
XEROX Interlisp-D Reference Manual
Volume III: Input/Output

3101'274
October, 1985

Copyright (c) 1985 Xerox Corporation

All rights reserved.

Portions from" Interlisp Reference Manual" Copyright (c) 1983
Xerox Corporation, and" Interlisp Reference Manual" Copyright
(c) 1974, 1975, 1978 Bolt, Beranek & Newman and Xerox
Corporation.

This publication may not be reproduced or transmitted in any
form by any means, electronic, microfilm, xerography, or
otherwise, or incorporated into any information retrieval system,
without the written permission of Xerox Corporation.

TABLE OF CONTENTS

26.1.8. I NSPECTWs 26.6

26.2. PROMPTFORWORD 26.9

26.3. ASKUSER 26.12

26.3.1. Format of KEVLST 26.13

26.3.2. Options 26.15

26.3.3. Operation 26.17

26.3.4. Completi ng a Key 26.18

26.3.5. Special Keys 26.19

26.3.6. Startup Protocol and Typeahead 26.20

26.4. TIVIN Display Typein Editor 26.22

26.4.1. Entering Input With TTVIN 26.22

26.4.2. Mouse Commands [lnterlisp-D Only] 26.24

26.4.3. Display Editing Commands 26.25

26.4.4. Using TTVIN for Lisp Input 26.28

26.4.5. Useful Macros 26.29

26.4.6. Programming With TTVIN 26.29

26.4.7. Using TTVIN as a General Editor 26.32

26.4.8. ? = Handler 26.33

26.4.9. Read Macros 26.34

26.4.10. Assorted Flags 26.36

26.4.11. Special Responses 26.38

26.4.12. Display Types 26.38

26.5. Prettypri nt 26.39

26.5.1. Comment Feature 26.42

26.5.2. Comment Pointers 26.44

26.5.3. Converti ng Comments to Lower Case 26.46

26.5.4. Special Prettyprint Controls 26.47

27. Graphics Output Operations 27.1

27.1. Primitive (iraphics Concepts 27.1

27.1.1. Positions 27.1

27.1.2 .. Regions 27.1

27.1.3. Bitmaps 27.3

27.1.4. Textures 27.6

27.2. Opening Image Streams 27.8

TABLE OF CONTENTS TOC.3

TABLE OF CONTENTS

27.3. Accessing Image Stream Fields 27.10

27.4. Current Position of an Image Stream 27.13

27.5. Moving Bits Between Bitmaps With BITBLT 27.14

27.6. Drawing Lines 27.17

27.7. Drawing Curves 27.18

27.8. Miscellaneous Drawing and Printing Operations 27.20

27.9. Drawing and Shading Grids 27.22

27.10. Display Streams 27.23

27.12. Fonts 27.25

27.13. Font Files and Font Directories 27.31

27.15. Font Profiles 27.32

27.16. Image Objects 27.35

27.16.1. IM.AGEFNS Methods 27.36

27.16.2. Registering Image Objects 27.39

27.16.3. Reading and Writing Image Objects on Files 27.40

27.16.4. Copying Image Objects Between Windows 27.41

27.17. Implementation of Image Streams 27.42

28. Windows and Menus 28.1

28.1. Using The Window System 28.2

28.2. Changing Window Commctnd Menus 28.7

28.3. Interactive Display Functions 28.9

28.4. Windows 28.12

28.4.1. Window Properties 28.13

28.4.2. Creclting Windows 28.13

28.4.3. Opening and Closing Windows 28.15

28.4.4. Redisplaying Windows 28.16

28.4.5. Reshaping Windows 28.16

28.4.6. Moving Windows 28.19

28.4.7. Exp'osing and Burying Windows 28.20

28.4.8. Shrinking Windows Into Icons 28.21

28.4.9. Coordinate Systems, Extents, And Scrolling 28.23

28.4.10. Mc)use Activity in Windows 28.27

28.4.11. Terminal 110 and Page Holding 28.29

28.4.12. The TTY Process and the Caret 28.30

TOC.4 TABLE OF CONTENTS

· TABLE OF CONTENTS

28.4.13. Miscellaneous Wi ndow Functions 28.31

28.4.14. Miscellaneous Window Properties 28.33

28.4.15. Example: A Scrollable Window 28.34

28.5. Menus 28.37

28.5.1. Menu Fields 28.38

28.5.2. Miscellaneous Menu Functions 28.42

28.5.3. Examples of Menu Use 28.43

28.6. Attached Windows 28.45

28.6.1. Attaching Menus To Windows 28.48

28.6.2. Attached Prompt Windows 28.50

28.6.3. Window Operations And Attached Windows 28.50

28.6.4. Window Properties Of Attached Windows 28.53

29. Hardcopy Facilities 29.1

29.1. Low-level Hardcopy Variables 29.5

30. Terminallnput/Output 30.1

30.1. Interrupt Characters 30.1

30.2. Terminal Tables 30.4

30.2.1. Terminal Syntax Classes 30.5

30.2.2. Terminal Control Functions 30.6

30.2.3. Line-Buffering 30.9

30.3. Dribble Files 30.12

30.4. Cursor and Mouse 30.13

30.4.1. Changing the Cursor Image 30.13

30.4.2. Flashing Bars on the Cursor 30.16

30.4.3. Cursor Position 30.17

30.4.4. Mouse Button Testing 30.17

30.4.5. Low Level Mouse Functions 30.18

30.5. Keyboard Interpretation 30.19

30.6. Display Screen 30.22

30.7. Miscellaneous Terminal 110 30.24

31. Ethernet 31.1

31.1. Ethernet Protocols 31.1

31.1.1. Protocol Layering 31.1

31.1.2. Level Zero Protocols 31.2

TABLE OFCONTENTS TOC.S

TABLE OF CONTENTS

31.1.3. Level One Protocols 31.3

31.1.4. Higher Level Protocols 31.4

31.1.5. Connecting Networks: Routers and Gateways 31.4

31.1.6. Addressing Conflicts with Level Zero Mediums 31.5

31.1.7. References 31.5

31.2. Higher-level PUP Protocol Functions 31.6

31.3. Higher-level NSProtocol Functions 31.7

31.3.1. Name and Address Conventions 31.7

31.3.2. Clearinghouse Functions 31.9

31.3.3. NS Printing 31.12

31.3.4. SPP Stream Interface 31.12

31.3.5. Courier Remote Procedure Call Protocol 31.15

31.3.5.1. Defining Courier Programs 31.15

31.3.5.2. Courier Type Definitions 31.17

31.3.5.2.1. Pre-defined Types 31.17

31.3.5.2.2. Constructed Types 31.18

31.3.5.2.3. User Extensions to the Type Language 31.19

31.3.5.3. Performing Courier Transactions 31.20

31.3.5.3.1. Expedited Procedure Call 31.22

31.3.5.3.2. Expanding Ring Broadcast 31.23

31.3.5.3.3. Using Bulk Data Transfer 31.24

31.3.5.3.4. Courier Subfunctions for Data Transfer 31.25

31.4. Level One Ether Packet Format 31.26

31.5. PUP Level One Functions 31.28

31.5.1. Creating and Managing Pups 31.28

31.5.2. Sockets 31.28

31.5.3. Sending and Receiving Pups 31.29

31.5.4. Pup Routing Information 31.30

31.5.5. Miscellaneous PUP Utilities 31.31

31.5.6. PUP Debugging Aids 31.32

31.6. NS Level One Functions 31.36

31.6.1. Creating and Managing XIPs 31.36

31.6.2. NS Sockets 31.37

31.6.3. Sending and Receiving XIPs 31.37

TOC6 TABLE OF CONTENTS

TABLE OF CONTENTS

31.6.4. NS Debugging Aids 31.38

31.7. Support for Other Level One Protocols 31.38

31.8. The SYSQUEUE mechanism 31.41

TABLE OF CONTENTS TOC.?

TABLE OF CONTENTS

[This page intentionally left blank]

TOc.a TABLE OF CONTENTS

TABLE OF CONTENTS

24. Streams and Files 24.1

24.1. Opening and Closing File Streams 24.2

24.2. File Names 24.5

24.3. Incomplete File Names 24.9

24.4. Version Recognition 24.11

24.5. Using File Names Instead of Streams 24.13

24.5.1. File Name Efficiency Considerations 24.14

24.5.2. Obsolete File Opening Functions 24.14

24.5.3. Converting Old Programs 24.15

24.6. Using Files with Processes 24.16

24.7. File Attributes 24.17

24.8. Closing and Reopening Files 24.20

24.9. Local Hard Disk Device 24.21

24.10. Floppy Disk Device 24.24

24.11. 110 Operations to and from Strings 24.28

24.12. Temporary Files and the CORE Device 24.29

24.13. NULL Device 24.30

24.15. Deleting, Copying, and Renaming Files 24.31

24.16. Searching File Directories 24.31

24.17. Listing File Directories 24.33

24.18. File Servers 24.36

24.18.1. Pu p Fi Ie Serve r Protocol s 24.36

24.18.2. Xerox NS File Server Protocols 24.37

24.18.3. Operati ng System Designations 24.38

24.18.4. Logging In 24.39

24.18.5. Abnormal Conditions 24.41

TABLE OFCONTENTS roc 1

TABLE OFCONTENTS

[This page intentionally left blank]

TOC.2 TABLE OF CONTENTS

TABLE OF CONTENTS

26.1.8. I NSPECTWs 26.6

26.2. PROMPTFORWORD 26.9

26.3. ASKUSER 26.12

26.3.1. Format of KEVLST 26.13

26.3.2. Options 26.15

26.3.3. Operation 26.17

26.3.4. Completi ng a Key 26.18

26.3.5. Special Keys 26.19

26.3.6. Startup Protocol and Typeahead 26.20

26.4. TIVIN Display Typein Editor 26.22

26.4.1. Entering Input With TTVIN 26.22

26.4.2. Mouse Commands [lnterlisp-D Only] 26.24

26.4.3. Display Editing Commands 26.25

26.4.4. Using TTVIN for Lisp Input 26.28

26.4.5. Useful Macros 26.29

26.4.6. Programming With TTVIN 26.29

26.4.7. Using TTVIN as a General Editor 26.32

26.4.8. ? = Handler 26.33

26.4.9. Read Macros 26.34

26.4.10. Assorted Flags 26.36

26.4.11. Special Responses 26.38

26.4.12. Display Types 26.38

26.5. Prettypri nt 26.39

26.5.1. Comment Feature 26.42

26.5.2. Comment Pointers 26.44

26.5.3. Converti ng Comments to Lower Case 26.46

26.5.4. Special Prettyprint Controls 26.47

27. Graphics Output Operations 27.1

27.1. Primitive (iraphics Concepts 27.1

27.1.1. Positions 27.1

27.1.2 .. Regions 27.1

27.1.3. Bitmaps 27.3

27.1.4. Textures 27.6

27.2. Opening Image Streams 27.8

TABLE OF CONTENTS TOC.3

TABLE OF CONTENTS

27.3. Accessing Image Stream Fields 27.10

27.4. Current Position of an Image Stream 27.13

27.5. Moving Bits Between Bitmaps With BITBLT 27.14

27.6. Drawing Lines 27.17

27.7. Drawing Curves 27.18

27.8. Miscellaneous Drawing and Printing Operations 27.20

27.9. Drawing and Shading Grids 27.22

27.10. Display Streams 27.23

27.12. Fonts 27.25

27.13. Font Files and Font Directories 27.31

27.15. Font Profiles 27.32

27.16. Image Objects 27.35

27.16.1. IM.AGEFNS Methods 27.36

27.16.2. Registering Image Objects 27.39

27.16.3. Reading and Writing Image Objects on Files 27.40

27.16.4. Copying Image Objects Between Windows 27.41

27.17. Implementation of Image Streams 27.42

28. Windows and Menus 28.1

28.1. Using The Window System 28.2

28.2. Changing Window Commctnd Menus 28.7

28.3. Interactive Display Functions 28.9

28.4. Windows 28.12

28.4.1. Window Properties 28.13

28.4.2. Creclting Windows 28.13

28.4.3. Opening and Closing Windows 28.15

28.4.4. Redisplaying Windows 28.16

28.4.5. Reshaping Windows 28.16

28.4.6. Moving Windows 28.19

28.4.7. Exp'osing and Burying Windows 28.20

28.4.8. Shrinking Windows Into Icons 28.21

28.4.9. Coordinate Systems, Extents, And Scrolling 28.23

28.4.10. Mc)use Activity in Windows 28.27

28.4.11. Terminal 110 and Page Holding 28.29

28.4.12. The TTY Process and the Caret 28.30

TOC.4 TABLE OF CONTENTS

· TABLE OF CONTENTS

28.4.13. Miscellaneous Wi ndow Functions 28.31

28.4.14. Miscellaneous Window Properties 28.33

28.4.15. Example: A Scrollable Window 28.34

28.5. Menus 28.37

28.5.1. Menu Fields 28.38

28.5.2. Miscellaneous Menu Functions 28.42

28.5.3. Examples of Menu Use 28.43

28.6. Attached Windows 28.45

28.6.1. Attaching Menus To Windows 28.48

28.6.2. Attached Prompt Windows 28.50

28.6.3. Window Operations And Attached Windows 28.50

28.6.4. Window Properties Of Attached Windows 28.53

29. Hardcopy Facilities 29.1

29.1. Low-level Hardcopy Variables 29.5

30. Terminallnput/Output 30.1

30.1. Interrupt Characters 30.1

30.2. Terminal Tables 30.4

30.2.1. Terminal Syntax Classes 30.5

30.2.2. Terminal Control Functions 30.6

30.2.3. Line-Buffering 30.9

30.3. Dribble Files 30.12

30.4. Cursor and Mouse 30.13

30.4.1. Changing the Cursor Image 30.13

30.4.2. Flashing Bars on the Cursor 30.16

30.4.3. Cursor Position 30.17

30.4.4. Mouse Button Testing 30.17

30.4.5. Low Level Mouse Functions 30.18

30.5. Keyboard Interpretation 30.19

30.6. Display Screen 30.22

30.7. Miscellaneous Terminal 110 30.24

31. Ethernet 31.1

31.1. Ethernet Protocols 31.1

31.1.1. Protocol Layering 31.1

31.1.2. Level Zero Protocols 31.2

TABLE OFCONTENTS TOC.S

TABLE OF CONTENTS

31.1.3. Level One Protocols 31.3

31.1.4. Higher Level Protocols 31.4

31.1.5. Connecting Networks: Routers and Gateways 31.4

31.1.6. Addressing Conflicts with Level Zero Mediums 31.5

31.1.7. References 31.5

31.2. Higher-level PUP Protocol Functions 31.6

31.3. Higher-level NSProtocol Functions 31.7

31.3.1. Name and Address Conventions 31.7

31.3.2. Clearinghouse Functions 31.9

31.3.3. NS Printing 31.12

31.3.4. SPP Stream Interface 31.12

31.3.5. Courier Remote Procedure Call Protocol 31.15

31.3.5.1. Defining Courier Programs 31.15

31.3.5.2. Courier Type Definitions 31.17

31.3.5.2.1. Pre-defined Types 31.17

31.3.5.2.2. Constructed Types 31.18

31.3.5.2.3. User Extensions to the Type Language 31.19

31.3.5.3. Performing Courier Transactions 31.20

31.3.5.3.1. Expedited Procedure Call 31.22

31.3.5.3.2. Expanding Ring Broadcast 31.23

31.3.5.3.3. Using Bulk Data Transfer 31.24

31.3.5.3.4. Courier Subfunctions for Data Transfer 31.25

31.4. Level One Ether Packet Format 31.26

31.5. PUP Level One Functions 31.28

31.5.1. Creating and Managing Pups 31.28

31.5.2. Sockets 31.28

31.5.3. Sending and Receiving Pups 31.29

31.5.4. Pup Routing Information 31.30

31.5.5. Miscellaneous PUP Utilities 31.31

31.5.6. PUP Debugging Aids 31.32

31.6. NS Level One Functions 31.36

31.6.1. Creating and Managing XIPs 31.36

31.6.2. NS Sockets 31.37

31.6.3. Sending and Receiving XIPs 31.37

TOC6 TABLE OF CONTENTS

TABLE OF CONTENTS

31.6.4. NS Debugging Aids 31.38

31.7. Support for Other Level One Protocols 31.38

31.8. The SYSQUEUE mechanism 31.41

TABLE OF CONTENTS TOC.?

TABLE OF CONTENTS

[This page intentionally left blank]

TOc.a TABLE OF CONTENTS

STREAMS AND FILES

24. STREAMS AND FILES

Interlisp-D can perform input/output operations on a large
variety of physical devices, including local disk drives, floppy disk.
drives, the keyboard and display screen, and remote file server
computers accessed over a network. While the low-level details
of how all these devices perform input/output vary considerably,
the Interlisp-D language provides the programmer a smal"
common set of abstract operations whose use is largely
independent of the physical input/output medium
involved-operations such as read, print, change font, or go to a
new line. By merely changing the targeted I/O device, a single
program can be used to produce output on the display, a file, or
a printer.

The underlying data abstraction that permits this flexibility is the
stream. A stream is a data object (an instance of the data type
STREAM) that encapsulates all of the information about an
input/output connection to a particular I/O device. Each of
Interlisp-D's general-purpose I/O functions takes a stream as one
of its arguments. The general-purpose function then performs
action specific to the stream's device to carry out the requested
operation. Not every device is capable of implementing every I/O
operation, while some devices offer additional functionality by
way of special functions for that device alone. Such restrictions
and extensions are noted in the documentation of each device.

The vast majority of the streams commonly used in Interlisp-D fall
into two interesting categories: the file stream and the image
stream.

A file is an ordered collection of data, usually a sequence of
characters or bytes, stored on a file device in a manner that
allows the data to be retrieved at a later time. Floppy disks, hard
disks, and remote file servers are among the devices used to store
files. Files are identified by a "file name", which specifies the
device on which the file resides and a name unique to a specific
file on that device. Input or output to a file is performed by
obtaining a stream to the file, using OPENSTREAM (page 24.2).
In addition, there are functions that manipulate the files
themselves, rather than their data content.

An image stream is an output stream to a display device, such as
the display screen or a printer. In addition to the standard
output operations, such as print, an image stream implements a
variety of graphics operations, such as drawing lines and
displaying characters in multiple fonts. Unlike a file, the

24.1

STREAMS AND FILES

"content" of an image stream cannot be retrieved. Image
streams are described on page 27.8.

The creation of other kinds of streams, such as network
byte-stream connections, is described in the chapters peculiar to
those kinds of streams. The operations common to streams in
general are described on page 25.1. This chapter describes
operations specific to file devices: how to name files, how to
open streams to files, and how to manipulate files on their
devices.

24.1 Opening and Closing File Streams

24.2

In order to perform input from or output to a file, it is necessary
to create a stream to the file, using OPENSTREAM:

(OPENSTREAM FILE ACCESS RECOG PARAMETERS-) [Function]

Opens and returns a stream for the file specified by FILE, a file
name. FILE can be either a string or a litatom. The syntax and
manipulation of file names is described at length on page 24.5.
Incomplete file names are interpreted with respect to the
connected directory (page 24.10).

RECOG specifies the recognition mode of FILE, as described on
page 24.12. If RECOG = NIL, it defaults according to the value of
ACCESS.

ACCESS specifies the "access rights" to be used when opening
the file, one of the following:

INPUT Only input operations are permitted on the file. The file must
already exist. Starts reading at the beginning of the file. RECOG
defaults to OLD.

OUTPUT Only output operations are permitted on the file. Starts writing
at the beginning of the file, which is initially empty. While the
file is open, other users or processes are unable to open the file
for either input or output. RECOG defaults to NEW.

BOTH Both input and output operations are permitted on the fi Ie.
Starts reading or writing at the beginning of the file. RECOG
defaults to OLD/NEW. ACCESS = BOTH im plies random
accessibility (page 25.18), and thus may not be possible for files
on some devices.

APPEND Only sequential output operations are permitted on the file.
Starts writing at the end of the file. RECOG defaults to
OLD/NEW. ACCESS = APPEND may not be allowed for files on
some devices.

STREAMS AND FILES

STREAMS AND FILES

OPENING AND CLOSING FILE STREAMS

Note: ACCESS = OUTPUT implies that one intends to write a new
or different file, even if a version number was specified and the
corresponding file already exists. Thus any previous contents of
the file are discarded, and the file is empty immediately after the
OPENSTREAM. If it is desired to write on an already existing file
while preserving the old contents, the file must be opened for
access BOTH or APPEND.

PARAMETERS is a list of pairs (A TTRIB VALUE), where A TTRIB is
any file attribute that the file system is willing to allow the user
to set (see SETFILEINFO, page 24.17). A non-list A TTRIB in
PARAMETERS is treated as the pair (A TTRIB T). Generally
speaking, attributes that belong to the permanent file (e.g.,
TYPE) can only be set when creating a new file, while attributes
that belong only to a particular opening of a file (e.g.,
ENDOFSTREAMOP) can be set on any call to OPENSTREAM. Not
all devices h()nor all attributes; those not recognized by a
particular device are simply ignored.

In addition to the attributes permitted by SETFILEINFO, the
following tokens are accepted by OPENSTREAM as values of
ATTRIB in its PARAMETERS argument:

DON'T.CHANGE.DATE If VALUE is non-NIL, the file's creation date (page 24.17) is not
changed when the file is opened. This option is meaningful only
for old files being opened for access BOTH. This should be used
only for specialized applications in which the caller does not
want the file system to believe the file's content has been
changed.

SEQUENTIAL If VALUE is non-NIL, this opening of the file need support only
sequential access; i.e., the caller intends never to use SETFILEPTR.
For some devices, sequential access to files is much more efficient
than random access. Note that the device may choose to ignore
this attribute and still open the file in a manner that permits
random access. Also note that this attribute does not make sense
with ACCESS = BOTH.

If FILE is not recogni'zed by the file system, OPENSTREAM causes
the error FILE NOT FOUND. Ordinarily, this error is intercepted
via an entry on ERRORTYPELST (page 14.22), which causes
SPELLFILE (page 24.32) to be called. SPELLFILE searches alternate
directories and possibly attempts spelling correction on the file
name. Only if SPELLFILE is unsuccessful will the FILE NOT FOUND
error actually occur.

If FILE exists but cannot be opened, OPENSTREAM causes one of
several other errors: FILE WON'T OPEN if the file is already
opened for conflicting access by someone else; PROTECTION
VIOLATION if the file is protected against the operation; FILE
SYSTEM RESOURCES EXCEEDED if there is no more room in the
file system.

24.3

OPENING AND CLOSING FILE STREAMS

(CLOSEF FILE)

(CLOSEF? FILE)

(OPENP FILE ACCESS)

24.4

[Function]

Closes FILE, and returns its full file name. Generates an error,
FILE NOT OPEN, if FILE does not designate an open stream. After
dosing a stream, no further input/output operations are
permitted on it.

If FILE is NIL, it is defaulted to the primary input stream if that is
not the terminal stream, or else the primary output stream if that
is not the terminal stream. If both primary input and output
streams are the terminal input/output streams, CLOSEF returns
NIL. If CLOSEF doses either the primary input stream or the
primary output stream (either explicitly or in the FILE = NIL case),
it resets the primary stream for that direction to be the
corresponding terminal stream. See page 25.3 for information
on the primary input/output streams.

WHENCLOSE (page 24.20) allows the user to "advise" CLOSEF to
perform various operations when a file is dosed.

Because of buffering, the contents of a file open for output are
not guaranteed to be written to the actual physical file device
until CLOSEF is called. Buffered data can be forced out to a file
without dosing the file by using the function FORCEOUTPUT

(page 25.10).

Some network file devices perform their transactions in the
background. As a result, it is possible for a file to be dosed by
CLOSEF and yet not be "fully" dosed for some small period of
time afterward, during which time the file appears to still be
busy, and cannot be opened for conflicting access by other users.

[Function]

Closes FILE if it is open, returning the value of CLOSEF; otherwise
does nothing and returns NIL.

In the present implementation of Interlisp-D, all streams to files
are kept, while open, in a registry of "open files". This registry
does not include nameless streams, such as string streams (page
24.28), display streams (page 28.29), and the terminal input and
output streams; nor streams explicitly hidden from the user, such
as dribble streams (page 30.12). This registry may not persist in
future implementations of Interlisp-D, but at the present time it
is accessible by the following two functions:

[Function]

ACCE~S is an access mode for a stream opening (one of INPUT,

OUTPUT, BOTH, or APPEND), or NIL, meaning any access.

If FILE is a stream, returns its full name if it is open for the
specified access, else NIL.

STREAMS AND FILES

OPENING AND CLOSING FILE STREAMS

If FILE is a file name (a litatom), FILE is processed according to the
rules of file recognition (page 24.12). If a stream open to a file by
that name is registered and open for the specified access, then
the file's full name is returned. If the file name is not recognized,
or no stream is open to the file with the specified access, NIL is
returned.

If FILE is NIL, returns a list of the full names of all registered
streams that are open for the specified access.

(CLOSEALL ALLFLG) [Function]

24.2 File Names

Closes all streams in the value of (OPENP), Returns a list of the
files closed.

WHENCLOSE (page 24.20) allows certain files to be "protected"
from CLOSEALL. If ALLFLG is T, all files, including those
protected by WHENCLOSE, are closed.

A file name in Interfisp-D is a string or litatom whose characters
specify a "path" to the actual file: on what host or device the file
resides, in which directory, and so forth. Because Interlisp-D
supports a variety of non-local file devices, parts of the path
could be very device-dependent. However, it is desirable for
programs to be able to manipulate file names in a
device-independent manner. To this end, Interlisp-D specifies a
uniform file name syntax over all devices; the functions that
perform the actual file manipulation for a particular device are
responsible for any translation to that device's naming
conventions.

A file name is composed of a collection of fields, some of which
have specific semantic interpretations. The functions described
below refer to each field by a field name, a literal atom from
among the following: HOST, DEVICE, DIRECTORY, NAME,

EXTENSION, and VERSION. The standard syntax for a file name
that contains all of those fields is
{HOST}DEVICE: < DIRECTORY >NAME.EXTENSION;VERSION.

Some host's file systems do not use all of those fields in their file
names.

HOST Specifies the host whose file system contains the file. In the case
of local file devices, the IIhost ll is the name of the device, e.g.,
DSK or FLOPPY.

DEVICE Specifies, for those hosts that divide their file system's name
space among mutiple physical devices, the device or logical
structure on which the file resides. This should not be co"nfused

STREAMS AND FILES 24.5

FilE NAMES

DIRECTORY

NAME

EXTENSION

VERSION

24.6

with Interlisp-D's abstract "file device", which denotes either a
host or a local physical device and is specified by the HOST field.

Specifies the "directory" containing the file. A directory usually
is a grouping of a possibly large set of loosely related files, e.g.,
the personal files of a particular user, or the files belonging to
some project. The DIRECTORY field usually consists of a principal
directory and zero or more subdirectories that together describe
a path through a file system's hierarchy. Each subdirectory name
is set off from the previous directory or subdirectory by the
character" >"; e.g., "lISP>lIBRARY>NEW".

This field carries no specific meaning, but generally names a set
of files thought of as being different renditions of the "same"
abstract file.

This field also carries no specific meaning, but generally
distinguishes the form of files having the same name. Most files
systems have some "conventional" extensions that denote
something about the content of the file. E.g., in Interlisp-D, the
extension DeOM standardly denotes a file containing compiled
function definitions.

A number used to distinguish the versions or "generations" of
the files having a common name and extension. The version
number is incremented each time a new file by the same name is
created.

Most functions that take as input "a directory" accept either a
directory name (the contents of the DIRECTORY field of a file
name) or a "full" directory specification-a file name fragment
consisting of only the fields HOST, DEVICE, and DIRECTORY. In
particular, the "connected directory" (page 24.10) consists, in
general, of all three fields.

For convenience in dealing with certain operating systems,
Interlisp-D also recognizes [] and () as host delimiters
(synonymous with {}), and I as a directory delimiter (synonymous
with < at the beginning of a directory specification and > to
terminate directory or subdirectory specification). For example,
a file on a Unix file server UNX with the name
lusr/foo/barlstuff.tedit, whose DIRECTORY field is thus
usr/foo/bar, could be specified as {UNX}/usr/foo/barlstuff.tedit,
or (UNX)<usr/foo/bar>stuff.tedit, or several other variations.
Note that when using [] or () as host delimiters, they usually must
be escaped with the reader's % escape character if the file name
is expressed as a litatom rather than a string.

Different hosts have different requirements regarding which
characters are valid in file names. From Interlisp-D's point of
view, any characters are valid. However, in order to be able to
parse a file name into its component fields, it is necessary that
those characters that are conventionally used as file name
delimiters be quoted when they appear inside of fields where

STREAMS AND FilES

FILE NAMES

there could be ambiguity. The file name quoting character is """
(single quote). Thus, the following characters must be quoted
when not used as delimeters: :, >, ;, /, and I itself. The character
. (period) need only be quoted if it is to be considered a part of
the EXTENSION field. The characters },], and) need only be
quoted in a file name when the host field of the name is
introduced by {, [, and (, respectively. The characters {, [, (, and
< need only be quoted if they appear as the first character of a
file name fragment, where they would otherwise be assumed to
introduce the HOST or DIRECTORY fields.

The following functions are the standard way to manipulate file
names in Interlisp. Their operation is puredy syntactic-they
perform no file system operations themselves.

(UNPACKFILENAME.STRING FILENAME - --) [Function]

(UNPACKFILENAME FILE-)

STREAMS AND FILES

Parses FILENAME, returning a list in propelrty list format of
alternating field names and field contents. The field contents
are returned as strings. If FILENAME is a strealm, its full name is
used.

Only those fields actually present in FILENAME are returned. A
field is considered present if its delimiting punctuation (in the
case of EXTENSION and VERSION, the preceding period or
semicolon, respectively) is present, even if the field itself is
empty. Empty fields are denoted by (the em pty string).

Examples:

(UNPACKFILENAME.STRING "FOO.BAR") ::I >
(NAME "FOO" EXTENSION "BARil)

(UNPACKFILENAME.STRING "FOO.;2") ::I >
(NAME "FOO" EXTENSION VERSION "2")

(UNPACKFILENAME.STRING "FOO;") ::I>
(NAME "FOO" VERSION)

(UNPACKFILENAME.STRING
n{ERIS}<LlSP>CURRENT>IMTRAN.DCOM;21")

::I > (HOST "ERIS" DIRECTORY "LlSP>CURRE~IT"
NAME "IMTRAN" EXTENSION "DCOM"
VERSION "21")

[Function]

Old version of UNPACKFILENAME.STRING that returns the field
values as atoms, rather than as strings.
UNPACKFILENAME.STRING is now considered the "correct" way
of unpacking file names, because it does not lose information
when the contents of a field are numeric. For example,

(UNPACKFILENAME "STUFF.TXT) ::I >
(NAME STUFF EXTENSION TXT)

24.7

FILE NAMES

24.8

but

(UNPACKFllENAME'STUFF.029) ::= >
(NAME STUFF EXTENSION 29)

Explicitly omitted fields are denoted by the atom Nil, rather than
the empty string.

Note: Both UNPACKFILENAME and UNPACKFllENAME.STRING
leave the trailing colon on the device field, so that the Tenex
device Nil: can be distinguished from the absence of a device.
Although UNPACKFllENAME.STRING is capable of making the
distinction, it retains this behavior for backward compatibility.
Thus,

(UNPACKFllENAME.STRING '{TOAST}DSK:FOO) ::= >
(HOST "TOAST" DEVICE "DSK:" NAME "FOO")

(FllENAMEFIElD FILENAME FIELDNAME) [Function]

Returns, as an atom, the contents of the FIELDNAME field of
FILENAME. If FILENAME is a stream, its full name is used.

(PACKFllENAME.STRING FIELD 1 CONTENTS 1 ... FIELDN CONTENTSN) [NoSpread Function]

Takes a sequence of alternating field names and field contents
(atoms or strings), and returns the corresponding file name, as a
string. . ,

If PACKFllENAME.STRING is given a single argument, it is
interpreted as a list of alternating field names and field contents.
Thus PACKFllENAME.STRING and UNPACKFllENAME.STRING
operate as inverses.

If the same field name is given twice, the first occurrence is used.

The contents of the field name DIRECTORY may be either a
directory name or a full directory specification as described
above.

PACKFllENAME.STRING also accepts the "field name" BODY to
mean that its contents should itself be unpacked and spliced into
the argument list at that point. This feature, in conjunction with
the rule 'that fields early in the argument list override later
duplicates, is useful for altering existing file names. For example,
to provide a default field, place BODY first in the argument list,
then the default fields. To override a field, place the new fields
first and BODY last.

If the value of the BODY field is a stream, its full name is used.

Examples:

(PACKFllENAME.STRING 'DIRECTORY "LISP"
'NAME "NET")

::= > "<lISP>NET"

STREAMS AND FILES

FILE NAMES

(PACKFILENAME.STRING "NAME "NETu

'DIRECTORY U{DSK}<USPFILES>U)

• > U{DSK}<USPFILES>NETn

(PACKFILENAME.STRING 'DIRECTORY "{DSK}"
'BODY "{TOAST}<FOO>BAR n

)

• > U{DSK}BAR"

(PACKFILENAME.STRING 'DIRECTORY "FRED"
'BODY n{TOAST}<FOO>BARU)

=- > U {TOAST} < FRED> BAR"

(PACKFILENAME.STRING 'BODY "{TOAST}<FOO>BAR"
'DIRECTORY UFREDU)

• > "{TOAST}<FOO>BAR"

(PACKFILENAME.STRING 'VERSION NIL
'BODY "{TOAST}<FOO>BAR.DCOM;2")

• > "{TOAST}<FOO>BAR.OCOM"

(PACKFILENAME.STRING 'BODY "{TOAST}<FOO>BAR.OCOM"
'VERSION 1)

• > "{TOAST}<FOO>BAR.DCOM;1"

(PACKFILENAME.STRING 'BODY "{TOAST}<FOO>BAR.DCOM;"
'VERSION 1)

• > "{TOAST}<FOO>BAR.DCOM;"

(PACKFILENAME.STRING 'BODY "BAR.;1"
'EXTENSION "DeOM")

• > "BAR.;1"

(PACKFILENAME.STRING 'BODY "BAR; 1"
'EXTENSION "DCOM")

• > "BAR.DeOM;1"

In the last two examples, note that in one case the extension is
explicitly present in the body (as indicated by the preceding
period), while in the other there is no indication of an extension,
so the defau It is used.

(PACKFILENAME FIELD 1 CONTENTS 1 ... FIELDN CONTENTSN) [NoSpread Function]

24.3 Incomplete File Names

STREAMS AND FILES

The same as PACKFILENAME.STRING, except that it returns the
file name as a litatom, instead of a string.

In general, it is not necessary to pass a complete file name (one
containing all the fields listed above) to functions that take a file
name as argument. Interlisp supplies suitable defaults for

24.9

INCOMPLETE FILE NAMES

(CNDIR HOSTIDIR)

24.10

certain fields, as described below. Functions that return names
of actual files, however, always return the fully specified name.

If the version field is omitted from a file name, Interlisp performs
version recognition, as described on page 24.11.

If the host, device and/or directory field are omitted from a file
name, Interlisp defaults them with respect to the· currently
connected directory. The connected directory is changed by
calling the function CNDIR or using the programmer's assistant

command CONN.

Defaults are added to the partially specified name" left to right"
until a host, device or directory field is encountered. Thus, if the
connected directory is {TWENTY}PS: < FRED>, then

BAR.DeOM means
{TWENTY}PS: < FRED> BAR.DCO M

< GRANOLA> BAR.DCOM means
{TWENTY}PS: < GRANOLA> BAR.DeOM

MTAO:<GRANOLA>BAR.DeOM means
{TWENTY}MTAO: < GRANOLA> BAR.DeOM

{THIRTY}<GRANOLA>BAR.DCOM means
{THIRTY}< GRANOLA> BAR.DCOM

In addition, if the partially specified name contains a
subdirectory, but no principal directory, then the subdire.ctory is
appended to the connected directory. For example,

ISO>BAR.DCOM means
{TWENTY}PS: < FRED> ISO> BAR.DeOM

Or, if the connected directory is the Unix directory
{UNX}/usr/fred/, then iso/bar.deom means
{UNX}/usr/fred/iso/bar.deom, but lother/bar.deom means
{UNX}/other/bar.deom.

[Function]

Connects to the directory HOST/DIR, which can either be a
directory name or a full directory specification including host
and/or device. If the specification inclu~es just a host, and the
host supports directories, the directory is defaulted to the value
of (USERNAME); if the host is omitted, connection is made to
another directory on the same host as before. If HOST/DIR is Nil,
connects to the value of LOGINHOST/DIR.

CNDIR returns the full name of the now-connected directory_
Causes an error, Non-existent directory, if HOST/DIR is not
recognized as a valid directory.

Note that CNDIR does not necessarily require or provide any
directory access privileges. Access privileges are checked when a
file is opened.

STREAMS AND FILES

CONN HOST/DIR,

LOGINHOST/OIR

INCOMPLETE FILE NAMES

[Prog. Asst. Command]

Convenient command form of CNOIR for use at the executive.
Connects to HOST/DIR, or to the value of LOGINHOST/OIR if
HOST/DIR is omitted. This command is undoable-undoing it

causes the system to connect to the previously connected
directory.

[Variable]

CONN with no argument connects to the value of the variable
LOGINHOST/OIR, initially {OSK}, but usually reset in the user's
greeting file (page 12.1).

(OIRECTORYNAME DIRNAME STRPTR-) [Function]

If DIRNAME is T, returns the full specification of the currently
connected directory. If DIRNAME is NIL, returns the "login"
directory specification (the value of LOGINHOST/OIR). For any
other value of DIRNAME, returns a full directory specification if
DIRNAME designates an eXisting directory (satisfies
DIRECTORYNAMEP), otherwise NIL.

If STRPTR is T, the value is returned as an atom, otherwise it is

returned as a string.

(OIRECTORYNAMEP DIRNAME. HOSTNAME) [Function]

(HOSTNAMEP NAME)

24.4 Version Recognition

STREAMS AND FILES

Returns T if DIRNAME is recognized as a valid directory on host
HOSTNAME, or on the host of the currently connected directory
if HOSTNAME is NIL. DIRNAME may be either a directory name
or a full directory specification containing host and/or device as
well.

If DIRNAME includes subdirectories, this function mayor may not
pass judgment on their validity. Some hosts support "true"
subdirectories, distinct entities manipulable by the file system,
while others only provide them as a syntactic convenience.

[Function]

Returns T if NAME is recognized as a valid host or file device
name at the moment HOSTNAMEP is called.

Most of the file devices in Interiisp support file version numbers.
That is, it is possible to have several files of the exact same name,
differing only in their VERSION field, which is incremented for
each new "version" of the file that is created. When a file name
lacking a version number is presented to the file system, it is

24.11

VERSION RECOGNITION

(FULLNAME X RECOG)

OLD

OLDEST

NEW

OLD/NEW

24.12

necessary to determine which version number is intended. This,
process is known as version recognition.

When OPENSTREAM opens a file for input and no version
number is given, the highest existing version number is used.
Similarly, when a file is opened for output and no version
number is given, a new file is created with a version number one
higher than the highest one currently in use with that file name.
The version number defaulting for OPENSTREAM can be
changed by specifying a different value for its RECOG argument,
as described under FULLNAME, below.

Other functions that accept file names as arguments generally
perform the default version recognition, which is newest version
for existing files, or a new version if using the file name to create
a new file. The one exception is DELFILE, which defaults to the
oldest existing version of the file.

The functions below can be used to perform version recognition
without actually calling OPENSTREAM to open the file. Note
that these functions only tell the truth about the moment at
which they are called, and thus cannot in general be used to
anticipate the name of the file opened by a comparable
OPENSTREAM. They are sometimes, however, helpful hints.

[Function] .

If X is an open stream, simply returns the full file name of the
stream. Otherwise, if X is a file name given as a string or litatom,
performs version recognition, as follows:

If X is recognized in the recognition mode specified by RECOG as
an abbreviation for some file, returns the file's full name,
otherwise NIL. RECOG is one of the following:

Choose the newest existing version of the file. Return NIL if no
file named X exists.

Choose the oldest existing version of the file. Return NIL if no file
named X exists.

Choose a new (not yet existing) version of the file. That is, if
versions of X already exist, then choose a version number one
higher than highest existing version; else choose version 1. For
some file systems, FULLNAME returns NIL if the use,. does not
have the access rights necessary for creating a new file named X.

Try OLD, then NEW. That is, choose the newest existing version
of the file, if any; else choose version 1. This usually only makes
sense if you are intending to open X for access BOTH.

RECOG = NIL defaults to OLD. For all other values of RECOG,
generates an error ILLEGAL ARG.

If X already contains a version number, the RECOG argument will
never change it. In particular, RECOG = NEW does not require

STREAMS AND FILES

(lNFllEP FILE)

(OUTFllEP FILE)

VERSION RECOGNITION

that the file actually be new. For example, (FUllNAME 'FOO.;2
'NEW) may return {ERIS}<lISP>FOO.;2 if that file already
exists, even though (FUllNAME 'FOO 'NEW) would default the
version to a new number, perhaps returning
{ERIS}< LISP> FOO.;S.

[Function]

Equivalent to (FUllNAME FILE 'OLD). That is, returns the full file
name of the newest version of FILE if FILE is recognized·_ as
specifying the name of an existing file that could potentially be
opened for input, Nil otherwise.

[Function]

Equivalent to (FUlLNAME FILE 'NEW).

Note that INFllEP, OUTFllEP and FUlLNAME do not open any
files; they are pure. predicates. In general they are also only
hints, as they do not necessarily imply that the caller has access
rights to the file. For example, INFllEP might return non-Nil, but
OPENSTREAM might fail for the same file because the file is
read-protected against the user, or the file happens to be open
for output by another user at the time. Similarly, OUTFllEP could
return non-Nil, but OPENSTREAM could fail with a FilE SYSTEM
RESOURCES EXCEEDED error.

Note also that in a shared file system, such as a remote file server,
intervening file operations by another user could contradict the
information returned by recognition. For example, a file that
was INFllEP might be deleted, or between an OUTFllEP and the
subsequent OPENSTREAM, another user might create a new
version or delete the highest version, causing OPENSTREAM to
open a different version of the file than the one returned by
OUTFllEP. In addition, some file servers do not well support
recognition of files in output context. Thus, in general, the
"truth" about a file can only be obtained by actually opening the
file; creators of files should rely on the name of the stream
opened by OPENSTREAM, not the value returned from these
recognition functions. In particular, for the reasons described
earlier, programmers are discouraged from using OUTFllEP or
(FUllNAME NAME 'NEW).

24.5 Using File Names Instead of Streams

STREAMS AND FILES

In earlier implementations of Interlisp, from the days of
Interlisp-l0 onward, the "handle" used to refer to an open file
was not a stream, but rather the file's full name, represented as a

24.13

USING FILE NAMES INSTEAD OF STREAMS

litatom. When the file name was passed to any I/O function, it
was mapped to a stream by looking it up in a list of open files. ,
This scheme was sometimes convenient for typing in file
commands at the executive, but was very poor for serious
programming in two major ways. First, the mapping from file
name to stream on eve!y input/output operation is inefficient.
Second, and more importantly, using the file name as the handle
on an open stream means that it is not possible to have more
than one stream open on a given file at once.

As of this writing, Interlisp-D is in a transition period, where it
still supports the use of litatom file names as synonymous with
open streams, but this use is not recommended. The remainder
of this section discusses this usage of file names for the benefit of
those reading older programs and wishing to convert them as
necessary to work properly when this compatibility feature is
removed.

24.5.1 File Name Efficiency Considerations

It is possible for a program to be seriously inefficient using a file
name as a stream if the program is not using the file's full name,
the name returned by OPENFILE (below). Any time that an
input/output function is called with a file name other than the
full file name, Interlisp must perform recognition on the partial
file name in order to determine which open file is intended.
Thus if repeated operations are to be performed, it is
considerably more efficient to use the full file name returned
from OPENFILE than to repeatedly use the possibly incomplete
name that was used to open the file.

There is a more subtle problem with partial file names, in that
recognition is performed on the user's entire directory, not just
the open files. It is possible for a file name that was previously
recognized to denote one file to suddenly denote a different
file. For example, suppose a program performs (INFILE 'FOO),

opening FOO.; 1, and reads several expressions from FOO. Then
the user interrupts the program, creates a FOO.;2 and resumes
the program (or a user at another workstation creates a FOO.;2).

Now a call to READ giving it FOO as its FILE argument will
generate a FILE NOT OPEN error, because FOO will be recognized
as FOO.;2.

24.5.2 Obsolete File Opening Functions

24.14

The following functions are now considered obsolete, but are
provided for backwards compatibility:

STREAMS AND FILES

USING FILE NAMES INSTEAD OF STREAMS

(OPENFllE FILE ACCESS RECOG PARAMETERS -) [Function]

(lNFllE FILE)

(OUTFllE FILE)

(lOFILE FILE)

24.5.3 Converting Old Programs

STREAMS AND FILES

Opens FILE with access rights as specified by ACCESS, and
recognition mode RECOG, and returns the full name of the
resulting stream. Equivalent to (FUllNAME (OPENSTREAM FILE
ACCESS RECOG PARAMETERS».

[Function]

Opens FILE for input, and sets it as the primary input stream.
Equivalent to (INPUT (OPENSTREAM FILE 'INPUT 'OLD»

[Function]

Opens FILE for output, and sets it as the primary output stream.
Equivalent to (OUTPUT (OPENSTREAM FILE 'OUTPUT 'NEW».

[Function]

Equivalent to (OPENFllE FILE 'BOTH 'OLD); opens FILE for both
input and output. Does not affect the primary input or output
stream.

At some point in the future, the Interlisp-D file system will
change so that each call to OPENSTREAM returns a disti nct
stream, even if a stream is already open to the specified file. This
change is required in order to deal rationally with files in a
multiprocessing environment.

This change will of necessity produce the following
incompati bi lities:

1) The functions OPENFllE, INPUT, and OUTPUT will return a
STREAM, not a full file name. To make this less confusing in
interactive situations, STREAMs will have a print format that
reveals the underlying file's actual name,

2) A greater penalty will ensue for passing as the FILE argument
t~ i/o operations anything other than the object returned from
OPENFllE. Passing the file's name will be signrficantly slower
than passing the stream (even when passing the "full" file
name), and in the case where there is more than one stream
open on the file it might even act on the wrong one.

3) OPENP will return Nil when passed the name of a file rather
than a stream (the value of OPENFllE or OPENSTREAM).

Users should consider the following advice when writing new
programs and editing existing programs, in order that they will
continue to operate well when this change is made:

Because of the efficiency and ambiguity considerations described
earlier, users have long been encouraged to use only full file

24.15

USING FILE NAMES INSTEAD OF STREAMS

names as FILE arguments to i/o operations. The" proper" way to
have done this was to bind a variable to the value returned from
OPENFILE and pass that variable to all i/o operations; such code
will continue to work. A less proper way to obtain the full file
name, but one which has to date not incurred any obvious
penalty, is that which binds a variable to the result of an INFILEP
and passes that to OPENFILE and all i/o operations. This has
worked because INFILEP and OPENFILE both return a full file
name, an invalid assumption in this future world. Such code
should be changed to pass around the value of the OPENFILE,

not the INFILEP.

Code that calls OPENP to test whether a possibly incomplete file
name is already open should be recoded to pass to OPENP only
the value returned from OPENFILE or OPENSTREAM.

Code that uses ordinary string functions to manipulate file
names, and in particular the value returned from OPENFILE,
should be changed to use the the functions
UNPACKFILENAME.STRING and PACKFILENAME.STRING. Those
functions work both on file names (strings) and streams
(coercing the stream to the name of its file).

Code that tests the value of OUTPUT for equality to some known
file name or T should be examined carefully and, if possible,
recoded.

To see more directly the effects of passing around STREAMs
instead of file names, replace your calls to OPENFILE with calls to
OPENSTREAM. OPENSTREAM is called in exactly the same way,
but returns a STREAM. Streams can be passed to READ, PRINT,
CLOSEF, etc just as the file's full name can be currently, but using
them is more efficient. The function FULLNAME, when applied
to a stream, returns its full file name.

24.6 Using Files with Processes

24.16

Because Interlisp-D does not yet support multiple streams per
file, problems can arise if different processes attempt to access
the same file. The user has to be careful not to have two
processes manipulating the same file at the same time, since the
two processes will be sharing a single input stream and file
pointer. For example, it will not work to have one process
TCOMPL a file while another process is running LlSTFILES on it.

STREAMS AND FILES

FILE ATIRIBUTES

24.7 File Attributes

Any file has a number of "file attributes", such as the read date,
protection, and bytesize. The exact attributes that a file can have
is dependent on the file device. The functions GETFILEINFO and
SETFILEINFO allow the user to conveniently access file attributes:

(GETFILEINFO FILE A TTRIB) [Function]

Returns the current setting of the ATTRIB attribute of FILE.

(SETFILEINFO FILE A TTRIB VALUE) [Function]

STREAMS AND FILES

Sets the attr.ibute ATTRIB of FILE to be VALUE. SETFILEINFO

returns T if it is able to change the attribute A TTRIB, and NIL if
unsuccessful, either because the file device does not recognize
ATTRIB or because the file device does not permit the attribute
to be modified.

The FILE argument to GETFILEINFO and SETFILEINFO can be an
open stream (or an argument designating an open stream, see
page 25.2), or the name of a dosed file. SETFILEINFO in general
requires write access to the file.

The attributes recognized by GETFILEINFO and SETFILEINFO fall
into two categories: permanent attributes, which are properties
of the file, and temporary attributes, which are properties only
of an open stream to the file. The temporary attributes are only
recognized when FILE designates an open stream; the
permanent attributes are usually equally accessible for open and
dosed files. However, some devices are willing to change the
value of certain attributes of an open stream only when specified
in the PARAMETERS argument to OPENSTREAM (page 24.2), not
on a later call to SETFILEINFO.

The following are currently recognized as permanent attributes
of a file:

BYTESIZE The byte size of the file. Interlisp-D currently only supports byte
sizeS.

LENGTH . The number of bytes in the file. Alternatively, the byte position

SIZE

CREATIONDATE

of the end-of-file. Like (GETEOFPTR FILE), but FILE does not have
to be open.

The size of FILE in pages.

The date and time, as a string, that the content of FILE was
"created". The creation date changes whenever the content of
the file is modified, but remains unchanged when a file is
transported, unmodified, across file systems. Specifically,
COPYFILE and RENAMEFILE (page 24.31) preserve the file's
creation date. Note that this is different from the concept of
"creation date" used by some operating systems (e.g., Tops20).

24.17

FILE A ITRIBUTES.

24.18

WRITE DATE The date and time, as a string, that the content of FILE was last
written to this particular file system. When a file is copied, its
creation date does not change, but its write date becomes the
time at which the copy is made.

READDATE The date and time, as a string, that FILE was last read, or Nil if it

has never been read.

ICREA TlONDA TE
IWRITEDATE
IREADDATE

AUTHOR

TYPE

The CREATIONDATE, WRITEDAT'E and READDATE, respectively,
in integer form, as IDATE (page 12.14) would return. This form is

useful for comparing dates.

The name of the user who last wrote the file.

The "type" of the file, some indication of the nature of the file's
content. The "types" of files allowed depends on the file device.
Most devices recognize the litatom TEXT to mean that the file
contains just characters, or BINARY to mean that the file contains
arbitrary data.

Some devices support a wider range of file types that distinguish
among the various sorts of files one might create whose content
is "binary". All devices interpret any value of TYPE that they do
not support to be BINARY. Thus, GETFllEINFO may return the
more general value BINARY instead of the original type that was
passed to SETFllEINFO or OPENSTREAM. Similarly, COPYFllE,
while attempting to preserve the TYPE of the file it is copying,
may turn, say, an INTERPRESS file into a mere BINARY file.

The way in which some file devices (e.g., Xerox file servers)
support a wide range of file types is by representing the type as
an integer, whose interpretation is known by the client. The
variable FILlNG.TYPES is used to associate symbolic types with
numbers for these devices. This list initially contains some of the
well-known assignments of type name to number; the user can
add additional elements to handle any private file types. For
example, suppose there existed an NS file type MAZEFllE with
numeric value 5678. You could add the element (MAZEFllE
5678) to FILlNG.TYPES and then use MAZEFllE as a value for the
TYPE attribute to SETFllEINFO or OPENSTREAM. Other devices
are, of course, free to store TYPE attributes in whatever manner
they wish, be it numeric or symbolic. FILlNG.TYPES is merely
considered the official registry for Xerox file types.

For most file devices, the TYPE of a newly created file, if not
specified in the PARAMETERS argument to OPENSTREAM,
defaults to the value of DEFAUl TFllETYPE, initially TEXT.

The following are currently recognized as temporary attributes
of an open stream:

STREAMS AND FILES

STREAMS AND FILES

ACCESS

ENDOFSTREAMOP

FILE ATTRIBUTES

The current access rights of the stream (see page 24.2). Can be
one of INPUT, OUTPUT, BOTH, APPEND; or NIL if the stream is
not open.

The action to be taken when a stream is at "end of file" and an
attempt is made to take input from it. The value of this attribute
is a function of one argument, the stream. The function can
examine the stream and its calling context and take any action it
wishes. If the function returns normally, its should return either
T, meaning to try the input operation again, or the byte that BIN

would have returned had there been more bytes to read.
Ordinarily, one should not let the ENDOFSTREAMOP function
return unless one is only performing binary input from the file,
since there is no way in general of knowing in what state the
reader was at the time the end of file occurred, and hence how it
will interpret a single byte returned to it.

The default ENDOFSTREAMOP is a system function that causes
the error END OF FILE. The behavior of that error can be further
modified for a particular stream by using the EOF option of
WHENCLOSE (page 24.20).

EOL The end-of-line convention for the stream. This can be CR, LF, or
CRLF, indicating with what byte or sequence of bytes the" End
Of Line" character is represented on the stream. On input, that
sequence of bytes on the stream is read as (CHARCODE EOl) by
READCCODE or the string reader. On output, (TERPRI) and
(PRINTCCODE (CHARCODE EOl» cause that sequence of bytes to

BUFFERS

be placed on the stream.

The end of line convention is usually not apparent to the user.
The file system is usually aware of the convention used by a
particular remote operating system, and sets this attribute
accordingly. If you believe a file actually is stored with a
different convention than the default, it is possible to modify the
default behavior by including the EOL attribute in the
PARAMETERS argument to OPENSTREAM.

Value is the number of 512-byte buffers that the stream
maintains at one time. This attribute is only used by certain
random-access devices (currently, the local disk, floppy, and Leaf J

servers); all others ignore it.

Streams open to files generally maintain some portion of the file
buffered in memory, so that each call to an I/O function does not
require accessing the actual file on disk or a file server. For files
being read or written sequentially, not much buffer space is
needed, since once a byte is read or written, it will never need to
be seen again. In the case of random access streams, buffering is
more complicated, since a program may jump around in the file,
using SETFILEPTR (page 25.19). In this case, the more buffer
space the stream has, the more likely it is that after a SETFllEPTR

to a place in the file that has already been accessed, the stream

24.19

FILE ATTRIBUTES

still has that part of the file buffered and need not go out to the
device again. This benefit must, of course, be traded off against'
the amount of memory consumed by the buffers.

24.8 Closing and Reopening Files

24.20

The function WHENCLOSE permits the user to associate certain
operations with open streams that govern how and when the
stream will be closed. The user can specify that certain functions
will be executed before CLOSEF closes the stream andlor after
CLOSEF closes the stream. The user can make a particular stream
be invisible to CLOSEALL, so that it will remain open across user
invocations of CLOSEALL.

(WHENCLOSE FILE PROP 1 VAL 1'" PROPN VALN) [NoSpread Function]

FILE must designate an open stream other than T (NIL defaults to
the primary input stream, if other than T, or primary output
stream if other than T). The remaining arguments specify
properties to be associated with the full name of FILE.
WHENCLOSE returns the full name of FILE as its value.

WHENCLOSE recognizes the following property names:

BEFORE VAL is a function that CLOSEF will apply to the stream just before
it is closed. This might be used, for example, to copy information
about the file from an in-core data structure to the file just
before it is closed.

AFTER VAL is a function that CLOSEF will apply to the stream just after it
is closed. This capability permits in-core data structures that
know about the stream to be cleaned up when the stream is
closed.

CLOSEALL VAL is either YES or NO and determines whether FILE will be
closed by CLOSEALL (YES) or whether CLOSEALL will ignore it
(NO). CLOSEALL uses CLOSEF, so that any AFTER functions will
be executed if the stream is in fact closed. Files are initialized
with CLOSEALL set to YES.

EOF VAL is a function that will be applied to the stream when an
end-of-file error occurs, and the ERRORTYPELST entry for that
error, if any, returns NIL. The function can examine the context
of the error, and can decide whether to close the stream,
RETFROM some function, or perform some other computation. If
the function supplied returns normally (i.e., does not RETFROM

some function), the normal error machinery will be invoked.

The default EOF behavior, unless overridden by this WHENCLOSE

option, is to call the value of DEFAULTEOFCLOSE (below).

STREAMS AND FILES

DEFAULTEOFCLOSE

24.9 Local Hard Disk Device

STREAMS AND FILES

CLOSING AND REOPENING FILES

For some applications, the ENDOFSTREAMOP attribute (page
24.19) is a more useful way to intercept the end-of-fi Ie error. The
ENDOFSTREAMOP attribute comes into effect before the error
machinery is ever activated.

Multiple AFTER and BEFORE functions may be associated with a
file; they are executed in sequence with the most recently
associated function executed first. The CLOSEALL and EOF

values, however, will override earlier values, so only the last
value specified will have an effect.

[Variable]

Value is the name of a function that is called by default when an
end of file error occurs and no EOF option has been specified for
the stream by WHENCLOSE. The initial value of
DEFAULTEOFCLOSE is NILL, meaning take no special action (go
ahead and cause the error). Setting it to CLOSEF would cause the
stream to be dosed before the rest of the error machinery is
invoked.

Warning: This section describes the Interlisp-D functions that
control the local hard disk drive available on some computers.
All of these functions may not work on all computers running
Interlisp-D. For more information on using the local hard disk
facilities, see the users guide for your computer.

This section describes the local file system currently supported on
the Xerox 1108 and 1186 computers. The Xerox 1132 supports a
simpler local file system. The functions below are no-ops on the
Xerox 1132, except for DISKPARTITION (which returns a disk
partition number), and DISKFREEPAGES. On the Xerox 1132,
different numbered partitions are referenced by using devices
such as {DSK1}, {DSK2}, etc. {DSK} always refers to the disk
partition that Interlisp is running on. The 1132 local file system
does not support the use of directories.

The ha rd disk used with the Xerox 1108 or 1186 may be
partitioned into a number of named "logical volumes." Logical
volumes may be used to hold the Interlisp virtual memory file
(see page 12.6), or Interlisp files. For information on intializing
and partitioning the hard disk, see the users guide for your
computer. In order to store Interlisp files on a logical volume, it is
necessary to create a lisp file directory on that volume (see
CREATEDSKDIRECTORY, below).

So long as there exists a logical volume with a Lisp directory on it,
files on this volume can be accessed by using the file device called
{DSK}. Interlisp-D can be used to read, write, and otherwise

24.21

LOCAL HARD DISK DEVICE

24.22

interact with files on local disk disks through standard Interl isp
input/output functions. All 1/0 functions such as LOAD,
OPENSTREAM, READ, PRINT, GETFILEINFO, COPYFILE, etc., work

with files on the local disk.

If you do not have a logical volume with a Lisp directory on it,
Interlisp emulates the {DSK} device by a core ~evice, a file device
whose backing store is entirely within the Lisp virtual memory.
However, this is not recommended because the core device only
provides limited scratch space, and since the core device is
contained in virtual memory, it (and the files stored on it) will be
erased when the virtual memory file is reloaded.

Each logical volume with a Lisp directory on it serves as a
directory of the device {DSK}. Files are referred to by forms such

as

{DSK}< VOLUMENAME > FILENAME

Thus, the file INIT.lISP on the volume lISPFILES would be called
{DSK} < lISPFILES > INIT.lISP.

Subdirectories within a logical volume are supported, using the
> character in file names to delimit subdirectory names. For
example, the file name {DSK}<LISPFILES>DOC>DESIGN.TEDIT
designates the file names DESIGN.TEDITon the subdirectory DOC
on the logical volume lISPFILES.

If a logi.cal volume name is not specified, it defaults in an unusual
but simple way: the logical volume defaults to the next logical
volume that has a lisp file directory on it including or after the
volume containing the currently running virtual memory. For
example, if the local disk has the logical volumes LISP, TEMP, and
lISPFILES, the LISP volume contains the running virtual memory,
and only the LISP volume has a Lisp file directory on it, then
{DSK}INIT.LISP refers to the file {DSK}<lispFiles>INIT.lISP. All
the functions below default logical volume names in a similar
way, except for those such as CREATEDSKDIRECTORY. To
determine the current default lisp file directory, evaluate
(DIRECTORYNAME '(DSK}).

(CREATEDSKDIRECTORY VOLUMENAME-) [Function]

Creates a lisp file directory on the logical volume VOLUMENAME,
and returns the name of the directory created. It is only
necessary to create a lisp file directory the first time the logical
volume is used. After that, the system automatically recognizes
and opens access to the logical volumes that have lisp file
directories on them.

(PURGEDSKDIRECTORY VOLUMENAME-) [Function]

Erases all lisp files on the volume VOLUMENAME, and deletes the
lisp file directory.

STREAMS AND FILES

LOCAL HARD DISK DEVICE

(LlSPDIRECTORYP VOLUMENAME) [Function]

(VOLUMES)

Returns T if the logical volume VOLUMENAME has a lisp file
directory on it.

[Function]

Returns a list of the names of all of the logical volumes on the
local hard disk (whether they have lisp file directories or not).

(VOLUMESIZE VOLUMENAME -) [Function]

Returns the total size of the logical volume VOLUMENAME in
disk pages.

(DISKFREEPAGES VOLUMENAME-) [Function]

(DISKPARTITlON)

(DSKDISPLA Y NEWSTATE)

Returns the total number of free disk pages left on the logical
volume VOLUMENAME.

[Function]

Returns the name of the logical volume containing the virtual
memory file that Interlisp is currently running in (see page 12.6).

[Function]

Controls a display window that displays information about the
logical volumes on the local hard disk (logical volume names,
sizes, free pages, etc.). DSKDISPLA Y opens or closes this display
window depending on the value of NEWSTATE (one of ON, OFF,
or CLOSED), and returns the previous state of the display
window.

If NEWSTATE is ON, the display window is opened, and it is
automatically updated whenever the file system state changes
(this can slow file operations significantly). If NEWSTATE is OFF,
the display window is opened, but it is not automatically
updated. If NEWSTATE is CLOSED, the display window is closed.
The display mode is initially set to CLOSED.

Once the display window is open, the user can update it or
change its state with the mouse. Left-buttoning the display
window updates it, and middle-buttoning the window brings up
a menu that allows you to change the display state.

Note: DSKDISPLA Y uses the value of the variable
DSKDISPLA Y .POSITION for the position of the lower-left corner
of the disk display window when it is opened. This variable is
changed if the disk display window is moved.

(SCAVENGEDSKDIRECTORY VOLUMENAME SILENn [Function]

STREAMS AND FILES

Rebuilds the lisp file directory for the logical volume
VOLUMENAME. This may repair damage in the unlikely event of

24.23

LOCAL HARD DISK DEVICE

24 .. 10 Floppy Disk Device

(FLOPPY.MODE MODE)

24.24

file system failure, signified by symptoms such as infinite looping
or other strange behavior while the system is doing a directory
search. Calling SCAVENGEDSKDIRECTORY will not harm an

intact volume.

Normally, SCAVENGEDSKDIRECTORY prints out messages as it
scavenges the directory. If SILENT is non-NIL, these messages are
not printed.

Note: Some low-level disk failures may cause "HARD DISK
ERROR" errors to occur. To fix such a failure, it may be necessary
to log out of Interlisp, scavenge the logical volume in question
using Pilot tools, and then cal.! SCAVENGEDSKDIRECTORY from
within Interlisp. See the users guide for your computer for more
information.

Warning: This section describes the Interlisp-D functions that
control the floppy disk drive available on some computers. All of
these functions may not work on all computers running
Interlisp-D. For more information on using the floppy disk
facilities, see the users guide for your computer.

The floppy disk drive is accessed through the device {FLOPPY}.
Interlisp-D can be used to read, write, and otherwise interact
with files on floppy disks through standard Interlisp input/output
functions. All I/O functions such as LOAD, OPENSTREAM, READ,
PRINT, GETFILEINFO, COPYFILE, etc., work with files on floppies.

Note that floppy disks are a removable storage medium.
Therefore, it is only meaningful to perform i/o operations to the
floppy disk drive, rather than to a given floppy disk. In this
section, the phrase "the floppy" is used to mean "the floppy that
is currently in the floppy disk drive."

For example, the following sequence could be used to open a file
XXX.TXTon the floppy, print "Hello" on it, and close it:

(SETQ xxx (OPENSTREAM '{FLOPPY}XXX.TXT 'OUTPUT 'NEW)
(PRINT "Hello" XXX)
(CLOSEF XXX)

[Function]

Interlisp-D can currently read and write files on floppies stored in
a number of different formats. At any point, the floppy is
considered to be in one of four "modes," which determines how
it reads and writes files on the floppy. FLOPPY.MODE sets the
floppy mode to the value of MODE, one of PILOT, HUGEPILOT,
SYSOUT, or CPM, and returns the previous floppy mode. The
floppy modes are interpreted as follows:

STREAMS AND FILES

STREAMS AND FILES

FLOPPY DISK DEVICE.

PILOT This is the normal floppy mode, using floppies in the Xerox Pilot
floppy disk format. This file format allows all of the normal
Interlisp-D I/O operations. This format also supports file names
with arbitrary levels of subdirectories. For example, it is possible
to create a file named {FLOPPY}<Lisp>Project>FOO.TXT.

HUGEPILOT This floppy mode is used to access files that are larger than a
single floppy, stored on multiple floppies. There are some
restrictions with using "huge" files. Some I/O operations are not
meaningful for "huge" files. When a stream is creat.ed for
output in this mode, the LENGTH file attribute (page 24.17) must
be specified when the file is opened, so that it is known how
many floppies will be needed. When an output file is created,
the floppy (or floppies) are automatically erased and
reformatted (after confirmation from the user).

HUGEPILOT mode is primarily useful for saving big files to and
from floppies. For example, the following could be used to copy
the file {ERIS}<Lisp>Bigfile.txt onto the huge Pilot file
{FLOPPY}BigFile.save:

(FLOPPY.MODE 'HUGEPILOT)
(COPYFILE '{ERIS} < Lisp> Bigfile.txt '{FLOPPY}BigFile.save)

and the following would restore the file:

(FLOPPY.MODE 'HUGEPILOT)
(COPYFILE '{FLOPPY}BigFile.save '{ERIS}< Lisp > Bigfile.txt)

During each copying operation, the user will be prompted to
insert "the next floppy" if {ERIS}<Lisp>Bigfile.txt takes
multiple floppies.

SYSOUT Similar to HUGEPILOT mode, SYSOUT mode is used for storing
sysout files (page 12.8) on multiple floppy disks. The user is
prompted to insert new floppies as they are needed.

This mode is set automatically when SYSOUT or MAKESYS is
done to the floppy device: (SYSOUT' {FLOPPY}) or (MAKESYS
'{FLOPPY}). Notice that the file name does not need to be
specifed in SYSOUT mode; unlike HUGEPILOT mode, the file
name Lisp.sysout is always used.

Note: The procedure for loading sysout files from floppies
depends on the particular computer being used. For information
on loading sysout files from floppies, see the users guide for your
computer.

Explicitly setting the mode to SYSOUT is useful when copying a
sysout file to or from floppies. For example, the following can be
used to copy the sysout file {ERIS}<Lisp>Lisp.sysout onto
floppies (it is important to set the floppy mode back when
done):

(FLOPPY.MODE 'SYSOUT)
(COPYFILE '{ERIS} < Lisp> Lisp.sysout' {FLOPPY})

24.25

FLOPPY DISK DEVICE

(FLOPPY.MODE 'PILOT)

CPM Interlisp-D supports the single-density single-sided (5055) CPM
floppy format (a standard used by many computers).
CPM-formatted floppies are totally different than Pilot floppies,
so the user should call FLOPPY.MODE to switch to CPM mode
when planning to use CPM floppies. After switching to CPM
mode, FLOPPY.FORMAT can be used to create CPM-formatted
floppies, and the usual input/output operations work with CPM
floppy files.

Note: There are a few limitations on (PM floppy format files:
(1) CPM file names are limited to eight or fewer characters, with
extensions of three or fewer characters; (2) (PM floppies do not
have directories or version numbers; and (3) CPM files are
padded out with blanks to make the file lengths multiples of
128.

(FLOPPY .FORMAT NAME AUTOCONFIRMFLG SLOWFLG) [Function]

24.26

FLOPPY.FORMAT erases and initializes the track information on a
floppy disk. This must be done when new floppy disks are to be
used for the first time. This can also be used to erase the
information on used floppy disks.

NAME should be a string that is used as the name of the floppy
(106 characters max). This name can be read and set using
FLOPPY.NAME (below).

If AUTOCONFIRMFLG is NIL, the user will be prompted to confirm
erasing the floppy, if it appears to contain valid information. If
AUTOCONFIRMFLG is T, the user is not prompted to confirm.

If SLOWFLG is NIL, only the Pilot records needed to give your
floppy an empty directory are written. If SLOWFLG is T,
FLOPPY. FORMAT will completely erase the floppy, writing track
information and critical Pilot records on it. SLOWFLG should be
set to Twhen formatting a brand-new floppy.

Note: Formatting a floppy is a very compute-intensive operation
for the I/O hardware. Therefore, the cursor may stop tracking
the mouse and keystrokes may be lost while formatting a floppy.
This behavior goes away when the formatting is finished.

Warning: The floppy mode set by FLOPPY.MODE (above) affects
how FLOPPY.FORMAT formats the floppy. If the floppy is going
to be used in Pilot mode, it should be formatted under
(FLOPPY.MODE 'PILOT). If it is to be used as a (MP floppy, it
should be formatted under (FLOPPY.MODE ·CPM). The two
types of formatting are incompatible.

STREAMS AND FILES

(FlOPPY.NAME NAME)

(FlOPPY.FREE.PAGES)

(FlOPPY.CAN.READP)

(FLOPPY .CAN. WRITEP)

FLOPPY DISK DEVICE

[Function]

If NAME is Nil, returns the name stored on the floppy disk. If
NAME is non-Nil, then the name of the floppy disk is set to
NAME.

[Function]

Returns the number of unallocated free pages on the floppy disk
in the floppy disk drive.

Note: Pilot floppy files are represented by contiguous pages on
a floppy disk. If the user is creating and deleting a lot of files on
a floppy, it is advisable to keep such a floppy less than 75 percent
full.

[Function]

Returns non-Nil if there is a floppy in the floppy drive.

Note: FlOPPV.CAN.READP does not provide any debouncing
(protection against not fully closing the floppy drive door). It
may be more useful to use FlOPPY.WAIT.FOR.FlOPPY (below).

[Function]

Returns non-Nil if there is a floppy in the floppy drive and the
floppy drive can write on this floppy.

It is not possible to write on a floppy disk if the "write-protect
notch" on the floppy disk is punched out.

(FlOPPY.WAIT.FOR.FlOPPV NEWFLG) [Function]

(FLOPPY .SCA VENGE)

(FlOPPY.TO.FllE rOFfLE)

STREAMS AND FILES

If NEWFLG is Nil, waits until a floppy is in the floppy drive before
returning.

If NEWFLG is T, waits until the existing floppy in the floppy drive,
if any, is removed, then waits for a floppy to be inserted into the
drive before returning.

[Function]

Attempts to repair a floppy whose critical records have become
confused (causing errors when file operations are attempted).
May also retrieve accidently-deleted files, provided they haven't
been overwritten by new files.

[Function]

Copies the entire contents of the floppy to the "floppy image"
file rOFfLE, which can be on a file server, local disk, etc. This can
be used to create a centralized copy of a floppy, that different
users can copy to their own floppy disks (using
FLOPPY .FROM.FllE).

24.27

FLOPPY DISK DEVICE

24.11

24.28

Note: A floppy image file for an 8-inch floppy is about 2500
pages long, regardless of the number of pages in use on the
floppy.

(FlOPPY.FROM.FllE FROMFILE) [Function]

Copies the "floppy image" file FROMFILE to the floppy.
FROMFILE must be a file produced by FlOPPY.TO.FllE.

(FlOPPY.ARCHIVE FILES NAME) [Function]

FlOPPY.ARCHIVE formats a floppy inserted into the floppy drive,
giving the floppy the name NAME#1. FlOPPY.ARCHIVE then
copies each file in FILES to the freshly formatted floppy. If the
first floppy fills up, FlOPPY.ARCHIVE uses multiple floppies
(named NAME#2, NAME#3, etc.), each time prompting the user
to insert a new floppy.

The function DIRECTORY (page 24.33) is convenient for
generating a list of files to archive. For example,

(FlOPPY.ARCHIVE
(DIRECTORy'{ERIS}<lisp>Project>*)
'Project)

will archive all files on the directory {ERIS}< Lisp> Project> to
floppies (named Project#1, Project#2, etc.).

(FlOPPY.UNARCHIVE HOST/DIRECTORy) [Function]

FlOPPY.UNARCHIVE copies all files on the current floppy to the
directory HOST/DIRECTORY. For example, (FlOPPY.UNARCHIVE
'{ERIS}<Lisp>Project» will copy each file on the current
floppy to the directory {ERIS}<Lisp>Project>. If there is more
than one floppy to restore from archive, FlOPPY.UNARCHIVE
should be called on each floppy disk.

I/O Operations to and from Strings

It is possible to treat a string as if it were the contents of a file by
using the following function:

(OPENSTRINGSTREAM STR ACCESS) [Function]

Returns a stream that can be used to access the characters of the
. string STR. ACCESS may be either INPUT, OUTPUT, or BOTH; Nil

defaults to INPUT. The stream returned may be used exactly like
a file opened with the same access, except that output
operations may not extend past the end of the original string.
Also, string streams do not appear in the value of (OPENP).

STREAMS AND FILES

I/O OPERATIONS TO AND FROM STRINGS

For example, after performing

(SETQ STRM (OPENSTRINGSTREAM "THIS 2 (IS A LIST)"»

the following succession of reads could occur:

(READ STRM) =- > THIS
(RATOM STRM) =- > 2
(READ STRM) =- > (IS A LIST)
(EOFP STRM) =- > T

Compatibility Note: In Interlisp-l0 it was possible to take input
from a string simply by passing the string as the FILE argument to
an input function. In order to maintain compatibility with this
feature, Interlisp-D provides the same capability. This not
terribly clean feature persists in the present implementation to
give users time to convert old code. This means that strings are
not equivalent to litatoms when specifying a file name as a
stream argument (see page 24.13). In a future release, the old
Interlisp-l0 string-reading feature will be decommissioned, and
OPENSTRINGSTREAM will be the only way to perform I/O on a
string.

24.12 Temporary Files and the CORE Device

STREAMS AND FILES

Many operating systems have a notion of "scratch file", a file
typically used as temporary storage for data most naturally
maintained in the form of a file, rather than some other data
structure. A scratch file can be used as a normal file in most
respects, but is automatically deleted from the file system after
its useful life is up, e.g., when the job terminates, or the user logs
out. In normal operation, the user need never explicitly delete
such files, since they are guaranteed to disappear soon.

A similar functionality is provided in Interlisp-D by core-resident
files. Core-resident files are on the device CORE. The directory
structure for this device and all files on it are represented
completely within the user's virtual memory. These files are
treated as ordinary files by all file operations; their only
distinguishing feature is that all trace of them disappears when
the virtual memory is abandoned.

Core files are opened and closed by name the same as any other
file, e.g., (OPENSTREAM '{CORE}<FOO>FIE.DCOM 'OUTPUT).
Directory names are completely optional, so files can also have
names of the form {CORE}NAME.EXT. Core files can be
enumerated by DIRECTORY (page 24.33). While open, they are
registered in (OPENP). They do consume virtual memory space,
which is only reclaimed when the file is deleted. Some caution

24.29

TEMPORARY FILES AND THE CORE DEVICE

should thus be used when creating large CORE files. Since the
virtual memory of an Interlisp-D workstation usually persists far
longer than the typical process on a mainframe computer, it is
still important to delete CORE files after they are no longer in

use.

For many applications, the name of the scratch file is irrelevant,
and there is no need for anyone to have access to the file
independent of the program that created it. For such
applications, NODIRCORE fil~s are preferable. Files created on
the device lisp NODIRCORE are core-resident files that have no
name and are registered in no directory. These files "disappear",
and the resources they consume are reclaimed, when all pointers
to the file are dropped. Hence, such files need never be explicitly
deleted or, for that matter, closed. The "name" of such a file is
simply the stream object returned from (OPENSTREAM
'{NODIRCORE} 'OUTPUT), and it is this stream object that must
be passed to all input/output operations, including CLOSEF and
any calls to OPENSTREAM to reopen the file.

(COREDEVICE NAME NODIRFLG) [Function]

24.13 NULL Device

24.30

Creates a new device for core-resident files and assigns NAME as
its device name. Thus, after performing (COREDEVICE 'FOO), one
can execute (OPENSTREAM '{FOO}BAR 'OUTPUT) to open a file
on that device. Interlisp-D is initialized with the single
core-resident device named CORE, but COREDEVICE may be used
to create any number of logically distinct core devices.

If NODIRFLG is non-NIL, a core device that acts like {NODIRCORE}
is created.

Compatibility note: In Interlisp-10, it was possible to create
scratch files by using file names with suffixes ;S or ;T. In
Interlisp-D, these suffixes in file names are simply ignored when
output is directed to a particular host or device. However, the
function PACKFILENAME.STRING is defined to default the device
name to CORE if the file has the TEMPORARY attribute and no
explicit host is provided.

The NULL device provides a source of content-free "files".
(OPENSTREAM '{NULL} 'OUTPUT) creates a stream that discards
all output directed at it. (OPENSTREAM' {NULL} 'INPUT) creates
a stream that is perpetually at end-of-file (i.e., has no input).

STREAMS AND FILES

24 .. 15

24.16

DELETING, COPYING, AND RENAMING FILES

Deleting, Copying, and Renaming Files

(DElFILE FILE) [Function]

Deletes FILE if possible. The file must be closed. Returns the full
name of the file if deleted, else NIL. Recognition mode for FILE is
OLDEST, i.e., if FILE does not have a version number specified,
then DELFILE deletes the oldest version of the file.

(COPYFILE FROMFILE rOFILE) [Function]

Copies FROMFILE to a new file named TOFILE. The source and
destination may be on any combination of hosts/devices.
COPYFILE attempts to preserve the TYPE and CREATIONDATE

where possible. If the original file's file type is unknown,
COPYFILE attempts to infer the type (file type is BINARY if any of
its 8-bit bytes have their high bit on).

COPYFILE uses COPYCHARS (page 25.20) if the source and
destination hosts have different EOl conventions. Thus, it is
possible for the source and destination files to be of different
lengths.

(RENAMEFILE OLOFILE NEWFILE) [Function]

Renames OLOF/LE to be NEWF/LE. Causes an error, FILE NOT

FOUND if FILE does not exist. Returns the full name of the new
file, if successful, else NIL if the rename cannot be performed.

If OLOF/LE and NEWF/LE are on the same host/device, and the
device implements a renaming primitive, RENAMEFILE can be
very fast. However, if the device does not know how to rename
files in place, or if OLOF/LE and NEWF/LE are on different devices,
RENAMEFILE works by copying OLOF/LE to NEWF/LE and then
deleting OLOF/LE.

Searching File Directories

DIRECTORIES [Variable]

Global variable containing the list of directories searched (in
order) by SPELLFILE and FINDFILE (below) when not given an
explicit OIRLST argument. In this list, the atom NIL stands for the
login directory (the value of LOGINHOST/DIR), and the atom T

stands for the currently connected directory. Other elements
should be full directory specifications, e.g.,
{TWENTY}PS: <LlSPUSERS>, not merely LlSPUSERS.

STREAMS AND FilES 24.31

SEARCHING FILE DIRECTORIES

24.32

LISPU SERSDI RECTORI ES [Variable]

Global variable containing a list of directories to search for
"library" package files. Used by the FILES file package command
(page 17.39).

{SPELLFILE FILE NOPRINTFLG NSFLG DIRLSn [Function]

Searches for the file name FILE, possibly performing spelling
correction (see page 20.15). Returns the corrected file name, if
any, otherwise NIL.

If FILE has a directory field, SPELLFILE attempts spelling
correction against the files in that particular directory.
Otherwise, SPELLFILE searches for the file on the directory list
DIRLSTbefore attempting any spelling correction.

If NOPRINTFLG is Nil, SPELLFILE asks the user to confirm any
spelling correction done, and prints out any files found, even if
spelling correction is not done. If NOPRINTFLG = T, SPELLFILE
does not do any printing, nor ask for approval.

If NSFLG= T (or NOSPELLFLG = T, see page 20.13), no spelling
correction is attempted, though searching through DIRLST still
occurs.

DIRLST is the list of directories searched if FILE does not have a
directory field. If DIRLST is Nil, the value of the variable
DIRECTORIES is used.

Note: If DIRLST is NIL, and FILE is not found by searching the
directories on DIRECTORIES, but the root narne of FILE has a
FllEDATES property (page 17.20) indicating that a file by that
name has been loaded, then the directory indicated in the
FILEDATES property is searched, too. This additional search is not
done if DIRLSTis non-NIL.

ERRORTYPELST (page 14.22) initially contains the entry {{23
{SPELLFILE (CADR ERRORMESS) NIL NOFILESPELLFLG»), which
causes SPELLFILE to be called in case of a FILE NOT FOUND error.
If the variable NOFILESPElLFlG is T (its initial value), then
spelling correction is not done on the file name, but
DIRECTORIES is still searched. If SPELLFILE is successful, the
operation will be reexecuted with the new (corrected) file name.

{FINDFILE FILE NSFLG DIRLSn [Function]

Uses SPELLFILE to search for a file named FILE. If it finds one,
returns its full name, with no user interaction. Specifically, it calls
(SPELLFILE FILE T NSFLG DIRLSn, after first performing two
simple checks: If FILE has an explicit directory, it checks to see if a
file so named exists, and if so returns that file. If DIRLST is NIL, it
looks for FILE on the connected directory before calling
SPELLFILE.

STREAMS AND FILES

Listing File Directories

LISTING FILE DIRECTORIES

The function DIRECTORY allows the user to conveniently specify
and/or program a variety of directory operations:

(DIRECTORY FILES COMMANDS DEFAULTEXT DEFAUL TVERS) [Function]

Returns, lists, or performs arbitrary operations on all files
specified by the "file group" FILES. A file group has the form of a
regular file name, exc~pt that the character * can be used to
match any number of characters, including zero, in the file name.
For example, the file group A *8 matches all file names beginning
with the character A and ending with the character 8. The file
group *.DCOM matches all files with an extension of DCOM.

If FILES does not contain an explicit extension, it is defaulted to
DEFAUL TEXT; if FILES does not contain an explicit version, it is
defaulted to DEFAUL TVERS. DEFAUL TEXT and DEFAUL TVERS
themselves default to *. If the period or semicolon preceding the
omitted extension or version, respectively, is present, the field is
explicitly empty and no default is used. All other unspecified
fields default to *. Null version is interpreted as "highest". Thus
FILES = * or *.* or *.*;* enumerates all files on the connected
directory; FILES = *. or *.;* enumerates all versions of files with
null extension; FILES = *.; enumerates the highest version of
files with null extension; and FILES = *. *; enumerates the
highest version of all files. If FILES is NIL, it defaults to *. *;*.

Note: Some hosts/devices are not capable of supporting "highest
version" in enumeration. Such hosts instead enumerate all
versions.

For each file that matches the file group FILES, the "file
commands" in COMMANDS are executed in order. Some of the
file commands allow aborting the command processing for a
given file, effectively filtering the list of files. The interpretation
of the different file· commands is described below. If
COMMANDS is NIL, it defaults to (COLLECT), which collects the
matching file names in a list and returns it as the value of
DIRECTORY.

The "file commands" in COMMANDS are interpreted as follows:

P Prints the file's name. For readability, DIRECTORY strips the
directory from the name, printing it once as a header in front of
each set of consecutive files on the same directory.

PP Prints the file's name without a version number.

a string Prints the string.

STREAMS AND FILES 24.33

LISTING FILE DIRECTORIES

READOA TE, WRITEDA TE
CREATIONDA TE, SIZE

LENGTH, BYTESIZE
PROTECTION, AUTHOR

TYPE Prints the appropriate information returned by GETFILEINFO

(page 24.17).

COLLECT

COUNTSIZE

DELETE

DELVER

PAUSE

Adds the full name of this file to an accumulating list, which will

be returned as the value of DIRECTORY"

Adds the size of this file to an accumulating sum, which will be
returned as the value of DIRECTORY.

Deletes' the file.

If this file is not the highest version of files by its name, delete it.

Waits until the user types any char before proceeding with the
rest of the commands (good for display if you want to ponder).

The following commands are predicates to filter the list. If the
predicate is not satisfied, then processing for this file is aborted
and no further commands (such as those above) are executed for
this file.

Note: if the P and PP commands appear in COMMANDS ahead of
any of the filtering commands below except PROMPT, they are
postponed until after the filters. Thus, assuming the caller has
placed the attribute options after the filters as well, no printing
occurs for a file that is filtered out. This is principally so that
functions like DIR (below) can both request printing and pass
arbitrary commands through to DIRECTORY, and have the
printing happen in the appropriate place.

PROMPT MESS Prompts with the yes/no question MESS; if user responds with
No, abort command processing for this file.

OLDERTHAN N Continue command processing if the file hasn't been referenced
(read or written) in N days.. N can also be a string naming an
explicit date and time since which the file must not have been
referenced.

NEWERTHAN N Continue command processing if the file has been written within
the last N days. N can also be a string naming an explicit date
and time. Note that this is not quite the complement of
OLDERTHAN, since it ignores the read date.

BY USER Continue command processing if the file was last written by the
given user, i.e., its AUTHOR attribute matches (case insensitively)
USER.

@ X X is either a function of one argument (FILENAME), or an
arbitrary expression which uses the variable FILENAME freely. If
X returns NIL, abort command processing for this file.

24.34 STREAMS AND FILES

LISTING FILE DIRECTORIES

The following two commands apply not to any particular file,
but globally to the manner in which directory information is
printed.

OUT FILE Directs output to FILE.

COLUMNS N Attempts to format output in N columns (rather than just 1).

AU

COLLECT?

DA
DATE

TI

DEL

DEL?
DELETE?

OLD

PR

SI

VERBOSE

DIRECTORY uses the variable DIRCOMMANDS as a spelling list to
correct spelling and define abbreviations and synonyms (see
page 20.15). Currently the following abbreviations are
recognized:

-> AUTHOR

-> PAUSE

-> PROMPT II ? II COLLECT

-> CREA nONDA TE

-> WRITEDATE

-> DELETE

.> PROMPT II delete?" DELETE

.> OLDERTHAN 90

-> PROTECTION

-> SIZE

- > AUTHOR CREATIONDATE SIZE READDATE WRITEDATE

(FILDIR FILEGROUp) [Function1

Obsolete synonym of (DIRECTORY FILEGROUP).

(DIR FILEGROUP COM 1 ... COM N) (NLambda NoSpread Function1

Convenient form of DIRECTORY for use in type-in at the
executive. Performs (DIRECTORY 'FILEGROUP '(P COM1 ...

COMN»'

(NDIR FILEGROUPCOM1'" COMN) [NLambda NoSpread Function1

STREAMS AND FILES

Version of DIR that lists the file names in a multi-column format.
Also, by default only lists the most recent version of files (unless
FILEGROUPcontains an explicit version).

24.35

FILE SERVERS

24.18 File Servers

24.18.1 Pup File Server Protocols

24.36

A file server is a shared resource on a local communications
network which provides large amounts of file storage. Different
file servers honor a variety of access protocols. Interlisp-D
supports the following protocols: PUP-FTP, PUP-Leaf, and NS
Filing. In addition, there are library packages available that
support other communications protocols, such as TCP/IP and
RS232.

With the exception of the RS232-based protocols, which exist
only for file transfer, these network protocols are integrated into
the Interlisp-D file system to allow files on a file server to be
treated in much the same way files are accessed on local devices,
such as the disk. Thus, it is possible to call OPENSTREAM on the
file {ERIS}<LlSP>FOO.DCOM;3 and read from it or write to it
just as if the file had been on the local disk
({DSK}<lISP>FOO.DCOM;3), rather than on a remote server
named ERIS. However, the protocols vary in how much control
they give the workstation over file system operations. Hence,
some restrictions apply, as described in the following sections.

There are two file server protocols in the family of Pup protocols:
Leaf and FTP. Some servers support both, while others support
only one of them. Interlisp-D uses whichever protocol is more
appropriate for the requested operation.

Leaf is a random access protocol, so files opened using these
protocols are RANDACCESSP (page 25.20), and thus most normal
i/o operations can be performed. However, Leaf does not
support directory enumeration. Hence, DIRECTORY cannot be
used on a Leaf file server unless the server also supports FTP. In
addition, Leaf does not supply easy access to a file's attributes.
INFILEP and GETFILEINFO have to open the file for input in order
to obtain their information, and hence the file's read date will
change, even though the semantics of these functions do not
implyit.

FTP is a file transfer protocol that only permits sequential access
to files. However, most implementations of it are considerably
more efficient than Leaf. Interlisp-D uses FTP in preference to
Leaf whenever the call to OPENSTREAM requests sequential
access only. In particular, the functions SYSOUT and COPYFILE
open their files for sequential access. If a file server supports FTP
but for some reason it is undesirable for Lisp to use it, one can set
the internal variable \FTPAVAILABLEto NIL.

The system normally maintains a Leaf connection to a host in the
background. This connection can be broken by calling

STREAMS AND FILES

FILE SERVERS

(BREAKCONNECTION HOSn. Any subsequent reference to files
on that host will reestablish the connection. The principal use
for this function arises when the user interrupts a file operation
in such a way that the file server thinks the file is open but Lisp
thinks it is closed (or not yet open). As a result, the next time Lisp
tries to open the file, it gets a file busy error.

24.18.2 Xerox NS File Server Protocols

STREAMS AND FILES

Interlisp supports file access to Xerox 803x file servers, using the
Filing Protocol built on Xerox Network Systems protocols.
Interlisp-D determines that a host is an NS File Server by the
presence of a colon in its name, e.g., {PHYLEX:}. The general
format of NS fileserver device names is
{SERVERNAME: DOMAIN: ORGANIZA T/ON}; the device
specification for an 8000-series product in general includes the
ClearingHouse domain and organization. If domain and
organization are not supplied directly, then they are obtained
from the defaults, which themselves are found by consulting the
nearest ClearingHouse if the user has not defined them in an init
file (page 31.8). However, note that the server name must still
have a colon in it to distinguish it from other types of host names
(e.g., Pup server names).

NS file servers in general permit arbitrary characters in file
names. The user should be cognizant of file name quoting
conventions (page 24.6), and the fact that any file name
presented as a litatom needs to have characters of significance to
the reader, such as space, escaped with a 0/0. Of course, one can
always present the file name as a string, in which case only the
quoting conventions are important.

NS file servers support a true hierarchical file system, where
subdirectories are just another kind of file, which needs to be
explicitly created. In Interlisp, subdirectories are created
automatically as needed: A call to OPENFILE to create a file in a
non-existent subdirectory automatically creates the
subdirectory; CONN to a non-existent subdirectory asks the user
whether to create the directory. For those using Star software, a
directory corresponds to a "File Drawer", while a subdirectory
corresponds to a "File Folder" .

Because of their hierarchical structure, NS directories can be
enumerated to arbitrary levels. The default is to enumerate all
the files (the leaves of the tree), omitting the subdirectory nodes
themselves. This default can be changed by the following
variable:

24.37

FilE SERVERS

FILING.ENUMERATION.DEPTH [Variable]

This variable is either a number, specifying the number of levels
deep to enumerate, or T, meaning enumerate to all levels. In the
former case, when the enumeration reaches the specified depth,
only the subdirectory name rooted at that level is listed, and
none of its descendants is listed. When
FILlNG.ENUMERATION.DEPTH is T, all files are listed, and no
subdirectory names are listed. FllING.ENUMERATION.DEPTH is
initially T.

Independent of FILlNG.ENUMERATION.DEPTH, a request to
enumerate the top-level of a file server's hierarchy lists only the
top level, i.e., assumes a depth of 1. For example, (DIRECTORY
'{PHYLEX:}) lists exactly the top-level directories of the server
PHYLEX:.

NS file servers do not currently support random access.
Therefore, SETFILEPTR of an NS file generally causes an error.
However, GETFILEPTR returns the correct character position for
open files on NS file servers. In addition, SETFILEPTR works in the
special case where the file is open for input, and the file pointer
is being set forward. In this case, the intervening characters are
automatically read.

Even while Interlisp has no file open on an NS Server, the system
maintains a "session" with the server for a while in order to
improve the speed of subsequent requests to the server. While
this session is open, it is possible for some nodes of the server's
file system to appear "busy" or inaccessible to certain clients on
other workstations (such as Star). If this happens, the following
function can be used to terminate any open sessions
immediately:

(BREAK.NSFILlNG.CONNECTION HOSn [Function]

Closes any open connections to NS file server HOST.

24.18.3 Operating System Designations

NElWORKOSTYPES

24.38

Some of the network server protocols are implemented on more
than one kind of foreign host. Such hosts vary in their
conventions for logging in, naming files, representing
end-of-line, etc. In order for Interlisp to communicate gracefully
with all these hosts, it is necessary that the variable
NElWORKOSTYPES be correctly set.

[Variable]

An association-list that associates a host name with its operating
system type. Elements in this list are of the form (HOSTNAME .

STREAMS AND FilES

FILE SERVERS

TYPE), for example, (MAXC2 . TENEX). The operating system
types currently known to Lisp are TENEX, TOPS20, UNIX, and
VMS. The host names in this list should be the "canonical" host
name, represented as an uppercase atom. For Pup and NS hosts,
the function CANONICAL.HOSTNAME (below) can be used to
determine which of several aliases of a server is the canonical
name.

(CANONICAL.HOSTNAME HOSTNAME) [Function]

24.18.4 Logging In

STREAMS AND FILES

Returns the "canonical" name of the server HOSTNAME, or NIL if
HOSTNAME is oot the name of a server.

Most file servers require a user name and password for access.
Interlisp-D maintains an ephemeral database of user names and
passwords for each host accessed recently. The database
vanishes when LOGOUT, SAVEVM, SYSOUT, or MAKESYS is
executed, so that the passwords remain secure from any
subsequent user of the same virtual memory image. Interlisp-D
also maintains a notion of the "default" user name and
password, which are generally those with which the user initially
logs in (on the 1132, the default user name corresponds to that
displayed in the Alto executive).

When a file server for which the system does not yet have an
entry in its password database requests a name and password,
the system first tries the default user name and password. If the
file server doesn't recognize that name/password, the system
prompts the user for a name and password to use for that host.
It suggests a default name:

{ERIS} Login: Green

which the user can accept by typing a carriage return, or replace
the name by typing a new name or backspacing over it.
Following the name, the user is prompted for a password:

{ERIS} Login: Verdi (password)

which is not echoed, terminated by another carriage return. This
information is stored in the password database so that the user is
prompted only once, until the database is again cleared.

Interlisp-D also prompts for password information when a
protection violation occurs on accessing a directory on certain
kinds of servers that support password-protected directories.
Some such servers allow one to protect a file in a way that it is
inaccessible to even its owner until the file's protection is
changed; in such case, no password would help, and the system
causes the normal PROTECTION VIOLATION error.

24.39

FILE SERVERS

24.40

The user can abort a password interaction by typing the ERROR
interrupt, initially Control-E. This generally either causes a
PROTECTION VIOLATION error, if the password was requested in
order to gain access to a protected file on an otherwise accessible
server; or to act as though the server did not exist, in the case
where the password was needed in order to gain any access to
the server.

The following functions are useful for altering the password
database:

(LOGIN HOSTNAME FLG DIRECTORY MSG) [Function]

Forces Interlisp-D to ask for the user name and password to be
used when accessing host HOSTNAME. Any previous login
information for HOSTNAME is overriden. If HOSTNAME is NIL, it
overrides login information for all hosts and resets the default
user name and password to be those typed in by the user. The
special value HOSTNAME = NS:: is used to obtain the default
user name and password for alliogins for NS Servers.

If FLG is the atom QUIET, only prompts the user if there is no
cached information for HOSTNAME.

If DIRECTORY is specified, it is the name of a directory on
HOSTNAME. In this case, the information requested is the
"connect" password for that directory. Connect pass'words for
any number of different directories on a host can be maintained.

If MSG is non-NIL, it is a message (a stri ng) to be pri nted before
the name and password information is requested.

LOGIN returns the user name with which the user completed the
login.

(SETPASSWORD HOST USER PASSWORD DIRECTORy) [Function]

(SETUSERNAM,E NAME)

Sets the values in the internal password database, exactly as if
the strings USER and PASSWORD were typed in via (LOGIN HOST
NIL DIRECTORy).

[Function]

Sets the default user name to NAME.

(USERNAME FLG STRPTR PRESERVECASE) [Function]

If FLG = NIL, returns the defaultuser name. This is the only value
of FLG that is meaningful in Interlisp-D.

USERNAME returns the value as a string, unless STRPTR is T, in
which case USERNAME returns the value as an atom. The name is
returned in upper case, unless PRESERVECASE is true.

STREAMS AND FILES

24.18.5 Abnormal Conditions

STREAMS AND FILES

FILE SERVERS

If Interlisp-D tries to access a file and does not get a response
from the file server in a reasonable period of time, it prints a
message that the file server is not responding, and keeps trying.
If the file server has actually crashed, this may continue
indefinitely. A control-E or similar interrupt aborts out of this
state.

If the file server crashes but is restarted before the user attempts
to do anything, file operations will usually proceed normally,
except for a brief pause while Interlisp-D tries to reestablish any
connections it had open before the crash. However, this is not
always possible. For example, when a file is open for sequential
output and the server crashes, there is no way to recover the
output already written, since it vanished with the crash. In such
cases, the system will cause an error such as Connection Lost.

LOGOUT closes any file server connections that are currently
open. On return, it attempts to reestablish connections for any
files that were open before logging out. If a file has disappeared
or been modified, Interlisp-D reports this fact. Files that were
open for sequential access generally cannot be reopened after
LOGOUT.

Interlisp supports simultaneous access to the same server from
different processes and permits overlapping of Lisp computation
with file server operations, aI/owing for improved performance.
However, as a corollary of this, a file is not closed the instant that
CLOSEF returns; Interlisp closes the file" in the background ". It
is therefore very important that the user exits Interlisp via
(LOGOUT), or (LOGOUT T), rather than boot the machine.

On rare occasions, the Ethernet may appear completely
unresponsive, due to Interlisp having gotten into a bad state.
Typing (RESTART.ETHER) will reinitialize Lisp's Ethernet driver(s),
just as when the Lisp system is started up following a LOGOUT,
SYSOUT, etc (see page 31.38)

24.41

FILE SERVERS

[This page intentionally left blank1

24.42 STREAMS AND FILES

TABLE OF CONTENTS

25. Input/Output Functions 25.1

25.1. Specifying Stre.ams for Input/Output Functions 25.1

25.2. Input Functions 25.2

25.3. Output Functions 25.7

25.3.1. PRINTLEVEL 25.11

25.3.2. Printing numbers 25.13

25.3.3. User Defined Printing 25.16

25.3.4. Printing Unusual Data Structures 25.17

25.4. Random Access File Operations 25.18

25.5. Input/Output Operations with Characters and Bytes 25.22

25.6. PRINTOUT 25.23

25.6.1. Horizontal Spacing Commands 25.25

25.6.2. Vertical Spacing Commands 25.26

25.6.3. Special Formatting Controls 25.27

25.6.4. Printing Specifications 25.27

25.6.4.1. Paragraph Format 25.28

25.6.4.2. Right-Flushing 25.29

25.6.4.3. Centeri ng 25.29

25.6.4.4. Numberi ng 25.29

25.6.5. Escaping to Lisp 25.30

25.6.6. User-Defined Commands 25.31

25.6.7. Special Printing Functions 25.32

25.7. READFILE and WRITEFILE 25.33

25.8. Read Tables 25.33

25.8.1. Read Table Functions 25.34

25.8.2. Syntax Classes 25.35

25.8.3. Read Macros 25.39

TABLE OF(ONTENTS TOC.l

TABLE OFCONTENTS

[This page intentionally left blank]

TOC.2 TABLE OF CONTENTS

25. INPUT/OUTPUT FUNCTIONS

This chapter describes the standard 1/0 functions used for
reading and printing characters and Interlisp expressions on files
and other streams. First, the primitive input functions are
presented, then the output functions, then functions for
random-access operations (such as searching a file for a given
stream, or changing the "next-character" pointer to a position in
a file). Next, the PRINTOUT statement is documented (page
25.23), which provides an easy way to write complex output
operations. Finally, read tables, used to parse characters as
Interlisp expressions, are documented.

25.1 Specifying Streams for Input/Output Functions

a stream

T

NIL

INPUT/OUTPUT FUNCTIONS

Most of the inputloutput functions in Interlisp-D have an
argument named STREAM or FILE, specifying on which open
stream the function's action should occur (the name FILE is used
in older functions that predate the concept of stream; the two
should, however, be treated synonymously). The value of this
argument should be one of the following:

An object of type STREAM, as returned by OPENSTREAM (page
24.2) or other stream-producing functions, is always the most
precise and efficient way to designate a stream argument.

The litatom T designates the terminal input or output stream of
the currently running process, controlling input from the
keyboard and output to the display screen. For functions where
the direction (input or output) is ambiguous, T is taken to
designate the terminal output stream. The T streams are always
open; they cannot be dosed.

The terminal output stream can be set to a given window or
display stream by using TTYDISPLA YSTREAM (page 28.29). The
terminal input stream cannot be changed. For more information
on terminal 1/0, see page 30.1.

The litatom NIL designates the "primary" input or output
stream. These streams are initially the same as the terminal

25.1

SPECIFYING STREAMS FOR INPUT/OUTPUT FUNCTIONS

input/output streams, but they can be changed by using the
functions INPUT (page 25.3) and OUTPUT (page 25.8).

For functions where the direction (input or output) is
ambiguous, e.g., GETFILEPTR, the argument NIL is taken to mean
the primary input stream, if that stream is not identical to the
terminal input stream, else the primary output stream.

a window Uses the display stream of the window (page 28.34). Valid for
output only.

a file name As of this writing, the name of an open file (as a litatom) can be
used as a stream argument. However, there are inefficiencies
and possible future incompatibilities associated with doing so.
See page page 24.13 for details.

(GETSTREAM FILE ACCESS) [Function]

(STREAMPX)

Coerces the argument FILE to a stream by the above rules. If
ACCESS is INPUT, OUTPUT, or BOTH, produces the stream
designated by FILE that is open for ACCESS. If ACCESS:: NIL,

returns a stream for FILE open for any kind of input/output (see
the list above for the ambiguous cases). If FILE does not
designate a stream open in the specified mode, causes an error,
FILE NOT OPEN.

[Function]

Returns X if X is a STREAM, otherwise NIL.

25.2 Input Functions

25.2

While the functions described below can take input from any
stream, some special actions occur when the input is from the
terminal (the T input stream, see page 25.1). When reading
from the terminal, the input is buffered a line at a time, unless
buffering has been inhibited by CONTROL (page 30.10) or the
input is being read by READC or PEEKC (page 25.5). Using
specified editing characters, the user can erase a character at a
time, a word at a time, or the whole line. The keys that perform
these editing functions are assignable via SETSYNTAX (page
25.37), with the initial settings chosen to be those most natural
for the given operating system. In Interlisp-D, the initial settings
are as follows: characters are deleted orie at a time by
Backspace; words a~e erased by control-W; the whole line is
erased by control-Q.

On the Interlisp-D display, deleting a character or a line causes
the characters to be physically erased from the screen. In

INPUT/OUTPUT FUNCTIONS

(INPUT FILE)

(READ FILE RDTBL FLG)

INPUT/OUTPUT FUNCTIONS

INPU T FUNCTIONS

Interlisp-10, the deleting action can be modified for various
types of display terminals by using DELETECONTROL (page 30.8).

Unless otherwise indicated, when the end of file is encountered
while reading from a file, all input functions generate an error,
END OF FILE. Note that this does not close the input file. The
ENDOFSTREAMOP stream attribute (page 24.19) is useful for
changing the behavior at end of file.

Most input functions have a RDTBL argument, which specifies
the read table to be used for input (see page 25.33). Unless
otherwise specified, if RDTBL is NIL, the primary read table is
used.

If the FILE or STREAM argument to an input function is NIL, the
primary input stream is used (see page 25.1).

[Function]

Sets FILE as the primary input stream; returns the old primary
input stream. FILE must be open for input.

(INPUT) returns the current primary input stream, which is not
changed.

Note: If the primary input stream is set to a file, the file's full
name, rather than the stream itself, is returned. See discussion
on page 24.13.

[Function]

Reads one expression from FILE. Atoms are delimited by the
break and separator characters as defined in RDTBL. To include a
break or separator character in an atom, the character must be
preceded by the character %, e.g., AB%(C is the atom ASCC, % %
is the atom %, %control-K is the atom control-K. For input from
the terminal, an atom containing an interrupt character can be
input by typing instead the corresponding alphabetic character
preceded by control-V, e.g., f VD for control-D.

Strings are delimited by double quotes. To input a string
containing. a double quote or a' %, precede it by %, e.g.,
"AS% "c" is the string AS"C. Note that % can always be typed
even if next character is not "special", e.g., %A%S%C is read as
ASC.

If an atom is interpretable as a number, READ creates a number,
e.g., 1E3 reads as a floating point number, 103 as a literal atom,
1.0 as a number, 1,0 as a literal atom, etc. An integer can be
input in a non-decimal radix by using syntax such as 123Q,
Ib10101, 15r1234 (see page 7.4). The function RADIX (page
25.13), sets the radix used to print integers.

When reading from the terminal, all input is line-buffered to
enable the action of the backspacing control characters, unless
inhibited by CONTROL (page 30.10). Thus no characters are

25.3

INPUT FUNCTIONS

(RATOM FILE RDTBL)

(RSTRING FILE RDTBL)

(RATOMSA FILE RDTBL)

(RATEST FLG)

25.4

actually seen by the program until a carriage-return (actually the
character with terminal syntax class EOL, see page 30.6), is typed. '
However, for reading by READ, when a matching right
parenthesis is encountered, the effect is the same as though a
carriage-return were typed, i.e., the characters are transmitted.
To indicate this, Interlisp also prints a carriage-return line-feed
on the terminal. The line buffer is also transmitted to READ
whenever an IMMEDIATE read macro character is typed (page
25.41).

FLG = T suppresses the carriage-return normally typed by READ
following a matching right parenthesis. (However, the
characters are still given to READ; i.e., the user does not have to
type the carriage-return.)

[Function]

Reads in one atom from FILE. Separation of atoms is defined by
RDTBL. % is also defined for RATOM, and the remarks
concerning line-buffering and editing control characters also
apply.

If the characters comprising the atom would normally be
interpreted as a number by READ, that number is returned by
RATOM. Note however that RATOM takes no special action for"
whether or not it is a break character, i.e., RATOM never makes a
string.

[Function]

Reads characters from FILE up to, but not including, the next
break or separator character, and returns them as a string.
Backspace, control-W, control-Q, control-V, and % have the
same effect as with READ.

Note that the break or separator character that terminates a call
to RATOM or RSTRING is not read by that call, but remains in the
buffer to become the first character seen by the next reading
function that is called. If that function is RSTRING, it will return
the null string. This is a common source of program bugs.

[Function]

Calls RATOM repeatedly until the atom A is read. Returns a list of
the atoms read, not including A.

[Function]

If FLG = T, RATEST returns T if a separator was encountered
immediately prior to the atom returned by the last RATOM or
READ, NIL otherwise.

INPUT/OUTPUT FUNCTIONS

(READe FILE RDTBL)

(PEEKCFILE -)

(LASTC FILE)

(READeCODE FILE RDTBL)

(PEEKCCODE FILE -)

(BIN STREAM)

INPUT/OUTPUT FUNCTIONS

INPUT FUNCTIONS

If FLG = NIL, RATEST returns T if last atom read by RATOM or
READ was a break character, NIL otherwise.

If FLG = 1, RATEST returns T if last atom read (by READ or
RATOM) contained a % used to quote the next character (as in
%[or %A%B%C), NIL otherwise.

[Function]

Reads and returns the next character, including %, ", etc, i.e., is
not affected by break or separator characters. The action of
READe is subject to line-buffering, i.e., READC does not return a
value until the line has been terminated even if a character has
been typed. Thus, the editing control characters have their usual
effect. RDTBL does not directly affect the value returned, but is
used as usual in line-buffering, e.g., determining when input has
been terminated. If (CONTROL T) has been executed (page
30.10), defeating line-buffering, the RDTBL argument is
irrelevant, and READC returns a value as soon as a character is
typed (even if the character typed is one of the editing
characters, which ordinarily would never be seen in the input
buffer).

