XEROX Interlisp-D Reference Manual
Volume lll: Input/Output

3101274
October, 1985

Copyright (c) 1985 Xerox Corporation
All rights reserved.

Portions from "Interlisp Reference Manual" Copyright (c) 1983
Xerox Corporation, and "Interlisp Reference Manual" Copyright
(c) 1974, 1975, 1978 Bolt, Beranek & Newman and Xerox
Corporation.

This publication may not be reproduced or transmitted in any
form by any means, electronic, microfilm, xerography, or
otherwise, or incorporated into any information retrieval system,
without the written permission of Xerox Corporation.

TABLE OF CONTENTS

26.1.8. INSPECTWs 26.6

26.2. PROMPTFORWORD 26.9
26.3. ASKUSER 26.12
26.3.1. Formatof KEYLST 26.13

26.3.2. Options 26.15

26.3.3. Operation ‘ 26.17

26.3.4. Completing a Key 26.18

26.3.5. Special Keys 26.19

26.3.6. Startup Protocol and Typeahead 26.20

26.4. TTYIN Display Typein Editor 26.22
26.4.1. Enteringinput With TTYIN 26.22

26.4.2. Mouse Commands [Interlisp-D Only] 26.24

26.4.3. Display Editing Commands 26.25

26.4.4. Using TTYIN for Lisp Input 26.28

26.4.5. Useful Macros 26.29

26.4.6. Programming With TTYIN 26.29

26.4.7. Using TTYIN as a General Editor 26.32

26.4.8. 7= Handler 26.33

26.4.9. Read Macros 26.34

26.4.10. Assorted Flags 26.36

26.4.11. Special Responses 26.38

26.4.12. Display Types 26.38

26.5. Prettyprint 26.39
26.5.1. Comment Feature 26.42

26.5.2. Comment Pointers 26.44

26.5.3. Converting Comments to Lower Case 26.46

26.5.4. Special Prettyprint Controls 26.47

27. Graphics Output Operations 27.1
27.1. Primitive Graphics Concepts 271
27.1.1. Positions 271

27.1.2., Regions 271

27.1.3. Bitmaps 27.3

27.1.4. Textures 27.6

27.2. Opening image Streams 27.8

TABLE OF CONTENTS

TOC.3

TABLE OF CONTENTS

27.3. Accessing Image Stream Fields 27.10
27.4. Current Position of an Image Stream 2713
27.5. Moving Bits Between Bitmaps With BITBLT 27.14
27.6. Drawing Lines 27.17
27.7. Drawing Curves 27.18
27.8. Miscellaneous Drawing and Printing Operations 27.20
27.9. Drawing and Shading Grids 27.22
27.10. Display Streams 27.23
27.12. Fonts 27.25
27.13. Font Files and Font Directories 27.31
27.15. FontProfiles 27.32
27.16. Image Objects 27.35
27.16.1. IMAGEFNS Methods 27.36

27.16.2. Registering Image Objects 27.39

27.16.3. Reading and Writing Image Objectson Files 27.40

27.16.4. Copying Image Objects Between Windows 27.41

27.17. Implementation of Image Streams 27.42
28. Windows and Menus 28.1
28.1. Using The Window System 28.2
28.2. Changing Window Command Menus 28.7
28.3. Interactive Display Functions 289
28.4. Windows 28.12
28.4.1. Window Properties 28.13

28.4.2. Creating Windows 28.13

28.4.3. Opening and Closing Windows 28.15

28.4.4. Redisplaying Windows 28.16

28.4.5. Reshaping Windows 28.16

28.4.6. Moving Windows 28.19

28.4.7. Exposing and Burying Windows 28.20

28.4.8. Shrinking Windows Into Icons 28.21

28.4.9. Coordinate Systems, Extents, And Scrolling 28.23

28.4.10. Mouse Activity in Windows 28.27

28.4.11. Terminal 1/0 and Page Holding 28.29

28.4.12. The TTY Process and the Caret 28.30

TOC.4

TABLE OF CONTENTS

. TABLE OF CONTENTS

28.4.13. Miscellaneous Window Functions 28.31

28.4.14. Miscellaneous Window Properties 28.33

28.4.15. Example: A Scrollable Window 28.34

28.5. Menus 28.37
28.5.1. Menu Fields 28.38

28.5.2. Miscellaneous Menu Functions 28.42

28.5.3. Examples of Menu Use : 28.43

28.6. Attached Windows 28.45
28.6.1. Attaching Menus To Windows 28.48

28.6.2. Attached Prompt Windows 28.50

28.6.3. Window Operations And Attached Windows 28.50

28.6.4. Window Properties Of Attached Windows 2853

29. Hardcopy Facilities . 29.1
29.1. Low-level Hardcopy Variables 29.5
30. Terminal Input/Output 30.1
30.1. Interrupt Characters 30.1
30.2. Terminal Tables 30.4
© 30.2.1. Terminal Syntax Classes 30.5

30.2.2. Terminal Control Functions 30.6

30.2.3. Line-Buffering , 30.9

30.3. Dribble Files 30.12
30.4. Cursor and Mouse 30.13
30.4.1. Changing the Cursor Image 30.13

30.4.2. Flashing Bars on the Cursor 30.16

30.4.3. Cursor Position 30.17

30.4.4. Mouse Button Testing 30.17

30.4.5. Low Level Mouse Functions 30.18

30.5. Keyboard Interpretation 30.19
30.6. Display Screen 30.22
30.7. Miscellaneous Terminal I/0 30.24
31. Ethernet 31.1
31.1. Ethernet Protocols 31.1
31.1.1. Protocol Layering 311

31.1.2. Level Zero Protocols 31.2

TABLE OF CONTENTS TOC.S

TABLE OF CONTENTS

31.1.3. Level One Protocols 31.3

31.1.4. Higher Level Protocols 31.4

31.1.5. Connecting Networks: Routers and Gateways 31.4

31.1.6. Addressing Conflicts with Level Zero Mediums 31.5

31.1.7. References 31.5
31.2. Higher-level PUP Protocol Functions 31.6
31.3. Higher-level NS-Protocol Functions 31.7
31.3.1. Name and Address Conventions 31.7
31.3.2. Clearinghouse Functions 319
31.3.3. NS Printing 3112
31.3.4. SPP Stream Interface 31.12
31.3.5. Courier Remote Procedure Call Protocol 31.15
31.3.5.1. Defining Courier Programs 31.15
31.3.5.2. Courier Type Definitions 3117
31.3.5.2.1. Pre-defined Types 3117
31.3.5.2.2. Constructed Types 31.18
31.3.5.2.3. User Extensions to the Type Language 31.19
31.3.5.3. Performing Courier Transactions 31.20
31.3.5.3.1. Expedited Procedure Call 31.22
31.3.5.3.2. Expanding Ring Broadcast 31.23
31.3.5.3.3. Using Bulk Data Transfer 31.24
31.3.5.3.4. Courier Subfunctions for Data Transfer 31.25
31.4. Level One Ether Packet Format 31.26
31.5. PUP Level One Functions 31.28
31.5.1. Creating and Managing Pups 31.28
31.5.2. Sockets 31.28
31.5.3. Sending and Receiving Pups 31.29
31.5.4. Pup Routing Information 31.30
31.5.5. Miscellaneous PUP Utilities 31.31
31.5.6. PUP Debugging Aids 31.32
31.6. NS Level One Functions 31.36
31.6.1. Creating and Managing XIPs 31.36
31.6.2. NS Sockets 31.37
31.6.3. Sending and Receiving XIPs 31.37

TOC.6 TABLE OF CONTENTS

TABLE OF CONTENTS

31.6.4. NS Debugging Aids 31.38
31.7. Support for Other Level One Protocols 31.38
31.8. The SYSQUEUE mechanism 31.41

TABLE OF CONTENTS TOC.7

TABLE OF CONTENTS

[This page intentionally left blank]

TOC.8 TABLE OF CONTENTS

TABLE OF CONTENTS

24. Streams and Files 24.1
24.1. Opening and Closing File Streams 24.2
24.2. File Names 245
24.3. Incomplete File Names 249
24.4. Version Recognition 24.11
24.5. Using File Names Instead of Streams 24.13

24.5.1. File Name Efficiency Considerations 24.14
24.5.2, Obsolete File Opening Functions 24.14
24.5.3. Converting Old Programs 2415
24.6. Using Files with Processes 24.16
24.7. File Attributes 24.17
24.8. Closing and Reopening Files 24.20
24.9. Local Hard Disk Device 24.21
24.10. Floppy Disk Device 24.24
24.11. /O Operations to and from Strings 24.28
24.12. Temporary Files and the CORE Device 24.29
24.13. NULL Device 24.30
24.15. Deleting, Copying, and Renaming Files 24.31
24.16. SearchingFile Directories 24.31
24.17. Listing File Directories 24.33
24.18. File Servers 24.36
24.18.1. Pup File Server Protocols 24.36
24.18.2. Xerox NS File Server Protocols 24.37
24.18.3. Operating System Designations 24.38
24.18.4. Loggingin 24.39
24.18.5. Abnormal Conditions 24.41

TABLE OF CONTENTS TOC.1

TABLE OF CONTENTS

[This page intentionally left blank]

TOC.2 TABLE OF CONTENTS

TABLE OF CONTENTS

26.1.8. INSPECTWs 26.6

26.2. PROMPTFORWORD 26.9
26.3. ASKUSER 26.12
26.3.1. Formatof KEYLST 26.13

26.3.2. Options 26.15

26.3.3. Operation ‘ 26.17

26.3.4. Completing a Key 26.18

26.3.5. Special Keys 26.19

26.3.6. Startup Protocol and Typeahead 26.20

26.4. TTYIN Display Typein Editor 26.22
26.4.1. Enteringinput With TTYIN 26.22

26.4.2. Mouse Commands [Interlisp-D Only] 26.24

26.4.3. Display Editing Commands 26.25

26.4.4. Using TTYIN for Lisp Input 26.28

26.4.5. Useful Macros 26.29

26.4.6. Programming With TTYIN 26.29

26.4.7. Using TTYIN as a General Editor 26.32

26.4.8. 7= Handler 26.33

26.4.9. Read Macros 26.34

26.4.10. Assorted Flags 26.36

26.4.11. Special Responses 26.38

26.4.12. Display Types 26.38

26.5. Prettyprint 26.39
26.5.1. Comment Feature 26.42

26.5.2. Comment Pointers 26.44

26.5.3. Converting Comments to Lower Case 26.46

26.5.4. Special Prettyprint Controls 26.47

27. Graphics Output Operations 27.1
27.1. Primitive Graphics Concepts 271
27.1.1. Positions 271

27.1.2., Regions 271

27.1.3. Bitmaps 27.3

27.1.4. Textures 27.6

27.2. Opening image Streams 27.8

TABLE OF CONTENTS

TOC.3

TABLE OF CONTENTS

27.3. Accessing Image Stream Fields 27.10
27.4. Current Position of an Image Stream 2713
27.5. Moving Bits Between Bitmaps With BITBLT 27.14
27.6. Drawing Lines 27.17
27.7. Drawing Curves 27.18
27.8. Miscellaneous Drawing and Printing Operations 27.20
27.9. Drawing and Shading Grids 27.22
27.10. Display Streams 27.23
27.12. Fonts 27.25
27.13. Font Files and Font Directories 27.31
27.15. FontProfiles 27.32
27.16. Image Objects 27.35
27.16.1. IMAGEFNS Methods 27.36

27.16.2. Registering Image Objects 27.39

27.16.3. Reading and Writing Image Objectson Files 27.40

27.16.4. Copying Image Objects Between Windows 27.41

27.17. Implementation of Image Streams 27.42
28. Windows and Menus 28.1
28.1. Using The Window System 28.2
28.2. Changing Window Command Menus 28.7
28.3. Interactive Display Functions 289
28.4. Windows 28.12
28.4.1. Window Properties 28.13

28.4.2. Creating Windows 28.13

28.4.3. Opening and Closing Windows 28.15

28.4.4. Redisplaying Windows 28.16

28.4.5. Reshaping Windows 28.16

28.4.6. Moving Windows 28.19

28.4.7. Exposing and Burying Windows 28.20

28.4.8. Shrinking Windows Into Icons 28.21

28.4.9. Coordinate Systems, Extents, And Scrolling 28.23

28.4.10. Mouse Activity in Windows 28.27

28.4.11. Terminal 1/0 and Page Holding 28.29

28.4.12. The TTY Process and the Caret 28.30

TOC.4

TABLE OF CONTENTS

. TABLE OF CONTENTS

28.4.13. Miscellaneous Window Functions 28.31

28.4.14. Miscellaneous Window Properties 28.33

28.4.15. Example: A Scrollable Window 28.34

28.5. Menus 28.37
28.5.1. Menu Fields 28.38

28.5.2. Miscellaneous Menu Functions 28.42

28.5.3. Examples of Menu Use : 28.43

28.6. Attached Windows 28.45
28.6.1. Attaching Menus To Windows 28.48

28.6.2. Attached Prompt Windows 28.50

28.6.3. Window Operations And Attached Windows 28.50

28.6.4. Window Properties Of Attached Windows 2853

29. Hardcopy Facilities . 29.1
29.1. Low-level Hardcopy Variables 29.5
30. Terminal Input/Output 30.1
30.1. Interrupt Characters 30.1
30.2. Terminal Tables 30.4
© 30.2.1. Terminal Syntax Classes 30.5

30.2.2. Terminal Control Functions 30.6

30.2.3. Line-Buffering , 30.9

30.3. Dribble Files 30.12
30.4. Cursor and Mouse 30.13
30.4.1. Changing the Cursor Image 30.13

30.4.2. Flashing Bars on the Cursor 30.16

30.4.3. Cursor Position 30.17

30.4.4. Mouse Button Testing 30.17

30.4.5. Low Level Mouse Functions 30.18

30.5. Keyboard Interpretation 30.19
30.6. Display Screen 30.22
30.7. Miscellaneous Terminal I/0 30.24
31. Ethernet 31.1
31.1. Ethernet Protocols 31.1
31.1.1. Protocol Layering 311

31.1.2. Level Zero Protocols 31.2

TABLE OF CONTENTS TOC.S

TABLE OF CONTENTS

31.1.3. Level One Protocols 31.3

31.1.4. Higher Level Protocols 31.4

31.1.5. Connecting Networks: Routers and Gateways 31.4

31.1.6. Addressing Conflicts with Level Zero Mediums 31.5

31.1.7. References 31.5
31.2. Higher-level PUP Protocol Functions 31.6
31.3. Higher-level NS-Protocol Functions 31.7
31.3.1. Name and Address Conventions 31.7
31.3.2. Clearinghouse Functions 319
31.3.3. NS Printing 3112
31.3.4. SPP Stream Interface 31.12
31.3.5. Courier Remote Procedure Call Protocol 31.15
31.3.5.1. Defining Courier Programs 31.15
31.3.5.2. Courier Type Definitions 3117
31.3.5.2.1. Pre-defined Types 3117
31.3.5.2.2. Constructed Types 31.18
31.3.5.2.3. User Extensions to the Type Language 31.19
31.3.5.3. Performing Courier Transactions 31.20
31.3.5.3.1. Expedited Procedure Call 31.22
31.3.5.3.2. Expanding Ring Broadcast 31.23
31.3.5.3.3. Using Bulk Data Transfer 31.24
31.3.5.3.4. Courier Subfunctions for Data Transfer 31.25
31.4. Level One Ether Packet Format 31.26
31.5. PUP Level One Functions 31.28
31.5.1. Creating and Managing Pups 31.28
31.5.2. Sockets 31.28
31.5.3. Sending and Receiving Pups 31.29
31.5.4. Pup Routing Information 31.30
31.5.5. Miscellaneous PUP Utilities 31.31
31.5.6. PUP Debugging Aids 31.32
31.6. NS Level One Functions 31.36
31.6.1. Creating and Managing XIPs 31.36
31.6.2. NS Sockets 31.37
31.6.3. Sending and Receiving XIPs 31.37

TOC.6 TABLE OF CONTENTS

TABLE OF CONTENTS

31.6.4. NS Debugging Aids 31.38
31.7. Support for Other Level One Protocols 31.38
31.8. The SYSQUEUE mechanism 31.41

TABLE OF CONTENTS TOC.7

TABLE OF CONTENTS

[This page intentionally left blank]

TOC.8 TABLE OF CONTENTS

24. STREAMS AND FILES

Interlisp-D can perform input/output operations on a large
variety of physical devices, including local disk drives, floppy disk_
drives, the keyboard and display screen, and remote file server
computers accessed over a network. While the low-level details
of how all these devices perform input/output vary considerably,
the Interlisp-D language provides the programmer a small,
common set of abstract operations whose use is largely
independent of the physical input/output medium
involved—operations such as read, print, change font, or go to a
new line. By merely changing the targeted /O device, a single
program can be used to produce output on the display, a file, or
aprinter. "

The underlying data abstraction that permits this flexibility is the
stream. A stream is a data object (an instance of the data type
STREAM) that encapsulates all of the information about an
input/output connection to a particular /O device. Each of
Interlisp-D's general-purpose 1/O functions takes a stream as one
of its arguments. The general-purpose function then performs
action specific to the stream's device to carry out the requested
operation. Not every device is capable of implementing every I/0
operation, while some devices offer additional functionality by
way of special functions for that device alone. Such restrictions
and extensions are noted in the documentation of each device.

The vast majority of the streams commonly used in interlisp-D fall
into two interesting categories: the file stream and the image
stream.

A file is an ordered collection of data, usually a sequence of
characters or bytes, stored on a file device in a manner that

- allows the data to be retrieved at a later time. Floppy disks, hard

disks, and remote file servers are among the devices used to store
files. Files are identified by a "file name", which specifies the
device on which the file resides and a name unique to a specific
file on that device. Input or output to a file is performed by
obtaining a stream to the file, using OPENSTREAM (page 24.2).
In addition, there are functions that manipulate the files
themselves, rather than their data content.

An image stream is an output stream to a display device, such as
the display screen or a printer. In addition to the standard
output operations, such as print, an image stream implements a
variety of graphics operations, such as drawing lines and
displaying characters in multiple fonts. Unlike a file, the

STREAMS AND FILES

241

STREAMS AND FILES

"content” of an image stream cannot be retrieved. Image
streams are described on page 27.8.

The creation of other kinds of streams, such as network
byte-stream connections, is described in the chapters peculiar to
those kinds of streams. The operations common to streams in
general are described on page 25.1. This chapter describes
operations specific to file devices: how to name files, how to
open streams to files, and how to manipulate files on their
devices.

24.1 Opening and Closing File Streams

In order to perform input from or output to a file, it is necessary
to create a stream to the file, using OPENSTREAM:

(OPENSTREAM FILE ACCESS RECOG PARAMETERS —) [Function]

INPUT

OUTPUT

BOTH

APPEND

Opens and returns a stream for the file specified by FILE, a file
name. FILE can be either a string or a litatom. The syntax and
manipulation of file names is described at length on page 24.5.
Incomplete file names are interpreted with respect to the
connected directory (page 24.10).

RECOG specifies the recognition mode of FILE, as described on
page 24.12. If RECOG = NIL, it defaults according to the value of
ACCESS.

ACCESS specifies the "access rights" to be used when opening
the file, one of the following:

Only input operations are permitted on the file. The file must
already exist. Starts reading at the beginning of the file. RECOG
defaults to OLD.

Only output operations are permitted on the file. Starts writing
at the beginning of the file, which is initially empty. While the
file is open, other users or processes are unable to open the file
for either input or output. RECOG defaults to NEW.

Both input and output operations are permitted on the file.
Starts reading or writing at the beginning of the file. RECOG
defaults to OLD/NEW. ACCESS=BOTH implies random
accessibility (page 25.18), and thus may not be possible for files
on some devices.

Only sequential output operations are permitted on the file.
Starts writing at the end of the file. RECOG defaults to
OLD/NEW. ACCESS=APPEND may not be allowed for files on
some devices. '

24.2

STREAMS AND FILES

OPENING AND CLOSING FILE STREAMS

DON'T.CHANGE.DATE

SEQUENTIAL

Note: ACCESS = OQUTPUT implies that one intends to write a new
or different file, even if a version number was specified and the
corresponding file already exists. Thus any previous contents of
the file are discarded, and the file is empty immediately after the
OPENSTREAM. If itis desired to write on an already existing file
while preserving the old contents, the file must be opened for
access BOTH or APPEND.

PARAMETERS is a list of pairs (ATTRIB VALUE), where ATTRIB is
any file attribute that the file system is willing to allow the user
to set (see SETFILEINFO, page 24.17). A non-list ATTRIB in
PARAMETERS is treated as the pair (ATTRIB T). Generally
speaking, attributes that belong to the permanent file (e.g.,
TYPE) can only be set when creating a new file, while attributes
that belong only to a particular opening of a file (e.g.,
ENDOFSTREAMOP) can be set on any call to OPENSTREAM. Not
all devices honor all attributes; those not recognized by a
particular device are simply ignored.

In addition to the attributes permitted by SETFILEINFO, the
following tokens are accepted by OPENSTREAM as values of
ATTRIBin its PARAMETERS argument:

If VALUE is non-NIL, the file's creation date (page 24.17) is not
changed when the file is opened. This option is meaningful only
for old files being opened for access BOTH. This should be used
only for specialized applications in which the caller does not
want the file system to believe the file's content has been
changed.

If VALUE is non-NIL, this opening of the file need support only
sequential access; i.e., the caller intends never to use SETFILEPTR.
For some devices, sequential access to files is much more efficient
than random access. Note that the device may choose to ignore
this attribute and still open the file in a manner that permits
random access. Also note that this attribute does not make sense
with ACCESS = BOTH.

If FILE is not recognized by the file system, OPENSTREAM causes
the error FILE NOT FOUND. Ordinarily, this error is intercepted
via an entry on ERRORTYPELST (page 14.22), which causes
SPELLFILE (page 24.32) to be called. SPELLFILE searches alternate
directories and possibly attempts spelling correction on the file
name. Onlyif SPELLFILE is unsuccessful will the FILE NOT FOUND
error actually occur.

If FILE exists but cannot be opened, OPENSTREAM causes one of
several other errors: FILE WON'T OPEN if the file is already
opened for conflicting access by someone else; PROTECTION
VIOLATION if the file is protected against the operation; FILE
SYSTEM RESOURCES EXCEEDED if there is no more room in the
file system.

STREAMS AND FILES

24.3

OPENING AND CLOSING FILE STREAMS

(CLOSEF FILE)

[Function]

(CLOSEF? FILE)

Closes FILE, and returns its full file name. Generates an error,.
FILE NOT OPEN, if FILE does not designate an openstream. After
cosing a stream, no further input/output operations are
permitted onit.

If FILE is NIL, it is defaulted to the primary input stream if that is
not the terminal stream, or else the primary output stream if that
is not the terminal stream. If both primary input and output
streams are the terminal input/output streams, CLOSEF returns
NIL. If CLOSEF closes either the primary input stream or the
primary output stream (either explicitly or in the FILE = NIL case),
it resets the primary stream for that direction to be the
corresponding terminal stream. See page 25.3 for information
on the primary input/output streams.

WHENCLOSE (page 24.20) allows the user to "advise" CLOSEF to
perform various operations when a file is closed.

Because of buffering, the contents of a file open for output are
not guaranteed to be written to the actual physical file device
until CLOSEF is called. Buffered data can be forced out to a file
without closing the file by using the function FORCEOUTPUT
(page 25.10).

Some network file devices perform their transactions in the
background. As a result, it is possible for a file to be closed by
CLOSEF and yet not be "fully" closed for some small period of
time afterward, during which time the file appears to still be
busy, and cannot be opened for conflicting access by other users.

[Function]

(OPENP FILE ACCESS)

Closes FILE if it is open, returning the value of CLOSEF; otherwise
does nothing and returns NiL.

In the present implementation of Interlisp-D, all streams to files
are kept, while open, in a registry of "open files". This registry
does not include nameless streams, such as string streams (page
24.28), display streams (page 28.29), and the terminal input and
output streams; nor streams explicitly hidden from the user, such
as dribble streams (page 30.12). This registry may not persist in
future implementations of Interlisp-D, but at the present time it
is accessible by the following two functions:

[Function]

ACCE§S is an access mode for a stream opening (one of INPUT,
OUTPUT, BOTH, or APPEND), or NIL, meaning any access.

if FILE is a stream, returns its full name if it is open for the
specified access, else NIL.

24.4

STREAMS AND FILES

OPENING AND CLOSING FILE STREAMS

(CLOSEALL ALLFLG)

If FILE is a file name (a litatom), FILE is processed according to the
rules of file recognition (page 24.12). If a stream open to a file by
that name is registered and open for the specified access, then
the file's full name is returned. if the file name is not recognized,
or no stream is open to the file with the specified access, NiL is
returned. '

If FILE is NIL, returns a list of the full names of all registered
streams that are open for the specified access.

[Function]

Closes all streams in the value of (OPENP). Returns a list of the
files closed.

WHENCLOSE (page 24.20) allows certain files to be "protected”

from CLOSEALL. If ALLFLG is T, all files, including those
protected by WHENCLOSE, are closed.

24.2 File Names

HOST

DEVICE

A file name in Interlisp-D is a string or litatom whose characters
specify a "path"” to the actual file: on what host or device the file
resides, in which directory, and so forth. Because Interlisp-D
supports a variety of non-local file devices, parts of the path
could be very device-dependent. However, it is desirabie for
programs to be able to manipulate file names in a
device-independent manner. To this end, Interlisp-D specifies a
uniform file name syntax over all devices; the functions that
perform the actual file manipulation for a particular device are
responsible for any transiation to that device's naming
conventions.

A file name is composed of a collection of fields, some of which
have specific semantic interpretations. The functions described
below refer to each field by a field name, a literal atom from
among the following: HOST, DEVICE, DIRECTORY, NAME,
EXTENSION, and VERSION. The standard syntax for a file name
that contains all of those fields is
{HOST)}DEVICE: < DIRECTORY >NAME.EXTENSION; VERSION.
Some host’s file systems do not use all of those fields in their file
names.

Specifies the host whose file system contains the file. In the case
of local file devices, the "host" is the name of the device, e.g.,
DSK or FLOPPY.

Specifies, for those hosts that divide their file system's name
space among mutiple physical devices, the device or logical
structure on which the file resides. This should not be confused

STREAMS AND FILES

24.5

FILE NAMES

DIRECTORY

NAME

EXTENSION

VERSION

with Interlisp-D's abstract "file device", which denotes either a
host or a local physical device and is specified by the HOST field.

Specifies the "directory” containing the file. A directory usually
is a grouping of a possibly large set of loosely related files, e.g.,
the personal files of a particular user, or the files belonging to
some project. The DIRECTORY field usually consists of a principal
directory and zero or more subdirectories that together describe
a path through a file system's hierarchy. Each subdirectory name
is set off from the previous directory or subdirectory by the
character ">"; e.g., "LISP>LIBRARY >NEW".

This field carries no specific meaning, but generally names a set
of files thought of as being different renditions of the "same”
abstract file.

This field also carries no specific meaning, but generally
distinguishes the form of files having the same name. Most files
systems have some “conventional" extensions that denote
something about the content of the file. E.g., in Interlisp-D, the
extension DCOM standardly denotes a file containing compiled
function definitions.

A number used to distinguish the versions or "generations" of
the files having a common name and extension. The version
number is incremented each time a new file by the same name is
created.

Most functions that take as input "a directory" accept either a
directory name (the contents of the DIRECTORY field of a file
name) or a "full" directory specification—a file name fragment
consisting of only the fields HOST, DEVICE, and DIRECTORY. In
particular, the "connected directory” (page 24.10) consists, in
general, of all three fields.

For convenience in dealing with certain operating systems,
Interlisp-D also recognizes [and () as host delimiters
(synonymous with {}), and / as a directory delimiter (synonymous
with < at the beginning of a directory specification and > to
terminate directory or subdirectory specification). For example,
a file on a Unix file server UNX with the name
/usr/foo/bar/stuff.tedit, whose DIRECTORY field is thus
usr/foo/bar, could be specified as {UNX}/usr/foo/bar/stuff.tedit,
or (UNX)<usr/foo/bar>stuff.tedit, or several other variations.
Note that when using [] or () as host delimiters, they usually must
be escaped with the reader's % escape character if the file name
is expressed as a litatom rather than a string.

Different hosts have different requirements regarding which
characters are valid in file names. From Interlisp-D's point of
view, any characters are valid. However, in order to be able to
parse a file name into its component fields, it is necessary that
those characters that are conventionally used as file name
delimiters be quoted when they appear inside of fields where

246

STREAMS AND FILES

FILE NAMES

there could be ambiguity. The file name quoting character is
(single quote). Thus, the following characters must be quoted
when not used as delimeters: :, >, ;,/, and ' itself. The character
. (period) need only be quoted if it is to be considered a part of
the EXTENSION field. The characters },], and) need only be
quoted in a file name when the host field of the name is
introduced by {, [, and (, respectively. The characters {, [, (, and
< need only be quoted if they appear as the first character of a
file name fragment, where they would otherwise be assumed to
introduce the HOST or DIRECTORY fields.

