WESTERN DIGITAL
c o R P 0O A 4 s

/ g N

Western Digital
UCSD Pascal™ 111.0 Operating
System Reference Manual

Release AQ
July 1982

Document Internal Number: 80-013016-00A0
Manual Product Number
(Use for Ordering). WD9893

The MicroEngine Company

a wholly owned subsidiary of: ;W_GE_S,,TPE‘Z’V,, ‘,,","',’ Ta‘{/'

2445 McCABE WAY, IRVINE, CALIFORNIA 92714 - (714) 557-3550 + TWX 910-595-1139

Information furnished in this document is believed to be accurate and reliable. However, no responsibility is assumed by Western Digital
Corporation for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by
implication or otherwise under any patent or patent rights of Western Digital Corporation. Western Digital Corporation reserves the right to
change product specifications at any time without notice.

No part of this document may be reproduced by any means, nor translated, nor transmitted into a machine language without the written consent
of Western Digital Corporation.

The following are trademarks of Western Digital Corporation:
Pascal MICROENGINE
Modular MICROENGINE
Western Digital Pascal

UCSD Pascal is a registered trademark of the University of California, San Diego.

WARNING
OPERATION OF THIS DEVICE IN A RESIDENTIAL
AREA MAY CAUSE HARMFUL INTERFERENCE
REQUIRING THE USER TO TAKE WHATEVER STEPS
MAY BE NECESSARY TO CORRECT THE INTER-
FERENCE.

60-013041-10

Copyright ©® 1982 The MicroEngine Company
First Printed: July 1982

All rights reserved.
Printed in the U.S.A.

2.

TN RODUC T TTON . t et ee s enceceeoeseacaccsosessosassooecasasesssssssensesss .Xill
OVERVIEW OF II1.J OPERATING SYSTEM::eceeeocosen cevennae sessesecccnes eesl=1
1.1 III.9 OPERATING SYSTEM CCMMAND STRUCTURE. v vevvvonoensn ceeseresl= 3
1.2 OUTER IEVEL OF COMMANDS . ¢ c v cosesoavscnse teessectsessocnnane eeesl=5
1.3 INNER IEVEL OF COMMANDS . ¢ v esse et es et st ssessestsacesensennonns eel= 9
1.3.1] (o B cessesesense 1- 9
1.3.2 File Handler (Filer).eecceceeeeeseeeenoanacnocansscnns 1-12
1.3.3 Other Inner Level of CommANdS. .ccocosoosseses cesesanss 1-15
SYSTEM FUNDAMENTALS . ¢ ¢ s ettt ecsonssssososasssnsosensss ceecenctssee s ve 22— 1
2e] PILES . eeite conevesnoscenosasooseannosnssosassancnnsannes Ceerceceens 2- 3
20101 TeXt Files--oooo oooooooooooooo e s s s s 0P LG es LGNS GOEEEBLEDBITEEEDS 2— 4
2.1.2 Code FileS..veeeeeeretnanonnsnn P X
2.1.3 DAta FileS..iee:eeeeeceresoscsnncsoscesosenncsss teeen «e2=-5
2.1.4 Bad FlleS.eieeerteesoteecacaccosososnseanncsnsnssss ceees2= 5
2.1.5 TWOTK FileSe e veeeereeesoeeenseoossnsosossscssonsssasnss eee2=5
2.1.6 File NameS:.ceeeveessesosssessasecasssesscooncsnnocnoson 2- 6
2.2 VOIIMES.: ¢ 4 22 s sevrossncanossccscssansssccss o secsscccscsssonces s se2= 7
SYSTEM EDITORS ettt cetteectacscesossosssssosnnsssossosss cesesssesese eee3—1
3.1 SCREEN-ORIENTED EDITOR e+ soeosvoeses checsecesssessessresceee s 3- 3
3.1.1 General Information........ Ceeteacectesececccronsanenone 3-3
3.1.2 Accessing the Screen-Oriented EQitOr........evess veeess3-4
3.1.3 Screen-Oriented Editor Commands......... Ceectcecesnnns .3-5
3—2 ADMD EDI'I‘OR oooooooooo .. ® 08 e s 0 s 000000 s e e s 0000800 s e s e ee o 3—37
3.2.1 Interactive Docunentation........ seeees.3-37
3.2.2 Command Differences........ Ceececcscncanans tececeanenae 3-57

3.3 L2 EDITOR: t et eevenn v onussnssssesssssssssosasasssssssasannnsaes 3-63

3.3.1 Initiating the L2 EJitOr.....cveeeeenencacnes cheeareaann 3-63
3.3.2 Space ConstraintS....cvvieeeierirecenoescsosoccanconnnss 3-63

3.3.3 Differences in CommandS. .« cceeeeeeeccsesscsssssocssenss 3-64
3.3.4 L2 Additional ComandS...-cceeeseecssosonacsss creeraans 3-66

3.4 LINE-ORIENTED EDITOR (YALOE) . teeeeeeereoenenoonsccasncassoans .o 369
3.4.1 General INnformation................ e secseasraanses «e03-69
3.4.2 Special Key CommandS......ccoeene teeetseeennens ceeesieen 3-71

3.4.3 Input/Output CommandsS.......eoeeeeees certteaaes ceeeee 3-72

3.4.4 Moving Commands..... Chteesesvasscnssnsanssseseeseantnan 3-74

3.4.5 Text Changing COMMANAS. c v et et verrnrerecsesenssosenssess 3-76
3.4.6 Miscellaneous CommAnAdS..coeeescasasaes ceecessennsassese3d=77

4. THE FILE HANDLER (FILER) .« e uee e eeenennnnnnseeeeseseannnenseassssenns 4- 1
4.1 GENERAL INFORMATION. c o c vt evscnvssansnsassessssscsssssssosessss 4- 3
4.1.1 Accessing the Filer.....ceitieeireneeesssscsossnscnnsas 4- 3
4.1.2 Files, Volumes, and File SpecificationS.....eeeceeennss 4- 3
4.1.3 Filer Command CategorieS. . icereiterseenernerensenacnsnns 4- 5

4.2 FILER COMMANDS ¢ e« c e toeeasesoscssssssossssosscsssseassenasscssssses 4~ 7
4.2.1 Glet (Get CoOmMANA) e ¢+ v vt eevereenrneneceeeasanns Cerereee 4- 7
4.2.2 S(ave (Save COMMANA) e eeveeeeveerneecssonsrnons teeeenen 4- 8
4.2.3 W(hat (What CoOmmAnNd) «« cveeereeeereneencesoceacoaanannss 4-10
4.2.4 N(ew (New CoOmMANA) + c v vovvevesrosoressosasnosssoscennans 4-11
4.2.5 L(ist (List Directory Command)....eeeeeseccessesccnsons 4-11
4.2.6 R(em (Remove CoOMMANd) e e.eeverrroroasesssoscsasasscnnnas 4-14
4.2.7 C(hng (Change Command)....veoveevennn Ceestseseserarnans 4-18
4.2,8 T(rans (Transfer Command)cceeeeeeneeonereacnacconnns 4-21
4.2.9 D(ate (Date CoOmmMANd) . cveeerrereeenasesoeossossocnnsanns 4-27
4.2.10 Q(uit (Quit COmMANA) e e eveereeerrenrenreneenaceesnnsnnns 4-28
4.2.11 B(ad-blks (Bad Blocks Command) . ..ceeeseencocesosanse .o 429
4.2.12 E(xt-dir (Extended Directory Command).....oeeeeeesosess 4-33
4.2.13 K(rnch (Crunch Command) ccesveerrroecrocesssscsonannsocns 4-34
4,2.14 M(ake (Make Command) «vvvvreererornencennoonnans Creeeeee 4-37
4.2.15 P(refix (Prefix Command)........ Cereeaee Ceereecenessans 4-39
4.2.16 V(al (Volume Command) « . veveeeerteerosoossononaness ceseen 4-4]1
4.2.17 X(amine (Examine Command)..c.eeeeserceessss Cerecenenans 4-42
4.2.18 Z{ero (Zero Command) .. ve et ereeeeesseneenooassasonenans 4-45

iv

?3’
:
;b

COMPITER INVOCATION. tovesveesnsesscnnnnasns sessssesresasessennas 5- 3
SYNTAX OF OOMPIIER OPTIONS. c::cceecvcosoncvcocsos ceeteseerennens 5- 5
COMPILER OPTIONS...... 4. eereessasassssessreressesnanss seeees ceeb= 7
5.3.1 G Option (Accept/Reject GOTO Statements)......eseee.. «o5= 7
5.3.2 I Option (Include Another Source File)..veeerecisnsnans 5~ 7
5.3.3 L Option (Source Program Listing)..eeeeeeeeecesssnncans 5- 9
5.3.4 P Option (Paging of a Listing)....ccoveeenn. Ceeeaerenas 5- 9
5.3.5 Q Option (Quiet Compiler).v.vieeeeeneenceeeerneonnenes .5-10
5.3.6 R Option (Range Checking).............. Ceceeeseetreenas 5-10
5.3.7 S Option (Swapping Mode)....ceveeveeeenennnns ceeeeenes5-10
5.3.8 U Option (User Program)....ecececeseeassses Cetereneonn 5-11
COMPILER OUTPUT . et v s eseceennnssanosnosnssanne Ceesssessacananas 5-15
Campilation Status Informmation...cveeeeseeccsssonceeanes 5-15

Syntax Error MessSageS....eeeseeeess Ceessesetssttrracnas 5-17

Source Program LiSting...eeeeeeeeseesenasenns creessane . 528
.............................. O i |
............................... N e
6.1.1 SETUP CoOmmandS....sceeeeeseneeens Cecesescececsenessnnns 6~ 3
6.1.2 CHANGE CommandS....cceeeecceessnanssns Cereesaaseseannns 6- 4
6.1.3 QUIT ComandS....ceoeceencsesas Sessrareessesasssssanane 6- 5
6.1.4 List of Fields in SETUP...cccevecvececsessosnces N
6.1.5 Miscellaneous Information.....coveesescecenss cerenas N -
6.1.6 General Terminal InformatiOn....eeceeeees certeciecensaes 6-11
6.1.7 Control Key Information...... N Ceeteeneenas 6-12
6.1.8 Video Screen Control Characters cesesssens «s.6-15
6.1.9 Disk Control Information......eeveeoes. sevesssrossannas 6-16
6.1.10 Example....... ceerescerscsactasusansaccssesas cesssvaces 6-18

6.2
6'3

6.4

6.5

6'6

6.7

6.8

BOOTMAKE ¢ « ¢ e e tee toanescossvoeaseesosesosassssssssossossssscssanss 6-19
BOOTER: ¢ ¢ s et teteasnsrosoccsassscssncsssscseanssseasssssssssssnsssse 6-21
wPIJICA’I'E DIREDIORY[}I‘IIJITI%-... oooooooo e s e 020 e e 00 c.oo..oooo-6—23
6.4.1 COPYPDUPDIR.: cvevvceane tessscescessssess st sassnsns eees0-23
6.4.2 MARKDUPDIR.: ¢ . vveecasesconcecsossssosssssnssnssssss eeees6=24
IIIBRARIANQ --------------------------- EEEEEEEREEE e s e 0 e R X 06-27
6.5.1 Execution of Librarian...ccccceececsccecnsccees crecensnns 6-27
6.5.2 FError Modification....... e eeesecceseraceseerennanen ..6-32
IIIBRARY MAP. ooooooooooo . o . .o . e e s s 000 . oo . . 006-33
LINKER:. e et teeencscsesescsssesscasnsns cecsncnas cecesssssssssseeas 6-37
6.7.1 Source Program OrganizatiON....c.ceeeeecesssesceccsonses 6-37
6.7.2 Using the LinKer....ceeeessesscacesssecscsccessonenssss0=37
6.7.3 Convention and Implementation........c.cevveviniuieanes, 6-39
P~CODE DISASSFMBIER. « v ccvvtevecessccssorassssscsasssossnssassonsss 6-45
6.8.1 DiSSASSEMDLY:+cccvescoccacercsnsosssssscenssnosscoascnsss 6-45
THE CALCULATOR: « t c tcvvoevosnesocnnes Ceseectscseevennasnoansnenos 647
GOTOXY PROCEDURE BINDER. ..t ccseesceosscscesosssassasscsccasnsssnsss 6-49
AUTOMATIC EXECUTION. ¢« e e eeeeesesocoscaassccsssvsonsssssossanssss 6-51
E‘O&“ TTRG ET—L’)PPY DISIG ooooooooooooooooooooooooooooooo e e s e 0 o o6_53
CONFIGURING WINCHESTER DISKS.::ceeeevesnes ceesecesessnsrranan ..6-55
6.13.1 The WFORMAT PrOgrae...ctsoesssesscsccasssonsnsssssnsnss 6-57
6.13.2 The CONFIGURE Program....ceeeoceoecsosonsess Ceereiranes 6-59
6.13.3 Using BOOIMAKE to Put an H3 Bootstrap

on a Winchester DisSKe..eeeeestsacesssssssoscesosscsnnss 666

vi

6.14 PATCH...:etivvrnrrnconconncannns cesaes chesieenen Ceeienenan .6-69
6515 muc@ae.-------a--i-----.-e--e-------ea--a.--a-as---i-aeiaai6_73
6.15.1 The Breakpoint HAndler.....ueeieeeneeneceonrnanonncnnnns 6-73
6.15.2 The DEbUgger . cccuceecccssecsccssccsssssosscsscasescssO=70
6.15.3 Accessing User Program Variables fraom the Debugger..... 6-83
6.16 COPY.ouivvevoennns Saeseeenecessesscssresenssantssecsassansanranns 6-87
PASCAL, PROGRAMMING CONSIDERATIONS. . ¢ ecveeseevoossssccasscsassscsasnnas 7= 1
7.1 INTRODUCTION- TO THE III.Z OPERATING SYSTEM...eveeveesss cevesene 7- 3
7.1.1 Operating System StUCtULrE...ceeveeerreerieencsncenanens 7- 4
7.1.2 The Bootstrap SeqUENCE. ...t eerrrertoosssscsssacsassssns 7-14
7.1.3 Registers and Operating Sytem TableS.....eeeeeeen. Y S)
7.1.4 Concurrency Primitives and INnterruptS..cceeceecceccesens 7-18
7.2 INTRINSICS. ::eceoecosceeranoocassosssssssssssssssssoscsnsananss 7-25
7.2.1 Character Array Manipulation Intrinsics.......ceceee.. .7-27
7.2.2 I/0 Intrinsics........... Cereeeiaeas Ceerresatesesenanns 7-29
7.2.3 String IntrinsicS........cc0..... B Y s =
7.2.4 Miscellaneous Intrinsic Routines............... ceeeeess7=37
7.2.5 Concurrency and Interrupt IntrinsicS.....ecceeeeeees...7=38
7.3 SEQMENTS...coeteeerecscnnns e eeseesssannas Ceeeecaaeerisaaeaans 7-41
Ted LINKAGES.:::seetssssosssesssssssssassssnssssessssessassssnssses 7-43
7.4.1 Pascal-to-Pascal Linkages (UnitS).....eeeeeiceensneaans 7-43
7.5 SYSTEM LIBRARY..... N cesssessesecsssranes 7-47
7.5.1 SCREENCONTROL Unlt 7-47
7.5.2 LONGINT UNiteeeeeoeeeeeeeeeneenscssesaceccssasosansssens 7-48
7.5.3 MENU Capabilityecceeeeeereeseocossoscsasenssnnsanss cees7-50
705.4 KBmTUFF L}rllt oo 7"‘52
70505 mIAY[.]NIT oo 7—53

vii

7.6 UCSD PASCAL ENHANCEMENTS........ teeseecsesessasreesesasttesonee 7-57

7.6.1 Case StatementS...eeiecrsrsssossenaosnacsss . ceeeaans 7-57

Te6.2 COMMENES e . oeeeeeoeessoesossnsssossssssesossasossssenssns 7-58

7.6.3 Dynamic Memory Alocation (IMA).....coeoeescecsnsseesons 7-58

7.6.4 FEOF(F)eeeveieennoennnn e esstesees e nesennen oy creaann 7-60

7e6.5 BOLN(F) teeererrereeenoscassceacanonossascsanssoesasanns 7-69

7.6.6 Files...vun. ceeeraae Ceesaretreestaseanes cestesreennns 7-6

7.6.7 GOTO and EXIT StatementS...eeeressescssonesssses ceeeaes 102

7.6.8 Packed VariabDleS.c.ceceeeerteesossssnssssssssossnsssnss 7-64

7.6.9 Parametric Procedures and FUNCLiONS.ceeeeseeeeennnnnss 7-66
7.6.10 Progam HeadingS...:eeeeeeeeesesecsessscssscessscsanssns 7-66
7.6.11 READ and READIN. .cvevues Certecescescanaas ceetesesneesans 7-66
Te6.12 RESET(F) e eeeeeeesosansecoooessssosassnsssessasssssosnnnes 7-68
7.6.13 REWRITE(F,S)cceee.vencccsccsscnsocnen cesesssssesreenas . 7-68
7.6.14 Segment ProcedureS:....eeceeeee. .. . teenenareseess 708

J 0.1 S Sictenrteneeecaeescetsstassoesssontosctoncssssceseans 7-69
7:6.16 StriNgS..cevteeeeeeeeseocetosnssssossssossasssssscassans 7-73
7.6.17 WRITE and WRITEIN. ¢ ce e s errocscsssoas tesescscscersnnann 7-71
7.6.18 Implementation Size LimitS....eceieeinieiieenrenennacnes 7-71
7.6.19 Extended COMPAriSONS:-e.seeseesrosscsesssssssesssssssens 7-71
7.6.20 Data Types for CONCULTENCYeevoeerrtussasssosoosennosses 7-72
7.6.21 Programming Examples...... secstscenaccssnsnnasnnsnasens 7-73
APPENDIX A. CQOMMAND SUMMARIES. . ecceveaosssns cetsssereassrsesrssesr e e e A-1
A.l Outer Level tvvvieveiesnssssssessssaasonssns Ceeteteresetsesennns A- 1
A.2 Screen-Oriented EQitOr...iveeeseeesosressseceseasasescsssssnnsas A- 1
B3 YA .. e eteeerereononsvesssssssssssossassssscsnsnonsnas cereene A- 3
A.4 FileHandler.i...: cersennenss . . ceraeaes e . A- 4
A.5 Pascal COMPiler..c..ev.veeeecensensoscenasensennse coss . ..A=- 5
APPENDIX B, TABIES.:t:2tcsasesacocccanss ceas vesenen teeessesseersnrs e B-1
Bl RUN-TIME FrrOrS. e eeeeeseeeocesassesssossssssssssssssssssssseses B-1
Be2 I/O RESULES.tvvvernsrosoncosnesnssossssnssnsnssnssnses Cerienens B- 2
B.3 Pascal Compiler Syntax ErrOrS....cceeeeeeeseceecsssescseccnaans B- 3
Bud Unit NUMDEIS:. e e st vacnrencsasscassoscssssssssosssssesssennssnses B- 7

viii

APPENDIX C. P-MACHINE OPCODES. AND OPERATOR EXECUTION TIMES..cceeeceovssen C-1

C.1 P-Machine OpCOdeS. . uuiveiereeeeesnssassossssssscessonasssns ceee -1
C.2 Pascal MicroEngine Operator EXecution TimeS...c.ceveeecvsveasnes Cc-15
C.3 P-Machine Description Metalanguage. ...eseeseessssscsscasscasaans c-35

APPENDIX D. AMERICAN STANDARD CODE FOR INFORMATION INTERCHANGE..:.esess0s.D=1

APPENDIX E. UCSD PASCAL RESERVED WORDS. . veoeeeessscsssaasons N

APPENDIX F. UCSD PASCAL SYNTAX DIAGRAMS.....ss. cessssane tesescescscasnsas F-1

APPENDIX G. MEl6dd AND SB16@9 I/0O ADDRESSES..:eeeeee.. Ceeteceeenteseaeaans G-1

APPENDIX H. BOOT AND INITTALIZATTON DIAGNOSTIC MESSAGES. . esstssecssosases H-1

H.1 SB1OJJ PROMe e evnvononnnns cessvseseons ceesnsesen O H- 1

H.1l.1 Built~In-Test(BIT) e cerevsronnenn tecesecssesnsessnsesns H- 2

H.1.2 Boot from Floppy DisKeeeeeeveeseonsnes ceessns cetseennans H=- 2

Hol.3 Error COdeS..cverivrscerosscsonncnneas ceessee cesesesnsceesH= 3

H.2 ME1OJJ PROMeet tevevnvvnsensccnssonnas trecsevesrescesanasense ...H=- 4

APPENDIX TI. III.J OPERATING SYSTEM GLOBALS [H3].eeeevsns cessecteencananns I-1
APPENDIX J. HARDWARE AND SOFTWARE CHANGES FOR III.J OPERATING SYSTEM

VERSIONS GO TO H34i et vevsenecosansnsansncnnenns cesecsneesnnns J-1

J.1 Changes from Version GO tO HO..veteveveeenoenooenaonnnns ceteeesedd=1

J.2 Changes from Version HJ tO Hl.v.veivneeeennereonennenne e |

J.3 Changes from Version H1 t0 H2........... treevesssensssaanssans eod= 2

J.4 Changes from Version H2 O H3.i.veeitneoneneseresnsnnsecnnananns J- 2

APPENDIX Ko G-OSSARY ooooooooooo LR I R S A O A N R N N SN S S S S S ST e o0 ees s K“ l

ix

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

3-1
3-2
3-3
34
3-5
3-6
3-7
3-8
3-9
3-10
3-11

4-1
4-2
4-3
4-4
4-5

4-6
4-7

4-8

4-9

4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-209
4-21
4-22
4-23
4-24
4-25
4-26
4-27
4-28
4-29

LIST OF FIGURES

I1I.9 Operating System Command Structure...........ecveee. 1- 4
Clpy B({uffer EXampl €.« .o eerverssnrasasseascanesssassannnes 3-19
C(py F(ile Example....cocevveenas Ceteesetaeseseatnenatnonns 3-11
Example of the Delete Comand.......... feteessaratanenenan 3-12
Example of the Replace Command......ccceeeens creseenseneass3=22
Use of Zap with the Find Command....ceeeeeesecesosscansens 3-26
Example of th Zap Command...ceeesescccananss N)
Two Examples of the Margin Command.....cceceeeccenscansass 3-39
Use of the Margin Command with Command Character......... .3-31
Example of Moving CommandS..eveeeeeceescovesseosssoooseses 3-76
Examples of Text-Changing COmmandS..eceeeececscoscecsecsesns 3-76
Example Of @ MaCrO..ceveeeetensesacssaacssns N &
Syntax for a File Specification..iceeeeceeeerenerscnscnens 4- 4
Get Comand EXamMOl €. e cvvresosssssossscscsssossnsnseses ceesd4— 8
Example of the Save Command ACrOsSS VOLUMES..ceeesosoescens 4~ 9
Example of the Save Command with SYSTEM.WRK.FILE.......... 4-10
Example of List Directory Command (List to Serial

25 0y of = o) 1S PP 4-12
Example of List Dlrectory Command (List to Console) 4-13
Remove Command Example Using Wild Card (?)..ceevseccvenens 4-16
Remove Command Examples Using Wild Card (=).ceeeeeenenennn 4-17
Remove Cammand —— File Sequence......ceveeeecrerecacecacns 4-18
Two-Line File Name Change...eceeterserseccscssscssscasansos 4-19
Change Command Using Subgroup Spec1fy1ng Strlng 4-20
Change Command Using Equal SigNe..eoeececescecosescaseccenns 4-20
Change Cammand — Changing the Volume Name4-21
Transfer Command Using Equal Sign and $.....cccc0.n ceenae .4-25
Transfer Cammand Using Subgroup—Specifying String.........4=-25
Transfer Command —— File Transfer Across VOLUmMES......ee.. 4-26
Transfer Command —- Same Disk Transfer.........eee... veoeod=26
Transfer Cammand —— Vol ume-to-Volume Transfer............. 4-27
Example of Date Command. . cceeesceosossssssensecsnscecsases 4-28
Bad Blocks Scan (Bad Blocks Found)..... Ceeeseteesaanann c. o432
Bad Blocks Scan (No Bad Blocks FOUNA) e eeeeeeecrenccnocenns 4-33
Example of Extended Directory Command............ ceseecens 4-34
Example of Crunch Cammand...cccoveeeeereeeriescnonnsonossans 4-36
Three Examples of the Make Command...c.ccceennvensnononncsns 4-38
Examples of the Prefix Command...c.veeeeveeertinnrenecasoans 4-49
Typical Volume Command DiSplayecceeeeteessecscscscscccsssss 4-41
Examples of the Examine Command....c.eeeeeeeercenccasenans 4-44
Zero Command (Blank Diskette).. e aeres et ae e 4-47
Zero Command (Disk Previously Zeroed) Ceretreaaes 4-47

X

Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Fiqure
Figure
Figqure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
~Figure
Figure
Figure
Figure
Figure
Figure

