820-11 PERSONAL COMPUTER

CP/M 2.2 OPERATING SYSTEM REFERENCE GUIDE

HISTORY PAGE

This package contains supplement pages to be inserted in your 820-I CP/M 2.2 Personal
Computer Reference Guide. To update your manual, insert this page as the first page in the
manual, then remove and add new pages as instructed below.

MANUAL REORDER # 9R80448

Manual Issue Date:

Supplement Dates:

Part # Software Level
5/1/82 79S80096A 1.000
6/1/82 156P82598 1.000
(79580096B)

- This supplement updates the CP/M 2.2 documentation to the DCT000008 software level and
includes the Rigid Disk documentation with the following page changes:

SECTION

Table of Contents
Introduction
General Programs

Systems Components

Reference

Diagnostics

REMOVE

v thru viii

1 through 8

1 through 54

i,ii 1 thru 4 18,19
23 thru 32 35,36
1,2 9 thrulé
21,22,31,32

1 thru 10

ADD

v thru viii

! through 8

1 through 54

i,ii 1 thru & 18,19
23 thru 32 35,36
51,52

1,2 9thrulé
21,22,31,32

1 thru 10

156P82598
6/1/82



CP/M 2.2 OPERATING SYSTEM REFERENCE GUIDE

820-11 PERSONAL COMPUTER

Copyright© 1982 Xerox Corporation. All rights reserved 9R80448



This equipment has been certified to comply with the limits for a Class B computing device,
pursuant to Subpart J of part 15 of FCC Rules. Only peripherals (computer input/output
devices, terminals, printers, etc.) certified to comply with the Class B limits may be
attached to this computer, Operation with non-certified peripherals is likely to result in
interference to radio and TV reception.

This equipment generates and uses radio frequency energy and if not installed and used
properly, that is, in strict accordance with the manufacturer's instructions, may cause
interference to radio and television reception. It has been type tested and found to comply
with the limits for a Class B computing device in accordance with the specifications in
Subpart J of part 15 of FCC Rules, which are designed to provide reasonable protection
against such interference in a residential installation. However, there is no guarantee that
interference will not occur in a particular installation. If this equipment does cause
interference to radio or television reception, which can be determined by turning the
equipment off and on, the user is encouraged to try to correct the interference by one or
more of the following measures:

Reorient the receiving antenna.
Relocate the computer with respect to the receiver.
Move the computer away from the receiver.
Plug the computer into a different outlet so that computer and receiver are on
different branch circuits.
If necessary, the user should consult the dealer or an experienced radio/television technician
for additional suggestions. The user may find the following booklet prepared by the Federal
Communications Commission helpful.
"HOW TO IDENTIFY AND RESOLVE RADIO-TV INTERFERENCE PROBLEMS"

This booklet is available from the U.S. GOVERNMENT PRINTING OFFICE, WASHINGTON,
D.C. 20402, STOCK NO. 004-000-00345-4,

Xerox® and 820-IITMare registered trademarks of Xerox Corporation.

Zilog and Z80 are trademarks of Zilog Inc., with whom the publisher is not associated.
CP/M is a registered trademark of Digital Research Incorporated.

Portions of this manual are reproduced by permission of Digital Research

Incorporated, Pacific Grove, California.

ii



TABLE OF CONTENTS

INTRODUCTION

Disk Drive Options

Floppy Disks

Configuring the 820-II

Utilities and Programs
Applications Software

ROM Level

Software Serial Number and Level

FEATURES & FACILITIES
Introduction
Functional Description of CP/M
General Command Structure
File References
Switching Disks
The Form of Built-In Commands
ERA afn cr
DIR afn cr
REN ufnl=ufn2 cr
SAVE nufn cr
TYPE ufn cr
Line Editing and Output Control
Transient Commands
STAT cr
ASM ufn cr
LOAD ufn cr
PIP cr
ED ufn cr
SYSGEN cr
SUBMIT ufn parm#l ... parm#n cr
DUMP uin cr
MOVCPM cr
BDOS Error Messages
Operation of CP/M on the MDS

USER'S GUIDE

An Overview of CP/M 2.0 Facilities
User Interface

Console Command Processor (CCP) Interface
STAT Enhancements

PIP Enhancements

ED Enhancements

The XSUB Function

BDOS Interface Conventions

CP/M 2.0 Memory Organization
BIOS Differences

ALTERATION GUIDE

Introduction

First Level System Regeneration
Second Level System Generation
Sample Tetsys and Putsys Programs

Diskette Organization

iii

0O 00NV W

O NDOWOONNRANWWWE



The BIOS Entry Points 14

A Sample BIOS : 21
A Sample Cold Start Loader ] 22
Reserved Locations in Page Zero 23
Disk Parameter Tables 25
The DISKDEF Macro Library 30
Sector Blocking and Deblocking 34
Appendix A 36
Appendix B 39
Appendix C 50
Appendix D 56
Appendix E 59
Appendix F 61
Appendix G 66
INTERFACE GUIDE
Introduction 1
Operating System Call Conventions 3
A Sample File-to-File Copy Program 29
A Sample File Dump Utility 34
A Sample Random Access Program 37
System Function Summary 46

ASSEMBLER (ASM)
Introduction
Program Format
Forming the Operand
Labels
Numeric Constants
Reserved Words
String Constants
Arithmetic and Logical Operators
Precedence of Operators
Assembler Directives
The ORG Directive
The END Directive
The EQU Directive
The SET Directive
The IF and ENDIF Directives
The DB Directive
The DW Directive
Operation Codes
Jumps, Calls, and Returns
Immediate Operand Instructions
Increment and Decrement Instructions
Data Movement Instructions
Arithmetic Logic Unit Operations
Control Instructions
Error Messages
A Sample Session

bt b et e e et e et st et bt et s
NAAOANMEETWNNAOOWVWOURONAANANN TSN

ASSEMBLER (MACRO-80)
Introduction

[
]
(o

iv



MACRO-80 Assembler
Running MACRO-80
Command Format

Format of MACRO-80 Source Files

"Expression Evaluation
Opcodes as Operands
Pseudo Operations

Macros and Block Pseudo Operations

Using Z80 Pseudo-ops
Sample Assembly
MACRO-80 Errors

Compatability with Other Assemblies

Format of Listings
LINK-80 Linking Loader
Running LINK-80
Command Format

Format of LINK Compatible Object Files

LINK-80 Error Messages

Program Break Information
TEKDOS Operating System

TEKDOS Command Files

MACRO-80

CREF-80

LINK-80

CONTEXT EDITOR
Ed Tutorial
Introduction to ED
ED Operation
Text Transfer Functions
Memory Buffer Organization
Memory Buffer Operation
Command Strings
Text Search and Alteration
Source Libraries
Repetitive Command Execution
Ed Error Conditions
Control Characters and Commands

DEBUGGING TOOL
Introduction
DDT Commands
The A (Assemble) Command
The D (Display) Command
The F (Fill) Command
The G (Go) Command
The I (Input) Command
The L (List) Command
The M (Move) Command
The R (Read) Command
The S (Set) Command
The T (Trace) Command
The U (Untrace) Command
The X (Examine) Command
Implementation Notes
An Example

2-1
2-1
2-1

2-8
2-10
2-11
2-25
2-33
2-34
2-35
2-36
2-37

4-1

4-1

4-1

4-7
4-10
4-11

A-1
A-1
A-1
A-2
A-2

OVWRROANNINAANNN T TR WWE

—



GENERAL PROGRAMS

SYSTEM CONFIGURATION UTILITY
Record Restart Command
Select Printer Port Options
Select Communication Port Options
Select I/O Device Assignments
Select Keyboard Data Format
Select Screen Attributes
Select Floppy Disk Head Step Rate
Configure Rigid Disk

BACKUP
List Directory
Backup Files
Replace Files
Verify Disk Integrity
Delete Files
Exit to CP/M

HOST TERMINAL

KILLESC

SWAP

TIME AND DATE

SCREEN PRINT

SET

SYSTEM COMPONENTS
620 PRINTER (20 CPS)
Introduction
Unpacking
Installation
Familiarization
Preparation for Operation
Installing a Printwheel
Installing a Ribbon Cartridge
Inserting Paper or Forms
Operating the 620 Printer (20 CPS)
Special Considerations
Cleaning Printwheels
Cleaning the Platen and Paper Rollers
Cleaning the Card Guide
Setting the Switches Under the Front Cover
Using the Control Panel Switches
Specifications
630 PRINTER (40 CPS)
Introduction
Unpacking
Installation
Familiarization
Preparation for Operation
Installing a Printwheel
Installing a Ribbon Cartridge
Inserting Paper or Forms

Paper Thickness/Print Intensity Adjustment

Operating the 630 Printer (40 CPS)

vi
6/1/82

N
NNNNNNNNN -~

NN
ww

FEEWWWLWNNNN
== OOV WUWWLWWW

CON Wi —

11

14
15
15

16
18
20
21

23
24
26

30
30
31
32
32
33



Special Considerations
Cleaning Printwheels
Changing Ribbons During Operation
Cleaning the Print Hammer
Setting the Switches Under the Front Cover
Setting the Operating Switches
Reading the Control Panel Indicators
Specifications
FORMS TRACTOR (630 Printer - 40 CPS)
Installation
Removal
Loading Paper
PARALLEL PRINTER INSTALLATION KIT
DAISY CHAINING DISK DRIVES

REFERENCE
SYSTEM RESIDENT MONITOR
Monitor Command Summary
Display Memory Command
Modify Memory Command
Extended Memory Command
Fill Memory Command
Copy Memory Command
Verify Memory Block Command
Go To Command
Input Command
Output Command
Load System
Read Disk Sector Command
Baud Rate Command
Typewriter Command
Host Terminal Command
Protocol Command
USER ACCESSIBLE MONITOR ROUTINES AND VARIABLES
Subroutine Entry Points
Display Control Codes
Escape Sequences
Control Codes
Escape Sequences
Numeric Pad
Main Keyboard
MONITOR RESIDENT 1/O DRIVER FUNCTIONS
Interrupt Processing
Memory Mapped Video Display
Display Character Codes
Key Station Numbering and Key Codes
Parallel Keyboard Input
Disk Interface
Serial Input/Output
Real Time Clock
Parallel I/O Option
DISK FORMAT
Disk Parameters
Disk Format (Floppy Disks)
GRAPHICS

vii
6/1/82

34
34
34
34
35
36
37
38
41
42
42
4y
45
51

OO NNIANAAN VL FETEREREFRTWUWN—



THEORY OF OPERATION

Central Processor

Clock Generator

Reset Controller

Port Address Decoding

Disk Transfer Synchronization
CRT Display Controller

Video Scrolling

Video RAM Addressing

Video Generation

Display Blanking
64K RAM and Bank Switching

Refresh :

Bank Switching

CTC

System PIO
General Purpose PIO and SIO

SIO

Baud Rate Generator

Interrupt Structures
General Purpose PIO Strappings (J11) and Pin Assignments (J8)
CTC Strapping and I/O Assignments (J10)
Video Output Connector Pin Assignments (J7)
Serial I/O Connector Pin Assignments Channel A (J4)
Serial 1/O Strapping Options for Channel A (J9)
Serial 1/O Connector Pin Assignments Channel B (J3)
Keyboard Connector Pin Assignments (J2)
Disk Drive Connector Pin Assignments (J1)42

DIAGNOSTICS

Preparing to Run Diagnostics on a Nem 820-I1
Initialize a Disk (floppy)

Format (initialize) a Rigid Disk

Running Diagnostics

viii

6/1/82

O N —



INTRODUCTION

This is your CP/M Operating System Reference Manual. An operating system is a set of
programs that controls the computer's internal operation. In this manual you will find
detailed instructions for using the CP/M Operating System on your XEROX 820-II Personal
Computer.

The CP/M Operating System is an industry standard that lets you use a variety of programs
you can purchase at software houses everywhere. Instructions for using application
programs can be found in the CP/M Handbook. :

If you have not used CP/M and the 820-II before, it is recommended that you go through the
CP/M Handbook to learn how to operate the 820-II. This introduction section also gives you
basic information about using the 820-II. You may want to read through it after you finish
the handbook.

If you need more detailed information about the 820-II and CP/M, you'll find it in the other
sections of this reference guide. A technical description of the 820-II and ROM monitor
commands is given in the REFERENCE section of this manual. This information will be
helpful to you as a programming aid.

One final note on using the 820-II successfully:

It is recommended that you always remove your disks from the 820-II
before you turn it off. Leaving disks in the system when you power down
can permanently erase information on the disks.

DISK OPTIONS

The 820-II can utilize either single or double sided disk drives. If you're not sure what type
of drive your system has, you can check the serial number plate (located on the bottom of
the disk drives) and compare the number to the chart below. Page 3 shows the type of disk
to use in each drive.

CAUTION: When checking the serial number on the Rigid Disk Drives, don't bump or drop
the unit or you may damage the Rigid Disk.

XEROX

ser+ X929~ 001083

Disk Drives Serial Number Disk Drives Serial Number
5%" Single Sided =  X929-000-0000 8" Single Sided =  X973-000-0000
5%" Double Sided= T66-000-0000 8" Double Sided = F10-000-0000

8" Rigid = U07-000-0000

INTRODUCTION
1



In addition to the number of sides on a disk, the 820-II will allow you to select the density of
the information recorded on the disk. "Density" refers to how much data can be stored on a
disk. The 820-II is designed to record in "double density", which means that you'll get twice
the amount of data on the disk as "single density". You do have the option of selecting and
using single density on the 820-II, if you so desire.

The density of a disk is determined when the disk is initialized. The INIT utility (step-by-
step instructions for INIT are in the handbook) lets you select:

1 Single Density, Single Side

2 Single Density, Double Side
3 Double Density, Single Side
4 Double Density, Double Side

Usually, you'd select the density and number of sides you want to work with and initialize all
your disks to work that way. This is the most convenient way to work and is recommended
for anyone just learning the 820-II.

Read the rest of this page only when using:

e disks that have different densities.

e disks that have different numbers of sides.
Should this situation arise, use the following guidelines:

e Use the PIP program to copy files between disks with different densities or numbers
of sides.

o Remember that the 820-I1 "sets" a disk drive to work in a certain density and
number of sides when it reads the first disk you insert after loading the CP/M
software. If you want to insert another disk with a different density and number of
sides, you'll have to tell the 820-II to "reset" the drive in one of two ways:

- Youcan press CTRL + C to reload the CP/M software, or

-  When using a floppy disk system you can tell the 820-II to pretend that the drive
has a different name. The A Drive can be referred to as Drive C and the B
Drive can be referred to as Drive D.

For example: This means that you can put a double density disk in Drive B and
work in double density by using B as the drive name (e.g., use B:filename to
address a file on the disk). Then, when you remove that disk and insert a single
density disk, you can refer to the drive as D (e.g., D:filename) so the 820-II will
recognize the change in density. Using this method, you can switch back and
forth between densities without reloading CP/M by referring to the drive as B
and D.

INTRODUCTION
2



Should you ever want to check to see what kind of disk a drive is set to read, you can use the
WHATSA program. This program will display a list of the possible drive names (A through
H) and the type of disk that is read (logged) by each drive. Remember, the first disk
inserted and read by a drive after CP/M is loaded determines what type of disk the drive is
set for. .

It should be noted that the first drive logged on can be referred to as A or C. Another
floppy disk drive can be referred to as B or D. The other drive names (E through H) are used
in conjunction with a rigid disk.

FLOPPY DISKS

The disks used in the 820-II can be purchased from Xerox or from any computer or office
equipment dealer. Disks will vary in quality and type. When a disk is marked "certified" for
double density, it means that the surface is of a high enough quality to allow you to record
double density data on the disk. Disks certified double sided are a high enough quality to
prevent errors in recording on either side of the disk.

When purchasing 8" disks, specify:

e Either Single Sided (77 tracks) or certified Double Sided (77 tracks per side).

e Double Density certified.

° Soft Sectored.

When purchasing 5%" disks, specify:
e Either Single Sided (40 tracks) or certified Double Sided (40 tracks per side).
e Double Density certified.

° Soft Sectored.

USING THE COPY UTILITY

The COPY utility will copy single or double density disks. The utility will physically copy
disks that have the same density and the same number of sides (such as, single sided double
density). When copying disks or files that have different densities or sides, you would use
the PIP utility to copy your files from one disk to the other and the SYSGEN utility to copy
the operating system.

If you suspect a problem with the files being copied, use the PIP utility with the verify
option instead of using the copy utility (the copy utility will copy the problem along with the
data).

INTRODUCTION
3



CONFIGURING THE 820-11

You can make changes to certain areas of the CP/M software to customize the 820-II to
your specific needs.

You can use the CONFIGUR or SET utility to change the software to operate with different
applications. The following is a list of modifications that can be made to the software using
the CONFIGUR utility:

e CP/M commands can be entered as restart commands to be executed each time that
CP/M is loaded.

e The standard printer port options may be changed to operate with different printers
other than the Xerox 620 (20 CPS) and 630 (40 CPS) printers.

e The communication port options may be changed.

e The 1/O device assignments (such as Console, etc.) may be changed.

® The keyboard data format (7 or 8 bits) may be changed.

e The screen attributes (blink, inverse video, etc.) may be changed on the screen.
® The floppy disk head step rate (speed) can be changed to improve performance.

e The rigid disk may be divided into four disks.

Note: The SET utility is used to change the communications/printer baud rate.

INTRODUCTION
6/1/82 4



UTILITIES AND PROGRAMS

The following is a list and description of the most commonly used utilities and programs on

your CP/M disk.

UTILITY/PROGRAM

DESCRIPTION

BACKUP
CONFIGUR

COPY
ED
FMT

HELP

INIT
KILLESC
PIP

SET

STAT

SWAP

SYSGEN

TIME
WHATSA

Used to backup the data on a rigid disk.

Used to modify CP/M for the following particular
requirements:

restart command

printer port options
communication port options
I/O device assignments
keyboard data format
screen attributes

floppy disk step rate

rigid disk partitioning

Used to make an exact copy of a disk.
Used to create and edit files.
Used to format a rigid disk prior to use.

Used as a guide for information about CP/M commands,
reference manuals, and 820-II special features.

Used to prepare (initialize) a new disk.
Used to disable the CTRL + ESC command.

Used to move a file(s) from one disk to another, and to
make copies of files.

Used to change the communications/printer port baud
rate.

Used to display the status of a disk; such as disk space and
information about the number, size, and kind of files on
any given disk.

Used to exchange logical disk drive assignments.

Used to copy the CP/M operating system onto a disk.

Used to set and display the date and time.

Used to show which logical and physical drives are in use

and what type of disks (density/number of sides etc.) are
being used.

INTRODUCTION
5



The following is a list and description of the utilities and programs which are normally used

when creating software programs.

UTILITY/PROGRAM

ASM

DDT

DUMP
L80
LOAD
MOVCPM
M80

SUBMIT

XSUB

DESCRIPTION

Used to translate an assembly language source file into a
hex file.

Used to load, alter and test programs written in the CP/M
environment,

Used to display the contents of a file in hexadecimal.
Used to translate a REL file into a COM file.

Used to translate a HEX file into a COM file.

Used to relocate CP/M for a different memory size.
Used to assemble the 8080 or Z-80 code.

Used to batch together CP/M commands for automatic
processing.

Used to input to programs executed in the submit file.

The following is a list of programs used only by the CP/M software and programs. You
should not erase these from the disk.

UTILITY/PROGRAM

TERMINAL
XERBAK
XERCPY

XERMAIN

DESCRIPTION

Support file for BACKUP utility.
Support file for BACKUP utility.
Support file for BACKUP utility.

Support file for BACKUP utility.

INTRODUCTION
6



APPLICATIONS SOFTWARE

The instructions in the 820-1I CP/M Operating System Handbook told you how to load CP/M.
After loading CP/M, you can run "applications" programs on the 820-1l. The applications
software may be purchased from XEROX or from other vendors.

When you use your CP/M software to run an applications program for the first time, the
program may ask you to define your system. The following information will help you answer
these questions:

Your 820-II is configured like a Televideo 950 terminal, or a Lear Siegler ADM-3A
display terminal.

Your 820-II has the choice of the following disk drives:

The 5%" single sided double density disks have 40 tracks and will have 155K of
available space.

The 5%" double sided double density disks have 40 tracks per side and will have
322K of available space.

The 8" single sided double density disks have 77 tracks and have 482K of
available space.

The 8" double sided double density disks have 77 tracks per side and have 980K
of available space.

The rigid disk drive assembly has a 8" double sided floppy drive, and an 8" 10
megabyte rigid drive. The double sided 8" drive is the same as the one above,
and the rigid disk has 1,024 tracks and has 8.192 megabytes of available space.

Always read and follow the instructions that come with the Applications
Programs.

Your software is a CP/M 2.2 Operating System.

INTRODUCTION
7



ROM LEVEL

The Xerox 820-II Basic Operating System monitor is contained in ROM on the CPU board.
To check what ROM level is in your system you would turn the 820-II on or press the RESET
button if it is already on and read the ROM version level on the screen as shown below.

ROM LEVEL

e

820-II v 0.00 (C) 1982 Xerox Corp

L - Load System
H - Host Terminal
T - Typewriter

SOFTWARE SERIAL NUMBER AND LEVEL

To check the software serial number and version level you would load your software and
read the screen as shown below:

SOFTWARE LEVEL

\ SERIAL NUMBER

Xerox 60k CP/M vers 2.20 #2-294 DCT0000000
A

INTRODUCTION
8



0] DIGITAL RESEARCH’

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

AN INTRODUCTION TO CP/M FEATURES AND FACILITIES

COPYRIGHT (c) 1976, 1977, 1978

DIGITAL RESEARCH

REVISION OF JANUARY 1978



Copyright (c) 1976, 1977, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any
form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579,
Pacific Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.



Table of Contents

Section Page

1.
2,

7e

IN'I'RODUCI‘IW B8 8000008006000 06008080808000080000c0s080s0s 1

FU’.\K:TIONAL DESCRIPI.IW OF CP/M 92 608080680000 0808000800 3
2.1. General Command StruCtUre ...ececccececsscsscecse 3
2.2. File References S 0SS 0SS 0SS QGIIVISISNOSIAIOSOIIDBDSOSINBRIOGS 3

[e)]

mITCI-IIIQG DISKS 8 0008680008008 00800880008c00s030000000000

TI'IE FORM OF BUILT-IN CDMMANDS e8sB000ces00000000000
4.1, ERA afn Cr scececccccccccccccccssccanccccncans
4 2. DIR afn CL weecsasscasesasscscsssscccssscssonasns
4.30 RENUfnl:u:Enz CL cecv0se000scss0000csc0000scss
4 4. SAVE n Ufn CLl cosccssscccscsncscsssscncssscsscse
4 5. TYPE Ufn CL cecsscnsascsssccsscsscsccssssscscsssenan

O WOoIdJ

LINE EDITING MD 0UI|PLH1 mNTmL..............0...... ll

TRMSIENT mem S S0 8880800000000 00006080c80008000s80 12
STAT cr S 0080000800000 N0000800095000800080000000000 13
Am ufr\ cr S 0880008880060 008800800000000008000000003s 16
LmDUfn cr G0 08 8008080088008 000800800080008800080080 17

PIP cr 0 0000008800083 080008800008080000sssscssssss 18

ED ufn cr B0 8006080800880 06068008000800000000000000 25
SY%EN cr 8 8060800806088 00800608080008808000008080asn000 27
SUBmT ufn mrm#l sss mrm#n cr G886 000000CBISSDS 28
DUMP Ufn cr @0 6000 0080000800080 0800800000n0800000800 3ﬂ
mV(:Pbi cr G 0D 8GOS S9080800000000008080000aa3008000 3@

CoJdooUnbdwhH-
°

[o N e Ne e e ) e ) Wer o))

Bms ERMR mSSAGES 9000808080000 0000000a0ss08080s80000 33

OPERATIONW CP/M ON TI—EMm 08 0080060800080 008000000s 34






1. INTRODUCTION,

CP/M is a monitor control program for microcomputer system development
which uses IBM-compatible flexible disks for backup storage, Using a computer
mainframe based upon Intel’s 8088 microcomputer, CP/M provides a general
environment for program construction, storage, and editing, along with
assembly and program check—out facilities, An important feature of CP/M is
that it can be easily altered to execute with any computer configuration which
uses an Intel 8080 (or Zilog Z-8@) Central Processing Unit, and has at least
16K bytes of main memory with up to four IBM-compatible diskette drives, A
detailed discussion of the modifications required for any particular hardware
environment is given in the Digital Research document entitled "CP/M System
Alteration Guide,"” Although the standard Digital Research version operates on
a single-density Intel MDS 800, several different hardware manufacturers
support their own input—-output drivers for CP/M.

The CP/M monitor ©provides rapid access to programs through a
comprehensive file management package., The file subsystem supports a named
file structure, allowing dynamic allocation of file space as well as
sequential and random file access., Using this file system, a large number of
distinct programs can be stored in both source and machine executable form,

CP/M also supports a powerful context editor, Intel-compatible assembler,
and debugger suwbsystems, Optional software includes a powerful
Intel-compatible macro assembler, symbolic debugger, along with wvarious
high-level languages. When coupled with CP/M°s Console Command Processor, the
resulting facilities equal or excel similar large computer facilities,

CP/M is logically divided into several distinct parts:

BIOS Basic I/0 System (hardware dependent)
BDOS Basic Disk Operating System

CCp Console Command Processor

TPA Transient Program Area

The BIOS provides the primitive operations necessary to access the
diskette drives and to interface standard peripherals (teletype, CRT, Paper
Tape Reader/Punch, and user-defined peripherals), and can be tailored by the
user for any particular hardware envirorment by “patching" this portion of
CP/M, The BDOS provides disk management by controlling one or more disk
drives containing independent file directories, The BDOS implements disk
allocation strategies which provide fully dynamic file construction while
minimizing head movement across the disk during access., Any particular file
may contain any number of records, not exceeding the size of any single disk.
In a standard CP/M system, each disk can contain up to 64 distinct files, The



BDOS has entry points which include the following primitive operations which
can be programmatically accessed:

SEARCH Look for a particular disk file by name.

OPEN Open a file for further operations,

CLOSE Close a file after vrocessing,

RENAME Change the name of a particular file,

READ Read a record from a particular file,

WRITE Write a record onto the disk.

SELECT Select a particular disk drive for further
operations,

The CCP provides symbolic interface between the user s console and the
remainder of the CP/M system, The CCP reads the console device and processes
commands which include listing the file directory, printing the contents of
files, and controlling the operation of transient programs, such as
assemblers, editors, and debuggers. The standard commands which are available
in the CCP are listed in a following section,

The last segment of CP/M is the area called the Transient Program Area
(TPA)., The TPA holds proarams which are loaded from the disk under command of
the CCP. During program editing, for example, the TPA holds the CP/M text
editor machine code and data areas, Similarly, programs created under CP/M
can be checked out by loading and executing these programs in the TPA,

It should be mentioned that any or all of the CP/M component subsystems
can be "overlayed" by an executing proaram., That is, once a user’s program is
loaded into the TPA, the CCP, BDOS, and BIOS areas can be used as the
program’s data area, A "bootstrap" 1loader is programmatically accessible
whenever the BIOS portion is not overlayed; thus, the user program need only
branch to the bootstrap loader at the end of execution, and the complete CP/M
monitor is reloaded from disk,

It should be reiterated that the CP/M operating system is partitioned
into distinct modules, including the BIOS portion which defines the hardware
environmment in which CP/M is executing, Thus, the standard system can be
easily modified to any non-standard ernvironment by changing the peripheral
drivers to handle the custom system,



2. FUNCTIONAL DESCRIPTION OF CP/M.

The user interacts with CP/M primarily through the CCP, which reads and
interprets commands entered through the console, In general, the CCP
addresses one of several disks which are online (the standard system addresses
up to four different disk drives)., These disk drives are labelled A, B, C,
and D, A disk is "logged in" if the CCP is currently addressing the disk, 1In
order to clearly indicate which disk is the currently logged disk, the CCP
always prompts the operator with the disk name followed by the symbol ">"
indicating that the CCP is ready for another command, Upon initial start up,
the CP/M system is brought in from disk A, and the CCP displays the message

xxK CP/M VER m.,m

where xx is the memory size (in kilobytes) which this CP/M system manages, and
m.m is the CP/M version number, All CP/M systems are initially set to operate
in a 16K memory space, but can be easily reconfigured to fit any memory size
on the host system (see the MOVCPM transient command). Following system
signon, CP/M automatically logs in disk A, prompts the user with the symbol
“A>" (indicating that CP/M is currently addressing disk "A"), and waits for a
command, The commands are implemented at two levels: built-in commands and
transient cammands,

2.1. GENERAL COMMAND STRUCTURE,
Built-in commands are a part of the CCP program itself, while transient

commands are loaded into the TPA from disk and executed. The built-in
commands are

ERA Erase specified files,

DIR List file names in the directory.,

REN Rename the specified file,

SAVE Save memory contents in a file,

TYPE Type the contents of a file on the logged disk.

