
4. Bus Arbiter and Mode Control
TABLE OF CONTENTS

4.1. Hardware 4-2

4.2. Theory of Operations 4-3

4.2.1 Ethernet and Rigid Disk Combinations 4-4

4.2.2 lOP, PCE, Ethernet, and Rigid Disk Combinations 4-9

4.2.3 Arbiter Flow Diagrams 4-15

4. Bus Arbiter and Mode Control

The external arbiter determines the use of the system address/data
buses for the rigid disk controller or DMA controller after the lOP or
PCE relinquishes the bus. A function called mode control is required
to switch the bus between the lOP and the PCE 80186 during PC
execution.

The two main tasks of the arbiter/mode control logic are:

1) to arbitrate Ethernet (ENET) and rigid disk controller (RDC)
requests;

2) to allow either the IOP 80186 or PCE 80186 to use the Naddress
and Ndata buses.

Figure 4.1 illustrates the data flow of the arbiter and mode control.
The signals are described in section 4.1.

ENetHoldReq ENetHoldAck.

Arbitration
RDCHoldRea Control

RDCHoldAck
AllowRDCCmd:

NMl ..
lntrReqToArb

Stop Rigid

~ Disk DMA
~ ..

FDCDmaReq .. Stop PCE
80186

ExpDmaReq ,..

NPCHldaToArb
N ArbHoldPCE

NPCElntrIOP' ,..
AllowPCCmd' ,..

Mode
IOPHldaToArb Control

HoldIOPCmd'
ArbHoldIOP

Figure 4.1. Arbitration and mode control block diagram

Bus Arbiter and Mode Control 4-1

Dove lOP Board

4.1 Hardware

The arbiter control logic consists of the following components.

• D type flip flops

• JK flip flops

• AND, OR, NOR, NAND, and inverter gates.

Table 4.1 lists the major control signals for the arbiter.

Table 4.1. Major Arbiter Logic Signals

Signal UO Description

MasterRst' Input Master reset. Reset output of the 80186. This signal establishes a known
state oflogic.

IOPCLKK' Input Inverted lOP clock. Inverted clock output of the 80186. This signal
IOPCLK' synchronizes the system functions.

IOPHldaToArb Input lOP hold acknowledge to arbiter. Signals the arbiter that the lOP
80186 is no longer using the system address and data buse·s.

IOPClk Input lOP Clock. Clock output of the 80186 synchronizes the system functions.

ENetHoldReq Input Ethernet hold request. Signal from the 82586 Ethernet controller
indicating that it needs the system Aladdress and Aldata buses.

RstENetCtlr' Input Reset Ethernet controller. lOP 80186 liD control signal that resets the
Ethernet controller and resets the Ethernet hold request latches to the
arbiter.

IOPNMI Input lOP non maskable interrupt. This signal is connected to the 80186
NMI.

IntrReqToArb Input Interrupt request to the arbiter. This signal is controlled by the master
8259 PIC and signifies that a peripheral device requires the attention of
the lOP 80186.

FDCDmaReq Input Floppy disk controllerfDMA request. Signifies that the 8272 floppy
disk controller requires DMA servicing from channel 0 of the integrated
80186 DMA controller.

ExpDmaReq Input Expansion DMA request. Signifies that the an expansion slot device
requires DMA servicing from channell of the integrated 80186 DMA
Controller.

ADDr'/Data Input Address/data. Signal from the RDC DMA controller that identifies
whether address or data is being placed on the system multiplexed AID
lines, as follows:

ADDr'/Data 0 = Address
ADDr'/Data 1 = Data

ResetDmaFifo' Input Reset DMA and FIFO. The lOP 80186 uses this signal to reset the rigid
disk FIFO and the RDC DMA state machine.

RDCHoldReq Input RDC hold request. Signifies that the rigid disk DMA controller needs to

. use the system Aladdress and Aldata buses.

AlPCEIntrIOP' Input PCE interrupt to lOP. Signifies that PC emulation requires lOP 80186
service.

AlPCEHldaToArb Input PCE hold acknowledge to arbiter. Signals the arbiter that the PCE
80186 is using the system Aladdress bus and Aldata bus.

-more-

4-2 Bus Arbiter and Mode Control

Dove lOP Board

Table 4.1. Major Arbiter Logic Signals (continued)

Signal I/O Description

AlIowRDCCmd' Input Allow ROC command. lOP executes this command to the arbiter by
reading the I/O port address F4H. thus signaling the arbiter to begin
processing the rigid disk DMA requests.

