varian data machines /a varian subsidiary

VARIAN
MICROPROGRAMMING
GUIDE

VARIAN MICROPROGRAMMING

GUIDE

varian data machines

Specifications are subject to change without notice. Address comments regarding this document to
Varian Data Machines, Publications Department, 2722 Michelson Drive, lrvine, California, 92664.

varian data machines / a varian subsidiary
2722 michelson drive / p.o. box e / irvine / california / 92664

© 1975 printed in USA

PR

_—@ varian data machines

98 A 9906 074
JULY 1975

varian data machines

PREFACE

Preface (about the guide itself - prerequisites, its organiza-
tion and why).

Microprograms are aptly called firmware to place them
between the realms of software and hardware. Where those
two conventional divisions of a computer overlap is an area
which provides many of the best features of both. The use
and benefits of microprogramming depend upon the user
having an understanding of both and their complex
interaction.

The reader of this guide should have some knowledge of
the hardware components of a computer system, such as
the functions and uses of registers, schemes of handling
interrupts etc. Programming techniques which make
efficient assembly-language functions like indexing and
high-speed algorithms will be useful here too. When a
microprogram is executed thousands of times more often
than any one application program, its fine tuning is also
needed that many more times. Also the microprogrammer
should know the problem-oriented languages used. To
choose which operators to microprogram, the designer
must be aware of the eventual applications. Combining
operators which are often used in the same sequence could
form a single microprogrammed operator with a greater
overlapping of actions.

All components of a computer system seem to be
increasingly complex yet easier and easier to use. Though
microprogramming adds more complexity the result is to
make a system easier to use. One goal of this guide is to
bring microprogramming into the range ot a good program-
mer. To that end the guide is written in simple language
(with a minimum of exotic terms and a glossary to look up
any of those) and a gradual progression from the big
picture to the details through numerous examples. The
examples are annotated and explained with the same tools
that will aid in the planning as well as understanding.

This guide is both an introduction and a reference. If
microprogramming is new to you, start at the beginning of
this guide and use it as a tutorial. Later the book can be
used for reference. The charts and examples are built up in
a logical development so that the complete examples will be
a pattern for your programming.

Varian Data Machines does not assume responsibility for
microprograms written and implemented according to the
recommendations outlined herein.

To improve the usefulness of this guide please return the
reader questionaire in the back after reading and using
this volume.

Related Documentation

The Writable Control Store manual (98 A 9906 08x)
provides information about the installation, theory of
operation, maintenance and test programs for the hard-
ware storage of microprograms.

Information about the Varian 70 series processor is
contained in the applicable system handbook and in more
detail in the Processor Manual (98 A 9906 02x). The
VORTEX Reference Manual (98 A 9952 10x) decribes the
use of the VORTEX operating system. The MOS (Master
Operating System) Reference Manual (98 A 9952 09x)
provides similar information necessary to use micropro-
gramming software with that operating system. (The x at
the end of each document part number is the revision
number and can be any digit 0 through 9.).

The following Varian manuals provide additional aids to the
understanding of Varian Computer Systems.

Title Document Number

72 System Handbook
73 System Handbook
74 System Handbook
Core Memory Manual
Semiconductor Memory Manual
Option Board Manual
Power Supply Manual

98 A 9906 20x
98 A 9906 01x
98 A 9906 21x
98 A 9906 03x
98 A 9906 04x
98 A 9906 05x
98 A 9906 06x

—

_@ varian data machines

TABLE OF CONTENTS

PREFAGE oot e it
SECTION 1
INTRODUCTION
1.1 ADVANTAGES ..ottt e st e et et e s e esaaa s s r e e e s e e s e s eeb et n e e b et 1-1
1.2 GUIDE TO THIS MANUAL......oovioiiiitiree ettt e 1-2
1.3 NOTATION IN THIS MANUAL oottt 1.2
1.8 COMPONENTS .ottt st et e s e e s st e b e tae e s e e e b b e s e s e ek b s et ae s 1-3
1.4.1 Hardware for Microprogrammed Systems .. 1.3
1.4.2 Writable Control SEOre ... e 1-6
1.4.3 SOMWAre MOAUIBSccuiimimiieieemmemisni s 1-8
SECTION 2
CAPABILITIES
2.1 GENERAL MICROINSTRUCTIONS. ..ottt s 21
2.2 DATA TRANSFER AND
TRANSFORMATION ...ooitiioteieeteeteent e eeeseee e s sba s ee e s b s e e s s e e s st 22
2.2.1 ALU Input Sources .. 22
222 ALU FUNCHIONS c.viivi ettt ettt r e s b s et 2-8
2.2.3 ALU Output Destinations.........coviiiieiee i 2-11

2.2.4 Other Registers
2.3 ADDRESSING
2.3.1 GENEIAL ..o bR e e s
2.3.2 NOrmMal AdAreSSING.......ccoimtiiriiiiaieiiiiiit e sa st
2.3.3 Field Selection AdAreSSiNg.........cccoiiiimimniri et 2-13
2.3.4 Test Addressing
2341 CONAITIONS oottt cie et e et etr e ee e s a s s r s e e

2.3.4.2 Addresses in BrancChes 217
2.3.5 Page Jump Addressing
2.3.6 Interrupt Addressing

2.4 MAIN MEMORY CONTROL......ccooiiiiieiiiiiiiiteiiciere et 2-17
2.4.1 Unconditional Cycle INFHationcccooiiiiiii 2-18
2.4.2 Conditional Cycle INItIation 2-20
2.4.3 Special Transfer .. 2-20
2.4.4 Wait for Memory DONE.........coociiiiiiiiiitiiie e e 2-20
2.5 MICROPROGRAMMING EXAMPLEcccooiiiiiiiiiiinii st 2-20

2.6 TIMING CONSIDERATIONS
2.7 ADDITIONAL CAPABILITIES

2.7.1 Register Field COontrol. ... -
2.7.2 Memory Addressing t0 64K 2-27
2.7.3 Memory Bus Lockout Status ... 2-27

2.7.4 Stack Use
2.7.5 Memory Addressing Using the

Optional Memory Map ..ot 2-:29

2.7.6 Memory ProteCtioncooceiiiiiiiiiiiiiee et e 2-29

2.7.7 Address Comparator LOGICcocoooriiiiiiiiiee 2-29
2.8 QUESTIONS ABOUT

MICROPROGRAMMING CAPABILITIES.......cooiiiiieiere e 2-30

varian data machines @ﬁ

SECTION 3
TECHNIQUES
3.1 INTERFACE WITH 620 EMULATION.......oeooviieeeeitceceeeeeeeeeeeeeee e eess e 31
3.1.1 Execution of User MiCrOPrograms............c.oue.mueureoeoeoineieeeercreeeeeeeeeseveeeseevesesseseeon 31
3.1.2 Steps in INSTruCtion EXECULIONovovivmieeireeeecee e ee v e, 31

3.1.3 INSrUCHION PIPEIINEovveeiriceeieeteeceeecetee oot e e st e,
3.1.4 ROM Standard States
3.1.5 Summary of Branches Between WCS and

ROM Control Store...........
3.1.6 Varian 73 Register Usage
3.2 FLOW DIAGRAM.......coiititieeiieeeeeeeee ettt s e ee et enes e e s et
321 RAIONGIE............coeieiceiiete et r et
B.2.2 FOMMAt ..ottt et et
3.3 FLOW DIAGRAM MNEMONICS
3.4 FLOW DIAGRAM EXAMPLES ..ottt oot eeees oo
3.4.1 BCS Entry Point Initialization.....
3.42 Memory-to-Memory Block Move
3.4.3 Reentrant Subroutine Call and Return
3.44 64K-Memory ADD to any of the

General-Purpose REGISTErScoucuiueeieeieieieeee e ee e -
3.4.5 Cyclic Redundancy Check (CRC) Generation

SECTION 4
MICROPROGRAM DATA ASSEMBLER, MIDAS

A1 BASIC ELEMENTS ..ottt ettt e en st en e ee et e s e e e s e ee e
4.2 GENERAL FORM OF STATEMENTS
4.3 STATEMENT DEFINITIONS ..ottt et e e en s
4.3.1 Format Statement.....

4.3.2 Program Statement
4.3.3 ASSEMDIEr DIr€CHIVESccccvivivieieiiititciit ettt ee e s ee et et e seres oo
434 COMMENT........oiiiiicrec ettt et et nteeenense et e e s esseens

4.6.1 VORTEX ENVIFONMENT ...ooiivieiaieieceitce ittt oo et et e e e eeeses e
4.6.2 MOS ENVIrONMENTooiiiiiiiiiieeecce et e te e oo eeeeees e e

_@] varian data machines

SECTION 5

CODING FROM FLOW DIAGRAMS

5.1 GENERAL. oot oeoeeee oo eteaesese e esae b s s ea b e ea e e e b e s s H R 51
52 EXAMPLES OF MICROPROGRAMS IN

ASSEMBLY LANGUAGE
5.2.1 BCS Entry Point Initialization
5.2.2 Memory-to-Memory Block Move
5.2.3 Reentrant Subroutine Call and Return ... 512
5.2.4 64K Add to General-Purpose Register
5.2.5 Cyclic Redundancy Check Generation

SECTION 6

MICROPROGRAM SIMULATOR, MICSIM
6.1 BASIC ELEMENTS ...oooiiiieieteterseecmciesereacie st et b e as st s e 61
6.2 GENERAL FORM OF STATEMENTS ..cooriiiiiiitiimmitem et 61
6.3 STATEMENT DEFINITIONS
6.3.1 Select INput Media (M) ..o
6.3.2 Initialize SIMUIAtor (1 OF Z)..ocioiiiieiiieine e
6.3.3 Page Select (P)............ .
6.3.4 Load CoNtrol SEOre (L).....coocoeiioeerieeireieeeinienmnimseir s
6.3.5 Alter/Display Simulator Registers (A) .
6.3.6 Change/Display Memory (C) ..o 5
6.3.7 Change/Display CCS Word (EC)
6.3.8 Change/Display DCS Word (ED)
6.3.9 Begin Simulated EXCUtON (B) ..o
6.3.10 CCS AdAress Halt (H)...covooeireimercniimermieice s
6.3.11 Single Microinstruction Step (S) ...t
6.3.12 TrACE (T).eiutrroeeetetem et eeei st et st e e
6.3.13 Dump Contents of CCS (D)
6.3.14 Exit t0 MOS 0r VORTEX (R) trooiit ot
6.4 OPERATING INSTRUCTIONScooiiiiitiieieiieie e em et
6.4.1 Program Loading

6.4.2 Initial Condition SeIeCtionccoiioiiiiiiiiie e
6.4.3 Loading Simulator Central Control Store

(CCS) and Decoder Control Store (DCS) ... 6-8
6.4.4 Other Control (As ReqUIred)cccoiiiiimiiiiii s 6-9
6.5 PROGRAM EXECUTION

6.6 AFTER SIMULATION coooovooeeoeeeeeeeete oo e oo eemsnnssenssse st meenc s
6.6.1 CONtrol STOre DUMP . ..ccoiiriiiii et
6.6.2 Initialization

6.6.3 REWUIN 10 MOS, VORTEX oo ieooooeioeerooeeeoasesssnmasssssseessessssaesssseaseeneemssnssnss s sssssesenes 69
6.7 620 EMULATION .
6.8 MAIN MEMORY SIMULATION .ooooooiioviioieerieeereesieeseeisessmeessssassnssss s
6.9 SIMULATOR ERROR MESSAGES..........ooiveerueririseiesseesesceesiesaenssenamnsssesssssssssssaresees :
6.10 EXAMPLE OF SIMULATOR OUTPUT

vi

varian data machines @T

SECTION 7

MICROPROGRAM UTILITY PROGRAM, MIUTIL
7.1 BASIC ELEMENTS

7:3.1 SeleCt PARE (P).eovvvvvcuvurmeeiiiccccrinenneeeneeeneeeeeeeeeooeeee e oo -
7.3.2 Load Control Store (L)

7.3.3 Examine/Change Control Store (E)
7.3.4 Dump Control Store (D).............
7.3.5 Return to Operating System (R)
7.3.6 Media Set and Reset (M)cccoooormirmimvoooecooeeoeoeeoeeeeeoooeoeooooooooooo .
7.3.7 Enabie Control Store (N)
7.3.8 Trace EXCULION (T)........oiioomiomneneeeroeenniieeeeeeeeeeeeeooeseseeeeeoeeo oo -
7.3.9 '

7.3.10
7.3.11
7.3.12
7.3.13

7.4.1 Program Loading
742 PrOGram EXECUtIONcc..cccccccocermmmmmmeerrroreeeoeeseoeeeeeeeoosoo oo -

SECTION 8
DECODER CONTROL STORE, 1/0 CONTROL AND
ADDITIONAL TOPICS

8.1 DECODER CONTROL STORE
8.2 1/0 CONTROL STORE.........ooorevececerereseeseoeoeereoeeeeeemreeeeee oo -
8.2.1 Microprogram Initiation ...
8.2.2 1/0 Microprogramming
8.2.3 Example of 170 Microprogram:

Clear and Input t0 A...cooooovvoiioieoeooe
8.3 MULTIPLE ENVIRONMENT APPLICATIONS

SECTION 9

| GLOSSARY
MICROPROGRAMMING GUIDE GLOSSARY /INDEX......cvvoroemocoeeoeeeoeeeeeeoeooeooeoooo 9-1

vii

Figure 1-1.

Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Figure 2-1.
Figure 2-1.
Figure 2-1.
Figure 2-2.

Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.

Figure 3-8.
Figure 3-8.
Figure 3-8.
Figure 4-1.
Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-3.
Figure 6-3.
Figure 6-3.
Figure 6-3.

— varian data machines

Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-7.
Figure 3-7.

Figure 3-7.

Figure 3-8.

LIST OF ILLUSTRATIONS

Simplified Comparison of a Microprogrammed
and a Conventional Computer

Varian 73 Processor BIOCK Diagramciiiiiiminiiiinenin e 1-4
Varian 73 Processor Data Paths........cccoooiiii e 1.5
Writable Control Store Block Diagram 1-7
Steps for Realizing MICrOProgramscccueiiiiiiiimimassss s 1-8

Microinstruction Fields (1 OF 3) ..o
Microinstruction Fields (2 0f 3) ..o
Microinstruction Fields (3 of 3)..
General-Purpose Registers, Operand Register

ANd ALU INPUL L.t
Field Selection Address Contribution
Coding Example of an Operand-Store Sequencec.coooeiiinn 2-19
Flowchart for LDA INStructionccooiieiimiininiiecc e 2-23
Fiow Diagram of LDA Instruction ... 2:24
Flowchart of Memory Address Control ... 2-:27
MemOry BUS LOCKOUL.....c.cueuiiiiieciticmm i -
Sample Flow Diagram Form
Flow Diagram for BCS Entry Point Initialization.............oooiiiinnn 39
Flow Diagram for Memory-to-Memory Block Move ... 310
Flow Diagram for Subroutine Call

Flow Diagram for Subroutine Return...........cs 313
ADD from 64K-Memory to General-Purpose Register..............coovi 314
Flowchart for Cyclic Redundancy Check Generation

Microprogram (1 of 4) ... 3-18
Flowchart for Cyclic Redundancy Check Generation

MICroprogram (2 Of 4) ..o 319
Flowchart for Cyclic Redundancy Check Generation

MiIcroprogram (3 Of 4) ..o 3:20
Flowchart for Cyclic Redundancy Check Generation

MICrOProgram (4 Of 4)cooiiiiiiiiiiiiiiit s 321
Flow Diagram of CRC Generation (1 of 4).....ccoooneiiiiiines 3-22
Flow Diagram of CRC Generation (2 of 4)....cccieiiiiin 3.23
Flow Diagram of CRC Generation (3 of 4) ..o 324
Flow Diagram of CRC Generation (4 of 4)...ccooiiiiniiii 3-25
Predefined Formats Recognized by MIDAS. ... 4.3
Microsimulator Control Flow.
Microsimulator Data FIOW ...
Simulator Output Format......ccoooiiii
Simulator Qutput Format (continued)...........coccooviiiiiiniiii

Simulator Output Format (continued)
Simulator Output Format (continued)
Simulator Output Format (continued)

vill

varian data machines -

Figure 6-3.
Figure 6-3.
Figure 6-3.
Figure 6-3.
Figure 6-3.
Figure 6-3.
Figure 6-3.
Figure 8-1.
Figure 8-2.
Figure 8-3.
Figure 8-4.
Figure 8-5.
Figure 8-5.

Table 2-1.
Table 2-2.
Table 2-3.
Table 2-4.
Table 2-5.
Table 2-6.
Table 2-7.
Table 2-8.
Table 2-9.

Table 3-1.
Table 3-1.
Table 3-1.
Table 5-1.
Table 5-1.
Table 5-1.
Table 5-1.
Table 5-2.
Table 5-2.
Table 6-1.
Table 6-1.
Table 7-1.
Table 8-1.

LIST OF ILLUSTRATIONS (continued)

Simulator Output Format (continued)...............coooovveevoomoomeeeeooeeooooooo 6 lo
Simulator Output Format (continued)
Simulator Output Format (continued)
Simulator Output Format (continued)
Simulator Output Format (continued)
Simulator Output Format (continued)
Simulator Output Format (continued)....
Decoder Control Store FOrMat............ccooomoeoveeveemomseosooeoeeoooeooeoooeoeooo
Decoder Address COMPONENTSovueveevreerooe oo
170 Microinstruction Format

LIST OF TABLES

ALU Input A Bus Selections
ALU Input B Bus Selections
ALU Operations

Carry Flag Settings
ALU Output Data Destinationco...oooveooveoeeeomooo 2-11
Operand Register Shift Operations 2:12

Mnemonics for Microprogramming Flow Diagrams

Mnemonics for Microprogramming Flow Diagrams (continued) 36
Mnemonics for Microprogramming Flow Diagrams (continued) 37
Conversion Table............cooiuuivuecmereeeeeeeeeeeooooo

Conversion Table (continued)
Conversion Table (continued) ... ;
Conversion Table (continued)coooecomooomio
User-Defined OPCOAESoveuceeeeeorreerseeeeeee oo oo

Summary of Microprogram Simulator Directives (continued) 6-2
Summary of Utility Directives........ocoo.ooovoovovoooo

170 Microprogram Example Code

———

varian data machines

SECTION 1
INTRODUCTION

Most of this book discusses how to microprogram. As an
incentive to read further, here are some general reasons
why to microprogram. The advantages of microprogram-
ming are based upon a comparison with a conventional
system either completely without microprogramming or
where it is not accessible (figure 1-1). After a brief summary
of the advantages a comparison with a conventional system
gives more details and a specific picture of a micropro-
grammed operation.

1.1 ADVANTAGES

A basic reason to microprogram is the one stated at first.
The initial idea was proposed for a "'systematic" approach
to the " usual somewhat ad hoc procedure” used to design
the control system of a machine. The narrow view in the
design of either software or hardware without an
awareness of the other can lead to a less efficent
functioning, like a refrigerator converted into a vacuum
cleaner -- there may be some common useful parts but we
would push around a great deal that did not help the
vacuuming. Good basic operators which match the eventual
application will improve the entire efficiency.

The usual random logic can be reduced with a more
structured organization. A conventional computer system
uses a collection of counters, special flip-flops, decoding
networks and other components unique to a particular
purpose for control logic. In contrast a microprogrammed
memory replaces most of this. The microprogram storage
is formed of regular and repetitive units. There are fewer
components thus increasing the reliability of the system.

The flexibility of the instructions in the control store offers
the ability to change the system in ways so basic that they
are not at all feasible in a fixed instruction set. Field
changes can be made by merely changing the controliing
microprograms. Final systems definition can be postponed
until a later stage of the design. Performance can be
economically expanded at a lower cost.

Emulation of a number of diverse devices, not only
processors but peripheral controllers for instance, can be
carried out on a single microprogrammed system.
Simultaneous emulation of some devices can be made or
the target system can be changed depending upon needs.
This would save some reprogramming and retraining and
yet gain the speed and reliability of a more advanced
system. Also the documentation and minor logistic
problems of a new machine would be avoided.

For more reliability and the continuous performance
necessary in many uses of computers, diagnostics and
servicing aids may be implemented in the control store. To
pinpoint problems the microprocessor can both test and

set states not available to the assembly-language program.
mer on a conventional machine.

4
Standard
Software
Execution , Coding
Time
MICRO-
PROGRAMS
Special
Purpose
Hardware
L
Cost
N

Instructions Tailored To Particular Environments

In general, microprogrammed instructions permit more
compact program representation. They use less main
memory than the equivalent would in conventional code.
Consequently, fewer memory fetches for anything other
than data are needed.

As an example of a possible microprogrammed operator
which reduces memory fetches, consider a common use of
arrays. Higher-level programming languages, such as
FORTRAN, BASIC, COBOL -- in fact, nearly all-- have
facilities for expressing a repetitive linear data structure, a
list or array. Arrays are an integral part of a large class of
techniques for diverse problems. Yet good operators for
arrays as such are not available as simple, single
instructions in a conventional machine.

In usual machine code the function of adding two
numerical arrays of the same size and number of elements
usually requires a series of actions as follows for each pair
of elements:

a. load memory to register

b. add memory to register

c. storeregister result in memory

d. update indices and close loop

The first two steps would each require a memory fetch and
the last step as many as three memory fetches.

A microprogrammed instruction would provide initializing
data descriptors and repetitively executing micro-operators

1.1

varian data machines

INTRODUCTION

over the described arrays of data. To start the program
segment would require several steps:

a. load the starting address, increment and extent of each
array

b. load the result’s starting address, increment and
extent

c. define the end and branch condition

This initialization could be followed by one instruction to
execute the newly-defined operator equivalent to the series
of typical instructions.

An extension of this principle of reducing memory retrieval
of instructions occurs in some special cases where data
normally resident in the stream of instructions can be
removed and instead reside in special-purpose micro-
routines. For example, if the array addition algorithm above
were limited to fixed-length arrays with fixed-size elements,
the increment and extent parameters could be stored as
local constants in the microprogram, eliminating the need
to transfer this information in the initial sequence.

1.2 GUIDE TO THIS MANUAL

The purpose of this section is to provide the user with a
helpful idea of the structure of the remainder of the
manual. The order of the following sections is based on the
order in which a programmer needs the information to
plan, then code, test and run microprograms.

Information in the sections

Introduction (Section 1)
Advantages of microprogramming
Guide to the remainder of the manual
Conventions (defining some words and notation) in the
manual
Components of microprogrammed systems

Capabilities (Section 2)
Micro operations available in central control store
Building blocks of microprograms providing data
transfer and transformations, conditional tests, and
memory access

Techniques (Section 3)
Explanation of interface with the 620 emulation
Procedures to use flow diagrams to write
microprograms
Examples of microprograms

Microprogram Assembler (Section 4)
Directives to code microprograms
Macros
Operating instructions

Coding from Flow Diagrams (Section 5)

Conversion steps and tables
Examples from section 3

1-2

Microprogram Simulator (Section 6)
Directives
Operating instructions

Microprogram Utility (Section 7)
Directives
Operating instructions

Decoder control store, {/0 control and additional topics
(section 8)

Format and use of optional decoder control store

|70 microprogramming procedures and example

Glossary (Section 9)
Terminology for microprogramming defined
Mnemonics defined

1.3 NOTATION IN THIS MANUAL

References to Microinstruction Fields

Within the microinstruction the fields are named with the
two-letter references recognized by the micro-assembler.
Some of the fields have names which are used in the text,
such as the CF field conveniently called the carry field.

References Within Fields

The bits within the fields are often discussed one at a time.
Several techniques are used to single out bits. A field may
be represented with the letter X in bit positions not
involved in the action being discussed. 1X for a two-bit
field indicates that only the high-order bit is required to be
one in this action, i.e., setting the field to 10 or 11. High-
order and leftmost are synonymous to select a particular
bit or group of bits. Similarly low-order and rightmost
select the same bit or a contiguous set of bits. Finally less
often a bit is mentioned by number with the convention
that bits are numbered from right to left starting with
zero.

Syntax of Directives

In the directive formats for the microprogramming software
the syntax is given with the following conventions:

Boldface type indicates a required parameter
Italic type indicates an optional parameter

Upper-case type indicates that the item is to be
entered exactly as written

Lower-case type indicates a variable and shows
where the user enters a value for that variable.

The formation of a list of the same items is indicated by
three consecutive periods.

For example, the syntax for the MIDAS FORM statement is
as follows

label FORM field(1), field(2),..., field(n)
Where:
label is a symbol as defined in MIDAS
basic elements
each field is a field identifier which is the
field length in decimal, followed
by an optional hexadecimal constant
enclosed in parentheses
Numbers

Microinstruction fields are given in binary notation unless
indicated otherwise in the context of the reference.

Definitions

To remove one barrier that often exists to the understand-
ing of microprogramming this section clarifies some terms
we use,

In a computer system many different kinds of storage exist
for data, instructions or both. Microprograms reside in the
system’s control store. All control store must be writable in
some manner so that the control information can be
introduced. The desire for greater speed often leads to the
design of storage that can only be loaded once and even
then only by mechanical or electromechanical means.
These are designated as read only or ROM for read-only
memory. This differentiates them from the arrays whose
contents can be changed by the user. This is called
writable control store (WCS).

The microprogram is a series of microinstructions. A
microinstruction resides in one fixed-length word in control
store. The microword is 64 bits long and selects the
operations which occur in one machine cycle (with some
exceptions). The individual operations, micro-operations or
primitives, are defined by fields within the microword.

In this manual whenever you encounter unfamilar words

look for the definition at the first use of the word or
consult the glossary in section 9.

1.4 COMPONENTS

1.4.1 Hardware for Microprogrammed Systems

Though the software for microprogramming provides an
interface for the user to program the system, to ptan a

varian data machines I—

INTRODUCTION

good system one needs to be very aware of the actyal
functions of the hardware. The tangible parts of the
microprogramming system are described below.

Processor

The major functional components of the Varian 70 series
processor (figure 1-2) are central control, data loop, mem-
ory control, 170 data loop, and 1/0 control. The processor
communicates with the computer control panel via the 170
bus.

The processor speed is 165 nanoseconds for a
microinstruction.

Central Cdntrol

Central control provides supervision for most of the major
components in the processor. Direct control is exercised
over the data loop. Requests may be made to other
components, such as memory and /0 control.

The key element in central control is a 64-bit control buffer.
This buffer, which is simply a microinstruction, completely
describes a set of actions for the other processor
components. For example, the data loop might be
instructed to increment one of the general-purpose regis-
ters. The memory control might be requested to begin the
fetch of a 16-bit word from main memory. Thus, the
control buffer holds the current microinstructions. It is
somewhat analogous to the instruction register in
assembly-language programming.

The 64 bits also specify the location of the new contents for
the control buffer. The control buffer is always loaded from
64-bit central control store. Thus, execution of a micropro-
gram basically consists of the control buffer being
sequentially loaded with the appropriate 64-bit values.
Central control store in a Varian 70 series system is divided
into pages, each consisting of 512 64-bit words. Page zero
of central control store always contains a set of microin-
structions which direct the processor components to
behave like a 620/f. This set of 512 microwords is thus
called the 620/f emulation, and resides in read-only
memory (ROM). Other centra! control store pages may be
added with the writable control store (WCS) option, thus
allowing the user to specify in detail the actions of the
processor components.

The microprograms for the standard instruction set are
described in the microinstruction flowcharts in the
System Maintenance Manual and in assembly language
in an appendix to this guide.

Data Loop

The data loop provides transfer paths, data transformation
circuits, storage registers and counters (figure 1-3).

Under control of the central control buffer the arithmetic
and logic unit (ALU) performs basic arithmetic functions

13

INTRODUCTION

1-4

— varian data machines

VTil-1800

COMVENTIONAL CONTROL

CONTROL
v
ARITHMETIC INPUT AND
MEMORY AND LOGIC OUTPUT

SIMPLIFIED GENERAL MICROPROGRAMMING

E CONTROL
STORE

M "{ CONTROL DECODER |———

Litl

1L 4 y
ARITHMETIC INPUT AND
MEMORY AND LOGIC OUTPUT

Figure 1-1. Simplified Comparison of a Microprogrammed

and a Conventional Computer

MEMORY
BUS

MEMORY
CONTROL

|

/0 “ S S CENTRAL DATA
CONTROL CONTROL LOQP

e}
DATA
LOOP

CONTROL
PANEL Vo Bus

VTil-15004

Figure 1-2. Varian 73 Processor Block Diagram

—

INTRODUCTION

1-5

varian data machines

i d Aok 4 e & e FRTAE A SN SO

T T T TR RN - -

553900y
ANO AW

SAMI4 $5IGQY

S woNs vive

19018
ICHINGD

1tn »3UNNOD
SNy LS 20207 L

LTI T Z

PAELIDFLS
N
N
4023738
y , Sshaas
X
N
S b
= I e e TR TGS $9m 01
3N LAGING (v, TS el 2T 2oidOY 0D JOUINO D H ss3CAY
g 21001
DNUOODI0
NOLS
TO¥INQD
ST vIvd AEOWIW

VTi3-292

i

Figure 1-3. Varian 73 Processor Data Paths

varian data machines

INTRODUCTION

such as addition, subtraction, and the common logical
functions including AND and OR. ALU output can be
directed to a number of places, including registers and
counters in the data loop, registers in the [/O data loop,
and to memory control.

Memory Control

The memory control section of the processor performs
tasks initiated by the central control, 170 control and
options. These tasks consist of reading a 16-bit word from
memory or writing a word or byte into memory.

Memory control acknowledges receipt of the signal to the
requesting sections and signals when done with the task.
When one request is accepted no others are acknowl-
edged until the current one is completed, but central
control can override its own prior request.

1/0 Data Loop

The 170 data loop contains a multiplexor, 1/0 data register,
and drivers and receivers. Three sources of data are
applied to the 1/0 data loop: data from the 1/0 bus, data
from the arithmetic and logic unit, and data from the
memory /0 register (MIOR). The input data is selected by
the 170 multiplexor under control of the 1/0 control signals
and transferred on to the bidirectional 1/0 bus.

In addition to being applied to the 1/0 drivers, the output
of the 1/0 data register is applied to the data loop and
memory control sections.

170 Control

The 1/0 control operates under control of an independent
read-only memory (ROM). It performs 1/0 operations
initiated either by the central control or 170 device activity.
This permits 1/0 operations to proceed with minimal
impact on internal processor functions. The 1/0 performs
programmed 1/0 initiated by the central control. Both
normal and high-speed direct memory access (DMA) are
handled by the 170 control. 1/0 interrupts are processed
by 170 control.

1.4.2 Writable Control Store

The Writable Control Store (WCS) extends the processor's
read-only control store to permit addition of new instruc-
tions, development of microprogrammed diagnostics, and
optimal tailoring of the computer system to its applications.

Unlike the read-only control store which contains the

Varian 70 series standard instruction set and cannot be
altered, the WCS can be loaded from the computer’s main

1-6

memory under control of }/0 instructions. This capability of
altering the contents of the WCS gives the user complete
access to the resources of the computer system.

A test program for the WCS hardware is provided to assist
in maintaining the system. Operating the test program is
described in the maintenance manual for the WCS.

Configurations

The WCS is available in three configurations:

1. One page (512 words) of control store and a subroutine
stack (Model 7X-4001)

2. Half page of control store and a subroutine stack
(Model 7X-4000)

3. One page with a subroutine stack, a writable decoder
control store and a writable 1/0 control store (Mod\er
7X-4002)

Model 7X-4002 is shown in the block diagram of figure 1-4.
The three control stores shown in this diagram are the
writable counterparts for read-only components of the
processor. -

The decoder control store replaces the instruction buffer,
decoder, and decoding logic in the processor to improve
instruction set changes. It is formed from two 16-word by
16-bit memory arrays with the logic that decodes main
memory instructions into an address for the central
control store.

The central control store is a counterpart of the page zero
of read-only storage. With each processor clock pulse, a 64-
bit microinstruction is read from the central control store
to specify the actions to occur. A typical microinstruction
may define several operations such as selecting the next
control store microinstruction to be executed, test condi-
tions for branching, initiating memory operations and
selecting ALU functions.

The 1/0 control store contains a 256-word memory array of
16-bit words.

A standard feature with all WCS models is the subroutine
stack that increases storage efficiency by providing a call
and return capability for subroutines of microinstructions.
Up to 16 addresses for branches can be stored in the
stack. Operations are provided for pushing, popping, and
deleting an entry.

Up to three writable control store pages (2048 words
including the page-zero read-only store) can be installed in
a Varian 70 series computer system. Each writable control
store page unit is contained on a printed-circuit board that
plugs into a Varian 70 series mainframe.

varian data machines @—

INTRODUCTION

J §

JYOLS TOJINOD 318V LIIM

vivda
|] .
| (Q¥vos NOILIO) _ oL viva g
T0¥INOD O/ JOWW\JOU < VIva
_ < ssyaav
SSIWAQv
y 1
Ve _ - Z
sNg O/1 5
v | =
>
Q
»55 >
5
«—)
o5 J%OHWU $$3¥qav O
> 40S$3IDOYd YIN =
TVEINID o viva =
Viva ¢ 2
r
| o ADV IS
$S3¥aqQv A $$3¥aqv INILNOYENS
_ nois [* v1ivd
2 TO¥INOD >
(V1va) SN AYOWIW _ 4300530 |4 viva
$53¥aqv

VTii1-1816

Figure 1-4. Writable Control Store Block Diagram

1.7

varian data machines

INTRODUCTION

1.4.3 Software Modules

Microprogram preparation uses a sequence of software
provided with the WCS. First the program is written and
assembled with a special assembler called’ MIDAS. Upon
error-free assembly the code is run in a simulated
environment which is completely independent of a WCS.
The ability to trace and correct the execution is available
with the microsimulator. These first two steps can occur
without a WCS. Then only when the microprograms are
checked completely the code can be loaded in the WCS

USER-DEFINED

with the micro-utility program. In addition to loading the
utility provides some diagnostics. These steps are depicted
in figure 1-5.

All the components of the microprogramming software were
designed to operate both under operating systems, MOS
and VORTEX, and as stand-alone programs on the Varian
70 or 620 series computers. Operating systems require a
minimum configuration (see the manual for the particular

VvII-1799

MICROPROG
SOURCE
\d
e
RECODED MICRO \
> SOURCE — ASSEMBLER
MIDAS
ASSEMBLY
LISTING
BINARY
OBJECT [
A v
MICRO uTILITY
KEYBOARD |
DIRECTIVES SIMULATOR —®{ PROGRAM
v
DIAGNOSTIC C controL o
AIDS = STORE
NO YES
WORKING

Figure 1-5. Steps for Realizing Microprograms

1.8

operating system). Table 1-1 lists the hardware require-
ments for microprogramming software.

Assembler

An assembler is a computer program which translates
symbolic statements into machine instructions. The sym-
bols are more meaningful than the strings of bit settings
they represent. In addition to simply translating from
symbolic to the executable code, the assembler assigns
storage locations to the assembled instructions and
produces a form of the instructions for loading into the
processor’s control store.

The microprogram data assembler (MIDAS) allows the user
to prepare microprograms for the WCS. Through the use of
operation mnemonics, symbolic addressing, address-field
calculation, macro definitions, error detection and auto-

MIDAS is designed to provide the user with a tool for
microprogram implementation. While relieving the user of
much of the tedious housekeeping associated with
generating microinstructions and their data fields, it also
allows the user to describe the microinstructions at their
most fundamental level.

INTRODUCTION

Simulator

Verifying that the microprogram does indeed solve the
problem is the next step. A logical step in implementing a
microprogram is to run it with the microsimulator. The
effects of executing a fauity microprogram are iikeiy to be
worse than those caused by poor assembly-language
coding.

The simulator runs the output from the assembler within
main-memory storage. At selected times conditions and the
contents of data locations can be changed and examined.
Projected changes can be simulated to evaluate eventual
changes to the microprograms.

~

After determining that the code is error-free the WCS can
be loaded with the utility program, which uses a command
set as consistent as possible with the simulator.

Utility

Loading the WCS with the assembled and test microcode is
performed by the microprogram utility, MIUTIL. In addi-
tion, on-line debugging directives are available through the
utility.

Table 1-1. WCS Software Configuration Matrix

Operating Memory (K)
Program System 8 12 16 20 24 32
Micro- VORTEX X R OO
Assembler
MIDAS MOS XR O 0 0O
SA XR O 0 0 O
Micro- VORTEX X R O
Simulator
MICSIM MOS X R OO
SA X R OO
Micro- VORTEX X 0 0 0
Utility
MIUTIL MOS XR 0 0 0O
SA XR O 0 0 0
WCS Test XN N N NN
Program

High-

TTY TTY TTY Speed
Keyboard/ PT PT PT
Printer Reader Punch Reader

X N N 0]

X X N 0

X X X 0

X N N X

X X N R

X X N R

X N N X

X X N R

X X N R

R (o] N X

(continued)

1-9

varian data machines —

INTRODUCTION

Operating
Program System

Micro- VORTEX
Assembler
MIDAS MOS

SA
Micro- VORTEX
Simulator

MICSIM MOS

SA
Micro- VORTEX
Utility
MIUTIL MOS
SA
WCS Test
Program
Legend:

R = recommended

N = not used with
the program

_—@ varian data machines

Table 1-1. WCS Software Configuration Matrix

High-
Speed
PT
Punch

o

X = minimum configuration

Card
Reader

O = optional (can be used but program
will function completely
without it)

(continued)

Card
Punch

0

(recommended in place of
its minimum counter part)

Line Mag
Printer Tape
R 0]
R X
R 0]
R o]
R X
R 0]
R o]
R X
R 0
N N

Rotating WCS
Memory Option

X

varian data machines

SECTION 2
CAPABILITIES

This section describes micro-operations available with
Varian 70 series systems. The operations are grouped into
the following categories:

a. data transfer and transformation
b. addressing and conditional actions
C. memory access

d. other controls

A basic example follows these sections. Some important
timing considerations are presented at the conclusion of
this section of capabilities.

This section describes only central control store
programming.

170 and decoder control stores are treated in section 8.

2.1 GENERAL MICROINSTRUCTIONS

The 64 bits of the microinstruction are grouped into fields
referenced by either an ordinal number or a two-letter
name for the microprogram assembler. The full resources
of the system can be exploited by the user who is familiar
with all the defined microinstruction fields. To start most
common operations, a limited set of fields is involved.

Because some of the bit combinations in the microword
have no function, the user should be cautious and avoid
coding those bit settings not defined. Undefined codes may
be assigned new functions in the future.

