and does so in a way that informs the file manager, so that the
editor knows where to find the functions.

Note: The LOADFROM command is not appropriate for
Common Lisp files-it is better to use LOAD PROP for
them.

The LOADCOMP subcommand calls the file manager's function
LOADCOMP. This loads from the file all the expressions that the
compiler would evaluate if compiling the file-macros, records,
and any other expressions enclosed in an EVAL@COMPILE
declaration.

The COMPILE command is used to compile a selected Lisp source
file or files. The files do not have to be loaded. The COMPILE
command uses the same compiler as CLEANUP does (the value of
DEFAULT-CLEANUP-COMPILER), unless you select a different
compiler from the COMPILE submenu.

S;ee ~~::.

E cl it)l---T-C-: C-) r·.-... l p::-, L-""
~~:. E: (:: (::1 rvl P L

"'1'2.1'!'!II'!.1IJI!III--',:. C () r· l PI L E·F I L E

Note that this command is placed on the history list, so that it
and its subcommands are undoable.

A special Executive window is opened for each file to display
information about the code being compiled. When the
compilation is finished, the window is closed. In the case of

LISP LIBRARY MODULES, MEDLEY RELEASE, FILEBROWSER 85

FILEBROWSER

EXPUNGE

RECOMPUTE

86

TCOMPL and BCOMPL, which invoke the Interlisp compiler, each
compiled file is saved on your connected directory with the
original file name and the extension MCOM. In the case of
COMPILE-FILE, which invokes the Xerox Common Lisp compiler,
the compiled file is saved on the same directory as the source file
with the original file name and the extension MFASL.

Note that this command compiles files found on a storage
device, not the functions defined in the Lisp image. If you have
made changes to any of the functions on a loaded file, you must
perform a MAKEFILE to write an updated version before
compiling it. For more information on making files and
compiling, see the IRM.

If you are sure you want to delete files permanently, choose the
EXPUNGE command. The EXPUNGE command is grayed while
FileBrowser expunges the files that were marked for deletion by
the DELETE command. As each file is removed from the system, it
is removed as well from the browser display, and the tally of total
number of files and number of deleted files is updated, so you
can see the progress of the command.

If for some reason a file can not be expunged, FileBrowser prints
a message saying so in its prompt window, but continues to
expunge the other files. The main reasons that prevent a file
from being expunged are its being opened, either by you or
some other user, or your not having the access rights required to
delete it (if it is on a file server). See the section
"Troubleshooting Problems with FileBrowser," below.

Note: The EXPUNGE command is not affected by the current
selection; it operates only on files marked for deletion,
whether currently selected or not.

FileBrowser's display shows those files that existed and matched
the specified pattern at the time you created the browser. If you
want the browser to reflect the latest state of the file system, use
the RECOMPUTE command.

For example, if you open a FileBrowser on your directory, then
save several versions of a TEd it file on that directory, the file
listing will not display the new versions until you RECOMPUTE.

The RECOMPUTE command operates exactly as when you started
up FileBrowser initially: it clears the display and tally windows,
then enumerates the files matching the pattern. The
RECOMPUTE command in the menu is grayed until the
enumeration is finished. During this time you cannot scroll or
perform any other operations on the browser. However, you can
close the window if you want to abort the command and throw
away the browser.

If any files are marked for deletion at the time you request a
RECOMPUTE, FileBrowser will present the choice of expunging

LISP LIBRARY MODULES, MEDLEY RELEASE, FILEBROWSER

NEW INFO

FILEBROWSER

or undeleting the files, just as it does when you want to quit the
browser (see the section "Quitting the FileBrowser," above).

The RECOMPUTE command also has a menu of subcommands
that allow you to list different files or different information for
the same set of files.

Ecm ::: ..
L08.cl ::::.

Compile)-
E ::(pun 1:1 e r.:::::-".: .)-.rr-1 e~P~a-:-tt:--.e-. t'n-'

.:t;;fK.IUI.~.IIl __ ~· t··.J e ··.·v Patte rn
:::;:ort t···J e v·." Info

Set Deptt-I
Stlape to Fit

SAME PATTERN is the same as the main RECOMPUTE command,
i.e., it enumerates the files matching the same pattern as before.

NEW PATTERN lets you change the pattern, i.e., browse a new set
of files. FileBrowser prompts you to supply a new file name
pattern and offers the old pattern as an initial default. You can
either type an entirely new pattern, replacing the one offered, or
delete the old pattern one character at a time by backspacing.
Press the carriage return when you have finished specifying the
pattern. FileBrowser then enumerates the files matching this
pattern, just as with the RECOMPUTE command. You can abort
the command with the Abort button, or by erasing the whole
pattern (by backspacing or using control-Q) and then pressing
the carriage return.

NEW INFO lets you change which attributes the browser displays.
It is described in the next section.

SET DEPTH lets you change the depth to which FileBrowser
enumerates a directory on an XNS file server. It is described in
the section "SET DEPTH".

SHAPE TO FIT reshapes the FileBrowser window so that all the
attributes in the display are visible at once, eliminating the need
to horizontally scroll the window to get at all the information.

FileBrowser displays some file attributes, or information about
the file, alongside each file in the browser display. Ordinarily,
the attributes displayed are the size of the file in pages, its
creation date, and its author. You can change which attributes
are displayed for all new FileBrowsers by changing
FB.DEFAULT.INFO (see the section "Customizing FileBrowser and
Using the Programmer Interface," below). You can change the
attributes displayed in a particular browser window by using the
NEW INFO command.

To use the NEW INFO command, select it from the submenu of
the RECOMPUTE command. FileBrowser opens up an additional
subwindow, the Info Options window, below the display
window. This subwindow contains a menu of attributes, with
the current defaults shaded. Selecting a shaded item unshades
it; selecting an unshaded item shades it. When you have
selected all the attributes you wish to see displayed, issue either

LISP LIBRARY MODULES, MEDLEY RELEASE, FILEBROWSER 87

FILEBROWSER

SET DEPTH

88

the RECOMPUTE or the NEW PATTERN command. The files will
be listed with the new information you requested. The Info
Options window stays open-you can close it at any time.

S€·l€·(:t. fr·offl tho:· lol,r r .. ~nlJ I,.t';o::h .~.ttr·ibIJt.e::: ·~r·e to be di:::p1.~.ved ..
th€·n (: 1 i (:k F:ec(of(plJt . .;·

EDITBITMAP.TEDIT~l 76 2~!1-~1a

ETHERRECORDS.TED~T;l 11=: ~, 2£1-Ma
~FILEBROWSER.TEDIT;t ::iaa 3-Ap ~=:ee
FONTSAMPLE.TEDIT~l 17 2~!l-~1.:t Ec~it
FTPSERVER.TEDIT;i l::i 2~!l-Ma L08.lj

FX-80DRIVER.TEDIT:2 ea ;::-Ap Compile
FX-80DRIVER.TEOIT;1 aa 2~!l-Ma E::o::pun!;je
13CHA>:: . TED IT ; 1 4~!1 2~!l-Ma F:ecornpute
GF-:APHEF-: . TEO IT; 1 67 2~!1-Ma Sort

.. r. .• ~r~r=-· .. - •... -;:::::::::: :c~r¢:~~.te:d:

".'·'.,'dttet-. ..

The Info Options items have the following meanings:

CREATED The date and time that the content of the file was created. This
date changes whenever the file is modified, but does not change
when a file is copied or renamed.

WRITTEN The date and time the file was last written to the file system. This
date is never older than the Created date, but it can be newer if
the file is copied, unmodified, from one file system to another.

READ The date and time the file was last read. This attribute may be
blank if the file has never been read.

AUTHOR The login name of the person who wrote the file, or last
modified it.

LENGTH The length of the file in (usually eight-bit) bytes.

PAGES The number of 512-byte pages in the file. On some servers, this
attribute is blank if the file is empty.

BYTESIZE The size (in bits) of the bytes in the file. In Xerox Lisp this is
always eight, but some older computers and file servers allow
other sizes.

TYPE A value indicating what kind of data the file contains. The usual
values of this attribute are TEXT, meaning the file contains just
characters, or BINARY, meaning the file contains arbitrary data.
Some servers have additional types, such as INTERPRESS for files
in Interpress format.

XNS file servers support a feature that allows enumerating a
directory to a user-specifiable depth. The "depth" of a file
reflects the number of subdirectories between it and the root of
the enumeration, i.e., the directory or subdirectory you gave in
the pattern to FileBrowser, not counting any containing
wildcards (asterisks). The immediate descendants of the root are

LISP LIBRARY MODULES, MEDLEY RELEASE, FILEBROWSER

SORT

FILEBROWSER

at depth 1, files in subdirectories of depth 1 are at depth 2, and
soon.

Ordinarily, FileBrowser enumerates a directory to the default
depth, which is usually unlimited. To enumerate a directory to a
different default, use the FB command with argument: DEPTH n,
for some positive integer n, or T for unlimited depth. To change
the depth in an existing FileBrowser, use the SET DEPTH
command, a subcommand under the RECOMPUTE command.
The command offers you a menu of choices:

(~lob'3.1 clef'3.ult
Infinite

1 .-.
..:.

"Global default" means use the default depth, overriding the
depth at which this browser was last enumerated. "Infinite"
means use no depth limit (same as depth T). "1" and "2" are
common depth choices; to choose some other numeric value,
select "Other" and enter the value via the displayed keypad.

The SET DEPTH command does not affect the current display. It
takes effect the next time you use the RECOMPUTE or
FILEBROWSE commands from the same browser.

During a RECOMPUTE, if a subdirectory appears at the specified
maximum depth, its descendants are not enumerated; rather,
the subdirectory itself appears as an entry in the browser display.
This entry can be selected, just like a file, but only a small number
of commands can be used on it: you can RENAME it, you can
DELETE it if it has no descendants, and you can FILEBROWSE it. It
has attributes, just as ordinary files do. Its page size is the size of
the entire subtree rooted at the subdirectory.

Note: Depth currently affects only XNS servers; all other devices
ignore it and enumerate to their own default depths. In
addition, due to a bug in XNS Services 10, depth is
ignored for nontrivial patterns, i.e., anything but" *. *".

The SORT command allows you to sort the files in the browser by
any attribute of the files displayed in the browser. Selecting
SORT brings up a menu of attributes by which to sort. This menu
includes all the attributes currently displayed in the browser
(such as Creation Date, Author), plus the choice Name. For some
attributes you can sort forward or backwards; the choice is on a
submenu, and the default is generally in the order of numerically
greatest (e.g., size) or most recent (e.g., creation date) first.

If the attribute you select is not Name, then the file names
displayed in the browser will be reformatted to include their
directory portion (if there are any subdirectories below the
browser's main pattern), as the subdirectory information is no
longer implicit in a file's position in the browser.

LISP LIBRARY MODULES, MEDLEY RELEASE, FILEBROWSER 89

FllEBROWSER

The sort order Name, Decreasing Version is the default order in
which browsers initially are created.

Customizing FileBrowser and Using the Programmer Interface

FileBrowser Functions

90

FileBrowsers are created programmatically by the function
FllEBROWSER, or by type-in from an Executive window with the
FB command.

Note: All functions, variables and literals in this section are in
the Interlisp package. You'll have to use the prefix Il: if
you are using another Executive.

(FllEBROWSER FILESPEC ATTRIBUTES OPTIONS) [Function]

Creates a FileBrowser on files matching the pattern FILESPEC and
displaying the values of the specified A TTRIBUTES for each file.
Returns the main window of the browser.

If ATTRIBUTES is missing or Nil, it defaults to the value of
FB.DEFAUlT.INFO (below). See FB.INFO.MENU.ITEMS for the
complete set of allowable attributes.

OPTIONS is a list in property-list format. The currently
implemented properties and their values are as follows:

: REGION A screen region in which FllEBROWSER will open
the browser; if this option is omitted, FileBrowser
will prompt you for a region.

: DEPTH The depth to which the enumeration should be
performed. Affects only XNS servers (see SET
DEPTH).

:TITlE The title for the main browser. If this is omitted,
the title derives from FILESPEC, and is updated
whenever the RECOMPUTE command is used.

:MENU-TITlE The title for the command menu. Defaults to "FB
Commands".

:MENU-ITEMS The set of ITEMS composing the command menu.
The default is the value of FB.MENU.ITEMS.

FB FILESPEC A TTR1 ... A TTRN [Command]

This is an Executive command for creating FileBrowsers. FB
creates a FileBrowser on files matching the pattern FILESPEC and
displaying the attributes ATTR1 through ATTRN, or the value of
FB.DEFAUlT.INFO if no attributes are specified. It prompts you
for a window region. If a keyword appears in the command line,
the remainder of the line from that point on is interpreted as the
OPTIONS argument to FllEBROWSER.

For example, the Executive command

LISP LIBRARY MODULES, MEDLEY RELEASE, FllEBROWSER

FileBrowser Variables

FILEBROWSER

FB *.MCOM LENGTH CREATIONDATE

browses all files on the connected directory with extension
MCOM, displaying the length in bytes and creation date for
each. The command

FB * :DEPTH 1

browses the connected directory to depth 1, displaying the
default attributes.

FB always returns NIL.

There are several global variables that can be altered to affect
FileBrowser's behavior. You can set them by typing

(SETQ VARIABLENAME NEWVALUE)

to your Executive window, and can save their values with a VARS
command in your initialization file.

FB.DEFAULT.INFO [Variable]

A list specifying which attributes should be displayed for each
file. The elements of this list are the Lisp names for the attributes
you want displayed. The choices are CREATIONDATE,
WRITE DATE, READDATE, LENGTH, SIZE, BYTESIZE, AUTHOR, and
TYPE. The attribute SIZE corresponds to the info item "Pages".

For example,

(SETQ FB.DEFAULT.INFO '(CREATIONDATE LENGTH»

would cause all new FileBrowsers to display exactly the attributes
creation date and length in bytes for each file.

FB.INFO.MENU.ITEMS [Variable]

The list of items in the menu used by the NEW INFO command.
Each element of the list is of the form (LABEL ATTRIBUTE
"DOCUMENTATION"). If you add new attributes to this variable,
you should also add corresponding entries to FB.INFO.FIELDS.

FB.lNFO.FIELDS [Variable]

A list describing, for each attribute, the format in which it is
displayed. In addition, the order of attributes in this list is the
order in which they are displayed in a browser window. Each
element is of the form (ATTRIBUTE HEADER WIDTH FORMAT
PROTOTYPE), where

A TTRIBUTE is the name of the attribute, which must be a
valid attribute for GETFILEINFO;

HEADER is a string displayed in the header line above the
main browser window;

WIDTH is the total width in pixels to allocate for printing
the values of this attribute, including trailing space;

LISP LIBRARY MODULES, MEDLEY RELEASE, FILEBROWSER 91

FILEBROWSER

qJ

FORMAT is NIL for ordinary values, DATE for attributes
whose value is a date, or (FIX N) for integer values;

PROTOTYPE is a string describing the widest value you
expect the field to have.

All values are printed left-justified in the allotted space, except
for format (FIX N), used for integer values, which are
right-justified in a field N pixels wide, with WIDTH-N pixels left
for trailing space.

If PROTOTYPE is present, then the WIDTH and N fields for the
item are ignored, and the width is taken to be the width of the
prototype string in the browser's font (FB.BROWSERFONT), plus
two characters' worth of space between columns.

FB.DEFAULT.NAME.WIDTH [Variable]

The amount of space, in points, to use for displaying file names
in a browser, initially 140. The name column is automatically
expanded if enough names are too wide. You can set this larger
if you routinely browse directories of long file names.

FB.ICONFONT [Variable]

The font in which the file pattern is displayed on the browser
icon, initially eight-point Helvetica. The value of this variable
should be a font descriptor, as returned by FONTCREATE.

For example,

(SETQ FB.ICONFONT (FONTCREATE 'MODERN 10 'BOLD»

FB.BROWSERFONT [Variable]

The font in which the information in the main display window is
printed, initially 10-point Gacha.

FB.PROMPTFONT [Variable]

The font in which prompt messages are printed, initially
eight-point Gacha.

FB.PROMPTLINES [Variable]

The number of lines in the prompt window, initially three.

FB. HARDCOPY. FONT [Variable]

Specifies the font to use when producing hardcopy directory
listings. Initially NIL, which means to use the font class
DEFAU L TFONT.

FB.HARDCOPY.DIRECTORY.FONT [Variable]

Specifies the font to use for subdirectory names, if there are any,
in hardcopy directory listings. Initially NIL, which means to use
the font class ITALlCFONT.

FB.DEFAULT.EDITOR [Variable]

Specifies the editor to call by default when the main Edit
command is selected. Its value is one of the following:

LISP LIBRARY MODULES, MEDLEY RELEASE, FILEBROWSER

FILEBROWSER

TEDIT Use the TEd it text editor.

LISP Use the Lisp structure editor, as in the Lisp Edit
subcommand.

NIL Use the Lisp structure editor if the selected file is
a File Manager Lisp source file, TEd it otherwise.

Other Names the entrypoint function of the editor of
choice. The editor is called with a single
argument, the file name.

The initial value of FB.DEFAULT.EDITOR is TEDIT.

FILING.ENUMERATION.DEPTH [Variable]

Adding FileBrowser Commands

The system variable that controls the default depth to which a
directory is enumerated. The value is a positive integer, or T for
unlimited depth. The initial value is T.

You can add your own commands to FileBrowser by adding items
to FB.MENU.ITEMS and writing functions to handle the
commands. This section describes the format of menu
commands and a set of functions that are useful for the
implementation of FileBrowser commands.

FB.MENU.ITEMS [Variable]

A list of the items that appear on FileBrowser's command menu.
You can add new FileBrowser commands by adding new
elements to the end of this list. After your change, any new
FileBrowser will have the added commands.

Each element of FB.MENU.ITEMS is of the form (LABEL YOURFN
"EXPLANA TlON'1, where

LABEL is the name of the command, as it is to appear in the
menu;

YOURFN is the name of the function to be called when the
command is selected, and

EXPLANATION is the explanation to be printed when the
mouse cursor is held over the command.

While YOURFN is Executing, the menu command is grayed out,
and FileBrowser is "locked" so that no other commands or
processes can access it.

You can have subcommands as well if you make the menu
command be of the form (LABEL YOURFN "EXPLANATION"
(SUBITEMS item 1 ... itemN», where each item} is recursively of
the same form as a menu command.

FileBrowser calls YOURFN with four arguments: (YOURFN
BROWSER KEY ITEM MENU), as follows:

BROWSER is FileBrowser object in control of this browser
window.

KEY is the mouse key pressed (left or middle).

LISP LIBRARY MODULES, MEDLEY RELEASE, FILEBROWSER 93

FILEBROWSER

94

ITEM is the menu item that was selected.

MENU is the command menu.

YOURFN can also be a list of two elements, (FN ARG), where ARG
is an arbitrary value that is passed, unevaluated, as the fifth
argument to FN. This is useful for writing one function that
implements several subcommands that are similar to the original
command.

Any additions to FB.MENU.ITEMS should be saved with the file
manager command APPENDVARS, so that the new items are
added to the end of the menu, and your changes will not
interfere with any changes to built-in FileBrowser commands in
new FileBrowser releases.

(FB.TABLEBROWSER BROWSER) [Function]

Returns the TABLEBROWSER object belonging to FileBrowser
BROWSER. See the documentation for the module
TABLEBROWSER for further operations you might perform on
one of these browsers.

(FB.SELECTEDFILES BROWSER NOERRORFLG) [Function]

Returns a list of table items representing the files currently
selected in BROWSER. If there are no selected files, this prints

No files are selected

in the prompt window, unless NOERRORFLG is true, in which case
this function quietly returns NIL.

(FB.FETCHFILENAME ITEM) [Function]

Returns the full name of the file denoted by ITEM, one of the
table items returned by FB.SELECTEDFILES.

(FB.PROMPTWPRINT BROWSER XI . . . XN) [Function]

Prints the strings XI through XN in BROWSER's prompt window.
The item T is printed as a carriage return (i.e., a command to go
to a new line).

(FB.PROMPTW.FORMAT BROWSER FORMAT-STRING &REST ARGS) [Function]

Prints to BROWSER's prompt window by applying the Common
Lisp function FORMAT to FORMAT-STRING and ARGS.

(FB.PROMPTFORINPUT PROMPT DEFAUL T BROWSER ABORTFLG DONTCLEAR)

[Function]

Prompts for your input in BROWSER's prompt window. PROMPT
is the prompt string, DEFAULT is the default answer. Returns
your input as a string, or NIL if there is no input, or if it was
aborted with control-E. If there is no input and ABORTFLG is
true, prints" ... aborted". The prompt window is first cleared (as
at the beginning of a command), unless DONTCLEAR is true.

LISP LIBRARY MODULES, MEDLEY RELEASE, FILEBROWSER

FILEBROWSER

(FB.ALLOW.ABORT BROWSER) [Function]

Enables the Abort button on BROWSER. This should be called
from the function implementing any FileBrowser command of
indefinite duration.

Troubleshooting Problems with FileBrowser

When FileBrowser returns the message "No files in group
FILENAMEPATTERN" when you know those files exist, the file
server is probably down or rejecting connections. If this is so,
your only option is to wait until the server is functioning again,
and then give the Recompute command. In the case of an NS file
server, the enumeration of files can also fail if you do not have
sufficient access privileges; this condition is usually noted by a
message in the system prompt window.

When you try to expunge a file and FileBrowser displays the
message "Can't expunge FILENAME," it may be because you
don't have write access to the file, or someone else is reading the
file. However, the most common reason is that the file is still
open. Be sure to close any TEdit windows in which you may still
be viewing the file. If you have recently issued a HARDCOPY
command for the file, a background process may still be working
on the file. If that's not the problem, you can get a list of open
streams by typing (OPENP) at the prompt in an Interlisp Executive
window. If one of them is open on the file you want to delete,
you can close it by passing the stream to the function CLOSEF. To
close all open streams (not recommended unless you're sure it is
okay), you can type (MAPCAR (OPENP) 'CLOSEF). If you don't
find an open stream, and the server is a Leaf or XNS file server,
you may have a disagreement between Lisp and the server on
what files are open, something that can occur if you had aborted
an OPENSTREAM operation. Call (BREAKCONNECTION
"servername") to reset the connection, then try again.

LISP LIBRARY MODULES, MEDLEY RELEASE, FILEBROWSER 95

FILEBROWSER

[This page intentionally left blank]

96 LISP LIBRARY MODULES, MEDLEY RELEASE, FILEBROWSER

XEROX

SUMMARY

FILEWATCH

Johannes A. G. M. Koomen

(Koomen.wbst@Xerox or Koomen@CS.Rochester)

May 14,1987

FILEWATCH

FILEWATCH is a facility for keeping an eye on open files. It continually updates a display showi ng

each open file, its current file pointer location, the total file size, and a percentage bar.

DESCRIPTION

Invoking the function FILEWATCH (or selecting the II FileWatch" entry on the BackgroundMenu)

starts up the FileWatch process if not already running, or brings up a FileWatch control menu

allowing you to forget a currently displayed file (i.e., stop displaying the file), recall a previously

forgotten file, close an open file (user beware!), change some or all FileWatch display properties,

or quit the FileWatch process. The Forget, Recall and Close entries on the FileWatch control menu

have roll-outs to let you perform the operation on several files at once.

FileWatch can be customized by setting the FileWatch properties (see below) using the function

FILEWATCHPROP. Right buttoning any FileWatch window brings up the FileWatch control menu,

with the provision that the Forget and Close commands apply to the file displayed in that

FileWatch window. Middle buttoning any FileWatch window allows you to move the entire

FileWatch display, and left buttoning cause the window to be redisplayed.

DETAILS

(FILEWATCH Command) [Function]

XEROX FILEWATCH

If Command is 'ON and no FileWatch process is already running, starts a process to watch open

files. If Status is 'OFF or 'QUIT and there is a FileWatch process running, kills the process. If

Command is neither one of the above nor one of the FileWatch commands listed below, starts a

process to watch open files if not already running, otherwise brings up the FileWatch control

menu. Returns the process if running, otherwise NIL.

FORGET [FileWatch command]

Brings up a menu of files currently being watched. Select the one you no longer want to have

watched.

FORGET-MANY [FileWatch command]

Repeatedly performs the FORGET command until no other files are being watched or you make a

null selection.

RECALL [FileWatch command]

Brings up a menu of forgotten files. Select the one you want to have watched again.

RECALL-MANY (FileWatch command]

Repeatedly performs the RECALL command until all forgotten files are being watched agai n or you

make a null selection.

CLOSE [FileWatch command]

Brings up a menu of open files. Select the one you want to have closed.

CLOSE-MANY [FileWatch command]

Repeatedly performs the CLOSE command until all open files have been closed or you make a null

selection.

MOVE [FileWatch command]

Performs the SET-ANCHOR, SET-POSITION, and SET-JUSTIFICATION commands.

SET-ANCHOR [FileWatch command]

2

XEROX FILEWATCH

Brings up a menu of four corner r}ames. Select the one on you wish to anchor the FileWatch

display. For instance, selecting Top-Right causes FileWatch windows to be stacked downwards

witht the top right corner of the first FileWatch window at the FileWatch display position.

SET-POSITION [FileWatch command]

Indicate where the FileWatch display should be positioned by moving the region of the combined

FileWatch windows.

SET-JUSTIFICATION [FileWatch command]

Requests confirmation to turn FileWatch window justification on, i.e., make all FileWatch windows

the same width as the largest one.

(FILEWATCHPROP PropName [PropValue]) [Function]

If PropValue is given, sets the property value accordingly. Always returns the ClJrrent (old) value of

the property. This is a general facility which you can use for whatever purpose you deem

appropriat~. However, there are some properties that have a predefined meaning to FileWatch:

ALL-FILES? [FileWatch property]

If NIL, FileWatch displays only user visible open files; otherwise all open files (including, for

example, file cacher files). Initially set to T if you are running the Koto release of Interlisp-D,

otherwise NIL. (Later releases have no facility yet to obtain all open files.)

ANCHOR [FileWatch property]

Each open file that is being watched gets its own FileWatch window. Multiple windows are

stacked automatically. The total region occupied by this stack is anchored at the corner indicated

by this property. The only legal values are TOP-LEFT, TOP-RIGHT, BOTTOM-LEFT, BOnOM-RIGHT.

Initially set to BOTTOM-RIGHT. If the anchor is at one of the bottom corners the stack grows

upward, otherwise downward. If the anchor is at one of the left corners the stack is aligned by left

edge, otherwise by right edge (see also the JUSTIFIED? property).

FILTERS [FileWatch property]

3

XEROX FILEWATCH

A list of file patterns, f.or example '(" {CORE}*. *; * "). An open file that matches any of the patterns

will not be watched. Initially set to NIL. Note that each pattern is expanded to include the HOST

and DIRECTORY equal to that of (DIRECTORYNAME), EXTENSION and VERSION equal to II * ", unless

already specified. For example, in my case, the filter "*JUNK*" expands to

"{lce}<Koomen>Lisp>*JUNK*.*;*". If you really wanted to filter all junk files, use the filter

II {*}* JUNK*".

FONT [FileWatch property]

The font used for the FileWatch displays, specified in a form suitable to give to the function

FONTCREATE. Initially set to '(GACHA 8).

INTERVAL [FileWatch property]

The value given to the function BLOCK. This should be either NIL or an integer indicating the

number of milliseconds to wait between FileWatch display updates. Initially set to 1000. Note that

FileWatch generates several FIXP's for large files every time throught the loop, so setting this to NIL

may cause excessive storage allocation and reclamation.

JUSTIFIED? [FileWatch property]

If T all FileVVatch windows are aligned along both left and right edges, and are grown or shrunk as

needed to accomodate the maximum filename length currently in use. This is aesthetically more

pleasing but incurs increased overhead due to frequent reshaping of the windows. Initially set to

NIL.

POSITION [FileWatch property]

The location of the anchored corner of the FileWatch display. Initially set to the bottom right

corner of the screen: (CONS SCREENWIDTH 0).

SHADE [FileWatch property]

The shade used for the FileWatch thermometers. Initially set to GRAYSHADE.

SORTFN [FileWatch property]

4

XEROX FILEWATCH

Either NIL or the name of a function taking two filenames as arguments (such as ALPHORDER),

which is used to sort the list of open files being watched. Initially set to NIL (i.e., no sorting).

5

Requirements

Installation

User Interface

FONTSAMPLE

FontSample provides a set of tools for generating Interpress
masters for a font sampler, and is intended to allow you to see
what results on a printer when you specify a font. This is useful
because there may be several font substitutions between when
you specify a font (for example in TEdit) and when a printer
actually renders the font.

The set of font mappings is a function of the local font
substitutions in a particular workstation, the workstation's
environment (which fonts are available to it at that time, if the
font file server is temporarily unavailable), which printer is being
used, and which font files are currently installed on the printer.

For example, Lisp might substitute Terminal for Gacha, and the
printer might substitute Modern for Terminal. Thus you could
request Gacha and get Modern. The font sampler is intended to
display the final result of these substitutions.

FONTSHEETSx.IP (where x = 1, ... 7)

Load FONTSAMPLE.LCOM from the library.

To find the cumulative effect of all font substitions at a given
time, environment, and printer, you should generate the
Interpress masters (which reflect the environmental and Lisp
mappings) and then send them to various printers (which reflect
the printer mappings).

(SEND.FILE.TO.PRINTER 'FONTSHEET1.IP)
(SEND.FILE.TO.PRINTER 'FONTSHEET2.IP)
etc.

Short sample masters for all currently supported Interpress fonts
can be found in the Lisp Library with the names FONTSHEET1.1P,
FONTSHEET2.IP ... FONTSHEET7.1P. These reflect the default Lisp
font mappi ngs.

Note: These environmental mappings may change from release
to release, so new masters should be printed for every
release.

LISP LIBRARY MODULES, MEDLEY RELEASE, FONTSAMPLE 97

FONTSAMPLE

Functions

Limitations

Example

98

(FNT.MAKEBOOK OUTFROOTNAME LlSTOFFONTS PRINTFN PERPAGE)

[Function]

This function enumerates fonts across multiple output files.
Multiple files are necessary because some printers cannot handle
documents with many fonts. The function iterates over the fonts
in LIS TOFFONTS, invoking PRINTFN (which has arguments as in
FNT.DISPLOOK) PERPAGE times per output file. The files are
named OUTFROOTNAME with the page number concatenated at
the end. If LlSTOFFONTS is the atom ALL, then FONTSAVAILABLE
is invoked for all Interpress fonts (this is an extremely slow
operation). PRINTFN defaults to FNT.DISPLOOK; PERPAGE
defaults to 18. Each font in LlSTOFFONTS should be a FONTLIST.

(FNT.DISPTBLE STREAM FOND [Function]

This function prints a description of the font and characters 0 to
254 of the font specified by FONT on STREAM. It expects a
letter-sized output stream. If used with FNT.MAKEBOOK,
PERPAGE should be 1.

(FNT.DISPLOOK STREAM FOND [Function]

This function prints a description of the font and representative
characters of FONT on STREAM. If used with FNT.MAKEBOOK,
PERPAGE should be 18.

The font sheets are applicable only to Interpress printers.

(SETQ FONTLISTLIST (LIST '(MODERN 10 MRR 0 INTERPRESS)
'(CLASSIC 8 BRR 0 INTERPRESS»)

(FNT.MAKEBOOK 'FOO FONTLISTLIST 'FNT.DISPTBLE 1)

generates two files named F001 and F002 each containing
output from one invocation of FNT.DISPTBLE. Thus F001 has a
font table for (MODERN 10 MRR 0 INTERPRESS), F002 has a font
table for (CLASSIC 8 BRR 0 INTERPRESS).

LISP LIBRARY MODULES, MEDLEY RELEASE, FONTSAMPLE

Requirements

Installation

Functions

Limitations

FTPSERVER

FTPServer implements a simple PUP FTP server protocol for a
Xerox workstation. The server is typically run as a background
process on one machine to allow other machines remote access
to the files on its disk.

Ethernet connection to a remote host.

Load FTPSERVER .LCOM from the library.

(FTPSERVER FTPDEBUGLOG) [Function]

Creates a process named FTPSERVER that listens on the standard
PUPFTP server socket for incoming connection requests. When
one arrives, FTPSERVER services it, then returns to its listening
state. The process continues to run until killed.

If FTPDEBUGLOG is non-NIL, it should be an open file/stream to
which tracing information is printed during the life of the
process.

If FTPDEBUGLOG is T, output goes to a newly created window.
FTPDEBUGLOG can also be a REGION, specifying where the
window is to be created.

FTPSERVER.DEFAULT.HOST [Variable]

Initially DSK. This is the default host for files requested of the
server via FTP. Setting this to FLOPPY, for example, would serve
files off the machine's floppy drive.

Note: FTPSERVER.DEFAULT.HOST can also be set to the name of
a remote host, but this has limited utility, as it doesn't
handle passwords correctly.

The current implementation is a simple tool which allows file
transfer between Xerox machines and supports only one remote

LISP LIBRARY MODULES, MEDLEY RELEASE, FTPSERVER 99

FTPSERVER

Examples

100

connection at a time. Because of this, files cannot be loaded
indirectly, i.e., via the filecoms of another file.

For example, suppose FOO loads BAR which loads WOO. When
FOO is being loaded, it will attempt to load BAR. But FTPServer
cannot support the second connection required to load BAR
while the first connection is still open to load FOO. (This is similar
to the case of tryi ng to load FOO and BAR when they are on
different floppies.)

Therefore, you should load files in an order that prevents
recursive loads: in this example, load WOO, then BAR, then FOO.

Delete (DELFILE) operation is now supported. Rename
(RENAMEFILE) operation is not implemented. FTPServer is best
suited for simple COPYFILE operations. -

An alternative way of specifying the host from the remote
machine is to make the host name be the "device" field of the
file name specification.

For example, if machine M is running FTPServer, another
machine could ask for directory of {M}FLOPPY: FOO. * to get a
listing of MiS {FLOPPY}FOO*.

To address your host, you may use the results of
ETHERHOSTNAME. If on your host (ETHERHOSTNAME NIL T)
evaluates to 123#456#, then on a remote machine you can
access file FOO on the host by:

{123#456#}FOO

LISP LIBRARY MODULES, MEDLEY RELEASE, FTPSERVER

Requirements

FX-80DRIVER

FX-80Driver prints text and graphics on Epson FX-80-compatible
printers. It implements a full device-independent graphics
interface for the FX-80, and can print source code, TEdit
documents, bitmaps and windows at a variety of qualities and
speeds.

The FX-80Driver contains two printer drivers: a fast driver, for
quick printing of draft-quality text, and a high-quality driver, for
slower printing of mixed-font text and graphics. You can print
early revisions of a document in fast mode, and then switch to
high-quality mode for the final copy. The matrix shown in Figure
1 illustrates the capabilities of each mode:

Fast High-quality

monofont yes TEdit only

Sketch yes

Windows yes

Lisp source monofont yes
code only

Grapher yes

Figure 1. FX-80 printer drivers

For historical reasons, FX-80 in this document refers to any and
all of the Epson FX-80 family of dot-matrix graphics printers. The
module supports the FX-80, FX-85, FX-86 and FX-286. The Epson
printers vary in speed and carriage width, but share a common
command language.

RS232 or TTY cable (see the wiring diagrams in the Introduction
of this manual).

Serial interface card in the printer.

DLRS23Cor DLTTY.

LISP L1BRARVMODULES, MEDLEY RELEASE, FX-80DRIVER 101

FX-80DRIVER

Installation

FX-80 Serial Interface

FX-80 DIP Switch Settings

Software

102

The FX-80Driver module requires that your Epson be equipped
with a suitable serial interface (such as the Hanzon Universal
Card).

The interface should be set up with XOn/XOff flow control
enabled, 9600 baud or slower, 1 stop bit, 8 bit characters, no
parity.

(See The Hanzon Universal Card booklet for instructions on the
DIP switch settings.)

The FX-80 should have its DIP switches set as shown in Figure 2.

Switch 2 Switch 1

on

off

1 2 3 4 1 2 345 6 7 8

Figure 2. FX-80 DIP switch settings

Switch 1 says no automatic linefeed, no automatic paper feed,
no buzz on paper-out, and to allow no software deactivation of
the pri nter.

Switch 2 says to use the USA character set, Pica type, allocate 2KB
for user-defined characters, allow paper-out detection, and print
zeros as zeros.

Note: For the FX-85, -86 and -286 DIP switch settings, consult
the corresponding Epson User's Manual.

Load FX-80DRIVER.LCOM and the required .LCOM modules from
the library.

Store all of the font files (file names ending with .displayfont)
corresponding to the fonts you wish to use on some convenient
directory or directories. HQFX80-FONT-DIRECTORIES should be
a list that contains these directories; it should be the same as
DISPLA YFONTDIRECTORIES.

Set FASTFX80-DEFAULT-DESTINATION (determines where output
to the FASTFX80 lineprinter device goes) and
HQFX80-DEFAULT-DESTINATION (determines where output to
the HQFX80 lineprinter device goes) to one of the following
values; they need not be the same:

LISP LIBRARY MODULES, MEDLEY RELEASE, FX-80DRIVER

User Interface

Desti nation

Value
Speed

Printing in Fast Mode

RS232 port

{RS232}
9600 max.

TTY port

{TTY}
4800 max.

FX-80DRIVER

file

FileName
n/a

Load the appropriate device driver for each of these
destinations: DL TTY.LCOM for the TTY port, and
DLRS232C. LCOM for the RS232C port.

Run the function RS232C.INIT or TTY.INIT (as appropriate), and
set the baud rate to match the setting on the printer.

You can set up the FX-80 to be your default printer, send FX-80
output to a file for later printing, or programmatically open an
image stream that produces output on the FX-80.

Having the FX-80 set up as your default printer means that you
can print the contents of windows by selecting the HARDCOPY
menu item on the wi ndow of interest. You can also use the
HARDCOPY - TO A FILE submenu item to spool your output for
later printing. And you can write programs that use the
OPENIMAGESTREAM function to create FX-80 format graphics
output.

You can print in fast mode by sending output to the printer
FASTFX80 or by opening an image stream to a file with extension
FASTFX80. This mode is called fast because it uses the printer's
built-in font, which allows a tight encoding of the document to
be printed. Fidelity to the original document is not as good as in
high-quality mode.

The following restrictions apply:

Special characters (that is, most Xerox Network Systems
extended characters, such as the bullet or dagger; see
CharCodeTables, Virtual Keyboards in this manual) are
ignored.

Only one font is supported (though roman, italic, and bold
typefaces do work).

Graphics (lines, underlines, bitmaps) are ignored.

Multiple column output does work.

LISP LIBRARY MODULES, MEDLEY RELEASE, FX-80DRIVER 103

FX-80DRIVER

Set FX-80 Fast Mode

Set FX-80 Destination

Set FX-80 Page Size

Print a File

Abort a Print Job

Printing in High-Quality Mode

Set HQ Mode

104

To set your default printer to be a fast mode FX-80, make the list
(FASTFX80 FASTFX80) the CAR of the list
DEFAU L TPRINTINGHOST.

To set the default destination of all output to {LPT}.fastfx80, set
the variable FASTFX80-DEFAU L T-DESTINATION to an
appropriate file name string. See the table above; the file name
could be that of a regular file like {DSK}SPOOLED-FAST-OUTPUT.

To, set the driver's page size to match the paper in the printer, set
the two variables \FASTFX80.INCHES-PER-PAGE (page height in
inches) and \FASTFX80.INCHES-PER-LiNE (page width in inches)
to appropriate values. The defaults are 11 and 8.5, respectively.
These can be set in your Lisp INIT file.

Select the HARDCOPY command from the background
(right-button) menu. The system first formats the file for
printing. Then, when the FX-80Driver actually starts transmitting
to the printer, a small abort window, bearing the name of the
document and the name of the printer, will appear near the top
of your screen.

Clicking on the item marked ABORT in the print window will
cleanly terminate the printing of the document.

Note: After aborting a print job, you may need to turn the
printer off and back on to make sure that other files will
print successfully.

Print in high-quality mode by sending output to the printer
HQFX80, or by opening an image stream on a file with type
HQFX80. High-quality mode printing supports all of Xerox Lisp's
device-independent graphics operations, as well as multi-font
printing and the XNS extended character set. It prints at 72
dot-per-inch resolution. Fidelity to the original document is
better than in fast mode, though printing speed is slower.

To set your default printer to be a high-quality FX-80, make the
list (HQFX80 HQFX80) the CAR of the list

LISP LIBRARY MODULES, MEDLEY RELEASE, FX-80DRIVER

Set Destination

Set Page Size

Print a File

Abort a Print Job

FX Printer Compatibility

FX-80DRIVER

DEFAULTPRINTINGHOST. You can use the PRINTERMENU
module or your favorite structure editor to do this.

To set the default destination of all output to {LPT}.hqfx80, set
the variable HQFX80-DEFAU L T-DESTINATION to an appropriate
file namestring. This could be "{TTY}", "{RS232}", or even the
name of a regular file like "{DSK}spooled-hq-output".

To set the driver's page size to match the paper in the printer, set
the two variables \HQFX80.INCHES-PER-PAGE (page height in
inches) and \HQFX80.INCHES-PER-LiNE (page width in inches) to
appropriate values. The defaults are 11 and 8.5, respectively.
These can be set in your Lisp INIT file.

Select the HARDCOPY command. The system first formats the
file for printing. Then, when the FX-80Driver actually starts
transmitting to the printer, a small abort window, bearing the
name of the document and the name of the printer, will appear
near the top of your screen.

Note: After printing a document on HQFX80, you may need to
turn the printer off and back on before you can print
with FASTFX80 on that pri nter.

See above.

(FX80-PRINT &KEY THING-TO-PRINT LANDSCAPE? COMPRESS?
[Function] HIGH-QUALITY?)

THING-TO-PRINT may be one of a window, bitmap, or file path
name. If THING-TO-PRINTis a path name, the file will be treated
as either a TEdit or Lisp source file, and printed in the
appropriate style.

In the window or bitmap cases, LANDSCAPE? specifies landscape
printing (X-coordinates run down the left margin) when
non-NIL;

COMPRESS? specifies FX-80 compressed printing mode.

If HIGH-QUALITY? is non-N I Land THING-TO-PRINT is a path
name, output will be sent to the default high-quality FX-80
printer, otherwise to the default fast FX-80 printer.

LISP LIBRARY MODULES, MEDLEY RELEASE, FX-80DRIVER 105

FX-80DRIVER

Limitations

Examples

106

The LANDSCAPE?, COMPRESS?, and HIGH-QUALITY? arguments
all default to NIL.

Landscape printing has not been implemented.

Send text output to fast FX-80:

(SETQ FX-80 (OPENIMAGESTREAM "{LPT}.FASTFX80"»
(CL:FORMAT FX-80 "HELLO, WORLD %%")
(CL:CLOSE FX-80)

Print source code on fast FX-80 (assuming the FastFX80 is not
your default printer, but is on the list DEFAULTPRINTINGHOST):

(LISTFILES (HOST FASTFX80) "{DSK}MYPROGRAM")

Note: Source code is stored in pre-pretty-printed form on the
file. The pretty-printer's default linelength (width of a
line in characters) is normally 102, which is too wide for
the FastFX-80s 8.S-inch wide page. To create source files
which print nicely on the fast FX-80, you should set the
variable FILELINELENGTH to a more appropriate value
before you MAKEFILE. 70 works nicely on 8.S-inch paper
with a standard font profile, though your mileage may
vary.

Print source code in the the fast FX-80 mode, assuming the
FastFX80 is your default printer:

(LISTFILES "{DSK}MYPROGRAM")

Print TEdit file in fast FX-80 mode, assuming the FastFX80 is your
default printer:

(LISTFILES "{WAYCOOL:}<PUBLIC>GENSYM.TEDIT")

Print text and graphics in high-quality mode:

(SETQ FX-80 (OPENIMAGESTREAM "{LPT}" 'HQFX80»
(MOVETO 300 300 FX-80)
(CL:FORMAT FX-80 "HELLO, WORLD %%")
(DRAWCIRCLE 300 300 230 '(ROUND 8) NIL FX-80)
(CL:CLOSE FX-80)

Print source code in high-quality mode, assuming the
high-quality FX-80 is not your default printer, but is on the list
DEFAU L TPRINTINGHOST:

LISP LIBRARY MODULES, MEDLEY RELEASE, FX-80DRIVER

FX-80DRIVER

(LISTFILES (HOST HQFX80) "{DSK}MYPROGRAM")

Note: See the previous note regarding FILELINELENGTH and
the fast FX-80. The same holds for high-quality FX-80
printing, and we recommend 70 as the value for
FILELINELENGTH.

Print source code in high-quality mode, assuming the
high-quality FX-80 is your default printer:

(LISTFILES "{DSK}MYPROGRAM")

Print TEdit file in high-quality mode, assuming the high-quality
FX-80 is your default printer:

(LISTFILES "{WAYGNARLY:}<PUBLIC>MAGNUMOPUS.TEDIT")

LISP LIBRARY MODULES, MEDLEY RELEASE, FX-80DRIVER 107

FX-80DRIVER

[This page intentionally left blank]

108 LISP LIBRARY MODULES, MEDLEY RELEASE, FX-80DRIVER

Installation

Functions

Storage

GCHAX
GCHax contains functions that are useful for tracking down
storage leaks, i.e., objects that should be garbage but do not get
garbage collected. There are functions for examinjng reference
counts, locating pointers to objects, and finding circularities
(which are among the chief culprits in storage leaks).

Typically, you might turn to GCHax when you notice that
STORAGE claims there are more instances of a data type in use
than you believe there should be.

Load GCHAX.LCOM from the library.

The function STORAGE displays statistics on the amounts and
distribution of the virtual memory space that has been allocated.
If you suspect your program may have storage leaks (e.g.,
because (VMEMSIZE) keeps growing without obvious reason),
this function is the place to start to get an indication of which
kinds of objects are not being reclaimed. STORAGE is part of the
standard Lisp sysout; you need not have loaded GCHAX to use it.

(STORAGE TYPES PAGE-THRESHOLD IN-USE-THRESHOLD) [Function]

With no arguments, STORAGE displays statistics for all data
types, along with some summary information about the space
remaining. The optional arguments let you refine the display.

If TYPES is given, STORAGE only lists statistics for those types.
TYPES should be a type name or list of type names.

If PAGE-THRESHOLD is given, then STORAGE omits types that
have fewer than PAGE-THRESHOLD pages allocated to them.
The default PAGE-THRESHOLD is 2, so types that are not
currently in use (consume no storage) do not appear unless you
specify a PAGE-THRESHOLD of zero.

If IN-USE-THRESHOLD is given, then STORAGE omits types that
have fewer than IN-USE-THRESHOLD instances in use (allocated
and not yet freed).

For example, {STORAGE '(ARRA YP BITMAP» lists only statistics
for the types ARRA YP and BITMAP; (STORAGE NIL 6) lists only
statistics for data types that have at least six pages allocated.
(STORAGE NIL NIL 100) lists only statistics for data types that have
at least 100 instances still in use.

LISP LIBRARY MODULES, MEDLEY RELEASE, GCHAX 109

GCHAX

110

Type

FIXP
FLOATP
LISTP
ARRAYP

The STORAGE function displays, for each Lisp data type, the
amount of space allocated to the data type, and how much is
currently in use. The display looks something like this:

Assigned
pages [items]

66 8448
24 3072

2574 ... 298584
8 512

Free items

7115
2412
5294

245

In use

1333
660

... 293290
267

Total alloc

447038
734877

3545071
48199

Type Is the name of the data type, as given to DATATYPE or the
Common Lisp DEFSTRUCT.

Assigned Is how much of your virtual memory is set aside for items of this
type. Memory is allocated in quanta of two pages (1024 bytes).
The numbers under Assigned show the number of pages and the
total number of items that fit on those pages. The tilde C) on
the LlSTP line indicates that the number is approximate, since
cdr-coding makes the precise counting of lists impossible-the
amount of memory consumed by any particular list cell varies
depending on its contents and how it was allocated.

Free items Shows how many of the assigned items are available to be
allocated (by the Interlisp create or the Common Lisp make­
constructs); these constitute the free list for that data type.

In Use Shows how many items of this type are currently in use, i.e., have
pointers to them and hence have not been garbage collected. If
this number is higher than your program seems to warrant, you
may want to look for storage leaks. The sum of Free items and In
Use is always the same as the total Assigned items.

Total Alloc Is the total number of items of this type that you have ever
allocated (created), or at least since the last call to BOXCOUNT
that reset the counter.

STORAGE also prints some summary information about how
much space is allocated and available collectively for
fixed-length items (mainly data types, both user and built-in),
variable-length items (arrays, bit maps, strings), and symbols.
The variable-length items have fixed-length headers, which is
why they also appear in the printout of fixed-length items. For
example, the line printed for the data type BITMAP says how
many bit maps have been allocated, but the figure displayed as
"assigned pages" counts only the headers, not the space used by
the variable-length part of the bitmap. The variable length
portion is accounted in the summary statistics for "ArrayBlocks",
where it is lumped with all other users of variable-length space,
as it is not possible for the system to more finely discriminate the
users of the space.

Data Spaces Summary

Datatypes (incl. LISTP etc.)
ArrayBlocks (variable)
Arrayalocks (chunked)
Symbols

Allocated
Pages

4370
5770
2626
1000

Remaining
Pages

\

/
47758

1048

LISP LIBRARY MODULES, MEDLEY RELEASE, GCHAX

GCHAX

variable-datum free list:
le 4
le 16
le 64
le 256
le 1024
le 4096
le 16384
others

Total cells

Storage Leak Tracking Functions

18 items; 72 cells.
84 items; 865 cells.
38 items; 1019 cells.
76 items; 7580 cells.

2 items; 1548 cells.
11 items; 18568 cells.

1 items; 4864 cells.
2 items; 59565 cells.

free: 94081 total pages: 736

In the summary, Remaining Pages indicates how many more
pages are available to be allocated to each type of datum. There
is a single figure for both fixed- and variable-length objects,
because they are allocated out of the same pool of storage.

Variable-length objects are allocated in two different ways,
reflected in the items "variable" and "chunked." The
distribution of the former among several different sized free lists
is shown next.

The functions in GCHax are oriented toward finding leaks that
involve items of some data type not getting garbage collected.

There are two main kinds of leaks:

Items that are unintentionally being held onto.

Items that no user structure is pointing to but are not
collected because of the nature of the garbage collector.

Examples of the former are structures assigned to global
variables and left there after the program finishes.

Examples of the latter are principally circular structures -
structures where you can follow a chain of pointers from an
object that eventually returns to the same object. Circular lists,
such as you get from (NCONC A A), are a special case of circular
structures. See comments in "Limitations" below.

Note: All functions listed below have names beginning with \ to
remind you that you are dealing with system internals,
and to proceed with at least a little caution. Although
these functions are generally safe, in that their casual use
will not cause arbitrary damage, you certainly can
produce unintended side effects.

In particular, the functions \SHOWGC and
\COLLECTINUSE have modes in which they return a list of
some kind of pointer; beware of unintentionally holding
on to such a list (e.g., by having it get onto the history
list), thereby preventing the eventual garbage collection
of any of those pointers.

Useful for keeping values off the history list are the Executive
command SHH for completely inhibiting history list entry, and
the idiom (PROG1 NIL operation), e.g., (PROG1 NIL (INSPECT
value)) to inspect a structure without holding on to a pointer to

LISP LIBRARY MODULES, MEDLEY RELEASE, GCHAX 111

GCHAX

112

the inspect window. You may find it convenient to define your
own Exec command to do inspection, e.g.,

(DEFCOMMAND IN (OBJ TYPE)
(PROGl NIL (INSPECT OBJ TYPE)}}

The reference counts of all objects in the system are maintained
in a global hash table, called the GC reference count table. Some
or all of its contents can be viewed with the following function:

(\SHOWGC ONL YTYPES COLLECT FILE CARL VL CDRL VL MINCNn [Function]

Displays on FILE (default T) all objects in the GC reference count
table whose reference count is at least MINCNT, whose default
value is 2.

If ONL YTYPES is given, it is a list of data type names to which
\SHOWGC confines itself.

If COLLECT is T, \SHOWGC returns a list of all the objects it
displays.

CARLVL and CDRLVL are print levels affecting the displaying of
lists; they default to two and six, respectively. In the listing,
collision entries in the reference count table are tagged with a *.
Reference count operations on pointers in collision entries are
much slower than on noncollision entries.

Objects with reference count of one (1) do not appear explicitly
in the reference count table, so cannot be viewed with
\SHOWGC, even if you set MINCNT as low as 1.

Note that if COLLECT is T, then the reference count of all the
collected items is now one greater, due to the pointer to each
from the returned list.

(\REFCNT PTR) [Function]

Returns the current reference count of PTR. Pointers that are not
reference counted (e.g., symbols and small integers) are
considered to have reference count 1. Since pointers from the
stack (e.g., PROG variables) do not affect reference counts, it is
possible for the reference count of an object to be zero without
the object being garbage collected.

Note: If you call \REFCNT from the Common Lisp interpreter,
e.g., by typing it at top-level, the answer is almost always
too large by 1, as the interpreter itself holds
reference-counted pointers to the arguments to the
function it is calling. The same problem besets
\FINDPOINTER (below). The problem does not exist from
the Old Interlisp Exec, which uses the Interlisp
interpreter. You can also avoid the problem by explicitly
invoking the Interlisp interpreter; e.g.,

(EVAL '(\ RE FCNT expression)}.

(\#COLLISIONS) [Function]

Returns a list of four elements:
Number of entries in the reference-count table, i.e., the

number of objects in memory whose reference count
is not 1;

LISP LIBRARY MODULES, MEDLEY RELEASE, GCHAX

(\#OVERFLOWS)

GCHAX

Number of entries that are in collision chains;

Ratio of these numbers, i.e., the fraction of all entries that
are in collision chains;

Ratio of the number of entries to the size of the hash table.

[Function]

Returns a list of four elements like \#COLLISIONS, but instead
counts only objects whose reference count has overflowed (is
greater than 62). Reference count operations on such objects are
significantly slower than on other objects.

(\COLLECTINUSE TYPE PRED) [Function]

Is useful when (STORAGE TYPE) shows more objects in use than
you think is right, but you can't find any such pointers yourself.

TYPE is a data type name or number other than LlSTP.
\COLLECTINUSE returns a list of all objects of that type that are
thought to be in use, i.e., not free.

If PRED is supplied, it is a function of one argument.
\COLLECTINUSE returns only objects for which PRED returns true.
PRED must not allocate storage; you probably want it to be a
com pi led fu ncti on.

Note: \COLLECTINUSE should be used with care. In a correctly
functioning system, \COLLECTINUSE is generally safe.
However, if the free list of TYPE has been smashed so
that some free objects are not on it, this function can
make matters much more confused, especially if the first
32-bit field of the data type in question contains a
pointer field.

(\FINDPOINTER PTR COLLECTIINSPECT? ALLFLG MARGIN ALLBACKFLG)

[Function]

Provides a brute-force approach to answering the question,
"Who has a pointer to x?" \FINDPOINTER searches virtual
memory, looking for places where PTR is stored. The search is
not completely blind: unless ALLFLG is true, it does not look in
places that cannot have reference-counted pointers, such as
pname space or the stack. However, if the reference count of
the object is zero, \FINDPOINTER searches the stack (and only the
stack, if ALLFLG is NIL), since in this case there is no hope of
finding pointers in the usual reference-counted spaces. If
ALLFLG = :STACK, then \FINDPOINTER searches the stack in
addition to places that contain reference-counted pointers, but
not other unlikely places.

\FINDPOINTER prints out a description of each place PTR is found.
If it is found in a list, it asks whether to recursively search for
pointers to the list, so you can track lists back to a more
identifying place, such as a symbol value cell or some data type.
It recurses without asking if ALLBACKFLG is true. If PTR is found
in a typed object, \FINDPOINTER names the field, if the data type
declaration is available, and asks if you want to recursively search
for pointers to this object. In either case, the search stops once
enough places have been found to account for PTR's reference
count (unless ALLFLG is T).

LISP LIBRARY MODULES, MEDLEY RELEASE, GCHAX 113

GCHAX

114

If COLLECTIINSPECT? is true, \FINDPOINTER saves the identifiable
pointers in a list. If COLLECTIINSPECT? = COLLECT, the list of
pointers is returned as value; otherwise, it is offered for
inspection.

MARGIN is the left margin (in units of characters) by which the
reports of locations are initially indented. The default is zero.
Recursive searches for pointers are indented relative to this
position.

The current version does not know how to parse array space, so if
PTR is found in an array, the best it can do is print the memory
address where it found it, usually something of the form
{}#nn,nnnnn. In addition, \FINDPOINTER doesn't even try to
find PTR as a literal inside a compiled code object, since such
references are not cell-aligned. Thus, \FINDPOINTER is really
most helpful if the pointer is stored in fixed-length data space
(e.g., in a field of a data type, or as the top-level value of a
symbol); fortunately, this handles most of the interesting cases in
practice.

Note: Of course, since it touches (potentially) a huge
percentage of your virtual memory, \FINDPOINTER is
completely disruptive of your working set.

(\FINDPOINTERS.OF.TYPE TYPE FILTER) [Function]

Calls \FINDPOINTER on each pointer in use of type TYPE that
satisfies FILTER, a function of one argument, the pointer. A
FIL TER of NIL is considered the true predicate. FILTER can also be
a list form to evaluate in which the variable PTR is used to refer
to the pointer in question.

\FINDPOINTERS.OF.TYPE is essentially the same as

(for PTR in (\COLLECTINUSE TYPE)
when < FIL TER is satisfied>
do (\FINDPOINTER PTR»

except that it takes care to discard the cells of the list returned
from \COLLECTINUSE before calling \FINDPOINTER, to avoid
seeing one extra reference per object.

For example,

(\FINDPOINTERS.OF.TVPE 'STREAM '(NOT (OPENP PTR»)

searches for pointers to all streams that are not currently open.

(\SHOW.CLOSED.WINDOWS) [Function]

Collects all windows that are not currently open or icons of open
windows, then opens each window one by one.

For each window, you are prompted to press the left mouse
button to close the window and go on to the next, or press right
to do something different. In the latter case, you are prompted
again to press the left button if you would like to search for
pointers to the window, using \FINDPOINTER, or press the right
button to just leave the window open on the screen and
proceed.

Returns the total number of windows examined.

LISP LIBRARY MODULES, MEDLEY RELEASE, GCHAX

Limitations

GCHAX

(\SHOWCIRCU LARITY OBJECT MAXLEVEL) [Function]

Follows pointers from OBJECT. If it finds a path back to itself, it
prints that path. This function is not exceptionally fast, and
deliberately (for performance reasons) does not detect
circularities in lists; it simply bottoms out on lists at MAXLEVEL,
which defaults to 1,000. Circular lists are usually obvious enough
anyway.

(\MAPGC MAPFN INCLUDEZEROCNT) [Function]

Maps over all entries in the GC reference count table, applying
MAPFN to three arguments: the pointer, its reference count (an
integer), and COLLISIONP, a flag that is T if the entry is a collision
entry. Entries with reference count zero are not included unless
INCLUDEZEROCNT is T. This function underlies \SHOWGC. Some
care is required in the writing of MAPFN; it should try to
minimize any reference-counting activity of its own, and in
particular avoid anything that would decrement the reference
count of the pointer passed to it.