[Function]

Returns the next character, but does not actually read it and
remove it from the buffer. If reading from the terminal, the
character is echoed as soon as PEEKC reads it, even though it is
then "put back" into the system buffer, where backspace,
control-W, etc. could change it. Thus it is possible for the value
returned by PEEKC to "disagree" in the first character with a
subsequent READ.

[Function]

Returns the last character read from FILE.

[Function]

Returns the next character code from STREAM; thus, this
operation is equivalent to, but more efficient than, (CHeON1

(READe FILE RDTBL».

[Function]

Returns, without consuming, the next character code from
STREAM; thus, this operation is equivalent to, but more efficient
than, (CHCON1 (PEEKC FILE».

[Function)

Returns the next byte from STREAM. This operation is useful for
reading streams of binary, rather than character, data.

25.5

INPUT FUNCTIONS

(READP FILE FLG)

(EOFP FILE)

(WAITFORINPUT FILE)

25.6

Note: BIN is similar to READCeODE, except that BIN always reads
a single byte, whereas READeeODE reads a "character" that can J

consist of more than one byte, depending on the character and
its encoding (see page 25.22).

READ, RATOM, RATOMS, PEEKe, READe all wait for input if
there is none. The only way to test whether or not there is input
is to use READP:

[Function]

Returns T if there is anything in the input buffer of FILE, Nil

otherwise. This operation is only interesting for streams whose
source of data is dynamic, e.g., the terminal or a byte stream over
a network; for other streams, such as to files, (READP FILE) is
equivalent to (NOT (EOFP FILE».

Note that because of line-buffering, READP may return T,

indicating there is input in the buffer, but READ may still have to
wait.

Frequently, the terminal's input buffer contains a single EOl
character left over from a previous input. For most applications,
this situation wants to be treated as though the buffer were
empty, and so READP returns Nil in this case. However, if
FLG = T, READP returns T if there is any character in the input
buffer, including a single EOL. FLG is ignored for streams other
than the terminal.

[Function]

Returns true if FILE is at "end of file", i.e., the next call to an
input function would cause an END OF FilE error; Nil otherwise.
For randomly accessible files (page 25.18), this can also be
thought of as the file pointer pointing beyond the last byte of
the file. FILE must be open for (at least) input, or an error is
generated, FilE NOT OPEN.

Note that EOFP can return Nil and yet the next call to READ
might still cause an END OF FilE error, because the only
characters remaining in the input were separators or otherwise
constituted an incomplete expression. The function SKIPSEPRS

(page 25.7) is sometimes more useful as a way of detecting end
of file when it is known that all the expressions in the file are
well formed.

[Function]

Waits until input is available from FILE or from the terminal, i.e.
from T. WAITFORINPUT is functionally equivalent to (until (OR
(READP T) (READP FilE» do Nil), except that it does not use up
machine cycles while waiting. Returns the device for which input
is now available, i.e. FILE or T.

INPUT/OUTPUT FUNCTIONS

INPUT FUNCTIONS

FILE can also be an integer, in which case WAITFORINPUT waits
until there is input available from the terminal, or until FILE
milliseconds have elapsed. Value is T if input is now available, NIL
in the case that WAITFORINPUT timed out.

(SKREAD FILE REREADSTRING RDTBL) [Function]

(SKIPSEPRS FILE RDTBL)

25.3 Output Functions

INPUT/OUTPUT FUNCTIONS

"Skip Read" .. SKREAD consumes characters from FILE as if one
call to READ had been performed, without paying the storage
and compute cost to really read in the structure. REREADSTRING
is for the case where the caller has already performed some
READe's and RATOM's before deciding to skip this expression. In
this case, REREADSTRING should be the material already read (as
a string), and SKREAD operates as though it had seen that
material first, thus setting up its parenthesis count, double-quote
count, etc.

The read table RDTBL is used for reading from FILE. If RDTBL is
NIL, it defaults to the value of FILERDTBL. SKREAD may have
difficulties if unusual read macros (page 25.39) are defined in
RDTBL. SKREAD does not recognize read macro characters in
REREADSTRING, nor SPLICE or INFIX read macros. This is only a
problem if the read macros are defined to parse subsequent
input in the stream that does not follow the normal parenthesis
and string-quote conventions.

SKREAD returns %) if the read terminated on an unbalanced
closing parenthesis; %] if the read terminated on an unbalanced
%], i.e., one which also would have closed any extant open left
parentheses; otherwise NIL.

[Function]

Consumes characters from FILE until it encounters a
non-separator character (as defined by RDTBL). SKIPSEPRS
returns, but does not consume, the terminating character, so
that the next call to READe would return the same character. If
no non-separator character is found before the end of file is
reached, SKIPSEPRS returns NIL and leaves the stream at end of
file. This function is useful for skipping over "white space" when
scanning a stream character by character, or for detecting end of
file when reading expressions from a stream with no
pre-arranged terminating expression.

Unless otherwise specified by DEFPRINT (page 25.16), pointers
other than lists, strings, atoms, or numbers, are printed in the
form {DATA TYPE} followed by the octal representation of the

25.7

OUTPUT FUNCTIONS

(OUTPUT FILE)

(PRIN1 X FILE)

(PRIN2 X FILE RDTBL)

25.8

address of the pointer (regardless of radix). For example, an
array pointer might print as {ARRA YP}#43,2760. This printed
representation is for compactness of display on the user's
terminal, and will not read back in correctly; if the form above is
read, it will produce the litatom {ARRA YP}#43,2760.

Note: the term "end-of-line" appearing in the description of a.n
output function means the character or characters used to
terminate a line in the file system being used by the given
implementation of Interlisp. For example, in Interlisp-D
end-of-line is indicated by the character carriage-retu rn.

Some of the functions described below have a ROTBL argument,
w~ich specifies the read table to be used for output (see page
25.33). If ROTBL is Nil, the primary read table is used.

Most of the functions described below have an argument FILE,
which specifies the stream on which the operation is to take
place. If FILE is Nil, the primary output stream is used (see page
25.1).

[Function]

Sets FILE as the primary output stream; returns the old primary
output stream. FILE must be open for output.

(OUTPUT) returns the current primary output stream, which is
not changed.

Note: If the primary output stream is set to a file, the file's full
name, rather than the stream itself, is returned. See discussion
on page 24.13.

[Function]

Prints X on FILE.

[Function]

Prints X on FILE with % 's and '''s inserted where required for it to
read back in properly by READ, using ROTBL.

Both PRIN1 and PRIN2 print any kind of Lisp expression, including
lists, atoms, numbers, and strings. PRIN1 is generally used for
printing expressions where human readability, rather than
machine readability, is important, e.g., when printing text rather
than program fragments. PRIN1 does not print double quotes
around strings, or % in front of special characters. PRIN2 is used
for printing Interlisp expressions which can then be read back
into Interlisp with READ; i.e., break and separator characters in
atoms will be preceded by % 's. For example, the atom "0" is
printed as %(%) by PRIN2. If the integer output radix (as set by
RADIX, page 25.13) is not 10, PRIN2 prints the integer using the

INPUT/OUTPUT FUNCTIONS

(PRIN3 X FILE)

(PRIN4 X FILE RDTBL)

(PRINT X FILE RDTBL)

OUTPUT FUNCTIONS

input syntax for non-decimal integers (see page 7.4) but PRIN1
does not (but both print the integer in the output radix).

[Function]

[Function]

PRIN3 and PRIN4 are the same as PRIN1 and PRIN2 respectively,
except that they do not increment the horizontal position
counter nor perform 'any linelength checks. They are useful
primarily for printing control characters.

[Function]

Prints the expression X using PRIN2 followed by an end-of-line.
Returns X.

(PRINTCCODE CHARCODE FILE) [Function]

(BOUT STREAM BYTE)

(SPACES N FILE)

(TERPRI FILE)

INPUT/OUTPUT FUNCTIONS

Outputs a single character whose code is CHARCODE to FILE.

This is similar to (PRIN1 (CHARACTER CHARCODE», except that
numeric characters are guaranteed to print "correctly"; e.g.,
(PRINTCCODE (CHARCODE 9» always prints "g", independent of
the setting of RADIX.

Note that PRINTCCODE may actually print more than one byte on
FILE, due to character encoding and end of line conventions;
thus, no assumptions should be made about the relative motion
of the file pointer (see GETFILEPTR, page 25.19) during this
operation.

[Function1

Outputs a single 8-bit byte to STREAM. This is similar to
PRINTCCODE, but for binary streams the character position in
STREAM is not updated (as with PRIN3), and end of line
conventions are ignored.

Note: BOUT is similar to PRINTCCODE, except that BOUT always
writes a single byte, whereas PRINTCCODE writes a "character"
that can consist of more than one byte, depending on the
character and its encoding (see page 25.22).

[Function1
Prints N spaces. Returns NIL.

[Function]

Prints an end-of-line character. Returns NIL.

25.9

OUTPUT FUNCTIONS

-(FRESHLINE STREAM)

(TAB POS MINSPACES FILE)

(SHOWPRIN2 X FILE RDTBL)

(SHOWPRINT X FILE RDTBL)

(PRINTBEllS --)

[Function]

Equivalent to TERPRI, except it does nothing if it is already at the
beginning of the line. Returns T if it prints an end-of-line, NIL

otherwise.

[Function]

Prints the appropriate number of spaces to move to position
POS. MINSPACES indicates how many spaces must be printed (if
NIL, 1 is used). If the current position plus MINSPACES is greater
than POS, TAB does a TERPRI and then (SPACES POS). If
MINSPACES is T, and the current position is greater than POS,

then TAB does nothing.

Note: A sequence of PRINT, PRIN2, SPACES, and TERPRI
expressions can often be more conveniently coded with a single
PRINTOU'!' statement (page 25.23).

[Function]

Like PRIN2 except if SVSPRETTYFLG = T, prettyprints X instead.
Returns X.

[Function]

Like PRINT except if SVSPRETTVFLG = T, prettyprints X instead,
followed by an end-of-line. Returns X.

SHOWPRINT and SHOWPRIN2 are used by the programmer's
assistant (page 13.1) for printing the values of expressions and
for printing the history list, by various commands of the break
package (page 14.1), e.g. 1. and BT commands, and various
other system packages. The idea is that by simply settting or
binding SVSPRETTVFlG to T (initially Nil), the user instructs the
system when interacting with the user to PRETTYPRINT
expressions (page 26.40) instead of printing them.

[Function]

Used by DWIM (page 20.1) to print a sequence of bells' to alert
the user to stop typing. Can be advised or redefined for special
applications, e.g., to flash the screen on a display terminal.

(FORCEOUTPUT STREAM WAITFORFINISH) [Function1

25.10

Forces any buffered output data in STREAM to be transmitted.

If WAITFORFINISH is non-Nil, this doesn't return until the data
has been forced out.

INPUT/OUTPUT FUNCTIONS

(POSITION FILE N)

(L1NELENGTH N FILE)

(SETLINELENGTH N)

25.3.1 PRINTLEVEL

OUTPUT FUNCTIONS

[Function]

Returns the column number at which the next character will be
read or printed. After a end of line, the column number is O. If N
is non-NIL, resets the column number to be N.

Note that resetting POSITION only changes Lisp's belief about
the current column number; it does not cause any horizontal
motion. Also note that (POSITION FILE) is not the same as
(GETFILEPTR FILE) which gives the position in the file, not on the
line.

[Function]

Sets the length of the print line for the output file FILE to N;

returns the former setting of the line length. FILE defaults to the
primary output stream. (L1NELENGTH Nil FILE) returns the
current setting for FILE. When a file is first opened, its line length
is set to the value of the variable FILELINELENGTH.

Whenever printing an atom or string would increase a file's
position beyond the line length of the file, an end of line is
automatically inserted first. This action can be defeated by using
PRIN3 and PRIN4 (page 25.9).

[Function]

Sets the line length for the terminal by doing (L1NELENGTH NT).
If N is NIL, it determines N by consulting the operating system's
belief about the terminal's characteristics. In Interlisp-D, this is a
no-op.

When using Interlisp one often has to handle large, complicated
lists, which are difficult to understand when printed out.
PRINTLEVEL allows the user to specify in how much detail lists
should be printed. The print functions PRINT, PRIN1, and PRIN2
are all affected by level parameters set by:

(PRINTLEVEL CARVAL CDRVAL) [Function]

INPUT/OUTPUT FUNCTIONS

Sets the CAR print level to CARVAL, and the CDR print level to
CDRVAL. Returns a list cell whose CAR and CDR are the old
settings. PRINTLEVEL is initialized with the value (1000. -1).

In order that PRINTLEVEl can be used with RESETFORM or
RESETSAVE, if CARVAL is a list cell it is equivalent to (PRINTlEVEL
(CAR CARVAL) (CDR CARVAL».

(PRINTLEVEL N NIL) changes the CAR printlevel without affecting
the CDR printlevel. (PRINTLEVEl Nil N) changes the CDR

25.11

OUTPUT FUNCTIONS

25.12

printlevel with affecting the CAR printlevel. (PRINTLEVEL) gives

the current setting without changing either.

Note: control-P (page 30.2) can be used to change the
PRINTLEVEL setting dynamically, even while Interlisp is printing.

The CAR printlevel specifies how "deep" to print a list.
Specifically, it is the number of unpaired left parentheses which
will be printed. Below that level, all lists will be printed as &. If
the CAR printlevel is negative, the action is similar except that an
end-of-line is inserted after each right parentheses that would
be immediately followed by a left parenthesis.

The CDR printlevel specifies how "long" to print a list. It is the
number of top level list elements that will be printed before the
printing is terminated with --. For example, if CDRVAL = 2, (A B C
o E) will print as (A B --). For sublists, the number of list elements
printed is also affected by the depth of printing in the CAR

direction: Whenever the sum of the depth of the sublist (i.e. the
number of unmatched left parentheses) and the number of
elements is greater than the CDR printlevel, •• is printed. This
gives a "triangular" effect in that less is printed the farther one
goes in either CAR or CDR direction. If the CDR printlevel is
negative, then it is the same as if the CDR printlevel were infinite.

Examples:

After: (A (B C (0 (E F) G) H) K L) prints as:

(PRINTLEVEL 3 -1) (A (B C (0 & G) H) K L)

(PRINTLEVEL 2 -1) (A (B C & H) K L)

(PRINTLEVEL 1 -1) (A & K L)

(PRI NTLEVEL 0 -1) &

(PRINTLE\lEL 1000 2) (A (B --) _.)

(PRINTLE\lEL 1000 3) (A (B C --) K --)

(PRIN1LEVEL 1 3) (A & K --)

PLVLFILEFLG [Variable]

Normally, PRINTLEVEL only affects terminal output. Output to
all other files acts as though the print level is infinite. However,
if PLVLFILEFLG is T (initially NIL), then PRINTLEVEL affects output
to files as well.

The following three functions are useful for printing isolated
expressions at a specified print level without going to the
overhead of resetting the global print level.

INPUT/OUTPUT FUNCTIONS

OUTPUT FUNCTIONS

(l VLPRI NT X FILE CARL VL CDRL VL TAIL) [Function]

Performs PRINT of X to FILE, using as CAR and CDR print levels
the values CARLVL and CDRL VL, respectively. Uses the Tread
table. If TAIL is specified, and X is a tail of it, then begins its
printing with II ••• ", rather than on open parenthesis.

(LVLPRIN2 X FILE CARLVL CDRLVL TAIL) [Function]

Similar to LVLPRIN2, but performs a PRIN2.

(LVLPRIN1 X FILE CARLVL CDRLVL TAIL) [Function]

25.3.2 Printing numbers

(RADIX N)

(FL TFMT FORMA n

INPUT/OUTPUT FUNCTIONS

Similar to LVLPRIN1, but performs a PRIN1.

How the ordinary printing functions (PRIN1, PRIN2, etc.) print
numbers can be affected in several ways. RADIX influences the
printing of integers, and FLTFMT influences the printing of
floating point numbers. The setting of the variable PRXFLG
determines how the symbol-manipulation functions handle
numbers. The PRINTNUM package permits greater controls on
the printed appearance of numbers, allowing such things as
left-justification, suppression of trailing decim als, etc.

[Function]

Resets the output radix for integers to the absolute value of N.
The value of RADIX is its previous setting. (RADIX) gives the
current setting without changing it. The initial setting is 10.

Note that RADIX affects output only. There is no input radix; on
input, numbers are interpreted as decimal unless they are
entered in a non-decimal radix with syntax such as 123Q,
Ib10101, 15r1234 (see page 7.4). RADIX does not affect the
behavior of UNPACK, etc., unless the value of PRXFLG (below) is
T. For example, if PRXFLG is NIL and the radix is set to 8 with
(RADIX 8), the value of (UNPACK 9) is (9), not (1 1).

Using PRINTNUM (page 25.15) or the PRINTOUT command .I
(page 25.30) is often a more convenient and appropriate way to
print a single number in a specified radix than to globally change
RADIX.

[Function]

Resets the output format for floating point numbers to the
FLOAT format FORMAT (see PRINTNUM below for a description
of FLOAT formats). FORMAT=T specifies the default "free"
formatting: some number of significant digits (a function of the
implementation) are printed, with trailing zeros suppressed;

25.13

OUTPUT FUNCTIONS

PRXFLG

25.14

numbers with sufficiently large or small exponents are instead
printed in exponent notation.

FLTFMT returns its current setting. (FL TF¥T) returns the current
setting without changing it. The initial setting is T.

Note: In Interlisp-D, FLTFMT ignores the WIDTH and PAD fields
of the format (they are implemented only by PRINTNU M).

Whether print name manipulation functions (UNPACK, NCHARS,
etc.) use the values of RADIX and FLTFMT is determined by the
variable PRXFLG:

[Variable]

If PRXFLG = NIL (the initial setting), then the" PRIN1" name used
by PACK, UNPACK, MKSTRING, etc., is computed using base 10

for integers and the system default floating format for floating
point numbers, independent of the current setting of RADIX or
FLTFMT. If PRXFLG = T, then RADIX and FL TFMT do dictate the
"PRIN1" name of numbers. Note that in this case, PACK and
UNPACK are not inverses.

Examples with (RADIX 8), (FL TFMT '(FLOAT 4 2»:

With PRXFLG = NIL,

(UNPACK 13) • > (1 3)

(PACK "(A 9» • > A9

(UNPACK 1.2345) • > (1 %. 2345)

With PRXFLG = T,

(UNPACK 13) • > (1 5)

(PACK I(A 9» • > A11

(UNPACK 1.2345) • > (1 %.23)

Note that PRXFLG does not effect the radix of "PRIN2" names, so
with (RADIX 8), (NCHARS 9 T), which uses PRIN2 names, would
return 3, (since 9 would print as 11 Q) for either setting of
PRXFLG.

Warning: Some system functions will not work correctly if
PRXFLG is not NIL. Therefore, resetting the global value of
PRXFLG is not recommended. It is much better to rebind PRXFLG
as a SPECVAR for that part of a program where it needs to be
non-NIl.

The basic function for printing numbers under format control is
PRINTNUM. Its utility is considerably enhanced when used in
conjunction with the PRINTOUT package (page 25.23), which
implements a compact language for specifying complicated

INPUT/OUTPUT FUNCTIONS

OUTPUT FUNCTIONS

sequences of elementary printing operations, and makes fancy
output formats easy to design and simple to program.

(PRINTNUM FORMAT NUMBER FILE) [Function]

FORMAT:

(FIX 2)

(FIX 2 NIL T)

(FIX 12 8 T)

(FIX 5 NIL NIL T)

Prints NUMBER on FILE according to the format FORMA T.

FORMATis a list structure with one of the forms described below.

If FORMAT is a list of the form (FIX WIDTH RADIX PADO

LEFTFLUSH), this specifies'a FIX format. NUMBER is rounded to
the nearest integer, and then printed in a field WIDTH characters
long with radix set to RADIX (or 10 if RADIX = NIL; note that the
setting from the function RADIX is not used as the default). If
PADO and LEFTFLUSH are both NIL, the number is right-justified
in the field, and the padding characters to the left of the leading
digit are spaces. If PADO is T, the character "0" is used for
padding. If LEFTFLUSH is T, then the number is left-justified in
the field, with traili"ng spaces to fill out WIDTH characters.

The following examples illustrate the effects of the FIX format
options on the number 9 (the vertical bars indicate the field
width):

(PRINTNUM FORMAT9) prints:

191

1091

10000000000111

19 I
If FORMAT is a list of the form (FLOAT WIDTH DECPART EXPPART

PADO ROUND), this specifies a FLOAT format. NUMBER is printed
as a decimal number in a field WIDTH characters wide, with
DECPART digits to the right of the decimal point. If EXPPART is
not 0 (or NIL), the number is printed in exponent notation, with
the exponent occupying EXPPART characters in the field.
EXPPARTshould allow forthe character E and an optional sign to
be printed before the exponent digits. As with FIX format,
padding on the left is with spaces, unless PADO is T. If ROUND is
given, it indicates the digit position at which rounding is to take'
place, counting from the leading digit of the number.

Interlisp-D interprets WIDTH = NIL to mean no padding, i.e., to
use however much space the number needs, and interprets
DECPART= NIL to mean as many decimal places as needed.

The following examples illustrate the effects of the FLOAT
format options on the number 27.689 (the vertical bars indicate
the field width):

FORMAT: (PRINTNUM FORMA T 27.689) prints:

(FLOAT 7 2) I 27.691

INPUT/OUTPUT FUNCTIONS 25.15

OUTPUT FUNCTIONS

(FLOAT 7 2 NIL 1)

(FLOAT 7 22)

(FLOAT 11 24)

(FLOAT 7 2 NIL NIL 1)

(FLOAT 72 NIL NIL 2)

NILNUMPRINTFLG

25.3.3 User Defined Printing

(DEFPRINT TYPE FN)

25.16

10027.691

12.77Ell

I 2.77E + 011

130.001

128.001

[Variable)

If PRINTNUM's NUMBER argument is not a numr>er and not NIL, a
NON-NUMERIC ARG error is generated. If NUMBER is NIL, the
effect depends on the setting of the variable NILNUMPRINTFLG.
If NILNUMPRINTFLG is NIL, then the error occurs as usual. If it is
non-NIL, then no error occurs, and the value of
NILNUMPRINTFLG is printed right-justified in the field described
by FORMAT. This option facilitates the printing of numbers in
aggregates with missing values coded as NIl.

Initially, Interlisp only knows how to print in an interesting way
objects of type litatom, number, string, list and stackp. A" other
types of objects are printed in the form {datatype} followed by
the octal representation of the address of the pointer, a format
that cannot be read back in to produce an equivalent object.
When defining user data types (using the DATATYPE record
type, page 8.9), it is often desirable to specify as we" how objects
of that type should be printed, so as to make their contents
readable, or at least more informative to the viewer. The
function DEFPRINT is used to specify the printing format of a
data type.

[Function]

TYPE is a type name. Whenever a printing function (PRINT,
PRIN1, PRIN2, etc.) or a function requiring a print name (CHCON,
NCHARS, etc.) encounters an object of the indicated type, FN is
called with two arguments: the item to be printed and the name
of the stream, if any, to which the object is to be printed. The
second argument is NIL on calls that request the print name of an
object without actually printing it.

If FN returns a list of the form (ITEM1 . ITEM2), ITEM1 is printed
using PRIN1 (unless it is NIL), and then ITEM2 is printed using
PRIN2 (unless it is NIL). No spaces are printed between the two
items. Typically, ITEM1 is a read macro character.

If FN returns NIL, the datum is printed in the system default
manner.

INPUT/OUTPUT FUNCTIONS

OUTPUT FUNCTIONS

If FN returns T, nothing further is printed; FN is assumed to have
printed the object to the stream itself. Note that this case if
permitted only when the second argument passed to FN is
non-Nil; otherwise, there is no destination for FN to do its
printing, so it must return as in one of the other two cases.

25.3.4 Printing Unusual Data Structures

HPRINT (for "Horrible Print") and HREAD provide a mechanism
for printing and reading back in general data structures that
cannot normally be dumped and loaded easily, such as (possibly
re-entrant or circular) structures containing user datatypes,
arrays, hash tables, as well as list structures. HPRINT will correctly
print and read back in any structure containing any or all of the
above, chasing all pointers down to the level of literal atoms,
numbers or strings. HPRINT currently cannot han91e compiled
code arrays, stack positions, or arbitrary unboxed numbers.

HPRINT operates by simulating the Interlisp PRINT routine for
normal list structures. When it encounters a user datatype (see
page 8.20), or an array or hash array, it prints the data contained
therein, surrounded by special characters defined as read macro
characters (see page 25.39). While chasing the pointers of a
structure, it also keeps a hash table of those items it encounters,
and if any item is encountered a second time, another read
macro character is inserted before the first occurrence (by
resetting the file pointer with SETFllEPTR) and all subsequent
occurrences are printed as a back reference using an appropriate
macro character. Thus the inverse function, HREAD merely calls
the Interlisp READ routine with the appropriate read table.

(HPRINT EXPR FILE UNCIRCULAR DATA TYPESEEN) [Function]

INPUT/OUTPUT FUNCTIONS

Prints EXPR on FILE. If UNCIRCULAR is non-Nil, HPRINT does no
checking for any circularities in EXPR (but is still useful for
dumping arbitrary structures of arrays, hash arrays, lists, user
data types, etc., that do not contain circularities). Specifying
UNCIRCULAR as non-Nil results in a large, speed and
internal-storage advantage.

Normally, when HPRINT encounters a user data type for the first
time, it outputs a summary of the data type's declaration. When
this is read in, the data type is redeclared. If DATA TYPESEEN is
non-Nil, HPRINT assumes that the same data type declarations
will be in force at read time as were at HPRINT time, and not
output declarations.

HPRINT is intended primarily for output to random access files,
since the algorithm depends on being able to reset the file
pointer. If FILE is not a random access file (and UNCIRCULAR =
Nil), a temporary file, HPRINT.SCRATCH, is opened, EXPR is

25.17

OUTPUT FUNCTIONS

(HREAD FILE)

(HCOPY ALL X)

HPRINTed on it, and then that file is copied to the final output

file and the temporary file is deleted.

[Function]

Reads and returns an HPRINT-ed expression from FILE.

[Function]

Copies data structure X. X may contain circular pointers as well
as arbitrary structures.

Note: HORRIBLEVARS and UGLYVARS (page 17.36) are two file
package commands for dumping and reloading circular and
re-entrant data structures. They provide a convenient interface
to HPRINT and HREAD.

When HPRINT is dumping a data structure that contains an
instance of an Interlisp data type, the data type declaration is also
printed onto the file. Reading such a data structure with HREAD
can cause problems if it redefines a system datatype. Redefining
a system datatype will almost definitely cause serious errors. The
Interlisp system datatypes do not change very often, but there is
always a possibility when loading in old files created under an
old Interlisp release.

To prevent accidental system crashes, HREAD will not redefine
datatypes. Instead, it will cause an error "attempt to read
DATATYPE with different field specification than currently
defined". Continuing from this error will redefine the datatype.

25.4 Random Access File Operations

25.18

For most applications, files are read starting at their beginning
and proceeding sequentially, i.e., the next character read is the
one immediately following the last character read. Similarly,
files are written sequentially. However, for files on some devices,
it is also possible to readlwrite characters at arbitrary positions in
a file, essentially treating the file as a large block of auxiliary
storage. For example, one application might involve writing an
expression at the beginning of the file, and then reading an
expression from a specified point in its middle. This particular
example requires the file be open for both input and output.
However, random file input or output can also be performed on
files that have been opened for only input or only output.

Associated with each file is a "file pointer" that points to the
location where the next character is to be read from or written
to. The file position of a byte is the number of bytes that precede

INPUT/OUTPUT FUNCTIONS

(GETFILEPTR FILE)

(SETFILEPTR FILE ADR)

INPUT/OUTPUT FUNCTIONS

RANDOM ACCESSFILE OPERATIONS

it in the file, i.e., a is the position of the beginning of the file.
The file pointer to a file is automatically advanced after each
input or output operation. This section describes functions
which can be used to reposition the file pointer on those files
that can be randomly accessed. A file used in this fashion is much
like an array in that it has a certain number of addressable
locations that characters can be put into or taken from.
However, unlike arrays, files can be enlarged. For example, if the
file pointer is positioned at the end of a file and anything is
written, the file "grows." It is also possible to position the file
pointer beyond the end of file and then to write. (If the program
attempts to read beyond the end of file, an END OF FILE error
occurs.) In this case, the file is enlarged, and a "hole" is created,
which can later be written into. Note that this enlargement only
takes place at the end of a file; it is not possible to make more
room in the middle of a file. In other words, if expression A
begins at position 1 000, and expression B at 1100, and the
program attempts to overwrite A with expression C, whose
printed representation is 200 bytes long, part of B will be altered.

Warning: File positions are always in terms of bytes, not
characters. The user should thus be very careful about
computing the space needed for an expression. In particular, NS
characters may take multiple bytes (see page 25.22). Also, the
end-of-line character (see page 24.19) may be represented by a
different number of characters indifferent implementations.
Output functions may also introduce end-of-line's as a result of
LlNELENGTH considerations. Therefore NCHARS (page 2.9) does
not specify how many bytes an expression takes to print, even
ignoring line length considerations.

[Function]

Returns the current position of the file pointer for FILE, i.e., the
byte address at which the next input/output operation will
commence.

[Function]

Sets the file pointer for FILE to the position ADR; returns ADR.
The special value ADR = -1 is interpreted to mean the address of
the end of file.

Note: If a file is opened for output only, the end of file is initially
zero, even if an old file by the same name had existed (see
OPENSTREAM, page 24.2). If a file is opened for both input and
output, the initial file pointer is the beginning of the file, but
(SETFILEPTR FILE -1) sets it to the end of the file. If the file had
been opened in append mode by (OPEN STREAM FILE 'APPEND),

the file pointer right after opening would be set to the end of
the existing file, in which case a SETFILEPTR to position the file at
the end would be unnecessary.

25.19

RANDOM ACCESS FILE OPERATIONS

25.20

(GETEOFPTR FILE)

(RANDACCESSP FILE)

[Function]

Returns the byte address of the end of file, i.e., the number of
bytes in the file. Equivalent to performing (SETFILEPTR FILE .1)
and returning (GETFILEPTR FILE) except that it does not change

the current file pointer.

[Function]

Returns FILE if FILE is randomly accessible, NIL otherwise. The file
T is not randomly accessible, nor are certain network file
connections in Interlisp-D. FILE must be open or an error is
generated, FILE NOT OPEN.

(COPYBYTES SRCFIL DSTFIL START END) [Function]

Copies bytes from SRCFIL to DSTFIL, starting from position START
and up to but not including position END. Both SRCFIL and
DSTFIL must be open. Retu rns T.

If END = NIL, START is interpreted as the number of bytes to copy
(starting at the current position). If START is also NIL, bytes are
copied until the end of the file is reached.

Warning: COPYBYTES does not take any account of multi-byte
NS characters (page 2.12). COPYCHARS (below) should be used
whenever copying information that might include NS characters.

(COPYCHARS SRCFIL DSTFIL START END) [Function]

Like COPYBYTES except that it copies NS characters (page 2.12),
and performs the proper conversion if the end-of-line
conventions of SRCFIL and DSTFIL are not the same (see page
24.19). START and END are interpreted the same as with
COPYBYTES, i.e., as byte (not character) specifications in SRCFIL.
The number of bytes actually output to DSTFIL might be more or
less than the number of bytes specified by START and END,
depending on what the end-of~line conventions are. In the case
where the end-of-line conventions happen to be the same,
COPYCHARS simply calls COPYBYTES.

(FILEPOS PA TTERN FILE START END SKIP TAIL CASEARRA y) [Function]

Analogous to STRPOS (page 4.5), but searches a file rather than a
string. FILEPOS searches FILE for the string PATTERN. Sea rch
begins at START (or the current position of the file pointer, if
START= NIL), and goes to END (or the end of FILE, if END = NIL).
Returns the address of the start of the match, or NIL if not found.

SKIP can be used to specify a character which matches any
character in the file. If TAIL is T, and the search is successful, the
value is the address of the first character after the sequence of
characters corresponding to PATTERN, instead of the starting
address of the sequence. In either case, the file is left so that the

INPUT/OUTPUT FUNCTIONS

RANDOM ACC ESS FI LE OPERA TlONS

next i/o operation begins at the address returned as the value of
FILEPOS.

CASEARRA Y should be a "case array" that specifies that certain
characters should be transformed to other characters before
matching. Case arrays are returned by CASEARRA Y or SEPRCASE
below. CASEARRA Y= NIL means no transformation will be
performed.

A case array is an implementation-dependent object that is
logically an array 'of character codes with one entry for each
possible character. FILEPOS maps each character in the file
"through" CASEARRA Y in the sense that each character code is
transformed into the corresponding character code from
CASEARRAY before matching. Thus if two characters map into
the same value, they are treated as equivalent by FILEPOS.
CASEARRA Y and SETCASEARRA Y provide an
implementation-independent interface to case arrays.

For example, to search without regard to upper and lower case
differences, CASEARRA Y would be a case array where all
characters map to themselves, except for lower case characters,
whose corresponding elements would be the upper case
characters. To search for a delimited atom, one could use II

ATOM" as the pattern, and specify a case array in which all of
the break and separator characters mapped into the same code
as space.

For applications calling for extensive file searches, the function
FFILEPOS is often faster than FILEPOS.

(FFILEPOS PA TTERN FILE START END SKIP TAIL CASEARRA y) [Function]

(CASEARRA Y OLDARRA y)

INPUT/OUTPUT FUNCTIONS

Like FILEPOS, except much faster in most applications. FFILEPOS
is an implementation of the Boyer-Moore fast string searching
algorithm. This algorithm preprocesses the string being
searched for and then scans through the file in steps usually
equal to the length of the string. Thus, FFILEPOS speeds up
roughly in proportion to the length of the string, e.g., a string of
length 10 will be found twice as fast as a string of length 5 in the
same position.

Because of certain fixed overheads, it is generally better to use
FILEPOS for short searches or short strings.

[Function]

Creates and returns a new case array, with all elements set to
themselves, to indicate the identity mapping. If OLDARRA Y is
given, it is reused.

25.21

RANDOM ACCESS FILE OPERATIONS

(SETCASEARRA Y CASEARRA Y FROMCODE TOCODE) [Function]

Modifies the case array CASEARRA Y so that character code
FROMCODE is mapped to character code TOCODE.

(GETCASEARRA Y CASEARRA Y FROMCODE) [Function]

(SEPRCASE CLFLG)

UPPERCASEARRA Y

Returns the character code that FROMCODE is mapped to in
CASEARRAY.

[Function]

Returns a new case array suitable for use by FILEPOS or FFILEPOS
in which all of the break/separators of FILEROTBL are mapped
into character code zero. If CLFLG is non-NIL, then all CLiSP
characters are mapped into this character as well. This is useful
for finding a delimited atom in a file. For example, if PATTERN is
.. FOO .. , and (SEPRCASE T) is used for CASEARRA Y, then FILEPOS
will find U(FOO ",

[Variable]

Value is a case array in which every lowercase character is
mapped into the corresponding uppercase character. Useful for
searching text files.

25.5 Input/Output Operations with Characters and Bytes

25.22

Interlisp-D supports the 16-bit NS character set (see page 2.12).
All of the standard string and print name functions accept
litatoms and strings containing NS characters. In almost all cases,
a program does not have to distinguish between NS characters or
a-bit characters. The exception to this rule is the handling of
input/output operations.

Interlisp-D uses two ways of writing 16-bit NS characters on files.
One way is to write the full 16-bits (two bytes) every time a
character is output. The other way is to use "run-encoding."
Each 16 NS character can be decoded into a character set (an
integer from 0 to 254 inclusive) and a character number (also an
integer from 0 to 254 inclusive). In run-encoding, the byte 255
(illegal as either a character set number or a character number) is
used to signal a change to a given character set, and the
following bytes are all assumed to come from the same character
set (until the next change-character set sequence).
Run-encoding can reduce the number of bytes required to
encode a string of NS characters, as long as there are long
sequences of characters from the same character set (usually the
case).

INPUT/OUTPUT FUNCTIONS

INPUT/OUTPUTOPERATIONSWITH CHARACTERS AND BYTES

Note that characters are not the same as bytes. A single
character can take anywhere from one to fou r bytes bytes,
depending on whether it is in the same character set as the
preceeding character, and whether run-encoding is enabled.
Programs which assume that characters are equal to bytes must
be changed to work with NS characters.

The functions BIN (page 25.5) and BOUT (page 25.9) should only
be used to read and write single eight-bit bytes. The functions
READCCODE (page 25.5)and PRINTCCODE (page 25.9) should be
used to read and write single character codes, interpreting
run-encoded NS characters. COPYBYTES (page 25.20) should
only be used to copy blocks of 8-bit data; COPYCHARS should be
used to copy characters. Most I/O functions (READC, PRIN1, etc.)
read or write 16-bit NS characters.

The use of NS characters has serious consequences for any
program that uses file pointers to access a file in a random access
manner. At any point when a file is being read or written, it has
a "current character set." If the file pointer is changed with
SETFILEPTR (page 25.19) to a part of the file with a different
character set, any characters read or written may have the wrong
character set. The current character set can be accessed with the
following function:

(CHARSET STREAM CHARACTERSEn [Function]

25.6 PRINTOUT

INPUT/OUTPUT FUNCTIONS

Returns the current character set of the stream STREAM. If
CHARACTERSET is non-NIL, the current character set for STREAM
is set. Note that for output streams this may cause bytes to be
written to the stream.

If CHARACTERSET is T, run encoding for STREAM is disabled:
both the character set and the character number (two bytes
total) will be written to the stream for each character printed.

Interlisp provides many facilities for controlling the format of
printed output. By executing various sequences of PRIN1, PRIN2,
TAB, TERPRI, SPACES, PRINTNUM, and PRINTDEF, almost any
effect can be achieved. PRINTOUT implements a com pact
language for specifying complicated sequences of these
elementary printing functions. It makes fancy output formats
easy to design and simple to program.

PRINTOUT is a CLiSP word (like FOR and IF) for interpreting a
special printing language in which the user can describe the
kinds of printing desired. The description is translated by
DWIMIFY to the appropriate sequence of PRIN1, TAB, etc.,

25.23

PRINTOUT

25.24

before it is evaluated or compiled. PRINTOUT printing
descriptions have the following general form:

(PRINTOUT STREAM PRINTCOM1'" PRINTCOMN)

STREAM is evaluated to obtain the stream to which the output
from this specification is directed. The PRINTOUT commands are
strung together, one after the other without punctuation, after
STREAM. Some commands occupy a single position in this list,
but many commands expect to find arguments following the
command name in the list. The commands fall into several
logical groups: one set deals with horizontal and vertical
spacing, another group provides controls for certain formatting
capabilities (font changes and subscripting), while a third set is
concerned with various ways of actually printing items. Finally,
there is a command that permits escaping to a simple Lisp
evaluation in the middle of a PRINTOUT form. The various
commands are described below. The following examples give a
general flavor of how PRINTOUT is used:

Example 1: Suppose the user wanted to print out on the
terminal the values of three variables, X, V, and Z, separated by
spaces and followed by a carriage return. This could be done by:

(PRIN1 X T)

(SPACES 1 T)

(PRIN1 V T)

(SPACES 1 T)

(PRIN1 ZT)

(TERPRI T)

or by the more concise PRINTOUT form:

(PRINTOUT T X, V , Z T)

Here the first T specifies output to the terminal, the commas
cause single spaces to be printed, and the final T specifies a
TERPRI. The variable names are not recognized as special
PRINTOUT commands, so they are· printed using PRIN1 by
default.

Example 2: Suppose the values of X and V are to be
pretty-printed lined up at position 10, preceded by identifying
strings. If the output is to go to the primary output stream, the
user could write either:

(PRIN1 "X • II)

(PRI NTDEF X 10 T)

(TERPRI)
(PRIN1 "V • II)

(PRINTDEF V 10 T)

(TERPRI)

or the equivalent:

(PRINTOUT NIL "X • II 10 .PPV X T

INPUT/OUTPUT FUNCTIONS

PRINTOUT

"V =" 10 .PPV V T)

Since strings are not recognized as special commands, "X =" is
also printed with PRIN1 by default. The positive integer means
TAB to position 10, where the .PPV command causes the value of
X to be prettyprinted as a variable. By convention, special atoms
used as PRINTOUT commands are prefixed with a period. The T
causes a carriage return, so the V information is printed on the
next line.

Example 3. As a final example, suppose that the value of X is an
integer and the value of V is a floating-point number. X is to be
printed right-flushed in a field of width 5 beginning at position
15, and V is to be printed in a field of width 10 also starting at
position 15 with 2 places to the right of the decimal point.
Furthermore, suppose that the variable names are to appear in
the font class named BOLDFONT and the values in font class
SMALLFONT. The program in ordinary Interlisp that would
accomplish these effects is too complicated to include here. With
PRINTOUT, one could write:

(PRINTOUT NIL
.FONT BOLDFONT "X • "15
.FONT SMALLFONT .15 X T
.FONT BOLDFONT "V • "15
.FONT SMALLFONT .F1 0.2 V T
.FONT BOLD FONT)

The .FONT commands do whatever is necessary to change the
font on a multi-font output device. The.l5 command sets up a
FIX format for a call to the function PRINTNUM (page 25.15) to
print X in the desired format. The .F10.2 specifies a FLOAT
format for PRINTNUM.

25.6.1 Horizontal Spacing Commands

N (N a number)

.TABPOS

INPUT/OUTPUT FUNCTIONS

The horizontal spacing commands provide convenient ways of
calling TAB and SPACES. In the following descriptions, N stands
for a literal positive integer (not for a variable or expression
whose value is an integer).

[PRINTOUT command]

Used for absolute spacing. It results in a TAB to position N

(literally, a (TAB N». If the line is currently at position N or
beyond, the file will be positioned at position N on the next line.

[PRINTOUT command]

Specifies TAB to position (the value of) POS. This is one of several
commands ~hose effect could be achieved by simply escaping to
Lisp, and executing the corresponding form. It is provided as a

25.25

PRINTOUT

.TABO POS

-N (N a number)

...

.SP DISTANCE

25.6.2 Vertical Spacing Commands

T

.SKIP LINES

.PAGE

25.26

separate command so that the PRINTOUT form is more concise
and is prettyprinted more compactly. Note that .TAB Nand N, J

where N is an integer, are equivalent.

[PRINTOUT command1

Like .TAB except that it can result in zero spaces (i.e. the call to
TAB specifies MINSPACES = 0).

[PRINTOUT command]

Negative integers indicate relative (as opposed to absolute)
spacing. Translates as (SPACES INI)·

[PRINTOUT command]

[PRINTOUT command]

[PRINTOUT command]

(1,2 or 3 commas) Provides a short-hand way of specifying 1,2 or
3 spaces, i.e., these commands are equivalent to -1, -2, and -3,
respectively.

[PRINTOUT command]

Translates as (SPACES DISTANCE). Note that .SP N and -Nt where
N is an integer, are equivalent.

Vertical spacing is obtained by calling TERPRI or printing
form-feeds. The relevant commands are:

[PRINTOUT command1

Translates as (TERPRI), i.e., move to position 0 (the first column)
of the next line. To print the letter T, use the string "T".

[PRINTOUT command]

Equivalent to a sequence of LINES (TERPRI)'s. The .SKIP
command allows for skipping large constant distances and for
computing the distance to be skipped.

[PRINTOUT command]

Puts a form-feed (control-L) out on the file. Care is taken to
make sure that Interlisp's view of the current line position is
correctly updated.

INPUT/OUTPUT FUNCTIONS

25.6.3 Special Formatting Controls

.FONT FONTSPEC

.SUP

.SUB

.BASE

25.6.4 Printing Specifications

INPUT/OUTPUT FUNCTIONS

PRINTOUT

There are a small number of commands for invoking some of the
formatting capabilities of multi-font output devices. The
available commands are:

[PRINTOUT command]

Changes printing to the font FONTSPEC, which can be a font
descriptor, a "font list" such as '(MODERN 10), an image stream
(coerced to its current font), or a windows (coerced to the
current font of its display stream). See fonts (page 27.25) for
more information.

FONTSPEC may also be a positive integer N, which is taken as an
abbreviated reference to the font class named FONTN (e.g. 1

= > FONT1).

[PRINTOUT command]

Specifies superscripting. All subsequent characters are printed
above the base of the current line. Note that this is absolute, not
relative: a .SUP following a .SUP is a no-oPe

[PRINTOUT command]

Specifies subscripting. Subsequent printing is below the base of
the current line. As with superscripting, the effect is absolute.

[PRINTOUT command]

Moves printing back to the base of the current line. Un-does a
previous .SUP or .SUB; a no-op, if printing is currently at the
base.

The value of any expression in a PRINTOUT form that is not
recognized as a command itself or as a command argument is
printed using PRIN1 by default. For example, title strings can be
printed by simply including the string as a separate PRINTOUT

comma~d, and the values of variables and forms can be printed
in much the same way. Note that a literal integer, say 51, cannot
be printed by including it as a command, since it would be
interpreted as a TAB; the desired effect can be obtained by using
instead the string specification" 51", or the form (QUOTE 51).

For those instances when PRIN1 is not appropriate, e.g., PRIN2 is
required, or a list structures must be prettyprinted, the following
commands are available: .

25.27

PRINTOUT

25.6.4.1

25.28

.P2 THING

.PPF THING

.PPVTHING

.PPFTL THING

.PPVTL THING

Paragraph Format

.PARA LMARG RMARG LIST

[PRINTOUT command]

Causes THING to be printed using PRIN2; translates as (PRIN2

THING).

[PRINTOUT command}

Causes THING to be prettyprinted at the current line position via
PRINTDEF (page 26.42). The call to PRINTDEF specifies that
THING is to be printed as if it were part of a function definition.
That is, SELECTQ, PROG, etc., receive special treatment.

[PRINTOUT command]

Prettyprints THING as a variable; no special interpretation is
given to SELECTQ, PROG, etc.

[PRINTOUT command]

Like .PPF, but prettyprints THING as a tail, that is, without the
initial and final parentheses if it is a list. Useful for prettyprinting
sub-lists of a list whose other elements are formatted with other
commands.

[PRINTOUT command]

Like .PPV, but prettyprints THING as a tail.

Interlisp's prettyprint routines are designed to display the
structure of expressions, but they are not really suitable for
formatting unstructured text. If a list is to be printed as a textual
paragraph, its internal structure is less important than
controlling its left and right margins, and the indentation of its
first line. The .PARA and .PARA2 commands allow these
parameters to be conveniently specified.

[PRINTOUT command]

Prints LIST in paragraph format, using PRIN1. Translates as
(PRINTPARA LMARG RMARG LlSn (see page 25.32).

Example: (PRINTOUTT 10 .PARA 5 -5 LST) will print the elements
of LST as a paragraph with left margin at 5, right margin at
(LiNELENGTH)-5, and the first line indented to 10 .

. PARA2 LMARG RMARG LIST [PRINTOUT command]

Print as paragraph using PRIN2 instead of PRIN1. Translates as
(PRINTPARA LMARG RMARG LlSTT).

INPUT/OUTPUT FUNCTIONS

25.6.4.2 RightmFlushing

.FRPOS EXPR

.FR2 POS EXPR

25.6.4.3 Centering

.CENTER POS EXPR

.CENTER2 POS EXPR

25.6.4.4 Numbering

INPUT/OUTPUT FUNCTIONS

PRINTOUT

Two commands are provided for printing simple expressions
flushed-right against a specified line position, using the function
FLUSHRIGHT (page 25.32). They take into account the current
position, the number of characters in the print-name of the
expression, and the position the expression is to be flush against,
and then print the appropriate number of spaces to achieve the
desired effect. Note that this might entail going to a new line

I before printing. Note also that right-flushing of expressions
longer than a line (e.g. a large list) makes little sense, and the
appearance of the output is not guaranteed.

[PRINTOUT command]

Flush-right using PRIN1. The value of POS determines the
position that the right end of EXPR will line up at. As with the
horizontal spacing commands, a negative position number
means IpOSI columns from the current position, a positive
number specifies the position absolutely. POS = 0 specifies the
right-margin, i.e. is interpreted as (LiNELENGTH).

[PRINTOUT command]

Flush-right using PRIN2 instead of PRIN1.

Commands for centering simple expressions between the current
line position and another specified position are also available.
As with right flushing, centering of large expressions is not
guaranteed.

[PRINTOUT command]

Centers EXPR between the current line position and the position
specified by the value of POS. A positive POS is an absolute
position number, a negative POS specifies a position relative to
the current position, and 0 indicates the right-margin. Uses
PRIN1 for printing.

[PRINTOUT command]

Centers using PRIN2 instead of PRIN1.

The following commands provide FORTRAN-like formatting
capabilities for integer and floating-point numbers. Each
command specifies a printing format and a number to be

25.29

PRINTOUT

.lFORMA T NUMBER

.FFORMA T NUMBER

.N FORMA T NUMBER

25.6.5 . Escaping to Lisp

FORM

25.30

printed. The format specification translates into a format-list for

the function PRINTNUM (see page 25.15).

[PRINTOUT command]

Specifies integer printing. Translates as a call to the function
PRINTNUM with a FIX format-list constructed from FORMA T. The
atomic format is broken apart at internal periods to form the
format-list. For example, .Is.8.T yields the format-list (FIX 58 T),
and the command sequence (PRINTOUT T .lS.8.T Faa) translates
as (PRINTNUM '(FIX 58 T) Faa). This expression causes the value
of Faa to be printed in radix 8 right-flushed in a field of width 5,
with O's used for padding on the left. Internal NIL's in the format
specification may be omitted, e.g., the commands .IS .. T and
.ls.NIL.T are equivalent.

The format specification .11 is often useful for forcing a number
to be printed in radix 10 (but not otherwise specially formatted),
independent of the current setting of RADIX.

[PRINTOUT command]

Specifies floating-number printing. Like the .I format command,
except translates with a FLOAT format-list.

[PRINTOUT command]

The .I and .F commands specify calls to PRINTNUM with quoted
format specifications. The.N command translates as (PRINTNUM
FORMA T NUMBER), i.e., it permits the format to be the value of
some expression. Note that, unlike the .I and .F commands,
FORMA T is a separate element in the command list, not part of
an atom beginning with .N.

There are many reasons for taking control away from PRINTOUT
in the middle of a long printing expression. Common situations
involve temporary changes to system printing parameters (e.g.
LlNELENGTH), conditional printing (e.g. print FOO only if FIE is T),
or lower-level iterative printing within a higher-level print
specification.

[PRINTOUT command]

The escape command. FORM is an arbitrary Lisp expression that
is evaluated within the context established by the PRINTOUT
form, i.e., FORM can assume that the primary output stream has
been set to be the FILE argument to PRINTOUT. Note that
nothing is done with the value of FORM; any printing desired is
accomplished by FORM itself, and the value is discarded.

INPUT/OUTPUT FUNCTIONS

25.6.6 User-Defined Commands

PRINTOUTMACROS

INPUT/OUTPUT FUNCTIONS

PRINTOUT

Note: Although PRINTOUT logically encloses its translation in a
RESETFORM (page 14.26) to change the primary output file to
the FILE argument (if non-NIL), in most cases it can actually pass
FILE (or a locally bound variable if FILE is a non-trivial expression)
to each printing function. Thus, the RESETFORM is only
generated when the # command is used, or user-defined
commands (below) are used. If many such occur in repeated
PRINTOUT forms, it may be more efficient to embed them all in a
single RESETFORM which changes the primary output file, and
then specify FILE = NIL in the PRINTOUT expressions themselves.

The collection of commands and options outlined above is aimed
at fulfilling all common printing needs. However, certain
applications might have other, more specialized printing idioms,
so a facility is provided whereby the user can define new
commands. This is done by adding entries to the global list
PRINTOUTMACROS to define how the new commands are to be
translated.

[Variable]

PRINTOUTMACROS is an association-list whose elements are of
the form (COMM FN). Whenever COMM appears in command
position in the sequence of PRINTOUT commands (as opposed to
an argument position of another command), FN is applied to the
tail of the command-list (including the command).

After inspecting as much of the tail as necessary, the function
must return a list whose CAR is the translation of the
user-defined command and its arguments, and whose CDR is the
list of commands still remaining to be translated in the normal
way.

For example, suppose the user wanted to define a command "?",
which will cause its single argument to be printed with PRIN1
only if it is not NIl. This can be done by entering (? ?TRAN) on
PRINTOUTMACROS, and defining the function ?TRAN as follows:

(DEFINEQ (?TRAN (COMS)
(CONS

(SUBST (CADR COMS) 'ARG
'(PROG «TEMP ARG»

(COND (TEMP (PRIN1 TEMP»»)
(CDDR COMS»]

Note that ?TRAN does not do any printing itself; it returns a form
which, when evaluated in the proper context, will perform the

25.31

PRINTOUT

desired action. This form should direct all printing to the primary

output file.

25.6.7 Special Printing Functions

25.32

The paragraph printing commands are translated into calls on
the function PRINTPARA, which may also be called directly:

(PRINTPARA LMARG RMARG LIST P2FLAG PARENFLAG FILE) [Function]

Prints LIST on FILE i n line~filled paragraph format with its first
element beginning at the current line position and ending at or
before RMARG, and with subsequent lines appearing between
LMARG and RMARG. If P2FLAG is non-NIL, prints elements using
PRIN2, otherwise PRIN1. If PARENFLAG is non-NIL, then
parentheses will be printed around the elements of LIST.

If LMARG is zero or positive, it is interpreted as an absolute
column position. If it is negative, then the left margin will be at
ILMARGI + (POSITION). If LMARG = NIL, the left margin will be at
(POSITION), and the paragraph will appear in block format.

If RMARG is positive, it also is an absolute column position (which
may be greater than the current (LiNELENGTH)). Otherwise, it is
interpreted as relative to (LiNELENGTH), i.e., the right margin
will be at (LiNELENGTH)"," IRMARGI. Example: (TAB 10)
(PRINTPARA 5 -5 LST T) will PRIN2 the elements of LST in a
paragraph with the first line beginning at column 10,
subsequent lines beginning at column 5, and all lines ending at .
or before (LiNELENGTH)-5.

The current (LiNELENGTH) is unaffected by PRINTPARA, and
upon completion, FILE will be positioned immediately after the
last character of the last item of LIST. PRINTPARA is a no-op if
LIST is not a list.

The right-flushing and centering commands translate as calls to
the function FLUSHRIGHT:

(FLUSHRIGHT POS X MIN P2FLAG CENTERFLAG FILE) [Function]

If CENTERFLAG = NIL, prints X right-flushed against position POS
on FILE; otherwise, centers X between the current line position
and POS. Makes sure that it spaces over at least MIN spaces
before printing by doing a TERPRI if necessary; MIN = NIL is
equivalent to MIN = 1. A positive POS indicates an absolute
position, while a negative POS signifies the position which is
IPOSI to the right of the current line position. POS = 0 is
interpreted as (LiNELENGTH), the right margin.

INPUT/OUTPUT FUNCTIONS

25.7 READFILE and WRITEFILE

READFILE AND WRITEFILE

For those applications where the user simply wants to simply
read all of the expressions on a file, and not evaluate them, the
function READFILE is available:

(READFILE FILE RDTBL END TOKEN) [NoSpread Function]

(WRITEFILE X FILE)

(ENDFILE FILE)

25.8 Read Tables

INPUT/OUTPU r FUNCTIONS

Reads successive expressions from file using READ (with read
table RDTBL) u!1til the single litatom END TOKEN is read, or an
end of file encountered. Returns a list of these expressions.

If RDTBL is not specified, it defaults to FILERDTBL. If END TOKEN
is not specified, it defaults to the litatom STOP.

[Function]

Writes a date expression onto FILE, followed by successive
expressions from X, using FILERDTBL as a read table. If X is
atomic, its value is used. If FILE is not open, it is opened. If FILE is
a list, (CAR FILE) is used and the file is left opened. Otherwise,
when X is finished, the litatom STOP is printed on FILE and it is
closed. Returns FILE.

[Function]

Prints STOP on FILE and closes it.

Many Interlisp input functions treat certain characters in special
ways. For example, READ recognizes that the right and left
parenthesis characters are used to specify list structures, and that
the quote character is used to delimit text strings. The Interlisp
input and (to a certain extent) output routines are table driven
by read tables. Read tables are objects that specify the syntactic
properties of characters for input routines. Since the input
routines parse character sequences into objects, the read table in
use determines which sequences are recognized as literal atoms,
strings, list structures, etc.

Most Interlisp input functions take an optional read table
argument, which specifies the read table to use when reading an
expression. If NIL is given as the read table, the" primary read
table" is used. If T is specified, the system terminal read table is
used. Some functions will also accept the atom ORIG (not the
value of ORIG) as indicating the "original" system read table.
Some output functions also take a read table argument. For

25.33

READ TABLES

example, PRIN2 prints an expression so that it would be read in

correctly using a given read table.

The Interlisp-D system uses the following read tables: T for
input/output from terminals, the value of FILERDTBL for
input/output from files, the value of EDITRDTBL for input from
terminals while in the tty-based editor, the value of DEDITRDTBL
for input from terminals while in the display-based editor, and
the value of CODERDTBL for input/output from compiled files.
These five read tables are initially copies of the ORIG read table.
with changes made to some of them to provide read macros
(page 25.39) that are ~p~cific to terminal input or file input.
Using the functions described below, the user may further
change, reset, or copy these tables. However, in the case of
FILERDTBL and CODERDTBL, the user is cautioned that changing
these tables may prevent the system from being able to read files
made with the original tables, or prevent users possessing only
the standard tables from reading files made using the modified
tables.

The user can also create new read tables, and either explicitly
pass them to input/output functions as arguments, or install
them as the primary read table, via SETREADTABLE, and then not
specify a RDTBL argument, i.e., use NIl.

25.8.1 Read Table Functions

25.34

(READTABLEP RDTBL) [Function]

Returns RDTBL if RDTBL is a real read table (not T or ORIG),
otherwise NIl.

(GETREADTABLE RDTBL) [Function]

If RDTBL = NIL, returns the primary read table. If RDTBL = T,
returns the system terminal read table. If RDTBL is a real read
table, returns RDTBL. Otherwise, generates an ILLEGAL
READTABLE error.

(SETREADTABLE RDTBL FLG) [Function]

Sets the primary read table to RDTBL. If FLG = T, SETREADTABLE
sets the system terminal read table, T. Note that the user can
reset the other system read tables with SETQ, e.g., (SETQ
FILERDTBL (GETREADTABLE».

Generates an ILLEGAL READTABLE error if RDTBL is not NIL, T, or
a real read table. Returns the previous setting of the primary
read table, so SETREADTABLE is suitable for use with
RESETFORM (page 14.26).

INPUT/OUTPUT FUNCTIONS

READ TABLES

(COPYREADTABlE RDTBL) [Function1

Returns a copy of RDTBL. RDTBL can be a real read table, Nil, T,
or ORIG (in which case COPYREADTABlE returns a copy of the
original system read table), otherwise COPYREADTABlE
generates an ILLEGAL READTABlE error.

Note that COPYREADTABLE is the only function that creates a
read table.

(RESETREADTABlE RDTBL FROM) [Function1

Copies (smashes) FROM into RDTBL. FROM and RDTBL can be
NIL, Ti or a real read table. In addition, FR.OM can be ORIG,
meaning use the system's original read table.

25.8.2 Syntax Classes

INPUT/OUTPUT FUNCTIONS

LEFTPAREN

RIGHTPAREN

A read table is an object that contains information about the
"syntax class" of each character. There are nine basic syntax
classes: lEFTPAREN, RIGHTPAREN, lEFTBRACKET,
RIGHTBRACKET, STRINGDElIM, ESCAPE, BREAKCHAR,
SEPRCHAR, and OTHER, each associated with a primitive
syntactic property. In addition, there is an unlimited assortment
of user-defined syntax classes, known as "read macros ". The
basic syntax classes are interpreted as follows:

(normally left parenthesis) Begins list structure.

(normally right parenthesis) Ends list structure.

LEFTBRACKET (normally left bracket) Begins list structure. Also matches
RIGHTBRACKET characters.

RIGHTBRACKET (normally left bracket) Ends list structure. Can close an arbitrary
numbers of lEFTPAREN lists, back to the last lEFTBRACKET.

STRINGDELIM (normally double quote) Begins and ends text strings. Within
the string, all characters except for the one(s) with class ESCAPE
are treated as ordinary, i.e., interpreted as if they were of syntax
class OTHER. To include the string delimiter inside a string, prefix
it with the ESCAPE character.

ESCAPE (normally percent sign) Inhibits any special interpretation of the
next character, i.e., the next character is interpreted to be of class
OTHER, independent of its normal syntax class.

BREAKCHAR (None initially) Is a break character, i.e., delimits atoms, but is
otherwise an ordinary character.

SEPRCHAR

OTHER

(space, carriage return, etc.) Delimits atoms, and is otherwise
ignored.

Characters that are not otherwise special belong to the class
OTHER.

25.35

READ TABLES

(GETSYNTAX CH TABLE)

25.36

Characters of syntax class lEFTPAREN, RIGHTPAREN,
lEFTBRACKET, RIGHTBRACKET, and STRINGDELIM are all break
characters. That is, in addition to their interpretation as
delimiting list or string structures, they also terminate the
reading of an atom. Characters of class BREAKCHAR serve only
to terminate atoms, with no other special meaning. In addition,
if a break character is the 'first non-separator encountered by
RATOM, it is read as a one-character atom. In order for a break
character to be included in an atom, it must be preceded by the
ESCAPE character.

Characters of class SEPRCHAR also terminate atoms,. b.ut are
otherwise completely ignored; they can be thought of as
logically spaces. As with break characters, they must be preceded
by the ESCAPE character in orderto appear in an atom.

For example, if $ were a break character and * a separator
character, the input stream ABC**DEF$GH*$$ would be read by
6 calls to RATOM returning respectively ABC, DEF, $, GH, $, $.

Although normally there is only one character in a read table
having each of the list- and string-delimiting syntax classes (such
as lEFTPAREN), it is perfectly acceptable for any character to
have any syntax class, and for more than one to have the same
class.

Note that a "syntax class" is an abstraction: there is no object
referencing a collection of characters called a syntax class.
Instead, a read table provides the association between a
character and its syntax class, and the input/output routines
enforce the abstraction by using read tables to drive the parsing.

The functions below are used to obtain and set the syntax class
of a character in a read table. CH can either be a character code
(a integer), or a character (a single-character atom). Single-digit
integers are interpreted as character codes, rather than as
characters. For example, 1 indicates control-A, and 49 indicates
the character 1. Note that CH can be a full sixteen-bit NS
character (see page 2.12).

Note: Terminal tables, described on page 30.4, also associate
characters with syntax classes, and they can also be manipulated
with the functions below. The set of read table and terminal
table syntax classes are disjoint, so there is never any ambiguity
about which type of table is being referred to.

[Function1

Returns the syntax class of CH, a character or a character code,
with respect to TABLE. TABLE can be Nil, T, ORIG, or a real read
table or terminal table.

CH can also be a syntax class, in which case GETSYNTAX returns a
list of the character codes in TABLE that have that syntax class.

INPUT/OUTPUT FUNCTIONS

READ TABLES

(SETSYNTAX CHAR CLASS TABLE) [Function]

Sets the syntax class of CHAR, a character or character code, in
TABLE. TABLE can be either NIL, T, or a real read table or
terminal table. SETSYNTAX returns the previous syntax class of
CHAR. CLASS can be anyone of the following:

• The name of one of the basic syntax classes.

• A list, which is interpreted as a read macro (see page 25.39).

• NIL, T, ORIG, or a real read table or terminal table, which means
to give CHAR the syntax class it has in the table indicated by
CLASS. For example, (SETSYNTAX '%('ORIG TABLE) gives the left
p'arenthesis character in TABLEthe same syntax class that it has in
the original system read table.

• A character code or character, which means to give CHAR the
same syntax class as the character CHAR in TABLE. For example,
(SETSYNTAX '{ '%[TABLE) gives the left brace character the
same syntax class as the left bracket.

(SYNTAXP CODE CLASS TABLE) [Function]

INPUT/OUTPUT FUNCTIONS

CODE is a character code; TABLE is NIL, T, or a real read table or
terminal table. Returns T if CODE has the syntax class CLASS in
TABLE; NIL otherwise.

CLASS can also be a read macro type (MACRO, SPLICE, INFIX), or a
read macro option (FIRST, IMMEDIATE, etc.), in which case
SYNTAXP returns T if the syntax class is a read macro with the
specified property.

Note: SYNTAXP will not accept a character as an argument, only
a character code.

For convenience in use with SYNTAXP, the atom BREAK may be
used to refer to all break characters, i.e., it is the union of
LEFTPAREN, RIGHTPAREN, LEFTBRACKET, RIGHTBRACKET,

STRINGDELIM, and BREAKCHAR. For purely symmetrical reasons,
the atom SEPR corresponds to all separator characters. However,
since the only separator characters are those that also appear in
SEPRCHAR, SEPR and SEPRCHAR are equivalent.

Note that GETSYNTAX never returns BREAK or SEPR as a value
although SETSYNTAX and SYNTAXP accept them as arguments.
Instead, GETSYNTAX returns one of the disjoint basic syntax
classes that comprise BREAK. BREAK as an argument to
SETSYNTAX is interpreted to mean BREAKCHAR if the character
is not already of one of the BREAK classes. Thus, if %(is of class
LEFTPAREN, then (SETSYNTAX '%('BREAK) doesn't do anything,
since %(is already a break character, but (SETSYNTAX '%(

'BREAKCHAR) means make %(be just a break character, and
therefore disables the LEFTPAREN function of %(. Similarly, if
one of the format characters is disabled completely, e.g., by

25.37

READ TABLES

(GETSEPR RDTBL)

(GETBRK RDTBL)

(SETSEPR LST FLG RDTBL)

(SETBRK LST FLG RDTBL)

25.38

(SETSVNTAX '%('OTHER), then (SETSVNTAX '%('BREAK) would
make %(be only a break character; it would not restore %(as
LEFTPAREN.

The following functions provide a way of collectively accessing
and setting the separator and break characters in a read table:

[Function]

Returns a list of separator character codes in RDTBL. Equivalent
to (GETSVNTAX 'SEPR RDTBL).

[Function]

Returns a list of break character codes in RDTBL. Equivalent to
(GETSVNTAX 'BREAK RDTBL).

[Function]

Sets or removes the separator characters for RDTBL. LST is a list
of charactors or character codes. FLG determines the action of
SETSEPR as follows: If FLG = NIL, makes RDTBL have exactly the
elements of LST as separators, discarding from RDTBL any old
separator characters not in LST. If FLG = 0, removes from RDTBL
as separator characters all elements of LST. This provides an
.. UNSETSEPR". If FLG = 1, makes each of the characters in LST be
a separator in RDTBL.

If LST= T, the separator characters are reset to be those in the
system's read table for terminals, regardless of the value of FLG,
i.e., (SETSEPR T) is equivalent to (SETSEPR (GETSEPR T». If RDTBL
is T, then the characters are reset to those in the original system
table.

Returns NIl.

[Function]

Sets the break characters for RDTBL. Similar to SETSEPR.

As with SETSVNTAX to the BREAK class, if any of the list- or
string-delimiting break characters are disabled by an appropriate
SETBRK (or by making it be a separator character), its special
action for READ will not be restored by simply making it be a
break character again with SETBRK. However, making these
characters be break characters when they already are will have
no effect.

The action of the ESCAPE character (normally %) is not affected
by SETSEPR or SETBRK. It can be disabled by setting its syntax to
the class OTHER, and other characters can be used for escape on
input by assigning them the class ESCAPE. As of this writing,
however, there is no way to change the output escape character;
it is II hardwired II as %. That is, on output, characters of special

INPUT/OUTPUT FUNCTIONS

READ TABLES

syntax that need to be preceded by the ESCAPE character wi II
always be preceded by %, independent of the syntax of % or
which, if any characters, have syntax ESCAPE.

, The following function can be used for defeating the action of
the ESCAPE character or characters:

(ESCAPE FLG RDTBL) [Function)

25.8.3 Read Macros

INPUT/OUTPUT FUNCTIONS

MACRO

SPLICE

If FLG= NIL, makes characters of class ESCAPE behave like
characters of class OTHER on input. Normal setting is (ESCAPE T).

ESCAPE returns the previous setting.

Read macros are user-defined syntax classes that can cause
complex operations when certain characters are read. Read
macro characters are defined by specifying as a syntax class an
expression of the form:

(TYPE OPTION, ..• OPTIONNFN)

where TYPE is one of MACRO, SPLICE, or INFIX, and FN is the
name of a function or a lambda expression. Whenever REAQ

encounters a read macro character, it calls the associated
function, giving it as arguments the input stream and read table
being used for that call to READ. The interpretation of the value
returned depends on the type of read macro:

This is the simplest type of read macro. The result returned from
the macro is treated as the expression to be read, instead of the
read macro character. Often the macro reads more input itself.
For example, in order to cause -EXPR to be read as (NOT EXPR),

one could define - as the read macro:

[MACRO (LAMBDA (FL RDTBL)

(LIST 'NOT (READ FL RDTBL]

The result (which should be a list or NIL) is spliced into the input
using NCONC. For example, if $ is defined by the read macro:

(SPLICE (LAMBDA NIL (APPEND FOO»)

and the value of FOO is (A B C), then when the user inputs (X $
Y), the result will be (X ABC V).

INFIX The associated function is called with a third argument, which is
a list, in TCONC format (page 3.6), of what has been read at the
current level of list nesting. The function's value is taken as a
new TCONC list which replaces the old one. For example, the
infix operator + could be defined by the read macro:

(lNFtX (LAMBDA (FL RDTBL Z)

(RPLACA (CDR Z)

(LIST (QUOTE IPLUS)

25.39

READ TABLES

ALWAYS

FIRST

ALONE

ESCQUOTE or ESC

NOESCQUOTE or NOESC

25.40

(CADR Z)
(READ FL RDTBL)))

Z))

If an INFIX read macro character is encountered not ina list, the
third argument to its associated function is ·NIL. If the function
returns NIL, the read macro character is essentially ignored and
reading continues. Otherwise, if the function returns a TeONe
list of one element, that element is the value of the READ. If it
returns a TCONC list of more than one .element, the list is the
value of the READ.

The specification for a read macro character can be augmented
to specify various options OPT/ON1 ... OPT/aNN, e.g., (MACRO

FIRST IMMEDIATE FN). The following three disjoint options
specify when the read macro character is to be effective:

The default. The read macro character is always effective (except
when preceded by the % character), and is a break character, i.e.,
a member of (GETSYNTAX 'BREAK RDTBL).

The character is interpreted as a read macro character only when
it is the first character seen after a break or separator character;
in all other situations, the character is treated as having class
OTHER. The read macro character is not a break character. For
example, the quote character is a FIRST read macro character, so
that DON'T is read as the single atom DON'T, rather than as DON
followed by (QUOTE T).

The read macro character is not a break character, and is
interpreted as a read macro character only when the character
would have been read as a separate atom if it were not a read
macro character, i.e., when its immediate neighbors are both
break or separator characters.

Making a FIRST or ALONE read macro character be a break
character (with SETBRK) disables the read macro interpretation,
i.e., converts it to syntax class BREAKCHAR. Making an ALWAYS
read macro character be a break character is a no-op.

The following two disjoint options control whether the read
macro character is to be protected by the ESCAPE character on
output when a litatom containing the character is printed:

The default. When printed with PRIN2, the read macro character
will be preceded by the output escape character (%) as needed
to permit the atom containing it to be read correctly. Note that
for FIRST macros, this means that the character need be quoted
only when it is the first character of the atom.

The read macro character will always be printed without an
escape. For example, the? read macro in the T read table is a
NOESCQUOTE character. Unless you are very careful what you
are doing, read macro characters in FILERDTBL should never be

INPUT/OUTPUT FUNCTIONS

IMMEDIATE or IMMED

NONIMMEDIATE or NONIMMED

INPUT/OUTPUT FUNCTIONS.

READ TABLES

NOESCQUOTE, since symbols that happen to contain the read
macro character will not read back incorrectly.

The following two disjoint options control when the macro's
function is actually executed:

The read macro character is immediately activated, i.e., the
current line is terminated, as if an EOL had been typed, a
carriage-return line-feed is printed, and the entire line (including
the macro character) is passed to the input function.

IMMEDIATE read macro characters enable the user to specify a
character that will take effect immediately, as soon as it is
encountered in the input, rather than waiting for the line to be'
terminated. Note that this is not necessarily as soon as the
character is typed. Characters that cause action as soon as they
are typed are interrupt characters (see page 30.1).

Note that since an IMMEDIATE macro causes any input before it
to be sent to the reader, characters typed before an IMMEDIATE

read macro character cannot be erased by control-A or control-Q
once the IMMEDIATE character has been typed, since they have
already passed through the line buffer. However, an INFIX read
macro can still alter some of what has been typed earlier, via its
third argument.

The default. The read macro character is a normal character with
respect to the line buffering, and so will not be activated until a
carriage-return or matching right parenthesis or bracket is seen.

Making a read macro character be both ALONE and IMMEDIATE
is a contradiction, since ALONE requires that the next character
be input in order to see if it is a break or separator character.
Thus, ALONE read macros are a/ways NONIMMEDIATE,
regardless of whether or not IMMEDIATE is specified.

Read macro characters can be "nested". For example, if • is
defined by

(MACRO (LAMBDA (FL RDTBL)

(EVAL (READ Fl RDTBL»»

and! is defined by

(SPLICE (LAMBDA (FL RDTBL)
(READ FL RDTBL»)

then if the value of FOO is (A B C), and (X • FOO Y) is input, (X (A
B C) Y) will be returned. If (X ! • FOO Y) is input, (X ABC Y) will
be returned.

Note: If a read macro's function calls READ, and the READ
returns NIL, the function cannot distinguish the case where a
RIGHTPAREN or RIGHTBRACKET followed the read macro
character, (e.g. "(A B ')"), from the case where the atom NIL (or
"0") actually appeared. In Interlisp-D, a READ inside of a read
macro when the next input character is a RIGHTPAREN or

25.41

READ TABLES

(INREADMACROP)

(READMACROS FLG RDTBL)

• (single-quote)

control-Y

, (backquote)

25.42

RIGHTBRACKET reads the character and returns NIL, just as if the
READ had not occurred inside a read macro.

If a call to READ from within a read macro encounters an
unmatched RIGHTBRACKET within a list, the bracket is sim ply put
back into the buffer to be read (again) at the higher level. Thus,
inputting an expression such as (A B ICC 0] works correctly.

[Function]

Returns NIL if currently not under a read macro function,
otherwise the number of unmatched left parentheses or
brackets.

[Function]

If FLG = NIL, turns off action of read macros in read table RDTBL.
If FLG = T, turns them on. Returns previous setting.

The following read macros are standardly defined in Interlisp in
the T and EDITRDTBL read tables:

Returns the next expression, wrapped in a call to QUOTE; e.g.,
'FOO reads as (QUOTE FOO). The macro is defined as a FIRST
read macro, so that the quote character has no effect in the
middle of a symbol. The macro is also ignored if the quote
character is immediately followed by a separator character.

Defined in T and EDITRDTBL. Returns the result of evaluating
the next expression. For example, if the value of FOO is (A B),
then (LIST 1 control- YFOO 2) is read as (LIST 1 (A B) 2). Note that
no structure is copied; the third element of that input expression
is still EQ to the value of FOO. Control-Y can thus be used to read
structures that ordinarily have no read syntax. For example, the
value returned from reading (KEY1 control- Y(ARRA Y 10» has an
array as its second element. Control-Y can be thought of as an
"un-quote" character. The choice of character to perform this
function is changeable with SETTERMCHARS (page 16.75).

Backquote makes it easier to write programs to construct
complex data structures. Backquote is like quote, except that
within the backquoted expression, forms can be evaluated. The
general idea is that the backquoted expression is a "template"
containing some constant parts (as with a quoted form) and
some parts to be filled in by evaluating something. Unlike with
control-Y, however, the evaluation occurs not at the time the
form is read, but at the time the backquoted expression is
evaluated. That is, the backquote macro returns, an expression
which, when evaluated, produces the desired structure.

Within the backquoted expression, the character"," (comma)
introduces a form to be evaluated. The value of a form preceded
by ",@" is to be spliced in, using APPEND. If it is permissible to

INPUT/OUTPUT FUNCTIONS

INPUT/OUTPUT FUNCTIONS

READ TABLES

destroy the list being spliced in (i.e., NCONC may be used in the
translation), then "'0" can be used instead of II ,@" .

For example, if the value of FOO is (1 234), then the form

'(A ,(CAR FOO) ,@(COOR FOO) 0 E)

evaluates to (A 1 340 E); it is logically equivalent to writing

(CONS fA

(CONS (CAR FOO)

(APPEND (COOR FOO) '(0 E»»

Backquote is particularly useful for writing macros. For example,
the body of a macro that refers to X as the macro's argument list
might be

'(CONO

«FIXP ,(CAR X»

,(CAOR X»

(T o,(COOR X»)

which is equivalent to writing

(LlST'CONO

(LIST {LIST 'FIXP (CAR X»

(CAOR X»

(CONS 'T (COOR X»)

Note that comma does not have any special meaning outside of a
backquote context.

For users without a backquote character on their keyboards,
backquote can also be written as I' (vertical-bar, quote).

1 Implements the 1. command for on-line help regarding the
function currently being "called" in the typein (see page 26.33).

I (vertical bar) When followed by an end of line, tab or space, I is ignored, i.e.,
treated as a separator character, enabling the editor's
CHANGECHAR feature (page 26.49). Otherwise it is a
"dispatching" read macro whose meaning depends on the
character(s) following it. The following are currently defined:

, (quote) -- A synonym for backquote .

. (period) -- Returns the evaluation of the next expression, i.e.,
this is a synonym for control-Y.

, (comma) -- Returns the evaluation of the next expression at
load time, i.e., the following expression is quoted in such a
manner that the compiler treats it as a literal whose value is not
determined until the compiled expression is loaded.

o or 0 (the letter 0) -- Treats the next number as octal, i.e., reads
it in radix 8. For example, 1012 = 10 (decimal).

B or b -- Treats the next number as binary, i.e., reads it in radix 2.
For example, Ib101 = 5 (decimal).

25.43

READ TABLES

25.44

X or x -- Treats the next number as hexadecimal, i.e., reads it in
radix 16. The upper~case letters A though F are used as the digits
after 9. For example, Ix1A = 26 (decimal).

R or r -- Reads the next number in the radix specified by the
(decimal) number that appears between the I and the R. When
inputting a number in a radix above ten, the upper~case letters A
through Z can be used as the digits after 9 (but there is no digit
above Z, so it is not possible to type all base~9g digits). For
example, 13r120 reads 120 in radix 3, returning 1 S.

(, {, f - Used internally by HPRINT and HREAD (page 2S.17)to
print and read unusual expressions.

The dispatching characters that are letters can appear in either
upper or lower case. .

INPUT/OUTPUT FUNCTIONS

TABLE OF CONTENTS

26. User Input/Output Packages 26.1

TABLE OF CONTENTS

26.1. Inspector 26.1

26.2.

26.3.

26.4.

26.1.1. Calli ng the Inspector 26.2

26.1.2. Multiple Ways of Inspecting 26.2

26.1.3. Inspect Windows 26.3

26.1.4. Inspect Window Commands 26.4

26.1.5. In.teraction With Break Windows 26.5

26.1.6. Controlling the Amount Displayed During Inspection
26.5

26.1.7. Inspect Macros 26.6

26.1.8. I NSPEClWs 26.6

PROMPTFORWORD 26.9

ASKUSER 26.12

26.3.1. Format of KEYlST 26.13

26.3.2. Options 26.15

26.3.3. Operation 26.17

26.3.4. Completing a Key 26.18

26.3.5. Special Keys 26.19

26.3.6. Startup Protocol and Typeahead 26.20

TTYIN Display Typein Editor 26.22

26.4.1. Entering Input With TTYIN 26.22

26.4.2. Mouse Commands [lnterlisp-D Only] ,26.24

26.4.3. Display Editing Commands 26.25

26.4.4. Using TTYIN for Lisp Input 26.28

26.4.5. Useful Macros 26.29

26.4.6. Programming With TTYIN 26.29

26.4.7. Using TTYIN as a General Editor 26.32

26.4.8. 1. Handler 26.33

26.4.9. Read Macros 26.34

TOC.1

TABLE OFCONTENTS

26.4.10. Assorted Flags 26.36

26.4.11. Special Responses 26.38

26.4.12. Display Types 26.38

26.5. Prettyprint 26.39

26.5.1. Comment Feature 26.42

26.5.2. Comment Pointers 26.44

26.5.3. Converting Comments to lower Case 26.46

26.5.4. Special Prettypri nt Controls 26.47

TOC.2 TABLE OF CONTENTS

26c 1 Inspector

USER INPUT/OUTPUT PACKAGES

26. USER INPUT/OUTPUT PACKAGES

This chapter presents anum ber of packages that have been
developed for displaying and allowing the user to enter
information. These packages are used to implement the user
interface of many system facilities.

• The Inspector (below) provides a window-based facility for
displaying and changing the fields of a data object.

• PROMPTFORWORD (page 26.9) is a function used for entering a
simple string of characters. Basic editing and prompting facilities
are provided.

• ASKUSER (page 26.12) provides a more complicated prompting
and answering facility, allowing a series of questions to be
printed. Prompts and argument completion are supported.

• TTYIN (page 26.22) is a display typein editor, that provides
complex text editing facilities when entering an input line.

• PRETIYPRINT (page 26.40) is used for printing function
definitions and other list structures, using multiple fonts and
indenting lines to show the structure of the list.

The Inspector provides a display-oriented facility for looking at
and changing arbitrary Interlisp-D data structures. The inspector
can be used to inspect all user datatypes and many system
datatypes (although some objects such as numbers have no
inspectable structure). The inspector displays the field names
and values of an arbitrary object in a windo.w that allows setting
of the properties and further inspection of the values. This latter
feature makes it possible to "walk" around all of the data
structures in the system at the touch of a button. In addition, the
inspector is integrated with the break package to allow
inspection of any object on the stack and with the display and
teletype structural editors to allow the editors to be used to
"inspect" list structures and the inspector to "edit" datatypes.

The underlying mechanisms of the data inspector have been
designed to allow their use as specialized editors in user
applications. This functionality is described at the end of this
section.

26.1

INSPECTOR

26.1.1 Calling the Inspector

Note: Currently, the inspector does not have UNDOing. Also,
variables whose values are changed will not be marked as such.

There are several ways to open an inspect window onto an
object. In addition to calling INSPECT directly (below), the
inspector can also be called by buttoning an Inspect command
inside an existing inspector window. Finally, if a non-list is edited
with EDITDEF (page 17.27), the inspector is called. This also
causes the inspector to be called by the Dedit com mand from the
display editor or the EV command from the teletype editor if the
selected piece of structure is a non-list.

(INSPECT OBJECT AS TYPE WHERE) [Function]

Creates an inspect window onto OBJECT. If ASTYPE is given, it
will be taken as the record type of OBJECT. This allows records to
be inspected with their property names. If ASTYPE is NIL, the
data type of OBJECT will be used to determine its property
names in the inspect window.

WHERE specifies the location of the inspect window. If WHERE is
NIL, the user will be prompted for a location. If WHERE is a
window, it will be used as the inspect window. If WHERE is a
region, the inspect window will be created in that region of the
screen. If WHERE is a position, the inspect window will have its
lower left corner at that position on the screen.

INSPECT returns the inspect window onto OBJECT, or NIL if no
inspection took place.

(lNSPECTCODE FN WHERE - - --) [Function]

26.1.2 Multiple Ways of Inspecting

26.2

Opens a window and displays the compiled code of the function
FN using PRINTCODE. The window is scrollable.

WHERE determines where the window should appear. It can be
a position, a region, or a window. If NIL, the user is prompted to
specify the position of the window.

Note: If the Tedit library package is loaded, INSPECTCODE uses it
to create the code inspector window. Also, if INSPECTCODE is
called to inspect the frame name in a break window (page 14.3),
the location in the code that the frame's PC indicates it was
executing at the time is highlighted.

For some datatypes there is more than one aspect that is of
interest or more than one method of inspecting the object. In

USER INPUT/OUTPUT PACKAGES

FNS

VARS

PROPS

Inspect

TtyEdit

DisplayEdit

As a PliST

As an AliST

As a record

As a "record type"

26.1.3 Inspect Windows

USER INPUT/OUTPUT PACKAGES

INSPECTOR

these cases, the inspector will bring up a menu of the possibilities
and wait for the user to select one.

If the object is a litatom, the commands are the types for which
the litatom has definitions as determined by HASDEF. Some
typical commands are:

Edit the definition of the selected litatom.

Inspect the value.

Inspect the property list.

If the object is a list, there will be choice of how to inspect the
list:

Opens an inspect window in which the properties are numbers
and the values are the elements of the list.

Calls the teletype list structure editor on the list (page 16.1).

Calls the DEdit display editor on the list (page 16.1).

Inspects the list as a property list, if the list is in property list form:
({PROP, VAL,) ..• (PROPN VALN»·

Inspects the list as an association-list, if the list is in ASSOC list

form: (PROP, VAL 1'" PROPN VALN)'

Brings up a submenu with all of the RECORDs in the system and
inspect the list with the one chosen.

Inspects the list as the record of the type named in its CAR, if the
CAR of the list is the name of a TYPERECORD (page 8.7).

If the object is a bitmap, the choice is between inspecting the
bitmap's contents with the bitmap editor (EDITBM) or inspecting
the bitmap's fields.

Other datatypes may include multiple methods for inspecting
objects of that type.

An inspect window displays two columns of values. The lefthand
column lists the property names of the structure being inspected.
The righthand column contains the values of the properties
named on the left. For variable length data such as lists and
arrays, the "property names" are numbers from 1 to the length
of the inspected item and the values are the corresponding
elements. For arrays, the property names are the array element
numbers and the values are the corresponding elements of the
array.

For large lists or arrays, or datatypes with many fields, the initial
window may be too small to contain all of them. In these cases,
the unseen elements can be scrolled into view (from the bottom)
or the window can be reshaped to increase its size.

26.3

INSPECTOR

26.1.4 Inspect Window Commands

ReFetch

ITHatum

26.4

In an inspect window, the lEFT button is used to select things,
the MIDDLE button to invoke commands that apply to the j

selected item. Any property or value can be selected by pointing
the cursor directly at the text representing it, and clicking the
lEFT button. There is one selected item per window and it is
marked by having its surrounding box inverted.

The options offered by the MIDDLE button depend on whether
the selection is a property or a value. If the selected item is a
value, the options provide different ways of inspecting the
selected structure. The exact commands that are given depend
on the type of the value.

If the selected item is a property name, the command SET will
appear. If selected, the user will be asked to type in an
expression, and the selected property will be set to the result of
evaluating the read form. The evaluation of the read form and
the replacement of the selected item property will appear as
their own history events and are individually undoable.
Properties of system datatypes cannot be set. (There are often
consistency requirements which can be inadvertently violated in
ways that crash the system. This may be true of some user
datatypes as well, however the system doesn't know which ones.
Users are advised to exercise caution.)

It is possible to copy-select property names or values out of an
inspect window. Litatoms, numbers and strings are copied as
they are displayed. Unprintable objects (such as bitmaps, etc.)
come out as an appropriate system expression, such that if is
evaluated, the object is re-created.

By pressing the MIDDLE button in the title of the inspect
window, a menu of commands that apply to the inspect window
is brought up:

[Inspect Window Command]

An inspect window is not automatically updated when the
structure it is inspecting is changed. The "ReFetch" command
will refetche and redisplay all of the fields of the object being
inspected in the inspect window.

[Inspect Window Command]

Sets the variable IT to object being inspected in the inspect
window.

USER INPUT/OUTPUT PACKAGES

IT+-selection

INSPECTOR

[Inspect Window Command]

Sets the variable IT to the property name or value currently

selected in the inspect window.

26.1.5 Interaction With Break Windows

The break window facility (page 14.3) knows about the inspector
in the sense that the backtrace frame window is an inspect
window onto the frame selected from the back trace menu
during a break. Thus you can call the inspector on an object that
is bound on the stack by selecting its frame in the back trace
menu, selecting its value with the LEFT button in the back trace
frame window, and selecting the inspect command with the
MIDDLE button in the back trace frame window. The values of
variables in frames can be set by selecting the variable name with
the LEFT button and then the "Set" command with the MIDDLE

button.

Note: The inspector will only allow the setting of named
variables. Even with this restriction it is still possible to crash the
system by setting variables inside system frames. Exercise caution
in setting variables in other than your own code.

26.1.6 Controlling the Amount Displayed During Inspection

The amount of information displayed during inspection can be
controlled using the following variables:

MAXI NSPECTCDRlEVEl [Variable]

The inspector prints only the first MAXINSPECTCDRLEVEL

elements of a long list, and will make the tail containing the
unprinted elements the last item. The last item can be inspected
to see further elements. Initially 50.

MAXINSPECTARRAVlEVEL [Variable]

The inspector prints only the first MAXI NSPECTARRA YLEVEL

elements of an array. The remaining elements can be inspected
by calling the function (I NSPECT/ARRA V ARRA Y BEGINOFFSEn

which inspects the BEGINOFFSET through the BEGINOFFSET +

MAXINSPECTARRAVLEVEl elements of ARRA Y. Initially 300.

I NSPECTPRINTLEVEl [Variable]

USER INPUT/OUTPUT PACKAGES

When printing the values, the inspector resets PRINTLEVEL (page
25.11)tothevalue of I NSPECTPRINTLEVEl. Initially (2 . 5).

26.5

INSPECTOR

I NSPECTALLFI ELDSFLG

26.1.7 Inspect Macros

26.1.8 INSPECTWs

26.6

[Variable]

If INSPECTALLFIELDSFLG is T, the inspector will show computed'
fields (ACCESSFNS, page 8.12) as well as regular fields for
structures that have a record definition. Initially T.

The Inspector can be extended to inspect new structu res and
datatypes by adding entries to the list INSPECTMACROS. An
entry should be of the form (OBJECITYPE . INSPECTINFO).

OBJECTTYPE is used to determine the types of objects that are
inspected with this macro. If OBJECITYPE is a litatom, the
INSPECTINFO will be used to inspect items whose type name is
OBJECTTYPE. If OBJECTTYPE is a list of the form (FUNCTION
DA TUM-PREDICA TE), DA TUM-PREDICA TE wi II be APPL Ved to the
item and if it returns non-NIL, the INSPECTINFO will be used to
inspect the item.

INSPECTINFO can be one of two forms. If INSPECTINFO is a
litatom, it should be a function that will be applied to three
arguments (the item being inspected, OBJECITYPE, and the
value of WHERE passed to INSPECT) that should do the
inspection. If INSPECTINFO is not a litatom, it should be a list of
(PROPERTIES FETCHFN STOREFN PROPCOMMANDFN

VALUECOMMANDFN TlTLECOMMANDFN TITLE SELECTlONFN

WHERE PROPPRINTFN) where the elements of this list are the
arguments for INSPECTW.CREATE, described below. From this
list, the WHERE argument will be evaluated; the others will not.
If WHERE is NIL, the value of WHERE that was passed to INSPECT
will be used.

Examples:

The entry {(FUNCTION MYATOMP) PROPNAMES GETPROP
PUTPROP) on INSPECTMACROS would cause all objects satisfying
the predicate MYATOMP to have their properties inspected with
GETPROP and PUTPROP. In this example, MYATOMP should
make sure the object is a litatom.

The entry (MYDATATYPE . MYINSPECTFN) on INSPECTMACROS
would cause all datatypes of type MYDATATYPE to be passed to
the function MYINSPECTFN.

The inspector is built on the abstraction of an INSPECTW. An
INSPECTW is a window with certain window properties that
display an object and respond to selections of the object's parts.
It is characterized by an object and its list of properties. An
INSPECTW displays the object in two columns with the property

USER INPUT/OUTPUT PACKAGES

INSPECTOR

names on the left and the values of those properties on the right.
An INSPECTW supports the protocol that the LEFT mouse button
can be used to select any property name or property value and
the MIDDLE button calls a user provided function on the selected
value or property. For the Inspector application, this function
puts up a menu of the alternative ways of inspecting values or of
the ways of setting properties. INSPECTWs are created with the
following function:

(lNSPECTW.CREATE DATUM PROPERTIES FETCHFN STOREFN PROPCOMMANDFN
VALUECOMMANDFN TlTLECOMMANDFN TITLE SELECTlONFN

USER INPUT/OUTPUT PACKAGES

WHERE PROPPRINTFN) [Function]

Creates an INSPECTW that views the object DATUM. If
PROPERTIES is a list, it is taken as the list of properties of DATUM

to display. If PROPERTIES is a litatom, it is APPL Yed to DATUM

and the result is used as the list of properties to display.

FETCHFN is a function of two arguments (OBJECT PROPERTy)

that should return the value of the PROPERTY property of
OBJECT. The result of this function will be printed (with PRIN2)
in the I NSPECTW as the value.

STOREFN is a function of three arguments (OBJECT PROPERTY

NEWVALUE) that changes the PROPERTY property of OBJECT to
NEWVALUE. It is used by the default PROPCOMMANDFN and
VALUECOMMANDFN to change the value of a property and also
by the function INSPECTW.REPLACE (described below), This can
be NIL if the user provides command functions which do not call
INSPECTW.REPLACE. Each replace action will be a separate event
on the history list. Users are encouraged to provide UNDOable
STOREFNs.

PROPCOMMANDFN is a function of three arguments (PROPERTY

OBJECT INSPECTW) which gets called when the user presses the
MIDDLE button and the selected item in the INSPECTW is a
property name. PROPERTY will be the name of the selected
property, OBJECT will be the datum being viewed, and
INSPECTWwill b~ the window. If PROPCOMMANDFN is a string,
it will get printed in the PROMPTWINDOW when the MIDDLE
button is pressed. This provides a convenient way to notify the
user about disabled commands on the properties.
DEFAULT.lNSPECTW.PROPCOMMANDFN, the default
PROPCOMMANDFN, will present a menu with the single
command Set on it. If selected, the Set command will read a
value from the user and set the selected property to the result of
EVALuating this read value.

VALUECOMMANDFN is a function of four arguments (VALUE

PROPERTY OBJECT INSPECTW) that gets called when the user
presses the MIDDLE button and the selected item in the

26.7

INSPECTOR

26.8

INSPECTW is a property value. VALUE will be the selected value
(as returned by FETCHFN), PROPERTY will be the name of the'
property VALUE is the value of, OBJECTwil1 be the datum being
viewed, and INSPECTW will be the INSPECTW window.
DEFAUl T.lNSPECTW.VAlUECOMMANDFN, the default
VALUECOMMANDFN, will present a menu of possible ways of
inspecting the value and create a new Inspect window if one of
the menu items is selected.

TlTLECOMMANDFN is a function of two arguments (INSPECTW

OBJECn which gets called when the user presses the MIDDLE
button and the cursor is in the title or border of the inspect
window INSPECTW. This com.mand function is provided so that
users can implement commands that apply to the entire object.
The default TlTL ECOMMA NDFN

(DEFAULT.lNSPECTW.TITlECOMMANDFN) presents a menu with
the commands ReFetch, ITHatum, and IT+-selection (see page
26.4).

TITLE specifies the title of the window. If TITLE is Nil, the title of
the window will be the printed form of DA TUM followed by the
string " Inspector". If TITLE is the litatom DON'T, the inspect
window will not have a title. If TITLE is any other litatom, it will
be applyed to the DATUM and the potential inspect window (if it
is known). If this result is the litatom DON'T, the inspect window
will not have a title; otherwise the result will be used as a title. If
TITLE is not a litatom, it will be used as the title.

SELECTlONFN is a function of three arguments (PROPERTY

VALUEFLG INSPECTW) which gets called when the user releases
the left button and the cursor is on one of the items. The
SELECTIONFN allows a program to take action on the user's
selection of an item in the inspect window. At the time this
function is called, the selected item has been "selected". The
function INSPECTW.SElECTITEM (described below) can be used
to turn off this selection. PROPERTY will be the name of the
property of the selected item. VALUEFLG will be NIL if the
selected item is the property name; T if the selected item is the
property value.

WHERE indicates where the inspect window should go. Its
interpretation is described in INSPECT (page 26.2),

PROPPRINTFN is a function of two arguments (PROPERTY

DATUM) which gets called to determine what to print in the
property place for the property PROPERTY. If PROPPRINTFN

returns Nil, no property name will be printed and the value will
be printed to the left of the other values.

An inspect window uses the following window property names
to hold information: DATUM, FETCHFN, STOREFN,
PROPCOMMANDFN, VAlUECOMMANDFN, SElECTIONFN,

USER INPUT/OUTPUT PACKAGES

INSPECTOR

PROPPRINTFN, INSPECTWTITLE, PROPERTIES, CURRENTITEM and
SELECTABLEITEMS.

(lNSPECTW.REDISPLA Y INSPECTW PROPS -) [Function]

Updates the display of the objects being inspected in INSPECTW.
If PROPS is a property name or a list of property names, only
those properties are updated. If PROPS is NIL, all properties are
redisplayed. This function is provided because inspect windows
do not automatically update their display when the object they
are showing changes.

This function is called by the ReFetch command in the title
command menu of an I NSPECTW (page 26.4).

(lNSPECTW.REPLACE INSPECTW PROPERTY NEWVALUE) [Function]

Calls the STOREFN of the inspe~t window INSPECTW to change
the property named PROPERTY to the value NEWVALUE and
updates the display of PROPERTY's value in the display. This
provides a functional interface for user PROPCOMMANDFNs.

(lNSPECTW.SELECTITEM INSPECTW PROPERTY VALUEFLG) [Function]

26.2 PROMPTFORWORD

USER INPUT/OUTPUT PACKAGES

Sets the selected item in an inspect window. The item is inverted
on the display and put on the window property CURRENTITEM of
INSPECTW. If INSPECTW has a CURRENTITEM, it is deselected.
PROPERTY is the name of the property of the selected item.
VALUEFLG is NIL if the selected item is the property name; T if
the selected item is the pr()perty value. If PROPERTY is NIL, no
item will be selected. This provides a way of deselecting all
items.

PROMPTFORWORD is a function that reads in a sequence of
characters, generally from the keyboard, without involving
READ-like syntax. A user can supply a prompting string, as well
as a "candidate" string, which is printed and used if the user
types only a word terminator character (or doesn't type anything
before a given time limit). As soon as any characters are typed
the "candidate" string is erased and the new input takes its
place.

PROMPTFORWORD accepts user type-in until one of the "word
terminator" characters is typed. Normally, the word terminator
characters are EOL, ESCAPE, LF, SPACE, or TAB. This list can be
changed using the TERMINCHAR.LST argument to

26.9

PROMPTFORWORD

PROMPTFORWORD, for example if it is desirable to allow the

user to input lines including spaces.

PROMPTFORWORD also recognizes the following special

characters:

Control-A, Backspace, or DELETE Any of these characters deletes the last character typed and
appropriately erases it from the echo stream if it is a display

stream.

Control-Q Erases all the type-in so far.

Control-R Reprints the accumulated string.

Control-V "Quotes" the next character: after typing Control-V, the next
character typed is added to the accumulated string, regardless of
any special meaning it has. Allows the user to include editing
characters and word terminator characters in the accumulated
string.

Control-W Erases the last word.

? Calls up a "help" facility. The action taken is defined by the
GENERATE7L1ST.FN argument toPROMPTFORWORD (see below).
Normally, this prints a list of possible candidates.

(PROMPTFORWORD PROMPT.STR CANDIDATE.STR GENERA TE7L1ST.FN ECHO. CHANNEL
DONTECHOTYPEIN.FLG URGENCY. OPT/ON TERMINCHARS.LST
KEYBD.CHANNEL) [Function]

PROMPTFORWORD has a multiplicity of features, which are
specified through a rather large number of input arguments, but
the default settings for them (i.e., when they aren't given, or are
given as NIL) is such to minimize the number needed in the
average case, and an attempt has been made to order the more
frequently non-defaulted arguments at the beginning of the
argument list. The default input and echo are both to the
terminal; the terminal table in effect during input allows most
control characters to be INDICA TE'd.

PROMPTFORWORD returns NIL if a null string is typed; this
would occur when no candidate is given and only a terminator is
typed, or when the candidate is erased and a terminator is typed
with no other input still un-erased. In all other cases,
PROMPTFORWORD returns a string.

PROMPTFORWORD is controlled through the following
arguments:

PROMPT.STR If non-NIL, this is coerced to a string and used for prompting; an
additional space is output after this string.

CANDIDATE.STR If non-NIL, this is coerced to a string and offered as initial
contents of the input buffer.

GENERATE7L1ST.FN If non-NIL, this is either a string to be printed out for help, or a
function to be applied to PROMPT.STR and CANDIDATE.STR
(after both have been coerced to strings), and which should

26.10 USER INPUT/OUTPUT PACKAGES

PROMPTFORWORD

return a list of potential candidates. The help string or list of
potential candidates will then be printed on a separate line, the
prompt will be restarted, and any type-in will be re-echoed.

Note: If GENERATE?LlST.FN is a function, its value list will be
cached so that it will be run at most once per call to
PROMPTFORWORD.

ECHO. CHANNEL Coerced to an output stream; NIL defaults to T, the "terminal
output stream", normally (TTYDISPLAYSTREAM). To achieve
echoing to the "current output stream", use (GETSTREAM NIL
·OUTPUT). If echo is to a display stream, it will have a flashing
caret showi ng where the next input is to be echoed.

DONTECHOTYPEIN.FLG If T, there is no echoing of the input characters. If the value of
DONTECHOTYPEIN.FLG is a single-character atom or string, that
character is echoed instead of the actual input. For example,
LOGIN prompts for a password with DONTECHOTYPEIN.FLG
being u.u.

URGENCY. OPTION If NIL, PROMPTFORWORD quietly wait for input, as READ does; if
a number, this is the number of seconds to wait for the user to
respond (if time'out is reached, then CANDIDA TE. WORD is
returned, regardless of any other type-in activity); if T, this
means to wait forever, but periodically flash the window to alert
the user; if TTY, then PROMPTFORWORD grabs the TTY
immediately. When URGENCY. OPTION = TTY, the cursor is
temporarily changed to a different shape to indicate the urgent
nature of the request.

TERMINCHARS.LST This is list of "word terminator" character codes; it defaults to
(CHARCODE (EOL ESCAPE LF SPACE TAB». This may also be a

KEYBD.CHANNEL

USER INPUT/OUTPUT PACKAGES

single character code.

If non-NIL, this is coerced to a stream, and the input bytes are
taken from that stream. NIL defaults to the keyboard input
stream. Note that this is not the same as the terminal input
stream T (page 25.1), which is a buffered keyboard input stream,
not suitable for use with PROMPTFORWORD.

Examples:

(PROMPTFORWORD
"What is your FOO word?" 'Mumble
(FUNCTION (LAMBDA () '(Grumble Bletch»)
PROMPTWINDOW NIL 30)

This first prompts the user for input by printing the first
argument as a prompt into PROMPTWINDOW; then the
proffered default answer, "Mumble", is printed out and the
caret starts flashing just after it to indicate that the upcoming
input will be echoed there. If the user fails to complete a word
within 30 seconds, then the result will be the string "Mumble".

(FRESHLINE T)

26.11

PROMPTFORWORD

(LIST
(PROMPTFORWORD

(CONeAT "{" HOST "} Login:")
(USERNAME NIL NIL T»

(PROMPTFORWORD
" (password)" NIL NIL NIL '*))

This first prompts in whatever window is currently
(TTYDISPLA YSTREAM), and then takes in a username; the
second call prompts with" (password)" and takes in another
word (the password) without proffering a candidate, echoing
the typed-in characters as "*".

26.3 ASKUSER

26.12

DWIM, the compiler, the editor, and many other system
packages all use ASKUSER, an extremely general user interaction
package, for their interactions with the user at the terminal.
ASKUSER takes as its principal argument KEYLSTwhich is used to
drive the interaction. KEYLST specifies what the user can type at
any given point, how ASKUSER should respond to the various
inputs, what value should be returned by ASKUSER, and is also
used to present the user at any given point with a list of the
possible responses. ASKUSER also takes other arguments which
permit specifying a wait time, a default value, a message to be
printed on entry, a flag indicating whether or not typeahead is
to be permitted, a flag indicating whether the transaction is to
be stored on the history list (page 13.1), a default set of options,
and an (optional) input file/string.

(ASKUSER WAIT DEFAUL T MESS KEYLST TYPEAHEAD LlSPXPRNTFLG OPTIONSLST FILE)
[Function]

WAIT is either NIL or a number (of seconds). DEFAULT is a single
character or a sequence (list) of characters to be used as the
default inputs for the case when WAIT is not NIL and more than
WAIT seconds elapse without any input. In this case, the
character(s) from DEFAULT are processed exactly as though they
had been typed, except that ASKUSER first types" ... ".

MESS is the initial message to be printed by ASKUSER, if any, and
can be a string, or a list. In the latter case, each element of the
list is printed, separated by spaces, and terminated with a " 1 Ii •

KEYLST and OPTIONSLST are described. TYPEAHEAD is T if the
user is permitted to typeahead a response to ASKUSER. NIL
means any typeahead should be cleared and saved.
LlSPXPRNTFLG determines whether or not the interaction is to be
recorded on the history list. FILE can be either NIL (i n which case

USER INPUT/OUTPUT PACKAGES

ASKUSER

it defaults to the terminal input stream, T), a stream, or a string.
If FILE is a string, and all of its characters are read before
ASKUSER finishes, FILE will be reset to T, and the interaction will
continue with ASKUSER reading from the terminal.

All input operations take place from FILE until an unacceptable
input is encountered, i.e., one that does not conform to the
protocol defined by KEYLST. At that point, FILE is set to T,
DEFAULT is set to NIL, the input buffer is cleared, and a bell is
rung. Unacceptable inputs are not echoed.

The value of ASKUSER is the result of packing a" the keys that
were matched, unless the RETURN option is specified (page
26.15).

(MAKEKEYLST LST DEFAULTKEY LCASEFLG A UTOCOMPLETEFL G) [Function]

26.3.1 Format of KEYLST

USER INPUT/OUTPUT PACKAGES

LST is a list of atoms or strings. MAKEKEYlST returns an
ASKUSER KEYLSTwhich will permit the user to specify one of the
elements on LST by either typing enough characters to make the
choice unambiguous, or else typing a number between 1 and N,
where N is the length of LST.

For example, if ASKUSER is called with KEYLST = (MAKEKEYlST
'(CONNECT SUPPORT COMPILE», then the user can type C-O-N, S,
C-O-M, 1,2, or 3 to indicate one of the three choices.

If LCASEFLG = T, then echoing of upper case elements wi" be in
lower case (but the value returned will still be one of the
elements of LSn. If DEFAULTKEYis non-Nil, it will be the last key
on the KEYLST. Otherwise, a key which permits the user to
indicate "No - none of the above" choices, in which case the
value returned by ASKUSER will be NIl.

AUTOCOMPLETEFLG is used as the value of the
AUTOCOMPlETEFlG option of the reSUlting key list.

KEYLST is a list of elements of the form (KEY PROMPTSTRING .
OPTIONS), where KEY is an atom or a string (equivalent),
PROMPTSTRING is an atom or a string, and OPTIONS a list of
options in property list format. The options are explained below.
If an option is specified in OPTIONS, the value of the option is the
next element. Otherwise, if the option is specified in the
OPTIONSLST argument to ASKUSER, its value is the next element
on OPTIONSLST. Thus, OPTIONSLST can be used to provide
default options for an entire KEYLST, rather than having to
include the option at each IE~vel. If an option does not appear on
either OPTIONS or OPTIONSL.ST, its value is NIL.

For convenience, an entry on KEYLST of the form (KEY .
ATOM/STRING), can be used as an abbreviation for (KEY

26.13

ASK USER

26.14

ATOM/STRING CONFIRMFlG T), and an entry of just the form
KEY, i.e., a non-list, as an abbreviation for (KEY Nil CONFIRMFlG'

T).

As each character is read, it is matched against the currently
active keys. A character matches a key if it is the same character
as that in the corresponding position in the key, or, if the
character is an alphabetic character, if the characters are the
same without regard for upper/lower case differences, i.e. Ii A"
matches II a" and vice versa (unless the NOCASEFlG option is T,

see page 26.15). In other words, if two characters have already
been input and matched, the third character is matched with
each active key by comparing it with the third character of that
key. If the character matches with one or more of the keys, the
entries on KEYLST corresponding to the remaining keys are
discarded. If the character does not match with any of the keys,
the character is not echoed, and a bell is rung instead.

When a key is complete, PROMPTSTRING is printed (NIL is
equivalent to 1111, the empty string, i.e., nothing will be printed).
Then, if the value of the CONFIRMFLG option is T, ASKUSER waits
for confirmation of the key by a carriage return or space.
Otherwise, the key does not require confirmation.