AllowPCCmd' Input Allow PCE command. lOP executes this command to the arbiter by
reading I/O port address F8H. thus signaling the arbiter to allow the
PCE 80186 access to the system Naddress and Aldata buses.

HoldlOPCmd' Input Hold lOP command. lOP executes this command to the arbiter by
reading [10 port address F2H. thus signaling the arbiter to permanently
hold the lOP 80186. This hold is maintained until a peripheral device
requires the attention of the lOP 80186.

AlArbHoldPCE Output Arbiter hold PCE. Control signal from the arbiter to the PCE 80186
that requests the processor to relinquish the system Aladdress bus and
Aldata bus.

RDCHoldAck Output ROC hold acknowledg~. Control signal from the arbiter to the rigid
disk DMA controller that the system Aladdress bus and AJdata bus may
be used.

E~etHoldAck Output Ethernet hold acknowledge. Control signal from the arbiter to the
Ethernet controller that the system Aladdress bus and Aldata bus may
be used .

ArbHoldlOP Output Arbiter hold acknowledge. Control signal from the arbiter to the lOP
80186 that the system Aladdress bus and Aldata bus may be used.

4.2 Theory of Operations

Bus Arbiter and Mode Control

The arbiter theory of operations is described first by a series of tables
listing the events that occur under specific circumstances. The tables,
listed below, are followed by a series of flow diagrams, Figures 4.2 .
4.6, illustrating decisions after a service request.

The following tables list 19 scenarios for arbiter operations:

Table 4.2 •
Table 4.3 •

•
•

Table 4.4 •

Table 4.5 •

Table 4.6 •
•

Ethernet requests service

RDC requests service (AllowRDCCmd' not executed)

RDC requests service (AllowRDCCmd' executed)

RDC requests service and interrupt occurs

RDC requests service then Ethernet requests service .
No interrupt to lOP occurs.

RDC and Ethernet request service before an lOP
acknowledge occurs

RDC and Ethernet request service at the same time

RDC and Ethernet request service at the same time.
An lOP interrupt occurs during Ethernet servicing.

4-3

Dove lOP Board

Table 4.7 • ROC and Ethernet request service.
occurs during the RDC request.

An interrupt

• RDC and Ethernet request service. An interrupt is
generated when the Ethernet is using the bus.

Table 4.8 • lOP executes an AllowPCCmd'

Table 4.9 • lOP requests service

Table 4.10 • lOP and PCE request service. PCE executes an I/O Rd'
orWr'

Table 4.11 • lOP, PCE, and ROC request service

• lOP, PCE, and ROC request service and an interrupt
occurs

Table 4.12 • lOP, PCE, and E~et request service

• lOP, PCE, and Ethernet request service and an
interrupt occurs

Table 4.13 • lOP, PCE, ROC, and Ethernet request service

Table 4.14 • lOP, PCE, and ROC request service. ROC requests
service, then Ethernet requests service, then an
interrupt occurs.

4.2.1 Ethernet and Rigid Disk Combinations

Arbitration of Ethernet and rigid disk requests for service are treated
in this section. Arbitration among Ethernet, rigid disk, PCE and lOP
requests are treated in section 4.2.2.

Table 4.2. Arbiter Flow Sequence:
Ethernet requests service

Signal Sequence of events

ENetHoldReq = 1

ArbHoldlOP = 1

!OPHldaToArb = 1

ENetHoldAck = 1

ENetHoldReq = 0

ENetHoldReq = 0
ArbHoldlOP = 0

1) IOP80186 is operating.

2) Ethernet controller sends a hold request to the
arbiter.

3) The arbiter sends a hold request to the lOP
80186.

4) The lOP 80186 sends a hold acknowledge to
the arbiter.

5) The arbiter sends a hold acknowledge to the
Ethernet controller.

6) The Ethernet controller drops the hold
request when it is finished transferring data.

7) The arbiter drops the Ethernet hold
acknowledge and drops the hold request to the
lOP 80186.

8) The lOP 80186 resumes opera tions.

4 - 4 Bus Arbiter and Mode Control

Signal

RDCHoldReq = 1

Signal

AllowRDCCmd'

RDCHoldReq = 1

ArbHoidIOP = 1

IOPHldaToArb = 1

RDCHoldAck = 1

RDCHoldReq = 0

RDCHoldAck = 0
ArbHoidIOP = 0

Signal

RDCHoldReq = 1

IntrReqToArb = 1

ArbHoidIOP = 1

IOPHldaToArb = 1

RDCHoidAck = 1

RDCHoldAck = 0

RDCHoldReq = 0

ArbHoldIOP = 0

RDCHoldReq = 1

Bus Arbiter and Mode Control

Dove lOP Board

Table 4.3. Arbiter Flow Sequence
RDC requests service

Allow RDCCmd' not executed

Sequence of events

1) IOP80186 is operating.