GCHax is not very useful for finding ordinary circular lists, as the
typical system has vast amounts of list structure, with nothing to
distinguish the interesting ones.

However, if the circular list also contains instances of user data
types, then those data types will tend to show up as
overallocated, and hence amenable to the search functions in
this module.

\FINDPOINTER does not know how to locate pointer arrays of
more than 64 elements, so it is not helpful if a pointer you seek is
located only in such an array.

LISP LIBRARY MODULES, MEDLEY RELEASE, GCHAX 115

GCHAX

[This page intentionally left blank]

116 LISP LIBRARY MODU LES, MEDLEY RELEASE, GCHAX

Installation

User Interface

Functions

GRAPHER

Grapher contains a collection of functions and an interface for
laying out, displaying, and editing graphs, that is, networks of
nodes connected by links. Graphs have node labels but not link
labels. links are drawn by default as straight lines without
arrowheads, but you can control the appearance of individual
links. Node labels can be single lines of text, bitmaps of arbitrary
size, or image objects. Facilities exist for calling functions at the
nodes in a graph, and image objects containing graphs can be
constructed so you can include graphs in documents and other
image structures.

For instance, the Browser module uses graphs to represent
function-calling structures (from MasterScope). Such a partially
specified node list need have only the graph labels and the links
specified. It is given to the LA YOUTGRAPH function along with
some formatting information. LA YOUTGRAPH is a Grapher
function which assigns a position to each node. There are
formats for laying out trees, lattices, and cyclic graphs.
LA YOUTGRAPH returns an instance of the GRAPH record, which
is usually given to the function SHOWGRAPH. SHOWGRAPH
displays a graph in a window.

Load GRAPHER.LCOM from the library.

A typical way to use Grapher is to implement a function that
creates a partially specified list of graph nodes representing
some user data (or control) structure. Then you can use Grapher
to display and manipulate or explore that structure.

Displayed graphs can be edited using the right button on the
mouse. Nodes can be added, deleted, moved, enlarged, or
shrunk. Links can be added or deleted.

Displayed graphs are often used as menus: selecting a node with
the left or middle button can cause user-provided functions to be
called on that node.

Grapher functions perform the following tasks:

• Creating a graph.

• Laying out a graph for display.

LISP LIBRARY MODULES, MEDLEY RELEASE, GRAPHER 117

GRAPHER

Creating a Graph

• Displaying a graph.

• Editing a graph.

• Inserting a graph into a document.

These tasks are described in the following subsections. An
additional subsection describes Grapher functions that perform
other tasks.

Start by creating a list of nodes for the graph. You can create
them directly (see the section "GRAPHNODE Record"), or you
can use the NODECREATE function.

(NODECREA TE ID LABEL POSITION TONODEIDS FROMNODEIDS FONT BORDER
LABELSHADE) [Function]

This function returns a GRAPHNODE record. The arguments of
this function are the same as the corresponding fields of the
GRAPH NODE record, as follows:

Argument GRAPHNODE Field

10 NODEID

LABEL NODELABEL

POSITION NODEPOSITION

TONODEIDS TONODE

FROMNODEIDS FROMNODE

FONT NODEFONT

BORDER NODEBORDER

LABELSHADE NODELABELSHADE

ID and LABEL are required; BORDER defaults to 0, LABELSHADE
defaults to WHITESHADE, and POSITION defaults to wherever it
seems convenient.

You need to specify how the nodes are connected by providing a
list of TONODEIDS and FROMNODEIDS for each node.

Laying Out a Graph for Display

(LAYOUTGRAPH NODELST ROOTIDS FORMAT FONT MOTHERD PERSONALD
FA MIL YD) [Function]

Lays out a partially specified graph by assigning positions to its
graph nodes. It returns a GRAPH record suitable for displaying
with SHOWGRAPH. An example appears after the description of
the arguments.

NODELST Is a list of partially specified GRAPHNODEs: only their
NODELABEL, NODEID, and TONODE fields need to be filled in.
NODE FONT fields may also contain font specifications to be used
instead of the default supplied by the FONT argument. These
optional fields are filled in appropriately if they are NIL. All
other fields are ignored and/or overwritten.

118 LISP LIBRARY MODULES, MEDLEY RELEASE, GRAPHER

GRAPHER

ROOT/OS Is a list of the node identifiers of the nodes that become the
roots.

The rest of the arguments are optional and control the format of
the layout.

FORMAT Controls the layout of the graph. It is an unordered list of atoms
or lists. The following options control the structure of the graph:

• COMPACT, the default, which lays out the graph as a forest
(that is, a set of disjoint trees) using the minimal amount of
screen space.

• FAST, which lays out the graph as a forest, sacrificing screen
space for speed.

• LATTICE, which lays out the graph as a directed acyclic graph,
that is, a lattice.

In addition, the following options control the direction of the
graph:

• HORIZONTAL, the default, has roots at the left and links that
run left-to-right.

• VERTICAL has roots at the top and links that run
top-to-bottom.

The directions can be reversed by including the atom REVERSE in
FORMAT.

Thus, for example,

• FORMAT = (LATTICE HORIZONTAL REVERSE) lays out
horizontal lattices that have the roots on the right, with the
links running right-to-Ieft.

• FORMAT = (VERTICAL REVERSE) lays out vertical trees that
have the roots at the bottom, with links running
bottom -to-top.

• FORMAT = NIL lays out horizontal trees that have the roots on
the left.

LA YOUTGRAPH creates virtual graph nodes to avoid drawing a
tangle of messy lines in cases where the graph is not a forest or a
lattice to begin with. It modifies the nodes of NODELST, which
may involve changing some of the TONODEs fields to point to
new nodes. The modified NODELST is set into the GRAPHNODEs
field of a newly created GRAPH record, which is returned as the
value of LA YOUTGRAPH. The creation of virtual nodes depends
on whether LATTICE is a member of FORMAT.

In a forest, nodes are laid out by traversing the forest top-down,
depth-first. If a node already has been laid out, LA YOUTGRAPH
creates a copy of the node (the same NODELABEL, different
NODEID, and no TONODEs), lays it down, and marks both it and
the original node by setting their NODEBORDER fields and
NODELABELSHADE fields. This occurs instead of drawing a link
that might cut across arbitrary parts of the graph. Hence, a
marked node occurs at least twice in the forest.

LISP LIBRARY MODULES, MEDLEY RELEASE, GRAPHER 119

GRAPHER

The default for marked nodes is to leave the shade alone and set
the border to 1. To alter this appearance, add the (MARK .
PROPS) to the FORMAT argument. PROPS is a property list. If it is
NIL, marking is suppressed altogether. If it contains BORDER or
LABELSHADE properties, those values are used in the
corresponding fields of marked nodes. For example, a format of
(MARK BORDER 5) would cause duplicated nodes to be boxed
with borders 5 points wide.

FORMAT adds a few enhancements to this basic marking
strategy, and can include one or both of these atoms:

• COPIES/ONLY-Only the new virtual nodes are marked. The
original is left unmarked.

• NOT/LEAVES-Marking is suppressed when the node has no
daughters.

For example,

• FORMAT = (COPIES/ONLY NOT/LEAVES) marks nodes that are
copies of nodes that have daughters (for example, if you see a
mark, the node has daughters that are not drawn).

• FORMAT = (NOT/LEAVES) marks both copies and originals, but
only when they have daughters.

• FORMAT = NIL marks originals and copies regardless of
progeny.

If FORMA T i ncl udes LATTICE, then a node that is the daughter of
more than one node is not marked. Instead, links from all its
parents are drawn to it. No attempt is made to avoid drawing
lines through nodes or to minimize line crossings. However, in
HORIZONTAL format, nodes are positioned so that From is
always left of To.

Similar conventions hold for the other formats. In VERTICAL
format, for instance, the TONODEs of a node are positioned
beneath it, and the FROM NODEs are positioned above it.

Cyclic graphs cannot be drawn using this convention, since a
node cannot be left of itself. When LA YOUTGRAPH detects a
node that points to itself, directly or indirectly, it creates a virtual
node, as described above, and marks both the original and the
copy. If FORMAT includes COPIES/ONLY, then only the newly
created node is marked.

FONT Is a font specification for use as the default NODE FONT.

The remaining three arguments control the distances between
nodes. NILs cause "pretty" defaults based on the size of FONT.

PERSONALD Is specified in points; it controls the minimum distance between
any two nodes.

MOTHERD Is the minimum distance between a mother and her daughters.

FA MIL YD Controls the minimum distance between nodes from different
nuclear families. The closest two sister nodes can be is
PERSONALD. The closest that two nodes that are not sisters can
be is PERSONALD + FAMIL YD.

120 LISP LIBRARY MODULES, MEDLEY RELEASE, GRAPHER

GRAPHER

LA YOUTGRAPH reads but does not change the fields
NODEBORDER and NODELABELSHADE of the nodes given it. The
marked nodes are an exception. Thus, if you plan to install black
borders around the nodes after the nodes have been laid out (for
example, by RESET/NODE/BORDER, described in the section
"Performing Other Tasks"), it is a good idea to give
LA YOUTGRAPH nodes that have white borders. This causes the
nodes to be laid out far enough apart that when you blacken the
borders later, the labels of adjacent nodes are not overwritten.

As an example, to create and display the following parse tree for
the sentence "The program displays a tree. ", enter

(SETQ Snode (NODECREATE 'S 'S NIL '(NPl VP»)
(SETQ NPlnode (NODECREATE 'NPl 'NP NIL '(DETl NOUNl) '(S) »
(SETQ DETlnode (NODECREATE 'DETl 'DET NIL '(THE) '(NPl) »
(SETQ THEnode (NODECREATE 'THE 'The NIL NIL '(DETl) »
(SETQ NOUNlnode (NODECREATE 'NOUNl 'NOUN NIL '(PROGRAM) '(NP1) »
(SETQ PROGRAMnode (NODECREATE 'PROGRAM 'program NIL NIL '(NOUNl) »
(SETQ VPnode (NODECREATE 'VP 'VP NIL '(VERB NP2) '(S) »
(SETQ VERBnode (NODECREATE 'VERB 'VERB NIL '(DISPLAYS) '(VP) »
(SETQ DISPLAYSnode (NODECREATE 'DISPLAYS 'displays NIL NIL '(VERB) »
(SETQ NP2node (NODECREATE 'NP2 'NP NIL '(DET2 NOUN2) '(VP) »
(SETQ DET2node (NODECREATE 'DET2 'DET NIL '(A) '(NP2) »
(SETQ Anode (NODECREATE 'A 'a NIL NIL '(DET2) »
(SETQ NOUN2node (NODECREATE 'NOUN2 'NOUN NIL '(TREE) '(NP2) »
(SETQ TREEnode (NODECREATE 'TREE 'tree NIL NIL '(NOUN2) »

(SHOWGRAPH (LAYOUTGRAPH (LIST Snode NPlnode DETlnode THEnode NOUNlnode
PROGRAMnode VPnode VERBnode DISPLAYSnode NP2node DET2node Anode
NOUN2node TREEnode) '(S) '(VERTICAL»)

.~-~.--.-.-.--.---

.• -..... - ---'.-•.
......... . .. ~ ...•....•...

•• -'.-.'-- '"--A

NP

.•. ,
.....•

................................

..............

DET NOUN

IIIIIF-

........•....•.
.•..•.• . ..•....•.

... 0 ••••••

. .••..
..•. . .••.

..•••. . .•.
00- ••••

IllER~, NP

The program displays DET NOUN

·3 t.r·ee

(LA YOUTSEXPR SEXPR FORMA T BOXING FONT MOTHERO PERSONALO
FA MIL YO) [Function]

Is just like LA YOUTG RAPH, except it gets its graph as an
s-expression rather than a list of GRAPHNODEs. Its first
argument is recursively interpreted as follows: If the s-expression
is a non-list, its NODELABEL is itself and it has no TONODEs; else
its CAR is taken as its NODELABEL and its CDR, which must be a
list of s-expressions, is taken as its TONODEs.

LISP LIBRARY MODULES, MEDLEY RELEASE, GRAPHER 121

GRAPHER

Displaying a Graph

122

Note: Circular s-expressions are allowed.

For example, to display the following parse tree for the sentence
"The program displays a tree.", enter:

[SHOWGRAPH (LAYOUTSEXPR '(S (NP (DET The)(NOUN program»
(VP (VERB displays) (NP (DET a)(NOUN tree»» '(VERTICAL)
NIL '(HELVETICA 12 BRR]

s

NP VP

,/~~.;,
..••....•..• -.

DET NOUN VERB

The program displays DET NOUN

a tree

(SHOWGRAPH GRAPH W LEFTBUTTONFN MIDDLEBUTTONFN TOPJUSTlFYFLG
ALLOWEDITFLG COPYBUTTONEVENTFN) [Function]

Displays the nodes in GRAPH.

If W is a window, the graph is displayed in it. If the graph is
larger than the window, the window is made a scrolling window.
If W is NIL, the graph is displayed in a window large enough to
hold it. If W is a string, the graph is displayed in a window large
enough to hold it, and the window uses the string for the
window title. The graph is stored on the GRAPH property of the
window. SHOWGRAPH returns the window.

If either LEFTBUTTONFN or MIDDLEBUTTONFN is non-NIL, the
window is given a BUTTONEVENTFN that, in effect, turns the
graph into a menu. Whenever you press left or middle mouse
button and the cursor is over a node, that node is displayed
inverted, indicating that it is selected. Releasing the mouse
button calls either the LEFTBUTTONFN or the MIDDLEBUTTONFN
with two arguments: the selected node and the window. The
node is a GRAPHNODE, or NIL if the cursor was not over a node
when the button was released. The function can access the
graph via the window's GRAPH property.

LISP LIBRARY MODULES, MEDLEY RELEASE, GRAPHER

GRAPHER

The graph's initial position in the window is determined by
TOPJUSTlFYFL. If T, the graph's top edge is positioned at the top
edge of the window; if Nil, the graph's bottom edge is
positioned at the bottom edge of the window.

ALLOWEDITFLG and COPYBOTTONFLG are described under
"Editing a Graph," below.

Note: The node labels are reprinted whenever the graph is
redisplayed. If this makes scrolling of a large graph
unacceptably slow, some speedup may be achieved by
instructing Grapher to cache bitmaps of the labels with
the nodes so they can be rapidly BITBl Ted to the screen
(set the variable CACHE/NODE/LABEUBITMAPS to T). The
possible gain in time, however, may be offset by the
increased storage required for the cached bitmaps.

(DISPLA YGRAPH GRAPH STREAM CLIP/REG TRANS) [Function]

Displays the specified graph on STREAM, which can be any image
stream, with coordinates translated to TRANS. Some streams
might also implement CLIP/REG as a clipping region. This is
primarily to improve efficiency for the display.

(HARDCOPYGRAPH GRAPH/WINDOW FILE IMAGETYPE TRANS) [Function]

Produces a file containing an image of GRAPH, that is, like
SHOWGRAPH, but for files. If GRAPH/WINDOW is a window,
HARDCOPYG RAPH operates on its GRAPH wi ndow property.
The FILE and IMAGETYPE argument are given to
OPENIMAGESTREAM to obtain a stream that the graph will be
displayed on. TRANS is the position in screen points (that is, it is
scaled by the image stream's DSPSCAlE) of the lower-left corner
of the graph relative to the lower-left corner of the piece of
paper.

G RAPH/HARDCOPY IFORMA T [Variable]

Is used to control the format of the graph when pn ntl ng to
paper. It is a property list that contains the following properties .

• MODE

Determines the orientation of the hardcopy of the graph. The
value can be LANDSCAPE, or PORTRAIT (the default). If
LANDSCAPE, the graph is shown with the longer paper edge
as the major axis. If PORTRAIT, graph is shown with the
shorter paper edge as the major axis. If you use the window
menu command to hardcopy, the graph is shown in PORTRAIT
mode .

• PAGENUMBERS

Determines whether to print the page number. The value can
be T or NIL If T, GRAPHER prints the page number in X-Y
format on the upper right corner of each page. If Nil, no
page number is printed.

LISP LIBRARY MODULES, MEDLEY RELEASE, GRAPHER 123

GRAPHER

Editing a Graph

124

• TRANS

Determines where to position the graph on paper. The value
can be NIL or a position. If NIL, each graph is positioned at the
center of the paper. If a position, GRAPHER determines the
location in screen points of the lower left corner of the graph
relative to the lower left corner of the paper.

The initial value of GRAPH/HARDCOPY/FORMAT is set to
(MODE PORTRAIT PAGENUMBERS T TRANS NIL)

DEFAULT.GRAPH.WINDOWSIZE [Variable]

Contains a list of two numbers in screen points. The first number
indicates the window width. The second number indicates the
window height. This variable is used to control the maximum
size of a graph window when it first gets displayed.

If ALLOWEDITFLG in the SHOWGRAPH function is non-NIL, you
can position the cursor over a node and use the right mouse
button to edit the graph. (The normal window commands can
be accessed by right-clicking (pressing the right mouse button) in
the border or title regions.) Holding down the control key and
simultaneously pressing the right mouse button allows you to
position nodes by tracking the cursor. Pressing the right mouse
button without the control key pops up the following menu of
edit operations.

Move Node
Add Node

Delete Node
Add link

Delete Link
Change label
label smaller
label larger
< -) Directed

<-) Sides
<-) Border
<-> Shade

STOP

The edit operations allow moving, adding, and deleting of nodes
and links.

• Adding a node prompts for a NODELABEL, creates a new node
with that label, adds it to the graph, and allows you to
position it.

• Deleting a node removes it (using DREMOVE) from the graph
after deleti ng all of the links to and from it.

• Selecting Directed or Sides allows you to control how links are
drawn between nodes. See the section "Graph Record" for
more information.

LISP LIBRARY MODULES, MEDLEY RELEASE, GRAPHER

GRAPHER

• Selecting Border allows you to invert the border around a
node's label.

• Selecting Shades allows you to invert a node's label.

When you select the STOP menu command, the graph window is
closed.

COPYBUTTONEVENTFN is a function to be run when you
copy-select from the Grapher window. If this is not specified, the
default simply COPYINSERTs a Grapher image object.

Certain fields of the GRAPH record contain functions that are
called from the graph editor menu to perform actions on an
element in the displayed graph. They allow the graph to serve as
a simple edit interface to the structure being graphed.

The following fields of a graph contain editing functions and the
arguments that are passed to those functions when they are
called. In all cases, GRAPH is the graph being displayed, and
WINDOW is the window in which it is displayed.

GRAPH.MOVENODEFN NODE NEWPOS GRAPH WINDOW OLDPOS

[Record field]

Contains a function that is called with the arguments shown
after you have stopped moving a node interactively; that is, it is
not called as the node is being moved. NEWPOS is the new
position of the node, OLDPOS its original position. The
difference between them can be used, for example, to move
other related nodes by the same distance.

GRAPH.ADDNODEFN GRAPH WINDOW [Record field]

Is called when you select ADD A NODE. Returns a node, or NIL if
no new node is to be added. A node-moving operation is called
on the new node after it is created to determine its position.

GRAPH.DELETENODEFN NODE GRAPH WINDOW [Record field]

Is called when a node is deleted. Before this function is called, all
of the links to or from the node are deleted.

GRAPH.ADDLlNKFN FROM TO GRAPH WINDOW [Record field]

Is called when a link is added.

GRAPH.DELETELlNKFN FROM TO GRAPH WINDOW [Record field]

Is called when a link is deleted, which can be either directly or
from deleting a node.

GRAPH.FONTCHANGEFN HOW NODE GRAPH WINDOW [Record field]

Is called for side effect only when you ask for the label on a node
to be made larger or smaller. HOW is either LARGER or
SMALLER.

GRAPH.CHANGELABELFN GRAPH NODE [Record field]

Is called for side effect only when you ask to change the label of
a node, for example, using EDITGRAPH.

LISP LIBRARY MODULES, MEDLEY RELEASE, GRAPHER 125

GRAPHER

Editing Menu

GRAPH.INVERTBORDERFN NODE GRAPH [Record field]

Is called for side effect only when you ask to invert the border of
a node, for example, using EDITGRAPH.

GRAPH.INVERTLABELFN NODE GRAPH [Record field]

Is called for side effect only when you ask to invert the label of a
node, for example, using EDITGRAPH.

The editing menu is controlled by two variables.

EDITGRAPHMENU [Variable]

Contains the editing menu, if it exists, or NIL. If you press the
right button and it is NIL, a fresh menu will be created from
EDITGRAPHMENUCOMMANDS.

EDITGRAPHMENUCOMMANDS [Variable]

A list of menu items used to create EDITGRAPHMENU. The
contents of EDITGRAPHMENUCOMMANDS must be a list that
can be used as the ITEMS field of a MENU; see MENU in the
Interlisp-D Reference Manual for details.

Inserting a Graph into a TEdit Document

126

A graph data structure can be encapsulated in a Grapher image
object so that it can be inserted in a TEd it document or other
image structure. Grapher image objects are constructed by the
following function.

(GRAPHEROBJ GRAPH HALIGN VALlGN) [Function]

Returns a Grapher-type image object that displays GRAPH.

HALIGN and VALIGN specify how the graph is to be aligned with
respect to the reference point in its host, for example, a TEdit file
or image object window. They can be numbers between zero
and one, specifying as a proportion of the width/height of the
graph the point in the graph that overlays the reference point;
zero means that the graph will sit completely above and to the
left of the reference point, and one means it will sit completely
below and to the right.

They can also be pairs of the form (NODESPEC POS), where

NODESPEC specifies a node that the graph is to be aligned by,
and POS specifies where in the node the alignment point is. The
NODESPEC can be either a NODEID or one of the atoms *TOP*,
BOTTOM, *LEFT*, or *RIGHT*, indicating the topmost,
bottommost, etc., node of the graph.

POS can be a number specifying proportional distances from the
lower-left corner of the node, or the atom BASELINE, indicating
the character baseline (for VALlGN, or simply zero for HALlGN).

For example, to align a linguistic tree so that the baseline of the
root node is at the reference point, VALIGN is (*TOP* BASELINE).

LISP LIBRARY MODULES, MEDLEY RELEASE, GRAPHER

Performing Other Tasks

GRAPHER

The BUTTONEVENTlNFN of the image object pops up a
single-item menu, which, if selected, causes the graph editor to
be run.

Grapher functions also allow you to return the smallest region
containing all nodes, invert a node region, reset fields in a node,
print a graph to a stream, read a graph from a stream, and edit a
graph.

(GRAPHREGION GRAPH) [Function]

Returns the smallest region containing all of the nodes in
GRAPH.

(FLIPNODE NODE DS) [Function]

Inverts a region in the stream OS that is one pixel bigger all
around than NODE's region. This makes it possible to see black
borders after the node has been fl i pped.

(RESET/NODE/BORDER NODE BORDER STREAM GRAPH)

and
(RESET/NODE/LABELSHADE NODE SHADE STREAM)

[Function]

[Function]

Reset the appropriate fields in the node. If STREAM is a display
stream or a window, the old node is erased and the new node is
displayed. Changing the border may change the size of the
node, in which case the lines to and from the node are redrawn.
The entire graph must be available to RESET/NODE/BORDER for
this purpose, either supplied as the GRAPH argument or
obtained from the GRAPH property of STREAM, if it is a window.
Both functions take the atom INVERT as a special value for
BORDER and SHADE. They read the node's current border or
shade, calculate what is needed to invert it, and do so.

(DUMPGRAPH GRAPH STREAM) [Function]

Prints GRAPH out on STREAM in a special, relatively compact
encoding that can be interpreted by the function READGRAPH,
below. Graphs cannot be saved on files simply by ordinary print
functions such as PRIN2. This is because the Grapher functions
use FASSOC (that is, EQ, not EQUAL) to fetch a graph node given
its ID, so reading it back in gives the right result only if the IDs are
atomic. HPRINT resolves this problem, but it tends to dump too
much information: it dumps a complete description of the node
font, for example, including the character bit maps.
DUMPGRAPH and READGRAPH are used in the implementation
of Grapher image objects.

(READGRAPH STREAM) [Function]

Reads information from STREAM starting at the current file
pointer and returns a graph structure equivalent to the one that
was given to DUMPGRAPH.

LISP LIBRARY MODULES, MEDLEY RELEASE, GRAPHER 127

GRAPHER

(EDITGRAPH GRAPH WINDOW) [Function]

Enables editing GRAPH in WINDOW. If GRAPH is NIL, an empty
graph is created for editing. If WINDOW is NIL, a window of
appropriate size is created.

(GRAPHERPROP GRAPH PROP NEWVALUE) [Function]

Accesses GRAPH.PROPS field of GRAPH record. The function
returns the previous value of GRAPH's PROP aspect. If
NEWVALUE is given, it is stored as the new PROP aspect.

Grapher Record Structure

GRAPH Record

128

Grapher has GRAPH records which represent graphs. Within
these records are GRAPHNODE records which are lists of graph
records.

A graph is represented by a GRAPH record, which has the
following fields:

GRAPHNODE

DIRECTEDFLG

SIDESFLG

GRAPH.MOVENODEFN

GRAPH.ADDNODEFN

GRAPH.DELETENODEFN

GRAPH.ADDLlNKFN

GRAPH.DELETELlNKFN

GRAPH.CHANGELABELFN

GRAPH.INVERTBORDERFN

GRAPH.INVERTLABELFN

GRAPH.FONTCHANGEFN

GRAPH.PROPS

GRAPHNODE is a list of graph nodes, and is described below.

DIRECTEDFLG and SIDESFLG are flags that control how links are
drawn between the nodes. If DIRECTEDFLG is NIL, Grapher draws
each link in such a way that it does not cross the node labels of
the nodes it runs between. Often, this leaves some ambiguity,
which is settled by SIDESFLG. If SIDESFLG is NIL, Grapher prefers
to draw links that go between the top and bottom edges of
nodes. If SIDESFLG is non-NIL, Grapher prefers to draw links
between the sides of the nodes.

If DIRECTEDFLG is non-NIL, the edges are fixed, for example,
always to the left edge of the To node. This can cause links to
cross the labels of the nodes they run between. In this case, if
SIDESFLG is NIL, the From end of the link is attached to the
bottom edge of the From node; the To end of the link is

LISP LIBRARY MODULES, MEDLEY RELEASE, GRAPHER

GRAPHNODE Record

GRAPHER

attached to the top edge of the To node. If DIRECTEDFLG is
non-NIL and SIDESFLG is non-NIL, the From end of the link is
attached to the right edge of the From node; the To end of the
link is attached to the left edge of the To node.

GRAPH.PROPS is a list in property-list format, and is accessed by
the function GRAPHERPROP.

The remaining fields give you hooks into the graph editor, and
are described in the section "Editing a Graph".

The GRAPHNODE record has the following fields of interest:

NODELABEL Is what gets displayed as the node. If this is a bit map, BITBL T is
used; if it is an image object, its IMAGEBOXFN and D/SPLA YFN
are used. Anything else is printed with PRIN3; see the /nterlisp-D
Reference Manual. Image objects can be used to give a node a
larger-than-normal margin around its text label.

NODEID Is a unique identifier. NODEIDs are used in the link fields instead
of pointers to the nodes themselves, so that circular Lisp
structures can be avoided. NODEIDs are often used as pointers to
the structure represented by the graph.

TONODE Is a list of NODEIDs. A link runs from the currently selected node
to each node in TONODEs. Entries in this field can be used to
specify properties of the lines drawn between nodes.

If an item in the TONODEs of the current node N 1 is not a
NODEID but rather a list of the form:

(LlNK% PARAMETERS TONODEID. PARAMLlST)

then PARAMLIST is interpreted as a property list specifying
properties of the link drawn from N1 to TONODE/D.

Properties of PARAMLIST currently noticed are LlNEWIDTH,
DASHING, COLOR, and DRAWLlNKFN. The first three are passed
directly to DRAWLINE.

For example, if the TONODEs for A is:

«LINK% PARAMETERS B LINEWIDTH 4 DASHING (3 3))

(LINK% PARAMETERS C DASHING (5 1) COLOR 12))

then two dashed lines will emanate from A, with the one to B
having width 4 and dashing (3 3), and the one to C having the
default width 1, dashing (5 1), and color (if implemented) 12.

If the property DRAWLlNKFN is on the list, then its value must be
a function to be called instead of DRAWLINE. It is passed all the
arguments of DRAWLINE plus the PARAMLIST as a last argument.

For convenience, the variable LlNKPARAMS is set to the constant
value LlNK% PARAMETERS. When DISPLA YGRAPH scales the
graph to the units of a particular output stream, the properties
whose names are found on SPECVAR
SCALABLELlNKPARAMETERS are also scaled.

LISP LIBRARY MODULES, MEDLEY RELEASE, GRAPHER 129

GRAPHER

Limitations

130

FROM NODE Is a list of NODEIDs. A link runs to the currently selected node
from each node in FROM NODEs.

NODEPOSITION Is the location of the center of the node (a POSITION).

NODEFONT Specifies the font in which this node's label is displayed. It can be
any font specification acceptable to FONTCREATE, including a
FONTDESCRIPTOR. NODEFONT is changed by the graph edit
operations Larger and Smaller. When this happens, the font
family may be changed as well as the size. Default is the value of
DEFAULT.GRAPH.NODEFONT (initially NIL, which specifies the
system DEFAULTFONT).

NODEBORDER Specifies the shade and width of the border around a node via
the following values:

NODELABELSHADE

NODEWIDTH
and NODEHEIGHT

NIL,O No border; equals border of width zero

T Black border, one pixel wide

1,2,3. . . Black border of the given width

-1,-2. . . White border of the given width

(W S) Where W is an integer and S is a texture or a shade;
yields a border W pixels wide filled with the given
shade S; see the Interlisp-D Referene Manual.

Default is the value of DEFAULT.GRAPH.NODEBORDER (initially
NIL).

Contains the background shade of the node. If this field is
non-NIL, then when a node is displayed, the label area for the
node is first painted as specified by this field, then the label is
printed in INVERT mode. This does not apply to labels that are
bit maps or image objects. The legal values for the field are: NIL
(same as WHITESHADE), T (same as BLACKSHADE), a texture, or a
bit map. Default is the value of
DEFAULT.GRAPH.NODELABELSHADE, which is initially NIL.

Are initially set by Grapher to be the width and height of the
node's NODE LABEL.

Grapher do~s not work well with packages. Because the node
labels are printed with PRIN3, Grapher does not visually
distinguish nodes whose labels are symbols in different
packages; you do not see that fact displayed in the graph.

LISP LIBRARY MODULES, MEDLEY RELEASE, GRAPHER

Requirements

Installation

User Interface

Function

Limitations

GRAPHZOOM

GraphZoom allows you to work with graphs (from Grapher) at
different scales.

GRAPHER

Load GRAPHER.LCOM and GRAPHZOOM .LCOM from the library.

The interface to GraphZoom is through the function
SHOWZOOMGRAPH which is used instead of SHOWGRAPH. The
resulting grapher window has the capability of being zoomed by
using a menu that is attached to the top. To use, call
SHOWZOOMGRAPH:

The window will have a menu above it that contains the items
LARGER and SMALLER. Selecting in the menu with the left
button will cause a small change in scale; selecting with the
middle button will cause a larger change in scale.

The graph will zoom toward the center of the window.

(SHOWZOOMGRAPH GRAPH WINDOW LEFTBUTTONFN
MIDDLEBUTTONFN TOPJUSTlFYFLG ALLOWEDITFLG INITSCALE)

[Function]

The arguments are the same as in the Grapher function
SHOWGRAPH. INITSCALE is the initial scale at which the graph is
shown. The default, 1.0, is the same as in SHOWGRAPH. Larger
scales make the graph appear smaller.

The zooming of text is driven from a list of font descriptors
stored as the value of the variable DECREASING. FONT. LIST. The

LISP LIBRARY MODULES, MEDLEY RELEASE, GRAPHZOOM 131

GRAPHZOOM

132

values on this list are Times Roman 72, 36, 30, Helvetica 24, 18,
14, 12, 10, 8, 5, 4, and 3. Graphs that have fonts other than
Helvetica will get printed in the closest Helvetica size. This is
often smaller than the corresponding Gacha font.

LISP LIBRARY MODULES, MEDLEY RELEASE, GRAPHZOOM

HASH
Note: This module is provided for backwards compatibility.

New applications should use the HASH-FILE Library
Module instead of this module.

Hash is a hash-coded dictionary facility, providing much the same
functionality as hash arrays do, except that the data is stored in a
file.

Hash permits information associated with string or atom keys to
be stored on and retrieved from files. The information (or
values) associated with the keys in a file may be numbers, strings,
or arbitrary Lisp expressions. The associations are maintained by
a hashing scheme that minimizes the number of file operations it
takes to access a value from its key.

Information is saved in a hash file. which is analogous to a hash
array. Actually, hash file can be either the file itself, or the
handle on that file which is used by the Hash module. The latter,
of data type HashFile, is the datum returned by CREATEHASHFILE
or OPENHASHFILE, currently an array record containing the hash
file name, the number of slots in the file, the used slots, and
other details. All other functions with hash file arguments use
this datum.

In older implementations (e.g., for Interlisp-10), hash files came
in several varieties, according to the types of value stored in
them. The EMYCIN system provided even more flexibility.

This system only supports the most general EXPR type of hash
files and EMYCIN-style TEXT entries, in the same file. The
VALUETYPE and ITEM LENGTH arguments are for the most part
ignored. Two-key hashing is supported in this system but is
discouraged as it is only used in EMYCIN, not in the Interlisp-10
system. The functions GETPAGE, DELPAGE, and GETPNAME,
which manipulate secret pages, do not exist in this
implementation. However, it is permissible to write data at the
end of a hash file; that data will be ignored by the Hash module,
and can be used to store additional data.

The Hash module views files as a sequence of bytes, randomly
accessible. No notice is made of pages, and it is assumed that the
host computer buffers 1/0 sufficiently.

Hash files consist of a short header section (8 bytes), a layer of
pointers (4*HASHFILE:Size bytes) followed by ASCII data.
Pointers are 3 bytes wide, preceded by a status byte. The
pointers point to key PNAMES in the data section, where each
key is followed by its value.

Deleted key pointers are reused but deleted data space is not, so
rehashing is required if many items have been replaced.

The data section starts at 4*HASHFILE:Size + 9, and consists of
alternating keys and values. As deleted data is not rewritten, not
all data in the data section is valid.

When a key hashes into a used slot, a probe value is added to it
to find the next slot to search. The probe value is a small prime
derived from the original hash key.

LISP LIBRARY MODULES, MEDLEY RELEASE, HASH 133

HASH

Requirements

Installation

Functions

Creating a Hash File

Hash files must reside on a random-access device (not a TCP/IP
file server).

Load HASH.LCOM from the library.

(CREATEHASH FI LE FILE VALUETYPE ITEMLENGTH #ENTRIES SMASH COPYFN)

[Function)

Creates a new hash file named FILE. All other arguments are
optional.

VALUETYPE is ignored in this implementation; any hash file can
accommodate both Lisp expressions and text.

ITEMLENGTH is not used by the system but is currently saved on
the file (if less than 256) for future use.

#ENTRIES is an estimate of the number of entries the file will
have. (This should be a realistic guess.)

SMASH is a hash file datum to reuse.

COPYFN is a function to be applied to entries when the file is
rehashed (see the description of REHASHFILE, below).

Opening and Closing Hash Files

134

Before you can use a hash file with this module, you have to
open it using the function

(OPENHASHFILE FILE ACCESS ITEMLENGTH #ENTRIES SMASH)

Reopens the previously existing hash file FILE.

[Function)

Access may be INPUT (or NIL), in which case FILE is opened for
reading only, or BOTH, in which case FILE is open for both input
and output. Causes an error II not a hashfile", if FILE is not
recognized as a hash file.

ITEMLENGTH and #ENTRIES are for backward compatibility with
EMYCIN where OPENHASHFILE also created new hash files; these
arguments should be avoided.

SMASH is a hash file datum to reuse.

LISP LIBRARY MODULES, MEDLEY RELEASE, HASH

HASH

If ACCESS is BOTH and FILE is a hash file open for reading only,
OPENHASHFILE attempts to close it and reopen it for writing.
Otherwise, if FILE designates an already open hash file,
OPENHASHFILE is a no-op.

OPENHASHFILE returns a hash file datum.

(CLOSEHASHFILE HASHFILE REOPEN) [Function]

Storing and Retrieving Data

Closes HASHFILE (when you are finished using a hash file, you
should close it). If REOPEN is non-NIL it should be one of the
accepted access types. In this case the file is closed and then
immediately reopened with ACCESS = REOPEN. This is used to
make sure the hash file is valid on the disk.

(PUTHASHFILE KEY VALUE HASHFILE KEY2) [Function]

Puts VALUE under KEY in HASHFILE. If VALUE is NIL, any previous
entry for KEY is deleted. KEY2 is for EMYCIN two-key hashing:
KEY2 is internally appended to KEY and they are treated as a
single key.

(GETHASHFILE KEY HASHFILE KEY2) [Function]

Gets the value stored under KEY IN HASHFILE. KEY2 is necessary
if it was supplied to PUTHASHFILE.

(LOOKUPHASHFILE KEY VALUE HASHFILE CALL TYPE KEY2) [Function]

A generalized entry for inserting and retrieving values; provides
certain options not available with GETHASHFILE or
PUTHASHFILE. LOOKUPHASHFILE looks up KEY in HASHFILE.

CALL TYPE is an atom or a list of atoms. The keywords are
interpreted as follows:

RETRIEVE If KEY is found, then if CALL TYPE is or contains
RETRIEVE, the old value is returned from
LOOKUPHASHFILE; otherwise returns T.

DELETE If CALL TYPE is or contains DELETE, the value
associated with KEY is deleted from the file.

REPLACE If CALLTYPE is or contains REPLACE, the old value is
replaced with VALUE.

INSERT If CALL TYPE is or contains INSERT,
LOOKUPHASHFILE inserts VALUE as the value
associated with KEY.

Combinations are possible.

For example, (RETRIEVE DELETE) will delete a key and return the
old value.

(PUTHASHTEXT KEY SRCFIL HASHFILE START END) [Function]

Puts text from stream SRCFIL onto HASHFILE under KEY. START
and END are passed directly to COPYBYTES.

LISP LIBRARY MODULES, MEDLEY RELEASE, HASH 135

HASH

"(GETHASHTEXT KEY HASHFILE DSTFIL) [Function]

Uses COPYBYTES to retrieve text stored under KEY on HASHFILE.
The bytes are output to the stream DSTFIL.

Functions for Manipulating Hash Files

136

(HASHFILEP HASHFILE WRITE?) [Function]

Returns HASHFILE if it is a valid, open hash file datum or returns
the hash file datum associated with HASHFILE if it is the name of
an open hash file. If WRITE? is non-NIL, HASHFILE must also be
open for write access.

(HASHFILEPROP HASHFILE PROPERTY) [Function]

Returns the value of a PROPERTY of a HASHFILE datum.
Currently accepted properties are NAME, ACCESS, VALUETYPE,
ITEM LENGTH, SIZE, #ENTRIES, COPYFN and STREAM.

(HASHFILENAME HASHFILE) [Function]

Same as (HASHFILEPROP HASHFILE 'NAME).

(MAPHASHFILE HASHFILE MAPFN DOUBLE) [Function]

Maps over HASHFILE applyi ng MAPFN. If MAPFN takes two
arguments, it is applied to KEY and VALUE. If MAPFN only takes
one argument, it is only applied to KEY and saves the cost of
reading the value from the file. If DOUBLE is non-NIL, then
MAPFN is applied to (KEY1 KEY2 VALUE) or (KEY1 KEY2) if the
MAPFN only takes two arguments.

(REHASHFILE HASHFILE NEWNAME) [Function]

As keys are replaced, space in the data section of the file is not
reused (though space in the key section is). Eventually the file
may need rehashing to reclaim the wasted data space.
REHASHFILE is really a special case of COPYHASHFILE, and creates
a new file. If NEWNAME is non-NIL, it is taken as the name of the
rehashed file.

The system automatically rehashes files when 7/8 of the key
section is filled. The system will print a message when
automatically rehashing a file if the global variable REHASHGAG
is non-NIL.

Certain applications save data outside Hash's normal framework.
Hash files for those applications will need a custom COPYFN
(supplied in the call to CREATEHASHFILE), which is used to copy
data during the rehashing process. The COPYFN is used as the FN
argument to COPYHASHFILE during the rehashing.

(COPYHASHFILE HASHFILE NEWNAME FN VALUETYPE LEAVEOPEN) [Function]

Makes a copy of HASHFILE under NEWNAME.

Each key and value pair is moved individually and if FN is
supplied, is applied to (KEY VALUE HASHFILE NEWHASHFILE).

What it returns is used as the value of the key in the new hash
file. (This lets you intervene, perhaps to copy out-of-band data
associated with VALUE.)

LISP LIBRARY MODULES, MEDLEY RELEASE, HASH

Global Variables of Hash

HASH

VALUETYPE is a no-op.

If LEAVEOPEN is non-NIL then the new hash file datum is
returned open, otherwise the new Hash file is closed and the
name is returned.

(HASHFILESPLST HASHFILE XWORD) [Function]

Returns a Lisp generator for the keys in HASHFILE, usable with
the spelling corrector. If XWORD is supplied, only keys starting
with the prefix in XWORD are generated.

HASHFILEDEFAU L TSIZE [Variable]

HASHFILERDTBL

HASH LOADFACTOR

HASHTEXTCHAR

HFGROWTHFACTOR

REHASHGAG

SYSHASHFILE

SYSHASHFILELST

Size used when #ENTRIES is omitted or is too small.
Default is 512.

[Variable]

The hash file read table. Default is ORIG.

[Variable]

The ratio, used slots/total slots, at which the system
rehashes the file. Default is 0.875.

[Variable]

The character separating two key hash keys. Default is
fA.

[Variable]

The ratio of total slots to used slots when a hash file is
created. Default is 3.

[Variable]

Flags whether to print message when rehashing; initially
off. Default is NIL.

[Variable]

The current hash file. Default is NIL.

[Variable]

An alist of open hash files. Default is NIL.

LISP LIBRARY MODULES, MEDLEY RELEASE, HASH 137

HASH

Limitations

138

The system currently is able to manipulate files on CORE, DSK,
FLOPPY and over the network, via leaf servers. Hash files can be
used with NS servers only if they support random access files.

Due to the pointer size, only hash files of less than 6 million
initial entries can be created, though these can grow to 14
million entries before automatic rehashing exceeds the pointer
limit. The total file length is limited to 16 million bytes. No
range checking is done for these limits.

Two-key hash files operate on pnames only, without regard to
packages.

LISP LIBRARY MODULES, MEDLEY RELEASE, HASH

Requirements

Installation

Functions

Creating a Hash File

HASH-FILE

Hash-File is similar to but not compatible with the library
module, Hash. Hash-File is modeled after the Common Lisp hash
table facility, and Hash was modeled after the Interlisp hash
array facility.

Hash files, like hash tables, are objects which efficiently map
from a given Lisp object, called the key, to another Lisp object,
called the value. Hash tables store this mapping in memory,
while hash files store the mapping in a specially formatted file.
Hash files are generally slower to access than hash tables, but
they do not absorb memory and they are persistent over Lisp
images. Hash files are recommended for large databases which
do not change very often.

Since hash files are not stored in memory, hashing for EQ or EQL
keys does not make sense. Memory references written to file in
one session will probably not be valid in another. For this reason,
the default hashing is for EQUAL keys, and then only those which
can be dependably printed and read.

All of the code for Hash-File is in a package called Hash-File.
Througout this document Lisp symbols will be printed as though
in a package which uses the packages Hash-File and Lisp.

Hash files must reside on a random-access device (not a TCP/IP
file server).

Load HASH-FILE.DFASL from the Library.

Hash-File has functions to create a new hash file, to open and
close existing hash files, and to store and retrieve data in hash
files.

(make-hash-file file-name size &key. keys) [Function]

Creates and returns a new hash file in file-name opened for
input and output. Size indicates the table size and should be an
integer somewhat larger than the maximum number of keys
under which you expect to store values in this hash file. (The

LISP LIBRARY MODULES, MEDLEY RELEASE, HASH-FILE 139

HASH-FILE

hash file will grow as required, so this number need not be
accurate. See the section, "Rehashing," below.) The keyword
arguments are explained as this document progresses.

Opening and Closing Hash Files

(open-hash-file file-name &key :direction. other-keys) [Function]

Opens an existing hash file and returns it. The :direction
argument must be one of : input or : i o. If opened for: input
then storing values in the hash file will be disallowed. The
default for :direction is : in put. Other key arguments are the
same as for make-hash-file and are explained as this document
progresses.

(close-hash-file hash-file) [Function]

Closes the file for hash-file, ensuring that all data has been saved.
The backing file is always kept coherent; thus the only reason to
close the hash-file is to ensure that the backing file is properly
written to disk. All the functions mentioned in this document
which operate on hash files will open the file when necessary;
thus it is safe to call e los e - h as h -f i 1 e at almost any time.

Storing and Retrieving Data

140

(get-hash-file key hash-file &optional default) [Function]

Retrieves the value stored under key in hash-file. Returns default
if there is nothing stored under key. The default for default is
nil. Also returns a second value which is true if something was
found under key and false otherwise.

(get-hash-file key hash-file) [Setf place]

Values can be stores in a hash file with:

(setf (get-hash-fi1e key hash-file) new-value)

Accordingly inef, deef, push, pop and any other macro that
accepts generalized variables will work with get-hash -f i 1 e.

(map-hash-file function hash-file) [Function]

For each entry in hash-file, function is called with the key and
value stored.

Note: It is unsafe to change a hash file while mapping over it.
The integrity of the file may be lost.

(rem-hash-file key hash-file) [Function]

Removes any entry for key in hash-file. Returns t if there was
such an entry, nil otherwise.

LISP LIBRARY MODULES, MEDLEY RELEASE, HASH-FILE

Other Fu nctions

File Format

HASH-FILE

(copy-hash-file hash-file file-name &optional new-size) [Function]

Makes and returns a hash file in file-name with the same
contents as hash-file. Much slower than i 1 : copyf i 1 e, but
performs garbage collection, often resulting in a smaller file.

(hash-file-count hash-file) [Function]

Returns the number of entries in hash-file.

(hash-file-p object) [Function]

Returns t if object is a hash file, nil otherwise.

(hash-file-p object) =(typep object 'hash-file)

Hash-File uses a linked bucket implementation as illustrated in
Figure 3.

file position in pointers

o

hash-fn(key-1, size) + 2
hash-fn(key-2. size) + 2

size

count

pointer-1

hash-fn(key-3, size) + 2 pOinter-2

size + 2

file position in bytes

pOinter-2

value-l

pointer-1 pointer-3

pointer-3

key-3
value-3

key-2
value-2

..,
Header

.J

1
Table

j

1
Data

The size of the table

The number of entries in the file

A collision leading to a
bucket of length two

An empty bucket

A bucket of length one

Figure 3. Hash File Format

LISP LIBRARY MODULES, MEDLEY RELEASE, HASH-FILE 141

HASH-FILE

Rehashing

142

Pointers are 32-bit integers written as four 8-bit bytes. There are
two pointers of header (holding the size and count) followed by
size pointers of table. Except for in the header and null pointers,
all pointers are file-positions in bytes. Every such pointer points
to the position on the file of the next pointer in the bucket.
Immediately following the next pointer on the file are the
printed representation of the key and value for the entry. New
entries, including ones for old keys, are always added at the end
of the file.

When the number of keys with values in the file reaches a
threshold, rehashing is performed to keep bucket lengths from
getting too long. This threshold is expressed as a fraction of the
table size.

rehash-threshold [Keyword argument]

rehash-size

Should be floating point number between zero and one. When
the product of the table size and the rehash threshold of a hash
file is greater than its hash-fi 1 e-count then the hash file is
automatically rehashed. The default for this keyword argument
is the value of the special variable
hash-file: :*rehash-threshold* whose global binding is
by default 0.875.

Rehashing is accomplished by having copy-hash-file make a
new hash file with a larger size in a new version of the file. The
new hash file structure is then smashed into the old one so that
pointers to the old one are still valid.

[Keyword argument]

Should be floating point number larger than one. The next
prime larger than the product of this and the old table size is
used to as the size for the new table. The default for this
keyword argument is the value of the special variable
hash-file: :*rehash-size* whose global binding is by
default 2.0.

hash-file:: *delete-old-version-on-rehash* [Special variable]

If true, when rehashing generates a new version of the backing
file the old version will be automatically deleted. The default
top-level value for this variable is nil.

Rehashing is very expensive. Thus, when possible, you should
attempt to make good estimates for the size argument to
make-hash-file.

LISP LIBRARY MODULES, MEDLEY RELEASE, HASH-FILE

Programmer's Interface

HASH-FILE

There may be applications in which you want to store things in
hash files but which could not be printed and read by the
functions p ri nt and read. The following hooks are provided
for this purpose.

val ue-read-fn [Keyword argument]

Called by get-hash-fi 1 e with one argument of a stream to
read a value. The file position will be set to the same position as
it was when this value was written. Default is
hash-file: :default-read-fn which binds *package* to
the XCL package and * re ad tab 1 e * to the XCL readtable before
calling read.

value-print-fn [Keyword argument]

Called by the setf method for get-hash-file with the object
to be stored and the stream to print it on. The file position of the
stream will be at the end of the file and there are no limitations
as to how much can be printed. Default is
hash-file: :default-print-fn which binds *package* to
the XCL package, *readtable* to the XCL readtable and
* p r in t - bas e * to 10 before call i ng p r i n t.

Example: A hash file with circular values.

(defun print-circular-object (object stream)

(let «*print-circle* t»
(hash-file::default-print-fn object stream»)

(setq hash-file-with-circular-values

(make-hash-file "{core}foo" 10
:value-print-fn

#'print-circular-object»

(setq 1 (list "foo"»

(setf (cdr 1) 1) =* #1= ("foo" . #1#)

(setf (get-hash-file "bar" hash-file-with-circular-values)

1)

(get-hash-file "bar" hash-file-with-circular-values)

=* #1= ("foo" . #1#)

(eq * 1) =* nil

key-read-fn [Keyword argument]

Called by get-hash-file with one argument of a stream to
read a key. The file postion will be set to the same position as it
was when this key was written. Default is
has h -f i 1 e: : def au 1 t - read -fn, described above.

LISP LIBRARY MODULES, MEDLEY RELEASE, HASH-FILE 143

HASH-FILE

Performance

144

key-print-fn [Keyword argument]

Called by the setf method for get-hash-file with the object
to be stored and the stream to print it on. The file position of the
stream will be at the end of the file and there are no limitations
as to how much can be printed. Default is
has h - f i 1 e : : de f a u 1 t - p r i n t - f n, d esc ri bed above.

Note: The value reader is called immediately after the key
reader. Thus, the key reader must be sure to read all that
the key printer printed so that the file position is
appropriate for the value reader. However, the value
reader is free to not read all that the value printer
printed.

You might now think that you could make a hash file whose keys
were circular by simply specifying our circular reader and printer
for the key print and read functions, but this would not be
sufficient. You also need the following hooks:

key-compare-fn [Keyword argument]

key-hash-fn

Called when searching a bucket to determine whether the
correct key/val ue pai r has been reached yet. Default is e qua 1.

[Keyword argument]

Called with a key and a range. Should return an integer
between zero and range-1 with the following property:

key-hash-fn(x) = key-hash-fn(y) iff key-compare-fn(x,y)

The default key-hash-fn is hash-file: :hash-object
which works on symbols, strings, lists, bit-vectors, pathnames,
characters and numbers. (Any object whose printed
representation can be dependably read in as an object equal to
the original.)

Note: This function will work on circular lists, as it only
proceeds a fixed depth down a structure. Thus to hash
on circular keys you also need to provide a key comparer
which is able to compare circular keys, as most defintions
of equal are not.

A linked bucket implementation generally gives shorter bucket
lengths, but uses more file space. The effects of this upon
performance are difficult to judge.

The following table shows the distribution of bucket lengths in a
Where-Is hash file containing 27,157 entries with a table size of
50,021.

LISP LIBRARY MODULES, MEDLEY RELEASE, HASH-FILE

HASH-FILE

length number of buckets this length

o 29,279 (empty buckets)
1 15,461
2 4334
3 794
4 125
5 23
6 4
7

This information was gathered by the function
hash-file::histogram.

LISP LIBRARY MODULES, MEDLEY RELEASE, HASH-FILE 145

HASH-FILE

[This page intentionally left blank]

146 LISP LIBRARY MODULES, MEDLEY RELEASE, HASH-FILE

Requirements

Installation

Creating Horizontal Ru les

HRULE

HRuie is a module that lets you create horizontal rules (solid
horizontal lines of various thicknesses) in a TEdit document.
Rules are often used to set off titles and page headings from
regular text, and to create decorative effects.

IMAGEOBJ
EDITBITMAP
TEDIT

Load HRULE.LCOM and the required .LCOM modules from the
library.

You specify a rule's thickness in decimal fractions of a printer's
point (1/72 of an inch).

To create a horizontal rule, place the caret at the point in your
document where you want the rule to begin, then type
control-O. This will bring up a small window titled "Form to
Eval" that contains a blinking caret. Type (HRULE.CREATE N)
after the caret, with N indicating the thickness of the rule.

Form to eval:
A

For example, to create a 4-point rule you would type
(HRULE.CREATE 4); to create a 2t-point rule you would type
(HRU LE.CREATE 2.5). Then press the carriage return. The
window will close, and a rule of the specified size will be created,
extending from the TEdit caret to the right margin of the
paragraph.

Note: This means that nothing can appear to the right of a rule
on the same line.

So, for example if you type the following paragraph

LISP LIBRARY MODULES, MEDLEY RELEASE, HRULE 147

HRULE

This is an example of a paragraph
that is about to have a horizontal
rule inserted in it, to show what
happens.

and insert a 2t-point rule after the word "rule," you end up with

This is an example of a paragraph
that is about to have a horizontal
rule __________ _

inserted in it, to show what
happens.

Like other image objects in TEdit, a rule is a single character that
can be deleted, moved, and copied like any other character.

You can use the TEdit Paragraph Looks menu to change the
width of a rule if you don't want it to extend to the normal right
margin of your document.

Stacking Several Rules in a Single Object

Limitations

148

Sometimes, you will want to stack several rules atop one
another, with space between them. This can be used to achieve
effects like

and

To create built-up rules of this type, follow the same procedure
as above, but provide a list of rule widths and spacings in place of
the single rule width. The first example above was created using
the form (HRULE.CREATE '(.5 .5 .5», and the second example was
created using the form (HRULE.CREATE '(3 1 1 1 3». The first
number in the list is the thickness of the topmost rule, the next
number is the space below it, the third number is the next rule,
and so on.

A rule can be, theoretically, infinitely small or infinitely large.
For most documents, however, you will probably want to create
rules that are between half a point and six points thick. On
printers, you can't usually tell the difference between rules that
are less than t point apart in thickness.

LISP LIBRARY MODULES, MEDLEY RELEASE, HRULE

Examples

HRULE

Shown in Figure 4 are some examples of horizontal rules. In
addition, you might want to look at the rules in this document,
which were all created with HRule.

t point rule

1-point rule

1t-point rule

2-point rule

2t-point rule

3-point rule

3t-point rule

4-point rule

4t-point rule

S-point rule

St-point rule

6-point rule

Figure 4. Horizontal rules

Shown in Figure 5 are some examples of built-up rules, along
with what you would type to create them:

(HRULE.CREATE '(1 1 1»

(HRULE.CREATE '(1 1 3»

(HRULE.CREATE '(.5.5.51 6»

(HRULE.CREATE '(2 1 2»

(HRULE.CREATE '(61 2»

Figure 5. Built-up rules

LISP LIBRARY MODULES, MEDLEY RELEASE, HRULE 149

HRULE

[This page intentionally left blank]

150 LISP LIBRARY MODULES, MEDLEY RELEASE, HRULE

Requirements

Installation

Establishing a Connection

KERMIT AND MODEM

Kermit and Modem are utilities for transferring files between
computers using ordinary RS232 and modem connections.

The file KERMIT.LCOM contains both the Kermit and Modem
protocols. Once loaded, it provides a means of transferring files
between a Xerox workstation and any other computer that
supports either Kermit or Modem, and to which Lisp is able to
open a Chat connection.

Of these two file transfer protocols, Kermit is preferred. Modem
is much less flexible than Kermit, and cannot be used on RS232
connections requiring parity or flow control. Modem was
developed primarily to support file transfers to and from
microcomputers running the CP/M operating system. Modem
implementations are available for Tops-20, VAX/Unix, and
VAXNMS. Kermit, on the other hand, was designed for file
transfers between computers of many types, and there exist
implementations of the Kermit protocol on machines ranging in
size from eight-bit microcomputers to large IBM mainframes.

For a detailed discussion and tutorial on Kermit, see Kermit: A
File Transfer Protocol by Frank Oa Cruz, Digital Press, 1987.

The machine must run Kermit or Modem, and you need the
means of reaching it, typically via Chat over an RS232 or a
network connection.

You also need the following .LCOM files in order to run this
module successfully:

KERMIT, KERMITMENU

as well as CHAT,

and either the RS232C or TCP-IP protocols, or the built-in NS
or PUP protocols.

Load KERMIT.LCOM and the required .LCOM modules from the
library.

The first step in using Kermit or Modem is to establish a Chat
connection with a desired host. You may use any sort of Chat

LISP LIBRARY MODULES, MEDLEY RELEASE, KERMIT AND MODEM 151

KERMIT AND MODEM

Kermit

Remote Kermit in Server Mode

Remote Kermit Not in Server Mode

152

connection (e.g., NS, TCP, PUP, or RS232). See the Chat module in
this manual.

If you are using an RS232 connection, and plan to transfer files
with the Modem protocol, do not establish a connection that
requires parity to be used; establish the connection with eight
bits per character and no parity (see the RS232 module in this
manual). Disable flow control (XOn/XOff) when using Modem.

When you have established a Chat connection to a remote host,
log in (if necessary) and start the remote host's Kermit or Modem
program. The details of running these programs differ slightly
between implementations; you should obtain documentation
specific to the version of Kermit or Modem running on the
remote host.

Most mainframe implementations of Kermit have a server mode.
This mode causes the remote Kermit to listen for either send or
receive requests without your having to type additional
commands to the remote Kermit. If the version of Kermit you are
using on the remote host does support server mode, give the
server mode command to place the program in this mode. In
most implementations of Kermit, server mode is entered by your
typing SERVER to the Kermit prompt:

Kermit>SERVER

If the remote Kermit does not support server mode, you must
issue individual send and receive requests for each file you
transfer. To send a file to a remote Kermit, issue the RECEIVE
command to the remote Kermit. To receive a file from a remote
Kermit, issue the SEND command to the remote Kermit. In most
cases, these commands are followed by the name of the file to be
sent or recei ved.

For example:
Kermit> RECEIVE FILENAME

or
Kermit> SEND FILENAME

If you are transferring files between two Xerox workstations
connected by an RS232 connection, call (CHAT 'RS232) on each
machine to establish the connection. Currently, Lisp Kermit does
not support a server mode, so you must issue a receive request on
one machine, followed by a send request on the other (see
below).

LISP LIBRARY MODULES, MEDLEY RELEASE, KERMIT AND MODEM

Local Kermit

Modem

KERMIT AND MODEM

After you have started the remote Kermit program, you need to
start the local Lisp Kermit program. Lisp provides both
functional and interactive interfaces for Kermit (and Modem).