Then, if the value of the KEVlST option is not NIL, its value
becomes the new KEYLST, and the process recurses. Otherwise,
the key is a II leaf, II i.e., it terminates a particular path through
the original, top-level KEYLST, and ASKUSER returns the result of
packing all the keys that have been matched and completed
along the way (unless the RETURN option is used to specify some
other value, as described below).

For example, when ASKUSER is called with KEYLST:: Nil, the
following KEYLSTis used as the default:

«V II esCrll) (N "ocr"»

This KEYLST specifies that if (as soon as) the user types V (or y),

ASKUSER echoes with V, prompts with "escr" I and returns V as
its value. Similarly, if the user types N, ASKUSER echoes the N,

prompts with "ocr", and returns N. If the user types 7, ASKUSER

prints:

Yes
No

to indicate his possible responses. All other inputs are
unacceptable, and ASKUSER will ring the bell and not echo or
print anything.

For a more complicated example, the following is the KEYLST
used for the compiler questions (page 18.1):

«ST "ore and redefine II KEVlST ("" (F . "orget exprs"»
(S . "ame as last time")

USER INPUT/OUTPUT PACKAGES

26.3.2 Options

(F. "File only")
(T . "0 terminal")
1
2
(Y . "es")
(N . "0"»

ASKUSER

When ASKUSER is called with this KEYLST, and the user types an
S, two keys are matched: ST and S. The user can then type a T,
which matches only the ST key, or confirm the S key by typing a

cr or space. If the user confirms the S key, ASKUSER prompts
with" arne as last time", and returns S as its value. (Note that the
confirming character is not included in the value.) If the user
types a T, ASKUSER prompts with "ore and redefine", and makes
(.... (F . "orget exprs"» be the new KEYLST, and waits for more
input. The user can then type an F, or confirm the "" (which
essentially starts out with all of its characters matched). If he
confirms the ."", ASKUSER returns ST as its value the result of
packing ST and "". If he types F, ASKUSER prompts with "orget
exprs", and waits for confirmation again. If the user then
confirms, ASKUSER returns STF, the result of packing ST and F.

At any point the user can type a 1 and be prom pted with the
possible responses. For example, if the user types S and then 7,
ASKUSER will type:

STore and redefine Forget exprs
STore and redefine
Same as last time

KEYLST When a key is complete, if the value of the KEYLST option is not
NIL, this value becomes the new KEYLST and the process recurses.
Otherwise, the key terminates a path through the original,
top-level KEYLST, and ASKUSER returns the indicated value.

CONFIRMFLG If T, the key must be confirn'led with either a carriage return or a
space. If the value of CONFIRMFLG is a list, the confirming
character may be any member of the list.

PROMPTCONFIRMFlG If T, whenever confirmation is required, the user is prompted
with the string" [confirm] ".

NOCASEFLG If T, says· do not perform case independent matching on
alphabetic characters. If !NIL, do perform case independent
matching, i.e. "A" matches with "a" and vice versa.

RETURN If non-NIL, EVAL of the value of the RETURN option is returned as
the value of ASKUSER. Note that different RETURN options can
be specified for different keys. The variable ANSWER is bound in
ASKUSER to the list of keys that have been matched. In other

USER INPUT/OUTPUT PACKAGES 26.15

ASKUSER

26.16

words, RETURN (PACK ANSWER) would be equivalent to what

ASKUSER normally does.

NOECHOFLG If non-NIL, characters that are matched (or automatically
supplied as a result of typing $ (escape) or confirming) are not
echoed, nor is the confirming character, if any. The value of
NOECHOFLG is automatically NIL when ASKUSER is reading from
a file or string. The decision about whether or not to echo a
character that matches several keys is determined by the value of
the NOECHOFLG option for the first key.

EXPLAINSTRING If the value of the EXPLAINSTRING option is non-NIL, its value is
printed when the user types a 1, rather than KEY +

PROMPTSTRING. EXPLAINSTRING enables more elaborate
explanations in response to a 1 than what the user sees when he
is prompted as a result of simply completing keys.

KEYSTRING

For example: One of the entries on the KEYLST used by
ADDTOFILES? (page 17.13) is:

(] "Nowherecrll NOECHOFLG T

EXPLAINSTRING "l .. nowhere, item is marked as a dummycr")

When the user types], ASKUSER just prints "Nowherecr ", i.e.,
the] is not echoed. If the user types 1, the explanation
corresponding to this entry will be:

]. nowhere, item is marked as a dummy

If non-NIL, characters that are matched are echoed as though the
value of KEYSTRING were used in place of the key. KEYSTRING is
also used for computing the value returned. The main reason for
this feature is to enable echoing in lowercase.

PROMPTON If non-NIL, PROMPTSTRING is printed only when the key is
confirmed with a member of the value of PROMPTON.

COMPLETEON When a confirming character is typed, the N characters that are
automatically supplied, as specified in case (4), are echoed only
when the key is confirmed with a member of the value of
PROMPTON.

The PROMPTON and COMPLETEON options enable the user to
construct a KEYLST which will cause ASKUSER to emulate the
action of the TENEX exec. The protocol followed by the TENEX
exec is that the user can type as many characters as he likes in
specifying a command. The command can be completed with a
carriage return or space, in which case no further output is
forthcoming, or with a $ (escape), in which case the rest of the
characters in the command are echoed, followed by some
prompting information. The following KEYLST would handle
the TENEX COPY and CONNECT comands:

«COpy II (FILE LIST) II

PROMPTON ($)

USER INPUT/OUTPUT PACKAGES

COMPlETEON ($)

CONFIRMFlG ($»
(CONNECT" (TO DIRECTORY) II

PROMPTON ($)

COMPlETEON ($)
CONFIRMFlG ($»)

ASKUSER

AUTOCOMPlETEFlG If the value of the AUTOCOMPlETEFlG option is not Nil,
ASKUSER will automatically supply unambiguous characters
whenever it can, i.e., ASKUSER acts as though $ (escape) were
typed after each character (except that it does not ring the bell if
there are no unambiguous characters).

MACROCHARS value is a list of dotted pairs of form (CHARACTER. FORM).

EXPLAINDELJMITER

26.3.3 Operation

USER INPUT/OUTPUT PACKAGES

When CHARACTER is typed, and it does not match any of the
current keys, FORM is evaluated and nothing else happens, i.e.
the matching process stays where it is. For example, 7 could have
been implemented using this option. Essentially MACROCHARS
provides a read macro facility while inside of ASKUSER (since
ASKUSER does READC's, read macros defined via the readtable
are never invoked).

value is what is printed to delimit explanation in response to 7.
Initially a carriage return, but can be reset, e.g. to a comma, for
more linear output.

All input operations are executed with the terminal table in the
variable ASKUSERTTBL, in which (1) (CONTROL T) has been
executed (see page 30.10), so that ASKUSER can interact with the
user after each character is typed; and (2) (ECHOMODE Nil) has
been executed (see page 30.7), so that ASKUSER can decide after

it reads a character whether or not the character shou Id be
echoed, and with what, e.g. unacceptable inputs are never
echoed.

As each character is typed, it is matched against KEYLST, and
appropriate echoing and/or prompting is performed. If the user
types an unacceptable character, ASKUSER simply rings the bell
and allows him to try again.

At any point, the user can type 7 and receive a list of acceptable
responses at that point (generated from KEYLSD, or type a
control-A, control-Q, control-X, or delete, which causes ASKUSER
to reinitialize, and start over.

Note that 7, Control-A, Control-Q, and Control-X will not work if
they are acceptable inputs, i.e., they match one of the keys on
KEYLST. Delete will not work if it is an interrupt character, in
which case it is not seen by ASKUSER.

26.17

ASKUSER

26.3.4 Completing a Key

26.18

When an acceptable sequence is completed, ASKUSER returns

the indicated value.

The decision about when a key is complete is more complicated
than $imply whether or not all of its characters have been
matched. In the compiler questions example above, all of the
characters in the S key are matched as soon as the S has been
typed, but until the next character is typed, ASKUSER does not
know whether die'S completes the S key, or is simply the first
character in the ST key. Therefore, a key is considered to be
complete when:

(1) All of its characters have been matched and it is the only key left,
i.e., there are no other keys for which this key is a substring.

(2) All of its characters have been matched and a confirming
character is typed.

(3) All of its characters have been matched, and the value of the
CONFIRMFLG option is NIL, and the value of the KEYLST option is
not NIL, and the next character matches one of the keys on the
value of the KEYLST option.

(4) There is only one key left and a confirming character is typed.
Note that if the value of CONFIRMFLG is T, the key still has to be
confirmed, regardless of whether or not it is complete. For
example, if the first entry in the above example were instead

(ST "are and redefine" CONFIRMFLG T KEYLST (.... (F . "orget
exprs"»

and the user wanted to specify the STF path, he would have to
type ST, then confirm before typing F, even though the ST
completed the ST key by the rule in case (1). However, he would
be prompted with "are and redefine" as soon as he typed the T,
and completed the ST key.

Case (2) says that confirmation can be used to complete a key in
the case where it is a substring of another key, even where the
value of CONFIRMFLG is NIL. In this case, the confirming
character doubles as both an indicator that the key is complete,
and also to confirm it, if necessary. This situation corresponds to

typing Scr in the above example.

Case (3) says that if there were another entry whose key was STX
in the above example, so that after the user typed ST, two keys,
ST and STX, were still active, then typing F would complete the
ST key, because F matches the (F . "orget exprs") entry on the
value of the KEYLST option of the ST entry. In this case, "are and
redefine" would be printed before the F was echoed.

USER INPUT/OUTPUT PACKAGES

26.3.5 Seecial Keys

USER INPUT/OUTPUT PACKAGES

ASKUSER

Finally, case (4) says that the user can use confirmation to specify
completion when only one key is left, even when all of its
characters have not been matched. For example, if the first key
in the above example were STORE, the user could type ST and
then confirm, and ORE would be echoed, followed by whatever
prompting was specified. In this case, the confirming character
also confirms the key if necessary, so that no further action is
required, even when the value of CONFIRMFlG is T.

Case (4) permits the user not to have to type every character in a
key when the key is the only one left. Even when there are
~everal active keys, the user can type $ (escape) to specify the
next N>O common characters among the currently active keys.
The effect is exactly the same as though these characters had
been typed. If there are no common characters in the active keys
at that point, i.e. N = 0, the $ is treated as an incorrect input, and
the bell is rung. For example, if KEYLST is (CLlSPFlG
CLiSPIFYPACKFlG CLiSPIFTRANFlG), and the user types C
followed by $, ASKUSER will supply the l, I, S, and P. The user
can then type F followed by a carriage return or space to
complete and confirm CLlSPFlG, as per case (4), or type I,
followed by $, and ASKUSER will supply the F, etc. Note that the
characters supplied do not have to correspond to a terminal
segment of any of the keys. Note also that the $ does not
confirm the key, although it may complete it in the case that
there is only one key active.

If the user types a confirming character when several keys are
left, the next N>O common characters are still supplied, the
same as with $. However, ASKUSER assumes the intent was to
complete a key, i.e., case (4) is being invoked. Therefore, after
supplying the next N characters, the bell is rung to indicate that
the operation was not completed. In other words, typing a
confirming character has the same effect as typing an $ in that
the next N common characters are supplied. Then, if there is only
one key left, the key is complete (case 4) and confirmation is not
required. If the key is not the only key left, the bell is rung.

& This can be used as a key to match with any single character,
provided the character does not match with some other key at
that level. For the purposes of echoing and returning a value, the
effect is the same as though the character that were matched
actually appeared as the key.

$ (escape) This can be used as a key to match with the result of a single call
to READ. For example, if the KEYLSTwere:

«COPY" (FilE LIST) "
PROMPTON ($)

26.19

ASKUSER

$$ (esc a pe, esca pe)

A list

nil

COMPLETEON ($)
CONFIRMFLG ($)
KEYLST «$ NIL RETURN ANSWER»»

then if the user typed COP FOOcr, (COpy FOO) woul d be
returned as the value of ASKUSER. One advantage of using $,
rather than having the calling program perform the READ, is
that the call to READ from inside ASKUSER is ERRORSET
protected, so that the user can back out of this path and
reinitialize ASKUSER, e.g. to change from a COpy command to a
CONNECT command, simply by typing control-E.

This can be used as a key to match with the result"of a single call
to READLINE.

A list can be used as a key, in which case the list/form is evaluated
and its value "matches" the key. This feature is provided
primarily as an escape hatch for including arbitrary input
operations as part of an ASKUSER sequence. For example, the
effect of $$ (escape, escape) could be achieved simply by using
(READLINE T) as a key.

The empty string can be used as a key. Since it has no characters,
all of its characters are automatically matched. "" essentially
functions as a place marker. For example, one of the entries on
the KEYLSTused by ADDTOFILES1 is:

(" II "File/list: II

EXPLAINSTRING "a file name or name of a function list"
KEYLST($»

Thus, if the user types a character that does not match any of the
other keys on the KEYLST, then the character completes the""
key, by virtue of case (4), since the character will match with the $
in the inner KEYLST. ASKUSER then prints "Filellist: II before
echoing the character, then calls READ. The character will be
read as part of the READ. The value returned by ASKUSER will be
the value of the READ.

Note: For 5 (escape), $5 (escape, escape), or a list, if the last
character read by the input operation is a separator I the
character is treated as a confirming character for the key.
However, if the last character is a break character, it will be
matched against the next key.

26.3.6 Startup Protocol and Typeahead

26.20

Interlisp permits and encourages the user to typeahead; in actual
practice, the user frequently does this. This presents a problem
for ASKUSER. When ASKUSER is entered and there has been
typeahead, was the input intended for ASKUSER, or was the
interaction unanticipated, and the user simply typing ahead to

USER INPUT/OUTPUT PACKAGES

USER INPUT/OUTPUT PACKAGES

ASKUSER

some other program, e.g. the programmer's assistant? Even
where there was no typeahead, i.e., the user starts typing after
the call to ASKUSER, the question remains of whether the user
had time to see the message from ASKUSER and react to it, or
simply began typing ahead at an inauspicious moment. Thus,
what is needed is an interlock mechanism which warns the user
to stop typing, gives him a chance to respond to the warning,
and then allows him to begin typing to ASKUSER.

Therefore, when ASKUSER is first entered, and the interaction is
to take place with a terminal, and typeahead to ASKUSER is not
permitted, the following protocql is observed:

(1) If there is typeahead, ASKUSER dears and saves the input buffers
and rings the bell to warn the user to stop typing. The buffers
will be restored when ASKUSER completes operation and
returns.

(2) If MESS, the message to be printed on entry, is not NIL (the
typical case), ASKUSER then prints MESS if it is a string, otherwise
CAR of MESS, if MESS is a list.

(3) After printing MESS or CAR of MESS, ASKUSER waits until the
output has actually been printed on the terminal to make sure
that the user has actually had a chance to see the output. This
also give the user a chance to react. ASKUSER then checks to see
if anything additional has been typed in the intervening period
since it first warned the user in (1). If something has been typed,
ASKUSER dears it out and again rings the bell. This latter
material, i.e., that typed between the entry to ASKUSER and this
point, is discarded and will not be restored since it is not certain
whether the user simply reacted quickly to the first warning
(bell) and this input is intended for ASKUSER, or whether the
user was in the process of typing ahead when the call to
ASKUSER occurred, and did not stop typing at the first warning,
and therefore this input is a continuation of input intended for
another program.

(4)

(5)

Anything typed after (3) is considered to be intended for
ASKUSER, i.e., once the user sees MESS or CAR of MESS, he is free
to respond. For example, UNDO (page 13.13) calls ASKUSER
when the number of undosaves are exceeded for an event with
MESS = (LIST NUMBER-UNDOSAVES "undosaves, continue
saving"). Thus, the user can type a response as soon as
NUMBER-UNDOSAVES is typed.

ASKUSER then types the rest of MESS, if any.

Then ASKUSER goes into a wait loop until something is typed. If
WAIT, the wait time, is not NIL, and nothing is typed in WAIT
seconds, ASKUSER will type II and treat the elements of
DEFAULT, the default value, as a list of characters, and begin
processing them exactly as though they had been typed. If the
user does type anything within WAIT seconds, he can then wait

26.21

ASKUSER

as long as he likes, i.e., once something has been typed,
ASKUSER will not use the default value specified in DEFAULT.

If the user wants to consider his response for more than WAIT
seconds, and does not want ASKUSER to default, he can type a
carriage return or a space, which are ignored if they are not
specified as acceptable inputs by KEYLST (see below) and they
are the first thing typed.

If the calling program knows that the user is expecting an
interaction with ASKUSER, e.g. another ·interaction preceded
this one, it can specify in the call to ASKUSER that typeahead is
permitted. In this case, ASKUSER simply notes whether there is
any typeahead, then prints MESS and goes into a wait loop as
described above.

If there is typeahead that contains unacceptable input, ASKUSER
will assume that the typeahead was not intended for ASKUSER,
and will restore the typeahead when it completes operation and
returns.

(6) Finally, if the interaction is not with the terminal, i.e., the
optional input file/string is specified, ASKUSER simply prints
MESS and begins reading from the file/string.

26 .. 4 ITYIN Display Typein Editor

26.4.1 Entering Input With TTYIN

26.22

TIYIN is an Interlisp function for reading input from the
terminal. It features altmode completion, spelling correction,
help facility, and fancy editing, and can also serve as a glorified
free text input function. This document is divided into two
major sections: how to use TTYIN from the user's point of view,
and from the programmer's.

TIYIN exists in implementations for Interlisp-10 and Interlisp-D.
The two are substantially compatible, but the capabilities of the
two systems differ (Interlisp-D has a more powerful display and
allows greater access to the system primitives needed to control
it effectively; it also has a mouse, greatly reducing the need for
keyboard-oriented editing commands). Descriptions of both are
included in this document for completeness, but Interlisp-D users
may find large sections irrelevant.

There are two major ways of using TTYIN: (1) set LlSPXREADFN
to TIVIN, so the lISPX executive uses it to obtain input, and (2)
call TIVIN from within a program to gather text input. Mostly

USER INPUT/OUTPUT PACKAGES

control-A, Backspace, Delete

control-W

control-Q

control-R

Escape

1

control-F

control-Y

Open key on Xerox 1132
Middle-blank key on Xerox 1132

LF in Interlisp-l 0

USER INPUT/OUTPUT PACKAGES

TTYIN DISPLAY TYPEIN EDITOR

the same rules apply to both; places where it makes a difference
are mentioned below.

The following characters may be used to edit your input,
independent of what kind of terminal you are on. The more
TTYIN knows about your terminal, of course, the nicer some of
these will behave. Some functions are performed by one of
several characters; any character that you happen to have
assigned as an interrupt character will, of couse, not be read by
TTYIN. There is a (somewhat inelegant) way of changing which
characters perform which functions, described under
TTYINREADMACROS later o,n ...

Deletes a character. At the start of the second or subsequent
lines of your input, deletes the last character of the previous line.

Deletes a "word ". Generally this means back to the last space or
parenthesis.

Deletes the current line, or if the current line is blank, deletes the
previous line.

Refreshes the current line. Two in a row refreshes the whole
buffer (when doing multi-line input).

Tries to complete the current word from the spelling list
provided to TTYIN, if any. In the case of ambiguity, completes as
far as is uniquely determined, or rings the bell. For LlSPX input,
the spelling list may be USERWORDS (see discussion of
TTYINCOMPlETEFlG, page 26.37).

Interlisp-l0 only: If no spelling list was provided, but the word
begins with a "<", tries directory name completion (or filename
completion if there is already a matching" >" in the current
word),

If typed in the middle of a word will supply alternative
completions from the SPLST argument to TTYIN (if any).
1ACTlVATEFlG (page 26.36) must be true to enable this feature.

Tops20 only: Invokes filename completion on the current
"word".

Escapes to a Lisp user exec, from which you may return by the
command OK. However, when in READ mode· and the buffer is
non-empty, control-Y is treated as Lisp's unquote macro instead,
so you have to use meta-control-Y (below) to invoke the user
exec.

Retrieves characters from the previous non-empty buffer when it
is able to; e.g., when typed at the beginning of the line this
command restores the previous line you typed at TTYIN; when
typed in the middle of a line fills in the remaining text from the

26.23

TTYIN DISPLAY TYPEIN EDITOR

control-X

old line; when typed following i Q or i W restores what those

commands erased.

If typed as the first character of the line means the line is a
comment; it is ignored, and TTYIN loops back for more input.

Note: The exact behaviour of this character is determined by the
value of TTY INC OM ME NT CHAR (page 26.37).

Goes to the end of your input (or end of expression if there is an
excess right parenthesis) and returns if parentheses are balanced,
beeps if not. Currently implemented in Interlisp-D only.

During most kinds of input, TTYIN is in "autofill" mode: if a
space is typed near the right margin, a carriage return is
simulated to start a new line. In fact, on cursor-addressable
displays, lines are always broken, if possible, so that no word
straddles the end of the line. The "pseudo-carriage return"
ending the line is still read as a space, however; i.e., the program
keeps track of whether a line ends in a carriage return or is
merely broken at some convenient point. You won't get
carriage returns in your strings unless you explicitly type them.

26.4.2 Mouse Commands [Interlisp-D Only]

The mouse buttons are interpreted as follows during TTYIN
input:

LEFT Moves the caret to where the cursor is pointing. As you hold
down LEFT, the caret moves around with the cursor; after you let
up, any typein will be inserted at the new position.

MIDDLE Like LEFT, but moves only to word boundaries.

RIGHT Deletes text from the caret to the cursor, either forward or
backward. While you hold down RIGHT, the text to be deleted is
complemented; when you let up, the text actually goes away. If
you let up outside the scope of the text, nothing is killed (this is
how to "cancel" the command). This is roughly the same as
CTRL-RIGHT with no initial selection (below).

If you hold down CTRL and/or SHIFT while pressing the mouse
buttons, you instead get secondary selection, move selection or
delete selection. You make a selection by bugging LEFT (to
select a character) or MIDDLE (to select a word), and optionally
extend the selection either left or right using RIGHT. While you
are doing this, the caret does not move, but your selected text is
highlighted in a manner indicating what is about to happen.
When you have made your selection (all mouse buttons up now),
lift up on CTRL and/or SHIFT and the action you have selected
will occur, which is:

SHIFT The select.ed text as typein at the caret. The text is highlighted
with a broken underline during selection.

26.24 USER INPUT/OUTPUT PACKAGES

TTYIN DISPLAY TYPEIN EDITOR

CTRL Delete the selected text. The text is complemented during
selection.

CTRL-SHIFT Combines the above: delete the selected text and insert it at the
caret. This is how you move text about.

You can cancel a selection in progress by pressing LEFT or
MIDDLE as if to select, and moving outside the range of the text.

The most recent text deleted by mouse command can be inserted
at the caret by typing Middle-blank key (on the Xerox 1132) or
the Open key (on the Xerox 1108). This is the same key that
retrieves the previous buffer when issued at the end of a line:.

26.4.3 Display Editing Commands

USER INPUT/OUTPUT PACKAGES

On terminals with a meta key: In Interlisp-1 0, TTYIN reads from
the terminal in binary mode, allowing many more editing
commands via the meta key, in the style of TVEDIT commands.
Note that due to Tenex's unfortunate way of handling
typeahead, it is not possible to type ahead edit commands
before TTYIN has started (i.e., before its prompt appears),
because the meta bit will be thrown away. Also, since Escape has
numerous other meanings in Lisp and even in TTYIN (for
completion), this is not used as a substitute for the meta key.

In Interlisp-D: Users will probably have little use for most of
these commands, as cursor positioning can often be done more
conveniently, and certainly more obviously, with the mouse.
Nevertheless, some commands, such as the case changing
commands, can be useful. The <bottom-blank> key can be

. used as an meta key if you perform (METASHIFT T) (see page
30.22). Alternatively, you can use the variable EDITPREFIXCHAR
as described in the next paragraph.

On display terminals without a meta key: If you want to type any
of these commands, you need to prefix them with the "edit'
prefix" character. Set the variable EDITPREFIXCHAR to the
character code of the desired prefix char. Type the edit prefix
twice to give an "meta-escape" command. Some users of the
TENEX TVEDIT program like to make escape (33Q) be the edit
prefix, but this makes it somewhat awkward to ever use escape
completion. EDITPREFIXCHAR is initially NIL.

On hardcopy terminals without a meta key: You probably want
to ignore this section, since you won't be able to see what's
going on when you issure edit commands; there is no attempt
made to echo anything reasonable.

In the descriptions below, "current word" means the word the
cursor is under, or if under a space, the previous word. Currently
parentheses are treated as spaces, which is usually what you
want, but can occasionally cause confusion in the word deletion

26.25

TTYIN DISPLAY TYPEIN EDITOR

[delete], [bs], [< I

[space I, [>]

[i I
[If]

[(I

[)]

[tab]

[control- L]

[{]and[}]

[[] (meta-left-bracket)

[]] (meta-right-bracket)

[Sx]

[Bx]

[Zx]

[A] or [R]

[K]

commands. The notation [CHAR] means meta-CHAR, if you have
a meta key, or CHAR preceeded by the character number'
EDITPREFIXCHAR if you don't. The notation $ stands for the
Escape key. Most commands can be preceded by numbers or
escape (means infinity), only the first of which requires the meta
key (or the edit prefix). Some commands also accept negative
arguments, but some only look at the magnitude of the argo
Most of these commands are taken from the display editors
TVEDIT and/or E, and are confined to work wi~hin one line of
text unless otherwise noted.

Cursor Movement Commands:

Back up one (or n) characters.

Move forward one (or n) characters.

Moves up one (or n) lines.

Moves down one (or n) lines.

Move back one (or n) words.

Move ahead one (or n) words.

Moves to end of line; with an argument moves to nth end of
line; [Stab] goes to end of buffer.

Moves to start of line (or nth previous, or start of buffer).

Go to start and end of buffer, respectively (like [$control-L] and
[Stab]).

Moves to beginning of the current list, where cursor is currently
under an element of that list or its closing paren. (See also the
auto-parenthesis-matching feature below under "Flags".)

Moves to end of current list.

Skips ahead to next (or nth) occurrence of character x, or rings
the bel/.

Backward search, i.e., short for [-5] or [-nS].

Buffer Modification Commands:

Zaps characters from cursor to next (or nth) occurrence of x.
There is no unzap command yet.

Repeat the last 5, B or Z command, regardless of any intervening
input (note this differs from Tvedit's A command).

Kills the character under the cursor, or n chars starting at the
cursor.

[cr] When the buffer is empty is the same as <If>, i.e. restores
buffer's previous contents. Otherwise is just like a < cr > (except
that it also terminates an insert). Thus, [<cr> <cr >] will repeat
the previous input (as will <If> <cr> without the meta key).

(0) Does "Open line", inserting a crlf after the cursor, i.e., it breaks
the line but leaves the cursor where it is.

26.26 USER INPUT/OUTPUT PACKAGES

USER INPUT/OUTPUT PACKAGES

TTYIN DISPLAY TYPEIN EDITOR

[T] Transposes the characters before and after the cursor. When
typed at the end of a line, transposes the previous two
characters. Refuses to handle funny cases, such as tabs.

[G] Grabs the contents of the previous line from the cursor position
onward. [nG] grabs the nth previous line.

[l] lowercases current word, or n words on line. [$l] lowercases the
rest of the line, or if given at the end of line lowercases the entire
line.

[U] Uppercases analogously.

[C] Capitalize. If you give it an argument, only the first word is
capitalized; the rest are just lowercased.

[control-Q] Deletes the current line. [$control-Q] deletes from the current
cursor position to the end of the buffer. No other arguments are
handled.

[control-W] Deletes the current word, or the previous word if sitting on a
space.

[J] II Justify" this line. This will break it if it is too long, or move
words up from the next line if too short. Will not join to an
empty line, or one starting with a tab (both of which are
interpreted as paragraph breaks). Any new line breaks it
introduces are considered spaces, not carriage returns. [nJ]
justifies n lines.

The linelength is defined as TTYJUSTLENGTH, ignoring any
prompt characters at the margin. If TTYJUSTLENGTH is negative,
it is interpreted as relative to the right margin. TTYJUSTLENGTH
is initially -8 in Interlisp-D, 7:2 in Interlisp-l O.

[$F] II Finishes" the input, regardless of where the cursor is.

[P]

[N]

Specifically, it goes to the end of the input and enters a < cr >,
control-Z or "]", depending on whether normal, REPEAT or READ
input is happening. Note that a "]" won't necessarily end a
READ, but it seems likely to in most cases where you would be
inclined to use this command, and makes for more predictable
behavior.

Miscellaneous Commands:

Interlisp-D: Prettyprint buffer. Clears the buffer and reprints it
using prettyprint. If there are not enough right parentheses, it
will supply more; if there are too many, any excess remains
unprettyprinted at the end of the buffer. May refuse to do
anything if there is an unclosed string or other error trying to
read the buffer.

Refresh line. Same as control-R. [$N] refreshes the whole buffer;
[nN] refreshes n lines. Cursor movement in TTYIN depends on
TTYIN being the only source of output to the screen; if you do a
control-T, or a system message appears, or line noise occurs, you
may need to refresh the line for best results. In Interlisp-l 0, if for

26.27

liYlN DISPLA Y TYPEIN EDITOR

[control-Y]

[$control-Y]

[+-J

26.4.4 Using TTYIN for Lisp Input

26.28

some reason your terminal falls out of binary mode (e.g. can
happen when returning to a Lisp running in a lower fork),
Meta-<anything> is unreadable, so you'd have to type
control-R instead.

Gets user exec. Thus, this is like regular control-Y, except when
doing a READ (when control-Y is a read macro and hence does
not invoke this function).

Gets a user exec, but first unreads the contents of the buffer
from the cursor onward. Thus if you typed at TTYIN something
destined for the Lisp executive, you can do [control-L$control-YJ
and give it to Lisp.

Adds the current word to the spelling list USERWORDS. With
zero arg, removes word. See TTYINCOMPLETEFLG (page 26.37).

Note to Datamedia, Heath users: In addition to simple cursor
movement commands and insert/delete, TTYIN uses the display's
cursor-addressing capability to optimize cursor movements
longer than a few characters, e.g. [tab] to go to the end of the
line. In order to be able to address the cursor, TTYIN has to know
where it is to begin with. Lisp keeps track of the current print
position within the line, but does not keep track of the line on
the screen (in fact, it knows precious little about displays, much
like Tenex). Thus, TTYIN establishes where it is by forcing the
cursor to appear on the last line of the screen. Ordinarily this is
the case anyway (except possibly on startup), but if the cursor
happens to be only halfway down the screen at the time, there is
a possibly unsettling leap of the cursor when TIYIN starts.

When TTYIN is loaded, or a sysout containing TTYIN is started up,
the function SETREADFN is called. If the terminal is a display, it
sets LlSPXREADFN (page 13.36) to be TTYINREAD. If the terminal
is not a display terminal, SETREADFN will set the variable to
READ. (SETREADFN 'READ) will also set it to READ.

There are two principal differences between TTYINREAD and
READ: (1) parenthesis balancing. The input does not activate on
an exactly balancing right parenlbracket unless the input started
with a parenibracket, e.g., "USE (FOO) FOR (FIE)" will all be on
one line, terminated by <cr >; and (2) read macros.

In Interlisp-l 0, TTYIN does not use a read table (TTYIN behaves as
though using the default initial Lisp terminal input readtable), so
read macros and redefinition of syntax characters are not
supported; however, " , " (QUOTE) and "control-Y" (EVAL) are
built in, and a simple implementation of ? and? = is supplied.
Also, the TTYINREADMACROS facility described below can

USERINPUTIOUTPUT PACKAGES

26.4.5 Useful Macros

26.4.6 Programming With TTYIN

TTYIN DISPLAY TYPEIN EDITOR

supply some of the functionality of immediate read macros in
the editor.

In Interlisp-D, read macros are (mostly) supported. Immediate
read macros take effect only if typed at the end of the input (it's
not dear what their semantics should be elsewhere).

There are two useful edit macros that allow you to use TTYIN as a
character editor: (1) ED loads the current expression into the
ttyin buffer to be edited (this is good for editing comments and
strings). Input is terminated in the usual way (by typing a
balancing right parenthesis at the end of the input, typing < cr >
at the end of an already balanced expression, or control-X
anywhere inside the balanced expression). Typing control-E or
dearing the buffer aborts ED. (2) EE is like ED but prettyprints
the expression into the buffer, and uses its own window. The
variable TIVINEDITPROMPT controls what prompt, if any, EE
uses. If it is T (initial value), no prompt is printed. EE is not
implemented in Interlisp-1 O.

The macro BUF loads the current expression into the buffer,
preceded by E, to be used as input however desired; as a trivial
example, to evaluate the current expression, BUF followed by a
<cr> to activate the buffer will perform roughly what the edit
macro EVAL does. Of course, you can edit the E to something
else to make it an edit command.

BUF is also defined at the executive level as a programmer's
assistant command that loads the buffer with the VALUEOF the
indicated event, to be edited as desired.

TV is a programmer's assistant command like EV [EDITV] that
performs an ED on the value of the variable.

And finally, if the event is considered "short" enough, the
programmer's assistant command FIX will load the buffer with
the event's input, rather than calling the editor. If you really
wanted the Interlisp editor for your fix, you could either say FIX
EVENT - TIV:, or type control-U (or whatever on tops20) once
you got TTYIN 's version to force you into the editor.

(TIVIN PROMPT SPLST HELP OPTIONS ECHOTOFILE TABS UNREADBUF RDTBL) [Function]

USER INPUT/OUTPUT PACKAGES

TTYIN prints PROMPT, then waits for input. The value returned
in the normal case is a list of all atoms on the line, with comma
and parens returned as individual atoms; OPTIONS may be used
to get a different kind of value back.

26.29

TIYIN DISPLAY TYPEIN EDITOR

PROMPT is an atom or string (anything else is converted to a
string). If NIL, the value of DEFAULTPROMPT, initially n** ", will
be used. If PROMPT is T, no prompt will be given. PROMPT may
also be a dotted pair (PROMPT1 . PROMPT2), giving the prompt

for the first and subsequent (or overflow) lines, each prompt
being a string/atom or NIL to denote absence of prompt. The
default prompt for overflow lines is 99 ••• ", Note that rebinding
DEFAUL TPROMPT gives a convenient way to affect all the
"ordinary" prompts in some program module.

SPLST is a spelling list, i.e., a list of atoms or dotted pairs
(SYNONYM. ROOn. If supplied, it is used to check and correct
user responses, and to provide completion if the user types
escape. If SPLST is one of the Lisp system spelling lists (e.g.,
USERWORDS or SPELLlNGS3), words that are escape-completed
get moved to the front, just as if a FIXSPELL had found them,
Autocompletion is also performed when user types a break
character (cr, space, paren, etc), unless one of the II nofixspell"
options below is selected; i.e., if the word just typed would
uniquely complete by escape, TTYIN behaves as though escape
had been typed.

HELP, if non-NIL, determines what happens when the I.Jser types
? or HELP. If HELP = T, program prints back SPLST in suitable
form. If HELP is any other litatom, or a string containing no
spaces, it performs (DISPLA YHELP HELP). Anything else is printed
as is. If HELP is NIL, ? and HELP are treated as any other atoms the
user types. [DISPLAYHELP is a user-supplied function, initially a
noop; systems with a suitable HASH package, for example, have
defined it to display a piece of text from a hashfile associated
with the key HELP.]

OPTIONS is an atom or list of atoms chosen from among the
following:

NOFIXSPELL Uses SPLST for HELP and Escape completion, but does not
attempt any FIXSPELLing. Mainly useful if SPLST is incomplete
and the caller wants to handle corrections in a more flexible way
than a straight FIXSPELL.

MUSTAPPROVE Does spelling correction, but requires confirmation.

CRCOMPLETE Requires confirmation on spelling correction, but also does
autocompletion on <cr> (i.e. if what user has typed so far
uniquely identifies a member of SPLST, completes it). This allows
you to have the benefits of autocompletion and still allow new
words to be typed.

DIRECTORY (only if SPLST= NIL) Interprets Escape to mean directory name
completion [lnterlisp-1 0 only].

USER Like DIRECTORY, but does username completion. This is identical
to DIRECTORY under Tenex [Interlisp-l 0 only].

26.30 USER INPUT/OUTPUT PACKAGES

USER INPUT/OUTPUT PACKAGES

TTYIN DISPLAY TYPEIN EDITOR

FilE (only if SPLST= Nil) Interprets Escape to mean filename
completion [Sumex and Tops20 only].

FIX If response is not on, or does not correct to, SPLST, interacts with
user until an acceptable response is entered. A blank line
(returning Nil) is always accepted. Note that if you are willing to
accept responses that are not on SPLST, you probably should
specify one of the options NOXFISPEll, MUSTAPPROVE or
CRCOMPlETE, lest the user's new response get FIXSPElled away
without their approval.

STRING Line is read as a string, rather than list of atoms. Good for free
text.

NORAISE Does not convert lower case letters to upper case.

NOVAlUE For use principally with the ECHOTOFILE arg (below). Does not
compute a value, but returns T if user typed anything, Nil if just a
blank line.

REPEAT For multi-line input. Repeatedly prompts until user types
control-Z (as in Tenex sndmsg). Returns one long list; with
STRING option returns a single string of everything typed, with
carriage returns (EOl) included in the string.

TEXT Implies REPEAT, NORAISE, and NOVAlUE. Additionally, input
may be terminated with control-V, in which case the global flag
CTRlVFlG will be set true (it is set to Nil on any other
termination). This flag may be utilized in any way the caller
desires.

COMMAND

READ

lISPXREAD

Only the first word on the line is treated as belonging to SPLST,

the remainder of the line being arbitrary text; i.e., "command
format". If other options are supplied, COMMAND still applies
to the first word typed. Basically, it always returns (CMD .

REST-OF-INPUn, where REST-OF-INPUT is whatever the other
options dictate for the remainder. E.g. COMMAND NOVAlUE
returns (CMD) or (CMD . T), depending on whether there was
further input; COMMAND STRING returns ·(CMD

II REST-OF-INPurt When used with REPEAT, COMMAND is only
in effect for the first line typed; furthermore, if the first line
consists salely of a command, the REPEAT is ignored, i.e., the
entire input is taken to be just the command.

Parens, brackets, and quotes are treated a la READ, rather than
being returned as individual atoms. Control characters may be
input via the control-Vx notation. Input is terminated roughly
along the lines of READ conventions: a balancing or
over-balancing right parenlbracket will activate the input, or
<cr> when no parenthesis remains unbalanced. READ
overrides all other options (except NORAISE).

Like READ, but implies that TTYIN should behave even more like
READ, i.e., do NORAISE, not be errorset-protected, etc.

26.31

TTYIN DISPLAY TYPEIN EDITOR

NOPROMPT Interlisp-D only: The prompt argument is treated as usual,
except that TTYIN assumes that the prompt for the first line has
already been printed by the caller; the prompt for the first line is
thus used only when redisplaying the line.

ECHOTOFILE if specified, user's input is copied to this file, i.e.,
TTYIN can be used as a simple text-to-file routine if NOVALUE is
used. If ECHOTOFILE is a list, copies to all files in the list.
PROMPT is not included on the file.

TABS is a special addition for tabular input. It is a list of tabstops
(numbers). When user types a tab, TTYIN automatically spaces
over to the next tabstop (thus the first tabstop is actually the
second "column" of input). Also treats specially the characters *
and"; they echo normally, and then automatically tab over.

UNREADBUF allows the caller to "preload" the rTYIN buffer
with a line of input. UNREADBUF is a list, the elements of which
are unread into the buffer (i.e., "the outer parentheses are
stripped off") to be edited further as desired; a simple carriage
return (or control-Z for REPEAT input) will thus cause the buffer's
contents to be returned unchanged. If doing READ input, the
"PRIN2 names" of the input list are used, i.e., quotes and % 's will
appear as needed; otherwise the buffer will look as though
UNREADBUF had been PRIN1'ed. UNREADBUF is treated
somewhat like READBUF, so that if it contains a pseudo-carriage
return (the value of HISTSTRO), the input line terminates there.

Input can also be unread from a file, using the HISTSTR1 format:
UNREADBUF = {< value of HISTSTR1> (FILE START. END»,

where START and END are file byte pointers. This makes TTYIN a
miniature text file editor.

RDTBL [lnterlisp-D only] is the read table to use for READing the
input when one of the READ options is given. A lot of character
interpretations are hardwired into TTYIN, so currently the only
effect this has is in the actual READ, and in deciding whether a
character typed at the end of the input is an immediate read
macro, for purposes of termination.

If the global variable TVPEAHEADFLG is T, or option LlSPXREAD
is given, TTYIN permits type-ahead; otherwise it clears the buffer
before prompting the user.

26.4.7 Using nVIN as a General Editor

26.32

The following may be useful as a way of outsiders to call TTYIN as
an editor. These functions are currently only in Interlisp-D.

(TIVINEDIT EXPRS WINDOW PRINTFN PROMPn [Function]

This is the body of the edit macro EE. Switches the tty to
WINDOW, clears it, prettyprints EXPRS, a list of expressions, into

USER INPUT/OUTPUT PACKAGES

TTYINAUTOCLOSEFLG

TTYINEDITWINDOW

ITYINPRINTFN

TTYIN DISPLAY TYPEIN EDITOR

it, and leaves you in TTYIN to edit it as Lisp input. Returns a new
list of expressions.

If PRINTFN is non-NIL, it is a function of two arguments, EXPRS

and FILE, which is called instead of PRETTYPRINT to print the
expressions to the window (actually to a scratch file). Note that
EXPRS is a list, so normally the outer parentheses should not be
printed. PRINTFN = T is shorthand for "unpretty"; use PRIN2
instead of PRETTYPRINT.

PROMPT determines what prompt is printed, if any. If T, no
prompt is printed. If NIL, it defaults to the value of
TTYINEDITPROMPT.

[Variable]

If TTYINAUTOCLOSEFLG is true, TTYINEDIT closes the window on
exit.

[Variable]

If the WINDOW arg to TTYINEDIT is NIL, it uses the value of
TTYINEDITWINDOW, creating it if it does not yet exist.

[Variable]

The default value for PRINTFN in EE's call to TTYINEDIT.

(SET.1TYINEDIT.WINDOW WINDOW) [Function]

(TTY I N.SCRA TCH FI LE)

26.4.8 ? = Handler

USER INPUT/OUTPUT PACKAGES

Called under a RESETLST. Switches the tty to WINDOW

(defaulted as in TTYINEDIT) and clears it. The window's position
is left so that TTYIN will be happy with it if you now call TTYIN
yourself. Specifically, this means positioning an integral number
of lines from the bottom of the window, the way the top-level
ttywindow normally is.

[Function]

Returns, possibly creating, the scratchfile that TTYIN uses for
prettyprinting its input. The file pointer is set to zero. Since
TTYIN does use this file, beware of multiple simultaneous use of
the file.

In Interlisp, the? = read macro displays the arguments to the
function currently" in progress" in the typein. Since TTYIN wants
you to be able to continue editing the buffer after a ? =, it
processes this macro specially on its own, printing the arguments
below your typein and then putting the cursor back where it was

26.33

TTYIN DISPLAY TYPEIN EDITOR

TIVIN7.FN

NIL

T

a list (ARGS . STUFF)

anything else

(TIVIN.READ7- ARGS)

when? = was typed. For users who want special treatment of
? = , the following hook exists:

[Variable]

The value of this variable, if non-NIL, is a user function of one
argument that is called when? = is typed. The argument is the
function that? = thinks it is inside of. The user function should
return one of the following:

Normal? = processing is performed.

Nothing is done. Presumably the user function has done
something privately, perhaps diddled some other window, or
called TIVIN.PRINTARGS (below).

Treats STUFF as the argument list of the function in question, and
performs the normal? = processing using it.

The value is printed in lieu of what? = normally prints.

At the time that? = is typed, nothing has been "read" yet, so you
don't have the normal context you might expect inside a
conventional readmacro. If the user function wants to examine
the typed-in arguments being passed to the fn, however, it can
call the function TIVIN.READ7. ARGS:

(Function]

When called inside TIVIN7 - FN user function, returns everything'
between the function and the typing of ? = as a list (like an
arglist). Returns NIL if ? = was typed immediately after the
function name.

(TIVIN.PRINTARGS FN ARGS ACTUALS ARGTYPE) [Function]

26.4.9. Read Macros

26.34

Does the function/argument printing for ?:c. ARGS is an
argument list, ACTUALS is a list of actual parameters (from the
typein) to match up with args. ARGTYPE is a valu~ of the
function ARGTVPE; it defaults to (ARGTVPE FN).

When doing READ input in Interlisp-1 0, no Lisp-style read macros
are available (but the • and control-Y macros are built in).
Principally because of the usefulness of the editor read macros
(set by SETIERMCHARS), and the desire for a way of changing
the meanings of the display editing commands, the following
exists as a hack:

USER INPUT/OUTPUT PACKAGES

TlYIN DISPLAY TYPEIN EDITOR

TTVINREADMACROS [Variable]

USER INPUT/OUTPUT PACKAGES

Value is a set of shorthand inputs useable during READ input. It
is an alist of entries (CHARCODE . SYNONYM). If the user types
the indicated character (the meta bit is denoted by the 200Q bit
in the char code), TTYIN behaves as though the synonym
character had been typed.

Special cases: 0 - the character is ignored; 200Q - pure meta bit;
means to read another char and turn on its meta bit; 400Q -
macro quote: read another char and use its original meaning.
For example, if you have macros «33Q . 200Q) (30Q . 33Q», then
Escape (33Q) will behave as an edit prefix, and control-X (30Q)
will behave like Escape. Note: currently, synonyms for meta
commands are not well-supported, working only when the
command is typed with no argument.

Slightly more powerful macros also can be supplied; they are
recognized when a character is typed on an empty line, i.e., as
the first thing after the prompt. In this case, the
TTVINREADMACROS entry is of the form (CHARCODE T .
RESPONSE). or (CHARCODE CONDITION. RESPONSE), where
CONDITION is a list that evaluates true. If RESPONSE is a list, it is
EVALed; otherwise it is left unevaluated. The result of this
evaluation (or RESPONSE itself) is treated as follows:

NIL The macro is ignored and the character reads normally, i.e., as
though TIVINREADMACROS had never existed.

An integer A character code, treated as above. Special case: -1 is treated like
0, but says that the display may have been altered in the
evaluation of the macro, so TTYIN should reset itself
appropriately.

Anything else This TTYIN input is terminated (with a crlf) and returns the value
of "resp~nse" (turned into a list if necessary). This is the principal
use of this facility. The macro character thus stands for the
(possibly computed) reponse, terminated if necessary with a crlf.
The original character is not echoed.

Interrupt characters, of course, cannot be read macros, as TTYIN
never sees them, but any other characters, even non-control
chars, are allowed. The ability to return NIL allows you to have
conditional macros that only apply in specified situations (e.g.,
the macro might check the prompt (LlSPXID) or other contextual
variables). To use this specifically to do immediate editor read
macros, do the following for each edit command and character
you want to invoke it with:

(ADDTOVAR TTVINREADMACROS (CHARCODE 'CHARMACR07
EDITCOM»)

For example, (ADDTOVAR TTVINREADMACROS (12Q

CHARMACR07 !NX» will make linefeed do the !NX command.

26.35

TTYIN DISPLAY TYPEIN EDITOR

26.4.10 Assorted Flags

TVPEAHEADFLG

Note that this will only activate linefeed at the beginning of a
line, not anywhere in the line. There will probably be a user
function to do this in the next release.

Note that putting (12Q T . !NX) on TIVINREADMACROS would
also have the effect of returning "!NX" from the READ call so
that the editor would do an !NX. However, TTYIN would also
return !NX outside the editor (probably resulting in a u.b.a.
error, or convincing DWIM to enter the editor), and also the
clearing of the output buffer (performed by CHARMACRO?)
would not happen.

These flags control aspects of TIYIN's behavior. Some have
already been mentioned. In Interlisp-O, the flags are all initially
set to T.

[Variable]

If true, TTYIN always permits typeahead; otherwise it clears the
buffer for any but LlSPXREAD input.

?ACTIVATEFLG [Variable]

26.36

If true, enables the feature whereby ? lists alternative
~ompletions from the current spelling list.

SHOWPARENFLG [Variable]

TIVINBSFLG

If true, then whenever you are typing Lisp input and type a right
parenthesis/bracket, TTYIN will briefly move the cursor to the
matching parenthesis/bracket, assuming it is still on the screen.
The cursor stays there for about 1 second, or until you type
another character (i.e., if you type fast you'll never notice it).
This feature was inspired by a similar EMACS feature, and turned
out to be pretty easy to im p/ement.

[Variable]

Causes TTYIN to a/ways physically backspace, even if you're
running on a non-display (not a OM or Heath), rather than print
\deletedtext\ (this assumes your hardcopy terminal or glass tty is
capable of backspacing). If TTYINBSFLG is LF, then in addition to
backspacing, TTYIN x"s out the deleted characters as it backs up,
and when you stop deleting, it outputs a linefeed to drop to a
new, clean line before resuming. To save paper, this linefeed
operation is not done when only a single character is deleted, on
the grounds that you can probably figure out what you typed
anyway.

USER INPUT/OUTPUT PACKAGES

TTYINRESPONSES

TTYINERRORSETFLG

TTYINCOMMENTCHAR

TTYINCOMPLETEFLG

USER INPUT/OUTPUT PACKAGES

TIYIN DISPLAY TYPEIN EDITOR

[Variable]

An association list of special responses that will be handled by
routines designated by the programmer. See "Special
Responses" , below.

[Variable]

[Interlisp-D only] If true, non-LlSPXREAD inputs are
errorset-protected (control-E traps back to the prompt),
otherwise errors propagate upwards. Initially NIL.

[Variable]

This variable affects the treatment of lines beginning with the
comment character (usually"; "). If TTYINCOMMENTCHAR is a
character code, and the first character on a line of typein is equal
to TTYINCOMMENTCHAR, then the line is erased from the screen
and no input function will see it. If TTYINCOMMENTCHAR is NIL,
this feature is disabled. TTYINCOMMENTCHAR is initially NIL.

[Variable]

If true, enables Escape completion from USERWORDS during
READ inputs. Details below.

USERWORDS (page 20.17) contains words you mentioned
recently: functions you have defined or edited, variables you
have set or evaluated at the executive level, etc. This happens to
be a very convenient list for context-free escape completion; if
you have recently edited a function, chances are good you may
want to edit it agai n (typing" E F xxS") or type a call to it. If there
is no completion for the current word from USERWORDS, the
escape echoes as "S", i.e. nothing special happens; if there is
more than one possible completion, you get beeped. If typed
when not inside a word, Escape completes to the value of
LASTWORD, i.e., the last thing you typed that the p.a, "noticed"
(setting TTYINCOMPLETEFLG to 0 disables this latter feature),
except that Escape at the beginning of the line is left alone (it is a
p.a. command).

If you really wanted to enter an escape, you can, of course, just
quote it with a control-V, like you can other control chars.

You may explicitly add words to USERWORDS yourself that
wouldn't get there otherwise. To make this convenient online
the edit command [+-] means II add the current atom to
USERWORDS" (you might think of the command as "pointing
out this atom "). For example, you might be entering a function
definition and want to "point to" one or more of its arguments
or prog variables. Giving an argument of zero to this command
will instead remove the indicated atom from USERWORDS.

26.37

TTYIN DISPLAY TYPEIN EDITOR

26.4.11 Special Responses

TTYINRESPONSES

26.4.12 Display Types

26.38

Note that this feature loses some of its value if the spelling list is
too long, for then the completion takes too long
computationally and, more important, there are too many
alternative completions for you to get by with typing a few
characters followed by escape. Lisp's maintenance of the
spelling list USERWORDS keeps the "temporary" section (which
is where everything goes initially unless you say otherwise)
limited to #USERWORDS atoms, initially 100. Words falloff the
end if they haven't been used (they are "used II if FIXSPELL
corrects to one, or you use <escape> to complete one).

There is a facility for handling "special responses" during any
non-READ ITYIN input. This action is independent of the
particular call to TIYIN, and exists to allow you to effectively
"advise II TTYIN to intercept certain commands. After the
command is processed, control returns to the original TTYIN call.
The facility is implemented via the list TTYINRESPONSES.

[Variable]

TTYINRESPONSES is a list of elements, each of the form:

(COMMANDS RESPONSE-FORM OPT/ON)

COMMANDS is a single atom or list of commands to be
recognized; RESPONSE-FORM is EVALed (if a list), or APPl Yed (if
an atom) to the command and the rest of the line. Within this
form one can reference the free variables COMMAND (the
command the user typed) and LINE (the rest of the line). If
OPT/ON is the atom LINE, this means to pass the rest of line as a
list; if it is STRING, this means to pass it as a string; otherwise, the
command is only valid if there is nothing else on the line. If
RESPONSE-FORM returns the atom IGNORE, it is not treated as a
special response (I.e. the input is returned normally as the result
of TTYIN).

Suggested use: global commands or options can be added to the
toplevel value of TTYINRESPONSES. For more specialized
commands, rebind TTYINRESPONSES to (APPEND NEWENTRIES
TTYINRESPONSES) inside any module where you want to do this
sort of special processing.

Special responses are not checked for during READ-style input.

[This is not relevant in Interlisp-D]

USER INPUT/OUTPUT PACKAGES

26.5 Prettyprint

USER INPUT/OUTPUT PACKAGES

TTYIN DISPLAY TYPEIN EDITOR

TTYIN determines the type of display by calling DISPLA YTERMP,

which is initially defined to tesot the value of the GTTYP jsys. It
returns either NIL (for printing terminals) or a small number
giving TTYIN's internal code flor the terminal type. The types
TTYIN currently knows about:

o = glass tty (capable of deleting chars by backspacing, but little
else);

1 = Datamedia;

2 = Heath.

Only the Datamedia has full editing power. DISPLA YTERMP has
built into it the correct terminal types for Sumex and Stanford
campus 20's: Datamedia = 11 on tenex, 5 on tops20; Heath = 18
on Tenex, 25 on tops20. You can override those values by setting
the variable DISPLA YTYPES to be an association list associating
the GTTYP value with one of these internal codes. For example,
Sumex displays correspond to DISPLAYTYPES = «11 .1) (18.2»
[although this is actually compiled into DISPLA YTERMP for
speed]. Any display terminal other than Datamedia and Heath
can probably safely be assigned to" 0" for glass tty.

To add new terminal types, you have to choose a number for it,
add new code to TTYIN for it and recompile. The TTYIN code
specifies what the capabilities of the terminal are, and howto do
the primitive operations: up, down, left, right, address cursor,
erase screen, erase to end of line, insert character, etc.

For terminals lacking a meta key (currently only Datamedias have
it), set the variable EDITPREFIXC:HAR to the ascii code of an edit
"prefix" (Le. anything typed preceded by the prefix is considered
to have the meta bit on). If your EDITPREFIXCHAR is 33Q
(Escape), you can type a real Escape by typing 3 of them (2 won't
do, since that means "Meta-Escape", a legitimate argument to
another command). You could also define an Escape synonym
with TTYINREADMACROS if you wanted (but currently it doesn't
work in filename completion). Setting EDITPREFIXCHAR for a
terminal that is not equipped to handle the full range of editing
functions (only the Heath and Datamedia are currently so
equipped) is not guaranteed to work, i.e. the display will not
always be up to date; but if you can keep track of what you're
doing, together with an occasional control-R to help out, go
right ahead.

The standard way of printing out function definitions (on the
terminal or into files) is to use PRETTYPRINT.

26.39

PRETTYPRINT

26.40

(PRETTYPRINT FNS PRETTYDEFLG-) [Function]

FNS is a list of functions. If FNS is atomic, its value is used). The!
definitions of the functions are printed in a pretty format on the
primary output file using the primary readtable. For example, if
FACTORIAL were defined by typing

(DEFINEQ (FACTORIAL [LAMBDA (N) (COND «ZEROP N) 1)
(T (lTIMES N (FACTORIAL (SUB1 N]

(PRETTYPRINT '(FACTORIAL» would print out

(FACTORIAL
[LAMBDA(N)
(COND
«ZEROP N)
1)

(T (lTiMES N (FACTORIAL (SUB1 NJ)

PRETTYDEFLG is T when called from PRETTYDEF (and hence
MAKEFILE). Among other actions taken when this argument is
true, PRETTYPRINT indicates its progress in writing the current
output file: whenever it starts a new function, it prints on the
terminal the name of that function if more than 30 seconds (real
time) have elapsed since the last time it printed the name of a
function.

PRETTYPRINT operates correctly on functions that are BROKEN,
BROKEN-IN, ADVISED, or have been compiled with their
definitions saved on their property lists: it prints the original,
pristine definition, but does not change the current state of the
function. If a function is not defined but is known to be on one
of the files noticed by the file package, PRETTYPRINT loads in the
definition (using LOADFNS) and prints it (except when called
from PRETTYDEF). If PRETTYPRINT is given an atom which is not
the name of a function, but has a value, it prettyprints the value.
Otherwise, PRETTYPRINT attempts spelling correction. If all fails,
PRETTYPRINT returns (FN NOT PRINTABLE). Note that
PRETTYPRINT will return (FN NOT PRINTABLE) if FN does not
have an accessable expr definition, or if it doesn't have any
definition at all.

[NLambda NoSpread Function1

For prettyprinting functions to the terminal. PP calls
PRETrYPRINT with the primary output file set to T and the
primary read table set to T. The primary output file and primary
readtable are restored after printing.

(PP FOO) is equivalent to {PRETTYPRINT '(FOO»; (PP FOO FIE) is
equivalent to (PRETTYPRINT '(FOO FIE».

As described above, when PRETTYPRINT, and hence PP, is called
with the name of a function that is not defined, but whose

USER INPUT/OUTPUT PACKAGES

(PF FN FROMFILES rOFfLE)

PRETTY PRINT

definition is ona file known to the file package, the definition is
autqmatically read in and then prettyprinted. However, if the
user does not intend on editing or running the definition, but
simply wants to see the definition, the function PF described
below can be used to simply C()py the corresponding characters
from the file to the terminal. This results in a savings in both
space and time, since it is not necessary to allocate storage to
actually read in the definition, and it is not necessary to
re-prettyprint it (since the function is already in prettyprint
format on the file).

[NLambda NoSpread Function]

Copies the. definition of FN found on each of the files in
FROMFfLES to rOFfLE. If rOFfLE = NIL, defaults to T. If
FROMFfLES = NIL, defaults to (WHEREIS FN NIL T) (see page
17.14). The typical usage of PF is simply to type "PF FN" .

PF prints a message if it can't find a file on FROMFILES, or it can't
find the function FN on a file.

When printing to the terminal, PF performs several
transformations on the characters in the file that comprise the
definition for FN: (1) font information is stripped out (except in
Interlisp-D, whose display supports multiple fonts); (2)
occurrences of the CHANGECHAR (page 26.49) are not printed;
(3) since f~.mctions typically tend to be printed to a file with a
larger linelength than when priinting to a terminal, the number
of leading spaces on each line is cut in half (unless PFDEFAULT is
T; initially NIL); and (4) comments are elided, if
COMMENTFLG is non-NIL (see page 26.43).

(SEE FROMFfLE rOFfLE) [NLambda NoSpread Function]

Copies all of the text from FROMFfLE to rOFILE (defaults to T),
processing all text as PF does. Used to display the contents of
files on the terminal.

(PP* X) [NLambda NoSpread Function]

(PF* FN FRaMFILES raFfLE) [NLambda NoSpread Function]

(SEE* FROMFILE raFILE) [NLambda NoSpread Function]

USER INPUT/OUTPUT PACKAGES

These functions operate exactly like PP, PF, and SEE, except that
.they bind **COMMENT**FLG to) NIL, so comments are printed in
full (see page 26.43).

26.41

PRETTYPRINT

While the function PRETTYPRINT prints entire function
definitions, the function PRINTDEF can be used to print parts of
functions, or arbitrary Interlisp structures:

(PRINTDEF EXPR LEFT DEF TAILFLG FNSLST FILE) [Function]

26.5.1 Comment Feature

26.42

Prints the expression EXPR in a pretty format on FILE using the
primary readtable. LEFT is the left hand margin (LiNELENGTH
determines the right hand margin). PRINTDEF initially performs
(TAB LEFT T), which means to space to position LEFT, unless
already beyond this position, in which case it does nothing.

DEF = T means EXPR is a function definition, or a piece of one. If
DEF = NIL, no special action is taken for LAMBDA's, PROG's,
COND's, comments, ClISP, etc. DEF is NIL when PRETTYDEF calls
PRETTYPRINT to print variables and property lists, and when
PRINTDEF is called from the editor via the command PPV.

TAILFLG = T means EXPR is interpreted as a tail of a list, to be
printed without parentheses.

FNSLST is for use for printing with multiple fonts (page 27.25).
PRINTDEF prints occurrences of any function in the list FNSLST in
a different font, for emphasis. MAKEFILE passes as FNSLST the
list of all functions on the file being made.

A facility for annotating Interlisp functions is provided in
PRETTYPRINT. Any expression beginning with the atom '*' is
interpreted as a comment and printed in the right margin.
Example:

(FACTORIAL
[LAMBDA (N)

(COND
«ZEROP N)
1)

(T

('*' COMPUTES N!)

('*' RECURSIVE DEFINITION:
Nt • N'*'N-1!)

(IT1MES N (FACTORIAL (SUB1 N])

These comments actually form a part of the function definition.
Accordingly, '*' is defined as an nlambda nospread function that
returns its argument, similar to QUOTE. When running an
interpreted function, '*' is entered the same as any other Interlisp
function. Therefore, comments should only be placed where
they will not harm the computation, i.e., where a quoted
expression could be placed. For example, writing

(ITIMES N (FACTORIAL (SUB1 N» ('*' RECURSIVE DEFINITION»

USER INPUT/OUTPUT PACKAGES

COMMENTFLG

COMMENTFLG

(COMMENT1 L-)

USER INPUT/OUTPUT PACKAGES

PRETIYPRINT

in the above function would cause an error when ITIMES
attempted to multiply N, Nm1!, and RECURSIVE.

For compilation purposes, * is defined as a macro which compiles
into no instructions (unless the comment has been placed where
it has been used for value, in which case the compiler prints an
appropriate error message and compiles * as QUOTE). Thus, the
compiled form of a function with comments does not use the
extra atom and list structure storage required by the comments
in the source (interpreted) code. This is the way the comment
feature is intended to be used.

A comment of the form (* E X) causes X to be evaluated at
prettyprint time, as well as printed as a comment in the usual
way. For example, (* E (RADIX 8» as a comment in a function
containing octal numbers can be used to change the radix to
produce more readable printout.

The comment character * is stored in the variable COMMENTFLG.
The user can set it to some other val ue, e.g. "; II , and use this to
indicate comments.

[Variable]

If CAR of an expression is EQ to COMMENTFLG, the expression is
treated as a comment by PRETTYPRINT. COMMENTFLG is
initialized to *. Note that whatever atom is chosen for
COMMENTFLG should also have an appropriate function
definition and compiler macro, for example, by copying those of

*

Comments are designed malinly for documenting listings.
Therefore, when prettyprinting to the terminal, comments are
suppressed and printed as the string **COMMENT**. The value
of **COMMENT**FLG determines the action.

[Variable]

If **COMMENT**FLG is NIL, comments are printed. Otherwise,
the v~lue of **COMMENT**FLG is printed. Initially II

COMMENT ".

[Function]

Prints the comment L. COMMENT1 is a separate function to
permit the user to write prettyprint macros (page 26.48) that use
the regular comment printer. For example, to cause comments
to be printed at a larger than normal linelength, one could put
an entry for * on PRETTYPRINTMACROS:

(* LAMBDA (X) (RESETFORM (LI~IELENGTH 100) (COMMENT1 X»)

This macro resets the line length, prints the comment, and then
restores the line length.

26.43

PRETTY PRINT

COMMENT1 expects to be called from within the environment
established by PRINTDEF, so ordinarily the user should call it only

from within prettyprint macros.

26.5.2 Comment Pointers

26.44

For a well-commented collection of programs, the list structure,
atom. and print name storage required to represent the
comments in core can be significant. If the comments already
appear on a file and are not needed for editing, a significant
savings in storage can be achieved by simply leaving the text of
the comment on the file when the file is loaded, and instead
retaining in core only a pointer to the comment. When this
feature is enabled, * is defined as a read macro (page 25.39) in
FllERDTBl which, instead of reading in the entire text of the
comment, constructs an expression containing (1) the name of
the file in which the text of the comment is contained, (2) the
address of the first character of the comment, (3) the number of
characters in the comment, and (4) a flag indicating whether the
comment appeared at the right hand margin or centered on the
page. For output purposes, * is defined on
PRETTYPRINTMACROS (page 26.48) so that it prints the
comments represented by such pointers by simply copying the,
corresponding characters from one file to another, or to the
terminal. Normal comments are processed the same as· before,
and can be intermixed freely with comment pointers.

The comment pointer feature is controlled by the function
NORMAlCOMMENTS.

(NORMAlCOMMENTS FLG) [Function]

If FLG is Nil, the comment pointer feature is enabled. If FLG is T,
the comment pointer feature is disabled (the default).

NORMALCOMMENTS can be changed as often as desired. Thus,
some files can be loaded normally, and others with their
comments converted to comment pointers.

For convenience of editing selected comments, an edit macro,
GET*, is included, which loads in the text of the corresponding
comment. The editor's PP* command, in contrast, prints the
comment without reading it by simply copying the
corresponding characters to the terminal. GET* is defined in
terms of GETCOMMENT:

(GETCOMMENT X DESTFL -) [Function]

If X is a comment pointer, replaces X with the actual text of the
comment, which it reads from its file. Returns X in all cases. If

USER INPUT/OUTPUT PACKAGES

(PRINTCOMMENT X)

PRETIVPRINT

DESTFL is non-NIL, it is the name of an open file, to which
GETCOMMENT copies the comment; in this case" X remains a
comment pointer, but it has been changed to point to the new
file (unless NORMALCOMMENTS has been set to DONTUPDATE).

[Function]

Defined as the prettyprint macro for *: copies the comment to
the primary output file by using GETCOMMENT.

(READCOMMENT FL RDTBL LSn [Function]

USER INPUT/OUTPUT PACKAGES

Defined as the read macro for * in FILERDTBL: if
NORMALCOMMENTSFLG is NIL, it constructs a comment pointer,
unless it believes the expression beginning with * is not actually a
comment, e.g., if the next atom is "." or E.

Note that a certain amount of care is required in using the
comment pointer feature. Since the text of the comment resides
on the file pointed to by the comment pointer, that file must
remain in existence as long as the comment is needed.
GETCOMMENT helps out by changing the comment pointer to
always point at the most recent file that the comment lives on.
However, if the user has been performing repeated MAKEFILE's
(page 17.10) in which differing functions have changed at each
invocation of MAKEFILE, it is possible for the comment pointers
in memory to be pointing at several versions of the same file,
since a comment pointer is only updated when the function it
lives in is prettyprinted, not when the function has been copied
verbatim to the new file. This can be a problem for file systems
that have a built-in limit on the number of versions of a given file
that will be made before old versions are expunged. In such a
case, the user should set the version retention count of any
directories involved to be infinite. GETCOMMENT prints an error
message if the file that the c:omment pointer points at has
disappeared.

Similarly, one should be cognizant of comment pointers in
sysouts, and be sure to retain any files thus pointed to.

When using comment pointers, the user should also not set
PRETTYFLG (page 26.48) to Nil. or call MAKEFILE with option
FAST, since this wi" prevent functions from being prettyprinted,
and hence not get the text of the comment copied into the new
file.

If the user changes the value of (OMMENTFLG but still wishes to
use the comment pointer feature, the new COMMENTFLG should
be given the same read-macro definition in FILERDTBL as * has,
and the same entry be put ()n PRETTYPRINTMACROS. For
example, if COMMENTFLG is res~H to be ";", then (SETSYNTAX ';

26.45

PRETIYPRINT

'* FILERDTBL) should be performed, and (; . PRINTCOMMENT)

added to PRETTYPRINTMACROS.

26.5.3 Converting Comments to Lower Case

LCASELST

UCASELST

ABBREVLST

26.46

This section is for users using terminals without lower case, who
nevertheless would like their comments to be converted to lower
case for more readable listings. If the second atom in a comment
is 0/0%, the text of the comment is converted to lower case so
that it looks like English instead of Lisp. Note that comments are
converted only when they are actually written to a file by
PRETTYPRI NT.

The algorithm for conversion to lower case is the following: If
the first character in an atom is f, do not change the atom (but
remove the f). If the first character is %, convert the atom to
lower case. Note that the user must type % % as % is the escape
character. If the atom (minus any trailing punctuation marks) is
an Interlisp word (i.e., is a bound or free variable for the function
containing the comment, or has a top level value, or is a defined
function, or has a non-NIL property list), do not change it.
Otherwise, convert the atom to lower case. Conversion only
affects the upper case alphabet, i.e., atoms already converted to
lower case are not changed if the comment is converted again.
When converting, the first character in the comment and the
first character following each period are left capitalized. After
conversion, the comment is physically modified to be the lower
case text minus the 0/0% flag, so that conversion is thus only
performed once (unless the user edits the comment inserting
additional upper case text and another % % flag).

[Variable]

Words on LCASELST will always be converted to lower case.
LCASELST is initialized to contain words which are Interlisp
functions but also appear frequently in comments as English

o
words (AND, EVERY, GET, GO, LAST, LENGTH, LIST, etc.).
Therefore, if one wished to type a comment including the lisp
fuction GO, it would be necessary to type f GO in order that it
might be left in upper case.

[Variable]

Words on UCASELST (that do not appear on LCASELST) will be
left in upper case. UCASELST is initialized to NIL.

[Variable]

ABBREVLST is used to distinguish between abbreviations and
words that end in periods. Normally, words that end in periods
and occur more than halfway to the right margin cause

USER INPUT/OUTPUT PACKAGES

26.5.4 Special Prettyprint Controls

PRETTVTABFlG

#RPARS

FIRSTCOl

PRETTVlCOM

#CAREFUlCOlUMNS

USER INPUT/OUTPUT PACKAGES

PRETTYPRINT

carriage-returns. Furthermore, during conversion to lowercase,
words ending in periods, except for those on ABBREVlST, cause
the first character in the next word to be capitalized. ABBREVlST
is initialized to the upper and lower case forms of ETC., I.E., and
E.G ..

[Variable1

In order to save space on files, tabs are used instead of spaces for
the inital spaces on each line, assuming that each tab
corresponds to 8 spaces. This rE~sults in a reduction of file size by
about 30%. Tabs are not used if PRETTVTABFlG is set to Nil
(initially T).

[Variable1

Controls the number of right parentheses necessary for square
bracketing to occur. If #RPARS = Nil, no brackets are used.
#RPARS is initialized to 4.

[Variable1

The starting column for comments. Comments run between
FIRSTCOl and the line length set by lINElENGTH (page 25.11). If
a word in a comment ends with a "." and is not on the list
ABBREVLST, and the position is greater than halfway between
FIRSTCOl and lINElENGTH, the next word in the comment
begins on a new line. Also, if a list is encountered in a comment,
and the position is greater than halfway, the list begins on a new
line.

[Variable]

If a comment has more than PRETTVlCOM elements (using
COUNT), it is printed starting at column 10, instead of FIRSTCOL.
Comments are also printed starting at column 10 if their second
element is also a *, i.e., comments of the form (* * _.).

[Variable]

In the interests of efficiency, PRETTVPRINT approximates the
number of characters in each atom, rather than calling NCHARS,
when computing how much will fit on a line. This procedure
works satisfactorily in most cases. However, users with unusually
long atoms in their programs, e.g., such as produced by CliSPIFV,
may occasionlly encounter somE~ glitches in the output produced
by PRETTVPRINT. The value' of #CAREFUlCOlUMNS tells
PRETTVPRINT how many columns (counting from the right hand

26.47

PRETTYPRINT

26.48

(WIDEPAPER FLG)

margin) in which to actually compute NCHARS instead of
approximating. Setting #CAREFULCOLUMNS to 20 or 30 will
eliminate the glitches, although it will slow down PRETTVPRINT
slightly. #CAREFULCOlUMNS is initially O.

[Function]

(WIDEPAPER T) sets FILELINELENGTH (page 25.11), FIRSTCOl, and
PRETTVLCOM to large values appropriate for pretty printing files
to be listed on wide paper. (WIDEPAPER) restores these
parameters to their initial values. WIDEPAPER returns the
previous setti ng of FLG.

PRETTVFLG [Variable]

CliSPI FVPRETTVFLG

PRETTVPRINTMACROS

PRETTVPRINTYPEMACROS

If PRETTVFlG is NIL, PRINTDEF uses PRIN2 instead of
prettyprinting. This is useful for producing a fast symbolic dump
(see the FAST option of MAKEFILE, page 17.10). Note that the
file loads the same as if it were prettyprinted. PRETTVFLG is
initially set to T. PRETTVFLG should not be set to NIL if comment
pointers (page 26.44) are being used.

[Variable]

Used to inform PRETTVPRINT to call CLiSPIFV on selected
function definitions before printing them (see page 21.26).

[Variable]

An association-list that enables the user to control the
formatting of selected expressions. CAR of each expression
being PRETTVPRINTed is looked up on PRETTVPRINTMACROS,
and if found, CDR of the corresponding entry is applied to the
expression. If the result of this application is Nil, PRE'ITVPRINT
ignores the expression; i.e., it prints nothing, assuming that the
prettyprintmacro has done any desired printing. If the result of
applying the prettyprint macro is non-NIL, the result is
prettyprinted in the normal fashion. This gives the user the
option of computing some other expression to be prettyprinted
in its place.

Note: "prettyprinted in the normal fashion" includes processing
prettyprint macros, unless the prettyprint macro returns a
structure EQ to the one it was handed, in which case the
potential recursion is broken.

[Variable]

A list of elements of the form (TYPENAM,E . FN). For types other
than lists and atoms, the type name of each datum to be
prettyprinted is looked up on PRETTYPRINTYPEMACROS, and if

USER INPUT/OUTPUT PACKAGES

PRETTYEQUIVLST

CHANGECHAR

USER INPUT/OUTPUT PACKAGES

PRETIYPRINT

found, the corresponding function is applied to the datum about
to be printed, instead of simply printing it with PRIN2.

[Variable]

An association-list that tells PRETTYPRINT to treat a CAR-of-form
the same as some other C:AR-of-form. For example, if
(QLAMBDA . LAMBDA) appears on PRETTYEQUIVLST, then
expressions beginning with QLAMBDA are prettyprinted the
same as LAMBDAs. Currently, PRETTYEQUIVLST only allows (i.e.,
supports in an interesting w.ay) equivalences to forms that
PRETTYPRINT internally handles. Equivalence to forms for which
the user has specified a prettyprint macro should be made by
adding further entries to PRETTYPRINTMACROS

[Variable]

If non-NIL, and PRETTYPRINT is printing to a file or display
terminal, PRETTYPRINT prints CHANGECHAR in the right hand
margin while printing those expressions marked by the editor as
having been changed (see page 16.30). CHANGECHAR is initially

I·

26.49

PRETIYPRINT

[This page intentionally left blank]

26.50 USER INPUT/OUTPUT PACKAGES

TAIBLE OF CONTENTS

27.. Graphics Output Operations 27.1

27.1. Primitive Graphics Concepts 27.1

27.1.1. Positions 27.1

27.1.2. Regions 27.1

27.1.3. Bitmaps 27.3

27.1.4. Textures 27.6

27.2. Opening Image Streams 27.8

27.3. Accessing Image Stream Fields 27.10

27.4. Current Position of an Image Stream 27.13

27.5. Moving Bits Between Bitmaps With BITBl T 27.14

27.6. Drawing lines 27.17

27.7. Drawing Curves 27.18

27.S. Miscellaneous Drawing and Printing Operations 27.20

27.9. Drawing and Shading Grids 27.22

27.10. Display Streams 27.23

27.12. Fonts 27.25

27.13. Font Files and Font Directories 27.31

27.15. Font Profiles 27.32

27.16. Image Objects 27.35

27.16.1. IMAGEFNS Methods 27.36

27.16.2. Registering Image Objects 27.39

27.16.3. Reading and Writing Image Objects on Files 27.40

27.16.4. Copying Image Objects Between Windows 27.41

27.17. Implementation of Image Streams 27.42

TABLE OF CONTENTS TOCl

TABLE OF CONTENTS

[This page intentionally left blank]

TOC.2 TABLE OF CONTENTS

27.GRAPHICS OUlrpUT OPERATIONS

Streams are used as the basis for all I/O operations. Files are
implemented as streams that can support character printing and
reading operations, and file pointer manipulation. An image
stream is a type of stream that also provides an interface for
graphical operations. All of the operations that can applied to
streams can be applied to image streams. For example, an image
stream can be passed as the argument to PRINT, to print
something on an image stream. In addition, special functions are
provided to draw lines and curves and perform other graphical
operations. Calling these functions on a stream that is not an
image stream will generate an error.

27 .. 1 Primitive Graphics Concepts

27.1.1 Positions

(POSITIONP X)

27.1.2 Regions

GRAPHICS OUTPUT OPERATIONS

The Interlisp-D graphics system is based on manipulating bitmaps
(rectangular arrays of pixels), positions, regions, and textures.
These objects are used by all of the graphics functions.

A position denotes a point in an X,Y coordinate system. A
POSITION is an instance of a record with fields XCOORD and
YCOORD and is manipulated with the standard record package
facilities. For example, (create POSITION XCOORD +- 10
YCOORD +- 20) creates a position representing the point (10,20).

[Function]

Returns X if X is a position; NIL otherwise.

A Region denotes a rectangular' area in a coordinate system.
Regions are characterized by the (:oordinates of their bottom left

,corner and their width and height. A REGION is a record with
fields LEFT, BOnOM, WIDTH, and HEIGHT. It can be
manipulated with the standard record package facilities. There

27.1

PRIMITIVE GRAPHICS CONCEPTS

27.2

are access functions for the REGION record that return the TOP

and RIGHT of the region.

The following functions are provided for manipulating regions:

(CREATEREGION LEFT B01TOM WIDTH HEIGHn [Function]

(REGIONP X)

Returns an instance of the REGION record which has LEFT,

B01TOM, WIDTH and HEIGHT as respectively its LEFT, BOTTOM,

WIDTH, and HEIGHT fields.

Example: (CREATEREGION 10 -20 100 200) will create a region

that denotes ~ rectangle whose width is 100, wh.ose height is
200, and whose lower left corner is at the position (10,-20).

[Function]

Returns X if X is a region, NIL otherwise.

(lNTERSECTREGIONS REGION1 REGION2 ... REG/ONn) [NoSpread Function]

Returns a region which is the intersection of a number of
regions. Returns NIL if the intersection is empty.

(UNIONREGIONS REGION 1 REGION2 ... REGIONn) [NoSpread Function]

Returns a region which is the union of a number of regions, i.e.
the smallest region that contains all of them. Returns Nil if there
are no regions given.

(REGIONSINTERSECTP REGION 1 REGION2) [Function]

Returns T if REGION 1 intersects REGION2. Returns NIL if they do
not intersect.

(SUBREGIONP LARGEREGION SMALLREGION) [Function]

Returns T if SMALLREGION is a subregion (is equal to or entirely
contained in) LARGEREGION; otherwise returns NIL.

(EXTENDREGION REGION INCLUDEREGION) [Function]

Changes (destructively modifies) the region REGION so that it
includes the region INCLUDEREGION. It returns REGION.

(MAKEWITHINREGION REGION LlMITREGION) [Function]

Changes (destructively modifies) the left and bottom of the
region REGION so that it is within the region LlMITREGION, if
possible. If the dimension of REGION are larger than
LlMITREGION, REGION is moved to the lower left of
LlMITREGION. If LlMITREGION is NIL, the value of the variable
WHOLEDISPLA V (the screen region) is used.
MAKEWITHINREGION returns the modified REGION.

GRAPHICS OUTPUT OPERATIONS

PRIMITIVE GRAPHICS CONCEPTS

(lNSIDEP REGION POSORX y) [Function]

27.1.3 Bitmaps

If POSORX and Y are numbE~rs, it returns T if the point
(POSORX, Y) is inside of REGION. If POSORX is a POSITION, it
returns T if POSORX is inside of REGION. If REGION is a
WINDOW, the window's interior region in window coordinates is
used. Otherwise, it returns NIl.

The display primitives manipulate graphical images in the form
of bitmaps. A bitmap is a rectangular array of II pixels, II each of
which is an integer representing the color of one point in the
bitmap image. A bitmap is creatE~d with a specific number of bits
allocated for each pixel. Most bitmaps used for the display
screen use one bit per pixel, so that at most two colors can be
represented. If a pixel is 0, the corresponding location on the
image is white. If a pixel is 1, its location is black. This
interpretation can be changed for the display screen with the
function VIDEOCOlOR (page 30,23). Bitmaps with more than
one bit per pixel are used to reprE~sent color or grey scale images.
Bitmaps use a positive integer coordinate system with the lower
left corner pixel at coordinate (0,0). Bitmaps are represented as
instances of the datatype BITMAP. Bitmaps can be saved on files
with the VARS file package command (page 17.35).

(BITMAPCREA TE WIDTH HEIGHT BITSPERPIXEL) [Function]

(BITMAPPX)

(BITMAPWIDTH BITMAP)

(BITMAPHEIGHT BITMAP)

(BITSPERPIXElBITMAP)

Creates and returns a new bitmap which is WIDTH pixels wide by
HEIGHT pixels high, with BITSPERPIXEL bits per pixel. If
BITSPERPIXEL is Nil, it defaults to 1.

[Function]

Returns X if X is a bitmap, Nil otherwise.

[Function]

Returns the width of BITMAP in pi.xels.

[Function]

Retu rns the hei ght of BITMAP in pli xel s.

[Function]

Returns the number of bits per pixel of BITMAP.

(BITMAPBIT BITMAP X Y NEWVALUE) [Function]

GRAPHICS OUTPUT OPERA nONS

If NEWVALUE is between 0 and the maximum value for a pixel in
BITMAP, the pixel (X, Y) is changE~d to NEWVALUE and the old

27.3

PRIMITIVE GRAPHICS CONCEPTS

27.4

(BITMAPCOPY BITMAp)

value is returned. If NEWVALUE is NIL, BITMAP is not changed
but the value of the pixel is returned, If NEWVALUE is anything
else, an error is generated. If (X, Y) is outside the limits of
BITMAP, 0 is returned and no pixels are changed. BITMAP can
also be a window or display stream. Note: non-window image
streams are "write-only"; the NEWVALUE argument must be
non-NIL

[Function]

Returns a new bitmap which is a copy of BITMAP (same
dimensions, bits per pixel, and contents).

(EXPANDBITMAP BITMAP WIDTHFACTOR HEIGHTFACTOR) [Function]

Returns a new bitmap that is WIDTHFACTOR times as wide as
BITMAP and HEIGHTFACTOR times as high. Each pixel of BITMAP

is copied into a WIDTHFACTOR times HEIGHTFACTOR block of
pixels. If NIL, WIDTHFACTOR defaults to 4, HEIGHTFACTOR to 1.

(SHRINKBITMAP BITMAP WIDTHFACTOR HEIGHTFACTOR DESTINA TlONBITMAP) [Function]

Returns a copy of BITMAP that has been shrunken by
WIDTHFACTOR and HEIGHTFACTOR in the width and height,
respectively. If NIL, WIDTHFACTOR defaults to 4, HEIGHTFACTOR

to 1. If DESTINA T10NBITMAP is not provided, a bitmap that is
l/WIDTHFACTOR by l/HEIGHTFACTOR the size of BITMAP is
created and returned. WIDTHFACTOR and HEIGHTFACTOR must
be positive integers.

(PRINTBITMAP BITMAP FILE) [Function]

(READBITMAP FILE)

(EDITBM BMSPEC)

Prints the bitmap BITMAP on the file FILE in a format that can be
read back in by READBITMAP.

[Function]

Creates a bitmap by reading an expression (written by
PRINTBITMAP) from the file FILE.

[Function]

EDITBM provides an easy-to-use interactive editing facility for
various types of bitmaps. If BMSPEC is a bitmap, it is edited. If
BMSPEC is an atom whose value is a bitmap, its value is edited. If
BMSPEC is NIL, EDITBM asks for dimensions and creates a bitmap.
If BMSPEC is a region, that portion of the screen bitmap is used.
If BMSPEC is a window, it is brought to the top and its contents
edited.

EDITBM sets up the bitmap being edited in an editing window.
The editing window has two major areas: a gridded edit area in

GRAPH ICS OUTPUT OPERATIONS

Paint

GRAPHICS OUTPUT OPERATIONS

PRIMITIVE GRAPHICS CONCEPTS

the lower part of the window and a display area in the upper left
part. In the edit area, the left button will add points, the middle
button will erase points. The riglht button provides access to the
normal window commands t() reposition and reshape the
window. The actual size bitmap is shown in the display area. For
example, the following is a picture of the bitmap editing
window editing a eight-high by E~jghteen-wide bitmap:

Bitmap Edito ..

If the bitmap is too large to fit in the edit area, only a portion will
be editable. This portion can be changed by scrolling both up
and down in the left margin and left and right in the bottom
margin. Pressing the middle button while in the display area will
bring up a menu that allows global placement of the portion of
the bitmap being edited. To allow more of the bitmap to be
editing at once, the window can be reshaped to make it larger or
the GridSize+- command described below can be used to reduce
the size of a bit in the edit area.

The bitmap editing window can be reshaped to provide more or
less room for editing. When this happens, the space allocated to
the editing area will be changed to fit in the new region.

Whenever the left or middle button is down and the cursor is not
in the edit area, the section of the display of the bitmap that is
currently in the edit area is complemented. Pressing the left
button while not in the edit region will put the lower left 16 x 16
section of the bitmap into the cursor for as long as the left
button is held down.

Pressing the middle button whilE! not in either the edit area or
the display area (Le. while in the grey area in the upper right or
in the title) will bring up a command menu. There are
commands to stop editing, to restore the bitmap to its initial
state and to clear the bitmap. Holding the middle button down
over a command will result in an explanatory message being
printed in the prompt window. The commands are described
below:

Puts the current bitmap into a window and call the window
PAINT command on it. The PAINT command implements
drawing with various brush sizes and shapes but only on an

27.5

PRIMITIVE GRAPHICS CONCEPTS

27.1.4 Textures

27.6

actual sized bitmap. The PAINT mode is left by pressing the
RIGHT button and selecting the QUIT command from the menu.
At this point, you will be given a choice of whether or not the
changes you made while in PAINT mode should be made to the

current bitmap.

ShowAsTile Tesselates the current bitmap in the upper part of the window.
This is useful for determining how a bitmap will look if it were
made the display background (using the function
CHANGEBACKGROUND). Note: The tiled display will not
automatically change as the bitmap changes; to update it, use
the ShowAsTile command again.

Grid,On/Off Turns the editing grid display on or off.

GridSize+- Allows specifkation of the size of the editing grid. Another
menu will appear giving a choice of several sizes. If one is
selected, the editing portion of the bitmap editor will be
redrawn using the selected grid size, allowing more or less of the
bitmap to be edited without scrolling. The original size is chosen
hueristically and is typically about 8. It is particularly useful when
editing large bitmaps to set the edit grid size smaller than the
original.

Reset Sets all or part of the bitmap to the contents it had when EDITBM
was called. Another menu will appear giving a choice between
resetting the entire bitmap or just the portion that is in the edit
area. The second menu also acts as a confirmation, since not
selecting one of the chokes on this menu results in no action
being taken.

Clear Sets all or part of the bitmap to O. As with the Reset command,
another menu gives a choke between clearing the entir,e bitmap
or just the portion that is in the edit area.

Cursor+- Sets the cursor to the lower left part of the bitmap. This prompts
the user to specify the cursor II hot spot" (see page 30.14) by
clicking in the lower left corner of the grid.

OK Copies the changed image into the original bitmap, stops the
bitmap editor and closes the edit windows. The changes the
bitmap editor makes during the interaction occur on a copy of
the original bitmap. Unless the bitmap editor is exited via OK, no .
changes are made in the original.

Stop Stops the bitmap editor without making any changes to the
original bitmap.

A Texture denotes a pattern of gray which can be used to
(conceptually) tessellate the plane to form an infinite sheet of
gray. It is currently either a 4 by 4 pattern or a 16 by N (N < = 16)

GRAPHICS OUTPUT OPERATIONS

PRIMITIVE GRAPHICS CONCEPTS

pattern. Textures are created from bitmaps using the following
function:

(CREATETEXTUREFROMBITMAP BITMAP) [Function]

(TEXTUREP OBJECn

(EDITSHADE SHADE)

GRAPHICS OUTPUT OPERATIONS

Returns a texture object that will produce the texture of BITMAP.
If BITMAP is too large, its lower ~eft portion is used. If BITMAP is
too small, it is repeated to fill out the texture.

[Function]

Returns OBJECT if it is a texture; INIL otherwise.

The functions which accept textures (TEXTUREP, BITBL T,

DSPTEXTURE, etc.) also accept bitmaps up to 16 bits wide by 16
bits high as textures. When a region is being filled with a bitmap
texture, the texture is treated as if it were 16 bits wide (if less, the
rest is filled with white space).

The common textures white and black are available as system
constants WHITESHADE and BU~~CKSHADE. The global variable
GRAYSHADE is used by many system facilities as a background
gray shade and can be set by the user.

[Function]

Opens a window that allows the user to edit textures. Textures
can be either small (4 by 4) patterns or large (16 by 16). In the

I edit area, the left button adds bits to the shade and the middle
button erases bits from the shadEL The top part of the window is
painted with the current texture whenever all mouse keys are
released. Thus it is possible to directly compare two textures that
differ by more than one pixel by holding a mouse key down until
all changes are made. When the "quit" button is selected, the
texture being edited is returned.

If SHADE is a texture object, EDITSHADE starts with it. If SHADE

is T, it starts with a large (16 by 16) white texture. Otherwise, it
starts with WHITESHADE.

The following is a picture of the texture editor, editing a large
(16 by 16) pattern:

27.7

PRIMITIVE GRAPHICS CONCEPTS

27.2 Opening Image Streams

27.8

An image stream is an output stream which "knows" how to
process graphic commands to a graphics output device. Besides
accepting the normal character-output functions (PRINT, etc.), an
image stream can also be passed as an argument to functions to
draw curves, to print characters in multiple fonts, and other
graphics operations.

Each image stream has an "image stream type," a litatom that
specifies the type of graphic output device that the image stream
is processing graphics commands for. Currently, the built-in
image stream types are DISPLAY (for the display screen),
INTERPRESS (for Interpress format printers), and PRESS (for Press
format printers). There are also library packages available that
define image stream types for the IRIS display, 4045 printer,
FX-80 printer, C150 printer, etc.

Image streams to the display (display streams) interpret graphics
commands by immediately executing the appropriate operations
to cause the desired image to appear on the display screen.
Image streams for hardcopy devices such as Interpress printers
interpret the graphic commands by saving information in a file,
which can later be sent to the printer.

GRAPH ICS OUTPUT OPERATIONS

OPENING IMAGE STREAMS

No~e: Not all graphics operations can be properly executed for
all . image stream types. For example, BITBl T may not be
supported to all printers. This functionality is still being
developed, but even in the long run some operations may be
beyond the physical or logical capabilities of some devices or
image file formats. In these casles, the stream will approximate
the specified image as best it can.,

(OPENIMAGESTREAM FILE IMAGETYPE OPTIONS) [Function]

REGION

GRAPHICS OUTPUT OPERATIONS

Opens and returns an image stream of type IMAGETYPE on a
destination specified by FILE. If FILE is a file name on a. n9rmal
file storage device, the image stream will store graphics
commands on the specified file, which can be transmitted to a
printer by explicit calls to lISTFllLES and SEND.FllE.TO.PRINTER.
If IMAGETYPE is DISPlA V, then the user is prompted for a
window to open. FILE in this casle will be used as the title of the
window.

If FILE is a file name on the lPl' device, this indicates that the
graphics commands should be stored in a temporary file, and
automatically sent to the printer when the image stream is
closed by ClOSEF. FILE = NIL is equivalent to FILE = {lPT}. File
names on the lPT device are of the form
{lPT}PRINTERNAME. TYPE, WherE! PRINTERNAME, TYPE, or both
may be omitted. PRINTERNAME is the name of the particular
printer to which the file will be transmitted on closing; it
defaults to the first printer on DEFAUl TPRINTINGHOST that can
print IMAGETYPE files. The TYPE extension supplies the value of
IMAGETYPE when it is defaulted (see below).
OPENIMAGESTREAM will gener,ate an error if the specified
printer does not accept the kind of file specified by IMAGETYPE.

If IMAGETYPE is Nil, the image type is inferred from the
extension field of FILE and the EXTENSIONS properties in the list
PRINTFILETVPES (see page 29.6). Thus, the extensions IP, IPR, a.nd
INTERPRESS indicate Interpress format, and the extension PRESS
indicates Press format. If FILE is () printer file with no extension
{of the form {lPT}PRINTERNAME) , then IMAGETYPE will be the
type that the indicated printer can print. If FILE has no extension
but is not on the printer device {lPT}, then IMAGETYPE will
default to the type accepted by the first printer on
DEFAUl TPRINTINGHOST.

OPTIONS is a list in property list format, (PROP7 VAL 7 PROP2

VAL2 -), used to specify certain attributes of the image stream;
not all attributes are meaningful or interpreted by all types of
image streams. Acceptable properties are:

Value is the region on the page (In stream scale units, 0,0 being
the lower-left corner of the page) that text wi II fi II up. It
establishes the initial values for DSPlEFTMARGIN,

27.9

OPENING IMAGE STREAMS

DSPRIGHTMARGIN, DSPBOTTOMMARGIN (the point at which

carriage returns cause page advancement) and DSPTOPMARGIN
(where the stream is positioned at the beginning of a new page).

If this property is not given, the value of the variable
DEFAUlTPAGEREGION, is used.

FONTS Value is a list of fonts that are expected to be used in the image
stream. Some image streams (e.g. Interpress) are more efficient
if the expected fonts are specified in advance, but this is not
necessary. The first font in this list will be the initial font of the
stream, otherwise the default font for that image stream type

will be used.

HEADING Value is the heading to be placed automatically on each page.
Nil means no heading.

Examples: Suppose that Tremor: is an Interpress printer, Quake
is a Press printer, and DEFAUl TPRINTINGHOST is (Tremor:

Quake):

(OPENIMAGESTREAM) returns an Interpress image stream on
printer Tremor:.

(OPENIMAGESTREAM Nil 'PRESS) returns a Press stream on

Quake.

(OPENIMAGESTREAM '{LPT}.INTERPRESS) returns an Interpress
stream on Tremor:.

(OPENIMAGESTREAM '{CORE}FOO.PRESS) returns a Press stream
on the file {CORE}FOO.PRESS.

(IMAGESTREAMP X IMAGETYPE) [NoSpread Function]

Returns X (possibly coerced to a stream) if it is an output image
stream of type IMAGETYPE (or of any type if IMAGETYPE = NIL),
otherwise Nil.

(IMAGESTREAMTYPE STREAM) [Function]

Returns the image stream type of STREAM.

(IMAGESTREAMTYPEP STREAM TYPE) [Function]

Returns T if STREAM is an image stream of type TYPE

27.3 Accessing Image Stream Fields

27.10

The following functions manipulate the fields of an image
stream. These functions return the old value (the one being
replaced). A value of Nil for the new value will return the

GRAPHICS OUTPUT OPERATIONS

ACCESSING IMAGE STREAM FIELDS

current setting without changing it. These functions do not
change any of the bits drawn ()n the image stream; they just
affect future operations done on the image stream.

(DSPCLlPPINGREGION REGION STREAM) [Function]

(DSPFONT FONT STREAM)

The clipping region is a region that limits the extent of characters
printed and lines drawn (in the image stream's coordinate
system). Initially set so that no clipping occurs.

Warning: For display streams, the window system maintains the
clipping region during window operations. Users should be very
careful about changing this field.

[Function]

The font field specifies the font (see page 27.25) used when
printing characters to the image stream.

Note: DSPFONT determines its new font descriptor from FONT

by the same coercion rules that FONTPROP and FONTCREATE use
(page 27.26), with one additional possibility: If FONT is a list of
the form (PROP, VAL, PROP2 VAL2 ...) where PROP 1 is

acceptable as a font-property to FONTCOPY (page 27.28), then
the new font is obtained by (FONTCOPY (DSPFONT NIL STREAM)

PROP, VAL, PROP2 VAL2 ...). For example, (DSPFONT '(SIZE 12)

STREAM) would change the font to the 12 point version of the
current font, leaving all other font properties the same.

(DSPTOPMARGIN YPOSITION STREAM) [Function]

The top margin is an integer that is the Y position after a new
page (in the image stream's coordinate system). This function
has no effect on windows.

(DSPBOTTOMMARGIN YPOSITION STREAM) [Function]

The bottom margin is an integer that is the minimum Y position
that characters will be printed by PRIN1 (in the image stream's
coordinate system). This function has no effect on windows.

(DSPLEFTMARGI N XPOSITION STREAM) [Function1
The left margin is an integer that is the X position after an
end-of-line (in the image stream"s coordinate system). Initially
the left edge of the clipping region.

(DSPRIGHTMARGIN XPOSITION STREAM) [Function]

GRAPHICS OUTPUT OPERATIONS

The right margin is an integer that is the maximum X position
that characters will be printed by PRIN1 (in the image stream's
coordinate system). This is initiall~, the position of the right edge
of the window or page.

27.11

ACCESSING IMAGE STREAM FIELDS

27.12

The line length of a window or image stream (as returned by
LlNELENGTH, page 25.11) is computed by dividing the distance
between the left and right margins by the width of an uppercase
IIA" in the current font. The line length is changed whenever the
font, left margin, or right margin are changed or whenever the
window is reshaped.

(DSPOPERATION OPERATION STREAM) [Function]

The operation is the default BITBLT operation (see page 27.15)
used when printing or drawing on the image stream. One of
REPLACE, PAINT, INVERT, or ERASE. Initia"y REPLACE. This is a
meaningless operation for most printers which support the
model that once dots are deposited on a page they cannot be
removed.

(DSPLINEFEED DELTA Y STREAM) [Function1

(DSPSCALE SCALE STREAM)

The linefeed is an integer that specifies the Y increment for each
linefeed, normally negative. Initially minus the height of the
initial font.

[Function]

Returns the scale of the image stream STREAM, a number
indicating how many units in the streams coordinate system
correspond to one printer's point (1/72 of an inch). For example,
DSPSCALE returns 1 for display streams, and 35.27778 for
Interpress and Press streams (the num ber of micas per printer's
point). In order to be device-independent, user graphics
programs must either not specify position values absolutely, or
must multiply absolute point quantities by the DSPSCAlE of the
destination stream. For example, to set the left margin of the
Interpress stream XX to one inch, do

(DSPLEFTMARGI N (TIMES 72 (DSPSCALE NIL XX» XX)

The SCALE argument to DSPSCALE is currently ignored. In a
future release it will enable the scale of the stream to be
changed under user control, so that the necessary multiplication
will be done internal to the image stream interface. In this case,
it would be possible to set the left margin of the Interpress
stream XX to one inch by doing

(DSPSCALE 1 XX)
(DSPLEFTMARGI N 72 XX)

(DSPSPACEFACTOR FACTOR STREAM) [Function1
The space factor is the amount by which to mUltiply the natural
width of all following space characters on STREAM; this can be
used for the justification of text. The default value is 1. For
example, if the natural width of a space in STREAM's current font

GRAPHICS OUTPUT OPERATIONS

ACCESSING IMAGE STREAM FIELDS

is 12 units, and the space factor is set to two, spaces appear 24
units wide. The values retlJrned by STRINGWIDTH and
CHARWIDTH are also affected.

The following two functions clnly have meaning for image
streams that can display color:

(DSPCOLOR COLOR STREAM) [Function]

Sets the default foreground color of STREAM. Returns the
previous foreground color. If COJlOR is NIL, it returns the current
foreground color without changing anything. The default color
is white

(DSPBACKCOLOR COLOR STREAM) [Function]

Sets the background color of STREAM. Returns the previous
background color. If COLOR is NIL, it returns the current
background color without changing anything. The default
background color is black.

27.4 Current Position of an Image Stream

Each image stream has a II current position, II which is a position
(in the image stream's coordinate system) where the next
printing operation will start from. The functions which print
characters or draw on an imag1e stream update these values
appropriately. The following functions are used to explicitly
access the current position of an irnage stream:

(DSPXPOSITION XPOSITION STREAM) [Function]

Returns the X coordinate of the (:urrent position of STREAM. If
XPOSITION is non-NIL, the X coordinate is set to it (without
changing the Y coordinate).

(DSPYPOSITION YPOSITION STREAM) [Function1

(MOVETO X Y STREAM)

GRAPHICS OUTPUT OPERA TIONS

Returns the Y coordinate of the (:urrent position of STREAM. If
YPOSITION is non-NIL, the Y coordinate is set to it (without
changing the X coordinate).

[Function1

Changes the current position of STREAM to the point (X, Y).

27.13

CURRENT POSITION OF AN IMAGE STREAM

(RELMOVETO OX DY STREAM) [Function]

Changes the current position to the point (DX.DY) coordinates
away from current position of STREAM.

(MOVETOUPPERlEFT STREAM REGION) [Function]

Moves the current position to the beginning position of the top
line of text. If REGION is non-Nil, it must be a REGION and the X
position is changed to the left edge of REGION and the Y

position changed .to the top of REGION less the font ascent of
STREAM. If REGION is Nil, the X coordinate is changed to the left
margin of STREAM and the Y coordinate is changed to the top of
the clipping region of STREAM less the font ascent of STREAM.

27 .. 5 Moving Bits Between Bitmaps With BITBL T

27.14

BITBl T is the primitive function for moving bits from one bitmap
to another, or from a bitmap to an image stream.

(BITBl T SOURCE SOURCELEFT SOURCEBOTTOM DES TINA TION DESTINA TlONLEFT
DESTINATIONBOTTOM WIDTH HEIGHT SOURCETYPE
OPERA TlON TEXTURE CLiPPINGREGION) [Function]

Transfers a rectangular array of bits from SOURCE to
DESTINATION. SOURCE can be a bitmap, or a display stream or
window, in which case its associated bitmap is used.
DESTINATION can be a bitmap or an arbitrary image stream.

WIDTH and HEIGHT define a pair of rectangles, one in each of
the SOURCE and DES TINA TlON whose left, bottom corners are
at, respectively, (SOURCELEFT, SOURCEBOTTOM) and
(DESTINATIONLEFT, DESTlNATlONBOTTOM). If these rectangles
overlap the boundaries of either source or destination they are
both reduced. in size (without translation) so that they fit within
their respective boundaries. If CLiPPINGREGION is non-Nil it
should be a REGION and is interpreted as a clipping region
within DES TINA TlON; clipping to this region may further reduce
the defining rectangles. These (possibly reduced) rectangles
define the source and destination rectangles for BITBl T.

The mode of transferring bits is defined by SOURCETYPE and
OPERA TlON. SOURCETYPE and OPERA TlON specify whether the
source bits should come from SOURCE or TEXTURE, and how
these bits are combined with those of DESTINATION.

SOURCETYPE and OPERA TlON are described further below.

TEXTURE is a texture, as described on page 27.6. BITBL T aligns
the texture so that the upper-left pixel of the texture coincides
with the upper-left pixel of the destination bitmap.

GRAPH ICS OUTPUT OPERA TlONS

GRAPHICS OUTPUT OPERA TlONS

MOVING BITS BETWEEN BITMAPS WITH BITBLT

SOURCELEFT, SOURCEBOTTOIVl, DES TINA TlONLEFT, and
DESTINA TlONBOrrOM default to O. WIDTH and HEIGHT default
to the width and height of the SOURCE. TEXTURE defaults to
white. SOURCETYPE defaults to INPUT. OPERATION defaults to
REPLACE. If CLIPPINGREGION is not provided, no additional
clipping is done. BITBLT returns T if any bits were moved; NIL

otherwise.

Note: If SOURCE or DESTINA TlON is a window or image stream,
the remaining arguments are interpreted as values in the
coordinate system of the window or image stream and the
operation of BITBLT is translated and clipped accordingly. Also,
if a window or image stream is used as the destination to BITBL T,

its clipping region further limits the region involved.

SOURCETYPE specifies whether the source bits should come from
the bitmap SOURCE, or from the texture TEXTURE. SOURCETYPE

is interpreted as follows:

INPUT The source bits come from SOURCE. TEXTURE is ignored.

INVERT The source bits are the inverse of the bits from SOURCE.

TEXTURE is ignored.

TEXTURE The s.ource bits come from TEXTURE. SOURCE, SOURCELEFT, and
SOURCEBOTTOM are ignored.

O~ERATION specifies how the source bits (as specified by
SOURCETYPE) are combined with the bits in DES TINA TlON and
stored back into DES TINA TlON. DESTINATION is one of the
following:

REPLACE All source bits (on or off) replace destination bits.

PAINT Any source bits that are on replace the corresponding
destination bits. Source bits that are off have no effect. Does a
logical OR between the source bits and the destination bits.

INVERT Any source bits that are on invert the corresponding destination
bits. Does a logical XOR between the source bits and the
destination bits.

ERASE Any source bits that are on erase the corresponding destination
bits. Does a logical AND operation between the inverse of the
source bits and the destination bit~s.

Different combinations of SOURC.ETYPE and OPERA TlON can be
specified to achieve many different effects. Given the following
bitmaps as the values of SOURCE, TEXTURE, and DES TINA TlON:

27.15

MOVING BITS BETWEEN BITMAPS WITH BITBL T

type: It~PUT
op: REPLACE

type: ItlVERT
op = REPLACE

~ .. ,~
.............................
.......................... ,. "' "'
~
.............................
'II~" " " •

.............................

.............................

.............................

.............................

.............................

.............................

type: TEXTURE
op: REPLACE

type: It~PUT
op: PAINT

type: ItlVERT
op: PAltll

type: TEXTURE
op: PAItIT

SOURCE

.............. , ,

..........................

..........................

..........................

..........................

.......................... "' "' "' "' "' "' "' "' "' ..

..........................

..........................

.. "''''''' .. '''''' "' "' "' "' "' "'
TEXTURE DESTltIA TIOt~

BITBL T would produce the results given below for the difference
combinations of SOURCETYPE and OPERATION (assuming
CLiPPINGREGION, SOURCELEFT, etc. are set correctly, of course):

type: It~PUT type: It~PUT
op: ItNERT op= ERASE

type: ItlVERT type: ItNERT
op: ItNERT 0,: . ERASE

1IIIIIiIiI········
.. "' "'

, 11IIIIIIII
type: TEXTURE type= TEXTURE
op= ItNERT op: ERASE

(BL TSHADE TEXTURE DES TINA TlON DES TINA TlONLEFT DES TINA TlONBOTTOM WIDTH

27.16

HEIGHT OPERA TlON CLiPPINGREGION) [Function]

BLTSHADE is the SOURCETYPE = TEXTURE case of BITBLT. It fills
the specified region of the destination bitmap DES TINA TlON

with the texture TEXTURE. DES TINA TlON can be a bitmap or
image stream.

(BITMAPIMAGESIZE BITMAP DIMENSION STREAM) [Function]

Returns the size that BITMAP will be when BITBL Ted to STREAM,

in STREAM's units. DIMENSION can be one of WIDTH, HEIGHT, or
NIL, in which case the dotted pair (WIDTH. HEIGHn will be
returned.

GRAPHICS OUTPUT OPERATIONS

27.6 Drawing Lines

DRAWING LINES

Interlisp-D provides several functions for drawing lines and
curves on image streams. The line drawing functions are
intended for interactive applications where efficiency is
important. They do not allow the use of "brush" patterns, like
the curve drawing functions, but (for display streams) they
support drawing a line in INVERT mode, so redrawing the line
will erase it. DRAWCURVE (page 27.19) can be used to draw lines
using a brush.

(DRAWLINE X, Y, X2 y 2 WIDTH OPERA TlON STREAM COLOR DASHING) [Function]

Draws a straight line from the pc)int (X ,_ y ,) to the point (X2- Y2)

on the image stream STREAM. The position of STREAM is set to
(X2- Y2)' If X, equals X2 and Y, equals Y2, a point is drawn at
(X ,_ V,).

WIDTH is the width of the line, in the units of the device. If
WIDTH is Nil, the default is 1.

OPERATION is the BITBlT operation (see page 27.15) used to
draw the line. If OPERATION is Nil, the value of DSPOPERATION

for the image stream is used.

COLOR is a color specification that determines the color used to
draw the line for image streams that support color. If COLOR is
Nil, the DSPCOlOR of STREAM is used.

DASHING is a list of positive integers that determines the dashing
characteristics of the line. The line is drawn for the number of
points indicated by the first element of the dashing list, is not
drawn for the number of points indicated by the second
element. The third element indicates how long it will be on
again, and so forth. The dashing sequence is repeated from the
beginning when the list is exhausted. If DASHING is Nil, the line
is not dashed.

(DRAWBETWEEN POSITION, POSITlON2 WIDTH OPERATION STREAM COLOR DASHING)

[Function]

Draws a line from the point POSITION, to the point POSITlON2

onto the destination bitmap of STREAM. The position of
STREAM is set to POSITION 2.