The following functions are the standard way to manipulate file
names in Interlisp. Their operation is purely syntactic—they
perform no file system operations themselves.

(UNPACKFILENAME.STRING FILENAME — — —) [Function]

(UNPACKFILENAME FILE —)

Parses FILENAME, returning a list in property list format of
alternating field names and field contents. The field contents
are returned as strings. If FILENAME is a stream, its full name is
used.

Only those fields actually present in FILENAME are returned. A
field is considered present if its delimiting punctuation (in the
case of EXTENSION and VERSION, the preceding period or
semicolon, respectively) is present, even if the field itself is
empty. Empty fields are denoted by "” (the empty string).

Examples:

(UNPACKFILENAME.STRING "FOO.BAR") = >
(NAME "FOO" EXTENSION “BAR")

(UNPACKFILENAME.STRING "F0QO.;2") = >
(NAME "FOO" EXTENSION "" VERSION "2")

(UNPACKFILENAME.STRING "FOO;") = >
(NAME "FOO" VERSION "")

(UNPACKFILENAME.STRING
"{ERIS} <LISP>CURRENT>IMTRAN.DCOM;21")
a > (HOST "ERIS" DIRECTORY "LISP>CURRENT"
NAME "IMTRAN" EXTENSION "DCOM"
VERSION "21")

[Function]
Old version of UNPACKFILENAME.STRING that returns the field
values as atoms, rather than as strings.

UNPACKFILENAME.STRING is now considered the “correct” way
of unpacking file names, because it does not lose information
when the contents of a field are numeric. For example,

(UNPACKFILENAME 'STUFF.TXT) = >
(NAME STUFF EXTENSION TXT)

STREAMS AND FILES

24.7

FILE NAMES

but

(UNPACKFILENAME 'STUFF.029) = >
(NAME STUFF EXTENSION 29)

Explicitly omitted fields are denoted by the atom NIL, rather than
the empty string.

Note: Both UNPACKFILENAME and UNPACKFILENAME.STRING
leave the trailing colon on the device field, so that the Tenex
device NIL: can be distinguished from the absence of a device.
Although UNPACKFILENAME.STRING is capable of making the
distinction, it retains this behavior for backward compatibility.
Thus,

(UNPACKFILENAME.STRING '{TOAST}DSK:FOO) = >
(HOST "TOAST" DEVICE "DSK:" NAME “"FOO")

-

(FILENAMEFIELD FILENAME FIELDNAME) [Function]

Returns, as an atom, the contents of the FIELDNAME field of
FILENAME. |f FILENAME is a stream, its full name is used.

(PACKFILENAME.STRING FIELD y CONTENTS ... FIELDp CONTENTSp) [NoSpread Function]

Takes a sequence of alternating field names and field contents
(atoms or strings), and returns the corresponding file name, as a
string. ‘ ‘

If PACKFILENAME.STRING is given a single argument, it is
interpreted as a list of alternating field names and field contents.
Thus PACKFILENAME.STRING and UNPACKFILENAME.STRING
operate as inverses.

If the same field name is given twice, the first occurrence is used.

The contents of the field name DIRECTORY may be either a
directory name or a full directory specification as described
above.

PACKFILENAME.STRING also accepts the "field name" BODY to
mean that its contents should itself be unpacked and spliced into
the argument list at that point. This feature, in conjunction with
the rule that fields early in the argument list override later
duplicates, is useful for altering existing file names. For example,
to provide a default field, place BODY first in the argument list,
then the default fields. To override a field, place the new fields
first and BODY last.

If the value of the BODY field is a stream, its full name is used.
Examples:

(PACKFILENAME.STRING 'DIRECTORY "LISP"
'‘NAME "NET")
a > "<LISP>NET"

248

STREAMS AND FILES

FILE NAMES

(PACKFILENAME.STRING ‘NAME "NET"
'DIRECTORY "{DSK} <LISPFILES>")
= > “{DSK} <LISPFILES >NET"

(PACKFILENAME.STRING 'DIRECTORY "{DSK}"
'‘BODY "{TOAST} <FOO>BAR")
= > "{DSK}BAR"

(PACKFILENAME.STRING 'DIRECTORY "FRED"
'BODY "{TOAST} <FOO>BAR")
= > "{TOAST} <FRED>BAR"

(PACKFILENAME.STRING 'BODY "{TOAST}<FOO>BAR"
'DIRECTORY "FRED™)
a > "{TOAST}<FOO>BAR"

(PACKFILENAME.STRING 'VERSION NIL
'BODY "{TOAST} <FOO>BAR.DCOM;2")
= > "{TOAST} <FOO>BAR.DCOM"

(PACKFILENAME.STRING 'BODY "{TOAST}<FOO>BAR.DCOM"
'VERSION 1)
= > "{TOAST}<FOO>BAR.DCOM;1"

(PACKFILENAME.STRING 'BODY " {TOAST}<FOO>BAR.DCOM;"
'VERSION 1)
= > "{TOAST}<FOO>BAR.DCOM;"

(PACKFILENAME.STRING 'BODY "BAR.;1"
'EXTENSION "DCOM")
= > "BAR.;1"

(PACKFILENAME.STRING 'BODY “BAR;1"
'EXTENSION "DCOM")
= > "BAR.DCOM;1"

In the last two examples, note that in one case the extension is
explicitly present in the body (as indicated by the preceding
period), while in the other there is no indication of an extension,
so the default is used.

(PACKFILENAME FIELD 1 CONTENTS ¢ ... FIELDpy CONTENTS) [NoSpread Function]

The same as PACKFILENAME.STRING, except that it returns the
file name as a litatom, instead of a string.

24.3 Incomplete File Names

In general, it is not necessary to pass a complete file name (one
containing all the fields listed above) to functions that take a file
name as argument. Interlisp supplies suitable defaults for

STREAMS AND FILES

249

INCOMPLETE FILE NAMES

(CNDIR HOST/DIR)

certain fields, as described helow. Functions that return names
of actual files, however, always return the fully specified name.

If the version field is omitted from a file name, Interlisp performs
version recognition, as described on page 24.11.

If the host, device and/or directory field are omitted from a file
name, Interlisp defaults them with respect to the. currently
connected directory. The connected directory is changed by
calling the function CNDIR or using the programmer’s assistant
command CONN.

Defaults are added to the partially specified name "left to right”
until a host, device or directory field is encountered. Thus, if the
connected directory is {TWENTY}PS: <FRED >, then

BAR.DCOM means
{TWENTY}PS: <FRED>BAR.DCOM

< GRANOLA >BAR.DCOM means
{TWENTY}PS: < GRANOLA >BAR.DCOM

MTAO: < GRANOLA >BAR.DCOM means
{TWENTY}MTAO: < GRANOLA>BAR.DCOM

{THIRTY}<GRANOLA>BAR.DCOM means
{THIRTY} < GRANOLA >BAR.DCOM

In addition, if the partially specified name contains a
subdirectory, but no principal directory, then the subdirectory is
appended to the connected directory. For example,

ISO>BAR.DCOM means
{TWENTY}PS: <FRED >ISO>BAR.DCOM

Or, if the connected directory is the Unix directory
{UNX}/usr/fred/, then iso/bar.dcom means
{UNX}/usr/fred/iso/bar.dcom, but /other/bar.dcom means
{UNX}/other/bar.dcom.

[Function]

Connects to the directory HOST/DIR, which can either be a
directory name or a full directory specification including host
and/or device. If the specification includes just a host, and the
host supports directories, the directory is defaulted to the value
of (USERNAME); if the host is omitted, connection is made to
another directory on the same host as before. If HOST/DIR is NIL,

" connects to the value of LOGINHOST/DIR.

CNDIR returns the full name of the now-connected directory.
Causes an error, Non-existent directory, if HOST/DIR is not
recognized as a valid directory.

Note that CNDIR does not necessarily require or provide any
directory access privileges. Access privileges are checked when a
file is opened. :

24.10

STREAMS AND FILES

INCOMPLETE FiLE NAMES

CONN HOST/DIR .

[Prog. Asst. Command]

LOGINHOST/DIR

Convenient command form of CNDIR for use at the executive.

‘Connects to HOST/DIR, or to the value of LOGINHOST/DIR if

HOST/DIR is omitted. This command is undoable—undoing it
causes the system to connect to the previously connected
directory.

[Variable]

CONN with no argument connects to the value of the variable
LOGINHOST/DIR, initially {DSK}, but usually reset in the user's
greeting file (page 12.1).

(DIRECTORYNAME DIRNAME STRPTR —) [Function]

if DIRNAME is T, returns the full specification of the currently
connected directory. If DIRNAME is NIL, returns the "login"
directory specification (the value of LOGINHOST/DIR). For any
other value of DIRNAME, returns a full directory specification if
DIRNAME designates an existing directory (satisfies
DIRECTORYNAMEP), otherwise NIL.

If STRPTR is T, the value is returned as an atom, otherwise it is
returned as a string.

(DIRECTORYNAMEP D/IRNAME HOSTNAME) [Function]

(HOSTNAMEP NAME)

Returns T if DIRNAME is recognized as a valid directory on host
HOSTNAME, or on the host of the currently connected directory
if HOSTNAME is NIL. DIRNAME may be either a directory name
or a full directory specification containing host and/or device as
well.

If DIRNAME includes subdirectories, this function may or may not
pass judgment on their validity. Some hosts support “true"
subdirectories, distinct entities manipulable by the file system,
while athers only provide them as a syntactic convenience.

[Function]

Returns T if NAME is recognized as a valid host or file device
name at the moment HOSTNAMEP is called.

24.4 Version Recognition

Most of the file devices in Interiisp support file version numbers.
That is, it is possible to have several files of the exact same name,
differing only in their VERSION field, which is incremented for
each new "version" of the file that is created. When a file name
lacking a version number is presented to the file system, it is

STREAMS AND FILES

24.11

VERSION RECOGNITION

(FULLNAME X RECOG)

necessary to determine which version number is intended. This
process is known as version recognition.

When OPENSTREAM opens a file for input and no version
number is given, the highest existing version number is used.
Similarly, when a file is opened for output and no version
number is given, a new file is created with a version number one
higher than the highest one currently in use with that file name.
The version number defaulting for OPENSTREAM can be
changed by specifying a different value for its RECOG argument,
as described under FULLNAME, below.

Other functions that accept file names as arguments generally
perform the default version recognition, which is newest version
for existing files, or a new version if using the file name to create
a new file. The one exception is DELFILE, which defaults to the
oldest existing version of the file.

The functions below can be used to perform version recognition
without actually calling OPENSTREAM to open the file. Note
that these functions only tell the truth about the moment at
which they are called, and thus cannot in general be used to
anticipate the name of the file opened by a comparable
OPENSTREAM. They are sometimes, however, helpful hints.

[Function]:

oLD

OLDEST

NEW

OLD/NEW

if X is an open stream, simply returns the full file name of the
stream. Otherwise, if X is a file name given as a string or litatom,
performs version recognition, as follows:

If X is recognized in the recognition mode specified by RECOG as
an abbreviation for some file, returns the file's full name,
otherwise NIL. RECOG is one of the following:

Choose the newest existing version of the file. Return NIL if no
file named X exists.

Choose the oldest existing version of the file. Return NIL if no file
named X exists.

Choose a new (not yet existing) version of the file. That is, if
versions of X already exist, then choose a version number one
higher than highest existing version; else choose version 1. For
some file systems, FULLNAME returns NIL if the user does not
have the access rights necessary for creating a new file named X.

Try OLD, then NEW. That is, choose the newest existing version
of the file, if any; else choose version 1. This usually only makes
sense if you are intending to open X for access BOTH.

RECOG = NIL defaults to OLD. For all other values of RECOG,
generates an error ILLEGAL ARG.

If X already contains a version number, the RECOG argument will
never change it. In particular, RECOG = NEW does not require

24.12

STREAMS AND FILES

VERSION RECOGNITION

that the file actually be new. For example, (FULLNAME 'FOO.;2
'NEW) may return {ERIS}<LISP>F00.;2 if that file already
exists, even though (FULLNAME 'FOO 'NEW) would default the
version to a new number, perhaps returning
{ERIS} < LISP>FOO0.;5.

(INFILEP FILE) _ [Function]
Equivalent to (FULLNAME FILE 'OLD). That is, returns the full file
name of the newest version of FILE if FILE is recognized: as
specifying the name of an existing file that could potentially be
opened for input, NIL otherwise.

(OUTFILEP FILE) [Function]
Equivalent to (FULLNAME FILE '"NEW).

Note that INFILEP, OUTFILEP and FULLNAME do not open any
files; they are pure predicates. In general they are also only
hints, as they do not necessarily imply that the caller has access
rights to the file. For example, INFILEP might return non-NIL, but
OPENSTREAM might fail for the same file because the file is
read-protected against the user, or the file happens to be open
for output by another user at the time. Similarly, OUTFILEP could
return non-NIL, but OPENSTREAM could fail with a FILE SYSTEM
RESOURCES EXCEEDED error.

Note also that in a shared file system, such as a remote file server,
intervening file operations by another user could contradict the
information returned by recognition. For example, a file that
was INFILEP might be deleted, or between an OUTFILEP and the
subsequent OPENSTREAM, another user might create a new
version or delete the highest version, causing OPENSTREAM to
open a different version of the file than the one returned by
OUTFILEP. In addition, some file servers do not well support
recognition of files in output context. Thus, in general, the
"truth” about a file can only be obtained by actually opening the
file; creators of files should rely on the name of the stream
opened by OPENSTREAM, not the value returned from these
recognition functions. In particular, for the reasons described
earlier, programmers are discouraged from using OUTFILEP or
(FULLNAME NAME 'NEW).

24.5 Using File Names Instead of Streams

In earlier implementations of Interlisp, from the days of
Interlisp-10 onward, the "handle" used to refer to an open file
was not a stream, but rather the file's full name, represented as a

STREAMS AND FILES 24.13

USING FILE NAMES INSTEAD OF STREAMS

litatom. When the file name was passed to any I/O function, it
was mapped to a stream by looking it up in a list of open files.
This scheme was sometimes convenient for typing in file
commands at the executive, but was very poor for serious
programming in two major ways. First, the mapping from file
name to stream on every input/output operation is inefficient.
Second, and more importantly, using the file name as the handle
on an open stream means that it is not possibie to have more
than one stream open on a given file at once.

As of this writing, Interlisp-D is in a transition period, where it
still supports the use of litatom file names as synonymous with
open streams, but this use is not recommended. The remainder
of this section discusses this usage of file names for the benefit of
those reading older programs and wishing to convert them as
necessary to work properly when this compatibility feature is
removed.

24.5.1 File Name Efficiency Considerations

It is possible for a program to be seriously inefficient using a file
name as a stream if the program is not using the file's full name,
the name returned by OPENFILE (below). Any time that an
input/output function is called with a file name other than the
full file name, Interlisp must perform recognition on the partial
file name in order to determine which open file is intended.
Thus if repeated operations are to be performed, it is
considerably more efficient to use the full file name returned
from OPENFILE than to repeatedly use the possibly incomplete
name that was used to open the file.

There is a more subtle problem with partial file names, in that
recognition is performed on the user's entire directory, not just
the open files. It is possible for a file name that was previously
recognized to denote one file to suddenly denote a different
file. For example, suppose a program performs (INFILE 'FOO),
opening FOO.;1, and reads several expressions from FOO. Then
the user interrupts the program, creates a FOO.;2 and resumes
the program (or a user at another workstation creates a IEOO.;Z).
Now a call to READ giving it FOO as its FILE argument will
generate a FILE NOT OPEN error, because FOO will be recognized
as FOO.;2.

24.5.2 Obsolete File Opening Functions

The following functions are now considered obsolete, but are
provided for backwards compatibility:

24.14

STREAMS AND FILES

USING FILE NAMES INSTEAD OF STREAMS

(OPENFILE FILE ACCESS RECOG PARAMETERS —) [Function]

Opens FILE with access rights as specified by ACCESS, and
recognition mode RECOG, and returns the full name of the
resulting stream. Equivalent to (FULLNAME (OPENSTREAM FILE
ACCESS RECOG PARAMETERS)).

(INFILE FILE) [Function]
Opens FILE for input, and sets it as the primary input stream.
Equivalent to (INPUT (OPENSTREAM FILE 'INPUT 'OLD))

(OUTFILE FILE) ‘ [Function]
Opens FILE for output, and sets it as the primary output stream.
Equivalent to (OUTPUT (OPENSTREAM FILE 'OUTPUT 'NEW)).

(JOFILE FILE) [Function]

24.5.3 Converting Old Programs

Equivalent to (OPENFILE FILE 'BOTH 'OLD); opens FILE for both
input and output. Does not affect the primary input or output
stream.

At some point in the future, the Interlisp-D file system will
change so that each call to OPENSTREAM returns a distinct
stream, even if a stream is already open to the specified file. This
change is required in order to deal rationally with files in a
multiprocessing environment.

This change will of necessity produce the foilowing
incompatibilities:

1) The functions OPENFILE, INPUT, and OUTPUT will return a
STREAM, not a full file name. To make this less confusing in
interactive situations, STREAMs will have a print format that
reveals the underlying file's actual name,

2) A greater penalty will ensue for passing as the FILE argument
to i/o operations anything other than the object returned from
OPENFILE. Passing the file's name will be significantly slower
than passing the stream (even when passing the "full" file
name), and in the case where there is more than one stream
open on the file it might even act on the wrong one.

3) OPENP will return NIL when passed the name of a file rather
than a stream (the value of OPENFILE or OPENSTREAM).

Users should consider the following advice when writing new
programs and editing existing programs, in order that they will
continue to operate well when this change is made:

Because of the efficiency and ambiguity considerations described
earlier, users have long been encouraged to use only full file

STREAMS AND FILES

24.15

USING FILE NAMES INSTEAD OF STREAMS

names as FILE arguments to i/o operations. The “proper” way to
have done this was to bind a variable to the value returned from
OPENFILE and pass that variable to all i/o operations; such code
will continue to work. A less proper way to obtain the full file
name, but one which has to date not incurred any abvious
penalty, is that which binds a variable to the result of an INFILEP
and passes that to OPENFILE and all i/o operations. This has
worked because INFILEP and OPENFILE both return a full file
name, an invalid assumption in this future world. Such code
should be changed to pass around the value of the OPENFILE,
not the INFILEP.

Code that calls OPENP to test whether a possibly incomplete file
name is already open should be recoded to pass to OPENP only
the value returned from OPENFILE or OPENSTREAM.

Code that uses ordinary string functions to manipulate file
names, and in particular the value returned from OPENFILE,
should be <changed to use the the functions
UNPACKFILENAME.STRING and PACKFILENAME.STRING. Those
functions work both on file names (strings) and streams
(coercing the stream to the name of its file).

Code that tests the value of OUTPUT for equality to some known
file name or T should be examined carefully and, if possible,
recoded.

To see more directly the effects of passing around STREAMs
instead of file names, replace your calls to OPENFILE with calls to
OPENSTREAM. OPENSTREAM is called in exactly the same way,
but returns a STREAM. Streams can be passed to READ, PRINT,
CLOSEF, etc just as the file's full name can be currently, but using
them is more efficient. The function FULLNAME, when applied
to a stream, returns its full file name.

24.6 Using Files with Processes

Because Interlisp-D does not yet support multiple streams per
file, problems can arise if different processes attempt to access
the same file. The user has to be careful not to have two
processes manipulating the same file at the same time, since the
two processes will be sharing a single input stream and file
pointer. For example, it will not work to have one process
TCOMPL a file while another process is running LISTFILES on it.

.

24.16

STREAMS AND FILES

FILE ATTRIBUTES

24.7 File Attributes

(GETFILEINFO FILE ATTRIB)

Any file has a number of "file attributes”, such as the read date,
protection, and bytesize. The exact attributes that a file can have
is dependent on the file device. The functions GETFILEINFO and
SETFILEINFO allow the user to conveniently access file attributes:

[Function]

Returns the current setting of the ATTRIB attribute of FILE.

(SETFILEINFO FILE ATTRIB VALUE) [Function]

BYTESIZE

LENGTH

SIZE
CREATIONDATE

Sets the attribute ATTRIB of FILE to be VALUE. SETFILEINFO
returns T if it is able to change the attribute ATTRIB, and NIL if
unsuccessful, either because the file device does not recognize
ATTRIB or because the file device does not permit the attribute
to be modified.

The FILE argument to GETFILEINFO and SETFILEINFO can be an
open stream (or an argument designating an open stream, see
page 25.2), or the name of a closed file. SETFILEINFO in general
requires write access to the file.

The attributes recognized by GETFILEINFO and SETFILEINFO fall
into two categories: permanent attributes, which are properties
of the file, and temporary attributes, which are properties only
of an open stream to the file. The temporary attributes are only
recognized when FILE designates an open stream; the
permanent attributes are usually equally accessible for open and
closed files. However, some devices are willing to change the

. value of certain attributes of an open stream only when specified

in the PARAMETERS argument to OPENSTREAM (page 24.2), not
on a later call to SETFILEINFO.

The following are currently recognized as permanent attributes
of afile:

The byte size of the file. Interlisp-D currently only supports byte
size 8.

- The number of bytes in the file. Alternatively, the byte position

of the end-of-file. Like (GETEOFPTR FILE), but FILE does not have
to be open.

The size of FILE in pages.

The date and time, as a string, that the content of FILE was
"created". The creation date changes whenever the content of
the file is modified, but remains unchanged when a file is
transported, unmodified, across file systems. Specifically,
COPYFILE and RENAMEFILE (page 24.31) preserve the file's
creation date. Note that this is different from the concept of
“creation date" used by some operating systems (e.g., Tops20).

STREAMS AND FILES

24.17

FILE ATTRIBUTES,

WRITEDATE

READDATE

ICREATIONDATE
IWRITEDATE
IREADOATE

AUTHOR
TYPE

The date and time, as a string, that the content of FILE was last
written to this particular file system. When a file is copied, its
creation date does not change, but its write date becomes the
time at which the copy is made.

The date and time, as a string, that FILE was last read, or NiL if it
has never been read.

The CREATIONDATE, WRITEDATE and READDATE, respectively,
in integer form, as IDATE (page 12.14) would return. This form is
useful for comparing dates.

The name of the user who last wrote the file.

The "type" of the file, some indication of the nature of the file's
content. The "types" of files allowed depends on the file device.
Most devices recognize the litatom TEXT to mean that the file
contains just characters, or BINARY to mean that the file contains
arbitrary data.

Some devices support a wider range of file types that distinguish
among the various sorts of files one might create whose content
is "binary". All devices interpret any value of TYPE that they do
not support to be BINARY. Thus, GETFILEINFO may return the
more general value BINARY instead of the original type that was
passed to SETFILEINFO or OPENSTREAM. Similarly, COPYFILE,
while attempting to preserve the TYPE of the file it is copying,
may turn, say, an INTERPRESS file into a mere BINARY file.

The way in which some file devices (e.g., Xerox file servers)
support a wide range of file types is by representing the type as
an integer, whose interpretation is known by the cient. The
variable FILING.TYPES is used to associate symbolic types with
numbers for these devices. This list initially contains some of the
well-known assignments of type name to number; the user can
add additional elements to handle any private file types. For
example, suppose there existed an NS file type MAZEFILE with
numeric value 5678. You could add the element (MAZEFILE
5678) to FILING.TYPES and then use MAZEFILE as a value for the
TYPE attribute to SETFILEINFO or OPENSTREAM. Other devices
are, of course, free to store TYPE attributes in whatever manner
they wish, be it numeric or symbolic. FILING.TYPES is merely
considered the official registry for Xerox file types.

For most file devices, the TYPE of a newly created file, if not
specified in the PARAMETERS argument to OPENSTREAM,
defaults to the value of DEFAULTFILETYPE, initially TEXT.

The following are currently recognized as temporary attributes
of an open stream:

24.18

STREAMS AND FILES

FILE ATTRIBUTES

ACCESS

ENDOFSTREAMOP

EOL

BUFFERS

The current access rights of the stream (see page 24.2). Can be
one of INPUT, OUTPUT, BOTH, APPEND; or NIL if the stream is
not open.

The action to be taken when a stream is at "end of file" and an
attempt is made to take input from it. The value of this attribute
is a function of one argument, the stream. The function can
examine the stream and its calling context and take any action it
wishes. If the function returns normally, its should return either
T, meaning to try the input operation again, or the byte that BIN
would have returned had there been more bytes to read.
Ordinarily, one should not let the ENDOFSTREAMOP function
return unless one is only performing binary input from the file,
since there is no way in general of knowing in what state the
reader was at the time the end of file occurred, and hence how it
will interpret a single byte returned to it.

The default ENDOFSTREAMORP is a system function that causes

the error END OF FILE. The behavior of that error can be further

modified for a particular stream by using the EOF option of
WHENCLOSE (page 24.20).

The end-of-line convention for the stream. This can be CR, LF, or
CRLF, indicating with what byte or sequence of bytes the "End
Of Line" character is represented on the stream. On input, that
sequence of bytes on the stream is read as (CHARCODE EOL) by
READCCODE or the string reader. On output, (TERPRI) and
(PRINTCCODE (CHARCODE EOL)) cause that sequence of bytes to
be placed on the stream.

The end of line convention is usually not apparent to the user.
The file system is usually aware of the convention used by a
particular remote operating system, and sets this attribute
accordingly. If you believe a file actually is stored with a
different convention than the default, it is possible to modify the
default behavior by including the EOL attribute in the
PARAMETERS argument to OPENSTREAM.

Value is the number of 512-byte buffers that the stream
maintains at one time. This attribute is only used by certain
random-access devices (currently, the local disk, floppy, and Leaf
servers); all othersignore it.

Streams open to files generally maintain some portion of the file
buffered in memory, so that each call to an I/0 function does not
require accessing the actual file on disk or a file server. For files
being read or written sequentially, not much buffer space is
needed, since once a byte is read or written, it will never need to
be seen again. In the case of random access streams, buffering is
more complicated, since a program may jump around in the file,
using SETFILEPTR (page 25.19). In this case, the more buffer
space the stream has, the more likely it is that after a SETFILEPTR
to a place in the file that has already been accessed, the stream

STREAMS AND FILES

24.19

FILE ATTRIBUTES

still has that part of the file buffered and need not go out to the
device again. This benefit must, of course, be traded off against -
the amount of memory consumed by the buffers.

24.8 Closing and Reopening Files

The function WHENCLOSE permits the user to associate certain
operations with open streams that govern how and when the
stream will be closed. The user can specify that certain functions
will be executed before CLOSEF closes the stream and/or after
CLOSEF cioses the stream. The user can make a particular stream
be invisible to CLOSEALL, so that it will remain open across user
invocations of CLOSEALL.

(WHENCLOSE FILE PROP; VAL ... PROPp VALp) [NoSpread Function]

BEFORE

AFTER

CLOSEALL

EOF

FILE must designate an open stream other than T (NIL defaults to
the primary input stream, if other than T, or primary output
stream if other than T). The remaining arguments specify
properties to be associated with the full name of FILE.
WHENCLOSE returns the full name of FILE as its value.

WHENCLOSE recognizes the following property names:

VAL is a function that CLOSEF will apply to the stream just before
itis closed. This might be used, for example, to copy information
about the file from an in-core data structure to the file just
before it is closed.

VAL is a function that CLOSEF will apply to the stream just after it
is closed. This capability permits in-core data structures that
know about the stream to be cleaned up when the stream is
closed.

VAL is either YES or NO and determines whether FILE will be
closed by CLOSEALL (YES) or whether CLOSEALL will ignore it
(NO). CLOSEALL uses CLOSEF, so that any AFTER functions will
be executed if the stream is in fact closed. Files are initialized
with CLOSEALL set to YES.

VAL is a function that will be applied to the stream when an
end-of-file error occurs, and the ERRORTYPELST entry for that
error, if any, returns NIL. The function can examine the context
of the error, and can decide whether to close the stream,
RETFROM some function, or perform some other computation. If
the function supplied returns normally (i.e., does not RETFROM
some function), the normal error machinery will be invoked.

The default EOF behavior, unless overridden by this WHENCLOSE
option, is to call the value of DEFAULTEOFCLOSE (below).

24.20

STREAMS AND FiLES

CLOSING AND REOPENING FILES

DEFAULTEOFCLOSE

For some applications, the ENDOFSTREAMOP attribute (page
24.19) is a more useful way to intercept the end-of-file error. The
ENDOFSTREAMOP attribute comes into effect before the error
machinery is ever activated.