To start the local side of the Kermit file transfer, use the
KERMIT.5END or KERMIT. RECEIVE functions:

(KERMIT.SEND LOCALFILE REMOTEFILE WINDOW TYPE) [Function]

LOCALFILE is the name of the file being sent to the remote
Kermit.

REMOTEFILE is the name under which the file should be stored
remotely. In most implementations of Kermit, this name
overrides any name you specified in the remote receive
command.

WINDOW is a pointer to the Chat window over which the
transfer will take place. If WINDOW is NIL, the value of
CHATWINDOW (the first Chat window to be opened) will be
used in its place.

TYPE is the type of the file. It should be set to either TEXT or
BINARY.

(KERMIT. RECEIVE REMOTEFILE LOCALFILE WINDOW TYPE) [Function]

LOCALFILE is the local name of the file to be received from the
remote Kermit.

REMOTEFILE is the name of the file on the remote machine.

WINDOW is a pointer to the Chat window over which the
transfer will take place. If WINDOW is NIL, the value of
CHATWINDOW (the first Chat window to be opened) will be
used in its place.

TYPE is the type of the file. It should be set to either TEXT or
BINARY.

While the file transfer is in progress, the associated Chat window
will be blank, and cumulative packet counts and other messages
will be displayed in a one-line prompt window above the Chat
window.

To transfer files with the Modem protocol, you must run the
Modem program on the remote machine. Modem does not
support a server mode. Typically, you run the program once per
file transferred, with instructions in the command line to
indicate whether the file is being sent or received. There are a
number of versions of the Modem protocol. On some systems,
you run the program called Modem; on other systems, the
program is called UModem or XModem.

LISP LIBRARY MODULES, MEDLEY RELEASE, KERMIT AND MODEM 153

KERMIT AND MODEM

On Unix, for instance, to send a text file to a Xerox workstation,
you would type:

%XMODEM -ST FILENAME

On Tops-20, you would type:

@MODEM SA FILENAME

Note: % and @ are host system prompts.

As with Kermit, after you have started the remote side of the file
transfer, you must start the local (Lisp) side. To do this, use
either of the functions MODEM.SEND or MODEM.RECEIVE:

(MODEM.SEND LOCALFILE WINDOW TYPE EOLCONVENTlON) [Function]

LOCALFILE is the name of the file to send to the remote Modem
program.

WINDOW is the Chat window over which the transfer will take
place.

TYPE is the file type, either TEXT or BINARY.

EOLCONVENTION is the end-of-line convention used by the
operating system on which the remote Modem program is
running. EOLCONVENTION should be one of CR, LF, or CRLF.
Typically, Unix and VMS require LF, Tops-20 requires CRLF, and
other Xerox machines require CR.

(MODEM. RECEIVE LOCALFILE WINDOW TYPE EOLCONVENTION) [Function]

LOCALFILE is the name of the file to receive from the remote
Modem program.

WINDOW is the Chat window over which the transfer will take
place.

TYPE is the file type, either TEXT or BINARY.

EOLCONVENTION is the end-of-line convention used by the
operating system on which the remote Modem program is
running (see above).

Interactive File Transfers With Kermit or Modem

154

A more convenient user interface for Kermit and Modem is
available via the module KERMITMENU.LCOM. It provides a
menu-oriented interface for issuing Kermit or Modem
commands. To obtain the menu interface, press the middle
mouse button in a live Chat window. The standard
middle-button Chat menu will contain an entry labeled" Kermit"
near its top. If you select this entry, a Kermit menu will appear at
the top of the associated Chat window:

LISP LIBRARY MODULES, MEDLEY RELEASE, KERMIT AND MODEM

Kermit/Modem Settings
Send! Re(eive! B,e! EKit!

Tra nffer mode: '3;;,am r·", I) d e m

Lo(a I file: {O·:.k} -::: I i·;pfi I es>fi Ie. t:·: t
Remote file: fi Ie, t:·: t

KERMIT AND MODEM

File t,pe: T e :.: t End.of .Iine Convention: CRLF

The entries on the top line of the menu are action commands:

SEND Starts sending a file to the remote Kermit or Modem program.
The remote program must be prepared to receive the file.

RECEIVE Starts receiving a file from the remote Kermit or Modem
program. The remote program must already be attempting to
send the file.

BYE Closes (severs) the connection.

EXIT Closes the window containing the menu, but does not close the
connection.

TRANSFER MODE This entry controls whether files are transferred using Kermit or
Modem. You may set the state of this entry by selecting either of
the Kermit or Modem labels with the mouse. The current
transfer mode choice is displayed inverted in the menu.

LOCAL FILE This entry holds the name of the local file being sent or received.
You may set the contents of this field by selecting the LOCAL FILE
label and typing the name.

REMOTE FILE This entry holds the name of the remote file being stored or
retrieved. You may set the contents of this field by selecting the
REMOTE FILE label and typing the name. The Modem protocol
does not use the contents of this field.

FILE TYPE This field controls whether files are sent in binary or text (ASCII)
mode. To set this field, select the FILE TYPE label and choose an
entry from the menu that appears.

END-OF-L1NE CONVENTION This field sets the end-of-line convention being used by the
remote Modem program (it is not used when files are transferred
in Binary mode or with the Kermit protocol). The contents of this
field must match the conventions of the operating system on
which the remote Modem program is running. To set this field,
select the END-OF-L1NE CONVENTION label, and choose an entry
from the menu that appears.

Limitations

Transfer files between two Xerox machines using the Kermit
protocol.

Modem cannot be used on RS232 connections requiring parity or
flow control.

LISP LIBRARY MODULES, MEDLEY RELEASE, KERMIT AND MODEM 155

KERMIT AND MODEM

[This page intentionally left blank]

156 LISP LIBRARY MODULES, MEDLEY RELEASE, KERMIT AND MODEM

Requirements

Installation

User Interlace

Background Menu

KEYBOARDEDITOR

KeyboardEditor is intended for use with the Virtual Keyboards
module. You should read that module's documentation before
reading this. The KeyboardEditor module lets you create new
virtual keyboards and change existing ones to suit your needs.

VIRTUALKEYBOARDS

Load KEYBOARDEDITOR.LCOM and VIRTUALKEYBOARDS.LCOM
from the library.

Loading KeyboardEditor adds EDIT to the Virtual Keyboard
submenu on the background menu.

The keyboard editor is used to modify and create virtual
keyboards. You can call it by selecting EDIT from the main
KeyboardEditorNirtualKeyboards menu and sliding the cursor to
the right to bring up the editor menu. You can also simply select
EDIT, which gives you the same options as NEW KEYBOARD,
DEFAULT INITIAL.

VSta.ts
Sketcrl
.'::'.R Edit ;'>

FileBro··.·vser
CH.':"T
Idle ;->

S~"'" e.Vr·'11 ~S-· v¥ ·it-c h-. -kC'-·. :,.-. b-o-ar-d----.
•. ::.n::,"p ,S· ... vitch an.::1 di.3play

HCjrdl;°PY ? Di-pl.1 .. l onl

~~,;i~ ~;.~:' r; _~.~.;.~? at;l~; . :', . ..
:::;p.ndr' .. 1;::,il Lu • .:td ko::yb'Jo:1rdoJ fIIO:::'. New f<eyboard, ,jefal-llt Inltlall

~T";I.~;~":' Remove i< .. evboard I"'·Je· keyboard, other initial
.. E::d:3tina ke board

Creating a New Keyboard From a CoPy of the Default Keyboard

Choose NEW KEYBOARD, DEFAULT INITIAL to create a keyboard
from a copy of the default keyboard (which initially has the same
key assignments as the 1108 keyboard). The system will prompt
you for a name for the new keyboard, then call the editor with a
copy of the default keyboard as the initial keyboard. The key

LISP LIBRARY MODULES, MEDLEY RELEASE, KEYBOARDEDITOR 157

KEYBOARDEDITOR

assignments that are not changed during the editing session will
remain as they are in the default keyboard.

Creating a New Keyboard From a CoPY of Any Known Keyboard

To create a new keyboard from a copy of a known keyboard
other than the default keyboard, select NEW KEYBOARD, OTHER
INITIAL from the Edit submenu. You will be prompted for a
name for the new keyboard. The system will then display a menu
of the known keyboards to enable you to choose one of them as
the initial keyboard.

ogic
MATH
OFFICE
DVORAK
C.JlEEK
ITALIAN

ANISH
RENCH

GERMAN
ST ANDARD -RUSSIAN

Changing an Existing Keyboard

You can change an existing keyboard by selecting EXISTING
KEYBOARD from the Edit submenu. Like the NEW KEYBOARD,
OTHER INITIAL command, this brings up a menu of known
keyboards from which you can choose a keyboard for editing.
However, you will not be prompted for a keyboard name first,
because you are editing the actual keyboard rather than using it
as a base for a new keyboard.

Calling the Keyboard Editor From lisp

158

The editor can also be called using the function

(EDITKEYBOARD KEYBOARD INITIALKEYBOARD) [Function]

where KEYBOARD is either a virtual keyboard (i.e., a list) or the
name of a virtual keyboard. If KEYBOARD is a virtual keyboard
or the name of a known keyboard (a keyboard that was defined
before), the editing will be done on that keyboard and the
second argument will be ignored.

If KEYBOARD is a new name, the editing will be done on a copy
of INITIALKEYBOARD, with KEYBOARD as its new name. If
INITIALKEYBOARD is NIL, the default keyboard will be used as a
base keyboard.

Examples:

To create a totally new virtual keyboard, call (EDITKEYBOARD
NEWNAME).

To create a new keyboard that is similar to a keyboard with the
name K1, call (EDITKEYBOARD NEWNAME 'K1)

LISP LIBRARY MODULES, MEDLEY RELEASE, KEYBOARDEDITOR

Using the Keyboard Editor

IJ

1

:::

:3

4

5

E;

7

11)

11

12

1:3

14

15

16

17

KEYBOARDEDITOR

To modify a keyboard with the name GREEK, call
(EDITKEYBOARD 'GREEK).

There are four different keyboard editor menus, three of them
displayed at any given time. After you call the editor, you will
see the command menu at the top, the character menu in the
middle, and the keys menu at the bottom.

CharSet Sto Quit Define
SHIFT CTRL !'ETA LOCK

LOC~DO~ LOCKUP EI.oENT

IJ 20 41J E;fl HII~ 120 141~1 HaJ 200 2:21:1 :::40 2E;kl :; kl 1:1 3:21) 34kl 3EaJ

I] (.9;1 P P I
1 l~J. Q a q ± I }E 'Z.:.

2 Eo R h 1"1-
(9

..,

C S 'J £ @ .~I

:f. 4 D T d :0' ·x 1M

~) 5 E U u ¥ I
.: .. :- 6 F V v 1T I tT ~i

7 ('1
_'f ~.~l g: "·l'" I

8 H J-r h x I
9 1;7 ,r I !ZJ !li 1 ./

* .,J z I lE ,);!

+ K k I J3

-< L .:- 1 I 4'

= f'.·1 TiL T ± I
:::- N n -:. t I

I) .1 I 11

III'tU;;.1 K.:ybo;;.rd : MATH

Figure 6. Character Display

LISP LIBRARY MODULES, MEDLEY RELEASE, KEYBOARDEDITOR 159

KEYBOARDEDITOR

160

L~

1

The character menu is a 16-by-16-character display of the 256
characters available in the current character set. The set that is
displayed when you enter the editor is character set 0, which
includes all of the ASCII characters plus many other symbols. See
Figure 6. If you need characters from other character sets, you
have to select Char Set from the command menu. A new menu
will pop up that contains numbers from 0 to 377 octal. This is the
character set menu, and it lets you switch the character menu to
display characters from other sets. Most of the character set
numbers are not currently implemented. The most useful ones
are shown in Figure 7.

o 20 40 60 100 120 1~0 160 200 220 240 260 300 320 3~0 360

ASCIIIISO/CGlTT Roman Alphabet and Punctuation

.c. "'S Symbols 1 - Punctuation and Symbols not in Char set 0

:3 .IS Symbols 2 - Punctuation and Symbols not in Char set 0

4 Extended Latin

5
.IS Hiragana

6
.IS Katakana

7

10 ~reek

11 Cyrilic

12 Symbols 3 - Miscellaneous Japanese Symbols

General and Technical Symbols 2
H

15 General and Technical Symbols 1

18 Ligatures, Graphical Entities, and Field Format Symbols

17 Accented Characters

Figure 7. Character Sets

The keys menu lets you make a key the current key by selecting
it. A selected key is marked by a black frame. To make a shifted

LISP LIBRARY MODULES, MEDLEY RELEASE, KEYBOARDEDITOR

KEYBOARDEDITOR

key the current key, shift-select the key (hold the shift key down
and click on the icon with the left button); it will be marked by
inverted shift keys in addition to the black frame.

The basic operation of editing is assigning a character to a key.
You can only assign character keys; keys other than character
keys will retain their current definitions. You assign a character
to a key by selecting the key from the keys menu, then selecting
the character from the character menu. If the character is to be
assigned to the shifted key, select the shifted key as the current
key.

A second type of editing operation is to change the LOCKSHIFT
state of a key. Each key either has or does not have a LOCKSHIFT
property. If a key has a LOCKSHIFT property and the shift lock
key of the keyboard is down, typing the key on your workstation
keyboard will send the shifted character of the key, regardless of
the state of the shift keys. The same rule applies to a virtual
displayed keyboard; if the LOCK item is inverted and the key has
a LOCKSHIFT property, selecting a key will send the shifted
character to the current input stream.

If a key has the LOCKSHIFT property, the lock key will be
inverted in the keys menu. To change the LOCKSHIFT property of
a key, first make the shifted key the current key. You then set or
unset the LOCKSHIFT property by selecting the lock key from the
keys menu.

If you are creating a new keyboard and you are satisfied with the
key assignments, select Define from the command menu. This
will add the newly created keyboard to the list of known
keyboards (it will thus appear on future menus). Selecting QUIT
will exit after modifying the virtual keyboard, and selecting Stop
will exit without modifying the keyboard. In both cases the new
keyboard will be returned to the caller of EDITKEYBOARD
function (above).

Creating New Keyboard Configurations

KEYBOARDCONFIGURATION [Record]

Describes a physical keyboard: its layout, the key numbers that
are used with KEY ACTION. It also describes each key: its default
meaning, its default label, whether you can change the key's
meaning with the keyboard editor.

A configuration consists of a number of parts:

CONFIGU RATION NAME [Record field]

The name of this configuration.

For example, KeyboardEditor comes with configurations named
DANDELION (1108), DORADO (1132), DOVE (1186), and
FU LL-IBMPC.

LISP LIBRARY MODU LES, MEDLEY RELEASE, KEYBOARDEDITOR 161

KEYBOARDEDITOR

162

KEYSIDLIST [Record field]

A list of the IDs you will use for the keys in the rest of the
configuration; i.e., your names for the keys. For simplicity, these
are usually numbers starting beyond 100 (to avoid overlapping
the true range of key numbers).

KEYREGIONS [Record field]

An alist of key IDs and the regions they occupy in the keyboard's
image when it is displayed. For example, the alphabetic keys in
the DANDELION keyboard are 29 screen points wide and 33 high.

DEFAULTASSIGNMENT [Record field]

An alist of key IDs and their default KEYACTIONs (see IRM).

KEYNAMESMAPPING [Record field]

An alist of key names to key IDs. The key names should be
mnemonic, and should distinguish relevant differences; e.g., the
7 on the 1186's numeric keypad is named NUMERIC7, while the 7
key in the main keyboard cluster is named 7.

MACHINETYPE [Record field]

The kind of machine for which this configuration is intended.

For example, the FULL-IBMPC configuration is meant to be used
with a DAYBREAK keyboard, so its MACHINETYPE is DAYBREAK.

KEYLABELS [Record field]

An alist of key numbers to special labels. This is used to label keys
such as the "Next" key, where the key assignment may not be a
printable character.

KEYLABELSFONT [Record field]

The font you want to use for the key labels. The default value is
Helvetica 5.

BACKGROU NDSHADE [Record field]

The shading for the non-key parts of the virtual keyboard's
image. This defaults to a reasonable gray value.

KEYBOARDDISPLA YFONT [Record field]

CHARLABELS

The font used to display actual character assignments. This
should probably be Classic 12, since it is the most complete font.

[Record field]

An alist from character codes to names. Used to give symbolic
names to characters such as ESCAPE, which don't otherwise print.

ACTUALKEYSMAPPI NG [Record field]

A function that takes one of your key IDs and returns a true key
number, for use by KEY ACTION.

Note: To create a new configuration, create an instance of the
KEYBOARDCONFIGURATION record, using the field
names shown above. Then add it to the list

LISP LIBRARY MODULES, MEDLEY RELEASE, KEYBOARDEDITOR

Editing a Keyboard Configuration

KEYBOARDEDITOR

VKBD.CONFIGURATIONS. You may then edit it using the
configuration editor described below.

Note: You must save your own configurations. There is no user
interface for saving them, nor any automatic scheme.

Once you have created a KEYBOARDCONFIGURA TION, you can
make modest changes to it using the function:

(EDITCONFIGURA TION CONFIGNAME) [Function]

where CONFIGNAME is the CONFIGURATIONNAME you have
assigned to your new configuration. This will create a virtual
keyboard display window with a menu on top of it as shown in
Figure 8.

Key 10 12::;
Key regions ((2~:liLl iH: 2~~ ::;3"))
Default assignment ((i05 7::; LDCh8H I FT"' ")
Key names (i I J
Key Label t-I I L
Assigna.ble? T

Figure 8. Virtual keyboard display window

Selecting a key with the mouse fills in the fields in the menu. The
figure shows the 1108's configuration being edited, with the I
key selected. To change one of the values, select the label at the
left edge of the menu (e.g., ASSIGNABLE?). You will be
prompted to edit the existing value using TTYIN.

The keyboard image is not automatically updated. To refresh it,
select REDISPLAY in the right-button window menu.

When you have finished editing, simply close the keyboard
window.

LISP LIBRARY MODULES, MEDLEY RELEASE, KEYBOARDEDITOR 163

KEYBOARDEDITOR

[This page intentionally left blank]

164 LISP LIBRARY MODULES, MEDLEY RELEASE, KEYBOARDEDITOR

Requirements

Installation

MASTERSCOPE

MasterScope is an interactive program for analyzing and cross
referencing user programs. It contains facilities for analyzing
user functions to determine what other functions are called, how
and where variables are bound, set, or referenced, and which
functions use particular record declarations. MasterScope can
analyze definitions directly from a file as well as in-memory
definitions.

MasterScope maintains a data base of the results of the analyses
it performs. Via a simple command language, you may
interrogate the data base, call the editor on those expressions in
functions that were analyzed which use variables or functions in
a particular way, or display the tree structure of function calls
among any set of functions.

MasterScope is interfaced with the editor and file manager so
that when a function is edited or a new definition loaded in,
MasterScope knows that it must reanalyze that function.

With the Medley release, MasterScope now understands
Common Lisp defun, defmacro, and defvar.

MSANALYZE, MSPARSE, MSCOMMON, MS-PACKAGE

You may also want to make use of Browser, DataBaseFns, and
SEd it or DEdit.

Load MASTERSCOPE.DFASL and the other .DFASL files from the
library.

MasterScope Command Language

You communicate with MasterScope using an English-like
command language, e.g., WHO CALLS PRINT. With these
commands, you can direct that functions be analyzed,
interrogate the MasterScope data base, and perform other
operations. The commands deal with sets of functions, variables,
etc., and relations between them (e.g., call, bind). Sets
correspond to English nouns, relations correspond to verbs.

A set of atoms can be specified in a variety of ways, either
explicitly, e.g., FUNCTIONS ON FIE specifies the atoms in
(FILEFNSLST 'FIE), or implicitly, e.g., NOT CALLING Y, where the
meaning must be determined in the context of the rest of the

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 165

MASTERSCOPE

MasterScope Commands

166

command. Such sets of atoms are the basic building blocks with
which the command language deals.

MasterScope also deals with relations between sets.

For example, the relation CALL relates functions and other
functions; the relations BIND and USE FREELY relate functions
and variables. These relations get stored in the MasterScope
data base when functions are analyzed. In addition,
MasterScope "knows" about file manager conventions;
CONTAIN relates files and various types of objects (functions,
variables).

Sets and relations are used (along with a few additional words)
to form sentence-like commands.

For example, the command WHO ON 'FOO USE 'X FREELY will
print out the list of functions contained in the file FOO which use
the variable X freely. The command EDIT WHERE ANY CALLS
'ERROR will call EDITF (see IRM) on those functions which have
previously been analyzed that directly call ERROR, pointing at
each successive expression where the call to ERROR actually
occurs.

The normal mode of communication with MasterScope is via
commands. These are sentences in the MasterScope command
language which direct MasterScope to answer questions or
perform various operations.

MasterScope commands are typed into the Executive window,
preceded by a period (.) to distinguish them from other
commands to the Exec. MasterScope keywords can be in any
package, so MasterScope commands can be issued in any type of
Exec. The commands may be typed uppercase or lowercase.

Note: Any MasterScope command may be followed by OUTPUT

ANALYZE SET

FILENAME to send output to the given file rather than
the terminal, e.g. WHO CALLS WHO OUTPUT CROSSREF.

[MasterScope command]

Analyzes the functions in SET (and any functions called by them)
and includes the information gathered in the data base.
MasterScope will not reanalyze a function if it thinks it already
has valid information about that function in its data base. You
may use the command REANALYZE to force reanalysis.

Note that whenever a function is referred to in a command as a
subject of one of the relations, it is automatically analyzed; you
need not give an explicit ANALYZE command. Thus, WHO IN
MYFNS CALLS FIE will automatically analyze the functions in
MYFNS if they have not already been analyzed.

Note also that only EXPR definitions will be analyzed; that is,
MasterScope will not analyze compiled code. If necessary, the
definition will be DWIMIFYed before analysis. If there is no
in-core definition for a function (either in the function definition
cell or an EXPR property), MasterScope will attempt to read in

LISP liBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE

MASTERSCOPE

the definition from a file. Files which have been explicitly
mentioned previously in some command are searched first. If the
definition cannot be found on any of those files, MasterScope
looks among the files on FILELST for a definition. If a function is
found in this manner, MasterScope will print a message
"(reading from FILENAME)". If no definition can be found at all,
MasterScope will print a message" FN can't be analyzed". If the
function previously was known, the message" FN disappeared!"
is printed.

REANALYZE SET [MasterScope command]

ERASE SET

Causes MasterScope to reanalyze the functions in SET (and any
functions called by them) even if it already has valid information
in its data base. This would be necessary if you had disabled or
subverted the file manager; e.g. performed PUTD's to change
the definition of functions.

[MasterScope command]

Erases all information about the functions in SET from the data
base. ERASE by itself clears the entire data base.

SHOW PATHS PATHOPTIONS [MasterScope command]

Displays a tree of function calls. This is described fully in "SHOW
PATHS" below.

SET RELA TION SET

SET IS SET

[MasterScope command]
[MasterScope command]

[MasterScope command] SET ARE SET

These commands have the same format as an English sentence
with a subject (the first SED, a verb (RELA TlON or IS or ARE), and
an object (the second SED. Any of the SETs within the command
may be preceded by the question determiners WHICH or WHO
(or just WHO alone).

For example, WHICH FUNCTIONS CALL X prints the list of
functions that call the function X.

RELATION may be one of the relation words in present tense
(CALL, BIND, TEST, SMASH, etc.) or used as a passive (e.g., WHO IS
CALLED BY WHO). Other variants are allowed, e.g. WHO DOES X
CALL, IS FOO CALLED BY FIE, etc.

The interpretation of the command depends on the number of
question elements present:

If there is no question element, the command is treated as an
assertion and MasterScope returns either T or NIL, depending on
whether that assertion is true. Thus, ANY IN MYFNS CALL HELP
will print T if any function in MYFNS call the function HELP, and
NIL otherwise.

If there is one question element, MasterScope returns the list of
items for which the assertion would be true.

For example,

MYFN BINDS WHO USED FREELY BY YOURFN

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 167

MASTERSCOPE

168

prints the list of variables bound by MYFN which are also used
freely by YOURFN.

If there are two question elements, MasterScope will print a
doubly indexed list:

. WHO CALLS WHO IN IFNS
RECORDSTATEMENT -- IRPLNODE
RECORDECLl -­
RECREDECLAREl -­
UNCLISPTRAN -­
RECORDWORD
RECORDl -­
EDITREC --

INCONC, IRPLACD, IRPLNODE
IPUTHASH
IPUTHASH, IRPLNODE2
IRPLACA
IRPLACA, ISETTOPVAL
ISETTOPVAL

EDIT WHERE SET RELATION SET [- EDITeOMS] [MasterScope command]

(WHERE may be omitted.) The first SET refers to a set of
functions. The EDIT command calls the editor on each expression
where the RELA TlON actually occurs.

For example, EDIT WHERE ANY CALL ERROR will call EDITF on
each (analyzed) function which calls ERROR stopping within a
TTY: at each call to ERROR. Currently you cannot EDIT WHERE a
file which CONTAINS a datum, nor where one function CALLS
another SOMEHOW.

EDITeOMS, if given, is a list of commands passed to EDITF to be
performed at each expression.

For example,

EDIT WHERE ANY CALLS MYFN DIRECTLY - (SW 2 3) P

will switch the first and second arguments to MYFN in every call
to MYFN and print the result. EDIT WHERE ANY ON MYFILE CALL
ANY NOT @ GETD will call the editor on any expression involving
a call to an undefined function.

Note that EDIT WHERE X SETS Y will point only at those
expressions where Y is actually set, and will skip over places
where Y is otherwise mentioned.

SHOW WHERE SET RELATION SET [MasterScope command]

Like the EDIT command except merely prints out the expressions
without calling the editor.

EDIT SET[- EDITeOMS] [MasterScope command]

Calls EDITF on each function in SET. EDITeOMS, if given, will be
passed as a list of editor commands to be Executed.

For example,

EDIT ANY CALLING FNl - (R FNl FN2)

will replace FN1 by FN2 in those functions that call FN1.

DESCRIBE SET [MasterScope command]

Prints the BIND, USE FREELY and CALL information about the
functions in SET.

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE

CHECK SET

MASTERSCOPE

For example, the command DESCRIBE PRINTARGS might print
out:

PRINTARGS[N,FLG]
binds: TEM,LST,X
calls: MSRECORDFILE,SPACES,PRINl
called by: PRINTSENTENCE,MSHELP,CHECKER

This shows that PRINTARGS has two arguments, Nand FLG; binds
internally the variables TEM, LST and X; calls MSRECORDFILE,
SPACES and PRIN 1; and is called by PRINTSENTENCE, MSHELP,
and CHECKER.

You can specify additional information to be included in the
description. DESCRIBELST is a list each of whose elements is a list
containing a descriptive string and a form. The form is evaluated
(it can refer to the name of the funtion being described by the
free variable FN). If it returns a non-NIL value, the description
string is printed followed by the value. If the value is a list, its
elements are printed with commas between them.

For example, the entry

("types: "(GETRELATION FN '(USE TYPE) T)

would include a listing of the types used by each function.

[MasterScope command]

Checks for various anomalous conditions (mainly in the compiler
declarations) for the files in SET (if SET is not given, FILELST is
used).

For example, this command will warn about:

Variables which are bound but never referenced.

Functions in BLOCKS declarations which aren't on the file
containing the declaration.

Functions declared as ENTRIES but not in the block.

Variables which may not need to be declared SPECVARS
because they are not used freely below the places where
they are bound.

etc.

FOR VARIABLE SET 1.5. TAIL [MasterScope command]

This command provides a way of combining CLiSP iterative
statements with MasterScope. An iterative statement will be
constructed in which VARIABLE is iteratively assigned to each
element of SET, and then the iterative statement tail 1.5. TAIL is
Executed.

For example,

FOR X CALLED BY FOO WHEN CCODEP DO (PRINTOUT T X
(ARGLIST X) T)

will print out the name and argument list of all of the compiled
functions which are called by FOO.

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 169

MASTERSCOPE

MasterScope Relations

170

CAll

A relation is specified by one of the keywords below. Some of
these "verbs" accept modifiers.

For example, USE, SET, SMASH and REFERENCE all may be
modified by FREELY. The modifier may occur anywhere within
the command. If there is more than one verb, any modifier
between two verbs is assumed to modify the first one.

For example, in

USING ANY FREELY OR SETTING X.

FREELY modifies USING but not SETTING. The entire phrase is
interpreted as the set of all functions which either use any
variable freely or set the variable X, whether or not X is set freely.
Verbs can occur in the present tense (e.g., USE, CALLS, BINDS,
USES) or as present or past participles (e.g., CALLING, BOUND,
TESTED). The relations (with their modifiers) recognized by
MasterScope are:

[MasterScope relation]

Function F1 calls F2 if the definition of F1 contains a form (F2 --).
The CAll relation also includes any instance where a function
uses a name as a function, as in

(APPLY (QUOTE F2) --). (FUNCTION F2).etc.

(CALL and CALLS are equivalent.)

CALL SOMEHOW [MasterScope relation]

USE

SET

SMASH

One function calls another SOMEHOW if there is some path from
the first to the other. That is, if F1 calls F2, and F2 calls F3, then F1
CALLS F3 SOMEHOW.

This information is not stored directly in the data base; instead,
MasterScope stores only information about direct function calls,
and (re)computes the CALL SOMEHOW relation as necessary.

[MasterScope relation]

If unmodified, the relation USE denotes variable usage in any
way; it is the union of the relations SET, SMASH, TEST, and
REFERENCE.

[MasterScope relation]

A function SETs a variable if the function contains a form

(SET Q va r - -). (S E T QQ va r - -) • etc.

[MasterScope relation]

A function SMASHes a variable if the function calls a destructive
list operation (RPLACA, RPLACD, DREMOVE, SORT, etc.) on the
value of that variable. MasterScope will also find instances
where the operation is performed on a part of the value of the
variable. For example, if a function contains a form (RPLACA
(NTH X 3) T), it will be noted as SMASHing X.

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE

TEST

REFERENCE

BIND

MASTERSCOPE

If the function contains a sequence (SETQ Y X), (RPLACA Y T),
then Y is noted as being SMASHed, but not X.

[MasterScope relation]

A variable is TESTed by a function if its value is only distinguished
between NIL and non-NIL.

For example, the form (COND «AND X --) --)) tests the value of X.

[MasterScope relation]

This relation includes all variable usage except for SET.

Note: The verbs USE, SET, SMASH, TEST and REFERENCE may be
modified by the words FREELY or LOCALLY. A variable is
used FREELY if it is not bound in the function at the place
of its use. It is used LOCALLY if the use occurs within a
PROG or LAMBDA that binds the variable.

MasterScope also distinguishes between CALL DIRECTLY and
CALL INDIRECTLY. A function is called directly if it occurs as
CAR-of-form in a normal evaluation context. A function is called
indirectly if its name appears in a context which does not imply
its immediate evaluation, for example (SETQ Y (LIST (FUNCTION
FOO) 3)). The distinction is whether or not the compiled code of
the caller would contain a direct call to the callee.

Note that an occurrence of (FUNCTION FOO) as the functional
argument to one of the built-in mapping functions which
compile open is considered to be a direct call.

In addition, CALL FOR EFFECT (where the value of the function is
not used) is distinguished from CALL FOR VALUE.

[MasterScope relation]

The BIND relation between functions and variables includes both
variables bound as function arguments and those bound in an
internal PROG or LAMBDA expression.

USE AS A FIELD [MasterScope relation]

FETCH

REPLACE

MasterScope notes all uses of record field names within FETCH,
REPLACE or CREATE expressi ons.

[MasterScope relation]

Use of a field within a FETCH expression.

[MasterScope relation]

Use of a record field name within a REPLACE or CREATE
expression.

USE AS A RECORD [MasterScope relation]

CREATE

MasterScope notes all uses of record names within CREATE or
TYPE? expressions. Additionally, in {fetch (FOO FIE) of X), FOO is

. used as a record name.

[MasterScope relation]

Use of a record name within a CREATE expression.

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 171

MASTERSCOPE

172

USE AS A PROPERTY NAME [MasterScope relation]

MasterScope notes the property names used in expressi ons such
as GETPROP, PUTPROP, GETLlS, etc., if the name is quoted; e.g. if
a function contains a form (GETPROP X (QUOTE INTERP», then
that function USEs INTERP as a property name.

USE AS A CLiSP WORD [MasterScope relation]

CONTAIN

MasterScope notes all iterative statement operators and user
defi ned CLiSP words as bei ng used as a CLiSP word.

[MasterScope relation]

Files CONTAIN functions, records, and variables. This relation is
not stored in the data base but is computed using the file
manager.

DECLARE AS LOCALVAR

DECLARE AS SPECVAR
[MasterScope relation]

[MasterScope relation]

ACCEPT

SPECIFY

KEYCALL

FLET

LABEL

MasterScope notes internal calls to DECLARE from within
functions.

[MasterScope relation]

[MasterScope relation]

[MasterScope relation]

MasterScope notes keyword arguments of Common Lisp
functions when they are analyzed and when they are called.

Faa ACCEPTS :BAR is true if Faa is a Common Lisp function that
accepts the keyword : BAR. Faa ACCEPTS
&ALLOW-OTHER-KEYS is true if Faa has &ACCEPT-OTHER-KEYS
in its lambda list.

Faa SPECIFIES :BAR is true if Faa is a function that calls any
function with the keyword :BAR; the function in question must
ACCEPT: BAR.

Faa KEY CALLS BAR is true if Faa is a function and calls BAR with
one or more keywords it ACCEPTS.

MACRO LET

LOCAL-DEFINE

[MasterScope relation]

[MasterScope relation]

[MasterScope relation]

[MasterScope relation]

MasterScope tracks uses of Common Lisp local definition forms
(it currently does not expand them while analyzing them,
however).

Faa FLETS BAR is true of FOO is a function with a FLET defining
BAR local to Faa.

LABELS and MACROLETS are similar. LOCAL-DECLARES is the
union of FLETS, LABELS, and MACROLETS.

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE

Abbreviations

MasterScope Templates

MasterScope Set Specifications

'ATOM

The following abbreviations are recognized:

FREE = FREELY

LOCAL = LOCALLY
PROP = PROPERTY

REF = REFERENCE

MASTERSCOPE

Also, the words A, AN and NAME (after AS) are "noise" words
and may be omitted.

MasterScope uses templates (see "Effecting MasterScope
Analysis" below) to decide which relations hold between
functions and their arguments.

For example, the information that SORT SMASHes its first
argument is contained in the template for SORT. MasterScope
initially contains templates for most system functions which set
variables, test their arguments, or perform destructive
operations. You may change existing templates or insert new
ones in MasterScope's tables via the SETTEMPLA TE function
(below).

MasterScope also constructs templates to handle Common Lisp
functions with keyword arguments. These constructed
templates are noticed by FILES? and can be saved if desired, or
MasterScope can recreate them by analyzing the functions
again.

A set is a collection of things (functions, variables, etc.). A set is
specified by a set phrase, consisting of a determiner (e.g., ANY,
WHICH, WHO) followed by a type (e.g., FUNCTIONS, VARIABLES)
followed by a specification (e.g., IN MYFNS). The determiner,
type and specification may be used alone or in combination.

For example,

ANY FUNCTIONS IN MYFNS.

VARIABLES IN GLOBALVARS,and
WHO

are all acceptable set phrases.

Note: Sets may also be specified with relative clauses
introduced by the word THAT, e.g. THE FUNCTIONS THAT
BIND'X.

[MasterScope set specification]

The simplest way to specify a set consisting of a single thing is by
the name of that thi ng.

For example, in the command WHO CALLS 'ERROR, the function
ERROR is referred to by its name. Although the' (apostrophe)

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 173

MASTE RSCOPE

174

'LIST

can be left out, to resolve possible ambiguities names should
usually be quoted; e.g., WHO CALLS 'CALLS will return the list of
functions which call the function CALLS.

[MasterScope set specification]

Sets consisting of several atoms may be specified by naming the
atoms.

For example, the command WHO USES '(A B) returns the list of
functions that use the variables A or B.

I N EXPRESSION [MasterScope set specification]

The form EXPRESSION is evaluated, and its value is treated as a
list of the elements of a set.

For example, IN GLOBALVARS specifies the list of variables in the
value of the variable GLOBALVARS.

@PREDICATE [MasterScope set specification]

LIKE ATOM

A set may also be specified by giving a predicate which the
elements of that set must satisfy. PREDICATE is either a function
name, a LAMBDA expression, or an expression in terms of the
variable X. The specification @ PREDICATE represents all atoms
for which the value of PREDICATE is non-NIL.

For example, @ EXPRP specifies all those atoms which have EXPR
definitions; @ (STRPOSL X CLlSPCHARRA Y) specifies those atoms
which contain CLiSP characters. The universe to be searched is
either determined by the context within the command (e.g., in
WHO IN FOOFNS CALLS ANY NOT @ GETD, the predicate is only
applied to functions which are called by any functions in the list
FOOFNS), or in the extreme case, the universe defaults to the
entire set of things which have been noticed by MasterScope, as
in the command WHO IS @ EXPRP.

[MasterScope set specification]

ATOM may contain ESCapes; it is used as a pattern to be
matched, as in the editor.

For example, WHO LIKE IR$ IS CALLED BY ANY would find both
IRPLACA and IRPLNODE.

(The ESC character prints out as a $; it is a wildcard for any
number of characters.)

FIELDS OF SET [MasterScope set specification]

KNOWN

SET is a set of records. This denotes the field names of those
records.

For example, the command WHO USES ANY FIELDS OF BRECORD
returns the list of all functions which do a fetch or replace with
any of the field names declared in the record declaration of
BRECORD.

[MasterScope set specification]

The set of all functions which have been analyzed.

LISP LIBRARY MODU LES, MEDLEY RELEASE, MASTERSCOPE

THOSE

MASTERSCOPE

For example, the command WHO IS KNOWN will print out the list
of functions which have been analyzed.

[MasterScope set specification]

The set of things printed out by the last MasterScope question.

For example, following the command

WHO IS USED FREELY BY PARSE

you could ask WHO BINDS THOSE to find out where those
variables are bound.

ON PATH PATHOPTIONS [MasterScope set specification]

Set Specifications by Relation

Refers to the set of functions which would be printed by the
command SHOW PATHS PATHOPTIONS.

For example,

IS FOO BOUND BY ANY ON PATH TO 'PARSE

tests whether FOO might be bound above the function PARSE
(that is, whether FOO is bound in any function that is higher up
in the calling tree than PARSE is). SHOW PATHS is explained in
detail below.

A set may also be specified by giving a relation its members must
have with the members of another set:

RELATIONING SET [MasterScope set specification]

RELATIONING is used here generically to mean any of the
relation words in the present participle form (possibly with a
modifier), e.g., USING, SETTING, CALLING, BINDING.
RELATIONING SET specifies the set of all objects which have that
relation with some element of SET.

For example, CALLING X specifies the set of functions which call
the function X; USING ANY IN FOOVARS FREELY specifies the set
of functions which uses freely any variable in the value of
FOOVARS.

RELA TlONED BY SET

RELATIONED IN SET

[MasterScope set specification]
[MasterScope set specification]

Set Specifications by Blocktypes

This is similar to the RELA TlONING construction.

For example, CALLED BY ANY IN FOOFNS represents the set of
functions which are called by any element of FOOFNS; USED
FREELY BY ANY CALLING ERROR is the set of variables which are
used freely by any function which also calls the function ERROR.

BLOCKTYPE OF FUNCTIONS

BLOCKTYPE ON FILES

[MasterScope set specification]

[MasterScope set specification]

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 175

MASTERSCOPE

Set Determiners

Set Types

176

These phrases allow you to ask about BLOCKS declarations on
files (see IRM). BLOCKTYPE is one of LOCALVARS, SPECVARS,
GLOBALVARS, ENTRIES, BLKFNS, BLKAPPLYFNS, or RETFNS.

BLOCKTYPE OF FUNCTIONS specifies the names which are
declared to be BLOCKTYPE in any blocks declaration which
contain any of FUNCTIONS (a "set" of functions). The
"functions" in FUNCTIONS can either be block names or just
functions in a block.

For example,

WHICH ENTRIES OF ANY CALLING 'Y BIND ANY
GLOBALVARS ON 'FOO.

BLOCKTYPE ON FILES specifies all names which are declared to be
BLOCKTYPE on any of the given FILES (a "set" of files).

Set phrases may be preceded by a determiner, which is one of the
words THE, ANY, WHO or WHICH. The question determiners
(WHO and WHICH) are meaningful in only some of the
commands, namely those that take the form of questions. ANY
and WHO (or WHOM) can be used alone; they are wild-card
elements, e.g., the command WHO USES ANY FREELY, will print
out the names of all (known) functions which use any variable
freely. If the determiner is omitted, ANY is assumed; e.g. the
command WHO CALLS '(PRINT PRIN1 PRIN2) will print the list of
functions which call any of PRINT, PRIN 1, PRIN2. THE is also
allowed, e.g. WHO USES THE RECORD FIELD FIELDX.

Any set phrase has a type; that is, a set may specify either
functions, variables, files, record names, record field names or
property names. The type may be determined by the context
within the command (e.g., in CALLED BY ANY ON FOO, the set
ANY ON FOO is interpreted as meaning the functions on FOO
since only functions can be CALLED), or you may give the type
explicitly (e.g., FUNCTIONS ON FIE).

The following types are recognized: FUNCTIONS, VARIABLES,
FILES, PROPERTY NAMES, RECORDS, FIELDS, I.S.OPRS. Also, the
abbreviations FNS, VARS, PROPNAMES or the singular forms
FUNCTION, FN, VARIABLE, VAR, FILE, PROPNAME, RECORD,
FIELD are recognized.

Note that most of these types correspond to built-in file manager
types (see IRM).

The type is used by MasterScope in a variety of ways when
interpreting the set phrase:

(1) Set types are used to disambiguate possible parsings.

For example, both commands

WHO SETS ANY BOUND IN X OR USED BY Y

LISP LIBRARY MODU LES, MEDLEY RELEASE, MASTERSCOPE

Conjunctions of Sets

MASTERSCOPE

WHO SETS ANY BOUND IN X OR CALLED BY Y

have the same general form. However, the first case is parsed as

WHO SETS ANY (BOUND BY X OR USED BY Y)

since both BOUND BY X and USED BY Y refer to variables; while
the second case is parsed as

WHO SETS ANY BOUND IN (X OR CALLED BY Y).

since CALLED BY Y and X must refer to functions.

Note that parentheses may be used to group phrases.

(2) The type is used to determine the modifier for USE:

FOO USES WHICH RECORDS is equivalent to

FOO USES WHO AS A RECORD FIELD.

(3) The interpretation of CONTAIN depends on the type of its
object: the command

WHAT FUNCTIONS ARE CONTAINED IN MYFILE

prints the list of functions in MYFILE.

WHAT RECORDS ARE ON MYFILE

prints the list of records.

(4) The implicit universe in which a set expression is interpreted
depends on the type:

ANY VARIABLES @ GETD

is interpreted as the set of all variables which have been noticed
by MasterScope (i.e., bound or used in any function which has
been analyzed) that also have a definition.

ANY FUNCTIONS @ (NEQ (GETTOPVAL X) 'NOBIND)

is interpreted as the set of all functions which have been noticed
(either analyzed or called by a function which has been
analyzed) that also have a top-level value.

Sets may be joined by the conjunctions AND and OR or preceded
by NOT to form new sets. AND is always interpreted as meaning
intersection; OR as union; NOT as complement.

For example, the set CALLING X AND NOT CALLED BY Y specifies
the set of all functions which call the function X but are not
called by Y.

Note: MasterScope's interpretation of AND and OR follow Lisp
conventions rather than the conventional English
i nterpretati on.

"Calling X and Y" would, in English, be interpreted as the
intersection of (CALLING X) and (CALLING V); but MasterScope
interprets CALLING X AND Y as CALLING (,X AND 'Y), which is the
null set.

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 177

MASTERSCOPE

SHOW PATHS

FROM SET

TO SET

178

Only sets may be joined with conjunctions. Joining modifiers, as
in

USING X AS A RECORD FIELD OR PROPERTY NAME

is not allowed; in this case, you must type

USING X AS A RECORD FIELD OR USING X AS A
PROPERTY NAME

As described above, the type of set is used to disambiguate
parsings. The algorithm used is to first try to match the type of
the phrases being joined and then try to join with the longest
preceding phrase.

In any case, you may group phrases with parentheses to specify
the manner in which conjunctions should be parsed.

In trying to work with large programs, you can lose track of the
hierarchy of functions. The MasterScope SHOW PATHS
command aids you by providing a map showing the calling
structure of a set of functions. SHOW PATHS prints out a tree
structure showing which functions call which other functions.

Loading the Browser library module modifies the SHOW PATHS
command so the command's output is displayed as an undirected
graph.

The SHOW PATHS command takes the form: SHOW PATHS
followed by some combination of the following path options:

[MasterScope path option]

Display the function calls from the elements of SET.

[MasterScope path option]

Display the function calls leading to elements of SET. If TO is
given before FROM (or no FROM is given), the tree is inverted
and a message (inverted tree) is printed to warn you that if FN 1
appears after FN2 it is because FN 1 is called by FN2.

Note: When both FROM and TO are given, the first one
indicates a set of functions which are to be displayed
while the second restricts the paths that will be traced;
i.e., the command SHOW PATHS FROM X TO Y will trace
the elements of the set CALLED SOMEHOW BY X AND
CALLING Y SOMEHOW.

If TO is not given, TO KNOWN OR NOT @ GETD is assumed; that
is, only functions which have been analyzed or which are
undefined will be included.

Note that MasterScope will analyze a function while printing out
the tree if that function has not previously been seen and it
currently has an EXPR definition. Thus, any function which can
be analyzed will be displayed.

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE

Error Messages

MASTE RSCOPE

AVOIDING SET [MasterScope path option]

Do not display any function in SET. AMONG is recognized as a
synonym for AVOIDING NOT.

For example, SHOW PATHS TO ERROR AVOIDING ON FILE2 will
not display (or trace) any function on FILE2.

NOTRACE SET [MasterScope path option]

Do not trace from any element of SET. NOTRACE differs from
AVOIDING in that a function which is marked NOTRACE will be
printed, but the tree beyond it will not be expanded. The
functions in an AVOIDING set will not be printed at all.

For example,

SHOW PATHS FROM ANY ON FILEl NOTRACE ON FILE2

will display the tree of calls eminating from FILE1, but will not
expand any function on FILE2.

SEPARATE SET [MasterScope path option]

Give each element of SETa separate tree.

Note: FROM and TO only insure that the designated functions
will be displayed. SEPARATE can be used to guarantee
that certain functions will begin new tree structures.
SEPARATE functions are displayed in the same manner as
overflow lines; i.e., when one of the functions indicated
by SEPARATE is found, it is printed followed by a forward
reference (a lower-case letter in braces) and the tree for
that function is then expanded below.

LlNELENGTH N [MasterScope path option]

Resets LlNELENGTH to N before displaying the tree. The
linelength is used to determine when a part of the tree should
"overflow" and be expanded lower.

When you give MasterScope a command, the command is first
parsed, i.e. translated to an internal representation, and then
the internal representation is interpretedo

If a command cannot be parsed, e.g. if you typed

SHOW WHERE CALLED BY X

MasterScope would reply

Sorry, I can't parse that!

and generate an error.

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 179

MASTE RSCOPE

Macro Expansion

If the command is of the correct form but cannot be interpreted
(e.g., the command EDIT WHERE ANY CONTAINS ANY)
MasterScope wi II pri nt the message

Sorry, that isn't implemented!

and generate an error.

If the command requires some functions having been analyzed
(e.g., the command WHO CALLS X) and the data base is empty,
MasterScope wi II pri nt the message

Sorry, no functions have been analyzed!

and generate an error.

As part of analysis, MasterScope will expand the macro definition
of called functions if they are not otherwise defined (see IRM).
MasterScope always expands Common Lisp DEFMACRO
definitions (unless it finds a template for the macro).

MasterScope Interlisp macro expansion is controlled by a
variable:

MSMACROPROPS [Variable]

Value is an ordered list of macro-property names that
MasterScope will search to find a macro definition. Only the
kinds of macros that appear on MSMACROPROPS will be
expanded. All others will be treated as function calls and left
unexpanded. Initially (MACRO).

Note: MSMACROPROPS initially contains only MACRO (not
10MACRO, DMACRO, etc.) on the assumption that the
machine-dependent macro definitions are more likely
"optimizers" .

If you edit a macro, MasterScope will know to reanalyze the
functions which call that macro.

Note: If your macro is of the "computed-macro" style, and it
calls functions which you edit, MasterScope will not
notice. You must be careful to tell masterscope to
REANALYZE the appropriate functions (e.g., if you edit
FOOEXPANDER which is used to expand FOO macros, you
have to REANALYZE ANY CALLING FOO.

180 LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE

MASTE RSCOPE

Effecting MasterScope Analysis

PPE

NIL

SET

SMASH

TEST

PROP

MasterScope analyzes the EXPR definition of a function, and
notes in its data base the relations that this function has with
other functions and with variables. To perform this analysis,
MasterScope uses templates which describe the behavior of
functions.

For example, the information that SORT destructively modifies its
first argument is contained in the template for SORT.
MasterScope initially contains templates for most system
functions that set variables, test their arguments, or perform
destructive operations.

A template is a list structure containing any of the following
atoms:

[in MasterScope template]

If an expression appears in this location, there is most likely a
parenthesis error.

MasterScope notes this as a call to the function ppe (lowercase).
Therefore, SHOW WHERE ANY CALLS ppe will print out all
possible parenthesis errors. When MasterScope finds a possible
parenthesis error in the course of analyzing a function
definition, rather than printing the usual".", it prints out a"?"
instead. MasterScope notes functions called with keywords they
do not accept as calls to ppe.

[in MasterScope template]

The expression occuring at this location is not evaluated.

[in MasterScope template]

A variable appearing at this place is set.

[in MasterScope template]

The value of this expression is smashed.

[in MasterScope template]

Is used as a predicate (that is, the only use of the value of the
expression is whether it is NIL or non-NIL).

[in MasterScope template]

Is used as a property name. If the value of this expression is of
the form (QUOTE ATOM), MasterScope will note that ATOM is
USED AS A PROPERTY NAME.

For example, the template for GETPROP is (EVAL PROP. PPE).

KEYWORD key1 ... [in MasterScope template]

Must appear at the end of a template followed by the keywords
the templated function accepts.

For example, the template for CL:MEMBER is (EVAL EVAL
KEYWORDS :TEST :TEST-NOT : KEY).

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 181

MASTERSCOPE

182

FUNCTION [in MasterScope template]

The expression at this point is used as a functional argument.

For example, the template for MAPC is

(SMASH FUNCTION FUNCTION. PPE).

FUNCTIONAL [in MasterScope template]

EVAL

RETURN

TESTRETURN

EFFECT

FETCH

REPLACE

RECORD

CREATE

BIND

CALL

CLiSP

The expression at this point is used as a functional argument.
This is like FUNCTION, except that MasterScope distinguishes
between functional arguments to functions which compile open
from those that do not. For the latter (e.g. SORT and APPLY),
FUNCTIONAL should be used rather than FUNCTION.

[in MasterScope template]

The expression at this location is evaluated (but not set, smashed,
tested, used as a functional argument, etc.).

[in MasterScope template]

The value of the function (of which this is the template) is the
value of this expression.

[in MasterScope template]

A combination of TEST and RETURN: If the value of the function
is non-NIL, then it is returned. For instance, a one-element COND
clause is this way.

[in MasterScope template]

The expression at this location is evaluated, but the value is not
used. (That is, it is evaluated for its side effect only.)

[in MasterScope template]

An atom at this location is a field which is fetched.

[in MasterScope template]

An atom at this location is a field which is replaced.

[in MasterScope template]

An atom at this location is used as a record name.

[in MasterScope template]

An atom at this location is a record which is created.

[in MasterScope template]

An atom at this location is a variable which is bound.

[in MasterScope template]

An atom at this location is a function which is called.

[in MasterScope template]

An atom at this location is used as a CLiSP word.

[in MasterScope template]

This atom: which can only occur as the first element of a
template, allows you to specify a template for the CAR of the

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE

Special Forms

.. TEMPLATE

MASTERSCOPE

function form. If! doesn't appear, the CAR of the form is treated
as if it had a CALL specified for it. In other words, the templates
C. EVAL) and (! CALL .. EVAL) are equivalent.

If the next atom after a ! is NIL, this specifies that the function
name should not be remembered.

For example, the template for AND is (! NIL .. TEST RETURN),
which means that if you see an AND, don't remember it as being
called. This keeps the MasterScope data base from being
cluttered by too many uninteresting relations. MasterScope also
throws away relations for COND, CAR, CDR, and a couple of
others.

In addition to the above atoms that occur in templates, there are
some special forms which are lists keyed by their CAR.

[in MasterScope template]

Any part of a template may be preceded by the atom .. (two
periods) which specifies that the template should be repeated an
indefinite number (N) = 0) of times to fill out the expression.

For example, the template for COND might be

(.. (TEST .• EFFECT RETURN))

while the template for SELECTQ is

(EVAL .. (NIL .. EFFECT RETURN) RETURN).

(Although MasterScope "throws away" the relations for COND,
it makes sense to template COND because there may be
important information within the arguments of COND.)

(BOTH TEMPLATE1 TEMPLA TE2) [in MasterScope template]

Analyze the current expression twice, using the each of the
templates in turn.

(I F EXPRESSION TEMPLA TE 1 TEMPLATE 2) [in MasterScope template]

Evaluate EXPRESSION at analysis time (the variable EXPR will be
bound to the expression which corresponds to the IF), and if the
result is non-NIL, use TEMPLATE1, otherwise TEMPLATE2. If
EXPRESSION is a literal atom, it is APPL Yd to EXPR.

For example,

(IF LISTP (RECORD FETCH) FETCH)

specifies that if the current expression is a list, then the first
element is a record name and the second element a field name,
otherwise it is a field name.

(@ EXPRFORM TEMPLATEFORM) [in MasterScope template]

Evaluate EXPRFORM glvmg EXPR, evaluate TEMPLATEFORM
giving TEMPLATE. Then analyze EXPR with TEMPLATE. @ lets
you compute on the fly both a template and an expression to
analyze with it. The forms can use the variable EXPR, which is
bound to the current expression.

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 183

MASTERSCOPE

(MACRO. MACRO) [in MasterScope template]

MACRO is interpreted in the same way as macros (see IRM) and
the resulting form is analyzed. If the template is the atom
MACRO alone, MasterScope will use the MACRO property of the
function itself. This is useful when analyzing code which
contains calls to user-defined macros. If you change a macro
property (e.g. by editing it) of an atom which has template of
MACRO, MasterScope will mark any function which used that
macro as needing to be reanalyzed.

Some examples of templates:

Function: Template:

DREVERSE (SMASH. PPE)

AND (! NIL TEST .. RETURN)

MAPCAR (EVAL FUNCTION FUNCTION)

COND {! NIL .. {IF CDR (TEST .. EFFECT
RETURN) (TESTRETURN . PPE»)

Templates may be changed and new templates defined using the
following functions:

(GETTEMPLA TE FN)

Returns the current template of FN.

(SETTEMPLATE FN TEMPLATE)

[Function]

[Function]

Changes the template for the function FN and returns the old
value. If any functions in the data base are marked as calling FN,
they will be marked as needing reanalysis.

Updating the MasterScope Data Base

184

MasterScope is interfaced to the editor and file manager so that
it notes whenever a function has been changed, either through
editing or loading in a new definition. Whenever a command is
given which requires knowing the information about a specific
function, if that function has been noted as being changed, the
function is automatically reanalyzed before the command is
interpreted. If the command requires that all the information in
the data base be consistent (e.g., you ask WHO CALLS X) then all
functions which have been marked as changed are reanalyzed.

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE

MasterScope Entries

MASTERSCOPE

(MASTERSCOPE COMMAND-) [Function]

Top level entry to MasterScope. If COMMAND is NIL, will enter
into an Executive in which you may enter commands. If
COMMAND is not NIL, the command is interpreted and
MASTERSCOPE will return the value that would be printed by the
command.

Note that only the question commands return meaningful
values.

(CALLS FN USEDATABASE-) [Function]

FN can be a function name, a definition, or a form.

Note: CALLS will also work on compiled code. CALLS returns a
list of four elements:

Functions called by FN

Variables bound in FN

Variables used freely in FN

Variables used globally in FN

For the purpose of CALLS, variables used freely which are on
G LOBALVARS or have a property G LOBALVAR val ue Tare
considered to be used globally. If USEDATABASE is NIL (or FN is
not a symbol), CALLS will perform a one-time analysis of FN.
Otherwise (i.e. if USEDATABASE is non-NIL and FN a function
name), CALLS will use the information in MasterScope's data
base (FNwill be analyzed first if necessary).

(CALLSCCODE FN-) [Function]

The subfunction of CALLS which analyzes compiled code.
CALLSCCODE returns a list of elements:

Functions called via "linked" function calls (not
implemented in Interlisp-D)

Functions called regularly

Variables bound in FN

Variables used freely

Variables used globally

(FREEVARS FN USEDATABASE) [Function]

Equivalent to (CADDR (CALLS FN USEDATABASE». Returns the
list of variables used freely within FN.

(SETSYNONYM PHRASE MEANING-) [Function]

Defines a new synonym for MasterScope's parser. Both
OLDPHRASE and NEWPHRASE are words or lists of words;
anywhere OLDPHRASE is seen in a command, NEWPHRASE will
be substituted.

For example,

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 185

MASTERSCOPE

(SETSYNCNYM
@(GETPROP X

'GLOBALS '(VARS
'GLOBALVAR»)

IN GLOBALVARS OR

would allow you to refer with the single word GLOBALS to the
set of variables which are either in GLOBALVARS or have a
GLOBALVAR property.

Functions for Writing Routines

186

The following functions are provided for users who wish to write
their own routines using MasterScope's data base:

(PARSERELA TION RELA TlON) [Function]

RELA TlON is a relation phrase; e.g., (PARSERELA TION '(USE
FREELY)). PARSERELA TION returns an internal representation
for RELATION. For use in conjunction with GETRELATION.

(GETRELATION ITEM RELATION INVERTED) [Function]

RELATION is an internal representation as returned by
PARSERELATION (if not, GETRELATION will first perform
(PARSERELA TION RELA TlON)).

ITEM is an atom. GETRELA TION returns the list of all atoms
which have the given relation to ITEM.

For example,

(GETRELATION 'X '(USE FREELY»

returns the list of variables that X uses freely.

If INVERTED is T, the inverse relation is used; e.g.

(GETRELATION 'X '(USE FREELY) T)

returns the list of functions which use X freely.

If ITEM is NIL, GETRELATION will return the list of atoms which
have RELA TlON with any other item; i.e., it answers the question
WHO RELA TlONS ANY.

Note that GETRELA TION does not check to see if ITEM has been
analyzed, or that other functions that have been changed have
been reanalyzed.

(TESTRELATION ITEM RELATION ITEM2INVERTED) [Function]

Is equivalent to (MEMB ITEM2 (GETRELA TION ITEM RELATION
INVERTED)); that is, it tests if ITEM and ITEM2 are related via
RELATION.