(DRAWTO X Y WIDTH OPERATION STREAM COLOR DASHING) [Function]

GRAPHICS OUTPUT OPERATIONS

Draws a Ii ne from the current position to the poi nt (X, Y) onto the
destination bitmap of STREAM. The position of STREAM is set to
(X. Y).

27.17

DRAWING LINES

(RELDRAWTO DX DY WIDTH OPERA TlON STREAM COLOR DASHING) [Function]

27.7 Drawing Curves

27.18

Draws a line from the current position to the point (DX,Dy)

coordinates away onto the destination bitmap of STREAM. The
position of STREAM is set to the end of the line. If OX and DY are
both 0, nothing is drawn.

A curve is drawn by placing a brush pattern centered at each
point along the curve's trajectory. A brush pattern is defined by
its shape, size, and color. The predefined brush shapes are
ROUND, SQUARE, HORIZONTAL, VERTICAL, and DIAGONAL;
new brush shapes can be created using the INSTALLBRUSH
function, described below. A brush size is an integer specifying
the width of the brush in the units of the device. The color is a
color specification, which is only used if the curve is drawn to an
image stream that supports colors.

A brush is specified to the various drawing functions as a list of
the form (SHAPE WIDTH COLOR), for example (SQUARE 2) or
(VERTICAL 4 RED). A brush can also be specified as a positive
integer, which is interpreted as a ROUND brush of that width. If
a brush is a litatom, it is assumed to be a function which is called
at each point of the curve's trajectory (with three arguments: the
X-coordinate of the point, the V-coordinate, and the image
stream), and should do whatever image stream operations are
necessary to draw each point. Finally, if a brush is specified as
NIL, a (ROUND 1) brush is used as default.

The appearance of a curve is also determined by its dashing
characteristics. Dashing is specified by a list of positive integers.
If a curve is dashed, the brush is placed along the trajectory for
the number of units indicated by the first element of the dashing
list. The brush is off, not placed in the bitmap, for a number of
units indicated by the second element. The third element
indicates how long it will be on again, and so forth. The dashing
sequence is repeated from the beginning when the list is
exhausted. The units used to measure dashing are the units of
the brush. For example, ~pecifying the dashing as (1 1) with a
brush of (ROUND 16) would put the brush on the trajectory, skip
16 points, and put down another brush. A curve is not dashed if
the dashing argument to the drawing function is NIL.

The curve functions use the image stream's clipping region and
operation. Most types of image streams only support the PAINT
operation when drawing curves. When drawing to a display
stream, the curve-drawing functions accept the operation
INVERT if the brush argument is 1. For brushes larger than 1,

GRAPHICS OUTPUT OPERA nONS

DRAWING CURVES
t «

these functions will use the ERASE operation instead of INVERT.
For display streams, the curvE,-drawing functions treat the
REPLACE operation the same as PAINT.

(DRAWCURVE KNOTS CLOSED BRUSH DASHING STREAM) [Function]

Draws a "parametric cubic spline curve" on the image stream
STREAM. KNOTS is a list of positions to which the curve will be
fitted. If CLOSED is non-NIL, the curve will be dosed; otherwise it
ends at the first and last positions in KNOTS. BRUSH and
DASHING are interpreted as described above.

For example,

(ORAWCURVE '«10 . 10)(50 . 50)(100. 10)(150. 50»
NIL '(ROUND 5) '(1 1 1 2) XX)

would draw a curve like the following on the display stream XX:

I ··1
(DRAWCIRCLE CENTERX CENTERY RADIUS BRUSH DASHING STREAM) [Function]

Draws a circle of radius RADIUS about the point
(CENTERX,CENTERy) onto the image stream STREAM. STREAM's
position is left at (CENTERX,CENTERy). The other arguments are
interpreted as described above.

(DRAWElLiPSE CENTERX CENTERY SEMIMINORRADIUS SEMIMAJORRADIUS ORIENTA TlON
BRUSH DASHING STREAM) [Function]

Draws an ellipse with a minor radius of SEMIMINORRADIUS and
a major radius of SEMIMAJORRADIUS about the point
(CENTERX,CENTERy) onto thE~ image stream STREAM.
ORIENTATION is the angle of the major axis in degrees, positive
in the counterclockwise direction. STREAM's position is left at
(CENTERX,CENTERy). The other arguments are interpreted as
described above.

New brush shapes can be defined using the following function:

(INSTALLBRUSH BRUSHNAME BRUSHFN BRUSHARRA y) [Function]

GRAPHICS OUTPUT OPERA TlONS

Installs a new brush called BRUSHNAME with creation-function
BRUSHFN and optional array BRU!>HARRA Y. BRUSHFN should be
a function of one argument (a width), which returns a bitmap of
the brush for that width. BRUSHFN will be called to create new
instances of BRUSHNAME-type brushes; the sixteen smallest
instances will be pre-computed and cached. "Hand-crafted II
brushes can be supplied as the BRUSHARRA Y argument.

27.19

DRAWING CURVES

Changing an existing brush can be done by calling
INSTALLBRUSH with new BRUSHFN and/or BRUSHARRA Y.

(DRAWPOINT X Y BRUSH STREAM OPERA TlON) [Function]

Draws BRUSH centered around point (X, Y) on STREAM, using
the operation OPERA TlON. BRUSH may be a bitmap or a brush.

27 as Miscellaneous Drawing and Printing Operations

27.20

(DSPFILL REGION TEXTURE OPERA TlON STREAM) [Function]

Fills REGION of the image stream STREAM (within the clipping
region) with the texture TEXTURE. If REGION is NIL, the whole
clipping region of STREAM is used. If TEXTURE or OPERA TlON is
NIL, the values for STREAM are used.

(FILLPOLYGON POINTS TEXTURE STREAM) [Function]

Fills in the polygon outlined by POINTS on the image stream
STREAM, using the texture TEXTURE.

POINTS is a list of positions (page 27.1) determining the vertices
of a dosed polygon. FILLPOLYGON fills in this polygon with the
texture TEXTURE. POINTS can also be a list whose elements are
lists of positions, in which case each sublist describes a separate
polygon to be filled.

Note: When filling a polygon, there is more than one way of
dealing with the situation where two polygon sides intersect, or
one polygon is fully inside the other. Currently, FILLPOLYGON to
a display stream uses the "odd" fill rule, which means that
intersecting pplygon sides define areas that are filled or not
filled somewhat like a checkerboard. For example,
(FILLPOLYGON '«125.125)(150.200)(175.125)(125.175)(175.
175» GRAYSHADE WINDOW) would produce a display
something like this:

.. ::ii.
·.·.'.·1.·.· :.:.'1/1 :.'/..;.., ~,. , . .,.

'»'::);. w-m.
/i.,*:~/" "<~::::i»
I~·.·.·I ·.·.·I.~ jlf' .'.:~:

This fill convention also takes into account all polygons in
POINTS, if it specifies multiple polygons. This can be used to put
"holes" in filled polygons. For example,

(FILLPOL YGON
'«(110 . 110)(150 .200)(190. 110»

«135.125)(160.125)(160.150)(135.150»)

GRAPH ICS OUTPUT OPERATIONS

MISCELLANEOUS DRAWING AND PRINTI NG OPERATIONS

GRA YSHADE WINDOW)

will put a square hole in a triangular region:

Currently, FILLPOLYGON uses the "Replace" BITBL T operation
(see page 27.15) to fill areas with the texture. However, any
areas that are not filled are not changed. If there are "holes" in
the filled polygon, this can be used to produce a "window"
effect. For example, the following is the display produced by
filling the star polygon (above) over a window full of text:

Text T~::o::t Text
Text 1:.:::~~;{t Text
T - ''-+ • .. ···~x~'t T - ·· .. t
T

': ::': '~~:~"T(' : ::'~~'ljl'l T -: ::~: ..
e t. e.·<.A... e"' .. t

T ,;~'?""-n.,.;,::~ T - .".' t ext \"~~"""'-'''M'''/, e.· ..• ' "'YJ'.',.'.
T e x 1;,-S:::"'T e x,,~~*, T ext
Is):" r I~·:(t·": Is,:,:·t

(FILLCIRCLE CENTERX CENTERY RADIUS TEXTURE STREAM) [Function]

(DSPRESET STREAM)

(DSPNEWPAGE STREAM)

Fills in a circular area of radius RADIUS about the point
(CENTERX,CENTERy) in STREAM with· TEXTURE. STREAM's
position is left at (CENTERX,CENTfRy).

[Function]

Sets the X coordinate of STREAM to its left margin, sets its Y
coordinate to the top of the dipping region minus the font
ascent. For a display stream, this also fills its destination bitmap
with its background texture.

[Function]

Starts a new page. The X coordinate is set to the left margin, and
the Y coord'inate is set to the top margin plus the linefeed.

(CENTERPRINTINREGION EXP REGION STREAM) [Function]

GRAPHICS OUTPUT OPERATIONS

Prints EXPso that is it centered within REGION of the STREAM. If
REGION is NIL, EXP will be centlered in the clipping region of
STREAM.

27.21

DRAWING AND SHADING GRIDS

27.9 Drawing and Shading Grids

27.22

A grid is a partitioning of an arbitrary coordinate system
(hereafter referred to as the "source system ") into rectangles.
This section describes functions that operate on grids. It includes
functions to draw the outline ·of a grid. to translate between
positions in a source system and grid coordinates (the
coordinates of the rectangle which contains a given position),
and to shade grid rectangles. A grid is defined by its "unit grid."
a region (called a grid specification) which is the origin rectangle
of the grid in terms of the source system. Its LEFT field is
interpreted as the X-coordinate of the left edge of the origin
rectangle, its BOTTOM field is the V-coordinate of the bottom
edge of the origin rectangle, its WIDTH is the width of the grid
rectangles, and its HEIGHT is the height of the grid rectangles.

(GRID GRIDSPEC WIDTH HEIGHT BORDER STREAM GRIDSHADE) [Function]

Outlines the grid defined by GRIDSPEC which is WIDTH
rectangles wide and HEIGHT rectangles high on STREAM. Each
box in the grid has a border within it that is BORDER points on
each side; so the resulting lines in the grid are 2* BORDER thick.
If BORDER is the atom POINT, instead of a border the lower left
point of each grid rectangle will be turned on. If GRIDSHADE is
non-NIL, it should be a texture and the border lines will be drawn
using that texture.

(SHADEGRIDBOX X Y SHADE OPERA TlON GRIDSPEC GRIDBORDER STREAM) [Function]

Shades the grid rectangle (X, Y) of GRIDSPEC with texture SHADE
using OPERATION on STREAM. GRIDBORDER is interpreted the
same as for GRID.

The following two functions map from the X,Y coordinates of
the source system into the grid X, Y coordinates':

(GRIDXCOORD XCOORD GRIDSPEC) [Function)

Returns the grid X-coordinate (in the grid specified by GRIDSPEC)
that contains the source system X-coordinate XCOORD.

(GRIDVCOORD YCOORD GRIDSPEC) [Function]

Returns the grid V-coordinate (in the grid specified by GRIDSPEC)
that contains the source system V-coordinate YCOORD.

The following two functions map from the grid X,Y coordinates
into the X,Y coordinates of the source system:

GRAPHICS OUTPUT OPERATIONS

DRAWING AND SHADING GRIDS

(LEFTOFGRIDCOORDGRIDX GRIDSPEC) [Function]

Returns the source system X-coordinate of the left edge of a grid
rectangle at grid X-coordinate (';RIDX (in the grid specified by
GRIDSPEC).

(BOTTOMOFGRIDCOORD GRIDY GRIDSPEC) [Function]

Display Streams

Returns the source system V-coordinate of the bottom edge of a
grid rectangle at grid V-coordinate GRIDY (in the grid specified
by GRIDSPEC).

Display streams (image streams of type DISPLAY) are used to
control graphic output operations to a bitmap, known as the
"destination" bitmap of the display stream. For each window on
the screen, there is an associated display stream which controls
graphics operations to a specific part of the screen bitmap. Any
of the functions that take a display stream will also take a
window, and use the associated display stream. Display streams
can also have a destination bitmap that is not connected to any
window or display device.

(OSPCREATE DESTINATION) [Function]

Creates and returns a display stream. If DESTINA TlON is
. specified, it is used as the destination bitmap, otherwise the
screen bitmap is used.

(DSPDESTINATION DESTINATION DISPLAYSTREAM) [Function]

Returns the current destination bitmap for DlsPLAYSTREAM,
setting it to DES TINA TlON if non-NIL. DESTINA TlON can be
either the screen bitmap, or an auxilliary bitmap in order to
construct figures, possibly save them, and then display them in a
single operation .

. Warning: The window system maintains the destination of a
window's display stream. Users should be very careful about
changing this field.

(DSPXOFFSET XOFFsET DlsPLA ysTREAM) [Function]

(DSPYOFFSET YOFFsET DISPLA YSTREAM) [Function]

GRAPHICS OUTPUT OPERA nONS

Each display stream has its own cOlordinate system, separate from
the coordinate system of its destination bitmap. Having the
coordinate system local to the display stream allows objects to be
displayed at different places by translating the display stream's

27.23

DISPLAY STREAMS

27.24

coordinate system relative to its destination bitmap. This local
coordinate system is defined by the X offset and Yoffset.

DSPXOFFSET returns the current X offset for DISPLA YSTREAM,
the X origin of the display stream's coordinate system in the
destination bitmap's coordinate system. It is set to XOFFSET if
non-NIL.

DSPYOFFSET returns the current Y offset for DISPLA YSTREAM,
the Y origin of the display stream's coordinate system in the
destination bitmap's coordinate system. It is set to YOFFSET if
non-NIL.

The X offset and Y offset for a display stream are both initially 0
(no X or V-coordinate translation).

Warning: The window system maintains the X and Y offset of a
window's display stream. Users should be very careful about
changing these fields.

(DSPTEXTURE TEXTURE DISPLA YSTREAM) [Function]

Returns the current texture used as the background pattern for
DISPLA YSTREAM. It is set to TEXTURE if non-NIL. Initially the
value of WHITES HADE.

(DSPSOURCETYPE SOURCETYPE DISPLA YSTREAM) [Function]

Returns the current BITBLT sourcetype used when printing
characters to the display stream (see page 27.15). It is set to
SOURCETYPE, if non-NIL. Must be either INPUT or INVERT.
Initially INPUT.

(DSPSCROLL SWITCHSETTING DISPLA YSTREAM) [Function]

Returns the current value of the "scroll flag," a flag that
determines the scrolling behavior of the display stream; either
ON or OFF. If ON, the bits in the display streams's destination
bitmap are moved after any linefeed that moves the current
position out of the destination bitmap. Any bits moved out of
the current clipping region are lost. Does not adjust the X offset,
Y offset, or clipping region of the display stream. Initially OFF.

Sets the scroll flag to SWITCHSETTING, if non-NIL.

Note: The word "scrolling" also describes the use of "scroll bars"
on the left and bottom of a window to move an object displayed
in a window. This feature is described on page 28.23.

Each window has an associated display stream. To get the
window of a particular display stream, use WFROMDS:

GRAPHICS OUTPUT OPERA TlONS

27.12

DISPLAY STREAMS

(WFROMDS DISPLA YSTREAM DONTCREA TE) [Function]

Returns the window associated with DISPLAYSTREAM, creating a
window if one does not exist (and DONTCREATE is NIL). Returns
NIL if the destination of DISPLA YSTREAM is not a screen bitmap
that supp<?rts a window system.

If DONTCREATE is non-NIL, VVFROMDS will never create a
window, and returns NIL if DISPLAYSTREAM does not have an
associated window.

TTYDISPLA VSTREAM calls WFROMDS with DONTCREA TE = T, so
it will not create a window unnecessarily. Also, if WFROMDS
does create a window, it calls CREATEW with NOOPENFLG = T.

(DSPBACKUP WIDTH DISPLA YSTREAM) [Function]

Fonts

Backs up DISPLAYSTREAM over a character which is WIDTH

screen points wide. DSPBACKUP fills the backed over area with
the display stream's background texture and decreases the X
position by WIDTH. If this would put the X position less than
DISPLA YSTREAM's left margin, its operation is stopped at the left
margin. It returns T if any bits were written, NIL otherwise.

A font is the collection of images that are printed or displayed
when characters are output to a graphic output device. Some
simple displays and printers can only print characters using one
font. Bitmap displays and graphic printers can print characters
using a large number of fonts.

Fonts are identified by a distinctive style or family (such as
Modern or Classic), a siz~ (such as 10 points), and a face (such as
bold or italic). Fonts also have a rotation that indicates the
orientation of characters on the screen or page. A normal
horizontal font (also called a portrait font) has a rotation of 0;
the rotation of a vertical (Iandsc,ape) font is 90 degrees. While
any combination can be specified, in practice the user will find
that only certain combinations of families, sizes, faces, and
rotations are available for any graphic output device.

To specify a font to the functions described below, a FAMIL V is
represented by a literal atom, a 5;IZE by a positive integer, and a
FACE by a three-element list of the form (WEIGHT SLOPE
EXPANSION). WEIGHT, which ~ndicates the thickness of the
characters, can be BOLD, MEDIUM, or LIGHT; SLOPE can be
ITALIC or REGULAR; and EXPANSION can be REGULAR,
COMPRESSED, or EXPANDED, indicating how spread out the
characters are. For convenience, faces may also be specified by

GRAPHICS 9UTPUT OPERATIONS 27.25

FONTS

27.26

three-character atoms, where each character is the first letter of
the corresponding field. Thus, MRR is a synonym for (MEDIUM
REGULAR REGULAR). In addition, certain common face
combinations may be indicated by special literal atoms:

STANDARD = (MEDIUM REGULAR REGULAR) = MRR

ITALIC = (MEDIUM ITALIC REGULAR) = MIR

BOLD = (BOLD REGULAR REGULAR) = BRR

BOLDITALIC = (BOLD ITALIC REGULAR) = BIR

Interfisp represents all the information related to a font in an
object called a font descriptor. Font descriptors contain the
family, size, etc. properties used to represent the font. In
addition, for each character in the font, the font descriptor
contains width information for the character and (for display
fonts) a bitmap containing the picture of the character.

The font functions can take fonts specified ina variety of
different ways. DSPFONT, FONTCREATE, FONTCOPV, etc. can be
applied to font descriptors, "font lists" such as '(MODERN 10),
image streams (coerced to its current font), or windows (coerced
to the current font of its display stream). The printout command
II .FONT" (page 25.27) will also accept fonts specified in any of
these forms.

(FONTCREATE FA MIL Y SIZE FACE ROTATION DEVICE NOERRORFLG CHARSEn [Function]

Returns a font descriptor for the specified font. FA MIL Y is a
litatom specifying the font family. SIZE is an integer indicating
the size of the font in points. FACE specifies the face
characteristics in one of the formats listed above; if FACE is NIL,
STANDARD is used. ROTATION, which specifies the orientation
of the font, is 0 (or NIL) for a portrait font and 90 for a landscape
font. DEVICE indicates the output device for the font, and can be
any image stream type (page 27.8), such as DISPLA V,
INTERPRESS, etc. DEVICE may also be an image stream, in which
case the type of the stream determines the font device. DEVICE

defaults to DISPLA V.

The FAMILY argument to FONTCREATE may also be a list, in
which case it is interpreted as a font-specification quintuple, a
list of the form (FA MIL Y SIZE FACE ROTA TlON DEVICE). Thus,
(FONTCREATE '(GACHA 10 BOLD» is equivalent to (FONTCREATE
'GACHA 10 'BOLD). FAMILY may also be a font descriptor, in
which case that descriptor is simply returned.

If a font descriptor has already been created for the specified
font, FONTCREATE simply returns it. If it has not been created,
FONTCREATE has to read the font information from a font file
that contains the information for that font. The name of an
appropriate font file, and the algorithm for searching depends
on the device that the font is for, and is described in more detail

GRAPHICS OUTPUT OPERA nONS

(FONTPX)

FONTS

below. If an appropriate font file is found, it is read into a font
descriptor. If no file is found, for DISPLA V fonts FONTCREATE
looks for fonts with less facE~ information and fakes the
remaining faces (such as by doubling the bit pattern of each
character or slanting it). For hardcopy priflter fonts, there is no
acceptable faking algorithm.

If no acceptable font is found, the action of FONTCREATE is
determined by NOERRORFLG. If NOERRORFLG is NIL, it
generates a FONT NOT FOUND error with the offending font
specification; otherwise, FONTCREATE returns NIl.

CHARSET is the character set which will be read to create the
font. Defaults to O. For more information on character sets, see
NS Characters, page 2.12.

[Function1

Returns X if X is a font descriptor; NIL otherwise.

(FONTPROP FONT PROP) [Function]

Returns the value of the PROP property of font FONT. The
following font properties are recognized:

FAMIL V The style of the font, represented as a literal atom, such as
CLASSIC or MODERN.

SIZE A positive integer giving the size of the font, in printer's points
(1172 of an inch).

WEIGHT The thickness of the characters; one of BOLD, MEDIUM, or LIGHT.

SLOPE The "slope" of the characters in the font; one of ITALIC or
REGULAR.

EXPANSION The extent to which the charactEHs in the font are spread out;
one of REGULAR, COMPRESSED, or EXPANDED. Most available
fonts have EXPANSION = REGULAR.

FACE A three-element list of the form (WEIGHT SLOPE EXPANSION),

giving all of the typeface pa?'ameters.

ROTATION An integer that gives the orientation of the font characters on
the screen or page, in degrees. A normal horizontal font (also
called a portrait font) has a rotati·on of 0; the rotation of a
vertical (landscape) font is 90.

DEVICE The device that the font can be printed on; one of DISPLA V,
INTERPRESS, etc.

ASCENT An integer giving the maximum height of any character in the
font from its base line (the printing position). The top line will
be at BASELINE + ASCENT-l.

DESCENT An integer giving the maximum extent of any character below
the base line, such as the lower part of a "p". The bottom line of
a character will be at BASELINE-DESCENT.

GRAPHICS OUTPUT OPERA nONS 27.27

FONTS

27.28

HEIGHT Equal to ASCENT + DESCENT.

SPEC The (FAMILY SIZE FACE ROTATION DEVICE) quintuple by which

the font is known to Lisp.

DEVICESPEC The (FAMILY SIZE FACE ROTATION DEVICE) quintuple that
identifies what will be used to represent the font on the display
or printer. It will differ from the SPEC property only if an implicit
coercion is done to approximate the speci fied font with one that
actually exists on the device.

SCALE The units per printer's point (1/72 of an inch) in which the font is
measured. For example, this is 35.27778 (the number of micas
per printer's point) for Interpress fonts, which are measured in
terms of micas.

(FONTCOPY OLDFONTPROP, VAL, PROP2 VAL2 ...) [NoSpread Function)

Returns a font descriptor that is a copy of the font OLDFONT, but
which differs from OLDFONT in that OLDFONTs properties are
replaced by the spedfied properties and values. Thus,
(FONTCOPY FONT 'WEIGHT 'BOLD 'DEVICE 'INTERPRESS) will
return a bold Interpress font with all other properties the same
as those of FONT. FONTCOPY accepts the properties FAMILY,
SIZE, WEIGHT, SLOPE, EXPANSION, FACE, ROTATION, and
DEVICE. If the first property is a list, it is taken to be the PROP,

VAL, PROP2 VAL2 ... sequence. Thus, (FONTCOPY FONT

'(WEIGHT BOLD DEVICE INTERPRESS» is equivalent to the
example above.

If the property NOERROR is specified with value non-NIL,
FONTCOPY will return NIL rather than causing an error if the
specified font cannot be created.

(FONTSAVAILABLE FA MIL Y SIZE FACE ROTA TlON DEVICE CHECKFILESTOO?) [Function]

Returns a list of available fonts that match the given
specification. FA MIL Y, SIZE, FACE, ROTA TlON, and DEVICE are
the same as for FONTCREATE. Additionally, any of them can be
the atom *, in which case all values of that field are matched.

If CHECKFILESTOO? is NIL, only fonts already loaded into virtual
memory will be considered. If CHECKFILESTOO? is non··NIL, the
font directories for the specified device will be searched. When
checking font files, the ROTATION is ignored.

Note: The search is conditional on the status of the server which
holds the font. Thus a file server crash may prevent FONTCREATE
from finding a file that an earlier FONTSAVAILABLE returned.

Each element of the list returned will be of the form (FAMILY

SIZE FACE ROTA TlON DEVICE).

Examples:

(FONTSAVAILABLE 'MODERN 10 'MRR 0 'DISPLAY)

GRAPHICS OUTPUT OPERATIONS

FONTS

will return «MODERN 10 (MIEDIUM REGULAR REGULAR) 0
DISPLAY» if the regular Modelrn 10 font for the display is in
virtual memory; NIL otherwise.

(FONTSAVAILABLE '·14 '* '* 'IN1ERPRESS T)

will return a list of all the size 14 Interpress fonts, whether they
are in virtual memory or in font files.

Warning: One must be careful when using the function
FONTSAVAILABLE to determine what Press font files are
available. For Press font families/faces, the font widths for
different sizes are consistently scaled versions of the smallest
font in the family/face. Therefore, instead of storing data about
all of the sizes in the FONTS.WIDTHS file, only the widths for the
font of SIZE = 1 are stored, and the other widths are calculated by
scaling these widths up. This is signified in the FONTS.WIDTHS

file by a font with SIZE = O. Therefore, if FONTSAVAILABLE is
called with CHECKFILESTOO?= T, and it finds such a "relative"
font, it returns a font spec list wit.h size of O. For example,

+-(FONTSAVAILABLE 'GACHA '*"* 0 'PRESS T)

«GACHA 0 (BOLD ITALIC REGULAR) 0 PRESS)

(GACHA 0 (BOLD REGULAR REGULAR) 0 PRESS)

(GACHA 0 (MEDIUM ITALIC REGULAR) 0 PRESS)

(GACHA 0 (MEDIUM REGULAR RIEGULAR) 0 PRESS»

This indicates that Press files can be created with GACHA files of
any size with faces BIR, BRR, MIR, and MRR. Of course, this
doesn't guarantee that these fonts are available in all sizes on
your printer.

(SETFONTDESCRIPTOR FA MIL Y SIZE FACE ROTA TlON DEVICE FONn [Function]

Indicates to the system that FONT is the font that should be
associated with the FA MIL Y SIZE FACE ROTATION DEVICE

characteristics. If FONT is NIL, the font associated with these
characteristics is cleared and will be recreated the next time it is
needed. As with FONTPROP and FONTCOPY, FONT is coerced to

c:>

a font descriptor if it is not one already.

This functions is useful when it is desirable to simulate an
unavailable font or to use a font with characteristics different
from the interpretations provided by the system.

(DEFAUL TFONT DEVICE FONT -) [Function]

GRAPHICS OUTPUT OPERA nONS

Returns the font that would be used as the default (if NIL were
specified as a font argument) for image stream type DEVICE. If
FONT is a font descriptor, it is set to be the default font for
DEVICE.

27.29

FONTS

27.30

(CHARWIDTH CHARCODE FONn [Function]

CHARCODE is an integer that represents a valid character (as
returned by CHCON1). Returns the amount by which an image
stream's X-position will be incremented when the character is
printed.

(CHARWIDTHY CHARCODE FONn [Function]

like CHARWIDTH, but returns the Y component of the
character's width, the amount by which an image stream's
V-position will be incremented when the character is printed.
This will be zero for most characters in normal portrait fonts, but
may be non-zero for landscape fonts or for vector-drawing fonts.

(STRINGWIDTH STR FONT FLG RDTBL) [Function]

Returns the amount by which a stream's X-position will be
incremented if the printname for the Interlisp-D object STR is
printed in font FONT. If FONTis an image stream, its font is used.
If FLG is non-NIL, the PRIN2-pname of STR with respect to the
readtable RDTBL is used.

(STRINGREGION STR STREAM PRIN2FLG RDTBL) [Function]

Returns the region occupied by STR if it were printed at the
current location in the image stream STREAM. This is useful, for
example, for determining where text is in a window to allow the
user to select it. The arguments PRIN2FLG and RDTBL are passed
to STRINGWIDTH.

Note: STRINGREGION does not take into account any carriage
returns in the string, or carriage returns that may be
automatically printed if STR is printed to STREAM. Therefore,
the value returned is meaningless for multi-line strings.

The following functions allow the user to access and change the
bitmaps for individual characters in a display font. Note:
Character code 256 can be used to access the "dummy"
character, used for characters in the font with no bitmap
defined.

(GETCHARBITMAP CHARCODE FONn [Function]

Returns a bitmap containing a copy of the image of the character
CHARCODE in the font FONT.

(PUTCHARBITMAP CHARCODE FONT NEWCHARBITMAP NEWCHARDESCENn [Function]

Changes the bitmap image of the character CHARCODE in the
font FONT to the bitmap NEWCHARBITMAP. If
NEWCHARDESCENT is non-NIL, the descent of the character is
changed to the value of NEWCHARDESCENT.

GRAPHICS OUTPUT OPERATIONS

27.13

FONTS

(EDITCHAR CHARCODE FONn [Function]

Calls the bitmap editor (EDITBM, page 27.4) ,on the bitmap image
of the character CHARCODE in the font FONT. CHARCODE can
be a character code (as returned by CHCON1) or an atom or
string, in which case the first character of CHARCODE is used.

Font Files and Font Directories

DISPLA YFONTDIRECTORIES

DISPLA YFONTEXTENSIONS

If FONTCREATE is called to cre,ate a font that has not been
loaded into Interlisp, FONTCREATE has to read the font
information from a font file that contains the information for
that font. For printer devices, the font files have to contain
width information for each character in the font. For display
fonts, the font files have to cont.ain, in addition, bitmap images
for each character in the fonts. The font file names, formats, and
searching algorithms are different for each device. There are a
set of variables for each device, that determine the directories
that are searched for font files. All of these variables must be set
before Interlisp can auto-load font files. These variables should
be initialized in the site-specific INIT file.

[Variable]

Value is a list of directories searched to find font bitmap files for
display fonts.

[Variable]

Value is a list of file extensions used when searching
DISPLA YFONTDIRECTORIES for display fonts. Initially set to
(DISPLA YFONT), but when using older font files it may be
necessary to add STRIKE and AC t() this list.

I NTERPRESSFONTDI RECTO RI ES [Variable]

PRESSFONTWIDTHSFllES

Value is a list of directories searched to find font widths files for
Interpress fonts.

[Variable]

Value is a list of files (not dire1ctories) searched to find font
widths files for Press fonts. Press font widths are packed into
large files (usually named FONTS.WIDTHS),

GRAPHICS OUTPUT OPERA nONS 27.31

FONT PROFILES

27.15 Font Profiles

27.32

PRETIVPRINT contains a facility for printing different elements
(user functions, system functions, clisp words, comments, etc.) in
different fonts to emphasize (or deemphasize) their importance,
and in general to provide for a more pleasing appearance. Of
course, in order to be useful, this facility requires that the u·ser is
printing on a device (such as a bitmapped display or a laser
printer) which supports multiple fonts.

PRETIVPRINT signals font changes by inserting into the file a
user-defined escape sequence (the value of the variable
FONTESCAPECHAR) followed by the character code which
specifies, by number, which font to use, i.e. f A for font number
1, etc. Thus, if FONTESCAPECHAR were the character f F, f F f C
would be output to change to font 3, f F f A to change to font 1,
etc. If FONTESCAPECHAR consists of characters which are
separator charactors in FILERDTBL, then a file with font changes
in it can also be loaded back in.

Currently, PRETIVPRINT uses the following font classes. The user
can specify separate fonts for each of these classes, or use the
same font for several different classes.

LAMBDAFONT The font for printing the name of the function being
prettyprinted, before the actual definition (usually a large font).

CLlSPFONT If CLlSPFLG is on, the font for printing any clisp words, i.e. atoms
with property CLlSPWORD.

COMMENTFONT The font used for comments.

USERFONT The font for the name of any function in the file, or any member­
of the list FONTFNS.

SVSTEMFONT The font for any other (defined) function.

CHANGEFONT The font for an expression marked by the editor as having been
changed.

PRETIVCOMFONT The font for the operand of a file package command.

DEFAULTFONT The font for everything else.

(FONTPROFILE PROFILE)

Note that not all combinations of fonts will be aesthetically
pleasing (or even readable!) and the user may have to
experiment to find a compatible set.

Although in some implementations LAMBDAFONT et al. may be
defined as variables, one should not set them directly, but should
indicate what font is to be used for each class by calling the
function FONTPROFILE:

[Function]
Sets up the font classes as determined by PROFILE, a list of
elements which defines the correspondence between font

GRAPHICS OUTPUT OPERA TlONS

FONTPROFILE

(FONTNAME NAME)

GRAPHICS OUTPUT OPERA TlONS

FONT PROFILES

classes and specific fonts. Each element of PROFILE is a I ist of the
form:

(FONTCLASS FONT # DISPLA YFONT PRESSFONT
INTERPRESSFONn

FONTCLASS is the font class nam1e and FONT# is the font number
for that class. For each font class name, the escape sequence will
consist of FONTESCAPECHAR followed by the character code for
the font number, e.g. i A for font number 1, etc.

If FONT# is NIL for any font class, the font class named
OEFAULTFONT (which must cllways be specified) is used.
Alternatively, if FONT# is the name of a previously defined font
class, this font class will be equivalenced to the previously
defined one.

DISPLA YFONT, PRESSFONT, and INTERPRESSFONT are font
specifications (of the form accepted by FONTCREATE) for the
fonts to use when printing to the display and to Press and
Interpress printers respectively.

[Variable]

This is the variable used to store the current font profile, in the
form accepted by the function F:ONTPROFILE. Note that simply
editing this value will not change the fonts used for the various
font classes; it is necessary to execute (FONTPROFILE
FONTPROFILE) to install the value of this variable.

The process of printing with multiple fonts is affected by a large
number of variables: FONTPROFILE, FILELINELENGTH,
PRETTYLCOM, etc. To facilitate switching back and forth
between various sets of values for the font variables, Interlisp
supports the idea of named "font configurations" encapsulating
the values of all relevant variables.

To create a new font configuration, set all "relevant" variables to
the values you want, and then call FONTNAME to save them (on
the variable FONTOEFS) under a given name. To install a
particular font configuration, call FONTSET giving it your name.
To change the values in a save-d font configuration, edit the
value of the variable FONTOEFS.

Note: The list of variables saved by FONTNAME is stored in the
variable FONTOEFSVARS. This cam be changed by the user.

[Function]

Collects the names and values of the variables on
FONTOEFSVARS, and saves them Ion FONTOEFS.

27.33

FONT PROFILES

27.34

(FONTSET NAME)

FONTDEFSVARS

FONTDEFS

FONTESCAPECHAR

FONTCHANGEFLG

LlSTFILESTR

COMMENTLINELENGTH

[Function1

Installs font configuration for NAME. Also evaluates
(FONTPROFILE FONTPROFILE) to install the font classes as
specified in the new value of the variable FONTPROFILE.

Generates an error if NAME not previously defined.

[Variable]

The list of variables to be packaged by a FONTNAME. Initially
FONTCHANGEFLG, FILELINELENGTH, COMMENTLINELENGTH,
FIRSTCOL, PRETTYLCOM, LlSTFILESTR, and FONTPROFILE.

[Variable1

An association list of font configurations. FONTDEFS is a list of
elements of form (NAME • PARAMETER-PAIRS). To save a
configuration on a file after performing a FONTNAME to define
it, the user could either save the entire value of FONTDEFS, or use
the ALiSTS file package command (page 17.37) to dum p out just

the one configuration.

[Variable]

The character or string used to signal the start of a font escape
sequence.

[Variable]

If T, enables fonts when prettyprinting. If NIL, disables fonts.

[Variable]

In Interlisp-l 0, passed to the operating system by LlSTFILES (page
17.14). Can be used to specify subcom mands to the LIST
command, e.g. to establish correspondance between font
number and font name.

[Variable]

Since comments are usually printed in a smaller font,
COMMENTLINELENGTH is provided to offset the fact that
Interlisp does not know about font widths. When
FONTCHANGEFLG = T, CAR of COMMENTLINELENGTH is the
linelength used to print short comments, i.e. those printed in the
right margin, and CDR is the linelength used when printing full
width comments.

(CHANGEFONT FONT STREAM) [Function]

Executes the operations on STREAM to change to the font FONT.
For use in PRETTYPRINTMACROS.

GRAPHICS OUTPUT OPERATIONS

27.16 Image Objects

GRAPHICS OUTPUT OPERATIONS

IMAGE OBJECTS

An Image Object is an object that includes information about an
image, such as how to display it, how to print it, and how to
manipulate it when it is included in a collection of images (such
as a document). More generall~"it enables you to include one
kind of image, with its own semantics, layout rules, and editing
paradigms, inside another kind of image. Image Objects provide
a general-purpose interface between image users who want to
manipulate arbitrary images, and image producers, who create
images for use, say, in documents.

Images are encapsulated inside a uniform barrier-the
IMAGEOBJ data type. From the outside, you communicate to the
image by calling a standard set of functions. For example, calling
one function tells you how big the image is; calling another
causes the image object to be displayed where you tell it, and so
on. Anyone who wants to create images for general use can
implement his own brand of IMAGEOBJ. IMAGEOBJs have been
implemented (in library packages) for bitmaps, menus,
annotations, graphs, and sketche's.

Image Objects were originally implemented to support inserting
images into TEdit text files, but the facility is available for use by
any tools that manipulate images. The Image Object interface
allows objects to exist in TEdit documents and be edited with
their own editor. It also provides a facility in which objects can
be shift-selected (or "copy-se~ected") between TEd it and
non-TEdit windows. For example, the Image Objects interface
allows you to copy-select graphs from a Grapher window into a
TEdit window. The source window (where the object comes
from) does not have to know what sort of window the
destination window (where the object is inserted) is, and the
destination does not have to know where the insertion comes
from.

A new data type, IMAGEOBJ, contains the data and the
procedures necessary to manipulate an o~ject that is to be
manipulated in this way. IMAGEOBJs are created with the
function IMAGEOBJCREATE (below).

Another new data type, IMAGEFNS, is a vector of the procedures
necessary to define the behavior of a type of IMAGEOBJ.
Grouping the operations in a separate data type allows multiple
instances of the same type of image object to share procedure
vectors. The data and procedure fields of an IMAGEOBJ have a
uniform interface through the function IMAGEOBJPROP.
IMAGEFNS are created with the function IMAGEFNSCREATE:

27.35

IMAGE OBJECTS

(lMAGEFNSCREATE DISPLA YFN IMAGEBOXFN PUTFN GETFN COPYFN BUTTONEVENTlNFN
COPYBUTTONEVENTlNFN WHENMOVEDFN WHENINSERTEDFN
WHENDELETEDFN WHENCOPIEDFN WHENOPERA TEDONFN
PREPRINTFN -) [Function1

Returns an IMAGEFNS object that contains the functions
necessary to define the behavior of an IMAGEOBJ.

The arguments DISPLA YFN through PREPRINTFN should all be
function names to be stored as the "methods" of the IMAGEFNS.
The purpose of each IMAGEFNS method is described below.

Note: Image objects must be "registered" before they can be
read by TEdit or HREAD (see page 27.39). IMAGEFNSCREATE
implicitly registers its GETFN argument.

(lMAGEOBJCREATE OBJECTDA TUM IMAGEFNS) [Function1

Returns an IMAGEOBJ that contains the object datum
OBJECTDA TUM and the operations vector IMAGEFNS.

OBJECTDATUM can be arbitrary data.

(lMAGEOBJPROP IMAGEOBJECT PROPERTY NEWVALUE) [NoSpread Function]

(lMAGEFNSP X)

(lMAGEOBJP X)

Accesses and sets the properties of an IMAGEOBJ. Returns the
current value of the PROPERTY property of the image object
IMAGEOBJECT. If NEWVALUE is given, the property is set to it.

IMAGEOBJPROP can be used on the system properties
OBJECTDATUM, DISPlAYFN, IMAGEBOXFN, PUTFN, GETFN,
COPYFN, BUTTONEVENTINFN, COPYBUTTONEVENTINFN,
WHENOPERATEDONFN, and PREPRINTFN. Additionally, it can be
used to save arbitrary properties on an IMAGEOBJ.

[Function]

Returns X if X is an IMAGEFNS object, Nil otherwise.

[Function]

Returns X if X is an IMAGEOBJ object, Nil otherwise.

27.16.1 IMAGEFNS Methods

27.36

Note: Many of the IMAGEFNS methods below are passed "host
stream" arguments. The TEdit text editor passes the "text
stream" (an object contain all of the information in the
document being edited) as the "host stream" argument. Other
editing programs that want to use image objects may want to
pass the data structure being edited to the IMAGEFNS methods
as the "host stream" argument.

GRAPHICS OUTPUTOPERA nONS

IMAGE OBJECTS

(OISPlA YFN IMAGEOBJ IMAGESTREAM IMAGESTREAMTYPE HOSTSTREAM)

Method]

[IMAGEFNS

The OISPLA YFN method is called to display the object IMAGEOBJ

at the current position on IMAGESTREAM. The type of
IMAGESTREAM indicates wheth~H the device is the display or
some other image stream.

Note: When the OISPlAYFN m,ethod is called, the offset and
clipping regions for the stream are set so the object's image is at
(0,0), and only that image area can be modified.

(lMAGEBOXFN IMAGEOBJ IMAGESTREAM CURRENTX RIGHTMARGIN) [IMAGEFNS Method]

The IMAGEBOXFN method should return the size of the object as
an IMAGEBOX, which is a data structure that describes the image
laid down when an IMAGEOBJ is displayed in terms of width,
height, and descender height. An IMAGEBOX has four fields:
XSIZE, YSIZE, YOESC, and XKERN. XSIZE and YSIZE are the width
and height of the object image. YOESC and XKERN give the
position of the baseline and the left edge of the image relative
to where you want to position it. For characters, the YOESC is
the descent (height of the descender) and the XKERN is the
amount of left kerning (note: TEdit doesn't support left
kerning).

The IMAGEBOXFN looks at the t)'pe of the stream to determine
the output device if the object's size changes from device to
device. (For example, a bit-map object may specify a scale factor
that is ignored when the bit map is displayed on the screen.)
CURRENTX and RIGHTMARGIN allow an object to take account
of its environment when deciding how big it is. If these fields are
not available, they are NIL.

Note: TEdit calls the IMAGEBOXFN only during line formatting,
then caches the IMAGEBOX as the BOUNOBOX property of the
IMAGEOBJ. This avoids the need to call the IMAGEBOXFN when
incomplete position and margin information is available.

(PUTFN IMAGEOBJ FILESTREAM) [IMAG EFNS Method]

(GETFN FILESTREAM)

GRAPHICS OUTPUT OPERA TlONS

The PUTFN method is called to save the object on a file. It prints
a description on FILESTREAM that, when read by the
corresponding GETFN method (see below), regenerates the
image object. (TEdit and HPRIN'T take care of writing out the
name of the GETFN.)

[lMAGEFNS Method]

The GETFN method is called when the object is encountered on
the file'during input. It reads the description that was written by
the PUTFN method and returns an IMAGEOBJ.

27,37

IMAGE OBJECTS

27.38

(COPYFN IMAGEOBJ SOURCEHOSTSTREAM TARGETHOSTSTREAM) [IMAGEFNS Method]

The COPYFN method is called during a copy-select operation. It
should return a copy of IMAGEOBJ. If it returns the litatom
DON'T, copying is suppressed.

(BUTTONEVENTINFN IMAGEOBJ WINDOWSTREAM SELECTION RELX REL Y WINDOW

HOSTSTREAM BUTTON) [IMAGEFNS Method]

The BUTTONEVENTINFN method is called when you press a
mouse button inside the object. The BUTTONEVENTINFN decides
whether or not to handle the button, to track the cursor in
parallel with mouse movement, and to invoke selections or edits
supported by the object (but see the COPYBUTTONEVENTINFN
method below). If the BUTTONEVENTINFN returns Nil, TEd it
treats the button press as a selection at its level. Note that when
this function is first called, a button is down. The
BUTTONEVENTlNFN should also support the button-down
protocol to descend inside of any composite objects with in it .. In
most cases, the BUTTONEVENTINFN relinquishes control (i.e.,
returns) when the cursor leaves its object's region.

Note: When the BUTTONEVENTINFN is called, the window's
clipping region and offsets have been changed so that the
lower-left corner of the object's image is at (0.0), and only the
object's image can be changed. The selection is available for
changing to fit your needs; the mouse button went down at
(RELX,REL Y) within the object's image. You can affect how TEdit
treats the selection by returning one of several values. If you
return Nil, TEd it forgets that you selected an object; if you
return the atom DON'T, TEdit doesn't permit the selection; if you
return the atom CHANGED, TEdit updates the screen. Use
CHANGED to signal TEdit that the object has changed size or will
have side effects on other parts of the screen image.

(COPYBUTTONEVENTlNFN IMAGEOBJ WINDOWSTREAM) [IMAGEFNS Method]

The COPYBUTTONEVENTINFN method is called when you button
inside an object while holding down a copy key. Many of the
comments about BUTTONEVENTINFN apply here too. Also, see
the' discussion below about copying image objects between
windows (page 27.41).

(WHENMOVEDFN IMAGEOBJ TARGETWINDOWSTREAM SOURCEHOSTSTREAM

TARGETHOSTSTREAM) [tMAGEFNS Method]

The WHENMOVEDFN method provides hooks by which the
object is notified when TEdit performs an operation (MOVEing)
on the whole object. It allows objects to have side effects.

GRAPHICS OUTPUT OPERA nONS

IMAGE OBJECTS

(WHENINSERTEDFN IMAGEOBJ TARGETWINDOWSTREAM SOURCEHOSTSTREAM

TARGETHOSTSTREAM) [IMAGEFNS Method]

The WHENINSERTEDFN method provides hooks by which the
object is notified when TEdit performs an operation (INSERTing)
on the whole object. It allows objects to have side effects.

(WHENDELETEDFN IMAGEOBJ TARGETW/NDOWSTREAM) [IMAGEFNS Method]

The WHENDELETEDFN method provides hooks by which the
object is notified when TEdit performs an operatiorl (DELETEing)
on the whole object. It allows objects to have side effects.

(WHENCOPIEDFN IMAGEOBJ TARGETWINDOWSTREAM SOURCEHOSTSTREAM

TARGETHOSTSTREAM) [IMAGEFNS Method]

The WHENCOPIEDFN method provides hooks by which the object
is notified when TEdit performs an operation (COPYing) on the
whole object. The WHENCOPIEDFN method is called in addition
to (and after) the COPYFN method above. It allows objects to
have side effects.

(WHENOPERATEDONFN IMAGEOBJ WINDOWSTREAM HOWOPERA TEDON SELECTION

(PREPRINTFN IMAGEOBJ)

27.16.2 Registering Image Objects

GRAPHICS OUTPU T OPERA nONS

HOSTSTREAM) [IMAGEFNS Method]

The WHENOPERATEDONFN method provides a hook for edit
operations. HOWOPERATEDON should be one of SELECTED,
DESELECTED, HIGHLIGHTED, and UNHILIGHTED. The
WHENOPERATEDONFN differs from the BUTTONEVENTINFN
because it is called when you extend a selection through the
object. That is, the object is treated in toto as a TEdit character.
HIGHLIGHTED refers to the selection being highlighted on the
screen, and UNHIGHLIGHTED means that the highlighting is
being turned off.

[IMAGEFNS Method]

The PREPRINTFN method is called to convert the object into
something that can be printed for inclusion in documents. It
returns an object that the receiving window can print (using
either PRIN1 or PRIN2,its choice) to obtain a character
representation of the object. If the PREPRINTFN method is NIL,
the OBJECTDATUM field of IMAGEOBJ itself is used. TEdit uses
this function when you indicate that you want to print the
characters from an object rather than the object itself
(presumably using PRIN1 case).'

Each legitimate GETFN needs to be known to the system, to
prevent various Trojan-horse problems and to allow the

27.39

IMAGE OBJECTS

automatic loading of the supporting code for infrequently used
IMAGEOBJs. To this end, there is a global list, IMAGEOBJGETFNS,
that contains an entry for each GETFN. The existence of the entry
marks the GETFN as legitimate; the entry itself is a property list,
which can hold information about the GETFN.

No action needs to be taken for GETFNs that are currently in use:
the function IMAGEFNSCREA TE automatically adds its GETFN

argument to the list. However, packages that support obsolete
versions of objects may need to explicitly add the obsolete
GETFNs. For example, TEdit supports bit-map IMAGEOBJs.
Recently, a change was made in the format in which objects are
stored; to retain compatibility with the old object format, there
are now two GETFNs. The current GETFN is automatically on the
list, courtesy of IMAGEFNSCREATE. However, the code file that
supports the old bit-map objects contains the clause: (ADDVARS
(IMAGEOBJGETFNS (OLDGETFNNAME»), which adds the old
GETFN to IMAGEOBJGETFNS.

For a given GETFN, the entry on IMAGEOBJGETFNS may be a
property list of information. Currently the only recognized
property is FilE.

FILE is the name of the file that can be loaded if the GETFN isn't
defined. This file should define the GETFN, along with all the
other functions needed to support that kind of IMAGEOBJ.

For example, the bit-map IMAGEOBJ implemented by TEdit use
the GETFN BMOBJ.GETFN2. Its entry on IMAGEOBJGETFNS is
(BMOBJ.GETFN2 FILE IMAGEOBJ), indicating that the support
code for bit-map image objects resides on the file IMAGEOBJ,
and that the GETFN for them is BMOBJ.GETFN2.

This makes it possible to have entries for GETFNs whose
supporting code isn't loaded-you might, for instance, have your
init file add entries to IMAGEOBJGETFNS for the kinds of image
objects you commonly use. The system's default reading method
will automatically load the code when necessary.

27.16.3 Reading and Writing Image Objects on Files

27.40

Image Objects can be written out to files using HPRINT and read
back using HREAD. The following functions can also be used:

(WRITEIMAGEOBJ IMAGEOBJ STREAM) [Function]

Prints (using PRIN2) a call to READIMAGEOBJ, then calls the
PUTFN for IMAGEOBJ to write it onto STREAM. During input,
then, the call to READIMAGEOBJ is read and evaluated; it in turn
reads back the object's description, using the appropriate GETFN.

GRAPHICS OUTPUT OPERATIONS

IMAGE OBJECTS

(READIMAGEOBJ STREAM GETFN NOERROR) [Function]

Reads an IMAGEOBJ from STREAM, starting at the current file
position. Uses the function GETFN after validating it (and
loading support code, if necessary).

If the GETFN can't be validated or isn't defined, READIMAGEOBJ
returns an "encapsulated imagE~ object", an IMAGEOBJ that
safely encapsulates all of the information in the image object.
An encapsulated image object displays as a rectangle that says,
"Unknown IMAGEOBJ Type" and lists the GETFN's name.
Selecting an encapsulated image object with the mouse causes
another attempt to read the object from the file; this is so you
can load any necessary support code and then get to the object.

Warning: You cannot save an encapsulated image object on a
file because there isn't enough information to allow copying the
description to the new file from the old one.

If NOERROR is non-NIL, READIMAGEOBJ returns Nil if it can't
successfully read the object.

27.16.4 Copying Image Objects Between Windows

COPYBUnONEVENTFN

GRAPHICS OUTPUT OPERATIONS

Copying between windows is implemented as follows: If a
button event occurs in a window when a copy key is down, the
window's COPYBUnONEVENTFN window property is called. If
this window supports copy-selection, it should track the mouse,
indicating the item to be copied. When the button is released,
the COPYBUnONEVENTFN should create an image object out of
the selected information, and call COPYINSERT to insert it in the
current TTY window. COPYINSERT calls the COPYINSERTFN
window property of the TTY window to insert this image object.
Therefore, both the source and destination windows can
determine how they handle copying image objects.

If the COPYBUnONEVENTFN of a window is Nil, the
BUnONEVENTFN is called instead when a button event occurs in
the window when a copy key is down, and copying from that
window is not supported. If the COPYINSERTFN of the TTY
window is NIL, COPYINSERT will turn the image object into a
string (by calling the PREPRINTFN method of the image object,
see page 27.39) and insert it by calling BKSYSBUF (page 30.11).

[Window Property]

The COPYBUnONEVENTFN of a window is called (if it exists)
when a button event occurs in the window and a copy key is
down. If no COPYBUnONEVENTFN exists, the BunONEVENTFN
is called.

2741

IMAGE OBJECTS

COPYINSERTFN

(COPYINSERT IMAGEOBJ)

[Window Property]

The COPYINSERTFN of the "destination" window is called by
COPYINSERT to insert something into the destination window. It
is called with two arguments: the object to be inserted and the
destination window. The object to be inserted can be a
character string, an IMAGEOBJ, or a list of IMAGEOBJs and
character strings. As a convention, the COPYINSERTFN should
call BKSYSBUF (page 30.11) if the object to be inserted insert is a

character string.

[Function1

COPYINSERT inserts IMAGEOBJ into the window that currently
has the TTY. If the current TTY window has a COPYINSERTFN, it
is called, passing it IMAGEOBJ qnd the window as arguments.

If no COPYINSERTFN exists and if IMAGEOBJ is an image object,
BKSYSBUF is called on" the result of calling its PREPRINTFN on it.
If IMAGEOBJ is not an image object, it is simply p,assed to
BKSYSBUF (page 30.11). In this case, BKSYSBUF will call PRIN2
with a read table taken from the process associated with the TTY
window. A window that wishes to use PRIN1 or a different read
table must provide its own COPYINSERTFN to do this.

27.17 Implementation of Image Streams

IMAGESTREAMTYPES

2742

Interlisp does all image creation through a set of functions and
data structures for device-independent graphics, known
popularly as DIG. DIG is implemented through the use of a
special type of stream, known as an image stream.

An image stream, by convention, is any stream that ha's its
IMAGEOPS field (described in detail below) set to a vector of
meaningful graphical operations. Using image streams, you can
write programs that draw and print on an output stream
without regard to the underlying device, be it a window, a disk,
or a printer.

To define a new image stream type, it is necessary to put
information on the variable IMAGESTREAMTYPES:

[Variable]

This variable describes how to create a stream for a given image
stream type. The value of IMAGESTREAMTYPES is an association
list, indexed by the image stream type (e.g., DISPLAY,
INTERPRESS, etc.). The format of a single association list item is:

(/MAGETY~E

(OPEN STREAM OPENSTREAMFN)

GRAPHICS OUTPUT OPERATIONS

IMPLEMENTATION OF IMAGE STREAMS

(FONTCREA TE FONTCREA TEFN)

(FONTSAVAllABlE FONTSA VAnABLEFN»

OPENSTREAMFN, FONTCREATEFN, and FONTSAVAILABLEFN are
"image stream methods," device-dependent functions used to
implement generic image stream operations. For Interpress
image streams, the association list entry is:

(lNTERPRESS
(OPENSTREAM OPENIPSTREAM)
(FONTCREATE \CREATEINTERPRESSFONT)
(FONTSAVAILABlE \SEARCHI NTIERPRESSFONTS»

(OPENSTREAMFN FILE OPTIONS) [Image Stream Method]

FILE is the file name as it was passed to OPENIMAGESTREAM, and
OPTIONS is the OPTIONS property list passed to
OPENIMAGESTREAM. The result must be a stream of the
appropriate image type.

(FONTCREATEFN FAMIL Y SIZE FACE ROTA TlON DEVICE) [Image Stream Method]

FA MIL Y is the family name for the font, e.g., MODERN. SIZE is
the body size of the font, in printer's points. FACE is a
three-element list describing the weight, slope, and expansion of
the face desired, e.g., (MEDIUM ITALIC EXPANDED). ROTA TlON

is how much the font is to be rotated from the normal
orientation, in minutes of arc. For example, to print a landscape
page, fonts have the rotation 5400 (90 degrees). The function's
result must be a FONTDESCRIPTOR with the fields filled in
appropriately.

(FONTSAVAILABLEFN FA MIL Y SIZE FACE ROTA TlON DEVICE) [Image Stream Method]

GRAPHICS OUTPUT OPERATIONS

This function returns a list of all fonts agreeing with the FAMIL Y,
SIZE, FACE, and ROTATION arguments; any of them may be
wild-carded (i.e., equal to *, which means any value' is
acceptable). Each element of the list should be a quintuple of
the form (FAMIL Y SIZE FACE ROTA TlON DEVICE).

Where the function looks is an implementation decision: the
FONTSAVAILABLEFN for the display device looks at
DISPLA YFONTDIRECTORIES, the Interpress code looks on
INTERPRESSFONTDIRECTORIES, and implementors of new
devices should feel free to introduce new search path variables.

As indicated above, image streams use a field that no other
stream uses: IMAGEOPS. IMAGEOPS is an instance of the
IMAGEOPS data type and contains a vector of the stream's
graphical methods. The methods contained in the IMAGEOPS
object can make arbitrary use of the stream's IMAGEDATA field,

27.43

IMPLEMENTATION OF IMAGE STREAMS

27.44

IMAGETYPE

IMFONTCREA TE

(lMCLOSEFN STREAM)

which is provided for their use, and may contain any data

needed.

The IMAGEOPS data type has the following fields:

[IMAG EOPS Field]

Value is the name of an image type. Monochrome display
streams have an IMAGETYPE of DISPLAY; color display streams
are identified as (COLOR DISPLAY). The IMAGETYPE field is
informational and can be set to anything you choose.

[IMAG EOPS Field]

Value is the device name to pass to FONTCREATE when fonts are
created for the stream.

The remaining fields are all image stream methods, whose value
should be a device-dependent function that implements the
generic operation. Most methods are called by a
similarly-named function, e.g. the function DRAWLINE calls the
IMDRAWLINE method. All coordinates that refer to points in a
display device's space are measured in the device's units. (The
IMSCALE method provides access to a device's scale.) For
arguments that have defaults (such as the BRUSH argument of
DRAWCURVE), the default is substituted for the NIL argument
before it is passed to the image stream method. Therefore,
image stream methods do not have to handle defaults.

[Image Stream Method]

Called before a stream is closed with CLOSEF. This method
should flush buffers, write header or trailer information, etc.

(lMDRAWLINE STREAM X, Y 1 Xl Y 1 WIDTH OPERA TlON COLOR DASHING) [Image Stream

Method]

Draws a line of width WIDTH from (X l' Y 1) to (Xl, Y2). See

DRAWlINE, page 27.17.

(IMDRAWCURVE STREAM KNOTS CLOSED BRUSH DASHING) [Image Stream Method]

Draws a curve through KNOTS. See DRAWCURVE, page 27.19.

(IMDRAWCIRCLE STREAM CENTERX CENTERY RADIUS BRUSH DASHING)

Method]
[Image Stream

Draws a circle of radius RADIUS around (CENTERX, CENTERy).

See DRAWCIRCLE, page 27.19.

GRAPHICS OUTPUT OPERATIONS

IMPLEMENTATION OF IMAGE STREAMS

(lMDRAWElLiPSE STREAM CENTERX CENTERY SEMIMINORRADIUS SEMIMAJORRADIUS

ORIENTATION BRUSH DASHING) [Image Stream Method]

Draws an ellipse around (CENTERX, CENTERY). See
DRAWElLiPSE, page 27.19.

(lMFILlPOl VGON STREAM POINTS TEXTURE) [Image Stream Method1

Fills in the polygon outlined by POINTS on the image stream
STREAM, using the texture TEXTURE. See FlllPOl VGON, page
27.20.

(lMFlllCIRClE STREAM CENTERX CENTERY RADIUS TEXTURE) [Image Stream Method1

Draws a circle filled with texture TEXTURE around (CENTERX,

CENTERy). See FlllCIRClE, page 27.21.

(lMBL TSHADE TEXTURE STREAM DES TINA TlONLEFT DESTINA T10NBOTTOM WIDTH HEIGHT

OPERATION CLIPPINGREGION) [Image Strea m Method]

The texture-source case of BITBl T (page 27.14).
DES TINA TlONLEFT, DES TINA TlONBOTTOM, WIDTH, HEIGHT, and
CLIPPINGREGION are measured in STREAM's units. This method
is invoked by the functions BITBl T and BLTSHADE (page 27.16).

(lMBITBL T SOURCEBITMAP SOURCELEFT SOURCEBOTTOM STREAM DESTINA TlONLEFT
DES TINA TlONBOTTOM WIDTH HEIGHT SOURCETYPE
OPERA TlON TEXTURE CLIPPINGREGION CLIPPEDSOURCELEFT
CLIPPEDSOURCEBOTTOM SCALE) [Image Stream Method]

Contains the bit-map-source cases of BITBl T (page 27.14).
SOURCELEFT, SOURCEBOTTOM, CLIPPEDSOURCELEFT,

CLiPPEDSOURCEBOTTOM, WIDTH, and HEIGHT are measured in
pixels; DES TINA TlONLEFT, DESTINA TlONBOTTOM, and
CLIPPINGREGION are in the units of the destination stream.

(I MSCAlEDBITBl T SOURCEBITMAP SOURCELEFT SOURCEBOTTOM STREAM
DESTINATIONLEFT DES TINA TlONBOTTOM WIDTH HEIGHT
SOURCETYPE OPERA TlON TEXTURE CLIPPINGREGION

(lMMOVETO STREAM X y)

GRAPHICS OUTPUT OPERA TlONS

CLIPPEDSOURCELEFT CLIPPEDSOURCEBOTTOM SCALE) [Image
Stream Method]

A scaled version of IMBITBL T. Each pixel in SOURCEBITMAP is
replicated SCALE times in the X and Y directions; currently,
SCALE must be an integer.

[Image Stream Method]

Moves to (X, Y). This method is invoked by the function MOVETO
(page 27.13). If IMMOVETO is not supplied, a default method
composed of calls to the IM)CPOSITION and IMVPOSITION
methods is used.

27.45

IMPLEMENTATION OF IMAGE STREAMS

27.46

(lMSTRINGWIOTH STREAM STR RDTBL) [Image Stream Method]

Returns the width of string STR in STREAM's units, using
STREAM's current font. This is envoked when STRINGWIOTH
(page 27.30) is passed a stream as its FONT argument. If
IMSTRINGWIOTH is not supplied, it defaults to calling
STRINGWIOTH on the default font of STREAM.

(lMCHARWIOTH STREAM CHARCODE) [Image Stream Method]

Returns the width of character CHARCODE in STREAM's units,
using STREAM's current font. This is invoked when CHARWIOTH
(page 27.30) is passed a stream as its FONT argument. If
IMCHARWIOTH is not supplied, it defaults to calling CHARWIOTH
on the default font of STREAM.

(lMCHARWIOTHY STREAM CHARCODE) [Image Stream Method]

Returns the Y componant of the width of character CHARCODE
in STREAM's units, using STREAM's current font. This is envoked
when CHARWIOTHY (page 27.30) is passed a stream as its FONT
argument. If IMCHARWIOTHY is not supplied, it defaults to
calling CHARWIOTHY on the default font of STREAM.

(lMBITMAPSIZE STREAM BITMAP DIMENSION) [Image Stream Method]

(lMNEWPAGE STREAM)

(lMTERPRI STREAM)

(lMRESET STREAM)

Returns the size that BITMAP will be when BITBl Ted to STREAM,
in STREAM's units. DIMENSION can be one of WIDTH, HEIGHT, or
Nil, in which case the dotted pair (WIDTH. HEIGHn will be
returned.

This is envoked by BITMAPIMAGESIZE (page 27. 16). If
IMBITMAPSIZE is not supplied, it defaults to a method that
multiplies the bitmap height and width by the scale of STREAM.

[Image Stream Method]

Causes a new page to be started. The X position is set to the left
margin, and the Y position is set to the top margin plus the
linefeed. If not supplied, defaults to (\OUTCHAR STREAM
(CHARCOOE t l». Envoked by OSPNEWPAGE (page 27.21).

[Image Strea m Method]

Causes a new line to be started. The X position is set to the left
margin, and the Y position is set to the current Y position plus
the linefeed. If not supplied, defaults to {\OUTCHAR STREAM
(CHARCOOE EOl». Envoked by TERPRI (page 25.9).

[Image Stream Method]

Resets the X and Y position of STREAM. The X coordinate is set
to its left margin; the Y coordinate is set to the top of the

GRAPHICS OUTPUT OPERATIONS

IMPLEMENTATION OF IMAGE STREAMS

clipping region minus the font ascent. Envoked by DSPRESET,
page 27.21.

The following methods all have corresponding DSPxx functions
(e.g., IMYPOSITION corresponds to DSPYPOSITION) that invoke
them. They also have the prOpE!rty of returning their previous
value; when called with NIL they return the old value without
changing it.

(lMCLlPPINGREGION STREAM REGION) [Image Stream Method]

Sets a new clipping region on STREAM.

(lMXPOSITION STREAM XPOSITION) [Image Stream Method]

Sets the X-position on STREAM.

(lMYPOSITtON STREAM YPOSITION) [Image Stream Method]

Sets a new Yaposition on STREAM.

(lMFONT STREAM FONn [Image Stream Method]

Sets STREAM's font to be FONT.

(lMLEFTMARGIN STREAM LEFTMARGIN) [Image Stream Method]

Sets STREAM's left margin to be LEFTM.f\,RGIN. The left margin is
defined as the X-position set after the new line.

(lMRIGHTMARGIN STREAM RIGHTMARGIN) [Image Stream Method]

Sets STREAM's right margin to be RIGHTMARGIN. The right
margin is defined as the maximum X-position at which characters
are printed; printing beyond it causes a new line.

(lMTOPMARGIN STREAM YPOSITlON) [Image Stream Method]

Sets STREAM's top margin (the Y-position· of the tops of
characters that is set after a new page) to be YPOSITION.

(lMBOTTOMMARGIN STREAM YPOSITlON) [Image Stream Method]

Sets STREAM's bottom margin (the V-position beyond which any
printing causes a new page) to be YPOSITION.

(IMLINEFEED STREAM DELTA) [Image Stream Method1

GRAPHICS OUTPUT OPERA TIONS

Sets STREAM's line feed distanc:e (distance to move vertically
after a new line) to be DELTA.

27.47

IMPLEMENTATION OF IMAGE STREAMS

27.48

(IMSCALE STREAM SCALE) [Image Stream Method]

Returns the number of device points per screen point (a screen
point being -1172 inch). SCALE is ignored.

(IMSPACEFACTOR STREAM FACTOR) [Image Stream Method]

Sets the amount by which to mUltiply the natural width of all
following space characters on STREAM; this can be used for the
justification of text. The default value is 1. For example, if the
natural width of a space in STREAM's current font is 12 units, and
the space factor is set to two, spaces appear 24 units wide. The
values returned by STRINGWIDTH and CHARWIDTH are also
affected.

(IMOPERATION STREAM OPERA TlON) [Image Stream Method]

Sets the default BITBl T OPERA TlON argument (see page 27.1 5).

(IMBACKCOlOR STREAM COLOR) [Image Stream Method]

(IMCOlOR STREAM COLOR)

Sets the background color of STREAM.

[Image Stream Method]

Sets the default color of STREAM.

In addition to the IMAGEOPS methods described above, there
are two other important methods, which are contained in the
stream itself. These fields can be installed using a form like
(replace (STREAM OUTCHARFN) of STREAM with (FUNCTION
MYOUTCHARFN». Note: You need to have loaded the
Interlisp-D system declarations to manipulate the fields of
STREAMs. The declarations can be loaded by loading the Lisp
Library package SYSEDIT.

(STRMBOUTFN STREAM CHARCODE) [Strea m Method]

The function called by BOUT.

(OUTCHARFN STREAM CHARCODE) [Stream Method]

The function that is called to output a single byte. This is like
STRMBOUTFN, except for being one level higher: it is intended
for text output. Hence, this function should convert (CHARCODE
EOl) into the stream's actual end-of-line sequence and should
adjust the stream's CHARPOSITION appropriately before
invoking the stream's STRMBOUTFN (by calling BOUT) to actually
put the character. Defaults to \FllEOUTCHARFN, which is
probably incorrect for an image stream.

GRAPHICS OUTPUT OPERA nONS

TABLE OF CONTENTS

28. Windows and Menus 28.1

28.1. Using The Window System 28.2

28.2. Changing Window Command Menus 28.7

28.3. Interactive Display Functions 28.9

28.4. Windows 28.12

28.4.1. Window Properties 28.13

28.4.2. Creating Windows 28.13

28.4.3. Opening and Closing Windows 28.15

28.4.4. Redisplaying Windows 28.16

28.4.5. Reshaping Windows 28.16

28.4.6. Moving Windows 28.19

28.4.7. Exposing and Burying Windows 28.20

28.4.8. Shrinking Windows Into Icons 28.21

28.4.9. Coordinate Systems, Extents, And Scrolling 28.23

28.4.10. Mouse Activity in Windows 28.27

28.4.11. Terminal 110 and Page Holding 28.29

28.4.12. The TTY Process and the Caret 28.30

28.4.13. Miscellaneous Window Functions 28.31

28.4.14. Miscellaneous Window Properties 28.33

28.4.15. Example~ A Scrollable Window 28.34

28.5. Menus 28.37

28.5.1. Menu Fields 28.38

28.5.2. Miscellaneous Menu Functions 28.42

28.5.3. Examples of Menu Use 28.43

28.6. Attached Windows 28.45

28.6.1. Attaching Menus To Windows 28.48

28.6.2. Attached Prompt Windows 28.50

28.6.3. Window Operations And Attached Windows 28.50

28.6.4. Window Properties Of Attached Windows 28.53

TABLE OF CONTENTS TOC.1

TABLE OFCONTENTS

[This page intentionally left blank]

TOC 2 TABLE OF CONTENTS

(WINDOWWORLD FLAG)

WINDOWS AND MENUS

28. WINDOWS AND MENUS

Windows provide a means by which different programs can
share a single display harmoniously. Rather than having every
program directly manipulating the screen bitmap, all display
input/output operations are directed towards windows, which
appear as rectangular regions of the screen, with borders and
titles. The Interlisp-D window system provides both interactive
and programmatic constructs for creating, moving, reshaping,
overlapping, and destroying windows in such a way that a
program can use a window in a relatively transparent fashion
(see page 28.12). This allows existing Interlisp programs to be
used without change, while providing a base for
experimentation with more complex windows in new
applications.

Menus are a special type of window provided by the window
system, used for displaying a set of items to the user, and having
the user select one using the mouse and cursor. The window
system uses menus to provide the interactive interface for
manipulating windows. The menu facility also allows users to
create and use menus in interactive programs (see page 28.37).

Sometimes, a program needs to use a number of windows,
displaying related information. The attached window facility
(page 28.45) makes it easy to manipulate a group of windows as
a single unit, moving and reshaping them together.

This chapter documents the Interlisp-D window system. First, it
describes the de'fault windows and menus supplied by the
window system. Then, the programmatic facilities for creating
windows. Next, the functions for using menus. Finally, the
attached window facility.

Warning: The window system assumes that all programs follow
certain conventions concerning control of the screen. All user
programs should use perform display operations using windows
and menus. In particular, user programs should not perform
operate directly on the screen bitmap; otherwise the window
system will not work correctly. For specialized applications that
require taking complete control of the display, the window
system can be turned off (and back on again) with the following
function:

[NoSpread Function]

The window system is turned on if FLAG is T and off if FLAG is
NIL WINDOWWORLD returns the previous state of the window

28.1

WINDOWS AND MENUS

system (T or NIL). If WINDOWWORLD is given no arguments, it
simply returns the current state without affecting the window
system.

28. 1 Using The Window System

When Interlisp-O is initially started, the display screen lights up,
showing a number of windows, including the following:

Copyright (C) by Xerox Corporation 23-JUI-85 01:47:24.

Interlisp-n
This window is the "logo window," used to identify the system.
The logo window is bound to the variable LOGOW until it is
closed. The user can create other windows like this by calling the
following function:

(LOGOW STRING WHERE TITLE ANGLEDEL TA) [Function]

Interlisp-O Executive
]
NIL
66~(PLUS 3 4)
7
1--.... _1/ t:*A

28.2

Creates a window formatted like the "logo window." STRING is
the string to be printed in big type in the window; if NIL,

"Interlisp-O" is used. WHERE is the position of the lower-left
corner of the window; if NIL, the user is asked to specify a
position. TITLE is the window title to use; if NIL, it defaults to the
Xerox copyright notice and date. ANGLEDEL TA specifies the
angle (in degrees) between the boxes in the picture; if NIL, it
defaults to 23 degrees.

WINDOWS AND MENUS

PROMPTWINDOW

USING THE WINDOW SYSTEM

This window is the "executive window," used for typing
expressions and commands to the Interlisp-D executive, and for
the executive to print any results (see page 13.1). For example, in
the above picture, the user typed in (PLUS 3 4), the executive
evaluated it, and printed out the result, 7. The upward-pointing
arrow (A) is the flashing caret, which indicates where the next
keyboard typein will be printed (see page 28.30).

This window is the" prompt window," used for printing various
system prompt messages. It is available to user programs
through the following functions:

[Variable]

Global variable containing the prompt window.

(PROMPTPRINT EXP, ... EXPN) [NoSpread Function]

(CLRPROMPT)

Close

WINDOWS AND MENUS

Clears the prompt window, and prints EXP, through EXPN in the

prompt window.

[Function]

Clears the prompt window.

The Interlisp-D window system allows the user to interactively
manipulate the windows on the screen, moving them around,
changing their shape, etc. by selecting various operations from a
menu.

For most windows, depressing the RIGHT mouse key when the
cursor is inside a window during I/O wait will cause the window
to come to the top and a menu of window operations to appear.
If a command is selected from this menu (by releasing the right
mouse key while the cursor is over a command), the selected
operation will be applied to the window in which the menu was
brought up. It is possible for an applications program to
redefine the action of the RIGHT mouse key. In these cases, there
is a convention that the default command menu may be brought
up by depressing the RIGHT key when the cursor is in the header
or border of a window (page 28.28). The operations are:

[Window Menu Command]

Closes the window, i.e, removes it from the screen. (See
CLOSEW, page 28.15.)

28.3

USING THE WINDOW SYSTEM

Snap

Paint

Clear

Bury

Redisplay

Hardcopy

28.4

[Window Menu Command]

Prompts for a region on the screen and makes a new window
whose bits are a snapshot of the bits currently in that region.
Useful for saving some particularly choice image before the
window image changes.

[Window Menu Command]-

Switches to a mode in which the cursor can be used like a paint
brush to draw in a window. This is useful for making notes on a
window. While the LEFT key is down, bits are added. While the
MIDDLE key is down, they are erased. The RIGHT button pops up
a command menu that allows changing of the brush shape, size
and shade, changing the mode of combining the brush with the
existing bits, or stopping paint mode.

[Window Menu Command]

Clears the window and repositions it to the left margin of the
first line of text (below the upper left corner of the window by
the amount of the font ascent).

[Window Menu Command]

Puts the window on the bottom of the occlusion stack, thereby
exposing any windows that it was hiding.

[Window Menu Command]

Redisplays the window. (See REDISPLA YW, page 28.16.)

[Window Menu Command]

Prints the contents of the window to the printer. If the window
has a window property HARDCOPYFN (page 28.34), it is called
with two arguments, the window and an image stream to print
to, and the HARDCOPYFN must do the printing. In this way,
special windows can be set up that know how to print their
contents in a particular way. If the window does not have a
HARDCOPYFN, the bitmap image of the window (including the
border and title) are printed on the file or printer.

To save the image in a Press or Interpress-format file, or to send it
to a non-default printer, use the submenu of the Hardcopy
command, indicated by a gray triangle on the right edge of the
Hardcopy menu item. If the mouse is moved off of the right of
the menu item, another pop-up menu will apear giving the
choices "To a file" or "To a printer." If "To a file" is selected, the
user is prompted to supply a file name, and the format of the file
(Press, Interpress, etc.), and the specified region will be stored in
the file.

WINDOWSAND MENUS

Move

Shape

Shrink

Expand

WINDOWS AND MENUS

USING THE WINDOW SYSTEM

If "To a printer" is selected, the user is prompted to select a
printer from the list of known printers, or to type the name of
another printer. If the printer selected is not the first printer on
DEFAUL TPRINTINGHOST (page 29.4), the user will be asked
whether to move or add the printer to the beginning of this list,
so that future printing will go to the new printer.

[Window Menu Command]

Moves the window to a location specified by depressing and
then releasing the LEFT key. During this time a ghost frame will
indicate where the window will reappear when the key is
released. (See GETBOXPOSITJON, page 28.9.)

[Window Menu Command]

Allows the user to specify a new region for the existing window
contents. If the LEFT key is used to specify the new region, the
reshaped window can be placed anywhere. If the MIDDLE key is
used, the cursor will start out tugging at the nearest corner of
the existing window, which is useful for making small
adjustments in a window that is already positioned correctly.
This is done by calling the function SHAPEW (page 28.16).

Occasionally, a user will have a number of large windows on the
screen, making it difficult to access those windows being used.
To help with the problem of screen space management, the
Interlisp-D window system allows the creation of "icons." An
icon is a small rectangle (containing text or a bitmap) which is a
"shrunken-down" form of a particular window. Using the
Shrink and Expand commands, the user can shrink windows not
currently being used into icons, and quickly restore the original
windows at any time.

[Window Menu Command]

Removes the window from the screen and brings up its icon.
(See SHRINKW, page 28.21.) The window can be restored by
selecting Expand from the window command menu of the icon.

If the RIGHT button is pressed while the cursor is in an icon, the
window command menu will contain a slightly different set of
commands. The Redisplay and Clear commands are removed,
and the Shrink command is replaced with the Expand command:

[Window Menu Command]

Restores the window associated with this icon and removes the
icon. (See EXPANDW, page 28.22.)

28.5

USING TH E WINDOW SYSTEM

Idle

SaveVM

Snap

Hardcopy

PSW

28_6

If the RIGHT button is pressed while the cursor is not in any
window, a "background menu" appears with the following
operations:

[Background Menu Command]

Enters" idle mode" (see page 12.4), which blacks out the display
screen to save the phosphor. Idle mode can be exited by pressing
any key on the keyboard or mouse. This menu command has
subitems that allow the user to interactively set idle options to
erase the password cache (for security), to request a password
before exiting idle mode, to change the timeout before idle
mode is entered automatically, etc.

[Background Menu Command]

Calls the function SAVEVM (page 12.7), which writes out all of
the dirty pages of the virtual memory. After a SAVEVM, and
until the pagefault handler is next forced to write out a dirty
page, your virtual memory image will be continuable (as of the
SAVEVM) should you experience a system crash or other disaster.

[Background Menu Command]

The same as the window menu command Snap described above.

[Background Menu Command]

Prompts for a region on the screen, and sends the bitmap image
to the printer by calling HARDCOPYW (page 29.3). Note that the
region can cross window boundaries.

Like the Hardcopy window menu command (above), the user can
print to a file or specify a printer by using a submenu.

[Background Menu Command]

Prompts the user for a position on the screen, and creates a
"process status window" that allows the user to examine and
manipulate all of the existing processes (see page 23.16).

Various system utilities (TEdit, DEdit, TTYIN) allow information to
be "copy-inserted" at the current cursor position by selecti ng it
with the "copy" key held down (Normally the shift keys are the
"copy" key; this action can be changed in the key action table.)
To "copy-insert" the bitmap of a snap into a Tedit document. If
the right mouse button is pressed in the background with the
copy key held down, a menu with the single item "SNAP"
appears. If this item is selected, the user is prompted to select a
region, and a bitmap containing the bits in that region of the
screen is inserted into the current tty process, if that process is
able to accept image objects.

WINDOWS AND MENUS

USING THE WINDOW SYSTEM

Some built-in facilities and Lispusers packages add commands to
the background menu, to provide an easy way of calling the
different facilities. The user can determine what these new
commands do by holding the RIGHT button down for a few
seconds over the item in question; an explanatory message will
be printed in the prompt window.

28.2 Changing Window Command Menus

The following functions provide a functional interface to the
interactive window operations so that user programs can call
them directly.

(DOWINDOWCOM WINDOW) [Function]

(DOBACKGROUNDCOM)

WINDOWS AND MENUS

If WINDOW is a WINDOW that has a DOWINDOWCOMFN
window property, it APPl Ys that property to WINDOW.
Shrunken windows have a DOWINDOWCOMFN property that
presents a window command menu that contains "expand"
instead of "shrink".

If WINDOW is a WINDOW that doesn't have a
DOWINDOWCOMFN window property, it brings up the window
command menu. The initial items in these menus are described
above. If the user selects one of the items from the provided
menu, that item is APPl Yed to WINDOW.

If WINDOW is Nil, DOBACKGROUNDCOM (below) is called.

If WINDOW is not a WINDOW or Nil, DOWINDOWCOM simply
returns without doing anything.

[Function]

Brings up the background menu. The initial items in this menu
are described above. If the user selects one of the items from the
menu, that item is EVAled.

The window command menu for unshrunken windows is cached
in the variable WindowMenu. To change the entries in this
menu, the user should change the change the menu "command
lists" in the variable WindowMenuCommands, and set the
appropriate menu variable to a non-MENU, so the menu will be
recreated. This provides a way of adding commands to the
menu, of changing its font or of restoring the menu if it gets
clobbered. The window command menus for icons and the
background have similar pairs of variables, documented below.
The "command lists" are in the format of the ITEMS field of a
menu (see page 28.39), except as specified below.

28.7

CHANGING WINDOW COMMAND MENUS

28.8

WindowMenu

WindowMenuCommands

IconWindowMenu

Note: Command menus are recreated using the current value of
MENUFONT.

[Variable]

[Variable]

The menu that is brought up in response to a right button in an
unshrunken window is stored on the variable WindowMenu. If
WindowMenu is set to a non-MENU, the menu will be recreated
from the list of commands WindowMenuCommands. The CADR
of each command added to WindowMenuCommands should be
a function name that will be APPl Yed to the window.

[Variable]

IconWindowMenuCommands [Variable]

BackgroundMenu

The menu that is brought up in response to a right button in a
shrunken window is stored on the variable IconWindowMenu. If
it is Nil, it is recreated from the list of commands
lconWindowMenuCommands. The CADR of each command
added a function name that will be APPl Yed to the window.

[Variable1

BackgroundMenuCommands [Variable]

BackgroundCopyMenu

The menu that is brought up in response to a right button in the
background is stored on the variable BackgroundMenu. If it is
Nil, it is recreated from the list of commands
BackgroundMenuCommands. The CADR of each command
added to BackgroundMenuCommands should be a form that
will be EVAled.

[Variable]

BackgroundCopyMenuCom ma nds [Variable]

The menu that is brought up in response to a right button in the
background when the copy key is down is stored on the variable
BackgroundCopyMenu. If it is Nil, it is recreated from the list of
commands BackgroundCopyMenuCommands. The CADR of
each command added to BackgroundCopyMenuCommands
should be a form that will be EVAled.

WINDOWS AND MENUS

INTERACTIVE DISPLAY FUNCTIONS

28.3 Interactive Display Functions

The following functions can be used by programs to allow the
user to interactively specify positions or regions on the display
screen.

(GETPOSITION WINDOW CURSOR) [Function]

Returns a POSITION that is specified by the user. GETPOSITION
waits for the user to press and release the left button of the
mouse and returns the cursor position at the time of release. If
WINDOW is a WINDOW, the position will be in the coordinate
system of WINDOW's display stream. If WINDOW is NIL, the
position will be in screen coordinates. If CURSOR is a CURSOR
(page 30.14), the cursor will be changed to it while GETPOSlnON
is running. If CURSOR is NIL, the value of the system variable

CROSSHAIRS will be used as the cursor: ED.

(GETBOXPOSITION BOXWIDTH BOXHEIGHT ORGX ORGY WINDOW PROMPTMSG) [Function]

Allows the user to position a "ghost" region of size BOXWIDTH

by BOXHEIGHT on the screen, and returns the POSITION of the
lower left corner of the region. If PROMPTMSG is non-NIL,
GETBOXPOSITION first prints it in the PROMPTWINDOW.
GETBOXPOSITION then changes the cursor to a box (using the

WINDOWS AND MENUS

global variable BOXCURSOR: Cb. If ORGX and ORGY are
numbers, they are taken to be the original position of the
region, and the cursor is moved to the nearest corner of that
region. A ghost region is locked to the cursor so that if the cursor
is moved, the ghost region moves with it. If ORGX and ORGY are
numbers, the corner of the region formed by (ORGX ORGY

BOXWIDTH BOXHEIGHn that is nearest the cursor position is
locked, otherwise the lower left corner is locked. The user can
change to another corner by holding down the right button.
With the right button down, the cursor can be moved across the
screen without effect on the ghost region frame. When the right
button is released, the mouse will snap to the nearest corner,
which will then become locked to the cursor. (The held corner
can be changed after the left or middle button is down by
holding both the original button and the right button down
while the cursor is moved to the desired new corner, then letting
up just the right button.) When the left or middle button is
pressed and released, the lower left corner of the region at'the
time of release is returned. If WINDOW is a WINDOW, the
returned position will be in WINDOWs coordinate system;
otherwise it will be in screen coordinates.

Example:

(GETBOXPOSITION 100200 NIL NIL NIL
"Specify the position of the command area. ")

28.9

INTERACTIVE DISPLA Y FUNCTIONS

prompts the user for a 100 wide by 200 high region and returns
its lower left corner in screen coordinates.

(GETREGION MINWIDTH MINHEIGHT OLDREGION NEWREGIONFN NEWREGIONFNARG

28.10

INITCORNERS) [Function)

Lets the user specify a new region and returns that region in
screen coordinates. GETREGION prompts for a region by
displaying a four-pronged box next to the cursor arrow at one

corner of a "ghost" region: ~:c~. If the user presses the left
button, the corner of a "ghost" region opposite the cursor is
locked where it is. Once one corner has been fixed, the ghost
region expands as the cursor moves.

To specify a region: (1) Move the ghost box so that the corner
opposite the cursor is at one corner of the intended region. (2)
Press the left button. (3) Move the cursor to the position of the
opposite corner of the intended region while holding down the
left button. (4) Release the left button.

Before one corner has been fixed, one can switch the curSOf to
another corner of the ghost region by holding down the right
button. With the right button down, the cursor changes to a

"forceps" (lib) and the cursor can be moved across the screen
without effect on the ghost region frame. When the right
button is released, the cursor will snap to the nearest corner of
the ghost region.

After one corner has been fixed, one can still switch to another
corner. To change to another corner, continue to hold down the
left button and hold down the right button also. With both
buttons down, the cursor can be moved across the screen
without effect on the ghost region frame. When the right
button is released, the cursor will snap to the nearest corner,
which will become the moving corner. In this way, the region
may be moved all over the screen, before its size and position is
finalized.

The size of the initial ghost region is controlled by the
MINWIDTH, MINHEIGHT, OLDREGION, and INITCORNERS
arguments.

If INITCORNERS is non-NIL, it should be a list specifying the initial
corners of a ghost region of the form (BASEX BASEY OPPX

OPPy), where (BASEX, BASEy) describes the anchored (orner of
the box, and (OPPX, OPPy) describes the trackable corner (in
screen coordinates). The cursor is moved to (OPPX, OPPY).

If INITCORNERS is NIL, the ghost region will be MINWIDTH wide
and MINHEIGHT high. If MINWIDTH or MINHEIGHT is NIL, a is
used. Thus, for a call to GETREGION with no arguments
specified, there will be no initial ghost region. The cursor will be
in the lower right corner of the region, if there is one.

WINDOWS AND MENUS

INTERACTIVE DISPLA Y FUNCTIONS

If OLDREGION is a region and the user presses the middle button,
the corner of OLDREGION farthest from the cursor position is
fixed and the corner nearest the cursor is locked to the cursor.

MINW~DTH and MINHEIGHT, if given, are the smallest WIDTH
and HEIGHT that the returned region will have. The ghost image
will not get any smaller than MINWIDTH by MINHEIGHT.

If NEWREGIONFN is non-NIL, it will be called to determine values
for the positions of the corners. This provides a way of
"filtering" prospective regions; for instance, by restricting the
region to lie on an arbitrary grid. When the user is specifying a
region, the region is determined by two of its corners, one that is
fixed and one that is tracking the cursor. Each time the cursor
moves or a mouse button is pressed, NEWREGIONFN is called
with three arguments: FIXEDPOINT, the position of the fixed
corner of the prospective region; MOVINGPOINT, the position of
the opposite corner of the prospective region; and
NEWREGIONFNARG. NEWREGIONFNARG allows the caller of
GETREGION to pass information to the NEWREGIONFN.

The first time a button is pressed and when the user changes the
moving corner via right buttoning, MOVINGPOINT is NIL and
FIXEDPOINTis the position the user selected for the fixed corner
of the new region. In this case, the position returned by
NEWREGIONFN will be used for the fixed corner instead of the
one proposed by the user. For all other calls, FIXEDPOINT is the
position of the fixed corner (as returned by the previous call) and
MOVINGPOINT is the new position the user selected for the
opposite corner. In these cases, the value of NEWREGIONFN is
used for the opposite corner instead of the one proposed by the
user. In all cases, the ghost region is drawn with the values
returned by NEWREGIONFN. NEWREGIONFN can be a list of
functions in which case they are called in order with each being
passed the result of calling the previous and the value of the last
one used as the point.

(GETBOXREGION WIDTH HEIGHT ORGX ORGY WINDOW PROMPTMSG) [Function]

Performs the same prompting as GETBOXPOSITION and returns
the REGION specified by the user instead of the POSITION of its
lower left corner.

(MOUSECONFIRM PROMPTSTRING HELPSTRING WINDOW DON'TCLEARWINDOWFLG)

[Function]

WINDOWS AND MENUS

MOUSECONFIRM provides a simple way for the user to confirm
orabor! some action simply by using the mouse buttons. It prints
the strings PROMPTSTRING and HELPSTRING in the window

WINDOW, changes the cursor to a "little mouse" cursor: ~
(stored in the variable MOUSECONFIRMCURSOR), and waits for
the user to press the left button to confirm, or any other button

28.11

INTERACTIVE DISPLA Y FUNCTIONS

28.4 Windows

28.12

to abort. If the left button was the last button released, returns
T, else NIL.

If PROMPTSTRING is NIL, it is not printed out. If HELPSTRING is
NIL, the string "Click LEFT to confirm, RIGHT to abort." is used. If
WINDOW is NIL, the prompt window is used.

Normally, MOUSECONFIRM clears WINDOW before returning. If
DON'TCLEARWINDOWFLG is non-NIL, the window is not cleared.

A window specifies a region of the screen, a display stream,
functions that get called when the window undergoes certain
actions, and various other items of information. The basic model
is that a window is a passive collection of bits (on the screen). On
top of this basic level, the system supports many different types
of windows that are linked to the data structures displayed in
them and provide selection and redisplaying routines. In
addition, it is possible for the user to create new types of
windows by providing selection and displaying functions for
them.

Windows are ordered in depth from user to background.
Windows in front of others obscure the latter. Operating on a
window generally brings it to the top.

Windows are located at a certain position on the screen. Each
window has a clipping region that confines all bits written to it
to a region that allows a border around the window, and a title
above it.

Each window has a display stream associated with it (see page
27.23), and either a window or its display stream can be passed
interchangeably to all system functions. There are dependencies
between the window and its display stream that the user should
not disturb. For instance, the destination bitmap of the display
stream of a window must always be the screen bitmap. The X
offset, Y offset, and Clipping Region fields of the display stream
should not be changed.

Windows can be created by the user interactively, under
program control, or may be created automatically by the system.

Windows are in one of two states: "open" or "closed". In an
"open" state, a window is visible on the screen (unless it is
covered by other open windows or off the edge of the screen)
and accessible to mouse operations. In a "closed" state, a
window is not visible and not accessible to mouse operations.
Any attempt to print or draw on a closed window will open it.

WINDOWS AND MENUS

28.4.1 Window Properties

WINDOWS

The behavior of a window is controlled by a set of "window
properties." Some of these are used by the system. However,
any arbitrary property name may be used by a user program to
associate information with a window. For many applications the
user will associate the structure being displayed with its window
using a property. The following functions provide for reading
and setting window properties:

(WINDOWPROP WINDOW PROP NEWVALUE) [NoSpread Function]

Returns the previous value of WINDOWs PROP aspect. If
NEWVALUE is given, (even if given as NIL), it is stored as the new
PROP aspect. Some aspects cannot be set by the user and will
generate errors. Any PROP name that is not recognized is stored
on a property list associated with the window.

(WINDOWADDPROP WINDOW PROP ITEMTOADD FIRSTFLG) [Function]

WINDOWADDPROP adds a new item to a window property. If
ITEMTOADD is EQ to an element of the PROP property of the
window WINDOW, nothing is added. If the current property is
not a list, it is made a list before ITEMTOADD added.
WINDOWADDPROP returns the previous property. If FIRSTFLG is
non-NIL, the new item goes on the front of the list; otherwise, it
goes on the end of the list. If FIRSTFLG is non-NIL and
ITEMTOADD is already on the list, it is moved to the front.

Many window properties (OPENFN, CLOSEFN, etc.) can be a list
of functions. WINDOWADDPROP is useful for adding additional
functi'ons to a window property without affecting any existing
functions. Note that if the order of items in a window property is
important, the list can be modified using WINDOWPROP.

(WINDOWDELPROP WINDOW PROP ITEMTODELETE) (Function]

28.4.2 Creating Windows

WINDOWDELPROP deletes ITEMTODELETE from the window
property PROP of WINDOW and returns the previous list if
ITEMTODELETE was an element. If ITEMTODELETE was not a
member of window property PROP, NIL is returned.

(CREATEW REGION TITLE BORDERSIZE NOOPENFLG) [Function]

WINDOWS AND MENUS

Creates a new window. REGION indicates where and how large
the window should be by specifying the exterior region of the
window. The usable height and width of the resulting window
will be smaller than the height and width of the region by twice
the border size and further less the height of the title, if any. If

28.13

WINDOWS

28.14

REGION is NIL, GETREGION is called to prompt the user for a

region.

If TITLE is non-NIL, it is printed in the border at the top of the
window. The TITLE is printed using the global display stream
WindowTitleDisplayStream. Thus the height of the title will be
(FONTPROP WindowTitleDisplayStream 'HEIGHT).

If BORDERSIZE is a number, it is used as the border size. If
BORDERSIZE is not a number, the window will have a border
WBorder (initially 4) bits wide.

If NOOPENFLG is non-NIL, the window will not be opened, i.e.
displayed on the screen.

The initial X and Y positions of the window are set to the upper
left corner by calling MOVETOUPPERLEFT (page 27.14).

(DECODE.WINDOW.ARG WHERESPEC WIDTH HEIGHT TITLE BORDER NOOPENFLG)

[Function]

(WINDOWPX)

This is a useful function for creating windows. WHERESPEC can
be a WINDOW, a REGION, a POSITION or NIL. If WHERESPEC is a
WINDOW, it is returned. In all other cases, CREATEW is called
with the arguments TITLE BORDER and NOOPENFLG. The
REGION argument to CREATEW is determined from WHERESPEC

as follows:

If WHERESPEC is a REGION, it is adjusted to be on the screen,
then passed to CREA TEW.

If WIDTH and HEIGHT are numbers and WHERESPEC is a
POSITION, the region whose lower left corner is WHERESPEC,

whose width is WIDTH and whose height is HEIGHT is adjusted to
be on the screen, then passed to CREATEW.

If WIDTH and HEIGHT are numbers and WHERESPEC is not a
POSITION, then GETBOXREGION is called to prompt the user for
the position of a region that is WIDTH by HEIGHT.

If WIDTH and HEIGHT are not numbers, CREATEW is given NIL as
a REGION argument.

If WIDTH and HEIGHT are used, they are used as interior
dimensions for the window.

[Function]

Returns X if X is a window, NIL otherwise.

WINDOWS AND MENUS

WINDOWS

28.4.3 Opening and Closing Windows

(OPENWP WINDOW)

(OPENWINDOWS)

(OPENW WINDOW)

(CLOSEW WINDOW)

OPENFN

CLOSEFN

WINDOWS AND MENUS

[Function]

Returns WINDOW, if WINDOW is an open window (has not been
closed); NIL otherwise.

[Function]

Returns a list of all open windows.

[Function]

If WINDOW is a closed window, OPENW calls the function or
functions on the window property OPENFN of WINDOW, if any.
If one of the OPENFNs is the atom DON'T, the window will not be
opened. Otherwise the window is placed on the occlusion stack
of windows and its contents displayed on the screen. If
WINDOW is an open window, it returns NIl.

[Function]

CLOSEW calls the function or functions on the window property
CLOSEFN of WINDOW, if any. If one of the CLOSEFNs is the atom
DON'T or returns the atom DON'T as a value, CLOSEW returns
without doing anything further. Otherwise, CLOSEW removes
WINDOW from the window stack and restores the bits it is
obscuring. If WINDOW was closed, WINDOW is returned as the
value. If it was not closed, (for example because its CLOSEFN
returned the atom DON'T), NIL is returned as the value.

WINDOW can be restored in the same place with the same
contents (reopened) by calling OPENW or by using it as the
source of a display operation.

[Window Property]

The OPENFN window property can be a single function or a list of
functions. If one of the OPENFNs is the atom DON'T, the window
will not be opened. Otherwise, the OPENFNs are called after a
window has been opened by OPENW, with the window as a .
single argument.

[Window Property]

The CLOSEFN window property can be a single function or a list
of functions that are called just before a window is closed by
CLOSEW. The function(s) will be called with the window as a
single argument. If any of the CLOSEFNs are the atom DON'T, or
if the value returned by any of the CLOSEFNs is the atom DON'T,
the window will not be closed.

Note: If the CAR of the CLOSEFN list is a LAMBDA word, it is
treated as a single function.

28.15

WINDOWS

Note: A ClOSEFN should not call ClOSEW on its argument.

28.4.4 Redisplaying Windows

(REDISPLA VW WINDOW REGION ALWA YSFLG) [Function]

REPAINTFN

28.4.5 Reshaping Windows

Redisplay the region REGION of the window WINDOW. If
REGION is Nil, the entire window is redisplayed.

If WINDOW doesn't have a REPAINTFN (page 28.16), the action
depends on the value of ALWA YSFLG. If ALWA YSFLG is Nil,
WINDOW will not change and the message "Window has no
REPAINTFN. Can't redisplay." will be printed in the prompt
window. If ALWAYSFLG is non-Nil, REDISPLAYW acts as if
REPAINTFN was Nill.

[Window Property]

The REPAINTFN window property can be a single function or a
list of functions that are called to repaint parts of the window by
REDISPLA VW. The REPAINTFNs are called with two arguments:
the window and the region in the coordinates of the window's
display stream of the area that should be repainted. Before the
REPAINTFN is called, the clipping region of the window is set to
clip all display operations to the area of interest so that the
REPAINTFN can display the entire window contents and the
results will be appropriately clipped.

Note: ClEARW (page 28.31) should not be used in REPAINTFNs
because it resets the window's coordinate system. If a
REPAINTFN wants to clear its region first, it should use DSPFlll
(page 27.20).

(SHAPEW WINDOW NEWREGION) [Function]

28.16

Reshapes WINDOW. If the window property RESHAPEFN is the
atom DON'T or a list that contains the atom DON'T, a message is
printed in the prompt window, WINDOW is not changed, and
Nil is returned. Otherwise, RESHAPEFN window property can be
a single function or a list of functions that are called when a
window is reshaped, to reformat or redisplay the window
contents (see below). If the RESHAPEFN window property is Nil,
RESHAPEBYREPAINTFN is the default.

If the region NEWREGION is Nil, it prompts for a region with
GETREGION (page 28.10). When calling GETREGION, the
function MINIMUMWINDOWSIZE is called to determine the,
minimum height and width of the window, the function

WINDOWS AND MENUS

WINDOWS

WINDOWREGION is called to get the region passed as the
OLDREGION argument, the window property NEWREGIONFN is
used as the NEWREGIONFN argument and WINDOW as the
NEWREGIONFNARG argument. If the window property
INITCORNERSFN is non-NIL, it is applied to the window, and the
value is passed as the INITCORNERS argument to GETREGION, to
determine the initial size of the "ghost region." These window
properties allow the window to specify the regions used for
interactive calls to SHAPEW.

If the region NEWREGION is a REGION and its WIDTH or HEIGHT
less than the minimums returned by calling the function
MINIMUMWINDOWSIZE, they will be increased to the
minimums.

If WINDOW has a window property DOSHAPEFN, it is called,
passing it WINDOW and NEWREGION (or the region returned by
GETREGION). If WINDOW does not have a DOSHAPEFN window
property, the function SHAPEW1 is called to reshape the
window. DOSHAPEFNs are provided to implement window
groups and few users should ever write them. They are tricky to
write and must call SHAPEW1 eventually. The RESHAPEFN
window property is a simpler hook into reshape operations.

(SHAPEW1 WINDOW REGION) [Function]

RESHAPEFN

WINDOWS AND MENUS

Changes WINDOWs size and position on the screen to be
REGION. After clearing the region on the screen, it calls the
window's RESHAPEFN, if any, passing it three arguments: (1)

WINDOW, (2) a bitmap that contains WINDOWs previous screen
image and (3) the region of WINDOWs old image within the
bitmap.

[Window Property]

The RESHAPEFN window property can be a single function or a
list of functions that are called when a window is reshaped by
SHAPEW. If the RESHAPEFN is DON'T or a list containing DON'T,
the window will not be reshaped. Otherwise, the function(s) are
called after the window has been reshaped, its coordinate
system readjusted to the new position, the title and border
displayed, and the interior filled with texture. The RESHAPEFN
should display any additional information needed to complete
the window's image in the new position and shape. The
RESHAPEFN is called with four arguments: (1) the window in its
reshaped form, (2) a bitmap with the image of the old window in
its old shape, and (3) the region within the bitmap that contains
the window's old image, and (4) the region of the screen
previously occupied by this window. This function is provided so
that users can reformat window contents or whatever.
RESHAPEBYREPAINTFN (below) is the default and should be
useful for many windows.

28.17

WINDOWS

28.18

NEWREGIONFN

INITCORNERSFN

DOSHAPEFN

[Window Property]

If SHAPEW calls GETREGION to prompt the user for a region, the

value of the NEWREGIONFN window property is passed as the

NEWREGIONFN argument to GETREGION (page 28.10).

[Window Property]

If this window property is non-Nil, it should be a function of one

argument, a window, that returns a list specifying the initial
corners of a "ghost region" of the form (BASEX BASEY OPPX

OPPY), where (BASEX, BASEy) describes the anchored corner of

the box, and (OPPX, OPPy) describes the trackable corner. If
SHAPEW calls GETREGION to prompt the user for a region, this

function is applied to the window, and the list returned is passed
as the INITCORNERS argument to GETREGION (page 28.10), to
specify the initial ghost region.

[Window Property]

If this window property is non-Nil, it is called by SHAPEW to

reshape the window (instead of SHAPEW1). It is called with two

arguments: the window and the new region.

(RESHAPEBVREPAINTFN WINDOW OLD/MAGE IMAGEREGION OLDSCREENREGION)

[Function]

This the default window RESHAPEFN. WINDOW is a window

that has been reshaped from the screen . region
OLDSCREENREGION to its new region (available via
(WINDOWPROP WINDOW 'REGION». OLDIMAGE is a bitmap

that contains the image of the window from its previous
location. IMAGEREGION is the region within OLDIMAGE that
contains the old image.

RESHAPEBVREPAINTFN BITBl Ts the old region contents into the

new region. If the new shape is larger in either or both
dimensions, the newly exposed areas are redisplayed via calls
WINDOWs REPAINTFN window property (page 28.16).

RESHAPEBVREPAINTFN may call the REPAINTFN up to four times
during a single reshape.

The choice of which areas of the window to remove or extend is
done as follows. If WINDOWs new region shares an edge with
OLDSCREENREGION, that edge of the window image will remain
fixed and any addition or reduction in that dimension will be
performed on the opposite side. If WINDOW has an EXTENT

property and the newly exposed window area is outside of it, any
extra will be added so as to show EXTENT that was previously not

visible. An exception to these rules is that the current X, Y
position is kept visible, if it was visible before the reshape.

WINDOWS AND MENUS

WINDOWS

28.4.6 Moving Windows

(MOVEW WINDOW POSorX y) [Function]

Moves WINDOW to the position specified by POSorX and Y
according to the following rules:

If POSorX is NIL, GETBOXPOSITION (page 28.9) is called to read a
position from the user. If WINDOW has a CALCULATEREGION
window property, it will be called with WINDOW as an argument
and should return a region which will be used to prompt the user
with. If WINDOW does not have a CALCULATEREGION window
property, the region of WINDOW is used to. prampt with.

If POSorX is a POSITION, POSarX is used.

If POSorX and Yare both NUMBERP, a pasitian is created using
POSorX as the XCOORD and Yas the YCOORD.

If POSorX is a REGION, a position is created using its LEFT as the
XCOORD and BOTTOM as the YCOORD.

If WINDOW is not open and POSorX is non-NIL, the window will
be maved without being opened. Otherwise, it will be opened.

If WINDOW has the atom DON°T as a MOVEFN windaw property,
the window will not be maved. If WINDOW has any other
non-NIL value as a MOVEFN property, it shauld be a functian or
list of functions that will be called before the window is moved
with the WINDOW and the new positon as its arguments. If it
returns the atom DON°T, the window will not be moved. If it
returns a position, the window will be moved to that position
instead of the new one. If there are more than one MOVEFNs,
the last one to return a value is the one that determines where
the window is moved to.

If WINDOW is moved and WINDOW has an AFTERMOVEFN
windaw property, it should be a function or a list of functions
that will be called after the window is moved with WINDOW as
an argument.

MOVEW returns the new position, ar NIL if the windaw could
not be moved.

Nate: If MOVEW moves any part of the window from off-screen
onto the screen, that part is redisplayed (by calling
REDISPLA YW).

(RELMOVEW WINDOW POSITION) [Function)

WINDOWS AND MENUS

Like MOVEW far moving windaws but the POSITION is
interpreted relative to the current pasitian of WINDOW.
Example: The following code maves WINDOW to the right ane
screen poi nt.

(RELMOVEW WINDOW (create POSITION XCOORD ~ 1 YCOORD
~O»

28.19

WINDOWS

CALCULA TEREGION

MOVEFN

AFTERMOVEFN

[Window Property]

If MOVEW calls GETBOXPOSITION to prompt the user for a
region, the CALCULATEREGION window property is called
(passing the window as an argument. The CALCULA TEREGION
should returns a region to be used to prompt the user with. If
CALCULATEREGION is NIL, the region of the window is used to

prompt with.

[Window Property]

If the MOVEFN is DON'T, the window will not be moved by
MOVEW. Otherwise, if the MOVEFN is non-NIL, it should be a
function or a list of functions that will be called before a window
is moved with two arguments: the window being moved and the
new position of the lower left corner in screen coordi nates. If
the MOVEFN returns DON'T, the window will not be moved. If
the MOVEFN returns a POSITION, the window will be moved to
that position. Otherwise, the window will be moved to the
specified new position.

[Window Property]

If non-NIL, it should be a function or a list of functions that will
be called after the window is moved (by MOVEW) with the
window as an argument.

28.4.7 Exposing and Burying Windows

28.20

(TOTOPW WINDOW NOCALL TO TOPFNFLG) [Function]

(BURYW WINDOW)

TOTOPFN

Brings WINDOW to the top of the stack of overlapping windows,
. guaranteeing that it is entirely visible. If WINDOW is dosed, it is

opened. This is done automatically whenever a printing or
drawing operation occurs to the window.

If NOCALL TOTOPFNFLG is NIL, the TOTOPFN of WINDOW is
called (page 28.20). If NOCALLTOTOPFNFLG is T, it is not called,
which allows a TOTOPFN to call TOTOPW without causing an
infinite loop.

[Function]

Puts WINDOW on the bottom of the stack by moving all the
windows that it covers in front of it.

[Window Property]

If non-NIL, whenever the window is brought to the top, the
TOTOPFN is called (with the window as a single argument). This
function may be used to bring a collection of windows to the top
together.

WINDOWS AND MENUS

WINDOWS

If the NOCALL TOPWFN argument of TOTOPW is non-NIL, the
TOTOPFN of the window is not called, which 'provides a way of
avoiding infinite loops when using TOTOPW from within a
TOTOPFN.

28.4.8 Shrinking Windows Into Icons

Occasionally, a user will have a number of large windows on the
screen, making it difficult to access those windows being used.
To help with the problem of screen space management, the
Interlisp-D window system allows the creation of Icons. An icon
is a small rectangle (containing text or a bitmap) which is a
"shrunken-down" form of a particular window. Using the
Shrink and Expand window menu commands (page 28.5), the
user can shrink windows not currently being used into icons, and
quickly restore the original windows at any time. This facility is
controlled by the following functions and window properties:

(SHRINKW WINDOW TOWHA T ICONPOSITION EXPANDFN) [Function]

WINDOWS AND MENUS

SHRINKW makes a small icon which represents WINDOW and
removes WINDOW from the screen. Icons have a different
window command menu that contains "EXPAND" instead of
"SHRINK". The EXPAND command calls EXPANDW which returns
the shrunken window to its original size and place. The icon can
also be moved by pressing the LEFT button in it, or expanded by
pressing the MIDDLE button in it.

The SHRINKFN property of the window WINDOW affects the
operation of SHRINKW. If the SHRINKFN property of WINDOW is
the atom DON'T, SHRINKW returns. Otherwise, the SHRINKFN
property of the window is treated as a (list of) function(s) to
apply to WINDOW; if any returns the atom DON'T, SHRINKW
returns.