Multiple AFTER and BEFORE functions may be associated with a
file; they are executed in sequence with the most recently
associated function executed first. The CLOSEALL and EOF
values, however, will override earlier values, so only the last
value specified will have an effect.

[Variable]

Value is the name of a function that is called by default when an
end of file error occurs and no EOF option has been specified for
the stream by WHENCLOSE. The initial value of
DEFAULTEOFCLOSE is NILL, meaning take no special action (go
ahead and cause the error). Setting it to CLOSEF would cause the
stream to be closed before the rest of the error machinery is
invoked.

24.9 Local Hard Disk Device

Warning: This section describes the Interlisp-D functions that
control the local hard disk drive available an some computers.
All of these functions may not wark on all computers running
Interlisp-D. For more information on using the local hard disk
facilities, see the users guide for your computer.

This section describes the local file system currently supported on
the Xerox 1108 and 1186 computers. The Xerox 1132 supports a
simpler local file system. The functions below are no-ops on the
Xerox 1132, except for DISKPARTITION (which returns a disk
partition number), and DISKFREEPAGES. On the Xerox 1132,
different numbered partitions are referenced by using devices
such as {DSK1}, {DSK2}, etc. {DSK} always refers to the disk
partition that Interlisp is running on. The 1132 local file system
does not support the use of directories.

The hard disk used with the Xerox 1108 or 1186 may be
partitioned into a number of named "logical volumes.” Logical
volumes may be used to hold the Interlisp virtual memory file
(see page 12.6), or Interlisp files. For information on intializing
and partitioning the hard disk, see the users guide for your
computer. Inorder to store Interlisp files on a logical volume, it is
necessary to create a lisp file directory on that volume (see
CREATEDSKDIRECTORY, below).

So long as there exists a logical volume with a Lisp directoryon it,
files on this volume can be accessed by using the file device called
{DSK}. Interlisp-D can be used to read, write, and otherwise

STREAMS AND FILES

24.21

LOCALHARD DISK DEVICE

interact with files on local disk disks through standard Interlisp
input/output functions. All /O functions such as LOAD,
OPENSTREAM, READ, PRINT, GETFILEINFO, COPYFILE, etc., work
with files on the local disk.

if you do not have a logical volume with a Lisp directory on it,
Interlisp emulates the {DSK} device by a core device, a file device
whose backing store is entirely within the Lisp virtual memory.
However, this is not recommended because the core device only
provides limited scratch space, and since the core device is
contained in virtual memory, it (and the files stored on it) will be
erased when the virtual memory file is reloaded.

Each logical volume with a Lisp directory on it serves as a
directory of the device {DSK}. Files are referred to by forms such
as

{OSK}< VOLUMENAME >FILENAME

Thus, the file INIT.LISP on the volume LISPFILES would be called
{DSK} <LISPFILES>INIT.LISP.

Subdirectories within a logical volume are supported, using the
> character in file names to delimit subdirectory names. For
example, the file name {DSK} <LISPFILES>DOC>DESIGN.TEDIT
designates the file names DESIGN.TEDIT on the subdirectory DOC
on the logical volume LISPFILES.

if a logical volume name is not specified, it defaults in an unusual
but simple way: the logical volume defaults to the next logical
volume that has a lisp file directory on it including or after the
volume containing the currently running virtual memory. For
example, if the local disk has the logical volumes LISP, TEMP, and
LISPFILES, the LISP volume contains the running virtual memory,
and only the LISP volume has a Lisp file directory on it, then
{DSK}INIT.LISP refers to the file {DSK} <LispFiles >INIT.LISP. All
the functions below default logical volume names in a similar
way, except for those such as CREATEDSKDIRECTORY. To
determine the current defauit lisp file directory, evaluate
(DIRECTORYNAME ‘{DSK}).

(CREATEDSKDIRECTORY VOLUMENAME —) [Function]

Creates a lisp file directory on the logical volume VOLUMENAME,
and returns the name of the directory created. It is only
necessary to create a lisp file directory the first time the logical
volume is used. After that, the system automatically recognizes
and opens access to the logical volumes that have lisp file
directories on them.

(PURGEDSKDIRECTORY VOLUMENAME —) : [Function]

Erases all lisp files on the volume VOLUMENAME, and deletes the
lisp file directory. ‘

24.22

STREAMS AND FILES

LOCAL HARD DISK DEVICE

(LISPDIRECTORYP VOLUMENAME) [Function]
Returns T if the logical volume VOLUMENAME has a lisp file
directory onit.

(VOLUMES) [Function]
Returns a list of the names of all of the logical volumes on the
local hard disk (whether they have lisp file directories or not).

(VOLUMESIZE VOLUMENAME —) [Function]
Returns the total size of the logical volume VOLUMENAME in
disk pages.

(DISKFREEPAGES VOLUMENAME —) [Function]

Returns the total number of free disk pages left on the logical
volume VOLUMENAME.

(DISKPARTITION) [Function]
Returns the name of the logical volume containing the virtual
memory file that Interlisp is currently running in (see page 12.6).

(DSKDISPLAY NEWSTATE) [Function]
Controls a display window that displays information about the
logical volumes on the local hard disk (logical volume names,
sizes, free pages, etc.). DSKDISPLAY opens or doses this display
window depending on the value of NEWSTATE (one of ON, OFF,
or CLOSED), and returns the previous state of the display
window.

If NEWSTATE is ON, the display window is opened, and it is
automatically updated whenever the file system state changes
(this can slow file operations significantly). If NEWSTATE is OFF,
the display window is opened, but it is not automatically
updated. If NEWSTATE is CLOSED, the display window is closed.
The display mode is initially set to CLOSED.

Once the display window is open, the user can update it or
change its state with the mouse. Left-buttoning the display
window updates it, and middle-buttaning the window brings up
a menu that allows you to change the display state.

Note: DSKDISPLAY wuses the value of the variable
DSKDISPLAY.POSITION for the position of the lower-left corner
of the disk display window when it is opened. This variable is
changed if the disk display window is moved.

(SCAVENGEDSKDIRECTORY VOLUMENAME SILENT) [Function]
Rebuilds the lisp file directory for the logical volume
VOLUMENAME. This may repair damage in the unlikely event of

STREAMS AND FILES 24.23

LOCAL HARD DISK DEVICE

file system failure, signified by symptoms such as infinite fooping
or other strange behavior while the system is doing a directory
search. Calling SCAVENGEDSKDIRECTORY will not harm an
intact volume.

Normally, SCAVENGEDSKDIRECTORY prints out messages as it
scavenges the directory. If SILENT is non-NIL, these messages are
not printed. '

Note: Some low-level disk failures may cause "HARD DISK
ERROR" errors to occur. To fixsuch a failure, it may be necessary
to log out of Interlisp, scavenge the logical volume in question
using Pilot tools, and then call SCAVENGEDSKDIRECTORY from
within Interlisp. See the users guide for your computer for more
information.

24.10

Floppy Disk Device

(FLOPPY.MODE MODE)

Warning: This section describes the Interlisp-D functions that
caontrol the floppy disk drive available on some computers. All of
these functions may not work on all computers running
Interlisp-D. For more information on using the floppy disk
facilities, see the users guide for your computer.

The floppy disk drive is accessed through the device {FLOPPY}.
Interlisp-D can be used to read, write, and otherwise interact
with files on floppy disks through standard Interlisp input/output
functions. All /0O functions such as LOAD, OPENSTREAM, READ,
PRINT, GETFILEINFO, COPYFILE, etc., work with files on floppies.

Note that floppy disks are a removable storage medium.
Therefore, it is only meaningful to perform i/o operations to the
floppy disk drive, rather than to a given floppy disk. In this
section, the phrase "the floppy" is used to mean "the floppy that
is currently in the floppy disk drive."

For example, the following sequence could be used to open a file
XXX.TXT on the floppy, print "Hello" on it, and close it:

(SETQ XXX (OPENSTREAM '{FLOPPY}XXX.TXT '"OUTPUT 'NEW)
(PRINT "Hello" XXX)
(CLOSEF XXX)

[Function]

Interlisp-D can currently read and write files on floppies stored in
a number of different formats. At any point, the floppy is
considered to be in one of four "modes," which determines how
it reads and writes files on the floppy. FLOPPY.MODE sets the
floppy mode to the value of MODE, one of PILOT, HUGEPILOT,
SYSOUT, or CPM, and returns the previous floppy mode. The
floppy modes are interpreted as follows:

24.24

STREAMS AND FILES

FLOPPY DISK DEVICE

PILOT

HUGEPILOT

SYSOUT

This is the normal floppy mode, using floppies in the Xerox Pilot
floppy disk format. This file format allows all of the normal
Interlisp-D I/OQ operations. This format also supports file names
with arbitrary levels of subdirectories. For example, it is possible
to create a file named {FLOPPY} <Lisp>Project>FOO.TXT.

This floppy mode is used to access files that are larger than a
single floppy, stored on muiltiple floppies. There are some
restrictions with using "huge" files. Some I/O operations are not
meaningful for "huge"” files. When a stream is created for
output in this mode, the LENGTH file attribute (page 24.17) must
be specified when the file is opened, so that it is known how
many floppies will be needed. When an output file is created,
the floppy (or floppies) are automatically erased and
reformatted (after confirmation from the user).

HUGEPILOT mode is primarily useful for saving big files to and
from floppies. For example, the following could be used to copy
the file {ERIS}<Lisp>Bigfile.txt onto the huge Pilot file
{FLOPPY)}BigFile.save:

(FLOPPY.MODE "HUGEPILOT)
(COPYFILE '{ERIS} < Lisp>Bigfile.txt '{FLOPPY}BigFile.save)

and the following would restore the file:

(FLOPPY.MODE 'HUGEPILOT)
(COPYFILE '{FLOPPY}BigFile.save '{ERIS} <Lisp > Bigfile.txt)

During each copying operation, the user will be prompted to
insert "the next floppy" if {ERIS}<Lisp>Bigfile.txt takes
multiple floppies.

Similar to HUGEPILOT mode, SYSOUT mode is used for storing
sysout files (page 12.8) on muiltiple floppy disks. The user is
prompted to insert new floppies as they are needed.

This mode is set automatically when SYSOUT or MAKESYS is
done to the floppy device: (SYSOUT '{FLOPPY}) or (MAKESYS
'{FLOPPY}). Notice that the file name does not need to be
specifed in SYSOUT mode; unlike HUGEPILOT mode, the file
name Lisp.sysout is always used.

Note: The procedure for loading sysout files from floppies
depends on the particular computer being used. For information
on loading sysout files from floppies, see the users guide for your
computer.

Explicitly setting the mode to SYSOUT is useful when copying a
sysout file to or from floppies. For example, the following can be
used to copy the sysout file {ERIS}<Lisp>Lisp.sysout onto
floppies (it is important to set the floppy mode back when
done):

(FLOPPY.MODE 'SYSOUT)
(COPYFILE '{ERIS} <Lisp>Lisp.sysout '{FLOPPY})

STREAMS AND FILES

24.25

FLOPPY DISK DEVICE

cPM

(FLOPPY.MODE 'PILOT)

Interlisp-D supports the single-density single-sided (SDSS) CPM
floppy format (a standard used by many computers).
CPM-formatted floppies are totally different than Pilot floppies,
so the user should call FLOPPY.MODE to switch to CPM mode
when planning to use CPM floppies. After switching to CPM
mode, FLOPPY.FORMAT can be used to create CPM-formatted
floppies, and the usual input/output operations work with CPM
floppy files.

Note: There are a few limitations on CPM floppy format files:
(1) CPM file names are limited to eight or fewer characters, with
extensions of three or fewer characters; (2) CPM floppies do not
have directories or version numbers; and (3) CPM files are
padded out with blanks to make the file lengths multiples of
128.

(FLOPPY.FORMAT NAME AUTOCONFIRMFLG SLOWFLG) [Function]

FLOPPY.FORMAT erases and initializes the track informationon a
floppy disk. This must be done when new floppy disks are to be
used for the first time. This can also be used to erase the
information on used floppy disks.

NAME should be a string that is used as the name of the floppy
(106 characters max). This name can be read and set using
FLOPPY.NAME (below).

If AUTOCONFIRMFLG is NIL, the user will be prompted to confirm
erasing the floppy, if it appears to contain valid information. If
AUTOCONFIRMFLG is T, the user is not prompted to confirm.

If SLOWFLG is NIL, only the Pilot records needed to give your
floppy an empty directory are written. If SLOWFLG is T,
FLOPPY.FORMAT will completely erase the floppy, writing track
information and critical Pilot records on it. SLOWFLG should be
set to T when formatting a brand-new floppy.

Note: Formatting a floppy is a very compute-intensive operation
for the 1/O hardware. Therefore, the cursor may stop tracking
the mouse and keystrokes may be lost while formatting a floppy.
This behavior goes away when the formatting is finished.

Warning: The floppy mode set by FLOPPY.MODE (above) affects
how FLOPPY.FORMAT formats the floppy. If the floppy is going
to be used in Pilot mode, it should be formatted under
(FLOPPY.MODE 'PILOT). If it is to be used as a CMP floppy, it
should be formatted under (FLOPPY.MODE 'CPM). The two
types of formatting are incompatible.

24.26

STREAMS AND FILES

FLOPPY DISK DEVICE

(FLOPPY.NAME NAME)

[Function]

(FLOPPY.FREE.PAGES)

If NAME is NIL, returns the name stored on the floppy disk. If
NAME is non-NIL, then the name of the floppy disk is set to
NAME.

[Function]

(FLOPPY.CAN.READP)

Returns the number of unallocated free pages on the floppy disk
in the floppy disk drive.

Note: Pilot floppy files are represented by contiguous pages on
a floppy disk. If the user is creating and deleting a lot of files on
a floppy, itis advisable to keep such a floppy less than 75 percent
full.

[Function]

(FLOPPY.CAN.WRITEP)

Returns non-NIL if there is a floppy in the floppy drive.

Note: FLOPPY.CAN.READP does not provide any debouncing
(protection against not fully closing the floppy drive door). It
may be more useful to use FLOPPY.WAIT.FOR.FLOPPY (below).

{Function]

Returns non-NIL if there is a floppy in the floppy drive and the
floppy drive can write on this floppy.

It is not possible to write on a floppy disk if the "write-protect
notch” on the floppy disk is punched out.

(FLOPPY.WAIT.FOR.FLOPPY NEWFLG) [Function]

(FLOPPY.SCAVENGE)

If NEWFLG is NIL, waits until a floppy is in the floppy drive before
returning.

If NEWFLG is T, waits until the existing floppy in the floppy drive,
if any, is removed, then waits for a floppy to be inserted into the
drive before returning.

[Function]

(FLOPPY.TO.FILE TOFILE)

Attempts to repair a floppy whose critical records have become
confused (causing errors when file operations are attempted).
May also retrieve accidently-deleted files, provided they haven't
been overwritten by new files.

[Function]

Copies the entire contents of the floppy to the “floppy image"
file TOFILE, which can be on a file server, local disk, etc. This can
be used to create a centralized copy of a floppy, that different
users can copy to their own floppy disks (using
FLOPPY.FROM.FILE).

STREAMS AND FILES

24.27

FLOPPY DISK DEVICE

Note: A floppy image file for an 8-inch floppy is about 2500
pages long, regardless of the number of pages in use on the

floppy.

(FLOPPY.FROM.FILE FROMFILE) [Function]
Copies the "floppy image" file FROMFILE to the floppy.
FROMFILE must be a file produced by FLOPPY.TO.FILE.

(FLOPPY.ARCHIVE FILES NAME) [Function]
FLOPPY.ARCHIVE formats a floppy inserted into the floppy drive,
giving the floppy the name NAME#1. FLOPPY.ARCHIVE then
copies each file in FILES to the freshly formatted floppy. If the
first floppy fills up, FLOPPY.ARCHIVE uses multiple fioppies
(named NAME#2, NAME#3, etc.), each time prompting the user
toinsert a new floppy.

The function DIRECTORY (page 24.33) is convenient for
generating a list of files to archive. For example,

(FLOPPY.ARCHIVE

(DIRECTORY '{ERIS} <Lisp >Project>*)
'Project)

will archive all files on the directory {ERIS}<Llisp>Project> to
floppies (named Project#1, Project#2, etc.).

(FLOPPY.UNARCHIVE HOST/DIRECTORY) [Function]
FLOPPY.UNARCHIVE copies all files on the current floppy to the
directory HOST/DIRECTORY. For example, (FLOPPY.UNARCHIVE
‘{ERIS} <Lisp>Project>) will copy each file on the current
floppy to the directory {ERIS} <Lisp>Project>. If there is more
than one floppy to restore from archive, FLOPPY.UNARCHIVE
should be called on each floppy disk.

24.11 /O Operations to and from Strings

It is possible to treat a string as if it were the contents of a file by
using the following function:

(OPENSTRINGSTREAM STR ACCESS) [Function]
Returns a stream that can be used to access the characters of the
. string STR. ACCESS may be either INPUT, OUTPUT, or BOTH; NIL
defaults to INPUT. The stream returned may be used exactly like
a file opened with the same access, except that output
operations may not extend past the end of the original string.
Also, string streams do not appear in the value of (OPENP).

24.28 STREAMS AND FILES

1/0 OPERATIONS TO AND FROM STRINGS

For example, after performing
(SETQ STRM (OPENSTRINGSTREAM "THIS 2 (IS A LIST)"))
the following succession of reads could occur:

(READ STRM) = > THIS
(RATOMSTRM) = > 2
(READ STRM) = > (ISALIST)
(EOFPSTRM) =2>T

Compatibility Note: In Interlisp-10 it was possible to take input
from a string simply by passing the string as the FILE argument to
an input function. In order to maintain compatibility with this
feature, Interlisp-D provides the same capability. This not
terribly clean feature persists in the present implementation to
give users time to convert old code. This means that strings are
not equivalent to litatoms when specifying a file name as a
stream argument (see page 24.13). In a future release, the old
Interlisp-10 string-reading feature will be decommissioned, and
OPENSTRINGSTREAM will be the only way to perform /O on a
string.

24.12 Temporary Files and the CORE Device

Many operating systems have a notion of “scratch file”, a file
typically used as temporary storage for data most naturally
maintained in the form of a file, rather than some other data
structure. A scratch file can be used as a normal file in most
respects, but is automatically deleted from the file system after
its useful life is up, e.g., when the job terminates, or the user logs
out. In normal operation, the user need never explicitly delete
such files, since they are guaranteed to disappear soon.

A similar functionality is provided in Interlisp-D by core-resident
files. Core-resident files are on the device CORE. The directory
structure for this device and all files on it are represented
completely within the user's virtual memory. These files are
treated as ordinary files by all file operations; their only
distinguishing feature is that all trace of them disappears when
the virtual memory is abandoned.

Core files are opened and closed by name the same as any other
file, e.g., (OPENSTREAM '{CORE}<FOO>FIE.DCOM 'OUTPUT).
Directory names are completely optional, so files can also have
names of the form {CORE}NAME.EXT. Core files can be
enumerated by DIRECTORY (page 24.33). While open, they are
registered in (OPENP). They do consume virtual memory space,
which is only reclaimed when the file is deleted. Some caution

STREAMS AND FILES

24.29

TEMPORARY FILES AND THE CORE DEVICE

should thus be used when creating large CORE files. Since the
virtual memory of an Interlisp-D workstation usually persists far
longer than the typical process on a mainframe computer, it is
still important to delete CORE files after they are no longer in
use.

For many applications, the name of the scratch file is irrelevant,
and there is no need for anyone to have access to the file
independent of the program that created it. For such
applications, NODIRCORE files are preferable. Files created on
the device lisp NODIRCORE are core-resident files that have no
name and are registered in no directory. These files “disappear”,
and the resources they consume are reclaimed, when all pointers
to the file are dropped. Hence, such files need never be explicitly
deleted or, for that matter, closed. The "name" of such a file is
simply the stream object returned from (OPENSTREAM
'{NODIRCORE} 'OUTPUT), and it is this stream object that must
be passed to all input/output operations, including CLOSEF and
any calls to OPENSTREAM to reopen the file.

(COREDEVICE NAME NODIRFLG) [Function]

Creates a new device for core-resident files and assigns NAME as
its device name. Thus, after performing (COREDEVICE 'FOO), one
can execute (OPENSTREAM '{FOO}BAR 'OUTPUT) to open a file
on that device. Interlisp-D is initialized with the single
core-resident device named CORE, but COREDEVICE may be used
to create any number of logically distinct core devices.

If NODIRFLG is non-NIL, a core device that acts like {NODIRCORE}
is created.

Compatibility note: In Interlisp-10, it was possible to create
scratch files by using file names with suffixes ;S or ;T. In
Interlisp-D, these suffixes in file names are simply ignored when
output is directed to a particular host or device. However, the
function PACKFILENAME.STRING is defined to default the device
name to CORE if the file has the TEMPORARY attribute and no
explicit host is provided.

24.13 NULL Device

The NULL device provides a source of content-free “files".
(OPENSTREAM '{NULL} 'OUTPUT) creates a stream that discards
all output directed at it. (OPENSTREAM '{NULL} 'INPUT) creates
astream that is perpetually at end-of-file (i.e., has no input).

24.30

STREAMS AND FILES

DELETING, COPYING, AND RENAMING FILES

24.15 Deleting, Copying, and Renaming Files

(DELFILE FILE) [Function]
Deletes FILE if possible. The file must be closed. Returns the full
name of the file if deleted, else NIL. Recognition mode for FILE is
OLDEST, i.e., if FILE does not have a version number specified,
then DELFILE deletes the oldest version of the file.

(COPYFILE FROMFILE TOFILE) [Function]
Copies FROMFILE to a new file named TOFILE. The source and
destination may be on any combination of hosts/devices.
COPYFILE attempts to preserve the TYPE and CREATIONDATE
where possible. [f the original file's file type is unknown,
COPYFILE attempts to infer the type (file type is BINARY if any of
its 8-bit bytes have their high bit on).

COPYFILE uses COPYCHARS (page 25.20) if the source and
destination hosts have different EOL conventions. Thus, it is
possible for the source and destination files to be of different
lengths.

(RENAMEFILE OLDFILE NEWFILE) [Function]
Renames OLDFILE to be NEWFILE. Causes an error, FILE NOT
FOUND if FILE does not exist. Returns the full name of the new
file, if successful, else NIL if the rename cannot be performed.

If OLDFILE and NEWFILE are on the same host/device, and the
device implements a renaming primitive, RENAMEFILE can be
very fast. However, if the device does not know how to rename
files in place, or if OLDFILE and NEWFILE are on different devices,
RENAMEFILE works by copying OLDFILE to NEWFILE and then
deleting OLDFILE.

24.16 Searching File Directories

DIRECTORIES [Variable]
Global variable containing the list of directories searched (in
order) by SPELLFILE and FINDFILE (below) when not given an
explicit DIRLST argument. In this list, the atom NIL stands for the
login directory (the value of LOGINHOST/DIR), and the atom T
stands for the currently connected directory. Other elements
should be full directory specifications, e.g.,
{TWENTY}PS: <LISPUSERS >, not merely LISPUSERS.

STREAMS AND FILES 24.31

SEARCHING FILE DIRECTORIES

LISPUSERSDIRECTORIES [Variable]
Global variable containing a list of directories to search for
“library" package files. Used by the FILES file package command
(page 17.39).

(SPELLFILE FILE NOPRINTFLG NSFLG DIRLST) [Function]
Searches for the file name FILE, possibly performing spelling
correction (see page 20.15). Returns the corrected file name, if
any, otherwise NIL.

If FILE has a directory field, SPELLFILE attempts spelling
correction against the files in that particular directory.
Otherwise, SPELLFILE searches for the file on the directory list
DIRLST before attempting any spelling correction.

If NOPRINTFLG is NIL, SPELLFILE asks the user to confirm any
spelling correction done, and prints out any files found, even if
spelling correction is not done. If NOPRINTFLG=T, SPELLFILE
does not do any printing, nor ask for approval.

If NSFLG=T (or NOSPELLFLG =T, see page 20.13), no spelling
correction is attempted, though searching through D/RLST still
occurs.

DIRLST is the list of directories searched if FILE does not have a
directory field. If DIRLST is NIL, the value of the variable
DIRECTORIES is used.

Note: If DIRLST is NIL, and FILE is not found by searching the
directories on DIRECTORIES, but the root name of FILE has a
FILEDATES property (page 17.20) indicating that a file by that
name has been loaded, then the directory indicated in the
FILEDATES property is searched, too. This additional search is not
done if DIRLST is non-NIL.

ERRORTYPELST (page 14.22) initially contains the entry ((23
(SPELLFILE (CADR ERRORMESS) NIL NOFILESPELLFLG))), which
causes SPELLFILE to be called in case of a FILE NOT FOUND error.
If the variable NOFILESPELLFLG is T (its initial value), then
spelling correction is not done on the file name, but
DIRECTORIES is still searched. If SPELLFILE is successful, the
operation will be reexecuted with the new (corrected) file name.

(FINDFILE FILE NSFLG DIRLST) [Function]
Uses SPELLFILE to search for a file named FILE. If it finds one,
returns its full name, with no user interaction. Specifically, it calls
(SPELLFILE FILE T NSFLG DIRLST), after first performing two
simple checks: If FILE has an explicit directory, it checks to see if a
file so named exists, and if so returns that file. If DIRLST is NIL, it
looks for FILE on the connected directory before calling
SPELLFILE.

24.32 STREAMS AND FILES

LISTING FILE DIRECTORIES

24.17 Listing File Directories

The function DIRECTORY allows the user to conveniently specify
and/or program a variety of directory operations:

(DIRECTORY FILES COMMANDS DEFAULTEXT DEFAULTVERS) [Function]

PP

astring

Returns, lists, or performs arbitrary operations on all files
specified by the "file group" FILES. A file group has the form of a
regular file name, except that the character * can be used to
match any number of characters, including zero, in the file name.
For example, the file group A*B matches all file names beginning
with the character A and ending with the character B. The file
group *.DCOM matches ail files with an extension of DCOM.

If FILES does not contain an explicit extension, it is defaulted to
DEFAULTEXT; if FILES does not contain an explicit version, it is
defaulted to DEFAULTVERS. DEFAULTEXT and DEFAULTVERS
themselves default to *. If the period or semicolon preceding the
omitted extension or version, respectively, is present, the field is
explicitly empty and no default is used. All other unspecified
fields default to *. Nullversion is interpreted as "highest". Thus
FILES = * or *.* or *.*;* enumerates all files on the connected
directory; FILES = *. or *.;* enumerates all versions of files with
null extension; FILES = *.; enumerates the highest version of
files with null extension; and FILES = *.*; enumerates the
highest version of all files. If FILES is NIL, it defaults to *.*;*.

Note: Some hosts/devices are not capable of supporting “highest
version” in enumeration. Such hosts instead enumerate all
versions.

For each file that matches the file group FILES, the “file
commands” in COMMANDS are executed in order. Some of the
file commands allow aborting the command processing for a
given file, effectively filtering the list of files. The interpretation
of the different file . commands is described below. If
COMMANDS is NIL, it defaults to (COLLECT), which collects the
matching file names in a list and returns it as the value of
DIRECTORY.

The "file commands" in COMMANDS are interpreted as follows:

Prints the file's name. For readability, DIRECTORY strips the
directory from the name, printing it once as a header in front of
each set of consecutive files on the same directory.

Prints the file's name without a version number.

Prints the string.

STREAMS AND FILES

24.33

LISTING FiLE DIRECTORIES

READDATE, WRITEDATE
CREATIONDATE, SIZE
LENGTH, BYTESIZE
PROTECTION, AUTHOR
TYPE

COLLECT

COUNTSIZE

DELETE
DELVER
PAUSE

PROMPT MESS

OLDERTHANN

NEWERTHAN N

BY USER

@x

Prints the appropriate information returned by GETFILEINFO
(page 24.17).

Adds the full name of this file to an accumulating list, which will
be returned as the value of DIRECTORY.

Adds the size of this file to an accumulating sum, which will be
returned as the value of DIRECTORY.

Deletes the file.
If this file is not the highest version of files by its name, delete it.

Waits until the user types any char before proceeding with the
rest of the commands (good for display if you want to ponder).

The following commands are predicates to filter the list. If the
predicate is not satisfied, then processing for this file is aborted
and no further commands (such as those above) are executed for
this file.

Note: if the P and PP commands appear in COMMANDS ahead of
any of the filtering commands below except PROMPT, they are
postponed until after the filters. Thus, assuming the caller has
placed the attribute options after the filters as well, no printing
occurs for a file that is filtered out. This is principally so that
functions like DIR (below) can both request printing and pass
arbitrary commands through to DIRECTORY, and have the
printing happenin the appropriate place.

