
USER'S GUIDE TO

VECTOR GRAPHIC SYSTEMS

USING·MOOS

MOOS System Diskette version 8.5

USER'S GUIDE

Revision B

October 18, 1979

IMPORTANT: 'Ibis manual is for MOOS System Diskettes 8.5 (lilLY.

'Ibis manual AND Diskette 8.5 are for use only with systems having
56K of contiguous memory.

Please turn to the ERRATA following the title page.

To start up a system using MOOS, see first page of Chapter 2. ~

Copyright 1979 Vector Graphic Inc.

· , ,

\ ." .

..... ' ,'J

.:: '

: copyr'ight: 1979 by VeCtor Graphic Inc.
All rights reserved.

Disclaimer ' ,
Vector Graphic makes no representati9ns or warranties with respect to the
contents of this manual it,self',' Whether or not the' product it describes is
covered by a warranty or repair agt:eement.· Further, Vector Graphic reserves the
right to revise this publication and to' make changes· from, time to time' in the
content hereof without obligation of Vector Graphic to notify any person of such
revision or changes, except when an agreement to the contrary exists.

Revisions
The date of release and revision letter of each page herein appears at the
bottom of each page. Changes from the previous revision are marked with a bar
in the margin. The revision letter such as A or B changes if the MANUAL has
been improved but the PRODUCT itself has not been significantly modified. The
date of release and revision letter on the Title Page corresponds to that of the
page roost recently revised. When the product itself is roodified significantly,
the product will get a new revision number, as shown on the manual's title page,
and the manual will revert to revision A, as if it were treating a brand new
product. EACH MANUAL SHOULD ONLY BE USED WITH THE PRODUCT IDENTIFIED ON THE
TITLE PAGE.

ERRATA

The following sheets describe the differences between the B.4 MDOS manual
and the B.5 manual. The chaI'Xle occurs because of a very significant change to
the system and the MOOS System Disk. Because of printiI'Xl schedules, the manual
text is NOT modified. Please make the appropriate changes in the text. The
disk, however, is ready to use.

Most of the differences derive from inclusion in the system of a 64K RAM
board which provides the user with 56K of contiguous memory. (BK are not used.)
To accomplish this, all other boards having on-board memory have been
readdressed (Flashwriter, Disk Controller, and PROM/RAMboards). The Extended
Systems Monitor has been changed to accomodate this, and the version of the
Moni tor used with the Flashwri ter board has been enhanced in other ways as well.
The MJX)S operatiI'Xl system and utilities have also been modified as requi red by
the change, and tw:> new utili ties added.

Change the following in the manual text:

If your system is a System B, the Extended. Systems Monitor Executive will
prompt the operator wi th "MON>". In other systems, the Monitor prompt is still
"*". Make this change in the text wherever you find it. It appears in many
places.

Change

1-1 The system has a 64K board, not a 4BK board. The user has access to 56K of
this.

1-9 Change the chart as follows:

FF40-FFFF
FC00-FF3F
FB00-FBFF
F000-F7FF
EC00-£FFF
EB00-EBFF
E000-E7FF
0000-£000

Monitor stack area (on PRC>'! RAM board)
RAM available to user (on PROM RAM board) .,.
Disk Bootstrap ROM and Disk Controller RAM
Flashwriter video buffer
lK optional PRC>'!
lK optional PRC>'!
Extended Systems Monitor
56K available to user

1-10 Top of RAM is DFFF.

Rev. B.5-6 l0/1Bn9

-, .. -
. \.

1-11 Remove NOESCAPE, change FLASH7 to PLASH8, add UPDATE-RES and WORM utilities
(both type EC.)

UPDAT.E':"RJ;;$ i~ u~~d to convert MOOS System Diskettes 8.4 and before into
diskettes that can run on the Update-64 systens as the 8.5 diskette can. Simply
put the diskette you want to update in drive 0 (remove any wr i te protect tab),
put, tite8.5 .diskette in drive 1, and type 1 : UPDATE-RES (return) while in the
MIX:S Executive.

WORM is a utility which tests memory more thoroughly than any other test,
including MDIAG. It erases all of memory, so make sure you have saved your data
on a diskette before using it. To use, type WORM (return) while in the MOOS
~ecl1t.1ve •. ~low it to repeat 5 times •. It will report any errors in memory.

2-2 N causes E000, not C000, to be displayed if the system is working properly •
. .

~. ' .. ':. ' "

2-3
, ~ .. ' . <:inc 2-13' ~ Some systems have a Bi tstreamer I board and some systems have a

Bi tstJ;:eamer II board. All configuration instructions in Chapter II apply to the
Bitstreamer rI. board •. Consult the Bitstreamer II manual or Vector Graphic or its
agents for instructions on interfacing with the Bitstreamer II. Basically, it
has} serial ports(2&~, 4&5, 6&7) each having a data and a status port address,
and 2 parallel ports (8 and 9.) Centronics drivers on the 8.5 MOOS Systems
Diskette will not work with Bitstreamer II.

,~, • ; I

:- '. ~.

2-17. Ren:>ve ~ction' 2;. 3.7., (This is because the only way now to cause a return of
control t9 the Extended Systems Monitor Executive is to press the RESET button
on the computer chassis.)

,i'e .• 3~~' ':':Cl!~l1ge:*ctiqn 3.7 ~ explain: Depress RESET on t.'1e computer chassis to retun
control to the ftt)nitor ~xecutive. Control-Q, ESC, and control-x will not work.

3-4 Change the reference to "control-Qft to "RESET button."

Change the title of section 3.10 to "ENTERING MOOS AND M.BASIC COMMANDS."
Change the contents of the section to read "All operator entries to the MOOS and
M.BABIC Executives can be edited with the BACK SPACE, DEL, underscore, or
control-H keystrokes. Terminate every line by depressing the RETURN key. If
desired, press control-T at almost any time to reverse the video image to black
on white, or back again. Some other special keys, such as the arrow keys to
move the cursor, may affect the screen image, but do not use them while in the
MOOS or M.BASIC Executives because these keys may confuse the Executives. (Note
that other Executives, such as the Extended Systems Monitor Executive and the
Word Management System do allow use of some of these special keys.) ft

4-1 Replace "ASSMft with "Z901.''

Rev. 8.5-8 10/18/79

REPAIR AGREEMENT

The Vector Graphic computer sold hereunder is sold "as is", with all
faults and without any warranty, either expressed or implied,
including any implied warranty of fitness for intended use or
merchantability. Ho~ever, the above notwithstanding, VECTOR
GRAPHIC, INC., will, for a period of ninety (99) days following
delivery to customer, repair or replace any Vector Graphic computer
that is found to contain defects in materials or workmanship,
provided:

1. Such defect in material or workmanship existed at the
time the Vector Graphic computer left the VECTOR GRAPHIC, INC.,
factory;

2. VECTOR GRAPHIC, INC., is given notice of the precise
defect claimed within ten (19) days after its discovery;

3. The Vector Graphic computer is promptly returned to
VECTOR GRAPHIC, INC., at customer's expense, for examination by
VECTOR GRAPHIC, INC., to confirm the alleged defect, and for
subsequent repair or replacement if found to be in order.

Repair, replacement or correction of any defects in material or
workmanship which are discovered after expiration of the period set
forth above will be performed by VECTOR GRAPHIC, INC., at Buyer's
expense, provided the Vector Graphic computer is returned, also at
Buyer's expense, to VECTOR GRAPHIC, INC., for such repair,
replacement or correction. In performing any repair, replacement or
correction after expiration of the period set forth above, Buyer
will be ch3rged in addition to the cost of parts the then-current
VECTOR GRAPHIC, INC., repair rate. At the present time the
applicable rate is $35.00 for the first hour, and $18.00 per hour
for every hour of work required thereafter. Prior to commencing any
repair, replacement or correction of defects in material or
workmanship discovered after expiration of the period for
no-cost-to-Buyer repairs, VECTOR GRAPHIC, INC., will submit to Buyer
a written estimate of the expected charges, and VECTOR GRAPHIC,
INC., will not commence repair until such time as the written
estimate of charges has been returned by Buyer to VECTOR GRAPHIC,
INC., signed by duly authorized representative authorizing VECTOR
GRAPHIC, INC., to commence with the repair work involved. VECTOR
GRAPHIC, INC., shall have no obligation to repair, replace or
correct any Vector Graphic computer until the written estimate has
been returned with approval to proceed, and VECTOR GRAPHIC, INC.,
may at its option also require prepayment of the estimated repair
charges prior to commencing work.

Repair Agreement void if the enclosed card is not returned to VECTOR
GRAPHIC, INC. within ten (10) days of ~nd consumer purchase.

Revision 8.1 5/2/79

TABLE OF CONTENTS

PAGE

SECTION I GENERAL INFORMATION

1.0 GENERAL DESCRIPTION OF SYSTEM AND SUBSYSTEMS 1-1

1 .0. 1 STANDARD HARDWARE AND SOFTWARE 1 -1
1.0.2 OPTIONAL COMPONENTS AND SOFTWARE 1-2

1.1 MICROPOLIS DISKETTE SUBSYSTEM SPECIFICATIONS 1-2

1 • 1 • 1 PERFORMANCE
1.1.2 DRIVE RELIABILITY

1.2 HEXADECIMAL NOTATION
1.3 OPERATING SYSTEM SOFTWARE

1 .3. 1 VECTOR GRAPHIC EXTENDED SYSTEMS MONITOR
1.3.2 PROGRAM DEVELOPMENT SOFTWARE
1.3.3 ELEMENTS OF MOOS
1.3.4 ELEMENTS OF M.BASIC
1.3.5 OTHER OPERATING SYSTEMS
1.3.6 RESIDENT PROGRAMS

1-2
1-2

1-3
1-3

1-3
1-4
1-4
1-5
1-6
1-7

FIGURE 1. 1 MZ SOFTWARE STRUCTURE USING MOOS 1-8
FIGURE 1.2 ML~ORY MAP FOR VECTOR GRAPHIC SYSTEMS 1-9
FIGURE 1.3 MEMORY MAP FOR MOOS AND M. BASIC 1 -10

1.4 MDOS SYSTEM DISKETTE 1-1 ~ to 1 -1 3

SECTION II
AND OSE OF ISKETTES

2.1 INSTALLATION 2-1
2.2 CONFIGURING THE MZ (for non-turnkey systems) 2-2

2.2.0 MODIFYING THE RES MODULE
2.2.1 STANDARD CONFIGURATIONS

2.2.1.1 PRINTER: PARALLEL, CENTRONICS
PROTOCOL

CONSOLE: SERIAL VIDEO TERMINAL

700 SERIES

2.2.1.2 PRINTER: SERIAL, DIABLO 1610 PROTOCOL OR
TELETYPE PROTOCOL

CONSOLE: SERIAL VIDEO TERMINAL

2.2.1.3 PRINTER: PARALLEL, CENTRONICS 700 SERIES
PROTOCOL

CONSOLE: PARALLEL ASCII KEYBOARD, SEPARATE
VIDEO MONITOR

Rev. 8.3-A 7/1/79

2-2
2-3

2-4

2-4

2-6

2.2.1.4 PRINTER: PARALLEL, CENTRONICS 700 SERIES
PROTOCOL

CONSOLE: VECTOR GRAPHIC MINDLESS TERMINAL

2.2.1.5 PRINTER: SERIAL, DIABLO 1610 PROTOCOL OR
TELETYPE PROTOCOL

CONSOLE: PARALLEL ASCII KEYBOARD, SEPARATE
VIDEO MONITOR

2.2.1.6 PRINTER: SERIAL, DIABLO 1610 PROTOCOL OR
TELETYPE PROTOCOL

CONSOLE: VECTOR GRAPHIC MINDLESS TERMINAL

2.2.1.7 SERIAL PRINTING TERMINAL (HAS A KEYBOARD),
DIABLO 1610 OR TELETYPE PROTOCOL

PAGE

2-7

2-8

2-9

AND A VIDEO IDNITOR 2-10

2.2.1.8 SERIAL PRINTING TERMINAL (HAS A KEYBOARD),
DIABLO 1610 OR TELETYPE PROTOCOL

AND NO VIDEO 2-12

2.2.2 ADDING A STANDARD PRINTER TO AN EXISTING MZ
SYSTEM 2-13

2.2.3 NON-STANDARD CONFIGURATIONS 2-15

2.3 OTHER MODIFICATIONS TO SYSTEM SOFTWARE & HARDWARE 2-15

2.3.1
2.3.2
2.3.3
2.3.4

2.3.5
2.3.6
2.3.7

2.3.8

CHANGING TO 2 MHZ CLOCK RATE
CONNECTING ADDITIONAL DISK DRIVES
USING I/O PORTS
CHANGING MEMORY ADDRESS AND I/O PORT
ASSIGNMENTS OF BOARDS
SHORTENING BASIC
BASIC-ONLY DISKETTE
STOPPING ESC FROM RETURNING CONTROL TO THE
SYSTEMS MONITOR
FINALIZING THE PERSONALIZED SYSTEM DISKETTE

2.4 DISKETTE MEDIA

2.4.1
2.4.2
2.4.3
2.4.4
2.4.5
2.4.6
2.4.7
2.4.8

DESCRIPTION
IF YOU HAVE PROBLEMS WITH DISK ERRORS
HANDLING
LOADING AND UNLOADING
RECOVERY TECHNIQUES
REPLACEMENT AND BACK-UP OF DISKETTES
INITIALIZING DISKETTES
WRITE PROTECT FOR DISKETTES

FIGURE 2.1 5 1/4 INCH DISKETTE
FIGURE 2.2 HOW TO MOUNT WRITE PROTECT TAB

2-15
2-15
2-15

2-16
2-16
2-16

2-17
2-17

2-19

2-19
2-19
2-19
2-20
2-21
2-21
2-22
2-22

2-23

Rev. 8.3-A 7/1/79

SECTION III DAY TO DAY OPERATIONS

3.0 SUMMARY OF NORMAL START UP PROCEDURE
3.1 SUMMARY OF PROMPTS
3.2 POWER-ON
3. 3 LOAD MOOS
3.4 LOAD M.BASIC FROM MOOS
3.5 OTHER OPERATING SYSTEMS AND LANGUAGES
3.6 RETURNING TO MOOS FROM M.BASIC
3.7 RETURNING TO MONITOR FROM ANYPLACE
3.8 RETURNING TO MOOS (OR M.BASIC) FROM MONITOR

MDOS (OR M.BASIC) IS ALREADY IN MEMORY
3.9 RETURNING TO MOOS OR M.BASIC EXECUTIVE FROM

A ROUTINE RUNNING UNDER THAT EXECUTIVE
3.10 VIDEO COMMANDS

3.10.1
3.10.2
3.10.3
3.10.4
3.10.5
3.10.6
3.10.7
3.10.8
3.10.9

CLEAR SCREEN
SCROLL SCREEN UP ONE LINE
BACKSPACE CURSOR
CONVERT TO REVERSE VIDEO
TAB CURSOR 8 SPACES TO THE RIGHT
ELIMINATE CURSOR FROM THE SCREEN
MOVE CURSOR TO TOP OF SCREEN
MOVE CURSOR DOWN, UP, LEFT, OR RIGHT
RETURN CURSOR TO LEFT EDGE OF SCREEN

3.11 POWER-DOWN

SECTION IV MICROPOLIS DISKETTE OPERATING SYSTEM

4.0 INTRODUCTION TO MOOS
4.1 THE MOOS EXECUTIVE

4.1.1 ENTERING EXECUTIVE COMMANDS
4.1.2 EXECUTIVE STATEMENT FORMAT
4.1.3 CANCELING AN OPERATION
4.1.4 DISPLAY CONTROL

Rev. 8.3-A 7/1/79

IF

PAGE

3-1
3-1
3-1
3-2
3-2
3-2
3-3
3-3

3-4

3-4
3-4

3-4
3-4
3-4
3-5
3-5
3-5
3-5
3-5
3-5

3-5

4-1
4-2

4-2
4-2
4-3
4-4

4. 1. 5 EXPLICIT EXECUTIVE COMMANDS

4.1.5.1 THE COMP COMMAND
4.1.5.2 THE DUMP COMMAND
4.1.5.3 THE ENTR COMMAND
4.1.5.4 THE FILL COMMAND
4.1.5.5 THE MOVE COMMAND
4.1.5.6 THE SEAR COMMAND
4.1.5.7 THE SEARN COMMAND
4.1.5.8 THE CREATE COMMAND
4.1.5.9 THE DISP COMMAND
4.1.5.10 THE FILES COMMAND
4.1.5.11 THE FREE COMMAND
4.1.5.12 THE SCRATCH COMMAND
4.1.5.13 THE LOAD COMMAND
4.1.5.14 THE SAVE COMMAND
4.1.5.15 THE RENAME COMMAND
4.1.5.16 TYPE COMMAND
4.1.5.17 THE APP COMMAND
4.1.5.18 THE ASSIGN COMMAND
4.1.5.19 THE EXEC COMMAND
4.1.5.20 THE ~1ATH COMMAND
4.1. 5.21 THE PROMPT COt1MANO
4. 1. 5. 22 THE IN IT CO~1MAN D

4.2 MOOS DISK FILE I/O

4.2.1 TRACK INDEXED FILE STORAGE
4.2.2 FILE NAMES
4.2.3 FILE PROTECTION AND TYPE DEFINITION
4.2.4 FILE AND RECORD STRUCTURE
4.2.5 FILE ACCESS METHODS
4.2.6 COMPATIBILITY BETWEEN MOOS AND BASIC FILES

4.3 MOOS SHARED SUBROUTINES

4.3.1 CONSOLE AND PRINTER INPUT/OUTPUT SUBROUTINES

4.3.1.1 @CIN - CONSOLE INPUT
4.3.1.2 @COUT - CONSOLE OUTPUT
4.3.1.3 @CBRK - CONSOLE BREAK CHECK
4.3.1.4 @CDIN - CONSOLE DEVICE INPUT
4.3.1.5 @CDOUT - CONSOLE DEVICE OUTPUT
4.1.1.6 @CDBRK - CONSOLE DEVICE BREAK CHECK
4.3.1.7 @CDINIT - CONSOLE DEVICE INITIALIZATION
4.3.1.8 @LOUT - LIST OUTPUT
4.3.1.9 @LATN - LIST ATTENTION
4.3.1.10 @LDOUT - LIST DEVICE Ot~PUT
4.3.1. 11 @LDATN - LIST DEVICE ATTENTION
4.3.1.12 @LDINIT - LIST DEVICE rNITIALIZATION
4.3.1.13 @CCRLF - CONSOLE LINE FEED CARRIAGE RETURN
4.3.1.14 @LCRLF - LIST LINE FEED CARRIAGE RETURN
4.3.1.15 @ASSIGN - ASSIGN

Rev. 7 3/78

PAGE

4-4

4-4
4-4
4-4
4-5
4-5
4-5
4-6
4-6
4-6
4-7
4-7
4-7
4-8
4-8
4-8
4-9
4-9
4-9
4-11
4-11
4-11
4-12

4-13

4-13
4-13
4-14
4-15
4-16
4-17

4-18

4-18

4-18
4-18
4-19
4-19
4-19
4-19
4-19
4-19
4-20
4-20
4-20
4-20
4-20
4-20
4-20

4.3.1.16 @CILINE - CONSOLE INPUT LINE
4.3.1.17 @HEXOUT - HEXADECIMAL OUTPUT
4.3.1.18 @HEXADDOUT - HEXADECI~~L ADDRESS OUTPUT
4.3.1.19 @HEXOUTSPC - HEXADECIMAL OUTPUT WITH SPACE
4.3.1.20 @SPACEOUT - SPACE OUT
4.3.1.21 @NLINEOUT - NEW LINE OUTPUT
4.3.1.22 @LINEOUT - LINE OUTPUT

4.3.2 TEXT LINE PARSING SUBROUTINES

4.3.2.1 @?ARAM - PARAMETER
4.3.2.2 @SKIPSPACE - SKIP SPACES
4.3.2.3 @SCAN - SCAN
4.3.2.4 @SEAR - SEARCH
4.3.2.5 @AHEXTBIN - ASCII HEX TO BINARY

4.3.3 THE FILE ACCESS ROUTINES

4.3.3.1 @CREATE - CREATE
4.3.3.2 @GFILESTAT - GET FILE STATUS
4.3.3.3 @DIRSEARCH - DIRECTORY SEARCH
4.3.3.4 @QPENFILE - OPEN A FILE
4.3.3.5 @CLOSEFILE - CLOSE A FILE
4.3.3.6 @RFILEINF - READ FILE INFORMATION
4.3.3.7 @SINXTRS - SET INDEX POSITION TO RECORD START
4.3.3.8 @RRECORDLEN - READ RECORD LENGTH
4.3.3.9 @RINXPOS - READ INDEX POSITION
4.3.3.10 @SINXPOS - SET INDEX POSITION
4.3.3.11 @INCINX - INCREMENT INDEX POSITION
4.3.3.12 @RFINXPOS - READ FROM INDEX POSITION
4.3.3.13 @RFINXPOSI - READ FROM INDEX POSITION AND

INCREMENT INDEX
4.3.3.14 @WTINXPOS - WRITE TO INDEX POSITION
4.3.3.15 @WTINX?OSI - WRITE TO INDEX POSITION AND

INCREMENT INDEX
4.3.3.16 @LOADDATA - LOAD DATA
4.3.3.17 @SAVEDATA - SAVE DATA
4.3.3.18 @DFINXPOSTEOR - DELETE FROM INDEX POSITION TO

END OF RECORD
4.3.3.19 @DFINXPOS - DELETE FROM INDEX POSITION TO END OF

FILE
4.3.3.20 @INCRECPOS - INCREMENT RECORD POSITION

4.3.4 FILE MANAGEMENT SUBROUTINES

4.3.4.1 @FREE - FREE
4.3.4.2 @RENAME - RENAME
4.3.4.3 @TYPE - FILE TYPE·
4.3.4.4 @SCRATCH - SCRATCH A FILE

Rev. 7 3/78

PAGE

4-21
4-21
4-21
4-21
4-21
4-22
4-22

4-22

4-22
4-23
4-23
4-23
4-24

4-24

4-26
4-26
4-27
4-27
4-27
4-27
4-28
4-28
4-28
4-29
4-29
4-29

4-30
4-30

4-30
4-31
4-31

4-31

4-32
4-32

4-32

4-32
4-32
4-33
4-33

PAGE

4.3.5 PHYSICAL DISK ACCESS ROUTINES 4-33

4.3.5.1 @GETASEC - GET A SECTOR 4-34
4.3.5.2 @PUTASEC - PUT A SECTOR 4-34
4.3.5.3 @WRITESECTOR - WRITE A SECTOR 4-35
4.3.5.4 @VERIFYSECTOR - VERIFY A SECTOR 4-35
4.3.5.5 @SEEKTRACK - SEEK TO A TRACK 4-35
4.3.5.6 @RESTOREDISK - RESTORE THE READ/WRITE HEAD 4-35

4.3.6 PROCESSOR ORIENTED UTILITY ROUTINES 4-36

4.3.6.1 @HLADDA - ADD A TO HL 4-36
4.3.6.2 @INXM - INCREMENT ~'EMJRY 4-36
4.3.6.3 @LHLINDEXED - LOAD HL INDIRECT INDEXED 4-36
4.3.6.4 @LHLI - LOAD HL INDIRECT 4-37
4.3.6.5 @TRANSDHC - TRANSFER FROM DE TO HL FOR A COUNT OF C 4-37
4.3.6.6 @TRANSDHBC - TRANSFER FROM DE TO HL FOR A COUNT OF BC 4-37
4.3.6.7 @TRANSDHBCR - TRMtSFER FROM DE TO HL FOR A COUNT OF

BC REVERSE 4-37
4.3.6.8 @TRANSFILENAME - TRANSFER A FILENAME 4-38
4.3.5.9 @FILLZER - FILL ZEROES 4-38
4.3.6.10 @FILLSPC - FILL SPACES 4-38
4.3.6.11 @FILLA - FILL FROM THE A REGISTER 4-38
4.3.6.12 @COMPARE - COMPARE HL TO DE 4-38

4.3.7 EXTENDED 8080 INTEGER ARITHMETIC (16 BITS) 4-39

4.3.7.1 @DEADDHL - BC=DE+HL 4-39
4.3.7.2 @DESUBHL - SC=DE-HL 4-39
4.3.7.3 @DEMULHL - BC=DE*HL 4-39
4.3.7.4 @DEDIVHL - BC=DE/HL 4-40
4.3.7.5 @DEMODHL - BC=DE%HL 4-40

4.3.8 MESSAGE OUTPUT SUBROUTINES 4-40

4.3.8.1 @DISKERROR - DISK ERROR MESSAGES 4-40
4.3.8.2 @CLOSEFILES - CLOSE ALL FILES 4-41
4.3.8.3 @ERRORMES - ERROR MESSAGES 4-41
4.3.8.4 @MESSAGEOUT - MESSAGE OUTPUT 4-41

4.3.9 SYSTEM BUFFERS AND ENTRY POINTS 4-41

4.4 LINEEDIT - THE MOOS LINE EDITOR 4-43

4.4.1 ENTERING LINES TO LINEEDIT 4-43
4.4.2 KEYING IN A NEW TEXT FILE 4-44
4.4.3 ENTERING LINEEDIT COMMANDS 4-44
4.4.4 THE CLEAR COMMAND 4-45
4.4.5 THE NAME COMMAND 4-45
4.4.6 THE FILE COMMAND 4-45
4.4.7 THE AUTO COMMAND 4-45

Rev. 7 3178

4.4.8 THE PROMPT COMMAND
4.4.9 THE LOAD COMMAND
4.4.10 THE APPEND COMMAND
4.4.11 THE SAVE COMMAND
4.4.12 THE RESAVE COMMAND
4.4.13 THE LIST COMMAND
4.4.14 THE LISTP COMMAND
4.4.15 THE PRINT COMMAND
4.4.16 THE PRINTP COMMAND
4.4.17 THE TAB COMMAND
4.4.18 THE DELT COMMAND
4.4.19 THE RENUM COMMAND
4.4.20 THE SEARCH COMMAND
4.4.21 THE SEARCHALL COMMAND
4.4.22 THE CHANGE COMMAND
4.4.23 THE CHANGEALL COMMAND
4.4.24 THE EDIT COMMAND

4.4.24.1 ADVANCING THE EDIT POINTER
4.4.24.2 CHANGING THE NEXT CHARACTER - C
4.4.24.3 DELETING THE NEXT CHARACTER - D
4.4.24.4 INSERTING CHARACTERS - I
4.4.24.5 LISTING THE LINE IN THE EDIT BU~FER - L
4.4.24.6 SEARCHING TO A SPECIFIED CHARACTER - S
4.4.24.7 DELETING TO A SPECIFIED CHARACTER - K
4.4.24.8 QUITTING THE EDIT COMMAND MODE - Q
4.4.24.9 COMPLETING THE EDIT COMMAND

4.4.25 THE DOS COMMAND - EXITING FROM LINEEDIT
4.4.26 LINEEDIT FILE STRUCTURE

4.5 ZSM - Z-80 ASSEMBLER

4.5.1 HOW TO RUN ZSM
4.5.2 LANGUAGE ELEMENTS

4.5.2.1 CONSTANTS
4.5.2.2 OPERATORS
4.5.2.3 REGISTERS
4.5.2.4 PSEUDO-OPS

4.5.3 ASSEMBLY ERRORS
4.5.4 INSTRUCTION SET
4.5.5 TEST FILE FOR ZSM

Rev. 8.4-A 7/26/79

PAGE

4-46
4-46
4-46
4-47
4-47
4-48
4-48
4-49
4-49
4-49
4-49
4-49
4-50
4-50
4-51
4-52
4-52

4-52.1
4-52.1
4-52.1
4-52.1
4-52.1
4-53
4-53
4-53
4-53

4-53
4-54

4-55

4-55
4-56

4-57
4-58
4-58
4-59

-4-63
4-64
4-67E

4.6 SYMSAVE UTILITY
4.7 FILECOPY UTILITY
4.8 DISKCOPY UTILITY
4.9 MOOS ERROR MESSAGES
4.10 COPYFILE UTILITY FOR SINGLE DISK
4.11 MICROPOLIS DEBUG
4.12 DEBUG-GEN UTILITY

SECTION V MICROPOLIS DISK EXTENDED BASIC

5.0 INTRODUCTION
5.1 ENTERING LINES TO THE BASIC INTERPRETER
5.2 ENTERING A PROGRAM
5.3 IMMEDIATELY EXECUTED LINES

5.3.1 THE EDIT COMMAND
5.3.2 THE RENUM COMMAND
5.3.3 THE r~ERGE COMMAND

5.4 DELETE COMMAND
5.5 LIST COMMAND
5.6 SAVE COMMAND
5.7 LOAD COMMAND
5.8 DISPLAY COMMAND
5.9 SCRATCH COMMAND
5 . 10 RUN COMMAND
5.11 INTERRUPTING A RUNNING PROGRAM
5.12 CONTINUING AN INTERRUPTED PROGRAM
5.13 PROGRAM TRACING COMMANDS
5.14 BASIC SYSTEM ERROR HANDLING
5.15 BASIC. CHARACTER SET
5.16 DATA

5.16.1 CONSTANTS
5.16.2 VARIABLES
5.16.3 OUTPUT FORMATS

Rev. 8 9/78

PAGE

4-68
4-69
4-69
4-71
4-74
4-75
4-92

5-1
5-1
5-2
5-3

5-3
5-4.1
5-4.3

5-3
5-4
5-4
5-5
5-5
5-6
5-6
5-7
5-7
5-8
5-8
5-9
5-9

5-9
5-10
5-12

PAGE

5. 11 OPERATORS 5-14

5.11.1 NUMERIC OPERATORS 5-14
5.11.2 STRING OPERATORS 5-14
5.11.3 RELATIONAL OPE~~TORS 5-15
5.11.4 LOGICAL OPERATORS 5-16

5.18 FUNCTIONS 5-11

5.18.1 INTRINSIC FUNCTIONS 5-11

5.18.1.1 NUMERIC FUNCTIONS

ASS 5-18
ATN 5-18
COS 5-18
EXP 5-18
FIX 5-18
FRAC 5-18
INT 5-18
LN 5-18
LOG 5-18
MAX 5-18
MIN 5-18
t-IlD 5-18
RNO 5-19
SGN 5-19
SIN 5-19
SQR 5-19
TAN 5-19

5.18.1.2 STRING FUNCTIONS
,

ASC 5-20
CHAR$ 5-20
FMT 5-20
INOEX 5-21
LEFT$ 5-21
LEN 5-21
MIO$ 5-21
MAX 5-21
MIN 5-21
REPEAT$ 5-21
RIGHT$ 5-21
STR$ 5-21
VAL 5-21
VERIFY 5-21

5.18.1.3 SPECIAL FUNCTIONS
IN 5-22
PEEK 5-22
PGMSIZE 5-22
SPACELEFT 5-22

5.18.2 USER DEFINED FUNCTIONS 5-22

Rev. 8 9/78

5.19 Expressions

5.19.1 Evaluation of Expressions
5.19.2 Numeric Expressions
5.19.3 String Expressions
5.19.4 Logical Expressions

5.20 BASIC Statements

5.20.1 DATA
5.20.2 DEF FN
5.20.3 DEF FA
5.20.4 DIM
5.20.5 END
5.20.6 EXEC
5.20.7 FLOW
5.20.8 FOR
5.20.9 GOSUB
5.20.10 GOTO
5.20.11 IF •• THEN
5.20.12 INPUT
5.20.13 LET
5.20. 14 MEMEND
5.20.15 NEXT
5.20.16 NOFLOW
~.20.17 ON •• GDTO
5.20.180N •• GOSUB
5.20.19 OUT
5.20.20 POKE
5.20.21 PRINT
5.20.22 READ
5.20.23 REM
5.20.24 RESTORE
5.20.25 RETURN
"5.20.26 SIZES
5.20.27 STOP
5.20.28 STRING

5.21" BASIC DISK FILE I/O

5.21.1 Disk Files
5.21.2 Disk File Commands

5.21.2.1 DISPLAY
5 • 21. 2 • 2 LOAD
5.21.2.3 PLOADG
5.21.2.4 SAVE
5.21.2.5 SCRATCH
5.21.2.6 CHAIN
5.21.2.7 LINK

Rev. 7 3178

5-33

5 ... 33
5-33
5-34
5-35

5-36

5-36
5 .. 37
5-37
5-38
5-38
5-39
5-39
5-40
5-42
5-43
5-43
5-44
5-44
5-45
5-45
5-45
5-45
5-46
5-46
5-46
5-47
5-49
5-49
5-49
5-49
5-50
5-50
5-50

5-51

5-51
5-52

5-53
5-53
5-53
5-54
5-54.1
5-54.1
5-54.1

Rev. 7 3/78

5.21.3 Disk I/O Statements

5.21.3.1 OPEN
5.21.3.2 PUT
5.21.3.3 GET
5.21.3.4 CLOSE
5.21.3.5 AITRS
5.21.3.6 EOF
5.21.3.7 FREESPACE
5.21.3.8 GETSEEK
5.21.3.9 PUTSEEK
5.21.3.10 RENAME

5.21.4 Disk I/O Functions

AITR
ERR
ERR$
NAME
RECGET
RECPUT
SIZE
TRACKS
FREETR

5.22 BASIC PRINT FILE OUTPUT

5.22.1 Printer Related Language Features

5.22. 1. 1 OPEN
5 . 22. 1. 2 PUT
5.22.1.3 CLOSE
5.22.1.4 ENDPAGE
5.22.1.5 ASSIGN
5.22.1.6 LISTP
5.22.1.7 PAGESIZE

5.22.2 Notes on Printer Related
PrograJmling

5-54.1

5-55
5-57
5-60
5-60
5-61
5-61
5-62
5-62
5-62
5-63

5-63

5-64
5-64
5-64
5-64
5-64
5-64
5-64
5-64
5-64

5-65

5-65

5-65
5-66
5-66
5-67
5-67
5-69
5-69

5-70

5.22.2.1 Separating Print Files 5-70
and Interactive Messages

5.22.2.2 Paginating Print Files 5-73
5.22.2.3 Spooling Print Files to 5-76

Disk for Later Output
5.22.2.4 Draining File Output to A 5-76

Nun Device
5.22.2.5 Echoing of Terminal 5-77

Output to Printer

SECTION VI DISK SUBSYSTEM THEORY AND DIRECT
PROGRAMMING

FIGURE 6.1 5 1/4 INCH DISKETTE

6.0 INTRODUCTION
6.1 FUNDAMENTALS OF THE FLEXIBLE DISK: MEDIA
6 • 2 HARDWARE FUNDAMENTALS
6.3 CONTROLLER REGISTERS
6.4 DISK OPERATIONS
6.5 ERROR HANDLING
6.6 DISK DRIVER

APPENDICES

A - BASIC ERROR MESSAGES
B - BASIC UTILITY PROGRAM
C - ACCESSING DISKCOPY FROM BASIC
o - SUMMARY OF MOOS ERROR MESSAGES
E - RES. I/O SOURCE LISTING
F - MICRO POLIS DISK BOOTSTRAP
G - "FEATURES" PROGRAM TO OPTIONALLY SHORTEN BASIC
H - INTERFACING TO A CENTRONICS PRINTER
I - TROUBLE SHOOTING IF MOOS DOES NOT LOAD
J - GAMES AND DISPLAYS ON THE MOOS SYSTEM DISKETTE

PAGE

6-1

6-1

6-3
6-3
6-7
6-9
6-13
6-20
6-21

K - CHANGING MICROPOLIS BOOTSTRAP ROM AND DISK I/O ADDRESS
L - CHANGING CLOCK RATE TO 2 MHZ
M - WRITING A CONSOLE PHYSICAL I/O ROUTINE
N - WRITING A PRINTER PHYSICAL I/O ROUTINE
o - REASSEMBLING AND SAVING THE RES MODULE
P - MAP OF I/O PORTS
Q - MEMORY DIAGNOSTICS

Rev. 8.3-A 7/1/79

appendices

E-1 Add remark: RES. I/O has been altered for the re-arranged board addressing.
Hence, if you need it, list it using LINEEDIT, or assemble it· using ZSM from the
8.5 MOOS System Diskette.

H-1 The instructions in this appendix only apply to the Bitstreamer I board.

1-1 Change C000 to E000.

J-1 Change FLASH7 to FLASH8.

K-1 and K-2 The standard location is from F800-FBFF. A single jumper at W4 is the
standard.

..
0-1 If the system has a Bitstreamer II board controlling a printer, use Bitstreamer

base address of 0 for serial ports at 2 and 3, and use base address 4 for' ports
6 and 7 (to control the printer.) (Do not worry about control of a serial
terminal, if used. 'Ihis is handled by the Extended Systems 'Monitor~) .

If controlling a printer out of a Bitstreamer II parallel port, then do not use
the standard drivers.

P-2 Add the following: Ports 8 and 9 are Bitstreamer II parallel ports. 40 is 64K
and 16K bank select. 10-14 are used by the Vector Graphic Precision Analog
Board. The Tarbell Disk uses Fe as well as its other port addresses •.

Q-1 and Q-2 Change 1f48K" to "56K. If To use the T canmand, enter T 0IiH"" DFFF. MAP
uses scratch pad FC00 to FDFF in all systems now. Add explanation of WoRM,
taken from the explanation above in this errata. ~ ...

. .

Rev. 8.5-8 10/18/79

I GENERAL INFORMATION

1.0 GENERAL DESCRIPTION OF SYSTEM AND SUBSYSTEMS

Your system is a general purpose microprocessor based computer. It
is delivered by Vector Graphic completely assembled and fully
tested, including both hardware and operating system software, and
including two quad density mini-floppy disk drives.

1.0.1 STANDARD HARDWARE AND SOFTWARE

1) Chassis with power supply and 1B slot fully shielded S-100
motherboard;

2) 4 MHz Z-Bo CPU board;

3) Two quad density Micropolis mini floppy disk drives, allowing
1232 256-byte sectors per diskette.

4) Disk controller board;

5) Bitstreamer I/O board;

6) 4BK Dynamic RAM board;

I

7) PROM/RAM III board, with space for 12K of EPROM and the I
ability to pr.ogram EPROM's (see the PROM/RAM III board
manual).

B) The Vector Graphic Extended Systems Monitor, on PROM;

9) Two copies of the MOOS System Diskette, each containing:
.-

a) The Vector Graphic-enhanced Mlcropolis Disk Operating
System - MDOS - a complete floppy diskette operating
system, including a Z-Bo Assembler, an editor, a debugger, I
and several other utilities (see Ch.4);

b) Micropolis BASIC (see Ch. 5);

c) A number of games and video displays (see Appendix J.)

1.0.2 OPTIONAL COMPONENTS AND SOFTWARE

Your MZ can be configured with various optional peripherals.
Section 2.2 of this manual lists the configurations of printers and
consoles considered "standard" for the MZ, and gives the components
such as interface boards and cables needed for each configuration.
In addition to the configurations discussed in Section 2.2, the
following components can optionally be added to an MZ:

1) Additional Bitstreamer I/O board(s), such as the Bitstreamer
II having three serial ports, two parallel ports, real-time

Rev. B.4-A 7/26/79 1-1

clock, and Z-80 inte~~upts.

2) Additional memo~y boa~d(s);

3) Othe~ S-100 compatible boa~ds f~om Vecto~ G~aphic o~ othe~
sou~ces.

4) 2 additional Mic~opolis mini-floppy disk d~ives;

5) Othe~ ope~ating system and language softwa~e.

Contact you~ deale~ fo~ mo~e info~mation on adding components
to the system.

1.1 MICROPOLIS FLOPPY DISKETTE SUBSYSTEM SPECIFICATIONS

1.1.1 PERFORMANCE

Capacity pe~ d~ive: 315K bytes, fo~matted
T~ansfe~ ~ate: 250K bits/second
Ave~age ~otational latency time: 100 milliseconds
Access time - t~ack-to-t~ack : 30 milliseconds
settling time: 10 milliseconds
Head load time: 75 milliseconds
Head positione~: steppe~ moto~ with lead-sc~ew d~ive
D~ive moto~ sta~t time: 1 second
Rotational speed: 300 RPM
Reco~ding density 5248 bits pe~ inch (BPI)
Reco~ding mode: MFM
T~ack density: 100 t~acks pe~ inch (TPI)
Su~faces used pe~ diskette: 1

1.1.2 DRIVE RELIABILITY

MTBF
MTTR

8000 h~s.
0.5 h~s ..

Media life
Head life

3 X 10 EXP 6 passes on single track
10 EXP 4 hI'S.

Soft e~~o~ ~ate
Ha~d e~~o~ ~ate
Seek e~ror rate

1 in 10 ElP 9
1 in 10 EXP 12
1 in 10 EXP 6

1-2 Rev. 8.4-A 7/26/79

I

1.2 HEXADECIMAL NOTATION

In this manual as in most microcomputer literature, the base 16
number system is used for all references to memory locations,
instruction codes, character codes, and so on. If you are not
familiar with it, you will soon find that the hexadecimal system is
the most natural way to express these numbers when dealing with a
computer that stores data as groups of 8 binary digits (bits) and
memory addresses as groups of 16 bits. Hex numbers will be
indicated by an upper case H following the ,digits. Remembering a
few key values will make things a great deal easier:

HEX NUMBER DECIMAL VALUE JARGON BINARY BITS

A 10 4
B 11 4
C 12 4
D 13 4
E 14 4
F 15 4

10 16 5
FF 255 8

100 256 9
3FF 1,023 10
400 1,024 lK 11
FFF 4,095 12

1000 4,096 4K 13
4000 16,384 16K 15
8000 32,7613 32K 16
FFFF 65,535 64K-l 16

The familiar rules of arithmetic work just the same in hex as in
decimal:

10 HEX (TRIVIAL)
40) 400

or
16 DECIMAL (MORE DIFFICULT)

64) 1024
64
384
384
---u

1.3 OPERATING SYSTEM SOFTWARE

1.3.1 VECTOR GRAPHIC EXTENDED SYSTEMS MONITOR

The first program the user comes into contact with after turning on
the system is the Vector Graphic Extended Systems Monitor.
(Exception: this is not true for MEMORITE systems.) It is entirely
stored on non-volatile PROM. Note that this use of the term
"Monitor" has a meaning entirely different than the term "monitor",
which refers to a piece of hardware, namely a stand-alone video
display. (NOTE: in the MEMORITE system, the Extended Systems

Rev. 8.1 2/5/79 1-3

Monitor is not encountered unless you press the RESET key~ or touch
the ESC key while the system is under control of MOOS or another
NON-word processing operating system.)

The Monitor consists of two parts: first, the Extended Systems
Monitor Executive, which allows the operator, through special
commands, to manipulate and display memory data and to jump to some
other program~ second, a program used to control console I/O.

You know the Extended Systems Monitor Executive is in control of the
system when the Monitor prompt (*) appears on the left edge of the
screen. The operator is then e~pected to enter one of the commands
available for manipulating or displaying memory or jumping to
another program. Most often, the operator will use the command
which calls up a full operating system and then transfers control to
it, and out of the Monitor.

Regardless of whether executive is in control of the system at any
given time, the Monitor console I/O routines, though invisible to
the operator, are continually being called on to control the
console. (Exception: when MEMORITE or the Word Management System
are doing word processing, the Monitor is not used to control the
console. Instead, the word processing software in these two systems
handles this task.)

Some of the Monitor's features and commands are explained where
relevent in this manual. A complete description is included as a
separate manual with your system.

1.3.2 PROGRAM DEVELOPMENT SOFTWARE - "PDS"

The operating system found on the MOOS Systems Diskette included
with the system is the Micropolis Diskette Operating System (MDOS).
MOOS includes an assembly language program development package.
Also found on the MOOS Systems Diskette is Micropolis Disk Extended
BASIC (often called just M.BASIC). MOOS and M.BASIC together give
all the functions a programmer may need for the development of
either assembly language or BASIC programs.

1.3.3 ELEMENTS OF MOOS

MOOS consists of an executive program, a group of "shared"
subroutines available to user programs as well as being used by
MOOS, and various utilities which include assembly language program
development tools.

The MOOS executive program allows the user to control computer
system operations from the system console. It provides commands for
memory management, file management, I/O control and program
control.

The shared subroutines include those that provide for console and
printer character I/O, buffered line I/O, text line parameter
parsing, sequential and random file access, file management,

1-4 Rev. 8.1 2/5/79

physical diskette access, and 16 bit interger arithmetic. There are
also a number of processor oriented utility subroutines.

The MDOS utilities are:

ZSM - a two pass, aoaO/SOS5/ZS0 disk to disk assembler program.

LINEEDIT - a line number oriented assembly language text editor with
character-within-line editing and global search and change
capabilities.

FILECOPY - a utility that copies disk files.

DISKCOPY - a utility that makes an exact copy of an entire
diskette.

SYMSAVE - a utility that creates a source file of symbol equate
statements from the symbol table left in memory immediately after an
assembly by the ZSM assembler.

DEBUG - a utility that facilitates checkout and debugging of
a080/S0a5 machine language programs. It cannot be used if zao code
which is not part of the a080 set is used.

1.3.4 ELEMENTS OF M.BASIC

M.BASIC is a complete, self-contained software package that provides
total support for BASIC programming. When M.BASIC is loaded you
have at hand a powerful set of tools for developing, testing,
executing and maintaining BASIC programs.

Program lines may be as long as 250 characters in length and may
include multiple statements. The maximum line number is 65529.'

M.BASIC has 12 immediate mode commands, including: SAVE a file,
LOAD a file, DISPLAY the file directory, SCRATCH a file, LIST a
program, DELETE lines from a program, RUN a program, CNTL/C to
interrupt a r~nning program, CONT to continue an interrupted
program, CNTL/U to cancel an input line, and FLOW and NOFLOW to
enable and disable the flow trace debugging aid.

M.BASIC supports 6 distinct data types, including integers, integer
arrays, floating point numbers in the range lE-61 to lE62-1, string
arrays, floating point arrays, and character strings up to 250
characters long. Integer and floating point arrays may have up to 4
dimensions. String arrays may have up to 3 dimensions plus a length
parameter.

A unique SIZES statement enables you to select the precision of
numeric variables up to 60 digits for simple arithmetic and 20
digits for transcendental functions. The system defaults to 8
digits for real numbers and 6 for integers.

M.BASIC supports numeric operators for addition, subtraction,
multiplication, division, integer division, and exponentiation.

Rev. 8.1 2/5/79 1-5

There are relational operators to compare numbers or strings and the
logical operators AND, OR, and NOT. String concatenation is also
available.

Numeric functions include ABS, ATN, COS, EXP, FIX, FRAC, INT, LN,
LOG, MAX, MIN, MOD, RND, SGN, SQR, and TAN.

String functions include ASC, CHAR$, FMT, INDEX, LEFT$, LEN, MID$,
MAX, MIN, REPEAT$, RIGHT$, STR$, VAL, VERIFY.

The unique FMT (X,Y$) function is the key to a powerful formatted
output capability. It returns a string which is the value of X
formatted per the image defined by format string Y$.

The DEF FN statement is provided to allow construction of user
defined functions. An assembly language function may be accessed by
using the DEF FA construction.

Standard statements in BASIC include CHAIN, DATA, DEF, DIM, EDIT,
END, EXEC, FOR-NEXT-STEP, GOSUB, GOTO, IF-THEN, INPUT, LET, MEMEND,
MERGE, NOFLOW, FLOW, ON-GOTO, ON-GOSUB, OUT, PLOADG, POKE, PRINT,
READ, REM, RENUM, RESTORE, RETURN, SIZES, STOP, and STRING.

The CHAIN is a true chain that passes variables from the current
program segment to next one loaded from disk.

EXEC is a unique statement that allows a string variable or constant
to be executed as if it were a predefined program line.

Data file programming in M.BASIC is simple. Files can be opened
simultaneously for both sequential and direct (random) access in
both read and write modes. Up to 10 files can be open at one time.
A CLEAR option allows a file to be opened for rewrite instead of
append. An END option provides an on-endfile-goto capability. An
ERROR option provides an on-error-goto capability.

Data is written to and read from files using GET and PUT statements
with variable lists that allow a mixture of numeric and string
variables. '

The file I/O structure also extends to printer and console output
files to afford a high degree of device independence. Additional
options on the OPEN statement facilitate the pagination of output
reports.

Also provided is a BASIC Utility program that provides for
initializing diskettes, saving M.BASIC on a BASIC-only diskette, and
examining and changing RAM memory. In addition, there is a utility
called FEATURES which allows you to shorten M.BASIC by eliminating
some of the features needed only for program development, but not
for running production programs.

1.3.5 OTHER OPERATING SYSTEMS

Other operating systems and higher level languages are available

1-6 Rev. 8.1 2/5/79

from Vector Graphic. These will not be discussed here. (See the
literature accompanying this manual.) MDOS and M. BASIC meet the
needs of the large majority of users.

1.3.6 RESIDENT PROGRAMS

MDOS and M.BASIC share the Extended Systems Monitor. They also
share a common program module called RES. This module contains
among other routines, the printer and diskette I/O routines, and
some of the console I/O routines.

Also shared is the ROM resident Disk Bootstrap program, (which is
what the Monitor uses in order to call up MDOS), and the Disk
Controller, (which is simply memory space needed to handle the
diskette drives.)

These routines are always resident in the computer memory when
either MDOS or M.BASIC is running. For interested users, listings
will be found in Appendix E for the I/O portion of RES, Appendix F
for the Disk Bootstrap program, and the Extended Systems Monitor
manual for the Monitor.

In contrast, MDOS and M.BASIC overlay each other; that is, they are
assigned the same area of memory; only one can be in memory at any
given time. Commands are provided for leaving one and calling up
the other.

Fig. 1.1 illustrates the relationships between the various system
programs. Programs which are always in memory when MDOS or M.BASIC
is used are in the center.

Fig. 1.2 gives the addresses of the various programs and important
memory locations in your system. No particular operating system is
shown.

Fig. 1.3 gives addresses for MDOS and M. BASIC. Note that this
operating system software fits into the unassigned memory area in
Fig. 1.2.

Rev. 8.1 2/5/79 1-7

I-'
I

00

jg
<:
•
00

I-'

tv
"-01
"
...,J
\0

FIGURE 1.1 MZ SOFTWARE STRUCTURE USING MOOS

MOOS
EXECUTIVE

ASSEMBLY
LANGUAGE
APPLICATION
PROGRAMS

SYMSAVE

EXTENDED SYSTEMS MCNlTOR, . wi th
ODnsOle physical I/O routines

DISK B<XJISTRAP 101, and
DISK CXNrIPLLER ADDRESSES

- ---

RES MODULE

Cot-MlN CONSOLE
AND PRINTER I/O

(Console
physical I/O
branches to
Monitor.)

COMttlN DISK
FILE STRUCTURES

DISK
EXTENDED
BASIC
INTERPRETER

BASIC
PROGRAMS

FIG 1.2 MEMORY M.~ FOR VECroR GAAPHIC SYSTEMS

Hex address

£000

DF40

DCOO

DN)O

0800

0000

0::00

caoo

C400

cooO

8000

0000

Rev. 8.1

1 ... ;.,

~1.10

T

2/5/79

Contents

8K RAM for userts programs, optional;
OR

High Resolution Video board, optional;
OR

Memorite PRQMt s , optional.

PR-2 stack area, not available to user.

RAM available to user.

Disk controller - first 3 bytes are addresses
used for memo mapped disk I/O. Remaining are
unusable.

Disk Bootstrap ROM.

Flashwriter board video buffer, optional.

Memorite configuration PBQM, optional.

EVIOS ProM, optional.

MZOS PROM, optional.

EXtended Systems Monitor, including console
I/O routines.

48K RAM, available to user.

1-9

1
/""

,.'.1

J

FIG 1.3 MEMORY MAP FOR MOOS AND M. BASIC

Hex address

BFFE'

2000 if MJ:X:S
5700 to

1

5086 if BASIC

Contents

RAM. lIBOC)ty for user I s program

Start in; FOint depends on whether MOOS or M. BASIC
is l::Jein;J used, an:l \'tlether BASIC has been soortened.

MOOS, includin;J all user callable rootines not in RES Module~
~ OR

M. BASIC Interpreter.

1599

1598

0627

0613

0611

060F

0604

0600

05F8

04E7

0281

OIAO

OIAO

006A

0000

RES mroLE

End of RES r-txlule.

LiXlUI' - Physical List OUtput Routine.

LDINrr - Physical List Initialization.

LDA.TN - Physical List Attention Chec.1<:: Routine.

CDINIT - Physical Console Initialization.

CDBRK - Physical Break Check R::>utine.

CIXX.JI' - Physical Console OUtput Routine.

<DIN - tbysical Console Input Routine.

MIX:S or M. BASIC warmstart (entry) location.

8eginnin;J of RES Module code.

Beginnin;J of RES M:ldule input bJffer.

MOOS system stack, an:l used by Boot loader.

RAM available to user.

1-10 Rev. 8.1 2/5/79

1

1.4 MDOS SYSTEM DISKETTE

This revision of the User's GUide to Vector Graphics Systems Using
MDOS corresponds to MOOS System Diskette 8.4, (and minor revisions I
~t labeled 8.4.1, 8.4.2, etc.) Following is a list of the files
on this diskette:

(Under TYPE, "EC" means the file is stored in executable machine
language code and it will be executed immediately if you type its
name after the MDOS prompt. "AL" means the file is stored in
assembly language source code. You must first assemble it using ZSM
before it can be executed by the computer. "Btt means the file is
stored in the M.BASIC language. It will be executed by using the
M.BASIC interpreter explained in chapter 5.)

NAME

DIR
RES

MDOS

BASIC

LINEEDIT

ZSM

SYMSAVE

FILECOPY

DISKCOPY

COPYFILE

DEBUG-GEN

FEATURES

DESCRIPTION TYPE

The disk directory.
Machine language routines used by both MOOS,

and M.BASIC Do not delete it unless you
are modifying it.

MOOS executive and disk I/O routines.
Do not delete this. See Appendix B
to create a BASIC-only diskette.

M.BASIC interpreter and disk I/O. EC
See Chapter 5.

Line editor for writing assembly language. EC
programs. See Section 4.4.

Assembler of Z-80 code prepared in extended EC
8080 mnemonics. See Section 4.5.

Utility which creates a source file EC
of equate statements using the symbol
table resulting from an assembly.
See Section 4.6. Used occasionally by
assembly language programmers.

Utility for copying a file from one drive EC
to another. See Seeton 4.7. Used often.

Utility for copying a disk from one drive to EC
another. See Section 4.8. Used often.

Utility for copying a file from one disk to EC
another, using the SAME drive, for systems
having only one drive. See Section 4.10.

Utility used to generate the DEBUG utility EC
residing in a particular portion of
memory. See Section 4.11.

Utility used to shorten BASIC. EC
See Appendix G.

Rev. 8.4-A 7/26/79 1-11

NAME

SYSQ1, and
SYSQ2

UTILITY

RES. I/O

DIAB

DIAB4
CENT
CENT4
DECW

DECW4
SAVERES

NOESCAPE

MDIAG

MAP

FLASH7

PROM

STARTREKG

CIVILWAR
LUNAR
FINANCE

DESCRIPTION TYPE

Assembly language source code containing the AL
names of all MOOS shared subroutines,
equated to their addresses. Used
in assembly language programs calling those
routines. See Section 4.3. Used from time
to time by assembly language programmers.

A utility used to initialize diskettes, create B
BASIC-only diskettes, and examine memory.
See Appendix B.

The source code file of the I/O routines in AL
RES. Used to rewrite the I/O routines if
using non-standard peripherals.
See Appendices M, N, and O.

Routine for interfacing to Diablo-protocol EC
printers if the Bitstreamer board is
addressed for ports 0 - 3. Overlays
directly over RES in memory.
See Section 2.2.2. Not
needed after RES is saved on diskette.

Same as DIAB, but Bitstreamer is at 4 - 7. EC
Same as DIAB, but for Centronics printers. EC
Same as CENT, but Bitstreamer is at 4 - 7. EC
Same as DIAB, but for teletype-protocol EC

printers.
Same as DECW, but Bitstreamer is at 4 - 7- EC
Utility used to save on disk the machine EC

language version of the I/O portion of the
RES Module. See Section 2.2.0. Not
needed after the RES Module is finalized.

Utility which stops the ESC key from causing EC
control to be passed to the Systems Monitor.
See Section 2.3.7. Not needed after used
once.

Utility used to check the computer's memory. EC
See Appendix Q. Do not delete this.

Utility which tells what kind of memory EC
(RAM, ROM or nothing) is in the system
at each address. See Appendix Q.
Useful when servicing a system.

Demonstration of the graphics capability of EC
the Flashwriter II board. See Appendix J.
Dealers use often.

Utility used with the PROM/RAM III board to EC
program EPROM's. See PROM/RAM III manual.

The Star Trek game. See Appendix J. B
Dealers use often. Others if they like it.

Another game. See Appendix J. B
Another game. See Appendix J. B
Day-to-day financial calculations.
See Appendix J. Used often if you need it. B

1-12 Rev. 8.4-A 7/26/79

To obtain a list of the files on your diskette, to see what is
actually there, turn the machine on. mount the system diskette in
drive 0 (right-hand drive), type B after the Monitor prompt (*),
type FILES after the MOOS prompt (5), and then press the RETURN key.
The interaction looks like this on the screen:

*B
Vector MZ MOOS x.xx
)FILES
OIR 03 0000
RES 03 0014

The left-hand number refers to the file type, explained in Section
4.2.3. The right-hand number gives the length of the file in
sectors. Both numbers are in hexadecimal (base 16).

The list is long and will roll past the edge of the screen. To stop
it at any point. depress control-S (CTRL key and S at the same
time.) To start it up again, depress the spacebar.

If you have a printer which is up and running with your system, you
can print the directory by typing ASSIGN 2,3 (return), before you
type FILES. After the directory is printed, type ASS.~I~G~N~2~z~2
(return} to turn the printer off again. "(return) U means press the
RETURN Key.

Rev. 8.3-A 7/1/79 1-13

II INSTALLATION, CONFIGURING PERIPHERALS, AND USE OF DISKETTES

2.1 INSTALLATION

For turn-key systems (that is, all internal wiring and software
modifications have been done prior to delivery), just plug in
external cables to the sockets on the rear panel of the mainframe.
End users: if sockets are not labeled and choice is not obvious, ask
your dealer.

Por non-turn-key systems, refer to Section 2.2 for directions on
setting up peripherals, interface boards, cables, and interface
software. For systems with which a printer will be used, it may be
desirable to first set the system up as if there were no printer ,
test it as explained below, then complete the setting up procedures
for the printer. Section 2.2 separates the 2 stages.

When ready to test the system, do as follows:

1. Turn the power key on the front panel and then turn on
peripherals. The Monitor prompt * should appear on the
screen. (Exception: in MEMORITE systems, depress RESET on
the front panel after turning the power on. The Monitor
prompt should then appear.)

2. Enter N on the keyboard. This is a memory test which also
functions as a test of the console. After a few seconds a
hexadecimal number should appear. It indicates the first
memory address where no memory hardware is located. In
normal systems with 48K of RAM, the number should be COOO.

3. Insert and mount the MOOS Personalized System Diskette in
drive o. Drive 0 is the right-hand drive. The left-hand
drive is drive 1. Refer to Section 2.4 for how to insert,
mount, and in general handle diskettes.

4. Enter B. This causes MOOS to be loaded and take control.
This will be indicated by the MOOS sign on message and the
MOOS prompt: >.

5. To test a separate printer , if any, first make sure there is
paper in the printer. Then, enter ASSIGN 2,3 (return),
followed by FILES (return). (The expression (return) always
means npress the RETURN key.n). A list of the files on the
System Diskette will be printed.

When the system is working properly, refer to Chapter 3 for a
complete description of normal operating procedures, and to Section
2.4 for instructions on the handling and maintenance of diskettes.
Do not neglect either Section 2.4 or Chapter 3 as they contain
information which is not effectively acquired by trial and error
alone. Section 2.3 describes various modifications which can be
made to the hardware.

Rev. 8.1 2/5/79 2-1

alone. Section 2.3 describes various modifications which can be
made to the hardware and systems software.

2.2 CONFIGURING THE MZ - THIS SECTION FOR NON-TURN-KEY SYSTEMS ONLY

2.2.0 MODIFYING THE RES MODULE

At various points in this chapter (or in related appendices) you
will be instructed to carry out procedures which modify the RES
Module. The most common of such procedures are the Software
Implementation Procedures found in section 2.2.1 under each of the
standard configurations. (These Software Implementation Procedures
are used only if a printer is implemented.)

To carry out any procedure which modifies the RES Module, turn the
system and all, peripherals on. In MEMORITE systems, depress the
RESET button next. Then insert and mount the Personalized MDOS
System Diskette in drive O. Do not use the Master MDOS System
Diskette. This diskette should never be altered and only used for
emergency back-up. After the Monitor prompts with *, enter B. This
"boots up" MOOS, as indicated by the MOOS sign-on message and MOOS
prompt: >. Now proceed with the given procedure.

Note that in all software procedures, "(return)" means "press the
RETURN key."

The user may be instructed to enter a command, such as DIAB4
(return). Whenever such a command is entered, the system will
respond by displaying the MOOS sign-on message again, or at least
the MOOS prompt >.

A step will be found which commands "Save the RES Module on
Personalized System Diskette." This is accomplished as follows:
Make sure the Personalized MDOS System Diskette is inserted and
mounted in drive o. Then under MDOS type SAVERES (return). .The
drive should write on the diskette. The RES Module is now saved on
the Personalized MOOS System Diskette.

Important: You may want to do several different procedures, each of
which terminates with saving the RES Module. You are definitely
free to do any group of them at one Sitting, and then save the RES
Module as described above ONCE at the end of the session, in order
to save trOUble. Alternately, you may of course save the RES Module
after each such procedure, if desired.

Note: SAVERES is a utility which saves on diskette the I/O portion
of the RES Module, in machine language form. The block of code
which is saved corresponds to the code found in the source listing
called RES. I/O, plus a few bytes before and after. In the rare case
you have modified the RES Module outside of the I/O portion, then
you must use the following alternate steps to save the RES Module:
Under MDOS, enter TYPE "RES" 0 (return) SCRATCH "RES" (return) SAVE
"RES" 2B1 1598 3 (return).

Rev. 8.4-A 7/26/79 2-2

I

2.2.1 STANDARD CONFIGURATIONS

At this time, Vector Graphic supplies the interface hardware and
software to support several different configurations of main
peripheral devices, that is, printers, keyboards, video displays,
and terminals. This section is concerned with identifying these
standard configurations, and explaining how they are implemented.

If the peripheral device desired is not found among the standard
configurations, refer to Section 2.2.3.

The information is collected in the following pages. Each section
is concerned with one configuration. Each configuration is a
selected group of peripherals. Peripherals are listed as generic
types, (upper case lettering). Specific makes are given as examples,
(lower case lettering). The user is not limited to these examples,
but can use any model that falls within the given generic
description.

To use these charts. find the configuration desired. When ordering
an HZ or other Vector Graphic computer, order it with the components
listed as well as the peripherals desired if supplied by Vector
Graphic. (Since all systems are always delivered with one
Bitstreamer board and an I/O cable, do not explicity order these
items.)

If no printer is being used. find the desired configuration ignoring
the type of printer listed. For this purpose, refer only to those
configurations whose .. headings are NOT preceded -by asterisks(*).
Then, only order ~he parts and carry out the steps shown WITHOUT
asterisks.

If a printer is being added to an existing system. find the desired
configuration, then only order the parts and carry out the ~teps
shown WITH an asterisk (*). To obtain a useful summary of the
issues involved with printers, see seciton 2.2.2

Some systems may already be partially configured at the factory or
by intermediaries, so that you need order and set up only the
components not already included. For example, "System Btl is an MZ
with the Vector Graphic Mindless Terminal and Flashwriter II board.
All you have to add is a printer. Your choices would be the
configurations in Sections 2.2.1.4 and 2.2.1.6 for Centronics or
Diablo-type printers respectively. MEMORITE is even simpler than a
System B. Just do the Soft~re Implementation procedure in Section
2.2.1.6, using the DIAB4 command.

Flashwriter Board: The charts refer to a "Flashwriter Board."
Order a Flashwriter I for 16 x 64 display and Flashwriter II for 80
X 24 display. When ordering an Extended Systems Monitor for use
with one of these boards, always state which it is for.

When your system and/or components are delivered. refer again to the
chart. Perform the implementation procedures listed in order to
implement the desired configuration.

Rev. 8.3-A 7/1/79 2-3

* 2.2.1.1 Printer: PARALLEL, CENTRONICS 700 SERIES PROTOCOL.
Console: SERIAL VIDEO TERMINAL.

Example: Parallel Centronics matrix printer (700 Series), and
Hazeltine terminal.

Interface Components Required

1. Option C Extended Systems Monitor, on PROM.
* 2. Centronics interfacing kit

3. Bitstreamer board and I/O cable (no need to order;
included in system automatically.)

Hardware Implementation Procedures

* 1. Install the Centronics interfacing kit as instructed in
Appendix H. Make sure there is an I/O cable connected at
one end to J3 on the Bitstreamer board and at the other
end installed in one of the cutouts at the rear of the
mainframe.

2. Plug the external terminal cable into the socket on the
rear of the mainframe which is wired to the 6 pin molex
connector on the Bitstreamer board.

* 3. Plug the printer cable into the socket which is wired to
J3 on the Bitstreamer board.

Software Implementation Procedures

* 1. Under t1DOS, enter CENT (return).

* 2. Save RES Module on Personalized System Diskette.

2.2.1.2 Printer: SERIAL, DIABLO 1610 OR TELETYPE PROTOCOL.
Console: SERIAL VIDEO TERMINAL.

Example: Printer: if Diablo protocol - Diablo 1610 or 1620,
Qume Sprint 5, or NEC Spinwriter; if Teletype protocol -
Decwriter, Teletype, or TI 810 or 820.

Console: Hazeltine terminal.

Interface Components Required

1.
2.

* 3.
* 4.

Option C Extended Systems Monitor, on PROM
Bitstreamer board and I/O cable (no need to order;
included in system automaticelly.)
A second Bitstreamer board
A second I/O cable

Hardware Implementation Procedures

* 1. Jumper one of the Bitstreamer boards so that it is
readdressed for ports 4 - 7 rather than the original 0 -
1. Instructions will be found in the Bitstreamer Userls

2-4 Rev. 8.1 2/5/79

Manual. This board will be used to control the printer.

* 2. Make sure that the printer is set for its highest speed,
(1200 baud for Diablo 1610 protocol), and that its parity
setting is MARK parity. Check the printer manual if
necessary. Some printers such as the Diablo require a
jumper on internal circuitry to increase from 300 baud to
1200 baud.

* 3. Make sure that the Bitstreamer board is set for the same
speed as the printer. This is set on a dipswitch on the
upper left-hand corner of the board. Press the
appropriate switch in and upward and make sure all other
switches are pressed downward.

4. Connect one of the I/O cables to J3 on one of the
Bitstreamer boards. Install the 2S pin socket on the
other end of the cable in a cutout at the rear of the
mainframe.

* S. Do step 4 for the second Bitstreamer and I/O cable.

* 6. Plug the printer cable into the socket connected to the
readdressed Bitstreamer.

7. Plug the terminal cable into the socket connected to the
normal Bitstreamer. IMPORTANT: Some terminals will not
operate if they are connected to all 2S pins, because some
of the pins of J3 on the Bitstreamer have functions other
than serial communications. If your terminal does not
operate after connecting it to all pins, then connect only
the essential ones. Example: the Hazeltine 1400 will
function only if a 3-line cable is used, connecting,pins
2,3, and 7. A 2S pin ribbon connector will not work.
Other terminals may require additional pins, but again not
all 2S. Refer to the Bitstreamer board manual if
necessary for definitions of each of the pins on the
backpanel connector.

Software Implementation Procedures

* 1. Under MDOS, if printer uses Diablo protocol, enter DIAB4
(return); if printer uses Teletype protocol, enter DECW4
(return).

* 2. Save RES Module on Personalized System Diskette.

Rev. 8.1 2/5/79

* 2.2.1.3 Printer: PARALLEL, CENTRONICS 700 SERIES PROTOCOL
Console: PARALLEL ASCII KEYBOARD, SEPARATE VIDEO MONITOR.

Example: Printer: Parallel Centronics matrix printer (Series 700)
Console: Vector Graphic stand-alone parallel keyboard and

Hitachi video monitor.

Interface Components Required

1.
2.
3.
4.
5.

* 6.
* 7.

Option EV Extended Systems Monitor on PROM
Flashwriter board
I/O cable
Video cable, for Flashwriter to rear panel
Video monitor to mainframe cable
Centronics interface kit
Bitstreamer board with I/O cable (no need to order;
included in system automatically.)

Hardware Implementation Procedures

* 1. Jumper the Bitstreamer board so that it is readdressed for
ports 4 - 7 rather than the original 0 - 1. Instructions
will be found in the Bitstreamer User's Manual.

* 2. Install the Centronics interfacing kit as instructed in
Appendix H. However, do not install the 6 pin molex
connector or the serial I/O cable which come in the
Centronics interface kit. They are not needed and can be
set aside. Make sure that there is a regular I/O cable
connected to J3 on the Bitstreamer board and installed at
the other end in a cutout at the rear of the mainframe.
This socket will be used for the printer cable.

3. Connect the 2 pin socket at one end of the video cable to
the 2 left-most pins which will be found rising vertically
from the left-hand corner of the Flashwriter board. The
socket should be positioned so that the inside wire is
connected to pin 1, and the-outside "shield" wire is
connected to pin 2 (ground). Install the circular socket
at the other end of the cable into one of the circular
cutouts at the rear of the mainframe.

4. Connect the 24 pin dip plug at one end of the second I/O
cable to Jl on the Flashwriter board. Install the 25 pin
socket at the other end in one of the cutouts at the rear
of the mainframe. This socket will be for the keyboard
cable.

* 5. Plug the printer cable into the appropriate sockets on the
rear of the mainframe.

6. Plug the external keyboard and monitor cables into the
appropriate sockets on the rear of the mainframe.

2-6 Rev. 8.1 2/5/79

Software Installation Procedures

* 1. Under MDOS, enter CENT4 (return).

* 2. Save RES module on Personalized System Diskette.

* 2.2.1.4 Printer: PARALLEL, CENTRONICS SERIES 700 PROTOCOL.
Console: VECTOR GRAPHIC MINDLESS TERMINAL.

Example: Parallel Centronics matrix printer (Series 700) and Vector
Graphic Mindless Terminal.

Interface Components Required

l.
2.
3.
4.

* 5.
* 6.

Option EV Extended Systems Monitor on PROM
Flashwriter board
Mindless Terminal 3-part I/O cable
External Mindless Terminal cable (or equivalent)
Centronics interface kit
Bitstreamer board with I/O cable (no need to order;
included in system automatically.)

Hardware Implementation Procedures

* 1. Jumper the Bitstreamer board so that it is readdressed for
ports 4 - 7 rather than th. original 0 - 1. Instructions
will be foul'l:d in the Bi tst,reamer User's Manual.

* 2. Install the Centronics interfacing kit as instructed in
Appendix H. However, do not install the 6 pin molex
connector or the serial (3 wire) I/O cable which come in
the Centronics interface kit. They are not needed an~ can
be set aside. Make sure that there is a regular I/O cable
connected to J3 on the Bitstreamer board and installed at
the other end in a cutout at the rear of the mainframe.
This socket will be used for the printer cab~e.

3. If not already done at the factory, install the Mindless
Terminal 3-part I/O cable as instructed in the terminal's
documentation. The 3 parts are connected to the power
supply, the Flashwriter board video output pins, and the
Flashwriter board keyboard input socket (Jl). At the
other end, the DB25 socket is installed in one of the
cutouts at the rear of the mainframe.

* 4. Plug the printer external cable into the respe~tive
socket at the rear of the mainframe.

5. Plug the terminal external cable into the respective
socket at the rear of the mainframe.

Software Installation Procedures

* 1. Under MDOS, enter CENT4 (return).

Rev. 8.1 2/5/79 2-7

* 2. Save RES module on Personalized System
Diskette.

2.2.1.5 Printer: SERIAL, DIABLO 1610 or TELETYPE PROTOCOL
Console: PARALLEL ASCII KEYBOARD, SEPARATE VIDEO MONITOR.

Example: Printer: if Diablo protocol - Diablo 1610 or 1620,
Qume Sprint 5, or NEC Spinwriter; if Teletype protocol -
Decwriter, Teletype, or TI 810 or 820.

Console: a Vector Graphic stand-alone parallel
keyboard and Hitachi video monitor.

Interface Components Required

1. Option EV Extended Systems Monitor on PROM
2. Flashwriter board
3. I/O cable
4. Video cable, Flashwriter to rear panel
5. Video monitor to mainframe cable

* 6. Bitstreamer board with I/O cable (no need to order;
included in system automatically.)

Hardware Implementation Procedures

1. If no printer is being used, remove the Bitstreamer
from the mainframe, and do not put it back in. It cannot
be in the system (unless readdressed as explained below.)

* 2. Jumper the Bitstreamer board so that it is readdressed for
ports 4 - 7 rather than the original 0 - 1. Instructions
will be found in the Bitstreamer User's Manual.

* 3. Make sure that the printer is set for its highest speed,
(1200 baud for Diablo 1610 protocol), and that its parity
setting is MARK parity. Check the printer manual if
necessary. Some printers such as the Diablo require a
jumper on internal circuitry to increase from 300 baud to
1200 baud.

* 4. Make sure that the Bitstreamer board is set for the same
speed as the printer. This is set on a dipswitch on the
upper left-hand corner of the board. Press the
appropriate switch in and upward and make sure all other
switches are pressed downward.

* 5. Make sure that there is a regular I/O cable connected to
J3 on the Bitstreamer board and installed at the other end
in a cutout at the rear of the mainframe. This socket
will be used for the printer cable.

6. Connect the 2 pin socket at one end of the video cable to
the 2 left-most pins which will be found rising vertically
from the left-hand corner of the Flashwriter board.
Install the circular socket at the other end of the cable

2-8 Rev. 8.1 2/5/79

into one of the circular cutouts at the rear of the
mainframe.

7. Connect the 24 pin dip plug at one end of the second I/O
cable to Jl on the Flashwriter board. Install the 25 pin
socket at the other end in one of the cutouts at the rear
of the mainframe. This socket will be for the keyboard
cable.

* 8. Plug the printer external cable into the appropriate
socket on the rear of the mainframe.

9. Plug the keyboard and monitor external cables in the
appropriate sockets on the rear of the mainframe.

Software Installation Procedures

* 1. Under MDOS, if printer uses Diablo protocol, enter DIAB4
(return); if printer uses Teletype protocol, enter DECW4
(return).

* 2. Save RES module on Personalized System Diskette

2.2.1.6 Printer: SERIAL, DIABLO 1610 or TELETYPE PROTOCOL.
Console: VECTOR GRAPHIC MINDLESS TERMINAL.

Example: Printer: if Diablo protocol - Diablo 1610 or 1620, Qume
Sprint 5, or NEC Sprinwriter; if Teletype protocol - Decwriter,
Teletype, or TI 810 or 820.

Console: Vector Graphic Mindless Terminal.

Interface Components Required

1. Option EV Extended Systems Monitor on PROM
2. Flashwriter board
3. Mindless Terminal 3-part I/O cable
4. External Mindless Terminal cable (or equivalent)

* 5. Bitstreamer board with I/O cable (no need to orderi
included in system automatically.)

Hardware Implementation Procedures

1. If no printer is being used, remove the Bitstreamer from
the mainframe. Do not put it back in. It cannot be in
the system.

* 2. Jumper the Bitstreamer board so that it is readdressed for
ports 4 - 7 rather than the original 0 - 1. Instructions
will be found in the Bitstreamer User's Manual.