TOWHAT, if given, indicates the image the icon window will
have. If TOWHATis a string, atom or list, the icon's image will be
that string (currently implemented as a title-only window with
TOWHAT as the title.) If TOWHAT is a BITMAP, the icon's image
will be a copy of the bitmap. If TOWHA T is a WINDOW, that
window will be used as the icon.

If, TOWHA T is not given (as is the case when invoked from the
SHRINK window command), then the following apply in turn:
(1) If the window has an ICONFN property, it gets called with the
two arguments WINDOW and OLD/CON, where WINDOW is the
window being shrunk and OLDICON is the previously created
icon, if any. The ICONFN should return one of the TOWHAT

entities described above or return the OLD/CON if it does not
want to change it. (2) If the window has an ICON property, it is
used as the value of TOWHAT. (3) If the window has neither an

28.21

WINDOWS

(EXPANDW ICONW)

SHRINKFN

ICONFN

ICON

28_22

ICONFN or ICON property, the icon will be WINDOWs title or, if
WINDOW doesn't have a title, the date and time of the icon
creation.

ICONPOSITION gives the position that the new icon will be on
the screen. If it is Nil, the icon will be in the corner of the
window furthest from the center of the screen.

In all but the default case, the icon is cached on the property
ICONWINDOW of WINDOW so repeating SHRINKW reuses the
same icon (unless overridden by the I~ONFN described above).
Thus to change the icon it is necessary to remove the
ICONWINDOW property or call SHRINKW explicitly giving a
TOWHA T argument.

[Function]

Restores the window for which ICONW is an icon, and removes
the icon from the screen. If the EXPANDFN window property of
the main window is the atom DON'T, the window won't be
expanded. Otherwise, the window will be restored to its original
size and location and the EXPANDFN (or list of functions) will be
applied to it.

[Window Property]

The SHRINKFN window property can be a single function or a list
of functions that are called just before a window is shrunken by
SHRINKW, with the window as a single argument. If any of the
SHRINKFNs are the atom DON'T, or if the value returned by any
of the SHRINKFNs is the atom DON'T, the window will not be
shrunk.

[Window Property]

If SHRINKW is called without begin given a TOWHAT argument
(as is the case when invoked from the SHRINK window
command) and the window's ICONFN property is non-Nil, then it
gets called with two arguments, the window being shrunk and
the previously created icon, if any. The ICONFN should return
one of the TOWHAT entities described above or return the
previously created icon if it does not want to change it.

[Window Property]

If SHRINKW is called without being given a TOWHAT argument,
the window's ICONFN property is Nil, and the ICON property is
non-Nil, then it is used as the value of TOWHAT.

WINDOW$AND MENUS

ICONWINDOW

EXPANDFN

WINDOWS

[Window Property]

Whenever an icon is created, it is cached on the property
ICONWINDOW of the window, so calling SHRINKW again will
reuse the same icon (unless overridden by the ICONFN.

Thus, to. change the icon it is necessary to remove the
ICONWINDOW property or call SHRINKW (page 28.21) explicitly
giving a TOWHATargument.

[Window Property]

The EXPANDFN window property can be a single function or a
list of functions. If one of the EXPANDFNs is the atom DON'T, the
window will not be expanded. Otherwise, the EXPANDFNs are
called after the window has been expanded by EXPANDW, with
the window as a single argument.

28.4.9 Coordinate Systems, Extents, And Scrolling

WINDOWS AND MENUS

Note: The word "scrolling" has two distinct meanings when
applied to Interlisp-D windows. This section documents the use
of "scroll bars" on the left and bottom of a window to move an
object displayed in the window. "Scrolling" also describes the
feature where trying to print text off the bottom of a window
will cause the contents to "scroll up." This second feature is
controlled by the function DSPSCROLL (page 27.24.

One way of thinking of a window is as a "view" onto an object
(e.g. a graph, a file, a picture, etc.) The object has its own natural
coordinate system in terms of which its subparts are laid out.
When the window is created, the X Offset and Y Offset of the
window's display stream are set to map the origin of the object's
coordinate system into the lower left point of the window's
interior region. At the same time, the Clipping Region of the
display stream is set to correspond to the interior of the window.
From then on, the display stream's coordinate system is
translated and its clipping region adjusted whenever the
window is moved, scrolled or reshaped.

There are several distinct regions associated with a window
viewing an object. First, there is a region in the window's
coordinate system that contains the complete image of the
object. This region (which can only be determined by application
programs with knowledge of the "semantics" of the object) is
stored as the EXTENT property of the window (below). Second,
the clipping region of the display stream (obtainable with the
function DSPCLlPPINGREGION, page 27.11) specifies the portion
of the object that is actually visible in the window. This is set so
that it corresponds to the interior of the window (not including
the border or title). Finally, there is the region on the screen that
specifies the total area that the window occupies, including the

28.23

WINDOWS

28.24

border and title. This region (in screen coordinates) is stored as
the REGION property of the window (page 28.34).

The wi ndow system supports the idea of scrolli ng the contents of
a window. Scrolling regions are on the left and the bottom edge
of each window. The LEFT key is used to indicate upward or
leftward scrolling by the amount necessary to move the selected
position to the top or the left edge. The RIGHT key is used to
indicate downward or rightward scrolling by the amount
necessary to move the top or left edge to the selected position.
The MIDDLE key is used to indicate global placement of the
object within the window (similar to "thumbing" a book). In the
scroll region, the part of the object that is being viewed by the
window is marked with a gray shade. If the whole scroll bar is
thought of as the entire object, the shaded portion is the portion
currently being viewed. This will only occur when the window
"knows" how big the object is (see window property EXTENT,

page 28.26).

When the button is released in a scroll region, the function
SCROLLW is called. SCROLLW calls the scrolling function
associated with the window to do the actual scrolling and
provides a programmable entry to the scrolling operation.

(SCROLLW WINDOW DEL TAX DEL TA Y CONTINUOUSFLG) [Function]

Calls the SCROLLFN window property of the window WINDOW

with arguments WINDOW, DEL TAX, DELTA Y and
CONTINUOUSFLG. See SCROLLFN window property, page 28.26.

(SCROLL.HANDLER WINDOW) [Function]

This is the function that tracks the mouse while it is in the scroll
region. It is called when the cursor leaves a window in either the
left or downward direction. If WINDOW does not have a scroll
region for this direction (e.g. the window has moved or reshaped
since it was last scrolled), a scroll region is created that is
SCROLLBARWIDTH wide. It then waits for SCROLLWAITIIME

milliseconds and if the cursor is still inside the scroll region, it
opens a window the size of the scroll region and changes the
cursor to indicate the scrolling is taking place.

When a button is pressed, the cursor shape is changed to indicate
the type of scrolling (up, down, left, right or thum b). After the
button is held for WAITBEFORESCROLLTIME milliseconds, until
the button is released SCROLLW is called each
WAITBETWEENSCROLLTIME milliseconds. These calls are made
with the CONTINUOUSFLG argument set to T. If the button is
released before WAITBEFORESCROLLTIME milliseconds,
SCROLLW is called with the CONTINUOUSFLG argument set to
NIL.

WINDOWS AND MENUS

WINDOWS

The arguments passed to SCROLLW depend on the mouse
button. If the LEFT button is used in the vertical scroll region, DY
is distance from cursor position at the time the button was
released to the top of the window and DX is O. If the RIGHT
button is used, the inverse of this quantity is used for DY and 0
for DX. If the LEFT button is used in the horizontal scroll region,
DX is distance from cursor position to left of the window and DY

is O. If the RIGHT button is used, the inverse of this quantity is
used for DX and 0 for DY.

If the MIDDLE button is pressed, the distance argument to
SCROLLW will be a FLOATP between 0.0 and 1.0 that indicates
the proportion of the distance the cursor was from the left or top
edge to the right or bottom edge.

Note: The scrolling regions will not come up if the window has a
SCROLLFN window property of NIL, has a non-NIL
NOSCROLLBARS window property, or if its SCROLLEXTENTUSE
(page 28.26) property has certain values and its EXTENT is fully
visible.

(SCROLLBYREPAINTFN WINDOW DEL TAX DELTA Y CONTINUOUSFLG) [Function]

WINDOWS AND MENUS

SCROLLBYREPAINTFN is the standard scrolling function which
should be used as the SCROLLFN property for most scrolling
windows.

This function, when used as a SCROLLFN, BITBL Ts the bits that
will remain visible after the scroll to their new location, fills the
newly exposed area with texture, adjusts the window's
coordinates and then calls the window's REPAINTFN on the
newly exposed region. Thus this function will scroll any window
that has a repaint function.

If WINDOW has an EXTENT property (page 28.26),
SCROLLBYREPAINTFN will limit scrolling in the X and Y directions
according to the value of the window property
SCROLLEXTENTUSE (page 28.26).

If DELTAX or DELTAY is a FLOATP, SCROLLBYREPAINTFN will
position the window so that its top or left edge will be
positioned at that proportion of its EXTENT. If the window does
not have an EXTENT, SCROLLBYREPAINTFN will do nothing.

If CONTINUOUSFLG is non-NIL, this indicates that the scrolling
button is being held down. In this case, SCROLLBYREPAINTFN
will scroll the distance of one linefeed height (as returned by
DSPLINEFEED, page 27.12).

Scrolling is controlled by the following window properties:

28.25

WINDOWS

EXTENT

SCROLLFN

NOSCROllBARS

SCROLLEXTENTU SE

(Window Property)'

Used to limit scrolling operations. Accesses the extent region of
the window. If non-NIL, the EXTENT is a region in the window's
display stream that contains the complete image of the object
being viewed by the window. User programs are responsible for
updating the EXTENT. The functions UNIONREGIONS,
EXTENDREGION, etc. (page 27.2) are useful for computing a new
extent region.

In some situations, it is useful to define an EXTENT that only
exists in one dimension. This may be done by specifying an
EXTENT region with a width or height of -1. SCROLLFN handling
recognizes this situation as meaning that the negative EXTENT
dimension is unknown.

[Window Property]

If the SCROLLFN property is NIL, the window will not scroll.
Otherwise, it should be a function of four arguments: (1) the
window being scrolled, (2) the distance to scroll in the horizontal
direction (positive to right, negative to left), (3) the distance to
scroll in the vertical direction (positive up, negative down), and
(4) a flag which is T if the scrolling button is being held down.
For more information, see SCROLL.HANDLER (page 28.24). For
most scrolling windows, the SCROLLFN function should be
SCROLLBYREPAINTFN (page 28.25).

[Window Property]

If the NOSCROLLBARS property is non-NIL, scroll bars will not be
brought up for this window. This disables mouse-driven scrolling
of a window. This window can still be scrolled using SCROLLW
(page 28.24).

[Window Property]

SCROLLBYREPAINTFN uses the SCROLLEXTENTUSE window
property to limit how far scrolling can go in the X and Y
directions. The possible values for SCROLLEXTENTUSE and their
interpretations are:

NIL This will keep the extent region visible or near visible. It will not
scroll the window so that the top of the extent is below the top
of the window, the bottom of the extent is more than one point
above the top of the window, the left of the extent is to the right
of the window and the right of the extent is to the left of the
window. The EXTENT can be scrolled to just above the window
to provide a way of "hiding" the contents of a window. In this
mode the extent is either in the window or just of the top of the
window.

T The extent is not used to control scrolling. The user can scroll the
window to anywhere. Having the EXTENT window property

28.26 WINDOWS AND MENUS

LIMIT

+

+-.

-+

(XBEHA VIOR . YBEHA VIOR)

WINDOWS

does all thumb scrolling to be supported so that the user can get
back to the EXTENT by thumb scrolling.

This will keep the extent region visible. The window is only
allowed to view within the extent.

This will keep the extent region visible or just off in the positive
direction in either X or Y (i.e. the image will be either be visible
or just off to the top and/or right.)

This will keep the extent region visible or just off in the negative
direction in either X or Y (i.e. the image will be either be visible
or just off to the left and/or bottom).

This will keep the extent region visible or just off in the window
(i.e. the image will be either be visible or just off to the left,
bottom, top or right).

If the SCROlLEXTENTUSE is a list, the CAR is interpreted as the
scrolling limit in the X behavior and the CDR as the scrolling limit
in the Y behavior. XBEHAVIOR and YBEHAVIOR should each be
one of the atoms (NIL T LIMIT + - +. - +). The interpretations of
the atoms is the same as above except that NIL is equivalent to
LIMIT.

Note: The NIL value of SCROLLEXTENTUSE is equivaient to (LIMIT
. +).

Example: If the SCROLLEXTENTUSE window property of a
window (with an extent defined) is (LIMIT. T), the window will
scroll uncontrolled in the Y dimension but be limited to the
extent region in the X dimension.

28.4.10 Mouse Activity in Windows

WINDOWENTRYFN

WINDOWS AND MENUS

The following window properties allow the user to control the
response to mouse .activity in a window. The value of these
properties, if non-NIL, should be a function that will be called
(with the window as argument) when the specified event occurs.

Note: these functions should be II self-contained 11',

communicating with the outside world solely via their window
argument, e.g., by setting window properties. In particular,
these functions should not expect to access variables bound on
the stack, as the stack context is formally undefined at the time
these functions are called. Since the functions are invoked
asynchronously, they perform any terminal input/output
operations from their own window.

[Window Property]

Whenever a button goes down in the window and the process
associated with the window is not the tty process, the

28.27

WINDOWS

CURSORINFN

CURSOROUTFN

CURSORMOVEDFN

BUTTONEVENTFN

RIGHTBUTTONFN

28.28

WINDOWENTRVFN is called. The default is GIVE.TTV.PROCESS
(page 23.13) which gives the process associated with the window
the tty and calls the BUTTONEVENTFN. WINDOWENTRVFN can
be a list of functions and all will be called.

[Window Property]

Whenever the mouse moves into the window, the CURSORINFN
is called. If CURSORINFN is a list of functions, all will be called.

[Window Property]

The CURSOROUTFN is called when the cursor leaves the window.
If CURSOROUTFN is a list of functions, all will be called.

[Window Property]

The CURSORMOVEDFN is called whenever the cursor has moved
and is inside the window. CURSORMOVEDFN can be a list of
functions and all will be called. This allows a window function to
implement "active" regions within itself by having its
CURSORMOVEDFN determine if the cursor is in a region of
interest, and if so, perform some action.

[Window Property]

The BUTTONEVENTFN is called whenever there is a change in the
state (up or down) of the mouse buttons inside the window.
Changes to the mouse state while the BUTTONEVENTFN is
running will not be interpreted as new button events, and the
BUTTONEVENTFN will not be re-invoked.

[Window Property]

The RIGHTBUTTONFN is called in lieu of the standard window
menu operation (DOWINDOWCOM) when the RIGHT key is
depressed in a window. More specifically, the RIGHTBUTTONFN
is called instead of the BUTTONEVENTFN when (MOUSESTATE
(ONL V RIGHT)). If the RIGHT key is to be treated like any other
key in a window, supply RIGHTBUTTONFN and BUTTONEVENTFN
with the same function.

When an application program defines its own RIGHTBUTTONFN,
there is a convention that the default RIGHTBUTTONFN,
DOWINDOWCOM (page 28.7), may be executed by depressing
the RIGHT key when the cursor is in the header or border of a
window. User RIGHTBUTTONFNs are encouraged to follow this
convention, by calling DOWINDOWCOM if the cursor is not in
the interior region of the window.

WINDOWS AND MENUS

WINDOWS

BACKGROUNDBUTTONEVENTFN [Variable]

BACKGROUNDCURSORI NFN [Variable]

BACKGROUNDCURSOROUTFN [Variable]

BACKGROUNDCURSORMOVEDFN [Variable]

These variabl.es provide a way of taking action when there is
cursor action and the cursor in in the background. They are
interpreted like the corresponding window properties. If set to
the name of a function, that function will be called, respectively,
whenever the cursor is in the background and a button changes,
when the cursor moves into the background from a window,
when the cursor moved from the background into a window and
when the cursor moves from one place in the backgrou nd to
another.

28.4.11 Terminal 1/0 and Page Holding

Each process has its own terminal i/o stream (accessed as the
stream T, page 25.1). The terminal i/o stream for the current
process can be changed to point to a window by using the
function TTYDISPLA YSTREAM, so that output and echoing of
type-in is directed to a window.

(TTYDISPLA YSTREAM DISPLA YSTREAM) [Function]

WINDOWS AND MENUS

Selects the display stream or window DISPLA YSTREAM to be the
terminal output channel, and returns the previous terminal
output display stream. TTYDISPLA YSTREAM puts
DISPLA YSTREAM into scrolling mode and calls PAGEHEIGHT ~ith
the number of lines that will fit into DISPLA YSTREAM given its
current Font and Clipping Region. The line length of
TTYDISPLAYSTREAM is computed (like any other display stream)
from its Left Margin, Right Margin, and Font. If one of these
fields is changed, its line length is recalculated. If one of the
fields used to compute the number of lines (such as the Clipping
Region or Font) changes, PAGEHEIGHT is not automatically
recomputed. (TTYDISPLA YSTREAM (TTYDISPLAYSTREAM)) will
cause it to be recomputed.

If the window system is active, the line buffer is saved in the old
TTY window, and the line buffer is set to the one saved in the
window of the new display stream, or to a newly created line
buffer (if it does not have one). Caution: It is possible to move
the TTYDISPLA YSTREAM to a nonvisible display stream or to a
window whose current position is not in its clipping region.

28.29

WINDOWS

(PAGEHEIGHT N)

PAGEFULLFN

[Function]

If N is greater than 0, it is the number of lines of output that will
be printed to TTYDISPLA YSTREAM before the page is held. A
page is held before the N + 1 line is printed to
TTYDISPLA YSTREAM without intervening input if there is no
terminal input waiting to be read. The output is held with the
screen video reversed until a character is typed. Output holding
is disabled if N is O. PAGEHEIGHT returns the previous setting.

[Window Property]

If the PAGEFULLFN window property is non-NIL, it will be called
with the window as a single argument when the window is full
(i.e., when enough has been printed since the last TTY
interaction so that the next character printed will cause
information to be scrolled off the top of the window.)

If the PAGEFULLFN window property is NIL, the system function
PAGEFULLFN is called. PAGEFULLFN simply returns if there are
characters in the type-in buffer for WINDOW, otherwise it inverts
the window and waits for the user to type a character.
PAGEFULLFN is user advisable.

Note: The PAGEFULLFN window property is only called on
windows which are the TTYDISPLA YSTREAM of some process.

28.4.12 The TTY Process and the Caret

PROCESS

28.30

At any time, one process is designated as the TIY process, which
is used for accepting keyboard input. The TTY process can be
changed to a given process by calling GIVE.TTY.PROCESS (page
23.13), or by clicking the mouse in a window associated with the
process. The latter mechanism is implemented with the
followi ng window property:

[Window Property]

If the PROCESS window property is non-NIL, it should be a
PROCESS and will be made the TTY process by
GIVE.TTY.PROCESS (page 23.13), the default WINDOWENTRYFN
property (page 28.27). This implements the mechanism by which
the keyboard is associated with different processes.

The window system uses a flashing caret (A) to indicate the
position of the next window typeout. There is only one caret
visible at anyone time. The caret in the current TTY process is
always visible; if it is hidden by another window, its window is
brought to the top. An exception to this rule is that the flashing
caret's window is not brought to the top if the user is buttoning
or has a shift key down. This prevents the destination window

WINDOWS AND MENUS

WINDOWS

(which has the tty and caret flashing) from interfering with the
window one is trying to select text to copy from.

(CARET NEWCAREn [Function]

Sets the shape that blinks at the location of the next output to
the current process. NEWCARETshould be one of the following:

a CURSOR object If NEWCARET is a CURSOR object (see page 30.14), it is used to
give the new caret shape

OFF Turns the caret off

NIL The caret is not changed. CARET returns a CURSOR representing
the current caret

T Reset the caret to the value of DEFAUL TCARET. DEFAUL TCARET

can be set to change the initial caret for new processes.

The hotspot of NEWCARET indicates which point in the new
caret bitmap should be located at the current output position.
The previous caret is returned. Note: the bitmap for the caret is
not limited to the dimensions CURSORWIDTH by
CURSORHEIGHT.

(CARETRA TE ONRA TE OFFRA TE) [Function]

Sets the rate at which the caret for the current process will flash.
The caret will be visible for ONRATE milliseconds, then not visible
for OFFRATE milliseconds. If OFFRATE is NIL then it is set to be
the same as ONRA TE. If ONRA TE is T, both the II on II and II off"
times are set to the value of the variable DEFAUL TCARETRATE

(initially 333). The previous value of CARETRATE is returned. If
the caret is off, CARETRATE return NIL.

28.4.13 Miscellaneous Window Functions

(CLEARW WINDOW') [Function]

Fills WINDOW with its background texture, changes its
coordinate system so that the origin is the lower left corner of
the window, sets its X position to the left margin and sets its Y
position to the base line of the uppermost line of text, ie. the top
of the window less the font ascent.

(INVERTW WINDOW SHADE) [Function]

WINDOWS AND MENUS

Fills the window WINDOW with the texture SHADE in INVERT

mode. If SHADE is NIL, BLACKSHADE is used. INVERTW returns
WINDOW so that it can be used inside RESETFORM.

28.31

WINDOWS

28.32

(FLASHWINDOW WIN? N FLASHINTERVAL SHADE) [Function]

(WHICHW Xy)

Flashes the window WIN? by "inverting" it twice. N is the
number of times to flash the window (default is 1).
FLASHINTERVAL is the length of time in milliseconds to wait
between flashes (default is 200). SHADE is the shade that will be
used to invert the window (default is BlACKSHADE).

If WIN? is Nil, the whole screen is flashed. In this case, the SHADE

argument is ignored (can only invert the screen).

[Function]

Returns the window which contains the position in screen
coordinates of X if X is a POSITION, the position (X, Y) if X and Y

are numbers, or the position of the cursor if X is NIl. Returns Nil
if the coordinates are not in any window. If they are in more
than one window, it returns the uppermost.

Example: (WHICHW) returns the window that the cursor is in.

(DECODEIWINDOW/ORIDISPLA YSTREAM DSORW WINDOWVAR TITLE BORDER) [Function]

Returns a display stream as determined by the DSORW and
WINDOWVAR arguments. If DSORW is a display stream, it is
returned. If DSORWis a window, its display stream is returned. If
DSORW is Nil, the litatom WINDOWVAR is evaluated. If its value
is a window, its display stream is returned. If its value is not a
window, WINDOWVAR is set to a newly created window
(prompting user for region) whose display stream is then
returned. If DSORW is NEW, the display stream of a newly
created window is returned. If a window is involved in the
decoding, it is opened and if TITLE or BORDER are given, the
TITLE or BORDER property of the window are reset. The
DSORW = Nil case is most useful for programs that want to
display their output in a window, but want to reuse the same
window each time they are called. The non-Nil cases are good
for decoding a display stream argument passed to a function.

(WIDTHIFWINDOW INTERIORWIDTH BORDER) [Function]

Returns the width of the window necessary to have
INTERIORWIDTH points in its interior if the width of the border is
BORDER. If BORDER is Nil, the default border size WBorder is
used.

(HEIGHTIFWINDOW INTERIORHEIGHT TlTLEFLG BORDER) [Function)

Returns the height. of the window necessary to have
INTERIORHEIGHT points in its interior with a border of BORDER

and, if TlTLEFLG is non-Nil, a title. If BORDER is Nil, the default
border size WBorder is used.

WINDOWS AND MENUS

WINDOWS

WIDTHIFWINDOW and HEIGHTIFWINDOW are useful for
calculating the width and height for a call to GETBOXPOSITION
for the purpose of positioning a prospective window.

(MINIMUMWINDOWSIZE WINDOVV) [Function]

Returns a dotted pair, the CAR of which is the minimum width
WINDOW needs and the CDR or which is the minimum height
WINDOW needs.

The minimum size is determined by the value of the window
property MINSIZE of WINDOW. If the value of the MINSIZE
window property is NIL, the width is 26 and the height is the
height WINDOW needs to have its title, border and one line of
text visible. If MINSIZE is a dotted pair, it is returned. If it is a
litatom, it should be a function which is called with WINDOW as
its first argument, which should return a dotted pair.

28.4.14 Miscellaneous Window Properties

TITLE

BORDER

WINDOWTITLESHADE

WINDOWS AND MENUS

[Window Property]

Accesses the title of the window. If a title is added to a window
whose title is NIL or .the title is removed (set to NIL) from a
window with a title, the window's exterior (its region on the
screen) is enlarged or reduced to accomodate the change
without changing the window's interior. For example,
(WINDOWPROP WINDOW 'TITLE "Results") changes the title of
WINDOW to be "Results". (WINDOWPROP WINDOW 'TITLE NIL)
removes the title of WINDOW.

[Window Property]

Accesses the width of the border of the window. The border will
have at most 2 point of white (but never more than half) and the
rest black. The default border is the value of the global variable
WBorder (initially 4).

[Window Property]

Accesses the window title shade of the window. If non-NIL, it
should be a texture which is used as the "backgound texture" for
the title bar on the top of the window. If it is NIL, the value of
the global variable WINDOWTITLESHADE (initially
BLACKSHADE) is used. Note that black is always used as the
background of the title printed in the title bar, so that the letters
can be read. The remaining space is painted with the "title
shade" .

28.33

WINDOWS

HARDCOPYFN

DSP

HEIGHT

WIDTH

REGION

[Window Property]

If non-NIL, it should be a function that is called by the window
menu command Hardcopy (page 28.4) to print the contents of a
window. The HARDCOPYFN property is called with two
arguments, the window and an image stream to print·to. If the
window does not have a HARDCOPYFN, the bitmap image of the
window (including the border and title) are printed on the file or
printer.

[Window Property]

Value is the display stream of the window. All system functions
will operate on either the window or its display stream. This
window property cannot be changed using WINDOWPROP.

[Window Property]

[Window Property]

Value is the height and width of the interior of the window (the
usable space not counting the border and title). These window
properties cannot be changed using WINDOWPROP.

[Window Property]

Value is a region (in screen coordinates) indicating where the
window (counting the border and title) is located on the screen.
This window property cannot be changed using WINDOWPROP.

28.4.15 Example: A Scrollable Window

28.34

The following is a simple example showing how one might
create a scrollable window.

CREATE.PPWINDOW creates a window that displays the pretty
printed expression EXPR. The window properties PPEXPR,
PPORIGX, and PPORIGY are used for saving this expression, and
the initial window position. Using this information,
REPAINT.PPWINDOW simply reinitializes the window position,
and prettyprints the expression again. Note that the whole
expression is reformatted every time, even if only a small part
actually lies within the window. If this window was going to be
used to display very large structures, it would be desirable to
implement a more sophisticated REPAINTFN that only redisplays
that part of the expression within the window. However, this
scheme would be satisfactory if most of the items to be displayed
are small.

RESHAPE.PPWINDOW resets the window (and stores the initial
window position), calls REPAINT.PPWINDOW to display the
window's expression, and then sets the EXTENT property of the

WINDOWS AND MENUS

WINDOWS AND MENUS

WINDOWS

window so that SCROLLBYREPAINTFN will be able to handle
scrolling and "thumbing" correctly.

(DEFINEQ

(CREATE.PPWINDOW

[LAMBDA (EXPR) (* rrb "4-0CT-82 12:06")
(* creates a window that displays
a pretty printed expression.)

(PROG (WINDOW)

(* ask the user for a piece of the
screen and make it into a window.)

(SETQ WINDOW (CREATEW NIL "PP window"»

(* put the expression on the
property list of the window so that
the repaint and reshape functions
can access it.)

(WINDOWPROP WINDOW (QUOTE PPEXPR) EXPR)

(* set the repaint and reshape
fu nctions.)

(WINDOWPROP WINDOW (QUOTE REPAINTFN)

(FUNCTION REPAINT.PPWINDOW»

(WINDOWPROP WINDOW (QUOTE RESHAPEFN)
(FUNCTION RESHAPE.PPWINDOW»

(* make the scroll function
SCROLLBYREPAINTFN, a system
function that uses the repaint
function to do scrolling.)

(WINDOWPROP WINDOW (QUOTE SCROLLFN)

(FUNCTION SCROLLBYREPAINTFN»

(* call the reshape function to
initially print the expression and
calculate its extent.)

(RESHAPE.PPWINDOW WINDOW)

(RETURN WINDOW])

(REPAI NT.PPWI NDOW

[LAMBDA (WINDOW REGION) (* rrb "4-0CT-82 11 :52")

(* the repainting function for a window with a
pretty printed expression. This repainting
function ignores the region to be repainted
and repaints the entire window.)

(* set the window position to the
beginning of the pretty printing
of the expression.)

28.35

WINDOWS

28.36

(MOVETO (WINDOWPROP WINDOW (QUOTE PPORIGX»

(WINDOWPROP WINDOW (QUOTE PPORIGY»

WINDOW)
(PRINTDEF (WINDOWPROP WINDOW (QUOTE PPEXPR»

o NIL NIL NIL WINDOW])

(RESHAPE.PPWI NDOW
[LAMBDA (WINDOW) (* rrb "4-0CT-82 12:01 ")

(* the reshape function for a
window with a pretty printed
expression.)

(PROG (BTM)

(* set the position of the window so that the
first character appears in the upper left corner
and save the X and Y for the repaint function.)

(DSPRESET WI NDOW)
{WINDOWPROP WINDOW (QUOTE PPORIGX)

(DSPXPOSITION NIL WINDOW»
(WINDOWPROP WINDOW (QUOTE PPORIGY)

(DSPYPOSITION NIL WINDOW»

(* call the repaint function to
pretty print the expression in
the newly cleared window.)

(REPAINT.PPWINDOW WINDOW)

(* save the region actually covered by the pretty
printed expression so that the scrolling routines
will know where to stop. The pretty printing of
the expression does a carriage return after the
last piece of the expression printed so that the
current position is the base line of the next line
of text. Hence the last visible piece of the
expression (BTM) is the ending position plus the
height of the font above the base line (its ASCENT).)

(WINDOWPROP WINDOW (QUOTE EXTENT)

(create REGION

HEIGHT»

LEFT +-0
BOTTOM +- [SETQ BTM (lPLUS

(DSPYPOSITION NIL WINDOW)

{FONTPROP WINDOW (QUOTE ASCENT]

WIDTH +-{WINDOWPROP WINDOW (QUOTE WIDTH»

HEIGHT +-{IDIFFERENCE
{WINDOWPROP WINDOW (QUOTE

BTM))

WINDOWS AND MENUS

28.5 Menus

WINDOWS

A menu is basically a means of selecting from a list of items. The
system provides common layout and interactive user selection
mechanisms, then calls a user-supplied function when a selection
has been confirmed. The two major constituents of a menu are a
list of items and a "when selected function." The label that
appears for each item is the item itself for non-lists, or its CAR if
the item is a list. In addition, there are a multitude of different
formatting parameters for specifying font, size, and layout.
When a menu is created, its unspecified fields are filled with
defaults and its screen image is computed and saved.

Menus can be either pop up or fixed. If fixed menus are used, the
menu must be included in a window.

(MENU MENU POSITION RELEASECONTROLFLG -) [Function]

WINDOWS AND MENUS

This function provides menus that pop up when they are used. It
displays MENU at POSITION (in screen coordinates) and waits for
the user to select an item with a mouse key_ Before any mouse
key is pressed, the item the mouse is over is boxed. After any key
is down, the selected menu item is video reversed. When all keys
are released, MENU's WHENSELECTEDFN field is called with four
arguments: (1) the item selected, (2) the menu, (3) the last mouse
key released (LEFT, MIDDLE, or RIGHT), and (4) the reverse list of
superitems rolled through when selecting the item and MENU
returns its value. If no item is selected, MENU returns NIL. If
POSITION is NIL, the menu is brought up at the value from
MENU's MENUPOSITION field, if it is a POSITION, or at the
current cursor position. The orientation of MENU with respect to
the specified position is determined by its MENUOFFSET field.

If RELEASECONTROLFLG is NIL, this process will retain control of
the mouse. In this case, if the user lets the mouse key up outside
of the menu, MENU return NIl. (Note: this is the standard way of
allowing the user to indicate that they do not want to make the
offered choice.) If RELEASECONTROLFLG is non-NIL, this process
will give up control of the mouse when it is outside of the menu
so that other processes can be run. In this case, clicking outside
the menu has' no effect on the call to MENU. If the menu is
closed (for example, by right buttoning in it and selecting
"Close" from the window menu), MENU returns NIL.
Programmers are encouraged to provide a menu item such as

28.37

MENUS

"cancel" or "abort" which gives users a positive way of
indicating" no choice".

Note: A "released" menu will stay visible (on top of the window
stack) until it is closed or an item is selected.

(ADDMENU MENU WINDOW POSITION DONTOPENFLG) [Function]

This function provides menus that remain active in windows.
ADDMENU displays MENU at POSITION (in window coordinates)
in WINDOW. If the window is too small to display the entire
menu, the window is made scrollable. When an item is selected,
the value of the WHENSELECTEDFN field of MENU is called with
three arguments: (1) the item selected, (2) the menu, and (3) the
mouse key that the item was selected with (LEFT, MIDDLE, or
RIGHT). More than one menu can be put in a window, but a
menu can only be added to one window at a time. ADDMENU
returns the window into which MENU is placed.

If WINDOW is NIL, a window is created at the position specified
by POSITION (in screen coordinates) that is the size of MENU. If a
window is created, it will be opened unless DONTOPENFLG is
non-NIL. If POSITION is NIL, the menu is brought up at the value
of MENU's MENUPOSITION field (in window coordinates), if it is
a position, or else in the lower left corner of WINDOW. If both
WINDOW and POSITION are NIL, a window is created at the
current cursor position.

Warning: ADDMENU resets several of the window properties of
WINDOW. The CURSORINFN, CURSORMOVEDFN, and
BUTTONEVENTFN window properties are replaced with
MENUBUTTONFN, so that MENU will be active.
MENUREPAINTFN is added to the REPAINTFN window property
to update the menu image if the window is redisplayed. The
SCROLLFN window property is changed to SCROLLBYREPAINTFN
if the window is too small for the menu, to make the window
scroll.

(DELETEMENU MENU CLOSEFLG FROMWINDOW) [Function]

This function removes MENU from the window FROMWINDOW.
If MENU is the only menu in the window and CLOSEFLG is
non-NIL, its window will be closed (by CLOSEW).

If FROMWINDOW is NIL, the list of currently open windows is
searched for one that contains MENU. If none is found,
DELETEMENU does nothing.

28.5.1 Menu Fields

A menu is a datatype with the following fields:

2838 WINDOWS AND MENUS

ITEMS

SUBITEMFN

WINDOWS AND MENUS

MENUS

[Menu Field]

The list of items to appear in the menu. If an item is a list, its CAR
will appear in the menu. If the item (or its CAR) is a bitmap, the
bitmap will be displayed in the menu. The default selection
functions interpret each item as a list of three elements: a label,
a form whose value is returned upon selection, and a help string
that is printed in the prompt window when the user presses a
mouse key with the cursor pointing to this item. The default
subitem function interprets the fourth element of the list. If it is
a list whose CAR is the litatom SUBITEMS I the CDR is taken as a
list of subitems.

[Menu Field]

A function to be called to determine if an item has any subitems.
If an item has subitems and the user rolls the cursor out the right
of that item, a submenu with that item's subitems in it pops up.
If the user selects one of the items from the submenu, the
selected subitem is handled as if it were selected from the main
menu. If the user rolls out of the submenu to the left, the
submenu is taken down and selection resumes from the main
menu.

An item with subitems is marked in the menu by a grey, right
pointing triangle following the label.

The function is called with two arguments: (1) the menu and (2)
the item. It should return a list of the subitems of this item if any.
(Note: it is called twice to compute the menu image and each
time the user rolls out of the item box so it should be moderately
efficient. The default SUBITEMFN, DEFAULTSUBITEMFN, checks
to see if the item is a list whose fourth element is a list whose
CAR is the litatom SUBITEMS and if so, returns the CDR of it.

For exam pie:

(create MENU
ITEMS +-'(AAAA (BBBB 'BBBB "help string for BBBB"

(SUBITEMS BBBB1 BBBB2 BBBB3»»

will create a menu with items A and B in which B will Qave
subitems B1, B2 and B3. The following picture below shows this
menu as it first appears:

The following picture shows the submenu, with the item BBBB3

selected by the cursor ~):

28.39

MENUS

WHENSElECTEOFN

WHENHElDFN

WHENUNHElDFN

MENUPOSITION

MENUOFFSET

28.40

[Menu Field1

A function to be called when an item is selected. The function is
called with three arguments: (1) the item selected, (2) the menu,
and (3) the mouse key that the item was selected with (lEFT,

MIDDLE, or RIGHT). The default function
OEFAUl TWHENSElECTEOFN evaluates and returns the value of
the second element of the item if the item is a list of at least
length 2. If the item is not a list· of at least length 2,
OEFAUl TWHENSElECTEDFN returns the item.

Note: If the menu is added to a window with AOOMENU, the
default WHENSElECTEDFN is BACKGROUNDWHENSElECTEDFN,

which is the same as DEFAUl TWHENSElECTEDFN except that
EVAl.AS.PROCESS (page 23.17) is used to evaluate the second
element of the item, instead of tying up the mouse process.

[Menu Field]

The function which is called when the user has held a mouse key
on an item for MENUHElDWAIT milliseconds (initially 1200). The
function is called with three arguments: (1) the item selected, (2)
the menu, and (3) the mouse key that the item was selected with
(lEFT, MIDDLE, or RIGHT). WHENHElOFN is intended for
prompting users. The default is OEFAUl TMENUHElDFN which
prints (in the prompt window) the third element of the item or,
if there is not a third element, the string "This item will be
selected when the button is released."

[Menu Field]

If WHENHElDFN was called, WHENUNHElDFN will be called: (1)

when the cursor leaves the item, (2) when a mouse key is
released, or (3) when another key is pressed. The function is
called with the same three argument values used to call
WHENHElDFN. The default WHENUNHElDFN is the function
ClRPROMPT (page 28.3), which just clears the prompt window.

[Menu Field]

The position of the menu to be used if the call to MENU or
ADDMENU does not specify a position. For popup menus, this is
in screen coordinates. For fixed menus, it is in the coordinates of
the window the menu is in. The point within the menu image
that is placed at this position is determined by MENUOFFSET. If
MENUPOSITION is Nil, the menu will be brought up at the cursor
position.

[Menu Field]

The position in the menu image that is to be located at
MENUPOSITION. The default offset is (0,0). For example, to
bring up a menu with the cursor over a particular menu item, set

WINDOWS AND MENUS

MENU FONT

TITLE

MENUTITLEFONT

CENTERFLG

MENU ROWS

MENUCOlUMNS

ITEMHEIGHT

ITEMWIDTH

MENUBORDERSIZE

WINDOWS AND MENUS

MENUS

its MENUOFFSET to a position within that item and set its
MENUPOSITION to NIL.

[Menu Field]

The font in which the items will be appear in the menu. Default
is the value of MENUFONT.

[Menu Field]

If non-NIL, the value of this field will appear as a title in a line
above the menu.

[Menu Field]

The font in which the title of the menu will be appear. If this is
NIL, the title will be in the same font as window titles. If it is T, it
wiil be in the same font as the menu items.

[Menu Field]

If non-NIL, the menu items are centered; otherwise they are
left-justified.

[Menu Field]

[Menu Field]

These fields control the shape of the menu in terms of rows and
columns. If MENU ROWS is given, the menu will have that
number of rows. If MENUCOLUMNS is given, the menu will have
that number of columns. If only one is given, the other one will
be calculated to generate the minimal rectangular menu.
(Normally only one of MENUROWS or MENUCOLUMNS is given.)
If neither is given, the items will be in one column.

[Menu Field]

The height of each item box in the menu. If not specified, it will
be the maximum of the height of the MENU FONT and the
heights of any bitmaps appearing as labels.

[Menu Field]

The width of each item box in the menu. If not specified, it will
be the width of the largest item in the menu.

[Menu Field]

The size of the border around each item box. If notspecified, 0
(no border) is used.

28.41

MENUS

MENUOUTLINESIZE

CHANGEOFFSETFlG

IMAGEHEIGHT

IMAGEWIDTH

[Menu Field]

The size of the outline around the entire menu. If not specified,
a maximum of 1 and the MENUBORDERSIZE is used.

[Menu Field]

(popup menus only) If CHANGEOFFSETFlG is non-Nil, the
position of the menu offset is set each time a selection is
confirmed so that the menu will come up next time in the same
position relative to the cursor. This will cause the menu to
reappear in the same place on the screen if the cursor has not
moved since the last selection. This is implemented by changing
the MENU OFFSET field on each use. If CHANGEOFFSETFlG is the
atom X or the atom V, only the X or the Y coordinate of the
MENU OFFSET field will be changed. For example, by setting the
MENUOFFSET position to (-l,O) and setting CHANGEOFFSETFlG
to V, the menu will pop up so that the cursor is just to the left of
the last item selected. This is the setting of the window
command menus.

The following fields are read only.

[Menu Field]

Returns the height of the entire menu.

[Menu Field]

Returns the width of the entire menu.

28.5.2 Miscellaneous Menu Functions

2842

(MAXMENUITEMWIDTH MENU) [Function1

Returns the width of the largest menu item label in the menu
MENU.

(MAXMENUITEMHEIGHT MENU) [Function]

(MENUREGION MENU)

(WFROMMENU MENU)

Returns the height of the largest menu item label in the menu
MENU.

[Function1

Returns the region covered by the image of MENU in its window.

[Function]

Returns the window MENU is located in, if it is in one; Nil
otherwise.

WINDOWS AND MENUS

MENUS

(DOSELECTEDITEM MENU ITEM BUTTON) [Function]

Calls· MENU's WHENSELECTEDFN on ITEM and BUTTON. It
provides a programmatic way of making a selection. It does not
change the display.

(MENUITEMREGION ITEM MENU) [Function]

Returns the region occupied by ITEM in MENU.

(SHADEITEM ITEM MENU SHADE DS/W) [Function]

Shades the region occupied by ITEM in MENU. If DS/W is a
display stream or a window, it is assumed to be where MENU is
displayed. Otherwise, WFROMMENU is called to locate the
window MENU is in. Shading is persistent, and is reapplied when
the window the menu is in gets redisplayed. To unshade an
item, call with a SHADE of O.

(PUTMENUPROP MENU PROPERTY VALUE) [Function]

Stores the property PROPERTY with the value VALUE on a
property list in the menu MENU. The user can use this property
list for associating arbitrary data with a menu object.

(GETMENUPROP MENU PROPERTy) [Function]

28.5.3 Examples of Menu Use

Example:

Example:

WINDOWS AND MENUS

Returns the value of the PROPERTY property of the menu MENU.

A simple menu:

(MENU (create MENU ITEMS +- '«YES T) (NO (QUOTE NIL)))))

Creates a menu with items YES and NO in a single vertical
column:

1~~SI
If YES is selected, T will be returned. Otherwise, NIL will be
returned.

A simple menu, with centering:

(MENU (create MENU TITLE +- "Faa?"
ITEMS +- '«YES T "Adds the Faa feature. ")

(NO 'NO "Remaves the Faa feature. "))
CENTERFLG +- T»

Creates a menu with a title Faa? and items YES and NO centered
in a single vertical column:

~ "'(ES
t···Je·

28.43

MENUS

Example:

Example:

28.44

The strings following the YES and NO are help strings and will be

printed if the cursor remains over one of the items for a period of
time. This menu differs from the one above in that it
distinquishes the NO case from the case where the user clicked
outside of the menu. If the user clicks outside of the menu, NIL is

returned.

A multi-column menu:

(create MENU ITEMS +- '(1 23 456 789 * 0 #)

CENTERFLG +- T
MENUCOLUMNS +- 3
MENUFONT +-(FONTCREATE 'MODERN 10 'SOLD)
ITEMHEIGHT +-15
ITEMWIDTH +-15
CHANGEOFFSETFLG +- T)

Creates a touch-tone-phone number pad with the items in 15 by
15 boxes printed in Modern 10 bold font:

123
4 ·5 6

7 8 9

* 0 II

If used in pop up mode, its first use will have the cursor in the
middle. Subsequent use will have the cursor in the same relative
location as the previous selection.

A program using a previously-saved menu:

(SELECTQ [MEN U
(COND «type? MENU FOOMENU)

(* use previously computed menu.)
FOOMENU)

(T (* create and save the menu)
(SETQ FOOMENU

(create MENU
ITEMS +- '«A 'A-SELECTED "prompt string for A")

(B 'S-SELECTED "prompt string for S"]
(A-SELECTED (* if A is selected) (DOATHING»
(B-SELECTED (* if B is selected) (DOSTHING»
(PROGN (* user selected outside the menu) NIL»)

This expression displays a pop up menu with two items, A and S,
and waits for the user to select one. If A is selected, DOATHING is
called. If S is selected, DOSTHING is called. If neither of these is
selected, the form returns NIl.

The purpose of this example is to show some good practices to
follow when using menus. First, the menu is only created once,
and saved in the variable FOOMENU. This is more efficient if the
menu is used more than once. Second, all of the information
about the menu is kept in one place, which makes it easy to

WINDOWS AND MENUS

28.6 Attached Windows

MENUS

understand and edit. Third, the forms evaluated as a result of
selecting something from the menu are part of the code and
hence will be known to masterscope (as opposed to the situation
if the forms were stored as part of the items). Fourth, the items
in the menu have help strings for the user. Finally, the code is
commented (always worth the trouble).

The attached window facility makes it easy to manipulate a
group of window as a unit. Standard window operations like
moving, reshaping, opening, and closing can be done so that it
appears to the user as if the windows are a single entity. Each
collection of attached windows has one main window and any
number of other windows that are II attached II to it. Moving or
reshaping the main window causes all of the attached windows
to be moved or reshaped as we". Moving or reshaping an
attached window does not affect the main window.

Attached windows can have other windows attached to them.
Thus, it is possible to attach window A to window B when B is
already attached to window C. Similarly, if A has other windows
attached to it, it can still be attached to B.

(ATIACHWINDOW WINDOWTOA TTACH MAINWINDOW EDGE POSITIONONEDGE

LEFT

WINDOWS AND MENUS

WINDOWCOMACTION) [Function]

Associates WINDOWTOA TTACH with MAINWINDOW so that
window operations done to MAINWINDOW are also done to
WINDOWTOA TTACH (the exact set of window operations passed
between main windows and attached windows is described on
page 28.51). ATIACHWINDOW moves WINDOWTOATTACH to
the correct position relative to MAINWINDOW.

Note: A window can be attached to only one other window.
Attaching a window to a second window will detach it from the
first. Attachments can not form loops. That is, a window cannot
be attached to itself or to a window that is attached to it.
ATIACHWINDOW will generate an error if this is attempted.

EDGE determines which edge of MAINWINDOW the attached
, window is positioned along: it should be one of TOP, BOTIOM,

LEFT, or RIGHT. If EDGE is NIL, it defaults to TOP.

POSITIONONEDGE determines where along EDGE the attached
window is positioned. It should be one of the following:

TheJattached window is placed on the left (of a TOP or BOTIOM
edge).

28.45

ATIACHED WINDOWS

28.46

RIGHT The attached window is placed on the right (of a TOP or

BOTIOM edge).

BOTIOM The attached window is placed on the bottom (of a LEFT or

RIGHT edge).

TOP The attached window is placed on the top (of a LEFT or RIGHT

edge).

CENTER The attached window is placed in the center of the edge.

JUSTIFY
or NIL The attached window is placed to fill the entire edge.

ATTACHWINDOW reshapes the window if necessary.

Note: The width or height used to justify an attached window
includes any other windows that have already been attached to
MAINWINDOW. Thus (ATIACHWINDOW BBB AAA 'RIGHT
'JUSTIFY) followed by (ATTACHWINDOW CCC AAA 'TOP
'JUSTIFY) will put CCC across the top of both BBB and AAA:

WINDOWCOMACTION provides a convenient way of specifying
how WINDOWTOA TTACH responds to right button· menu
commands. The window property PASSTOMAINCOMS
determines which right button menu commands are directly
applied to the attached window, and which are passed to the
main window (see page 28.51). Depending on the value of
WINDOWCOMACTlON, the PASSTOMAINCOMS window
property of WINDOWTOA TTACH is set as follows:

NIL PASSTOMAINC.OMS is set to (CLOSEW MOVEW SHAPEW
SHRINKW BURYW), so right button menu commands to close,
move, shape, shrink, and bury are passed to the main window,
and all others are applied to the attached window.

LOCALCLOSE PASSTOMAINCOMS is set to (MOVEW SHAPEW SHRINKW
BURYW), which is the same as when WINDOWCOMACTION is
NIL, except that the attached window can be closed
independently.

HERE PASSTOMAINCOMS is set to NIL, so all right button menu
commands are applied to the attached window.

MAIN PASSTOMAINCOMS is set to T, so all right button menu
commands are passed to the main window.

Note: If the user wants to set the PASSTOMAINCOMS window
property of an attached window to something else, it must be
done after the window is attached, since ATTACHWINDOW
modifies this window property.

WINDOWS AND MENUS

ATTACHED WINDOWS

(DETACHWINDOW WINDOWTODETACH) [Function1

Detaches WINDOWTODETACH from its main window. Returns a
dotted pair (EDGE. POSITIONONEDGE) if WINDOWTODETACH

was an attached window, NIL otherwise. This does not close
WINDOWTODETACH.

(DETACHALLWINDOWS MAINWINDOW) [Function]

Detaches and closes all windows attached to MAINWINDOW.

(FREEAITACHEDWINDOW WINDOW) [Function]

Detaches the attached window WINDOW. In addition, other
attached windows above (in the case of a TOP attached window)
or below (in the case of a BOITOM attached window) are moved
closer to the main window to fill the gap.

Note': Attached windows that "reject" the move operation (see
REJECTMAINCOMS, page 28.51) are not moved.

Note: FREEAITACHEDWINDOW currently doesn't handle LEFT
or RIGHT attached windows.

(REMOVEWINDOW WINDOW) [Function]

Closes WINDOW, and calls FREEAITACHEDWINDOW to move
other attached windows to fill any gaps.

(REPOSITIONAITACHEDWINDOWS WINDOW) [Function]

Repositions every window attached to WINDOW, in the order
that they were attached. This is useful as a RESHAPEFN for main
windows with attached window that don't want to be reshaped,
but do want to keep their position relative to the main window
when the main window is reshaped.

Note: Attached windows that "reject" the move operation (see
REJECTMAINCOMS, page 28.51) are not moved.

(MAINWINDOW WINDOW RECURSEFLG) [Function]

If WINDOW is not a window, it generates an error. If WINDOW is
closed, it returns WINDOW. If WINDOW is not attached to
another window, it returns WINDOW itself. If RECURSEFLG is NIL
and WINDOW is attached to a window, it returns that window.
If RECURSEFLG is T, it returns the first window up the "main
window" chain starting at WINDOW that is not attached to any
other window.

(AITACHEDWINDOWS WINDOW COM) [Function]

Returns the list of windows attached to WINDOW.

WINDOWS AND MENUS 28.47

ATIACHED WINDOWS

If COM is non-NIL, only those windows attached to WINDOW

that do not reject the window operation COM are returned (see
REJECTMAINCOMS, page 28.51).

(ALLATTACHEDWINDOWS WINDOW) [Function]

Returns a list of all of the windows attached to WINDOW or
attached to a window attached to it.

(WINDOWREGION WINDOW COM) [Function]

(WINDOWSIZE WINDOW)

Returns the screen region occupied by WINDOW and its attached
windows, if it has any.

If COM is non-NIL, only those windows attached to WINDOW
that do not reject the window operation COM are considered in
the calculation (see REJECTMAINCOMS, page 28.51).

[Function]

Returns the size of WINDOW and its attached windows (if any),
as a dotted pair (WIDTH. HEIGHn.

(MINATTACHEDWINDOWEXTENT WINDOW) [Function]

Returns the minimum size that WINDOW and its attached
windows (if any) will accept, as a dotted pair (WIDTH. HEIGHn.

28.6.1 Attaching Menus To Windows

2848

The following functions are provided to associate menus to
windows.

(MENUWINDOW MENU VERTFLG) [Function]

Returns a closed window that has the menu MENU in it. If MENU
is a list, a menu is created with MENU as its ITEMS menu field (see
page 28.39). Otherwise, MENU should be a menu. The returned
window has the appropriate RESHAPEFN, MINSIZE and MAXSIZE
window properties to allow its use in a window group.

If both the MENU ROWS and MENUCOLUMNS fields of MENU are
NIL, VERTFLG is used to set the default menu shape. If VERTFLG is
non-NIL, the MENUCOLUMNS field of MENU will be set to 1 (the
menu items will be listed vertically); otherwise the MENUROWS
field of MENU will be set to '1 (the menu items will be listed
horizontally).

(ATTACHMENU MENU MAINWINDOW EDGE POSITIONONEDGE NOOPENFLG) [Function]

Creates a window that contains the menu MENU (by calling
MENUWINDOW) and attaches it to the window MAINWINDOW

WINDOWS AND MENUS

A TIACH ED WINDOWS

on edge EDGE at position POSITIONONEDGE. The menu window
is opened unless MAINWINDOWis closed, or NOOPENFLG is T.

If EDGE is either LEFT or RIGHT, MENUWINDOW will be called
with VERTFLG = T, so the menu items will be listed vertically;
otherwise the menu items will be listed horizontally. These
defaults can be overridden by specifying the MENU ROWS or
MENUCOLUMNS fields in MENU.

(CREATEMENUEDWINDOW MENU WINDOWTlTLE LOCA TlON WINDOWSPEC) [Function]

WINDOWS AND MENUS

Creates a window with an attached menu and returns the main
window. MENU is the only required argument, and may be a
menu or a list of menu items. WINDOWTITLE is a string
specifying the title of the main window. LOCA TlON specifies the
edge on which to place the menu; the default is TOP.
WINDOWSPEC is a region specifyin9 a region for the aggregate
window; if NIL, the user is prompted for a region.

Examples:

(SETQ MENUW
(MENUWINDOW

(create MENU
ITEMS +- '(smaller LARGER)
MENU FONT +- '(MODERN 12)
TITLE ~ "zoom controls"
CENTERFLG +- T
WHENSELECTEDFN +- (FUNCTION ZOOMMAINWINDOW»»

creates (but does not open) a menu window that contains the
two items "smaller" and "LARGER" with the title "zoom
controls" and that calls the function ZOOMMAINWINDOW when
an item is selected. Note that the menu items will be listed
horizontally, because MENUWINDOW is called with
VERTFLG = NIL, and the menu does not specify either a
MENUROWS or MENUCOLUMNS field.

(ATTACHWINDOW MENUW
(CREATEW '(50 5015050»
'TOP
'JUSTIFY)

creates a window on the screen and attaches the above created
menu window to its top:

zoom controls
srnaller LARGEF:.

(CREATEMENUEDWINDOW

28.49

ATTACHED WINDOWS

28.6.2 Attached Prompt Windows

(create MENU
ITEMS ~ '(smaller LARGER)
MENU FONT ~ '(MODERN 12)
TITLE ~ "zoom controls"
CENTERFLG ~ T
WHENSELECTEDFN ~(FUNCTION ZOOMMAINWINDOW))))

creates the same sort of window in one step, prompting the user
for a region.

Many packages have a need to display status information or
prompt for small amounts of user input ina place outside their
standard window. A convenient way to do this is to attach a
small window to the top of the program's main window. The
following functions do so in a uniform way that can be
depended on among diverse applications.

(GETPROMPTWINDOW MAINWINDOW #LlNES FONTDONTCREATE) [Function]

Returns the attached prompt window associated with
MAINWINDOW, creating it if necessary. The window is always
attached to the top of MAINWINDOW, has DSPSCROLL set to T,
and has a PAGEFULLFN of NILL to inhibit page holding. The
window is at least #LlNES lines high (default 1); if a pre-existing
window is shorter than that, it is reshaped to make it large
enough. FONT is the font to give the prompt window (defaults
to the font of MAINWINDOW), and applies only when the
window is first created. If DONTCREA TE is true, returns the
window if it exists, otherwise NIL without creating any prompt
window.

(REMOVEPROMPTWINDOW MAINWINDOW) [Function]

Detaches the attached prompt window associated with
MAINWINDOW (if any), and closes it.

28.6.3 Window Operations And Attached Windows

28.50

When a window operation, such as moving or clearing, is
performed on a window, there is a question about whether or
not that operation should also be performed on the windows
attached to it or performed on the window it is attached to. The
"right" thing to do depends on the window operation: it makes
sense to independently redisplay a single window in a collection
of windows, whereas moving a single window usually implies
moving the whole group of windows. The interpretation of
window operations also depends on the application that the

WINDOWS AND MENUS

PASSTOMAINCOMS

REJECTMAINCOMS

WINDOWS AND MENUS

ATIACHED WINDOWS

window group is used for. For some applications, it may be
desirable to have a window group where individual windows can
be moved away from the group, but still be conceptually
attached to the group for other operations. The attached
window facility is flexible enough to allow all of these
possibilities.

The operation of window operations can be specified by each
attached window, by setting the following two window
properties:

[Window Property]

Value is a list of window commands (e.g. CLOSEW, MOVEW)
which, when selected from the attached window's right-button
menu, are actually applied to the central window in the group,
instead of being applied to the attached window itself. The
"central window" is the first window up the "main window"
chain that is not attached to any other window.

If PASSTOMAINCOMS is NIL, all window operations are directly
applied to the attached window. If PASSTOMAINCOMS is T, all
window operations are passed to the central window.

Note: ATTACHWINDOW (page 28.45) allows this window
property to be set to commonly-used values by using its
WINDOWCOMACTION argument. ATTACHWINDOW always sets
this window property, so users must modify it directly only after
attaching the windowto another window.

[Window Property]

Value is a list of window commands that the attached window
will not allow the main window to apply to it. This is how a
window can say "leave me out of this group operation."

If REJECTMAINCOMS is NIL, all window commands may be
applied to this attached window. If REJECTMAINCOMS is T, no
window commands may be applied to this attached window.

Note: The PASSTOMAINCOMS and REJECTMAINCOMS window
properties affect right-button menu operations applied to main
windows or attached windows, and the action of programmatic
window functions (SHAPEW, MOVEW, etc.) applied to main
windows. However, these window properties do not affect the
action of window functions applied to attached windows.

The following list describes the behavior of main and attached
windows under the window operations, assuming that all
attached windows have their REJECTMAINCOMS window
property set to NIL and PASSTOMAINCOMS set to (CLOSEW
MOVEW SHAPEW SHRINKW BURYW) (the default if

28.51

ATIACHED WINDOWS

28.52

Move

Reshape

ATTACHWINDOW is called with WINDOWCOMACT/ON = NIL, see
page 28.45).

The behavior for any particular operation can be changed for
particular attached windows by setting the standard window
properties (e.g., MOVEFN or CLOSEFN) of the attached window,
An exception is the TOTOPFN property of an attached window,
that is set to bring the whole window group to the top and
should not be set by the user (although users can add functions
to the TOTOPFN window property).

If the main window moves, all attached windows move with it,
and the relative positioning between the main window and the
attached windows is maintained. If the region is determined
interactively, the prompt region for the move is the union of the
extent of the main window and all attached windows (excluding
those with MOVEW in their REJECTMAINCOMS window
property).

If an attached window is moved by calling the function MOVEW,
it 'is moved without affecting the main window. If the
right-button window menu command Move is called on an
attached window, it is passed on to the main window, so that all
windows in the group move.

If the main window is reshaped, the minimum size of it and all of
its attached windows is used as the minimum of the space for the
result. Any space greater than the minimum is distributed
among the main window and its attached windows. Attached
windows with SHAPEW on their REJECTMAINCOMS window
property are ignored when finding the minimum size, creating a
"ghost" region, or distributing space after a reshape.

If an attached window is reshaped by calling the function
SHAPEW, it is reshaped independently. If the right-button
window menu command Shape is called on an attached window,
it is passed on to the main window, so the whole group is
reshaped.

Note: Reshaping the main window will restore the conditions
established by the call to ATTACHWINDOW, whereas moving the
main window does not. Thus, if A is attached to the top of Band
then moved by the user, its new position relative to B will be
maintained if B is moved. If B is reshaped, A will be reshaped to
the top of B. Additionally, if, while A is moved away from the
top of B, C is attached to the top of B, C will position itself above
where A used to be.

Close If the main window is closed, all of the att,ached windows are
closed also and the links from the attached windows to the main
window are broken. 'This is necessary for the windows to be
garbage collected.

WINDOWS AND MENUS

Open

Shrink

Redisplay

ATTACHED WINDOWS

If an attached window is closed by calling the function CLOSEW,
it is dosed without affecting the main window. If the
right-button window menu command Close is called on an
attached window, it is passed on to the main window. Note that
closing an attached window detaches it.

If the main window is opened, it opens all attached windows and
reestablishes links from them to the main window.

Attached windows can be opened independently and this does
not affect the main window. Note that it is possible to reopen a
closed attached window and not have it linked to its main
window.

The collection of windows shrinks as a group. The SHRINKFNs of
the attached windows are evaluated but the only icon displayed
is the one for the main window.

The main or attached windows can be redisplayed
independently.

Totop If any main or attached window is brought to the top, all of the
other windows are brought to the top also.

Expand Expanding any of the windows expands the whole collection.

Scrolling All of the windows involved in the group scroll independently.

Clear All windows clear independently of each other.

28.6.4 Window Properties Of Attached Windows

Windows that are involved in a collection either as a main
window or as an attached window have properties stored on
them. The only properties that are intended to be set be set by
the user are the MINSIZE, MAXSIZE, PASSTOMAINCOMS, and
REJECTMAINCOMS window properties. The other properties
should be considered read only.

MINSIZE [Window Property]

MAXSIZE [Window Property]

WINDOWS AND MENUS

Each of these window properties should be a dotted pair (WIDTH

. HEIGHn or a function to apply to the window that returns a
dotted pair. The numbers are used when the main window is
reshaped. The MINSIZE is used to determine the size of the
smallest region acceptable during reshaping. Any amount
greater than the collective minimum is spread evenly among the
windows until each reaches MAXSIZE. Any excess is given to the
main window.

Note: If you give the main window of an attached window
group a MINSIZE or MAXSIZE property, its value is moved to the

28.53

ATIACHED WINDOWS

MAINWINDOW

ATIACHEDWINDOWS

WHEREATIACHED

28.54

MAINWINDOWMINSIZE or MAINWINDOWMAXSIZE property, so
that the main window can be given a size function that
computes the minimum or maximum size of the entire group.
Thus, if you want to change the main window's minimum or
maximum size after attaching windows to it, you should change
the MAINWINDOWMINSIZE or MAINWINDOWMAXSIZE

property instead.

Note: This doesn't address the hard problem of overlapping
attached windows side to side, for example if window A was
attached as [TOP, LEFT] and B as [TOP, RIGHT]. Currently, the
attached window functions do not worry about the overlap.

The default MAXSIZE is NIL, which will let the region grow
indefinitely.

[Window Property]

Pointer from attached windows to the main window of the
group. This link is not available .if the main window is closed.
The function MAINWINDOW (page 28.47) is the preferred way to
access this property.

[Window Property]

Pointer from a window to its attached windows. The function
ATIACHEDWINDOWS (page 28.47) is the preferred way to access
this property.

[Window Property]

For attached windows, a dotted pair (EDGE. POSITIONONEDGE)

giving the edge and position on the edge that determine how
the attached window is placed relative to its main window.

The TOTOPFN window property on attached windows and the
properties TOTOPFN, DOSHAPEFN, MOVEFN, CLOSEFN, OPENFN,
SHRINKFN, EXPANDFN and CALCULATEREGIONFN on main
windows contain functions that implement the attached
window manipulation facilities. Care should be used in
modifying or replacing these properties.

WINDOWS AND MENUS

TABLE OF CONTENTS

29. Hardcopy Facilities 29.1

29.1. Low-level Hardcopy Variables 29.5

TABLE OF CONTENTS TOC.1

TABLE OFCONTENTS

[This page intentionally left blank]

TOC.2 TABLE OF CONTENTS

29. HARDCOPY FACILITIES

Interlisp-D includes facilities for generating hardcopy in
"Interpress" format and "Press" format. Interpress is a file
format used for communicating documents to Xerox Network
System printers such as the Xerox 8044 and Xerox 5700. Press is a
file format used for communicating documents to Xerox laser
Xerographic printers known by the names "Dover", "Spruce",
"Penguin", and "Raven". There are also library packages
available for supporting other types of printer formats (4045,
FX-80, C150, etc.). The hardcopy facilities are designed to allow
the user to support new types of printers with minimal changes
to the user interface.

Files can be in a number of formats, including Interpress files,
plain text files, and formatted Tedit files. In order to print a file
on a given printer, it is necessary to identify the format of the
file, convert the file to a format that the printer can accept, and
transmit it. Rather than require that the user explicitly
determine file types and do the conversion, the Interlisp-D
hardcopy functions generate Interpress or other format output
depending on the appropriate choice for the designated printer.
The hardcopy functions use the variables PRINTERTYPES and
PRINTFILETYPES (described below) to determine the type of a
file, how to convert it for a g!ven printer, and how to send it. By
changing these variables, the user can define other kinds of
printers and print to them using the normal hardcopy functions.

(SEND.FILE.TO.PRINTER FILE HOSTPRINTOPTIONS) [Function]

DOCUMENT.NAME

DOCUMENT.CREATION.DATE

SENDER.NAME

HARDCOPY FACILITIES

The function SEND.FILE.TO.PRINTER causes the file FILE to be
sent to the printer HOST. If HOST is NIL, the first host in the list
DEFAUL TPRINTINGHOST which can print FILE is used.

PRINTOPTIONS is a property list of the form (PROP1 VALUEl

PROP2 VALUE2 ...). The properties accepted depends on the type
of printer. For Interpress printers, the following properties are
accepted:

The document name to appear on the header page (a string).
Default is the full name of the file.

The creation date to appear on the header page (a Lisp integer
date, such as returned by IDATE). The default value is the
creation date of the file.

The name of the sender to appear on the header page (a string).
The default value is the name of the user.

29.1

HARDCOPY FACILITIES

29.2

RECIPIENT.NAME

MESSAGE

#COPIES

PAGES.TO.PRINT

MEDIUM

The name of the recipient to appear on the header page (a

string). The default is none.

An additional message to appear on the header page (a string).

The default is none.

The number of copies to be printed. The default value is 1.

The pages of the document that should be printed, represented
as a list (FIRSTPAGE# LASTPAGE#). For example, if this option is
(3 5), this specifies that pages 3 through 5, inclusive, should be
printed. Note that the page numbering used for this purpose
has no connection to any page numbers that may be printed on
the document. The default is to print all of the pages in the
document.

The medium on which the master is to be printed. If omitted,
this defaults to the value of NSPRINT.DEFAULT.MEDIUM, as
follows: NIL means to use the printer's default; T means to use
the first medium reported available by the printer; any other
value must be a Courier value of type MEDIUM. The format of
this type is a list (PAPER (KNOWN.SIZE TYPE» or (PAPER
{OTHER.SIZE (WIDTH LENGTH»). The paper TYPE is one of
US.LETTER, US.LEGAL, AO through A10, ISO.BO through ISO.B10,
and JIS.BO through JIS.B10. For users who use A4 paper
exclusively, it should be sufficient to set
NSPRINT.DEFAUL T.MEDIU M to (PAPER (KNOWN.SIZE .. A4 "».
When using different paper sizes, it may be necessary to reset the
variable DEFAUL TPAGEREGION, the region on the page used for
printing (measured in micas from the lower-left corner).

STAPLE? True if the document should be stapled.

#SIDES 1 or 2 to indicate that the document should be printed on one or
two sides, respectively. The default is the value of
EMPRESS#SIDES.

PRIORITY The priority of this print request, one of LOW, NORMAL, or HIGH.
The default is the printer's default.

Note: Press printers only recognize the options #COPIES,
#SIDES, DOCUMENT.CREATION.DATE, and DOCUMENT .. NAME.

For example,

(SEND.FILE.TO.PRINTER 'FOO NIL
'(#COPIES 3 #SIDES 2 DOCUMENT.NAME "For John"»

SEND.FILE.TO.PRINTER calls PRINTERTYPE and PRINTFILETYPE to
determine the printer type of HOSTand the file format of FILE. If
FILE is a formatted file already in a form that the printer can
print, it is transmitted directly. Otherwise,
CONVERT.FILE.TO.TYPE.FOR.PRINTER is called to do the
conversion. [Note: If the file is converted, PRINTOPT/ONS is
passed to the formatting function, so it can include properties
such as HEADING, REGION, and FONTS.] A" of these functions

HARDCOPY FACILITIES

HARDCOPY FACILITIES

use the lists PRINTERTYPES and PRINTFllETYPES to actually
determine how to do the conversion.

lISTFllES (page 17.14) calls the function lISTFIlES1 to send a
single file to a hardcopy printing device. Interlisp-D is initialized
with lISTFIlES1 defined to call SEND.FllE.TO.PRINTER.

(HARDCOPYW WINDOW/BITMAP/REGION FILE HOST SCALEFACTOR ROTA TlON

PRINTER TYPE) [Function]

HARDCOPY FACILITIES

Creates a hardcopy file from a bitmap and optionally sends it to a
printer. Note that some printers may have limitations
concerning how big or how. "complicated" the bitmap may be
printed.

WINDOW/BITMAP/REGION can either be a WINDOW (open or
closed), a BITMAP, or a REGION (interpreted as a region of the
screen). If WINDOW/BITMAP/REGION is NIL, the user is prompted
for a screen region using GETREGION.

If FILE is non-Nil, it is used as the name of the file for output. If
HOST= Nil, this file is not printed. If FILE is Nil, a temporary file
is created, and sent to HOST.

To save an image on a file without printing it, perform
(HARDCOPYW IMAGE FILE). To print an image to the printer
PRINTER without saving the file, perform (HARDCOPYW IMAGE

NIL PRINTER).

If both FILE and HOST are NIL, the default action is to print the
image, without saving the file. The printer used is determined by
the argument PRINTERTYPE and the value of the variable
DEFAUl TPRINTINGHOST. If PRINTERTYPE is non-Nil, the first
host on DEFAULTPRINTINGHOST of the type PRINTERTYPE is
used. If PRINTER TYPE is Nil, the first printer on
DEFAUlTPRINTINGHOST that implements the BITMAPSCAlE (as
determined· by PRINTERTYPES, page 29.5) operation is used, if
any. Otherwise, the first printer on DEFAUl TPRINTINGHOST is
used.

The type of hardcopy file produced is determined by HOST if
non-Nil, else by PRINTERTYPE if non-Nil, else by the value of
DEFAUl TPRINTINGHOST, as described above.

SCALEFACTOR is a reduction factor. If not given, it is computed
automatically based on the size of the bitmap and the
capabilities of the printer type. This may not be supported for
some printers.

ROTATION specifies how the bitmap image should be rotated on
the printed page. Most printers (including Inter press printers)
only support a ROTA TlON of multiples of 90.

PRINTERTYPE specifies what type of printer to use when HOST is
NIl. HARDCOPYW uses this information to select which printer

29.3

HARDCOPY FACILITIES

(PRINTERSTATUS PRINTER)

DEFAULTPRINTINGHOST

(PRINTFILETYPE FILE -)

(PRI NTERTYPE HOSn

29.4

to use or what print file format to convert the output into, as

described above.

The background menu contains a "Hardcopy" command (page
28.6) that prompts the user for a region on the screen, and sends
the image to the default printer.

Hardcopy output may also be obtained by writing a file on the
printer device LPT, e.g. (COPYFILE 'FOO '{LPT}}. When a file on
this device is closed, it is converted to Interpress or some other
for~at (if necessary) and sent to the default printer (the first host
on DEFAULTPRINTlNGHOSn. One can include the printer name
directly in the file name, e.g. (COPYFILE 'FOO {LPT}TREMOR:)
will send the file to the printer TREMOR:.

[Function]

Returns a list describing the current status of the printer named
PRINTER. The exact form of the value returned depends on the
type of printer. For Interpress printers, the status describes
whether the printer is available or busy or needs attention, and
what type of paper is loaded in the printer.

Returns NIL if the printer does not respond ina reasonable time,
which can occur if the printer is very busy, or does not implement
the printer status service.

[Variable]

The variable DEFAUL TPRINTINGHOST is used to designate the
default printer to be used as the output of printing operations.
It should be a list of the known printer host names, for example,
(QUAKE LlSPPRINT:). If an element of DEFAUL TPRINTINGHOST is
a list, is interpreted as (PRINTERTYPE HOSn, specifying both the
host type and the host name. The type of the printer, which
determines the protocol used to send to it and the file format it
requires, is determined by the function PRINTERTYPE.

If DEFAULTPRINTINGHOST is a single printer name, it is treated as
if it were a list of one element.

[Function]

Returns the format of the file FILE. Possible values include
INTERPRESS, TEDIT, etc. If it cannot determine the file type, it
returns NIL. Uses the global variable PRINTFILETYPES.

[Function]

Returns the type of the printer HOST. Currently uses the
following heuristic: (1) If HOSTis a list, the CAR is assumed to be
the printer type and CADR the name of the printer; (2) If HOST is
a litatom with a non-NIL PRINTERTYPE property, the property

HARDCOPY FACILITIES

HARDCOPY FACILITIES

value is returned a's the printer type; (3) If HOSTcontains a colon
(e.g., PRINTER:PARC:XEROX) it is assumed·to be an INTERPRESS

printer; (4) if HOST is the CADR of a list on
DEFAULTPRINTINGHOST, the CAR is returned as the printer type;
(5) otherwise, the value of DEFAUL TPRINTERTYPE is returned as
the printer type.

29.1 Low-level Hardcopy Variables

PRINTERTYPES

The following variables are used to define how Interlisp should
generate hardcopy of different types, The user should only need
~o change these variables when it is necessary to access a new
type of printer, or define a new hardcopy document type (not
often).

[Variable]

The characteristics of a given printer are determined by the value
of the list PRINTERTYPES. Each element is a list of the form

(TYPES (PROPERTY 1 VALUE1) (PROPERTY2 VALUE2) ...)

TYPES is a list of the printer types that this entry addresses. The
(PROPERTYn VALUEn) pairs define properties associated with
each printer type.

The printer properties include the following:

CANPRINT Value is a list of the file types that the printer can print directly.

STATUS Value is a function that knows how to find out the status of the
printer, used by PRINTERSTATUS (page 29.4).

PROPERTIES Value is a function which returns a list of known printer
properties.

SEND Value is a function which invokes the appropriate protocol to
send a file to the printer.

BITMAPSCALE Value is a function of arguments WIDTH and HEIGHT in bits
which returns a scale factor for scaling a bitmap.

BITMAPFILE Value is a form which, when evaluated, converts a bitmap to a
file format that the printer will accept.

Note: The name 8044 is defined on PRINTERTYPES as a synonym
for the INTERPRESS printer type. The names SPRUCE, PENGUIN,

and DOVER are defined on PRINTERTYPES as synonyms for the
PRESS printer type. The printer types FULLPRESS and RAVEN are

also defined the same as PRESS, except that these printer types
indicate that the printer is a "Full Press" printer that is able to
scale bitmap images, in addition to the normal Press printer
facilities.

HARDCOPY FACILITIES 29,5

LOW-LEVEL HARDCOPY VARIABLES

PRINTFILETYPES

TEST

CONVERSION

EXTENSION

296

[Variable1

The variable PRINTFILETYPES contains information about various
file formats, such as Tedit files and Interpress files. The format is
similar to PRINTERTYPES. The properties that can be specified
include:

Value is a function which tests a file if it is of the given type.
Note that this function is passed an open stream.

Value is a property list of other file types and funcitons that
convert from the specified type to th,e fi Ie format.

Value is a list of possible file extensions for files of this type.

HARDCOPY FACILITIES

TABLE OF CONTENTS

30. Terminal Input/Output 30.1

30.1. Interrupt Characters 30.1

30.2. Terminal Tables 30.4

30.2.1. Terminal Syntax Classes 30.5

30.2.2. Terminal Control Functions 30.6

30.2.3. Li ne-Bufferi ng 30.9

30.3. Dribble Files 30.12

30.4. Cursor and Mouse 30.13

30.4.1. Changing the Cursor Image 30.13

30.4.2. Flashing Bars on the Cursor 30.16

30.4.3. Cursor Position 30.17

30.4.4. Mouse Button Testing 30.17

30.4.5. Low Level Mouse Functions 30.18

30.5. Keyboard Interpretation 30.19

30.6. Display Screen 30.22

30.7. Miscellaneous Terminal 1/0 30.24

TABLE OFCONTENTS TOC.l

TABLE OF CONTENTS

[This page intentionally left blank]

TOC 2 TABLE OF CONTENTS

30.1 Interrupt Characters

TERMINAL INPUT/OUTPUT

30. TERMINAL INPUT/OUTPUT

Most input/output operations in Interlisp can be simply modeled
as reading or writing on a linear stream of bytes. However, the
situation is much more complex when it comes to controlling the
user's "terminal," which includes the keyboard, the mouse, and
the display screen. For example, Interlisp coordinates the
operation of these separate I/O devices so that the cursor on the
screen moves as the mouse moves, and any characters typed by
the user appear in the window currently containing a flashing
cursor. Most of the time, this system works correctly without
need for user modification.

The purpose of this chapter is to describe how to access the
low-level controls for the terminal I/O devices. It documents the
use of interrupt characters, the keyboard characters that
generate interrupts. Then, it describes terminal tables, used to
determine the meaning of the different editing characters
(character delete, line delete, etc.). Then, the "dribble file"
facility that allows terminal I/O to be saved onto a file is
presented (page 30.12). Finally, the low-level functions that
control the mouse and cursor, the keyboard, and the screen are
documented.

Errors and breaks can be caused by errors within functions, or by
explicitly breaking a function. The user can also indicate his
desire to go into a break while a program is running by typing
certain control characters known as "interrupt characters ". The
following interrupt characters are currently enabled in
Interlisp-D:

Note: In Interlisp-D with multiple processes, it is not sufficient to
say that "the computation" is broken, aborted, etc; it is
necessary to specify which process is being acted upon. Usually,
the user wants interrupts to occur in the TTY process, which is the
one currently receiving keyboard input. However, sometimes
the user wants to interrupt the mouse process, if it is currently
busy executing a menu command or waiting for the user to
specify a region on the screen. Most of the interrupt characters
below take place in the mouse process if it is busy, otherwise the

30.1

INTERRUPT CHARACTERS

Control-B

Control-D

Control-E

Control-G

Control-P

Control-T

30.2

TTY process. Control-G can be used to break arbitrary processes.
For more information, see page 23.14.

Causes a break within the mouse process (if busy) or the TTY
process. Use control-G to break a particular process.

Aborts the mouse process (if busy) or the TTY process, and
unwinds its stack to the top level. Calls RESET (page 14.20).

Aborts the mouse process (if busy) or the TIY process, and
unwinds its stack to the last ERRORSET. Calls ERROR! (page
14.20).

Pops up a menu listing all of the currently-running processes.
Selecting one of the processes will cause a break to take place in
that process.

Changes the PRINTLEVEL setting of PRINTLEVEL (see page 25.11)

in the TTY process. This allows the PRINTLEVEL setting to be
changed dynamically, even while Interlisp is printing.

When control-P is typed, Interlisp rings the bell, prints "set
printlevel to:," and waits for the user to type a series of digits.
Input is terminated by a non-digit, after which the 'program
continues.

If the input is terminated by a period or an exclamation point,
the CAR printlevel is immediately set to this number, and
printing continues with the (possibly new) printlevel. If the print
routine is currently deeper than the new level, all unfinished lists
above that level will be terminated by " __)". Thus, if a circular or
long list of atoms, is being printed out, typing "control-PO." will
cause the list to be terminated immediately_

If the input is terminated by a comma, another number may be
typed terminated by a period or exclamation point. The CAR
printlevel will then be set to the first number, the CDR printlevel
to the second number.

In either case, if a period is used to terminate the printlevel
setting, the printlevel will be returned to its previous setting
after the current printout has finished. If an exclamation point is
used, the change is permanent and the printlevel is not restored
(until it is changed again).

Prints status information for the TTY process. First it prints "10
wait," "Waiting", or "Running, II depending on whether the TTY
process is currently in waiting for characters to be typed, waiting
for some other reason, or running. Next, it prints the names of
the top three frames on the stack, to show what is running.
Then, it prints a line describing the .percentage of time (since the
last control-T) that has been spent running a program, swapping,
garbage collecting, doing local disk i/o, etc. For example:

Running in TTWAITFORINPUT in TTBIN in TTYIN1
95% Util, 0% Swap, 4% GC

TERMINAL INPUT/OUTPUT

DELETE

INTERRUPT CHARACTERS

Clears typeahead in all processes.

The user can disable and/or redefine Interlisp interrupt
characters, as well as define new interrupt characters. Interlisp-D
is initialized with the following interrupt channels: RESET
(control-D), ERROR (control-E), BREAK (control-B), HELP
(control-G), PRINTLEVEL (control-P), RUBOUT (DELETE), and
RAID. Each of these channels independently can be disabled, or
have a new interrupt character assigned to it via the function
INTERRUPTCHAR described below. In addition, the user can
enable new interrupt channels, and associate with each channel
an interrupt character and an expression to be evaluated when
that character is typed.

(lNTERRUPTCHAR CHAR TYPIFORM HARDFLG-) [Function]

TERMINAL INPUT/OUTPUT

Defines CHAR as an interrupt character. If CHAR was previously
defined as an interrupt character, that interpretation is disabled.

CHAR is either a character or a character code (page 2.12). Note
that full sixteen-bit NS characters can be specified as interrupt
characters (see page 2.12). CHAR can also be a value returned
from INTERRUPTCHAR, as described below.

If TYPIFORM = NIL, CHAR is disabled.

If TYPIFORM = T, the current state of CHAR is returned without
changing or disabling it.

If TYPIFORM is one of the literal atoms RESET, ERROR, BREAK,
HELP, PRINTLEVEL, RUBOUT, or RAID, then INTERRUPTCHAR
assigns CHAR to the indicated Interlisp interrupt channel,
(reenabling the channel if previously disabled).

If TYPIFORM is any other literal atom, CHAR is enabled as an
interrupt character that when typed causes the atom TYPIFORM
to be immediately set to T.

If TYPIFORM is a list, CHAR is enabled as a user interrupt
character, and TYPIFORM is the form that is evaluated when
CHAR is typed. The interrupt will be hard if HARDFLG = T,
otherwise soft.

(lNTERRUPTCHAR T) restores all Interlisp channels to their
original state, and disables all user interrupts.

HARDFLG determines what process the interrupt should run in.
If HARDFLG is NIL, the interrupt will run in the TTY process, which
is the process currently receiving keyboard input. If HARDFLG is
T, the interrupt will occur in whichever process happens to be
running. If HARDFLG is MOUSE, the interrupt will happen in the
mouse process, if the mouse is busy, otherwise in the TTY process.

INTERRUPTCHAR returns a value which, when given as the CHAR

argument to INTERRUPTCHAR, will restore things as they were
before the call to INTERRUPTCHAR. Therefore,INTERRUPTCHAR

30.3

INTERRUPT CHARACTERS

can be used in conjunction with RESETFORM or RESETLST (page

14.26).

INTERRUPTCHAR is undoable.

(RESET.lNTERRUPTS PERMITTEDINTERRUPTS SAVECURRENT?) [Function]

(liSPINTERRUPTS)

(INTERRUPTABLE FLAG)

30.2 Terminal Tables

30.4

PERMITTEDINTERRUPTS is a list of interrupt character settings to
be performed, each of the form (CHAR TYPIFORM HARDFLG).
The effect of RESET.lNTERRUPTS is as if (lNTERRUPTCHAR CHAR
TYPIFORM HARDFLG) were performed for each item on
PERMITTEDINTERRUPTS, and (lNTERRUPTCHAR OTHERCHAR NIL)
were performed on every other existing interrupt character.

If SAVECURRENT? is non-NIL, then RESET.lNTERRUPTS returns

the current state of the interrupts in a form that could be passed
to RESET.lNTERRUPTS, otherwise it returns NIL. This can be used

with a RESET.lNTERRUPTS that appears in a RESETFORM, so that
the list is built at "entry", but not upon "exit".

[Function]

Returns the initial default interrupt character settings for
Interlisp-D, as a list that RESET.lNTERRUPTS would accept.

[Function]

if FLAG = NIL, turns interrupts off. If FLAG = T, turns interrupts

on. Value is previous setting. INTERRUPTABLE compiles open.

Any interrupt character typed while interrupts are off is treated
the same as any other character, i.e. placed in the input buffer,
and will not cause an interrupt when interrupts are turned back
on.

A read table (page 25.33) contains input/output information that
is media-independent. For example, the action of parentheses is
the same regardless of the device from which the input is being
performed. A terminal table is an object that contains
information that pertains to terminal input/output operations
only, such as the character to type to delete the last character or
to delete the last line. In addition, terminal tables contain such
information as how line-buffering is to be performed, how
control characters are to be echoed/printed, whether lower case
input is to be converted to upper case, etc.

Using the functions below, the user may change, reset, or copy
terminal tables, or create a new terminal table and install it as
the primary terminal table via SETTERMTABLE. However, unlike

TERMINAL INPUT/OUTPUT

(GETTERMTABLE TTBL)

(COPYTERMTABLE TTBL)

(SETTERMTABLE TTBL)

TERMINAL TABLES

read tables, terminal tables cannot be passed as arguments to
input/output functions.

[Function]

If TTBL = NIL, returns the primary (i.e., current) terminal table. If
TTBL is a terminal table, return TTBL. Otherwise, generates an
ILLEGAL TERMINAL TABLE error.

[Function]

Returns a copy of TTBL. TTBL can be a real terminal table, NIL

(copies the primary terminal table), or ORIG (returns a copy of
the original system terminal table). Note that COPYTERMTABLE

is the only function that creates a terminal table.

[Function]

Sets the primary terminal table to be TTBL. Returns the previous
primary terminal table. Generates an ILLEGAL TERMINAL TABLE

error if TTBL is not a real terminal table.

(RESETTERMTABLE TTBL FROM) [Function]

(TERMTABLEP TTBL)

30.2.1 Terminal Syntax Classes

Copies (smashes) FROM into TTBL. FROM and TTBL can be NIL or
a real terminal table. In addition, FROM can be ORIG, meaning
to use the system's original terminal table.

[Function]

Returns TTBL, if TTBL is a real terminal table, NIL otherwise.

A terminal table associates with each character a single "terminal
syntax class", one of CHARDELETE, LlNEDELETE, WORDDELETE,

RETYPE, CTRLV, EOL, and NONE. Unlike read table classes, only
one character in a particular terminal table can belong to each of
the classes (except for the default class NONE). When a new
character is assigned one of these syntax classes by SETSYNTAX

(page 25.37), the previous character is disabled (i.e., reassigned
the syntax class NONE), and the value of SETSYNTAX is the code
for the previous character of that class, if any, otherwise NIL.

The terminal syntax classes are interpreted as follows:

CHARDELETE (Initially BackSpace and control-A in Interlisp-D) Typing this
character deletes the previous character typed. Repeated use of
this character deletes successive characters back to the beginning
of the line.

LlNEDELETE (Initially control-Q in Interlisp-D) Typing this character deletes
the whole line; it cannot be used repeatedly.

TERMINAL INPUT/OUTPUT 30.5

TERMINAL TABLES

WORDDELETE (Initially control-W in Interlisp-D) Typing this character deletes
the previous "word", i.e., sequence of non-separator characters.

RETYPE (Initially control-R) Causes the line to be retyped as Interlisp sees
it (useful when repeated deletions make it difficult to see what
remains).

CTRLV

CNTRLV (Initially control-V) When followed by A, B, ... Z, inputs the
corresponding control character control-A, control-B,
control-Z. This allows interrupt characters to be input without
causing an interrupt.

EOL On input from a terminal, the EOL character signals to the line
buffering routine to pass the input back to the calling function.
It also is used to terminate inputs to READlINE (page 13.36). In
general, whenever the phrase carriage-return linefeed is used,
what is meant is the character with terminal syntax class EOl.

NONE The terminal syntax class of all other characters.

GETSYNTAX, SETSYNTAX, and SYNTAXP all work on te'rminal
tables as well as read tables (see page 25.36). As with read
tables, full sixteen-bit NS characters can be specified in terminal
tables (see page 2.12). When given NIL as a TABLE argument,
GETSYNTAX and SYNTAXP use the primary read table or primary
terminal table depending on which table contains the indicated
CLASS argument. For example, (SETSYNTAX CH 'BREAK) refers
to the primary read table, and (SETSYNTAX CH 'CHARDELETE)

refers to the primary terminal table. In the absence of such
information, all three functions default to the primary read
table; e.g., (SETSYNTAX '{ '%[) refers to the primary read table.
If given incompatible CLASS ar:td table arguments, all three
functions generate errors. For example, (SETSYNTAX CH 'BREAK

TTBL), where TTBL is a terminal table, generates an ILLEGAL

READTABLE error, and (GETSYNTAX 'CHARDELETE RDTBL)

generates an ILLEGAL TERMINAL TABLE error.

30.2.2 Terminal Control Functions

30.6

(ECHOCHAR CHARCODE MODE TTBL) [Function]

ECHOCHAR sets the "echo mode" of the character CHARCODEto

MODE in the terminal table TTBL. The "echo mode" determines
how the character is to be echoed or printed. Note that
although the name of this function suggests echoing only, it
affects all output of the character, both echoing of input and
printing of output.

CHARCODE should be a character code. CHARCODE can also be a
list of characters, in which case ECHOCHAR is applied to each of

TERMINAL INPUT/OUTPUT

IGNORE

REAL

SIMULATE

INDICATE

TERMINAL TABLES

them with arguments MODE and ITBL. Note that echo modes
can be specified for full sixteen-bit NS characters (see page 2.12).

MODE should be one of the litatoms IGNORE, REAL, SIMULATE,
or INDICATE which specify how the character should be echoed

or printed:

CHARCODE is never printed.

CHARCODE itself is printed. Some terminals may respond to
certain control and meta char~cters in interesting ways.

Output of CHARCODE is simulated. For example, control-I (tab)
may be simulated by printing spaces. The simulation is
machine-specific and beyond the control of the user.

For control or meta characters, CHARCODE is printed as # and/or
f followed by the corresponding alphabetic character. For
example, control-A would echo as f A, and meta-control-W
would echo as # f W.

The value of ECHOCHAR is the previous echo mode for
CHARCODE. If MODE = NIL, ECHOCHAR returns the current echo
mode without changing it.

Warning: In some fonts, control and meta characters may be
used for printable characters. If the echomode is set to INDICATE
for these characters, they will not print out correctly.

(ECHOCONTROL CHAR MODE ITBL) [Function]

(ECHOMODE FLG ITBL)

(GETECHOMODE ITBL)

TERMINAL INPUT/OUTPUT

ECHOCONTROL is an old, limited version of ECHOCHAR, that can
only specify the echo mode of control characters. CHAR is a
character or character code. If CHAR is an alphabetic character
(or code), it refers to the corresponding control character, e.g.,
(ECHOCONTROL 'z 'INDICATE) if equivalent to (ECHOCHAR
(CHARCODE f Z) 'INDICATE).

[Function]

If FLG = T, turns echoing for terminal table ITBL on. If FLG = NIL,
turns echoing off. Returns the previous setting.

Note: Unlike ECHOCHAR, this only affects echoing of typed-in
characters, not printing of characters.

[Function]

Returns the current echo mode for ITBL.

The following functions manipulate the "raise mode," which
determines whether lower case characters are converted to
upper case when input from the terminal. There is no "raise
mode" for input from files.

30.7

TERMINAL TABLES

30.8

(RAISE FLG TTBL)

(GETRAISE TTBL)

[Function]

Sets the RAISE mode for terminal table TTBL. If FLG = NIL, all
characters are passed as typed. If FLG= T, input is echoed as
typed, but lowercase letters are converted to upper case. If
FLG = 0, input is converted to upper case before it is echoed.
Returns the previous setting.

[Function]

Returns the current RAISE mode for TTBL.

(DELETECONTROL TYPE MESSAGE TTBL) [Function]

Specifies the output protocol when a CHARDELETE or
L1NEDELETE is typed, by specifying character strings to print
when characters are deleted.

Interlisp-l0 (designed for use on hardcopy terminals) ethos the
characters being deleted, preceding the first by a \ and following
the last by a \, so that it is easy to see exactly what was deleted.
Note: Interlisp-D is initially set up to physically erase the deleted
characte.rs from the display, so the DELETECONTROL strings are
initialized to the null string.

The various values of TYPE specify different phases of the
deletion, as follows:

1STCHDEL MESSAGE is the message printed the first time CHARDELETE is
typed. Initially "\" in Interlisp-l O.

NTHCHDEL MESSAGE is the message printed when the second and
subsequent CHARDELETE characters are typed (without
intervening characters). Initially"" in Interlisp-l O.

POSTCHDEL MESSAGE is the message printed when input is resumed
following a sequence of one or more CHARDELETE characters.
Initially .,\" in Interlisp-l O.

EMPTYCHDEL MESSAGE is the message printed when a CHARDELETE is typed

and there are no characters in the buffer. Initially II ##cr tl in
Interlisp-l0.

ECHO If TYPE = ECHO, the characters deleted by CHARDELETE are
echoed. MESSAGE is ignored.

NOECHO If TYPE = NOECHO, the characters deleted by CHARDELETE are
not echoed. MESSAGE is ignored.

L1NEDELETE MESSAGE is the message printed when the L1NEDELETE character

is typed. Initially II ##cr ll
•

Note: In Interlisp-l0, the L1NEDELETE, 1 STCHDEL, NTHCHDEL,
POSTCHDEL, and EMPTYCHDEL messages must be 4 characters or
fewer in length.

DELETECONTROL returns the previous message as a string. If
MESSAGE = NIL, the value returned is the previous message

TERMINAL INPUT/OUTPUT

TERMINAL TABLES

without changing it. For TYPE = ECHO and NOECHO, the value
of DELETECONTROL is the previous echo mode, i.e., ECHO or
NOECHO.

(GETDELETECONTROL TYPE TTBL) [Function]

30.2.3 Line-Buffering

TERMINAL INPUT/OUTPUT

Returns the current DELETECONTROL mode for TYPE in TTBL.

Characters typed at the terminal are stored in two buffers before
they are passed to an input function. All characters typed in are
put into the low-level "system buffer", which allows type-ahead.
When an input function is entered, characters are transferred to
the "line buffer" until a character with terminal syntax class EOL
appears (or, for calls from READ, when the count of unbalanced
open parentheses reaches 0). Note that PEEKC is an exception; it
returns the character immediately when its second argument is
NIL. Until this time, the user can delete characters one at a time
from the line buffer by typing the current CHARDELETE
character, or delete the entire line buffer back to the last
carriage-return by typing the current LlNEDELETE.

Note that this line editing is not performed by READ or RATOM,
but by Interlisp, i.e., it does not matter (nor is it necessarily
known) which function will ultimately process the characters,
only that they are still in the Interlisp line buffer. However, the
function that is requesting input at the time the buffering starts
does determine whether parentheses counting is observed. For
example, if a program performs (PROGN (RATOM) (READ» and
the user types in "A (B CD)", the user must type in the
carriage-return following the right parenthesis before any action
is taken, because the Ii ne buffering is happening under RATOM.
If the program had performed (PROGN (READ) (READ», the
line-buffering would be under READ, so that the right
parenthesis would terminate line buffering, and no terminating

, carriage-return would be required.

Once a carriage-return has been typed, the entire line is
"available" even if not all of it is processed by the function
initiating the request for input. If any characters are" left over" ,
they are returned immediately on the next request for input. For
example, (LIST (RATOM) (READC) (RATOM» when the input is II A

Ber" returns the three-element list (A % B) and leaves the
carriage-return in the buffer.

If a carriage-return is typed when the input under READ is not
"complete" (the parentheses are not balanced or a string is in
progress), line buffering continues, but the lines completed so

30.9

TERMINAL TABLES

30.10

(CONTROL MODE TTBL)

(GETCONTROl TTBL)

READ

RATOM

READC
PEEKC

far are not available for editing with CHARDElETE or

lINEDElETE.

The function CONTROL is available to defeat line-buffering:

[Function]

If MODE = T, eliminates Interlisp's normal line-buffering for the
terminal table ITBL. If MODE = Nil, restores line-bufferi ng
(normal). When operating with a terminal table in which
(CONTROL T) has been performed, characters are returned to the
calling function without line-buffering as described below.

CONTROL returns its previous setting.

[Function]

Returns the current control mode for ITBL.

The function that initiates the request for input determines how
the line is treated when (CONTROL T) is in effect:

If the expression being typed is a list, the effect is the same as
though done with (CONTROL Nil), i.e., line-buffering continues
until a carriage-return or matching parentheses. If the
expression being typed is not a list, it is returned as soon as a
break or separator character is encountered, e.g., (READ) when
the input is "ABC<space>" immediately returns ABC.
CHARDElETE and lINEDElETE are available on those characters
still in the buffer. Thus, if a program is performing several reads
under (CONTROL T), and the user types "NOW IS THE TIME"
followed by control-Q, only TIME is deleted, since the rest of the
line has already been transmitted to READ and processed.

An exception to the above occurs when the break or separator
character is an opening parenthesis, bracket or double-quote,
since returning at this point would leave the line buffer in a
"funny" state. Thus if the input to (READ) is "ABC(", the ABC is
not read until a carriage-return or matching parentheses is
encountered. In this case the user could lINEDElETE the entire
line, since all of the characters are still in the buffer.'

Characters are returned as soon as a break or separator character
is encountered. Until then, lINEDElETE and CHARDElETE may
be used as with READ. For example, (RATOM) followed by
"ABC < control-A> < space>" returns AB. (RA TOM) followed by
"(<control-A>" returns (and types ## indicating that
control-A was attempted with nothing in the buffer, since the (is
a break character and would therefore already have been read.

The character is returned immediately; no line editing is possible.
In particular, (READC) is perfectly happy to return the

TERMINAL INPUT/OUTPUT

(CLEARBUF FILE FLG)

(SYSBUF FLG)

(LiNBUF FLG)

(BKSYSBUF X FLG RDTBL)

TERMINAL INPUT/OUTPUT

TERMINAL TABLES

CHARDELETE or LlNEDELETE characters, or the ESCAPE character
(%).

The system buffer and line buffer can be directly manipulated
using the following functions.

[Function]

Clears the input buffer for FILE. If FILE is T and FLG is T, the
contents of Interlisp's system buffer and line buffer are saved
(and can be obtained via SYSBUF and LlNBUF described below).

When control-O or control-E is typed, or any of the interrupt
characters that require terminal interaction is typed (control-G,
or control-P), Interlisp automatically performs (CLEARBU F T T).
For control-P and, when the break is exited normally, control-H,
Interlisp restores the buffer after the interaction.

The action of (CLEARBUF T), i.e., clearing of typeahead, is also
available as the RUBOUT interrupt character, initially assigned to
the delete key in Interlisp-O. Note that this interrupt clears both
buffers at the time it is typed, whereas the action of the
CHARDELETE and LlNEDELETE character occur at the time they
are read.

[Function]

If FLG = T, returns the contents of the system buffer (as a string)
that was saved at the last (CLEARBUF T T). If FLG = NIL, clears this
internal buffer.

[Function]

Same as SYSBUF for the line buffer.

If both the system buffer and Interlisp's line buffer are empty,
the internal buffers associated with LlNBUF and SYSBUF are not
changed by a (CLEARBUF T T).

[Function]
I

BKSYSBUF sets the system buffer to the PRIN1-name of X. The
effect is the same as though the user typed X. Some
implementations have a limit on the length of X, in which case
characters in X beyond the limit are ignored. Returns X.

If FLG is T, then the PRIN2-name of X is used, computed with
respect to the read table RDTBL.

Note that if the user is typing at the same time as the BKSYSBUF
is being performed, the relative order of the type-in and the
characters of X is unpredictable.

Compatibility note: Some implementations of BKSYSBUF
(lnterlisp-l0) use a "system" buffer, from which keyboard

30.11

TERMINAL TABLES

(BKLlNBUF STR)

interrupts are also processed. In this case, BKSYSBUF of an
interrupt character actually invokes the interrupt at some
(asynchronous) time after the BKSYSBUF is initiated. In other
implementations (Interlisp-D), the characters are not processed
for interrupts, and it is possible to BKSYSBUF characters which
would otherwise be impossible to type.

[Function]

STR is a string. BKLlNBUF sets Interlisp's line buffer to STR. Some
implementations have a limit on the length of STR, in which case
characters in STR beyond the limit are ignored. Returns STR.

BKLlNBUF, BKSYSBUF, LlNBUF, and SYSBUF provide a way of
"undoing" a CLEARBUF. Thus to "peek" at various characters in
the buffer, one could perform (CLEARBUF T T), examine the
buffers via LlNBUF and SYSBUF, and then put them back.

The more common use of these functions is in saving and
restoring typeahead when a program requires some
unanticipated (from the user's standpoint) input. The function
RESETBUFS provides a convenient way of simply clearing the
input buffer, performing an interaction with the user, and then
restoring the input buffer.

(RESETBUFS FORM1 FORM2 ... FORMN) [NLambda NoSpread Function]

Clears any typeahead (ringing the terminal's bell if there was,
indeed, typeahead), evaluates FORM1, FORM2, ... FORMN, then

restores the typeahead. Returns the value of FORMN. Compiles

open.

30.3 Dribble Files

30.12

A dribble file is a "transcript" of all of the input and output on a
terminal. In Interlisp-D, DRIBBLE opens a dribble file for the
current process, recording the terminal input and output for that
process. Multiple processes can have separate dribble files open
at the same time.

(DRIBBLE FILE APPENDFLG THAWEDFLG) [Function]

Opens FILE and begins recording the typescript. Returns the old
dribble file if any, otherwise NIl. If APPENDFLG = T, the
typescript will be appended to the end of FILE. If
THAWEDFLG=T, the file will be opened in "thawed" mode, for
those implementations that support it. (DRIBBLE) closes the
dribble file for the current process. Only one dribble file can be

TERMINAL INPUT/OUTPUT

(DRIBBLEFILE)

30.4 Cursor and Mouse

30.4.1 Changing the Cursor Image

(CURSORBITMAP)

TERMINAL INPUT/OUTPUT

DRIBBLE FILES

active for each process at anyone time, so (DRIBBLE FILE7)

followed by (DRIBBLE FILE2) will cause FILE1 to be closed.

[Function]

Returns the name of the current dribble file for the current
process, if any, otherwise NIL.

Terminal input is echoed to the dribble file a line buffer at a
time. Ttius, the typescript produced is somewhat neater than
that appearing on the user's terminal, because it does not show
characters that were erased via control-A or control-Q. Note that
the typescript file is not included in the list of files returned by
(OPENP), nor will it be dosed by a call to CLOSEALL or CLOSEF.
Only (DRIBBLE) doses the typescript file.

A mouse is a small box connected to the computer keyboard by a
long wire. On the top of the mouse are two or three buttons.
On the bottom is a rolling bailor a set of photoreceptors, to
detect when the mouse is moved. As the mouse is moved on a
surface, a small image on the screen, called the cursor, moves to
follow the movement of the mouse. By moving the mouse, the
user can cause the cursor to point to any part of the display
screen.

The mouse and cursor are an important part of the Interlisp-D
user interface. The Interlisp-D window system allows the user to
create, move, and reshape windows, and to select items from
displayed menus, all by moving the mouse and clicking the
mouse buttons. This section describes the low-level functions
used to control the mouse and cursor.

Interlisp-D maintains the image of the cursor on the screen,
moving it as the mouse is moved. The bitmap that becomes
visible as the cursor can be accessed by the following function:

[Function]

Returns the cursor bitmap.

30.13

CURSOR AND MOUSE

30.14

CURSORWIDTH

CURSORHEIGHT

[Variable]

[Variable]

Value is the width and height of the cursor bitmap, respectively.

The cursor bitmap can be changed like any other bitmap by
BITBLTing into it or pointing a display stream at it and printing or
drawing curves. However, for some applications it is necessary to
save and restore the cursor, which can be most easily done using
CURSOR record objects. A CURSOR record contains fields
CURSORBITMAP and CURSORHOTSPOT. The value of the
CURSORBITMAP field is a bitmap that is CURSORWIDTH bits wide
by CURSORHEIGHT high. The value of the CURSORHOTSPOT
field is the "hot spot" of the cursor, a position in the bitmap
interpreted as the point that the cursor is pointing to. CURSOR
objects can be saved on a file using the file package command
CURSORS,orthe UGLYVARS file package command.

(CURSORCREATE BITMAP X y) [Function]

(CURSOR NEWCURSOR-)

Returns a cursor object which has BITMAP as its image and the
location (X, Y) as the hotspot. If X is a POSITION, it is used as the
hot spot. If BITMAP has dimensions different from
CURSORWIDTH by CURSORHEIGHT, the lesser of the widths and
~he lesser of the heights are used to determine the bits that
actually get copied into the lower left corner of the cursor. If X is
NIL, 0 is used. If Y is NIL, CURSORHEIGHT-l is used. The default
cursor is an uparrow with its tip in the upper left corner and its
hot spot at (O,CURSORHEIGHT-l).

[Function]

Returns a CURSOR record instance that contains (a copy of) the
current cursor specification. If NEWCURSOR is a CURSOR record
instance, the cursor will be set to the values in NEWCURSOR. If
NEWCURSOR is T, the cursor will be set to the default cursor

DEFAULTCURSOR, an upward left pointing arrow: ~.

(SETCURSOR NEWCURSOR-) [Function]

(FLlPCU RSOR)

If NEWCURSOR is a CURSOR record instance, the cursor will be
set to the values in NEWCURSOR. This does not return the old
cursor, and therefore, provides a way of changing the cursor
without using storage.

[Function]

Inverts the cursor.

TERMINAL INPUT/OUTPUT

TERMINAL INPUT/OUTPUT

S·I::'
our

CURSOR AND MOUSE

The following list describes the cursors used by the Interlisp-D
system. Most of them are stored as the values of various
variables.

In variable DEFAUL TCURSOR. This is the default cursor.

In variable WAITINGCURSOR. Represents an hourglass. Used
during long computations.

In variable MOUSECONFIRMCURSOR. Indicates that the system is
waiting for the user to confirm an action by pressing the left
mouse button, or aborting the action by pressing any other
button. Used by the function MOUSECONFIRM (page 28.1 1).

In variable SYSOUTCURSOR. Indicates that the system is saving
the virtual memory in a sysout file. See SYSOUT, page 12.8.

SAl).
It~G In variable SAVINGCURSOR. Indicates that SAVEVM has been

called automatically to save the virtual memory state after the
system is idle for long enough. See SAVEVMWAIT, page 12.7.

ED In variable CROSSHAIRS. Used by GETPOSITION (page 28.9) to
indicate a position.

o In variable BOXCURSOR. Used by GETBOXPOSITION (page 28.9)
to indicate where to place the corner of a box.

In variable FORCEPS. Used by GETREGION (page 28.10) when
the user switches corners.

I\~ In variable EXPANDINGBOX. Used by GETREGION (page 28.10)
when a box is first displayed.

, In variable UpperRightCursor .

....I In variable LowerRightCursor.

r In variable UpperLeftCursor.

L In variable LowerLeftCursor.

t
t
+

The previous four cursors are used by GETREGION (page 28.10) to
indicate the four corners of a region.

In variable VertThumbCursor. Used during scrolling to indicate
thumbing in a vertical scroll bar.

In variable VertScrollCursor.

In variable ScrollUpCursor.

In variable ScrollDownCursor.

The previous four cursors are used by SCROLl.HANDLER (page
28.24) during vertical scrolli ng.

30.15

CURSOR AND MOUSE

1111111 In variable HorizThumbCursor. Used during scrolling to indicate
thumbing in a horizontal scroll bar.

++ In variable HorizScroliCursor.

... In variable ScrollLeftCursor.

... In variable ScroliRightCursor.

The previous four cursors are used by SCROLL.HANDLE:R (page
28.24) during horizontal scrolling.

TeLE
RtU[I, .f- 0, .f- N, CMD

CA
R;:.bl, Brk., N~T These cursors are used by the Teleraid low-level debugger. These

cursors are not accessable as standard Interlisp-D cursors.

30.4.2 Flashing Bars on the Cursor

30.16

Inverted cursor: ~

.. -
Upper middle bar: '\

Lowereler middle bar: .. ,

Bottom bar: ~_

The low-level Interlisp-D system uses the cursor to display certain
system status information, such as garbage collection or
swapping. This is done because changing the cursor-image is
very quick, and does not require interacting with the window
system. Interlisp inverts horizontal bars on the cursor when the
system is swapping pages, or doing certain stack operations.
Normally, these bars are only inverted for a very short time, so
they look like they are flashing. These cursor changes are
interpreted as follows:

Whatever image is being displayed as the cursor, whenever
Interlisp does a garbage collection, the whole cursor is inverted.

Swap read. On when Interlisp is swapping in a page from the
virtual memory file into the real memory. It is also on when
Interlisp allocates a new virtual memory page, even though that
doesn't involve a disk read. If this is flashing a lot, the system is
doing a lot of swapping. This is an indication that the virtual
memory working set is fragmented (see page 22.1). Performance
may be improved by reloading a clean Interlisp system .