Nearly all of the commands reference a particular file or group of files, The
form of a file reference is specified below.

2.2, FILE REFERENCES,

A file reference identifies a particular file or group of files on a
particular disk attached to CP/M. These file references can be either
"unambiguous" (ufn) or ambiguwous" (afn). An unambiqguous file reference
uniquely identifies a single file, while an ambiguous file reference may be



satisfied by a number of different files,

File references consist of two parts: the primary name and the secondary
name, - Although the secondary name is optional, it usually is generic; that
is, the secondary name "ASM," for example, is used to denote that the file is
an assembly language source file, while the primary name distinguishes each
particular source file, The two names are separated by a "." as shown below:

PPPPPPPP. SSS

where pppppppp represents the primary name of eight characters or less, and
sss is the secondary name of no more than three characters, As mentioned
above, the name

BPPPPPPP

is also allowed and is eguivalent to a secondary name consisting of three
blanks, The characters used in specifying an unambiquous file reference
cannot contain any of the special characters

K>, 5= 2% (]
while all alphanumerics and remaining special characters are allowed,

An ambiguous file reference is used for directory search and pattern
matching, The form of an ambiguwus file reference 1is similar to an
unambiguous reference, except the symbol "?" may be interspersed throughout
the orimary and secondary names, In various commands throughout CP/M, the “?"
symbol matches any character of a file name in the "?" position, Thus, the
ambiguwous reference

X?Z2.C?M
is satisfied by the unambiguwus file names
XYZ .00M
and
X3Z .CAM
Note that the ambiguous reference
*.*
is eguivalent to the ambiguous file reference

oooooooo

while



PPPPPPPP. *
and
* ,SSS

are abbreviations for

PPPPPPPP. 227
and

respectively, As an example,
DIR * *

is interpreted by the CCP as a command to list the names of all disk files in
the directory, while

DIR X,Y
searches only for a file by the name X.Y Similarly, the command
DIR X?Y.C?M

causes a search for all (unambiguous) file names on the disk which satisfy
this ambiguwous reference,

The following file names are valid unambiguous file references:
X XY? GAMMA
XY XYZ ,QOM GAMMA, 1
As an added convenience, the programmer can generally specify the disk
drive name along with the file name., In this case, the drive name is given as
a letter A through Z followed by a colon (:), The specified drive is then
"logged in" before the file operation occurs, Thus, the following are valid
file names with disk name prefixes:
A:X.Y B:XYZ C:GAMMA
Z:XYZ ,C0OM B:X.,A?M C:* ,ASM
It should also be noted that all alphabetic lower case letters in file

and drive names are always translated to upper case when they are processed by
the CCp,



3. SWITCHING DISKS.

The operator can switch the currently logged disk by typing the disk
drive name (A, B, C, or D) followed by a colon (:) when the CCP is waiting for
console input, Thus, the sequence of prompts and commands shown below might
occur after the CP/M system is loaded from disk A:

16K CP/M VER 1.4

A>DIR List all files on disk A,
SAMPLE  ASM

SAMPLE  PRN

A>B: Switch to disk B.

B>DIR * . ASM List all "AsM" files on B,
DUMP ASM

FILES ASM

B>A: Switch back to A,



4, THE FORM OF BUILT-IN COMMANDS,

The file and device reference forms described above can now be used to
fully specify the structure of the built-in cammands, In the description
below, assume the following abbreviations:

ufn - unambiquous file reference
afn - ambiguwous file reference
cr - carriage return

Fur ther, recall that the CCP always translates lower case characters to upper
case characters internally. Thus, lower case alphabetics are treated as if
they are upper case in cammand names and file references,

4,1 ERA afn cr

The ERA (erase) command removes files from the currently logged-in disk
(i.e., the disk name currently prompted by CP/M preceding the ">"), The files
which are erased are those which satisfy the ambiguous file reference afn,
The following examples illustrate the use of ERA:

ERA X.Y The file named X.Y on the currently logged disk
is removed from the disk directory, and the space
is returned,

ERA X, * All files with primary name X are removed from
the current disk,

ERA * ASM All files with secondary name ASM are removed
from the current disk,

ERA X?Y.C?M All files on the current disk which satisfy the
ambiguous reference X?Y,C?M are deleted.

ERA * * Erase all files on the current disk (in this case
the CCP prompts the console with the message
"ALL FILES (Y/N)?"
which requires a Y response before files are
actually removed),

ERA B:*_ PRN All files on drive B which satisfy the ambiguous

of the currently logged disk,



4,2, DIR afn cr
The DIR (directory) command causes the names of all files which satisfy
the ambigwous file name afn to be listed at the console device. As a special
case, the canmand
DIR

lists the files on the currently logged disk (the command “"DIR" is eguivalent
to the cammand "DIR *.*"), Valid DIR commands are shown below.

DIR X.Y

DIR X?Z.C?M

DIR ?2?2.,Y

Similar to other CCP commands, the afn can be preceded by a drive name.

The following DIR commands cause the selected drive to be addressed before the
directory search takes place,

DIR B:

DIR B:X.Y

DIR B:* ,A?M

If no files can be found on the selected diskette which satisfy the
directory request, then the message “NOT FOUND" is typed at the console,

4,3, REN ufnl=ufn2 cr

The REN (rename) command allows the user to change the names of files on
disk. The file satisfying ufn2 is changed to ufnl. The currently logged disk
is assumed to contain the file to rename (ufnl). The CCP also allows the user
to type a left-directed arrow instead of the equal sign, if the user’s console
supports this graphic character., Examples of the REN command are

REN X.Y=Q.R The file Q.R is changed to X.Y.
REN XYZ ,Q0M=XYZ .XXX The file XYZ.XXX is changed to XYZ.COM.

The operator can precede either ufnl or ufn2 (or both) by an optional
drive address. Given that ufnl is preceded by a drive name, then ufn2 is
assumed to exist on the same drive as ufnl. Similarly, if ufn2 is preceded by
a drive name, then ufnl is assumed to reside on that drive as well., If both
ufnl and ufn2 are preceded by drive names, then the same drive must be



specified in both cases, The following REN commands illustrate this format.

REN A:X,ASM = Y, ASM The file Y.,ASM is changed to X.ASM on
drive A,

REN B:ZAP,BAS=70T,BAS The file ZOT.BAS is changed to ZAP,BAS
on drive B.

REN B:A,ASM = B:A,BAK The file A,BAK is renamed to A,ASM on
drive B,

If the file ufnl is already present, the REN command will respond with
the error "FILE EXISTS" and not perform the change. If ufn2 does not exist on
the specified diskette, then the message "NOT FOUND" is printed at the
console,

4,4, SAVE n ufn cr

The SAVE command places n pages (256-byte blocks) onto disk from the TPA
and names this file ufn, In the CP/M distribution system, the TPA starts at
180H (hexadecimal), which is the second page of memory. Thus, if the user’s
program occupies the area from 10@0H through 2FFH, the SAVE command must
specify 2 pages of memory. The machine code file can be subsequently loaded
and executed. Examples are:

SAVE 3 X.,0oM Copies 10PH through 3FFH to X,C0M,

SAVE 40 Q Copies 10@H through 28FFH to Q (note
that 28 is the page count in 28FFH,
and that 28H = 2*16+8 = 40 decimal).

SAVE 4 X.Y Copies 100H through 4FFH to X.Y.

The SAVE command can also specify a disk drive in the afn portion of the
command, as shown below,

SAVE 1@ B:ZOT.COM Copies 10 pages (1@@H through @AFFH) to
the file ZOT.QOM on drive B,

4,5. TYPE ufn cr

The TYPE command displays the contents of the ASCII source file ufn on
the currently logged disk at the console device, Valid TYPE commands are

TYPE X.Y



TYPE X.PIM

TYPE XXX

The TYPE command expands tabs (clt-I characters), assumming tab positions
are set at every eighth colum, The ufn can also reference a drive name as
shown below,

TYPE B:X.PRN The file X.PRN from drive B is displayed.

10



5. LINE EDITING AND OUTPUT (QONTROL.,

The CCP allows certain line editing functions while typing command lines.

rubout Delete and echo the last character typed at the
console,

ctl-U Delete the entire line typed at the console,

ctl=Xx (Same as ctl-U)

ctl-R Retype current command line: types a "clean line" fol-

lowing character deletion with rubouts,

ctl-E Physical end of line: carriage is returned, but line
is not sent until the carriage return key is depressed.

ctl-C CP/M system reboot (warm start)

ctl-Z End input from the console (used in PIP and ED),.

The control functions ctl-P and ctl-S affect console output as shown below.,

ctl-pP Copy all subsequent console output to the currently
assigned list device (see the STAT command)., Output
is sent to both the list device and the console device
until the next ctl-P is typed.

ctl-S Stop the console output temporarily. Program execution
and output continue when the next character is typed
at the console (e.g., another ctl-S), This feature is
used to stop output on high speed consoles, such as
CRT's, in order to view a segment of output before con-
tinuing,

Note that the ctl-key seguences shown above are obtained by depressing the
control and letter keys simultaneously, Further, CCP command 1lines can
generally be up to 255 characters in lenath; they are not acted upon until the
carriage return key is typed.

11



6. TRANSIENT COMMANDS.

Transient commands are loaded from the currently logged disk and executed
in the TPA. The transient commands defined for execution under the CCP are
shown below, Additional functions can easily be defined by the user (see the
LOAD caommand definition).

STAT List the number of bytes of storage remaining on the
currently logged disk, provide statistical information
about particular files, and display or alter device
assignment,

ASM Load the CP/M assembler and assemble the specified
program from disk.

LOAD Load the file in Intel "hex" machine code format and
produce a file in machine executable form which can be
loaded into the TPA (this loaded program becomes a
new command under the CCP),

DDT Load the CP/M debugger into TPA and start execution,

PIP Load the Peripheral Interchange Program for subseguent
disk file and peripheral transfer operations,

ED Load and execute the CP/M text editor program,

SYSGEN Create a new CP/M system diskette,

SUBMIT Submit a file of commands for batch processing.

DUMP Dump the contents of a file in hex.

MOVCPM quenerate the CP/M system for a particular memory
size.

Transient commands are specified in the same manner as built-in commands, and
additional cammands can be easily defined by the wuser. As an added
convenience, the transient command can be preceded by a drive name, which
causes the transient to be loaded from the specified drive into the TPA for
execution, Thus, the command

B:STAT
causes CP/M to temporarily “log in" drive B for the source of the STAT

transient, and then return to the original 1logged disk for subsequent
processing,

12



The basic transient commands are listed in detail below.
6.1l. STAT cr

The STAT command provides general statistical information about file
storage and device assignment, It is initiated by typing one of the following
forms:

STAT cr
STAT "command line" cr

Special forms of the "command line" allow the current device assignment to be
examined and altered as well, The wvarious command lines which can be
specified are shown below, with an explanation of each form shown to the
right,

STAT cr If the user types an empty command line, the STAT
transient calculates the storage remaining on all
active drives, and prints a message

x: R/W, SPACE: nnnK
or
x: R/O, SPACE: nnnK

for each active drive x, where R/W indicates the
drive may be read or written, and R/O indicates
the drive is read only (a drive becomes R/O by
explicitly setting it to read only, as shown
below, or by inadvertantly changing diskettes
without performing a warm start). The space
remaining on the diskette in drive x is given

in kilobytes by nnn,

STAT x: Cr If a drive name is given, then the drive is
selected before the storage is computed. Thus,
the command "STAT B:" could be issued while
logged into drive A, resulting in the message

BYTES REMAINING ON B: nnnK
STAT afn cr The command line can also specify a set of files
to be scanned by STAT. The files which satisfy
afn are listed in alphabetical order, with stor-
age requirements for each file under the heading

RECS BYTS EX D:FILENAME,TYP
rrrr bbbK ee d:pppppprPrp.Sss

where rrrr is the number of 128-byte records

13



allocated to the file, bbb is the number of kilo~
bytes allocated to the file (bbb=rrrr*128/1024),
ee is the number of 16K extensions (ee=bbb/16),

d is the drive name containing the file (A...Z),
pPPPPPPP is the (up to) eight-character primary
file name, and sss is the (up to) three~character
secondary name, After listing the individual
files, the storage usage is summarized.

STAT x:afn cr As a convenience, the drive name can be given
ahead of the atn. In this case, the specified
drive is first selected, and the form "STAT afn*
is executed.

STAT x:=R/0 cr This form sets the drive given by x to read-only,
which remains in effect until the next warm or
cold start takes place, When a disk is read-only,
the message

BDOS ERR ON x: READ ONLY

will appear if there is an attempt to write to
the read-only disk x, CP/M waits until a key

is depressed before performing an automatic warm
start (at which time the disk becomes R/W).

The STAT command also allows control over the physical to logical device
assignment (see the IOBYI'E function described in the manuals “CP/M Interface
Guide" and "CP/M System Alteration Guide"). In general, there are four
logical peripheral devices which are, at any particular instant, each assigned
to one of several physical peripheral devices. The four logical devices are
named:

CON: The system console device (used by CCP
for communication with the operator)

RDR: The paper tape reader device

PUN: The paper tape punch device

LST: The output list device

The actual devices attached to any particular computer system are driven
by subroutines in the BIOS portion of CP/M., Thus, the logical RDR: device,
for example, could actually be a high speed reader, Teletype reader, or
cassette tape. In order to allow some flexibility in device naming and
assignment, several physical devices are defined, as shown below:

14



TTY: Teletype device (slow speed console)

CRT: Cathode ray tube device (high speed console)

BAT: Batch processing (console is current RDR:,
output goes to current LST: device)

UCl: User-defined console

PTR: Paper tape reader (high speed reader)

UR1: User-defined reader #1

UR2: User—-defined reader #2

PTP: Paper tape punch (high speed punch)

UPl: User-defined punch #1

UP2: User-defined punch #2

LPT: Line printer

ULl: User—defined list device #1

It must be emphasized that the physical device names may or may not
actually correspond to devices which the names imply. That is, the PTP:
device may be implemented as a cassette write operation, if the user wishes.
The exact correspondence and driving subroutine is defined in the BIOS portion
of CpP/M, In the standard distribution version of CP/M, these devices
correspond to their names on the MDS 80@ development system.

The possible logical to physical device assignments can be displayed by
typing
STAT VAL: cr

The STAT prints the possible values which can be taken on for each logical
device:

CON. = TTY: CRT: BAT: UCl:

RDR: = TTY: PTR: URl: UR2:
PUN: = TTY: PTP: UPl: UP2:
LST: = TTY: CRT: LPT: ULl:

In each case, the logical device shown to the left can take any of the four
physical assignments shown to the right on each line, The current logical to
physical mapping is displayed by typing the command

STAT DEV: cr

15



which produces a listing of each logical device to the left, and the current
corresponding physical device to the right, For example, the 1list might
appear as follows:

CON: = CRT:
RDR: = UR1:
PUN: = PIP:
LST: = TTY:

The current logical to physical device assignment can be changed by typing a
STAT command of the form

STAT 1d1 = pdl, 132 = pd2 , ... , 1dn = pdn cr
where 1dl through 1ldn are logical device names, and wdl through pdn are
compatible physical device names (i.e., 1di and ndi appear on the same line in
the "VAL:" cammand shown above)., The following are valid STAT commands which
change the current logical to physical device assignments:

STAT (ON:=CRT: cr
STAT PUN: = TTY:,LST:=LPT:, RDR:=TTY: cCr

6.2, ASM ufn cr
The ASM command loads and executes the CP/M 8080 assembler, The ufn
specifies a source file containing assembly language statements where the
secondary name is assumed to be ASM, and thus is not specified, The following
ASM commands are valid:
ASM X
ASM GAMMA

The two-pass assembler is automatically executed. If assembly errors occur
during the second pass, the errors are printed at the console,

The assembler produces a file
X « PRN
where x is the primary name specified in the ASM command, The PRN file
contains a listing of the source vprogram (with imbedded tab characters if

present in the source program), along with the machine code: generated for each
statement and diagnostic error messages, if any. The PRN file can be listed

16



at the console using the TYPE command, or sent to a peripheral device using
PIP (see the PIP command structure below). Note also that the PRN file
contains the original source program, augmented by miscellaneous assembly
information in the leftmost 16 columns (program addresses and hexadecimal
machine code, for example). Thus, the PRN file can serve as a backup for the
original source file: if the source file is accidently removed or destroyed,
the PRN file can be edited (see the ED operator s gquide) by removing the
leftmost 16 characters of each 1line (this can be done by issuing a single
editor "macro® cammand). The resulting file is identical to the original
source file and can be renamed (REN) from PRN to ASM for subsequent editing
and assembly, The file

X JHEX

is also produced which contains 8080 machine language in Intel "hex" format
suitable for subsequent loading and execution (see the LOAD command). For
complete details of CP/M’s assembly lanquage program, see the "CP/M Assembler
Language (ASM) User s Guide,"

Similar to other transient commands, the source file for assembly can be
taken from an a.ternate disk by prefixing the assembly lanquage file name by a
disk drive name, Thus, the command

ASM B:ALPHA cr
loads the assembler from the currently logged drive and operates upon the

source program ALPHA,ASM on drive B. The HEX and PRN files are also placed on
drive B in this case.

6.3. LOAD ufn cr

The LOAD command reads the file ufn, which is assumed to contain "hex"
format machine code, and produces a memory image file which can be
subsequently executed., The file name ufn is assumed to be of the form

X JHEX

and thus only the name x need be specified in the command., The LOAD command
creates a file named

x . QOM
which marks it as containing machine executable code., The file is actually
loaded into memory and executed when the user types the file name x
immediately after the prompting character “>" printed by the CCP,
In general, the CCP reads the name x following the prompting character

and looks for a built-in function name. If no function name is found, the CCP
searches the system disk directory for a file by the name

17



X ., COM

If found, the machine code is loaded into the TPA, and the program executes,
Thus, the user need only LOAD a hex file once; it can be subsequently
executed any number of times by simply typing the primary name. 1In this way,
the user can "invent"” new commands in the CCP, (Initialized disks contain the
transient commands as QOM files, which can be deleted at the user’s option,)
The operation can take place on an alternate drive if the file name is
prefixed by a drive name, Thus,

LOAD B:BETA

brings the LOAD program into the TPA from the currently logged disk and
operates upon drive B after execution begins,

It must be noted that the BETA.HEX file must contain valid Intel format
hexadecimal machine code records (as produced by the ASM program, for example)
which begin at 100H, the beginning of the TPA, Further, the addresses in the
hex records must be in ascending order; gaps in unfilled memory regions are
filled with zeroes by the LOAD command as the hex records are read, Thus,
LOAD must be used only for creating CP/M standard "COM" files which operate in
the TPA. Programs which occupy regions of memory other than the TPA can be
loaded under DDT.

6.4, PIP cr

PIP is the CP/M Perivheral Interchange Program which implements the basic
media conversion operations necessary to load, print, punch, copy, and combine
disk files. The PIP program is initiated by typing one of the following forms

(1) PIP cr
(2) PIP “command line" cr

In both cases, PIP is loaded into the TPA and executed, 1In case (1), PIP
reads command lines directly from the console, prompted with the "*"
character, wntil an empty command line is typed (i.e., a single carriage
return is issued by the operator). Each successive command line causes some
media conversion to take place according to the rules shown below, Form (2)
of the PIP command is eguivalent to the first, except that the single command
line given with the PIP command is automatically executed, and PIP terminates
immediately with no further prompting of the console for input command lines,
The form of each cammand line is

destination = source#l, source#2, ... , source#n cr

where "destination" is the file or peripheral device to receive the data, and

18



“source#l, ..., source¥n" represents a series of one or more files or devices
which are copied from left to right to the destination,

When multiple files are given in the command line (i.e, n > 1), the
individual files are assumed to contain ASCII characters, with an assumed CP/M
end-of-file character (ctl-Z) at the end of each file (see the O parameter to
override this assumption), The egual symbol (=) can be replaced by a
left-oriented arrow, if your console supports this ASCII character, to improve
readability, Lower case ASCII alphabetics are internally translated to upper
case to be consistent with CP/M file and device name conventions, Finally,
the total command line length cannot exceed 255 characters (ctl-E can be used
to force a physical carriage return for lines which exceed the console width).

The destination and source elements can be unambiguous references to CP/M
source files, with or without a preceding disk drive name., That is, any file
can be referenced with a preceding drive name (A:, B:, C:, or D:) which
defines the particular drive where the file may be obtained or stored. When
the drive name is not included, the currently logged disk is assumed.
Further, the destination file can also appear as one or more of the source
files, in which case the source file is not altered until the entire
concatenation is complete, If the destination file already exists, it is
removed if the command line is properly formed (it is not removed if an error
condition arises). The following command lines (with explanations to the
right) are valid as input to PIP:

X=Ycr Copy to file X from file Y.
where X and Y are unambigquous
file names; Y remains unchanaed.

X =Y,Z2 cr Concatenate files Y and 7Z and
copy to file X, with Y and 2
unchanged,

X ,ASM=Y,ASM,Z ,ASM,FIN,ASM cr Create the file X.,ASM from the
concatenation of the Y, 72, and
FIN files with type ASM,

NEW,ZOT = B:0LD,ZAP cr Move a copy of OLD,ZAP from drive
B to the currently logged disk;
name the file NEW,ZOT.

B:A,U = B:B,V,A:C,W,D.X cr Concatenate file B,V from drive B

with C.W from drive A and D.X.
from the logged disk; create
the file A.U on drive B,

For more convenient use, PIP allows abbreviated commands for transferring
files between disk drives., The abbreviated forms are

19



PIP x:=afn cr

PIP x:=y:afn cr

PIP ufn = y: cr 0
PIP x:ufn = y: cr

The first form copies all files from the currently logged disk which satisfy
the afn to the same file names on drive x (x = A,..Z). The second form is
equivalent to the first, where the source for the copy is drive y (y = A...
Z). The third form is eguivalent to the command "PIP ufn=y:ufn cr" which
copies the file given by ufn from drive y to the file ufn on drive x. The
fourth form is equivalent to the third, where the source disk is explicitly
given by v.

Note that the source and destination disks must be different in all of
these cases., 1If an afn is specified, PIP lists each ufn which satisfies the
afn as it is being copied. If a file exists by the same name as the
destination file, it is removed upon successful completion of the copy, and
replaced by the copied file,

The following PIP commands give examples of valid disk-to-disk copy
operations:

B:=*,(OM cr Copy all files which have the
secondary name “"COM" to drive B
from the current drive.

A:=B:ZAP.* cr Copy all files which have the
primary name “"ZAP" to drive A
from drive B.

ZAP,ASM=B: cr Eouivalent to ZAP.ASM=B:ZAP,ASM
B:ZOT.(OM=A: cr Eaquivalent to B:ZOT,COM=A:Z0T,O0M
B:=GAMMA,BAS cr Same as B:GAMMA,BAS=GAMMA,BAS
B:=A:GAMMA,BAS cr Same as B:GAMMA,BAS=A:GAMMA,BAS

PIP also allows reference to physical and logical devices which are
attached to the CP/M system., The device names are the same as given under the
STAT command, along with a number of specially named devices. The 1logical
devices given in the STAT command are

CON: (console), RDR: (reader), PUN: (punch), and LST: (list)

while the physical devices are

20



TTY: (console, reader, punch, or list)

CRT: (console, or list), UCl: (console)
PTR: (reader), URl: (reader), UR2: (reader)
PTP: (punch), UPl: (punch), UP2: (punch)
LPT: (list), ULl: (list)

(Note that the "BAT:" physical device is not included, since this assignment
is used only to indicate that the RDR- and LST: de91ces are to be used for
console input/output.)

The RDR, IST, PUN, and CON devices are all defined within the BIOS
portion of CP/M, and thus are easily altered for any particular I/O system.
(The current physical device mapping is defined by IOBYTE; see the "CP/M
Interface Guide" for a discussion of this function)., The destination device
must be capable of receiving data (i.e., data cannot be sent to the punch),
and the source devices must be capable of generating data (i.e., the LST:
device cannot be read).

The additional device names which can be used in PIP commands are

NUL: Send 40 "nulls" (ASCII 0°s) to the device
(this can be issued at the end of punched output).

EOF: Send a CP/M end-of-file (ASCII ctl-Z) to the
destination device (sent automatically at the
end of all ASCII data transfers through PIP),

INP: Special PIP input source which can be "patched"
into the PIP program itself: PIP gets the input
data character-by-character by CALLing location
103H, with data returned in location 109H (parity
bit must be zero).

OUT: Special PIP output destination which can be
patched into the PIP program: PIP CALLs location
106H with data in register C for each character
to transmit, Note that locations 109H through
1FFH of the PIP memory image are not used and
can be replaced by special purpose drivers using
DDT (see the DDT operator s manual).

PRN: Same as LST:, except that tabs are expanded at
every eighth character position, lines are
numbered, and page ejects are inserted every 60
lines, with an initial eject (same as [t8np]).

File and device names can be interspersed in the PIP commands. In each
case, the specific device is read until end-of-file (ctl-2Z2 for ASCII files,
and a real. end of file for non-ASCII disk files), Data from each device or
file is concatenated from left to right until the last data source has been

21



read, The destination device or file is written using the data from the
source files, and an end-of-file character (ctl-Z) is appended to the result
for ASCII files, Note if the destination is a disk file, then a temporary
file is created ($$$ secondary name) which is chanded to the actual file name
only upon successful completion of the copy. Files with the extension “COM"
are always assumed to be non-ASCII,

The copy operation can be aborted at any time by depressing any key on
the keyboard (a rubout suffices). PIP will respond with the message "ABORTED"
to indicate that the operation was not completed, Note that if any operation
is aborted, or if an error occurs during processing, PIP removes any pending
commands which were set up while using the SUBMIT command,

It should also be noted that PIP performs a special function if the
destination is a disk file with type "HEX" (an Intel hex formatted machine
code file), and the source is an external peripheral device, such as a paper
tape reader. In this case, the PIP program checks to ensure that the source
file contains a properly formed hex file, with legal hexadecimal values and
checksum records. When an invalid input record is found, PIP reports an error
message at the console and waits for corrective action, It is usually
sufficient to open the reader and rerun a section of the tape (pull the tape
back about 2@ inches). When the tape is ready for the re-read, type a single
carriage return at the console, a{nd PIP will attempt another read, If the
tape position cannot be properly :{ead, simply continue the read (by typing a
return following the error message)l, and enter the record manually with the ED
program after the disk file is constructed., For convenience, PIP allows the
end-of-file to be entered from the console if the source file is a RDR:
device. In this case, the PIP program reads the device and monitors the
keyboard, If ctl-Z is typed at the keyboard, then the read operation is

terminated normally.
Valid PIP commands are shown below,

PIP IST: = X,PRN cr Copy X.PRN to the LST device and
terminate the PIP program.

PIP cr S Start PIP for a sequence of
commands (PIP prompts with “*"),
*CON:=X.ASM,Y.ASM,%.ASM cr Concatenate three ASM files and
: copy to the CON device,

*X  HEX=CON:,Y . HEX,PTR: cr Create a HEX file by reading the
(ON (until a ctl-Z is typed), fol-
lowed by data from Y.HEX, followed
by data from PTR until a ctl-Z is
encountered,

*cr | Single carriage return stops PIP.

22



PIP PUN:=NUL:,X.ASM,EOF:,NUL: cr Send 40 nulls to the punch device;
then copy the X,ASM file to the
punch, followed by an end-of-file
(ctl-Z) and 40 more null charac-
ters,

The user can also specify one or more PIP parameters, enclosed in left
and right square brackets, separated by zero or more blanks, Each parameter
affects the copy operation, and the enclosed 1list of parameters must
immediately follow the affected file or device., Generally, each parameter can
be followed by an optional decimal integer value (the S and Q parameters are
exceptions). The valid PIP parameters are listed below,

B Block mode transfer: data is buffered by PIP until an ASCII
x-off character (ctl-S) is received from the source device,
This allows transfer of data to a disk file from a continuous
reading device, such as a cassette reader. Upon receipt of
the x-off, PIP clears the disk buffers and returns for more
input data, The amount of data which can be buffered is de-
pendent upon the memory size of the host system (PIP will
issue an error message if the buffers overflow).

Dn Delete characters which extend past column n in the transfer
of data to the destination from the character source. This
parameter is used most often to truncate long lines which are
sent to a (narrow) printer or console device,

E Echo all transfer operations to the console as they are being
performed.
F Filter form feeds from the file, All imbedded form feeds are

removed, The P parameter can be used simultaneously to
insert new form feeds,

H Hex data transfer: all data is checked for proper Intel hex
file format, Non-essential characters between hex records
are removed during the copy operation., The console will be
prompted for corrective action in case errors occur.

I Ignore ":08" records in the transfer of Intel hex format
file (the I parameter automatically sets the H parameter).

L Translate upper case alphabetics to lower case,

N Add line numbers to each line transferred to the destination
starting at one, and incrementing by 1. ILeading zeroes are
suppressed, and the number is followed by a colon, If N2
is specified then leading zeroes are included, and a tab is
inserted following the number, The tab is expanded if T is

23



set.