* 2. Make sure that the printer is set for its highest speed,
(1200 baud for Diablo 1610 protocol), and that its parity
setting is MARK parity. Check the printer manual if

Rev. 8.1 2/5/79 2-9

necessary. Some printers such as the Diablo require a
jumper on internal circuitry to increase from 300 baud to
1200 baud.

* 4. Make sure that the Bitstreamer board is set for the same
speed as the printer. This is set on a dipswitch on the
upper left-hand corner of the board. Press the
appropriate switch in and upward and make sure all other
switches are pressed downward.

* 5. Make sure that there is a regular I/O cable
J3 on the Bitstreamer board and installed at
in a cutout at the rear of the mainframe.
will be used for the printer cable.

connected to
the other end
This socket

6. If not already done at the factory, install the Mindless
Terminal 3-part I/O cable as instructed in the terminal's
documentation. The 3 parts are connected to the power
supply, the Flashwriter board video output pins, and the
Flashwriter board keyboard input socket (Jl). At the
other end, the DB25 socket is installed in one of the
cutouts at the rear of the mainframe.

* 7. Plug the printer external cable into the respective socket
at the rear of the mainframe.

8. Plug the terminal external cable into its socket at the
rear of the.mainframe.

Software Installation Procedures

* 1.

* 2.

Under MDOS, if printer uses Diablo protocol, enter
(return); if printer uses Teletype protocol, enter
(return).
Save RES module on Personalized System Diskette •

DIAB4
DECW4

. * 2.2.1.7 SERIAL PRINTING TERMINAL (HAS A KEYBOARD), DIABLO 1610
OR TELETYPE PROTOCOL
AND A VIDEO MONITOR

Example: Printing terminal: if Diablo protocol - Diablo 1620, Qume
Sprint 5 with keyboard, or NEC Sprinwriter with keyboard; if
Teletype protocol - Decwriter, Teletype, or TI 810 or 820, with
keyboards;

Video monitor: Hitachi.

tnterface Components Required

1. Option CV Extended Systems Monitor on PROM
2. Flashwriter board
3. Video cable, Flashwriter to rear panel
4. Video Monitor to Mainframe cable

* 5. Bitstreamer board with I/O cable (no need to order;
included in system automatically.)

2-10 Rev. 8.1 2/5/79

Hardware Implementation Procedures

* 1. Make sure that the printer is set for its highest speed,
(1200 baud for Diablo 1610 protocol), and that its parity
setting is MARK parity. Check the printer manual if
necessary. Some printers such as the Diablo require a
jumper on internal circuitry to increase from 300 baud to
1200 baud. .

* 2. Make sure that the Bitstreamer board is set for the same
speed as the printer. This is set on a dipswitch on the
upper left-hand corner of the board. Press the
appropriate switch in and upward and make sure all other
switches are pressed downward.

* 3. Make sure that there is a regular I/O cable connected to
J3 on the Bitstreamer board and installed at the other end
in a cutout at the rear of the mainframe. This socket
will be used for the printer cable.

* 4. Disable the parallel port on the F1ashwriter board. To do
this, simply remove chip U52 from the board, using a small
screw driver to pry it ou~ of its socket. If U52 cannot
be easily located, refer to the Flashwriter User's
Manual.

5. - Connect the 2 pin socket at one end of the video cable to
the 2 left-most pins which will be found rising vertically
from the left-hand corner of the Flashwriter board. The
socket should be positioned so that the inside wire is
connected to pin I, and the outside "shield" wire is
connected to pin 2 (ground). Install the circular socket
at the other end of the cable into one of the cir9ular
cutouts at the rear of the mainframe.

* 6. Plug the printer external cable into the socket on the
rear of the mainframe.

7. Plug the monitor external cable into the appropriate
socket on the rear of the mainframe.

Software Installation Procedures

* 1. Under MDOS, if printer uses Diablo protocol, enter DIAB
(return); if printer used Teletype protocol, enter DECW
(return).

* 2. Save RES module on Personalized Diskette.

Rev. 8.1 2/5/79 2-11

* 2.2.1.8 SERIAL PRINTING TERMINAL (HAS KEYBOARD), DIABLO 1610
OR TELETYPE PROTOCOL
NO VIDEO.

Example: Printing terminal: if Diablo protocol - Diablo 1620, Qume
Sprint 5 with keyboard, or NEC Sprinwriter with keyboard; if
Teletype protocol - Decwriter, Teletype, or TI 810 or 820, with
keyboards;

Interface Components Required

1. Option C Extended Systems Monitor on PROM

* 2. Bitstreamer board with I/O cable (no need to order;
included in system automatically.)

Hardware Implementation Procedures

* 1. Make sure that the printer is set for its highest speed,
(1200 baud for Diablo 1610 protocol), and that its parity
setting is MARK parity. Check the printer manual if
necessary. Some printers such as the Diablo require a
jumper on internal circuitry to increase from 300 baud to
1200 baud.

* 2. Make sure that the Bitstreamer board is set for the same
speed as the printer. This is set on a dipswitch on the
upper left-hand corner of the board. Press the
appropriate switch in and upward and make sure all other
switches are pressed downward.

* 3. Make sure that there is a regular I/O cable connected to
J3 on the Bitstreamer board and installed at the other end
in a cutout at the rear of the mainframe. This s~cket
will be used for the printer cable.

* 4. Plug the printer cable into the socket at the rear of the
mainframe.

Software Implementation Procedures

* 1. Under MDOS, if printer uses Diablo protocol, enter DIAB
(return); if printer uses Teletype protocol, enter DECW
(return).

* 2. Save RES Module on Personalized System Diskette.

* 3. If printer uses Diablo protocol, then before each session
at the computer, as the first step after loading MDOS,
enter:

ASSIGN 2,3 (return)
ASSIGN 1,0 (return)

(Do not be concerned that while entering the second line,
the printer prints every character twice.)

2-12 Rev. 8.1 2/5/79

NOTE: Using the serial Diablo protocol printing terminals at 1200
baud with no video display is limited by the fact that no Extended
Systems Monitor commands which cause outputing more than about 40
characters can be used. (This is because serial output from the
Extended Systems Monitor does not use the Diablo protocol technique
of checking whether the printer can accept the next character. More
than 40 characters at 1200 baud will usually cause the printer's
buffer to overflow.) MDOS and M.BASIC commands do not cause the
same problem, so long as the above mentioned ASSIGN commands are
used prior to each session.

One way to solve this problem is to run the printer at 300 baud
(Bitstreamer at 300 baud too) and to use the DECW command rather
than the DIAB command before saving the R~module on the
Personalized System Diskette. In this case, the ASSIGN commands are
not needed. The drawback is slower printing.

2.2.2 ADDING A STANDARD PRINTER TO AN EXISTING SYSTEM

The information in this section concerns adding a printer to an
existing system, one which already has some kind of video display
and keyboard functioning. The logic behind this information is the
same as that used in section 2.2.1, except that here it is presented
in summary form.

The printers presently considered standard for Vector Graphic
systems are:

Centronics Series 700 parallel matrix printers,
Diablo 1610 protocol serial printers, such as Diablo 1610, Qume

Sprint 5, or NEC Sprinwriter, and
Teletype protocol printers, such as Decwriter, Teletype, or TI

810 and 820.

There are many makes and models with protocols similar or identical
to the above. Some differences between makes of printers will not
make them incompatible with the Vector Graphic computers
necessarily, but it is recommended that the user tryout with his
system any printer not listed above, before purchasing.

Adding a printer involves 3 steps:

1) obtain the interface components, as well as the printer,
2) do hardware implementation procedures required, and
3) do software implementation procedures required.

INTERFACE COMPONENTS REQUIRED

1) Bitstreamer board and I/O cable. Generally, use the one which
came with your system. If it is being used to control a serial
terminal now, it can be used in addition to control a parallel
printer such as a Centronics printer. However, if the present

Rev. 8.1 2/5/79 2-13

terminal is serial, and a SERIAL printer such as Diablo, Qume, or
Teletype is desired, a second Bitstreamer and I/O cable must be
ordered.

2) If a parallel Centronics protocol printer is to be implemented,
order a CENTRONICS INTERFACE KIT from Vector Graphic or an
authorized dealer.

HARDWARE IMPLEMENTATION

1) If the keyboard and video are controlled by a Flashwriter board,
or if both the printer and the video console are serial, then there
will be 2 interface boards in the system. When this is the case,
the Bitstreamer controlling the printer must be jumpered to respond
to port addresses 4 - 7 rather than 0 - 1. Instructions will be
found in the Bitstreamer User's Manual.

2) If "the printer is a parallel printer using Centronics protocol,
make the modifications to the Bitstreamer board and install the
Centronics Interface Kit, both as described in Appendix H. Do all
the procedures in Appendix H if the keyboard and video are a serial
terminal such as Hazeltine. However, if the keyboard and video are
controlled by a Flashwriter board, then do not bother to install the
6-pin plug or the ser~al I/O cable.

3) If printer is serial, make sure it is set at its highest speed
(1200 baud if it is Diablo 1610 protocol.) Then make sure the
dipswitch on the upper left-hand corner of the Bitstreamer is set at
the same rate (chosen switch up, all others down.) Printer must be
set for MARK parity.

4) Make sure the the 24 pin dip plug on the I/O cable is inserted in
J3 on the Bitstreamer board and that the socket on the other end is
installed in one of the cutouts on the mainframe back panel. " Then
plug the printer cable into that same socket on the back panel.

SOFTWARE IMPLEMENTATION

The RES Module on the MDOS System Diskettes is not configured for
any particular printer. However, a large number of versions of the
I/O portion of the RES Module are present on the diskettes. The
user need only overlay the desired version onto the RES Module
stored in memory, and then save the new RES Module onto the
Personalized System Diskette. The versions available as of this
release are:

CENT and CENT4

DIAB and DIAB4

OECW and DECW4

for parallel Centronics protocol printers

for serial Diablo protocol printers

for serial Teletype protocol printers

In each case, the version with a "4ft attached must be used if the
Bitstreamer has been readdressed for ports 4 - 7. Otherwise use the
version without a "4".

2-14 Rev. 8.1 2/5/79

To accomplish the overlay, simply enter the name of the file in
upper case letters following the MDOS prompt >. After ~he overlay is
done, indicated by another MDOS sign-on message appearing on the
screen, save the RES Module by entering the following commands under
MDOS:

TYPE "RES" a (return)
SCRATCH "RES" (return)
SAVE "RES" 2B8 146B 3 (return)

If the printer is not one of the above types, then a custom
interface routine must be written. See Appendix N.

2.2.3 NON-STANDARD CONFIGURATIONS

Any configuration of peripherals which includes a printer, video
unit, keyboard, or terminal different than those used in the
standard configurations, is a non-standard configuration.

Hardware: In order to order and implement the interface hardware,
use the standard configuration procedures as models as far as is
possible.

Software: In many non-standard configurations, it will be necessary
to custom write a printer and/or console physical I/O routine. refer
to Appendix M for rewriting console I/O and to Appendix N for
rewriting printer I/O~

2.3 MODIFYING THE SYSTEM HARDWARE

2.3.1 CHANGING TO 2 MHZ CLOCK RATE

Some non-Vector Graphic S-IOO boards operate only at 2 MHz, the rate
of the original 8080 clock. Since the Z-80 can operate at both
rates, you may desire to run the system at 2 MHz in order to include
such boards. Instructions will be found in Appendix L.

2.3.2 CONNECTING ADDTIONAL DISK DRIVES

2 Micropolis disk drives are standard equipment. Additional drives
may be added because the Micropolis software can addresss up to 4
drives. Contact your dealer or Vector Graphic in order to order.'

Rev. 8.1 2/5/79 2-15

2.4 DISKETTE MEDIA

2.4.1 DESCRIPTION

The recording medium used with the MZ Micropolis diskette subsystem
is an industry standard 5 1/4-inch diskette (Fig 2.l) in its
hard-sectored version with 16 sectors, each defined by a sector
hole. Thus, it has one index hole and 16 sector holes. Diskettes
of this type are available from computer stores or from other
computer supply sources. DO NOT USE DISKETTES WITH OTHER THAN 16
HARD SECTORS, OR THOSE WHICH ARE SOFT-SECTORED (NO SECTOR HOLES).
THEY WILL NOT WORK.

2.4.2 HANDLING

1) The Micropolis flexible disk drive subsystem was designed to
take every reasonable precaution to protect your diskettes and the
data recorded on them. Examples of this care are the door interlock
which prevents mounting of the diskette until it is properly
inserted, and the automatic 5 second deselect feature which relieves
the head load pressure from the recording surface when the drive is
not in use.

Once the diskette is removed from the drive, it is your
responsibility to exercise the same care in handling and storing the
diskette to ensure its long service life. The following precautions
are guidelines for proper handling:

a) The exposed recording surface is easily contaminated - do
not touch or attempt to clean the surface. Do not smoke, eat or
drink while handling the diskette. Whenever the diskette is removed
from the drive, return it to its protective envelope.

b) The diskette is a thin oxide-coated plastic sheet which may
be damaged if handled carelessly. Do not place heavy objects on the
diskette; do not expose the diskette to excessive heat or sunlight;
do not use rubber bands or paper clips on the diskette; do not bend
or fold the diskette.

c) Do not write on the diskette labels with an erasable
pencil: graphite particles may contaminate the diskette or it may
be damaged by the force exerted in writing. A fiber-tip type of pen
is recommended. Return the diskette to its envelope before writing
on labels.

d) Information is recorded on the diskette as magnetized
"spots". Exposure of the diskette to magnetic fields or
ferromagnetic objects which may become magnetized may result in the
loss of information.

If a diskette is damaged or contaminated it should be replaced. If
a contaminated diskette is placed in the drive, the receiver and
read/write head may become contaminated and ruin other diskettes.

2) The auto-deselect will ensure reasonable diskette life. But, as

2-16 Rev. 8.1 2/5/79

a rule you should unmount the diskette whenever it is not going to
be accessed for long periods of time. This will give added diskette
life and prolong the life of the drive motor.

2.4.3 LOADING AND UNLOADING

There are two stages of loading a diskette. First, insert the
diskette with label side upward for horizontal drives, or leftward
for vertical drives, and with the edge nearest to the read/write
head access hole going in first. Insert the diskette all the way,
until it clicks into place. At this point the diskette is said to
be "inserted" but not yet lImoun ted". The diskette may be left like
this for any length of time without decreasing its life. Power may
be turned on or off with the diskette in this condition. It is
recommended however that if a diskette will not be used for any
length of time it be returned to its envelope or other storage
file.

Second, the diskette is "mounted" by depressing the manual load
actuater on the disk drive slowly but firmly until it stays in the
mounted position. The drive will begin to turn and rotate the
diskette inside its jacket. If the load actuator cannot be fully
depressed, this indicates that the diskette was not inserted
completely or properly.

Power should NOT be turned on or off when a diskette is in the
mounted position. The consequence is from time to time the loss of
data on the diskette.

Once the diskette is mounted, it is accessible by software for
writing or reading. When a read or write operation is initiated,
you will hear an audible click from the drive unit and the red ,light
on the unit will glow, indicating that unit has been selected.
After the operation is complete, the unit will remain selected for 5
seconds. At the end of 5 seconds, the unit will be automatically
deselected: the red light will go out, and there will be another
click as the head load pad is raised off the surface of the
diskette. This automatic deselect feature is important in
lengthening the life-span of diskettes.

To dismount the diskette, press the load actuator down as far as it
will go, then release pressure. It will then open to the unmounted
position. This discontinues rotation of the diskette within its
jacket. In order to do your part as user in prolonging the life of
the diskette, observe the following rule: UNLOAD THE DISKETTE DURING
PERIODS IN WHICH IT IS NOT IN USE. This reduces wear of the
diskette against its jacket. Note that the diskette m~y be left
inserted, so long as it is unmounted, without shortening lts life.

To remove the diskette, press the load activator upward (or leftward
in vertical drives). The diskette will be popped out (de-inserted)
and can now be removed.

Rev. 8.1 2/5/79 2-17

2.4.4 REPLACEMENT AND BACK-UP OF DISKETTES

The nature of floppy diskette drives is that the read-write head is
in contact with the diskette surface whenever the unit is selected,
resulting in gradual deterioration of the surface. Continual
loading of the head on a single track will naturally result in its
deterioration before the rest of the diskette. The rotation of the
diskette within its jacket is an additional source of wear.

Backup: The BEST defense against loss of diskette-based data is
maintaining a back-up diskette for each diskette you use. In the
business world, this is considered dogma. Data is most often lost
due to damage to diskettes from accidental mis-handling; normal wear
is much less often a problem. The standard rule of thumb is as
follows: copy a front-line diskette on to its back-up whenever you
cannot afford to lose the information stored since you last backed
it up. This goes for programs as well as data. If you are
operating business programs such as inventory or accounts
receivable, maintain a regular back-up schedule, once a week or once
bi-weekly. In addition, your programs if possible should be written
so that an internal file of entries is maintained, and a printout of
entries made each day is produced. Then, if data is lost before it
can be copied on to the back-up, it is fairly easy to re-enter it,
using the back-up diskette as the starting point. In business
particularly, back-up diskettes and printouts of daily entries
should be stored in a safe place.

Replacement: In addi.tion to being backed up, frequently used
diskettes must be replaced from time to time. The intervals are
entirely dependent on the kind of usage. There are no accurate
predictions for diskette life-span, but 2000 to 3000 hours of
rotation is a reasonable estimate. A good suggestion therefore is
to replace such diskettes every 6 months. Data diskettes.used
infrequently may never require replacement. .

Failure of a diskette will be indicated by the inability of the
system to read a file which it normally has been able to read. MDOS
will report "PERM I/O ERROR". With proper care, this should not
occur.

Replacing a diskette simply means copying it onto a new previously
unused diskette. The old diskette can be used for temporary
storage, or disposed of.

To copy diskettes use the Diskcopy Utility, see Section 4.3.

2-18 Rev. 8.1 2/5/79

2.4 DISKETTE MEDLA

2.4.1 DESCRIPTION

Use an industry standard 5 1/4-inch diskette (Fig 2.1) with 16
"hard" sectors. There will be 16 sector holes and 1 additional
index hole around the edge of the center hole. Get them from
computer stores or from other computer supply sources. DO NOT USE
DISKETTES WITH OTHER THAN 16 HARD SECTORS, OR THOSE WHICH ARE
SOFT-SECTORED (NO SECTOR HOLES). THEY WILL NOT WORK.

Without relation to price, some brands of diskettes do not work well
in the Micropolis high-density drives. Use one of the following
brands: Scotch, Dysan, or Maxell. Other brands will not be
reliable.

Individual diskettes may sometimes not work. Besides manufacturing
defects, we have occasionally found batches of diskettes with the
wrong number or sectors, and sometimes diskettes are manufactured
with 2 diskettes inside the jacket. Diskettes which do not work or
do not work reliably should be replaced immediately.

2.4.2 IF YOU HAVE PROBLEMS WITH DISK ERRORS

By a disk error, we are referring to errors reported on the screen
as "PERM I/O ERROR", indicating something wrong with the diskette or
drive. (The message is different in different operating systems.
Another uses "CRC ERROR".) If your system generates such errors
often with different diskettes, take the fol+owing measures in the
order given:

.
a) Make sure the ocver to the mainfram is on. It is a

shield.

b) Switch to another of the suggested brands of diskettes.

c) If the errors persist, contact your dealer or service
representative.

2.4.3 HANDLING

Diskettes are easily damaged and contaminated. Please obey the
following rules without exception:

a) Do not touch or attempt to clean the inner surface.

b) Do not smoke, eat, or drink while handling the diskette.

c) Do not place heavy objects on the diskette.

d) Do not expose the diskette to excessive heat or sunlight.

Rev. 8.3-A 7/1/79 2-19

e) Do not use rubber bands or paper clips on the diskette.

f) Do not bend or fold the diskette.

g) Do not write on a diskette with a pencil. A fiber-tipped
pen is recommended. Return the diskette to its envelope before
writing on it.

h) Do not expose the diskette to magnetic fields.

i) After use, always return a diskette to its protective
envelope or other protective system such as plastic notebook pages
designed for diskettes.

j)
rubbing.

Store diskettes in a vertical position, thus reducing

k) If a diskette is damaged or contaminated, replace it. If a
contaminated diskette is placed in the drive, the receiver and
read/write head may become contaminated and ruin other diskettes.

1) Unmount the diskette if it will not be accessed for a half
hour or more. If the interval is very long, remove it from the
drive and return it to its storage envelope.

2.4.4 LOADING AND UNLOADING

There are two stages of loading a diskette. First, insert the
diskette with label side leftward, with the edge nearest the exposed
area pointing inward. Insert the diskette until it clicks into
place. You should not have to push so hard that the diskette bends.
The diskette is now "inserted" but not yet "mounted". Although not
good practice for long periods, you may leave the diskette like this
any length of time, and even turn power on or off.

Second, to I1mount" the diskette, push the door of the drive until
you feel increased resistence about'half-way closed, then SLOW DOWN,
and push SLOWLY but surely until it stays in the mounted position.
The drive will begin to turn and rotate the diskette inside its
jacket. If you cannot fully close the door, the diskette is not
inserted properly.

Do NOT turn power on or off while a diskette is in the mounted
position. This will sometimes damage the diskette. However:-I£ you
accidently do this, go ahead and use the diskette because it is
probably undamaged.

Once the diskette is mounted, it is accessible by software for
writing or reading. When the computer accesses the diskette, you
will hear a click from the drive and its red light will glow. After
the operation is complete, the drive will remain on for 5 seconds.
You can be entering new material at the keyboard during this time.
At the end of 5 seconds, the red light will go out, and there will
be another click as the head load pad is raised off the surface of

2-20 Rev. 8.3-A 7/1/79

the diskette. This automatic deselect feature is imporant in
lengthening the life-span of diskettes.

To dismount the diskette, press the door further open as far as it
will go, then let it close. It will then release to the unmounted
position. This stops the rotation of the diskette. UNMOUNT THE
DISKETTE DURING PERIODS IN WHICH IT IS NOT IN USE. This reduces
wear of the diskette against its jacket. You may leave it inserted
withough shortening lifespan.

To remove a diskette, press the door lefward. The diskette will pop
out.

2.4.5 RECOVERY TECHNIQUES

If you repatedly get PERM I/O erros using one particular diskette,
then it is probably defective. This will sometimes happen with a
new diskette when you are initializing it or copying another
diskette to it. After several attempts, dis~ard it or return it if
possible. Whenever you repeat a disk operation after an error,
always unload and reload the diskette, because it may be seated
incorrectly.

If an old diskette repeatedly gives errors, first repeat the
operation several times, unloading and reloading the diskette each
time. If there is still a problem, check the center hole. If it is
wrinkled, straighten it out with your fingers and then try again.
If you still get errors, try copying the diskette to another
diskette using the DISKCOPY utility in MOOS. If the error still
occurs, try swit~hing source and destination drives. Some
combination of drives and repositioning of diskettes within drives
will almost always result in a successful copy. If you cannot copy
a diskette at all, then copy it file by file to another initialized
diskette using the MDOS COPYFILE utility. There will probably be
one file which does not copy, but if you are lucky, they will all be
good.

2.4.6 REPLACEMENT AND BACK-UP OF DISKETTES

As with any magnetic storage medium, the recording gradually
deterioreates over time. Even if a diskette is not damaged, it will
begin producing errors after sufficient use.

Backup: The BEST defense against loss of diskette-based data is
maintaining a back-up diskette for each diskette you use. In the
business world, this is considered dogma. Copy a diskette on to its
back-up whenever you cannot afford to lose the information stored
since you last backed it up. This goes for programs as well as
data. If you are operating business programs such as inventory or
accounts receivable, maintain a regular back-up schedule, once a
week or once bi-weekly. In addition, a transaction journal - that
is a printed copy of entries made each day into the system - is an
excellent idea to build into business software as a last resort
back-up.

Rev. 8.3-A 7/1/79 2-21

Replacement: In addition to being backed up, replace frequently used
diskettes by copying to a fresh diskette every 6 months. A good
suggestion is to use the back-up diskette, which is fairly fresh, as
the new front-line diskette, and to create a fresh back-up. Do not
wait until a frequently used diskette fails, before you replace it
with the back-up.

To copy diskettes, use the DISKGOPY utility. See Section 4.3

2.4.7 INITIALIZING DISKETTES

PreviouslX unused diskettes must be initialized (also called
"formatted') before use. There are two routines in the Micropolis
software that can do this. Use either the INIT command in MOOS (see
4.1.5.22) or the F command in the BASIC UTILITY program operating
under M.BASIC. (see Appendix B). Their results are identical. DO
NOT INITIALIZE THE MOOS SYSTEM DISKETTES PROVIDED WITH THE SYSTEM.
OR ANY OTHER DISKETTE CONTAINING DESIRED INFORMATION. THIS DESTROYS
THEIR CONTENTS.

2.4.8 WRITE PROTECT FOR DISKETTES

Write protect tabs come in boxes of new diskettes. If you attach a
tab over the write protect cutout on a diskette as shown in Fig. 2.2
the disk drive will not allow you to erase or change any information
on the diskette. The tab may be removed later.

2-22 Rev. 8.3-A 7/1/79

wRITE ENABLE NOTCH

OJ
o

Rev. 8.3-A 7/1/79

WRITE PROTECT TAB
FOLD OVER SIDE OF DISK WRITE PROTECT TAB IN PLACE

INDEX AND
SECTOR HOLE

g~

o

Figure 2.2 How To Mount Write Protect Tab

2-23

III DAY TO DAY OPERATIONS FOR MOOS AND M.BASIC

3.0 SUMMARY OF NORMAL START UP PROCEDURE

1) Power-on the mainframe, then the peripherals.
2) If yours is a MEMORITE system, depress RESET key.
3) Insert and mount MDOS System diskette in drive o.
4) Enter B on keyboard. MDOS comes on.
5) Enter BASIC (return) on keyboard. M.BASIC comes on.

(return) means press the RETURN key.

Please read the rest of this. chapter thoroughly. The above does not
give all the information you need.

3.1 SUMMARY OF PROMPTS

When one of these prompts appears, it indicates the corresponding
system is loaded and its executive routine is waiting for operator
input.

1) *
2) >
3) READY

3.2 POWER-ON

Monitor
MDOS
M.BASIC

1) No diskette may be in mounted position, (i.e. rotating)
but it may be inserted in drive.

2) Turn the power key on the mainframe. The RESET button
will light up.

3) If yours is a MEMO RITE system, depress the RESET button.

4) Switch on all desired peripherals.

5) Depress RESET on printer, if printer will be used and if
printer has one.

6) An asterisk and cursor will appear on the console
indicating the Extended Systems Monitor executive is
available for commands. A few Monitor commands are
covered in this chapter. The remaining will be found in
the Extended Systems Monitor manual. Look it over. Some
may be useful. Monitor commands can be entered ,at this
time or at any other time that the Monitor executive is
called back into control, indicated by the Monitor prompt
(*) •

Rev. 8.4-A 7/26/79 3-1

I

3.3 LOAD MOOS

1) Insert, if not done already, and mount an MDOS System
diskette in drive O. In place of the MDOS System
diskette, you may substitute an M.BASIC-only diskette.

2) Enter B. MDOS will be loaded into memory and control will
be transferred to the MOOS executive. The screen will
look like this:

*B
Vector MZ MOOS X.XX
>
You may now enter MOOS commands (Chapter 4).

If MDOS should come up but does not, refer to Appendix I for
troubleshooting.

If a M.BASIC-only diskette was in drive 0, the screen will look like
this:

*B
MICROPOLIS BASIC VS. X.X.-COPYRIGHT 19XX
READY

In this case, you may begin entering M.BASIC commands immediately
(chapter 5) and skip Section 3.4. Section 2.3.6 discusses
BASIC-only diskettes.

3.4 LOAD M.BASIC FROM MOOS
,

You may work in MOOS for some time and then transfer control to
M.BASIC, or you may desire to go immediately to M.BASIC as your
first MDOS command. In either case, enter BASIC (return). The
screen will appear like this:

>BASIC
MICROPOLIS BASIC VS. X.X.-COPYRIGHT 19XX
READY

You may now enter M.BASIC commands. (Chapter 5).

3.5 OTHER OPERATING SYSTEMS AND LANGUAGES

This manual deals primarily with the MOOS operating system, as it is
normally delivered. For commands in other operating systems,
including how to load their associated BASIC's or other languages,
refer to the manuals for those systems, included if and when they
are ordered.

3-2 Rev. 8.3-A 7/1/79

3.6 RETURNING TO MDOS FROM M.BASIC

1)

2)

3)

Make sure there is a System diskette with MDOS mounted in
drive O.

Enter LINK "MDOS" (return). (See Section 5.21.2.7 for how
LINK works and for other uses of LINK command).

Screen will look like this:

READY
LINK "MDOS"
Vector MZ MOOS X.XX
>

You may now enter MDOS commands.

To return to M.BASIC. enter BASIC (return) as usual (see Section
3.4.)

3.7 RETURNING TO MONITOR FROM ANYPLACE

1)

2)

Depress control-~ (hold CTRL key down while depressing Q);
or press the RE ET key-on-the mainframe front panel.
Control-Q is preferred.

You may now enter Extended System Monitor commands.
"

NOTE: For systems without the version 3.1 Systems Monitor,
control-Q will not work when you try it. If you find this
to be the case, then either the ESC key or control-X WILL
work instead. To find out which will work in your system,
get MDOS running and try them. Control-X and the ESC key
each have a special function in the MDOS and M.BASIC
editors. If one of these causes a return to the Monitor,
then obviously, you cannot use that function in the MOOS
and M.BASIC editors. Make a mental note of this when
reading the MDOS and M.BASIC editor instructions. If ESC
or control-X causes a return to the Monitor instead-oI
control-Q then substitute it wherever control-Q appears in
this chapter.

Returning to the Monitor is useful when Monitor commands are needed
for trouble-shooting MDOS or M.BASIC programs. It is also used if
there is no other way to break out of an undesired loop or output
sequence in any program. Always use control-Q rather than RESET if
possible, because on extremely rare occasions, RESET may change some
of the contents of memory.

Control-g will not work when certain special purpose programs are
operating. The most important of these are disk access routines,
and the Word Management System and MEMORITE word processing
software. RESET is necessary in these cases if you want to return
to the Monitor.

Rev. 8.3-A 7/1/79 3-3

Avoid using RESET to abort a disk write operation t if possible t

because if at that moment the directory is being written t then all
the data on the disk can be effectively lost. (The same holds true
if you dismount the disk at that time.)

In addition, aborting a disk read or write operation may leave the
file in an "openl1 state, which can cause an error message next time
the drive is accessed. This can be cleared by executing the FILES
command in MOOS. Enter FILES (return), then return to your program
and access the disk.

The best advice is, in general t allow disk read and write operations
to go to their natural conclusions. Only abort if the operation is
looping indefinitely.

3.8 RETURNING TO MOOS (OR M.BASIC) FROM MONITOR IF MOOS (OR M.BASIC)
IS ALREADY IN MEMORY

This is the MOOS (or M.BASIC) warm-start command.

Depress J after the Monitor prompts with *.

3.9 RETmu~ING TO MDOS OR M.BASIC EXECUTIVE FROM WITHIN A ROUTINE
RUNNING UNDER THAT EXECUTIVE

Depress control-C. (Hold the CTRL key down while depressing C. - -
Response is MDOS prompt (» if MOOS is the executive, or BASIC
prompt (READY) if BASIC is the executive.

Control-C is used to leave a routine at other than the normal end
point. Use it when the routine is waiting for any type of key~oard
input. It is sometimes also effective for interrupting an overly
long or unending stream of output.

If it does not work, then control-Q is the alternative. Since this
returns control to the Monitor, depress J then to return to MDOS or
M.BASIC.

3.10 VIDEO COMMANDS

This section is ONLY relevent to systems using memory mapped video,
such as the Vector Graphic Mindless Terminal. If a serial terminal
such as Hazeltine is used, then refer to the manual for that
terminal to find how you can control the screen image from the
keyboard.

These commands may also not work if another operating system, such
as CP/M is in control of the system. They will definitely not work
when word processing, using the Word Management System or MEMORITE,
is in control.

Most of the time, when the system is waiting for keyboard input,

3-4 Rev. 8.3-A 7/1/79

operator may perform the following operations on the screen image.
These commands are made possible by the Extended Systems Monitor.
For more information of a technical nature. refer to the Extended
Systems Monitor manual.

3.10.1 CLEAR SCREEN

Depress control-D.

3.10.2 SCROLL SCREEN UP ONE LINE

Depress control-J or LF key.

3.10.3 BACKSPACE CURSOR

Depress BACKSPACE key. underscore key, or control-H. Also. the DEL
key will have this effect IF MDOS or M.BASIC is running.

These commands will always work when MOOS or M.BASIC executives are
waiting for input, and when any M.BASIC program is waiting for
input.

In other situations, for example, when an assembly language program
is waiting for input, these commands mayor may not work depending
on how the program in control was written.

3.10.4 CONVERT THE SYSTEM TO REVERSE VIDEO

For variation, you can cause the screen to display characters
black-on-white rather than white-on-black. Just depress cont~ol-T
(hold down CTRL key while depressing T) If you depress this again,
the video wrrr-return to white-on-black. Characters already entered
will remain on the screen the way they were entered.

3.10.5 TAB CURSOR TO NEXT TAB LOCATION (EVERY 8 SPACES)

Depress TAB key or control-I

3.10.6 ELIMINATE CURSOR FROM THE SCREEN

Depress control-N

3.10.7 MOVE CURSOR TO TOP OF SCREEN

Depress control-B

Rev. 8.3-A 7/1/79 3-5

3.10.8 MOVE CURSOR DOWN, UP, LEFT, OR RIGHT

Depress one of the keys with an arrow on it. If your keyboard has
no arrow keys, then depress control-R, control-U, control-W, or
control-Z to move cursor down, up, left, or right respectivel~.
However, Control-U and the up-arrow key will not work under while in I
MDOS or M.BASIC, though it will work under certain machine language
programs and when in the Extended Systems Monitor echo mode (Y
command).

3.10.9 RETURN CURSOR TO LEFT EDGE OF SCREEN

Depress RETURN key or contro1-M.

3.11 POWER-DOWN

1. Make sure you have stored on diskette all the programs and
data you wish to save.

2. Dismount all diskettes. They may be left inserted and
clicked in, so long as they are not mounted (rotating).

3. Turn off all peripherals.

4. Turn the power key on the mainframe front panel.

Rev. 8.4-A 7/26/79 3-6

IV MICROPOLIS DISKETTE OPERATING SYSTEM

4.0 INTRODUCTION TO MOOS

Micropolis Program Development Software consists of two systems,
Micropolis BASIC which is discussed in Chapter V and the Micropolis
Diskette Operating System (MOOS). MOOS consists of an executive
program, a group of shared subroutines available to user programs,
and an assembly language program development package.

The MDOS executive program implements an interactive command language
that allows the user to control computer system operations from the
system console. It provides commands for memory management, file
management, I/O control and program control.

MOOS contains a very large group of subroutines which can be called
from a user's application program. These subroutines provide for
console and printer character I/O, buffered line I/O, text line
parameter parsing, sequential and random file access, file management,
physical diskette access, and 16 bit integer arithmetic. There are
also a number of processor oriented utility subroutines.

Six application programs make up the package that supports assembly
language program development. LINEEDIT facilitates the creation of
source files. ASSM is a two pass 8~8~/808S disk to disk assembler.
SYMSAVE creates a source file of equate statements from a latent
symbol table. FILECOPY is a utility for copying named files. OISKCOPY
is a utility for making literal copies of an entire diskette. DEBUG
provides facilities to locate and correct program bug's in machine
lanquage programs.

4-1

Rev. 8 9/78

4.1 THE MOOS EXECUTIVE

The MOOS executive program implements an interactive command language
that allows the operation of the microcomputer system to be controlled
from the system console. When ~mos is loaded it signs on with the
message
MICROPOLIS MOOS VS. X.X • COPYRIGHT 1978
>
It is then waiting for an executive statement to be entered.

4.1.1 ENTERING EXECUTIVE COMMANDS

Executive statements are entered by typing characters in sequence on
the console keyboard. An executive statement is terminated by pressing
the RETURN key. During the entry of a statement each character that is
typed is echoed by the executive on the console display. Two control
features may be used when entering a line.

l} When DEL or RUBOUT key is pressed the next previously typed
character will be deleted from the line. A backarrow is echoed
to the terminal display for each character deleted.

2} Holding down the control key and typing X (CMTl/X) will cause
all of the current line to be cancelled. 'A carriage return line
feed ~ombination is echoed to the terminal display. The
executive is positioned to accept entry of a new line.

4.1.2 EXECUTIVE STATEMENT FORMAT

An executive statement has the following form:

(unit:]NAME ("<ASCII>" "<ASCII>" ••. "<ASCII>" <hex> <hex> •.• <hex> J

The NAME in an executive statement may be the name of an explicit command
or the name of a disk file. MOOS has 23 explicit commands which are
discussed in this section. Explicit command names are uppercase only
and must not be preceded by any spaces. In addition, executable assembly
language programs can be loaded into memory and run by entering their
file NAME. This provides an implicit command capability that can be used
to extend the executives vocabulary. Implicit command filenames can be
up to ten ASCII characters in the code range 21 hex to 7E hex. Imbeded
spaces. double quotes, backarrows, and rubouts are not allowed in
implicit command filenames.

When an executive statement is entered the executive program searches
its table of explicit command names for a match with the NAME that was
input. If the NAME is found i~ the table of command names the statement
is executed immediately. If the NAME is not an explicit command name.
then the NAME is treated as an implicit command filename which must be

Rev. 8'.1 2/5/79 4-2

found on disk. Implicit command filenames may be prefixed by an optional
unit number. This specifies the disk drive on which the NAMEd file is to
be found. If no unit number is specified, unit ~ is assumed. If a unit
number is specified it must be separated from the first character of the
NAME by a colon (:). The executive processes the implicit command filename
by searching the directory of the specified disk drive for the file. If
the file is found on the disk (and the file type is correct) the executive
loads the program file into memory and transfers control, along with any
parameters in the executive. statement, to the program. If the executive
does not fi nd the fil e on the speci fi ed dri ve an error message ;'s output
to the console stream: COMMAND NOT FOUND. If the file is found on the
disk but it is not an executable file an error message is output to the
console stream: WRONG FIL! TYPE. See the section on file type definitions
for a detailed discussion of file types.

Executive statements consist of a NAME followed by parameters, as necessary.
Parameters can be ASCII or numeric. There can be up to four ASCII parameters
and up to four numeric parameters. There must be at least one space between
the NAME and any parameters. All parameters must be separated from each
other by at least one space. Entry of an executive statement with too many
parameters of either type, or w1thout the required spaces between fields
will result in a SYNTAX ERROR.

ASCII parameters consist of from 0 to 10 ASCII characters in the code range
20H to 7EH except for 22H which is the double quote and 5FH and 7FH which
are interpreted as backspace requests by the logical console input routines.
ASCII parameters must be enclosed in double quotation marks. Entry of an
executive statement with unbalanced quotation marks or illegal characters
in an ASCII parameter win result in a SYNTAX ERROR.

ASCII parameters in executive statements are generally used to specify
disk filenames. In this usage a unit number may be prefixed to the ASCII

. filename within the quotation marks by typing the unit number followed by
a colon {:} followed by the filename. This indicates the disk drive unit
on which the file is to be found. If no unit is specified, unit 0 is
assumed. The digit of the unit specification and the colon are not included
in the 10 character length restriction for ASCII parameters. For example.
"DATAFILEOl tI and "1: DATAFILEOl" are both valid ASCII parameters in an
executive statement.

Numeric parameters in executive statements are unsigned hexadecimal values
from 0 to FFFF. They represent such elements as memory addresses, fi1etypes,
and databytes. Entry of a numeric parameter with a value greater than FFFF
or with illegal characters will result in a SYNTAX ERROR.

4.1.3 CANCELLING AN OPERATION

All MOOS explicit commands and all application programs supplied by Micropolis
can be cancelled in progress by holding down the control key and typing a
C (CNTL/C) on the console keyboard. The operation will be terminated as soon
as the CNTL/C is recognized and the message CANCELLED will be output to the
console. Control is returned to the MOOS executive.

Rev. 7 3/78 4-3

4.1.4 DISPLAY CONTROL

All MOOS explicit commands and all application programs supplied by Micropolis
can be temporarily stopped in progress by holding down the control key and
typing an S (CNTL/S). The process will pause upon recognition of the CNTL/S.
Typing any key other than CNTL/S or CNTL/C will cause the process to resume.
This function is very useful in controlling commands and programs that output
displays at high speed. For example, the output of a DISP command may be
viewed at reading speed by stopping and resuming the output as necessary.

4.1.5 EXPLICIT EXECUTIVE COMMANDS

Command syntax for each of the MOOS explicit commands ;s illustrated in
this section with the aid of the following notation:

[] Option brackets. Any parameters enclosed between brackets are
optional.

< > Symbol brackets. This space should be replaced by the item
described.

4.1.5.1 THE CaMP COMMAND

COMP <start addr. blockl> <end addr. b1ock1> <start addr. b1ock2>

The COMP command compares two blocks of memory and displays address locations
that do not compare and the data at those locations. Example:

>COMP 5000 50~F 5010
5004 01 09 5014

The block of memory from 5000 to 500F is compared "'ith the block of memory
from 5010 to 501F~ One location fails to compare. Location 5004 contains
01 while the corresponding location, 5014, in the second block contains 09.

4.1.5.2 THE DUMP COMMAND

DUMP <start addr.>[<end addr.>]

The DUMP command outputs to the system console a formatted hex display of
the contents of a block of memory. Sequential memory locations are shown
16 to a line with the memory address at the left margin. If the optional end
address parameter i,s not entered, only one byte is dlsp1ayed. Example:
>DUMP 50210 5011
5000 50 C0 27 77 4F 33 4F CD 70 9E 98 00 6A FD 82 90
5010 77 28

4.1.5.3 THE ENTR COMMAND

ENTR <start addr.>

4-4

Rev. 8 9/78

\

The ENTR command allows data to be entered into memory directly from the
console device. Example:

>ENTR 7000
>78 89
6~

Three bytes were entered starting at location 7000 hex. These were 78
at 7000. 89 at 7001. and 6F at location 7002.

Typing in an ENTR command places the executive in a special enter mode.
While in the enter mode each line of values that is typed is entered into
memory when the RETURN key ;s pressed. Until the RETURN key is pressed
the standard backspacing and CNTL/X tools are available for line correction.
The last value on the last line must be followed by a slash (I) to properly
terminate the enter mode. Entry of a illegal hex value in any line will
also cause termination of the enter mode with the message SYNTAX ERROR.

4.1.5.4 THE FILL COMMAND

FILL <start addr.> <end addr.> <byte>

The FILL command fills a block of memory with a specified byte.
Example: .

>FILL 7000 8000 9

Each byte of memory in the block from 7000 to 8000 is changed to a 09
by this command.

4.1.5.5 THE MOVE COMMAND

MOVE <source addr. start> <source addr. end> <dest. addr. start>

The MOVE command copies the source block of memory to the destination
block. The source block is not changed. The destination block is
changed to be an exact copy of the source block. Example:

>MOVE 3000 4000 7000

Each byte in the memory block from 3000 to 4000 ;s copied into the
corresponding position in the memory block from 7000 to 8000.

4.1.5.6 THE SEAR COMMAND

SEAR <start addr.> <end addr.> <byte>

The SEAR command searches a block of memory for all occurrences of the
specified byte and displays all locations with a match. Example:

>SEAR 3000 3020 9F
3004 9F
3018 9F

The block of memory from 3000 to 3020 ;s searched for all occurrences of
a 9F. location 3004 and location 3018 both contain 9F. No other
locations in the block contain 9F.

4-5

Rev. 7 3/78

4.1.5.7 THE SEARN COMMAND

SEARN <start addr.> <end addr.> <byte>

The SEARN command searches a block of mel'lory for all non-occurrences of a
specified byte and displays all locations that do not match. Example:

>SEARN 30~0 3010 67
3002 09 67
3006 76 67

The block of memory from 3000 to 3010 is searched for all non-matches with
the mask 67. Location 3002 contained a 9 rather than a 67, and 3~06
contained a 76 rather than a 67.

4.1.5.8 THE CREATE COMMAND

CREATE "[unit:]<filename>" [<file type>]

The CREATE command creates a new file in the directory of the diskette
in the specified unit and allocates the initial track for the file. If
no unit is specified, unit 0 ;s assumed. The second parameter optionally
gives the file a TYPE designation. If no type is specified the type is
defaulted to 0.

4.1.5.9 THE DISP COMMAND

DISP l[unit:]<fi1ename>" [<record number>]

The DISP command outputs a formatted hex display of the data contents of
a file to the system console. The unit number indicates the disk drive

_ on which the file is to be found. If no unit is specified, unit 0 is
assumed. The optional record number indicates on which record in the file
the display is to begin. If no record number is specified, record 1 is
assumed.

Each record is displayed with a header line that contains the record
number, the address in memory where the record is to be loaded, and the
number of data bytes in the record. Data lines follow the record header.
Each data line has up to sixteen data bytes preceded by the index position
in the record of the first data byte on that line.

>DISP "l :TEST" 29
0029 3C00 0022
00 12 2A BD 76 8F ED 54 41 89 00 00 82 BC CC 76 89
10 78 88 3B BS 88 54 58 56 90 88 32 31 30 00 00 00
20 89 SS
002A 3C80 0003
00 FF FF FF
002S 3F00 0009
00 45 43 4B 4C 31 37 38 00 00
002C 2800 0000
END-FILE

Rev. 8 9/78 4-6

The first line of the display shows the record number 29, the load
address 3C~~, and the length of the record 22 bytes (all in hex). The
header line is followed by three lines which display the data in record
29. Each data line starts with the index position of the first byte in the
line. It is followed by two spaces and then the data.

The next header is for record 2A which has a load address of 3C8~ and
contains 03 bytes of data.

Record 2B has a load address 3F00 and contains ~9 bytes of data.

The last header is for record 2C which has a load address of 2B~ and a
record length of 0. If the file is an executable object file (like ASSM
for example), the address in the zero length sector is the execution
address of the file. LOADing stops when the zero length sector is read.
If the file is a run type which is being implicitly loaded and run,
program control is transferred to the execution address.

4-6.1

Rev. 8 9/78

4.1.5.10 THE FILES COMMAND

FILES [<unit>]

The FILES command outputs a formatted display of the file information
in a diskette directory to the system console. The unit number
indicates which disk drive directory ;s to be displayed. If no unit is
specified, unit 0 is assumed. Example:

>FILES 1
DIR
RES
MOOS
LINEEDIT
ASSM
SYMSAVE
FILECOPY
DISKCOPY
BASIC

03 0000
03 0013
9lF 9l9l1C
15 000C
15 0010
15 0003
15 0003
0F 0009
0F 004B

The files on drive one are displayed on the console. The left column
contains the filename, the second column ;s the file type, and the
third column contains the number of sectors the file uses. All numbers
are in hex.

4.1.5.11 THE FREE COMMAND

FREE [<unit>]

The FREE command outputs to the system console the number of tracks
left unallocated (free) on a diskette. The unit number indicates which
disk drive. If no unit is specified, unit 0 is assumed. Example:

>FREE 1
003B

The diskette on drive one has 3B tracks available to be allocated.

4.1.5.12 THE SCRATCH COMMAND

SCRATCH "[unit:]<fi1ename>"

The SCRATCH command removes a named file from the directory of a diskette
and returns its allocated tracks to available status. Disk drive III is
assumed if no unit is specified.

Note: Some files cannot be SCRATCHed without first changing the file
TYPE (see 4.1.5.9 and 4.2.3).

4-7

Rev. 7 3/78

4.1.5.13 THE LOAD COMMAND

The LOAD command loads (reads) a named fil~ from a diskette into the computers
memory and then returns control to the MOOS executive. If no unit number
is specified, the file is expected to be found on unit 0.

The LOAD command can be used in conjunction with two categories of files,
OBJECT files and DATA files. The specific nature of the load that is
performed depends on the category of the specified file to be loaded. The
process of LOADing an OSJECT file is described in 4.1.5.13.1. The process
of LOADing a DATA file is described in 4.1.5.13.2.

The LOAD command can NOT be used to load a file in the OVERLAY category.
An OVERLAY file ;s defined as any file with a file type value in the range
0C - 0F hex (see Section 4.2.3). An attempt to LOAD an OVERLAY file results
in the message WRONG FILE TYPE. OVERLAY files are not LOADable because
they generally imply the replacement of the MOOS module and require immediate
execution. Control cannot be returned to the MOOS executive and must be
transferred immediately to the newly overlayed program module. If there is
a necessity to LOAD an OVERLAY file into a memory area which does not
conflict with MOOS, this can be done by changing the file type to an OBJECT
type and then using an offset load per Section 4.1.5.13.1.

4.1.5.13.1 THE LOAD COMMAND FOR OBJECT FILES

An OBJECT file is defined as any file with a file type value in the range
08 - 0B hex or 14 - lBhex. These ranges include ASSM object files, BASIC
• save memory' files, executable system files, and executable user files
(see Section 4.2.3).

The format of the LOAD command for OBJECT files is:

LOAD lI[unit:] <filename>1I [<start addr.>]

OBJECT files are LOADed by using the address and length information in the
header of each record of the file (see Section 4.2.4). This is called a
'scatter load' because it permits records in the file to be loaded into
non-contiguous portions of memory depending on the associated addresses.
The LOAD is terminated when the first 0 length record in the file is
encountered.

If the optional start address is not specified in the LOAD command, then
the load of an OBJECT file proceeds according to the following example.

The OBJECT fi 1 e to be loaded is "TEST".

DrS? IITEST"
0000 2B00 0005
00 31 32 33 34 35
0001 2C00 0004
00 54 45 53 54
0002 2B00 0000
END-FILE

Rev. 8 9/78 4-8

Typing LOAD "TEST" loads two text strings into memory. The string "12345"
in record 0 is loaded starting at 2800 hex for five bytes. The test string
"TEST" in record 1 is loaded starting at 2C~0 hex for four bytes. The last
record contains a zero length ~ector which terminates the load of an OBJECT
type file. For an executable file the zero length sector contains the run
address which in this case is 2800 hex. This file. however. could not be
a run file as it stands as there is no executable code.

If the loa'd address of the first record is less than 2B00 hex. the message
LOAD ADDRESS ERROR is displayed because file may not be loaded beneath the
MOOS application area.

If the optional start-address is specified in the LOAD command. then the
first record of the file is loaded starting at the specified address. The
load address in the record header of the first record is subtracted from
the start-address to produce an offset. Hhen the records following the
first record of the file are loaded. the calculated offset is added to the
load address in the record header and the record is loaded starting at the
calculated address. This is called an loffset scatter load l .

Using the file TEST in the example above, typing LOAD IITEST II 5000 loads the
string 1112345 11 starting at memory location 5000 hex for five bytes. The
offset is calculated by subtracting the load address in the header of the first
record from the start-address. 5000-2B00=2500 hex. The string "TEST u is
loaded starting at 5100 hex for four bytes. The load address in the header
of the second record, 2C~0 has the offset 25~0 hex added to it and the result
is the offset-load address.

If the optional start-address is less than 2800 the message LOAD ADDRESS
ERROR is displayed.

4.1.5.13.2 THE LOAD COMMAND FOR DATA FILES

Any file which is not an OBJECT file and not an OVERLAY file is treated as
a DATA file by the LOAD command. DATA files thereby include file type values
in the ranges 0-7, 10-13 hex, and 1C-FF hex. These ranges cover MOOS and
BAS.IC DATA files, ASSM and LINEEDIT source files, BASIC program files and all
of the unassigned file types (see Section 4.2.3).

The format of the LOAD command for DATA files is:

LOAD U[unit:] <filename>1I <start addr.>

The start address parameter is mandatory.
a SYNTAX ERROR message will be displayed.
2B00 HEX a LOAD ADDRESS ERROR will result.
tion of the operating system.

4-8.1

Rev. 8 9/78

If a start address is not specified
If the start address is less than
This prevents accidental destruc-

Data is loaded starting at the sDecified address and continuing until the
number of records in the file as shown in the directory have been loaded.
The data is loaded into memory sequentially and contiguously. Only the
number of data bytes in each record are loaded. The LOAD comMand does not
pad records of less than 256 bytes. If a file were loaded at location
3000 and the first record had only 4 data bytes in it, then the first data
byte from the next record would be loaded at location 3004. Records with
zero length are skipped over. The load address in the sector header (see
Section 4.2.4) has no meaning when doing a data LOAD.

4.1.4.14 THE SAVE COMMAND

SAVE "[unit:]<filename>" <start addr.> <end addr.> [<file type>]
[<exec. addr.>]

The SAVE command saves (writes) a new file to a diskette from a block
of memory. The file is written sequentially from the memory start
address through the memory end address into full sequential records. If
no unit number is specified, the file is written to unit 0. If a file
type is not specified the file type will be zero. If an execution address
is not specified. the execution address of the file will be set to the
start address of the memory block. Note that the type and execution
address parame°i:.ers are position dependent such that if an execution address
is specified then a file type must also be present. Example:

>SAVE ill:NEWFlLEiI 2B"~ 3700 0 30021

A file is created on the diskette in drive one with the name NEWFILE
and the memory block from 2B0~ to 3700 is written to that file. The file
is given a type of " and the execution address saved with the file is
30210. If no execution address had been specified then 2B00 would be
saved as the execution address.

4.1.5.15 THE RENAME COM~AND

RENAME "[unit:]<filename>" "<new name>"

The RENAME command changes the name of a diskette file to a specified
new name. If no unit number is specified, the file to be renamed is
expected to be found on unit 0. Example:

>RENAME "l:OLDFILE" "NEWFILE"

The file named OLDFILE on the diskette in drive one is changed to NEWFILE
on the diskette in drive one. The file type is unchanged by the renaming
process.

Rev. 8 9/78 4-3.2

4.1.5.16 THE TYPE COMMAND

TYPE "[un it:]<fil ename>" <type>

The TYPE command changes the type designation of a specified file. The
type designation is a single hex byte. A definition of file types is
given in Section 4.2. Example:

>TYPE "1 :PROGRAMX" 15

The type of the file PROGRAMX one disk drive one is changed to a value
of 15.

4.1.5.17 THE APP COMr~AND

APP ["<ASCII>" "<ASCII>" ... "<ASCII>"] [<hex> <hex> ... <hex>]

The APP command transfers program control from the MOOS executive to
the start of the MOOS applications area at 2B00 hex. It expects a valid
executable program to be in the applications area with its entry point
at the beginning. Up to four ASCII parameters and four hex parameters
can be passed to the program. For example, if you are doing several
assemblies, the assembler need only be read into memory once from diskette
as it does not change itself in the process of assembling a program.
After it is once in memory the APP command can be used to communicate with
the assembler. Example:

>APP "1: SOURCE" "0BJ.ECT" "P"

If the assembler were already in memory, the above example would transfer
control and the necessary parameters to the program and the assembler
would assemble the source file called SOURCE from drive one; produce an
object file on drive zero called OBJECT; and output a paginated listing
on the print device.

The APP command functions like the EXEC command in that it PUSHes the
address of the operating systems warm start entry point onto the system
stack. Therefore if the program in the applications area does not provide
its own stack, a RET would return control to the operating system.

4.1.5.18 THE ASSIGN COMMAND

ASSIGN <device #> <logical stream mask> [<width> <null count>]

The ASSI~~ command is a dual purpose command which provides the ability
to specify the connections of physical output print devices to logical
output streams and the values for carriage width and nullcount of the
referenced physical device. The physical device number must be 1 or 2.
The logical stream mask must be a 0,1,2, or 3. The device width and
nullcount must be numeric values in the range 1 to FF hex. The width
and null count parameters are optional. If width or nullcount are not
included, the values corresponding to the referenced physical device

4-9

Rev. 8 9/78

are not changed. If only the device width is included, then the
nullcount is left unchanged. However. if a nullcount is specified then
the width must be present as a place holder even if it is the same. If
the ASSIGN command contains only three parameters the third is always
the width.

Logical output stream number one consists of all output generated by
system messages, keyboard echoing and the output from any eXDlicit
executive command. Logical output stream number two consists of all
output generated by LISTP and PRI~TP commands in the line editor, and
by all listings in the assembler. The logical stream mask can be set to
a three to represent both logical output streams one and two, or to a
zero indicating that the device is to receive no output.

Physical device number one represents the display element of the
keyboard display device that is configured as the system console (see
Section 2.2.4.1 on terminal configuration). PhYSical device number two
represents the hard copy print device which is configured as the system
printer (see Section 2.2.4.3).

The output of a logical stream is directed to all physical devices
which are assigned to it. A physical device may be assigned to one,
both, or no logical streams. The ASSIGN command cancels any previous
assignment of the specified device.

In its initialized state the terminal is aSSigned to stream one only,
and the printer is assigned to stream two only. This state can be
restored by executing:

>ASSIGN 1 1
.>ASSIGN 2 2

When the console and printer devices are configured, each device has a
carriage width and nullcount parameter associated with it. These values
may be changed by specifying optional third and fourth parameters in an
appropriate ASSIGN command. The width parameter determines the maximum
number of characters on each line for the given device. When a line is
output that is longer than this value an autowrap feature is activated
and a carriage return and line feed is inserted at the appropriate point
so that the logical line is continued on the next device line. The
width can be changed on a given device by repeating the current assignment
with the new width parameter. For example. if the console were currently
assigned to stream one with a width of 80 characters (decimal). it could
be changed to a width of 72 characters {decimal} as follows:

>ASSIGN 1 1 48

72 decimal is 48 hex. This width assignment will stay in effect until
the width is specifically reaSSigned. or until the system is rebooted.

The nullcount may have to be changed to accommodate unbuffered character
serial devices which may lose characters while the carriage is being
returned. The nullcount value ;s one greater than the actual number of

Rev. 7 3/78 4-10

output nulls (ie. 1 will output no nulls). For example, if the printer
were currently assigned to stream two at 132 characters per line and
no nulls (nullcount=l), the number of output nulls could be changed to
five with the following command:

>ASSIGN 2 2 84 6

132 decimal is 84, and 6 will result in five nulls being output after a
carriage return.

Because the MOOS executive language has been designed to be interactive
it depends on the availability of a display device for system messages,
keyboard echoing, and display of command results. Therefore an interlock
is built into the system to ensure that stream one always has at least
one device assigned to it. If an ASSIGN command violates this condition,
then physical device one is automatically assigned to stream one as part
of the assignment being processed. Additionally if the print device
supports a printer attention condition (out of paper, motor off, etc.)
the system will force the assignment to an initial state (ASSIGN 1 1,
ASSIGN 2 2) if the printer signals that it needs attention. This ensures
that the attention message will be output to the console.

4.1.5.19 THE EXEC COMMAND

EXEC <address>

The EXEC command transfers processor control directly to the specified
memory address. It expects a valid program to begin at that address.
The address of the operating systems warm start entry point is PUSHed
onto the 8080 1 s hardware stack by the EXEC command. Therefore, if the
executed program does not set its cwn stack, a final RET in the program
will return to the operating system. This feature allows subroutines to
be exercised separate of the rest of a system under development.

4.1.5.20 THE MATH COMMAND

MATH <hex number> <hex number>

The MATH command performs 16 bit integer math functions on the two specified
hex numbers. It displays the sum, difference, product, quotient, and modulus.
Example:

>MATH 4 5
0009 FFFF 0014 0000 0004

The results are displayed from left to right: 4+5=9; 4-5=FFFF 4*5=14
; 4/5=0 (intiger division) and a remainder (modulus) of 4.

4.1.5.21 PROMPT "<ASCII>II

The PROMPT command sets the executive prompt string to the value of the
ASCII string. The string can be up to ten characters long. Spaces are

4-11

Rev. 8 9/78

not allowed. The prompt is initially> when the system is configured.
Example:

>PROMPT "**"
**

The prompt is changed from> to a **

4.1.5.22 THE IN IT COMMAND

INIT <unit>

The INIT command initializes a diskette in the specified drive. The
drive unit number must be specified. The INIT command formats the
diskette by writing an empty block with the correct track and sector
identification on every sector of the diskette and reading each sector
to verify the media. It creates a blank directory and places a system
loader on the diskette. The INIT command essentially cleans the diskette
of any data previously on the diskette and prepares it for new use.
Accidental use of the INIT command could destroy the entire content of
a diskette. Therefore, the system provides an interlock on this command.
After the command is entered, the system prompts ARE YOU SURE? It waits
for a 'Y' or 'N' response to indicate yes or no. An 'N' cancels the
command without doing any damage. Example:

INIT 1
ARE YOU SURE?

The diskette on driv~ one will be initialized if a 'Y' is typed. All
other rep1ys will result in the command being canceled. Control returns
to the executive.

Rev. 7 3/78 4-12

4.2 MOOS DISK FILE I/O

MOOS implements a powerful and efficient method for storage and retrieval
of files on diskettes compatible with Micropolis disk subsystems. Track
o of each diskette contains a directory of the files on that diskette.
Each directory entry holds the name, protection attributes. type. length
and starting location for one file. Track 0 also contains a track map
index that lists all unassigned tracks and all tracks assigned to each file
in the order of assignment. Files are stored on the remaining tracks of
the diskette using a track indexed architecture that allows files to grow
or shrink dynamically. Files may be accessed sequentially by byte or
record and directly (randomly) by record or byte within record.

4.2.1 TRACK INDEXED FILE STORAGE

The track indexed file storage scheme defines one track as the minimum
disk space consumed by a file. The maximum storage assignable to one
file is all tracks on the diskette (35 on MOO I subsystems and 77 on
MOO II subsystems), except the directory track~. When MOOS creates a
new file it assigns one track to that file. Additional file space is
assigned to the file one track at a time as needed. Files are contiguous
within a track but not necessarily from track to track. If a file is
shortened, unused tracks are returned to available status. When a file
is deleted (scratched), all of its assigned tracks are freed for
reassignment.

Maintenance of the tr~ck map in the track indexed scheme operates as
follows. Whenever a file is opened for access MOOS reads the track map
from that files diskette into main memory. Any record in the file may
then be accessed with only one disk seek by appropriate reference through
the track map. File access operations that cause the file to be extended
or shortened by one track also cause the track map to be immediately
updated in memory and on disk. When the file is closed its directory
entry is rewritten to reflect any changes in the files size or status.

4.2.2 FILE NAMES

File names consist of from 0 to 10 ASCII characters in the code range
20H to 7EH except for 22H which is the double quote and 5FH and 7FH
which are interpreted as backspace requests by the logical console
input routines.

A unit number may be prefixed to the'filename by typing the unit number
followed by a colon (:) followed by the filename. This indicates the
disk drive unit on which the file is to be found. If no unit is specified,
unit ~ is assumed. The digit of the unit specification and the colon
are not included in the 10 character length restriction for ASCII para
meters. For example, DATAFILE0l and 1:DATAFILE0l are both valid file
names.

If the file name is to be an implicit command in an executive statement
there are additional restrictions that apply. The file name may not
start with a blank. It may have no imbeded blanks and it may not exist
in the MOOS explicit command table.

4-l3

Rev. 7 3/78

Files that are to be shared with BASIC must have valid BASIC file names.
BASIC file names can be up to 10 characters long and use the ASCII
characters from 20 hex through SA hex except the colon (3A hex). This
should be kept in mind when creating file names for MOOS. The BASIC
file names are a subset of the MOOS file names and some incompatibility
can occur if care is not used.

4.2.3 FILE PROTECTION AND TYPE DEFINITION

MOOS provides two forms of file protection. A file can be write protected
or a file can be delete protected. MOOS also allows files to be classified
as to unique information content by assigning a type designation. A files'
access codes and type designation are combined in one byte of the files'
directory entry. The first two least significant bits of the file type
byte are bit encoded and specify file access restrictions. The access
codes are as follows:

BIT
1 0

o 0 A normal read/write file
o 1 A normal read only file
1 0 A permanent read/write file
1 1 A permanent read only file

A normal file can be read, written, and deleted from the diskette by
using the SCRATCH command (Section 4.1.2.5). A read only file can be
read or SCRATCHed but .i.t cannot be written into. A permanent file can
be read or written but it cannot be SCRATCHed. A permanent read only
file can be read but it cannot be written into or SCRATCHed. Attempts
to SCRATCH a permanent file will result in the message PERM FILE.
Attempts to write into a read only file will result in the message READ
ONLY FILE. The TYPE command may be used to change the access codes of a
file if necessary. .

Note that these access code safeguards are software features that will
only protect a file as long as the operating system has not been damaged.
Diskettes may be physically write protected by placing a write protect
tab over the slot in the upper right hand edge of the diskette. This
causes the write electronics in Micropolis disk subsystems to be disabled
when that diskette is loaded in a disk drive.

The most significant six bits of the file type byte specify the type of file.
This allows 64 different classifications of files each having four access
codes.

The codes 0 through 7F hex are reserved for present and future system usage
and should not be assigned other meanings by the user. The codes from 80
to FF hex are available to the user and are not used by the system.

Rev. 8 9/78 4-14

The executive, the assembler, and the editor check file types when called
upon to load, save, or resave a file. If the file type is not correct
the function will not take place. A table of file types follows:

TYPE CODE
IN HEX -----

00-03
04-07
08-0B
0C-0F
10-13
14-17
18-1B
lC-7F
80-FF

DESCRIPTION

MOOS & BASIC DATA FILES
EDITOR/ASSEMBLER SOURCE FILES
ASSEMBLER OBJECT & BASIC 'SAVE MEMORY' FILES
EXECUTABLE OVERLAY FILES
BASIC PROGRAM FILES
EXECUTABLE SYSTEr4 FILES
EXECUTABLE USER FILES
RESERVED FOR FUTURE EXPANSION
AVAILABLE FOR USER DEFINITION

The line editor produces type 4 files. It can load type 4,5,6, and 7 files.
The assembler will only assemble type 4,5,6, and 7 files. It produces
type 8 fil es.

Executable system files and user files may be loaded with the load command.
Any attempt to load a file below the application program area will result
in a LOAD ADDRESS ERROR. Executable overlay files may be loaded below the
application program area by typing the file name as an implicit executive
command. Any attempt to implicitly load a file that is not an overlay file
will result in the message WRONG FILE TYPE.

It is not possible to load an overlay file without beginning its execution.
However, the entry point of the overlay could contain a jump to the MOOS
warmstart address. This would return control to MOOS immediately after
the overlay file was loaded, provided that the file did not overlay any
functi ona 1 r~oos code. I

4.2.4 FILE AND RECORD STRUCTURE

An MOOS file consists of a group of related records stored on a diskette.
The group is given a filename and type designation as described above.
These are stored in the fi1e directory on track 0 of the diskette.

Each record of an MOOS file begins with a two byte memory address followed
by a two byte length indicator. The remainder of the record consists of
o to 256 data bytes. The memory address tells MOOS where in memory to 10ad
the data from that record. The length indicator tells MOOS how many valid
data bytes are in the record. A record needs a minimum block of 4 bytes
and a maximum block of 260 bytes to be properly stored.

The records of a MOOS file are stored on the sectors of a diskette. one
for one. Micropolis disk subsystems write a physical sector that is 268
bytes long. The first 8 bytes of the sector are used for control purposes
strictly by the operating system. The remaining 260 bytes are available
for a record. Short records, including 0 length (empty) records are
possible. If a particular record has less than 256 data bytes the remainder
of the sector is not used. However, the record may be expanded at any
time by rewriting the sector to make use of the unused bytes ..

4-15

Rev. 8 9/78

The object program file that corresponds to the following assembly
language program serves to illustrate the MOOS file and record structure.

ADDR B1 B2 B3 E LINE# LABEL OPCODE OPERAND

0000 1000 START ORG 40~0H
4000 21 00 70 2000 LXI H,7000H
4003 3000 DATA OS 10H
4013 00 4000 BYTE DB " 4014 5000 DATAl DS 10H
4024 01 6000 BYTEl DB 1
4025 C3 25 40 7000 BEGIN JMP $
4028 8000 END BEGIN

The first record of the object file has 4000 hex in the memory address
bytes in Intel low/high format. The record length bytes contain 0003.
indicating that the record has only three bytes of data. The three data
bytes are 21 00 70. This record is written on the disk as one sector.
The second record of the object file has a memory address of 4013 and a
length of 0001, one byte of data 00. This record is also stored on the
disk as one sector. The third record has a memory address of 4024 and a
length of 0004, four bytes of data 01 C3 25 40. This record is stored
on the disk as one sector. A fourth record is written that has a memory
address 4025 and a length of 0000. This empty record marks the end of
the object file and its memory address holds the execution address
specified in the END statement.

The structure of this object file is standard for all MOOS executable
or memory load files. The file is allocated one entire track on the disk.
It contains eight data bytes spread across 3 sectors. The 4th and last
sector contains no data. Its memory address field holds the file
execution address. Given an executable file type, the records of this file
could be loaded into memory at 4000, 4013 and 4024 by typing its name to
the executive. Direct processor control would transfer to 4025 to begin
program execution. This type of file is called a scatter loadable file·
because it can be loaded non-contiguously into main memory.

Note: The number of records in each MOOS file is included in the directory
entry for that file. This determines the end of file for data files.
Data files do not require a zero length record to mark their end because
there is no execution address for a data file. The special zero length
record is used with files that load into a range of memory and may require
an associated execution address. For these files the zero length record
is included in the record count in the files' directory entry.

4.2.5 FILE ACCESS METHODS

MOOS contains shared subroutines that allow user application programs to
access diskette files sequentially by byte or record and directly (randomly)
by record and byte within record.

A file may be written sequentially by writing a byte at a time and
incrementing the index position. The system buffers the bytes written

Rev. 8 9/78 4-16

until a full 256 byte record ;s constructed and then writes it to the
next sector in the file. The file space is automatically extended as
necessary. A file may also be written sequentially by repeatedly writing
blocks of data up to 256 bytes in length as one record and then incrementing
the record position to the next record. A file written in this manner
may have records of varying length up to 256 bytes.

A file may be read sequentially by reading a byte at a time and incrementing
the index position until the end of file is reached. ' If the file contains
any short records the unused bytes at the end of the sectors of those records
will be automatically skiped by this byte sequential access., A file may
also be read sequentially a record at a time by starting at the first record,
reading the record length and then reading that number of bytes as a block,
incrementing the record position to the next record, and repeating the
process until the end of file is reached.

A specific record in a file may be accessed by setting the index position
directly to the start of that record. The record may then be read or written
either a byte at a time or as a block of bytes. A specific byte in a
directly accessed record may be r~ad or written by first setting the index
position directly to that byte in the record. These techniques facilitate
the spot updating of a file.

4.2.6 COMPATIBILITY BETWEEN MOOS AND BASIC FILES

BASIC file names are a subset of t·100S file names. Therefore all BASIC files
can be handled by the MOOS file name parsing logic, but not all MOOS file
name can be handled by BASIC. Refer to the Section 4.2.2 on FILE NAMES for
a complete discussion.

BASIC data files contain records of from zero to 250 bytes of data. The
file and record structure ;s the same as that used by MOOS as discussed
in Section 4.2.4. The two bytes at the start of the record which hold ,the
length of the record can never be greater than 250 if the file is to be
used by a BASIC program as a data file. BASIC will output an error message
to the console stream and stop the program if the record length is greater
than 250. MOOS can create BASIC readable files as follows:

1000 * GET DATA TO BE WRITTEN INTO A BASIC COMPATABLE FILE
2000 MVI B,250
3000 GET CALL GET OAT E
3500 JC EXIT ;CLOSE FILE & EXIT
4000 CALL @WTINXPOSI
5000 OCR B
6000 JNZ GET
7~00 CALL @INCRECPOS
8000 JMP GET

This partial program illustrates a method for writing 250 byte records:
For these records to be meaningfull to BASIC, the data must be seven bit
ASCII with the proper BASIC string delimiters (refer to the STRING statement
in the chapter on BASIC). The subroutine GETOATE is the users data acquisi
tion routine which returns the carry flag set when the process is done.
@WTINXPOSI and @INCRECPOS are MOOS subroutines which are documented in Section
4.3.3. The method shown corresponds to the process for writing a file
sequentially by record as described in Section 4.2.5.

4-17

Rev. 8 9/78

4.3 MOOS SHARED SUBROUTINES

MOOS provides the applications development programmer with many useful
subroutines that can be accessed directly from an applications program.
These subroutines provide for console and printer character I/O. buffered
line I/O, text line parameter parsing. sequential and random file access,
file management. physical diskette access, and 16 bit integer arithmetic
There are also a number of processor oriented utility subroutines.

When you write an assembly language program, these subroutines can be
referenced by name. e.g. CALL @HLAOOA. The PDS MASTER diskette contains
two files named SYSQ1 and SYSQ2. These are editor compatible source
files that contain the names of all of the MOOS shared subroutines
equated to their entry addresses. Application programs that reference
these routines by name should include the SYSQl and SYSQ2 files in their
assembly by using the assembler LINK pseudo-op, described in detail in
Section 4.5.

The following sections specify what arguments each subroutines expects,
what arguments each subroutine returns, and how it functions.

4.3.1 CONSOLE AND PRINTER INPUT/OUTPUT SUBROUTINES

Micropo1is Program Development Software packages perform input and output
through the following subroutines. These routines link the system with
the device handlers described in Chapter II under configuring for
supported devices.

The device handler routines start with a vector table whose address is
@CIOTABLE for the console, and @LIOTABLE for the printer. The routines
in this section enter the drivers by indirectly accessing these tables
using @CONSOLEADDR. and @LISTADOR which are buffers that hold pointers
to the actual location of @CIOTABLE and @LIOTABLE. By changing the two
bytes at locations @CONSOLEAOOR or @LISTAODR the user can have spec;a1
purpose drivers in memory at the same time as the standard drivers.

4.3.1.1 @CIN - CONSOLE INPUT

The @CIN routine waits for input from the system console. It strips
parity and changes ASCII codes SF (backarrow) and 7F (rubout) into 08
(backspace). It returns the input character (7 bit ASCII) in the B
register, with the carry flag clear (NC). It preserves the HL, DE,
and C registers.

4.3.1.2 @COUT - CONSOLE OUTPUT

The @COUT routines waits until the console stream is ready and then outputs
a character. It changes carriage returns into a carriage return followed
by the number of nulls associated with the device attached to the console
stream. It changes ASCII code 08 hex (backspace) into a SF (backarrow).
If the wrap logic for the device assigned to the console stream is enabled
a line feed ana a carriage return nulls sequence will be output when the

Rev. 8 9/78 4-18

number of characters on the line equals the width. Refer to the ASSIGN
command in the MOOS executive. It expects the character (7 bit ASCII)
in the B register. It returns the carry flag set (C) if a printer
attention condition occurs. and sets the assignment to ASSIGN 1 1. and
ASSIGN 2 2. Refer to the ASSIGN command in the MOOS executive. It
preserves the HL, DE. and BC registers.

4.3.1.3 @CBRK - CONSOLE CHECK BREAK

The @CBRK routine checks the console device for the input of a cancel
(control C), or a 'pause (control S). It returns the zero flag set (Z)
and the CANCELED message code in the A register if a CONTROL C (03) is
input. It preserves the HL. DE, and C registers. On pause (control S)
the routine loops, waiting for another character to be input. Entry of
any character other than control S will terminate the pause and return
to the call er.

4.3.1.4 @CDIN - CONSOLE DEVICE INPUT

The @COIN routine waits for input from the console device. It returns the
character (8 bits including parity) in the B register, with the carry flag
clear (NC). It preserves the DE, HL, and C registers.