If ITEM2 is NIL, the call is equivalent to

(NOT (NULL (GETRELATION ITEM RELATION INVERTED»)

i.e., TESTRELATION tests if ITEM has the given RELATION with
any other item.

(MAPRELA TION RELA TlON MAPFN) [Function]

Calls the function MAPFN on every pair of items related via
RELA TlON. If (NARGS MAPFN) is 1, then MAPFN is called on every
item which has the given RELA TlON to any other item.

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE

MASTERSCOPE

(MSNEEDUNSAVE FNS MSG MARKCHANGEFLG) [Function]

Used to mark functions which depend on a changed record
declaration (or macro, etc.), and which must be LOADed or
UNSAVEd (see below). FNS is a list of functions to be marked,
and MSG is a string describing the records, macros, etc. on which
they depend. If MARKCHANGEFLG is non-NIL, each function in
the list is marked as needing reanalysis.

(UPDATEFN FN EVENIFVALID-) [Function]

Equivalent to the command ANALYZE 'FN; that is, UPDATEFN
will analyze FN if FN has not been analyzed before or if it has
been changed since the time it was analyzed. If EVENIFVALID is
non-NIL, UPDATEFN will reanalyze FN even if MasterScope thinks
it has a valid analysis in the data base.

(UPDATECHANGED) [Function]

Performs (UPDATEFN FN) on every function which has been
marked as changed.

(MSMARKCHANGED NAME TYPE REASON) [Function]

Mark that NAME has been changed and needs to be reanalyzed.
See MARKASCHANGED in the IRM.

(DUMPDATABASE FNLSn [Function]

Dumps the current MasterScope data base on the current output
file in a LOADable form. If FNLST is not NIL, DUMPDATABASE
will only dump the information for the list of functions in FNLST.
The variable DATABASECOMS is initialized to

«E (DUMPDATABASE»)

Thus, you may merely perform (MAKEFILE
'DATABASE.EXTENSION) to save the current MasterScope data
base. If a MasterScope data base already exists when a
DATABASE file is loaded, the data base on the file will be merged
with the one in memory.

Note: Functions whose definitions are different from their
definition when the data base was made must be
REANALYZEd if their new definitions are to be noticed.

Note: The DataBaseFns library module provides a more
convenient way of saving data bases along with the
source files to which they correspond.

Noticing Changes that Require Recompiling

When a record declaration, iterative statement operator or
macro is changed, and MasterScope has noticed a use of that
declaration or macro (i.e. it is used by some function known
about in the data base), MasterScope will alert you about those
functions which might need to be recompiled (e.g. they do not

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 187

MASTERSCOPE

currently have EXPR definitions). Extra functions may be
noticed.

For example if FOO contains (fetch (REC X) --), and some
declaration other than REC which contains X is changed,
MasterScope will still think that FOO needs to be
loaded/unsaved. The functions which need recompiling are
added to the list MSNEEDUNSAVE and a message is printed out:

The functions FN1, FN2, ... use macros which have changed.

Call UNSAVEFNSO to load and/or unsave them.

In this situation, the following function is useful:

(UNSAVEFNS -) [Function]

Implementation Notes

188

Uses LOADFNS or UNSAVEDEF to make sure that all functions in
the list MSNEEDUNSAVE have EXPR definitions, and then sets
MSNEEDUNSAVE to NIL.

Note: If RECOMPILEDEFAULT (see IRM) is set to CHANGES,
UNSAVEFNS prints out

"WARNING: you must set RECOMPILEDEFAULT to EXPRS
in order to have these functions recompiled
automatically ...

MasterScope keeps a data base of the relations noticed when
functions are analyzed. The relations are intersected to form
primitive relationships such that there is little or no overlap of
any of the primitives.

For example, the relation SET is stored as the union of SET LOCAL
and SET FREE. The BIND relation is divided into BIND AS ARG,
BIND AND NOT USE, and SET LOCAL, SMASH LOCAL, etc.
Splitting the relations in this manner reduces the size of the data
base considerably, to the point where it is reasonable to
maintain a MasterScope data base for a large system of functions
during a normal debugging session.

Each primitive relationship is stored in a pair of hash tables, one
for the forward direction and one for the reverse.

For example, there are two hash tables, USE AS PROPERTY and
USED AS PROPERTY. To retrieve the information from the data
base, MasterScope performs unions of the hash values.

For example, to answer FOO BINDS WHO, MasterScope will look
in all of the tables which make up the BIND relation. The
internal representation returned by PARSERELATION is a list of
dotted pairs of hash tables. To perform GETRELA TION requires
only mapping down that list, doing GETHASHs on the
appropriate hash tables and UNIONing the result.

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE

Example

Sample Session

MASTERSCOPE

Hash tables are used for a variety of reasons: storage space is
smaller; it is not necessary to maintain separate lists of which
functions have been analyzed (a special table, DOESN'T DO
ANYTHING is maintained for functions which neither call other
functions nor bind or use any variables); and accessing is
relatively fast. Within any of the tables, if the hash value is a list
of one atom, then the atom itself, rather than the list, is stored as
the hash value. This also reduces the size of the data base
significantly.

The following illustrates some of the MasterScope facilities.
50 . ANALYZE FUNCTIONS ON RECORD

NIL
51 . WHO CALLS RECFIELDLOOK -
(RECFIELDLOOK ACCESSDEF ACCESSDEF2 EDITREC)
52 . EDIT WHERE ANY CALL RECFIELDLOOK
RECFIELDLOOK :
(RECFIELDLOOK (CDR Y) FIELD)
tty:
5*OK
ACCESSDEF
(RECFIELDLOOK DECLST FIELD VAR1)
6*OK
(RECFIELDLOOK USERRECLST FIELD)
7*N VARl
8*OK
ACCESSDEF2
(RECFIELDLOOK (RECORD.SUBDECS TRAN) FIELD)
tty:
(RECFIELDLOOK (RECORD.SUBDECS TRAN) FIELD)
9*N (CAR TAIL]
10*OK
EDITREC :
(RECFIELDLOOK USERRECLST (CAR EDITRECX»
11*OK
NIL
53 . WHO CALLS ERROR

(EDITREC)
54 . SHOW PATHS TO RECFIELDLOOK FROM ACCESSDEF -
(inverted tree)

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 189

MASTERSCOPE

1. RECFIELDLOOK RECFIELDLOOK
2. ACCESSDEF
3.

4.

5.
RECORDCHAIN ACCESSDEF
NIL

ACCESSDEF2 ACCESSDEF2
ACCESSDEF

55 . WHO CALLS WHO IN IFNS
-

RECORDSTATEMENT -- IRPLNODE
RECORDECL1 -- INCONC. IRPLACD. IRPLNODE
RECREDECLARE1 -- IPUTHASH
UNCLISPTRAN -- IPUTHASH. IRPLNODE2
RECORDWORD IRPLACA
RECORD1 IRPLACA. ISETTOPVAL
EDITREC -- ISETTOPVAL

Event 50 You direct that the functions on file RECORD be analyzed. The
leading period and space specify that this line is a MasterScope
command. MasterScope prints a greeting and prompts with
Within the top-level Executive of MasterScope, you may issue
MasterScope commands, programmer's assistant commands,
(e.g., REDO, FIX), or run programs. You can exit from the
MasterScope Executive by typing OK. The function "." is defined
as a Nlambda NoSpread function which interprets its argument
as a MasterScope command, Executes the command and returns.

Event 51

MasterScope prints a"." whenever it (re)analyzes a function, to
let you know what it is happening. The feedback when
MasterScope analyzes a function is controlled by the flag
MSPRINTFLG: if MSPRINTFLG is the atom ".", MasterScope will
print out a period. (If an error in the function is detected, "?" is
printed instead.) If MSPRINTFLG is a number N, MasterScope will
print the name of the function it is analyzing every Nth function.
If MSPRINTFLG is NIL, MasterScope won't print anything. Initial
setting is ".".

Note that the function name is printed when MasterScope starts
analyzing, and the comma is printed when it finishes.

You ask which functions call RECFIELDLOOK. MasterScope
responds with the list.

Statement 52 You ask to edit the expressions where the function
RECFIELDLOOK is called. MasterScope calls EDITF on the
functions it had analyzed that call RECFIELDLOOK, directing the
editor to the appropriate expressions. You then edit some of
those expressions. In this example, the teletype editor is used. If
DEdit is enabled as the primary editor, it would be called to edit
the appropriate functions.

Statement 53 Next you ask which functions call ERROR. Since some of the
functions in the data base have been changed, MasterScope
reanalyzes the changed definitions (and prints out .'s for each
function it analyzes). MasterScope responds that EDITREC is the
only analyzed function that calls ERROR.

190 LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE

SHOW PATHS

MASTERSCOPE

Statement 54 You ask to see a map of the ways in which RECFIELDLOOK is
called from ACCESSDEF. A tree structure of the calls is displayed.

Statement 55 You then ask to see which functions call which functions in the
list IFNS. MasterScope responds with a structured printout of
these relations.

1.MSPARSE
2.
3.
4.
5.
5.
7 .
8.
9.
{5}
10.
11.
12.
13.
14.
15.

The command SHOW PATHS FROM MSPARSE will print out the
structure of MasterScope's parser:

MSINIT MSMARKINVALID
I MSINITH MSINITH
MSINTERPRET MSRECORDFILE
I MSPRINTWORDS

I PARSECOMMAND GETNEXTWORD CHECKADV
I I PARSERELATION {a}

I I PARSESET {b}
I I PARSEOPTIONS {c}

I I MERGECONJ GETNEXTWORD

GETNEXTWORD {5}
FIXUPTYPES SUBJTYPE
I OBJTYPE
FIXUPCONJUNCTIONS MERGECONJ {9}

MATCHSCORE
MSPRINTSENTENCE

overflow - a
15.PARSERELATION GETNEXTWORD {5}
17 . CHECKADV

overflow - b
19.PARSESET PARSESET
20.
21.
22.

GETNEXTWORD {5}
PARSERELATION {5}
SUBPARSE GETNEXTWORD {5}

overflow - c
23.PARSEOPTIONS GETNEXTWORD {5}
24. PARSESET {19}

This example shows that the function MSPARSE calls MSINIT,
MSINTERPRET, and MSPRINTSENTENCE. MSINTERPRET in turn
calls MSRECORDFILE, MSPRINTWORDS, PARSECOMMAND,
GETNEXTWORD, FIXUPTYPES, and FIXUPCONJUNCTIONS. The
numbers in braces {} after a function name are backward
references: they indicate that the tree for that function was
expanded on a previous line. The lowercase letters in braces are
forward references: they indicate that the tree for that function

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE 191

MASTERSCOPE

192

will be expanded below, since there is no more room on the line.
The vertical bar is used to keep the output aligned.

LISP LIBRARY MODULES, MEDLEY RELEASE, MASTERSCOPE

Requirements

Installation

Programmer's Interface

MATCH

Match provides a fairly general pattern match facility that allows
you to specify certain tests that would otherwise be clumsy to
write, by giving a pattern which the datum is supposed to match.

Essentially, you write "Does the (expression) X look like (the
pattern) P?"

For example, (MATCH X WITH (& 'A -- 'B» asks whether the
second element of X is an A, and the last element a B.

DWIM must be enabled.

Load MATCH.LCOM from the library.

(MATCH OBJECT WITH PA TTERN)

Matches the OBJECT with the PATTERN.

[CLISP operator]

The implementation of the matching is performed by computing
(once) the equivalent Lisp expression which will perform the
indicated operation, and substituting this for the pattern (rather
than by invoking each time a general purpose capability such as
that found in the AI languages FLIP or PLANNER).

For example, the translation of
(MATCH X WITH (& 'A -- '6» is:
(AND (EQ (CADR X) 'A)

(EQ (CAR (LAST (CDDR X») '6»

Thus the pattern match facility is really a pattern match compiler,
and the emphasis in its design and implementation has been
more on the efficiency of object code than on generality and
sophistication of its matching capabilities. The goal was to
provide a facility that could and would be used even where
efficiency was paramount, e.g., in inner loops. Wherever
possible, already existing Lisp functions are used in the
translation, e.g., the translation of ($ 'A $) uses MEMB, ($ ('A $) $)
uses ASSOC, etc.

The syntax for pattern match expressions is (MATCH FORM WITH
PATTERN), where PATTERN is a list as described below. If FORM
appears more than once in the translation, and it is not either a
variable or an expression that is easy to (re)compute, such as

LISP LIBRARY MODULES, MEDLEY RELEASE, MATCH 193

MATCH

194

(CAR V), (CDDR Z), etc., a dummy variable will be generated and
bound to the value of FORM so that FORM is not evaluated a
multiple number of times.

For example, the translation of

(MATCH (FOO X) WITH ($ 'A $))issimply

(ME M 8 'A (F 00 X)),

while the translation of

(MATCH (FOO X) WITH ('A '8 --)) is:

[PROG ($$2)

(RETURN

(AND (E Q (C A R (S E T Q $ $ 2 (F 00 X))) 'A)

(EQ (CAOR $$2) '8]

In the interests of efficiency, the pattern match compiler assumes
that all lists end in NIL, i.e., there are no LlSTP checks inserted in
the translation to check tails.

For example, the translation of

(MATCH X WITH ('A & --» is

(AND (EQ (CAR X) (QUOTE A» (CDR X».

which will match with (A B) as well as (A. B).

Similarly, the pattern match compiler does not insert LlSTP checks
on elements, e.g.,

(MATCH X WITH «' A --) --» translatessimplyas

(EQ (CAAR X) 'A),

and

(MATCH X WITH «$1 $1 --) --» translates as

(COAR X).

Note that you can explicitly insert LlSTP checks yourself by using
@, as described below, e.g.,

(MATCH X WITH «$1 $1 --)@LISTP --)translatesas

(CDR (LISTP (CAR X»).

PATLlSPCHECK [Variable]

The insertion of LlSTP checks for ELEMENTS is controlled by the
variable PATLlSTPCHECK. When PATLlSTPCHECK is T, LlSTP
checks are inserted, e.g.,

(MATCH X WITH «' A --) --») translates as:

(EQ (CAR (LISTP (CAR (LISTP X»)) 'A).

PATLlSTPCHECK is initially NIL. Its value can be changed within a
particular function by using a local CLiSP declaration (see IRM).

PATVARDEFAULT [Variable]

Controls the treatment of !ATOM patterns (see below).

If PATVARDEFAULT is' or QUOTE, !ATOM is treated the same as
'ATOM.

If PATVARDEFAULT is = or EQUAL, same as = ATOM.

If PATVARDEFAULT is = = or EQ, same as = = ATOM.

LISP LIBRARY MODULES, MEDLEY RELEASE, MATCH

__ ~M~A.TCH

Pattern Elements

Element Patterns

IfPATVARDEFAULTis orSETQ,sameasATOM &.

PATVARDEFAULT is initially' (quote).

PATVARDEFAULT can be changed within a particular function by
using a local CLISP declaration (see IRM).

Note: Numbers and strings are always interpreted as though
PATVARDEFAULT were =, regardless of its setting. EQ,
MEMB, and ASSOC are used for comparisons involving
small integers.

Note: Pattern match expressions are translated using the DWIM
and CLISP facilities, using all CLISP declarations in effect
(standardlfast/undoable; see IRM).

A pattern consists of a list of pattern elements. Each pattern
element is said to match either an element of a data structure or
a segment.

For example, in the TTY editor's pattern matcher (see IRM), " __ "
matches any arbitrary segment of a list, while & or a subpattern
match only one element of a list. Those patterns which may
match a segment of a list are called segment patterns; those that
match a single element are called element patterns.

There are several types of element patterns, best given by their
syntax:

$1 or & Matches an arbitrary element of a list.

'EXPRESSION Matches only an element which is equal to the given expression
e.g., 'A, '(A B).

EQ, MEMB, and ASSOC are automatically used in the translation
when the quoted expression is atomic, otherwise EQUAL,
MEMBER, and SASSOC.

= FORM Matches only an element which is EQUAL to the value of FORM;
e.g., = X, = (REVERSE Y).

= = FORM Same as =, but uses an EQ check instead of EQUAL

ATOM The treatment depends on setting of PATVARDEFAULT (see
above).

(PA TTERN1 ... PA TTERNn) Matches a list which matches the given patterns; e.g.,
(& &), (-- 'A).

ELEMENT-PA TTERN@FN Matches an element if ELEMENT-PATTERN matches it, and FN
(name of a function or a LAMBDA expression) applied to that
element returns non-NIL

For example, &@NUMBERP matches a number, and ('A --)@FOO
matches a list whose first element is A and for which FOO applied
to that list is non-NIL

For simple tests, the function-object is applied before a match is
attempted with the pattern, e.g.,

LISP LIBRARY MODULES, MEDLEY RELEASE, MATCH 195

MATCH

Segment Patterns

196

*

« -- 'A --)@LISTP --) translates as

(AND (LISTP (CAR X» (MEMB 'A (CAR X»),
not the other way around. FN may also be a FORM in terms of
the variable @, e.g., &@(EQ @ 3) is equivalent to = 3.

Matches any arbitrary element. If the entire match succeeds, the
element which matched the * will be returned as the value of the
match.

Note: Normally, the pattern match compiler constructs an
expression whose value is guaranteed to be non-NIL if
the match succeeds and NIL if it fails. However, if a *
appears in the pattern, the expression generated could
also return NIL if the match succeeds and * was matched
to NIL.

For example,

(MATCH X WITH (' A * --» translatesas
(AND (EQ (CAR X) 'A) (CADR X»,
so if X is equal to (A NIL B) then (MATCH X WITH ('A * --» returns
NIL even though the match succeeded.

-ELEMENT-PATTERN Matches an element if the element is not C) matched by
ELEMENT-PATTERN, e.g., -'A, - = X, -(-- 'A --).

(* ANY* ELEMENT-PA TTERN ELEMENT-PA TTERN ...)

$ or--

Matches if any of the contained patterns match.

Matches any segment of a list (including one of zero length).

The difference between $ and -- is in the type of search they
generate.

For example,
(MATCH X WITH ($ 'A 'B $» translates as

(EQ (CADR (MEMB 'A X» 'B), whereas
(MATCH X WITH (-- 'A 'B $» translates as:
[SOME X (FUNCTION (LAMBDA ($$2 $$1)

(AND (EQ $$2 'A)

(EQ (CADR $$1) 'B]

Thus, a paraphrase of ($ 'A 'B $) would be "Is B the element
following the first A?", whereas a paraphrase of (-- 'A '8 $)
would be "Is there any A immediately followed by a B?"

Note that the pattern employing $ will result in a more efficient
search than that employing --. However, ($ 'A '8 $) will not
match with (X Y Z A M 0 A 8 C), but (-- 'A '8 $) will.

Essentially, once a pattern following a $ matches, the $ never
resumes searching, whereas -- produces a translation that will
always continue searching until there is no possibility of success.
However, if the pattern match compiler can deduce from the
pattern that continuing a search after a particular failure cannot
possibly succeed, then the translations for both -- and $ will be
the same.

LISP LIBRARY MODULES, MEDLEY RELEASE, MATCH

For example, both

(MATCH X WITH ($ 'A $3 $»and
(MATCH X WITH (-- 'A $3 --»translateas

(CDDDR (MEMB (QUOTE A) X»

MATCH

because if there are not three elements following the first A,
there certainly will not be three elements following subsequent
A's, so there is no reason to continue searching, even for --.

Similarly, ($ 'A $ '8 $) and (-- 'A -- '8 --) are equivalent.

$2, $3, etc. Matches a segment of the given length.

Note that $1 is not a segment pattern.

!ELEMENT-PATTERN Matches any segment which ELEMENT-PATTERN would match as
a list.

For example, if the value of FOO is (A 8 C), ! = FOO will match the
segment ... A 8 C ... etc.

Note: Since! appearing in front of the last pattern specifies a
match with some tail of the given expression, it also
makes sense in this case for a ! to appear in front of a
pattern that can only match with an atom, e.g., ($2 !'A)
means match if CDDR of the expression is the atom A.

Similarly,

(MATCH X WITH ($! 'A» translates to

(EQ (CDR (LAST X» 'A).

!ATOM The treatment depends on setting of PATVARDEFAULT.

If PATVARDEFAULT is ' or QUOTE, same as !'ATOM (see above
discussion).

If PATVARDEFAULT is = or EQUAL, same as! = ATOM.

If PATVARDEFAULT is = = or EQ, same as! = = ATOM.

IfPATVARDEFAULTis orSETQ,sameasATOM $.

The atom"." is treated exactly like"!". In addition, if a pattern
ends in an atom, the "." is first changed to .. ! .. , e.g., ($1 . A) and
($1 ! A) are equivalent, even though the atom "." does not
explicitly appear in the pattern.

One exception where "." is not treated like "!" is when "."
preceding an assignment does not have the special
interpretation that"!" has preceding an assignment (see below).

For example,

(MATCH X WITH (' A . Faa 'B» translates as:
(AND (EQ (CAR X) 'A)

(EQ (CDR X) 'B)

(SETQ Faa (CDR X»)

LISP Ll8RARY MODULES, MEDLEY RELEASE, MATCH 197

MATCH

but

(MATCH X WITH ('A! FOO_'B» translates as:
(AND (EQ (CAR X) 'A)

(NULL (CDDR X»

(EQ (CADR X) 'B)

(SETQ FOO (CDR X»)

SEGMENT-PA TTERN@FUNCTION-OBJECT Matches a segment if the segment-pattern matches it, and the
function object applied to the corresponding segment (as a list)
returns non-NIL.

Assignments

198

For example, ($@CDDR 'D $) matches (A BCD E) but not (A B D
E), since CDDR of (A B) is NIL.

Note: An @ pattern applied to a segment will require
computing the corresponding structure (with LDIFF) each
time the predicate is applied (except when the segment
in question is a tail of the list being matched).

Any pattern element may be preceded by "VARIABLE ",
meaning that if the match succeeds (i.e., everything matches),
VARIABLE is to be set to the thi ng that matches that pattern
element.

For example, if X is (A BCD E), (MATCH X WITH ($2 Y $3» will
set Y to (C DE). -

Note that assignments are not performed until the entire match
has succeeded, so assignments cannot be used to specify a search
for an element found earlier in the match, e.g., (MATCH X WITH
(Y $1 = Y --» will not match with (A ABC ...), unless, of course,
the value of Y was A before the match started. This type of
match is achieved by using place-markers, described below.

If the variable is preceded by a !, the assignment is to the tail of
the list as of that point in the pattern, i.e., that portion of the list
matched by the remainder of the pattern.

For example, if X is (A BCD E), (MATCH X WITH ($!Y 'C 'D $»
sets Y to (C D E), i.e., CDDR of X. In other words, when !precedes
an assignment, it acts as a modifier to the , and has no effect
whatsoever on the pattern itself, e.g., (MATCH X WITH ('A 'B»
and (MATCH X WITH ('A !FOO 'B» match identically, and in the
latter case, Faa will be set to CDR of X.

Note: * PATTERN-ELEMENT and!* PATTERN-ELEMENT are
acceptable, e.g.,

(MATCH X WITH ($ 'A *_('B --) --» translates as:
[PROG ($$2) (RETURN

(AND (EQ (CAADR (SETQ $$2 (MEMB 'A X») 'B)
(CADR $$2]

LISP LIBRARY MODULES, MEDLEY RELEASE, MATCH

Place Markers

Replacements

MATCH

Variables of the form # N, where N is a number, are called place
markers, and are interpreted specially by the pattern match
compiler. Place markers are used in a pattern to mark or refer to
a particular pattern element. Functionally, they are used like
ordinary variables, i.e., they can be assigned values, or used
freely in forms appearing in the pattern.

For example,

(MATCH X WITH (#1_$1 =(ADD1 #1»)

will match the list (2 3).

However, they are not really variables in the sense that they are
not bound, nor can a function called from within the pattern
expect to be able to obtain their values. For convenience,
regardless of the setting of PATVARDEFAULT, the first
appearance of a defaulted place-marker is interpreted as though
PATVARDEFAULTwere

Thus the above pattern could have been written as

(MATCH X WITH { 1 =(ADD1 1»).

Subsequent appearances of a place-marker are interpreted as
though PA TVARDEFAU L T were =.

For example,

(MATCH X WI TH (#1 #1 - -)) is equivalent to

(MATCH X WITH (#1_$1 =#1 --»,andtranslatesas

(AND (CDR X) (EQUAL (CAR X) (CADR X».

Note that (EQUAL (CAR X) (CADR X» would incorrectly match
with (NIL).

The construct PATTERN-ELEMENT FORM specifies that if the
match succeeds, the part of the data that matched is to be
replaced with the value of FORM.

For example, if X = (A BCD E), (MATCH X WITH ($ 'C $1 Y $1»
will replace the third element of X with the value of Y. As with
assignments, replacements are not performed until after it is
determined that the entire match will be successful.

Replacements involving segments splice the corresponding
structure into the list being matched, e.g., if X is (A BCD E F) and
FOO is (1 23), after the pattern (,A $ FOO 'D $) is matched with
X, X will be (A 1 23 DE F), and FOO will be EQ to CDR of X, i.e., (1
23 D E F).

Note that ($ FOO FIE $) is ambiguous, since it is not clear
whether FOO or FIE is the pattern element, i.e., whether
specifies assignment or replacement.

For example, if PATVARDEFAULT is =, this pattern can be
interpreted as ($ FOO _ = FIE $), meaning search for the value of

LISP LIBRARY MODULES, MEDLEY RELEASE, MATCH 199

MATCH

Reconstruction

200

FIE, and if found set FOO to it, or ($ = FOO FIE $) meaning
search for the value of FOO, and if found, storethe value of FIE
into the corresponding position. In such cases, you should
disambiguate by not using the PATVARDEFAULT option, i.e., by
specifying' or = .

Note: Replacements are normally done with RPLACA or
RPLACD. You can specify that IRPLACA and IRPLACD
should be used, or FRPLACA and FRPLACD, by means of
CLiSP declarations (see IRM).

You can specify a value for a pattern match operation other than
what is returned by the match by writing (MATCH FORM1 WITH
PATTERN = > FORM2).

For example,

(MATCH X WITH (FOO_$ 'A --) =) (REVERSE FOO»
translates as:
[PROG ($$2)

(RETURN
(COND «SETQ $$2 (MEMB 'A X»

(SETQ FOO (LDIFF X $2»
(REVERSE FOO]

Place markers in the pattern can be referred to from within
FORM, e.g., the above could also have been written as

(MATCH X WITH (!#1 'A --) =) (REVERSE #1».

If -> is used in place of = >, the expression being matched is
also physically changed to the value of FORM.

For example,

(MATCH X WITH (#1 'A !#2) -) (CONS #1 #2»
would remove the second element from X, if it were equal to A.

In general, (MATCH FORM 1 WITH PATTERN -> FORM2) is
translated so as to compute FORM2 if the match is successful, and
then smash its value into the first node of FORM1. However,
whenever possible, the translation does not actually require
FORM2 to be computed in its entirety, but instead the pattern
match compiler uses FORM2 as an indication of what should be
done to FORM 1.

For example,
{MATCH X WITH (#1 'A !#2) -) (CONS #1 #2»
translates as
{AND {EQ (CADR X) 'A) {RPLACD X (CDDR X»).

LISP LIBRARY MODU LES, MEDLEY RELEASE, MATCH

Limitations

Examples

MATCH

The pattern match facility does not contain some of the more
esoteric features of other pattern match languages, such as
repeated patterns, disjunctive and conjunctive patterns,
recursion, etc. However, you can be confident that what
facilities it does provide will result in Lisp expressions comparable
to those you would generate by hand.

(MATCH X WITH (-- 'A --»

-- matches any arbitrary segment. 'A matches only an A, and the
second -- agai n matches an arbitrary segment; thus this
translates to (MEMB 'A X).

(MATCH X WITH (-- 'A»

Again, -- matches an arbitrary segment; however, since there is
no -- after the 'A, A must be the last element of X. Thus this
translates to: (EQ (CAR (LAST X» 'A).

(MATCH X WITH ('A 'B -- 'C $3 --»

CAR of X must be A, and CADR must be B, and there must be at
least three elements after the first C, so the translation is:

(AND (EQ (CAR X) 'A)

(EQ (CADR X) 'B)

(CDDDR (MEMB 'C (CDDR X»»

(MATCH X WITH «'A 'B) 'C Y_$l $»

Since ('A 'B) does not end in $ or --, (CDDAR X) must be NIL. The
translation is:

(COND

((AND (EQ (CAAR X) 'A)

(EQ (CADAR X) 'B)

(NULL (CDDAR X»

(EQ (CADR X) 'C)

(CDDR X»

(SETQ Y (CADDR X» T»

(MATCH X WITH (#1 'A $ 'B 'C #1 $»

#1 is implicitly assigned to the first element in the list. The $
searches for the first B following A. This B must be followed by a
C, and the C by an expression equal to the first element. The
translation is:

LISP LIBRARY MODULES, MEDLEY RELEASE, MATCH 201

MATCH

202

[PROG ($$2)

(RETURN

(AND (EQ (CADR X) 'A)

(EQ [CADR (SETQ $$2 (MEMB 'B (CDDR X] 'C)

(CDDR $$2)

(EQUAL (CADDR $$2) (CAR X]

(MATCH X WITH (#1 'A -- 'B 'C #1 $»
Similar to the pattern above, except that -- specifies a search for
any B followed by a C followed by the first element, so the
translation is:

[AND (EQ (CADR X) 'A)
(SOME (CDDR X)

(FUNCTION (LAMBDA ($$2 $$1)
(AND (EQ $$2 'B)

(EQ (CADR $$1) 'C)
(CDDR $$1)
(EQUAL (CADDR $$1) (CAR X]

LISP LIBRARY MODULES, MEDLEY RELEASE, MATCH

Requirements

Installation

MATMULT

Two dimensional graphical transformations, such as rotations,
scalings, and translations are conveniently represented as
homogeneous 3-by-3 matrices, which operate on homogeneous
3-vectors. Similarly, three dimensional graphical transformations
are conveniently represented as homogeneous 4-by-4 matrices,
which operate on homogeneous 4-vectors. MatMult provides
utilities for creating and manipulating such matrices and vectors,
and takes advantage of microcode support for high-speed 3-by-3
and 4-by-4 matrix multiplication.

All matrices and vectors in MatMult are represented as Common
Lisp arrays of element type single-float, so the Common Lisp
array functions are sufficient to create and access individual
elements of these specialized arrays. However, MatMult provides
convenient wrapper functions for most common operations on
these arrays.

All the following functions that return arrays accept optional
array arguments. If given a result argument, these functions
alter the contents of that argument rather then allocating new
storage. It is an error for the optional array argument to be not
of element type single-float, or to have incorrect dimensions.

MatMult should be run on an 1109 with a Weitek floating point
chip set, but is also quite efficient on an 1186.

Load MATMULT.LCOM from the library.

Matrix Creation Functions

(MAKE-HOMOGENEOUS-3-VECTOR X y) [Function]

Returns a 3-vector of element type single-float. If X or Y is
provided, then the corresponding element of the vector is set
appropriately, otherwise it defaults to 0.0. The third element of
the vector is always initialized to 1.0.

Note: Throughout this text, "set" is used to emphasize that the
value of the result element is altered and that no new
storage is allocated to it.

(MAKE-HOMOGENEOUS-3-BY -3 &KEY AOO A01 A 10 A20 A21) [Function]

Returns a 3-by-3 matrix of element type single-float. If a keyword
argument is provided, the corresponding element of the matrix

LISP LIBRARY MODULES, MEDLEY RELEASE, MATMULT 203

MATMULT

204

is set appropriately, otherwise entries default to 0.0. The (2 ,2) is
always initialized to 1.0.

(MAKE-HOMOGENEOUS-N-BY-3 N &KEY INITIAL-ELEMEN7) [Function]

Returns an N-by-3 matrix of element type single-float. If the
keyword argument is provided, all the elements in the first two
columns are set appropriately, otherwise they default to 0.0. The
third column is always initialized to 1.0.

(MAKE-HOMOGENEOUS-4-VECTOR X Y Z) [Function]

Returns a 4-vector of element type single-float. If X, Y or Z is
provided then the corresponding element of the vector is set
appropriately, otherwise it defaults to 0.0. The forth element of
the vector is always initialized to 1.0.

(MAKE-HOMOGENEOUS-4-BY-4 &KEY AOO AOI A02 A03 A 10 A 11 A 12 A 13
A20 A21 A22 A23 A30 A31 AJ2 [Function]

Returns a 4-by-4 matrix of element type single-float. If a keyword
arguments is provided, the corresponding element of the matrix
is set appropriately, otherwise entries default to 0.0. The (3 ,3) is
always initialized to 1.0.

(MAKE-HOMOGENEOUS-N-BY-4 N &KEY INITIAL-ELEMEN7) [Function]

Returns an N-by-4 matrix of element type single-float. If the
keyword argument is provided, all the elements in the first three
columns are set appropriately, otherwise they default to 0.0. The
forth column is always initialized to 1.0.

(IDENTITY -3-BY -3 RESUL n [Function]

Returns a 3-by-3 identity matrix.

If RESUL T is supplied, it is side effected and returned.

(That is, the storage associated with the optional result
argument is reused for the result, rather than allocating new
storage for the result.)

(IDENTITY -4-BY -4 RESUL n [Function]

Returns a 4-by-4 identity matrix. If RESULT is supplied, it is side
effected and returned.

(ROTATE-3-BY-3 RADIANS RESULn [Function]

Returns a 3-by-3 rotation matrix specified by a counter-clockwise
rotation of RADIANS radians. If RESULT is supplied, it is set and
returned.

(ROTATE-4-BY -4-ABOUT -x RADIANS RESUL n [Function]

Returns a 4-by-4 rotation matrix specified by a positive
right-handed rotation of RADIANS radians about the X axis. If
RESULTis supplied, it is set and returned.

(ROTATE-4-BY-4-ABOUT-Y RADIANS RESULn [Function]

Returns a 4-by-4 rotation matrix specified by a positive
right-handed rotation of RADIANS radians about the Y axis. If
RESUL Tis supplied, it is set and returned.

LISP LIBRARY MODULES, MEDLEY RELEASE, MATMULT

MATMULT

(ROTATE-4-BY-4-ABOUT-Z RADIANS RESULn [Function]

Returns a 4-by-4 rotation matrix specified by a positive
right-handed rotation of RADIANS radians about the Z axis. If
RESULT is supplied, it issetand returned.

(SCALE-3-BY -3 SX SY RESUL n [Function]

Returns a 3-by-3 homogeneous scaling transformation that
scales by a factor of SX along the X-axis and SY along the Y-axis.
If RESULT is supplied, it is set and returned.

(SCALE-4-BY -4 SX SY SZ RESUL n [Function]

Returns a 4-by-4 homogeneous scaling transformation that
scales by a factor of SX along the X-axis, SY along the Y-axis, and
SZ along the Z axis. If RESULT is supplied, it is set and returned.

(TRANSLATE-3-BY-3 TX TY RESVLn [Function]

Returns a 3-by-3 homogeneous translation that translates by TX
along the X-axis and TY along the Y-axis. If RESUL T is supplied, it
is set and returned.

(TRANSLA TE-4-BY -4 TX TY TZ RESUL n [Function]

Returns a 4-by-4 homogeneous translation that translates by TX
along the X-axis, TY along the Y-axis and TZ along the Z axis. If
RESULT is supplied, it is set and returned.

(PERSPECTIVE-4-BY -4 PX PY PZ RESUL n [Function]

Returns a 4-by-4 homogeneous perspective transformation
defined by PX, PY, and pz. If RESULT is supplied, it is set and
returned.

Matrix Multiplication Functions

If run on workstations equipped with the extended processor
option, these functions make good use of the hardware
floating-point unit. The three digits at the end of each function's
name describe the dimensions of their arguments.

Note: The results of the following matrix multiplication
functions are not guaranteed to be correct unless the
matrix arguments are all different (Not EQ).

(MATMULT-133 VECTOR MATRIX RESULn [Function]

Returns the inner product of a 3-vector, VECTOR, and a 3-by-3
matrix, MATRIX. If RESULT is supplied, it is set and returned.

(MATMULT-331 MATRIX VECTOR RESULn [Function]

Returns the inner product of a 3-by-3 matrix, MATRIX, and a
3-vector, VECTOR. If RESULTis supplied, it is set and returned.

LISP LIBRARY MODULES, MEDLEY RELEASE, MATMULT 205

MATMULT

(MATMULT-333 MATRIX-1 MATRIX-2 RESULD [Function]

Returns the inner product of a 3-by-3 matrix, MATRIX-1, and
another 3-by-3 matrix, MATRIX-2. If RESULT is supplied, it is set
and returned.

(MATMULT-N33 MATRIX-1 MATRIX-2 RESULD [Function]

Returns the inner product of an N-by-3 matrix, MATRIX-1, and a
3-by-3 matrix, MATRIX-2. If RESULT is supplied, it is set and
returned.

(MATMULT-144 VECTOR MATRIX REsULD [Function]

Returns the inner product of a 4-vector, VECTOR, and a 4-by-4
matrix, MATRIX. If REsULTis supplied, it is set and returned.

(MATMULT-441 MATRIX VECTOR RESULD [Function]

Returns the inner product of a 4-by-4 matrix, MATRIX, and a
4-vector, VECTOR. If RESULT is supplied, it is set and returned.

(MATMULT-444 MATRIX-1 MATRIX-2 RESULD [Function]

Returns the inner product of a 4-by-4 matrix, MATRIX-1, and
another 4-by-4 matrix, MATRIX-2. If RESULT is supplied, it is set
and returned.

(MATMULT-N44 MATRIX-1 MATRIX-2 RESULD [Function]

Returns the inner product of an N-by-4 matrix, MATRIX-1, and a
4-by-4 matrix, MATRIX-2. If RESULT is supplied, it is set and
returned.

Miscellaneous Functions

206

(PROJECT-AND-FIX-3-VECTOR 3-VECTOR 2-VECTOR) [Function]

The homogeneous 3-VECTOR is projected onto the X-V plane,
coerced to integer coordinates (rounding by truncation) and
returned. If 2-VECTOR is supplied, it is set and returned.

(PROJECT-AND-FIX-N-BY -3 N-3-MATRIX N-2-MATRIX) [Function]

The homogeneous N-by-3 matrix, N-3-MATRIX, is projected onto
the X-V plane row-by-row, coerced to integer coordinates
(rounding by truncation) and returned. If N-2-MATRIX is
supplied, it is set and returned.

(PROJECT-AND-FIX-4-VECTOR 4-VECTOR 2-VECTOR) [Function]

The homogeneous 4-vector, 4-VECTOR, is projected onto the X-V
plane, coerced to integer coordinates (rounding by truncation)
and returned. If 2-VECTOR is supplied, it is set and returned.

LISP LIBRARY MODULES, MEDLEY RELEASE, MATMULT

MATMULT

(PROJ ECT -AN D-FIX -N-BY -4 N-4-MA TRIX N-2-MATRIX) [Function]

The homogeneous N-by-4 MATRIX, N-3-MATRIX, is projected
onto the X-Y plane row-by-row, coerced to integer coordinates
(rounding by truncation) and returned. If N-2-MATRIX is
supplied, it is set and returned.

(DEGREES-TO-RADIANS DEGREES) [Function]

Returns DEGREES converted to radians.

Limitations

MatMult is not intended as a general matrix manipulation
package; it is specialized for the 3-by-3 and 4-by-4 cases.

Use CmlFloatArray for more general floating point array
facilities.

Example

{* ; "Try (spiral)")

{CL:DEFUN SPIRAL {&OPTIONAL {WINDOW (CREATEW»
&AUX
(WIDTH (WINDOWPROP WINDOW 'WIDTH»
(HALF-WIDTH (QUOTIENT WIDTH 2»
(HEIGHT (WINDOWPROP WINDOW 'HEIGHT»
(HALF-HEIGHT (QUOTIENT HEIGHT 2»
(SCALE-FACTOR (CL:EXP (QUOTIENT

(CL:LOG (QUOTIENT (MIN WIDTH HEIGHT) 2.0»
1440.0»»

(LET ({LINE-l (MAKE-HOMOGENEOUS-3-VECTOR 1.0 0.0»
{LINE-2 (MAKE-HOMOGENEOUS-3-VECTOR»
{TEMP (MAKE-HOMOGENEOUS-3-VECTOR»
{POINTS (CL:MAKE-ARRAY 2»
{TRANSFORM {MATMULT-333 (ROTATE-3-BY-3 (DEGREES-TO-RADIANS 2.5»

(SCALE-3-BY-3 SCALE-FACTOR SCALE-FACTOR»)
(TRANSLATION (TRANSLATE-3-BY-3 HALF-WIDTH HALF-HEIGHT»)

(CL:OO ({L-l LINE-l)
(L-2 LINE-2)
{I 0 (CL:l+ I»)

({EQ I 1728»
(MATMULT-133 L-l TRANSFORM L-2)
(MATMULT-133 L-2 TRANSLATION TEMP)
(PROJECT-AND-FIX-3-VECTOR TEMP POINTS)
(ORAWLINE HALF-WIDTH HALF-HEIGHT (CL:AREF POINTS 0)

(CL:AREF POINTS 1)
1
'REPLACE WINDOW)

(CL:ROTATEF L-l L-2»»

LISP LIBRARY MODULES, MEDLEY RELEASE, MATMULT 207

MATMULT

[This page intentionally left blank]

208 LISP LIBRARY MODULES, MEDLEY RELEASE, MATMULT

Requirements

Installation

Functions

XNS Time Service

MINISERVE

MiniServe contains servers for three simple protocols: Time
Service (both PUP and XNS versions) and PUP 10 Service. The
servers are intended to run in the background on an 1108 or
1186 on networks that lack other sources of these services.

The time must be correctly set on the machine running MiniServe
(see "NS Time Service" below).

Load MINISERVE.LCOM from the library.

Either set the variable NS.TO.PUP.ALlST correctly, or make sure
that the variable NS.TO.PUP.FILE is the name of a file containing
a single form which will be used to set NS.TO.PUP.ALlST (see
"PUP 10 Service" below).

Evaluate (STARTMINISERVER).

(STARTMINISERVE) [Function]

This function has no arguments; it adds three background
processes to the environment, one for each of the protocols that
miniserve handles. These processes and protocols are:

\NSTIMESERVER Provides the XNS Time Service

\PUPTIMESERVER Provides the PUP Time Service

\PUP.ID.SERVER Provides the PUP 10 Service

XNS Time Service answers requests for the time using the XNS
Time Protocol.

You must already have set the correct date and time on your
workstation, either via one of the installation utilities or by
evaluating

(SETTIME "dd-MMM-yy hh:mm:ss").

If you are not in the Pacific time zone, you should also make sure
the following variables are set correctly:

LISP LIBRARY MODULES, MEDLEY RELEASE, MINISERVE 209

MINISERVE

PUP Time Service

PUP 10 Service

\BEGINDST

\ENDDST

[Variable]

The ordinal day of the year (1 = January 1, 366 = December 31)
on or before which daylight saving time starts in your area. Set it
to 367 if your area does not observe daylight saving time.

[Variable]

The ordinal day of the year on or before which daylight saving
time ends.

\TIMEZONECOMP [Variable]

The number of hours west of Greenwich; e.g., Eastern standard
time = 5.

PUP Time Service is like NS Time Service, but using a PUP
protocol. This service is not required by any Xerox workstation as
long as XNS Time Service is available, but may be of use to other
workstati ons.

You can disable it by evaluating

(MOVD 'NILL '\PUPTIMESERVER).

PUP 10 Service supplies workstations with PUP host numbers,
given their 48-bit XNS host numbers, so that they may
communicate via PUP protocols.

NS.TO.PUP.FILE [Variable]

The name of a file containing a single form which will be used to
set NS.TO.PUP.ALlST. Either this variable or NS.TO.PUP.ALlST
must be set for the PUP 10 Service to work.

NS.TO.PUP.ALlST [Variable]

A list which maps a workstation's XNS host number to a pup host
number. Elements of this list are dotted pairs of the form:

«NSHOSTNUMBER A B C) . PUPNUMBER)

where A, 8, C are the three 16-bit components of the
workstation's 48-bit XNS host number (the value of the variable
\MY.NSHOSTNUMBER), and PUPNUMBER is the corresponding
PUP host number to be assigned to the workstation. PUP host
numbers are integers in the range [1,254], and must be unique
among hosts on a si ngle net.

To set up this list correctly you can do the following on each
workstation which will use the service (including the workstation
running MiniServe):

1. Decide on a unique PUP host number for this workstation.
It must be an integer inthe range [1,254]. For example we'll
choose PUP Host number 2.

210 LISP LIBRARY MODULES, MEDLEY RELEASE, MINISERVE

Restarting MiniServe

MINISERVE

2. Get the workstation's NS host number and add it to the PUP
host number. Evaluate the following form:

(CONS \MY.NSHOSTNUMBER YOURPUPNUMBER)

Using our chosen PUP host number of "2" and an example
value for \MY.NSHOSTNUMBER the result might be:

«NSHOSTNUMBER 0 43520 14312) . 2)

3. Back on the workstation which is about to run MINISERVE,
insert the dotted pair into NS.TO.PUP.ALlST.

If you need to restart MiniServe:

Use the PSW window to kill the three processes that were
started by STARTMINISERVE.

Evaluate (STARTMINISERVE).

LISP LIBRARY MODULES, MEDLEY RELEASE, MINISERVE 211

MINISERVE

[This page intentionally left blank]

212 LISP LIBRARY MODULES, MEDLEY RELEASE, MINISERVE

Requirements

Installation

Clearinghouse Concepts

NSMAINTAIN

NSMaintain allows you to view and modify objects in the
Clearinghouse data base from inside Lisp. Similar operations are
available when chatting to a Clearinghouse service.

Xerox NS network environment with Clearinghouse server(s).

DES.LCOM.

Load NSMAINTAIN.LCOM from the library. This file
automatically loads DES.LCOM. DES is currently only used by the
Change Password command, so its loading can be omitted if you
do not need that command.

The Clearinghouse maintains a distributed data base of objects,
each of which has a set of properties. The objects are such things
as users, groups, and network servers; the properties are such
attributes as a server address or a user's mailbox location.

Clearinghouse objects are partitioned into a three-level
hierarchy: each object is contained in a domain, which in turn is
part of an organization. A fully qualified object name is a
three-part name in the form object:domain:organization.
Similarly, a domain name is a two-part name of the form
domain:organization. Lisp maintains a notion of the default
domain, which is typically the domain in which you and the
servers in your immediate area are registered. When typing
object names, you may omit the organization field or both
domain and organization fields if they are the same as your
default domain. Similarly, when typing a domain name, you may
omit the organization field if it is the same as the default.

When printing the names of objects, the system usually elides
the domain and/or organization, following the same rules. For
example, for the object named "John Jones:Sales:ACME", the
system would print "John Jones:" if the default domain were
"Sales:ACME", or "John Jones:Sales" if the default domain were
"Admin:ACME". NSMaintain, however, prints fully qualified
names in certain places that do not need the compactness of the
elided names, so as to reduce potential confusion. For the same
reason, whenever NSMaintain prompts for an object name and
you omit one or two of the fields, NSMaintain automatically

LISP LIBRARY MODULES, MEDLEY RELEASE, NSMAINTAIN 213

NSMAINTAIN

User Interface

214

echoes the defaults for you. You can change the defaults with
the "Change Default Domain" command.

Any object in the Clearinghouse can have one or more aliases,
which are Clearinghouse names that point directly to the object.
An alias can be thought of as a "nickname", and can be used
interchangeably with the "real name" for virtually all
operations. For example, it is common practice to register users
with their full names and provide at least one alias consisting of
their last names.

Some objects in the Clearinghouse are groups, rather than
individuals. Groups are described further in the section on group
commands.

For more information on the Clearinghouse service, consult the
Interlisp-D Reference Manual or the Clearinghouse
documentation, which is part of the Network Systems
documentation kit.

NSMaintain runs in an Exec window. To start it up, evaluate:

(NSMAINTAIN) [Function]

Starts an NSMaintain session. It prompts with "CH:" in the
current window and awaits commands from you. Command
names complete automatically following one- or two-letter
inputs. Type Q, for the Quit command, when you wish to finish.

Most of the commands take as input from you one or more
Clearinghouse object names. For many commands, NSMaintain
offers you the same name as you last used in a similar context.
For example, if you use the Describe command to learn about an
object that is a group and then use the List Members command,
NSMaintain offers you the group name just described. To accept
the name, just press the carriage return; otherwise, start typing
the desired name; your type-in replaces the offered name. The
alphabetic case of names is not significant; you may type in
either upper or lowercase. However, the commands that create
objects will preserve the exact case of the name as you first type
it.

Typing a null name to most commands aborts the command. If a
sample name is offered, you have to backspace over it, or use
Control-Q to erase the whole name. You can also usually use
Control-E to abort a command.

The description of the commands below is partitioned into two
parts: general user commands and administrator commands.
The user commands can be used by anyone, and mostly are
concerned with viewing the data base. The administrator
commands allow system administrators to modify the data base;
these commands cannot be used by ordinary users. However,
there are two administrator commands, Add Self and Remove

LISP LIBRARY MODULES, MEDLEY RELEASE, NSMAINTAIN

User Commands

NSMAINTAIN

Self, that can be used by anybody to join or leave groups with
open access.

Anyone can use these commands to obtain information, change
passwords, and change NSMaintain's defaults.

Obtaining Information

These commands let you examine the data base.

Most of the List commands enumerate items in the data base
matching a particular pattern. A pattern is a Clearinghouse
name optionally containing asterisks as wild cards, which match
zero or more characters. Wild cards are permitted only in the
first component of the name; the remaining parts must be a
valid domain and organization. In a two-part name, wild cards
are permitted in the domain name but not the organization.
Thus, for example, "* John*:Sales:ACME" is a valid pattern
matching objects whose name component contains the substring
"John"; "Joe:*:ACME" is not a valid pattern.

Following a List command (except List Domains), you can use the
Show Details command to get more information about any of
the names listed.

Describe Gives a description of any object registered in the Clearinghouse,
what its registered name is (in case you typed an alias), and all
interesting properties of the object. If the object is a group, its
Owner and Friends are also listed; to see its members, use the List
Members command.

List Domains Lists all domains matching a specified domain pattern; for
example, "*:Xerox" to list all domains in the Xerox organization.

List Clearinghouses Lists all Clearinghouse servers that serve a specified domain.

List Administrators Lists the administrators for a domain.

List Aliases Lists all aliases matching a given pattern. Note that none of the
other List commands (except for List Objects with property any)
will match your pattern against an alias, so you may want to use
the List Aliases command if you don't find the object you were
looking for otherwise.

List Groups Lists all groups matching a given pattern.

List True Groups Same as List Groups, but filters out all names that also have a
"user" property. These "groups" are typically used for mail
forwarding. This command requires considerably more
computation than List Groups.

List Servers Lists objects matching a given pattern and registered as a server.
You are prompted for the type of server; for example, Mail, File,
or Print. Type? to see the choices.

List Users Lists the names of all users matching a given pattern.

List Objects Lists all registered objects of of an arbitrary Clearinghouse type
that match a given pattern. You are prompted for the type(a
Clearinghouse property name) and pattern. To list all objects,

LISP LIBRARY MODULES, MEDLEY RELEASE, NSMAINTAIN 215

NSMAINTAIN

Miscellaneous

that is, those with any property, press the carriage return to the
property prom pt, or su ppl y the property II * II •

List Members Lists the members of a specified group.

Show Details Prompts you for a name, performing automatic spelling
completion from the names printed in the most recent List
command such as List Users, and then performs the Describe
command on the name. Press the carriage return in response to
the name prompt to return to the main CH: prompt.

If there was only one name in the list, this command does a
Describe on it without further prompting.

Type Entry Synonym for Describe.

Type Members Synonym for List Members.

Change Default Domain Changes the defaults used on type-in inside NSMaintain for
domain and organization. NSMaintain asks if you also want to
change the defaults globally; if you say yes, the variables
CH.DEFAULT.DOMAIN and CH.DEFAULT.ORGANIZATION are
changed, so that the new defaults have effect outside of
NSMaintain as well.

The defaults are never used when typing aliases in the Add Alias
and Add User commands; these commands default the domain
to be the same as the domain of the main object.

Note: Unless you change the defaults globally, this command
does not affect type-out and the Change Login
command, which are still performed with respect to the
global defaults. This may change in a future
implementation.

Change Login Prompts you for a new name and password, which becomes the
default NS login on your machine and for NSMaintain. You can
also use this to fix your password if you were incorrectly logged
in before you started NSMaintain.

Change Password Allows you to change your password. Prompts for a user name,
offering your logged-in name as default. A domain
administrator can also change other users' passwords. After you
type the new password, you are asked to retype the password, to
ensure that you typed what you thought you had. Neither
password is echoed.

Quit Exit NSMaintain.

Administrator Commands

Creating and Deleting Objects

These commands modify the Clearinghouse data base. In
general, they require that you have the appropriate
administrator access.

To create or delete objects in a domain, you must be an
administrator for the domain.

LISP LIBRARY MODULES, MEDLEY RELEASE, NSMAINTAIN

NSMAINTAIN

Add Alias Assigns an alias for a specific object registered in the
Clearinghouse data base.

Add User Creates a new user. You are prompted for the user's name
(preferably a full name), a brief description (for example, the
user's affiliation, office number, etc), an initial password, and
one or more aliases.

Change Remark Allows you to change the remark; that is, text description, of any
object in the data base. NSMaintain prompts you for the object
name, then for a new remark, offering the old remark as default.

Remove Alias Removes an Alias from the data base. You are prompted for the
alias. This has no affect on the primary object for which the
removed name is an alias.

Remove User Undoes the effect of Add User; that is, removes a user name and
all its properties from the data base.

Remove Registered Object Removes a specified object and all its properties from the data
base. The primary name and description of the object are
printed first and you are asked to confirm the deletion. You can
use this to remove groups and other kinds of objects.

Manipulating Groups

A group is a Clearinghouse object with members. Groups are
most commonly used for mailing lists and access control. The
members can be either individuals or other groups. In the case of
groups used for access control, a member can also be a pattern in
which "*,, usually replaces one or more entire fields of a
three-part name.

A group has associated with it two access control lists: owners
and friends. Owners can make any change to a group; they are
like domain administrators for the narrow scope of the group
itself. Friends are allowed to add or remove themselves from the
group. For example, common interest groups typically have
"open" membership, consisting of a friends list of "*:domain",
or even "*:*:*" for a completely open group.

If the Owners or Friends list is empty, it defaults to the
administrators of the domain. However, if the Owners list is
non-empty, it overrides the administrators list. For example, if
you remove yourself from the owners of a group, you can no
longer modify the list, even though you are a domain
administrator. The defaulting can lead to confusion, especially
since the Describe command does not (and unfortunately
cannot) indicate whether the owners and friends it displays are
explicit or defaulted. For example, if a group previously had no
explicit owners, then the Remove Owner command cannot be
used, and any use of the Add Owner command implicitly
removes all the domain administrators.

Add Group Creates a new user group. You are prompted for the group's
name, a short description of the group, its initial members one at
a time, its owners and its friends. NSMaintain checks all of the
names except those that are patterns to ensure that you gave
valid Clearinghouse names, and to resolve aliases. The
Clearinghouse does not actually require that members of a

LISP LIBRARY MODULES, MEDLEY RELEASE, NSMAINTAIN 217

NSMAINTAIN

Add Member
Add Friend

group be registered Clearinghouse names, as it does not attach
explicit meaning to the contents of a group until told to do so.
Thus, if you type an invalid name, NSMaintain asks whether you
really meant it, and keeps the name if you answer yes. Note,
however, that any group used for access control must contain
only registered Clearinghouse names or patterns.

If you specify any owners, you are always made an owner
yourself as well, whether you explicitly said so or not, so as to
avoid the anomaly of your not being able to further modify the
group. You can, of course, remove yourself afterward if you
really meant to.

Add Owner Adds a member, friend or owner to a group.

Add Self Adds you, the currently logged in user, to a group. You must be
a friend or owner of the group.

Remove Member
Remove Friend
Remove Owner Removes a specified member, friend or owner from a group.

Remove Self Removes you, the currently logged in user, from a group. You
must be a friend or owner of the group.

Manipulating Domains

Errors

These commands change the list of administrators of a domain.
You must be an administrator of the domain or the parent
organization to do this.

Add Domain Administrator Adds a user to the set of administrators for a domain.

Remove Domain Administrator Removes a specified user from the administrators for a domain.

NSMaintain always ends each command with some sort of
feedback about the completion of the operation. In information
commands, the feedback is, of course, the requested
information. In commands that change the data base,
NSMaintain usually prints "done". If a command fails,
NSMaintain prints a terse error message. Listed here are some of
the more common ones:

NoSuchObject You asked about a name that does not exist in the Clearinghouse
data base. Check that the spelling and the domain are correct.

IliegalOrganization

IliegalDomain
IliegalObject The name you gave is not legal as a Clearinghouse name. Since

NSMaintain already checks for incorrect use of asterisks, this
usually means the name is too long. (The name component must
be no more than 40 characters long; domains and organizations
are limited to 20 characters each.)

Missing The name you specified for a group, such as in the AddMember
command, is not a group.

218 LISP LIBRARY MODULES, MEDLEY RELEASE, NSMAINTAIN

Examples

NSMAINTAIN

Credentialslnval id
Veriferlnvalid You are logged in incorrectly; that is, either your name or your

password is incorrect. You can use the Change Login command
to log in correctly.

AccessRightslnsufficient You do not have the authority to make the change you
requested. You can find out who does have the authority by
using the command Describe for changing a group, or List
Domain Administrators for all other changes.

NoChange The change you requested would have no effect; for example,
you added to a group a name that was already a member, or
requested to remove a name that was not there.

TooBusy The Clearinghouse contacted by NSMaintain was too busy to
field the request. Lisp's present Clearinghouse implementation,
unfortunately, does not handle this error, so passes it along to
you. If you repeat the operation it may succeed. If this error
persists for a long time, you may want to evaluate
(START.CLEARINGHOUSE T) to completely clear the
Clearinghouse cache; the system may then succeed in locating a
more responsive server.

In the example session that follows, all user input is in boldface;
everything else is typed by the system. To avoid clutter, carriage
returns typed by the user are not shown. In many cases, a simple
carriage return accepts the default input typed by the system, or
completes a partially typed name. For clarity, most of the user
input is in uppercase, although lowercase is equally acceptable.
Commentary is in italics.

64) (NSMAINTAIN)
[Default login: Arthur Dent:Research:ACME;
Default domain: Research:ACME]

NSMaintain shows me the defaults.
(My password has not, however, been verified.)

CH: Describe name: EDISON:Research:ACME ...