Prompts with the yes/no question MESS; if user responds with
No, abort command processing for this file.

Continue command processing if the file hasn't been referenced
(read or written) in N days. N can also be a string naming an
explicit date and time since which the file must not have been
referenced.

Continue command processing if the file has been written within
the last N days. N can also be a string naming an explicit date
and time. Note that this is not quite the complement of
OLDERTHAN, since it ignores the read date.

Continue command processing if the file was iast written by the
given user, i.e., its AUTHOR attribute matches (case insensitively)
USER.

X is either a function of one argument (FILENAME), or an
arbitrary expression which uses the variable FILENAME freely. (f
Xreturns NIL, abort command processing for this file.

24.34

STREAMS AND FILES

LISTING FILE DIRECTORIES

OUTFILE
COLUMNS N

AU
COLLECT?

DA
DATE

LL
DEL

DEL?
DELETE?

oLD

PR

Sl
VERBOSE

(FILDIR FILEGROUP)

The following two commands apply not to any particular file,
but globally to the manner in which directory information is
printed.

Directs output to FILE.
Attempts to format output in N columns (rather than just 1).

DIRECTORY uses the variable DIRCOMMANDS as a spelling list to
correct spelling and define abbreviations and synonyms (see
page 20.15). Currently the following abbreviations are
recognized:

=> AUTHOR
= > PAUSE
=> PROMPT" ?" COLLECT

= > CREATIONDATE
= > WRITEDATE
= > DELETE

= > PROMPT " delete? " DELETE

= > OLDERTHAN 90

= > PROTECTION

a > SIZE

a > AUTHOR CREATIONDATE SIZE READDATE WRITEDATE

[Function]

(DIR FILEGROUP COM ... COM)

Obsolete synonym of (DIRECTORY FILEGROUP).

[NLambda NoSpread Function]

(NDIR FILEGROUP COM ... COMp)

Convenient form of DIRECTORY for use in type-in at the
executive. Performs (DIRECTORY 'FILEGROUP '(P COM; ..
COMp)).

[NLambda NoSpread Function]

Version of DIR that lists the file names in a multi-column format.

Also, by default only lists the most recent version of files (unless

FILEGROUP contains an explicit version).

STREAMS AND FILES

24.35

FILE SERVERS

24.18

File Servers

24.18.1

Pup File Server Protocols

A file server is a shared resource on a local communications
network which provides large amounts of file storage. Different
file servers honor a variety of access protocols. Interlisp-D
supports the following protocols: PUP-FTP, PUP-Leaf, and NS
Filing. In addition, there are library packages available that
support other communications protocols, such as TCP/IP and
RS232.

With the exception of the RS232-based protocols, which exist
only for file transfer, these network protocols are integrated into
the Interlisp-D file system to allow files on a file server to be
treated in much the same way files are accessed on local devices,
such as the disk. Thus, it is possible to call OPENSTREAM on the
file {ERIS}<LISP>F00.DCOM;3 and read from it or write to it
just as if the file had been on the local disk
({DSK}<LISP>F00.DCOM:;3), rather than on a remote server
named ERIS. However, the protocols vary in how much control
they give the workstation over file system operations. Hence,
some restrictions apply, as described in the following sections.

There are two file server protocols in the family of Pup protocols:
Leaf and FTP. Some servers support both, while others support
only one of them. Interlisp-D uses whichever protocol is more
appropriate for the requested operation.

Leaf is a random access protocol, so files opened using these
protocols are RANDACCESSP (page 25.20), and thus most normal
i/o operations can be performed. However, Leaf does not
support directory enumeration. Hence, DIRECTORY cannot be
used on a Leaf file server unless the server also supports FTP. In
addition, Leaf does not supply easy access to a file's attributes.
INFILEP and GETFILEINFO have to open the file for input in order
to obtain their information, and hence the file's read date will
change, even though the semantics of these functions do not
imply it.

FTP is a file transfer protocol that only permits sequential access
to files. However, most implementations of it are considerably
more efficient than Leaf. Interlisp-D uses FTP in preference to
Leaf whenever the call to OPENSTREAM requests sequential
access only. In particular, the functions SYSOUT and COPYFILE
open their files for sequential access. If a file server supports FTP
but for some reason it is undesirable for Lisp to use it, one can set
the internal variable \FTPAVAILABLE to NIL.

The system normally maintains a Leaf connection to a host in the
background. This connection can be broken by calling

24.36

STREAMS AND FILES

FILE SERVERS

(BREAKCONNECTION HOST). Any subsequent reference to files
on that host will reestablish the connection. The principal use
for this function arises when the user interrupts a file operation
in such a way that the file server thinks the file is open but Lisp
thinks it is closed (or not yet open). As a result, the next time Lisp
tries to open the file, it gets a file busy error.

24.18.2 Xerox NS File Server Protocols

Interlisp supports file access to Xerox 803x file servers, using the
Filing Protocol built on Xerox Network Systems protocols.
Interlisp-D determines that a host is an NS File Server by the
presence of a colon in its name, e.g.,, {PHYLEX:}. The general
format of NS fileserver device names is
{SERVERNAME:DOMAIN: ORGANIZATION}; the device
specification for an 8000-series product in general includes the
ClearingHouse domain and organization. If domain and
organization are not supplied directly, then they are obtained
from the defaults, which themselves are found by consulting the
nearest ClearingHouse if the user has not defined them in an init
file (page 31.8). However, note that the server name must still
have a colonin it to distinguish it from other types of host names
(e.g., Pup server names).

NS file servers in general permit arbitrary characters in file
names. The user should be cognizant of file name quoting
conventions (page 24.6), and the fact that any file name
presented as a litatom needs to have characters of significance to
the reader, such as space, escaped with a %. Of course, one can
always present the file name as a string, in which case only the
quoting conventions are important.

NS file servers support a true hierarchical file system, where
subdirectories are just another kind of file, which needs to be
explicitly created. In Interlisp, subdirectories are created
automatically as needed: A call to OPENFILE to create a filein a
non-existent subdirectory automatically creates the
subdirectory; CONN to a non-existent subdirectory asks the user
whether to create the directory. For those using Star software, a
directory corresponds to a “File Drawer", while a subdirectory
corresponds to a “File Folder".

Because of their hierarchical structure, NS directories can be
enumerated to arbitrary levels. The default is to enumerate all
the files (the leaves of the tree), omitting the subdirectory nodes
themselves. This default can be changed by the following
variable:

STREAMS AND FILES

24.37

FILE SERVERS

FILING.ENUMERATION.DEPTH [Variable]
This variable is either a number, specifying the number of levels
deep to enumerate, or T, meaning enumerate to all levels. Inthe
former case, when the enumeration reaches the specified depth,
only the subdirectory name rooted at that level is listed, and
none of its descendants is listed. When
FILING.ENUMERATION.DEPTH is T, all files are listed, and no
subdirectory names are listed. FILING.ENUMERATION.DEPTH is
initially T.

Independent of FILING.ENUMERATION.DEPTH, a request to
enumerate the top-level of a file server's hierarchy lists only the
top level, i.e., assumes a depth of 1. For example, (DIRECTORY
'{PHYLEX:}) lists exactly the top-level directories of the server
PHYLEX:.

NS file servers do not currently support random access.
Therefore, SETFILEPTR of an NS file generally causes an error.
However, GETFILEPTR returns the correct character position for
open files on NS file servers. In addition, SETFILEPTR works in the
special case where the file is open for input, and the file pointer
is being set forward. In this case, the intervening characters are
automatically read.

Even while Interlisp has no file open on an NS Server, the system
maintains a "session” with the server for a while in order to
improve the speed of subsequent requests to the server. While
this session is open, it is possible for some nodes of the server's
file system to appear "busy” or inaccessible to certain clients on
other workstations (such as Star). If this happens, the following
function can be used to terminate any open sessions
immediately:

{BREAK.NSFILING.CONNECTION HOST) [Function]
Closes any open connections to NS file server HOST.

24.18.3 Operating System Designations

Some of the network server protocols are implemented on more
than one kind of foreign host. Such hosts vary in their
conventions for logging in, naming files, representing
_end-of-line, etc. In order for Interlisp to communicate gracefully
with all these hosts, it is necessary that the variable
NETWORKOSTYPES be correctly set.

NETWORKOSTYPES [Variable]
An association-list that associates a host name with its operating
system type. Elements in this list are of the form (HOSTNAME .

24.38 STREAMS AND FILES

FILE SERVERS

TYPE), for example, (MAXC2 . TENEX). The operating system
types currently known to Lisp are TENEX, TOPS20, UNIX, and
VMS. The host names in this list should be the "canonical” host
name, represented as an uppercase atom. For Pup and NS hosts,
the function CANONICAL.HOSTNAME (below) can be used to
determine which of several aliases of a server is the canonical
name.

(CANONICAL.HOSTNAME HOSTNAME) [Function]

24.18.4 Log_gin_g In

Returns the "canonical" name of the server HOSTNAME, or NIL if
HOSTNAME is not the name of a server.

Most file servers require a user name and password for access.
Interlisp-D maintains an ephemeral database of user names and
passwords for each host accessed recently. The database
vanishes when LOGOUT, SAVEVM, SYSOUT, or MAKESYS is
executed, so that the passwords remain secure from any
subsequent user of the same virtual memory image. Interlisp-D
also maintains a notion of the "default" user name and
password, which are generally those with which the user initially
logs in (on the 1132, the default user name corresponds to that
displayed in the Alto executive).

When a file server for which the system does not yet have an
entry in its password database requests a name and password,
the system first tries the default user name and password. If the
file server doesn't recognize that name/password, the system
prompts the user for a name and password to use for that host.
It suggests a default name:

{ERIS} Login: Green

which the user can accept by typing a carriage return, or replace
the name by typing a new name or backspacing over it.
Following the name, the user is prompted for a password:

{ERIS} Login: Verdi (password)

which is not echoed, terminated by another carriage return. This
information is stored in the password database so that the user is
prompted only once, until the database is again cleared.

Interlisp-D also prompts for password information when a
protection violation occurs on accessing a directory on certain
kinds of servers that support password-protected directories.
Some such servers allow one to protect a file in a way that it is
inaccessible to even its owner until the file's protection is
changed; in such case, no password would help, and the system
causes the normal PROTECTION VIOLATION error.

STREAMS AND FILES

24.39

FILE SERVERS

The user can abort a password interaction by typing the ERROR
interrupt, initially Control-E. This generally either causes a
PROTECTION VIOLATION error, if the password was requested in
order to gain access to a protected file on an otherwise accessible
server; or to act as though the server did not exist, in the case
where the password was needed in order to gain any access to
the server.

The following functions are useful for altering the password
database:

(LOGIN HOSTNAME FLG DIRECTORY MSG) [Function]

Forces Interlisp-D to ask for the user name and password to be
used when accessing host HOSTNAME. Any previous login
information for HOSTNAME is overriden. If HOSTNAME is NIL, it
overrides login information for all hosts and resets the default
user name and password to be those typed in by the user. The
special value HOSTNAME = NS:: is used to obtain the default
user name and password for all logins for NS Servers.

If FLG is the atom QUIET, only prompts the user if there is no
cached information for HOSTNAME.

if DIRECTORY is specified, it is the name of a directory on
HOSTNAME. In this case, the information requested is the
“connect" password for that directory. Connect passwords for
any number of different directories on a host can be maintained.

If MSG is non-NIL, it is a message (a string) to be printed before
the name and password information is requested.

LOGIN returns the user name with which the user completed the
login.

(SETPASSWORD HOST USER PASSWORD DIRECTORY) [Function]

(SETUSERNAME NAME)

Sets the values in the internal password database, exactly as if
the strings USER and PASSWORD were typed in via (LOGIN HOST
NIL DIRECTORY).

[Function]

Sets the default user name to NAME.

(USERNAME FLG STRPTR PRESERVECASE) [Function]

If FLG = NIL, returns the default user name. This is the only value
of FLG that is meaningful in Interlisp-D.

USERNAME returns the value as a string, unless STRPTR is T, in
which case USERNAME returns the value as an atom. The name is
returned in upper case, unless PRESERVECASE is true.

24.40

STREAMS AND FILES

FILE SERVERS

24.18.5 Abnormal Conditions

If interlisp-D tries to access a file and does not get a response
from the file server in a reasonable period of time, it prints a
message that the file server is not responding, and keeps trying.
If the file server has actually crashed, this may continue
indefinitely. A control-E or similar interrupt aborts out of this
state.

if the file server crashes but is restarted before the user attempts
to do anything, file operations will usually proceed normally,
except for a brief pause while Interlisp-D tries to reestablish any
connections it had open before the crash. However, this is not
always possible. For example, when a file is open for sequential
output and the server crashes, there is no way to recover the
output already written, since it vanished with the crash. In such
cases, the system will cause an error such as Connection Lost.

LOGOUT closes any file server connections that are currently
open. On return, it attempts to reestablish connections for any
files that were open before logging out. If a file has disappeared
or been modified, Interlisp-D reports this fact. Files that were
open for sequential access generally cannot be reopened after
LOGOUT.

Interlisp supports simultaneous access to the same server from
different processes and permits overlapping of Lisp computation
with file server operations, allowing for improved performance.
However, as a corollary of this, a file is not closed the instant that
CLOSEF returns; Interlisp closes the file "in the background"”. It
is therefore very important that the user exits Interlisp via
(LOGOUT), or (LOGOUT T), rather than boot the machine.

On rare occasions, the Ethernet may appear completely
unresponsive, due to Interlisp having gotten into a bad state.
Typing (RESTART.ETHER) will reinitialize Lisp's Ethernet driver(s),
just as when the Lisp system is started up following a LOGOUT,
SYSOUT, etc (see page 31.38) '

STREAMS AND FILES

24.41

FILE SERVERS

[This page intentionally left blank]

24.42 STREAMS AND FILES

TABLE OF CONTENTS

25. Input/Output Functions 25.1
25.1. Specifying Streams for Input/Output Functions 25.1
25.2. Input Functions 25.2
25.3. Output Functions 25.7

25.3.1. PRINTLEVEL 25.11
25.3.2. Printing numbers 25.13
25.3.3. User Defined Printing 25.16
25.3.4. Printing Unusual Data Structures 25.17
25.4. Random Access File Operations 25.18
25.5. Input/Output Operations with Characters and Bytes 25.22
25.6. PRINTOUT 25.23
25.6.1. Horizontal Spacing Commands 25.25
25.6.2. Vertical Spacing Commands 25.26
25.6.3. Special Formatting Controls 25.27
25.6.4. Printing Specifications 25.27
25.6.4.1. Paragraph Format 25.28
25.6.4.2. Right-Flushing 25.29
25.6.4.3. Centering 25.29
25.6.4.4. Numbering - 25.29
25.6.5. Escaping toLisp 25.30
25.6.6. User-Defined Commands 25.31
25.6.7. Special Printing Functions 25.32
25.7. READFILE and WRITEFILE 25.33
25.8. Read Tables 25.33
25.8.1. Read Table Functions 25.34
25.8.2. Syntax Classes 25.35
25.8.3. Read Macros 25.39

TABLE OFCONTENTS TOC

TABLE OF CONTENTS

[This page intentionally left blank]

TOC.2 TABLE OF CONTENTS

25. INPUT/OUTPUT FUNCTIONS

This chapter describes the standard I/O functions used for
reading and printing characters and Interlisp expressions on files
and other streams. First, the primitive input functions are
presented, then the output functions, then functions for
random-access operations (such as searching a file for a given
stream, or changing the "next-character” pointer to a positionin
a file). Next, the PRINTOUT statement is documented (page
25.23), which provides an easy way to write complex output
operations. Finally, read tables, used to parse characters as
Interlisp expressions, are documented.

25.1 Specifying Streams for Input/Output Functions

a stream

NIL

Most of the input/output functions in Interlisp-D have an
argument named STREAM or FILE, specifying on which open
stream the function's action should occur (the name FILE is used
in older functions that predate the concept of stream; the two
should, however, be treated synonymously). The value of this
argument should be one of the following:

An object of type STREAM, as returned by OPENSTREAM (page
24.2) or other stream-producing functions, is always the most
precise and efficient way to designate a stream argument.

The litatom T designates the terminal input or output stream of
the currently running process, controlling input from the
keyboard and output to the display screen. For functions where
the direction (input or output) is ambiguous, T is taken to
designate the terminal output stream. The T streams are always
open; they cannot be closed.

The terminal output stream can be set to a given window or
display stream by using TTYDISPLAYSTREAM (page 28.29). The
terminal input stream cannot be changed. For more information
on terminal I/O, see page 30.1.

The litatom NIL designates the "primary"” input or output
stream. These streams are initially the same as the terminal

INPUT/QUTPUT FUNCTIONS

25.1

SPECIFYING STREAMS FOR INPUT/OUTPUT FUNCTIONS

awindow

a file name

(GETSTREAM FILE ACCESS)

input/output streams, but they can be changed by using the
functions INPUT (page 25.3) and OUTPUT (page 25.8).

For functions where the direction (input or output) is
ambiguous, e.g., GETFILEPTR, the argument NIL is taken to mean
the primary input stream, if that stream is not identical to the
terminal input stream, else the primary output stream.

Uses the display stream of the window (page 28.34). Valid for
output only.

As of this writing, the name of an open file (as a litatom) can be
used as a stream argument. However, there are inefficiencies
and possible future incompatibilities associated with doing so.
See page page 24.13 for details.

[Function]

(STREAMP X)

Coerces the argument FILE to a stream by the above rules. If
ACCESS is INPUT, OUTPUT, or BOTH, produces the stream
designated by FILE that is open for ACCESS. If ACCESS=NIL,
returns a stream for FILE open for any kind of input/output (see
the list above for the ambiguous cases). If FILE does not
designate a stream open in the specified mode, causes an error,
FILE NOT OPEN.

[Function]

Returns X if Xis a STREAM, otherwise NIL.

25.2 Input Functions

While the functions described below can take input from any
stream, some special actions occur when the input is from the
terminal (the T input stream, see page 25.1). When reading
from the terminal, the input is buffered a line at a time, unless
buffering has been inhibited by CONTROL (page 30.10) or the
input is being read by READC or PEEKC (page 25.5). Using
specified editing characters, the user can erase a character at a
time, a word at a time, or the whole line. The keys that perform
these editing functions are assignable via SETSYNTAX (page
25.37), with the initial settings chosen to be those most natural
for the given operating system. In Interlisp-D, the initial settings
are as follows: characters are deleted one at a time by
Backspace; words are erased by control-W; the whole line is
erased by control-Q.

On the Interlisp-D display, deleting a character or a line causes
the characters to be physically erased from the screen. In

INPUT/OUTPUT FUNCTIONS

INPUT FUNCTIONS

(INPUT FILE)

Interlisp-10, the deleting action can be modified for various
types of display terminals by using DELETECONTROL (page 30.8).

Unless otherwise indicated, when the end of file is encountered
while reading from a file, all input functions generate an error,
END OF FILE. Note that this does not close the input file. The
ENDOFSTREAMOP stream attribute (page 24.19) is useful for
changing the behavior at end of file.

Most input functions have a RDTBL argument, which specifies
the read table to be used for input (see page 25.33). Unless
otherwise specified, if RDTBL is NIL, the primary read table is
used.

If the FILE or STREAM argument to an input function is NIL, the
primary input stream is used (see page 25.1).

[Function]

(READ FILE RDTBL FLG)

Sets FILE as the primary input stream; returns the old primary
input stream. FILE must be open for input.

(INPUT) returns the current primary input stream, which is not
changed.

Note: If the primary input stream is set to a file, the file's full
name, rather than the stream itself, is returned. See discussion
onpage 24.13.

[Function]

Reads one expression from FILE. Atoms are delimited by the
break and separator characters as defined in RDTBL. Toinclude a
break or separator character in an atom, the character must be
preceded by the character %, e.g., AB%(C is the atom AB(C, % %
is the atom %, %control-K is the atom control-K. For input from
the terminal, an atom containing an interrupt character can be
input by typing instead the corresponding alphabetic character
preceded by control-V, e.g., 1 VD for control-D.

Strings are delimited by double quotes. To input a string
containing ,a double quote or a %, precede it by %, egq.,
"AB%"C" is the string AB"C. Note that % can always be typed
even if next character is not “"special”, e.g., %A%B%C is read as
ABC.

If an atom is interpretable as a number, READ creates a number,
e.g., 1E3 reads as a floating point number, 1D3 as a literal atom,
1.0 as a number, 1,0 as a literal atom, etc. An integer can be
input in a non-decimal radix by using syntax such as 123Q,
|[b10101, |Sr1234 (see page 7.4). The function RADIX (page
25.13), sets the radix used to print integers.

When reading from the terminal, all input is line-buffered to
enable the action of the backspacing control characters, unless
inhibited by CONTROL (page 30.10). Thus no characters are

INPUT/OUTPUT FUNCTIONS

25.3

INPUT FUNCTIONS

(RATOM FILE RDTBL)

actually seen by the program until a carriage-return (actually the
character with terminal syntax class EOL, see page 30.6), is typed.-
However, for reading by READ, when a matching right
parenthesis is encountered, the effect is the same as though a
carriage-return were typed, i.e., the characters are transmitted.
To indicate this, Interlisp also prints a carriage-return line-feed
on the terminal. The line buffer is also transmitted to READ
whenever an IMMEDIATE read macro character is typed (page
25.41).

FLG =T suppresses the carriage-return normally typed by READ
following a matching right parenthesis. (However, the
characters are still given to READ; i.e., the user does not have to
type the carriage-return.)

[Function]

(RSTRING FILE RDTBL)

Reads in one atom from FILE. Separation of atoms is defined by
RDTBL. % is also defined for RATOM, and the remarks
concerning line-buffering and editing control characters also
apply.

If the characters comprising the atom would normally be
interpreted as a number by READ, that number is returned by
RATOM. Note however that RATOM takes no special action for "
whether or not it is a break character, i.e., RATOM never makes a
string.

[Function]

Reads characters from FILE up to, but not including, the next
break or separator character, and returns them as a string.
Backspace, control-W, control-Q, control-V, and % have the
same effect as with READ.

Note that the break or separator character that terminates a call
to RATOM or RSTRING is not read by that call, but remains in the
buffer to become the first character seen by the next reading
function that is called. If that function is RSTRING, it will return
the null string. Thisis a common source of program bugs.

(RATOMS A FILE RDTBL) [Function]
Calls RATOM repeatedly until the atom A is read. Returns a list of
the atoms read, not including A.

(RATEST FLG) [Function]

If FLG = T, RATEST returns T if a separator was encountered
immediately prior to the atom returned by the last RATOM or
READ, NIL otherwise.

INPUT/OUTPUT FUNCTIONS

INPUT FUNCTIONS

(READC FILE RDTBL)

If FLG = NIL, RATEST returns T if last atom read by RATOM or
READ was a break character, NIL otherwise.

if FLG = 1, RATEST returns T if last atom read (by READ or
RATOM) contained a % used to quote the next character (as in
%[or %A%B%C), NIL otherwise.

[Function]

(PEEKC FILE —)

Reads and returns the next character, including %, ", etc, i.e., is
not affected by break or separator characters. The action of
READC is subject to line-buffering, i.e., READC does not return a
value until the line has been terminated even if a character has
been typed. Thus, the editing control characters have their usual
effect. RDTBL does not directly affect the value returned, but is
used as usual in line-buffering, e.g., determining when input has
been terminated. If (CONTROL T) has been executed (page
30.10), defeating line-buffering, the RDTBL argument is
irrelevant, and READC returns a value as soon as a character is
typed (even if the character typed is one of the editing
characters, which ordinarily would never be seen in the input
buffer).

[Function]

(LASTC FILE)

Returns the next character, but does not actually read it and
remove it from the buffer. If reading from the terminal, the
character is echoed as soon as PEEKC reads it, even though it is
then "put back" into the system buffer, where backspace,
control-W, etc. could change it. Thus it is possible for the value
returned by PEEKC to "disagree"” in the first character with a
subsequent READ.

[Function]

(READCCODE FILE RDTBL)

Returns the last character read from FILE.

[Function] .

(PEEKCCODE FILE —)

Returns the next character code from STREAM; thus, this
operation is equivalent to, but more efficient than, (CHCON1
(READC FILE RDTBL)).

[Function]

(BIN STREAM)

Returns, without consuming, the next character code from
STREAM,; thus, this operation is equivalent to, but more efficient
than, (CHCON1 (PEEKC FILE)).

[Function]

Returns the next byte from STREAM. This operation is useful for
reading streams of binary, rather than character, data.

INPUT/QUTPUT FUNCTIONS

255

INPUT FUNCTIONS

(READP FILE FLQ)

Note: BIN is similar to READCCODE, except that BIN always reads

a single byte, whereas READCCODE reads a “character” that can:
consist of more than one byte, depending on the character and

its encoding (see page 25.22).

READ, RATOM, RATOMS, PEEKC, READC ail wait for input if
there is none. The only way to test whether or not there is input
is to use READP:

[Function]

(EOFP FILE)

Returns T if there is anything in the input buffer of FILE, NIL
otherwise. This operation is only interesting for streams whose
source of data is dynamic, e.g., the terminal or a byte stream over
a network; for other streams, such as to files, (READP FILE) is
equivalent to (NOT (EOFP FILE)).

Note that because of line-buffering, READP may return T,
indicating there is input in the buffer, but READ may still have to
wait.

Frequently, the terminal's input buffer contains a single EOL
character left over from a previous input. For most applications,
this situation wants to be treated as though the buffer were
empty, and so READP returns NIL in this case. However, if
FLG=T, READP returns T if there is any character in the input
buffer, including a single EOL. FLG is ignored for streams other
than the terminal.

[Function]

(WAITFORINPUT FILE)

Returns true if FILE is at "end of file", i.e., the next call to an
input function would cause an END OF FILE error; NIL otherwise.
For randomly accessible files (page 25.18), this can also be
thought of as the file pointer pointing beyond the last byte of
the file. FILE must be open for (at least) input, or an error is
generated, FILE NOT OPEN.

Note that EOFP can return NIL and yet the next call to READ
might still cause an END OF FILE error, because the only
characters remaining in the input were separators or otherwise
constituted an incomplete expression. The function SKIPSEPRS
(page 25.7) is sometimes more useful as a way of detecting end
of file when it is known that all the expressions in the file are
well formed.

[Function]

Waits until input is available from FILE or from the terminal, i.e.
from T. WAITFORINPUT is functionally equivalent to {until (OR
(READP T) (READP FILE)) do NIL), except that it does not use up
machine cycles while waiting. Returns the device for which input
is now available,i.e. FILEorT.

25.6

INPUT/QUTPUT FUNCTIONS

INPUT FUNCTIONS

FILE can also be an integer, in which case WAITFORINPUT waits
until there is input available from the terminal, or until FILE
milliseconds have elapsed. Value is T if input is now available, NiL
in the case that WAITFORINPUT timed out.

(SKREAD FILE REREADSTRING RDTBL) [Function]

(SKIPSEPRS FILE RDTBL)

“Skip Read". - SKREAD consumes characters from FILE as if one
call to READ had been performed, without paying the storage
and compute cost to really read in the structure. REREADSTRING
is for the case where the caller has already performed some
READC's and RATOM's before deciding to skip this expression. In
this case, REREADSTRING should be the material already read (as
a string), and SKREAD operates as though it had seen that
material first, thus setting up its parenthesis count, double-quote
count, etc.

The read table RDTBL is used for reading from FILE. |f RDTBL is
NIL, it defaults to the value of FILERDTBL. SKREAD may have
difficulties if unusual read macros (page 25.39) are defined in
RDTBL. SKREAD does not recognize read macro characters in
REREADSTRING, nor SPLICE or INFIX read macros. This is only a
problem if the read macros are defined to parse subsequent
input in the stream that does not follow the normal parenthesis
and string-quote conventions.

SKREAD returns %) if the read terminated on an unbalanced
closing parenthesis; %] if the read terminated on an unbalanced
%], i.e., one which also would have dosed any extant open left
parentheses; otherwise NiL.

[Function]

Consumes characters from FILE until it encounters a
non-separator character (as defined by RDTBL). SKIPSEPRS
returns, but does not consume, the terminating character, so
that the next call to READC would return the same character. If
no non-separator character is found before the end of file is
reached, SKIPSEPRS returns NIL and leaves the stream at end of
file. This functionis useful for skipping over "white space" when
scanning a stream character by character, or for detecting end of
file when reading expressions from a stream with no
pre-arranged terminating expression.