2) RDCIDMA controller sends a hold request to the arbiter.

3) Arbiter ignores the request because the lOP 80186 did
not execute an AllowRDCCmd'.

Allow RDCCmd' executed

Sequence of events

1) IOP80186 is operating.

2) lOP 80186 executes an AllowRDCCmd' lIO instruction.

3) RDCIDMA controller sends a hold request to the arbiter.

4) The arbiter sends a hold request to the lOP 80186.

5) The lOP 80186 sends a hold acknowledge to the arbiter.

6) The arbiter sends a hold acknowledge to the RDCIDMA
controller.

7) The RDCIDMA controller drops the hold request when it is
finished transferring data.

8) The arbiter drops the hold acknowledge to the RDCIDMA
controller and drops the hold request to the lOP 80186.

9) The lOP 80186 resumes operations.

RDC requests service and an interrupt occurs

Sequence of events

1) lOP 80186 is operating.

2) RDCIDMA controller sends a hold request to the arbiter.

3) The arbiter fields a system interrupt.

4) The arbiter sends a hold request to the lOP 80186.

5) The lOP 80186 sends a hold acknowledge to the arbiter.

6) The arbiter sends a hold acknowledge to the RDCIDMA
controller.

7) The RDCIDMA controller begins transferring data.
During the current bus cycle, the arbiter drops the
RDCIDMA controller hold acknowledge.

8) The RDCIDMA controller drops its hold request to the
arbiter.

9) The arbiter drops its hold request to the lOP 80186.

10) The RDCIDMA controller sends a hold request to the
arbiter.

11) The lOP 80186 resumes execution.

12) The arbiter ignores the RDCIDMA controller hold request
until the IOP 80186 executes an AllowRDCCmd' 1I0
instruction.

4-5

Dove lOP Board

4-6

Table 4.4. Arbiter Flow Sequence
RDC requests service then Ethernet requests service

no interrupt to the lOP occurs

Signal Sequence of events

RDCHoldReq = 1

ArbHoldlOP = 1

IOPHoldAck = I

RDCHoldAck = I

ENetHoldReq = 1

RDCHoldAck = 0

RDCHoldReq = 0

ENetHoldAck = I

RDCHoldReq = I
ENetHoldReq = 0

ENetHoldAck = 0

RDCHoldAck = 1

RDCHoldReq = 0

RDCHoldAck = 0

ArbHoldlOP = 0

1) IOP80186 is operating.

2) The RDCIDMA controller sends a hold request to the arbiter.

3) The arbiter sends a hold request to the lOP 80186.

4) The lOP 80186 sends a hold acknowledge to the arbiter.

5) The arbiter sends a hold acknowledge to the RDCIDMA
controller.

6) The RDCIDMA controller begins transferring data.

7) The Ethernet controller sends a hold request to the arbiter.

8) The arbiter drops the hold acknowledge to the RDCIDMA
controller.

9) The RDCIDMA controller drops the hold request to the arbiter
after completing the current transfer cycle.

10) The arbiter issues a hold acknowledge to the Ethernet controller,
which then begins to transfer data.

11) The RDCIDMA controller sends a hold request to the arbiter.

12) The Ethernet controller drops the hold request when finished
transferring data.

13) The arhiter drops the Ethernet hold acknowledge.

14) The arbiter issues a hold acknowledge to the RDCIDMA
controller.

15) The RDCIDMA controller drops the hold request when finished
transferring data.

16) The arbiter drops the hold acknowledge to the RDCIDMA
controller.

17) The arbiter drops the hold request to the lOP 80186.

18) The lOP 80186 resumes operation.

Table 4.5. Arbiter Flow Sequence
RDC and Ethernet request service

before lOP Acknowledge occurs

Signal Sequence of events

RDCHoldReq = 1

ArbHoldlOP = 1

ENetHoldReq = 1

IOPHldaToArb = 1

ENetHoldAck = 1

ENetHoldReq = 0

ENetHoldAck = 0
RDC HoldAck = 1

RDCHoldReq = 0
RDCHoldAck = 0

ArbHoldIOP = 0

1) lOP is operating.

2) The RDCIDMA controller sends a hold request to the arbiter.

3) The arbiter sends a hold request to the lOP 80186.

4) The Ethernet controller sends a hold request to the arbiter.

5) The lOP 80186 sends a hold acknowledge to the arbiter.

6) The arbiter sends a hold acknowledge to the Ethernet
controller (priority 1); the Ethernet controller transfers data.