0 Object file (non-ASCII) transfer: the normal CP/M end of
file is ignored.

Pn Include page ejects at every n lines (with an initial page
eject). If n=1 or is excluded altogether, page ejects
occur every 60 lines, If the F parameter is used, form feed
suppression takes place before the new page ejects are
inserted.

0sTz Quit copying from the source device or file when the
string s (terminated by ctl-Z) is encountered,

Sstz Start copying from the source device when the string s is
encountered (terminated by ctl-Z), The S and O parameters
can be used to “abstract" a particular section of a file
(such as a subroutine), The start and quit strings are al-
ways included in the copy operation,

NOTE - the strings following the s and g parameters are
translated to upper case by the CCP if form (2) of the
PIP command is used, Form (1) of the PIP invocation, how-
ever, does not perform the automatic upper case translation,
(1) PIP cr
(2) PIP "command line" cr

Tn Expand tabs (ctl-I characters) to every nth column during the
transfer of characters to the destination from the source.

U Translate lower case alphabetics to upper case during the
the copy operation,

\Y Verify that data has been copied correctly by rereading
after the write operation (the destination must be a disk
file),

Z Zero the parity bit on input for each ASCII character,

The following are valid PIP commands which specify parameters in the file
transfer:

PIP X.,ASM=B:{v] cr Copy X.ASM from drive B to the current drive
and verify that the data was properly copied.

PIP LPT:=X,ASM[nt8u] cr Copy X.ASM to the LPT: device; number each
line, expand tabs to every eighth column, and
translate lower case alphabetics to upper
case,

24



PIP PUN:=X.,HEX[i],Y.ZOT{h] cr First copy X.HEX to the PUN: device and
ignore the trailing ":00" record in X.HEX;
then continue the transfer of data by reading
Y.Z0T, which contains hex records, including
any ":00" records which it contains,

PIP X.LIB = Y.ASM [ sSUBRl:"z qIMP 137z ] cr Copy from the file Y.ASM
into the file X.LIB, Start the copy when the
string "SUBRl:" has been found, and quit copy-
ing after the string "JMP L3" is encountered.

PIP PRN:=X.,ASM([p50] Send X.ASM to the LST: device, with line num-
bers, tabs expanded to every eighth column,
and page ejects at every 50th line, Note that
nt8p6@ is the assumed parameter list for a PRN
file; p5@ overrides the default value.

6.5. ED ufn cr

The ED program is the CP/M system context editor, which allows creation
and alteration of ASCII files in the CP/M environment, Complete details of
operation are given the ED user s manual, "ED: a Context Editor for the CP/M
Disk System.,” 1In general, ED allows the operator to create and operate upon
source files which are organized as a sequence of ASCII characters, separated
by end-of-line characters (a carriage-return line-feed sequence). There is no
practical restriction on line length (no single line can exceed the size of
the working memory), which is instead defined by the number of characters
typed between cr’s. The ED program has a number of commands for character
string searching, replacement, and insertion, which are useful in the creation
and correction of programs or text files under CP/M., Although the CP/M has a
limited memory work space area (aprroximately 5088 characters in a 16K CP/M
system), the file size which can be edited is not limited, since data is
easily "paged" through this work area.

Upon initiation, ED creates the specified source file, if it does not
exist, and opens the file for access. The programmer then "appends" data from
the source file into the work area, if the source file already exists (see the
A command), for editing. The appended data can then be displayed, altered,
and written from the work area back to the disk (see the W command).
Particular points in the program can be automatically paged and located by
context (see the N command), allowing easy access to particular portions of a
large file,

Given that the operator has typed

ED X.,ASM cr

25



the ED program creates an intermediate work file with the name

X.$$$

to hold the edited data during the ED run., Upon completion of ED, the X.ASM
file (original file) is renamed to X.,BAK, and the edited work file is renamed
to X.ASM, Thus, the X.BAK file contains the oriaginal (unedited) file, and the
X.ASM file contains the newly edited file, The operator can always return to
the previous version of a file by removing the most recent version, and
renaming the previous version, Suppose, for example, that the current X.ASM
file was improperly edited; the sequence of CCP command shown below would
reclaim the backup file,

DIR X.* Check to see that BAK file
is available,

ERA X.ASM Erase most recent version,

REN X.ASM=X,BAK Rename the BAK file to ASM,

Note that the operator can abort the edit at any point (reboot, power failure,
ctl-C, or O command) without destroying the original file, 1In this case, the
BAK file is not created, and the original file is always intact.

The ED program also allows the user to "ping-pong” the source and create
backup files between two disks., The form of the ED command in this case is

ED ufn d:

where ufn is the name of a file to edit on the currently logged disk, and 4 is
the name of an alternate drive., The ED program reads and processes the source
file, and writes the new file to drive d, using the name ufn. Upon completion
of processing, the original file becomes the backup file, Thus, if the
operator is addressing disk A, the following command is valid:

ED X.ASM B:

which edits the file X.ASM on drive A, creating the new file X.$$$ on drive
B, Upon campletion of a successful edit, A:X.ASM is renamed to A:X.BAK, and
B:X.$$$ is renamed to B:X.ASM. For user convenience, the currently logged
disk becomes drive B at the end of the edit., Note that if a file by the name
B:X.ASM exists before the editing begins, the message

FILE EXISTS
is printed at the console as a precaution against accidently destroying a

source file., 1In this case, the operator must first ERAse the existing file
and then restart the edit operation,

26



Similar to other transient commands, editing can take place on a drive
different from the currently logged disk by preceding the source file name by
a drive name, Examples of valid edit reguests are shown below

ED A:X.,ASM Edit the file X.,ASM on drive A, with
new file and backup on drive A.

ED B:X.ASM A: Edit the file X,ASM on drive B to the
temporary file X.$$$ on drive A, On
termination of editing, change X,ASM
on drive B to X.BAK, and change X.S$SS
on drive A to X,ASM,

6.6. SYSGEN cr

The SYSGEN transient command allows generation of an initialized diskette
containing the CP/M operating system, The SYSGEN program prompts the console
for caommands, with interaction as shown below.

SYSGEN cr Initiate the SYSGEN program.
SYSGEN VERSION m,m SYSGEN sign-on message,

SOURCE DRIVE NAME (OR RETURN TO SKIP)

Respond with the drive name (one
of the letters A, B, C, or D) of
the disk containing a CP/M sys-
tem; usually A, If a copy of
CP/M already exists in memory,
due to a MOVCPM command, type a
cr only. Typing a drive name

X will cause the response:

SOURCE ON x THEN TYPE RETURN Place a diskette containing the
CP/M operating system on drive
X (x is one of A, B, C, or D).
Answer with cr when ready.

FUNCTION COMPLETE System is copied to memory.
SYSGEN will then prompt with:

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

If a diskette is being ini-
tialized, place the new disk
into a drive and answer with

the drive name, Otherwise, type
a cr and the system will reboot
from drive A, Typing drive name
X will cause SYSGEN to prompt

27



with:

DESTINATION ON x THEN TYPE RETURN Place new diskette into drive
X; type return when ready.

FUNCTION CQOMPLETE New diskette is initialized
in drive x.

The "DESTINATION" prompt will be repeated until a single carriage return is
typed at the console, so that more than one disk can be initialized.,

Upon campletion of a swcessful system generation, the new diskette
contains the operating system, and only the built-in commands are available,
A factory-fresh IBM-cormpatible diskette appears to CP/M as a diskette with an
empty directory; therefore, the operator must copy the appropriate COM files
from an existing CP/M diskette to the newly constructed diskette using the PIP
transient,

The user can copy all files from an existing diskette by typing the PIP
command

PIP B: = A: * *[v] cr

which copies all files from disk drive A to disk drive B, and verifies that
each file has been copied correctly, The name of each file is displayed at
the console as the copy operation proceeds.

It should be noted that a SYSGEN does not destroy the files which already
exist on a diskette; it results only in construction of a new operating
system, Further, if a diskette is being used only on drives B through D, and
will never be the source of a bootstrap operation on drive A, the SYSGEN need
not take place. In fact, a new diskette needs absolutely no initialization to
be used with CP/M,

6.7. SUBMIT ufn parm#l ... parm#n cr

The SUBMIT command allows CP/M commands to be batched together for
automatic processing, The ufn given in the SUBMIT command must be the
filename of a file which exists on the currently logged disk, with an assumed
file type of "SUB." The SUB file contains CP/M prototype commands, with
possible parameter substitution, The actual parameters parm#l ... parm#n are
substituted into the prototype commands, and, if no errors occur, the file of
substituted cammands are processed sequentially by CP/M,

28



The prototype command file is created using the ED program, with
interspersed "$" parameters of the form

$1 $2 $3 ... $n

corresponding to the number of actual parameters which will be included when
the file is submitted for execution, When the SUBMIT transient is executed,
the actual parameters parm#l ... parm#n are paired with the formal parameters
$1 ... Sn in the prototype cammands, If the number of formal and actual
parameters does not correspond, then the submit function is aborted with an
error message at the console, The SUBMIT function creates a file of
substituted camnmands with the name

$$$.SUB

on the logged disk. When the system reboots (at the termination of the
SUBMIT), this cammand file is read by the CCP as a source of input, rather
than the console. If the SUBMIT function is performed on any disk other than
drive A, the cammands are not processed until the disk is inserted into drive
A and the system reboots. Further, the user can abort command processing at
any time by typing a rubout when the command is read and echoed. In this
case, the $$$.SUB file is removed, and the subsequent commands come from the
console. Command processing is also aborted if the CCP detects an error in
any of the commands. Programs which execute under CP/M can abort processing of
command files when error conditions occur by simply erasing any existing
$$$.SUB file,

In order to introduce dollar signs into a SUBMIT file, the user may type
a "$$" which reduces to a single "$" within the command file, Further, an
up-arrow symbol “"*" may precede an alphabetic character x, which oroduces a
single ctl-x character within the file,

The last cammand in a SUB file can initiate another SUB file, thus
allowing chained batch commands,

Suppose the file ASMBL.SUB exists on disk and contains the prototype
commands
ASM $1
DIR $1.*
ERA *_ BAK
PIP $2:=$S1,PRN
ERA $1.PRN

and the command
SUBMIT ASMBL X PRN cr

is issued by the operator. The SUBMIT program reads the ASMBL.SUB file,

swstituting "X" for all occurrences of $1 and “"PRN" for all occurrences of
$2, resulting in a $$$.SUB file containing the commands

29



AM X

DIR X.*

ERA *_,BAK

PIP PRN:=X,.PRN
ERA X.PRN

which are executed in sequence by the CCP,

The SUBMIT function can access a SUB file which is on an alternate drive
by preceding the file name by a drive name, Submitted files are only acted
upon, however, when they appear on drive A, Thus, it is possible to create a
submitted file on drive B which is executed at a later time when it is
inserted in drive A,

6.8. DUMP ufn cr

The DUMP program types the contents of the disk file (ufn) at the console
in hexadecimal form. The file contents are listed sixteen bytes at a time,
with the absolute byte address 1listed to the 1left of each 1line in
hexadecimal, Long typeouts can be aborted by pushing the rubout key during
printout, (The source listing of the DUMP program is given in the “CP/M
Interface Guide" as an example of a program written for the CP/M environment.)

6.9, MOVCPM cr

The MOVCPM program allows the user to reconfigure the CP/M system for any
particular memory size, Two optional parameters may be used to indicate (1)
the desired size of the new system and (2) the disposition of the new system
at program termination, If the first parameter is amitted or a "*" is given,
the MOVCPM program will reconfigure the system to its maximum size, based upon
the kilobytes of contiguous RAM in the host system (starting aat @00@H). If
the second parameter is omitted, the system is executed, but not permanently
recorded; if "*" is given, the system is left in memory, ready for a SYSGEN
operation., The MOVCPM program relocates a memory image of CP/M and places
this image in memory in preparation for a system generation operation, The
command forms are:

MOVCPM cr Relocate and execute CP/M for manage-
ment of the current memory configura-
tion (memory is examined for contigu-
ous RAM, starting at 10@0H). Upon com—
pletion of the relocation, the new
system is executed but not permanently
recorded on the diskette., The system
which is constructed contains a BIOS
for the Intel MDS 804.

30



MOVCPM n cr Create a relocated CP/M system for
management of an n kilobyte system (n
must be in the range 16 to 64), and
execute the system, as described above.

MOVCPM * * cr Construct a relocated memory image for
the current memory confiaquration, but
leave the memory image in memory, in
preparation for a SYSGEN operation,

MOVCPM n * cr Construct a relocated memory image for
an n kilobyte memory system, and leave
the memory image in preparation for a
SYSGEN operation,

The cammand
MOVCPM * *

for example, constructs a new version of the CP/M system and leaves it in
memory, ready for a SYSGEN operation., The message

READY FOR "SYSGEN" OR
“SAVE 32 CPMxx,COM"

is printed at the console upon completion, where xx is the current memory size
in kilobytes, The operator can then type

SYSGEN cr Start the system generation,

SOURCE DRIVE NAME (OR RETURN 'O SKIP) Respond with a cr to skip
the CP/M read operation since the system
is already in memory as a result of the
previous MOVCPM operation,

DESTINATION DRIVE NAME (OR RETURN T@ REBOOT)
Respond with B to write new system
to the diskette in drive B, SYSGEN
will prompt with: :

DESTINATION ON B, THEN TYPE RETURN
Ready the fresh diskette on drive
B and type a return when ready.

Note that if you respond with "A" rather than "B" above, the system will be
written to drive A rather than B, SYSGEN will continue to type the prompt:

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

until the operator responds with a single carriage return, which stops the

31



SYSGEN program with a system reboot,

The user can then go through the reboot process with the o0ld or new
diskette, Instead of performing the SYSGEN operation, the user could have

typed
SAVE 32 CPMxx,COM

at the campletion of the MOVCPM function, which would place the CP/M memory
image on the currently logged disk in a form which can be “patched." This is
necessary when operating in a non-standard environment where the BIOS must be
altered for a particular peripheral device configuration, as described in
the"CP/M System Alteration Guide."

Valid MOVCPM commands are given below:

MOVCPM 48 cr Construct a 48K verskon of CP/M and start
execution,
MOVCPM 48 * cr Construct a 48K version of CP/M in prepara-

tion for permanent recordina; response is

READY FOR "SYSGEN" OR
"SAVE 32CPM48,C00M"

MOVCPM * * cr Construct a maximum memory version of CP/M
and start execution,

It is important to note that the newly created system is serialized with
the number attached to the original diskette and is subject to the conditions
of the Digital Research Software Licensing Agreement,

32



7. BDOS ERROR MESSAGES.

There are three error situations which the Basic Disk Operating System
intercepts during file processsing. When one of these conditions is detected,
the BDOS prints the message:

BDOS ERR ON x: error
where X is the drive name, and “"error® is one of the three error messages:

BAD SECTOR
SELECT
READ ONLY

The "BAD SECTOR" message indicates that the disk controller electronics
has detected an error condition in reading or writing the diskette, This
condition is generally due to a malfunctioning disk controller, or an
extremely worn diskette, If vou find that your system reports this error more
than once a month, you should check the state of your controller electronics,
and the condition of your media., You may also encounter this condition in
reading files generated by a controller produced by a different manufacturer,
Even though controllers are claimed to be IBM-compatible, one often finds
small differences in recording formats. The MDS-80@ controller, for example,
requires two bytes of one’s following the data CRC byte, which is not required
in the IBM format., As a result, diskettes generated by the Intel MDS can be
read by almost all other IBM-compatible systems, while disk files generated on
other manufacturer’s eguipment will produce the "BAD SECTOR" message when read
by the MDS, In any case, recovery from this condition is accomplished by
typing a ctl-C to reboot (this is the safest!), or a return, which simply
ignores the bad sector in the file operation, Note, however, that typing a
return may destroy your diskette integrity if the operation is a directory
write, so make sure you have adeguate backups in this case,.

The “SELECT" error occurs when there is an attempt to address a drive
beyond the A through D range. In this case, the value of x in the error
message gives the selected drive, The system reboots following any input from
the console.

The "READ ONLY" message occurs when there is an attempt to write to a
diskette which has been designated as read-only in a STAT command, or has been
set to read-only by the BDOS, In general, the operator should reboot CP/M
either by using the warm start procedure (ctl-C) or by performing a cold start
whenever the diskettes are changed, If a changed diskette is to be read but
not written, BDOS allows the diskette to be changed without the warm or cold
start, but internally marks the drive as read-only. The status of the drive
is subseguently changed to read/write if a warm or cold start occurs, Upon
issuing this message, CP/M waits for imput from the console., An automatic
warm start takes place following any input.

33



8. OPERATION OF CP/M ON THE MDS,

This section gives operating procedures for using CP/M on the Intel MDS
microcomputer development system, A basic knowledge of the MDS hardware and
software systems is assumed.

CP/M is initiated in essentially the same manner as Intel’s 1ISIS
operating system, The disk drives are 1labelled through 3 on the MDS,
corresponding to CP/M drives A through D, respectively, The CP/M system
diskette is inserted into drive @, and the BOOT and RESET switches are
depressed in sequence, The interrupt 2 light should go on at this point, The
space bar is then depressed on the device which is to be taken as the system
console, and the light should go out (if it does not, then check connections
and baud rates). The BOOT switch is then turned off, and the CP/M signon
message should appear at the selected console device, followed by the "A>"
system prompt., The user can then issue the various resident and transient
commands

The CP/M system can be restarted (warm start) at any time by pushing the
INT @ switch on the front panel, The built-in Intel ROM monitor can be
initiated by pushing the INT 7 switch (which generates a RST 7), except when
operating under DDT, in which case the DDT program gets control instead,

Diskettes can be removed from the drives at any time, and the system can
be shut down during operation without affecting data integrity, Note,
however, that the user must not remove a diskette and replace it with another
without rebooting the system (cold or warm start), unless the inserted
diskette is "read only."

Due to hardware hang-ups or malfunctions, CP/M may type the message
BDOS ERR ON x: BAD SECTOR

where x is the drive which has a permanent error., This error may occur when
drive doors are opened and closed randomly, followed by disk operations, or
may be due to a diskette, drive, or controller failure. The user can
optionally elect to ignore the error by typing a single return at the
console, The error may produce a bad data record, requiring re-initialization
of up to 128 bytes of data. The operator can reboot the CP/M system and try
the operation again.

Termination of a CP/M session requires no special action, except that it
is necessary to remove the diskettes before turning the power off, to avoid
random transients which often make their way to the drive electronics,

It should be noted that factory-fresh IBM-compatible diskettes should be
used rather than diskettes which have previously been used with any ISIS
version, In particular, the ISIS “FORMAT" operation produces non-standard
sector numbering throughout the diskette, This non-standard numbering
seriously degrades the performance of CP/M, and will operate noticeably slower

34



than the distribution version, If it becomes necessary to reformat a diskette
(which should not be the case for standard diskettes), a program can be
written under CP/M which causes the MDS 800 controller to reformat with
sequential sector numbering (1-26) on each track,

. o i ot o v ———

Note: "MDS 800" and "ISIS" are registered trademarks of Intel Corporation,

35






10) DIGITAL RESEARCH’

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2 USER'S GUIDE

COPYRIGHT (c) 1979

DIGITAL RESEARCH



Copyright

Copyright (¢) 1979 by Digital Research. All rights reserved.
No part of this publication mav be reproduced, transmitted,
transeribed, stored in a retrieval system, or translated into
any language or computer language, in any form or by anv
means, electronie, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove,
California 93950,

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims anv
implied warranties of merchantability or fitness for any parti-
cular purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

Trademarks

CP/M is a registered trademark of Digital Research. MP/M,
MAC, and SID are trademarks of Digital Research.



CP/M 2 USER'S GUIDE

Cooyright (c) 1979
Digital Researcn, Box 573
Pacific Grove, California

An Overview of CP/#¥ 2.4 rFacilities . . . .
User Interface . . o+« v o o o s o o o o s+ .
Console Commana Processor (CCP) Interface
STAT fnhancements . . ¢ 4 + o « o o o o &
PIP £nnancCementsS o o o o o s o o o s o o o
ED Enhancements . . o ¢« ¢ s v 4 e e s e s
‘The X3U3 Function . . ¢ ¢ ¢ ¢ ¢« ¢ o o o &
3D0S Interface Conventions . . o+ « o + « &
CP/%M 2,0 Memory Organization . . . . . . .

3I05 D1ffereNCesS v v v o o o o o o o o o

19
11
12
27

23






l. AX OVERVIEW OF CP/M 2.0 FACILITIES.

Cp/M 2.9 is a nigh-performance single-console operating system
which uses table driven tecinniques to allow field recontiguration to
match a wide variety of disk caracities., All of the fundamental file
restrictions are removed, while maintaining upward compatibility from
previous versions of release.l. Features of CP/M 2.4 include field
specification of one to sixteen logical drives, eacn containing up to
eignt megabytes. Any particular file can reach the full drive size
with the capapility to expand to thirty-two megabytes in future
releases. The directory size can be field configured to contain any
reasonable numpber of entries, and each file is optionally tagged with
read/only and system attributes. Users of Cp/M 2.4 are physically
separated oy user numbers, with facilities for file copy operations
from one user area to another. Powerful relative-record random access
functions are present in CP/M 2.9 which provide direct access to any
of the 065536 records of an eight megabyte file,

All disk-dependent portions ot CP/M 2.0 are placed into a
BIOS-resident "disk vparameter block"” which is either nand coded or
produced automatically wusing the disk definition macro library
provided with CP/M 2.9. The end user need only svecity the maximum
numoer of active disks, the starting and ending sector numbers, the
data allocation size, the maximum extent of the logical disk,
directory size information, and reserved track values. The macros use
this intormation to generate the appropriate taoles and table
references for use during CP/M 2.9 overation. Deblocking information
is also provideda which aids in assembly or disassembly of sector sizes
wnich are multiples ot tne fundamental 128 oyte data wunit, and the
system alteration manual 1includes general-purpose suoroutines which
use the tnis deblocking information to take advantage of larger sector
sizes. Use of these subroutines, together with the table driven data
access algorithms, make CP/M 2.9 truly a universal data management
system,

file expansion is achieved by providing up to 512 logical tile
extents, where each logical extent contains 16K bytes of data. CP/M
2.9 1is structured, nowever, so that as much as 128K bytes of data 1is
addressed by a single physical extent (corresponding to a single
directory entry), thus maintaining compatibility wita ©orevious
versions while taking full aavantage ot directory space.

Random access facilities are present in CP/M 2.0 whica allow
immediate reference to any record of an eight megabyte file. Using
Cp/M's unigque data organization, data blocks are only allocated when
actually reguired and movement to a record position requires little
search time. Sequential file access is uobward compatipole from earlier
versions to the full eight megaoytes, wnile random access
compatibility stops at 512K byte files. Due to CP/M 2.0's simoler and
faster random access, application vrogrammers are encouraged to alter
their programs to take full advantage of the 2.0 facilities.

Several CP/M 2.0 modules ana utilities have improvements which
correspond to the enhanced file system. STAT and PIP both account for
file attributes and wuser areas, while the CCP orovides a “login"

(All Information Contained Herein is Proprietary to Digital Researcn.)

1



function to change from one user area to anotner. The CCp also
formats directory displays in a more convenient manner and accounts
for botn CRT and hard-cooy devices in its enhanced line editing
functions.

The sections below point out the inaividual differences between
cp/# 1.4 and CP/M 2.9, witn the understanding that the reader is
either familiar witn CP/M 1.4, or has access to the 1.4 manuals.
Additional information dealing with CP/M 2.8 I/O system alteration is
oresentea in the Digital Researcn manual "CP/M 2.3 Alteration Guide.”

(A1l Information Contained derein is Proprietary to Digital Research.)

2



2., USER INTERFACE.

Console line processing takes CRT-type devices into account with
three new control characters, shown with an asterisk in the list below
(the sympol “ctl” below indicates that the control key is
simultaneously depressed):

rub/del removes and ecnoes last character

ctl=-C reboot when at beginning of line

ctl-£ physical end of line

ctl-d obackspace one ciharacter position¥*

ctl-J (line feed) terminates current input¥*
ctl-M (carriage return) terminates inout
ctl-R retype current line after new line
ctl-U remove current line after new line
ctl=-X backspace to beginning of current line*

In particular, note that ctl-H produces tne proper backspace overwrite
function (ctl-H can be changed internally to another character, such
as delete, through a simple single pyte change). Further, the line
editor keeps track of the current prompt column position so that the
operator can properly align data input following a ctl-U, ctl-R, or
ctl-X command.

(All Information Contained Herein is Proprietary to Digital Research.)

3



3. CONSOLE COMMAND PROCESSOR (CCP) IWTERFACE.

There are four functional differences between CP/M 1.4 anda CP/M
2.0 at the console command processor (CCpP) level, The CCP now
displays directory information across the screen (four elements per
line), the USER command is present to allow maintenance ot separate
files in the same directory, and the actions of the "ERA *,*" and
“SAVE" commands have changed. The altered DIR format is
self-explanatory, while the USER command takes the form:

USER n

where n is an integer value in the range f to 15. Upon cold start,
the operator is automatically "logged" into user area number ¥, which
is compatible with standard CP/M 1.4 directories. The operator may
issue the USER command at any time to move to anotner logical area
within the same directory. Drives which are 1logged-in while
addressing one user number are automatically active when the operator
moves to another user numper since a user number is simply a prefix
which accesses particular directory entries on the active disks.

The active user number is mwaintained until changed by a
subseguent USER command, or until a cold start operation when user
is again assumed.

Due to the fact that user numbers now tag individual directory
entries, 'the £RA *.* command has a different etfect. 1In version 1.4,
this command can pbe used to erase a directory wnicn has “garbage"
information, wverhaps resulting from use of a diskette under another
operating system (heaven forpial). In 2.9, however, the LERA *.,*
command affects only the current user number., Thus, it is necessary
to write a simple utility to erase a nonsense disk (the program simply
writes the hexadecimal pattern E5 throughout the disk).

The SAVE command in version 1,4 allows only a single memory save
operation, with the potential of destroying the memory 1image due to
directory operations following extent boundary changes. Version 2.9,
nowever, does not perform directory operations in wuser data areas
after disk writes, and thus the SAVE operation can be used any number
of times without altering the memory image.

(A1l Information Contained Herein is Proprietary to Digital Research.)

4



4, STAT ENHANCEMENTS.

The STAT program has a number of additional functions which
allow disk parameter display, user number display, and file indicator
manipulation. The command:

STAT VAL:

produces a summary of the available status commands, resulting in the
output:

Temo R/O Disk: d:=R/0

Set Indicator: d:filename.typ 3R/0 $R/W $S5YS SDIR
Disk Status DSK: d:DSK:

User Status USR:

Iobyte Assign:

(list of possible assignments)

whicn gives an instant summary of the possible STAT commands. The
command form:
5TAT d:filename.tvo $5

where "d:" is an optional drive name, and "filename.typ" is an
unambiguous or ambiguous file name, ovroduces the output disolay
format:

Size Recs 3ytes Ext Acc

43 43 6k 1 R/O A:ED.COM
55 55 12k 1 R/O (A:PIP.COM)
955306 128 2k 2 R/W A:X.DAT
where tne $S parameter causes the "Size" field to be displayed

(without the $5, the Size field is skipped, but the remaining tields
are disvlayed). The Size field 1lists the wvirtual file size in
records, while the "Recs" field sums the number of virtual records in
each extent, For files constructed seguentially, the Size and Recs
fields are 1identical. The "Bytes" field lists the actual number of
bytes allocated to the corresvonding file, The minimum allocation.
unit is determined at configuration time, and thus tne number of bytes
corresponds to the record count plus the remaining unused space in the
last allocated block for seguential files., Random access files are
given data areas only when written, so the Bytes field contains the.
only accurate allocation figure. In the case of random access, the
3ize field gives the logical end-of-file record position and the Recs
field counts the logical records of each extent (each of these
extents, however, may contain unallocated “noles" even though they are
added into the record count). The "Ext® fiela counts the number of
logical 16K extents allocated to the file, Unlike version 1.4, the
Ext count does not necessarily corresoond to the number of directory
entries given to the file, since there can be up to 128K pytes (8
logical extents) directly addressed by a single directory entry,
devending upon allocation size (in a special case, there are actually
256K bytes which can be directly addressed by a ohysical extent).

The "Acc" fie{d gives the R/O or R/W access mode, which 1is
changed wusing the commands shown obelow. Similarly, the parentheses
(All Intormation Contained Herein is Proprietary to Digital Research.)