25.3 Output Functions

Unless otherwise specified by DEFPRINT (page 25.16), pointers
other than lists, strings, atoms, or numbers, are printed in the
form (DATATYPE} followed by the octal representation of the

INPUT/OUTPUT FUNCTIONS

25.7

OUTPUT FUNCTIONS

(OUTPUT FILE)

address of the pointer (regardless of radix). For example, an
array pointer might print as {ARRAYP}#43,2760. This printed
representation is for compactness of display on the user's
terminal, and will not read back in correctly; if the form above is
read, it will produce the litatom {ARRAYP}#43,2760.

Note: the term "end-of-line" appearing in the description of an
output function means the character or characters used to
terminate a line in the file system being used by the given
implementation of Interlisp. For example, in Interlisp-D
end-of-line is indicated by the character carriage-return.

Some of the functions described below have a RDTBL argument,
which specifies the read table to be used for output (see page
25.33). If RDTBL is NIL, the primary read table is used.

Most of the functions described below have an argument FILE,
which specifies the stream on which the operation is to take
place. If FILE is NIL, the primary output stream is used (see page
25.1).

[Function]

(PRIN1 X FILE)

Sets FILE as the primary output stream; returns the old primary
output stream. FILE must be open for output.

(OUTPUT) returns the current primary output stream, which is
not changed.

Note: If the primary output stream is set to a file, the file's full
name, rather than the stream itself, is returned. See discussion
on page 24.13.

[Function]

(PRIN2 X FILE RDTBL)

Prints X on FILE.

[Function]

Prints X on FILE with %'s and “'s inserted where required for it to
read back in properly by READ, using RDTBL.

Both PRIN1 and PRIN2 print any kind of Lisp expression, including
lists, atoms, numbers, and strings. PRIN1 is generally used for
printing expressions where human readability, rather than
machine readability, is important, e.g., when printing text rather
than program fragments. PRIN1 does not print double quotes
around strings, or % in front of special characters. PRIN2 is used
for printing Interlisp expressions which can then be read back
into Interlisp with READ; i.e., break and separator characters in
atoms will be preceded by %’'s. For example, the atom "()" is
printed as %(%) by PRIN2. If the integer output radix (as set by
RADIX, page 25.13) is not 10, PRIN2 prints the integer using the

25.8

INPUT/QUTPUT FUNCTIONS

QUTPUTFUNCTIONS

(PRIN3 X FILE)

input syntax for non-decimal integers (see page 7.4) but PRIN1
does not (but both print the integer in the output radix).

[Function]

(PRIN4 X FILE RDTBL)

[Function]

(PRINT X FILE RDTBL)

PRIN3 and PRIN4 are the same as PRIN1 and PRIN2 respectively,
except that they do not increment the horizontal position
counter nor perform ‘any linelength checks. They are useful
primarily for printing control characters.

[Function]

Prints the expression X using PRIN2 followed by an end-of-line.
Returns X.

(PRINTCCODE CHARCODE FILE) [Function]

(BOUT STREAM BYTE)

Outputs a single character whose code is CHARCODE to FILE.
This is similar to (PRIN1 (CHARACTER CHARCODE)), except that
numeric characters are guaranteed to print "correctly”; e.g.,
(PRINTCCODE (CHARCODE 9)) always prints "9", independent of
the setting of RADIX.

Note that PRINTCCODE may actually print more than one byte on
FILE, due to character encoding and end of line conventions;
thus, no assumptions should be made about the relative motion
of the file pointer (see GETFILEPTR, page 25.19) during this
operation.

[Function]

(SPACES N FILE)

Outputs a single 8-bit byte to STREAM. This is similar to
PRINTCCODE, but for binary streams the character position in
STREAM is not updated (as with PRIN3), and end of line
conventions are ignored.

Note: BOUT is similar to PRINTCCODE, except that BOUT always
writes a single byte, whereas PRINTCCODE writes a “character"
that can consist of more than one byte, depending on the
character and its encoding (see page 25.22).

[Function]

(TERPRI FILE)

Prints N spaces. Returns NIL.

[Function]

Prints an end-of-line character. Returns NIL.

INPUT/OUTPUT FUNCTIONS

25.9

OUTPUT FUNCTIONS

{FRESHLINE STREAM) [Function]
Equivalent to TERPRI, except it does nothing if it is already at the’
beginning of the line. Returns T if it prints an end-of-line, NiL
otherwise.

(TAB POS MINSPACES FILE) [Function]
Prints the appropriate number of spaces to move to position
POS. MINSPACES indicates how many spaces must be printed (if
NIL, 1 is used). If the current position plus MINSPACES is greater
than POS, TAB does a TERPRI and then (SPACES POS). If
MINSPACES is T, and the current position is greater than POS,
then TAB does nothing.

Note: A sequence of PRINT, PRIN2, SPACES, and TERPRI
expressions can often be more conveniently coded with a single
PRINTOUT statement (page 25.23).

(SHOWPRIN2 X FILE RDTBL) [Function]
Like PRIN2 except if SYSPRETTYFLG =T, prettyprints X instead.
Returns X.

(SHOWPRINT X FILE RDTBL) [Function]

Like PRINT except if SYSPRETTYFLG =T, prettyprints X instead,
followed by an end-of-line. Returns X.

SHOWPRINT and SHOWPRIN2 are used by the programmer's
assistant (page 13.1) for printing the values of expressions and
for printing the history list, by various commands of the break
package (page 14.1), e.g. ?= and BT commands, and various
other system packages. The idea is that by simply settting or
binding SYSPRETTYFLG to T (initially NIL), the user instructs the
system when interacting with the user to PRETTYPRINT
expressions (page 26.40) instead of printing them.

(PRINTBELLS -—) ' [Function]
Used by DWIM (page 20.1) to print a sequence of bells to alert
the user to stop typing. Can be advised or redefined for special
applications, e.g., to flash the screen on a display terminal.

(FORCEOUTPUT STREAM WAITFORFINISH) [Function]
Forces any buffered output data in STREAM to be transmitted.

if WAITFORFINISH is non-NIL, this doesn't return until the data
has been forced out.

25.10 INPUT/QUTPUT FUNCTIONS

QUTPUT FUNCTIONS

(POSITION FILE N)

{Function]

~ (LINELENGTH N FILE)

Returns the column number at which the next character will be
read or printed. After a end of line, the column numberis 0. If N
is non-NIL, resets the column number to be N.

Note that resetting POSITION only changes Lisp's belief about
the current column number; it does not cause any horizontal
motion. Also note that (POSITION FILE) is not the same as
(GETFILEPTR FILE) which gives the position in the file, not on the
line.

[Function]

(SETLINELENGTH N)

Sets the length of the print line for the output file FILE to N;
returns the former setting of the line length. FILE defaults to the
primary output stream. (LINELENGTH NIL FILE) returns the
current setting for FILE. When a file is first opened, its line length
is set to the value of the variable FILELINELENGTH.

Whenever printing an atom or string would increase a file's
position beyond the line length of the file, an end of line is
automatically inserted first. This action can be defeated by using
PRIN3 and PRIN4 (page 25.9).

[Function]

25.3.1 PRINTLEVEL

Sets the line length for the terminal by doing (LINELENGTH N T).
If Nis NIL, it determines N by consulting the operating system's
belief about the terminal's characteristics. In Interlisp-D, this is a
no-op.

When using Interlisp one often has to handle large, complicated
lists, which are difficult to understand when printed out.
PRINTLEVEL allows the user to specify in how much detail lists
should be printed. The print functions PRINT, PRIN1, and PRIN2
are all affected by level parameters set by:

(PRINTLEVEL CARVAL CDRVAL) [Function]

Sets the CAR print level to CARVAL, and the CDR print level to
CDRVAL. Returns a list cell whose CAR and CDR are the old
settings. PRINTLEVEL is initialized with the value (1000 . -1).

In order that PRINTLEVEL can be used with RESETFORM or
RESETSAVE, if CARVAL is a list cell it is equivalent to (PRINTLEVEL
(CAR CARVAL) (CDR CARVAL)).

(PRINTLEVEL N NIL) changes the CAR printlevel without affecting
the CDR printlevel. (PRINTLEVEL NIL N) changes the CDR

INPUT/QUTPUT FUNCTIONS

25.11

OUTPUT FUNCTIONS

After:

(PRINTLEVEL 3 -1)
(PRINTLEVEL 2 -1)
(PRINTLEVEL 1 -1)
(PRINTLEVEL 0 -1)
(PRINTLEVEL 1000 2)
(PRINTLEVEL 1000 3)
(PRINTLEVEL 1 3)

PLVLFILEFLG

printlevel with affecting the CAR printlevel. (PRINTLEVEL) gives
the current setting without changing either.

Note: control-P (page 30.2) can be used to change the
PRINTLEVEL setting dynamically, even while interlisp is printing.

The CAR printlevel specifies how “"deep” to print a list.
Specifically, it is the number of unpaired left parentheses which
will be printed. Below that level, all lists will be printed as &. If
the CAR printlevel is negative, the action is similar except that an
end-of-line is inserted after each right parentheses that would
be immediately followed by a left parenthesis.

The CDR printlevel specifies how "long" to print a list. It is the
number of top level list elements that will be printed hefore the
printing is terminated with --. For example, if CDRVAL=2,(ABC
D E) will print as (A B --). For sublists, the number of list elements
printed is also affected by the depth of printing in the CAR
direction: Whenever the sum of the depth of the sublist (i.e. the
number of unmatched left parentheses) and the number of
elements is greater than the CDR printlevel, -- is printed. This
gives a "triangular"” effect in that less is printed the farther one
goes in either CAR or CDR direction. If the CDR printlevel is
negative, thenitis the same as if the CDR printlevel were infinite.

Examples:

(A (BC(D(EF)G)H)KL)prints as:
(A(BC(D&G)H)KL)
(A(BC&H)KL)

(A&KL)

&

(A(B--)--)

(A(BC--)K-)

(A&K--)

[Variable]

Normally, PRINTLEVEL only affects terminal output. Output to
all other files acts as though the print level is infinite. However,
if PLVLFILEFLG is T (initially NIL), then PRINTLEVEL affects output
to files as well.

The following three functions are useful for printing isolated
expressions at a specified print level without going to the
overhead of resetting the global print level.

25.12

INPUT/QUTPUT FUNCTIONS

OUTPUT FUNCTIONS

(LVLPRINT X FILE CARLVL CDRLVL TAIL) [Function]

Performs PRINT of X to FILE, using as CAR and CDR print levels
the values CARLVL and CDRLVL, respectively. Uses the T read
table. If TAIL is specified, and X is a tail of it, then begins its
printing with “...", rather than on open parenthesis.

(LVLPRIN2 X FILE CARLVL CDRLVL TAIL) [Function]

Similar to LVLPRIN2, but performs a PRIN2.

(LVLPRIN1 X FILE CARLVL CDRLVL TAIL) [Function]

25.3.2 Printing numbers

Similar to LVLPRIN1, but performs a PRIN1.

(RADIX N)

How the ordinary printing functions (PRIN1, PRIN2, etc.) print
numbers can be affected in several ways. RADIX influences the
printing of integers, and FLTFMT influences the printing of
floating point numbers. The setting of the variable PRXFLG
determines how the symbol-manipulation functions handle
numbers. The PRINTNUM package permits greater controls on
the printed appearance of numbers, allowing such things as
left-justification, suppression of trailing decimals, etc.

[Function]

(FLTFMT FORMAT)

Resets the output radix for integers to the absoiute value of N.
The value of RADIX is its previous setting. (RADIX) gives the
current setting without changingit. Theinitial settingis 10.

Note that RADIX affects output only. There is no input radix; on
input, numbers are interpreted as decimal unless they are
entered in a non-decimal radix with syntax such as 123Q,
|b10101, [Sr1234 (see page 7.4). RADIX does not affect the
behavior of UNPACK, etc., unless the value of PRXFLG (below) is
T. For example, if PRXFLG is NIL and the radix is set to 8 with
(RADIX 8), the value of (UNPACK 9) is (9), not (1 1).

Using PRINTNUM (page 25.15) or the PRINTOUT command .|
(page 25.30) is often a more convenient and appropriate way to
print a single number in a specified radix than to globally change
RADIX.

[Function]

Resets the output format for floating point numbers to the
FLOAT format FORMAT (see PRINTNUM below for a description
of FLOAT formats). FORMAT =T specifies the default "free"
formatting: some number of significant digits (a function of the
implementation) are printed, with trailing zeros suppressed;

INPUT/OUTPUT FUNCTIONS

25.13

QUTPUT FUNCTIONS

PRXFLG

numbers with sufficiently large or small exponents are instead
printed in exponent notation. '

FLTFMT returns its current setting. (FLTFMT) returns the current
setting without changing it. The initial settingis T.

Note: In Interlisp-D, FLTFMT ignores the WIDTH and PAD fields
of the format (they are implemented only by PRINTNUM).

Whether print name manipulation functions (UNPACK, NCHARS,
etc.) use the values of RADIX and FLTFMT is determined by the
variable PRXFLG:

[Variable]

If PRXFLG = NIL (the initial setting), then the "PRIN1" name used
by PACK, UNPACK, MKSTRING, etc., is computed using base 10
for integers and the system default floating format for floating
point numbers, independent of the current setting of RADIX or
FLTFMT. If PRXFLG =T, then RADIX and FLTFMT do dictate the
"PRIN1" name of numbers. Note that in this case, PACK and
UNPACK are notinverses.

Examples with (RADIX 8), (FLTFMT '(FLOAT 4 2)):
With PRXFLG = NIL,

(UNPACK 13) a> (13)

(PACK'(A9)) => A9

(UNPACK 1.2345) => (1%.2345)
WithPRXFLG =T,

(UNPACK 13) => (15)

(PACK'(A9)) => AN

(UNPACK 1.2345) = > (1 %.23)

Note that PRXFLG does not effect the radix of "PRIN2" names, so
with (RADIX 8), (NCHARS 9 T), which uses PRIN2 names, would
return 3, (since 9 would print as 11Q) for either setting of
PRXFLG.

Warning: Some system functions will not work correctly if
PRXFLG is not NIL. Therefore, resetting the global value of
PRXFLG is not recommended. itis much better to rebind PRXFLG
as a SPECVAR for that part of a program where it needs to be
non-NiL.

The basic function for printing numbers under format control is
PRINTNUM. Its utility is considerably enhanced when used in
conjunction with the PRINTOUT package (page 25.23), which
implements a compact language for specifying complicated

25.14

INPUT/QUTPUT FUNCTIONS

OUTPUT FUNCTIONS

sequences of elementary printing operations, and makes fancy
output formats easy to design and simpie to program.

(PRINTNUM FORMAT NUMBER FILE) [Function]

FORMAT:
(FIX 2)
(FIX2NILT)
(FIX128T)
(FIXSNILNILT)

FORMAT.
(FLOAT 7 2)

Prints NUMBER on FILE according to the format FORMAT.
FORMAT is a list structure with one of the forms described below.

If FORMAT is a list of the form (FIX WIDTH RADIX PADO
LEFTFLUSH), this specifies'a FIX format. NUMBER is rounded to
the nearest integer, and then printed in a field WIDTH characters
long with radix set to RADIX (or 10 if RADIX = NIL; note that the
setting from the function RADIX is not used as the default). If
PADQ and LEFTFLUSH are both NIL, the number is right-justified
inthe field, and the padding characters to the left of the leading
digit are spaces. If PADO is T, the character "0" is used for
padding. If LEFTFLUSH is T, then the number is left-justified in
the field, with trailing spaces to fill out WIDTH characters.

The following examples illustrate the effects of the FIX format
options on the number 9 (the vertical bars indicate the field
width):

{(PRINTNUM FORMAT 9) prints:

19l

09|

|000000000011|

9 |

If FORMAT is a list of the form (FLOAT WIDTH DECPART EXPPART
PADO ROUND), this specifies a FLOAT format. NUMBER is printed
as a decimal number in a field WIDTH characters wide, with
DECPART digits to the right of the decimal point. f EXPPART is
not 0 (or NIL), the number is printed in exponent notation, with
the exponent occupying EXPPART characters in the field.
EXPPART shouid allow for the character E and an optional sign to
be printed before the exponent digits. As with FIX format,
padding on the left is with spaces, unless PADO is T. If ROUND is

given, it indicates the digit position at which rounding is to take -
place, counting from the leading digit of the number.

Interlisp-D interprets WIDTH = NIL to mean no padding, i.e, to
use however much space the number needs, and interprets
DECPART = NIL to mean as many decimal places as needed.

The following examples illustrate the effects of the FLOAT
format options on the number 27.689 (the vertical bars indicate
the field width):

(PRINTNUM FORMAT 27.689) prints:
| 27.69]

INPUT/OUTPUT FUNCTIONS

25.15

OUTPUT FUNCTIONS

(FLOAT72NILT)
(FLOAT722)
(FLOAT1124)
(FLOAT 7 2 NIL NIL 1)
(FLOAT 7 2NIL NIL 2)

NILNUMPRINTFLG

|0027.69]

| 2.77€1|

| 2.77E+ 01
| 30.00|

| 28.00]

[Variable]

25.3.3 User Defined Printing

If PRINTNUM's NUMBER argument is not a number and not NIL, a
NON-NUMERIC ARG error is generated. If NUMBER is NIL, the
effect depends on the setting of the variable NILNUMPRINTFLG.
If NILNUMPRINTFLG is NIL, then the error occurs as usual. If it is
non-NiL, then no error occurs, and the value of
NILNUMPRINTFLG is printed right-justified in the field described
by FORMAT. This option facilitates the printing of numbers in
aggregates with missing values coded as NIL.

(DEFPRINT TYPE FN)

Initially, Interlisp only knows how to print in an interesting way
objects of type litatom, number, string, list and stackp. All other
types of objects are printed in the form {datatype} foliowed by
the octal representation of the address of the pointer, a format
that cannot be read back in to produce an equivalent object.
When defining user data types (using the DATATYPE record
type, page 8.9), it is often desirable to specify as well how objects
of that type should be printed, so as to make their contents
readable, or at least more informative to the viewer. The
function DEFPRINT is used to specify the printing format of a
data type.

[Function]

TYPE is a type name. Whenever a printing function (PRINT,
PRIN1, PRIN2, etc.) or a function requiring a print name (CHCON,
NCHARS, etc.) encounters an object of the indicated type, FN is
called with two arguments: the item to be printed and the name
of the stream, if any, to which the object is to be printed. The
second argument is NiL on calls that request the print name of an
object without actually printing it.

If FN returns a list of the form (ITEM1 . ITEM2), ITEM1 is printed
using PRIN1 (unless it is NIL), and then ITEM2 is printed using
PRIN2 (unless it is NIL). No spaces are printed between the two
items. Typically, ITEM1 is a read macro character.

If FN returns NIL, the datum is printed in the system default
manner.

25.16

INPUT/QUTPUT FUNCTIONS

OUTPUT FUNCTIONS

if FN returns T, nothing further is printed; FN is assumed to have
printed the object to the stream itself. Note that this case if
permitted only when the second argument passed to FN is
non-NiL; otherwise, there is no destination for FN to do its
printing, so it must return as in one of the other two cases.

25.3.4 Printing Unusual Data Structures

HPRINT (for "Horrible Print") and HREAD provide a mechanism
for printing and reading back in general data structures that
cannot normally be dumped and loaded easily, such as (possibly
re-entrant or dircular) structures containing user datatypes,
arrays, hash tables, as well as list structures. HPRINT will correctly
print and read back in any structure containing any or all of the
above, chasing all pointers down to the level of literal atoms,
numbers or strings. HPRINT currently cannot handle compiled
code arrays, stack positions, or arbitrary unboxed numbers.

HPRINT operates by simulating the Interlisp PRINT routine for
normal list structures. When it encounters a user datatype (see
page 8.20), or an array or hash array, it prints the data contained
therein, surrounded by special characters defined as read macro
characters (see page 25.39). Whiie chasing the pointers of a
structure, it also keeps a hash table of those items it encounters,
and if any item is encountered a second time, another read
macro character is inserted before the first occurrence (by
resetting the file pointer with SETFILEPTR) and all subsequent
occurrences are printed as a back reference using an appropriate
macro character. Thus the inverse function, HREAD merely calls
the Interlisp READ routine with the appropriate read table.

(HPRINT EXPR FILE UNCIRCULAR DATATYPESEEN) [Function]

Prints EXPR on FILE. If UNCIRCULAR is non-NIL, HPRINT does no
checking for any circularities in EXPR (but is still useful for
dumping arbitrary structures of arrays, hash arrays, lists, user
data types, etc., that do not contain circularities). Specifying
UNCIRCULAR as non-NIL resuits in a large. speed and
internal-storage advantage.

Normally, when HPRINT encounters a user data type for the first
time, it outputs a summary of the data type's declaration. When
this is read in, the data type is redeclared. |f DATATYPESEEN is
non-NIL, HPRINT assumes that the same data type declarations
will be in force at read time as were at HPRINT time, and not
output declarations.

HPRINT is intended primarily for output to random access files,
since the algorithm depends on being able to reset the file
pointer. If FILE is not a random access file (and UNCIRCULAR =
NIL), a temporary file, HPRINT.SCRATCH, is opened, EXPR is

INPUT/OUTPUT FUNCTIONS

25.17

QUTPUT FUNCTIONS

(HREAD FILE)

HPRINTed on it, and then that file is copied to the final output
file and the temporary file is deleted.

[Function]

(HCOPYALL X)

Reads and returns an HPRINT-ed expression from FILE.

[Function]

Copies data structure X. X may contain circular pointers as well
as arbitrary structures.

Note: HORRIBLEVARS and UGLYVARS (page 17.36) are two file
package commands for dumping and reloading circular and
re-entrant data structures. They provide a convenient interface
to HPRINT and HREAD.

When HPRINT is dumping a data structure that contains an
instance of an Interlisp datatype, the datatype declaration is also
printed onto the file. Reading such a data structure with HREAD
can cause problems if it redefines a system datatype. Redefining
a system datatype will almost definitely cause serious errors. The
Interlisp system datatypes do not change very often, but there is
always a possibility when loading in old files created under an
old Interlisp release.

To prevent accidental system crashes, HREAD will not redefine
datatypes. Instead, it will cause an error "attempt to read
DATATYPE with different field specification than currently
defined". Continuing from this error will redefine the datatype.

25.4 Random Access File Operations

For most applications, files are read starting at their beginning
and proceeding sequentially, i.e., the next character read is the
one immediately following the last character read. Similarly,
files are written sequentially. However, for files on some devices,
itis also possible to readAwrite characters at arbitrary positions in
a file, essentially treating the file as a large block of auxiliary
storage. For example, one application might involve writing an
expression at the beginning of the file, and then reading an
expression from a specified point in its middle. This particular
example requires the file be open for both input and output.
However, random file input or output can also be performed on
files that have been opened for only input or only output.

Associated with each file is a "file pointer" that points to the
location where the next character is to be read from or written
to. The file position of a byte is the number of bytes that precede

25.18

INPUT/QUTPUT FUNCTIONS

RANDOM ACCESS FILE OPERATIONS

it in the file, i.e., 0 is the position of the beginning of the file.
The file pointer to a file is automatically advanced after each
input or output operation. This section describes functions
which can be used to reposition the file pointer on those files
that can be randomly accessed. A file used in this fashionis much
like an array in that it has a certain number of addressable
locations that characters can be put into or taken from.
However, unlike arrays, files can be enlarged. For example, if the
file pointer is positioned at the end of a file and anything is
written, the file "grows." It is also possible to position the file
pointer beyond the end of file and then to write. (If the program
attempts to read beyond the end of file, an END OF FILE error
occurs.) In this case, the file is enlarged, and a "hole" is created,
which can later be written into. Note that this enlargement only
takes place at the end of a file; it is not possible to make more
room in the middle of a file. In other words, if expression A
begins at position 1000, and expression B at 1100, and the
program attempts to overwrite A with expression C, whose
printed representation is 200 bytes long, part of B will be altered.

Warning: File positions are always in terms of bytes, not
characters. The user should thus be very careful about
computing the space needed for an expression. In particular, NS
characters may take multiple bytes (see page 25.22). Also, the
end-of-line character (see page 24.19) may be represented by a
different number of characters in different implementations.
Output functions may also introduce end-of-line's as a result of
LINELENGTH considerations. Therefore NCHARS (page 2.9) does
not specify how many bytes an expression takes to print, even
ignoring line length considerations.

(GETFILEPTR FILE) [Function]
Returns the current position of the file pointer for FILE, i.e., the
byte address at which the next input/output operation will
commence.

(SETFILEPTR FILE ADR) [Function]

Sets the file pointer for FILE to the position ADR; returns ADR.
The special value ADR =-1 is interpreted to mean the address of
the end of file.

Note: If a file is opened for output only, the end of file is initially
zero, even if an old file by the same name had existed (see
OPENSTREAM, page 24.2). If a file is opened for both input and
output, the initial file pointer is the beginning of the file, but
(SETFILEPTR FILE -1) sets it to the end of the file. If the file had
been opened in append mode by (OPENSTREAM FILE 'APPEND),
the file pointer right after opening would be set to the end of
the existing file, in which case a SETFILEPTR to position the file at
the end would be unnecessary.

INPUT/QUTPUT FUNCTIONS

25.19

RANDOM ACCESS FILE OPERATIONS

(GETEOFPTR FILE)

[Function]

(RANDACCESSP FILE)

Returns the byte address of the end of file, i.e., the number of
bytes in the file. Equivalent to performing (SETFILEPTR FILE -1)
and returning (GETFILEPTR FILE) except that it does not change
the current file pointer.

[Function]

Returns FILE if FILE is randomly accessible, NIL otherwise. The file
T is not randomly accessible, nor are certain network file
connections in Interlisp-D. FILE must be open or an error is
generated, FILE NOT OPEN.

(COPYBYTES SRCFIL DSTFIL START END) [Function]

Copies bytes from SRCFIL to DSTFIL, starting from position START
and up to but not including position END. Both SRCFIL and
DSTFIL must be open. Returns T.

If END = NIL, START is interpreted as the number of bytes to copy
(starting at the current position). If START is also NIL, bytes are
copied until the end of the file is reached.

Warning: COPYBYTES does not take any account of multi-byte
NS characters (page 2.12). COPYCHARS (below) should be used
whenever copying information that might include NS characters.

(COPYCHARS SRCFIL DSTFIL START END) [Function]

Like COPYBYTES except that it copies NS characters (page 2.12),
and performs the proper conversion if the end-of-line
conventions of SRCFIL and DSTFIL are not the same (see page
24.19). START and END are interpreted the same as with
COPYBYTES, i.e., as byte (not character) specifications in SRCFIL.
The number of bytes actually output to DSTFIL might be more or
less than the number of bytes specified by START and END,
depending on what the end-of-line conventions are. In the case
where the end-of-line conventions happen to be the same,
COPYCHARS simply calls COPYBYTES.

(FILEPOS PATTERN FILE START END SKIP TAIL CASEARRAY) [Function]

Analogous to STRPOS (page 4.5), but searches a file rather than a
string. FILEPOS searches FILE for the string PATTERN. Search
begins at START (or the current position of the file pointer, if
START = NIL), and goes to END (or the end of FILE, if END = NIL).
Returns the address of the start of the match, or NiL if not found.

SKIP can be used to specify a character which matches any
characterin the file. If TA/Lis T, and the search is successful, the
value is the address of the first character after the sequence of
characters corresponding to PATTERN, instead of the starting
address of the sequence. In either case, the file is left so that the

25.20

INPUT/QUTPUT FUNCTIONS

RANDOM ACCESS FILE OPERATIONS

next i/o operation begins at the address returned as the value of
FILEPOS.

CASEARRAY should be a "case array” that specifies that certain
characters should be transformed to other characters before
matching. Case arrays are returned by CASEARRAY or SEPRCASE
below. CASEARRAY=NIL means no transformation will be
performed.

A case array is an implementation-dependent object that is
logically an array ‘of character codes with one entry for each
possible character. FILEPOS maps each character in the file
“through" CASEARRAY in the sense that each character code is
transformed into the corresponding character code from
CASEARRAY before matching. Thus if two characters map into
the same value, they are treated as equivalent by FILEPOS.
CASEARRAY and SETCASEARRAY provide an
implementation-independent interface to case arrays.

For example, to search without regard to upper and lower case
differences, CASEARRAY would be a case array where all
characters map to themselves, except for lower case characters,
whose corresponding elements wouid be the upper case
characters. To search for a delimited atom, one could use "
ATOM " as the pattern, and specify a case array in which all of
the break and separator characters mapped into the same code
as space.

For applications calling for extensive file searches, the function
FFILEPOS is often faster than FILEPOS.

(FFILEPOS PATTERN FILE START END SKIP TAIL CASEARRAY) [Function]

(CASEARRAY OLDARRAY)

Like FILEPOS, except much faster in most applications. FFILEPOS
is an implementation of the Boyer-Moore fast string searching
algorithm. This algorithm preprocesses the string being
searched for and then scans through the file in steps usually
equal to the length of the string. Thus, FFILEPOS speeds up
roughly in proportion to the length of the string, e.g., a string of
length 10 will be found twice as fast as a string of length 5 in the
same position.