5-1
5-2
5-3
5-4
5-5
5-6

6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-19
o-11

7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11

7-12

7-13
7-14
7-15
7-16
7-17
7-18
7-19
7-20
7-21
7-22
7-23
7-24
7-25
7-26
7-27
7-28

SU= Option EXAMOLE. . s toevesececsssonsesnsossssnse sasnnnan 5-12

Example of USES Clause with U Option...... T o KC
Typical Compilation Status Information.......cecoeeen cesses5-16
Syntax Error Example —— Message Displayed.....ccoeeeveeess 5-18
Syntax Error Example -- O+ and I+ Options Selected........ 5-19
Source Program LiStinge..eceeceeeeeceeeesorcesccensasnnnes 5-21
SETUP FieldS...voieeeeneennscoossecnns ceesesesseessessesanss 6~ 7
SETUP EXaMDlCecsvroeosasecssnsns Ceeterseesieseatassaseanas 6-18
Display of Segments in Iink File.e.ccveeeiieeerenrvonnnnenes 6-28
Display of Cutput File after LinKing...eeeeeeceeeseseenans 6-29
Map Output File —— *SYSTEM.LIBRARY..esseessssesscssoossnas 6-35
Code File DiagraMe...cceeeeereecseseeecssscnsensssnsannsons 643
Disassambly EXample. ccveeeeereeeetoceenseceesssssorsssnnes 646
Calculator EXampleS. . .eeeeeeeseccrsocessocesasassssaccsonss 648
QOTOXY Procedure for Soroc IQ120 Terminal cceseeeecerenacas 6-50
Using PATCH to Examine @ BlOCK. .- eeeerreeroeeeenenanannans 6~72
Compiler Produced Listing........ Cetecteeereseresceneaeans 6-83
Structure of III.d Operating SystemM...ecececececcscensocss 7- 4
Segment Declaration SyntaX...eeeeeseeseessssssssssccecnnns 7- 7
The Segment Dictionary...... tessesessenscssasrtsssssensanas 7- 8
ACode Segment..eeeeeeeeeeaceeancenseeoroessacancsancnncns 7- 9
Procedure Code SECEION...uteieteenretnnssoerassssososconnas 7-10
System Meamory During Operating System Executlon 7-11
A Data Segment.....coiiiiienitetientsenrsscsesssesscscnnens 7-12
Bootstrap Microcode/Software Instruction.....c.ceeeeeeenes.. 7-14
Example of a Start Procedure.....cceeeeceeceocessncssnnsss 7-21
Semaphore EXample...ccceeeeeeesetereccscsnssossssacsssasosonns 7-23
Exampl e of the MOVELEFT, MOVERIGHT Character Array
Manipulation INtrinsSiCS..cceeeeecscrsosesescssoassssscans 7-27
Example of the Scan Character Array Manipulation
INntrinsSicsS...coeeeeennonocencannns Ceeetteersssenssscensnas 7-28
Example of Asynchronous I/0 Simulation.....cceeeeeeenceees 7-34
Examples of String IntrinsicsS... «veeeveieereneees ceersenen 7-36
Example of WAIT Procedure.......... Ceeireeaaan P 7-49
Example Of USES.:. civeeerecetroesssoeossosonsasassscsssssscsss 7-44
Syntax for a UNIT Definition.....eeeeeeeeennncncecacennons 7-45
Example Uses Of Long INtegerS. .o ceeeessnecssecccnssannss 7-49
Programs to Create User Menu Interface€........eeeeeeeensnn 7-51
Example Program Of DEIAYUNIT.. et eeeeeecooseosesoonsssanns 7-55
Example of a Fallthrough in a Case Statement.........ccce.. 7-57
Using MARK and RELEASE to Change Heap Size....c.ecveeensss 7-59
Example of Using Untyped Files........ teeeectvsescncasannen 7-61
Example of using the EXIT statement....c.ceeeeceesceeceess 7-63
Examples of Packed Arrays and ReCOrdS.....ceeeeescscocsssns 7-64
Examples of Set Comparisons........ceeeees Cetesereceananan 7-69
Program to Access Absolute Memory AdJresS....ececeeeaneeses 7-74
Noninterrupt 1/0 Driver -- Referenced by Absolute Memory
4V L == 7-75

Xi

Figure 7~29 Interrupt I/0 Driver -- Referenced by Absolute Memory

AAAressS (CONSOLE:) erveeerreenooossosesessonsssnsesansnsnss 7-76
Figure 7-30 Interrupt I/O Driver —-- Referenced by Absolute Memory
AAAress (REMOTE:) et eeeerreoeenantocnsoanenananssencnansss 7-78

Figure 7-31 DireCtOry ACCESS.ce et riveresrsacsnesssssocsstsassonsans .. 7-82

LIST OF TABLES

Table 1-1 E(dit CoOmmMandsS. v eeeeereeeesoenoosonnnnesnsns certeeerecaans 1-19
Table 1-2 Filer CommandS. . oevee.veteasacecensesossesonsnanssane eess1-13
Table 2-1 I/0 DEViCES et cnetenenraseeeesneeneensennessneennenns cered2= 7
Table 3-1 Moving Commands —- CRT Initiated.......... Cereeees ceesaans 3- 6
Table 4-1 Filer Commands By Category..:eeecesecesooesass Cereereeneas 4- 5
Table 4~2 Block Quantities on Disk........ Gedsveceeresaearsesnasssana 4-46
Table 6-1 Transparent Mode and XON/XOFF ProtocOl....... Cetereaeea. 6- 8
Table C-1 P-Machine OpCOdeS. . cvvvrvneesnennsrsssnsonnass N Cc-2
Table C-2 Operator Execution TimeS...veeseeeeesseneteanssssosasscnnne c-17
Table C-3 P-Code Operators in a Pascal-like Metalanguage.....ececee.. C-35
Table G-1 ME1G00 I/0 AAreSSeS....eecverernneronunnssneennnnnsnnanan G- 1
Table G-2 Interrupt AQAresSSeS..cc et eeerreisssssserssesessossnncones G- 2
Table G-3 Mask RegisterS....ieieeieeieenerenscnsnnncnnnns ceersenausne G- 3
Table G4 SB16090 I/0 AAAreSSeS..veeeenenenns et eteeteaeaeaeeeeaeaa G- 4
Table G-5 SBlodd Interrupt Addresses........ teevreesseseirenntrasaes G- 4
Table G-6 SBlodd Control Registers.............. thesrerseseersaanans G-5

xii

This manual is one in a series of publications that support the Western
Digital Corporation UCSD Pascal (TM) III.@ Operating System. This operating
system, UCSD Pascal (TM), was developed at the University of California, San
Diego, but has been enhanced and refined by The MicroEngine Campany (a sub-
sidiary of Western Digital Corporation).

This manual is not tutorial in nature and does not describe the operational
aspects of the software. However, the first four chapters are written to
provide new users with a quick grasp of the system cammand structure, the
Editors, and the Filer. This book is intended to be a reference manual for
users of the III.J Operating System.

ORGANIZATION OF THIS MANUAL

This reference manual is divided into seven main chapters and ten appendices.

® Chapter 1 provides an overview of the III.J Operating System including
a general explanation of the outer and inner cammand levels.

® Chapter 2 contains discussions of some system fundamental concepts -
namely, files and volumes.

® C(hapter 3 describes four system editors: The Screen-Oriented Editor,
the Advanced Editor, the L2 Editor, and YAIOE (Yet Another Line-
Oriented Editor).

® (hapter 4 discusses the system File Handler (Filer).
® Chapter 5 describes the Pascal Compiler.

® Chapter 6 provides information on mumerous system util ity programs
that are part of the III.d Operating System.

® Chapter 7 explains same Pascal programming considerations for using
the III.0 Operating System on ME1699 and SB16J@ computer systems.

® Appendix A lists command summaries for the outer level of canmnands,
the Screen-Oriented Editor, the Line-Oriented Editor (YAIOE), the
Filer, and the Pascal Compiler.

® Appendix B contains several tables of information:

Run-Time Errors
I/0 Results
Syntax Errors
Unit Numbers
xiii

e Appendix C contains tables of the P-machine opcodes, operator
execution times, and the opcodes in a Pascal-like Metalanguage.

® Appendix D is an ASCII code chart.

e Appendix E lists the UCSD Pascal (TM) reserved words.

e Appendix F shows UCSD syntax diagrams.

e ZAppendix G contains tables of ME160@ and SB16d9 I/0 addresses.

e Appendix H lists the ME160J@ and SB16J0 boot and initialization
diagnostic messages.

® 2Appendix I gives the code for the system glcbals of the H3 release
of the III.d Operating System.

e ZAppendix J describes the hardware and software changes for the oper-
ating system from versions GJ to H3.

e 2Appendix K is a glossary of terms.

Please submit the Publication Comment Form (located at the back of this
manual) with any camments about this document to:

THE MICROENGINE COMPANY

Subsidiary of Western Digital Corp.
2445 McCabe Way

Irvine, California 92714

ATTN: Product Documentation

kkkkk

This guide was prepared and edited using the
Western Digital Pascal (M) Screen-Oriented Editor.

xiv

RELATED DOCUMENTS

The following publications provide additional information on 1608 Series
SuperMicrc Computer Systems.

'

e ME16P@ Modular Serie i i i
Guide (order numnber ME169d).

This book provides basic information for setting up a new MEl6dd camputer
system.

® MICROENGINE (™) Computexr.Systems Peripheral Device Configuration Guide
(order number ME1692).

This quide describes procedures for configuring nonstandard peripheral
devices to be installed with 1609 series systems.

® Getting Started with the Western Digital 1600 Series SuperMicro
Computer System (order number ME1694).

This document briefly describes the major camponents of the III.d
Operating System and steps the user through one simple session using
the system. It is included as part of the set of documents to
accanpany the 1687 product line.

® SB162@ Series SuperMicro Computer System Installation/Operation Guide
(order number SB1699).

This book provides basic information for setting up a new SB16d0 camputer
system.

e Introduction to Pascal Including UCSD Pascal by Rodney Zaks (order
number WD9891).

This book introduces the reader to the Pascal programming language.

® Beginner's Guide for the UCSD Pascal System by K. Bowles (order number
WD9892).

This tutorial book aids in understanding and gaining familiarity with
the UCSD Pascal (TM) operating system.

For copies of these documents, see your Western Digital sales representative.

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

1. OVERVIEW OF THE III.J OPERATING SYSTEM

The Western Digital UCSD Pascal(TM) III.d Operating system is designed to
run on the ME16JJ and SB16d9 SuperMicro Series Camputer System produced
by The MicroEngine Company, subsidiary of Western Digital Corporation.
This operating system is an enhanced version of the UCSD Pascal(TM) III.d
Operating System.

Basically a single-user program development system, the III.@ Operating
System provides a camplete enviromment for both program development and
execution and text processing. Comprised of several modules plus numerous

utility programs, the III.d Operating System is a multitasking operating
system. .

This operating system allows multiple tasks to run concurrently based on
priority.

The major camponents of the III.d Operating System are listed below and are
discussed in this manual; also, a chapter pertaining to Pascal programming
is included.

® System Filer.

® System Editors (Screen-Oriented, L2, Advanced, and YAIOE).
® System Campiler (UCSD Pascal).

® System Utilities.

The overall structure of the III.d Operating System in regard to cammands is
discussed in this chapter.

Page 1-1

THIS PAGE IS INTENTIOMALLY LEFT BIANK FOR FORMATTING PURPOSES.

Page 1-2

.

The ITI.@ Cperating System cammand structure is camposed of an outer level
of commands and an inner level of cammands. The outer level of cammands
allows access to the inner level of cammands or enables performance of
specific functions. For example, typing an E from the outer level cammand
line accesses the Screen-Oriented Editor, which, in turn, displays a cammand
prampt line (inner level of cammands); or typing an X from the outer level
camand line executes a code file (performance of a specific function).

The relationship of the ocuter level of cammands and the inner levels of
cammands is shown in Figure 1-1.

The following two subsections discuss the outer level of cammands and the
inner level of cammands, respectively.

Page 1-3

t~1 ®beg

OUTER LEVEL COMMANDS
Command: E(dit, R(un,v_(i1e C(omp, L(ink, X(ecute, D(ebug ?

and: A(da, /U(ser restart, I(nitialize, H(alt

/ INNER LEVEL COMMANDS
——-——ﬁl > Edit: A(

djt C(py D(lete F(1nd I(nsrt J(mp R(ptace Q(uit X(chng Z(ap ?

— e e e e e e e - e

\{Tove[<arrow>,<sp>,<ret>, , P(ageJ d1rect1onD< >], M(rgn, S(et, V(rfy"®

e o e o e e e et e e = = - A}

? =

INNER LEVEL COMMANDS
Filer: G(et, S(ave, W(hat, L(dir, R(em, C(hng, T(rans, D(ate, Q(uit
? =

NOTE

Typing a "?" causes the second (unseen)
command prompt line to be displayed.

Figure 1-1. III.p Operating System Command Structure.

1.2 OUTER IEVEL OF COMMANDS

The outer level of cammands is automatically displayed across the top of
the screen in the following three cases: (1) after booting or automatic
execution of the operating system; (2) after any of the lower levels
have campleted execution; and (3) after campletion of any outer level
camand (for example, after execution of a program.)

The outer level of cammands is as shown below. (The second line of cammands
is not displayed on the cathode-ray tube (CRT) screen unless a ? is

typed.)

Comand: E(dit, R(un, F(ile, C(amp, L(ink, X(ecute, D(ebug?

|
I
| ? = Cammand: A(da, U(ser restart, I(nitialize, H(alt
|

The individual cammand is executed by typing the character that immediately
precedes the (. This character is capitalized in the prampt, but all
system cammand characters may be entered in upper or lower case.

Each outer level cammand causes execution of a program on the system
diskette named "SYSTEM.<function—name>", where <function-name> is, for
example, editor, filer, or campiler.

The following paragraphs briefly describe the outer level of cammands, which
are discussed in more detail in this manual.

e E(dit

The E(dit cammand invokes one of the available system editors.
The Editors are system programs that allow insertion or
deletion of information, finding and replacing character
strings, changing text format, copying information, and other
text manipulations within a file.

Entering an E causes the Screen-Oriented Editor to be brought into
memory from disk. If the system console is a CRT, the Screen-
Oriented Editor is executed. If a work file is present, it is
automatically read into the Editor buffer. Otherwise, the

Editor prampts for a file.

Page 1-5

® R(un

Entering an R causes the code file associated with the current
work file to be executed. If a code file does not currently
exist, the system Campiler is called autamatically. If the
campilation requires linkage to separately campiled code, the
Linker also is called automatically and assumes the use of the
file *SYSTEM.LIBRARY. The program is executed after a successful
campilation and linkage.

e F(ile

Entering an F calls the File Handler (Filer) into memory fram
disk. The inner level of cammands for the Filer is displayed
in a prompt line across the top of the screen after an F is
entered.

The Filer is a system program that provides file maintenance
capabilities. For example, the Filer provides facilities

for (1) moving, copying, and deleting files; (2) listing
volume directories; (3) checking disk or diskette storage

for damage or recording errors; (4) naming, or changing

the name of, volumes and files; and (5) listing the peripheral
devices and volumes currently on line.

C(amp

Entering a C initiates the Pascal campiler. If a work file
exists the Campiler autamatically campiles the work file;
otherwise, a prampt for the file to be completed is displayed.

The Pascal Campiler reads a text file that contains Pascal
language statements (source) and converts the statements into
executable machine instructions (P-codes).

L(ink

Entering an L starts the Linker program which allows routines
to be linked from libraries other than *SYSTEM.LIBRARY.

X(ecute

Entering an X allows execution of a campiled code file. A
prampt asking for the name of the file to be executed is
displayed.

Execution of a program is the actual use of the code file to

instruct the camputer to do the task for which the program
is designed.

Page 1-6

If the file requested is present, it is executed. If the
file is not present (or the program name is misspelled),

the message "No file <file name>.CODE" is displayed.

If the code file is camposed of several separately campiled
files, one of which has not been linked, the message "Must
link first" is displayed.

The ".CODE" suffix on a campiled file is implicit
and should not be entered as part of the file
name.

Programs (particularly programs not yet campiled) can be
executed by use of F(ile, G(et the file, Q(uit the Filer,
and R(un the file.

The X(ecute camnand is used to execute the system utilities,
like PATCH, SETUP, and so forth. (See Chapter 6 for the
details of the system utilities.)

D(ebug

Entering a D causes the Debugger utility to be called. If
the work file is not campiled or linked, the Campiler and
Linker are automatically executed so that a valid code file
exists. The Debugger then allows breakpoints to be inserted
in the code file and program memory and state to be examined.
(See Section 6.15 for details of the Debugger.)

?

The ? is typed to cause the second (and unseen) line of
outer level cammands to be displayed on the screen.

A(da

Entering an A causes the MicroAda(TM) campiler to be called
if the campiler is available as part of the operating system.
If the campiler is not present, the message "No file:SYSTEM.
ADACOMP" is displayed.

The MicroAda(TM) campiler reads a text file containing Ada

language statements (source) and converts those statements
into machine-executable instructions.

Page 1-7

® U(ser restart

Entering a U causes the system to begin executing the program
or option last used. Using this cammand is quicker and
requires fewer keystrokes than reexecuting the program or
reinitiating a specific cammand.

e I(nitialize

Entering an I causes the operating system to be reinitialized.
That is, the III.d Operating System is restarted and the outer
level cammand line is displayed. The assigned volume as the
default volume (Filer P(refix cammand) is maintained across the
restart.

Using the I(nitialize cammand is not as drastic as using
restart button to reinitialize the system.

e H(alt

Entering an H causes the III.J Operating System to terminate;
use of this cammand is not recammended. The system must be
reinitialized by using the restart button. The initialization
sequence and loading of the system files fraom disk to memory
occur as if the system had just been "powered on".

Page 1-8

1.3 TINNER IEVEL OF COMMANDS

The imner levels of cammands are accessed through the cammand prampts of the
outer level of cammands. A brief explanation of the inner level cammands is
presented in the following subsections. The various cammands are explained
in more detail in other chapters of this manual.

1.3.1 E{dit

Any one of the four editors may be executed when E is entered

fram the outer level cammand line, depending on which editor is named
SYSTEM.EDITOR. The Screen-Oriented Editor is named SYSTEM.EDITOR on the
operating system disk shipped from the factory, but the any of the other
editors could be designated as the system editor. If not renamed, the other

editors can be executed by entering X fraom the ocuter level cammand line
followed by the file name.

' Screen-Oriented Editor

This editor is specifically designed for use with video display terminals
(CRTs). This editor provides facilities for manipulating text in the work
file or in any text file. The inner level of cammands accessed through the
Edit command is shown below. (The second line of cammands is not displayed
on the screen wmless a ? is entered fram the E(dit prampt line.)

[>Edit:A(djst C(py D(lete F(ind I(nsrt J(mp R(place Q(uit X(chng Z(ap ? |
| |
| 2 = >move[<arrows>, <sp>, <ret>,=,P(age),direction[<,>],M(rgn,S(et,V(rfy |
| |

Table 1-1 presents a brief explanation of these cammands. (See Chapter 3
for detailed explanations of the cammands.)

Page 1-9

Table 1-1. E(dit Commands (Page 1 of 2).

Command Explanation

A(djst The adjust command allows a line to be shifted left,
right, or centered.

Clpy The copy cammand allows text to be copied fram the
buffer or a file into the file being edited.

D(lete The delete command allows text to be removed fram
the file being edited.

F(ind The find cammand allows a specified string of
characters to be located in the file being edited.

I(nsrt The insert cammand allows characters or spaces to
be added to the file being edited.

J (mp The jump cammand allows the cursor to be moved
quickly through the file being edited to specific
points - namely, to the beginning or end of the
file and to markers set within the file.

R(place The replace cammand allows a specified string of
characters in the file being edited to be
autamatically replaced with a designated string
of characters. (Several options regarding the
R(place cammand are explained in Chapter 3.)

Q(uit The quit camnand terminates the editing session.
Several options regarding the edited file are
available when the session is terminated.

X(chng The exchange cammand allows a character—for-
character change to be effected. That is,
a character or space typed over the existing
text replaces the existing text with the new
character.

Z(ap The zap cammand allows sections, lines, words,
and so forth of text to be deleted fram the
file being edited. The text being deleted is
stored in the buffer.

? The ? is typed to cause the second (and unseen)
line of E(dit caommands to be displayed on the
screen.

Page 1-19

Table 1-1. E(dit Commands {(Page 2 of 2).

move
[<arrows>, <sp>, <ret>.
=, P(age]

direction [<,>]

M(rgn

S(et

V(rfy

This group of actions and the P(age cammand
allow movement through the file being edited.

This group of actions allows right, left,
up, and down movement through the file
being edited.

The margin cammand is used in conjunction with
the S(et cammand to allow paragraph margins to
be specified and automatically adjusted. This
cammand is dependent on the enviromment being

set such that FILLING is true and AUTO-INDENT

is false.

The set cammand allows the enviromment to be
changed or markers to be set in the file being
edited.

The verify cammand redisplays the text window
with the line containing the cursor positioned
at the center of the screen.

Page 1-11

Advanced Editor (ADV.EDITOR)

The Advanced Editor (ADV.EDITOR) can be renamed SYSTEM.EDITOR and called by
entering an E from the outer level cammand prompt line. Alternately, this
editor can be executed by entering an X followed by ADV.EDITOR as the file
name. This editor is an enhanced version of the Screen-Oriented Editor.
(See Section 3.2.)

L2 Editor (L2)

The L2 Editor (L2), unless renamed SYSTEM.EDITOR, is executed by entering an
X from the outer level cammand prompt line followed by L2 as the file

name. The L2 Editor is a version of the Screen-Oriented Editor which
allows editing of large files which cannot be contained in main memory at
one time. (See Section 3.3.)

Line—Oriented Editor (YAILOE)

The Line-Oriented Editor, YALOE, is executed fram the outer level cammand
prompt line by entering an X followed by YAIOE as the file name. This
editor is used when the system console is a teleprinter. This editor, like
the Screen-Oriented Editor, provides facilities for inserting, modifying,
and deleting text in the work file or any text file. (See Section 3.4.)

1.3.2 File Handler (Filer)

The Filer is the module of the III.@ Operating System that is used for
maintenance of files stored on disk. The Filer is used to view the directory
of files, to copy or transfer files between disks, and other file
maintenance tasks.' The inner level of cammands accessed through the F(ile
cammand is shown below. (The second line of cammands is not displayed on
the screen unless a ? is entered fram the F(ile cammand prampt line.)

|Filer: G(et, S(ave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans, D(ate, Q(uit |
|

|?=Filer: B(ad-blks, E(xt-dir, Krnch, M(ake, P(refix, V(ols, X(amine, Z(erol

Page 1-12

Table 1-2 summarizes the Filer cammands. (See Chapter 4 for detailed
explanations of the cammands.)

Table 1-2. Filer Cammands (Page 1 of 2).

Cammand

G(et

S(ave

W(hat

N(ew

L(dir

R(em

C(hng

T(rans

D(ate

Q(uit

[AV]

B(ad-blks

Explanation

D ——

The get command causes the specified file to be
loaded into memory from disk.

The save cammand writes the work file to disk as
the file name specified in response to the "Save
as <file name>?" or "Save as what file?" prampts.

The what cammand displays the name and status
(saved or not saved) of the work file.

The new camand clears the work file space.

The list directory cammand lists the disk
directory to the volume and file specified.

The ranove cammand removes file entries from the
directory.

The change cammand changes the name of a file
or a volume.

The transfer cammand copies the specified file(s)
to a given destination, leaving the source file
intact.

The date cammand allows the system date to be
changed.

The quit cammand causes the Filer program to
teminate and returns control to the ocuter level
camand structure.

The ? is typed to cause the second (and unseen)
line of Filer cammands to be displayed on the
screen.

The bad-blocks cammand scans the disk to detect

bad blocks (corrupted or damaged storage areas)
on the disk.

Page 1-13

Table 1-2. Filer Commands (Page 2 of 2).

Command Explanation

E(xt-dir The extended-directory cammand lists the disk
directory in more detail than the L(dir caamand.
The additional pieces of information shown by
this cammand are (1) in column one, the unused spaces
on the disk; (2) in colum two, the beginning block
number of the file; (3) in colum three, the number
of bytes in the last block of the file; and (4) in
column four, the file kind.

K(rnch The crunch cammand moves the files on the specific
volume so that all unused blocks are grouped at
the end of the directory (located in the last
blocks on the disk).

M(ake The make cammand creates a new directory entry
with the name specified.

P(refix The prefix cammand changes the current default
volume to the volume specified.

V(ols The volumes camnand lists all the volumes currently
on line and off line along with their associated
unit (device) numbers to the system console.

X (amine The examine cammand attempts to physically recover
suspected bad blocks detected by a bad-blocks scan.

Z(ero The zero cammand initializes the directory on the
specified volume with the new volume name specified
and with all blocks on the disk unused.

Page 1-14

1.3.3 Other Inner level Commands

The remaining outer level cammands (excluding E(dit and F(ile) access
programs that may ask questions, display menus, or display prampt lines for
that specific program. For example, the X(ecute cammand asks for the name of
the file to be executed. If, for example, the system utility program PATCH
is executed, a series of questions/prampts and cammand lines are displayed.
These various prampts, camnands, and menus are also considered inner levels
of cammands.

Page 1-15

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

Page 1-16

2. SYSTEM FUNDAMENTALS

This chapter describes the files and volumes (I/O devices) allowed with the
I1I.9 Operating System. Basic knowledge of the types of files and file
specifications is essential to effective use of the operating system.
Likewise, same basic information regarding the use of volumes is necessary
to be able to take advantage of the features available in the III.Q
Operating System.

This chapter provides those essential facts and oconcepts that enable
effective programming and ease of use of the operating system.

Page 2-1

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

Page 2-2

2.1 FILES

A file is defined as a body of information or a stream of bytes that is
usually stored on an I/0 device. Typical examples of files are programs,
letters, lists, and text stored on disks or diskettes as well as

information sent to a printer. For diskettes or disks, a table of contents
for the files stored on the disk or diskette is maintained. This table of
contents is called a directory; each file has a separate entry in the
directory. BAny file is referenced according to the file name by a Pascal
program and by the III.d Operating System. Each entry in the directory is a
file name.

The directory shows certain pieces of information regarding the file. The
file name that is given to the file plus the type of file are two of those
pieces of information. The most cammon files are either text or code

files. Text files contain information such as letters, lists, reports, and
program source statements. Code files contain the P-codes (machine-executable
information) for a source program. The file type or kind is denoted by the
suffix appended to the file name. The following types of permanent files are
used by the III.0 Operating System; one additional file is used by the III.@
Operating System - a work file. (This file is discussed separately in a
following subsection.)

Reserved Extended Directory
Suffix Contents of File Listing
. TEXT Human-readable text Textfile
.CODE Machine~executable code Codefile
.DATA Data file Datafile
.BAD A physically damaged area of disk Bad file

These file types are explained more fully in the following subsections.

The directory of any given wolume is limited to 77 file entries. If the
directory is full and an attempt to write a new file to that volume is made,
the following error message results:

| No room on disk |

The above error message also results when an area on disk does not exist
that is large enough to contain the file.

Page 2-3

2.1.1 Text Files

s et v e e s e e v

A text file contains human-readable text. The text file is composed of
1024 byte pages, where a page is defined as:

<[DLE][indent][text][CRI[DLE][indent][text][CR]. . .[nulls]>

Data Link Escapes (DLEs) are followed by an indent code, which is a byte
that contains a value 32 plus the number of spaces for indentation. At
the end of the page, the last carriage return is followed by at least
one null. The nulls pad to the end of the page to give the Campiler an
integral numbers of lines on a page. The DLE and indent code are
optional and are used for text campression.

The first page of a text file is the header page. This page is reserved
for information for the Text Editor. When a user program opens a text
file and REWRITEs or RESETs it with a file name ending in .TEXT the I1/0
subsystem creates, then skips, the header page. The Filer transfers the
header page only on a disk-to disk transfer; the header page is amitted
on a transfer to a serial device (PRINTER or CONSOLE).

A code file is the file generated by campiling a program. A program is
generally contained in a text file (the source statements written in
the programming language) which is campiled; on successful campletion
of the campilation, a code file is generated. This file contains
machine-executable instructions (P-codes) that were generated fram the
source program. The suffix .CODE is autamatically appended to the
original file name to designate the code file that matches the text
file.

The first block of information in a code file describes the code kept in the
file. Heading the block is an array of 16 word pairs - a pair for each
segment on the disk. (With the H2 release, information for the additional
segments (128 segments available) is stored in segment pages at the end of
the file.) The first word of the pair gives the block number within the file
where code begins. The second word gives the number of words of code
located there.

Following this array is a series of 16 eight-character arrays that

describe the segments by name. These eight characters identify the
segment at campile time.