5



shown around the PIP.CO#4 file name indicate that it has the *“"system"”
indicator set, so that it will not be listed in DIR commands. The
four command forms

STAT d:filename.typ SR/0
STAT d:filename.tyo $R/W
STAT d:filename.typ $5YS
STAT d:filename.typ $DIR

set or reset various vermanent file indicators, The R/O0 indicator
places the file (or set of files) in a read-only status until changed
by a subseguent STAT command. The R/0 status 1is recorded in the
directory with tne file so that it remains R/O through intervening
cold start operations, The R/W 1indicator places the file in a
vermanent read/write status. The SYS indicator attaches the system
indicator to the file, while the DIR command removes the system
indicator. The “"filename.typ" may be ambiguous or unambiguous, but in
either case, the files whose attributes are changed are listed at the
console when the change occurs., The drive name denoted by “d:" |is
optional,

Wwhen a file is marked R/0, subsequent attempts to erase or write
into the file result in a terminal BDOS message

B8dos £rr on d: File R/O

The BDOS then waits for a console inout before performing a subseguent
warm start (a “"return” is sufficient to continue). The command form

3TAT d:DSK:

lists the drive characteristics of the disk named by "d:" which is in
the range A:, B:, ..., P:. The drive characteristics are listed in
the format:

d: Drive Characteristics
65536: 128 Byte record Capacity
8192: Kilooyte Drive Capacity
128: 32 Byte Directory Entries
d: Checked Directory Entries
1024: Records/ Extent
128: Records/ B8lock
58: Sectors/ Track
2: Reserved Tracks

where "d:" is the selected drive, followed by the total record
capacity (65536 is an 8 megabyte drive), followed by the total
capacity listed in Kilooytes. The directory size 1is listed next,
followed by the "checked" entries. The number of checked entries is
usually identical to the directory size for removable media, since
this mechanism is used to detect changed media during CP/M operation
without an intervening warm start. For fixed media, the number is
usually =zero, since the media is not changed without at least a cold
or warm start. The number of records per extent determines the
addressing capacity of each directory entry (1924 times 128 bytes, or

(All Information Contained Herein is Proprietary to Digital Research.)

6



128k in the example avbove). The number of records per block shows the
pasic allocation size (in the example, 128 records/plock times 128
bytes per record, or 16K bpytes per block). The listing is then
followed by the number of physical gectors per track and the number of
reserved tracks. For logical drives which share the same physical
disk, the number of reserved tracks may be guite large, since this
mechanism is used to skip lower-numbered disk areas allocated to other
logical disks. The command form

nroduces a drive characteristics taple for all currently active
dgrives, The final STAT command form is

STAT USR:

which produces a list of the user numbers which have files on the
currently addressed disk. The display format is:

Active User : ¢
Active rFiles: 9 1 3

where tne first line lists the currently addressed user number, as set
by the last CCP USER command, followed by a 1list of wuser numbers
scanned from the current directory. 1In the above case, the active
user number is ¥ (default at cold start), witn three user numbers
whicn nave active files on the current disk. The operator can
subsequently examine tne directories of the other wuser numbers by
logging-in with USER 1, USER 2, or USER 3 commands, followed by a DIR
command at the CCP level.

(All Information Contained Herein is Proprietary to Digital Research.)

7



-

>. PIP ENHANCEMENTS.

PIP provides three new functions which account for the features
of Cp/M 2.0. All three functions take the form of file parameters
which are enclosed in square prackets following the appropriate file
names. The commands are:

Gn Get File from User number n
(n in the range v - 15)

W Wwrite over R/0 files without
console interrogation

R Read system files

The G command allows one user area to receive data files from another.
Assuming the operator has issued the USER 4 command at the CCP level,
the PIP statement

PIP X.Y = X.Y[G2]

reads file X.Y from user number 2 into user area number 4. The
command

PIP A:=A:*,*[G2]

cooies all of the files from the A drive directory for user number 2
into the A drive directory of the currently logged user number. HNote
that to ensure file security, one cannot copy tiles into a different
area than the one which is currently addressed by the USER command.

Note also that the PIP program itself is initially covied to a
user area (so that subsequent files can be copied) using the SAVE
command, The sequence of operations shown below effectively moves PIP
from one user area to the next.

JSER 4 login user ¢

DDT PIP,COM load PIP to memory
(note PIP size s)

G9 return to CCP

USER 3 login user 3

SAVE s PIP,.COM

where s is the integral number of memory "pages" (256 byte segments)
occupied by PIP. The number s can be determined when PIP.COM is
loaded under DODT, by referring to the value under the "NEXT" disvplay.
If for example, the next available address is 1D@#0, then PIP.COM
requires 1C hexadecimal pages (or 1 times 16 + 12 = 28 pages), and
thus the value of s is 28 in the subseguent save. Once PIP is copied
in this manner, it can then be copied to another disk belonging to the
same user number through normal pip transfers.

Under normal operation, PIP will not overwrite a file which is

set to a permanent R/O status. If attempt is made to overwrite a R/0O
file, the vprompt

(All Information Contained Herein is Proprietary to Digital Research.)

8



NDRSTINATION FILE IS R/O, DELETE (Y/N)?

is issued. 1If the operator responds with the character "y" then the
file is overwritten. Otnerwise, the response

** NOT DELETED **

is issued, the file transfer is skippped, and PIP continues with the
next operation in seqguence, In order to avoid the promnt and resoonse
in the case of R/0O file overwrite, the command line can include the W
parameter, as shown below

PIP A:=B:*,COM[W]

which copies all non-system files to.the A drive from the B drive, and
overwrites any R/O files in the process., If the operation 1involves
several concatenated files, the W parameter need only be included with
the last file in the list, as shown in the following example

PIP A.DAT = B,DAI,F:NEW.DAT,G:OLD.DAT[W]

Files with the system attribute can be included in PIP transfers
if the R parameter is included, otherwise gsystem files are not
recognized. The command line

pLP ED.COM = B3:ED.CUOM[R]

for example, reads the ED.COM file from the 3 drive, even 1f 1t has
been marked as a R/0 ana system file. The system file attributes are
copied, if present.

It should be noted that downward compatipility with previous
versions of CP/M 1is only maintained if the file does not exceed one
megabyte, no file attributes are set, and the file is created by user
U, If comvatibility 1is required with non-standard (e.g., "double
density") versions of 1.4, it may Dbe necessary to select 1.4
compatibility mode when constructing the internal disk parameter plock
(see the "CP/M 2.0 Alteration Guide,” and refer to Section 18 which
descripes BIOS differences).

(All Information Contained Herein is Proprietary to Digital Research.)

9



. ED ENHANCEMENTS,

The CP/M standard orogram editor provides several new facilities
in the 2.9 release. Experience has shown that most operators use the
relative line numbering feature of ED, and thus the editor has the “v"
(Verify Line) option set as an initial value, The operator can, of
course, disable line numbering by typing the "-v" command. If you are
not familiar with the ED line number mode, you may wish to refer to
the Appendix in the £&D user's guide, where the "v" command is
described,

ED also takes file attributes into account. If the operator
attempts to edit a read/only file, the message

** FILE IS READ/ONLY **
appears at the console. The file can be loaded and examined, but
cannot be altered in any way. Normally, the operator simply ends the
edit session, and uses STAT to change the file attribute to R/W. If
tne edited tile has the "system" attribute set, the message
"SYSTEM" FILE NOT ACCESSIBLE

is dispvlayed at the console, and the edit session is aborted. Again,
the STAT wprogram can be used to change the system attribute, if
desireaq,

Finally, the insert mode ("i") command allows CRT line editing
functions, as described in Section 2, above.

(All Information Contained Herein is Proprietary to Digital Research.)

19



7. THE XSUB FUNCTION,

An additional utility program is supplied with version 2.0 of
CP/M, called XSUB, which extends the power of the SUBMIT facility to
include line input to programs as well as the console command
processor, The XSUB command is included as the first line of your
submit file and, when executed, self-relocates directly below the CCP.
All subsequent submit command lines are processed by XSUB, so that
programs which read buffered console input (BDOS function 10) receive
their input directly from the submit file, For example, the file
SAVER,.SUB could contain the submit lines:

XsSUB

DDT

IS1.HEX

R

G@

SAVE 1 $2.COM

with a subsequent SUBMIT command:
SUBMIT SAVER X ¥
which substitutes X for $1 and Y for $2 in the command stream. The
XSUB program loads, followed by DDT which is sent the command lines
"“IX.HEX" "R" and "G@" thus returning to the CCP, The final command
“SAVE 1 Y.COM" is processed by the CCP.
The XSUB program remains in memory, and prints the message
(xsub active)

on each warm start operation to indicate 1its presence, Subsequent
submit command streams do not require the XSUB, unless an intervening

cold start has occurred. Note that XSUB must be loaded after DESPOOL,
if both are to run simultaneously.

(All Information Contained Herein is Proprietary to Digital Research,)

11



8. BDOS INTERFACE CONVENTIONS,

CP/M 2.0 system calls take place in exactly the same manner as
earlier versions, with a call to location G@@5H, function number in
register C, and information address in register pnair DE. Single byte
values are returned in register A, with double byte values returned in
AL (for reasons of compatibility, register A = L and register B = H
upon return in all cases). A list of CP/M 2.4 calls is given below,
with an asterisk following functions which are either new or revised
from version 1.4 to 2.6. WNote that a =zero value 1is returned for
out-of range function numbers.

¥ System Reset 19* Delete File

1 Console Input 26 Read Seguential

2 Console Output 21 wWrite Seguential

3 Reader Input 22* Make File

4 Puncn Output 23* Rename File

5 List Outout 24* Return Login Vector

6* Direct Console I/0 25 Return Current Disk

7 Get I/0 Byte 26 Set DMA Address

3 Set I/0 Byte 27 Get Addr(alloc)

Y Print String 28* Write Protect Disk
19* Read Console Buffer 29* Get Addr(R/0 Vector)
11 Get Console Status 30* Set File Attriputes
12* Return Version Number 31* Get Addr (Disk Parms)
13 Reset Disk System 32* Set/Get User Code
14 Select Disk 33* Read Random
15*% Oven File 34* Write Random
16 Close File 35* Comoute File Size
17* Search for First 36* Set Random Record

18* Search for Next

(Functions 28, 29, and 32 should be avoided in application programs to
maintain upward compatibility with MP/M.) The new or revised functions
are described below.

Function 6: Direct Console I/O.

Direct Console I/0 1is supoorted under CP/M 2.4 for those
applications where it 1is necessary to avoid the B8D0S console I/O
operations. Programs whicn currently perform direct I/0 through the
3108 should be changed to use direct I/0 under BDOS so that they can
be tully supported under future releases of MP/M and Cp/M.

Upon entry to function 6, register E eitner contains hexadecimal
FF, denoting a console input reguest, or register & contains an ASCII
character. If the input value is FF, then function 6 returns A = ¥
if no character is ready, otherwise A contains the next console input
character.

If the inout value in E is not FF, then function 6 assumes that
E contains a valid ASCII character which is sent to the console,

(All Information Contained Herein is Proprietary to Digital Research.)

12



Function 13: Read Console Buffer.

The console buffer read overation remains unchanged except that
console 1line wediting 1is supported, as described in Section 2. Note
also that certain functions which return the carriage to the leftmost
oosition (e.g., ctl-X) do so only to the column position where the
promot ended (previously, the carriage returned to the extreme left
margin). This new convention makes operator data input and line
correction more legible,

Function 12: Return Version Number.

function 12 has been redefined to orovide information which
allows version-independent programming (this was previously the "lift.
head" function whicn returned HL=0009¥ in version 1.4, but performed no
operation). The value returned by function 12 is a two-bvte value,
with H = 80 for the CP/M release (H = 01 for MP/M), and L = 09 for all
releases previous to 2.0, CP/M 2.0 returns a hexadecimal 2@ in
register L, with subsequent version 2 releases in the hexadecimal
range 21, 22, through 2F. 0Using function 12, for examole, you can
write application programs which orovide both seguential and random
access functions, with random access disabled when operating under
early releases of CP/M.

In the file overations described below, DE addresses a file.
control oplock (FCB). Further, all directory operations take place in
a reserved area which does not affect write buffers as was the case in
version 1.4, with the exception of Searcn First and Search Next, where
compatinility is required.

The File Control B3lock (FCB) data area consists of a sequence of 33
bytes for sequential access, and a series of 36 bytes in the case that.
the file 1is accessea randomly,. The default file control plock
normally located at ¥45CHd can be used for random access files, since
bytes #@7DH, WOTEd, and @07FH are available for this purpose. For
notational ourposes, the FCB3 format 1is shown with the following
fields:

(All Information Contained fierein is Proorietary to Digital Research.)

13



]

wher

d

f

t

with

0 01 B2
e

r

1...28

l,t2,t3

ex

rc

dd...dn

cr

rd,rl,r2

68 69 16 11 12 13 14 15 16 ...

drive code (¥ - 16)

# => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B,

ié;> auto disk select drive P,
in ASCII
bit = ¢

file name
with high

contain the
uoper case,
contain the file type in ASCII
upper case, with high bit = §
tl', t£2', and t3' denote the

bit of these positions,

tl’ 1 => Read/Only file,

t2* 1l => 8YS file, no DIR list

o

the
set
{(_j_

contains
normally
in range

current extent number,
to 406 by the user, but
31 during file I/0

reserved for internal system use
reserved for internal system use,
to zero on call to OPEN, MAKE,

set
SEARCH

record count for extent “"ex,"
takes on values from ¥ - 128
filled—-in py CP/M, reserved for
system use

current record to read or write in
a sequential file operation, normally
set to zero by user

optional random record number in the
range ¥-65535, with overflow to r2,
rd,rl constitute a 1l6-bit value with
low byte r#, and high byte rl

Function 15: Open File.

Tne Open File operation is identical
exception

the

to

byte as

previous
that byte s2 is automatically zeroed.
previous versions of CP/M defined this

zero,

31 32 33 34 35

definitions,
Note that

but made no

(All Information Contained Herein is Proprietary to Digital Research,)

14



cnecks to assure compliance, Thus, the byte is cleared to ensure
upward compatipility with the latest version, where it is required.

Function 17: Searcn for First.

Search First scans the directory for a match with the file given
oy the FCB addressed by DE. The value 255 (hexadecimal FF) 1is
returned if the file is not found, otherwise a value of A egual to 0,
1, 2, or 3 is returned indicating the file is present. In the case
that the file 1is found, the current DMA address is filled with the
record containing the directory entry, and the relative starting
position is A * 32 (i.e., rotate the A register left 5 bits, or ADD A
five times). Although not normally required for application programs,
the Girectory information can be extracted from the buffer at this
position,

An ASCII guestion mark (63 decimal, 3F hexadecimal) in any
position from fl1 through ex matches the corresponding field of any
directory entry on the default or auto-selected disk drive., If the dr
field contains an ASCII guestion mark, then the auto disk select
function is disabled, the default disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user number. This latter function 1is not normally used by
application mrograms, out does allow complete flexibility to scan all
current directory values. If the dr field is not a guestion mark, the
s2 byte is automatically zeroed.

Function 18: Search for Next,

The Search Next function 1is similar to the Searcn First
function, except that the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match.

Function 19: Delete File.

The Delete File function removes files which match the FCB
addressed by DE. The filename and type may contain ambiguous
references (i.e., guestion marks in various positions), but the drive
select code cannot be ambiguous, as in the Search and Search Next
functions,

Function 19 returns a decimal 255 if the reference file or files
could not be found, otherwise a value in the range 0 to 3 is returned.

(A1l Information Contained Herein is Proprietary to Digital Research.)

15



Function 22: Make File.

The Make File operation is identical to previous versions of
CP/M, except that byte s2 is zeroed upon entry to the 3DOS.

Function 23: Rename File.

The Actions of the file rename functions are the same as
previous releases except that the value 255 is returned if the rename
function is unsuccessful (the file to rename could not be found),
otherwise a value in the range ¥ to 3 is returned,

Function 24: Return Login Vector,

The login vector value returned by CP/M 2.0 is a 16-bit value in
HdL, where the least significant bit of L corresponds to the first
drive A, and the high order bit of H corresponds to the sixteenth
drive, labelled P, WNote that compatibility is maintained with earlier
releases, since registers A and L contain the same values upon return.

Function 28: Write Protect Current Disk.

The disk write protect function provides temvorary write
protection for the currently selected disk. Any attemot to write to
the disk, before the next cold or warm start overation produces the
message

Bdos Err on d: R/O

Function 29: Get R/0O Vector.

Function 29 returns a bit vector in register pair HL which
indicates drives which have the temporary read/only bit set. Similar
to function 24, the least significant bit corresponds to drive A,
while the most significant bit corresponds to drive P. The R/0O bit is
set either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M which detect changed disks,

Function 39: Set File Attributes.

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/0 and System attributes (tl' and t2' above) can be
set or reset. The DE pair addresses an unambiguous file name with the
appropriate attributes set or reset, Function 30 searches for a

(All Information Contained Herein is Proprietary to Digital Research.)

16



matcn, and changes the matched directory entry to contain the selected
inaicators. 1Indicators fl' through f4' are not wpresently used, but
may be useful for applications programs, since they are not involved
in the matching orocess during file open and close operations.
Indicators £5' tnrough f3' and t3' are reserved for future system
exoansion,

Function 31: Get Disk Parameter Block Address,

The address of the BIOS resident disk vparameter block 1is
returned in HL as a result of this function call., This address can be
used for either of two purposes, First, the disk parameter values can
pe extracted for display and space .computation purposes, or transient
programs can dynamically change the values of current disk parameters

when the disk environment changes, if required. «Normally, apnlication
programs will not require this facility.

Function 32: Set or Get User Code,.

An application program can change or interrogate the currently
active user number by calling function 32, If register E = FF
nexadecimal, then tne value of the current user number is returned in
register A, where the value is in the range 4 to 31. 1If register E is
not FF, then the current user number is changed to the value of E
(modulo 32).

Function 33: Read Random,

The Read Random function is similar to the seguential file read
operation of vprevious releases, except that the read operation takes
olace at a particular record number, selected by the 24-bit value
constructed from the three bpyte field following the FCB (byte
vositions r@ at 33, rl at 34, and r2 at 35). Note that the seguence
of 24 pits 1is stored with least significant nyte first (ry), middle
oyte next (rl), and high byte last (r2). Cp/M release 2.9 does not
reference byte r2, except in computing the size of a file (function
35). Byte r2 must be zero, however, since a non-zero value indicates
overflow past the end of file,

Thus, in version 2.9, the ré,rl byte pair 1is treated as a
double-pbyte, or "word" value, which contains the record to read. This
value ranges from ¥ to 65535, providing access to any particular
record of the 8 megabyte file, In order to orocess a file wusing
random access, the base extent (extent J) nmnust first be opened.
Although the pase extent may or may net contain any allocated data,
this ensures that the file is oroperly recorded in the directory, and
is visible in DIR reguests. The selected record number 1is then stored
into the random record field (rd,rl), and the BDOS is called to reaa
the record. Upon return from the call, register A either contains an

(All Information Contained Herein is Proprietary to vigital Research.)

17



error code, as listed below, or the value 96 indicating the overation
was successful. 1In the latter case, the current DMA address contains
the randomly accessed record. Note that contrary to the sequential
reaa operation, the record number is not advanced. Thus, subsequent
random read operations continue to read the same record,

Uoon eacn random read operation, the logical extent and current

record values are automatically set, Thus, the file can be
sequentially read or written, starting from the current randomly
accessed position, Note, however, that in this case, the 1last

randomly read record will be re-~read as you switch from random mode to
sequential read, and the last record will be re-written as you switch
to a seguential write operation., You can, of course, simply advance
tne random record vposition following each random read or write to
opbtain the effect of a sequential I/O overation.

Error codes returned in register A following a random read are
listed below.

1 reading unwritten data

42 (not returned in random mode)
23 cannot close current extent

d4 seek to unwritten extent

Y45 (not returned in read mode)

26 seek past ohysical end of disk

Error code vl ana ¥4 occur when a random read operation accesses a
data block which has not been previously written, or an extent which
nas not been created, which are equivalent conditions. Error 3 does
not normally occur under proper system operation, but can be cleared
by simply re-reading, or re-opening extent zero as long as the disk is
not physically write protected. Error code 86 occurs whenever byte r2
is non-zero under the current 2,9 release. Normally, non-zero return
codes can be treated as missing data, with zero return codes
indicating operation complete,

Function 34: Write Random.

The Wwrite Random operation is initiated similar to the Read
Random call, except that data is written to the disk from the current
DMA address., Further, if the disk extent or data block which is the
target of the write has not yet been allocated, the allocation is
performed before the write operation continues. As in the Read Random
operation, the random record number is not changed as a result of the

write, The logical extent number and current record positions of the
file control block are set to correspond to the random record which is
being written. Again, seguential read or write operations can

commence - following a random write, with +the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the random
record position following each write to get the effect of a sequential
write operation, WNote that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent

(All Information Contained Herein is Proprietary to Digital Research.)

18



switch as it does in sequential mode under either CP/M 1.4 or CP/M
2.0,

The error codes returned by a random write are identical to the
random read operation with the addition of error code ¥5, wnich.
indicates that a new extent cannot be <created due to directory
~overflow.

Function 35: Compute File Size,

when computing the size of a file, the DE register pair
addresses an FCB in random mode format (bytes r@, rl, and r2 are
present). The FCB contains an unambiguous file name which is used in
the directory scan. Upon return, the random record bytes contain the
“virtual" file size which is, in effect, the record address of the
record following the end of the file, if, following a call to
function 35, the high record byte r2 is 91, then the file contains the
maximum record count 65536 in version 2.8. Otherwise, bytes rd and rl
constitute a 16-bit value (r# 1is the 1least significant byte, as
before) which is the file size,

Data can be apoended to the end of an existing file by simoly
calling function 35 to set the random record position to the end of
file, tnen performing a seguence of random writes starting at the
preset record address.

Tne virtual size of a file corresponds to the physical size when
the file is written sequentially. 1If, instead, the file was created
in random mode and "holes" exist in the allocation, then the .file may
in fact contain fewer records than the size indicates, If, for
example, only the last record of an eight megabyte file is written in
random mode (i.e., record number 65535), then the virtual size is
65536 records, although only one block of data is actually allocated.

Function 36: Set Random. Record.

The Set Random Record function causes the BDOS to automatically
produce the random record position from a file which nas been read or
written seguentially to a varticular point, The function can be
useful in two ways.

First, it is often necessary to initially reada and scan a
sequential file to extract the positions of various "key" fields. As
each key is encountered, function 36 is called to compute the random
record position for the data corresponding to this key, If the data
unit size is 128 bytes, the resulting record vosition is placed into a
table with the key for later retrieval, After scanning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved earlier.
The scheme is easily generalized when variable record lengths are

(All Information Contained iHderein is Proprietary to Digital Research.)

19



involved since the program need only store the buffer-relative byte
position along with the key and record number in order to find the
exact starting position of the keyed data at a later time.

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write., A file is
sequentially accessed to a particular point in the file, function 36
is called which sets the record number, and subseguent random read and
write operations continue from the selected point in the file.

This section is concluded with a rather extensive, but complete
example of random access operation, The program listed below performs
the simple function of reading or writing random records upon command
from the terminal, Given that the program has been created,
assembled, and placed into a file labelled RANDCM.COM, the CCP level
command:

RANDOM X.DAT

starts the test program. The program looks for a file by the name
X.DAT (in this particular case) and, if found, proceeds to prompt the
console for input. If not found, the file 1is <created before the
prompt is given. Each prompt takes the form

next command?

and is followed by operator input, terminated by a carriage return.
The input commands take the form

nw nRk Q

where n is an integer value in the range J to 65535, and W, R, and 0O
are simple command characters corresponding to random write, random
read, and guit processing, resoectively. If the W command is issued,
tne RANDOM program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by
a carriage return., RANDOM then writes the character string into the
X.DAT file at record n. If the R command is issued, RANDOM reads
record number n and disvlays the string value at the console., If the
Q command is issued, the X.DAT file is closed, and the program returns
to the console command processor. In the interest of brevity (ok, so
the program's not so brief), the only error message is

error, try again
The program begins with an initialization section where the
input file is opened or created, followed by a continuous loop at the
label "ready" where the individual commands are interpreted. The
default file control block at ¥95CH and the default buffer at #080H
are used in all disk operations, The utility subroutines then follow,

(All Information Contained Herein is Proprietar? to Digital Research.)

20



which contain the orincipal input 1line processor, called “readc.®
This wparticular program shows the elements of random access
processing, and can be wused as the basis for further oprogram
development.

;***************************************************

.k *
:* sample random access program for co/m 2.9 *
« X *
;***************************************************

y1e9 org 19dh sbase of toa

aade = reboot edqu G090h ssystem reboot

dad5 = bdos egu d0¥5h ;bdos entry point
7

ol = coninp equ 1 ;console input function

gop2 = conout equ 2 ;console output function

ggey = pstring equ 9 ;print string until '$°

ddda = rstring equ 19 sread console buffer

ddbc = version egu 12 ;return version number

J0BE = ovenf equ 15 ;file open function

dd1g = closef eqgu 16 ;close function

gole = makef egu 22 ;make file function

Jy2l = readr equ 33 ;read random

w22 = writer eagu 34 swrite random

Jddbc = fco eau gd5ch ;default file control block

Bdld = ranrec equ fcb+33 ;:;random record position

do7f = ranovf equ fco+35 ;high order (overflow) byte

2089 = buff 2dau g080h sbuffer address

poda = cr equ #dnh ;jcarriage return

d0da = 1f eqgu dah :1line feed
;***************************************************
. X *
4
;* load SP, set—up file for random access *
. % *
;***************************************************

3100 31lbco 1xi sp,stack
H version 2.@?

B183 Bdelic mvi c,version

9105 cdis59 call bdos

2108 fe2d cpi 29n ;version 2.0 or better?

Ylva d2160 jnc versok
H bad version, message and go back

glod 111bd 1xi d,badver

#1189 cdday call orint

3113 c30909 jmo repoot
versok:
H correct version for random access

(A1l Information Contained Herein is Proprietary to Digital Research.)

21



91ll6 Yebf nvi c,ovenf ;open default fcb

¥1lls 115cH ixi d,fcb
1llo cdys5yg call bdos
dlle 3c inr a ;err 255 becomes zero
WIL1E c2379 jnz reaay
; cannot open file, so create it
8122 deléd navi c,makef
d124 115c¢cy Ixi d,fcb
d127 cdpbHo call bdos
bl2a 3c inr a serr 255 becomes zero
9120 c2379 jnz ready
: cannot create file, directory full
¥1l2e 113ad 1xi d,nospace
6131 cdday call print
9134 c3339 jmp repoot ;back to ccp

LEREREEESEREEREEEEEREE TR R R R R R I R I e g g I

* *
* looo back to “ready" after each command *
* *

KKK KRR R AR KRR KRR R KA KRR KRR AR R IR KK RKRKRKR R A AR A AR KR AR KR KKK

S N6 ~o “e ws N ws o

eady:
; file is ready for processing

0137 cdesy call readcom ;read next command

d13a 227dd shld ranrec ;store input record#

v13d 217£0 1xi h,ranovf '

8144 3099 mvi m,d ;clear high byte if set

9142 fe51 coi 'Q° ;guit?

4144 c2569 jnz notg
: guit processing, close file

0147 deld mvi c,closef

8149 115cy 1xi d,fco

91l4c cddse call bdos

vlaf 3c inr a ;err 255 becomes 0

2158 cabdy jz error jerror message, retry

9153 c3d89 jmo reboot ;back to ccp
;***************************************************
« %k *
i* end of guit command, orocess write *
- K *

’
;*********"k****’k************************************

notqg:
: not the guit command, random write?
4156 fes57 cpi WY
9158 c2890 jnz notw
; this is a random write, fill buffer until cr
d15b 11449 Ixi d,datmsg
Jd15e cddad call print ;data prompt

(All Information Contained Herein is Proprietary to Digital Research.)

22



3161 de7f mvi c,127 ;up to 127 characters

#3163 21800 1xi h,buff ;destination
rloop: ;read next character to buff
dl66 c5 push b ;save counter
d167 eb push h ;next destination
Y168 cdc2i call getchr gjcharacter to a
d16o el Pop h ;restore counter
Jléc cil DOD b ;restore next to fill
gled fedd cpi cr send of line?
dlot ca784d jz erloop
: not end, store character
g172 77 mov m,a
8173 23 inx h snext to f£ill
vwl74 Bd dcr ol ;counter goes down
G175 c2660 inz rloop send of pbuffer?
erloop:
H end of read loop, store 40
9178 3699 mvi m,9d
r
; write the record to selected record number
d1l7a de22 mvi c,writer
¥g17c 115cd 1xi d, fcb
317t cdos5d call bdos
4182 b7 ora a serror code zero?
¥w183 c2b9%d jnz error :message if not
2186 c3374 jmp ready ;for another record
;********************'k***’k**************************
« % *
1
:* end of write command, pnrocess read *
. K *
;*****************************'k*********************
notw:
; not a write command, read record?
9189 fes52 cpi 'R’
d18b c2b9d jnz error ;skip if not
1
; read random record
d18e de2l mvi c,readr
¥199 115cw 1xi d, fcb
B193 cdds5d call bdos
196 b7 ora a ;return code 9¢7?
9197 c2b9¥ jnz error
H read was successful, write to console
B19a cdcfd call crlf ;new line
g19d Jdedd mvi c,128 ;max 123 characters
¥19f 213049 1xi h,buff ;next to get
wloop:
dla2 Te mov a,m snext character
#la3 23 inx h ;hext to get
flad e67f ani 7fh ;mask parity
d1la6 cal37® jz ready ; for another command if 40
Plad cb push b ; save counter
Blaa eb push h ;save next to get

(All Information Contained Herein is Proprietary to Digital Research.)