Thomas A. Edison:Research:ACME is a User (Electronics Div., Rm 2732)
Ali ases: Ed i son:, Wi zard: Domain and organization are elided here
Mailboxes: [Time: 8-Aug-86 17:30:54; Mail.Service: (Snail:)]
Userdata: [Last.Name.Index: 10; File.Service: Phylum:]

The Userdata property is used by Viewpoint

CH: List Groups by pattern: *:Research:ACME ... AllResearch, Consultants,
ED, LispImplementors, LispInterest, NetAdministration, Skiiers, Staff,
WireBusters

CH: Show Details of previously listed names

LISP LIBRARY MODULES, MEDLEY RELEASE, NSMAINTAIN 219

NSMAINTAIN

220

name: Consultants "C<cr> " is all that I typed

Consultants:Research:ACME is a User Group (Part-time personnel)
Owners: Staff:
Friends: NetAdministration:

name: SKiiers

Skiiers:Research:ACME is a User Group (Snow sport enthusiasts)
Owners: UserAdministration:All Areas, Perry White:
F r i end s: *. * Anyone in organization ACME can join

name:

CH: list Members of group: Skiiers:Research:ACME ...
Alexander G. Bell:Telcom, Christopher Craft:, Staff:

CH: Add Self to group: Skiiers:Research:ACME ... done
Skiiers was offered as default, being the last
group I mentioned-I had only to type a cr.

CH: Add Self to group: Skiiers:Research:ACME ... failed: NoChange
I.e., I'm already a member

CH: list Servers of type File
by pa t te rn: *:Development: ACME ... A r row, Qu i ve r

CH: list Users by pattern: Ed*:Research:ACME ... (none)
There are no users whose full name starts "Ed"

CH: list Aliases by pattern: Ed*:Research:ACME ... Edison, Educators
But there are some aliases (not necessarily all users)

CH: list objects having property wORKSTATION
by pattern: *M*:Research:ACME ... Archimedes, Camero, Cardamom,

Homestead, MayDay, Mendel, Ramanujan, SatanicMechanic, TheTajMahal

CH: Show Details of previously listed names
name: Archimedes

Archimedes:Research:ACME is a Workstation (1186 in Rm. 2732)
Address.List: (6285#0.125101.20200#0)
Authentication.Level: [Simple: true; Strong: false]

CH: Change Default Domain (for name entry) to be: Development:ACME
Set this default globally as well (i.e. for use outside Maintain)? N

CH: Add Alias for object: Newton:Development:ACME
Alias: Isaac:Development:ACME ... done

CH: Describe name: Newton:Development:ACME

S. Isaac Newton:Development:ACME is a User (Apple Tester, Rm. 34)
Aliases: Isaac:Development, SIN:Development
Userdata: [Last.Name.Index: 0; File.Service: Arrow:Development]

LISP LIBRARY MODULES, MEDLEY RELEASE, NSMAINTAIN

NSMAINTAIN

CH: Remove Alias alias: SIN:Development:ACME
from S. Isaac Newton:Development

done, alias was removed

CH: Add User
New user's name: CharlesS.Brown:Development:ACME
Remark (terminate with CR): TestTeamcaptain
Alias: Chuck:Development:ACME
Alias: Brown:Development:ACME
Alias: CSB:Development:ACME
Ali as: xxx Bare <cr> was typed to end the list
Initial password: ******* (retype password) ******* ... done

CH: Add Group

Chuck can later use Change Password to
set a password of his own choosing.

New g roup name: Entomologists: Deve 1 opmen t: ACME
Remark (terminate with CR): Seekers of bugs

Enter names of members, owners and friends, one per line, terminated with
a blank line.

Member: brown:Development:ACME = Charles S. Brown:Development:ACME
NSMaintain resolves alias, so that member
names are in canonical form

Member: F.Kafka:Development:ACME
Member: xxx

(If you enter no owners, the group will be owned by the administrators of
Development:ACME.)

Owner: brown:Development:ACME
Owne r: xxx

Friend: *:Development:ACME
Friend: *:Research:ACME
Friend: xxx

Adding members ... done

Charles S. Brown:Development:ACME

Adding owners ... (including Arthur Dent:Research:ACME) done
I'm an owner, too (else I couldn't modify the group)

Adding friends ... done

CH: Remove Use r: BILBO: Deve 1 opmen t: ACME
Bilbo Baggins:Development:ACME (Furry ring finder)

Confirm deletion (y or n): Y
done

CH: Qu i t [conf i rm] Back to the exec now.

LISP LIBRARY MODULES, MEDLEY RELEASE, NSMAINTAIN 221

NSMAINTAIN

[This page intentionally left blank]

222 LISP LIBRARY MODULES, MEDLEY RELEASE, NSMAINTAIN

Requirements

Installation

User Interface

Functions

PRESS

Xerox Lisp includes utilities for generating hardcopy in "Press"
format. This is a file format for communicating documents to
Xerox laser xerographic printers of the Press, Spruce or Fullpress
class, which are known by the names Dover, Penguin, Raven and
Spruce.

Note: Press, along with other classes of printers, is described
fully in two sections in the IRM, "Hardcopy Facilities" and
"Fonts."

The reason for putting this document into the Lisp
Library Modules Manual is that support of these printers
is no longer an integral part of the system.

FONTS.WIDTHS

PUPPRINT.LCOM

A Press pri nt server

Load PRESS.LCOM from the library.

Set the variable PRESSFONTWIDTHFILES (see below).

You can use the usual means:

HARDCOPY in background (right-button) menu,

HARDCOPY in FileBrowser menu, or

functions typed into the exec window (see below).

DEFAU L TPRINTINGHOST

PRESSFONTWI DTH FI LES

SEND.FILE.TO.PRINTER

LlSTFILES

(All: see the IRM for full details.)

[Variable]

[Variable]

[Function]

[Function]

LISP LIBRARY MODULES, MEDLEY RELEASE, PRESS 223

PRESS

Limitations
PRESS does not support NS characters or NS fonts.

224 LISP LIBRARY MODULES, MEDLEY RELEASE, PRESS

Installation

Functions

Create a Key Pad

READNUMBER

ReadNumber contains functions for implementing a
calculator-type menu for entering numbers with the mouse.

Load READNUMBER.LCOM from the library.

ReadNumber functions are called either from the Executive
window or programmatically from another process.

The numbers captured by ReadNumber are passed to whatever
process currently has the TTY.

(RNUMBER MSG POSITION MSGFONT DIGITFONT INCLUDEABORTFLG
FLOA TlNGPTFLG POSITIVEONL YFLG ACCEPTTYPEINFLG)

[Function]

Brings up a menu that looks like a ten-key calculator pad. Your
selections, made by pressing the left mouse button when the
cursor is on a digit, are accumulated in a displayed total. The key
pad includes a backspace key (BS), a clear key (CLR), and a + /­
key (-). When OK is selected, the total is returned.

If MSG is given, it is displayed at the top of the menu.

If POSITION is given, the menu will be put there; otherwise it will
be put at the cursor.

If MSGFONT is given, MSG will be printed in it. If MSGFONT is
NIL, DEFAULTFONT is used.

If DIGITFONT is given, the labels on the keys will be printed in
that font. If DIGITFONTis NIL, BOLDFONT is used.

If INCLUDEABORTFLG is non-NIL, the menu will also include an
abort key (abt). If the abort key is pressed, RNUMBER returns
NIL

If FLOATlNGPTFLG is non-NIL, the menu will include a decimal
point, and the value returned may be a floating point number.

If POSITIVEONL YFLG is non-NIL, the menu will not include a + /­
key (-) and you will only be able to input positive numbers (but
see ACCEPTTYPEINFLG).

If ACCEPTTYPEINFLG is non-NIL, the menu will also respond to
user-typed input (i.e., numbers typed in on the keyboard, rather
than selected with the mouse). In this mode, carriage return
corresponds to OK.

LISP LIBRARY MODULES, MEDLEY RELEASE, READNUMBER 225

READNUMBER

Note: The decimal point (.) and the minus sign (-) are also
accepted, even though they are not options in the key
pad menu.

If you close the key pad window, the action taken by RNUMBER
depends upon the value of INCLUDEABORTFLG. If
INCLUDEABORTFLG is NIL, RNUMBER generates an error {i.e.,
calls (ERROR!». If INCLUDEABORTFLG is non-NIL, RNUMBER
returns NIL (the same thing it does if the abort key is pressed).

Create a Key Pad for Repeated Use

Examples

226

For some applications, it may be beneficial to avoid the creation
of the key pad menu window each time a number is asked for.
The following functions allow you to create a key pad menu
window and use it repeatedly to get values from you.

Note: When used in this manner, a key pad menu window can
only be used by one process at a time.

(CREATE.NUMBERPAD.READER MSG WPOSITION MSGFONT DIGITFONT
INCLUDEABORTFLG FLOATINGPTFLG POSITIVEONL YFLG)

[Function]

Creates a window suitable for use by NUMBERPAD.READ (see
below). Its arguments are the same as for the function
RNUMBER.

(NUMBERPAD.READ NUMBERPADIREADER ACCEPTTYPEINFLG) [Function]

NUMBERPADIREADER should be a window returned by the
function CREATE.NUMBERPAD.READER (see above).
NUMBERPAD.READ uses the window in the same manner as the
function RNUMBER.

(RNUMBER "How many WIDGITS would you like?")

will result in the following menu being popped up:

HOI .. } m.9n~' ~IJ I DG I TS
'.o,IOU 1 (~ ~lOI...I 1 ike?

o

clr
123
456
789
bs 0 ok

LISP LIBRARY MODULES, MEDLEY RELEASE, READNUMBER

Limitations

READNUMBER

(RNUMBER "How far to the left?") NIL '(CLASSIC
12) '(MODERN 14) T T)

will result in the following menu being popped up:

Ho·'!.1' far to the left·~,
RB elE!

- CRT RP.

-1 --:1 ::l
0

L

4 c 6 __ I

7 B 9
0 .. --·k

If you choose both FLOATNGPOINTFLG and INCLUDEABORTFLG,
then there is no room for the backspace key, so the input is
correctable only by selecting CLEAR and starting over. However,
if ACCEPTTYPEINFLG is T, the keyboard's backspace key can be
used_

LISP LIBRARY MODULES, MEDLEY RELEASE, READNUMBER 227

READNUMBER

[This page intentionally left blank]

228 LISP LIBRARY MODULES, MEDLEY RELEASE, READNUMBER

Requirements

Hardware

RS232

The 1108 and 1186 each support two RS232 ports. One of these
ports is configured as Data Terminal Equipment, and is intended
to be connected to modems or terminal ports on other
computers. (On the 1108, this port is available only with the
addition of the E30 option.) The other port is configured as Data
Communication Equipment, and is meant to drive printers or
terminals. In this document, the DTE port is called the RS232
port, and the DCE port is called the TTY port.

Lisp provides a stream-oriented interface to the RS232 hardware.
Users' programs can open streams to the hosts {RS232} or {TTY},
and perform input or output using standard Lisp 1/0 functions,
such as READ-BYTE, READ-CHAR, etc.

Programs may use RS232 streams or TTY streams with the same
programmatic interface; however, the RS232 port is preferred
over the TTY if the application expects to handle large amounts
of input data. In the 1108 and 1186, data entering the RS232
port is buffered independently of Lisp by the 1/0 processor (lOP).
In addition, the RS232 software provides an additional layer of
character buffering, freeing user programs from having to
monitor the RS232 hardware frequently.

No independent buffering is provided for data entering the TTY
port. As a result, Lisp cannot guarantee to catch all characters
received on this port. For this reason, the TTY port should be
used primarily to drive output devices such as printers.

To connect to a modem or another device, you need an RS232 or
TTY cable (see the wiring diagrams in the Introduction of this
manual).

For the 1108 only, you need the E-30 upgrade kit.

For the RS232 port to operate correctly, the remote device must
assert the standard RS232 signals DSR and CTS. This requirement
means that the appropriate pins on the 1186 be driven high,
either properly by connecting the 1186 side to the corresponding
device side, or permanently by jumpering the pins.

In order for the TTY port to operate correctly, the remote device
must assert DTR and RTS. This requirement means that the
appropriate pins on the 1186 be driven high, either properly by
connecting the 1186 side to the corresponding device side, or
permanently by jumpering the pins.

LISP LIBRARY MODULES, MEDLEY RELEASE, RS232 229

RS232

Software

Installation

Using the RS232 Port

230

You need the following .LCOM files in order to run this module
successfully:

DLRS232C or DL TTY (one of these is required)

RS232MENU

RS232CHAT or TTYCHAT, and KERMIT (these are optional).

(See also the file dependencies enumerated in the Introduction
of this manual.)

Load the required .LCOM modules from the library.

Run RS232C.INIT or TTY.INIT to set parameters.

Support for the RS232 port is contained in the file
DLRS232C.LCOM. Before using the RS232 port, it is necessary to
initialize the RS232 hardware. The function RS232C.INIT is
provided for this purpose:

(RS232C.INIT BAUDRATE BITSPERSERIALCHAR PARITY NOOFSTOPBITS
FLOWCONTRO/)

[Function]

The arguments correspond to the port parameters (see below).

Alternatively, the BAUDRATE argument can be an instance of
the RS232C.INIT record. If BAUDRATE is NIL, the value of the
global variable RS232C.OEFAULT.INIT.INFO is used in its place.
This provides a means of automatically initializing the RS232
hardware without user intervention.

RS232C.OEFAULT.INIT.INFO [Variable]

This variable controls default initialization of the RS232 port. Its
value may be set in the site INIT.LlSP file, or in your INIT.LlSP file.
If RS232C.OEFAULT.INIT.INFO is not set when the RS232 module
is loaded, its fields will be set to the following default values:

BaudRate: 1200

BitsPerSerialChar: 8
Parity: NONE

NoOfStopBits: 1
FlowControl: XOnXOff

LISP LIBRARY MODULES, MEDLEY RELEASE, RS232

RS232

Programs may use the lisp function OPENSTREAM as an
alternative to calling RS232CINIT directly, with the parameters
bundled up into the PARAMETERS argument.

For example, (RS232CINIT 9600 8) can also be achieved by:

(OPENSTREAM '{RS232} 'INPUT NIL '((BaudRate
9600) (BitsPerSerialChar8»

(RS232CSET.PARAMETERS PARAMETERLISn [Function]

This function allows applications to change the settings of the
RS232 hardware while the RS232 port is in use.

PARAMETERLIST is an association list of parameter names and
_values. The following example sets the baud rate to 9,600 baud,
and the character length to eight bits:

(RS232C.SET.PARAMETERS '((BaudRate . 9600)
(BitsPerSerialChar . 8»}

The following is a list of legal parameter names and values:

BaudRate 1186: 50, 75, 110, 150, 300, 600, 1200, 2400, 3600, 4800, 7200,
9600, 19200.

1108: all of the above, and 28800, 38400,48000, 56000, 57600.

BitsPerSerialChar 5,6, 7,8 bits of data. If 5 or 6 bits of data are sent, they should be
DATA, not CHARACTER.

Parity NONE, ODD, EVEN (1 parity bit).

NoOfStopBits 1, 1.5, 2 (i.e., the stop bit may have a period equal to 1, 1.5 or 2
bit-widths). ~ /,,~ ~ DL- IZ.s~-;7---

FlowControl NIL, NONE, XOnXOff, list.

NIL and NONE: no flow control.

XOnXOff: flow control using Xon and Xoff characters. For
applications requiring XOn and XOff characters other than i Q
and is respectively, this parameter may be supplied as a list in
the form: (1 <XOn> <XOff», where <XOn> and <XOff>
represent the character codes (ASCII 1 - 127) of the characters
which are to be treated as the XOn and XOff characters. The
leading "1" signifies that flow control should be enabled; a
leading "0" will program the RS232 port with the appropriate
XOn and XOff characters, but leave flow control disabled.

ModemControl This parameter should be a list of modem control signals to be
enabled, such as OSR, CTS, DTR, OTR, RI and HS.

The functions~ RS232MODEMCONTROL, RS232MOOEMSTATUSP,
and RS232MOOIFYMODEMCONTROL provide finer control over
the settings of modem signals (see below).

DTR This parameter enables or disables the data terminal ready
signal; it may be specified as T or NIL.

RTS This parameter enables or disables the request to send signal; it
may be specified as T or NIL.

LISP LIBRARY MODULES, MEDLEY RELEASE, RS232 231

RS232

Using RS232 Streams

232

(RS232CGET.PARAMETERS PARAMETERLlSn [Function]

The current settings for the RS232 port may be obtained at any
time by calling this function.

PARAMETERLIST should be a list of parameter names.
RS232CGET.PARAMETERS returns an association list of
parameter names and values, in a format acceptable to
RS232CSET.PARAMETERS.

(RS232C.SHUTDOWN) [Function]

The RS232 port is turned off by calling this function. It disables
the RS232 port and closes any open streams on the devices.

Programs may open streams to the RS232 port by call i ng
OPENSTREAM with the file name {RS232}. The ACCESS argument
to OPENSTREAM controls whether an INPUT or OUTPUT stream is
returned. RS232 streams are unidirectional; to obtain a second
stream open for the opposite access, call the function
RS232COTHER.STREAM.

Only one pair of RS232 streams may be open at a time; an error
will result if you attempt to open more.

(RS232COTHER.STREAM STREAM) [Function]

STREAM should be an RS232 stream. If STREAM is open for
INPUT, an RS232 stream open for OUTPUT is returned;
conversely, if STREAM is open for OUTPUT, an RS232 stream open
for INPUT is returned.

The following Lisp functions are defined to work on RS232
streams open for the appropriate access: BIN, BOUT, READP,
OPENP, CLOSEF, and FORCEOUTPUT.

(RS232C.CLOSE-STREAM DIRECTION) [Function]

This function closes one or both RS232 streams, so you don't
need to have access to the streams to close them.

DIRECTION can be one of INPUT, OUTPUT, BOTH, or NIL. The
function closes the RS232 stream open in DIRECTION mode; if
DIRECTION is BOTH or NIL the input and output streams will be
closed, if they exist.

RS232 streams are buffered. Input and output are performed in
units of packets of data. The 1/0 processor collects incoming data
into a packet, and makes that packet available to Lisp when one
of the following conditions is true:

The packet is filled.

The frame time-out has expired.

The frame time-out is the number of hundredths of a second
that are allowed to occur between the reception of single
characters. This parameter is automatically set by the RS232
module. Its value depends on the baud rate of the RS232 port. If
the value is set too large, interactive applications such as Chat
will suffer from uneven typeout; if the value is too small, a

LISP LIBRARY MODULES, MEDLEY RELEASE, RS232

RS232

larger number of shorter packets may be exchanged between
Lisp and the I/O processor, resulting in increased processing
overhead.

Lisp buffers data for output in packets of up to 578 characters.
Output packets are sent to the RS232 port when one of the
following conditions is true:

The current output packet is full.

The user program calls the FORCEOUTPUT function to force
the cu rrent output packet to be sent.

The output stream is closed.

Applications that generate a large amount of output slowly may
wish to reduce the size of outgoing packets. Although this will
require additional processing overhead, it will cause output to
occur more frequently without the program explicitly calling
FORCEOUTPUT.

(RS232C.OUTPUT.PACKET.LENGTH NEWVALUE) [Function]

This function returns the current setting of the variable that
controls the maximum size of output packets. If NEWVALUE is
supplied, the setting is changed to NEWVALUE. NEWVALUE may
be a number between 1 and 578.

Specifying a value is a matter of how long you are willing to wait
at input time before you are assured of seeing incoming data.
You can do a straightforward division to set the length (e.g., at
9600 baud, you get about 1 char/millisecond, so the max delay is
578ms; if you can tolerate only 1/4 second, then set it to 250 or
so).

(RS232C.READP.EVENT STREAM) [Function]

Many RS232 applications are time-dependent. File transfer
protocols such as Kermit and Modem depend on one or both
sides of a file transfer detecting connection problems by means
of time-outs. This function allows user programs to detect
time-out conditions efficiently.

STREAM should be an RS232 stream open for input. This
function returns an event that a program may wait upon for
input data to become available on the stream. The following
example illustrates how a program could wait up to 10 seconds
for a character to become available:

[LAMBDA (STREAM)
(LET «EVENT (RS232C.READP.EVENT STREAM»
(TIMER (SETUPTIMER 10000»)
(until (OR (READP STREAM) (TIMEREXPIRED? TIMER»
do (AWAIT.EVENT EVENT TIMER T)
finally (RETURN (COND «READP STREAM) (BIN STREAM]

LISP LIBRARY MODULES, MEDLEY RELEASE, RS232 233

RS232

Using Modems

Error Condition Reporting

234

The following functions are useful for controlling modems:

(RS232SENDBREAK EXTRALONG?) [Function]

This function sends the out-of-band BREAK signal, for a period of
0.25 seconds; if EXTRALONG? is non-NIL, then the period is
extended to 3.5 seconds.

(RS232MODEMCONTROL SIGNALSONLSn [Function]

This function is a Lambda-NoSpread function that sets the
modem control lines to be "on" for the signals named in the list
SIGNALSONLST; it returns the former setting of the lines. If
SIGNALSONLST is not supplied (which is not the same as
supplying NIL), then the control lines remain unchanged. The
entries in SIGNALSONLST are symbol names for standard modem
control lines; currently usable signal names are DTR and RTS.

(RS232MODIFYMODEMCONTROL SIGNALSONLST SIGNALSOFFLSn [Function]

Changes only those modem control lines specified in the union
of the two arguments; those in SIGNALSONLST are set to be on,
and those in SIGNALSOFFLST are set off. Returns the former
state just as (RS232MODEMCONTROL) does.

(RS232MODEMST A TUSP SPEQ [Function]

Returns non-null if the reading of the modem status lines is
consistent with the boolean form specified by SPEC; modem
status signals currently supported are DSR, RI, and RLSD. SPEC
may be any AND/OR/NOT combination over these signal names.

Example:

(RS232MODEMSTATUSP '(AND CTS (NOT RLSD»).

(RS232MODEM HANG U P) [Function]

This function takes whatever steps are appropriate to cause the
modem to hang up. Generally, this means turning the DTR signal
down for about three seconds, or until the DSR signal has gone
down.

The RS232 port detects parity errors, character framing errors,
lost characters, and a number of other unusual conditions. As
the I/O processor delivers each input packet to Lisp, it reports
when the packet was received without error. If an error did
occur while the packet was being received, Lisp will report this
fact by writing a message to RS232CERROR.STREAM.

RS232C ERROR.STREAM [Variable]

RS232 error conditions are reported on this stream. This stream is
initially the PROMPTWINDOW.

(RS232C REPORT.STA TUS NEWVALUE) [Function]

There are circumstances in which the RS232 hardware believes it
has encountered an error, when in fact it has not. A frequent

LISP LIBRARY MODU LES, MEDLEY RELEASE, RS232

RS232TRACE

RS232CHAT

RS232

cause is an incorrect parity setting in the RS232 port. Continually
reporting RS232 errors is likely to slow RS232 processing severely.
In cases where error reporting is not important, it is possible to
disable error reports with the RS232CREPORT.STATUS function.
This function returns the current setting of status reporting,
which may be one of the following:

T Errors are reported on both input and output.

NIL Errors are never reported.

OUTPUT Errors are reported on output only.

INPUT Errors are reported on input only.

In addition, if NEWVALUE is supplied, the current setting of
status reporting is changed to NEWVALUE.

To help in debugging RS232 applications, it is possible to trace
the data that is being sent out via the port. RS232 packets are
traced usi ng:

(RS232CTRACE MODE) [Function]

MODE is one of PEEK, T, or NIL. If MODE is either T or PEEK,
RS232CTRACE will open a trace window in the mode selected. T
Indicates a full trace, with every byte being shown. PEEK is a less
verbose trace, with every incoming packet shown as a II + II and
every outgoi ng packet shown as a "! II • NIL wi II tu rn off the
tracing. Clicking the left mouse button in the trace window will
cycle between the modes.

RS232 Trace File

!+!+!+!+!+

The RS232CHAT module is a facility that permits the Chat library
module to communicate over the RS232 port. Once it is loaded,
you may chat to the host named RS232 to open a connection to
the RS232 port.

LISP LIBRARY MODULES, MEDLEY RELEASE, RS232 235

RS232

RS232CMENU

RS232CMENU is a utility that provides a menu interface to
controlling the settings of the RS232 port. When loaded along
with RS232CHAT, this utility may be invoked by choosing the
"Set Line Parameters" entry in the options menu that appears if
you select "Options" in the middle-button Chat menu.

RS232 Port Settings
Apply! Abort! Show! SendBrea Ie! SendLongBrea Ie! Ha ngup!

Baud Rate: 9600 Parity: r·J 0 n e Cha ra rter Length: $ e·'le n
Flow Control: ::.:: 0 n ::.:: off Stop Bits: 0 n e Report Errors:

The following commands are available in the RS232 menu:

Apply This menu item changes the RS232 port settings according to the
values of the fields in the rest of the menu. No changes are made
to the RS232 hardware until this command is given.

Abort Closes the RS232 menu and aborts any changes that could have
been made.

SendBreak Sends a normal (0.25 second) break signal. Requires
confirmation, as this command could cause the modem
connection to be broken.

SendLongBreak Sends a long (3.5 second) break signal. As above, this requires
confirmation.

Hangup Tries to hang up the modem (by dropping DTR). Requires
confirmation.

The following fields are multiple choice items; when their labels
are selected with the mouse, a menu of possible values for the
field appears. Choosing a value from the menu will change the
field; clicking off the menu will leave the field unchanged.

Baud Rate Changes the BaudRate of the RS232 port.

Parity Changes the Parity setti ng of the RS232 port.

Character Length Changes the BitsPerSerialChar setting of the RS232 port.

Flow Control Changes the FlowControl setting of the RS232 port.

Stop Bits Changes the NoOfStopBits setting of the RS232 port.

Report Errors Changes the RS232C. REPORT.ST ATUS setti ng of the RS232 port.

File Transfer Using RS232

236

Files may be transferred using RS232CHAT and either the Kermit
or Modem protocols.

LISP LIBRARY MODULES, MEDLEY RELEASE, RS232

Using the rrv Port

RS232

Support for the TTY port is contained on the file DLTTY.LCOM.
The TTY port is designed to support low-speed communications
with RS232 devices. The 1/0 processor offers no low-level support
for input buffering. As a result, it is quite possible for newly
received input characters to overwrite previously received but
unread characters in the input hardware. The TTY port provides
exactly one character's worth of buffering; each character must
be read by Lisp before the next character is completely received.

Note: No hardware flow control is provided on the TTY port.
The Lisp TTY port service routines will obey received flow
control commands, but will not generate flow control
commands in response to increased input data rate.

(TTY.INIT BAUDRATE BITSPERSERIALCHAR PARITY NOOFS TOPBI TS
FLOWCONTROL)

[Function]

This function is very similar to the function RS232C.INIT.

Before using the TTY port, the TTY hardware must be
programmed with the proper characteristics for your
application.

Alternatively, the BAUDRATE argument can be an instance of
the RS232C.INIT record. If BAUDRATE is NIL, the value of the
global variable TTY.DEFAULT.INIT.INFO is used in its place. This
provides a means of automatically initializing the TTY port
hardware without user intervention.

TTY. DE FAU L T.I N IT.I N FO [Variable]

This variable controls default initialization of the TTY port. Its
value may be set in the site INIT.LlSP file, or in your INIT.LlSP file.
If TTY.DEFAULT.INIT.lNFO is not set when the TTY package is
loaded, its fields will be set to the following default values:

BaudRate: 1200
BitsPerSerialChar: 8

Parity: NONE
NoOfStopBits: 1

FlowControl: XOnXOff

Programs may use OPENSTREAM as an alternative to calling
TTY.INIT directly, with the parameters bundled up into the
PARAMETERS argument as shown below.

For example:

(OPENSTREAM '{TTY} 'BOTH NIL '«BaudRate 9600)
(BitsPerSerialChar 8»

(TTY.SET.PARAMETERS PARAMETERLISn [Function]

Applications may change the settings of the TTY hardware while
the TTY port is in use.

LISP LIBRARY MODULES, MEDLEY RELEASE, RS232 237

RS232

Using TIY Streams

238

PARAMETERLIST is an association list of parameter names and
values. For example, let's set the baud rate to 9600 baud and the
character length to eight bits:

(TTY.SET.PARAMETERS '«BaudRate . 9600)
(BitsPerSerialChar . 8)))

The following is a list of legal parameter names and values:

BaudRate 50, 75, 110, 150, 300, 600, 1200, 2400, 3600, 4800, 7200, 9600,
19200.

BitsPerSerialChar 5,6,7,8. If 5 or 6 bits of data are sent, they should be DATA, not
CHARACTERS.

Parity NONE, ODD, EVEN (1 parity bit).

NoOfStopBits 1,2 (This parameter should be 1 except at 110 baud).

FlowControl NIL, XOnXOff. For applications requiring XOn and XOff
characters other than i Q and is respectively, this parameter
may be supplied as a list in the form:(1 <XOn> <XOff »,
where <XOn> and <XOff> are replaced by the character
values of the XOn and XOff characters. The leading 1 signifies
that flow control should be enabled; a leading 0 will program
the TTY port with the appropriate XOn and XOff characters, but
leave flow control disabled.

Note: XOnXOff flow control is known to be reliable only up to
4800 baud.

DSR This parameter enables or disables the data set ready signal; it
may be specified as T or NIL.

CTS This parameter enables or disables the clear to send signal; it
may be specified as T or NIL.

(TTY.GET.PARAMETERS PARAMETERLlSn [Function]

The current settings for the TTY port may be obtained at any
time by calling this function.

PARAMETERLIST should be a list of parameter names.
TTY.GET.PARAMETERS returns an association list of parameter
names and values, in a format acceptable to
TTY.SET.PARAMETERS.

(TTY.SHUTDOWN) [Function]

This function turns off (disables) the TTY port and closes any
open streams on the device.

Programs may open streams to the TTY port by calling
OPENSTREAM with the file name {TTY}. The ACCESS argument
to OPENSTREAM may be INPUT, OUTPUT, or BOTH.

Unlike RS232 streams, TTY port streams are not buffered, and a
single stream may be used for both input and output. The
generic Lisp input/output functions BIN, BOUT, READP, OPENP,
and CLOSEF may be used on TTY port streams.

LISP LIBRARY MODULES, MEDLEY RELEASE, RS232

TTYCHAT

RS232CMENU

Examples

RS232

TTYCHAT is a module that enables the Chat library module to
communicate over the TTY port. No user-callable functions or
user-settable variables are available in the TTYCHAT module.
Once it is loaded, you may chat to the host named TTY to open a
connection to the TTY port. TTYCHAT is contained on the file
TTYCHAT.LCOM.

Because the TTY port does no low-level input buffering, it is
quite likely that many input characters will be lost while chatting
at 1200 baud or higher. This package should only be used for
non-critical applications, such as testing connections between
the TTY port and low-speed printers.

RS232CMENU is compatible with the TTY port as well. Certain
RS232 port commands, such as SendBreak! are not available with
the TTY port, and hence do not appear in the menu.

Testing the Connection Between Two Xerox Lisp Machines

To test for a working RS232 connection between Machine A (a
Xerox 1108) and Machine B (a Xerox 1100, 1108, or 1186) by
moving a file between them, proceed as follows:

Load RS232CHAT.LCOM on both machines.

Call RS232C.INIT to set up parameters.

Do RS232CHAT on both machines. You will be prompted for
a window.

Whatever you type on machine A should be echoed on machine
B and vice versa.

Testing the Connection Between Xerox Lisp Machines and a VAX Running VMS

VAX side: Set baud rate at which files will be transferred on the VAX side
using the VMS command SET. For example, to set to 1200 baud,
type:

SET TERM TTA1:/SPEEO=1200/PERM

1108 side: Load RS232CHAT.LCOM

Initialize: (RS232C. INIT 1200 8 NIL 1 NIL' RS232C)

Then call (RS232CHAT)

You should be able to use the Chat window like a VAX teletype
terminal.

LISP LIBRARY MODULES, MEDLEY RELEASE, RS232 239

RS232

240

By matching the baud rate on the VAX (through SET TERM) with
that on the 1108 (through RS232C.INIT), you can use any speed
up to 9600 baud.

LISP LIBRARY MODULES, MEDLEY RELEASE, RS232

Installation

User Interface

SAMEDIR

SameDir modifies MAKEFILE to guard against inadvertent1y
writing out a file onto a directory other than the one it'came
from.

SameDir adds the form (CHECKSAMEDIR) to MAKEFILEFORMS. It
compares the (HOST&DIRECTORYFIELD OLDFILE) against
(DIRECTORYNAME T T) to see whether the connected directory
matches the old file's source.

Load SAMEDIR.LCOM from the library.

If you do a MAKEFILE and you are connected to a directory that is
not listed in the FILEDATES property of the file, and the file has a
FILEDATES property at all (i.e., this isn't a brand new file), the
system will prompt you with:

You haven't loaded or written TORTOISE in your connected
directory {server} < user> should I write it out anyway?

Your options are reply with Y, N, C, or 0:

Y Yes, do the MAKEFILE

N No, abort the MAKEFILE

C Connect to other directory: allows you to type in another
path.

o Oops! Connect to the best guess; i.e., the directory where
the file was last loaded or written. This option requires
confirmation, in case you don't like the directory that the
system prompts you with.

The default answer to the question is Y (do the MAKEFILE).

When comparing directory names, SameDir ignores case
differences between the old and new directory names.

MIGRATIONS [Variable]

For those who regularly LOADFROM files on one directory and
MAKEFILE elsewhere, the variable MIGRATIONS can be set to
keep SameDir from asking too often. It is an association list
containing pairs of (OLDDIR . NEWDIR) , which specifies which
migrations are allowable.

For example, if it is legitimate to LOADFROM a file on
{MYHOST}<PUBLlC> and then do a MAKEFILE to
{MYHOST}<TEST>, then adding ({MYHOST}<PUBLlC> .
{MYHOST}<TEST» to MIGRATIONS will prevent MAKEFILE
from complaining about such movement.

LISP LIBRARY MODULES, MEDLEY RELEASE, SAMEDIR 241

SAMEDIR

Limitations

242

For Unix hosts using the PUP FTP protocol, there is sometimes an
inconsistency between the directory name in the full file name
and the directory name in DIRECTORYNAME. SameDir may have
trouble in that case detecting that the directories are the same.

LISP LIBRARY MODULES, MEDLEY RELEASE, SAMEDIR

Description

Requirements

Spy

Spy is a tool to help you make programs run faster by giving you
a picture of where the program is spending its time.

Spy has two parts: a sampler and a displayer. The sampler runs
while your program is running, and it monitors what your
program is doing. The displayer displays the data gathered by
the sampler.

The sampler periodically interrupts the running program to
account the functions in the current call stack. This allows Spy to
remember not only (proportionally) how long is spent in each
individual function, but also how long each function is seen on
the call stack. The sampler data structures minimize interference
with the normal running of the program - there is little
noticeable performance degradation. Spy doesn't log every call
and return (it only samples), so you can run it even over long
computations without fear of overflowing storage limits.

The displayer uses the Grapher module to display the data
gathered by the sampler. In the graph, the height of each node
is adjusted to be proportional to the amount of time. Just as
MasterScope and Browser give an interactive picture of the static
structure of the program, Spy gives an interactive picture of the
dynamic structure. The displayer is interactive as well as graphic.
That is, you can look at the data in a variety of ways, since it
seems there is no one picture that says it all. Since the displayer
knows the whole call graph, it can show the entire tree structure,
with separate calls to a function accounted separately, or merge
separate calls to the same functions. Since the sampler records
the entire calling stack when it samples, it can account for both
individual and cumulative time. When the sampler runs, if a
function is on the top of the stack, it adds to its individual total;
if the function is on the stack at all, the sampler adds to the
cumulative total.

When there are several calls to the same function within the
graph, the displayer can either merge the nodes (show the total
time for the function in one node) or not. If a node is merged,
then one of the boxes in the graph will have all of the time for
that function accounted to it, and the rest will be left as ghost
boxes. Spy has a variety of ways of controlling which nodes will
be merged.

GRAPHER
READNUMBER
IMAGEOBJ

LISP LIBRARY MODULES, MEDLEY RELEASE, SPY 243

Spy

Installation

User Interlace

244

Load SPY.LCOM and the required .LCOM modules from the
library.

(SPY.BUTTON POS) [Function]

(SPY.START)

(SPY.ENO)

This function puts up a little window, which you can use to turn
Spy on and off. If POS is NIL, you can drag the window with the
mouse. If POS is specified (in the format xxx. yyy) then the
window is placed at those coordinates.

When Spy isn't watching, it looks like this:

Left-clicking (pressing the left mouse button) on it once will turn
on sampling, and the window will look like this:

Spy on

R
Clicking on it again will turn off sampling, and display the results
(SPY.TREE 10). This is the simplest way of spying on operations.
(See SPY.TREE below.)

Note: You can't turn off sampling if the mouse process is locked
out.

[Function]

Reinitializes the internal Spy data structures, and turns on
sampling.

[Function]

Turns off sampling, and cleans up the data structures in
preparation for the display phase performed by SPY.TREE.

(SPY.TOGGLE) [Function]

If Spying is off, turn it on with (SPY.START). If it is on, turn it off
with (SPY.ENO) and then show the results with (SPY.TREE 10).

It is reasonable to use this with an interrupt character; e.g.,

LISP LIBRARY MODULES, MEDLEY RELEASE, Spy

Spy

(INTERRUPTCHAR (CHARCODE ~C) '(SPY. TOGGLE} T}

will enable control-C (or any other character you specify) as an
interrupt which will turn spying on and off, the same as clicking
on the Spy button. (If the Spy button is visible, it will respond to
the interrupt.) Then, a control-C will turn on spying, and another
one will turn it off.

(WITH.SPY FORM) [Macro]

Calls (SPY.START), evaluates FORM, calls (SPY.END), and then
returns the value of FORM.

For example,

(WITH.SPY (LOAD 'FOO})

is basically

(PROGN (SPY.START) (PROGl (LOAD 'FOO) (SPY.END].

(SPY.TREE THRESHOLD INDIVIDUALP MERGETYPE DEPTHLlM/n [Function]

SPY.TREE displays the results of the last Spy sampling in a
Grapher window. There are a number of parameters that control
the display, which you can either set when you call SPY.TREE, or
set interactively with the menu. You normally just use
(SPY.TREE) and the menus.

THRESHOLD is a percentage (defaults to 0). If a function's
contribution to the total elapsed time is lower than the
threshold percentage, it is not displayed.

INDIVIDUALP is either NIL or T. This controls whether cumulative
or individual percentages are displayed. The default is
cumulative, in which case a function is charged for the time
spent in that function and all subfunctions; if individual, a
function is only charged for the time spent in that function
alone.

MERGE TYPE is one of (NONE, ALL, DEFAULT). This controls
accounting for functions that appear in several places in the
calling tree. Mergetype ALL indicates the total time spent for all
calls to the same function, regardless of where it appears.
Mergetype NONE indicates the times separately for each instance
of the function. Mergetype DEFAULT is the same as NONE
except for recursive functions.

DEPTHLIMIT is a number (defaults to NIL = arbitrary depth; not
completely debugged for other values).

You will get a prompt to open a window, and then a graph will
appear in it, something like this:

LISP LIBRARY MODULES, MEDLEY RELEASE, Spy 245

Spy

SPY T, 656 samples
r "1 I ~ f 14 \BPCKGROUND, PROCEssl z .' f ~ / J l z./ ... :0', M)IISE PROCES.... ;'1 ~ ,,,1_------ 0:-':"', - • " ':'1 r
11(1(1 -r"~ ~.r.F.Q I f! ~ 2 ~~-:1

~ "",\ ~ ~ -"'--'e rr-n!j t z,~ ~./ XI:I:U£ ~ "':0 'EMEr:~-'-,-, -~ -'---.,.J L '"",,;7 CL: EIIPl

Right Button Operation

WINDOW, IW[IIJSE, H~DLERI ~17 SCF:OLL, H~DLER 15 \SCROL -~
~"""""""''''N'''''''''''''''''''''''''''''''''..I! r:I".F.F.IXr..l"D.

·'~·"X' w.·.·,· '~~~'x;.:*<:;.,,:.:.~:.~»~~),-::::.:~~
~~la""lrEiM:liJsE:":;tAtEj
::::'$.::::i-::::~:~:::::::::~::::~:~'$.:~::~::;:,"<:::>'X~*":::;W

~:7 CL:FIJNC.uLL r.:7 €':-:ec- , ~7 MUSlERSCOPE -

In this example, 100% of the time was spent under the top
frame, T. That time was then divided up among three processes:
\BACKGROUND.PROCESS, \MOUSE.PROCESS, :EXEC. The
numbers to the left of the label are the percentages. The height
of the box is proportional to the percentage (except that it is
always made big enough to hold the label). The width isn't
significant; it is just wide enough to hold the name of the
function

You can poi nt at any of the nodes.

If you right-click on a node, the window title will change to show
the function name, and the individual and cumulative
percentages. The first number is the individual total and the
second is the cumulative. If the right-click is not on a node, the
title will change to show the name of the top frame and the total
number of samples.

Left/Middle Button Operations - on a Node

If you left-click, or middle-click on a node, you will get a menu:

Ne'vvSubTree
SubTree
Delete
f'./1erge
Edit
InspectCoc~e

NewSubTree Creates another Spy window that includes data only from this
node and its descendents (with the tree rooted at the selected
node). Suppose that you were only interested in the actions that
you had invoked with the mouse. You can left-click
\MOUSE.PROCESS and select the NewSubTree option. You then
get a picture like this:

246 LISP LIBRARY MODULES, MEDLEY RELEASE, Spy

Spy

Spy \MOUSE,PROCESS, 147 samples

SubTree Behaves just like NewSubTree except that Spy will reuse the same
window.

Delete Removes the selected item (and its subbranches) from
consideration in this window, and redisplays.

For example, if you don't want to consider GETMOUSESTATE in
the graph at all, you can delete the GETMOUSESTATE box and
get:

SPY \MOUSE,PROCESS, 120 samples

1(1(1 \ \M)IJSE, f'F:OCESS 9E;

'f':""""-'''''''''-'''''-'''''''U''''-'''''''''''''-'''''''''''''''''''J. ~ ~ ... ~ ~ ~ ;a!

~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~

WINDOW. M)IJSE. H~DLEF: ~3:::: SCROLL. H~DLER~ ~ .. :: " ···r·F'flLL H~DLE~' ~.'.. :'.'
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t........,,",

~ ~ ... ~ ~ 1

The percentage for the SCROLLHANDLER changed from 80% to
93% when GETMOUSESTATE was deleted.

Merge Allows you to merge a node with its caller everywhere in the
tree.

Edit Invokes SEdit for the function in the node.

InspectCode Shows the compiled code for the function in the node.

Left/Middle Button Operation - Not on a Node

If you press the left, or middle button while not on a node, you
get a menu that will let you view or change the parameters for
the Spy window:

LISP LIBRARY MODULES, MEDLEY RELEASE, Spy 247

Spy

Legend Displays Spy border interpretation.

Inspect Allows for the inspection of the current parameter settings for
the Spy window.

SetThreshold Sets the threshold for displaying a node. Any node whose
percentage is below the threshold won't show up (unless it is
needed to connect the graph together). You can set the initial
threshold via the threshold argument to SPY.TREE; otherwise it
defaults to zero.

Individual/Cumulative This is used to toggle between the display of individual and
cumulative times. The initial default is cumulative; you can set it
to Individual by supplying T as the INDIVIDUALP argument to
SPY.TREE. (See below).

MergeNone/MergeAIi/MergeDefault This controls merging of nodes; see below.

Ctrl-LeftlCtrl-Middle Button Operations

Merged Nodes

248

If you press the left, or middle button while the control key is
down, you will get the same menu, but the action will be
deferred until you next use the left/middle button. For example,
you can delete several nodes and then do one update.

If two nodes are merged, then the merged node will include the
time (and descendents) of the other. The display of a merged
node is different; it is shown with a thick gray border; e.g. ,