Page 2-4

Then follows a 16-word array of state descriptors.. The values in this ar—
ray tell what kind of segment is at the described location. The values are:

LINKED
HOSTSEG
SEGPROC
UNITSESG
SEPRTSEG

The remaining 144 words of the block are reserved for system use.

2.1.3 Data Files

The content and format of data files are determined by the user.

2.1.4 Bad Files

————— et ot s

Bad files are those files marked by the Filer after a bad-block scan
detects bad blocks, and the bad blocks have been examined. (See
section 4.2.11.) The designation of bad files prevents use of
physically bad blocks on disk.

2.1.5 Work File

A file basic to the III.d Operating System is the work file. The work
file concept is that space is temporarily available for a copy

of a file being created or one being changed. This space and a name
are reserved for any work that is being done on the system. If a
specific name is not assigned to a text file at the campletion of the
work session and the Update option of the Editor is selected to end
the session, the III.@ Operating System automatically assigns the name
*SYSTEM.WRK.TEXT to the file and then writes the file on the system
diskette.

If the work file is a Pascal program, the R(un cammand can be used to
canpile and then execute the code. The R(un cammand causes the Pascal
campiler (1) to take the current work file; (2) campile it into executable
P-code; and (3) when no errors are found and campilation is campleted to call
the III.d Operating System to execute the code. The Pascal campiler saves
the code form of the work file on the system diskette as *SYSTEM.WRK.CODE.

Thus, the work file can be edited, campiled, linked, or run numerous
times without telling the III.d Operating System that the file to
use is the work file. Each of the above operations is designed to
use the work file on the operating system diskette unless a specific
file name is entered.

Page 2-5

Thus, a program can be written and debugged with a minimum amount of
keystrokes and without redundant write operations. Once the program
is completed and runs correctly, the text and code work files can be
given permanent names so that the program is stored on disk. The work
files are not permanently saved on disk until the Filer S(ave cammand
is executed, and the work files named. Once the new name is entered
in response to the S(ave prampt "Save as vwhat file?", both work files
are renamed and written onto the disk.

2.1.6 File Names

s ey e i et e e

Because Pascal programs and the III.@ Operating System reference a
file by its name, a correct file name is important. The following
rules and statements define a legal file name.

® The file name may not exceed 15 characters. (The volume
name may be specified in addition to the 15 characters.
However, the volume prefix may not exceed seven characters
plus the colon.)

® The file name may not include the following characters:
ll=ll' Il$ll' l.?ll' or II’II.

® The legal characters for a file name are the alphanumerics
plus the following special characters: "-", "/", "\", " ",
and ".".

® Lower—-case letters used in a file name are translated to
upper case.

® Blanks and rnonprinting characters used in a file name are
removed.

Special characters are nommally used to indicate hierarchical relation-
ships between files and to distinguish related files of different types.

The wild card characters "=" and "?" are used to specify subsets of the
directory. (See Section 4.1.1). Many Filer cammands use a file
specification to perform a certain action on the group of files designated.

Page 2-6

2.2 VOLWMES

A volume is any I/O device (that is, a device comnected to the camputer to
send or receive data.) A block-structured device is one that can have a
directory (for example, disk). A non-block-structured device does not have
an internal structure; it simply produces or consumes a stream of
characters (for example, printer and console). A non-block-structured
device can be referenced by the device file name (such as PRINTER: or
CONSOLE:) or by the unit number. Block-structured devices can be referenced
by the unit number or by the volume name of the diskette stored in the
appropriate drive or the volume name as configured on a Winchester disk.

Table 2-1 gives the volume names reserved for non-block-structured devices,
the unit number associated with each device, and the unit numbers associ-
ated with the system and alternate disks.

Table 2-1. I/O Devices.

Unit
Number Volume ID Description

1 CONSOLE : Screen and keyboard with echo

2 SYSTEM: Screen and keyboard without echo

3 UNUSED

4 <volume name>: System disk (typically)

5 <volune name>: Alternate disk (Winchester or floppy)

6 PRINTER: Line printer (parallel device)

7 RCONS1: Remote console

8 REMOTE: Additional peripherals (serial devices)
9-14 <volume name>: Additional disk drives (Winchester or floppy
15 RCONS2: Remote console

16 RTERM2: Remote terminal

17 RCONS3: Remote console

18 RTERM3: Remote terminal

19 RCONS4: Remote console

20 RTERV4: Remote terminal

21 RCONS5: Remote console

22 RTERM5: Remote terminal

23 RCONS6: Remote console

24 RTERM6: Remote terminal

25 RCONS 73 Remote console

26 RTERM7: Remote terminal

27 PRINTR1: Additional line printer

28..255 Winchester disk units or future devices

(Additional unit numbers are reserved for system use.)

Page 2-7

On H3 and later releases, the unit numbers 4, 5, 9-14, and 28-255 can be
used as either Winchester or floppy units. In general, any unit can be the
"system" unit, depending on how the system is configured. The default
configuration for a floppy-only system is shown in Table 2-1.

The volumes CONSOLE: AND SYSTERM: refer to the user CRT and keyboard. In a
Pascal program, CONSOLE: is referenced by the standard file names INPUT and
OUTPUT; SYSTERM: is referenced by the standard file name KEYBOARD:. The
difference between SYSTERM: AND CONSOLE: is that reading from CONSOLE:
causes input characters to be echoed to the screen and reading from SYSTERM:

does not. This difference in character echo also applies to RCONS: and
RTERM: .

Volume names for block-structured devices can be assigned by the user. The
following rules and statements define a legal volume name.

® The volume name may not exceed seven characters in length.

® The volume name may not contain the following characters:
II=II' "$l|' "?", or II’II.

® The character "*" is the reserved volume ID of the system disk,
the disk on which the system was booted.

The character ":" when used alone is the volume ID of the default disk.
The system and default disks are equivalent unless the default prefix
is changed using the Filer P(refix cammand.

Use of the "#<unit number>" is equivalent to the name of the volume

in the disk drive at the current time or designates another I/0 device
(for example, #6: designates the PRINTER:).

Page 2-8

3. SYSTEM EDITORS

An editor is a specialized program that facilitates creating, reading and
changing text files. The III.J Operating System contains four editors: the
Screen-Oriented Editor (SYSTEM.EDITOR), the Advanced Editor (ADV.EDITOR), the
L2 Editor (L2), and a Line-Oriented Editor (YAIOE). Each of these editors is
suited to a specific use. That is, the Screen-Oriented Editor is designed for
use with a video display console; it handles a text file as one unit in the main
memory of the computer. The Advanced Editor is an enhanced version of the Screen-—
Oriented Editor designed to offer additional efficiencies in text manipulation.
The Advanced Editor is included in the III.®d Operating System as an alternate
choice to the Screen-Oriented Editor as the system editor. The editor named
SYSTEM.EDITOR is invoked when an E is typed at the outer cammand level. The L2
Editor is a version of the Screen-Oriented Editor which facilitates editing of
large files which cannot fit into the main memory buffer at one time. The Line-
Oriented-Editor (YALOE) is designed for use with a teleprinter or

telewriter as the system console.

These four editors plus their cammands are described in this chapter.

Page 3-1

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

3.1 SCRYEN-ORIENTED EDITOR

The Screen-Oriented Editor is designed for use with video display
terminals. This editor handles a text file as one wnit which is read into
the main memory buffer of the camputer. The Screen~-Oriented Editor
facilitates text manipulation by providing such capabilities as insertion
and deletion of text, change of text character-for—character, setting and
modifying paragraph margins, finding a specific character string, moving
text from one place to another, and replacing a given character string with
another.

3.1.1 General Information

The Screen-Oriented Editor provides a window into the file through the
screen of a CRT. The window shows that portion of the file in which editing
is taking place. The window can be moved to variocus parts of the file
displaying the portion of the text available at that position.

When entering any file, the Screen-Oriented Editor displays the start of the
file in the upper left corner of the screen. That position is the original
position of the cursor. The cursor is a marker indicating the position at
which an action would take place if initiated. The cursor can be moved
about freely in the file by the directional arrows until an editing command
or mode is specified. Once the command is executed, the cursor is frozen
within the movement specifications of the cammand and cannot be freely moved
until that action is campleted.

The cursor is never actually "at" a character position but is between the
character at which it appears (for ease of display) and the character
immediately preceding. This location is most clearly apparent in the
I(nsert mode, which inserts in front of the character at which the cursor is
located.

Repeat factors are allowed by many of the commands to repeat the action of
the cammand as many times as indicated by the immediately preceding number.
For example, entering 2 <down-arrow> causes the <down arrow> cammand to be
repeated twice, moving the cursor down two lines. The assumed repeat factor
is 1 if no number is typed before the cammand. A slash (/) typed before the
cammand indicates an infinite mumber of repeats for some commands.

Page 3-3

Some commands are directional. If their direction is forward, they operate
forward through the file; if backwards, they operate in reverse. The
directional arrow that appears before the "Edit:" cammand line indicates,
for example, the default direction for cammands that are directional. The
right arrow (>, "greater than" sign) appears at the beginning of the "Edit:"
camand line. Unless the dirction is changed, this arrow indicates that all
directional actions will progress forward through the file. When direction
affects the cammands, it is specifically noted in this manual.

All command characters may be entered in upper or lower case, although they
are referenced in this document in upper case form only for brevity.

3.1.2 Accessing the Screen-Oriented Editor

The Screen-Oriented Editor is accessed by typing E (for edit) from the outer
level command prompt line. If a work file exists, this editor autcmatically
reads it into the main memory buffer for editing. If a work file does not
exist, the following prompt appears on the screen:

|>Edit:
| No workfile is present. File? (<ret>for no file <esc-ret> to exit)
I

If a return (<ret>) is entered, the Edit command line appears across the top
of the screen. The main Edit cammand line is illustrated below.

[>Edit:A(djst C(py D(lete F(ind I(nsrt J(mp R(place Q(uit X(chng z(ap?

The second Edit cammand line can be accessed by typing a ?. The second Edit
camand line is illustrated below.

| >movel <arrows>, <sp>, <ret>,=,P(age], direction [<,>],M(rgn,S(et,V(rfy

Page 3-4

If a file name for editing is entered in response to the first prampt,
following lines appear on the screen as the file is read into the buffer:

then, the Edit cammand line appears across the top of the screen.

[>Edit: l
| Reading.... I

If a file name is entered that is not present (for example, a typographical
error is made in the file name), the following message and prampt are
displayed.

| Not present. File? |

Once the file is read into the buffer or a new file is designated, the
cursor is shown in the upper left corner of the screen. Unless the first line

is indented, this position is row 1 colum @ of the screen and is the beginning
of the file.

3.1.3 Screen-Oriented Editor Caommands

Although the -Screen-Oriented Editor cammands are described in this manual in
the order in which they appear in the Edit command prampt line, the commands
can be grouped into three major categories, as follows:

Moving cammands.
Text-changing cammands.
Formatting cammands.
Quit cammand.

A brief discussion of each of these categories follows.

e MOVING COMMANDS

The moving cammands move the cursor from one location to
another to position it for the next editing function. Many
of these comnands are initiated by keys on the CRT keyboard.
The cammands initiated from the CRT keyboard are listed in
Table 3-1.

Page 3-5

Table 3-1.

Moving Cammands - CRT Initiated.

<down-arrow>
<up—-arrow>
<right-arrow>
<left-arrow>

ll<ll or ll, [1] or ll_ll
Il>ll or H.|l Or ll+ll
<space>
<backspace>
<return>

P(age
J (ump
B(egin

E(nd
M(arker

Function

Moves cursor down

Moves cursor up

Moves cursor right

Moves cursor left

Changes the direction to backward
Changes the direction to forward

Moves 1 character (directional)

Moves cursor left

Moves to the beginning of the next line
(directional)

Moves the screen display on screen page
forward or backward (directional)

Moves the cursor to a predetermined point
in the file as follows:

Moves cursor to the beginning of the file
Moves cursor to the end of the file
Moves cursor to the marker specified

Direction is always indicated by an arrow (> or <) in front of

the prompt line.

The direction is forward when the Editor is

entered, but can be changed by typing the appropriate arrow
whenever the "Edit:" prampt line is present. On many standard
keyboards, the period (.) can be used for forward because it

is the lower case for ">"; and the camma (,) can be used for
backward, being the lower case for "<". Also, the + and - signs
change the direction —- + is forward and - is backward.

Repeat-factors are valid for same command options and some of

the cursor moves.

A repeat-factor is a number that specifies

how many times the cammand function or move action is to be
repeated. The number is entered immediately prior to the
cursor move or cammand option. For example, the F(ind and
R(eplace camands allow repeat-factors. Also, use of the
down or up arrows allows a repeat-factor to be specified.

Page 3-6

The cursor moves and other commands that allow repeat-factors

use a factor of 1 if no number is specified. Repeat-factors may
range from @ to 9999 when entered as a number. Using the

slash (/) before a cursor move causes the action to repeat
infinitely until the end of the file (or beginning of the

file, depending on the direction) is reached. Using the

slash (/) with other cammands that allow repeat factors causes
the last occurrence of a string in the file to be found or

an infinite repeat of the cammand. For example, if "/RLV.pascal
..Pascal." is entered fram the Edit caommand line, all occurrences
of "pascal" in the file are found on a one-by-one basis, the cur-
sor appears at the end of each target, and a prampt appears for a
decision as to whether or not to replace that occurrence with the
substitute string. (See the Replace cammand subsection for additional
explanation of these actions.)

Repeat factors can be used with any of the keyboard cammands
listed in Table 3-1. Repeat factors are ignored if not appropriate to
the command (such as "<" or ">" direction changes).

The Editor maintains the column position of the cursor when
executing the <up arrow> and <down arrow> cammands.

The moving commands that do not have special function keys on
the CRT keyboard are JUMP, PAGE, and = (equals); these
camands are described in separate subsections.

TEXT-CHANGING COMMANDS

The majority of Editor cammands fall into the text-changing
category. The main function of an editor is to facilitate
the manipulation of text within a file. The text-changing
commands are listed below but are described in separate
subsections.

Clpy (Copy Command)
D(elete (Delete Command)
I(nsrt (Insert Command)
R(place) (Replace Command)
X (chng (Exchange Command)
Z(ap (Zap Command)

FORMATTING COMMANDS

Several Edit cammands effect text formatting. This group of
camands control indentation, margins, and general text layout

on the page. These cammands are listed on the following page
but are described in separate subsections.

Page 3-7

A(djst (Adjust Commands)
M(rgn (Margin Commands)
S(et (Set Commands)

A(djst (Adjust Command)

The Adjust command allows selected lines of text to be shifted right or left
without changing their contents. This command is initiated by typing an A
from the Edit command prompt line. After entering the A, the following
prompt line appears:

|>Adjust: L(just R(just C(enter <left,right,up,down-arrows>{<etx> to leave}l

These options refer to the line on which the cursor is located. This cammand
adjusts indentation on a line-by-line basis. On any line, the right-arrow
and left-arrow cammands move the whole line one space to the right or left,
respectively, each time the arrow is typed. An <etx> or (editor accept key)
is typed when indentation is adjusted as desired.

To adjust a sequence of lines, one line is adjusted; then the up-arrow and
down—-arrrow camnands are used to adjust the line above or below,
respectively, by the same amount. Repeat factors can be used before any of
the arrows; use of the / is also valid.

"L" and "R" are used to left- and right-justify lines to margins set in
the Environment. "C" centers the line between the set margins. Typing an
up~ or down—-arrow justifies or centers the line above or below to the same
specification as the original line.

The Adjust command can only be terminated by typing an <etx> (or equivalent);

an adjust action can be aborted by typing <esc> before any line adjustment
is specified.

C(py (Copy Comand)

The Copy cammand allows insértion of passages of text into the work file; the
insertion may be text previously saved in the buffer of the work file or
text copied from a file other than the work file. This command is initiated
by typing a C from the Edit command line. After entering C, the following
prampt line appears:

|>Copy: B(uffer F(from file <esc>

[
l
oo}

Page

C(PY B(UFFER

The C(py B(uffer option copies the text saved in the buffer into the work
file at the cursor position where the C was entered. Each use of an I(nsrt,
D(lete, or Z(ap camand stores the text passage that was inserted, deleted,
or zapped, in the buffer. Thus, through use of D(lete, then terminating the
deletion with an <esc> instead of an <etx>, the C(py B(uffer option allows
the text to be copied at .a second location in the file but leaves the
original text intact. That is, the sequence -- D(elete <esc> Copy B(uffer —-
allows copying text; the sequence —- D(elete <etx> C(opy B(uffer —- allows
moving text. Any insertion or deletion of text before copying the buffer
automatically fills the buffer with that text and, in so doing, removes the
text previously stored in the buffer.

Figure 3-1 is an example of the C(py B(uffer selection using a "D(lete
<esc>" sequence first in order to copy a passage of text to a second
location in the file. In Figure 3-1, the keys typed are shaded; camments
are enclosed in braces ({}). The Edit command line and the text passage to
be copied are shown at the top of the figure. The cursor is located at the
beginning of the text to be deleted/copied.

After the copy is campleted, the cursor returns to the position immediately
preceding the text that was copied. The use of the C(py B(uffer sequence
does not change the contents of the buffer. The original indentation of cam—
plete lines in the buffer is retained when the buffer is copied into the file.

C(PY F(ILE

The C(py F(ile option is used to copy another file or a passage of text from
another file into the work file. To copy a passage of text from another
file that is saved on disk, markers must have been previously set while
editing that file. The text to be copied must be delimited by a beginning
and ending marker.

When the C(py F(ile option is selected by first entering C for copy from the
Edit command line and then entering an F for "F(ram file" fram the Copy
prampt line, the following prompt appears. The file name and the appropriate
marker names are requested.

|>Copy: From what file[marker,marker]? |

Any file may be specified; however, a text file is assumed. The copy
operation does not change the contents of file being copied. Also, the
original indentation of camplete lines in the external file is retained when
the file (or portion of it) is copied into the file being edited.

Page 3-9

The sequence of entries and responses in Figure 3-2 illustrates the use of
the C(py F(ile option to copy a portion of text (delimited by markers a and
b) from a second file named "cpyex.text" into the current work file. In
Figure 3-2, the keys typed to effect the copy are shaded; camments are
enclosed in braces ({}). System responses are prefaced by a right arrow (>).

>Edit: A(djst C(py D(lete F(ind I(nsrt J(mp R(place Q(uit X(chnge Z(ap ?
Fill in the following information

to allow an update of your

credit record.

. {Continuation of file text}

Your credit record can be an important
asset vhen applying for a loan. Your
rights to have knowledge of your credit
rating have been established by law.

To find out your credit rating, return
the portion of this flyer marked below.

c <———{Cursor is positioned on the blank line below the line
, of hypens in the text.}

B @
Fill in the following information
to allow an update of your
credit record.
Name:
Address:
Acct. Number

If you have questions regarding the
procedure explained in this flyer, call
800-222-10099. {End of file}

(@ The "D(lete <esc>" sequence causes the text to dis-|
appear from the screen — then to reappear after thel
buffer is filled. |

that causes a COPY menu to appear then disappear as

I

@ The "COPY B(uffer" sequence is a two-step action |
I

the selection is made. The copy is then completed. |

Figure 3-1. C{py B(uffer Example.

Page 3-10

e F(ind I(nsrt J(mp R(place Q(uit X(chng Z(ap ?

Bluffer F(ram file <esc>

From what file[marker,marker]?

{After the above return is typed, the copy is campleted, beginning
at the location of the cursor when the C for copy was entered.}

Figure 3-2. C(py F(ile Example - Passage of Text.

If no marker names are entered with the file name, the entire file
designated is copied into the work file. The copy begins at the cursor
location where the copy operation was begun. On campletion of the copy from
a file, the cursor returns to the beginning of the text just copied fram the
file.

D(lete (Delete Cammand)

The Delete cammand is initiated by typing D for delete from the Edit cammand
line. This command allows characters to be removed fram the text being
edited. After typing a D for delete, the following prompt line appears
across the top of the screen.

[>Delete: <> Moving cammands>{<etx> to delete,<esc> to abort}

To delete characters, any of the cursor moving cammands (<arrows>, <ret>,
and so forth) are valid. The arrow before the word "Delete" in the prampt
line indicates the direction in which the characters are to be deleted. The
direction can be changed by typing the directional arrow just prior to
typing the D for delete or during the delete action.

Page 3-11

Typing <ret> while in Delete mode removes the entire line of text. Also, the
repeat factor may be used to delete several lines at once by prefacing a
<ret> (or any other moving cammand) with the desired repeat number.

The cursor must be placed at the first character to be deleted. This
position is the anchor position or starting point. As the cursor is moved
away from the anchor position, text in its path is removed. As the cursor is
moved back toward the anchor position, previously deleted text is restored.
All text between the anchor position and the final position is deleted, and
the space is closed up when the <etx> (or editor accept key) is typed.

The Delete command is terminated in one of two ways - (1) either typing an

<etx> to accept the deletion or (2) typing an <esc> to abort the deletion.

Typing an <esc> leaves the original text in place in the file. For either

termination, the text that is or would have been deleted is copied into the
buffer. (Refer to the C(py Command section in this chapter.)

Figure 3-3 illustrates use of the Delete cammand. The keys typed to effect
the deletion are shaded; camments are enclosed in braces ({}). System
prompts are prefaced by a directional arrow.

>Edit:A(djst C(py D(lete F(ind I(nsrt J(mp R(place Q(uit X(chng Z(ap ?

{The text below is the original text before deleting.}
This sentence of the text is to remain the same. This sentence
is to be modified by the delete operation.

weor over the "t" in the second occurrence of "to."}

{The following text results from the deletion.}
This sentence of the text is to remain the same. This sentence
is modified by the delete operation.

Figure 3-3. Example of the Delete Command.

Page 312

A padded ' ' (space) may implicit
end of the line following the deletion.

After a deletion that includes a <ret>, the line on which the cursor is
located may extend beyond the edge of the screen display (8@ characters). An
! appears in the last visible character position of the line to indicate
that text occurs beyond the screen limit and cannot be displayed. To see
the text that extends beyond the screen limit, a <ret> can be inserted
anywhere in the visible portion of the line. The text that was not seen is
then displayed on a new line below the visible text. The new line of text
begins with the character on which the cursor was located when the <ret> was
inserted.

F(ind (Find Command)

The Find command searches through the file for the specified group of
characters (the target) and moves the cursor to the end of that group. If a
repeat-factor is specified, the Find cammand moves the cursor to the end of
the specified occurrence of the target.

The Find cammand is initiated by typing an F from the Edit cammand line.
After an F is entered, one of the following two prampt lines is displayed
depending on the setting of the T(oken default option in the Environment
mode. (See the S(et E(nviromment description in a separate section of this
chapter.)

[>Find [1]:L(it<target>=>

The above prompt line appears if the T(oken default is set to true.

[>Find [1]:T(ok<target>=>

The above prompt line appears if the T(oken default is set to false.

Page 3-13

TARGETS AND DELIMITERS

The target is a group of characters and/or spaces that is specified as the
string (or group) to be found. The target is described or '"set off" to the
system by delimiters. Delimiters are a set of characters that enclose the
specified target when entering the command. Any character that is not a
letter or number may be chosen as the delimiter as long as the character is
not in the target string.

If a character that occurs in the target is used as a delimiter, the Find
action begins immediately after the character is entered. The Editor
interprets that character as the closing delimiter and thus, begins
searching for the target string. In that case, the target found is only
part of the intended target.

A commonly used delimiter is the slash (/) because that character does not
often occur in text, and it is convenient to type.

If the target is not preceded by a delimiter, the following error message
appears:

|ERROR: Invalid delimiter. <space> to continue. |

For a literal search, the Find command searches for the target string exactly
as it is entered. That is, if the target is entered in all capital letters,
the search is for a matching pattern in the file - all capital letters. If,
for example, the target is entered in all caps and the pattern in the file
only begins with a capital letter, a match is not made and the following
message appears.

|ERROR: Pattern not in the file. <space>to continue.

Page 3-14

LITERAL AND TOKEN SEARCHES

The search for the target may be either a literal or token search; the
target is treated differently for each of these options. The literal search
causes the target to be matched exactly or literally, even if the target
appears within a word. The spaces are also considered in a literal search.
For example, the literal target / Pascal / produces only the match of " Pas-
cal " (as a separate word in the file). However, the word Pascal followed
by a period (Pascal.) would not match the target because the target is
enclosed by spaces. Also, a literal target like /oper/, might match the
following patterns in text:

operating
operation
operate

cooperate

The token search matches the target to a token, which may be a camplete
word, a punctuation character, or an identifier. Several different tokens
may be strung together to form a single target. Blanks or spaces are not
considered in the token search. For example, a target of /I:INTEGER;/ when
used in a token search could match the following patterns in the work file:

The default (or automatic) setting for either literal or token searching is
determined by the setting of the T(oken default option, accessed by the S(et
E(nvironment cammand. The Find prampt line displays the alternate search
type - either L(it or T(ck - not the default type. That is, the default
type is the one NOT shown in the prampt line.

To use the alternate type rather than the default type, the first letter (as
shown in the prompt line) of the alternate search is typed before the target
is entered hut after the F for Find is entered. The letter appears after
the => of the prampt line; no action begins until the closing delimiter of
the target is entered.

Page 3-15

SAME-TARGET OPTION

In order to find repeated occurrences of a target in a file, typing FS causes
the Editor to search for the target string last specified. Thus, the

target need not be reentered. However, L(it or T(oken is a property of each
find action; this property is not associated with the pattern when it is
defined. For example, the sequence —— FL/oper/ -- finds the next occurrence

of "oper", but an "FS" following that sequence does not find the next occurrence
of the target because the L (for literal) must be typed again.

If the last specified target is not known, the S(et E(nvironment command can
be executed to show the current target. For example, the Environment display
might list the following:

Patterns:
<target>= 'Pascal'’

I(nsrt (Insert Command

The Insert cammand allows new information to be added to the work file.

All characters typed as an insertion becamne part of the text stored in main
memory. To insert text, the cursor is positioned at the place the insert is
to begin. An I for insert is typed fram the Edit cammand line; the

following prompt line appears:

|>Insert: Text {<bs> a char, a line} [<etx> accepts, <esc> escapes] |

In the insertion, the new characters are added between the character on
which the cursor was located when the insert began and the character to the
immediate left of the cursor. That is, a space is opened between the cursor
position and the character to the left of the cursor. This space continues
to widen as characters are entered; the original text that was to the right
of the cursor is moved right as the insert increases. The shifting of text
continues until the insert is finished and accepted (<etx> or editor accept
key) or until the insert is aborted (<esc>).

Once the original text is pushed to the screen display limit, that line
drops down to the next line to allow more text to be inserted. Once the
insertion reaches the screen display limit, the original text that made up
the remainder of the line drops down another line. Therefore, when a <ret>
is typed, the insertion can continue on a new line. The rest of the

work file page of text is not displayed on the screen but remains in main
memory. When an <etx> is typed to accept the insertion, the original text
is brought to the end of the insertion and the remainder of the page appears
on the screen.