7) When data transfer is finished, the Ethernet controller drops
its hold request to the arbiter.

8) The arbiter drops the hold acknowledge to the Ethernet con­
troller and sends a hold acknowledge to the RDCIDMA
controller.

9) The RDCIDMA controller transfers data and then drops its
hold request to the arbiter. The arbiter drops its hold
acknowledge to the RDCIDMA controller.

10) The arbiter drops its hold request to the lOP 80186.

11) The lOP 80186 resumes operations.

Bus Arbiter and :-.tode Control

Bus Arbiter and :.\'lode Control

Dove lOP Board

Table 4.6. Arbiter Flow Sequence
ROC and Ethernet request service at the same time

Signal

RDCHoldReq = 1
ENetHoldReq = 1

ArbHoldlOP = 1

IOPHldaToArb = 1

ENetHoldAck = 1

ENetHoldReq = 0

ENetHoldAck = 0

RDCHoldAck = 1

RDCHoldReq = 0

RDCHoldAck = 0
ArbHoJdlOP = 0

1)

2)

3)

4)

5)

6)

7)

8)

9)

Sequence of events

lOP 80186 is operating.

The RDCIDMA controller and the Ethernet controller
send a hold request to the arbiter.

The arbiter sends a hold request to the lOP 80186.

The lOP 80186 sends a hold acknowledge to the arbiter.

The arbiter sends a hold acknowledge to the Ethernet
controller (priority 1); the Ethernet controller begins
transferring data.

The Ethernet controller finishes transferring data and drops
the hold request to the arbiter.

The arbiter drops the hold acknowledge to the Ethernet
controller.

The arbiter sends the hold acknowledge to the RDCIDMA
controller; the RDCIDMA controller begins transferring
data.

The RDCIDMA controller finishes transferring data and
drops the hold request to the arbiter.

10> The arbiter drops the hold request to the RDCIDMA
controller and then drops the hold request to the lOP 80186.

11) The IOP80186 resumes operations.

lOP interrupt occurs during Ethernet servicing

Signal Sequence of events

ENetHoldReq = 1
RDCHoldReq = 1

ArbHoldlOP = 1
IOPHldaToArb = 1

ENetHoldAck = 1
IntrReqToArb = 1

ENetHoldReq = 0
ENetHoldAck = 0

RDCHoldAck = 1

RDCHoldAck = 0

RDCHoldReq = 0

ArbHoidIOP = 0

RDCHoldReq = 1

1) lOP is operating.

2) Ethernet and RDCIDMA controllers send a hold request to
the arbiter.

3) The arbiter sends a hold request to the lOP 80186. The lOP
80186 sends a hold acknowledge to the arbiter.

4) The arbiter sends a hold acknowledge to the Ethernet con­
troller (priority 1). The Ethernet controller transfers data.
During this data transfer, an lOP interrupt is generated.

5) The Ethernet drops the hold request to the arbiter. The
arbiter drops the hold acknowledge to the Ethernet.

6) The arbiter sends a hold acknowledge to the RDCIDMA
controller; the RDCIDMA controller begins data transfer.
During the current bus cycle, the arbiter drops the hold
acknowledge to the RDCIDMA controller.

7) The RDCIDMA controller completes the current bus cycle,
then drops the hold request to the arbiter.

8) The arbiter drops the hold request to the IOP 80186.

9) The RDCIDMA controller sends a hold request to the arbiter.

10) The lOP 80186 resumes operations.

11) The arbiter ignores the RDCIDMA controller hold request
until the lOP 80186 executes an AllowRDCCmd' lJO
instruction.

4-7

4-8

Dove lOP Board

Signal

ENetHoldReq = 1

ArbHoldIOP = 1
IOPHldaToArb = 1

ENetHoldAck = 1
RDCHoldReq = 1

ENetHoldReq = 0
ENetHoldAck = 0
RDCHoldAck = 1

IntrReqToArb = 1

RDCHoldAck = 0

RDCHoldReq = 0

ArbHoldIOP = 0

RDCHoldReq = 1

Signal

RDCHoldReq = 1

ArbHoldlOP = 1

IOPHldaToArb = 1

RDCHoldAck = 1

ENetHoldReq = 1

RDCHoldAck = 0

RDCHoldReq = 0

ENetHoldAck = 1

RDCHoldReq = 1

ENetHoldReq = 0

IntrReqToArb = 1

ENetHoldAck = 0
RDCHoldAck = 1

RDCHoidAck = 0

RDCHoldReq = 0

ArbHoldlOP = 0

RDCHoldReq = 1

Table 4.7. Arbiter Flow Sequence
Ethernet and ROC request service

Interrupt occurs during ROC request

Sequence of events

1) lOP is operating.