23



dlab fe2d cpi sgraphic?

#lad d4ca8i cnc putchr ;skip output if not
d1by el pop h
d1bl cl pop b
#1b2 @a dcr c jcount=count-1
91b3 c2a20 jnz wloop
d1b6 c3370 jmp ready
;***************************************************
« % *
i* end of read command, all errors end-uo here *
« % *
;'k*************t************************************
H
error:
#1b9 11599 1xi d,errmsg
d1lbc cddad call print
d1bt c3370 jmo ready
;***************************************************
% *
r
i* utility subroutines for console i/o *
« X x
;***************************************************
getchr:
;read next console character to a
Blc2 0edl mvi c,coninp
d1cd cdgs5d call bdos
Jdlc7 c9 ret
7
putchr:
;write character from a to console
01c8 vei?2 mvi c,conout
Ulca 5f mov e,a ;character to send
dlcb cddsbg call bdos ;send character
dlce c9 ret
crif:
;send carriage return line feed
dlcf 3egdd mvi a,cr ;carriage return
¥1d1 cdc8d call putchr
d1d4 3eda mvi a,lf :line feed
0146 cdc8d call vutchr
81d9 c9 ret
print:
;jprint the buffer addressed by de until §
¥lda ds push d
91db cdcfy call crlf
glde dl LoD d ;new line
d1df 0eh9 mvi c,pstring
dlel cd@s50 call bdos ;orint the string
dled c9 ret
readcom:

(All Information Contained Herein is Proprietary to Digital Research.)

24



;read the next command line to the conbuf

d1le5 116by 1xi d,prompt

0le8 cdda¥ call print ;command?

leb deda mvi c,rstring

dled 117a¥ 1xi d,conbuf-

Jg1fd cddsg call bdos sread command line
; command line is present, scan it

J1f3 21898 1xi h,? ;start with 0000

g1f6 117cd 1xi d,conlin;command line

¥1f9 la readc: ldax d ;next command character

Jl1fa 13 ° inx d :t0 next command position

W1fb b7 ora a ;cannot pbe end of command

#A1lfc c8 rz
: not zero, numeric?

@1lfd de3v sui g

J1ff feba cpi 19 ;carry if numeric

Y201 42139 jnc endrd
H add-in next digit

9284 29 dad h i

V205 4d mov c,l

B2v6 44 mov b,h sbc = value * 2

G287 29 dad h s %4

P28 29 dad h : %8

3239 @9 dad b %2 + *g = *19

D2da 85 add 1 ;+digit

d2090 HT mov 1,a

d20c A2£99 jnc readc ; for another char

4289t 24 inrt h soverflow

¥210 c3f99¥ jmp readc ;for another char
endrd:
: end of read, restore value in‘a

G213 c63v adi /N : command

9215 febl coi tal ;translate case?

¥217 a8 rc
; lower case, mask lower case bits

9213 eo5f ani 13181111b

921la c9 ret
;**********k***************‘k**********x*************
« X *
:* string data area for console messages *
P *
;*********************************‘k*****************
padver

d21b 536£79 db ‘sorry, you need cp/m version 28’
nospace:

023a 4e6£29 db ‘no directory space$’
datmsg:

$244 5479749 db ‘type data: §'
errmsg:

2259 457272 db ‘error, try again.$'’
prompt:

w260 4e6570 db ‘next commanda? $'

-
’

(All Information Contained Herein is Proprietary to Digital Research.)

25



;*******t*********x***x*****************************

« K *
;¥ fixed and variable data area *
« K ®
;***************************************************
627a 21 conbuf: db conlen ;length of console buffer
¥27b consiz: ds 1 sresulting size after read
¥27c conlin: ds 32 ;length 32 buffer
dd21 = conlen equ $-consiz
d29c ds 32 ;16 level stack
stack:
d2bc end

(All Information Contained Herein is Proprietary to Digital Research.)

26



9y, CpP/M 2.0 MEMORY ORGANIZATION.

Similar to earlier versions, CP/M 2.0 is field-altered to fit
various memory sizes, depending upon the host computer memory
configuration, Typical base addresses for popular memory sizes are
shown in the table below,

Module 20k 24k 32k 48k 64k
ccp 3409H 44091 6400H A4008 E400H
BDOS 3CO9H 4CP o 6Co0ad ACJVH ECOOH
BIOS 47091 5AQdH TAQ0H BAJOH FAQ3H

Top of Ram 4FFFH 5FFFH 7FFFH BFFFA FFFFH

The distribution disk contains a CP/M 2.¢ system configured for a 208k
Intel MDS-809 with standard 1IBM 8" floppy disk drives. The disk
layout is shown below:

Sector Track 99 Module Track 91 Module

1 (Bootstrap Loader) 43834 BDOS + 480H

34804 CCP + 0@VH 4190H BDOS + 500H

3 3430d CCP + @8¥R 4186GH BDOS + 58dH

4 3539d CCP + 1904 - 4239H BDOS + 640H

5 353804 CCP + 189dH 423¢YH BDOS + 6380d

6 3600H CCp + 200H 433pd BDOS + 780H

7 3680H CCp + 2809H 438¢H BDOS + 780H

B 3700 CCP + 3pdd 44940 BDOS + 8o0H

9 373894 CCP + 38dd 448¢H BDOS + 88YH

19 38vud CCp + 490H 4500H BDOS + 990H

11 338uH CCP + 430H 4580H BDOS + 98YH

12 390dH CCP + 500@H 469Y¥Hd BDOS + AUQH

13 398vH CCP + 58dH 468@H BDOS + ABOH

14 3A00H CCP + 600H 4709H BDOS + B@IH

15 3A80H CCP + 680H 4780H BDOS + B3W¥H

16 3BY0H CCp + 7404 480¥H BDOS + CUO@H

17 3B3@H CCp + 7824 48804 BDOS + C8dH

18 . 3CY@H BDOS + 0B@0H 49904 BDOS + DO@H

19 3C80H BDOS + 080H 4980GH BDOS + D3@H

20 3D@PH BDOS + 100H 4AGPH BIOS + VOVH

21 3D8PH BDOS + 18@H 4A8¢QH BIOS + 980H

22 3EPPWH BDOS + 290H 4BPPH BIOS + 100H

23 3E80H BDOS + 280H 4B38¢Hd BIOS + 180H

24 3F@ddH BDOS + 300H 4CQQ0H BIOS + 200H

25 3F8PH BDOS + 380H 4C80H BI0S + 2804

26 4900PH BDOS + 400H 4DYOH BIOS + 390H
In particular, note that the CCP is at the same position on the disk,
and occupies the same space as version 1.4, The BDOS portion,
however, occupies one more 256-byte page and the BIOS portion extends
through the remainder of track #1. Thus, the CCP is 8Y0H (2048

decimal) bytes in length, the BDOS is EW@QOH (3584 decimal) bytes in
length, and the BIOS is up to 380H (898 decimal) bytes in length. 1In
version 2.9, the BIOS portion contains the standard subroutines of
1.4, along with some initialized table space, as described in the
following section,

(All Information Contained Herein is Proprietary to Digital Research.)

27



1J, BIOS DIFFERENCES.

The CP/M 2.0 Basic I/0 System differs only slightly in concept
from its predecesssors, Two new jumo vector entry points are defined,
a new sector translation subroutine is included, and a disk
characteristics table must be defined, The skeletal form of these
changes are found in the program shown below.

1: org 4000h

2: maclio diskdef

3: jmo boot

4: ; cee

5: jmp listst ;list status

6: jmp sectran ;sector translate

7: disks 4

8: 3 large capacity drive

9: bpb eau 16*1924 ;bytes per block

19: rpb eqgu bpb/128 ;records per block

11: maxb equ 05535/rpb ;max block number
12: diskdef @¢,1,58,3,bpb,maxb+1,128,0,2
13: diskdef 1,1,58, ,bpb,maxb+1,128,46,2

14: diskdef 2,9

15: diskdef 3,1

16: ;

17: boot: ret ;nop

18: ;

19: listst: xra a ; NOp

29 ret

21: ;

22: seldsk:

23: ;drive number in c

24: 1xi h,?d ;0284 in hl produces select error
25: mov a,c ;& is disk number @ ... ndisks-1
26 cpi ndisks ;less than ndisks?

27: rnc ;return with AL = 0849 if not
23: proper disk number, return dpb element address
29: mov l,c

30 dad h ;%2

31: dad h ;%4

32: daa h ;%8

33: dad h 1*16

34: 1xi d,dpbase

35: dad d s HL=.dpb

36: ret

37: ;

38: selsec:

39: ;sector number in ¢

49 1xi h,sector

41: mov m,c

42 ret

43: ;

44: sectran:

45: ;translate sector BC using table at DE
46: xchg ;HL = .tran

47: dad b ;single precision tran

(All Information Contained Herein is Proprietary to Digital Research.)

28



48: ; dad b again if double precision tran

49: mov l,m ;only low byte necessary here
5d: ; fill both H and L if double vrecision tran
51: ret +HL = ?7?ss

52: 3

53: sector: ds 1

54: endef

55: end

Referring to the program shown above, lines 3-6 reporesent the
BIOS entry vector of 17 elements (version 1.4 defines only 15 jump
vector elements). The last two elements provide access to the
"LISTST" (List Status) entry point for DESPOOL. The use of this
particular entry point is defined in the DESPOOL documentation, and is
no different than the previous 1.4 release, It should be noted that
the 1.4 DESPOOL wprogram will not operate under version 2.8, put an
update version will be availaple from Digital Research in the near
future.

The "“SECTRAN®" (Sector Number Translate) entry shown in the Jjump
vector at line 6 provides access to a BIOS-resident sector translation
suproutine., This mechanism allows the user to specify the sector skew
factor and translation for .a particular disk system, and is described
below.

A macro library 1is shown 1in the 1listing, <called DISKDEF,
included on line 2, and referenced in 12-15. Although it is not
necessary to use the macro liorary, it greatly simplifies the disk
definition process. You must have access to the MAC macro assembler,
of course, to use the DISKDEF facility, while the macro library is
included with all Cp/M 2.0 distribution disks. (See the CP/M 2.0
Alteration Guide for formulas which you can use to hand-code the
tables produced by the DISKDEF library).

A BIOS disk definition consists of the following sequence of
macro statements:

MACLIB DISKDEFR
DISKS n
DISKDEF d,...
DISKDEF 1,...
DISKDEF n-1

ENDEF

where the MACLIB statement loads the DISKDEF.LIB file (on the same
disk as your BIOS) into MAC's internal tables., The DISKS macro call
follows, which specifies the number of drives to be configured with
your system, where n is an integer in the range 1 to 16. A series of
DISKDEF macro calls then follow which define the <characteristics of.
each logical disk, @ through n-1 (corresvonding to logical drives A
through P). HNote that the DISKS and DISKDEF macros generate 1in-line

(All Information Contained Herein is Proprietary to Digital Research.)

29



fixed data tables, and thus must be placed in a non-executable portion
of your BIOS, typically directly following the BIOS jump vector,

The remaining portion of your B2I0S 1is defined followipg th
DISKDEF macros, with the ENDEF macro call immediately preceding th
END statement. The ENDEF (End of Diskdef) macro generates the
necessary uninitialized RAM areas which are located above your BIOS.

The form of the DISKDEF macro call is

DISKDEF dn,fsc,lsc,[skf],bls,dks,dir,cks,ofs, [0]

where
dn is the logical disk number, ¥ to n-1
fsc is the first physical sector number (§ or 1)
lsc is the last sector number
skf is the optional sector skew factor
bls is the data allocation block size
dir is the number of directory entries
cks is the number of "checked" directory entries
ots is the track offset to logical track 40
[0] is an ovtional 1.4 compatibility flag

The value "dn" is the drive number being defined with this DISKDEF
macro invocation. The "fsc" parameter accounts for differing sector
nunoering systems, and is usually § or 1. The "“lsc" is the last
numpered sector on a track. When nresent, the "skf" parameter defines
the sector skew factor which is used to create a sector translatiog
table according to the skew. If the number of sectors is 1less tha®
256, a single-byte table is created, otherwise each translation table
element occupies two bytes. No translation table is created if the

skf parameter 1is omitted (or equal to 0). The "bls" varameter
specifies the number of bytes allocated to each data block, and takes
on the wvalues 1924, 2048, 49096, 8192, or 16384, Generally,

performance 1increases with larger data block sizes since there are
fewer directory references and logically connected data records are
physically close on the disk, Further, each directory entry addresses
more data and the BIOS-resident ram space is reduced, The “dks"
specifies the total disk size in "bls" units. That is, if the bls =
2048 and dks = 1003, tnen the total disk capvacity is 2,248,000 bytes.
If dks is greater than 255, then the block size parameter bls must be
greater than 1624, The value of ™Mdir" 1is the total number of
directory entries which may exceed 255, if desired. The “cks"”
parameter determines the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks
the disk read/only so that data 1is not subseguently destroyed).
Normally the value of cks = dir when the media is easily changed, as
is the case with a floppy disk subsystem. If the disk is permanently
mounted, then the value of cks is typically @, since the ©probability
of changing disks without a restart is guite low. The "ofs" value
determines the number of tracks to skip when this particular drive is
addressed, which can be used to reserve additional operating systep

(All Information Contained Herein is Proprietary to Digital Research.)

30



space or to simulate several logical drives on a single large capacity
physical drive. Finally, the [0] parameter is included when file
compatibility is required with versions of 1.4 which have been
modified for higher density disks. This parameter ensures that only

6K is allocated for each directory record, as was the case for
previous versions., Normally, this parameter is not included.

For convenience and economy of table svace, the special form
DISKDEF i,j

gives disk i the same characteristics as a previously defined drive j.
A standard four-drive single density system, which is compatible with
version 1.4, is defined using the following macro invocations:

DISKS 4
DISKDEF ]
DISKDEF 1
DISKDEF 2
DISKDEF 3

+126,6,1024,243,64,64,2

ENDEF

with all disks having the same parameter values of 26 sectors per
track (numbered 1 through 26), with 6 sectors skipped between each
access, 1024 bytes per data block, 243 data blocks for a total of 243k
byte disk capacity, 64 checked directory entries, and two operating
system tracks.

The definitions given in the program shown above (lines 12
through 15) provide access to the largest disks addressable by CP/M
2.0, All disks have identical parameters, except that drives @ and 2
skip three sectors on every data access, while disks 1 and 3 access
each sector in sequence as the disk revolves (there may, however, be a
transparent hardware skew factor on these drives).

The DISKS macro generates n "disk header blocks," starting at
address DPBASE which is a label generated by the macro. Each disk
header block contains sixteen bytes, and correspond, in sequence, to
each of the defined drives., 1In the four drive standard system, for
example, the DISKS macro generates a table of the form:

DPBASE EQU 3

DPE(@ DW XLT@ ,0000H,0000H,0000d,DIRBUF ,DP3J,CSVJ,ALVY
DPELl: DW XLT?,0000H,0000H,0900H,DIRBUF,DPBJ,CSV]1,ALV]
DPE2: DW XLTO,0000H,0000H,00030H,DIRBUF,DPBA,CSV2,ALV2
DPE3: DW XLTO ,0000H,0000H,0000H,DIRBUF,DPBJ,CSV3,ALV3

where the DPE (disk parameter entry) labels are included for reference
purposes to show the beginning table addresses for each drive @
through 3. The values contained within the disk parameter header are
described in detail in the CP/M 2.8 Alteration Guide, but basically
address the translation vector for the drive (all reference XLT#,
wvhich is the translation vector for drive # in the above example),

(All Information Contained Herein is Proprietary to Digital Research.)

31



followed by three 16-bit *“"scratch" addresses, followed by the
directory buffer address, cdisk parameter block address, check vector
address, and allocation vector address, The check ana allocation
vector addresses are generated by the ENDEF macro in the ram areas
following the BIOS code and tables,

The SELDSK function is extended somewhat in version 2.0. In
particular, the selected disk number is passed to the BIOS in register
C, as before, and the SELDSK subroutine performs the appropriate
software or hardware actions to select the disk. Version 2.4,
however, also requires the SELDSK subroutine to return the address of
the selected disk parameter header (DPE@, DPEl, DPE2, or DPE3, in the
above example) 1in register HL. If SELDSK returns the value HL =
200PH, then the BDOS assumes the disk does not exist, and prints a
select error mesage at the terminal. Program lines 22 through 36 give
a sample CP/M 2.0 SELDSK subroutine, showing only the disk parameter
header address calculation.

The subroutine SECTRAN is also included in version 2.9 which
performs the actual logical to physical sector translation. 1In
earlier versions of CP/M, the sector translation process was a part of
the BDOS, and set to skip six sectors between each read. Due
differing rotational speeds of various disks, the translation function
has become a vpart of the BIOS in version 2.#. Thus, the BDOS sends
sequential sector numbers to SECTRAN, starting at sector number 4.
The SECTRAN subroutine uses the seguential sector number to produce a
translated sector number which is returned to the B8DOS. The B8DOS
subsequently sends the translated sector number to SELSEC before the
actual read or write is verformed. Note that many controllers have
the capability to record the sector skew on the disk itself, and thud
there is no translation necessary. In this case, the "skf" parameter
is omitted in the macro call, and SECTRAN simply returns the sane
value which it receives. The table shown below, for example, 1is
constructed when the standard skew factor skf = 6 is specified in the
DISKDEF macro call:

XLTO: DB 1,7,13,19,25,5,11,17,23,3,9,15,21
DB 2,8,14,20,26,6,12,18,24,4,10,16,22

If SECTRAN is required to translate a sector, then the following
process takes place. The sector to translate is received in register
pair BC. Only the C register is significant if the sector value does
not exceed 255 (B = 03 in this case). Register pair DE addresses the
sector translate table for this drive, determined by a previous call
on SELDSK, corresponding to the first element of a disk parameter
header (XLTW in the case shown above). The SECTRAN subroutine then
fetches the translated sector number by adding the input sector number
to the base of the translate taple, to get the indexed translate table
address (see lines 46, 47, and 48 in the above program). The value at
this location is then returned in register L. HNote that if the number
of sectors exceeds 255, the translate table contains 16-bit elements
whose value must be returned in HL.

Following the ENDEF macro call, a number of wuninitialized data
areas are defined. These data areas need not be a part of the BIOSG
(All Information Contained Herein is Proprietary to Digital Research.)

32



which is loaded upon cold start, but must be available between the

8I0S and the enda of memory. The size of the uninitialized RAM area is

determined by EQU statements generated by the ENDEF macro. For a
randard four-drive system, the ENDEF macro might oproduce

4C72 = BEGDAT EQU 3
(data areas)
4DBY = ENDDAT EQU 3
¥13C = DATSIZ EQU 35-3EGDAT

which indicates that uninitialized RAM begins at location 4C724, ends
at 4DBYH-1, and occupies ¥13Cd bytes. You must ensure that tnese
addresses are free for use after the system is loaded.

Cp/M 2,4 is also easily adapated to disk subsystems whose sector
size is a multiple of 128 bytes, Information is orovided by the BDOS
on sector write operations whicn eliminates the need for pre-read
operations, thus allowing plocking and deblocking to take vplace at the
3I0S level,

See the "CP/M 2.d Alteration Guide" for additional details
concerning tailoring your CP/M system to your varticular hardware.

(All Information Contained Herein is Proprietary to Digital Research.)

33






i0

DIGITAL RESEARCH’

Post Office Box 5789, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.2 ALTERATION GUIDE

Copyright (c) 1979
DIGITAL RESEARCH



Copyright

Copyright (¢) 1979 by Digital Research. Al rights reserved.
No part of this publication mav be reproduced, transmitted,
transeribed, stored in a retrieval system, or translated into
any language or computer language, in any form or by anv
means, electronie, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove,
California 93950,

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims anv
implied warranties of merchantability or fitness for any parti-
cular purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

Trademarks

CP/M is a registered trademark of Digital Research. MP/M,
MAC, and SID are trademarks of Digital Research.



CP/M 2.2 ALTERATION GUIDE

Copyright (c¢) 1979
Digital Research, Box 579
Pacific Grove, California

Introduction ., . « « ¢« &+ + o o .
First Level System Regeneration ,
Second Level System Generation
Sample Getsys and Putsys Programs
Diskette Organization . . . . . .
The BIOS Entry Points . . . . . .
A Sample BIOS . o & & o o o o o o
A Sample Cold Start Loader . . .
Reserved Locations in Page Zero .,
Disk Parameter Tables . . . . . .
The DISKDEF Macro Library . . . .
Sector Blocking and Deblocking .

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix
Appendix

Qm@m@moOw P
e e e o o o o
s & e o o o o
e o o o o o o
e o o o e o o
e e e o o o o
e o e o o & o

e e o o e o

¢ e o o o o o

e o o e ¢ s

19
12
14
21
22
23
25

39






1. INTRODUCTION

The standard CP/M system assumes operation on an Intel MDS-8060
microcomputer development system, but is designed so that the user can
alter a specific set of subroutines which define the hardware
operating environment, 1In this way, the user can produce a diskette
whicn operates with any IBM-3741 format compatible drive controller
and other peripheral devices.

Altnough standard CP/M 2.0 is configured for single density floppy
disks, field-alteration features allow adaptation to a wide variety of
disk subsystems from single drive minidisks through high-cavacity
"hard daisk" systems, In order to simplify the following adaptation
process, we assume that CP/M 2.0 will first be configured for single
density flopoy disks where minimal editing and debugging tools are
available, If an earlier version of CP/M 1is available, the
customizing process is eased considerably. 1In this latter <case, you
may wish to briefly review the system generation process, and skip to
later sections which discuss system alteration for non-standard disk
systems,

In order to achieve device independence, CP/M 1is separated 1into
three distinct modules:
BIOS - pbasic I/O system which is environaent dependent
BDOS - basic disk operating system which is not dependent
upon the hardware configuration
CCP - the console command processor which uses the BDOS

Of these modules, only the 8I0S is dependent upon the particular
nardware. That is, the user can "patch" the distribution version of
CP/M to provide a new BIOS which provides a customized 1interface
between the remaining CP/M modules and the user's own hardware system,
I'he purpose of this document is to provide a step-by-step procedure
for patching your new BIOS into CP/M.

If CP/M is being tailored to your computer system for the first

time, the new BIOS requires some relatively simple software
development and testing. The standard BIOS is listed in Appendix B,
and can be used as a model for the customized package. A skeletal

version of the BIOS 1is given in Appendix C which can serve as the
basis for a modified BIOS., 1In addition to the BIOS, the user must
write a simple memory loader, called GETSYS, whicn brings the
operating system into memory. In order to patcn the new BIOS into
CP/M, the user must write the reverse of GETSYS, called PUTSYS, which
olaces an altered version of CP/M back onto the diskette. PUTSYS can
be derived from GETSYS by changing the disk read commands into disk
write commands. Sample skeletal GETSYS and PUTSYS programs are
describea in Section 3, and listed in Apvendix D. 1In order to make
the CP/M system work automatically, the user must also supply a cold
start loader, similar to the one provided with CP/M (listed in
Appendices A and B). A skeletal form of a cold start loader is given
in Appendix E which can serve as a model for your loader.

(All Information Contained Herein is Proprietary to Digital Research.)

1



2, FIRST LEVEL SYSTEM REGENERATION

T'he procedure to follow to patcn the CP/M system is given below in
several steps. Address references in each step are shown with a
following "H" which denotes the hexadecimal radix, and are given for a
20K CP/M system, For larger CP/M systems, add a "bias" to each
address which is shown with a "+b" following it, where b is equal to
tne memory size - 20K. Values for b in various standard memory sizes
are

24K: b = 24K - 20K = 4K = 10d0H
32K: o = 32K = 20K = 12K = 30694
40K: b = 49K - 20K = 20K = 5000H
48K b = 48K - 20K = 28K = 7000H
56K: b = 56K - 20K = 36K = 90004
62K: b = 62K - 20K = 42K = A80UH
04K: b = 64K - 20K = 44K = B0d0H

Note: The standard distribution version of CP/M is set for
operation within a 26K memory system. Therefore, you must first bring
up the 20K CP/M system, and then configure it for your actual memory
size (see Second Level System Generation).

(1) Review Section 4 and write a GETSYS program which reads the
first two tracks of a diskette into memory. The data from the diskette
must begin at location 338¢H. Code GETSYS so that it starts at
location 16¥H (pase of the TPA), as shown in the first vart of
Appendix d,

(2) Test the GETSYS program by reading a blank diskette into
memory, and check to see that the data has been read properly, and
that the diskette has not been altered in any way by the GETSYS
program,

(3) Run the GETSYS program using an initialized CP/M diskette to
see 1f GETSYS 1loads CP/M starting at 3380H (the operating system
actually starts 128 bytes later at 34¢dd).

(4) Review Section 4 and write the PUTSYS program which writes
memory starting at 33804 back onto the first two tracks of the
diskette. The PUTSYS program should be located at 200H, as shown 1in
the second part of Appendix D,

(5) Test the PUTSYS program using a blank uninitialized diskette
by writing a portion of memory to the first two tracks; clear memory
and read it back using GETSYS. Test PUTSYS completely, since this
program will be used to alter CP/M on disk.

(6) Study Sections 5, 6, and 7, along with the distribution
version of the BIOS given in Appendix B, and write a simple version
which performs a similar function for the customized environment. Use
the program given in Appendix C as a model. Call this new BIOS by the
name CBIOS (customized BIOS). Implement only the primitive disk
operations on a single drive, and simple console input/output
functions in this phase.

(All Information Contained Herein is Proprietary to Digital Researcn.)

2



(7) Test CBIOS completely to ensure that it woproperly performs
console character I/0 and disk reads and writes., Be especially
careful to ensure that no disk write operations occur accidently
during read operations, and check that the pbroper track and sectors
are addressed on all reads and writes. Failure to make these <checks
may cause destruction of the initialized CP/M system after it is
patched.

(3) Referring to Figure 1 in Section 5, note that the B3I0S 1is
placed between locations 4AP¥H and 4FFFH. Read the CP/M system using
GETSYS and replace the BIOS segment by the new CBIOS developed in step
(6) and tested in step (7). This replacement is done in the memory of
the machine, and will be placed on the diskette in the next step.

(9) Use PUTSYS to pblace the patched memory image of CP/M onto the
first two tracks of a blank diskette for testing,

(19) Use GETSYS to bring the copied memory image from the test
diskette @back into memory at 3380H, and check to ensure that it has
loaded back properly (clear memory, if possible, before the 1load).
Upon successful load, brancn to the cold start code at location 4AgbH.
The cold start routine will initialize vage zero, then jumo to the CCP
at location 340¥H which will call the BDOS, whicih will call the CBIOS.
The CBIOS will be asked by the CCP to read sixteen sectors on track 2,
and if successful, CP/M will type "A>", the system prompt,.

When you make it this far, you are almost on the air. If you have
trouble, use whatever debug facilities you have available to trace and
breakpoint your CBIOS.

(11) Upon completion of step (18), CP/M has promoted the console
for a command input, Test the disk write operation by typing

SAVE 1 X.COM
(recall that all commands must be followed by a carriage return).
CP/M should respond with another prompt (after several disk accesses):
A>
If it does not, debug your disk write functions and retry.
(1l2) Then test the directory command by typing
DIR
CP/M should respond with
A: X COM
(13) Test the erase command by typing

ERA X,.COM

(A1l Information Contained Herein is Proprietary to Digital Research.)

3



Cp/M should respond with the A promot, When you make it this far, you
should have an operational system which will only require a bootstrap
loader to function completely,

(14) wWrite a bootstrap loader which is similar to GETSYS, and
olace it on track ¥, sector 1 using PUT3YS (again using the test
diskette, not the distripbution diskette). See Sections 5 and &8 for
wore information on the bootstrap operation,

(15) Retest the new test diskette with the bootstrap loader
installed by executing steps (11), (l2), and (13). Upon completion of
these tests, type a control-C (control and C keys simultaneously). The
system should then execute a "warm start" which reboots the system,
and types the A prompt.

(16) At this point, you probably have a good version of vyour
customized CP/# system on your test diskette., Use GETSYS to load CP/H
trom vyour test diskette. Remove the test diskette, place the
distribution diskette (or a legal copy) into the drive, and use PUTSY3
to revlace the distribution version by your customized version. Do
not make this replacement if you are unsure of your patch since this
step destroys the system which was sent to you from Digital Research.

(17) Load your modified Cp/M system and test it by tyoing
DIR
Cp/# should respond with a list of files which are provided on the
initialized diskette. One such file should be the memory image for
the debugger, called DDT.COM.
NOTE: from now on, it is important that you always reboot tne CP/M
system (ctl-C is suifficient) when the diskette is removed and replaced

by anotner diskette, unless the new diskette is to be read only.

(18) Load and test the debugger by tvping

DDT
(see the document "CP/M Dynamic Debugging Tool (DDT)" for overating
nrocedures, You should take tne time to become familiar with DDT, it

will be your pest friend in later steps.