Page 3-16

If a <ret> is inserted at the screen display limit, the original text to the
right of the insert disappears from the screen, allowing as many new lines
as required to be inserted. After a <ret> is inserted, the cursor is
positioned immediately below the first character of the line above, if
A{uto indent is true. If A(uto indent is false, the cursor is positioned
to colum @ or the left margin. To change the indentation of the new line,
the space bar or backspace key can be used to alter the cursor position. This
alteration must be done immediately after the <ret> is typed and before any
text is entered. Once any character other than space or backspace is typed
at the beginning of the line, the indentation cannot be altered by the space
or backspace keys.

G_ERRORS

The Insert prampt line shows the error-correcting capabilities available
during the insert. The <bs> corresponds to the left-arrow key (backspace)
and is used to delete a character at a time in the reverse direction. The
 corresponds to the delete key, which deletes all text back to and
including the last <ret> character entered.

The direction set at the beginning of the Insert
prampt line is not valid. If a nonusable control
character like an up arrow, is typed inadvertently,
a question mark (?) appears on the screen. These
errors can be erased by the <bs> or keys.

ACCEPTING OR ABORTING THE INSERTTON

To end the insertion (accept the new text into the file), an <etx> (or editor
accept key) is typed. To abort the insertion at any point, an <esc> is entered.
All inserted text is discarded when the <esc> key is typed. That is, the copy
buffer is not changed by an I(nsert <esc>.

However, after an insertion is accepted (<etx>), the information is
available from the copy buffer until the next insertion or deletion.
Therefore, if an insert is to appear in several locations in the file, the
C(opy B(uffer cammand can be used to place the text in the various location.

Page 3-17

J(mp (Jump Cammand)

The Jump cammand allows the cursor to be moved quickly fram one place to
another in the file without using the up or down arrows repeatedly. The
Jump cammand moves the cursor to the beginning or end of the file or to
preset markers in the file.

The Jump command is initiated by typing a J from the Edit cammand line. The
following prompt line appears:

[>Jump: B(eginning E(nd Marker <esc>

Typing a B for beginning moves the cursor to the beginning of the file,
displays the Edit command line at the top of the screen, and displays the
first page of the file. Likewise, typing an E for end moves the cursor to
the end of the file, displays the Edit cammand line at the top of the
screen, and displays the last page of the file.

Typing an M for Marker causes the following prampt line to appear.

[Junp to what marker?

If a marker name is entered that is present in the file, the cursor moves to
that position after a <ret> is typed. If a nonexistent marker name is
entered, the following error message appears:

|[ERROR: Not there. <space> to continue.

- The cursor does not move from its current position when an error occurs.
Establishing markers in the file is explained in the S(et M(arker command
section.

If <esc> is typed in response to the jump prompt line, the jump action is
aborted.

Page 3-18

R(place (Replace Command)

The Replace cammand finds a target and replaces it with a specified
substitute. This cammand is very similar to the Find ocommand but extends
the capabilities of Find. (See the section discussing the Find cammand.)

The Replace cammand is initiated by typing an R fram the Edit command line.
After an R is entered, one of the following two prompt lines is displayed
depending on the setting of the T(oken default option in the Envirorment
mode. (See the S{et E(nviromment description in a separate section in this
chapter.)

|>Replace [1]:L(it V(fy <targ><sub> =>

The above prampt line appears if the T(oken default is set to true.

| >Replace [1]:T(ck V(fy <targ><sub> =>

The above prompt line appears if the T(oken default is false.

The Replace cammand searches through the file according to the direction

set, finds the specified number of occurrences of the target, and replaces each

occurrence with the specified substitute (unless verification is selected.)
After the replacement is campleted, the cursor is positioned at the end of
the last target found or substituted.

See the Find cammand section for a discussion of the repeat-factor, targets
and delimiters, and the literal and token search modes.

Page 3-19

COMMAND STRUCTURE

The Replace cammand requires two user-specified groups of characters - the
target (same as the Find cammand) and the substitute. The target is the
group of characters to be found, and the substitute is the new replacement
for the target.

These strings must each be enclosed within a set of delimiters. Delimiters
must form a set; that is, the opening and closing delimiter must be the same
character.

A typical example of the Replace cammand structure is given below:

[>Replace[1]:L(it V(fy <targ><sub>=>/ pascal// Pascal/ |

The slashes are the delimiters. The replace operation would replace the
first occurrence of the token " pascal” with " Pascal", starting at the
cursor position and replacing forward in the file.

VERIFY OPTION

When V is entered (for verification) in the Replace cammand, no substitute
of characters is campleted until the user looks at each target found and
decides to replace that occurrence. After the V is typed in the cammand, no
action occurs until the first occurrence of the target is found. At that
point, the following prampt asks the user for a decision regarding the
replacement.

|>Replace[1]: <esc> aborts, 'R' replaces,' ' doesn't

If the user wants to replace the target with the substitute, an R is typed.
If the user does not want to replace that occurrence of the target with the
substitute, a <space> is typed. To abort the replace operation, an <esc>
can be entered.

A slash (/) used with the Verify option causes every occurrence (in the set
direction) of the target to be examined before replacement.

Page 3-20

SAME-STRING OPTTON

As with the Find cammand, the same-string option is available with the
Replace cammand. Typing an S in place of the target directs the Replace
cammand to use the target specified previously, either by a previous use of
the Replace or Find cammands. Likewise, an S may be used for the substitute
string. The Replace cammand then uses the last substitute string specified

in a previous Replace cammand.

For example, the following Replace cammand entry causes the command to use a
previous target with a new substitute string.

[>Replace: L(it V(fy <targ><sub>=>S/Pascal(TM)/

Likewise, the following Replace cammand entry causes the command to use a
previous substitute with a new target.

|>Replace: L(it V(fy <targ><sub>=>/pascal/s

Typing the following characters causes the Replace cammand to use the
previous target and substitute:

RVSS

The next occurrence of the previously specified target is replaced (after
verification) with the previously specified substitute.

If a previous target or substitute has not been specified the following
message appears:

|[ERROR: No old pattern. <space> to continue.

Figure 34 is an example of use of the Replace cammand. In Figure 3—4 user
input is shaded; camments are enclosed in braces ({}). System responses are
prefaced by an >.

Page 3-21

>Edit:A(djst C(py D(lete F(ind I(nsrt J(mp R(place Q(uit X(chng Z(ap ?

PROGRAM REPLACE; {Text before replacement.}
BEGIN
WRITEIN ('SQME WORDS'):
WRITEIN ('MORE WORDS');
WRITEIN ('EVEN MORE WORDS');
END.

';Réplace [3]:L(it V(fy <targ><sub>=>{fi{??ffﬁ?”“:ﬁ'

PROGRAM REPIACE; {Text after replacement}
BEGIN
WRITEIN ('SOME BYTES'):
WRITELN ('MORE BYTES');
WRITEIN ('EVEN MORE BYTES');
END.

Figure 3-4. Example of the Replace Command.

Q(uit (Quit Command)

The Quit cammand terminates the Editor session. The Quit cammand is initi-
ated by typing Q fram the Edit cammand line. The following message appears:

|>Quit:

| U(pdate the workfile and leave

| E(xit without updating

| R(eturn to the editor without updating
| W(rite to a file name and return

| S(ave as <vol:file name> and return

One of the five options must be selected by typing the appropriate letter.
These five options are described in the following subsections.

UPDATE OPTION

The U(pdate option causes the editor to write the file just modified
(currently in memory) onto the system volume as SYSTEM.WRK.TEXT. This
option erases any previous versions of the system work file.

(SYSTEM.WRK.CODE is removed as well as the previous SYSTEM.WRK.TEXT.)

If the system work file is the text file being edited, the U(pdate option
should be used periodically to avoid accidental loss of recent changes.

Page 3-22

EXIT OPTION

The E(xit option terminates the editing session without recording the
changes made to the file currently in memory. Any changes made to the work
file since the beginning of the editing session are NOT recorded. This
option is useful when a file is to be read only.

RETURN OPTION

The R(eturn option returns to the Editor without recording any changes made
during the editing session. The cursor returns to its location in the file
at the time a Q was typed. This option is useful after a Q is inadvertently
entered.

WRITE OPTION
The W(rite option provides the means to record the changes made during the

editing session. The following prompt appears requesting the name of the
file in which the changes should be recorded.

[>Quit:
| Name of output file (<cr> to return)-->

The changed file may be written to any file name. If the file already
exists, the changed file replaces it. Typing a <ret> aborts the cammand.

Once the file name is entered, the following message and prampt appear:

| Your file is nnn bytes long.
| Do you want to E(xit from or R(eturn to the Editor?

Typing an E exits the Editor and redisplays the outer level command prompt
line. Typing an R returns the cursor to its previous location in the

file. However, the changes made during the editing session were recorded on
disk.

SAVE OPTION

The S(ave option is useful in the case where the Editor is used with a file
other than the system work file. If the Editor is entered without a work
file, the Editor prompts for the file to be edited. If a file name is
entered, at Quit time, the S{ave option appears and asks if the file is to
be saved as the name of the input file.

Page 3-23

X(chng (Exchange Command)

The Exchange camnand (X(chng) allows existing characters to be exchanged on
a one-for-one basis by new characters being entered. The Exchange cammand is

initiated by typing an X from the Edit command line. The following prompt
line then appears:

| >Exchange:Text{<bs>a char}[<esc> escapes; <etx> accepts]

As characters are entered, the cursor moves to the right over the text
replacing the characters. If an <etx> has not been entered, backspacing
restores the original characters on a one-for-one basis.

Typing an <esc> aborts the Exchange cammand without making the changes.

Typing an <etx> (or editor accept key) accepts the changes as part of the
file.

The exchange cammand does not allow typing past the
end of the original text or the end of the line.
Also, a <ret> may not be entered as a character to be
exchanged. New text must be added through the I(nsrt

cammand if the exchange exceeds the length of the
original text.

After the Exchange cammand is initiated, the right arrow may be used to

space over the existing text without changing it. Exchange is not affected
by the current direction.

Page 3-24

Z(ap (Zap Command)

The Zap command deletes all text between the start of the text last found,
adjusted, replaced, or inserted and the current cursor position. Zap is
designed to be used immediately after a Find, Replace, Adjust, or Insert.

| cauTioN |

If any of the above cammands are followed by a

text change or any cammand that moves the cursor,
the results of the Zap cammand are unpredictable.

The Zap cammand is initiated by typing a Z fram the Edit command line.

If more than 80 characters are being zapped, the Editor asks for
verification:

[>WARNING!You are about to zap more than 8d chars,do you wish to zap?(y/n) |

If the most recent text changing cammand was I(nsert, use of the Zap
cammand deletes the insertion. If the most recent cammand was F(ind, use
of the Zap cammand deletes the occurrence of the target found. If the most
recent cammand was R(place, use of the Zap cammand deletes the substitute
string from the text.

The text deleted is available for use with the C(py B(uffer cammand.

If the amount of text to be zapped exceeds the capacity of the copy buffer,
the following message appears. (The maximum amount of text that can be
zapped, and subsequently copied by the C(opy B(uffer cammand, varies depending
on the size of the file being edited.) The = (equal sign) moving command
jumps to the Z(ap "anchor" point.

Page 3-25

| SWARNING!You are about to zap more than 8¢ chars,do you wish to zap?(y/n)l|

If a Y is entered, the following message appears:

|There is no room to copy the deletion. Do you wish to delete anyway?(y/n)|

If a Y for yes is entered, the designated text is deleted and is not placed
in the copy buffer. The designated text begins with the first character of
the text last found, adjusted, replaced, or inserted; the designated text

ends at the current cursor position.

Figures 3-5 and 3-6 present examples of the Zap cammand. The first example
shows Zap used with the Find cammand to zap the target string. The second
example shows the use of Zap after an insertion.

In the figures, user input is shaded. Comments are enclosed in braces ({}).

>Edit: A(djst C(py D(lete F(ind I(nsrt J(mp R(place Q(uit X(Chng, Z(ap ?
{The following text contains the target to be found and zapped.}
This paragraph illustrates the use of the Zap cammand to find a

target and then remove it. The target to be zapped is the first
occurrence of the word "cammand".

>Find [1]:L(it <target>=

{The Find camnand searches through the file, placing the cursor
at the end of the target.}

{At this point, the target is zapped and the text is changed
as below.}

This paragraph illustrates the use of the Zap to find a target and
then remove it. The target to be zapped is the first occurrence of
the word "cammand".

Figure 3-5. Use of Zap with the Find Cammand.

Page 3-26

7 D(lete F(ind I(nsrt J{(mp R(place Q{uit X

{The original text appears below.}

1. Turn on the power for the system terminal.
Turn the round knob on the left side ofthe
terminal clockwise until you hear a click.

The intensity of the cursor and the characters
are also changed byturning the knob. The

cursor is usually a rectangular box or an
underline that moves over the screen to show

you where you are currently keying on the screen.

2. Turn on the power for the system. Press
the white circle on the red switch that is
located in the upper right corner of the
system box.

>Find[1]: L(it <target> => /The

{The Find cammand searches through the file,
placing the cursor at the end of the target.}

{The following message appears:}

WARNING! You are about to zap more than 8@ chars, do you wish to zap? (y/n

{The zap is effected and the text is as below.}

1. Turn on the power for the system terminal.
Turn the round knob on the left side ofthe
terminal clockwise until you hear a click.

2. Turn on the power for the system. Press
the white circle on the red switch that is
located in the upper right corner of the
system box.

Figure 3-6. Example of the Zap Command.

Page 3-27

Equal (=) Command

The Equal cammand is initiated by typing an equal sign (=) from the Edit
main cammand line. Although not displayed on the Edit main cammand line,
this cammand is displayed on the secondary Edit cammand line accessed by
typing a ? from the Edit main cammand line.

This cammand moves the cursor to the beginning of the last portion of the
text that was inserted, adjusted, found, or replaced. The Equal cammand is
not direction-oriented; therefore, it is valid from any location in the file.

Whenever text is inserted, adjusted, found, or replaced, the beginning
location is saved. However, if a copy or deletion is made between the
beginning of the file and the absolute position, the beginning location of
the last insertion, adjustment, find, or replacement is changed. Therefore,
the Equal command location is no longer valid.

P(age (Page 3~-Command)

The Page cammand displays the next page, whether forward or backward, where
a page is the number of lines that are contained on the CRT screen (usually
23-24 lines). The cursor position remains the same except that its logical
position is moved forward or backward by n lines.

At the end of the file, a camplete screen is not displayed if the number of
lines remaining is not a full page.

To move several pages at a time, the repeat-factor may be used.

The Page cammand is initiated by entering P fram the Edit main command line.
The Page camand moves forward if a +P is entered or backward if a -P is
entered. The last entry (+ or -P) remains in effect until changed by a
subsequent explicit change of direction. That is, once a -P is entered,
subsequent entries of P move backward in the file until a +P is entered. The
forward direction is the default until changed by a -P entry.

Although not displayed on the Edit main cammand line, this cammand is
displayed on the secondary Edit cammand line accessed by typing a ? from the
Edit main oammand line.

M(rgn (Margin Command)

The Margin cammand adjusts a paragraph as closely as possible (without
exceeding the margins) to the margins set in the Enviromment. The Margin
camand is initiated by typing an M from the Edit main command line with the
cursor positioned samewhere within the paragraph to be adjusted. Although
not displayed on the Edit main cammand line, this cammand appears on the
Edit secondary cammand line, accessed by typing a ? fram the Edit main
camand line.

A paragraph is defined as any text occurring between two blank lines.
Additionally, a paragraph may delimited by the use of the Command Character
as set in the Envirorment. In that case, the Cammand Character appearing as
the first nonblank character on a line causes the Margin camnand to regard
the line as a blank line. Therefore, the Margin cammand begins the
paragraph on the line immediately after the line containing the Command
Character and adjusts the text until the next blank line or line beginning
with the Command Character is encountered.

The Margin cammand adjusts one paragraph at a time and is totally dependent
on the right, left, and paragraph margins set in the Envirorment.

To margin a paragraph, the cursor is placed somewhere within the paragraph,
and an M is typed. The Enviromment setting for A(uto indent must be false
and the setting for F(illing must be true. The screen goes blank while the
Editor is readjusting the paragraph. For a long paragraph, several seconds
may elapse before the paragraph is redisplayed.

In breaking lines to avoid exceeding the right margin, the Margin command

uses spaces or hyphens within words as breaking points. All other characters
in sequences are considered to be words. Also, the Margin cammand may campress
groups of spaces into single spaces.

Figure 3-7 gives two examples of the Margin cammand used with different

margin settings. Figure 3-8 gives an example of the Margin command where
the Cammand Character is used to delimit paragraphs.

Page 3-29

>Edit: A(djst C(py D(lete F(ind I(nsrt J(mp R(place Q(uit X(chng Z(ap ?
{The original text of the paragraph appears below.}
The Margin cammand is executed by typing an M when the cursor is in the

paragraph to be margined. The Margin cammand adjusts only one paragraph
at a time and aligns the text to the specifications set in the Enviromment.

The Margin cammand is executed by typing an M when the
cursor is in the paragraph to be margined. The Margin
camand adjusts only one paragraph at a time and aligns the
text to the specifications set in the Environment.

The Margin cammand is executed by typing an M when the cursor is in
the paragraph to be margined. The Margin cammand adjusts
only one paragraph at a time and aligns the text to the
specifications set in the Enviromment.

Figure 3-7. Two Examples of the Margin Command.

Page 3-30

.
-

~ f a1/
Flind Ii{nsrt

']

TIL L, £ a2 —— ~
>Edit: A{djst C{py D{let

{The text below is the original text before the Margin
cammand is executed.}

“Baud Rate
To set the baud rate for Port B using the H2 operating system with

the SBlodd, execute BAUD, a new program.
“Execution of BAUD causes a menu of baud rates for serial Port B to

be displayed. Select the number that corresponds to the appropriate
baud rate.

“Baud Rate
To set the baud rate for Port B using the H2

operating system with the SB16dd, execute BAUD, a

new program.
“Execution of BAUD causes a menu of baud rates for serial Port B to

be displayed. Select the number that corresponds to the appropriate
baud rate.

Figure 3-8. Use of the Margin Cammand with Command Character.

S(et (Set Command)

The Set command offers two options: set markers or set enviromment. The Set
camand is initiated by entering an S from the Edit main cammand line.
Although not displayed on the Edit main cammand line, this cammand appears
on the Edit secondary cammand line, accessed by typing a ? from the Edit
main cammand line.

Page 3-31

The following praompt appears after the S is typed.

|>Set: E(nviromment M(arker <esc> I

SET MARKER

Often in a long file the ability to jump to specified positions is a
convenience. By setting markers in a file, the cursor can be moved quickly
to those markers (Jump cammand). Markers can also delimit text in one file
that is to be copied into another file (Copy cammand).

To place a marker in-a file, the cursor is moved to that position and SM for
S(et M(arker is entered. The following prompt appears:

| Set what marker? |

The name entered may be any length, however, at most, eight characters
are recorded as the marker name. If the marker already existed, it is reset.

Only ten markers are permitted in a file at any one time. On typing
Mzzz<ret>", if ten markers exist in the file, the following prampt and
display appear, where the markers are named aaa through jjj. If the
eleventh marker is one named already, the new marker is placed over the old
one and no overflow prampt appears. For example, if "SMaaa<ret>" is entered
at marker eleven, no overflow condition exists.

Marker ovflw. Which one to replace?
0) aaa
1) bbb
2) ccc
3) ddd
4) eee
5) fff
6) g9g
7) hhh
8) iii
9) 333

Page 3-32

when a nurnber between £ and

. . .
setting the desired marker.

crder to add another one.

s entered, that space is available fo

.
i r
Thus, cne existing marker must be removed in

A marker may be removed by deleting the text that contains the marker.

SET ENVIRONMENT

The Set Environment cammand allows the editing enviromment to be controlled
by the user. This command offers options pertaining to text formatting;
also the Set Enviromment cammand displays other information regarding the
file being edited.

The Set Enviromment cammand is initiated by typing an S and then an E (or an
SE) fram the Edit cammand line. A display similar to the following
appears:

>Environment: {options}<etx> or <sp> to leave

A(uto indent True

F(illing False

L(eft margin 0

R(ight margin 79

P(ara margin 5

C(amand ch °

T(cken def True

Patterns:
<target>= ' ', <subst>-

Markers:

|

|

|

|

|

l

|

|

l

| nn bytes used, nnnnn available
|

|

|

|

|

: ORANGE PEACH
|

o —— o S v St S — — ——— T— —— —— — — t—

The options shown in the upper part of the display are changed by entering
the first letter of the option name and the new value.

These options are explained in the following paragraphs. The number of
bytes used in the file is shown as is the number of bytes remaining for
use. The creation date of the file and the date that the file was last
written are also shown.

The "Patterns" information does not appear unless a Find or Replace has been

campleted during the editing session. The "Markers" information is not
displayed unless markers exist in the file.

Page 3-33

A(uto indent - When true, the auto indent option causes each new line
inserted to be aligned (or indented) with the first nonblank character
of the previous line. When false, this option causes the lines to be
aligned with the left edge of the screen or begun at the Left margin
set in the enviromment. This option affects the results of the Insert
and Margin commands.

In order for an Insert to autamatically remargin at the part of the
paragraph following the insertion, A(uto indent must be set to false
and F(illing must be set to true. Likewise, the Margin cammand
requires those settings in order to adjust an entire paragraph.

To set the A(uto indent option, either AT or AF is typed. If any
character (or numbers other than T or F is entered, a beep sounds
and "T or F" appears to the right of the option. Also, the screen
is frozen until an appropriate choice is made.

F(illing - When true, the lines of text are autamatically filled with
words up to the right margin set in the Enviromment. Lines are broken
between whole words (at spaces) or at hyphens only.

When false, the margins set in the Environment are ignored; the text
is spaced as entered.

This option affects the results of the Insert and Margin cammands. The
Insert camand does not cause remargining of the paragraph text following
an insertion if F(illing is false. Likewise, the Margin cammand cannot
adjust a paragraph if F(illing is false.

To set the F(illing option, either FT or FF is typed. If any character
(or number) other than T or F is entered, a beep sounds and "T or F"
appears to the right of the option. Also, the screen is frozen until
an appropriate choice is made.

L(eft, R(ight, and P(aragraph Margins - These margins are set by entering
an L, an R, or a P plus an unsigned integer less than or equal to 84

(the maximum screen width supported by the Editor) and a <space> or
<ret>. These settings are used by the Insert and Margin commands in
adjusting a paragraph. These settings also affect the center and
justify options in the Adjust cammand.

Page 3-34

Fo) PSSR R PRy I Me 2 v meeenmend ol s o Ll el e Ll 'r....,....l_ —_ K wmme o am
QAL a1 I d.ctf:‘L = 1lill>S [T 1Y 1 o0 1L - L uic diasci et al u L'n.Lg.Lll
Commands. (See the discussion of Command Character in the Margin Cammand

section.) When the Command Character is the first nonblank character on a
line, that line is not siubject to reamargining by the Insert or Margin
camands.

The default Cammand character is the caret (”). This character appears
as an up arrow (") in the Enviromment display but prints as a caret.

T(oken default — The setting of this option affects the search type used
of the Find and Replace cammands. (See those sections for additional
explanation.)

If the T(oken default is set to true by entering TT, the default search
for the Find and Replace cammands is a token search. If the T(oken
default is set to false by entering TF, the default search for the Find
and Replace cammands is a literal search.

If any character (or number) other than T or F is entered, a beep
sourds and "T or F" appears to the right of the option. Also, the
screen is frozen until an appropriate choice is made.

V(erify (Verify Command)

The Verify cammand verifies the contents of the work file and the Editor
status by redisplaying the screen. The Verify cammand is initiated by
typing V from one of the Edit command lines. Although not displayed in the
Edit main caommand prompt line, this cammand appears on the secondary Edit
camand line, accessed by typing a ? fram the Edit main cammand line.

This cammand redisplays the text window and attempts to adjust the window so
that the cursor is at the center of the screen.

Page 3-35

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

Page 3-36

3.2 ADVANCED EDITOR

The Advanced Editor is an enhanced version of the Screen-Oriented Editor
that offers additional capabilities and some efficiencies in text
manipulation. The Advanced Editor is included in the H3 III.@ Operating
System as an alternative to the regular Screen-Oriented Editor, which is
named SYSTEM.EDITOR on the operating system.

If the Advanced Editor is to be used as the system
editor, the Screen-Oriented Editor can be renamed,
and then the Advanced Editor can be named
SYSTEM.EDITOR. In that case, the Advanced Editor is
called when an E (for E(dit) is entered from the
system camand line.

The Advanced Editor is directed to experienced users of the MicroEngine.
This editor is intended for use in a program enviromment where large
programs with multiple include files are used. The Advanced Editor allows
editing of different files without the need to go to the Filer to change or
save the work file. In addition, the Advanced Editor supports a macro
capability so that powerful strings of editing cammands can be invoked by a
one character cammand.

Because the Advanced Editor is self-documenting (interactive documentation),

‘Section 3.2.1 presents the sections of the interactive documentation as they
appear on the terminal display. Section 3.2.2 summarizes the extentions and
differences between the Screen—Oriented and Advanced Editor commands.

3.2.1 Interactive Documentation

The following information appears on the display when the interactive
documentation is accessed. In the Advanced Editor, the documentation is
accessed by typing a '?' fram the edit cammand line. The various sections
and subsections of the interactive documentation are listed continuously in
this book, separated by dotted lines.

When accessed interactively, the various sections are chosen by the user
depending on the information required.

Page 3-37

Advanced Editor Commands

Moving J (ump [B(egin, E(nd, M(arker, A(djourn 1],
<left>, <right>, <up>, <down>, '=',
F(ind, W(ord, P(age, <space>, <ret>, <tab>, [directional]
>, ', '+ or ', Y, -t [set direction]
Formatting A(djust, M(argin

Text changing D(elete, I(nsert, R(eplace, X(change, Z(ap,
C(opy [B(uffer, F(ile 1]

Control C(opy [C(ontrols 1,
S(et [E(nviromment, M(arker, A(djourn, *(macro],
V(erify [redisplay screen 1],
Q(uit [buffer action, next editing option 1],
‘2! [interactive documentation]

Interactive Documentation

Interactive documentation in the Advanced Editor is requested by '?' at most
editor prompts that select cammand options. '?' at the outer level displays
all cammands and allows selection of the Advanced Editor introduction, this
section, or specific documentation on any outer level command. '?' at any
other editor prompt displays documentation for that cammand.

Documentation is organized into sections, same of which have subsections
presenting further information. After any section other than the outer level
section is displayed, the next option prampt offers <esc> or selection of
the "parent" section or any subsection of the current one. The prompt after
the outer level section offers the options mentioned above.

<esc> returns to the editor prampt where the '?' was initially entered.
Parent and subsections are selected by moving the cursor to the section
title and typing <etx>. The cursor is intially placed on the Parent title
(the section of which the current one is a subsection).

If a section requires more than one screen page, the following prompt occurs
before scrolling to the next page. If reading this section for the first
time, please type <etx>.