::::::}::i-::::::~~:'i-:::;i-:-.s.:~~).:::::::::.: ::::::~:::: :'i-::::x:::: :i-.-::':!:.:::;.:::<::~::::;.::::~:::

~~~~ Inc: llJd€-s I)thH' br·.:..nch€·s ~f: 
~~'$.::::::x:s(':;::::::~~""::::::*:!:.:-;:~:i-:::::::>'~"!:).i.::::::::::'5-:::::m:'%:.:~-: .... :::::::-;.::t.:: 

The time in a merged node is the sum of the times for all 
occurrences. Other calls to the same function may show up as 
ghost boxes; e.g. 

I •••••••••••••••••••••••••••••••••••••••• 

The case where a function is merged with a recursive call to itself 
is handled specially: the head of the recursion is marked with a 
wider checkered border: 

't'i~",.,"'",.,"'~~"'~"'~.r!"'",.,",.,"'",.,~"'-J. 
~H€·.:..d .:.t r€',::lJr's 1'''€- ch.:..lrI3. 
'(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,::1; 

and the tail of the recursion is shown in reverse video: 

End of rec:ursive chain 

LISP LIBRARY MODULES, MEDLEY RELEASE, Spy 



Individual and Cumulative Modes 

Spy 

In the recursive case, you can find a situation like this: 

In this case, A calls Band C, and C calls A. All of the time is really 
spent in B, although only 10% is due to the call from the 
top-level, and 90% is under a call to C, which called A, which 
called B. In this situation, C is also recursive, of course, and also 
has the recursive border. If you find this display confusing, try the 
MERGENONE option and see if you get a clearer picture. 

MERGEDEFAULT means to merge any function that is not in 
SPY.NOMERGEFNS, initially set to (SI: :*UNWIND-PROTECT* 
CL:EVAL \\EVAL-PROGN \\lNTERPRET-ARGUMENTS 
\\lNTERPRETER \\lNTERPRETER1 ERRORSET \\EVAL \\EVALFORM 
APPLY \\PROGV EVAL). 

MERGENONE means not to merge at all. 

MERGEALL means to merge any two nodes for the same 
function. 

The default for Individual mode is MERGEALL. The default for 
Cumulative mode is MERGEDEFAULT. 

Spy initially comes up with the height of the boxes showing the 
amount of time the function was on the current call stack. This is 
called cumulative mode, since each function gets the time that 
both it and the functions it calls account for. There is another 
kind of display, called Individual, in which the boxes are 
proportional to the amount of time the function was on the top 
of the stack. 

One thing to watch for: when you switch between Individual 
and Cumulative modes, the threshold stays the same. Sometimes 
the threshold for Individual needs to be higher; otherwise, 
functions will tend to disappear in the Individual tree. Also, 
switching to Individual mode also changes to MERGEALL, while 
switching to Cumulative changes you to MERGEDEFAU LT. 

(SPY. LEGEND) [Function] 

If you forget what the different shadings and borders mean, this 
function brings up a window that shows what they mean; i.e., it 
shows the interpretation of SPY.BORDERS or the other internal 
controls. 

SPY.FREQUENCY [Variable] 
How many times per second to sample? Initially set to 10. 
(Maximum 60). 

LISP LIBRARY MODULES, MEDLEY RELEASE, SPY 249 



Spy 

Limitations 

250 

SPY.NOMERGEFNS [Variable] 

SPY.TREE 

Functions on this list won't get merged under MergeDefault. 
Includes (SI: :*UNWIND-PROTECT* CL:EVAL \\EVAL-PROGN 
\\INTERPRET-ARGUMENTS \\INTERPRETER \\INTERPRETER1 
ERRORSET \\EVAL \\EVALFORM APPLY \\PROGV EVAL). You may 
need to add more. 

[Variable] 

This variable (same name as the function) is used to hold the data 
from the last sampling. You can save it and restore it using 
UGL YVARS (see IRM). 

SPY.BORDERS [Variable] 

SPY.FONT 

Used to control the border display on a tree. This is a list of 
(NODETYPE DESCRIPTION BORDERWIDTH TEXTURE 
INTERIORTEXTURE). 

[Variable] 

Font used to display node labels. Initially GACHA 10. 

SPY.MAXLINES [Variable] 

Maximum height of a node in the graph, measured in multiples 
of the font height of SPY.FONT. 

Spy doesn't know anything about the interpreter or the internal 
workings of lisp. Internal functions that are not REALFRAMEP 
and don't normally show up on BT backtraces (but do on BTn will 
be shown in Spy. This includes things like \INTERPRETER1, which 
will appear underneath any interpreted function call. Thus Spy 
does not distinguish between frames that are interesting or not 
i nteresti ng to the user. 

LISP LIBRARY MODULES, MEDLEY RELEASE, Spy 



Requirements 

Installation 

Definitions 

Limitations 

SYSEDIT 

There are many system-internal data type declarations that don't 
usually appear in the sysout. For example, most people don't 
use the internal fields of strings or streams, so their definitions 
aren't included in the sysout. However, there is a collection of 
definitions that are used by people who are working on 
system-level code, definitions that are widely relied upon by 
more than one system source file. 

SysEdit is provided for users who work with the system sources or 
who write system-level code - it brings in the frequently-used 
defi nitions. 

MASTERSCOPE 
EXPORTS.ALL 
CMLARRAY-SUPPORT 

Lisp programming environment. 

The declarations and definitions are provided in the source 
listings of SysEdit and in the files it loads. 

SEDit internal definitions are not included, nor are declarations 
that are used only within a single system source file. 

LISP LIBRARY MODULES, MEDLEY RELEASE, SYSEDIT 251 



SYSEDIT 

[This page intentionally left blank] 

252 LISP LIBRARY MODULES, MEDLEY RELEASE, SYSEDIT 



Installation 

User Interface 

TABLEBROWSER 

TableBrowser implements a simple mechanism for building 
applications that browse certain kinds of tabular data. It 
supplies a set of basic functions that maintain the window, 
allowing scrolling and selection of items; the application defines 
the items, how they print, and any higher-level operations to 
perform on them. FileBrowser is an example of an application 
built upon TableBrowser. 

Load TABLEBROWSER.LCOM from the library. 

During program development, you also need to load the 
declarations file TABLEBROWSERDECLS; this file is not needed 
when running a compiled application. The file manager coms 
for the typical application file should thus include the two 
commands 

(FILES (SYSLOAD) TABLEBROWSER) 
(DECLARE: EVAL@COMPILE DONTCOPY 

(FILES (SOURCE) TABLEBROWSERDECLS) 

An instance of a TableBrowser application is a window 
displaying a browser. The browser consists of an ordered set of 
items. Each item contains an item of application data and some 
bookkeeping information. TableBrowser maintains the display, 
supplying generic scrolling, painting, reshaping and selection 
mechanisms; the application supplies TableBrowser with a set of 
methods for displaying the contents of an item, what to do when 
an item is copy selected, etc. 

Review the user interface of the FileBrowser module to get an 
idea of the selection mechanism and the sort of functionality 
available from TableBrowser. Briefly, items are selected by 
clicking in the browser window - left to select a single item, 
middle to add an item to the current selection, control-middle to 
remove an item, right to extend the selection, control-right to 
extend the selection, including deleted items. 

The typical application creates a browser window, fills it with 
items, and attaches one or more menus to the window. The 
menu contains commands that may perform application-specific 
operations, usually on the set of currently selected items. 

LISP LIBRARY MODULES, MEDLEY RELEASE, TABLEBROWSER 253 



TABLEBROWSER 

Records 

TABLEITEM Record 

TABLEBROWSER Record 

254 

TIDATA 

There are two important records, TABLEITEM and 
TABLEBROWSER. These records are declared in the file 
TABLEBROWSERDECLS. 

Each piece of application data (a line in the browser) is 
encapsulated in an instance of the datatype TABLEITEM, whose 
fields are as follows. The first four fields are supplied by the 
application; the others are maintained by TableBrowser and 
should be considered read-only from the point of view of the 
application: 

[Record field] 

An arbitrary pointer to the application data. 

TIUNSELECTABLE [Record field] 

If T, the user is not permitted to select this item. 

TIU NCOPYSELECTABLE [Record field] 

If T, the user is not permitted to copy-select this item. 

TIUNDELETABLE [Record field] 

TI# 

TISELECTED 

TIDELETED 

If T, the user is not permitted to delete this item. This field is not 
currently supported by TableBrowser, though the application 
may use it itself for this purpose. 

[Record field] 

An integer denoting the position of this among the set of items 
in the browser. This field is maintained automatically by 
TableBrowser as items are removed or new items are inserted. 
The first item is numbered 1. 

[Record field] 

T if the item is currently selected; NIL otherwise. 

[Record field] 

T if the item is currently marked for deletion; NIL otherwise. 

For each browser, there is an instance of the datatype 
TABLEBROWSER, whose fields are described below. 
TABLEBROWSERs are created by TB.MAKE.BROWSER (see the 
section "Functions," below). The first six fields listed here are 
"methods"- application functions called from the TableBrowser 
code when some event occurs or in order to carry out some 
operation. The application function is called with the browser 
object itself as the first argument, and possibly other arguments. 
Only the first method, TBPRINTFN, is required; the others may be 
NIL. For most applications, the fields listed here are set in the call 
to TB.MAKE.BROWSER and then never changed. 

-------------------
LISP LIBRARY MODULES, MEDLEY RELEASE, TABLEBROWSER 



TBPRINTFN 

TBCOPYFN 

TBCLOSEFN 

TABLEBROWSER 

[Record field] 

Application function invoked to print a single item in the 
browser. The three arguments are the browser, the item being 
painted, and the window in which the item is to be painted. At 
the time the method is called, TableBrowser has set the x,y 
position of the window to the left edge of the line where this 
item starts. It has done nothing to the line, including clear it; the 
application must clear the line before printing if it so desires. 
Somewhat smoother, but more complex, repainting is possible if 
the application clears only the areas that it is not otherwise 
overwriting. After the printing is finished, TableBrowser 
supplies a selection mark and deletion line if appropriate. 
TableBrowser worries about scrolling, reshaping, inserting new 
items, etc., and calls the printing function for each line that it has 
determined needs to be (re)displayed as the result of operations 
performed on the browser. 

[Record field] 

Application function invoked when an item in the browser is 
copy-selected. Copy selection occurs when the Copy or Shift key 
is held down and the mouse is used to select a line in the 
browser. While the Copy key is down, TableBrowser highlights 
the item under the cursor with a dotted underline; when the 
copy key is released, the highlighting is removed, and the copy 
function is called with two arguments: the browser and the item 
selected. The Copy function typically calls BKSYSBUF on some 
string or structure representing the item selected. Copy selection 
can be aborted by moving the mouse outside the window with 
the mouse button still down. If an item's TIUNCOPYSELECTABLE 
field is true, copy selection is ignored while the mouse is inside 
the item. If TBCOPYFN is NIL, then copy selection is ignored for 
the entire browser. 

[Record field] 

Application function invoked when the user tries to close or 
shrink the browser window. The three arguments are the 
browser, the window, and a flag whose value is one of the 
symbols CLOSE or SHRINK. If the function returns the symbol 
DON'T, then the close or shrink operation is aborted; if it returns 
NIL, it proceeds; otherwise, the value is a function to run as a 
separate cleanup process. In this last case, the window remains 
open and the value returned from the TBCLOSEFN application is 
called in a new process with the same three arguments (browser, 
window, flag). When this function finishes, it should call the 
function TB.FINISH.CLOSE (see the section" Functions, II below) to 
complete the close or shrink operation, assuming it wishes it to 
proceed. 

TBAFTERCLOSEFN [Record field] 

Application function invoked when the browser window is 
about to be discarded. The two arguments are the browser and 
the window. This function is called after the TBCLOSEFN, if any, 
has permitted the window to close; note that it is not called 
when a window is merely shrunk. The application might, for 

LISP LIBRARY MODULES, MEDLEY RELEASE, TABLEBROWSFR 255 



TABLEBROWSER 

example, want to remove the browser from its own structures, 
snap circular links, etc. The return value is ignored. 

TBTITLEEVENTFN [Record field] 

Application function invoked when the middle mouse button is 
pressed while the cursor is in the title bar of the browser (clicking 
in the body of the window is for selection and is handled by 
TableBrowser itself). The two arguments are the window and 
the browser. Note that this is the only method that does not 
take the browser as the first argument; this is to match the form 
of window system button event functions. 

TBFONTCHANGEFN [Record field] 

Application function invoked when the font of the window is 
changed (by TB.SET.FONT). The two arguments are the browser 
and the window. The application function might, for example, 
want to change cached information about the size of the font. 

TBLINETHICKNESS [Record field] 

The thickness of the horizontal lines drawn through deleted 
items. This defaults to the value of TB.DELETEDLINEHEIGHT, 
initially 1. For example, setting this field to the height of an item 
would result in items being completely blacked out when they 
are deleted. 

TBHEADINGWINDOW [Record field] 

An optional auxiliary window that is to be horizontally scrolled 
in parallel with the main window. The WIDTH of the window's 
EXTENT property is maintained in synch with that of the main 
window, and whenever the main window is horizontally 
scrolled, the heading window is scrolled by the same amount. 
You still need to create this auxiliary window, attach it where 
you want it and supply it with a REPAINTFN. (This is how 
FileBrowser implements its header line identifying the columns 
of attributes.) 

TBUSERDATA [Record field] 

TBFONT 

An arbitrary pointer to application-dependent data. 

The following fields describe the size and shape of items. The 
values are usually derived from information supplied when a 
browser is created (see TB.MAKE.BROWSER) and then never 
changed. If an application wishes to change any of these fields 
once a browser has been created, it should call TB.SET.FONT 
afterwards to notify TableBrowser of the change. 

[Record field] 

A font descriptor, the default font in which items are painted. 

TBFONTHEIGHT [Record field] 

The height of the font. 

----------------------------
256 LISP LIBRARY MODULES, MEDLEY RELEASE, TABLEBROWSER 



Functions 

Creating a TableBrowser 

TABLEBROWSER 

TB#LlNESPERITEM [Record field] 

The number of lines (in units of the font's height) occupied by 
each item. TableBrowser requires that each item occupy the 
same number of lines. The default is 1. For multi-line items, the 
window is positioned at the first line when its print function is 
called, selection markers point at the first line, and deletion lines 
are drawn only through the first line. 

TBITEMHEIGHT [Record field] 

TBBASELINE 

TBWINDOW 

TBLOCK 

The total height of an item. This is normally the font height 
times the number of lines per item, but an application can set it 
explicitly, independent of the font, instead of specifying the 
number of lines per item. 

[Record field] 

The distance of an item's baseline above the bottom of the item. 
This field has been renamed from TBFONTDESCENT. This field is 
used for two purposes: 

• When the browser's PRINTFN is called, the y-position of the 
window is set to be at the baseline . 

• Selection marks and deletion lines are centered between the 
baseline and the top of the item. 

The following fields are maintained by TableBrowser, but may 
be of use to application code; they should be considered 
read-only. 

[Record field] 

A pointer to the window containing the browser. 

[Record field] 

A monitor lock acquired by the TableBrowser when performing 
operations on the browser. Application code may want to hold 
this lock while performing a series of TableBrowser operations 
that it wishes to have occur atomically. Selection and scrolling 
are inhibited while this lock is busy. 

This section describes the functions that create and manipulate 
TableBrowser windows and their contents. Typical use for most 
of these functions is from the code invoked by commands from a 
menu attached to the window by the application. 

(TB.MAKE.BROWSER ITEMS WINDOWSPEC PROPS) [Function] 

Creates a new browser, browsing ITEMS, a list of TABLEITEM 
records. ITEMS may be NIL, in which case an empty browser is 

LISP LIBRARY MODULES, MEDLEY RELEASE, TABLEBROWSER 257 



TABlEBROWSER 

258 

created. It is permissible for the TISElECTED and/or TIDElETED 
fields to be true in any item; this is a way of setting the initial 
selection, and/or pre-deleting some items. 

If WINDOWSPEC is supplied, it is a window or region; otherwise, 
the user is prompted for a window. 

PROPS is a list in property list format specifying initial values for 
some features of the browser. The properties PRINTFN, COPYFN, 
ClOSEFN, AFTERClOSEFN, lINESPERITEM, ITEMHEIGHT, 
BASELINE, HEADINGWINDOW, lINETHICKNESS, and USERDATA 
set the corresponding fields of the new TABlEBROWSER record 
(see above). The following additional properties are recognized: 

TITLE The title to put on the window. If Nil, the window will not be 
given a title. 

FONT The font in which to paint items (a font descriptor or any other 
argument acceptable to FONTCREATE). This font is made the 
window's current font. If the browser's print function displays 
items in more than one font, the application should choose the 
tallest font for the FONT property, and it is responsible for 
ensuring that the correct font is always in use. If this property is 
Nil, the default display font is used. The browser fields TBFONT 
and TBFONTHEIGHT are set from this font. In addition, if the 
caller did not specify the ITEMHEIGHT property, the fields 
TBITEMHEIGHT and TBBASELINE are calculated from the font. 
TableBrowser uses the sizes to know where each line starts. 

If the caller specified the ITEMHEIGHT property but no BASELINE, 
the baseline is taken to be zero. If the caller did not specify 
ITEMHEIGHT, then the baseline is calculated to be the font's 
descent, or in the case of multiple lines per item, the descent plus 
the font height times (#lINESPERITEM-1), so that the behavior 
described above for TB#lINESPERITEM holds. 

TB.MAKE.BROWSER returns a new TABlEBROWSER object 
describing the browser. The application is free to attach further 
windows to this one. The TABlEBROWSER object is also stored 
on the window's TABlEBROWSER property. 

(TB.REPLACE.ITEMS BROWSER NEWITEMS) [Function] 

Completely replaces the items of BROWSER with NEWITEMS, a 
list of TABlEITEM records. This is a lot like creating a new 
browser, except that the window structure is already there. 

{TB.SET.FONT BROWSER FONn [Function] 

Changes BROWSER's display font to FONT, which is of the same 
form as the FONT property given to TB.MAKE.BROWSER. If 
FONT is Nil, TB.SET.FONT makes its computations based on the 
browsers current display-related fields (TBFONT, 
TB#lINESPERITEM, etc). 

TB.SET.FONT clears the window; the application is responsible 
for ensuring that the window is redisplayed, e.g., by calling 
REDISPLA YW. TB.SET.FONT does not do the redisplay itself, so as 
to avoid double redisplay in the case where the application also 

LISP LIBRARY MODULES, MEDLEY RELEASE, TABLEBROWSER 



Simple Item Operations 

TABLEBROWSER 

wants to change the items at the same time (by calling 
TB. REPLACE. ITEMS). 

(TB.FINISH.CLOSE BROWSER WINDOW CLOSEFLG-) [Function] 

Takes care of closing or shrinking WINDOW, occupied by 
BROWSER, after the cleanup performed by the browser's 
TBCLOSEFN (see above). 

CLOSEFLG is one of the symbols CLOSE or SHRINK. 

(TB.BROWSER.BUSY BROWSER) [Function] 

Briefly changes the cursor to a large "X", the conventional way 
TableBrowser indicates that an operation attempted with the 
mouse cannot be performed because the browser is busy. 

(TB.SELECT.ITEM BROWSER ITEM) [Function] 

Marks ITEM in BROWSER selected. Ordinarily, selection occurs by 
means of the mouse. However, applications may want to 
programmatically select items in response to a user command. 
Selected items are indicated by a small triangle in the left 
margin. 

(TB.UNSELECT.ITEM BROWSER ITEM) [Function] 

Marks ITEM in BROWSER not selected. 

(TB.UNSELECT.ALLITEMS BROWSER) [Function] 

Marks all items in BROWSER not selected. This is considerably 
faster than unselecting items one at a time. The typical use for 
this function is prior to calling TB.SELECT.ITEM, to ensure that 
the new selection is the browser's only selection. 

(TB.DELETE.ITEM BROWSER ITEM) [Function] 

Marks ITEM in BROWSER for deletion. The display shows a line 
drawn through the item. It is permissible to delete a deleted 
item (it is a no-op). 

(TB.UNDELETE.ITEM BROWSER ITEM) [Function] 

Removes the deletion mark from ITEM in BROWSER. 

(TB.INSERT.ITEM BROWSER NEWITEM BEFOREITEM) [Function] 

Adds NEWITEM to BROWSER's set of items, inserting it 
immediately before the item BEFOREITEM, or at the end if 
BEFOREITEM is NIL 

(TB.REMOVE.lTEM BROWSER ITEM) [Function] 

Removes ITEM from BROWSER's set of items. This is the 
operation that an application's "Expunge" function would 
typically use, but it need not be in any way correlated with 
deleted items. 

LISP LIBRARY MODULES, MEDLEY RELEASE, TABLEBROWSfR 259 



TABLEBROWSER 

(TB.NORMALlZE.ITEM BROWSER ITEM) [Function] 

Scrolls BROWSER's window, if necessary, so that ITEM is visible. 

(TB.CLEAR.LlNE BROWSER ITEM LEFT WIDTH) [Function] 

Clears the contents of ITEM's line in BROWSER, starting at the 
x-position LEFT and clearing a region WIDTH pixels wide. LEFT 
defaults to zero, WIDTH to infinity, so omitting both clears the 
whole line. 

This function is typically used by a browser's print function to 
clear the line before displaying fresh contents. An application 
wanting to print with minimal visual disruption may want to use 
TB.CLEAR.LlNE only on those portions of the line not being 
printed to explicitly, so that repainting a line with only slight 
changes minimizes the apparent display activity. 

(TB.REDISPLA Y.ITEMS BROWSER FIRST/TEM LAST/TEM) [Function] 

Ordinarily, TableBrowser takes care of deciding when items need 
to be redisplayed (e.g., when scrolling, reshaping, inserting, etc.). 
However, there may be times when circumstances beyond the 
knowledge of TableBrowser require that an item be redisplayed, 
e.g., when the contents of the item are changed by the 
application. In such cases, the application is responsible for 
telling TableBrowser that repainting is needed. 

TB.REDISPLA Y.ITEMS explicitly invokes BROWSER's repaint 
method to redisplay items FIRST/TEM through LAST/TEM, which 
may be the same item in the case of redisplaying a single item. 
The item arguments may be given as TABLEITEM objects or as a 
number. FIRST/TEM defaults to the browser's first item and 
LAST/TEM defaults to the last one; thus (TB.REDISPLAY.ITEMS 
BROWSER) forces redisplay of the entire browser, and is 
equivalent to calling REDISPLAYW on the window. Only those 
items currently visible in the window are actually repainted. 

Operations on Multiple Items 

260 

(TB.NUMBER.OF.ITEMS BROWSER TYPE) [Function] 

Returns the number of items in BROWSER of the specified TYPE, 
one of the following symbols: 

NIL Returns the total number of items. 

SELECTED Returns the number of items currently selected. 

DELETED Returns the number of items currently deleted. 

(TB.NTH.ITEM BROWSER N) [Function] 

Returns the Mh item in BROWSER. N is an integer; the first item 
is numbered 1. Returns NIL if N is less than 1 or greater than the 
number of items in the browser. 

Most of the following functions accept a predicate or mapping 
function. The results of the mapping are unpredictable if the 
mapping function adds or removes items, so an application 

LISP LIBRARY MODULES, MEDLEY RELEASE, TABLEBROWSER 



TABLEBROWSER 

wishing to do so should first collectthe items of interest and map 
over that list itself. 

(TB.COLLECT.ITEMS BROWSER PREDFN) [Function] 

Returns a list, in browser order, of all the items in BROWSER of 
the type specified by PREDFN. PREDFN can be one of the symbols 
NIL, SELECTED or DELETED, which are interpreted as for 
TB.NUMBER.OF.ITEMS. Otherwise, PREDFN is a predicate 
function of two arguments, BROWSER and an item from the 
browser; PREDFN should return T if the item is to be collected. 

(TB.MAP.ITEMS BROWSER MAPFN NULLFN) [Function] 

Applies the function MAPFN successively to each item in 
BROWSER. MAPFN should accept two arguments, BROWSER and 
the item. 

If the browser is empty, TB.MAP.ITEMS instead calls NULLFN, if 
specified, with the single argument BROWSER. 

(TB.MAP.SELECTED.ITEMS BROWSER MAPFN NULLFN) [Function] 

Applies the function MAPFN successively to each selected item in 
BROWSER. MAPFN should accept two arguments, BROWSER and 
the item. 

If no items are currently selected in the browser, 
TB.MAP.SELECTED.ITEMS instead calls NULLFN, if specified, with 
the single argument BROWSER. 

A typical application calls TB.MAP.SELECTED.ITEMS in response 
to a menu selection to carry out the operation on the items you 
have selected. 

(TB.MAP.DELETED.ITEMS BROWSER MAPFN NULLFN) [Function] 

Applies the function MAPFN successively to each deleted item in 
BROWSER. MAPFN should accept two arguments, BROWSER and 
the item. 

If no items are currently deleted in the browser, 
TB.MAP.DELETED.ITEMS instead calls NULLFN, if specified, with 
the single argument BROWSER. 

{TB.FIND.ITEM BROWSER PREDFN FIRST# LAST# BACKWARDSFLG)[Function] 

Returns the fi rst item in BROWSER in the range of items 
numbered FIRST# through LAST# that satisfies the predicate 
PREDFN (a function of two arguments), BROWSER and the item. 

PREDFN can also be one of the symbols SELECTED or DELETED to 
search for selected or deleted items. 

FIRST# defaults to 1, LAST# defaults to the number of items in 
the browser, so omitting both searches the whole browser. 

If BACKWARDSFLG is true, the range is searched in reverse order. 

LISP LIBRARY MODULES, MEDLEY RELEASE, TABLEBROWSER 261 



TABLEBRQWSER 

Miscellaneous Access Functions 

Limitations 

262 

These provide functional access to some of the fields defined in 
the Records section. 

(TB.ITEM.SELECTED? BROWSER ITEM) [Function] 

Returns T if ITEM in BROWSER is selected. 

(TB.ITEM.DELETED? BROWSER ITEM) [Function] 

Returns T if ITEM in BROWSER is deleted. 

(TB.WINDOW BROWSER) [Function] 

Returns a pointer to the window containing the browser. 

(TB.USERDATA BROWSER NEWVALUE) [Function] 

Returns the value of the TBUSERDATA field of the browser; if 
NEWVALUE is supplied, it is stored as the new value of this field. 

TB.LEFT.MARGIN [Constant] 

The left margin, in pixels, of the start of each item in the 
browser. Space to the left of this point is used by the selection 
marker. This constant is compiled into TableBrowser. 

In the current implementation, the items in a browser are 
maintained as a simple list. This means that some operations 
that might be expected to take constant time (e.g., returning the 
nth item) instead take linear time (or worse). TableBrowser 
currently optimizes its operations for sequential access, so that 
the most typical operations are not adversely affected. However, 
note that performance may not be acceptable for very large 
browsers (on the order of 1000 items) when accessing items in 
random order, or in particular, searching a browser in reverse 
order. 

LISP LIBRARY MODULES, MEDLEY RELEASE, TABLEBROWSER 



Requirements 

Hardware 

Software 

TCP-IP 

The Transport Control Protocol - Internet Protocol (TCP-IP) family 
of networking protocols was developed under the auspices of 
the Department of Defense to standardize communication 
mechanisms within Department of Defense networks such as the 
ARPANET. 

The protocols are documented in a collection of working papers 
known as Requests for Comments (RFCs). Appropriate RFC 
numbers appear throughout this document as new protocols are 
introduced. 

TCP-IP has both hardware and software requirements. 

• Ethernet 

• Cooperating host (yours or theirs) 

• 110Xl118X with an Ethernet controller (usually co-resident on 
an otherwise inhabited module) 

• XCVR interface cable 

• XCVR installed on an Ethernet with a logical (direct or 
internet) connection to the cooperating host. 

You need the files enumerated in the section titled "Interlisp 
Files. II Files loaded by the high-level modules TCPFTP, 
TCPFTPSRV, TCPCHAT, and TCPTFTP automatically load their 
dependencies. If you load files from floppy, you must load their 
dependencies first: 

File Dependencies 

TCP TCPLLlP 

TCPCHAT TCP, CHAT 

TCPCONFIG None 

TCPDEBUG TCP 

TCPDOMAIN TCPUDP 

TCPFTP TCPNAMES, TCP 

TCPFTPSRV TCPFTP 

TCPHTE None 

TCPLLAR None 

TCPLLlCMP None 

TCPLLlP TCPHTE, TCPLLlCMP, TCPLLAR 

LISP LIBRARY MODULES, MEDLEY RELEASE, TCP-IP 263 



TCP-IP 

User Interface 

Installation 

Obtaining Network Addresses 

264 

TCPNAMES 

TCPTFTP 

TCPUDP 

None 

TCPUDP 

TCPLLlP 

TCP does not have a user interface module of its own. Its 
functions and variables are accessible via an Interlisp Executive, 
and you can direct some of its debugging information to a 
window. 

As a network protocol module, it extends capability to other 
programs which may have their own window interfaces, for 
example, Chat and FileBrowser. 

The first step in installing TCP-IP is to add your workstation to a 
network supporting TCP-IP and communications with others on 
the net. The rest of this section contains a step-by-step set of 
directions for this installation. 

After you are on the network, load the required .LCOM modules 
for the type of service you want. For a full description of these 
modules, see the section "Interlisp Files. II 

Module 

TCPFTP 

TCPFTPSRV 

TCPCHAT 

TCPTFTP 

Implementation 

TCP-based file transfer protocol 

TCP-based FTP server 

TELNET protocol for the Chat system. 

TFTP protocol. 

The first thing you need to do is to get a TCP-IP address assigned 
to each of your workstations from your network administrator. 
If your site supports Domains, get the name of your local domain 
and the addresses of your domain server(s) from your network 
administrator. You will also need to know the network addresses 
and operating system of the hosts you want to communicate 
with and the addresses of any network gateways you have. 

Note: The maximum length of the domain and organization 
fields is 20 characters each. 

Be sure to find out whether your net is a true Class A, B or C 
network and is not broken up into subnets. If it is broken up into 

LISP LIBRARY MODULES, MEDLEY RELEASE, TCP-IP 



TCP-IP 

subnets, be sure to read the discussion on SUBNETMASKs in "A 
Primer on IP Networks." 

Warning For Sun Installations: When running TCP-IP to a Sun 
from an 11xx, directory enumeration on an unmatched 
directory path returns a listing for the top-level directory 
of the logged-in user. The TCPFTP protocol does not 
support directory creation. 

Creating HOST.TXT File 

Create a HOSTS.TXT file containing entries for the TCP-IP hosts 
needed by the user community and place a copy of the file on 
either a directory contained in the DIRECTORIES search path of 
each workstation on the net or the local disk of each Interlisp 
workstation. 

The following is a sample HOSTS. TXT file: 
Hosts.txt, 
Internet Hosts Table for Networks 192.20.10.0 and 174.23.0.0 
12-Dec-86 

The format of this file is documented in RFC 810, "DoD Internet 
Host Table Specification", which is available online at SRI-NIC 
as the file 

[SRI-NIC]<RFC)RFC952.TXT 

It may be retrieved via FTP using username ANONYMOUS with 
any password. 

or as the file 
[INDIGO]<RFC)RFC952.TXT 

Read access to GV World. Valid GV credentials required. 

The format for entries is: 

GATEWAY: ADDR, ADDR : NAME : CPUTYPE : OPSYS : PROTOCOLS 
HOST: ADDR, ALTERNATE-ADDR (if any): HOSTNAME,NICKNAME : CPUTYPE 

OPSYS : PROTOCOLS : 

Where: 
ADDR = internet address in decimal, e.g., 26.0.0.73 
CPUTYPE = machine type (Xerox-llxx, VAX-ll/780, SUN, etc.) 
OPSYS = operating system (UNIX, TOPS20, TENEX, VMS, Interlisp, 

etc. ) 
PROTOCOLS = transport/service (TCP/TELNET, TCP/FTP, etc.) 
: (colon) = field delimiter 
:: (2 colons, NO space between) = null field 

LISP LIBRARY MODULES, MEDLEY RELEASE, TCP-IP 265 



TCP-IP 

HOST: 192.20.10.1 
TCP/FTP 
HOST: 192.20.10.3 
TCP/FTP 
HOST 192.20.10.15 

HOST 192.20.10.71 
TCP/FTP : 
HOST: 174.23.77.22 

Bach : Xerox-ll0B : Interlisp TCP/TELNET, 

PARC-VAXC : VAX-11/7BO : UNIX TCP/TELNET, 

Oberon: VAX-11/7BO : VMS: TCP/TELNET, TCP/FTP 

Explorer: TI-EXPLORER : TOPS-20 : TCP/TELNET, 

Sunrise: SUN: UNIX: TCP/TELNET, TCP/FTP : 
HOST : 174.23.30.21 : Rutgers VAX-11/7BO TOPS-20: TCP/TELNET t 

TCP/FTP : 
HOST 174.23.76.21 Simba SYMBOLICS SYMBOLICS-3600 
TCP/TELNET, TFP/FTP : 
GATEWAY: 192.20.10.240, 174.23.77.250 : Hellsgate : VMS: IP/GW : 

This example shows a host table that indicates that there are four 
hosts (Bach, PARC-VAXC, Oberon, and Explorer) on net 
192.20.10.0, three hosts (Sunrise, Rutgers, and Simba) on net 
174.23.0.0 and a gateway (Hellsgate) that connects the two. 

In regard to the OPSYS field in the HOSTS.TXT file, it is preferable 
to use values recognized by the Lisp variable NETWORKOSTYPES. 
Interlisp is the default value if a host's OSType is not declared. 

Note that if any host is accessible via another network protocol 
(for example, PUP or NS), you may desire to call the host by an 
unambiguous name when it is accessed via TCP. You can do this 
by giving it an unambiguous name in the HOSTS.TXT file. 

If you ever modify the HOSTS.TXT table after TCP.LCOM has been 
loaded, use the function (\HTE.READ.FILE 'HOSTTABLE) to reread 
the file. 

For example, 

(\HTE.READ.FILE '{DSK}<LISPFILES)HOSTS.TXT) 

TCP.ALWAYS.READ.HOSTS.FILE [Variable] 

Initially set to T. Setting it to NIL causes the system to parse the 
HOSTS.TXT file only when the filename (stored in the 
configuration file) is different from the previously read filename, 
or the write date of the file has changed. The HOSTS.TXT file will 
always be read at least once when loading the software into a 
clean sysout. 

Creating the LocaIIP.lNIT File 

266 

TCP.CONFIGURE brings up a menu that you complete. 

Exec 3 (XCL) 
3/38) (tcp .configure ) 
#<window @ 47,55554) 
3/37) 

LISP LIBRARY MODULES, MEDLEY RELEASE, TCP·IP 



TCP Configuration 

IApply! Reset! Quit II 

Host Name: 
Host Address: 

Network Address: 
Subnet mask: 

Default Gateway: 
Local DCIIlain: 

DClllain servers: 

Pan her-
1:3. .77 I::: 
13, ,77,0 
13, 52,205,0 
1!d2 .20 . 10 .240 

TCP-IP 

Hosts.txt file: {Dsk}<Lispfiles)HOSTS,TXT 

{ds~:_}ip. init." done, 

Reset! 

Host Name: 
Host Address: 

Network Address: 
Subnet mask: 

Default Gateway: 
Local Domain: 

OClllain servers: 

Panthe r-
13.2.77.8 
13.2,77,0 
13.252.205.0 
H~i2 .20 . 10 .240 

Hosts.txt file: {Dsk}<Lispfiles>HOSTS.TXT 

If any field does not apply to your site, leave it blank. 

Selecting Apply! writes the file {DSK}< LlSPFILES > IP.INIT to the 
local disk. 

Note: The file {DSK}< LlSPFILES> IP.INIT must exist on each 
Interlisp machine before TCP.LCOM is loaded. And this 
file must remain on the workstation and must not be 
copied to other workstations. Also, the font GACHA 12 
MRR must be available. 

Selecting Reset! resets the menu to the original state. 

Selecting Quit! closes the window. 

You must perform the TCP.CONFIGURE step individually on each 
workstation, but you need to perform it only once. As long as 
there is an IP.lNIT file on the workstation, the TCP-IP module will 
be configured automatically whenever it is loaded or initialized. 

If you change your IP.INIT file while TCP-IP is running, you will be 
prompted to confirm Restarting Tep. In most cases, you should 
confirm the restart. 

LISP LIBRARY MODULES, MEDLEY RELEASE, TCP-IP 267 



TCP-IP 

Adding Host and Operating System Names to NETWORKOSTYPES 

Loading TCP 

Verifying TCP Connections 

The variable NETWORKOSTYPES is used during Chat to 
determine the sequence of characters to send when performing 
auto-login. There should be an entry in "NETWORKOSTYPES for 
each TCP host that you want to communicate with in the form 
(TCPHOSTNAME.OSTYPE). 

For example: 

«SUNRISE. UNIX)(RUTGERS . TOPS-20) etc) 

Make sure the variables DIRECTORIES and 
LlSPUSERSDIRECTORIES point to the location of the .LCOM files 
of TCP-IP, or that they are in the connected directory. 

You can then load TCP.LCOM which in turn loads its dependent 
files. 

If you plan to do TCP file transfers, load TCPFTP. 

If you plan to use the 11 xx Lisp workstation as a TCPFTP Server 
host, load TCPFTPSRV. To start the server, evaluate 
(TCPFTP.SERVER). An Interlisp machine running the TCPFTP 
server should be identified as a TOPS-20 machine in the other 
Interlisp machines' HOSTS. TXT table. It will thus masquesrade as 
a TOPS-20 server. 

The rest is automatic. You can treat an Interlisp host running the 
server just like any other TCPFTP server. The default path for 
resolving filenames is {DSK}<LlSPFILES>, but you can change or 
override it. 

For example, assume {ERIC} is a machine running the FTP server. 
From another machine which has TCPFTP loaded, you can do SEE 
{ERIC}{FLOPPY}FOO, which will type out the file FOO located on 
the floppy drive of {ERIC}. 

If you plan to Chat to a TCP host, load CHAT, CHATTERMINAL, 
DMCHAT and then TCPCHAT.LCOM. Be sure that hosts with 
which you wish to chat have their NETWORKOSTYPES set. 

If you plan to use the TCP Trivial File Transfer Protocol, load 
TCPTFTP. 

Interlisp's TCPTFTP also provides a TCPTFTP server. Load 
TCPTFTP.LCOM and evaluate (TFTP.SERVER) . You can then use 
the appropriate TFTP commands to copy files from the Interlisp 
machine; for example TFTP.PUT and TFTP.GET. 

Load TCPDEBUG. Execute (TCPTRACE T) and you will be 
prompted to open a window to show TCP packets. Select 
INCOMING, OUTGOING and CONTENTS from the window's 
menu. If the host that you are communicating with has a TCP 
echoserver process you can then try (TCP.ECHOTEST 'HOSTNAME 

------------------------
268 LISP LIBRARY MODU LESt MEDLEY RELEASE, TCP-IP 



TCP-IP 

3) . For example, using the above HOSTS.TXT file this would be 
(TCP.ECHOTEST 'SIMBA 3). 

You will be prompted to open a window for the echo test and 
should see text, for example: 

This is byte number 21 

This is byte number 45 

This is byte number 69 

You should also see packets being sent and received in the 
TCPTRACE window. 

Note: If a remote host is not running a TCP echo server process 
you will not get this response. 

Connecting, Transferring Files, and Chatting to a Host 

First log in to the host by typing (LOGIN 'HOST); for example, 
(LOGIN 'SUNRISE). You will then be prompted for a user name 
and password. This will be sent to the host when you attempt to 
CONNect or Chat. 

Use the command CONN {HOST}<DIRECTORY>SUBDIR> to 
connect to a particular host. The local directory delimiters < and 
> can be used when connecting or file transferring. When 
communicating with a remote host you can specify the directory 
path as <DIRECTORY> SUBDIRECTORY> SUBDIRECTORY ... , 
and the appropriate delimiters are presented to the remote host. 
Determination of what delimiter is presented depends upon the 
value of the OSTYPE field in the HOSTS.TXT file. If the field is 
empty,OSTYPE = 'Interlisp' is the default. 

Using the above HOST.TXT file as an example you can do the 
following: 

UNIX CONN {SUNRISE}<DIR>SUBDIR>SUBDIR> 

VMS CONN {OBERON}<DIR>SUBDIR>SUBDIR> 

TOPS-20 CONN {RUTGERS}<DIR>SUBDIR> 

SYMBOLICS-3600 CONN {SIMBA}<DIR>SUBDIR> 

You can then do a DIR of the remote host, COPYFILE files to and 
from the host, assuming TCPFTP is loaded, MAKEFILE, etc. 

Since the TCPFTP specification does not specify file type 
conventions, the variable TCP.DEFAULT.FILETYPES is used to 
associate a file's extension with the type of file it is. It is a list in 
the form (extension. type); for example, 

((LCOM . BINARY) (TXT. TEXT) etc) 

Since Unix systems are case-sensitive, you should also have the 
lower case version of the file extensions on this list. If a file 
extension is not found on this list, the variable 
TCP.DEFAULTFILETYPE is used as the default file type during file 
transfers. 

To Chat to a remote host, select Chat from the background menu 
and enter the host name when prompted. You will be prompted 

LISP LIBRARY MODULES, MEDLEY RELEASE, TCP-IP 269 



TCP-IP 

for a Chat window and should then be able to chat to the host. If 
you have problems opening the Chat connection, try (CHAT 
'HOST 'NONE). This will suppress the automatic login. 

Making a Sysout that Contains TCP-IP 

TCP-IP Protocol Layers 

Link layer 

270 

1. Load Medley sysout. 

2. Create TCP host table. 

3. Load TCPCONFIG.LCOM and run TCP.CONFIGURE if there is 
no IP.INIT file on local disk. 

4. Load TCP.LCOM.TCPFTP.LCOM, TCPCHAT.LCOM. 

5. Load TCPDEBUG.LCOM if you always want to have trace 
and echo facilities available. 

6. Evaluate (TCP.STOP) 

7. Evaluate (STOPIP) 

8. Evaluate 

(SETQ RESTARTETHERFNS (LIST '(LAMBDA NIL (AND \lPFLG 
(\lPINIT»») 

9. Load any other files that you want in this sysout. 

10. Evaluate SYSOUT to the device of your choice. Evaluate 
(\TCP.INIT) to re-enable TCP. 

11. Load TCP sysout on other machine. 

12. Create TCP host table. 

13. Evaluate (TCP.CONFIGURE) and identify the new machine. 

14. Evaluate (\TCP.INIT) to re-enable TCP. 

15. Evaluate (\lPINIT) to restart the IPLISTENER process. 

The TCP-IP family consists of four principal protocol layers: the 
link layer, the internet layer, the transport layer, and the 
application layer. 

The physical link layer, the medium for transferring packets 
between hosts, is assumed to be any medium capable of 
transporting packets of data between hosts. Common link layers 
in this family include the Ethernet and the ARPANET. 

The Address Resolution (AR) Protocol enables hosts to map 
between internet addresses and link layer addresses. 

For example, the internet layer protocol IP (see below) uses a 
32-bit combined unique host and network address; the host 

LISP LIBRARY MODULES, MEDLEY RELEASE, TCP-IP 



Internet Layer 

Transport Layer 

Application Layer 

File Transfer 

TCP-IP 

address field is of variable size and depends on the pattern 
encoded in the high-order bits of the address. On the other 
hand, the 10MB Ethernet uses a fixed-size 48-bit unique host 
address. The Address Resolution protocol, documented in 
RFC826, allows hosts to discover dynamically the link layer 
address equivalents of other internet hosts. 

The internet layer is responsible for routing packets between 
hosts. Unlike the link layer, the internet layer is capable of 
movi ng packets between hosts that are not connected to the 
same network. The term IP in TCP-IP refers to the Internet 
Protocol, the protocol that performs this task in the TCP-IP 
family. IP is documented in RFC791. IP is not assumed to be 
error-free; packets may be lost or duplicated while moving 
through the internet. It is the responsibility of the transport 
layer (see below) to guarantee perfect delivery, should the client 
require it. 

IP also depends on an associated protocol called the Internet 
Control Message Protocol (ICMP). ICMP is responsible for 
handling exception conditions that arise between hosts using IP. 
Such conditions include the inability to deliver packets, errors in 
packet formats, etc. ICMP is documented in RFC792. 

The transport layer is responsible for assuring error-free, 
duplicate-free, sequenced delivery of packets between 
communicating processes. The most common transport layer is 
TCP, the Transport Control Protocol. TCP maintains the 
appearance of a perfect byte stream between processes. TCP is 
documented in RFC793. 

An unreliable transport layer called the User Datagram Protocol 
(UDP) allows for packet exchange between communicating 
processes, but makes no attempt to guarantee delivery, suppress 
duplication, etc. Clients of UDP must provide their own 
error-recovery mechanisms if necessary. UDP is documented in 
RFC768. 

Many applications exist in the TCP-IP family. The most common 
applications are file transfer, virtual terminal interaction, and 
mail delivery. 

Two principal file transfer applications are in use: FTP, based on 
TCP and documented in RFC765; and TFTP (the Trivial File 
Transfer Protocol), based on UDP and documented in RFC783. 
Both are implemented in Interlisp, and are discussed at greater 
length below. 

LISP LIBRARY MODULES, MEDLEY RELEASE, TCP-IP 271 



TCP-IP 

Virtual Terminal Interaction 

Mail Delivery 

A Primer on IP Networks 

Network Addresses 

272 

The TELNET protocol, documented in RFC854, specifies the 
protocol for virtual terminal interaction between a user and a 
remote system. The Chat module will use the TELNET protocol to 
connect to TCP-only hosts. 

The Simple Mail Transfer Protocol (SMTP) enables the delivery of 
mail between system elements using TCP. It is not currently 
implemented in Interlisp. SMTP is documented in RFC821. The 
format of messages is described in RFC822. 

The Internet Protocol internetwork is a collection of IP networks, 
a subset of which may communicate with each other. Each 
network is assigned an IP address, which is composed of a 
network number and a host number. No two hosts in the 
internetwork have the same network and host number 
combination; the composition of the network and host number 
for a particular host unambiguously identifies that host within 
the internetwork. 

The address space of the internetwork is formed of the 
concatenated network and host numbers of its constituent hosts, 
and is 32 bits long. This 32-bit address space is currently 
partitioned into three classes of network addresses, known as 
class-A, class-B, and class-C: 

Class-A addresses consist of 7 bits of network number and 24 bits 
of host number. 

Class-B addresses consist of 14 bits of network number and 16 
bits of host number. 

Class-C addresses consist of 21 bits of network number and 8 bits 
of host number. 

Thus, there may be 128 class-A networks, 16,384 class-B 
networks, and over two million class-C networks. In addition, a 
single class-A network has the capacity to address over 16 million 
hosts, while a class-C network can address only 255 hosts. The 
class to which a particular IP network belongs may be 
determined by examining the most significant bits of its address. 

Network number assignments are strictly controlled by a central 
authority. Institutions requesting network assignments are 
given class-A, -B, or -C networks depending on their estimated 
eventual size (numbers of hosts). Sites without assigned network 
numbers may request an assigned number by contacting: 

LISP LIBRARY MODU LES, MEDLEY RELEASE, TCP-IP 



Broadcast Address 

Subnets 

Joyce Reynolds 
USC Information Sciences Institute 
4676 Admiralty Way 
Marina del Rey, California 90292-6695 
Phone: (213) 822-1511 
ARPANET: JKREYNOLDS@USC-ISIF.ARPA 

TCP-IP 

IP addresses are normally stored or exchanged as single 32-bit 
numbers. The printed representation of an IP address takes the 
form W.X.Y.Z, where W through Z are the decimal equivalents of 
each of the 8--bit bytes that constitute the address. Class-A 
addresses are of the form N.H.H.H; class-B addresses are of the 
form N.N.H.H; and class-C addresses are of the form N.N.N.H, 
where N indicates a byte of the network number, and H indicates 
a byte of the host number. 

Class-A: N.H.H.H The first number is between 0-127 (for 
example, 122.0.2.1) 

Class-B: N.N.H.H The first number is between 128-191 (for 
example, 153.4.23.5) 

Class-C: N.N.N.H The first number is between 192-255 (for 
example, 194.5.67.3) 

For example, 36.47.0.12 is an address on network 36, a class-A 
network; and 192.10.200.1 is an address on network 192.10.200, 
a class-C address. 

The Internet Protocol defines an address in which the host field 
contains all ones to be a broadcast address for its network. Thus, 
the address 36.255.255.255 is the broadcast address on network 
36, and 192.10.200.255 is the broadcast address on network 
192. 10.200. 

It is quite common for class-B networks to be partitioned into a 
set of smaller subnetworks, which are really class-C networks, but 
have the wrong network number to be recognized as class-C 
networks. This is just as common is partitioning a class-A 
network into many class-B subnetworks. An implementation of 
TCP-IP that is not prepared to handle this violation of the IP 
standard will not be able to communicate with hosts on the same 
network but different subnetworks. Fortunately, extending an 
IP implementation to support subnetworks is straightforward. 

SUBNETMASK is a 32-bit parameter that resembles an IP address. 
The purpose of the mask is to enable a host to determine when a 
destination IP address is or is not on the same subnet as the 
sending host itself. 

The SUBNETMASK has the following properties: 

• The bitwise-AND of a source host's address (for example, this 
machine) and the SUBNETMASK must be equal to the 
bitwise-AND of a destination host's address and the 

LISP LIBRARY MODULES, MEDLEY RELEASE, TCP-IP 273 



TCP-IP 

274 

SUBNETMASK if and only if the two hosts are on the same 
subnetwork . 

• The bitwise-AND of a source host's address and the 
SUBNETMASK must not be equal to the bitwise-AND of a 
destination host's address and the SUBNETMASK if and only if 
the two hosts are on different subnetworks. 

As an example, consider network 39.0.0.0. This is a class-A 
network. Suppose this network consists of a number of 
subnetworks; for example, subnetworks with numbers like 
39.47.*.* and 39.9.*.*. According to the IP specification, these 
subnetworks should really be one monolithic network, such that 
a host desiring to communicate with any other host whose 
address begins with 39 ... should have to take no special action 
with regard to routing packets to that host. Let us assume that 
this is not the case. The only way a machine has of telling which 
hosts are on different networks is to compare the masked version 
of the address with the masked version of its own address. 

To continue the example further, assume the following: 

Host A has address 39.9.0.6. Host A's SUBNETMASK is 39.255.0.0. 

Host B has address 39.9.0.7. Host B's SUBNETMASK is also 
39.255.0.0. 

Host C has address 39.47.0.6. Host C's SUBNETMASK is also 
39.255.0.0. 

When host A sends to host B, it compares its masked address with 
host B's masked address, and finds them equal: 

39.9.0.6 AND 39.255.0.0 = 39.9.0.0; 39.9.0.7 AND 39.255.0.0 = 
39.9.0.0 

However, when host A sends to host C, it finds the masked 
comparison does not match: 

39.9.0.6 AND 39.255.0.0 = 39.9.0.0; 39.47.0.6 AND 39.255.0.0 = 
36.47.0.0 

Class-A networks that are subdivided into class-B subnetworks 
have SUBNETMASKs that look like X.255.0.0, where X is the 
class-A network number. Likewise, class-B networks subdivided 
into class-C subnetworks have SUBNETMASKs that look like 
X.Y.255.0, where X.Y is the class-B network number. Finally, 
networks in which subnet routing is not in use have 
SUBNETMASKs identical to their network addresses. For 
example, if network 36 did not use subnet routing, its 
SUBNETMASK would be 36.0.0.0. 

The definitive document on this approach to subnetwork 
routing is RFC940. 

LISP LIBRARY MODULES, MEDLEY RELEASE, TCP-IP 



Interlisp Files 

Tep 

TCP-IP 

The files that implement the TCP-IP protocol suite are divided 
into two classes: those that implement low-level functionality, 
normally not of interest to general users, and those that 
implement higher-level functionality for user programs (either 
application or transport layer protocols). 

The higher-level functions reside in the files TCP, TCPDEBUG, 
TCPFTP, TCPCHAT, TCPNAMES, TCPPUDP, and TCPFTP. 

TCP The TCP layer. Implements TCP streams, based on the buffered 
TCP device (for example, BIN runs in microcode). 

TCPDEBUG Contains routines to help debug TCP and TCP-based applications. 

TCPFTP Contains the TCP-based file transfer protocol. Creates a new 
virtual 1/0 device, allowing transparent filing operations with 
TCP-only hosts. 

TCPFTPSRV Contains the TCP-based FTP server program. When the server 
program is running on a Xerox 1100-series workstation, other 
TCP-based hosts may transfer files to and from the workstation. 

TCPNAMES Implements translation of file name formats between operating 
system types. 

TCPCHAT Implements the TELNET protocol for the Chat system. 

TCPUDP Contains the UDP layer. 

TCPTFTPlmplements the TFTP protocol. Creates a buffered TFTP device to 
allow efficient bulk transfer between hosts. 

The low-level functions reside in the files TCPLLlP, TCPLLlCMP, 
TCPLLAR, TCPHTE, and TCPCONFIG. 

TCPLLlP Implements the IP layer. 

TCPLLlCMP Implements ICMP for IP. 

TCPLLAR Implements AR for the 3- and 10-megabyte Ethernets. 

TCPHTE Implements the functionality necessary to parse RFC810-style 
HOSTS. TXT files. This allows name-to-address translation within 
the Interlisp host. 

TCPCONFIG Provides a function to carryon a configuration dialog when 
TCP-IP is first installed on a machine. This file needs to be loaded 
only once, to produce the file {DSK}IP.INIT. Thereafter, 
TCPCONFIG is needed only to reestablish or modify IP 
parameters. 

Tep implements the transport control protocol for Interlisp. 
After TCP is loaded, Interlisp supports a TCP stream capable of 
bidirectional 1/0 to a remote system element. The following 
functions are intended for use by applications programs. 

LISP LIBRARY MODULES, MEDLEY RELEASE, TCP-IP 275 



TCP-IP 

276 

(TCP.OPEN DST.HOST DST.PORT SRCPORT MODE ACCESS NOERRORFLG 
OPTIONS) [Function] 

Opens a TCP stream to DST.PORTon DST.HOSTfrom SRCPORT. 

DST.HOST can be a host name, an IP host address in text format 
(such as 192.10.200.1), or the 32-bit integer representation of an 
IP host address as returned by the function DODIP.HOSTP (which 
is documented under TCPlLlP). 

DST.PORT is a 16-bit number representing a TCP port open in 
LISTENING mode on the remote system. 

SRCPORT is also a 16-bit number, but may be supplied as Nil to 
obtain a defaulted unique local port number. 

MODE is either ACTIVE, meaning to act as initiator of the 
connection, or PASSIVE, meaning to wait for a remote system 
element to initiate the connection. 

ACCESS is either INPUT, OUTPUT, or APPEND (OUTPUT and 
APPEND are treated in the same manner). 

If NOERRORFLG is non-Nil, TCP.OPEN will return Nil if the 
connection fails; otherwise, TCP.OPEN will call ERROR to signal 
failure. 

OPTIONS is an optional parameter which allows the application 
program to control some of the characteristics of the TCP 
connection. OPTIONS is supplied in property-list format. 
Currently, the only recognized option is MAXSEG, whose value 
should be the number of data bytes the remote TCP sender is 
allowed to place into a single TCP segment (Ethernet packet). 
The maximum value of MAXSEG is 536. 

If TCP.OPEN succeeds, it returns a STREAM open as specified by 
ACCESS. The generic operations BIN, BOUT, PEEKBIN, BINS, 
BOUTS, READP, EOFP, OPENP, GETFllEPTR, FORCEOUTPUT, and 
ClOSEF may be performed on streams opened for suitable 
access. 

(TCP.OTHER.STREAM STREAM) [Function] 

Returns the STREAM open in the other direction with respect to 
STREAM (for example, if STREAM is open for INPUT, 
TCP.OTHER.STREAM returns a STREAM open for OUTPUT, and 
vice versa). 

(TCP.URGENT.EVENT STREAM) [Function] 

Returns an event upon which a user process may wait for 
U'RGENT data to arrive on STREAM. 

(TCP.URGENTP STREAM) [Function] 

Returns T if STREAM is currently reading URGENT data. 

(TCP.URGENT.MARK STREAM) [Function] 

Marks the current point in STREAM as the end of URGENT data. 
STREAM must be open for OUTPUT. 

LISP LIBRARY MODU LES, MEDLEY RELEASE, TCP-IP 



TCPDEBUG 

TCP-IP 

(TCP.CLOSE.SENDER STREAM) [Function] 

(TCP.STOP) 

(\TCP.INIT) 

Closes the output side of STREAM, which may be either the 
INPUT or OUTPUT stream for the connection. This function 
differs from CLOSEF in that the INPUT side of the connection is 
not closed (although the remote system element may close the 
connection once the local output side of the connection is 
closed). 

[Function] 

Disables the TCP protocol, closing all open TCP streams. 

[Function] 

(Re)initializes the TCP module. 

\TCP.DEFAULT.RECEIVE.WINDOW [Variable] 

Is the default number of bytes allowed outstanding from the 
remote system. It is initially 4,096. 

\TCP.DEFAULT.USER.TIMEOUT [Variable] 

(TCPTRACE) 

Is the default number of milliseconds a remote system element is 
allowed to remain silent before the TCP connection is declared 
broken. It is initially 60,000. 

TCPDEBUG implements tracing and test functions used to debug 
TCP and TCP-based applications. 

[Function] 

Opens a trace window and attaches a menu to the window's top. 

TCP Trace Window 
Incorninf:.1 

Tirne 
Tt"r3.n:::itions 
() ut!~ 0 i n !:1 

Contents 
Chech.surns 

~:ECV: f"r'c,m 1:~2.:3. 200. 1: 2:::: to 1:32.:~. 200. 4::::: 57511 
E;:~47847:3 .. E;94784:32/57550 [Pi:K .. PSH] 1 .• .Ii n.jI)I .• .1 = 204::: 

ch€'c:ksIJm = 1E;401 1 €'n!~th = 10 

The menu entries represent state changes or data elements to be 
traced; each entry is a toggle. Clicking on the toggle once will 
activate the trace of the particular element and will gray-over 
the entry; clicking a second time will deactivate the tracing and 
ungray the menu item. The following data elements/transitions 
may be d i spl ayed: 

Contents Displays a line's worth of packet contents. The 
Incoming or Outgoing switch must be on. 

Incoming Displays incoming data. 

Outgoing Displays outgoing data. 

LISP LIBRARY MODULES, MEDLEY RELEASE, TCP-IP 277 



TCP-IP 

TCPFTP 

278 

Checksums Displays checksums for each TCP segment. 

Time Displays the time interval since the last action on 
the connection. 

Transitions Displays state transitions on the TCP state machine. 

(PPTCB TCB FILE) [Function] 

Prints the state of a TCP connection. PPTCB is normally the INFO 
function for the process that monitors a connection; thus, 
selecting INFO in the process status window will cause a window 
to pop up containing a report on the status of the associated 
connection. 

(TCP. ECHOTEST HOST NUNES) [Function] 

Opens a TCP connection to the TCP echo port on HOST and sends 
NUNES of random text. The echo responses are displayed in a 
window. If NUNES is NIL, the echo test will run forever. 

(TCP.ECHO.SERVER PORn [Function] 

Starts a TCP echo server on PORT (defaults to the TCP echo port). 
It is usually more useful to start the echo server as a process by 
doing (ADD.PROCESS '(TCP.ECHO.SERVER PORn). 

(TCP.SINK.SERVER PORn [Function] 

Starts a TCP sink server on PORT (defaults to the TCP sink port). 
Any data sent to this port will be acknowledged and discarded. 
As with the TCP echo server, it is usually more useful to start this 
server as an independent process. 

(TCP.FAUCET HOST PORT NUNES) [Function] 

If HOST is non-NIL, this function opens a connection to PORT on 
HOST and sends NUNES of text (the default is to send lines of text 
forever). PORT defaults to the TCP sink port. If HOST is NIL, this 
function waits for a remote system to connect to the TCP faucet 
port and then sends out NUNES of random text. 

TCPFTP implements a virtual 1/0 device that performs Lisp filing 
operations transparently using the RFC765 FTP protocol. The 
standard filing operations of reading, writing, renaming, 
deleting, and directory enumeration are supported by the 
TCPFTP device. However, neither random access filing nor 
GETFILEINFO are supported, as there is no protocol specification 
for performing these operations on files. Interlisp operations 
such as RECOMPILE will not work when files are stored on TCPFTP 
file servers. 

Once TCPFTP is loaded, filing operations should be transparent 
to users; no additional initialization need be performed. There 
are, however, two important global variables: 

TCPFTP.DEFAULT.FILETYPES [Variable] 

This variable is an association list, keyed by common extensions 
of file names, and contains appropriate file types (for example, 
TEXT or BINARY) for such files. The TCPFTP protocol provides no 

LISP LIBRARY MODULES, MEDLEY RELEASE, TCP-IP 



TCPFTPSRV 

TCP-IP 

mechanism for determining the type of a file about to be 
retrieved. The file type is usually known in the case of output 
operations (for example, COPYFILE or MAKEFILE to a file server). 
However, in the case of COPYFILE from a file server, the TCPFTP 
module has to infer the file type from other knowledge. The 
module tries to match the extension of the file name with an 
entry on the list TCPFTP.DEFAULT.FILETYPES. If it finds a match, 
it uses the value of the entry in the list as the file type of the file; 
if it doesn't find a match, it uses the value of 
TCP.DEFAULTFILETYPE for the file type of the file. 

TCP.DEFAULTFILETYPE [Variable] 

If no matching extension is found for the file being opened, the 
TCPFTP module uses the value of TCP.DEFAULTFILETYPE as the 
file type of the remote file. The initial value of 
TCP.DEFAULTFILETYPE is BINARY.r however, users may preset its 
value in their INIT.L1SP files prior to loading TCP-IP. 

The following functions are available for debugging broken file 
server connections. 

(FTPDEBUG FLG) [Function] 

If FLG is T, this function opens a scrolling trace window that 
displays FTP commands as they are issued. PUPFTP commands 
will also be displayed in this window (the window is the value of 
FTPDEBUGLOG). 

(\TCP.BYE HOSn [Function] 

Breaks an FTP connection to HOST. 

(\TCPFTP.lNIT) [Function] 

(Re)initializes the TCPFTP module. 

The TCPFTPSRV module contains a program which implements 
an FTP service for Interlisp. When this program is running on a 
workstation, other hosts are able to store and retrieve files from 
the workstation. 

(TCPFTP.SERVER PORT DEFAUL T.FILE. PATH) [Function] 

To start the server program, evaluate the form (TCPFTP.SERVER). 
If PORT is supplied, the FTP server program will listen for 
connections on the TCP port specified by PORT; otherwise, the 
server will listen on the default FTP server port, port 21. 

If DEFAULT.FILE.PATH is supplied, the initial path for resolving 
file names will be relative to DEFAULT.FILE.PATH; the default 