2) The Ethernet controller sends a hold request to the arbiter.

3) The arbiter sends a hold requestto lOP 80186; the lOP 80186 sends a
hold acknowledge to the arbiter.

4) The arbiter sends a hold acknowledge to the Ethernet controller. The
Ethernet transfers data. During this data transfer, the RDCfDMA
controller sends a hold request to the arbiter.

5) When the Ethernet finishes transferring data, it drops the hold request
to the arbiter. The arbiter drops the hold acknowledge to the Ethernet
controller and sends a hold acknowledge to the RDCfDMA controller.

6) The RDCfDMA controller begins transferring data. During this data
transfer, an lOP interrupt request is generated.

7) The arbiter drops the RDCfDMA controller hold acknowledge.

8) The RDCfDMA controller completes the current bus cycle then drops the
hold request to the arbiter.

9) The arbiter drops the hold request to the lOP 80186.

10) The RDCfDMA controller sends a hold request to the arbiter.

11) The lOP 80186 resumes operations.

12) The arbiter ignores the RDCfDMA controller hold request until the lOP
80186 executes an AlIowRDCCmd' lJO instruction.

Interrupt is generated when the Ethernet is using the bus

Sequence of events

1) IOP80186 is operating.

2) The RDCfDMA controller sends a hold request to the arbiter.

3) The arbiter sends a hold request to the lOP 80186.

4) The lOP 80186 sends a hold acknowledge to the arbiter.

5) The arbiter sends a hold acknowledge to the RDCfDMA controller.

6) The RDCfDMA controller begins transferring data.

7) The Ethernet controller sends a hold request to the arbiter.

8) The arbiter drops the hold acknowledge to the RDCfDMA controller.

9) The RDCfDMA controller drops the hold request to the arbiter after the
current bus cycle is complete.

10) The arbiter issues a hold acknowledge to the Ethernet controller, which
then begins to transfer data.

11) The RDCfDMA controller sends a hold request to the arbiter.

12) The Ethernet controller drops the hold request when finished transferring
data.

13) Before the Ethernet controller drops the hold request, the arbiter fields a
system interrupt.

14) The arbiter drops the hold acknowledge to the Ethernet con-
troller and issues a hold acknowledge to the RDCfDMA controller.

15) The RDCfD MA controller performs one bus cycle; during the RDC transfer
the arbiter drops the hold acknowledge.

16) At the end of a current bus cycle, the RDCfDMA controller drops the hold
request to the arbiter.

17) The arbiter drops the hold request to the IOP 80186.

18) The RDCfDMA controller sends a hold request to the arbiter.

19) The lOP resumes operation.

20) The arbiter ignores the RDC hold request until the lOP 80186 executes an
AllowRDCCmd'lJO instruction.

Bus Arbiter and ~ode Control

Dove lOP Board

4.2.2 lOP, PCE, Ethernet, and Rigid Disk Combinations

Arbitration of lOP and PCE requests for service, alone and in
combination with each other, Ethernet, and RDC, are presented 10

this section.

Signal

AlIowPCCmd'

ArbHoldlOP = 1

Table 4.8. Arbiter Flow Sequence
lOP executes AllowPCCmd'

Sequence of events

1) lOP 80186 is operating.

2) lOP executes an Allow PCCmd'I/0 instruction.

3) The arbiter sends a hold request to the lOP 80186. The lOP
IOPHldA ToAcb = 1 sends a hold acknowledge to the arbiter.

ArbHoldPCE = 0 4) The arbiter drops the hold request to the PCE 80186. PCE
PCHldaToArb = 0 80186 drops the hold acknowledge to the arbiter.

5) PCE 80186 executes instructions.

IntrReqToArb = 1 6) Arbiter senses an lOP 80186 interrupt pending and sends an
ArbHoldPCE = 1 arbiter hold request to the PCE 80186.

PCHldaToArb = 1 7) The PCE 80186 sends a hold acknowledge to the arbiter.

ArbHoldlOP = 0 8) The arbiter drops the hold request to the lOP 80186.

9) The lOP 80186 resumes operations.

Table 4.9. Arbiter Flow Sequence
lOP requests service

Sillnal SeQuence of events
1) The IOP80186 is operating.

HoldlOPCmd' 2) The lOP 80186 executes HoldlOPCmd'I/0 instruction.

ArbHoldlOP = 1 3) The arbiter sends a hold request to the lOP 80186.

IOPHldaToArb = 1 4) The lOP 80186 sends a hold acknowledge to the arbiter.