<esc> or <etx> to continue
After scrolling has occurred, typing <ret> to any subsequent prompt within

the section causes it to be redisplayed fram the start. This special option
does not appear in prampts.

Page 3-38

Advanced Editor Introduction

The Advanced Editor is an extension of the Screen-Oriented Editor. It
increases the range of text which may be conveniently edited in one session,
while providing more flexible editing control of the current file. A summary
of areas of added capability includes

- improved file control and protection,

- refinement of same basic editor cammands and addition of others,
- user—defined editing cammands by use of a flexible macro facility,
- multiple file editing with Pascal work file control cammands, and
interactive documentation.

To read about interactive documentation, type <etx> to return to the camplete
cammand display and then type '?'. Or type any Advanced Editor cammand listed
there for specific cammand documentation. Select the File Control section
here for discussion on expanded editing controls and multiple file editing,

or the Introduction to Macros to find out how to define your own editing
cammands.

File Control and Protection

UCSD Pascal text files include a header record that stores editing control
information for the file. The Advanced Editor adds new control capabilities,
including user—defined editing macros, an adjourn (automatic return) point in
the file and flexible tab stops. It allows copying controls between files
and initializes new files to a standard set of controls provided by the user.

Multiple files may be edited during one session, and for each file the
Advanced Editor records whether or not the text and/or the editing controls
have been changed. This status is shown with the current file name in the
S(et E(nvironment display and by the Q(uit display.

The Q(uit cammand presents edit buffer action and next edit options according
to this information. It also guards against inadvertent loss of editing
changes. The Pascal work file may be changed by the buffer action, or files
other than the work file may be edited without affecting the Pascal work file
status.

Page 3-39

Editing Controls

The edit-controls header in each text file contains the controls defined
below. The Advanced Editor has added control capabilities; this change is
reflected by a different header version nurber from the two values used by
the Screen-Oriented editor and the L2 editor. .

Controls can be copied to and fram text files and "edit-controls only" data
files. These data files contain only the controls header and may be used to
store the different controls appropriate for documents, program source, etc.
One such file, '*ADV ED.CONTROLS', is assumed to be a user's standard set of
controls. The C(opy C(ontrols cammand accepts the name '*' as shorthand for
this file.

The Advanced Editor automatically initializes any new file or a text file
with an old control version fram the standard controls '*ADV ED.CONTROLS'.
If it is not present, the file contains no markers or macros, and the other
control values are set to default values defined below. Controls other than
Macros, Markers, and Adjourn are changed by S(et E(nvironment.

Macros - User-editing cammands defined by S(et *(macros. See 'Introduction
to Macros' for further discussion.

Markers - Up to ten, named, cursor locations in the file. Names are eight
characters in significance. Markers are set by S(et M(arker and
jumped to by J(ump M(arker. If text containing a marker location is
deleted, the marker is removed. The C(opy F(ile cammand allows use
of markers to delimit the text to be copied. Markers are related
to the text in the file and are not copied by C(opy C(ontrols.

Adjourn - An explicit location to which the cursor is positioned on entry. It
is set by S(et A(djourn and jumped to by J(ump A(djourn. Its default
location is the start of the file. If text containing the Adjourn
location is deleted, it is reset to the start of the file. Like
markers, this value is not copied by C(opy C(ontrols.

Tabs ~ User-selected tab stops at any column. Tabs are jumped to by the
directional moving cammand <tab>. Default tab stops are @,8,16, ...

Auto-indent - A Boolean affecting Insert. If true, new line indentation is
aligned with the previous line; otherwise, the Left Margin is used.
Default is true.

Filling - A Boolean affecting Insert. If true, <ret> is automatically added
to keep text within the Right Margin. The Margin cammand requires
Filling true. Default is false.

Token def - A Boolean affecting Find and Replace. If true, the default pattern

match mode is token; otherwise, literal. See 'Find cammand' section
for further definition. Default is true.

Page 3-4

left, Paragrapgh, Right Margin - integers af fecmrg Insert, Adijust, and
Maragin. Values are colum nunbers in the ranage @..79 'Fr\r an 80—

Lmv Vihd WA ke N NSl CALLM L - K. B LAana
colunn terminal. The Paragraph margin is the indentation of the
first line. Defaults are @,5,79.

Quit Command

The Quit cammand normally displays the current file name, whether or not
controls and/or text have been changed and shows two prompts: buffer action
and next options. Buffer action refers to options available regarding the
current edit buffer, and next options offer the user a choice of subsequent
actions, including editing another file. No action is taken by the Advanced
Editor until a next option other than backspace is entered.

The buffer action prompt is presented only when the text in the file has been
changed. If no changes are made, Quit displays 'no changes to' file name
instead of the buffer action prampt and offers the next option prampt. If
only control changes are made, Quit similarly displays 'Control changes only'
with the file name and will update the changes in the source file by default.

The user may backspace from the next option back to the buffer action. For
example, if default update of control changes is not desired, the changes may
be discarded by backspacing fram the next option to the buffer action and
then entering D(iscard.

To protect against inadvertant loss of editing changes, the Advanced Editor
always requires confirmation before text changes are discarded.

If a code file with the same name as the text file exists, it is removed when
text changes are written to the source file. The code file is not removed if
only control changes are written to the source file.

Page 341

<file-name> Buffer Action ?
< status >

'$', <esc>, <ret>, '?'
U(pdate

S(ave

W(rite to a file
D(iscard

The action to be taken on the edit buffer is specified by this prompt. The
source file name (or 'new file') and its status are shown to the left of the
prampt. Status indicates whether or not text and/or controls changed.

<esc> - Leaves the editor.
<ret> - Returns to editing.
D(iscard - Discards edit buffer and offers the next option.

If text changes are made, <esc> and D(iscard confirm:
'Discard changes to <file-name> ? '
N(o requires respecifying the buffer action.

‘s’ - Writes the buffer to the source file without altering the Pascal
work file. This option is not available for a new file.

U(pdate - Writes the buffer to '*SYSTEM.WRK.TEXT' and updates Pascal work
file status to reflect this file as the current version, with the
source file as the base file.

S(ave - Writes the buffer to the source file and updates Pascal work file
status to reflect the source file as the base file. Existing
updated versions of the Pascal work file are removed. For a new
file, the base file name is entered after the prampt

'Save as what file ? '
W(rite - Writes the buffer to the file name specified after the prampt
'Output file ? '
If the file name is not a disk file (for example, 'PRINTER:'),
the file header containing the edit controls is not written.

If an updated work file ('*SYSTEM.WRK' - text and/or code) exists whose
base file is different from the current source file, U(pdate and S(ave
must remove it. In this case, both confirm:

'Discard current work file (source = <file-name>) ? '
N(o requires respecifying the buffer action.

Page 3-42

<esc>, <ret>, <left>, '?'
<file-name>, '*'

Next Option ?

The action to be taken next is specified by this prompt. No buffer action is
taken wtil a response other than <left>, or backspace, is given. After the
next option is specified, the buffer action (if any) is performed before the
requested next action.

<esc> - Leaves the editor.
<ret> - Returns to editing.
<left> - Goes back to the buffer action prampt for respecification.

<file-name> -~ Causes the text file name entered to be edited next.

Pkt — Causes the most recent version of the Pascal work file to be
edited next. This file is '*SYSTEM.WRK.TEXT' if present or the
base file otherwise. This option is not offered if no Pascal
work file exists.

If a <file-name> is entered but the file is not present, Quit prampts
'Create <file-name> ? '

If the answer is Y(es, a new file with the given <file-name> may be created

next. N(o requires respecifying the next option.

Editor Input Conventions

Outer level editor cammands are selected by typing single terminal keys or

a special Prefix and a single key. Each key except the Prefix may be
associated with a primary and an alternate cammand, and either cammand may be
a basic editor cammand or a user-defined macro cammand. Typing a key invokes
the primary cammand and typing Prefix key invokes the alternate cammand. See
'Introduction to Macros' and its subsections for further discussion.

Upper and lower case letters are treated as the same key at the outer level
and in all cases of single char cammand options.

Basic editor cammands cammonly prampt the user to enter a name or select a
cammand option. Command options are given by typing one of the displayed
single chars. The entered char is not interpreted as a macro, although a
previously invoked macro may include the single char response in its macro
string.

Page 3-43

File or marker names are entered by typing the name and <ret> to terminate
the input. <left>, or backspace, is used to back up over the previous char.
 backs up over all the previous input. The particular cammand is
aborted if the name is empty when <ret> is typed, or if <esc> is typed at any
time before <ret>. The standard suffix '.TEXT' does not need to be typed for
text file names; it is appended to the name as needed.

User confirmation of a particular action and other yes or no questions are
offered by various editor cammands. These are answered by Y(es, N(o, or
<esc>. Normally <esc> is the same as N(o; differences to that rule are
explicitly noted in the documentation.

Introduction to Macros

Macros are user—defined editing commands. Each macro is a key which maps to
a string of up to 25 characters. The string defines the editing action that
takes place when the macro is used. Macro camnand keys are recognized at the
outer level of the editor and in places where moving cammands are valid
(within D(elete mode for example).

The macro string may include basic editor cammands, responses to prampts that
result from those cammands, or macro keys (including recursion on the macro
itself). Macros may also be defined to include interactive input. A special
char (shown as <user>) may be put into the macro string. When this char is
encountered, input is taken interactively until <etx> is typed.

Any key on the terminal may be defined to be a macro cammand. To increase
naming flexibility, the Advanced Editor can recognize two cammands for any
key: the primary and alternate cammands. Either of the cammands associated
with a key may be a macro or a basic editor cammand. For example, a macro
named 'D' may be defined as the alternate 'D' cammand, where D(elete remains
the primary cammand, or vice versa.

A special "alternate cammand" key called the Prefix is used preceding any
cammand key to indicate the alternate cammand for that key. The Prefix key
is specified by the user and may be changed at any time.

Macros are stored in the edit controls header of each text file, so that any
file may contain its own set of macros. Easy copying of macros among files
is provided by the C(opy C(ontrols cammand, as well as the capability for
each new file to be initialized from a standard set of macros (discussed in
the 'Edit Controls' section).

Macros are displayed, defined, and removed by the S(et *(macros cammand. This
camand could not be named S(et M(acros because that would have conflicted
with S(et M(arker.

Page 3-44

- Ia) 3
Macro Cammand Invocation

Macro cammands are recognized at the outer level and where moving commands
are valid. The macro string is "expanded" into a special input buffer, and
input is taken fram the macro expansion until it is exhausted. Nested macro
keys are similarly expanded when encountered, including recursion on the
original macro. Dynamic macro expansion may be up to 255 characters.

When the <user> input char is encountered in the macro expansion, the active
macro is suspended, and input is taken interactively from the user. This mode
is terminated by typing <etx>, causing resumption of the macro. The <etx> is
not read by any editor cammand; it only switches input mode.

The Prefix key is uﬁed within a macro to specify an alternate cammand just as
it is interactively. The following example shows definition of a macro as
the primary cammand such that a basic editor command becames the alternate
camand. The example also illustrates a <user> input parameter and nesting
of macros. The default Prefix value '@' is used in the example.

Macro Definition Explanation

s e e s e s e e e

@B JB J(ump B(egin

F @B@F/<user>/ @B invokes the jump begin macro, @F is the alternate
F camand (the standard Find) and <user> allows
the pattern to be typed interactively. After the
terminating <etx> is typed, the closing delimiter
/ is read from the macro to initiate the find.

The outer level input 'Fwhat ever<etx>' jumps to the beginning of the file
and finds the pattern 'what ever'.

Macros: D(efine, R(emove, C(ontrol-chars, '?', Q(uit

The macro enviromment accessed by S(et *(macros displays the above prampt,
the current Prefix and <user> characters, how many macros are defined and
available, and all the currently defined macros. Prefix and <user>
characters may be changed by the C(ontrol-chars cammand; a total of 20
macros may be defined for any file. Macros are always displayed with the
Prefix if they are alternate cammands:

<key> = <macro-string> or @<key> = <macro-string>

Page 3-45

The <macro-string> shows printable characters directly and nonprintable
characters as <name> or CIRL <key>. Common keyboard characters are shown in
the first form (<ret>, <left>, <etx>). Otherwise, they are shown in the
CTRL_ form, where <key> is the appropriate ASCII char typed with CIRL.

R(emove prompts 'Remove what macro (CTRL E to escape) '; the macro to be
removed is entered (with the Prefix if an alternate cammand). See 'Macro
Control Characters' section for explanation of the macro escape key.

Controls: P(refix, A(ccept, E(scape, B(ack-up, U(ser-input, '?', Q(uit

Q = Prefix char

CIRL A = Definition accept char
CTRL E = Definition escape char
CIRL B = Definition back-up char

CIRL U = User interactive-input char

The C(ontrol-chars cammand displays the above prampt and control-char
status. The values shown here are the defaults. Each may be changed by

entering the desired control-char name, for example A(ccept, and then the
new value.

The Prefix and <user> chars are discussed in 'Introduction to Macros'. Both
can be included in defined macros, and when their values are changed by this
camand, all current macros are autamatically updated to the new value.

The other three control characters are used in defining macros. The escape
char may also be used to abort the R(emove macro command or any of the above
control-char change cammands.

Define what macro (CTIRL E to escape)

The macro <key> is entered, preceded by the Prefix if it is to be an
alternate cammand. The definition escape char may be used to abort the new
definition. If the <key> is not an existing basic editor cammand or macro,
Define shows the control characters used for definition and the new macro:

CTRL A accept, CIRL E escape, CIRL B back-up, CTRL U user-interactive-input
<key> =

The macro string is then entered. The accept char is used to terminate the

definition; the escape char to abort it; and the back-up char backspaces
over the last char entered (default values are shown above).

Fage 3-406

If the new macro <key> is a basic editor cammand or a macro, Define prampts
as fllows before the macro string is entered:

A LVl UWD AMeLUL © Wie aliwa D i ey

Override <editor cammand> ? (for example 'Override F(ind ?')

Replace macro ?
<key> = <macro-string>

These prompts may be answered Y(es, N{o, or <esc> (the normal editor <esc>).
Y(es causes the <editor cammand> to became the alternate <key> cammand or
implicitly removes the previous macro. <esc> aborts the definition. If the
new macro was not initially prefixed, N(o prampts

Prefix <key> ?

If Y(es is entered, <key> is defined as an alternate cammand; otherwise,
the new definition is aborted.

Set: E(nvironment, M(arker, A(djourn, *(macro, '?', <esc>

The Set cammand offers access to edit controls according to the above prampt.
See subsections for Set Enviromment and Set Macro cammand discussions.

M(arker - Prompts for a marker name:

'Set what marker? '
The marker entered is set to the current cursor location. The
marker name may contain any char and is significant through eight
chars. A file may have up to ten markers. If no markers are
available and the entered marker does not already exist, the ten
existing markers are displayed with the prampt

'Marker overflow: enter name of marker to replace or <esc>
An immediate <ret> or <esc> before <ret> for either prampt aborts
the Set Marker cammand.

A(djourn - Sets the adjourn location to the current cursor position. This
causes the cursor to be automatically set to its current position
when the source file is next edited.

Page 3-47

Environ: <option letters>, S(et-tabs, '?', Q(uit

The edit control enviromment accessed by S(et E(nviromment displays the above
prampt, the Advanced Editor version, edit control values that may be changed
by environment options, the source file name and edit buffer status, and
other control information. See 'Edit Controls' section for definition of
control values.

<option letters> refer to the first letters of the edit controls shown at the
top of the screen. Their values are changed by entering the appropriate char
and the new value. Auto indent, Filling, and Token def are Booleans; new
values are entered as 'T' or 'F'. Command ch is set to any char value.

Left, Right, and Paragraph Margins are integers in the range [0..84].

The source file name is displayed; if text and/or edit controls are changed,
the change status is shown to the right of the file name. Also displayed is
the number of edit buffer bytes currently used and available, and the date
the source file was created and last changed.

If markers exist in the file, their names are displayed in the order in which
they occur (from the start to the end of the file). Find/Replace patterns are
displayed if they have been defined. <target> is the last Find pattern or
Replace source pattern, and <sub> is the last Replace substitute pattern.

The numnber of <target> replacements by <sub> is shown after Replaces.

Tabs are displayed as a full line of '-' and 'T' chars, where 'T' indicates a
column with a tab stop. The S(et-tabs option positions the cursor on colum @
of the tab line and prampts as follows:

Tab stops: Q(uit, <left,right>, S(et, R(eset, Z(ero, C(ol # &

T T -T T -T ~T ~T -T T T

The cursor column position is changed by entering an optional repeat-factor
with <left> or <right>, or by entering C(ol and the new colum value. S(et
and R(eset define and remove a tab stop at the current column; 'T' and '-'
are also recognized for S(et and R(eset, respectively. Z(ero resets all tab
stops from the current colum to the end of the line.

Page 348

Copy: Bluffer, F(ile, Clontrols, '?', <esc>

Text and editing controls are copied according to this prompt. The F(ile and
C(ontrols options provide copying fram the current edit buffer to external
files or from external files into the edit buffer. See the respective sub-
sections for further discussion.

The B(uffer option specifies copying text from the copy buffer to the current
cursor location. The copy buffer contains the text last inserted, deleted or
zapped. It contains the deleted text if delete is terminated by <etx> or
the text that would have been deleted when delete is terminated by <esc>.

The two delete cases are effective ways to move and copy text respectively.
The copy buffer is not changed if insert is terminated by <esc>.

If the copy buffer contains entire lines, all lines are copied with their
original indentation before the line in which the cursor is located. If the
copy buffer contains partial lines, it is copied to the exact location of
the cursor and the line into which it is copied retains its current
indentation.

Copy controls F(ram T(o another file, '?', <esc>

Editing controls are copied according to this prampt. The first option
specifies the direction of the copy: F(ram another file into the current edit
buffer or T(o another file from the edit buffer. The copy controls cammand
prampts according to the specified direction

TO what file ('*') 2 or FROM what file ('*') ?

where '*' stands for the user's standard set of controls, '*ADV ED.CONTROLS'.
The file name entered may refer to a text file or an "edit-controls only"
data file, such as '*ADV ED.CONTROLS'. See 'Editing Controls' section for
further information on edit controls files.

When the cammand is C(opy C(ontrols T(o and the file does not exist, an edit
controls data file is created with the entered file name. This case allows

storing a set of editing controls for subsequent copying by other files. It
is the means of initially creating the standard controls file.

Markers and the Adjourn location are directly related to the text in the file
and are not copied by the copy controls cammand.

Page 3-49

Copy text F(rom T(o another file, '?', <esc>

Text is copied according to this prompt. The first option specifies the
direction of the copy: F(rom another file into the current edit buffer or
T(o another file from the edit buffer. The copy file cammand prompts
according to the specified direction

TO what file (from <marker-spec>) ? or FRM what file (<marker-spec>) ?

The copy TO option creates a file with the entered file name containing text
from the current edit buffer. The optional <marker-spec> may be used to
delimit the text that is written. The copy FROM option copies text fram the
entered file to the current cursor location; in this case, the optional
<marker-spec> refers to markers in the external file.

The <marker-spec> includes marker names enclosed by '[' and ']':
<marker-spec> = [M,] - from marker M to the end of the file

[, M] - from the start of the file to marker M

[M1,M2] - between markers Ml and M2 (order doesn't matter)
C(opy F(ile T(o allows a fourth <marker-spec> form:

[M] = between the current cursor location and marker M
In all cases, the copy file cammand copies entire lines. Text is copied from

the start of the line containing the initial marker (cursor) to the end of
the line containing the final marker (cursor).

Page 3-52

Non-Directional Moving Commands

These moving cammands are not affected by the current direction. The arrow
keys may be preceded by a repeat—-factor to specify the number of colums or
lines to move. The Jump cammand is discussed in a separate section.

<left> - moves the cursor x colums left | x=1

<right> - moves the cursor x colums right | or

<up> - moves the cursor x lines up | x = repeat-factor
<down> - moves the cursor x lines down |

<left> and <right> keep the cursor within lines; <left> moves fram the start
of a line to the end of the preceding line and <right> moves from the end of
a line to the start of the next line. <up> and <down> maintain the current
colum in the line to which the cursor is moved.

‘=1 - moves the cursor to the start of the text last Found, Replaced,
Inserted, or Adjusted; the Zap cammand deletes text fram ‘=' to
the current cursor position.

Jump: B(egin, E(nd, M(arker, A(djourn, '?', <esc>
The Jump cammand repositions the cursor according to the above prompt:
B(egin - Jumps to the start of the first line in the file.

E(nd - Junps to the end of the last line in the file.

M(arker = Jumps to the location of the marker entered in response to
'‘Junp to what marker? '
An immediate <ret> or an <esc> before <ret> aborts the jump.

A(djourn - Jumps to the adjourn location in the file. This is the
initial cursor location when the file is next edited.

Page 3-51

Directional Moving Commands

These cammands move the cursor in the current direction by units depending on
the particular move — chars, lines, etc. Each directional moving cammand may
be preceded by a repeat-factor that specifies the number of units to move.
F(ind is also a directional camnand; it is discussed in a separate section.

<space> - moves chars (columns)

<ret> - moves lines and positions the cursor on the start of the line

<tab> - moves to tab stops

W(ord - moves words and positions the cursor on the start of the word —-—
words are sequences of chars separated by <space>s and <ret>s

P(age - moves screen display pages and redisplays with the cursor on the

same relative screen line on which it was initially located
The default direction is forward; the following cammands change direction

'<', ', and '-' set direction backward, or
'>', '.! and '+' set direction forward.

>Find[r]: '?' L(it <target> => or >Find[r]: '?' T(ok <target> =>

The Find cammand is a directional moving ocammand which positions the cursor
to the end of a specified <target> pattern. Find offers two pattern matching
modes: Token and Literal. The Token def control value determines the default
mode; the other mode is selected by entering L(it or T(ck preceding the
<target>. The <target> pattern used by the last Find can be specified by
entering 'S' (for Same) instead of the full <target>.

Literal mode causes any occurrence of the <target> pattern to be found exactly
as entered, including multiline patterns. Token mode causes isolated
occurrences of tokens to be found. A token is any punctuation char or a name
(a sequence of alpha, numeric, and ' ' chars.) Names are delimited by <ret>,
<space>, or punctuation tokens. Multitoken patterns can be specified.

A repeat-factor is used with Find to specify how many occurrences of the
<target> pattern to find before stopping. The default value of 1 causes the
next <target> pattern in the current direction to be found. The Find prompt
shows the repeat-factor, indicated by '[r]' above.

<target> Specification

The <target> pattern is enclosed within a set of identical delimiters.
The first char entered defines the delimiter, which can be any char other
than a token name char. The <target> pattern is the chars entered
between (but not including) the delimiters. L(it or T(ok is entered
before the opening delimiter to switch the default pattern mode.

Page 3-52

<left> backspaces over the preceding <target> char, and backs up

to the start of the <target>.

'S' is entered instead of the <target> to indicate the same pattern. All
occurrences of a given <target> can be found by entering the full <target>
initially and 'FS' to find subsequent occurrences. L(it or T(ok must be
entered as needed with each Find cammand; for example, if Token def is
true and the initial Find is 'FL<target>', subsequent literal Finds must
be entered as ‘FIS'.

Aborting Find by <esc>

<esc> can be entered at any time before the closing delimiter to abort
the Find cammand; in this case, the previous <target> is not changed.
<esc> can also be entered to abort the Find during the <target> search.

Multiple-File Finds

The current <target> pattern is preserved throughout an editing session.
This feature allows entering a pattern once, using the Q(uit <file-name>
option, and using 'FS' to search for it in other files.

Literal / Token Mode Examples

The literal <target> /is/ is found in any of the following text sequences:
'isolated’, 'find is safe', or 'distance'.
A token mode Find of /is/ finds only the middle occurrence. A token Find
of /x is/ also finds 'x is ' or 'x,
is not'.
A literal find of /x is/ finds neither occurrence.

Adjust[xx]: L(just, R(just, C(enter, <arrows> {<etx> to leave}

The Adjust cammand allows lines of text to be shifted right or left according
to the above prompt. Options other than <up> and <down> refer to the line in
which the cursor is located. To adjust a sequence of lines, one line is
adjusted; then <up> or <down> is used to adjust the line above or below by
the same amount. The cursor colum is shown in the prampt throughout the
Adjust command (indicated by [xx] above).

Adjust mode is terminated by entering <etx>; <esc> can only be entered to
abort the Adjust cammand before any line adjustment is specified. Specific
adjust options are defined below; a repeat-factor can be used with the
<arrow> keys (x is used below to mean 1 or the repeat-factor).

Page 3-53

L(just =~ aligns the current line to the Left Margin

R(just - aligns the current line to the Right Margin

C(enter - centers the current line between the Left and Right Margins

<left> - shifts the current line x spaces left

<right> - shifts the current line x spaces right

<up> -~ adjusts x lines above the current line by the current adjust amount
<down> - adjusts x lines below the current line by the current adjust amount

Margin Cammand

The Margin cammand is used to adjust the paragraph in which the cursor is

located as closely as possible to the Paragraph, Left, and Right margins. A
paragraph is defined as any text occurring between two blank lines. A para-
graph may also be delimited by use of the Command Char appearing as the first
nonblank char on a line. In that case, the line is regarded as a blank line.

The first line of the paragraph is adjusted to the Paragraph margin; other
lines are adjusted to the Left margin. In breaking lines to avoid exceeding
the Right margin, the Margin cammand regards <space>, <ret>, and hyphen ('-')
as word delimiters. Also, the Margin cammand may campress multiple <space>s
into a single <space>.

Margining is normally used when Auto-indent is false and Filling is true;
if either value is not as above, Margin prompts

'Do you wish to margin this paragraph ? '
If the response is Y(es, the current paragraph is margined; otherwise the
Margin comnand is aborted. (Auto-indent and Filling also affect Insert).

All ocontrol values that affect Margin are accessed by S(et E(nvironment.

Insert: TEXT, <left>, <tab>, {<etx> to accept, <esc> to abort}

The Insert command allows general insertion of text into the edit buffer
according to the above prampt. The new text is inserted as typed at the
location of the cursor when Insert is entered. Insert mode is terminated
by <etx> to accept or <esc> to abort the insertion.

If Auto-indent is true, new lines are aligned with the preceding line; other-
wise new line indentation is the Left Margin. If Filling is true, <ret> is
automatically added to keep lines within the Right Margin. The following
special chars are interpreted as Insert control cammands; other nonprintable
chars are inserted as typed and displayed as '?'.

Page 3-54

<left> - backspaces over the preceding inserted char

 - backs up to the end of the preceding inserted line

<dcl> = backs up to the start of the current inserted line
(<dcl> is ASCII code 17 — nommally CTRL Q)

<tab> - inserts blanks up to the next tab stop on the line

The inserted text is available to be copied by C(opy B(uffer if accepted; if
Insert is aborted by <esc>, the current copy buffer is not changed.