—

2-1

varian data machines

CAPABILITIES

NOIS INILONO
LdlHS QIZITYWION
NOIS 0 WD
MOYIAD JIINAOD LAIHS
NOIS 3w

9sa

SO¥3Z 1V NIV
A¥¥VD NV

NOIS NV

SINO TV N1V
S1S3L 4/029 1NwW3
1SS

(43

£5S

ISNIS 01
MOTNIAO

it
ol
Lot
ool
Lot
o101
001
0001
g
Lo
1010
0010
LLo0
0100
1000
0000

(€ =45V 0=4D A0 # 40

NOILYY3dO dWN{ 3OVd
ONILSIL WNOILIANGD
QI/NNA

XX1X
XXX
(XXX

Ot = 45 V00 =41

& SIQUINOD

MOVRIAO 1358 X01X
MOTNIAO 133 X10X
FONVHD SNLvIS ON XQOX

1530 O/1 ON |

45 vV 00 = 41

9 119 SSWAQY O/1
I»meOmx /1

(UNIWITIWOD SINO) NOISHIANL

49 GNY

WI 30 35N $314103dS

SNNIW

SNd

4O JAISNTIDI X3
3O IAISNTONI
anv

OL 335NVIL

1<>1>+ -‘

‘STOIWAS O NOILINIAIT

(X111 S1enbs piay Wi 100 Slenba piay 3s) Juasad
i ysanbas /1 ue uadm 0.3z € AQ PadICR) SI LK see

Dio) S 243 AQ paaads Piai 3u) jO SIUIUO3 3L §1(S3) oa

(00 12N jou DIdY 11) Pa1jI90s 51 JUISSAIPPE 158 ¢

(0 syenbe pjatg
49 01 Stenba ity 45 ‘00 SIenba pray 35} duinl 3Rey

(X111 s/enba pjoy W1 00 S1enbs pia1) 35) 1anbs. 074

{XTLTsjenba
P19 W1 0D Uloq SRy 4L 'IS) pamoje sidnuaul

(01 40 10 S1enba Piai AY) UCHIRIX Play s91siBay

Uoijewo) $SaIppe JO -1 SHA Ut PASR Jou S plaYy

Bl

«

uaum
Si e

oS
i3y 5240V
21015 0:4u02

o T
pue
¥ s=zmccoo
)

ansnpul

(o] = Tefeele]

~ |
q_m_%_m_

0
amsppul

o
o~
=

ONISSIAAQY JHOLS-TOYINOD "I 3M8VL

SKI9 $STYAAY (SW AG GINSYW
“$I WO¥4 SLIS §) 103133 41313

T84

$538QQv O/ 40 ST sliE

O/t 153NN

YIIWOAN 39Vd SEDITFS

dwnf 3Dvd

14N¥8ILNI (319 OSNOD < ¥ x.a
(INJO) SL4N¥IIINI 3/9d 4O dW XXIX
dW d) SLINAEIINY O/ XIXX
SLMIING O/ (XXX

$31avN3 13§

SLIAYYIENT ITEVNI ONY ¥3GOD3IC 103138

MOTNIAQ TWWVYS XXXL
SI4NAYILING IWWYS 35Tv4 41 SISV 1S3 "
i | 98 30 vV 3DV Ol
OGNY 3300230 103138 XXX INAL 41 S3S5Vd 1531 1§
1531 IWNOMIGNOD T4WYS XIXX ONIISIL ON 00 5SSOV 0_ W AR G3INSYW) A1 WOU¥S S1IR ¥ SED3ES
(AddV LON $30Q 00 - 35} ¥t OL ¥81 XXX 349 NI NOHIONOD 1531 1S3IN0O 0N CLALD = Y
00 =35V 00 =3l
ONISSIAAY WWOLS TOILNOD | IWVL 3
1 ~
7~ N
Lo 19] s] a | s4 W SW ! v | 1 1
ir o < &r 051 ” 65 £9
ol ONILSIL TYNOILIGNOD on ONISSNAAY

truction Fields (1of 3)

icroins

Figure 2-1. M

VTii-296 B

22

ines

data mach

varian

CAPABILITIES

- (280

9066 V 86 ‘|pMmow S 40 ¢ uoLDes
ut ynox20; Asouiow puc Buyssaippo
Krowaw pg ‘5u0n0uedo o4 4o
5u01dLSap Of 18)94) Prom 00D D 5O
SOM o4i Aq pesn 51 jiagt) oy ‘(| = g
PUS ‘100t = W1 “00 = 41 ‘00 = 35 ueym

‘310N

{{3a0owa v (1 L
AUIOA00 = gDV (1

v YILNNOD WYIOOUd INIWIEINI GNY
gAYV ¥2USISI ANVIIO avOT 1t
gAY ¥3LS193% AIN YOSSIDOM QVOT oLl
SINO ¥IINNOD L3IHS INNOD 101
qvy AINNCD WYIOO¥d LNIWIIINI 00l
9 ¥dO avol Lo
1Ay ¥ILNNOD LiIHS avo olo
Ay AIINNOD WWIOO¥ VOl 100
gVVY NOILIV ON 000
1Ay
il
avy
SO¥IZ
ivy
A 4
v

“13W SI NOLLIONOD 1831 41
‘IAOEY SY NOLDY AMOWIW

1SINOI AYOWIW IQINIAC
13W 1ON NOILIONOD IS3L 41 NOILDY

It = 45
13w AYW—HW XX 1
LON IS31 4i | QYW= ¥3INNOD WWVIOOUd XXO0I
Jxgowaw tavis AvW-—niy Xx10

XX00

O =49 v (0# 40

1] OIS ItAe Lixx
SO OIS ANVIIO 0IXX
40 HOL134 ONWI34O 10XX
4l HIOL34 NOWDNIISNI 00XX

00 # dS

AJOWIW 13VLIS R
“OYW = JIW

ViAG—— 34D 40 0 Lig

QYW = YIINNOD WVYIOOUd
+QYW) SSTHAAY AYOWIW ~— NIV
1S3NDIY AYOWIW 3QIIIIAO

XX
XX0t
XXi0
XX00

[LAOL = V1

[0 =35} v {00 = 40) A (10 = 29

G3ISN 1ON SI 1 Lig
I 118 SS3QAv O/1 St 0 L8

153n03¥ o/

118 INVIIHINSIS
15v31 8-— (4O 40 | 119 V 4m)
A (NdINO NV 40 St 118 v 3m)

88 40 -1 SLE-— Il WV vy

15300 O/1 V0= 8Y) v (I = W)

89 PO ¥V-— INdINO 34OLS TOYINOD

153N0D O/ v (0= 89) v {0 = aw)

|+

c l-v
v+ M_ Av) LHON QILdIHS WO LI O/ 15IND3Y
v+EAY 1437 Q3LdiHs 349 ol $DA LIGIHNI # O/1 ISINDA
Y o+ v ¥IINNOD WYAOO¥d 10 SNOLONAA S
-@vw 3O 00 ¥30023a 1I8IHNI 99 — g9
@vvi+@aw Y 1NdNI N1V AIX HOSIANINS L3S v — vy ¢
g8 +v AIX HOSIAYIANS 1357y
3Q0W NV S13S vy +y g3sNNN Y 40
TN T -avw H3LSION AN O/f AVOT S118 ¥ ¥3Q¥0 MOT O1
- t-8-v OV LdNYYALNI 13§ S1 A8 Q3123135 SLI9 81
@V + @AW OV LMIYIINI 13S] ¥ I0IWS 0110 Q114 §8 3H1 OL
@vw+y QISONA Lo10 JONVHD SLIGIHNI 9988 ¢
. >_,..« HUSION INANI ANY ¥91-— NV 0010 48 40
14 90 1 118 ey GION 335) eIl 11 W3IW NIVW ON HONVY¥g 3Ovd 1100 S118 ¥ ¥3040 MOT OL
A8 135 NV 40 300W v OIsYW) v ¥ o1 INOA O/1 ¥O4 1Ivm 0100 S1AS QILDINS S1I9 ¥l
£IVHILN L9 40 WIUSIOW WIDAIS 10 INOG AYOWIW 304 LIVM 1000 a1l ¥V 3HLOL
Lavd sI W ((3QOWQ VIt A DL =81)A ¥O 00 NOILDY ON 0000 FONVHD SLIBIHNT YV —Vv |
LLAOL =97 (10 A 00 =91V (0= 4w) § LNdNI N1V 0= 45 Usinosy oA Vo = s
N Iw EE}) \4l _ a1 wI v
61 T3 9% a2 3 ve E3
00W Ny NOLLONMI ¥IUSION 1NdN1 MY NOILV O/1 AJOWIW o/

VII.2958

Figure 2-1. Microinstruction Fields (20f3)

2-3

varian data machines

CAPABILITIES

Iveain
1i8-91 30 J¥vd

LLAOL =91

14371 OL G3LdIHS

IV¥ILIT LIg-9L 4O Idvd

1L AOL =87

TwE3LT Lie-9t JO Ldvd

TYNOIS dWNT 318YN3
PUO 4/d LINNYILNL L3ST¥

1L AOL=81

i3 A 3LAS LHOWN WO L1L0 TYNOIS dWNF 318VN3 0L
0¥3Z | 31A8 LHOW ¥O 0L10 4/4 L4MEYIINI YOSSIDO¥d L3S 10
Q3aN3LX3 A 31AQ 1471 %O 1010 NOWDY ON 00
NOIS ¢ 3LAS IHOW %O 00L0 45— ¥dO 40 6t 1§ 1
SNLVLS 1100 (0= 28) V(LOA00=8D NOIWDV ON 0
¥01 0100
YW 1000 10 A 00 =81
4O 0000
g LAdNI NV SV ¥31S1OY
WIS $3141034S SL 11§ 4O ~—8sa il
oo o IWYS S1 118 WO 01
Sl 1ig ¥dO OL @ILAIHS 0 LI8 LNdNI Y 10
Si Lig OL G3LdIHS 0 119 ¥O 00 TVHALIT L1891 4O 1¥Vd
(L=4M V(L =28 VIO A 00 =97 ILAOL=81
§ LNdNI ATV SV
3O SIS
0=9 44O LatHS |
011§ %0 OL GiLdHS O L8 ¥V LI NOILDY ON 0
0 118 ¥dO OL QardIHs 61 La NV 0L 0 A 00 =81
0 LIg OL GildIHS S1 11§ 1ndN1 v 10 —
9 OL G3LdTHS St _
VAL LIg-91 4O L¥Vd ool 1Hs Si L w0 00
TS (0=4M v (L=25 v(oAoo=gl
WAL 40 Luvd
tLAoL =11
L 114 —0 oo IVHALIN LI8-91 3O Lav4
6L 119 ~—0 LI ¥O 110
SLug-—S1L ey 00 LA oL =191
StugV-—0LlaY 100
Sl Lig ¥ —NOIS AMULINW 000 349 — 1NdINC MV i
Wo A 00 =49 V{L=vD NOUDY ON 0
10 A00 = 81
‘ON %O 0 Lig=——1 LI %O 1
‘ON %9 0 LIg—§1 Li§ NV 0
0=y v (i=aW
0 118 NV ~— St 1§ 3O 01X Vv 153n03 OI V (10 A 00 =81
oLlENIV-—SL LY 10X
0 lig NV -—0 00X
Sl IR NTV-—SLLE Y X1 0 = NI-A¥VD NTY
SL LI NIV-—¥L LIV XXO V3L L19-91 4O 14vd SI 4D
NOILYNILSIQ
NIV SV 34O SAI3D3dS (1o A00 =80V (0l = V1) LHOW ¥dO ldIHS 1 1L AOL =81
1337 %O LIKS [}
(1= 3w V(10 A00=287
{1 =25) V (10AQ0 =97
Lol
NOLWDNN ATV WIDMS XXI
v LdNE DIV — 1 XIX ANYVD GROLS 0L
¥ INdNI V INdNI MV —10 10X SON® —S1 L18 MY \ ARVD o&Sw %
N sv NOUDY ON 000
SV ¥dO $IIDMS NOLLOY ON o Ni-AREYD N1Y
10 £ V1 (10 A00 = 9D V(00 = YO (0 =25 v (10A00=18Y 10 A 00 = 81
vy 98 | HS 4% [am an | oos o am |) <
¢ ol zl €l [St 9 81
114§ S33151938 N1V

VTI-297B

(30f3)

Figure 2-1. Microinstruction Fields

2-4

varian data machines [@——

CAPABILITIES

THIS PAGE
INTENTIONALLY LEFT
BLANK

2.5

varian data machines

CAPABILITIES

2.2 DATA TRANSFER AND
TRANSFORMATION

2.2.1 ALU Input Sources

Input to the arithmetic and logic unit (ALU) is selected by a
combination of fields. The ALU receives two inputs, A and
B. Two buses can move information to the ALU but the
same sources are not available for both buses. Some inputs
to the ALU can be sent on either bus and some on both.
The general-purpose registers can be selected as input
upon either bus and a specific register selected for each
bus.

Any of the general-purpose registers can be shifted on its
way on the A bus ‘to the ALU. Shifting can be one bit
position to the left or right.

Input to the ALU can be from one or two of the general-
purpose registers. The use of one of these registers is
indicated by setting field LA to zero for input on the A bus,
and LB for input on the B bus. The specific register is
specified in AA and/or BB.

For example to use registers R2 and R4 as the input to the
ALU

field LB LA BB AA
value 0 0 2 4
(hex.)

Mnemonic B$GPR A$GPR R2 R4

LA can also specify that the register indicated by AA is
shifted or rotated. Shift left and shift right are indicated in
the LA field and the shift field, SH.

Special Registers as ALU Input

By setting the LB field to one, SREG for special register the
value in the BB field takes on a different meaning:

OPR Operand register
MIR Memory input register
IOR 170 register

STAT Processor status word
ORSE Operand right byte sign extended
OLSE Operand left byte sign extended
ORZF Operand right byte zero fill
OLZF Operand right byte in the

left byte position zero fill

NOOS_WN=O

2:6

Table 2-1. ALU input A Bus Selections

ALU Input A Bus Source Fields
LA SH LB
Program counter 01 XXX XX
General-purpose 00 Neither oX
register (any one X01 nor
of 16) specified X1X
in AA
General-purpose 00 XXX 1X
register (any one
of 16) specified in
AA
All zeros input 00 X01)4
All ones input 00 X1X 0X
General register (in 10 See 0X
AA) shifted left below
Bit 15 = register OXX
bit 14
Bit 15 = register IXX
bit 15
Bit 00 = zero X00
Bit 00 = register X01
bit 15
Bit 00 = operand X10
register bit 15
General register (in 11 See 0X
AA) shifted right below
Bit 15 = multiply 000
sign flag
Bit 15 = register 001
bit 00
Bit 15 = register 010
bit 15
Bit 15 = operand 011
register bit 00
Bit 15 = zero 100

X indicates the bit in that position is of no consequence

to this action.

GPR

16 GENERAL-
PURPOSE
REGISTERS

RO, R1,...,RF

' N SHIFT/ROTATE

varian data machines @ﬁ

OPR

CAPABILITIES

> OPERAND

REGISTER

L

-

Ul

W

ALU INPUT A

<

L

W

ALU INPUT B

=

VTil-1802

Figure 2-2. General-Purpose Registers, Operand Register and ALU Input

27

gr——

varian data machines

CAPABILITIES

Table 2-2. ALU input B Bus Selections

ALU Input B Bus Source Fields
LB BB

General-purpose 00 Specifies

register (any one register

of 16)

Operand register 01 0000

full word

Operand register 01 0100

right byte with
sign extended
Operand register 01 0101
left byte with.
sign extended
Operand register 01 0110
right byte with
zeros in left byte
Operand register 01 0111
right byte in left
byte position; zeros
in right

Memory input register 01 0001
(MIR)

170 register (IOR) 01 0010

Processor status word 01 0011
(STAT)

Instruction register 10 Part of
masked by 16-bit mask
literal constant
consisting of fields

MF, CF, WR, SC, VF, WF,
XF, SH and BB. A one
in the mask fields

forces the corre-
sponding ALU input

bit to a zero.

Part of
constant

16-bit literal 11
constant consisting
of the ones com-
plement of fields
MF, CF, WR, SC, VF,
WF, XF, SH and BB

NOTE: When the 16-bit literal or mask is used, the ALU
mode is forced to the arithmetic mode if the FF fieid bit 1
is a zero and to the logical mode if the FF field bit 1 is a
one. A carry of zero is forced. The ALU output may not be
written into any general register in this case. The WR field,
which would specify such an operation is disabled for use
as part of the 16-bit literal or mask.

2-8

Processor Status Word

The processor status word may be applied to the ALU input
B bus when the LB field equals 01 and the BB field equals
0011. Processor status bits are assigned as follows:

Bit Function Name

00 Not used (logic 1)

01 Supervisor mode flag SUPR

02 ALU zerc flag ALUZ

03 Shift counter bit 00

04 Shift counter bit 01

05 Shift counter bit 02

06 Shift counter bit 03

07 Shift counter bit 04

08 Overflow flag OVFL
09 ALU all ones flag ALUO
10 ALU sign flag ALUS
11 ALU carry flag ALUC

12 Processor key register
bit 0

13 Processor key register
bit 1

14 Processor key register
bit 2

15 Processor key register
bit 3

2.2.2 ALU Functions

Two sources for data, an action to be performed by the
arithmetic and logic unit and a destination for the result
are all specified in a single microinstruction.

The ALU function is determined by three fields in
microinstruction. These fields, function, mode and carry,
are grouped together to give meaningful names to some
common operations, like ADD for addition. This entire
group of fields can be set to execute combinations which
do not have convenient names in the assembler.

One basic ALU action or an operator is chosen. There are
three categories of operations. Arithmetic operations
available at this level include addition, subtraction,
increment etc. Logical operators which have convenient

varian data machines

single-word names are AND, OR, exclusive OR, NOT
implication and equivalence. Also the ALU can perform
more complicated logical functions explained later in this
section.

Table 2-3 lists some of the more common arithmetic and
logical operations and the carresponding fields.

Table 2-3. ALU Operations

Assembler ALU

Mnemonic Action FF MF CF
ZERO all zeros 0011 1 00
ONES FFFF 1100 1 00
TRNA A 1111 1 00
TRNB B 1010 1 00
INCA A+t 0000 0 11
DECA A—1 1111 0 00
ADD A+ B 1001 0 00
SUB" A—B 0110 0 11
SHFA A+ A 1100 0 00
AND AAB 1011 1 00
OR A VB 0001 0 00
EOR A B 0110 1 00
NOTA A 0000 1 00
NOTB B 0101 1 00

*cannot be used when input B is mask or literal

CAPABILITIES

ALU Mode

There are two modes available for the ALU, arithmetic and
logical. In the arithmetic mode the user selects a type of
carry input to the ALU to be used with the arithmetic
action. In logical functions the value of the carry field (CF)
is ignored. The mode is directly set as either arithmetic or
logical by the MF field. Indirectly the mode can be set
when the actual mode field is part of a literal or literal
mask. If the LB field is 10 or 11 in binary, the MF and CF
fields are part of a 16-bit constant. In this case the ALU
mode is taken from the bit 1 setting of the FF field
(consequently this limits the functions available with a
literal or mask).

Carry Flag

The CF field specifies carry input to the ALU as follows:
CF Value of Carry In

00 Zero

01 Stored carry

10 Stored carry complement
11 One

The carry flag ALUC, bit 11 of STAT, is altered only if SF is
set to zero or two, TF to zero and the GF field to XX1X.

Under these conditions carry is set or reset to the carry
produced by the ALU. The only meaningful conditions for
carry are the arithmetic functions such as add, increment,
decrement and subtract. For these conditions the carry

_ flag is set as follows. MF is zero for all of the following.

29

———

varian data machines

CAPABILITIES
Table 2-4. Carry Flag Settings

FF Function If Carry In = 0 If Carry In = 1

0000 A Reset Set if result = 0

0001 AvB Reset Set if result = 0

0010 AVB Reset Set if result = 0

0011 —1 Reset Set unconditionally

0100 A+ (AAB) X X

0101 (AVB) + (AVB) X X

0110 A-BA Set if [(A,, = B,;) A (A2 B)lv Set if [(A,, = B,;)) A (A > B)]v
[(A; = B) A (A< O)] [(A, = Bi) A (A< O)]

0111 (A A B)—1 Set if result is # —1 Set unconditionally

1000 A+ (AAB) X X

1001 A+B Setit (A< 0)/ (B<O)y Setit [(A<O)A(B<O)V
[(A, # By)A [(A, =B, A (A, = O)A
(A, = 0)/ (A2 B)V
(Al 2 1BI)] v
[(As %= Bi)A [(A,; = B,) A(B,, = O)A
(B, = 0O)A (B 2 A)] v [Result = O]
B! 2 1AD)]

1010 (AvB)+ (AAB) X X

1011 (A AB)—1 Set if result ¥ —1 Set unconditionaliy

1100 A+ A Setif A, =1 IfA, =1

1101 (AVB)+A X X

1110 (AVB +A X X

1111 A—1 Set if result £ —1 Set unconditionally

Arithmetic Operations

Arithmetic Functions

FF Value

The FF field determines an arithmetic operation as
indicated below when the MF field is 0. Carry input is set

independently. When bit 1 of FF is zero

the arithmetic

mode is selected when the actual mode field is part of a
mask or literal. The expressions in parentheses are
evaluated first from left to right. Any further evaluation is
performed from left to right.

Logical Operations

When MF is one, the logical operations occur as indicated

below by FF field

settings. The carry field is ignored.

Symbol indicates exclusive OR operation.

2-10

MTMUOUODPLOONOON_WOWNN=2Q

ALU Action

A

AVB

AV B

All ones

A+ (AAB)
(AVB)+(AA B)
A —B —1

AAB -1

A+ (AAB)
A+ B

(AV B) + (A AB)
(A A B)—1

A+ A
(AVB)+ A
(AVB)+ A
A—1

SYMBOLS
V lInclusive OR
X Exclusive OR
+ Addition
— Subtraction
logical AND
¢ complement

varian data machines

Logical Functions

FF Value

MTMOTOWMPOENDIUHWN = O

ALU Action
A

> 1>
N o<
S ww
[o]
(7}

o

>1> > o>
<> >
ww Wi e

CAPABILITIES

2.2.3 ALU Output Destinations

The ALU output will be determined by the function
performed. This data can be directed by the microinstruc-
tion to the general-purpose registers, some of the special
registers, counters, and indirectly to memory and 1/0.

A muitiple destination can be one of the general-purpose
registers and a special register.

The direct assignments of the ALU result is specified by a
combination of fields, WR, LB, AA and RF. The first three
are used to specify any one of the 16 general-purpose
registers while RF selects sending data to the program
counter, operand register, shift counter or key register.

Table 2-5. ALU Output Data Destination

Destination

Control Fields

DIRECT CONTROL

General register (any 1 of
16) (Specified in AA)

Program counter

Operand register

Shift counter

Processor key register
INDIRECT MEMORY CONTROL
NOTE: Transfer occurs only

if cycle is successfully
initiated)

Memory data bus

Memory address register

Memory input register and
instruction buffer

INDIRECT 1/0 CONTROL
170 register

NOTE: Transfer is under
direct control of 170
control. Operation is
specified by TS, AB, MR
fields and contents of
1/0 control store.

RF

001
011 or
111
010

110

WR | SF M LB
1 0X
Not 00 XX1X
Not 00 01xX
00 0100
00 111X

2-11

ety

varian data machines

CAPABILITIES

2.2.4 Other Registers

Shift Counter

The shift counter is an 8-bit counter which may be
incremented and tested independent of the ALU. It is thus
useful in keeping track of iteration in a microprogram. The
counter may be tested for overflow using test addressing.
The overflow condition occurs when the shift counter is

minus one.

An instruction which both increments and tests the shift
counter will be testing the old value. If the counter is
loaded with negative number and incremented to O, the
one instruction delay is no problem. This is because
checking the old value for - 1 produces the same result as
checking the new value for zero.

Program Counter

The program counter is a 16-bit register which can be
incremented and/or used as a memory address, indepen-
dent of the ALU. The following are considerations when
incrementing the program counter:

a. if the same microinstruction uses the P register for a
memory address, the new value of P will be used.

b. if the microinstruction both increments P and uses P as
an ALU input, unpredicatable results are obtained. In
general, using P as an ALU input and incrementing P
should not be done in the same instruction.

Processor Key Register (KEY)

A 4-bit processor key register supplies signals for memory
operations initiated by the processor. These four bits in
conjunction with the high-order bits of the normal memory
address are used by the memory map option determine
physical addresses. 1t should be noted that this key register
is different from the map register used under VORTEX Il
The latter is loaded over 1/0 and cannot be conveniently
accessed from the micro level.

1/0 Key Register

A similar key register for /0 is a 4-bit register which
supplies signals to the memory map option during memory
operations initiated by the 1/0 control.

Operand Register

The operand register is a 16-bit register which has special
shifting abilities. As previously noted, the ALU input A bus
may have any of the 16 general-purpose applied shifted
left or right one-bit position. In addition, the operand -
register may be shifted left or right independently or in
conjunction with shifting of any general register. This can
occur any time the 16-bit literal or mask is not in use.

2-12

When the LB field is equal to OX (no literal/mask) the SC,
WF and XF fields define operand register shifting.

When the SC field equals 0 no shifting takes place. When
the SC field equals 1, the operand register is shifted left if
the WF field equals 0 and right if the WF field equals 1.

For left shifts the next contents of the operand register bit
00 is specified by the XF field. If XF equals 00 operand
register bit 15 is copied to bit 00 to permit independent
circular shifting. 1f XF equals 01 bit 15 of the general
register specified by the AA field is copied to bit 00.

This permits double-length circular shifting. If XF = 10 the
complement of the ALU output bit 15 is copied to bit 00. if
XF = 11 the operand register bit 00 is set to zero.

For right shifts the next contents of the operand register bit
15 is specified by the XF field. If XF equals 00 operand

register bit 00 is copied to bit 15 to permit independent
circular shifting. If XF equals 01 bit 00 of the general

Table 2-6. Operand Register Shift Operations

Control Field

LB SC WF | XF

No shifting 0
No shifting iX
Shifting of operand register | Ox 1

Left shifting 0

Bit 00 = operand 00
register bit 15

Bit 00 = general 01
register bit 15
(specified in AA)

Bit 00 = ALU bit 15 10
complement
Bit 00 = zero 11
Right shifting 1
Bit 15 = operand 00

register bit 00

Bit 15 = general 01
register bit 00
(specified in AA)

Bit 15 = operand 10
register bit 15 ’

Bit 15 = SHFT (shift 11
flag)

register specified by the AA field is copied to bit 15 to
permit double-length circular shifting. If XF equals 10 the
operand register bit 15 is maintained at its current state
to permit independent arithmetic shifting. 1f XF equals 11
the shift flag (SHFT) is copied to bit 15.

2.3 ADDRESSING

2.3.1 General

Executing instructions in an order other than strictly
sequential gives programs flexibility and compactness. The
ways in which the order of microinstructions can be varied
are similar to those used in assembly-language programs.
For the microassembler the usual order of execution takes
the next instruction -- the contents of word five after word
four and so on - unless a jump or branch specifies the
change in order. In reality each and every microinstruction
specifies the next one to be executed, but usually the
assembler constructs sequential-execution addressing
automatically.

A jump in a microprogram can be a conditional action
based on the true or false state of flags or signals in the
system. In microinstructions the jump is not a separate
instruction but the sampling and/or testing and the
branch itself are specified in fields of a microword. In
addition to conditional and unconditional branches, the
branch may be from one page to another. The page jump
is described following a few simpler cases and conditions.

Three basic types of addressing create the address of the
next microinstruction to be executed. Normal addressing is
the simplest case. The next address is specified by the
current microinstruction. Field-selection addressing uses
an instruction register field to specify the address for the
next microinstruction. In decoding addressing (using the
decoder control store) the instruction buffer specifies the
next address (section 8 in this manual describes the use of
this feature).

Three other types of addressing are similar to the basic
types. Conditional addressing uses testing of various
conditions to choose one of two addresses. The page jump
can specify both the page and word number within the
page for the next microinstruction. Interrupt addressing
uses both the microinstruction and the system's interrupt
logic to determine the next microinstruction.

2.3.2 Normal Addressing

Normal addressing is used to arbitrarily specify the next
microinstruction address. No conditional testing is
involved, no interrupts are active or they are disabled and
decoder addressing is not specified. The FS and TS fields
are set equal to 0000 and the MT field equals 0 so the low
order address contribution (bits 0-3) is governed entirely
by the MS field. The high order bits (4-8) are supplied by
the AF field.

varian data machines T

CAPABILITIES

8]7'6]5]4 32 |1]o

Control Store Address --
Normal Addressing

No reset

No interrupts
No decoding
FS = 0000
MT = 0

TS = 0000 or
TF =0

Normal Addressing with TS Field

The TS field may be used to form bits 1 through 4 of the
control store address when none of the following
conditions is true:

a. Register field extraction (AB field equals 01 or 10)

b. Interrupts allowed (SF and TF field both 00; GF field
equals X1XX)

¢. 1/Orequest (SF field equals 00; IM field equals 111X)

d. Page jump (TF field equals 00; SF field equals 10; GF
field equals X1XX)

The address is formed by the inclusive OR of the TS field
into bits 1 through 4 of the address obtained with normal
addressing (FS field equals to 0000; no decoding; no
interrupts, MT field equals 0).

8[7[6(5'4 3|2|1|0
AF MS

—

inclusive or

I

010 |0 {0 TS 0

Control Store Address
Normal Addressing with
TS Field

2.3.3 Field Selection Addressing

The contents of the instruction register and a number of
processor flags may be used to form a control store
address. Any 1- to 5-bit contiguous field from the
instruction register may also be used in forming the low-
order five bits of control store address. Thus, up to a 32-
way branch may be performed based on instruction
register contents. This permits detailed instruction decod-

2-13

varian data machines

CAPABILITIES

ing. In addition, the interrupt flag, byte address flag, shift
flag and console step mode may be selected to alter the
control store address.

Field selection addressing is used any time the FS field is
not equal to 0000. The field selection address contribution
for all values of the FS field is shown in the tables below.
Any bit of the field selection contribution may be forced to
a zero by use of the MS and MT fields. The field masks bits
0-3 of the field select contribution. The MT field masks bit
4. A zero in any bit of the MS and MT fields forces the
contribution of the corresponding field selection bit to zero.
When an 1/0 request is issued (SF field equal to 00 and IM
field equal to 111X) the MT field is used as part of the 1/0
operation specification. In this case, the MT field is ignored
and bit 4 of the field selection address contribution is
masked to zero.

The field selection address contribution is shown below for
all values of the FS field.

High-order address bits 4 through 8 are provided by the AF
field.

The TS field is logically ORed into the control store address
bits 1 through 4 under the same conditions as normal
addressing into TS field. Thus, the composite field selection
address is formed as follows:

Control Store Address Bit

4 3 2 1 0 FS Field
One One One One One 0
One One One One INT 1

. One 01 One SHFT. | BYTA 2
One One One One STEP 3
04 03 02 01 00 4
05 o4 03 02 01 5
06 05 04 03 02 6
07 06 05 04 03 7
08 07 06 05 04 8
09 08 07 06 05 9
10 09 08 07 06 A
11 10 09 08 07 B
12 11 10 09 08 C
13 12 11 10 09 D
14 13 12 11 10 E
15 14 13 12 11 F

Numbers 00 through 15 refer to instruction register bits
INT is the interrupt flag (complement)

BYTA is the byte address flag

SHFT is the shift flag

STEP is true when the console s in the STEP mode

Figure 2-3. Field Selection Address Contribution

2-14

0000—-|

inclusivej
or
[oofofo] 1s¢ [0
inclusive
or
ojojo]o (FS)**
and

Control Store
Address Field
Selection

* TS field is not used in bits 1-4 of address formation
when:

a. Register field extraction (AB field equals 01 or 10)

b. Interrupts allowed (SF, TF fields both 00, IM field
equals 111X)

c. 1/0request (SF field equals 00; IM field equals 111X)

d. Page jump (TF field equals 00; SF field equals 10; GF
field equats X1XX)

e. Testaddressing is specified (TF field not equal 00)
=% (FS)is the contents of the field specified by the FS field

#xx MT is replaced by a zero when an 1/0 request is
present (SF field equals 00; IM field equals 111X}

Normal addressing and normal addressing with TS field
are a subset of the field selection addressing set, i.e., the
FS field equals 0000 and the MT field equals O.

2.3.4 Test Addressing

Two addresses must be specified when test operations are
performed -- one for use if the test passes and one for use
if it fails. Testing is specified whenever the TF field is not
equal to 00. If the test is to pass when the condition tested
is true, the TF field must be equal to 10. If the test is to.
pass when the condition tested is false, the TF field must
be equal to 11. The condition to be tested is specified by
the GF field.

The address used if the test passes is identical to that
formed by field selection addressing. The address used if

varian data machines

test fails is made up of the AF and TS fields as shown
below.

8 |7 |6 |5 |4 3l2|1lo
AF

0fj0]o]o | l

inclusive
or

OOOI; TS 0

Control Store Address --
Test Fails

2.3.4.1 Conditions

Whether or not a test is to be done and the way the test
passes are indicated in the test field (TF). Testing is
specified whenever the TF is not zero. If the test is to pass
when the condition is true, the TF is equal to 10. If the test
is to pass when the condition is false, the value of the TF
should be 11.

The condition to be tested is specified in the GF field.

Summary of Conditions Mnemonics

Value of Mnemonic
GF for Assembler

OVFL
IOSR
SSW3
SSW2
SSW1
TFIR
ALUO
ALUS
ALUC
ALUZ
SHFT
MIRS
SFTC
GPRS
NORM
QUOS

TMTMOOTPOONIITADWN —O

Meanings and Use of Conditions

OVFL Overflow may be set and reset unconditionally. It
may sample data-loop conditions. Automatically reset
by system reset or microinstruction in which the GF
value is TFIR and the instruction register bit 0 is set
and the test met.

CAPABILITIES

IOSR 1/0 Sense Response (discussed in |/0 section)

SSW3, Sense switches are set and reset
SSw2 only by manual manipulation on the
and controt panel.

SSW1

TFIR Test from instruction register which determines a
set of conditions tested simultaneously. Nine bits of
the instruction register cause the following tests:

0 Overflow
1 Positive/NOT bit
2 Negative/NOT bit
3 RO of General-purpose registers
4RI of General-purpose registers
5 R2of General-purpose registers
6 Senseswitch 1
7 Senseswitch 2
8 Senseswitch3

ALUO ALU allones

ALUS ALU sign flag

ALUC ALU carry flag

ALUZ ALU all zeroes

SHFT Shift flag copies bit 15 of the general register

specified in the AA field whenever the literal or mask is
not being used and the VF value is 1. This flag may
be shifted into the operand register bit 15. It may be
tested by a microinstruction to cause a branch to
either of two microinstructions.

MIRS Memory input register sign
SFTC Overflow of the shift counter
GPRS General-purpose register 0 bit 15 (sign)

NORM Normalize flag is set after any microinstruction
which the ALU output bus bit 15 is not equal to bit 14. It
will be reset after any microinstruction during which
the ALU output bus bits 14 and 15 are the same.

QUOS Quotient flag copies bit 15 of the ALU output after
a microinstruction in which the literal or mask is not
being used and the WF value is right or 1 and SC
field is zero.

MULS Multiply sign sets any microinstruction during
which any of the following three conditions existed:
1. ALU output bit 15 and ALU input A bit 15 were
both equal to 1
2. ALU output bit 15 and ALU input B bit 15 were
both equal to 1
3. ALU input A bit 15 and input B bit 15 were both
equaltol.
This flag may be applied to the ALU input A bus during
right shift operations

—

varian data machines

CAPABILITIES
BYTA Byte address flag copies bit 00 of the general unless the ALU is all zeros and sampling is requested.

register specified by the AA field whenever a general-
purpose register is specified as shifted input to the The foliowing table lists some of the major flags. ALUZ,
ALU input A bus. This flag may be used to determine ALUC, ALUS, and ALUO are sampled together by any
the address of the next microinstruction and for microinstruction in which SF equals X0, TF equals zero,
memory byte store operations (SF not equal to zero and GF equais XX1X,
and IM field equal XX11) determines which byte of
the addressed memory location is to be aitered. If Summary of flags requiring sampling for microprogrammed
BYTA equals zero, the left byte is selected. BYTA conditions.

equal to one selects the right byte. BYTA is set or
reset during the microinstruction rather than at the

end. Flag Sampling

A wide variety of flags are available for use in micropro- NORM no
gramming. In general, they may be tested no sooner than MULS no
the microinstruction after which they were set. In other SHFT yes
words, a microinstruction which both changes a flag and QUOS yes
tests will be testing the old value of the flag. BYTA no

OVFL yes
The conditions that cause a flag to be set depend on the ALUZ yes
particular flag. In addition some flags require that the ALUC yes
microinstruction specify sampling before they will be set. ALUO yes
For example, the ALU all zeros (ALUZ) flag will not be set ALUS yes

Table 2-7. Overflow Flag Control
OVERFLOW FLAG CONTROL

Conditions
Operations Fields Bit 15
ALU Input | ALU Output
TF SF GF FF AA | BB
Set overflow 00 01 X01X
Reset overflow 00 01 X10X
Sample overflow 00 01 X11X
(ADD) 1XXX
SET 0 0 1
1 1 0
DON'T SET* 1 0 X
0 1 X
(SUBTRACT) OXXX
SET 1 0 0
0 1 1
DON'T SET* 0 0 X
1 1 X

Also, reset by system reset or a microinstruction specifying
test of the 620/f test condition with the instruction
register bit 00 on in which the test passes.

Overflow may be sampled to be set if SF = 00 and GF =
IXXX. It will not be reset even if no overfiow exists.

* |f set previously, overflow will remain set regardless of
sampling conditions.

2-16

2.3.4.2 Addresses in Branches

The destination address when the test fails must be an
even word address. The destination addresses of both the
pass and fail conditions must be within 32 words of each
other.

Procedure for Address Assignment

Following completion of a flowchart assignment of control
store, address assignment may be performed. A usefui
procedure is:

1. Assign the microprogram entry addresses consistent
with the desired format of the BCS instructions.

2. Assign addresses to microinstructions to be executed
upon receipt of an interrupt. These addresses must be
X XXXX 0111.

3. Assign addresses to all microinstructions to be
executed following those using TEST ADDRESSING
where the "test fails” condition prevails.

4. Assign addresses to all microinstructions to be
executed by field selection addressing. If field selection
specifies test of the interrupt, byte address, shift, or
console step flags assign addresses to the microin-
structions to be executed in accordance with the
foliowing restrictions:

Flag On Flag Off
Interrupt X XXXXXXXX0 XXXXXXXX1
Byte Address X XXXXXXXX1 XXXXXXXX0
Shift X XXXXXXX1X XXXXXXX0X

Console Step X XXXXXXXX1 XXXXXXXX0

5. Recheck all field select and test addressing
microinstructions for addressing consistency. Prepare
a list of assigned addresses and corresponding
microinstruction numbers labels (keyed to the flow-
chart) to avoid duplicate assignments.

6. Other microinstructions may have their addresses
arbitrarily assigned by the programmer or the
assembler.

CAPABILITIES

2.3.5 Page Jump Addressing

The microinstruction specifies a branch to a location in
another 512-word page by executing a page jump. in this
case, a 13-bit address is generated which sets a new active
page number and specifies an address within that page.
The page number is specified by the TS field. The word
address is specified by field select addressing.

1 | 0

12 lll l10|9 8L7|6E]4|3
TS Address modified field

select addressing

2

Control store address
page jump

A Page Jump with memory is specified by the TF field equal
to 00; the SF field equal to 10; and the GF field equal to
X1XX.

A page jump without initiating a memory cycle is specified
by setting the TF and SF fields to zero, and the IM field =
0011.

2.3.6 Interrupt Addressing

When interrupts are allowed and an interrupt is active in a
class which is enabled by the TS field, the low-order four
bits of the control store address are supplied by the
interrupt logic and the high order bits from the AF field.

8 7L6|5[4 3l2I1|0

F A

1A is supplied by interrupt logic.

IHA is 7 for 1/Q interrupts and 1 for second tests of /0
interrupts after initiation of the 1/0 interrupt sequence.

The TS field enables interrupts whenever bits are set as
fotlows:

Bit Set Enables

170 interrupts

1 170 interrupts only if memory
protection is installed

2 Memory protection interrupt

3 STEP, console step mode interrupt

2.4 MAIN MEMORY CONTROL

Memory access may be initiated in a microinstruction
which indicates the type of operation and the address

varian data machines —

— varian data machines

CAPABILITIES

source. Main memory access includes the fetching and
storing of data to and from the memory through the
memory buses. Memory can either be the core or
semiconductor variety (as distinct from the disc or drum
storage often called rotating memory, which is accessed as
a peripheral device through 170 facilities).

When a microinstruction initiates an access, the memory
control section handles the complete operation. This
permits the microprogram to initiate access to/from
memory and perform other functions (ALU etc.) while the
access actually occurs the microprogram can detect the
completion of the memory access by specifying a wait for
memory done.

Two different types of fetches can be requested. The
instruction fetch (IF) moves the contents of a 16-bit word
from main memory to the memory input register (MIR)
and the instruction buffer (IBR). The operand fetch (OF)
moves a 16-bit word to the memory input register and does
not change the instruction buffer. Instruction fetches are
usually used for fetching 16-bit macroinstructions for
decoding from the IBR. The operand fetch is used for
general data and address fetches. The microword which
requests a fetch provides the address in main memory.
After the request is made it is handied compietely by
memory control and requires no further actions in the
following microinstructions.

Example of fetch sequence

n n+1 n+2
request wait for (data is
instruction memory ready for
fetch done use in MIR)

Memory requests to store data are of two types. The first is
the operand store (OS), which stores a 16-bit word in main
memory. The second is the byte store (BS), which stores
only an 8-bit byte. As with the fetch operations, the
microinstruction which requests the store must furnish the
main-memory address for the operation. Microinstructions
following the request for a store must provide the data to
be stored on the ALU until the memory operation is
complete.

Example of store sequence

n n+1 n+2

request store RO — ALU| (operation

using P as wait for complete)
address memory
done

During operand stores, the memory data are derived from
the ALU output. if the ALU input is from any of the 16
general-purpose registers and an arithmetic operation is

2-18

specified for the ALU, incorrect parity data may be stored
in memory. This situation can be avoided by using only
logical ALU functions during operand stores; or by
addressing the general-purpose register to the proper ALU
input during the microinstruction that initiates the memory
store cycle. Figure 2-4 is a coding example of an operand-
store sequence using an arithmetic operation with a
general-purpose register as the data source.

Completion of a memory operation is detected either with
the wait-for-memory-done function or by requesting another
memory operation. Wait-for-memory-done suspends mi-
croinstruction execution until the memory operation is
complete. Requesting another memory operation has the
same effect because microword cannot complete until its
memory request is acknowledged by memory control and
requests are not acknowledged until any previous request
is complete.

Override

An active memory access may have the type of operation
changed by the next microinstruction. By making an
immediate change the immediately prior action is overrid-
den. This can be conditional upon the result of the same
test available for addressing (GF field).

Example:

Microinstruction Microinstruction Microinstruction

Cycle n Cycie n+1 Cycle n+2
Initiate memory memory
memory store store
store starts continues
override too late
possible to override

Memory cycies may be initiated by microinstructions either
unconditionally or depending on the results of a test.

2.4.1 Unconditional Cycle Initiation

A memory cycle is unconditionally initiated or overridden
when the SF field equals 01 or if the SF field equals 10 and
the TF field equals 0O.

The IM field specifies the type of operation and the address
source. Permitted operations are:

IM Value Action

XX00 Read data from memecry into the instruction
buffer and memory input register (instruction fetch).