(1Y) 3efore making further CBIOS modifications, practice using
the editor (see the ED user's guide), and assembler (see the ASM
user's guide). Then recode and test the GETSYS, PUT3YS, and CBIOS
programs using ED, AS}, and DDT. Code and test a COPY program which
does a sector-to-sector copny from one diskette to another to obtain
pack-up copies of the original diskette (NOTE: read your CP/M
Licensing Agreement; it specifies vyour legal responsibilities when
copying the CP/M system). Place the copyright notice

Copyright (c), 1979
Digital Research

(All Information Contained Herein is Proprietary to Digital Researcn.)

4



on eacn copy which is made with your COPY program,

(2¥0) Modify vyour CBIOS to include the extra functions for
ounches, readers, signon messages, and so-forth, and add the
facilities for a adaditional disk drives, if desired. You can make
these changes with the GETSYS and PUTSYS programs which vyou have
developed, or vyou can refer to the following section, which outlines
Cp/M facilities which will aid you in the regeneration process.

You now have a good copy of the customized CP/M system. Note that
although the CBIOS portion of CP/M which you have develooed belongs to
you, the modified version of CP/M which you have created can be copieaq
for vyour use only (again, read your Licensing Agreement), and cannot
be legally copied for anyone else's use,

It should be noted that your system remains file-compatible with all

other CpP/M systems, (assuming media compatiplity, of course) which
allows transfer of non-proprietary software between users of CP/M.

(All Information Contained Herein is Proprietary to Digital Research.)



3. SECOND LEVEL SYSTEM GENERATIOWN

Now that you have the CP/M system running, vyou will want to
configure CP/M for your memory size, In general, you will first get a
memory image of CP/i with the “MOVCPM" program (system relocator) and
olace this memory image into a named aisk file. The disk file can then
be loaded, examined, patched, and replaced using the debugger, and
system generation program. For further details on the operation of
these programs, see the "Guide to CP/M Features and Facilities"
manual,

Your CBIOS and BOOT can be modified using ED, and assembled using
ASM, producing files called CBIOS.HEX and BOOT.HEX, which contain the
machine code for CBIOS and BOOT in Intel hex format.

o get the memory image of CP/M into the TPA configured for the
desired memory size, give the command:

MOVCPM xx *

where "Xx" is the memory size in decimal K bytes (e.g., 32 for 32K).
The response will pe:

CONSTRUCTING xxXK CP/#M VERS 2.4
READY FOR "SYSGEN" OR
"SAVE 34 CPMxx.COM"

At this point, an image of a CP/M in the TPA configured for the
requested memory size. The memory image is at location #90¢H through
227FH, (i.e., The BOOT is at 99Y20H, the CCP 1is at 980d, the BDOS
starts at 1180H, and the BIOS is at 1F80H.) Note that the memory
image has the standard MDS-80¥Y BIOS and BOOT on it. It is now
necessary to save the memory image in a file so that you can patch
your CBIOS and CBOOT into it:

SAVE 34 CPMxx.COM

The memory image created by the "MOVCPM" program is offset by a
negative bias so that it loads into the free area of the TPA, and thus
does not interfere with the operation of CP/M in higher memory. This
memory image can be subsequently loaded under DDT and examined or
changed in preparation for a new generation of the system. DDT is
loaded with the memory image by typing:

DDT CPMxx.COM Load DDT, then read the CPM
image

DDT should respond with
NEXT PC
2300 @100
- (The DDT prompt)

You can then use the display and disassembly commands to examine

(All Information Contained Herein is Proprietary to Digital Research.)

6



portions of the memory image between 9@9¥H and 227Fd. Note, however,
that to find any particular address within the memory image, you must
apply the negative bias to the Cp/M address to find the actual
address. Track 9?8, sector ¢l is loaded to location 9@6H (you should
find the cold start loader at 9Y¥d0H to 97FH), track @@, sector ¥2 is
loaded into 98fH (this is the base of the CCP), and so-forth through
the entire CP/M system load. 1In a 20K system, for example, the CCP
resides at the CP/M address 3400H, but is olaced into memory at 980H
by the SYSGEN program. Thus, the negative bias, denoted by n,
satisfies

3400H + n = 980H, or n = 980H - 3490H

Assuming two's complement arithmetic, n = D58#H, which can be checked
by

349@gH + D58PH = 10980H = 0980H (ignoring nigh-order
overflow).

Note that for larger systems, n satisfies

(34G@H+b) + n = 98UH, or

n = 98¢YH - (34990H + b), or

The value of n for common CP/M systems is given below

memory size bias b negative offset n
20K daoRH D58YH - ©9dyYy = D530H
24K 10004 D58PH - 1992H = C53vH
32K 33861 D580H - 3040H = A58dH
49K 50004 D58YH - HYVYYH = 8530H
4 8K 79004 D58@H - 7900H = 6580H
56K 900 YH D539PH - YYPoH = 458VH
6 2K AB@OH p580H - A8dwH = 2D80H
64K BOOOH D580H - B@YOH = 2580H

Assume, for example, that you want to locate the address X within the
memory image loaded under DDT in a 20K system. First type

AxX,n Hexadecimal sum and difference
and DDT will respond with the value of x+n (sum) and x-n (difference).
The first number printed by DDT will be the actual memory address in
the image where the data or code will be found. The input

H3400,D580

for example, will produce 98¥H as the sum, which is where the CCP is
located in the memory image under DDT.

Use the L command to disassemble portions the BIOS located at
(4A9@YH+D) =-n which, when you use the H command, produces an actual
address of 1F8¢H. The disassembly command would thus be

(All Information Contained Herein is Proprietary to Digital Research.)

7



L1F89
It is now necessary to vatch in your CBOOT and CBIOS routines. The
BOOT resides at 1location @9¢¢¥H in the memory image., If the actual
load address is "n", then to calculate the bias (m) use the command:

H900,n Subtract load address from
target address.

The second number typoed in response to the command is the desired bias
(m) . For example, if your BOOT executes at JP8vH, the command:

H901Y,80
will reply
W98y D88Y Sum and difference in hex.

Therefore, the bias “m“ would be ¥880UH. To read—-in the BOOT, give the
command:

ICBOOT.HEX Input file CBOOT.HEX
Then:
Rm Read CBOOT with a bias of
m (=9didH-n)

You may now examine your CBOOT with:
L9d9

we are now ready to replace the CBIOS. Examine the area at 1F80H
where the original version of the CBIOS resides, Then type

ICBIOS.HEX Ready the “"hex" file for loading

assume that your CBIOS is being integrated into a 20K CP/M system, and
thus is origined at location 4Ag¥d. 1In order to properly locate the
CBIOS in the memory image under DDT, we must apply the negative bias n
for a 20K system when loading the hex file., This is accomplished by
typing

RD589 Read the file with bias D584H

Upon completion of the read, re-examine the area where the CBIOS has
been loaded (use an “L1F8Q" command) , to ensure that is was loaded
properly, When you are satisfied that the change has been made,
return from DDT using a control-C or "Gg" command,

Now use SYSGEN to replace the patched memory 1image back onto a

diskette (use a test diskette until you are sure of your patch), as
shown in the following interaction

(All Information Contained Herein is Proprietary to Digital Research.)

3



SYSGEN ' Start the SYSGEN program
SYSGEN VERSION 2. Sign-on message from SYSGEN
SOURCE DRIVE NAME (OR RETURN TO SKIP)
Resvond with a carriage return
to skip the CP/M read operation
since the system is already in
memory.
DESTINATION DRIVE NAME (OR RETURN TO REBOOT)
Respond with "B" to write the
new system to the diskette in
drive B.
DESTINATION ON B, THEN TYPE RETURN
Place a scratch diskette in
drive B, then type return,
FUNCTION COMPLETE
DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

Place the scratch diskette in your drive A, and then perform a
coldstart to bring up the new CP/M system you have configured.

Test the new CP/M system, and place the Digital Research copyright
notice on the diskette, as specified in your Licensing Agreement:

Copyright (c), 13979
Digital Research



4. SAMPLE GETSYS AND PUTSYS PROGRAMS

The following program provides a framework for the GETSYS and
PUTSYS programs referenced in Section 2. The READSEC and WRITESEC
subroutines must be inserted by the user to read and write the
spvecific sectors.

GETSY5 PROGRAM - READ TRACKS @ AND 1 TO MEMORY AT 3389H

H REGISTER USE
H A (SCRATCH REGISTER)
; B TRACK COUNT (2, 1)
H C SECTOR COUNT (1,2,...,26)
H DE (SCRATCH REGISTER PAIR)
; HL LOAD ADDRESS
H 5P : SET TO STACK "ADDRESS
1
START: LXI SP,3380H ;SET STACK POINTER TO SCRATCH AREA
LXI H, 338vH sSET BASE LOAD ADDRESS
MVI B, o s START WITH TRACK ©
RDTRK : ;READ NEXT TRACK (IWITIALLY 9)
MVI c,1 sREAD STARTING WITH SECTOR 1
RDSEC: sREAD NEXT SECTOR
CALL READSEC tUSER-SUPPLIED SUBROUTINE
LXI D,1238 sMOVE LOAD ADDRESS TO NEXT 1/2 PAGE
DAD D sHL = HL + 128
IdR C ;SECTOR = SECTOR + 1
MoV A,C ;CHECK FOR END OF TRACK
CPI 27
JcC RDSEC ;CARRY GENERATED IF SECTOR < 27
H ARRIVE HERE AT END OF TRACK, MOVE TO NEXT ‘RACK
INR B
MOV A,B ;TEST FOR LAST TRACK
CpI 2
JC RDTRK ;CARRY GENERATED IF TRACK < 2

~e we

ARRIVE HERE AT END OF LOAD, HALT FOR NOW
HLT

USER-SUPPLIED SUBROUTINE TO READ THE DISK
EADSEC:
ENTER WITH TRACK NUMBER IN REGISTER B8,
SECTOR NUMBER IN REGISTER C, AND
ADDRESS TO FILL IN HL

we we we we ;U" ~e

PUSH B iSAVE B8 AND C REGISTERS
PUSH t :SAVE HL REGISTERS

0 0000000000000 000N ERSsCEOEOESIOEOEOSOEGEOGS S

perform disk read at this point, branch to

label START if an error occurs

'..l.l.ll.....'.l..l‘."....t.‘..l.l.......

poP H s RECOVER HL

POP B sRECOVER B AND C REGISTERS
RET sBACK TO MAIN PROGRAM

END START

(All Information Contained Herein is Proprietary to Digital Research.)

10



Note that this program is assembled and listed in Appendix C for
reference purposes, with an assumed origin of 1W9H. The hexadecimal
operation codes which are listed on the left may be wuseful 1if the
program has to be entered through your machine's front panel switcnes.

The PUTSYS program can be constructed from GETSYS Dby changing only
a few operations in the GETSYS program given above, as shown in
Appendix D. The register pair HL Dbecome the dump address (next
address to write), and operations upon these registers do not change
within the program. The READSEC subroutine is replaced by a WRITESEC
subroutine which performs the opvosite function: data from address HL
is written to the track given Dby register B and sector given by
register C. It is often useful to combine GETSYS and PUTSYS into a

single program during the test and development phase, as shown in the
Appendix.

(A1l Information Contained Herein is Proprietary to Digital Research.)

11



5. DISKETTE ORGANIZATION

The sector allocation for the standard distribution version of
Ce/M 1is given here for reference purposes, The first sector (see
table on the following page) contains an optional software boot
section. Disk controllers are often set uo to bring track @, sector 1
into memory at a specific 1location (often 1location Wo@oH) ., The
program in this sector, called BOOT, has the responsibility of
bringing the remaining sectors into memory starting at location
3408d+b., If your controller does not have a built-in sector load, you
can ignore the program in track , sector 1, and begin the 1load from
track ¥ sector 2 to location 3493H+Db.

AS an example, the Intel MDS-899 hardware cold start loader brings
track ¥, sector 1 into absolute address 300wH, Uoon loading this
sector, control transfers to location 300dH, where the bootstrap
operation commences by loading the remainder of tracks 4, and all of
track 1 into memory, starting at 344wH+b. The user should note that
tnis bootstrap loader is of little use in a non-MDS environment,
althougn it is wuseful to examine it since some of the boot actions
will have to pbe duplicated in your cold start loader.

(All Information Contained Herein is Proprietary to Digital Research.)

12



Track§# Sector§ pPage# Memory Address CP/M Module name

4o 01 (boot address) Cold Start Loader
g0 32 39 343 ¢H+b CCP
" D3 v 348¢H+b S
” d4 21 3508H+b “

" ) . 3580H+b "

. 26 B2 360@H+D "

" b7 . 3680H+b ”

" 28 93 3700H+D .

! 09 " 378@H+b "

" 19 g4 38008+b "

" 11 . 3880H+Db .

" 12 25 399¢H+b .

" 13 . 3980H+b .

" 14 36 3A0QH+b .

" 15 " 3A8@H+b "

" 16 37 38¢0H+b .
D9 17 . 3B89H+Db ccp
3 13 8 3Cd90H+b BDOS

. 19 o 3C80H+Db "

" 24 49 3D@GQYH+Db "

" 21 . 3D8@d4d+b .

. 22 19 3E90Hd+b .

" 23 " 3E8@H+Db "

" 24 11 3FJQH+D .

. 25 . 3F80H+b .

" 26 12 4309H+D .
g1 1l " 43 80H+b "

" B2 13 4190PH+b .

" g3 “ 4180H+b -

. J4 14 4203H+b "

" 25 . 4283H+D "

. 36 15 4303H+b .

" 67 " 4380H+b B

. 98 16 44003H+b "

B 09 . 4480H+b .

" 192 17 45@3H+b .

" 11 " 4583H+b .

" 12 18 4600H+b .

" 13 . 4680H+b "

" 14 19 4700H+b “

" 15 . 478@H+b .

. 16 20 48@0H+b "

. 17 . 488@H+b .

. 18 21 49G0H+b .

g1 19 u 4980@H+b BDOS

31 20 22 4A0QH+b BIOS

. 21 . 4A80H+b .

. 23 23 AB@OH+D .

" 24 . 4B8PH+b .

" 25 24 4COQH+Db "

g1 26 . 4C8@4+b BIOS

22-76 B1-26 (directory and data)

(All Information Contained Herein is proprietary to Digital Research.)



6. THE BIOS ENTRY POINTS

The entry points into the BIOS from the cold start loader and BDOS
are detailed below. Entry to the BIOS is through a "jump vector"
located at 4AdQPH+D, as shown below (see Appendices B and C, as well).
The jump vector is a sequence of 17 jumo instructions which send
program control to the individual BIOS subroutines,. The BIOS
suoroutines may be emnty for certain functions (i.e., they may contain
a single RET operation) during regeneration of CP/M, but the entries
must be present in the-jump vector.

The jump vector at 4AUPH+b takes the form shown below, where the
individual jump addresses are given to the left:

470 0BH+D JMpP BOOT ARRIVE HERE FROM COLD START LOAD
4AY3d+p JHMP WBOOT ARRIVE HERE FOR WARM START
47 6t+b JMp CONST CHECK FOR CONSOLE CHAR READY

4AJ9H+b JMP CONIH
4A9CH+D JMP CONOUT
4APFH+D JMp LIST
4Al12t+b JMP PUNCH
4A15H+Db JMP READER

READ CONSOLE CHARACTER IN

WRITE CONSOLE CHARACTER OUT
WRITE LISTING CHARACTER OUT
WRITE CHARACTER TO PUNCH DEVICE
READ READER DEVICE

4A18d+Db JMP HOME MOVE TO TRACK ¥J@ ON SELECTED DISK
4A184d+5 JMP SELDSK SELECT DISK DRIVE
4A1EH+0 JUP SETTRK SET TRACK NUMBER
4A21H+0 JMP SETSEC SET SECTOR NUMBER

4A24H+Db JMP SETDMA
4A27H+b JMP READ
4A2AH+0 JMP WRITE
4AZDH+Db JMP LISTST
4A30H+b JMP SECTRAN

SET DMA ADDRESS

READ SELECTED SECTOR

WRITE SELECTED SECTOR
RETURN LIST STATUS

SECTOR TRANSLATE SUBROUTINE

WO NE MO NE NI NE Ve N NE NS Ne NE me e e we we

Each jump address corresponds to a particular subroutine which
performs the specific function, as outlined below, There are three
major divisions in the jump table: the system (re)initialization
which results from calls on BOOT and WBOOT, simple character I/0
pertormed by calls on CONST, CONIN, CONOUT, LIST, PUNCH, READER, and
LISTST, and diskette I/O vperformed by calls on HOME, SELDSK, SETTRK,
SETSEC, SETDMA, READ, WRITE, and SECTRAN.

All simple character I/O operations are assumed to be performed in
ASCII, upper and lower case, with high order (parity bit) set to zero.
An end-of-file condition for an input device is given by an ASCII
control-z (1lAH). Peripheral devices are seen by CP/M as "logical"
devices, and are assigned to physical devices within the BIOS.

In order to operate, the BDOS needs only the CONST, CONIN, and
CONOUT subroutines (LIST, PUNCH, and READER may be used by PIP, but
not the BDOS). Further, the LISTST entry is used currently only by
DESPOOL, and thus, the 1initial version of CBIOS may have empty
subroutines for the remaining ASCII devices.

(All Information Contained Herein is Proprietary to Digital Research.)

14



The characteristics of each device are

CONSOLE The principal interactive console which communicates .
with the operator, accessed through CONST, CONIN, and
CONOUT. Typically, the CONSOLE is a device such as a
CRT or Teletype.

LIST The principal listing device, if it exists on vyour
system, which is usually a hard-copy device, such as a
printer or Teletype,.

PUNCH The principal tape punching device, if it exists, which
is normally a high-speed paper tape punch or Teletype.

READER The principal tape reading device, such as a simple
optical reader or Teletype.

Note that a single peripheral can be assigned as
the LIST, PUNCH, and READER device simultaneously. If
no peripheral device is assigned as the LIST, PUNCH, or
READER device, the CBIOS created by the user may dgive
an appropriate error message so that the system does
not "hang" if the device is accessed by PIP or some
other wuser wvrogram, Alternately, the PUNCH and LIST
routines can just simoly return, and the READER routine
can return with a 1AH (ctl-2z) in reg A to indicate.
immediate end-of-file,

For added flexibility, the wuser can optionally
implement the "“IOBYTE" function which allows
reassignment of ohysical and logical devices. The
IOBYTE function creates a mapping of logical to
physical devices which can be altered dguring Cp/#"
processing (see the STAT commanc). The definition of
the IOBYTE function corresponds to the Intel standard:
as follows: a single location in memory (currently:
location ¥@9P3H) is maintainea, callea IOBYTE, which
defines the logical to physical device mapping which is
in effect at a particular time. The mapping 1is
performed py splitting the IOBYTE into four distinct
fields of two bits each, called the CONSOLE, READER,
PUNCH, and LIST fields, as shown below:

most significant least significant

IOBYTE AT 90038 | LIST | PUNCH | READER | CONSOLE |

bits 6,7 bits 4,5 bits 2,3 bits 0,1
The value in each field can be in the range 0-3,
defining the assigned source oOr destination of each

logical device. The values which can be assigned to
each field are given below

(All Information Contained Herein is Proprietary to Digital Research.)

15



CONSOLE field (bits 6,1)

]

console is assigned to the console printer device (TTY:)
console is assigned to the CRT device (CRT:)

batch mode: use the READER as the CONSOLE input,

and the LIST device as the CONSOLE output (BAT:)

user defined console device (UCl:)

field (bits 2,3)

READER is the Teletype device (TTY:)

READER is the high-speed reader device (RDR:)
user defined reader # 1 (UR1l:)

user defined reader # 2 (UR2:)

PUNCH fleld (bits 4,5)

PUNCH is the Teletype device (TTY:)

PUNCH is the high speed punch device (PUN:)
user defined punch 1 (UPl:)

user defined opunch % 2 (UP2:)

LIST field (bits 6,7)

LIST is the Teletype device (TTY:)
LIST is the CRT device (CRT:)

LIST is the line printer device (LPT:)
user defined list device (ULL:)

Note again that the implementation of the IOBYTE is
optional, and affects only the organization of your
CBIOS. No CP/M systems use the IOBYTE (although they
tolerate the existence of the IOBYTE at location
dv¥3d), except for PIP which allows access to the

physical devices, and STAT which allows
logical-pnysical assignments to be made - and/or
displayed (for more information, see the “"CP/M Features
and Facilities Guide"). In any case, the IOBYTE

implementation should be omitted until your basic CBIOS
is fully implemented and tested; then add the IOBYTE to
increase your facilities,

Disk I/0 is always performed through a sequence of
calls on the various disk access subroutines which set
up the disk number to access, the track and sector on a
particular disk, and the direct memory access (DMA)
address 1nvolved in the I/0 operation. After all these
parameters have been set up, a call is made to the READ
or WRITE function to perform the actual I/O operation.
Note that there is often a single call to SELDSK to
select a disk drive, followed by a number of read or
write operations to the selected disk before selecting
another drive for subsequent operations. Similarly,
there may be a single call to set the DMA address,
tollowed by several calls which read or write from the
selectea DMA address pefore the DMA address is changed,
The track and sector subroutines are always called
before the READ or WRITE operations are performed.

(All Information Contained Herein is Proprietary to Digital Research.)

l6



Note that +the READ and WRITE routines should
perform several retries (l@ 1is standard) before
reporting the error condition to the BDOS. If the
error condition is returned to the BDOS, it will report
the error to the user. The HOME subroutine may or may
not actually perform the track 60 seek, depending upon
your controller characteristics; the important point is
that track 08 has been selected for the next operation,
and is often treated in exactly the same manner as
SETTRK with a parameter of 20.

The exact responsibilites of eacn entry point
subroutine are given below:

BOOT The BOOT entry point gets control from the cold start
loader and 1is responsible for basic system
initialization, including sending a signon message
(which can be omitted in the first version). If the
IOBYTE function is implemented, it must be set at this
point, The various system parameters which are set py
the WBOOT entry point must be initialized, and control
is transferred to the CCP at 3400H+b for further
processing, Note that reg C must be set to zero to
select drive A,

WwBOOT The WBOOT entry point gets control when a warm start
occurs. A warm start 1is performed whenever a user
orogram branches to location 9#@d0H, or when the CPU is
reset from the front panel. The CP/M system must be
loaded from the first two tracks of drive A up to, but
not including, the BIOS (or CBIOS, if you have
completed your patch). System parameters must be ini-
tialized as shown below:

location 4,1,2 set to JMP WBOOT for warm starts
(0@0GH: IJMP 4A@3H+D)

location 3 set initial value of IOBYTE, 1if
implemented in your CBIOS

location 5,6,7 set to JMP BDOS, which 1is the
primary entry point to CP/M for
transient programs., (@@@5H: JMP
3CH6H+Db) '

(see Section 9 for complete details of page zero use)
Upon completion of the initialization, the WBOOT
program must branch to the CCP at 3409H+b to (re)start
the system, Upon entry to the CCP, register C 1is set
to the drive to select after system initialization.

CONST Sample the status of the currently assigned console
device and return @FFH in register A if a character is
ready to read, and @0H in register A if no console
characters are ready.

CONIN Read the next console character into register A, and

(All Information Contained Herein is Proprietary to Digital Research.)

17



set the parity opit (high order bit) to zero. If no
console character is ready, wait until a character is
typed pefore returning,

CONOUT Send the character from register C to the console
output device, The character is in ASCII, with high
order parity bit set to zero. You may want to include
a time-out on a line feed or carriage return, if vyour
console device requires some time interval at the end
of the line (such as a TI Silent 700 terminal). You
can, 1if you wish, filter out control characters which
cause your console device to react in a strange way (a
control-z causes the Lear Seigler terminal to clear
the screen, for example),

LIST Send the character from register C to the currently
assigned listing device. The character is in ASCII
with zero parity,

puUwCH Send the character from register C to the currently
assigned punch device, The character is in ASCII with
Zero parity.

READER Read the next character from the currently assigned
reader device into register A with zero parity (high
order bit must be zero), an end of file condition is
reported by returning an ASCII control-z (1lAH).

HOME Return the disk heaa of the currently selected disk
(initially disk A) to the track 8@ position, If your
controller allows access to the track 6 flag from the
drive, step the heaa until the track #® flag is
detected. 1If your controller does not support this
feature, you can translate the HOME call into a call
on SETTRK with a parameter of 0.

SELDSK Select the disk drive given by register C for further
operations, where register C contains 0 for drive A, 1
for drive B, and so-forth up to 15 for drive P (the
standard CP/M distribution version supports four
drives). On each disk select, SELDSK must return in
HL the base address of a 16-byte area, called the Disk
Parameter Header, described in the Section 10. For
standard floppy disk drives, the contents of the
header and associated tables does not change, and thus
the program segment included in the sample CBIOS
performs this operation automatically, If there is an
attempt to select a non-existent drive, SELDSK returns
HL=PP0dH as an error indicator. Although SELDSK must
return the header address on each call, it is
advisable to postpone the actual physical disk select
operation until an I/O function (seek, read or write)
1s actually performed, since disk selects often occur
without utimately performing any disk I/0, and many
controllers will unload the head of the current disk

(All Information Contained Herein is Proprietary to Digital Research.)

18



before selecting the new drive. This would cause an
excessive amount of noise and disk wear.

SETTRK Register BC contains the track number for subsedguent
disk accesses on the currently selected drive, You
can choose to seek the selected track at this time, or
delay the seek until the next read or write actually
occurs. Register BC can take on values in the range
9-76 corresponding to valid track numbers for standard
floppy disk drives, and @-65535 for non-standard disk
subsystems,

SETSEC Register BC contains the sector number (1 through 26)
for subseguent disk accesses on the currently selected
drive. You can choose to send this information to the
controller at this point, or instead delay sector
selection until a read or write operation occurs.

SETDMA Register BC contains the DMA (disk memory access)
address for subseguent read or write operations., For
example, if B = ¢dH and C = 80H when SETDMA is calleaq,
then all subseguent read operations read their data
into 8@%H through @FFH, and all subsequent write
operations get their data from 84H through @FFH, until
the next call to SETDMA occurs, The initial DMA

address is assumed to be B8UH. Note that the
controller need not actually support airect memory
access. I1f, for example, all data is received and

sent through I/O ports, the CBIOS which you construct
will wuse the 128 byte area starting at the selected
DMA address for the memory buffer during the following
read or write operations,

READ Assuming the drive has been selected, the track has
been set, the sector has been set, and the DMA aadress
has been specified, the READ subroutine attempts to
read one sector based upon these parameters, and
returns the following error codes in register A:

] no errors occurred
1 non-recoverable error condition occurred

Currently, CP/M responds only to a zero Or non-=zero
value as the return code, That is, if the value in
register A is @ then CP/M assumes that the disk
operation completed properly. If an error occurs,
however, the CBIOS should attempt at least 14 retries
to see if the error is recoverable, When an error is
reported the BDOS will print the message “BDOS ERR ON
X: BAD SECTOR". The operator then has the option of
typing <cr> to ignore the error, or ctl-C to abort.

WRITE Write the data from the currently selected DMA address

to the currently selected drive, track, and sector.
The data should be marked as "non deleted data" to

(A1l Information Contained Herein is Proprietary to Digital Research.)

19



maintain compatibility with other CP/M systems. The
error codes given in the READ command are returned in
register A, with error recovery attempots as described
above,

LISTST Return the ready status of the list device. Used Dby
tne DESPOOL program to improve console response during
its operation. The value ¥¥ is returned in A if the
list device is not ready to accept a character, and
UFFl 1if a character can be sent to the printer. Note
that a 69 value always suffices,

SECTRAN pertorms sector logical to physical sector translation
in order to improve the overall response of cep/Mm,
Standard CP/M systems are shioped with a “skew factor"
of 6, where six physical sectors are skipped between
each logical read operation, This skew factor allows
enough time between sectors for most programs to load
their buffers without missing the next sector. In
particular computer systems which use fast processors,
memory, and disk subsystems, the skew factor may be
changed to improve overall response. Note, however,
that you should maintain a single density IBM
compatible version of (Cp/M for information transfer
into and out of your computer system, wusing a skew
ftactor of 6. 1In general, SECTRAN receives a logical
sector number in BC, and a translate table address in
DE, The sector number is used as an index into the
translate table, with the resulting physical sector
number in HL, For standard systems, the tables and
indexing code is orovided in the CBIOS and need not be
changed.,

(All Information Contained Herein is Proprietary to Digital Research.)

29



7. A SAMPLE BIOS

The program shown in Appendix C can serve as a basis for your
first BIOS. The simplest furctions are assumed in this BIOS, so that
you can enter it through the front wvanel, if absolutely necessary.
Note that the user must alter and insert code into the subroutines for
CONST, CONIN, CONOUT, READ, WEITE, and WAITIO subroutines, Storage is
reserved for user-supplied code in these regions. The scratch area
reserved in page zero (see Section 9) for the BIOS 1is wused in this
program, so that it could be implemented in ROM, if desired,

Once operational, this skeletal version can be enhancea to print
the initial sign-on message and perform better error recovery. The
subroutines for LIST, PUNCH, and READER can be filled-out, and the
IOBYTE function can be implemented.