Delete, Zap cammands

These two camnands delete text from the edit buffer. The deleted text is
available for subsequent copying by the C(opy B(uffer cammand.

Delete - Enters Delete mode; the current cursor position is recorded as
the anchor location and the following prampt is displayed

>Delete: < > QMoving cammands> {<etx> to delete, <esc> to abort}

All moving commands may be used in Delete mode, including direction
change. Text is deleted as the cursor is moved away from the anchor
and restored as the cursor is moved toward the anchor. Delete mode
is terminated by <etx> to accept or <esc> to abort the deletion. If
<esc> is entered, the text which would have been deleted by <etx> is
available for copying.

Zap ~ Deletes text between the cursor and the '=' location -- the start of
the text last Found, Replaced, Inserted, or Adjusted. If more than
80 chars are being zapped, Zap requires confirmation before deleting
the text.

>Repllr]: '?' L(it V(fy <target><sub> =>
or
>Repllr]: '?' T(ok V(fy <target><sub> =>

The Replace cammand finds a <target> pattern and replaces it with a specified
substitute. Replace extends the Find cammand by offering pattern replacement
capability. See the Find command section for discussion of all aspects of
<target> pattern search, including Token and Literal pattern matching modes.
Token def, accessed by S(et E(nviromment, determines the default mode.

A repeat-factor is used with Replace to specify how many <target> patterns to

replace by substitute patterns. '/' can be used with Replace to specify all
occurrences. The prampt shows the repeat-factor, indicated by '[r]' above.

Page 3~55

The Replace cammand searches for the <target> pattern in the current direction,
finds the specified number of occurrences, and replaces each occurrence with
the substitute pattern. User verification of each replacement is optionally
requested by entering V(fy preceding the <target> pattern. When verification
is selected, Replace offers the following prampt for each <target> occurrence

>Replace[r]: <esc> aborts, 'R' replaces, ' ' doesn't

<esc> is used to abort the Replace cammand. 'R' causes replacement of the
current <target> occurrence, and ' ' indicates not replacing it. The Replace
camand continues after both 'R' and ' '.

The <target> and substitute patterns are entered according to the rules
defined in the Find cammand section. The substitute pattern is indicated by
<sub> in the prompt. Each pattern is enclosed within a pair of identical
delimiters. The delimiters used for the <sub> pattern can be different fram
those used for the <target> pattern.

The options L(it or T(ok, and V(fy are entered before the <target> pattern or
between the closing delimiter for <target> and the opening delimiter for
<sub>. 'S' can be used for either pattern to indicate the same pattern as
the last Replace. The S(et E(nviromment cammand displays the current form
of both patterns and shows the number of <target> patterns actually replaced
after a Replace cammand is executed.

Xchange: TEXT, <left>, <right> {<etx> to accept, <esc> to abort}

The Xchange cammand allows existing chars in the current line to be exchanged
on a one-for-one basis by new chars being entered. New chars are exchanged
at the current cursor location and the cursor is moved right for each char
entered.

The <left> arrow, or backspace, moves the cursor and restores the original
chars. The <right> arrow moves the cursor over existing chars without
exchange. Xchange mode is terminated by <etx> to accept or <esc> to abort
the exchange.

If the cursor reaches the end of the line, the Xchange is implicitly
accepted and the Insert cammand is automatically invoked. This allows easy
extension of the length of the line or addition of new lines following it.

Page 3-56

Verify cammand

The Verify cammand redisplays the screen without moving the cursor. If no
repeat-factor is entered, the line containing the cursor is centered in the
redisplayed screen.

A repeat-factor is used with Verify to specify the redisplayed screen line
number for the line containing the cursor. This allows explicit control
over the amount of text that is shown before and after the cursor.

A repeat-factor in the range [2..height] is a valid line number, where
height is 23 for a normal 24 line terminal. Prompts are displayed on line @;
the default repeat-factor, 1, and other invalid values cause centering.

3.2.2 Comand Differences

The following summaries briefly describe the differences between specific
Advanced Editor cammands and the corresponding Screen-Oriented Editor canmands.
In most cases, the Advanced Editor camnand extends the capability of the
Screen-Oriented Editor cammand. The cammands are grouped as follows: moving
cammands, formatting cammands, text-changing cammands, and control cammands.

Refer to the appropriate discussions in Section 3.2.1 for details of the

Advanced Editor cammands and to Section 3.1 for discussions of the Screen-
Oriented Editor cammands.

Moving Commands

Several moving camnands are extended (or different) in the Advanced Editor.

Page 3-57

JUMP_COMMAND
In the Advanced Editor, the Jump cammand contains an additional option -

J(ump A(djourn - which repositions the cursor to the adjourn location in the
file.

FIND COMMAND

The Find camnand offers several additional features in the Advanced Editor.

l. A may be used to erase the characters backwards to the
beginning of the pattern.

2. BAn <esc> may be used during an attempted find action to abort
the search.

3. The response (a space) to the prampt '<target> not found...'
may be typed ahead or an <esc> may be used.

4. Repeated backward finds of a target (using FS) do not require
that the cursor be "manually" moved to the beginning of the
target in order to find the second occurrence of the target.

5. Find patterns are preserved across files in any given editing
session.

W(ORD COMMAND

This cammand is an additional cammand of the Advanced Editor that
repositions the cursor (directional) to the first nonblank character of the
next word. A "word" is defined as a sequence of characters not including a
<space> or a <ret>.

<tab> COMMAND

The <tab> camnand repositions the cursor (directional) to the next user-
specified tab stop. If the next tab stop is beyond the end or

before the start of the printed line, the cursor is still positioned at the
next tab stop.

In Insert mode, spaces are implicitly inserted from the initial cursor
location to the tab stop.

Page 3-58

Formatting Commands

Two Advanced Editor cammands that effect formatting of text are different
fram the corresponding Screen—QOriented Editor commands.

A(DJUST COMMAND

The Adjust camand prompt line shows the column-number location of the
cursor as shown below by “xx":

|>Adjust[xx]: L(just R(just C(enter <arrows> {<etx> to leave} I

The column number is displayed immediately; thus, A(djust <esc> may be used
to show the current cursor location.

M(ARGIN COMMAND

In the Advanced Editor if an M is entered and Auto-indent and Filling are
not set FALSE and TRUE, respectively, a prampt line appears as below:

| Do you wish to margin this paragraph? (Y/N) |

If a Y is entered, the current Auto-indent and Filling settings are
suspended; the paragraph is margined (Auto-indent and Filling are
temporarily set to FALSE and TRUE, respectively); and the original (saved)
settings for Auto-indent and Filling are restored.

Text-Changing Cammands

Some additional features are offered in three Advanced Editor cammands. The
additions to the R(eplace cammand are the same as those additions described
in the Find cammand listed in Moving Commands in this section.

X(CHANGE COMMAND

The Exchange command allows characters to be exchanged on a one-for-one
basis regardless of the initial cursor location within the line. That is,
the Screen-Oriented Editor cammand does not allow the cursor to be moved
left of the initial position; this cammand allows the entire line to be
changed. When an end-of-line is encountered, the exchanged text is
implicitly accepted, and the Insert cammand is automatically invoked.

Page 3-59

c(oPY F(ILE COMMAND

This cammand offers the choice of copying "from" or "to" a file. Also, a
list of marker choices is shown that allows copying (1) from a marker to the
end of the file; (2) from the start of the file to the marker; or (3)
between two markers. In the copy to a file, an additional choice is
offered: copy the text between the current cursor location and the marker.
The "copy to a file" option is a new feature of this cammand.

Control Commands

The Advanced Editor offers a new C(opy cammand option that copies editing
controls to or from a file. Also, the S(et E(nviromment cammand contains
additional features.

C(OPY C(ONTROLS COMMAND

This cammand copies the editing controls (for example, the standard set of
controls '*ADV ED.CONTROLS') fram another file into the current edit buffer
or to another file fram the buffer.

The Advanced Editor S(et E(nviromment cammand prampt line is shown below:

| Environ: <option letters>, S(et-tabs, '?', Q(uit |

These choices (1) allow the editing enviromment to be changed; (2) allow
tabs to be set; (3) allow interactive documentation to be viewed; and (4)
allow a return to editing.

When campared with the Screen-Oriented Editor cammand, this cammand displays
some additional information. The file name and status, <target patterns>
(even complex or multiline ones), and tab positions are shown.

The S(et-tabs option causes the cursor to be placed on colum @ of the tab
line as follows: ‘

| Tab stops: Q(uit, <left,right>, S(et, R(eset, Z(ero, C(ol # @ |

The tab stops are shown on the display as below (T is tab stop and - is not):

T T T T T T T -T T T

Page 3-6¢

The various S{et-tabs options are described in the following paragraphs.
Q(uit —- Terminates the tab setting operation.

<left,right> -— Moves the cursor over the tab line without changing the
tabs. A repeat-factor may be used. The colum number is
displayed as the cursor moves.

S(et, R(eset —— Changes the tab at the current column and advances to
the next tab stop (T). A 'T' is allowed for Set, and
a - is allowed for Reset.

Z(ero — Resets- or clears all tabs from (and including) the current column
to the end of the line.

C(ol — Allows a new column to be entered directly and positions the
cursor on the colum # (at the end of the prampt) where the
new colum is entered.

| NOTE |

'A colum number outside the range @..79 is not
allowed. For example, if the cursor is on colum
18, and an ll<- or 79-> is entered, the cursor is
not repositioned.

S(ET)

The *(macro and A(djourn options are enhancements to this cammand. The S(et
*(macro allows macros (user-editing commands) to be defined. The S(et
A(djourn option sets the explicit location to which the cursor is positioned
on entry to the file.

V(ERIFY COMMAND

The Advanced Editor enhancement to this command allows the user to specify the
redisplayed screen line number for the line to contain the cursor. That is,
use of a repeat-factor enables the user to explicitly control the amount of
text shown before and after the cursor on the redisplayed screen.

Page 3-61

Q(UIT COMMAND

The Advanced Editor Q(uit cammand offers the user additional choices regarding
the termination of an editing session. These options are divided into actions
possible with the edit buffer and the next actions to be executed. These

various choice are explained in detail in the Quit Command discussion in
Section 3.2.1.

Page 3-62

The L2 Bditor is a version of the Screen-Oriented Editor which allows
editing of files which are too large to fit into the main memory buffer.
This editor automatically produces a backup copy of the file being edited.
Because the 1.2 Editor is an extended version of the Screen-Oriented
Editor, very few differences exist between the two editors. These
differences are described in the following subsections.

3.3.1 Initiating the L2 Editor

Unlike the Screen-Oriented Editor, the L2 Editor must be executed as a code
file. That is, an X (for execute) is typed from the outer level camnand
line of the III.d Operating System. A prampt asking which file to execute
then appears. The response is "L2".

An alternate approach is to rename the L2 code file as the SYSTEM.EDITOR.

In that case, the L2 Editor is called from the system main cammand line when
an E is entered.

3.3.2 Space Constraints

If enough space does not exist on the disk to create the backup copy of the
file, the L2 Editor issues the following message:

| ERROR: Not enough roam for backup! |

To make enough space on the disk, either the Filer K(runch option (cambines
unused blocks at the end of the disk) must be used, or a file must be re—
moved. Another disk could also be used.

Once sufficient disk space is available to create the backup copy, the L2
Editor displays the following message when executed:

| Copying to <filename>.back.
| >Edit: A(djst C(py D(lete F(ind I(nsrt J(mp R(place Q(uit X(chng Z(ap ?
| Reading. . .

Page 3-63

3.3.3 Differences In Camands

Some of the L2 Editor cammands are slightly different than the same Screen-—
Oriented Editor cammands. These differences are pointed out in the follow-
ing subsections.

J(mp (Jump Command)

The prompt that appears in response to the initiation of a Jump cammand is
the same for both editors. However, the B(eginning and E(nd refer to the
beginning and end of the buffer in the L2 Editor rather than referring to
the file beginning and end as in the Screen-Oriented Editor.

F(ind (Find Command)

VWhen a Find cammand is initiated, the L2 Editor displays "Finding...". If
the pattern is not found in the contents of the buffer, the following prompt
is displayed:

| End of buffer encountered. Get more from disk?(y/n)

If a Y for yes is entered, the L2 Editor moves another section of the file
into the buffer and continues the search. The direction of the search
still depends on the direction set.

S(et (Set Command)

The Set cammand functions the same in the L2 Editor as in the Screen-—
Oriented Editor except that 20 markers are allowed instead of 1¢. Entering SM
and SE cause the markers and the enviromment, respectively, to be set as in
the Screen-Oriented Editor. However, the Environment status display con-
tains some additional information for the L2 Editor. The following display
shows the typical information shown in the Environment status display.

(uto _ndent
F(illing
L{eft margin
R{ight margin
P(ara margin
C(amand ch
S(et tabs
T(cken def

mnn bytes used. mmmm available.

There are n pages in the left stack, and m pages in
the right stack. You have n pages of roam, and at
most n pages worth in the buffer.

Markers: <Pl P2 >P3

('<' indicates the marker is in the left stack, '>'
in the right stack, and no arrow indicates the marker
is in the current buffer)

Created mnddyy: Last updated mm yy dd(Revision n).

e —————————

The S(et tabs option in the L2 Enviromment status display is accessed by typing

an S while the display is on the screen; the following prompt appears.

[Set tabs: <right,left,vectors> c(ol # N(o R(ight L(eft D(ecimal Stop <etx> |

This option is not fully implemented; therefore, using R(ight, L(eft and
D(ecimal has the same effect. That is, a variable tab stop is allowed
rather than each tab being set eight characters apart.

INOTE |

The enviromment information is not mutually
canpatible between the Screen-Oriented Editor and
the L2 Editor. Either may be used on a file
last updated by the other editor (subject to

file size constraints); however, the environment
information is reset to the default state.

Page 3-65

Q(uit (Quit Command)

After all changes and additions are campleted in the buffer being edited
using the L2 Editor, a Q is entered to end the editing session. This
process is the same as with the Screen-Oriented Editor except that the
W(rite option is not available in the L2 Editor.

The other three options of the Q(uit caommand are slightly different than
those of the Screen-Oriented Editor; these options are described below.

U(pdate - This option supplies additional information to indicate the
file name and length. The information below is an example of the extra
information given when a new file is created:

Writing.*
The workfile, X:F1.TEXT, is 73 blocks long.
The backupfile is X:F1.RACK.

The recently edited file is <filename>.TEXT and the original file with
no changes is <filename>.BACK.

E(xit - This option prevents the <filename>.BACK fram being created.
The existing backup file is removed.

R(eturn - This option is the same as the R(eturn option of the Screen-

Oriented Editor except that the cursor returns to the last editing
change made in the buffer being edited.

3.3.4 L2 Additional Commands

The L2 Editor contains two cammands that the Screen—-Oriented Editor does not
offer - the B(anish and N(ext cammands.

Page 3-66

B{anish (Ranish Command)

The B(anish cammand moves characters fram the buffer into the stack to allow
more room in the buffer. This command is useful when an overflow condition
would occur in campleting a large insertion or copy. The left and right
stacks are behind and ahead of the cursor, respectively. The screen is the
boundary for the operation.

The B(anish cammand is initiated by typing a B; the following prompt line
appears.

| >Banish: To the L(eft or R(ight <esc>

N(ext (Next Command)

The Next cammand is used to move beyond the bounds of the buffer. This
cammand is initiated by entering an N; the following prompt appears.

| Next: F(orwards, B(ackwards in the file: S(tart,
| E(nd of the file. <esc>

When using an F or B, an implicit banish occurs using the cursor as the
point of reference. If F is entered, everything above the screen is
banished to the left stack. More characters are added to the bottom of the
screen to extend the buffer in the forward direction.

If B is entered, the characters below the cursor are banished to the right
stack and the lower part of the screen becames blank. More characters are
added above the screen.

The symbolic file is depicted below.

| LEFT STACK | | RIGHT STACK |
| BUFFER | |
| START I | END I

Page 3-67

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

Page 3-68

~ NPTy TN 1
3.4 LINE-ORIENTED EDITOR (YALOE

S ot i o o o o

-

Line-Oriented Text Editor, YAIOE, is designed for use in systems
having a teleprinter or teletypewriter as the system console. This
editor is useful for creating a GOTOXY procedure in the case where the
CRT to be used with the system is not campatible with the system as
shipped. Because the screen editors are dependent on a correct GOTOXY
procedure, YAIOE is used to create the procedure. Once the GOTOXY pro-

cedure is bourd in and the SYSTEM.MISCINFO file created, the screen edit-
ors can be used.

nji
D
%
1
s
-1
B,

YAIOE provides facilities for the following actions:

® Listing lines of text from the work file (the file
being created or modified).

® Transferring text between the text buffer and files.

® Relocating the cursor (the current position in the
text being manipulated).

® Inserting, deleting, replacing, and exchanging text.

YAIOE also provides a macro facility, allowing the user to execute
a frequently used group of cammands by issuing a single command.

3.4.1 General Information

The YALOE Text Editor is designed for use in systems that have a tele-
printer or teletypewriter as the system console rather than a video

display terminal. YALOE must be executed from the system main cammand
line or else must be renamed SYSTEM.EDITOR.

YAIOE assumes the existence of a work file but is not dependent on the

work file being present. The work file can be created after entering YAIOE.
If a work file already exists, YAIOE prints the following message.

| Workfile STUFF read in. |

If YAIOE is called and the work file is empty, the following message
appears:

Page 3-69

YAIOE operates in either Command or Text Mode and is in Cammand Mode
when entered. In Cammand Mode, all keyboard input is assumed to be
camands. Each camand may be terminated by <esc>. The cammands may be
strung together. No camnands in a string (or singly) are executed until
the final cammand in the string is followed by <esc> <esc>. Spaces,
carriage returns and tabs within a cammand string are ignored unless they
appear in a text string. When the execution of a cammand string is camp-
lete, YAIOE prampts for the next camnand with an asterisk (*). In

contrast to other levels of the II11.d Operating System, a prompt line of
available cammands is not given.

If an error is encountered during cammand execution, the cammand is ter-—
minated at that point without campleting execution.

Text Mode is entered whenever a cammand is typed that must be followed
by text. All succeeding characters are considered to be text until the
next <esc>. The cammands that require text are F(ind, G(et, I(nsert,
M(acro define, R(ead file, W(rite to file, and eX(change.

When typed, <esc> echoes a dollar sign ($). The
<esc> terminates each text string and causes
YAIOE to reenter the Command Mode. A double
<esc> terminates the cammand string and causes
YAIOE to begin execution.

The work file is stored in the text buffer. This area is allocated
dynamically by the ? camand. YAIOE works only with files that fit
campletely within the text buffer.

The cursor is the position in the file vwhere the next cammand is to
be executed. Most edit cammands function in relation to the cursor.

Some of the YAILOE cammands described here require a cammand argument
to precede the cammand letter. Usually, the argument specifies the
number of times the cammand should be performed or the particular
portion of text to be affected by the cammand. With some cammands,
the specifications are implicit and no argument is needed. The can-
mand arguments used by YAIOE are as follows:

n Any integer, signed or unsigned. Unsigned integers are
assumed to be positive. In a cammand that accepts an
argument, the absence of the argument implies 1 (only one
execution) or minus 1 if only the minus sign is present.

m A number in the range @ through 9.

0O

The beginning of the current line.

Page 3-79

3.4.2

3279%. A "-/" is -3279@. Used for a large
r

Represents -n where n equals the length of the last text

-

argument used. Applies only to the J, D, and C commands.

Special Key Commands

Various keys on the keyboard have special functions, some of which are
unique to YAIOE. These cammands are described below. Those control
keys that do not appear below are ignored and discarded by YALOE.

<esc>

The escape key is echoed as a dollar sign ($) on the console.
A single <esc> terminates a text string. A double <esc>
executes a camand string..

RUBOUT
<linedel>
On hard-copy terminals, line delete is echoed as "<ZAP" and a
carriage return. On others, it clears the current line on the
screen. In both cases, the contents of that line are discarded
by YAIOE.
CIRL H
<chardel>
On hard-copy terminals, character delete is echoed as a percent
sign (%) followed by the character deleted. Deletions are right
to left, with each character deleted, erased by the %, up to the
beginning of the cammand string. CIRL H may be used in both Cam-
mand and Text Modes.
CIRL X

CTRL X causes YAIOE to ignore the entire command string and respond
with a carriage return and an asterisk (*) to prompt for another
camand. The cammand string being ignored may be on several lines.
All lines back to the previous * prompt are ignored. (A character
delete is confined to one line.)

Page 3-71

CIRL O

CTRL O causes YALOE to switch to the optional character set (bit 7
turned on). This cammand argument applies only to the TERAK 8510A
terminal.

If strange characters appear on the terminal,
CRTL O may have been hit accidentally. This
condition is corrected by again typing CIRL O.

CIRL F
flush

CTRL F causes YALOE to discard all output to the terminal until
the next CIRL F is typed.

CIRL S
stop

3.4.3

CTRL S causes YAIOE to store all output to the terminal until
the next CIRL S is typed.

Input/Output Commands

The cammands that control I/0 are described below.

LIST
The LIST cammand is specified by typing L for L(ist. This cammand
causes YALOE to print a specified number of lines on the terminal with-
out moving the cursor. Variations of this command are explained below.
*-3LS$ Prints all characters starting at the third preceding line
and ending at the cursor.
*51,$$ Prints all characters beginning at the cursor and terminating
at the fifth carriage return (line).
*JLSS Prints from the beginning of the current line up to the cursor.
VERIFY

The VERIFY cammand is specified by typing V for V(erify. This camand
causes YAIOE to print the current text line on the terminal. The posi-
tion of the cursor within the line has no effect on the cammand, and the
cursor is not moved. No arguments are used. VERIFY is equivalent in
effect to a *L$$ list cammand.

Page 3~72

The WRITE cammand is specified by typing W for W(rite followed by the
file title, in the following format:

*W<file title>$

The file title is any legal file title, except that the file type is
not given. YALOE automatically appends ".TEXT" as a suffix unless
the title ends with a ".", "]", or ".TEXT". If the title ends in a

.", the period is strlpped from it.

The WRITE cammand writes the entire text buffer to a file having the
given file title. The cursor is not moved, nor are the contents of
the text file altered. If the volume specified by the file title has
insufficient roam for the text buffer, the following error message

appears:

OUTPUT ERROR. HELP!

QUIT

The text buffer can be written to another volume.

The READ cammand is specified by typing R for R(ead followed by the
file title, in the following format:
*R<file title>$
YAIOE attempts to locate the file title as given. If no file is found
having that title, a ".TEXT" is appended and a new search is made.
The READ camnand inserts the specified file into the text buffer,
starting at the location of the cursor. If the file read does not
fit, the entire text buffer is undefined in content. This situation
is an unrecoverable error.
The QUIT cammand is specified by typing Q for Q(uit and has several
forms, as follows:
0.8} Quit and update by writing out a new SYSTEM.WRK.TEXT.
QE Quit and escape YAIOE; do not alter the work file.
R Do not quit; return to YALOE.
If Q is typed alone, a pranpt is sent to the terminal giving the above
cholces. An tion must be entered \u, E, or R].

Page 3-73

The QU camand is a special case of the WRITE cammand. If QU does not
work, W can be used to write out SYSTEM.WRK.TEXT followed by QE to exit
fram YAIOE. QR is used to return to YAIOE after a Q has been typed
accidentally.

ERASE

The ERASE cammand is specified by typing E for E(rase. This cammand
functions only with video display terminals and causes YALOE to erase
the screen.

The O cammand is specified by typing O. This cammand functions only
with video display terminals and causes YAIOE to display the text around
the cursor each time the cursor is moved. The argument for the O cam-
mand specifies the mumber of lines to be displayed. This option is in
a disabled state when YAIOE is entered. If needed, the option must

be enabled by using the O cammand. A second O disables the option.

The location of the cursor is denoted by a split in the line of text.

3.4.4 Moving Comands

The moving camands relocate the cursor to a new position. These cammands are
important because most other editing cammands are dependent on cursor position-
ing. The moving cammands are described below.

The direction of cursor movement is specified in the commands by the sign of
the argument. A positive (+n) argument gives the number of characters or
lines to move in a forward direction; and a negative argument (-n), in a
backwards direction.

Carriage return characters are treated the same as any other character in
text except that the <cr> denctes the end of a line of text.

Examples of the moving cammands are given in Figure 3-9. In the examples,
the cursor position is indicated by an up arrow (") although the cursor
does not actually appear on the teleprinter or teletypewriter.

JUMP

The JUMP cammand is specified by typing J for J(ump. JUMP moves the
cursor a specified number of characters in the text buffer. Move-
ment may be either forward or backward and is not restricted to the
current line.

Page 3-74

ADVANCE

The ADVANCE cammand is specified by typing A for A(dvance. ADVANCE
moves the cursor a specified muber of lines. The cursor is then
positioned at the beginning of the line to which it moved. An argu-
ment of zero moves the cursor to the beginning of the current line.
Movement may be either forward or backward.

{Here are the original lines and the cursor position.}

THE TIME HAS QOME<cr>

TO TALK OF MANY THINGS<cr>

Example 1. *8J$$ moves the cursor forward eight characters to the next line
between the K and the space.
TO TAIK OF MANY THINGS<cr>

Example 2. *-2A$$ moves the cursor to the beginning of the second preceding
line.
THE TIME HAS COME<cr>

Example 3. *BGTWINES=J$$ moves the cursor to the beginning of the text buf-
fer, then starts searching for the string "IWINE". When the
string is found, the cursor is positioned immediately before it.

Figure 3-9. Example of Moving Commands.
BEGINNING

The BEGINNING cammand is specified by typing a B for B(eginning. BE-
GINNING moves the cursor to the beginning of the text buffer.

GET and FIND

The search cammands GET and FIND are synonymous. GET is specified by
typing G and FIND by typing F. With either cammand, the current text
buffer is searched starting fram the location of the cursor for the

nth occurrence of a specified text string.
ful search, the cursor is positioned immediately following the nth occur-

rence if n is positive and immediately before, if n is negative. ‘If
the search is unsuccessful, YAIOE generates an error message, and the
cursor is positioned at the end of the buffer if n is positive and at
the beginning if n is negative.

Page 3-75

On campletion of a success-

3.4.5 Text Changing Commands

The text-changing cammands add to, remove, or change the text. These cauwnands
are described in the following paragraphs; examples are given in Figure 3-14.

INSERT

The INSERT command is specified by typing I for I(nsert. INSERT causes
YAIOE to enter Text Mode to add characters immediately following the
cursor until an <esc> is typed. After insertion is campleted, the cursor
is positioned immediately following the last character inserted.

Occasionally, with a large insertion, the temporary buffer becames full.
Before this situation occurs, the following message is printed on the

console.

| Please finish.

Typing <esc> <esc> terminates the insertion at that point so that the
temporary buffer can be amptied into the text buffer. Insertion can
then be continued by again typing I to reenter Text Mode. Not typing

I causes the characters that are next entered as insertions to be inter-
preted as cammands.