XX01 Read data from memory into the memory input
register (operand or address fetch).

varian data machines @—ﬁ

CAPABILITIES

- . _ I B §
] L - AR I S
e —
- “A e — _ . *
T T ¥11 i i Tt - 7
- b i : i ; L i I L |
i 4 T ﬂ ,— T T ,‘ _ : 4\ Jlﬂ ” T J W “ , : T
P W i , | | ; | |) e —_—]
. _ | ! | | w | i i ; I I B 1
-t J— —_—_— —
|| ¥IN g2
SL m»zﬁu m::. @zHao< A8 amd@wpm 38 41 Wivd 3SHL SAAIABN I ByoI
N DEIACER D 1A
MCIH)Y >l mummmwaUN_whgéi.mefzz 01°(°3d8)9"#/| | N39| [T
| B YOIW LX3IN IWL NT a35N 39 T71IM HITHM .M s3Ss3yaay 3¥d ¢
w« W@g¥d 6S3¥dqV z< ON1ISnN m4u>u AdOHINW muw‘pm v ﬂw_,(xHh_\.m.RHJ &‘,x.OH
! T T
| TN - SOWIM) () £7° (¥dD$e)) 11D]
, b p%cm,:u@ﬁzfyi (LA INGRIZ ET>TTRE 74 BEE:
ZO.h<U_u_h2wm‘_ ’) i D._m_u‘ FZmE%O{n@_‘R 378VidVA — 1‘4‘1H~[‘ R zo_p(twao:

sauiyoew ejep :n:m>@

BN

WHOJ DNIGOD Sva

V1112085

Figure 2-4. Coding Example of an Operand-Store Sequence

2-19

— varian data machines

CAPABILITIES

IM Value Action
XX10 Write the full word output of the ALU into memory.

XX11 Write the byte from the ALU specified by the byte
address flag (BYTA) into the corresponding memory
byte. The other memory byte at the designated word
address is unaffected. If BYTA is false, the left byte is
written. If BYTA is true, the right byte is written.

BYTA, the byte address flag, copies bit O of the general
register specified by the AA field whenever a general-
purpose register is specified as shifted input to the
ALU input A bus.

The operation may be changed by the following microin-
struction by specifying the new operation with the IM field
equal to 00XX. This permits, for example, conversion of a
store cycle into a fetch or an instruction fetch into an
operand fetch.

The data to be written to memory must be maintained at
the ALU output by the microinstruction(s) following
initiation until the cycle is complete.

The source to be used for loading the memory address
register is specified as follows:

IM = 01XX ALU output
IM = 10XX Program counter
IM = 11XX Memory input register

2.4.2 Conditional Cycle Initiation

A memory cycle may be initiated (or overridden) or not
depending on the results of a test specified by the GF field.
Conditions tested were described previously in the section
of test addressing.

If the TF field is not equal to 00 and the SF field equals 10,
the cycle will be initiated (or overridden) if the tested
condition is false.

If the SF field is equal to 11, the cycle will be initiated (or
overridden) if the tested condition is true.

In either case, the IM field specifies the operation to be
performed and the address source to be used as described
in the previous section.

2.4.3 Special Transfer

ALU output data may be transferred to the instruction
buffer and memory input register by using the memory
data bus. This does not involve activation of any memory
module. To initiate this transfer the SF field must be equal
to 00 and the IM field equal to 0100. The ALU output data
must be set up by the initiating microinstruction and
maintained for one more microinstruction.

2:20

2.4.4 Wait for Memory Done

The wait-for-memory-done function suspends microinstruc-
tion execution until memory control signals completion of
central control’s prior request. This function is SF = 0 and
IM = 0001. If no central control has no prior request
active, the wait-for-memory-done has no effect.

Table 2-8. Memory Operations

Control Field
Function SF TF IM
UNCONDITIONAL INITIATION ~— 01
or
10 |00
CONDITIONAL INITIATION
Condition True 11
Condition False 10 {Not 00
(Condition Specified in GF)
EITHER
Operation XX00
Read memory data into
instruction buffer and
memory input register
Read memory data into XX01
memory input register
Write ALU word output XX10
Write ALU byte output XX11
Address Source or Override
Override operation 00XX
ALU output 01XX
Program counter 10XX
Memory input register 11XX
SPECIAL TRANSFER
(ALU output to instruction 00 0100
buffer and memory input
register)

2.5 MICROPROGRAMMING EXAMPLE

General

lAs an example of instruction implementation using Varian
microprogramming, the steps of a single-word addressing
load accumulator LDA in the direct address mode will be
traced.

SS1IM

Initially the instruction pipeline is assumed to be empty so
a new instruction must be fetched from main memory. The

varian data machines

first microinstruction studied will be that obtained from
control store location 13E (all addresses are given in
hexadecimal). This location has the label SS1M, which is
one of the microprogram’'s standard states.

The microinstruction fields at 13E are:

TS AF MS MT FS TF SF GF
0000 01001 0010 0 0000 00 01 0000

MR AB IM LB LA RF FF MF
0 00 1000 00 00 000 0000 00

CF WR SC VF WF XF SH BB AA
0 0 0 0 0 00 000 0000 0000

The function of this microinstruction is to initiate an
instruction fetch from the memory address specified by
the program counter. Note that the SF field equal to 01
specifies unconditional initiation of the memory cycle. The
IM field specifies use of the program counter for an
address source and the instruction buffer and memory
input register as destinations for data received from
memory. The FS, MT, TS and TF fields contain all zeros so
normal mode addressing is specified. The next control store
address will be 092. No other fields of the microinstruction
are pertinent.

SS2m

Location 092 is another microprogram standard state
labeled S$S2M. It continues the process of filling the
pipeline by initiating another instruction fetch using the
incremented contents of the program counter.

The microinstruction fields at 092 are:

TS AF MS
0000 00010 1101 O

MT FS TF SF GF
0000 00 01 0000

MR AB IM LB LA RF FF MF
0O _ 00 1000 00 00 100 0000 0O

CF WR SC VF WF XF SH BB AA
600 0 0 O 006 000 0000 0000

Again the SF field is equal to 01 and the IM field is equal to
1000 specifying another instruction fetch using the
program counter. In this case, however, the RF field equals
100 specifying that the program counter will be incre-
mented before it is used an address. This microinstruction
will not be immediately executed as the previous microin-
struction initiated memory activity and the memory

interface will remain busy until the first instruction from
memory is loaded into the instruction buffer and the
memory input register. At the time, the current microin-
struction completes and the next microinstruction from

location 02D becomes active. Normal addressing occurs
again due to FS, TS, MT and TF fields being zero. No other
fields of the microinstruction are pertinent.

CAPABILITIES

SS3M

Location 02D is another microprogram standard state
labeled "'SS3M". |t causes decoding of the instruction
fetched from memory while checking for interrupts. It also
copies the instruction buffer into the instruction register to
make room for the next instruction from memory.

The microinstruction fields at 02D are:

TS AF MS
1110 01101 0110 0

MT Fs TF SF GF
0000 00 00 0101

MR AB IM LB LA RF FF MF
0 00 0110 00 00 000 0000 0

CF WR SC VF WF XF SH BB AA
00 0 0 0 0 00 000 0000 0OOCO

This microinstruction manipulates no data paths nor does
it initiate any memory cycles. Its sole purpose is to check
for interrupts and, if there are none, cause a branch to the
required microsequence. The TF field is equal to 0 and the
GF field bit 0 is a one causing data transfer from the
instruction buffer to the instruction register. With the SF
field equal to 00 and the GF field bit 2 equal to one,
interrupts and decoder addressing are enabled. The TS
field defines the interrupts which are enabled - all except
170 interrupts unless the memory protect option is
installed. The IM field specifies selection of the interrupt
flag. If this flag were set, interrupts would be suppressed.
The flag is reset by this microinstruction. If an interrupt
were active and the interrupt flag had not been set, the
next control store address would be ODX where X
designates the four bits supplied by the interrupt logic. This
would produce a branch to the interrupt microprogram
sequence.

Assuming no interrupts are present, the new control store
address will be determined by the decoder logic. The
instruction fetched from memory is assumed to be 10F9
(hexadecimal) or 010371 (octal). This is a V73 "LDA”
instruction with direct addressing of location 00F9 (hex-
adecimal). The most significant four bits of the instruction
buffer address the first decoder control store at location
one. The next four bits address the second decoder control
store at location 00. The decoder control store contents
are:

1st decoder

Control store B12 =1
location 1 B8-BO = 110000010

2nd decoder

Control store A8-A0 = 010000000

location O
Since B12 equals 1, the B8BO and A8.A0 address

components are logically ORed to produce an address of
182.

2-21

-

varian data machines

CAPABILITIES

SWA10

Location 182 contains the first microinstruction of the
single word addressing sequence (SWA10) for the
instruction fetched from memory. It forms the effective
address by masking bits 00 through 10 from the
instruction register. It also initiates the operand fetch.

The microinstruction fields at 182 are:

TS AF Ms MT FS TF SF GF
0000 10010 1111 0 0000 00 01 0000

MR AB IM LB LA RF FF
0 00 0101 10 00 011 1010

MF CF WR SC'VF WF XF SH BB AA
1 1M 1 1 0 0 00 000 0000 0000
T :

= == --= == 16-bit mask literal-==-----~ 4

The LB field equals 10 so the ALU B input bus will have the
contents of the instruction register masked by the 16 bits
of the MF, CF, WR, SC, VF, WF, XF, SH and BB fields (a
zero in the mask enables the corresponding instruction
register bit). The mask equals F800 so the low order 11 bits
of the instruction are used. ‘

The ALU mode is determined by the FF field (1010) in
conjunction with the LB field (forces logical mode)
resulting in an ALU function of the ALU = B.

The RF field equals 011 so the ALU output is copied into
the operand register.

The SF field equals 01 so unconditional memory control is
specified by the IM field (0101) to be fetch an operand
into the memory input register using the ALU output for
an address source. This microinstruction will complete
when the memory cycle initiated by the microinstruction at
092 completes.

The FS, TS, TF and MT fields all contain zeros so normal
addressing is used and the AF and MS fields specify the
next control store address of 12F.

SWA20

Location 12F contains the second microinstruction of the
single word addressing sequence (SWA20). It decodes bits
13-15 of the instruction register contents to determine the
class of the single word addressing instruction.

The microinstruction fields at 12F are:

TS AF MS MT FS TF SF GF
0000 11110 1100 1 1111 00 00 0000

MR AB IM LB LA RF FF MF
0 00 0000 00 00 0COO 0000 O

2-22

CT WR SC VFF WF XF SH BB AR
00 0 0 O O 00 000 0000 0000

No data manipulation or memory controt operations are
performed by this microinstruction. it serves only to
branch to the specific microsequence for the class of
single-word addressing instruction contained in the
instruction register. Field select addressing is used to
perform this decoding (FS field is not equal to 0000). The
FS field is equal to 1111 so the selected field is bits 11
through 15 of the instruction register. The composite
address formation is illustrated:
876543210
AF field contribution: 111100000
or =111100000

TS field contribution: 000000000
Field selected from
instruction register:
(I = 10F9)

000000010
and = 000000000

Mask consisting of MT 000011100

and MS fields

Final effective address
produced by inclusive or

111100000

The address of the next microinstruction is then 1EQ.

LDA1

Location 1EO is the first microinstruction specific to the
LDA instruction (LDA1).

This microinstruction increments the program counter and
initiates another instruction fetch from main memory.

TS AF MS MT FS TF SF GF
0000 01011 0101 O 0000 00 01 0000

MR AB IM LB LA RF FF MF
0O 00 1000 00 00 100 0000 O

CF WR SC VF WF XF SH BB AA
00 0 0 O O 00 000 0000 0000

The RF field equals 100 specifying that the program
counter will be incremented during this microinstruction.

The SF field equals 01 so unconditional memory control is
specified by the M field (1000) to fetch an instruction into
the instruction buffer and memory input register using the
program counter for an address source. (Note that the

program counter is incremented during the microinstruc-
tion so the new value will be used for the memory cycle).

Normal addressing is used to specify the next microinstruc-
tion address (TF, TS, FS, MT fields are all zero). The AF
and MS fields define the address to be 0BS.

LDA2

Location OB5 is the second microinstruction specific to the
LDA instruction (LDA2). This microinstruction transfers
the contents of the memory input register to the
accumulator, RO; transfers the instruction buffer contain-
ing the next instruction to the instruction register to make
room for the instruction whose fetch was initiated by the
microinstruction 1E0; decodes the instruction buffer to
determine the starting address of the next microsequence
and checks for interrupts.

The microinstruction fields at 0B5 are:

TS AF Ms MT FS
1111 01101 0110 0

TF SF GF
0000 00 00 0101

MR AB IM LB LA RF FF MF
0O 00 0110 01 00 000 1010 1

CF WR SC VF WF XF SH BB AA
0601 0 0 0 00 000 0001 0000

The ALU B input is specified by the LB field (equal to 01) to
be one of the special registers. The BB field (equal to
0001) defines the memory input register as the source.

The ALU operation is specified to be in the logical mode
(MF = 1) with the ALU output equal to the ALU B input
(FF = 1010).

The WR bit equals a one so the ALU output data will be
written into the register specified by the AA field (AA =
0000) which is the accumulator (A register). This is the
execution phase of the LDA instruction.

The SF and TF fields are both equal to 00 and the GF field
bit O is a one so the instruction buffer contents are copied
into the instruction register. The GF field bit 2 is a one so
the instruction decoder is enabled and interrupts are
checked.

The IM field equal to 0110 with the SF field equal to 00
selects and resets the interrupt flag. If the flag is set, the
decoded address and interrupts are suppressed and the
next microinstruction is fetched from location 0DO0. All
interrupt classes are enabled as the TS field contains all
ones. If an interrupt is active and the interrupt flag is off,
only the decoded address is suppressed and the next
microinstruction is fetched from the address specified by
the AF field and the interrupt logic. This address is 0DX
where X is the address supplied by the interrupt logic
(X#0).

If no active enabled interrupts exist, the next microinstruc-
tion will be fetched from the address specified by the

varian data machines

CAPABILITIES

SSIM (13E)

INITIATE INSTRUCTION
FETCH USING P

552M y (092)
INCREMENT P

INITIATE INSTRUCTION
FETCH USING P

SS3M J, (02D)

DECODE INSTRUCTION
BUFFER

TRANSFER BUFFER TO
INSTRUCTION REGISTER

ENABLE INTERRUPTS

SELECT AND RESET
INTERRUPT FLAG

SWA10 v (182)

INSTRUCTION REGISTER
BITS 00 THRU 10 ALU
LOAD OPERAND REGISTER

START MEMORY OPERAND
FETCH USING ALU

SWA20 . (12F)

FIELD SELECT INSTRUCTION
REGISTER BITS 13 - 15

I 000

13-15
LDAI ! (1E0)
INCREMENT P

INITIATE INSTRUCTION
FETCH USING P

LDA2 L 4 (0B5)

COPY MEMORY INPUT
REGISTER INTO RO

TRANSFER BUFFER TO
INSTRUCTION REGISTER

DECODE INSTRUCTION
BUFFER

SELECT RESET INTERRUPT
FLAG

VIir-r938

Figure 2-5. Flowchart for LDA Instruction

DECODED SINGLE WORD
ADDRESSING INSTRUCTION

2-23

—

varian data machines

CAPABILITIES
IDENT SSIM S52M SS3M SWAI0 SWA20 LDA LDA2
(HEX. ADOR.) (136) (92) (2D) (182) (12p) (1E0) (0Bs)
FUNCTION FETCH FETCH FETCH FETCH FETCH FETCH
LDA NEXT INST, NEXT INST. | OPERAND OPERAND THIRD INST.
z
Q |request IF IF OF IF
b
ADDRESS P P ALU P
INPUT A
INPUT B I A O7FF MIR
2
I
OuTPUT TRNB TRNB
DESTINATION RO
9 | sAMPLE
2
<
hd
© |rest
FIELD
MODE DECODE SELECTION DECODE
o N3-15
z
Z
2
<
8 LDAT+X FROM
a FROM
2 |aporess $52M S53M DECODER SWA20 g«jsgs X - LDA? DECODER
o ENABLE 1BR 1
4 | SPECIAL INCP INTERRUPTS INCP ENABLE
5 |AcTIONS 1BR— INTERRUPTS

Timing diagram shows the start-up and execution of a sequence of single-word addressing instructions (330 nanosecond

memory cycle time is assumed).

VTil-2084

decoder control store logic. If the instruction buffer
contains another single-word addressing instruction, the
next address will be 182 (SWA10) and the sequence will be
repeated.

Figures 2-5 and 2-6 show a flowchart and flow diagram of
the microinstruction sequence described. Note that the
pipeline effect of buffering instructions permits efficient use
of the memory. (A 330-nanosecond semiconductor memory
was assumed).

2.6 TIMING CONSIDERATIONS

Most microinstruction operations take place at the conclu-
sion of the cycle. Certain exceptions do exist. ALU inputs
are sampled at the midpoint in time of the cycle. Control-
store address information, memory addresses, and most
register and flag changes occur at the end of the
microinstruction execution. The areas below should be
considered while planning microprograms.

Program counter incrementation (RF = 100 or 111)
Incrementation takes place at the midpoint of the

224

Figure 2-6. Flow Diagram of LDA Instruction

microinstruction. Thus the program counter value
applied to the ALU input will not be the incremented
value. The new value will be used as a memory
address, if the program counter is specified as an
address source.

Byte address flag
The byte address flag is set or reset at the temporal
midpoint of the microinstruction. Thus, it can be al-
tered in the same instruction which requests a byte
store and its new value will determine which byte of
the memory location is to be altered.

Memory write operations

ALU inputs, function, mode and carry must be
maintained constant throughout any memory write
cycle. This is accomplished by specifying another
memory cycle immediately following the current cycle
thus interiocking execution of the next microinstruc-
tion with completion of the memory cycle in progress
or by using the wait for memory done function (SF =
00, IM = 0001).

Memory input register
The memory input register (MIR) should not be used
as an ALU input if it can receive a new value from

varian data machines

memory during that instruction. Thus, the MIR should
not be used as an ALU input by an instruction which
Causes a wait for memory done to complete a memory
fetch. If the microinstruction which immediately fol-
lows a fetch request does not result in a wait for
memory done, it can apply the MIR to the ALU and
obtain the old value. Subsequent instructions can not
obtain the old value and the new value can not be
applied to the ALU until the instruction following
memory completion.

Note that the above discussion only applies to the
MIR as an ALU input. The MIR can be used as a
memory address source during the same instruction
in which it is changing. In this case, the new value
just received from memory will be used as the memory
address.

Special transfers
The transfer of ALU data to the instruction buffer and
memory input register requires ALU data to be
maintained for two microinstructions.

170 operations
11 the 1/0 section is not idle when a new 1/0 operation is
specified, microinstruction execution will not occur
untit the 1/0 becomes idle. A wait for 1/0 done
function (SF = 00, and IM = 0010) will cause a
similar wait condition until the 1/0 DN bit becomes
true.

Use of the 1/0 register
If direct memory access or similar 1/0 operations are
possible the 170 register may be altered. Care in use of
this register is indicated. Control of the 1/0 register is
described in the 1/0 section of this guide.

2.7 ADDITIONAL CAPABILITIES

2.7.1 Register Field Control

Many types of instruction words contain fields which
specify registers which contain operand data. If all
combinations of operations on all possible registers had to
be specified by individual microinstructions, the control
store size would be quite large.

A Varian 70 series system permits three- or four-bit fields
to be selected from the instruction register and stored and
maintained in the control-buffer-register specification
fields. This permits a single microinstruction to handle all
combinations of registers for any operation.

CAPABILITIES

This register field extraction is performed independently of
the field select addressing function and both may be used
simultaneously.

The AA and BB fields of the microinstruction contained in
control store are copied into their corresponding positions
in the control buffer any time the AB field equals 00 and
the MR field equals 0. This is the normal mode of
operation.

When the SF field equals 00 and no i/0 request is active,
the AB field equals 01 or 10; the TS field specifies a four
bit field of the instruction register to be loaded into the
control buffer’s AA or BB field. The field not being loaded
will be loaded into the control buffer's AA or BB field. The
field not being loaded will be maintained at its last value.
A code of AB equals 01 and loads the field selected into
the BB field. A code of AB equals 10 and loads the field
selected into the AA field.

The MR bit is used to mask the most significant bit of the
selected field. If MR equals zero, the most significant bit of
the selected field will be treated as a zero. If MR equals
one, the most significant bit of the setected field will be
loaded into the designated field.

The AA and BB fields can be maintained in their current
state by specifying and AB field equal to 11 while the SF
field equals 00 and no 1/0 request is present.

If no /0 request is present, the AB field equals 00 and the
MR field equals 1, the control buffer AA field will be
maintained at its current value and the BB field will be
forced to either of two addresses depending on data loop
conditions and the WF field.

WF field equal to 1

Operand register bit 01 = 1; BB = 1111

Operand register bit 01 = 0; BB = 1110
WF field equal to O

ALU bit 15 = 1; BB = 1111

ALU bit 15 = 0; BB = 1110

This function is used by the Varian 73 standard instruc-
tions microprograms for multiply and divide.

Register field control operations are summarized in the
tables following.

225

varian data machines

CAPABILITIES

Table 2-9. Register Field Control

Function

SF

AB

Control Fields

MR TS WF

Load A and B fields from
control store

Inhibit loading of A field
and place selected 4 bit
field (masked) from in-
struction register into

B field

Inhibit loading of B field
and place selected 4 bit
field (masked) from in-
struction register into

A field

tnhibit loading of A and
B fields

Inhibit loading of A field
and force B field to 1110

if ALU output bit 15 = 0 or
to 1111 if ALU bit 15 = 1

Inhibit loading of A field

and force B field to 1110

if operand register bit

01 = O or to 1111 if operand
register bit 01 = 1

All functions are inhibited
if an 170 request is issued.

00

00

00

00

00

01

10

11

00

00

0

Selects
field

Mask most
significant
bit of BB field

Selects
field

Mask most
significant
bit of AA field

Table 2-10. Register Field Selection

Bits Selected From
Instruction Register

TS Field for register file
000 03 02 01 00
[¢]0)8 04 03 02 01
010 05 04 03 02
011 06 05 04 03
100 07 06 05 04
101 08 07 06 05
110 09 08 07 06
111 10 09 08 07

Other Controls

Transfer instruction buffer to instruction register
The contents of the instruction buffer will be transferred to

the instruction register when TF and SF both equal zero,
and GF has a low-order bit set to 1.

2-26

Enable Jump Signal

A signal is sent to the memory-protection option designat-
ing a jump instruction by setting the LB high-order bit to
zero and the SC field to zero and the XF field equal to 11 or
10. If the XF field equals 11, the interrupt flag will be reset.

Reset Interrupt Flag

The interrupt flag will be reset if the LB field equals 00 or
01 and the XF field equals 11 or O1.

Enable Special ALU Mode

(This feature is useful for the standard instruction set, but
not generally suggested)

The ALU mode, carry input and overflow sampling may be
forced according to the contents of the instruction register
by setting the LA and LB fields equals to either 00 or 01

varian data machines

(high-order bit equals zero) and the SH high-order bit
equal to 1. In this case, the ALU function will be as follows:

Bit

3 As specified by FF field

2 most significant 2 bits
1 Instruction register bit 7
0 Instruction register bit 7

complemented

2.7.2 Memory Addressing to 64K

The standard instruction set has addressing capability to
32K words with 15-bit addresses. The use of bit 15 to
select indirect addressing mode removes it from use as an
address bit. The memory modules can recognize a 16-bit
address which increases the range of addresses to 64K
words.

The most significant bit of the memory address bus is
normally grounded to prevent any address generated by
the standard instruction set from attempting to access
above 32K words. This is necessary since the high-order bit
can be set by indirect memory reference in the host
instruction set.

The WCS permits use of the full 16-bit addressing
capabilities of a Varian 70 series system. This enabling is
automatically inhibited while executing from page zero so
standard 620 problems will execute correctly in the lower
32K words of memory.

User-written microprograms in the WCS can generate 16.
bit addresses to cause access to the full 64K words. This
mode is enabled or disabled with a group of control fields
in the microinstruction. Once enabled this mode is
retained until explicitly disabled as described below or a
system reset occurs. The enabled mode is not effective
when page zero is active.

64K Mode of Memory Addressing

Enable Disable
SF=0 SF=0

TF=0 TF=0
IM=1101 IM=1101
LB=11 LB=11

MF =1 CF=11or 10

Changing the memory mode requires all the
conditions set as indicated. Figure 2-7 illus-
trates memory bus control.

2.7.3 Memory Bus Lockout Status

Systems in which multiple processors share the use of
common memory modules often require the capability of

CAPABILITIES

SYSTEM RESET

—

64K
ADDRESSING
DISABLED

ENABLE

4

64K
ENABLED
IF PAGE 0

l

MICROPROG
DISABLE

() ENABLE=IM=1101A (T = 0) A
(S=0)A{LB= 11) A(MF = 1)

@ DISABLE = (IM = T101)A (T = 0) A
(S=0)A(LB=11)A(C = 10VIT)

}T11-1806

Figure 2.7. Fiowchart of Memory Address Control

testing the contents of some memory locations and
modifying those contents (if the results of the test indicate)
without the possibility of another processor gaining access
to that location between the test and the change.

WCS Implementation

The WCS permits use of a function allowing the processor it
controls to temporarily lockout all memory modules
connected to its memory bus. While the memory system is

2-27

——

varian data machines

CAPABILITIES

locked out on one port, no accesses are permitted on the
other port. To prevent simultaneous lockout from both
processors the lockout mode for any memory bus only
becomes enabled when the requesting bus actually gains
access to the memory (so the other bus cannot establish
the lockout mode). The memory lockout mode is set or
reset with the following microinstruction fields:

Set Reset
Field LOCKOUT LOCKOUT
SF 0 0
TF 0 0
IM 1101 1101
LB 11 11
CF X1 X0
AA XXX0 - XXX1

X indicates a bit position not involved in this operation.

If priority memory access (PMA) is present in the system,
caution must be exercised to prevent the PMA from
establishing its own lockout mode while either processor is
in lockout mode. Simultaneous lockout would prevent all
further accesses to memory and ’lock-up” the system.
Figure 2-8 illustrates memory bus lockout.

Lockout is removed by system reset.

2.7.4 Stack Use

Three stack operations, branch/push, branch/pop and
branch/delete are used on the microprogram-return stack.
All are global and effect a page selection. On the branch/
push and branch/delete, the TS field gives the new page
number. On the branch/pop, the word at the top of the
stack gives the new page number. The return address
which is pushed is an independent 13-bit specification

PROCESSOR

A MEMORY

PROCESSOR
B

t t

?

t

PORT A

PORT B

MEMORY BUS LOCKOUT STATUS

MEMORY CYCLES
PERMITTED

PROCESSOR A
ACCESSES
FOR TEST

PROCESSOR A
MODIFIES

VTi1-1808

MEMORY CYCLES
FORBIDDEN

PROCESSOR A
ACCESSES
FOR TEST

PROCESSOR B
ACCESSES
FOR TEST

PROCESSOR A
MODIFIES

Figure 2-8. Memory Bus Lockout

2-28

varian data machines

provided by mask field of microinstruction from the
destination of the branch. The 13-bit specification is made
up from the following fields of the microinstruction:

PAGE Word

12711]10(¢ 8 7 654 3210

WR| SC | VF | WF XX SH BB

All stack operations have a value of zero for the SF and TF
fields, M set to 1101 and LB set to 3. Push requires bit 1
of the AA field set to 1. Pop is designated by bit 2 of the AA
field set to 1 and bit 0 of the BB field set to 0. Branch/
delete is the same as branch/pop except bit 0 of the BB
field is set to 1.

TF SF M (B AA BB

Branch/push 0 0 D 3 bitl
=1
Branch/pop 0 0 D 3 bit2 bito
=1 =0
Branch/delete 0 0 D 3 bit2 bito
=1 =1

In initializing the stack an error branch can be pushed into
the first location. If a microinstruction tries to "’pop’ this
return, an underflow condition will occur and the error
branch will be taken. An attempt to 'push” one more level
than the sixteen allowed causes a branch to the address at
stack location zero.

In addition to pop and push operations on the stack, a
stack entry delete operation is provided. This causes a
page branch to the address specified by the processor and
deletes one entry from the top of the stack.

All stack return addresses including the error return are

restricted to the WCS. This avoids conflicts with processor-
generated addresses during the pop operation.

Questions and Answers About Microprogramming Stack

Q: The WCS stack push and pop operations do not appear
to be mutually exclusive. If both are specified, would the
stack first pop the new address then push the return
address?

A: Such an operation is undefined and should be avoided.
Q: Do micro stack operati'ons proceed at full speed?

A: The stack operates at the same speed as other writable
control store operations -- 190 nanoseconds.

2.7.5 Memory Addressing Using the
Optional Memory Map

The memory-map key register (used by VORTEX il) cannot
be easily modified from the WCS. As an option, the memory

CAPABILITIES

map can be wired to operate with the processor key
register. This mode is not supported by standard Varian
software. The following paragraphs describe this special
mode of operations.

The processor key register is four bits which may be applied
to the ALU input bus B as part of the status word. It is
loaded from ALU output bus bits 12-15 and applied to the
memory address bus as a four-bit extension to the 15-bit
memory address register. The key register provides bits 15-
18.

18 17 16 15]14 0

key register Memory Address Register
memory map input
19 bits

when 64K mode is enabled, bit 15 of the memory address
register is also ORed into the effective map input bit 15.

During memory cycles initiated by 1/0 (DMA), the 1/0 key
register is applied instead.

Care must be taken in using the processor key register as
an input to the ALU input bus B. No 170 initiated memory
bus activity must take place during application of the
status word or the value of the /0 key register may be
used instead of the processor key register.

2.7.6 Memory Protection

It the memory protection is enabled, write operations are
automatically inhibited. A memory-protection internal
interrupt is generated as well as an [/0 interrupt request.
The memory-protection option may be disabled only by
appropriate 1/0 instructions, not by microinstructions. Care
must be taken in using the memory protection if more
than 32K words of memory are to be addressed (bit 15 of
memory address is enabled). Such use is very specialized
and should only be undertaken after consultation with
Varian Data Machines.

2.7.7 Address Comparator Logic

Address comparator logic is provided in Varian 70 series
processor to prevent erroneous operation in the event a
store instruction stores data into the next memory location
in the program (macro). Erroneous operation would occur
because the processor fetches the contents of the next
memory location (n + 1) before the execution of the current
instruction (at location n) is completed. The comparator
logic compares the address from the program counter with
the address from the memory address lines. If the addresses
are equal, the comparator logic generates an equal-address
flag (MPLE) which enables the memory contents already
fetched into the processor’s instruction buffer to be updated
to the new contents stored by the store instruction.

2:29

—

varian data machines

CAPABILITIES

A store instruction can thus cause a dynamic alteration
to the original program flow. An example where this dynamic
alteration would be useful is in forming a BCS macroin-
struction in which the address is located in the A register
and the operation code is located in a memory location.
The A register is combined with the memory location to
produce the BCS macroinstruction. By using the STA in-
struction with direct addressing into location n+1, the
A-register contents are stored in location n+1 and are
processed as the next instruction in the program.

The following items should be considered when micropro-
grams involving a store instruction are written:

a. The instruction buffer is modified if the address in the
program counter equals the address on the memory
address lines and a non-memory accessing microin-
struction is executed during the store operation (no
back-to-back memory operations).

b. The instruction buffer is modified if the address in the
program counter equals the address on the memory
address lines and either a memory accessing microin-
struction or a wait-for-memory done condition follows
the store operation (back-to-back memory operations).
This type of operation is shown in the diagram below:

Microinstruction
being executed

Start memory { Memory-accessing
for store microinstruction
operation

Previous micro-
instruction

Memory operation |
being performed |

Unknown Store operation

A !
|

B |

Program counter is equal to memory
address here |

! |

!]

MPLE flag is generated due to equal

addresses |

Program counter may no
longer equatl the memory
address, but MPLE flag is
still active and the in-
struction buffer is modi-
fied anyway.

c. If microprograms are written for a user-defined mac-
roinstruction set and dynamic program alteration
occurs, all store operations should be followed by a
non-memory accessing microinstruction so that the
MPLE flag can test for equal addresses. Any modifi-
cation to the program counter during execution of the

2-30

store operation should be avoided. This type of opera-
tion is shown in the diagram below:

Microinstruction
being executed

Non-memory
accessing Next

micro- microinstruction
instruction

Start memory
for store op-
eration

Memory operation
being performed

Unknown Store operation

MPLE flag tests for equal
addresses.

2.8 QUESTIONS ABOUT
MICROPROGRAMMING CAPABILITIES

Q: If a current memory cycle is to alter the memory input
register, and the memory input register is specified as
the memory address source by the current microin-
struction (awaiting memory cycle completion), are the
old or new contents of the memory input register
used for the next cycle’'s address? Does the
situation change if the memory input register is an
ALU input and the ALU is selected as an address
source? Does the WCS clock rate affect this?

A: The new value of the memory input register is used
when the memory input register is used as an address
source. The memory input register should not be used
through the ALU to determine the address of the next
memory cycle when it can be altered by the current
memory cycle. The WCS clock rate does not affect
this.

Q: What is the standard entry point to branch to when an
interrupt is detected ?

A: Interrupts, when enabled, cause a branch to the
address specified by the AF field and interrupt address
supplied by the 1/0 control. Standard 1/0 interrupts
supply an address component of 0111 to the least
significant four bits. The most significant five bits are
specified by the user (AF field) and may be anywhere
in the currently active control store page. At that
address, the microprogram should perform the func-
tions of the V73 IWAIT microinstruction (location OD7
on page zero) and then branch to INT1 (OD1 page
zero) or perform in the current page the functions of
INT1, INT2, INT3 and INTA4.

varian data machines

Q: Is data in the memory input register protected against

DMA and PMA operations ?

: Yes, DMA and PMA operations do not alter the memory
input register.

. When reading data from memory is the data available
in the memory input register at a fixed number of
microinstructions following memory initiation, or
must a wait for memory done be placed before using
the data or starting another memory cycle ?

CAPABILITIES

: Data arrives in the memory input register no sooner

than the second microinstruction after its initiation. it
may arrive after that. The access time depends upon
DMA or PMA or other memory bus cycles, semicon-
ductor memory refresh cycles or core memory rewrite
cycles in progress at the time. |f a new memory cycle
is to be initiated immediately following completion of
the current cycle, interlocking is automatic as the
execution of microinstructions will cease until the new
cycle initiation is accepted by memory control.
Otherwise a wait-for-memory-done function must be
specified.

2-31

varian data machines

SECTION 3
TECHNIQUES

This section describes the use of flow diagrams in writing
user microprograms and the interface with the 620
emulation microprogram. Several detailed examples of flow
diagrams for sample microprograms are included here.
These examples will be continued in later sections, where
the flow diagrams will be translated into assembly
language.

3.1 INTERFACE WITH 620 EMULATION

3.1.1 Execution of User Microprograms

Branch to Control Store Implementation

The BCS instruction causes a branch to the WCS and
always goes to page 1. The control store word in page 1 is
specified in bits O - 4, allowing a branch to one of the first
32 words, which contain vectors to microprogrammed
routines. The BCS instruction is a special coding of an 1/0
instruction and, as such, is not a generic mnemonic within
the DAS assembler language. This instruction for use in
symbolic DAS coding must be defined by the user.

The BCS macro is decoded directly on the WCS page during
primary decoding time as defined by the processor logic. A
BCS is performed only if decoder control store page O is
currently selected. Any other control store selected causes
the macro to be taken as part of a different instruction set.
The BCS page branch does not change the decoder control
store selection. A focal page-branch micro-operation can
change the selection of a decoder control store to page 1.

3.1.2 Steps in Instruction Execution

The following are the general stages in the execution of a
16-bit macro instruction:

1. A microinstruction initiates an instruction fetch.

2. The instruction is transferred from memory to the
instruction buffer.

3. The instruction is copied into the instruction register
and a request is made for a decoding of the instruction
buffer contents. This decoding simply identifies the
instruction to be a member of a certain class of

instructions and effectively causes a branch to a
microroutine which does any work common to that .
class; for example, single-word memory-addressing
instructions may use the same microroutine for
computing the effective memory address.

4. Secondary decoding of the instruction determines its
exact identity. This is done by such features as field-
selection addressing, which allows using bits from the
instruction register to determine a microprogram
branch address. Using such methods, the microin-
structions which complete the actual execution of the
instruction are reached.

5. Microinstructions which form the instruction are
executed.

3.1.3 Instruction Pipeline

In our system, the term instruction pipelining refers to the
technique of fetching the next instruction from memory
before the current one has finished executing. This is
possible due to the availablility of two 16-bit registers for
holding instructions. The first is the instruction buffer
(1BR), which receives the instruction being fetched from
memory. In IBR the next instruction is held while the
current instruction being executed is in the instruction
register (). When ready, the instruction buffer is transfer-
red to the instruction register and the next instruction may
be fetched from memory.

The chief advantage of this method lies in the fact that the
microinstructions are much faster than the fetches from
memory.

Thus, without the pipeline, a one or two microinstruction
delay would be added to the execution of each instruction
while the processor waited for the instruction from memory.

Interfacing with the Pipeline

The instruction pipeline is crucial to the execution of the
standard instruction set. Thus, any new instructions being
added through microprogramming must consider and be
cautious of the effects and requirements of the pipeline.
Because of the pipeline, user's microroutines in WCS can
rely on certain things being true when they receive control
from page zero. Likewise they must make sure certain
techniques are used when they exit to read-only memory.

31

varian data machines

TECHNIQUES

Upon entry to WCS by a BCS instruction, the following
conditions exists:

a. The program counter (P) is pointing to the word
following the BCS.

b. The BCS command will be in the instruction register.

¢. The word following the BCS will be on its way from
memory to the instruction buffer and memory input
buffer.

On exit from WCS the microprogram must set conditions
for the next command, and maintain the pipeline. In
particular the following are required:

a. The next instruction to be executed is in the instruction
buffer. This will often be the word after the BCS, which
was already on its way there on entry. if the BCS has
a parameter, or if the instruction buffer was
modified, then the instruction may have to be
fetched.

b. The program counter should be incremented to one
beyond the location of the next instruction and an
instruction fetch initiated. This will not only preserve
the pipeline but will also make sure any memory
activity necessary to complete setup of condition

(a).

¢. The instruction buffer should be copied into the
instruction register in preparation for its execution.

d. A request for decoding of the instruction buffer
contents should be made along with a page branch
back to page zero, i.e., ROM. The decoding results in
the correct microroutine getting control for execution
of the next instruction.

In most cases, the preceding steps can be summarized by
the rule:

The second to last microinstruction should
increment P and do an instruction fetch.

The last microinstruction should transfer iBR to
| and request decoding addressing.

3.1.4 ROM Standard States

Much ome interfacing with the pipeline can be done by
using standard microinstructions (standard states) in
page zero. These were developed explicitly for this purpose
for use by the 620/f emulation. The most common ones
make up the three microword sequence listed below. They

32

may be used simply by doing a page jump directly to
whichever microword is appropriate.

Address Label Function

13E SS1M Restarts the pipeline at P with
an instruction fetch by P. It
then branches to SS2M.

92 SS2M Maintains the pipeline by incre-
menting P and requesting an
instruction fetch. it branches
to SS3M.

2D SS3M This instruction decodes the

IBR contents to determine the
next microinstruction to execute.
It also copies the IBR into |

3.1.5 Summary of Branches Between WCS and
ROM Control Store

From ROM to WCS

BCS Macro (from Decoder Page Zero Only)

This macro ensures the start of a processor fetch during
the primary decode of the BCS according to the V73
pipeline rule. The clock change and page selection occur
during the primary decoding of the microinstruction.

[/0 Branch

Control is transferred to the selected page of central
control store during the data phase of the |/0 command.
I/0 branch can go to any central control store page and
does not select a decoder.

This mechanism assures that no DMA /0 memory
transfers and no processor memory transfers are in
process during the clock change.

From WCS to ROM

The 1/0 branch is not a viable mechanism from WCS to
ROM.

A micro level page branch is the standard method for going
from WCS to ROM. This operation is the converse of the
BCS disscussed above.

Standard state sequences in the ROM provide pipeline
start up and various other housekeeping functions for the
standard instruction set. These may be of interest for
particular microprogramming entrances.

varian data machines

3.1.6 Varian 73 Register Usage

The 620 emulation on Varian 70 series systems uses some
general-purpose registers. Using the standard instructions
with his own microprograms a user is responsible for
preserving the settings and restoring those necessary to
their original conditions. The use and requirements for
particular registers are described below. All others are only
used by user's microprograms.

Registers 0, 1, and 2 are used for the emulation of the A, B,
and X registers respectively. These need not be restored
by user’s microprograms.

Register 3 is forced to all zeros by the hait microprogram
and used as a source of zeros by the standard instruction
set. Its restoration is required.

Register 4 is also used by the halt program and saves the
contents of the instruction register. While the standard
microprograms are running it is not used and therefore
does not require resetting.

Register 5 is a source of ones for the standard micropro-
grams and must be reestablished as such by a user's
microprogram.

Registers £ and F (15 and 16) are used as temporary
storage for some standard instructions yet their use does
not extend beyond the particular single instruction so
these two do not need to return to a set value.

Register Usage

Number Standard Use Restore
0 A register no
1 B register no
2 X register no
3 All zeros yes
4 Saves | no
5 All ones yes
6-D None no
E Temporary no
F Temporary no

3.2 FLOW DIAGRAM

3.2.1 Rationale

As the reader should now be aware, the 64-bit microword is
both extremely powerful and extremely complex. This may
result in several problems. A beginning microprogrammer
can be completely baffled how to start. Intermediate
microprogrammers tend to be confused about how much
or how little can be done in single microinstruction.