(A1l Information Contained Herein is Proprietary to Digital Research.)

21



8., A SAMPLE COLD START LOADER

The program shown in Appendix D can serve as a basis for your cold
start loader. The disk read function must pbe supplied by the wuser,
ana the program must be loaded somehow starting at location 64000.
Note tnat svace is reserved for your patch so that the total amount of
storage required for the cold start loader is 128 bytes, Eventually,
you will probably want to get this loader onto the first disk sector
(track b, sector 1), and cause your controller to load it into memory
automatically upon system start-up. Alternatively, you may wish to
place tne cold start loader into ROM, and place it above the CP/M
system, In this case, it will pe necessary to originate the program
at a nigher address, and key-in a jump instruction at system start-up
which prancnes to the loader. Subsequent warm starts will not require
this key-in operation, since the entry point 'WBOOT' gets control,
thus pringing the system in from disk automatically. Note also that
the skeletal cola start loader has minimal error recovery, which may
oe enhanced on later versions,

(All Information Contained Herein is Proprietary to Digital Research.)

22



9. RESERVED LOCATIONS IN PAGE ZERO

Main memory page zero, between locations #0H and WFFH, contains
several segments of code and data which are wused during Cp/Hd
processing., The code and data areas are given below for reference
purposes.

Locations Contents
from to
VoooH - VOD2H Contains a jump instruction to the warm start

entry voint at location 4AG3H+b. This allows a
simple programmed restart (JMP @09¥H) or manual
restart from the front vanel.

00034

Q0034 Contains the Intel standard IOBYTE, which 1is
optionally included in the user's CBIOS, as
described in Section 6,

0ido4a

voo4H Current default drive number (0=A,...,15=p).

Po0O5H poo7d Contains a Jjump instruction to the BDOS,and
serves two purposes: JMP @@G5H provides the
primary entry point to the BDOS, as described in
the manual “CP/M Interface Guide," and LHLD
PDYWP6H brings the address field of the
instruction to the HL register pair., This value
is the 1lowest address in memory used by CpP/"
(assuming the CCP is being overlayed). Note
that the DDT program will change the address
field to reflect the reduced memory size 1in
debug mode.

D9 38H

Ba274 (interrupt locations 1 through 5 not used)

003064

0e378 (interrupt location 6, not «currently wused -
reserved)

08 38H

00 3AH Restart 7 - Contains a jump instruction into the
DDT or SID program when running in debug mode
for programmed breakpoints, but is not otherwise
used by CP/M.

29 3BH

W@3FH (not currently used - reserved)

Jv40H

WO 4FH 16 byte area reserved for scratch by CBIOS, but
is not used for any purpose in the distribution
version of CP/M

¥0O50H

¥a5BH (not currently used - reserved)

YB5CH @@7CH default file control Dblock produced for a
transient program by the Console Command

Processor,

Q@7DH.

GB7FH Optional default random record position

(A1l Information Contained Herein is Proprietary to Digital Research,)

23



6o8Yd - UOFFH default 128 byte disk buffer (also filled with
the command line when a transient is loaded
under the CCP).

Note that this information is set-up for normal operation under
the CP/M system, but can be overwritten by a transient program if the
BDOS facilities are not reguired by the transient.

It, for example, a particular program performs only simple I/0 and
must begin execution at location ¥, it can be first 1loaded into the
TPA, wusing normal CP/M facilities, with a small memory move program
which gets control when loaded (the memory move program must get
control <from 1location @1l¥bH, which is the assumed beginning of all
transient programs)., 7The move program can then proceed to move the
entire memory image down to location 6, ana pass control to the
starting address ot the memory load, Wwote that 1if the BIOS is
overwritten, or if location ¥ (containing the warm start entry point)
is overwritten, then the programmer must bring the CP/M system back
into memory with a cold start sequence.

(All Information Contained Herein is Proorietary to Digital Research.)

24



190. DISK PARAMETER TABLES.,

Tables are included in the BIOS which describe the particular
characteristics of the disk subsystem used with CP/M. These tables
can be either hand-coded, as shown in the sample CBIOS in Appendix C,
or automatically generated using the DISKDEF macro library, as shown
in Appendix B, The purpose here is to describe the elements of these
tables.

In general, each disk drive has an associated (l6-byte) disk
parameter header which both contains information about the disk drive
and provides a scratchpad area for certain BDOS operations, The
format of the disk parameter header for each drive is shown below

Disk Parameter Header
| XLT | 0000 | 0000Q | 0600 |IDIRBUF| DPB | CSv | ALV |
16b 16b 16b 16b 16b 16b 16b 16b

where each element is a word (l16-bit) value. The meaning of each Disk
Parameter Header (DPH) element is

XLT Address of the logical to physical translation vector,
if wused for this particular drive, or the value 0000H
if no sector translation takes place (i.e, the physical
and logical sector numbers are the same). Disk drives
with identical sector skew factors share the same
translate tables.

Boon Scratchpad values for use within the BDOS (initial
value is unimportant).

DIRBUF Address of a 128 byte scratchpad area for directory
operations within BDOS. All DPH's address the same

scratchpad area,

DPB Address of a disk parameter block for this drive,
Drives with identical disk characteristics address the
same disk parameter block.

Ccsv Address of a scratchpad area used for software check
for changed disks, This address is different for each
DPH.

ALV Address of a scratchpad area used by the BDOS to Kkeep

disk storage allocation information. This address is
different for each DPH.

Given n disk drives, the DPH's are arranged in a table whose first row

of 16 bytes corresponds to drive @, with the last row corresponding to
drive n-1, The table thus appears as

(A1l Information Contained Herein is Proprietary to Digital Research.)

25



DPBASE:

90 |XLT 00| 0000 | 0000 | V000 |DIRBUF|DBP 00|CSV 00|ALV 00|

P1 |XLT 01| 0000 | 0000 | 9900 |DIRBUF|DBP @1|CSV ¥1|ALV 91|

n-1|XLTn-1| 0000 | 0002 | 0000 |DIRBUF|DBPn-1|CSVn-1|ALVn-1|

where the label DPBASE defines the base address of the DPH table.

A responsibility of the SELDSK subroutine is to return the base
address of the DPH for the selected drive. The following segquence of
operations returns the table address, with a @0000H returned if the
selected drive does not exist,

NDISKS EQU 4 ;s NUMBER OF DISK DRIVES
SELDSK:
;SELECT DISK GIVEN BY BC
LXTI H,00060H ;s ERROR CODE
MOV A,C - :DRIVE OK?
CpI NDISKS :CY IF SO
RNC sRET IF ERROR
:NO ERROR, CONTINUE
MOV L,C : LOW (DISK)
MOV H,B sHIGH(DISK)
DAD H 1 %2
DAD H 1 %4
DAD H : *8
DAD H 1 *16
LXI D,DPBASE ;FIRST DPH
DAD D :DPH (DISK)
RET

The translation vectors (XLT @@ through XLTn-1) are located
elsewhere 1in the BIOS, and simply correspond one-for-one with the
logical sector numbers zero through the sector count-1, The Disk
Parameter Block (DPB) for each drive is more complex, A particular
DPB, which is addressed by one or more DPH's, takes the general form

l16b 8b 8b 8b 16b 16b 8b 8b 16b 16b

where each is a byte or word value, as shown by the "8b" or "l1l6b"
indicator below the field.

SPT is the total number of sectors per track
BSH is the data allocation block shift factor, determined
by the data block allocation size,
(All Information Contained Herein is Proprietary to Digital Research,)

26



EXM is the extent mask, determined by the data block
aliocation size and the number of disk blocks.

DSM determines the total storage capacity of the disk drive

DRM determines the total number of directory entries which
can be stored on this drive AL@,ALl1 determine reserved
directory blocks.

CKS is the size of the directory check vector

OFF is the number of reserved tracks at the beginning of
the (logical) disk.

The values of BSH and BLM determine (implicitly) the data allocation
size BLS, which 1is not an entry in the disk parameter block. Given
that the designer has selected a value for BLS, the values of BSH and
BLM are shown in the table below

BLS BSH BLM
1,024 3 7
2,048 4 15
4,096 5 31
8,192 6 63

16,384 7 127

where all values are in decimal. The value of EXM depends upon both
~he BLS and whether the DSM value is less than 256 or greater than
55, as shown in the following table

BLS DSM < 256 DSM > 255
1,024 ] N/A
2,048 1 0
4,096 3 1
8,192 7 3

16,384 15 7

The value of DSM is the maximum data block number supported by
this particular drive, measured in BLS units. The product BLS times
(DSM+1) is the total number of bytes held by the drive and, of course,
must be within the capacity of the ohysical disk, not counting the
reserved operating system tracks.

The DRM entry is the one less than the total number of directory
entries, which can take on a 16-bit value, The values of AL@® and ALl,
however, are determined by DRM, The two values AL@ and ALl can
together be considered a string of 16-bits, as shown below.

(A1l Information Contained Herein is Proprietary to Digital Research,)

27



60 01 02 03 04 05 06 07 68 09 14 11 12 13 14 15

where position 00 corresponds to the high order bit of the byte
labelled AL®#, and 15 corresponds to the low order bit of the byte
labelled AL1. Each bit position reserves a data block for number of
directory entries, thus allowing a total of 16 data blocks to be
assigned for directory entries (bits are assigned starting at 60 and
filled to the right until position 15). Each directory entry occupies
32 bytes, resulting in the following table

BLS Directory Entries
1,624 32 times # Dbits
2,048 64 times # Dbits
4,096 128 times # bits
8,192 256 times # bits

16,384 512 times # Dbits

Thus, if DRM = 127 (128 directory entries), and BLS = 1024, then there
are 32 directory entries per block, reguiring 4 reserved blocks. In
this case, the 4 high order bits of AL@ are set, resulting in the
values AL@ = @FOH and ALl = @@H.

The CKS value is determined as follows: if the disk drive media
is removable, then CKS = (DRM+l)/4, where DRM is the last directory
entry number, If the media is fixed, then set CKS = ¢ (no directory
records are checked in this case).

Finally, the OFF field determines the number of tracks which are
skipped at the beginning of the physical disk. This value 1is
automatically added whenever SETTRK is called, and can be used as a
mechanism for skipping reserved operating system tracks, or for
partitioning a large disk into smaller segmented sections,

To complete the discussion of the DPB, recall that several DPH's
can address the same DPB if their drive characteristics are identical.
Further, the DPB can be dynamically changed when a new drive is
addressed by simply changing the pointer in the DPH since the BDOS
copies the DPB values to a local area whenever the SELDSK function is
invoked,

Returning back to the DPH for a particular drive, note that the
two address values CSV and ALV remain. Both addresses reference an
area of uninitialized memory following the BIOS. The areas must be
unigue for each drive, and the size of each area is determined by the
values in the DPB.

The size of the area addressed by CSV is CKS bytes, which is
sufficient to hold the directory check information for this particular

drive, If CKS = (DRM+l)/4, then you must reserve (DRM+1l)/4 bytes for
directory check use, If CKS = #, then no storage is reserved.

(All Information Contained Herein is Proprietary to Digital Research.)

28



The size of the area addressed by ALV 1is determined by the
maximum number of data blocks allowed for this particular disk, and is
computed as (DSM/8)+1.

The CBIOS shown in Appendix C demonstrates an instance of these
tables for standard 8" single density drives, It may be useful to

examine this program, and compare the tabular values with the
definitions given above,

(A1l Information Contained Herein is Proprietary to Digital Research.)

29



11. THE DISKDEF MACRO LIBRARY.

A macro library is shown in Appendix F, called DISKDEF, which
greatly simplifies the table construction process. You must have
access to the MAC macro assembler, of course, to use the DISKDEF
facility, while the macro 1library is included with all CP/M 2.0
distribution disks.

A BIOS disk definition consists of the following sequence of
macro statements:

MACLIB DISKDEF
DISKS n
DISKDEF @,...
DISKDEF 1

7 oo e
® e o 000

DISKDEF n-1

ENDEF

where the MACLIB statement loads the DISKDEF.LIB file (on the same
disk as vyour BIOS) into MAC's internal tables. The DISKS macro call
follows, which specifies the number of drives to be configured with
your system, where n is an integer in the range 1 to 16. A series of
DISKDEF macro calls then follow which define the characteristics of
each logical disk, @ through n-1 (corresponding to logical drives A
through P)., Note that the DISKS and DISKDEF macros generate the
in-line fixed data tables described in the previous section, and thus
must be placed in a non-executable portion of your BIOS, typically
directly following the BIOS jump vector.

The remaining portion of your BIOS is defined following the
DISKDEF macros, with the ENDEF macro call immediately preceding the
END statement. The ENDEF (End of Diskdef) macro generates the
necessary uninitialized RAM areas which are located in memory above
your BIOS.

The form of the DISKDEF macro call is

DISKDEF dn, fsc,1lsc,[skf],bls,dks,dir,cks,ofs, [@]

where
dn is the logical disk number, @ to n-1
fsc is the first physical sector number (@ or 1)
1sc is the last sector number
skf is the optional sector skew factor
bls is the data allocation block size
dir is the number of directory entries
cks is the number of "“checked" directory entries
ofs is the track offset to logical track 0@
(@] is an optional 1.4 compatibility flag

The value "dn“ is the drive number being defined with this DISKDEF

(All Information Contained Herein is Proprietary to Digital Research.)

30



macro invocation. The “"fsc" parameter accounts for differing sector
numbering systems, and is usually @ or 1. The "lsc" is the 1last
numbered sector on a track. When present, the "skf" parameter defines
the sector skew factor which is used to create a sector translation
table according to the skew, If the number of sectors is less than
256, a single-byte table is created, otherwise each translation table
element occupies two bytes., No translation table is created if the
skf parameter is omitted (or equal to @). The "bls" parameter
specifies the number of bytes allocated to each data block, and takes
on the values 1024, 2048, 4096, 8192, or 16384, Generally,
performance increases with larger data block sizes since there are
fewer directory references and logically connected data records are
physically close on the disk, Further, each directory entry addresses
more data and the BIOS-resident ram space is reduced, The "dks"
specifies the total disk size in “"bls" units, That is, if the bls =
2048 and dks = 1000, then the total disk capacity is 2,048,000 bytes.
If dks is greater than 255, then the block size parameter bls must be
greater than 1024, The value of "dir" 1is the total number of
directory entries which may exceed 255, if desired. The *"cks"
parameter determines the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks
the disk read/only so that data is not subsequently destroyed). As
stated in the previous section, the value of cks = dir when the media
is easily <changed, as is the case with a floppy disk subsystem., If
the disk is permanently mounted, then the value of cks is typically @,
since the probability of changing disks without a restart is aquite
low. The "ofs" value determines the number of tracks to skip when
this particular drive is addressed, which can be used to reserve
additional operating system space or to simulate several logical
drives on a single large capacity physical drive. Finally, the [0@]
parameter is included when file compatibility is reguired with
versions of 1.4 which have been modified for higher density disks.
This parameter ensures that only 16K is allocated for each directory
record, as was the case for previous versions. Normally, this
parameter is not included.

For convenience and economy of table space, the special form
DISKDEF i,3
gives disk i the same characteristics as a previously defined drive jJj.

A standard four-drive single density system, which is compatible with
version 1.4, is defined using the following macro invocations:

(A1l Information Contained Herein is Proprietary to Digital Research.)

31



DISKS 4

DISKDEF  0,1,26,6,1024,243,64,64,2
DISKDEF 1,0

DISKDEF 2,0

DISKDEF 3,0

ENDEF

with all disks having the same parameter values of 26 sectors per
track (numbered 1 through 26), with 6 sectors skipped between each
access, 1024 bytes per data block, 243 data blocRs for a total of 243k
byte disk capacity, 64 checked directory entries, and two operating
system tracks,

The DISKS macro generates n Disk Parameter Headers (DPH's) ,
starting at the DPH table address DPBASE generated by the macro. Each
disk header block contains sixteen bytes, as described above, and
correspond one-for-one to each of the defined drives. In the four

drive standard system, for example, the DISKS macro generates a table
of the form:

DPBASE EQU $

DPE®: DW XLT9 ,0000H,0000H,0000H,DIRBUF ,DPBO,CSVH ,ALVY
DPE]l: DW XLTO,0000H,0000H,0000H,DIRBUF,DPB@,CSV1,ALV1
DPE2: DW XLT0 ,0000H,0000H,0090H,DIRBUF,DPBY,CSV2,ALV2
DPE3: DW XLTO ,0000H,0000H,0000H,DIRBUF,DPBJ,CSV3,ALV3

where the DPH labels are included for reference purposes to show the
beginning table addresses for each drive @ through 3., The values
contained within the disk parameter header are described in detail in
the previous section, The check and allocation vector addresses are

generated by the ENDEF macro in the ram area following the BIOS code
and tables,

Note that if the “skf" (skew factor) parameter is omitted (or
equal to @), the translation table is omitted, and a G@00H value is
inserted in the XLT position of the disk parameter header for the
disk, In a subseguent call to perform the logical to physical
translation, SECTRAN receives a translation table address of DE =
@@@PH, and simply returns the original logical sector from BC in the
HL register pair. A translate table is constructed when the skf
parameter 1is present, and the (non-zero) table address is placed into
the corresponding DPH's. The table shown below, for example, is
constructed when the standard skew factor skf = 6 is specified in the
DISKDEF macro call:

XLT@: DB 1,7,13,19,25,5,11,17,23,3,9,15,21
DB 2,8,14,20,26,6,12,18,24,4,10,16,22

Following the ENDEF macro call, a number of uninitialized data
areas are defined. These data areas need not be a part of the BIOS
which is loaded upon cold start, but must be available between the
BIOS and the end of memory. The size of the uninitialized RAM area is
determined by EQU statements generated by the ENDEF macro. For a
standard four-drive system, the ENDEF macro might produce

(All Information Contained Herein is Proprietary to Digital Research.)

32



4C72

BEGDAT EQU $
(data areas)
ENDDAT EQU S
DATSIZ EQU S$~BEGDAT

4DBO
P13C

which indicates that uninitialized RAM begins at location 4C72H, ends
at 4DBPH-1, and occupies @13CH bytes., You must ensure that these
addresses are free for use after the system is loaded.

After modification, you can use the STAT program to check vyour
drive characteristics, since STAT uses the disk parameter block to
decode the drive information., The STAT command form

STAT d:DSK:

decodes the disk parameter block for drive d (d4=A,...,P) and displays
the values shown below:

r: 128 Byte Record Capacity
k: Kilobyte Drive Capacity
d: 32 Byte Directory Entries
c: Checked Directory Entries
e: Records/ Extent

b: Records/ Block

s: Sectors/ Track

t: Reserved Tracks

Three examples of DISKDEF macro invocations are shown below with
corresponding STAT parameter values (the last produces a full
8-megabyte system).

DISKDEF ©#,1,58,,2048,256,128,128,2
r=4096, k=512, d=128, c=128, e=256, b=16, s=58, t=2

DISKDEF 8,1,58,,2048,1024,300,0,2

r=16384, k=2048, d=300, c=0, e=128, b=1l6, s=58, t=2

DISKDEF ©,1,58,,16384,512,128,128,2
r=65536, k=8192, 4d=128, c=128, e=1024, b=128, s=58, t=2

(All Information Contained Herein is Proprietary to Digital Research.)

33



12, SECTOR BLOCKING AND DEBLOCKING.

Upon each call to the BIOS WRITE entry point, the CP/M BDOS
includes information which allows effective sector blocking and
deblocking where the host disk subsystem has a sector size which is a
multiple of the basic 128-byte unit. The purpose here is to present a
general-purpose algorithm which can be included within your BIOS which
uses the BDOS information to perform the operations automatically,

Upon each call to WRITE, the BDOS provides the following
information in register C:

normal sector write
write to directory sector
write to the first sector
of a new data block

0
1
2

Condition @ occurs whenever the next write operation is into a
previously written area, such as a random mode record update, when the
write 1is to other than the first sector of an unallocated block, or
when the write is not into the directory area. Condition 1 occurs
when a write into the directory area is performed. Condition 2 occurs
when the first record (only) of a newly allocated data block is
written, 1In most cases, application programs read or write multiple
128 byte sectors in sequence, and thus there is little overhead
involved in either operation when blocking and deblocking records
since pre-read operations can be avoided when writing records,

Appendix G lists the blocking and deblocking algorithms in skeletal
form (this file is included on your CP/M disk). Generally, the
algorithms map all CP/M sector read operations onto the host disk
through an intermediate buffer which is the size of the host disk
sector. Throughout the program, values and variables which relate to
the CP/M sector involved in a seek operation are prefixed by "sek,"
while those related to the host disk system are prefixed by “hst.,"
The equate statements beginning on line 29 of Appendix G define the
mapping between CP/M and the host system, and must be changed if other
than the sample host system is involved.

The entry points BOOT and WBOOT must contain the initialization
code starting on 1line 57, while the SELDSK entry point must be
augmented by the code starting on line 65, Note that although the
SELDSK entry point computes and returns the Disk Parameter Header
address, it does not physically selected the host disk' at this point
(it is selected 1later at READHST or WRITEHST)., Further, SETTRK,
SETTRK, and SETDMA simply store the values, but do not take any other
action at this point, SECTRAN performs a trivial trivial function of
returning the physical sector number,

The principal entry points are READ and WRITE, starting on lines
110 and 125, respectively. These subroutines take the place of vyour
previous READ and WRITE operations.

The actual physical read or write takes place at either WRITEHST
or READHST, where all values have been prepared: hstdsk is the host

(All Information Contained Herein is Proprietary to Digital Research.)

34



disk number, hsttrk is the host track number, and hstsec is the host
sector number (which may require translation to a physical sector

number) . You must insert code at this point which performs the full
host sector read or write into, or out of, the buffer at hstbuf of
length hstsiz. All other mapping functions are performed by the
algorithms.

This particular algorithm was tested using an 80 megabyte hard
disk unit which was originally configured for 128 byte sectors,
producing approximately 35 megabytes of formatted storage. When
configured for 512 byte host sectors, usable storage increased to 57
megabytes, with a corresponding 400% improvement in overall response.

In this situation, there is no apparent overhead involved in
deblocking sectors, with the advantage that wuser programs still
maintain the (less memory consuming) 128-byte sectors, This 1is

primarily due, of course, to the information provided by the BDOS
which eliminates the necessity for pre-read operations to take place.

(A1l Information Contained Herein is Proprietary to Digital Research.)

35



0o00
fEff
0000

0oBe =

XYY
2806
1880
1600
1603

3000

1880
Poo2
0031
0019
0a18

wnwnu

£800
ffof
vo78
0879
B37b
a07¢f

0B78
g079
B07a
OOff
6eo3
od4
G100

LI | I T I 1}

3000 310001

3083 db79
3805 db7b

3007 dbff

3098 €58930

APPENDIX A: THE MDS COLD START LOADER

® wms = wo

r

false
true
testing

bias

bias

cpmb
bdos
bdose
boot
rboot

.
14

bdosl
ntrks
bdoss
bdos@
bdosl
1
mon89
rmon89
base
rtype
rbyte
reset
dstat
ilow
ihigh
bsw
recal
readtf
stack

rstart:

-
14

H
coldstar

MDS-800 Cold Start Loader for CP/M 2.0

Version 2.0 August, 1979

equ
equ
equ

if
equ
endif
if
equ
endif
equ
equ
equ
eqgu
equ

org

equ
eqgu
equ
equ
eau

equ
equ
equ
equ
equ
equ

equ
egu
equ
equ
equ
equ
equ

1xi

in
in

)

not false

false

testing

#3400h

not testing

d080nh

bias ;base of dos load
8#6h+bias sentry to dos for calls
1880Bh+bias send of dos load
l600h+bias ;jcold start entry point
boot+3 swarm start entry point
30060h ;loaded here by hardware
bdose-cpmb

2 ;tracks to read
bdosl/128 :# sectors in bdos

25 :# on track 0
bdoss-bdosg +# on track 1

P£f800h ;intel monitor base

bff@fh ;restart location for mon80
@78h ; 'base’ used by controller
base+l j;result type

base+3 ;result byte

base+7 ;reset controller

base ;disk status port

base+l ;low iopb address

base+2 ;high iopb address

Bffh :boot switch

3h ;recalibrate selected drive

4h ;disk read function

1006h ;use end of boot for stack

sp,stack;in case of call to mon8¢9
clear disk status

rtype
rbyte

check if boot switch is off

t:
in
ani
jnz

bsw

: . SWi ?
gg&dstartSWltCh on:

36



300e

3010
3612

3015
3016
3618
3019
301b

1012

3622

3024
3026

3028

302b

382d
302e
3631
3032

3034

3037
303a
303b
3083c

303f

a37f

0602
214230

7d
d379
1c
d37a
db78

889830

dab79

e603
fef2

d20030

db7b

17
dcOfft
1f
eble

c20030

110700
19
05
c21530

c30016

~e weo

tart:

~s we [ ~e

waitd:

-e -a ~e ~e -e weo

we weo

~e wo weo

e we

clear the controller

out reset :logic cleared
mvi b,ntrks ;number of tracks to read
1xi h,iopb®

read first/next track into cpmb

mov a,l

out ilow

mov a,h

out ihigh

in dstat

?21 éaitﬁ

check disk status

in rtype

ani 11b

cpi 2

if testing

cnc rmon8@ ;9o to monitor if 11 or 10
endif

if not testing

jnc rstart ;retry the load

endif

in rbyte ;i/0 complete, check status
if not ready, then go to mon8#@

ral

ccC rmon8@ :not ready bit set
rar ;restore

ani 11110b j;overrun/addr err/seek/crc
if testing

cnz rmon8@ ;go to monitor

endif

if not testing

jnz rstart ;retry the load

endif

1xi d,iopbl ;length of iopb

dad d ;addressing next iopb
dcr b scount down tracks
jnz start

jmp boot, print message, set-up jmps
jmp boot

parameter blocks

37



3042 89 iopb@: db 80h ;iocw, no update

3043 04 db readf ;read function

3044 19 db bdos# ;% sectors to read trk 0
3045 99 db %} strack @

3046 02 db 2 istart with sector 2, trk ¢
3047 0000 dw cpmb ;start at base of bdos

o7 = iopbl equ $—-iopb®

3049 80 iopbl: &b 80h

304a 04 db readf

304b 18 db bdosl ;sectors to read on track 1
304c 01 db 1 strack 1

3046 41 db 1 ;sector 1

304e 800c dw cpmb+bdos@*128 ;base of second rd
3059 end

38



Po14

4300
34060
3cl6
1600
00@2c
6302
0004
BG80
goda

4a00
4a03
4a@6
4369
4afc

c3b34a
c3c34a
c3614b
c3644b
c36a4db

APPENDIX B:

N e Ne e we we < Ne Ne we Ne we
]
=~
n

cpmb
bdos
cpml
nsects
offset
cdisk
buff
retry

Ne NO MO NE NE WE We N NE NG N WE WS WE e WE W Ve "o e Te Ne Ne N e e

wboote:

mds-800

THE MDS BASIC I/O SYSTEM (BIOS)

i/o drivers for cp/m 2.0

(four drive single density version)

version 2,0 august, 1979

equ

20 ;version 2,0

copyright (c) 1979

digital

box 579,

research
pacific grove

california, 93950

org
equ
equ
equ
equ
egu
equ
egu
equ

perform
boot
wboot

4a@0h 1base of bios in 20k system

3400h :base of cem cco

3c@6h :base of bdos in 20k system
S$-cpmb ;length (in bytes) of cpm system
cpml/128;number of sectors to load

2 snumber of disk tracks used by cp
300@4h ;address of last logged disk
@080h :default buffer address

19 smax retries on disk i/o before e

following functions
cold start
warm start (save i/o byte)

(boot and wboot are the same for mds)

const

conin
conout
list
punch
reader
home

console status

reg-a = 00 if no character ready
reg-a = ff if character ready

console character in (result in reg-a)
console character out (char in reg-c)
list out (char in reg-c)

punch out (char in reg-c)

paper tape reader in (result to reg-a)
move to track 00

(the following calls set-up the io parameter bloc
mds, which is used to perform subseguent reads an

seldsk
settrk
setsec
setdma

select disk given by reg-c (0,1,2...)

set track address (#,...76) for sub r/w
set gsector address (1,...,26)

set subsequent dma address (initially 8@h

read/write assume previous calls to set i/o parms

read
write

read track/sector to preset dma address
write track/sector from preset dma addres

jump vector for indiviual routines

jmp
jmp
Jjmp
jmp
jmp

boot
wboot
const
conin
conout

39



4aff
4al2

c36d4b
c3724b
4al5 c¢3754b
4al8 c3784b
4alb c37d4b
4ale c3a74b
4a2l1 c3ac4db
4a24 c3bb4b
4a27 c3cléb
4a2a c3cadb
4a2d c3764b
4a30 c3bléb