value of this variable is {DSK}< L1SPFILES >. 

TCPFTP.SERVER.USE.TOPS20.SYNTAX [Variable] 

This variable controls whether file names sent back to FTP client 
programs are formatted in Tops-20 or Interlisp syntax. If the 
variable is true (the default), all file names will be formatted in 
Tops-20 syntax. This permits an Interlisp workstation to 

LISP LIBRARY MODULES, MEDLEY RELEASE, TCP-IP 279 



TCP-IP 

TCPNAMES 

TCPCHAT 

280 

masquerade as a Tops-20 mainframe for the purposes of file 
transfer to and from other vendors' machines. 

The TCPNAMES module provides a set of functions for 
translating between the file-naming conventions of different 
operating systems. This is needed by the TCPFTP module in order 
for it to convert between Interlisp format file names and the file 
name formats of other operati ng systems. 

(REPACKFILENAME.STRING NAME FOROSTYPE) [Function] 

NAME is a file name in some operating system's format. 
FOROSTYPE is the name of an operating system. 
REPACKFILENAME.STRING attempts to translate NAME into a 
format acceptable to the operating system named by 
FOROSTYPE. NAME may be a string or atom; the function always 
returns a string. 

Currently acceptable operating system types are: 

IFS 
INTERLISP 

MS-DOS 
SYMBOLlCS-3600 
TENEX 
TOPS-20 (also TOPS20) 

UNIX 
VMS 

(TI-Explorers should use TOPS-20 as their operating system.) 

The correspondence between the target operati ng system type 
and the file name translation function is maintained in an 
extensible hash table. 

(\REPACKFILENAME.NEW.TRANSLATION OSTYPE FUNCTION) [Function] 

This function adds a new file name translation function for a 
new operating system type. The function must be a 
LAMBDA-NOSPREAD function, and must be prepared to receive 
either a single property-list format argument, such as would be 
returned by UNPACKFILENAME, or an arbitrary number of 
arguments in property-list format. 

File names in the above format will be passed to the translation 
function adhering to the conventions of many operating 
systems; the function must recognize the operating system type 
and produce the desired output format, which must be a string. 

\REPACKFILENAME.OSTYPE.TABLE [Variable] 

This variable is the hash table that stores the correspondence 
between operating system types and translation functions. 

TCPCHAT implements the TELNET protocol for virtual terminal 
I/O between Interlisp and a remote system. Once loaded into 

LISP LIBRARY MODULES, MEDLEY RELEASE, TCP-IP 



TCPUDP 

TCP-IP 

Interlisp, the standard Chat system will use TCP TELNET to 
communicate with hosts that are believed to support the 
protocol. 

No user-callable functions reside in this module, although the 
following variables may be of interest. 

TCPCHAT.TELNET.TTY.TYPES [Variable] 

This variable is an association list that maps internal names of 
Chat terminal emulators to official terminal names as specified in 
RFC884, the TELNET Terminal Type Option. This allows TCPCHAT 
to set the user's terminal type automatically when a connection 
is established. 

TCPCHAT.TRACEFLG [Variable] 

If this variable is non-NIL, TELNET negotiations will be printed to 
TCPCHAT.TRACEFILE (see below). This is sometimes useful in 
debugging negotiation problems. 

TCPCHAT.TRACEFILE [Variable] 

(UDP.INIT) 

(UDP.STOP) 

TELNET negotiations are printed to this file if 
TCPCHAT.TRACEFLG is non-NIL 

UDP implements the user datagram protocol. The following 
functions are meant to be called by client applications. 

[Function] 

Initializes the UDP module. This function is normally called when 
UDP is loaded and should not need to be called again under 
normal circumstances. 

[Function] 

Disables the UDP module, closing any open UDP sockets. 

(U DP.OPEN.SOCKET SKT # IFCLASH) [Function] 

Opens a socket for U DP operati ons. 

SKT#, if supplied, is a 16-bit number and will default to a 
number between 1,000 and 65,535. 

IFCLASH specifies what to do if the requested socket is already 
open and is handled as in OPENPUPSOCKET and OPENNSOCKET 
(see the IRM). 

It returns an instance of an IPSOCKET. 

(U DP.CLOSE.SOCKET IPSOCKET NOERRORFLG) [Function] 

Closes an open IPSOCKET. If IPSOCKET is not an open socket and 
NOERRORFLG is NIL, an error will occur; otherwise, NIL is 
returned if the socket is not active, and T is returned if the socket 
is active. 

Any remaining packets on the socket's input queue are discarded 
when this function is called. 

LISP LIBRARY MODULES, MEDLEY RELEASE, TCP-IP 281 



TCP-IP 

282 

(UDP.SOCKET.EVENT IPSOCKEn [Function] 

Returns an event that a process may use to wait for packet arrival 
on IPSOCKET. 

(U DP.SOCKET. NUMBER IPSOCKEn 

Returns the socket number of IPSOCKET. 

(UDP.GET IPSOCKET WAIn 

[Function] 

[Function] 

Returns the next packet waiting on IPSOCKET. If no packets are 
waiting, does one of the following based on the value of WAIT. 

NIL Returns immediately. 

T Waits forever for a packet to arrive. 

A FIXP waits up to WAIT milliseconds for a packet to arrive 
and returns NIL if none arrived during that time. 

Thus, this function is like GETPUP and GETXIP. 

(UDP.SETUP UDP DEsTHOsT DES TsOCKET 10 IPsOCKET REQUEUE) [Function] 

Initializes a fresh packet (as returned from 
\ALLOCATE.ETHERPACKET). The packet will be sent to 
DEsTsOCKET on DES THOs T. 

10 is a number to be placed in the IP header ID field (zero is fine). 

REQUEUE specifies what to do with the packet after it is sent; NIL 
(the default) means no special treatment; FREE means to release 
the packet and return it to the free packet queue. Any instance 
of a SYSQUEUE will cause the packet to be queued on the tail of 
the specified queue. 

UDP.SETUP initializes all IP and UDP fields and sets the packet up 
as a minimum-length UDP packet. 

(UDP.SEND IPsOCKET UDP) [Function] 

Sends UDP, a U DP-formatted packet, out from IPsOCKET. 

(UDP.EXCHANGE IPsOCKETOUTUDP TlMEOUn [Function] 

Sends OUTUDP out from IPsOCKET and waits TIMEOUT 
milliseconds for a response; returns NIL if no response came in 
during the specified interval, or the packet that did come in 
during that time. 

Clears the socket's input packet queue before waiting for a 
packet to arrive. 

(UDP.APPEND.BYTE UDP BYTE) [Function] 

Appends BYTE to the U DP data portion of UDP and increments 
the UDP and IP length fields by one. 

(UDP.APPEND.WORD UDP WORD) [Function] 

Appends WORD to the U DP data portion of UDP and increments 
the U DP and IP length fields by two. 

LISP LIBRARY MODULES, MEDLEY RELEASE, TCP-IP 



TCPTFTP 

TCP-IP 

(U DP.APPEND.CELL UDP CELL) [Function] 

Appends CELL to the UDP data portion of UDP and increments 
the UDP and IP length fields by four. 

(UDP.APPEND.STRING UDP STRING) [Function] 

Appends STRING to the U DP data portion of UDP and increments 
the UDP and IP length fields by the length STRING. 

TFTP implements the trivial file transfer protocol. This protocol is 
useful for transferring unimportant files rapidly (for example, 
between workstations and printers). The following user-callable 
functions exist. 

(TFTP.PUT FROM TO PARAMETERS) 

Sends a file to a TFTP host. 

[Function] 

FROM may refer to any accessible file; TO must refer to a file 
accessible via TFTP. 

No attempt is currently made to translate between Interlisp file 
name syntax and remote system file name syntax for TO. 

For example, if TO resides on a Unix host, it would take a syntax 
like {HOST}/DIRECTORY/SUBDIRECTORY/FILENAME. 

PARAMETERS is currently a list of parameters in the same format 
used by OPENFILE in .PARAMETERS; for example 
«EOLCONVENTION 1) (TYPE TEXT». 
Note: TFTP transfers between Xerox Lisp and Unix hosts 

initiated from Xerox Lisp should have the PARAMETERS 
argument be '« EOLCONVENTION 10». 

(TFTP.GET FROM TO PARAMETERS) [Function] 

Gets a file from a TFTP host. FROM must be a file accessible by 
TFTP; TO may be any file. 

The file name syntax caveats for FROM are the same as for TO in 
TFTP.PUT. PARAMETERS is also as in TFTP.PUT. 

(TFTP.SERVER LOGSTREAM) [Function] 

Starts a TFTP server process. 

LOGSTREAM may be left NIL, causing a new window to appear 
when the TFTP server is first invoked. Remote systems that 
support TFTP clients may store or retrieve files through any 
Interlisp workstation running the TFTP server. 

The full Interlisp syntax for file names is supported; thus, 
requests to store files whose names include hosts will result in 
the Interlisp workstation's transparently storing the files on the 
designated hosts. 

(\TFTP.OPENFILE FILENAME ACCESS RECOG PARAMETERS) 

Returns a STREAM to open for ACCESS on FILENAME. 

[Function] 

LISP LIBRARY MODULES, MEDLEY RELEASE, TCP-IP 283 



TCP-IP 

TCPLLlP 

IP Socket Access 

284 

PARAMETERS is the usual format; TYPE is the only recognized 
parameter (BINARY opens a stream in octet format; TEXT, the 
default, opens a stream in NETASCII format; see RFC783). 

BIN, BOUT, READP, EOFP, etc., may be used on this stream. 

The stream is not RANDACCESSP. 

(\TFTP.CLOSEFILE STREAM) [Function] 

(\lPINIT) 

(STOPIP) 

Closes the open stream. This is normally useful for streams open 
for OUTPUT; for INPUT streams, end-of-file will occur eventually. 

For users planning implementations on top of IP, the following 
low-level TCP functions are available. 

[Function] 

Reinitializes the IP world; for example, after some catastrophe. 

[Function] 

Disables IP. 

(DODIP.HOSTP NAME) [Function] 

If NAME is an integer, NAME is returned unaltered. If NAME is a 
text format IP host address (such as 192.10.200.1), DODIP.HOSTP 
returns its integer representation. 

If NAME is a string or atom name, DODIP.HOSTP attempts to 
convert NAME to its IP host address integer value, using 
information supplied in the HOSTS.TXT file (see TCPHTE, below). 

If NAME is unknown, DODIP.HOSTP returns NIL. 

If NAME is known, it is cached with its corresponding address so 
that the function IPHOSTNAME may be used later to convert the 
address back to a name. 

(lPHOSTNAME IPADDRESS) [Function] 

Tries to convert IPADDRESS to a host name. 

If IPADDRESS has no known name, it is converted to the text 
representation of an IP address (for example, 192.10.200.1). 

(IPTRACE MODE) [Function] 

Turns on tracing of IP activity. This function is like PUPTRACE and 
XIPTRACE, which are documented in the IRM. 

If MODE is NIL, IP tracing is disabled. 

If MODE is T, verbose IP tracing is enabled. 

If MODE is PEEK, concise IP tracing is enabled. If MODE is either T 
or PEEK, the user is prompted for a window into which trace 
output wi II be pri nted. 

LISP LIBRARY MODU LES, MEDLEY RELEASE, TCP-IP 



TCP-IP 

(\IP.ADD.PROTOCOL PROTOCOL SOCKETCOMPAREFN NOSOCKETFN INPUTFN 
ICMPFN) [Function] 

Defines a new IP-based protocol. The lowest-level IP functions 
maintain a list of active protocols and perform packet delivery 
based on the existence of open sockets for protocols of received 
packet types. 

PROTOCOL is a protocol number, a number between 1 and 255. 
The following protocols are defined and should not be 
disturbed: 

TCP 6 

ICMP 
UDP 17 

SOCKETCOMPAREFN is a function with two arguments, an IP 
packet that has just been received and an open IPSOCKET. This 
function should return NIL if the packet does not belong to the 
supplied socket, or T if it does. The function will typically be 
interested in the IPSOCKET field of the IPSOCKET. 

NOSOCKETFN is a function with one argument, an IP packet that 
has just been received. Its purpose is to handle received packets 
for which no socket can be found. If NOSOCKETFN is NIL, the 
default function, \IP.DEFAULT.NOSOCKETFN, will be used; this 
function simply returns an ICMP message indicating the socket is 
unreachable. 

INPUTFN is a function with two arguments, a received IP packet 
and an open IPSOCKET. The INPUTFN is supposed to handle 
reception of packets when their destination socket has been 
found. If INPUTFN is NIL, the default function, 
\IP.DEFAULT.INPUTFN, will be supplied. 

INPUTFN enqueues the received packet on the IPSQUEUE field of 
the IPSOCKET if the current queue length (stored in the 
IPSQUEUELENGTH field) is less than the allocated length (stored 
in the IPSQUEUEALLOC field). 

INPUTFN also increments the IPSQUEUELENGTH field, and 
notifies the event stored in the IPSEVENT field. 

ICMPFN is a function with two arguments and is called when an 
ICMP packet referring to the protocol is received. The first 
argument is a pointer to the received ICMP packet. The second 
argument is a pointer that may be used as if pointed to the 
original outgoing packet included in the ICMP data. This allows 
the protocol functions to parse the data in the ICMP packet to 
determine which socket sent the offending packet. The ICMPFN 
must never attempt to deallocate the packet identified by the 
second argument; however, it is quite permissible (and 
expected) that the ICMPFN will release the packet identified by 
the first argument. The default ICMPFN simply releases the 
packet identified by the first argument. 

\IP.ADD.PROTOCOL returns an IPSOCKET datum, which 
represents the active protocol; it is not in fact a useful IPSOCKET 
and may be safely ignored. 

LISP LIBRARY MODULES, MEDLEY RELEASE, TCP-IP 285 



TCP-IP 

IP Packet Building 

286 

(\IP.DELETE.PROTOCOL PROTOCOL) [Function] 

Deactivates a protocol with protocol number PROTOCOL. Any 
open sockets are closed. 

(\IP.OPEN.SOCKET PROTOCOL SOCKET NOERRORFLG SOCKETCOMPAREFN 
NOSOCKETFN INPUTF~ [Function] 

Attempts to open an IPSOCKET for protocol PROTOCOL. 

SOCKET is the identifying information for this socket; this 
quantity will be EQUAL-compared with other sockets open on 
PROTOCOL. Should a match be found, an error will occur unless 
NOERRORFLG is T, in which case the existing socket will be 
returned. 

SOCKETCOMPAREFN, NOSOCKETFN, and INPUTFN may be 
supplied to override the functions specified when the protocol 
was defined; they are not normally useful, however. 

(\IP.CLOSE.SOCKET SOCKET PROTOCOL NOERRORFLG) [Function] 

Closes a socket open on PROTOCOL. SOCKET is the same 
quantity passed to \IP.OPEN.SOCKET; it is currently not an 
instance of an IPSOCKET. If NOERRORFLG is T, an error will not 
occur if the socket is not found. 

The following functions are useful for placing bytes into IP 
packets (as allocated by \ALLOCA TE.ETHERPACKET). 

Note that most applications will probably want to define a block 
record to overlay the data portion of an IP packet. Here is an 
example of such a block record. 

Note: Users who are developing new IP-based protocols will 
need to load EXPORTS.ALL from the library. 

(ACCESSFNS UDP 
«UDPBASE (\IPDATABASE DATUM») 
(BLOCKRECORD UDPBASE 

«UDPSOURCEPORT WORD) 
(UDPDESTPORT WORD) 
(UDPLENGTH WORD) 
(UDPCHECKSUM WORD») 

(ACCESSFNS UDP 
«UDPCONTENTS 
(\ADDBASE 

(\IPDATABASE DATUM) 
(FOLDHI \UDPOVLEN BYTESPERWORD»»» 

(\IP.APPEND.BYTE IP BYTE INHEADER) [Function] 

Appends BYTE to the IP data portion of IP and increments the IP 
length field by one. If INHEADER is T, the IPHEADERLENGTH 
field is appropriately incremented so that the bytes appear to 
have been appended to the options portion of the IP header. 
There must not be any data bytes in the data portion of the 
packet if this function is to work correctly. 

LISP LIBRARY MODULES, MEDLEY RELEASE, TCP-IP 



IP Packet Sending 

TCPHTE 

TCP-IP 

(\lP.APPEND.WORD IP WORD INHEADER) [Function] 

Appends WORD to the IP data portion of IP and increments the 
IP length field by two. INHEADER is as in \lP.APPEND.BYTE. 

(\lP.APPEND.CELL IP CELL INHEADER) [Function] 

Appends CELL to the IP data portion of IP and increments the IP 
length field by four. INHEADER is as in \lP.APPENO.BYTE. 

(\lP.APPEND.STRING IP STRING) [Function] 

Appends STRING to the IP data portion of IP and increments the 
IP length field by the length STRING. 

(\lP.SETUPIP IP DESTHOST 10 SOCKET REQUEUE) [Function] 

Initializes IP. This function should be called just after IP is 
obtained from \ALLOCA TE.ETHERPACKET; if this is not done, the 
append functions above will fail. 

DESTHOST is the 32-bit IP address to which this packet will be 
sent. 

10 is an arbitrary 16-bit quantity that wi II become the IPI D field of 
the packet. 

SOCKET is the open IPSOCKET from which the packet will be 
sent. 

REQUEUE defaults to FREE and controls the disposition of the 
packet after transmission (see the IRM for the documentation of 
SETUPPUP or FILLINXIP). 

(\IP.TRANSMIT IP) [Function] 

Tries to send IP. Performs IP checksum algorithm prior to 
sending. Returns NIL if successful, otherwise it returns a status 
indication, such as NoRouting or AlreadyQueued. This function 
is like SENOPUP and SENDXIP, except that no socket argument is 
required. 

HTE provides functions for parsing HOSTS.TXT files as 
documented by RFC810. This file is loaded automatically by LLiP 
and is used by \IPINIT to read in the initial file, HOSTS.TXT. The 
following variable and function may be of interest. 

HOSTS.TEXT.DIRECTORIES [Variable] 

Is the search path for the file HOSTS.TXT. This variable is 
initialized to NIL; thus the search path to be used is by default 
01 RECTORI ES. 

(\HTE.READ.FILE FILE WANTEDTYPES) 

Reads a HOSTS.TXT file. 

[Function] 

WANTEDTYPES is a list of types drawn from the set {HOST, NET, 
GATEWAY}, to be read from the file; types not specified in 
WANTEDTYPES are ignored. WANTEDTYPES defaults to (HOSn. 

LISP LIBRARY MODULES, MEDLEY RELEASE, TCP-IP 287 



TCP-IP 

TCP Debugging Aids 

Limitations 

Known Problems in TCPFTPSRV 

References 

288 

With TCPDEBUG loaded use (TCPTRACE T) to open up a trace 
window of TCP traffic. The appropriate items need to be selected 
from the windows menu in order for data to be seen. 

(SETQ TCPCHAT.TRACEFLG T) will print TELNET negotiations to a 
file, which is what the variable TCPCHAT.TRACEFILE points to. 

(FTPDEBUG T) opens a scrolling trace window that displays FTP 
commands as they are issued. You will see unencrypted 
passwords if they are issued. 

You must use the 1186 microcode in order for TCP-IP to work on 
an 1186 (microcode for the 1185 will not do). 

TCP-IP will not work with Unix systems that have trailer 
encapsulation enabled. Connections will hang and then 
eventually break. 

Directory enumeration on a VMS system results in NIL. 

It does not handle error conditions in the middle of file transfers. 

Doing a DIR gives you only filename and version: no author, 
creation date, etc. This is because the TCPFTP protocol 
specification doesn't support author, creation date, etc. 

If there are multiple files on the system, deleting a file without 
specifing a specific version deletes the most recent version. The 
workaround is to give the specific version to delete. 

The subdirectory structure is not presented back to the client 
host. If you have a file on both the <Iispfiles> directory and a 
subdirectory, when you do a DIR *. * you do not see the 
subdirectory listed, but you do see that there are two files on the 
host with the same version number. 

Users with access to the ARPANET may retrieve any RFC from host 
SRI-NIC.ARPA with the file transfer protocol (FTP) anonymous 
log-in option. RFCs are stored under <RFC>RFCnnn.TXT, where 
nnn is replaced by the number of the particular RFC. 

From points on the Xerox internet, the RFC files can be retrieved 
from {Indigo}< RFC>. {Indigo} is an IFS host. From Lisp, you can 
simply (LOGIN) and supply your GV credentials if you haven't 

LISP LIBRARY MODULES, MEDLEY RELEASE, TCP-IP 



TCP-IP 

already, open a FileBrowser on that directory, and retrieve the 
file to the local workstation environment. 

The following RFCs are mentioned in this manual: 

LISP LIBRARY MODULES, MEDLEY RELEASE, TCP-IP 

RFC765 (superceded by RFC 959) 

RFC768 

RFC783 

RFC791 

RFC792 

RFC793 

RFC810 (superceded by RFC 952) 

RFC814 

RFC821 

RFC822 

RFC826 

RFC854 

RFC894 

RFC895 

RFC903 

RFC904 

RFC940 

289 



TCP-IP 

[This page intentionally left blank] 

290 LISP LIBRARY MODULES, MEDLEY RELEASE, TCP-IP 



Requirements 

Installation 

User Interface 

TELERAID 

TeleRaid is an interactive debugger which can be used either to 
examine, from one workstation, the state of another 
workstation's virtual memory, or to look inside a sysout file. 

REMOTEVMEM, READSYS, RDSYS, VMEM 

Either: 

Ethernet PUP connection between the two machines. The 
machine which is to be examined must be in the TeleRaid mode; 
i.e., the shape of its cursor must be the TeleRaid prompt. It must 
also have a PUP address. 

Or: 

A sysout file. 

Load TELERAID.LCOM and the required .LCOM modules from the 
library. 

The standard use of TeleRaid is to debug a workstation that has 
stopped at a maintenance panel halt. Pressing the UNDO key 
when the machine is in this state transfers control to a small 
TeleRaid server that responds to simple commands over the 
network. While the TeleRaid server is running, the cursor 
changes to TELERAID. Also, on a 1108 workstation, the previous 
contents of the maintenance panel are restored. 

On a 1108 workstation, the maintenance panel halt condition is 
indicated by a four-digit code that begins with a 9. On an 1186, 
the four-digit code is displayed at the cursor. 

The term "debuggee" is used to denote the sysout file or 
machine running the TeleRaid server, i.e., the one being 
debugged, while "debugger" refers to the machine that is 
viewing the debuggee's virtual memory (usually by running 
TeleRaid). 

LISP LIBRARY MODULES, MEDLEY RELEASE, TELERAID 291 



TELERAID 

Function 

TeleRaid Commands 

Displaying a Stack 

292 

(TELERAID HOST RAIDIX) [Function] 

Enters an interactive debugger viewing the virtual memory of 
HOST, which must denote a machine running a TeleRaid server. 
HOSTis either a host name or a PUP address. 

RAIDIX is an optional number denoting the radix in which values 
are printed and numbers are accepted as input; if not specified, 
it defaults to 8 (octal). The only other accepted value for RAIDIX 
at present is 16, for hexadecimal input and output. 

If you don't know a machine's PUP name or address, you can find 
out by typing control-P on the debuggee: control-P changes the 
maintenance panel to show the machine's PUP host number in 
decimal radix. You can also find out your PUP address when Lisp 
is running (rather than in a maintenance panel halt) by 
evaluating (PORTSTRING (ETHERHOSTNUMBER». Users typically 
do this once and tape a note to the terminal so as to have this 
information handy. 

If the debugger is on the same physical Ethernet as the 
debuggee, you can use that PUP host number directly as the 
HOST argument. Otherwise, you must convert the PUP host 
number to octal and use the general form of a PUP address, 
which is a string of the form "net#host#". 

For example, (TELERAID 12) debugs the machine whose PUP 
address is 12 decimal on the same network. (TELERAID 
"13#14#") debugs host 14 octal (12 decimal) on network 13 
octal. 

Note: If the control-P command displays zero in the 
maintenance panel, it means the machine does not have 
a PUP host number assigned, or the halt occurred so 
quickly after booting that the Ethernet has not been fully 
initialized. In this case, TeleRaid cannot be used. See the 
description of READSYS (below) for directions on 
TeleRaiding a sysout file. 

Each TeleRaid command is a single character, followed by 
arguments appropriate to the command. In the description of 
the commands that follows, unless otherwise specified, numbers 
are assumed to be typed in the default radix (octal unless you 
have specified a different RAIDIX in the call to TELERAID). 

For casual users, the L command followed by several F commands 
generally provide the most useful information. Many of the 
other commands require some knowledge of the internal 

LISP LIBRARY MODULES, MEDLEY RELEASE, TELERAID 



TELERAID 

representation of Lisp objects and stack frames, something that 
this document does not attempt to provide. 

L shows the stack of the debuggee, as a back trace consisti ng of a 
numbered sequence of frame names. The first frame is usually 
\MP.ERROR if you got here by a maintenance panel halt. 

In the case of MP code 9305, the stack shown is the page fault 
handler's and is uninteresting, except for the argument to the 
\INVALIDADDR frame. 

Use the control-L P command to see the stack of the process that 
took the fault. 

control-L type Shows the stack of the debuggee starting at some other place. 
The argument type is a single letter denoting which stack to 
view. The system has a number of special contexts, which are 
areas of stack space used by certain system routines. 

Legal values of type are P (page fault), G (garbage collector), K 
(keyboard handler), H (hard return), S (stack manipulator), R 
(reset), and M (miscellaneous). 

The most interesting of these for most users is P, which for MP 
code 9305 shows the stack in which the address fault occurred. 
In addition, type F lets you view the stack starting at an arbitrary 
stack frame; follow F with an octal number denoting the frame 
(as in the control-X command, below). 

K type Changes the type of stack link that the Land control-L 
commands follow to be type, which is either A or C. The default 
is to follow Clinks (control links). ALinks follow the chain of free 
variable access instead. 

Viewing Frames From a Stack 

After displaying a particular stack with the L or control-L 
commands, the following commands view individual frames 
from that stack: 

F number Prints the contents of frame number, where number is the 
number next to the frame name in the back trace. 

Note: Unlike most other commands, number is in decimal. 

The frame is printed in two parts, a basic frame containing the 
function's arguments and a frame extension containing control 
information, the function's local (PROG) variables, and dynamic 
values. On the left side of the printout are the octal contents of 
each cell of the frame, with an interpretation, usually as a Lisp 
value, on the right. 

line-feed or control-J Shows the next frame (closer to the root of the stack). Same as F 
n + 1, where n is the number of the frame most recently viewed. 
Immediately after an L or control-L command, n is zero, so 
line-feed views the first frame. 

r Shows the previous frame. Same as F 0-1. 

D symbol Shows the definition cell for symbol. A definition cell containing 
all zeros denotes an undefined function. A definition cell whose 
left half is less than 400 denotes an interpreted definition; you 

LISP LIBRARY MODULES, MEDLEY RELEASE, TELERAID 293 



TELERAID 

can use the V command (below) to have it printed as a Lisp 
expressi on. 

A symbol Shows the top-level value of symbol. 

P symbol Shows the property list of symbol. 

C symbol Prints (using PRINTCODE) the code definition for symbol. 

V hi 10 Interprets the virtual address hi, 10 as a Lisp value and attempts 
to print it. Virtual addresses appearing in stack frames are 
already interpreted for you by the F command, as are those in 
value cells (the A command) and property lists (the P command), 
but you may want to use the V command if you find a virtual 
address inside some other structure. 

B hi 10 count Prints count words of the raw contents of the virtual memory 
starting at virtual address hi, 10. This is most useful for examining 
the contents of a datatype, which other commands simply print 
as its virtual address, i.e., in the form {type}#hi,lo. 

hi 10 number Sets the contents of the word at virtual address hi, 10 to be 
number. This command obviously should be used with care. 

control-V symbol atomicValue Sets the top-level value of symbol to be atomicValue, i.e., this is a 
remote SETTOPVAL. Only symbols and small integers are 
acceptable values to set. In addition, if the previous value was 
not a symbol or small integer, it is not reference counted 
correctly, so will not be garbage collected. 

U Displays the debuggee's screen on your own Gust the screen bit 
map, not the cursor). Typing any character restores your own 
screen. If the debugee's screen is larger than the debugger's, 
then you'll see that portion of the screen that fits. You can move 
the image of the remote screen by pressing the left mouse 
button and dragging the image, much like an over-size icon. 

control-Y Enters the Old Interlisp Executive under TeleRaid, where you can 
evaluate arbitrary Lisp expressions or call some of the functions 
listed below to perform TeleRaid operations for which there is 
no command. 

Use the Interlisp Executive's OK command to exit and return to 
TeleRaid. 

Q Quits TeleRaid without affecting the debuggee. 

control-N Executes the CONTROL-N TeleRaid command in the debuggee, 
i.e., causes the debuggee to resume execution, and quits 
TeleRaid. This command should not be used unless you are sure 
that the debuggee is resumable. 

Viewing the System Stack 

294 

The following commands are for use by experts in stack format. 
A stack address is a number in the default radix denoting where 
the object of interest starts. 

W address Walks sequentially through the system stack (i.e., by stack 
address, not by control or access links) starting at address, 
showing the stack frame type and its name (for frame 
extensions). If address is not given, this command shows the 

LISP LIBRARY MODULES, MEDLEY RELEASE, TELERAID 



TELERAID 

entire user stack. For the READSYS function (see next section) 
the walk starts at zero, so it shows the system stack as well. 

control-F address Prints the basic frame stored at address. 

control-X address Prints the frame extension stored at address. 

S address count Prints raw contents of the stack (as with the B command) starting 
at address for count words; 

Functions for Saving Work 

The following functions do not have corresponding TeleRaid 
commands, but may be useful to call in the executive obtained 
from the control-Y command. They can be used to try to patch a 
broken sysout back into shape, or at least to save some of the 
work out of a workstation in a maintenance panel halt. Further 
functions like these can be written using the functions described 
in the next section. 

(VLOADFNS FN) [Function] 

Reads the EXPR definition of FN from the remote environment 
and stores it locally on FN's EXPR property. FN can be a single 
symbol or a list of symbols. 

(VLOADVAR VAR) [Function] 

Locally sets the variable VAR to be the remote top-level value of 
VAR. 

(VSAVEWORK) [Function] 

Attempts to figure out what has changed and not been saved in 
the remote environment by looking at CHANGEDFNSLST, 
CHANGEDVARSLST and the property lists of files on FILELST. For 
each changed function or variable, it asks you whether to save it, 
and if so, it uses VLOADFNS or VLOADVAR to fetch it. You can 
then save the functions or variables from the locally running Lisp. 

VSAVEWORK does not know how to save records, properties, 
etc., although a knowledgeable programmer could use the 
functions described in the next section to extend VSAVEWORK. 

(VUNSAVEDEF FN) [Function] 

Attempts to do a remote UNSAVEDEF by going down the 
VGETPROPLIST of FN, looking for properties CODE, BROKEN, and 
ADVISED. If it finds one, it stores the corresponding code object 
in FN's remote definition cell, and prints a message saying what it 
has done. 

For example, if you've managed to break something that's used 
by the interpreter, and have thus gotten into a recursive break, 
you might be able to recover by VUNSAVEDEFing it, then doing a 
control-D on the remote machine. 

(VYANKDEF NEWSYMBOL OLDSYMBOL) [Function] 

Yanks the definition from function OLDSYMBOL and stores it 
into NEWSYMBOL. For example, (VYANKDEF 'PRINTBELLS 'NILL) 
turns off ringing of the bell in the remote environment. 

LISP LIBRARY MODULES, MEDLEY RELEASE, TELERAID 295 



TELERAID 

Implementation 

Note: VUNSAVEDEF and VYANKDEF do not adjust reference 
counts, or interact correctly with BREAK and ADVISE. 
They should be thought of as emergency patches 
designed to get the system running long enough to save 
state and bailout. In particular, do not call UNBREAK or 
UNADVISE on a function that you have applied 
VUNSAVEDEF to, and do not alter or remove its CODE, 
BROKEN, or ADVISED property. Similarly, do not 
redefine the function OLDSYMBOL that you have yanked 
a definition from. 

TeleRaid is implemented in two parts: ReadSys, which reads a 
remote system's virtual memory, and VRaid, the interactive 
debugger described above. The remote virtual memory can be 
either a workstation running a TeleRaid server or a sysout file. 
The functions inside TeleRaid look like normal Lisp functions, but 
they are designed to operate on the remote virtual memory, 
rather than the normal (local) virtual memory. The remote 
versions of functions normally begin with V. 

In general, TeleRaid is not a facility for the casual user. It is 
mostly used by system implementors performing very low-level 
debugging. The set of functions described here is a partial list, 
intended to help the serious programmer who has some interest 
in doing this kind of debugging. 

Reading the Remote Vmem 

296 

(READSYS FILE WRITEABLE) [Function] 

Opens the remote virtual memory FILE, which should be the 
name of a file in sysout format. If WRITEABLE is T, then the file is 
opened for write access, so that commands that alter the virtual 
memory (e.g., the and control-V commands) are permitted. 
The main use for this is to patch sysouts in simple ways (e.g., by 
changing a global flag from NIL to T). 

FILE can also be a list of one element, the PUP address of a 
machine running a TeleRaid server, in the same form as the HOST 
argument to the function TELERAID. In this case, WRITEABLE is 
ignored. 

If FILE is NIL, READSYS closes any open virtual memory file, clears 
its data structures and reverts to examining no virtual memory. 

(VRAID RAIDIX) [Function] 

Runs the TeleRaid interactive debugger on the virtual memory 
most recently opened by READSYS. 

LISP LIBRARY MODULES, MEDLEY RELEASE, TELERAID 



Manipulating the Remote VMem 

TELERAID 

The functions and macros described below directly manipulate 
the remote virtual memory. You can call them directly in the Lisp 
executive that you get by using the control-Y command under 
TeleRaid, or at the top level after calling READSYS. You can 
also, of course, write your own programs to use these functions. 
In order to use any of the macros below, you must LOADFROM 
the source file VMEM. 

In the following functions, a pointer means a pointer into the 
remote virtual memory (the argument PTR), a 24-bit integer. All 
other arguments refer to local objects. Functions that fetch out 
of or store into the remote virtual memory operate on pointers. 
You can create a local copy of the structure denoted by a pointer 
by calling V\UNCOPY. You cannot do the inverse, i.e, create 
remote copies of local structures-the only local objects that you 
can translate into the remote virtual memory are symbols 
(assuming the same symbol exists remotely) and small integers. 

Note: The functions that store into the remote memory should 
be used with care. None of these functions perform the 
proper reference counting. Therefore, if you are storing 
a value that ought to be reference-counted (roughly 
speaking, anything other than a symbol or small integer) 
and/or overwriting such a value, the garbage collector 
may get confused when the remote memory is resumed. 

(VVAG2 HI LO) [Function] 

Returns a pointer with hi-Ioc (top 8 bits) HI and lo-Ioc (low 16 
bits) LO. 

(VHILOC PTR) [Macro] 

Returns the high part of PTR, i.e., (LRSH PTR 16). 

(VLOLOC PTR) [Macro] 

Returns the low part of PTR, i.e., (LOGAND PTR 177777Q). 

(VADDBASE PTR D) [Macro] 

Remote \ADDBASE: Returns a pointer that is 0 words beyond 
PTR, i.e., (IPLUS PTR D). 

(V\U NCOPY PTR) [Function] 

(V\COPY X) 

Returns a local copy of the remote structure pointed to by PTR. 
\UNCOPY only knows how to copy ordinary structures: symbols, 
integers (not bignums), floating-point numbers, characters, 
strings and lists. All other pointers, either as the argument to 
V\UNCOPY or inside structures copied by V\UNCOPY, are 
converted to local objects of type REMOTEPOINTER that print in 
the way that datatypes conventionally print-their contents are 
not copied. 

[Function] 

Returns a remote pointer to the local object X, which must be a 
symbol or small integer. 

LISP LIBRARY MODULES, MEDLEY RELEASE, TELERAID 297 



TELERAID 

Limitations 

298 

(VG ETTOPVAL A TOM) 

Returns a pointer to ATOM's top-level value. 

(VGETVALATOM) 

[Function] 

[Function] 

Returns a local copy of ATOM's top-level value, i.e., (V\UNCOPY 
(VGETTOPVAL ATOM». 

(VSETTOPVAL A TOM VAL) [Function] 

Sets ATOM's top-level value to be VAL, which must be a symbol 
or small integer. 

(VGETPROPLIST ATOM) 

Returns a pointer to ATOM's property list. 

(VGETDEFN ATOM) 

Returns a pointer to ATOM's function definition. 

(VTYPENAME PTR) 

Returns the type name of PTR. 

(VGETBASEO PTR) 

[Function] 

[Function] 

[Function] 

[Function] 

The most primitive fetching function: Returns the 16-bit integer 
stored in location PTR. 

(VPUTBASEO PTR VAL) [Function] 

The most primitive storing function: Stores the 16-bit integer 
VAL into location PTR. 

(VFIND.PACKAGE NAME) [Function] 

Like the CL:FIND-PACKAGE, but returns the remote address of 
the named package or NIL if not found. 

(VFIND.SYMBOL NAME REMOTE-PACKAGE) [Function] 

Like the CL:FIND-SYMBOL, but returns the remote address of the 
named symbol. 

(VGETBASE PTR D) 

(VPUTBASE PTR D) 

(VGETBASEBYTE PTR D) 

(VGETBASEPTR PTR D) 

(VPUTBASEPTR PTR D VAL) 

[Macro] 

[Macro] 

[Macro] 

[Macro) 

[Macro) 

These are remote versions of \GETBASE, \PUTBASE, 
\GETBASEBYTE, \GETBASEPTR and \PUTBASEPTR, respectively. 
They are implemented in terms of VGETBASEO and VPUTBASEO. 

TeleRaid uses pUP, thus the machine being examined must be on 
the same network or reachable via PUP gateways. 

LISP LIBRARY MODULES, MEDLEY RELEASE, TELERAID 



TELERAID 

This code has one major shortcoming which will not normally 
turn up. If the local and remote sysouts conflict in their package 
setups, it is possible for this code to return symbols interned in 
what for the Teleraiding machine would be the correct package, 
but for the remote machine is in fact incorrect. The problem lies 
in the fact that you cannot uncopy a symbol correctly between 
two machines with incompatible package setups. An example of 
such a situation would be where on one machine the package 
Faa inherits BAR, and on the other BAR is present directly in 
Faa. BAR's package cell will be different in the two cases. 

LISP LIBRARY MODULES, MEDLEY RELEASE, TELERAID 299 



TELERAID 

[This page intentionally left blank] 

300 LISP LIBRARY MODULES, MEDLEY RELEASE, TELERAID 



Requirements 

Installation 

User Interface 

TEXEC 

TExec is a version of the Interlisp-D executive which includes 
certain features of TEdit, so that commands can be edited, much 
like text. TExec preserves all of the functionality of the "old" 
executive (including history commands, ? =, DWIM, 
Programmer's Assistant, editing of the current input form, 
parenthesis matching/blinking, etc.) plus the ability to scroll 
anywhere in the output for viewing and/or copy-selecting old 
text. 

TExec makes it easy to use Interlisp to get information, then use 
that information to build new commands to Interlisp. 

TExec has two major advantages: 

You can put into a window something longer than a windowful 
and still be able to scroll back and forth in it. In the regular exec 
window, all you see are the last few lines. 

You can print something to the window, then use all or part if it 
at your next type-in. 

TEdit 

Load TEDIT.LCOM and TEXEC.LCOM modules from the library. 

The Executive is described in the IRM and in the Lisp Release 
Notes. 

TEd it is described in the Lisp Documentation Tools manual. 

LISP LIBRARY MODULES, MEDLEY RELEASE, TEXEC 301 



TEXEC 

Starting TExec 

TExec can be invoked interactively from the right-button 
(background) menu, or programmatically by calling 

(TEXEC REGION PROMPT MENUFN) [Function] 

If REGION is not specified, the system issues a prompt to create a 
window. If prompt is not supplied, a # is used as the prompt. 

If MENUFN is not supplied, a command menu similar to TEd it is 
used. See the TEdit section in the Lisp Documentation Tools 
manual titled "Using the TEdit Window." 

Differences between TExec and TEdit 

Using TExec 

302 

The following TEdit commands are not included in the TExec 
main menu: LOOKS, SUBSTITUTE, QUIT, AND EXPANDED MENU. 

TExec has two Find commands which are not in TEdit: FORWARD 
FIND and BACKWARD FIND. 

FORWARD FIND searches forward from the beginning of the text 
stream if no previous text string has been found or if the caret is 
in the current/next type-in; otherwise the search continues 
forward from the last find. 

BACKWARD FIND searces backwards from the type-in point if it 
is the first time, or from the last place it found the text. You can 
force BACKWARD FIND to start from the type-in point by placing 
the caret there with the mouse. 

To allow the easy copy-selection of entire lines of input, use a 
carriage-return/line feed as the prompt, and the prompt will be 
printed on a different line from the type-in; e.g., (TEXEC REGION 
"<CR><LF>"). 

Pressing the escape key does not cause recognition of keywords 
in USERWORDS as it does under TTYIN. The i R (retype input) 
and case-changing commands of TTYIN are not implemented. 
Display stream graphics are not saved in the output. 

TExec allows editing the current type-in using TEd it commands 
(see the TEd it section in the Lisp Documentation Tools manual 
titled "Editing Text"). Type-in is considered editable until a final 
matching right parenthesis, right bracket, or carriage return is 
typed, at which point it becomes immutable. Any output to a 
TExec window such as from CONTROL-T or ? = is placed in front 
of the current type-in so as not to interfere with your typing. 

Unechoed input mode is implemented using a feature of TEdit 
known as invisible characters. Such characters, though invisible, 
are present in the buffer, and will be copied if they are within 
the bounds of a copy-selection. The primary terminal table, 
\PRIMTERMTABLE (the value of (GETTERMTABLE)) is used 
(different from TEdit) to allow control characters to be echoed as 
CONTROL-X (where is x is the control character), as they are in 
the Old Interlisp Executive. 

LISP LIBRARY MODULES, MEDLEY RELEASE, TEXEC 



Limitations 

TEXEC 

The contents of a TExec window are saved in memory as a text 
stream. The maximum number of characters to be saved is 
specified by selecting the LIMIT command in the menu. When 
this limit is reached, characters are deleted from the beginning 
of the buffer as new ones are added to the end. The initial 
setting is 10,000 characters. 

The escape key works the way it is described in the Programmer's 
Assistant section of the IRM. It is used as a character substitution 
mark by the Programmer's Assistant USE command. 

TExec does not understand Common Lisp syntax, so it is best to 
call it from an Interlisp exec. 

= ? is not implemented. 

LISP LIBRARY MODULES, MEDLEY RELEASE, TEXEC 303 



TEXEC 

[This page intentionally left blank] 

304 LISP LIBRARY MODULES, MEDLEY RELEASE, TEXEC 



Overview 

Installation 

Dependencies 

TEXTMODULES 

TEXTMODULES converts source code files from File Manager 
format to Common Lisp style plain text and back again. When 
exporting to plain text, a small number of File Manager corns 
types are supported. When importing from a plain text file, 
several convenience features are available including comment 
upgrade and conversion of specific named defmacros into 
defdefi ners. 

NOTE: The Text File Translator changes source code format only; 
this is not an Interlisp to Common Lisp translator. 

All symbols described in this section are in the TEXTMODULES 
package, nicknamed TM. 

This section describes the load and make processes, and the static 
format of text files and their File Manager counterparts. The File 
Manager counterparts are discussed in increasing detail until 
their programmability is covered. 

The Text File Translator supports the development of portable 
Common Lisp source code in the Lisp Environment. It brings 
portable Common Lisp sources into the File Manager without 
losing any of their contents. It also makes new text files based 
on the File Manager's "filecoms." 

The original file's function and ordering are retained, but exact 
formatting is not. The pretty printer causes all comments and 
expressions on the text file to be uniformly formatted. 

Exporting a source file into text and back again will lose 
grouping of definitions under their corns. 

Load TEXTMODULES.DFASL from the library. 

Special support for editing and printing of comments is required. 
This are provided by the SEDIT-COMMONLISP file. Some caveats 
on the editing of presentations are mentioned below. 

LISP LIBRARY MODULES, MEDLEY RELEASE, TEXTMODULES 305 



TEXTMODU LES 

The support file is automatically loaded by the TEXTMODULES 
file. SEDIT-COMMONLISP cannot operate without 
TEXTMODULES and must be loaded by it or after it. 

File Manager source files created with load-textmodule depend 
on having TEXTMODULES and SEDIT-COMMONLISP loaded. 

Programmer's Interface 

306 

load-textmodule pathname &key module install package upgrade-comment-Iength 
join-comments convert-loaded-files defdefiner-macros 

[Function] 

Like lisp:load; the file indicated by pathname is loaded, but in 
addition filecoms ar created and other information is stored for 
the File Manager. Key arguments are described below. 

(See below under Text File Format for a description of the format 
of text files which can be read by load-textmodule). 

Local bindings of reader affecting variables are established and 
set to Common Lisp defaults, except for the readtable. 

A special readtable is used which creates internal representations 
for objects normally lost during reading (see below under 
Presentation types). 

If there are some simple forms to set up the read environment at 
the front of the file, they are recognized and moved into a newly 
created makefile environment (see below under Makefile 
Environment for a complete description of this). 

Each form is read from the file (one at a time). If the form is 
recognized a description of it is given to the File Manager and its 
definition is installed. If the form is not recognized it is wrapped 
in a "top level form" filecom and then installed by stripping 
presentation objects and evaluating. 

defun in a let at top-level is treated like any top-level form. Such 
forms should be edited directly in the filecoms. Not doing this 
can have curious consequences, since calling ed on the function 
name will not modify the definition in the let (which remains in 
the FILECOMS as a top level form). 

No forms after the read environment forms should change the 
reader's environment. 

When the file has been completely read its content description is 
given to the File Manager. Also added to the content description 
are properties declaring its il:filetype as :compile-file and 
makefile-environment as that of the text file (whether given by 
setting forms at the front of the file or by default). 

Several key options are available: 

module A string or symbol used to create the symbol used as the File 
Manager's name of this module. Strings have their case 
preserved. Symbols have their name strings taken. Defaults to 
the uppercased root name of the path. 

LISP LIBRARY MODULES, MEDLEY RELEASE, TEXTMODULES 



TEXTMODULES 

install T or NIL. Indicates whether the definitions in the file should be 
installed in the running system. Any package setup makes it 
mandatory to install the definitions in a source file; e. g. since 
:INSTALL NIL means forms in the file are not evaluated, any 
IN-PACKAGE form would not be evaluated and the file would be 
read in the wrong package. This can sometimes be worked 
around using the :PACKAGE argument. 

package A package name or package, defaults to "USER". This is the 
package the file will be read into. 

upgrade-comment-Iength A number or NIL. Defaults to the value of 
*upgrade-comment-Iength* (which defaults to 40). The length, 
in characters, at which single semicolon comments are upgraded 
to double semicolon comments. 

join-comments T or NIL. Defaults to the value of *join-comments* (which 
defaults to T). Causes comments of the same level in the coms to 
be joined together. This makes for more efficient editor 
operation, but loses all formatting inside of comments; e.g. 
inter-comment line breaks are not preserved. 

convert-loaded-files T, :QUERY or NIL. Defaults to the value of 
*convert-Ioaded-files* (which defaults to :QUERY). If a REQUIRE 
or LOAD statement is noticed at top level a recursive call to 
LOAD-TEXTMODULE will be made. With :QUERY turned on the 
user is first prompted. If the pathname specified in the LOAD or 
REQUIRE is computed based on variables in the file being loaded 
:INSTALL must be true. Complex systems that contain special 
loading functions will not be handled by this mechanism. 

defdefiner-macros A list of defmacro names. Defaults to the value of 
*defdefiner-macros* (which defaults to NIL). If a top-level 
defmacro is found whose name is on this list, the defmacro will 
be translated into an IL:FUNCTIONS defdefiner form. The 
defdefiner form then creates a macro that builds definers. 
Definers are the basic definition units maintained by the File 
Manager. DEFUN is itself a defdefiner macro. A particular 
DEFUN form is a definer for the named function (see the Lisp 
Release Notes, 4. Changes to Interlisp-D in LyridMedley, Section 
17.8.2 Defining New File Manager Types, for more information 
on the defdefiner form). 

Warning: names on this list must be in the correct package, i.e. 
the one the file will be read in. A typical way to use this feature 
is: 

• Examine the text source file for DEFMACRO forms that are used 
to create defdefiners. 

• Make the package which the text file's IN-PACKAGE expression 
will later find. 

• Do LOAD-TEXTMODULES giving the :DEFDEFINER-MACROS key 
argument a list of fully package qualified symbols naming the 
defdefiners contained in the file. 

make-textmodule module &key type pathname filecoms width [Function] 

The File Manager's description of the file module is used to 
create a text file. module may be provided as either a string or a 

LISP LIBRARY MODULES, MEDLEY RELEASE, TEXTMODULES 307 



TEXTMODU LES 

symbol. A string's case will be preserved. A symbol's name string 
is used. Keyword arguments are described below. 

(See below under File manager description of contents for a 
description of filecoms that can be written out by 
make-textmodule .) 

Local bindings of printer affecting variables are established and 
set to Common Lisp defaults, except for the readtable. 

The file's environment is written out, based on its 
makefile-environment property (see below under File manager 
source file format for ways of expressing the environment). 

The specially made description of the file's contents (from the 
File Manager) is iterated over to write out each form in the file. 

Several key options are availible: 

type A string, defaults to ".LlSP". The file type extension to be used 
on the text file being written. 

pathname A pathname, defaults to the module name merged with the 
extension and *default-pathname-defaults*. The file which will 
contain the new text file. 

filecoms A list of file commands may be supplied here. Defaults to the 
commands for the File Manager file named by module. 

width A positive integer, defaults to 80. The width, in characters, of 
lines in the text file. Used by the prettyprinting routines for 
formatti ng. 

Variables that control loading 

308 

*join-comments* 

* convert-Ioaded-fi les * 

[Variable] 

T or NIL. Defaults to T. Causes comments of the same level in the 
file coms to be joined together. This makes for more efficient 
editor operation, but loses any formatting inside of comments, 
e.g. inter-comment line breaks are not preserved. 

[Variable] 

NIL, :QUERY or T. Defaults to :QUERY. Controls whether a LOAD 
or REQUIRE statement at top level in a loaded text file will cause 
the referred to file to be recursively load-textmodule'd. If the 
pathname specified in the LOAD or REQUIRE is computed based 
on variables in the file being loaded the :INSTALL argument to 
load-textmodule must be true. 

*upgrade-semicolon-comments * [Variable] 

NIL or a positive integer. Defaults to 40. Controls whether and 
at what length (in characters) a single semicolon comment is 
upgraded to a double semicolon comment. NIL inhibits 
upgrading. 

LISP LIBRARY MODULES, MEDLEY RELEASE, TEXTMODULES 



TEXTMODU LES 

* defdefi ner-macros * [Variable] 

A list of defmacro names. Defaults to NIL. If a top-level 
defmacro is found by LOAD-TEXTMODU LES whose name is on 
this list, the defmacro will be translated into an IL:FUNCTIONS 
defdefiner form. The defdefiner form creates a macro that 
builds definers. Definers are the basic definition units 
maintained by the File Manager. DEFUN is itself a defdefiner 
macro. A particular DEFUN form is a definer for the named 
defun (see the Lisp Release Notes, 4. Changes to Interlisp-D in 
LyridMedley, Section 17.8.2 Defining New File Manager Types, 
for more information on the defdefiner form). 

Text file format 

Warning: names on this list must be in the correct package, i.e. 
the one the file will be read in. A typical way to use this feature 
is: 

• Examine the text source file for DEFMACRO forms that are used 
to create defdefiners. 

• Make the package which the file's IN-PACKAGE expression will 
later find. 

• Do LOAD-TEXTMODULES glvmg the :DEFDEFINER-MACROS 
keyword argument a list of fully package qualified symbols 
naming the defdefiners contained in the file. 

TextModules creates and understands the format of portable 
pure Common Lisp text files with very simple and constrained 
package setup information. The overall form of these files is 
described here as a guide to what sort of files may be imported. 

An EMACS style mode line comment may optionally be present 
as the file's first item. It corresponds to the 
makefile-environment in the file manager. 

-*- Mode: LISP; Package: (FOO GLOBAL 1000); Base:l0 -*-

mode For some versions of the EMACs editor this will declare the major 
mode, which arranges key to command bindings for LISP instead 
of documents. 

package Name, used packages and initial space for symbols. 

base Numeric "ibase" 

The mode line is generated by TextModules and is provided 
purely as a convenience in transporting code to EMACS based 
environments. It has no effect on the File Manager. The 
makefile-environment is actually instated using expressions 
directly following the mode line. 

The Common Lisp community has agreed that portable text files 
will use only one reader environment and hence not switch 
packages or alter the readtable partway through. TextModules 

LISP LIBRARY MODULES, MEDLEY RELEASE, TEXTMODULES 309 



TEXTMODU LES 

310 

assumes that the reader environment is set up by the seven (plus 
two) standard environment modifying forms. These forms are 
recognized by the TextModules parser only if they appear at the 
front of the file and in order (comments being ignored): 

Put provide 
In in-package 

Seven shadow 
Extremely export 

Random require (or il:filesload) 
User use-package 

Interface import 
shadowi ng-i mport 
setf *read-base* 

Commands Contents of module 

Portable files may optionally add *read-base* setting and 
shadowing-import expressions. Also, il:filesload may be used in 
place of require, when a Lisp file (not containing a provide form) 
must be loaded. 

Anyone of these forms is optional, but they must appear first in 
the file (and in order) to be parsed into a makefile-environment 
when load-textmodule is called. 

Warning: this software applies heuristics to the package forms to 
make them independent of the package environment they are 
read in. These may not work and it is recommended that the 
makefile-environment be checked for correctness after 
load-textmodule brings in the file. Complex package setups ""ill 
almost certainly not be handled correctly and should be created 
in a separate file which the main text file can REQUIRE. 

The contents of a text file are a sequence of forms. Certain forms 
are understood by the File Manager and hence specially 
recognized. These recognized forms include: 

Comments which are translated into Interlisp style comments 

Definers such as defun or defvar 

eval-when which is translated into a File Manager eval-when 

Readtimeconditionals which may become "unread objects" 

All other forms are considered top level forms and simply saved 
as is. 

Definers hold onto presentations, e.g., read time conditionals, as 
well as comments. Comments and presentations are always 
available to be edited. 

To see if something is a definer form, examine the property list of 
its name (like defun). Use the Exec's pi (print property list) 
command to look for the property :definer-for. 

Note that only the above kinds of forms will be recognized by 
the TextModules parser on a portable Common Lisp file. 

There are a few somewhat common problems that can arise 
when importing a text file. Chief among these are 
"bootstrapping definitions" and circularity. 

LISP LIBRARY MODULES, MEDLEY RELEASE, TEXTMODULES 



Problems to be aware of 

File Manager source files 

TEXTMODU LES 

Occasionally, when starting up a complex software system, it is 
useful to install a temporary definition until the mechanism 
required by the actual definition is in place. This can cause a 
definition by the same name to appear in more than one place in 
a text file. The Textmodules system will simply use the latter 
definition in the file, causing the next loading of it to fail for lack 
of the lost bootstrap definition. It is recommended that 
bootstrap definitions be made into "top level forms", e.g. a 
DEFUN can become a (SETF (SYMBOL-FUNCTION <name» ... ) 
form, DEFPARAMETER can become (SETF <name> ... ), etc. 

Also, some styles of programming may encourage creation of 
circular structure. Textmodules must map over top level forms to 
install presentations that contain comments, etc. Circular 
structures can cause these routines to fill memory with list 
structure. 

Unlike standard Common Lisp, the File Manager is designed to 
keep all of a file's contents resident in memory as structure, 
rather than text. This scheme allows very fast update and editing 
of definitions. To maintain its own source files the File Manager 
keeps descriptions of the format (makefile-environment) and 
contents (filecoms) of a file. 

The makefile-environment of the file is used to note the 
readtable and package the rest of the file to be read and printed 
in, and any file dependencies. 

The filecoms maintain a description of the top-level defining 
forms in a file, like function and variable definitions. They also 
store plain top-level forms. Within any form there can appear 
lisp data, like vectors or "number in a radix." How these are read 
and printed are controlled by presentation types (described 
separately; see below). 

It is important to separate the environment of the file from its 
contents because the File Manager (not TextModules) first reads 
all the forms in the file, and then evaluates them. Text based 
source files sometimes change the package as needed. This 
cannot work for the File Manager since the file's forms are all 
read and then executed, i.e. the package changes would not 
occur until after the entire file had been read, and forms after 
any IN-PACKAGE form would have been read incorrectly. 

The File Manager first reads the makefile-environment forms in 
a well known environment (INTERLISP package, INTERLISP 
readtable) evaluates them to find the environment of the rest of 
the source file, then reads the rest of the source file in that 
environment. This is why the package environment setup forms 

LISP LIBRARY MODULES, MEDLEY RELEASE, TEXTMODULES 311 



TEXTMODU LES 

are so carefully parsed out of text files being imported into the 
envi ronment. 

File Manager source files created by load-textmodule depend on 
both the TEXTMODULES & SEDIT-COMMONLISP modules. These 
must be loaded before source files created with them can be 
reloaded. 

File Manager source file format 

312 

The makefile-environment of a "managed" source file is used to 
control both how the exported text file and managed source 
files are printed. It is kept in a property named 
iI:makefile-environment on the symbol with the root name of 
the file (in the INTERLISP package). This property is automatically 
generated when a portable text file is imported. The property is 
itself a plist containing :readtable, :package and :base values. 
The readtable used is called" LISP-FILE", a readtable defined by 
the TextModules program (hence File Manager source files 
created by load-textmodules depend on TextModules). The part 
of the makefile-environment of main interest is the :package. It 
sets the package in which the exported text file is printed. 

Three forms of the makefile-environment's :package property 
are recognized. 

• a string or symbol naming a package 
• a defpackage statement 
• a let statement 

A string or symbol is simply taken to name a package. 

A defpackage statement will have its portable components 
translated into a let statement as described below. 

A let used for the makefile-environment should bind *package* 
and contai n some form of the standard seven package and 
module setup forms (See above under "Text file format"). It 
should finally return the altered value of *package*. For 
example: 

(let «*package* *package*» 
... environment setup forms. 
*package* 

The forms in this expression must be written in a standard, 
pre-existing package, such as USER or XCL-USER. This is to break 
the circularity of writing a package defining form in the package 
it defines. 

The package defining expressions in the let should follow all of 
the rules for portable text files (See above under "Text file 
format"), e.g., they should appear in order. 

LISP LIBRARY MODULES, MEDLEY RELEASE, TEXTMODULES 



TEXTMODU LES 

File Manager description of contents 

When a portable text file is imported its contents are parsed to 
produce the File Manager's filecoms (File Commands). File 
commands are a high-level way of viewing and controlling the 
ordering of definitions in a file. The following describes the 
filecoms produced when a text file is imported. 

Forms on the file are either recognized as top level defining 
forms or wrapped in a "top level form" filecom. Several forms 
are recognized by TextModules itself and others can be added 