The microprogram flow diagram is designed to minimize
these problems. Making a flow diagram for a micropro-

TECHNIQUES

gram is roughly comparable to the low-level flowcharting
of an assembly language program. The flow diagram,
however, is designed to provide special assistance to the
microprogrammer. it gives the basic capabilities of the
standard microword, thus providing reminders of both
what can be done and what should be done in each
microword.

3.2.2 Format

A sample blank microprogram flow diagram form can be
seen in figure 3-1. The vertical columns each represent a
single microinstruction.

The horizontal rows are divided into the type of operations
that can be performed. A microinstruction is created by
going down a column and filling in tr\e appropriate boxes
with the specific operations desired in each general
category. Many of these operations can be specified using
the mnemonics introduced in the previous section. Table
3-1 provides an ordered list of mnemonics.

Specifically, the first row of the flow diagram is used for
identifying the particular microword. Labeled IDENT, this
row is usually left blank uniess the microword is
referenced elsewhere in the microprogram. Such reference
occurs most often when the microword is the target of a
jump from another microword. When not empty the box
usually contains the label which will be carried through to
the actual assembly language version. Depending upon the
programmers preference absolute or relative addresses
could also be assigned here.

The group of three rows under MEMORY specifies both the
current state of memory and the requests for memory
operations being made in the current microword. The
FUNCTION row specifies the former. It is useful for
charting out memory activity and optimizing the memory
usage. In microprograms where memory activity is not
critical, this row could be left blank.

The REQUEST row indicates the type of memory request
being made in the microword. The ADDRESS row specifies
the source of the memory address for the requested
operation. If no request is made, then both these rows can
be blank.

The ALU section of the flow diagram consists of four rows.
These rows specify the two inputs for the ALU, the
operation to be performed on them, and the destination of
the result.

Two rows are included in the STATUS section. The first,
SAMPLE, specifies which flags and status bits are 1o be
sampled during that microinstruction. Sampling is usually
necessary before the flag or status indicators can be

tested. The TEST row specifies which flag or status bit, if
any, is being tested in the current microword. This testing

33

]

—-@ varian data machines

TECHNIQUES

S - —

]

SNOILOV
VIO3dS

H43H10

ss3daqv

DNISS3YaAav

Elelo])}

1s3l

IFTdNVS

| SN1vVis

NOILVNILS3A

ind1lno

nv

g LNdNI

V¥ LNdNi

SS34Haav

1$3Nn03d

AYOW3NW

[

NOILONNA

AN3AI

Figure 3-1. Sample Flow Diagram Form

VTI1-2027
34

varian data machines

may be used both for conditional memory requests and
conditional addressing.

The two rows of the ADDRESSING section specify the
addressing method or mode being used and the resulting
effective address or addresses. These boxes are often left
blank to signify normal addressing with the next column
on the right to be executed next. The label contained in the
IDENT row can also be used here.

The SPECIAL ACTIONS section is provided for the micro-
operations which do not fit conveniently into the other
sections. Most common among these are the operations on
the special registers and counters. These include the

TECHNIQUES

operand register, program counter, and shift counter. Such
things as register field control or even general comments
could also be included here.

3.3 FLOW DIAGRAM MNEMONICS

The following table 3-1 lists the sections of the flow
diagram and some applicable. mnemonics. These
mnemonics represent the most common values and should
be sufficient for many microprograms. Other functions
without mnemonics can be described in whatever way the
user finds clearest. The ways could range from actually
writing the field values to putting in verbal commentary.

Table 3-1. Mnemonics for Microprogramming Flow

Row Mnemonic
IDENT None
MEMORY None
FUNCTION
MEMORY IF
REQUEST OF
0s
BS
TESTF~
TESTT,~
WAIT, MEMDN
MEMORY ALU
ADDRESS P
MIR
OVR
ALU Rn (n = 0,1,2,....F)
INPUT A Rn, SL
Rn, SR
P
ZERO
ONES
ALU Rn (n = 0,1,2,...,F)
INPUT B MIR

Comments
User-supplied labels and addresses

User-supplied commentary on memory
operations

Instruction fetch

Operand fetch

Operand store

Byte store

Conditional request (on test condition
false)

Conditional request (on test condition
true)

Wait for memory done (before going
to next microword)

ALU output

Program counter

Memory input register

Override memory operation of the previous
microword using its memory address

General register 'n’

General register 'n' shifted left on
bit position.

General register 'n’ shifted right on
bit position

Program counter

All zeros (0)

All ones (FFFF)

NOTE: When using a shifted general
register, user must specify
condition of high and low bits.

General register 'n’

Memory input register
(continued)

35

— varian data machines

TECHNIQUES

Table 3-1. Mnemonics for Microprogramming Flow
Diagrams (continued)

Row Mnemonic Comments

IOR 170 register

STAT Status word

LIT The 16-bit value from O to FFFF

MSK Instruction register masked by 'xxxx

OPR Operand register

ORSE Operand register right byte, sign
extended

OLSE Operand register left byte, sign extended

ORZF Operand register right byte, zeros in
left byte.

ORLZ Operand register right byte in left

byte position, zeros in right byte

NOTE: When using MSK or LIT, caution
should be used to avoid field con-
flicts with other mnemonics.

ALU ZERO . All zeros (0)
OUTPUT ONES All ones (FFFF)
TRNA A (transfer input A)
TRNB B (transfer input B)
INCA A+ 1
INCB* AVB + 1 (B + 1 when A = 0)
DECA A-1
DECB A + B(B- 1when A = FFFF)
ADD A+ B
SUB* A- B
SHFA A + A (shift A left one)
AND AANB
OR AVB
EOR A~-B (exclusive OR)
NOTA A
NOTB* B
TCB* AVB + 1 (two’s complement B
when A = 0)

*cannot be used when input B is MSK or LIT.

ALU Rn (n = 0,1.2,...,F) General register 'n’
DESTINATION Special registers Refer to special actions row
NOTES:

1) general register cannot be used
here if input B was LIT or MSK.

2) general registers used for both
input A and destination must be the
same general register.

STATUS, SHFT Set shift flag
SAMPLE
OVFL Set overflow flag
ALU Set ALU related flags (i.e., ALUO,
ALUS, ALUC, and ALUZ)
STATUS, OVFL Overflow flag
TEST 10SR 170 sense response

(continued)

3-6

Row

ADDRESSING,
MODE

ADDRESSING,
ADDRESS

SPECIAL
ACTIONS

* Must be used with an unconditional memory request.

varian data machines @-—

TECHNIQUES
Table 3-1. Mnemonics for Microprogramming Flow
Diagrams (continued)
Mnemonic Comments

SSW3 Sense switch three

SSW2 Sense switch two

SSW1 Sense switch one

TFIR Test from instruction register

ALUO ALU ones flag

ALUS ALU sign flag

ALUC ALU carry flag

ALUZ ALU zeros flag

SHFT Shift flag

MIRS Memory input register sign

SFTC Shift counter all ones flag (i.e.,
averflow)

GPRS General register O sign

NORM Normalize flag

Quas Quotient flag

PJMP to n Page jump to page 'n’

FSEL Field select addressing

INT Interrupt addressing

DECODE Addressing by decoder control store

TESTT test addressing; pass if test con-
dition true

TESTF Test addressing: pass if condition
false

POPIJMP Branch/pop to an address specified
by stack

NOTE: these are only a basic set of
abbreviations, to be used alone or
in combination.

P~ Test pass address
F- Test fail address
POUT Load program counter with ALU output
SCOUT Load shift counter with ALU output
OPROUT Load operand register with ALU output
INCP Increment the program counter
INCSC Increment the shift counter
INCP, OPROUT Does both.
SHFTOP, LFT Shift operand register left one bit
position
SHFTOP, RGHT Shift operand register right one
bit position

NOTE: high/low bits must also be
specified by user on these two

operations

IBR to | Transfer instruction buffer to
instruction register.

PUSH, X Push value x on the stack (requires
PJMP addressing mode)

POPDEL Delete entry at top of stack
(requires PJMP addressing mode)

ROVFL Reset overflow*

SOVFL Set overflow*

37

varian data machines

TECHNIQUES

3.4 FLOW DIAGRAM EXAMPLES
The following examples are included:

1. BCS Entry Point Initialization

2. Memory-to-Memory Block Move

3. Reentrant Subroutine Call

4. Fixed-point ADD to any of 16 general registers with
direct addressing to 64K.

5. Cyclic Redundancy Check (CRC) Generation.

Each of the examples includes a description of the problem,
a description of how it was handled, and a flow diagram.
Later in this manual, the examples will be continued in the
form of assembler listings of the code produced from each
of the flow diagrams in section 5.

3.4.1 BCS Entry Point Initialization

This is essentially an example of making a micro subrou-
tine which is simply a NOP. From the standpoint of being
an example, it details how to reach WCS and then return
to the macro level. From a functional standard point, it
provides meaningful initialization for the 20 (hex) BCS
entry points in WCS. By loading this program before all
others, any unused BCS entry points will have meaningfui
contents (as opposed to possibly fatal random contents).

Referring to the flow diagram, (figure 3-2) the thirty-two
entry points are all initialized to the same microinstruc.
tion. It is simply a page branch {0 a standard microword,
SS2M, on page zero. This will result in a return to the
macro level by maintaining the pipeline and returning
control to the ROM central control store.

3.4.2 Memory-to-Memory Block Move

This microprogram is designed to move a block of n words
from one area in memory to another.

For purposes of this example, the microprogram is called by
executing a BCS to word zero of WCS page one. [t takes its
arguments in the following format:

A register (RO): to address
B register (R1): from address
X register (R2): block length

When called, words are sequentially copied from their old
location (from address) to their new position (to address).
The number of words moved is equal to the block length.

The following commentary describes how the microprogram
operates. Refer to the flow diagram figure 3-3.

3-8

Word zero in page one is the entry point for the BCS
instruction. It contains a branch to a microword labeled
MBM, which may be on any WCS page. This is the actual
beginning of block move and no further decoding of the
BCS is done.

The microprogram starts by setting up its parameters. The
current program counter value is saved in R7. Next, the
from address minus one is put in its place. Having it in the
program counter will allow easier use of it as an address
source for memory requests. The to address is also
decremented. These addresses are decremented because
they are incremented in the instructions which request
the memory operations.

After this initialization, a three microinstruction loop is
entered which does the actual block move. The first
microword, (MBMA), increments the from address in the
program counter. It then requests that the word at that
address be fetched from memory. It also puts the memory
input register (MIR) onto the ALU output. Once the looping
is begun, the MIR will contain the word just fetched from
memory. Placing it on the ALU will cause it to be stored at
the to address, since the previous micro in the loop
requested a write of ALU output into memory.

The second mircoword in the loop decrements the block
length in R2. The ALU output (i.e., the new value) is
sampled for testing in the next microword.

The next microword, the third and last in the loop,
increments the to address in RO and tests the ALU sign
flag. If it is off, then the block length has not yet become
negative and the necessary number of words has not yet
been moved. In this case, an operand store is requested
using the to address as the destination. The next
microword will have to specify the the value to be stored,
so a loop is made back to MBMA which will do this. This
loop also causes the next word to be fetched and the
process continues until the block length goes negative. in
that case the loop is exited and the extra memory fetch
requested is simpfy forgotten.

Microword MBMB restores the program counter to the
address in R7 and starts a memory cycle to restore the
pipeline. A branch is executed to standard state SS2M
which increments the program counter and starts a second
memory fetch to fill the instruction pipeline. Upon entering
standard state SS3M, the macroinstruction is decoded and
control is returned to the processor’s centrai control store.

3.4.3 Reentrant Subroutine Call and Return

This example provides call and return microprograms for
reentrant subroutines. The subroutine call stores its return
address in the X register (R2) and saves the original
contents of X on a stack pointed to by the B register (R1).

The subroutine return simply pops the stack back into the
X register and branches back to the return address.

varian data machines @

VT11-2028

TECHNIQUES
r‘ [T T"TT I [
’ l
' J
{ 1 | |
]]
&
3 32 | 28
L g - N
F4
=}
z [
Q o A « o - g w & 22
- - ww w — - = z o w w =5
[8) =] 4 5 5 o = o [a o« Q=
z p o 2 2 lag |l Eleo|=2!|&] a w =
o S w a H s 2 w <] o aQ
a [[< < = o a 7] = -] < nda
AHOWINW J nv SNivis DNISs3Haqv H3HLO

Figure 3-2. Flow Diagram for BCS Entry Point Initialization

39

ines

data mach

varian

TECHNIQUES

H3HLO

i SNOILOV
1N0d dON 1nod 1vioads
(260) VYWEW-4
WcSS , anwgn-d Waw ssayaav m
W -]
| m
. | /1]
! W ®
i 4
00} W)
11831
4P | dNd Eafe])]
, SNV 1S3l w
5
[=4
i nv I1dNVS | &
! f
' MO}eq 39S oY 2y - Mmo|ag 8es od /Y NOILVNILS3a
VYNVHL i YON! vo3a gNvVYHL v03a v03a YNVYL 1ndino
. i >
=
HIN g 1ndNI
14 oY 2d - by od ” d v LNAdNI
g |
; nv NV d ss3ayaav
| v 5
| 30 =
A 41831 40 ,, 1s3nozu| S
H <
elep Belep BlED !
Buiyojay Buiyolsy Bunols | NOILONNS
swan YNEW WawW | abed 1N3al
L 0 piom

VTii-2029

Figure 3-3. Flow Diagram for Memory-to-Memory Block Move

310

varian data machines

For purposes of this example, the subroutine call is
executed by doing a BCS to word 1 of WCS page 1. The
word following the BCS is taken as the effective address of
the subroutine being called. The subroutine return s
made by executing a BCS to word 2 of WCS page 1.

The stack operations are performed in the following way. A
push causes the B register to be decremented and the X
register stored at the resulting address. A pop causes the
X register to be loaded from the memory location pointed
to by the B register followed by the B register being
incremented.

The following is a detailed description of the subroutine
call. Refer to the flow diagram in figure 3-4.

The first microinstruction of the routine is at the BCS entry
point. On the memory-to-memory block move, this first
microword of the program did nothing but branch to the
actual microroutine. The only reason for not combining it
with the next microinstruction was to clarify the relation-
ship of the entry point and the rest of the program. In an
actual application where execution time is critical, the
microwords would have been combined. This is done on
the subroutine call example. The first microword decre-
ments the stack pointer (R1) and begins saving the
contents of R2 at the resulting address. It then does a
page branch to the rest of the microroutine which could be
on any WCS page.

The second microword places R2 on the ALU so that it will
be stored by the memory request in the first microword.
R2 must be on the ALU for the entire duration of the write
into memory. Since this could take a variable amount of
time, (depending on the type of memory in the system), a
request is made to wait for the memory-done signal. This
means the next microword will not be executed until the
write operation is complete and thus, R2 will stay on the
ALU for the necessary time.

The third microword saves the return address in R2. The
program counter is currently pointing to the word after th
BCS instruction. That word contains the effective address
of the subroutine to be called. Thus, the return address is
obtained simply by incrementing the program counter and
then storing it in R2. This microword also begins the
actual transfer to the subroutine to be called. This is done
by restarting the pipeline at the address of the subroutine.
That address is already in the MIR due to the fact it was
the word after the BCS.

The fourth microword sets the program counter to the
second word in the subroutine call and requests it be
fetched. This completes the restarting of the instruction
pipeline and a return can be made to ROM control. This is
done with a page jump to SS3M on page O. Note that the
fourth microword has performed all the functions of $S2M.

The following is a detailed description of the subroutine
return. Refer to the flow diagram in figure 3-5.

TECHNIQUES

The first microword begins restarting the instruction
pipeline at the return address. Also, the program counter is
restored.

The second microinstruction begins the fetch of the original
contents of R2 off the stack.

The third microword increments the stack pointer to finish
the pop of the stack. It also finishes the restart of the
instruction pipeline by requesting another instruction
fetch by the incremented program counter.

The last microword restores the old contents of R2, which
by now have been transferred from memory to the memory
input register (MIR). Since the pipeline has now been
restored, the microword can return to ROM using a page
jump and with request for decoding addressing. The
decode will generate the next address in page zero based
on the next 'macro’ instruction to be executed.

Note that the second to last microword performs the
functions of SS2M and the fast microword performs the
functions of SS3M.

3.4.4 64K-Memory ADD to any of the
General-Purpose Registers

This example adds the contents of any location in 64K
words of memory to the contents of any of the 16 generai-
purpose registers, RO, R1,.,RF. The sum replaces the
previous contents of the specified register. If overflow
occurs, the overflow status bit will be set. The addressing
mode for this example will be indexing by general register
R1.

In execution the contents of LOC bit 8 - 15 specify a branch
to control store (BCS) instruction. Bits 0 - 3 define the
operation to the performed and the addressing mode to be
used. Bits 4 - 7 specify the general register affected.

With indexing the contents of all LOC + 1 are added to the
contents of the register (R1), and the 16-bit sum is used
as the effective address of the operand. The operand is
fetched from memory and is added to the contents of the
register specified by the LOC 4 - 7.

A flow diagram follows as figure 3-6.

The strategy used for the operation described above has
the following steps:

1. (AD1 or AD1A) enter from decoding of BCS in page
zero. Address fetch cycle has been initiated. Initiate
next instruction fetch and increment P.

2. Transfer contents of MIR (address value) to OPR to
preserve against alteration by previously initiated
instruction fetch.

3. Perform indexing by adding contents of R1 to contents
of OPR. Initiate operand fetch using ALU output as

effective address. (continued)

311

varian data machines

TECHNIQUES

(o]
|—
SNOILOV| T
1nod Io3ds| O
A, (qzo)
j WESS L8V ss3uaav| >
: =]
. 1 o)
M ! m
i ! —_—
., ! 0o z
“ dWrd aaow| @
dWrd
is31| @
- - - T - >
” 2
: : I1dNVS | &
¢ T
i ; MO(3g
) L 1 055 2y 1y NOILVYNILS3A
i 9ONI VONI VNHL vo3a 1ndino
R O . 2
(=4
HIN g LNdNI
E
m oyd3az d 2d Iy Vv LNdNI
nv HIN N ss3avaav
R S - 2
NAWIW z
4l 4l 1IVM S0 1S3n0O3d w
— ——t—— [N . . =<
Jsul ugns
180 320}S Uo ZY
I NOILONNS
10 Y939} JO 34018
S N
Lav sbed IN3a
- I piom

VTII-2030

Figure 3-4. Flow Diagram for Subroutine Call

312

ines

data mach

varian

TECHNIQUES

(=}
! =
o) dONI 1nod SNOILOV| T
WVID3Ad m
u| VId3ds| T
apooap AQ
>
gl wou cav ss3idaav 4
=]
b]
m
7]
@
3009030 4
0 0 drd aow| ©
diNlrd
1831 m..
>
c
AVdNVYS | »
24 X8| Mo|3q aas NOILYNILS3a
aNdL VONI VNH1 YNH1L 1Ndino
x 2
c
HIN 9 1NdNI
Iy d 142 Y 1NdNI
d niv niv ssS3yaav
=
L
3l 0 3l 1sanoau | &
<
uononnsu 24 Buo "JISuUl “Ixu
puooss 4O Y9} JO yo}8y NOLLONNA
Buiyojay
zav L obed IN3al
L - 2 piom

VIIi-2031

Figure 3-5. Flow Diagram for Subroutine Return

313

@ varian data machines

TECHNIQUES

108138 pjay

18151684 S 0L pue 00 =
o1 Ly Sh piom | sbed SNOWLOV| T
! 108jas pjal 19181604 =
snowaid wouy, 195 pigy nwuz_ 1Noydo 1B PBJED0., wvIoads | J
1 0} U d ONI
0 39vd
0 Quom sav vav £qyv cav ss3vaav uﬂv
=]
D
m
»
®
300930 z
0 Ol dWrd Jaow
1831 m
>
)]
NV 14AQ ERE1GL 4 m
xy NOILVYNILS3Ia
aav daav 8NY1 1Ndino
2
c
=diIN HIW HdQ ISHA 8 LNdNI
=Xy %% V¥ 10dNI
d nvy d ss3yaav
=
41 40 _.w._
el 1S3ND3Y | ©
]
<
" HO134
40 4l 3V NOI
SS3Haqv OlLINN
sav +av €eav cav =ViIAVY/ 1aV IN3Ql

VTiI-2032

Figure 3-6. ADD from 64K-Memory to General-Purpose Register

314

varian data machines

4. Wait for completion of operand fetch by specifying next
instruction fetch with incremented program counter
and field select register specifications from instruc-
tion bits 4 - 7 into AA field. Set BB field to select MIR.

5. Add contents of MIR to contents of previously selected
register and store sum in selected register. Sample
overflow condition. Page jump to V73 page zero with
decoding of instruction fetched by step 1.

Execution Time Estimate

Execution time depends upon the memory speed involved.
With 330 nanoseconds semiconductor memory the pipeline
is kept full. The number of microinstruction times from
decoding to decoding is six. All of these are from writable
control store. The execution time is therefore six times 190
or 1140 nanoseconds. Since three memory cycles are
involved, the effective three cycle time is 1140 divided by 3,
or 380 nanoseconds.

3.4.5 Cyclic Redundancy Check (CRC) Generation

INSTRUCTION FORMAT

15 987 43 0
1 0 5 CRC Vector LOC
Data Array Word Address LoC + 1
Byte Count LoC + 2

DATA FORMAT: Packed 2 bytes in each word as follows:

Byte 1 Byte 2
Byte 3 Byte 4
Byte N~1 Byte N
may be last

byte

The packed byte array at the specified address is scanned
and the 16-bit cyclic redundancy check is performed. The
16-bit CRC is left in the accumulator (A register or RO). If
the accumulator is not cleared before entry, the accumula-
tor’s contents will be included in the CRC.

The CRC polynomial word is x] ’ + X'+ x4 ,
which is commonly used in binary synchronous
communication.

Since array size can be quite large, the instruction can be
interrupted after service of every two bytes. When
interrupt service is completed, the process of CRC
generation is resumed and runs to completion (except as
interrupted). The overfiow flag is used to signal an
interrupted instruction. If it is set, contents of the B and X

TECHNIQUES

registers are taken as data address and byte count
respectively.

RO, R1 and R2 (A, B and X) registers are used by this
instruction. RO is the current CRC value. R1 is the current
data array address. R2 is the current byte count value. RF
contains the CRC polynomial (octal 100005). The overfiow
flag is used to designate an incomplete instruction.

The calling sequence normally used would be:

TZA (ctear accumulator)

ROF 7 (reset overflow flag)
BCS CRC

Address (data array address)

a—

Byte count (number of bytes in array)

Detailed Description of Procedure

1. Enter from decoding of BCS in page 1. Address fetch
cycle has been initiated. The overflow flag is used to
designate an incomplete instruction, i.e., one which
was interrupted before the entire byte array was
scanned for CRC generation. If such an interrupt had
occurred the current data array address and byte
count in registers Rl and R2 should be used rather
than the corresponding values used when the instruc-
tion was initiated. A memory cycle to fetch the byte
count is initiated conditionally. The overflow flag is
tested for an "off'" condition. The 16-bit word
representing the CRC polynomial is placed in OPR. If
the overflow flag is off, the next step is step 2. If it is
on, step 1A is executed.

2. Thedata array address is copied from MIR into R1.

3. The contents of R1 is used as an address (through the
ALU) and the first pair of bytes is fetched. The overflow
flag is set to indicate that the instruction is
incomplete.

4. The byte count is copied from MIR into R2. ALU status
is sampled so that the byte count can be tested for zero
in step 5.

5. The shift counter is loaded with - 8 (the number of bits
per data byte). The ALU zero status flag is tested to see
if the byte count was zero. Execution is suspended
(by a 'wait for memory done'") unti! the two data
bytes are fetched. If the ALU zero flag is off, the next
step is 5A; otherwise, step 18 is next.

5A. The CRC polynomial placed in OPR in step 1 is now
placed in RF.

6. The data bytes in MIR are copied into OPR.
(continued)

3-15

—

varian data machines

TECHNIQUES

10.

10A.

11.

12.

13.

14.

15.

15A.

158B.

16.

3-16

Steps 7, 8, 9, 10, 10A, and 11 constitute the iterative
loop which accumulates the CRC for the left data byte.
In step 7, RO (the CRC) is shifted one bit left and
applied to the ALU input A while the shift counter is
incremented. Bit 15 of RO is copied into the shift flag
(DSB). Bit 15 of OPR is applied to ALU input A bit
00. OPR is also shifted one bit left. The CRC
polynomial in RF is applied to ALU input B. The
exclusive OR is performed by the ALU and the result
is placed into RO. The shift counter is tested to see if
the eighth bit of the left byte has been processed. If it
has, step 10 is executed next; if not, step 8 is next.

The DSB flag is tested to see if a correction cycle is
needed. (If bit 15 of the old CRC was a zero, the
exclusive OR operation of step 7 must be cancelled.)
If a correction cycle is necessary, step 9 is executed
next; otherwise, the next bit of the data byte is
processed by returning to step 7.

This correction cycle exclusively ORs the CRC in RO with
the polynomial in RF. The result is placed in RO. When
this is done the resulting CRC is that which would
have been obtained if step 7 had not performed an
exclusive OR. The next bit of the data byte is next
processed by returning to step 7.

This step is entered from step 7 after the last bit of the
ieft data byte is processed. The DSB flag is tested to
determine the need for a correction cycle. The byte
count in R2 is decremented. The ALU status is
sampled so that it can be tested for zero in step 11. If
a correction cycle is necessary, step 10A is executed;
otherwise, step 11 is next.

This is a correction cycle identical to step 9.

The shift counter is reinitialized to -8 for processing
the right data byte. The ALU zero status flag is tested to
determine if the right byte should be processed. If
ALUZ is not equal to one, the next step is 12; if ALUZ
equals one, the next step is 18.

This step is identical to step 7. The right data byte
which has been shifted left in OPR is now processed.

This step is identical to step 8.

This step is identical to step 9.

The operations of step 10 are performed. The DSB flag
is tested as in step 10. If it is set, step 15B is next;
otherwise, the correction cycle of step 15A is next.

This step is identical to step 10A.

This step tests for interrupts. If an interrupt is
present, step 20 is next; otherwise, step 16.

The data array address pointer in R1 is incremented
and used as an address for a fetch of the next operand
byte pair, if the ALU zero flag is off (indicating the
decremented byte count at step 25 was not zero). If

17.

1A

18.

19.

20.

the byte count was not zero, step 17 is next;
otherwise, step 18 is executed.

The shift counter is initialized to - 8 and execution is
suspended until the next pair of data bytes is fetched
from memory. Step 6 is next.

If step 1 determines the overflow flag to be set
indicating an incomplete instruction, step 1A initiates
the fetch of a data word from memory using the
contents of R1 as an address. Step 17 is executed
next.

If step 16, 11, or 5 determines the byte count to be
zero, step 18 resets the overflow flag to indicate
completion of the instruction. The program counter is
incremented and the net instruction fetch is
initiated.

A page jump to ROM (page zero) V73 standard state
/SS2M, is executed. /SS2M will initiate another
instruction fetch to fill the pipeline.

If an interrupt was detected at step 158, the interrupt
status must again be tested by step 20. This is because
interrupts can be overriden by DMA traps and must
be checked twice to ensure that a trap has not
occurred which would abort the interrupt. The 1/0
control is requested to perform an 1/0 interrupt
sequence. Decoding is inhibited since only the
interrupt status is to be tested. If an interrupt is
found, step 21 is next; otherwise, step 16 is next.

208B. The cycle is performed as in step 10A.

21.

22.

23.

24.

If an interrupt was found at step 20, the data array
address in R1 is incremented and the ALU zero flag is
tested to determine if the byte count at step 15 was
zero. If it was not zero, step 22 is next; otherwise,
step 24 is executed.

The program counter is reduced by 3 to point to the
BCS instruction. After completion of the interrupt
routine this instruction will be refetched and the
overflow flag will be tested in step 1 to determine the
need to initialize R1 and R2 from the instruction
second and third words.

Execution is suspended until the 170 control signals
completion of the interrupt sequence, then a page jump
to ROM standard interrupt state/INT2 is performed.

If the byte count was zero, the overflow flag is reset
and an instruction fetch is initiated with the
incremented program counter value.

varian data machines

CRC Generation Timing

Execution time depends on memory speed and data array
size. If no interrupts occur the timing consists of (a)
initialization -- fetch of BCS, address and byte count and
first byte pair. This involves one ROM decode cycte and
WCS microinstructions 1, 2, 3, 4, 5, 5A, 11, and 6 all at
190 nanoseconds (assuming a 330 nanoseconds main
memory cycle). Initialization thus amounts to 1520

TECHNIQUES

nanoseconds. (b) CRC processing -- each byte takes 16 to
24 steps with the average 20 plus steps 10, 11, 15, 15B
and 16 all at 190 nanoseconds. Processing takes an
average of 8550 nanoseconds for each byte pair. ©)
cleanup involves steps 18 and 19 from WCS at 190
nanoseconds, and the memory cycle of SS2M at 330
nanoseconds. Clean up takes a maximum of 710 nanonec-
onds. Altogether the timing for an array of N bytes
averages (2230 + 1/2(N - 2)) times 8550 nanoseconds.

317

—

—

TECHNIQUES

ENTER

OF BCS

varian data machines

FROM DECODE

(ADDRESS FETCH IS UNDERWAY)

000 | 1

INCREMENT P
POLYNOMIAL TO OPR

START BYTE COUNT FETCH IF INCOMP
FLAG 1S OFF (OVERFLOW)

TEST INCOMPLETE FLAG (OVERFLOW)

INITIAL SETUP

020(1A

FETCH DATA
WORD

021 [2]

CALLING
SEOUENCE

DATA ARRAY
FORMAT

SAVE ADDRESS IN R1

033 l 3
FETCH DATA WORD

SET INCOMPLETE FLAG (OVERFLOW)

TZA (OPTIONAL - SEE TEXTY

ROF (OPTIONAL- SEE TEXT)

BCS ! CRC

DATA ARRAY ADDRESS

BYTE COUNT

BYTE 1 BYTE 2

BYTE 3 BYTE 4

BYTE N-1 BYTE N

(FAAY BE LAST BYTEY

DURING EXECUTION

RO (A REGISTER CONTAINS CRC
R1 (B REGISTER) CONTAINS THE CURRENT

ADDRESS OF DATA

R2 (X REGISTER) CONTAINS THE CURRENT

BYTE COUNT

ADDRESS STEP #

VTi2-402

318

o3[7]

SAVE BYTE COUNT IN R2
SAMPLE ALU STATUS

024 5]
INITIALIZE SHIFT COUNTER
TEST ALU = 0 FLAG FOR ZERO BYTE CT
WAIT MEMORY DONE

022117

INITIALIZE SHIFT COUNTER
WAIT MEMORY DONE

026 |5A

TRANSFER OPR

TO RF

v

027 [6]

TRANSFER DATA TO OPR

Figure 3-7. Flowchart for Cyclic Redundancy Check Generation
Microprogram (1 of 4)

varian data machines S

024 ,7

SHIFT RO LEFT TO ALU A INPUT
SHIFT OPR LEFT

RO(15) ~=DSB

OPR (15) —ALU INPUT A BIT 00
POLYNOMIAL (RF) TO ALU B INPUT
EXCLUSIVE OR ALU INPUTS

LOAD RO

INCREMENT SHIFT COUNTER

TEST SHIFT COUNT OVERFLOW

SC

TECHNIQUES

PROCESS FIRST
BYTE

029 [10]

DECREMENT BYTE COUNT (R2)

OVERFLOW
=0

02 [8]

TEST DSB FLAG

SAMPLE ALU STATUS
TEST DSB FLAG

@ |
@ 1 032 [11]

INITIALIZE SHIFT COUNTER
TEST ALU = 0 FLAG FOR
ZERO BYTE COUNT

028 [o]
RO TO ALU A INPUT
RF TO ALU B INPUT
EXCLUSIVE OR ALU INPUTS
LOAD R0
(CORRECTION CYCLE)

030 IIOA
RO TO ALU A INPUT
RF TO ALU B INPUT

EXCLUSIVE OR ALU INPUTS
LOAD RO
(CORRECTION CYCLE)

-geeg-

vTiz-400 Figure 3-7. Flowchart for Cyclic Redundancy Check Generation

Microprogram (2 of 4)

319

—

varian data machines:

TECHNIQUES

VTi2-401

3-20

26

035115

03A112
PROCESS
SECOND
SAME AS . BYTE
sC
OVERFLOW
=0
034113

SAME AS

DECREMENT BYTE COUNT
SAMPLE ALU STATUS

DSB FLAG TEST

ENABLE INTERRUPTS

038]14
SAME AS E
®

:: 03E|16

INCREMENT ADDRESS (RT)
FETCH DATA WORD IF ALU =0
FLAG 1S OFF
TEST ALU = 0 FLAG (BYTE COUNT - 0)

RESET OVERFLOW
INCREMENT P
FETCH NEXT INSTRUCTION

028 (19

PAGE JUMP TO ROM

SS2Mm
(060}

DS 1

oacfisA
SAME AS .

]

TEST INTERRUPTS

Figure 3-7. Flowchart for Cyclic Redundancy Check Generation

Microprogram (3 of 4)

a INTERRUPT

037120

ENABLE
INTERRUPTS DISABLE DECODE
START /O INT SEQUENCE

INTERRUPT

varian data machines @—ﬁ

TECHNIQUES

oa1 [21]

INCREMENT ADDRESS (R1)
TEST ALU = 0 FLAG (BYTE COUNT = 0)

ALU=0

036] 3
E3

02D (24

RESET OVERFLOW
INCREMENT p
INSTRUCTION FETCH START

L

02¢ [22]
pP-3—P

(RESET PROGRAM COUNTER TO
CAUSE REFETCH OF BCS)

VTIi-1803

v

02F [23]

WAIT FOR 1/0O DONE

036 [25]

PAGE JUMP TO ROM

Figure 3-7. Flowchart for Cyclic Redundancy Check Generation
Microprogram (4 of 4)

/INT 2
(OFF)

321

data machines

varian

TECHNIQUES

o
JINO 1NQYdO sNolLov| 3
1N0YdO 1NO2S 138 ‘d9NI viodds| T
vSOHO-d4 2oHO-4
>
L10HO L0W0D 810HD-1 vOHO £0HO VIOHO-1 ssavaav]
pe)
m
w
]
2
WHON WHON 11831 WHON WHON dJ1s3L aaow | ©
| o 1
zZnv RETY) lsdi| @
N - >
c
nv IJdWYS | &
| _
‘ 44 2d 1y aNdl NOILVYNILS3G
aNyL ﬁ aNdl angl aNdl aNYL aNyl aNyL S008 "MSW 1ndino
I « | _N
f c
H iy HIW HdO 8444 "MSW HiN J Ly HIN 8§ 1NdNI
; w !
_ i vV LNdNI
| - ;
| nv NaW3W nv d ss3yaav
S - N =
4, m
0 Livm 40 | 1S3l 1s3anoau |
] 40 D
U AU S | =
| _ HO13d
; HO13d i HOL134
| s ————— ————————— $$34aav NOILONNA
m viva ' INNOD 31A8 AvHaY
e
_f V1OHO % 90HO YSOH"O | SOHD 12015 10] €0HD 2o LOHD AN3Q

VTI1-2033

Figure 3-8. Flow Diagram of CRC Generation (1 of 4)

3-22

ines

data mach

varian

TECHNIQUES

‘JW

OSONI o
00 VNIVeSLHLO 1
1N00s 00Hd O« o w._zon._.._.o< 1

; vidad
147°dOLdHS S| 3

(44.x "0 3beq) 2LOHO4 89404
Z2iNI 81LOHD-1 L1DYD 2€0,X yaelste] 604D 0LOHD-1 ss3yaay W
o
bl
m
»
@
z=Sw Z=SW z
dwrd 1i83] WHON

WHON 1354 0 1354 11831 3g0W
zZny 0148 1sai| @
>
c
Ny L4HS F1dAVS | &

o4 2y oy oH NOILYNILS3a

aNy1 HO3 944 HO3 Ho3 indino
] E
c

8444 "MSW 44 €d 34 44 8 LndNI

od A o4 Js'od vV LNdNi

ss3yaaqy
z
m
2
1s3no3y S
-

NOLLONNA

S2oHD L10HD YOLOHD 0LOHD 604D 80HOD LOHD AN3qI

|

Vrii-2034

Figure 3-8. Fiow Diagram of CRC Generation (2 of 4)

323

data machines

varian

TECHNIQUES

300034

OSON!

o
-
SLdNYYILNI 004d0O«0 wioads| 3
379VYN3 147°d@L4HS
210404 €104

9 9l S St zt 34a >
olSie} Py 240 851040 g5104H0 240 vLOHD CIoUOL ss3avaav 5
P
m
w
@
NHON Z = SW Z = SW F3

WHON 11831 H WHON 1354 WHON 13s4 11s31 3Jaon
zZNnvy o148 isat| 9
>
c
nv 13HS INdNVYS | &

iy o4 2d 04 od NOILYNILS3A

£€40'044 403 944 Ho3 403 1ndi1no
g

8444 'MSW 44 £y 44 34 g9 1NdNI

Ly oy 2y od 7S04 V LNdNI

NaW3W nv ssayaaqv
n
41831 o
Livm 1s3nd3d | ©
40]
<

NOILONNS

10dD 91040 g51040 VSLOHD SLOHD v1OHD €040 ZIOHD IN3QI

%

VTI1-2035

Figure 3-8. Flow Diagram of CRC Generation (3 of 4)

3-24

ines

data mach

varian

TECHNIQUES

_ B
I10AD "LNI
01 18v1S
dON! =]
d Ol LIvM IID3ds
e 13s3y SLdNYYILNI 13534 S
3I18YN3
, . 220404 (26.x '0 IOVd)
W $2040 YZOHI-1 910HD WZSS 61010 ss3uaav| »
2
1 m
I (73
@
4
WHON 11s31 WHON dWrd WHON 3aon| @
o |
; ZNnv 1831 m
L W »
“ 2
Idwvs| &
P —— t 7
m ! iy NOILVNILS2a
TJ — -t ! 040
! aav | "04W' 044 indino|
o ‘ :
| Od44'MSIW g g 1ndNI
b -
W d _7 iy v LNdNI
ﬂ W d d ss3ayaav
R ———
" | &
ﬁ | A A 1s3no3y | 8
S, I [<
|
M | HOL34 HISNI HO134
| LX3N HLSNI NOLLONNS
—_— LX3N
| zzouo £20H0 vZoHD 120H0 0Z040 6L0HD 810HO 1N3al

VTI1-2036

Figure 3-8. Flow Diagram of CRC Generation (4 of 4)

3-25

varian data machines

SECTION 4

MICROPROGRAM DATA ASSEMBLER,
MIDAS

For execution the microprograms must be expressed in the
internal machine language, yet during their development it
is advantageous to express the program in a symbolic
language which has more meaning to the person writing
the program. This symbolic language is then translated into
the executable machine language by the assembler.
In addition MIDAS assembler provides

« symbolic addressing

« macro-definition capability

» user-defined microword formats

» user-defined opcodes

+ address field calculations

« error detection

+ concordance listing with MOS or VORTEX using the
concordance program CONC

4.1 BASIC ELEMENTS

The source language input to the assembler consists of a
sequence of records. Each record contains 80 character
positions. These characters are represented internally in
standard 8-bit ASCIl codes. The following paragraphs
describe the content and format of the input to MIDAS.

Characters

The characters forming the symbolic source statements are
described below. Characters not in this set can appear
only in the comment field.

Alphabetic: A through Z
Numeric: 0 through 9
Special / slash
Characters: * asterisk

+ plus sign

- minus sign

space (blank)
' apostrophe

(left parenthesis
) right parenthesis

MIDAS statements are formed from the character set
above. The comment field can contain valid 70/620 ASCI|
characters in addition to any from the MIDAS character
set. Literals may be formed from any ASCH characters.

Symbols

The programmer may create symbols to be used for
statement labels or to define numeric values. A symbol
may contain one to six characters from the alphabetic or
numeric subset. The first character of a symbol must be
alphabetic.

Examples of correctly formed symbols
ABCA4 INPUT1 SAVEUX P23456

Symbols may also use the pound sign (%) or dollar sign ($)
character in any character position.

Example

A$B#C1 $RUN A$TOP #FIVE
Constants

A constant is a self-defining term. Four types of constants
are available: decimal integer, hexadecimal, octal and
binary.

A decimal constant is an unsigned sequence of decimal
digits. The value of a decimal constant may not exceed
32767.

A hexadecimal constant is an unsigned sequence of
hexadecimal digits, base 16, preceded by the letter X and
an apostrophe. The maximum hexadecimal number
processed by the assembler is X'7FFF.

An octal constant is an unsigned sequence of octal digits, 0
through 7, preceded by the letter O and an apostrophe. An
octal constant can not exceed 0'77777.

A binary constant is an unsigned sequence of ones and
zeros preceded by the letter B and an apostrophe. Binary
constants may be as large as 16 bits.

Expressions

An expression is a single term or a series of terms
connected by the following operators. All are integer
operators.

+ Addition

- Subtraction

* Multiplication

/ Division
A term is a symbol, constant, or a special symbol, *, which
denotes the program location counter. A term is associ-
ated with a value inherent to the term in the case of a
constant, or assigned by the assembler.