*-4DS$$

*BSGIWINE $=DS$$

*/K$$

*OCAAASS

*BGAS=CBS$$

*-3XNEWSS

Deletes the four characters immediately preceding the
cursor, even if they are on the previous line.

Moves the cursor to the beginning of the text buffer,
searches for the string "IWINE", and deletes it.

Deletes all lines in the text buffer from the line in
which the cursor is positioned to the end of the buffer.

Replaces the characters fram the beginning of the line
to the cursor with "AAA" (same as *OXAAASS).

Searches for the first occurrence of "A" and replaces
it with "B".

Exchanges all characters beginning with the first char-
acter on the third line back and ending at the cursor
with the string "NEW".

Figure 3-10. Examples of Text-Changing Commands.

Page 3-7¢

DELETE
The DELETE cammand is specified by typing D for D(elete. DELETE removes
a specified number of characters fram the text buffer, starting with the
position of the cursor. On campletion of the deletion, the cursdr is
positioned immediately following the deleted text.

The KILL cammand is specified by typing K for K(ill. KILL deletes a
specified number of lines from the text buffer starting at the position
of the cursor. On campletion, the cursor is positioned at the beginning
of the line following the deleted text.

CHANGE

The CHANGE cammand is specified by typing C for C(hange. CHANGE replaces
n characters, starting at the position of the cursor, with the given
text string. On campletion, the cursor is positioned immediately follow-
ing the changed text.

EXCHANGE
The EXCHANGE command is specified by typing X for eX(change. EX-
CHANGE exchanges n lines, starting with the line on which the cursor

is located, with the indicated text string. The cursor remains at
the end of the changed text on campletion of the caommand.

3.4.6 Miscellaneous Commands

Same YAIOE cammands do not fall into a category but are miscellaneous commands
for various purposes. These camands are described in the following paragraphs.

SAVE

The SAVE cammand is specified by typing S for S(ave. SAVE copies

the specified number of lines into the save buffer, starting at the
cursor. On campletion, the cursor position is unchanged, and the
contents of the text buffer are unaltered. Each time SAVE is exe-
cuted, the previous contents of the save buffer, if any, are destroy-
ed. If executing a SAVE will cause the text buffer to overflow, YAIOE
generates a message and does not perform SAVE.

Page 3-77

UNSAVE

MACRO

The UNSAVE cammand is specified by typing U for U(nsave. UNSAVE
inserts the entire contents of the save buffer into the text buffer
at the cursor. On campletion, the cursor is still positioned before
the inserted text. If the text buffer does not have enough roam for
the contents of the save buffer, YALOE generates a message to this
effect and does not execute UNSAVE.

The save buffer may be removed by typing OU.

A macro is a single camnand that performs a string of standard but
related cammands. Any group of fregquently used commands can be group—
ed into a macro to eliminate the need for having to write the whole
set of instructions whenever they are needed. The user may create
macros by using the M(acro cammand. The MACRO cammand is specified by
typing M for M(acro in the following format:

mM3cammand string%

In this format, m is an integer in the range @ through 9. MACRO is
used to define a maximum of ten macros. The default number is 1.
The cammand string is stored in the macro buffer m. The cammand
string delimiter (% in the above case) is always the first character
following the M. The delimiter may be any character that does not
appear in the macro cammand string itself. The second occurrence of
the delimiter terminates the macro.

All characters except the delimiter are legal macro cammand string char—
acters, including a single <esc>. All YAIOE cammands are legal. An
example of a macro is given in Figure 3-11.

If an error occurs when defining a macro, the following error message
is generated:

Error in macro definition.

The macro must be redefined.

Page 3-78

*{MFPREFACES=CEND PREFACESV%$S

This example defines macro nmumber 4. When macro 4 is
executed, YAIOE looks for the string "PREFACE", changes
it to "END PREFACE", and then displays the change to
verify it.

Figure 3-11. Example of a Macro.

N (Execute Macro)

The N cammand, which executes a specified macro cammand string,
is specified by N in the following format:

nNmS

The n is simply any cammand argument (for example, a repeat factor),
and m is the macro rmumber to be executed. If m is amitted, one is
assumed. Because m is technically a cammand text string, the N can-
mand must be terminated by <esc> (echoed as §).

Attempts to execute undefined macros result in the generation of the
following error message:

| Unhappy macnum.

Errors encountered during macro execution generate the following error
message.

| Error in macro.

? (List)
The ? cammand is specified by typing ?; this cammand prints a list

of all cammands, the sizes of the text buffer, the save buffer, and
the memory still available for expansion.

Page 3-79

THIS PAGE IS INTENTIONALLY LEFT BIANK FOR FORMATTING PURPOSES.

Page 3-80

4. THE FILE HANDLER (FILER)

The File Handler (Filer) is a separate campartment of the III.J Operating
System which handles, identifies, structures, and restructures files used
on the system. The Filer offers cammands that provide means to keep track
of files, to manipulate files, and to maintain files and diskettes/disks.

That is, the Filer cammands can be generally categorized. These categories
are (1) information cammands to provide lists of files and volumes; (2) man-
ipulative cammands to handle the system work file; and (3) disk and file
maintenance cammands to allow the following operations:

Moving files and directories.

Copying files and volumes.

Creating files, changing file names, and removing files.

Checking disks/diskettes for corrupted or damaged areas.

Creating new directories so that information can be recorded.

Changing the system date so that updated files reflect a current date.
Changing the default volume on the system.

9000000

Refer to Section 1.3.2 for a brief description of the Filer cammands. This
chapter contains a detailed explanation of the Filer cammands in Section 4.2.
Section 4.1 presents same general information regarding the Filer —- namely,
accessing the Filer (4.1.1); Files, Volumes and File Specifications (4.1.2);
and the Filer Command Categories (4.1.3).

Page 4-1

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

Page 4-2

4.1 GENERAL INFORMATION

Generally, the Filer manipulates and maintains files, which are the basic unit
of permanent storage used with the III.J Operating System. Same Filer functions
relate to files stored on disks/diskettes; other functions relate to unblocked
device files such as a printer or console file.

4.1.1 Accessing the Filer

The Filer is accessed by typing F (for F(iler) from the system outer level cammand
line. In response to the F, the following Filer main cammand line is displayed
across the top of the screen.

| Filer: G(et, S(ave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans, D(ate, Q(uit |

This cammand line lists some of the Filer cammands; to display the secondary
Filer comand line, a ? is entered. The secondary cammand line is shown below:

| Filer: B(ad-blk, E(xt-dir, K(runch, M(ake, P(refix, V(ols, X(amine, Z(ero |

The cammands listed in the secondary cammarxd line can be accessed directly fram
the Filer main cammand line by typing the first character of the cammand or
can be accessed from the secondary cammand line after it is displayed in res—
ponse to the entry of a ?.

All Filer cammands are initiated by typing the first character of the
cammand on the console. Many of the cammands display additional prompt
lines in order to have the information necessary for execution. Answering a
"Yes/No" question on a prompt line with any character other than a Y or y
constitutes a No answer. In most cases, typing an <esc> returns control to
the Filer main cammand line.

4.1.2 Files, Volumes, and File Specifications

Refer to Section 2.1 for an explanation of files and to Section 2.2 for an
explanation of volumes. These subjects are important to understand
regarding the Filer.

Page 4-3

Another important subject in regards to the Filer is that of file specifi-
cations. Many Filer cammands require a file specification. Figure 4-1
illustrates the syntax of a file specification.

4ike specd fication

- vobune 17
—-.(volume IDH string - string [> -
o

positive
integer []

L —-()—

!

Figure 4-1. Syntax for a File Specification.

Whenever a file name is requested, as many files as desired may be listed.

The file names must be separated by cammas, and the list must be terminated with
a carriage return (<ret>). Commands that operate on single file names continue
reading the names fram the list and operate on each until no names remain. Com-
mands that operate on two file names at once (for example, CHANGE and TRANSFER)
continue reading names in pairs until one or no file names remain. If only

one file name remains in the above case, the Filer prampts for the second name.
If an error is found in the list, the entire list is flushed. The rules for
legal file names are listed in Section 2.1.

The Filer performs the requested action on all files meeting the file specif-
ications. Same specifications are made by using wild card characters. The wild
card characters "=" and "?" specify a subset of a directory. For example, a
file specification that contains "PUB=TEXT" as a string to specify a subset
causes the Filer to perform the requested action on all files whose names be-
gin with the string "PUB" and end with the string "TEXT".

Page 4-4

If a ? is used in place of the =, the Filer requests verification before per-
forming the requested action. Generally, the ? causes the Filer to request
verification before campleting any cammand. Using the 7 alone causes the Fi-
ler to act on every file in a volume directory and to request verification for
each file before campleting the cammand for that file. For example, the ? can
be used in file transferring fram one media (or diskette) to another to prampt
the user regarding the transfer of each file.

In using wild card characters, either or both strings may be empty. For ex-
ample, a subset specification "=<string" or "<string>=" or even "=" is valid.

In the case where both strings are ampty, the Filer acts on every file in the
volume directory.

In some contexts, the pattern '[number]' at the end of a file name is inter-
preted as a block size specification and is not part of the actual file name.

4.1.3 Filer Comand Categories

The Filer cammands can be grouped into three main categories as follows:

® Information Commands
® Manipulative Commands for the System Work File
® File/Disk Maintenance Commands

These categories group the cammands by general function. A list of the cam-
mands in each group is presented in Table 4-1.

Table 4-1. Filer Commands By Category.

Information Work File Manipulation File/Disk Maintenance
L(dir G(et R(em K(runch
E(xt-dir S(ave C(hng M(ake
V(ols W(hat T(rans P(refix

N(ew D(ate X(amine

B(ad-blks Z(ero

Page 4-5

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

Page 4-6

4.2 FILER COMMANDS

Although the Filer cammands can be grouped into functional categories, the
descriptions of the cammands presented in this section are ordered based
on their placement in the Filer main and secondary cammand lines. The can
mands listed on the main cammand line are presented first (in left to right
order as they appear on the prampt line). Then, the secondary cammands are
described based on their order in the secondary prampt line.

4.2.1 G(et (Get Command)

The Get cammand is used to load a specified file into the work area as the work
file. The Get camand is initiated by typing G fram the Filer main cammand
line. If no files named SYSTEM.WRK.TEXT or SYSTEM.WRK.CODE exist in the dir-
ectory, the Filer responds with the following prampt:

| Get what file? l

If either or both the system work files exist, the Filer asks the following ques-
tion:

| Throw away current workfile? |

If the response is yes, that file (or files) is removed fraom the disk. If the
response is other than yes, the Get cammand action is aborted and the Filer
main cammand line reappears.

In response to the first prompt, the file name entered is loaded as the work file.
The suffixes .TEXT and .CODE are not required. If a text and code file exist

for the file name entered, both are loaded. If one or the other type of file
exists, that file is entered although neither .TEXT nor .CODE were specified.
Also, the entire file specification is not required. If the volume ID or name

is not given, the default disk is assumed. Wild card characters are not allow—
ed, and the size specification is ignored.

When the Filer campletes the loading operation, one of the following messages
is printed -- depending on the files that exist on the disk.

® Text and code file loaded.

® Code file loaded.
® Text file loaded.

Page 4-7

If no file exists with the specified name, the Filer responds:

| No file loaded. |

An example of the Get cammand is presented in Figure 4-2. In the figure, the
characters entered by the user are shaded; camments are enclosed in braces (th.

Filer: G(et, S(ave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans, D(ate, Q(uit
G

Get what file?

{Two files named POP.TEXT and POP.CODE exist on device #5.}

Text and ocode file loaded.

Figure 4-2. Get Command Example.

4.2.2 S(ave (Save Command)

The Save cammand is used to save (write to disk) the work file. Both campo-
nents (SYSTEM.WRK.TEXT and SYSTEM.WRK.CODE) of the work file are saved

(1) under the original file name if a Get cammand was used or (2) under a
different file name as specified by the user. The Save cammand is initiated
by typing S from the Filer main cammand line.

If the work file was created by the Get cammand, the Filer prampts as below:

| Save as <file name>?

If a yes response is given and the file already exists, the Filer prompts:

| <file name> exists...remove it? |

If a yes response is entered, and the original file is located on other than the
default volume, the following message appears:

| <vol ID>:SYSTEM.WRK.TEXT transferred to <file name>

Page 4-8

In this case, the SYSTEM.WRK.TEXT' (or .CODE) file remains on the system volume
until the work file is cleared. The work file can be cleared by a Get or New
cannand .

If the original file is on the system disk or default volume, the message re-
garding transferring the file does not appear. The original file is updated if
the work file is saved with the name of the original file. In this case, the
"SYSTEM.WRK" files disappear when the Save cammand is used to write the work
file to the original file name or to a new file name.

The suffixes ".TEXT" and "CODE" are not required when using the Save cammand.
The III.J Operating System automatically appends to correct suffix.

If the volume name is not specified, the default volume is assumed. Wild cards
are not allowed, and the size specification does not apply.

Figures 4-3 and 4~4 give examples of the Save cammand. Comments are enclosed
in braces ({}), and user input is shaded.

Filer: G(et, S(ave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans, D(ate, Q(uit

Get what file?
Text and Code file loaded.

{Through the above sequence of cammands, the file "TEST" on the volume
named "SFW1" is made the work file. This file has a code file assoc-
iated with it. After the Editor is used to load the file into memory
and to make changes to the file and the code is recampiled using

the Run cammand, the file is to be saved as "TEST1". The following
sequence of cammands is used to save the work files.}

Filer: G(et, S(ave, W(hat, N(ew, L{dir, R(em, C(hng, T(rans, D(ate, Q(uit

ve as SFW1:TEST?
Save as what file?

SYS1:SYSTEM.WRK.TEXT transferred to SFW1:TEST1.TEXT

SYS1:SYSTEM.WRK.CODE transferred to SFW1:TEST1.CODE
{The updated versions of the file are, thus, transferred to the volume
"SFW1". The "SYSTEM.WRK" and "SYSTEM.CODE" files remain on the default

volume until the work space is cleared.}

Figure 4-3. Example of the Save Command Across Volumes.

Page 4-9

Filer: G(et, S(ave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans, D(ate, Q(uit

{n text file is created using the Screen-Oriented Editor, and the work file
is updated using the U option of the Editor Q(uit cammand. Thus, the file
is written on the default volume as SYSTEM.WRK.TEXT. The work file is
temporary and, at that point, the work file is not saved. The following
sequence of cammands saves the file as PLAY.TEXT on the default volume and,
at the same time, removes the SYSTEM.WRK.TEXT file.}

5
Save as what file? |
TEXT file saved

Figure 4-4. Example of Save Command With SYSTEM.WRK File.

4.2.3 W(hat (What Command)

The What cammand displays the name and status (saved or not saved) of the current
work file. This cammand is initiated by typing W fram the Filer main cammand
line.

If SYSTEM.WRK.TEXT and/or SYSTEM.WRK.CODE exist on the default volume but a Get
cammand was not used to create a named work file, the following response to a
What cammand appears.

| Workfile is not named (not saved)

However, if the Get cammand is used to load a named work file (for example,
SFW1:PLAY.TEXT), and the file is edited and updated but not saved, the response
to the What cammand is as follows.

| Workfile is SFW1:PLAY (not saved) |

If neither named nor unnamed work files are present, the following response to
the What command appears.

| No workfile

Page 4-19

4.2.4 N(ew (New Command)

The New caommand clears the work space so a new work file can be created. The
New cammand removes any work files on the system volume so that no default
file exists to be used automatically by the E(dit, C{amwpile, or R{un commands.
All versions of the work file (SYSTEM.WRK.TEXT and/or SYSTEM.WRK.CODE) are
removed from the system directory by the New cammand.

The New camnand is initiated by typing N from the Filer main cammand line.

If a system work file exists at the time a New cammand is executed, the follow-
ing prompt appears:

| Throw away current workfile?

If a Y is entered, the work space is cleared. If an N is entered, the main
camand line of the Filer is redisplayed.

If a backup work file exists (as created when the L2 Edltor is used to create
the work file), the following prompt appears:

| Remove <workfile name>.Back?

4.2.5 L(dir (List Directory Command)

The List Directory cammand gives information pertaining to the specified direc—
tory of a selected disk/diskette volume. All or part of the directory is dis-
played (default destination is OONSOLE:) as specified. The List Directory can—
mand is initiated by typing L fram the Filer main cammand line. The following
prompt appears:

| Dir listing of what vol ? I

The directory can be listed to the volume and file specified. The default vol-
ume is "CONSOLE:", but the listing can be directed to a file on disk, "PRINT-
ER:", or "REMOTE:". The file specification, in this case, must be in terms of
source and destination.

Page 4-11

The source file specification consists of a mandatory volume name where ":"
indicates the prefixed volume and an optional file name, which may include sub-
set-specifying strings. If subset-specifying strings are used, a wild card is
used. The source information must be separated from the destination information
(if given) by a camma.

When entered, the destination specification includes the volume name and, if
the volume is block-structured, a file name. The file size is ignored.

Usually, this cammand is used to list the entire directory. The directory

listing that appears on the screen fills the screen, stops, and prompts as be-
low to continue viewing the listing.

| Type <space> to continue |

When the space bar is pressed, the next screen of information is displayed until
the directory list is campleted. The directory is limited to 77 file entries.
(See 2.2 regarding this limitation.)

Figures 4-5 and 4-6 give examples of the L(dir cammand. Figure 4-5 presents an
example of this cammand as used to print the directory on a serial printer.
Figure 4-6 shows a directory listed by this cammand to the console. Camments
are enclosed in braces ({}); user input is shaded.

Filer: G(et, S(ave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans, D(ate, Q(uit

DJ.r listing of what vol?

{This specification causes the directory for the system diskette to be
printed on the serial printer}

Figure 4-5. Example of List Directory Command (List to Serial Printer).

Page 4-12

Filer: G{et, S{ave, W(hat, N{ew, L{dir, R{em, C{hng, T{rans, D{ate, Q{uit

Dir listing of what vol?

{The following directory of the system diskette is displayed on the screen;
the volume name is H30S.}

Type <space> to continue

H30S:

SYSTEM.COMPILER 79 4-Feb~-82
LIBRARY.CODE 23 4-Feb-82
DISASM.CODE 24 4-Feb-82
SYSTEM . LINKER 27 25-Feb-82
SYSTEM.MISCINFO 1 8-Mar-82
BINDER.CODE 8 4-Mar-82
LIBMAP.CODE 9 4-Feb-82
SYSTEM. EDITOR 52 29-Jul-81
ADV.EDITOR 79 23-Mar-82
CONFIGURE.CODE 25 25-Mar-82
WEFORMAT . CODE 18 24-Mar-82
MARKDUPDIR . CODE 5 23-Mar-82
COPYDUPDIR. CODE 5 23-Mar-82
BOOTER.CODE 5 23-Mar-82
SETUP.CODE 39 31-Mar-82
PATCH. CODE 8 2-Apr-82
SYSTEM.LIBRARY 30 7-Apr-82
COPY.CODE 5 25-Mar-82
SYSTEM. PACAL 119 25-Mar-82
SYSTEM.FILER 48 19-Apr-82
FORMAT . CODE 14 2-Apr-82
BOOTMAKE . CODE 7 2-Apr-82

{After the space bar is pressed, the following information is
displayed.}

H30S:
BOOT. CODE 19 2-Apr-82
23/23 files<listed/in-dir>, 632 blocks used, 346 unused

Tigure 4-6. Example of List Directory Command (List to Console).

In Figure 4-6, the file names are listed that are contained in the directory
for H30S (colum one). Colum two gives the number of blocks in the file;
column three is the date the file was last written. This date could be the
creation date, if the file has not been "written to" since that date. This
date is changed each time the file is written; the date is based on the date
set through the Filer Date cammand.

Page 4-13

The bottom line of the directory listing shows how many file names are shown
and the total of the file names in the directory. In the example, 23 file
names are listed out of a total of 23 file names in the directory. However,
if a subset-specifying string, for example, "#4:SYSTEM.=", had been entered,
seven out of 23 files would be shown (7/23). Of the total blocks on the
diskette, 632 blocks are used and 346 remain available for use.

4.2.6 R(em (Remove Command)

The Remove cammand is used to remove file names from the disk directory, leav-
ing the space formerly occupied by the file marked as unused. This cammand
changes the directory; the information in the removed file still resides on
the disk/diskette. However, once the file name is removed from the directory,
the file information is no longer accessible to the user. The III.@ Operating
System now considers the area of the disk on which the file is written to be
free space. Other files may now write to that space.

The Remove cammand is executed by typing R fram the Filer main command line.
The following prompt appears in response to this canmand.

| Remove what file? |

The Remove cammand requires one file specification for a file to be removed.
The following rules apply in response to this prampt.

® The volume name or device number is required unless the file
resides on the default disk. A colon is required to separate the
volume identification from the file name. For example,
SFWl:testl.CODE, where "SFW:" is the volume identification and
"testl.CODE" is the file name.

@ The file name extension is required. That is, the ".TEXI" or
".CODE" suffix must be included as part of the file name.

® Wild cards are permitted as described below:

A file name consisting of a single letter followed by an equal

sign (=) instructs the Filer to remove all files beginning with that
letter. The equal sign may also be used to remove groups of files
with cammon letters either at the beginning or end of the file name.

A file name that consists solely of an equal sign causes every
file in the directory to be removed.

The use of a question mark (?) causes a prompt for confirmation to
appear before each file is removed. The question mark may be
substituted in either of the above wild card specifications.

A list of files may pe removed by entering the file names separated by cammas.

Page 4-14

The Filer prompts for confirmation whether or not to remove the file name from
the directory; the prompt is shown below.

| Update directory? l

A Y or y response causes the Filer to remove the file fram the directory; any
other response leaves the directory in its original state. In either case, the

execution of the Remove camnand is camplete, and the Filer main cammand line is
redisplayed.

The Remove cammand should NOT be used to remove
the SYSTEM.WRK.TEXT or SYSTEM.WRK.CODE files.

These files should only be removed through the
New or Get cammands.

Because the "SYSTEM.WRK" files are referenced in
an operating system table, even if the files are
removed by the R{(emove cammand, the III.d
Operating System still lists the files as being
present. This situation provides error messages
such as "Workfile lost".

Figures 4-7, 4-8, and 4-9 give examples of the Remove cammand. Figure 4-7
illustrates the question mark to cause prampting for each removal; Figure
4-8 illustrates the use of the wild card equal sign; and Figure 4-9 illus-
trates removal of multiple files separated by cammas. Comments are enclosed
in braces ({}); user input is shaded.

Page 4-15

Filer: G(et, S(ave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans, D(ate, Q(uit

{The following cammands and responses remove all files that begin with an

"a" as selected by the user. The ? is used to cause the filer to pranpt
for each file to be removed.}

B

Remove what file?
Remove ASDIOE? N
Remove ASDIOE.MASK?

Remove APUNIT.CODE?

Remove ARC.TEST.TEXT
Remove ALPHA.TEXT?
Remove ADD3.TEXT?
Update directory?

Figure 4-7. Remove Command Example Using Wild Card (?).

In Figure 4-7, the user confirms or denies the removal of file names that begin
with an "A". After Y is entered in response to the "Update directory?" prampt,
the Filer main cammand line reappears.

Page 4-16

Filer: G{et, S{ave, What, N{ew, L{dir, R{em, C{hng, T{rans, D{ate, Q{uit

{The following cammands and responses remove all files which begin with
"NEW" and all files which end with "TEST". The equal sign is used as a
wild card to effect the removals.}

Remove what file?

QSTGS: NEW/TEST1 . TEXT removed
QSTGS: NEW/TEST2. TEXT removed
:NEW/TEST3. TEXT removed

Update directory?
{The Filer main camnand line reappears after the directory update.}

Filer: G(et, S(ave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans, D(ate, Q(uit

Remove what file?
QSTGS:BCD. TEST. TEXT removed
QSTGS:CDE. TEST. TEXT removed
Update directory?

Figure 4-8. Remove Command Examples Using Wild Card (=).

Figure 4-8 above illustrates the removal of file names that have cammon begin-
ning or ending nodes by using the equal sign as a wild card.

Page 4-17

Filer: G(et, S(ave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans, D(ate, Q(uit
{The following cammands and responses remove a series of three files.}

"

Remove what file?
QSTGS: HDW2. TEXT _
Update directory? ¥
QSTGS: SFW1.TEXT removed
Update directory? ¥
QSTGS:SFW2.TEXT? removed
Update directory? Y

Figure 4-9. Remove Command Example - File Sequence.

4.2.7 C(hng (Change Command)

The Change command changes a file name or volume name. This cammand is init-
iated by typing C from the Filer main cammand line. After typing C, the Filer
prompts for the file to be changed as shown below.

| Change what file? I

This command requires two file specifications: (1) the file or volume name to
be changed and (2) the new name. These specifications may be entered on one
line in response to the prampt separated by a camma, or they may be entered

on two lines with a return (<ret>) separating the first fram the second. In
the case where the specifications are separated by a <ret>, the following second
prompt appears.

| Change to what? l

Any volume name or device number in the second specification is ignored because
the Filer recognizes that the file is on the same volume (or is the same volume,
when the volume name is changed). The size specification, if given, if also
ignored.

Wild card specifications are permitted. That is, the portion of the original
file name represented by the equal sign is duplicated in place of the equal
sign in the new file name. If a wild card is used in the first specification,
it must also be used in the secord.

Any subset-specifying strings used in the first specification are replaced by
the analogous strings (replacement strings) in the second. That is, string
characters may be placed before or after the equal sign, or both, in the first

Page 4-18

or second file specification. If the equal sign is used alone as a subset-
specifying string (both strings are empty), the Filer considers the specific-
ation to apply to all files in the directory.

The file name suffixes ".TEXT" and ".CODE" must be given as part of the file
specification. Also, the Filer does not change any name if the new name ex-
ceeds 15 characters in length. When using a subset-specifying string to change
the names of a group of files, if one of the new file names will exceed 15
characters, that file name is not changed. If all the new file names will ex-—
ceed 15 characters, none of the changes are made.

To change a volume name, the volume name followed by a colon must be specified
for both the old and new names. No reference to files in the directory should
be made.

Figures 4-1@, 4-11, 4-12 and 4-13 give examples of the Change cammand. Figure
4-109 illustrates the separation of the file specifications by a <ret>; Figure
4-11 and 4-12 give examples of wild card specifications; and Figure 4-13 is an
example of a volume name change. In the figures, comments are enclosed in
braces ({}), and user input is shaded.

Filer: G(et, S(ave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans, D(ate, Q(uit

Change what file? v
Change to what? |
QSTGS: JUNK. TEXT changed to PLAY.TEXT

.TEXT <ret>

{The above cammand and responses effect the file name change.
The volume name is not repeated because the file is assumed
to be on the same volume.}

Figure 4-1¢. Two-Line File Name Change.