Because of certain fixed overheads, it is generally better to use
FILEPOS for short searches or short strings.

[Function]

Creates and returns a new case array, with all elements set to
themselves, to indicate the identity mapping. If OLDARRAY is
given,itis reused.

INPUT/OUTPUT FUNCTIONS

25.21

RANDOM ACCESS FILE OPERATIONS

(SETCASEARRAY CASEARRAY FROMCODE TOCODE) [Function]
Modifies the case array CASEARRAY so that character code
FROMCODE is mapped to character code TOCODE.

(GETCASEARRAY CASEARRAY FROMCODE) [Function]
Returns the character code that FROMCODE is mapped to in
CASEARRAY.

(SEPRCASE CLFLG) [Function]

Returns a new case array suitable for use by FILEPOS or FFILEPOS
in which all of the break/separators of FILERDTBL are mapped
into character code zero. If CLFLG is non-NIL, then all CLISP
characters are mapped into this character as well. This is useful
for finding a delimited atom in a file. For example, if PATTERN is
" FOO ", and (SEPRCASE T) is used for CASEARRAY, then FILEPOS
will find "(FOO&".

UPPERCASEARRAY [Variable]
Value is a case array in which every lowercase character is
mapped into the corresponding uppercase character. Useful for
searching text files.

25.5 [Input/Output Operations with Characters and Bytes

Interlisp-D supports the 16-bit NS character set (see page 2.12).
All of the standard string and print name functions accept
litatoms and strings containing NS characters. In almost all cases,
a program does not have to distinguish between NS characters or
8-bit characters. The exception to this rule is the handling of
input/output operations.

Interlisp-D uses two ways of writing 16-bit NS characters on files.
One way is to write the full 16-bits (two bytes) every time a
character is output. The other way is to use “run-encoding.”
Each 16 NS character can be decoded into a character set (an
integer from 0 to 254 inclusive) and a character number (also an
integer from 0 to 254 inclusive). In run-encoding, the byte 255
(illegal as either a character set number or a character number) is
used to signal a change to a given character set, and the
following bytes are all assumed to come from the same character
set (until the next change-character set sequence).
Run-encoding can reduce the number of bytes required to
encode a string of NS characters, as long as there are long
sequences of characters from the same character set (usually the
case).

25.22 INPUT/QUTPUT FUNCTIONS

INPUT/QUTPUT OPERATIONS WITH CHARACTERS AND BYTES

Note that characters are not the same as bytes. A single
character can take anywhere from one to four bytes bytes,
depending on whether it is in the same character set as the
preceeding character, and whether run-encoding is enabled.
Programs which assume that characters are equal to bytes must
be changed to work with NS characters.

The functions BIN (page 25.5) and BOUT (page 25.9) should only
be used to read and write single eight-bit bytes. The functions
READCCODE (page 25.5)and PRINTCCODE (page 25.9) should be
used to read and write single character codes, interpreting
run-encoded NS characters. COPYBYTES (page 25.20) should
only be used to copy blocks of 8-bit data; COPYCHARS should be
used to copy characters. Most I/0 functions (READC, PRIN1, etc.)
read or write 16-bit NS characters.

The use of NS characters has serious consequences for any
program that uses file pointers to access a file in a random access
manner. At any point when a file is being read or written, it has
a "current character set." If the file pointer is changed with
SETFILEPTR (page 25.19) to a part of the file with a different
character set, any characters read or written may have the wrong
character set. The current character set can be accessed with the
following function:

(CHARSET STREAM CHARACTERSET) [Function]

Returns the current character set of the stream STREAM. |f
CHARACTERSET is non-NIL, the current character set for STREAM
is set. Note that for output streams this may cause bytes to be
written to the stream.

If CHARACTERSET is T, run encoding for STREAM is disabled:
both the character set and the character number (two bytes
total) will be written to the stream for each character printed.

25.6 PRINTOUT

Interlisp provides many facilities for controlling the format of
printed output. By executing various sequences of PRIN1, PRIN2,
TAB, TERPR!, SPACES, PRINTNUM, and PRINTDEF, almost any
effect can be achieved. PRINTOUT implements a compact
language for specifying complicated sequences of these
elementary printing functions. It makes fancy output formats
easy to design and simple to program.

PRINTOUT is a CLISP word (like FOR and IF) for interpreting a
special printing language in which the user can describe the
kinds of printing desired. The description is translated by
DWIMIFY to the appropriate sequence of PRIN1, TAB, etc,

INPUT/QUTPUT FUNCTIONS

25.23

PRINTOUT

before it is evaluated or compiled. PRINTOUT printing
descriptions have the following general form: '

(PRINTOUT STREAM PRINTCOM ¢ ... PRINTCOM)

STREAM is evaluated to obtain the stream to which the output
from this specification is directed. The PRINTOUT commands are
strung together, one after the other without punctuation, after
STREAM. Some commands occupy a single position in this list,
but many commands expect to find arguments following the
command name in the list. The commands fall into several
logical groups: one set deals with horizontal and vertical
spacing, another group provides controls for certain formatting
capabilities (font changes and subscripting), while a third set is
concerned with various ways of actually printing items. Finally,
there is a command that permits escaping to a simple Lisp
evaluation in the middle of a PRINTOUT form. The various
commands are described below. The following examples give a
general flavor of how PRINTOUT is used:

Example 1: Suppose the user wanted to print out on the
terminal the values of three variables, X, Y, and Z, separated by
spaces and followed by a carriage return. This could be done by:

(PRIN1 X T)
(SPACES1T)
(PRINT1YT) :
(SPACES1T)
(PRIN1ZT)
(TERPRIT)

or by the more concise PRINTOUT form:
(PRINTOUTTX,Y,ZT)

Here the first T specifies output to the terminal, the commas
cause single spaces to be printed, and the final T specifies a
TERPRI. The variable names are not recognized as special
PRINTOUT commands, so they are printed using PRIN1 by
default.

Example 2: Suppose the values of X and Y are to be
pretty-printed lined up at position 10, preceded by identifying
strings. If the output is to go to the primary output stream, the
user could write either:

(PRIN1 "X = ")
(PRINTDEF X 10 T)
(TERPRI)

(PRIN1T "Y =)
(PRINTDEFY 10 T)
(TERPRI)

or the equivalent:
(PRINTOUTNIL"X =" 10 .PPVXT

25.24

INPUT/QUTPUT FUNCTIONS

PRINTOUT

"Y="10.PPVYT)

Since strings are not recognized as special commands, "X =" is
also printed with PRIN1 by default. The positive integer means
TAB to position 10, where the .PPV command causes the value of
X to be prettyprinted as a variable. By convention, special atoms
used as PRINTOUT commands are prefixed with a period. The T
causes a carriage return, so the Y information is printed on the
nextline.

Example 3. As a final example, suppose that the value of X is an
integer and the value of Y is a floating-point number. X is to be
printed right-flushed in a field of width 5 beginning at position
15, and Y is to be printed in a field of width 10 also starting at
position 15 with 2 places to the right of the decimal point.
Furthermore, suppose that the variable names are to appear in
the font class named BOLDFONT and the values in font class
SMALLFONT. The program in ordinary Interlisp that would
accomplish these effects is too complicated toinclude here. With
PRINTOUT, one could write:

(PRINTOUT NiL
.FONT BOLDFONT "X =" 15
.FONTSMALLFONT.ISXT
.FONT BOLDFONT "Y =" 15
.FONT SMALLFONT .F10.2YT
.FONT BOLDFONT)

The .FONT commands do whatever is necessary to change the
font on a multi-font output device. The .I5S command sets up a
FIX format for a call to the function PRINTNUM (page 25.15) to
print X in the desired format. The .F10.2 specifies a FLOAT
format for PRINTNUM.

25.6.1 Horizontal Spacing Commands

N (N a number) .

The horizontal spacing commands provide convenient ways of
calling TAB and SPACES. In the following descriptions, N stands
for a literal positive integer (not for a variable or expression
whose value is aninteger).

[PRINTOUT command]

.TAB POS

Used for absolute spacing. It results in a TAB to position N
(literaily, a (TAB N)). If the line is currently at position N or
beyond, the file will be positioned at position N on the next line.

[PRINTOUT command]

Specifies TAB to position (the value of) POS. This is one of several
commands whose effect could be achieved by simply escaping to
Lisp, and executing the corresponding form. It is provided as a

INPUT/OUTPUT FUNCTIONS

25.25

PRINTOUT

.TABO POS

separate command so that the PRINTOUT form is more concise
and is prettyprinted more compactly. Note that .TAB N and N,’
where Nis an integer, are equivalent.

[PRINTOUT command]

-N (N a number)

Like .TAB except that it can result in zero spaces (i.e. the call to
TAB specifies MINSPACES = 0).

[PRINTOUT command]

Negative integers indicate relative (as opposed to absolute)
spacing. Translates as (SPACES |N|).

[PRINTOUT command]

[PRINTOUT command]

[PRINTOUT command]

.SP DISTANCE

(1, 2 or 3 commas) Provides a short-hand way of specifying 1,2 or
3 spaces, i.e., these commands are equivalent to -1, -2, and -3,
respectively.

[PRINTOUT command]

25.6.2 Vertical Spacing Commands

Translates as (SPACES DISTANCE). Note that .SP N and -N, where
Nis aninteger, are equivalent.

Vertical spacing is obtained by calling TERPRI or printing
form-feeds. The relevant commands are:

T [PRINTOUT command]
Translates as (TERPRI), i.e., move to position 0 (the first column)
of the nextline. To print the letter T, use the string "T".

SKIP LINES [PRINTOUT command]
Equivalent to a sequence of LINES (TERPRI)'s. The .SKIP
command allows for skipping large constant distances and for
computing the distance to be skipped.

PAGE [PRINTOUT command]

Puts a form-feed (control-L) out on the file. Care is taken to
make sure that Interlisp's view of the current line position is
correctly updated.

25.26

INPUT/OUTPUT FUNCTIONS

PRINTOUT

25.6.3 Special Formatting Controls

.FONT FONTSPEC

There are a small number of commands for invoking some of the
formatting capabilities of multi-font output devices. The
available commands are:

[PRINTOUT command]

.Sup

Changes printing to the font FONTSPEC, which can be a font
descriptor, a "font list" such as '(MODERN 10), an image stream
(coerced to its current font), or a windows (coerced to the
current font of its display stream). See fonts (page 27.25) for
more information.

FONTSPEC may also be a positive integer N, which is taken as an
abbreviated reference to the font class named FONTN (e.g. 1
= > FONT1).

[PRINTOUT command]

.SUB

Specifies superscripting. All subsequent characters are printed ‘
above the base of the current line. Note that this is absolute, not
relative: a.SUP following a .SUPis a no-op.

[PRINTOUT command]

.BASE

Specifies subscripting. Subsequent printing is below the base of
the current line. As with superscripting, the effect is absolute.

[PRINTOUT command]

25.6.4 Printing Specifications

Moves printing back to the base of the current line. Un-does a
previous .SUP or .SUB; a no-op, if printing is currently at the
base.

The value of any expression in a PRINTOUT form that is not
recognized as a command itself or as a command argument is
printed using PRIN1 by default. For example, title strings can be
printed by simply including the string as a separate PRINTOUT
command, and the values of variables and forms can be printed
in much the same way. Note that a literal integer, say 51, cannot
be printed by including it as a command, since it would be
interpreted as a TAB; the desired effect can be obtained by using
instead the string specification “51", or the form (QUOTE 51).

For those instances when PRIN1 is not appropriate, e.g., PRIN2 is
required, or a list structures must be prettyprinted, the following
commands are available:

INPUT/QUTPUT FUNCTIONS

25.27

PRINTOUT

P2 THING

[PRINTOUT command]

.PPF THING

Causes THING to be printed using PRIN2; translates as (PRIN2
THING).

[PRINTOUT command]

PPV THING

Causes THING to be prettyprinted at the current line position via
PRINTDEF (page 26.42). The call to PRINTDEF specifies that
THING is to be printed as if it were part of a function definition.
Thatis, SELECTQ, PROG, etc., receive special treatment.

[PRINTOUT command]

PPFTL THING

Prettyprints THING as a variable; no special interpretation is
given to SELECTQ, PROG, etc.

[PRINTOUT command]

PPVTL THING

Like .PPF, but prettyprints THING as a tail, that is, without the
initial and final parentheses if itis a list. Useful for prettyprinting
sub-lists of a list whose other elements are formatted with other
commands.

[PRINTOUT command]

25.6.41 Paragraph Format

Like .PPV, but prettyprints THING as a tail.

.PARA LMARG RMARG LIST

interlisp's prettyprint routines are designed to display the
structure of expressions, but they are not really suitable for
formatting unstructured text. If a listis to be printed as a textual
paragraph, its internal structure is less important than
controlling its left and right margins, and the indentation of its
first line. The .PARA and .PARA2 commands allow these
parameters to be conveniently specified.

[PRINTOUT command]

Prints LIST in paragraph format, using PRIN1. Translates as
(PRINTPARA LMARG RMARG LIST) (see page 25.32).

Example: (PRINTOUT T 10 .PARA 5 -5 LST) will print the elements
of LST as a paragraph with left margin at 5, right margin at
(LINELENGTH)-5, and the first line indented to 10.

PARA2 LMARG RMARG LIST [PRINTOUT command]

Print as paragraph using PRIN2 instead of PRIN1. Translates as
(PRINTPARA LMARG RMARG LISTT).

25.28

INPUT/QUTPUT FUNCTIONS

PRINTOUT

25.6.4.2 Right-Flushing

.FR POS EXPR

Two commands are provided for printing simple expressions
flushed-right against a specified line position, using the function
FLUSHRIGHT (page 25.32). They take into account the current
position, the number of characters in the print-name of the
expression, and the position the expression is to be flush against,
and then print the appropriate number of spaces to achieve the
desired effect. Note that this might entail going to a new line
before printing. Note also that right-flushing of expressions
longer than a line (e.g. a large list) makes little sense, and the
appearance of the output is not guaranteed.

[PRINTOUT command]

.FR2 POS EXPR

Flush-right using PRIN1. The value of POS determines the
position that the right end of EXPR will line up at. As with the
horizontal spacing commands, a negative position number
means |POS| columns from the current position, a positive
number specifies the position absolutely. POS =0 specifies the
right-margin, i.e. isinterpreted as (LINELENGTH).

[PRINTOUT command]

25.6.43 Centering

Flush-right using PRIN2 instead of PRIN1.

.CENTER POS EXPR

Commands for centering simple expressions between the current
line position and another specified position are also available.
As with right flushing, centering of large expressions is not
guaranteed.

[PRINTOUT command]

CENTER2 POS EXPR

Centers EXPR between the current line position and the position
specified by the value of POS. A positive POS is an absolute
position number, a negative POS specifies a position relative to
the current position, and 0 indicates the right-margin. Uses
PRIN1 for printing.

[PRINTOUT command]

25.6.44 Numbering

Centers using PRIN2 instead of PRIN1.

The following commands provide FORTRAN-like formatting
capabilities for integer and floating-point numbers. Each
command specifies a printing format and a number to be

INPUT/QUTPUT FUNCTIONS

25.29

PRINTOUT

JFORMAT NUMBER

printed. The format specification translates into a format-list for
the function PRINTNUM (see page 25.15).

[PRINTOUT command]}

.FFORMAT NUMBER

Specifies integer printing. Translates as a call to the function
PRINTNUM with a FIX format-list constructed from FORMAT. The
atomic format is broken apart at internal periods to form the
format-list. For example, .15.8.T yields the format-list (FIX 58 T),
and the command sequence (PRINTOUT T .I5.8.T FOO) translates
as (PRINTNUM ‘(FIX 5 8 T) FOO). This expression causes the value
of FOO to be printed in radix 8 right-flushed in a field of width 5,
with 0's used for padding on the left. Internal NiL's in the format
specification may be omitted, e.g.,, the commands .I5..T and
AS.NIL.T are equivalent.

The format specification .11 is often useful for forcing a number
to be printed in radix 10 (but not otherwise specially formatted),
independent of the current setting of RADIX.

[PRINTOUT command]

.N FORMAT NUMBER

Specifies floating-number printing. Like the .| format command,
except translates with a FLOAT format-list.

[PRINTOUT command]

25.6.5 Escaping to Lisp

The .1 and .F commands specify calls to PRINTNUM with quoted
format specifications. The .N command translates as (PRINTNUM
FORMAT NUMBER), i.e., it permits the format to be the value of
some expression. Note that, unlike the . and .F commands,
FORMAT is a separate element in the command list, not part of
an atom beginning with .N.

FORM

There are many reasons for taking control away from PRINTOUT
in the middle of a long printing expression. Common situations
involve temporary changes to system printing parameters (e.g.
LINELENGTH), conditional printing (e.g. print FOO only if FIEis T),
or lower-level iterative printing within a higher-level print
specification.

[PRINTOUT command]

The escape command. FORM is an arbitrary Lisp expression that
is evaluated within the context established by the PRINTOUT
form, i.e., FORM can assume that the primary output stream has
been set to be the FILE argument to PRINTOUT. Note that
nothing is done with the value of FORM; any printing desired is
accomplished by FORM itself, and the value is discarded.

25.30

INPUT/QUTPUT FUNCTIONS

PRINTOUT

25.6.6 User-Defined Commands

Note: Although PRINTOUT logically encloses its translation in a
RESETFORM (page 14.26) to change the primary output file to
the FILE argument (if non-NIL), in most cases it can actually pass
FILE (or a locally bound variable if FILE is a non-trivial expression)
to each printing function. Thus, the RESETFORM is only
generated when the # command is used, or user-defined
commands (below) are used. If many such occur in repeated
PRINTOUT forms, it may be more efficient to embed them allin a
single RESETFORM which changes the primary output file, and
then specify FILE = NIL in the PRINTOUT expressions themselves.

PRINTOUTMACROS

The collection of commands and options outlined above is aimed
at fulfilling all common printing needs. However, certain
applications might have other, more specialized printing idioms,
so a facility is provided whereby the user can define new
commands. This is done by adding entries to the global list
PRINTOUTMACROS to define how the new commands are to be
translated.

[Variable]

PRINTOUTMACROS is an association-list whose elements are of
the form (COMM FN). Whenever COMM appears in command
position in the sequence of PRINTOUT commands (as opposed to
an argument position of another command), FN is applied to the
tail of the command-list (including the command).

After inspecting as much of the tail as necessary, the function
must return a list whose CAR is the translation of the
user-defined command and its arguments, and whose CDR is the
list of commands still remaining to be translated in the normal
way.

For example, suppose the user wanted to define a command "?",
which will cause its single argument to be printed with PRIN1
only if it is not NIL. This can be done by entering (? ?TRAN) on
PRINTOUTMACROS, and defining the function 2TRAN as follows:

(DEFINEQ (?TRAN (COMS)
(CONS
(SUBST (CADR COMS) ‘ARG
'(PROG ((TEMP ARG))
(COND (TEMP (PRIN1 TEMP)))))
(CDDR COMS))]

Note that 2TRAN does not do any printing itself; it returns a form
which, when evaluated in the proper context, will perform the

INPUT/OUTPUT FUNCTIONS

25.31

PRINTOUT

25.6.7 Special Printing Functions

desired action. This form should direct all printing to the primary
output file.

The paragraph printing commands are translated into calls on
the function PRINTPARA, which may also be called directly:

(PRINTPARA LMARG RMARG LIST P2FLAG PARENFLAG FILE) [Function]

Prints LIST on FILE in line-filled paragraph format with its first
element beginning at the current line position and ending at or
before RMARG, and with subsequent lines appearing between
LMARG and RMARG. If P2FLAG is non-NIL, prints elements using
PRIN2, otherwise PRIN1. If PARENFLAG is non-NiL, then
parentheses will be printed around the elements of L/ST.

If LMARG is zero or positive, it is interpreted as an absolute
column position. If it is negative, then the left margin will be at
|[LMARG]| + (POSITION). If LMARG = NIL, the left margin will be at
(POSITION), and the paragraph will appear in block format.

if RMARG is positive, it also is an absolute column position (which
may be greater than the current (LINELENGTH)). Otherwise, itis
interpreted as relative to. (LINELENGTH), i.e., the right margin
will be at (LINELENGTH) +|RMARG|. Example: (TAB 10)
(PRINTPARA 5 -5 LST T) will PRIN2 the elements of LST in a
paragraph with the first line beginning at column 10,
subsequent lines beginning at column 5, and all lines ending at
or before (LINELENGTH)-5.

The current (LINELENGTH) is unaffected by PRINTPARA, and
upon completion, FILE will be positioned immediately after the
last character of the last item of LIST. PRINTPARA is a no-op if
LIST is not a list.

The right-flushing and centering commands translate as calls to
the function FLUSHRIGHT:

(FLUSHRIGHT POS X MIN P2FLAG CENTERFLAG FILE) [Function]

If CENTERFLAG = NIL, prints X right-flushed against position POS
on FILE; otherwise, centers X between the current line position
and POS. Makes sure that it spaces over at least MIN spaces
before printing by doing a TERPRI if necessary; MIN=NIL is
equivalent to MIN=1. A positive POS indicates an absolute
position, while a negative POS signifies the position which is
[POS| to the right of the current line position. POS=0 is
interpreted as (LINELENGTH), the right margin.

25.32

INPUT/QUTPUT FUNCTIONS

READFILE AND WRITEFILE

25.7 READFILE and WRITEFILE

For those applications where the user simply wants to simply
read all of the expressions on a file, and not evaluate them, the
function READFILE is available:

(READFILE FILE RDTBL ENDTOKEN) ‘ [NoSpread Function]
' Reads successive expressions from file using READ (with read
table RDTBL) until the single litatom ENDTOKEN is read, or an

end of file encountered. Returns a list of these expressions.

If RDTBL is not specified, it defaults to FILERDTBL. If ENDTOKEN
is not specified, it defaults to the litatom STOP.

(WRITEFILE X FILE) ' [Function]
Writes a date expression onto FILE, followed by successive
expressions from X, using FILERDTBL as a read table. If X is
atomicg, its value is used. If FILE is not open, itis opened. If FILE is
a list, (CAR FILE) is used and the file is left opened. Otherwise,
when X is finished, the litatom STOP is printed on FILE and it is
closed. Returns FILE.

(ENDFILE FILE) [Function]
Prints STOP on FILE and closes it.

25.8 Read Tables

Many Interlisp input functions treat certain characters in special
ways. For example, READ recognizes that the right and left
parenthesis characters are used to specify list structures, and that
the quote character is used to delimit text strings. The Interlisp
input and (to a certain extent) output routines are table driven
by read tables. Read tables are objects that specify the syntactic
properties of characters for input routines. Since the input
routines parse character sequences into objects, the read table in
use determines which sequences are recognized as literal atoms,
strings, list structures, etc.

Most Interlisp input functions take an optional read table
argument, which specifies the read table to use when reading an
expression. If NiIL is given as the read table, the "primary read
table" is used. If T is specified, the system terminal read table is
used. Some functions will also accept the atom ORIG (not the
value of ORIG) as indicating the "“original" system read table.
Some output functions also take a read table argument. For

INPUT/QUTPUT FUNCTIONS 25.33

READ TABLES

25.8.1 Read Table Functions

example, PRIN2 prints an expression so that it would be read in
correctly using a givenread table.

The Interlisp-D system uses the following read tables: T for
input/output from terminals, the value of FILERDTBL for
input/output from files, the value of EDITRDTBL for input from
terminals while in the tty-based editor, the value of DEDITRDTBL
for input from terminals while in the display-based editor, and
the value of CODERDTBL for input/output from compiled files.
These five read tables are initially copies of the ORIG read table,
with changes made to some of them to provide read macros
(page 25.39) that are specific to terminal input or file input.
Using the functions described below, the user may further
change, reset, or copy these tables. However, in the case of
FILERDTBL and CODERDTBL, the user is cautioned that changing
these tables may prevent the system from being able to read files
made with the original tables, or prevent users possessing only
the standard tables from reading files made using the modified
tables.

The user can also create new read tables, and either explicitly
pass them to input/output functions as arguments, or install
them as the primary read table, via SETREADTABLE, and then not
specify a RDTBL argument, i.e., use NIL.

(READTABLEP RDTBL) [Function]
Returns RDTBL if RDTBL is a real read table (not T or ORIG),
otherwise NIL.

(GETREADTABLE RDTBL) {Function]
If RDTBL =NIL, returns the primary read table. If RDTBL=T,
returns the system terminal read table. if RDTBL is a real read
table, returns RDTBL. Otherwise, generates an ILLEGAL
READTABLE error.

(SETREADTABLE RDTBL FLG) [Function]

Sets the primary read table to RDTBL. If FLG=T, SETREADTABLE
sets the system terminal read table, T. Note that the user can
reset the other system read tables with SETQ, e.g., (SETQ
FILERDTBL (GETREADTABLE)).

Generates an ILLEGAL READTABLE error if RDTBL is not NIL, T, or
a real read table. Returns the previous setting of the primary
read table, so SETREADTABLE is suitable for use with
RESETFORM (page 14.26).

25.34

INPUT/QUTPUT FUNCTIONS

READ TABLES

(COPYREADTABLE RDTBL) [Function]
Returns a copy of RDTBL. RDTBL can be a real read table, NIL, T,
or ORIG (in which case COPYREADTABLE returns a copy of the
original system read table), otherwise COPYREADTABLE
generates an ILLEGAL READTABLE error.

Note that COPYREADTABLE is the only function that creates a
read table.

(RESETREADTABLE RDTBL FROM) [Function]

25.8.2 Syntax Classes

Copies (smashes) FROM into RDTBL. FROM and RDTBL can be
NIL, T, or a real read table. In addition, FROM can be ORIG,
meaning use the system's original read table.

LEFTPAREN
RIGHTPAREN
LEFTBRACKET

RIGHTBRACKET

STRINGDELIM

ESCAPE

BREAKCHAR

SEPRCHAR

OTHER

A read table is an object that contains information about the
“syntax class" of each character. There are nine basic syntax
classes: LEFTPAREN, RIGHTPAREN, LEFTBRACKET,
RIGHTBRACKET, STRINGDELIM, ESCAPE, BREAKCHAR,
SEPRCHAR, and OTHER, each associated with a primitive
syntactic property. In addition, there is an unlimited assortment
of user-defined syntax classes, known as “read macros". The
basic syntax classes are interpreted as follows:

(normally left parenthesis) Begins list structure.
(normally right parenthesis) Ends list structure.

(normally left bracket) Begins list structure. Also matches
RIGHTBRACKET characters.

(normally left bracket) Ends list structure. Can close an arbitrary
numbers of LEFTPAREN lists, back to the last LEFTBRACKET.

(normally double quote) Begins and ends text strings. Within
the string, all characters except for the one(s) with class ESCAPE
are treated as ordinary, i.e., interpreted as if they were of syntax
class OTHER. Toinclude the string delimiter inside a string, prefix
it with the ESCAPE character.

(normally percent sign) Inhibits any special interpretation of the
next character, i.e., the next character isinterpreted to be of class
OTHER, independent of its normal syntax class.

(None initially) Is a break character, i.e., delimits atoms, but is
otherwise an ordinary character.

(space, carriage return, etc.) Delimits atoms, and is otherwise
ignored.

Characters that are not otherwise special belong to the class
OTHER.

INPUT/QUTPUT FUNCTIONS

25.35

READ TABLES

(GETSYNTAX CH TABLE)

Characters of syntax class LEFTPAREN, RIGHTPAREN,
LEFTBRACKET, RIGHTBRACKET, and STRINGDELIM are all break
characters. That is, in addition to their interpretation as
delimiting list or string structures, they also terminate the
reading of an atom. Characters of class BREAKCHAR serve only
to terminate atoms, with no other special meaning. In addition,
if a break character is the first non-separator encountered by
RATOM, it is read as a one-character atom. In order for a break
character to be included in an atom, it must be preceded by the
ESCAPE character.

Characters of class SEPRCHAR also terminate atoms, but are
otherwise completely ignored; they can be thought of as
logically spaces. As with break characters, they must be preceded
by the ESCAPE character in order to appear in an atom.

For example, if $ were a break character and * a separator
character, the input stream ABC**DEF$GH*$$ would be read by
6 calls to RATOM returning respectively ABC, DEF, $, GH, $, $.

Although normally there is only one character in a read table
having each of the list- and string-delimiting syntax classes (such
as LEFTPAREN), it is perfectly acceptable for any character to
have any syntax class, and for more than one to have the same
class.