Stack operations. If this is flashing a lot, it sugqests that some
process is neglecting to release stack pointers in a timely fashion
(see page 11.9).

Stack operations. On when Interlisp is moving frames on the
stack. If the system is slow, and this is flashing a lot, HARDRESET
(page 23.1) sometimes helps.

Swap write. On when Interlisp writes a dirty virtual memory
page from the real memory back into the virtual memory file.

TERMINAllNPUT/QUTPUT

30.4.3 Cursor Position

CURSOR AND MOUSE

The position at which the cursor bitmap is being displayed can be
read or set using the following functions:

(CURSORPOSITION NEWPOSITION DISPLA YSTREAM OLDPOSITlON) [Function]

Returns the location of the cursor in the coordinate system of
DISPLA YSTREAM (or the current display stream, if
DISPLA YSTREAM is NIL). If NEWPOSITION is non-NIL, it should be
a position and the cursor will be positioned at NEWPOSITION. If
NEWPOSITION is NIL, the current position is simple returned.

Note: The current position of the cursor is the position of the
"hot spot" of the cursor, not the position of the cursor bitmap.

If OLDPOSITION is a POSITION object, this object will be changed
to point to the location of the cursor and returned, rather of
allocating a new POSITION. This can improve performance if
CURSORPOSITION is called repeatedly to track the cursor.

Note: To get the location of the cursor in absolute screen
coordinates, use the variables LASTMOUSEX and LASTMOUSEY
(page 30.18).

(ADJUSTCURSORPOSITION DEL TAX DELTA y) [Function]

30.4.4 Mouse Button Testing

Moves the cursor DELTAX points in the X direction and DELTAY

points in the Y direction. DEL TAX and DELTA Y default to O.

There are two or three keys on the mouse. These keys (also
called buttons) are referred to by their location: LEFT, MIDDLE,
or RIGHT. The following macros are provided to test the state of
the mouse buttons:

(MOUSESTA TE BUTTONFORM) [Macro]

TERMI NAL INPUT/OUTPUT

Reads the state of the mouse buttons, and returns T if that state
is described by BUTTONFORM. BUTTONFORM can be one of the
key indicators LEFT, MIDDLE, or RIGHT; the atom UP (indicating
all keys are up); the form (ONLY KEy); or a form of AND, OR, or
NOT applied to any valid button form .

•
For example: (MOUSESTATE LEFT) will be true if the left mouse
button is down. (MOUSESTATE (ONLY LEFT» will be true if the
left mouse button is the only one down. (MOUSESTATE (OR
(NOT LEFT) MIDDLE» will be true if either the left mouse button
is up or the middle mouse button is down.

30.17

CURSOR AND MOUSE

(LASTMOUSESTATE BUTTONFORM) [Macro]

Similar to MOUSESTATE, but tests the value of
LASTMOUSEBUTIONS (below) rather than getting the current
state. This is useful for determining which keys caused
MOUSESTATE to be true.

(UNTILMOUSESTATE BUTTONFORM INTERVAL) [Macro]

BUTTONFORM is as described in MOUSESTATE. Waits until
BUTTONFORM is true or until INTERVAL milliseconds have
elapsed. The value of UNTILMOUSESTATE is T if BUTTONFORM

was satisfied before it timed out, otherwise NIl. If INTERVAL is
NIL, it waits indefinitely. This compiles into an open loop that
calls the TIV wait background function. This form should not be
used inside the TIV wait background function.
UNTILMOUSESTATE does not use any storage during its wait
loop.

30.4.5 Low Level Mouse Functions

30.18

This section describes the functions and variables that provide
low level access tothe mouse and cursor.

(LASTMOUSEX DISPLA YSTREAM) [Function]

Returns the value of the cursor's X position in the coordinates of
DISPLAYSTREAM (as of the last call to GETMOUSESTATE, below).

(LASTMOUSEV DISPLA YSTREAM) [Function]

LASTMOUSEX

LASTMOUSEY

LASTMOUSEBUTIONS

Returns the value of the cursor's Y position in the coordinates of
DISPLA YSTREAM (as of the last call to GETMOUSESTATE, below).

[Variable]

Value is the X position of the cursor in absolute screen
coordinates (as of the last call to GETMOUSESTATE, below).

[Variable]

Value is the Y position of the cursor in absolute screen
coordinates (as of the last call to GETMOUSESTATE, below).

[Variable]

Value is an integer that has bits on corresponding to the mouse
buttons that are down (as of the last call to GETMOUSESTATE,

below). Bit 4Q is the left mouse button, 2Q is the right button,
1Q is the middle button.

TERMINAL INPUT/OUTPUT

LASTKEYBOARD

(GETMOUSESTATE)

CURSOR AND MOUSE

[Variable]

Value is an integer encoding the state of certain keys on the
keyboard (as of the last call to GETMOUSESTATE, below). Bit
200Q = lock, 100Q = left shift, 40Q = ctrl, 10Q = right shift, 4Q
= blank Bottom, 2Q = blank Middle, 1 Q = blank Top. If the key
is down, the corresponding bit is on.

[Function]

Reads the current state of the mouse and sets the variables
LASTMOUSEX, LASTMOUSEY, and LASTMOUSEBUTTONS. In
polling mode, the program must remember the previous state
and look for changes, such as a key going up or down, or the
cursor moving outside a region of interest.

(DECODEBUTTONS BUTTONSTA TE) [Function]

30.5 Keyboard Interpretation

(KEYDOWNP KEYNAME)

TERMINAL INPUT/OUTPUT

Space

Carriage return

Returns a list of the mouse buttons that are down in the state
BUTTONSTATE. If BUTTONSTATE is not a smalrinteger, the value
of LASTMOUSEBUTTONS (above) is used. The button names that
can be returned are: LEFT, MIDDLE, RIGHT (the three mouse
keys).

For each key on the keyboard and mouse there is a
corresponding bit in memory that the hardware turns on and off
as the key moves up and down. System-level routines decode the
meaning of key transitions according to a table of "key actions ",
which may be to put particular character codes in the sysbuffer,
cause interrupts, change the internal shifticontrol status, or
create events to be placed in the mouse buffer.

[Function]

Used to read the instantaneous state of any key, independent of
any buffering or pre-assigned key action. Returns T if the key
named KEYNAME is down at the moment the function is
executed.

Most keys are named by the characters on the key-top.
Therefore, (KEYDOWNP ta) or (KEYDOWNP tA) returns T if the
"A" key is down.

There are a number of keys that do not have standard names
printed on them. These can be accessed by special names as
follows:

SPACE

CR

30.19

KEYBOARD INTERPRETATION

30.20

Line-feed LF

Backspace BS

Tab TAB

Blank keys on 1132 The 1132 keyboard has three unmarked keys on the right of the
normal keyboard. These can be accessed by BLANK-BOTTOM,
BLANK-MIDDLE, and BLANK-TOP.

Escape ESCAPE

Shift keys LSHIFT for the left shift key, RSHIFT for the right shift key.

Shift lock key LOCK

Control key CTRL

Mouse buttons The state of the mouse buttons can be accessed using LEFT,
MIDDLE, and RIGHT.

(SHIFTDOWNP SHim [Function]

Returns T if the internal "shift" flag specified by SHIFT is on; NIL
otherwise.

If SHIFT = 1SHIFT, 2SHIFT, LOCK, META, or CTRL, SHIFTDOWNP
returns the state of the left shift, right shift, shift lock, control,
and meta flags, respectively.

If SHIFT = SHIFT, SHIFTDOWNP returns T if either the left or right
shift flag is on. .

If SHIFT = USERMODE1, USERMODE2, or USERMODE3,
SHIFTDOWNP returns the state of one of three user-settable
flags that have no other effect on key interpretation. These flags
can be set or cleared on character transitions by usi ng
KEVACTION (below).

(KEVACTION KEYNAME ACTIONS-) [Function]

NIL
IGNORE

(CHAR SHIFTEDCHAR LOCKFLAG)

Changes the internal tables that define the action to be taken
when a key transition is detected by the system keyboard
handler. KEYNAME is specified as for KEYDOWNP. ACTIONS is a
dotted pair of the form (DOWN-ACTION. UP-ACTION), where
the acceptable transition actions and their interpretations are:

Take no action on this transition (the default for up-transitions
on all ordinary characters).

If a transition action is a three-element list, CHAR and
SHIFTEDCHAR are either character codes or (non-numeric)
single-character litatoms standing for their character codes.
Note that CHAR and SHIFTEDCHAR can be full sixteen-bit NS
characters (see page 2.12). When the transition occurs, CHAR or
SHIFTEDCHAR is transmitted to the system buffer, depending on
whether either of the two shift keys are down.

TERMINAL INPUT/OUTPUT

1SHIFTUP,1SHIFTDOWN
2SHIFTUP,2SHIFTDOWN

CTRLUP, CTRLDOWN
METAUP, METADOWN

KEYBOARD INTERPRETA TION

LOCKFLAG is optional, and may be LOCKSHIFT or NOLOCKSHIFT.
If LOCKFLAG is LOCKSHIFT, then SHIFTEDCHAR will also be
transmitted when the LOCK shift is down (the alphabetic keys
initially specify LOCKSHIFT, but the digit keys specify
NOLOCKSHIFT). For example, (a A LOCKSHIFT) and (61 Q !

NOLOCKSHIFT) are the initial settings for the down transitions of
the "a" and "1" keys respectively.

Change the status of the internal "shift" flags for the left shift,
right shift, control, and meta keys, respectively. These shifts
affect the interpretation of ordinary key actions. If either of the
shifts is down, then SHIFTEDCHARs are transmitted. If the
control flag is on, then the the seventh bit of the character code
is cleared as characters are transmitted. If the meta flag is on, the
the eighth bit of the character code is set (normally cleared) as
characters are transmitted. For example, the initial keyactions
for the left shift key is (1SHIFTDOWN. 1SHIFTUP).

LOCKUP, LOCKDOWN, LOCKTOGGLE Change the status of the internal "shift" flags for the shift lock
key. If the lock flag is down, then SHIFTEDCHARs are transmitted
if the key action specified LOCKSHIFT. LOCKUP and LOCKDOWN
clear and set the shift lock flag, respectively. LOCKTOGGLE
complements the flag (turning it off if the flag is on; on if the
flag is off).

USERMODE1UP, USERMODE1DOWN, USERMODE1TOGGLE
USERMODE2UP, USERMODE2DOWN, USERMODE2TOGGLE
USERMODE3UP, USERMODE3DOWN, USERMODE3TOGGLE

Change the status of the three user flags USERMODE1,
USERMODE2, and USERMODE3, whose status can be determined
by calling SHIFTDOWNP (above). These flags have no other
effect on key interpretation.

EVENT An encoding of the current state of the mouse and selected keys
is placed in the mouse-event buffer when this transition is
detected.

KEY ACTION returns the previous setting for KEYNAME. If
ACTIONS is NIL, returns the previous setting without changing
the tables.

(MODIFY.KEYACTIONS KEYACTIONS SA VECURRENT?) [Function]

TERMINAL INPUT/OUTPUT

KEYACTIONS is a list of key actions to be set, each of the form
(KEYNAME. ACTIONS). The effect of MODIFY.KEYACTIONS is as
if (KEYACTION KEYNAME ACTIONS) were performed for each
item on KEYACTIONS.

If SAVECURRENT? is non-NIL, then MODIFY.KEYACTIONS returns
a list of all the results from KEY ACTION, otherwise it returns NIL.

30.21

KEYBOARD INTERPRETATION

(METASHIFT FLG)

30.6 Display Screen

(SCREEN BITMAP)

SCREENWIDTH

SCREENHEIGHT

WHOLEDISPLAY

This can be used with a MODIFY.KEYACTIONS that appears ina
RESETFORM, so that the list is built at "entry", but not upon
"exit" .

[NoSpread Function]

If FLG is T, changes the keyboard handler (via KEYACTION) so as
to interpret the "stop" key on the 1108 as a metashift: if a key is
struck while the meta is down, it is read with the 200Q bit set.
For CHAT users this is a way of getting an "Edit" key on your
simulated Datamedia.

If FLG is other than NIL or T, it is passed as the ACTIONS argument
to KEYACTION. The reason for this is that if someone has set the
"STOP" key to some random behavior, then (RESETFORM
(METASHIFT T) ._) will correctly restore that random behavior.

Interlisp-D supports a high-resolution bitmap display screen. All
printing and drawing operations to the screen are actually
performed on a bitmap in memory, which is read by the
computer hardware to become visible as the screen. This section
describes the functions used to control the appearance of the
display screen.

[Function]

Returns the screen bitmap.

[Variable]

[Variable]

Value is the width and height of the screen bitmap, respectively.

[Variable]

Value is a region that is the size of the screen bitmap.

The background shade of the display window can be changed
using the following function:

(CHANGEBACKGROUND SHADE-) [Function]

30.22

Changes the background shade of the window system. SHADE
determines the pattern of the background. If SHADE is a texture,
then the background is simply painted with it. If SHADE is a
BITMAP, the background is tesselated (tiled) with it to cover the

TERMINAL INPUT/OUTPUT

DISPLAY SCREEN

screen. If SHADE is T, it changes to the original shade, the value
of WINDOWBACKGROUNDSHADE. It returns the previous value
of the background.

(CHANGEBACKGROUNDBORDER SHADE-) [Function]

On the Xerox 1108, changes the shade of the border of the
display to SHADE, which should be a texture. It returns the
previous texture of the background border.
CHANGEBACKGROUNDBORDER is a no-op on the Xerox 1132.

WINDOWBACKGROUNDSHADE [Variable]

Value is the default background shade for the display.

(VIDEOCOLOR BLACKFLG) [NoSpread Function]

Sets the interpretation of the bits in the screen bitmap. If
BLACKFLG is NIL, a 0 bit will be displayed as white, otherwise a 0
bit will be displayed as black. VIDEOCOLOR returns the previous
setting. If BLACKFLG is not given, VIDEOCOLOR will return the
current setting without changing anything.

Note: This function only works on the Xerox 1100 and Xerox
1108.

(VIDEORATE TYPE) [Function]

Sets the rate at which the screen is refreshed. TYPE is one of
NORMAL or TAPE. If TYPE is TAPE, the screen wi II be refreshed at
the same rate as TV (60 cycles per second). This makes the picture
look better when video taping the screen. Note: Changing the
rate may change the dimensions of the display on the picture
tube.

Maintaining the video image on the screen uses cpu cycles, so
turning off the display can improve the speed of compute-bound
tasks. When the display is off, the screen will be white but any
printing or displaying that the program does will be visible when
the display is turned back on. Note: Breaks and PAG6FULLFN
waiting (page 28.30) turn the display on, but users should be
aware that it is possible to have the system waiting for a
response to a question printed or a menu displayed on a
non-visible part of the screen. The functions below are provided
to turn the display off.

Note: These functions have no effect on the Xerox 1108 display.

(SETDISPLA YHEIGHT NSCANLINES) (Function]

TERMINAL INPUT/OUTPUT

Sets the display to only show the top NSCANLINES of the screen.
If NSCANLINES is T, resets the display to show the full screen.
Returns the previous setting.

30.23

DISPLA Y SCREEN

(DISPLA VDOWN FORM NSCANLINES) [Function]

Evaluates FORM (with the display set to only show the top
NSCANLINES of the screen), and returns the value of FORM. It
restores the screen to its previous setting. If NSCANLINES is not
given, it defaults to O.

30.7 Misc'ellaneous Terminal 1/0

30.24

(RINGBELLS N) [Function]

Flashes (reverse-videos) the screen N times (default 1). On the
Xerox 1108, this also beeps through the keyboard speaker.

(PLAVTUNE FrequencyIDuration.pair/ist) [Function]

(BEEPON FREQ)

(BEEPOFF)

(SETMAINTPANEL N)

On the Xerox 1108, PLA VTUNE plays a sequence of notes
through the keyboard speaker. FrequencyIDuration.pair/ist
should be a list of dotted pairs (FREQUENCY . DURA T/ON).

PLA VTUNE maps down its argument, beeping the 1108 keyboard
buzzer at each frequency for the specified amount of time.
Specifying NIL for a frequency means to turn the beeper off the
specified amount of time. The units of time are TICKS (page
12.16), which last about 28.78 microseconds on the Xerox 1108.
PLA VTUNE makes no sound on a Xerox 1132. The default
"simulate" entry for control-G (ASCII BEL) on the 1108 uses
PLA VTUNE to make a short beep.

PLA VTUNE is implemented using BEEPON and BEEPOFF:

[Function]

On the Xerox 1108, turns on the keyboard speaker playi ng a note
with frequency FREQ, measured in TICKS (page 12.16). The
speaker will continue to play the note until BEEPOFF is called.

[Function]

Turns off the keyboard speaker on the Xerox 1108.

[Function]

On the Xerox 1108, this sets the four-digit" maintanance panel"
display on the front of the com puter to display the num ber N.

TERMINAL INPUT/OUTPUT

TABLE OF-CONTENTS

31. Ethernet 31.1

31.1. Ethernet Protocols 31.1

31.1.1. Protocol Layering 31.1

31.1.2. Level Zero Protocols 31.2

31.1.3. Level One Protocols 31.3

31.1.4. Higher Level Protocols 31.4

31.1.5. Connecti ng Networks: Routers and Gateways 31.4

31.1.6. Addressing Conflicts with Level Zero Mediums 31.5

31.1.7. References 31.5

31.2. Higher-level PUP Protocol Functions 31.6

31.3. Higher-level NS Protocol Functions 31.7

31.3.1. Name and Address Conventions 31.7

31.3.2. Clearinghouse Functions 31.9

31.3.3. NS Printing 31.12

31.3.4. SPP Stream Interface 31.12

31.3.5. Courier Remote Procedure Call Protocol 31.15

31.3.5.1. Defining Courier Programs 31.15

31.3.5.2. Courier Type Definitions 31.17

31.3.5.2.1. Pre-defined Types 31.17

31.3.5.2.2. Constructed Types 31.18

31.3.5.2.3. User Extensions to the Type Language 31.19

31.3.5.3. Performi ng Couri er Transactions 31.20

31.3.5.3.1. Expedited Procedure Call 31.22

31.3.5.3.2. Expanding Ring Broadcast 31.23

31.3.5.3.3. Using Bulk Data Transfer 31.24

31.3.5.3.4. Courier Subfunctions for Data Transfer 31.25

31.4. Level One Ether Packet Format 31.26

31.5. PUP Level One Functions 31.28

31.5.1. Creating and Managing Pups 31.28

TABLE OF CONTENTS TOC.1

TABLE OF CONTENTS

31.5.2. Sockets 31.28

31.5.3. Sending and Receiving Pups 31.29

31.5.4. Pup Routing Information 31.30

31.5.5. Miscellaneous PUP Utilities 31.31

31.5.6. PUP Debugging Aids 31.32

31.6. NS Level One Functions 31.36

31.6.1. Creating and Managing XIPs 31.36

31.6.2. NS Sockets 31.37

31.6.3. Sending and Receiving XIPs 31.37

31.6.4. NS Debugging Aids 31.38

31.7. Support for Other Level One Protocol s 31.38

31.S. The SYSQUEUE mechanism 31.41

TOC.2 TABLE OF CONTENTS

31.1 Ethernet Protocols

31.1.1 Protocol Layering

ETHERNET

31. ETHERNET

Interlisp was first developed on large timesharing machines
which provided each user with access to large amounts of disk
storage, printers, mail systems, etc. Interlisp·D, however, was
designed to run on smaller, single·user machines without these
facilities. In order to provide Interlisp·D users with access to all of
these services, Interlisp·D supports the Ethernet communications
network, which allows multiple Interlisp·D machines to share
common printers, file servers, etc.

Interlisp-D supports the Experimental Ethernet (3 Megabits per
second) and the Ethernet (10 Megabits per second) local
communications networks. These networks may be used for
accessing file servers, remote printers, mail servers, or other
machines. This chapter is divided into three sections: First, an
overview of the various Ethernet and Experimental Ethernet
protocols is presented. Then follow sections documenting the
functions used for implementing PUP and NS protocols at various
levels.

The members of the Xerox 1100 family (1108, 1132), Xerox file
servers and laser xerographic printers, along with machines
made by other manufacturers (most notably DEC) have the
capability of communicating over 3 Megabit per second­
Experimental Ethernets, 10 Megabit per second Ethernets and
telephone lines.

Xerox pioneered its work w.ith Ethernet using a set of protocols
known as PARC Universal Packet (PUP) computer communicatio-n
protocols. The architecture has evolved into the newer Network
Systems (NS) protocols developed for use in Xerox office
products. All of the members of the Xerox 1100 family can use
both NS and PUP protocols.

The communication protocols used by the members of the Xerox
1100 family are implemented in a "layered" fashion, which
means that different levels of communication are implemented

31.1

ETHERNET PROTOCOLS

31.1.2 Level Zero Protocols

312

as different protocol layers. Protocol Layeri ng allows
implementations of specific layers to be changed without
requiring changes to any other layers. The layering also allows
use of the same higher level software with different lower levels
of protocols. Protocol designers can implement new types of
protocols at the correct protocol level for their specific
application in a layered system.

At the bottom level, level zero, there is a need to physically
transmit data from one point to another. This level is highly
dependent on the particular transmission medium involved.
There are many different level zero protocols, and some of them
may contain several internal levels. At level one, there is a need
to decide where the data should go. This level is concerned with
how to address a source and destination, and how to choose the
correct transmission medium to use in order to route the packet
towards its destination. A level one packet is transmitted by
encapsulating it in the level zero packet appropriate for the
transmission medium selected. For each independent
communication protocol system, a single level one protocol is
defined. The rule for delivery of a level one packet is that the
communication system must only make a best effort to deliver
the packet. There is no guarantee that the packet is delivered,
that the packet is not duplicated and delivered twice, or that the
packets will be delivered in the same order as they were sent.

The addresses used in level zero and level one packets are not
necessarily the same. Level zero packets are specific to a
particular transmission medium. For example, the destination
address of a level zero packet transmitted on one of the two
kinds of Ethernet is the Ethernet address (host number) of a
machine on the particular network. Level one packets specify
addresses meaningful to the particular class of protocols being
implemented. For the PUP and NS protocols, the destination
address comprises a network number, host number (not
necessarily the same as the level zero host number), and a socket
number. The socket number is a higher-level protocol concept,
used to multiplex packets arriving at a single machine destined
for separate logical processes on the machine.

Protocols in level two add order and reliability to the level one
facilities. They suppress duplicate packets, and are responsible
for retransmission of packets for which acknowledgement has
not been received. The protocol layers above level two add
conventions for data structuring, and implement application
specific protocols.

Level zero protocols are used to physically connect computers.
The addresses used in level zero protocols are protocol specific.

ETHERNET

31.1.3 Level One Protocols

ETHERNET

ETHERNET PROTOCOLS

The Ethernet and Experimental Ethernet level zero protocols use
host numbers, but level zero phone line protocols contain less
addressing information since there are only two hosts connected
to the telephone line, one at each end. As noted above, a level
zero protocol does not include network numbers.

The 3MB Experimental Ethernet [1] was developed at PARe.
Each Experimental Ethernet packet includes a source and
destination host address of eight bits. The Experimental
Ethernet standard is used by any machine attached to an
Experimental Ethernet.

The 10MB Ethernet [2] was jointly developed and standardized
by Digital, Intel, and Xerox. Each Ethernet level zero packet
includes a source and destination host address that is 48 bits
long. The Ethernet standard is used by any machine attached to
an Ethernet.

Both of the level one protocols described later (PUP and NS) can
be transported on any of the level zero protocols described
above.

The Ethernet and Experimental Ethernet protocols are broadcast
mediums. Data packets can be sent on these networks to every
host attached to the net. A packet directed at every host on a
network is a broadcast packet.

Other Level 0 protocols in use in industry include X.25,
broadband networks, and Chaosnet. In addition, by using the
notion of "mutual encapsulation", it is possible to treat a
higher-level protocol (e.g. ARPANET) as if it were a Level Zero
Protocol.

Two Level One Protocols are used in the Xerox 1100 Family, the
PUP and the NS protocols. With the proper software, computers
attached to Ethernets or Experimental Ethernets can send PUPs
and NS packets to other computers on the same network, and to
computers attached to other Ethernets or Experimental
Ethernets.

The PUP protocols [3] were designed by Xerox computer
scientists at the Palo Alto Research Center. The destination and
source addresses in a PUP packet are specified using an 8-bit
network number, an 8-bit host number, and a 32-bit socket
number. The 8-bit network number allows an absolute
maximum of 256 PUP networks in an internet. The 8-bit host
number is network relative. That is, there may be many host
number "1"s, but only one per network. 8 bits for the host
number limits the number of hosts per network to 256. The

31.3

ETHERNET PROTOCOLS

31.1.4 Higher Level Protocols

socket number is used for further levels of addressing within a
specific machine ..

The Network Systems (NS) protocols [4, 5] were developed by the
Xerox Office Products Division. Each NS packet address includes
a 32-bit network number, a 48-bit host number, and a 16-bit
socket number. The NS host and network numbers are unique
through all space and time. A specific NS host number is
generally assigned to a machine when it is manufactured, and is
never changed. In the same fashion, all networks (including
those sold by Xerox and those used within Xerox) use the same
network numbering space---there is only one network "74".

The higher level PUP protocols include the File Transfer Protocol
(FTP) and the leaf Protocol used to send and retrieve files from
Interim File Servers (IFSs) and DEC File Servers, the Telnet
protocol implemented by "Chat" windows and servers, and the
EFTP protocol used to communicate with the laser xerographic
printers developed by PARC (" Dovers" and" Pengu ins").

The higher level NS protocols include the Filing Protocol which
allows workstations to access the product File Services sold by
Xerox, the Clearinghouse Protocol used to access product
Clearinghouse Services, and the TelePress Protocol used to
communicate with the Xerox model 8044 Print Server.

31.1.5 Connecting Networks: Routers and Gateways

314

When a level one packet is sent from one machine to another,
and the two machines are not on the same network, the packet
must be passed between networks. Computers that are
connected to two or more level zero mediums are used for this
function. In the PUP world, these machines have been
historically called "Gateways." In the NS world these machines
are called Internetwork Routers (Routers), and the function is
packaged and sold by Xerox as the Internetwork Routing Service
(IRS).

Every host that uses the PUP protocols requires a PUP address;
NS Hosts require NS addresses. An address consists of two parts:
the host number and the network number. A computer learns its
network number by communicating with a Router or Gateway
that is attached to the same network. Host number
determination is dependent on the hardware and the type of
host number, PUP or NS.

ETHERNET

ETHERNET PROTOCOLS

Note that there is absolutely no relationship between a host's NS
host and net numbers and the same host's PUP host and net
numbers.

31.1.6 Addressing Conflicts with Level Zero Mediums

31.1.7 References

[1]

[2]

[3]

[4]

[51

ETHERNET

For convenience in the respective protocols, a level one PUP
(8-bit) host number is the same as a level zero Experimental
Ethernet host number; i.e., when a PUP level one packet is
transported by a n Experimental Ethernet to another host on the
same network, the level zero packet specifies the same host
number as the level one packet. Similarly, a level one NS (48-bit)
host number is the same as a level zero Ethernet host number.

When a PUP level one packet is transported by an Ethernet, or an
NS level one packet is sent on Experimental Ethernet, the level
one host number cannot be used as the level zero address, but
rather some means must be provided to determine the correct
level zero address. Xerox solved this problem by specifying
another level-one protocol called translation to allow hosts on
an Experimental Ethernet to announce their NS host numbers, or
hosts on an Ethernet to announce their PUP host numbers. Thus,
both the Ethernet and Experimental Ethernet Level Zero
Protocols totally support both families of higher level protocols.

Robert M. Metcalfe and David R. Boggs, Ethernet: Distributed
Packet Switching for Local Computer Networks, Communications
of the ACM, vol. 19 no. 7, July 1976.

Digital Equipment Corporation, Intel Corporation, Xerox
Corporation. The Ethernet, A Local Area Network: Data Link
Layer and Physical Layer Specifications. September 30, 1980,
Version 1.0

D. R. Boggs, J. F. Shoch, E. A. Taft, and R. M. Metcalfe, PUP: An
Internetwork Architecture, IEEE Transactions on
Communications, com-28: 4, April 1980.

Xerox Corporation. Courier: The Remote Procedure Call
Protocol. Xerox System Integration Standard. Stamford,
Connecticut, December, 1981, XSIS 038112.

Xerox Corporation. Internet Transport Protocols. Xerox System
Integration Standard. Stamford, Connecticut, December, 1981,
XSIS 028112.

31.5

HIGHER-LEVEL PUP PROTOCOL FUNCTIONS

31.2 Higher-level PUP Protocol Functions

31.6

This section describes some of the functions provided in
Interlisp-D to perform protocols above Level One. Level One
functions are described in a later section, for the benefit of those
users who wish to program new protocols.

(ETHERHOSTNUMBER NAME) [Function]

Returns the number of the named host. The number is 16-bit
quantity, the high 8 bits designating the net and the low 8 bits
the host. If NAME is NIL, returns the number of the local host.

(ETHERPORT NAME ERRORFLG MUL TFLG) [Function]

Returns a port corresponding to NAME. A "port" is a network
?ddress that represents (potentially) one end of a network
connection, and includes a socket number in addition to the
network and host numbers. Most network functions that take a
port as argument allow the socket to be zero, in which case a
well-known socket is supplied. A port is currently represented as
a dotted pair (NETHOST. SOCKEn.

NAME may be a litatom, in which case its address is looked up, or
a port, which is just returned directly. If ERRORFLG is true,
generates an error "host not found" if the address lookup fails,
else it returns NIl. If MULTFLG is true, returns a list of alternative
port specifications for NAME, rather than a single port (this is
provided because it is possible for a single name in the name
database to have multiple addresses). If MUL TFLG is NIL and
NAME has more than one address, the currently nearest one is
returned. ETHERPORT caches its results.

The SOCKET of a port is usually zero, unless the name explicitly
contains a socket designation, a number or symbolic name
following a + in NAME, e.g., PHYLUM + LEAF. A port can also be
specified in the form "NET#HOST#SOCKEr', where each of NET,

HOST and SOCKET is a sequence of octal digits; the socket, but
not the terminating #, can be omitted, in which case the socket
is zero.

(ETHERHOSTNAME PORT USE. OCTAL. DEFAUL n [Function]

Looks up the name of the host at address PORT. PORT may be a
numeric address, a (NETHOST . SOCKEn pair returned from
ETHERPORT, or a numeric designation in string form,
"NET#HOST#SOCKEr', as described above. In the first case, the
net defaults to the local net. If PORT is NIL, returns the name of
the local host. If there is no name for the given port, but
USE.OCTAL.DEFAULT is true, the function returns a string
specifying the port in octal digits, in the form
II NET#HOST#SOCKEr', with SOCKET omitted if it is zero. Most

ETHERNET

HIGHER-LEVEL PUP PROTOCOL FUNCTIONS

functions that take a port argument will also accept ports in this
octal format.

(EFTP HOST FILE PRINTOPTIONS) [Function]

#COPIES

#SIDES

DOCUMENT.CREATION.DATE

DOCUMENT.NAME

Transmits FILE to HOST using the EFTP protocol. The FILE need
not be open on entry, but in any case is closed on exit. EFTP
returns only on success; if HOST does not respond, it keeps
trying.

The principal use of the EFTP protocol is for transmitting Press
files to a printer. If PRINTOPTIONS is non-Nil, EFTP assumes that
HOST is a printer and FILE is a Press file, and takes additional
action: it calls PRINTERSTATUS (page 29.4) for HOST and prints
this information to the prompt window; and it fills in the
"printed-by" field on the last page of the press fi Ie with the
value of USERNAME (page 24.40). Also, PRINTOPTIONS is
interpreted as a list in property list format that controls details of
the printing. Possible properties are as follows:

Value is the number copies of the file to print. Default is one.

If the value is 2, select two-sided printing (if the printer can print
two-sided copies).

Value is the document creation date to appear on the header
page (an integer date as returned by IDATE).

Value is the document name to appear on the header page (as a
string). Default is the full name of the file.

31.3 Higher-level NS Protocol Functions

The following is a description of the Interlisp-D facilities for using
Xerox SPP and Courier protocols and the services based on them.
The sections on naming conventions, Printing, and Filing are of
general interest to users of Network Systems servers. The
remaining sections describe interfaces of interest to those who
wish to program other applications on top of either Courier or
SPP.

31.3.1 Name and Address Conventions

ETHERNET

Addresses of hosts in the NS world consist of three parts, a
network number, a machine number, and a socket number.
These three parts are embodied in the Interlisp-D data type
NSADDRESS. Objects of type NSADDRESS print as
"net#h1.h2.h3#socket", where all the numbers are printed in
octal radix, and the 48-bit host number is broken into three

31.7

HIGHER·LEVEL NS PROTOCOL FUNCTIONS

31.8

16-bit fields. Most functions that accept an address argument
will accept either an NSADDRESS object or a string that is the
printed representation of the address.

Higher-level functions accept host arguments in the form of a
symbolic name for the host. The NS world has a hierarchical
name space. Each object name is in three parts: the
Organization, the Domain, and the Object parts. There can be
many domains in a single organization, and many objects in a
single domain. The name space is maintained by the
Clearinghouse, a distributed network database service.

A Clearinghouse name is standardly notated as
object: domain: organization. The parts organization or
domain: organization may be omitted if they are the default (see
below). Alphabetic case is not significant. Internally, names are
represented as objects of data type NSNAME, but most functions
accept the textual representation as well, either as a litatom or a
string. Objects of type NSNAME print as
object:domain:organization, with fields omitted when they are
equal to the default. A Domain is standardly represented as an
NSNAME in which the object part is null. If frequent use is to be
made of an NS name, it is generally preferable to convert it to an
NSNAME once, by calling PARSE.NSNAME, then passing the
resultant object to all functions desiring it.

CH.DEFAU L T.ORGANIZA TION [Variable]

CH.DEFAULT.DOMAIN

This is a string specifying the default Clearinghouse
organization.

[Variable1

This is a string specifying the default Clearinghouse domain. If it
or the variable CH.DEFAULT.ORGANIZATION is NIL, they are set
by Lisp system code (when they are needed) to be the first
domain served by the nearest Clearinghouse server.

In small organizations with just one domain, it is reasonable to
just leave these variables NIL and have the system ')et them
appropriately. In organizations with more than one domain, it is
wise to set them in the site initialization file, so as not to be
dependent on exactly which Clearinghouse servers are up at any
time.

(PARSE.NSNAME NAME #PARTS DEFAUL TDOMAIN) [Function]

When #PARTS is 3 (or Nil), parses NAME, a litatom or string, into
its three parts, returning an object of type NSNAME. If the
domain or organization is omitted, defaults are supplied, either
from DEFAUL TDOMAIN (an NSNAME whose domain and

ETHERNET

HIGHER-LEVEL NS PROTOCOL FUNCTIONS

organization fields only are used) or from the variables
CH.OEFAUL T.DOMAIN and CH.DEFAUL T.ORGANIZATION.

If #PARTS is 2, NAME is interpreted as a domain name, and an
NSNAME with null object is returned. In this case, if NAME is a
full 3-part name, the object part is stripped off.

If #PARTS is 1, NAME is interpreted as an organization name,
and a simple string is returned. In this case, if NAME is a 2- or
3-part name, the organization is extracted from it.

If NAME is already an object of type NSNAME, then it is returned
as is (if #PARTS is 3), or its domain and/or organization parts are
extracted (if #PARTS is 1 or 2).

(NSNAME.TO.STRING NSNAME FULLNAMEFLG) [Function]

Converts NSNAME, an object of type NSNAME, to its string
representation. If FULLNAMEFLG is true, the full printed name is
returned; otherwise, fie.lds that are equal to the default are
omitted.

Programmers who wish to manipulate NSAODRESS and
NSNAME objects directly should load the Library package
ETHERRECORDS.

31.3.2 Clearinghouse Functions

ETHERNET

This section descri bes functions that may be used to access
information in the Clearinghouse.

(START.CLEARINGHOUSE RESTARTFLG) [Function]

CH.NET.HINT

Performs an expanding ring broadcast in order to find the
nearest Clearinghouse server, whose address it returns. If a
Clearinghouse has already been located, this function simply
returns its address immediately, unless RESTARTFLG is true, in
which case the cache of Clearinghouse information is invalidated
and a new broadcast is performed. START.CLEARINGHOUSE is
normally performed automatically by the system the first time it
needs Clearinghouse information; however, it may be necessary
to call it explicitly (with RESTARTFLG set) if the local
Clearinghouse server goes down.

[Variable]

A number or list of numbers, giving a hint as to which network
the nearest Clearinghouse server is on. When
START.CLEARINGHOUSE looks for a Clearinghouse server, it
probes the network(s) given by CH.NET.HINT first, performing
the expanding ring broadcast only if it fails there. If the nearest
Clearinghouse server is not on the directly connected network,

31.9

HIGHER-LEVEL NS PROTOCOL FUNCTIONS

31 10

setting CH.NET.HINT to the proper network number in the loca,1
site init file (page 12.1) can speed up START.CLEARINGHOUSE
considerably.

(SHOW.CLEARINGHOUSE ENTlRE.CLEARINGHOUSE? DONT.GRAPH) [Function]

This function displays the structure of the cached Clearinghouse
information in a window. Once created, it will be redisplayed
whenever the cache is updated, until the window is closed. The
strtlcture is shown using the Library package GRAPHER.

If ENTIRE. CLEARINGHOUSE? is true, then this function probes the
Clearinghouse to discover the entire domain:organization
structure of the Internet, and graphs the result. If DONT.GRAPH

is true, the structure is not graphed, but rather the results are
returned as a nested list indicating the structure.

(LOOKUP.NS.SERVER NAME TYPE FULLFLG) [Function]

Returns the address, as an NSADDRESS, for the object. NAME.

TYPE is the property under which the address is stored, which
defaults to ADDRESS. LIST. The information is cached so that it
need not be recomputed on each call; the cache is cleared by
restarting the Clearinghouse. If FULLFLG is true, returns a list
whose first element is the canonical name of NAME and whose
tail is the address list.

The following functions perform various sorts of retrieval
operations on database entries in the Clearinghouse. Here, "The
Clearinghouse" refers to the collective service offered by all the
Clearinghouse servers on an internet; Lisp internally deals with
which actual server(s) it needs to contact to obtain the desried
information. The argument(s) describing the objects under
consideration can be strings or NSNAME's, and in most cases can
contain the wild card u*", which matches a subsequence of zero
or more characters. Wildcards are permitted only in the most
specific field of a name (e.g., in the object part of a full
three-part name). When an operation intended for a single
object is instead given a pattern, the operation is usually
performed on the first matching object in the database, which
mayor may not be interesting.

(CH.LOOKUP.OBJECT OBJECTPA ITERN) [Function]

Looks up OBJECTPAITERN in the Clearinghouse database,
returning its canonical name (as an NSNAME) if found, NIL
otherwise. If OBJECTPAITERN contains a "*", returns the first
matching name.

ETHERNET

ETHERNET

HIGHER·LEVEL NS PROTOCOL FUNCTIONS

(CH.LlST.ORGANIZATIONS ORGANIZATIONPA TTERN) [Function}

Returns a list of organization names in the Clearinghouse
database matching ORGANIZA TlONPA TTERN. The default
pattern is "*", which matches anything.

(CH.LlST.DOMAINS DOMAINPA TTERN) [Function]

Returns a list of domain names (two-part NSNAME's) in the
Clearinghouse database matching DOMAINPA TTERN. The
default pattern is "*", which matches anything in the default
organization.

(CH.LIST.OBJECTS OBJECTPA TTERN PROPERTy) (Function]

Returns a list of object names matching OBJECTPA TTERN and
having the property PROPERTY .. PROPERTY is a number or a
symbolic name for a Clearinghouse property; the latter include
USER, PRINT.SERVICE, FILE.SERVICE, MEMBERS, ADDRESS. LIST
and ALL.

For example,

(CH.LlST.OBJECTS "*:PARC:Xerox" (QUOTE USER»

returns a list of the names of users in the domain PARC: Xerox.

(CH.lIST.OBJECTS "*lisp*:PARC:Xerox" (QUOTE MEMBERS»

returns a list of all group names in PARC:Xerox containing the
substring "lisp".

(CH.lIST.AlIASES OBJECTNAMEPA TTERN) [Function]

Returns a list of all objects in the Clearinghouse database that
are aliases and match OBJECTNAMEPA TTERN.

(CH.lIST.AlIASES.OF OBJECTPA TTERN) (Function]

Returns a list of all objects in the Clearinghouse database that
are aliases of OBJECTPA TTERN.

(CH.RETRIEVE.lTEM OBJECTPA TTERN PROPERTY INTERPRETA TlON) [Function]

Retrieves the value of the PROPERTY property of
OBJECTPATTERN. Returns a list of two elements, the canonical
name of the object and the value. If INTERPRETA TlON is given, it
is a Clearinghouse type (see page 31.19) with which to interpret
the bits that come back; otherwise, the value is simply of the
form (SEQUENCE UNSPECIFIED), a list of 16-bit integers
representing the value.

(CH.RETRIEVE.MEMBERS OBJECTPA TTERN PROPERTY -) [Function]

Retrieves the members of the group OBJECTPA rTERN, as a list of
NSNAMEs. PROPERTY is the Clearinghouse Group property

31.11

HIGHER-LEVEL NS PROTOCOL FUNCTIONS

under which the members are stored; the usual property used

for this purpose is MEMBERS.

(CH.lSMEMBER GROUPNAME PROPERTY SECONDARYPROPERTY NAMt) [Function]

Tests whether NAME is a member of GROUPNAME's PROPERTY

property. This is a potentially complex operation; see the
description of procedure IsMember in the Clearinghouse
Protocol documentation for details.

31.3.3 NS Printing

This section describes the facilities that are available for printing
Interpress masters on NS Print servers.

(NSPRINT PRINTER FILE OPTIONS) [Function]

This function prints an Interpress master on PRINTER, which is a
Clearinghouse name represented as a string or NSNAME. If
PRINTER is NIL, NSPRINT uses the first print server registered in
the default domain. FILE is the name of an Interpress file to be
printed. OPTIONS is a list in property list format that controls
details of the printing (see SENO.FILE.TO.PRINTER, page 29.1).

(NSPRINTER.STATUS PRINTER) [Function]

This function returns a list describing the printer's current status;
whether it is available or busy, and what kind of paper is loaded.

(NSPRINTER.PROPERTIES PRINTER) [Function]

This function returns a list describing the printer's capabilities at
the moment; the type of paper loaded, whether it can print
two-sided, etc.

31.3.4 SPP Stream Interface

31 12

This section describes the stream interface to the Sequenced
Packet Protocol. SPP is the transport protocol for Courier, which
in turn is the transport layer for Filing and Printing.

(SPP.OPEN HOST SOCKET PROBEP NAME PROPS) [Function]

This function is used to open a bidirectional SPP stream. There
are two cases: user and server.

User: If HOSTis specified, an SPP connection is initiated to HOST,

an NSAOORESS or string representing an NS address. If the
socket part of the address is null (zero), it is defaulted to SOCKET.

If both HOST and PROBEP are specified, then the connection is

ETH ERNET

CLOSEFN

A TTENTlONFN

ERRORHANDLER

OTHERXIPHANDLER

EOM.ON.FORCEOUTPUT

SERVER.FUNCTION

ETHERNET

HIGHER-LEVEL NS PROTOCOL FUNCTIONS

probed for a response before returning the stream; NIL is
returned if HOSTdoesn't respond.

Server: If HOST is NIL, a passive connection is created which
listens for an incoming connection to local socket SOCKET.

SPP.OPEN returns the input side of the bidirectional stream; the
function SPPOUTPUTSTREAM is used to obtain the output side.
The standard stream operations BIN, READP, EOFP (on the input
side), and BOUT, FORCEOUTPUT (on the output side), are
defined on these streams, as is CLOSEF, which c~n be applied to
either stream to dose the connection.

NAME is a mnemonic name for the connection process, mainly
useful for debugging.

PROPS is an optional property list, used to set the properties that
determine the behavior of the SPP stream when certain events
occur. The following properties can be specified:

A function or list of functions called (with the stream as
argument) when an SPP connection is closed.

A function called (with the stream as argument) when an
ATTENTION packet is received on the SPP connection.

A function called (with the stream as argument) when an error
(such as end-of-stream) occurs on the SPP connection.

A function called (with the stream as argument) when a non-SPP,
non-error packet is received on the socket associated with the
SPP connection.

The value of this property should be either T or NIL (the default).
If T, then the end-of-message bit is set when the current
collection of bytes buffered for transmission is forcibly sent (e.g.
by FORCEOUTPUT, page 25.10).

This property can be used for creating SPP servers. Normally,
when a connection is opened with the HOST argument set to NIL,

a passive "listener" connection is created. SPP.OPEN will not
return until some other host attempts to connect to socket
specified in the SPP.OPEN call.

If the SERVER.FUNCTION property is specified, a new listener
(and listener process) is created. SPP.OPEN will return
immediately. Whenever another host attempts to connect to the
specified socket, a new process and unique SPP connection are
created. The function specified by the SERVER.FUNCTION

property is run in the top level of the new process. The server
function should be a function of two arguments: the first
argument is the SPP input stream associated with the
connection; the second argument is the SPP output stream
associated with the connection.

31.13

HIGHER-LEVEL NS PROTOCOL FUNCTIONS

31.14

(SPPOUTPUTSTREAM STREAM) [Function]

SPP.USER.TIMEOUT

Applied to the input stream of an SPP connection, this function
returns the corresponding output stream.

[Variable]

Specifies the time, in milliseconds, to wait before deciding that a
host isn't responding.

(SPP.DSTVPE STREAM DSTYPE) [Function]

(SPP.SENDEOM STREAM)

Accesses the current datastream type of the connection. If
DSTYPE is Nil, returns the datastream type of the current packet
being read. If DSTYPE is non-Nil, sets the datastream type of all
subsequent packets sent on this connection, until the next call to
SPP.DSTVPE. Since this affects the current partially-filled packet,
the stream should probably be flushed (via FORCEOUTPUT)
before this function is called.

[Function]

Transmits the data buffered so far on the output stream
STREAM, if any, with the End of Message bit set. If there is
nothing buffered, sends a zero-length packet with the End of
Message bit set.

(SPP.SENDA TIENTION STREAM A TTENTlONBYTE-) [Function]

Sends an SPP "attention" packet on the output stream STREAM,
with the Attention bit set and containing the single byte of data
A TTENTlONBYTE.

Note: The appropriate way to determine whether an SPP stream
is open, or whether an End of Message or Attention indication
has been reached (for input streams) is to use the EOFP function
(page 25.6). When EOFP is applied to an SPP stream, it returns
one of the following values:

Nil The connection is open and readable or writable.

T The connection is closed.

EOM (Input streams only) The End of Message bit was set in the last
packet received, and all bytes from the packet have been read.
The function SPP.ClEAREOM (below) must be called to dear this
condition.

ATIENTION (Input streams only) An attention packet is waiting.
SPP.ClEARATIENTION (below) must be called before the single
byte of data associated with the attention packet can be read.

ETHERNET

HIGHER-LEVEL NS PROTOCOL FUNCTIONS

(SPP.CLEAREOM STREAM NOERRORFLG) [Function]

Clears the End of Message indication on STREAM. This is
necessary in order to read beyond the EOM. Causes an error if
the stream is not currently at the End of Message, unless
NOERRORFLG is non-NIL.

(SPP.CLEARA TIENTION STREAM NOERRORFLG) [Function]

Clears the Attention packet indication on STREAM. This must be
called before the single byte of data associated with the
attention packet can be read. Causes an error if the stream does
not have an attention packet waiting, unless NOERRORFLG is
non-NIL

31.3.5 Courier Remote Procedure Call Protocol

31.3.5.1

ETHERNET

Defining Courier Programs

Courier is the Xerox Network Systems Remote Procedure Call
protocol. It uses the Sequenced Packet Protocol for reliable
transport. Courier uses procedure call as a metaphor for the
exchange of a request from a user process and its positive reply
from a server process; exceptions or error conditions are the
metaphor for a negative reply. A family of remote procedures
and the errors they can raise constitute a remote program. A
remote program generally represents a complete service, such as
the Fil,ing or Printing programs described earlier in this chapter.

For more detail about Courier, the reader is referred to the
published specification of the Courier protocol. The following
documentatipn assumes some familiarity with the protocol. It
describes how to define a Courier program and use it to
communicate with a remote system element that implements a
server for that program. This section does not discuss how to
construct such a server.

A Courier program definition is accessed using the file package
type COURIERPROGRAMS, so GETDEF, PUTDEF, and EDITDEF can
be used to manipulate Courier programs. The file package
command COURIERPROGRAMS (page 17.39) can be used to save
Courier programs on files. Courier program are initially defined
using the following function:

(COURIERPROGRAM NAME ...) [NLambda NoSpread Function]

This function is used to define Courier programs. The syntax is

(COURIERPROGRAM NAME
(PROGRAMNUMBER VERSIONNUMBER)
. DEFINITIONS)

31 15

HIGHER-LEVEL NS PROTOCOL FUNCTIONS

31 16

The tail DEFINITIONS is a property list where the properties are
selected from TYPES, PROCEDURES, ERRORS and INHERITS; the
values are lists of pairs of the form (LABEL. DEFINITION). These
are described in more detail as follows:

The TYPES section lists the symbolically-defined types used to
represent the arguments and results of proced ures and errors in
this Courier program. Each element in this section is of the form
(TYPENAME TYPEDEFINITlON), e.g., (PRIORITY INTEGER). The
TYPEDEFINITION can be a predefined type (see next section),
another type defined in this TYPES section, or a qualified
typename taken from another Courier program; these latter are
written as a dotted pair (PROGRAMNAME. TYPENAME).

The PROCEDURES section lists the remote procedures defined by
this Courier program. A procedure definition is a stylized
reduction of the Courier definition syntax defi ned in the Cou ri er
Protocol specification:

(PROCEDURENAME NUMBER ARGUMEN"rS

RETURNS RESUL TTYPES REPORTS ERRORNAMES)

ARGUMENTS is a list of type names, one per argument to the
remote procedure, or NIL if the procedure takes no arguments.
RESUL TTYPES is a list of type names, one for each value to be
returned. ERRORNAMES is a list of names of errors that can be
raised by this procedure; each such error must be listed in the
program's ERRORS section. The atoms RETURNS and I~EPORTS
are noise words to aid readability.

The ERRORS section lists the errors that can be raised by
procedures in this program. An error definition is of the form

(ERRORNAME NUMBER ARGUMENTS),

where ARGUMENTS is a list of type names, one for each
argument, if any, reported by the error.

The INHERITS section is an optional list of other Courier
programs, some of whose definitions are "inherited" by this
program. More specifically, if a type, procedure or error
referenced in the current program definition is not defined in
this program, the system searches for a definition of it in each of
the inherited programs in turn, and uses the first such definition
found.

The INHERITS section is useful when defining variants of a given
Courier program. For example, if one wanted to tryout version 4
of Courier program BAR, and version 4 differed from version 3 of
program BAR only in a small number of procedure or type
definitions, one could define a program NEWBAR with an
INHERITS section of (BAR) and only need to list the few changed
definitions inside NEWBAR.

ETHERNET

31.3.5.2 Courier Type Definitions

31.3.5.2.1 Pre-defined Types

ETHERNET

BOOLEAN

INTEGER

CARDINAL

UNSPECIFIED

LONGINTEGER

LONGCARDINAL

STRING

TIME

NSADDRESS

NSNAME

HIGHER-LEVEL NS PROTOCOL FUNCTIONS

This section describes how the Courier types described in the
Courier Protocol document are expressed in a Lisp Courier
program definition, and how values of each type are
represented. Each type in a Courier program's TYPES section
must ultimately be defined in terms of one of the following
"base" types, although the definition can be indirect through
arbitrarily many levels. That is, a type can be defined in terms of
any other type known by an extant Courier definition. The
names of the base types are "global"; they need no
qualification, nor do type names mentioned in the same Courier
program. To refer to a type not defined in the same Courier
program (or to any non-base type when there is no program
context), one writes a Qualified name, in the form (PROGRAM.
TYPE). In general, a Qualified name is legal in any place that calls
for a Courier type.

Pre-defined (atomic) types are expressed as uppercase litatoms
from the following set:

Values are represented by T and NIL.

Values are represented as small integers in the range
[-32768 .. 32767].

Values are represented as small integers in the range [0 .. 65535].

Same as CARDINAL.

Values are represented as FIXP's.

Same as LONGINTEGER. Note that Interlisp-D does not
(currently) have a datatype that truly represents a 32-bit
unsigned integer.

Values are represented as Lisp strings.

In addition, the following types not in the document have been
added for convenience:

Represents a date and time in accordance with the Network Time
Standard. The value is a FIXP such as returned by the function
IDATE, and is encoded as a LONGCARDINAL.

Represents a network address. The value is an object of type
NSADDRESS (page 31.7), and is encoded as six items of type
UNSPECIFIED.

Represents a three-part Clearinghouse name. The value is an
object of type NSNAME (page 31.8), and is encoded as three
items of type STRING.

31.17

HIGHER-LEVEL NS PROTOCOL FUNCTIONS

NSNAME2

31.3.5.2.2 Constructed Types

Represents a two-part Clearinghouse name, i.e., a domain. The
value is an object of type NSNAME (page 31.8), and is encoded as

two items of type STRING.

Constructed Types are composite objects made up of elements of
other types. Theyare all expressed as a list whose CAR names the
type and whose remaining elements give details. The following
are available:

(ENUMERATION (NAME INDEX) .•. (NAME INDEX»

(SEQUENCE TYPE)

(ARRA Y LENGTH TYPE)

Each NAME is an arbitrary litatom or string; the corresponding
INDEX is its Courier encoding (a CARDINAL). Values of type
ENUMERATION are represented as a NAME from the list of
choices. For example, a value of type (ENUMERATION
(UNKNOWN 0) (RED 1) (BLUE 2» might be the litatom RED

A SEQUENCE value is represented as a list, each element being of
type TYPE. A SEQUENCE of length zero is represented as NIL.
Note that there is no maximum length for a SEQUENCE in the
Lisp implementation of Courier.

An ARRAY value is represented as a list of LENGTH elements,
each of type TYPE.

(CHOICE (NAME INDEX TYPE) .•. (NAME INDEX TYPE»

The CHOICE type allows one to select among several different
types at runtime; the INDEX is used in the encoding to
distinguish the value types. A value of type CHOICE is
represented in Lisp as a list of two elements, (NAME VALU£). For
example, a value of type

(CHOICE (STATUS 0 (ENUMERATION (BUSY 0) (COMPLETE 1)})

(MESSAGE 1 STRING»

could be (STATUS COMPLETE) or (MESSAGE "Out of paper. ").

(RECORD (FIELDNAME TYPE) ..• (FIELDNAME TYPE»

31 18

Values of type RECORD are represented as lists, with one element
for each field of the record. The field names are not part of the
value, but are included for documentation purposes.

For programmer convenience, there are two macros that allow
Courier records to be constructed and dissected in a manner
similar to Lisp records. These compile into the appropriate
composites of CONS, CAR and CDR.

(COURIER.CREATE TYPE FIELDNAME ~ VALUE ... FIELDNAME ~ VALUE) [Macro]

Creates a value of type TYPE, which should be a fully-qualified
type name that designates a RECORD type, e.g.,
(MAILTRANSPORT . POSTMARK). Each FIELDNAME should
correspond to a field of the record, and all fields must be

ETHERNET

HIGHER-LEVEL NS PROTOCOL FUNCTIONS

included. Each VALUE is evaluated; all other arguments are not.
The assignment arrows are for readability, and are optional.

(COURIER.FETCH TYPE FIELD OBJECn [Macro]

Analogous to the Record Package operator fetch. Argument
TYPE is as with COURIER.CREATE; FIELD is the name of one of its
fields. COURIER.FETCH extracts the indicated field from OBJECT.

For readability, the noiseword "of" may be inserted between
FIELD and OBJECT. Only the argument OBJECT is evaluated.

For example, if the program CLEARINGHOUSE has a type
declaration

(USERDATA.VALUE (RECORD (LAST.NAME.INDEX CARDINAL)
(FILE.SERVICE STRING»),

then the expression

(SETQ,INFO (COURIER.CREATE
(CLEARINGHOUSE. USERDATA.VALUE)
LAST.NAME.lNDEX ~ 12
FILE.SERVICE ~ "Phylex:PARC:Xerox")

would set the variable INFO to the list (12
"Phylex:PARC:Xerox"). The expression

(COURIER.FETCH (CLEARINGHOUSE. USERDATA.VALUE)
FllE.SERVICE of INFO)

would produce "Phylex:PARC:Xerox".

31.3.5.2.3 User Extensions to the Type Language

COURIERDEF

ETHERNET

The programmer can add new base types to the Courier
language by telling the system how to read and write values of
that type. The programmer chooses a name for the type, and
gives the name a COURIERDEF property. The new name can then
be used anywhere that the type names listed in the previous
sections, such as CARDINAL, can be used. Such extensions are
useful for user-defined objects, such as datatypes, that are not
naturally represented by any predefined or constructed type.
The NSADDRESS and NSNAME Courier types are defined by this
mechanism.

[Property Name]

The format of the COURIERDEF property is a list of up to four
elements, (READFN WRITEFN LENGTHFN WRITEREPFN). The first
two elements are required; if the latter two are omitted, the
system will simulate them as needed. The elements are as
follows:

31.19

HIGHER-LEVEL NS PROTOCOL FUNCTIONS

31.3.5.3

31.20

READFN This is a function of three arguments, (STREAM PROGRAM TYPE).

The function is called by Courier when it needs to read a value of
this type from STREAM as part of a Courier transaction. The
function reads and returns the value from STREAM, possibly
using functions such as COURIER.READ (page 31.25). PROGRAM

and TYPE are the name of the Courier program and the type. In
the case of atomic types, TYPE is a litatom, and is provided for
type discrimination in case the programmer has supplied a single
reading function for several different types. In the case of
constructed types, TYPE is a list, CAR of which is the type name.

WRITEFN This is a function of four arguments, (STREAM VALUE PROGRAM

TYPE). The function is called by Courier when it needs to write
VALUE to STREAM. PROGRAM and TYPE are as with the reading
function. The function should write VALUE on STREAM. The
result returned from this function is ignored.

LENGTHFN This function is called when Courier wants to write a value of this
type in the form (SEQUENCE UNSPECIFIED), and then only if the
WRITEREPFN is omitted. The function is of three arguments,
(VALUE PROGRAM TYPE). It should return, as an integer, the
number of 16-bit words that the WRITEFN would require to write
out this value. If values of this type are all the same length, the
LENGTHFN can be a simple integer instead of a function. See
diSCUSSion of COURIER.WRITE.SEQUENCE.UNSPECIFIED (page
31.26.

WRITEREPFN This function is called when Courier wants to write a value of this
type in the form (SEQUENCE UNSPECIFIED). The function takes
the same arguments as the WRITEFN, but must write the value to
the stream preceded by its length. If this function is omitted,
Courier invokes the LENGTHFN to find out how long the value is,
and then invokes the WRITEFN. If the LENGTHFN is omitted,
Courier invokes the WRITEFN on a scratch stream to find out how
long the value is.

Performing Courier Transactions

The normal use of Courier is to open a connectio~ with a remote
system element using COURIER.OPEN, perform one or more
remote procedure calls using COURIER.CALL, then close the
connection with CLOSEF.

(COURIER.OPEN HOSTNAME SERVERTYPE NOERRORFLG NAME WHENCLOSEDFN

OTHERPROPS) [Function]

Opens a Courier connection to the Courier socket on HOST, and
returns an SPP stream that can be passed to COURIER.CALl.
HOSTNAME can be an NS address, or a symbolic Clearinghouse
name in the form of a string, litatom or NSNAME. In the case of a
symbolic name, SERVERTYPE specifies the Clearinghouse

ETHERNET

ETHERNET

HIGHER-LEVEL NS PROTOCOL FUNCTIONS

property under which the server's address may be found;
normally, this is NIL, in which case the ADDRESS.LlST property is
used.

Normally, if a connection cannot be made, or the server supports
the wrong version of Courier, an error occurs. If NOERRORFLG is
non-NIL, COURIER.OPEN returns NIL in these cases.

If NAME is non-NIL, it is used as the name of the Courier

connection process.

WHENCLOSEDFN is a function (or list of functions) of one
argument, the Courier stream, that will be called when the

. connection is closed, either by user or server.

If OTHERPROPS is non-NIL, it should be a property list of spp

stream properties, as accepted by SPP.OPEN (page 31.12). Any

CLOSEFN property on this list is overridden by the value of

WHENCLOSEDFN.

(COURIER.CALL STREAM PROGRAM PROCEDURE ARG 1 ... ARG N NOERRORFLG) [NoSpread

Function]

This function calls the remote procedure PROCEDURE of the
Courier program PROGRAM. STREAM is the stream returned by
COURIER.OPEN. The arguments should be Lisp values

appropriate for the Courier types of the corresponding formal
parameters of the procedure. There must be the same number
of actual and formal arguments. If the procedure call is
successful, Courier returns the result(s) of the call as specified in
the RETURNS section of the procedure definition. If there is only
a single result, it is returned directly, otherwise a list of results is
returned.

Procedures that take a Bulk Data argument (source or sink) are
treated specially; see page 31.24.

If the procedure call results in an error, one of three possible
courses is available. The default behavior is to cause a Lisp error.
To suppress the error, an optional keyword can be appended to
the argument list, as if an extra argument. This NOERRORFLG
argument can be the atom NOERROR, in which case NIL is

returned as the result of the call. If NOERRORFLG is
RETURNERRORS, the result of the call is a list (ERROR
ERRORNAME. ERRORARGS). If the failure was a Courier Reject,

rather than Error, then ERRORNAME is the atom REJECT.

Examples:

(COURIERPROGRAM PERSONNEL (17 1)

TYPES
«PERSON.NAME (RECORD (FIRST.NAME STRING)

(MIDDLE MIDDLE.PART)

(LAST.NAME STRING»)

31.21

HIGHER-LEVEL NS PROTOCOL FUNCTIONS

31.3.5.3.1 Expedited Procedure Call

)

(MIDDlE.PART (CHOICE (NAME 0 STRING)
(INITIAL 1 STRING»))

(BIRTHDA V (RECORD (VEAR CARDINAL)
(MONTH STRING)
(DA V CARDINAL))))

PROCEDURES
«GETBIRTHDA V 3 (PERSON.NAME)

RETURNS (BIRTHDA V) REPORTS (NO.SUCH.PERSON)))

ERRORS
«NO.SUCH.PERSON 1))

This expression defines PERSONNEL to be Courier program
number 17, version number 1. The example defines three types,
PERSON.NAME, MIDDlE.PART and BIRTHDA V, and one
procedure, GETBIRTHDAV, whose procedure number is 3. Th.e
following code could be used to call the remote GETBIRTHDA Y

procedure on the host with address HOSTADDRESS.

(SETQ STREAM (COURIER.OPEN HOSTADDRESS»
(PROG1 (COURIER.CALL STREAM 'PERSONNEL 'GETBIRTHDA Y

(COURIER.CREATE (PERSONNEL. PERSON.NAME)
FIRST.NAME ~ "Eric"
MIDDLE ~ '(INITIAL "e")

LAST.NAME ~ "Cooper"»
(CLOSEF STREAM»

COURIER.CALL in this example might return a value such as (1959
"January" 10).

Some Courier servers support "Expedited Procedure Call", which
is a way of performing a single Courier transaction by a Packet
Exchange protocol, rather than going to the expense of setting
up a full Courier connection. Expedited calls must have no bulk
data arguments, and their arguments and results must each fit
into a single packet.

(COURIER.EXPEDITED.CALL ADDRESS SOCKET# PROGRAM PROCEDURE ARG 1 ... ARGN

31.22

NOERRORFLG) [NoSpread Function]

Attempts to perform a Courier call using the Expedited
Procedure Call. ADDRESS is the NS address of the remote host
and SOCKET# is the socket on which it is known to listen for
expedited calls. The remaining arguments are exactly as with
COURIER.CALL. If the arguments to the procedure do not fit in
one packet, or if there is no response to the call, or if the call
returns the error USE.COURIER (which must be defined by

ETHERNET

31.3.5.3.2 Expanding Ring Broadcast

HIGHER-LEVEL NS PROTOCOL FUNCTIONS

exactly that name in PROGRAM), then the call is attempted
instead by the normal, non-expedited method-a Courier
connection is opened with ADDRESS, and COURIER.CALL is
invoked on the arguments given.

"Expanding Ring Broadcast" is a method of locating a server of a
particular type whose address is not known in advance. The
system broadcasts some sort of request packet on the
directly-connected network, then on networks one hop away,
then on networks two hops away, etc., until a positive response is
received.

For use in locating a server for a particular Courier program, a
stylized form of Expanding Ring Broadcast is defined. The
request packet is essentially the call portion of an Expedited
Procedure Call for some procedure defined in the program. The
response packet is a Courier response, and typically contains at
least the server's address as the result of the call. The designer of
the protocol must, of course, specify which procedure to use in
the broadcast (usually it is procedure number zero) and on what
socket the server should listen for broadcasts.

START.CLEARINGHOUSE uses this procedure to locate the
nearest Clearinghouse server.

(COURIER.BROADCAST.CALL DESTSOCKET# PROGRAM PROCEDURE ARGS RESULTFN

ETHERNET

NETHINT MESSAGE) [Function]

Performs an expanding ring broadcast for servers willing to
implement PROCEDURE in Courier program PROGRAM.
DESTSOCKET# is the socket on which such servers of this type are
known to listen for broadcasts, typically the same socket on
which they listen for expedited calls. ARGS is the argument list, if
any, to the procedure (note that it is not spread, unlike with
COURIER.CALL) .

If a host responds positively, then the function RESULTFN is called
with one argument, the Courier results of the procedure call. If
RESULTFN returns a non-null value, the value is returned as the
value of COURIER.BROADCAST.CALL and the search stops there;
otherwise, the search for a responsive host continues. If
RESULTFN is not supplied (or is NIL), then the results of the
procedure call are returned directly from
COURIER.BROADCAST.CALL; i.e., RESULTFN defaults to the
identity function.

NETHINT, if supplied, is a net number or list of net numbers as a
hint concerning which net(s) to try first before performing a pure
expanding-ring broadcast. If MESSAGE is non-Nil, it is a
description (string) of what the broadcast is looking for, to be

31.23

HIGHER-LEVEL NS PROTOCOL FUNCTIONS

31.3.5.3.3 Using Bulk Data Transfer

31 24

printed in the prompt window to inform the user of what is
happening. For example, START.CLEARINGHOUSE passes in the
message "Clearinghouse servers" and the hint CH.NET.HINT.

When a Courier program needs to transfer an arbitrary amount
of information as an argument or result of a Courier procedure.
the procedure is usually defined to have one argument of type
"Bulk Data". The argument is a "source" if it is information
transferred from caller to server (as though a procedure
argument), a "sink" if it is information transferred from server to
caller (as though a procedure result). These two "types" are
indicated in a Courier procedure's formal argument list as
BULK.DATA.SOURCE and BULK.DATA.SINK, respectively. A
Courier procedure may have at most one such argument ..

In a Courier call, the bulk data is transmitted in a special way,
between the arguments and the results. There are two basic
ways to handle this in the call. The caller can specify how the
bulk data is to be interpreted (how to read or write it), or the
caller can request to be given a bulk data stream as the result of
the Courier call. The former is the preferred way; both are
described below.

In the first method, the caller passes as the actual argument to
the Courier call (i.e., in the position in the argument list occupied
by BULK.DATA.SOURCE or BULK.DATA.SINK) a function to
perform the transfer. Courier sets up the transaction, then calls
the supplied function with one argument, a stream on which to
write (if a source argument) or read (if a sink) the bulk data. If
the function returns normally, the Courier transaction proceeds
as usual; if it errors out, Courier sends a Bulk Data Abort to abort
the transaction.

In the case of a sink argument, if the value returned from the
sink function is non-NIL, it is returned as the result of
COURIER.CALL; otherwise, the result of COURIER.CAlL is the
usual procedure result, as declared in the Courier program.

For convenience, a Bulk Data sink argument to a Courier call can
be specified as a fully qualified Courier type, e.g.,
(CLEARINGHOUSE. NAME), in which case the Bulk Data stream is
read as a "stream of" that type (see COURIER.READ.BULKDATA,
below).

The second method for handling bulk data is to pass NIL as the
bulk data II argument 01 to COURIER.CALL In this case, Courier
sets up the call, then returns a stream that is open for OUTPUT (if
a source argument) or INPUT (if a sink). The caller is responsible
for transferring the bulk data on the stream, then closing the
stream to complete the transaction. The value returned from

ETHERNET

HIGHER-LEVEL NS PROTOCOL FUNCTIONS

CLOSEF is the Courier result. This method is required if the
caller's control structure is open~ended in a way such that the
bulk data cannot be transferred within the scope of the call to
COURIER.CALL.

In either method, the stream on which the bulk data is
transferred is a standard Interlisp stream, so BIN, BOUT,
COpy BYTES are all appropriate.

Many Courier programs define a "Stream of <type>" as a
means of transferring an arbitrary number of objects, all of the
same type. Although this is typically specified formally in the
printed Courier documentation as a recursive definition, the
recursion is in practice unnecessary and unwieldy; instead, the
following function should be used.

(COURIER.READ.BULKDATA STREAM PROGRAM TYPE DONTCLOSE) [Function]

Reads from STREAM a "Stream of TYPE" for Courier program
PROGRAM, and returns a list of the objects read. STREAM is
closed on exit, unless DONTCLOSE is non-NIl.

Passing (X . Y) as the bulk argument to a Courier call is thus
equivalent to passing the function (LAMBDA (STREAM)
(COURIER.READ.BULKDATA STREAM X Y».

31.3.5.3.4 Courier Subfunctions for Data Transfer

ETH ERNET

The following functions are of interest to those who transfer
data in Courier representations, e.g., as part of a function to
implement a user-defined Courier type.

(COURIER.READ STREAM PROGRAM TYPE) [Function]

Reads from the stream STREAM a Courier value of type TYPE for
program PROGRAM. If TYPE is a predefined type, then
PROGRAM is irrelevant; otherwise, it is required in order to
qualify TYPE.

(COURIER.WRITE STREAM ITEM PROGRAM TYPE) [Function]

Writes ITEM to the stream STREAM as a Courier value of type
TYPE for program PROGRAM.

(COURIER.READ.SEQUENCE STREAM PROGRAM TYPE) [Function]

Reads from the stream STREAM a Courier value SEQUENCE of
values of type TYPE for program PROGRAM. Equivalent to
{COURIER.READ STREAM PROGRAM (SEQUENCE TYPE».

31 2S

HIGHER-LEVEL NS PROTOCOL FUNCTIONS

(COURIER.WRITE.SEQUENCE STREAM ITEM PROGRAM TYPE) [Function]

Equivalent to (COURIER.WRITE STREAM ITEM PROGRAM

(SEQUENCE TYPE».

Some Courier programs traffic in values whose interpretation is
left up to the clients of the program; the values are transferred
in Courier transactions as values of type (SEQUENCE

UNSPECIFIED). For example, the Clearinghouse program

transfers the value of a database property as an uninterpreted
sequence, leaving it up to the caller, who knows what type of
value the particular property takes, to interpret the sequence of
raw bits as some other Courier representation. The following
functions are useful when dealing with such values.

(COURIER.WRITE.REP VALUE PROGRAM TYPE) [Function1

Produces a list of 16-bit integers, i.e., a value of type (SEQUENCE

UNSPECIFIED), that represents VALUE when interpreted as a

Courier value of type TYPE in PROGRAM. Examples:

(COURIER.WRITE.REP T NIL 'BOOLEAN) = > (1)

(COURIER.WRITE.REP "Thing" NIL 'STRING) = >
(5 52150Q 64556Q 63400Q)

(COURIER.WRITE.REP '(1025) NIL '(SEQUENCE INTEGER» = >
(2 10 25)

(COURIER.READ.REP LIST. OF. WORDS PROGRAM TYPE) [Function]

Interprets LIST. OF. WORDS, a list of 16-bit integers, as a Courier
object of type TYPE in the Cou rier program PROGRAM.

(COURIER.WRITE.SEQUENCE.UNSPECIFIED STREAM ITEM PROGRAM TYPE) [Function]

Writes to the stream STREAM in the form (SEQUENCE
UNSPECIFIED) the object ITEM, whose value is really a Courier

value of type TYPE for program PROGRAM. Equivalent to, but
usually much more efficient than, (COURIER.WRITE STREAM
(COURIER.WRITE.REP ITEM PROGRAM TYPE) NIL '(SEQUENCE
UNSPECIFIED».

31.4 Level One Ether Packet Format

3126

The data type ETHERPACKET is the vehicle for all kinds of packets

transmitted on an Ethernet or Experimental Ethernet. An
ETHERPACKET contains several fields for use by the Ethernet
drivers and a large, contiguous data area making up the data of
the level zero packet. The first several words of the area are

ETHERNET

ETHERNET

EPLINK

EPFLAGS

EPUSERFIELD

EPTRANSMITTING

EPREQUEUE

LEVELONE ETHER PACKET FORMAT

reserved for the level one to zero encapsulation, and the
remainder (starting at field EPBODY) make up the level one
packet. Typically, each level one protocol defines a
BlOCKRECORD (page 8.11) that overlays the ETHERPACKET
starting at th~ EPBODY field, describing the format of a packet
for that particular protocol. For exam pie, the records PUP and
XIP define the format of level one packets in the PUP and NS
protocols.

The extra fields in the beginning of an ETHERPACKET have
mostly a fixed interpretation over all protocols. Among the
interesting ones are:

A pointer used to link packets, used by the SYSQUEUE
mechanism (page 31.41). Since this field is used by the system for
maintain'ing the free packet queue and ether transmission
queues, do not use this field unless you understand it.

A byte field that can be used for any purpose by the user.

A pointer field that can be used for any purpose by the user. It is
set to Nil when a packet is released.

A flag that is true while the packet is "being transmitted", i.e.,
from the time that the user instructs the system to transmit the
packet until the packet is gathered up from the transmitter'S
finished queue. While this flag is true, the user must not modify
the packet.

A pointer field that specifies the desired disposition of the
packet after transmission. The possible values are: Nil means no
special treatment; FREE means the packet is to be released after
transmission; an instance of a SYSQUEUE means the packet is to
be enqueued on the specified queue (page 31.41).

The normal life of an outgoing Ether packet is that a program
obtains a blank packet, fills it in according to protocol, then
sends the packet over the Ethernet. If the packet needs to be
retained for possible retransmission, the EPREQUEUE field is used
to specify a queue to place the packet on after its transmission,
or the caller hangs on to the packet explicitly.

There are redefinitions, or "overlays" of the ETHERPACKET
record specifically for use with the PUP and NS protocols. The
following sections describe those records and the handling of
the PUP and NS level one protocols, how to add new level one
protocols, and the queueing mechanism associated with the
EPREQUEUE field.

31.27

PUP LEVEL ONE FUNCTIONS

31 as PUP Level One Functions

31.5.1 Creating and Managing Pups

(ALLOCA TE.PUP)

(CLEARPUP PUP)

(RELEASE.PUP PUP)

31.5.2 Sockets

3128

The functions in this section are used to implement level two and
higher PUP protocols. That is, they deal with sending and
receiving PUP packets. It is assumed the reader is familiar with
the format and use of pups, e.g., from reading reference [3] on
page 31.5.

There is a record PUP that overlays the data portion of an
ETHERPACKET and describes the format of a pup. This record
defines the following numeric fields: PUPLENGTH (16 bits),
TCONTROL (transmit control, 8 bits, cleared when a PUP is
transmitted), PUPTYPE (8 bits), PUPID (32 bits), PUPIDHI and
PUPIDLO (16 bits each overlaying PUPID), PUPDEST (16 bits
overlayed by 8-bit fields PUPDESTNET and PUPDESTHOSn,
PUPDESTSOCKET (32 bits, overlayed by 16-bit fields
PUPDESTSOCKETHI and PUPDESTSOCKETLO), and PUPSOURCE,
PUPSOURCENET, PUPSOURCEHOST, PUPSOURCESOCKET,
PUPSOURCESOCKETHI, and PUPSOURCESOCKETLO, analagously.
The field PUPCONTENTS is a pointer to the start of the data
portion of the pup.

[Function]

Returns a (possibly used) pup. Keeps a free pool, creating new
pups only when necessary. The pup header fields of the pup
returned are guaranteed to be zero, but there may be garbage
in the data portion if the pup had been recycled, so the caller
should clear the data if desired.

[Function]

Clears all information from PUP, including the pointer fields of
the ETHERPACKET and the pup data portion.

[Function]

Releases PUP to the free pool.

Pups are sent and received on a socket. Generally, for each
"conversation" between one machine and another, there is a
distinct socket. When a pup arrives at a machine, the low-level
pup software examines the pup's destination socket number. If
there is a socket on the machine with that number, the incoming
pup is handed over to the socket; otherwise the incoming pup is

ETHERNET

PUP LEVEL ONE FUNCTIONS

discarded. When a user process initiates a conversation, it
generally selects a large, random socket number different from
any other in use on the machine. A server process, on the other
hand, provides a specific service at a "well-known" socket,
usually a fairly sma" number. In the PUP world, advertised
sockets are in the range 0 to 100Q.

(OPENPUPSOCKET SKT# IFCLASH) [Function]

Opens a new pup socket. If SKT# is NIL (the normal case), a
socket number is chosen automatically, guaranteed to be
unique, and probably different from any socket opened this way
in the last 18 hours (the low half of the time of day clock is
sampled).

If a specific local socket is desired, as is typically the case when
implementing a server, SKT# is given, and must be a (u p to
32-bit) number. IFCLASH indicates what to do in the case that
the designated socket is already in use: if NIL, an error is
generated; if ACCEPT, the socket is quietly returned; if FAIL, then
OPENPUPSOCKET returns NIL without causing an error. Note
that "well-known" socket numbers should be avoided unless the
caller is actually implementing one of the services advertised as
provided at the socket.

(CLOSEPUPSOCKET PUPSOC NOERRORFLG) [Function]

Closes and releases socket PUPSOc. If PUPSOC is T, closes all pu p
sockets (this must be used with caution, since it wi" also close
system sockets!). If PUPSOC is already closed, an error is
generated unless NOERRORFLG is true.

(PUPSOCKETNUMBER PUPSOC) [Function]

Returns the socket number (a 32-bit integer) of PUPSOc.

(PUPSOCKETEVENT PUPSOC) [Function]

Returns the EVENT of PUPSOC (page 23.7). This event is notified
whenever a pup arrives on PUPSOC, so pup clients can perform
an AWAIT.EVENT on this event if they have nothing else to do at
the moment.

31.5.3 Sending and Receiving Pups

(SENOPUP PUPSOC PUP)

ETHERNET

[Function]

Sends PUP on socket PUPSOc. If any of the PUPSOURCESHOST,
PUPSOURCENET, or PUPSOURCESOCKET fields is zero, SENDPUP
fills them in using the pup address of this machine and/or the
socket number of PUPSOC, as needed.

31.29

PUP LEVELONE FUNCTIONS

(GETPUP PUPSOC WAin

(DISCARDPUPS SOC)

[Function]

Returns the next pup that has arrived addressed to socket
PUPSOc. If there are no pups waiting on PUPSOC, then GETPUP

returns Nil, or waits for a pu p to arrive if WAIT is T. If WAIT is an
integer, GETPUP interprets it as a number of milliseconds to wait,
finally returning Nil if a pup does not arrive within that time.

[Function]

Discards without examination any pups that have arrived on SOC

and not yet been read by a GETPUP.

(EXCHANGEPUPS SOC OUTPUP DUMMY IDFIL TER TIMEOUn [Function]

31.5.4 Pup Routing Information

(PUPNET.DISTANCE NET#)

Sends OUTPUP on SOC, then waits for a responding pup, which it
returns. If IDFILTER is true, ignores pups whose PUPID is different
from that of OUTPUP. TIMEOUT is the length of time (msecs) to
wait for a response before giving up and returning NIl.

TIMEOUT defaults to \ETHERTIMEOUT. EXCHANGEPUPS discards
without examination any pups that are currently waiting on SOC

before OUTPUP gets sent. (DUMMY is ignored; it exists for
compatibility with an earlier implementation).

Ordinarily, a program calls SENDPUP and does not. worry at all
about the route taken to get the pup to its destination. There is
an internet routing process in Lisp whose job it is to maintain
information about the best routes to networks of interest.
However, there are some algorithms for which routing
information and/or the topology of the net are explicitly desired.
To this end, the following functions are supplied:

[Function]

Returns the" hop count" to network NET#, i.e., the number of
gateways through which a pup must pass to reach NET#,
according to the best routing information known at this point.
The local (directly-connected) network is considered to be zero
hops away. Current convention is that an inaccessible network is
16 hops away. PUPNET.DISTANCE may need to wait to obtain
routing information from an Internetwork Router if NET# is not
currently in its routing cache.

(SORT.PUPHOSTS.BY.DISTANCE HOSTLISn [Function]

Sorts HOSTLIST by increasing distance, in the sense of
PUPNET.DISTANCE. HOSTLISTis a list of lists, the CAR of each list
being a 16-bit Net/Host address, such as returned by

31.30 ETHERNET

PUP LEVELONE FUNCTIONS

ETHERHOSTNUMBER. In particular, a list of ports «nethost .
socket) pairs) is in this format.

(PRINTROUTINGTABLE TABLE SORT F/~E) [Function]

Prints to FILE the current routing cache. The table is sorted by
network number if SORT is true. TABLE = PUP (the default)
prints the PUP routing table; TABLE = NS prints the NS routing
table.

31.5.5 Miscellaneous PUP Utilities

ETHERNET

(SETUPPUP PUP OESTHOST OESTSOCKET TYPE 10 SOC REQUEUE) [Function]

(SWAPPUPPORTS PUP)

Fills in various fields in PUP's header: its length (the header
overhead length; assumes data length of zero), TYPE, 10 (if 10 is
NIL, generates a new one itself from an internal 16-bit counter),
destination host and socket (OESTHOST may be anything that
ETHERPORT accepts; an explicit nonzero socket in OESTHOST

overrides OESTSOCKEn. If SOC is not supplied, a new socket is
opened. REQUEUE fills the pa~kets EPREQUEUE field (see
above). Value of SETUPPUP is the socket.

[Function]

Swaps the source and destination addresses in PUP. This is useful
in simple packet exchange protocols, where you want to respond
to an input packet by diddling the data portion and then
sending the pup back whence it came.

(GETPUPWORD PUP WORO#) [Function]

Returns as a 16-bit integer the contents of the WORO#th word
of PUP's data portion, counting the first word as word zero.

(PUTPUPWORD PUP WORO# VALUE) [Function]

(GETPUPBVTE PUP BYTE #)

Stores 16-bit integer VALUE in the WORO#th word of PUP's data
portion.

[Function]

Returns as an integer the contents of the BYTE #th 8-bit byte of
PUP's data portion, counting the first byte as byte zero.

(PUTPUPBVTE PUP BYTE# VALUE) [Function]

Stores VALUE in the BYTE#th B.-bit byte of PUP's data portion.

31.31

PUP LEVELONE FUNCTIONS

(GETPUPSTRING PUP OFFSEn [Function]

(PUTPUPSTRING PUP STR)

Returns a string consisting of the characters in PUP's data portion
starting at byte OFFSET(default zero) through the end of PUP.

[Function]

Appends STR to the data portion of PUP, incrementing PUP's
length appropriately.

31.5.6 PUP Debugging Aids

3132

PUPTRACEFLG

Tracing facilities are provided to allow the user to see the pup
traffic that passes through SENDPUP and GETPUP. The tracing
can be verbose, displaying much information about each packet,
or terse, which shows a concise "picture" of the traffic.

[Variable]

Controls tracing information provided by SENDPUP and GETPUP.

Legal values:

NIL No tracing.

T Every SENDPUP and every successful GETPUP call PRINTPUP of the
pup at hand (see below).

PEEK Allows a concise "picture" of the traffic. For normal,
non-broadcast packets, SENDPUP prints"! ", GETPUP prints" + ".

For broadcast packets, SENDPUP prints" f ", GETPUP prints "*".

In addition, for packets that arrive not addressed to any socket
on this machine (e.g., broadcast packets for a service not
implemented on this machine), a .,&" is printed.

PUPIGNORETYPES [Variable]

PUPONL YTYPES

PUPTRACEFILE

A list of pup types (small integers). If the type of a pup is on this
list, then GETPUP and SENDPUP will not print the pup verbosely,
but treat it as though PUPTRACEFLG were PEEK. This allows the
user to filter out "uninteresting" pups, e.g., routine routing
information pups (type 201 Q).

[Variable]

A list of pup types. If this variable is non-NIL, then GETPUP and
SENDPUP print verbosely only pups whose types appear on the
list, treating others as though PUPTRACEFLG were PEEK. This lets
the tracing be confined to only a certain class of pu p traffic.

(Variable]

The file to which pup tracing output is sent by default. The file
must be open. PUPTRACEFILE is initially T.

ETHERNET

ETHERNET

PUPTRACETIME

(PUPTRACE FLG REGION)

PUP LEVEL ONE FUNCTIONS

[Variable]

If this variable is true, then each printout of a pup is
accompanied by a relative timestamp (in seconds, with 2 decimal
places) of the current time (i.e., when the SENDPUP or GETPUP
was called; for incoming pups, this is not the same as when the
pup actually arrived).

[Function]

Creates a window for puptracing, and sets PUPTRACEFllE to it. If
PUPTRACEFllE is currently a window and FLG is Nil, closes the
window. Sets PUPTRACEFlG to be FLG. If REGION is supplied,
the window is created with that region. The window's
BUTTONEVENTFN is set to cycle PUPTRACEFlG through the
values Nil, T, and PEEK when the mouse is clicked in the window.

(PRINTPUP PACKET CALLER FILE PRE. NOTE DOFILTER) [Function]

PUPPRINTMACROS

Prints the information in the header and possibly data portions
of pup PACKET to FILE. If CALLER is supplied, it identifies the
direction of the pup (GET or PUT), and is printed in front of the
header. FILE defaults to PUPTRACEFllE. If PRE. NOTE is non-Nil,
it is PRIN1'ed first. If DOFILTER is true, then if PUP's type fails the
filtering criteria of PUPIGNORETYPES or PUPONl YTYPES, then
PUP is printed "tersely", i.e., as a I, +, i, or *, as described
above.

GETPUP and SENDPUP, when PUPTRACEFlG is non-Nil, call
(PRINTPUP PUP {'GET or 'PUT} Nil Nil T).

The form of printing provided by PRINTPUP can be influenced by
adding elements to PUPPRINTMACROS.

[Variable]

An association list of elements (PUPTYPE . MACRO) for printing
pups. The MACRO (CDR of each element) tells how to print the
information in a pup of type PUPTYPE (CAR of the element). If
MACRO is a litatom, then it is a function of two arguments (PUP

FILE) that is applied to the pup to do the printing. Otherwise,
MACRO is a list describing how to print the data portion of the
pup (the header is printed in a standard way).

The list form of MACRO consists of "commands" that specify a
"datatype" to interpret the data, and an indication of how far
that datatype extends in the packet. Each element of MACRO is
one of the following: (a) a byte offs~t (positive integer),
indicating the byte at which the next element, if any, takes
effect; (b) a negative integer, the absolute value of which is the
number of bytes until the next element, if any, takes effect; or (c)
an atom giving the format in which to print the data, one of the
following:

31.33

PUP LEVELONE FUNCTIONS

BYTES

CHARS

WORDS

INTEGERS

Print the data as 8-bit bytes, enclosed in brackets. This is the

default format to start with.

Print the data as (8-bit) characters. Non-printing characters are
printed as if the format were BYTES, except that the sequence
15Q, 12Q is printed specially as [crlf].

Print the data as 16-bit integers, separated by commas (or the
current SEPR).

Print the data as 32-bit integers, separated by commas (or the
current SEPR). Note: the singular BYTE, CHAR, WORD, INTEGER

are accepted as synonyms for these four commands.

SEPR Set the separator for WORDS and INTEGERS to be the next
element of the macro. The separator is initially the two

IFSSTRING

FINALLY

T

REPEAT

characters, comma, space.

Interprets the data as a 16-bit length followed by that many 8-bit
bytes or characters. If the current datatype is BYTES, leaves it
alone; otherwise, sets it to be CHARS.

If there is still data left in the packet by the time processing
reaches this command, prints" '" If and stops.

The next element of the macro is printed when the end of the
packet is reached (or printing stops because of a ...). This
command does not alter the datatype, and can appear anywhere
in the macro as long as it is encountered before the actual end of
the packet.

Perform a TERPRI.

The remainder of the macro is itself treated as a macro to be
applied over and over until the packet is exhausted. Note that
the offsets specified in the macro must be in the relative form,
i.e., negative integers. For example, the macro (INTEGERS 4
REPEAT BYTES -2 WORDS ·4) says to print the first 4 bytes of the
data as one 32-bit integer, then print the rest of the data as sets
of 2 8-bit bytes and 2 16·bit words.

Only as much of the macro is processed as is needed to print the
data in the given packet. The default macro for printing a pup is
(BYTES 12 ...), meaning to print the first up to 12 bytes as bytes,
and then print" ... If if there is anything left.

(PUP.ECHOUSER HOST ECHOSTREAM INTERVAL NTIMES) [Function]

31 34

Sends dummy packets to be echoed by the host HOST. Can be
used as a simple test of the functioning of the Ethernet and the
host.

HOSTis the pup host to send the packets to. ECHOSTREAM is the
stream for printing status information. INTERVAL is the interval
(in milliseconds) to wait for the packet to be echoed (default
1000). NTIMES is the number of packets to send (default 1000).

ETHERNET

ETHERNET

PUP LEVELONE FUNCTIONS

As each packet is sent and received, characters are printed to
ECHOSTREAM as follows:

Printed when a packet is sent.

+ Printed when an echo packet is sucessfully received.

Printed when an echo packet has not been received after
INTERVAL milliseconds.

? Printed when a packet is received, but it isn't an echo packet or
an error packet.

(late) Printed when an error packet is received, after the echo request
timed out.

The trace can be used to test the functioning of the ethernet and
host. For example, if the trace is ! + ! + ! + ! + ! +, the host is
listening and echoing correctly. LLLL!. indicates that for some
reason the host is not responding. ! + !.!.!(late).!(late)(late) +

indicates that the packets are being echoed, but not
immediately.

The following functions are used by PRINTPUP and similar
functions, and may be of interest in special cases.

(PORTSTRING NETHOST SOCKEn [Function]

Converts the pup address NETHOST, SOCKET into octal string
format as follows: NET#HOST#SOCKET. NETHOST may be a port
(dotted pair of nethost and socket), in which case SOCKET is
ignored, and the socket portion of NETHOST is omitted from the
string if it is zero.

(PRINTPUPROUTE PACKET CALLER FILE) [Function]

Prints the source and destination addresses of pup PACKET to
FILE in the PORTSTRING format, preceded by CALLER

(interpreted as with PRINTPUP).

(PRINTPACKETDATA BASE OFFSET MACRO LENGTH FILE) [Function]

Prints data according to MACRO, which is a list interpreted as
described under PUPPRINTMACROS, to FILE. The data starts at
BASE and extends for LENGTH bytes. The actual printing starts at
the OFFSETth byte, which defaults to zero. For example,
PRINTPUP ordinarily calls (PRINTPACKETDATA (fetch
PUPCONTENTS of PUP) 0 MACRO (IDIFFERENCE (fetch
PUPlENGTH of PUP) 20) FILE).

(PRINTCONSTANT VAR CONSTANTLIST FILE PREFIX) [Function1

CONSTANTLIST is a list of pairs (VARNAME VALUE), of the form
given to the CONSTANTS File Package Command.
PRINTCONSTANT prints VAR to FILE, followed in parentheses by

31.35

PUP LEVEL ONE FUNCTIONS

(OCTALSTRING N)

31.6 NS Level One Functions

31.6.1 Creating and Managing XIPs

(ALLOCA TE.XIP)

(RELEASE.XIP XIP)

31.36

the VARNAME out of CONSTANTLlSTwhose VALUE is EQ to VAR,

or ? if it finds no such element. If PREFIX is non-NIL and is an
initial substring of the selected VARNA ME, then VARNAME is
printed without the prefix.

For example, if FOOCONSTANTS is «FOO.REQUEST 1)

(FOO,ANSWER 2) (FOO,ERROR 3)), then (PRINTCONSTANT 2
FOOCONSTANTS T "FOO,'O) produces"2 (ANSWER)".

[Function]

Returns a string of octal digits representing N in radix 8.

The functions in this section are used to implement level two and
higher NS protocols. The packets used in the NS protocol are
termed Xerox Internet Packets (XIPs). The. functions for
manipulating XIPs are similar to those for managing PU Ps, so will
be described in less detail here. The major difference is that NS
host addresses are 48-bit numbers. Since Interlisp-D cannot
currently represent 48-bit numbers directly as integers, there is
an interim form called NSHOSTNUMBER, which is defined as a
TYPERECORD of three fields, each of them being a 16-bit portion
of the 48-bit number.

There is a record XIP that overlays the data portion of an
ETHERPACKET and describes the format ofaXIP. This record
defines the following fields: XIPLENGTH (16 bits), XIPTCONTROL
(transmit control, 8 bits, cleared when a XIP is transmitted),
XIPTYPE (8 bits), XIPDESTNET (32 bits), XIPDESTHOST (an
NSHOSTNUMBER), XIPDESTSOCKET (16 bits), and
XIPSOURCENET, XIPSOURCEHOST, and XIPSOURCESOCKET,
analagously. The field XIPCONTENTS is a pointer to the start of
the data portion of the XIP.

[Function]

Returns a (possibly used) XIP. As with ALLOCATE.PUP, the
header fields are guaranteed to be zero, but there may be
garbage in the data portion if the pup had been recycled.

[Function]

Releases XIP to the free pool.

ETHERNET

31.6.2 NS Sockets

NS LEVELONE FUNCTIONS

As with pups, XIPs are sent and received on a socket. The same
comments apply as with pup sockets (page 31.29), except that NS
socket numbers are only 16 bits.

(OPENNSOCKET SKT# IFCLASH) [Function]

Opens a new NS socket. If SKT# is Nil (the normal case), a socket
number is chosen automatically, guaranteed to be unique, and
probably different from any socket opened this way in the last 18
hours. If a specific local socket is desired, as is typically the case
when implementing a server, SKT# is given, and must be a (u p to
16-bit) number. IFCLASH governs what to do if SKT# is already in
use: if IFCLASH is Nil, an error is generated; if IFCLASH is ACCEPT,
the socket is quietly returned; if IFCLASH is FAil, then
OPENNSOCKET returns Nil without causing an error.

(ClOSENSOCKET NSOC NOERRORFLG) [Function]

(NSOCKETNUMBER NSOC)

(NSOCKETEVENT NSOC)

31.6.3 Sending and Receiving XIPs

(SENDXIP NSOC XIP)

(GETXIP NSOC WAin

ETHERNET

Closes and releases socket NSOC. If NSOC is T, closes all NS
sockets (this must be used with caution, since it will also close
system sockets!). If NSOC is already closed, an error is generated
unless NOERRORFLG is true.

[Function]

Returns the socket number (a 16-bit integer) of NSOC.

[Function]

Returns the EVENT of NSOC. This event is notified whenever a
XIP arrives on NSOC.

[Function]

Sends XIP on sock~t NSOC. If any of the XIPSOURCESHOST,
XIPSOURCENET, or XIPSOURCESOCKET fields is zero, SENDXIP
fills them in using the NS address of this machine and/or the
socket number of NSOC, as needed.

[Function]

Returns the next XIP that has arrived addressed to socket NSOC.

If there are no XIPs waiting on NSOC, then GETXIP returns Nil, or
waits for a XIP to arrive if WAITis T. If WAITis an integer, GETXIP
interprets it as a number of milliseconds to wait, finally returning
Nil ifaXIP does not arrive within that time.

31.37

NS LEVEL ONE FUNCTIONS

(DISCARDXIPS NSOQ [Function]

Discards without examination any XIPs that have arrived on
NSOC and not yet been read by a GETXIP.

(EXCHANGEXIPS SOC OUTXIP IDFIL TER TlMEOUn [Function]

31.6.4 NS Debugging Aids

Useful for simple NS packet exchange protoc!s. Sends OUTXIP on
SOC, then waits for a responding XIP, which it returns. If
IDFIL TER is true, ignores XIPs whose packet exchange ID (the first
32 bits of the data portion) is different from that of OUTXIP.

TIMEOUT is the length of time (msecs) to wait for a response
before giving up and returning NIL. TIMEOUT defaults to
\ETHERTIMEOUT. EXCHANGEXIPS discards without examination
any XIPs that are currently waiting on SOC before OUTXIP gets
sent.

XIPs can be printed automatically by SENDXIP and GETXIP

analogously to the way pups are. The following variables
behave with respect to XIPs the same way that the corresponding
PUP-named variables behave with respect to PUPs:
XIPTRACEFLG, XIPTRACEFILE, XIPIGNORETYPES, XIPONL YTYPES,

XIPPRINTMACROS. In addition, the functions PRINTXIP,

PRINTXIPROUTE, XIPTRACE, and NS.ECHOUSER are directly
analogous to PRINTPUP, PRINTPUPROUTE, PUPTRACE, and
PUP.ECHOUSER. See page 31.32.

31.7 Support for Other Level One Protocols

(RESTART.ETHER)

3138

Raw packets other than of type PUP or NS can also be sent and
received. This section describes facilities to support such
protocols. Many of these functions have a \ in their names to
designate that they are system internal, not to be dealt with as
casually as user-level functions.

[Function]

This function is intended to be invoked from the executive on
those rare occasions when the Ethernet appears completely
unresponsive, due to Lisp having gotten into a bad state.
RESTART.ETHER reinitializes Lisp's Ethernet driver(s), just as
when the Lisp system is started up following a LOGOUT, SYSOUT,

etc. This aborts any Ethernet activity and dears several internal
caches, including the routing table.

ETH ERNET

ETHERNET

(\ALLOCATE.ETHERPACKET)

SUPPORT FOR OTH ER LEVEL ONE PROTOCOLS

[Function]

Returns an ETHERPACKET datum. Enough of the packet is
cleared so that if the packet represents a PUP or NS packet, that
its header is all zeros; no guarantee is made about the remainder
of the packet.

(\RELEASE.ETHERPACKET EPKn [Function]

\LOCALNOBS

Returns EPKT to the pool of free packets. This operation is
dangerous if the caller actually is still holding on to EPKT, e.g., in
some queue, since this packet could be returned to someone else
(via \ALLOCATE.ETHERPACKET) and suffer the resulting
contention.

From a logical standpoint, programs need never call
\RELEASE.ETHERPACKET, since the packets are eventually
garbage-collected after all pointers to them drop. However,
since the packets are so large, normal garbage collections tend
not to occur frequently enough. Thus, for best performance, a
well-disciplined program should explicitly release packets when
it knows it is finished with them.

A locally-connected network for the transmission and receipt of
Ether packets is specified by a network descriptor block, an
object of type NOB. There is one NOB for each
directly-connected network; ordinarily there is only one. The
NOB contains information specific to the network, e.g., its PUP
and NS network numbers, and information about how to send
and receive packets on it.

[Variable]

The first NOB connected to this machine, or NIL if there is no
network. Any other NOBs are linked to this first one via the
NOBNEXT field of the NOB.

In order to transmit an Ether packet, a program must specify the
packet's type and its immediate destination. The type is a 16-bit
integer identifying the packet's protocol. There are preassigned
types for PUP and NS. The destination is a host address on the
local network, in whatever form the local network uses for
addressing; it is not necessarily related to the logical ultimate
destination of the packet. Determining the immediate
destination of a packet is the task of routing. The functions
SENOPUP and SENOXIP take care of this for the PUP and NS
protocols, routing a packet directly to its destination if that host
is on the local network, or routing it to a gateway if the host is on
some other network accessible via the gateway. Of course, a
gateway must know about the type (protocol) of a packet in
order to be able to forward it.

31.39

SUPPORT FOR OTHER LEVELONE PROTOCOLS

31.40

(ENCAPSULATE.ETHERPACKET NOB PACKET POH NBYTES ETYPE) [Function]

Encapsulates PACKET for transmission on network NOB. PDH is
the physical destination host (e.g., an 8-bit pup host number or a
48-bit NS host number); NBYTES is the length of the packet in
bytes; ETYPE is the packet's encapsulation type (an integer).

(TRANSMIT.ETHERPACKET NOB PACKEn [Function]

Transmits PACKET, which must already have been encapsulated,
on network NOB. Disposition of the packet after transmission is
complete is determined by the value of PACKETs EPREQUEUE
field.

In order to receive Ether packets of type other than PUP or NS,
the programmer must specify what to do with incoming packets.
Lisp maintains a set of packet filters, functions whose job it is to
appropriately dispose of incoming packets of the kind they want.
When a packet arrives, the Ethernet driv-er calls each filter
function in turn until it finds one that accepts the packet. The
filter function is called with two arguments: (PACKET TYPE),
where PACKET is the actual packet, and TYPE is its Ethernet
encapsulation type (a number). If a filter function accepts the
packet, it should do what it wants to with it, and return T; else it
should return NIL, allowing other packet filters to see the packet.

Since the filter function is run at interrupt level, it should keep its
computation to a minimum. For example, if there is a lot to be
done with the packet, the filter function can place it on a queue
and notify another process of its arrival.

The system already supplies packet filters for packets of type PUP
and NS; these filters enqueue the incoming packet on the input
queue of the socket to which the packet is addressed, after
checking that the packet is well-formed and indeed addressed to
an existing socket on this machine.

Incoming packets have their EPNETWORK field filled in with the
NOB of the network on which the packet arrived.

(\AOO.PACKET.FIL TER FIL TER) [Function]

Adds function FIL TER to the list of packet filters if it is not already
there.

(\DEL.PACKET.FIL TER FILTER) [Function]

Removes FIL TER from the list of packet filters.

(\CHECKSUM BASE NWOROS INITSUM) [Function]

Computes the one's complement add and cycle checksum for the
NWOROS words starting at address BASE. If INITSUM is supplied,
it is treated as the accumulated checksum for some set of words

ETHERNET

SUPPORT FOR OTHER LEVEL ONE PROTOCOLS

preceding BASE; normally INITSUM is omitted (and thus treated
as zero).

(PRINTPACKET PACKET CALLER FILE PRE. NOTE DOFILTER) [Function]

\PACKET.PRINTERS

Prints PACKET by invoking a function appropriate to PACKETs

type. See PRINTPUP for the intended meaning of the other
arguments. In order for PRINTPACKET to work on a
non-standard packet, there must be information on the list
\PACKET.PRINTERS.

[Variable]

An association list mapping packet type into the name of a
function for printing that type of packet.

31.8 The SYSQUEUE mechanism

ETHERNET

(\ENQUEUE 0 ITEM)

(\DEQU EU E 0)

The SVSQUEUE facility provides a low-level queueing facility.
The functions described herein are all system internal: they can
cause much confusion if misused.

A SVSQUEUE is a datum containing a pointer to the first element
of the queue and a pointer to the last; each item in the queue
points to the next via a pointer field located at offset 0 in the
item (its QLlNK field in the QABlEITEM record). A SVSQUEUE
can be created by calling (NCREATE 'SYSQUEUE).

[Function]

Enqueues ITEM on 0, i.e., links it to the tail of the queue,
updating O'S tail pointer appropriately.

[Function]

Removes the first item from 0 and returns it, or returns Nil if 0 is
empty.

(\UNQUEUE 0 ITEM NOERRORFLG) [Function]

(\QUEUElENGTH 0)

(\ONQUEUE ITEM 0)

Removes the ITEM from 0, wherever it is located in the queue,
and returns it. If ITEM is not in 0, causes an error, unless
NOERRORFLG is true, in which case it returns NIl.

[Function}

Returns the number of elements in O.

[Function]

True if ITEM is an element of O.