IntrReqToArb = 1 5) The arbiter keeps the lOP in hold state until it senses an lOP
interrupt pending.

ArbHoldlOP = 0 6) The arbiter drops the hold request to the lOP 80186. The lOP
IOPHldaToArb = 0 80186 drops the hold acknowledge to the arbiter and resumes

operations.

Bus Arbiter and Mode Control 4-9

Dove lOP Board

4 -10

Table 4.10. Arbiter Flow Sequence
10P-PCE: (PCE executes I/O Rd' or Wr')

Sillnal Sequence of events

11 [OP 80 186 is operating.

AllowPCCmd' 2) [OP 80186 executes an AllowPCCmd' liD instruction.

ArbHoidIOP = 1 3) The arbiter sends a hold request to the lOP 80186.

IOPHldaToArb = 1 4) The lOP 80186 sends a hold acknowledge to the arbiter.

ArbHoldPCE = 0 5) The arbiter drops the PCE 80186 hold request.

PCHldaToArb = 0 6) The PCE 80186 drops the hold acknowledge to the arb iter.

7) The PCE 80186 begins executing instructions.

8) The PCE 80186 executes liD Rd' or Wr'.

AlPCElntrIOP' = 0 9) The PCE 80186 generates an interrupt to the lOP 80186.

ArbHoldPCE = 1 10) The arbiter sends a hold request to PCE 80186.

AlPCHldaToArb = 1 III The PCE 80186 sends a hold acknowledge to the arbiter.

ArbHoldIOP = 0 12) The arbiter drops the hold request to the lOP 80186.

IOPHldaToArb = 0 13) The lOP 80186 drops the hold acknowledge to the arbiter.

14) lOP 80 186 resumes opera tions.

Bus Arbiter and Mode Control

Si2nal

AllowPCCmd'

ArbHoldlOP = 1

RDCHoldReq = 1

IOPHldaToArb = 1
RDCHoldAck = 1

RDCHoldReq = 0

RDCHoldACK = 0

ArbHoldPCE = 0
PCHldaToArb = 0

Dove lOP Board

Table 4.11. Arbiter Flow Sequence
lOP, PCE, and ROC request service

Sequence of events
1) lOP 80186 is operating.

2) lOP 80186 executes an AllowPCCmd'I/O instruction.

3) The arbiter sends a hold request to the lOP 80186.

4) The RDCIDMA controller sends a hold request to the arbiter.

5) The lOP 80186 sends a hold acknowledge to the arbiter. The
arbiter sends a hold acknowledge to the RDCIDMA
controller.

6) The RDC transfers data. When it is finished, the RDCIDMA
controller drops the hold request to the arbiter. The arbiter
drops the hold acknowledge to the RDCIDMA controller.

7) The arbiter drops the hold request to the PCE 80186; the
PCE 80186 drops the hold acknowledge to the arbiter.

8) The PCE 80186 begins executing and will not stop until the
arbiter senses an lOP 80186 interrupt pending or PCE 80186
executes I/O Rd' or Wr' instruction.

lOP, PCE, and RDC request service and an interrupt occurs

Signal Sequence of events

1) The lOP 80186 is operating.

AllowPCCmd' 2) The lOP 80186 executes an Allow PCCmd' I/O instruction.

ArbHoldIOP = 1 3) The arbiter sends a hold request to the lOP 80186.

RDCHoldReq = 1 4) The RDCIDMA controller sends a hold request to the arbiter.

IntrReqToArb = 1 5) The arbiter senses an lOP 80186 interrupt pending.

IOPHldaToArb = 1 6) The lOP 80186 sends a hold acknowledge to the arbiter.

RDCHoldAck = 1 7) The arbiter sends a hold acknowledge to the RDCIDMA
controller.

8) The RDCIDMA controller begins transferring data.

RDCHoldAck = 0 9) The arbiter drops the hold acknowledge to the RDCIDMA
controller.

RDCHoldReq = 0 10) The RDCIDMA controller completes the current bus cycle
and drops the hold request to the arbiter.

ArbHoldPCE = 0 III The arbiter drops the hold request to the PCE 80186.

RDCHoldReq = 1 12) The RDCIDMA controller sends a hold request to the arbiter.
The arbiter ignores this request until the lOP 80186 executes
an Allow RDCCmd'II0 instruction.

PCHldaToArb = 0 13) The PCE 80186 drops the hold acknowledge to the arbiter
and the PCE 80186 begins executing.

ArbHoldPCE = 1 14) The arbiter sends a hold request to the PCE80186.