4.3.1.5 @CDOUT - CONSOLE DEVICE OUTPUT

The @CDOUT routine'waits until the console device is ready to receive a
byte and then outputs it. It expects the byte for output in the B register.
It preserves the DE, HL. and BC registers. It returns the carry flag c1 ear
(Ne). '

4.3.1.6 @CDBRK - CONSOLE DEVICE BREAK CHECK

The @CDBRK routine checks the console input ready status. If an input,
is ready it gets the input. Otherwise it returns immediate1~. It ret~rns
the zero flag set (Z) and the input character (8 bits inc1uaing parity)
in the B register if there was an input. It preserves the DE, HL, and C
registers. If there was no input the @CDBRK routine returns the zero flag
clear (NZ), and the B register is unchanged.

4.3.1.7 @CDINIT - CONSOLE DEVICE INITIALIZATION

The @CDINIT routine initializes the console interface device. it preserves
the HL. DE, and BC registers. It returns the carry flag clear (NC).

4.3.1.8 @LOUT - LIST OUTPUT

The @LOUT routine waits until the list stream ;s ready to receive and
then outputs a character. It changes carriage returns into a carriage
return followed by the number of nulls associated with the device attached
to the list stream. It changes ASCII code 08 hex (backspace) into a SF
(backarrow). If the wrap logic for the device assigned to the list stream
is enabled a 1; ne feed and a ca rri age return null s seGuence wi,11 . be. output

4-19

Rev. 8 9/78

when the number of characters on the line equals the width. Refer to
the ASSIGN command in the MOOS executive. It expects the character
(7 bit ASCII) in the B register. It returns the carry flag set (e) if
a printer attention condition occurs, and sets the assignment to ASSIGN
1 1, and ASSIGN 2 2. Refer to the ASSIGN command in the MOOS executive.
It preserves the HL, DE. and Be registers.

4.3.1.9 @LATN - LIST ATTENTION

The @LATN routine checks the list stream for a printer attention condition.
It returns the carry flag set (C) if a printer attention condition occurs,
and sets the assignment to ASSIGN 1 1, and ASSIGN 2 2. Refer to the ASSIGN
command in the MOOS executive. It preserves the HL. DE, and BC registers.

4.3.1. 10 @LDOlJL::...LIST DEVICE OUTPUT

The @LDOUT routine waits until the list device is ready to receive a byte
and then outputs it. It expects the byte for output in the B register.
It preserves the DE, HL, and Be registers. It returns the carry flag
set (C) if a printer attention occurs.

4.3.1.11 @LDATN - LIST DEVICE ATTENTION

The @LDATN routine checks the list device for a printer attention condition.
It returns the carry flag set (C) if a printer attention condition occurs.
It preserves the HL, DE, and BC registers.

4.3.1.12 @LDINIT - LIST DEVICE INITIALIZATION

The"@LDINIT routine initializes the list device. It preserves the HL, DE.
and Be registers. It returns the carry flag clear (NC).

4.3.1.13 @CCRLF - CONSOLE LINE FEED CARRIAGE RETURH

The @CeRLF routine outputs a line feed carriage return and nulls to the
console stream. It returns the carry flag set (e) if a printer attention
condition occurs, and changes the assignment to ASSIGN 1 1, and ASSIGN 2 2.
Refer to the ASSIGN command in the MOOS executive. It preserves the HL,
DE. and BC registers.

4.3.1.14 @LCRLF - LIST LINE FEED CARRIAr,E RETURN

The @LeRLF routine outputs aline feed carriage return and nulls to the
list output stream. It returns the carry flag set (C) if a printer attention
condition occurs, and changes the assignment to ASSIGN 1 1, and ASSIGN 2 2.
Refer to the ASSIGN command in the MOOS executive. It preserves the HL,
DE, and BC registers.

4.3.1.15 @ASSIGN - ASSIGN

The @ASSIGN routine assigns the physical device to specified logical stream(s)
and sets the width and nul1count associated with the device. It expects the
physical device number in the E register, the logical stream mask in the D

Rev. 7 3/78 4-20

register, the width in the C register, the nullcount (nulls+l) in the B
register, and the number of parameters passed in the H register. No
registers are preserved. (Refer to the ASSIGN command in the executive for
a detailed discussion of physical device assignment to logical output
streams).

4.3.1.16 @CILINE - CONSOLE INPUT LINE

The @CILINE routine outputs a specified prompt message to the console
and then buffers up to 132 characters of input text from the console
device. It provides the standard backspace (rubout) and line cancel
(CNTL/X) controls during the line entry process. The text line input is
terminated by a carriage return. (Note: The carriage return is not echoed
to the console). It expects the address of a string of text to be output
as a prompt in the HL registers. The message pointed to must be properly
terminated with a byte code of 0 through IF hex or the high order eight
bit of the last byte set. It returns the input line ;n @INBUFF. and the
number of input characters including the terminating carriage return in the
B register. It preserves the HL. DE. and C registers. Any control char
acters input during the line entry process are echoed to the console str.eam
but not entered into @INBUFF.
4.3.1.17 @HEXOUT - HEXAOECI~~L OUTPUT

The @HEXOUT routine converts an unsigned 8 bit binary value in the A
register to a hex number and outputs the number to the console. It returns
the carry flag set (C) if a printer attention condition occurs, and changes
the assignment to ASSIGN 1 1, and ASSIGN 2 2. Refer to the ASSIGN command
in the MOOS executive; It preserves the HL, DE, and C registers.

4.3.1.18 @HEXADOOUT - HEXADECI~mL ADDRESS OUTPUT

The @HEXADOOUT routine converts an unsigned 16 bit binary value in the
HL registers to a hex number and outputs the number to the console followed
by one space character. It returns the carry flag set (C) if a printer
attention condition occurs, and changes the assignment to ASSIGN 1 1, and
ASSIGN 2 2. Refer to the ASSIGN command in the MOOS executive. It preserves
the HL, DE. and C registers.

4.3.1.19 @HEXOUTSPC - HEXADECIMAL OUTPUT WITH SPACE

The @HEXOUTSPC routine converts an unsigned 8 bit binary value in the
Hl registers to a hex number and outputs the number to the console
followed by one space character. It returns the carry flag set (C) if
a printer attention condition occurs, and changes the assignment to
ASSIGN 1 1, and ASSIGN 2 2. Refer to the ASSIGN command in the MOOS
executive. It preserves the HL. DE, and C registers.

4.3.1.20 @SPACEOUT - SPACE OUTPUT

The @SPACEOUT routine outputs a space (20 hex) to the console stream.
It returns the carry flag set (C) if a printer attention condition occurs,
and changes the assignment to ASSIGN 11, and ASSIGN 2 2. Refer to the
ASSIGN command in the MOOS executive. It preserves the HL. DE. and
C registers.

4-21

Rev. 8 9/78

4.3. 1.21 @NLINEOUT - NEW LINE OUTPUT

The @NLINEOUT routine outputs a carriage return line feed and a line of
text to the console stream. It expects the address of the beginning of the
text line in the HL registers. The message pointed to must be properly
terminated with a byte code in the range g through IF hex or the high
order eighth bit of the last byte set. It returns the carry flag
clear (NC) in all cases. It preserves the HL, DE, and C registers.

4.3.1.22 @LINEOUT - LINE OUTPUT

The @LINEOUT routine outputs a line of text to the console stream. It
expects the address of the beginning of the text line in the HL registers.
The message pointed to must be properly terminated with a byte code in
the range g through IF hex or the high order ei~hth bit of the last byte
set. It returns the carry flag clear (NC) in all cases. It preserves
the HL, DE, and C registers.

4.3.2 TEXT LINE PARSING SUBROUTINES

The following routines are used by the system to parse input command lines
for the MOOS executive. After the command has been entered into the input
buffer using @CILINE. the @SCAN routine is used to locate the first space
after the command, and @SKIPSPACE skips to the first non-space character.
Then the @PARAM routine separates the command parameters into buffers according
to their type. @PARAM makes use of @SCAN, @SKIPSPACE, and @AHEXTBIN to do
its job. After the parameter types have been separated, the address of the
beginning of the input buffer is placed into @MASKADDR and the @SEAR rout~ne
searches the MOOS command table for a match. If the command is valid, the
@SEAR routine returns with the zero flag clear and @LHLI will get the function
from the table, which in this case is an address. Control is passed to the
command routine with a PCHL instruction. The command routine can retrieve
the parameters from the appropriate buffers with LHLD instructions.

The user can use these routines to parse applications program input lines
using similar logic.

4.3.2.1 @PARAM - PARAMETER

The @PARAM routine parses a text line. It separates parameters into ASCII,
numeric and unit numbers. It counts the number of occurrences of each
parameter type and places the count and each parameter in a separate buffer.

It expects the start address of the text to be parsed in the HL registers.

It returns ASCII parameters in @ASCBUFF0 through @ASCBUFF3.

It returns unit numbers in @DRIVEN0 through @DRIVEN3.

Rev. 8 9/78 4-22

It returns binary (numeric) parameters in @BBUFF0 through @BBUFF3.

It returns the number of ASCII parameters in @NASCPAR.

It returns the number of unit number parameters in @NDRVPAR.

It returns the number of binary parameters in @NBINPAR.

It returns the carry flag clear (NC) and the end of line address in the
HL registers if there were no errors.

It preserves the DE and BC registers.

If a parameter is in error the carry flag is set (C), the SYNTAX ERROR
code is in the A register, and the location where the error occurred is
returned in the HL registers.

4.3.2.2 @SKIPSPACE - SKIP SPACES

The @SKIPSPACE routine skips spaces in a text line.

It expects the text line's start address in the HL register.

It returns the address in the HL registers of the first non-space character.

If the character is a control character the carry flag is set (C).

It preserves the DE and BC registers.

4.3.2.3 @SCA~ - SCAN

The @SCAN routine scans a text line for the first occurrence of a specified
character.

It expects the text line's starting address in the HL registers and the
mask character in the C register.

It returns the address in the HL register where the match occurred and
the number of characters passed over in the B register.

The carry flag is set (C) if the mask character was not found prior to
a control character.

It preserves the DE and C re9isters.

4.3.2.4 @SEAR - SEARCH

The @SEAR routine searches a table of argument-function pairs and returns
the address of the function associated with the argument. The last character
of the argument has the most significant bit set high. For example, an
ASCII A is 41 hex. If the most Significant bit ;s set high it is a C1 hex.

4-23

Rev. 7 3/78

The argument is immediately followed by its function. The arguments can be
variable length but the functions must all be the same length. The end of
the table is marked by a 0 following the last function.
It expects the table's start address in the HL register and the argument
masks' starting address in @MASKADDR. The argument mask string must be
terminated by a space or control character. It expects the A register to
contain the size (number of bytes) of the functions in the table.

It returns the zero flag clear (NZ) and the address of the start of the
argument's function in the HL register.

The zero flag is set (Z) if the argument was not in the table.
case the HL registers contain the end of table address. ie. the
the 0 after the last function.
It preserves the DE and BC registers.

4.3.2.5 @AHEXTBIN - ASCII HEX TO BINARY

In this
address of

The @AHEXTBIN routine converts a text string of unsigned hexadecimal digits
represented in ASCII code into a binary number. The string can be one to
four digits in length. It must end with a space or control character.

It expects the string's start address in the DE registers.

It returns a 16 bit binary number in the HL registers.

It returns the number of digits in the number in the B register.

It returns the DE registers pointing to the space or control character
that ends the text string.

It preserves the C register.

If the number is greater than four digits long or not a hex value. the
routine returns the carry flag clear (NC) and the illegal character's
address in the DE registers.

4.3.3 THE FILE ACCESS ROUTINES

The file access subroutines implement the MOOS file access methods described
in Section 4.2.5. They allow an open disk file to be accessed sequentially
by byte 'or record and directly (randomly) by record and byte within record.

Before a file can be accessed it must be opened. To open a named file on
a specified disk unit the file must be assigned a logical file number
and a filebuffer. MOOS supports simultaneously open files numbered from
o through 7. It makes available two resident filebuffers. Additional
filebuffers must be allocated in the memory space of the application
program. Each filebuffer requires 288 bytes of memory.

Rev. 7 3/78 4-24

When a file is opened the first record of the file is read into its
filebuffer. The record in the file buffer of a file at any given time
is called the current record of that file. Associated with the current
record of each open file is an update flag. Any access that modifies
the content of the current record will cause the update flag to be set.
If the update flag ;s set, any access that leads to the current record
being replaced by a new record will first cause the current record with
the modified content to be rewritten in place (updated) to the disk
file. If the update flag is not set, no update takes place before a new
record is read. Invoking a new record resets the update flag.

The current record of each open file has a record length which is written
with the record as described in Section 4.2.4. Its value may vary from
o to 256. A 0 length record indicates an empty record that still occupies
one physical sector on the diskette. A 256 byte record is a full record
that cannot be extended.

The index position of the current record is a logical pointer that marks
the next byte in the record to be accessed. The value of the index position
ranges from 0 to 255. However, the index position may never be greater than
the length in a particular record. An index position of ~ indicates that
the next byte to be accessed is the first byte in a record. An index
position of 255 indicates that the next byte to be accessed is the last
byte in a full record.

If the index position in the current record is less than the current record
length, then it pOints to a valid byte position within the record. That
byte may be read or rewritten. If the index position is equal to the current
record length. then it points to the end of record (EOR) position which is
the first non valid byte position in a non full record. The EOR position
may be written but it may not be read.

Reading from the end of record position updates the current record to disk
as necessary and the next record in the file becomes the current record.
The index position is set to ~ and the data is read from this position.
This allows files containing a mixture of non full records to be read
sequentially by byte.

If the end of record position is written to, the length of the current
record is increased by one and the position just written becomes a valid
byte position. This allows data to be added to the end of a record extending
it up to its maximum length of 256 bytes. Note. however. that incrementing
the index position when it already has a value of 255 updates the current
record to disk as necessary and the next record of the file becomes the
current record. The index position will be set to ~.

A new file may be written sequentially by byte by repeatedly writing to
the index position and incrementing the index position. This will produce
a file of full records with the possible exception of the last record. The
system automatically extends the amount of disk space allocated to a file
when enough new records are written to require another track.

4-25

Rev. 7 3/78

The current record of each open file also has a record position number
associated with it. The record position number specifies which record
the current record is in the file. The record position number may be
set or incremented. Setting the record position updates the current
record to disk as necessary and the specified record from the file is
read and becomes the current record. This provides a mechanism for
direct (random) access to any record in a file. Incrementing the record
position number updates the current record to disk as necessary and the
next record in the file ;s read and becomes the current record. This
function can be used to sequentially write a file of short/mixed length
records.

When processing of a file is complete, the file must be closed. Closing
a file updates the current record to disk as necessary and frees the
logical file number and the filebuffer for subsequent reallocation.

4.3.3.1 @CREATE - CREATE

The @CREATE routine creates a file of a specified type on a specified
disk unit. The created file has one track allocated to it and one empty
(~ length) record written to it. It is left open and ready for access
with the index position set to ~ and the empty record as the current
record.

It expects the file number in the B register and the disk unit number in the
C register and the filename in @ASCIIBUFF.

It expects the file type in the D register and the start address of the
file buffer in the HL registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

It preserves the HL,. DE, and BC registers.

4.3.3.2 @GFILESTAT - GET FILE STATUS

The @GFILESTAT routine checks the open/closed status of a file.

It expects the file number in the B register.

If the file is closed it returns with the zero flag set (Z) and the
"FILE NOT OPEW message code in the A register.

It preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

Rev. 8 9/78 4-26

4.3.3.3 @DIRSEAReH - DIRECTORY SEARCH

The @DIRSEAReH routine reads the directory of a specified disk unit to
determine if a specified file exists.

It expects the unit number in the C register and the file name in
@ASeI I BUFF.

It returns the zero flag clear (NZ) and the "FILE NOT FOUND" message
code in the A register if the file ;s not in the directory.

It preserves the HL. DE. and Be registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.4 @OPENFILE - OPEN A FILE

The @OPENFILE routine opens a file for processing. It assigns a specified
logical file number and filebuffer to the file.

It expects the file name in @ASeIIBUFF. the file number in the B register.
and the drive number in the C register.

It expects the address of the file buffer in the HL registers.

It preserves the Hl.OE". and Be registers.

If the routine detects an error it returns the carry flag set (e) and
the error message code in the A register.

4.3.3.5 @CLOSEFILE - CLOSE A FILE

The @CLOSEFILE routine updates the current record to disk as necessary
and frees the logical file number and the filebuffer for subsequent
reallocation.

It expects the file number in the B register.

It preserves the Hl, DE. and Be registers.

If the routine detects an error it returns the carry flag set (e) and
the error message code in the A register.

4.3.3.6 @RFILEINF - READ FILE INFORMATION

The @RFILEINF routine gets the disk unit number. the number of records
in the file. the file type. and the record position number of the
current record.

It expects the file number in the B register.

4-27

Rev. 7 3/78

It returns the file type in the B register and the disk unit number in
the C register.

It returns the number of records in the file in the DE registers.

It returns the record position number of the current record in the HL
registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.7 @SINXTRS - SET INDEX POSITION TO RECORD START

The @SINXTRS routine updates the current record to disk as necessary
and reads a specifiej record which becomes the current record. The
index position is set to 0.

It expects the file number in the B register and the record number in
the HL registers.

It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.8 @RRECORDLEN - READ RECORD LENGTH

The @RRECOROLEN routine gets the length of the current record in a file.

It expects the file number in the B register.

It returns the length of the record in the HL registers.

It preserves the DE and Be registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.9 @RINXPOS - READ INDEX POSITION

The @RINXPOS routine gets the index position of the current record of a
file.

It expects the file number in the B register.

It returns the index position in the C register.

It preserves the HL, DE. 8 registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

Rev. 7 3/78 4-28

4.3.3.10 @SINXPOS - SET INDEX POSITION

The @SINXPOS routine sets the index position within the current record
in a file.

It expects the file number in the B register and the index position in
the C register.

It preserves the HL. DE, Be regtsters.

If the routine detects an error it returns the carry flag set (e) and
the error message code in the A register.

4.3.3.11 @INCINX - INCREMENT INDEX POSITION

The @INCINX routine increments the index position in the current record
of a file. If the increment would result in a value greater than the
current record length, then the current record is updated to disk as
necessary and the next record of the file becomes the current record
and the index position is set to 0.

It expects the file number in the B register.

It returns the zero flag set (Z) if the index position is in the same
record.

It returns the zero flag clear (NZ) if the index position is in a new
record.

It preserves the HL. DE, Be registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.12 @RFINXPOS - READ FROM INDEX POSITION

The @RFINXPOS routine reads the data byte pOinted to by the index position
in-the current record of a file. If the index position is at the EOR
position the current record ;s updated to disk as necessary and the next
record of the file becomes the current record. The index position is
set to 0 and the data is read from this position.

It expects the file number in the B register.

It returns the data in the C register.

It returns the zero flag set eZ) if the data is from the same record.

It returns the zero flag clear (NZ) if the data is from a new record,

It preserves the HL, DE, B registers.

If the routine detects an error it returns the carry flag set eel and
the error message code in the A register.

4-29

Rev. 7 3178

4.3.3.13 @RFINXPOSI - READ FROM INDEX POSITION AND INCREMENT INDEX

The @RFINXPOSI reads the data byte pointed to by the index position in
the current record of a file and then increments the index position. If
the original index position is at the EOR position, the current record
is updated to disk as necessary and the next record of the file becomes
the current record. The index position is set to ~ and the data is read
from that position. Then the increment takes place. If the increment

'would result in a value greater than the current record length, the
current record is updated to disk as necessary and the next record from
the file becomes the current record. The index position is set to ~ in
that case.

It expects the file number in B.

It returns the data in the C register.

It returns the zero flag set (Z) if the data is from the same record.

It returns the zero flag clear (NZ) if the data is from a new record.

It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.14 @WTINXPOS ~-WRITE TO INDEX POSITION

The @WTINXPOS routine writes to the index position in the current record
of a file. If the index position is the EOR position the record length is
extended by one.

It expects the data in the C register, and the filenumber in the B .
register.

It preserves the HL, DE, BC registers

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

It returns the zero flag set (Z) if the data is from the
same record.

It returns the zero flag clear (NZ) if the data is from a
new record.

4.3.3.15 @WTINXPOSI - WRITE TO INDEX POSITION AND INCREMENT INDEX

The @WTINXPOSI routine writes to the index position in the current record
and then increments the index position. If the index position is the
EaR position the current record length is extended by one. If the incre
ment would result in an index greater than 255, then the current record

Rev. 8.1 2/5/79

is updated to disk as necessary and the next recorq in the file. becomes
the current record. The index position is set to p in this case.

It expects the data in the C register, and the filenumber in the B register.

It pre~erves the HL. DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

It returns the zero flag set (Z) if the data ;s from the same record.

It returns the zero flag clear (NZ) if the data is from a new record.

4.3.3.16 @LOADOATA - LOAD DATA

The @LOADDATA routine loads a block of data into memory starting from.
the index position in the current record and continuing from a specified
number of bytes. It advances the index position like a repeated sequence of

reads and increments.

It expects the file number in the B register.

It expects the start address of the memory block in the HL registers.

It expects the block size,in the DE registers.

It returns the zero flag set (Z) if the last byte read is from the
same record as the first byte.

It returns the zero flag clear (NZ) if the last byte read is from a new
record.

It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

After a call to @LOADDATA the buffer @MEMORYPNTR contains the address
of the memory byte immediately after the last memory byte loaded.
For example, if 5 bytes are loaded into 4~00H through 4004H, then
@MEMORYPNTR contains the address 4005H in standard low-high format. This
is useful in cases where the number of bytes loaded is less than the number
of bytes requested because an end of file is encountered during the @LOADDATA.

4.3.3.17 @SAVEDATA - SAVE DATA

The @SAVEDATA routine writes a block of memory to a file starting at
the index position of the current record and continuing for a specified
number of bytes. It advances the index position like a repeated
sequence of writes and increments.

It expects the file number in the B register.

Rev. 8.1 2/5/79 4-31

It expects the start address of the memory block in the HL registers.

It expects the number of bytes in the memory block in the DE registers.

It preserves the HL, DE, Be registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

It returns the zero flag set (Z) if the last byte read is from the same
record as the first byte.

It returns the zero flag clear (NZ) if the last byte read is from a new
record.

After a call to @SAVEDATA the buffer @MEMORYPNTR contains the address of the
memory byte immediately after the last memory byte saved. For example, if 5
bytes are saved from 4000H to 4004H then @MEMORYPNTR contains 4VV5H in
standard low-high fo·rmat. This is useful in cases where a DISK FULL
condition causes less bytes to saved than are requested in the cal' to
@SAVEDATA.

4.3.3.18 @DFINXPOSTEOR - DELETE FROM INDEX POSITION TO END OF RECORD

The @DFINXPOSTEOR routine deletes from the index position to the end of
the current record by making the record length equal to the value of
the index position.

It expects the file number in the B register.

It preserves the HL, DE, BC'registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

Rev. 8.1 2/5/79 4-31A

4.3.3.19 @DFINXPOS - DELETE FROM INDEX POSITION TO END OF FILE

The @DFINXPOS routine deletes from the index position to the end of the
file by making the number of records in the file equal to the record
position number of the current record and the current record length
equal to the value of the index position. Any tracks no longer required
by the file due to the deletion are freed for subsequent reallocation
to other files.

It expects the file number in the B register.

It preserves the HL. DE. Be registers.

If the routine detects an error it returns the carry flag set (e) and
the error message code in the A register.

4.3.3.20 @INCREepOS - INCREMENT RECORD POSITION

The @INCRECPOS routine updates the current record to disk as necessary.
reads in the next record which becomes the current record and sets the
index position to 0. If the current record is the last record in the
file, the file is automatically extended by one record.

It expects the file number in the B register.

It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.4 FILE MANAGEMENT SUBROUTINES

In addition to accessing named files on the disK it becomes necessary
on occasion to perform housekeeping functions such as removing old files,
changing file types and names, and determining the amount of space left
on a disk for additional files. These functions are available as executive
commands, and are also provided as subroutines that may be used directly
by applications programs.

4.3.4.1 @FREE - FREE

The @FREE routine returns the number of tracks left on a diskette that
are free and available for allocation to a file.

It expects the unit number in the C register.

It returns the number of free tracks in the HL registers.

If the routine detects an error it returns the carry flag set (e} and
the error message code in the A register.

4.3.4.2 @RENAME - RENAME

The @RENAME routine renames a file on a diskette.

4-32

Rev. 7 3/78

It expects the file number in the B register.

It expects the new name in @ASCIIBUFF.

It preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.4.3 @TYPE - FILE TYPE

The @TYPE routine changes the type (attributes} of a file. See Section
4.2.3 for type definitions.

It expects the file number in the B register.

It expects the new file type in the C register.

It preserves the HL. DE, and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.4.4 @SCRATCH - SCRATCH A FILE

The @SCRATCH routine deletes a specified file from a specified disk unit .
..

It expects the unit number in the C register.

It expects the file name in @ASCIIBUFF.

It preserves the HL, DE. and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.5 PHYSICAL DISK ACCESS ROUTINES

The physical disk access subroutines are the most primitive level of
access provided within the MOOS context. They allow a diskette to be
treated as a collection of logical blocks independent of the MOOS file
system and provide access to a specified logical block on a specified
track o.f a diskette.

Micropolis MOD I disk subsystems write 35 tracks on one side of a diskette.
The MOD II subsystems write 77 tracks on one side of a diskette. A track
in either subsystem is divided into 16 sectors each of which contains 268
bytes. Tracks numbered ~ through 34 or 76 are written concentrically
inward toward the center of the diskette. The physical sectors on a track
are numbered from 0 through 15.

4-33

Rev. 7 3/78

Diskettes initialized by and formatted for use with MOOS have the track
number written in the first byte and the physical sector number written
in the second byte of each sector of a track. These bytes are maintained
exclusively by the operating system.

The remaining 266 bytes of a sector are accessible as a logical block
by the MOOS physical disk access routines. In order to enhance access
time to multiple blocks. MOOS maps logically sequential blocks onto the
physical sectors of a track in a staggered pattern as shown.

LOGICAL BLOCKS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
PHYSICAL SECTORS 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15

The physical disk access routines automatically access the correct
physical sector that corresponds to the logical block that ;s specified.
If it is necessary to access the sectors of a track in true physically
sequential order, the application program must use the table above to
unmap the sectors. For example. to access sector 0 followed by sector 1
the program would have to specify logical block 1 followed by logical
block 9.

Note that the record structure of MOOS files as detailed in Section
4.2.4 must be preserved if the physical disk access routines are used
to operate on such records.

4.3.5.1 @GETASEC - GET A SECTOR

The @GETASEC routine gets (reads) a sector from a specified disk unit
into a specified memory buffer given the track and logical block numbers.

It expects the unit number in the C register.

It expects the track number in the 0 register and the logical block number
in the E register.

It expects the address in the HL register of the start of a 266 byte buffer.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.5.2 @PUTASEC - PUT A SECTOR

The @PUTASEC routine puts (writes) from a specified memory buffer to a
sector on a specified disk unit given the track and logical block numbers.
Before it writes the sector it reads the header information of the target
sector-2 to verify that it will be writing on the correct sector. This
;s called a preread. It requires that the preread sector be readable.

It expects the unit number in the C register.

It expects the track number in the 0 register and the logical block number
in the E register.

Rev. 7 3/78 4-34

It expects the address in the Hl register of the beginning of a 266
byte buffer.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.5.3 @WRITESECTOR - WRITE A SECTOR

The @WRITESECTOR routine writes from a specified memory buffer to a
sector on a specified disk unit given the track number and logical block
number. It does not do a preread before writing. This' allows a sector
to be written on an uninitialized track or a track on which the preread
sector is unreadable.

It expects the unit number in the C register.

It expects the track number in the 0 register and the logical block
number in the E register.

It expects the address in the HL registers of the beginning of a 266
byte buffer.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.5.4 @VERIFYSECTOR - VERIFY A SECTOR

The @VERIFYSECTOR routine verifies the validity of the header information
and checksum of a sector on a specified disk unit.

It expects the unit number in the C register.

It expects the track number in the 0 register and the logical block
number in the E register.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.5.5 @SEEKTRACK - SEEK TOA TRACK

The @SEEKTRACK routine moves the read/write head to a specified track on
a specified disk unit.

It expects the unit number in the C register.

It expects the track number in the 0 register.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.5.6 @RESTOREDISK - RESTORE THE READ/WRITE HEAD

The @RESTOREDISK routine positions the read/write head to track zero of
a specified disk unit.

4-35

Rev. 7 3/78

It expects the unit number in the C register.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.6 PROCESSOR ORIENTED UTILITY ROUTINES

These subroutines effectively extend the instruction set of the 8080 to
provide for some commonly required operations.

When parentheses enclose an item in the following subs~~tians. this
indicates the contents of the memory location specified by the value
within the parentheses. For example. HL={HL} means that the HL register
pair is replaced with the bytes at the address in HL and HL+l. If the
HL registers contain the address 40~0 hex, and at location 4000 there is
a 01. and at location 4001 there is a 02, then the HL register would be
replaced by 0201 hex. The law byte goes into L and the high byte into H.

4.3.6.1 @HLADDA - ADO A TO HL

The @HLADDA routine adds the unsigned 8 bit value in the A register to
the unsigned 16 bit value in the HL registers.

It expects a value in the HL. and the A registers.

It returns HL=HL+A.

It preserves the DE and BC registers.

4.3.6.2 @INXM - INCREMENT MEMORY

The @INXM routine increments a memory pair pointed to by the HL registers.
It ;s similar to an INR M instruction but it operates on a byte pair
(16 bits) in memory.

It expects the address of the memory pair in the HL registers.

It preserves the DE and BC registers and the PSW.

4.3.6.3 @LHLINDEXED - LOAD HL INDIRECT INDEXED

The @LHLINDEXED routine loads the HL registers indirect from the location
pointed to by the HL registers indexed by the A register.

It expects the address in the HL registers, and the index in the A register.

It returns HL={HL+2*A}.

It preserves the DE and BC registers.

Rev. 8 9/78 4-36

4.3.6.4 @LHLI - LOAD HL INDIRECT

The @LHLI routine loads the HL registers with the content of the byte
pair pointed to by the HL registers.

It expects an address in the HL registers. /

It returns HL = (HL).

It preserves the BC and DE registers.

4.3.6.5 @TRANSDHC - TRANSFER FROM DE TO HL FOR A COUNT OF C

The @TRANSDHC routine copies a memory block pointed to by the DE
registers to a memory block pointed to by the HL registers for a length
in the C register. It begins at the start of each block and working to
the end.

It expects the start address of the source block in the DE registers
and the start address of the destination block in the HL registers and
the number of bytes to copy in the C register.

It returns (HL~ ... +C) = (DE+0 ... +C).

It preserves the B register.

4.3.6.6 @TRANSDHBC - TRANSFER FROM DE TO HL FOR A COUNT OF BC

The @TRANSDHBC routine copies a memory block pointed to by the DE
registers to a memory block pointed to by the HL registers for a length
in the BC registers. It begins at the start of each block and works to
the end. .

It expects the start address of the source block in the DE registers
and the start address of the destination block in the HL registers and
the number of bytes to copy in the BC registers.

It returns (HL~ ... +BC) = (DE+0 •.. +BC).

4.3.6.7 @TRANSDHBCR - TRANSFER FROM DE TO HL FOR A COUNT OF BC REVERSE

The @TRANSDHBCR routine copies a memory block pointed to by the DE
registers to a memory block pointed to by the HL registers for a length
in theBC registers. It begins at the end of each block and working to
the beginning.

It expects the start address of the source block in the DE registers
and the start address of the destination block in the HL registers and
the number of bytes to copy in the BC registers.

It returns (HL+BC ••.. +0),= (DE+BC +0).

4-37

Rev. 7 3/78

4.3.6.8 @TRANSFILENAME - TRANSFER A FILENAME

The @TRANSFILENAME routine copies a filename from one of the ASCII
buffers (@ASCBUFF0 through @ASCBUFF3) to the @ASCIIBUFF.

It expects the @ASCBUFF number (ie. 0 to 3) in the C register.

It preserves the HL, DE. and BC registers.

4.3.6.9 @FILLZER - FILL ZEROES

The @FILLZER routine fills a block of memory up to 256 bytes in length
with zeros.

It expects the start address of the memory block in the HL registers
and the number of bytes to fill in the 8 register.

It preserves the DE and C registers.

4.3.6.l0@FILLSPC - FILL SPACES

The @FILLSPC routine fills a block of memory up to 256 bytes in length
with spaces (hex 20).

It expects the start address of the 'memory block in the HL registers
and the number of bytes to fill in the B register.

It preserves the DE and C registers.

4.3.6.11 @FILLA - FILL FROM THE A REGISTER

The @FILLA routine fills a block of memory up to 256 bytes in length
with the value specified in the A register.

It expects the start address of the memory block in the HL registers,
the number of bytes to fill in the 8 register. and a fill value in the
A register.

It preserves the DE and C registers.

4.3.6.12 @COMPARE - COMPARE HL TO DE

The @COMPARE routine compares the value in the HL registers to the
value in the DE registers.

It expects a value in the DE register and the value to compare it to in
the HL register. The forms are like an 8080 CMP 8 instruction where DE
;s analogous to the A register and HL is analogous to th~ B register.

Rev. 7 3/78 4-38

(

It returns the following sense:

DE = HL
DE > HL
DE < HL
DE >=HL

zero flag set (Z),
zero flag clear (NZ),
zero flag clear (NZ),
zero flag any state,

carry flag clear (NC)
carry flag clear (NC)
carry flag set (C)
carry flag clear (NC)

It preserves the HL, DE, and BC registers.

4.3.7 EXTENDED 8080 INTEGER ARITHMETIC (16 BITS)

These routines extend the capability of the 8080 to allow 16 bit unsigned
integer addition, subtraction, multiplication, and division (quotient,
and modulus).

The result of all of these routines is returned in the BC registers. The
HL and DE registers are preserved. With the exception of @DEDIVHL and
@DEMODHL (divide and modulus routines), the carry flag is returned set (C)
if a carry or borrow occurred. The divide and modulus routines return the
carry unchanged.

4.3.7.1 @DEADDHL - BC=DE+HL

The @DEADDHL routine performs 16 bit unsigned integer addition.

It expects the addend in the DE register and the augend in the HL registers.

It returns the sum in the BC registers and the carry clear (NC) unless
a carry out of the high order bit occurs.

It preserves the HL and DE registers.

4.3.7.2 @DESUBHL - BC=DE-HL

The @DESUBHL routine performs 16 bit unsigned integer subtraction using
twos compliment addition.

It expects the minuend in the DE registers the subtrahend in the HL registers.

It returns the difference in the BC registers as a twos compliment number
and the carry clear (NC) unless a borrow into the high order bit occurs.

It preserves the HL and DE registers.

4.3.7.3 @DEMULHL - BC=DE*HL

The @DEMULHL routine performs 16 bit unsigned integer multiplication.

It expects the multiplicand in the DE registers and the multiplier in the
HL registers.

4-39

Rev. 7 3/78

It returns the product in the BC registers and the carry clear (NC) unless
a carry out of the high order bit occurs.

It preserves the HL and DE registers.

4.3.7.4 @DEDIVHL ~ BC=DE/HL

The @OEDIVHL routine performs 16 bit unsigned integer division.

It expects the dividend in the DE registers and the divisor in the HL registers.

It returns the integer quotient in the BC registers.

It preserves the HL and DE registers.

4.3.7.5 @DEMODHL ~ BC=DE%HL

The @DEMODHL routine performs 16 bit unsigned integer division and returns
the modulus (remainder) of the operation.

It expects the dividend in the DE registers and the divisor in the HL registers.

It returns the remainder of the division in the BC registers.

It preserves the HL and DE registers.

Example: 5/2=2 and a remainder of 1. The quotient is the result of @DEDIVHL
and the modulus (or remainder) is the result of @DEMOOHL.

4.3.8 MESSAGE OUTPUT SUBROUTINES

These routines provide a simple means for outputing standard messages.
Some of the routines access the system messages while others allow the user
to set up a table of applications messages. The system messaqes are described
in Section 4.8.

4.3.8.1 @OISKERROR ~ DISK ERROR MESSAGES

The @DISKERROR routine outputs system error messages related to disk operation.
The routine closes all open disk files, outputs the appropriate error message
to the console stream, and returns control to the MOOS executive which resets
the 8080 stack to the MOOS system stack.

It will output the appropriate error messages as detected by FILE MANAGEMENT
and PHYSICAL DISK ACCESS routines (Sections 4.3.3 and 4.3.4) when they return
a carry set (C) condition and an error message code in the A register.

It expects the error message code in the A register.

It DOES NOT RETURN.

Rev. 7 3/78 4~40

4.3.8.2 @CLOSEFILES - CLOSE ALL FILES

The @CLOSEFILES routine closes all open files using the standard system
file close routines. Any errors that are encountered will be reported on
the console device.
It always returns the carry flag clear (NC).

It preserves the HL, DE and BC registers.

4.3.8.3 @ERRORMES - ERROR MESSAGES

The @ERRORMES routine performs similarly to @DISKERROR except that it does
not close all open files and it does return to the calling routine on exit.

It expects the error message code in the A register.

It preserves the C register.

4.3.8.4 @MESSAGEOUT - MESSAGE OUTPUT

The @MESSAGEOUT routine is a generalized message-table output routine.
The user can provide his own applications message table and use this routine
to output the messages to the console stream. The table may have variable
length messages with imbedded blanks. Each message can be terminated with
a control character or a character with the most significant bit set high.
The control character will not be output. The character with the eighth
bit high will be output after the bit is stripped. For example. an ASCII A
is hex 41. Cl hex is an ASCII A with the most significant bit high.

It expects the message table's address in the HL registers.

It expects the message's code in the A register. The code corresponds
to the message's location in_the table. ie •• ~ is the first message. 5
is the sixth etc.

It preserves the C register.

4.3.9 SYSTEM BUFFERS AND ENTRY POIUTS

These are miscellaneous entry points and buffers already described in detail
in conjunction wi~h other subroutines.

@CONSOLEADDR - Contains the location of @CIOTABLE

@LISTADD - Contains the location of @LIOTABLE

@CIOTABLE - Start address of the console input/output vector table

@LIOTABLE - Start address of the list input/output vector table

@PCON - Start address of phYSical console driver routines

@PLIST - Start address of physical list driver routines

4-41

Rev. 8 9/78

@WARMSTART - Warm start entry point; initializes console and list devices,
and prints the MOOS signon message.

@MOOSEXECUTIVE - Entry point for MOOS executive. Outputs the current MOOS
executive prompt and initializes the MOOS stack. This entry does not output
the signon message.

@FILEBUFFER0 and @FILEBUFFERl - @FILEBUFFER0 and @FILEBUFFERl are 288 byte
buffers u1ed by the system for file access. They may be used as applications
program file buffers. See the section on FILE ACCESS ROUTINES.

@APROGRAM - Address of the start of the applications area. The APP command
transfers program control to this address. All file types except overlay
(0C-0F hex) must have load addresses greater than or equal to @APROGRAM or
a LOAD ADDRESS ERROR will occur when an attempt is made to load the file.

@MASKADDR - A two byte pointer used by the @SEAR routine. @~ASKADDR points
to the address of the mask string.

@PARAMlEN - A one byte parameter used by the @SEAR routine. It contains
the length of the functions in the table to be searched.

@MDOSRETURN - Applications programs that have not changed the I/O initializa
tion return to this entry point instead of @WARMSTART. @MDOSRETURN outputs
the MOOS signon message and initializes the MOOS stack but does not reinitialize
the I/O handlers.

The following buffers are used by the @PARAM routine and are discussed in
detail there.

1) One byte buffers which holds the number of specified parameters.

@NORVPAR @NASCPAR @NSINPAR

2) Ten byte buffers which holds ASCII parameters.

@ASCBUFF0
@ASCBUFF2

@ASCBUFFl
@ASCBUFF3

3) One byte buffers which holds disk unit number parameters.

@DRIVEN0
@DRIVEN2

@DRIVENl
@DRIVEN3

4) Two byte buffers which holds binary parameters.

@BBUFF0
@BBUFF2

@BBUFFl
@BBUFF3

@ASCIIBUFF - @ASCIIBUFF is a ten byte buffer which holds filenames for
the @CREATE, @RENAME, @SCRATCH, and @TRANSFILENAME routines.

@INBUFF - @INBUFF is the system input buffer. It is 132 bytes long.

Rev. 7 3/78 4-42

4.4 LINEEDIT - THE MOOS LINE EDITOR

LINEEDIT is an MOOS application program which provides assistance in
creating and maintaining assembly language source program files that
are compatible with the MOOS 8080/8085 assembler. It may also be used
as a limited general text editor.

LINEEDIT is invoked by typing LINEEDIT in response to an MOOS executive
prompt or by typing the command LOAD IlLINEEDIT" followed by the command
APP. It signs on with the message MOOS LINE EDITOR VS. X.X.

The user interacts with LINEEDIT through the system console. Lines
entered at the keyboard may be text lines which are stored in the edit
buffer or commands for LINEEDIT to execute. The general editing process
consists of three parts.

1) Placing a text file into the edit buffer by entering it a line
at a time from the keyboard or by loading an existing file from
disk.

2) Modifying the text file in the edit buffer by adding, changing,
and deleting lines.

3) Storing the file in the edit buffer onto a disk.

How to use LINEEDIT to carry out this process is described in the
following sections.

. 4.4.1 ENTERING LINES TO LINEEDIT

After signing on LINEEDIT waits for a line to be input. A line consists
of not more than 132 characters typed in sequence. The entry of a 1in~
is terminated by pressing the RETURN key. During the entry of a line
each character that is typed is echoed by LINEEDIT on the console display.
If more than 132 characters are typed prior to the RETURN, LINEEDIT will
stop echoing characters and only honor a valid control function such as the
RETURN. Characters which may be entered into a text line are ASCII
characters in the code range 20H to 7EH with the exception of the backarrow
(5FH). LINEEDIT also uses the MOOS console output system to keep track
of the character count as a line is typed and automatically output a
carriage return/line feed combination when the count exceeds the width of
the display device. This combination is not included in the line count.

Two control features may be used when entering a line.

1) When DEL or RUBOUT key ;s pressed the next previously typed
character will be deleted from the line. A backarrow is echoed
to the terminal display for each character deleted. Neither the
deleted characters nor the backarrow are included in the line count.

Rev. 81. 2/5/79 4-43

2) Holding down the control key and typing X (CNTL/X) will cause
all of the current line to be cancelled. A carriage return/line
feed combination is echoed to the terminal display. LINEEDIT is
positioned to accept entry of a new line.

4.4.2 KEYING IN A NEW TEXT FILE

LINEEOIT recognizes a line as a text file line by the presence of a
leading line number. Each line number must be in the range 0 to 9999. A
text file is entered one line at a time using the normal line entry
procedure. As each line 1s entered LINEEOIT stores it in the edit buffer
which it maintains in the computer system's main memory. Text lines are
stored in the edit buffer in numeric order by line number. The lines in
the buffer at any given time constitute the current text file.

To insert a new line in the current text file. type in the new line
including the line number. LINEEDIT will automatically place the new
line in the program buffer in proper sequence according to its line number.

To replace an existing line in the current text file enter the line number
and the new text. The new line will automatically replace the old line
that has the same line number in the current text file.

To delete one existing program line in the current text file type the
line number and press the return key. The corresponding line will be
eliminated from the current text file. Note that multiple lines may also
be eliminated by using the DELT command as described in Section 4.4.18.

Consecutive text lines may be entered conveniently by using LINEEDIT's
automatic line numbering feature. Prior to typing the first character
of a new line. you can cause the 'next' line number to be generated for
you by pressing the space bar one time. The 'next' line number will echo
to the terminal display and LINEEDIT will then be waiting for the first,
text character of that line. See Section 4.4.7 on the AUTO command to
specify the increment that determines the 'next' line number.

4.4.3 ENTERING LINEEDIT COMMANDS

Whenever a line is typed which does not begin with a line numcer.
LINEEDIT attempts to interpret this line as a command. If the line is
not recognizeable as a LINEEOIT command~ the message COMMAND NOT FOUND
will be displayed.' LINEEDIT commands are single words or abbreviations
followed by parameters if required. All LINEEDIT commands are uppercase
only. If the command requires one or more parameters. there must be at
least one space between the command word and the first parameter and
between each parameter. Parameters may be ASCII or numeric. ASCII
parameters must be enclosed in double quotation marks except for within
the SEARCH and CHANGE command dialogues. Numeric parameters are entered
in decimal. LINEEDIT offers commands to facilitate the management of
the editing process.

Rev. 7 3/78 4-44

4.4.4 THE CLEAR COMMAND

The edit buffer may be initialized to an empty state by using the CLEAR
command. This command has no parameters. It is entered by typing CLEAR
and pressing the return key.

Entering a CLEAR command may result in the message FILE ON DISK NOT UPDATED.
PROCEED? This is a warning that the contents of the current text file has
not been stored on disk since it was last altered. When the message appears
the current text file is not yet lost. To override this warning type Y
and press the return key. The CLEAR command will be processed. Otherwise
type N and press the return key. The message CANCELLED will be displayed
and LINEEDIT will be waiting for an alternate command.

When the CLEAR command is processed, LINEEDIT will display the message
FILE NOT NAMED followed by two hex numbers which indicate that the edit
buffer is empty and unnamed.

4.4.5 THE NAME COMMAND

The current text file in the edit buffer may be named or renamed by using
the NAME command. NAME "filename" is the general form of this command.
The filename may be any valid MOOS filename. No disk drive unit number
should be specified since this name is to be associated with the current
text file in the edit buffer which is in the main system memory. When the
NAME command is executed, LINEEDIT will display the new filename followed
by two hex numbers which represent the beginning and ending addresses of
the current text file in memory. A text file may be keyed into the edit
buffer before it is named. However. it cannot be stored on disk without

,-,' being named.

4.4.6 THE FILE COMMAND

The name of the current text file and its address limits in memory can
be determined by using the FILE command. This command has no parameters.
It is entered by typing FILE and pressing the return key. The name of the
current text file will be displayed. followed by two hex numbers which are
the starting and ending memory addresses of the current text file. If the
current text file has not been named. the message FILE NOT NAMED will be
displayed in place of the filename.

4.4.7 THE AUTO COMMAND

LINEEDIT's automatic line numbering facility adds a fixed increment to
the last entered line number in order to compute the Inext' automatic
line number. When LINEEDIT is started this increment value is set at a
default of 1. This value may be changed by using the AUTO command. The
general form of the command is AUTO number. The increment will be set
to the decimal value of number.

4-45

Rev. 7 3/78

4.4.8 THE PROMPT COMMAND

When LINEEDIT is started its prompt message is null. After processing
an input line, it simply echoes a carriage return/line feed combination.
and waits for a new input with the cursor at the left margin of the
terminal display. A prompt character or message can be specified for
LINEEDIT by using the PROMPT command. PROMPT "message" is the general
form of this command. The message may be from 1 to 10 characters in
length and include any characters val id in a text 1 ine. It must be
enclosed in double quotes as shown. When the PROMPT command is executed,
LINEEDIT will immediately display the new prompt at the left of the
terminal display and be positioned waiting for a new input line. The
LINEEDIT prompt may be restored to its initialized state by typing PROMPT
and pressing the return key.

4.4.9 THE LOAD COMMAND

A text file may be loaded into the edit buffer from disk by using the
LOAD command. LOAD "unit number:filename" is the general form of the
command. The double quotes must be used as shown. The filename must be
a valid MOOS filename. The unit number is optional. If it is supplied,
it must consist of a single digit from 0 to 3 followed by a colon (:).
It designates the disk unit on which the specified file is to be found.
If no unit number is specified, unit 0 is assumed.

When a text file is successfully loaded, it replaces the contents of the
edit buffer and all text from the previous text file in the buffer is
lost. The name of the current text file becomes the name of the disk
file that was loaded."'not including the unit number.

Entering a LOAD command may result in the message FILE ON DISK NOT UPDATED.
PROCEED? This is a warning that the current text file has not been stored
on disk since it was last altered. When the message appears, the current
text file is not yet lost. To override this warning type Y and press the
return key. The LOAD command will be processed. Otherwise, type Nand
press the return key. The message CANCELLED will be displayed and LINEEDIT
will be waiting for an alternate command.

Entering a LOAD command may result in the message FILE BUFFER OVERFLOW.
See Appendix D for an explanation of this condition.

4.4.10 THE APPEND COMHAND

A text file may be loaded from disk and appended to the end of the current
text file in the edit buffer by using the APPEND command. APPEND "unit
number:filename" ;s the general form of this command. The double quotes
must be used as shown. The filename must be a valid MOOS filename. The
unit number is optional. If it ;s supplied, it must consist of a single
digit from ~ to 3 followed by a colon (:). It designates the disk unit
on which the specified file is to be found. If no unit number is specified,
unit 0 is assumed.

Rev. 7 3/78 4-46

When an APPEND is executed, the text file from disk is concatenated onto
the end of the text file which was already in the edit buffer. The text
lines of the appended file are not merged into the existing file in order
by line number. The appended file may contain line numbers which conflict
with the existing file. For these reasons it ;s important to use the RENUM
command immediately after a successful APPEND.

The name of the current text file in the edit buffer is not affected by
an APPEND.

Entering an APPEND command may result in the message WRONG FILE TYPE.
This is an indication that the requested file has an attribute type
different than 4 through 7. These are the only valid source file types
acceptable to LINEEDIT and the assembler.

Entering an APPEND command may result in the message FILE BUFFER OVERFLOW.
This is an indication that the amount of system memory available for the
edit buffer is not enough to hold the additional file which was requested.
When this condition occurs, the requested file is not appended but the
existing is retained without change.

4.4.]1 THE SAVE COM~\AND

The current text file in the edit buffer may be stored on di~k as a new
disk file by using the SAVE command. The general form of this command
is SAVE unit number. The unit number is optional. If it is supplied, it
must consist of a single digit from 0 to 3. It designates the disk unit
on which the current text file is to be stored. If no unit number is
specified, unit 0 is assumed.

The name of the current text file in the edit buffer is used to create
an entry in the directory of the specified disk and the text file is
stored on the disk under that name. If the name already exists on the
specified disk a DUPLICATE NAME message will result, and nothing will be
written to disk. The edit buffer is unchanged. The file may be SAVEd by
first changing its NAME to one that doesn't conflict or by using the
RESAVE command if appropriate.

A file created by the SAVE command is given the attribute type 4 which
marks it as an editor/assembler source file.

4.4.12 THE RESAVE COMMAND

The current text file in the edit buffer may replace an existing file
or disk by using the RESAVE command. The general form of this command
is RESAVE unit number. The unit number is optional. If it is supplied,
it must consist of a single digit from 0 to 3. It designates the disk
unit on which the existing file to be replaced is found. If no unit
number is specified, unit 0 is assumed.

The directory of the specified disk unit is searched for a filename
which matches the name of the current text file in the edit buffer. The
current text file is written over that file on the disk. If no match is

4-47

Rev. 7 3/78

found, the message FILE NOT FOUND will be displayed. The current text
file can be saved as a new file by using the SAVE command. If the file
matched on disk has a type other than 4 through 7, the message WRONG
FILE TYPE will be displayed. Text source files must have a source file
type.

4.4.13 THE LIST COMMAND

A formatted display of lines in the current text file can be output to
the system console by using the LIST command. The forms of this command
are LIST, LIST linenumberl, and LIST linenumberl linenumber2. The display
will begin with linenumberl or the next highest and continue through
linenumber2 or the next lowest. If linenumberl and linenumber2 are the
same, only one line will be displayed. If 1;nenumber2 is less than
linenumberl. nothing will be displayed. If linenumber2 is not supplied,
the display will begin with linenumberl or the next highest, and continue
through the last line currently in the current text file. If no l·;ne
numbers are supplied. the entire edit buffer will be displayed.

The LIST command produces a formatted display of the text lines that is
oriented to 8080 assembly language source text. The format is defined
as four fields each beginning at a specific tab location. The first field
begins at the left margin and displays the line number as a 4 digit number.
The second field is the label field. It consists of all characters in the
text line through the first space or colon (:) that occurs. The third
field is the opcode and operands field. The opcode consists of all
characters following the label field through the next occurrence of a space.
The operand consists of all characters following the opcode through the
next occurrence of a space. The fourth field is the comment field. It
begins with a semicolon {;} following the space that terminates the operands
and continues to the end of the text line.

Refer to the TAB command to change the tab settings which determine the .
placement of the fields for the LIST format. When using the LIST command
with general text editing, it is advisable to set the tabs to 1 1 1. This
effectively removes the tabulation effects which are designed for assembly
language source text.

4.4.14 THE LISTP COMMAND

A formatted display of lines in the current text file can be output to
the system printer by using the LISTP command. The forms of this command
are LISTP, LISTP linenumberl, and LISTP linenumberl linenumber2.

The LIST? command functions the same as the LIST command except that output
is directed to the system printer instead of the system console.

Rev. 7 3178 4-48

4.4.15 THE PRINT COMMAND

A literal (unformatted) display of lines in the current text file can be
output to the system console by using the PRINT command. The forms of this
command are PRINT, PRINT linenumberl, and PRINT linenumberl linenumber2.
The linenumber specifications in the PRINT command function the same as
in the LIST command.

The PRINT command displays text lines as they are stored in the edit buffer
but without the line numbers so that general text may be displayed just as
it was entered. If an unformatted display of assembly language source
text is desired, it can be obtained by setting the tabs to 1 1 1 and using
the LIST command.

4.4. 16 THE PRINTP CO~~ND

A literal (unformatted) display of lines in the current text file can be
output to the sys tern pri nter by us i ng the PRINTP command. The forms of
this command are PRINTP, PRINTP linenumberl. and PRINTP linenumberl
1 i nenumber2.

The PRINTP command functions the same as the PRINT command except that
output is directed to the system printer instead of the system console.

4.4.17 THE TAB COMMAND

The tab settings that. determine the placement of the fields for the LIST
and LISTP format may be changed by using the TAB command. TAB numberl
number2 number3 ;s the form of this command. The first number is the
column at which the opcode field begins. The second number is the column
at which the operand field begins. The third number is the column at which
the comment field begins.

The initial and default values of the TAB parameters are 15,22,36 decimal.
The settings may be reset to these values by typing TAB without any para
meters. Missing parameters are set to the default if possible or the value
of the preceding parameter if that parameter is greater than the default
value for that tab column. If TAB 17 were typed the tab setting would be
17, 22, 36. TAB 25 would set the tabs to 25, 25, 36.

4.4.18 THE DELT COMMAND

A group of consecutive lines may be deleted from the current text file
by using the DELT command. The forms of this command are DELT linenumberl,
and DELT linenumberl linenumber2. Lines will be deleted from linenumberl
or the next highest that exists, through linenumber2 or the next lowest that
exists. If linenumber2 is less than linenumberl nothing will be deleted.
If they are equal only that line will be deleted. If only linenumberl is
specified then only that line will be deleted. The edit buffer is
automatically compressed wHenever 1 ines are de·leted.

Rev. 8 9/78 4-49

4.4.19 THE RENUM COMMAND

Allor part of the lines in the current text file can be renumbered by
using the RENUM command. The forms of this command are RENUM, RENUM
startingnumber, RENUM startingnumber increment, and RENUM startingnumber
increment first-1ine-to-change. RENUM takes the line number of the first
line to change and sets it equal to the startinq number. The line number
of each line after the first line to change is then set to the value of
the preceding new line number plus the increment value. If no first line
to change is specified, the first line in the edit buffer is assumed. If
no increment value is specified, the va1u~ 10 is used. If no starting
number is specified, the value 0 is used. Typing RENUM alone will oroduce
a text file numbered from 0 by 10's.

Entering a RENUM command may result in the message LINE NUMBER OVERFLOW.
This is an indication that the renumbering attempt lead to a line number
greater than 9999. When this occurs the edit buffer is left in a partially
renumbered state. Lines up to the overflow point have been renumbered but
the ones after that point retain their old value. A RENUM with a smaller
increment value should be executed immediately to correct this condition.

4.4.20 THE SEARCH COMMAND

Lines in the current text file that contain a specified string of text
can be located and displayed by USing the SEARCH command. The forms of
this command are SEARCH. SEARCH 1inenumber1, or SEARCH linenumberl
linenumber2. SEARCH without a linenumber specified will search the whole
buffer. SEARCH 1inenumber1 will search from the line number specified
to' the end of the buffer. SEARCH 1 inenumber1 1 inenumber2 will search the
buffer starting at the first line specified through the second line
speci fi ed.

I~hen the SEARCH command is entered, LINEEO IT will respond wi th the prompt
SEARCH MASK? A string of up to 132 legal text line characters can be
entered. The entry is term; nated by press i ng the return key. LINEEDIT
searches through the lines in the current text file looking for the first
occurrence within each line of a substring that matches the specified search
mask. It examines every line except those lines that begin with an asterisk
(*). Every examined line that contains a match is displayed on the system
console. This display is a literal (unformatted) display including the line
number. Lines with a leading asterisk (*) are considered comment lines in
assembly language source text. Refer to the SEARCHALL command to operate
on comment lines.

The SEARCH command also provides a universal match character capability.
Each question mark (?) that is entered in the search mask string is treated
as a match for any character in that position. For example, the search
mask A?I will match all three character substrings that begin with A and
end with I. Note that this capability means that question marks (?)
included in the text cannot be explicitly searched for ..

If no lines in the current text file contain a match to the specified
search mask. the message STRING NOT FOUND will be displayed.

Rev. 8 9/78 4-50

4.4.21 THE SEARCHALL COMMAND

All lines in the current text file that contain a specified string of
text, including those lines that begin with an asterisk (*) can be located
and displayed by using the SEARCHALL command.

The forms of this command are SEARCHALL, SEARCHALL linenumberl. or SEARCHALL
linenumberl linenumber2. SEARCHALL without a linenumber specified will
search the whole buffer. SEARCHALL linenumberl will search from the line
number specified to the end of the buffer. SEARCHALL linenumberl linenumber2
will search the buffer starting at the first line specified through the
second line specified. The SEARCHALL command functions the same as the
SEARCH command except that all text lines including those that begin with
an asterisk (*) are included in the search.

4.4.22 THE CHANGE COMMAND

The first occurrences of a specified string in lines of the current text
file can be replaced with a different string of same or different length
by using the CHANGE command. The forms of this command are CHANGE. CHANGE
linenumberl, or CHANGE linenumberl linenumber2.' CHANGE without a linenumber
specified will change all lines in the buffer. CHANGE linenumberl will
change lines fr.om the line number specified to the end of the buffer. CHANGE
linenumberl linenumber2 will change lines in the buffer starting at the
first line specified through the second line specified.

CHANGE operates on all lines within the specified range except lines starting
with an asterisk (*) or semicolon (;). These lines are considered comment
lines in assembly language source text. Refer to the CHANGEALL command to
operate on comment lines.

When the CHANGE command is entered, LINEEDIT will respond with the prompt
SEARCH MASK 1. A string of up to 132 legal text line characters may be
entered. The entry is terminated by pressing the return key. If no lines
in the current text file contain a match to the specified search mask, the
message STRING NOT FOUND will be displayed. Otherwise, LINEEDIT will then
respond with the prompt CHANGE TO 1. Another string of up to 132 legal
text string characters can be entered. The entry is terminated by pressing
the return key. LINEEDIT searches through lines in the current text file
looking for the first occurrence within each line of a substring that matches
the specified search mask. It replaces such occurrences with the specified
change-to string, adjusting line and buffer length accordingly. Each line
as changed is displayed on the console without tabs expanded.

The CHAN~E command also respects the universal match character capability
as descrlbed under the SEARCH command. If the search mask contains one or
~re question marks (1) these characters positions will match any character
1n the search process, and the matched substring will then be replaced by
the change-to string. Example:

Rev. 8 9/78 4-51

LIST
10 Sl@LABEL1A
20 S2@LABEL2A
30 @LABEL3
CHANGE
SEARCH MASK ? S?@
CHANGE TO ? @
10 @LABELlA
20 @LABEL2A

The change-to string may also contain question marks (?). This provides the
ability to retain specified character positions in the search string while
making changes on either or both sides of the retained character. Example:

LIST
10 TAG01A
20 TAGOFF
30 TAG22A
CHANGE
SEARCH MASK ? TAG??A
CHANGE TO ? LASEL??B
10 LABEL01B
30 LABEL22B

Lines 10 and 30 have been changed while line 20 ;s unchanged because it
did not match the search string. The TAG at the beginning and the A at
the end of lines 10 and 30 have been changed. The 01 in line 10 and the
22 in line 30 have been retained.

4.4.23 THE CHANGEALL COMr~ND

The first occurrences of a specified string in all lines of the current
text file, including those lines that begin with an asterisk (*). or
semicolon (;) can be replaced with a different string of same or different
length by using the CHANGEALL command. The forms of this command are
CHANGEALL. CHANGEALL 1inenumber1 t or CHANGEALL 1inenumber1 linenumber2.
When the CHANGEALL command is entered it functions the same as the CHANGE
command, except that all text lines including those that begin with an
asterisk (*) are included in the search.

4.4.24 THE EDIT COMr~ND

The text within a specified line in the current text file can be changed
without retyping the entire line by using the EDIT command. EDIT linenumber
is the form of this command. If the specified linenumber is not found in
the current text file. the message LINE NOT FOUND is displayed. LINEEDIT
processes an EDIT command by copying the specified 1 ine into a specia'l
editing buffer and displaying the line number at the left margin of the
console. An invisible edit pointer is set to point to the first character
in the text line after the space that terminates the line number. LINEEDIT
;s now in the EDIT command mode. A separate set of single key commands is
available for editing a line in the special edit buffer.

Rev. 8 9/78 4-52

4.4.24.1 ADVANCING THE EDIT POINTER - THE SPACE BAR

The invisible edit pointer in the special editing buffer may be advanced
one position by pressing the space bar one time. The character to which
the edit pointer is pointing will be displayed on the console. This
indicates that the edit pointer has passed over the character. The edit
pointer is then advanced so that it is now pointing at the next character
in the text line immediately after the one that is displayed. The entire
line can be displayed in this manner.

4.4.24.2 CHANGING THE NEXT CHARACTER - C

The character to which the edit pointer is pointing in the edit buffer
can be changed by typing a c or C, followed by the new character.
The new character is printed on the console and replaces the character
in the edit buffer at that position. The edit pointer is advanced to
point to the character immediately after the new displayed character.

4.4.24.3 DELETING THE NEXT CHARACTER - D

The character to which the edit pointer is pointing in the edit buffer
can be deleted by typing a d or D. The deleted character is printed
on the console enclosed in backslashes (/). The edit pointer is left
pointing at the character immediately after. the deleted character.

4.4.24.4 INSERTING CHARACTERS - I

Characters may be inserted into the line or at the end of the line by
typing an i or I followed by the characters to be inserted. The
insertion begins immediately before the character pointed to by
the edit pointer. Characters are inserted in sequence as typed until
the ; nsert mode ; s termi na ted by, depressing the ESC key. The ed it
pointer remains pointing to the same character that it pointed to when
the insertion began. The insert mode may also be terminated by pressing
the return key. This also terminates the EDIT command and replaces the
line in the current text file with the newly edited version from the
special editing buffer.

4.4.24.5 LISTING THE LINE IN THE SPECIAL EDITING BUFFER - L

The remainder of the line in the special edit buffer from the position
of the edit pointer to the end of the line may be displayed by typing
an 1 or L. The characters are displayed on the console followed by
a carriage return-line feed. The line number is reprinted at the left
margin of the console display and the edit pointer is reset to the beginning
position. This command is useful to see what the line looks like before
editing is completed. It may also be useful to use this command immediately
after entering the original EDIT command. This would display the line
about to be edited without exiting the editing mode.

4-52.1

Rev. 8.3-A 7/1/79

4.4.24.6 SEARCHING TO A SPECIFIED CHARACTER - S

The edit pointer may be advanced in the special editing buffer to the
first occurrence of a specified character by typing an s or S
followed by the character to search for. The characters from the position
of the edit pointer up to but not including the searched for character
are printed on the console. The edit pointer ;s left pOinting at the
first occurrence of cne searched for character. If the search argument
does not exist in the line then the entire line is printed and the edit
pointer is positioned at the end of the line.

4.4.24.7 DELETING TO A SPECIFIED CHARACTER - K

Characters in the special editing buffer from the edit pointer position
up to but not including a specified search character can be deleted by
typing a k or K followed by the search character. The deleted
characters are displayed on the console, enclosed in backslashes (I).
If the search argument does not exist in the edit line. then all the
characters from the edit pointer to the end of the line are deleted.
The edit pointer is left pointing at the search character or at the end
of the line.

4.4.24.8 QUITTING THE EDIT COMMAND MODE - Q

The EDIT command may be aborted without changing the line in the current
text file by typing a q or Q. The partially edited 1i.ne in the
special editing buffer is abandoned. No changes are made to the line in
the current text file. LINEEDIT is ready to accept a new command.

4.4.24.9 COMPLETING THE EDIT COMMAND - THE RETURN KEY

The line in the special editing buffer can replace the line in the current
text file at any point by pressing the return key. This terminates the
EDIT command in a normal manner.

4.4.25 THE DOS COMMAND - EXITING FROM LINEEDIT

Control of the computer system can be returned from LINEEOIT to the MOOS
executive by using the DOS command. This command has no parameters. It
is entered by typing DOS and pressing the return key. Control is
returned to the MOOS executive which signs on with the message MICROPOLIS
MOOS VS. X.X. LINEEDIT remains in the system application program area and
the contents of the current text file are not disturbed unless some action
taken from the executive destroys these areas. Entering an APP command to
the executive would return control to LINEEDIT.

Entering the DOS command may result in the message FILE ON DISK NOT UPDATED.
PROCEED? This is a warning that the current text file has not been stored
on disk since it was last altered. When the message appears the current
text file is not yet lost. To override this warning type Y and press the
return key. The OOS command will be processed. Otherwise type N and press
the return key. The message CANCELLED ~ill be displayed and LINEEOIT will
be waiting for an alternate command.

Rev. 8 9/78 4-53

4.4.26 LINEEOIT FILE STRUCTURE

The current text file in the LINEEOIT edit buffer has the following
format. Each line begins with a byte that contains a count of the number
of bytes in the line. The count includes the count byte and the carriage
return at the end of the line. The count byte is followed by four bytes
that hold the digits of the line number in ASCII. The line number can
range from 0000 to 9999. At least one space (20 hex) follows the line
number. The remainder of the line can contain from 0 to 125 characters
followed by a carriage return. The shortest line contains 6 bytes. The
longest line contains 132 bytes. The characters of the source program
appear in the line exactly as they were typed during input. ASSM and
LINEEOIT require only one space between elements of an assembly statement.
Additional spaces are ignored. Therefore, there is no reason to type in
more than the minimum number of spaces when entering a source program.
After the carriage return that terminates the last line of the current text
file there is a byte that contains a 01 to mark the end of the file.

The current text file is written to a disk file just as it appears in
the edit buffer. All records in the disk file with the possible exception
of the last one are full records. A text line may span two records. 'The
following logic could be used in an MOOS application program designed to
process an editor source file.

1000 START CALL @RFINXPOSl
2000 OCR C
3000 JZ ENDOFFILE
4000 MVI . 0,0'
5000 MOV E,C
6000 LXI H,BUFFER
7000 CALL @LOAOOATA
8000 *PROCESS THE LINE IN THE BUFFER
9~0 J~ ~A~

The @RFINXPOS routine gets the line count byte into the C register. If
the count is 01 the end of the file has been reached. Otherwise. all
program lines have a line length of no less than 6. The line length is
moved into the O~ registers (0=0) and the buffer address is placed into
the Hl registers. The @LOAODATA routine starts at the index position
and loads the next DE bytes into the buffer which leaves the index pOSition
pointing to the line count byte of the next text line. The program can
then process the text line and loop back to get the next line.

Rev. 7 3/78 4-54

4.5 ZSM - Z-8~ ASSEMBLER

ZSM is an MDOS program to convert Z-8~ assembly language source code
into object code, which consists of a sequence of binary codes that
can be loaded into the computer's memory and executed. ZSM takes
the place of ASSM, the earlier 8~8~/8~85 assembler for MDOS. Any
references in this manual to ASSM should be understood as references
to ZSM.

As input ZSM expects a type 4, 5, 6, or 7 text file, such as that
produced by LINEEDIT. The output file produced will be a type 8
file. This type of file may be scatter loaded into memory, meaning
that it need not be contiguous code; rather, it can be several
groups of individual code.

Note that this is a disk assembler, so memory size is not a
constraint on the size of file that may be assembled.

ZSM is a copyrighted piece of software. Any reproduction or
redistribution of it or this manual is expressly forbidden.

4.5.1 HOW TO RUN ZSM

ZSM is invoked from the MDOS executive by typing its name, followed
by the assembly parameters. The format is as follows:

>ZSM "<source filename>" "<object filename>" "<options>" «offset>]

The <source filename-> must be the assembly language source program
as explained above. The <object filename> is the name of the output
file. It must be included, but may be blank if the S or M option,
below, is used.

The <options> are instructions to ZSM pertaining to how to assemble
the program. The number of options specified varies with what is
desired and may be blank, but the field must nevertheless be
included. The options are as follows.

E

p

S

M
file.

L
listing.

Only lines containing assembly errors will be listed.

The assembly listing will be paginated.

The assembly listing will be produced, but no object code.

The object code will be written into memory, not to a disk

The line numbers from th~ source file will not appear on the

T The symbol table created by ZSM will be printed following
the listing.

"SM" is the only combination not allowable, since they are mutually
exclusive. If they are both present, though, the S option will
prevail.

Rev. 8.1 2/5/79 4-55

The <offset) parameter indicates an offset to be added before the
object code is placed into memory (via the M option). For example,
it would be impossible to assemble a program into memory at 2B00,
since that is where ZSM resides. Therefore, to put a program into
memory that was designed to run at 2B00, you would have to specify
an offset, for example 3000. This would result in code destined for
2800 to be actually put into memory at 5A00 (2800 + 3000).

Here are some examples of valid commands:

1. ZSM "SFILE" ·OFILE" ""
2. ZSM "SFILE" "" "PTS"
3. ZSM "SFILE" "" "ML" 3000
4. ZSM "SFILE" "OFILE" "Eft

Line 1 would assemble SFILE into the file OFILE, and produce a
normal listing. Line 2 would assemble SFILE, producing a paginated
listing including a symbol table, but not produce an object file.
Line 3 would assemble SFILE, putting the object code into memory
with an offset of 3000; it would produce no object file; and it
would produce a normal listing, but without line numbers. Line 4
would assemble SFILE into the file OFILE, and only list those lines
(if any) containing errors.

Assembling a file with the M option in such a way that the operating
system or assembler would be overwritten will cause a 'Load address
error'. Including the wrong number of parameters in the command
line, or forgetting a quote symbol, will cause a 'Syntax error'.
Specifying an object file which already exists will cause a
'Duplicate name' error, meaning there already exists a file with
that name. Either SCRATCH that file, or select a new name for the
object file.

4.5.2 LANGUAGE ELEMENTS

The source file has a general format as follows:

i.tt LABEL: OPCODE OPERANDS ;comments

The titi represents the four digit line number assigned each line by
the line editor. Although the line number itself is ignored, it
-must- be present, and must be four characters long, followed by a
space.

The LABEL is optional. If present, it will be entered into the
symbol table. Whether or not it is present, its position must be
followed by a space or colon. That is,

ttii LABEL OPC or titi LABEL: OPC or ii" OPC

are valid, while

.iii OPC

is not.

4-56 Rev. 8.1 2/5/79

Labels may include any of the following characters:

ABC 0 E F G H I J K L M N 0 P Q R STU V W X Y Z
abc d e f g h i j kIm n 0 p q r stu v w x y z
a 123456789 @. []{} \ I" --

To avoid ambiguity, however, the first character may not be • or
a-9. In addition, a label may be of any length up to 47 characters.
All characters are significant. In normal use, though, up to 12
characters should suffice; and over 14 characters will look a little
strange on the listing.

The OPCOOE must either be a Z-8a opcode or a pseudo-op. Both are
explained later.

The OPERANDS vary_ There can be any number of them, depending on
whether they are operands for an opcode or a pseudo-op. There are
also instances where there are no operands, and therefore this field
can, in some cases, be omitted. If more operands are supplied that
are needed, the extras are ignored.

The COMMENT field is totally ignored by the assembler, except for
printing it on the listing. Comments are used only for
documentation or clarity, and can be omitted altogether. If
present, comments should be preceeded by a semicolon (;). The
semicolon will cause a TAB to the third TAB setting, whereas its
absence will result in the comment appearing immediately to the
right of the operand field.

There is one exception to the above format, and that is the case of
an all-comment line. If the first character of the line (after the
line number and space) is either an asterisk (*) or semicolon, the
entire line will be treated as a comment.

4.5.2.1 CONSTANTS

ZSM provides for constants of two varieties, numeric and ASCII.

ASCII constants are indicated by enclosing the appropriate character
in single quotes ('). Any ASCII character can appear between the
quotes, except for (1) control characters, having an ASCII code of
under 29 hex; (2) the single quote character, ASCII code 27 hex; (3)
the underscore character , ASCII code SF hex; and (4) the DEL
character, 7F hex.

Numeric constants may be in any of four bases - 2, 8, 10, and 16. A
specific base is indicated as follows:

.ttH indicates hexadecimal (base 16) - for example lC7H

.ttQ indicates octal (base 8) - for example 62Q
tttB indicates binary (base 2) - for example lelalB
##to or just ttt indicates decimal (base Ie) - for example 1930 or
193

Rev. 8.1 2/5/79 4-57

Regardless of base, all numeric constants -must- begin with a digit,
0-9. (This is to prevent ambiguity with labels.) Thus A07 hex
would have to be written as 0A07H.

There is one special numeric constant, denoted by the symbol $.
This constant is always equal to the address of the current line;
that is, the memory location that the current line will be written
into when it is loaded. Note that this reflects the address of the
beginning of the current line, -not- the next line (as in some
assemblers). As an example, consider that

JMP $

would cause an infinite loop, since it would jump to itself.

4.5.2.2 OPERATORS

ZSM recognizes 10 operators. They are as follows:

+ addition
subtraction, or negative (as in -1)

* multiplication
/ division
% modulo (remainder of division)
& logical AND

logical OR * logical EXCLUSIVE~OR
) rotate right (1101018)3 yields 1011108)
< rotate left (11101108<1 yields 11011018)

All arithmetic operators treat their operands as unsigned 16-bit
quantities, and answers are truncated to 16 bits. All logical
operators perform their function on a bit-by-bit basis, and -they
also treat their operands as l6-bit values.

Operators combine with constants to form expressions. In an
expression, all operators are evaluated in a strict left-to-right
order, with no precedence of operators.

Thus consider the following situation:

TEST has been assigned the value 1000H.
INC has been assigned the value 6.

The expression encountered is TEST*6+INC!7<8.

The procedure would be TEST*6 (6BBBH) +INC (6~06H) 17 (6007H) <8
(0760B). Thus the resulting value is 760H. I

4.5.2.3 REGISTERS

The Z-80 has a number of registers, all of Wh~Ch have a specific
symbolic reference. ZSM supports these references, as follows.

4-58 Rev. 8.1 2/5/79

. ... ' ;.

register designation

register B - 8
register C - C
register D - D
register E - E
register H - H
register L - L
accumulator- A
memory M
A & flags PSW
Stack Ptr SP
Index reg x- IX
Index r~ Y- IY

Also called BC for register-pair instructions

Also called DE for register-pair instructions

Also called HL for register-pair instructions

Also called (HL), but ZSM does not allow this.
Program Status Word, may also be called AF

Also may be called X for brevity
Also may be called Y for brevity

Of course, the Z-80 also has registers A', B', C ' , D', E', H', L',
F', PC, I, and R, but these are never explicitly referred to in an
instruction, so no special designation is needed.

4.5.2.4 PSEUDO-OPS

ZSM supports a large number of pseudo-ops. They will be explained
now.