31 41

THE SYSQUEUE MECHANISM

[This page intentionally left blank]

3142 ETHERNET

A

(A E 1 ... EM) (Editor Command) II: 16.32

AOOOn (gensym) I: 2.11

ABBREVLST (Variable) III: 26.46; 26.47
(ABS X) I: 7.4

ACCESS (File Attribute) III: 24.19
Access chain (on stack) I: 11.3

ACCESSFNS (Record Type) I: 8.12; 8.14

1ACTlVATEFLG (Variable) III: 26.36

Active frame I: 11.3

(ADD DATUM ITEM,'TEM2 ...) (Change Word) I:

8.18

ADD (File Package Command Property) II: 17.45
(\ADD.PACKET.FILTER FILTER) (Function) III: 31.40

(ADD.PROCESS FORM PROP 1 VALUE, ... PROPN

VALUEN) II: 23.2

(ADD1 X) I: 7.6

(ADDFILE FILE ---) II: 17.19

(ADDMENU MENU WINDOW POSITION
DON TOPENFL G) III: 28.38

(ADDPROP A TM PROP NEW FLG) I: 2.6

(ADDSPELL X SPLST N) II: 20.21; 20.23

ADDSPELLFLG (Variable) II: 20.13; 17.5; 20.16,22

(ADDTOCOMS COMS NAME TYPE NEAR L1STNAME)
II: 17.48

(ADDTOFILE NAME TYPE FILE NEAR L1STNAME) II:
17.48

(ADDTOFILES?-) II: 17.13

(ADDTOSCRATCHLIST VALUE) I: 3.8

(ADDTOVARVARX,X2,,,XN) II: 17.54; 17.36

(ADDVARS (VAR, • LST,) ... (VARN' LSTN)} (File

Package Command) II: 17.36
(ADIEU VAL) I: 11.21

(ADJUSTCURSORPOSITION DEL TAX DELTA y) III:
30.17

ADV-PROG (Function) II: 15.10-11

ADV-RETURN (Function) II: 15.10-11
ADV-SETQ (Function) ,,: 15.10-11

(ADVICE FN 1 ... FN N) (File Package Command) II:

17.35; 15.13
ADVICE (File Package Type) II: 17.22
ADVICE (Property Name) II: 15.12-13; 17.18

INDEX

INPEX

Ad vice to fu ncti ons II: 15.9

ADVINFOLST (Variable) II: 15.12-13
(ADVISE FN, ... FNN) (File Package Command) II:

17.34; 15.13
(ADVISEFNWHENWHEREWHAn II: 15.11; 15.10
ADVISED (Property Name) I: 10.9; II: 15.11
ADVISEDFNS (Variable) II: 15.11-12

(ADVISEDUMPXFLG) II: 15.13

Advising functions II: 15.9
AFTER (as argument to ADVISE) II: 15.10; 15.11

AFTER (as argument to BREAKIN) II: 15.6; 14.5

After (DEdit Command) II: 16.7

AFTER (in INSERT editor command) II: 16.33

AFTER (in MOVE editor command) II: 16.38
AFTER L1TATOM (Prog. Asst. Command) II: 13.15;

13.24,33
AFTEREXIT (Process Property) II: 23.3

AFTERMOVEFN (Window Property) III: 28.20

AFTERSYSOUTFORMS (Variable) I: 12.9

ALIAS (Property Name) II: 15.5; 15.8

ALINK (in stack frame) I: 11.3

(ALlSTS(VAR , KEY, KEY2"')'" (VARNKEY3KEY4

... » (File Package Command) II: 17.37
ALiSTS (File Package Type) II: 17.22

ALL (in event specification) II: 13.7

ALL (in PROP file package command) II: 17.37
(ALLATIACHEDWINDOWS WINDOW) III: 28.48

(\ALLOCATE.ETHERPACKET) (Function) III: 31.39

(ALLOCATE.PUP) III: 31.28
(ALLOCATE.XIP) III: 31.36

(ALLOCSTRING N INITCHAR OLD FATFLG) I: 4.2
&ALLOW-OTHER-KEYS (DEFMACRO keyword) I:

10.26
(ALLOW.BUTION.EVENTS) II: 23.15

ALLPROP (Litatom) I: 10.10; II: 13.29; 17.5,54
ALONE (type of read macro) III: 25.40

(ALPHORDER A B CASEARRA y) I: 3.17

already undone (Printed by System) II: 13.13; 13.42
ALWA YS FORM (1.S. Operator) I: 9.11
ALWA YS (type of read macro) III: 25.40
AMBIGUOUS (printed by DWIM) II: 20.16
AMBIGl:JOUS DATA PATH (Error Message) I: 8.3

INDEX.l

INDEX

AMBIGUOUS RECORD FIELD (Error Message) I: 8.2
AMONG (Masterscope Path Option) II: 19.16
ANALYZE SET (Masterscope Command) II: 19.4

(AND Xl X2 ... XN) I: 9.3

AND (in event specification) II: 13.7
AND (in USE command) II: 13.10
ANSWER (Variable) III: 26.15
(ANTILOG X) I: 7.13
* ANY* (in edit pattern) II: 16.18
APPEND (File access) III: 24.2

(APPENDX1 X2'" XN) I: 3.5

(APPENDTOVAR VAR Xl X2'" XN) II: 17.55; 17.36

(APPENDVARS (VAR1 . LST1)'" (VARN . LSTN» (File

Package Command) II: 17 ~36
(APPLY FNARGLIST -) I: 10.11; II: 18.19

(APPLY* FN ARG1 ARG2'" ARGN) I: 10.12; II:

18.19
APPLY-format input II: 13.4
Applying functions to arguments I: 10.11
Approval of DWIM corrections II: 20.4; 20.3
APPROVEFLG (Variable) II: 20.14; 20.22,24
(APROPOS STRING ALLFLG QUIETFLG OUTPUn I:

2.11
Arbitrary-size integers I: 7.1
(ARCCOS X RADIANSFLG) I: 7.14
ARCCOS: ARG NOT IN RANGE (Error Message) I:

7.14
* ARCHIVE* (history list property) II: 13.33
ARCHIVE EventSpec (Prog. Asst. Command) II:

13.16
ARCHIVEFLG (Variable) II: 13.23
ARCHIVEFN (Variable) II: 13.23; 13.16
ARCHIVELST (Variable) II: 13.31; 13.16
(ARCSIN X RADIANSFLG) I: 7.14
ARCSIN: ARG NOT IN RANGE (Error Message) I:

7.14
(ARCTAN X RADIANSFLG) I: 7.14
(ARCTAN2 Y X RADIANSFLG) I: 7.14
SETARE SET (Masterscope Command) II: 19.5
(ARG VAR M) I: 10.5
* ARGN (Stack blip) I: 11.15
ARG NOT ARRAY (Error Message) I: 5.1-2; II: 14.30
ARG NOT HARRAY (Errpr Message) II: 14.31
ARG NOT LIST (Error Message) I: 3.2,5,15-16; II:

14.28
ARG NOT LlTATOM (Error Message) I: 2.3,5,7; 9.8;

10.3,11; II: 14.28; 17.54
(ARGLIST FN) I: 10.8; II: 14.10

INDEX.2

ARGNAMES (PropertyName) I: 10.8
ARGS (Break Command) II: 14.10
... ARGS (history list property) II: 13.33
ARGS NOT AVAILABLE (Error Message) I: 10.8
(ARGTYPE FN) I: 10.7
Argument lists of functions I: 10.2
ARGVAL (stack blip) I: 11.16
Arithmetic I: 7.1
AROUND (as argument to ADVISE) II: 15.10;

15.11-12
AROUND (as argument to BREAKIN) II: 15.6; 14.5
(ARRA Y SIZE TYPE INIT ORIG -) I: 5.1
(ARRAYORIG ARRA y) I: 5.2
(ARRAYPX) 1:5.1;9.2
ARRAYRECORD (Record Type) I: 8.8
Arrays I: 5.1; 9.2
ARRAYS FULL (Error Message) II: 14.29; 22.5
(ARRA YSIZE ARRA y) I: 5.2
(ARRA YTYP ARRA y) I: 5.2
AS VAR (I.S. Operator) I: 9.15
ASCENT (Font property) III: 27.27
(ASKUSER WAIT DEFAULT MESS KEYLST

TYPEAHEAD LlSPXPRNTFLG OPTIONSLST FILE)
III: 26.12

ASKUSERTTBL (Variable) III: 26.17
Assignments in CLISP II: 21.9
Assignments in pattern matching I: 12.28
(ASSOC KEY ALSn I: 3.15
Association lists I: 3.15
Association lists in EVALA I: 10.13
ASSOCRECORD (Record Type) I: 8.8
(ATOM X) I: 2.1; 9.1
ATOM HASH TABLE FULL (Error Message) II: 14.28
ATOM TOO LONG (Error Message) I: 2.2; II: 14.28
ATOMRECORD (Record Type) I: 8.9
Atoms I: 2.1; 9.1
(ATTACH X L) I: 3.5
Attached windows III: 28.45; 28.1
(ATTACHEDWINDOWS WINDOW COM) III: 28.47
ATTACHEDWINDOWS (Window Property) III:

28.54
(ATTACHMENU MENU MAINWINDOW EDGE

POSITIONONEDGE NOOPENFLG) III: 28.48
~ATTACHWINDOW WINDOWTOATTACH

MAINWINDOW EDGE POSITIONONEDGE
WINDOWCOMACTION) III: 28.45

ATTEMPT TO BIND NIL OR T (Error Message) I: 9.8;
10.3; II: 14.30

INDEX

attempt to read DATA TYPE with different field

specification than currently defined (Error
Message) III: 25.18

ATTEMPT TO RPLAC NIL (Error Message) I: 3.2; II:
14.28

ATTEMPT TO SET NIL (Error Message) I: 2.3; II:

14.28
ATTEMPTTOSETT (ErrorMessage) I: 2.3
ATTEMPT TO USE ITEM OF INCORRECT: TYPE (Error

Message) II: 14.30
(AU-REVOI R VAL) I: 11.21
AUTHOR (File Attribute) III: 24.18
AUTOBACKTRACEFLG (Variable) II: 14.15
AUTOCOMPLETEFLG (ASKUSER option) III: 26.17
AUTOPROCESSFLG (Variable) II: 23.1
&AUX (DEFMACRO keyword) I: 10.26
A VOl 01 NG SET (Masterscope Path Option) II: 19.16
(AWAIT. EVENT EVENT TIMEOUT TlMERP) II: 23.7

B
(B E1'" EM) (EditorCommand) II: 16.32

Background menu III: 28.6
Background shade III: 30.22
BACKGROUNDBUTTONEVENTFN (Variable) III:

28.29
BackgroundCopyMenu (Variable) III: 28.8
BackgroundCopyMenuCommands (Variable) III:

28.8
BACKGROUNDCURSORINFN (Variable) III: 28.29
BACKGROUNDCURSORMOVEDFN (Variable) III:

28.29
BACKGROUNDCURSOROUTFN (Variable) III: 28.29
BackgroundMenu (Variable) III: 28.8
BackgroundMenuCommands (Variable) III: 28.8
BACKGROUNDPAGEFREQ (Variable) I: 12.10
BACKGROUNDWHENSELECTEDFN (Function) III:

28.40
Backquote (') III: 25.42
Backslash functions I: 10.10
Backspace III: 30.5; 25.2; 26.23
(BACKTRACE IPOS EPOS FLAGS FILE PRINTFN) I:

11.11
Backtrace break commands II: 14.9
Backtrace frame window II: 14.3
Backtrace functions I: 11.11
BACKTRACEFONT (Variable) II: 14.15
BAD FILE NAME (Error Message) II: 14.31
BAD FILE PACKAGE COMMAND (Error Message) II:

17.34

INDEX

BAD PROG BINDING (Error Message) II: 18.23
BAD SETQ (Error Message) II: 18.23
BAD SYSOUT FILE (Error Message) II: 14.29
(BAKTRACE IPOS EPOS SKIPFNS FLAGS FILE) I:

11.11
BAKTRACELST (Variable) I: 11.12
Barson cursor III: 30.16
.BASE (PRINTOUT command) III: 25.27
Basic frames on stack I: 11.3; 11.1,6
(BCOMPLFILESCFILE--) II: 18.21; 18.17-18
(BEEPOFF) III: 30.24

. (BEEPON FREQ) III: 30.24

INDEX

BEFORE (as argument to ADVISE) II: 15.10; 15.11
BEFORE (as argument to BREAKIN) II: 15.6; 14.5
Before (DEdit Command) II: 16.7
BEFORE (in INSERT editor command) II: 16.33
BEFORE (in MOVE editor command) II: 16.38
BEFORE LlTATOM (Prog. Asst. Command) II: 13.15;

13.24,33
BEFOREEXIT (Process Property) II: 23.3
BEFORESYSOUTFORMS (Variable) I: 12.9
\BeginDST (Variable) I: 12.16
Bell (in history event) II: 13.19; 13.13,31,39
Bell in terminal III: 30.24
Bells printed by DWIM II: 20.3
(BELOW COM X) (Editor Command) II: 16.25
(BELOW COM) (Editor Command) II: 16.25
BF PA TTERN NIL (Editor Command) II: 16.23
(BF PA TTERN) (Editor Command) II: 16.23
BF PA TTERN T (Editor Command) II: 16.23
BF PA TTERN (Editor Command) II: 16.23
(BI N M) (Editor Command) II: 16.40
(BI N) (Editor Command) II: 16.41
Bignums I: 7.1
(BIN STREAM) III: 25.5
(BIND COMS 1 ... COMSN) (Editor Command) II:

16.63
BIND VARS (1.5. Operator) I: 9.12
BIND VAR (1.5. Operator) I: 9.12
BIND (in Masterscope template) II: 19.20
BIND (Masterscope Relation) II: 19.9
Bindings in stack frames I: 11.6
BINDS (Litatom) II: 21.21
BIR (Font face) III: 27.26
Bit tables I: 4.6
(BITBL T SOURCE SOURCELEFT SOURCEBOTTOM

DES TINA TlON DES TINA TlONLEFT
DES TINA TlONBOTTOM WIDTH HEIGHT

INDEX.3

INDEX

SOURCETYPE OPERA TlON TEXTURE
CLIPPINGREGION) III: 27.14

(BITCLEAR N MASK) (Macro) I: 7.9
BITMAP (Data Type) III: 27.3
(BITMAPSIT BITMAP X Y NEWVALUE) 111.: 27.3
(BITMAPCOPY BITMAP) III: 27.4
(SITMAPCREATE WIDTH HEIGHT BITSPERPIXEL) III:

27.3
(BITMAPHEIGHT BITMAP) III: 27.3
(BITMAPIMAGESIZE BITMAP DIMENSION STREAM)

III: 27.16
(BITMAPP X) III: 27.3
Bitmaps III: 27.3
(BITMAPWI DTH BITMAP) III: 27.3
BITS (as a field specification) I: 8.21
BITS (record field type) I: 8.10
(BITSET N MASK) (Macro) I: 7.9
(BITSPERPIXEL BITMAP) III: 27.3
(BlnEST N MASK) (Macro) I: 7.9
(BK N) (Editor Command) II: 16.16
BK (EditorCommand) II: 16.16
(BKLlNBUF STR) III: 30.12
(BKSYSBUF X FLG RDTBL) III: 30.11; 30.12
BLACKSHADE (Variable) III: 27.7
BLINK (in stack frame) I: 11.3
Blips on the stack I: 11.14
(BLIPSCAN BLIPTYP IPOS) I: 11.16
(BLlPVAL BUPTYP IPOS FLG) I: 11.16
BLKAPPL Y (Function) II: 18.19
BLKAPPLY* (Function) II: 18.19
BLKAPPL YFNS (in Masterscope Set Specification) II:

19.12
BLKAPPLYFNS (Variable) II: 18.19; 18.18
BLKFNS (in Masterscope Set Specification) II: 19.12
BLKLIBRARY (Variable) II: 18.20; 18.18
BLKLIBRARYDEF (Property Name) II: 18.20
BLKNAME (Variable) II: 18.18
(BLOCK MSECSWAIT TIMER) II: 23.5
Block compiling II: 18.17
Block compiling functions II: 18.20
Block declarations II: 18.17; 17.42
Block library II: 18.19
(BLOCKCOMPILE BLKNAME BLKFNS ENTRIES FLG)

II: 18.20; 18.18
BLOCKED (Printed by Editor) II: 16.65
BLOCKRECORD (Record Type) I: 8.11
(BLOCKS BLOCK 1.'. BLOCKN) (File Package

Command) II: 17.42; 18.17

INDEX.4

(BL TSHADE TEXTURE DESTINA TlON
DES TINA TlONLEFT DES TINA TlONBOTTOM
WIDTH HEIGHT OPERA TlON CLIPPINGREGION)

III: 27.16
(BO N) (Editor Command) II: 16.41
&BODY (DEFMACRO keyword) I: 10.25
BOLDITALIC (Font face) III: 27.26
BORDER (Window Property) III: 28.33
BOTH (File access) III: 24.2
(BOTH TEMPLATE 1 TEMP LA TE 2) (in Masterscope

template) II: 19.20
BOnOM (as argument to ADVISE) II: 15.11
Bottom margin III: 27.11
(BOnOMOFGRIDCOORO GRIDY GRIDSPEC) III:

27.23
(BOUNDP VAR) I: 2.3
(BOUT STREAM BYTE) III: 25.9
(BOXCOU NT TYPE N) II: 22.8
BOXCURSOR (Variable) III: 28.9; 30.15
Boxing numbers I: 7.1
Boyer-Moore fast string searching algorithm III:

25.21
BQUOTE (Function) III: 25.42
Break (DEdit Command) II: 16.9
BREAK (Error Message) II: 14.29
(BREAKX) II: 15.5; 14.5; 15.1,7
BREAK (in backtrace) II: 14.9
BREAK (Interrupt Channel) II: 23.15; III: 30.3
BREAK (Syntax Class) III: 25.37
Break characters III: 25.36; 25.4; 30.10
Break commands II: 14.5; 14.17
Break expression II: 14.5; 14.12
BREAK INSERTED AFTER (Printed by BREAKIN) II:

15.7
Break package II: 14.1
Break windows II: 14.3; 14.1
Break within a break on FN (Printed by system) II:

14.16
(BREAK.NSFILlNG.CONNECTlON HOSn III: 24.38
(BREAKOFNWHENCOMS--) II: 15.4; 15.5,8
(BREAK1 BRKEXP BRKWHEN BRKFN BRKCOMS

BRKTYPE ERRORN) II: 14.16; 14.20; 15.1,3-6;
20.24

BREAKCHAR (Syntax Class) III: 25.35
(BREAKCHECK ERRORPOS ERXN)· II: 14.13;

14.19,22,27
BREAKCHK (Variable) II: 14.23
BREAKCOMSLST (Variable) II: 14.17
BREAKCONNECTION (Function) III: 24.37

INDEX

BREAKDELIMITER (Variable) II: 14.10
(BREAKDOWN FN1 ... FNN) II: 22.9

(BREAKIN FN WHERE WHEN COMS) II: 15.6; 14.5;
15.1,3-4,7-8

Breaki ng CLISP expressions II: 15.4
Breaking functions II: 15.1
BREAKMACROS (Variable) II: 14.17; 14.16
(BREAKREAD TYPE) II: 14.18
BREAKREGIONSPEC (Variable) II: 14.15
BREAKRESETFORMS (Variable) II: 14.18
(BRECOMPILE FILES CFILE FNS -) II: 18.21; 17.12;

18.17-18
BRKCOMS (Variable) II: 14.17; 14.7-8,16; 15.4
BRKDWNCOMPFLG (Variable) II: 22.11
(BRKDWNRESULTS RETURNVALUESFLG) II: 22.9
BRKDWNTYPE (Variable) II: 22.10; 22.11
BRKDWNTYPES (Variable) II: 22.10
BRKEXP (Variable) II: 14.5; 14.8,11-12,16; 15.4
BRKFILE (Variable) II: 14.17
BRKFN (Variable) II: 14.16; 14.6; 15.4
BRKINFO (Property Name) II: 15.4,7-8
BRKINFOLST (Variable) II: 15.7-8
BRKTYPE (Variable) II: 14.16
BRKWHEN (Variable) II: 14.16; 15.4
BROADSCOPE (Property Name) II: 21.28
BROKEN (Property Name) I: 10.9; II: 15.4
BROKEN-IN (Property Name) I: 10.9; II: 15.7; f5.8
BROKENFNS (Variable) II: 15.4,7; 20.24
Brushes for drawing curves III: 27.18
BT (Break Command) II: 14.9
BT (Break Window Command) II: 14.3
BT! (Break Window Command) II: 14.3
BTV (Break Command) II: 14.9
BTV! (Break Command) II: 14.9
BTV* (Break Command) II: 14.9
BTV + (Break Command) II: 14.9
BUF (Editor Command) III: 26.29
BUFFERS (File Attribute) III: 24.19
BUILDMAPFLG (Variable) II: 17.56; 17.5; 18.15
Bulk Data Transfer III: 31.24
Bury (Window Menu Command) III: 28.4
(BURYW WINDOW) III: 28.20
BUTTONEVENTFN (Window Property) III: 28.28;

28.38
(BUTTONEVENTINFN IMAGEOBJ WINDOWSTREAM

SELECTION RELX REL Y WINDOW HOSTSTREAM
BUTTON) (lMAGEFNS Method) III: 27.38

Buttons on mouse III: 30.17
BY FORM (without INION) (1.5. Operator) I: 9.14

INDEX

INDEX

BY FORM (with INION) (1.5. Operator) I: 9.14; 9.18
BY (in REPLACE editor command) II: 16.33
BYTE (as a field specification) I: 8.21
(BYTE SIZE POSITION) (Macro) I: 7.10
BYTE (record field type) I: 8.10
(BYTEPOSITION BYTESPEQ (Macro) I: 7.10
BYTESIZE (File A ttribute) III: 24.17
(BYTESIZE BYTESPEQ (Macro) I: 7.10

C
C (MAKEFILEoption) II: 17.10
C ... R functions I: 3.2
CAAR (Function) I: 3.2
CADR (Function) I: 3.2
CALCULATEREGION (Window Property) III: 28.20
CALL (in Masterscope template) II: 19.20
CALL (Masterscope Relation) II: 19.7
CALL DIRECTLY (Masterscope Relation) II: 19.8
CALL FOR EFFECT (Masterscope Relation) II: 19.9
CALL FOR VALUE (Masterscope Relation) II: 19.9
CALL INDIRECTLY (Masterscope Relation) II: 19.8
CALL SOMEHOW (Masterscope Relation) II: 19.8
(CALLS FN USEDATABASE-) II: 19.22
(CALLSCCODE FN--) II: 19.22
CAN'T - AT TOP (Printed by Editor) II: 16.15
CAN'T BE BOTH AN ENTRY AND THE BLOCK NAME

(Error Message) II: 18.22; 18.20
CAN'T FIND EITHER THE PREVIOUS VERSION ...

(Printed by System) II: 17.16
CANFILEDEF (File Package Type Property) II: 17.30
(CANONICAL.HOSTNAME HOSTNAME) III: 24.39
CAP (Editor Command) II: 16.52
(CARX) 1:3.1

CARlCDRERR (Variable) I: 3.1
#CAREFULCOLUMNS (Variable) III: 26.47
(CARET NEWCAREn III: 28.31
(CARETRATE ONRATE OFFRATE) III: 28.31
Carets III: 28.30
Carriage-return II: 13.37; III: 25.8; 25.4
Case arrays III: 25.21
(CASEARRAY OLDARRA y) III: 25.21
CAUTIOUS (DWIM mode) II: 20.4; 20.3,24; 21.4,6
CCODEP (data type) I: 10.6
(CCOoEP FN) I: 10.7
CDAR (Function) I: 3.2
CooR (Function) I: 3.2
(CDR X) I: 3.1

Center (DEdit Command) II: 16.8
.CENTER POS EXPR (PRINTOUT command) III: 25.29

INDEX.S

INDEX

.CENTER2 POS EXPR (PRINTOUT command) III:

25.29
CENTERFlG (Menu Field) III: 28.41

(CENTERPRINTINREGION EXP REGION STREAM) III:

27.21

CEXPR (Litatom) I: 10.7

CEXPR* (Litatom) I: 10.7

CFEXPR (Litatom) I: 10.7

CFEXPR* (Litatom) I: 10.7; 10.8
CH.DEFAUlT.DOMAIN (Variable) I: 12.3; III: 31.8

CH.DEFAUlT.ORGANIZATION (Variable) I: 12.3; III:

31.8

(CH.lSMEMBER GROUPNAME PROPERTY

SECONDARYPROPERTY NAME) III: 31.12

(CH.lIST.AlIASES OBJECTNAMEPA TTERN) III:

31.11

(CH.lIST.AlIASES.OF OBJECTPAITERN) III: 31.11
(CH.lIST.DOMAINS DOMAINPA ITERN) III: 31.11
(CH.lIST.OBJECTS OBJECTPATTERN PROPERTy) III:

31.11

(CH.lIST.ORGANIZA TIONS

ORGANIZATIONPATTERN) III: 31.11

(CH.lOOKUP.OBJECT OBJECTPATTERN) III: 31.10

CH.NET.HINT (Variable) I: 12.3; III: 31.9

(CH.RETRIEVE.ITEM OBJECTPA ITERN PROPERTY
INTERPRETATION) III: 31.11

(CH.RETRIEVE.MEMBERS OBJECTPA ITERN

PROPERTY -) III: 31.11

(CHANGE DATUM FORM) (Change Word) I: 8.19

(CHANGE @ TO E 1 ... EM) (Editor Command) II:

16.34

(CHANGEBACKGROUND SHADE -) III: 30.22

(CHANGEBACKGROUNDBORDER SHADE -) III:

30.23

(CHANGECAllERS OLD NEW TYPES FILES METHOD)

II: 17.28

CHANGECHAR (Variable) II: 16.30; III: 26.49
CHANGED (MARKASCHANGED reason) II: 17.18

changed, but not unsaved (Printed by Editor) II:

16.69
CHANGEFONT (Font class) III: 27.32
(CHANGEFONT FONT STREAM) III: 27.34
(CHANGENAME FN FROM TO) II: 15.8

CHANGEOFFSETFlG (Menu Field) III: 28.42
(CHANGEPROP X PROP 1 PROP2) I: 2.6

CHANGESARRA Y (Variable) II: 16.30

(CHANGESlICE N HISTORY -) I: 12.3; II: 13.21;
13.31

Changetran I: 8.17

INDEX.6

CHANGEWORD (Property Name) I: 8.19

(CHARACTER N) I: 2.13

Character codes I: 2.12

Character echoing III: 30.6

Character I/O III: 25.22
Character sets I: 2.14; III: 25.22

CHARACTERNAMES (Variable) I: 2.14

Characters I: 2.12
CHARACTERSETNAMES (Variable) I: 2.14

(CHARCODE CHAR) I: 2.13
CHARDElETE (syntax class) III: 30.5,8

(CHARSET STREAM CHARACTERSEn III: 25.23

(CHARWIDTH CHARCODE FONn III: 27.30

(CHARWIDTHY CHARCODE FONn III: 27.30

(CHCON X FLG RDTBL) I: 2.13
(CHCON1 X) I: 2.13

CHECK SET (Masterscope Command) II: 19.7

(CHECKIMPORTS FILES NOASKFLG) II: 17.43
(\CHECKSUM BASE NWORDS INITSUM) (Function)

111:31.40
CHOOZ (Function) II: 20.1 9

CL (Editor Command) II: 16.55; 21.27

Cl:FlG (Variable) II: 21.23

(CLDISABlE OP) I: 9.11; II: 21,26

(ClEANPOSlST PLSn I: 11.21

(CLEANUP FILE 1 FILE2'" FILEN) II: 17.12

CLEANUPOPTIONS (Variable) II: 17.12

Clear (DEdit Command) II: 16.8

Clear (Window Menu Command) III: 28.4
(ClEARBUF FILE FLG) III: 30.11; 30.12

Clearinghouse III: 31.8
(ClEARPUP PUP) III: 31.28

(ClEARSTK FLG) I: 11.9

CLEARSTKlST (Variable) I: 11.9

(CLEARW WINDOW) III: 28.31

CLINK (in stack frame) I~ 11.3
Clipping region III: 27.11
CLiSP II: 21.1; 20.8,10-11

ClISP (as CAR of form) II: 21.17

CLiSP (in Masterscope template) II: 19.20
CLiSP (MARKASCHANGED reason) II: 17.18
CLiSP and compiler II: 18.9,14
CLiSP declarations II: 21.12; 21.17
CLiSP interaction with user II: i1.6
CLiSP internal conventions II: 21.27
CLiSP operation II: 21.14
CLiSP words II: 20.9
CLlSP: (Editor Command) II: 21.26; 21.17
ClISPARRAY (Variable) II: 21.25; 21.17,26

INDEX

CLlSPCHARRA Y (Variable) II: 21.25

CLlSPCHARS (Variable) II: 21.25
(CLlSPDEC DECLSn II: 21.12; 21.25

CLlSPFLG (Variable) II: 21.25
CLlSPFONT (Font class) III: 27.32

CLlSPFORWORDSPLST (Variable) I: 9.10

CLiSPHELPFLG (Variable) II: 21.21; 21.6

CLlSPI.S.GAG (Variable) I: 9.20

CLiSPIFTRANFLG (Variable) II: 21.26

CLiSPIFWORDSPLST (Variable) I: 9.5
(CLISPIFY X EDITCHAIN) II: 21.22; 21.23; 17.11;

21.14
CLiSPIFY (MAKEFILEoption) II: 17.11; 21.26

(CLISPIFYFNS FN1'" FNN) II: 21.23

CLiSPIFYPACKFLG (Variable) II: 21.24
CLiSPIFYPRETTYFLG (Variable) I: 12.3; II: 21.26;

17.11; III: 26.48
CLiSPIFYUSERFN (Variable) II: 21.24

CLISPINFIX (Property Name) II: 21.29
CLiSPINFIXSPLST (Variable) II: 21.25; 21.9

CLiSPRECORDTYPES (Variable) I: 8.15
CLiSPRETRANFLG (Variable) II: 21.22; 21.17

(CLlSPTRAN X TRAN) II: 21.25

CLlSPTYPE (Property Name) II: 21.27; 21.28
CLlSPWORD (Property Name) I: 8.19; II: 21.29

(CLOCK N-) I: 12.15

Close (Window Menu Command) III: 28.3

(CLOSEALL ALLFLG) III: 24.5; 24.20

CLOSEBREAKWINDOWFLG (Variable) II: 14.15
(CLOSEF FILE) III: 24.4
(CLOSEF1 FILE) III: 24.4

CLOSEFN (WindowProperty) III: 28.15

(CLOSENSOCKET NSOC NOERRORFLG) III: 31.37
(CLOSEPUPSOCKET PUPSOC NOERRORFLG) III:

31.29
(CLOSEW WINDOW) III: 28.15

Closing and reopening files III: 24.20
CLREMPARSFLG (Variable) II: 21.23
(CLRHASH HARRA y) I: 6.2

(CLRPROMPT) III: 28.3
(CNDIR HOSTIDIR) III: 24.10

CNTRLV (syntax class) III: 30.6
CODE (Property Name) II: 17.27

CODERDTBL (Variable) III: 25.34

COLLECT FORM (1.5. Operator) "I: 9.10
COMMAND (Variable) III: 26.38
COMMENT (printed by editor) II: 16.48

COMMENT (printed by system) III: 26.43
Comment pointers II: 16.55; III: 26.44

INDEX

INDEX

COMMENT USED FOR VALUE (Error Message) II:

18.23
COMMENTFLG (Variable) III: 26.43

(COMMENT1 L -) III: 26.43
COMMENTFLG (Variable) III: 26.43; 26.45

COMMENTFONT (Font class) III: 27.32

COMMENTLINELENGTH (Variable) III: 27.34

Comments in functions III: 26.42

(COMPARE NAME 1 NAME2 TYPE SOURCE 1

SOURCE2) II: 17.29
(COMPAREDEFS NAME TYPE SOURCES) II: 17.29

(COMPARELISTS X y) I: 3.19

Comparing lists I: 3.19
(COMPILE X FLG) II: 18.14

COMPILE.EXT (Variable) II: 18.13

(COMPILE1 FN DEF-) II: 18.14

Compiled files II: 18.13

Compiled function objects I: 10.6
COMPILED ON (printed when file is loaded) II:

18.13

(COMPILEFILES FILE 1 FILE2'" FILEN) II: 17.14

COMPILEHEADER (Variable) II: 18.13

Compiler II: 18.1

Compiler error messages II: 18.22
Compiler functions II: 18.13; 18.20

Compiler printout II: 18.3

Compiler questions II: 18.1
COMPILERMACROPROPS (Variable) I: 10.22

COMPILETYPELST (Variable) I: 10.14; II: 18.11; 18.9
COMPILEUSERFN (Function) II: 18.12
COMPILEUSERFN (Variable) II: 18.9; 18.11

Compiling CLiSP II: 18.11; 18.9,14
Compiling data types II: 18.11

Compiling files II: 18.14; 18.21

Compiling FUNCTION II: 18.10

Compiling function calls II: 18.8
Compiling functional arguments II: 18.10
Compiling open functions II: 18.11
COMPLETEON (ASKUSER option) III: 26.16

COMPSET (Function) II: 18.1

Computed macros I: 10.23

(COMSX1'" XM) (EditorCommand) II: 16.59

(COMS COM 1 ... COM N) (File Package Command)

II: 17.40

(COMSQ COM1'" COMN) (Editor Command) II:

16.59

(CONCAT XI X2 ... XN) I: 4.4

(CONCATLIST L) I: 4.4

INDEX.?

INDEX

(COND CLAUSE, CLAUSE2'" CLAUSEK) I: 9.4

COND clause I: 9.4
CONFIRMFLG (ASK USER option) III: 26.15
Conjunctions in Masterscope II: 19.14
CONN HOSTIDIR (Prog. Asst. Command) III: 24.11
Connected directory III: 24.9
Connection Lost (Error Message) III: 24.41
(CONS X y) I: 3.1
(CONSCO.U NT N) II: 22.8
(CONSTANT X) II: 18.7
(CONSTANTS VAR, ... VARN) (File Package

Command) II: 17.37

(CONSTANTS VAR7 VAR2 '" VARN) II: 18.8

Constants in compiled code II: 18.7
Constru cti ng lists in CLiSP II: 21. 1 0
CONTAIN (File Package Command Property) II:

17.46
CONTAIN (Masterscope Relation) II: 19.10
CONTENTS (File Package Command Property) II:

17.46
CONTEXT (history list property) II: 13.33
Context switching I: 11.4
CONTINUE SAVING? (Printed by System) II: 13.41
CONTINUE WITH T CLAUSE (printed by DWIM) II:

20.7
Continuing an edit session II: 16.50
(CONTROL MODE TTBL) III: 30.10; 25.3,5
Control chain (on stack) I: 11.3
Control-A III: 30.5; 25.41; 26.23
Control-B (Interrupt Character) II: 14.27,29; 23.15;

III: 30.2
Control-character echoing III: 30.6
Control-D (lnterruptCharacter) II: 14.2,17,20;

16.49; 18.4; 23.14; III: 30.2; 30.11
CONTROL-E (Error Message) II: 14.31
Control-E (Interrupt Character) II: 13.18;

14.2,20,31; 15.7; 20.5,7; 23.14; III: 30.2; 24.40;
30.11

Control-F III: 26.23
Control-G (inhistorylist) II: 13.19; 13.13
Control-G (lnterruptCharacter) II: 23.14; III: 30.2;

30.11
Control-L III: 25.26
Control-P (interruptcharacter) II: 14.10; III: 30.2;

30.11
Control-Q III: 30.5; 25.2,41; 26.23
Control-R III: 30.6; 26.23
Control-T (Interrupt Character) III: 30.2
Control-V III: 30.6; 25.3

INDEX.S

Control-W III: 30.6; 25.2; 26.23
Control-X III: 26.24
Control-X (EditorCommand) II: 16.18
Control-Y II: 16.75; III: 25.42; 26.23
Control-Z (EditorCommand) II: 16.18
CONVERT.FILE.TO.TYPE.FOR.PRINTER (Function)

III: 29.2
Coordinate Systems III: 28.23
COPY (DECLARE: Option) II: 17.41
Copy (DEdit Command) II: 16.9
(COpy X) I: 3.8
(COpy ALL X) I: 3.8

(COPYARRAY ARRA y) I: 5.2
COPYBUnONEVENTFN (Window Property) III:

27.41
(COPYBUnONEVENTlNFN IMAGEOBJ

WINDOWSTREAM) (lMAGEFNS Method) III:

27.38
(COPYBYTES SRCFIL DSTFIL START END) III: 25.20
(COPYCHARS SRCFIL DSTFIL START END) III: 25.20
(COPYDEF OLD NEW TYPE SOURCE OPTIONS) II:

17.27
(COPYFILE FROMFILE TOFILE) III: 24.31
(COPYFN IMAGEOBJ SOURCEHOSTSTREAM

TARGETHOSTSTREAM) (lMAGEFNS Method)
III: 27.38

COPYING (in CREATE form) I: 8.4
Copying files III: 24.31
Copying image objects between windows III:

27.41
Copying lists I: 3.8; 3.5,13-14,19
(COPYINSERT IMAGEOBJ) III: 27.42
COPYINSERTFN (Window Property) III: 27.42
(COPYREADTABLE RDTBL) III: 25.35
COPYRIGHTFLG (Variable) I: 12.3; II: 17.53
COPYRIGHTOWNERS (Variable) I: 12.3; II: 17.54
(COPYTERMTABLE TTBL) III: 30.5
COPYWHEN (DECLARE: Option) II: 17.42
CORE (file device) III: 24.29
(COREDEVICE NAME NODIRFLG) III: 24.30
(COROUTINE CALLPTR COROUTPTR COROUTFORM

ENDFORM) I: 11.19
Coroutines I: 11.18
(COS X RADIANSFLG) I: 7.13
(COUNT X) I: 3.10
COUNT FORM (1.5. Operator) I: 9.11
(COUNTDOWN X N) I: 3.11
Courier III: 31.15
Courier programs III: 31.15

INDEX

(COURIER.BROADCAST.CALL DESTSOCKET#
PROGRAM PROCEDURE ARGS RESUL TFN
NETHINTMESSAGE) III: 31.23

(COURIER.CAll STREAM PROGRAM PROCEDURE

ARG1'" ARGNNOERRORFLG) III: 31.21

(COURIER.CREATE TYPE FIELDNAME ~ VALUE ...

FIELDNAME~VALUE) (Macro) III: 31.18
(COURIER.EXPEDITED.CALl ADDRESS SOCKET#

PROGRAM PROCEDURE ARG1 ... ARGN

NOERRORFLG) III: 31.22
(COURIER.FETCH TYPE FIELD OBJECn (Macro) III:

31.19
(COURIER.OPEN HOSTNAME SERVERTYPE

NOERRORFLG NAME WHENCLOSEDFN
OTHERPROPS) III: 31.20

(COURIER.READ STREAM PROGRAM TYPE) III:

31.25
(COURIER.READ.BUlKDATA STREAM PROGRAM

TYPE DONTCLOSE) III: 31.25
(COURIER.READ.REP LIST. OF. WORDS PROGRAM

TYPE) III: 31.26
(COURIER.READ.SEQUENCE STREAM PROGRAM

TYPE) III: 31.25
(COURIER.WRITE STREAM ITEM PROGRAM TYPE)

III: 31.25
(COURIER.WRITE.REP VALUE PROGRAM TYPE) III:

31.26
(COURIER.WRITE.SEQUENCE STREAM ITEM

PROGRAM TYPE) III: 31.26
(COURIER.WRITE.SEQUENCE.UNSPECIFI ED STREAM

ITEM PROGRAM TYPE) III: 31.26
COURIERDEF (Property Name) III: 31.19
(COURIERPROGRAM NAME ...) III: 31.15
(COURIERPROGRAMS NAME1 ... NAMEN) (File

Package Command) II: 17.39; III: 31.15

COURIERPROGRAMS (File Package Type) II: 17.23;
III: 31.15

COUTFllE (Variable) II: 18.4

CREATE (in Masterscope template) II: 19.20
CREATE (in record declarations) I: 8.14
CREATE (Masterscope Relation) II: 19.9
CREATE (Record Operator) I: 8.3; 8.14

CREATE NOT DEFINED FOR THIS RECORD (Error

Message) I: 8.13
(CREATE.EVENT NAME) II: 23.7
(CREATE.MONITORlOCK NAME -) II: 23.8
(CREATEDSKDIRECTORY VOLUMENAME -) III:

24.22

INDEX

INDEX

(CREATEMENUEDWINDOW MENU WINDOWTlTLE

LOCATION WINDOWSPEC) III: 28.49
(CREATEREGION LEFT BOTTOM WIDTH HEIGHn

III: 27.2
(CREATETEXTUREFROMBITMAP BITMAP) III: 27.7
(CREATEW REGION TITLE BORDERSIZE NOOPENFLG)

III: 28.13
CREATIONDATE (File Attribute) III: 24.17
CROSSHAIRS (Variable) III: 28.9; 30.15

CTRlV (syntax class) III: 30.6
CTRlVFLG (Variable) III: 26.31

Current expression in editor II: 16.13; 16.20

Current position of i mage stream III: 27.13
CURRENTITEM (Window Property) III: 26.8

Cursor III: 30.13
(CURSOR NEWCURSOR-) III: 30.14
CURSOR (Record) III: 30.14
(CURSORBITMAP) III: 30.13 .
(CURSORCREATE BITMAP X y) III: 30.14
CURSORHEIGHT (Variable) III: 30.14
CURSORINFN (Window Property) III: 28.28; 28.38

CURSORMOVEDFN (Window Property) III: 28.28;
28.38 .

CURSOROUTFN (Window Property) III: 28.28
(CURSORPOSITION NEWPOS/TION DISPLA YSTREAM

OLDPOS/TlON) III: 30.17
CURSORS (File Package Command) III: 30.14
CURSORWIDTH (Variable) III: 30.14

D

D (EditorCommand) II: 16.57
Dashing of curves III: 27.18
(DASSEM.SAVELOCAlVARS FN) II: 18.6
Data fragmentation II: 22.1
Data type compiling II: 18.11
Data type eval uati ng I: 10.13
Data type names I: 8.20
Data types I: 8.20; II: 22.13

DATA TYPES FULL (Error Message) II: 14.30
DATABASECOMS (Variable) II: 19.24

DATATYPE (Record Type) I: 8.9
(DATATYPES-) I: 8.20
(DATE FORMAn I: 12.13
(DATEFORMAT KEY1'" KEYN) I: 12.14

DATUM (in Changetran) I: 8.19
DATU M (Variable) I: 8.12, 1 4

DATUM (Window Property) III: 26.8

DATUM OF INCORRECTTYPE (Error Message) I:

8.22

INDEX.9

INDEX

(DC FILE) II: 16.3
(DCHCON X SCRATCHLIST FLG RDTBL) I: 2.13
DCOM (file name extension) II: 18.13; 18.14,21
DEALLOC' (data type name) I: 8.21
Debugging functions II: 15.1
Declarati ons in CLiSP II: 21.12
DECLARE (Function) II: 18.5; 21.19
DECLARE DECL (1.5. Operator) I: 9.17
DECLARE AS LOCALVAR (Masterscope Relation) II:

19.10
DECLARE AS SPECVAR (Masterscope Relation) II:

19.10
(DECLARE: . FILEPKGCOMSIFLAGS) (File Package

Command) II: 17.40; 18.14,17
DECLARE: (Function) II: 17.41
DECLARE: DECL (1.5. Operator) I: 9.17
(DECLAREDATATYPE TYPENAME FIELDSPECS --)

I: 8.21
DECLARETAGSLST (Variable) II: 17.42
(DECODE.WINDOW.ARG WHERESPEC WIDTH

HEIGHT TITLE BORDER NOOPENFLG) III:
28.14

(DECODEIWINDOW/OR/DISPLA VSTREAM DSORW

WINDOWVAR TITLE BORDER) III: 28.32
(DECODEBUTTONS BUTTONSTATE) III: 30.19
Dedit II: 16.1
DEDITL (Function) II: 16.4
DEditLi nger (Variable) II: 16.12
DEDITRDTBL (Variable) III: 25.34
DEDITTYPEINCOMS (Variable) II: 16.12
Deep binding I: 11.1; 2.4; II: 22.6
DEFAUL T.lNSPECTW.PROPCOMMANDFN (Function)

III: 26.7
DEFAULT.lNSPECTW.TITLECOMMANDFN (Function)

III: 26.8
DEFAUL T.lNSPECTW. VALUECOMMANDFN

(Function) III: 26.8
DEFAULTCARET (Variable) III: 28.31
DEFAU L TCARETRA TE (Variable) III: 28.31
DEFAULTCOPVRIGHTOWNER (Variable) I: 12.3; II:

17.54
DEFAULTCURSOR (Variable) III: 30.14; 30.15
DEFAU L TEOFCLOSE (Variable) III: 24.21
DEFAULTFILETYPE (Variable) III: 24.18
DEFAULTFONT (Font class) III: 27.32
(DEFAUL TFONT DEVICE FONT -) III: 27.29
DEFAULTINITIALS (Variable) II: 16.76
DEFAULTMAKENEWCOM (Function) II: 17.31
DEFAULTMENUHELDFN (Function) III: 28.40

INDEX.l0

DEFAULTPAGEREGION (Variable) III: 27.10; 29.2
DEFAUL TPRINTERTYPE (Variable) III: 29.5
DEFAULTPRINTINGHOST (Variable) I: 12.3; III: 29.4
DEFAULTPROMPT (Variable) III: 26.30
DEFAULTRENAMEMETHOD (Variable) II: 17.29
DEFAULTSUBITEMFN (Function) III: 28.39
DEFAUL TTTYREGION (Variable) II: 23.10
DEFAULTWHENSELECTEDFN (Function) III: 28.40
DEFC (Function) II: 13.27
(DEFERREDCONSTANT X) II: 18.8
(DEFEVAL TYPE FN) I: 10.13
Defgroups II: 17.1
(DEFINE X -) I: 10.9
DEFINED (MARKASCHANGED reason) II: 17.18
DEFINED, THEREFORE DISABLED IN CLiSP (Error

Message) I: 9.10; II: 21.6
(DEFINEQ X 1 X2 '" XN) I: 10.9
Defining file package commands II: 17.45
Defining file package types II: 17.29
Defining functions I: 10.9
Defining iterative statement operators I: 9.20
Definition groups II: 17.1
(DEFLIST L PROP) I: 2.6
(DEFMACRO NAME ARGS FORM) I: 10.24
(DEFPRINT TYPEFN) III: 25.16
(\DEL.PACKET.FILTER FILTER) (Function) III: 31.40
(DEL.PROCESS PROC -) II: 23.4
DELDEF (File Package Type Property) II: 17.31
(DELDEF NAME TYPE) II: 17.27
Delete III: 30.11; 26.23
Delete (DEdit Command) II: 16.7
(DELETE. @) (Editor Command) II: 16.34
DELETE (Editor Command) II: 16.32; 16.30
DELETE (File Package Command Property) II: 17.46
DELETE (Interrupt Character) II: 23.15; III: 30.3
(DELETECONTROL TYPE MESSAGE TTBL) III: 30.8
DELETED (MARKASCHANGED reason) II: 17.18
(DELETEMENU MENU CLOSEFLG FROMWINDOW)

III: 28.38
Deleti ng files III: 24.31
(DELFILE FILE) III: 24.31
(DELFROMCOMS COMS NAME TYPE) II: 17.49
(DELFROMFILES NAME TYPE FILES) II: 17.48
(DEPOSITBY-TE N POS SIZE VAL) I: 7.10
(\DEQUEU E Q) (Function) III: 31.41
DESCENT (Font property) III: 27.27
DESCRI BE SET (Masterscope Command) II: 19.6
DESCRIBELST (Variable) II: 19.6
DESCRIPTION (File Package Type Property) II: 17.32

INDEX

Destination bitmap III: 27.23

DESTINATION IS INSIDE EXPRESSION BEING MOVED
(Printed by Editor) II: 16.38

Destructive functions I: 3.13,19; II: 22.14

Destructuring argument lists I: 10.27

(DETACHALLWINDOWS MAINWINDOW) III: 28.47

(DETACHWINDOW WINDOWTODETACH) III: 28.47

Determiners in Masterscope II: 19.13

DEVICE (File name field) III: 24.5
DEVICE (Font property) III: 27.27

Device-independent graphics III: 27.42

DEVICESPEC (Font property) III: 27.28
(OF FN NEW?) II: 16.2

DFNFLG (Variable) I: 10.10; II: 13.29; 16.69; 17.5,28

(DIFFERENCE X y) I: 7.3

different expression (Printed by Editor) II: 16.66

DIG (Device-Independent Graphics) III: 27.42

(DIRFILEGROUPCOM1'" COMN) III: 24.35

DIRCOMMANDS (Variable) III: 24.35

Directories III: 24.31
DIRECTORIES (Variable) I: 12.3; II: 17.16; III: 24.31;

24.32
DIRECTORY (File name field) III: 24.6

(DIRECTORY FILES COMMANDS DEFAUL TEXT

DEFAUL TVERS) III: 24.33
(DIRECTORYNAME DIRNAME STRPTR-) III: 24.11

(DIRECTORYNAMEP DIRNAME HOSTNAME) III:

24.11

Disabling CLISP operators II: 21.26
(DISCARDPUPS SOC) III: 31.30

(DISCARDXIPS NSOC) III: 31.38
(DISKFREEPAGES VOLUMENAME -) III: 24.23;

24.21
(DISKPARnnON) III: 24.23; 24.21

(DISMISS MSECSWAIT TIMER NOBLOCK) II: 23.5

DISPLAY (Image stream type) III: 27.23; 27.8
Display screens I: 12.4; III: 30.22

Display streams III: 27.23; 27.8
(DISPLAYDOWN FORM NSCANLINES) III: 30.24
(DISPLA YFN IMAGEOBJ IMAGESTREAM

IMAGESTREAMTYPE HOSTSTREAM)

(lMAGEFNS Method) III: 27.37

DISPLAYFONTDIRECTORIES (Variable) I: 12.3; III:
27.31

DISPLA YFONTEXTENSIONS (Variable) I: 12.3; III:
27.31

DISPLA YHELP (Function) III: 26.30
DISPLA YTYPES (Variable) III: 26.39
Division by zero I: 7.2

INDEX

INDEX

DMACRO (Property Name) I: 10.21

(DMPHASH HARRA Y 1 HARRA Y 2 ... HARRA Y N) I:

6.3
DO COM (Editor Command) II: 16.54; 13.43

DO FORM (I.S. Operator) I: 9.10

(DOBACKGROUNDCOM) III: 28.7

(DOCOLLECT ITEM LSn I: 3.7
DOCOPY (DECLARE: Option) II: 17.41

Document printing III: 29.1

DOEVAL@COMPILE (DECLARE: Option) II: 17.42

DOEVAL@LOAD (DECLARE: Option) II: 17.41
DON'T.CHANGE.DATE (OPENSTREAM parameter)

III: 24.3
DONTCOMPILEFNS (Variable) II: 18.14; 18.15,18
DONTCOPY (DECLARE: Option) II: 17.41

DONTEVAL@COMPILE (DECLARE: Option) II: 17.42

DONTEVAL@LOAD (DECLARE: Option) II: 17.41

(DOSELECTEDITEM MENU ITEM BUTTON) III: 28.43

DOSHAPEFN (Window Property) III: 28.18

DOVER (Printer type) III: 29.5
(DOWINDOWCOM WINDOW) III: 28.7
DOWINDOWCOMFN (Window Property) III: 28.7

(DP NAME PROP) II: 16.2
(DPB N BYTESPEC VAL) (Macro) I: 7.10

(DRAWBETWEEN POSITION 1 POSITION2 WIDTH

OPERATION STREAM COLOR DASHING) III:

27.17
(DRAWCIRCLE CENTERX CENTERY RADIUS BRUSH

DASHING STREAM) III: 27.19

(DRAWCURVE KNOTS CLOSED BRUSH DASHING

STREAM) III: 27.19

(DRAWELLIPSE CENTERX CENTERY
SEMIMINORRADIUS SEMIMAJORRADIUS
ORIENTATION BRUSH DASHING STREAM) III:
27.19

(DRAWLINE Xl Y1 X2 Y2 WIDTH OPERATION

STREAM COLOR DASHING) III: 27.17
(DRAWPOINT X Y BRUSH STREAM OPERATION) III:

27.20
(DRAWTO X Y WIDTH OPERA TlON STREAM COLOR

DASHING) III: 27.17

(DREMOVE X L) I: 3.19
(DREVERSE L) I: 3.19

(DRIBBLE FILE APPENDFLG THAWEDFLG) III: 30.12

Dribble files III: 30.12
(DRIBBLEFILE) III: 30.13
DSK (file device) III: 24.21
(DSKDISPLA Y NEWSTATE) III: 24.23
DSKDISPLAY.POSlnON (Variable) III: 24.23

INDEX.11

INDEX

DSP (Window Property) III: 28.34
(DSPBACKCOLOR COLOR STREAM) III: 27.13
(DSPBACKUP WIDTH DISPLAYSTREAM) III: 27.25
(DSPBOTTOMMARGIN YPOSITION STREAM) III:

27.11
(DSPCLlPPINGREGION REGION STREAM) III: 27.11
(DSPCOLOR COLOR STREAM) III: 27.13
(DSPCREATE DESTINATION) III: 27.23
(DSPDESTINA nON DES TINA TlON DISPLA YSTREAM)

III: 27.23
(DSPFILL REGION TEXTURE OPERA TlON STREAM)

III: 27.20
(DSPFONT FONT STREAM) III: 27.11
(DSPLEFTMARGIN XPOSITION STREAM) III: 27.11
(DSPLINEFEED DELTAYSTREAM) III: 27.12
(DSPNEWPAGE STREAM) III: 27.21
(DSPOPERATION OPERATION STREAM) III: 27.12
(DSPRESET STREAM) III: 27.21
(DSPRIGHTMARGIN XPOSITION STREAM) III: 27.11
(DSPSCALE SCALE STREAM) III: 27.12
(DSPSCROLL SWITCHSETTING DISPLA YSTREAM)

III: 27.24
(DSPSOURCETYPE SOURCETYPE DISPLA YSTREAM)

III: 27.24
(DSPSPACEFACTOR FACTOR STREAM) III: 27.12
(DSPTEXTURE TEXTURE DISPLA YSTREAM) III:

27.24
(DSPTOPMARGIN YPOSITION STREAM) III: 27.11
(DSPXOFFSET XOFFSET DISPLAYSTREAM) III: 27.23
(DSPXPOSITION XPOSITION STREAM) III: 27 .. 13
(DSPYOFFSET YOFFSET DISPLA YSTREAM) III: 27.23
(DSPYPOSITION YPOSITION STREAM) III: 27.13
(DSUBLIS ALST EXPR FLG) I: 3.14
(DSUBST NEW OLD EXPR) I: 3.13
DT.EDITMACROS (Variable) II: 16.12
DUMMY-EDIT-FUNCTION-BODY (Variable) II:

16.70; 16.2
(DUMMYFRAMEP POS) I: 11.13
(DUMPDATABASE FNLSn II: 1:9.24
(DUNPACK X SCRATCHLISTFLG RDTBL) I: 2.9
Duration Functions I: 12.16
during INTERVAL (1.5. Operator) I: 12.18
(DV VAR) II: 16.2
DW (Editor Command) II: 16.55; 21.27
DWIM II: 20.1
(DWIM X) II: 20.4
DWIM interaction with user II: 20.4
DWIM variables II: 20.12
DWIMCHECK#ARGSFLG (Variable) II: 21.22

INDEX.12

DWIMCHECKPROGLABELSFLG (Variable) II: 21.22;
21.19

DWIMESSGAG (Variable) II: 21.22; 18.12
DWIMFLG (Variable) II: 20.14; 16.66,68,71; 20.23
(DWIMIFY X QUIETFLG L) II: 21.18; 21.20; 21.15
DWIMIFYCOMPFLG (Variable) II: 21.22;

18.12,15,21
DWIMIFYFLG (Variable) II: 20.13
(DWIMIFYFNSFN1'" FNN) II: 21.20; 21.19

DWIMINMACROSFLG (Variable) II: 21.20
DWIMLOADFNS1 (Function) II: 20.13
DWIMLOADFNSFLG (Variable) II: 20.14; 20.13
DWIMUSERFORMS (Variable) II: 20.11; 20.9-10
DWIMWAIT (Variable) II: 20.13; 20.5-6

E
(E XT) (Editor Command) II: 16.58
(E X) (Editor Command) II: 16.58
E (EditorCommand) II: 16.57; 13.43; 16.55
(E FORM1'" FORMN) (File Package Command) II:

17.40
E (in a floating point number) I: 7.11; III: 25.3
E (use in comments) III: 26.43
EACHTIME FORM (1.5. Operator) I: 9.16; 9.18
(ECHOCHAR CHARCODE MODE TTBL) III: 30.6
(ECHOCONTROL CHAR MODE TTBL) III: 30.7
Echoing characters III: 30.6
(ECHOMODE FLG TTBL) III: 30.7
ED (Editor Command) III: 26.29
RELA TlONED BY SET (Masterscope Set

Specification) II: 19.12
RELATIONED IN SET (Masterscope Set Specification)

II: 19.12
EDIT (Break Command) II: 14.11; 14.12-13
EDIT (Break Window Command) \I: 14.3
Edit (DEdit Command) II: 16.9
(EDIT NAME -) II: 16.68
EDIT (Litatom) II: 16.50
EDIT SET [- EDITCOMS] (Masterscope Command) II:

19.6
edit (Printed by Editor) II: 16.72
Edit chain II: 16.13; 16.20
Edit macros II: 16.62
EDIT WHERE SET RELA TlON SET [- EDITCOMS]

(Masterscope Command) II: 19.6
EDIT-SAVE (Property Name) II: 16.49-50
(EDIT4E PAT X -) II: 16.72
(EDITBM BMSPEC) III: 27.4
(EDITCALLERS ATOMS FILES COMS) II: 16.14

INDEX

{EDITCHAR CHARCODE FOND III: 27.31

EDITCHARACTERS (Variable) I: 12.4; II: 16.76

EditCom (DEdit Command) II: 16.9

EDITCOMSA (Variable) II: 16.68; 16.66

EDITCOMSL (Variable) II: 16.66; 16.67-68

EDITDA TE (Function) II: 16.76

EDITDA TE7 (Function) II: 16.76

EDITDEF (File Package Type Property) II: 17.31

(EDITDEF NAME TYPE SOURCE EDITCOMS) II:

17.27

EDITDEFAULT (Function) II: 16.66; 13.43

(EDITE EXPR COMS ATM TYPE IFCHANGEDFN) II:

16.71

EDITEMBEDTOKEN (Variable) II: 16.12; 16.37

(EDITFNAMECOM1 COM2'" COMN) II: 16.68

(EDITFINDP X PATFLG) II: 16.73

(EDITFNS NAMECOM1 COM2 ... COMN) II: 16.70

(EDITFPAT PAT -) II: 16.73

EDITHISTORY (Variable) II: 13.43;

13.31-32,35,42,44; 16.54

Editing compiled code II: 15.8

(EDITL L COMSATM MESS EDITCHANGES) II: 16.72

(EDITLO L COMS MESS -) II: 16.72

(EDITLOADFNS7 FN STR ASKFLG FILES) II: 16.73

EDITLOADFNSFLG (Variable) II: 16.70

(EDITMODE NEWMODE) II: 16.4

EDITOR (in backtrace) II: 14.9

(EDITP NAMECOM1 COM2 ... COMN) II: 16.71

EDITPREFIXCHAR (Variable) III: 26.25; 26.39

EDITQUIETFLG (Variable) II: 16.19
EDITRACEFN (Variable) II: 16.75

EDITRDTBL (Variable) II: 16.72; III: 25.34

(EDITRECNAMECOM1'" COMN) I: 8.16

(EDITSHADE SHADE) III: 27.7
EDITUSERFN (Variable) II: 16.66

(EDITV NAMECOM1 COM2'" COMN) II: 16.71

EE (Editor Command) III: 26.29

EF (Editor Command) II: 16.52
EF (Function) II: 16.4

EFFECT (in Masterscope template) II: 19.19

(EFTP HOST FILE PRINTOPTIONS) III: 31.7

Element patterns in pattern matching I: 12.25
(ELT ARRAY N) I: 5.1

(EMBED @IN.X) (EditorCommand) II: 16.37

EMPRESS#SIDES (Variable) III: 29.2

Empty list I: 3.3

(ENCAPSULATE.ETHERPACKET NDB PACKET PDH

NBYTES ETYPE) III: 31.40

INDEX

Encapsulated image objects III: 27.41

END (as argument to ADVISE) II: 15.11

END OF FILE (Error) III: 24.19

INDEX

END OF FILE (Error Message) III: 25.3,6,19

End-of-line character I: 2.14; III: 24.19; 25.8-9,19

(ENDCOLLECT LSTTAIL) I: 3.7

\EndDST (Variable) I: 12.16

(ENDFILE FILE) III: 25.33

ENDOFSTREAMOP (File Attribute) III: 24.19

(\ENQUEUE Q ITEM) (Function) III: 31.41
ENTRIES (in Masterscope Set Specification) II: 19.12

ENTRIES (Variable) II: 18.l8

Entriestoa block II: 18.17; 18.20

(ENTRY# HISTX) II: 13.40

Enumerating files III: 24.33

(ENVAPPLY FN ARGS APOS CPOS AFLG CFLG) I:

11.8

(ENVEVAL FORM APOS CPOS AFLG CFLG) I: 11.7
(EOFPFILE) III: 25.6; 31.14

EOL (File Attribute) III: 24.19

EOL (syntax class) III: 30.6

EP (Editor Command) II: 16.52

EP (Function) II: 16.4

(EQ X y) I: 9.3

(EQLENGTH X N) I: 3.10

(EQMEMBX y) I: 3.13

(EQP X y) I: 7.2; 9.3; 11.4

(EQUAL X y) I: 9.3; 3.4; 7.2

(EQUALALL X y) I: 9.3

(EQUALN X Y DEPTH) I: 3.11

ERASE SET (Masterscope Command) II: 19.5

ERROR (Error Message) II: 14.29; 14.19

(ERROR MESS 1 MESS2 NOBREAK) II: 14.19;
14.29,32

ERROR (history list property) II: 13.33

ERROR (lnterruptChannel) II: 23.14; III: 30.3

Error correction II: 20.1

Error numbers II: 14.27; 14.20,22

(ERROR!) II: 14.20; 14.6

(ERRORMESS U) II: 14.20; 14.16,27

ERRORMESS (Variable) II: 14.22

(ERRORMESS1 MESS1 MESS2 MESS3) II: 14.21;

14.16
(ERRORN) II: 14.20; 14.27

ERRORPOS (Variable) II: 14.23

Errors in iterative statements I: 9.19

Errors messages from compiler II: 18.22

(ERRORSET FORM FLAG -) II: 14.21; 14.14,19-20
(ERRORSTRING X) II: 14.21

INDEX.13

INDEX

ERRORTYPELST (Variable) II: 14.22; III: 24.3
(ERRORX ERXM) II: 14.19
ERRORX (Litatom) II: 14.16
(ERSETQ FORM) I: 9.9; II: 14.22
ESC (type of read macro) III: 25.40
(ESCAPE FLG RDTBL) III: 25.39
ESCAPE (Syntax Class) III: 25.35
Escape ($) (in CLlSP) II: 21.10-11
Escape ($) (in Edit Pattern) II: 16.·18
Escape ($) (in Editor) II: 16.45-46
Escape ($) (in spelling correction) II: 20.15; 20.22
Escape ($) (in TTYIN) III: 26.23
Escape ($) (Prog. Asst. Command) II: 13.11
Escape ($) (use in ASKUSER) III: 26.19
Escape-GO ($GO) (TYPE-AHEAD command) II:

13.18
Escape-Q ($Q) (TYPE-AHEAD command) II: 13~ 18
Escape-STOP ($STOP) (TYPE-AHEAD command) II:

13.18
ESCQUOTE (type of read macro) III: 25.40
(ESUBST NEW OLD EXPR ERRORFLG CHARFLG) II:

16.73; 13.9
(ETHERHOSTNAME PORT USE.OCTAL.DEFAUL n

111:31.6
(ETHERHOSTNUMBER ~AME) III: 31.6
Ethernet III: 31.1
ETHERPACKET (data type) III: 31.26
(ETHERPORT NAME ERRORFLG MULTFLG) III: 31.6
\ETHERTIMEOUT (Variable) III: 31.38
EV (Editor Command) II: 16.52
EV (Function) II: 16.4

EVAL (Break Command) II: 14.5; 14.6; 15.6
EVAL (Break Window Command) II: 14.3
Eval (DEdit Command) II: 16.9
EVAL (Editor Command) II: 16.58
(EVAJwX -) I: 10.12
EVAL (in Masterscope template) II: 19.19
EVAL (Litatom) II: 21.21
EVAL-format input II: 13.4
(EVAL.AS.PROCESS FORM) II: 23.17
(EVAL.I N. TTY .PROCESS FORM WAITFORRESUL n

II: 23.18
EVAL@COMPILE (DECLARE: Option) II: 17.42
EVAL@COMPILEWHEN (DECLARE: Option) II:

17.42
EVAL@LOAD (DECLARE: Option) II: 17.41
EVAL@LOADWHEN (DECLARE: Option) II: 17.41
(EVALA X A) I: 10.13
(EVALHOOK FORM EVALHOOKFN) I: 10.14

INDEX.14

Evaluating arguments to functions I: 10.2; 10.12
Evaluating data types I: 10.13
Evaluating expressions I: 10.11
Evaluating functions I: 10.11
Evaluating nlambda arguments I: 10.5 .
(EVALV VARPOSRELFLG) I: 11.8
EVALV-format input II: 13.4
(EVENP X y) I: 7.9
EVENT (Variable) II: 13.22
Event addresses II: 13.6
Event numbers II: 13.31; 13.6,13,22,40
Event specifications II: 13.5; 13.21
(EVERY EVERYX EVERYFN1 EVERYFN2) I: 10.17
(EXAM X) (Editor Command) II: 16.61
(EXCHANGEPUPS SOC OUTPUP DUMMY IDFIL TER

TIMEOUn III: 31.30
(EXCHANGEXIPS SOC OUTXIP IDFILTER T1MEOUn

III: 31.38
Executive II: 13.1
Executive window III: 28.3
Exit (DEdit Command) II: 16.10
EXP (Variable) II: 15.4
Expand (Window Menu Command) III: 28.5
(EXPANDBITMAP BITMAP WIDTHFACTOR

HEIGHTFACTOR) III: 27.4
EXPANDFN (Window Property) III: 28.23
EXPANDINGBOX (Variable) III: 30.15
(EXPANDMACRO EXP QUIETFLG --) I: 10.24
(EXPANDW ICONW) III: 28.22
EXPANSION (Font property) III: 27.27
EXPLAINDELIMITER (ASKUSER option) III: 26.17
EXPLAINSTRING (ASKUSER option) III: 26.16
(EXPORT COM 1 ... COM N) (File Package Command)

II: 17.43
EXPR (Litatom) I: 10.7
EXPR (Property Name) I: 10.10; II: 16.69-70;

17.5,18,27; 18.13; 20.9-10
EXPR (Variable) II: 20.13; 19.21
Expr definitions I: 10.2; 10. 1
EXPR* (Litatom) I: 10.7
EXPRESSIONS (File Package Type) II: 17.23; 13.17
(EXPRP FN) I: 10.7
(EXPT A N) I: 7.13
(EXTENDREGION REGION INCLUDEREGION) III:

27.2
EXTENSION (File name field) III: 24.6
EXTENT (Window Property) III: 28.26; 28.23-25,34
Extents III: 28.23

INDEX

(EXTRACT @1 FROM. @2) (Editor Command) II:

16.36
$$EXTREME (Variable) I: 9.12

F
F PATTERN NIL (EditorCommand) II: 16.22
(F PATTERN N) (EditorCommand) II: 16.22
(F PATTERN) (Editor Command) II: 16.22
F PATTERN T (Editor Command) II~ 16.21
F PATTERN N (EditorCommand) II: 16.21; 16.55
F (in event address) II: 13.6
.FFORMA T NUMBER (PRINTOUT command) III:

25.30
F (Response to Compiler Question) II: 18.2
F PATTERN (Editor Command) II: 16.21
F/L (as a DWIM construct) II: 20.9
(F:I EXPRESSION X) (Editor Command) II: 16.22
FACE (Font property) III: 27.27
FAMILY (Font property) III: 27.27
(FASSOCKEYALSn I: 3.15; II: 21.13
FAST (MAKEFILEoption) II: 17.11
Fast functions II: 22.14
FASTYPEFLG (Variable) II: 20.21
FAULT IN EVAL (Error Message) II: 14.29
FAULTAPPLY (Function) II: 20.7; 20.11
FAULTAPPLYFLG (Variable) II: 20.12
FAUL TARGS (Variable) II: 20.12
FAULTEVAL (Function) II: 20.7; 14.29; 20.11
FAUL TFN (Variable) II: 20.12
FAUL TX (Variable) II: 20.12
(FCHARACTER N) I: 2.13
(FDIFFERENCE X y) I: 7.12
(FEQP X y) I: 7.12
FETCH (in Masterscope template) II: 19.19
FETCH (Masterscope Relation) II: 19.9
FETCH (Record Operator) I: 8.2; II: 21.9
(FETCHFIELD DESCRIPTOR DATUM) I: 8.21
FETCHFN (Window Property) III: 26.8
FEXPR (Litatom) I: 10.7
FEXPR* (Litatom) I: 10.7; 10.8
FFETCH (Record Operator) I: 8.3
(FFILEPOS PA TTERN FILE START END SKIP TAIL

CASEARRA y) III: 25.21
(FGREATERP X y) I: 7.12
(FIELDLOOK FIELDNAME) I: 8.16
FIELDS (File Package Type) II: 17.23
FIELDS OF SET (Masterscope Set Specification) II:

19.12
(FILDIR FILEGROUP) III: 24.35

INDEX

FILE (GETFN Property) III: 27.40
FI LE (Property Name) II: 17.19
File access rights III: 24.2
File attributes III: 24.17
File devices III: 24.1
File directories III: 24.31
File enumeration III: 24.33
File maps II: 17.55
File names II: 22.13; III: 24.5; 24.1,9,12-13
FILE NOT FOUND (Error Message) II: 14.29; III:

24.3,31
FILE NOT OPEN (Error Message) II: 14.28; III:

24.4,14; 25.2,6,20
File package II: 17.1
File package commands II: 17.32
File package types II: 17.21
File pointers III: 25.18; 25.19,23
File servers III: 24.36
FILE SYSTEM RESOURCES EXCEEDED (Error

Message) II: 14.29; III: 24.3,13
FILE WON'T OPEN (Error Message) II: 14.28; III:

24.3
FILE: (Comp;/~r Question) II: 18.1
(FILECHANGES FILE TYPE) II: 17.52
FILECHANGES (Property Name) II: 17.20; 17.15
Filec,?ms II: 17.32; 17.4-5,48
(FILECOMS FILE TYPE) II: 17.49
(FILECOMSlST FILE TYPE -) II: 17.49
(FILECREATEDX)· II: 17.51; 18.13
(FILEDATE FILE -) II: 17.52
FILEDATES (PropertyName) II: 17.20; 17.15,51
FILEDEF (Property Name) II: 20.10
(FILEFNSlST FILE) II: 17.49

INDEX

FILEGETDEF (File Package Type Property) II: 17.30
FI LEG ROU P (Property Name) II: 17. 1 2

FILELINElENGTH (Variable) III: 25.11; 26.48
FILELST (Variable) II: 17.20; 17.6,12; 20.24
FILEMAP (Property Name) II: 17.20; 17.55
FILEMAP DOES NOT AGREE WITH CONTENTS OF

(Error Message) II: 17.56
(FILENAMEFIELD FILENAME FIELDNAME) III: 24.8
\FILEOUTCHARFN (Function) III: 27.48
FILEPKG.SCRATCH (file) II: 17.30
(FILEPKGCHANGES TYPE LSn II: 17.18
(FILEPKGCOM COMMANDNAME PROP 1 VAL 1 ...

PROPN VALN) II: 17.47

(FILEPKGCOMS LlTATOM1'" LlTATOMN) (File

Package Command) II: 17.39
FILEPKGCOMS (File Package Type) II: 17.23

INDEX.15

INDEX

FILEPKGCOMSPLST (Variable) II: 17.34
FILEPKGFLG (Variable) II: 17.5

(FILEPKGTYPE TYPE PROP1 VAL 1 ... PROPN VALN)

II: 17.32
FILEPKGTYPES (Variable) II: 17.22
(FILEPOS PA ITERN FILE START END SKIP TAIL

CASEARRAy) III: 25.20; 25.21
FILERDTBL (Variable) II: 17.5-6,50; III: 25.34;

25.7,33; 26.44
Files III: 24.1
(FILES FILE 1 .. ' FILEN) (File Package Command) II:

17.39
FILES (File Package Type) II: 17.23
(FILES?) II: 17.12

(FILESLOAD FILE 1'" FILEN) II: 17.9
FILETYPE (Property Name) II: 18.12,15; 21.26
Filevars II: 17.44; 17.5,49
FILEVARS (File Package Type) II: 17.23
FILlNG.ENUMERATION.DEPTH (Variable) III: 24.38
FILlNG.TYPES (Variable) III: 24.18
(FILLCIRCLE CENTERX CENTERY RADIUS TEXTURE

STREAM) III: 27.21
(FILLPOLYGON POINTS TEXTURE STREAM) III:

27.20
FINALLY FORM 0.5. Operator) I: 9.16; 9.18
Find (DEdit Command) II: 16.8
FIND (1.5. Operator) I: 9.22
(FIND.PROCESS PROC ERRORFLG) II: 23.5
(FINDCALLERSATOMS FILES) II: 16.75
(FINDFILE FILE NSFLG DIRLSn III: 24.32
FIRST (as argument to ADVISE) II: 15.11
FIRST (DECLARE: Option) II: 17.42
FIRST FORM 0.5. Operator) I: 9.16; 9.18
FIRST (type of read macro) III: 25.40
FIRSTCOL (Variable) I: 12.3; III: 26.47; 26.48
FIRSTNAME (Variable) I: 12.2
(FIX N) I: 7.7
FIX EventSpec (Prog. Asst. Command) II: 13.12;

13.33
FIX format (in PRINTNUM) III: 25.15
FIXEDITDA TE (Function) II: 16.76
FIXP (as a field specification) I: 8.21
(FIXP X) I: 7.2; 9.1
FIXP (record field type) I: 8.10
(FIXR N) I: 7.7
(FIXSPELL XWORD REL SPLST FLG TAIL FN TlEFLG

DONTMOVETOPFLG --) II: 20.22; 20.24
FIXSPELL.UPPERCASE.QUIET (Variable) II: 20.22
FIXSPELLDEFAULT (Variable) II: 20.13; 20.5; 21.19

INDEX.16

FlXSPELLREL (Variable) II: 20.22
FLAG (record field type) I: 8.10
Flashing bars on cursor III: 30.16
(FLASHWINDOW WIN? N FLASHINTERVAL SHADE)

III: 28.32
(FLAST X) I: 3.9; II: 21.13
(FLENGTH X) I: 3.10
(FLESSP X y) I: 7.12
(FLlPCURSOR) III: 30.14
(FLOAT X) I: 7.13
FLOAT format (in PRINTNUM) III: 25.15
FLOATING (record field type) I: R 10
FLOATING OVERFLOW (Error Message) II: 14.31
Floating point arithmetic I: 7.11
Floating point numbers I: 7.11; 7.1-2; 9.1; III: 25.3
Floating point overflow I: 7.2
FLOATING UNDERFLOW (Error Message) II: 14.31
FLOATP (as a field specification) I: 8.21
(FLOATPX) 1:7.2;9.1
FLOATP (record field type) I: 8.10
FLOPPY (file device) III: 24.24
Floppy disk drive III: 24.24
Floppy disk modes III: 24.24
Floppy image file III: 24.27
(FLOPPY.ARCHIVE FILES NAME) III: 24.28
(FLOPPY.CAN.READP) III: 24.27
(FLOPPY.CAN.WRITEP) III: 24.27
{FLOPPY. FORMAT NAME AUTOCONFIRMFLG

SLOWFLG) III: 24.26
(FLOPPY.FREE.PAGES) III: 24.27
(FLOPPY.FROM.FILE FROMFILE) III: 24.28
(FLOPPY.MODE MODE) III: 24.24
(FLOPPY.NAME NAME) III: 24.27
(FLOPPY.SCAVENGE) III: 24.27
(FLOPPY.TO.FILE TOFILE) III: 24.27
(FLOPPY.UNARCHIVE HOST/DIRECTORy) III: 24.28
(FLOPPY.WAIT.FOR.FLOPPY NEWFLG) III: 24.27
{FL TFMT FORMA n III: 25.13
(FLUSHRIGHT POS X MIN P2FLAG CENTERFLAG FILE)

III: 25.32
(FMAXXl X2 ... XN) I: 7.13

(FMEMBXy) I: 3.13; II: 21.13
(FMINX1X2,,,XN) 1:7.12

(FMINUS X) I: 7.12
FN (stackblip) I: 11.16
FN (Variable) II: 19.7
(FNCHECK FN NOERRORFLG SPELLFLG PROPFLG

TAIL) I: 10.8; II: 20.23

INDEX

(FNS FN1 ... FNN) (File Package Command) II: 17.34

FNS (File Package Type) II: 17.23

IFNS (Variable) II: 13.26

(FNTH X N) I: 3.9 .
(FNTYP FN) I: 10.7; II: 17.27

.FONT FONTSPEC (PRINTOUT command) III: 25.27

Font configurations III: 27.33

Font descriptors III: 27.26

FONT NOT FOUND (Error Message) III: 27.27

FONTCHANGEFLG (Variable) III: 27.34

(FONTCOPY OLDFONT PROP 1 VAL 1 PROP 2 VAL 2 ...)

III: 27.28
(FONTCREATE FA MIL Y SIZE FACE ROTATION DEVICE

NOERRORFLG CHARSEn III: 27.26

(FONTCREATEFN FA MIL Y SIZE FACE ROTA TlON

DEVICE) (Image Stream Method) III: 27.43

FONTDEFS (Variable) III: 27.34

FONTDEFSVARS (Variable) III: 27.34

FONTESCAPECHAR (Variable) III: 27.34

FONTFNS (Variable) III: 27.32

(FONTNAME NAME) III: 27.33

(FONTP X) III: 27.27

(FONTPROFILE PROFILE) III: 27.32

FONTPROFILE (Variable) III: 27.33

(FONTPROP FONT PROP) III: 27.27

Fonts III: 27.25; 27.11

FONTS.WIDTHS (Filename) III: 27.29,31

(FONTSAVAILABLE FAMILY SIZE FACE ROTATION

DEVICE CHECKFILESTOO?) III: 27.28

(FONTSAVAILABLEFN FAMILY SIZE FACE ROTA TlON

DEVICE) (Image Stream Method) III: 27.43

(FONTSET NAME) III: 27.34

(FOO BAR BAZ -) I: 1.8

FOR VARS (1.5. Operator) I: 9.12
FOR VAR (1.5. Operator) I: 9.12

FOR (in INSERT editor command) II: 16.33

FOR (in USE command) II: 13.9

FOR VARIABLE SET 1.5. TAIL (Masterscope

Command) II: 19.7

FOR OLD VAR (1.5. Operator) I: 9.12

(FORCEOUTPUT STREAM WAITFORFINISH) III:

25.10
FORCEPS (Variable) III: 30.15

forDuration INTERVAL (I.~. Operator) I: 12.18

FORGET EventSpec (Prog. Asst. Command) II:

13.16; 13.21

FORM (Process Property) II: 23.2
FORM (stack blip) I: 11.16

Form-feed III: 25.26

INDEX

(FPLUS X1 X2'" XN) I: 7.12

(FQUOTIENT X Y) I: 7.12

.FR POS EXPR (PRINTOUTcommand) III: 25.29

.FR2 POS EXPR (PRINTOUT command) III: 25.29

Fragmentation of data space II: 22.1
Frame extensions of stack frames I: 11.3

Frame names of stack frames I: 11.3

Frames on the stack I: 11.2

(FRAMESCAN ATOM POS) I: 11.7

INDEX

Free variable access II: 22.5
(FREEATTACHEDWINDOW WINDO\N) III: 28.47

FREELY (use in Masterscope) II: 19.8

(FREERESOURCE RESOURCENAME . ARGS) (Macro)

I: 12.23

(FREEVARS FN USEDATABASE) II: 19.22

(FREMAINDER X Y) I: 7.12

FREPLACE (Record Operator) I: 8.3

(FRESHLINE STREAM) III: 25.10

FROM FORM (1.5. Operator) I: 9.14; 9.15

FROM (in event specification) II: 13.7

FROM (in EXTRACT editor command) II: 16.36
FROM SET (Masterscope Path Option) II: 19.16

(FRPLACA X Y) I: 3.3; II: 21.13

(FRPLACD X Y) I: 3.3; II: 21.13

(FRPLNODE X A D) I: 3.3

(FRPLNODE2 X y) I: 3.3

(FRPTQ N FORM1 FORM2'" FORMN) I: 10.15

(FS PATTERN1'" PATTERNN) (Editor Command) II:

16.22

(FTIMES X1 X2'" XN) I: 7.12

\FTPAVAILABLE (Variable) III: 24.36

Full file names III: 24.12
(FULLNAME X RECOG) III: 24.12

FULLPRESS (Printer type) III: 29.5

FUNARG (Litatom) I: 10.19; 10.7

(FUNCTION FN ENV) I: 10.18

FUNCTION (in Masterscope template) II: 19.19

Function debugging II: 15.1

Function definition cells I: 10.9; 2.5

Function definitions I: 10.2; 10.9

Function types I: 10.2
FUNCTIONAL (in Masterscope template) II: 19.19

Functional arguments I: 10.18; II: 18.10

FUNNYATOMLST (Variable) II: 21.24

G
(GAINSPACE) II: 22.12

GAINSPACEFORMS (Variable) II: 22.12

Garbage collection II: 22.1

INDEX.17

INDEX

(GATHEREXPORTS FROMFILES TOFILE FLG) II:

17.43

(GCD N1 N2) I: 7.7

(GCGAG MESSAGE) II: 22.3

(GCTRP) II: 22.3

(GDATE DATE FORMAT -) I: 12.14

GE (CLISP Operator) II: 21.8

(GENERATE HANDLE VAL) I: 11.17

{GENERATOR FORMCOMVAR) I: 11.17

Generator handles I: 11.17

Generators I: 11.16

Generators for spelling correction II: 20.19

Generic arithmetic I: 7.3

GENNU M (Variable) I: 2.11

(GENSYM PREFIX ----) I: 2.10; II: 15.10-11

(GEQ X y) I: 7.4

GET (old name for LlSTGET1) I: 3.16
GET* (Editor Command) II: 16.55; III: 26.44
(GETATOMVAL VAR) I: 2.4

(GETBOXPOSITION BOXWIDTH BOXHEIGHT ORGX

ORGYWINDOWPROMPTMSG) III: 28.9

(GETBOXREGION WIDTH HEIGHT ORGX ORGY

WINDOWPROMPTMSG) III: 28.11

(GETBRK RDTBL) III: 25.38

(GETCASEARRA Y CASEARRA Y FROMCODE) III:
25.22

{GETCHARBITMAP CHARCODE FONn III: 27.30

(GETCOMMENT X DESTFL -) III: 26.44

(GETCONTROL TTBL) III: 30.10

GETD (Editor Command) II: 16.56

(GETD FN) I: 10.10

GETDEF (File Package Type Property) II: 17.30

(GETDEF NAME TYPE SOURCE OPTIONS) II: 17.25
(GETDELETECONTROL TYPE TTBL) III: 30.9

(GETDESCRIPTORS TYPENAME) I: 8.22

GETDUMMYVAR (Function) I: 9.20

(GETECHOMODE TTBL) III: 30.7

(GETEOFPTR FILE) III: 25.20

(GETFIELDSPECS TYPENAME) I: 8.22

(GETFILEINFO FILE ATTRIB) III: 24.17

(GETFILEPTR FILE) III: 25.19

(GETFN FILESTREAM) (IMAGEFNS Method) III:

27.37

(GETHASH KEY HARRA y) I: 6.2; II: 21.17
(GETLIS X PROPS) I: 2.7

(GETMENUPROP MENU PROPERTy) III: 28.43
(GETMOUSESTATE) III: 30.19

GETP (old name of ~ETPROP) I: 2.5

(GETPOSITION WINDOW CURSOR) III: 28.9

INDEX.18

(GETPROMPTWINDOW MAINWINDOW #LlNES

FONT DONTCREA TE) III: 28.50

(GETPROPATM PROP) I: 2.5

(GETPROPLIST ATM) I: 2.7

{GETPUP PUPSOC WAIn III: 31.30

(GETPUPBYTE PUP BYTE#) III: 31.31

{GETPUPSTRING PUP OFFSEn III: 31.32

(GETPUPWORD PUP WORD#) III: 31.31

(GETRAISE TTBL) III: 30.8

(GETREADTABLE RDTBL) III: 25.34

(GETREGION MINWIDTH MINHEIGHT OLDREGION
NEWREGIONFN NEWREGIONFNARG
INITCORNERS) III: 28.10

(GETRELATION ITEM RELATION INVERTED) II:

19.23

(GETRESOURCE RESOURCENAME . ARGS) (Macro)

I: 12.23

(GETSEPR RDTBL) III: 25.38

(GETSTREAM FILE ACCESS) III: 25.2

(GETSYNTAX CH TABLE) III: 25.36

(GETTEMPLATE FN) II: 19.21

(GETTERMTABLE TTBL) III: 30.5

(GETTOPVAL VAR) I: 2.4

GETVAL (EditorCommand) II: 16.58

{GETXIP NSOCWAln III: 31.37

(GIVE.TTY.PROCESS WINDOW) Ii: 23.13
(GLC X) I: 4.3

Global variables II: 18.4; 21.19; 22.5

GLOBALVAR (Property Name) II: 18.4; 21.19

Globalvars II: 18.4

(GLOBALVARS VAR1'" VARN) (File Package

Command) II: 17.37; 18.4

GLOBALVARS (in Masterscope Set Specification) II:

19.12

GLOBALVARS (Variable) II: 18.4; 18.18; 21.19

(GNC X) I: 4.3

~O (Break Command) II: 14.5; 14.6
(GO LABEL) (Editor Command) II: 16.23

(GO U) I: 9.8

GO (in iterative statement) I: 9.18

$GO (escape-GO) (TYPE-AHEAD command) II:

13.18

GRAYSHADE (Variable) III: 27.7

(GREATERP X y) I: 7.3

(GREET NAME -) I: 12.2
GREETDATES (Variable) I: 12.2

(GREETFILENAME USER) I: 12.2

Greeting I: 12.1

INDEX

(GRID GRIDSPEC WIDTH HEIGHT BORDER STREAM

GRIDSHADE) III: 27.22

Grid specification III: 27.22
Grids III: 27.22
(GRIDXCOORD XCOORD GRIDSPEC) III: 27.22

(GRIDYCOORD YCOORD GRIDSPEC) III: 27.22

GROUP (history list property) II: 13.33
GT (CLISP Operator) II: 21.8

H

Hard disk device III: 24.21

HARD DISK ERROR (Error Message) II: 14.28; ",:

24.24
Hardcopy (Background Menu Command) ",: 28.6

Hardcopy (Window Menu Command) III: 28.4

Hardcopy facilities III: 29.1
HARDCOPYFN (Window Property) III: 28.34

(HARDCOPYW WINDOW/BITMAP/REGION FILE

HOST SCALEFACTOR ROTA TlON PRINTER TYPE)

III: 29.3
(HARDRESET) II: 23.1; 14.26
(HARRA Y MINKEYS) I: 6.2

(HARRA YP X) I: 6.2; 9.2

(HARRA YPROP HARRA Y PROP NEWVALUE) I: 6.2

(HARRA YSIZE HARRA y) I: 6.2

HASDEF (File Package Type Property) II: 17.30

(HASDEF NAME TYPE SOURCE SPELLFLG) II: 17.26

HASH ARRAY FULL (Error Message) I: 6.3
Hash arrays I: 6.1

Hash keys I: 6.1

Hash overflow I: 6.3

HASH TABLE FULL (Error Message) I: 6.3; II: 14.29

Hash values I: 6.1

(HASHARRA Y MINKEYS OVERFLOW HASHBITSFN

EQUIVFN) I: 6.1

Hashing functions I: 6.4

HASHLINK (Record Type) I: 8.9

HASH OVERFLOW (Function) I: 6.3
(HASTTYWINDOWP PROCESS) II: 23.11

(HCOPY ALL X) I: 3.8; III: 25.18

HEIGHT (Font property) III: 27.28
HEIGHT (Window Property) III: 28.34

(HEIGHTIFWINDOW INTERIORHEIGHT TlTLEFLG
BORDER) III: 28.32

(HELP MESS 1 MESS2 BRKTYPE) II: 14.20

HELP (lnterruptChannel) II: 23.14; III: 30.3

Help! (Error Message) II: 14.20
HELPCLOCK (Variable) II: 14.14; 13.9,35
HELPDEPTH (Variable) II: 14.13

INDEX

HELPFLAG (Variable) Ii: 14.14; 14.27
HELPTIME (Variable) II: 14.14

HERALDSTRING (Variable) I: 12.9
HERE (in edit command) II: 16.34
HISTORY (history list property) II: 13.33
HISTORY (Property Name) II: 13.14
HISTORY (Variable) II: 13.22
History list format II: 13.31

History lists II: 13.1; 13.31; 16.54
HISTORYCOMS (Variable) II: 13.43

INDEX

(HISTORYFIND LST INDEX MOD EVENTADDRESS -)

II: 13.40; 13.39
(HISTORYMATCH INPUT PAT EVENn II: 13.40

(HISTORYSAVE HISTORY 10 INPUT1 INPUT2 INPUT3

PROPS) II: 13.38; 13.31,33-34,43
HISTORYSAVEFORMS (Variable) II: 13.22

HISTSTRO (Variable) II: 13.32

HISTSTR1 (Variable) III: 26.32
HorizScrollCursor (Variable) III: 30.16
HorizThumbCursor (Variable) III: 30.16
(HORRIBLEVARS VAR1 ... VARN) (File Package

Command) II: 17.36; III: 25.18
HOST (File name field) III: 24.5
(HOSTNAMEP NAME) III: 24.11

Hot spot of cursor III: 30.14

Hotspot III: 30.14
(HPRINT EXPR FILE UNCIRCULAR DA TA TYPESEEN)

III: 25.17

HPRINT.SCRATCH (File name) III: 25.17
(HREAD FILE) III: 25.18

(I C Xl'" XN) (EditorCommand) II: 16.58

.lFORMAT NUMBER (PRINTOUT command) III:

25.30
(I.S.0PR NAME FORM OTHERS EVALFLG) I: 9.20

I.S.0PR (Property Name) II: 17.18
I.s.oprs I: 9.9

(I.S.OPRS OPR 1 ... OPRN) (File Package Command)

I: 9.22; II: 17.39

I.S.0PRS (File Package Type) II: 17.23

I.s.types I: 9.10; 9.20
ICON (Window Property) III: 28.22

ICONFN (Window Property) III: 28.22

Icons III: 28.21; 28.5
ICONWINDOW (Window Property) III: 28.23
IconWindowMenu (Variable) III: 28.8

IconWindowMe,nuCommands (Variable) III: 28.8

ICREATIONDATE (File Attribute) III: 24.18

INDEX.19

INDEX

10 (Variable) II: 13.22
(lDATE STR) I: 12.13
(lDIFFERENCE X y) I: 7.6
Idle (Background Menu Command) III: 28.6
IDLE (Function) I: 12.4
Idle mode I: 12.4
(lDLE.BOUNCING.BOX WINDOW BOX WAin I:

12.6
IDLE.QOUNCING.BOX (Variable) I: 12.6
IDLE.FUNCTIONS (Variable) I: 12.6
IDLE.PROFILE (Variable) I: 12.4
Idling I: 12.4
(lEQP X y) I: 7.7
(IF X COMS 7 COMS 2) (Editor Command) II: 16.60

(IF X COMS 7) (Editor Command) II: 16.60

(IF X) (Editor Command) II: 16.60
(IF EXPRESSION TEMPLATE 7 TEMPLATE2) (in

Masterscope template) II: 19.21
IF (Statement) I: 9.5
IF-THEN-ELSE statements I: 9.5
(lFPROP PROPNAME LlTATOM7 ... LlTATOMN) (File

Package Command) II: 17.38; 17.45
IFY (Editor Command) II: 16.55
(IGEQ X y) I: 7.7
IGNORE (Litatom) III: 26.38
IGNOREMACRO (Litatom) I: 10.23
(lGREATERP X y) I: 7.6
(lLEQ X y) I: 7.7
(lLESSP X y) I: 7.7
ILLEGALARG (ErrorMessage) I: 2.9; 5.1; 10.11;

11.6; II: 14.29; III: 24.12
ILLEGAL DATA TYPE (Error Message) I: 8.22
ILLEGAL DATA TYPE NUMBER (Error Message) II:

14.30
ILLEGAL EXPONENTIATION (Error Message) I: 7.13
ILLEGAL GO (Error Message) II: 18.23
ILLEGAL OR IMPOSSIBLE BLOCK (Error Message) II:

14.30
ILLEGAL READTABLE (Error Message) II: 14.30; III:

25.34-35; 30.6
ILLEGAL RETURN (Error Message) I: 9.8; II: 14.28;

18.23
ILLEGAL STACK ARG (Error Message) I: 11.5; II:

14.29
ILLEGAL TERMINAL TABLE (Error Message) II:

14.30; III: 30.5-6
Image objects III: 27.35
Image stream types III: 27.8

INDEX.20

Image streams III: 27.8; 24.1
IMAGEBOX (Record) III: 27.37
(lMAGEBOXFN IMAGEOBJ IMAGESTREAM

CURRENTX RIGHTMARGIN) (lMAGEFNS

Method) III: 27.37
IMAGEDATA (Stream Field) III: 27.43
IMAGEFNS (Data Type) III: 27.35
(lMAGEFNSCREATE DISPLA YFN IMAGEBOXFN

PUTFN GETFN COPYFN BUTTONEVENTlNFN
COPYBUTTONEVENTlNFN WHENMOVEDFN
WHENINSERTEDFN WHENDELETEDFN
WHENCOPIEDFN WHENOPERATEDONFN
PREPRINTFN -) III: 27.36

(lMAGEFNSP X) III: 27.36
IMAGEHEIGHT (Menu Field) III: 28.42
IMAGEOBJ (Data Type) III: 27.35
(IMAGEOBJCREATE OBJECTDA TUM IMAGEFNS)

III: 27.36
IMAGEOBJGETFNS (Variable) III: 27.40
(lMAGEOBJP X) III: 27.36
(lMAGEOBJPROP IMAGEOBJECT PROPERTY

NEWVALUE) III: 27.36
IMAGEOPS (Data type) III: 27.43
IMAGEOPS (Stream Field) III: 27.43
(IMAGESTREAMP X IMAGETYPE) III: 27.10
(lMAGESTREAMTYPE STREAM) III: 27.10
(lMAGESTREAMTYPEP STREAM TYPE) III: 27.10
IMAGESTREAMTYPES (Variable) III: 27.42
IMAGETYPE (lMAGEOPS Field) III: 27.44
IMAGEWIDTH (Menu Field) III: 28.42
(lMAX X 7 X2 ... XN) I: 7.7

(lMBACKCOLOR STREAM COLOR) (Image Stream

Method) III: 27.48
(lMBITBL T SOURCEBITMAP SOURCELEFT

SOURCEBOTTOM STREAM DES TINA TIONLEFT
DESTINA TlONBOTTOM WIDTH HEIGHT
SOURCETYPE OPERA TlON TEXTURE
CLIPPINGREGION CLiPPEDSOURCELEFT
CLIPPEDSOURCEBOTTOM SCALE) (Image

Stream Method) III: 27.45
(IMBITMAPSIZE STREAM BITMAP DIMENSION)

(Image Stream Method) III: 27.46
(IMBL TSHADE TEXTURE STREAM DES TINA TlONLEFT

DESTINA TlONBOTTOM WIDTH HEIGHT
OPERA TlON CLIPPINGREGION) (Image Stream

Method) III: 27.45
(IMBOTTOMMARGIN STREAM YPOSITlON) (Image

Stream Method) III: 27.47
(lMCHARWIDTH STREAM CHARCODE) (Image

Stream Method) III: 27.46

INDEX

(lMCHARWIDTHY STREAM CHARCODE) (Image

Stream Method) III: 27.46
(lMCLlPPINGREGION STREAM REGION) (Image

Stream Method) III: 27.47
(I MClOSEFN STREAM) (Image Stream Method) III:

27.44
(lMCOlOR STREAM COLOR) (Image Stream

Method) III: 27.48
(lMDRAWCIRClE STREAM CENTERX CENTERY

RADIUS BRUSH DASHING) (Image Stream
Method) III: 27.44

(I MDRAWCURVE STREAM KNOTS CLOSED BRUSH
DASHING) (Image Stream Method) III: 27.44

(lMDRAWElLlPSE STREAM CENTERX CENTERY
SEMIMINORRADIUS SEMIMAJORRADIUS
ORIENTA TlON BRUSH DASHING) (Image

Stream Method) III: 27.45
(IMDRAWLINE STREAM X 1 Y 1 X2 Y2 WIDTH

OPERATION COLOR DASHING) (Image Stream
Method) III: 27.44

(I MFIllCIRClE STREAM CENTERX CENTERY RADIUS

TEXTURE) (Image Stream Method) III: 27.45
(lMFlllPOl YGON STREAM POINTS TEXTURE)

(Image Stream Method) III: 27.45
(lMFONT STREAM FONn (Image Stream Method)

III: 27.47
IMFONTCREATE (lMAGEOPS Field) III: 27.44
(lMIN X, X2 ... XN) I: 7.7
(lMINUS X) I: 7.6
(lMLEFTMARGIN STREAM LEFTMARGIN) (Image

Stream Method) III: 27.47
(lMLlNEFEED STREAM DELTA) (Image Stream

Method) III: 27.47
IMMED (typeofreadmacro) III: 25.41
IMMEDIATE (type of read macro) III: 25.41
(lMMOVETO STREAM X Y) (Image Stream Method)

III: 27.45
(lMNEWPAGE STREAM) (Image Stream Method)

III: 27.46
(lMOD X N) I: 7.6
(lMOPERATION STREAM OPERATION) (Image

Stream Method) III: 27.48
(lMPORTFILE FILE RETURNFLG) II: 17.43
(lMRESET STREAM) (Image Stream Method) III:

27.46
(lMRIGHTMARGIN STREAM RIGHTMARGIN) (Image

Stream Method) III: 27.47
(I MSCALE STREAM SCALE) (Image Stream Method)

III: 27.48; 27.44

INDEX

INDEX

(IMSCALEDBITBL T SOURCEBITMAP SOURCELEFT
SOURCEBCJTTOM STREAM DES TINA TlONLEFT
DES TINA TlONBOTTOM WIDTH HEIGHT
SOURCETYPE OPERA TlON TEXTURE
CLiPPINGREGION CLiPPEDSOURCELEFT
CLiPPEDSOURCEBOTTOM SCALE) (Image

Stream Method) III: 27.45
(lMSPACEFACTOR STREAM FACTOR) (Image Stream

Method) III: 27.48
(lMSTRINGWIDTH STREAM STR RDTBL) (Image

Stream Method) III: 27.46
(lMTERPRI STREAM) (Image Stream Method) III:

27.46
(lMTOPMARGIN STREAM YPOSITION) (Image

Stream Method) III: 27.47
(lMXPOSITION STREAM XPOSITlON) (Image Stream

Method) III: 27.47
(lMYPOSITlON STREAM YPC;>SITlON) (Image Stream

Method) III: 27.47
(FN1IN FN2) (arg to BREAKO) II: 15.4
IN FORM (1.5. Operator) I: 9.13; 9.14,18
IN (in EMBED editor command) II: 16.37
IN (in USE command) II: 13.9
IN EXPRESSION (Masterscope Set Specification) II:

19.11
ON OLD (VAR+-FORM) 0.5. Operator) I: 9.13
IN OLD (VAR+-FORM) 0.5. Operator) I: 9.13
IN OLD VAR (1.5. Operator) I: 9.13
IN? (Break Command) II: 14.13
Incomplete file names II: 22.13; III: 24.9; 24.14
INCORRECT DEFINING FORM (Error Message) I:

10.9
(INFILE FILE) III: 24.15
(lNFllECOMS? NAMETYPECOMS-) II: 17.48
(lNFILEP FILE) III: 24.13
INFIX (type of read macro) III: 25.39
InfixoperatorsinCLlSP II: 21.7
INFO (PropertyName) I: 10.4; 11:21.21; 13.41;

21.18,23
INFOHOOK (Process Property) II: 23.16; 23.3
RELATIONING SET (Masterscope Set Specification)

II: 19.11
INIT (in record declarations) I: 8.14
Init files I: 12.1
INIT.LISP (File name) I: 12.1
INITCORNERSFN (Window Property) III: 28.18
Initialization files I: 12.1
INITIALS (Variable) II: 16.76
INITIALSLST (Variable) I: 12.4; II: 16.76

INDEX.21

INDEX

(INITRECORDS REC 1 ... RECN) (File Package

Command) I: 8.11; II: 17.38

(INITRESOURCE RESOURCENAME . ARGS) (Macro)

I: 12.23

(INITRESOURCES RESOURCE 1 '" RESOURCEN) (File

Package Command) I: 12.20,24; II: 17.39

(INITVARS VAR1'" VARN) (File Package Command)

II: 17.36

I NPUT (File access) III: 24.2
(INPUT FILE) III: 25.3

Input buffer II: 14.16; III: 30.11; 25.6

Input functions III: 25.2

Input/Output functions III: 25.1

(INREADMACROP) III: 25.42

(INSERT E1 .•. EM BEFORE. @) (Editor Command)

II: 16.33

(INSERT El'" EMAFTER. @) (Editor Command) II:

16.33

(INSERT E 1 ... EM FOR. @) (Editor Command) II:

16.33

INSIDE FORM (I.S. Operator) I: 9.13

(INSIDEP REGION POSORX y) III: 27.3

(INSPECT OBJECT ASTYPE WHERE) III: 26.2

INSPECT/ARRAY (Function) III: 26.5

INSPECTALLFIELDSFLG (Variable) III: 26.6

(INSPECTCODEFNWHERE----) III: 26.2

INSPECTMACROS (Variable) III: 26.6
Inspector III: 26.1

INSPECTPRINTlEVEL (Variable) III: 26.5

(INSPECTW.CREATE DATUM PROPERTIES FETCHFN
STOREFN PROPCOMMANDFN
VALUECOMMANDFN TlTLECOMMANDFN
TITLE SELECTIONFN WHERE PROPPRINTFN)
III: 26.7

(INSPECTW.REDISPLAY INSPECTWPROPS-) III:
26.9

(INSPECTW.REPLACE INSPECTW PROPERTY
NEWVALUE) III: 26.9

(INSPEClW.SElECTITEM INSPECTW PROPERTY

VAL UEFL G) III: 26.9

INSPEClWTITLE (Window Property) III: 26.8
(INSTALLBRUSH BRUSHNAME BRUSHFN

BRUSHARRA y) III: 27.19

INSTRUCTIONS (Litatom) I: 10.23
INTEGER (record field type) I: 8.10
Integer arithmetic I: 7.5

Integer input syntax I: 7.4; III: 25.3,9
(lNTEGERLENGTH X) I: 7.9

Integers I: 7.4; 9.1

INDEX.22

Interlisp-D executive II: 13.1

Interlisp-D executive window III: 28.3

INTERPRESS (Image stream type) III: 27.8

Interpressformat I: 12.3; III: 27.8-10,12,31,33;
29.1,5

INTERPRESSFONTDIRECTORI ES (Variable) I: 12.3;

III: 27.31

Interpreter and the stack I: 11.14

Interpreting expressions I: 10.11

Interpretor blips on the stack I: 11.14

INTERRUPT (Litatom) II: 14.16

Interrupt characters III: 30.1

(INTERRUPTABLE FLAG) III: 30.4

(INTERRUPTCHAR CHAR TYPIFORM HARDFLG -)

III: 30.3

(INTERSECTION X y) I: 3.11

(lNTERSECTREGIONS REGION 1 REGION2 ...