Note that a "syntax class" is an abstraction: there is no object
referencing a collection of characters called a syntax class.
Instead, a read table provides the association between a
character and its syntax class, and the input/output routines
enforce the abstraction by using read tables to drive the parsing.

The functions below are used to obtain and set the syntax class
of a character in a read table. CH can either be a character code
(a integer), or a character (a single-character atom). Single-digit
integers are interpreted as character codes, rather than as
characters. For example, 1 indicates control-A, and 49 indicates
the character 1. Note that CH can be a full sixteen-bit NS
character (see page 2.12).

Note: Terminal tables, described on page 30.4, also associate
characters with syntax classes, and they can also be manipulated
with the functions below. The set of read table and terminal
table syntax classes are disjoint, so there is never any ambiguity
about which type of table is being referred to.

[Function]

Returns the syntax class of CH, a character or a character code,
with respect to TABLE. TABLE can be NIL, T, ORIG, or a real read
table or terminal table.

CH can also be a syntax class, in which case GETSYNTAX returns a
list of the character codesin TABLE that have that syntax class.

25.36

INPUT/OUTPUT FUNCTIONS

READ TABLES

(SETSYNTAX CHAR CLASS TABLE) [Function]

Sets the syntax class of CHAR, a character or character code, in
TABLE. TABLE can be either NIL, T, or a real read table or
terminal table. SETSYNTAX returns the previous syntax class of
CHAR. CLASS can be any one of the following:

The name of one of the basic syntax classes.
Alist, which is interpreted as a read macro (see page 25.39).

NIL, T, ORIG, or a real read table or terminal table, which means
to give CHAR the syntax class it has in the table indicated by
CLASS. For example, (SETSYNTAX '%('ORIG TABLE) gives the left
parenthesis character in TABLE the same syntax class that it hasin
the original system read table.

A character code or character, which means to give CHAR the
same syntax class as the character CHAR in TABLE. For example,
(SETSYNTAX '{ '%[TABLE) gives the left brace character the
same syntax class as the left bracket.

(SYNTAXP CODE CLASS TABLE) [Function]

CODE is a character code; TABLE is NIL, T, or a real read table or
terminal table. Returns T if CODE has the syntax class CLASS in
TABLE; NIL otherwise.

CLASS can also be a read macro type (MACRO, SPLICE, INFIX), or a
read macro option (FIRST, IMMEDIATE, etc.), in which case
SYNTAXP returns T if the syntax class is a read macro with the
specified property.

Note: SYNTAXP will not accept a character as an argument, only
a character code.

For convenience in use with SYNTAXP, the atom BREAK may be
used to refer to all break characters, i.e., it is the union of
LEFTPAREN, RIGHTPAREN, LEFTBRACKET, RIGHTBRACKET,
STRINGDELIM, and BREAKCHAR. For purely symmetrical reasons,
the atom SEPR corresponds to all separator characters. However,
since the only separator characters are those that also appear in
SEPRCHAR, SEPR and SEPRCHAR are equivalent.

Note that GETSYNTAX never returns BREAK or SEPR as a value
although SETSYNTAX and SYNTAXP accept them as arguments.
Instead, GETSYNTAX returns one of the disjoint basic syntax
classes that comprise BREAK. BREAK as an argument to
SETSYNTAX is interpreted to mean BREAKCHAR if the character
is not already of one of the BREAK classes. Thus, if %(is of class
LEFTPAREN, then (SETSYNTAX '%('BREAK) doesn't do anything,
since %(is already a break character, but (SETSYNTAX ‘%(
'BREAKCHAR) means make %(be just a break character, and
therefore disables the LEFTPAREN function of %(. Similarly, if
one of the format characters is disabled completely, e.g., by

INPUT/OUTPUT FUNCTIONS

25.37

READ TABLES

(GETSEPR RDTBL)

(SETSYNTAX '%('OTHER), then (SETSYNTAX '%('BREAK) would
make %({ be only a break character; it would not restore %(as
LEFTPAREN.

The following functions provide a way of collectively accessing
and setting the separator and break charactersin a read table:

[Function]

(GETBRK RDTBL)

Returns a list of separator character codes in RDTBL. Equivalent
to (GETSYNTAX 'SEPR RDTBL).

[Function]

(SETSEPR LST FLG RDTBL)

Returns a list of break character codes in RDTBL. Equivalent to
(GETSYNTAX ‘BREAK RDTBL).

[Function]

(SETBRK LSTFLG RDTBL)

Sets or removes the separator characters for RDTBL. LST is a list
of charactors or character codes. FLG determines the action of
SETSEPR as follows: If FLG = NIL, makes RDTBL have exactly the
elements of LST as separators, discarding from RDTBL any old
separator characters notin LST. If FLG =0, removes from RDTBL
as separator characters all elements of LST. This provides an
“UNSETSEPR". If FLG =1, makes each of the characters in LST be
a separator in RDTBL.

If LST=T, the separator characters are reset to be those in the
system's read table for terminals, regardless of the value of FLG,
i.e., (SETSEPR T) is equivalent to (SETSEPR (GETSEPR T)). if RDTBL
is T, then the characters are reset to those in the original system
table.

Returns NIL.

[Function]

Sets the break characters for RDTBL. Similar to SETSEPR.

’

As with SETSYNTAX to the BREAK class, if any of the list- or
string-delimiting break characters are disabled by an appropriate
SETBRK (or by making it be a separator character), its special
action for READ will not be restored by simply making it be a
break character again with SETBRK. However, making these
characters be break characters when they already are will have
no effect.

The action of the ESCAPE character (normally %) is not affected
by SETSEPR or SETBRK. It can be disabled by setting its syntax to
the class OTHER, and other characters can be used for escape on
input by assigning them the class ESCAPE. As of this writing,
however, there is no way to change the output escape character;
itis "hardwired” as %. That is, on output, characters of special

25.38

INPUT/QUTPUT FUNCTIONS

READ TABLES

(ESCAPE FLG RDTBL)

syntax that need to be preceded by the ESCAPE character will
always be preceded by %, independent of the syntax of % or
which, if any characters, have syntax ESCAPE.

_The following function can be used for defeating the action of

the ESCAPE character or characters:

[Function]

25.8.3 Read Macros

If FLG=NIL, makes characters of class ESCAPE behave like
characters of class OTHER on input. Normal setting is (ESCAPE T).
ESCAPE returns the previous setting.

MACRO

SPLICE

INFIX

Read macros are user-defined syntax classes that can cause
complex operations when certain characters are read. Read
macro characters are defined by specifying as a syntax class an
expression of the form:

(TYPE OPTIONj ... OPTION FN)

where TYPE is one of MACRO, SPLICE, or INFIX, and FN is the
name of a function or a lambda expression. Whenever READ
encounters a read macro character, it calls the associated
function, giving it as arguments the input stream and read table
being used for that call to READ. The interpretation of the value
returned depends on the type of read macro:

This is the simplest type of read macro. The result returned from
the macro is treated as the expression to be read, instead of the
read macro character. Often the macro reads more input itself.
For example, in order to cause "EXPR to be read as (NOT EXPR),
one could define ~ as the read macro:

[MACRO (LAMBDA (FL RDTBL)
(LIST'NOT (READ FL RDTBL]

The result (which should be a list or NIL) is spliced into the input
using NCONC. For example, if $ is defined by the read macro:

(SPLICE (LAMBDA NIL (APPEND FOO)))

and the value of FOO is (A B C), then when the user inputs (X $
Y), theresult willbe (XABCY).

The associated function is called with a third argument, which is
a list, in TCONC format (page 3.6), of what has been read at the
current level of list nesting. The function's value is taken as a
new TCONC list which replaces the old one. For example, the
infix operator + could be defined by the read macro:

(INFIX (LAMBDA (FL RDTBL 2)
(RPLACA (CDR 2)
(LIST(QUOTE IPLUS)

INPUT/OUTPUT FUNCTIONS

25.39

READ TABLES

ALWAYS

FIRST

ALONE

ESCQUOTE or ESC

NOESCQUOTE or NOESC

(CADR Z)
(READ FL RDTBL)))
2))

If an INFIX read macro character is encountered not in a list, the
third argument to its associated function is NIL. If the function
returns NIL, the read macro character is essentially ignored and
reading continues. Otherwise, if the function returns a TCONC
list of one element, that element is the value of the READ. If it
returns a TCONC list of more than one element, the list is the
value of the READ.

The specification for a read macro character can be augmented
to specify various options OPTION; ... OPTIONy;, e.g., (MACRO
FIRST IMMEDIATE FN). The following three disjoint options
specify when the read macro character is to be effective:

The default. The read macro character is always effective (except
when preceded by the % character), and is a break character, i.e.,
a member of (GETSYNTAX '‘BREAK RDTBL).

The character is interpreted as a read macro character only when
it is the first character seen after a break or separator character;
in all other situations, the character is treated as having class
OTHER. The read macro character is not a break character. For
example, the quote character is a FIRST read macro character, so
that DON'T is read as the single atom DON'T, rather than as DON
followed by (QUOTET).

The read macro character is not a break character, and is
interpreted as a read macro character only when the character
would have been read as a separate atom if it were not a read
macro character, i.e., when its immediate neighbors are both
break or separator characters.

Making a FIRST or ALONE read macro character be a break
character (with SETBRK) disables the read macro interpretation,
i.e., converts it to syntax class BREAKCHAR. Making an ALWAYS
read macro character be a break characteris a no-op.

The following two disjoint options control whether the read
macro character is to be protected by the ESCAPE character on
output when alitatom containing the character is printed:

The default. When printed with PRIN2, the read macro character
will be preceded by the output escape character (%) as needed
to permit the atom containing it to be read correctly. Note that
for FIRST macros, this means that the character need be quoted
only when it is the first character of the atom.

The read macro character will always be printed without an
escape. For example, the ? read macro in the T read table is a
NOESCQUOTE character. Unless you are very careful what you
are doing, read macro characters in FILERDTBL should never be

25.40

INPUT/QUTPUT FUNCTIONS

READ TABLES

IMMEDIATE or IMMED

NONIMMEDIATE or NONIMMED

NOESCQUOTE, since symbols that happen to contain the read
macro character will not read back in correctly.

The following two disjoint options control when the macro's
function is actually executed:

The read macro character is immediately activated, i.e., the
current line is terminated, as if an EOL had been typed, a
carriage-return line-feed is printed, and the entire line (including
the macro character) is passed to the input function.

IMMEDIATE read macro characters enable the user to specify a
character that will take effect immediately, as soon as it is

encountered in the input, rather than waiting for the line tobe ™ -

terminated. Note that this is not necessarily as soon as the
character is typed. Characters that cause action as soon as they
are typed are interrupt characters (see page 30.1).

Note that since an IMMEDIATE macro causes any input before it
to be sent to the reader, characters typed before an IMMEDIATE
read macro character cannot be erased by control-A or control-Q
once the IMMEDIATE character has been typed, since they have
already passed through the line buffer. However, an INFIX read
macro can still alter some of what has been typed earlier, via its
third argument.

The default. The read macro character is a normal character with
respect to the line buffering, and so will not be activated until a
carriage-return or matching right parenthesis or bracket is seen.

Making a read macro character be both ALONE and IMMEDIATE
is a contradiction, since ALONE requires that the next character
be input in order to see if it is a break or separator character.
Thus, ALONE read macros are always NONIMMEDIATE,
regardless of whether or not IMMEDIATE is specified.

Read macro characters can be "nested”. For example, if = is
defined by

(MACRO (LAMBDA (FL RDTBL)
(EVAL (READ FL RDTBL))))

and !is defined by

(SPLICE (LAMBDA (FLRDTBL)
(READ FL RDTBL)))

then if the value of FOO is (AB C), and (X = FOO Y)isinput, (X (A
B C) Y) will be returned. If (X!=FOO Y)isinput, (XABCY)will
be returned.

Note: If a read macro's function calls READ, and the READ
returns NIL, the function cannot distinguish the case where a
RIGHTPAREN or RIGHTBRACKET followed the read macro
character, (e.g. "(A B ')"), from the case where the atom NIL (or
"()") actually appeared. In interlisp-D, a READ inside of a read
macro when the next input character is a RIGHTPAREN or

INPUT/QUTPUT FUNCTIONS .

25.41

READ TABLES

(INREADMACROP)

RIGHTBRACKET reads the character and returns NIL, just as if the
READ had not occurred inside a read macro.

If a call to READ from within a read macro encounters an
unmatched RIGHTBRACKET within a list, the bracket is simply put
back into the buffer to be read (again) at the higher level. Thus,
inputting an expression such as (A B '(C D] works correctly.

[Function]

(READMACROS FLG RDTBL)

Returns NIL if currently not under a read macro function,
otherwise the number of unmatched left parentheses or
brackets.

[Function]

' (single-quote)

control-Y

* (backquote)

If FLG = NIL, turns off action of read macros in read table RDTBL.
If FLG =T, turns them on. Returns previous setting.

The following read macros are standardly defined in Interlisp in
the T and EDITRDTBL read tabies:

Returns the next expression, wrapped in a cail to QUOTE; e.g.,
'FOO reads as (QUOTE FOO). The macro is defined as a FIRST
read macro, so that the quote character has no effect in the
middle of a symbol. The macro is also ignored if the quote
character is immediately followed by a separator character.

Defined in T and EDITRDTBL. Returns the result of evaluating
the next expression. For example, if the value of FOO is (A B),
then (LIST 1 control-YFQO 2) is read as (LIST 1 (A B) 2). Note that
no structure is copied; the third element of that input expression
is still EQ to the value of FOO. Control-Y can thus be used to read
structures that ordinarily have no read syntax. For example, the
value returned from reading (KEY1 control-Y(ARRAY 10)) has an
array as its second element. Control-Y can be thought of as an
"un-quote” character. The choice of character to perform this
function is changeable with SETTERMCHARS (page 16.75).

Backquote makes it easier to write programs to construct
complex data structures. Backquote is like quote, except that
within the backquoted expression, forms can be evaluated. The
general idea is that the backquoted expression is a "template"”
containing some constant parts (as with a quoted form) and
some parts to be filled in by evaluating something. Unlike with
control-Y, however, the evaluation occurs not at the time the
form is read, but at the time the backquoted expression is
evaluated. That is, the backquote macro returns an expression
which, when evaluated, produces the desired structure.

Within the backquoted expression, the character ",” (comma)
introduces a form to be evaluated. The value of a form preceded
by ".@" is to be spliced in, using APPEND. If it is permissible to

25.42

INPUT/QUTPUT FUNCTIONS

READ TABLES

| (vertical bar)

destroy the list being spliced in (i.e., NCONC may be used in the

translation), then “,." can be used instead of *,@".

For example, if the value of FOO is (1 2 3 4), then the form
‘(A (CARFOO) ,@(CDDR FOO) D E)

evaluatesto(A 134 DE); itislogically equivalent to writing

(CONS'A
(CONS (CAR FOO)
(APPEND (CDDR FOO) ‘(D E))))

Backquote is particularly useful for writing macros. For example,
the body of a macro that refers to X as the macro's argument list
might be

‘(COND
((FIXP ,(CAR X))
{CADR X))
(T..(CDDR X))

which is equivalent to writing

(LIST'COND
(LIST (LIST 'FIXP (CAR X))
{(CADR X))
(CONS 'T(CDDR X)))

Note that comma does not have any special meaning outside of a
backquote context.

For users without a backquote character on their keyboards,
back quote can also be written as |' (vertical-bar, quote).

iImplements the ?= command for on-line help regarding the
function currently being "called” in the typein (see page 26.33).

When followed by an end of line, tab or space, | is ignored, i.e.,
treated as a separator character, enabling the editor's
CHANGECHAR feature (page 26.49). Otherwise it is a
“dispatching” read macro whose meaning depends on the
character(s) following it. The following are currently defined:

* (quote) -- A synonym for backquote.

. (period) -- Returns the evaluation of the next expression, i.e.,
this is a synonym for control-Y.

. (comma) -- Returns the evaluation of the next expression at
load time, i.e., the following expression is quoted in such a
manner that the compiler treats it as a literal whose value is not
determined until the compiled expression is loaded.

0 or o (the letter O) -- Treats the next number as octal, i.e., reads
itinradix 8. For example,|012 = 10 (decimal).

B or b -- Treats the next number as binary, i.e., reads it in radix 2.
For example, |b101 = 5 (decimal).

INPUT/OUTPUT FUNCTIONS

25.43

READ TABLES

X or x -- Treats the next number as hexadecimal, i.e., reads it in
radix 16. The upper-case letters A though F are used as the digits
after 9. For example, |x1A = 26 (decimal).

R or r -- Reads the next number in the radix specified by the
(decimal) number that appears between the | and the R. When
inputting a number in a radix above ten, the upper-case letters A
through Z can be used as the digits after 9 (but there is no digit
above Z, so it is not possible to type all base-99 digits). For
example, [3r120 reads 120 in radix 3, returning 15.

(. {, T - Used internally by HPRINT and HREAD (page 25.17)to
print and read unusual expressions.

The dispatching characters that are letters can appear in either
upper or lower case.

25.44

INPUT/QUTPUT FUNCTIONS

TABLE OF CONTENTS

26. User Input/Output Packages 26.1
26.1. Inspector 26.1
26.1.1. Calling the Inspector 26.2
26.1.2. Multiple Ways of Inspecting 26.2
26.1.3. Inspect Windows 26.3
26.1.4. Inspect Window Commands 26.4
26.1.5. Interaction With Break Windows 26.5
26.1.6. Controlling the Amount Displayed During Inspection
26.5
26.1.7. Inspect Macros 26.6
26.1.8. INSPECTWs 26.6
26.2. PROMPTFORWORD 269
26.3. ASKUSER 26.12
26.3.1. Formatof KEYLST 26.13
26.3.2. Options 26.15
26.3.3. Operation 26.17
26.3.4. Completing a Key 26.18
26.3.5. Special Keys 26.19
26.3.6. Startup Protocol and Typeahead 26.20
26.4. TTYIN Display Typein Editor 26.22
26.4.1. Entering Input With TTYIN 26.22
26.4.2. Mouse Commands [Interlisp-D Only] . .26.24
26.4.3. Display Editing Commands 26.25
26.4.4. Using TTYIN for Lisp Input 26.28
26.4.5. Useful Macros 26.29
26.4.6. Programming With TTYIN 26.29
26.4.7. Using TTYIN as a General Editor 26.32
26.4.8. ?= Handler 26.33
26.4.9. Read Macros 26.34

TABLE OF CONTENTS TOC.

TABLE OF CONTENTS

26.4.10. Assorted Flags 25.36
26.4.11. Special Responses 26.38
26.4.12. Display Types 26.38
26.5. Prettyprint 26.39
26.5.1. Comment Feature 26.42
26.5.2. Comment Pointers 26.44
26.5.3. Converting Comments to Lower Case 26.46
26.5.4. Special Prettyprint Controls 26.47

TOC.2

TABLE OF CONTENTS

26. USER INPUT/OUTPUT PACKAGES

This chapter presents a number of packages that have been
developed for displaying and allowing the user to enter
information. These packages are used to implement the user
interface of many system facilities.

The Inspector (below) provides a window-based facility for
displaying and changing the fields of a data object.

PROMPTFORWORD (page 26.9) is a function used for entering a
simple string of characters. Basic editing and prompting facilities
are provided.

ASKUSER (page 26.12) provides a more complicated prompﬁng
and answering facility, allowing a series of questions to be
printed. Prompts and argument completion are supported.

TTYIN (page 26.22) is a display typein editor, that provides
complex text editing facilities when entering an input line.

PRETTYPRINT (page 26.40) is used for printing function
definitions and other list structures, using multiple fonts and
indenting lines to show the structure of the list.

26.1 Inspector

The Inspector provides a display-oriented facility for looking at
and changing arbitrary Interlisp-D data structures. The inspector
can be used to inspect all user datatypes and many system
datatypes (although some objects such as numbers have no
inspectable structure). The inspector displays the field names
and values of an arbitrary object in a window that allows setting
of the properties and further inspection of the values. This latter
feature makes it possible to "walk" around all of the data
structures in the system at the touch of a button. In addition, the
inspector is integrated with the break package to allow
inspection of any object on the stack and with the display and
teletype structural editors to allow the editors to be used to
“inspect" list structures and the inspector to "edit" datatypes.

The underlying mechanisms of the data inspector have been
designed to allow their use as specialized editors in user
applications. This functionality is described at the end of this
section.

USER INPUT/OUTPUT PACKAGES

26.1

INSPECTOR

26.1.1 Calling the Inspector

Note: Currently, the inspector does not have UNDQing. Also,
variables whose values are changed will not be marked as such.

There are several ways to open an inspect window onto an
object. In addition to calling INSPECT directly (below), the
inspector can also be called by buttoning an Inspect command
inside an existing inspector window. Finally,if a non-list is edited
with EDITDEF (page 17.27), the inspector is called. This also
causes the inspector to be called by the Dedit command from the
display editor or the EV command from the teletype editor if the
selected piece of structure is a non-list.

(INSPECT OBJECT ASTYPE WHERE) [Function]

Creates an inspect window onto OBJECT. If ASTYPE is given, it
will be taken as the record type of OBJECT. This allows records to
be inspected with their property names. If ASTYPE is NIL, the
data type of OBJECT will be used to determine its property
names in the inspect window.

WHERE specifies the location of the inspect window. f WHERE is
NIL, the user will be prompted for a location. If WHERE is a
window, it will be used as the inspect window. If WHERE is a
region, the inspect window will be created in that region of the
screen. |f WHERE is a position, the inspect window will have its
lower left corner at that position on the screen.

INSPECT returns the inspect window onto OBJECT, or NIL if no
inspection took place.

(INSPECTCODE FN WHERE — — — —) [Function]

26.1.2 Multiple Ways of Inspecting

Opens a window and displays the compiled code of the function
FN using PRINTCODE. The window is scrollable.

WHERE determines where the window should appear. it can be
a position, a region, or a window. If NIL, the user is prompted to
specify the position of the window.

Note: If the Teditlibrary package is loaded, INSPECTCODE uses it
to create the code inspector window. Also, if INSPECTCODE is
called toinspect the frame name in a break window (page 14.3),
the location in the code that the frame's PC indicates it was
executing at the time is highlighted.

For some datatypes there is more than one aspect that is of
interest or more than one method of inspecting the object. In

26.2

USER INPUT/OUTPUT PACKAGES

INSPECTOR

FNS
VARS
PROPS

inspect

TtyEdit
DisplayEdit
As a PLIST

As an ALIST

As arecord

" Asa "record type”

26.1.3 Inspect Windows

these cases, the inspector will bring up a menu of the possibilities
and wait for the user to select one.

If the object is a litatom, the commands are the types for which
the litatom has definitions as determined by HASDEF. Some
typical commands are:

Edit the definition of the selected litatom.
Inspect the value.
Inspect the property list.

If the object is a list, there will be choice of how to inspect the
list:

Opens an inspect window in which the properties are numbers
and the values are the elements of the list.

Calls the teletype list structure editor on the list (page 16.1).
Calls the DEdit display editor on the list (page 16.1).

Inspecfs the list as a property list, if the listis in property list form:
((PROP; VALY) ... (PROPp VALpN)).

Inspects the list as an association-list, if the list is in ASSOC list
form: (PROP¢ VALj ... PROPp VALp).

Brings up a submenu with all of the RECORDs in the system and
inspect the list with the one chosen.

Inspects the list as the record of the type named in its CAR, if the
CAR of the list is the name of a TYPERECORD (page 8.7).

If the object is a bitmap, the choice is between inspecting the
bitmap's contents with the bitmap editor (EDITBM) or inspecting
the bitmap's fields.

Other datatypes may include multiple methods for inspecting
objects of that type.

An inspect window displays two columns of values. The lefthand
column lists the property names of the structure being inspected.
The righthand column contains the values of the properties
named on the left. For variable length data such as lists and
arrays, the "property names" are numbers from 1 to the length
of the inspected item and the values are the corresponding
elements. For arrays, the property names are the array element
numbers and the values are the corresponding elements of the
array.

For large lists or arrays, or datatypes with many fields, the initial
window may be too small to contain all of them. In these cases,
the unseen elements can be scrolled into view (from the bottom)
or the window can be reshaped to increase its size.

USER INPUT/OUTPUT PACKAGES

26.3

INSPECTOR

26.1.4 Inspect Window Commands

In an inspect window, the LEFT button is used to select things,
the MIDDLE button to invoke commands that apply to the:
selected item. Any property or value can be selected by pointing
the cursor directly at the text representing it, and clicking the
LEFT button. There is one selected item per window and it is
marked by having its surrounding box inverted.

The options offered by the MIDDLE button depend on whether
the selection is a property or a value. If the selected item is a
value, the options provide different ways of inspecting the
selected structure. The exact commands that are given depend
on the type of the value. '

If the selected item is a property name, the command SET will
appear. |If selected, the user will be asked to type in an
expression, and the selected property will be set to the result of
evaluating the read form. The evaluation of the read form and
the replacement of the selected item property will appear as
their own history events and are individually undoable.
Properties of system datatypes cannot be set. (There are often
consistency requirements which can be inadvertently violated in
ways that crash the system. This may be true of some user
datatypes as well, however the system doesn't know which ones.
Users are advised to exercise caution.)

It is possible to copy-select property names or values out of an
inspect window. Litatoms, numbers and strings are copied as
they are displayed. Unprintable objects (such as bitmaps, etc.)
come out as an appropriate system expression, such that if is
evaluated, the object is re-created.

ReFetch

By pressing the MIDDLE button in the title of the inspect
window, a menu of commands that apply to the inspect window
is brought up:

[Inspect Window Command]

ITe—datum

An inspect window is not automatically updated when the
structure it is inspecting is changed. The “ReFetch" command
will refetche and redisplay all of the fields of the object being
inspected in the inspect window.

[Inspect Window Command]

Sets the variable IT to object being inspected in the inspect
window.

26.4

USER INPUT/OUTPUT PACKAGES

INSPECTOR

ITeselection

[Inspect Window Command]

Sets the variable IT to the property name or value currently
selected in the inspect window.

26.1.5 Interaction With Break Windows

The break window facility (page 14.3) knows about the inspector
in the sense that the backtrace frame window is an inspect
window onto the frame selected from the back trace menu
during a break. Thus you can call the inspector on an object that
is bound on the stack by selecting its frame in the back trace
menu, selecting its value with the LEFT button in the back trace
frame window, and selecting the inspect command with the
MIDDLE button in the back trace frame window. The values of
variables in frames can be set by selecting the variable name with
the LEFT button and then the “Set" command with the MIDDLE
button.

Note: The inspector will only allow the setting of named
variables. Even with this restriction it is still possible to crash the
system by setting variables inside system frames. Exercise caution
in setting variables in other than your own code.

26.1.6_Controlling the Amount Displayed During Inspection

MAXINSPECTCDRLEVEL

The amount of information displayed during inspection can be
controlled using the following variables:

[Variable]

MAXINSPECTARRAYLEVEL

The inspector prints only the first MAXINSPECTCDRLEVEL
elements of a long list, and will make the tail containing the
unprinted elements the last item. The last item can be inspected
to see further elements. Initially 50.

[Variable]

INSPECTPRINTLEVEL

The inspector prints only the first MAXINSPECTARRAYLEVEL
elements of an array. The remaining elements can be inspected
by calling the function (INSPECT/ARRAY ARRAY BEGINOFFSET)
which inspects the BEGINOFFSET through the BEGINOFFSET +
MAXINSPECTARRAYLEVEL elements of ARRAY. Initially 300.

[Variable]

When printing the values, the inspector resets PRINTLEVEL (page
25.11) to the value of INSPECTPRINTLEVEL. Initially (2.5).

USER INPUT/QUTPUT PACKAGES

26.5

INSPECTOR

INSPECTALLFIELDSFLG [Variable]
If INSPECTALLFIELDSFLG is T, the inspector will show computed®
fields (ACCESSFNS, page 8.12) as well as regular fields for
structures that have a record definition. Initially T.

26.1.7 Inspect Macros

The Inspector can be extended to inspect new structures and
datatypes by adding entries to the list INSPECTMACROS. An
entry should be of the form (OBJECTTYPE . INSPECTINFO).
OBJECTTYPE is used to determine the types of objects that are
inspected with this macro. If OBJECTTYPE is a litatom, the
INSPECTINFO will be used to inspect items whose type name is
OBJECTTYPE. If OBJECTTYPE is a list of the form (FUNCTION
DATUM-PREDICATE), DATUM-PREDICATE will be APPLYed to the
item and if it returns non-NIL, the INSPECTINFO will be used to
inspect the item.