ORG Set origin

The ORG pseudo-op specifies where the object code is to be put.
Assembled code and data is assembled starting at the address
specified as the operand to the ORG psuedo-op, and proceeds upward,
until the end of the program or another ORG. A program can contain
as many ORGs as desired. Since ORG is handled in pass 1, any symbol
appearing in the operand must already be defined.

LINK Link to a file

The LINK pseudo-opallows separate program files on the disk to be
'linked together' and assembled as one file. The LINK operand is a
source file name, enclosed in single quotes. No drive specification
is needed for the LINK file, as all units will be searched (starting
with the unit the original source file is on) to locate the file.
If the file is not found, a 'File not found' error will be issued,
and the assembly aborted.
Linking to a file is like a subroutine; that is, when the linked-to
file is exhausted, assembly of the original program will continue
from where it was left off at. For example,

LXI
LINK
MOV

H,4000H
'TEST'
A,M

will cause the entirety of the file TEST to be assembled between the
LXI and the MOV.
Files that are linked to must not contain an END pseudo-op.

Rev. 8.1 2/5/79 4-59

END End of assembly

The END pseudo-op indicates to ZSM that the end of the program has
been reached. As such, it may be omitted, since the physical end of
a program has the same effect.
In addition, though, an operand may be included. This operand, if
present, indicates the starting address of the program. This
address is not where the program is loaded, but instead where
execution will begin. This allows the program to begin execution at
any point in memory, rather than the beginning of the program. If
this is omitted, then the beginning of the program is used as the
starting address.
In order for the starting address to be effective, the object file
would be changed to an implicit command file under MDOS (type
9C-9F).

EQU Equate

The EQU pseudo-op simply equates the label associated with it to the
value of the operands.

9919 TEN
B02B TWENTY

EQU
EQU

19
2*le

The above code would cause the label TEN to have the value Ie, and
TWENTY to have the value 2B.

REQ Request value

The REQ pseudo-op is similar to the EQU pseudo-op, only instead of
an explicit value being specified, the system console is prompted
for the value. The prompt is specified as the operand. For
example,

B9l9 TEST REQ 'Input:'

Would cause the message

Input:

to be displayed on the console during pass 1 of the assembly. The
operator must then type the value to be associated with the label.
For example, if the operator had typed '5GH' in response to the
prompt, then TEST would have a value of 56 hex.

PRT Print

The PRT pseudo-op allows information to be displayed on the console
during pass 2. If operands are present, they are displayed,
otherwise, just a carriage return/linefeed is printed. For
example,

4-6B Rev. 8.1 2/5/79

7000H 0010 TEST
0020

EQU
PRT 'This is a test I ,TEST

would cause

This is a test 7000

to be printed on the console during pass 2.

TAB Tab settings

The TAB pseudo-op changes the tab settings for the assembly listing.
Normally, they are at positions 15, 22, and 36. If it is desired to
change them, then the TAB pseudo-op is used. It expects three
operands, one for each tab setting. If a particular operand is
zero, then that position is set to the default. The three settings
represent the location of the opcode, operand, and comment fields
respectively.

NLIST No list

The NLIST pseudo-op will cause code following it not to be listed.
Note that this overrides any options which may have been specified
in the command string; If the E option was used, nothing will be
listed (errors or not) after a NLIST.

LIST List

The LIST pseudo-op cancels the effect of the NLIST pseudo-oPe If
there has been no NLIST, then this has no effect.

FORM Form feed

The FORM pseudo-op produces a formfeed in the listing when
encountered.

IFF If false - conditional assembly

The block of code following the IFF pseudo-op will be assembled only
if the operand evaluates to 0.

IFT If true - conditional assembly

The block of code following the IFT pseudo-op will be assembled only
if the operand evaluates to anything other than 0.

ENDIF End of IF block

Rev. 8.1 2/5/79 4-61

The ENDIF pseudo-op is used to mark the end of an 1FT or IFF block.

DB Define byte

The DB pseudo-op assigns its operands to successive memory
locations. Either numeric or ASCII operands may be present, but
either one must evaluate to only 8 bits. This means that only one
ASCII character may be included per operand. For example,

0010 LOCATION DB 1,20H,11B,'D' ,TEST,14

would put each operand into a successive memory location.

·Z· is a special case of the DB pseudo-op, and it is equivalent to
DB 0. For example,

0010 XXX
0010 XXX

Z
DB

are equivalent.

DW Define word

and

The DW pseudo-op is basically similar to DB, only it defines two
bytes at a time, rather than 1. Also, the two bytes are in Intel
standard low/high format.

DO Define data

The DD pseudo-op is exactly like DW, only the two bytes are put in
high/low format.

DT Define text

The DT pseudo-op allows ASCII text to be put into memory. The
desired text must be enclosed by single quotes. For example,

0010 TEST DT 'ABCDEF '

would produce the following object code: 41 42 43 44 45 46 (hex).

DTH Define text terminated high

The DTH pseudo-op is like DT, only the last character is ORed with
80H before it is written out. In the above example, the last byte
would be C6 hex.

DTZ Define text terminated with zero

The DTZ pseudo-op is like DT also, only it causes a byte of 00 to be

4-62 Rev. 8.1 2/5/79

appended to the text string. Thus the example would be 41 42 43 44
45 46 00.

DS Define storage

The DS pseudo-op causes the assembler to skip over the number of
bytes specified by the operand. Since the object file is scatter
loaded, the area skipped over will remain undisturbed.

FILL fill storage

The FILL pseudo-op is similar to DS, only it fills the area with a
constant, rather that skipping over it. The constant to fill with
is specified with the second operand. For example,

FILL 5,3

would produce the output

4.5.3 ASSEMBLY ERRORS

There are ten assembly errors. Note that an error doesn't
necessarily cause the program to assemble wrong, particularly if the
error is a syntax error in something like a TAB statement.
Nevertheless, all errors should be avoided.

The errors are as follows.

A Argument error This is caused by an invalid character in an
operand field, or an ASCII constant which is out of range.

D Duplicate label error This indicates that a symbolic name
was used more than once as a label. The first value will be used.

J Jump error This indicates a relative jump (JR, JRZ, JRNZ,
JRC, JRNC, DJNZ) to a label which is out of range. The relative
jump should be replaced with an absolute one.

L Label error
characters.

This is caused by a label which contains invalid

M Missing label error This indicates that an EQU or REQ
pseudo-op was encountered, but there was no label on the line.
Obviously, a label is necessary for either of these.

o Opcode error
opcode.

This is caused by an illegal or missing

R Register error This indicates that an illegal value was
found where a register was expected.

Rev. 8.1 2/5/79 4-63

S Syntax error
use of operators.

This is caused by missing operands or improper

U Undefined symbol error This indicates that a symbol was
used, but that the symbol has not been defined.

V Value error This indicates that the value computed is out of
range for the operation being used, specifically a two-byte
instruction, or a DB.

4.5.4 INSTRUCTION SET

ZSM supports the complete Z-8~ instruction set, using the TDL-style
mnemonlCS. These mnemonics represent the Z-8~ instruction set as a
logical superset of the 8989 mnemonics. The reason that these
'superset' mnemonics were chosen over the Zilog mnemonics is for
ease of use. All 8989 programs will run unmodified on ZSM, but they
wouldn't on a Zilog-mnemonic assembler. In addition, someone
familiar with 8989 mnemonics will find the superset easy to learn,
since they are a logical extension of 8~89 mnemonics.

One thing that is important to grasp is how indexing is handled.
Under Zilog mnemonics, an operand might appear as (IX+d) where d is
the offset and IX is the index register. Under ZSM, it would be
d(X). Thus instead of

9919 LD HL,(IX+12)

the following notation is used:

LXI H,12(X)

The same is true of IY, only it would appear as (Y) instead of, (X).
In addition, an offset of zero may be omitted entirely. That is,
(IX+9) needn't be written as 9(X), it can simply be (X).

The next sections outline the instruction set. It is not meant as a
tutorial on the Z-89, but rather a guide to the spectfic mnemonics
used. Following that is a test program. If you have a Mostek or
Zilog Z-89 Programming Manual, notice that in the back is an
alphabetic list of all possible instructions. That list is in Zilog
mnemonics. The test program herein is an exact duplicate of that
list, only in the superset mnemonics. You are not expected to enter
and assemble this program, but to use it as reference for the
mnemomics.

In the 'following section, certain general conventions are used.
They are as follows:

n an 8 bit value
nn a 16 bit value
d an 8 bit value, specifically a displacement
r register, such as A, B, C, D, E, H, L, M, d(X), dey)
I one of the index registers, IX or IY (abbreviated X or Y)
rp register pair, ,such as B, D, H, SP, PSW, IX, IY

4-64 Rev. 8.1 2/5/79

b a bit, value 0 - 7

Rev. 8.1 2/5/79 4-65

8 bit load group

Instruction Zilog equivalent

MOV r,r LO r,r
MOV r,M LO r,(HL)
MOV r,d(I) LO r,(I+d)
MOV M,r LO (HL) ,r
MOV d(I),r LO (I+d),r

MVI r,n LO r,n
MVI M,n LO (HI..) ,n
MVI d(I) ,n LO (I+d) ,n

LOA nn LO A, (nn)
STA nn LO (nn),A

LOAX rp LO A, (rp)
STAX rp LO (rp) ,A

LOAI LO A,I
LOAR LO A,R
LOlA LO I,A
LORA LD R,A

16 bit load group

Instruction Zilog equivalent

LXI rp,nn LO rp,nn

LBCD nn LD Be, (nn)
SBCO nn LD (nn) ,Be
LOEO nn LD OE, (nn)
SDEO nn LO (nn),OE
LHI..D nn LD HI.. , (nn)
SHLD nn LD (nn) ,HL
LSPD nn LD SP I (nn)
SSPO nn LD (nn) ,SP
LrXD nn LD IX, (nn)
SIXD nn LD (nn) ,II
LIYD nn LO II, (nn)
SIYO nn LD (nn) ,II

SPHL LD SP , HI..
SPIX LD SP,II
SPIY LO SP,IY

PUSH rp PUSH rp
POP rp POP rp

4-66 Rev. 8.1 2/5/79

Exchange, bloCK transfer, and searoh group

Instruction Zlloe; equivalent

XCHG EX DE,HL
EXAF EX AF,AF'
EXX EXX
XTHL EX (SP),HL
XTIX EX (SP) ,IX
XTIY EX <SP) ,II

LDI LDI
l.DIR LDIR
LDD !..DD
LDDR LDDR

CCl CPI
eeIR CPIR
ceo CPD
ceOR CPDR

Input / Output group

Instruction Zilog equivalent

IN n IN A,n
OUT n OUT n,A

IN? r IN r, (C)
OUT? r OUT (C) ,r

lUI INI
INIH INIR
IND IND
!NDR INDR

aUTI OUTl
aUTIR OTIR
aUTD OUTD
OUTDR OTDR

t',

Rev. 8.1 2/5/79 4-67

8 bit airthmetic/logical group

Instruction Zilog equivalent

ADD r ADD A,r
ADD M ADD A,(HL)
ADD d(I} ADD At U+d}
ADI n ADD A,n

ADC r ADC Atr
ACI n ADC A,n

(references to M and d(I) are like ADD)
SUB r SUB A,r
SUI n SUB (, Atn

SEB r SBC A,r
SBl n SSC A,n

ANA r AND A,r
ANI n AND Atn

ORA r OR A,r
ORI n OR A,n

.. "~~.
XRA r XOR Atr
XRI n lOR A,n

-, eMP r CP A,r
CPI n CP A,n

INR r INC r
DCH r DEC r ,.,- .. ~

1b bit arithmetic group

Instruction Zilog equivalent

DAD rp ADD HL,rp
DADC rp ADC HL,rp
DSBC rp SSC HL,rp

DADX rp ADD IX,rp
DADY rp ADD II ,rp

INX rp INC rp
DCI rp DFC rp

4-67A Rev. 8.1 2/5/79

General purpose arithmetic and control group

Instruction

DAA

CMA

NEG

CMC
STC

NOP

HLT

D1
EI

IMO
1M1
1M2

Rev. 8.1 2/5/79

Zilog equivalent

DAA

cPt.

NEG

CCF
SCF

NOP

D1
EI

1M
1M
1M

a
1
2

4-678

Rotate and shift group

Instruction Zilog equivalent

RLC RLCA
RAL RLA
RRC RRCA
RAR RRA

RLCR r RLC r
RLCR M RLC (HL)
RLCR d(I) RLC (I+d)

(references to M and d(I) are like RLCR)
RALR r RL r

RRCR r RRC r

RARR r RR r

SLAR r SLA r

SRAR r SRA r

SRLR r SRL r

RLD RLD
RRD RRD

Bit manipulation group

Instruction Zilog equivalent

BIT b,r BIT b,r
BIT b,M BIT b, (HL)
Brr b,d(I) BIT b, (I+d)

RES b,r RES b,r
(references to Hand d(l) are like BIT)

SET b.r SET b.r

4-67C Rev. 8.1 2/5/79

Jump, call, and return group

Instruction Zilog equivalent

JMP nn JP nn
JZ nn JP Z,nn
JNZ nn JP NZ,nn
JC nn JP C,nn
JNC nn JP NC,nn
JPO nn (or JNO) JP Pa,nn
JPE nn (or JO) JP PE,nn
JM nn JP M,nn
JP nn JP P,nn

JR nn (or Jl'1PR) JR d
JRZ nn JR Z,d
JRNZ nn JR NZ,d
JRC nn JR C,d
JRNC nn JR NC,d

DJNZ nn OJNZ d

PCRL JP (HL)
PCIX JP (IX)
PCn: JP (II)

CALL nn CALL nn
CZ nn CALL Z,nn
CNZ nn CALL NZ,nn
CC on CALL C,nn
CNC nn CALL NC,nn
CPO nn (or CNO) CALL PO,nn
CPE nn (or CO) CALL PE,nn
eM nn CALL M,nn
CP nn CALL P,nn

RET RET
RZ RET Z
RNZ RET NZ
RC RET C
RNC RET NC
RPO (or RNa) RET po
RPE (or RO) RET PE
RH RET M
RP RET P

RE"I'l RETI
RETN RETN

RST n RST m (m :: B • n)

Rev. 8.1 2/5/79 4-67 0

Page 1 Page 2

Addr Bl B2 B3 B4 E Line Label Oped Operand Addr Bl B2 B3 B4 E Line Label Oped Operand

0000 0001 004A E6 20 0057 ANI N
0000 0002 Test file for ZSH 004C 0058 ;
0000 0003 by Neale Brassell 004C CB 46 0059 A.004C BIT O,H
0000 0004 OOIlE DD CB 05 46 0060 BIT O,IND(X)
0000 0005 This uses all instructions 0052 FD CB 05 46 0061 BIT O,IND(Y)
0000 0006 j 0056 CB 117 0062 BIT O,A
0000 8E 0007 A.OOOO ADC H 0058 CB 40 0063 BIT O,B
0001 DD 8E 05 0008 ADC IND(X) 005A CD 111 0064 BIT O,C
0004 FD 8E 05 0009 ADC IND(Y) 005C CB 42 0065 BIT O,D
0007 8F 0010 ADC A 005E CB 43 0066 BIT O,E
0008 88 0011 ADC B 0060 CB 114 0067 BIT O,H
0009 89 0012 ADC C 0062 CB 115 0068 BIT O,L
OOOA 8A 0013 ADC D 0064 0069
OOOB 8B 0014 ADC E 0064 CB 4E 0070 BIT l,H
001lC 8C 0015 ADC H 0066 DD CB 05 4E 0071 BIT 1,IND(X)
OOoD 8D 0016 ADC L 006A FD CB 05 4E 0072 BIT 1.INDO~)
OOOE CE 20 0017 ACI N 006E CB IIF 0073 BIT l,A
0010 ED 4A . 0018 DADC B 0070 CB 118 00111 BIT l,B
0012 ED 5A 0019 DADC D 0072 CB 49 0075 BIT l,C
00111 ED 6A 0020 DADC H 00711 CB IIA 0016 BIT l,D
0016 ED 1A 0021 DADC SP 0076 CB 4B 0077 BIT l,E

""-
0018 0022 i 0018 CB 4C 0078 BIT l,H

I 0018 86 0023 A.0018 ADD H 001A CB 110 0019 BIT l,L
0'\ 0019 DD 86 05 00211 ADD IND(X) 007C 0080
....... 001C FD 86 05 0025 ADD IND(Y) 007C CD 56 0081 BIT 2,H
t>l 001F 87 0026 ADD A 007E DO CB 05 56 0082 BIT 2,IND(X)

0020 80 0027 ADD B 0082 FD CB 05 56 0083 BIT 2,INDO')
0021 81 0028 ADD C 0086 CD 57 0084 BIT 2,A
0022 82 0029 ADD 0 0088 CB 50 0085 BIT 2.B
0023 83 0030 ADD E 008A CB 51 0086 BIT 2,C
00211 811 0031 ADD H 008C CB 52 0087 BIT 2,D
0025 85 0032 ADD L 008E CB 53 0088 BIT 2,E
0026 C6 20 0033 ADI N 0090 CB 54 0089 BIT 2,8
0028 09 0034 DAD B 0092 CB 55 0090 BIT 2,L
0029 19 0035 DAD 0 0094 0091
002A 29 0036 DAD tI 00911 CB 5E 0092 BIT 3,H
002B 39 0037 DAD SP 0096 DO CB 05 5E 0093 BIT 3,IND(I)

::v 002C DO 09 0038 DADX B 009A FD CB 05 5E 0094 BIT 3,INDCt)
(I) 002E DO 19 0039 DAD X 0 009E CB 5F 0095 BIT 3,A
<: 0030 DO 29 0040 DAD X X OOAO CB 58 0096 BIT 3,B

0032 DD 39 0041 DADI SP 00A2 CB 59 0097 BIT 3,C

00
0034 FD 09 0042 DADY B 00A4 CB 5A 0098 BIT 3,0
0036 FD 19 0043 DADY 0 00A6 CB 5B 0099 BIT 3,E

I-' 0038 FD 29 0044 DADY Y 00A8 CB 5C 0100 DIT 3,tI
003A FD 39 0045 DADY SP OOAA CB 50 0101 BIT 3,L
003C 0046 ; OOAC 0102

N 003C A6 0047 A.003C AHA H OOAC CB 66 0103 BIT 4,H ""'-Ul 003D DO A6 05 0048 ANA IND(X) noAE DD CB 05 66 01011 BIT 4.IND(I)
""'- 0040 FD A6 05 0049 ANA IND(Y) 00B2 FD CB 05 66 0105 BIT 4,IND(Y)
....... 00113 A7 0050 ANA A 00B6 CB 67 0106 BIT II,A !,O 0044 AO 0051 ANA D 00B8 CB 60 0101 BIT 4,B

0045 A 1 0052 ANA C OOBA CB 61 0108 BIT 4,C
0046 A2 0053 ANA D OOBC CB 62 0109 BIT 4,D
0047 A3 0054 ANA E OOBE CB 63 0110 BIT 4,E
0048 A4 0055 ANA tI OOCO CB 611 0111 BIT 4,tI
0049 A5 0056 ANA L OOCZ CII 65 0112 BIT II,L

t~ ".

rage Page II

it;' Addr 81 82 B3 B~ ~ ~i~= laval Opca :,' erand Addr Bl b2 t) BII E Line label Oped Operand
<:

ooell 0113 0136 FE 20 0169 CPI N
co OOCII CB 6E 01111 BIT 5," 0136 0170 i

...... 00C6 DO CB 05 6E 0115 BIT 5,IND(Xl 0136 ED A9 0111 A,On8 ceo
OOCA FD CB 05 6E 0116 BIT 5,INDn) OnA ED B9 0112 CCOR
DaCE CB 6F OIl" Bit 5,A onc ED AI 0113 CCI

N 0000 CB 66 OllS BIT 5,B onE ED Bl 01'111 CCIR

"'" 0002 CB 69 0119 BIT 5,C 01110 0175 i
VI

"'" 0004 CB 6A 0121) BI'f 5,0 01110 2F 0116 A.0140 CHI.
-J 001)6 CB 6B 0121 BIT 5,E 0111 1 0117 I
..0 00c8 CB 6c 0122 BIT 5,lI 0141 27 0176 A.Olll1 OAA

OODA CB 61) 012) BIT 5,l 01112 0179 i
OODC OUli 0142 35 0180 1.OH2 DCR " OODC CB "6 0125 BIT 6,11 0111) DO 35 05 0181 I)CR IND(X)
OOIlE DO CD 05 76 0126 BIT 6,INI>(1) 01116 FD 3S as 0182 OCR IND(X)
00E2 FD CB 05 76 0121 BIT 6,INDcY) 01119 3D 0163 OCR A
00E6 CB 77 0128 BIT 6,A 0111A 05 01811 DCII B
00E8 CB 70 0129 BI'C 6,B 0111B OB 0165 DCI B
OOEl CS 71 01]0 BIT 6,C OIIiC 00 0186 OCR C
OOEC C9 72 0131 BIT 6,1) 01110 15 0187 OCR 0
OOEE CB 73 0132 8lT 6,£ OlliE 10 0188 DeX D

OOFO CD 711 On3 BIT 6,K 0111F 10 0189 DCR E

00F2 CB 15 01311 BIT 6,'" 0150 25 0190 DCR u
~

00,'11 0135 0151 2D 0191 DCI U

I OOFII CB 7E 0136 BIT 7,H 0152 DO 2B 0192 DCI 1
0\ 00F6 DO CB 05 1£ 0131 Bl'f 7,IND(I) 01511 FD 2B 0193 DCI 1
...... OOFA '0 CB 05 7£ 0138 BIT 7,INI)(I) 0156 20 019_ OCR ...
I':lJ OOFE CD 1F 0139 BIT 7,A 0151 3B 0195 DCI SP

0100 CB 18 01110 BIT 7,B 0158 0196 ;
0102 CB 19 01111 BIT 1,C 0156 F3 0191 A.0158 01
01011 CB 11 01112 BIT 7,0 0159 0198 ;
0106 CB 1B 01113 BIT 1,E 0159 10 2£ 0199 A.0159 I)JNZ $+DIS
0108 CD 1C 01lill BIT 1,lI 015B 0200 ;
010A CB 10 01115 BIT 1,'" 0151:1 FB 0201 !.0158 £1
OIOC 01116 j 015C 0202 i
010C DC 68 05 01117 A.Ol0C CC NN 015C £3 0203 A.015C ITHl
010F FC 88 05 01118 CH NN 0150 DO E3 02011 IT IX
0112 1)4 86 05 0149 CNC NN 015F FD t:3 0205 XTn
0115 CI> 86 05 0150 CAli. NN 0161 08 0206 RIAF
0118 Cil 88 05 0151 CNZ NN 0162 EB 0207 XCUO
011B FII 88 05 0152 CP NN 0163 09 0208 Ell
011& EC 88 05 0153 CPE NN 01611 0209 j

0121 Ell 88 05 0154 CPO NN 01611 76 0210 A.01611 lilT
01211 CC 68 05 0155 CZ NN 0165 0211 j

0127 0156 j 0165 ED 46 0212 A.0165 IHO
0127 3Y 0151 A.0121 CHC 0167 ED 56 0213 IHI
0128 0156 i 0169 ED 5E 02111 1112
0128 BE 0159 A .0128 CHP H 016B 0215 i
0129 DO BE 05 0160 CHP IND(X) 016B ED "6 0216 A.OlbB INP A
012C FD BE 05 0161 CHP INDIY) 0160 DB 20 021" IN N
012f' SF 0162 CHf' A 01uY ED ItO 0216 lNP Il

0130 Btl 0163 CHf' 1:1 0171 IW lj~ 0219 INP c
0131 B9 0101t CHf' C 0113 ED 511 0220 INP D

01]2 SA 0\t'5 CHf' 0 0175 ED 58 0221 INP E
01 n lUI t) lot- CMP Ii: 0171 ED 60 02U INP II

'I BC 010" CHf' II 'l179 ED 00 0223 INP l
) SD 010:) CMf' L 1"8 ilU4

?age S Page L

Addr B1 62 63 B4 E Line label Oped Operand Addr 31 B2 63 aq E Line label Oped Operand

01111 311 0225 A.0171i INR M 0100 DO 711 05 0281 HOV lNO(X),H

ol1e DO 311 05 0226 INR INO(X) OlEO DO 15 05 0282 HOV iNDCX) ,L
onF FO 311 05 0221 INR INOCY) 01£3 DO 36 05 20 0283 HVI INO(X) tN
0182 3C 0228 INR A OlE:1 02t'lll ;
0183 011 0229 INR 8 01E1 FO 11 05 0265 A.01E1 KJV INOcn ,A
018~ 03 0230 INX 8 OlEA FO 10 05 0286 KJV INOCr) ,B
0185 OC 0231 INR C OlEO FO 11 05 0281 KJV INO(Y),C
0186 111 0232 INR 0 01FO FO 72 05 0288 KJV INO(X) ,0
0187 13 0233 INI 0 01F3 FO 13 05 0289 KJV INO(Y) ,E
0186 IC 02311 INn E 01F6 FO 111 05 0290 KJV IND(Y) ,II
0189 211 0235 INn II 01F~ FO 15 05 0291 KJV INDex) ,L
018A 23 0236 INX II 01FC FO 36 05 20 0292 HVI IND(X) ,N

~<

016B DO 23 0231 INI I
;)

0200 0293 i
0180 FD 23 0236 INI Y ~ 0200 32 86 05 02911 A.0200 Sf! NN
016F 2C 0239 INR L ~"< 0203 ED 113 86 05 0295 SBeD NN
0190 33 02110 IN>': SP 0201 ED 53 88 05 0296 SDED NN
0191 02111 ; 020B 22 68 05 0291 SlIlD NN
0191 ED AA 02112 '.0191 IND 020E DO 22 86 05 0298 SIlO NN
0193 ED BA 02113 INOR 0212 FO 22 86 05 0299 SUD NN
0195 ED A2 021111 INI 0216 ED 13 68 05 0300 SSPD NN
0191 ED 82 02115 INIR 0211 0301 i

0199 02116 ; 0211 OA 0302 A.02lA LOU B
.... 0199 19 02111 A.0199 PCIIl 021B lA 0303 lOU 0
I 019A DO E9 02116 PCIX 021C 1E 03011 KJV A,H

Q)
019C FD E9 02119 pcn 0210 DO 1£ 05 0305 KJV A,INO(X)

-....J
G') 019E DA 68 05 0250 JC Nil 0220 FO 1E 05 0306 KJV A,IND(Y)

OlAl FA 88 05 0251 JH NN 0223 3A 88 05 0301 lOA NN
OlAll D2 88 05 0252 JNC NN 0226 1F o30t! HOV A,A
OlA1 C3 88 05 0253 JHP NN 0221 78 0309 KJV A,a
01AA C2 88 05 02511 JNZ NN 0226 19 0310 KJV A,C
OlAD F2 88 05 0255 JP NN 0229 11. 0311 KJV A,D
0180 EA 88 05 0256 JPE NN 022A 1a 0312 HOV A,E
01B3 E2 88 05 0251 JPO NN 022a 1C 0313 HOV A,II
01B6 CA 88 05 0258 JZ NN 022C ED 51 0)111 lDAl
01B9 0259 ; 022E "0 0]15 HOV A,l
01B9 38 2E 0260 A.01B9 JRC $+OIS 022F 3E 20 0]16 HVI A,N
01BB 18 2E 0261 In $+OIS 0231 ED 5F 0317 LOAH
01aD 30 2E 0262 JRNC <$+018 0233 0318 i

::0 01BF 20 2E 0263 JRNZ $+DIS 0233 46 0319 A.0233 KJV atH
til 01Cl 28 2E 026~ JRZ $+DIS 02311 DO 116 05 0320 HOV a,IND(X)
<: 01C3 0265 ; 0231 FO 116 05 0321 HOV B,IND(Y) .

OICl 02 0266 A.01C3 STU £I 023A 111 0322 KJV 8,A
(X) OICIl 12 0267 SUX 0 023B 110 0323 KJV a,B

01C5 11 0268 KJV H,A 02]C 111 03211 KJV B,C
..... 01C6 10 02c9 KJV M.B 0230 112 0325 KJV a,D

o lC1 11 0270 KJV H,C (5 023E 113 0]26 HOV B,E
tv 01c8 12 0271 HOV H,D 023F 1111 0321 mv B,H
"- 01C9 13 0212 HOV M,E f,\ 02110 115 032i1 KJV B,l
U1 01CA 111 027 3 mv H,II 02111 Oll 20 0329 MVI B,N
"-
-.,J 01ca 15 02"11 KJV H,l 02113 0]30 ;
1..0 01CC 36 20 027 5 MVI M,N 02113 ED liB ~s 05 0]31 A.02113 LBCD NN

01CE DO 71 05 0216 HOV IND(X),A 02111 01 1:18 I>:> 0332 LX! B,NN
OlDl DD 10 05 027~ KJV IIID(X) IB 024A 0333 ;
01011 DO 11 05 02"::. HOY um(x),C' 0211A 'IE ()33~ A.024A tOV C,M
OlD" DO 72 0') 02"9 I()V IhO(X),O 02118 DO liE 0, ;1335 HOV C,INO(X)
U1DA DO i3 0') 02thi HOV ltiO(X) ,E • 02n: HI liE \)~ 1'336 HOV C,INO(Y)

{} •

:;0
(l)

rllge '1 Page 0

<:
Addr Bl 82 B3 B~ E L1n~ Label Oped Operaml Addr Bl 82 63 64 E Line Label Oped Operand

0) 0251 4~' 0337 I4lV C,A 02Al 1"0 2A 88 05 0393 A.02Al LUO NN

..... 0252 liB 0330 I4lV C,8 02A5 1"0 21 8& 05 0394 LXI Y,NN

0253 119 0339 I4lV C,C 02A9 0395 i

02511 IIA 0340 I«lV C,O 02A9 6£ 0396 A.02A9 I«lV L,H
tv 0255 115 03111 I4lV C,E 1l2U DO 6E 05 0397 I«lV L,INO(X)

'" U1 0256 IIC 03112 I4lV C,II 02AO 1"0 6£ 05 0398 HOY L,INO(Y)

'" 0257 liD 031n mv C,L 02BO 61" 0399 I4lV L,A
...... 0258 OE 20 OJIIII MVI C N 0281 68 01100 HOY L,8
\0 025A 0345 i 0282 69 01101 t«lV L,e

025A 56 03116 A.025A my D,M 0253 6A 0402 t«l~ L,D

0255 DO 56 05 03117 KlY O,INO(1) 02511 61l 01103 KlY L,E
025E FO 56 05 03118 mv O,INOn) 02B5 6c 011011 t«lY L,H

0261 57 03119 t«lV D,A if. 0256 60 01105 t«lV L,L

0262 50 0350 HOV 0,5 . 'l 02B7 2£ 20 01106 MYI L,N
0263 51 0351 mv D,C 02B9 01107 i

02611 52 0352 t«lV 0,0 0259 ED II~' 01108 A.02B9 LORA
0265 53 0353 HOV O,E 02B5 01109 i

0266 511 03511 HOV O,H 02B5 ED 7B 88 05 01110 A.025B LSI'O 14M

0267 55 0355 KlV O,L 02BF F9 01111 SPilL
0268 16 20 0356 MVI 0,14 02CO DO 1"9 01112 SPIX
026A 0357 i 02C2 1"0 F9 01113 SPU

",., 026A ED 58 88 05 0358 A.026A LOED NN 02GII 31 88 05 011111 LXI SP,NN

I 026E 11 88 05 0]59 LII 0,1414 02C1 01115 i
0\ 0211 0360 i 02C1 ED A8 01116 A.02C1 LDO
...... 0211 5E 0]61 A.0211 mv E,M 02<:9 ED B8 0411 LOOR
~ 0212 DO 5E 05 0362 I«lV E,INO(X) 02Ca ED AO 01118 LOI

0275 FO 5E 05 036] KlV B,INO(Y) 02CO ED 80 01119 lOIR
0218 5f 0]611 mv E,A 02Cf 01120 i

0219 58 0305 t«lV E,5 02CF ED 1111 01121 A.02Cf IUXl

0211 59 0366 t«lV E,C 0201 01122 j

0215 5A 0361 t«lV E,O 02Dl 00 01123 A.0201 1401'

021C 58 0]68 KJV E,£ 0202 0112" i

0270 5C 0369 t«lV £,11 '0202 56 01125 A.0202 ORA M

021E 50 0370 mv E,L 0203 DO 86 05 01126 ORA INO(X)

021f IE 20 0311 MVI E,N 0206 1"0 B6 05 01121 ORA INO(Y)
0281 0372 j 0209 81 0~28 ORA A
0281 66 0313 A.0281 KlV H,H 020A BO 01129 ORA B
0282 DO 66 05 03711 t«lV H,INO(X) 020B Bl 01130 ORA C
0285 1"0 66 05 0)75 KlV Il,INO(l) 020C B2 0431 ORA 0

0288 61 0316 t«lV II,A 0200 B3 0432 ORA E

0289 60 0377 mv H,a 020E BII 01133 ORA H
028A 61 0378 KlV II,C 0201" 55 011311 OIiA L

021:1B 62 0379 mv 11,0 02EO 1"6 20 0~35 ORI N

028e 63 0360 KlV H,E 02£2 0436 j

0280 611 03111 HOV H,II 02£2 ED BB 0~37 A.02E2 OUTDR

028E 65 0382 mv H,L 02EII £0 l!3 OQ)8 OOTIR

0281" 26 20 0383 MVI H,N 02£6 Oq39 j

0291 03611 j
02E6 ED 79 Oq~O A.02£0 OUTP A

0291 2A 88 05 0)85 1.0291 11110 NN 02£11 £0 111 t)lllj 1 OUTP B

0294 21 88 05 03116 LXI II.NN 02[1 ED II-J "1142 OUTP C

0~91 036" l 02EC ED li1 ;')"''''') OUTI' 0

0297 £0 11"1 o 3d:l A. 02',r' lI)U t1.!Et:: ED 'i'il \1!t~~ OUTP E

0299 OJtl-) i O.!FO ED 1>1 \) .. 4:' oorp H

0299 DO 2A 1111 c~ o jIlll 1.0299 LIIO Ntl !l2F2 ~:o 09 .l~.;::> OUTI' L

'I) DO 21 dB O~ In91 t.Xl X,NN I)~fll 03 20 ll~~" OUT N

0392 ; 'Fb l).j4~

rage :; Page 10

Addr Bl b~ ~3 Bq ~ ~lr.e LaDel Oped Ope ran:! Addr 81 B2 1:: 2'1 E. : !ne Label Oped Operand

02F6 ED AB 0~49 A.02FO aUTO 03611 CD 9B C05 RES 3,E
02F8 ED A3 0'150 CUT I 0366 CB 9C 0500 RES 3,H
02FA Olf51 j 0368 CB 90 0507 RES 3,L
02FA Fl 01152 A.02FA POP rsw 036A 0508
02FB C I 0115, POP Ii 036A CB Ao 0509 RES II,M
02FC 01 011511 POP 0 036C DO CB 05 A6 0510 RES 1I,IND(X)
02fD El 01155 1'01' II 0370 t'O CB 05 A6 0511 RES II,IND(Y)
02FE DO EI 01156 POP x 03711 CB A1 0512 RIi:S II,A
0300 FD EI 01157 POP y 0316 CB AO 0513 RES II,B
0302 F5 01151.1 PUSIJ PSW 0318 CB AI 05111 RES II,C
0303 C5 01159 ('US" B 031A CB AZ 0515 RES 11,0
03011 os 01160 PUSH 0 031C CB A3 0516 RES lirE
0305 E5 01161 PUSH 1\ . 031E CB All 0511 RES II,"
0306 DO E5 0462 PUSH X It(0380 CD A5 0518 RES II,L
()308 FD E5 01163 PUSH Y 0382 0519
030A 011611 ; '0' 0382 CB AE 0520 RES 5,H
030A CB 86 01165 A.OlOA RES O,H 03811 DO CB 05 AE 0521 RES 5,INDU)
030C DO CB 05 86 01160 RES O,IND(X) 0388 FO CB 05 AE 0522 RES 5,IND(J)
0310 FD CB 05 86 01161 liES O,IND(Y) 038c CB AF 0523 RES 5,A
03111 CB 81 01l6a RES O,A 038E CB A8 05211 RES 5,8
0316 CB 80 01169 RES O,B 0390 CD A9 0525 RES 5,C
0318 CB 81 0410 RES O,C 0392 CB AA 0526 RES 5,0
03IA CB 82 01111 RES 0,0 03911 CB AB 0521 RES 5,E

"'"
031C CB 83 01112 RES O,E 0396 CB AC 0528 RES 5,H

I 031E CB 811 Olin RES 0." 0398 CB AD 0529 RES 5,L
0'1 0320 CB 85 01174 RES O.L 039A 0530
-..J 0322 01115 039A CB B6 0531 RES 6,H
H 0322 CB 8E 01176 RES I,H 039C DO CB 05 B6 0532 RES 6,IND(X)

03211 DO CB 05 8E 04 71 RES I,IMD(X) 03AO FD CB 05 B6 0533 RES 6.IND(r)
0328 FD CB 05 8E 0418 RES I,INDO) 03AII CB B7 05311 RES 6,A
032C CB 6F 01179 RES I,A 03A6 CB BO 0535 RES 6,B
032E CB 86 01180 RES I,B 03A8 CB Bl 0536 RES 6.C
0330 CD 89 01181 RES I.C 03AA CD B2 0537 RES 6,0
0332 CB 8A 01182 RES I,D 03AC CB B3 0538 RES 6,E
03311 CB 8B 01183 RES I,E 03AE CB BII 0539 RES 6,"
0336 CB 8C 04811 RES I," 03BO CB B5 05110 RES 6,L
0338 CD 80 0485 RES I,L 03B2 05111
033A 01186 03B2 CB BE 05112 RES 7,H
033A CB 96 OqS7 RES . 2,M 03BII DO CD 05 BE 05113 RES 7,IND(X)

!:O 033C DO CB 05 96 01188 RES 2,IMD(X) 03B8 FD CB 05 BE 051111 RES 1,IND(Y)
Cl) 03110 FD CB 05 96 01189 RES 2,IND(Y) 03DC CD BF 05115 RES 7,A
< OWl CB 97 01190 RES 2,A 03BE CB 08 05~6 RES 7,B

03116 '::B 90 0~91 RES 2,0 03CO CB 89 05117 RES 7,C
co 03118 CB 91 0492 RES 2,C 03C2 CB BA 05Q8 RES 7,0

0311A CB 92 01193 RES 2,0 03CII CB DB 05~9 RES 7,E
I-' 0311C CB 93 011911 RES 2,.: 0]C6 CIl BC 0550 RES 7 t H

0311E CD 9q 0495 RES 2,11 O]CS CB BD 0551 RES 1,L
N 0350 CB 95 Oqgt> RES 2,L 03CA 0552
'-..,. 0352 C~9" 03CA C9 055] A.03CA RET
VI 0352 CB 9E M98 RES 3,M OjCB 08 05~~ RC

'-..,. 03511 DO CD 05 9E 01199 liES J, INN l. 1 l13CC Fii 0,5:- RM
-..J 0358 FD CD 05 9E 11500 RES l, IND(I \ 1l1CI) 00 0551) IlNC
~

035C CIl 9F 051)) RES].A 03CE CO l)t:;"~ RNZ
035E CB 98 051l.? RES 3,0 OlCF ~'O 11:;;5.5 RP
0]60 CIl 99 0'1) 3 RES 3 pC 0300 Ed 0:;:-~ RPE
0]62 CB 9A u5,1~ RES 3,D 0301 EO 1);0\) uro

~ l

rage 11 Page 12

:;0 Addr Bl b2 B3 B~ E llne label Oped (I) Operan'j Addr Bl B2 63 b~ E line Label Oped uperand

<:
0302 cO 0561 liZ 01l3C 01i11 j

OJ 0)03 0562 J 01l3C OF 0616 A.01l3C RRC
0303 ED 110 05b) A.0303 RiTI 01130 Ob19 ;

I-' 0)05 ED 115 05bll RETN 01130 ED 61 Ob20 A.01l31J RRO

0301 0565 j OIl3F Ob21 ;
0301 CD 16 0566 A.0301 RALR H 01l3F C1 ()622 A.01l3F RST 0

tv 0309 DO CB 05 16 0561 IUOU) 011110 CF 0623 RST 1

"
ElALR

VI 0300 FD CD 05 16 0568 RAlR lRO(Y) 011'11 01 06211 RS'r 2

" 03El CB 17 0569 RALR A 01/'12 OF 0625 RST 3
-J 03E3 Cll 10 0510 RALR B 04113 E7 0626 liST II
\0 OlE5 CIl 11 0571 RALH C 0111111 EF 0627 RST 5

03E7 CB 12 0572 HALR 0 011115 F7 0628 RST 6

03E9 CD 13 0513 RALR E i " 011116 FF 0629 RST 1
O:;EIl CD 1'1 05711 RALR H tf, 011111 0630 j

03EO CB 15 0515 RALIi L 0'1111 9E 0631 A.01l1l1 SBD H
03EF 0576 j 0'1'18 00 9E 05 Ob32 SBB INO(X)

03EF 11 0511 A.03EF RAL OIlIlB FD 9E 05 0633 SBa INO(Y)
03FO 0518 i (lilliE 9F 06311 saa A
03FO CII 06 0519 A.03FO RLCR H OIlIjF 98 0635 SBB 0

03F2 DO CB 05 06 0580 RLeR IND(lC) 01150 99 0636 sss c
03l'6 FO co 05 06 0581 RLCR IRO(Y) 0'151 9A Ob37 SBO 0
03l'A CD 01 0582 RlCR • 01152 9B 0636 SOD E
03l'C CD 00 0583 RlCR B 01153 9C 0639 SBB " ..,.. 03FE CD 01 058'1 RlCR C Oli5li 90 06110 SBB l

I 01100 CB 02 0585 RlClI 0 0'155 OE 20 Obljl SBI H
(1) 01102 CB 03 0586 IllCR E 01151 06'12 i
-J
'-4 0'1011 CB Oli 0581 IllCR " 01151 EO 112 06113 A.01l51 OS DC 0

01106 CD 05 0588 RLCR l' 01159 EO 52 Obllll OSBC 0
01108 0589 i 01l5B EO 62 06115 OSOC H

01108 01 0590 A.01I08 RLC 01l5!) EO 12 06116 OSBC SI'
01109 0591 j 01l5F 06111 i
01109 EO 6F 0592 A.0409 RlO 01l5F 31 06116 •• 01l5F STC
OIiOB 0593 i 01160 06119 i
olloa CB IE 05911 A.OIIOO RAHR H 01160 CD C6 0650 A.01l60 SET O,H

01100 00 CB 05 IE 0595 RARR INO(l) 01162 00 CB 05 c6 0651 SET O,INO(X)
0411 FO CB 05 IE 0596 RARR IHO(Y) 01166 FO CB 05 c6 0652 SET O,IRO(Y)

01115 ca IF 0591 RARR A 01l6A CB C1 0653 SET O,A
01111 CD 18 0598 RARR D 01l6c ca co 06511 SET O,B
01119 CB 19 0599 RARR C OIIbE CB Cl 0655 SET O,C

011 lB CB 1A 0600 IlARR 0 01110 CD C2 0656 SET 0,0
01110 CB lB ObOl RARR E 0'112 CB C3 0651 SET O,E
Oljll' CB lC 0602 RARR H 04111 CB CII 0658 SET O,H
01121 CB 10 Ob03 RARR l 01l1b CD C5 0659 SET O,L
01123 06011 i 01178 Ob60
01123 \1; 0005 A.01l23 RAR 01118 CD CE 0661 SET I,"
/}1I211 0606 ; 01l1A 00 CB 05 CE ob62 SET I,IRI)(X)
011211 CB OE Ob01 A.01l211 RRCr. H OIl?E FO CB 05 CE 0663 SET l,INO(Y)
01126 00 CD 05 OE 060tl RRCIl IHD(X) 01182 CB CF Ob611 SET l,A
01l2A fO CB 05 OE 0009 ftfteR INIl(Y) 011811 CB Cd Ob65 SET I,B
01l2E CB OF 0010 HRCIl A 01180 CIl ClI 0060 SET I,C
01130 CB 08 0011 HRCR B 01188 cn. CA 116b" SET I,D
01132 CB 09 0012 AIiCR C 01l8A CIl CEI Dobd SET I,E

01134 CB OA 0013 RNCN 0 048C L'B CC Ooo~ SET I,"
0436 CB OB 06111 NRCR ., OlldE CD CO ,)0"0 SET t,l
(\' '~ OC Ob15 HHeR II 01190 Oo?1

) 01) vol!) RHCR l 01190 CB 00 (lb?;? SE'I 2,M

rage 13 Page 14

Addr Bl 02 B3 64 E Lir.~ Label Oped OperaOd P.ddr Bl B2 83 E4 E Line Label Oped Operand

0492 DD CB 05 D6 0673 SET 2,INIj(X) 050E FD CB 05 FE 07 29 SET 7,INDO')

0496 FD CB 05 D6 0674 SET 2,IND(Y) 0512 CB Fio 07jO SET 7,A

049A CB D7 0675 SET 2,A 0514 CB F8 0731 SET 7,B

049C CB DO 0676 SET 2,B 0516 CD F9 0"32 SET 7,C

049E CB Dl 0677 SET 2,C 0518 CB FA 0733 SET 7,D
04AO CD D2 O(,"d SET 2,D 05IA CII FD 0734 SET 7,E

04A2 CD D3 0679 SET 2,E 051C CD FC 0735 SET 7,"
04A4 CD D4 0680 SET 2," 051E CD FD 0736 SET 7,L
04A6 CD D5 (~81 SET 2,L 0520 0737
01lA8 0682 0520 ca 26 0738 A.0520 SLAFt H
04A8 CD DE 0683 SET 3,H 0522 DD CD 05 26 0739 SLAR IND(X)
04AA DD CD 05 DE 0684 SET 3,IND(X) 0526 FD CD 05 26 0740 SLAR INDO')
04AE FD CB 05 DE 0685 SET 3,IND(Y) 052A CII 27 0741 SLAR A
04D2 CD DF 0686 SET 3,A 052C CD 20 0742 SLAR B
04B4 CD D8 0687 SET 3,D 052E CB 21 0743 SLAR C
04D6 CD D9 06118 SET 3,C 0530 CD 22 0744 SLAR D
04D8 CD DA 0689 SET 3,D 0532 CB 23 0745 SLAR E
04DA CD D8 0690 SET 3,E 0534 CD 24 0746 SLAR " 04DC CD DC 0691 SET 3," 0536 CD 25 0747 SLAR L
04DE CD DD 0692 SET 3,L 0538 0748 j

04CO 0693 0538 CD 2E 0749 A.0538 SRAR H
04CO CD E6 0694 SET 4,H 053A DD CD 05 2E 0750 SRAR IND(X)

~
04C2 DD CD 05 E6 0695 SET 4,IND(X) 053E FD CD 05 2E 0751 SRAR IND(Y)

I 04C6 FD CD 05 E6 0696 SET 4,IND(Y) 0542 CD 2F 0752 SRAR A
0'1 04CA CD E7 0697 SET 4,A 0544 CD 28 0753 SRAR D
..... 04CC CD EO 0698 SET 4,D 0546 CD 29 0754 SRAR C
~ 04CE CD El 0699 SET 4,C 0548 CD 2A 0755 SRAR D

04DO CD E2 0700 SET 4,D 054A CD 2D 0756 SRAR E
04D2 CD E3 0701 SET 4,E 054C CD 2C 0757 SRAR " 04D4 CD E4 0702 SET 4," 054E CD 2D 0758 SRAR L
04D6 CD E5 0703 SET 4,L 0550 0759 j

04D8 0704 0550 CD 3E 0760 A.0550 SRLR H
04D8 CB EE 0705 SET 5,H 0552 DD CD 05 3E 0761 SRLR IND(X)
04DA DD CD 05 EE 0706 SET 5,IND(X) 0556 FD CD 05 3E 0762 SRLR INDO')
04DE FD CII 05 EE 0707 SET 5,INDO') 055A CD 3F 0763 SRLR A
04E2 CD EF 0708 sin 5,A 055C CB 38 0764 SRLR D
04E4 CD E8 0709 SET 5,D 055E CD 39 07 65 SRLR C
04E6 CD E9 0710 SET 5,C 0560 CD 3A 0766 SRLR D
04E8 CD EA 0711 SET 5,D 0562 CB 3D 0767 SRLR E

~ 04EA CD ED 0712 SET 5,E 0564 CD 3C 0768 SRLR " ~
<: OIIEC CB EC 0713 SET 5,11 0566 CD 3D 0769 SRLR L

04EE CB ED 0714 SET 5,L 0568 0710 i

04FO 0715 0568 96 0"71 A.05611 SUD H
OJ 04FO CB F6 0716 SET 6,H 0569 DD 96 05 0772 SUB IND(X)

I-' 04F2 DD CD 05 F6 0717 SET 6,IND(X) 056C FD 96 05 07 73 SUB IND(Y)
04F6 FD CB 05 F6 0718 SET 6,IND(Y) 056~' 97 0"74 SUD A
04FA CD F7 0'(19 SET 6,A 0570 90 0775 SUD D

1'0 04FC CD FO 0720 SET 6,D 0571 91 0"76 SUD C

'" U1 04FE CD Fl 0721 SET 6,C 0572 92 0"77 SUB D

'" 0500 CB F2 0722 Sl::T 6,D 05"3 93 0'7'76 SUD E
--.J 0502 ~B F3 0"23 SET 6,E 0574 94 0""<) SUII H
\D 051)4 CIl F4 0724 SET 6,11 05"5 95 O"otJ SUB I

0506 Cil f5 0"25 SET 6,L 05"6 D6 20 ll"d 1 SUI N
0500 0720 05"6 O~dl i

0~08 CB FE 0727 SET 7,H 0~78 AE 11".:)3 A ,057d)'HA H

O,)llA DD CB OS FE 0"26 Sl::T '1 ,INDO \ 05"9 DD AE os IPd4 XRA INlh X)

Addr B1 B2 B3 B4 E Line Label Oped Operand

057C FD AE 05 0785 IRA IND(Y)
057F AF 0786 XRA A
0580 A8 0787 XRA B
0581 A9 0788 IRA C
0582 AA 0789 XRA D
0583 AB 0790 IRA E
0584 AC 0791 IRA H
0585 AD 0792 IRA L
0586 EE 20 0793 XRI N
0588 0794
0588 0795 Now tor the definitions
0588 0796 ;
0588 0020 :; 0797 N EQU 208
0588 00 00 0798 NN DW 0
058A 0005 :; 0799 IND EQU 5
058A 0030 = 0800 DIS EQU 30R
OS8A 0801 i
OS8A 0802 A.058A END

... 7

Rev. 8.1 2/5/79 4-67 L

4.6 SYMSAVE UTILITY

The SYMSAVE utility is an applications program that may be used to create
an equate batch from a symbol table left in memory immediately after an
assembly. This equate batch is stored as an editor source file 'and can
be edited by the 1ine editor and assembled by the assembler. The program
is invoked from the MOOS executive by typing SYMSAVE followed by an ASCII
filename parameter enclosed in double quotes and an optional ASCII mask
string enclosed ;n double quotes.

[unit:]SYMSAVE "<filename>" ["<mask string>"]

The mask string can be up to ten characters long. It is used to save only
those symbols in the symbol table that start with the specified mask string.

Example:

ADDR Bl 82 B3 E LINE LABEL OPCODE OPERA.ND
0000 1000 ORG 4000H
4000 C3 00 40 2000 START J~1P $
4003 01 32100 DATAl DB 01
4004 02 4000 DATA2 011 02
4005 03 5000 DATA3 DB 03
4006 6000 FINISH END START

IlTIIlediately after the above proqram ;s assembled. the symbol table ;·s still
resident in memory. To create a disk file of symbols from the above assembly
type:

SYMSAVE "TESTI!

The file TEST that SY~SAVE creates is an editor compatible source file
which looks as follows:

0001 START
0002 DATAl
210213 DATA2
0004 DATA3
0005 FINISH

EQU
EQU
EQU
EQU
EQU

4000H
4003H
4004H
4005H
4006H

If only the data symbols were required, the mask string parameter can be
used as follows:

SYMSAVE "TESTl" "DATA"

The file TESTl looks as follows:

0001 DATAl
21002 DATA2
02103 DATA3

EQU
EQU
EQU

4003H
4004H
4005H

This file contains only the symbols which start with the string DATA.

Rev. 7 3/78 4-68

A symbol equate file can be used in other programs by using the assembler
LINK pseudo-op.

Example:

ADDR B1 B2 B3 E LINE LABEL 'OPCODE OPERAND
0000 1000 LINK 'TEST t

0000 2000 DRG FINISH
4006 3E 01 3000 BEGIN MVI A ,DATAl
4008 32 03 40 4000 STA DATA2
400B C3 00 40 5000 JMP START
400E 6000 END BEGIN

By linking the equate batch file with the new program segment all of the
symbols defined in the first program segment can be referenced in the new
program segment.

4.7 FILECOPY UTILITY

The FILECOPY utility is an applications program that allows files to be
copied from one disk to another or onto the same disk under a different
filename. To improve speed in the process of copying a file. it uses
all available memory after the end of the program as a buffer. To invoke
the program from the MOOS executive type FILECOPY followed by a filename
enclosed in double quotes and an optional newfilename enclosed in double
quotes or a unit number- by itself if the copied file is to have the same
name as the ori gina1 .

(un it:]FILECOPY fI<[unit:]fi 1 ename>II u<[uni t:]newfil ename>"

or

[unit:]FILECOPY "<[unit:]fi 1 ename> II <unit number>

FILECOPY exits to the MOOS executive when it is done or if it encounters
an error condition. The copied file has the same filetype as the original.
Any file can be copied regardless of type or origin. This includes BASIC
data and program files. Attempting to copy a file onto the same disk
without specifying a newfilename results in a DUPLICATE NAME error.

4.8 DISKCOPY UTILITY

OISKCOPY is a special overlay utility that writes an absolute binary copy
of one disk onto another. The utility overlays MOOS or BASIC. It uses
all available memory during the copying process. The more memory in a
system the faster the copying process. On average it takes about b/o
minutes to copy and verify all 3l5k bytes of a t~D II disk. To invoke the
utility from the MOOS executive. type:

OISKCOPY

A sign-on message is output:

MICROPOLIS OISKCOPY VS X.X - COPYRIGHT 1978
SPECIFY UNIT # FOR ORIGINAL (SOURCE) DISKETTE
?

4-69

Rev. 7 3/78

DISKCOPY waits until the unit number is entered. When a number between
o and 3 is entered it prompts:

SPECIFY UNIT # FOR DESTINATION DISKETTE
?

and waits until ;',Ie unit number (0 to 3) is entered. It then profTlpts:

PUT DISKETTES IN SPECIFIED UNITS
TYPE Y WHEN READY
?

and waits for a Y. A note of CAUTION. we strongly recommend placing a
write protect tab on the original (source) diskette. It is possible to
put the wrong diskette in the wrong drive or type the wrong unit numbers.
If your original does not have a write protect tab and you make an error,
the original can be overwritten. The write protect tab provides a physical
interlock which disables the write electronics.

When a Y is typed DISKCOPY will start the copying process. During copying.
the process can be temporarily halted between read source and write
destination cyc)es by typing a control S. The process is restarted by typing
any other key except a control C.

The control C will cancel the entry or copy process and prompt:

CANCELLED
fi)RE ?

If a Y is typed DISKCOPY starts from the top asking for the unit numbers
again. If an N is typed DISKCOPY prompts:

PUT SYSTEM DISKETTE IN UNIT 0
TYPE Y WHEN READY
?

When a Y ;s typed the disk in unit 0 is rebooted. If it1s an MOOS diskette
MOOS is booted. If the disk in unit 0 is a BASIC only disk or some other
boatable system, it will be booted in and sign on. DISKCOPY is overlayed
by the incoming system and is no longer in memory.

I~hen the disk has been copied and verified correctly DISKCOPY outputs:

GOOD COPY
t1lRE ?

If the copy cannot be completed or does not verify correctly DISKCOPY outputs:

PERM I/O ERROR ON DESTINATION DISKETTE

or

PERM I/O ERROR ON SOURCE DISKETTE

indicating where the error occurred.

Rev. 7 3/78 4-70

It ;s possible for single drive systems to make use of the DISKCOPY utility
to copy from one disk to another. In this case it is imperative that the
original diskette be write protected with a write protect tab. The procedure
involves specifying the same unit number for both source and destination
disks. Immediately after typing a Y in response to the TYPE Y WHEN READY
prompt, type a control S. The DISKCOPY program will read as many tracks
from the source disk as can be contained in main memory and then pause.
When the select indicator light goes out. remove the source diskette and
insert the destination diskette. Press the return key and as soon as the
select indicator light comes on type a control S again. When the select
indicator light goes out again, the data from the source disk has been
written to the destination disk and one complete cycle ;s finished. This
process is repeated, swaping the source and destination disks in and out
until the entire disk is copied. After the last data is written onto the
destination disk, the program goes directly into a verifying process and
will not pause until this is over. When the source is placed back into the
drive and the return key is pressed the system will prompt: GOOD COpy or
output an error message as discussed above. At this point the copy ;s
complete.

4.9 ERROR MESSAGES

This section ;s a summary of the error messages generated by the MOOS
shared subroutines. The shared subroutines return an error code in the
A register when an error exit occurs. These codes can be passed to the
error message output routines to generate the proper error message.

Example:

A file ;s created by the following BASIC program:

10 DIM A$(248)
20 Z$=CHAR$(13):REM CARRIAGE RET
30 OPEN 1 "N:TEXTFILE":REM NEW FILE
40 INPUT A$:REM GET A LINE OF TEXT FROM CONSOLE
50 IF A$="EXIT" THEN a0:REM END INPUT BY TYPING EXIT
60 PUT 1 A$+Z$:REM CONCATENATE CARR RTN AT END
70 GOTO 40:REM LOOP TILL EXIT
80 CLOSE 1
90 END

This BASIC program writes one text line per record. Each line is
terminated with a carriage return.

The file can be read by the following assembly language routine. Assume
it has been assembled and given the name READ and an executable file type
of 15. Typing READ "TEXTFILE" loads and executes the program.

4-71

Rev. 7 3/78

0000 LINK
0010 LINK
0020 ORG
0030 START CALL
0040 LDA
0050 ORA
0060 JZ
0070 MVI
0080 CALL
0090 MVI
0100 LOA
0110 MaV
0120 LXI
0130 CALL
0140 JC
0150 CALL
0160 JC
0170 MOV
0180 ANI
0190 ORA
0200 MVI
0210 JNZ
0220 NEXTCHR MVI
0230 CALL
0240 JC
0250 HOV
0260 MaV
0270 CPI
0280 CZ.
0290 CALL
0300 JMP
0310 EXIT CPI
0320 JZ
0330 STC
0340 JMP
0350 END

'SYSQ1 '
'SYSQ2'
@APROGRAM
@CCRLF
@NASCPAR
A
@ERRORMES
C.0
@TRANSFILENAME
B,0
@DRIVEN0
C,A
H.@FILEBUFFER0
@OPENFILE
@DISKERROR
@RFILEINF
@DISKERROR
A.B
0FCH
A
A.17
@DISKERROR
B.0
@RFINXPOSI
EXIT
B,C
A.B
0DH
@CCRLF
@COUT
NEXTCHR
2
@CLOSEFILE

@DISKERROR
START

;MooS EQUATE BATCH
;MOOS EQUATE BATCH
;APPLICATIONS AREA
;CARRIAGE RETURN LINEFEED
;NUMBER OF ASCII PARAMETERS
; I F ZERO
;ERROR
;@ASCBUFF0
;MOVE INTO @ASCIIBUFFER
;FILE NUMBER
;UNIT NUMBER
; INTO C FOR OPEN
;USE SYSTEM BUFFER 0
;OPEN THE FILE
;IF ERROR CODE IN A
;CHECK THE FILE TYPE
; IF ERROR CODE IN A
;FILE TYPE
;TYPE NOT ATTRIBUTES
;BASIC DATA FILES=0
;WRONG FILE TYPE MESSAGE
;ERROR
; FILE NUMBER
;READ FILE BYTE AT A TIME
; END? OR ERROR?
;CHARACTER FOR OUTPUT
; INTO A FOR COMPARE
;CARRIAGE RET END OF LINE
;IF CR DO CR LF
;OTHER CHR JUST OUTPUT
;LOOP TILL END-FILE
;END-FILE?
;CLOSE AND RETURN TO MOOS
; ERROR
;ERROR MESSAGE IN A

Note the handling of the errors in lines 6~, 140. 160. 210. 240, and
310-340.

Rev. 8 9/78 4-72

The error codes are summarized below. See appendix D for definitions of
the error messages.

CODE#
o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

MESSAGE
SYNTAX ERROR
PERM I/O ERR
END-FILE
DISK FULL
FILE NOT FOUND
DUPLICATE NAME
PARM ERR
DRIVE NOT UP
PERM FILE
14RITE PROTECT
FILE NOT OPEN
COMMAND NOT FOUND
BAD FILE #
FILE OPEN
READ ONLY FILE
BAD RECORD #
CANCELLED
WRONG FILE TYPE
INDEX PAST EOR
LOAD ADDRESS ERROR

Rev. 8 9/78

4-73

r'

4.10 COPYFILE UTILITY

The COPYFILE utility is an applications program that allows files to be
copied from one disk to another on a system with only one disk drive.
The utility uses all the available memory after the end of the COPYFILE
program as a buffer. To invoke the program from MOOS type COPYFILE
followed by a filename:

[unit:] COPYFILE "<[unit:] filename>"

The COPYFILE program signs on:

INSERT SOURCE DISKETTE INTO DRIVE 0
ARE YOU READY?

The system waits for a capital Y to be typed. Any other input is ignored
except a control C which returns control to MOOS. When a Y is typed the
COPYFILE program loads as much of the source file into memory as it can
and then prompts:

INSERT DESTINATION DISKETTE INTO DRIVE 0
ARE YOU READY?

Take the source diskette out of your drive and put the destination diskette
into the drive. When ready type a capital Y. Any other input is ignored
except a control C which returns control to MOOS. The COPYFILE program
creates a file on the destination disk with tbe same name and filetype as
the source file. It then writes the file from memory onto the destination
diskette.

If the files is longer than can be held in memory at one time the COPYFILE
program will prompt:

INSERT SOURCE DISKETTE INTO DRIVE 0
ARE YOU READY?

The same procedure as above must be repeated until the whole file has been
copied. When the copy is complete the COPYFILE program returns to MOOS
which prompts:

>

If the COPYFILE program encounters any errors it displays the proper error
message and returns to MOOS.

COPYFILE can copy any type or length file. This includes BASIC data and
program files.

4-74 Rev. 8 9/78

4.11 DEBUG - THE PDS 8080/8085 PROGRAM DEBUGGER

r~icrop01is DEBUG is a utility program which facilitates checkout and
debugging of 808~/8085 machine language programs. It provides an
environment in which the performance of a program can be monitored by
starting and stopping program execution at user-specified points and by
examining and/or changing the contents of relevant machine registers and
memory locations. DEBUG cannot. be used with non-808 Z8a code.

DEBUG and the program to be monitored must co-reside in the main system
memory. Before DEBUG can be used an executab1e version must be obtained that
uses a 4K block of memory which does not conflict with the program to be
debugged. The process of creating an executable version of DEBUG configured
for a specific memory space is described in Section 4.12.

DEBUG is invoked from the MOOS executive by typing the name of a configured
DEBUG-XX version as created by the DEBUG-GEN utility {see Section 4.12}.
Example:

>DEBUG-70

MICROPOLIS DEBUG VS. X.X - COPYRIGHT 1978

DEBUG signs on and displays an asterisk (*) which is the DEBUG Executive
prompt. Program execution control and machine state examination and
modification are performed by entering appropriate commands to the DEBUG
Executive.

The program may be executed one instruction at a time (referred to as
"single-stepping") with the machine state displayed after each step.
Alternatively, the results of a program segment may be examined by placjng
a breakpoint at the end of the segment. When execution of the program
is started, it will execute in real time until the breakpoint is reached.
Control of the computer is then returned to the DEBUG Executive and the
user may examine the contents of memory and the machine registers.

4.11.1 THE DEBUG EXECUTIVE

Operation of DEBUG facilities is controled by the DEBUG Executive. The
executive prompts the user for a corrmand with the character ~"".

Executive statements are entered by typing characters in sequence on the
console keyboard. An executive statement is terminated by pressing the
RETURN key. During the entry of a statement each character that is typed
is echoed by the executive on the console display. Two control features
may be used when entering a line.

1)- When DEL or BACKSPACE is pressed the next previously typed
character will be deleted from the line. A backarrow is echoed
to the terminal display for each character deleted.

, Rev. 8.3-A 7/1/79 4-75

2) Holding down the control key and typing X (CNTL/X) will cause
all of the current line to be cancelled. A carriage return line
feed combination is echoed to the terminal display. The executive
is positioned to accept entry of a new line.

An executive statement has the following form:

NAME [<hex> <hex> ... <hex>]

The NAME in an executive statement is the name of one of the DEBUG commands.
Command names are uppercase only and must not be preceded by any spaces.
If the command name is not recognized by ,DEBUG a SYNTAX error message is
displayed.

Executive statements consist of a NAME followed by up to four numeric
parameters. There must be at least one space between the NAME and any
parameters. All parameters must be separated from each other by at least
one space. Entry of an executive statement with too many parameters or
without the required spaces between fields will result in a SYNTAX error.

Numeric parameters in executive statements are unsigned hexadecimal values
from 0 to FFFF. They represent such elements as memory addresses and
register values. Entry of a numeric parameter with a value greater than
FFFF or with illegal characters will result in a SYNTAX error.

4.11.2 DEBUG MEMORY RELATED COMMANDS

The DEBUG memory related commands are similar to those available under the
MOOS executive (see Section 4.1) with the exeception of the LIST command
which is unique to the DEBUG context. The syntax of these commands is
illustrated with the aid of the following notation:

[] Option brackets. Any parameters enclosed between brackets are
optional.

< > Symbol brackets. This space should be replaced by the item described.

4.11.2.1 THE DUMP COMMAND

DUMP <start addr.> [<end addr.>]

The DUMP command outputs a formatted hex display of the contents of a block
of memory. Sequential memory locations are shown 16 to a line with the memory
address at the left margin. If the <end addr.> is not entered only one byte
is displayed. Example:

* DUMP 5000 5011
5000 50 C0 27 77 4F 33 4F CD 7D 9E 98 00 6A FD 82 90
5010 77 2B

Notice that memory bytes are printed out in groups of four so that addresses
inside the line may be more easily computed. The grouping follows the address.

* DUMP 5002 501 F
5002 27 77 4F 33 4F CD 70 9E 98 00 6A FD 82 90
5010 77 28 54 56 F4 3E 23 2A 34 87 19 3D 21 2C 2A 28

Rev. 8 9/78 4-76

4.11.2.2 THE ENTR COMMAND

ENTR <start addr.>

The ENTR command allows data to be entered into memory directly from the
console device. Example:

*£NTR 7000
*78 89
6F/

Three bytes were entered starting at location 7000 hex. These were 78
at 7000, 89 at 7001. and 6F at location 7002.

Typing in an ENTR command places the executive in a special enter mode.
While in the enter mode each line of values that is typed is entered into
memory when the RETURN key is pressed. Until the RETURN key is pressed
the standard backspacing and CNTL/X tools are available for line correction.
The last value on the last line must be followed by a slash (/) to properly
terminate the enter mode. Entry of a illegal hex value in any line will
also cause termination of the enter mode with the message SYNTAX ERROR.

4.11.2.3 THE FILL COMMAND

FILL <start addr.> <end addr.> <byte>

The FILL command fins a block of memory with a specified byte.
Example:

* FILL 7000 8000 9

Each byte of memory in the block from 7000 to 8000 is changed to a 09
by this command.

4.11.2.4 THE MOVE COMMAND

MOVE <source addr: start> <source addr. end> <dest. addr. start>

The MOVE command copies the source block of memory to the destination
block. The source block is not changed. The destination block is
changed to be an exact copy of the source block. Example:

* ~{)VE 3000 4000 7000

Each byte in the memory block from 3000 to 4000 ;s copied into the
corresponding position in the memory block from 7000 to 8000.

Rev. 8 9/78 4-77

4.11.2.5 THE SEAR COMMAND

SEAR <start addr.> <end addr.> <byte>

The SEAR command searches a block of memory for all occurrences of the
specified byte and displays all locations with a match. Example:

* SEAR 3000 39120 9F
30914 9F
3018 9F

The block of memory from 30091 to 3020 is searched for all occurrences of
a 9F. Location 39104 and location 39118 both contain 9F. No other
locations in the block contain 9F.

4.11.2.6 THE SEARN CO~~ND

SEARN <start addr.> <end addr.> <byte>

The SEARN command searches a block of memory for all non-occurrences of a
specified byte and displays all locations that do not match. Example:

* SEARN 3000 39110 67
30912 09 67
39106 76 67

The block of memory from 30091 to 39110 is searched for all non-matches
with the mask 67. Location 3002 contained a 9 rather than a 67. and
39106 contained a 76 rather than a 67.

4. 11 .2.7 THE COt~p COMMAND

COMP <start addr. blockl> <end addr. blockl> <start addr. b1ock2>

The cor~p corrmand compares two blocks of memory and displays address locations
that do not compare and the data at those locations. Example:

* cOt-w 5000 5910F 50191
5004 911 919 5014

The block of memory from 50910 to 500F is compared with the block of memory
from 591191 to 501F. One location fails to compare. Location 50914 contains
01 while the corresponding location. 5014, in the second block contains 09.

4.11.2.8 THE LIST COMMAND

LIST <start addr.> <end addr.>

The LIST command displays the 89180/8085 mnemonic form of the bytes contained
in the specified memory block.

* DUMP 30910 3008
3000 CA 912 37 67 C3 lA 37 CB

Rev. 8.1 9/78 4-78

*LIST 3000 3008
3000 JZ 3702
3003 ORA A
3004 JMP 371A
3008 CB *

The memory block from 3000 to 3007 contains three 8080/8085 instructions.
The byte following the third instruction is not a valid 8080/8085 instruction.
This is indicated by the '*' following its value.

4.11.3 DEBUG MACHINE REGISTER AND FLAG COMMANDS

The DEBUG commands in this category are used in conjunction with DEBUG's
program execution control features during the process of monitoring a
programs performance. Whenever the program execution is paused and the
DEBUG Executive is waiting for a command, it is possible to display andlor
alter the state of the 8080/8085 registers and flags as they are relative
to the last instruction executed in the program being monitored.

4.11.3.1 THE DISR COMMAND

DISR

The DISR command displays the contents of the processor registers and flags
along with the next instruction to be executed. In addition the contents
of memory at locations addressed by register pairs (e.g. at the address
contained in BC) along with the word on the top of the stack are displayed.
Example:

*DISR
A FLAGS Be DE HL SP @B @D @H @SP

00 ZCMEH 0000 0000 0000 1234 00 00 ~0 0000
0000 LXI SP,1234

The second line of the display indicates the processor state. The columns
@B, @D, @H and @SP indicate the contents of memory at the addresses contained
in the respective register pairs. The flag values are indicated by the
presence or absence of a character in the FLAGS column. The Z character
indicates a zero condition, the C character a carry condition, the M
character a negative sign condition (in the SIGN flag), the E character an
even-parity condition and the H character a half-carry condition. Absence
of any character indicates the opposite condition on the same flag.

The third line displays the address and mnemonic of the next instruction
to be executed. The address of the instruction corresponds to the current
value of the 8080 program counter (PC) register in the context of the program
that DEBUG is monitoring. The instruction is the one that will be executed
next by a single step operation or when program execution is resumed by
using a command such as the CONT or RET commands. Note that the state of
the registers and flags as displayed by the DISR command reflects their
values BEFORE the next instruction shown on the third line is executed.

Rev. 8.1 9/78 4-79

4.11.3.2 REGISTER SETTING COMMANDS

REGISTERNAME <hex number>

The r~ster setting commands allow the contents of the 8080/3085 processor
registers to be set to a specified value prior to the execution of the next
instruction in the program being monitored. The general format of a register
setting command is a register name followed by a hex data value.

The following register names may be used:

ABC D E H L
BC DE HL SP PC @SP

The first line shows 8 bit registers and the second line shows 16 bit
registers. PC is the program counter. @SP designates the 16 bit word on
top of the machine stack.

The following examples would change the program counter value to 60F3, the
A register value to 7. and the value at the top of the stack to C172.

*PC 60F3
*A 7
*@SP Cl72

4.11.3.3 FLAG SETTING COMMANDS

The flag setting commands allow the states of the 8080/8085 processor flags
to be set or reset prior to the execution of next instruction in the program
being monitored. The commands set the flag state according to the mnemonic
form used in assembly language. The commands are:

FZ FNZ FC FNC FP FM FPE FPO FH FNH

The FZ and FNZ commands set the state of the ZERO fla~to zero or non-zero.
The FC and FNC commands set the state of the CARRY flag to carry or no carry.
The FP and FM command set the state of the SIGN flag to positive or minus.
The FPE and FPO commands set the state of the PARITY flag to even or odd.
The FH and FNH commands set the state of the HALF-CARRY flag to half-carry
or no half-carry.

Examples:

*FNZ
*FC

The state of the ZERO flag is set to non zero and the state of the CARRY
flag is set to carry.

Rev. 8 9/78 4-80

4.11.4 DEBUG MISCELLANEOUS UTILITY COMMANDS

The two commands in this category are the MATH command which is useful in
doing address computations while engaged in a debug session, and the RST
command which may be needed to avoid conflict with program usage of the
processor restarts.

4.11.4.1 THE MATH COMMAND

MATH <hex number> <hex number>

The MATH command performs a 16 bit integer addition and subtraction on the
two specified hex numbers. It displays the sum and difference. The MATH
command ;s useful for length and address calculations. Example:

*MATH 4 5
0009 FFFF

4+5 equals 9 and 4-5 equals FFFF.

4.11.4.2 THE RST CO~~ND

RST <vector number>

DEBUG normally uses the 'RST 6' restart vector of the 8080 or 8085 processor
as its mechanism for implementing breakpoints (see Section 4.11.5~1). Some
computers and/or a particular program may already be using 'RST 6' for a
different purpose. In this case it is possible to change the RST vector
used by DEBUG to one of the other available RST's, 1-5 or 7. Example:

*RST 7

The RST vector used by DEBUG is changed to RST 7 from its default usage of
RST 6.

4.11.5 DEBUG PROGRAM EXECUTION CONTROL

DEBUG offers 3 modes of control to monitor progress through a program; the
breakpoint mode, the single step mode, and the trace mode. There is a
permanent breakpoint facility normally used in conjunction with the commands
SET, DISB~ CLR, EXEC and REPT. There is a temporary breakpoint facility
used in conjunction with the commands CONT and RET. The single-step mode is
controlled with the space bar. The trace mode is a form of continuous sing1e
stepping. Use of these modes and their associated commands are detailed in
this section.

4.11.5.1 THE BREAKPOINT MODE

Breakpoints provide a means to stop program execution at a given point. When
program execution reaches that point control of the processor is transferred
to DEBUG. Once in DEBUG, the results of the program section which was executed
may be examined or modified.

Rev. 8 9/78 4-81

In the breakpoint mode DEBUG replaces the instruction at a given address
with one of the 'RST' instructions of the 8080/8085 (see 4.11.4.2 the RST
command). Then DEBUG replaces the three bytes of code at the corresponding
'RST' vector location with a 'JMP' instruction to a routine inside itself.
DEBUG then loads the processor's registers with the stored 'user program
register' values and transfers control of the processor to the user's program.
When the breakpointed instruction address is executed, the 'RST' that DEBUG
had placed at that location causes the processor to 'CALL' the RST vector
location which then causes the processor to 'JMP' back to DEBUG. DEBUG then
stores the processor's registers in the 'user program registers' and replaces
the original contents of both the breakpointed instruction and the RST
vector location.