4.1

varian data machines

MICROPROGRAM DATA ASSEMBLER, MIDAS

Multi-term expressions are evaluated from left to right. No
parentheses are allowed. Expressions are reduced to a
single value by the procedure below.

1. Each termis given a value

2. Muiltiplication and division are performed from left to
right

3. Addition and subtraction are performed left to right

4. If an expression has a leading minus sign, the value is
computed as though a zero term preceded the minus
sign. A leading plus sign is ignored.

5. The value resulting is right-justified in its generated
resultant field. Unspecified leading bit positions
contain zeros.

Program Location Counter

The assembler maintains a program location counter which
is automatically initialized to zero at the start of each
assembly. As program statements are processed the
assembler assigns consecutive memory (WCS) addresses to

the microinstructions generated, unless the program
location counter is explicitly modified. The counter may be
modified by the ORG and ALOC directives. The asterisk (*)
character as a label denotes the current value of the
program location counter.

4.2 GENERAL FORM OF STATEMENTS

Input to the assembler is in the form of statements in
punched-card images. The statement is contained in a
fixed format in character positions 1 through 72. 73
through 80 are reserved for sequencing information and
have no effect on the generated microprogram.

A statement is divided into a label, operation, continuation,
operand, and comment field. These are discussed in order
below.

Label

A source statement can be associated with a symbolic
label, which allows the statement to be referenced from
other statements in the program. The label, if present,
must begin in character position 1 and is terminated by a
space. A label may be a one to six character symbol.

Operation

The operation field may consist of the format-defining
operator FORM, the label of a predefined or user-defined
format statement, a macro name or an assembler

42

directive. The operation field begins in position 8 and is
terminated by a space.

Continuation

Continuation lines may be used when additional lines of
coding are required to complete a statement originating on
one line. There can be up to three continuations per
statement. This is designated by the character C in
position 15. The actual statement continues in positions 16
through 72. Continuation lines are only valid for the
format and program statements.

Operand

The operand field begins in position 16 and is terminated
by a space. The operand field may contfain subfields
separated by commas.

Comment

The comment field is optional for documenting programs.
The content of this field is output on the assembly listings
but in no way has an effect upon the assembly process.
The comment field begins with the first non-blank
character following the operand field.

4.3 STATEMENT DEFINITIONS

MIDAS processes four types of statements: format, pro-
gram, assembler-directive and comment.

4.3.1 Format Statement

The format statement labels and describes a structure for
the microinstruction generated by the program statement.
Each program statement specifies a format in which the
user has grouped and broken up fields within the
microword to set values. Two predefined formats are GEN
and GMSK, "standard” formats shown in figure 4-1. The
user may define additional formats through the use of the
format statement.

The general form of the format statement begins with a
required label followed by the word FORM followed by the
field identifiers separated by commas. A field identifier
consists of a field length in decimal, which may be followed
by a hexadecimal constant enclosed in parentheses.

label FORM field(1) , field(2), . . ., field(n)
Where:
label is a symbol formed according to
the basic elements
each field is a field identifier which is the

field length in decimal, followed

by an optional hexadecimal constant

enclosed in parentheses
length(constant)

ordinal field
field size
number name in bits

1 TS 4]

2 AF/MS 9

3 MT 1

4 FS 4

5 TF 2

6 SF 2

7 GF 4

8 MR 1

9 AB 2

10 M 4

11 LB 2 GEN
12 LA 2

13 RF 3

14 FF 4

15 MF 1

16 CF 2

17 WR 1

18 SC 1

19 VF 1

20 WF 1

21 XF 2

22 SH 3

23 BB 4

24 AA 4 __J
ordinal field
field size
number name in bits

1 TS 4

2 AF/MS 9

3 MT 1

4 FS 4

5 TF 2

6 SF 2

7 GF 4

8 MR 1 GMSK

9 AB 2

10 M 4

11 LB 2

12 LA 2

13 RF 3

14 FF 4

15 MK 16

16 AK 4 _J

Figure 4-1. Predefined Formats Recognized by MIDAS

Field length can not exceed 16 bits. Fields are specified
from left to right. Each field identifier has an implicit
ordinal field number associated with it for reference. All
64 bits of the microinstruction word must be allocated.

Fields to which constant values have not been assigned are
initialized to zero.

Possible errors in the format statement include allocating
more than or less than 64 bits and using a constant value

MICROPROGRAM DATA ASSEMBLER, MIDAS

exceeding the size of the field. If an attempt is made to
redefine a format, an error is indicated and the format is
ignored.

Continuation lines can be used on the format statement
but a field identifier may not be carried across lines. A
comma must complete the field identifier before continuing
the statement on the next line. If the last non-blank
character of the operation field is a comma, it implies the
next record will be a continuation.

Example:
LIST FORM

14,4,2(x'3),2,4,1,2,
C4,2,2,7,16(X"' 1FFF) , 4

4.3.2 Program Statement

The program statement represents the encoding of the
microinstructions in symbolic notation. Each program
statement references a format statement to be used in
building the microinstruction. The format of the program
statement is an optional label followed by a format label
followed by a program field.

label format program-field
Where:

the program-field consists of one or more of the following
separated by commas.

One address expression
Predefined opcode
User-defined opcode
Field constant

The single address expression specifies the mode of
addressing to be used in fetching the next microsinstruc-
tion. The address expression, if present, must be the first
item in the program field. The format of an address
expression is:

/mode (expression, fail address)

Where mode is a key denoting the following possible
address modes:

Normal addressing
Test

Field Select

Test and field select
Page jump

Implicit

WMoz

The value of the first expression in parentheses is the an
address of the next instruction under non-test conditions,
or if the test passes. The value of the second expression is
the address of the next instruction if the test fails,

43

varian data machines —_

— varian data machines

MICROPROGRAM DATA ASSEMBLER, MIDAS

Modes N, F and P require only the first expression. T and S
must use both expressions. None is given for the implicit
mode.

Address evaluation is performed with the following
considerations:

When the address mode uses field selection (modes F and
S), the value of the expression must refer to the
lower address selected in that field. This address
must be an even numbered address.

The contents of the mask field (MS) and the mask exten-
sion field (MT), which provide the mask for the
field address, must be defined by the user.

In the test or the test-and-field-select modes of addressing,
the fail address must be an even numbered word and
must be greater than pass address taken modulo 16.

For example, if the pass address is X'16, the range of the fail
address must be from X’10 to X'1E and an even word.
If the pass address is X'26, the fail address may
range (on even words only) from X'20 to X'3E.

The value is 13 bits with the high-order four bits specifing
a page number and the low-order 9 a word within
the page.

The implicit mode generates normal addressing to the
program location counter plus one.

In a page jump the expression specified must produce a
value which contains both the page and word
addressing information. This destination can be
defined through use of the EQU directive.

If the test field (TS) is being used to select interrupts or
to specify AA or BB field definition, its value must be
defined by the user.

Predefined Opcodes

When a predefined opcode is used in the program field, it
specifies that a particular value be placed in a field of the
microinstruction as defined by the format statement.

Predefined opcodes are symbols consisting of three to six
characters. The first two characters identify a field of the
defined formats and the following characters specify the
value in hexadecimal notation to be placed in the field.
These field names must not be used as labels in user-
defined opcodes. The two-character names for fields and
the permissible range for each is given below.

Predefined opcodes may be used with user-defined formats
since each of these opcodes has an ordinal field number
associated with it. There is no predefined opcode for the
combined address field AF/MS.

4-4

Fields of the Microinstruction

Ordinal
Name Number Range
TS 1 0-F
MT 3 0-1
FS 4 0-F
TF 5 0-3
SF 6 0-3
GF 7 0-F
MR 8 0-1
AB 9 0-3
IM 10 0-F
LB 11 0-3
LA 12 0-3
RF 13 0-7
FF 14 0-F
MF 15 0-1
MK 15 0 - FFFF
CF 16 0-3
AK 16 0-F
WR 17 0-1
SC 18 0-1
VF 19 0-1
WF 20 0-1
XF 21 0-3
SH 22 0-7
BB 23 0-F
AA 24 0-F

User-Defined Opcodes

Users can assign values to symbols through the EQU
directive. The opcode is placed in parentheses and
preceded by the decimal ordinal field number designating
the format field for the value.

Statement labels and user-defined opcodes must avoid
naming conflicts.

Field Constant

A field constant denotes a value to be placed in a
microinstruction field. Either decimal, hexadecimal, octal
or binary constant is placed in parentheses and preceded
by a decimal ordinal field number.

Error Conditions

The effect of error conditions upon the continuing assembly
depends upon the type of error. The errors listed below are
indicated on the listing. The action shown in parentheses
is taken in the program statement.

a. Reference to a non-existent format (program statement
is ignored)

b. Value exceeds the size of field (value truncated)
(continued)

c. Both operand in the program field and a format
constant are specified for the same field (inclusive OR
of the values inserted)

d. Multiple values generated for a field (first used)

e. Inconsistency between the address mode specified and
the values of the address controt fields e.g., normat
addressing and test field (TF) non-zero. (Mode is
used to generate address)

Additional Considerations

The assembler evaluates each operand in the program
field, and then uses the format indicated to form a
microinstruction. Operand values and format field
constants are placed in the appropriate fields.

Values computed for a field are inserted in the field right-
justified. Fields whose values are not explicitly defined in
either the format or program statement are set to zero.

A program statement may have continuation lines, but an
operand may not be carried across lines. A comma must
complete the operand before continuing the statement on
the next line. If the last non-blank character of the
operation field is a comma, it implies the next record will
be a continuation line.

Example:
EXC1 GMSK

/N(EXC2),LB3,RF3,FFA,
CMKF7FF

4.3.3 Assembler Directives

Instructions to the assembler are known as directives.
These statements have label, operation, operand and
comment fields. The operation field contains the name of
the directive, such as EQU, ORG, ALOC, SPAC, EJEC, MAC
and EMAC.

The directives for macro definition MAC and EMAC are
described in a later section. Other assembler directives are
discussed in order below.

EQU -- Equate

The EQU directive is used to assign symbols to a given
value or the value of another symbol. The symbol in the
label field is required in this directive. It is defined to have
the value of the expression in the operand field.

The format of the EQU directive requires both a symbol in
the label field and expression in the operand field. If the
expression in the operand field contains a symbol, it must
have been previously defined.

varian data machines

MICROPROGRAM DATA ASSEMBLER, MIDAS

If the symbol in the label field has been previously defined
or if there is no label, an error is indicated and the
statement is ignored.

Examples:

THREE EQU 3

SCzZ EQU X'FE

v EQU THREE+2
ORG -- Origin

The ORG directive sets the program location counter to the
value of the expression in the operand field.

A symbol in the label field is optional in the ORG directive.
The expression to which the program location counter is
set must be in the operand field.

If an expression in the operand field contains a symbol, it
must have been previously defined. A value of zero or a
negative value in the operand field causes an error to be
indicated and the statement is ignored. If the expression
exceeds the page size, it is an error and causes the
assembly to be terminated.

At the beginning of each assembly pass the assembler
initializes the program location counter to zero. i

Examples:
ORG X'1E0
ORG BEGIN

ALOC -- Allocate

The ALOC directive informs the assembler that it is to skip
over previously allocated locations as it is assigning
sequential addresses to the generated microinstructions.

From the beginning of an assembly pass until the
occurrence of the ALOC directive the assembler will keep a
list of all assigned locations. After the ALOC directive is
processed the assembler will test each new program

location counter setting against the list of allocated
locations. If a new value is in allocated .space, the
assembler will increment the counter and again make the
test. The sequence will continue until unallocated space is
found.

The format of the ALOC directive requires an expression in
the operand field, but the symbol in the label field is
optional.

An error is indicated and the statement ignored, if the
operand field contains a negative value or exceeds the page
size.

45

varian data machines

MICROPROGRAM DATA ASSEMBLER, MIDAS

In the implicit addressing mode the address of the next
instruction is the next allocatable location.

Examples:
ALOC FIELD*4
ALOC 0'20
SPAC -- Space

The SPAC directive provides a blank line on an assembly
listing to improve readability.

Both the label and operand fields of the SPAC directive are
ignored. A symbolic source listing shows a blank line in
place of SPAC directives.

Examples:

SPAC

SPAC ADD HERE LATER
EJEC -- Eject

The EJEC directive causes the assembly listing device to
advance to the first print location of the next output page.

Both the label and operand fields are ignored. EJEC is
listed.

END -- End

The END directive causes an assembly to be terminated.
An END directive is required as the terminal source
statement for each assembly.

A symbol in the label field is optional and assigned the
value of the program location counter. The operand field
is ignored.

4.3.4 Comment

A statement with an asterisk in the first character position
is entirely commentary. Its contents have no effect upon
the assembly process, however the statement is output to
the listing.

4.4 ASSEMBLY-LANGUAGE EXAMPLES

The following examples show how representative microin-
structions in the WCS could be coded as source statements

46

for MIDAS,

Example 1:
EXC1 GMSK /N(EXC2),LB},RF3,FFA,MKFTFF

This example uses the normal mode of addressing.

Example 2:

/T{LASL2,LASL1),TF2,GPC,LA2,
CRF5,WR1,SC1,XF3,SH6

LASL1 GEN

This example shows the use of the test mode of
addressing, and the use of a continuation record.

Example 3:

BT10 GEN /F(BT20),2(X'F),PS4,RF4,XF1

This example shows the use of the field select mode of
addressing. The field address mask is provided by the
hexadecimal field constant.

Example 4:

/S(LDA2,SWA26),2(X'C) ,MT1,PFSF,
CTF3,GFB,LB1,RF3,FPA ,MF1,BB1

SWA22 GEN

This example shows the use of the test and field select

. mode of addressing. The field address mask is provided by

the hexadecimal field constant and the predefined opcode
MT.

Example 5:

SEN2 GEN /%,1(B"1),IMF LB1,FFA,MF1,WR1,

CXF1,AAE

This example shows the use of the implicit mode of
addressing. The instruction initiates 1/0 activity and the
binary field constant provides part of the 1/0 control store
starting address.

Example 6:

P EQU X'200 PAGE ADDRESS (PAGE 1)

GMSK /P(DIV+P),IMD,LB3,
C15(*+14P) ,AK2

This example shows the use of the branch/push operation.
The operation effects a page selection and the destination
and return addresses are global. The destination address
is generated by the address expression. Note the page
address contribution of P. The expression for field 15

generates the global address which is pushed on the
microprogram return stack. P contributes to this again.

varian data machines

Control returns to the instruction immediately following
the branch/push instruction in this example.

Example 7:

GEN IMD,LB3,AAY

This exampie shows the use of the branch/pop operation.
The global return address used is the last item pushed on
the stack.

Example 8:

s§s1M EQU X'13E

M .
GEN /P(SS1M), SFO,TFO, IM3

This example shows the use of the page jump mode of
addressing. In page selection the value in the address
expression must contain both the page and word
contribution to the global address. In this example the page
jump is to a standard state in the central control store
(page 0) from some other page.

Example 9:

SS3M GMSK /N(SS2MI), 1(X'E),GFS, IM6

This example uses the normal mode of addressing but
selects the decode-ROM and samples interrupts (GF field
bit 2 is true). The hexadecimal constant defines the
interrupts which are enabled.

The following examples show the use of page branch,
branch/push, and branch/pop operations.

Example 10:

§52M EQU X'092

MW1 GEN /P{SS2M),IM3,SF0,TFO

This example of a microword, labeled MW1, does a page
jump to one of the standard states in read-only memory.

Example 11:

PAGE EQU X'200 PAGE ONE SPECIFICATION

MW2 GMSK

/P(SUBR+PAGE), TF0, SFO,
CIMD,LB3,AK2, 15 (MW2+ 1+PAGE)
SUBR GEN
EXIT GEN TF0,SFO,IMD,LB3,AA4,BBO

MICROPROGRAM DATA ASSEMBLER, MIDAS

This example calls a micro subroutine and uses the stack
to save the return address. The subroutine call is labeled
MW2. It forms the return address by adding the word and
page numbers, and then pushes the address on the stack.
Likewise, the address of the subroutine is formed by adding
page and word numbers. The subroutine returns by a
microinstruction labeled EXIT which does a pop jump.

4.5 MACRO CAPABILITY

A macro provides a convenient way to generate a sequence
of assembler source statements many times in one or more
programs. The macro definition is written only once, and a
single statement, the macro reference, is written each time
the user wishes to generate the desired sequence of
statements. These statements are then processed like any
other assembler statements. Macro definition uses the
MAC and EMAC directives.

MAC -- Macro

The MACRO directive introduces a macro definition. This
definition is terminated by the EMAC DIRECTIVE. The
name of the macro is the symbol which appears in the
label field of the MAC directive. Operand field parameters
may be passed from the macro-reference source statement
to the macro through use of the special parameter symbols
P(1) through P(n).

A macro is invoked by the appearance of the macro name
in the operation field of a statement.

The label field must contain a symbol.

In the macro-reference statement the operand field may
contain a list of parameters. At the time the macro.
reference is encountered, each parameter is evaluated and
stored into a table within the assembler. The parameters
may be labels, constants, or user-defined opcodes. Prede-
fined opcodes are not permitted. The macro definition is
then processed with the values in the table being
substituted for the special symbols P(1) through P(n). For
example, if the operand field of a macro-reference state-
ment appears as:

2,ABC,X'E0

then within the generated macro the value of P(1)is 2, P(2)
is the value of the symbol ABC, and the value P(3) is 224.

All arguments in the macro-reference parameter list are
evaluated prior to invoking the macro.

An error is indicated and the MAC direction ignored, if the
label field does not contain a symbol. Also an error is
indicated and the reference is ignored if the macro has not
been defined prior to its being referenced.

It a symbol is present in the label field of a macro-reference

statement, it is assigned the value of the program location
counter at the time the macro is invoked.

4.7

———

@ varian data machines

MICROPROGRAM DATA ASSEMBLER, MIDAS

A macro definition may contain a reference to another
macro definition, nesting definitions. However, a macro
may not be called recursively.

EMAC -- End Macro

The EMAC directive terminates a macro definition. The
contents of both the label and operand fields are ignored.

Example:

The following example shows the use of macro definition
and reference.

ONE EQU 1
TWO EQU 2
THREE EQU - 3

y

FOUR EQU

SHFT MAC
GEN /T(*,S83M1),TF3,SF3,
CGFC,IM8,12(P(1)),RF5,
CWR1,22(P(2)),AA1

ASLB SHFT TWO, FOUR
LRLB SHFT TWO, ONE
ASRB SHFT THREE, TWO

4.6 OPERATING INSTRUCTIONS

This section describes the operating procedure for MIDAS
in each of its three environments: VORTEX, MOS and as a
standalone program.

MIDAS runs under VORTEX as a level 0 background task
and may be cataloged into the background library using
the procedures described in the VORTEX Reference
Manual (Varian document 98 A 9952 10x).

MIDAS under MOS must be added to the system file using
the system preparation Program as described in the
Varian Master Operating. System Reference Manual
(Varian document 98 A 9952 09x).

MIDAS in the standalone environment makes use of the
Standalone FORTRAN 1V loader, runtime [/0 and runtime
utility. Use of the components are describe in the Varian
620 FORTRAN IV Reference Manual (Varian document 98
A 9902 03x).

48

4.6.1 VORTEX Environment

MIDAS is scheduled from the background library at level 0
by the /LOAD,MIDAS directive. MIDAS terminates when
the END statement is encountered, and exits to the
executive. Only one source program can be assembled for
each load of MIDAS.

MIDAS inputs symbolic source statements from the
processor Input device (PI) and outputs these statements
on the processor output device (PO). When the END
statement is encountered, MIDAS rewinds the PO file and
commences pass two. During pass two, it inputs source
statements from the system scratch device (SS) and
produces an assembly listing on the’ list output device
(LO), and object records on the Binary Output device (BO).

PO and SS devices not only must be the same physical
device, but the same magnetic tape, drum or disc unit. If
Pl is assigned to a Rotating Memory Device (RMD)
partition, MIDAS assumes the source records are blocked
three 40-word records per RMD 120-word physical record.
However, if Pl is the same logical unit as the System Input
Device (SI), and it is assigned to a RMD partition, MIDAS
assumes the source records are not blocked but consist of
one source record per RMD 120-word physical record. If BO
is assigned to a RMD partition, the output is blocked two
60-word object records per RMD 120-word physical reocrd.
The assembler’'s table space may be expanded and
consequently larger source programs assembled by use of
the VORTEX /MEM directive.

4.6.2 MOS Environment

MIDAS is loaded from the system file by the system loader
by means of the /ULOAD,MIDAS directive.

It reads the source records from Pl and outputs them to
PO. Pass two source input is from SS. When the END
statement is encountered on pass one, the SS file is
repositioned and reread. During pass two, the output can
be directed to BO for the object module and to LO for the
assembly listing. When an END statement is encountered
on pass two, control is returned to MOS. Therefore, it is
necessary to reload MIDAS with another /ULOAD directive
if multiple assemblies are desired.

4.6.3 Stand-Alone Environment

MIDAS is loaded by the 620 stand-alone FORTRAN IV
loader, along with the runtime 1/0 and runtime utility. The
description of this loading procedure and subsequent
execution is described in the Varian 620 FORTRAN IV
Reference Manual, where MIDAS is substituted for the DAS
MR Assembler. Upon execution, MIDAS will input source
records from logical unit 3 (PI), output source records for
pass two to logical unit 9 (PO), input pass two source
records from logical unit 8 (SS), output binary object
records to logical unit 2 (BO), and output assembly listing
to logical unit 4 (LO). When the first assembly is

completed, subsequent assemblies may be performed by
restarting MIDAS at location 0541.

4.7 ASSEMBLER INPUT AND OUTPUT

The following section contains a description of the source
records required for assembler input and the object
records and listing produced by the assembler.

Source Records

The assembler input consists of a sequence of logical
records containing 80 character positions. If a logical
record contains more than 80 positions, only the first 80
are input and the remainder are ignored. If a record
contains less than 80 positions, blank characters are
supplied by the assembiler to fill 80 character positions.

Only the first 72 are considered in the assembly process.
Character positions 73 through 80 may be used as
desired.

Listing Format

An assembly-listing page consists of 44 lines per page with
each line containing no more than 120 characters. The
lines per page count may be changed when running under
an operating system. Each page contains the following:

Page number and title line followed by a blank tine
Program listing containing two less than the current
lines/page count

At the end of an assembly a symbol table will be printed
followed by a line containing the message "mmmm
ERRORS ASSEMBLY COMPLETE" where mmmm is the
accumulated error count expressed as a decimal number.

The line format for the title line is a function of the
environment in which MIDAS runs. The following descrip-
tion pertains to the standalone and MOS versions, with the
comments in parentheses referring to VORTEX. Beginning
with the first character position the format is illustrated

below.

Object Code Records

MIDAS produces object code which is input for the
microsimulator and the microutility programs. Logical
records of the object code are a fixed length of 60 words.
Word 1 is the record control word. Word 2 contains an
exclusive OR checksum of word 1 and the remaining words

MICROPROGRAM DATA ASSEMBLER, MIDAS

of the record. Word 3 through 11 optionally contain a
program identification block. Words 12 through the end of
the record (or 3 through end of record if there is no

program identification block) contain data fields.

Record Control Word Format

The format of the record control word is as follows:

1514 1312 11 10 9 8
10

76543210
a1l 1 b c 0dddddddd

where a is 1 if the checksum is suppressed, b is 1 if not
starting record, c¢is 1 when it is not the last record, and d
is binary record number modulo 256.

Program Identification Block

This block appears in words 3 through 11 of the starting
record of each program. Word 3 contains the highest value
of the program counter during the assembly, words 4
through 7 contain an eight-character ASCIl program
identification, and words 8 through 11 contain an eight-
character ASCIl program creation date.

Data Field Format

Data fields contain either one- or four-word entries. One-
word entries are loader control words, and four-word
entries consist of data words.

The format of the loader control word is code in bits 13-15
and an address/count in the low-order 13 bits. A code of
zero instructs the loader to ignore this entry. One is the
code for setting the loading location counter to the value
contained in bits O through 12. A value of two indicates
the following microinstructions should be loaded. The
number of microinstructions minus one is specified in bits
1 through 12.

Data Words

Data words contain microinstructions. Each microinstruc-
tion is comprised of four 16-bit words. Word 1 contains bits
63 through 48 of the microinstruction while word 4
contains bits 15 through O of the microinstruction. A
microinstruction will not be carried across a logical record
boundary. If insufficient space remains on a logical record
for the four-word microinstruction, the remaining space
will be ignored and the microinstruction started on the
next logical record.

4.9

varian data machines —_

varian data machines

MICROPROGRAM DATA ASSEMBLER, MIDAS

4.8 ASSEMBLY ERROR MESSAGES

During assembly the symbolic statements are checked for
syntactic errors. In addition, a condition may occur where
the assembler is unable to determine the correct meaning
of the symbolic source statements.

Either case is indicated as an error and up to eight error
codes will be output beneath the source statement
incorrectly constructed.

NR, LC and 10 errors terminate the assembly.

Each error code with the exception of 10 is followed by a
space and two decimal digits indicating the character

position the assembler was scanning when the error was
detected.

The error codes and their meanings are listed below.

Error

Code Meaning

AD Address expression or associated fields in error
(see below)

cC Continuation not expected

CE Numeric conversion error

DD illegal redefinition of a symbol

ER Syntax error

EX An expression contained an illegal construction
FN Field number inconsistent with format

10 7O error

LC Program location counter setting exceeds the
maximum WCS page size (512 words)

MF Duplicate field reference

4-10

NR

NS

OoP

SE

SY

SZ

a.

No memory available for addition of an entry to
assembler’s tables

No symbol in the label field where required
Operation field undefined

Symbeol in label field has a value during pass 2 that
is different from the value determined in pass 1

Undefined symbol. A value of zero is assumed

A value too large for the size of a field, or the fields
defined in a format statement do not equal 64 bits

The AD error may occur under these circumstances:

With the character pointer in, or at the end of, an
address expression:

1. A test fail address is not on an even num-
bered word.

2. A field select origin address is not on an
even boundary.

3. The displacement between the test pass and
the test fail addresses is too great.

With the character pointer at the end of the
operand field:

1. Normal addressing mode and the FS or MT
or TF field is not equa! to zero.

2. Test addressing mode is used and the TF
field is equal to zero.

3. Field selection addressing is the mode and
the FS field is equal to zero.

4. Test and field selection addressing mode
and either the FS or TF field equals to zero.

5. Page-jump addressing mode and either the
FS or TF field is not equal to zero.

SECTION 5
CODING FROM FLOW DIAGRAMS

5.1 GENERAL

This section details the conversion of flow diagrams, (as
developed in section 3), into code which MIDAS accepts.
As examples actual assembler listings of the sample
microprograms discussed in section 3 are included.

"Flow diagram conversion is basically a matter of table-
lookup. Tables are " included in this section which list the
standard mnemonics and the corresponding assembler
code.

Assembler code produced is given in two different formats.
The first format produces code using only the predefined
assembler opcodes for the GEN or GMSK statements. The
second format is based around user-defined opcodes

which follow the mnemonics developed thus far as closely
as possible. As these are not predefined, some burden is
placed on the user to include the necessary EQU directives
(these EQUs are available from Varian as a software part).

However, the resulting code is considerably more readable
than that produced in the first format.

Each column in the fiow diagram will produce a single
assembler program statement. This transformation can
be performed as follows:

L. Fillin the label field if necessary, this will often be from
the IDENT section.

2. Choose either GEN or GMSK as format label. The latter,
GMSK, is used only when the 16-bit literal/mask is
needed.

3. Derive the appropriate address expression

4. For each of the standard mnemonics in the column,
add the statements shown in the conversion tables.

5. Replace any nonstandard mnemonics with appropriate
field value assignments.

In addition to this translation, other assembler directives
must be included to set the location of the program in
WCS. In doing this, addressing considerations must be
taken into account. For example, in test addressing the
failure branch must always be to an even location.

The following table (5-1) lists the standard mnemonics and
the assembler code they produce. Foliowing the table, the
EQU statements which define the format i| opcodes are
listed in table 5-2.

Table 5-1. Conversion Table

Row Mnemonic
IDENT None

MEMORY None
FUNCTION

MEMORY: IF,OVR

REQUEST, IF,ALU

ADDRESS IF.P
IF,MIR
OF,OVR
OF,ALU
OF,P
OF,MIR
08,0VR
0S,ALU
0s,P
OS,MIR
BS,OVR
BS,ALU
BS,P
BS,MIR

Unconditional

Format | Format 1l

IMO 10(IF$OVR)
M4 10(IF$ALU)
IM8 10(IF$P)

IMC 10(IF$MIR)
IM1 10(OF$0VR)
IM5 10(OF$ALU)
IM9 10(OF$P)

IMD 10(OF$MIR)
M2 10(0OS$0OVR)
IM6 10(0S$ALU)
IMA 10(0S$P)

IME 10(0S$MIR)
IM3 10(BS$OVR)
M7 10(BS$ALU)
IMB 10(BS$P)

IMF 10(BS$MIR)
SF1 (or SF2,TF0O) 6(MEMC)[or

6(MEMC$),5(0)]

(continued)

51

varian data machines —

r——@ varian data machines

CODING FROM FLOW DIAGRAMS

Table 5-1. Conversion Table (continued)

Row Mnemonic Format | Format Il
TESTT SF3 6(TESTT)
TESTF SF2 (and not TFO) 6(TESTF)
WAIT,MEMDN SFO,IM1 6(SPEC),10(WAITMD)
ALU Rn LAO,AAN 12(A$GPR),24(Rn)
INPUT A Rn,SL LA2,AAN 12(A$GPRL),24(Rn)
Rn,SR LA3,AAN 12(A$GPRR),24(Rn)
P LAl 12(A$P)
ZERO LAQ,SH1 12(A$SPEC),22(AZERO)
ONES LAO,SH2 12(A$SPEC),22(AONES)

Note: 1) when using
shifted general register
user must specify high-
low bits through SH field.

2) when using the GMSK
format, use 16(Rn) in-
stead of 24(Rn) and
AKn instead of AAN.

ALU Rn LB0,BBn 11(B$GPR),23(Rn)
INPUT B MIR LB1,BB1 11(B$SPEC),23(MIR)
IOR LB1,BB2 11(B$SPEC),23(I0R)
STAT LB1,BB3 11(B$SPEC),23(STAT)
LITx LB3,MKy 11(LIT),15(y)
MSK.x LB2,MKy 11(MSK),15(y)

Note: y is the one’s
complement of x

OPR LB1,BBO 11(B$SPEC),23(OPR)

ORSE LB1,BB4 11(B$SPEC),23(ORSE)

OLSE LB1,BBS 11(B$SPEC),23(OLSE)

ORZF LB1,BB6 11(B$SPEC),23(ORZF)

ORLZ LB1,BB7 11(B$SPEC),23(0RLZ)
ALU ZERO FF3,MF1 14(ZER0),15(LOG)
OUTPUT ONES FF3 14(ONES)

TRNA FFF,MF1 14(TRNA),15(LOG)

TRNB FFA,MF1 14(TRNB),15(LOG)

INCA CF3 14(INCA), 16(CRY1)

INCB FF1,CF3 14(INCB),16(CRY1)

DECA FFF 14(DECA)

DECB FF9 14(DECB)

ADD FF9 14(ADD)

SUB FF6,CF3 14(SUB),16(CRY1)

SHFA FFC 14(SHFA)

AND FFB,MF1 14(AND),15(LOG)

OR FF1 14(OR)

EOR FF6,MF1 14(EOR),15(LOG)

NOTA FFO,MF1 14(NOTA),15(LOG)

NOTB FF5,MF1 14(NOTB),15(LOG)

TCB FF2,CF3 14(TCB),16(CRY1)

Note: The mnemonics

INCB and TCB require

input A to be ZERO.

Mnemonic DECB require

input A to be ONES.
(continued)

52

Row

ALU
DESTINATION

STATUS
SAMPLE

STATUS
TEST

ADDRESSING:
MODE,
ADDRESS

SPECIAL
ACTIONS

Table 5-1. Conversion Table (continued)

Mnemonic

Rn

SHFT
OVFL
ALU

OVFL
IOSR
SSW3
SSW2
SSW1
TFIR
ALUO
ALUS
ALUC
ALUZ
SHFT
MIRS
SFTC
GPRS
NORM
QuUoS

blank
FSEL
INT

PJMP to n:

1) using stack
2) without memory
request

3) with memory
request

POPJMP

DECODE
1) with IBR to |
2) without IBR to |

TESTT

TESTF

POUT

SCOUT
OPROUT

INCP

INCSC
INCP,OPROUT

Format |
WR1,AAn

VF1
Refer to Table 2.7
TFO,SF0,GF2

GFO
GF1

GF2

GF3
GF4
GF5
GF6
GF7
GF8
GF9
GFA
GFB
GFC
GFD
GFE
GFF

/%
/F(base),FSx

user supplied

/N(word), TSn
/N(word),TSn,
SFO,TFO,IM3
/N(word),GF4,
SF2,TFO,TSn

TFO,SFO,IMD,
LB3,AA4,BBO

TFO,SFO,GF5
TFO,SFO,GF4

/T(pass,fail),
TF2

/T(pass,fail),
TF3
RF1
RF2
RF3
RF4
RF5
RF7

varian data machines @_—

CODING FROM FLOW DIAGRAMS

Format i
17(GPROUT),24(Rn)

19(S$SHFT)
TFO,SF0,7(S$ALU)

7(OVFL)
7(10SR)
7(SSW3)
7(SSW2)
7(SSW1)
7(TFIR)
7(ALUO)
7(ALUS)
7(ALUC)
7(ALUZ)
7(SHFT)
7(MIRS)
7(SFTC)
7(GPRS)
7(NORM)
7(QUOS)

Note: TF field must
also be set in test
addressing.

/%
/F(base),FSx

user supplied

/P(word + page)

/P(word + page),
10(PJMP),SFO,TFO
/P(word + page),
7(PJMP$),6(MEMC$),TFO

10(STACK),24(POPJMP),
LB3,TF0,SF0,BBO

5(0),6(0),7(DECOD$)
5(0),6(0),7(DECODE)

/T(pass,fail),5(TT)

/T(pass,fail),5(FT)

13(POUT)
13(SCOUT)
13(OPROUT)
13(INCP)

13(INCSC)
13(OPROUT + INCP)

(continued)

5-3

[—@ varian data machines

CODING FROM FLOW DIAGRAMS

Table 5-1. Conversion Table (continued)

Mnemonic

SHFTOP,LFT
SHFTOP,RGHT

IBR to |
with decode
without decode

PUSH,x

POPDEL

ROVFL
SOVFL

Format |

SC1,WFO
SC1,WF1

TF0,SFO,GF5
TFO,SFO0,GF1

TFO,SFO,IMD,
LB3,AK2,MKx

TF0,SFO,IMD,
BB1,AA4,LB3
TFO,SF1,GF4*
TFO,SF1,GF2*

Format H

18(SHFTOP),20(LFT)
18(SHFTOP),20(RGHT)

Note: on shifting OPR
XF and AA fields used
to determine high/low
bits.

TFO,SF0,7(DECOD$)
TFO,SFO,7(I1BRSI)

10(STACK), 16(PUSH),
15(x),LB3,TF0,SFO

10(STACK),23(POPDEL),
LB3,TFO,SFO,AA4
7(ROVFL)*

7(SOVFL)*

* Must be used with unconditional memory request.

Table 5-2 is the assembler directives needed for the user

defined

request as released software parts.

Row
ADD EQU
ALUC EQU
ALUO EQU
ALUS EQU
ALUZ EQU
AND EQU

AONES EQU
AZERO EQU
A$GPR EQU
ASGPRL EQU
A$GPRR EQU
A$P EQU
A$SPEC EQU

BS$ALU EQU
BS$MIR EQU
BS$OVR EQU
BS$P EQU
B$GPR EQU
B$SPEC EQU

CRY1 EQU
DECA EQU
DECB EQU

DECODE EQU
DECOD$ EQU

EOR EQU

FT EQU

54

Table 5-2. User-Defined Opcodes

S =2 WNOaANMX WSO Y
[+

7

= O XWX
w

w

opcodes of format Il. These are available on

GPROUT
GPRS

IBRS$I
IF$ALU
IF$MIR
IF$OVR
IF$P
INCA
INCB
INCP
INCSC
IOR
IOSR

LFT
LIT
LOG

MEMCS$
MEMC
MIR
MIRS
MSK

NORM
NOTA
NOTB

OF $ALU
OF$MIR

—

EQU
EQU

o]
o

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

a

ANV E 2O 0O X & =

o

EQU
EQU
EQU

- W

EQU
EQU
EQU
EQU
EQU

NX 2N
™

EQU
EQU
EQU

u o X

EQU 5

EQU X'D .
(continued)

varian data machines

Table 5-2. User-Defined Opcodes (continued)

OF$0VR
OF$P
OLSE
ONES
OPR
OPROUT
OR
ORLZ
ORSE
ORZF
OS$ALU
OS$MIR
0S$0VR
ossp
OVFL

PIMPS
PJMP
POPDEL
POPJIMP
POUT
PUSH

Quos

RO
R1
R2
R3
R4
RS
R6
R7
RS
R9
RA
RB
RC
RD
RE

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU

EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

OXN){O\O\J:\l—lewUI\D—A

N =& awss

>

HUNRMUNXOONOTNETWN 2O

MU w >

(continued)

CODING FROM FLOW DIAGRAMS

RF EQU X'F
RGHT EQU 1
ROVFL EQU y
SCOUT EQU 2
SFTC EQU X'c
SHFA EQU X'c
SHFT EQU X'A
SHFTOP EQU 1
SOVFL EQU 2
SPEC EQU 0
SSW1 EQU y
SSW2 EQU 3
SSW3 EQU 2
STACK EQU X'D
STAT EQU 3
SuUB EQU 6
S$ALU EQU 2
S$SHFT EQU 1
TCB EQU 2
TESTT EQU 3
TESTF EQU 2
TFIR EQU 5
TRNA EQU X'F
TRNB EQU X'A
TT EQU 2
WAITMD EQU 1
ZERO EQU 3

5.2 EXAMPLES OF MICROPROGRAMS IN
ASSEMBLY LANGUAGE

The five examples of section 3 were coded using

techniques outlined in this section. Comments on

encoding and actual assembler listings follow.

The first three examples use the equates in table 5.2,

the
the

55

—

CODING FROM FLOW DIAGRAMS

000¢
0008
0006
0007
0009
000B
0002
0001
0000
0002
0003
0001
0000
0007
000F
0003
000B
0000
0001
0003
000F
0009
o004
0005
0006
0003
0001
000D
0001
0004
000C
0000
0008
0000
0001
0004

0005
0002
0001
0006
0000
0003
0001
0001
0002
0001
000B
0002
000E
0000
0005
0005
000D
0001
0009
0007
0005
0003
0000
0003
0001
0004
0006
0006
000E
0002

56

— varian data machines

VW -

L N B AR 3

%* % ¥ N

*
ADD
ALUC
ALUO
ALUS
ALUZ
AND
AONE
AZERO
ASGPR
A$GPRL
ASGPRR
ASP
AS$SPEC
BSS$SALU
BS$MIR
BSS$SOVR
BS$P
B$GPR
B$SPEC
CRY1
DECA
DECB
DECODE
DECODS$
EOR

FT
GPROUT
GPRS
IBR$I
IF$ALU
IF$MIR
IF$OVR
IFSP
INCA
INCB
INCP

INCSC
IOR
IOSR
KouT
LFT
LIT
LOG
MEMC
MEMCS$
MIR
MIRS
MSK
NORM
NOTA
NOTB
OF$ALU
OF $MIR
OF$OVR
OF$P
OLZF
OLSE
ONES
OPR
QPROUT
OR
ORSE
ORZF
OS$ALU
OS$MIR
OS$OVR

5.2.1 BCS Entry Point Initialization

Since physical addresses were assigned at the flow diagram
level, the transformation was quite straightforward. Note
that a standard deck of all the EQU statements was used
though not all were needed.