4a33+=

4a33+824a00
4a37+000000
4a3b+6edc73
4a3f+0d4dee
4a43+824a00
4a47+0000080
4a4b+6edc73
4a4f+3c4dld
4a53+824a00
4a57+0060000
4a5b+6e4c73
4a5f+6bdd4c
4a63+824a00
4a67+000000
4a6bb+6ed4c73
4a6f+9a4d7b

4a73+=
4a73+1a00
4a75+03
4a76+07
4a77+60
4a78+£200
4a7a+3f00
4a7c+ch
4a7d4+00
4ale+l1000
4a80+0200
4a82+=
4a82+¢1
4a83+07
4a84+vH4d
4a85+13
4a286+19
4aB87+085
4a88+@b
4a89+11
4a8a+l7
4a8b+03

-.

dpbase
dpef:

dpel:

dpe2:

dpe3:

dpb®

x1t9

Jmp
Jmp
Jmp
Jmp
Jmp
Jmp
Jmp
jmp
jmp
jmp
Jmp
jmp

maclib
disks
egu
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
aw
dw
dw
dw
diskdef
equ
dw
db
db
db
dw
aw
db
db
dw
dw
egu
db
db
db
ab
db
db
db
db
db
db

list
punch
reader
home
seldsk
settrk
setsec
setdma
read
write
listst
sectran

diskdef

x1t@,0000h
0000h,0000h
dirbuf, dpb@
csvd ,alvd

x1tl,0000h
0006h,0000h
dirbuf,dpbl
csvl,alvl

x1t2,00006h
00@0h,00006h0
dirbuf,dpb2
csv2,alv2

x1t3,00006h
VP0OGh,0000h
dirbuf,dpb3
csv3,alv3

:load
4 : four
$ :base

:1list status

the disk definition library

disks

of disk parameter blocks
stranslate table
;scratch area
;dir buff,parm block
;check, alloc vectors
;translate table
;scratch area
;dir buff,parm block
;check, alloc vectors
;translate table
;scratch area
;dir buff,parm block
;check, alloc vectors
stranslate table
;scratch area
;dir buff,parm block
;check, alloc vectors

0,1,26,6,1024,243,64,64,0ffset

49

;disk parm block
1sec per track
:block shift
sblock mask
;extnt mask
;disk size-1
;directory max
;alloch

sallocl

;check size
;offset
;translate table



4a8c+09
4a8d+0£
4a8e+15
4a38f+02
4a90+98
4a9l1+0e
4a92+14
4a93+1a
4a94+06
4a95+0c
4396+12
4a97+18
4a98+64
4a9%9+0a
4a9%9a+10
4a9pb+16

4a73+=
Polt+=
PB10+=
4a82+=

4a73+=
Blf+=
BaElo+=
4a82+=

4373+=
PA1E+=
Bdl10+=
4a82+=

gafad
Bofc
BB£3
do7e

£800
ffof
£863
£806
£809
f8@c
f80f
£812

dpbl
alsl
cssl
x1ltl

dpb2
als?2
css2
x1t2

dpb3
als3
css3
x1t3

8 NE NE NE WO We w Ne N N

14
revrt
intc
icon
inte

’

’
mon80
rmon849
ci
ri
co
po
lo
csts

db
ab
db
db
db
db
db
db
db
db
db
db
db
db
db
db
diskdetf
equ
equ
equ
equ
diskdef
egu
egu
equ
egu
diskdef
eqgu
equ
egu
equ

9

15
21

2

8

14
20
26

6

12
18
24

4

10
16
22
1,0
dpb@
als@
cssi
x1to
2,0
dpb@
alsd
cssb
x1t9
3,0
dpb@
alsg
cssi
x1t®

;eguivalent parameters

:same allocation vector size
:same checksum vector size
:same translate table

;eqguivalent parameters

ssame allocation vector size
;same checksum vector size
;same translate table

;equivalent parameters

;same allocation vector size
;same checksum vector size
;same translate table

endef occurs at end of assembly

end of controller - independent code,

the remaini

are tailored to the particular operating environm
be altered for any system which differs from the

the following code assumes the mds monitor exists
and uses the i/o0 subroutines within the monitor

we also
equ
equ
equ
equ

assume the mds system has four disk drive

gfdh ;interrupt revert port
@fch ;interrupt mask port
@£f3h ;interrupt control port

9111$1110b;enable rst @ (warm boot) ,rst 7

mds monitor equates

equ
equ
equ
equ
equ
equ
equ
equ

@£880h ;mds monitor

@ff@fh ;restart mon8@ (boot error)
pf8@3h ;console character to reg-a
pf8@6h ;reader in to reg-a

@f809nh ;console char from c to console o
@f8@ch ;punch char from c to punch devic
gf88fh ;list from c to list device
@f812h ;console status #0/ff to register

41



0078
po78
PB79
B07b

8B79
po7a

Voo4
Po6o6
6003
0ov4
pood
0d0a

4a9c
4a9f
4aal
4aad
4abl

4ab3
4ab6
4ab9
4abc
4abd
4acg

4ac3

4ac6
4ac8

4ac9
dacc
4acft
4adl
4ad4
4ad6
4ad9
4adb

4ade
4adf

Pdbada
3230
6b2043f
322e30
Pdvago

310001
219c4a
cdd34b
af

320400
c30f4b

318000

fela
c5

010634
cdbb4b
bed0
cd7d4b
0edd
cda74b
Ded 2
cdacédb

cl
d62c

7
base
dstat
rtype
rbyte
ilow
ihigh
readf
writf
recal
iordy
cr

1f

signon:

‘w-e

poot:

Ne e e F ~e e
O
[0}
(e}
+

~e

wboot@:

~e we

disk ports and commands

equ 78h ;base of disk command io ports
equ base ;disk status (input)

equ base+l ;result type (input)

egu base+3 ;result byte (input)

egu base+l ;iopb low address (output)
egu base+2 ;iopb high address (output)
egu 4h ;read function

equ 6h ;write function

equ 3h ;recalibrate drive

egu 4h ;i/0 finished mask

equ @dh ;carriage return

equ Pah :line feed

i signon message: xxk cp/m vers y.y

db cr,1f,1f

db ‘20 ;sample memory size

db 'k cp/m vers '

db vers/190+'6','."' ,vers mod 10+'9"’

db cr,l1f,0

;print signon message and go to ccp
(note: mds boot initialized iobyte at 6663h)
1xi sp,buff+80h

1xi h,signon

call prmsg ;print message

Xra a ;clear accumulator

sta cdisk ;set initially to disk a
jmp gocpm ;9o to cp/m

loader on track 0, sector 1, which will be skippe
read cp/m from disk - assuming there is a 128 byt
start,

1xi sp,buff ;using dma - thus 86 thru ff ok f
mvi c,retry ;max retries

push b

;enter here on error retries

1xi b,comb ;set dma address to start of disk
call setdma

mvi c,® sboot from drive @

call seldsk

mvi c,d

call settrk ;start with track @

mvi c,2 sstart reading sector 2

call setsec

read sectors, count nsects to zero
pop b ;10-error count
mvi b,nsects

42



4dael
4ae2
4daeb
4ae8
4daeb
daee
4aef
4afp
4afl
4af4
4af?
4af9

4dafc
4aff
4b@ 0o
4bg1
4b04
4b@5
4b@d6
4b@7
4bda
4bdb
4bdc

4b0f
4bl@
4bl2
4bl4
4bl5
4b17
4b19
4blb
4blc

4ble
4pb21

4b24
4b26
4b29
4b2c
4b2f
4b32
4b35
4b38
4b3b
4b3e

c5
cdcldb
c2494b
2a6cdc
118000
19

44

44
cdbb4db
3a6bdc
fela
da@54b

3a6adc
3¢
4f
cda74b
af
3¢
4f
cdacdb
cl
@5
cZ2elda

£3
3el2
d3fd
af
d3fc
3eTe
d3fc
af
d3£f3

018009
cdbb4db

3ec3

320000
21034a
220100
3208508
21063c
220600
323800
2100£8
223900

rdsec:

~e

rdl:

~e () ~ =~
o}
3
3

~e we

~e we

~-e

;read next sector

push b ;save sector count

call read

jnz booterr ;retry if errors occur
lhia iod ;increment dma address

1xi d,128 ;sector size

dad d ;incremented dma address in hl
mov b,h

mov c,l sready for call to set dma
call setdma

lda ios ;sector number just read
cpi 26 sread last sector?

jc rdl

must be sector 26, zero and go to next track
lda iot ;get track to register a
inr a

mov c,a ;ready for call

call settrk

Xra a ;clear sector number

inr a :t0 next sector

mov c,a ;ready for call

call setsec

pop b ;recall sector count

dcr b sdone?

jnz rdsec

done with the load, reset default buffer address
;s (enter here from cold start boot)
enable rst@ and rst7?

di

mvi a,l2h sinitialize command
out revrt

Xra a

out intc :cleared

mvi a,inte ;rst@ and rst7 bits on
out intc

Xra a

out icon ;interrupt control

set default buffer address to 86h
1xi b,buff
call setdma

reset monitor entry points

mvi a,jmp

sta ]

1xi h,wboote

shld 1 ; jmp wboot at location 00

sta 5

1xi h,bdos

shld 6 ;jmp bdos at location 5

sta 7*8 ;jmo to mon8@ (may have been chan
I1xi h,mon8@

shld 7*8+1
leave iobyte set

43



4b41
4b4 4
4b45
4b46

4b49
4bda
4b4b

4bde
4b4f

4b52
4b55
4b58

4b5b

4bol

4b64

4b67

4b69

4bba

4b6d

4b70
4b71

4b72

4b75

3al400
4f
fb
c30034

cl
pd
cab524b

c5
c3c94a

215b4b
cdd34b
C3Bfff

3f626£4

c312£8

cd@3fs
e67t
c9
c309f8

c30f£8

af
c9

c30cfs8

c306£8

-.

—e wo

booterr:

~e

booterf:

.
4

’
bootmsg:

onst:

~e () ~o ~o

conout:

’
list:

;
listst:

punch:

’

;
reader:

.
’

I
home:

previously selected disk was b, send varameter to

lda cdisk ;last logged disk number
mov c,a ;send to ccp to log it in
ei

jmp cpomb

error condition occurred, print message and retry
pop b ;recall counts

dcr o]

jz booterfd

try again

push b

jmp wbootf

otherwise too many retries

1xi h,bootmsg

call prmsg

jmp rmon8M® ;mds hardware monitor
db '?boot',0

;console status to reg-a
(exactly the same as mds call)
jmp Ccsts

;jconsole character to reg-a

call ci
ani 7fh ;remove parity bit
ret

;console character from ¢ to console out
jmp co

;list device out
(exactly the same as mds call)
jmp lo

;return list status
Xra a
ret ;always not ready

spunch device out

(exactly the same as mds call)
jmp po

;reader character in to reg-a
(exactly the same as mds call)
jmp ri

;move to home position

44



4b78
4b7a

4b7d
4b80Y
4pb81
4b83

4b84
4b86
4b89
4b8a
4b8c
4b8d
490

4b92
4b93
4b96
4b97
4b99
4bY%a

483k
4b9%e
4b9f
4bap
4bal
4ba2
4pbab
4bab

4ba?
4baa
4bab

4bac
4bat
4bbi

4bbl
4bb3
4bb4
4bb5
4bb6

1BB2

el
c3a74b

210000
79
felld
ag

e6ph2
32664c
79
e6d1l
b7
ca924b
3e30

47
21684c
Te
e6ct
oY

77
6200
29

29

29

29
11334a

19
c9

21l6adc
71
c9

216bdc
71
c9

0600
eb

39

Te
326b4c

&5

~e

mvi
Jjmp

1
seldsk: ;select
1xi
mov
cpi
rnc

~e

ani
sta
mov
ani
ora
jz

mvi

setdrive:

mov
1xi
mov
ani
ora
mov

mov
nvi

dad
dad
dad
dad
1xi
dad
ret

~e wo

treat as track 06 seek

c,d
settrk

disk given by register c
h,8080h ;return 098P if error
a,c
ndisks ;too large?

;leave hl = 06000

16b :00 90 for drive 9,1 and 10 10 fo
dbank :to select drive bank

a,c ; 08, 61, 10, 11

1b ;smds has ¢,1 at 78, 2,3 at 88

a ;jresult 0672

setdrive

a,?d0110080b ;selects drive 1 in bank
b,a ;save the function

h,iof :io function

a,m

11001111b ;mask out disk number

b smask in new disk number

m,a :ssave it in iopb

%:ﬁ ;hl=disk number

h $ %2

h : %4

h ;%8

h :*16

d,dpbase

d ;hl=disk header table address

settrk: ;set track address given by ¢

1xi
mov
ret

.
’

h,iot
m,C

setsec: ;set sector number given by ¢

1xi

mov

ret
sectran:

mvi
xchg
dad
mov
sta
mo
re

h,ios
m,c

;translate sector bc using table at de

b,0 ;double precision sector number i
stranslate table address to hl

b stranslate(sector) address

a,m ;translated sector number to a

ios

1,a ;return sector number in 1

setdma: ;set dma address given by regs b,c

45



4bbb
4bbc
4bbd
4bco

4bcl
4bc3
4bco
4bc9

4bca
4dbcc
4bcf
4bd2

4bad3
4bd4
4ba5s

4bdé6
4bd7
4bds
4bdb
4bdc
4bdd

4be@
4be3
4bed
4beb
4be7

4be8
4bea
4bed
4bee
4bef

4bfo

4bf2

4bf5

4bf8

69
60
226c4c
c9

Peld 4
cdeb4b
cdf@4b
c9

Bed6
cdefdb
cdf@4b
c9

Te
b7
c8

e5
4f
cd6adb
el
23
c3d34b

21684c
e
e6f8
bl

77

e6240
216bdc
b6

77

c9

feba

cd3f4c

cddc4c

3a664c

3
I

read:

~e ~eo

write:

T e ~e N

rmsg:

e

4
setfunc:

-
’

—-e we

-
1

waitio:

rewait:

’

-

mov 1l,c
mov h,b
shld iod
ret

;read next disk record (assuming disk/trk/sec/dma

mvi c,readf ;set to read function

call setfunc

call waitio ;perform read function

ret ;may have error set in reg-a

;disk write function

mvi c,writf

call setfunc ;set to write function
call waitio

ret ;may have error set

utility subroutines
;print message at h,1 to 8

mov a,m
ora a ;Zero?

rz

more to print

push h

mov c,a

call conout

pop h

inx h

jmo prmsg

set function for next i/o (command in reg-c)

1xi h,iof ;io function address

mov a,m ;get it to accumulator for maskin
ani 11111000b ;remove previous command
ora o] ;set to new command

mov m,a ;replaced in iopb

the mds-806 controller req's disk bank bit in sec
mask the bit from the current i/o function

ani 001036908b ;mask the disk select bit
1xi h,ios ;address the sector selec
ora m ;select proper disk bank
mov m,a ;set disk select bit on/o
ret

mvi c,retry ;max retries before perm error

start the i/o function and wait for completion

call intype ;in rtype
call inbyte ;clears the controller
lda dbank ;set bank flags

46



4bfb
4bfc
4bfe
4ci@
4¢c03
4cB5
4cé6
4cid8

4cidb
4c@d
4cle

4cl@
4cl3
4cl>5

4cl8

4clb
4cld

4¢c20
4c21

4c24
4c27
4c28
4c2b
4c2c
4cle

4c31

4c32
4c35

b7
3e67
@64dc
c2@bdc
d379
78
d37a
c310@4c

d389
78
d38a

cd594c
e604
caldidc

cd3fdc

fe@?2
ca32i4c

b7
c2384c

cddcdc
17
da324c
1f
eofe
c2384c

c9

cd4dcdc
c3384c

~e weo

- we

~e we

~e wo

e we

wready:

error:

Ne Ne Ne Ne Ne Ne Ne we e o E ~e

ora a :zero if drive 8,1 and nz
mvi a,iopb and @ffh ;low address for iopb

nvi b,iopb shr 8 ;high address for iopb
jnz iodrl sdrive bank 1?

out ilow ;low address to controlle
mov a,b

out ihigh shigh address

jmp waitd ;to wait for complete

:drive bank 1

out ilow+16h ;88 for drive bank 10
mov, a,b

out ihigh+16h

call instat ;wait for completion
ani iordy ;ready?

jz wait@

check io completion ok

call intype ;must be io complete (00)
@ unlinked i/o complete, 1 linked i/o comple
190 disk status changed 11 (not used)

cpi 10b ;jready status change?

jz wready

must be @0 in the accumulator
ora a
jnz werror ;some other condition, re

check i/0 error bits

call inbyte

ral

jc wready ;unit not ready
rar

ani 11111116b ;any other errors?
jnz werror

read or write is ok, accumulator contains zero
ret

;not ready, treat as error for now
call inbyte ;clear result byte
jmp trycount

;sreturn hardware malfunction (crc, track, seek, e
the mds controller has returned a bit in each pos
of the accumulator, corresponding to the conditio
@ - deleted data (accepted as ok above)

- Crc error

- seek error

- address error (hardware malfunction)

- data over/under flow (hardware malfunct
write protect (treated as not ready)

- write error (hardware malfunction)

- not ready

NSOk W
|

47



4c38
4c39

4c3c
4cle

4c3f
4¢c42
4c43
4c46
4c48
4c49
4cdb

4cé4c
4c4f
4c59
4c53
4c55
4c56
4c58

4c59
4c5c¢
4c5d
4c60
4c62
4c63
4c65

4c66

4¢co67
4c68
4c69
4c6a
4céeb
4coe

pa
c2f24b

3edl
c9

3abb64c
b7
c2494c
db79
c9
db89
c9

3a664c
b7
c2564c
db7b
c9
db8b
c9

3a664c
b7
c2634c
db78
c9
db88
cY

0o

80
g4
01
g2
b1
8000

(accumulator bits are numbered 7 6 5 4 3 2 1 @)

it may be useful to filter out the various condit
but we will get a permanent error message if it i
recoverable. in any case, the not ready conditio
treated as a separate condition for later improve

(T Se mo No ~e w8 wo

rycount:
: register c contains retry count, decrement ‘'til z
dcr c
jnz rewait ;for another try
14
; cannot recover from error
mvi a,l serror code
ret

~e ws

intype, inbyte, instat read drive bank 06 or 10

intype: lda dbank
ora a
jnz intypl ;skip to bank 10
in rtype
ret
intypl: in rtype+l@h ;78 for 0,1 88 for 2,3
ret
inbyte: 1lda dbank
ora a
jnz inbytl
in rbyte
ret
inbytl: in rbyte+l@h
ret
instat: lda dbank
ora a
jnz instal
in dstat
ret
instal: in dstat+10h
ret
: data areas (must be in ram)
dbank: db 7] ;disk bank 00 if drive 6,1
; 18 if drive 2,3
iopb: ;10 parameter block
db 80h ;normal i/o operation
iof: db readf :i0 function, initial read
ion: db 1 ;number of sectors to read
iot: db offset ;track number
ios: db 1 ;sector number
iod: aw buff ;io address

~e we =

define ram areas for bdos operation

48



dcbet=
4coe+
4cee+t
4d0d+
44l1d+
4d3c+
4d4c+
4d6b+
447b+
4d9a+
4daat=
@13c+=
4daa

begdat
dirbuf:
alvi:
csvid:
alvl:
csvl:
alv2:
csv2:
alv3:
csv3:
enddat
datsiz

endef
equ
ds
ds
ds
ds
ds
ds
ds
ds
ds
equ
equ
end

$
128
31
16
31
16
31
16
31
16

$

$-begdat

49

;directory access buffer



APPENDIX C: A SKELETAL CBIOS

skeletal cbios for first level of cp/m 2.0 altera

3614 = msize equ 20 ;Cp/m version memory size in kilo
H "bias" is address offset from 34006h for memory sy
; than 16k (referred to as "b" throughout the text)

0000 = bias equ (msize-20) *1024

3400 = ccp equ 34@0h+bias ;base of ccp

3c06 = bdos egu ccp+806h sbase of bdos

4a0@ = bios eqgu ccp+l600h ;base of bios

0004 = cdisk egu 2004h ;current disk number 6=a,...,15=p

0gR3 = iobyte equ 2003h ;intel i/o byte

4a00@ org bios ;origin of this program

B3d2c = nsects eqgu (S-ccp) /128 swarm start sector count
; jump vector for individual subroutines

4afl c39c4da jmp boot scold start

4a@3 c3ab6d4a wboote: jmp wboot ;warm start

4aP6 c3114b jmp const sconsole status

4aP9 c3244b jmp conin sconsole character in

4allc ¢3374b jmp conout ;console character out

4aff c3494b jmp list :1list character out

4al2 c34d4b jmp punch ;punch character out

4al5 c34f4b jmp reader ;reader character out

4al18 c3544b jmp home ;move head to home positi

4alb c35a4b jmp seldsk ;select disk

4ale c37d4b jmp settrk ;set track number

4a2l1 c3924b jmp setsec ;set sector number

4324 c3adib jmp setdma ;set dma address

4a27 c3c34b jmp read ;read disk

4a2a c3de64db jmp write ;write disk

4a2d c34bdb jmp listst ;return list status

4a36 c3a74b jmp sectran ;sector translate

fixed data tables for four-drive standard
ibm-compatible 8" disks
disk parameter header for disk 00

[oTR LTI TIR TR Y3

4a33 734a0@ dpbase: dw trans, 9000h
4a37 000000 dw f000h,0000h
4a3b f@4c8d dw dirbf,dpblk
4a3f ec4dio dw chk@@,allod
: disk parameter header for disk 01
4a43 734a80 dw trans,0000h
4a47 000000 dw 2000h,0000h
4a4b f04c8d dw dirbf,dpblk
4a4f fc4dst dw chkfl,allol
H disk parameter header for disk 82
4a53 734a00 dw trans, 9000h
4a57 000000 dw p000h,0000n
4a5b f@4c8d dw dirbf,dpblk
4a5f @cdeae dw chk@2,all@g?2

50



4a63
4a67
4a6b
4a6f

4373
4a7b
4a7f
4a83
4a87
4a8b

4a8d
4a8f
4a90
4a91
4a92
4a94
4296
4a97
4298
4a9%a

4a9c
4a9d
4aafd
4aa3

4aab
4aa9
4aab
4daae

4abl
4ab3
4abb

4ab7

4aba
4abb
4abc
4abd
4abe
4dacl

734a00
000000
£f04c8a
lcd4ecd

(/
050206
170369
150208
141206
121804
1016

1a00
B33
87
Y]
£200
3f00
cf
PO
10066
B200

af

320300
320400
c3efda

318009
Bedd

cdb5aédb
cdb44b

d62c
dedd
1602

219034

c5
das
e5
4a
cd924b
cl

-.

-e we

trans:

dpblk:

[oBR LI TR LI T

’
wboot:

.

~e we

loadl:

disk parameter header for disk 03

dw trans,90060h

dw $0060Oh,0000h

aw dirbf,dpblk

dw chk#3,allé3

sector translate vector

g8 3576131175 i88SESEE L1:8:9:8

db 23,3,9,15 ;sectors 9, lﬁ 11 12
db 21,2,8,14 :sectors 13,14,15,16
db 20,26,6,12 ;sectors 17,18,19,24
db 18,24,4,10 ;sectors 21,22,23,24
db 16,22 :sectors 25,26

;disk parameter block, common to all disks
dw 26 ;sectors per track
db 3 sblock shift factor
db 7 :block mask

db 2 ;null mask

aw 242 ;disk size-1

dw 63 ;directory max

db 192 ;alloc @

db @ ;alloc 1

dw 16 ;check size

aw 2 :track offset

end of fixed tables

individual subroutines to perform each function
;simplest case is to just perform parameter initi

Xra a. ;zero in the accum

sta iobyte ;clear the iobyte

sta cdisk ;select disk zero

jmp gocpm ;initialize and go to cp/
;simplest case is to read the disk until all sect
1xi .sp,.80h ;use space below buffer f
mvi c,Dd ;select disk @

call seldsk

call home ;go to track 60

mvi b,nsects :b counts # of sectors to
mvi c,d :c has the current track
mvi d,2 :d has the next sector to

note that we begin by reading track @, sector 2 s
contains the cold start loader, which is skipped

1xi h,ccp ;base of cp/m (initial lo
:load one more sector

push b ;save sector count, current track
push d :save next sector to read

push h ;save dma address

mov c,d ;get sector address to register c
call setsec j;set sector address from register
pop b srecall dma address to b,c

51



4dac2
4ac3

4aco
4acH
dachb

4ace
4act
4ad2
4ad3
4ad4
4ad>b
4ado6

4ad9
4ada
4adb
4add

4aeld
dae?

4ae3
daed
4aeb
4daeb
4ae9
4daea
d4aeb
4aec

4daef
4afl
4af4
4af’

4afa
4afd
4bo @

4b@3
4b06

4b09
4bda
4bad
4bfe

c5
cdadd4b

cdc34b
fedd
c2a64a

el
1184000
19
dl
cl
85
caefda

14

7a
felb
dabada

1601
dc

c5
a5
e5
cd7d4b
el
dl
cl
c3bada

3ec3

320000
21034a
220108

3205900
21d63c
220600

3180060
cdad4b

fb
3a@400
4f
c30034

~e we

-. wo

~s we

~s ~e

~o ~o»

~s ~e

gocpm:

~e

~e

-

push b ;replace on stack for later recal
call setdma ;set dma address from b,c

drive set to @, track set, sector set, dma addres
call read

cpi g0h ;jany errors?

jnz wboot ;retry the entire boot if an erro

no error, move to nexXxt sector

pop h ;recall dma address

1xi d,1l28 ;dma=dma+128

dad d ;new dma address is in h,1

pop d ;recall sector address

pop b ;recall number of sectors remaini
dcr b ;sectors=sectors-1

jz gocpm ;transfer to cp/m if all have bee

more sectors remain to load, check for track chan

inr a

mov a,d ;sector=27?, if so, change tracks
cpi 27

jc loadl ;carry generated if sector<27

end of current track, go to next track

mvi d,1 1begin with first sector of next
inr c strack=track+l

save register state, and change tracks
push b

push d

push h

call settrk ;track address set from register
pop h

pop d

pop b

jmp loadl ; for another sector

end of load operation, set parameters and go to ¢

mvi a,bc3h ;c3 is a jmp instruction

sta 0 ;for jmp to wboot

1xi h,wboote ;wboot entry point

shld 1 ;set address field for jmp at 0
sta 5 ;s for jmp to bdos

1xi h,bdos ;bdos entry point

shld 6 ;jaddress field of jump at 5 to bd
1xi b, 80h ;default dma address is 8@h

call setdma

ei ;enable the interrupt system

1da cdisk ;get current disk number

mov c,a ;send to the ccp

jmp ccp 790 to cp/m for further processin

52



4bll
4b21
4b23

4b24
4b34
4b36

4b37
4b38
4b4s

4b49
4dbda

4b4b
4bdc

4b4d
4bde

4b4f
4b51
4b53

4b54
4b56
4b59

4b5a
4b5d
4b5e
4b61

3e0@
c9

e67f
c9

79

cY

79
c9

af
c9

79
c9

3ela
e67f
c9

fedd
cd7dab
c9Y

210060
79
32efdc
febd

() NS¢ Ne Ne Ne we we

onst:

-s wo

reader:

~o T we we Ne wo Ne o

seldsk:

simple i/0 handlers (must be filled in by user)
in each case, the entry point is provided, with s
to insert your own code

;console status, return @ffh if character ready,

ds 16h ;space for status subroutine
mvi a,foh
ret

;console character into register a

ds 10h ;space for input routine
ani 7£fh ;strip parity bit
ret

sconsole character output from register c

mov a,c ;get to accumulator
ds 10h ;space for output routine
ret

:1list character from register c
mov a,c ;character to register a
ret ;null subroutine

sreturn list status (@ if not ready, 1 if ready)
Xra a :0 is always ok to return
ret -

spunch character from register c

mov a,c ;character to register a
ret ;null subroutine

;sread character into register a from reader devic

mvi a,lah ;enter end of file for now (repla
ani 7fh ;remember to strip parity bit
ret

i/o drivers for the disk follow
for now, we will simply store the parameters away
in the read and write subroutines

;move to the track 00 position of current drive
translate this call into a settrk call with param

mvi c,? ;select track #
call settrk
ret swe will move to #0 on first read

;select disk given by register c

1xi h,8806h ;error return code

mov a,c

sta diskno

cpi 4 smust be between 0 and 3

53



4b63
4b64

4bbe
4b71
4b72
4b74
4b75
4b76
4b77
4b78
4b7b
4b7c

4b7d
4b7e
4b81
4b91

4b92
4b93
4b96
4bab6

4ba’7
4ba8
4ba9
4baa
4bac

4bad
4bae
4baf
4bb2
4bc2

4bc3
4bd3

4bdé

ae

3aefdc
6f
2600
29

29

29

29
11334a
19

c9

79
32e94c
c9
79
32ebdc
c9

eb
29
6e
2600
c9

69
60
22eddc

c9

c3e64b

rnc ;ho carry if 4,5,...
: disk number is in t