Because of the introduction of an 'RST' instruction into the program, when a
breakpoint is encountered, at least one level of stack space must be available
so that the return address back into the program can be stored. Therefore,
when using the breakpoint mode the user must insure that at least one stack
level will be,available when the breakpoint is encountered.

Note that breakpoints cannot be used to DEBUG ROMed code because an 'RST'
instruction cannot be patched into the code.

When a breakpoint is encountered during program execution, DEBUG will display
the contents of the program registers in the following format:

A FLAGS Be DE HL SP @B @D @H @SP
13 0000 0000 0000 01A2 00 00 00 l4FE

Refer to the DISR command section for a detailed description of this display.

4.11.5.2 PERMANENT BREAKPOINTS

Permanent breakpoints are set using the SET command. These breakpoints are
not cleared when control of the processor is returned to DEBUG. Permanent
breakpoints are only cleared by the CLR command. Permanent breakpoints can
be used as traps on such things as error routines or executive loops.

Note that permanent breakpoints do not leave a 'RST' instruction in the
program code. The existence of a permanent breakpoint tells DEBUG to place
a breakpoint in the code only when the program is executing. Thus the
original program is intact whenever the DEBUG has control of the processor

4.11.5.3 THE SET COMMAND

SET <breakpoint #> <address>

T-he SET command aerlnes a permanent breakpoint. The breakpoint # and the
hex address at which the breakpoint will be set are entered with the command.
More than one breakpoint # may be set with the same breakpoint address.
However, an attempt to SET a breakpoint # which is already set will cause the
message SYNTAX ERROR to be printed and the command to be ignored. A maximum
of 4 breakpoint liS may be set at any time. Example:

*SET 1 2354

Permanent breakpoint number 1 was set at location 2354 (hex).

Rev. 8 9/78 4-82

4.11.5.4 THE DISS COM~~ND

DISS

The OISB command displays all currently SET breakpoints.
Example:

DISB
01 2354
03 2365

The display indicates that breakpoint number 1 is set at address 2354 (hex)
and breakpoint number 3 is set at address 2365 (hex). Breakpoints number
2 and 4 are not SET.

4.11.5.5 THE CLR COMMAND

CLR [<breakpoint I>]

The CLR command clears a SET breakpoint. If the optional breakpoint number
is not entered~ then all SET breakpoints will be cleared. If a breakpoint
number is entered but is not currently SET. the message SYNTAX ERROR will be
displayed.

Example:

*CLR 1

Permanent breakpoint number 1 is cleared.

4.11.5.6 THE EXEC COMMAND

EXEC <starting address>

The EXEC command transfers control of the processor to the user's program.
The processor's PC register will be set to the entered starting address and
execution will start there. If a breakpoint is encountered, control of the
processor will be returned to DEBUG. If no permanent breakpoints are SET
at that time, the program will retain control of the processor.

Example:

*EXEC 3014

A FLAGS BC DE HL SP @B @D @H @SP
00 Z C 0012 0341 3674 0195 00 00 00 3054
3507 JMP 3643
*
Program execution was started at location 3014 (hex). A breakpoint was
encountered at location 3507 returning control back to DEBUG.

Rev. 8 9/78 4-83

.. .."

4.11.5.7 THE REPT COM~~ND

REPT <breakpoint #> <repeat count>

The REPT command transfers control to the user's program until a permanent
breakpoint has been hit a given number of times. The breakpoint number entered
specifies the breakpoint address and the entered repeat count specifies the number
of times it must be hit before control is transferred back to DEBUG. If any ~
breakpoint other than the one being repeated is encountered. control will be
transferred back to DEBUG and the repeat operation is cancelled. If the
breakpoint # specified in the REPT command is not set. a SYNTAX error is displayed.
Example:

*SET 1 3000
*00 E 2000 0000 0000 0000 00 00 00 0000

3000 DCR B
*00 lF00 0000 0000 0000 00 00 ~0 0000

3001 JMP 3000
*REPT 1 8

A FLAGS BC DE HL SP @B @D @H @SP
00 E 1800 0000 0000 01A0 00 00 00 0000

*

The breakpoint at location 3000 (hex) is all.owed to be passed over 8 times
before control is transferred back to DEBUG and the processor state is
displayed.

4.11.5.8 TEMPORARY BREAKPOINTS

Temporary breakpoints are one-shot breakpoints which the user instructs
DEBUG to place in the program by using the CaNT or RET commands. When
control of the processor returns to DEBUG. the breakpoints are cleared.
Temporary breakpoints are the type normally used to follow the execution of
the program from routine to routine.

4.11.5.9 THE CaNT COMMAND

CaNT [<break 1> [<break 2> [<break 3> [<break 4>JJJ3

The CaNT command continues execution of the user's program at the current
PC location with up to four temporary specified breakpoints. If no temporary
breakpoints are specified. then control will never return to DEBUG unless an
already specified permanent breakpoint is encountered. Example:

*CONT 356F
A FLAGS BC DE HL SP @B @D @H @SP

00 M 0120 0341 3674 0195 00 00 00 3054
3507 DCR A
*
Program execution is resumed at the next instruction indicated by the value
of the user program PC register and execution continues until the breakpoint
at location 356F (hex) ;s encountered. which returns control back to DEBUG.

Rev. 8 9/78 4-84

4.11.5.10 THE RET COMMAND

RET

The RET command transfers control of the processor to the user's program
with a temporary breakpoint set at the address which is on the top of the
stack (@SP). This allows the user to 'RETURN' from a subroutine which was
'CALL'ed by the program.

If a breakpoint other than the 'RET' breakpoint is hit, control will return .
to the DEBUG and the 'RET' breakpoint will be cleared.

Note. The RET command should only be used after a 'CALL' type instruction
has been executed or when the top of the stack contains a known return
address. Otherwise a breakpoint might be piaced at an address which is not
a part of the program. (e.g. the last instruction was a 'PUSH' and therefore
the top of the stack contains a data word instead of a return address)
Example:

*DISR
A FLAGS BC DE HL SP @B @D @H @SP
~0 Z 00~~ ~000 ~000 0000 00 00 00 00~0
2A00 LXI SP,3000

*00 Z 0000 00~0 000~ 30~0 00 00 00 3243
2A03 CALL 2B00

*00 Z 0000 0000 0000 2FFE 00 00 00 2A06-
2B00 STC

*RET
A FLAGS BC DE HL SP @B @D @H @SP

00 ZC 0000 0000- 0000 3000 00 00 00 3243

After the second instruction single-step, the RET command causes a temporary
breakpoint to be set at location 2A06 (which is the return address on the top
of stack) and program execution is resumed. When the program reaches 2A06
control of the processor is returned to DEBUG and the processor state is
displayed.

Exception Note: The following program fragment illustrates a special
programming construct with which the RET command can not be used.

Call MESSAGE
TEXT DTH 'SIGNON'

RET

MESSAGE XTHL
CALL @LINEOUT
INX H
RET

If an RET command is given after the call to MESSAGE has just been executed,
the return address on the top of the stack is pointing to location TEXT.
DEBUG puts a breakpoint at that location. MESSAGE then outputs the Signon
text and returns without encountering the breakpoint because the return
address has been modified by the called routine.

Rev. 8 9/78 4-85

4.11.5.11 THE SINGLE STEP MODE

The single-stepping mode of program execution allows a datailed inspection
of what the program is doing on an instruction by inst~uction basi: E:cr
time the space bar is pressed in response to the DEBUG '*' prompt, DEBUG
causes the next instruction in the program to be executed and displays
the contents of the processor registers.

Example:

*DISR
A FLAGS

13
2A00 STC
*13 C
2A01 XRA
*00 Z E
2A02 STA

BC DE HL SP @B @D @H @SP
0000 0~00 0000 01A2 00 00 00 14FE

0000 0000 000~ 01A2 00 00 00 14FE
A

0000 0000 0000 01A2 00 00 00 14FE
345F

At the '*' prompt the user typed a space which caused DEBUG to single-step
an instruction and print the resulting register contents on the same line.
In the single-step mode of operation, DEBUG makes a local copy of the instruction
to be executed in its own buffers. DEBUG then executes the instruction in its
buffers and stores the results. The single-step mode does not need to modify
the program in any way which allows programs in ROM may be stepped through
without.problem.

4.11.5.12 THE TRACE ~nDE COMMAND

TRACE

The TRACE command operates as a continuous single-stepping command. It is
used to provide a trace printout of the user's ~roqram. During a TRACE the
Control S / Control functions provide pause and break control.

Example:

*TRACE
00 E 1800 0000 0000 01A0 00 00 00 0000
3001 JMP 3000

*

00 E 1800 0000 0000 01A0 00 00 00 0000
3000 DCR B
00 E 1700 0000 0000 01A0 00 00 00 0000
3001 JMP 3000
00 E 1700 0000 0000 01A0 00 00 00 0000
3000 DCR B
00 1600 0000 0000 01A0 00 00 00 0000
3001 JMP 3000

The program was put in TRACE mode. The Control C key was pressed and stopped
the TRACE after 5 instructions had been executed.

Rev. 8 9li8 4-86

Exception Note: The nature of Micropolis disk subsystems is such that a
disk access must not be interrupted during the data transfer process which
is accomplished by a program loop. For this reason it is not possible to
TRACE successfully through portions of a program that call MOOS disk access
routines, because the TRACE command effectively interrupts the program once
every instruction. .

4.11.6 INITIATING A DEBUG SESSION

Both DEBUG and the program to be monitored must be in memory at the same
time. The program is loaded into memory first by using the LOAD command
from the ~1DOS executive. DEBUG;s then invoked from the t-1DOS executive
by typing the name of a configured DEBUG version as created by DEBUG-GEN
(see Section 4.12). The version invoked should not use any memory space
that is required by the program to be monitored. Example:

>LOAD "TEST PROGRAW'
>DEBUG
MICROPOLIS DEBUG V.S. X.X - COPYRIGHT 1978
*
DEBUG signs on and displays its executive prompt. Monitoring of program
execution is now controlled from the DEBUG executive.

If the program to be monitored is one which runs in the MOOS Application
area, and which requires one or more ASCII or binary parameters that are
normally input as part of an MOOS Executive statement, then the way to
initiate program execution control ;s by SETting a permanent breakpoint
at the address of the entry point (first instruction) of the program and
then EXECuting the MOOS Executive at the warmstart address which is 4E7H.
Example:

*SET 1 2800
*EXEC 4E7
tHCROPOLIS MOOS V.S. X.X - COPYRIGHT 1978
>APP "ASCIIPARM" 12

A FLAGS BC DE HL SP @B @D @H @SP

2800 LXI SP, 01A0

Permanent breakpoint number 1 is set at the program entry point 2800 hex
and execution is begun at the system warmstart address. The MOOS executive
signs on and prompts for a command. The APP command is used to transfer
control to the start of the program in the application area and to pass
one ASCII and one numeric parameter. The breakpoint is then encountered.
DEBUG outputs a register display and waits for additional single-step,
breakpoint or other commands.

Rev. 8 9/78 4-87

If the program to be monitored is one which can be executed directly without
requiring any parameters from the MOOS executive. then the simplest way
to initiate program execution control is to set the PC register to the program
entry point address. Set the stack pointer to an appropriate address and then
use the CONT command to set a temporary breakpoint at the first desired stop
point and transfer control to the program. Example:

*PC 3000
*SP lA0
*CONT 3020

The program counter is set to 3000 hex and the stack is set at lA0 hex. A
temporary breakpoint is set at 3020 hex and program execution is begun at
the PC value. 3000 hex. When the temporary breakpoint is encountered DEBUG
will output a register display and wait for a new command.

4.11.7 EXITING DEBUG

The user may exit DEBUG in one of two ways. First, the user may simply
transfer control of the processor to the program permanently. This is done
by clearing all permanent breakpoints with the CLR command and then using
the CONT command without setting any temporary breakpoints. Second. the
user may simply return to the MOOS executive. This is done by CLRing all
permanent breakpoints and then typing:

*EXEC 4E7

This warms tarts the MDOS executive and leaves the program without any
breakpoints set.

4.11.3 RE-ENTERING DEBUG

If control of the processor has been permanently given to the program, DEBUG
may be restarted by executing the first address of the lK boundary on which
DEBUG is running. This 'warmstart' procedure will cause any breakpoints
which were set in the program to be replaced by the original instructions.

An example of a situation where a restart of DEBUG would be necessary is as
follows. A breakpoint was set in the program and control transferred by a
CONT command. However. the program entered a loop which had a bug such that
the loop was never exited. This caused the system to lock up. The only
way to get control back to DEBUG is by restartinq DEBUG.

4.11.9 SAMPLE PROGRAM DEBUGGING SESSION

This section contains a sample debugging session as an example of the use of
various DEBUG features. The program bei,ng DEBUGged is listed in 4.11.9.1.
Assume that the program and DEBUG are on disk unit 0 along with an MOOS
system. The actual debugging session is shown in Section 4.11.9.2.

Rev. 8 9/78 4-88

4.11.9.1 SAMPLE PROGRAM LISTING

3000 16 00 13000 rWI 0,0
3002 21 80 02 01310 LXI H,280H
3005 CD 313 13020 LOOP: CALL SUB
3008 25 0030 OCR H
3009 C2 05 30 13040 JNZ LOOP
300C 70 0050 t~OV A,L
3000 0F 0060 RRC
300E 6F 0070 MOV L,A
300F 02 05 30 0080 JNC LOOP
3012 C9 ~090 RET
3013 FS 0100 SUB: PUSH PSW
3014 7C 0110 MOV A,H
3015 B5 0120 ORA L
3li'16 F1 0130 POP PSI~_

3017 C9 0140 RET

4.11.9.2 DEBUGGING SESSION

The following text is a description of the debugging session listing which
follows.

The first three lines show the test program being loaded into memory along
with the load and execution of the DE8UG. Once DEBUG is loaded and running
it signs on and displays its executive prompt 1*1. At that point the PC
and SP registers are- initial ized so that the program can be tested. A
permanent breakpoint is set at the final RET instruction so that the program
will not return illegally. Then the first three instructions of the program
are single-stepped leaving the program inside the subroutine. The subroutine
is RETurned from and execution is allowed to proceed to location 3013C using
the CONT command. Then the TRACE command is used to let execution pro,ceed.
The TRACE is cancelled at location 30135. A permanent breakpoint is SET and
the REPT command used to allow the inner loop (the CALL, OCR Hand JNZ) to
execute twice. After two loops control returns to DEBUG. The second
breakpoint (the one used for the REPT) is cleared and the program is allowed
to execute to the final RET instruction. Having finished testing the program,
MOOS is warmstarted.

MICROPOLIS r~DOS V.S. 4.0 - COPYRIGHT 1978

>LOAD "TESTn

>DEBUG-70
load program into memory
run debug (7000 hex)

MICROPOLIS DEBUG V.S. 4.0 - COPYRIGHT 1978

*SP lA0
*PC 3li'00

Rev. 8 9/78

set up a stack
set up PC

4-89

*OISR
A FLAGS Be DE HL SP @B @O @H @SP
80 ze E 0000 0000 0000 01A0 e3 e3 e3 5845
3000 MVI 0.00

*SET 1 3012 set breakpoint on final RET
*OISB

01 3012
*80 ZC E 0000 0000 0000 01A0 e3 C3 e3 5845 single-step

3002 LXI H.0280
*80 ze E 0000 0000 0280 01A0 C3 C3 11 5845 single-step

3005 CALL 3013
*80 ZC E 0000 0000 0280 019E e3 C3 l' 3008 single-step

3013 PUSH H
*RET return from SUB ca 11
A FLAGS BC DE HL SP @B @O @H @SP
02 M 0000 0000 0280 01A0 C3 C3 11 5845
3008 OCR H

*CONT 300C set temporary break and go
A FLAGS SC DE HL SP @B @O @H @SP
01 Z E 0000 0000 0080 01 P,'/J C3 C3 0A 5845
300C MOV A,L

*TRACE trace execution
80 Z E 0000 0000 0080 01A0 C3 e3 0A 5845
3000 RRC
40 Z E 0000 0000 0030 01A0 C3 C1 0A 5845
300E MOV L,A
40 Z E 0000 0000 0040 01A0 C3 C3 0A 5845
300F JNC 3005
40 Z E 0000 0000 0040 01A0 C3 C3 0A 5845
3005 CALL 3013 Control C hit here

*SET 2 300C set permanent break
*REPT 2 2 execute inner loop hI; ce
A FLAGS BC DE HL SP @B @O @H @SP
20 Z E 0000 0000 0020 01A0 C3 C3 0A 5845
300C t{)V A, L

*CLR 2 clear breakpoint 2
*01S8 display breakpoints

01 3012
*CONT complete program
A FLAGS BC DE HL SP @B @O @H @SP
80 ZC E 0000 0000 0080 01A0 C3 C3 0A 5845
3012 RET

*CLR clear all breakpoints
*EXEC 4E7 warmstart MOOS

,r·tICROPOLIS MOOS V.S. 4.0 - COPYRIGHT 1978

Rev. 8 9/ia 4-90

4.11.10 USING DEBUG WITH BASIC

DEBUG is des i gned so that it is independent of the ~1DOS execut i ve. The
only part of PDS on which DEBUG relies is the console and printer I/O
logic contained in the RES module. This independence makes it possible to
use DEBUG in conjunction with Micropolis BASIC to debug user written
machine language routines that BASIC accesses via its DEF FAA construct.

To use DEBUG in this way, its filetype must be changed to an overlay type
C, so that it may be accessed with the BASIC LINK statement. This can be
done from the MOOS executive by using the TYPE command.

The BASIC program and the machine subroutine should be loaded prior to
accessing DEBUG. Also the end of BASIC's memory space must avoid conflict
with the machine routine and the particular version of DEBUG being used.
~~hen these conditions are met DEBUG can be accessed from the BASIC monitor
by using the statement LINK "DEBUG-XXII. Example:

MICROPOLIS BASIC V.S. X.X - COPYRIGHT 1978

READY
LOAD "BASICPGM"
READY
LIST
10 DEF FAA=16R7010
20 A=FAA (1)
30 PRINT A
40 END
READY
MEMEND l6R7000
READY
LOAD "MROUTINE"
READY
LINK "DEBUG-74"

MICROPOLIS DEBUG V.S. X.X - COPYRIGHT 1978

*SET 1 7010
*EXEC 4E7

mCROPOLIS BASIC V.S. X.X - COPYRIGHT 1978

READY
RUN
A FLAGS

DEBUG Register display
7010 PUSH H
*

Rev. 8 9/78 4-91

From the BASIC monitor the file "BASICPGM" is loaded and listed. It is a
program that accesses a machine language routine beginning at address 7010
hex. BASIC's end of memory is set to 7000 hex and the machine routine
"'~ROUTINE" is loaded in above the end of BASIC. A version of DEBUG which
starts at 7400 hex is then linked to. In DEBUG a permanent breakpoint
is set at 7010 hex, the beginning of the machine routine. Control is then
transferred to the system warmstart address 4E7 hex and BASIC signs on
again. A RUN command starts execution of the BASIC program, which accesses
the machine routine when line 20 ;s executed. The DEBUG breakpoint is
encountered and DEBUG outputs a register display and waits for a command.
The machine routine accessed from BASIC may now be steoped through or
otherwise debugged as required.

4.12 THE DEBUG-GEM UTILITY

The Micropolis DEBUG program is supplied in a non-configured form embedded
within the DEBUG-GEN utility program. Before DEBUG can be used an executable
version must be obtained by running the DEBUG-GEN utility.

DEBUG requires 4K of contiguous memory address space which may start on any
1 K boundary above the beginninq of the '~DOS a!"ol ications area. DEBUG-GEN
accepts a memory space specification and creates a version of DEBUG that
uses the specified memory space.

From the MOOS executive, DEBUG-GEN is invoked by entering the filename
DEBUG-GEM like an executive statement (see Section 4.1.2) or by entering
the command LOAD "DEBUG-GENu follo\'Jed by the command APP.

The program signs on with the message

DEBUG GENERATION PROGRAM V5. X.X.

and prompts for the memory address at which the DEBUG will run with the
message

ENTER PAGE ADDRESS (2C-F0) ?

Type a two di~it hexadecimal number that corresponds to the high-order byte
of the start address where the DEBUG will run. This address may only be on
a lK boundary. The program will ignore the lowest 2 bits of the response.

DEBUG-GEN creates a type 14 file on disk unit 0 and fills it with the
relocated DEBUG system. The file name is 1I0EBUG-XX" where XX (hex) is the
page address entered by the user.

Rev. 8 9/78 4-92

Example:

MICROPOLIS MOOS V.S. 4.~ - COPYRIGHT 1978

>OEBUG-GEN

DEBUG GENERATION PROGRAM V. S. X. X

ENTER PAGE ADDRESS (ZC-F0)? 70

RUN FILE' NAMED DEBUG- 70
>
In ttlis example a program fi1e named "OEBUG-72r" is created on disk unit 0.
This file is a running DEBUG package which will use the memory space from
79100H to 7FFFH.

Rev. 8 9/78 4-93

V MICROPOLIS DISK EXTENDED BASIC

5.0 INTRODUCTION

Micropolis Program Development Software consists of two systems, the Micropolis
Diskette Operating System (MOOS) and Micropolis Disk Extended Basic. Both
systems are supplied on a MASTER diskette included with each Micropolis disk
subsystem. The auto-load bootstrap brings MDOS, which is the first system on
the diskette, into memory. Control is transferred from MOOS to BASIC by
typing the filename BASIC to the MOOS executive. It is also possib1e to create
a BASIC only diskette so that BASIC may be directly loaded by the bootstrap
system~ See Chapter II, Section 2. This chapter describes the Micropolis
BASIC interpreter and its associated BASIC programming language.

The Micropolis BASIC Interpreter is a special 8080 machine language program
supplied on a master diskette included with the disk subsystem. It provides
a simple and powerful means for developing, maintaining and executing BASIC
programs on 8080 type microcomputer systems. The user interacts with the
Interpreter through a terminal which consists of an input keyboard and an
output display that may be video or printed hardcopy. Lines entered at the
keyboard may be program lines which are stored in the program buffer or
commands for immediate execution. A program in the program buffer may be
modified in place, stored as a disk file, retrieved from disk and executed
under control of the Interpreter. These functions and others are invoked
by entering the apptopriate immediate commands. Elements of the BASIC
Interpreter and its use are described in Sections 5.1 and following.

The original 8ASIC programming language was developed by John Kemeny and
Thomas Kurtz at Dartmouth College, Hanover, New Hampshire; "Micropolis
Extended Disk BASIC is an elaborated version of that language. BASIC
consists of data types, operators, function references and key words which
combine to form statements that can be grouped into executable BASIC
programs. The details of these language elements and the rules for com
bining them are described in sections following.

5. 1 ENTERING LINES TO THE BASIC INTERPRETER

The BAS I C Interpreter ; s loaded into the rna in computer memory from ~100S
or booted from a BASIC only diskette. At the end of this procedure the
message READY is displayed at the terminal. This means that the Interpreter
is in control and is waiting for a line to be input.

A line consists of not more than 250 characters typed in sequence. The
entry of aline is terminated by depressing the RETURN key. If more than
250 characters are typed prior to the RETURN the Interpreter will output
the message INPUT OVERFLOW and cancel the entire line.

During the entry of a line each character that is typed is echoed by the
Interpreter on the terminal display. If the character typed ;s not part
of the BASIC character set (see Section 5.15) it will not be echoed and
will not be included in the line entered. The Interpreter also keeps
track of the character count as a line is typed and automatically outputs
a carriage return / line feed combination to the terminal display when

5-1
Rev. 7 3/78

the count exceeds the width of the display device. This combination ;s not
included in the line count.

Two control features may be used when entering a line.

1) when DEL or RUBOUT key is depressed the next previously
typed character will be deleted from the line. A back arrow
is echoed to the terminal display for each character deleted.
Neither the deleted characters nor the back arrows are included
in the line count.

2) Holding down the control key and typing X (CNTL/X) will cause
all of the current line to be cancelled. A carriage return
line feed combination is echoed to the terminal display; the
Interpreter is positioned to accept entry of a new line.

5.2 ENTERING A PROGRAM

The BASIC Interpreter recognizes a line as a program line by the presence
of a leading line number. A BASIC program is entered one program line at
a time using the normal line entry procedures. The message READY is not
displayed after the entry of a program line. This permits consecutive
program lines to be entered conveniently. As each program line is entered
the Interpreter stores' it in a program buffer which it maintains in the
computer system1s mair. memory.

Each line of a BASIC program is composed of a line number followed by one
or more statements (see Section 5.20) which are separated from each other
by a colon (:). The length of a program line may not exceed 250 characters
including the digits in the line number. Each line number must be within
the range 0 - 65529. Spaces preceding the first digit of a line number
are ignored. Spaces embedded in a line number are not legal. All other
spaces in a program line are preserved as entered ..

Program lines are stored in the program buffer in numeric order by line
number. The lines in the buffer at any given time constitute the current
program. This program may be modified in three ways.

To insert a new program line, type in the new line including the line
number. The interpreter will automatically place the new line in the
program buffer in proper sequence.

To modify an existing program line enter the line number and the new
statement or statements. The new line will automatically replace the
old line in the program buffer that has the same line number.

To delete an existing program line type the line number followed by carriage
return. The corresponding line will be eliminated from the program buffer.
Note that multiple lines may also be eliminated by using the DELETE command
as described in 5.4.

Rev. 8.1 2/5/79 5-2

5.3 IMMEDIATELY EXECUTED LINES

Whenever a line is typed in, the Interpreter scans it from left to right
until the first non blank character is encountered. If this character is
a digit it is assumed to be the first digit of a line number and the line
is treated as a program line. (see Section 5.2). If the first non blank
character ;s not a digit then the line is interpreted for immediate
execution.

Most normal BASIC statements may be entered for immediate execution.
Exceptions are the DEF FN, OEF FA, and DATA statements which are only
functional within a program. Multiple statements may be included in an
immediate line by separating them with colons (:). BASIC statements are
covered in Section 5.20.

Another form of immediate line is the command. Commands are operations
which generally make sense only in immediate mode. Most of the commands
in BASIC system relate to the program buffer and to the manipulation and
execution of BASIC programs. The available commands are described in the
following sections.

EDIT, RENUM and MERGE are three commands which function only in the immediate
mode. These commands cause a SYNTAX error if they appear in a program.

5.3.1 THE BASIC EDIT COMMAND

EDIT 1inenumber

A specified line in the BASIC program buffer can be changed without retyping
the entire line by using the EDIT command. EDIT linenumber is the form of
this command. If the specified 1inenumber is not found in the current program
buffer, the message STMT * NOT FOUND ;s displayed. BASIC processes an EDIT
command by copying the specified line into a special editing buffer and
setting an invisible pointer to point to the first digit of the linenumber
that begins the text line. BASIC is then in the EDIT command mode. A
separate set of single key commands is available for editing a line in the
special edit buffer. The whole line including the linenumber can be edited.

5.3.1.1 ADVANCING THE BASIC EDIT POINTER - THE SPACE BAR

The invisible edit pointer in the special editing buffer may be advanced
one position by pressing the space bar one time. The character to which
the edit pointer is pointing will be displayed on the console. This
indicates that the edit pointer has passed over the character. The edit
pointer is then advanced so that it is now pointing at the next character
in the text line immediately after the one that is displayed. The entire
line can be displayed in this manner.

5.3.1.2 CHANGING THE NEXT CHARACTER - C

The character to which the edit pointer fs pointing in the edit buffer
can be changed by typing a c or C, followed by the new character.
The new character is printed on the console and replaces the character
in the edit buffer at that position. The edit pointer is advanced to
point to the character immediately after the new displayed character.

Rev. 8 9/78 5-3

5.3.1.3 DELETING THE NEXT CHARACTER - D

The character to which the edit pointer is pointing in the edit buffer
can be deleted by typing a d or D. The deleted character is printed
on the console enclosed in bacKslashes (f). The edit pointer is left
pointing at the character immediately after the deleted character.

5.3.1.4 INSERTING CHARACTERS - I

Characters may be inserted into the line or at the end of the line by
typing an i or I followed by the characters to be inserted. The
insertion begins immediately before the character pointed to by the
edit pointer. Characters are inserted in sequence as typed until the
insert mode is terminated by depressing the ESC Key. The edit pointer
remains pointing to the same character that it pointed to when the insertion
began. The. insert mode may also be terminated by pressing the return key.
This also terminates the EDIT command and replaces the line in the current
text file with the newly edited version from the special editing buffer.

5.3.1.5 LISTING THE LINE IN THE SPECIAL EDITING BUFFER - L

The remainder of the line in the special edit buffer from the position
of the edit pointer to the end of the line may be displayed by typing an
1 or L. The characters are displayed on the console followed by a carriage
return-line feed. The edit pointer is reset to the beginning position.
This command is useful to see what the line looks like before editing is
completed. It may also be helpful to use this command immediately after
entering the original EDIT command. This would display the line about to
be edited without exiting the editing mode.

5.3.1.6 SEARCHIHG TO A SPECIF!ED CHARACTER - S

The edit pointer may be advanced in the special editing buffer to the first
occurrence of a specified character by typing an s or S followed by the
character to search for. The characters from the position of the edit
pointer up to but not including the searched for character are printed on
the console. The edit pointer is left pointing at the first occurrence of
the searched for character. If the search argument does not exist in the
line then the entire line is printed and the edit pointer is positioned at
the end of the line.

5.3.1.7 DELETING TO A SPECIFIED CHARACTER - K

Characters in the special editing buffer from the edit pointer position
up to but not including a specified search character can be deleted by
typing a k or K followed by the search character. The deleted characters
are displayed on the console, enclosed in backslashes (f). If the search
argument does not exist in the edit line, then all the characters from the
edit pointer to the end of the line are deleted. The edit pointer is left
painting at the search character or at the end of the line.

5-4

Rev. 8.3-A 7/1/79

5.3.1.8 qUITTING THE BASIC EDIT COMMAND MODE - 0

The EDIT command may be aborted without changing the line in the current
text file by typing a q or Q. The partially edited line in the special
editing buffer is abandoned. No changes are made to the current program
buffer. BASIC is ready to accept a new command.

5.3.1.9 COMPLETING THE BASIC EDIT COMMAND - THE RETURN KEY

The line in the special editing buffer can be placed in the current program
buffer by pressing the return key at any point while in the BASIC EDIT
command mode. If the line number of the line in the special edit buffer
matches a line number in the current program buffer, then the edited line
replaces the corresponding line in the program buffer and the EDIT mode is
completed. If there is no 1 ine in the current program buffer with the same
line number as the line in the special edit buffer, then the edited line is
inserted into the current program buffer in proper line number order. This
feature facilitates the copying or repetition of program lines by changing
only the line number during the edit.

5.3.2 THE RENUM CO~1MAND

RENlIt1
RENUM (starting-number)
RENlIM (starting-number, increment)
RENlIM (starting-number, increment, first-line-to-change)

Some or all of the lines in the current program buffer can be renumbered by
using the RENUM command. This command renumbers lines in the program, changing
line numbers, and line number references that follow branch statements.
These statements are GOTO, GOSUB, ON ... GOTO, ON ... GOSUB, THEN, RESTORE. The
ERROR, END, and ENDPAGE options of the OPEN statement are also affected.

The forms of this command are RENUM, RENUM (starting-number), RENUM (starting
number, increment), and RENUM (starting-number, increment, first-line-to-change).
RENUM takes the line number of the first-line-to-change and sets it equal to
the starting-number. The line number of each line after the first-line-to-change
is then set to the value of the preceding new line number plus the increment
value. If no first-line-to-change is specified, the first line in the program
buffer is assumed. If no increment value is specified, the value 10 is used.
If no starting-number is specified, the value 10 is used. Typing RENUM alone
will produce a program numbered from 10 by l0 l s. Examples:

Assume that the current program buffer contains the following program:

9 REM RENUM EXAMPLE PROGRAM
25 INPUT "VALUE";A
30 PRINT liTHE SQUARE ROOT OF" ;A; II IS" ;SQR(A)
45 GOTO 25

The command RENUM (50,30,30) would produce the following:

9 REM RENUM EXM1PLE PROGRAM

Rev. 8 9/78

25 INPUT "VALUE";A
50 PRINT liTHE SqUARE ROOT OF" ;A; II IS" ;SQR(A)
80 GOTO 25

5-4.1

The command RENUM would produce the following:

10 REM RENUM EXAMPLE PROGRAM
2~ INPUT "VALUE";A
30 PRINT liTHE SQUARE ROOT OF" ;A;" ISII ;SQR(A)
40 GOTO 20

The command RENUM (1~0) would produce the following:

100 REM RENUM EXAMPLE PROGRAM
110 INPUT IIVALUE" iA
120 PRINT "THE SQUARE ROOT OF";A;"ISlI i SQR(A)
130 GOTO 110

The command RENUM (1000,100) would produce the following:

1000 REM RENUM EXAMPLE PROGRAM
1100 INPUT II VALUE II ;A
1200 PRINT liTHE SQUARE ROOT OF";A;IIISII;SQR(A)
1 300 GOTO 1100

Several error conditions are checked before any renumbering is done. This
is to safeguard the program against possible damage. As errors are detected
error messages are printed along with the lines where the error occurred. No
changes are made to the program if any errors are encountered and no
renumbering can be succ~ssfu11y carried out until the errors are corrected.

Entering a RENUM command may result in the message NUMBER OUT OF RANGE
followed by the line where the error occurred. This is an indication that
the renumbering attempt lead to a line number greater than 65529. This can
be corrected by entering a RENUM with a smaller increment value that does
not cause a line number greater than 65529.

Entering a RENU~1 command may result in the message MEMORY OVERFLOW. This
indicates that renumbering would create a program to long to be run in the
memory currently available to BASIC. The program is not renumbered.

Entering a RENUM command may result in the message STMT IF NOT FOUND without
printing the offending line. This occurs when the specified
first-line-to-change does not exist in the program. No change is made.
Example; if the program is:

10 PRINT IITESTII
20 GOTO 10

The command RENUM (100.10.30) wou1 d cause a STMT * NOT FOUND error because
there is no line 30 at which to start renumbering.

Entering a RENUM corrrnand may result in the message STMT Ii NOT FOUND followed
by the line where the error occurred. This indicates that a branch statement
(GOTO,GOSUB, etc.) contained a reference to a line number that does not exist
in the program. If this is intentional a stub line should be placed in the
~~ogram to allow the RENUM to operate. This can be done by typing the line
number with a REM statement as a place holder.

Rev. 8 9/78 5-4.2

Entering a RENUt1 command may result in the message SYNTAX ERROR. This can
be caused by several types of syntactical errors. If the line contains
unbalanced quotes or parentheses the SYNTAX ERROR message is displayed, or
if renumbering would cause a sequence error in the line numbering (e.g. the
lines were numbered 10,20,30,40 and you typ~d RENUM (10,10,30). This would
result in numbers 10,20,10,20 which is not allowed.). '

The RENUM command does not change line numbers following LIST, or DELETE.
If these statements are used within a program they must be changed manually.

RENUM will not renumber line number references in scientific notation (lE3),
or expressions (GOTO 90*8+3). Such references must be changed manually.

If computed GOTO's, GOSUBls or RESTOREls are used in the program they will
more than likely be incorrect after renumbering unless extreme care is
taken in selecting the renumbering parameters.
Example; if the program is:

10 DATA THIS,IS,A,TEST
20 DATA MORE,TEST,HERE,END
30 INPUT "WHICH DATA,l or 2u,A
40 RESTORE (10*A)
50 READ A$,B$,C$,OS

The command RENUM (100,10,30) would renumber the executable part of the
program while leaving the DATA statements unchanged.

10 DATA THIS,IS,A,TEST
20 DATA MORE,TEST,HERE,END
100 INPUT IIWHICH DATA,l OR 211,A
110 RESTORE (10*A)
120 READ A$,B$,C$,DS

The computed RESTORE on line 110 would still function after the program is
renumbered. However. if lines 10 and 20 had been renumbered, then the
program would not perform as intended.

The RENUM command can cause a line to expand to a length greater than 250
characters. Such a long 1 ine can only be created by RENU~1 and coul d not be
entered from the keyboard because the input buffer is only 250 characters
long. The Basic EDIT command uses the 250 character input buffer during
editing. If renumbering causes a line longer than 250 characters and that
line is later edited using the Basic EDIT command the line will be truncated
at 250 characters by the editor. '

5. 3. 3 THE MERGE COM~1AND

MERGE "unit#: fil ename"

The MERGE command allows existing program files on disk to be incorporated
with a program presently in the BASIC program buffer. The form of the
command is MERGE lIunit#:filename". The unit# is a number from 0 to three
followed by a colon. If no unit number is specified, unit zero is assumed.

Rev. 8 9/78 5-4.3

Lines are merged one at a time from the merge file into the current program
buffer. starting with the first line in the merge file. If the line number
in the merge file ;s the same as a line number presently in the program
buffer. then the line from the file replaces the line in the buffer. If the
line number in the merge file does not match any line number in the program
buffer, then the line from the file ;s inserted in the current program
buffer in proper line number order. When all lines from the merge file have
been placed in the program buffer the MERGE is complete.

The entire merge file is loaded into memory following the program in the
program buffer. Therefore the length of program in the program buffer plus
the merge program must be less than the space currently available to BASIC,
otherwise a LOAD OVERRUN message is output and the merge does not take place.

The MERGE command also needs some additional buffer space to perform the
merge. I f there ; s not enough room the message ~1EMORY OVERFLOH is output
and the merge does not take place.

Large programs are often developed as modules. Each module ;s written with
its test data and debugged separately. The following example shows a three
part survey program. Part 1 reads the survey data and tal1eys the vote.
This module is allocated line numbers from 1000 to 2000. The data has been
allocated lines 10 to 100 and the printer output module is allocated lines
5000 to 6000.

The program under test uses lines 10-30 as test data, and lines 5000-5010
prints the test results. The program looks as follows in the program buffer:

10 REM LIVE DATA SUPPLIED BY OTHER PART OF PROGRAM'
20 REM TEST DATA.
30 DATA 1.1,2.2.3,3,4,4.0,1,4,1,99
1000 REM PROCESS SURVEY MODULE.
1010 T=l :REM INIT TOTAL COUNTER
1020 REM VALID DATA IS 0=NO OPINION,1=YES,2=NO,99=END OF DATA.
Hl25 READ C
1030 IF C=0 THEN Tl=Tl+l
1040 IF C=l THEN T2=T2+1
1050 IF C=3 THEN T3=T3+1
1060 IF C=99 THEN T=T-l:GOTO 5000
1070 IF C<0 OR C>2 AND C<>99 THEN PRINT "ITEM";T;IINOT VALID"
1080 T=T+l
1090 GOTO 1025
5000 REM TEST PRINT OUT ROUTINE
5010 PRINT UNO OPINION=" j Tl;" YES=";T2;" NO=" j T3j" TOTAL=";T

This process module with the temporary test data and print logic can be
separately tested.debugged and then saved on disk with the command SAVE "PARTl".

The real print module can then be developed as follows:

DELETE
5000 REM PRINT rJODULE
5010 OPEN 1 "*P" ERROR 5200
5020 A$="ZZ9":I3$="VZ9"
5030 P1=Tl/T:P2=T2/T:P3=T3/T
5040 IF Pl+P2+P3<>100 THEN PRINT"PERCENT ERRORII:STOP
5050 PUT 1 TAB(60) ;"NO Il

Rev. 8 9/78 5-4.4

5060 PUT 1 TAB(H~);"RESPONSES";TAB(25);IlYES %";TAB(46)"NO %";
5070 PUT 1 TAB{60)"OPINION %11
5080 PUT 1 REPEAT$(":11,72)
5090 PUT 1 TAB(12);FMT(T,A$);TAB(25);FMT(Tl,A$);TAB(30);FMT(Pl ,B$);
5100 PUT 1 TAB(45);FMT{T2,A$);TAB{51);FMT{P2,B$);TAB{60);FMT{T3,A$);
5110 PUT 1 TAB(69);FMT(P3,B$)
5120 PUT 1 REPEAT$("-",72)
5130 CLOSE 1: STOP
5200 PRINT ERR$: INPUT"CONTINUE II ,C$: SOTO 5020

When the real print module is debugged the command SAVE "PART2" saves it on
the disk.

To test the system PAR,., and PART2 are combined by typing the commands
LOAD "PARTl Il and a carriage return. and then the command MERGE "PART2" and
a carriage return. The combined programs are RUN using the test data. When
these parts are debugged they are saved on disk by typing the command SAVE
uPROGRAMIl and a carriage return.

The data is entered into a separate file as follows:

DELETE
10 REM LIVE DATA
20 DATA 1,1,1,2,2,1.0,1,2,1
30 DATA 0,2,2.2,1,2.2,1,1,1
40 DATA 1,1.1,2,2,1,2,1,0,0
50 DATA 99

And then saved by typing the conmand SAVE IlDATA" and a carriage return.
Several different data files can be produced if needed.

The final program is loaded in two parts by typing the commands:
LOAD "PROGRAM II and a carriage return and then MERGE "DATA" and a carriage
return. The final program appears as follows:

10 REM LIVE DATA
20 DATA 1,1,1,2,2,1.0,1,2,1
30 DATA 0,2.2,2,1,2,2,1,1,1
40 DATA 1,1.1,2,2,1,2.1,0,0
50 DATA 99
1000 REM PROCESS SERVEY MODULE.
1010 T=1 :REM INIT TOTAL COUNTER
1020 REM VALID DATA IS 0=NO OPINION,1=YES,2=NO,99=END OF DATA.
1025 READ C
1030 IF C=0 THEN T1 =T1+ 1
1040 IF C=l THEN T2=T2+1
1050 IF C=3 THEN T3=T3+1
1060 IF C=99 THEN T=T-l:GOTO 5000
1070 IF C<0 OR C>2 AND C<>99 THEN PRrrrr IIITEMII;T;IINOT V.n.UD"
1080 T=T+l
1090 SOTO 1025

Rev. 8 9/78 5-4.5

5000 REM PRINT MODULE
5010 OPEN 1 "*P" ERROR 5200
5020 A$=IIZZ9 11 :B$="VZ9"
5030 Pl=Tl/T:P2=T2/T:P3=T3/T
5040 IF Pl+P2+P3<>100 THEN PRINT"PERCENT ERRORJI:STOP
5050 PUT 1 TAB(60}; "NO"
5060 PUT 1 TAB{H!}; "RESPONSES" ;TAB(25}; "YES %" ;TAB(46} "NO %";
5070 PUT 1 TAB(60}"OPINION %"
5080 PUT 1 REPEAT$(":::1I,72}
5090 PUT 1 TAB(12};FMT(T,A$};TAB(25);FMT(Tl,A$};TAB(30);FMT(P1 ,BS);
5100 PUT 1 TAB(45);FMT{T2,A$);TAB(51);FMT(P2.B$);TAB(60};FMT{T3,A$};
5110 PUT 1 TAB(69);FMT(P3,BS)
5120 PUT 1 REPEAT$("-" ,72)
5130 CLOSE1: STOP
5200 PRINT ERR$: HIPUT"CONTINUE" ,C$:GOTO 5020

5.4 THE DELETE COMMAND

Groups of program lines may be eliminated from the current program buffer
by using the DELETE command. There are four forms of this command.

Type DELETE X-V to eliminate the lines numbered X through Y. Line number
V must be greater than line number X. If either line X or line V or both
are not in the current program buffer a LINE NOT FOUND message will be displayed
and nothing will be deleted.

Type DELETE X- to eliminate line X through the last line in the current
program buffer. If line X is not in the buffer a LINE NOT FOUND message
will be displayed and nothing will be deleted.

Type DELETE -Y to eliminate the first line through line V in the current
program buffer. If line V ;s not in the buffer a LINE NOT FOUND message will
be displayed and nothing will be deleted.

Type DELETE to eli mi na te the entire contents of the current program bu·ffer.
The buffer will be set to empty and a new program may be entered.

5.S THE LIST COMMAND

Allor part of the program in the current program buffer can be listed
on the terminal display device by using the LIST Command. There are four
forms of this command.

Type LIST X-V to display the lines numbered X through V. Line number V must
be greater than line number X. If either line X or V are not in the current
program buffer the first present line number greater than X or V will be used
instead.

Type LIST X- to display the lines from line X through the last line in the
current program buffer. If line X is not in the current program buffer the
first present line number greater than X will be used instead.

Rev. 8 9/78 5-4.6

Type LIST -y to display the first line through line number Y in the current
program buffer. If line Y is not in the current program buffer the first
present line number greater than Y will be used instead.

Type LIST to display the entire content of the current program buffer.

5.6 THE SAVE COMMAND

A program in the current program buffer can be stored on disk for later
retrieval by using the SAVE command.

SAVE liN: unit number: name of file tl is the general form of the command.

The word SAVE and the quotation marks and the name of file must always be
present. The name of file may be from 1 to 10 characters long. The characters

e)

Rev. 8 9/78 5-4.7

which are legal in a file name are the letters A through Z, the digits 0
through 9, and ten special characters including comma (,), dash (-),
period (.), slash (I), semi-colon (;), less than «), equal (a), greater
than (), question mark (?) and at sign (~.

The N: is optional. If it is not included in the command the existing
file with the specified name on the specified unit will be overwritten
and replaced by the program in the program buffer. If no such file exists
the message FILE NOT FOUND will be output •. However, if the N: is included
in the SAVE command then a new file will be created with the designated
name on the designated unit. If N: is used and the file already exists
on the specified unit the message DUPLICATE NAME will be output.

The unit number: is also optional. When present it consists of a single
digit from 0 to 3 followed by the colon (:). It represents the address
of the disk unit on which the specified file is to be replaced or created.
If no unit number is specified in the SAVE command, unit ~ is assumed.

5.7 THE LOAD COMMAND

A previously stored program can be retrieved from disk and placed in the
current program buffer by uSing the LOAD command.

LOAD "unit number: name of file" is the general form of the command.

The word LOAD and the. quotation marks and the name of file must always be
present. The name of file may be from 1 to l~ characters and may use the
letters A-Z, the digits ~-9 and the special characters (~), (-), (.), (I),
(;), «), (""), (?),(@),(».

The unit number: is optional. If it is used it must consist of a single
digit from ~ to 3 followed by a colon (:). It deSignates the address of
the disk unit on which the specified file is to be found. If no unit number
is specified, unit ~ is assumed.

If the filename specified in a LOAD command is not present on the specified
unit the message FILE NOT FOUND will be output. When a program file is
successfully loaded it replaces the contents of the current program buffer
and all data associated with the last program in the buffer is lost. If
the filename specified in the LOAD command is a data file (see section 5.21)
which cannot be properly placed in the program buffer, the message NOT A
LOAD FILE will be output.

5.8 THE DISPLAY COMMAND

The names of all files which are presently stored on a diskette are recorded
in a special file on that diskette. This special file is known as the
diskette dlrectory and its name is always DIR. The names currently recorded
in a diskette directory can be output to the terminal display by USing the
DISPLAY command.

DISPLAY "unit number: DIR" is the general form of the command.

5-5
Rev. 2 5177

The word DISPLAY and the quotation marks and the name DIR must be "resent.
The unit number: is optional. If it is not present unit 0 is assumed. If
it is used it must consist of a single digit from 0 to 3 followed by a colon (:)
It designates the address of the disk unit whose directory is to be displayed.

The DISPLAY command outputs the filenames five to a line. The first name
shown should always be DIR. On disks where it is present the second name
shown should always be BASIC.

If the diskette in the specified unit does not contain a valid directory file
a PERM IJO ERR message will result because the disk cannot be accessed by
the BASIC system.

5 • 9 THE SCRATCH COMMAND

A file that is stored on disk may be eliminated by using the SCRATCH command.

SCRATCH "unit number: name of file" is the genera 1 form of the command.

The word SCRATCH and the quotation marks and the name of file must always
be present. The name of file may consist of 1 to 10 characters, including
the letters A-Z, the digits ~-9 and the special characters (,), (-), (.),
(./), (;), (0, (=), (»), (?), (@).

The unit number: is optional. If it is used it must consist of a single
digit from 0 to 3 followed by a colon (:). It designates the address of
the disk unit from which the specified file is to be eliminated. If no
unit number is specified, unit 0 will be assumed. If the specified file
on the specified unit does not exist the message FILE NOT FOUND will be
output.

When a file is SCRATCHed the storage space unused by that file is automatically
freed and made available for reallocation.

5.10 THE RUN COMMAND

A BASIC program must be in the current program buffer in order to be
executed by the interpreter. This may be accomplished by typing in the
program from the input terminal or by using the LOAD command. Once a
program is in the current program buffer it may be executed by using the
RUN command.

RUN is the form of the command.

When the RUN command is entered, the interpreter resets all disk files to
"closed", and frees all memory space previously allocated to variables from
the last program run. It then begins execution of the program with the
first program line in the buffer and proceeds to execute program lines in

Rev. 2 5/77 5-6

ascending order of line number. This sequence is altered only when
par'ticular program statements deliberately change the sequence by trans
ferring control. Each program line is only executed when execution
control reaches that line; it is executed each time that this occurs.
Execution is halted when an END or STOP statement is encountered or when
execution control processes the last line in the current program buffer
and it does not alter the control sequence. At this point the interpreter
displays the message READY and waits for a line to be entered.

5 . 11 INTERRUPTING A RUNNING PROGRAM

The execution of a program may be ipterrupted prior to completion by
holding down the CONTROL key and typing C at the input terminal. The
interpreter will respond by displaying the message INTERRUPT followed
by the message READY.

The interruption generally occurs after the end of whatever program line
was being executed when the CONTROL'C was entered. In the case of the
input statement and whenever characters are being output, the interrul't
will occur immediately. Under these circumstances the remainder of the
input or outl'ut will be lost if a continue is attempted (see section 5.12).

When program execution is interrupted, the value of all program variables
remain as last assigned. Any'open disk files remain open with file pointers
current. Variables may be examined by using immediate PRINT statements and
may be altered with immediate assign,ment statements. These are frequently
used aids in debugging programs. However, if the program in the current
program buffer is modified (lines deleted, inserted, or changed) then all
variable and file information from the interrupted program is lost and the
program can no longer be continued.

5.12 CONTINUING AN INTERRUPTED PROGRAM

If an executing program has been interrupted by the CONTROL C procedure
and no changes have been made to the current program buf'fer, then the
execution of the program may be continued by USing the CONT command.

CONT is the form of the command.

When the CONT command is entered program execution is resumed at the point
in the execution control sequence following the last program line executed.
If continuation is not possible because no program has been interrupted or
because the current program buffer has been altered, the message NOTHING
TO RETURN TO will be displayed.

5-7

Rev. 2 5/77

5.13 PROGRAM TRACING COMMANDS

Often, when developing a new program, it is useful to be able to follow
the execution on a line by line basis. This capability is provided in
the Micropolis BASIC system through the use of the now and NOnOW commands.

now is the form of the command which enables this program line tracing
capability. When the now trace capability is enabled and the RUN command
is entered the interpreter displays each ~rogram line immediately before
it is executed. The now trace remains enabled after the end 'of a program
execution. It must be specifically disabled.

Nonow is the form of the command which disables the program line tracing
capability.

5.14 BASIC SYSTEM ERROR HANDLING

Whenever the BASIC interpreter attempts to execute an immediate line
which has just been entered or the next program line during program
execution, it is possible that an error condition may arise. If this
occurs the interpreter tries to indicate the problem by displaying an
appropriate error message at the terminal.

If the line in error is an immediate line then the error message will
be directly followed by the message READY. Allor part of the erroneous
line may not have been executed.

If the line in error is a program line, the line number and text of the
erroneous line are displayed after the error message and before the READY
message. Allor part of the erroneous program line may not have been
executed. Program execution is not continuable after an error.

Appendix A specifies the error messages which may be printed by BASIC
and their probable causes.

5.15 THE BASIC CHARACTER SET

BASIC recognizes all printing ASCII characters except the SHIFT 0 (SF HEX)
backspace character and the RUB OUT (7F HEX) character. However, lower case
symbols may only be used in REM statements and in literal strings. The
character set, along with the decimal. hexadecimal and octal values of the
corresponding ASCII codes are listed in table 5.1.

Rev. 8 9/78 5-8

5.16" BASIC DATA

BASIC programs operate on ~o types of data: Numeric and String. Numeric data
includes integers and real (floating point) numbers. Character string data
items consist of a sequence of characters chosen from the BASIC character set.
This includes letters, numbers, special characters and blanks. A data item
may be a constant which has an unchangiag value, or a variable which may assume
different values during the execution of a program. A variable may be either
simple or grouped with other variables of like data type into a structure
called an array, and referenced as a member of the array.

5.16.1 CONSTANTS

A constant is an unvarying value. It is expressed as its actual value. A
constant may be a numer~c value, or a character string value.

5.16.1.1 ~~RIC CONSTANTS

Numeric constants may be integers or real numbers.

An in~eger is a positive or negative whole number which may be defined
as a decimal number or in any number base (radix) up to 36. The format
of an integer may be:

Integer format: -nn n Example: -93784

Radix' format: -xxRnn •••. n Example: -l6R7B2

Where (-) is an optional sign, xx is the number base, R indicates radix
format, and nn •••• n is the number expressed with the digits 0-9 and the
letters A-Z (for radix format). The range of an integer specified in
decimal format is l-5E (2*ISIZE) to 5E (2*ISIZE). See SIZES statement
for definition of ISIZE. The maximum value of an integer specified in
radix format is 65535. A DIGIT BEYOND RADIX error occurs if a digit or
letter is used that is invalid for the radix specified.

A real number is a positive or negative number which includes a decimal
point and fractional part or a number expressed in scientific notation.
The formats of a real number may be:

Rea 1 forma t : -nn .•.. n. nn ..•

Scientific format: -nn .•. nE-xx
-nn •.. n.nn .•. E-xx

Example:

Example:
Example:

-2.677

257E-4
-l2.23lEl4

Where nn •.. n.nn .•. represents the number exoressed using the digits ~-9
and a decimal point; an optional minus sign (-) denotes a negative number
or exponent, E specifies scientific notation and xx re~resents the
exponent expressed with the digits 0-9.

The range of a real number is lE-6l to (lE62)-l.

5-9-
Rev. 2 5/77

]ASIC CHA...~AC'l'EB SET IN COLLATI!tG SEC~IC!:

CHAR DECIMAL HEX OCTAL C'9:,AR D ECDfAL H:1r OCTAL
""i~.

(space) 32 20 040 f$ 64 40 100
33 21 041 A 65 41 101 .. 34 22 042 :8 66 42 102

M 35 23 043 C 67 43 103 .. 36 24 044 D 63 44 104
-: '97 25 045 E E9 45 105
'. 38 26 046 7 70 46 106
• 39 Zl 047 G 71 47 107

40 2S 050 H 72 4S 110
\ 41 29 051 I '(.3 49 111
• 42 2A 052 J 74 4A 112
-+- 43 2] 053 ?;: 75 4] 113
t 4:4 2C 054 L 76 4C 114

45 2D 055 !~ 77 4-D US
• 46 2Z 056 rr '7S 4E 115
/ 47 2: 057 0 79 4? 117
0 4:8 30 060 P 90 50 120
1 49 31 061 0 81 51 121
2 50 32 062 R 92 52 122
:3 51 33 063 S 83 53 12:3
4- 52 34 064 T ·'34 54 124
5 53 35 065 ::r 95 55 125
6 54 36 066 V 96 56 12E
7 55 'S7 067 W 37 57 127
8 56 38 070 ! 89 58 130
~ 57 39 071 Y 89 59 131

· 59 3A 0'72 Z 90 5A 132 · · 59 313 073 [91 513 133 1

< 60 3C 074 \ 92 5C 134
=!I 61 3J) 075 1 93 5D 135
> 62 3E 076 ! 9<1. 5E 136
? 53 31' om .. 95 5F 107

Table 5.1 Standard Collating Sequence

5-9.1
Rev. 1 5177

5.16.1.2 STRING CONSTANTS

A character string is a sequence of valid BASIC characters. Entered
as a cons tant, a s tr ing mus t be enc losed in quotes ("). Quotes
within a string must be doubled (the constant" is entered as II " " ").

The length of a string is the number of characters. The maximum
length of all character strings within a program is set by the SIZES
s ta tement.

5.16.2 VARIABLES

Variables may be integer, real, or string. The amount of memory used
for each of the 3 types can be defined in a SIZES statement before
execution of a BASIC program. ISIZE defines the memory space for
integers; RSIZE for rea 1 var iab les; and SSIZE for charac ter s tr ings.

5.16.2.1 INTEGER VARIABLES

Integer variables are designated by any letter followed by a rercent
sign (%).

The range of an integer is from 1-5E(2*ISIZE) to 5E(2*ISIZE).
The internal format is 2 BCD dlgits per byte stored in lens com~lement.

If an attempt is made to store a number that exceeds the range a
CONVERSION error occurs,

5.16.2.2 REAL VARIABLES

Real variables are indicated by any letter (not enclosed in quotes)
or a letter followed by a d it. The range of a real is lE-6l to
(lE62)-1. The preciSion or level of accuracy is 2(RSIZE-l) decimal
digits.

The Internal Storage Format Is:
Byte 1: 1 bit sign and 7 bit exponent (excess 64)
Byte 2 thru RSIZE: 2 BCD d its per byte.

5.16.2.3 STRING VARIABLES

A string variable is designated by a letter followed by a dollar
sign ($). String variables may have a length of U~ to 250 characters.
The default value of maximum string length is defined by the SSIZE
rarameter of the SIZES statement. The maximum SIZE of any particular
string may be declared in a DIM statement, which supercedes the
SIZES statement. If a string which is longer than the maximum length
is assigned to a variable, it will be truncated on the right.

The internal format of a string variable is:

Rev. 2 5/77 5-10

Byte 1: Maximum string length
Byte 2: Current string length
Byte 3 th~ N: Any character, 1 character per byte

(N- 2+ Maximum string length found in Byte 1)

5.16.2.4 CONVERSIONS

Automatic conversion between integer and real data types is pro
vided which allows mixed-mode arithmetic. A real value is con
verted to an integer by truncating the fractional part while
preserving the sign of the number.

Conversion between string and numeric data types is provided by
the ST.R$, VAL, FMT, CHAR$, and ASC functions. See section 5.18.1.2
for description of these functions.

5.16.2.5 ARRAYS

Numeric and character string data may be stored in memory as
arrays. An array is a set of variables of one data type (numeric
or character) identified by a single variable name. A numeric
array is denoted by a single letter or a single letter followed
by a percent sign (%) and may have 1 to 4 dimensions. A string
array is denoted by a single letter followed by a dollar sign ($)
and may have 1 to 3 dimensions. Both types of array are zero
indexed. An array must be declared in a DIM statement which
defines the number of dimensions and the index range in each
dimension. An array indexing error occurs if an attempt is made
to reference an element of an array which has not been defined in
a DDI statement.

A one dimensional array is a simple linear list in which the
elements of the array are stored sequentially in memory. For
example, an array A which has a dimension of 4 is stored:

A (QJ)
A (1)
A (2)
A (3)
A (4)

An element of a one dimensional array is referenced by the array
name and by the index of the element within the array, enclosed in
parentheses. The 4th element of array A in the above example is
A (3). The index may be specified by a constant, as in this
example, a numeric variable, or a numeric expression.

5-11
Rev. 2 5/77

A two dimensional array is conceptualized as a table organized
by rows and columns. An array B dimensioned as B (3,2) would
be represented as:

ROW 0

ROW 1

ROW 2

ROW 3

c c c
000
L L L
012

~
Array B (3. 2)

An element of a 2 dimensional array is referenced by the array
name and the row and column indices. The shaded element in the
above illustration is referred to as B(2,2), where the first
index is the row index and the second is the column index.

The elements of a 2 dimensional array are stored sequentially in
memory in column major order, that is column by column. The
elements of the array B would be stored:

B (0,0)
B (1,O)
B (2,O)
B (3,f/J)
B (f/J, 1)
B (1,1)
B (2,1)
B (3,1)
B (f/J, 2)
B (1,2)
B (2,2)
B (3,2)

As with one-dimensional arrays, the row and column indices may be
specified by a constant, a numeric variable or a numeric expression.

3 and 4 dimensional arrays are extensions of the two dimensional
concept. An element of one of those arrays is referenced by the
array name and the appropriate number of indices.

5.16.3 OUTPUT FO~ATS

A numeric data item is converted to a string when it is output to

Rev. 1 5/77 5-12

the terminal. Unless the output format is explicitly specified
by use of the FMT function, a numeric value will be output in
one of three default formats according to the following rules:

1) The negative sign (if present) precedes the number
2) A space is output in place of a positive sign
3) A space is output following the number.
4) A number is either a whole number or a decimal

number. A whole number is a number without a
fractional part. A decimal number is a number
with a whole and a fractional part.

5) The output formats are: Whole, Decimal and Scientific.

Whole: (-)xxxxxxxil
Decimal
Scientific:

(-)xxx ... x.xxxil
(-}n.xxxxx E(-)TT¥

(-) = minus sign if negative, blank if positive
x = digit pOSition
n ~ one non-zero digit
E = signifies exponent

TT = exponent
. ¥ = blank

6) The value of an integer variable is output in whole format.
7) A constant or the value of a real variable is output as

follows:
a) If the constant or value is a whole number

having less than or equal the number of digits
specified by RSIZE, then whole format is used.

b) If the constant or va lue is a decima 1 number greater
than or equal to .1 and having less than or equal the
number of digits specified by RSIZE, then decimal
format is used.

c) Otherwise, scientific format is used.

String data is output without modification.

The maximum output line length is 250 characters. If an attempt
is made to output a line longer than the maximum length, i.e.tby
trying to output 2 strings of 250 characters with the same nrint
statement. The characters in excess of 250 are truncated and
the message "WARNING--TRUNCATED OUTPUT" is output.

5-13

Rev. 2 5/77

5.17 BASIC OPERATORS

Operators are symbols which specify operations to be performed upon data
items. BASIC recognizes 4 classes of operations:

Numeric(arithmetic): String; Relational; and Logical.

Rev. 2

5.17.1 Numer ic Opera tors

Numeric operators specify arithmetic operations to be oerformed
upon numeric data items and numeric function references. A numeric
data item may be a constant, a simple numeric variable or a numeric
array element. Numeric operators are classified as binary o~erators
which perform operations with 2 data items, and unary operators which
perform operations upon single data items.

The binary operator"s are listed below:

Symbol

t
/
*

"
+

Operation

Exponentiation
Divis ion
Multiplication
Integer Division (X'Y = Int(X/Y»

"" Sub trac t ion
Addition

The unary opera tors are 1 is ted be low:

Symbol

+

Operation

Negation
No effect

The "+" symbol is recognized as a unary operator to allow constructs
such as A::tI. +7 and A= +B to be syntac tica lly correc tal though the "+"
has no effect.

5.17.2 String Operators

One operator is recognized for string data items: concatenation.
A string data item may be a string constant, string variable or
string array element, or a string function reference.

Symbol Ooeration

+ Concatenation

5/77 5-14

The "+" operator yields a string composed of the characters in the
string data item to the left of the operator followed by the char
acters in the string data item to the right of the operator.

EXAMPLE: If A$ = "ABCD" and B$ = ''EFGR'' the opera tion A$ + B$
yields the string "ABCDEFGH"

5.17.3 Relational Operators

Relational operators allow the comparison of the values of numeric
or string data items.

The relational operators are listed below:

S:::,!!bol Meanins

" Less Than
) Greater Than
... Equal to

/..= Less than or equal to
>= Greater than or equal to
<) Not equal to

A relational operator is used in an expression of the form (Data Item 1
operator Data Item 2) which yields a single value as follows: The
values of the two data items are compared. Based upon this comparison
if the expression is true, the value "true" (1) is returned. If the
expression is false, the value "false" (0) is returned.

EXAMPLE: If A=l and B=2 then

A(a Yields a value of 1
A=B Yields a value of 0

The data items compared must both be the same data type (numeric or
string) or a type error results.

String comparison is performed as follows: Starting from the leftmost
character, two strings are compared character-by-character until there
is a mis-match or the end of one of the strings is reached. If there
is a mis-match, the string containing the character which is higher in
the collating sequence is considered "greater" than the other string.
If the end of one of the strings is reached without a mis-match and
the strings are not of the same length then the longer string is
IIgrea ter". If the end of one string is reached and the strings are
of the same length then the strings are lie qua 1 " ,

5-15

Rev. 2 5/77

5.17.4 Logical Operators

The relational operators as described in section 5.17.3 return a
value of "true" or "false". This type of value is referred to as
a boolean value and is re~resented in Micropolis BASIC as an integer.
Truth or falsity is determined by converting the integer to a 16 bit
binary number. If the least significant bit of the binary number is
o then the value is false, else the value is true. Logical operators
specify operations to be performed with boolean values as described
below:

Binary Logical Operators

Operator Expression Truth Table

AND VAL 1 AND VAL 2 VAL 1 VAL 2 RESULT
True True True
True False False
'False True False
Fa'se False Fa lse

Operator EX'Dression Truth Table

OR VAL 1 OR VAL 2 VAL 1 VAL 2 RESULT
True True True
True False True
False True True
False False False

Unary Logics 1 Operators

Operator EXDression Truth Table

NOT NOT VAL RESULT
rue False
alse True

The primary function of the logical operators is to allow the
formation of complex exnressions which evaluate to a single value of
"true" or "false".

EXAMPLE = A<=B AND c=0

Rev. 2 5/77 5-16

A secondary function is nrovided by the 16 bit implementation of
Boolean values. The logical o~erators perform the above defined
funct'ons across the full 16 bits. This allows you to perform the
AND, OR and Complement (NOT) functions in the same manner as the
elementary 8080 instructions. The utility of this feature is iJlus
trated in the following examrle which is a serial 1/0 handler for
an IMSAI SIO board.

8000
8100
8200
8300
8400
8500

NOTE:

REM INPUT ROUTINE - RETURNS CHAR IN A
A '" IN (3) AND 2: IF A '~0 GOTO 8100 :! WAIT INPUT READY
A '" IN (2) AND 16R7F: RETURN:! MASK PARITY AND RETURN
REM OUTPUT CHARACTER IN A
B'" IN (3) A~Dl: IF B"'0 GOTO 8400:: WAIT OUTPUT READY
OUT(2) = A: RETURN:! OUTPUT AND RETURN

This example will not work for I/O to the terminal device.
The BASIC interpreter checks for input from the terminal
between execution of BASIC statements and will gobble any
character received unless it is a CTt/C.

5.18 BASIC FUNCTIONS

Functions are included in the BASIC language to provide commonly required
computations. A function reference consists of the name, followed by its
arguments. The arguments are enclosed in parenthesis and separated from
each other by commas.

A function returns a single value.

BASIC recognizes two types of functions: Intrinsic functions which are
built into BASIC; and user defined functions.

5.18.1 Intrinsic Functions

Intrinsic functions may be classified as numeric, stri.ng, special
and file. The functions relating to files are discussed in the file
I/O section.

5.18.1.1 Numeric Functions

The numeric functions provide most of the commonly used trigonometric
and math functions. The math package computes these functions with up
to 2~ digits of precision, which requires RSIZE to be set less than or
equal to 10. Attemrting to use the math functions with RSIZE greater
than 10 will cause a PRECISI0N ERROR. The numeric functions' are detailed
in table 5.2.

Rev. 8 9/78 5-17

, ,

Table 5.2 NUMERIC FUNCTIONS

Function
Reference Value

ABS (x) The absolute value of x, where x is a
numeric expression. -

ATN(x) The arctangent of x, where x is a
numeric eXnression. Returns va 1ue in the
range -'\T/2 totr!2. -

COS (x) The cosine of x, where x is a numeric
ex-ression in radians.

EXP(x) The value of e ra ised to th e powE!r x,
where x is a numeric eXtlressiotl.
The whole number part of x with any frac~

FIX (x) tional part truncated and the sign preserved,
where x is a numeric expression.

FRAC(x} The fract ional part of x with the sign
pres erved , where x is a numeric expression.

INT(x) The greatest integer not greater than x,
where x is a numeric expression.

LN(x) The logarithm of x to the base e, where
x is a numeric expression with a value
greater than 0.

,

LOG (x) The logarithm of X"to base 10, where x
is a numeric expression with a value
"'rea ter than 0.

MA.X(x,y) The greater value, x or y, where both x
and yare numeric expressions.

MJR.(x,y) The lesser va lue, x or y, where both x
and yare numeric expressions.

MOD(x,y) x modulo y which is equa 1 to x~ (y'f'INT(x!y» .
Both x and y tm.tst be numeric exnressions.

Rev. 2 5/77 5-18

Table 5.2 (cont)

Function
Reference Value

Generates a pseudo random number between
o and 1. The argument x is a numeric
expression which controls the number generated
as follows:
Ifx is non zero, RND generates a number

RND(x) using x as the seed. If x=0, the last
random number generated is used as the seed.
Reneatedly calling RND with x=0 generates
a sequence of ~seudo random numbers.

SGN(x) +1 if the sign of x is !'lOS itive, -1 if the
sign of x is negative, 0 if x is 0.

SIN(x) The sine of x where x is a numeric exp-
ression in radians.

SQR(x) The pos itive square root of x, where x is
a positive .numeric eXtlression.

TAN(x) The tangent of x, where x is a numeric
expression in radians.

Rev. 2 5/77 5-19

5.18.1.2 String Functions

String functions are provided to compare strings, mani~ulate substrings
and to convert between numeric and string data types. The string functions
are detailed in table 5.3.

Function
Reference

ASC (s$)

CHAR $ (x)

FMT(x,y$)

Rev. 2 S/77

Table 5.3. STRING FUNCTIONS

Value

The ASCII code of the first character
in string s$. Returns a numeric value

Returns the character whose ASCII code
is x

Returns a string consisting of the value
x forma tted by the pic ture conta ined in
string y$. The argument y$ can be any
expression evaluating to a string. Each
character in the string (except a V)
represents one character in the result
string. The following characters are
used to format the digits of u number:

9-- A digit position of the number
leading zeroes are output as "0"

z-- A digit pOSition. Leading zeroes
are replaced by blanks.

V-- Decimal point alignment. If V is
not specified, the decimal point
is assumed to be at the far right
resulting in truncation of the
fractional t'lart of the numb~r.

$-- A digit position. If more than 1
$ appears in the string then the
digit rosition closest to the leading
non-zero digit of the numbercontains
a "$" and the leading zeroes are
blanked.

*-- A digit t'losition. Leading zeroes
are ret'llaced by asterisks.

,-- A comma appearing before the leading
digit is reolaced with a blank,
asterisk or dollar sign according to
the context.

All other characters are output unChangEd

l If the number is too large to fit in th
format snecified, the entire string is
filled with question marks (?).

5-20

Table 5.3

Function
Reference

(cont inued)

Value 1
i-r-ND-EX--(-X-$-,-y-$-)---+--Th-e-p-O-S-i-t-io-n--in-s-t-r-i-n-g-x-$-o-f' -the-~~rs ~-~~cu~~nc ~ . '.--

x$, then 0 is returned.
of string y$. If string y$ is not a substring of ~

I----------I--------------,,~'-.- ... -. _._-.,-- -.. - ... --.-~
LEFT$ (x$, n)

LEN (x$)

MID$ (x$,n,y)

MAX (x$,y$)

Returns n leftmost charact~~~_o_=_~~. . _ t
Returns length of x$. i

Returns y characters from string x$ starting with
character n. •

j

The greater, string x$ or string y$. See the 1
collating sequence in Table 5.1. j

~--------~--------------------.---------.~
iMIN (x$,y$) The lesser, string x$ or string y$. See the I

collating sequence in Table 5.1. I
---------------~---------------------- 1

The character string with string x$ repeated I REPEAT$ (x$, n)
n number of ttmes.

j RIGHT$ (x$, n) The n rightmost characters of string x$.

Converts the number n to a string. l STR$ (n)
~---------------.. -+---.. I VAL (x$) Converts the string x$ to a number. The contents

of x$ may be numeric digits or a numeric expression
EXAMPLE: If A$ ~ "2+2", then VAL (A$) ==4

!----------------~---.--
j VERIFY (x$, y$)

Rev. 2 5/77

Verifies that all characters in
in y$. Returns the position of
in x$ which is not found in y$.
in x$ are in y$ returns 0.

string x$ are,also .
the first characterl
If all characters

I

5.18.1.3 Special Functions

Micropolis BASIC provides several other functions which nertain
neither to numbers nor strings. These special functions are
detailed in Table 5.4.

Table 5.4 SPECIAL FUNCTIONS

Function
Reference Value

IN(x) Inputs a value from I/O port x. The
value of x must be greater than o and
less than ~36.

PEEK(x) Returns the contents of memory
location x. The value of x must be
greater than 0 and less than 65536.

PGMSIZE Returns the size of the t>rogram
currently occupying the program buffer
in bytes.

SPACELEFT Returns the amount of space left in
the program buffer in bytes.

5.18.2 User Defined Functions

Micropolis BASIC provides the ability to define two tyues of functions:
BASIC functions and assembly language functions.

5.18.2.1 User Defined BASIC Functions

BASIC allows the user to define functions which consist of BASIC
expressions and which are referenced in the same manner as the
intrinsic functions. A BASIC function is defined in a DEF statement
which has the following form:

DEF FN(letter) (parameter) = expression

Rev. 2 5/77

Function
Name

Optional
Parameter

5-22

Expression which provides
the value of the function

The characteristics of a function definition are:

1) Function Name--consists of the characters ''m'' and one of
the letters A-Z yielding up to 26 user-defined BASIC functions.

2) Parameter--a function may optionally include a parameter which
passes a value to the function when it is referenced. The
parameter which appears in the function definition is a "dummy
parameter". For example, consider the function defined by:

10 DEF FNZ(X) = Xt3+~+A+B

The parameter X is a fldummy" in the sense that when the function
is referenced, the value ~assed in the function reference is
used in the place of ''X''. The !'arameter is only used in the
definition to indicate the form of the exnression. However, the
variables A and B are actual variable names.When the function is
referenced, the current values of A and B are used in evaluating
the expression.

3) Expression--a function may be defined as either a string function
or a numeric function by the form of the expression. The ex
pression may be any BASIC expreSSion which yields a Single value
of the appropriate data type.

A function reference consists of the 3 character function name
and the parameter (enclosed in parentheses) if a parameter is
included in the function definition. A function reference yields
a single value and can be used as a data item in any expression
not restricted to constants. A small program USing the above
defined function is given below as an example:

10 DEF FNA(X) =Xt3+Xt2+A+B
20 INPUTA,B,C
30 PRINT FNA(C)
40 GOTO 20
READY
RUN
? 2,3,1

7
? 0,1,2
13
?
INTERRUPT
READY,

Rev. 6 9/77

5-23

"

Below is an example of a string function.

5 :JIZES(5,4,80)
10 DEF FNB(S$)=REPEATS(S$,N)
20 INPUT A$,N
30 B$=FNB(A$)+"ISN'T THIS REPETITIVE?"
40 PRINT B$

READY
RUN
? "AGAIN AND It, 4
AGAIN AND AGAIN AND AGAIN AND AGAIN AND ISN'T THIS REPETITIVE?

READY

See the ''DEF FN" statement for more detailed information.

5.18.2.2 Assembly Language Functions

Micropolis BASIC allows the user to define Assembly Language
''Functions'' which provide linkage to assembly language subroutines.
The linkage allows a BASIC program to pass from 1 to 4 arguments
to an assembly language subroutine and provides for a result to be
passed back to the basic program when the assembly language sub
routine returns control.