THIS IS INITIALIZATION FOR BCS 'ENTRY POINTS

THE FOLLOWING ARE SUPPLEMENTAL OPCODES
FOR USE WITH THE MICRO ASSEMBLER

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

o]

w

m

o

ErORON EaXa WUl W=0OX W NOaWNOaNXWONoh©Ww
o]

w

"

=]

NX AN EaWOWUNNNOUaXUVNOXNXaNaaswohahwm
m

(continued)

0000

0000
0001
0002
0003
0004
0005
0006
0007
ooos
0009
000A
000B
0o00C
000D
000E
000F
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
001A
001B
001C
001D

000A
0000
0003
0004
0001
000F
0000
0001
0002
0003
0004
0005

0006
0007
0008
0009
000A
0008
000C
000D
000E
000F
0001
0002
000C
000C
000A
0001
0000
0004
0003
0002
0003
0006
0002
0006
0001
0002
0003
0002
0005
000F
000A
0002
0001
0003

013E
0092
002D

0490000180000000
0490000180000000
0490000180000000
0430000180000000
04%0000180000000
0490000180000000
0490000180000000
0490000180000000
0u490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0430000180000000
0490000180000000
0490000180000000
04%0000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
04390000180000000
0490000180000000
0490000180000000
0490000180000000

125
126
127
128
129
130

132

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

os$p
OVFL
PJIMP
PJIMP$
POUT
Quos
RO
R1
R2
R3
RY4
R5

R6

R7

RS

R9

RA

RB

RC

RD

RE

RF
RGHT
scouTtT
SFTC
SHFA
SHFT
SHFTOP
SPEC
SSW1
SSW2
SSW3
STAT
SUB
S$ALU
S$OVFL
S$SHFT
TCB
TESTT
TESTF
TFIR
TRNA
TRNB
TT
WAITMD
ZERO

SS1M
SS2M
SS3M

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

FOLLOWING ARE ROM STANDARD STATE ADDRESSES

EQU
EQU
EQU

ORG

GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN

>

MEWN2OX aFTwOoX
o]

»a0

WaNXNXUNWNASONAWNWEOaXXXNaX XXX XXWoawn
>

X'13E
X'092
X'02D

0

/N(S§S2M), 10 (PJIMP),
/N(8S2M), 10(PJIMP),
/N(8S2M), 10(PJIMP),
/N(Ss2M), 10 (PJIMP),
/N(ss2M), 10(PIMP),
/N(SS2M), 10{PJMP),
/N(SS2M),10{(PJIMP),
/N{SS2M), 10{PJIMP),
/N{SS2M),10(PIMP),
/N(SS2M), 10(PJIMP),
/N(SS2M), 10(PIMP),
/N(SS2M) ,10(PIMP),
/N(S5S2M), 10(PJIMP) ,
/N(SS2M),10(PIMP),
/N(S5S2M), 10(PJIMP),
/N(SS2M), 10(PJIMP),
/N(SS2M),10(PJIMP),
/N(SsS2M), 10(PJMP),
/N(SS2M), 10{PJMP) ,
/N(SS2M), 10{(PIMP),
/N(SS2M), 10(PIMP),
/N(SS2M), 10(PJMP),
/N{SS2M), 10(PJMP),
/N(SS2M), 10(PIMP),
/N(SS2M), 10(PJIMP),
/N(SS2M), 10 (PIMP),
/N(8S2M), 10{PJIMP},
/N(SS2M), 10 (PJIMP),
/N(SS2M), 10{PJMP),
/N{Ss2M),10(PIMP),

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

varian data machines

0)
0}
0)
o)
0)
0)
0)
0)
0)
0)
0)
0)
0)
o)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)

RESTART PIPELINE a P
MAINTAIN PIPELINE
DECODE NEXT INSTRUCTION

RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN

TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO

(IN IBR)}

ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
(continued)

CODING FROM FLOW DIAGRAMS

5-7

varian data machines

CODING FROM FLOW DIAGRAMS

001E 0450000180000000 164

001F 0490000180000000

SYMBOLS

0000
0009
000B
0007
000F
0003
oo0o0C
0004
0000
0001
0005
0005
0001
0002
0001
0003
0oo08
000D
0006
000A
002D
0006
000F

ASGPR
ADD
AND
BS$ALU
DECA
FT
IF$SMIR
INCP
LFT
MIR
NOTB
OLSE
OR
OS$OVR
POUT
R3

R8

RD
S$QVFL
SHFT
SS3IM
SUB
TRNA

0002
0008
0002
000F
0009
0001
0000
0005
0003
000B
0005
0007
0004
000A
000F
0004
0009
000E
0001
0001
0004
0002
000A

165
167
ASGPRL 0003
ALUC 0006
AONE 0001
BS$SMIR 0003
DECB 0005
GPROUT 000D
IF$SOVR 0008
INCSC 0002
LIT 0001
MIRS 0002
OF$ALU 000D
OLZF 0003
ORSE 0006
ossp 0000
Quos 0000
RY 0005
RY 000A
RE O000F
S$SHFT 0002
SHFTOP 0000
SSW1 0003
TCB 0002
TRNB 0002

0 ERRORS ASSEMBLY COMPLETE

5-8

GEN

GEN

END
ASGPRR 0001
ALUO 0007
AZERC 0000
BS$OVR 000B
DECOD$ 0004
GPRS 0001
IFS$P 0000
IOR 0001
LOG 0001
MSK 000E
OF$MIR 0001
ONES 0000
ORZF 0006
OVFL 0003
RO 0001
RS 0006
RA 000B
RF 0001
SCoUT 000C
SPEC 013E
SSW2 0002
TESTF 0003
TT 0001

/N(SS2M),10(PIMP),
/N(SS2M), 10 (PJIMP),

AspP
ALUS
B$GPR
BSS$P
DECODE
IBRSI
INCA
IOSR
MEMC
NORM
OF$OVR
OPR
OSS$ALU
PIMP
R1

R6

RB
RGHT
SFTC
SS1M
SSW3
TESTT
WAITMD

0000
0009
0001
0003
0006
0004
0001
0006
0002
0000
0009
0003
O0COE
0004
0002
0007
000C
0002
ooocC
0092
0003
0005
0003

A$SPEC
ALUZ
B$SPEC
CRY 1
EOR
IF$ALU
INCB
KouT
MEMCS$
NOTA
OF$P
OPROUT
OSSMIR
PJIMPS
R2

R7

RC
S$SALU
SHFA
SS2M
STAT
TFIR
2ERO

1(0)
1(0)

RETURN TO ROM
RETURN TO ROM

varian data machines

0001

0009
0008
0006
0007
0009
000B
0002
0001
0000
0002
0003
0001
0000
0007
000F
0003
000B
0000
0001
0003
000F
0009
0004
0005
0006
0003
0001
000D
0001
0004
ooocC
0000
0008
0000
0001

0004
0005
0002
0001
0006
0000
0003
0001
0001
0002
0001
000B
0002
000E
0000
0005
0005
000D
0001
0009
0007

CODING FROM FLOW DIAGRAMS

5.2.2 Memory-to-Memory Block Move

The subroutine was assigned physical location 101, page 1
as its first address. This places word MBMA on an even
word, as it must be. Since the microroutine is on page 1,
the need for the page jump from the BCS entry point no
longer exists. It was included never the less.

1 *
2 *
3 * MEMORY-TO-MEMORY BLOCK MOVE
4 *
5 % CALL: BCS TO WORD 0
6 *
7 x PARAMETERS: A REG ~ 'TO' ADDRESS
8 * B REG - 'FROM' ADDRESS
9 x X REG - BLOCK LENGTH
10 =
11 x
13 R1 EQU 1
Ty
15 = THE FOLLOWING ARE SUPPLEMENTAL OPCODES
16 * FOR USE WITH THE MICRO ASSEMBLER
17 =
18 *
19 ADD EQU 9
20 ALUC EQU 8
21 ALUO EQU 6
22 ALUS EQU 7
23 ALUZ EQU 9
24 AND EQU X'B
25 AONE EQU 2
26 AZERO EQU 1
27 ASGPR EQU 0
28 ASGPRL EQU 2
29 AS$GPRR EQU 3
30 ASP EQU 1
31 A$SPEC EQU 0
32 BSS$ALU EQU 7
33 BS$MIR EQU X'F
34 BS$SOVR EQU 3
35 BS$P EQU X'B
36 B$GPR EQU 0
37 B$SPEC EQU 1
38 CRY! EQU 3
39 DECA EQU X'F
40 DECB EQU 9
41 DECODE EQU 4
42 DECOD$ EQU 5
43 EOR EQU 6
44 FT EQU 3
45 GPROUT EQU 1
46 GPRS EQU X'D
47 IBRSI EQU 1
48 IF$ALU EQU 4
49 IF$MIR EQU x'c
50 IF$OVR EQU 0
51 IF$P EQU 8
52 INCA EQU 0
53 INCB EQU 1

54 INCP EQU
55 INCSC EQU
56 IOR EQU
57 IOSR EQU
58 KOUT EQU

59 LFT EQU
60 LIT EQU
61 LOG EQU

62 MEMC EQU
63 MEMC$ EQU

64 MIR EQU
65 MIRS EQU
66 MSK EQU

]

67 NORM EQU
68 NOTA EQU
69 NOTB EQU
70 OF$ALU EQU
71 OF$MIR EQU
72 OF$OVR EQU
73 OF$P EQU
74 OLZF EQU

NOa X UUNOXNXaNa2wWwoRhaNw s
=} w

(continued)

59

0005
0003
0000
0003
0001
o004
0006
0006
000E
0002
000A
0000
0003
0004
0001
000F
0000
0002
0003
0004
0005
0006
0007
0008
0009
000A
000B
000C
000D
000E
000F
0001
0002
0o00C
000C
000A
0001
0000
0004
0003
0002
0003
0006
0002
0006
0001
0002
0003
0002
0005
000F
000A
0002
0001
0003

013E
0092
002D

0000

0000 1808000180000000

0101

0101 0810000008F90007

0102 0818000000F10000

— varian data machines

CODING FROM FLOW DIAGRAMS

131
132
133
134
135
136

140
141

143
145
146
147
149

151
152

154

156
157

159

161
162

OLSE
ONES
OPR
OPROUT
OR
ORSE
ORZF
OSS$ALU
OS$MIR
0S$OVR
0OS$P
OVFL
PIMP
PIMPS
POUT
QuUos
RO

R2

R3

RY

RS

R6

R7

R8

R3

RA

RB

RC

RD

RE

RF
RGHT
SCOUT
SFTC
SHFA
SHFT
SHFTOP
SPEC
SSW1
SSW2
SSW3
STAT
SUB
S$SALU
S$OVFL
S$SHFT
TCB
TESTT
TESTF
TFIR
TRNA
TRNB
T
WAITMD
ZERQ

SS1M
SS2M
SS3M

*

MBM

*

*

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

>

o]

»00

o]

WoRXMXUNWN AN WNWEO XXX NN XM XXX OO IO N EWNOX A FWOXNXXOOE WO W
» MEYOmD >

FOLLOWING ARE ROM STANDARD STATE ADDRESSES

EQU X'13E RESTART PIPELINE & P

EQU X'092 MAINTAIN PIPELINE

EQU X'02D DECODE NEXT INSTRUCTION (IN IBR)
ORG 0

FOLLOWING IS BCS ENTRY POINT

GEN /N(MBM), 10(PJIMP)}, 1(1) BRANCH TO BLOCK MOVE ROUTINE
FOLLOWING IS ACTUAL BLOCK MOVE ROUTINE
ORG X'101

SAVE P IN R7

GEN /*,12(A$P), 14 (TRNA), 15(L0G), 17 (GPROUT) , 24 (R7)

DECR 'TO' ADDR

GEN /%,12(A$GPR),24(R0O), 14(DECA), 17 (GPROUT)

DECR 'FROM' ADDR ; PUT IT IN P
(continued)

varian data machines

0103 0820000001F00001
0104 08280404A4A80010
0105 0830008000F10002
0106 283829C300070000
0107 0490090201P80007
SYMBOLS
0000 ASGPR 0002 A$GPR
0009 ADD 0008 ALUC
000B AND 0002 AONE
0007 BS$ALU 00OF BS$MI
000F DECA 0009 DECB
0003 FT 0001 GPROU
000C IFS$SMIR 0000 IF$OV
0004 INCP 0005 INCsC
0000 LFPT 0003 LIT
0107 MBMB 0001 MEMC
. 0002 MSK 000E NORM
000D OF$MIR 0001 OF$OV
0003 ONES 0000 OPR
0006 ORZF 0006 OSS$AL
0000 OVFL 0003 PJMP
0000 RO 0001 Rt
0005 RS 0006 R6
000A RA 000B RB
000F RF 0001 RGHT
0002 SCOUT 000C SFTC
0000 SPEC 013E SS1M
0003 SswW2 0002 SSW3
0002 TESTF 0003 TESTT
0002 TT 0001 WAITM

CODING FROM FLOW DIAGRAMS

164 GEN /*,12(A$GPR),2“(R1),1U(DECA),13(POUT)
166 =*
167 = FIRST LOOP MICROWORD; STORE AT 'TO'; REQUEST FETCH OF INCR 'FROM'
169 MBMA GEN /*,10(0F$P),S(MEMC),11(BSSPEC),23(HIR),14(TRNB),15(LOG),
170 C13(INCP)
172 =
173 * SECOND LOOP MICROWORD; DECR BLOCK LENGTH; SAMPLE RESULT FOR TEST
175 GEN /*,12(A$GPR),24(R2),14(DECA),17(GPROUT),7(S$ALU)
177 =
178 = FINAL LOOP MICROWORD; EXIT OR CONTINUE THE LOOP WITH REQUEST
179 * FOR A STORE AT INCREMENTED 'TO' ADDR
181 GEN /T(HBHB,MBHA),S(TT),10(OS$ALU),6(TESTF),
182 c12(AstR),2u(n0),1u(INCA),15(cnv1),17(GpROUT),7(ALus)
184 =
185 = EXIT MICROWORD ; RESTORE P AND THE PIPELINE
187 MBMB GEN /N(SSZM),7(PJMP$),1(O),10(IF$ALU),G(MEMCS),S(O),
188 C12(AS$GPR}, 24(R7), 14(TRANA), 15(LOG) , 13 (POUT)
190 END
L 0003 ASGPRR 0001 A$P 0000 AS$SPEC
0006 ALUO 0007 ALUS 0009 ALUZ
0001 AZERO 0000 B$GPR 0001 B$SPEC
R 0003 BS$OVR 000B BS$P 0003 CRY?
0005 DECOD$ 0004 DECODE 0006 EOR
T 000D GPRS 0007 IBR$I 0004 IF$ALU
R 0008 IF$P 0000 INCA 6001 INCB
0002 IOR 0001 IOSR 0006 KouT
0001 LOG 0101 MBM 0104 MBMA
0002 MEMC$ 0001 MIR 000B MIRS
0000 NOTA 0005 NOTB 0005 OF$ALU
R 0009 OFS$P 0005 OLSE 0007 OLZF
0003 OPROUT 0001 OR 0004 ORSE
U 000E OS$MIR 0002 OSSOVR 00OA OS$P
0004 PJMP$ 0001 pouUT 000F QuOS
0002 R2 0003 R3 0004 R4
0007 R7 0008 RS 0009 R9
000C RC 000D RD 000E RE
0002 SSALU 0006 S$OVFL 0001 S$SHFT
000C SHFA 000A SHFT 0001 SHFTOP
0092 ss2M 002D SS3M 0004 SSW1
0003 STAT 0006 SUB 0002 TCB
0005 TFIR 000F TRNA 000A TRNB
D 0003 ZERO

0 ERRORS ASSEMBLY COMPLETE

511

varian data machines

CODING FROM FLOW DIAGRAMS

5.2.3 Reentrant Subroutine Call and Return

These routines were assigned locations beginning at word
110, page 1. As with the previous example, the page jumps
are no longer necessary since the routines are on the same
page as their BCS entry points. In this case they were
simply coded using normal addressing.

1 %
2
3
4 =
5 x
[*
7 =
8
9 x
10 =
12 =
13 =
14 =
15 =
16 =

0009 17 ADD
0008 18 ALUC
0006 19 ALUO
0007 20 ALUS
0009 21 ALUZ
000B 22 AND
0002 23 AONE
0001 24 AZERO
0000 25 ASGPR
0002 26 ASGPRL
0003 27 ASGPRR
0001 28 ASP
0000 29 ASSPEC
0007 30 BSS$SALU
000F 31 BS$MIR
0003 32 BS$OVR
000B 33 BSS$P
0000 34 BS$GPR
0001 35 BS$SPEC
0003 36 CRYI1
000F 37 DECA
0009 38 DECB
0004 39 DECODE
0005 40 DECODS
0006 41 EOR
0003 42 FT
0001 43 GPROUT
000D 44 GPRS
0001 45 IBRSI
0004 46 IFSALU
000C 47 IFS$MIR
0000 48 IFSOVR
0008 49 IFS$P
0000 50 INCA
0001 51 INCB
0004 52 INCP

0005 53 INCsSC
0002 54 IOR
0001 55 IOSR
0006 S6 KoUT
0000 57 LFT
0003 58 LIT
0001 59 LOG
0001 60 MEMC
0002 61 MEMCS$
0001 62 MIR
000B 63 MIRS
0002 64 MSK
000E 65 NORM
0000 &6 NOTA
0005 67 NOTB
0005 &8 OFS$ALU
000D 69 OFS$MIR
0001 70 OFS$OVR
0009 71 OF$P
0007 72 OLZF
0005 73 OLSE
0003 74 ONES

REENTRANT SUBROUTINE CALL AND RETURN

CALL: FOR SUBROUTINE CALL : BCS TO WORD 1
FOR SUBROUTINE RETURN: BCS TO WORD 2

PARAMETERS: B REGISTER - STACK POINTER

THE FOLLOWING ARE SUPPLEMENTAL OPCODES
FOR USE WITH THE MICRO ASSEMBLER

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

o]

w

w

=]

EFa OO E X WU LEOUXWOXWHNOaAWNOSNX OO
[g]

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

w

[}

WMV AN UTNOXNM aNaawo WU
o

(continued)

varian data machines

0001

0001

0110

0110

0000
0003
0001
0004
0006
0006
000E
0002
000A
0000
0003
0004
0001
000F
0000
0001
0002
0003
0004
0005

0006
0007
0008
0009
000A
000B
000C
000D
000E
000F
0001
0002
000C
000C
000A
00601
0000
0004
0003
0002
0003
0006
0002
0006
0001
0002
0003
0002
0005
000F
000A
0002
0001
0003

013E
0092
002D

0880040300F10001

0888000080F8C002

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

94

130
131
132
133
134
135

137
138
139
141

143
144

146
147

149
150
151
153

155
156

158

OPR
OPRQUT
OR
ORSE
ORZF
QS$ALU
OS$MIR
OS$0OVR
Ossp
OVFL
PIMP
PJIMP$
POUT
Quos
RO

R1

R2

R3

RY

R5

R6

R7

R8

R9

RA

RB

RC

RD

RE

RF
RGHT
scouTt
SFTC
SHFA
SHFT
SHFTOP
SPEC
SSW1
SSW2
SSW3
STAT
SUB
S$ALU
S$OVFL
S$SHFT
TCB
TESTT
TESTF
TFIR
TRNA
TRNB
T
WAITMD
ZERO

S51M
582M
SS3M

*

*

LAB1

CODING FROM FLOW DIAGRAMS

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

o]

>

NEBLWNCSOX S EFWOXNXONE 2awo
o}

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

HUEARN XXX XXX OWoO a0
mEHOOW P

»aa

WaNXXUNWNSONOWNWEOS o
o

FOLLOWING ARE ROM STANDARD STATE ADDRESSES

EQU X'13E RESTART PIPELINE 3 P
EQU X'092 MAINTAIN PIPELINE
EQU X'02D DECODE NEXT INSTRUCTION (IN IBR)

FOLLOWING IS CODE FOR SUBROUTINE CALL

ORG 1

BCS ENTRY POINT PUSHES OLD R2 ON STACK

GEN /N(LAB1),1o(ossALU),6(HEMC),12(A$GPR),24(R1),1u(DECA),
C17 (GPROUT)

REST OF ROUTINE

ORG X'110

WAIT ON STORE OF R2

GEN /*,6(5PEC),10(WAITMD),12(A$GPR),2U(R2),1U(TRNA),15(LOG

)

(continued)

513

N

varian data machines

CODING FROM FLOW DIAGRAMS

ot

0890040608070002

0112 0168090221160110

0002

0002 08A8040201F80002

0115

0115 08BOOH4O2B0F80001

0116 08B80O4UO40O4070001

0117 00000141AOA90012

SYMBOLS

0000 ASGPR 0002
0009 ADD goo08
000B AND 0002
0007 BSSALU 0O0CF
000F DECA 0009
0003 FT 0001
000C IF$SMIR 0000
0004 INCP 0005
0110 LAB1 0115
0001 MEMC 0002
000E NORM 0000
0001 OF$OVR 0009
0000 OPR 0003
0006 OSS$SALU 000E
0003 PJIMP 0004
0001 R1 0002
0006 R6 0007
000B RB 000C
0001 RGHT 0002
000C SFTC ooocC
013E SS1M 0092
0002 SSW3 0003
0003 TESTT 0005
0001 WAITMD 0003

160 *
161 =* FETCH FIRST INSTRUCTION OF SUBR ; STORE INCR P IN R2
163 GEN /*,10{IF$MIR), 6 (MEMC),12(A$P), 14 (INCA), 16 (CRY1),
164 C17(GPROUT) , 24 (R2)
166 *
167 * FETCH SECOND INST OF SUBR; SET NEW P; BACK TO ROM
169 GEN /N(ss3M),7(PIMPS$),1(0),10(IFSALU),6(MEMCS),5(0),
170 C12(A$SPEC),22(AZERO),
171 C11(B$SPEC), 23 (MIR), 14 (INCB),16{CRY1), 13(POUT)
173 *
174 * FOLLOWING IS CODE FOR SUBROUTINE RETURN
175 *
177 ORG 2
179 *
180 BCS ENTRY POINT - BEGINS FETCH OF INST AT RETURN ADDRESS
182 GEN /N(LAB2),10{IF$ALU),6(MEMC), 12(A$GPR) ,24(R2),
183 C14(TRNA), 15(LOG), 13{POUT)
185 *
186 »* REST OF THE ROUTINE
187 =
189 ORG X'115
191 *
192 * FETCH OLD R2 VALUE FROM STACK
194 LAB2 GEN /%*,10 (OF$ALU) , 6 (MEMC), 12(A$GPR) ,24(R1), 14 (TRNA), 15(LOG}
196 *
197 = FETCH SECOND INSTRUCTION AT RETURN ADDRESS ; INCR STK PTR
199 GEN /%*,10(IFSP),6(MEMC), 12(ASGPR) ,24(R1), 14(INCA), 16 (CRY1),
200 C17{GPROUT), 13{INCP)
202 =
203 =* RESTORE R2 ; BACK TO ROM
205 GEN 10(PJMP), 1(0),7(DECODS), 11(B$SPEC),23(MIR),
206 C14(TRNB), 15(LOG), 17 (GPROUT) , 24 (R2)
208 END
A$GPRL 0003 ASGPRR 0001 ASP 0000 AS$SPEC
ALUC 0006 ALUO 0007 ALUS 0009 ALUZ
AONE 0001 A2ERO 0000 B$GPR 0001 BS$SPEC

BS$SMIR 0003

DECB

0005

GPROUT 000D
IF$OVR 0008

INCSC

LAB2

MEMCS

NOTA
OF$P

0002
0000
0001
0005
0005

OPROUT 0001
OS$MIR 0002

PIMP$

R2
R7
RC

S$ALU

SHFA
S82M
STAT
TFIR
ZERO

0001
0003
0008
000D
0006
000A
002D
0006
000F

0 ERRORS ASSEMBLY COMPLETE

5-14

BS$OVR 000B BS$P 0003 CRY1
DECODS$ 0004 DECODE 0006 EOR

GPRS
IFS$P
IOR
LFT
MIR
NOTB
OLSE
OR

0001 IBR$I 0004 IFS$SALU
0000 INCA 0001 INCB
0001 IOSR 0006 KOUT
0003 LIT 0001 LOG
000B MIRS 0002 MSK
0005 OF$ALU 000D OFS$MIR
0007 OLZF 0003 ONES
0004 ORSE 0006 ORZF

OS$OVR 000A OSSP 0000 OVFL

POUT
R3
R8
RD

000F QUOS 0000 RO

0004 RY 0005 R5
0009 R9 000A RA
000E RE 000F RF

S$OVFL 0001 S$SHFT 0002 SCOUT

SHFT
SS3M
SUB

TRNA

0001 SHFTOP 0000 SPEC

0004 SSW1 0003 SSW2

0002 TCB 0002 TESTF
000A TRNB 0002 TT

0000

0000 0100040404000000

0010

0010 0100040404000000

0020

0020 0108000023A80010

0021 01100402A0900001

0022 4118043404000010

0023 000003C1A0910000

SYMBOLS

0000 AD1 0010 ADI1A

0023 ADS

[NN
WONHANEWUNOWOAND T WN —

varian data machines

CODING FROM FLOW DIAGRAMS

5.2.4 64K Add to General-Purpose Register

*ADD TO ANY REGISTER FROM 64K MEMORY INDEX BY R1
*

ORG 0
*
AD1 GEN /N(AD2) ,SF1,IM8,RF4
*
*THIS ENTRY USED FOR EVEN REGISTER ADDRESSES.
*INITIATE ANOTHER INSTRUCTION FETCH USING INCREMENTED PROGRAM COUNTER.
*

ORG X'010
*

AD1A GEN /N(AD2),SF1,IM8,RF4
*

*THIS ENTRY USED FOR ODD REGISTER ADDRESSES.
*INITIATE ANOTHER INSTRUCTION FETCH USING INCREMENTED PROGRAM COUNTER.
*

ORG X'020

*

AD2 GEN /%*,LB1,RF3,FFA,MF1,BB1
20 =
21 *TRANSFER MEMORY INPUT REGISTER TO OPERAND REGISTER TO PREVENT LOSS
22 *DUE TO PREVIOUSLY INITIATED FETCH. THIS IS THE BASE ADDRESS.
23 *
24 AD3 GEN /%,SF1,IM5,LB1,LAO,FF9,AA1
25 %
26 +PERFORM INDEXING BY ADDING R1 TO OPERAND REGISTER. INITIATE OPERAND
27 *FETCH USING ALU OUTPUT.
28 %
29 AD4 GEN /%,TS4,MR1,AB2,BB1,SF1,IM8,RF4
30 *
31 #FIELD SELECT REGISTER SPECIFICATION FROM INSTRUCTION BITS 47 TO
32 *A FIELD OF MICROINSTRUCTION. SET B FIELD TO SELECT MEMORY INPUT
33 #REGISTER. INITIATE ANOTHER INSTRUCTION FETCH USING INCREMENTED
34 *PROGRAM COUNTER.
35 #
36 ADS GEN /P(X'0000),LB1,LAQ,FF3,GFF,WR1, IM3
37
38 *ADD CONTENTS OF MEMORY INPUT REGISTER TO THAT OF PREVIOUSLY SELECTED
39 *REGISTER AND STORE BACK THE SUM. PAGE BRANCH TO ZERO AND DECODE
40 *INSTRUCTION PREVIQUSLY FETCHED. OVERFLOW AND CONDITION CODES ARE
41 *SAMPLED. TRANSFER INSTRUCTION BUFFER TO INSTRUCTION REGISTER.
42
43 END
0020 AD2 0021 AD3 0022 ADY

0 ERRORS ASSEMBLY COMPLETE

515

A1 varian data machines

CODING FROM FLOW DIAGRAMS

[N N NN NN
CONNMNNEWNOWO~NOVEWN

NN
-0

22

0000 31
0000 01083804E7ATFFAF 32

0020 40
0020 0110040280A80010 41

0021 0198000020A90011 46

0022 01380000E2A00070 50

0023 0120008020A90012 55

0024 31282240E2A00070 60

0025 0158050404000000 67

0026 0138000020A9000F 72

0027 0150000023A80010 76

0028 01500000006900F0 80

5-16

5.2.5 Cyclic Redundancy Check Generation

*THIS MICROPROGRAM COMPUTES THE CYCLIC REDUNDANCY CHECK WORD ON A
*PACKED BYTE ARRAY USING THE POLYNOMIAL:

* XK¥* 16+ X¥*15+X*%2+1

*ENTRY IS VIA A BCS TO LOCATION 0 OF PAGE 1

*THE WORD FOLLOWING THE BCS IS THE DATA ARRAY ADDRESS

*THE WORD FOLLOWING THE DATA ARRAY ADDRESS IS THE BYTE COUNT

*

#THE 16 BIT CRC IS LEFT IN RO

*RO,R1,AND R2 ARE ALL USED BY THIS INSTRUCTION (A,B,X}. RF IS ALSO USED.
*R0 IS THE CURRENT CRC

*R1 IS THE CURRENT WORD ADDRESS OF THE DATA

*R2 IS THE CURRENT BYTE COUNT

*RF CONTAINS THE CRC POLYNOMIAL B'1000000000000101

*THE MICROPROGRAM MAY BE INTERRUPTED AFTER EVERY TWO BYTES ARE PROCESSED
*IF THE OVERFLOW FLAG IS SET UPON ENTRY THE CURRENT VALUES OF R1 AND

*R2 ARE USED INSTEAD OF THOSE SPECIFIED BY MEMORY CONTENTS.

*THE ACCUMULATOR (RO) SHOULD BE CLEARED PRIOR TO ENTRY UNLESS CRC IS TO
*BE ACCUMULATED WITH A PRIOR CRC VALUE.

*

*
*TYPICAL ENTRY SEQUENCE IS:

* TZA
* ROF
* DATA 0105000
* DATA ADDR
* DATA COUNT
*
*
*CRC GENERATION
*
ORG X'0
CRC1 GMSK /T(CRC2,CRC1A) ,TF3,SF2,IM9,LB3,RF7,FFA,MK7FFA, AKF

*
*ENTRY IS FROM DECODE OF THE BCS. THE ADDRESS FETCH HAS BEEN INITIATED.
*OVERFLOW FLAG IS TESTED TO DETERMINE IF INSTRUCTION WAS INTERRUPTED
*FETCH OF BYTE COUNT IS INITIATED USING INCREMENTED PROGRAM COUNTER
*THE POLYNOMIAL IS PLACED IN OPR
*IF OVERFLOW IS ON GO TO CRC1A OTHERWISE CRC2
*

ORG X'020 .
CRC1A GEN /N(CRC17),SF1,IM5,FFA,BB1,MF1
*

*COME HERE IF OVERFLOW FLAG WAS ON WHEN INSTRUCTION WAS FETCHED
*FETCH DATA BYTE PAIR
*

CRC2 GEN /N(CRC3),LB1,FFA,WR1,BB1,AA1,MF1
*

*SAVE DATA ARRAY ADDRESS IN R1 (FROM MIR)

*

CRC17 GMSK /N(CRC6) ,IM1,LB3,RF2,FFA,MK0007
*

*SET SHIFT COUNTER TO -8

*WAIT FOR MEMORY DONE FROM DATA FETCH

*

CRC4 GEN /%*,GF2,LB1,FFA,BB1,MF1,AA2,WR1

*

*SAVE BYTE COUNT IN R2

#SAMPLE ALU STATUS TO CHECK FOR ZERO BYTE COUNT
*

CRCS GMSK /T(CRC18,CRC5A), TF2,GF9,IM1,LB3,RF2,FFA,MK0007
*

*PUT -8 IN SHIFT COUNTER (8 BITS PER BYTE)

*TEST ALU ZERO STATUS FLAG TO SEE IF BYTE COUNT WAS ZERO
*WAIT FOR MEMORY DONE FROM DATA FETCH

*IF BYTE COUNT WAS ZERO GO TO CRC18 OTHERWISE CRCS5A

*

CRC18 GEN /N(CRC19) ,SF1,GF4,IM8,RF4

*

*WHEN BYTE COUNT WENT TO ZERO RESET OVERFLOW TO INDICATE COMPLETION
*START NEXT INSTRUCTION FETCH USING INCREMENTED PROGRAM COUNTER

*

CRC5A GEN /*,FFA,MF1,AAF,WR1,LB1
*

*MOVE POLYNOMIAL (IN OPR) TO RF
*

CRC6 GEN /N(CRC7},LB1,RF3,FFA,BB1,MF1
*

*TRANSFER DATA BYTES FROM MIR TO OPR
*

CRC9 GEN /N{CRC7),FF6,MF1,WR1,BBF

*

*THIS IS A CORRECTION CYCLE

*R0 TO ALU INPUT A)
(continued)

0029

0190808000610032

002A 714823001569DAF0

0028

002C

002D
002E

002F

0030

0031

0032

0033

0034

0035

0036
0036

0037
0037

0038

0490090000000000

0178000069900030

0178050404000000
4110800000000000

01B0000100000000

01900000006900F0

6168224000070001

D128224062A00070

0118048280A80010

4190800000000000

41F0808000610032

07F8000180000000

71FC012700000000

01D00000006900F0

110
111
112
13
114

116
117
118
119
120
121
122
123
124
125
126

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
131
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

169

varian data machines

CODING FROM FLOW DIAGRAMS

*RF TO ALU INPUT B

*EXCLUSIVE OR ALU INPUTS TO RO

*

CRC10 GEN 2(X'032) ,MT0,FS2,GF2,FF6,MF0,AA2,BB3,WR1
*

*AFTER LAST BIT IS PROCESSED TEST DSB FLAG FOR A CORRECTION CYCLE

*DECREMENT BYTE COUNT

*SAMPLE ALU STATUS TO ALLOW CHECK FOR BYTE COUNT ZERO

*IF CORRECTION CYCLE NECESSARY GO TO CRC10A OTHERWISE CRC11

*

CRC7 GEN /T(CRC10,CRC8)},TF2,GFC,LA2,RF5,FF6,MF1,WR1,5C1,VF1,
CXF3,SH2,BBF

*

*SHIFT RO LEFT TO ALU INPUT A

*SHIFT OPR LEFT

*RO(15) TO SHIFT FLAG (DSB)

*OPR(15) TO ALU INPUT A BIT 00

*POLYNOMIAL (RF) TO ALU INPUT B

*EXCLUSIVE OR ALU INPUTS TO RO

*INCREMENT SHIFT COUNTER

*TEST FOR SHIFT COUNTER OVERFLOW, IF OVERFLOW GO TO CRC8 OTHERWISE CRC10

*

CRC19 GEN /P(X'0092),SF2,GF4

*

*PAGE JUMP TO PAGE 0 LOC 060 (SS2M)

*

CRC22 GMSK /N(CRC23),LB3,LA1,RF1,FF9,MK0003

%*

*SUBTRACT 4 FROM PROGRAM COUNTER TO CAUSE REFETCH OF THE BCS INSTRUCTION
*AFTER INTERRUPT PROCESSING

%

CRC24 GEN /N{CRC23),SF1,GF4, IM8,RFY4

CRC8 GEN /F(CRC9),FS2,2(X'022), TSt

*

*TEST SHIFT (DSB) FLAG TO SEE IF CORRECTION CYCLE IS NEEDED. IF BIT 15
*OF THE OLD CRC WAS A ZERO THE EXCLUSIVE OR PERFORMED AT CRC7 MUST

*BE CANCELLED. IF DSB WAS 1 GO TO CRC7 OTHERWISE CRC10

*

CRC23 GEN /N{(CRC25),IM2

*

*WAIT FOR IO DONE

*

CRC10A GEN /N(CRC11} ,FF6,MF1,WR1,BBF

*
*THIS IS CORRECTION CYCLE SIMILAR TO CRC8
*

CRC21 GEN /T(CRC24,CRC22),TF2,GF9,FF0,MF0,CF3,WR1, AA1

*

*INCREMENT DATA ARRAY ADDRESS (R1)

*TEST ALU ZERO FLAG FOR ZERO BYTE COUNT IF ALU ZERO IS ON GO TO CRC24
*OTHERWISE CRC22

*

CRC11 GMSK /T(CRC18,CRC12),TF2,GF9,LB3,RF2,FFA,MK0007

*

*PUT -8 INTO SHIFT COUNTER

*TEST ALU ZERO STATUS FLAG TO SEE IF RIGHT BYTE SHOULD BE PROCESSED
*IF SO GO TO CRC12 OTHERWISE CRC18

*

CRC3 GEN /N(CRCQ),SF1,GF2,IM5,FFA,BBl,HF1
*

*USING R1 AS ADDRESS INITIATE FETCH OF TWO BYTES.
*SET OVERFLOW FLAG TO INDICATE INCOMPLETE INSTRUCTION
*

CRC13 GEN /F(CRC14),FS2,2(X'032),TsS4
%

*IDENTICAL TO CRC8
*

CRC15 GEN 1(x"4),2(X"03E) ,MT0,FS2,GF2,FF6,MF0,AA2,BB3,WR1

*

*PERFORM OPERATIONS OF CRC10. 1IF DSB IS SET GO TO CRC15B OTHERWISE
*CRC15A

*

ORG X'036
CRC25 GEN /P(X'00FF),IM3
*PAGE JUMP TO PAGE 0 LOC OFF (INT2)
*
ORG X'037
CRC20 GEN 2(CRC16),1(X"'7),MT1,GF4,MR1, IME
*

*WHEN CRC15 DETECTS AN INTERRUPT CHECK IT AGAIN TO SEE IF IT WAS
*OVERRIDEN BY A DMA TRAP.

*START IO INTERRUPT SEQUENCE

*IF INTERRUPT GO TO CRC21 OTHERWISE CRC16

*

CRC14 GEN /N{(CRC12) ,FF6,MF1,WR1,BBF

*

(continued)

517

)

varian data machines

003E

Q03E 71F8010600000000

003F 11282A4280070001

003A

003A 21A823001569DAF0

003C

003C 01F00000006200F0

SYMBOLS

0000 CRC1 0029 CRC10
0034 CRC13 0038 CRC14
003F CRC16 0022 CRC17
0021 CRC2 0037 CRC20
002D CRC24 0036 CRC25
0026 CRCS5A 0027 CRCé

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

CODING FROM FLOW DIAGRAMS

*IDENTICAL TO CRC9Y
*

ORG X'03E
*
CRC15B GEN 1(X'7),2(X'03F),GF4,IMC
*

*LOOK FOR INTERRUPT
*

*
CRC16 GEN /T(CRC18,CRC17),TF2,SF2,GF9,IM5,FF0,CF3,AAl,WR1
*

*INCREMENT ARRAY ADDRESS (R1)
*FETCH NEXT BYTE PAIR IF ALU ZERO FLAG IS OFF (BYTE COUNT NOT ZERO)
*IF BYTE COUNT WAS ZERO GO TO CRC18 OTHERWISE CRC17
*
ORG X'03A
CRC12 GEN /T(CRC15,CRC13),TF2,GFC,LA2,RF5,FF6,MF1,WR1,5C1,XF3,
CSH2,BBF,VF1
*
*IDENTICAL TO CRC7. THIS PROCESSES THE RIGHT BYTE OF DATA WHICH HAS
*BEEN SHIFTED LEFT IN OPR
*
ORG Xx'03C
CRC15A GEN /N(CRC15B) ,FF6 ,MF1,WR1,BBF
*
*IDENTICAL TO CRC10A
*

*
END

0030 CRC10A 0032 CRC11 003A CRC12
0035 CRC15 003C CRC15A 003E CRC15B
0025 CRC18 002B CRC19 0020 CRCI1A
0031 CRC21 002C CRC22 002F CRC23
0033 CRC3 0023 CRCY 0024 CRCS
002A CRC7 002E CRCS8 0028 CRCHO

0 ERRORS ASSEMBLY COMPLETE

5-18

varian data machines

SECTION 6
MICROPROGRAM SIMULATOR, MICSIM

The Microprogram Simulator (MICSIM) helps the user find
and correct microprogram bugs. Any program develop-
ment includes some time to verify that the program solves
the problem. Testing may find that it does not. Running
the microprogram simulator aids in both the discovery and
correction of microprogram errors.

When the microprogram is free of errors, the simulator can
be used to determine the performance before the design is
final, measure the efficiency of the technique and evaluate
changes and extensions.

MICSIM runs on all V70 series systems. Microprograms can
also be simulated on 620 systems without WCS. The

hardware requirements depend upon the operating system
used.

6.1 BASIC ELEMENTS

In general this simulator provides the basic facilities for
inputting, modifying and outputting the contents of the
simulated control store, tracing, and address halt of the
microinstructions.

The fundamental program blocks of the simulator are:

a. Simulation control, inputs the simulator commands
and directs their execution.

b. Simulator command execution represents the actual
execution of the simulator commands.

¢. Microinstruction execution, executes a micro-
instruction by simulating its effect.

d. Simulation information accumulator and list output.

The relationships of the basic program blocks are ilius-
trated in figure 6-1.

Note: The 1/0 functions of the computer are not simulated.

6.2 GENERAL FORM OF STATEMENTS
The simulator processes three types of directives. All
directives begin with a single letter indicating the type.
The following types of actions are handled by the
simulator:

a. initialize simulator and storage

b. change and examine storage

¢. trace, dump and control execution

Table 6-1 summarizes the directives for quick reference;
section 6.7 provides detailed description and examples.

MICRO
SIMULATION
CONTROL

SIMULATOR
CONTROL
EXECUTIVE

INTERFACE
PROGRAM

OPERATING
SYSTEM

PERIPHERAL
/O

VTii-1810

Figure 6-1. Microsimulator Control Flow

Table 6-1. Summary of Microprogram Simulator

Pn

LC

LDA

Directives

Initialize Simulator and Storage

Initialize simulator

Clear tables and registers
Select page n (o through 4)
Load central control store (CCS)

Load decoder control store (DCS) A

61

as—

varian data machines

MICROPROGRAM SIMULATOR, MICSIM

LDB Load decoder control store (DCS) B
MS Select Pl as input device
MR Select S| as input device
B. Change and Examine Storage
Ar Alter/Display register r, where r is

ALU output

Shift counter

Instruction register

Key register in data loop
Memory input register
Operand register
Program counter

Status register

wovozTxX—0O>»

ARn Alter/Display general register n
(0 through F hexadecimal)

AJn Alter/Display stack position n
(0 through F hexadecimal)

Cm Change/Display main memory word m

ECn Change/Display CCS word n

EDdn Change/Display DCS d (A or B) word n
C. Trace, Dump and Control Execution

D Dump complete CCS

Dm Dump contents of CCS starting at CCS
word m

Dm,n Dump contents of CCS from word m to n
D.n Dump from word zero to n

TS Trace set

TR Trace reset

TSn,m Trace from CCS word n to word m

Bn Begin simulated execution at CCS word n
Hn,n . Halt at CCS address(es) n

8S Single step set

SR Single step reset

R Return to MOS or VORTEX; Halt in
standalone

Two methods of correcting typographical errors are availa-
ble to the operator. An entire line can be deleted by
typing the backslash character (shift/L). The backslash is
output as a visual aid. A line feed and a carriage return

6-2

are output to indicate that the line has been deleted. A
character just entered can be deleted by typing the
backarrow character. The backarrow character is printed
on the Teletype page printer as a visual indicator of the
deletion. As many backarrows as necessary can be entered;
each deletes one character (but not beyond the beginning
of the line).