Page 4-19

Filer: G(et, S(ave, W(hat, N{ew, L(dir, R(em, C(hng, T(rans, D(ate, Q(uit

{An example using a wild card specification is given below. The cammands
and responses below show the change of three file names. The wild card
specifications change the subgroups of files that begin with "SFW" and end
in "XT" to file names beginning with "OLDSFW" and ending in "XT". The or-
iginal file names in the directory are: SFWL.TEXT,SFW2.TEXT,HDW1.TEXT,
HDW2.TEXT, and SFW3.TEXT.}

<

Change what file? @Q8TG >
QSTGS: SFW1. TEXT changed to OLDSFWL.TEXT
QSTGS: SFW2 . TEXT changed to OLDSFW2.TEXT
OSTGS: SFW3. TEXT changed to OLDSFW3.TEXT

Figure 4-11. Change Cammand Using Subgroup-Specifying String.

Filer: G(et, S(ave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans, D{ate, Q(uit

{The example below shows the use of the equal sign alone to change all the
file names in a directory. The letter "A" is added before each file name.}

Change what file? ' LLAIL '
LCALGS:RGDEMO.RPGL changed to ARGDEMO.RPGL

LCAIGS:1C.CODE changed to ALC.CODE
LCALGS: LCMASK changed to ALCMASK
LCALGS:LCDIMP.CODE changed to ALCDUMP.CODE
LCALGS:LLC.CODE changed to ALLC.CODE

LCALGS: TEST. TEXT changed to ATEST.TEXT
LCALGS: TEST2. TEXT changed to ATEST2.TEXT

Figure 4-12. Change Command Using Equal Sign.

Page 4-20

If the response to the "Change what file?" prompt in Figure 4-11 is changed to
"LCALGS:a=,a <ret>", the "A" at the beginning of all the file names is removed.

0‘11
l..l
I‘B‘
B
(1)
G
;‘\
|
¢
47]
o~
&
<y
0]
-
=
o2
3]
ct
-
i
——
gt
.
-
Eh
J
[a}
-

R{em, C{hng, T(rans, D{ate, Q{uit

{The command and response below changes the volume name "LCALGS:" to
"QSTGS: ".}

Change what file?
LCAIGS: changed to (QSTGS:

Figure 4-13. Change Command —— Changing the Volume Name.

4.2.8 T(rans (Transfer Command)

The Transfer Command copies the specified file(s) or volume to the given
destination, leaving the source file or volume intact. The Transfer coam—
mand is initiated by typing a T from the Filer main cammand line. The fol-
lowing prompt appears:

| Transfer what file? |

Page 4-21

The source and destination for the copy must be given. These file specifications
are required and must be separated by a comma or a <ret>. These specifications
may be entered in response to the first prompt on that line separated by a
comma. Alternately, the source specification only may be entered on that line:
in that case, a second prompt appears as shown below.

| To where? |

The destination specification is required in response to the second prompt.

The size specification is recognized and is used to allocate space for the des-
tination file. (See the Make cammand in this chapter.)

Transferring Files Across Volumes

An individual file or group of files can be transferred (or copied) from one
volume to another, leaving the original file intact. Wild card specifications
are valid in the file specifications. The following points describe the use
of wild cards with the Transfer cammand.

@ The $ can be used to transfer a file to another volume
without changing the file name. The destination file name is
replaced by the $ although the destination volume must still be
given.

The destination file name should not be
canpletely amitted; the $ should appear with the
volume name. If the file name is amitted, the
directory of the volume may be destroyed. If the
file name is amitted and no $§ is given, the Filer
pranpts as below.

| Possibly destroy directory of <destination vol>?

A "Y" answer to this prompt causes the directory
of the destination volume to be destroyed. A
"N" response allows the cammand to be reexecuted
with the volume name plus a $.

Page 4-22

® If the source file specification includes a wild card
character and the destination is a block-structured device, the
destination file specification must also contain the wild card
character or must contain a $.

Subset-specifying strings in the source specification

are replaced with analogous strings (replacement strings) in the
destination specification.

® Any of the subset-specifying strings may be empty. The
equal sign (=) used alone specifies every file on the volume. This
wild card character used as the destination specification causes the
subset-specifying strings in the source spec1f1catlon to be replaced
with nothing.

® The ? may be used in place of the equal sign to cause
the Filer to prampt the user for confirmation of the transfer.

Transferring a File on the Same Disk

Files may also be transferred or copied fram a volume to the same volume. To
do so, the same volume name is specified for the source and destination. This
capability is especially useful to relocate a file on the disk.

On same-disk transfer, specifying the number of blocks for the copied file
causes the Filer to copy the file into the first available area that is at least
as large as the specified size. Otherwise, the Filer copies the file into the
largest unused area.

On a same-disk transfer, if the same file name is specified for both source and
destination, the Filer rewrites the file to the size-specified area and removes
the older copy of the file. (Two files with the same name cannot exist on the
disk.) Thus, this type of transfer relocates a file with the original file
name on the same disk and removes the old file.

Wild card characters should not be used in file

specifications for any transfer on the same
disk. The results are unpredictable.

The following prompts appear when the source and destination file names are
given with the device number used as the volume specification.

Page 4-23

| Put destination disk in #5 |
| Type <space> to continue |

To effect the transfer on the same disk, a <space> is entered.

Transferring One Volume to Another

One camplete volume is copied to another by specifying only the source and
destination volume names or device numbers. Transfers fram one Winchester
volume to another Winchester volume result in a prampt that asks for a new
name for the destination volume. Transferring from one block-structured
volume to another causes the destination volume to be an exact copy of
the source volume, including the directory. The following prampt appears
to verify that an exact copy including directory is desired.

| Possibly destroy directory of <destination volume>? I

If a Y or y is entered, the volume-to-volume transfer is campleted. If an N
is entered, the action is aborted, and the Filer main cammand line reappears.

The Y response is often used to create a backup copy of a source diskette. The
name of the destination volume can be changed to show that it is a backup copy,
if desired.

The name of the destination disk should be
changed immediately, or the diskette removed,
because two volumes on line with the same name
cause unpredictable results.

Prior to the H2 release of the III.@ Operating System, a volume-to-volume
transfer did not transfer the bootstrap. However, with the H2 release, the
Transfer cammand copies track @, where the bootstrap resides, to the new volume.
This copy of track @ occurs only on floppy disk transfers; transfers to or

from the Winchester disk do not copy track 4.

Page 4-24

Transfers With Non-Block-Structured Volumes

The Transfer cammand can be used to copy files to volumes t are not block-
structured (for example, CONSOLE:, PRINTER:, or REMOTE:) by specifying the
appropriate volume name or device number. The file name is then ignored. The
destination volume must be on line.

Transfers from nmon-block-structured devices are possible; however, the source
must be an input device. In this case, the source file specification is unnec-
essary and is ignored if present.

Examples

e e e s e et

Figures 4-14, 4-15, 4-16, 4-17, and 4-18 show examples of the Transfer caummand.
Comments are enclosed in braces ({}), and user input is shaded.

Filer: G(et, S(ave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans, D(ate, Q(uit

{The following cammand and responses illustrate a transfer of all files
using the equal sign and $.}

Transfer what file?

LCALGS : RGDEMO. RPGL ansferred LCALGS1 : RGDEMO. RPGL
LCALGS: IC.CODE transferred to LCALGS1.CODE
LCSLGS : LOMASK transferred to LCALGS1:MASK
LCALGS : LCDUMP. CODE transferred to LCALGS1:DUMP.CODE
LCALGS: LIC.CODE transferred to LCALGS1:LIC.CODE

: TEST. TEXT transferred to LCALGS1:TEST.TEXT
LCALGS : TEST2. TEXT transferred to LCALGS1:TEST2.TEXT

Figure 4-14. Transfer Command Using Equal Sign and S.

Figure 4-14 presents an example in which all the files on one volume are trans-
ferred to another volume using an equal sign to specify all files and a $ to
specify that the files are copied with the same name as the original file.

Filer: G(et, S(ave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans, D(ate, Q(uit

{The following cammand and responses illustrate the use of a subset—
specifying string to transfer a group of files to another volume.}

T

Transfer what file? LGCALGS:LC=,LOGIN:LL= <ret>
LGCALGS:IC.CODE transferred to LOGIN:LL.CODE
LGCALGS : LIMASK transferred to LOGIN:LIMASK
LGCALGS : ICDUMP. CODE transferred to LOGIN:LLDUMP.CODE

Figure 4-15. Transfer Cammand Using Subgroup-Specifying Strings.

Page 4-25

One, two or all three fields of the date entry may be changed. For example,
entering 29 changes the day; entering —Jun changes only the month; and entering
--83 changes only the year. The hyphens hold the place of the fields that are
not changed. Also, entering 29-Jun changes the day and the month. (Any

month name entered that is longer than three characters is truncated to three
characters.)

If a <ret> is typed in response to the prompt, the date is not changed.

Figure 4-19 gives an example of changing the day and month through the Date
cammand. Comments are enclosed in braces ({}); user input is shaded.

Filer: G(et, S(ave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans, D(ate, Q(uit

{The following cammand and responses illustrate changing the system date.}

D

Date set:<1l..31>-<JAN..DEC>-<@d..99> or <CR>
Today is S5-tay-82

New Date? 6~jum <ret>

New date is 6-Jun-82

Figure 4-19. Example of the Date Command.

In the Date cammand example, the month is entered with the first letter in lower

case. When the Filer displays the new date the first letter of the month is
an upper case character.

4.2.16 Q(uit (Quit Command)

The Quit cammand exits the Filer portion of the III.d Operating System; the main
(outer level) cammand line is displayed on the top of the screen. This cammand
is executed by typing Q from the Filer main command line.

Page 4-28

To verify that the file was indeed moved, the E(xt-dir (Extended Directory)
mand can be used to see the size and location of the file before and after the

Filer: G(et, S(ave, W(hat, N{ew, L(dir, R{em, C(hng, T(rans, D(ate, Q{uit

{The following cammand and responses illustrate 4 v-lume-to-volume transfer
of files.}

Transfer what file?
Possibly destroy directory o

H30S: transferred to XXX:

Figure 4-18. Transfer Command -- Volume-to-Volume Transfer.

The example in Figure 4-18 illustrates a volume-to-volume transfer of Ffiles.

The new diskette is an exact copy of the source diskette. If an L (for List

Directory) is entered for the new volume, the name of the new volume is H30S,
instead of XXX. The new diskette should be removed immediately or the volume
name changed (see Change cammand) so that two volumes with the same name are

not on line.

4.2.9 D(ate (Date Command)

The Date command sets (or changes) the date used by the III.d Operating System
to show when a file is saved. The Date cammand is initiated by typing a D

fram the Filer main cammand line. The following prompt appears for the date
change.

| Date set:<l..31>-<JAN..DEC>-<0d..99> OR <CR> |
| Today is 5-May-82 |
| New date? |

A new date may be entered in the format described on the first line above,

followed by a carriage return (<ret> or <cr>). The new date is immediately
displayed.

Either a hyphen (-) or back-slash (/) may be used as the delimiter between the
date fields.

Page 4-27

Figure 4-15 presents an example in which the subgroup of files that begins
with "IC" is transferred to another volume and is prefixed with the characters
"ILL" in place of the original "ILC".

Filer: G(et, S(ave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans, D(ate, Q(uit

{The following cammand and responses illustrate a file transfer across
volumes. }

L
Transfer what file?
LCAILGS: TEST2. TEXT

transferred to LOGIN:TEST2.TEXT

Figure 4-16. Transfer Cammand —- File Transfer Across Volumes.

Figure 4-16 presents an example of copying one file from one volume tO another
volume using the file specification.

Filer: G(et, S(ave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans, D(ate, Q(uit

{The following cammand and responses illustrate relocating a file on the
disk by using the same file specification for both the source and destin-
ation.}

Transfer what file?
LCALGS:IOMASK exists...
LCALGS:ICMASK transferred to LCAILGS: LO/IASK

Figure 4-17. Transfer Command —— Same Disk Transfer.

Figure 4-17 presents an example of relocating a file on the same disk. The size
specification appears in brackets after the source file name. The Filer writes
the new file into an unused area of at least nine blocks. If a size specifica-
tion is not given, the Filer writes the new file in the largest unused area.

The old (original) file is removed. The prompt regarding the removal of the
existing file only appears if a size specification is used.

Page 4-26

4.2.11 B(ad-blks (Bad Blocks Command)

The Bad Blocks cammand scans the disk/diskette to determine if damaged or cor-
rupted blocks exist on the disk and to identify the bad areas. This cammand,

although not displayed on the Filer mRin cammand line, may be executed by typ—
ing a B from the Filer main or secondary cammand line. (The secondary cammand
line is displayed in response to the entry of a ? from the Filer main cammand

line.)

The following prompt begins the bad-blocks scan.

| Bad blocks scan of what vol? |

Either the volume name or device number, followed by a <ret>, is entered in
response to the prompt.

After the first question is answered, the following praompt appears:

| Entire disk (nnnn blocks)? I

This question requires a Y or an N as a response. The number in parentheses is
the total number of blocks on the volume, which depends on how the disk was
initialized and recorded. A Y (for yes) response causes the scan to begin.

An N (for nmo) entered results in the following prompts.

| First block? |

The beginning block number of the range of blocks to be scanned is entered,
followed by a <ret>. The next prompt asks for the ending block number of the
range.

| Block nnnn to? I

The beginning block number of the range is substituted for nnnn above. The
ending number is entered, followed by a <ret>. The following message then
appears, restating the range to be scanned. The scan begins.

Page 4-29

| Block range: nnnn to nnnn !

If bad blocks are found, the prompts in the subsequent paragraphs appear.

Once the prompts for the entire disk or a range are answered, the scan begins.
If bad blocks are found, the message below appears.

| Block nnnn is bad |

In the message, the mnnn represents the actual block number. Every bad block
is reported on the display. Once a group of bad blocks are discovered, the
following question appears.

| Examine blocks nnnn - nnnn? |

This question presents the range of bad blocks (nnnn-nnnn) and asks if the user
wants the bad blocks examined. If a Y is entered and the bad blocks contain
data, the Filer supplies further information about the damaged area. This
information is the name of the file written on the bad area; also, the block
range of the file is reported. Another prampt appears as shown below.

| File(s) endangered: |
| file name nnnn nnnn |
| Try to fix them? |

The Filer can try to recover the blocks, or, if a fix is not possible, can mark
the blocks as "bad". The attempt to fix the bad blocks consists of reading,
rewriting, and then rechecking the blocks. If, after the attempt to fix the
bad blocks, the blocks are still bad, the next prompt asks if the Filer should
mark the bad blocks.

| Mark them (may remove files!)? l

Marking bad blocks that have data stored on them causes the file to be removed;
therefore, an n should be entered unless the file is expendable. If an n is
entered, the scan continues.

Page 4-30

However, if bad blocks are reported on an area of disk that is unused, those
blocks can be marked and are not used in any subsequent writes to disk. In

that case, if a Y response is entered, a quick message flashes as the blocks
are marked. By executing the E{xt-dir (Extended Directory cammand), the user
sees the area marked as bad. For example, the directory entry might appear

T ey
as oSiLOwe.

| LcaALGs: I
| <unused» 274 10 I
| BAD.@@284.BAD 27 6-May-82 284 572 Bad Disk l

A message appears when the scan is campleted, reporting the total number of
bad blocks, as below.

| nnn bad blocks found |

If the disk/diskette contains bad blocks, the safest move is to transfer the
good files fram its directory to a good disk. The disk that has bad blocks
can then be reformatted using the FORMAT program, then rescanned to determine
if the area if usable.

In the previous sequence of prampts and actions, the examine and fix actions
may report that the bad blocks were possibly fixed. Although the Filer may
consider a block good, the block may not be "good" for the user's purpose.

That is, a text file should be closely examined to determine if garbled text
appears in the file. A data file should be manipulated by any program that
uses it to determine the validity of the file. A code file that had bad blocks
fixed should simply be replaced.

Often the cause of bad blocks is that bad or corrupted data were written on the
disk. Overwriting or reformatting may correct that type of error. Physical
damage to, or problems with the recording surface, are unrecoverable errors.

Figure 4-20 shows an example of a bad blocks scan in which bad blocks are
reported. Comments are enclosed in braces ({}); user input is shaded.

Page 4-31

Filer: G(et, S(ave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans, D(ate, Q(uit

Bad block scan of what vol? |
Entire disk (988 blocks)?

{on floppy drives, clicking noises result
nnnn as blocks are scanned. Block numbers flash
Block 742 is bad in place of nnnn.}

Block 743 is bad
Block 744 is bad
Block 745 is bad
Block 746 is bad
Block 747 is bad
Block 748 is bad
Block 749 is bad
Block 758 is bad

Examine blocks 742-75@7?

File(s) endangered:

SYSTEM.PASCAL 655 765 {File name and beginning and ending
Try to fix them? blocks of file.}

Block 742 is bad

Block 743 is bad

Block 744 is bad

Block 745 is bad

Block 746 is bad

Block 747 is bad

Block 748 is bad

Block 749 is bad

Block 7580 is bad

Mark them (may remove files!)?
Continue scan? |
Continue bad block scan
12 bad blocks found

Figure 4-290. Bad Blocks Scan (Bad Blocks Found).

Page 4-32

Figure 4-21 gives an example of a bad block scan in which no bad blocks are
found.

Bad block scan of what vol?

Entire disk (1976 blocks)?

nnnn ' {on floppy drives, clicking noises result
as blocks are scanned. Block numbers
flash in place of nnnn.}

@ bad blocks found

Figure 4-21. Bad Blocks Scan (No Bad Blocks Found).

4.2.12 E(xt-dir (Extended Directory Command)

The Extended Directory cammand is an extension of the List Directory cammand.
This cammand displays, or lists, detailed information about the specified
directory of a disk/diskette wvolume. Although this command is not displayed
on the Filer main cammand line, it is executed by typing an E from the Filer
main or secondary cammand line. (The secondary cammand line is displayed by
typing a ? from the Filer main cammand line.)

The following prompt appears in response to the cammand invocation:

| Dir listing of what vol? |

The use of wild card characters is the same for the Extended Directory cammand
as for the List Directory cammand. (See Section 4.2.5 List Directory cammand.)

The data shown through use of this cammand are (1) file name; (2) unused
areas of disk; (3) block length for each file; (4) last modification date;
(5) starting block address; (6) number of bytes in the last block in the
file; and (7) file kind. The summary line at the end of the list is the
same as the summary line of the List Directory cammand.

Figure 4-22 gives an example of the Extended Directory cammand. Comments are
enclosed in braces ({}); user input is shaded.

Page 4-33

Filer: G(et, S(ave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans, D(ate, Q(uit

B

Dir listing of what vol? I

LCAIGS:

RGDEMO. RPGL 8 12-Apr-82 10 9% Datafile
LC.CODE 67 12-Apr-82 18 512 Codefile
< UNUSED > 9 85

LCDUMP. CODE 18 12-Apr-82 A 512 Codefile
LIC.CODE 64 25-Mar-82 112 512 Codefile
< UNUSED > 8 176

TEST2.TEXT 4 30-Apr-82 184 512 Textfile
TEST . TEXT 4 30-Apr-82 188 512 Textfile
< UNUSED > 9 192

LCMASK 9 38-Apr-8l 201 512 Datafile
< UNUSED > 1766 219

7/7 files<listed/in-dir>, 174 blocks used, 1792 unused, 1766 in largest area

Figure 4-22. Example of the Extended Directory Command.

In Figure 4-22, the volume name appears at the top of the first colum. The
first column gives the file name and unused areas. Column two is the block
length of the file. Colum three is the last modification date of the file.
The number in colum four is the starting address of the file (block number).
The fifth column shows how many bytes exist in the last block of the file. The
last colum shows the file kind.

4.2.13 K(rmch (Crunch Command)

The Crunch cammand moves the files on the specified volume toward the begin-
ning of the disk so that unused blocks are grouped at the end. This cammand
is initiated by typing K fram the Filer main or secondary cammand line. (The
cammand appears on the Filer secondary cammand line, which is accessed by
typing a ? from the Filer main camand line.)

The prompt that is displayed in response to this caommand follows.

| Crunch what vol?

Page 4-34

After the volume name or device number is entered, the following prompt is dis-
played.

| Are you sure you want to crunch <vol name or ID>? |

The second prompt asks the user to verify continuation of the crunch operation.
A Y response causes the Filer to begin moving files. An N response aborts the
crunch operation; the Filer main cammand line is redisplayed.

The volume specified to crunch must be on line. As each file is moved, its
nare is reported on the console. If SYSTEM.PASCAL is moved during a crunch
operation, the system must be rebooted.

The Crunch cammand is not allowed if the Copier Task (see COPY utility,
6.16) is active on a file on the volume to be crunched.

Figure 4-23 presents an example of the Crunch cawmand. Comments are enclosed
in braces ({}); user input is shaded.

Page 4-35

Filer: G(et, S(ave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans, D(ate, Q(uit

{In this example, the Extended Directory of the volume is listed before the
Crunch cammand is uysed. The crunch operation is campleted; then, another
copy of the Extended Directory listing is given. Thus, a "before" and "after"

picture of the disk usage is shown.}

Crunch what vol?

Are you sure you want to crunéh LCAIGS:? ¥

Moving LILCDUMP.CODE
Moving LIC.CODE
Moving TEST2.TEXT
Moving TEST.TEXT
Moving LMASK
ICALGS: crunched

B

Dir listing of what vol?

LCAIGS:

RGDEMO. RPGL 8 12-Apr-82 19 9% Datafile
LC.CODE 67 12-Apr-82 18 512 Codefile
< UNUSED > 9 85

LCDUMP.CODE 18 12-Apr-82 A 512 Codefile
LIC.CODE 64 25-Mar-82 112 512 Codefile
< UNUSED > 8 176

TEST2.TEXT 4 30-Apr-82 184 512 Textfile
TEST. TEXT 4 30-Apr-82 188 512 Textfile
LCMASK 9 30-Apr-82 192 512 Datafile
< UNUSED > 1766 210

7/7 files<listed/in-dir> 174 blocks used, 1792 unused, 1766 in largest area

E

Dir listing of what vol?]

LCAIGS:

RGDEMO. RPGL 8 12-Apr-82 10 96 Datafile
1LC.COE 67 12-Apr-82 18 512 Codefile
LCDUMP. CODE: 18 12~-Apr-82 85 512 Codefile
LLC.CODE 64 25-Mar-82 143 512 Codefile
TEST2.TEXT 4 30-Apr-82 167 512 Textfile
TEST.TEXT 4 30-Apr-82 171 512 Textfile
LOMASK 9 3¢-Apr-81 175 512 Datafile
< UNUSED > 1792 184

7/7 files<listed/in-dir> 174 blocks used, 1792 unused, 1792 in largest area

Figure 4-23. Example of the Crunch Command.

Page 4-36

4.2.14 M(ake (Make Command)

The Make command creates a directory entry with the specified file name. This
cammand is initiated by typing M from the Filer main or secondary cammand line.
{This cammand is displayed on the secondary cammand line, which is accessed by
typing a ? from the Filer main cammand line.)

The following prompt appears requesting the specified file name and specifica-
tion.

| Make what file? |

The file specification must be entered in response to the prompt. In this case,
the optional file size specification can be useful in managing disk space effec-
tively. If no size specification is given, the Filer creates the file using the
largest unused area of disk.

The size specification, if used, follows the volume name (or device number)
plus file name. That is, the number of blocks enclosed in brackets ([]) appears
immediately to the right of the file name. Two default size specifications are
explained below.

[@] This size specification is the same as anitting a size specification.
The file is created in the largest unused area.

[*] This size specification results in the file being created in the second
- largest, or half the largest unused area, whichever is larger.

Because other files cannot use the area allocated to a file created by the Make
camnand, the cammand can be used to create a directory entry in order to reserve
that area of disk (for example, to save the space for future use).

Files with a file name that ends with .TEXT must occupy at least four blocks
and must occupy an even number of blocks. If the Make cammand is used to create
a text file with a size specification of less than four blocks, the following
message appears:

| No room on vol |

If the Make cammand is used to create a .TEXT file with a size specification that
is an odd number of blocks, the file is created with one less block than specif-
ied.

Figure 4-24 gives examples of the M(ake cammand to create file entries in the

directory. In the figure, camments are enclosed in braces ({}); user input is
shaded.

Page 4-37

Filer: G(et, S(ave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans, D(ate, Q(uit

{Three examples of the Make cammand are shown below. The Extended Directory
listing for the volume is shown before and after the Make operation.}
Dir listing of what vol? |

LCALGS:

RGDEMO. RPGL 8 12-ppr-82 10 9% Datafile
LC.CODE 67 12-Apr-82 18 512 Codefile
LCDUMP. CODE 18 12-ppr-82 85 512 Codefile
LIC.CODE 64 25-Mar-82 103 512 Codefile
TEST2.TEXT 4 30-Apr-82 167 512 Textfile
TEST.TEXT 4 30-Apr-82 171 512 Textfile
LCOMASK 9 30-Apr-81 175 512 Datafile
< UNUSED > 1792 184

7/7 files<listed/in-dir> 174 blocks used, 1792 unused, 1792 in largest area

I.CAL»GS:TEST3.'I‘EXI‘ made

M
Make what file? LCALGS
LCALGS:TEST4.TEXI' made
M

Make what file?
LCALGS:TEST5.TEXT made

B

Dir listing of what vol? I

LCALIGS:

RGDEMO. RPGL 8 12-Apr-82 19 9% Datafile
LC.CODE 67 12-Apr-82 18 512 Codefile
LCDUMP. CODE 18 12-ppr-82 85 512 Codefile
LILC.CODE 64 25-Mar-82 103 512 Codefile
TEST2.TEXT 4 30-Apr-82 167 512 Textfile
TEST . TEXT 4 30-Apr-82 171 512 Textfile
LAavASK 9 30-Apr-81 175 512 Datafile
TEST3.TEXT 28 6-May-82 184 512 Textfile
TEST4.TEXT 4 6May-82 212 512 Textfile
TEST5. TEXT 887 6May-82 216 512 Textfile
< UNUSED > 880 109

10/10 files<listed/in-dir>, 1086 blocks used, 880 unused, 880 in largest area

Figure 4-24. Three Examples of the Make Command.

Page 4-38

The three examples of the Make cammand in Figure 4-22 illustrate several points.
The first make operation creates a file that is allocated 28 blocks of space;
the Extended Directory listing confirms that the specified size was allocated
for the file TEST3.TEXT.

The second make oOperation specified the creation of a text file of five blocks.
The file was actually allocated four blocks, one block less than the odd-numbered
size specification, as shown on the directory listing.

The third make operation uses a default size specification that causes the Filer
to allocate half the largest unused area to the file. The directory listing
confirms that the file entry is made according to specification. The "before"
listing shows a total, and the largest unused area, of 1792 blocks. The first
two make operations used 32 of those blocks, leaving 176@ blocks in the largest
unused area. The third make operation specifies a size of half that area —-—

or 880 blocks. The directory listing confirms that 880 blocks are allocated
for the file TESTS5.TEXT.

4.2.15 P(refix (Prefix Command)

The Prefix command changes the current default volume to the volume specified