An Assembly Language Function is defined as follows:

DEF FA (letter)- expression

The function name consists of the characters "FA" and one of the
letters A-Z yielding UP to 26 assembly language functions. The
expression is a numeric ex~ression which S?ecifies the memory address
of the subroutine entry point.

An assembly language function reference consists of the 3 character
name followed by a list of arguments enclosed in narentheses.

Examp1es:

100 A::: FAA
200 A$ = FAB (B$, C$)

Up to 4 arguments may be passed to an Assembly Language Function
and 1 result may be passed back as the v.l~e of the function reference.

Rev. 7 3/78 5-24

The arguments and result are passed through the following locations
which define the subroutine linkage:

LOCATION LABEL DESCRIPTION --
04BCH ARGl
04BEH ARG2
04C0H ARG3
04C2H ARG4
04C4H NARGS
04C5H RSIZE
04C6H ISIZE
04C7H SSr.ZE

01A0H RESULT

Pointer to the first argument
Pointer to the second argument
Pointer to the third argument
Pointer to the fourth argument
Number of arguments passed

Values of RSIZE. ISIZE
and SSIZE as described
in Section 5.20.26

250 byte result buffer

When an assembly language subroutine is referenced. thebas;c interpreter
sets the pointers in the linkage table to point to the values of the
arguments, indicates the number of arguments passed in NARGS, and calls the
subroutine. When the subroutine returns, the interpreter expects to find
the value returned by the subroutine. if any, in the result buffer.

The format of the arguments pointed to by ARGl-4 and of the result returned
is:

BYTE 0 - Type Indicator
1- Real
2 - Integer
3 - String

BYTE l-N- Refer to Section 5.16.2 "Variables" for the
internal storage format for each variable type.
The length of each variable type is specified
by RSIZE. ISIZE and SSIZE.

The general procedure for using assembly language subroutines ;s as follows:

1) Load BASIC from MOOS or directly from a BASIC only SYSTn1 DISK.

2) Set the memory space used by BASIC using the MEMENO statement
to reserve space above BASIC for your subroutine.

3) Load the subroutine using the LO~O command. Execution of an
object file load within a program is allowed.

4) Define the name and entry point of the subroutine with the
OEF FA Statement. The subroutine may new be used.

5-25

Rev. 7 3/78

The assembly language program example on the following cages demonstrates
most of the principles involved in passing arguments and returning results.
It was created by using the assembly language development to01s of the
MOOS system. The source program was entered with LINEEDIT and then assembled
with ASSM to produce an object file named CONCAT which can be loaded by
BASIC.

The CONCAT subroutine expects two string arguments to be passed and returns
a string which is composed of the second argument concatenated with the first
argument. If only one argument is passed. the result string is "argument
error!!. If both arguments are not strings. the string returned is "type
errorll.

Note: This example is not complete - a proper subroutine of this type
would have to handle the special cases of null strings and checking to see
if the maximum string length has been exceeded. etc.

Rev. 7 3/78 5-26

.~

J'l02 ***.***o************.*o*******.*.*~
~0e0 ~: *
0000 * ASSFt"'BLY LANGUA~F *
ao~0 * S:J'BP';UTHIE LI"-IKAGE :,!,

~000 * :!:EMC 1978 , ..
','

~Z00 .'. * ...
J010 il ***********************************
3eee ~:

i>0'~ 2! *
J0i2J :::
zeez 21A0 RESULT Ee f

] lA::lci
JeZe 24E C APGl f,n

"V 4'RCS
~0a21 a~EE ARG~ ECJ AFG1+2
lZeV! 24CZ ARGe EO] ARG1+4
~~e'2 04C~ ARG4 n:r A'Il~1+6
.?~J3 .34(;4 ~.ARGS i:JU ARGl-8
~0~e 04ce RS IZl E~TJ AFG1+9
';'220 :34C6 ISIZE E~U AliG1+1Z
J.o;3 :,3 04C7 SSIZE E:JU AF.G1+11
Z0ez * czze *
ll~~ eRG 5240H
62'40 :':

6142 :'~ TtiIS fEMe AGCE?TS Titi 0 ARG:JMENTS
tA4t .:' WHIC? ABE STRINGS AND F.iT:n<"l:
5Z4e ... ARG 1 80~CAT:ENATED WITH AR::;2. ','

6Z4e
c.HJ i,.

6£'40 ;:A G4 ;2': N'ERCK It.l1 NARCS ;CH~CK ::CR TWO
5<;43 '!E 02 CPI 2 i ARGUMENTS.
6Z'45 C2 8t £,1 J'J Z N3F.ER i!F NCT 1WO - EEFO?.
6i:' 4: e 2A ~,.

~ " 24 7YPCK LHLD ARCl i:'LfE. CHECK' TYPE OF
6,z 4'B 7:! rov A.~ ; AR::n. IT MUST
6l4C FE: (3'; C?I ;3 i'5E A S7RI~G.
6~4£

~ , 87 6e JNZ TYF'E''?R i!F NaT - E:;,P.OR.
50=1 2A BE 04 LELD AEG2 JELSE, CEECf: ARG?
Et54 71 r:ov A.~ iIT ALSO r-:UST
525: FE Z3 CPI ;:, ; BE A STRING.
6357 ':2 27 60 JNZ TYPERR iIF ~CT - ERRCR.
€t5A * oe ::A * 'BeTH ARGUMEl'iTS ARE _v ALI D STRINGS
~e Sf.. >:;

t~5A 11 Aa Jl LXI D, RESULT ;SETUP RETURN
621 = r. 3E 0:: wn'!

• ~" .I. A.3 ;PARAr.ITER At;. A
6205 t 12 51,A,! D i STR I :~G TYPE.
cZ€a 1.2 IN X D ; S! I P OVER
6251 13 I~X D ; LE~G':'H FOR
5262 13 IN! "" ; NO'1o' .r.J

6t€3 AF IRA A ; ZERO LE~GTH
6.z 64 47 MOil 'B.A i COUNTER.
Sl65 ~,A 'BC 04 LHLD ARGl iMCVE FIRST
€ltd CD 79 f0 -:--:STP CALL :-:OVE ; ARGUl":ENT TO RE~UL,T
606:9 2A u: 04 LHLD A?G2 ; ~OVE SECOND
see!. CIi 79 60 CALL ~CVE ; AGFUrENT TO E. ESULT
EZ'i1 78 :v: 0 v A.E ;GE~ LEr\GTB COUNT
Se?2 "I'" ... t::. Al 01 5TA R £5ULT+1 ; PUT COUN'r INTO
SIZ75 32 A2 el S1A R ESITL T+2 ; FiESU LT.
6:o?6 C9 R.!T iDONE. RETURN TO BASIC

5-27

Rev. 7 3/78

6079 *
E079 lit MOVE ARGUMENTS TO RISULT.
6079 '" fiL REGISTERS H!S ARGUMINT ADDRES S •
6079 ~ DE REGISTERS HAS POSITION I N RESULT.
6079 * ! REGISTER IS COUNT
6079 *' 6079 23 MOVE INI H iSlIP TYPE
537A 23 INX H iSlIP MAX LENGTH
6itl7! 4:E MOV C,M iGET LENGTH or STRIN~
5e7C 23 INX H
507D 7E MOVEl MOV A.M i(;ET CHARACTER
6,z 7E 12 STAX D ; PU! IT INTO RESULT
50?! 13 INX D iNEXT
6080 23 INX H
SJEl 04 INE ! ; COUNT +1
60E2 0!: DCR C ;LENGTH -1
6~S3 C2 7D S~ JNZ MOVEl jLOCP TILL DONE
6eSt C9 RET iDONE
see7 * 5eS7 * a.aS7 21 9E €~ TYPERR LXI H.TYPMSG
S0EA C~ ge S~ Jr.? EMSG
6eeD »I

6Z6D 21 AE 60 NERIR LXI H.N'BRMSG
se90 11 !0 01 EMSG LXI DtRESULT ; PUT MESSAGE IN RESULT
5093 3E 03 HVl A,3 iSTRING TYPE
6itlS5 12 STAX D
sass l~ IN! D
6eS7 13 INX D
609b 13 INX D
6e99 AF XRA A ; ZERO COUNT
sa9! 47 ~cv :BtA.
6~9B C3 68 60 JM? MSTR ir.OVI TO RESULT
6e9~ ::\I

5e9£ * ER~OR MESSAGES
60SE *' 609E 0e 00 0A TTPMSG DB 0.0.10
60A1 54 59 50 DT 'TYPE ERROR"
5JA4 45 20 45
50A7 52 52 41
50A! 52
6itlAE lit

60A3 00 00 0E N'BFHSG DB 0.0.14
S0A!; 41 52 47 DT ' ARGUMENT ERROR"
50]1 55 ~D 45
5e34 4i 54 20
6tE7 45 52 52
621EA 41 52
50]C :ec

6a!C I'ND NBRCI

Rev. 7 3/78 5-28

Listing of and output from a BASIC program that utilizes
the CONCAT assembly language routine.

READY
LIS T
10 DIM AS(250) .B$(250) ,C$(250)
2Z M EM EN D l6R5FF!
30 LOAD "CONCAT"
42 DEF FAA=16R604e
=?0 INPUT AS
tM INPU'I B$
72 C$=IAA{AS.B$)
90 PRINT C$
92 GOTO 5l
BEADY
RUN
? 12345
? 67893
1234567SSe
? NOVI IS THE TIME
? FOR ALL GOOD MEN
NOW IS THE TIMEFOF. ALL GGOD MEN
?
IKTEBRUPT
60 INPUT B$
P. EADY
PRINT FAAfA$)
ARGUMENT llFiOR
READY
PEIN'! IAA{A,B)
TYPE. ERROR
READY
PH IN'! FAA(· 12345 '. "673921")
1234567690
R!AD!

Rev. 7 3/78 5-29

Pages 5-30 through 5-32 left blank intentionally.

'~.

Rev. 7 3/73 5-30

5.19 BASIC EXPRESSIONS

A BASIC expression is a combination of data items and function references
connected by operators. An expression specifies an operation or series of
operations that yields a single value, which is referred to as the value of
the expression. Data items may be constants, simple variables, or array
elements. Operators may be arithmetic, string, relational, and logical.

Rev. 2

5.19.1 Evaluation of Expressions

BASIC contains a precise set of rules which define the manner in
which expressions are evaluated:

1) Operator Precedence -- Ooerators encountered in an
expression are performed in the following order:

1) Function references
2) Unary operators
3) Arithmetic & string operators
4) Relational operators
5) Logical o"erators

2) Operators which have the same level of precedence are
performed in the order in which they are encountered
in scanning the expression from left to right.

3) The normal rules of precedence & order of evaluation
may be overridienby the use of parentheses to partition
an expression into subexpressions. Nesting of sub
expressions is limited by the overall complexity of the
expression. If an expression is too complex it may cause
a STACK OVERFLOW error. In this case, the expression
should be broken into two expressions.

4) Expressions containing subexpressions are evaluated
from the innermost subexpression outward to the next
level of parenthesis until all parenthetical expressions
have been evaluated. Within a subexpression the rules
given for operator precedence and order of evaluation
apply.

5.19.2 Numeric Expressions

A numeric expression consists of numeric function references, numeric
operators, and numeric data items and evaluates to a numeric result.
Operations are performed in the following order:

5/77 5-33

, :

1) Function references
2) Unary + ~nd -
3) Exponentiation
4) Division and Multiplication
5) Integer division
6) Addition and Subtraction

Parentheses may be used to force evaluation in the exact order desired.

EXAMPLES:

1. 2*3+7*4

This expression is evaluated as follows: (V (x) indicates the value
of x)

1) 2*3 yields 6
2) 7*4 yields 28
3) V(2*3) + V(7-*4) yields 34

2. 2*(3+7) *4

This expression is evaluated as follows:

1) 3+7 yields 10
2) 2* V(3+7) yields 20
3) V(2*V(3+7)) *4 yields 80

5.19.3 String Expressions

A string expression consists of string function references, string
operators, and string data items and evaluates to a string result.
Operations are performed in the following order:

1) Function references
2) Concatenation

EXAMPLE: Let B$.. "The number is"

B$+STR$ (134)

This expression is evaluated as follows:

1) STR$(134) yields " 134 "
2) V (STR$(134)) is concatenated with the current

va lue of B$ which yields .''The number is 134 "

5-14

Rev. 2 5/77

5.19.4 Logical Expressions

A logical expression consists of numeric and string expressions
combined with relational and logical operators. The value of a
logical expression is a Boolean value. Operations are performed
as follows:

1) Function references are performed.
2) The NOT operation is performed.
3) Numeric and string ex~ressions are evaluated.
4) Relational operations are performed
5) The AND o~erations are performed
6) The OR operations are performed
7) Parentheses may be used to force evaluation in the exact order

desired
EXAMPLE:
A+2(:3 AND B+3(5 OR NOT (B$="A")

This expression is evaluated as follows:

1) The va lue of B$ is compared with "A" (Note: if ~arentheses
had not been used, BASIC would have tried to ~erform NOT
B$ which would have given an error) Temporary result Tl is
set =1 if B$="A" else is set =0

2) Tl is complemented
3) A+2 is evaluated
4) B+3 is evaluated
5) The value of A+2 is compared with 3 and a temporary result

T2 is set =0 if A+2)3 or 1 otherwise.
6) The value of B+3 is compared with 5 and T3 is set =0

if B+3 is greater than or equal to 5 else is set =1.
7) T2 is ANDed with T3 yielding T4
8) The value of the expression is obtained by ORting T4

with Tl

Note: The NOT operator complements the 16 bit representation of
Boolean values so the final value of this expression is
65535 if true and 65534 if false.

Rev. 2 5/77 5- 35

5.20 BASIC STATEMENTS

BASIC statements specify operations to be performed in a BASIC program, and
describe the data and operating environment of the ryrogram.

Every BASIC statement consists of a keyword followed by a list of zero or
more expressions which specifies the operation to be performed by the
statement.

Multiple statements may be included in the same program line separated by
the colon (:) (see section 5.2).

The statements included in the BASIC language are listed alphabetica lly
and described in detail in the following pages. Conventions of notation
used are:

Indicates a choice of one of the items enclosed.

2) (J Indicates optional items.

3) Parentheses () used in definitions must be included as
illustrated.

5.20.1 DATA 1 numeric constant}
1 string constant {

numeric constant]
string constant

150 DATA 25, "APRn. 1, 1977", 26E-J

, . .

The DATA statement is used to define a list of data internal
to a BASIC ~rogramwhich may be accessed with the READ state
ment. When a BASIC 9rogram is started, the DATA no inter is
initialized to point to the first data item in the first DATA
statement in the program. When a READ statement is executed,
one value is resd from the list for each variable specified
and the '["ointer is advanced to Doint to the next da ta item.
When the data items in a DATA statement are depleted, the
pointer is set to floint to the first data item in the next
DATA statement encountered in the program such that all the
data values contained in DATA statements constitute a con
tiguous list. The RESTORE statement can be used to re-position
the DATA pointer to point to the first data item of any DATA
statement within the program.

The DATA statement is non-executable and may therefore appear
anywhere within a program.

5-36
Rev. 2 5/77

'. ~
"

5.20.2 DEF FN letter [(function parameter name)] "" f::J:1Jression

10 DEF FNA "" x+y+z
100 DEF FNL(A)- (4*3. 1415*A) 13
150 DEFFNR (M$) "" REPEAT$ (M$. 5)

The DEF FN statement is used to define a function.
The name of the function defined is "FN" followed
by one of the letters A-Z. Each function name may be
defined only once in a given program.

For example. if the statement 110 DEF FNN= 3. 1415*R2
were used in a program. 260 DEF FNN (M$)=REPEAT(M$,5)
could not be used because the function names are
identical. The statement 260 DEF FNM (M$)-REPEAT(M$,5)
would be legal.

A function ~arameter is optional. If ~resent, it is a
dummy ~arameter and its name may be any sim~le variable
name. A function will return a numeric or string value
depending upon the form of the expression.

A DEF FN··statement is non-executable and may arpear
anywhere in a program.

5.20.3 DEF FA letter = numeric expression

Rev. 2 5/77

90 DEF FAA = 16R7000

The DEF FA statement is used to define a function which
provides linkage to an assembly language subroutine.
The function name cons ists of the letters "FAil and one
of the letters A-Z. The expression contains the starting
address of the assembly language subroutine. See section
5.18.2.2 "Assembly Language Functions" for details of
linkage and passing arguments.

5-37

5.20.4 DIM letter (%1 (II, 12, ••• 14)
DIM letter $(length)
DIM letter $(11, ••• 13,length)

10 DIM A (2,4)
20 DIM B%(2,3,4,5)
30 DIM A$(40)
40 DIM A$(2,3,40)

The DIM statement is used to define the maximum length of
string variables and to define the number of dimensions and
index ranges for arrays.

The first form of the DIM statement is used to define a
numeric array. The array name consists of one of the letters
A-Z. An optional percent sign (%) may follow the letter to
denote an integer array. The array may have 1 to 4 dimen
sions as defined by the number of parameters (I). The value
of each I defines the maximum value of the index for that
dimension.

The second form is used to set the maximum length of a
string variable. The name of the variable is one of the
letters A-Z followed by the dollar sign ($). The'length
specified must be less than or equal to 250 and overrides
the default length specified in the SIZES statement.

The third form is used to define a string array. The array
name consists of one of the letters A-Z followed by the dollar
sign ($). A string array may have 1 to J dimensions as
defined by the number of parameters (I) specified. The value
of each I defines the maximum value of the index for that
dimension. The last parameter specified in the parameter
list is the maximum length of each string element.

Dimension statements are executed dynamically, therefore
the parameters may be either constants or expressions.

5.20.5 END

The END statement is optional in BASIC. Execution will
terminate when the END statement is executed and may not
be continued with the CONT command. It is recommended
that an END statement be the last statement of a program
to serve as a listing aid. Its presence ensures that the
listing is complete.

5-38
Rev. 2 5/77

5.20.6 EXEC string expression

100 EXEC A$

The EXEC statement is a feature unique to Micropolis BASIC.
The EXEC statement causes the string expression to be passed
to the BASIC Interpreter and to be executed as a statement.
The expression may consist of one or more BASIC statements
separated by colons(:). The expression passed is checked for
syntax errors and then execut~d if valid. The follOWing
program is given as an example of the power inherent in this
statement. The program accepts arithmetic statements from
the terminal and prints the results -- effectively operating
the terminal as a desk ca lc.~llator.

5.20.7 FLOW

LIST

10 INPUT A$: EXEC "PRINT "+A$' : GOTO 10
READY
RUN
? 2+2
4

? SIN(3.l4l59/4)
.70710595

?

10 FLOW

The FLOW statement turns on the program trace feature which
aids in debugging BASIC programs. The program trace will out
put to the terminal the program line of each statement which
is executed. The program line will be output again if the
THEN portion of an IU • THEN statement is executed. The
program trace is turned off by the NO FLOW statement.

5-39
Rev. 2 5/77

5.20.8 FOR numeric = numeric TO numeric fSTEP numeric J L expression

Rev. 2 5/77

variable expression expression

30 FOR X = 1 TO 30
40 FOR Y 30 to 0 STEP -1
50 FOR X = A to B

The FOR statement initiates the repeated execution of a set
of statements following it. The set begins with the statement
immediately following the FOR statement. The set ends with
the NEXT statement that contains the same variable as the
FOR statement. The numeric variable controls the number of
times t±e set of statements is to be executed and is called the
loop variable. The set of statements to be executed is
referred to as a FOR • • NEXT loop.

The expressions specify the initial value of the loop
variable, the terminal value of the loop variable, and the
value to be added to the loop variable after each pass
through the loop (step). The step parameter is optional;
when not specified, a default value of +1 is used.

The statements within the FOR NEXT are executed
until the value of the loop variable is stepped outside
the range defined by the initial and terminal values.

The STEP value can be negative, as in:
20 FOR I = 1016 to 0 STEP -116

This statement would cause the initial value of the loon
variable I to be set at l~, subtract 10 from the loon
variable each time the loop was completed, and terminate
executing the loop when the loop variable contained the
va lue ~.

The statement 15 FOR J. D TO 0 would cause the FOR loon
to be executed one time. That is, the statements between
the FOR J and the NEXT J statements would be executed
once before the loop variable of ~ + 1 would be compared to
the limit value of 0. At this point the loop variable limit
would have been exceeded and program execution would fall
through to the next line number.

A set of· FOR ••• TO ••• NEXT statements may be nested within
one or more sets of FOR ••• TO ••• NEXT statements. For
example:

ID FOR K • 1 TO 90
20 FOR L = 1 TO 15
30 PRINT K, L
40 NEXT L
50 NEXT K

5-40

When nesting FOR ... TO ..• NEXT statements it is imperative
that the inside loop (in this case the L loop) be completely
enclosed within the outer loop.

If the above statements had been entered incorrectly as follows:

10 FOR K • 1 TO 9~
20 FOR L = 1 TO 15
30 PRINT K, L
40 NEXT K
50 NEXT L

The error message ''MISSING FOR" would occur when the ''NEXT L"
statement is encountered.

If a GOTO or IF ••• THEN statement is executed from within a
loop, the program execution will continue in a normal manner.
BASIC will continue the loop from the current value of the
loop variable if the loop is re-entered at Some later point.

Rev. 2 5/77 5-41

't-.

5.20.9 GOSUB (1 inenumber 1.
lnumeric expressionj

210 GOSUB 1000

The GOSUB statement causes a set of statements to be executed as
a subroutine.

When a GOSUB statement is executed, control is transferred to the
first statement whose line number is specified in the GOSUB
statement. The referenced line number and all statements following
it will be executed until a RETURN statement is encountered.
Control is then returned to the statement following the GOSUB.
Consider the following:

IS(I GOSUB 21": PRINT A + B
l6l1 END
2111 INPUT X,Z
22~A ==X+l: B a Z-10
230 RETURN

When line number 150 is executed, control is transferred to line
number 2ll1. Line 210 and 220 are executed, then 230, the RETURN
statement. The'RETURN causes control to be transferred to the
statement Umnediately following the GOSUB. Therefore, the sum
of A + B will be printed before the program ends.

GOSUB statements can be nested. That is, a subroutine can
contain a GOSUB statement that references another subroutine.
Control will be returned to the first subroutine when the RETURN
statement of the second is executed. The message STMT # NOT
FOUND will be output if a GOSUB statement references a line
number that does not exist in the program.

BASIC allows an expression to be used as the line number. If
this is done, care must be taken to insure that the value of
the expression is a positive real number. The fractional part
of the number will be truncated in forming the line number.
A dUMBER OUT OF RANGE error will occur if the number is invalid.

Rev. 2 5/77 5-42

5.20.10 GOTO
{

line number }

5.20.11

Rev. 2

numeric expression

100 GOTO 5000
200 GOTO A+B

The GOTO statement causes control to be transferred to the first
statement in a specified program line. A GOTO statement may
reference any line in a program, including its own line. The
line number may be specified as a constant or a numeric expression
Care must be taken to ensure that the expression evaluates to a
positive real value. The fractional part of the number will be
truncated in forming a line number. If the value is invalid, a
NUMBER OUT OF RANGE error will occur. If the line number does
exist in the program, a STMT # NOT FOUND will occur.

IF logical expression [[THETHENN] STATEMENT [:STATEMENT II
1 line number J

10

20

30

40

IF A< B THEN PRINT "*"

IF A = 2 GOTO 100

IF A • 4 THEN 100

IF A .. 2 AND C .. 3 mEN D = 2: GOTO 1000

The first form of the TF statement provides conditional execution
of one or more statements based upon the value of a logical
expression.

The statements subject to conditional execution must all reside
within the same program line as the IF statement. If th~ logical
expression evaluates to "true", then the statements are executed.
If the expression evaluates to "false", then all remaining state
ments within the 1 ine are ignored. The keyword THEN is optional
in th is form.

The second form of the IF statement provides a conditional
program branch based upon the value of a logical expression.
If the expression evaluates to II true " , control is transferred
·to the first statement in the specified program line. If the
expression evaluates to "false", program execution conti",ues
at the next sequential program line. The line number must be
specified as a constant. If the line number specified does not
exist in the program, a STMT # NOT FOUND error occurs.

5/77 5-43

'" ~

5.20.12 INPUT ["prompstring"t:n variable list

H'J INPUT A ,A$
20 INPUT "ENTER NUMBERS"; A,B

The INPUT statement prompts for data to be entered from the
terminal and waits for the user to enter the data. If a
prompt string followed by a semicolon (;) is included, the
string is output, followed by a question mark (7) before
waiting. If a prompt string followed by a comma (,) is
included, the string is output and then the question mark
is output on the next line before waiting for entry. If
no prompt string is included, a question mark is output
to the next terminal line before waiting for input.

One value must be entered for each variable in the variable
list. Values may be numeric or string constants separated
from each other by the current string delimiter. Strings
entered do not need to be enclosed in quotes (") unless they
contain the string delimiter. If a string constant ;s
erroneously entered in place of a numeric constant, a
TYPE ERROR occurs, followed by the message REENTER FROM
BEGINNING. This means that all values in the variable list
should be entered again in proper order. The last value
entered is delimited by a carriage return. If too few values
are entered, INSUFFICIENT INPUT is output to the terminal and
the statement waits for more input to satisfy the variable
list. If too many values are entered, EXTRA INPUT IGNORED
is output to the terminal and the program continues execution.

S.ZO.13 [LET] variable ~ expression

10 LET A = 5

Rev. 6 9/17

20 A$ = "FAT HIPPO"

The LET statement causes the expression to be evaluated and
assigns the resulting value to the variable. The data type·
of the expression and the variable must be the same type or
a IITYPE ERROR" results. The LET keyword ;s optional.

5-44

5.20.14 MEMEND numeric expression

10 MEMEND 16R7000

The MEMEND statement is used to define the upper limit of the
memory space used by BASIC. One of the main applications of
this statement is to reserve memory for assembly language
subroutines which may be placed above the address specified
by the expression.

5.20.15 NEXT numeric variable

10 NEXT X

The NEXT statement terminates the loop initiated by the
FOR statement that contains the same variable. 'While the
loop is being executed, each time control reaches the NEXT
statement, the loop variable is incremented by the STEP
value, or by 1 if a STEP value was not defined.

When loop execution terminates, control passes to the
statement following the NEXT statement.

If a NEXT statement is encountered prior to the execution
of a FOR statement naming the same loop variable, a MISSING
FOR error occurs.

S.20.l6 NOFLOW

500 NOFLOW

The NOFLOW statement turns off the program flow trace
which may be activated by a FLOW statement.

5.20.17 ON numeric expression GOTO line number list

100 ON K+5
200 ON J

GOTO 200, 300, 400
GOTO A+50, 400,B

The ON ••• GOTO statement causes control to be transferred to
the line number whose positional value in the line number list
is equal to the expression. If the exnression is zero or
greater than the number of lines in the list, control is
passed to the next statement. If the expression is fractional,
the fraction is truncated prior to the GOTO being executed.
If the expression is negative a 'NUMBER OUT OF RANGE error
occurs. The line numbers in the line number list may be
numeric constants or numeric expressions. If a line number
in the list does not exist a STMT I NOT FOUND error occurs.

5-45

Rev. 2 5/77

5. 20. 18 ON n.umer ic expres s ion GOSUB 1 ine ~llmlber 1 is t

100 ON X GOSUB 500, 600, 700, 80~
200 ON Z+2 GOSUB B,C, 600

The ON ••• GOSUB statement causes execution of the subroutine
beginning at the line number whose positional value in
the line number list is equal to the value of the numeric
expression.

If the expression is zero or greater than the number of
lines in the list, control is passed to the next statement.
If the expression is fractional, the fraction is truncated
prior to the GOSUB being executed. If the expression is
negative a NUMBER OUT OF RANGE error occurs.

The line numbers in the line number list may be numeric
constants or numeric express ions. If a line number in the
list does not exist a 3TMT # NOT FOUND error occurs.

When a RETURN statement is encountered in the subroutine,
control returns to the statement followng the ON ••• GOSUB
statement.

5.20.19 OUT (numeric eXpression 1) ~ numeric expression 2

H'10 OUT (l6R10) = 20

The OUT statement causes the value of ex~ression 2 to be
output to the I/O Dort specified by exnression 1. Both
expressions must be numeric expressions with values in the
range 0 to 255 or a NUMBER OUT OF RANGE error occurs.

5.20.20 POKE (numeric expression 1) = numeric expression 2

Rev. 2 5/77

100 POKE (16R6000) 20~
200 POKE (A) '" B

The POKE statement stores the value specified by expression
2 in the memory location specified by expression 1. Ex
pression 1 must be in the range ~ to 65535 and expTes8ion 2
must be in the range a to 255. If the value for either
expression is outside of the specified range, a NUMBER OUT
OF RANGE error occurs. Care must be exercised to ensure
that the location POKE'd does not cause BASIC to crash.

5-46

5.2Q.21 PRINT expression il} [TAB{numeric expressio~ ...
100 PRINT A;B;C
200 PRINT TAB(10); "TIm ANSWER IS"; FMT(A, "ZZZ9V. 99")

The PRINT statement causes the value of the exnressions in
the expression list to be output to the terminaL Ex~ressions
are output in the formats described in section 5.16.3.
"Output Formats 11.

An output line conSists of up to 250 characters and is
partitioned into 16 character print fields. Print T"osition
within an output line is controlled as follows:

Rev. 6 5/77

1) An expression is output starting at the current
print position. Each expression must be separated
from the next expression by a comma (,) or a
semicolon (;).

2) If the expression is followed by a semicolon,
the print pOSition is set to the next position
following the last character output for the
expression. If the expression is the last

:s,..expression of the PRINT statement then output
,;;.;~ generated by subsequent PRINT statements will
'IP. start at this position on this line of the output

on the terminal.

3) If the expression is followed by a comma, the
print position will be set to the beginning of
the next 16 character print field after out~
putting the expression. If the expression is
the last expression of the PRINT statement then
output from subsequent PRINT statements will
begin at this pOSition on this line of output
on the termina 1.

4) If the last expression of the PRINT statement is
not terminated by a comma or semicolon then the
print position is set to the first character of
the next line after outputting the value of the
exnression.

5) The print ~osition may be explicitly set by including
references to the tab function which cperates only
in ?RINT or PUT statements. TAB moves the ryrint
rosition to the position sT"ecified by the value of
the tab function parameter. If the pOSition is
already beyond the specified value when the print

statement is executed then the specified value is
simply ignored.

BASIC contains a parameter which specifies the length of a
physical output line on the terminal. If a print line
which is longer than the terminal width is output, carriage
returns and line feeds will automatically be inserted to
wrap the output across as many physical lines as necessary.

Rev. 2 5/77

5.20.22 READ variable list

10 READ A,B,C$

The READ statement reads values from the BASIC programs
internal data list which is created by including data
statements within the program. One value is read from
the data list for each variable appearing in the variable
list. If there is insufficient data in the data list to
satisfy the variable list then RAN OUT OF DATA will be
output. If a string value is read for a numeric variable
then a TYPE ERROR will occur. Values are read sequentially
from the data list unless the pointer which points to the
next value to be read is repositioned by use of the RESTORE
statement.

5.20.23 REM remark text

10 REM THIS JUNK IS A REMARK AND IS NOT EXECUTED

The REM statement is used to include comment text. The
character (!) may also be used to include comments in a
program line. The REM statement and any characters fol
lowing a (!) character in a program line are non-executable
and are ignored.

5.20.24 RESTORE [numeric expression]

10 RESTORE
2~ RESTORE 25

The RESTORE statement is used to pOSition the data list
pointer which allows control of the sequence in which
data items are read from the program's internal data list.
The pointer will be set to the first data item of the data
statement whose line number is specified by the numeric
expression. If an expression is not specified, the pointer
will be set to the first item in the first data statement
appearing in the program.

5.20.25 RETURN
l0~ RETURN

The RETURN statement transfers control to the statement
immediately follOWing the last GOSUB statement executed.
If a RETURN statement is encountered prior to the execution
of a GOSUB statement the error message ~OTHING TO RETURN
TO is output to the terminal.

5-49
Rev. 2 5/77

5.20.26 SIZES (numeriC
constant 1,

20 SIZES (5,4,80)
30 SIZES (6,5,40,3000)

The SIZES statement is used to specify the number of bytes
of storage to be used for real variables (RSIZE), integer
variables (ISIZE) and string variables (SSIZE), and the
maximum program size when using chained program segments
(see section 5.21.2.6). Constant 1 - constant 3 are positive
integer constants. The value of constant 2 specifies ISIZE
which must be greater than 1 and less than RSIZE. The value
of constant 1 specifies RSIZE which must be greater than
ISIZE and less than 30. The value of constant 3 specifies
SSIZE which must be greater than 0 and less than 251.

Constant 4 is an optional parameter. If it is present it
specifies the maximum number of bytes allocated for progl'am
size, after which variable space allocation begins.

If no SIZES statement is executed, the default SIZES are
(5,3,40).

The SIZES statement may not be executed if any variables are
already allocated. If any of the constraints described are
violated, a SIZES ERROR error occurs.

5.20.27 STOP
100 STOP

The STOP statement causes the execution of a BASIC program
to cease. The execution may be resumed from the line
following the STOP statement with a CONT command.

5.20.28 STRING string expression

Rev. 6 9/77

10 STRING ";"

The STRING statement defines the current string delimiter
used to terminate a string accessed by an INPUT or GET
statement. The end of string will be signified by either
the end of the record or the first occurence of the string
delimiter. If a STRING statement has not been executed,
the default delimiter is the comma (,).

5-50

5.21 BASIC DISK Fn~ I/O

A file is a data structure which may be accessed as a named entity and consists
of a collection of data grouped into elementary units called records. The file
structure is generally used for storing data on mass storage devices such as a
disk. Disk Extended BASIC provides the ability to create and access files stored
on the disk. Common maintenance operations such as renaming or deleting a file
are included.

5.21.1 Disk Files

Each file stored on a diskette
from 1 .to 10 characters long.
0-9, or the special characters

is identified by a file name, which may be
The characters may be letters, digits
period (.), slash (/), or hyphen (-).

The minimum amount of space required to store a file is one track. When a
"new" file is opened, a complete track is allocated. This track and any
other track aSSigned by the BASIC file system to this file remain una~ail
able to any other file until released by the user. The maximum number of
files that can be stored on a disk is a function of the number of tracks
available on the disk. The Mod I disk drive provides 35 tracks per
diskette; Mod II provides 77 tracks· per diskette. One track per diskette
is required for the file directory, so the maximum number of files is
either 34 or 76. Conversely, the maximum size of a file is 34 or 76
tracks. Each track. consists of 16 sectors of 256 bytes per sector. A
file is accessed ·sector by sector; therefore a "record" is 1 sector.

Actual placement of files is maintained by the BASIC file system. One
track is a110ca ted for each "new" file opened. When 16 records have been
written to a particular file, another track is allocated. The file
appears contiguous to the program, even if it is not stored on contiguous
tracks. It is not possible to store one file on more than one disk; that
is, a file may not span disks.

Files may be stored in 3 formats: Program, Object and Data.

1) Program Files - A program file is a BASIC program which was stored
by a SAVE command as described in section 5.6. The data consists
of the BASIC program text as it resided in the program buffer with
keyword compression. A LOAD command will load the data from a
program file into the BASIC program buffer.

2) Object Files - An object file is an tmage of a block of memory
which was saved using the memory range option of the SAVE command.
A LOAD command will read the data back into the memory locations
from which it was saved. This is the format in which assembly
language programs may be stored on the disk.

5-51
Rev. 2 5/77

3) Data Files - Data files contain data created by and are
accessible to BASIC programs by use of the PUT and
GET statements. Each execution of a PUT statement
stores 1 record in the file. Data within each record
is represented as ASCII characters.

Each record is a 25~ character string. A data file
may not be loaded uSing the LOAD command. Micropolis
BASIC provides the ability to access the records of a
data file either sequentially or directly. (commonly
referred to as random access)

In addition to the format, a file may also have Write
Protect and Permanent attributes.

1) Write Protect - A file which is Write
Protected cannot be re-written but may
be deleted by a SCRATCH command. This
is a software Write Protect not related
to the physical Write Protect provided
by a Write Protect tab installed on a
diskette. If a physical Write Protect
tab is installed on a diskette, all
operations which attempt to modify a
file or the directory will yield a

WRITE PROTECT error.

2) Permanent - A Permanent file may be re-
written but may not deleted by a SCRATCH command.

A file may be both Permanent and Write Protected.

Several ~eywords are provided to manipulate disk files as described
below:

5.21.2 Disk File Commands

r~~ands are provided to load and save program or object files, delete
cile, and to display a list of the files which reside on a diskette.

Although commands may appear in a BASIC ~rogram, commands will generalJy
be executed in Immediate mode. All disk commands reference the directory
of the desired diskette. If the diskette is not loaded or a malfuncticn
exists in the disk drive which causes it to return a not ready status
the message jRlVE NOT UP will be outout to the terminal when a command
is executed. If the drive is unable to read or write on the diskette
properly then a PERM 1/0 ERROR will resul t .

Re·l. 2 5(77 5-52

5.21.2.1 DISPLAY string expression

DISPLAY "1: DIR"
DISPLAY A$

The DISPLAY command will output the directory of the diskette loaded
into the drive specified by the string expression. The value of the
string expression must be of the form:

II [unit:] DIR" where unit is the drive

unit address in the range of 0 to 3. If omitted, drive 0 is assumed.
If the string is a constant it must be enclosed in quotes ("). If
a directory does not exist on the diskette a -FILE NOT FOUND error
results.

5.21.2.2 LOAD string expression

LOAD 112 : DEMO PGM "

The LOAD command loads a program or object file into memory. The
file is specified by the string expression which must evaluate to
the following form:

" [unit:] filename" where unit. is the

unit address in the range 0 to 3. If omitted, unit 0 is assumed~
The file name may be any valid filename. If the string is a constant
it must be enclosed in quotes ("). If the desired file does not
reside on the diskette a FILE NOT FOUND error results. If the
file is a data format file, a NOT A LOAD FILE error results.

5.21.2.3PLOADG string expression

PLOADG "0: NEXTSEG"

The PLOADG statement operates like a combined LOAD command and RUN
command. It loads the program file named in the string expression
into the current program buffer and then transfers control directly
to the logic of the RUN command. All variables and file status from
the preceding program are reset to the initialize condition and
execution begins with the fiLst line of the new program.

The PLOADG statement may be used to cause automatic execution of
several program files in sequence. This is accomolished by using
a PLO~DG statement as the last executed statement of each program
in the sequence, such that it names, loads and begins the next
program in the sequence. Note, however, that no nrogram variables
or open files are retained from one nrogram or segment to the next.

Rev. 3 6/77 5-53

Rev. 3

The string expression in the PLOADG statement must evaluate to the
following form:

If [unit:] filename ll

where unit is the unit address in the range 0 to 3. If omitted,
unit 0 is assumed. The file name may be any valid filename. If
the string is a constant, it must be enclosed in quotes ("). If
the desired file does not reside on the diskette a FILE NOT FOUND
error results. If the file is a data format file, a NOT A LOAD
FILE error results. If the file is an object file rather than a
program file, it will be loaded just as if a LOAD command had been
used and the current program will continue executing with the
statement after the PLOADG statement.

5.21.2.4 SAVE string expression [memory address rang~
SAVE ''N: I : NEWPRG"
SAVE ''N:LOADER" 16R7000, l6R7DFF

The SAVE command stores program format or object format files on the
diskette. The file is specified by the string expressio~ which must
evaluate to the following form:

"fN:] [~nit:J filename"

If the file to be saved does not already exist on the diskette, the
"N:" must prefix the unit/file name to cause the creation of a new
file in the directory on the diskette. The unit is the drive unit
address in the range 0-3. If omitted, unit 0 is assumed. If the
string is a constant it must be enclosed in quotes (").

The filename may be any valid filename.

If the memory range option is not included, the contents of the
BASIC program buffer will be stored in the desired file in ~rogram
format.

If the memory range option is specified it must be of the form:

numeric expression 1, numeric expression 2

The numeric expressions must evaluate to positive real values in
the range 0 - 65535. Fractional parts will be truncated. The
contents of memory from expression I to expression 2 will be
stored in the desired file in object format.

6/77 5-54

If "N:" is not specified for a new file, a FILE NOT FOUND
error results. If a file has a Write Protect attribute,
it cannot be overwritten and a WRITE PROTECT error will
occur if an attempt is made to save it. If a file specified
as new already exists a DUPLICATE NAME error occurs.

5.21.2.5 SCRATCH string expression

SCRATCH "l:JUNKfILE"

The SCRATCH command deletes a file from the diskette directory
and releases the tracks allocated to the file for use by other
files. The file to be scratched is specified by the expression
which must evaluate to the form:

"[unit:] filename ll where the unit is

the drive unit address in the range 0 - 3. The filename may
be any valid filename. If the expression is a constant it
must be enclosed in quotes ("). If the unit address is
omitted, unit 0 is assumed.

If the specified file does not exist, a FILE NOT FOUND error
results. If the file has a permanent file attribute then it
cannot be deleted and a PER~ FILE error occurs .

. 5.21.2.6 CHAIN string expression

Rev. 6 9/77

990 CHAIN IINEXTPART II

The CHAIN statement loads the BASIC program file specified
in the string expression into ·the current program buffer and
then transfers execution control to the first line of the
newly loaded program segment. This operation is similar to
the PLOADG statement with the important exception that the
CHAIN statement preserves all allocated variables, user
defined assembly language functions, SIZES parameters, and
the current string delimiter from the last program segment.
These preserved values are passed to the newly 10aded program
segment which may use them just as if it had assigned them.
Note that open file information and user defined BASIC
functions are not preserved by the CHAIN statement. If any
files are open when a CHAIN is executed they are imp1icit1y
closed. This means that the filenumber is disassociated
from the filename and made free for reuse; but the directory
is not updated and therefore any changes in the length of
the file are not recorded. In general, all open files should
be proper1y CLOSEd before executing a CHAIN statement.

5-54.1

The CHAIN statement is a powerful tool which facilitates
the construction of programs much larger than available
system memory would otherwise permit. It makes it possible
to. transfer data and control from section to section of a
very large program that has been divided into separately
loadable segments. To use the CHAIN statement effectively
certain rules must be observed.

Rev. 6 9/77

1) The program size of a segment being chained in
cannot be greater than the program size of the
program currently in the program buffer. If
this condition does occur a LOAD OVERRUN error
will be reported. A procedure for avoiding this
condition is to specify the size of the largest
program in a chained program set as the fourth
argument of a SIZES statement (see section
5.20.26). This SIZES statement should appear as
the first statement of the first executed program
of the chained set. The program size of each
segment can be determined by LOADing it and using
the PGMSIZE function {see section 5.18.1.3}.
Assuming a set of three program files named
SEG1, SEG2, SEG3 9 the following example illustrates
the procedure:

LOAD ."SEG1"
READY
PRINT PGMSIZE
472
READY
LOAD "SEG2"
PRINT PGMSIZE
526
READY
LOAD "SEG3"
PRINT PGMSIZE
126
READY

In this example the largest PGMSIZE is 526. If
SEGl were the first file to be executed and the
standard system precisions were desired, then the
statement SIZES (5.3,40.526) would be included
as the first statement of SEG1.

2} All files should be closed before executing a
CHAIN statement.

3) A CHAIN statement should not normally be executed
from within a FOR-NEXT loop. If this is done only
the current value of the loop tndex variable will
be preserved across the CHAIN.

4) A CHAIN statement should not normally be executed from within
a subroutine. If this is done the RETURN information for that
subroutine is lost across the CHAIN.

5} A program segment which is to be CHAINed should not normally
contain a SIZES statement since SIZES statements cannot be
executed after any variables have been allocated. The only excep
tion is the case of the SIZES statement used to set the maximum
program size. A special internal test allows such a statement
to be chained back to as necessary.

5.21.2.7 LINK string expression

LINK "MOOS"

LINK "OISKCOPY"

The LINK command loads the overlay file specified in the string expression
into memory and transfers control to the execution address of the overlay.
This command is designed primarily for use with Micropolis supplied overlay
files such as MOOS and DISKCOPY. These files completely replace BASIC in
memory when LINKed to. They take over the control of the computer system
and provide their own operating. commands and dialogue.

The string expression must evaluate to a valid filename. The file must be
an overlay type C through F. If the specified file ;s not found or the
disk unit is not ready, control will return to BASIC where the error will
be reported. ·If an'unrecoverable disk error occurs during the LINKing
process, the system will execute a soft halt. This;s done because BASIC
has already been partlally destroyed and the new system has not been
successfully loaded. The computer must be reset and a new system booted in.

The LINK command can be used to load and transfer control to a machine
language program file that runs in high memory above the end of BASIC
(see MEMEND statement), It can return to the BASIC interpreter by jumping
to the system warmstart address.

5.21.3 DISK I/O STATEMENTS

BASIC statements are provided which allow a BASIC program to create and
transfer data to.and from data format files, and to perform certain file
maintenance functions on any type file such as renaming a file or changing
the attributes of a file. The operation of disk I/O statements differs from
the disk commands as follows:

5-54.3

Rev. 7 3/78

1) Disk I/O statements refer to files through a orogram
IIFile Number"~ An OPEN statement must be executed to
associate a file on the diskette with a nrogram file
number.

2) When all I/O oper-ations on a file are complete, a file
must be closed by executing a CLOSE statement. CLosing
a file consists of updating the directory to reflect all
operations which have been performed Since the file was
opened, and disassociating the file from the program
file number. CAUTION: A file which has been written to
must ALWAYS be closed or data written to the file may be
lost.

Prior to any operation which accesses the disk, BASIC ensures that
the drive is ready to accept commands. If the diskette is not
loaded or a malfunction exists which prevents the drive from
performing operations then a DRIVE NOT UP" error results. If the
disk is unable to perform the specified read/write operation properly,
a PERM I/O ERROR results.

A program file number may be in the range 0 to 9. As many as 10
fil~may be open at once within a program. If an I/O statement
attempts to access a file which has not been opened by an OPEN
statement then a "FILE NOT OPEN error results.

If an I/O statement specifies a file number outside the range 0
to 9 then a 'NOT A FILE# error occurs.

5.21.3.1 OPEN file number string expression options

10 OPEN 1
20 OPEN 2

liN: NEWFILE"
"JOE" END 1000 ERROR 5000

The OPEN statement opens the specified file for access by disk
I/O statements. The file is selected by the string ex?ression
which must evaluate to the form:

"eN J [uni t:] filename"

If the file to be opened does not exist on the diskette, the characters
''N:'' must be included in the unit/filename to cause the creation of a
new file in the directory. The file created is a data format file. The
unit specifies the drive unit address which must be in the range 0-9.
The filename may be any valid filename. If the string is a constant,
it must be enclosed in quotes (It). If the unit address is omitted,
unit 0 is assumed. If the specified file does not exist and is not
declared as a new file, a FILE NOT FOUND error occurs. If a file
specified as new already exists, a DUPLICATE NAME error occurs.

5·55
Rev. 8 9178

The filenumber must be a numeric expression with a value of 0 - 9.
The filename specified will be associated with this file number
until the file is closed and all file I/O directed to the file number
will be performed using this file.

Each open file has two associated pointers which noint to the next
record to be accessed in a sequential PUT or GET statement. When
a file is opened, the sequential GET pointer is initialized to
point to the first record. The sequential PUT pointer is initialized
to point to the record following the last record. The last record in
the file is considered the end of the file for GET statements. The
last record +1 is considered the end of file for PUT statements.
For example a 5 record file would have pointers initialized as follows: r EOF for a GET (Read)

\
_____ '!- EOF for a PUT (Write)

RECORD 1 2 3 4 s 6 : _____ I

---t----~-------- t
Sequential
GET pointer

Sequentia 1
PUT pointer

An open file may be read from and written to both sequentia11y and
directly by record.

The open statement includes several options which ~re listed below:

1) CLEAR - The CLEAR option overrides the normal initialization
of the sequential GET & PUT pointers. The pointers are
initialized so that the file is empty. A subsequent GET
will encounter an end-of-file. A PUT will write into
record 1. This option is generally used to initialize the
pointers for re-writing a file sequentially.

2) END numeric expression

Rev. 2 5/77

The END option specifies the line number to GOTO when the
end-of-file is encountered during a read operation. The
numeric expression must evaluate to a positive real number
which is a valid program line within the program when the
fractional part, if any, is truncated. If the line does
not exist, a STMT fFNOT FOUND error occurs. This option
allows the BASIC program to handle an end-file condition
without the program being aborted. If the END option is
not Specified, the normal end-file handling is to abort
the program with an END-FILE error.

5-56

3) ERROR numeric expression

The ERROR option specifies the line number to GOTO if a
disk 110 error occurs. The numeric expres~ion must
evaluate to a positive real number which is a valid
program line within the program when the fractional part,
if any, is truncated. If the line does not exist, a

STMT # NOT FOUND error occurs. This option allows
a BASIC program to handle disk 110 errors without being
aborted. If the error option is not included, a disk
110 error will cause the appropriate error message to
be output and abort the program. the ERR function may
be used in the error handling program section to determine
the type of error.

5.21.3.2 PUT filenumber RECORD record number ~xpression List

100 PUT 1 A;B;C
2013 PUT 1 A ;A$+". If; B'
300 PUT 1 RECORD 3 A;B;C

The PUT statement causes the values of the expressions in the ex
pression list to be written onto a record of the file specified by
the- filenumber expression. The filenumber must be a ~umeric ex
pression having a value of the digits 0 - 9 when the fractional
part, if any, is-truncated.

Each execution of a PUT statement writes one record into the file.

Each disk record is composed of a 250 character string and is, in
fact, a print line. Each expression in the expression list is
evaluated, converted to a string if the resulting value is numeric,
and is placed in the string in exactly the same way that orint lines
are built. The rules for building the string are as follows:

Rev. 6 9/77

1) The record string is partitioned into 16 character fields.
A pointer which is initialized to point to the first char
acter in the string keeps track of the next pOSition in
the string to be loaded.

2) Expressions are evaluated as they are encountered in
scanning the expression list and from left to right,
and are converted to strings according to the formats
described in section 5.16.3 "Output Formats". The
resulting string is loaded into the record string
beginning at the pointer position. Each expression must
be separated from the next expression by a comma(,) or a
semicolon(;) •

3} If the expression is followed by a comma(,) after the
expression has been loaded into the string, the string is
padded with enough blanks to position the pointer to the
beginning of the next 16 character field.

4) If the expression is followed by a semicolor(;), after the
expression has been loaded into the string the pointer ;s
set to the character position following the last character
of the expression.

S) After all expressions have been loaded into the record
string, any remaining characters in the string are pada
with blanks and the record string is written onto the
diskette.

EXAMPLE: If A = 100 and B = -2.5, the statement:

100 PUT 1 A;B

would cause the following record to be written on
the disk: (Note: ~ denotes a blank)

~' iS100kS, - 2. 5 iSiS ~" -. ' ---------v-'
A M 240 Charact~r pad

The Statement

100 PU7 1 A.S

would cause tne fol lowing record to be written to
the disk:

~)5l~~jSjSjS~jStH?jS~ ~~ ••• ~
A PAD B 229 Character pad

The expressions in the expression list may be numeric and string in any
order subject to the following restrictions: (l) If a string expression
follows a numeric expression it must be immediately preceded by the
current string delimiter. (2) The last character of a string expression
must be the current string delimiter. These restrictions Must Be
Strictly Followed or the expression will not be properly read back.

On Input. numeric values are delimited by blanks. The output format of
numeric values always follows the value with a blank. so numeric strings
built as described will always read back correctly. Strings, however,
may contain embedded blanks. The input logic which reads a record from
the disk looks for the current string delimiter to denote the end of a
string. If a string follows a numeric value, the blank following the
numeric field will be included in the string unless the current string
delimiter precedes the string.

Rev. 8 9/78 5-58

l
\,

One solution to this problem is to concatenate the string delimiter
on all string variable references, include the string delimiter in all
string constants, and precede all string expressions following numeric
expressions with the string delimiter.
EXAMPLE:

To writ'e the values of A,B$,C, E$ and F$ on the diskette, the PUT
statement would be

100 PUT 1 A· II "+B$+" II·C· II "+E$+" II'F$+1f II " "" " , (This example uses the default delimiter, co~ (,»

If it is desired to change the string delimiter, the following approach
could be used to implement the previous example:

10 D$ = ";" :! SET STRmG DELIMITER
20 STRmG D$

100 PUT 1 A;D$+B$+D$;C;O$+E$+O$;F$+D$

If this approach is used, the string delimiter must be the same
when a record is read as when it was written or incorrect results
will be obta ined.

If the record option is not included, the record is written into the
file at the record number specified by the sequential PUT pointer. The
pointer is then incremented by 1.

If the record number option is included, the record is written into
the record specified by the record number expression. The record
number expression must have a value which is a ~ositive real number.
The fractional uart is truncated. If the record number is greater
than, the end-of-file as described in 5.21. 3.1, a PARM ERROR
occurs,

NOTE; Writing a record directly by use of the RECORD option does
not affect the sequential put pointer. The ~ointer will
only be moved by a sequential PUT or execution of a PUTSEEK
statement.

If an attempt is made to write more than 250 characters into a
record, the first 250 characters' will be written and the remaining
characters will be truncated. A warning message 'WARNmG - TRUNCATED
OUTPUT will be output to the terminal.

Rev. 6 9/77

5.21.3.3 GET fi1enumber RECORD record number variable list

1 A,B,C$ 100 GET
200 GET 1 RECORD 100 A,B C$

The GET statement reads a record from the file soecified by the
filenumber expression and assigns the values read to the variable
list. The filenumber ex~ression must evaluate to one of the di1its
o - 9. The fractional part, if any, is truncated.

If a string is read for numeric variable, a TYPE ERROR results.
If too few values exist in the record string to satisfy the
variable list, a RAN OUT OF DATA error occurs. If an attem;,t
is made to get a record which is past the last record, an END
FILE error occurs.

If the RECORD option is not included, the record read is the
record specified by the sequential GET pointer. The sequential
GET ro inter wi 11 then be i.ncremented by 1.

If the RECORD option is included, the record read is the record
specified by the recordnumber expression. The expression must
evaluate to a positive real number. The fractional part will be
truncated.

NOTE: The sequent,ial GET pointer is not affected by a direct
GET. The pointer will only be modified by a sequential
GET or by execution of a GETSEEK statement.

5.21.3.4 CLOSE filenumber

100 CLOSE 1

The CLOSE statement causes the file specified by the filenumber
expression to be closed for disk I/O. The filenumber eXnression
must evaluate to one of the digits 0 - 9 when the fractional nart
is truncated.

Closing a file consists of updating the file entry in the diskette
directory to reflect all operations which were performed upon the
file since it was opened, and disassociating the file from the
program filenumber. As a rule, all files whi.ch are opened in a
program should be closed before the ~rogram terminates. All files
which have been written into ~!E be closed or the directory will
not be updated and data written into the file may be lost. Any
files which are left open are implicitly closed by a RUN command
or any command that modifies the nrogram buffer, such as a DELETE,

Rev. 2 5/77 5-60

LOAD or line insertiQn/deletion. Implicit closure does not u~date
the directory.

5.21.3.5 ATTRS (filenumber) = numeric e~pression

100 ATTRS (2) = 19

The ATTRS statement sets the file attributes of the file referenced
by the filenumber to the value of the numeric expression. The file
number expression must evaluate to one of the digits 0-9 when the
fractional part is truncated. The numeric expression, when the
fractional part is truncated, must evaluate to a valid combination
of the attribute values which are described below:

VALUE

16
8
2
1

Al'TRIJ3UTE

Program File
Object File
Permanent File
Write Protect

A file which does not have a Program or Object attribute is assumed
to be a Data Format file. Some examples are:

19 16+2.1· Write ~rotected, permanent, ~rogram file
9 ~ 8+1 = Write protected, object file

26 - 16+8+2 ~ Invalid combination - This would identify
a file as being a Permanent Program file and
Object file, which is not possible.

A main intent of the ATTRS statement is to allow the user to change
the Write Protect and Permanent attributes only. The File Format '
attributes should not be changed. The current value of the attribute
parameter may be accessed by the ATTR function.

5.21.3.6 EOP (filenumber)· expression

150 EOF (9) ~ 50

The EOF statement sets the file length parameter of the file
referenced by the file number to the value of the expression.
The filenumber expression must evaluate to one of the digits
o - 9 when the fractional part is truncated. The expression
must evaluate to a positive real number. The fractional part
will be truncated. The EOP statement is used to decrease the
length of a file. The value of the expression should be set to
1 greater than the last record number. For example if a file
contains 100 records and it is desired to delete the last SO
records, the statement

100 EOP (1) '" Sl

5-61
Rev. 2 S/77

would cause record 50 to be the last accessable record. The following
cautions apply to the use of EoF statement:

1) The EoF statement does not reset the sequential PUT/GET
pointers. If they are set beyond the new EoF an END-FILE
error will occur if a PUT or GET is attemrvted. Reset the
pointers to the proper values with the GETSEEK and PUTSEEK
statements.

2) Do Not Set the EoF Beyond the true length of the file.
Any sectors remaining on the last allocated track may be
read by a GET and will yield garbage.

3) Resetting the EoF does not release the now unused tracks
for system use. De-allocate the unused tracks by executing
a FREESPACE statement.

5.21.3.7 FREESPACE filenumber

100 FREESPACE 1

The FREESPACE statement de-allocates any tracks allocated to the
file referenced by filenumber which are beyond the current end of
file. Filenumber expression must evaluate to one of the digits
o - 9 when the fractional part is truncated. If there are no
excess tracks allocated an "END FILE" error results.

5.21.3.8 GETSEEK (filenumber):o I11meric expression

50 GETSEEK (1) = 20

The GETSEEK statement sets the sequential GET pointer associated
with the filenumber to the value of the numeric exoression. The
filenumer expression must evaluate to one of the digits 0 - 9 when
the fractional part is truncated. The numeric ex~ression must
evaluate to a positive real number. The fractional part is
truncated. The value must be greater than zero and less than or
equal to the last record number or a PARM ERROR or END FILE
error will occur when a sequential GET is performed. The current
pOSition of the pointer may be accessed by USing the RECGET function.

5.21.3.9 PUTSEEK (filenumber) - numeric expression

100 PUTSEEK (2) a 30

The PUTSEEK statement sets the sequential PUT pointer associated
with the filenumber to the value of the numeric ex~ression. The
filenumber expression must evaluate to one of the digits 0 - 9
when the. fractional part is truncated. The numeric eXT'ression must

Rev. 8 9/78 5-62

evaluate to a positive real number. The fractional part is truncated.
The value must be greater than zero and less than the last record

"number +2 or a PARM ERROR will occur when a sequential PUT is
performed. The current value of the ~ointer may be accessed by
using the RECPUT function.

5.21.3.10 RENAME (filenumber) = string e.xpression

100 RENAME (1) = ''NEWNAME''

The RENAME statement changes the name of the file referenced by
the filenumber to the value of the string ex~ression. The file
number expression must evaluate to one of the digits 0 - 9 when
the fractional part is truncated. The string expression must
evaluate to a valid file name. The current name can be accessed
using the NAME function.

5.21.4 DISK I/O FUNCTIONS

Disk File I/O functions are included within BASIC to provide information
about a currently open file. Each function reference includes a file
number expression which must evaluate to one of the digits 0 - 9 when the
fractional part is truncated. If the specified file number does not
have a file currently opened to it a "FILE NOT OPEN error occurs. The
disk file I/o functions are detailed ~n table 5.5.

5-63

Rev. 2 5/77

Function
Reference

TABLE 5.5 DISK Ilo P11NCTIONS

---------------------------_ .. ---_ ..
ATrR (n) Returns the attribute parameter associated with

file n. See section 5.21.3.5 for a description
of the value.

Returns the error code associated with the last
disk error. The error codes are:

o No Error
1 Permanent I/O Error
2 - End-Fil e
3 Di sk Full
4 - File Not Found
5 - Duplicate Name
6 - Parameter Error
7 Drive Not Up
8 - Permanent File
9 Write Protect

11 - Inva1id File Name
12 - Printer Attention

The error code is not reset by a successful operation,1
so is meaningless unless an error occurs. :

~--------------~--~
ERR$

,
!
f-
! NAME (n) ,
I

I
~ ---
l_RECGET (n)

i RECPUT (n)
!

.-
SIZE (n)

- --_._------ ~.-

TRACKS (n)

FREETR (n)

Rev_. 8 9/78

Returns the error message string associated with the
last disk error.

- ----.
Returns a string containing the na me of the file
associated with file number n.

Returns the value of the sequentia I GET pointer
associated with file number n.

- .. »- ~------ - ~--~-

-- ..

Returns the value of the sequentia I PUT pointer
asso<: ia ted with file number n.

---- -""- ~

Returns the, SIZE (in records) of t he file associated
with file number n.

- .. -- ---" .-.

Returns the number of disk tracks
allocated to file number n.

-...
Returns the number of disk tracks
available for allocation (free) 0
unit associated with file number

.. ..

5-64

currently

currently
n the disk
n .

5.22 BASIC PRINT FILE OUTPUT

Micropo1is BASIC provides a set of print file output features for systems which
have a hard copy printer device in addition to the standard keyboard-display
terminal. This section specifies each of the printer related language features
and discusses how to use the available features to solve some common printer
programming problems.

5.22.1 Printer Related Language Features

The printer related language features consist of seven statement and option
keywords. They achieve a high flexibility of output control by expanding the
disk file I/O scheme to include print file and terminal file output and by
adding a physical device assignment capability. Following are descriptions
of each statement syntax and function.

5.22.1.1 OPEN filenumber string expression option(s)

Rev. 6 9/77

l~ OPEN 1 u*P II PAGESIZE 66 END PAGE 9~~
2~ OPEN 2 "*Tu
3~ OPEN 7 u*N"

The syntax of the OPEN statement in this context is the same as that
for disk files as shown in section 5.21.3.1. The statement associates
a fi1enumber with a filename specified in the string expression.
The filenumber must be a numeric expression with a value of ~ - 9.
The string'expression which contains the filename must have one of
three specific values which designate a particular output print device.

1) Filename *p associates the filenumber being opened with the
system printer.

2) Filename *T associates the filenumber being opened with the
display element of the system terminal.

,3) Filename *N associates the filenumber being opened with a null
output device. The output directed to that file will be
discarded or drained.

Any other filename will be interpreted as a disk file name per
section 5.21.3.1.

There are two print file options available with the OPEN
statement:

a) PAGESIZE numeric expression

This option allows the programmer to set a limit value for
an internal system counter which counts the number of lines
output to the associated filenumber. The counter is incre
mented on each PUT statement to the associated file, unless
that PUT statement ends in a comma or semicolon (see section
5.22.1.2). Each time the limit count is reached, the

5-65

/

counter is reset and the system checks for a correspond
ing ENOPAGE option.

The numeric expression must evaluate to a whole number from
o - 65535. If a print file ;s opened without a PAGESIZE
option the internal limit value defaults to a value of 66
which is the number of lines per page on standard 11 inch
forms.

b} ENOPAGE linenumber

This option specifies a program line number to which the
system will perform a GOSUB each time that the limit ;s
reached on the internal lines per page counter. The line
number must be a numeric expression which evaluates to a
legal linenumber. That line should be the beginning of a
subroutine which programs some appropriate end of page
actions and which ends with a RETURN statement. The RETURN
will go back to the statement immediately after the PUT
statement which triggered the end of page action.

If no ENOPAGE option is specified for a given file the
internal lines per page counter is just reset each time the
limit is reached and processing continues normally.

5.22.1.2 PUT filenumber expression list

15 PUT Ii1 "TOTAl: "; Al t "ITEM NAME :11; B$
25 PUT 7 At Bj

The PUT statement causes the values of the expressions in the
expression list to be assembled into an output record which is then
output to the print file device associated with the filenumber.
The filenumber must be a numeric expression with a value in the
range 0 - 9. The expression list consists of a sequence of
constants and/or variables separated by commas or semicolons. The
rules by which the output record is assembled are the same as those
for PRINT statements as detailed in section 5.20.21. Separate
carriage width wraparound control ;s provided for the printer
device. If the expression list ends with a comma or semicolon then
no carriage return line feed is output. In this case the internal
lines per page counter of the associated file is not incremented.
(see section 5.22.1.1 - PAGESIZE option). The TAB and FMT func
tions may be used in PUT statements.

5.22.1.3 CLOSE filenumber

Rev. 6

90 CLOSE 6
99 CLOSE 2

The CLOSE statement causes the file specified by the filenumber
expression to be closed for output. The filenumber must be in
the range 0 - 9. When a print file is closed the associated
filenumber is freed for use in a subsequent OPEN to another file.

9/77 5-66

Any files which are left open are implicitly closed by a RUN command
or by any command that modifies the program buffer, such as DELETE,
LOAD or· line insertion change.

5.22.1.4 ENDPAGE filenumber

25 ENDPAGE 7

28 ENDPAGE R6

The END PAGE statement is related to the ENDPAGE option described in
section 5.22.1.1. However, it is syntactically and functionally
distinct. Its function is to end the current output page of the
designated fi1enumber and thereby position the output device to the
beginning of the next logical page. The fi1enumber must be a numeric
expression with a value in the range 0 - 9. When the ENDPAGE state
ment is executed the current value of the lines per page counter
associated with fi1enumber is subtracted from its limit value. The
result determines the number of empty lines which are output to the
file device to complete the current logical page. When the ENDPAGE
statement is complete the associated lines per page counter is reset
to mark the beginning of the next logical page.

5.22.1.5 ASSIGN (physical device number. logical stream indicator, device
width. null count)

Rev. 6 9/77

10 ASSIGN (2,1,80,6)
20 ASSIGN {2,2,132}
30 ASSIGN (l,l)

The ASSIGN statement is a dual purpose statement which provides the
ability to specify the connections of physical output print devices
to logical output streams and the values for carriage width and
nu11count of the referenced physical device. The physical device
number must be a numeric expression which evaluates to a 1 or a 2.
The logical stream indicator must be a numeric expression which
evaluates to a 1, 2 or 3. The device width and nul1count must be
numeric expressions with values in the range 1 - 255. They are
optional parameters in the ASSIGN statement. If they are not in
cluded, the values corresponding to the referenced physical device
are not changed. If only the device width is included, then the
nul1count is left unchanged. Note however that specifying a null
count requires that a device width also be specified, i.e., if the
statement only contains three arguments, the third will always be
treated as a device width.

Logical output stream number 1 consists of all output generated by
,system messages, keyboard echoing, PRINT statements, LIST commands,
and PUT statements when the corresponding fi1enumber is open to *T.
Logical output stream 2 consists of all output generated by LISTP
commands and by PUT statements when the corresponding filenumber is
open to *P. The logical stream indicator may be set to a value of
3 to represent both logical output streams 1 and 2.

5-67

Physical device number 1 represents the display element of the
keyboard display device that is configured as the system terminal.
(see section 3.3.1 on terminal configuration). Physical device
number 2 represents the hard copy print device which is configured
as the system printer. (see section 3.3.4).

The output of a logical stream is directed to all physical devices
which are assigned to it. A physical device may be assigned to
one or both logical streams. Whenever a physical device ;s ASSIGNed
its previous assignment state ;s effectively cancelled. A list of
legal device connections follows:

ASSIGN (l,l) - connects terminal display to stream 1 only

ASSIGN 0,2) - connects terminal display to stream 2 only

ASSIGN (1,3) - connects terminal display to stream 1 and
stream 2

ASSIGN (2,1) - connects printer to stream 1 only

ASSIGN (2,2) - connects printer to stream 2 only

ASSIGN (2,3) - connects printer to stream 1 and stream 2

In its initialized state BASIC connects the terminal to stream 1
only and the printer to stream 2 only. This state can be restored
by executing an ASSIGN (1,1) followed by an ASSIGN (2,2).

When the terminal and printer devices are configured each device
has a carriage width and a nul1count parameter associated with it.
These parameters may be altered under program control by specifying
optional 3rd and 4th arguments in an appropriate ASSIGN statement.
The width parameter determines the maximum number of spaces on each
line for the given device. When a line is output that is longer
than width the autowrap feature is activated and a carriage return
line feed is inserted between character number width and width +1.
The autowrap feature may be disabled at configuration time. The
width parameter may be changed on a given device by restating the
current device assignment with a new width argument. For example,
if the terminal were currently assigned to stream 1 with a width
of 80, it could be changed to a width of 72 with the statement
ASSIGN (1,1,72). Note that any such change remains in effect until
a subsequent ASSIGN statement alters it or until the system is re
loaded. The nu11count parameter is one greater than the number of
nulls which are output after each carriage return output to a given
device. It is important with unbuffered character serial devices
which may lose characters while the carriage is being returned.
The nulcount parameter for a given device may be dynamically changed
by restating the current device assignment and WIDTH with a new
nul1count. For example, if the printer were currently assigned to
stream 2, 132 columns, no nulls (nul1count = 1), it could be changed
to stream 2, 132 columns, 5 nulls by using the statement ASSIGN
(2,2,132,6).

Rev. 6 9/77 5-68

Because BASI.C is an interactive language it depends on the avall
ability of a display device for system messages and keyboard
echoing. An interlock is therefore built in to ensure that stream
1 always has at least one device assigned to it. If an ASSIGN state
ment is processed the result of which would violate thts condHion,
then physical device 1 is automatically assigned to stream 1 as part
of the ASSIGN being processed.

5.22.1.6 LISTP X - Y

LISTP
LISTP 1 CI
LISTP -lCl
LISTP 1 CI
LISTP 1 CI-l CICI

The LISTP command causes a listing of the program tn the current
program buffer to be directed to logical output stream 2 which is
normally connected with the system printer. This COMMAND is anal
ogous to the LIST command (see section 5.5) with two exceptions.
The LIST command directs its output to logical stream 1 which 1s
normally connected to the system terminal display. The LISTP
command outputs a paginated. listing with three blank lines at the
top and bottom of each page and 60 lines of listing as standard.
(see 5.22.1.7).

X and Y must be legal linenumber constants.

LISTP prints the entire program buffer.

LISTP X prints only line X if present or the first line greater than
X if no line X exists.

LISTP X- prints all lines starting with 1 or the first greater than
X through the end of the program buffer.

LISTP -Y prints from the beginning of program buffer thru line Y or
the first greater than Y.

LISTP X-V prints from 1 ine X or first greater than X through line Y
or first greater than Y.

5.22.1.7 PAGESIZE numeric expression

Rev. 6 9/77

PAGESIZE 42

The PAGESIZE command is related to the LISTP command. It causes the
number of lines of listing per page of the LISTP command to be set
to the value of the numeric expression in the PAGESIZE statement.
This number is the number of actually printed Hnes not including the
3 blank lines at the top and bottom of each page, For example, to
list a program on paper which holds 48 lines per page, the statement
PAGESIZE 42 would be the proper value to use. When BASIC 1s conf1g-
ured the default value for this parameter is 60. .

5-69

NOTE that the PAGESIZE statement as described here is syntactically
and functionally distinct from the PAGESIZE option of the OPEN
statement as described in 5.22.1.1 .

5.22.2 Notes On Printer Related Programming

Used properly and with care the printer related language features in
Micropolis BASIC provide for highly flexible and efficient programming
of many common print file related functions. This section provides some
examples and commentary.

5.22.2.1 Separating Print Files and Interactive Messages

There ;s a large variety of applications which can be programmed in
the following three part structure:

1) Output to the terminal display a sequence of prompting
messages which lead the user through a process of entering
variable data from the terminal keyboard.

2) Process the input data through algorithms which create de
sired output data.

3) Output to the printer one or more pages which present the
desired output data with proper labelling in an appropriate
report format.

This structure requires the ability to separate output which is
normally intended for the operators terminal from output which, is
normally intended for the system printer. In Micropolis BASIC the
separation may be accomplished by using PRINT statements for terminal
display messages and PUT statements to open print files for system
printer output. The technique is illustrated by the following program
for building a depreciation schedule chart.

Rev. 6 9/77 5-70

l

100
110
120
130
141)
lS0
160
171)
1 :30
1':"0
21)0
210
:30 (t
310
320
330
:340
:350
360
370
380
400
410
420
430
440
45l)
4':'1)
470
4:30
4':"0
5!)!)
51!)
9t;'.~

••• DATA INPUT SECTION

PRINT nTHIS PROGRAM WILL BUILD A DEPPECIATION SCHEDULE M

PRINT "SHOWING YEAR BY YEAR DEPRECIATION OF A FIXED ASSET»
PR I NT »AT :STFi:A I GHT L I l"iE AND 2 (I O~~ ACCELERATEI' RATES."
PRINT
PRINT "PLEASE ENTER ASSET VALUE ";
It-iPIJT A
PRINT "PLEASE ENTER TERM IN YEARS";
INPUT T
PRINT "PLEASE ENTER FIRST YEAR OF TERM (EG. 1977)";
INPUT Y

••• PRINT OUT CHART HEADINGS

OPEN 9 ".p"
PUT '?: PUT 9
PUT 9 "DEPRECIATION SCHEDULE FOR $ U;A;" OVER »;T;" YEAR(S)"
PUT '?: PUT 9
PUT '3" YEAR"~ "ST. LN. DEP.", "BALAI1CE", "200~'; DEP.", "BALAtKE"
PUT 9
!
! ••• COMPUTE AND PRINT EACH LINE

Bl=A:B2=A:S=A/T:F$="SZZZZZZV.99"
FOR l<=lTOT
B1=Bl-$
D=2.B2/T
B2=B2-D
PUT 9 Y,FMT(S,F$),FMT(Bl,FS),FMT(D,F$),FMT(B2~F$)
Y=Y+1
NEXT K
C:LOSE 9
END

Rev. 6 9/77 5-71

R~
THIS PROGRAM WILL BUILD A DEPRECIATION SCHEDULE
SHOWING YEAR BY YEAR DEPRECIATION OF A FIXED ASSET
AT STRAIGHT LINE AND 200% ACCELERATED RATES.

PLEASE ENTER ASSET VALUE? 100000
PLEASE ENTER TERM IN YEARS? 25
PLEASE ENTER FIRST YEAR OF TERM (EG. 1977)1 1980

DEPRECIATION SCHEDULE FOR $ ·100000 OVER 25 YEARCS)

YEAR ST. LN. DEP. BALANCE 200% DEP.

1980 $ 4000.00 $ 96000.00 $ 8000.00
1981 $ 4000.00 $ 92000.00 $ 7360.00
1~2 $ 4000.00 $ 88000.00 $ 6771.20
1%3 $ 4000.00 $ 84000.00 $ 6229.50
1984 $ 4000.00 $ 80000.00 $ 5731. 14
1985 $ 4000.00 $ 76000.00 $ ~~~~ ~~

~c(c.e~

1986 $ 4000.00 $ 72000.00 $ 4850.84
1987 $ 4000.00 $ 68000.00 $ 4462.77
1%8 $ 4000.00 $ 64000.00 $ 4105.75
1%9 $ 4000.00 $ 60000.00 $ 3777.29
1990 $ 4000.00 $ 56000.00 $ 3475. 10
1991 • $ 4000.00 $ 52000:00 $ 3197.09
l~o
-~~ $ 4000;00 $ 48000.00 $ 2941.33

1"3 $ 4000.00 $ 44000.00 $ 2706.02
1~4 $ 4000.00 $ 40000.00 $ 2489.54
1995 $ 4000.00 $ 36000.00 $ 2290.37
1996 $ 4000.00 $ 32000.00 $ 2107.14
1997 $ 4000.00 $ 28000.00 $ 1938.57
1998 $ 4000.00 $ 24000.00 $ 1783.49
1~9 $ 4000.00 $ 20000.00 $ Ib40.81
2000 $ 4000.00 $ 16000.00 $ 1509.54
2001 $ 4000.00 $ 12000.00 $ 1388.78
2002 $ 4000.00 $ 8000.00 $ 1277.68
2003 $ 4000.00 $ 4000.00 $ 1175.4~
2004 $ 4000.00 $. 00 $ 1081.42

READY

Rev. 6 9/77 5-72

BALANCE

$ 92000.00
$ 84640.00
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$

77868.80
71639.29
659U8.15
60635.50
55784.66
51321.88
47216.13
43438.84
39963.7'
36766.6~
3382~ 3C
311! 9
286&
26339.3~
24232.21

$' 22293.63
$ 20510.14
$ 188~9.33
$ 17359.78
$ 15971.00
$ 14693.32
$ 13517.85
$ 12436.42

(

5.22.2.2 Paginatlng Print Files

Rev. 6 9/77

When the number of lines tn a pr1nt file spans several printed
pages it is often required to print the file with page numbers,
headings and an equal number of lines on each page. The ENDPAGE
statement and the PAGESIZE and ENDPAGE options of the OPEN statement
provide a useful set of tools for accomplishing this goal. The
following example shows the depreciation schedule program of section
5.22.2.1 modified to print on 2~ line pages with each page numbered
and titled. Note the use of the PAGESIZE and ENDPAGE options in
line 320 in conjunction with the page heading subroutine at line 600.
NOTE also the use of the ENOPAGE statement in line 510 which ejects
the last report page and leaves the printer at the top of the next
blank page.