Each simulator directive is checked for syntax errors as the
input is interpreted. When an error is detected by the
simulator an error message is output to the Teletype page
printer. The simulator then is ready to receive the corrected
directive.

The simulator will operate under VDM MOS or VORTEX. For
the MOS or stand-alone versions the hardware is described
in VDM document number 98 A 9952 09x, VDM 620
Master Operating System. For the VORTEX version the
hardware is described in VDM document number 98 A
9952 10x, VORTEX Reference Manual. In addition, the
computer must have the arithmetic option, at least 16K
(20K for VORTEX) of memory and for two control store
pages another 4K of memory is needed. The input/output
interface for the MOS and stand-alone versions is de-
scribed in the document 98 A 9952 09x and VDM
document number 89A0023, VDM 620 MOS Input/Output
Control System.

The input/output interface for the VORTEX version is
described in the above document number 98 A 9952 10R
and VDM document number 89A0202, system external

- Specification for the VORTEX Operating System.

6.3 STATEMENT DEFINITIONS

In the following discussion of simulator dialog, simulator
input will be in bold type. This will not appear during
actual runs.

All numeric values denoted in the following discussion of
the simulator directives are hexadecimal (0-F). Numeric
values which are entered on Sl are right justified with
unspecified leading bit positions containing zeros.

6.3.1 Select Input Media (M)

The select input media directive is used to select the device
from which simulator directives will be entered. Normal
operation uses the S| device assigned at load time. Using
this directive, the Pl device assigned at load time can be
used as an alternate input device.

The two formats of the directive are:

MS Select Pl as input device
MR Select Sl as input device

6.3.2 Initialize Simulator (I or Z)

The initialize directive is used to initialize to zero the
contents of the simulator registers, the test condition

varian data machines

flags, CCS control buffer and the CCS word execution
count table. Also, the single step option is reset, the trace
option is set and the CCS address halt is set to 200 hex.
This directive is normally used at the beginning of each
simulation run. The simulator CCS’s are not initialized.

The Z directive performs a subset of the | directive
functions. With this directive the following are cleared:

a. Allregisters
b. Alistack entry
¢. Allsimulation flags and condition codes
Unlike the | command, the following are not cleared:
a. CCShaltvalues
b. Trace flag and limits
c. Single step flag
d. Execution limit
e. Pagevalue and limit

The Z directive is normally used when a simulation run is
continued after an incorrect branch.

6.3.3 Page Select (P)

This directive is used to select the control store page upon
which the simulator directive will be executed. Initializa-
tion selects page 0. Once a page is selected, all directives
will refer to that page until it is change by a new P
command or until the system is reinitialized. The format
for this command is:

Pn where n = 0, 1, 2, or 3.

6.3.4 Load Control Store (L)

This command is used to read the micro assembler output,
assemble the data into usable 64-bit (CCS) words or 16-bit
(DCS) words and store the words into the simulator control
store.

The format for this command is:

LC -- Load Central Control Store (CCS)
LDA - Load Decoder A Control Store (DCS)
LDB -- Load Decoder B Control Store (DCS)
LM - Load Main Memory

The statement LOAD COMPLETE will be output to the
Teletype following successful loading of the control store.

6.3.5 Alter/Dispiay Simulator Registers (A)

This directive is used to display and change, or display
only, the contents of general registers, stack positions and

MICROPROGRAM SIMULATOR, MICSIM

any of the following simulator registers:

Program Counter (P)
Instruction Register 0]
Status Register (S)
Operand Register (0)
Shift Counter ©)
Memory Latch (M)
Processor Key Register (K)
ALU Output (A)

a. The format for display or change of the registers above
in this directive is:

nnnn(c/r

Ar nnnn()
mmmm Where ¢ = !
¢ (c/r)

Where r is one of the register letters above and ¢ is a
comma, carriage return, a value followed by a comma or a
value. mmmm is the contents of that register (output by
the simulator) and nnnn is the desired contents. |f the
command is terminated with a comma (,), the simulator
will output the letter A (signifying you are still in this
routine) and wait for another register designator. If the
directive is terminated with a carriage return (c/r), the
simulator returns to the executive. If no change value is
input, the contents remain the same.

For the file registers and jump stack, the specific file
register or stack position must also be designated upon
initial entry.

b. For general-purpose registers

ARi
mmmm

Where i is a hexadecimal number 0 through F designating
the specific register and ¢ is a comma, carriage return, a
value or a value followed by a comma.

c. For stack positions

Aln
mmmm
¢

Where n is a stack position and ¢ is a comma, carriage
return, a value or a value followed by a comma.

The rest of the format is identical to that for the other

registers except that the comma terminator causes the
display of the number and contents of the next sequential

6-3

varian data machines

MICROPROGRAM SIMULATOR, MICSIM

file register or stack position. A comma terminator to
register or stack position F effects a return to the simulator
executive.

Example 1:

AP Display Program Counter
0776

, No change, stay in command
AM Display Memory Latch
14FC

(c/r) No change, return
Example 2:

AS Display Status Word

0000

FFFF Change Status to All Ones
Example 3:

ARA Display General register 10
FFFF

0000, Change to all zeros

B Display general register 11
1234

(c/r) No change, return

6.3.6 Change/Display Memory (C)

This directive is used to display or display and change a
memory location. Both the location and its contents are in
hexadecimal notation.

The format of the command is:

Cmmmm
hhhh
c

Where c is as defined above and mmmm is the hexadecimal
address of the memory location, hhhh is the contents of
that word output by the simulator. If the simulator
directive is terminated with a comma, the simulator will
display the contents of the next memory location. If the
simulator directive is terminated with a carriage return,
the change/display memdry directive is terminated. If no
change value is input, the contents remain the same.

6.3.7 Change/Display CCS Word (EC)

The change/display CCS word simulator directive is used to
display and/or change the contents of a CCS word.

The format for the change/display CCS word simulator
directive is:

6-4

nnnnnnnnnnNnnnnnn
nnnnnnnnnnhnnnnn,
ECmmmm _ ,
hhhhhhhhhhhhhhhh Where b= {+}f(l)V(l).----f(n)V(n){c/r}
b
(c/r)

Where mmmm is the (hexadecimal) address of a CCS word,
hhhhhhhhhhhhhhhh is the contents of that CCS word
(output by the simulator) and nnnnnnnnnnnnnnnn is the
desired contents of that CCS word. (f the simulator
directive is terminated with a comma, the simulator will
display the contents of the next CCS word. If the simulator
directive is terminated with a carriage return (c/r), the
change/display CCS word simulator directive is terminated.
If no change value is input, the contents remain the same.

If the first character is a + or =, the remainder of the
record is treated as a field change only. The + is used to
change only the fields specified. The = is used to clear the
microword before changing the fields specified. f(n) is a
2-character field name and v(n) is the change value.

If less than 16 digits are input for a change, the digits are
right justified and zeros will appear in the most significant
bits not specified.

Example 1

_EC8A

0123456789ABCDEF
FEDCBA9876543210

Example 2:

ECDC
FFFFFFFFFFFFFFFF
DD
AAAAAAAAAAAAAAAA

0

Example 3:

In word F, change only the TS and AA fields; in word 10,
change fields TS, MS, and LB and clear all the others.

ECF
0123456789ABCDEF

+ TS4,AAF,
1111111111111111

=TS83,MS7,LB1

6.3.8 Change/Display DCS Word (ED)

This directive is used to display and change, or display
only, the contents of a DCS A or DCS B word.

varian data machines

The format for the directive is:

EDdi nnnn
mmmm Where ¢ = nnnn,

c ,
(c/r)

Where d is the letter A or B designating DCS A or B, i is the
DCS address (0-F), mmmm is the contents of the location
and nnnn is the desired contents. A comma terminator
causes the display of the next sequential address and its
contents. A comma terminator to address F effects a return
to the simulator executive as does the carriage return
terminator. If no change value is input the contents
remain the same.

6.3.9 Begin Simulated Execution (B)

The begin-simulated-execution simulator directive is used
to start the simulated execution of the CCS
microinstructions.

The format for the begin-simulated-execution directive is:
Bmmm

Where mmm is the control store memory address for the
start of the simuiated execution. If no CCS address is
given, then the starting address is the CCS address
generated as the next CCS address from the last
microsimulation. However, if the simulator is initialized in
the meantime, the address will be word zero.

Examples:

BO Begin at word O of current page
B7F
B Begin from last calculated address

NOTE: A simulation run can be terminated prior to a
planned termination by setting SENSE switch 3. The
simulation run will then terminate upon completion of the
current micro operation. This feature is useful in terminat-
ing 'run away" simulation runs.

6.3.10 CCS Address Halt (H)

The CCS address halt simulator directive is used to set an
address into the simulator such that whenever that CCS
address is accessed by the simulator, the simulation
process will stop. Since control store addresses are between
0 and 1FF (hexadecimal), specifying an address outside
this range effectively "turns off” the address halt. Up to
five halt addresses may be set per page. The default value
is 200 (CCS word 512).

The format for the CCS address halt simulator directive is:

Hnnn ,nnn,...

MICROPROGRAM SIMULATOR, MICSIM

Where nnn is the (hexadecimal) halt address.

NOTE: To set muitiple halts all addresses must be entered
under the same H command.

The halt addresses are set in the page currently selected.
To set halt addresses in another page that page must be
selected with the "P"" command.

Example:

H3A9
H100, 10A, IFF,0

When the halt address is reached, the location and control
buffer fields are listed on the line printer if the trace
option is ON. Also, the message "CCS HALT" is output to
the TTY and line printer. Then the simulator returns to the
executive.

6.3.11 Single Microinstruction Step (S)

The single microinstruction step simulator directive is used
to set or reset the single step option in the simulator. When
the single step option is on, instruction simulation is
ceased after the execution of each microinstruction.

The formats for the single microinstruction simulator
directive are:

SS Single step ON
SR Single step OFF

The first control store word to be executed must be
specified via the begin (B) directive. To continue with the
next microword enter the B directive without an address.

A special form of the SR directive (set single step OFF) can
be used to set a limit on the number of microinstructions
to be executed before returning to the simulator executive.

The format of this directive is:
SRnnnn

Where nnnn is 1-4 hex digits specifying the execution limit.
When this limit is reached, control is returned to simuiator
executive. Omission of nnnn results in an unlimited run
count.

6.3.12 Trace (T)

The trace directive controls output to the line printer. The
trace option is normally ON and pertinent data and
execution resuits are listed on the line printer after the
simulated execution of each control store instruction.

The format for the directive is:

TS Set trace ON

TR Set trace OFF

TSnan,mmm Set trace ON from word nnn
to word mmm

6-5

varian data machines

MICROPROGRAM SIMULATOR, MICSIM

If nnn is missing, its value is defaulted to zero. If mmm is
missing, its value is defaulted to 200 hex (word 512). If TS
is specified with bounds, the current CCS address is output
to LO regardless of whether or not the address is within the
bounds; however, the remainder of the trace is suppressed.

The following information is listed on the line printer (LO)
for each control store word executed:

1. CCSword address

2. List of CCS word fields and their values
NOTE: Fields AA, BB, and FF are dynamically altered
and need not be equal to the value of the CCS word.

3. Next CCS word

4. Current top of stack

5. Number of items on stack
6. ALU A input

7. ALUBinput

8. ALU output

9. Carryin status (CF)
10.Carry out status (ALUC)

11.Contents of the 16 general-purpose registers (RO-RF).
(4 per line by 4 lines)

12.Contents of the following registers and flip-flops:

P Program counter

SC Shift counter

OPR Operand register

KREG Key register processor

I0KR 170 key register

IBR Instruction buffer

| Instruction register

STAT Status register

IOR 170 data register

SHFT Sign store of register A bit 15

QuUOS Storage of sign bit (DAL 15) of
ALU output

13.Memory Operations Data
The values listed are the values at the end of the
memory operations for that CCS word. The memory
operations performed are a function of conditions/
codes upon entry (values from the last CCS word
executed).
When MCCO is less than n and memory wait is required,
the following memory operations data will appear twice per
microword trace (n is the memory type specification 3, 4,
or 5, see section 6.4.2). The first set is an intermediate
value while the second set represents the values at the
end of the memory operation.

6-6

Memory Condition Code

MCCO = 0 Idle
MCCO = 1—(n—1) Active but not done
MCCO = n Active and done

where n = memory type specification 3, 4, or 5 (see section
6.4.2).

Memory Operation Code

MOPC = 0 Transfer ALU output to MIL
and IBR

MOPC = 1 Read from main memory to
MIL and IBR

MOPC = 2 Read from main memory to MIL

MOPC = 3 Write 16-bit ALU output to
main memory

MOPC = 4 Write a byte of ALU output

to main memory (byte is
specified by MBYC)

Main Memory Address Source

MADS = Address is ALU output

MADS Address is program counter

MADS = 2 Address is memory input
register (MIR)

Invalid address source

o
- O

I
>

MADS

" Byte Designator for Write Operations

MBYC =1 Right byte

MBYC

0 Left byte

NOTE: The byte (of the memory word) not designated is not
altered.

Memory interface Registers

The contents of registers MIL and IBR are listed.

Main Memory Address (MMAD)

The main memory address (as specified by MADS) is listed.
It is listed for every CCS word executed regardless of the
actual memory operation as specified by MCCO and
MOPC.

Status of test conditions (test inputs). Each status bit
stored in a separate word of memory and the 16-bit word
is listed (XXXX). The 16 test conditions are listed on 2
lines, 8 per line. Each test bit is listed as 0000 = false
condition; or 0001 = true condition.

Test Bits

0 ALU overflow

1 170 sense (continued)

varian data machines

2 SSw3

3 SSw2

4 SSW1

5 620/f test (for JMP, JMPM,
XEC groups of instructions)

6 ALU equals

7 ALU sign

8 ALU carry

9 ALU zero

10 Shift flag

11 MIL 15 (sign bit of memory input register)

12 Shift count = -1

13 Al5 - sign of A register for multiply
operations

14 DAL 15/DAL 14 (ALU output bits 15 and 14)

15 QS bit

.

6.3.13 Dump Contents of CCS (D)

The dump CCS directive is used to list on the line printer
selected contents of the simulator control CCS and the
count of the number of times each word was executed.

The formats for the directive are:

Dmmm,nnn
Dmmm
D,nnn

D

Where mmm and nnn are the beginning and ending
hexadecimal CCS address to dump. (f mmm is omitted,
dump begins at CCS word 0. If nnn is omitted, the
complete contents of the simulated CCS table is dumped
starting at mmm. If both m and n are omitted, the
complete simulated CCS table, starting at location zero is
dumped.

The line printer list format is:

ADDR HEXADECIMAL BINARY

aaaa hhhhhhhh hhhhhhhh bbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbb
aaaa hhhhhhih hhhhhhhh bbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbb

Where (aaaa) is the address of the CCS word in hexadeci-
mal, (hhhhhhhh hhhhhhhh) is the contents of the CCS
word in hexadecimal, (bbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbb) is the contents of the CCS word in
binary and xxxx is the execution count in hexadecimal.

MICROPROGRAM SIMULATOR, MICSIM

The field identifier words and the contents and count of up
to 14 locations are listed on each page.

6.3.14 Exit to MOS or VORTEX (R)

The exit to MOS or VORTEX simulator directive is
used to effect a transfer of control from the simulator to
MOS or VORTEX. NOTE: The use of this directive with the
stand-alone version produces a halt.

6.4 OPERATING INSTRUCTIONS

The simulator program operates under either MOS,
VORTEX, or stand-alone environments. The simulator
executive communicates with the software environment in
which it is running by means of the appropriate interface
program, INTR, provided with the simulator. ‘The user
communicates to the program via the system Teletype. The
BLD i loader is required when loading of MIDAS object
programs for execution under the simulator (MOS or
stand- alone only).

When operating under VORTEX, the five background global
control blocks (FCB's) are used when the logical unit is an
RMD thus permitting the stacking of jobs. The following
restraints are made on the use of RMD logical units:

1. SI, Pl,and LO are to be in unblocked format.

2. Bl must be blocked.

The simulator data flow is shown in figure 6-2.

OPERATING
SYSTEM
[
Pl
v DEVICE
3 »{ SIMULATOR)
DEVICE * ’
M BI
DEVICE
Jr v
Lo SO
DEVICE DEVICE
VTil-1809

Figure 6-2. Microsimulator Data Flow

6-7

gt

varian data machines

MICROPROGRAM SIMULATOR, MICSIM

6.4.1 Program Loading

Under VORTEX, MICSIM can be scheduled from the
background library at level zero by the /LOAD,MICSIM
directive. Before scheduling, the number of WCS pages in
addition to page zero which wili be needed should be
determined and a /MEM,X directive given. In the /MEM
directive, X shouid be the number of additional WCS pages
(beyond page zero) times 4.

Under MOS, each time the simulator is to be executed its
relocatable binary object deck should be positioned on the
Bl device and the /LOAD directive given.

In the stand-alone environment, MICSIM is loaded by the
620 stand-alone FORTRAN IV loader, along with the
runtime 1/0 and runtime utility. (Refer to VDM document
numbr 89A0226, Overview and External Specification for
information on the Varian 620 stand-alone FORTRAN |V
loader.) The simulator uses logical unit numbers 2, 3, 4, 5,
and 6 for Sl, SO, PI, LO, and Bl. The stand-alone loader
should be instructed to assign these units to meaningful
devices.

Examples:
Sample Loading Procedures

1. VORTEX
/JOB,SIM
/MEM, x
/LOAD, MICSIM

x value = 0O, only 1 WCS page; = 4, 2 WCS
pages; = 8, 3 WCS pages; = 12, 4 WCS pages.

2. MOS
/JOB,SIM
/LOAD
Test Program (optional)
Simulator
EOF (2-7-8-9 multi-punch)

3. STAND-ALONE
Load stand-alone loader
With AID I, change absolute location 7 ($PED)
to the desired start load address
Return to the loader
Enter the following:
200300402504602 (c/r)
(to set SI = TY, SO = TY, Pl = PT, LO
=-77, Bl = PT)
Mount simulator tape in reader
Enter the following:
PM
Load Runtime /0
Load Runtime Utility

6.4.2 Initial Condition Selection

After loading, the simulator program is automatically
entered and outputs the following to SO:

6-8

VARIAN 73 MICROSIMULATOR
PAGE LIMIT?

The user then inputs on Sl one of the following:

(for ROM page only)

(for ROM and WCS page 1)

(for ROM and WCS pages 1 and 2)
(for ROM and WCS pages 1, 2, and 3)

wN = o

Any other input is an error and the request will be
repeated.

MICSIM then outputs to SO:
MEMORY TYPE

The user then inputs on Sl one of the following:

3 (for semi-conductor)
4 (for core)
5 (for slow core)

Any other input is an error and the request will be
repeated.

Following a correct input, the following is output to SO.
SI**

An SI** indicates that the program is in the simulator
executive awaiting a user command. Control is returned to
the executive following execution of each command.

All simulator dialog is entered through the S| device and

echoed on the SO and LO devices. Dialog may be either
conversational or batch depending on the S| device
assignment. All of the simulator directives must be
terminated with a carriage return; the simulator will output
a line feed.

6.4.3 Loading Simulator Central Control Store
(CCS) and Decoder Control Store (DCS)

Use the P directive to select the WCS page in which
simulation is to take place.

Use the L directive to ioad the micro assembler output into
the specified simulator control store (central or decoder).

Use the M directive to select the input device; either S| or
Pl

Use | directive to initialize to zero ali the simulator
registers, test conditions, control store buffer, status
registers and execution count table.

Use the A directive to initialize the program counter, file
registers, and instruction register as required.

Position the 620/70 sense switches as required. The
simulator program monitors the 620/70 sense switches
similar to the Varian computer sensing of its control-panel
sense switches.

varian data machines

6.4.4 Other Control (As Required)

Use the E directives to make any patch corrections to the
CCS or DCS.

Use H directives to set simulation halts when the specified
control store address is reached. The initialized address is
200 hex. and will remain such until specified otherwise.

Use S directives to specify single step operation as
required. The initialized condition is run (not step).

Use T directives to specify operation with or without trace
listing as required. The initialized condition is with trace.

6.5 PROGRAM EXECUTION
After all initialization and start-up conditions are specified,

use the B directive to begin execution at the specified
control store address.

6.6 AFTER SIMULATION

6.6.1 Control Store Dump

Use the D directive to dump the control store words and
the execution counts for each control store.

6.6.2 Initialization

Use | directive to initialize registers, tables, etc. prior to
making another run.

6.6.3 Return to MOS, VORTEX
Use the R directive to return to MOS or VORTEX as

required. (NOTE: In the stand-alone version this command
effects a halt).

6.7 620 EMULATION

To run programs using the 620/f emulation ROM, the
following sequence of events must be done:

Note that CCS page 0 and DSC initially contain 620
emulation values.

1. Set CCS halt to 080 (hex) via H command.
2. Set RS to FFFF (- 1) via AR5 command.
3. Setother registers and sense switches as needed.

4. Set pseudo P register to location (hex) of first macro to
be executed via AP command.

5. Set trace and step/run mode as needed.

6. Begin at 13E via Bcommand.

MICROPROGRAM SIMULATOR, MICSIM

The sequence of events 1 through 5 may be in any order
but must be done before event 6. Event 6 begins
simulation at standard state 1.

6.8 MAIN MEMORY SIMULATION

Simulation of main memory operations is restricted so that
a simulation run does not destroy the simulator or related
programs. This is accomplished by not simulating writes to
memory addresses outside defined main memory. Any
attempt to do this will be flagged as an error and the write
will not be performed; simulation will continue however. A
read may be made anywhere in available memory. Memory
addressing above 32K will effect wraparound if available on
the computer.

Loading Main Memory

A 200 (octal) word block of memory has been created at
the beginning of the simulator. The name MMEM points to
the start of that block and the name EMEM points to the
end of the block. A DASMR program with an ORG within
this block can be loaded by MICSIM from the Bl device
using the LM directive. The object program to be loaded
must not contain any of the following:

a. Literals

b. Indirects

c. Entrynames

d. Externals

If any of these are encountered, the load is aborted and a
MS11 diagnostic results.

The location of MMEM can be found in the load map. (It is
always the first loaded location of MICSIM).

6.9 SIMULATOR ERROR MESSAGES

MESSAGE REASON

General

MSO01 Input could not be interpreted as a valid
command.

MS02 A non-hex character was encountered when
hex expected.

Initialization

MS03 Insufficient common area to contain specified
number of pages.

MS04 The selected page number was not valid.

6-9

——-@ varian data machines

MICROPROGRAM SIMULATOR, MICSIM

CS Addressing

MS05 An attempt was made to jump to an
unavailable WCS page.

MS06 A BCS instruction was encountered when
WCS page 1 is unavailable.

CS Loading

MS07 Read error on Bl device.
MS08 EOF encountered before load complete.
MS09 EOD/BEOD encountered before load complete.

MS10 Sequence error on BI.

6-10

MS11
MS12
Memory
MS13

MS14

MS15

Invalid loader code.

Checksum error.

Undefined macro opcode.

Attempted to write to memory outside defined
main memory.

Attempted to load outside defined main
memory.

Field Selection

MS16

MS17

Invalid field name.

Invalid field value.

varian data machines @_—

MICROPROGRAM SIMULATOR, MICSIM

6.10 EXAMPLE OF SIMULATOR OUTPUT

Figure 6-3 shows the simulation listing of the LDA example
developed in section 2.

PAGE 0000 VARTEYX MICSIM

VARTAN 73 MICRO STMULATOR
PAGE LIMIT?

0

MEKDRY TYPE?

a

MSww \

F0 SELFCT PAGF ZERD

"Suw

coon PUT AN FLNDAY INST IN MEMNRY FNR SIMULATION
nonn

10F9Q LDA FROM MEMAORY |LDC 'FQ!
MSAkx

CFQ CHECK WHATS T BE LNADED
noas

MSw%x

sp SET PROGRAM COUNTER TN THE 1LNAY

noon

200

MS k%

SR7 SET FXECUTINN LIMIT TN SEVEN MICRNS

MSw

R{AE REGIN FXECUTINON AT STAMNARD STATE ONE, SSIM

Figure 6-3. Simulator Output Format

611

6-12

_@ varian data machines

MICROPROGRAM SIMULATOR, MICSIM

PAGE 0001 VORTEX
CCS LOC O13E PAGE O
TS AF M8 MT FS TF SF GF MR 4B
00 09 02 00 00 00 01 00 00 00
RF FF MF CF WR SC VF WF XF SH
00 00 Q0 00 00 00 00 00 00 00
NEXT CCS ADNRESS 0092 PAGE 0
CURRENT TNP OF STACK 0000
NUMBER NF ITEMS ON STACK 0
ALU INPUT A 0000
ALU INPUT B 0000
ALU OUTPUT 0000
CIN ©
cout o
RO 0000 R1 0000 R2 0000 R3 0000
RA 0000 RS FFFF R6 0000 R7 0000
R8 0000 RO 00NN RA 0000 RB 0000
RC 0000 RD 0000 RE 0000 RF 0000
p SC OPR KREG JIDKR IBRR I
0200 0000 0000 0000 0000 0000 0000
MCCO
MOPC 1
MADS 1§
MBYC O
MIR 0000
IBR 0000
MMAD 0200 10F$
TEST CONDITION STATES
OVFL SENS SSW3 SSw2 SS8wWi EMUL ALUD
0000 0000 0000 0000 0000 0000 0000
ALUC ALUZ SHFT MIRS SFTC ROAD NORM
0000 0000 0000 0000 0000 0000 0000

MICS

IM
08

BB
00

STAT
0000

ALUS
0000

QU0S
0000

Figure 6-3. Simulator Output Format (continued)

IM

L8
00

AA
00

LA
00

I0R
0000

SHFY QuOs
0000 0000

PAGE 0002
CCS LOC 0092 PAGE 0
TS AF MS MT FS TF SF
00 02 oD a0 00 00 0f
RF FF MF CF WR SC VF
04 00 00 00 00 00 00
NEXT CCS ADDRESS 002D PAGE
CURRENT TOP OF STACK 0000
NUMBER NF ITEMS ON STACK 0
ALU INPUT A 0000
ALY INPUT 8 06000
ALLU NUTPUT ao0on
CIN 0
couT o
RO 0000 R1 0000 R2 0000
R4 0000 R5 FFFF R6 0000
R8 0000 RO 0000 RA 0000
RC 0000 RD 0000 RE 0000
p SC NPR KREG TDKR
0201 0000 0000 0NOO 000N
MEEN 4
MOPC 1
MADS 1
MBYC 0
MIR 0000
IBR 6000
MMAD 0200 10Fg

GF
00

wF
on

0

I8
o0

VARTEX

RY
R7
RB
RF

R
00

MR
o0

XF
00

AR
0o

SH
00

o000
0000
nooo
0000

nnno

varian data machines @——

MICROPROGRAM SIMULATOR, MICSIM

MICSIM
IM B LA

08 00 00

BB AA

00 00

STAT INR SHFT QuNS
0000 0000 0000 0000

Figure 6-3. Simulator Output Format (continued)

6-13

—-@ varian data machines

MICROPROGRAM SIMULATOR, MICSIM

PAGE 0003 VORTEX MICSIMm

MCCO
MOPC
MADS
MBYC
MIR 10FQ

18R 10FQ

MMAD 0201 0000

D i e ea

TEST CONDITINN STAYES
NVFL SEMS SSW3 8SSw2 SSwi EMUL ALUD ALUS
0000 0000 0000 0000 0000 00GH 0000 0000

ALUC ALLZ SHFT MIRS SFTC ROAD NNRM QUNS
000a n0G0 0000 000D 000N OOOD 0000 ANDD

Figure 6-3. Simulator Output Format (continued)

varian data machines I@I

MICROPROGRAM SIMULATOR, MICSIM

PAGE 06N4 VORTEX MICSIM
CCS LOC 002D PAGE 0

TS AF mM§ MT FS TF SF GF MR AB IM LB LA
0E oD 06 .00 00 00 00 05 0N 00 06 00 0O

RF FF MF CF WR SC VF WF XF SH A&B AA
66 N0 00 00 00O 00 NO 0N 00 ON 00 0N

NEXT CCS ADDRESS 0182 PAGE 0O

CURRENY TOP NOF STACK 0000
NUMBER OF TTEMS ON STACK 0

ALl INPUT A 0000
ALU TNPUY B poQO

ALLU BUTPUT 6000

CIiIn O
cour o

RO 06O RYL 0NOD R2 0N0ONO RI 0000
R4 0ONPO RS FFFF R6 0000 R7 0000
R8 0OOO RG 000D RA 0000 RB 0000
RC 00600 RD 0000 RE 0000 RF 0000

P St PR KREG TINKR IBR 1 STAY IOR SHFT ouns
n2etl o000t 0000 0NOO 0000 10F9 10F9 0N00 0000 000 HAOOO
McCo 2

MOPC 1

MADS 1

MBYC O

MIR 10FQ

18R 10F9

MMAD 020t 0000

TEST CONDITYION STYATES
OVFL SENS SSW3 8Sw2 SSwi1 EMUL ALUO ALUS
0000 0000 0000 0000 0000 0000 0000 0000

ALUC ALUZ SHFT MIRS SFYC ROAO NORM QUOS
0000 0000 0000 0000 0000 0000 0000 NO00O

Figure 6-3. Simulator Output Format (continued)

6-15

PAGE

ccs L

TS
on

RF
03

NEXT

CURRF
NUMBE

AL U
ALt

AL

CIN
cou

RO
RA
R8
RC

p
neaot

Mgen
MOPC
MADS
MBYC
MIR

I1BR

MMAD

616

——@ varian data machines

MICROPROGRAM SIMULATOR, MICSIM

noons

0C 0182 PAGE
Fs
ne

MT
00

AF
12

MS
OF

FF
0A

wR
01

MF
01

CF
n3
CCS ADDRESS 012F

MT TOP OF STACK
R OF ITEMS ON 5T

INPUT A nCOOQ

INPUT R OGF9

NUTPUY OOFJ
0

T o

nnGo
0oonn
0000
0noo

R1
RS
RO
RT

0onn
FFFF
a0nn
0000

KREG
Qe00

Gl
onnn

IPR
NO0FQ

O e b

10F9
10F9

0201 0000

VARTEX
0
TF SF GF MR AB
00 a1 00 00 00
SC VF «F XF SH
01 00 00 nbd 00
PAGE 0O
nooo
CK 0
R?2 0000 RI o000
R6 0000 R7 0000
RA 0000 RB 0000
RE 0000 RF 0000
I0KR IRR I
0000 10F9 {0OF9

mICS

IM
ns

BH
0o

STAT
onoon

Figure 6-3. Simulator Output Format (continued)

™

LB
n2

AA
00

LA
noe

INR
noon

SHFTY
0000

auns
0000

PAGE

MCCOo
MOPC
MADS
MBYC
MIR

18R

MMAD

DVFL
nooo

ALUC
0000

0006

OONW

0000
0000
00F9

SENS
0000

ALUZ
poon

0036

TEST
SSW3
0000

SHFY
0000

varian data machines @—-—

MICROPROGRAM SIMULATOR, MICSIM

VORTEX MICSIM

CONDITION STATES

S§w2
0000

MIRS
Q000

SSw1q
0000

SFTC
0000

EMUL
0000

ROAD
0000

ALUD ALUS
0000 0000
NORM QUDS
0000 0000

Figure 6-3. Simulator Output Format (continued)

617

!@I varian data machines

MICROPROGRAM SIMULATOR, MICSIM

PAGE 0007
ccs Loc
78 AF
00 1E
RF FF
00 00

012F

M8
oc

MF
00

MT
01

CF
00

NEXT CCS ADDRESS

PAGE

FS
oF

wR
00

01EO

CURRENT TOP DF STACK
NUMBER OF ITEMS ON STACK

ALU INPUT A 0000
INPUT B 0000

AL
ALY OUTPUY
CIn O
coutT o
RO 0000
R4 00600
RB 0000
RC 0000
P sSc
0201 0600
Mcen 2
MDPC 2
MADS O
MBYC 0
MIR co00
18R pooo
MMAD OOF9
OVFL SENS
0000 0000
ALUC ALUZ
N000 0000

6-18

R
RS
R9
RD

co

NPR
NOFS

0036

TEST

SSW3
0000

SHFT
nooo

0o

nono
FEFF
AOOO
0000

KREG
enoo

SSw2
0000

MIRS
0000

0
TF
00

sC
00

00

R2
R6
RA
RE

SF
00

VF
00

PAGE

00
(o]

0000
oeoe
0000
0000

I0KR
0000

SSw1
0000

SFTC
0000

GF
00

WF
00

0

8
0o

VNRTEX

MR
nn

XF
00

R3

R7
QB
RF

R
no

CONDITION STATES

EMUL
0000

ROAD
0000

AB
00

SH
0o

ngoo
0noo
oooe
onno

10F9

ALUD
0000

NORM
0000

MICS

M
00

RA
noe

STAT
ooon

ALLS
nnno

- Quos

0000

Figure 6-3. Simulator Output Format (continued)

™

L8
00

AA
00

LA
00

I1NR
oaen

SHFY
nana

auos
0000

PAGE 0008

ccs Loc 01€0 PAGE o

TS AF M8 MT FS
00 0B 05 00 00

RF FF MF CF WR
04 00 00 00 00

NEXT CCS ADDRESS 0085

CURRENT TOP OF STACK

NUMBER NF ITEMS ON STACK

ALY INPUT A 0000
ALL INPUT R 0000

ALU OUTPUY 0000

CIN 0
couT o
RO 0000 RY Q00D
R4 0N0OO RSB FFFF
R8 0000 R9 0000
RC 0000 RD 0000
P sc OPR KREG
0202 0000 O0OF9 0000
MCCO 4
MOPC 2
MADS 0O
MBYC ©
MIR oono
IBR 0000

MMAD 00OF9 o036

Figure 6-3. Simulator Output Format (continued)

TF SF
00 0%
8C VF
00 00
PAGE
0000
0
R2 0000
R6 0000
RA 0000
RE 0000
IDKR
0000

GF
00

wF
00

0

I8
00

VORTEX

RJ
R7
RB
RF

R
o0

MR
00

XF
00

AB
on

SH
00

0000
0000
0000
0000

10F9

varian data machines @——

MICROPROGRAM SIMULATOR, MICSIM

MICSIM
IM LB (LA
08 00 00
BB AA
00 00

STAT JIOR SHFT Quns
0000 0000 0000 0000

619

!@I varian data machines

MICROPROGRAM SIMULATOR, MICSIM

PAGE 0009 VORTEX

MCCO
MQPC
MADS
mgyc
MIR 0036

IBR ooon

MMAD 0202 0000

S e e e

TEST CONDITION STATES
OVFL SENS SSW3 SS5w2 SSwi EMUL
0000 0000 000C 0000 0000 0000

ALUEC ALUZ SHFY MIRS SFTC ROAD
0000 0nAOO 0000 0000 0000 0000

Figure 6-3. Simulator Output Format (continued)

6-20

ALUOD
0000

NORM
noon

MICSIM

ALUS
0000

Quos
0nooon

varian data machines @—-—-

MICROPROGRAM SIMULATOR, MICSIM

PAGE 0010 VORTEX MICSTIM
CCS Loc 00B5 PAGE

TS AF M5 MT FS8 TYF SF GF MR AR IM LB LA
OF oD 06 00 00 00 00 05 00 00 06 01 00

RF FF MF CF WR SC VF WF XF SH BB AA
00 0A 01 00 01 00 00 00 00 00 01 00

NEXT £CS ANDRESS 0080 PAGE ©

CURRENT TPP OF STACK 0000
NUMBER OF ITEMS (N STACK 0

ALU INPUT A 0000
ALY INPUT B 0036

ALt DUHTPUT nO3S

CIN O
COuT o

RO 0036 R1 0000 R2 0nONO RI 0000
R4 n000 R5 FFFF R6 0000 R7 0000
R 0000 R9 0000 RA 0000 RB 0006
RC 0000 RD 0N00 RE 0000 RF 0000

P scC OPR KREG IOKR IBR I STAT IOR SHFT QuNs
0202 NOON 0OF9 NOOO 00NO0 0000 000D 0000 0000 0000 0000
Mcen 2

MOPC 1

MADS {

MRYC o

MIR 0036

IAR nono

MMAD 0202 0000

TEST CONDITION STATES
OVFL SENS SSW3 SSW2 SSwi EMUL ALUD ALUS
0000 0000 0000 NOOO 0000 0000 0000 0000
ALUC ALUZ SHFT MIRS SFTC ROAD NDRM QUOS

0000 0000 0000 0000 0000 0000 0000 0000
EXECUTION LIMIT SATISFIED

Figure 6-3. Simulator Output Format (continued)

6-21

varian data machines

SECTION 7

MICROPROGRAM UTILITY PROGRAM,
MIUTIL

The microprogram utility (MIUTIL) loads information into
WCS and provides an interface with hardware features of
the WCS.

Two sets of directives are provided. The basic set will allow
the user to load the WCS with microassembler output,
examine single WCS words and list WCS contents. The
second group of directives gives the user access to the
debugging features of the control store. With these
directives single microstep execution can be done.

The utility operates in three environments, under the
VORTEX operating system, MOS operating system and as a
stand-alone program. A standard interface program pro-
vides compatibility.

7.1 BASIC ELEMENTS

The microprogram utility accepts directives as similar as
possible to those of the microprogram simulator.

7.2 GENERAL FORM OF DIRECTIVE

In general a utility directives consists of a unique first
character, followed by a string of parameters, terminated
by a carriage return. The following sections describe the
meaning of each of these first characters and permissible

parameters. Table 7-1 summarizes the utility directives.

The following are the utility directives available to the user:

Table 7-1. Summary of Utility Directives

A. Basic Command Set

Pn Page select

LC Load central control store (CCS)

LDA Load decoder control store (DCS) A

LDB Load decoder control store (DCS) B

MS Media set, selects Pl for input

MR Media reset, selects S for input

Exm Examine/change control store x word m
Dxm,n Dump control store x word m through n

R Return the operating system or exit from

utility in stand-alone environment

B. Debugging Directives

Nx Enables control store x

TS Trace set

TR Trace reset

Gn Set microprogram execution address to
CCS word n

(continued)

Xn Execute n microinstructions
| Initialize WCS

Bn Branch to CCSword n

Hn Halt execution at word n

7.3 DIRECTIVE DEFINITIONS

in the following discussion of utility directives, the
characters the user inputs are in bold-face type and
explanation of the action in regular type.

All numeric values are hexadecimal.

7.3.1 Select Page (P)

This directive selects a particular WCS page for the
commands which follow. The directives for loading, and
dumping do not accept a page number and thus rely on the
previous P command for page selection.

Before the first P command is given by the user, a default
page value of 1 is assumed.

The letter P is followed by a hexadecimal digit for the page
number. For example P3 would select page 3.

7.3.2 Load Control Store (L)

This directive loads microassembler output into the
writable control store. The user specifies which page is to
be loaded by the prior P command. The user specifies
which control store should be loaded by the one parameter
following the letter L. C indicates central control store, DA
or DB for decode control store A or B, and | for 1/0 control
store.

For example, after P2 a directive LC would load page two of
the central writable control store.

7.3.3 Examine/Change Control Store (E)

Through this directive a single word of WCS may be either
examined or changed. The user specifies which control
store and the word number. The page is obtained through
the previous P directive.

The form of the E directive is Exmmm where x is either
C, DA, DB or | for central, decoder, and 170 control stores
respectively, and mmm is the address of the control store
word in hexadecimal notation.

7-1

varian data machines

MICROPROGRAM UTILITY PROGRAM, MIUTIL

The utility will type out the contents of the location
followed by a carriage return. The change value format is
the same as the microsimulator format. Refer to section
6.3.7 for details.

For example
Action Caused
MU#*
P1 Selects page 1
MU**
EI29 Examine 170 control store location 29
12A3 Computer types contents
0, User changes contents to zero
002A
1233 Computer types location 2A
[¢] User changes its contents to zero
MU**
ECF Utility accepts another directive

7.3.4 Dump Control Store (D)

The dump directive provides a listing of the control store
contents. The page is determined by the prior P directive.
The user specifies the locations and control store type in
the parameters.

The general format for the dump directive is:
Dxmmm,nnn

where x is C, DA, DB or | for the specific control store (as
above), mmm is the hexadecimal location where the dump
is to start, and nnn is last location to be dumped. If the
final location is missing, the last location of the page is
assumed. If the first address is omitted, it is assumed to be
zero.

Dump directive example:

MU E2E-]

P2

MU %%

DC Provides listing of central control
store page 2

MU %* %

D130,5A Provides listing of the 1/0 control
store, locations 30 through 5A

MU**)

DI,5A List from location zero through 5A

MU *

Section 7.8 shows a sample printout of the microprogram
utility directive D.