REG/ONn) III: 27.2

Inverted cursor III: 30.16

(lNVERlW WINDOW SHADE) III: 28.31

(lOFILEFILE) III: 24.15

(lPlUS X 1 X2 ... XN) I: 7.6

(lQUOTIENT X y) I: 7.6

IREADDATE (File Attribute) III: 24.18
(IREMAINDER X y) I: 7.6

SETIS SET (Masterscope Command) II: 19.5

ISTHERE (/.5. Operator) I: 9.22

IT (Variable) II: 13.20

ITALIC (Font face) III: 27.26
ITEMHEIGHT (Menu Field) III: 28.41

ITEMS (Menu Field) III: 28.39

ITEMWIDTH (Menu Field) III: 28.41

Iterative statements I: 9.9

(lTiMES X 1 X2 ... XN) I: 7.6

IT+-datum (Inspect Window Command) III: 26.4

IT+-selection (Inspect Window Command) III: 26.5

IWRITEDATE (FileAttribute) III: 24.18

J
JMACRO (Property Name) I: 10.21

JOIN FORM (1.5. Operator) I: 9.11

JOINC (Editor Command) II: 16.53

K
&KEY (DEFMACRO keyword) I: 10.25
Key names III: 30.19

(KEY ACTION KEYNAME ACTIONS -) III: 30.20
Keyboard III: 30.19

(KEYDOWNP KEYNAME) III: 30.19

INDEX

KEYLST (ASKUSER argument) III: 26.13

KEYLST (ASK USER option) III: 26.15

Keys on mouse III: 30.17

KEYSTRING (ASK USER option) III: 26.16

Keyword macro arguments I: 10.24

KNOWN (Masterscope Set Specification) II: 19.12

(KWOTE X) I: 10.13

L
(L-CASEXFLG) I: 2.10; II: 16.52

LABELS (Litatom) II: 21.21,23

LAMBDA (Litatom) I: 10.2

LAMBDA (Macro Type) I: 10.22

Lambda functions I: 10.2

Lambda-nospread functions I: 10.5

Lambda-spread functions I: 10.3

LAMBDAFONT (Font class) III: 27.32

LAMBDASPLST (Variable) I: 10.8; II: 20.14; 20.9-11

LAMS (Variable) II: 18.9; 18.14

Landscape fonts III: 27.27
LAPFLG (Variable) II: 18.1

Large integers I: 7.1; 7.2; 9.1

LARGEST FORM (1.5. Operator) I: 9.12

LAST (as argument to ADVISE) II: 15.11

(LAST X) I: 3.9

LASTAIL (Variable) II: 16.14; 16.15,21,72

(LASTC FILE) I": 25.5

LASTKEYBOARD (Variable) III: 30.19

LASTMOUSEBUTTONS (Variable) III: 30.18

(LASTMOUSESTATE BUTTONFORM) (Macro) III:

30.18

(LASTMOUSEX DISPLA YSTREAM) III: 30.18

LASTMOUSEX (Variable) III: 30.18

(LASTMOUSEY DISPLA YSTREAM) III: 30.18

LASTMOUSEY (Variable) III: 30.18

(LASTN L N) I: 3.10

LASTPOS (Variable) II: 14.6; 14.4,7-10,12

LASTV ALU E (Property Name) II: 16.50

\LASTVMEMFILEPAGE (Variable) I: 12.11

LASTWORD (Variable) II: 20.18; 20.21-23; 21.10

(LC . @) (Editor Command) II: 16.24

LCASELST (Variable) III: 26.46

LCFIL (Variable) II: 18.1-2

(LCL . @) (Editor Command) II: 16.24

(LCONC PTR X) I: 3.6;·3.7

(LOB BYTESPECVAL) (Macro) I: 7.10

LDFLG (Argument to LOAD) II: 17.5

(LDIFF LSTTAILADD) I: 3.12

LDIFF: NOT A TAIL (Error Message) I: 3.12

INDEX

(LDIFFERENCE X y) I: 3.11

LE (CLISP Operator) II: 21.8

LEFT (key indicator) III: 30.17

Left margin III: 27.11

INDEX

LEFTBRACKET (Syntax Class) III: 25.35

(LEFTOFGRIDCOORD GRIDX GRIDSPEQ III: 27.23

LEFTPAREN (Syntax Class) III: 25.35

LENGTH (File Attribute) III: 24.17

(LENGTH X) I: 3.10

(LEQ X y) I: 7.4

(LESSP X Y) I: 7.4

(LETVARLSTE1E2 ... EN) (Macro) 1:9.9

(LET* VARLSTE1 E2'" EN) (Macro) I: 9.9

(LI N) (Editor Command) II: 16.41

LIKE ATOM (Masterscope Set Specification) II:

19.11

(LINBUF FLG) III: 30.11; 30.12

LINE (Variable) III: 26.38

Line buffer III: 30.9; 30.11

Line length III: 27.12

Line-buffering III: 30.9; 25.3-6

line-feed (Editor Command) II: 16.18

LlNEDELETE (syntax class) III: 30.5,8

(LiNELENGTH N FILE) III: 25.11; 27.12

LlNELENGTH N (Masterscope Path Option) II: 19.17

(LISP-IMPLEMENTATION-TYPE) I: 12.12

(LlSP-IMPLEMENTATION-VERSION) I: 12.12

(LlSPDIRECTORYP VOLUMENAME) III: 24.23

LISPFN (Property Name) II: 21.28

(LiSPINTERRUPTS) III: 30.4

(LiSPSOURCEFILEP FILE) II: 17.52

LlSPUSERSDIRECTORIES (Variable) I: 12.3; II: 17.9;

III: 24.32

(LlSPX LlSPXX LlSPXID LlSPXXMACROS

LlSPXXUSERFN LlSPXFLG) II: 13.35;

13.12,19,32-34,36,43; 16.51,57; 20.4,17,24

LlSPX Printing Functions II: 13.25

(LlSPXJ X FN VARS) II: 13.41; 13.27

LlSPXCOMS (Variable) II: 13.35; 17.39

(LlSPXEVAL LlSPXFORM LlSPXID) II: 13.36

(LlSPXFIND HISTORY LINE TYPE BACKUP -) II:

13.39; 13.44

LlSPXFINDSPLST (Variable) II: 13.8

LlSPXHIST (Variable) II: 13.33; 13.30,34,42

LlSPXHISTORY (Variable) II: 13.31; 13.35,43

LlSPXHISTORYMACROS (Variable) II: 13.23

LlSPXLlNE (Variable) II: 13.23

(LlSPXMACROS LlTATOM1 ... LlTATOMN) (File

Package Command) II: 17.39

INDEX.23

INDEX

L1SPXMACROS (File Package Type) II: 17.23

L1SPXMACROS (Variable) II: 13.23; 13.35

(L1SPXPRIN1 X Y Z NOOOFLG) II: 13.25

(L1SPXPRIN2 X Y Z NOOOFLG) II: 13.25

(L1SPXPRINT X Y Z NOOOFLG) II: 13.25; 13.33

L1SPXPRINT (history list property) II: 13.33

(L1SPXPRINTDEF EXPR FILE LEFT OEF TAIL NOOOFLG)

II: 13.25

L1SPXPRINTFLG (Variable) II: 13.25

(L1SPXREAD FILE RDTBL) II: 13.38; 13.3,19,32,35,43
L1SPXREADFN (Variable) II: 13.36; 13.5,38; III:

26.28
(L1SPXREADP FLG) II: 13.38; 13.43

(LISPXSPACES X Y Z NOOOFLG) II: 13.25

(LISPXSTOREVALUE EVENT VALUE) II: 13.39

(L1SPXTAB X Y Z NODOFLG) II: 13.25

(L1SPXTERPRI X Y Z NODOFLG) II: 13.25
(L1SPXUNREAD LST -) II: 13.38

USPXUSERFN (Variable) II: 13.24; 13.35

LISPXVALUE (Variable) II: 13.24

(LIST XI Xl'" XN) I: 3.4

LIST (MAKEFILE option) II: 17.11

LIST (Property Name) II: 17.27

List cells I: 3.1; 9.2

List structure editor II: 16.1

(LIST'*' X t Xl'" XN) I: 3.4

(LISTFILESFILE1FILEl ... FILEN) II: 17.14; 17.11

L1STFILES1 (Function) II: 17.14

L1STFILESTR (Variable) III: 27.34

(LISTGET LSTPROP) I: 3.16

(LISTGET1 LSTPROP) I: 3.16

Listing file directories III: 24.33

L1STlNG7 (Compiler Question) II: 18.1

(LISTP Xl I: 3.1; 9.2

LlSTP checks in pattern matching I: 12.25
(L1STPUT LSTPROP VAL) I: 3.16

(L1STPUT1 LSTPROP VAL) I: 3.16
Lists 1:3.1;3.3

(LITATOM Xl I: 2.1'; 9.1

Litatoms I: 2.1; 9.1

Literal atoms I: 2.1

(LLSH X N) I: 7.8

(LO N) (Editor Command) II: 16.41

(LOAD FILE LOFLG PRINTFLG) II: 17.6; 13.40; 18.13
(LOAD? FILE LOFLG PRINTFLG) II: 17.6
(LOADBLOCK FN FILE LDFLG) II: 17.8
(LOADBYTE N POS SIZE) I: 7.10

(LOADCOMP FILE LDFLG) II: 17.8

INDEX.24

(LOADCOMP7 FILE LDFLG) II: 17.8

(LOADDEF NAME TYPE SOURCE) II: 17.28

LOADEDFILELST (Variable) I: 12.11; II: 17.20

(LOADFNS FNS FILE LDFLG VARS) II: 17.6

(LOADFROMFILEFNSLDFLG) II: 17.8; 18.16

Loading files II: 17.5

LOADOPTIONS (Variable) II: 17.6

(LOADTIMECONSTANT Xl II: 18.8

(LOADVARS VARS FILE LDFLG) II: 17.8

Local eLlsP declarations II: 21.13
Local hard disk device III: 24.21

Local record declarations I: 8.7,11; II: 21.13

Local variables I: 9.8; II: 18.5; 22.5

LOCALLY (use in Masterscope) II: 19.8

\LOCALNDBS (Variable) III: 31.39

Localvars II: 18.5

(LOCALVARS VAR1'" VARN) (File Package

Command) II: 17.37

LOCALVARS (in Masterscope Set Specification) II:

19.12

LOCALVARS (Variable) II: 18.5
Location specification in the editor II: 16.23;

16.24,60

LOCATION UNCERTAIN (Printed by Editor) II: 16.14

LOCF (Macro) I: 8.11

(LOG Xl I: 7.13

(LOGAND X 1 Xl'" XN) I: 7.8

Logging into file servers III: 24.39

Logical arithmetic functions I: 7.8

Logical volumes III: 24.21

(LOGIN HOSTNAME FLG DIRECTORY MSG) III:
24.40

LOGINHOST/DIR (Variable) I: 12.3; III: 24.11

(LOG NOT N) (Macro) I: 7.9

Logo window III: 28.2

(LOGOR X, Xl'" XN) I: 7.8

(LOGOUT FASn I: 12.7
(LOGOW STRING WHERE TITLE ANGLEDELTA) III:

28.2

LOGOW (Variable) III: 28.2

(LOGXOR X, Xl'" XN) I: 7.8

(LONG-SITE-NAME) I: 12.12

(LOOKUP.NS.SERVER NAME TYPE FULLFLG) III:

31.10

(LOWER Xl (Editor Command) II: 16.53

LOWER (Editor Command) II: 16.52

Lower case characters I: 2.10

Lower case comments III: 26.46

INDEX

Lower case in CLiSP II: 21.27

Lower case input III: 30.8
(LOWERCASE FLG) II: 21.27

LowerLeftCursor (Variable) III: 30.1 5

LowerRightCursor (Variable) III: 30.15

(LP COMS1 ... COMSN) (Editor Command) II: 16.60;

16.61
LPARKEY (Variable) II: 20.14; 20.6

(LPQ COMS1'" COMSN) (EditorCommand) II:

16.61
LPT (printer device) III: 29.4

(LRSH X N) I: 7.8

(LSH X N) I: 7.8

LSTFIL (Variable) II: 18. 1

(LSUBST NEW OLD EXPR) I: 3.13
LT (CLlSPOperator) II: 21.8

(LVlPRIN1 XFILECARLVLCDRLVL TAIL) III: 25.13
(lVlPRIN2 X FILE CARLVL CDRLVL TAIL) III: 25.13
(LVlPRINT X FILE CARLVL CDRLVL TAIL) III: 25.13

M

(M (0 (ARG1'" ARGN) COMS1 ... COMSM) (Editor

Command) II: 16.62

(M (0 ARG COMS 1 ... COMSM) (Editor Command)

II: 16.62

(M C COMS 1 ... COMSN) (Editor Command) II:

16.62

(MACHINE-INSTANCE) I: 12.12

(MACHINE-TYPE) I: 12.12

(MACHINE-VERSION) I: 12.12

(MACHINETYPE) I: 12.13

MACRO (File Package Command Property) II: 17.45

(MACRO. MACRO) (in Masterscope template) II:
19.21

MACRO (Property Name) I: 10.21; II: 17.18; 18.11

MACRO (type of read macro) III: 25.39

Macro expansion in Masterscope II: 19.17
MACROCHARS (ASK USER option) III: 26.17
MACROPROPS (Variable) I: 10.21
Macros I: 10.21

(MACROS LlTATOM"" LlTATOMN) (File Package

Command) II: 17.35
MACROS (File Packag~ Type) II: 17.24
Macros in the editor II: 16.62

Maintanance panel III: 30.24
(MAINWINDOW WINDOW RECURSEFLG) III: 28.47
MAINWINDOW (Window Property) III: 28.54

INDEX

INDEX

MAINWINDOWMAXSIZE (Window Property) III:

28.54
MAINWINDOWMINSIZE (Window Property) III:

28.54
(MAKEARGNAME EXP) (EditorCommand) II: 16.57

(MAKEBITTABLE L NEG A) I: 4.6
(MAKEFILE FILE OPTIONS REPRINTFNS SOURCEFILE)

II: 17.10; 17.14; 18.16; 20.24

MAKEFILE and CLiSP II: 21.26
MAKEFILEFORMS (Variable) II: 17.12
MAKEFILEOPTIONS (Variable) II: 17.10

MAKEFILEREMAKEFLG (Variable) II: 17.15; 17.11

(MAKEFILES OPTIONS FILES) II: 17.12

(MAKEFN (FN . ACTUALARGS) ARGLIST N 1 N2)

(Editor Command) II: 16.56

(MAKEKEYlST LST DEFAUL TKEY LCASEFLG

AUTOCOMPLETEFLG) III: 26.13

(MAKENEWCOM NAME TYPE - -) II: 17.49
(MAKESYS FILE NAME) I: 12,9

MAKESYSDA TE (Variable) I: 12.13; 12.10

MAKESYSNAME (Variable) I: 12.13
(MAKEWITHINREGION REGION LlMITREGION) III:

27.2
Manipulating file names III: 24.5
(MAP MAPX MAPFN 1 MAPFN2) I: 10.15

(MAP.PROCESSES MAPFN) II: 23.5
(MAP2C MAPX MAPY MAPFNl MAPFN2) I: 10.16

(MAP2CAR MAPX MAPY MAPFN1 MAPFN2) I:

10.16
(MAPATOMS FN) I: 2.11

(MAPC MAPX MAPFN 1 MAPFN2) I: 10.15

(MAPCAR MAPX MAPFN 1 MAPFN2) I: 10.15

(MAPCON MAPX MAPFN1 MAPFN2) I: 10.15; II:

21.13
(MAPCONC MAPX MAPFN1 MAPFN2) I: 10.16; II:

21.13
(MAPDl MAPDLFN MAPDLPOS) I: 11.13

(MAPHASH HARRA Y MAPHFN) I: 6.3

(MAPLIST MAPX MAPFN 1 MAPFN2) I: 10.15

(MAPRELA TION RELA TlON MAPFN) II: 19.24

(MAPRINT LST FILE LEFT RIGHT SEP PFN

LlSPXPRINTFLG) I: 10.17
(MARK LlTATOM) (Editor Command) II: 16.28
MARK (Editor Command) II: 16.27; 16.28

Mark-and-sweep garbage collection II: 22.1
(MARKASCHANGED NAME TYPE REASON) II:

17.17
MARKASCHANGEDFNS (Variable) II: 17.18

Marking changes II: 17.17

INDEX.2S

INDEX

MARKLST (Variable) II: 16.27; 16.72

(MASK.O'S POSITION SIZE) (Macro) I: 7~9
(MASK.1'S POSITION SIZE) (Macro) I: 7.9

Masterscope II: 19.1

(MASTERSCOPE COMMAND-) II: 19.22

Masterscope commands II: 19.4

Masterscope templates II: 19.18

MATCH (Pattern Matching Operator) I: 12.24

(MAXX, X2'" XN) I: 7.4

MAX.FIXP (Variable) I: 7.5

MAX.FLOAT (Variable) I: 7.11; 7.12

MAX.lNTEGER (Variable) I: 7.5; 7.7
MAX.SMALLP (Variable) I: 7.5

MaxBkMenuHeight (Variable) II: 14.15
MaxBkMenuWidth (Variable) II: 14.15

MAXINSPECTARRAYLEVEL (Variable) III: 26.5

MAXINSPECTCDRLEVEL (Variable) III: 26.5.
MAXLEVEL (Variable) II: 16.20; 16.23

MAXLOOP (Variable) II: 16.61

MAXLOOP EXCEEDED (Printed by Editor) II: 16.61
(MAXMENUITEMHEIGHT MENU) III: 28.42

(MAXMENUITEMWIDTH MENU) III: 28.42
MAXSIZE (Window Property) III: 28.53

(MBD E"" EM) (Editor Command) II: 16.36

(MEMB X y) I: 3.12

(MEMBER X y) I: 3.13

MEMBERS (Clearinghouse Group property) III:
31.12

(MENU MENU POSITION RELEASECONTROLFLG -)
III: 28.37

MENUBORDERSIZE (Menu Field) III: 28.41
MENUBUTIONFN (Function) III: 28.38

MENUCOLUMNS (Menu Field) III: 28.41
MENUFONT (Menu Field) III: 28.41

MENU FONT (Variable) III: 28.8,41

MENUHELDWAIT (Variable) In: 28.40

(MENUITEMREGION ITEM MENU) III: 28.43

MENUOFFSET (Menu Field) III: 28.40

MENUOUTLINESIZE (Menu Field) III: 28.42
MENUPOSITION (Menu Field) III: 28.40
(MENUREGION MENU) III: 28.42
MENUROWS (Menu Field) III: 28.41
Menus III: 28.37; 28.1

MENUTITLEFONT (Menu Field) III: 28.41

(MENUWINDOW MENU VERTFLG) III: 28.48
(MERGE A B COMPAREFN) I: 3.17

(MERGEINSERT NEW LSTONEFLG) I: 3.18
Meta-character echoing III: 30.6
(METASHIFT FLG) III: 30.22

INDEX.26

MIDDLE (key indicator) III: 30.17

Middle-blank key III: 26.23,25
MILLISECONDS (Timer Unit) I: 12.16

(MIN X 1 X2 ... XN) I: 7.4

MIN.FIXP (Variable) I: 7.5

MIN.FLOAT (Variable) I: 7.11; 7.13
MIN.lNTEGER (Variable) I: 7.5; 7.7

MIN.SMALLP (Variable) I: 7.5

(MINATIACHEDWINDOWEXTENT WINDOW) III:

28.48

(MIN1MUMWINDOWSIZE WINDOW) III: 28.33

MINSIZE (Window Property) III: 28.53; 28.33
(MINUS X) I: 7.3
(MINUSP X) I: 7.4

MIR (Font face) III: 27.26

MISSING OPERAND (DWIM error message) II: 21.15

MISSING OPERATOR (CLISP error message) II: 21.15

(MISSPELLED? XWORD REL SPLST FLG TAIL FN) II:

20.22; 20.23-24
(MKATOM X) I: 2.8

(MKLlST X) I: 3.4
(MKSTRING X FLG RDTBL) I: 4.2

MODIFIER (Litatom) I: 9.22

(MODIFY.KEYACTIONS KEYACTIONS

SAVECURRENT?) III: 30.21

Modules II: 17.1

(MONITOR.AWAIT.EVENT RELEASELOCK EVENT

TIMEOUT TlMERp) II: 23.8

Mouse 111:30.13
Mouse buttons III: 30.17

Mouse Keys III: 30.17

(MOUSECONFIRM PROMPTSTRING HELPSTRING

WINDOW DON'TCLEARWINDOWFLG) III:

28.11

MOUSECONFIRMCURSOR (Variable) III: 28.11;
30.15

(MOUSESTATE BUTTONFORM) (Macro) III: 30.17

(MOVD FROM TO COPYFLG -) I: 10.11
(MOVD1 FROM TO COPYFL G -) I: 10.11

(MOVE @1 TO COM. @2) (Editor Command) II:

16.38; 16.37

Move (Window Menu Command) III: 28.5

MOVEFN (Window Property) III: 28.20
(MOVETO X Y STREAM) III: 27.13

(MOVETOFILE TOFILE NAME TYPE FROMFILE) II:
17.49

(MOVETOUPPERLEFT STREAM REGION) III: 27.14
(MOVEW WINDOW POSorX y) III: 28.19

INDEX

MRR (Font face) III: 27.26

MSMACROPROPS (Variable) II: 19.17

(MSMARKCHANGED NAME TYPE REASON) II:
19.24

(MSNEEDUNSAVE FNS MSG MARKCHANGEFLG) II:

19.24

MSNEEDUNSAVE (Variable) II: 19.25

MSPRINTFLG (Variable) II: 19.2

Multiple streams to a file III: 2~.15

MULTIPLY DEFINED TAG (Error Message) II: 18.23
MULTIPLY DEFINED TAG, ASSEMBLE (Error

Message) II: 18.23

MULTIPLY DEFINED TAG, LAP (Error Message) II:

18.23

N
(-N E1 ... EM) (N) :11) (Editor Command) II: 16.29

(N E 1 ..• EM) (N) :I 1) (Editor Command) II: 16:29

(N E 1'" EM) (Editor Command) II: 16.29

(N)(N> :I 1) (Editor Command) II: 16.29

.. N (N) • 1) (Editor Command) II: 16.15

N(N) .1) (EditorCommand) II: 16.15; 16.29;

16.55
-N (N a number) (PRINTOUT command) III: 25.26

N (N a number) (PRINTOUT command) III: 25.25;

25.30
NAME (File name field) III: 24.6

NAME (Process Property) II: 23.2

NAME LlTATOM(ARG1'" ARGN): EventSpec (Prog.

Asst. Command) II: 13.14

NAME LlTATOM ARG1'" ARGN: EventSpec (Prog.

Asst. Command) II: 13.14

NAME LlTATOM EventSpec (Prog. Asst. Command)
II: 13.14; 13.16,33

NAMES RESTORED (Printed by System) II: 15.9

NAMESCHANGED (Property Name) II: 15.5
(NARGS FN) I: 10.8

(NCHARS X FLG ROTBL) I: 2.9; 4.2

(NCONCX1 X2'" XN) I: 3.5; 3.6; II: 21.13

(NCONC1 LST X) I: 3.5; 3.6; II: 21.13

(NCREA TE TYPE OLOOBJ) I: 8.22

(NDIR FILEGROUPCOM1'" COMN) III: 24.35

NEGATE (Editor Command) II: 16.54

(NEGATE X) I: 3.20; II: 16.54
(NEQ X Y) I: 9.3

NETWORKOSTYPES (Variable) III: 24.38

NEVER FORM (I.S. Operator) I: 9.11
NEW (MAKEFILEoption) II: 17.11

INDEX

INDEX

(NEW/FN FN) II: 13.41

NEWCOM (File Package Type Property) II: 17.31

NEWREGI.ONFN (Window Property) III: 28.18

(NEWRESOURCE RESOURCENAME . ARGs) (Macro)
I: 12.23

NEWVALUE (Variable) I: 8.12

(NEX COM) (Editor Command) II: 16.26

NEX (Editor Command) II: 16.26

NIL (Editor Command) II: 16.55; 16.59

NIL (in block declarations) II: 18.18
NIL (in Masterscope template) II: 19.18

NIL (Litatom) I: 2.3; 9.2

NIL (Primary stream) III: 25.1

NILCOMS (Variable) II: 17.13

(NI LL X 1 ... X N) I: 10.18

NILNUMPRINTFLG (Variable) III: 25.16

NLAMA (Variable) II: 18.9; 18.14

NLAMBDA (Litatom) I: 10.2

NLAMBDA (Macro Type) I: 10.22

Nlambda functions I: 10.2

Nlambda-nospread functions I: 10.6

Nlambda-spread functions I: 10.4
(NLAMBDA.ARGSX) I: 10.13

NLAML (Variable) II: 18.9; 18.14

(NLEFT L N TAIL) I: 3.9

(NLlSTP X) I: 3.1; 9.2

(NLSETQ FORM) I: 9.9; II: 14.22; 13.30

NLSETQGAG (Variable) II: 14.22

NO BINARY CODE GENERATED OR LOADED (Error
Message) II: 18.23

(FN- NO BREAK INFORMATION SAVED) (value of
REBREAK) II: 15.8

NO DO, COLLECT, OR JOIN (Error Message) I: 9.19

NO FILE PACKAGE COMMAND FOR (Error Message)
II: 17.40

NO LONGER INTERPRETED AS FUNCTIONAL
ARGUMENT (Error Message) II: 18.23

NO PROPERTY FOR (Error Message) II: 17.38

NO USERMACRO FOR (Error Message) II: 17.34

NO VALUE SAVED: (Error Message) II: 13.29

NOBIND (Litatom) I: 2.2; 11.8; II: 13.28-29; 17.5

NOBREAKS (Variable) II: 15.7

NOCASEFLG (ASKUSER option) III: 26.15

NOCLEARSTKLST (Variable) I: 11.10
NODIRCORE (file device) III: 24.30

NOECHOFLG (ASK USER option) '111: 26.16

NOESC (type of read macro) III: 25.40

NOESCQUOTE (type of read macro) III: 25.40

NOEVAL (Litatom) II: 21.21

INDEX.27

INDEX

NOFILESPELLFLG (Variable) III: 24.32
NOFIXFNSLST (Variable) II: 21.21; 17.8; 18.12;

21.19
NOFIXVARSLST (Variable) II: 21.21; 17.8; 18.12;

21.15,19
NON-ATOMIC CAR OF FORM (Error Message) II:

18.23
Non-existent directory (Error Message) III: 24.10
NON-NUMERIC ARG (Error Message) I: 5.2;

7.3,6,11; II: 14.28
NONE (syntax class) III: 30.6
NONIMMED (type of read macro) III: 25.41
NONIMMEDIATE (type of read macro) III: 25.41
NOPRINT (Litatom) II: 13.29
(NORMALCOMMENTS FLG) III: 26.44; 26.45
NOSAVE (Function) II: 13.41
NOSAVE (Litatom) II: 13.29,40
NOSCROLLBARS (Window Property) III: 28.26;

28.25
NOSPELLFLG (Variable) II: 20.13; 21.21; III: 24.32
Nospread functions I: 10.3
NOSTACKUNDO (Litatom) II: 13.29
(NOT X) I: 9.3
NOT A BINDABLE VARIABLE (Error Message) II:

18.23
NOTA FUNCTION (ErrorMessage) I: 10.8; II: 15.11
NOT BLOCKED (Printed by Editor) II: 16.65
(NOT BROKEN) (value of UNBREAKO) II: 15.8
not changed. so not unsaved (Printed by Editor) II:

16.69
NOT COMPI LEABLE (Error Message) II: 18.22;

18.14,18
(FILE NOT DUMPED) (returned by MAKEFILE) II:

17.12
not editable (Error Message) II: 16.70-71
NOT FOUND (Error Message) II: 18.22
(FN NOT FOUND) (printed by break) II: 14.7
(NOT FOUND) (printed by BREAKIN) II: 15.6-7
FILENAME NOT FOUND (printed by LlSTFILES) II:

17.14
(FN7 NOT FOUND IN FN2) (value of BREAKO) II:

15.4
NOT FOUND, SO ITWILL BE WRITTEN ANEW (Error

Message) II: 17.51
NOT IN FILE - USING DEFINITION IN CORE (Error

Message) II: 18.22
NOT ON BLKFNS (Error Message) II: 18.22;

18.19-20

INDEX.28

NOT ON FILE, COMPILING IN CORE DEFINITION

(Error Message) II: 18.18
(FN NOT PRINTABLE) (returned by PRETTYPRINT)

III: 26.40
NOT-FOUND: (Litatom) II: 17.7
(NOTANY SOMEX SOMEFNl SOMEFN2) I: 10.17
NOTCOMPILEDFILES (Variable) II: 17.14; 17.10-11
(NOTE VAL LSTFLG) I: 11.20
NOTE: BRKEXP NOT CHANGED. (Printed by Break)

II: 14.12
(NOTEVERY EVERYX EVERYFNl EVERYFN2) I:

10.17
NOTFIRST (DECLARE: Option) II: 17.42
nothing saved (Printed by Editor) II: 16.64-65
nothing saved (Printed by System) II: 13.26; 13.13
Noticing files II: 17.19
(~OTIFY.EVENT EVENTONCEONL y) II: 23.7
NOTLISTEDFILES (Variable) II: 17.14; 17.10
NOTRACE SET (Masterscope Path Option) II: 19.16
NS character I/O III: 25.22; 25.6,9,19
NScharacters I: 2.12; 4.2; III: 25.19-20,36; 27.27;

30.3,6-7,20
NS.ECHOUSER (Function) III: 31.38
NSADDRESS (Data type) III: 31.7; 31.17
NSNAME (Data type) III: 31.8; 31.17-18
(NSNAME.TO.STRING NSNAME FULLNAMEFLG) III:

31.9
(NSOCKETEVENT NSOO III: 31.37
(NSOCKETNUMBER NSOO III: 31.37
(NSPRINT PRINTER FILE OPTIONS) III: 31.12
NSPRINT.DEFAULT.MEDIUM (Variable) III: 29.2
(NSPRINTER.PROPERTIES PRINTER) III: 31.12
(NSPRINTER.STATUS PRINTER) III: 31.12
(NTH COM) (Editor Command) II: 16.26
(NTH N) (Editor Command) II: 16.17; 16.26
(NTH X N) I: 3.9
(NTHCHAR X N FLG RDTBL) I: 2.10
(NTHCHARCODE X N FLG RDTBL) I: 2.13
NULL (file device) III: 24.30
(NULL X) I: 9.3
Null strings I: 4.1
NULLDEF (File Package Type Property) II: 17.30
(NUMBERP X) I: 7.2; 9.1
Numbers I: 7.1; 9.1; III: 25.4
(NX N) (Editor Command) II: 16.16
NX (Editor Command) II: 16.16

INDEX

o
(OBTAIN.MONITORLOCK LOCK DONTWAIT

UNWINDSAVE) II: 23.9
OCCURRENCES (Printed by Editor) II: 16.61
Octal integers I: 7.4
(OCTALSTRING N) III: 31.36
(OOOP N MODULUS) I: 7.9
BLOCKTYPE OF FUNCTIONS (Masterscope Set

Specification) II: 19.12
OK (Break Command) II: 14.5; 14.6,12
OK (Break Window Command) II: 14.3
OK (DEdit Command) II: 16.10
OK (Editor Command) II: 16.49; 16.53,72
OK (Masterscope Command) II: 19.2
OK (Prog. Asst. Command) II: 13.36
OK TO REEVALUATE (printed by DWIM) II: 20.7
OKREEVALST (Variable) II: 20.14; 20.7
OLD (1.5. Operator) I: 9.13
OLDVALUE (Variable) II: 14.27
ON FORM (1.5. Operator) I: 9.13; 9.14
BLOCKTYPE ON FILES (Masterscope Set

Specification) II: 19.12
ON OLD VAR (1.5. Operator) I: 9.13
ON PATH PATHOPTIONS (Masterscope Set

Specification) II: 19.13
Only the compiled version ... was loaded

(MAKEFILE message) II: 17.16
(\ONQUEUE ITEM Q) (Function) III: 31.41
OPCOOE7· ASSEMBLE (Error Message) II: 18.23
Open functions II: 18.11
(OPENFILE FILE ACCESS RECOG PARAMETERS-)

III: 24.15
OPENFN (Window Property) III: 28.15
~)PENIMAGESTREAM FILE IMAGETYPE OPTIONS)

III: 27.9
OPEN LAMBDA (Macro Type) I: 10.22
(OPENNSOCKET SKT# IFCLASH) III: 31.37
(OPENP FILE ACCESS) III: 24.4
(OPENPUPSOCKET SKT#IFCLASH) III: 31.29
(OPENSTREAM FILE ACCESS RECOG PARAMETERS

-) III: 24.2
(OPENSTREAMFN FILE OPTIONS) (Image Stream

Method) III: 27.43
(OPENSTRINGSTREAM STR ACCESS) III: 24.28
(OPENW WINDOW) III: 28.15
(OPENWINOOWS) III: 28.15
(OPENWP WINDOW) III: 28.15
OPERATION (BITBLTargument) III: 27.15
&OPTIONAL (DEFMACRO keyword) I: 10.25

INDEX

Optional macro arguments I: 10.24

(O R X, X 2 ... X N) I: 9.4

INDEX

Order of precedence of CLISP operators II: 21.12
(ORF PA TTERN, ... PA TTERNN) (Editor Command)

II: 16.22
ORIG (Litatom) III: 25.33
ORIGINAL (Break Command) II: 14.10
(ORIGINAL CaMS, ... COMSN) (Editor Command)

II: 16.64
(ORIGINAL COM, ... COM N) (File Package

Command) II: 17.40
ORIGINAL I.S.OPR OPERAND (/.5. Operator) I: 9.17;

9.21
(ORR COMS, ... COMSN) (Editor Command) II:

16.61
OTHER (Syntax Class) III: 25.35
(OUTCHARFN STREAM CHARCODE) (Stream

Method) III: 27.48
(OUTFILE FILE) III: 24.15
(OUTFILEP FILE) III: 24.13
OUTOF FORM (/.5. Operator) I: 9.15; 11.18
OUTPUT (File access) III: 24.2
(OUTPUT FILE) III: 25.8
OUTPUT (Masterscope Command) II: 19.4
OUTPUT FILE? (Compiler Question) II: 18.2
Output functions III: 25.7
OVERFLOW (Error Message) I: 7.2; II: 14.31
(OVERFLOW FLG) I: 7.2
Overflow of floating poi nt numbers I: 7.2

P

(P 0 N) (Editor Command) II: 16.48
(P M N) (Editor Command) II: 16.48
(P 0) (Editor Command) II: 16.48
(P M) (Editor Command) II: 16.47
P (EditorCommand) II: 16.47; 16.28
(P EXP, ... EXPN) (File Package Command) II: 17.40

P.A. 11:13.1
.P2 THING (PRINTOUT command) III: 25.28
(PACK X) I: 2.8

(PACK* X, X2'" XN) I: 2.9

(PACKCX) I: 2.13
\PACKET.PRINTERS (Variable) 1I1~ 31.41
(PACKFILENAME FIELD, CONTENTS1 ... FIELDN

CONTENTSN) III: 24.9

(PACKFILENAME.STRING FIELD, CONTENTS, ...

FIELDNCONTENTSN) III: 24.8

.PAGE (PRINTOUT command) III: 25.26

INDEX.29

INDEX

Page holding in windows III: 28.30
(PAGEFAULTS) II: 22.8
PAGEFULLFN (Function) III: 2830
PAGEFULLFN (Window Property) III: 28.30
(PAGEHEIGHT N) III: 28.30
Paint (Window Menu Command) III: 28.4
.PARA LMARG RMARG LIST (PRINTOUT command)

III: 25.28
.PARA2 LMARG RMARG LIST (PRINTOUT command)

III: 25.28
PARENT (Variable) II: 20.12
Parentheses counting by READ III: 25.4; 30.9
PARENTHESIS ERROR (Error Message) I: 10.13
Parenthesis-moving commands in the editor II:

16.40
(PARSE.NSNAME NAME #PARTS DEFAULTDOMAIN)

III: 31.8
(PARSERELATION RELATION) II: 19.23
PASSTOMAINCOMS (Window Property) III: 28.51
Passwords III: 24.39
Path options in Masterscope II: 19.16
Paths in Masterscope II: 19.15
PATLlSTPCHECK (Variable) I: 12.25
Pattern match compiler I: 12.24
Pattern matching I: 12.24
Pattern matching in the editor II: 16.18; 16.72-73
PATVARDEFAULT (Variable) I: 12.26-27,30
PB (Break Command) II: 14.8
PB LlTATOM (Prog. Asst. Command) II: 13.17
(PEEKC FILE -) III: 25.5; 30.10
(PEEKCCODE FILE -) III: 25.5
PENGUIN (Printer type) III: 29.5
Performance analysis II: 22.1
Period in a list I: 3.3
(PF FN FROMFILES TOFILE) III: 26.41
(PF* FN FROMFILES TOFILE) Ilk 26.41
PFDEFAULT (Variable) 111:26.41

Pilot floppy disk format III: 24.25
Pixels III: 27.3
PL LlTATOM (Prog. Asst. Command) II: 13.17
Place markers in pattern matching I: 12.29
(PLA YTUNE FrequencyIDuration.pairlist) III: 30.24
(PLUS Xl X2 ... XN) I: 7.3

PlVLFILEFlG (Variable) III: 25.12
POINTER (as a field specification) I: 8.21
POINTER (record field type) I: 8.9
Polygons III: 27.20,45
(POP DATUM) (Change Word) I: 8.19
Pop (DEdit Command) II: 16.9

INDEX.30

Portrait fonts III: 27.27
{PORTSTRING NETHOSTSOCKEn "I: 31.35
(POSITIONFILEN) III: 25.11 _

POSITION (Record) III: 27.1
(POSITIONP X) III: 27.1

Positions III: 27.1
{POSSIBILITIES FORM) I: 11.20
Possibilities lists I: 11.20
POSSIBLE NON-TERMINATING ITERATIVE

STATEMENT (Error Message) I: 9.20
POSSIBLE PARENTHESIS ERROR (Error Message) II:

21.19
POSTGREETFORMS (Variable) I: 12.2
(POWEROFTWOP X) I: 7.9
PP (Editor Command) II: 16.47

(PP FN1'" FNN) III: 26.40

PP* (EditorCommand) II: 16.48
(PP* X) III: 26.41
PPE (in Masterscope template) II: 19.18
ppe (used in Masterscope) II: 19.18
.PPF THING (PRINTOUT command) "I: 25.28
.PPFTl THING (PRINTOUT command) III: 25.28
PPT (EditorCommand) II: 16.48; 21.17,26
(PPT X) II: 21.26; 21.17
PPV (Editor Command) II: 16.48; "I: 26.42
.PPV THING (PRINTOUT command) III: 25.28
.PPVTl THING (PRINTOUT command) III: 25.28
Precedence rules for CLISP operators II: 21.8
Prefix operators in CLISP II: 21.7
PREGREETFORMS (Variable) I: 12.1
(PREPRINTFN IMAGEOBJ) (lMAGEFNS Method) III:

27.39
PRESS (Image stream type) III: 27.8
Press format I: 12.3; III: 27.8-10,12,29,31,33;

29.1-2,5
PRESSFONTWIDTHSFILES (Variable) I: 12.3; III:

27.31
PRETTYCOMFONT (Font class) III: 27.32
(PRETTYCOMPRINT X) II: 17.52
(PRETTYDEF PRTTYFNS PRTTYFILE PRTTYCOMS

REPRINTFNS SOURCEFILE CHANGES) II:
17.50; 1 5. 1 3

PRETTYEQUIVlST (Variable) III: 26.49
PRETTYFlG (Variable) I: 12.3; II: 17.11; III: 26.48
PRETTYHEADER (Variable) II: 17.52; 17.51
PRETTYLCOM (Variable) III: 26.47; 26.48
(PRETTYPRINT FNS PRETTYDEFLG -) III: 26.40
Prettyprinting function definitions III: 26.39
PRETTYPRINTMACROS (Variable) III: 26.48

INDEX

PRETTYPRINTYPEMACROS (Variable) III: 26.48

PRETTYTABFLG (Variable) III: 26.47
Primary input stream III: 25.3; 24.4

Primary output stream III: 25.8; 24.4

Primary read table III: 25.33; 25.3,8; 30.6

Primary streams III: 25.1; 25.3,8

Primary terminal table III: 30.4; 30.6

(PRIN1 X FILE) III: 25.8; 25.11

(PRIN2 X FILE ROTBL) III: 25.8; 25.11

PRIN2-names I: 2.8-9,13; 4.2
(PRIN3 X FILE) III: 25.9

(PRIN4 X FILE ROTBL) III: 25.9

(PRINT X FILE ROTBL) III: 25.9; 25.11

PRINT (history list property) II: 13.33

Print names I: 2.7

(PRINT-LlSP-INFORMATION STREAM FILESTRING)

I: 12.11
(PRINTBELLS -) II: 20.3; III: 25.10
PRINTBINDINGS (Function) II: 13.17; 14.9

(PRINTBITMAP BITMAP FILE) III: 27.4

(PRINTCCODE CHARCOOE FILE) III: 25.9
PRINTCODE (Function) III: 26.2

(PRINTCOMMENT X) III: 26.45

(PRINTCONSTANT VAR CONSTANTLISTFILE PREFIX)

III: 31.35
(PRINTDATE FILE CHANGES) II: 17.51

(PRINTDEF EXPR LEFT OEF TAILFLG FNSLST FILE) III:
26.42; 26.48

(PRINTERSTATUS PRINTER) III: 29.4

(PRINTERTYPE HOSn III: 29.4
PRINTERTYPE (Property Name) III: 29.4

PRINTERTYPES (Variable) III: 29.5

(PRINTFILETYPE FILE -) III: 29.4
PRINTFILETYPES (Variable) III: 29.6; 27.9

(PRINTFNS X -) II: 17.51

(PRINTHISTORY HISTORY LINE SKIPFN NOVALUES
FILE) II: 13.42; 13.13

Printing circular lists III: 25.17
Printing documents III: 29.1

Printing numbers III: 25.13
Printing unusual data structures III: 25.17
(PRINTLEVEL CARVAL CORVAL) III: 25.11

PRINTLEVEL (Interrupt Channel) III: 30.3
PRINTMSG (Variable) II: 14.23
(PRINTNUM FORMAT NUMBER FILE) III: 25.15;

25.14
PRINTOUT (CLISP word) III: 25.23

PRINTOUTMACROS (Variable) III: 25.31

INDEX

(PRINTPACKET PACKET CALLER FILE PRE. NOTE

OOFILTER) III: 31.41

INDEX

(PRINTPACKETDATA BASE OFFSET MACRO LENGTH

FILE) III: 31.35

(PRINTPARA LMARG RMARG LIST P2FLAG

PARENFLAG FILE) III: 25.32

PRINTPROPS (Function) II: 13.17

(PRINTPUP PACKET CALLER FILE PRE. NOTE

OOFILTER) III: 31.33
(PRINTPUPROUTE PACKET CALLER FILE) III: 31.35
(PRINTROUTINGTABLE TABLE SORT FILE) III: 31.31

PRINTXIP (Function) III: 31.38
PRINTXIPROUTE (Function) III: 31.38

PROCESS (WindowProperty) II: 23.13; III: 28.30

Process mechanism II: 23.1

Process status window II: 23.16
(PROCESS.APPL Y PROC FN ARGS WAITFORRESUL n

II: 23.6
(PROCESS.EVAL PROC FORM WAITFORRESUL n II:

23.6
(PROCESS.EVALV PROC VAR) II: 23.6

(PROCESS.FINISHEDP PROCESS) II: 23.4

(PROCESS.RESULT PROCESS WAITFORRESUL n II:

23.4
(PROCESS.RETURN VALUE) II: 23.4
(PROCESS.STATUS.WINDOW WHERE) II: 23.17

Processes II: 23.1
(PROCESSP PROO II: 23.4
(PROCESSPROP PROC PROP NEWVALUE) II: 23.2

(PROCESSWORLD FLG) II: 23.1

(PRODUCE VAL) I: 11.17

(PROGVARLSTE1E2 ... EN) 1:9.8

PROG label I: 9.8

(PROG* VARLSTE1 E2'" EN) (Macro) I: 9.9

(PROG1 X 1 X2'" XN) I: 9.7

(PROG2 Xl X2'" XN) I: 9.7

(PROGN Xl X2 ... XN) I: 9.8

Programmer's assistant II: 13.1
Programmer's assistant and the editor II: 13.43
Programmer's assistant commands applied to P.A.

commands II: 13.20

Programmer's assistant commands that fail II:
13.20

Prompt character II: 13.38; 13.3,22; 14.1
Prompt window III: 28.3
PROMPT#FLG (Variable) I: 12.3; II: 13.22; 13.38
(PROMPTCHAR 10 FLG HISTORy) II: 13.38;

13.22,43

INDEX.31

INDEX

PROMPTCHARFORMS (Variable) II: 13.22; 13.38

PROMPTCONFIRMFLG (ASKUSER option) III: 26.15

(PROMPTFORWORD PROMPT.STR CANDIDA TE.STR
GENERATE?L1ST.FN ECHO. CHANNEL
DONTECHOTYPEIN.FLG URGENCY. OPTION
TERMINCHARS.LST KEYBD.CHANNEL) III:

26.9; 26.10

PROMPTON (ASK USER option) III: 26.16

(PROMPTPRINT EXP1'" EXPN) III: 28.3

PROMPTSTR (Variable) II: 13.22

PROMPTWINDOW (Variable) II: 23.14; III: 28.3

(PROP PROPNAME L1TATOM1 ... L1TATOMN) (File

Package Command) II: 17.37; 17.45

PROP (in Masterscope template) II: 19.19

PROP (Litatom) I: 10.10

prop (Printed by Editor) II: 16.69

PROPCOMMANDFN (Window Property) III: 26.8

Proper tail I: 3.9

PROPERTIES (Window Property) III: 26.8

Properties of litatoms I: 2.5

Property lists I: 3.15

Property names I: 3.15; 25-6

Property values I: 3.15; 2.5-6

(PROPNAMES A TM) I: 2.6

PROPPRINTFN (Window Property) III: 26.8

PROPRECORD (Record Type) I: 8.8

(PROPS {L1TATOM1 PROPNAME1)'" (LJTATOMN

PROPNAMEN» (File Package Command) II:

17.38

PROPS (File Package Type) II: 17.24

PROPTYPE (Property Name) II: 17.24; 17.18

PROTECTION VIOLATION (Error Message) II: 14.31;
III: 24.3,39

PRXFLG (Variable) III: 25.14

(PSETQ VARl VALUE1'" VARN VALUEN) (Macro) I:

2.3

Pseudo-carriage return II: 13.32

PSW (Background Menu Command) III: 28.6

(PUP.ECHOUSER HOST ECHOSTREAM INTERVAL
NTIMES) III: 31.34

PUPIGNORETYPES (Variable) III: 31.32

(PUPNET.DISTANCE NET#) III: 31.30

PUPONLYTYPES (Variable) III: 31.32

PUPPRINTMACROS (Variable) III: 31.33

(PUPSOCKETEVENT PUPSOC) III: 31.29

(PUPSOCKETNUMBER PUPSOC) III: 31.29

(PUPTRACE FLG REGION) III: 31.33
PUPTRACEFILE (Variable) III: 31.32

PUPTRACEFLG (Variable) III: 31.32

INDEX.32

PUPTRACETIME (Variable) III: 31.33

(PURGEDSKDIRECTORV VOLUMENAME -) III:

24.22

(PUSH DATUM ITEM1'TEM2 ...) (Change Word) I:

8.18

(PUSHLIST DATUM ITEM1'TEM2 ...) (Change Word)

I: 8.19

(PUSHNEW DATUM ITEM) (Change Word) I: 8.18

(PUTASSOC KEY VAL ALSn I: 3.15

(PUTCHARBITMAP CHARCODE FONT

NEWCHARBITMAP NEWCHARDESCENn III:

27.30

(PUTD FN DEF-) I: 10.11

PUTDEF (File Package Type Property) II: 17.30

(PUTDEF NAME TYPE DEFINITION REASON) II:

17.26

(PUTFN IMAGEOBJ FILESTREAM) (lMAGEFNS

Method) III: 27.37
(PUTHASH KEY VAL HARRA y) I: 6.2

(PUTMENUPROP MENU PROP~RTY VALUE) III:

28.43

(PUTPROP ATM PROP VAL) I: 2.5; 2.6

(PUTPROPS A TM PROP 1 VAL 1 ... PROP N VAL N) II:

17.55

(PUTPUPBVTEPUPBYTE#VALUE) III: 31.31

(PUTPUPSTRING PUP STR) III: 31.32

(PUTPUPWORD PUP WORD# VALUE) III: 31.31

Q
Q (Editor Command) II: 16.57

Q (following a number) I: 7.4
$Q (escape-Q) (TYPE-AHEAD command) II: 13.18

(\QUEUELENGTH 0) (Function) III: 31.41

(QUOTEX) I: 10.12

(QUOTIENT X y) I: 7.3

Quoting file names III: 24.6

R
(R X y) (Editor Command) II: 16.45

(R1 X Y) (Editor Command) II: 16.46

(RADIX N) I: 2.8; 7.5; III: 25.13; 25.3,8

RAID (Interrupt Channel) II: 23.15; III: 30.3

(RAISE X) (Editor Command) II: 16.53

RAISE (Editor Command) II: 16.52
/ (RAISE FLG TTBL) III: 30.8

(RAND LOWER UPPER) I: 7.14

(RANDACCESSP FILE) III: 25.20
Random numbers I: 7.14

Randomly accessible files III: 25.18

INDEX

(RANDSET X) I: 7.14

(RATEST FLG) III: 25.4
(RATOM FILE RDTBL) III: 25.4; 25.36; 30.10
(RATOMS A FILE RDTBL) III: 25.4
RAVEN (Printer type) III: 29.5
(RCX y) (Editor Command) II: 16.46

RC (MAK EFILE option) II: 17.10
(RC1 X y) (EditorCommand) II: 16.46

(READ FILE RDTBL FLG) III: 25.3; 30.10
Read macros III: 25.39
Read tables III: 25.33; 25.3,8
READ-MACRO CONTEXT ERROR (Error Message) II:

14.30
(READBITMAP FILE) III: 27.4
READBUF (Variable) II: 13.36; 13.38
(READC FILE RDTBL) III: 25.5; 30.10
(READCCODE FILE RDTBL) III: 25.5
(READCOMMENT FL RDTBL LSn III: 26.45
READDATE (File Attribute) III: 24.18
(READFILE FILE RDTBL ENDTOKEN) III: 25.33
(READIMAGEOBJ STREAM GETFN NOERROR) III:

27.41
(READLINE RDTBL --) II: 13.36;

13.24,32,35,37,43; 16.67
(READMACROS FLG RDTBL) III: 25.42
(READP FILE FLG) III: 25.6
(READTABLEP RDTBL) III: 25.34

READVICE (Property Name) II: 15.12-13
(READVISEX) II: 15.12; 15.13; 17.35
(REALFRAMEP POS INTERPFLG) I: 11.13
(REALMEMORVSIZE) I: 12.10

(REALSTKNTH N POS INTERPFLG OLDPOS) I: 11.13
REANAL VZE SET (Masterscope Command) II: 19.4
(REBREAK X) II: 15.8; 15.4
(RECLAIM) II: 22.3
(RECLAIMMIN N) II: 22.3

RECLAIMWAIT (Variable) II: 22.3
(RECLOOK RECNAME ----) I: 8.16
Recognition of file versions III: 24.11
(RECOMPILE PFILE CFILE FNS) II: 18.15; 17.12;

18.14,18
RECOMPILEDEFAULT (Variable) II: 18.16; 18.22
Reconstruction in pattern matching I: 12.30
RECORD (in Masterscope template) II: 19.20
RECORD (Record Type) I: 8.7
Record declarations I: 8.6
Record declarations in CLISP II: 21.14
Record package I: 8.1
Record types I: 8.7; 8.6

INDEX

(RECORDACCESS FIELD DATUM DEC TYPE

NEWVALUE) I: 8.16
(RECORDACCESSFORM FIELD DA TUM TYPE

NEWVALUE) I: 8.17

INDEX

(RECORDFIELDNAMES RECORDNAME -) I: 8.16
(RECORDS REC 1 ... RECN) (File Package Command)

I: 8.2,11; II: 17.38
RECORDS (File Package Type) II: 17.24
REDEFINE? (Compiler Question) II: 18.1

(FNredefined) (printedbysystem) I: 10.10
Redisplay (Window Menu Command) III: 28.4
(REDISPLAVWWINDOW REGION ALWAYSFLG) III:

28.16
REDO EventSpec UNTIL FORM (Prog. Asst.

Command) II: 13.8
REDO EventSpec WHILE FORM (Prog. Asst.

Command) II: 13.8
REDO EventSpec N TIMES (Prog. Asst. Command)

II: 13.8
REDO EventSpec (Prog. Asst. Command) II: 13.8;

13.33
REDOCNT (Variable) II: 13.9
REFERENCE (Masterscope Relation) II: 19.8
Reference-counting garbage collection II: 22.2
ReFetch (Inspect Window Command) III: 26.4
REGION (Record) III: 27.1
REGION (Window Property) III: 28.34; 28.24
(REGIONP X) III: 27.2

Regions III: 27.1
(REGIONSINTERSECTP REGION 1 REGION2) III: 27.2
Registering image objects III: 27.39
(REHASH OLDHARRA Y NEWHARRA y) I: 6.3
REJECTMAINCOMS (Window Property) III: 28.51
SET RELA TlON SET (Masterscope Command) II:

19.5
Relations in Masterscope II: 19.7
(RELDRAWTO DX DY WIDTH OPERA TlON STREAM

COLOR DASHING) III: 27.18
(\RELEASE.ETHERPACKET EPKn (Function) III:

31.39
(RELEASE.MONITORLOCK LOCK EVENIFNOTMINE)

II: 23.9
(RELEASE.PUP PUP) III: 31.28
(RELEASE.XIP XIP) III: 31.36
Releasing stack pointers I: 11.9
(RELMOVETO DX DY STREAM) III: 27.14
(RELMOVEW WINDOW POSITION) III: 28.19
(RELPROCESSP PROCHANDLE) II: 23.4
(RELSTK POS) I: 11.9; 11.10

INDEX.33

INDEX

(RELSTKP X) I: 11.9
(REMAINDER X y) I: 7.3
REMAKE (MAKEFILEoption) II: 17.11
Remaking a symbolic file II: 17.15
REMEMBER EventSpec (Prog. Asst. Command) II:

13.17
(REMOVE X L) I: 3.19
(REMOVEPROMPTWINDOW MAINWINDO'N) III:

28.50
(REMOVEWINDOW WINDO'N) III: 28.47
(REMPROP A TM PROP) I: 2.6
(REMPROPLIST ATM PROPS) I: 2.6
(RENAME OLD NEW TYPES FILES METHOD) II:

17.29
(RENAMEFILE OLDFILE NEWFILE) III: 24.31
Renaming files III: 24.31
Reopening files III: 24.20
(REPACK @) (EditorCommand) II: 16.53
REPACK (EditorCommand) II: 16.53
REPAINTFN (Window Property) III: 28.16; 28.38
REPEAT EventSpec UNTIL FORM (Prog. Asst.

Command) II: 13.8
REPEAT EventSpec WHILE FORM (Prog. Asst.

Command) II: 13.8
REPEAT EventSpec (Prog. Asst. Command) II: 13.8
REPEATUNTlLN(Na number) (1.5. Operator) I: 9.16
REPEATUNTILFORM (I.S. Operator) I: 9.16
REPEATWHILE FORM (1.5. Operator) I: 9.16
Replace (DEdit Command) II: 16.7
(REPLACE @WITH E 1 ... EM) (EditorCommand) II:

16.33
(REPLACE @ BY E 1 .•• EM) (Editor Command) II:

16.33
REPLACE (in Masterscope template) II: 19.19
REPLACE (Masterscope Relation) II: 19.9
REPLACE (Record Operator) I: 8.2; 8.3; II: 21.10
REPLACE UNDEFINED FOR FIELD (Error Message) I:

8.12
(REPLACEFIELD DESCRIPTOR DATUM NEWVALUE)

I: 8.22
Replacements in pattern matching I: 12.29
(REPOSITIONATTACHEDWINDOWS WINDO'N) III:

28.47
Reprint (DEdit Command) II: 16.9
REREADFLG (Variable) II: 13.39; 13.38
(RESET) II: 14.20; 14.25
RESET (Interrupt Channel) II: 23.14; III: 30.3
(VARIABLE RESET) (printed by system) II: 13.28

(RESET.lNTERRUPTS PERMITTED/NTERRUPTS

SAVECURRENT?) III: 30.4
(RESETBUFS FORM, FORM2'" FORMN) III: 30.12

(RESETDEDIT) II: 16~3

(RESETFORM RESETFORM FORM1 FORM2'"

FORMN) II: 14.26

RESETFORMS (Variable) II: 13.22
(RESETLST FORMI'" FORMN) II: 14.24

(RESETREADTABLE RDTBL FROM) III: 25.35
(RESETSAVE X y) II: 14.24
RESETSTATE (Variable) II: 14.26; 23.11
(RESETTERMTABLE TTBL FROM) III: 30.5
(RESETUNDO X 5 TOPFLG) II: 13.30; 14.27
(RESETVAR VAR NEWVALUE FORM) II: 14.25; 18.4

(RESETV ARS VARSLST E 1 E 2 ... EN) II: 14.25

(RESHAPEBYREPAINTFN WINDOW OLD/MAGE
IMAGEREGION OLDSCREENREG/ON) III:

28.18
RESHAPEFN (Window Property) III: 28.17
resourceName RESOURCE (1.5. Operator) I: 12.18
Resources I: 12.19
(RESOURCES RESOURCE 1 ... RESOURCEN) (File

Package Command) I: 12.19,23; II: 17.39
RESOURCES (File Package Type) I: 12.19; II: 17.24
RESPONSE (Variable) II: 22.1 2
&REST (DEFMACROkeyword) I: 10.25
(RESTART.ETHER) III: 31.38; 24.41

(RESTART.PROCESS PROC) II: 23.5
RESTARTABLE (Process Property) II: 23.2
RESTARTFORM (Process Property) II: 23.3
(RESUME FROMPTR TOPTR VAL) I: 11.19
(RETAPPLY POS FN ARGS FLG) I: 11.9
(RETEVALPOSFORMFLG~) I: 11.9; II: 20.7
RETFNS (in Masterscope Set Specification) II: 19.12
RETFNS (Variable) II: 18.19; 18.18
(RETFROM POS VAL FLG) I: 11.8
RETRIEVE LlTATOM (Prog. Asst. Command) II:

13.15; 13.24,33
RETRY EventSpec (Prog. Asst. Command) II: 13.9;

13.33
(RETTO POS VAL FLG) I: 11.9
RETURN (ASKUSER option) III: 26.15
RETU RN FORM (Break Command) II: 14.6
(RETURN X) I: 9.8
RETURN (in iterative statement) I: 9.18
RETURN (in Masterscope template) II: 19.19
RETYPE (syntax class) III: 30.6
REUSING (in CREA TE form) I: 8.4

INDEX

Reusi ng stack pointers I: 11.10

(REVERSE L) I: 3.19

REVERT (Break Command) II: 14.10

revert (Break Window Command) II: 14.3

(RI N M) (Editor Command) II: 16.41

RIGHT (key indicator) III: 30.17

Right margin III: 27.11

Right-button background menu III: 28.6

Right-button window menu III: 28.3

RIGHTBRACKET (Syntax Class) III: 25.35

RIGHTBUTTONFN (Window Property) III: 28.28

RIGHTPAREN (Syntax Class) III: 25.35

(RINGBELLS N) III: 30.24

(RO N) (Editor Command) II: 16.41

Root name of a file II: 17.4

ROOTFILENAME (Function) II: 17.4,20

(ROT X N FIELDSIZE) I: 7.10

ROTATION (Font property) III: 27.27

(RPAQ VAR VALUE) II: 17.54; 13.28; 17.5

(RPAQ7 VAR VALUE) II: 17.54; 17.5

(RPAQQ VAR VALUE) II: 17.54; 13.28; 17.5,50

RPARKEY (Variable) II: 20.14; 20.6

#RPARS (Variable) III: 26.47

(RPLACA X y) I: 3.2; II: 21.13

(RPLACDXy) I: 3.2; II: 21.13

(RPLCHARCODE X N CHAR) I: 4.5

(RPlNODE X A D) I: 3.2; II: 13.40

(RPLNODE2 X y) I: 3.3; II: 13.40

(RPLSTRING X NY) I: 4.4

(RPT NFORM) I: 10.15

(RPTQ N FORM1 FORM2 ... FORMN) I: 10.15

(RSH X N) I: 7.8

(RSTRING FfLE RDTBL) III: 25.4

RUBOUT (Interrupt Channel) II: 23.15; III: 30.3

Run-encoding of NS characters III: 25.22

Run-on spelling corrections II: 20.22; 20.4

RUNONFLG (Variable) II: 20.14; 20.22

S
S LlTATOM@ (EditorCommand) II: 16.29

S (Response to Compiler Question) II: 18.2

(SASSOC KEY ALSn I: 3.15
SAV/ING cursor I: 12.7

SAVE (EditorCommand) II: 16.49; 16.51,72

SAVE EXPRS? (Compiler Question) II: 18.2
(SAVEDEF NAME TYPE DEFINITION) II: 17.27

(SAVEPUT ATM PROP VAL) II: 17.55

(SAVESET NAME VALUE TOPFLG FLG) II: 13.29;

13.28

INDEX

SAVESETQ (Function) II: 13.28

SAVESETQQ (Function) II: 13.28

INDEX

SaveVM (Background Menu Command) III: 28.6

(SAVEVM -) I: 12.7

SAVEVMMAX (Variable) I: 12.7

SAVEVMWAIT (Variable) I: 12.7

Saving bitmaps on files III: 27.3
SAVINGCURSOR (Variable) I: 12.7; III: 30.15

SCALE (Font property) III: 27.28

(SCAVENGEDSKDIRECTORY VOLUMENAME SILENn

III: 24.23

(SCRATCHLIST LST X 1 X2 ... XN) I: 3.8

(SCREEN BITMAP) III: 30.22

SCREENHEIGHT (Variable) III: 30.22

Screens I: 12.4; III: 30.22

SCREENWIDTH (Variable) III: 30.22

(SCROLL.HANDlER WINDOVV) III: 28.24

SCROlLBARWIDTH (Variable) III: 28.24

(SCROLLBYREPAINTFN WINDOW DEL TAX DELTAY

CONTINUOUSFLG) III: 28.25

ScroliDownCursor (Variable) III: 30.15

SCROLLEXTENTUSE (Window Property) III: 28.26;

28.25
SCROlLFN (Window Property) III: 28.26; 28.25,38

Scrolling III: 28.23; 27.24

ScrollleftCursor (Variable) III: 30.1 6

ScroliRightCursor (Variable) III: 30.16

ScrollUpCursor (Variable) III: 30.15

(SCROlLW WINDOW DEL TAX DELTAY

CONTINUOUSFLG) III: 28.24

SCROLLWAITTIME (Variable) III: 28.24

Searching file directories III: 24.31

Searching files III: 25.20

Searching in the editor II: 16.18; 16.20

Searching strings I: 4.5

SEARCHING ... (Printed by BREAKIN) II: 15.7
(SEARCHPDl SRCHFN SRCHPOS) I: 11.14

SECONDS (Timer Unit) I: 12.16

(SEE FROMFILE TOFILE) III: 26.41

(SEE"" FROMFfLE TOFfLE) III: 26.41

Segment patterns in pattern matching I: 12.27

(SElCHARQ E CLAUSE 1 ... CLAUSEN DEFAUL n
(Macro) I: 2.15

SElECTABlEITEMS (Window Property) III: 26.8

(SElECTC X CLAUSE 1 CLAUSE2 ... CLAUSEK

DEFAULn I: 9.7

SElECTIONFN (Window Property) III: 26.8

INDEX.35

INDEX

(SELECTQ X CLAUSE 1 CLAUSE2 ... CLAUSEK

DEFAULn I: 9.6
(SEND.FILE. TO.PRINTER FILE HOST PRINTOPTIONS)

III: 29.1
(SENDPUP PUPSOC PUP) III: 31.29

(SENDXIP NSOC XIP) III: 31.37
SEPARATE SET (Masterscope Path Option) II: 19.16

Separator characters III: 25.36; 25.4; 30.10

SEPR (Syntax Class) III: 25.37

(SEPRCASE CLFLG) III: 25.22
SEPRCHAR (Syntax Class) III: 25.35
SEQUENTIAL (OPENSTREAM parameter) III: 24.3

(SET VAR VALUE) I: 2.3

SET (in Masterscope template) II: 19.18
SET (Masterscope Relation) II: 19.8

Set specifications in Masterscope II: 19.10

(SET.TTYINEDIT.WINDOW WINDOW) III: 26.33

(SETA ARRAY N V) I: 5.1

(SETARG VAR M X) I: 10.5
(SETATOMVAL VAR VALUE) I: 2.4
(SETBLlPVAL BLIPTYP IPOS N VAL) I: 11.16

(SETBRK LSTFLG RDTBL) III: 25.38
(SETCASEARRA Y CASEARRA Y FROMCODE TOCODE)

III: 25.22

(SETCURSOR NEWCURSOR -) III: 30.14

(SETDISPLA YHEIGHT NSCANLINES) III: 30.23

(SETERRORN NUM MESS) II: 14.20
(SETFILEINFOFILEATTRIB VALUE) III: 24.17

(SETFI LEPTR FILE ADR) III: 25.19

SETFN (Property Name) II: 21.28
(SETFONTDESCRIPTOR FA MIL Y SIZE FACE

ROTATION DEVICE FONn III: 27.29
SETlNITlALS (Variable) II: 16.76

(SETlINELENGTH N) III: 25.11

(SETMAINTPANEL N) III: 30.24

(SETPASSWORD HOST USER PASSWORD

DIRECTORy) III: 24.40
(SETPROPLIST ATM LSn I: 2.7
(SETQ VAR VALUE) I: 2.3

(SETQQ VAR VALUE) I: 2.3
SETREADFN (Function) III: 26.28

(SETREADTABLE RDTBL FLG) III: 25.34

Sets in Masterscope II: 19.10
(SETSEPR LST FLG RDTBL) III: 25.38
(SETSTKAR G N POS VAL) I: 11:.7
(SETSTKARGNAME N POS NAME) I: 11.7
(SETSTKNAME POS NAME) I: 11.6
(SETSYNONYM PHRASE MEANING -) II: 19.23
(SETSYNTAX CHAR CLASS TABLE) III: 25.37

INDEX.36

(SETTEMPLATE FN TEMPLATE) II: 19.21

(SETTERMCHARS NEXTCHAR BKCHAR LASTCHAR

UNQUOTECHAR 2CHAR.PPCHAR) II: 16.75;

16.18
(SETTERMTABLE TTBL) III: 30.5

(SETTIME On I: 12.15

Setting maintanance panel III: 30.24
(SETTOPVAL VAR VALUE) I: 2.4

(SETUPPUP PUP DESTHOST DESTSOCKET TYPE ID

SOC REQUEUE) III: 31.31
(SETUPTIMER INTERVAL OldTimer? timerUnits

intervalUnits) I: 12.17
(SETUPTIMER.DATE DTS OldTimer?) I: 12.17

(SETUSERNAME NAME) III: 24.40

(SHADEGRIDBOX X Y SHADE OPERA TlON GRIDSPEC

GRIDBORDER STREAM) III: 27.22
(SHADEITEM ITEM MENU SHADE DS/W)· III: 28.43

SHALL I LOAD (printed by DWIM) II: 20.10

Shallow binding I: 11.1; 2.4; II: 22.6
Shape (Window Menu Command) III: 28.5

(SHAPEW WINDOW NEWREGION) III: 28.16

(SHAPEW1 WINDOW REGION) III: 28.17

SHH FORM (Prog. Asst. Command) II: 13.18

(SHIFTDOWNP SHIm III: 30.20
(SHORT-SITE-NAME) I: 12.12

SHOULD BE A SPECVAR (Error Message) II: 18.22

SHOULDCOMPILEMACROATOMS (Variable) I:

10.28
Shouldn't happen! (Error Message) II: 14.20
(SHOULDNT MESS) II: 14.20

(SHOW X) (Editor Command) II: 16.61

SHOW PATHS PATHOPTIONS (Masterscope

Command) II: 19.5; 19.15

SHOW WHERE SET RELATION SET (Masterscope

Command) II: 19.6

(SHOW.CLEARINGHOUSE ENTIRE.CLEARINGHOUSE?

DONT.GRAPH) III: 31.10

(SHOWDEF NAME TYPE FILE) II: 17.27
SHOWPARENFLG (Variable) III: 26.36
(SHOWPRIN2XFILERDTBL) II: 13.13,42; III: 25.10

(SHOWPRINT X FILE RDTBL) I: 11.12; II: 14.8-9; III:

25.10
Shrink (Window Menu Command) III: 28.5

(SHRINKBITMAP BITMAP WIDTHFACTOR

HEIGHTFACTOR DESTINATIONBITMAP) III:

27.4
SHRINKFN (Window Property) III: 28.22
Shrinking windows III: 28.21

INDEX

(SHRINKW WINDOW TOWHA T ICONPOSITION
EXPANDFN) III: 28.21

SIDE (History List Property) II: 13.33; 13.40-43
SIDE (Property Name) II: 13.34
SIGNEOWORO (as a field specification) I: 8.21

SIGNEDWORD (record field type) I: 8.10
(SIN X RADIANSFLG) I: 7.13

Siteinitfile I: 12.1
SIZE (File Attribute) III: 24.17
SIZE (Font property) III: 27.27
.SKIP LINES (PRINTOUT command) III: 25.26
(SKIPSEPRS FILE RDTBL) III: 25.7
SKOR (Function) II: 20.20
(SKREAO FILE REREADSTRING RDTBL) III: 25.7
SLOPE (Font property) III: 27.27
Small integers I: 7.1; 9.1
SMALLEST FORM (1.5. Operator) I: 9.12
(SMALLP X) I: 7.1; 9.1
(SMARTARGLIST FN EXPLAINFLG TAIL) I: 10.8
SMASH (in Masterscope template) II: 19.18 -

SMASH (Masterscope Relation) II: 19.8
(SMASHFILECOMS FILE) II: 17.49
SMASHING (in CREA TE form) I: 8.4
SMASHPROPS (Variable) ,,: 22.12

SMASHPROPSLST (Variable) II: 22.12
SMASHPROPSMENU (Variable) II: 22.12
Snap (Background Menu Command) III: 28.6
Snap (Window Menu Command) III: 28.4
(SOFTWARE-TYPE) I: 12.12
(SOFTWARE-VERSION) I: 12.12
(SOME SOMEX SOMEFN1 SOMEFN2) I: 10.17
SORRY, I CAN'T PARSE THAT (Error Message) II:

19.17
SORRY, NO FUNCTIONS HAVE BEEN ANALYZED

(Error Message) II: 19.17
SORRY, THAT ISN'T IMPLEMENTED (Error Message)

II: 19.17
(SORT DATA COMPAREFN) I: 3.17
(SORT.PUPHOSTS.BY.DISTANCE HOSTLISn III:

31.30
SOURCETYPE (BITBLTargument) III: 27.15
.SP DISTANCE (PRINTOUT command) III: 25.26
Space factor 111:27.12
(SPACES N FILE) III: 25.9
Spaghetti stacks I: 11.2
(SPAWN.MOUSE -) II: 23.15
Speaker in terminal III: 30.24
SPEC (Font property) III: 27.28
Special variables II: 18.5; 22.5

INDEX

INDEX

Specvars II: 18.5; 14.26
(SPECVARS VAR1 ... VARN) (File Package Command)

II: 17.37
SPECVARS (in Masterscope Set Specification) II:

19.12
SPECVARS (Variable) II: 18.5; 18.18
(SPELLFILE FILE NOPRINTFLG NSFLG DIRLSn II:

14.23,29; III: 24.32; 24.3
Spellingcorrection II: 20.15; 13.8,35; 14.17;

16.66,68; 17.34,42; 20.2,19; 21.9,25
Spelling correction on file names II: 20.24; III:

24.32 .

Spelling correction protocol II: 20.4
Spelling lists I: 9.10; II: 20.16; 13.8,35; 14.17;

16.66,68; 17.6,34,42; 20.9-11; 21.9,25; III:
24.35

SPELLlNGS1 (Variable) II: 20.17; 20.11,18,21
SPELLlNGS2 (Variable) II: 20.17; 20.10-11,18,21
SPELLINGS3 (Variable) II: 20.17; 13.29; 20.9,18,21
SPELLSTR1 (Variable) II: 20.18
SPLICE (type of read macro) III: 25.39
(SPLITC X) (Editor Command) II: 16.54
(SPP.CLEARATIENTION STREAM NOERRORFLG)

III: 31.15
(SPP.CLEAREOM STREAM NOERRORFLG) III: 31.15

(SPP.DSTYPE STREAM DSTYPE) III: 31.14
(SPP.OPEN HOST SOCKET PROBEP NAME PROPS)

III: 31.12
(SPP.SENOATIENTION STREAM ATTENTlONBYTE-)

111:31.14
(SPP.SENOEOM STREAM) III: 31.14
SPP.USER.TIMEOUT (Variable) III: 31.14
(SPPOUTPUTSTREAM STREAM) III: 31.14

Spread functions I: 10.3
SPRUCE (Printer type) III: 29.5
(SQRTN) I: 7.13
SQRT OF NEGATIVE VALlJE (Error Message) I: 7.13
Square brackets inserted by PRETTYPRINT III:

26.47
ST (Response to Compiler Question) II: 18.2
Stack I: 11.1
Stack and the interpreter I: 11.14
Stack descriptors I: 11.4
Stack functions I: 11.4
STACK OVERFLOW (Error Message) 1:11. 1 0; II:

14.28; 23.1 5
STACK POINTER HAS BEEN RELEASED (Error

Message) I: 11.5
Stack pointers I: 11.4; 11.5,9

INDEX.37

INDEX

STACK PTR HAS BEEN RELEASED (Error Message)

II: 14.30

(STACKP X) I: 11.9

STANDARD (Font face) III: 27.26

(START.CLEARINGHOUSE RESTARTFLG) III: 31.9

STF (Response to Compiler Question) II: 18.2

(STKAPPL Y POS FN ARGS FLG) I: 11.8

(STKARG NPOS-) I: 11.7; II: 14.8

(STKARGNAME N POS) I: 11.7

(STKARGS POS-) I: 11.7
(STKEVAlPOSFORMFLG-) I: 11.8; II: 14.8

(STKNAME POS) I: 11.6

(STKNARGS POS -) I: 11.7

(STKNTH N POS OLDPOS) I: 11.6

(STKNTHNAME N POS) I: 11.6

(STKPOS FRAMENAME N POS OLDPOS) I: 11.5

(STKSCAN VAR IPOSOPOS) I: 11.6

STOP (at the endofa file) II: 11.6; III: 25.33

Stop (DEdit Command) II: 16.10

STOP (EditorCommand) II: 16.49; 15.6; 16.53,72

$STOP (escape-STOP) (TYPE-AHEAD command) II:

13.18

(STORAGE TYPES PAGETHRESHOLD) II: 22.3

Storage allocation II: 22.1
STORAGE FULL (Error Message) II: 14.30; 23.15

STORAGE.ARRA YSIZES (Variable) II: 22.4

(STORAGE.LEFT) II: 22.5

STOREFN (Window Property) III: 26.8

Storing files II: 11.10

(STREAMP X) III: 25.2

Streams III: 24.1

(STREQUAL X y) I: 4.1

STRF (Variable) II: 18.1; 18.2,14

String pointers I: 4.1

(STRING-EQUAL X Y) I: 4.2

STRINGDELIM (Syntax Class) III: 25.35

(STRINGHASHBITS STRING) I: 6.5

(STRINGP X) I: 4.1; 9.2

(STRINGREGION STR STREAM PRIN2FLG RDTBL) III:

27.30
Strings I: 4.1; 9.2; III: 25.3

(STRINGWIDTH STR FONTFLG RDTBL) III: 27.30

(STRMBOUTFN STREAM CHARCODE) (Stream

Method) III: 27.48

(STRPOS PAT STRING START SKIP ANCHOR TAIL

CASEARRA Y BACKWARDSFLG) I: 4.5; III:
25.20

(STRPOSL A STRING START NEG BACKWARDSFLG)
I: 4.6

INDEX.38

Structure modification commands in the editor II:

16.29

.SUB (PRINTOUT command) III: 25.27

(SUB1 X) I: 7.6

(SUBATOM X N M) I: 2.8

Subdeclarations I: 8.14

SUBITEMFN (Menu Field) III: 28.39

SUBITEMS (Litatom) III: 28.39

(SUBLISALSTEXPRFLG) I: 3.14

(SUBPAIR OLD NEW EXPR FLG) I: 3.14

SUBRECORD (in record declarations) I: 8.14

(SUBREGIONP LARGEREGION SMALLREGION) III:

27.2

(SUBSET MAPX MAPFN1 MAPFN2) I: 10.17

(SUBST NEW OLD EXPR) I: 3.13

Substitution macros I: 10.22

(SUBSTRING X N M OLDPTR) I: 4.3

SUCHTHAT (1.5. Operator) I: 9.22

SUCHTHAT (in event address) II: 13.6

SU M FORM (I.S. Operator) I: 9.11

.SUP (PRINTOUT command) III: 25.27

SURROUND (Editor Command) II: 16.37

SUSPEND (Process Property) II: 23.2

(SUSPEND. PROCESS PROO II: 23.6

SUSPICIOUS PROG LABEL (Error Message) II: 21.19
SVFLG (Variable) II: 18.1-2

(SW N M) (Editor Command) II: 16.47

(SWAP DATUM1 DATUM2) (Change Word) I: 8.19

Swap (DEdit Command) II: 16.8

(SWAP @1 @2) (Editor Command) II: 16.47

SWAPBLOCK TOO BIG FOR BUFFER (Error Message)

II: 14.31

SWAPC (Editor Command) II: 16.54
(SWAPPUPPORTS PUP) III: 31.31

Switch (DEdit Command) II: 16.7

Symbols I: 2.1

SYNONYM (in record declarations) I: 8.15

Synonyms for file package commands II: 17.47

Synonyms for file package types II: 17,32

Synonyms in spell i ng correcti on II: 20.16

Syntax classes III: 25.35
(SYNTAXP CODE CLASS TABLE) III: 25.37

SYS/OUT cursor I: 12.8
(SYSBUF FLG) III: 30.11; 30.12

SYSFILES (Variable) II: 17.6

SYSHASHARRA Y (Variable) I: 6.1

SYSLOAD (LOAD option) II: 17.5; 17.6; 20.10
(SYSOUT FILE) I: 12.8

INDEX

Sysout files I: 12.8; III: 24.25

SYSOUT.EXT (Variable) I: 12.8

SYSOUTCURSOR (Variable) I: 12.8; III: 30.15

SYSOUTDATE (Variable) I: 12.13; 12.8

SYSOUTFILE (Variable) I: 12.8

SYSOUTGAG (Variable) I: 12.9

SYSPRETIYFLG (Variable) I: 11.12; II: 13.13,42;

14.8-9; III: 25.10

SYSPROPS (Variable) I: 2.5; 1.1: 17.38

SYSTEM (in record declarations) I: 8.15

System buffer III: 30.9; 30.11

SYSTEM ERROR (Error Message) II: 14.27

System version information I: 12.11

SYSTEMFONT (Font class) III: 27.32

(SYSTEMTYPE) I: 12.13

T
T (Litatom) I: 2.3

T (Macro Type) I: 10.23

T (PRINTOUT command) III: 25.26

T (Terminal stream) III: 25.1; 25.2

T FIXED (printed by DWIM) II: 20.6

(TAB POS MINSPACES FILE) III: 25.10

.TAB POS (PRINTOUT command) III: 25.25

.TABO POS (PRINTOUT command) III: 25.26

TAIL (stack blip) I: 11.16
TAIL (Variable) II: 20.12

Tail of a list I: 3.9

(TAILP X y) I: 3.9

(TAN X RADIANSFLG) I: 7.13

(TCOMPLFILE5) II: 18.14; 18.15,18,21

(TCONC PTR X) I: 3.6; 3.7

Tep/lp III: 24.36

Teletype list structure editor II: 16.1

(TEMPLATES LlTATOM1'" LlTATOMN) (File Package

Command) II: 17.39

TEMPLATES (File Package Type) II: 17.24

Templates in Masterscope II: 19.18
Terminal input/output III: 30.1; 25.3

Terminal streams III: 25.1; 25.2

Terminal syntax classes III: 30.5

Terminal tables III: 30.4

(TERMTABLEP TTBL) III: 30.5
(TERPRI FILE) III: 25.9

TEST (Editor Command) II: 16.65

TEST (in Masterscope template) II: 19.19
TEST (Masterscope Relation) II: 19.8

(TESTRELA TION ITEM RELA TlON ITEM2 INVERTED)
II: 19.23

INDEX

INDEX

TESTRETURN (in Masterscope template) II: 19.19

(TEXTUREP OBJECn III: 27.7

Textures III: 27.6

THEREIS FORM (I.S. Operator) I: 9.11

(THIS.PROCESS) II: 23.4

THOSE (MasterscopeSetSpecification) II: 19.12

(@1 THRU @2) (EditorCommand) II: 16.42

(@1 THRU) (Editor Command) II: 16.42; 16.44

THRU (I.S. Operator) I: 9.22

THRU (ineventspecification) II: 13.7
TICKS (Timer Unit) I: 12.16

(TIME TIMEX TlMEN TlMETYP) II: 22.8

Time stamps I: 10.9; II: 16.76

Time-slice of history list II: 13.31; 13.21

TIME.ZONES (Variable) I: 12.15

(TIMEALL TlMEFORM NUMBEROFTIMES TlMEWHA T
INTERPFLG -) II: 22.7

(TIMEREXPIRED? TIMER Clock Value. or. timerUnits)
I: 12.17

Timers I: 12.16

timerUnits UNITS (I.S. Operator) I: 12.18

(TIMES X 1 X2'" XN) I: 7.3

TIMES (use with REDO) II: 13.8

\TimeZoneComp (Variable) I: 12.16

TITLE (Menu Field) III: 28.41

TITLE (Window Property) III: 28.33

(@1 TO @2) (Editor Command) II: 16.42

(@1 TO) (Editor Command) II: 16.42; 16.44

TO FORM (1.5. Operator) I: 9.14; 9.15

TO (in event specification) II: 13.7

TO SET (MasterscopePath Option) II: 19.16

TOO MANY ARGUMENTS (Error Message) I: 10.3;

II: 14.31

TOO MANY FILES OPEN (Error Message) II: 14.28

TOO MANY USER INTERRUPT CHARACTERS (Error
Message) II: 14.30

TOP (as argument to ADVISE) II: 15.11

TOP (in backtrace) II: 14.9
Top margin III: 27.11

TOTOPFN (Window Property) III: 28.20

(TOTOPW WINDOW NOCALL TO TOPFNFL G) III:

28.20

(TRACE X) II: 15.5; 14.5,17; 15.1,7

TRACEREGION (Variable) II: 14.16

TRACEWINDOW (Variable) II: 14.16
Tracing functions II: 15.1

Transcript files III: 30.12

Translations in eLlsP II: 21.17

INDEX.39

INDEX

(TRANSMIT.ETHERPACKET NDB PACKEn III: 31.40

TREAT AS CLlSP? (Printed by DWIM) II: 21 .1 5

TREATASCLlSPFLG (Variable) II: 21.16

TREATED ASCLISP (Printed by DWIM) II: 21.16

(TRUE X ,." XN) I: 10.18

TRUSTING (DWIM mode) II: 20.4; 20.2; 21.4,6,16

(TRYNEXT PLST ENDFORM VAL) I: 11.21

TIY process III: 28.30

(TTY.PROCESS PROC) II: 23.12

(TTY.PROCESSP PROC) II: 23.12

TTY: (EditorCommand) II: 16.51; 15.6; 16.49,52,61

TTY: (Printed by Editor) II: 16.52

(TTYDISPLA YSTREAM DISPLAYSTREAM) III: 28.29

TTYENTRYFN (Process Property) II: 23.13; 23.3

TTYEXITFN (Process Property) II: 23.13; 23.3

(TTYIN PROMPTSPLSTHELPOPTIONS ECHOTOFILE
TABS UNREADBUF RDTBL) III: 26.22; 26.29

(TTYIN.PRINTARGS FN ARGS ACTUALS ARGTYPE)
III: 26.34

(TTYIN.READ? :I ARGS) III: 26.34

(TTYIN.SCRATCHFILE) III: 26.3~

TTYIN?:I FN (Variable) III: 26.34

TTYINAUTOCLOSEFLG (Variable) III: 26.33

TTYINBSFLG (Variable) III: 26.36

TTYINCOMMENTCHAR (Variable) III: 26.37; 26.24

TTYINCOMPLETEFLG (Variable) III: 26.37

(TTYINEDIT EXPRS WINDOW PRINTFN PROMPn
III: 26.32

TTYINEDITPROMPT (Variable) III: 26.29; 26.33

TTYINEDITWINDOW (Variable) III: 26.33

TTYINERRORSETFLG (Variable) III: 26.37

TTYINPRINTFN (Variable) III: 26.33

TTYINREAD (Function) III: 26.28

TTYINREADMACROS (Variable) III: 26.35

TTYINRESPONSES (Variable) III: 26.37; 26.38

TTYJUSTLENGTH (Variable) III: 26.27

TV (Prog. Asst. Command) III: 26.29

TYPE (File Attribute) III: 24.18

Type names of data types I: 8.20

TYPE-AHEAD (Prog. Asst. Command) II: 13.18

TYPE-IN? (Variable) II: 20.12

TYPE? (in record declarations) I: 8.14

TYPE? (Record Operator) I: 8.5; 8.8

TYPE? NOT IMPLEMENTED FOR THIS RECORD (Error
Message) I: 8.5

TYPEAHEADFLG (Variable) III: 26.36; 26.32

(TYPENAME DATUM) I: 8.20

(TYPENAMEP DATUM TYPE) I: 8.21

TYPERECORD (Record Type) I: 8.7

INDEX.40

Types in Masterscope II: 19.13

(TYPESOF NAME POSSIBLETYPES IMPOSSIBLETYPES
SOURCE) II: 17.27

U
(U-CASEX) I: 2.10; II: 16.52

(U-CASEP X) I: 2.10

(UALPHORDERA B) I: 3.18

UB (Break Command) II: 14.6

UCASELST (Variable) III: 26.46

(UGLYVARS VAR, ... VARN) (File Package

Command) II: 17.36; III: 25.18

UNABLE TO DWIMIFY (Error Message) II: 18.12

(UNADVISEX) II: 15.12; 15.11,13

UNADVISED (Printed by System) II: 15.9

UNARYOP (Property Name) II: 21.28

UNBLOCK (Editor Command) II: 16.65

UNBOUND ATOM (Error Message) I: 2.2-3; II: 14.31

Unboxing numbers I: 7.1

(UNBREAK X) II: 15.7; 15.5,8; 22.9

(UNBREAKO FN -) II: 15.7; 15.8

(FN UNBREAKABLE) (value of BREAKIN) II: 15.6

(UNBREAKINFN) II: 15.8; 15.7

UNBROKEN (Printed by ADVISE) II: 15.11

UNBROKEN (printed by compiler) II: 18.13

UNBROKEN (Printed by System) II: 15.9

UNDEFINED CAR OF FORM (Error Message) II:
14.31

UNDEFINED FUNCTION (Error Message) II: 14.31;

20.2
UNDEFINED OR ILLEGAL GO (Error Message) I: 9.8;

II: 14.28

UNDEFINED TAG (Error Message) I: 10.28; II: 18.23

UNDEFINED TAG. ASSEMBLE (Error Message) II:
18.23

UNDEFINED TAG, LAP (Error Message) II: 18.23

Undo (DEdit Command) II: 16.8

(UNDO EventSpec) (Editor Command) II: 16.66

UNDO (Editor Command) II: 16.64; 13.43

UNDO EventSpec : X 1 ... XN (Prog. Asst. Command)

II: 13.14

UNDO EventSpec (Prog. Asst. Command) II: 13.13;

13.7,28,33,42-43; 20.3

Undoing II: 13.26; 13.44

Undoing DWIM corrections II: 13,14; 21.20

Undoing in the editor II: 16.64; 13.44; 16.29

Undoingoutoforder II: 13.27; 13.13

(UNDOLlSPX LINE) II: 13.42

(UNDOLlSPX1 EVENTFLG-) II: 13.42

INDEX

UNDOlST (Variable) II: 16.64; 13.44; 16.50,65,72
undone (Printed by Editor) II: 16.64
undone (Printed by System) II: 13.13,42
(UNDONlSETQ UNDOFORM-) II: 13.30
(UNDOSAVE UNDOFORM HISTENTRY) II: 13.40;

13.34,41
#UNDOSAVES (Variable) II: 13.41
UNFIND (Variable) II: 16.28;

16.21,33-34,36-40,50,56,72
(UNION X y) I: 3.11
(UNIONREGIONS REGION1 REGION2'" REGIONn)

III: 27.2
UNIX file names III: 24.6
UNLESS FORM (1.5. Operator) I: 9.16
(UNMARKASCHANGED NAME TYPE) II: 17.18
(UNPACK X FLG RDTBL) I: 2.9
(UNPACKFllENAME FILE -) III: 24.7
(UNPACKFllENAME.STRING FILENAME - --)

III: 24.7
(\UNQUEUE Q ITEM NOERRORFLG) (Function) III:

31.41
Unreading II: 13.38; 13.3
UNSAFE.TO.MODtFY.FNS (Variable) I: 10.10; II:

15.5; 17.26
UNSAFEMACROATOMS (Variable) I: 10.28
UNSAVED (printed by DWIM) II: 20.9-10
unsaved (Printed by Editor) II: 16.69
(UNSAVEDEF NAME TYPE -) II: 17.28; 20.9-10
(UNSAVEFNS -) II: 19.25
(UNSET NAME) II: 13.29; 13.28
UNTIL N(N a number) (1.5. Operator) I: 9.16
UNTil FORM (1.5. Operator) I: 9.16
UNTil (use with REDO) II: 13.8
untilDate DTS (1.5. Operator) I: 12.18
(UNTllMOUSESTATE BUTTONFORM INTERVAL)

(Macro) III: 30.18
UNUSUAL CDR ARG LIST (Error Message) II: 14.29
UP (Editor Command) II: 16.13; 16.14,21,34
(UPOATECHANGED) II: 19.24
(UPDATEFllES --) II: 17.21
(UPDATEFN FN EVENIFVALID-) II: 19.24
Updating files II: 17.21
UPFINOFlG (Variable) II: 16.35; 16.21,23
Upper case characters I: 2.10
UPPERCASEARRAY (Variable) III: 25.22
UpperleftCursor (Variable) III: 30.15
UpperRightCursor (Variable) III: 30.15
USE (Masterscope Relation) II: 19.8

INDEX

INDEX

USE EXPRS1 FORARGS1 AND ... AND EXPRSNFOR

ARGSN IN EventSpec (Prog. Asst. Command)

II: 13.10
USE EXPRS FOR ARGS IN EventSpec (Prog. Asst.

Command) II: 13.9
USE EXPRS IN EventSpec (Prog. Asst. Command) II:

13.9; 13.10; 13.32-33
USE AS A CliSP WORD (Masterscope Relation) II:

19.9
USE AS A FIELD (Masterscope Relation) II: 19.9
USE AS A PROPERTY NAME (Masterscope Relation)

II: 19.9
USE AS A RECORD (Masterscope Relation) II: 19.9
USE-ARGS (History List Property) II: 13.33
USED AS ARG TO NUMBER FN? (Error Message) II:

18.23
USED BlKAPPl Y WHEN NOT APPLICABLE (Error

Message) \I: 18.22
USEDFREE (CLISP declaration) II: 18.12; 21.19
USEMAPFlG (Variable) Ii: 17.56
USER BREAK (Error Message) II: 14.31
User data types I: 8.20
User defined printing III: 25.16
User init file I: 12.1
User interrupt characters III: 30.3
(USERDATATYPES) I: 8.20
(USEREXEC LlSPXID LlSPXXMACROS LlSPXXUSERFN)

II: 13.35
USERFONT (Font class) III: 27.32
USERGREETFllES (Variable) I: 12.2
(USERlISPXPRINT X FILE Z NODOFLG) II: 13.25
(USERMACROS LlTATOM1'" LlTATOMN) (File

Package Command) II: 17.34; 16.64,66
USERMACROS (File Package Type) II: 17.24
USERMACROS (Variable) II: 16.64; 17.34
(USERNAME FLG STRPTR PRESERVECASE) III: 24.40
USERRECORDTYPE (Property Name) I: 8.15
USERWORDS (Variable) II: 20.17; 16.68,71;

20.18,21,23-24
USING (in CREA TE form) I: 8.4
usingTimer TIMER (1.5. Operator) I: 12.18

V

$$VAl (Variable) I: 9.12
VALUE (PropertyName) II: 17.28; 13.28-29
!VAlUE (Variable) II: 14.5
Value cell of a (Litatom) I: 2.4; 11.1
Value of a break II: 14.5

INDEX.41

INDEX

VALUE OUT OF RANGE EXPT(Error Message) I:

7.13
VALUECOMMANOFN (Window Property) III: 26.8
(VALUEOF LINE) II: 13.19; 13.34
Variable bindings I: 11.1; 10.19; II: 17.54
Variable bindings in stack frames I: 11.6
(VARIABLES POS) I: 11.7; II: 14.10
(VARS VARl ... VARN) (File Package Command) II:

17.35
VARS (File Package Type) II: 17.24
VARTYPE (Property Name) II: 17.22; 17. 18
VAXMACRO (Property Name) I: 10.21
VERSION (File name field) III: 24.6
Version information I: 12.11
Version recognition offiles III: 24.11
VertScrollCursor (Variable) III: 30.15
VertThumbCursor (Variable) III: 30.15
Video display screens I: 12.4; Ill: 30.22
Video taping from the screen III: 30.23
(VIOEOCOLOR BLACKFLG) III: 30.23
(VIOEORATE TYPE) III: 30.23
(VIRGINFN FN FLG) II: 15.8
Virtual memory I: 12.6
Virtual memory file I: 12.6; III: 24.21,23
(VMEM.PURE.STATE X) I: 12.10
(VMEMSIZE) I: 12.11
(VOLUMES) III: 24.23
(VOlUMESIZE VOLUMENAME -) III: 24.23

W
(WAIT.FOR.TTY MSECS NEEDWINDOW) II: 23.12
WAITBEFORESCROlLTIME (Variable) III: 28.24
WAITBETWEENSCROLLTIME (Variable) III: 28.24
(WAITFORINPUT FILE) III: 25.6
WAITINGCURSOR (Variable) III: 30.15
(WAKE.PROCESS PROC STATUS) II: 23.5
WBorder (Variable) III: 28.14,32-33
(WBREAK ONFLG) II: 14.15
WEIGHT (Font property) III: 27.27
(WFROMOS DISPLA YSTREAM DONTCREA TE) III:

27.25
(WFROMMENU MENU) III: 28.42
WHEN FORM (1.5. Operator) I: 9.15
WHENCHANGEO (File Package Type Property) II:

17.31
(WHENClOSE FILE PROP, VALl'" PROPN VALN)

III: 24.20
(WHENCOPIEOFN IMAGEOBJ

TARGETWINDOWSTREAM

INOEX.42

SOURCEHOSTSTREAM TARGETHOSTSTR EAM)

(lMAGEFNS Method) III: 27.39
(WHENOElETEDFN IMAGEOBJ

TARGETWINDOWSTREAM) (ItV1AGEFNS

Method) III: 27.39
WHENFILEO (File Package Type Property) II: 17.32
WHENHELOFN (Menu Field) III: 28.40
(WHENINSERTEOFN IMAGEOBJ

TARGE7WINDOWSTREAM
SOURCEHOSTSTREAM TARGETHOSTSTREAM)

(lMAGEFNS Method) III: 27.39
(WHENMOVEOFN IMAGEOBJ

TARGE7WINDOWSTREAM
SOURCEHOSTSTREAM TARGETHOSTSTREAM)

(lMAGEFNS Method) III: 27.38
(WHENOPERATEDONFN IMAGEOBJ

WINDOWSTREAM HOWOPERATEDON
SELECTION HOSTSTREAM) (lMAGEFNS

Method) III: 27.39
WHENSElECTEDFN (Menu Field) III: 28.40
WHENUNFILED (File Package Type Property) II:

17.32
WHENUNHELDFN (Menu Field) III: 28.40
WHERE (1.5. Operator) I: 9.22
WHEREATTACHED (Window Property) III: 28.54
(WHEREIS NAME TYPE FILES FN) II: 17.14
(WHICHW X Y) III: 28.32
WHILE FORM (1.5. Operator) I: 9.16
WHILE (use with REDO) II: 13.8
WHITESHADE (Variable) III: 27.7
&WHOLE (DEFMACRO keyword) I: 10.27
WHOLEDISPLA V (Variable) III: 30.22; 27.2
(WIDEPAPER FLG) III: 26.48
WIDTH (Window Property) III: 28.34
(WIDTHIFWINDOW INTERIORWIDTH BORDER) III:

28.32
WINDOW (Process Property) II: 23.3
Window command menu III: 28.3
Window has no REPAINTFN. Can't redisplay.

(printed in prompt window) III: 28.16
Window menu III: 28.3
Window properties III: 28.13
Window system III: 28.2; 28.1
(WINDOWADDPROP WINDOW PROP ITEMTOADD

FIRSTFLG) III: 28.13
WINDOWBACKGROUNDSHADE (Variable) III:

30.23
(WINDOWOElPROP WINDOW PROP

ITEMTODELETE) III: 28.13

INDEX

WINDOWENTRYfN (Window Property) II: 23.13;
III: 28.27

WindowMenu (Variable) III: 28.8
WindowMenuCommands (Variable) III: 28.8
(WINDOWP X) III: 28.14
(WINDOWPROP WINDOW PROP NEWVALUE) III:

28.13
(WINDOWREGION WINDOW COM) III: 28.48
Windows III: 28.12; 28.1
(WINDOWSIZE WINDOW) III: 28.48
WindowTitleDisplayStream (Variable) III: 28.14
WINDOWTITlESHADE (Variable) III: 28.33
WINDOWTITlESHADE (Window Property) III:

28.33
(WINDOWWORlD FLAG) III: 28.1
WITH (in REPLACE editor command) II: 16.33
WITH (inSURROUNDeditorcommand) II: 16.37
WITH (Record Operator) I: 8.5
WITH (in REPLACE command) (in Editor) II: 16.33
WITHmRESOURCE (Macro) I: 12.23
(WITH-RESOURCES (RESOURCE, RESOURCE2 ...)

FORM, FORM2"') (Macro) I: 12.23

(WITH.fAST.MONITOR LOCK FORM, ... FORMN)

(Macro) II: 23.8
(WITH.MONITOR LOCK FORM, ... FORMN) (Macro)

II: 23.8
WORD (as a field specification) I: 8.21
WORD (record field type) I: 8.10
WORDDELETE (syntax class) III: 30.6
Working set II: 22.1
WRITEDATE (File Attribute) III: 24.18
(WRITEfILE X FILE) III: 25.33
(WRITEIMAGEOBJ IMAGEOBJ STREAM) III: 27.40

x
X offset III: 27.24
XIPIGNORETYPES (Variable) III: 31.38
XIPONL YTYPES (Variable) III: 31.38
XIPPRINTMACROS (Variable) III: 31.38
XIPTRACE (Function) III: 31.38
XIPTRACEflLE (Variable) III: 31.38
XIPTRACEfLG (Variable) III: 31.38
XKERN (lMAGEBOX Field) III: 27.37
XPOINTER (record field type) I: 8.10
XSIZE (lMAGEBOX Field) III: 27.37
(XTR . @) (Editor Command) II: 16.35

v
Yoffset III: 27.24

INDEX

YDESC (lMAGEBOX Field) III: 27.37
Your virtual memory backing file is almost full...

(Error Message) I: 12.11
YSIZE (lMAGEBOX Field) III: 27.37

Z
(ZERO X, ... XN) I: 10.18

(ZEROP X) I: 7.4

[,] inserted by PRETTYPRINT III: 26.47

\

(\ LlTA TOM) (Editor Command) II: 16.28
\ (EditorCommand) II: 16.28; 16.33
\ (in event address) II: 13.6
\ functions I: 10.10
(\ADD.PACKET.fIL TER FILTER) III: 31.40
(\ALLOCATE.ETHERPACKET) III: 31.39
\BeginDST (Variable) I: 12.16

INDEX

(\CHECKSUM BASE NWORDS INITSUM) III: 31.40
(\DEl.PACKET.FILTER FILTER) III: 31.40
(\DEQUEUE 0) III: 31.41
\EndDST (Variable) I: 12.16
(\ENQUEUE 0 ITEM) III: 31.41
\ETHERTIMEOUT (Variable) III: 31.38; 31.30
\fllEOUTCHARfN (Function) III: 27.48
\fTPAVAILABlE (Variable) III: 24.36
\LASTVMEMfllEPAGE (Variable) I: 12.11
\LOCALNDBS (Variable) III: 31.39
(\ONQUEUE ITEM 0) III: 31.41
\P (Editor Command) II: 16.28; 16.49
\PACKET.PRINTERS (Variable) III: 31.41
(\QUEUELENGTH 0) III: 31.41
(\RElEASE.ETHERPACKET EPKn III: 31.39
\TimeZoneComp (Variable) I: 12.16
(\UNQUEUE 0 ITEM NOERRORFLG) III: 31.41

] (use in input) II: 13.36

i
i (Break Command) II: 14.6; 14.17
i (Break Window Command) II: 14.3
i (CLlSPOperator) II: 21.7
i (Editor Command) II: 16.16
t (use in comments) III: 26.46

+-
+- (CLISP Operator) II: 21.9

INDEX.43

INDEX

{(:- PA TTERN) (Editor Command) II: 16.25
(:- (Editor Command) II: 16.25;,16.27
(:- (in event address) II: 13.6
(:- (in pattern matching) I: 12.28
(:- (in record declarations) I: 8.14
(:- (Printed by System) II: 14.2
~ (Editor Command) II: 16.28

; (backquote) (Read Macro) III: 25.42

I (change character) II: 16.30; III: 26.49
I (Read Macro) I: 7.4; III: 25.43

- (CLISP Operator) II: 21.11
- (in pattern matching) I: 12.27

!
! (in Masterscope template) II: 19.20
! (in PA commands) II: 13.9
! (in pattern matching) I: 12.27·28
! (use with <,> inCLlSP) II: 21.10
!! (use with <,> in CLlSP) II: 21.10
!O (Editor Command) II: 16.15
!E (EditorCommand) II: 16.55; 13.43
!EVAL (Break Command) II: 14.6
!EVAL (Break Window Command) II: 14.3
!F (EditorCommand) II: 16.55; 13.43
!GO (Break Command) II: 14.6
! N (Editor Command) II: 16.55; 13.43
! NX (EditorCommand) II: 16.16; 16.17
!OK (Break Command) 'II: 14.6
!Undo (DEdit Command) II: 16.8
!UNDO (EditorCommand) II: 16.64
!VALUE (Variable) II: 14.5; 14.16; 15.9-10

II (string delimiter) I: 4.1; III: 25.3·4
'"' (use in ASKUSER) III: 26.20
II < c.r. > II (in history commands) II: 13.32

#N (N a number) (in pattern matching) I: 12.29
FORM (PRINTOUT command) III: 25.30
(## COM, COM2 ... COMN) II: 16.59; 16.24

(in INSERT, REPLACE, and CHANGE commands)
II: 16.34

';'INOEX:44

(Printed by System) III: 30.10
#CAREFULCOLUMNS (Variable) III: 26.47
#RPARS (Variable) III: 26.47
#SPELLlNGS1 (Variable) II: 20.18
#SPELLI NGS2 (Variable) II: 20.18
#SPELLlNGS3 (Variable) II: 20.18
#UNDOSAVES (Variable) II: 13.41; 13.30
#USERWORDS (Variable) II: 20.18

$
$ X FOR YIN EventSpec (Prog. Asst. Command) II:

13.11
$ Y-> XIN EventSpec (Prog. Asst. Command) II:

13.11
$ YTOXIN EventSpec (Prog. Asst. Command) II:

13.11
$ Y • XIN EventSpec (Prog. Asst. Command) II:

13.11
$ Y X IN EventSpec (Prog. Asst. Command) II: 13.11
$ (dollar) (in pattern matching) I: 12.27
$ (escape) (in CLlSP) II: 21.10-11
$ (escape) (in Edit Pattern) II: 16.18
$ (escape) (in Editor) II: 16.45-46
$ (escape) (in spelling correction) II: 20.15; 20.22
$ (escape) (Prog. Asst. Command) II: 13.11
$ (escape) (use in ASKUSER) III: 26.19
$$ {escape, escape} (in Edit Pattern) II: 16.18
$$ {escape, escape} (use in ASK USER) III: 26 .. 20
$$EXTREME (Variable) I: 9.12
$$VAL (Variable) I: 9.12; 9.19
$1 (in pattern matching) I: 12.26
$GO (escape-GO) (TYPE-AHEAD command) II:

13.18
$Q(escape-Q) (TYPE-AHEAD command) II: 13.18
$STOP (escape-STOP) (TYPE-AHEAD command) II:

13.18

%
% I: 2.1; 4.1; III: 25.3; 25.4,38; 30.11
% (use in comments) III: 26.46
%% (use in comments) III: 26.46

&
& (in Edit Pattern) II: 16.18
& (in MBD command) II: 16.36-37
& (in pattern matching) I: 12.26
& (Printed by System) III: 25.12
& (use in ASKUSER) 111:26.19

INDEX

&ALLOW-OTHER-KEYS (DEFMACRO keyword) I:

10.26
&AUX (DEFMACRO keyword) I: 10.26
&BODY (DEFMACROkeyword) I: 10.25
&KEY (DEFMACRO keyword) I: 10.25
&OPTIONAL (DEFMACROkeyword) I: 10.25
&REST (DEFMACRO keyword) I: 10.25
&Undo (DEdit Command) II: 16.8
&WHOLE (DEFMACROkeyword) I: 10.27

, (CLISP Operator) II: 21.11
, (in DWIM) II: 20.8
, (in pattern matching) I: 12.26
'LIST (Masterscope Set Specification) II: 19.11
'A TOM (Masterscope Set Specification) II: 19.10
, (Read macro) I: 10.12; III: 25.42

(in (DEdit Command) II: 16.7
(out (DEdit Command) II: 16.8
o I: 3.3
() (DEdit Command) II: 16.7
() out (DEdit Command) II: 16.7

) in (DEdit Command) II: 16.7
) out (DEdit Command) II: 16.8

*
* (as a prettyprint macro) III: 26.44
* (as a read macro) III: 26.44
* (CLISP Operator) II: 21.7
(* . X) (Editor Command) II: 16.56
(* . TEXn (File Package Command) II: 17.40
* (Function) III: 26.42
* (In File Group) III: 24.33
* (in file package command) II: 17.44
* (in pattern matching) I: 12.26
* (use in comments) III: 26.42; 26.43
*** note: FILENAME dated DATE isn't current

version; FILENAME dated DATE is. (printed by
EDITLOADFNS?) II: 16.74

***** (in compiler error messages) II: 18.22
BREAK (in backtrace) II: 14.9
COMMENT (printed by editor) II: 16.48
COMMENT (printed by system) III: 26.43
COMMENTFLG (Variable) I: 12.3; II: 16.48; III:

26.43

INDEX

DEALLOC (data type name) I: 8'.21'; II: 22.4
EDITOR (inbacktrace) II: 14'.9
TOP (in backtrace) II: 14.9
ANY (in edit pattern) II: 16.18

INDEX

ARCHIVE (Historylistproperty) II: 13.33;:13.16"
* ARGN (Stack blip) I: 11.15
ARGVAL (stack blip) I: 11.16
CONTEXT (history list property) II: 13.33
ERROR (historylistproperty) II: 13.33
FN (stack blip) I: 11.16
FORM (stack blip) I: 11.16
GROUP (history list property) II: 13.33
HISTORY (history list property) II: 13.33
LlSPXPRINT (history list property) II: 13.33
PRINT (historylistproperty) II: 13.33
TAIL (stack blip) I: 11.16

+
+ (CLlSPOperator) II: 21.7

, (PRINTOUT command) III: 25.26
" (PRINTOUT command) III: 25.26
II' (PRINTOUT command) III: 25.26

- (CLISP Operator) II: 21.7
-- (in Edit Pattern) II: 16.19
... (in pattern matching) I: 12.27
_. (Printed by System) III: 25.12
-> EXPR (Break Command) II: 14.11
-> (inpatternmatching) I: 12.30

'. :;,

-> (printed by DWIM) II: 20.4; 20.2-3,6
-> (printed by editor) II: 16.46

· (CLISP Operator) II: 21.9
· (in a floating point number) I: 7.11
· (in a list) I: 3.3 -
· (in Masterscope) II: 19.2
· (in pattern matching) I: 12.28
· (printed by Masterscope) II: 19.2
PA TTERN .. @ (Editor Command) II: 16.27
.. (in Edit Pattern) II: 16.19
.. TEMPLATE (in Masterscope template) II: 19.20
... (in Edit Pattern) II: 16.19-20
... (printed by DWIM) II: 20.3,5
... (Printed by Editor) II: 16.14
... (printedduringinput) II: 13.37; 13.5

INDEX.4S

,INDEX

..• VARS (Prog. Asst. Command) II: 13.10; 13.33

••• ARGS (history list property) II:: 13.33
.BASE (PRINTOUT command) III: 25.27
.CENTER POS EXPR (PRINTOUT command) III: 25.29
.CENTER2 POS EXPR (PRINTOUT command) III:

25.29
.FFORMA T NUMBER (PRINTOUT command) III:

25.30
.FONT FONTSPEC (PRINTOUT command) III: 25.27

.FR POS EXPR (PRINTOUT command) ",: 25.29

.FR2 POS EXPR (PRINTOUT command) III: 25.29

.lFORMAT NUMBER (PRINTOUT command) III:

25.30
.N FORMA T NUMBER (PRINTOUT command) III:

25.30
.P2 THING (PRINTOUT command) III: 25.28

.PAGE (PRINTOUT command) '": 25.26

.PARA LMARG RMARG LIST (PRINTOUT command)
III: 25.28

.PARA2 LMARG RMARG LIST (PRINTOUT command) .

",: 25.28
.PPF THING (PRINTOUT command) III: 25.28
.PPFTL THING (PRINTOUT command) II I: 25.28
.PPV THING (PRINTOUT command) II I: 25.28
.PPVTL THING (PRINTOUT command) III: 25.28
.SKIP LINES (PRINTOUT command) III: 25.26
.SP DISTANCE (PRINTOUT command) III: 25.26
.SUB (PRINTOUT command) III: 25.27
.SUP (PRINTOUT command) III: 25.27
.TAB POS (PRINTOUT command) III: 25.25
.TABO POS (PRINTOUT command) III: 25.26

I (CLISP Operator) II: 21.7
I (use with @ break command) II: 14.7
I functions II: 13.26; 13.27,41
IFNS (Variable) II: 13.26

IMAPCON (Function) II: 21.13
IMAPCONC (Function) II: 21.13
INCONC (Function) II: 21.13
INCONC1 (Function) II: 21.13
IREPLACE (Record Operator) I: S.3
IRPLACA (Function) II: 21.13
IRPLACD (Function) II: 21.13
IRPLNODE (Function) II: 13.40
IRPLNODE2 (Function) II: 13.40

o
o (Editor Command) II: 16.15

o (instead of right parenthesis) II: 20.5; 20.1,S,l 0

1
10MACRO (Property Name) I: 10.21

2

(2ND. @) (Editor Command) II: 16.24

3
32MBADDRESSABLE (Function) II: 22.5
(3ND . @) (Editor Command) II: 16.25

7
7 (instead of') II: 20.9

8
8 (instead of left parenthesis) II: 16.67
8044 (Printer type) III: 29.5

9
9 (instead of left parenthesis) II: 20.5; 20.1,8,10-11

: (CLISP Operator) II: 21.9

(: E"" EM) (EditorCommand) II: 16.32

(:) (Editor Command) II: 16.32

: (Printed by System) II: 14.1
:: (CLISPOperator) II: 21.9

; FORM (Prog. Asst. Command) II: 13.18

<
< (CLISP Operator) II: 21.10
<,> (useinCLlSP) II: 21.10

=-
=- FORM (Break Command) II: 14.10
=- (CLlSPOperator) II: 21.8
=- (in event address) II: 13.6
:II (in pattern matching) I: 12.26
=- (printed by DWIM) II: 20.5
=- (use with @break command) II: 14.7

:11:11 (in Edit Pattern) II: 16.19
:II =- (in pattern matching) I: 12.26

• > (in pattern matching) I: 12.30
=- E (Printed by Editor) II: 16.67

>
> (CLlSPOperator) II: 21.10

INDEX

1
1 (Editor Command) II: 16.48
1 (Litatom) I: 3. 11

1 (printed by DWIM) II: 20.4-5
1 (printed by Masterscope) II: 19.18
1 (Read Macro) II: 14.8; III: 25.43
1- (Break Command) II: 14.7
1- (Break Window Command) II: 14.3
1- (Editor Command) II: 16.48
1- (in TTYIN) III: 26.33
11 EventSpec (Prog. Asst. Command) II: 13.13;

13.33
1ACTIVATEFLG (Variable) III: 26.36; 26.23
1Undo (DEdit Command) II: 16.8

@

@ (Break Command) II: 14.6; 14.12
@ (in event specification) II: 13.39
(@ EXPRFORM TEMPLATEFORM) (in Masterscope

template) II: 19.21
@ (in pattern matching) I: 12.26,28
@ (location specification in editor) II: 16.24
@ PREDICA TE (Masterscope Set Specification) II:

19.11
@ (use with @break command) II: 14.7
@@ (in event specification) II: 13.8; 13.16,39

INDEX , INbex.47

1Noex

[This page intentionally left blank]

IND€X.48 INDEX

	0000
	0001
	00_toc_03
	00_toc_04
	00_toc_05
	00_toc_06
	00_toc_07
	00_toc_08
	24-001
	24-002
	24-003
	24-004
	24-005
	24-006
	24-007
	24-008
	24-01
	24-02
	24-03
	24-04
	24-05
	24-06
	24-07
	24-08
	24-09
	24-10
	24-11
	24-12
	24-13
	24-14
	24-15
	24-16
	24-17
	24-18
	24-19
	24-20
	24-21
	24-22
	24-23
	24-24
	24-25
	24-26
	24-27
	24-28
	24-29
	24-30
	24-31
	24-32
	24-33
	24-34
	24-35
	24-36
	24-37
	24-38
	24-39
	24-40
	24-41
	24-42
	25-001
	25-002
	25-01
	25-02
	25-03
	25-04
	25-05
	25-06
	25-07
	25-08
	25-09
	25-10
	25-11
	25-12
	25-13
	25-14
	25-15
	25-16
	25-17
	25-18
	25-19
	25-20
	25-21
	25-22
	25-23
	25-24
	25-25
	25-26
	25-27
	25-28
	25-29
	25-30
	25-31
	25-32
	25-33
	25-34
	25-35
	25-36
	25-37
	25-38
	25-39
	25-40
	25-41
	25-42
	25-43
	26-001
	26-002
	26-003
	26-01
	26-02
	26-03
	26-04
	26-05
	26-06
	26-07
	26-08
	26-09
	26-10
	26-11
	26-12
	26-13
	26-14
	26-15
	26-16
	26-17
	26-18
	26-19
	26-20
	26-21
	26-22
	26-23
	26-24
	26-25
	26-26
	26-27
	26-28
	26-29
	26-30
	26-31
	26-32
	26-33
	26-34
	26-35
	26-36
	26-37
	26-38
	26-39
	26-40
	26-41
	26-42
	26-43
	26-44
	26-45
	26-46
	26-47
	26-48
	26-49
	26-50
	27-001
	27-002
	27-01
	27-02
	27-03
	27-04
	27-05
	27-06
	27-07
	27-08
	27-09
	27-10
	27-11
	27-12
	27-13
	27-14
	27-15
	27-16
	27-17
	27-18
	27-19
	27-20
	27-21
	27-22
	27-23
	27-24
	27-25
	27-26
	27-27
	27-28
	27-29
	27-30
	27-31
	27-32
	27-33
	27-34
	27-35
	27-36
	27-37
	27-38
	27-39
	27-40
	27-41
	27-42
	27-43
	27-44
	27-45
	27-46
	27-47
	27-48
	28-001
	28-002
	28-01
	28-02
	28-03
	28-04
	28-05
	28-06
	28-07
	28-08
	28-09
	28-10
	28-11
	28-12
	28-13
	28-14
	28-15
	28-16
	28-17
	28-18
	28-19
	28-20
	28-21
	28-22
	28-23
	28-24
	28-25
	28-26
	28-27
	28-28
	28-29
	28-30
	28-31
	28-32
	28-33
	28-34
	28-35
	28-36
	28-37
	28-38
	28-39
	28-40
	28-41
	28-42
	28-43
	28-44
	28-45
	28-46
	28-47
	28-48
	28-49
	28-50
	28-51
	28-52
	28-53
	28-54
	29-001
	29-002
	29-01
	29-02
	29-03
	29-04
	29-05
	29-06
	30-001
	30-002
	30-01
	30-02
	30-03
	30-04
	30-05
	30-06
	30-07
	30-08
	30-09
	30-10
	30-11
	30-12
	30-13
	30-14
	30-15
	30-16
	30-17
	30-18
	30-19
	30-20
	30-21
	30-22
	30-23
	30-24
	31-001
	31-002
	31-01
	31-02
	31-03
	31-04
	31-05
	31-06
	31-07
	31-08
	31-09
	31-10
	31-11
	31-12
	31-13
	31-14
	31-15
	31-16
	31-17
	31-18
	31-19
	31-20
	31-21
	31-22
	31-23
	31-24
	31-25
	31-26
	31-27
	31-28
	31-29
	31-30
	31-31
	31-32
	31-33
	31-34
	31-35
	31-36
	31-37
	31-38
	31-39
	31-40
	31-41
	31-42
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	index-07
	index-08
	index-09
	index-10
	index-11
	index-12
	index-13
	index-14
	index-15
	index-16
	index-17
	index-18
	index-19
	index-20
	index-21
	index-22
	index-23
	index-24
	index-25
	index-26
	index-27
	index-28
	index-29
	index-30
	index-31
	index-32
	index-33
	index-34
	index-35
	index-36
	index-37
	index-38
	index-39
	index-40
	index-41
	index-42
	index-43
	index-44
	index-45
	index-46
	index-47
	index-48