(see below under "Making new specifiers"). The constructs that 
recognize filecoms, both to export and import plain text, are 
called specifiers. 

The following are placed in the filecoms based on the parsed 
contents of the text file: 

(il:* type string) Contains a comment string. type is a symbol of one, two, three 
or four semicolons, or a vertical bar. This handles top level single, 
double or triple semicolon comments, as well as balanced 
comments. When viewed in SEdit these display in real comment 
format, instead of the internal list representation. 

(eva I-when when. filecoms) Wrapper with an evaluation time and containing more filecoms. 

definers All definers are recognized, e.g. DEFUN, DEFMACRO, DEFVAR, 
DEFPARAMETER, DEFSTRUCT, etc. The definer specifier also 
converts DEFMACRO forms on the *defdefiner-macros* list to 
defdefiners during loading, and vice versa on printed to a text 
file. 

(il:p (top-level-form form» Top level form wrapper with a macro that calls the presentation 
translator. This filecom contains expressions which were not 
recognized and must be evaluated at load time. This kind of 
filecom also handles top level occurances of conditional read and 
read time evaluations (hash comma and hash dot). The 
top-level-form specifier also looks for LOADed or REQUIREd files 
and, depending on the variable *convert-Ioaded-files*, attempts 
to convert the loaded files as well. 

When the file is loaded and before evaluating these forms any 
presentation objects in them are stripped out (as for comments) 
or installed (as for read time evaluations). This is done by the 
TOP-LEVEL-FORM macro, which dispatches to the translation 
functions for the particular presentation objects. i.e., this allows 
comments to appear anywhere in the forms and not affect 
evaluation. 

The above coms are created when a text file is imported. There 
are also a few specifiers provided to export filecoms, but not 
create them on import. These are convenient for exporting 

. typical File Manager files. They are: 

(il:coms. filecoms) Used to group together definitions in a File Manager source file. 
The filecoms are dumped onto the text file in order. No 
information is placed on the resulting text file to preserve the 
grouping of the filecoms; if the exported text file is later 
imported the coms grouping will not reappear. 

LISP LIBRARY MODULES, MEDLEY RELEASE, TEXTMODULES 313 



TEXTMODU LES 

(il:vars. descriptors) As described in the IRM. The descriptors are exported as 
defparameter forms. If the exported text file is later imported 
these vars cams will reappear under variables cams. 

(il:initvars. descriptors) As described in the IRM. The descriptors are exported as defvar 
forms. If the exported text file is later imported these initvars 
cams will reappear under variables cams. 

(il:constants. descriptors) As described in the IRM. The descriptors are exported as 
defconstant forms. If the exported text file is later imported 
these constants cams wi II reappear under variables cams. 

(il:props . descriptors) As described in the IRM. The descriptors are exported as (setf 
(getf ... ) ... ) forms. If the exported text file is later imported these 
props coms will reappear under p cams (top-level forms). 

(il:prop props. symbols) As described in the IRM. The props and symbols descriptors are 
used to generate forms for export, e.g. (setf (getf 'foo 'bar) 21). 
If the exported text file is later imported these prop cams will 
reappear under p cams (top-level forms). 

(il:files. items) As described in the IRM. The items are used to generate forms 
for export, e.g. (load "Foo.lisp"). All options except noerror are 
ignored, the latter will cause the :if-does-not-exist nil key 
argument to be included in the load expression. If the exported 
text file is later imported these files coms will reappear under p 
coms (top-level forms). 

Making new specifiers 

314 

*specifiers* 

Specifiers are the glue that relate forms on a plain text file to 
filecoms in a File Manager source file. They can be considered 
addenda to the filepkgtype mechanism of the File Manager. 

[Variable] 

A list of specifiers (its default contents are described below). 
New specifiers should be added to this list. This list is searched 
linearly; its order is significant mostly in that the default 
top-level form recognizer must always be last. 

make-specifier &key name filecom-p form-p add-form install-form print-filecom 
[Function] 

This function creates new specifiers for inclusion on the 
*specifiers* list. A specifier maps between the forms in a text 
file's contents and filecoms. It is the basis for importing and 
exporting top-level forms. Specifiers can be nested, as for 
EVAL-WHEN. 

To do all of this a specifer contains functions that recognize 
forms of its kind on the text file and coms in filecoms, as well as 
functions that add the definition to the filecoms and install the 
definition as the one to be used at runtime. Finally, there is a 
function which prints a form onto a text file based on a com on 
the fileoms. 

LISP LIBRARY MODULES, MEDLEY RELEASE, TEXTMODULES 



TEXTMODU LES 

name A string naming the specifier. 

filecom-p Predicate on FILECOM which returns true if it is the one used to 
represent this specifier in the filecoms of a managed file. 

form-p Predicate on FORM, a form read from a text file being imported, 
which returns true if this is the specifier for the definition in 
FORM. 

add-form Function of FORM and FILECOMS. FORM is a form read from a 
text file being imported, and which has already been confirmed 
with the form-p method. Should make the definition in FORM 
available (editable) in the programming environment (File 
Manager). It should make the definition editable and add a 
filecom for FORM to the FILECOMS description. It should return 
the new FILECOMS description. To add-form runs of subforms 
use add-form and form-specifier (see below). 

Care should be used when making a definition editable. The 
simplest instance of this occurs when the FORM's definition is a 
definer. In this case its evaluation may be wrapped in a binding 
of il:dfnflg to il:prop to ensure that the definition form goes 
into the table of current definitions without being evaluated. 

Adding a filecom to the FILECOMS should be done in a way that 
preserves ordering. The simplest way to do this is to append the 
new filecom to the end of the current FILECOMS. 

install-form Function of a FORM which makes the definition in FORM the 
current one to be used in execution. If the defining mode flag 
indicates that the file is being loaded for editing only this 
function will not be called during loading of the form (il :dfnflg is 
set by the :install option to load-textmodule). To install runs of 
subforms use install-form and form-specifier (see below). 

Care should be used when making a definition executable. The 
simplest instance of this occurs when the FORM's definition is a 
definer. In this case its evaluation may be wrapped in a binding 
of il:dfnflg to t to ensure that the definition form is actually 
evaluated. 

print-filecom Function of FILECOM and STREAM which should generate a new 
line and pretty print a form, representing the FILECOM, onto the 
stream. To print runs of subforms use print-filecom and 
filecom-specifier (see below). 

form-specifier form 

The semantics of the add-form and install-form methods remove 
some confusion between loading a definition into memory for 
editing (loading PROP) and installing that definition as the 
currently executable one (loading T). The add-form method 
makes the definition editable and the install-form makes it 
executable. 

The following functions are used to handle subforms EG. In the 
eval-when specifier there are subforms that need to be parsed. 

[Function] 

Searches the current list of specifiers in an attempt to recognize 
form (as read from a text file being imported). Returns a 

LISP LIBRARY MODULES, MEDLEY RELEASE, TEXTMODULES 315 



TEXTMODU LES 

specifier for form. If none is found a warning is signalled and a 
"do nothing" specifier is returned. 

filecom-specifier filecom [Function] 

Searches the current list of specifiers in an attempt to recognize 
filecom (as found in the filecoms of the managed file). Returns a 
specifier for filecom. If none is found a warning is signalled and 
a "do nothing" specifier is returned. 

add-form form filecoms &optional specifier [Function] 

Adds the form to the filecoms description based on the add 
method in the specifier. If specifier is not provided 
form-specifier will be used to get it from form. Returns the new 
filecoms. nil is used as an empty contents description. 

install-form form &optional specifier [Function] 

If the current definition mode (il:dfnflg) allows it, installs the 
form as current and executable based on the specifier. If 
specifier is not provided form-specifier wi II be used to get it from 
form. 

print-filecom filecom stream &optional specifier [Function] 

Prints a new line on stream and then pretty prints a form 
representing the filecom onto the stream. If specifier is not 
provided filecom-specifierwill be used to get it from filecom. 

Presentation objects 
Presentation objects represent things that normally disappear 
during reading, like comments or numbers written in a particular 
base. Each presentation object must be capable of being read 
from a text file, edited with SEdit, installed as it would be when 
normally read, and printed to a text file in its original form. 

Presentations supported by Lisp 

316 

Many presentations are already supported by SEdit : 

#\character Character object. 
#:symbol Uninterned symbol. 

#'function Hash quote function abbreviation. 
; comment 

;; comment 
;;; comment 

;;;; comment Semicolon comments. Internal formatting is preserved when 
these are imported, including CRs and tabs, etc. Adjacent 
comments are not smashed together so that line breaks are 
preserved. A single leading space in a comment is ignored, since 
comments are always printed with a single leading space. 

These comment types are represented internally in the same way 
as in Lisp, i.e., a list beginning with the symboIIL:*, following by 

LISP LIBRARY MODULES, MEDLEY RELEASE, TEXTMODULES 



TEXTMODU LES 

a symbol (interned in the INTERLISP package) containing one 
through four semicolons. 

#Icommentl# A balanced comment. Imported and exported by TextModules.­
Directly supported by SEdit as though it were a "level 5" 
semicolon comment. 

This comment type is represented internally in a manner similar 
to semicolon comments, but where the symbol containing 
semicolons is replaced by a symbol whose name is the vertical bar 
character. 

Presentations supported by SEDIT-COMMONLISP 

Several presentations are specially supported by 
SEDIT-COMMONLISP. Any of these can be created using the 
following commands in SEdit: 

Read time conditionals Control-N Hash minus 
Control-P Hash plus 

Read time evaluation Control-Q Hash dot 
Load time evaluation Control-F Hash comma 

Octal notation Control-I Hash "0" 
Hexidecimal notation Control-J Hash "X" 

Binary notation Control-K Hash "B" 

# + feature form 
#-feature form Read time conditionals. 

A conditional expression can be either unread or read depending 
on whether the truth of its features expression and sign parse 
true (see Common Lisp, the Language). Read conditional 
expressions are stored as structure. Unread conditional 
expressions are stored as strings due to the potential inclusion of, 
e.g., numbers of higher precision, symbols in unknown packages, 
or the inclusion of unknown reader macros. 

Unread read time conditionals are read by remembering file 
position, doing a read suppress read, backing up to the original 
position and saving all the characters between in a string. This 
means that streams from which conditional read presentations 
are read must be capable of random access (the TTY is not). 

These are represented by hash-plus and hash-minus structures. 

Editing of read time conditional presentations is not quite 
WYSIWYG. Feature symbols should always be given as keywords 
(this is done implicitly by the lisp reader, but not in SEdit) and 
unread forms appear in strings and must be edited as such. 

#.form Read time evaluation. Hash dot is represented by the hash-dot 
presentation. 

#.form Load time evaluation. Hash comma is represented by the 
hash-comma structure. 

LISP LIBRARY MODULES, MEDLEY RELEASE, TEXTMODULES 317 



TEXTMODU LES 

#0 rational 
#Xrational 
#Brational Rational representations (Octal, heXidecimal, and Binary). These 

are represented by the hash-o, hash-x and hash-b structures. 

Presentations not directly supported 

It is not possible to directly edit the following presentations in 
SEdit: 

#(contents) Vectors 
#rankA(contents) Arrays 

#S(name field1 value 1 ... ) Structures 
#*1010101 Bitvectors 

Any of these may be edited by opening an inspector from SEdit: 
selecting the object and using the Meta-E command on it. Any 
of these may be created in SEdit by inserting the appropriate 
make- expression, selecting it, and using the Meta-Z command 
with cI:eval as the mutating function. 

Presentations not supported 

318 

The following standard Common Lisp presentations are not 
supported by either SEdit or TextModules: 

#n = object and #n# Object tag and reference notation 
#baseRnumber Radix notation 

LISP LIBRARY MODULES, MEDLEY RELEASE, TEXTMODULES 



Requirements 

Installation 

User Interface 

VIRTUAL KEYBOARDS 

Virtual Keyboards lets you change the behavior of your lisp 
workstation keyboard to mimic another keyboard, hence 
making yours a "virtual" version of that other keyboard. It also 
lets you display pictures of keyboards on your screen and use 
them as menus for typing occasional special characters. Several 
keyboards may be displayed on the screen at once, letting you 
switch easily among keyboards for several languages and 
making hundreds of characters available for typing. 

The virtual keyboards supplied with the module are Dvorak, 
German, Greek, Italian, logic, math, Spanish, European accents, 
and standard Russian. You can also define new keyboards with 
the associated Keyboard Editor module, which lets you edit a 
keyboard while seeing the actual look of the characters. 

The virtual keyboards can be used with TEdit, DEdit, in the Lisp 
Executive window, for any application with which you use your 
keyboard. 

You need one of the following files, as appropriate for the 
machine you are using: 

DAN DELION KEYBOARDS 

DORADOKEYBOARDS 
DOVE KEYBOARDS 

Load VIRTUALKEYBOARDS.LCOM from the 
Virtual Keyboards loads the xxxKEYBOARDS files. 

library. 

Loading VirtualKeyboards adds the item KEYBOARD to the 
background menu and the default window menu. Using the 
mouse in this module is the same as in the KeyboardEditor. 

Selecting this item from the background menu changes your 
keyboard for all windows. 

LISP LIBRARY MODULES, MEDLEY RELEASE, VIRTUALKEYBOARDS 319 



VIRTUALKEYBOARDS 

Switch Keyboards 

320 

'v'::::;ta.ts 
Sketcl'-I 
,!:.,R Eclit ;~ 

Fil e 81'O\hi3 er 
CH.L:..T 

Idle ;~ 
:::; a.v e \/'v1 

HaH~py , s~~~~:~~YJ~f~~~Y 
TE,jit Stor'e ke' .... boa.r'd::; 

Sen,jMaii L08,j l<.ey~joarcl:3 file? 
Keyboard ~ F:en-Iove kevtlo3.t·,j 

Selecting this item from the default window menu allows you to 
specify a keyboard for an individual window_ 

CI03e 
Snap 
Paint 
Clear 
81_11'\" 

Redi3F:da.y :::;;vy'itch ~-:.eyboa.rd 
Harclcopy~· :::;v·,..itcfl ancl di::;pl'3.Y 

rv1o' .... e~' Di:::;pla.yonly 
:::;hape Store I<evboard::; 
St-ll'inl·( Loa.:1 ~'.eytioarcl.3 file;" 

.;a;;jl,T"~l.~I."Si Ren-I,-,I,o'e ke·'lbo.::s.t·cJ 

The main keyboard module commands are described in detail 
below_ 

Use the SWITCH KEYBOARD command to change the behavior of 
your keyboard to that of a selected virtual keyboard. This brings 
up a menu of the keyboards currently known to the program_ 

Quit 
DEFAULT 
EUROPEAN 
logic 
MATH 
OFFICE 
DVORAK 
GREEK 
ITALIAN 
SPANISH 
FRENCH 
GERMAN 
STANDARD -RUSSIAN 

Select the keyboard you want to substitute for your workstation 
keyboard_ Once you have changed your keyboard's behavior, 
pressing a key will send the character newly assigned to that key 
to the current input stream_ 

LISP LIBRARY MODULES, MEDLEY RELEASE, VIRTUALKEYBOARDS 



Switch & Display a Keyboard 

Display-Only a Keyboard 

Store Keyboards 

VI RTUALKEYBOARDS 

Use the SWITCH AND DISPLAY command to change the behavior 
of your keyboard to that of a selected keyboard and, in addition, 
display that keyboard's layout on the screen. You will be offered 
a menu of the keyboards known to the program; select the one 
you want to substitute for your workstation's keyboard. 
Displaying the keyboard layout helps if you're typing on an 
unfamiliar keyboard. SWITCH AND DISPLAY lets you type 
characters by using the keyboard displayed on the screen as a 
menu. 

Figure 9. Keyboard layout display 

You can display the layout for any given virtual keyboard using 
the DISPLAY ONLY command. You will be offered a menu of the 
keyboards known to the program (such as above); select the one 
you want to display. This is useful if you are primarily using the 
standard English keyboard but need to type some characters in 
other languages, or some special characters such as 
mathematical symbols. 

You can use the displayed image as a menu: Selecting a key from 
the image with the left mouse button will send the character 
assigned to that key, and pressing the shift key while you click on 
a key will send the shifted character. Middle-clicking also sends 
the shifted character. 

The effect is exactly as if you had pressed a key with that 
character assigned to it (except that interrupt characters are 
treated as ordinary characters; i.e., they do not cause an 
interrupt). The character is sent to the process that has the TTY 
(usually where the caret is flashing). 

After you edit a keyboard (using the KeyboardEditor module), 
you can store it using the STORE KEYBOARDS command in the 
top-level menu. When you select STORE KEYBOARDS, the system 

LISP LIBRARY MODULES, MEDLEY RELEASE, VIRTUALKEYBOARDS 321 



VIRTUALKEYBOARDS 

Loading Keyboards File 

Replace All Known Keyboards 

will prompt you for a file name. After you type the file name 
into the prompt window, the system will store all the keyboards 
known to it (both new and old) in that file in a form that will 
enable it to load them. 

To load a keyboards file, choose the LOAD KEYBOARDS FILE 
command, then slide the mouse cursor to the right and choose 
one of the three items in its submenu. 

'v'Stats 
Sketch 
.':::"R Edit ,'" 

FileBro·· ... · ... :;;8t" 

CHAT 
IcHe ~~;. 

Choosing REPLACE will load a set of keyboards that you stored 
using the StORE KEYBOARDS command, replacing all the 
keyboards currently known to the system. 

The currently known keyboards will be lost. 

Add New Keyboards to the List of Known Keyboards 

To add new keyboards without replacing any of the currently 
known keyboards, select ADD--DON'T REDEFINE. This will load a 
set of keyboard definitions. 

If a keyboard in the file has the same name as one that is already 
known to the system, that keyboard will not be loaded and the 
current definition will stay in effect. 

Load New Keyboards and Redefine Existing Keyboards 

The ADD--REDEFINE command is similar to ADD--DON'T 
REDEFINE, except that it redefines existing keyboards that have 
the same name as keyboards on the file. 

Currently known keyboards that do not have the same name as 
newly loaded keyboards will remain in the list of known 
keyboards. 

Removing Keyboards From the Menu 

322 

To remove a keyboard from the set of currently known 
keyboards, select the REMOVE KEYBOARD command. This will 
pop up a menu of the known keyboards (such as above), from 
which you can select a keyboard to be deleted. 

LISP LIBRARY MODULES, MEDLEY RELEASE, VIRTUALKEYBOARDS 



Defining a Virtual Keyboard 

Using the Functional Interface 

VI RTUALKEYBOARDS 

A virtual keyboard is a list whose CAR is the name of the 
keyboard and whose CDR is a list of key actions. Creating a new 
virtual keyboard can be done directly in Lisp or interactively, 
using the KeyboardEditor module. 

The list of keyboards that are known to the program appears in 
the menu of keyboard names that pops up when you select 
SWITCH KEYBOARD from the background menu. This list is 
stored in the global variable VKBD.KNOWN-KEYBOARDS (see 
below). To add a keyboard to the list, you have to define that 
keyboard. To define a keyboard you can either call the function 
DEFINEKEYBOARD or manipulate the variable 
VKBD.KNOWN-KEYBOARDS directly as explained herein. 

You may also use the KeyboardEditor module, which provides a 
menu-based user interface for creating and changing keyboard 
layouts. 

A virtual keyboard is a list of the form 

(KEYBOARD-NAME KEY-ASSIGNMENT1 KEY-ASSIGNMENT2 ... ). 

A KEY-ASSIGNMENT is a list of the form 

(KEY (UNSHIFTED-CHAR SHIFTED-CHAR LOCK/UNLOCK». 

KEY is a key name (the character that appears on the actual 
keyboard). 

UNSHIFTED-CHAR and SHIFTED-CHAR are character codes. Each 
can be either an integer representing the actual code or a list of 
two elements: the number of the character set and the number 
of the character in the set. 

LOCK/UNLOCK is either the atom LOCKSHIFT, in which case 
SHIFTED-CHAR will be transmitted when the shift-lock key is 
down, or NOLOCKSHIFT, in which case the shift-lock key has no 
effect on that key. LOCK/UNLOCK is LOCKSHIFT by default. 

(DEFINEKEYBOARD KEYBOARD-NAME LlST-OF-KEY-ASSIGNMENTS 
KEYS-ARE-NUMBERS ?) 

[Function] 

Creates a new virtual keyboard after parsing the list of key 
assignments and adds the keyboard to the list of known 
keyboards. 

If KEYS-ARE-NUMBERS? is T, the function expects to find key 
numbers instead of key names. 

(SWITCH KEYBOARDS NEW-KEYBOARD SWITCH-FLG DISPLAY-FLG 
MENU-POSITION) 

[Function] 

LISP LIBRARY MODULES, MEDLEY RELEASE, VIRTUALKEYBOARDS 323 



VIRTUALKEYBOARDS 

Limitations 

324 

Switches the current keyboard to NEW-KEYBOARD, where 
NEW-KEYBOARD is either a virtual keyboard or the name of a 
known keyboard. 

If SWITCH-FLG is non-NIL, the actual key actions of the keyboard 
will be modified. 

If DISPLA Y-FLG is non-NIL, a window with a menu will be 
displayed. This displayed keyboard will act as a menu and wi" 
send characters to the current input stream when a character is 
selected. 

VKBD. KNOWN-KEYBOARDS [Variable] 

Contains the list of a" currently known virtual keyboards. 

After loading the Dvorak keyboard, and then restoring defaults, 
you lose the shift-lock key. 

LISP LIBRARY MODULES, MEDLEY RELEASE, VIRTUALKEYBOARDS 



Requirements 

Installation 

WHERE-IS 
This is a new implementation of a facility similar to but not 
compatible with the Lyric library module Where Is. Where-Is 
indexes all definers, but Wherels only indexed Interlisp FNS 
definitions. 

Hash-File and Cash-File. 

Load WHERE-IS.DFASL and the required .DFASL modules from 
the library. 

Changed File Manager Functions 

Databases 

Where-Is allows the file manager to know of many more 
definitions than are actually in the files which have been noticed. 
In order to achieve this behavior, the following file manager 
functions are changed when Where-Is is loaded. 

Both of these functions are called by the edit interface (the 
function cI :ed). Thus when Where-Is is loaded the contents of its 
databases are known to the editor. 

( i 1 : wh ere i s name type files filter) [Function] 

Performs as described in the Interlisp Reference Manual. Returns 
the subset of files that contain a type definition for name. Files 
defaults to il :filelst (all noticed files). When Where-Is is loaded 
and il :whereis is passed t as its files argument il :whereis will look 
in the Where-Is databases. 

( i 1 : typesof name possible-types impossible-types source filter) [Function] 

Performs as described in the Interlisp Reference Manual. Returns 
the subset of possible-types that name is defined as. 
Possible-types defaults to il :filepkgtypes (all define types). When 
Where-Is is loaded il:typesof will also include the types for name 
in its databases. 

Where-Is provides functions to use and build databases. 

LISP LIBRARY MODULES, MEDLEY RELEASE, WHERE-IS 325 



WHERE-IS 

Using a Database 

Building a Database 

326 

(xc 1 : : add -wh ere - i s - da tabase pathname) [Function] 

Adds the database in the file named by pathname to the 
databases known to Where-Is. If a database on an older version 
of this file is already known, then Where-Is will start using the 
new version. 

(xc1::de1-where-is-database pathname) [Function] 

Deletes the database named by pathname from the databases 
known to Where-Is. 

xc1::*where-is-cash-fi1es* [Variable] 

Contains the list of databases known to Where-Is. 

There is a proceed case for errors while accessing a database 
which will delete the offending database. This can be useful 
when a file server goes down. 

(xc1: :where-is-notice database-file &key files new hash-file-size 
temp-file-name define-types quiet) [Function] 

Records the definers on files in the file named by database-file. 

Files can be a pathname or a list of pathnames. The default for 
files is "*. ; ". Note that it is important to include the trailing 
semi-colon so that only definers on the most recent version are 
recorded. 

If new is true a new database file will be created, otherwise 
database-file is presumed to name an existing.Where-ls database 
to be augmented. The default for new is nil. 

Hash-file-size is only used when new is false and is passed as the 
size argument to make-hash-file. The default for hash-file-size is 
xc1: :*where-is-hash-fi1e-size*, which has a default 
top-level value of 10,000. 

If temp-file-name is provided then all changes will happen in the 
temporary file named, which will afterwards be renamed to 
database-file. This can both make things faster (if the temporary 
file is on a faster device) and doesn't generate a new version of a 
database until the new version is ready to be used. The use of a 
temporary file may slow things down when a large existing 
database is just being updated to reflect a small number of 
changes. 

Define-types is the list of define types (file package types) which 
should be recorded. The default define types are all those on 
IL: FILEPKGTYPES which are not aliases for others and which are 
notinthelist xc1: :*where-is-ignore-define-types*. 

Unless quiet is true, xc1::where-is-notice will print the 
name of each file as it is processed. 

xc1: :where-is-notice returns the pathnameofthe hash file 
written. 

LISP LIBRARY MODULES, MEDLEY RELEASE, WHERE-IS 



WHERE-IS 

[This page intentionally left blank] 

LISP LIBRARY MODULES, MEDLEY RELEASE, WHERE-IS 327 



XEROX WHO-LINE 

WHO-LINE 

By: sM L (Lanning.pa@Xerox.com) 

INTRODUCTION 

Need to know what package you're in? Don't know what your connected directory is? Fret not. 

The Who-Line is here. 

The Who-Line is a window that displays this information on your screen. It is continually updated 

to reflect the current state of the world (thanks to an entry on.BACKGROUNDFNS). 

STARTING WHO-LINE 

Loading Who-Line.dfasl from any Executive will automatically open the Who-Line at the bottom of 

the display. If you close the Who-Line window, it can be reopened with the function 
(lNSTALL-WHO-UNE-OPTIONS) described below 

Defining the information displayed in the Who-line 

The values displayed in the Who-Line are determined by the setting· of the variable 

*WHO-L1NE-ENTRIES* . 

*WHO-L1 NE-ENTRIES * [Global Variable] 

*WHO-UNE-ENTRIES* is a list that describes the items that will be displayed in the who-line. Each 

item in the list should be a list of up to five things: the name of the item; a form that, when 

evaluated, will produce the value to display; the maximum number of characters in the value; an 

optional function to call if the item is selected (with the mouse) in the Who-Line; and an optional 

form that will reset any internal state of the entry when evaluated. 

[[NOTE: Since the items on the Who-Line are evaluated rather often, it is best if they are fast and 

efficient (= don't CONS or allocate any space).]] 

The following are standard members of *WHO-UNE-ENTRIES*. 

*WHO-U N E-USER-ENTRY* [Variable] 

Displays the current user in the Who-Line. Selecting this item in the Who-Line will let you change 

the logged in user. 

*WHO-UNE-HOST-NAME-ENTRY* [Variable] 



XEROX WHO-LINE 

Displays the (ETHERHOSTNAME) of the machine you are running on. 

*WHO-LiNE-PACKAGE-ENTRY* [Variable1 

Displays the package of the current TTY process in the Who-Line. Selecting this item in the 

Who-Line will let you switch the package of the current TIY process. 

*WHO-LINE-READTABLE-ENTRY* [Variable] 

Displays the (name of the) readtable of the current TTY process in the Who-Line. Selecting this 

item in the Who-line will let you switch the readtable of the current TTY process. 

*WHO-LlNE-TTY -PROC-ENTRY* [Variable] 

Displays the name of the current TTY process in the Who-line. Selecting this item in the Who-Line 
will let you give the TIY to a different process. 

*W HO-LI N E-D I RECTORY -E NTR Y * [Variable] 

Displays the current connected directory in the Who-Line; the directory is shown in the format 

"Dir>Subdir> ... >Subdir on {Host}". SelectIng thIs Item tn the Who-line will let you connect to 

another directory: the variable *WHO-UNE-DIRECTORIES* (see below) is used to produce a menu 

of interesting directories. If you are holding down a SHIFT key when you select an item from this 

menu, the directory name will be COPYINSERTed into the current tty input stream, otherwise you 
will be connected to that directory. 

*WHO-LINE-VMEM-ENTRY* [Variable] 

Displays the percentage of the VMem file that is currently being used in the Who-Line. If the 

VMem file is inconsistant, the number will be preceeded by an asterik ("*"). Selecting this item in 
the Who-line will let you do a (SAVEVM). 

*WHO-LlNE-TIME-ENTRY* [ Variable] 

Displays the current time in the Who-line. Selecting this item in the Who-line will let you do a 

(SEnIME). If you hold down a shift key when you select this item, the current time will be 
COPYINSERTed into the current tty input stream instead. 

The default value of *WHO-LiNE-ENTRIES* contains all these items 

Other ways to tailor the Who-Line 

*WHO-LiNE-ANCHOR* [Variable] 

*WHO-LiNE-ANCHOR* describes where the who-line will be displayed. If *WHO-LiNE-ANCHOR* 

contains the symbol :TOP, the Who-Line will be anchored at the top of the screen; if it contains the 

2 



XEROX WHO-LINE 

symbol :BOTTOM it will be anchored at the bottom of the screen. If *WHO-UNE-ANCHOR* 
contains the symboi :LEFT, it will be anchored to the ieft side of the display; if it contains the 

symbol :CENTER it will be centered on the screen; if it contains the symbol :JUSTIFY it will run the 

width of the screen; if it contains the symbol : RIGHT it will be anchored to the right side of the 
screen. Finally, if *WHO-UNE-ANCHOR* is a POSITION, it will be used as the lower leh corner of 

the Who-line. The default value is (:CENTER :BOTTOM). 

*WHO-UNE-NAME-FONT* [Variable] 

The font used to display the names of the items in the who-line. The default is HELVETICA 8 BOLD. 

*WHO-U N E-VALU E-FONT* [Variable] 

The font used to display the values in the who-line. The default is GACHA 8. 

*WHO-UNE-COLOR* [Variable] 

The color of the Who-Line. Legal values are the keywords :WHITE and :BLACK. The default is 
:WHITE. 

*WHO-Ll N E -BOR DE R * [Variable] 

The border width of the Who-Line window. The default is 2. 

*WHO-U N E-TITLE* [Variable] 

The title of the Who-line window. The default is NIL. 

*WHO-U N E-DISPLA Y -NAM ES 1* [Variable] 

If *WHO-UNE-DISPLAY-NAMES?* is true, the names of items in the who-line will be displayed; 
otherwise they will not be shown. The default value is T. 

*WHO-UNE-UPDATE-INTERVAL * [Variable] 

The number of milliseconds between updates of the who-line. The default is 100 milliseconds. 

Installing new Who-Line options 

Changing the above variables has no direct effect on the who-line. These values need to be 
installed in the Who-Line before they can take effect. 

(INSTALL-WHO-LINE-OPTIONS) [Function] 

INSTALL-WHO-LiNE-OPTIONS installs the above options in the Who-Line, and updates the 
Who-Line accordingly. 

3 



XEROX WHO-LINE 

Who-Line process state 

The who-line entry *WHO-UNE-TTY-STATE-ENTRY* tries to display the current state of the TTY 

process. 

*WHO-UNE-TTY -STATE-ENTRY * [Variable] 

A Who-Line entry that displays the "state" of the current TIY process in the Who-Line. The typical 

state of a process is the name of the function that is currently running in that process. This simple 
minded result can be altered by use of the following items. 

[[NOTE: Because of the nature of the Xerox Lisp scheduler, this information is almost always out of 

date.]] 

The Who-Line "state" can be explicitly controlled from code. If the special variable 

*WHO-UNE-STATE- is bound, its value is taken to be the state of that process. You can use this 

feature to provide visual indiation of the state of your code by using the programming idiom: 

(LET (*WHO-lINE-STATE* indicator)) 
(BLOCK) ;Give the Who-line a chance to run 

... your-code ... } 

This will run the ... your-code ... with the Who-Line state of the process set to (the value of) 
indicator. The call to BLOCK insures that the Who-Line has a chance to update before 

... your-code ... is run. 

*WHO-LINE-STATE-UNINTERESTING-FNS* [Global Variable] 

If there is no declared who-Ii ne state (via a WITH-WHO-lINE-STATE form), then the name of the 

function that is currently running is used as the who-line state. However, if the function is on the 

list *WHO-UNE-STATE-UNINTERESTING-FNS*, the function that called it is used instead. The 
default value of *WHO-lINE-STATE-UNINTERESTING-FNS* is (BLOCK AWAIT.EVENT). 

WHO-LINE-STATE [Property] 

If the function that is currently running has a WHO-LINE-STATE property, the value of that 

property is used as the who-line state. This is used to convert functions like \TTYBACKGROUND to 
meaningful values like "TTY wait". 

(WHO-lINE-REDISPLA Y -INTERRU PT) [Function] 

Updates the Who-Line. It is intended that this function be installed on an interrupt character, so 

that the user can easily force an update of the Who-Line. For example, 
(ADVISE 'CONTROL-T 'BEFORE '(WHO-LiNE-REDISPLAY-INTERRUPT)) 

will cause a iT interrupt to update the Who-Line as well as its current behavior of printing state 

4 



XEROX WHO-LINE 

information in the Prompt window. Alternatly, you can define a new interrupt character that will 

force an update of the Who-line; 

(lNTERRUPTCHAR (CHARCODE i U) '(WHO-UNE-REDISPLAY-INTERRUPT) 'MOUSE) 

will cause the Who-line to be updated whenever the user hits a i U. 

Other interesting things 

*WHO-LINE-OIRECTORIES * [Global Variable] 

A list of interesting directories used to generate a pop-up menu of directories to connect to when 

you select the DIRECTORY item in the Who-Line. The default value is a list containing just your 

LOGINHOST/DIR. 

(CU RRENT -TTY -PACKAG E) [Function] 

Returns' the name of the package of the current TIY process. This function is used in the default 

value of *WHO-UNE-ENTRIES*. 

(CU R R EN T -TTY -R EAD TAB L E -NAM E) [Function] 

Returns the name of the readtable of the current TTY process, or the string" Unknown" if it can't 

figure out the name. This function is used in the default value of "'WHO-UNE-ENTRIES". 

(SET-PACKAGE-INTERACTIVEL Y) [Function] 

Pops up a menu of currently defined packages. If the user selects one of them, the current package 

is changed to the selected package. 

(SET-READTABLE-INTERACTIVEL Y) [Function] 

Pops up a menu of currently known readtables. If the user selects one of them, the current 

readtable is changed to the selected readtable. 

5 



A 
Abort a Print Job 104-105 
Aborting Commands 75 
Access Functions 262 
Add New Keyboards to the List 322 
add-form (Function) 316 
ADD.BORDER. TO. BITMAP (Function) 63 
ADD.PROCESS (Function) 278 
Adding FileBrowser Commands 93 
address space of the internetwork . 27~ 
administrator commands for NSMamtam 216 
ADVISE (Function) 296 
aliases 214 
AllOCATE.ETHERPACKET (Function) 282 
analyzing user functions 165 
application layer 271 
ARPANET 263 
array functions 203 
array operations 35 
Assignments 198 

B 
BACKWARD FIND (Command) 302 
BEGINDST (Variable) 210 
BIN (Function) 232 
BIT.lN.COlUMN (Function) 63 
BIT.lN.ROW (Function) 64 
BITBl T (Function) 123 
BOUT (Function) 232 
BREAK (Function) 296 
broadcast address 273 
Browser 117 
BROWSER (Function) 14 
Browser describe window 14 
Browser printout window 14 
BROWSER window 72 
BROWSERBOXING (Variable) 14 
BROWSERFORMAT (Variable) 14 

C 
C4 printed circuit board 1 
CACHE/NODE/LABEUBITMAPS (Variable) 123 
call graph 243 
call stack 243 
Calling the Keyboard Editor 158 
CAllS (Function) 185 
CAllSCCODE (Function) 185 
Cash-File 17 
Centronics 19 
Centronics cable 19 
Centronics port 1 
CENTRONICS.RESET (Function) 19 
CH.DEFAUlT.DOMAIN (Variable) 216 
CH.DEFAUlT.ORGANIZATION (Variable) 216 
Changing an Existing Keyboard 158 
character framing errors 234 
CharCodeTables 21 
Chat 25 
CHAT (Function) 26 
Chat connections 26 
Chat Menu 27 

LISP LIBRARY MODULES, MEDLEY RELEASE, INDEX 

INDEX 

Chat wi ndow 154 
CHAT.AllHOSTS (Variable) 29 
CHAT.DISPLA YTYPES (Variable) 28 
CHAT.EMACSCOMMANDS (Variable) 30 
CHAT.FONT (Variable) 29 
CHAT.lN.EMACS? (Variable) 30 
CHAT.lNTERRUPTS (Variable) 29 
CHAT.KEY ACTIONS (Variable) 29 
CHAT.PROTOCOl TYPES (Variable) 30 
CHAT.TTY.PROCESS (Variable) 30 
CHAT.WINDOW.REGION (Variable) 29 
CHAT.WINDOW.SIZE (Variable) 29 
chatti ng to a host 269 
CHECKSAMEDIR (Function) 241 
Clean-Up After Copying Files 41 
Clearinghouse service 213 
close-hash-file (Function) 140 
ClOSECHATWINDOWFlG (Variable) 29 
ClOSEF (Function) 10,232 
ClOSEHASHFllE (Function) 135 
CmlFloatArray 35 
COllECTINUSE (Function) 113 
COLLISIONS (Function) 112 
COMMAND menu 72 
Common Lisp 303 
COMPilE (Command) 85 
Conjunctions of Sets 177 
connecti ng to a host 269 
control-E (Command) 74 
control-F (Command) 50 
control-O (Command) 147 
control-P (Command) 292 
control-Q (Command) 74,87 
control-S (Command) 50 
control-Z (Command) 50 
Conversation Mode 39 
convert-loaded-files (Variable) 308 
COpy (Command) 78 
Copy-Selecting Files 76 
COPYFllES (Function) 39 
CPE-FP upgrade 1 
Create a Key Pad for Repeated Use 226 
CREATE.NUMBERPAD.READER (Function) 226 
CREATEHASHFllE (Function) 134 
Creating 4045XLP Master Files 4 
creating a graph 118 
Creati ng a Hash Fi I e 134 
Creating a New Bitmap 62 
Creating a New Keyboard 157 
Creating a TableBrowser 257 
Creating Horizontal Rules 147 
creating HOST.TXT file 265. . 
Creating New Keyboard Configurations 161 
creating objects 216 . 
creating the 10caIIP.INIT file 266 
creation dates 40 
cumulative mode 249 
Custom i zi ng Chat 28 
Customizing FileBrowser 90 
cyclic graphs 117 

INDEX-l 



INDEX 

o 
DataBaseFns 43 
Datamedia 2500 25 
daughter 120 
debuggee 291 
debugger 291 
DECREASING.FONT. LIST (Variable) 132 
DEdit command menu 51 
DEdit Functions 51 
DEdit Idioms 56 
DEdit Parameters 54 
DEdit Window 48 
DEDITLINGER (Variable) 54 
DEDITTYPEINCOMS (Variable) 55 
DEFAULT-CLEANUP-COMPilER (Variable) 85 
DEFAUlT.GRAPH.WINDOWSIZE (Variable) 124 
DEFAUl TCHATHOST (Variable) 26,29 
DEFAUl TPRINTERTYPE (Variable) 2 
DEFAUlTPRINTINGHOST (Variable) 2,223 
defdefiner-macros (Variable) 309 
DEFINEKEYBOARD (Function) 323 
Defining a Virtual Keyboard 323 
DEGREES-TO-RADIANS (Function) 207 
DELETE (Command) 76 
deleti ng objects 216 
Device Errors 20 
Differences between TExec and TEdit 302 
Digital VT100 25 
directed acyclic graph 119 
DIRECTORIES (Variable) 2,268 
directory-only lines 74 
DIRECTORYNAME (Function) 241 
Display-Only a Keyboard 321 
displayer 243 
DISPLA YFONTDIRECTORIES (Variable) 102 
DISPLA YGRAPH (Function) 123 
Displaying a Stack 292 
Displaystream graphics 302 
DM2500 Chat 32 
DODIP.HOSTP (Function) 284 
domain 213 
DT.EDITMACROS (Variable) 55 
DUMPDATABASE (Function) 187 
DUMPDB (Function) 44 
DUMPGRAPH (Function) 127 
Dvorak keyboard 324 
dynamic structure 243 

E 
E30 option 229 
EDIT (Command) 83 
edit buffer window 48 
EditBitMap 59 
EditBitMap sub-menu 61 
EditBitMap window 60 
EDITBM (Function) 59 
EDITCONFIGURA TlON (Function) 163 
EDITEMBEDTOKEN (Variable) 54 
EDITGRAPH (Function) 128 
EDITGRAPHMENU 126 
EDITGRAPHMENUCOMMANDS (Variable) 126 
Editing a Bitmap in a Document 63 
editing a graph 124 
Editing a Keyboard Configuration 163 
Editing an Existing Bitmap 62 
EDITKEYBOARD (Function) 158 
EDITMODE (Function) 48 
EDITMODE (Variable) 84 

INDEX-2 

Effecting MasterScope Analysis 181 
Element Patterns 195 
Embedding and extracting 57 
EMYCIN 134 
ENDDST (Variable) 210 
Entering DEdit Commands 51 
environmental and Lisp mappings 97 
EOlCONVENTION (Variable) 283 
Error Condition Reporting 234 
ERRORPUP (Record) 68 
ERRORXIP (Record) 67 
Establishing a Connection 151 
ETHERHOSTNUMBER (Variable) 5,292 
Ethernet 270 
Ethernet packet 276 
EtherRecords 67 
EVALUATE-POLYNOMIAL (Function) 37 
EXPUNGE (Command) 86 
extend the selection 74 
Extended Processor board 19 
extended processor option 35 
External Communication Service 31 

F 
FASSOC (Function) 127 
fast mode FX-80 104 
FASTFX80-DEFAUl T-DESTINATION (Variable) 102 
FB (Command) 90 
FB.AllOW.ABORT (Function) 95 
FB.BROWSERFONT (Variable) 92 
FB.DEFAUl T.EDITOR (Variable) 84,92 
FB.DEFAUlT.lNFO (Variable) 87,91 
FB.DEFAUlT.NAME.WIDTH (Variable) 92 
FB.FETCHFllENAME (Function) 94 
FB.HARDCOPY.DIRECTORY.FONT (Variable) 92 
FB.HARDCOPY.FONT (Variable) 92 
FB.lCONFONT (Variable) 92 
FB.lNFO.FIElDS (Variable) 91 
FB.lNFO.MENU.lTEMS (Variable) 91 
FB.MENU.lTEMS (Variable) 93 
FB.PROMPTFONT (Variable) 92 
FB.PROMPTLINES (Variable) 92 
FB.PROMPTW .FORMA T (Function) 94 
FB.PROMPTWPRINT (Function) 94 
FB.PROMTFORINPUT (Function) 94 
FB.SElECTEDFllES (Function) 94 
FB.TABlEBROWSER (Function) 94 
file name translation function 280 
File Transfer Using RS232 236 
FllEBROWSE (Command) 83 
FileBrowser 69 
FllEBROWSER (Function) 90 
FileBrowser Functions 90 
FileBrowser Variables 91 
filecom-specifier (Function) 316 
filing operations 278 
FILlNG.ENUMERATION.DEPTH (Variable) 93 
FIND-ARRA Y-ElEMENT-INDEX (Function) 37 
FINDPOINTER (Function) 113 
FINDPOINTERS.OF.TYPE (Function) 114 
FLiPNODE (Function) 127 
floating-point vector 35 
FNT.DISPlOOK (Function) 98 
FNT.DISPTBlE (Function) 98 
FNT.MAKEBOOK (Function) 98 
font mappi ngs 97 
FontSample 97 
FORCEOUTPUT (Function) 232-233 

LISP LIBRARY MODULES, MEDLEY RELEASE, INDEX 



forest 119 
form-specifier (Function) 316 
FORWARD FIND (Command) 302 
FREEVARS (Function) 185 
FROM.SCREEN.BITMAP (Function) 64 
FTP servi ce 279 
FTPDEBUG (Function) 279 
FTPSERVER (Function) 5,99 
FTPSERVER.DEFAULT.HOST (Variable) 99 
function-calling structures 117 
Functions for Manipulating Hash Files 136 
Functions for Saving Work 295 
Functions for Writing Routines 186 
FX Printer Compatibility 105 
FX-80 DIP Switch Settings 102 
FX-80 family 101 
FX-80 Serial Interface 102 
FX-80Driver 101 
FX80-PRINT (Function) 105 

G 
GapTelnet 31 
garbage collector 297 
Gateway Access Protocol 31 
GCHax 109 
General Purpose Records 67 
Get, Set Parameters via Inspector Window 8 
get-cash-file (Function) 17 
GETFILEINFO (Function) 278 
GETHASHFILE (Function) 135 
GETHASHTEXT (Function) 136 
GETRELA TION (Function) 186 
GETTEMPLA TE (Function) 184 
GETTERMTABLE (Function) 302 
Getting Hardcopy Directory Listings 76 
ghost boxes 248 
Global Variables of Hash 137 
graph 13 
GRAPH (Record) 128 
graph data structure 126 
graph nodes 117 
GRAPH/HARDCOPY IFORMAT (Variable) 123 
Grapher 117,243 
Grapher image objects 126 
GRAPHEROBJ (Function) 126 
GRAPHERPROP (Function) 128 
graphics interface 101 
GRAPH NODE (Record) 129 
GRAPHREGION (Function) 127 
GraphZoom 131 
groups 217 

H 
HANZON Universal Card 102 
HARDCOPY (Command) 80 
HARDCOPY GRAPH (Function) 123 
Hash 133 
Hash tables 189 
Hash-File 139 
HASHFILEDEFAUL TSIZE (Variable) 137 
HASH FILENAME (Function) 136 
HASHFILEP (Function) 136 
HASHFILEPROP (Function) 136 
HASHFILERDTBL (Variable) 137 
HASHFILESPLST (Function) 137 
HASHLOADFACTOR (Variable) 137 
HASHTEXTCHAR (Variable) 137 

LISP LIBRARY MODULES, MEDLEY RELEASE, INDEX 

HFGROWTHFACTOR (Variable) 137 
HOST&DIRECTORYFIELD (Function) 241 
HOSTS.TEXT.DIRECTORIES (Variable) 287 
HOSTS.TXT files, parsing 287 
HPRINT (Function) 127 

INDEX 

HQFX80-DEFAUL T-DESTINA liON (Variable) 102 
HQFX80-FONT-DIRECTORIES (Variable) 102 
HRuie 147 
HRULE.CREATE (Function) 147 
HTE.READ.FILE (Function) 287 

I 
1/0 processor 237 
IDENTITY-3-BY-3 (Function) 204 
IDENTITY-4-BY-4 (Function) 204 
imagestream 6 
include all files, both deleted and undeleted 74 
Individual mode 249 
INFO menu 72 
Info Options window 87 
Input Conventions for FileBrowser Commands 74 
Inserting a segment 57 
install-form (Function) 316 
INTERACT&ADD.BORDER.TO.BITMAP (Function) 

65 
INTERACT&SHIFT.BITMAP.DOWN (Function) 65 
INTERACT&SHIFT.BITMAP.LEFT (Function) 65 
INTERACT&SHIFT.BITMAP.RIGHT (Function) 65 
Interactive File Transfers With Kermit or Modem 

154 
Interactive Terminal Service 31 
internal fields 251 
internet layer 271 
INTERPRESSFONTDIRECTORIES (Variable) 22 
interpreter 250 
interrupt character 244 
INVERT.BITMAP.BIW (Function) 64 
I NVERT. BITMAP. DIAGONALLY (Function) 64 
INVERT.BITMAP.HORIZONTALLY (Function) 64 
INVERT.BITMAP.VERTICALLY (Function) 64 
invisible characters 302 
IP addresses 273 
IP networks primer 272 
IP packet building 286 
I P packet send i ng 287 
IP socket access 284 
IP.ADD.PROTOCOL (Function) 285 
IP.APPEND.BYTE (Function) 286 
IP.APPEND.CELL (Function) 287 
IP.APPEND.STRING (Function) 287 
IP.APPEND.WORD (Function) 287 
IP.CLOSE.SOCKET (Function) 286 
IP.DELETE.PROTOCOL (Function) 286 
IP.OPEN.SOCKET (Function) 286 
IP.SETUPIP (Function) 287 
IP.TRANSMIT (Function) 287 
IPHOSTNAME (Function) 284 
IPINIT (Function) 284 
IPTRACE (Function) 284 
iterative statement operator 187 

J 
join-comments (Variable) 308 

K 
Kermit 152,236 
Kermit menu 154 

INDEX-3 



INDEX 

KERMIT. RECEIVE (Function) 153 
KERMIT.SEND (Function) 153 
KEY ACTION (Function) 161 
keyboard editor menus 159 
Keyboard Editor 157 

L 
landscape mode 1 
Landscape printing 106 
lattices 117 
laying out a graph for display 118 
LA YOUTFOREST (Function) 14 
LA YOUTGRAPH (Function) 118 
LA YOUTSEXPR (Function) 121 
Library Module Dependencies 17 
linguistic tree 126 
link layer 270 
Lisp interrupts 27 
LlSPUSERSDIRECTORIES (Variable) 268 
LlSPXREAD (Function) 50 
list of nodes 118 
list structure editor 47 
LlSTFILES (Function) 3,223 
LOAD (Command) 84 
LOAD (Function) 43 
Load New Keyboards 322 
load-textmodule (Function) 306 
LOADDB (Function) 44 
LOADDBFLG (Variable) 44 
LOADFROM (Function) 43,85 
loading TCP 268 
LOOKUPHASHFILE (Function) 135 
lost characters 234 
low-level TCP functions 284 

M 
macro 187 
Macro Expansion 180 
maintenance panel halt 291 
make-cash-file (Function) 17 
make-hash-file (Function) 139 
MAKE-HOMOGENEOUS-3-BY -3 (Function) 203 
MAKE-HOMOGENEOUS-3-VECTOR (Function) 203 
MAKE-HOMOGENEOU5-4-VECTOR (Function) 204 
MAKE-HOMOGENEOUS-N-BY -3 (Function) 204 
MAKE-HOMOGENEOUS-N-BY -4 (Function) 204 
make-specifier (Function) 314 
make-textmodule (Function) 307 
MAKEFILE (Function) 43,77,241 
MAKEFILEFORMS (Function) 241 
making a sysout that contains TCP-IP 270 
manipulating domains 218 
manipulating groups 217 
Manipulating the Remote Vmem 297 
MAP-ARRA Y (Function) 35 
MAPGC (Function) 115 
MAPHASHFILE (Function) 136 
MAPRELA TlON (Function) 186 
MasterScope 13,43,165 
MASTERSCOPE (Function) 185 
MasterScope Commands 166 
MasterScope database 165 
MasterScope Entries 185 
MasterScope Relations 170 
MasterScope Set Specifications 173 
MasterScope Templates 173 
Match 193 

INDEX-4 

MatMult 203 
MATMULT-133 (Function) 205 
MATMULT-144 (Function) 206 
MATMULT-331 (Function) 205 
MATMUL T-333 (Function) 206 
MATMULT-441 (Function) 206 
MATMUL T-444 (Function) 206 
MATMULT-N33 (Function) 206 
MATMULT-N44 (Function) 206 
Matrix Creation Functions 203 
Matrix Multiplication Functions 205 
Merged Nodes 248 
MIGRATIONS (Variable) 241 
MiniServe 209 
mlFloatArray 207 
Modem 153,236 
MODEM. RECEIVE (Function) 154 
MODEM. SEND (Function) 154 
Moving an expression 57 
MSMACROPROPS (Variable) 180 
MSMARKCHANGED (Function) 187 
MSNEEDUNSAVE (Function) 187 
Multiple DEdit Commands 56 
Multiple Streams 10 
MY.NSHOSTNUMBER (Variable) 210 

N 
network addresses 272 
network protocols 25,30 
NETWORKOSTYPES (Variable) 268 
NEW INFO FileBrowser command 87 
NODECREATE (Function) 118 
Notecards 10 
Noticing Changes that Require Recompiling 187 
NS characters 224 
NS Chat 31 
NS Records 67 
NS.TO.PUP.ALlST (Variable) 210 
NS.TO.PUP.FILE (Variable) 210 
NSHOSTNUMBER (Record) 68 
NSMaintain 213 
NSMAINTAIN (Function) 214 
NSTIMESERVER (Function) 209 
NTERACT&SHIFT.BITMAP.UP (Function) 65 
NUMBERPAD.READ (Function) 226 

o 
objects 213 

creati ng 216 
deleting 216 

obtaining information in NSMaintain 215 
obtaining network addresses 264 
open-hash-file (Function) 140 
OPENHASHFILE (Function) 134 
OPENIMAGESTREAM (Function) 10,103 
Opening a 4045 Stream 8 
Opening a Centronics Stream 19 
Opening a Chat Connection 26 
Opening and Closing Hash Files 134 
OPENP (Function) 232 
OPENSTREAM (Function) 232 
Operations on Multiple Items 260 
organization 213 
OVERFLOWS (Function) 113 

P 
package 299 

LISP LIBRARY MODULES, MEDLEY RELEASE, INDEX 



packages 130,138 
parents 120 
parity errors 234 
PARSERELA TION (Function) 186 
PATlISPCHECK (Variable) 194 
Pattern Elements 195 
pattern match compiler 194 
Pattern match expressions 195 
PATVARDEFAUlT (Variable) 194 
PERSPECTIVE-4-BY -4 (Function) 205 
Place Markers 199 
pnames 138 
portrait mode 1 
PORTSTRING (Function) 5,292 
PPTCB (Function) 278 
Press 223 
PRESSFONlWlDTHFllES (Variable) 223 
primitive relationship 188 
PRIMTERMTABlE (Variable) 302 
PRIN3 (Function) 130 
Print TEdit file in high-quality mode 107 
Print a File 104-105 
Print source code in high-quality mode 106 
Print source code on fast FX-80 106 
Print TEd it file in fast FX-80 mode 106 
Print text and graphics in high-quality mode 106 
print-filecom (Function) 316 
printer drivers 101 
printer's point 147 
Printing in Fast Mode 103 
Printing in High-Quality Mode 104 
Printing Source or TEdit Files 3 
Printing Speed 10 
Printing via FTPserver 5 
Printing Windows 4 
Programmer's Assistant 303 
PROJECT-AND-FIX-3-VECTOR (Function) 206 
PROJECT-AND-FIX-4-VECTOR (Function) 206 
PROJECT-AND-FIX-N-BY-3 (Function) 206 
PROJECT-AND-FIX-N-BY-4 (Function) 207 
PROMPT window 71 
properti es 213 
protocol number 285 
PUP (Record) 68 
PUP Chat 30 
PUP FTP 99,242 
PUP 10 Service 210 
PUP Records 68 
PUPTimeService 210 
PUP.lD.SERVER (Function) 209 
PUPADDRESS (Record) 68 
PUPNUMBER (Variable) 210 
PUPTIMESERVER (Function) 209 
PUTHASHFllE (Function) 135 
PUTHASHTEXT (Function) 135 

Q 
QABlEITEM (Record) 67 
Query Mode 39 
queue multiple arguments 57 
quick-scrolling 73 
Quitting the FileBrowser 75 

R 
RANDACCESSP (Function) 284 
READ-BYTE (Function) 229 
READ-CHAR (Function) 229 

LISP LIBRARY MODULES, MEDLEY RELEASE, INDEX 

READGRAPH (Function) 127 
Reading the Remote Vmem 296 
ReadNumber 225 
ReadNumber window 65 
READP (Function) 232 
READSYS (Function) 296 
REAlFRAMEP (Function) 250 
RECOMPllEDEFAUlT (Variable) 188 
RECOMPUTE (Command) 86 
Reconstruction 200 
record declaration 187 
recu rsi ve loads 1 00 
Redefine Existing Keyboards 322 
REDUCE-ARRA Y (Function) 36 
REFCNT (Function) 112 
reference counting 297 
REHASHFllE (Function) 136 
REHASH GAG (Variable) 137 
relations between sets 166 
Remote Kermit in Server Mode 152 
Remote Kermit not in Server Mode 152 
Remote System Administration 31 
Remote System Executive 31 

INDEX 

Removing Keyboards From the Menu 322 
RENAME (Command) 80 
REPACKFllENAME.NEW.TRANSLA TION (Function) 

280 
REPACKFllENAME.OSTVPE.TABlE (Variable) 280 
REPACKFllENAME.STRING (Function) 280 
Replace All Known Keyboards 322 
Replacements 199 
RESET/NODE/BORDER (Function) 127 
RESET/NODE/LABElSHADE (Function) 127 
RESETDEDIT (Function) 51 
Resetting 4045XLPstream 9 
Restarting MiniServe 211 
RNUMBER (Function) 225 
ROTATE-3-BY-3 (Function) 204 
ROTATE-4-BY-4-ABOUT-X (Function) 204 
ROT ATE-4-BY -4-ABOUT -Y (Function) 204 
ROTATE-4-BY-4-ABOUT-Z (Function) 205 
ROTATE.BITMAP.LEFT (Function) 64 
ROTATE.BITMAP.RIGHT (Function) 64 
RS232 151,229 
RS232 Chat 32 
RS232 port 229 
RS232C.ClOSE-STREAM (Function) 232 
RS232C.DEFAUl T.lNIT.lNFO (Variable) 230 
RS232C.ERROR.STREAM (Variable) 234 
RS232C.GET.PARAMETERS (Function) 232 
RS232C.lNIT (Function) 230 
RS232C.OTHER.STREAM (Function) 232 
RS232C.OUTPUT.PACKET.lENGTH (Function) 233 
RS232C.READP.EVENT (Function) 233 
RS232C.REPORT.STATUS (Function) 234 
RS232C.SET.PARAMETERS (Function) 231 
RS232C.SHUTDOWN (Function) 232 
RS232CHA T 235 
RS232CMENU 236,239 
RS232MODEMCONTROl (Function) 234 
RS232MODEMHANGUP (Function) 234 
RS232MODEMSTATUSP (Function) 234 
RS232MODIFYMODEMCONTROL (Function) 234 
RS232SENDBREAK (Function) 234 
RS232TRACE 235 

S 
s-expression 121 

INDEX-5 



INDEX 

SameDir 241 
sampler 243 
SAVEDBFLG (Variable) 44 
Scale factors 10 
SCALE-3-BY-3 (Function) 205 
SCALE-4-BY -4 (Function) 205 
SCALEDBITBL T (Function) 10 
SCROLL bar 73 
secret pages 133 
SEE (Command) 81 
Segment Patterns 196 
Segment selection and manipulation 56 
Selecting Files 73 
Selecting Objects and Lists 49 
selection stack 49 
Send text output to fast FX-80 106 
SEND.FILE.TO.PRINTER (Function) 3,223 
Serial interface card 101 
server mode 152 
SET DEPTH (Command) 88 
Set Destination 105 
Set Determiners 176 
Set FX-80 Destination 104 
Set FX-80 Page Size 104 
Set HQ Mode 104 
Set Page Size 105 
Set Specifications by Blocktypes 175 
Set Specifications by Relation 175 
Set Types 176 
SETSYNONYM (Function) 185 
SETIEMPLA TE (Function) 184 
SETIIME (Function) 209 
SHIFT.BITMAP.DOWN (Function) 64 
SHIFT.BITMAP.LEFT (Function) 64 
SHIFT.BITMAP.RIGHT (Function) 64 
SHIFT.BITMAP.UP (Function) 64 
SHOW PATHS (Command) 178 
SHOW.CLOSED.WINDOWS (Function) 114 
SHOWCIRCULARITY (Function) 115 
SHOWCOMMONCSETS (Function) 22 
SHOWCSET (Function) 22 
SHOWCSETLIST (Function) 22 
SHOWCSETRANGE (Function) 22 
SHOWGC (Function) 112 
SHOWGRAPH (Function) 14, 122, 131 
SHOWZOOMGRAPH (Function) 131 
Simple Item Operations 259 
SINGLEFILEINDEX (Function) 11 
Sketch 11 
SORT (Command) 89 
special characters 319 
specifiers (Variable) 314 
Specifying What Files to Browse 70 
Spy 243 
SPY.BORDERS (Variable) 250 
SPY.BUTION (Function) 244 
SPY.END (Function) 244 
SPY.FONT (Variable) 250 
SPY.FREQUENCY (Variable) 249 
SPY.LEGEND (Function) 249 
SPY.MAXLINES (Variable) 250 
SPY.NOMERGEFNS (Variable) 250 
SPY.START (Function) 244 
SPY.TOGGLE (Function) 244 
SPY. TREE (Function) 245 
SPY.TREE (Variable) 250 
stack 293 
stack architecture 56 

INDEX-6 

Stacking Several Rules in a Single Object 148 
Starting FileBrowser 69 
Starti ng TExec 302 
STARTMINISERVE (Function) 209 
static structure 243 
STOPIP (Function) 284 
STORAGE (Function) 109 
Store Keyboards 321 
Storing and Retrieving Data 135 
SUBNETMASK (Variable) 273 
subnetworks 273 
Sun 

TCPto a 265 
Switch & Display a Keyboard 321 
Switch A-2 2 
Switch Keyboards 320 
switch setti ngs 2 
SWITCHKEYBOARDS (Function) 323 
SysEdit 251 
SYSHASHFILE (Variable) 137 
SYSHASHFILELST (Variable) 137 
system sources 251 

T 
TableBrowser 253 
TABLEBROWSER (Record) 254 
TABLEITEM (Record) 254 
TALLYwindow 71 
target-source-command 56 
TB.BROWSER.BUSY (Function) 259 
TB.CLEAR.L1NE (Function) 260 
TB.COLLECT.lTEMS (Function) 261 
TB.DELETE.lTEM (Function) 259 
TB.FIND.lTEM (Function) 261 
TB.FINISH.CLOSE (Function) 259 
TB.lNSERT.lTEM (Function) 259 
TB.lTEM.DELETED? (Function) 262 
TB.lTEM.SELECTED? (Function) 262 
TB.MAKE.BROWSER (Function) 257 
TB.MAP.DELETED.lTEMS (Function) 261 
TB.MAP.lTEMS (Function) 261 
TB.MAP.SELECTED.lTEMS (Function) 261 
TB.NORMALlZE.lTEM (Function) 260 
TB.NTH.lTEM (Function) 260 
TB.NUMBER.OF.lTEMS (Function) 260 
TB.REDISPLA Y .ITEMS (Function) 260 
TB.REMOVE.lTEM (Function) 259 
TB.REPLACE.lTEMS (Function) 258 
TB.SELECT.lTEM (Function) 259 
TB.SET.FONT (Function) 258 
TB.UNDELETE.lTEM (Function) 259 
TB.USERDATA (Function) 262 
TB.WINDOW (Function) 262 
TCP 

and directory enumeration 265 
TCP Chat 32 
TCP debuggi ng aids 288 
TCP segment 276 
TCP-IP 263 
TCP-IP protocol 41 
TCP-IP protocol layers 270 
TCP.BYE (Function) 279 
TCP.CLOSE.SENDER (Function) 277 
TCP.DEFAULT.RECEIVE.WINDOW (Variable) 277 
TCP.DEFAULT.USER.TIMEOUT (Variable) 277 
TCP.DEFAULTFILETYPE (Variable) 279 
TCP.ECHO.SERVER (Function) 278 
TCP.ECHOTEST (Function) 278 

LISP LIBRARY MODULES, MEDLEY RELEASE, INDEX 



TCP.FAUCET (Function) 278 
TCP.lNIT (Function) 277 
TCP.OPEN (Function) 276 
TCP.OTHER.STREAM (Function) 276 
TCP.SINK.SERVER (Function) 278 
TCP.STOP (Function) 277 
TCP.URGENT.EVENT (Function) 276 
TCP.URGENT.MARK (Function) 276 
TCP.URGENTP (Function) 276 
TCPCHAT.TELNET.TTY.TYPES (Variable) 281 
TCPCHAT.TRACEFILE (Variable) 281 
TCPCHAT.TRACEFLG (Variable) 281 
TCPFTP.DEFAULT.FILETYPES (Variable) 278 
TCPFTP.lNIT (Function) 279 
TCPFTP.SERVER (Function) 279 
TCPFTP.SERVER.USE.TOPS20.SYNTAX (Variable) 

279 
TCPTRACE (Function) 277 
TEd it 10,25,147,301,319 
TEdit Chat 32 
TeleRaid 291 
TELERAID (Function) 292 
TeleRaid Commands 292 
teletype editor 47 
TELNET protocol 272,280 
ten-key calculator pad 225 
terminal emulators 25 
Testing the Connection Between Two Xerox Lisp 

Machines 239 
TESTRELA nON (Function) 186 
TExec 301 
TEXEC (Function) 302 
TEXTMODU LES 305 
TFTP.CLOSEFILE (Function) 284 
TFTP.GET (Function) 283 
TFTP.OPENFILE (Function) 283 
TFTP.PUT (Function) 283 
TFTP.SERVER (Function) 283 
thumbing 73 
TIMEZONECOMP (Variable) 210 
traci ng and test functions 277 
trailer encapsulation 288 
transferri ng fi I es 151,269 
TRANSLA TE-3-BY -3 (Function) 205 
TRANSLA TE-4-BY -4 (Function) 205 
translating between the file-naming conventions 

280 
transport layer 271 
transport control protocol 275 
trees 117 
TRIM.BITMAP (Function) 64 
trivial file transfer protocol 283 
Troubleshooting Problems With FileBrowser 95 
TTY port 229 
TTY.DEFAULT.lNIT.lNFO (Variable) 237 
TTY.GET.PARAMETERS (Function) 238 
TTY.lNIT (Function) 237 
TTY.SET.PARAMETERS (Function) 237 
TTY.SHUTDOWN (Function) 238 
TTYCHAT 239 
Two-key hash files 138 
Typing Characters to DEdit 50 

U 
UDP.APPEND.BYTE (Function) 282 
UDP.APPEND.CELL (Function) 283 
UDP.APPEND.STRING (Function) 283 
UDP.APPEND.WORD (Function) 282 

LISP LIBRARY MODULES, MEDLEY RELEASE, INDEX 

UDP.CLOSE.SOCKET (Function) 281 
UDP.EXCHANGE (Function) 282 
UDP.GET (Function) 282 
UDP.lNIT (Function) 281 
UDP.OPEN.SOCKET (Function) 281 
UDP.SEND (Function) 282 
UDP.SETUP (Function) 282 
UDP.SOCKET.EVENT (Function) 282 
UDP.SOCKET.NUMBER (Function) 282 
UDP.STOP (Function) 281 
UNDELETE (Command) 76 
Unechoed input mode 302 
Unix 242,283 
unread 50 
UNSAVEFNS (Function) 188 
UPDATECHANGED (Function) 187 
UPDATEFN (Function) 187 

INDEX 

U pdati ng the MasterScope Data Base 184 
upgrade-semicolon-comments (Variable) 308 
user commands for NSMaintain 215 
user datagram protocol 281 
USERWORDS (Function) 302 
Using a 4045XLP Stream 9 
Using Modems 234 
Using RS232 Streams 232 
Using TExec 302 
Using the 4045 as a Default Printing Host 3 
Using the FileBrowser Window 71 
Using the Keyboard Editor 159 
Using the TTY Port 237 
Using TTY Streams 238 

V 
verifying TCP connections 268 
Version Control 40 
VFIND.PACKAGE (Function) 298 
VFIND.SYMBOL (Function) 298 
VGETBASEO (Function) 298 
VGETDEFN (Function) 298 
VGETPROPLIST (Function) 298 
VGETTOPVAL (Function) 298 
VGETV AL (Function) 298 
Viewing an Existing Bitmap 62 
Viewing Frames from a Stack 293 
Viewing the System Stack 294 
violation of the IP standard 273 
virtual graph nodes 119 
virtual memory 291 
virtual terminal 1/0 280 
Virtual Keyboards 157,319 
VKBD.CONFIGURATIONS (Variable) 163 
VKBD.KNOWN-KEYBOARDS (Variable) 324 
VLOADFNS (Function) 295 
VLOADVAR (Function) 295 
VPUTBASEO (Function) 298 
VRAID (Function) 296 
VSAVEWORK (Function) 295 
VSETTOPVAL (Function) 298 
VT100 Chat 32 
VTYPENAME (Function) 298 
VUNSAVEDEF (Function) 295 
VVAG2 (Function) 297 
VY ANKDEF (Function) 295 
v\COPY (Function) 297 
v\UNCOPY (Function) 297 

INDEX-7 



INDEX 

W 
Weitek floating-point chip set 35 
When To Copy 40 
Where-Is 325 
wild cards 70 
wrapper functions 203 

X 
XCVR interface cable 263 
Xerox 2700-11 laser printer 
Xerox 4045 Laser CP 1 
Xerox Character Codes 21 
Xerox/Diablo 630 1 
XIP (Record) 67 
XNS host number 210 
XNS Time Service 209 

4 
4045 configuration cartridge 2 
4045 Emulation Mode Selection 2 
4045 Fonts 9 
4045 Parameter Names and Values 6 
4045 Port Initialization 3 
4045 Port Selection 2 
4045 PROM and Software Compatibility 
4045XlP.CHANGE.MODE (Function) 5 
4045XlP.DEFAUl TS (Variable) 6 
4045XlP.GET.PARAMETERS (Function) 7 
4045XlP.PARAMETERS (Record) 6 
4045XlP.SET.PARAMETERS (Function) 7 
4045XLPstream Options 6 
4045XlPSTREAM. VERSION (Variable) 2 

INDEX-8 LISP LIBRARY MODULES, MEDLEY RELEASE, INDEX 



C 
U 
T 

o 
N 

D 
o 
T 
T 
E 
D 

L 
I 
N 
E 

Envos Corporation 

READER COMMENT FORM 

WE WOULD APPRECIATE YOUR COMMENTS AND SUGGESTIONS FOR IMPROVING THIS PUBLICATION. 

PUBLICATION NUMBER I RELEASE DATE I TITLE I CURRENT DATE 

HOW DID YOU USE THIS PUBLICATION? is THE MATERIAL PRESENTED IN THIS GUIDE: 

D LEARNING D WRITING/GRAPHIC 
FULLY WELL WELL o REFERENCE D INSTALLATION D COVERED 0 ILLUSTRATED 0 ORGANIZED D CLEAR 

WHAT IS YOUR OVERALL RATING OF THIS PUBLICATION? DO YOU HAVE SUGGESTED CONTENT CORRECTiONS, CHANGES 

D VERY GOOD o FAIR o VERY POOR 
OR ADDITIONS-:> 

DGOOD o POOR DYES o NO 

YOUR OTHER COMMENTS MAY BE ENTERED HERE. PLEASE BE SPECIFIC AND GIVE PAGE, PARAGRAPH AND LINE NUMBER 
REFERENCES WHERE APPLICABLE. 

YOUR NAME & RETURN ADDRESS 

THANK YOU FOR YOUR INTEREST (FOLD AND FASTEN AS SHOWN ON BACK AND MAIL) 



TAPE HERE ONLY 

... fP.L9. ....................................................................................................................................................................................... _ 

FOLD 

BUSINESS REPLY MAIL 
First Class Permit No. 1744 Mountain View, California 

Postage will be paid by Addressee 

Envos Corporation 
Attn: Customer Support 
1157 San Antonio Road 
Mountain View, California 94043 

No Postage 
Necessary 
If Mailed 

in the 
United States 


	00000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	00019
	00020
	00021
	00022
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	058a
	058b
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	096a
	096b
	096c
	096d
	096e
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	327a
	327b
	327c
	327d
	327e
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	replyA
	replyB