AlPCEHldaToArb = 1 15) The PCE 80186 sends a hold acknowledge to the arbiter; the
ArbHoldIOP = 0 arbiter drops the hold request to the lOP 80186. The lOP
IOPHldaToArb = 0 80186 drops the hold acknowledge to the arbiter.

16) The lOP 80186 resumes operations

Bus Arbiter and :vIode Control 4-11

Dove lOP Board

Signal

AllowPCCmd'

ArbHoldlOP = 1

ENetHoldReq = 1

IOPHldaToArb = 1

ENetHoldAck = 1

ENetHoldReq = 0
ENetHoldAck = 0

ArbHoldPCE = 0

PCHldaToArb = 0

Signal

AllowPCCmd'

ArbHoldlOP = 1

ENetHoldReq = 1

IntrReqToArb = 1

IOPHldaToArb = 1

ENetHoldAck = 1
ENetHoldReq = 0
ENetHoldAck = 0

ArbHoldPCE = 0
PCHldaToArb = 0

ArbHoldPCE = 1

AlPCHldaArb = 1

ArbHoldlOP = 0
IOPHldaToArb = 0

4 -12

Table 4.12. Arbiter Flow Sequence
lOP, peE, and Ethernet request service

Sequence of events

1) lOP is operating.

2) The lOP 80186 executes an AJlowPCCmd'lIO instruction.

3) The arbiter sends a hold request to the lOP 80186.

4) The Ethernet controller sends a hold request to the arbiter .

5) The lOP 80186 sends a hold acknowledge to the arbiter.

6) The arbiter sends a hold acknowledge to the Ethernet controller.

7) The Ethernet controller transfers data. When it is finished, the
Ethernet controller drops the hold request to the arbiter . The
arbiter drops the hold acknowledge to the Ethernet controller.

8) The arbiter drops its hold request to the PCE 80186.

9) The PCE 80186 drops its hold acknowledge and begins executing
and continues executing until the arbiter senses that the lOP
80186 has an interrupt pending or PCE executes lIO Rd' or Wr'.

lOP, PCE, and ENet request service and an interrupt occurs

Sequence of events

1) lOP 80186 is operating.

2) lOP 80186 executes an AllowPCCmd'UO instruction .

3) The arbiter sends a hold request to the lOP 80 186.

4) The Ethernet controller sends a hold request to the arbiter.

51 The arbiter fields a system interrupt.

6) The lOP 80186 sends a hold acknowledge to the arbiter.

7) The arbiter sends a hold acknowledge to the Ethernet controller.
The Ethernet transfers data and then drops the hold request to
the arbiter. The arbiter drops the hold acknowledge to the
Ethernet controller.

8) The arbiter drops the hold request to the peE 80186. The PCE
80186 drops the hold acknowledge to the arbiter.

9) PCE 80186 begins executing.

10) The arbiter sends a hold request to the PCE 80186.

III The PCE 80186 sends a hold acknowledge to the arbiter.

12) The arbiter drops the hold request to the lOP 80186. The lOP
80186 drops the hold acknowledge to the arbiter.

13) The lOP resumes operations.

Bus Arbiter and Mode Control

Signal

AllowPCCmd'

ArbHoldlOP = 1

RDCHoldReq = 1
ENetHoldReq = 1

10PHldaToArb = 1

ENetHoldAck = 1

ENetHoldReq = 0
ENetHoldAck = 0

ROCHoldAck = 1
RDCHoldReq = 0
RDCHoldAck = 0

ArbHoldPCE = 0
PCHldaToArb = 0

Bus Arbiter and Mode Control

Dove lOP Board

Table 4.13. Arbiter Flow Sequence
lOP, PCE, ROC, and Ethernet request service

Sequence of events

1) lOP is operating.

2) lOP 80186 executes an AllowPCCmd' I/O instruction.

3> The arbiter sends a hold request to the lOP 80 186.

4) The Ethernet and the RDCfDMA controllers send a hold request to
the arbiter.

5) The lOP 80186 sends a hold acknowledge to the arbiter.

6) The arbiter sends a hold acknowledge to the Ethernet controller.

7) The Ethernet controller transfers data and then drops the hold
request to the arbiter. The arbiter drops the hold acknowledge to
the Ethernet controller.

8) The arbiter sends a hold acknowledge to the RDCIDMA controller.
The RDCIDMA controller transfers data and then drops the hold
request to the arbiter. The arbiter drops the hold acknowledge to
the RDCfDMA controller.

9) The arbiter drops the hold request to the PCE 80186. The PCE
80186 drops the hold acknowledge to the arbiter.

10) The PCE 80186 begins executing and will continue executing until
the arbiter senses that lOP 80186 has an interrupt pending or PCE
executes I/O Rd' or Wr'.