5-73

100 ••• DATA INPUT SECTION
110
120 PlUtH "THIS PROGf;.:At'1 I .• IILL BUILD A DEPf;.:ECIATIOti :;CHErIULE"
130 PRINT ·SHOWING YEAR BY YEAR DEPRECIATION OF A FIXED ASSET"
140 PRINT "AT STRAIGHT LINE AND 200% ACCELERATED RATES."
15 (I PF.: HIT
160 PRINT "PLEASE ENTER ASSET VALUE ";
170 ItiPUT A
180 PRINT -PLEASE ENTER TERM IN YEARS";
1'~(I INPUT T
200 PRINT "PLEASE ENTER fIRST YEAR OF TERM lEG. 19(7)-;
210 INF'UT Y
:;:0 (I
305 ••• OUTPUT INITIALIZATION
310
320 OPEN 9 -.P" PAGESIZE 20 ENDPAGE 6(10
330 P=l:GOSUB 600
:34 (I B 1 =t=t: B2=A: S=A ·T: F~!;= If $ZZZZZZ\.' • t;";' U

41)1)

410 ••• COMPUTE AND PRINT EACH LINE
420 !
440 FOR 1<=1TOT
450 B1=B1-:S
460 D=2.B2/T
470 B2=B2-D
480 PUT 9 Y~FMT(S,F$)~FMT(B1,F$),FMT(D,F$),FMT(B2,F$)

'5 I) I) r"IE>::T I<
510 ENDPAGE 9:CLOSE 9
520 :S;TOP
600
610 ••• PAGE HEADING SUBROUTINE
620
6:30 PliT ':it
640 PUT 9 TAB(72);"PAGE -;P
650 PUT ':it
66 (I PUT '=- .. DEPf;.:EC I AT I Ott :SCHEDULE FOR :%: .. ; A;" O\"ER "; T;" 'lEAR (5) ..

670 PUT 9: PIJT '31
67'5 PUT 9" 'lEAR ,. , .. ST. LN. DEP." ~ "BALAt"iC:E" , "2 (I O~·~ DEP."," BAU1ttCE"
677 PUT '31
700 P=P+1
71 (t REnJRtf
9';'9 END

Rev. 6 9/77 5-74

READ't
RUN
THIS PROGRAM WILL BUILD A DEPRECIATION SCHEDULE
SHOWING YEAR BY YEAR DEPRECIATION OF A FIXED ASSET
AT STRAIGHT LINE AND 200% ACCELERATED RATES.

'LEASE ENTER ASSET VALUE? 100000
PLEASE ENTER TERM IN YEARS? 25
PLEASE ENTER FIRST YEAR OF TERM (EG. 19(7)? 1980

DEPRECIATION SCHEDIJLE FOR $ 100000 O E~: '-,C'
'::"-' 'r'EAR CS}

'yEAR ST. U'!. !IEP. BALANCE 200~: DEP.

1'~:30 :£ 4000.00 $ 96000.00 $ 8000.(1)
1981 $ 4000.00 :I; 92000.00 $ 7:360.00
1'~82 $ 4000.00 $ 88000.00 :£; Et771.20
1'~83 $ 4000.00 $ 84000.00 $ 622':".50
1'~84 $ 4000.00 $ 80000.01) $ 5731.14
1'385 $ 4000.00 $ 760(11).00 :£ 5272. ':,5
1986 $ 4000.00 $ 72000.00 $ 4850. :34
1':'87 $ 40(1).00 $ 6:3000.00 $ 4462.77
t'988 $ 4000.00 $ 64000.00 $ 4105.75
19S'? $ 4000.00 :I; 60000.00 $:3777.29
1'?90 $ 4000.00 $ 56000.00 $:3475.1(1
19'31 $ 4000.00 $ 52000.00 $:31'?7.0'?

jEPRECIATION SCHEDULE FOR $ 100000 O'· ... EF: 25 YEAR (S)

'lEAR ST. LN. DEP. BALANCE 2 t) o~,~ IIEP.

1'392 $ 4000.00 $ 48000.00 $ 2'?41. 3:~:
1'~93 $ 4000.00 $ 44000.00 $ 2706.02
19-;'4 $ 4000.00 $ 40000.00 $ 248';'.54
1'395 $ 4000.1)0 $ 36000.00 $ 2290_.:37
1996 $ 4000.00 $:32000 .. 00 $ 2107.14
1997 $ 4000.00 $ 28000.01) $ 193:::.57
1'~98 $ 4000.1)0 $ 241)00.00 $ 178:;:.49
1'5199 $ 41)00.00 $ 2001)0.00 $ 1640.81
2(01) $ 4000.00 $ 16000.00 $ 1509.54
2001 $ 4000.00 $ 12000.00 $ 1 ~::::8. 7:3
2002 $ 4000.00 $ 8000.00 :£; 1277.6:::
2003 $ 4000.00 $ 4000.00 $ 1175.46

DEPRECIATION SCHEDULE FOR $ 100000 OVER 20::' ... ' YEAR (S)

'lEAR ST. LN. DEP. BALAtiCE 2 0 O~,~ Ih':P.

2004 $ '4000. 00 $.00 $ 1081.42

Rev. 6 9/77 5-75

PAGE 1

BALANCE

:£ '32000.00
:£ :::4640.00
$ 77:~6E! • E: I)
$ 7 1 6=3*:'- • 2*3
$ E,5'~O:::. 15
:£ 606:35.50
$ 557:::4. ;':,6
$ 51 :321 • :::8
:£ 47216. 13
:£ 4::::43:::. E:4
$:3·~·:"6:~:. 73
$ ~j ,- -:t ," wOO .- .-.

,-' f:t,. '=' '=' • '=' .:..

PAGE 2

E:ALAtK:E

$:3:3::::25. 3 (t
$ 3111'? 28
:£; 28629.73
$ 263:39.36
$ 24232.21
$ 2229:3.63
$ 20510.14
$ 18:36';'. 3:;:
$ 17359.7:3
:£ 15971.00
:£ 14':,93.32
'1> 13517.85

PAI~E
,..
"-

BALANCE

$ 124:36.42

5.22.2.3 Spooling Print Files To Disk For Latar Output

The commonality of the OPEN, CLOSE and PUT statements to both disk
and print files makes it possible to alter a print file program so
that the output is saved in a disk file instead of sent to the ~rinter.
The procedure is to change the filename in the relevant OPEN statement
from "*P" to some appropriate disk filename. For example, line 320
in the depreciation program listing might be changed to

32ta OPEN 9 "N:DEP-REPORT" PAGESIZE 20 ENOPAGE 600

A print file that has been spooled to disk in this manner can be
printed out at a later time by uSing the following program:

5 INPUT "ENTER PAGE WIDTH OF FILE TO 8E PRINTEDu;A
10 DIM AS(A)
20 STRING CHARS(16RFF)
30 INPUT "ENTER NAME OF FILE TO BE PRINTED";AS
40 OPEN 1 AS END 90
5~ OPEN 2 "*P"
60 GET 1 AS
70 PUT 2 AS
80 GOTO 60
9~ CLOSE 1
l~g CLOSE 2
1 Hl END

N1Jte that the string into which each disk record is read must be
dimensioned to a length which matches the expected page width of
the report (lines 5 and l~). This ensures that the extra blank
padding that fills each disk record will not be printed out causing
extra blanks lines on most printers.

Nate also that line 20 changes the system string delimiter to a
value that is illegal in normal print fi1es. This ensures that the
entire content of each line will be assigned to and printed from AS
regardless of which characters appear in the print file. tf this
were not done any commas in the print file would cause erroneous
output.

5.22.2.4 Draining File Output To A Null Dev;ce

Rev. a

During the program development and test process or in a reduced
system hardware environment it is sometimes useful to run a program
which outputs one or more fi1es and be able to suppress one or more
of the output files while the rest of the program runs normally.
In Micropolis BASIC this is easily accomplished by changing the
filename in the open state~ent of each rile to be suppressed to a
"*N" . When the program; s run all output to "*N" fi 1 es will be
suppressed or drained away without otherNise affecting program
operation. The following program illustrates this idea.

9/78 5-76

H1 0 1M AS (4 • 3Ci)
21J FOR J=l TO 4:AS(·J)=IIIl:NEXT J
3~ INPUT ~ FIRST LINE ";AS(l)
40 INPUT IISECOND LINE II ;A5(2)

5<1 INPUT II THIRD LINE ";AS (3)
6<1 INPUT "FOURTH LINE ";A$(4)
7'l as="LA8ELS lI

8~ INPUT "ADO TO DISK FILE (Y/N)II;XS
9Q IF XS : "Y" THEN BS",II,.,'l"
10Q CS=" "p"
110 INPUT "PRINT LASEl. (YPO";XS
1213 IF XS= "Y" THEN CS=I1s-N"
130 XS=11 J"
140 OPEN 1 6$
15(,1 PUT 1 AS(1)~XS+AS(2)+XS+AS(3)+XS+AS{4)+AS
16Q CLOSE 1
17G OPEN 2 CS
laG FOR J=l TO 4:PUT 2 A$(J):NEXT J
19~ CLOSE 2
2Q~ GOTO 2~

The file output section attempts to add four lines of input to a
label file and then p.l"'int a copy of the new label entry. If either
or both of these functions is refused by the operator during the
input section, the program changes the filename variable for the
associated OPE1'1 statement to II1rN". When the output section exe
cutes the refused function out~ut is simply drained, i.e. net
output anywhere.

5.22.2.5 Echoing Of Terminal Out~ut TQ Printer

On syste!iis with a video terminal and printer device it is oft!!!'1
desirable to obtain a hard copy audit trail of all sys:~~ program
operation, including all or the prompts and system ~essa;es normally
directed to the terminal only. This is easily done oy USing tne
s ta te.rr.e n t

ASSIGN (2.3).

This statement causes t~e hard copy prin:er to be connec:~d to logicai
output st~~am 1 which inciuaes all pr1nt stataT.ents, ir.~ut dialogue,
keyboard echoing, *T fiies, and system messages; and to logical out
put stream 2 which includes all ,,? ::rint files. TAUS everything
aimed at the te~inal thru stream 1 wi11 also go to the printer.

T"i s echo 'Tiode remains active wnt; 1 changed. The statement ASS!GN
(2.2) ',.,ill res:ore the sYHem :0 nor.:o:al which ;s device 1
(~ermina1) connected tJ s~ream 1 and device 2 (~ri;.ter) connected to
stream 2.

Rev. 8 9/78 5 ... jj

(This page left blank deliberately.)

Rev. 4 7/77 6-1

T
I

I

I
i
I
I

T
i .

Rev. 8.1

~u.c/Wll' n! HEAO .. c::ass
HOI.! (IICtH SIOUl

2/5/79

'-------=:.....S1'~ess UI.IEl' NOTO!!S

Figure 6.1

6-2

VI. DISK SUBSYSTEM THEORY AND DIRECT PROGRA}1MING

6.0 INTRODUCTION

This section describes the Micropolis flexible disk subsystem in
sufficient detail to enable an experienced 8080 assembly language
programmer to implement a disk driver.

6.1 FUNDAMENTALS OF THE FLEXIBLE DISK: MEDIA

6.1.1 Recording Medium

The recording medium used with the Micropolis flexible disk
subsystem is illustrated in Figure 6.1. The medium consists
of .a thin, oxide coated circular disk permanently housed in
a protective plastic jacket. The disk rotates freely within
the jacket, which is lined with a material that cleans the
disk as it rotates. Several holes in the plastic jacket
allow a disk drive to access the disk. When a diskette is
loaded into a drive, the disk is clamped to a motor-driven
spindle through the drive spindle hole. The read/write head
and the load pad which nresses the disk against the head,
access the disk through the read/write head access holes.
A photo detector senses sector and index holes through the
sector/index hole. A switch iIi the disk dri.ve senses the
Write Protect cutout. If a Write Protect tab is placed
over the cutout, the diskette may be read, but may not be
written on. If the cutout is open, both read and write
operations may be performed.

6.1.2 Disk Data Format

Figure 6.2 illustrates the format of data recorded on the
diskette. Data is recorded on the diskette on concentric
tracks. The outermost track is Track 0 and the innermost
track is 76 in Mod II subsystems and Track 34 in Mod I
subsystems. Each track has an unformatted capacity of
6250 bytes. Disk data transfers are performed on a block
baSiS, which would require a 6250 byte RAM buffer in the
computer for a full track size block. This buffer size
is wasteful of memory, so the actual format used divides
a track into blocks of more manageable size called sectors.
The format used in the Micropolis flexible disk subsystem
divides each track into 16 sectors. The beginning of each
sector is indicated by a sector hole punched in the disk.
This hole is sensed by a sector/index sensor in the disk
drive. An index hole is located halfway between the holes
for sector 15 and sector 0 and indicates the next hole is
sector 0.

6-3
Rev. 4 7/77

/""---TllACK ZERO

76 (34)

INOEl<

~-~~----------------12.5M~~------------~~~

HeADER

DISK OArA

SYNC

Figure 6.2

Rev. 4 7/77 6-4

Each sector has an unformatted caoacity of anproximately 390
bytes. However, not all of the available storage space can be
used for data. The electronics in the disk drive and the nature
of the media and drive mechanism require a certain amount of
space be given up to accommodate the electronic characteristics
and t'o allow sufficient tolerance in the recording format to
permit interchanging diskettes between different disk drives.
Briefly, the factors which must be taken into account are:
mechanical tolerance in the physical distance between sector
holes punched in the disk; alignment of the sector/index sensor
with respect to the read/write head; response of the sector/
index sensor and logic; disk speed variation; write clock
frequency tolerance; and, acquisition time of the read data
decoder.

The recommended sector format is illustrated in Figure 6.2.
This is the format used in disk files created by the Micropolis
Disk Extended BASIC software and is the format required by the
disk bootstrap located on the controller board. This format
was designed to make the best trade-off between storage capacity
and tolerance margins. Although other formats could possibly
utilize more storage capacity, they would be incompatible with
the bootstrap and a complete discussion of the engineering
considerations necessary to design another format is beyond
the scope of this sec t ion.

A disk sector c.onsists ot the follOWing fields:

1) Preamble: The preamble is composed of anproximately 40 bytes
of zero (0) data bits. The preamble is automatically generated
by the disk controller and is necessary to provide tolerance
for the mechanical alignment and electrical characteristics
of the sector/index sensor. It also provides a field of kno~
data pattern for synchronization of the read data decoder.

2) Sync: The sync byte is a byte of ~FFH data which is used in
the disk controller to define the beginning of useful data.

3) Header:' The header is a 2 byte block consisting of the binary
track address of the track on which the sector reSides (0-76 (34))
and the address of the sector (0-15). The header is used to
verify that the proper sector is being accessed in a disk I/O
operation.

4) Data: The data field consists of 266 bytes of user data.

5) Checksum: The checksum is a one byte error detection code which
provides error detection in read operations. The checksum is
computed as follows: a) The accumulator and carry are initially
cleared; b) Each byte of the header and data fields is added to
the accumulator with carry. In write operations, the computed
checksum is written immediately following the data field. In
read operations, the checksum is re-computed from the read data
and is compared with the checksum byte which is read. If they
do not compare, a read error has occurred.

6-5
Rev. 4 7/77

~
::.
j;
~

UNII ADORn

1U:I!m-:~ ..
~ IH stcrOl I_ AOOR!S~
SlCTOI flAG

----~-

I

~ \1 C ONtl nM{1

• ;.

SlUCflOGIC

INO£X n'AU rOl

nCfOl (OUN IU

r ~rcrOlIN.!F_~.uPT_
1_ .WAn l{RO ~!Aru~ ----

HE' _ ______ _

I O'"(Cn:N~ ___ ~_
~
L~·{AOY.
I ... WIlt{(PRO!!:.C. T "A lUi

wilt{(

U.OI'1fJftttt

CON11ICl

+-

v •• ln

- I
?'Jlfft: 0":['" "t \UIAl ':,IUtt 04U ,weoorJ --r~--"

'----
- - 1

j; ! pA'. SUtl4l .tl\O O.\f.\ -- --1-----
I

OAIA OICQO£.

I '{AOY ITA IUS """-

I
1

CONnOt!!.

1-6
I

oltvr IfIlC!

fl·.

'OS,II0NlR

CONfitOl

VIIIII!:/£RASI.

>tAO WIlt{(!"\£

CONntOl 10Cl(

MOIOI!

C('N"r~

,('ICou.

I'"M 1111 fIt"N" ,

..... -

... -

..

I
I
I
I
I

-. 1

I
I
I

'l!ACK lUO

S!CIOtIINO!X 'IA Sf

mACK lllO SWIICH

I
~IT"r.
MOrOl
OR IV(

",'It lit PROItCr

, \
__ -1 \

- -\
z-----J~

H!AO O, •• 'AGf

WIll!: PROItCr
\WUCII

,!AO/V'ltt{(-UASl CONII'O! ANIl O"IA

r
I
I

, I
'--,-I- J

I III'INOlf

I I
I I ,
I

IMNOl! MOrOR CON_flt_Ot ______________ _

----~-- .. ----ci
I

DISk!!!!. IOAOto IWUCII

O_,vr Mt CHAI~IC\

SPlNOl!
OIIVI

M0101

~

..0
• ..0

l""'
I""'.......
I""'-

-ct-

~
a)

~

6) Postamble: The rest of a sector from the checksum to the next
sector hole is filled with zero data bits. The length of the
postamble allows for the mechanical tolerance in the placement
of sector holes on the disk and tolerance for disk speed and
write clock variations.

'6. 2 HARDWARE FUNDAMENTA LS

Figure 6.3 is a block diagram of the Micropolis flexible disk
subsystem. The components of the subsystem may be grouped as:
spindle drive control; sector logic; position control logic;
read/write logic; select and head load logic.

1) Spindle Drive Control: The disk drive spindle motor is
controlled by a micro-switch that senses when the diskette
is inserted and loaded, or unloaded. When the diskette is
loaded, the disk is accelerated to a speed of 3~0 RPM.
After an appropriate delay to allow the speed to stabilize,
the drive is ready to accept connnands. If 'the drive is
selected by the controller, the drive will indicate this
state by asserting ready status.

2) Sector Logic: When the disk is rotating, the sector/index
hole sensor provides the controller with an electrical pulse
corresponding to each hole punched in the disk. The controller
separates the sector and index pulses and counts the sector
pulses~ thereby providing the programmer with the 4 bit address
of the sector currently passing under the read/write head. A
flag bit in the status register is provided to indicate when
the sector address is valid and when a read or write operation
may be initiated.

3) Position Control Logic: The read/write head is mounted on,a
carriage which is moved from-track to track by a. stepper
motor-driven lead screw. Positioning is accomplished by
specifying the deSired direction (in or out) and issuing
a step command. Control logic in the drive electronics
generates all the signals necessary to cause the motor to
move a track in the desired direction. When a drive is
first selected, such as at power on, the track position of
the drive is indeterminate. Before read or write operations
may be performed, the positioner must be recalibrated as
follows: when the carriage is pOSitioned at track 0, a
microswitch associated with the pOSitioning mechanism is
made. The state of th is "track 0" switch is provided as
a status bit. Recalibration consists of examining the
track 0 status and if it is not true, issuing a command to
step out .. After an appropriate delay to allow the comnand
to be executed, the process is repeated. Once the pOSitioner
has been calibrated, the software must .keep track of the
current posit ion.

6-7
Rev. 4 7/77

Rev. 4

4) Read/Write Logic: Data is transferred between the computer
and the controller on a byte-by-byte basis. For write
operations. the controller generates the preamble and then
converts a-bit byte data from the computer to the serial
data which is recorded on the disk. When the computer
stops supplying data, the controller automatically writes
zero data to the rest of the sector until a sector pulse
is sensed. For read operations, the controller converts
the serial data stream coming from the disk to 8-bit bytes
and automatically detects the sync byte to determine when
valid data is available.

The controller generates a "transfer ready" status flag
which indicates that the controller is ready to accept
data in a write operation, or that data is available in
a read operation.

The controller is accessed using a technique called
''memory-mapped I/o". This means that the controller
command, status and data registers are treated as
memory addresses and that controller read/write commands
are actually memory reference instructions. When the
controller data register is accessed in a read or write
operation, the controller forces the computer to wait
until the controller is ready to transfer data. From
the computer's point of view, the controller appears to
be s low memory.

The read/write control logic in the drive electronics
provides the conversion between the serial digital data
at the controller interface and the serial data signals
at the read/write head. Whenever the drive is performing
a write operation, the positioner control and read logic
is disabled and the appropriate signals are generated to
drive the read/write and erase heads. The erase head used
in flexible disk drives is a "trim" erase head. Old data
written on a sector is implicitly erased by being written
over by new data. However, any slight track positioning
errors could cause sufficient remnant old data to be left
in the space between tracks to cause data reliability
problems. To elUninate this error source, an erase head
which erases the disk a small distance on either side of
the newly written data is provided. This erase head is
located a small distance behind the read/write head and
cleans up the inter-track gap after data is written.

When a write operation is terminated by the occurrence of
a sector pulse, the erase head is left on a sufficient
amount of time for the last data written to be trimmed.
Since the position control and read logic will be inhibited
until the write operation is complete (including the erase),
a new operation must not be attempted for at least one
millisecond after the termination of a write operation.

7177 6-8

The drive contains a microswitch which senses the write
protect cutout in the diskette jacket. When the write
protect tab is installed, the write/erase control logic
is inhibited. The state of the write protect switch is
available as a status bit.

5) Select and Head Load Logic: The controller will support
up to 4 disk drive units connected in a "daisy chain"
configuration. The drive electronics in each unit are
conditioned by the drive select such that only one drive
at a time will respond to, or provide, signals on the
controller/drive interface. When a drive is not selected,
the spring-loaded pressure pad which holds the disk in
contact with the read/write head is moved away so that there
is no contact and the head is "unloaded". When the drive is
selected, a solenoid is energized, which allows the load pad
to contact the disk so read or write operations may be
performed. The controller contains a 4-second timer which
automatically deselects all units if the controller has not
been accessed for four seconds.

6.3 CONTROLLER REGISTERS

The disk controller occupies a lK byte block of memory from F4~~H to F7FFH.
The first half (F400H to F5FFH) is reserved for on-board bootstrap ROM. The
controller command, status and data registers start at address F600H and are
defined as follows:

1) Output Registers

Command Register

F600B or
F60lH

7 6 5
COMMAND

CODE

MOD ,. Command Modifier

The commands available are:

Code Command
Select drive 001

010 Set interrupt enable
(controls sector
pulse interrupt)

·011 Step 1 track

100 Enable write

Reset controller

6-9
Rev. 4 7/77

Modifier
Contains drive unit address (0-3)

01 ,. enable interrupt
00 = disable interrupt

00 ,. step out
01 = step in

Not used

Not used

Write Data Register

F602H If the write data register is referenced when the
transfer flag is set during a write operation, the
controller expects a data byte to be on the S100
buss data lines. The PRDY line will be held false
until the controller has accepted the data, then
the PRDY line will be set true for 1 bit time
(4 usec). (See the status register description
for the definition of the transfer flag,)

2) Input Registers

Sector Register

F600H

Bits
0-3

4,5

6

7

Status Register

F60lB

Rev. 4 7/77

R.
F

F L
L G.
G.

I
!

i
! I

; / If I

! I
I

Definition

SECTOR
ADDRESS

Sector Address: Address of the sector currently
passing under the read/write head of the selected
drive,

Reserved.

Sector Interrupt Flag: Indicates an interrupt
request has been generated by a sector pulse.
Flag is reset by issuing a reset or an interrupt'
disable command.

Sector Flag: Indicates the sector address is
valid and that a read or write operation may be
performed. Flag is true for 30 usec at the start
of each sector. All data transfers must be
initiated within 100 u seconds of the flag going
true.

7 ~ L5 -ri-r-i 2 i 1 0
X p I R S U A
F I E I P : K L N D
E N j A 1 T I ~ T I D .
R. I T l D I

D T R
I E . Y

j , , , I
F

i , . ,
I , I

L ; , I
J ! ! G. [i I I I I I

6-10

F602H

Bits
0-1

2

3

4

5

6

7

Definition
Unit Address: Address of the currently selected
drive. Address is valid only if SLTD is true.

~: Unit selected. This flag is low true,
1. e. ,

o = Selected
1 = Not selected

SLTD is true if a drive has been selected and
the 4-second timer has not expired. SLTD is
low true so that the software may detect when
the controller is not installed (non-existent
memory references yield 0FFH).

TK0: Track 0 status from selected drive.

WPT: Write protected status from selected drive.

~: Ready status from the selected drive.
When true, indicates the drive is ready to
perform commands.

~: PINTE status from the S100 BUSS.

XFER FLAG: Transfer flag. In write operations,
indicates that the controller is ready to accept
data from the computer. In read operations,
indicates the controller has data available to
the computer. When the software detects the
transfer flag has set, all data transfers are
performed by accessing the controller data
register, which automatically synchronizes the
transfer by use of the PRDY line.

Read Data Register

If the read data register is accessed when the transfer flag is
set during a read operation, the controller will hold the PRDY
line false until a' byte of data is available. The controller
will then place the data on the S100 BUSS data lines and set
PRDY true for 1 bit time (4 usee), The data will only be
available for th:is 1 bit time period.

6-11
Rev. 8 9/78

Figure 6.4

DRIVE SELECT LOGIC

ilev. 4 7/77 6-12

N MILLISECOND TIMER

Status Read
Re-triggers
4 second
timer

uP

6.4 DISK OPERATIONS

The following paragraphs describe 'in detail the steps involved in performing
each of the operations required to operate the Micropolis flexible disk drive
subsystem.

6.4.1 Select a Drive

A drive must be selected pr~or to any status read, step or data transfer
operation. Selection must be performed for each operation since the 4
second timer may have deselected a unit since it was last accessed. The
important considerations in selecting a drive are:

1) When the drive is selected, the head will be loaded. A
minimum of 75 milliseconds must be allowed for the head
to load and settle.

2) The sector counter is located in the controller. When a
drive is selected, a minimum of 250 milliseconds must be
allowed for the sector counter to synchronize to the drive.

Figure 6.4 is a flowchart of the select operation.

NOTE that all delays are generated by a software timing loop
subroutine. A read status command is included to re-trigger
the 4 second tUner every time the delay routine is entered.

6.4.2 Position the Read

A drive must be selected before a step command can be issued to cause
the head to move 1 track. One step command of the appropriate direction
(in or out) must be issued for each track moved. A minimum delay of 30
milliseconds must be allowed between each step command. (Note a step
in moves the head toward the center of the disk and therefore to 'a higher
track number.) Typical logic to implement a 1 track step is illustrated
in Figure 6.5.

After the head is positioned to the desired track, an extra delay must be
allowed for the head to settle before read/write operations are attempted.
The complete process for an N track move is illustrated in Figure 6.6.

6.4.3 Restore to Track 0

When a drive is first selected, the position of the read/write head is
indeterminate. Prior to performing disk data transfers. the positioner
must be "recalibrated" which consists of stepping the head out until the
track 0 switch is made. If the drive already indicates track 0 status
when first selected, the head is stepped in 8 tracks, then out to ensure
a good track 0 position. Once calibrated, the software must keep track of
the current head position for each drive. The restore ~ogic recommended
is illustrated in Figure 6,7.

Rev. 4 7/77

Figure 6.5

Figure 6.6

Rev. 4 7/77

STEP 1 TRACK

POS maN N TRACKS

(POSITION)

I
SEi-GCT

ORlv,,",

STEP
IN/oUr

(EXIT)

6-14

Figure 6.7

Rev. 4 7/77

STEP
,AI

srs;P
OUT"

RESTORE TO TRACK 0

-------------------1£ already at track ~. move
off 8 tracks then restore to
ensure a good position.

6-15

-------1£ 85 step out commands have
been given and track 0 has
not been reached, something
is wrong.

6.4.4 Write Operation

Figure 6.8 illustrates the logic necessary to perform a sector write
operation. The program illustrated requires a 268 byte memory buffer
with the first two bytes set to the track and sector address. The
sync byte and checksum are generated in the program. The steps
involved in writing a sector are:

Rev. 4

1) Move the data to the write buffer.

2) Select the drive.

3) Wait for sector flag. When the flag goes true compare the
sector address with the desired sector address. When the
desired sector is found, issue an enable write command.

4) The enable write command causes the controller to generate
the preamble. Wait for transfer ready flag to indicate the
controller is ready to receive data. The software must then
write the sync byte. The tUning of the software loop which
tests for XFER ready and then outputs the sync byte is
extremely critical. The sync byte must be on the S10~ buss
data lines within 32 usee after UEB. ready sets. The
following code satisfies the tUning require.ents:

O[L = F60ra and A • 0 when this loop is entered)

*Wait for XFER ready flag

WAIT ORA M
.rp WAIT

*INSERT SYNC BYTE
INXH
MVI M, 0FFR

5) Each successive data byte must be made available witbin 32
useconds of the previous byte. When the data register is
accessed, the cont~oller will hold PRDY false until it accepts
the data and then allow PRDY to go true for 1 bit time. The
timing constraints on the write loop are therefore a maximum
loop time of 32 useconds and a minimum loop time of 1 bit time
(4 useconds). These figures do not include any margin for
clock tolerance, so the actual design goals should be about
28 and 6 useconds for a conservative design.

6) When the checksum has been written, stop accessing the controller
write register. The controller will automatically zero fill the
rest of the sector.

,
7) After the checksum is written, the ~rogram waits for the next

sector flag. At this time the controller terminates the write
operation and the erase delay in the drive starts. The 1 milli
second software delay allows sufficient time for the erase delay
to expire so that step and read functions are again enabled.

7/77 6-16

Figure 6.8 SECTOR. WRITE

(WRlrG')

Controller
generates
preamble

Write
sync
byte

Main
write
loop

Rev. 4 7177

S EL.ECT

DRIvE'

OAT'A -
0FFJ-I

c,.GT' O~TR
F!-Q.C,..,
s"'P' ... ,q,

Po 00 O~TA
1"0

e~Cl< 5LJ""-

_-----"'\ ----Wait for
"" A 1'- .si'CTC It desired

sector

,"'

""'-

---Zero
fill
sector
to next~
sector
Jurk

";0

for
erase
delay in

DEL-A 'f drive
:1. MS.lii~

6-17

6.4.5 Read Operation

Figure 6.9 illustrates the logic necessary to p.rform a sector read
operation. The program illustrated requirea a 268 byte read buffer.
The track/sector 10 will be read into the first two bytes of the
buffer and when the operation is complete, will be compared against
the desired track/sector address. The steps involved in reading a
sector are:

Rev. 4

1) Select the drive.

2) Wait for the sector flag. When the sector flag is true,
compare the sector address with the desired sector.

J) When the desired sector is found, wait for the transfer
flag to set to indicate disk data is available. Note
that no command is necessary to start a read operation,
but you must always wait for a sector flag to indicate
the start of the read.

4) When the transfer flag is set, the sync byte will be
available in 25-28 useconds. The sync byte will only
be available for 3-4 useconds so the timing of the loop
which checks for the transfer ready flag is critical. The
following co~e satisfies the timing requirements:

CRL ~ F6~ta and A • 0 when this loop is entered)

* Wait for XPER ROY flag

WAIT ORA M
JP WAIT

*GOBBLE SYNC BYIE
INK Ii
MOV A,M

5) Each successive data byte will be available within approximately
25 useconds and will be available for about 3 uaeconds.
When the controller data regiater is accaased, the
controller will hold PRDY false until the data ia
ready, then will place the data on the S100 buss data
lines and allow PROY to go true for 1 bit time. Once
the softvare has read a byte, it must not access the
data register again until this bit time has expired.
The timing constraints on the read loop are therefore
a max~ loop time of 25 useconds and a min~ loop
time of 5-6 useconds. These figurea reflect a
conservative margin to allow for tUning variations
in the disk read data.

6) The last byte to be read from the disk is the checksum.

7/77

The checksum read should be compared with the re-computed
checksum, to determine if a read error has occurred.

6-18

Figure 6.9 SECTOR READ

(READ)
!

jJO

SELECT
O~\Vf

""0"'. OA,.A
1'"0
S.ur:FER

Rev. 4 7/77

Wait for
controller
to detect
sync.

Capture sync
byte and
discard

6-19

USAO&n, ETlROQ.

Firlt 2 bytes of
buffer should be
track/sector In

7) If no checksum error is detected, the first rwo bytes
read should be compared with the desired track and
sector addresses to ensure the correct sector was read.

6.5 ERROR HANDLING

An important consideration whICh may ~ be ignored ia the design of a
flexible disk driver is the handling of errors which occur. Magnetic
storage devices in general are subject to errors. The succeptability
of the diskette to damage or contamination due to handling makes error
handling particularly important in flexible disk systems. Most errors
are of a temporary nature and will be invisible to the system with a
properly designed driver.

Most errors can be attributed to one or more of the following sources:

1) Transient Electrical Noise

2) Media Contamination - Particles of foreign substances may become
lodged berween the head and the recording surface of the disk and
cause data errors.

3) Read Positioning - The read write head may be positioned to the
wrong track if the specified step rate is exceeded or may be
marginally positioned if a drive is misadjusted.

4) Disk Centering - Due to the flexible material of which the disk
is constructed, or in the event the disk is damaged or distorted
due to mis-handling, it is possible that a diskette may be
~properly clamped to the spindle in the disk drive.

The following procedures are recommended to perform proper error handling
in disk read/write operations:

Rev. 4

Read Operations

1) Step the pOSitioner to the desired track.

2) Perform the read operation as described in Section 6.9.5. If a
header or checksum error occurs, re-read the sector up to 5 timeS.

3) If the 5 retrys were unsuccessful, step the pOSitioner off one
track and then back to the desired track. Repeat Step 2. If
still unsuccessful, step the positioner off one track in the
other direction and then back. Repeat Step 2.

4) Perform tne restep procedure given in Step 3 up to 4 timeS. If
still unsuccessful, deselect the unit and wait about 200::milli
seconds for the head to unload. Reselect the unit, restore to
track 0, and re-seek to the deSired track. Repeat Steps 2 and 3.

5) Perform the reselect function given in Step 4 up to 3 times. If
still unsuccessful, abort the operation with a permanent I/O error.

7177 6-20

Wri te Operat ion

1) Step the positioner to the desired track.

2) Read the sector immediately preceding the desired sector. Any
errors ~'1hich occur should be handled in the manner described
for normal read operations. This operation ensures the head is
properly positioned to the right track and the sector counter is
synchronized with the disk.

3) vlrite the desired sector as described in Section 6.4.4.

4) Read the sector just written to ensure the data was recorded
properly. If an error occurs, repeat Steps 2, 3, and 4 up to 5 times.

5) If unsuccessful, perform tr e restep operation as described for the
read operation and repeat Steps 2, 3, and 4.

6) If 4 restep operations are unsuccessful, perform the reselect
operation as described for the read operation.

7) If 3 reselect operations are unsuccessful, abort the operation
with a permanent 1/0 error.

If a permanent 1/0 error occurs, the disk may be improperly centered, there
may be a defect in or damage to the recording surface of the disk, or the
disk may have been written on a marginal drive.

The "resteplf procedure described takes advantage of the hysteresis present
in all positioning systems. Friction in the positioner causes the head
position to deviate slightly from the nominal track position. This position
will be different when the head is stepped to a track from different directions.
In normal operations, this slight position error is well within the tolerance
limits for proper operations. However, if errors are encountered in reading
a disk which was written on another drive that is marginally aligned, the
slight difference may be enough to recover the data.

The "rese lec t II procedure serves to d is lodge a ny fore ign pa rt ic les and to
recalibrate the positioner, should it be positioned to the wrong track.

6.6 DISK DRIVER

As a comprehensive example of all the principles presented in this section, a
sample disk driver is presented here. This driver provides the facilities to
seek to a track, seek and read a sector, seek and write a sector, and seek
and verify a sector. This verify operation is a special case of a sector
read but only the header bytes are transferred into the buffer. This allows
the use of a single disk buffer to perform write operations, which consist
of a header check prior to write, writing the sector, and a read-after-write
check.

The power-on recalibration is transparent. The driver maintains a table
containing the current track address of each drive connected to the controller.
The user's power on initialize software must set the entries in this table to
0FFH. The f~rst time a drive is accessed, the driver will recognize this
flag and recalibrate the pOSitioner on the drive before performing the
specified operation.

Rev. 4 7/77 6-21

When the driver is called, the HL register must point to a parameter block
(referred to as a disk control block) which specifies the operation to be
performed. When the driver returns, the condition code will reflect the
status of the operation. (See the listing for details.)

The DCB is structured as follows:

ADDRESS

DCB + 0

DCB + 1

DCB + 2

DCB + 3

DCB + 4

DCB + 5

7 6 5 4 3 2 1
.' , / '

/ / /
FN

CODE
1---;---.,.-----------+----- .. -

ID
F
L
A
G

It
A
W

F

~ I I SEC TOR

UNIT
ADDR.

ADD RES S

ADDRESS I TRACK f---------------------.....
!BUFFER ADD RES S LSB

r;-; F FER ADD RES S MSB

The DCB entries are described as follows:

Rev. 4

FN CODE Function code
fa '" Seek only
1 - Seek and read sector
2 '" Seek and write sector
3 m Seek and verify sector

ID FLAG Pre-Write Header (ID) Check Flag
o = Perform check
1 '" Inhibit check

RAW FLAG Read-After-Write Check Flag
o = Perform check
1 = Inhibit check

UNIT ADDR. Drive Unit Address
0-3

Sector and Track Address are the address of the sector which is to be
written or read and the address of the track upon which the sector
resides. The driver will seek as necessary to move the head to the
des ired track.

The Buffer Address is a 16 bit memory address stored in standard
8080 low/high format. ThlS must be the address of a 268 byte read/
write buffer. The first two bytes of the buffer are reserved for the
header.

7/77 6-22

To perform a write operation, move the data to the read/write buffer,
set up the DCB, and call the driver.

To perform a read operation, set up the DCB and call the driver. When
the operation is complete, the data from the desired sector will be in
the read buffer.

Rev. 4 7/77 6-23

Rev. 4 7/77

****~~********************.****.********

* * * DISK DElVER FOR MICEOPOLIS *
* FLEXIBL.E DISK St!BSYSTEM *
* * * COPYP.IGHT ~ICF.OPCLIS CORPORATION *
* 8 JUNE 1977 *
• * **************************** ••• *.*******
*
*
'" 1)
,..

'" ,..

'" '"
'" • ...
'"
'" ,..
•
'" '"
'" '"
'"
'" '"
'"
'"
'"
'"
'" '"
'"
'" '" •
'" '"
'" '" '"
'" *
'"
'"
'"
'" '" '"
'" '"
'"

CALLING S:;,2UEPJCE:

L..'<I H"UDCS
CALL DSKIO
JNZ ERROR

?onIT f:L TO USEF..
DCE &. PEP-FORK
OPE:?.At' I ON

CDCS IS THE USE?'·S DISK CONTROL
SLOCK VHICH DEFINES THE OPERATION
TO BE PERFORMED AND IS S!PUCT~~En
AS FOLLOil:S=

UDCE+0
9
1
2
3

FUNCTION CODE
SEEK TF.ACK ONLY
SEEK AND READ SECTOR
SEEK AND \~ITE SECTO~
SEEK AND VERIFY SECTOR

~~ITE OPERATIONS CONSIST OF:
1) VERIFY THE TP.ACK/SECTOP. ID

IN THE SECTOR IMMEDIATELY
PRECEEDING THE DESIRED SECTOR

2) PE..'l:tFORM THE \'''P..ITE OPEP.ATION
3) THE SeCTOR WRITTEN IS THEN

VERIFIED BY A R£AD-AFTEP.-~?-ITE
CHECKSUM READ

NOTE:THE 10 CHECK AND READ AFTER
VP.ITE CHECKS CAN BE OVEP~IODEN
BY CONTROL FLAGS IN UDCB+l
FOR ~~lTING ON UNFOR~~TTED DISKS

UDCB+l
BIT

0-1
6

1

CONTROL FLAGS/uNIT SELECT
FUNCTION
UNIT ADDRESS
READ-ArTER-WRITE CHECK
CONTROL:0=PERFORM~
i-INHIBIT
PRE-w~ITE ID CHECK
CONTROLr 0=PEP.FORM~

'-INHIBIT.
UDCS+2 SECTOE ADORESS C0-1S)
UDCB+3 TRACK ADDRESS (0-76)(34)
UDCB+4&S BUFFER ADDRESS

SUFFER ADDRESS IS THE START
ADDRESS OF THE READ/WRITE
BUFFER TO BE USED IN
PERFORMING THE OPERATION.

6-24

A00 F3

*
*
*
*
*
*
*
*
*
*
*

ALL OPERATIONS
RE~UIRE A 268 BYTE BUFFER
ORGANIZED AS FOLLO~S:

BYTE 0 -- TRACK ID
BYTE 1 -- SECTOR ID
BYTE 2-267 -- DATA

BYTES 0 AND 1 ARE FILLED
IN AS NECESSARY BY THE
DRIVER

* 2) THE DISK 1/0 DRIVER RETURNS VITH
* THE CONDITION CODE SET TO Z IF
* THE OPERATION WAS SUCCESSFUL AND
* NZ IF AN ERROR OCCURRED. THE
* A REGISTER WILL CONTAIN AN ERROR
* CODE AS FOLLO\lJS:
* 1 PERMANENT 1/0 ERROR --AN
* UNRECOVERABLE DISK ERROR
* OCCUERED
* 2 PARAMETER ERROR - ONE OF THE
* PARAMETERS IN THE DCB IS
* INVALID
* 3 DRIVE NOT UP - THE SELECTED
* DRIVE IS NOT READY
* A -- VRITE PROTECT - THE SELECTED
* DRIVE IS ~RITE PROTECTED AND
* A \iRITE OPERAT I ON 'l,.:AS
* SPECIFIED
* 3) INITIALIZATION REQUIREMENTS,
* * 1) THE DRIVE~ CONTAINS A TABLE
* LABLED "TRACK" wHICH CONTAINS
* THE CURRENT TRACK POSITION FOR
* EACH DRIVE CONNEXTED TO THE
* CONTROLLER. EACH ENTRY MUST BE
* INITIALIZED TO FFH TO CAUSE THE
* TRACK POSITION OF EACH DRIVE TO
* BE RE-CALIBRATED THE FIRST TIME
* IT IS ACCESSED

* * 2) THE PARAMETER LABELED "TRKMX"
* MUST BE SET TO THE HIGHEST
* TRACK ADDRESS lo7HICH IS 76 FOR
* MOD II SUBSYSTEMS AND 34 FOR
* MOD I SUBSYSTEMS

* * 3) THE 16 BIT PAF~METER LABELED
* nDADF."MUST BE SET TO THE ADDRESS
* OF THE DISK CONTROLLER ~HICH IS
* THE BOCT PROM ADDRESS+200H

*
*
* ORG X'400'

* DSKIO 01

6-25

8~el CS PUSH B SAVE REGISTERS
e4e2 05 PUSH 0
"~"3 ES PUSH H
0~0~ 21"999 LXI H~0 SAVE STACK POINTER
0~97 39 DAD 51'
9~98 229697 SHLD STACK
0~9B E1 POP H GET POINTER TO
r/l~0C E5 PUSH H USER'S OCB
0400 11 f506 LXI O,OCB COpy USER OCB TO
0~10 0606 MVI B,OCELEN INTERNAL OCE
0412 7E OS919 MOV A,M
9413 12 STAX 0
0414 23 INX H
9~15 13 INX 0
0416 05 OCR B
0417 C21204 JNZ DS910 ...

... VALl DATE OCB PARAMETERS

...
0~IA 21f506 LXI H,OCB fUNCTION MUST BE
0410 7E MOV A~M 3 OR LESS
041E fE94 CPI 4
0420 020205 JNC PARMER PARAMETER ERROR
0423 23 INX H
0424 7E MOV A~M UNIT ADDRESS MUST
9425 E63f ANI X'3F' BE LESS THAN 4
9427 fE94 CPI 4
9429 020205 JNC PARMER
0~2C 23 INX H
0420 7E MOV A~M SECTOR MUST BE
042E fE10 CPI 16 15 OR LESS
0439 020205 JNC PARMER
9433 23 INX H
0434 3AFB96 LOA TRKMX TRACK MUST BE LESS
0437 96 SUB M THAN OR EQUAL TO
0438 FA0295 JM PARMER MAX TRACK

...

... ENSURE DRIVE IS OPERATIONAL

...
043B CDE40S CALL SLCT

...

... SEEK TO DESIRED TRACK

...
943E CDD504 CALL SEEK

...

... GET fUNCTION PARAMETER fROM Dca

... AND PERFORM ANY OTHER REQUIRED

... fUNCTION

...
0441 3AF596 LDA OCBFN DONE IF TUNCT:
0444 87 ORA A SEEK ONLYCS)
0445 CAcca4 JZ OSU9 DONE

...

... PERFORM READ/WRITE FUNCTION

...

...

... RETRY CONTROL fOR READ/WRITE

Rev. 4 7/77 6-26

*
*
* ..
*
* ..
•
*
*
* ..
*
*
*
*
* ..

0448 3E03 05020
044A 3206€7
0440 3E04 DS030
044F 32e.~07
0452 3EI2J5 0$040

;. .', 10454 :320407
.;.

.;.

0457 2AF906 OS050
04SA 220007
045D ::iAF506
0460 3D
0461 C26A04

* .;. ..
0464 CD6106
0467 C3A204
046A 3D C5060
0468 C29704

*
'"
*

046:: 3AF606
0471 ::6&10
0473 C28304
0476 3AF706
0479 3D
047A E6eF
047C ~7

Rev. 4 7/77

OPERA: I OtJS :
A :3 LEVEL RETRY STRUCTt:EE IS
PfOVIDED AS F'OLLOV5:
1 -- IF' AN ERPOF. OCCUPS,UF TO 5
~ETRYS OF THE OFF'ENDINC OPEnATION
wILL EE PERFORMED
2-- IF THE LEVEL 1 RETRY! APE NOT

. SFCCESSFUL"THE POSITIONEH VILL
EE STEPPED OFF TRACY. AND EACK
AND THE LEVEL 1 RETEYS '.! I LL BE
PERFORMED. THE LEVEL 2 RETRYS
WILL 8E PERFORMED UP TO 4 TIMES
3 -- IF' THE LEVEL 2 RETRY
PROCECURE IS NOT SUCCESSFUL"THE
UNIT 1I.'ILL EE DESELECTED TO IJI'OLOAD
THE EEAD THEN THE UN I T lH LL BE
P.ESELECTED"THE POSITIONER vILL
BE r::ECALIBRATED AND MOVED BACK
TO THE DESIFED TRACK AND THE
LE'VEL 1 AND 2 RETF.Y PROCEDURE 5
VILL 8E PERFORMED. THIS ~ILL 8E
DONE UP TO 3 TIMES.IF NOT
St!CCEssn:L.lii PEPr-:ANENT I/O
ERRO~ VILL RESULT

MVI A,,3
5TA L3P.TRY
NVI A,,4
STA L2RTRY
MVI A.l5
$TA Ll::TRY

PRESET P.ETr:Y
COUNTERS

SELECT DESIRED FtJNCT ION AND
PERFORM

LHLD DCEAD
SHLD Bt:FADR
LOA DCBFN
DCF; A
.JNZ D5060

BEAD SECTOR

CALL READAL
.JMP 05090
DC? A
.JNZ 05080

t..:F.I TE SECTOR

LDA OCEUN
ANI HCI
.JNZ DS070
LOA DCESC
OCR A
ANI X'~F'

MOV s .. A.

PRESET EUFFER
ADDRESS
GET FUNCTION

READ SECTOR
CHECK FOF. EF.::OF.

IF HEADER CHECK
INP.IBIT SET GO
"tRITE
BACKSPACE SECTOR
COUNT MOD 16

6-27

0470 CDB106 CALL READCK DO PRE-WRITE HDR
048.0 C2A204 JNZ 05.09.0 CHECK - ABORT ERR
.0483 CD2F06 DS070 CALL VSECT GO T.t!RI TE
0486 3AF706 LOA DCBSC DO RAyl CHECKSUM
.0489 47 MOV BIA READ CHECK
048A 3AF606 LOA DCBUN UNLESS INHIBITED
048D E640 ANI RAFI
048F EE49 XR1 RAF1
.0491 C4B106 CN·Z READCK
.0494 CJA204 JMP DS990 GO CHECK FOR ERR
.0497 3D DS080 DCR A
0498 C2D20S JNZ PARMER TRAP-JUST IN CASE

*
* VERIFY SECTOR

* 049B 3AF706 LDA DCBSC
049E 47 MOV alA
049F CDB106 CALL READC}{ DO CHECKSUM READ

*
* CHECK FOR ERROR

* 04A2 CACC04 OS.090 JZ OS199 NO ERROR-EXIT
04AS 3A0407 LDA LIRTRY LEVEL 1 -- RETRY
94A8 JD OCR A UP TO 5 TIM'ES
04A9 320407 STA LIRTRY
04AC C25704 JNZ DS050

*
* RETRIED 5 TIMES - STEP OFF TRACK

* AND BACK AND REPEAT

* I!IUF CD3605 CALL RESTEP
1!1482 3A0S07 LDA L2RTRY PERFORM UP TO 4
0485 3D OCR A TIMES
04B6 320507 STA L2RTRY
04B9 C2521!14 JNZ DS040

*
* STEPPED OFF 4 TIMES - DESELECT

* DRIVE TO UNLOAD HEAD THEN

* SELECTIRESTORE AND RE-SEEK

* 04BC CD6305 CALL RESLCT
04BF 3A061!17 LDA LJRTRY PERFORM UP TO 3
04C2 JD OCR A TIMES
04C3 320607 STA LJRTRY
1!14C6 C24D04 JNZ OS030

*
* UNSUCCESSFUL -- ABORT VITH

* PERMANENT I/O ERROR

* 1!14C9 C3CC05 ..IMP PER MER
•
* END OF OPERATION

* 04CC 2AI!IS07 DS100 LHLO STACK RESTORE STACK PTR
04CF F9 SPHL
0400 E1 POP H RESTORE REGISTERS
04Dl 01 POP 0

Rev. 4 7/77 6-28

04D2 CI
0403 00
04D4 C9

0405 COE405
04D8 E5
04D9 CD8D~5
04DC 3EFF
040E BE
04DF C2E504
04E2 CD7905
04E5 3AF806
04E8 4F
04E9 96
04EA CA0405

04ED FAFA04
04F0 CD0705
04F3 3D
04F4 C2F004
04F7 C30105
04FA COID05
04FO 3C
04FE C2FA04
0501 C02D05
0504 71
0505 El
0506 C9

0507 F5
0508 D5
0509 E5
050A AF
050B 320707
050E 2A0207
0511 3661
0513 111£00
0516 CD1706
0519 £1
051A 01
051B Fl
051C C9

051D FS
051E 05

Rev. 4 7/77

POP 6
EIADR NOP

RET
...
...

SPACE FOP. EI

... SEEX TO DESIRED TP~CX

...
SEEK

SEEKI

...

CALL
PUSH
CALL
MVI
CMP
JNZ
CALL
LOA
MOV
SUB
JZ

SLCT
H
LDTRK
A.#X'FF'
M
SEEK!
F.ESTOR
DCBTK
C .. A
M
SEEKR

ENSURE DPIVE SLTD
AND READY
POINT ilL TO TRACK
SEE IF DRIVE HAS
BEEN INITIALIZED
YES-CONTINUE
CALIBRATE POSITION
GET TRACK FROM DCB
SAVE IN C
ALREADY AT TRACK!
YE,S-RETURN

... NOT AT TRACK -- ISSUE THE

... APPROPRIATE NUMBER OF STEPS TO

... MOVE TO THE DESIRED TRACK

...
JM SEXOUT

SEKIN CALL STEPIN
OCR A
JNZ SEKIN

. , JMP SEEKRI
SEKOUT CALL STPOUT

INR A
JNZ SEKOUT

SEEKRl CALL SETTLE
SEEXR MOV M.#C

POP H
RET

...

\<TAIT HEAD SETTLE
STORE TRACK

... STEP POSITIONER IN 1 TRACK

...
STEP IN PUSH PS"!

PUSH D
PUSH H
XRA A
STA DIRCTN
LHLO DADR
r1V I M.# STEP+ 1

STPI LXI D .. 30

...

CALL TIME?
POP H
POP D
POP PSV:
RET

SET DIRECTION FLAG

STEP IN ONE TP.K

WAIT STEP TIME

... STEP POSITIONER OUT 1 TRACK ...
STPOUT PUSH PSW

PUSH 0

6-29

11151F E5
215221 3EFF
21522 320707
0525 2A02217
0528 36621
11152A C313215

052D
052E
053!
0534
0535

05
1 UJA00
CD1706
01
C9

•
*

PUSH H
MVI A .. X'FF'

DIRCTN
DADR

STA
LHLD
MVI
JMP

M .. STEP
STP!

SET DIRECTION FLAG

STEP OUT ONE TRK
GO WAIT STEP TIME

* WAIT HEAD SETTLE TIME

* SETTLE

*

PUSH
LXI
CALL
POP
RET

D
D .. 10
TIMER
D

10 MILLISECONDS

* STEP OFF TRACK ONE AND BACK TO CORRECT
* POSSlBLE MARGINAL TRACK POSITION
* OF DRIVE WHICH WROTE THE DISK
* IF TRACK 0 SUBSTITUTE RESTOR

* 0536 COBD0S RESTEP CALL LDTRK
MOV A.,M
ORA A

GET CRNT TRK ADDR
GET CRNT TRK 0539 7E

053A B7
053B C24205
053E CD7905
0541 C9

JNZ RSTPA
CALL RESTOR
RET

USE RESTOP. IF TK 0

0542 3Ae707 RSTPA
0~45 B7

LOA
ORA
JNZ
CALL
CALL
CALL
CALL
RET

DIRCTN
A
RSTPB
STEPIN
SETTLE
STPOUT
SETTLE

0S46 C25605"
0549 CD0705
054C C02005
054F CDI005
0552 CD2D05
0555 C9
0556 CDI005 RSTPB
0559 C02005

CALL STPOUT
CALL SETTLE
CALL STEPIN
CALL SETTLE
RET "

05SC C00705
055F C02D05
0562 C9

0563
111564
0567
0569
056C
056F
0572
0573
0576

"' Rev. 4 7/77

E5 I

2A0207
36A0
IlCS00
C01706
CDE405
El
C07905
C30504

* * RETRY ROUTINE TO RESTORE TO 0 THEN
• LIFT HEAD.. LOVER HEAD AND RESEEK

* RESLCT

*

PU,SH
LHLD
MVI
LXI
CALL
CALL
POP
CALL
JMP

H
DADR
M ... RESET
0.,2210
TIMER
SLCT
H
RESTOR
SEEK

RESET CONTROLLEl1

RESELECT .. LOWR HEAD

GO RE-SEEK

* RESTORE POSITIONER TO TRACK 0
* POSITIONER MUST BE STEPPED OUT
* UNTIL THE TRACK 0 SWITCH IS MADE

6-30

79 ES
,7A C5
i7E CDBD05
i7E 36FF
;80 CD8805
)83 3600
5&5 C 1
586 El
587 C9.

588
589
58C
58D
58E
'591
1592
1593
1595

'598
~59A

~59D

2lS9E
:liSA I

£5
CDE405
DS
C5
2A0207
23
7E
E606
CAA405

3E06
CD0705
3D
C29A05
C02D05

05A4 0ES5
05A6 7E
05A7 E606
05A9 C2E1605
05AC CDID05
05AF 0D
05B0 C2A605

05B3 C3CC05

•
II<

TO CALIBRATE TRACK POSITION

RESTOR PUSH H

II<

PUSH B
CALL LDTRK
MVI M .. X'FF'
CALL RESTRI
MVI M.,0
POP B
POP H
RET

II< RESTORE TO TK 0
II<

RESTRI

II<

PUSH
CALL
PUSH
PUSH
l..HLD
INX
MOV
ANI
JZ

H
SLCT
D
B
DADR
H
A .. M
TK0
REST3

POINT HL TO TRACK
PRESET TO BAD TRK
RESTOP.E TO TK 0
SET TRACK=0

ENSURE UNIT SLCTD
AND READY

POINT TO STATUS
BYTE
ALREADY AT
TRACK 0 ?
NO .. PRESS ON

II< ALREADY AT TRACK 0 - STEP
• IN 8 TIMES THEN RESTORE
• TO ENSURE GOOD POSITION
•
REST2

II<

MVI
CALL
DCR
JNZ
CALL

A.,6
STEPIN
A
REST2
SETTLE:

STEP IN 6
TRACKS

WAIT SETTLE TIME

* STEP OUT UNTIL TRACK 0 SWITCH
II< IS ACTUATED OR UNTIL 65 STEPS
• HAVE BEEN ISSUED SO THAT WE
• DONT BANG AGAINST THE STOP
• FOREVER IF TK0 SWITCH IS
II< BROKEN
•
REST3 MVI
REST3A MOV

•

ANI
JNZ
CALL
DCR
JNZ

CI85
A .. M
TK0
REST4
STPOUT
C
REST3A

LOAD MAX STEPCNT
TRACK 01

YES- PRESS ON
STEP OUT ONE TK
MAX STEPS ?
NO - TRY AGAIN

• MAXIMUM NUMBER OF STEPS HAVE
• BEEN ISSUED - ERROR ABORT
II<

JMP PERMER
•
.FOUND TRACK 0 .. WAIT
* SETTLE TIME THEN EXIT
•

Rev. 4 7/77

ilSE6 CD2D"S REST4 CALL SETTLE ~.rAI T HEAD SETTLE
"SE9 Cl POP E
0SEA 01 POP 0
058E E1 POP H
0SEC C9 RET

*
* LOAD AODRESS OF CURRENT TRACK ON
* CURRENT UNIT INTO HL
*

05BD 05 LDTRK PUSH 0
0SEE 3AF606 LOA OCBUN
0SCI E603 ANI 03 MASK OUT UNIT
0SC3 SF 1-10 V E .. A
0SC4 1600 MVI 0 .. 0
0SC6 21FC06 LXI H .. TRACK POINT HL INTO
05C9 19 DAO 0 TRACK TABLE
05CA 01 PO? 0
05CE C9 RET

*
*
*
*
* ERROF.. EXITS
*

"5CC 3E0l PERMER MVI A .. 1
0SCE 87 ORA A
05CF C3CC04 JMP OS100
0502 3E02 PARMER MVI A .. 2
0504 87 ORA A
0505 C3CC04 JM? DS100
0SD8 3E03 ORIVER MVI A .. 3
0S0A 87 ORA A
0508 C3CC04 JM? 05100
0S0E 3E04 PRaTER MVI A .. 4
0SE0 87 ORA A
05El C3CC04 JMP 05100

* *
*
**
* REGISTER DEFINITIONS ANO *
* FLAG EQUATES FOR MICROPOLIS *
* FLEXI8LE OISK CONTROLLER 8 *
****.***********************************
*
*
*

F400 EPROM EQU X'F40" '
F600 DIAOR EQU B?ROM+X'0200 ,

*
* DATA REGISTERS
*

F602 VDATA EQU DIAOR+X '02'
F602 RDATA EQU WDATA

*
* STATUS REGISTERS
*

Rev. 4 7/77 6-32

F600

0040
0080
0020

F601

0080
0040
0020
0010
0008
0004

F600

0020

0040

0060

0080

00A0

Rev. 4 7/77

DSECTR EQU
• 0-3

• 4
• 5
• 6
• 7 •

DIADR
SECTOR COUNT
SPARE
SPARE
SCTR INTERRUPT FLAG
SECTOR FI..AG

• FI..AG BITS
•
SIFLG
SFLG
DTM?

• •

EQU X'40'
EQU X'S0'
EQU X '20'

DSTAT EQU DIADR+l
• 0-1 UNIT ADDRESS

• 2
• 3

UNIT SELECTED (LOW TRUE)
TRACK 0

• 4
• S
• 6
• 7

WRITE PROTECT
DISK READY
PINTE
TRANSFER FI..AG

•
• FI..AG BITS
•
TFLG
INTE
RDY
T"tPT
TK0
USLT
• •

EQU X' 6113'
EQU X'4e'
EQU X'20'
EQU X 'Ie'
EQU X'0S'
EQU X'04'

• COMMAND REGISTER
•
DCHND EQU DIADR
.(ALSO WILL RESPOND TO DISK+1)
• • •
•

0-1
5-7

COMMAND MODIFIER
COMMAND

• COMMANDS
•
SLUN £QU X'2e' SELECT UNIT
• MODIFIER CONT~INS UNIT ADDRESS
SINT EQU X'40' SET INTERRUPT
• MODIFIER al ENABLE INTERRUPT
• -0 DISABLE INTERRUPT
STEP EQU X'60' STEP CARRIAGE
• MODIFIER -00 STEP OUT
• -01 STEP IN
VTCMD EQU X'8S' ENABLE WRITE
• NO MODIFIER USED
RESET EQU X'AS' RESET CONTROLLER
• NO MODIFIER USED
•
•

6-.33

•
13086 SCLEN EQU 134 SECTOR LNGTH/2

• • • SELECT DRIVE SPECIFIED

• BY UNIT ADDRESS IN DCB

•
aSEA DS SLCT PUSH D
0SES CS PUSH a
135E6 ES PUSH H
05£7 2Aa2a7 LHLD DADR GET CONTROLLER ADR
aSEA 3AF6a6 LDA DCBUN GET UNIT ADR FROM
aSED E603 ANI x'a3 ' DCB
aSEF 47 MOV alA AND SAVE
aSF0 23 INX H POINT TO STATUS
a5Fl 7E MOV AIM AND READ
aSF2 4F MOV CIA SAVE STATUS
13SF3 E6a7 ANI X'07 ' MASK USLD & ADDR
0SFS AS XRA 8 DESIRED UNIT PREV

• NOTE-THIS TEST WILL FAIL IF

• CONTROLLER IS NOT PLUGGED IN
aSF6 79 MOV AIC SELECTED?
0SF7 CA0C06 JZ SL0t13 YES-CHECK RDY
95FA 7S MOV Ala GET UNIT ADDRESS
9SFS F62a ORI SLUN BUILD COMMAND
a5FD 77 MOV MIA OUTPUT COMMAND

• WAIT 259 MSEC FOR'
aSFE I1FAa0 LXI DI259 SECTOR CNTR TO
9691 CD1706 CALL TIMER GET IN SYNC
96134 7E MOV AIM GET STATUS
96as E607 ANI X'07' SELECTED NOW?
06137 AS XRA a
0608 7E MOV A."M GET STATUS AGAIN
0609 C21006 JNZ SL020 ERROR IF NOT SLTD
06ac E620 SL010 ANI RDY ENSURE UNIT IS
06aE EE2a XRI RDY READY
0610 El SL02a POP H
0611 CI POP B
0612 Dl POP D
0613 CS RZ RETURN IF OK

• DRIVE NOT UP ERROR
0614 C3DS05 JMP DRIVER

• • • 1 MILLISECOND TIMER
• DE=(DELAY> TIME IN MSEC

• • A IS DESTROYED
•

13617 CS TIMER PUSH a
0618 E5 PUSH H
0619 2A9207 WiLD DADH
061C 7E MOV A."M RE-TRIGGER 4
061D 9660 MVI 8.,,96 SECOND TIMER
961F 76 TIal0 MOV AlB COUNT
0629 0691 SUI 1 DELAY LOOP-l.998
9622 87 ORA A MSEC '5130 NSEC

Rev. 4 7/77 6-34

0623 C22006

0626 IE
0627 7B
0628 E2
0629 C21FI2I6
12162C El
0620 C1
062E C9

062F
0632
0635
0636
0637
121639
12163C
063D
063E
063F
0641
0644
0647
121648
0649
064C
0640
064E
12164F
0652

CDE41215
3AF71216
47
C5
I2IE86
2A0207
E5
23
7E
E6 I 121
C20E05
2A0007
E5
01
3AF81216
77
23
70
2A02 121 7
CDE906

0655 3680
0657 23

JNZ TI12I10+1

* * IMSEC EXPIRED - DECREMENT DELAY
* MULTIPLIER & CHECK FOR DONE

*

lit

DCX 0
MOV A.,E
ORA 0
JNZ TIell2l
POP H
POP E
RET

lit WRITE 1 SECTOR
lit

lit

WSECT

*

CALL
LOA
MOV
PUSH
MVI
LHLD
PUSH
INX
MOV
ANI
JNZ
.LHLD
PUSH
POP
LOA
MOV
INX
MOV
LHLD
CALL

SLCT
DCBSC
B.,A
5
C.,SCLEN
DADR
H
H
A.,M
WPT
PROTER
EUFADR
H
o
DCETK
M.,A
H
M.,E
DADR
GETSEC

ENSURE UNIT SLO
AND READY

C <- EYiCT/2
GET CONTROLLER ADR

READ STATUS
ABORT IF
W1UTE PROTECTED

GET BUFFER ADD?.

MOVE TO DE
MOVE TRACK AND
SECTOR 10 TO WRITE
BUFFER

GET CONTROLLER ADR
WAIT FOR SECTOR

* FOUND DESIRED SECTOR-
* ENABLE WRITE

*

*

MVI M.,WTCMD
INX H

* WAIT FOR TRANSFER FLAG

* 0658 56 WSI2I10 ORA M
0659 F2581216 JP WS010

065C 23
0650 36FF

065F AF
0660 EE.
0661 12161210

Rev. 4 7/77

* * INSERT SYNC BYTE

*

*

*

INX H
MVI M.,X'FF'

XRA A
XCHG
MVI 5.,0

CLEAR CARRY

AND CHECl<SUM

6-35

• WRITE HEADER & DATA FIELD
•

0663 7E 'WS020 MOV A"M GET BYTE FROM MEM
066.1.1 12 STAX 0 yiRITE TO DISK
0665 sa ADC B ADD TO CKSUM
0666 .1.17 MOV 8"A SAVE CKSUM
0667 23 INX H NEXT BYTE
0668 7:= MOV A"M -::rc -
0669 12 STAX 0
066A 8S ACC B
066B 47 MOV B"A
066C 23 INX H
0660 00 OCR C
066E C26306 JNZ WS020

* • END OF DATA .. INSERT CHECKSut1

* 0671 78 MOV A"B
0672 12 STAX D

• • WAIT END OF SECTOR

* 0673 El POP H
0674 A1' XRA A
0675 B6 VS030 ORA M VAIT SCTR FLAG
0676 1'27506 JP VS030
0679 110100 LXI D,,1 VAIT 1 MSEC FOR
067C CD1106 CALL TIMER ERASE DELAY
061F Cl POP E
0680 C9 RET

*
* • READ 1 SECTOR
III VERIFY CHECKSUM AND HEADER
•
* RETURNS Z=OK

* NZ=ERROR
•

0681 CDE405 READAL CALL SLCT ENSUF!E UNIT IS
• ROY + SLTD

0684 3AF706 LDA Dcasc GET SECT OR ADDR
0687 47 MOV E"A FROM DCB
0688 CS PUSH B
0689 0ES6 MVI C"SCLEN C <- BYTCT/2
068B CDD606 CALL WTSYNC t·TA I T DES I RED

* SECTOR & STRIP
• SYNC BYTE
III

• FOUND DESIRED SECTOR .. READ
•

068E EB XCHG
068F 060" MVI B,,0 CLF! CHECKSUM

III

* READ LOOP

* 0691 IA RDA10 LDAX D READ FROM DISK
0692 71 MOV M"A MOVE TO BUFFER

Rev. 4 7/77 6-36

0693 23
0694 88
0695 47
0696 lA
0697 77
0698 23
0699 88
069A 47
069B 00
069C C29106

069F lA
ra6A0 B8
06Al C 1
06A2 cra

06A3 2A0007
06A6 EB
06A7 CDBD05
06AA lA
06AB BE
06AC C0
06AC 13
06AE lA
06AF SS
0680 C9

06Bl CS
06B2 CDE40S
06B5 0E85
06B7 CDD606

06BA 0600
06BC 7E
06BD 12
06B£ 88
JeBF 47

Rev. 4 7/77

>It

INX
ACC
MOV
LDAX
MOV
INX
ADC
MOV
OCR
JNZ

H
B
BolA
D
M"A
H
B
E"A
C
RDAl0

NEXT LOC
ADD TO CHECKSUM
AND SAVE
NEXT READ
-ETC-

END OF DATA?
NO-LOOP

>It END OF DATA-READ CHECKSUM

* LDAX D
RDA020 CM? B

POP B
RNZ

>It

COt1PARE \'fITH
COMPUTED CHECKSUM
RETURN IF ERROR

* CHECKSUM OK-VERIFY HEADER

*

>It

BUFADR LHLD
XCHG
CALL
LDAX
CMP
RNZ
INX D
LDAX 0

-CM? B
RET

LDTRK
C
M

>It VERIFY SECTOR
>It

POINT DE TO READ
BUFFER
POINT TO CURRENT
TRACK AND COMPARE
WITH TRACK ID READ

COMPARE SECTOR 10
wITH DESIRED SeT?

>It READ THROUGH SECTOR WITHOUT
* MOVING DATA INTO MEMORY AND
* VERIFY TRACK AND SECTOR 10
>It AND CHECKSUM
>It

>It ONLY TRACK AND SECTOR 10 ARE READ
>It INTO MEMORY AND CHECKSUM IS
>It VERIFIED
>It

>It SECTOR IS SPECIFIED BY E REG
>It

* RETURNS Z-OK
>It NZ-ERROR
>It

READCK PUSH
CALI..
MVI
CAI..L

>It

MVI
MOV
STAX
AOC
MOV

S
SLCT
C .. SCI..EN-l
WTSYNC

SAVE SECTOR
ENSURE SI..TD&RDY
C <- BYTCT/2-1
WAIT SECTOR & STRP
OFF SYNC BYTE
CLR CHECKSUM
READ TRACK ID
SAVE IN BUFFR
ADD TO CHECKSUM
AND SAVE

6-37

06C0 13 INX 0
06Cl 7E MOV A"M READ SCTR 10
06C2 12 STAX D AND SAVE
06C3 88 ADC B
06C4 47 MOV B"A
06C5 00 NOP

•
* READ THROUGH REMAINDER OF SECTOR

* TO COMPUTE , VERIFY CHECKSUM

* 06C6 7E RDCKI0 MOV A"M READ FROM DISK
0.6C7 88 ADC B ADO TO CHECKSUM
06C8 47 MOV B .. A SAVE CKSUM
06C9 00 tlIOP
06CA 00 NOP
06CB 7E MOV A"M -ETC-
06CC 88 ADC B
06CD 47 MOV B"A
06CE 0D DCR C
06CF C2C606 JNZ RDCKI0

• • END OF DATA - READ CHECKSUM

* 06D2 7E MOV A .. M
06D3 C3A006 JMP RDA020 GO CHECK HDR , .' CHECKSUM

*
*
* WAIT FOR DESIRED SECTOR
* TO COME AROUND AND STRIP OFF

* SYNC BYTE FOR READ ROUTINES
*

0606 2A0007 WTSYNC LHLD BUFADR GET BUFFER ADDRESS
0609 EB XCHG
06M 2A0207 LHl.D DADR AND CONTROLLER ADR
06DD CDE906 CALL GET SEC WAIT FOR SECTOR
06E0 23 INX H
06El B6 WTS010 ORA M WAIT FOR XFER RnY
06E2 F2E106 JP WiS010 FLAG
06E5 23 INX H OK-READ IN SYNC
06E6 7E MOV A .. M BYTE - - THROW IT
06E1 AF XRA A AWAY .. CLEAR CARRY
06E8 C9 RET AND GO READ

*
* 1J'AIT FOR DESIRED SECTOR TO COME

• AROUND

* a6E9 7£ G£TSEC MOV A"M \fAIT FOR SCTR FLAG
06EA B7 ORA A
a6EB F2E906 JP GETSEC
06EE E60F ANI X-SF' OK -IS THIS THE
S610 A8 XRA B ONE WE WANT?
06FI C2E906 JHZ GET SEC NO-WAIT
06F4 C9 RET PRESS 9N

*
* RAM STORAGE REQUIRED FOR DRIVER

•
Rev. 4 7/77 6·38

• • INTERNAL DISK CONTROL BLOCK
•

06F5 DCa EQU •
06F5 DCBFN DS 1
06F6 DcaUN DS 1
061'7 Dcasc DS 1
06F8 DcaTK DS 1
06F9 DCBAD DS 2
0006 DCBLEN EQU .-DCB

•
•

0060 HCI EQU X'80' HEADER CHECK INn
0040 P.AFI EQU X'40' RAW CHECK INHIBIT
06FB 4C TRKMX DC 76 MOD 2

• • • CURRENT TRACK TABLE
• MUST BE INITIALIZED TO FF
• AT PO~ER ON TO CAUSE DISK TO
• BE RESTORED TO TRACK 0
• THE FIRST TIME IT IS ACCESSED TO

• CALIBRATE TRACK POSITION

* 06FC FY TRACK DC X'FF'
06FD FY DC X'FY'
06FE 1'1' DC X'FY'
06FY FF pC X'FY'

•
* 0700 BUFADR DS 2 CURRENT BUFFER ADR

* • -• -
0702 001'6 DADH DC B(DIADR) DISK CTL? ADDR

*
* RETRY COUNTERS

0704 LIRTRY DS 1
0705 L2RTRY DS 1
0706 L3RTRY OS 1

* 0707 DIRCTN DS 1
0708 STACK DS 2 SAVED SP

•
* •

070A END *-*

6-39
Rev. 4 7/77

(
\

APPENDIX A ~ BASIC ERROR MESSAGES .
ARGUMENT - Argument in a function reference ;$ the wrong data type or missing.

ARRAY INDEXING ERROR - A reference to an array element contains an inva1id
index. May also be caused if an attempt is made to reference an array ele
ment before the array is defined in a DIM statement.

. .
CONVERSION ERROR - Attempt to assign a real value to an integer variable and

the converted value is too large .
.

DIGIT BEYOND RADIX - A number specified 1n radix format includes a digit which
is invalid for the spec·ified radix.

DISK FULL - An attempt was made to allocate another track for a file and no
free tracks remain.

DRIVE NOT UP - The desired disk !,Jnit.does not have a diskette loaded, is not
up to speed, or has a malfunction which prevents it from accepting commands.

DUPLICATE NAME - An attempt .. was. made to OP.fN a file name which already exists
as a new fi1 e.

END-FILE - The end-of-file was encountered in a disk file.read,.

EXTRA INPUT IGNORED - The response to an INPUT'statement contained more values
than were needed to satisfy the variable list and the eXtra values were
ignored.