INSPECTINFO can be one of two forms. If INSPECTINFO is a
litatom, it should be a function that will be applied to three
arguments (the item being inspected, OBJECTTYPE, and the
value of WHERE passed to INSPECT) that should do the
inspection. If INSPECTINFO is not a litatom, it should be a list of
(PROPERTIES FETCHFN STOREFN PROPCOMMANDFN
VALUECOMMANDFN TITLECOMMANDFN TITLE SELECTIONFN
WHERE PROPPRINTFN) where the elements of this list are the
arguments for INSPECTW.CREATE, described below. From this
list, the WHERE argument will be evaluated; the others will not.
If WHERE is NIL, the value of WHERE that was passed to INSPECT
will be used.

Examples:

The entry ((FUNCTION MYATOMP) PROPNAMES GETPROP
PUTPROP) on INSPECTMACROS would cause all objects satisfying
the predicate MYATOMP to have their properties inspected with
GETPROP and PUTPROP. In this example, MYATOMP should
make sure the object is a litatom.

The entry (MYDATATYPE . MYINSPECTFN) on INSPECTMACROS
would cause all datatypes of type MYDATATYPE to be passed to
the function MYINSPECTFN.

26.1.8 INSPECTWs

The inspector is built on the abstraction of an INSPECTW. An
INSPECTW is a window with certain window properties that
display an object and respond to selections of the object's parts.
It is characterized by an object and its list of properties. An
INSPECTW displays the object in two columns with the property

26.6 USER INPUT/OUTPUT PACKAGES

INSPECTOR

names on the left and the values of those properties on the right.
An INSPECTW supports the protocol that the LEFT mouse button
can be used to select any property name or property value and
the MIDDLE button calls a user provided function on the selected
value or property. For the Inspector application, this function
puts up a menu of the alternative ways of inspecting values or of
the ways of setting properties. INSPECTWSs are created with the
following function:

(INSPECTW.CREATE DATUM PROPERTIES FETCHFN STOREFN PROPCOMMANDFN

VALUECOMMANDFN TITLECOMMANDFN TITLE SELECTIONFN
WHERE PROPPRINTFN) [Function]

Creates an INSPECTW that views the object DATUM. If
PROPERTIES is a list, it is taken as the list of properties of DATUM
to display. If PROPERTIES is a litatom, it is APPLYed to DATUM
and the result is used as the list of properties to display.

FETCHFN is a function of two arguments (OBJECT PROPERTY)
that should return the value of the PROPERTY property of
OBJECT. The result of this function will be printed (with PRIN2)
inthe INSPECTW as the value.

STOREFN is a function of three arguments (OBJECT PROPERTY
NEWVALUE) that changes the PROPERTY property of OBJECT to
NEWVALUE. It is used by the default PROPCOMMANDFN and
VALUECOMMANDEFN to change the value of a property and also
by the function INSPECTW.REPLACE (described below). This can
be NIL if the user provides command functions which do not call
INSPECTW.REPLACE. Each replace action will be a separate event
on the history list. Users are encouraged to provide UNDOable
STOREFN:s.

PROPCOMMANDEFN is a function of three arguments (PROPERTY
OBJECT INSPECTW) which gets called when the user presses the
MIDDLE button and the selected item in the INSPECTW is a
property name. PROPERTY will be the name of the selected
property, OBJECT will be the datum being viewed, and
INSPECTW will be the window. If PROPCOMMANDEFN is a string,
it will get printed in the PROMPTWINDOW when the MIDDLE
button is pressed. This provides a convenient way to notify the
user about disabled commands on the properties.
DEFAULT.INSPECTW.PROPCOMMANDFN, the default
PROPCOMMANDEFN, will present a menu with the single
command Set on it. If selected, the Set command will read a
value from the user and set the selected property to the result of
EVALuating this read value.

VALUECOMMANDFN is a function of four arguments (VALUE
PROPERTY OBJECT INSPECTW) that gets called when the user
presses the MIDDLE button and the selected item in the

USER INPUT/QUTPUT PACKAGES

26.7

INSPECTOR

INSPECTW is a property value. VALUE will be the selected value
(as returned by FETCHFN), PROPERTY will be the name of the’
property VALUE is the value of, OBJECT will be the datum being
viewed, and INSPECTW will be the INSPECTW window.
DEFAULT.INSPECTW.VALUECOMMANDFN, the default
VALUECOMMANDEFN, will present a menu of possible ways of
inspecting the value and create a new Inspect window if one of
the menu items is selected.

TITLECOMMANDEFN is a function of two arguments (INSPECTW
OBJECT) which gets called when the user presses the MIDDLE
button and the cursor is in the title or border of the inspect
window INSPECTW. This command function is provided so that
users can implement commands that apply to the entire object.
The default TITLECOMMANDFN
(DEFAULT.INSPECTW.TITLECOMMANDFN) presents a menu with
the commands ReFetch, ITedatum, and IT«selection (see page
26.4).

TITLE specifies the title of the window. If TITLE is NIL, the title of
the window will be the printed form of DATUM followed by the
string " Inspector”. If TITLE is the litatom DON'T, the inspect
window will not have a title. If TITLE is any other litatom, it will
be applyed to the DATUM and the potential inspect window (if it
is known). If this result is the litatom DON'T, the inspect window
will not have a title; otherwise the result will be used as a title. If
TITLE is not a litatom, it will be used as the title.

SELECTIONFN is a function of three arguments (PROPERTY
VALUEFLG INSPECTW) which gets called when the user releases
the left button and the cursor is on one of the items. The
SELECTIONFN allows a program to take action on the user's
selection of an item in the inspect window. At the time this
function is called, the selected item has been "selected". The
function INSPECTW.SELECTITEM (described below) can be used
to turn off this selection. PROPERTY will be the name of the
property of the selected item. VALUEFLG will be NIL if the
selected item is the property name; T if the selected item is the
property value.

WHERE indicates where the inspect window should go. Its
interpretation is described in INSPECT (page 26.2). '

PROPPRINTFN is a function of two arguments (PROPERTY
DATUM) which gets called to determine what to print in the
property place for the property PROPERTY. I|f PROPPRINTFN
returns NIL, no property name will be printed and the value will
be printed to the left of the other values.

An inspect window uses the following window property names
to hold information: DATUM, FETCHFN, STOREFN,
PROPCOMMANDFN, VALUECOMMANDEFN, SELECTIONFN,

26.8

USER INPUT/QUTPUT PACKAGES

INSPECTOR

PROPPRINTFN, INSPECTWTITLE, PROPERTIES, CURRENTITEM and
SELECTABLEITEMS.

(INSPECTW.REDISPLAY INSPECTW PROPS —) [Function]

Updates the display of the objects being inspected in INSPECTW.
If PROPS is a property name or a list of property names, only
those properties are updated. If PROPS is NIL, all properties are
redisplayed. This function is provided because inspect windows
do not automatically update their display when the object they
are showing changes.

This function is called by the ReFetch command in the title
command menu of an INSPECTW (page 26.4).

(INSPECTW.REPLACE INSPECTW PROPERTY NEWVALUE) [Function]

Calls the STOREFN of the inspect window INSPECTW to change
the property named PROPERTY to the value NEWVALUE and
updates the display of PROPERTY's value in the display. This
provides a functional interface for user PROPCOMMANDFNs.

(INSPECTW.SELECTITEM INSPECTW PROPERTY VALUEFLG) [Function]

Sets the selected item in an inspect window. The item is inverted
onthe display and put on the window property CURRENTITEM of
INSPECTW. If INSPECTW has a CURRENTITEM, it is deselected.
PROPERTY is the name of the property of the selected item.
VALUEFLG is NIL if the selected item is the property name; T if
the selected item is the property value. |f PROPERTY is NIL, no
item will be selected. This provides a way of deselecting all
items.

26.2 PROMPTFORWORD

PROMPTFORWORD is a function that reads in a sequence of
characters, generally from the keyboard, without involving
READ-like syntax. A user can supply a prompting string, as well
as a "candidate" string, which is printed and used if the user
types only a word terminator character (or doesn't type anything
before a given time limit). As soon as any characters are typed
the “candidate" string is erased and the new input takes its
place.

PROMPTFORWORD accepts user type-in until one of the "word
terminator” characters is typed. Normally, the word terminator
characters are EOL, ESCAPE, LF, SPACE, or TAB. This list can be
changed using the TERMINCHAR.LST argument to

USER INPUT/QUTPUT PACKAGES

26.9

PROMPTFORWORD

Control-A, Backspace, or DELETE

Control-Q
Control-R
Control-V

Control-W
?

PROMPTFORWORD, for example if it is desirable to allow the
user to input lines including spaces.

PROMPTFORWORD also recognizes the following special
characters:
Any of these characters deletes the last character typed and

appropriately erases it from the echo stream if it is a display
stream.

Erases all the type-in so far.
Reprints the accumulated string.

“Quotes" the next character: after typing Control-V, the next
character typed is added to the accumulated string, regardless of
any special meaning it has. Allows the user to include editing
characters and word terminator characters in the accumulated
string.

Erases the last word.

Calls up a "help" facility. The action taken is defined by the
GENERATE?LIST.FN argument to.PROMPTFORWORD (see below).
Normally, this prints a list of possible candidates.

(PROMPTFORWORD PROMPT.STR CANDIDATE.STR GENERATE?LIST.FN ECHO.CHANNEL

DONTECHOTYPEIN.FLG URGENCY.OPTION TERMINCHARS.LST
KEYBD.CHANNEL) [Function]

PROMPT.STR

CANDIDATE.STR

GENERATE?LIST.FN

PROMPTFORWORD has a multiplicity of features, which are
specified through a rather large number of input arguments, but
the default settings for them (i.e., when they aren’t given, or are
given as NIL) is such to minimize the number needed in the
average case, and an attempt has been made to order the more
frequently non-defaulted arguments at the beginning of the
argument list. The default input and echo are both to the
terminal; the terminal table in effect during input allows most
control characters to be INDICATE'd.

PROMPTFORWORD returns NIL if a null string is typed; this
would occur when no candidate is given and only a terminator is
typed, or when the candidate is erased and a terminator is typed
with no other input still un-erased. In all other cases,
PROMPTFORWORD returns a string.

PROMPTFORWORD is controlled through the following
arguments:

If non-NIL, this is coerced to a string and used for prompting; an
additional space is output after this string.

If non-NIL, this is coerced to a string and offered as initial
contents of the input buffer.

If non-NIL, this is either a string to be printed out for help, or a
function to be applied to PROMPT.STR and CANDIDATE.STR
(after both have been coerced to strings), and which should

26.10

USERINPUT/QUTPUT PACKAGES

PROMPTFORWORD

ECHO.CHANNEL

DONTECHOTYPEIN.FLG

URGENCY.OPTION

TERMINCHARS.LST

KEYBD.CHANNEL

return a list of potential candidates. The help string or list of
potential candidates will then be printed on a separate line, the
prompt will be restarted, and any type-in will be re-echoed.

Note: If GENERATE?LIST.FN is a function, its value list will be
cached so that it will be run at most once per call to
PROMPTFORWORD.

Coerced to an output stream; NIL defaults to T, the "terminal
output stream”, normally (TTYDISPLAYSTREAM). To achieve
echoing to the "current output stream"”, use (GETSTREAM NiL
'OUTPUT). If echo is to a display stream, it will have a flashing
caret showing where the next input is to be echoed.

If T, there is no echoing of the input characters. If the value of
DONTECHOTYPEIN.FLG is a single-character atom or string, that
character is echoed instead of the actual input. For example,
LOGIN prompts for a password with DONTECHOTYPEIN.FLG
being "*".

If NIL, PROMPTFORWORD quietly wait for input, as READ does; if
a number, this is the number of seconds to wait for the user to
respond (if timeout is reached, then CANDIDATE.WORD is
returned, regardless of any other type-in activity); if T, this
means to wait forever, but periodically flash the window to alert
the user; if TTY, then PROMPTFORWORD grabs the TTY
immediately. When URGENCY.OPTION=TTY, the cursor is
temporarily changed to a different shape to indicate the urgent
nature of the request.

This is list of "word terminator” character codes; it defaults to
(CHARCODE (EOL ESCAPE LF SPACE TAB)). This may also be a
single character code.

if non-NIL, this is coerced to a stream, and the input bytes are
taken from that stream. NIL defaults to the keyboard input
stream. Note that this is not the same as the terminal input
stream T (page 25.1), which is a buffered keyboard input stream,
not suitable for use with PROMPTFORWORD.

Examples:

(PROMPTFORWORD
"What is your FOO word?" 'Mumble
(FUNCTION (LAMBDA () '(Grumble Bletch)))
PROMPTWINDOW NIL 30)

This first prompts the user for input by printing the first
argument as a prompt into PROMPTWINDOW; then the
proffered default answer, "Mumble", is printed out and the
caret starts flashing just after it to indicate that the upcoming
input will be echoed there. If the user fails to complete a word
within 30 seconds, then the result will be the string "Mumble™.

(FRESHLINE T)

USER INPUT/QUTPUT PACKAGES

26.11

PROMPTFORWORD

(LIST
(PROMPTFORWORD
(CONCAT "{" HOST "} Login:")
(USERNAME NIL NIL T))
(PROMPTFORWORD
" (password)" NIL NIL NIL '*))

This first prompts in whatever window is currently
(TTYDISPLAYSTREAM), and then takes in a username; the
second call prompts with " (password)"” and takes in another
word (the password) without proffering a candidate, echoing
the typed-in charactersas "*".

26.3 ASKUSER

DWIM, the compiler, the editor, and many other system
packages all use ASKUSER, an extremely general user interaction
package, for their interactions with the user at the terminal.
ASKUSER takes as its principal argument KEYLST which is used to
drive the interaction. KEYLST specifies what the user can type at
any given point, how ASKUSER should respond to the various
inputs, what value should be returned by ASKUSER, and is also .
used to present the user at any given point with a list of the
possible responses. ASKUSER also takes other arguments which
permit specifying a wait time, a default value, a message to be
printed on entry, a flag indicating whether or not typeahead is
to be permitted, a flag indicating whether the transaction is to
be stored on the history list (page 13.1), a default set of options,
and an (optional) input file/string.

(ASKUSER WAIT DEFAULT MESS KEYLST TYPEAHEAD LISPXPRNTFLG OPTIONSLST FILE)

[Function]

WAIT is either NIL or a number (of seconds). DEFAULT is a single
character or a sequence (list) of characters to be used as the
default inputs for the case when WAIT is not NIL and more than
WAIT seconds elapse without any input. In this case, the
character(s) from DEFAULT are processed exactly as though they
had been typed, except that ASKUSER first types "...".

MESS is the initial message to be printed by ASKUSER, if any, and
can be a string, or a list. In the latter case, each element of the
list is printed, separated by spaces, and terminated witha " ? .
KEYLST and OPTIONSLST are described. TYPEAHEAD is T if the
user is permitted to typeahead a response to ASKUSER. NiL
means any typeahead should be cleared and saved.
LISPXPRNTFLG determines whether or not the interaction is to be
recorded on the history list. FILE can be either NIL (in which case

26.12

USER INPUT/OUTPUT PACKAGES

ASKUSER

it defaults to the terminal input stream, T), a stream, or a string.
If FILE is a string, and all of its characters are read before
ASKUSER finishes, FILE will be reset to T, and the interaction will
continue with ASKUSER reading from the terminal.

All input operations take place from FILE until an unacceptable
input is encountered, i.e., one that does not conform to the
protocol defined by KEYLST. At that point, FILE is set to T,
DEFAULT is set to NIL, the input buffer is cleared, and a bell is
rung. Unacceptable inputs are not echoed.

The value of ASKUSER is the result of packing all the keys that
were matched, unless the RETURN option is specified (page
26.15).

(MAKEKEYLST LST DEFAULTKEY LCASEFLG AUTOCOMPLETEFLG) [Function]

26.3.1 Formatof KEYLST

LST is a list of atoms or strings. MAKEKEYLST returns an
ASKUSER KEYLST which will permit the user to specify one of the
elements on LST by either typing enough characters to make the
choice unambiguous, or else typing a number between 1 and N,
where N is the length of LST.

For example, if ASKUSER is called with KEYLST = (MAKEKEYLST
'(CONNECT SUPPORT COMPILE)), then the user can type C-O-N, S,
C-0-M, 1, 2, or 3to indicate one of the three choices.

If LCASEFLG =T, then echoing of upper case elements will be in
lower case (but the value returned will still be one of the
elements of LST). If DEFAULTKEY is non-NIL, it will be the last key
on the KEYLST. Otherwise, a key which permits the user to
indicate “"No - none of the above" choices, in which case the
value returned by ASKUSER will be NIL.

AUTOCOMPLETEFLG is wused as the value of the
AUTOCOMPLETEFLG option of the resulting key list.

KEYLST is a list of elements of the form (KEY PROMPTSTRING .
OPTIONS), where KEY is an atom or a string (equivalent),
PROMPTSTRING is an atom or a string, and OPTIONS a list of
options in property list format. The options are explained below.
If an optionis specified in OPTIONS, the value of the option is the
next element. Otherwise, if the option is specified in the
OPTIONSLST argument to ASKUSER, its value is the next element
on OPTIONSLST. Thus, OPTIONSLST can be used to provide
default options for an entire KEYLST, rather than having to
include the option at each level. If an option does not appear on
either OPTIONS or OPTIONSLST, its value is NiL.

For convenience, an entry on KEYLST of the form (KEY .
ATOMY/STRING), can be used as an abbreviation for (KEY

USER INPUT/OUTPUT PACKAGES

26.13

ASKUSER

ATOM/STRING CONFIRMFLG T), and an entry of just the form
KEY,i.e., a non-list, as an abbreviation for (KEY NiL CONFIRMFLG’
T).

As each character is read, it is matched against the currently
active keys. A character matches a key if it is the same character
as that in the corresponding position in the key, or, if the
character is an alphabetic character, if the characters are the
same without regard for upper/lower case differences, i.e. "A"
matches "a" and vice versa (unless the NOCASEFLG option is T,
see page 26.15). In other words, if two characters have already
been input and matched, the third character is matched with
each active key by comparing it with the third character of that
key. If the character matches with one or more of the keys, the
entries on KEYLST corresponding to the remaining keys are
discarded. If the character does not match with any of the keys,
the character is not echoed, and a bell is rung instead.

When a key is complete, PROMPTSTRING is printed (NIL is
equivalent to "", the empty string, i.e., nothing will be printed).
Then, if the value of the CONFIRMFLG optionis T, ASKUSER waits
for confirmation of the key by a carriage return or space.
Otherwise, the key does not require confirmation.

Then, if the value of the KEYLST option is not NIL, its value
becomes the new KEYLST, and the process recurses. Otherwise, .
the key is a "leaf," i.e., it terminates a particular path through
the original, top-level KEYLST, and ASKUSER returns the result of
packing all the keys that have been matched and completed
along the way (unless the RETURN option is used to specify some
other value, as described below).

For example, when ASKUSER is called with KEYLST =NIL, the
following KEYLST is used as the default:

((Y "es<r™) (N "o<™))

This KEYLST specifies that if (as soon as) the user types Y (or y),
ASKUSER echoes with Y, prompts with “es<"™, and returns Y as
its value. Similarly, if the user types N, ASKUSER echoes the N,
prompts with "o, and returns N. If the user types ?, ASKUSER
prints:

Yes

No

to indicate his possible responses. All other inputs are
unacceptable, and ASKUSER will ring the bell and not echo or
print anything.

For a more complicated example, the following is the KEYLST
used for the compiler questions (page 18.1):

((ST "ore and redefine " KEYLST ("" (F. "orget exprs"))
(S . “ame as last time")

26.14

USER INPUT/OUTPUT PACKAGES

ASKUSER

26.3.2 Options

(F. "File only™)
(T."oterminal")
1

2

(Y."es")
(N."0")

When ASKUSER is called with this KEYLST, and the user types an
S, two keys are matched: ST and S. The user can then type a T,
which matches only the ST key, or confirm the S key by typing a

€ or space. If the user confirms the S key, ASKUSER prompts
with “ame as last time", and returns S as its value. (Note that the
confirming character is not included in the value.) If the user
types a T, ASKUSER prompts with "ore and redefine"”, and makes
("" (F . "orget exprs")) be the new KEYLST, and waits for more
input. The user can then type an F, or confirm the "" (which
essentially starts out with all of its characters matched). If he
confirms the ", ASKUSER returns ST as its value the result of
packing ST and "". If he types F, ASKUSER prompts with "orget
exprs”, and waits for confirmation again. If the user then
confirms, ASKUSER returns STF, the result of packing STand F.

At any point the user can type a ? and be prompted with the
possible responses. For example, if the user types S and then ?,
ASKUSER will type:

STore and redefine Forget exprs
STore and redefine
Same as last time

KEYLST

CONFIRMFLG

PROMPTCONFIRMFLG

NOCASEFLG

RETURN

When a key is complete, if the value of the KEYLST option is not
NIL, this value becomes the new KEYLST and the process recurses.
Otherwise, the key terminates a path through the original,
top-level KEYLST, and ASKUSER returns the indicated value.

If T, the key must be confirmed with either a carriage returnor a
space. If the value of CONFIRMFLG is a list, the confirming
character may be any member of the list.

If T, whenever confirmation is required, the user is prompted
with the string “ [confirm] .

Iif T, says do not perform case independent matching on
alphabetic characters. If NIL, do perform case independent
matching,i.e. "A" matches with "a" and vice versa.

If non-NIL, EVAL of the value of the RETURN optionis returned as
the value of ASKUSER. Note that different RETURN options can
be specified for different keys. The variable ANSWER is bound in
ASKUSER to the list of keys that have been matched. In other

USER INPUT/QUTPUT PACKAGES

26.15

ASKUSER

NOECHOFLG

EXPLAINSTRING

KEYSTRING

PROMPTON

COMPLETEON

words, RETURN (PACK ANSWER) would be equivalent to what
ASKUSER normally does.

if non-NIL, characters that are matched (or automatically
supplied as a result of typing $ (escape) or confirming) are not
echoed, nor is the confirming character, if any. The value of
NOECHOFLG is automatically NIL when ASKUSER is reading from
a file or string. The decision about whether or not to echo a
character that matches several keys is determined by the value of
the NOECHOFLG option for the first key.

If the value of the EXPLAINSTRING option is non-NIL, its value is
printed when the user types a ?, rather than KEY +
PROMPTSTRING. EXPLAINSTRING enables more elaborate
explanations in response to a ? than what the user sees when he
is prompted as a result of simply completing keys.

For example: One of the entries on the KEYLST used by
ADDTOFILES? (page 17.13) is:

(] "Nowhere<'" NOECHOFLG T
EXPLAINSTRING "] - nowhere, item is marked as a dummy®<r")

When the user types], ASKUSER just prints "Nowhere¢ ™", i.e.,
the] is not echoed. If the user types ?, the explanation
corresponding to this entry will be: ‘

]- nowhere, item is marked as a dummy

If non-NIL, characters that are matched are echoed as though the
value of KEYSTRING were used in place of the key. KEYSTRING is
also used for computing the value returned. The main reason for
this feature is to enable echoing in lowercase.

If non-NIL, PROMPTSTRING is printed only when the key is
confirmed with a member of the value of PROMPTON.

When a confirming character is typed, the N characters that are
automatically supplied, as specified in case (4), are echoed only
when the key is confirmed with a member of the value of
PROMPTON.

The PROMPTON and COMPLETEON options enable the user to
construct a KEYLST which will cause ASKUSER to emulate the
action of the TENEX exec. The protocol followed by the TENEX
exec is that the user can type as many characters as he likes in
specifying a command. The command can be completed with a
carriage return or space, in which case no further output is
forthcoming, or with a $ (escape), in which case the rest of the
characters in the command are echoed, followed by some
prompting information. The following KEYLST would handle
the TENEX COPY and CONNECT comands:

((CopPy " (FILE LIST) "
PROMPTON ($)

26.16

USER INPUT/OUTPUT PACKAGES

ASKUSER

AUTOCOMPLETEFLG

MACROCHARS

EXPLAINDELIMITER

26.3.3 Operation

COMPLETEON ($)
CONFIRMFLG ($))
(CONNECT " (TO DIRECTORY) "
PROMPTON ($)
COMPLETEON ($)
CONFIRMFLG (%))

If the value of the AUTOCOMPLETEFLG option is not NIiL,
ASKUSER will automatically supply unambiguous characters
whenever it can, i.e., ASKUSER acts as though $ (escape) were
typed after each character (except that it does not ring the bell if
there are no unambiguous characters).

value is a list of dotted pairs of form (CHARACTER . FORM).
When CHARACTER is typed, and it does not match any of the
current keys, FORM is evaluated and nothing else happens, i.e.
the matching process stays whereitis. For example, ? could have
been implemented using this option. Essentially MACROCHARS
provides a read macro facility while inside of ASKUSER (since
ASKUSER does READC's, read macros defined via the readtable
are never invoked).

value is what is printed to delimit explanation in response to ?.
Initially a carriage return, but can be reset, e.g. to a comma, for
more linear output.

All input operations are executed with the terminal table in the
variable ASKUSERTTBL, in which (1) (CONTROL T) has been
executed (see page 30.10), so that ASKUSER can interact with the
user after each character is typed; and (2) (ECHOMODE NIL) has
been executed (see page 30.7), so that ASKUSER can decide after
it reads a character whether or not the character should be
echoed, and with what, e.g. unacceptable inputs are never
echoed.

As each character is typed, it is matched against KEYLST, and
appropriate echoing and/or prompting is performed. If the user
types an unacceptable character, ASKUSER simply rings the bell
and allows him to try again.

At any point, the user can type ? and receive a list of acceptable
responses at that point (generated from KEYLST), or type a
control-A, control-Q, control-X, or delete, which causes ASKUSER
to reinitialize, and start over.

Note that ?, Control-A, Control-Q, and Control-X will not work if
they are acceptable inputs, i.e., they match one of the keys on
KEYLST. Delete will not work if it is an interrupt character, in
which case itis not seen by ASKUSER.

USER INPUT/OUTPUT PACKAGES

26.17

ASKUSER

26.3.4 Completing a Key

When an acceptable sequence is completed, ASKUSER returns
the indicated value.

(1

(2)

(3

(4)

The decision about when a key is complete is more complicated
than simply whether or not all of its characters have been
matched. In the compiler questions example above, all of the
characters in the S key are matched as soon as the S has been
typed, but until the next character is typed, ASKUSER does not
know whether the 'S completes the S key, or is simply the first
character in the ST key. Therefore, a key is considered to be
complete when:

All of its characters have been matched and it is the only key left,
i.e., there are no other keys for which this key is a substring.

All of its characters have been matched and a confirming
character is typed.

All of its characters have been matched, and the value of the
CONFIRMFLG option is NIL, and the value of the KEYLST optionis
not NIL, and the next character matches one of the keys on the
value of the KEYLST option.

There is only one key left and a confirming character is typed.
Note that if the value of CONFIRMFLG is T, the key still has to be
confirmed, regardless of whether or not it is complete. For
example, if the first entry in the above example were instead

(ST "ore and redefine " CONFIRMFLG T KEYLST ("" (F. "orget
exprs"))

and the user wanted to specify the STF path, he would have to
type ST, then confirm before typing F, even though the ST
completed the ST key by the rule in case (1). However, he would
be prompted with “"ore and redefine" as soon as he typed the T,
and completed the ST key.

Case (2) says that confirmation can be used to complete a key in
the case where it is a substring of another key, even where the
value of CONFIRMFLG is NIL. In this case, the confirming
character doubles as both an indicator that the key is complete,
and also to confirm it, if necessary. This situation corresponds to

typing ST in the above example.

Case (3) says that if there were another entry whose key was STX
in the above example, so that after the user typed ST, two keys,
ST and STX, were still active, then typing F would complete the
ST key, because F matches the (F . "orget exprs"”) entry on the
value of the KEYLST option of the ST entry. In this case, "ore and
redefine" would be printed before the F was echoed.

26.18

USER INPUT/QUTPUT PACKAGES

ASKUSER

26.3.5 Special Keys

Finally, case (4) says that the user can use confirmation to specify
completion when only one key is left, even when all of its
characters have not been matched. For example, if the first key
in the above example were STORE, the user could type ST and
then confirm, and ORE would be echoed, followed by whatever
prompting was specified. In this case, the confirming character
also confirms the key if necessary, so that no further action is
required, even when the value of CONFIRMFLG is T.

Case (4) permits the user not to have to type every characterin a
key when the key is the only one left. Even when there are
several active keys, the user can type $ (escape) to specify the
next N>0 common characters among the currently active keys.
The effect is exactly the same as though these characters had
been typed. If there are no common charactersin the active keys
at that point,i.e. N=0, the $is treated as anincorrect input, and
the bell is rung. For example, if KEYLST is (CLISPFLG
CLISPIFYPACKFLG CLISPIFTRANFLG), and the user types C
followed by $, ASKUSER will supply the L, I, S, and P. The user
can t