4 -13

4 - 14

Dove lOP Board

Table 4.14. Arbiter Flow Sequence
lOP, PCE, RDC reque!lt !lervice

RDC hold request then Ethernet hold request then interrupt.

Signal Sequence or events

[) The lOP 80186 is operating.

AllowPCCmd' 2) The lOP 80186 executes an AllowPCCmd' 110 instruction.

ArbHoldIOP '"' 1 3) The arbiter sends a hold request to the lOP 80 186.

IOPHldaToArb = 1 4) The lOP 80186 sends a hold acknowledge to the arbiter.

ArbHoldPCE = 0 5) The arbiter drops the hold request to the PCE 80186.

PCHldaToArb = 0 6) The PCE 80186 drops the hold acknowledge to the arbiter.

7) The PCE 80186 begins operating.

RDCHoldReq = 1 8) The RDCfDMA controller sends a hold request to the arbiter.

AfArbHoldPCE = 1 9) The arbiter sends a hold request to the PCE 80186.

AfPCHldaToArb = 1 10) The PCE 80186 sends a hold acknowledge to the arbiter.

RDCHoldAck = 1 III The arbiter sends a hold acknowledge to the RDCIDMA controller,
which then begins transferring data.

ENetHoldReq = 1 12) The Ethernet controller sends a hold request to the arbiter.

RDCHoldAck = 0 13) The arbiter drops the hold acknowledge to the RDCDMA controller.
RDCHoldReq = 0 The RDCIDMA controller completes the current bus cycle and drops the

hold request to the arbiter.

ENetHoldAck = 1 14) The arbiter sends a hold acknowledge to the Ethernet controller,
ENetHoldReq = 0 which transfers data and then drops the hold request to the arbiter.

IntrReqToArb = l- IS) The arbiter senses an lOP 80 186 interrupt pending and drops the
ENetHoldAck = 0 hold acknowledge to the Ethernet controller.

RDCHoldAck = 1 16) The arbiter sends a hold acknowledge to the RDCIDMA controller,
which then resumes transferring.

RCHHoldAck = 0 17) The arbiter drops the hold acknowledge to the RDCIDMA controller.

RDCHoldReq = 0 18) The RDCIDMA controller completes the current bus cycle and drops the
hold register to the arbiter.

ArbHoldPCE = 0 19) The arbiter drops the hold request to PCE 80186; the PCE 80186 drops
PCHldaToArb = 0 the hold acknowledge to the arbiter.

20) PCE 80186 resumes operations.

AfArbHoldPCE = 1 211 The arbiter sends a hold request to the PCE 80186. PCE 80186 sends a
AfPCEHldaArb = 1 hold acknowledge to the arbiter.

ArbHoldlOP = 0 22) The arbiter drops the hold request to the lOP 80186.

23) The lOP 80186 resumes operations.

Bus Arbiter and Mode Control

Dove lOP Board

4.2.3 Arbiter Flow Diagrams

Figures 4.2 - 4.6 illustrate what happens when the arbiter receives
one of the service requests described in the preceding sections.

Stop

PCE 80186 ~--..,....t.-"

Start

lOP 80186

Bus Arbiter and Mode Control

N

Clear ENet
Acknowledge

Start
lOP 80186

Figure 4.2. Arbiter flow diagram: service request

4 -15

4 -16

Dove lOP Board

Stop
PCE IWI S6

Clear RDC
Acknowledge

Acknowledge
~Net

Clear ENet
Acknowledge

N

Start
PCE 80186

(0
Figure 4.3. Arbiter flow diagram: service request (continued)

Start
rap 801 86

+
(0

Bus Arbiter and Mode Control

Clear RDC
Acknuwiedge

Cle.r ENet
Acknowledge

N

Start
lOP 80186

Dove lOP Board

Figure 4.4. Arbiter flow diagram: service request (continued)

Bus Arbiter and Mode Control 4 -17

4-18

Dove lOP Board

Clea r ROC
Ar: knowled ge

Cle.r ENet
Acknowledge

N IOPNMI
IOPInt r

y

y

Clear ROC
Acknowiedge

Sta rt
lOP 80186

Figure 4.5. Arbiter flow diagram: service request (continued)

Bus Arbiter and Mode Control

lOP

Clear RDC
Acknowledge

Start

Clear £Net
Acknowledge

Y RDCHold
~------------"--~ Pending

N

lOP 80186 1 1------------------1

Dove lOP Board

Figure 4.6. Arbiter flow diagram: service request (continued)

Bus Arbiter and Mode Control 4 -19