FILE ALREADY OPEN - File number specified in an OPEN statement already has a
file opened to it.

FILE NOT FOUND - File name specified in a disk I/O command does not exist on
the spec i fi ed di s kette. . .

FILE NOT OPEN - File number specified in a disk I/O statement does not have
a fil e name opened to it. .

FILE TYPE ERROR - The attributes of the referenced file are inconsistent with
the requirements of the statement or comnand that referenced it.

ILLEGAL IMMEDIATE - An attempt was made to use a statement as a direct command,
but the statement. is only valid within a BASIC program.

INPUT OVERFLOW - A program line greater than 250 characters in length was en
tered - the entire program ~ine is cancelled.

INSUFFICIENT INPUT - The response to an INPUT statement contained insufficient
values to satisfy the· variable Hst.

INTERRUPT - Execution of a program was interrupted by entry of a CNTL/C key at
the terminal.

INVALID DISK FILE NAME - Disk file name specified is not a valid disk file
name.

Rev. 7 3/78

LOAD OVERRUN - The length of the BASIC program being loaded exceeds the
memory space currently available to BASIC.

LOG OF NEG # - Attempt was made to pass a negative or zero value to the
LOG or LN function.

MEMORY OVERFLOW - Insufficient memory exists for execution of the program.

MISSING FOR - A NEXT statement was encountered prior to execution of a
FOR statement specifying the loop variable.

NOT A FILE # - File number specified in a disk 1/0 statement is not one of
the digits a - 9.

NOT A LOAD FILE - Attempt to load a data format disk file.

NOT A RECORD # - The value following the RECORD option in a GET or PUT
statement is not a valid record number.

NOTHING TO RETURN TO - A RETURN statement was encountered prior to executing
a GOSUB statement.

NUMBER OUT OF RANGE - The value of an expression referenced is illegal.
Refer to the description of the statement in error for the range of
valid values.

OVERFLOW - Numeric overflow - Result of an operation is too large to be
contained in a variable.

OUTPUT OVERFLOW - A PRINT or PUT statement has attempted to create an output
line (re€ord) greater than 250 characters in length. This exceeds the
maximum internal buffer capacity. The line (record) is not output.

PARM ERR - Disk I/O Parameter error ~ usually caused by setting the sequential
GETIPUT pointers to an invalid value.

PERM FILE - An attempt was made to SCRATCH a permanent file.

PERM 110 ERROR - A disk 1/0 error occurred which was not recoverable in the
disk 1/0 retry logic.

PRECISION ERROR - A numeric function or the t operator was referenced with
. RSIZE greater than 10.

READY - The BASIC interpreter is ready for entry of commands or program
lines at the terminal.

RAN OUT OF DATA - A READ statement depleted the data list before satisfying
the variable list. A GET statement encountered the end of the current
record without satisfying the variable list.

Rev. 8 9/78 A-2

/I

(

(

SIZES ERROR - One of the parameters of a SIZES statement is invalid or
there are already variables allocated when the statement is encountered.

SQRT OF NEG # - Attempt to pass a negative number to the SQR function.

STACK OVERFLOW - The statement in error contains an expression which is
too complex. Break the expression into multiple expressions which are
less complex.

STMT # NOT FOUND - The statement in error tried to transfer control to a
program line number which does not exist.

SYNTAX - The statement in error is not recognizable or contains an invalid
structure such as unequal right and left parentheses.

TYPE ERROR - Attempt to assign a value of the wrong data type to a variable.

WRITE PROTECT - An attempt was made to write on a file with a write protect
. attribute or the diskette on which the file resides has a write protect

tab installed.

UNDERFLOW - Numeric underflow - The result of an operation is too small to
be assigned to a variable.

XtY INDETERMINATE - Attempt to take a fractional power of a negative number
or 0 or to raise 0 to a negative or 0 power, which are undefined operations.

ZERO DIVIDE - Attempt to divide by zero which ;s an undefined operation.

~3

Rev. 8 9/78

APPENDIX B - BASIC UTILITY

B.0 DESCRIPTION

The MOOS System diskette included with each system contains a BASIC
utility program.

The functions provided are:

1) Initializing a diskette:
purchased diskette can
data or programs. The
instead. It has the same

This must be done before a newly
be used by MOOS or M.BASIC to store
INIT command in MDOS may be used
effect.

2) Examining and modifying memory: Used to examine, and change
if desired, the contents of any location in memory. The P
command in the Extended Systems Monitor is similar.

3) Saving BASIC: Writes a copy of M.BASIC plus the RES module
onto a diskette. Used for creating a BASIC-only system
diskette.

B.l CALLING THE UTILITY

1) Make sure you have mounted in drive 9 an MOOS system
diskette, or BASIC-only diskette with both M.BASIC and the
BASIC Utility on it. .

2) Use normal operating procedures to get M.BASIC in control,
indicated by the READY prompt.

3) Enter the command LOAD "UTILITY· (return).

4) When the system responds with READY, enter RUN (return) ~ The
Utility will sign on with:

BASIC UTILITY PROGRAM-VERSION X.X
ENTER KEY TO SELECT DESIRED FUNCTION

F FORMAT DISK
M MEM EXAM/MODIFY
S SAVE BASIC
E EXIT

FUNCTION?

5) To select a function, enter the associated letter, followed
by a return.

6) After completing a function, the program will request another
command. Enter E to return to M.BASIC.

7) If the program is for some reason unable to complete a
function, it may return to the M.BASIC executive. To get
back to the Utility, begin again at step 3.

Rev. 8.1 2/5/79 8-1

B.2 INITIALIZING A DISKETTE - FUNCTION F

The Utility refers to this as the FORMAT DISK function.
Initialization consists of writing track and sector address
information in each sector of the data area of the diskette and
writing an empty Directory on the Directory track.

Since initialization essentially erases a diskette, DO NOT
initialize the System diskettes included with your system.

1) In response to F (return), the Utility will output:

SPECIFY UNIT NUMBER?

2) Enter the number of the drive to be used (0 to 3) and press
return. The program responds with:

INSERT BLANK DISKETTE IN UNIT X.
ARE YOU READY?

If you wish to get out of this function, press
otherwise, continue.

(return) ,

3) Load the diskette you wish to initialize into the specified
drive.

4) Enter Y (return).

The Utility will ini~ialize the diskette. This takes about 7e
seconds.

When completed, the Utility will request the next function command.

B.3 MEMORY EXAM/MODIFY FUNCTION M

In response to M (return), the Utility will output:

ENTER ADDRESS?

Type the hexadecimal representation of the desired memory address
followed by a carriage return. The Utility will print the
hexadecimal value of the contents of the desired memory location,
followed by a question mark (?). Enter one of the following
responses:

1) If a hexadecimal number from e - FF followed by a carriage
return is entered, the contents of the memory location just
displayed are set to the value entered. The contents of the
next sequential memory location are then displayed and the
Utility promp.ts for the next response.

2) If a carriage return only is entered, the contents of the
next sequential memory location are displayed and the Utility
prompts for the next response.

B-2 Rev. 8.1 2/5/79

3) If a colon (:) followed by a carriage return is entered, the
utility prompts for the entry of a new address to
display/modify as described above.

4) If an exclamation mark (1) followed by a carriage return is
entered, the Utility exits the memory modify/display function
and prompts for a new function select.

B.4 SAVE BASIC FUNCTION S

1) In response to S (return), the Utility will output:

ARE YOU READY?

If you want to get out of this function, press (return),
otherwise, continue.

2) Mount the diskette on which you wish to store M. BASIC in
drive~. (The diskette MUST be newly initialized. If it is
not, do section B.2 above, first.)

3) Enter Y (return).

4) The Utility will save M. BASIC on the diskette, and set its
attributes to permanent and write-protected. When completed,
the Utility will request the next function command.

5) If you wish to' copy the BASIC Utility onto the BASIC-only
diskette, exit from the Utility by entering E as the next
function. After the BASIC prompt READY,-enter ~AV~
-N:UTILITY- (return).

6) To copy any assembly language utility, such as DISKCOPY,' onto
the BASIC-only diskette, use the FILECOPY command in MDOS.

Rev. 8.1 2/5/79 B-3

APPENDIX C - ACCESSING DISKCOPY FROM BASIC

DISKCOPY is a special overlay utility that writes an absolute binary copy
of one disk onto another. The utility overlays MOOS or BASIC. It uses
all available memory during the copying process. The more memory in a system
the faster the copying process. On average it takes about two minutes to
copy and verify all 31Sk bytes of a MOD II disk.

NOTE 1: Previous versions of DISKCOPY will not run with BASIC 3.0 and
DISKCOPY 3.0 will not run with earlier versions of Micropolis
BASIC.

NOTE 2: In multiple drive systems DISKCOPY can be copied onto another
disk by using the FILECOPY utility under MOOS (Section 4.7).

The DISKCOPY utility ;s invoked from BASIC by using the LINK command.

LINK U[unit:]DISKCOPy n

a sign-on message is output:

MICROPOLIS DISKCOPY VS X.X - COPYRIGHT 1978
SPECIFY UNIT # FOR ORIGINAL (SOURCE) DISKETTE
?

DISKCOPY waits until the unit number is entered. When a number between
o and 3 is entered it prompts:

SPECIFY UNIT # FOR DESTINATION DISKETTE
?

and waits until the unit number (0 to 3) is entered.

PUT DISKETTES IN SPECIFIED UNITS
TYPE Y WHEN READY
?

It then prompts:

and waits for a Y. A note of CAUTION, we strongly recommend placing a
write protect tab on the original (source) diskette. It is possible to
put the wrong diskette in the wrong drive or type the wrong unit numbers.
If your original does not have a write protect tab and you make an error,
the original can be overwritten. The write protect tab provides a physical
interlock which disables the write electronics.

When a Y is typed DISKCOPY will start the copying process. During copying,
the process can be temporarily halted between read source and write destina
tion cycles by typing a control S. The process is restarted by typing any
other key except a control C.

The control C will cancel the entry or copy process and prompt:

CANCELLED
f'Y)RE ?

Rev. 7 3/78 C-l

If a Y is typed DISKCOPY starts from the top asking for the unit numbers
again. If an N is typed DISKCOPY prompts:

PUT SYSTEM DISKETTE IN UNIT 0
TYPE Y WHEN READY
?

When a Y is typed the disk in unit 0 is rebooted. If it's an MOOS diskette
MOOS is booted. If the disk in unit 0 is a BASIC only disk or some other
boatable system, it will be booted in and sign on. DISKCOPY is overlayed
by the incoming system and is no longer in memory.

When the disk has been copied and verified correctly DISKCOPY outputs:

GOOD COpy
r-tJRE ?

If the copy cannot be completed or does not verify correctly DISKCOPY outputs:

PERM I/O ERROR ON DESTINATION DISKETTE

or

PERM I/O ERROR ON SOURCE DISKETTE

indicating where the error occurred.

It is possible for single drive systems to make use of the DISKCOPY utility
to copy from one disk to another. In this case it ;s imperative that the
original diskette be write protected with a write protect tab. The procedure
involves specifying the same unit number for both source and destination
disks. Immediately after typing a Y in response to the TYPE Y WHEN READY
prompt. type a control S. The DISKCOPY program will read as many tracks frOID
the source disk as can be contained in main memory and then pause. When the
select indicator light goes out, remove the source diskette and insert the
destination diskette. Press the return key and as soon as the select
indicator light comes on type a control S again. When the select indicator
light goes out again the data from the source disk has been written to the
destination disk and one complete cycle is finished. This process is
repeated, swaping the source and destination disks in and out until the
entire disk is copied. After the last data is written onto the destination
disk, the program goes directly into a verifying process and will not pause
until this is over. When the source is placed back into the drive and the
return key is pressed the system will prompt: GOOD COpy or output an error
message as discussed above. At this point the copy is complete.

C-2

Rev. 7 3/18

APPENDIX 0 - SU"iARY OF MOOS ERROR MESSAGES

0.1 MOOS EXECUTIVE AND SHARED SUBROUTINES

BAD FILE II

The file number specified is greater than 8.

BAD RECORD #

The record number specified is greater than exists in the specified file.

CANCELLED

A control C was typed at the console, canceling an operation.

COMMAND NOT FOUND

The word typed as a command name, or implicit command (file name) does
not exist. The command was spelled incorrectly or the file name was
not found on the specified dislt

DISK FULL

An attempt was made to allocate an additional track to a file, and no
free tracks exist. The file is closed and the message is output. Some
data may have been successfully written to the file before additional
track space was needed.

DRIVE NOT UP

The disk unit specified is not loaded.

DUPLICATE NAME

The file name already exists on the unit specified. All files on a'disk
must have unique names.

END-FILE

The end of the file has been reached during a disk read.

FILE NOT FOUND

The file name specified does not exist on the unit specified.

FILE NOT OPEN

The file with the specified number has not been opened.

D-l

Rev. 7 3/78

INDEX PAST EOR

The index position is beyond the end of the record.

LOAD ADDRESS ERROR

The address specified with a file to be loaded into memory would cause
the file to overwrite the operating system.

PARM ERR

A parameter is out of range for a particular command. to big or to small.
This is different than a syntax error caused by a parameter beyond the maximum
input range.

PERM FILE

The file specified with a SCRATCH command or with the @SCRATCH subroutine
has an attribute with bit 1 set high indicating a permanent file.

PERM I/O ERR

A disk I/O error occurred which was not recoverable by the disk I/O retry
logic.

READ ONLY FILE

The specified file has an attribute with bit 0 set high. This inhibits
rewriting of the file ..

SYNTAX ERROR

The syntax of a command is wrong. This may be due to incorrect spelling.
or parameters beyond the maximum input ranges; 10 characters for ASCII
and four hex digits for numeric.

SYSTEM VERSION ERROR

An attempt was made to run a system program on the wrong version of the
system.

1~RITE PROTECT

The unit specified with a SAVE command or a subroutine that writes to the
disk has a disk in it with a write protect tab in place.

WRONG FILE TYPE

The file type does not correspond to the type of operation that is to
be perfonned.

0.2 EDITOR

FILEBUFFER OVERFLOW

Rev. 8 9/78 0-2

This message occurs whenever there is less than 256 bytes of buffer space
remaining in the edit buffer. Input can continue until the buffer is
completely full t but the message will be repeated after each carriage
return. The file should be written to disk and a new file started. If
a file is loaded from disk and is too large to reside in the buffer, this
message is output and the load is aborted. No data is loaded. This is
most likely to occur in conjunction with the APPEND command. If an APPEND
causes an overfollow, it is aborted and the files that were in the buffer
prior to the command are not changed.

FILE ON DISK NOT UPDATED, PROCEED?

The current working file in the editor buffer has not been saved or resaved
to disk. If you want to continue without updating the disk then type a Y
in response, otherwise type an N.

FILE NOT NAMED

A name has not been given to the current editor file prior to trying to
save it onto a disk.

LINE NOT FOUND

A line number which does not exist in the current text file was specified
in an EDIT command.

LINE NUr~ER OVERFLOW

The editor command RENUM specified an increment that caused the line number
to exceed 9999 decimal. The file ;s only partially renumbered and care
should be taken to do an additional RENUM with a smaller increment to assure
that the file is properly numbered prior to doing any editing on the fi.le.

STRING NOT FOUND

The SEARCH MASK specified with a SEARCH or CHANGE command in the editor
does not exist in the text.

0.3 ASSEMBLER

See Section 4.5.3.

D-3

Rev. 8.4-A 7/26/79

APPENDIX E - RES.I/O SOURCE LISTING

Addr B1 B2 B3 B4 E Line Label Opcd Operand

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
04EC

04EC
04FO
0502
078D
0792
0797
07E5
07EA
04EA
04E7

DODD
OOOA
0008
0003
0013
0015
0018
007F
005F

0010

CODC
C098

0000
0000
0000
0000
0000
0000

0003
0002
0000
0001

0010 *
0020 * I/O source file for Micropolis RES module
0030 * on Vector MZ, version 4.1
0040 *
0050 * by Neale Brassell,
0060 * 2179
0070 * Vector Graphic Inc.
0080 *
0090 * first, general system equates from SYSQ
0100 *

- 0110 @CONSOLEADDR EQU 04ECH
0120 @CIOTABLE EQU 04FOH
0130 @LIOTABLE EQU 0502H

• 0140 @CDIN EQU 078DH
= 0150 @CDOUT EQU 0792H
• 0160 @CDBRK EQU 0797H
= 0170 @LDOUT EQU 07E5H
• 0180 @LDATN EQU 07EAH
m 0190 @D1PORT EQU 04EAH
= 0200 RES EQU 04E7H

0210 *
0220 * now, general equates
0230 *

= 0240 CR EQU ODH
~ 0250 LF EQU OAB

0260 BS EQU 08H
a 0270 CNTC EQU 03H
- 0280 CNTS EQU 13H
= 0290 CNTU EQU ISH
- 0300 CNTX EQU 18H
= 0310 DEL EQU 7FH

0320 USCORE EQU 5FH
0330 *

- 0340 CANCELLED EQU 16
0350 *

= 0360 MIN EQU OCODCR
= 0370 MOUT EQU OC098H

0380 *
0390 * Get printer etc. from user, and compute ports
0400 *

- 0410 DIAB REQ 'Diablo (I-Yes, O-No):'
= 0420 CENT REQ 'Centronics (I-Yes, a-No):'

0430 DECW REQ 'Decwriter, TTY, etc (I-Yes, a-No):'
m 0440 OTHR REQ 'Any other printer (I-Yes, O=No):'

0450 BASE REQ 'Bitstreamer base address:'
0460 ANY EQU DIAB!CENT!DECW!OTHR
0470 *

- 0480 SSTAT EQU BASE+3 ;serial status
0490 SDATA EQU BASE+2 ;serial data

= 0500 PSTAT EQU BASE ;parallel 0
= 0510 PDATA EQU BASE+l ;parallel 1

0520 *
0530 * Ok! first, the vectors to the i/o tables
0540 *
0550 ORG @CONSOLEADDR
0560 *

Rev. 8.1 2/5/79 E-1

Addr B1 B2 B3 B4 E Line Label Opcd Operand

04EC FO 04
04EE 02 05
04FO
04FO
04FO
04FO
04FO
04FO 14 05
04F2 2E 05
04F4 77 05
04F6 F8 05
04FS 00 06
04FA 04 06
04FC OF 06
04FE
04FE 00
04FF 01
0500 4F
0501 03
OS02
OS02
0502
0502
OS02
OS02 00 00
OS04 8E OS
OS06 EA 05
OS08 00 00
OSOA 27 06
OSOC 11 06
050E 13 06
OSlO
OSlO 00
OSl1 01
OS12 83
OS13 01
OS14
OS14
0514
OS14
OS14
OS14 CD 8D 07
OS17 78
0518 FE 03
051A C8
051B FE 15
051D C2 22 05
0520 06 18
0522 FE 5F
0524 CA 2A 05
0527 EE 7F
0529 CO
052A 06 08
052C 3C
052D C9
052E

0570
0580
0590 *

DW
DW

@CIOTABLE
@LIOTABLE

0600 * the console i/o table
0610 *
0620
0630 *
0640
0650
0660
0670
0680
0690
0700
0710 *
0720 WRAPFLAG
0730 NULLCT
0740 WIDTH
0750 CURSOR
0760 *

ORG

DW
DW
DW
DW
DW
DW
DW

DB
DB
DB
DB

@CIOTABLE

CIN
COUT
CBRK
CD IN
CDOUT
CDBRK
CDINIT

o
1
79
3

0770 * next, the list i/o table
0780 *
0790
0800 *
0810
0820
0830
0840
0850
0860
0870
0880 *
0890 PWRAPFLAG
0900 PNULLCT
0910 PWIDTH
0920 PCURSOR
0930 *

ORG

DW
DW
DW
DW
DW
DW
DW

DB
DB
DB
DB

@LIOTABLE

o
LOUT
LATN
o
LDOUT
LDATN
LDINIT

o
1
131
1

0940 * now for the logical i/o routines
0950 *
0960 * {CIN} logical console input
0970 *
0980 CIN
0990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090 BSPCE
1100
1110
1120 *

MOV
CPI
RZ
CPI
JNZ
MVI
CPI
JZ
XRI
&'lZ
MVI
INR
RET

E-2

@CDIN
A,B
CNTC

CNTU
$+S
B,CNTX
USCORE
BSPCE
DEL

jlogical input
jlogical output
;logigal break check
jphysical input
jphysical output
jphysical break check
jphysical initialization

jwraparound flag
jnull count (+1)
iwidth (-1)
;cursor position

iplaceholder for input
ilogical output
jlogical attention check
jplaceholder for input
iphysical output
jphysical attention check
jphysical initi~lization

jwraparound flag
jnull count (+1)
iwidth (-1)
jline position

jget character

; "'C?
;return if so
;"'U?

jxlate ... u into ... x
;underscore?

jDEL?

;make backspace
jforce NZ

Rev. 8.1 2/5/79

Addr Bl B2 B3 B4 E Line Label Opcd Operand

052E
052E
052E ED 5B FE 04
0532 2A 00 05
0535 78
0536 FE OA
0538 CA 92 07
053B FE OD
053D CA SF 05
0540 FE 18
0542 CA 6F 05
0545 FE 08
0547 C2 4D 05
054A 25
054B 25
054C 00
054D CD 92 07
0550 7B
0551 B7
0552 CO
0553 7C
0554 BD
0555 C2 69 05
0558 06 OD
OSSA CD 92 07
055D 06 OA
055F CD 92 07
0562 06 00
0564 15
0565 C2 5F 05
0568 AF
0569 3C
056A 32 01 05
056D B7
056E C9
056F 06 5C
0571 CD 92 07
0574 C3 58 05
0577
0577
0577
0577 CD 97 07
057A CO
057B 78
057C FE 13
057E C2 89 05
0581 CD 8D 07
0584 FE 13
0586 CA 81 05
0589 FE 03
058B 3E 10
058D C9
058E
058E
058E
058E £D SB 10 OS

REV. 8.1 2/5/79

1130 * {COUT} logical console output
1140 *
1150 COUT
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290 COUT!
1300 WRAP
1310
1320
1330
1340
1350
1360 CCRLF
1370
1380
1390 CROUT
1400
1410
1420
1430
1440 DONE
1450
1460
1470
1480 CNTXOUT
1490
1500
1510 *

LDED
LHLD
MOV
CPI
JZ
CPI
JZ
CPI
JZ
CPI
JNZ
DCR
DCR
NOP
CALL
MOV
ORA
RNZ
MOV
CMP
JNZ
MVI
CALL
MVI
CALL
MVI
DCR
JNZ
XRA
INR
STA
ORA
RET
MVI
CALL
JMP

w"RAPFLAG
WIDTH
A,B
LF
@CDOUT
CR
CROUT
CNTX
CNTXOUT
BS
COUTI
H
H

@CDOUT
A,E
A

A,H
L
DONE
B,CR
@CDOUT
B,LF
@CDOUT
B,O
D
CROUT
A
A
CURSOR
A

B,'\ '
@CDOUT
CCRLF

1520 * {CBRK} logical console break check
1530 *
1540 CBRK
1550
1560
1570
1580
1590 PAUSE
1600
1610
1620 CANC
1630
1640
1650 *

CALL
RNZ
MOV
CPI
JNZ
CALL
CPI
JZ
CPI
MVI
RET

@CDBRK

A,B
CNTS
CANC
@CDIN
CNTS
PAUSE
CNTC
A,CANCELLED

1660 * {LOUT} logical list output
1670 *
1680 LOUT LDED PWRAPFLAG

E-3

;get wrap, null, width, cursor
;get character
;linefeed?
joutput, ignor if so
; return?
jhandle special
;"X character?
jhandle special also

; print if not BS

;adjust cursor counter
;(space for patch)
;print character
;get wrap flag

;return if no wrap
;get cursor
;end of line?
jdone if not

;print LF

;and CR
;make a null
;decrement counter
;loop

;increment cursor ptr
; save

; return
;print \ instead of "X

;go print CRLF

;return if no char
;get char
;"S?

;get char
;another "'S?

; "C?
;error code, just in case
; return

;get wrap, n1Jlls

-

Addr B1 B2 B3 B4 E Line Label Opcd Operand

0592 2A 12 05
0595 78
0596 FE OA
0598 C2 A2 05
059B CD E5 07
059E DA EE 05
05A1 C9
05A2 FE OD
05A4 CA CC OS
OSA7 FE 18
05A9 CA DF OS
05AC FE 08
OSAE C2 B4 05
05B1 25
OSB2 25
05B3 00
05B4 CD E5 07
05B7 DA EE OS
05BA 7B
OSBB B7
05BC CO
05BD 7C
05BE BD
05BF C2 D9 OS
05C2 06 aD
05C4 CD E5 07
05C7 DA EE 05
05CA 06 OA
05CC CD E5 07
05CF DA EE 05
05D2 06 00
05D4 15
05D5 C2 CC 05
05D8 AF
05D9 3C
05DA 32 13 05
05DD B7
05DE C9
05DF 06 SC
05E1 CD ES 07
05E4 D2 C2 05
05E7 C3 EE 05
05EA
OSEA
OSEA
05EA CD EA 07
OSED DO
OSEE 21 EA 04
OSF1 3E 01
05F3 77
OSF4 3C
05F5 23
05F6 77
OSF7 C9
05F8

1690
1700
1710
1720
1730
1740
1750
1760 LOUTO
1770
1780
1790
1800
1810
1820
1830
1840
1850 LOUT1
1860
1870 LWRAP
1880
1890
1900
1910
1920
1930 LCRLF
1940
19S0
1960
1970 LCROUT
1980
1990
2000
2010
2020
2030 LDONE
2040
2050
2060
2070 LCNTXOUT
2080
2090
2100
2110 *

LHLD
MOV
CPI
JNZ
CALL
JC
RET
CPI
JZ
CPI
JZ
CPI
JNZ
DCR
DCR
Nap
CALL
JC
MOV
ORA
RNZ
MOV
O!P
JNZ
MVI
CALL
JC
MVI
CALL
JC
MVI
DCR
JNZ·
XRA
INR
STA
ORA
RET
MVI
CALL
JNC
J}!P

PWIDTR
A,B
LF
LOUTO
@LDOUT
ATT

CR
LCROUT
CNTX
LCNTXOUT
BS
LOUT1
H
H

@LDOUT
ATT

A,H
L
LDONE
B,CR
@LDOUT
ATT
B,LF
@LDOUT
ATT
B,O
D
LCROUT
A
A
PCURSOR
A

B,' \'
@LDOUT
LCRLF
ATT

;and width t cursor

;linefeed?

;print directly if LF
; handle if ATTN

;return?

; AX character?

jbackspace?

;adjust cursor

j(spot for patch)
jprint character
; handle if ATTN
;wraparound?

;return if not
;get cursor
; too far right?

jprint LF
;check ATTN

iprint CR

;create a null
;count
jprint nulls

jinc cursor
jsave it

;return
jxlate here, too
; print
;handle CRLF if no ATTN
jgo to ATTN routine

2120 * {LATN} list logical attention check
2130 *
2140 LATN
2150
2160 ATT
2170
2180
2190
2200
2210
2220
2230 *

CALL
RNC
LXI
MVI
MOV
INR
INX
MOV
RET

E-4

@LDATN

H,@D1PORT
A,l
M,A
A
H
M,A

jdo it
;done if NC
jon ATTN,

reset
assignments
to their
defaults,
and indicate
an error.

Rev. 8.1 2/5/79

Addr Bl B2 B3 B4 E Line Label Oped Operand

05F8
05F8
05F8
05F8
05F8
05F8 CD DC CO
05FB CA F8 05
05FE 47
05FF C9
0600
0600
0600
0600 78
0601 C3 98 CO
0604
0604
0604
0604 CD DC CO
0607 CA OD 06
060A 47
060B AF
060C C9
060D 3C
060E C9
060F
060F
060F
060F AF
0610 C9
0611

2250 *
2260 * now for the physical i/o drivers
2270 *
2280 * {CDIN} physical console input
2290 *
2300 CDIN
2310
2320
2330
2340 *

CALL
JZ
MOV
RET

MIN
CDIN
B,A

2350 * {CDOUT} physical console output
2360 *

·2370 CDOUT
2380
2390 *

~10V

JMP
A,B
MOUT

;get stat/char
;none yet
;satisfy requirements
;that's that

;get character
;go print it

2400 * {CDBRK} physical console break check
2410 *
2420 CDBRK
2430
2440
2450
2460
2470 CBI
2480
2490 *

CALL
JZ
MOV
IRA
RET
INR
RET

MIN
CBI
B,A
A

A

;get stat/char
;no char
;save char
;set z
;return
;clear Z
;and return

2500 *. {CDINIT} physical console initialization
2510 *
2520 CDINIT
2530
2540 *

XRA
RET

A ;clear CY
;console is always init'ed

Rev. 8.1 2/5/79 E-5

Addr Bl B2 B3 B4 E Line Label Opcd Operand

0611
0611
0611
0611
0611
0611 AF
0612 C9
0613
0613
0613
0613 AF
0614 D3 03
0616 D3 03
0618 D3 03
061A 3E 40
061C D3 03
061E 3E CE
0620 D3 03
0622 3E 27
0624 D3 03
0626 C9
0627
0627
0627
0627 CD EA 07
062A D8
062B
062B
062B
062B
062B
062B
062B
062B
062B
062B
062B
062B
062B
062B
062B
062B
062B
062B
062B
062B
062B
062B
062B
062B
062B
062B
062B
062B
062B
062B

2560 *
2570 * Now for the physical list routines.
2580 *
2590 * {LDATN} physical list ATTN check
2600 *
2610 LDATN
2620
2630 *

XRA
RET

A ;none of our devices
; have this feature

2640 * {LDINIT} physical list init~lization
2650 *
2660 LDINIT
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770 *

IRA
OUT
OUT
OUT
t-1VI
OUT
MVI
OUT
MVI
OUT
RET

A
SSTAT
SSTAT
SSTAT
At 40R
SSTAT
A,OCER
SSTAT
A,27R
SSTAT

;send nulls

;send reset

;send mode

;send command

;return

2780 * {LDOUT} physical list output
2790 *
2800 LDOUT
2810
2820 -it' __

2830
2840
2850 'It

2860 LOI
2870
2880
2890
2900
2910
2920
2930 'It

2940
2950 'It

2960
2970
2980 'It

2990 L01
3000
3010
3020 '
3030
3040
3050
3060
3070
3080 L02
3090
3100
3110

CALL
RC

1FT
PRT

IN
RAR
JNC
MOV
OUT
IRA
RET

END IF

IFT
PRT

IN
R.AR
JNC
MOV
OUT
CPI
JNZ
MVI
CALL
IN
ANI
JZ
IN

E-6

@LDATN ; formality

DECW ;if TTY, Decwriter. etc.
'General selected'

SSTAT

L01
AtB
SDATA
A

;get status

;wait till ready

;output data
;clear C
; return

DIAB j1£ Diablo
'Diablo selected'

SSTAT

LOI .
A,B
SDATA
LF
!ARET
B,CNTC
LDOUT
SSTAT
2
L02
SDATA

jget status

;wait till ready

;output character
;linefeed?
;return if not
;send ETX char

;get return status

;wait till reply ready
;get reply

R@v. 8.1 2/5/79

Addr B1 B2 B3 B4 E Line Label Opcd Operand

062B 3120 MVl B,LF ;restore LF
062B 3130 XARET XRA A ;zap carry flag
062B 3140 RET ;return
062B 3150 '*
062B 3160 ENDIF
062B 3170 '*
062B 3180 1FT CENT ; if Centronics
062B 3190 PRT 'Centronics selected'
062B 3200 '*
062B 3210 L01 IN PDATA ;get status
062B 3220 RAR
062B 3230 JC L01 ;wait till not busy
062B 3240 MOV A,B
062B 3250 ORI 128 ;strobe on
062B 3260 OUT PDATA
062B 3270 ANI 127 ;strobe off
062B 3280 OUT PDATA
062B 3290 ORI 128 ;strobe on
062B 3300 OUT PDATA
062B 3310 XRA A ;clear C flag
062B 3320 RET ;return
062B 3330 *
062B 3340 END IF
062B 3350 *
062B 3360 IFF ANY ;if no printer>at all
062B 3370 PRT 'No printer'
062B 3380 *
062B C3 92 07 3390 L01 .n1P @CDOUT ;dummy routine
062E 3400 '*
062E 3410 Et-.llIF
062E 3420 *
062E 3430 * -.. -
062E 3440 1FT OTHR ;spec1al driver
062E 3450 PRT 'Special printer'
062E 3460 *
062E 3470 L01 RET ;user must write special driver
062E 3480 '*
062E 3490 END IF
062E 3500 *
062E 3510 *
062E 3520 PRT 'End ::II: ' ,$
062E 3530 *
062E 3540 END RES

Rev. 8.1 2/5/79 E-7

APPENDIX F - MICROPOLIS DISK BOOTSTRAP

The Micropo1is Disk Bootstrap Program resides in PROM on the controller
B board, occupying the first 512 bytes of the controller address space.
The bootstrap is involved by starting program execution at the base address
of the controller. An address-independent re10cator determines the controller
base address and moves the bootstrap code from PROM to low RAM system
memory where it is executed. The Bootstrap Program selects drive unit 0
and reads the contents of sector 0 of track 0 (the System Loader Program)
into memory. Sector 0 must be formatted as described in Section 6.1.2
and must be organized as follows:

Byte 0
Byte 1
Byte 2-11
Byte 12-265
Byte 266-267

Track ID
Sector ID
(Ignored)
System Loader Program
Load Address

Sector 0 is read into RAM at the system loader origin specified by bytes
266 and 267. After a successful read, the bootstrap transfers control to
load address +12. The DE register pair will contain the controller base
address.

The Bootstrap Program requires approximately lK of RAM memory from address
9~H.

F-l

Rev. 7 3/78

FEa9

******************-*********************
* * * MICROPOLIS DISK BOOTST!AP *
* *
* VERSION 2 -- RELOCATABLE *
* BOOTSTRAP - OPERATES WITS * * CONTROLLER STRAPPED FOR ANY * * LOCATICN FROM C090H-FC09H *
* :«
* PROM PART NUMBERS: *
* HIGH 899393-01-4C :«
* LOW 899903-92-2C * * *
* RELEASE 1.9 *
* COPYRIGHT MICRCPOLIS COFPORATION *
* OCTOBER 11 1977 *
* * **
*
** * REGISTER DEFINITIONS AN~ *
* FLAG E~UATES FOR MICROPOLIS *
* FLEXIBLE DISK CONTReLLER B *
********************************~,*******

* *
* BPROM
*
* JOe

* JOe

DISK
*

I·OU X "F409 '
DEfINITIONS GIVEN FOR STANDARD
ADDRISS OF F400R -- CONTROLLER
MAY ACTUALLY BE STRAPPED FOR
ANY lK BOUNDARY FROM C309E -Fe90R

EQU BPROM+X'0200'

* DATA REGISTERS
* FE02 VDATA EQU DIS[+1'02'

1602 RDATA EQU VDATA
* * STATUS REGIS~ERS
* F600 DSECTR rou DIS!
* 0-3 S ECTOR COUNT
* 4: SPARE
* 5 SPARE
* 6 SCTF. INTERRUPT FLAG
* 7 SECTOR FLAG
* * FLAG BITS
* 0040 SIFLG EOU X'40 '

9060 SFLG IOU X '80'
0920 DT~R EQU X '20'

* * f601 DSTAT EQU DIS{+l

F-2

Rev. 7 3/18

e080
'.a040
0020
eele
0e08
2004

F600

0060

0080

0010

000J

0086

Rev. 7 3/78

* 0-1 UNIT ADDRESS
* 2 UNIT SELECTED (lOW TRUE)
* 3 TRACK 0
* 4 WRITE PROTECT
* 5 DISK READT
* 6 P INTE
* 7 TRANSFER FLAG
*
* FLAG BITS
* TFLG EQU X'80 '
INTE EQU X'40 '
RtY EGU X '20'
'iPT EOU X '10'
TICe EOU X'08'
USLT EGU X '04'
*
*
* COMMAND REGISTER
*
DCM~t EOU DISK
*(ALSO WILL RESPOND TO DISK+l)
*

0-1
5-7

COM~AND MODIFIER
COMt'!AND

* CO~r--ANDS

* SLUN
* Sr'NT
*
* STEP
*
* WRITE
* RESET
* *
*

EOU X '20' SELECT UNIT
MOtIFIER CONTAINS UNIT ADDRESS
EOU X' 40' SET INTERRUPT
MODIFIER =1 ENABLE INTERRUPT

=0 DISABLE INTERRUPT
EOU X'6/2I' ST!:P CARRIAGE
MODIFIER =03 STEP OUT

=01 STEP IN
EQU X' 80' ENABLE W,R I TE
NO MODIFIER USED
Eeu X'A0' RESET CONTROLLER
NO MODIFIER USED

* DISK PARAMETERS
* SDLY EOU 15
* BYTeT EOU 134
*

STEP+SETTLE TIME
DIVIDED BT 2.6775
BYTCT /2

********************~******************

* *
* *

PROM-RESIDENT BOOTSTRAP * * **
* * BOOTSTRAP REQUIRES AT LEAST lK
* OF RAM MEMORY FROM 90H

F-3

00Ae

000e

~a 6:8 :r.3
006C 21A200
006F i9
0070 36C9
2072 CDA200
00?e EB
0076 2&A0e0
0079 2E00
0e7] £5
007C 011D00
007: 09
0080 E5
0081 El
0082 ZE1A
0084 09
0085 06BD
0087 E]
0088 3]
a089 3]
008A lA
308] 77

a08C II!

Rev. 7 3/78

* * RELOCATES FROM PROM INTO RAM THEN
* BOOTSTRAP LOADS SECTOR ZER0 OF
* TRACK ZERO INTO RA~ AND STARTS
* THE PP.CGRAM LOADED
* * SECTOR ZERa IS ORGANIZED AS
* FOLLOWS: * BYTES 0-1 HEADER
* BYTES 2-265 USEB PROGRAr. * BYTES 266-267 RAM AttRESS
* * BOOTSTRAP WILL READ SECTOR ZERO * I~TO RAM STARTING AT THE
* ADDRESS SPE~IFIED BY BYTES
* 266 & 267 AND WILL START * THE PROGRAK AT RAM ADDRESS +12

*
* * CTCRG E:U X'A0' CONTROLLER BASE

ADDRESS SAVEr HERE *

* * *
* RELOC

RE010

*

ORG CTORG-X'35' CTOFG+2-RLCLEN)

RELOCATOR -- ~OVES 300TSTRAP INTO
RAM AND STARTS BOOTSTRAp

DI
LX I
SPHL

B,CTORG+2

MVI ~.I'C9'
CALL CtORG+2
ICHG
LHLD CTORG
MV I L ,0
PUS l! H
LXI B,:BTDSPl
DAD]
PUSH
POP

E
H
C,BTDSP2
B
B,BTLEN

MVI
DAD
MVI
XCHG
DCI SP
DCI SP
LDAI D
MOV M,A

STUFF A RETURN IN
RAM AND CALL IT TO
DETERr.INE ADDRESS
OF CONTROLLE!!
SAVE RAr. ADrR
GET ADDRESS ~HICH
WAS PUSHED ON STAC
MS] IS CTLR ADDE
BUI LD MOVE LOOP
ADDRESS
STUFF ON STACK
ADJUST SP
BUMP HL TO START
OF BOOT CODE

ADJUST SP TO POINT
TO Ri010 ON STACK
~OVE BYTE FROM
PROM TO RAt':

* COMPARE MEMORY WITH A REG --
* IF DIFFERE~ THEN DESTINATION * RAM IS BAD OR IS PROM --
* REtOCATOR WItL LOOP IN ~OVE
* LOOP UNTIL SUCCESSFUL
* GaOl: r.OVE?

F-4

00Bt C0 RNZ NO-LOOP
00BE 23 INX H
0081 13 INX D
00ge 05 DCR !3 DONE?
0091 C0 RNZ NO-LOOP
009, I1 POP H YES-CLEAN UP STACK
0093 ,AA000 LHLD CTCRG BUILD CONTROLLER
0096 1100132 LX I 1', X'200' ADDRESS !ROM BASE
0099 19 DAD D
009A 22A200 SELD ~ADR AND SAVE
Z09t 36A0 MVI M. RES ET RESET CO~TROLLER
ee9F C3D400 J~P SL01~ AND GC START BOOT

*
001D BTtSPl EOU RE010-RELOC
0el}' BTDSP2 EOU *-RE010
003'7 RLCLEN EQU *-RELOC

* 00A2 BOOT Eeu *
00A, tArE DS 2
00A4 LDRST DS 2

*
* * ... READ 1 SECTOR ...
*
*
* B'""SECTOR
* C=BYTECOUNT /2
* DE=READ :BUFFER
*
* A,HL ARE DESTROYE~
*
* RETU1H~S Z=OK
* NZ=ERROR
* -
*

.
* WAIT FOR DESIRED SECTCR
* 00A6 2AA200 RtSEC LHLD DADR

e0A9 7E MOV A,~ WAIT SCTF FLAG
e0AA ESBe ANI SFLG
00AC CAA900 JZ RDSEC+3
00AF 7E MOV A,M OK-IS THIS THE
00130 ES0F ANI X'0F' DESIRED SCTR?
30]2 AB lEA B
00133 C2A900 JNZ RDSEC+3 NO-WAIT

* * FOUND DESIRED SECTOR GO READ
* 00136 23 INX H

*
* 00137 B6 RD005 ORA M WAIT FOR TRANSFER
* FLAG

00138 F2B700 JP RD005
* * TRANSFER FLAG SET-STRIP

,

F-5

Rev. 7 3/78

* SYNC BYTE
* 301313 23 I NX !1

00'BC 7E MOV A.~ READ SYNC BTT!
e0BD AF XRA A CLEAR CARRY
00'BE D XCHG
00'Bi 0600 MVI 'B.0 AND CHECKSUM
0eCl 00 NOP
30C2 era NO!»

(:

* READ LOOP
*

a0C~ 1A RD01e LDAX D READ FROr. DISK
00C4 77 MOV M.A MOVE TO BUfFER
00Ct 23 INX H NEIT LOC
a0C6 88 ADC B ADD TO CHECKSUM
00C7 47 f"!OV B.A AND SAVE
30ca lA LDAl D NEXT READ
30C9 77 MOV M.A -ETC-
e0 CA 2:3 INX H
00CB 89 ADC 13
0ecc 47 MOV B.A
~0CD 0D DCR C END OF DATA?
aeCl C2C300 JNZ RD01e NO-LOOP

*
* END CF DATA-READ CHECKSTIM
*

a~n)1 11 LDAI D
"0D2 18 CMP 13 COMPARE WITH
00D~ C9 RET COMPUTED CHECKSUM

* *
*
* * * * SELZCT DRIVE " *
* 00 D4 2AA2KH3 ~L010 LHLI: DADR SELECT DFIVE

0aD7 3620 ~VI M, SLUN
0eDS 23 INX H
20DA 7E MOV A,M
eeDB 2'B DCI H
00DC E624 ANI RDY+USLT CRECK SLTD So RDY
00DE EE20 XliI RDY WAIT UNTIL OK
00E0 C2D400 JNZ SL310 TO PROCEED

III
III VAIT 250 MSEC

00E3 "ESE MVI C ,94 FOR SECTOR CNTR
00IS CD4901 CALL TIMER TO SY tiC
00ES 23 SL020 INI a
0eE9 7E roov A.M READ STATUS AGAIN
"IitEA 2'B DCI H
00E'B E624 ANI RDY+USLT TO ENSURE STILL
00 ED EE20 I·RI RDY OK TO PRO C EED
00ir C2D400 JNZ SL310 NO-TRY AGAIN

Rev. 7 3/78 F-6

III

* RES'ICRE DRIVE TC TRACK :3
ICc

0012 23 CZERC INX t: READ STATUS
00I~ 7t !"OV A.M
20r4 Esa8 ANI Tr3 TRACK 01
eare 2B DCX Ii
22F7 CA0701 JZ CZZ30 ~O-PF.ESS ON

*
* IF ALREADY AT TRACK ZERC
~ STEP IN THEN BACK OUT
i.e TC ENSURE A GOOD POSITION
lie

00FA 060S ~VI 'B.8 STEP IN 5 TKS
20:'C 3661 CZ010 MVt ~ ,STEp·1 STEP IN
a0Fl al0!" ~vt C.SDlY DELAY SEE! +
0100 CD4S01 CALL T IMl'R SETTLE TIME
a10~· 05 cze20 DCR B
0104 C2FC30 JNZ CZ010 lOOP UNTIL IN

(::

3107 23 CZ03Z t NX Ii READ STATUS
012JS 7E MOV A.M TRACK 01
a109 Ieae ANI TI0
21e] 2B Del H
a10C C21901 JNZ RSZDO YES-PRESS ON
010F 36€0 MVI ~, STEP NO-STEP OUT
alll 0E0l' ~VI C.SDlY DILAY
011~ CD4901 CALL TIMER THEN TEST AGAIN
0116 C:!0701 J~P cza30

oCt

oCt READ THRCUGH SECTOR ZERO
lOr ONE TIME TO FIN: EAM ADDRESS
* TREN READ PROGRAM IN & START
* 0119 215rel

011C CD3701
0111 C2:D400
0122 2A6902
012:: 22A400
2128 CD3701
012:8 C2D400
012! 2AA42'0
0131 110C0e
0134 19
0135 n
2136 19

P.SZERO LXI H,BTBUF

* 0137 15 BZERe
21~8 tB
0139 018600
013C CDA6id0
013F E1
014e C23701
0143 E:
2144 7E
014~ 23
014£ :86

Rev. 7 3/78

CALL RZER0 READ seTR ZERO-
JNZ SL013 RESEEK II IiDR BAD
LBlD BTBUF+266 GET PGM ADDRESS
SHLD LtRST GO LOAD PG~
CALL RZEP.0
JNZ SLli:l1a
LHLD LDRST
LXI D, 12
DAD D
POP D
PCiiL

PU~E E
XCHG
lXI !LBYTCT
CALL RDSEC
POP H
J~Z RZ!R<a
pusa g
!'I:OV A,~
INI H
eRA ~

F-7

RESEEI IF HDR BAD
CO!,;PU'fE START
ADDRESS AND GO
START PlfOGRAM
(CTLR eRG STILL
ON STACK)

SAVE PAM ADDRESS
:CE(-ArDRISS

READ IN SECTOR 0

RETRY IF CKSUM ERR

CHECK HEADER

-. ..:--

APPENDIX G - "FEATURES" PROGRAM TO OPTIONALLY SHORTEN BASIC

M.BASIC contains features which are very useful during program
development but unnecessary when running debugged production
programs. It is possible to selectively delete some or all of these
features. When these features are removed the program buffer
(user's program space) is enlarged. Without removing them,the
program buffer begins at 5D86 (Hex) whereas when all the features
which can be removed are removed, the program buffer begins at 57~~.
This is the same place it did in version 3.~ of M.BASIC.

A special assembly languge program called FEATURES is supplied to
selectively remove features from BASIC. The three features which
can be removed are MERGE, RENUM, and EDIT. The procedure is as
follows:

1) Load BASIC fron an MOOS system diskette or from a BASIC-only
diskette. This must be BASIC version 4.~.

2) Type LINK "FEATURES" then depress (return).

3) The program will then begin by displaying:

BASIC V.S. 4.~ FEATURES PROGRAM

ENTER NUMBER OF DESIRED FUNCTION (CONTROL-C TO EXIT)

I-REMOVE MERGE·
2-REMOVE RENUM AND MERGE
3-REMOVE EDIT, RENUM AND MERGE

?
,

4) Select the desired function and enter its number. You have
only the 3 choices given. The program will begin executing
as soon as you touch one of the number keys. If you want to
return to BASIC rather than executing the program, depress
control-C (hold CTRL key down while depressing the letter C)
instead of one of the numbers.

5) When the selected features are removed, the system is
returned to BASIC automatically.

NOTE: If you run the FEATURES program using a disk whose BASIC is
already shortened and if you select any of the features which had
been removed, then the program will set the beginning of the program
buffer back to where it was originally, as if the feature had not
been removed, but the feature itself will not be added back on.
Thus, the program buffer will be shrunk, but you will not have the
feature. In short, be careful that you do not try to remove a
feature that has already been removed.

The shortened BASIC created by the FEATURES program may be saved ona
newly initialized diskette for use as a BASIC-only diskette. Follow

Rev. 8.1 2/5/79 G-l

the procedure in Appendix B before you exit from BASIC, in order to
do this.

The shortened BASIC can also be saved on your Personalized MDOS
System Diskette, or a copy of it. To do this, type the following
lines after BASIC's ~READY- prompt, with the desired system disk in
drive 0 (each line is followed by depressing return):

OPEN 1 -BASIC-:ATTRS(1)=0
SCRATCH -BASIC-
SAVE "BASIC· 16R1572, 16R5DFF
ATTRS(l}=16RF:CLOSE 1

Following the last line, your system diskette has a copy of the
shortened version of- BASIC, which will be used every time you enter
the command BASIC. You can use the DISKCOPY command in MDOS to copy
this sytem diskette.

If you do not save your shortened BASIC in one of these ways, then
since it only exists in the system's memory, it will be lost when
you turn the power off or return to MDOS. Until then, you can use
it for programming in BASIC.

G-2 Rev. 8.1 2/5/79

APPENDIX H - INTERFACING TO A CENTRONICS PRINTER

Centronics Printer

VEC"lUR GRAPHIC PR1Nl'ER INI'ERFACE

General

The Vector Graphic Printer Interface provides the means to connect a Centronics

line printer such as the 700 series of printers or equivalent to the Vector MZ

or other Vector Graphic microcomputers. 'Ihe interface is designed to utilize

the Vector Graphic Bit Streamer I/O board parallel ports via connection to one

input port and one output port.

The software driver program monitors the BUSY signal frem the printer and when

the printer is not BUSY (BUSY=O) the program may transfer a character of data at

which time the printer BUSY signal goes true thus holding off data transmission

until the printer is once again ready to accept data.

I/O :tORI' BIT ASSIGNMENTS

PORT 01 CXJ'.I'PUr

BIT 7 6 5

STROBE JlZ\TA DATA

6 5

PORT 01 INPOT

BIT

Rev. 8.1 2/5/79

4 3 2 1 0

~TA ~l\ mTA DATA DATA

4 3 2 1 0

H-1

IN'l'ERFACE PARI'S LIST

1 ea Serial I/O cable (Bit Streamer to Vector MZ backpanel.

1 ea Printer cable (Vector MZ backpane1 to printer)

1 ea 6 pin Mo1ex connector.

INSTALLATION INSTRUCI'IONS

CAUTION - Power must be off before proceeding with installation.

1. Bit Streamer I/O Board

a) Cut the circuit trace at J3-19.

b) Add a short jumper wire from J3-19 to J2-17.

c) Add the 6 pin lJb1ex connector on t:."'le circuit or back side

of the board as shown in Figure 1.

d) Install the Bit Streamer in a chassis slot near the back

panel of the computer chassis.

e) Plug in the 24 pin dip plug (part of the I/O cable) into J3 of

the Bit Streamer. If your computer does not have this cable

(Vector PIN Io-1327) one must be obtained.

2. Serial I/O Cable

a) Install the serial I/O cable in the Vector MZ with t..~e 25 pin

connector attached in an available cutout on the rear panel

and connect the 6 pm lJb1ex p1 ug to the 5i t Streamer as

shown in Figure 1. '!his now becomes the connector to use with

your terminal (Hazel tine, etc).

B-2 Rev. 8.1 2/5/79

CABLE WIRE LIsr AND DIAGRAM

VEC'roR HZ/CENTRONICS I/O CABLE

J1 J2 CENTRONICS CO~..PUTER
VEC'IDR HZ CEm'RCNICS SIGNN:. NAME SIGNAL NAME

6 11 Bt:lSY port 1)1 bit 0 IN
25 7 mTA 6 port 01 bit 5 OUT
24 6 I:lATA 5 port 01 bit 4 OUT
16 3 l'Jt\TA 2 port 01 bit 1 OUT
15 4 DA.TA 3 port 01 bit 2 OUT
17 2 l'Jt\TA 1 port 01 bit I) OUT
12 8 I:lATA 7 port 01 bit 6 OUT
14 5 I:lATA 4 port 01 bit 3 OUT
11 1 STROBE port 01 bit 7 OUT

7 16 GIOJND

J1 J2

D D 1 120" = -
"~

DB-25P Ampheno1 57-30360
or equiv.

Rev. 8.3-A 7/1/79 8-3

CABLE WIRE LIST AND DIAGRAM

SERIAL I/O CABLE

Jl
BIT STR.E'AMER

1
5
6

Jl

6 Pin f1:o1ex

J2
VECTOR MZ BACK PANEL

7
3
2

1 = 12"

H-4

SIGNAL N1>.ME

GROUND
TRANSMIT MTA
RECEIVE MTA

J2

DB-25S

Rev. 8.1 2/5/79

/

~ 11111111 11111111 11111111 ~ ~ \.i~
...J .. ~ ~~ 11111111 11111111 11111111

~ ~ 11\

1/1

~ :::(\u .
U ~

~ "
::)

8-
':tl " - - - - V --== ~-" - - - I:{) \.1. = -!I - - -'=l -1,1 - - -c::.. -t - - -~ - - -= - - ' .~--- -- -- -- - - -- - - -~ ..(

h h

Rev·. 8.1 2/5/79 B-5

APPENDIX I TROUBLE SHOOTING IF MDOS DOES NOT LOAD

This section is applicable the first time you attempt to load MDOS
using the Extended System Monitor a command.

1) If the disk drive select light does not go on in response
to command a, check the connection between the mainframe and the
console. If this is not the problem, then the system requires
attention by the dealer or by Vector Graphic.

2) If the MOOS has not signed on within 20 seconds, but the
disk drive select indicator light is still glowing, the bootstrap
ROM has been unable to read the loader into memory from the
diskette. Depress RESET. Check whether the correct diskette was
inserted in the correct drive, that it is inserted facing correctly
(label leftward or upward), and that it is fully inserted and fully
mounted (snapped into place). If not the problem, inspect the
diskette for obvious contamination or damage. Reload the diskette
and begin again with the Monitor a command.

3) If the system has not signed on but the unit select
indicator has extinguished, the loader may not have been able to
read the rest of the system into memory. The probable cause is a
malfunctioning memory chip. Use the Extended Systems Monitor
command N to test memory. (See the Extended Systems Monitor
manual.) If this test terminates at a value below ca33H (i.e. 48K),
it indicates malfunctioning memory: The ending address is the
loc~tion of the malfunction. If N reveals no problem, then try
command T, a more thorough memory test. Use the ending address
given by command N, less 1, as the second address in the command T
argument, and use 333a as the first address. To use an Extended
System Monitor command, depress RESET on the front panel of the
mainframe. Then enter the command you want, after the Mo~itor
prompt * appears.

4) If there is no problem with memory, the system requires
attention by a service representative.

Rev. 8.1 2/5/79 I-I

APPENDIX J GAMES AND DISPLAYS ON THE MOOS SYSTEM DISKETTE

STARTREKG, CIVILWAR, and LUNAR are games written in BASIC. Get into
BASIC, then enter:

PLOADG "<game name>" (return).

The games are self-explanatory, with the exception of STARTREKG.
STARTREKG uses the classic set of rules familiar to all computer
Startrek aficianados. For others, a little trial and error gets the
player going.

FINANCE is a BASIC program for computing various interest and
annuity problems. It is useful on a day-to-day basis for users
working with investment problems. Its operation is
self-explanatory. To start it, use the PLOADG command as with
games, above.

FLASH7 is a demonstration of the graphics capability of the
Flashwriter II board. Do not attempt to use it unless your system
uses this board, indicated by BO X 24 display on a video monitor or
Mindless Terminal. Also, it will not work if the system is set up
to run word-processing (i.e. it is a MEMORITE II system, or the Word
Management System character generator PROM's have been installed on
the Flashwriter II board.) It will only work if the system has the
graphics character generator PROM's Which are installed when MZ
systems are manufacturerd.

To use FLASH7, mount 'an MOOS System diskette in drive O. Get into
the MOOS command mode (usually done by depressing B (return) after
turning on or reseting the machine.) Then type FLASH7 (return).
The program will begin executing, showing off the many features of
the Flashwriter II board, including graphics, lack of glitches on
screen, multiple cursors, reverse video, and so on. The program
will execute indefinitely by repeating itself until halted by the
operator with the RESET botton. This program is an excellent demo
for dealers. (Dealers who want to demo Word Management System on
the same system must forego it, however.)

The operator may interact with FLASH7 (unlike the earlier FLASH6) in
various ways. First, touching the space bar at most times will
freeze the screen, for closer examination. Another space bar will
resume the demo. Second, the operator can cause the demo to jump
directly to any of several pOints within its cycle, if that
particular part of the demo is of special interest. This is
accomplished by pressing one of the following letters at almost any
time while the demo is operating:

letter part of demo letter part of demo

C Character Set B IntrodUCing System B
R Sphere L Higher Level Languages
G Gettysburg Address S Bubble Sort
D Darth Vader

Rev. B.4-A 7/26/79 J-l

I

J

APPENDIX K
ADDRESSES

CHANGING MICROPOLIS BOOTSTRAP ROM AND DISK I/O

The disk Bootstrap ROM and Disk Controller I/O addresses are
located in the 1K block from the base address D8~~ to DBFF.

The user may change this location by changing jumpers on the disk
controller board. If this is done, however, the B command in the
Extended Systems Monitor will no longer function, unless the new
base address is F4~~. If not, in place of B, the operator must use
the G command followed by the new base address.

No software changes are necessary. Disk I/O routines in the RES
module automatically find the disk controller and Bootstrap
addresses.

This is also true if the CP/M operating system is used. However,
the MEMORITE and Word Management System word processing software,
and the MZOS operating system, can only function with the disk
controller and Bootstrap block beginning at the normal D8~~
location.

Use the following procedure to change the location of the block:

1. Refer to figure K.1, locate the base address desired and
determine the jumpers required.

2. Referring to figure K.2, locate the address jumper
locations on the controller board. Vector Graphic ships the board
with jumpers WI and W4 installed.

3. Remove one or both of the installed jumpers and replace
with jumpers required for the desired address. Use short lengths of
wire, a 25-3~ watt soldering iron, and resin-core solder. To avoid
blowing LSI chips with static electricity, do not work in a carpeted
room. Touch the contacts on the board edge with one hand before
beginning to solder.

Rev. 8.1 2/5/79 K-1

STANDARD
ADDRESS

BASE ADDRESS
t---j

: CO: 00 - C3FF
I I

: C4 : 00 - C7FF
I I

: C8: 00 - CBFF
I I

: CC : 00 - CFFF
I I

: DO: 00 - D3FF
I I

: 04: 00 - D7FF
I I

: 08 : 00 - OBFF
I ,

: DC : 00 - OFFF
I I

: EO : 00 - E3FF
I I

: E4 : 00 - E7FF
t I

: E8 : 00 - EBFF
I I

: EC : 00 - EFFF
I I

: Fa: 00 - F3FF.
• I

! F4 : 00 - F7FF
t I

: Fa: 00 - FBFF
I I

: FC : 00 - FFFF
,----,

ADDRESS BIT
JUMPER

A15 A14 A13 A12 All Ala A9 A8
N/A Wl W2 W3 \.14 . N/~-

'1

1

1

1

1

1

1

1

1 a
o
a
a
a
o
a
a
1

1

1

1

a
a
a
a
1

1

a
a
o
a
1

a
o
1

1

a
o
1

o
o
1

1

a
o
1

a
1

o
1

a

o
1

o
1

a
1

a
1

a

o 0

a 0

o a
o 0

o 0

a 0

o 0

o a
a 0

a 0

o 0

o 0

o 0

o 0

a 0

o a

JUMPER INSTALLED
Wl W2 W3 W4

y

y

y

y

y

y

y

y

N

N

N

N

N

N

N

N

y

y

y

y

N

N

N

N

Y
y

Y

Y

N

N

N

N

y

y

N

N

Y

Y

N

N

Y

Y

N

N

Y

Y

N

N

y

N

Y

N

Y

N

Y

N

y

N

Y

N
v

N

Y

N

As an example. ff you wish to use base address F400 install jumper at W3.

Fi gure K.1 Control1erBase Address Jumper Confi gurations

K-2
Rev. 7

c

:;-."

~ • '.·N'"

.'. "'<>\-

,

.C2s

Address Jumpers

. ".:.-:; ..

{C 30)-

.. _, '-- .. -, ~ , .. .-'"' ',,,
. _, --"'~""'''''.-''''

;;;->0 CO~
;~

:~ A
. ~ ': .•. ~';

Figure K.2 Locating The Controller Address Jumpers

K-3
Rev. 7

APPENDIX L - CHANGING CLOCK RATE TO 2 MHz

To operate the system at 2 MHz speeds, a jumper must be removed from
the disk controller board, as follows:

1) Refer to figure L.l. Locate the ribbon cable edge connector
and the resistors R25, R6 and R7.

2) Between R25 and R6 is a jumper location, W9. Remove the
jumper there with a 25-30 watt soldering iron. To avoid
blowing LSI chips with static electricity, do not work in a
carpeted room. Touch the contacts on the board edge with one
hand before beginning to solder.

A jumper must then be added to the Z-80 board at location "A8.
Location 8A 8 will be found under the top row of chips, directly
under the third chip from the left, U3. If necessary, refer to the
figure found in the Z-80 Board User's Manual.

Rev. 8.1 2/5/79 L-l

!

vRl
:. :~:::.

,~ .,{"'.

) r
:~

J3

I I
1

. 1
c:::::z

..... "

,,' (C 29)

Figure L.1 Locatinq the controller processor speed jumper

L-2
Rev. 7

Speed Jumper

,...

APPENDIX M WRITING A CONSOLE PHYSICAL I/O ROUTINE

For users wishing to replace the console physical driver in the
Vector Graphic Extended Systems Monitor, this section describes the
console I/O requirements of the RES module.

Your version should be written in place of the routines in RES. I/O
found from lines 2250 to 2540. RES. I/O is the source code for the
I/O routines in the RES module. It will be found on your MOOS
System Diskettes. The listing is in Appendix E.

If there are any other routines to rewrite, such as printer
routines, do this before assembling RES.I/O. To assemble RES. I/O
refer to Appendix 0 where the procedures are explained.

1) Lines 720 - 750 in the @CIOABLE can be changed if required.

2) The logic~l input, output and break check routines (CIN,
COUT, and CBRK) should not have to be changed. They are
tailored to support all MOOS and BASIC requirements.

3) The console physical input routine (COIN) must have the
following characteristics:

a) It must return all registers except A & B unchanged.
b) It can use the A register (destroy it).
c) It must return an ASCII character including the parity bit

if any, in the B register.
d) It must return the carry flag clear (NC). The other

status flags can be in any state.

4) The console physical output routine (CDOUT) must hav~ the
following characteristics:

a) It must take an ASCII character in the B register.
b) It must return all. registers except A unchanged.
c) It can use the A register (destroy it).
d) It must return the carry flag clear (NC).
e) The other status flags can be in any state.

5) The console physical break check routine (CDBRK) must have
the following characteristics:

a) It must check the console input status port to determine
if a key has been pressed.

b) If no key has been pressed it must return all registers
except A unchanged and the zero flag clear (NZ).

c) If a key has been pressed it must return the byte, in the
B register. The A register can be used (destroyed). All
other registers must be unchanged. The zero flag must be
set (Z).

d) The status flags other than zero can be in any state.

6) It will probably not be necessary to change the Physcial

Rev. 8.l 2/5/79 M-l

Console Device Initialize routine (CDINIT).

M-2 Rev. 8.1 2/5/79

APPENDIX N - WRITING A PRINTER PHYSICAL I/O ROUTINE

This Appendix is used when you want to write a custom version of the
printer physical I/O routines in the RES module.

1) RES. I/O is an assembly language source code file found on the
MDOS System Diskettes. In order to rewrite any part of the
I/O routines in the RES module, rewrite the relevent portions
of this source file, using the Line Editor in MDOS. Note
that RES. I/O is not the source file for the entire RES
module, but only the I/O portion of it.

2) Write the your printer driver routine beginning at line 3470
in the RES. I/O. Make sure the contents of lines 3520-3540
are at the end of your routine. The first line must use the
label L0l, not LDOUT. Do not over-write the other printer
physical I/O routines in the Source code (only yours will be
assembled, as you will see.) The parts of the new routine
must have the following characteristics:

a) The character to be output is passed to the physical
output routine in the B register in ASCII.

b) The physical output routine can use (destroy) the A
register.

c) All registers except A must be returned unchanged.

d) Some print~rs can signal when paper is out, the motor is
off, or they are out of ribbon. The system supports
printers which can signal a PRINTER ATTENTION condition.
If the printer needs attention, the physical output
routine should return with the carry flag set (C). If
your printer does not support a printer atten~ion
condition, then always return with the carry clear (NC).
The other status flags can be returned in any state.
LDATN, the routine which handles printer attention, must
not qestroy any registers except A.

3) Lines 890-920 in the @LIOTABLE can be changed if desired.

4) The present contents of lines 3520 - 3540 must be at the end
of your routine, or it will not assemble.

5) Turn to Appendix 0 when you are ready to assembly and save
the new RES module.

Rev. 8.1 2/5/79 N-l

APPENDIX 0 - REASSEMBLING AND SAVING THE RES MODULE

Follow the procedure in this appendix after you have modified the
RES. I/O source code using the Line Editor in MDOS. When you are
done with this appendix. the RES module program will be modified on
your MDOS System Diskette, and ready to use.

1) Mount Personalized MDOS System Diskette in Drive O.

2) In MDOS, enter ZSM "RES.I/O" "CRES" "E" (return).

3) Four questions will appear on the screen one after the other.
Your answers to these questions tell the assembler which
printer driver to include in the assembled code. Your
choices will be a standard Diablo protocol driver. a standard
Centronics protocol driver, a standard Decwriter and Teletype
protocol driver, or a driver you have written yours~lf
according to the instructions in Appendix N. As each
question appears, depress a 0 if you do not want that driver,
or a 1 if you do. Answer 1 to only one of the questions, and
o to the other three. If you did not write your own and are
not sure which of the three standard drivers you need, review
section 2.2 in Chapter 2 which includes examples of the
different types of printers •

. 4) After the fourth question, another question will appear on
the screen, asking "Bitstreamer base address?" The answer to
this question is 0 if the Bitstreamer board is jumpered to
respond to port #' sO, 1, 2. and 3, and it is 4 if the
Bitstreamer board is jumpered to respond to port l's-4, 5, 6,
and 7. Generally, the former is the case if you are using a
serial terminal such as a Hazeltine, and the latter is the
case if you are using a Flashwriter board to interface a
memory-mapped terminal such as Vector Graphic's Mindless
Terminal or a memory-mapped video monitor such as a Hitac~i.
(If for some reason you have chosen to jumper the Bitstreamer
board for a different set of port Its, then respond with the
lowest H of the set you are using.)

5) After the last question, the object code will be assembled.
At the end of the as s emb ly , the message "END = XXXX" will
appear. This value must be under 0700. If it is not, then
the routines you have written are too long, and must be
shortened.

6) At this point, with the code successfully assembled, the new
I/O portion of the RES module is on disk as a temporary file
called "CRES" but not yet overlayed over the entire RES
module on the system diskette. To do this, enter TYPE "CRES"
C £return), and then CRES Jreturn~. Finally, type SCRATCH
lie ES" (return) to clear t is work ile from the disk.

7) The complete RES module with all changes is now in memory,
but not yet stored on disk. Debug it now. Proceed when it

Rev. 8.3-A 7/1/79 0-1

is finalized.

8) To save the new RES module, follow the instructions in
Section 2.2.0 of this manual.

10) NOTE: Do not overlay one of the pre-written printer drivers
as instructed in Chapter 2. sections 2.2.1 and 2.2.2. Steps 3
and 4 above already installed the correct driver.

0-2 Rev. 8.3-A 7/1/79

APPENDIX P - MAP OF I/O PORTS

On the following page you will find a chart which lists all the I/O
ports that an 8080 or Z80 can address, in hexadecimal notation. An
I/O port is accessed when the processor executes an IN xx or OUT xx
instruction, where xx is the one of the port numbers in the chart.
The port number will appear on the lower half of the address bus
instead of a memory address, and either SINP or SOUT will be active
high which tells memory NOT to react and tells I/O devices that it
is their turn. Each I/O device and board has gating circuitry which
detects when its own port number is on the bus. Usually, I/O
devices have dip-switches or jumper pads with which you can assign
any port number.

Next to some of the ports, you will fi~d the names of commonly used
boards which respond to those port numbers. Some of these boards
are Vector Graphic's and some are not. In the case of the Vector
Graphic boards, most of them can be assigned ANY port number, either
by dip-switch or jumper. The numbers show~ for these boards are
those that Vector Graphic software expects. Use this information to
avoid present and future conflict when you are assigning port
numbers to hardware. You can also use this sheet as a worksheet if
you are assigning a number of ports.

Rev. 8.3-A 7/1/79 P-1

MAP OF PORTS

00 V.G. Fla.sh· V.G. 40 V.G. 16K oanK select: i~~ !~~ 01 Writers Bit- 41
rO:l Streamer 42 82 C2
03 V.G. I 43 83 C3
04 Bit· Alternate 44 84 C4
05 Streamer Bit· 45 85 C5
g~ I.I Streamer 46 86 C6

!I 47 87 IC2
08 48 88 C8 VOM (not V.G.)
09 49 89 I~':I
OA 4A SA CA
OB 4B 88 CB .
OC 4C 8C CC
00 40 80 CD
OE 4E aE CE
OF 41 8F CF
IllY AD SO 90 DO
11 A1 51 91 01
12 A2 0+7A Board 52 92 02
13 A3 (cot V .G.) S3 93 03
14 AI+ 54 94 D4
15 AS 55 95 OS
16 AD

,
56 96 06

17 A7 57 97 07
IHS 58 98 08
19 59 99 D9
1A SA 9A DA
1.8 5B 9B DB
1C 5C 9C DC
10 50 9D DO
lE On/Off D&%zler ISE 9E DE
1 F Mode (Not! V.G.) SF 9F OF

140 60 AO EO
21 ~i Al E1
22 '. A2 E2
23 63 A3 E3
24 ~~ 1A4 E4
2S AS ES
26 ~~ A6 E6
27 A7 E7
28 168 AS EB
29 169 A9 E9
2A 6A ~ EA
28 6B EB
2C 16C Stacua 'l'arbell AC· Ee
2D 6D Daca Ta.pe AD ED
2E ~E Stat:ua (Not V.G.) As: EE
2F 61 DaCa AF EF -30 illJ BO FO
31 ~i 81 11
32 B2 12
33 ~l B3 F3
34 54 F4
35 ~~ 85 FS
36 B6 F5 V.G.
37 ~~ B7 F7 Jovst:ick
48 B8 11.'1:1 !aroel.l
39 19 159 li'9 Disk
3A 7A SA FA (not V .G.)
.38 ~~ SB Fa
3C BC I~ 3D 7D BD
3E I~; ".G. Vl.C1eO lJl.gl.cl.zer BE l;1:. Lmsal. Memorv (no tV. G.
13F BF u: rronr: oanel (not: V.G.

P-2 Rev. 8.3-A 7/1/79

APPENDIX Q - MEMORY DIAGNOSTICS

MDIAG

If you have some reason to suspect that the computer's main memory
is malfunctioning, use the Memory Diagnostic program on the MDOS
System Diskette. Simply turn the system on, mount the system
diskette in drive 0 (the right-hand drive), type B following the
Monitor prompt (*), type MDLAG following the MDOS prompt (», then
depress the RETURN key. The program will load into the scratch-pad
area of memory (not part of main memory) and execute.

MDLAG tests the contiguous memory beginning at 0000. There are
actually two tests going on at the same time. Each repetition
("passU) of the program fills the next 8K block of memory wi th
random numbers, and then tests it for changes. At the same time, it
also fills all of memory with a certain fill code, and then tests
all of it for changes. A display appears showing the result of each
repetition. The program waits a certain "delay time" after filling
before it tests memory. After all 8K blocks of main memory have
been tested, the delay time is increased, and the program repeats
beginning with 0000.

The display shows for each repetition the TOP OF MEMORY (the lowest
address which is not in main memory), ACTIVE BLOCK (the first
address of the 8K block currently subject to the random number
test), the PASS NUMBER (incremented after each repetition), the FILL
CODE (the code used to fill all of main memory as the second part of
the test), the DELAY TIME currently being used, the number of ERRORS
READ, and an ERROR DUMP showing the last 10 errors encountered,
giving the address which malfunctioned, the code written, and the
code read.

MDIAG will run indefinitely, with ever increasing delay times, if
allowed to. It is used at the factory to burn the systems in for
long periods of time. To stop it, depress the RESET key.

Monitor T Command

The T memory test is part of the Extended Systems Monitor PROM which
comes in the system. To activate it, depress the RESET key, then
type T, followed by the beginning address (in hex) of the block you
want to test, then the ending address of the block. For example, to
test the 48K of main memory, type T 0000 BFFF. The program will
begin executing immediately.

The program stores random numbers into memory, then tests to see if
any have changed. If memory is perfect, you will see nothing on the
screen. However, if anything changes, the program displays the
address, the code written, and the code read back. Then it
continues testing. It will go on until stopped by depressing the
RESET key.

Comparing with MDLAG, the strengths of the "T" test are 1) it allows

Rev. 8.3-A 7/1/79 Q-l

you Co eese poreions of memory which are not contiguous beginning at
0000, for example an 8K block from EOOO co Frrr, or ehe screen
memory, normally from 0000 Co 07F:; 2) ie displays ALL the errors,
rather chan the lase la, allowing you to pinpoint all malfunctioning
locaeions, and 3) you can use it withoue .disk. drives, if needed.

The weaknesses are 1) it may not show up errors produced by dynamic
memory over a delay time longer than T uses, whereas MDIAG increases
ehe delay time to long enough ineervals; and 2) you must know the
ending address of memory. MDIAG is considered the better test for
dynamic memories, which are used in the standard Vector Graphic
systems.

~~nitor N command

N is a non-destructive memory test. To activate it, depress the
USE'! key I then type N. It will make only one pass through memory,
temporarily storing-each byte, testing whether 00 and FF can be
store~ and recalled correctly, and then replacing the original
contenes. It does this tmell an error is found, whereupon it prines
the address, the code written, and the code recalled, and then
returns to the ~...onitor executive.

!his program is tllOS t useful for deter.:aining how much iD&in memory a
given system has, because if no errors are found, it will print out
the fi:se address of ROM memory which is above main memory. 'rhe ~
tese is noe nearly as thorough as eieher the T test or MDIAG, and ie
only reporcs the first error found. However, it allows you to test
memory without destrOying any. of the contents, unlL~a the ·oehers.

MA.? is a utility which tells you whether R..J\.l.'l. ROM or no memory at
all, is ae each address in the syseem. This includes all special
purpose memory such as video boards, scraech-pad, and so on. Use
MA? if you are noe sure what is in the system. If ehe syseem is
seandard, chen the resule should be the same as ehe map in Figure
1.2 (Chapter 1), with the PROMs appropriate for your configuration.

To run ~.A.P, simply tu:.r:l ehe system on, mount the system diskett:e in
drive a (the right-hand drive), type B following the ~~nitor prom~e
(*'), type ~ following che MOOS pro~t (», the depress J;he RETUR.N
k.ey •.. The p=og:::n will load and execUee. The resulca.nt dis-play is a··
matrix of memory that is fairly self-~lanatory. You only have to
know that the addresses increase from left co right in bloCks of 100
Hex (256 bytes). You can run ~~ witn RAM holding data or program
without losing anything; ie is a non-destructive test, except for
the area ie uses itself, which is the scratch.oad area beginning
from oeoo to DOFF. .

Q-Z Rev. 8.3-A 7/1/79

.