7-2

7.3.5 Return to Operating System (R)

This directive causes exit from the utility. If running under
MOS or VORTEX, control is returned to the operating
system. If the utility is running in a stand-alone environ-
ment, the R directive causes a halt. There are no
parameters, merely the letter R.

7.3.6 Media Set and Reset (M)

This directive allows the selection of an alternate device for
input of utility directives. 'MS’ selects the 'PI’ unit for
input. 'MR’ returns the utility to the Sl unit for input.

Note that receiving an illegal command will cause the
media to be automatically reset to SI.

The following directives are designed to operate in the
special hardware configuration described in section 7.5.

7.3.7 Enable Contro! Store (N)

This directive allows the user to enable the specified control
stores. The page number used in the one specified by the

“last P directive.

The general form of the N directive is:
Nx

where x is D or |, which specifies enabling of the decoder or
170 control store, respectively.

For example:

MU**

P1

MU*# .
ND Enables decoder control store, WCS page 1
MU**

7.3.8 Trace Execution (T)

The purpose of this directive is to provide the user with a
means of following micro execution while it is in progress.
To accomplish this, the address of each microinstruction is
typed before it is executed.

The general form of the T directive is:

Ta

where a is one of the following: S for setting or enabling
trace mode, or R for resetting or disabling trace mode.

varian data machines

Before the first T directive is given, the trace mode is reset,
i.e., turned off.

The general form. of the trace output is:
p-nnn

where p is the page number and nnn is the word number of
the next instruction to be executed.

7.3.9 Set Micro Execution Address (G)

This directive allows the user to choose a location for
starting microprogram execution.

This routine will do the following:

1. Step the WCS to stop any execution that might be in
progress.

2. Load the micro address register with the specified
address.

3. Step the WCS to load the first microword into the
control buffer.

4. If trace mode, the next control store address to be
executed will be read from the WCS and output to the
user.

This directive does not begin execution. It serves only as
the setup for an X directive.

The format of the G directive is as follows:
Gn

where n is from one to three hex digits specifying a word
number in central control store.

The page is obtained from the last P directive.

7.3.10 Execute Microinstruction (X)

This directive is used after the G directive to begin actual
micro execution. It can be used to specify free-running
execution or execution of a fixed number of micro’s
followed by a halt. By requesting execution of a single
micro, followed by a halt, it can be used to stop free-
running execution.

If free-running execution without trace Is requested, the
fine clock will simply be enabled to run free. There are two
ways of interrupting this. An X directive specifying
execution of one microinstruction will step the WCS. It can
then be restarted by another X directive. The G directive
will also stop free-running execution. It sets a starting
address, however, and thus it should not be used if the
interrupted execution is to be restarted where it left off.

MICROPROGRAM UTILITY PROGRAM, MIUTIL

If free-running execution is requested in trace mode, then
the WCS is simply single stepped an indefinite number of
times. This allows reading of the WCS address before each
single step.

If execution of a fixed number of microinstructions is
requested, the WCS wiil simply be stepped the appropriate
number of times. If trace mode, then the address will be
accessed from the WCS and returned to the user before
each micro is executed.

The following is the format of the X directive:

Xn

Where n is zero for free-running execution or non-zero to
request execution of n microinstructions.

The default value for nis 1.
For example:

MU **

X7 Execute seven microinstructions

MU ==

X0 Enable free-running execution

MU**

X Execute one microinstruction (note: this
would halt the previous free run)

MU **

7.3.11 Initialize WCS (I)

The purpose of this directive is to execute an EXC 07X
command. This will deselect all WCS control stores,
terminate any DMA operations in progress and enable free
run of the fine clock. The result is that control will return to
the ROM with all WCS activity suspended.

This command should only be used when a meaningful
ROM location will receive control. Thus, it should not be
used for such things as halting a free-running
microprogram.

7.3.12 Branch to CCS (B)

This directive simply executes an 1/0 branch to the
specified address in central control store. Such a branch
causes free run execution to begin at that location. The B
command thus produces a similar effect to a Gn, X0
directive sequence. The B directive never steps the WCS
though, and thus cannot respond to the trace flag.

The general form of the B directive is:
Bn

Where n is from one to three hex digits specifying a word
number in central control store.

The page number is obtained from the last P directive.

7-3

ey

varian data machines

MICROPROGRAM UTILITY PROGRAM, MIUTIL

7.3.13 Set Halt Address (H)

This directive may be used with the X directive to single-
step microprogram execution to a certain address in WCS.

The format of the H directive is:
Hn

where n is from one to three hexadecimal digits specifying
a word in control store. The page number is specified in the
last P directive.

Single stepping as a result of an X directive will be
terminated when the specified location is the next one to
be executed. A message in the trace format will be output
to signal this.

The halt can be removed by entering HO. Only one halt
address may be set at a time.

7.4 OPERATING INSTRUCTIONS

7.4.1 Program Loading

Under VORTEX, load VORTEX as described in the VORTEX
Reference Manual, 98 A 9952 10x. The utility shouid be in
the foreground library. It can be put there at system
generation time or added later using the load module
generator.

To load the utility and begin execution, an OPCOM
schedule directive is necessary. For example:

; SCHED,MIUTIL,3,FL,F
schedules the utility at priority three.

Under MOS, load MOS as described in the MOS Reference
Manual, 98 A 9952 09x. Then, the MOS loader may be used
to load the utility program. Execution will begin on
successful completion of the load.

For example:

/JOB, UTIL

/LOAD

Utility program binary object
EOF (2-7-8-9 multi-punch)

In a stand-alone environment, load the Varian 620 stand-
alone FORTRAN IV system loader as described in VDM
document number 89A0226. Instruct the loader to change
its logical unit numbers by entering appropriate values.
Next, load the utility binary object, followed by the
FORTRAN |V stand-alone system runtime /0 tape,
followed by the runtime utility tape. On completion of
loading, the machine will go into step. Press RUN to start
execution.

74

7.4.2 Program Execution

After successful loading, the utility program is entered
automatically. The program will first type VARIAN 73
MICRO UTILITY to identify itself. Next, the configura-
tion will be determined by the following request:

DEBUG CONFIG? (Y or N)

The user should then type Y followed by a carriage return,
if his system is in the special two-processor debugging
configuration described in section 7.5. Otherwise, if his
system is simply the standard configuration, the user
should type N, followed by a carriage return.

Under the stand-alone and MOS environments, the micro
utility will then type

EVEN WCS DEV ADDR ?

The user should then type either 70, 72, or 74, depending
on the hardware configuration, followed by a carriage
return. This request is not made under VORTEX because
the device address is specified at SYSGEN time.

The utility will then type:
MU**
to indicate that it is ready to accept a directive. Whenever

an iliegal directive is given, an error message is typed.
Description of the . various messages can be found in

. section 7.7. Note that a directive may be in error either due

to bad syntax or due to context. An example of the latter
case is giving a debugging directive in a non-debugging
configuration.

During execution of the D and X directives, SENSE switch 3
may be set to terminate their execution prematurely.

SENSE switch 1 may be set during tracing to suppress
listing of page zero addresses.

7.5 DEBUGGING CONFIGURATION

The additional debugging directives of the utility cannot
operate on the WCS of the processor on which the utility
itself is running. For this reason, a special hardware
configuration is needed to use these directives.

The special configuration must have two computer systems:
one with a WCS and the other actually operating the utility.

The system which runs the utility program must have the
hardware appropriate for the type of operating system or
for stand-alone operations. The processor need not have
any WCS and the processor itself can be either a 70-series,
620/f, or 620/L. Operating system requirements prevail,
since VORTEX does not run on a 620/L.

The Writable Control Store Reference Manual (Varian
document number 98 A 9906 08x) describes the physical
properties of this two-processor system for debugging.

varian data machines

7.6 UTILITY ERROR MESSAGES

Message
General

Muo1

Muo2

MU03

Muo04

MU05

MU06

Reason

Input could not be interpreted as a valid
command.

A non-hex character was encountered when hex
expected.

EOF detected on Sl. Return mode to operating
system.

The selected page number was not valid.
WCS Access
Unable to access WCS: WCS is busy.

Unable to access WCS: BIC load in progress.

Message

Reason

CS Loading

Muo7

MUo08

MU09

MU10

MU11

MU12

Read error on Bl device.

EOQF encountered before load complete.

EOD/BOD encountered before load complete.

Sequence error on Bl.
Invalid loader code.

Checksum error.

Field Selection

MU16

MuU17

Invalid field name.

Invalid field value.

MICROPROGRAM UTILITY PROGRAM, MIUTIL

7-5

B e

—@ varian data machines

MICROPROGRAM UTILITY PROGRAM, MIUTIL

7.7 EXAMPLES

The following is a sample of microutility output:

PAGE 0000 09/07/73 VORTEX MIUTIL
VARIAN 73 MICRO UTILITY

VEBUG CONFIG ? (Y DR N)
N .

MUwnw
tc23
0000000000000000

’
0028
0000000000000000

[

G027
Q00000N0000000000
8aA,

0028
0000000000000000

Miiaw
UDAB,B

PAGE 0001 09/07/73 VORTEX MIUTIL

OC8 Ao , PAGE 01

0008 0000 0000 0000 0000
MUaxwn
voa

PAGE 0002 09/07/73 VORTEX MIUTIL

LES B , PAGE 01

Q000 0000 0000 0000 0000 0000 0000 0000 0000
0008 0000 0000 Q000 Q000 0000 0000 0000 0000
MU nw
ves,?

7-6

PAGE 0003 09/07/73

tCS LocC 0005 PAGE 0t
TS AF M8 MT FS TF
00 00 00 00 00 00
RF FF MF CF WR §C
00 00 00 00 00 00

CCS |.nc¢ 0006 PAGE 01
TS AF MS MT FPS TF
00 00 00 00 00 00
RF FF MF CF wR S§C
00 00 00 00 00 00

CCS Luc 0007 PAGE 01t
TS AF MS MT FS TF
00 00 00 00 00 0O
RF FF MF CF WR §C
00 00 Q0 00 00 00

MiUnw

LC

LOAD COMPLETE

Mu.t :

1 |

LOAD COMPLETE

Mijsew

SF
00

VF
00

SF
oo

VF
00

SF
00

VF
00

GF
00
WF
00

GF
00

wNF
00

GF
00

wF
00

VORTEX
MR AB
00 00
XF SH
00 00
MR AB
00 00
XF SH
00 00
MR AB
00 00
XF SH
00 00

MICROPROGRAM UTILITY PROGRAM, MIUTIL

MIUTIL
IM LB LA
00 00 00
BB AA
00 00
IM LB LA
00 00 00
BB AA
00 00
IM LB LA
00 00 00
88 AA
00 00

77

varian data machines @_—

varian data machines

SECTION 8

DECODER CONTROL STORE, 1/0
CONTROL AND ADDITIONAL TOPICS

These topics are not of interest to all microprogrammers.
Both decoder and 1/0 control stores are options and also
less trivial to program. Not all applications require an
understanding of the item treated as additional topic
which is multiple environment applications.

8.1 DECODER CONTROL STORE

Preliminary decoding of instructions in the instruction
buffer is performed by the instruction decoder control store
and the instruction decoding logic. These elements trans-
late the 16-bit instruction into a 9-bit control-store address
according to the contents of the instruction decoder control
store.

The instruction decoder control store consists of two 16-
word by 16-bit memory arrays. The processor implements
this with programmable read-only memory (PROMS). An
option of the WCS permits selection of read/write arrays to
permit alternate decoding strategies.

The decoder B control store array uses instruction buffer
bits 12 through 15 as an address. The decoder A control
store array uses instruction bits 08 through 11 as an
address. The formats for these two control store arrays are
in figure 8-1.

The decoders are identified as A and B. Bits within them
numbered right to left starting with zero, so that bit 10 of
decoder B is identifed as B10. A and B designations are
accepted by microprogram simulator and utility programs.

The decoder address is enabled by the TF and SF fields
both equal to 00 and the GF field equal to X1XX. if an
interrupt is present, decoding is inhibited and interrupt
addressing is used.

Decoder addressing will be inhibited if the IM field equals
11X0. If decoder addressing is so inhibited and no
interrupts are present, field-selection addressing is used.

The possible components of a decoded address are shown
in figure 8-1 and 8-2. The nine low-order bits obtained from
the decoder B are always used in decoder addressing.

The five most significant bits (4-8) in decoder A are
included in the control store address bits 4 through 8 by an

inclusive OR, if either of the following bit combinations
exist in the first decoder output:

B12 equals zero
or

B15 equals zero

The four least significant bits of decoder A are included in
the control store address bits 0 through 3 by an inclusive
OR if either of the following bit combinations exist in the
first decoder output.

B12 equals zero and B10 equals one
or
B15 equals zero and B10 equals one

The contents of instruction buffer bits 04 through 07 are
included in the control store address bits 0 through 3 by
an inclusive OR, if either of the following bit combinations
exist:

B14 equals zero
or
B15 equals zero and Al3 equals one

The contents of instruction buffer bits 00 through 03 are
included in the control store address bits 0 through 3 by
an inclusive OR, if either of the following bit combinations
exist:

B13 equals zero
or

B15 equals zero and Al3 equals one

One exception to this is the contribution of instruction
buffer bits 04 through 07. The contribution to control store
address bit 2 will be the contents of instruction buffer bit
03 instead of bit 06, if the decoder B bit 00 equals one
and the decoder A9 equals one.

Decoder addressing is used to perform a preliminary
instruction decoding function. It permits instruction classes
to be discriminated with the detailed decoding performed
later by field-selection addressing after the instruction
buffer is transferred to the instruction register.

The meaning of other bits in the two decoder control store
words is shown in figures 8-1 and 8-2. These signals are
available at a processor connector and are used by Varian
70 series options to detect certain instruction classes.

8-1

/
DECODER CONTROL STORE, 170 CONTROL AND ADDITIONAL TOPICS

£-0 5119 SS34AAav OL ILNANINOD O1 £0-v0 S1Ig
4344N8 NOILDNYISNI SITEVNI “3STV4 519 A8 QIDVONIT NIHM
€~0 S1I8 SS3¥AAav O1 IINIIIINOD Ol 80-00 S1Ig
4344N8 NOILDNILSNI SIT18VNI “35Tv4 619 AT dI19VYNI NIHM
TVYNOIS IVNYILX3
TVYNODIS TYN¥3LX3
TYNOIS TYNY3ILX]
NO SI 119 00 ¥3a0D3Q 15414 41

$533AQv d3q0>23d 40 ¢ 118 12304 1IVNOIS ._<Z~_E.xm'—

11-80 S1Ig QESH
4344N9 NOILDNYLISNI (XZvaid) (EXX) XX (XX [(EXX)[(029)] (125) 1ON)
WO¥4 d3Q0D3a
oV - 8V &Vl OLV| LIV | 2LV [€IV | vIv] Sty
€IV ANV
vV SLE IOLS TOYINOD ‘v ¥30023a S318vN3
£-0 S1I¥ SSIAAY OL ILNIIYINOD
Ol £0-¥0 S1I8 ¥344N9 NOILDNILSNI SIT19VYNT
£-0 S1I9 SS3¥AAav Ol ILNGI¥INOD
Ol £0-00 S1I8 ¥344N8 NOIIDNYISNI S319VYN13
SLI8 6 INVDIJINDIS 1SVIT Vv ¥340D3a SI19VYN3
IYNDIS TYNYILIX3I
J3719vN3T 34V Z19 4O S19 NIHM
Vv 4300230 40 S1I9 ¥ INVDIHINDIS 1SYIT SIT9VNI
O/1 WOY4 TYNDIS TvN¥ILX3
NOILNEINLINOD $53¥aay
G1-ZL S1ld -
¥344N8 NOILDNYLSNI (Xevai) (O] (00} | (PO)| e {0ES)] (1ES)| (2ES)
WO¥4 43aooag T | —
09 - 89 69 | 019 | 119] zi9] €19} v19| <19

A4
4300513a

!
4300251d

VTil-1936

Figure 8-1. Decoder Control Store Format

8-2

’ r-@ varian data machines

CONTROL STORE
ADDRESS BIT

varian data machines

DECODER CONTROL STORE, 1/0 CONTROL AND ADDITIONAL TOPICS

(FROM DECODER B)
B8-BO (DECODED FROM BITS 12-15
OF INSTRUCTION BUFFER)

(FROM DECODER A)

A8-A4 A3-AQ

B15=0 OR B12=0

ENABLED COMPONENTS ARE LOGICALLY OR'ed.

ALL DECODER COMPONENTS ARE INHIBITED UNLESS
THE SF FIELD EQUALS 00 AND THE GF FIELD EQUALS
X1XX AND NO ENABLED INTERRUPT REQUESTS ARE

B12=0 ANDBIO =1, OR
B15=0 ANDBIO =1

INSTRUCTION BUFFER
BITS 00-03

BI3=0 OR (B15=0AND A13=1)

INSTRUCTION BUFFER

ACTIVE,

BITS 04-07

IN ADDITION, DECODING MAY BE INHIBITED BY THE %

IM FIELD EQUAL TO 11X0.

B14=0OR (B15=0 AND Al4=1)

% THIS BIT IS FORCED TO STATE OF INSTRUCTION BUFFER BIT 03
IF DECODER B BIT 10 IS ON AND DECODER A BIT 9 IS ON,

VTI1-1937 A

Figure 8-2. Decoder Address Components

!

8.2 170 CONTROL STORE

8.2.1 Microprogram Initiation

The microinstruction can initiate 1/0 activity by signaling
an 170 request while forming a starting address for the
independent |/0 control store. An 1/0 request is made by
setting the SF field equal to 00 and the IM field equal to
111X. (If the IM field equals 1110, decode addressing is
inhibited).

The 1/0 control-store starting address is specfied by the
MT, MR and TS fields.

7 6 5 4 3 2 1 0

MT | MR TS AB1*] O
170 request 170 Control

SF = 00 Store Starting

IM = 111X Address

*AB1 is most significant bit of the AB field

The microinstruction can wait for completion of [/0 activity

by specifying a wait for |70 done. This is coded by setting .

the SF field equal to 00 and the IM field equal to 0010.
Execution of this and subsequent microinstruction will be
inhibited until the 1/0 sequence is completed. If the 1/0 is
busy performing a sequence and an 1/0 request is issued
execution of the microinstruction specifying new 1/0
activity will be inhibited untit the 1/0 completes its current
sequence.

Standard 1/0 page zero starting addresses for processor-
initiated 1/0 are:

Hexadecimal
Address Action
04 Sense, EXC or EXCA 1/0 sequences
oC Data Input
iC Data Output

1/0 operations can be initiated by external events such as
DMA traps. Standard 1/0 page zero addresses are:

Hexadecimal
Address Action
40 DMA trap out
50 DMA trap in
70 High-speed DMA trap out
80 High-speed DMA trap in
DC Interrupt

8-3

varian data machines

DECODER CONTROL STORE, 1/0 CONTROL AND ADDITIONAL TOPICS

8.2.2 1/0 Microprogramming

The 170 control section performs 1/0 sequences initiated
from either the Varian processor microprograms or external
DMA trap requests or interrupts. :

1/0 microprogramming must be undertaken only with a full
knowledge of the hardware function of the processor's 170
control section and the WCS's 1/0 control store. This is
described in the Varian 73 Processor and WCS mainte-
nance manuals {(document numbers 98 A 9906 02x and 98
A 9906 08x).

No simulator program exists to aid in debugging 1/0
microprograms.

All special 1/0 micrdprogramming must be considered an
engineering design more than a programming task.

170 control performs the following functions in accordance
with the sequence 1/0 microinstructions stored in the 1/0
control store:

* Control the source of data applied to the 1/0 register
input bus.

« 1/Oregister input bus.
« Control loading on byte shifting of the | /0O register.

« Initiate memory cycle requests to the Varian 73
memory control section.

+ Initiate |70 bus control signals.

« Wait for completion of external events such as memory
cycles, new processor microprogrammed requests,
external control signals, etc.

« Signal completion of /0 activity to the processor’s
central control section.

170 control store formats are shown in figure 8-3.

The 1/0 address counter is automatically incremented at
completion of each microinstruction unless a "WAIT” or
"IDLE" state is entered. This counter is cleared to zero by
system reset.

[/0 microinstructions are executed from sequential ad-
dresses until the end of the sequence whereupon the 170
becomes idle and ready to accept new requests.

As the address counter is loaded with its starting address,
the 1/0 control buffer is loaded with the contents of 1/0
control store location corresponding to the last contents
of the address register. Following a system reset this will be
the contents of 170 control store address zero. At all other
times it will be the ending address of the previous 1/0
sequence. In either case, the standard data will cause bits
IDLE and DN to become true.

8-4

IDLE true indicates the 1/0 control is not idle and further
requests are to be ignored as long as IDLE is true, the 170
address counter and 1/0 control buffer are enabled.

At each succeeding microinstruction time the address
counter is incremented and the /0 control buffer is
loaded with the contents of the address designated by the
address counter. The 16 bits of the 1/0 control buffer
control all 170 functions. Their use is described below:

CDO Control the processor's
CD1 1/0 data loop multipiexor (IOMXX +)

Ccb

1 0 170 Register Input
00 ALU

01 Memory {/0 register
1 0 1/0 bus byte swapped
11 1/0 bus

CD2 Control the processor's
CD3 1/0 register

CcD

32

0 0 No action

0 1 Shift right (left byte to right byte)
1 0 Shift left (right byte to left byte)
11 Load from ALU

These bits do not directly control the /0 register. The 170
register may also be controlled by |DLE (when the 1/0 is
idle, the register is continously loaded from the ALU).

CcDh4 Enables the processor’'s 1/0 register onto

the E-bus.
FRY Initiates an 1/0 function ready (FRYX-I)

signal. RYX-l is terminated 247.5 nano-
seconds later by signal [I|T-.

Spare Not used.

DRY Initiates an 1/0 bus data ready (DRYX:I)
signal. DRYX-| is terminated 247,5 nano-
seconds later by signal IEDRYN + derived
from HIT-.

IDLE Determines idle/busy status of 1/0 control.
While busy the 1/0 can accept no new re-
quests.

ines

data mach

varian

DECODER CONTROL STORE, I/0 CONTROL AND ADDITIONAL TOPICS

wvds | | ! l I-XA¥4 TYNDIS
EEBK FOAITIMONMNDY AYOWIW TOIINOD O [ILVILINI YWA Q33dS HOIH LON
NIHM 1SINOIY YOSSIDOYd IDATTIMONNDY | | { 0 -4 A4
SN8 O 1 Ol A4Q ¥331s t 0 L TYNOIS TO¥INOD O | ILVILINI YWQA Q33dS HOIY 41
1SINOIY ¥OSSIDONd O LIV | 1 o 0
IDQIVAONMDY I1DAD AYOWIW 404 Livm | 0 | | _!
3I9AITMONMNDY
LdNGYIING 13534 SYILNNOD ¥D0T1D IDNVAAY | 0 | 0
GIAIIDIY L1INSIY YOSSIDOUd SN8 O 1 OL ¥31SI9TY O | $I19VYN3
FANNTHA SSTHAAY IDNNOIS MINAYOT | o o |
TYNY3IXI NO Livm 103135 | o o 0 _
NOILONN4 z 0
| IDYNOS G31D373IS WOY4 avol | _
1A 1431 OL 31AS LHOIY L 0
LN 135 dO14-d174 3DNINO3IS LdNYIIINI ANY vWa ILAS LHOW OL 31A8 1437 0 l
033dS HOIH ON 41 1-XN} TYNDIS TOLNOD O -1 3LVILIN NOILDY ON © 0
VWA 33dS HOIH 31 [-4A¥Q TYNOIS TO¥INOD O | 3LWILIN] NOILVYIdO ¥31S1933 O |
LN 135 1TON dO14-dI14 IDNZNOIS LNIYILINI ANY YWQ r
033dS HOIH ON 41 1-XA¥Q TYNOIS TO¥LNOD O/1 ILVILIN|
|
ASNE O 1 135
SN O | { L
LVLS oLV NI O 1 LN Q3dd VS 31A8 508 O | _ 0
¥IISIDIY O | AYOWIW 0 l
F1DAD AYOWIW 1S3NDIY ndino Niv o 0
INdNI 33151935 O |
NOILdO J¥NLNA YO4 QIAYISTY — —
TONINOD Tv¥INID
OL NOILITdWOD O I STYNOIS 0 4
]
r A N ' N N
z _ o} A y ¢ 4 (0
A43 NG | A | wod [iivm | 37ar| ava [3uwas| ays XaD
00 _) _ 20 | 0| vol| <o 90 L8 | s o |tz Jet |ot | g

VIii-1811

Figure 8-3. 170 Microinstruction Format

8-5

—@ varian data machines

DECODER CONTROL STORE, 1/0 CONTROL AND ADDITIONAL TOPICS

ADDRESS ADDRESS FROM CONTROL
GENERATOR MICROINSTRUCTION

/O ADDRESS COUNTER

1/0 CONTROL STORE

1/0 CONTROL BUFFER

TRAP AND
INTERRUPT L MEMORY REQUESTS
REQUESTS
+ CONTROL SIGNALS TO
I/O REGISTER

1/0 BUS DRIVERS
I/O REGISTER INPUT BUS

+» 1,0 DONE
» 1/O IDLE

1/0 BUS CONTROL INTERFACE

[-O BUS CONTROL SIGNALS

V1il1-1934

Figure 8-4. 1/0 Control Simplified Block Diagram

86

varian data machines

DECODER CONTROL STORE, 1/0 CONTROL AND ADDITIONAL TOPICS

WAIT Places the 1/0 control in a "wait”

RQM
CRY
DN
F2
EF
2 1
0 0
0 0
0 1
0 1
10
10
11
11

—

O = O -0

state by inhibiting address counter and
ROM buffer clocks until receipt of a
designated signal. The I/0 may wait for
any of the following:

. new processor request

. processor interrupt flag reset
. data memory cycle complete
. " external wait signal

Selection of the specific condition is
determined by the function bits EF2,
EF1 and EFO of the 1/0 control buffer.

Requests a DMA memory cycle from the
processor’s memory control.

Channel request. Reserved for
future option.

Results in an 1/0 done signal (IDNC-
low) to signal the processor of completion

of the 1/0 sequence.

Function bits which control:

. selection of "wait” condition

. advance of interrupt clock counters
. steering of DRY

. acknowledge interrupt requests

. loading of new sequence addresses

Select wait on external signal IEXW +
Load new sequence address from CPU if
CRQIO +

Advance IUCX and IUCF ciock counters
Select wait for memory cycle complete
Select wait on CPU request

Steer DRY to DRYX:|

Acknowledge interrupt sequence request
from CPU

Not used

Any 1/0 sequence continues through successive ROM
addresses until address counter and ROM buffer clocks
are inhibited by either of two conditions:

IDLE becomes false signifying end of sequence or

WAIT becomes true signaling that the current sequence

must stop to wait for some external event such as:

¢« memory cycle

* new processor request
* new processor request

¢ interrupt flag set

» external wait line active

For programmed 1/0 sequences signal DN will become
active and at the next microinstruction time IDLE will
become active also. IDLE causes I/0 sequencing to stop.

The 1/0 sequence is thus completed leaving the address
counter loaded with an address whose contents IDLE and
DN. This will be the first data loaded into the ROM buffer
when clocks are reenabled.

8.2.3 Example of 1/0 Microprogram:
Clear and Input to A

The flowchart and code sheet following describe the
standard programmed 1/0 sequence for V73 input data
transfers. The corresponding flowchart for the processor
microprogram to initiate the /0 transfer may be found in
the second volume of the System Maintenance Manual.

Referring to the processor microprogram flowchart for the
sequence required to start the 1/0 operation, the first

central control address is 1A0. This was obtained with
decode addressing. The entire sequence will now be
traced.

IABM1 (1A0)

This microinstruction causes the operand register to be
loaded with a mask word containing only bit 13 true.
Normal addressing specifies the next address.

IABM2 (1C3)

This microinstruction specifies an /0 request with an 1/0
starting address of OC. If the 1/0 was idle (the 1/0 control
store buffer IDLE bit was a zero) the 170 control accepts
the starting address and simultaneously loads its control
buffer with a standard code of 0088. This places the 170 in
its "busy” state and signals the processor that the 1/0
operation was accepted.

8-7

@ varian data machines

DECODER CONTROL STORE, I/0 CONTROL AND ADDITIONAL TOPICS

During this microinstruction the processor transfers the
operand register to register E (this register has been
designated S1).

IABM3 (1F3)

This microinstruction logically OR's the contents of register
E with the masked (bits 0-8) contents of the instruction
register. This places the device address, function code and
bit 13 (specifying an input transfer) at the ALU output.

In the 170 control the I/0 microprogram is executing the
microinstruction at location OC which loads the 1/0
register with ALU output data.

The processor microprogram specifies a ''Wait for /0
Done” which causes further processor operations to be
suspended until the 1/0 control signals completion. The
remainder of the 1/0 sequence will now be traced.
Addresses are sequential.

170 address OC is "NOP"". It performs no function.

Table 8-1. 1/0 Microprogram Example Code

170 address of continues to enable the 1/0 register to the
170 bus and generates the IFRYX:| control signal to signal
170 devices that a new address and function code may be
sampled.

170 address 10 performs the same function as OF. This
allows for 170 bus settling time.

1/0 address 11 selects the 1/0 bus as an input to the 1/0
register. The selected |/0 device may place its data on the
170 bus.

170 address 12 continues to select the 1/0 bus as an input
to the 170 register and generates control signal IDRYX-I.

170 address 13 continues to select the I/0 bus as an input
to the 1/0 register, continues to generate IDRYX-I and
causes the 1/0 register to be loaded with the data placed
on the /0 bus. 170 control buffer bit "DN" becomes false
permitting microinstruction execution to proceed.

170 address 14 returns the 170 control to an idle condition.
Simultaneously the next central control microinstruction is
executed.

CIA (09D)

This microinstruction transfers the 1/0 register contents to
register 0 (the A register). The program counter is
incremented and a new instruction fetch is initiated. The
microprogram branches to SS3M (02D) where the instruc-
tion buffer is decoded to branch to the start of the next
instruction.

8-8

Note that 1/0 address 15 will be executed when the next
I/0 operation is started. This microinstruction contains
the standard code of 0088 which will place the 170 in its
""busy” state.

8.3 MULTIPLE ENVIRONMENT APPLICATIONS

This section describes using the Varian 70 series WCS for
extended instruction execution and dual/muiti environ-
ment applications.

This section discusses the application of WCS to extend the
standard V70 series emulation of a Varian 620/f to perform
additional instructions and functions. It also discussed a
dual environment implementation, which can be extended
to multi-environment machine.

Application of the WCS to Extend Execution
Capabilities

Using the macro BCS, it is possible to define entry points in
extended micro store for a large number of special
functions. These extended functions can be defined to use

V70 series hardware not explicit in the 620/f emulation

such as 16 general purpose accumulator registers and
more explicit status testing. Examples of application of this
capability would be implementation of floating point
arithmetic, stack organizations and so on. Characteristic of
extended operations is that no primary decodes would
occur during the operation (exceptions are possible of
course). It is possible to enable interrupts while disabling
primary decode so it would be possible to allow interrupts
during very long microsequences. However, the point of
interruptability and its ramifications would have to be
carefully considered.

Application of the WCS to Dual/Multi

Environment Operation

Emulation of instruction architectures other than that of
the host machine is achieved by performing primary control
store address decoding in the WCS extended control store.
It is possible to have unique architecture in each 512 word
block of control store. Some possible examples of this
would be:

1. Hardware emulation of a VXX machine under control of
WCS in the V70 series systems.

2. Implementation of a higher level language processor
operating under control in the V70 series systems.

Vrir-1812

il

[ORxx —= EBxx

.d

IFRY
[ORxx —EBxx

DECODER CONTROL STORE, 1/0 CONTROL AND ADDITIONAL TOPICS

M M
TR TS AB
CRQIOA 0{0| o011 |00 |-
0[0] 0011 | 10{-
7 0
15
OO
0c
DALxx —1ORxx
o0
NOP
L—»

b

varian data machines @——

PROGRAM ENTER
HALT LOOP ENTER

IFRY
[ORxx — EBxx

b

EBxx — IORxx

b

Figure 8-5. Flowchart of I/0 Microprogramming Example

IDRY
EBxx — [ORxx

s

[DRY
CLK IOR
EBxx —IORxx

8-9

@ varian data machines

DECODER CONTROL STORE, 1/0 CONTROL AND ADDITIONAL TOPICS

FROM
PREVIOUS
INSTRUCTION
1ABM1 v 140 IME] 098
8 8007 MEM START
MASK — DOR > IOR —DOR
RESET CINTF
TABM2 ‘ 103 INA 099
MEM START
I 001
égRi‘ZﬁT > INCR P >
A OR IOR—A
IABM3 ‘ IF3 INB 094
FIELD SELECT 6-8 010 MEM START
WAIT FOR IDN > INCR P »(SSaM)
S1 OR MASK [—IOR B OR IOR —B
INAB! 098
oy B OR IOR —~DOR
CIA 05D
101 MEM START
» INCR P —>
IOR—~A
CIB 09E
10 MEM START:
» INCR P =
IOR =B
CIAB 09F
m MEM START
> INCR P
IOR—A, DOR
IME2 v 09C
MEM START
INCR P - ssom
DOR — MEM
INAB2 082
MEM START
S INCR P
A OR DOR—A, DOR

B
>

1AB y 083
ENABLE D-ROM & INTRPT; NEXT
M1—+C21; DOR—B; L INSTRUCTION

TEST & RESET CINTF

VTII-1815

Figure 8-5. Flowchart of 1/0 Microprogramming Example (continued)

8-10

DECODER CONTROL STORE, 1/0 CONTROL AND ADDITIONAL TOPICS

An Example of a Second Environment

Architecture and Call Sequence

For our example, we will define a second environment E2
(as distinguished from the V70 series system environment
E1) which can use general registers of the V70 series
systems as stack pointers, general purpose accumulators
and so forth. The question arises as to interruptability of
this second environment and what registers are available
to E2.

A macro sequence to call E2 from the V70 series systems
could be:

P BCS (105000) page jump to E2 entrance
micro

P) + 1 xxxxx LOC of first instruction of E2 in
main memory

Py + 2 BCS (105001) page jump to E2 interrupt
return entrance

E2 Entrance and Interrupt Micro Code

The normal entrance micro code saves (P) + 2 at register
E for reference in case of an interrupt. Also, it can be used
to return jump to the next V70 series system instruction
when environment 2 is completed..

Upon receiving an E1 interrupt while in E2, the microse-
quence (simplified) is as follows:

[

E2 STORE

1 | IWAIT STATE RETURN 7
REQ.1/0 P AT D

®
PAGE JMP

to V70 series

interrupt micro
2 SAVE REG. processor
3 3TOA
4 4TOB
5TOC
y in V70 series and
RESTORE 620/f environment,
REG. 3,5 register 5 is all ones
I'sto 5 _— and register 3 is all
0's to 3 zeros. Registers 4, E,
and F are temporary
storage
' (continued)

The content of E is the return instruction location as
required by control word 0D1. Only registers 3,4,5, E and F
may be subsequently modified by 620 code and it is only
necessary to save 3,4,5 as the return path will supply
restoration of E.

The interrupt return is implemented via the BCS at the V70
series interrupt return reference. The interrupt return entry
code restores registers 3, 4, 5 from A, B, and C respectively
and stores the location of the interrupt return BCS in E.
The code then restarts the instruction pipeline at the
reference stored in D. Note that the 70 series interrupt
routine is responsible for maintaining A, B, and X registers
(0,1,2).

E2 Register File Usage

We can now see that the second environment has 10
registers (0-9) available for general purpose use, while E is
allocated for the interrupt return page jump instruction
address. Registers A, B, C, D and F are also available for
intermediate usage between interruptable states.

Considerations of Saving and Storing Status

The above example does not define how status is to be
saved and restored. This should be considered when
defining the interruptability of the second environment. In
any event, register and overflow status will be maintained
by the V70 series environment interrupt routines but the
equal, less than and greater than status is more difficult.
This may involve saving the status in the interrupt return
micro code.

Further Discussion of Multi-Environment Systems

The above example of interrupt handling in multi-environ-
ment machine is presented as an exploration of a
mechanism which solves the problem given a particular set
of system restraints (interrupt service routines are in the
host V70 series environment and do not use other than
normal 620/f instructions, i.e., instructions only use
registers 0, 1, 2, 3, 4,5, E, F).

Each different set of environments may require different
mechanisms of interrupt handling. Some will require
saving registers in main memory, possibly at locations
relative to the location of the interrupt return page jump.
An alternate environment might utilize its own 1/0 drivers,

811

varian data machines —

varian data machines

DECODER CONTROL STORE, 1/0 CONTROL AND ADDITIONAL TOPICS

which would involve locking out interrupts and swapping
out interrupt entrance code and possibly also the interrupt
processing routines. In this situation the second environ-
ment might offer system executive control as well as its
optimized functions. When environment, register save/
restore will probably have to be comprehensive and in main
memory.

Other Multi-Environment Considerations for

the V70 Series System Reset

The system reset function will normally be wired to return
control to the host module (normally zero).

Power Fail/Restart

The system executive is expected to contain the necessary
job restart information in case of a power fail. Therefore,
the host environment is not required to save facilities of an
alternate environment (some of which are unknown to the
host machine). The E2 environment could be saved if
desired by using a special instruction such as a 620/f
extension macro which saves and restores the file.

8-12

Step Mode

If it is desirable to single step computer operation in
alternate environments, it is necessary to micro code a
halt loop in that environment. The alternate environment
has the option of enabling or disabling the step function in
its micro code.

Conclusion

This section described two basic applications for the Varian
70 series WCS. Its use for extending the instruction set of
the standard 620 emulator is quite straight forward. Its
application to produce a dual or multi environment
machine was also seen to be practical and feasibie with the
system problem of interrupt handling examined in some
detail. In fact, a second environment which offered 10
general purpose registers and 5 scratch registers for
implementing stack/queue pointers, floating point registers
or whatever, was demonstrated.

Because of the ability to add new instructions to the 620
emulation in the V70 and the flexibility of micro coding, the
example is really only one of many possibilities. The
mechanism generally will be designed to meet require-
ments of the system definition.

varian data machines

SECTION 9
GLOSSARY
Entries are brief descriptions of terms appearing in the source on the B bus or a part of
text. These definitions reflect the usage preferred for mask literal
consistency and a minimum of terms. Whenever two words .
have been used previously for the same item a choice was BCS mnemonic for Branch to Control
made in favor of the most meaningful and unambiguous. Store, a 16-bit MACRO
instruction which initiates
‘ execution of microprograms
AA microinstruction field of bits 0 - 3 , in WCS
to select an ALU source on bus A BIC
and/or destination Buffer Interlace Controller
AB microinstruction bit 35, which is binary numbering system in which only two
used in field-selection addressing states are represented, one and zero
and 1/0 requests
BYTA flag which indicates left or right
addressing determination of next instruction byte of word
to be executed
byt -bi i
AF microinstruction field which contri- yie 8-bit unit
butes to address generation
CF N))) .
ALU Arithmetic and Logical Unit, the microinstruction fleld. which varies
) - the type of carry action on ALU
logical and storage providing data actions
transfer and basic arithmetic and
logical operations in the processor
control contains current microinstruction
ALUC flag for ALU carry, bit 11 of proc- buffer being executed; separate for
essor status word central control logic (64 bits)
and 1/0 control logic (16-bits)
ALUO ftag for ALU output all ones, bit 9
of processor status word control memory in which microinstructions
store are stored
ALUS flag for ALU sign, bit 10 of proc-
essor status word
cycle time required to execute one micro-
ALUZ flag for ALU output all zeros, bit instruction
2 of processor status word
. . cycle, time required to access and restore
application program oriented to solving problems memory storage in main memory
software rather than managing systems
resources
ASCI American Standard Code for Infor- cyclic technlqye. for va_llda_\t_mg storage or
. redundancy transmission reliability
mation Interchange codes for char-
: ; check
acter representation
assembler computer program which translates
symbolic statements into machine data path transfer media for data within
executable instructions, see MIDAS processor
)))) DCS Decoder Control Store, optional
BB microinstruction field of bits 4

programmable control store for

through 7, which specify the ALU instruction decoding

(continued)

91

varian data machines

GLOSSARY OF MICROPROGRAMMING

DMA

direct
addressing

DSB

emulation,
620

FF

field select

GF

GPR

GPRS

hexadecimal
or hex

instruction
buffer

instruction
register

10Cs

IOR

key register

9-2

Direct Memory Access

instructions contain actual effective
memory address to be used, in con-
trast with relative or indirect ad-
dressing

shift flag; SHFT

standard microprogram that
resides in control store

page O, and directs execution
of Varian 620 instructions

microinstruction field which specifies
ALU action

technique of addressing which uses
the bits of the instruction re-
gister to determine a microprogram
branch address

microinstruction field, which specifies
condition to be tested

general-purpose register, one of 16
16-bit registers

general-purpose register 0
bit 15 (sign)

numbering system using base 16, re-
presenting numbers with digits and
letters A through F

Instruction Fetch

interrupt address supplied by option
board to indicate type of interrupt

microinstruction field designating

type of memory control

storage for instruction immediately
after fetched from memory

storage for instruction for an
instruction to be executed

1/0 Control Store, optional
unit of programmable storage for
varying /0 rates and disciplines

170 Register

four-bit register which supplies
signals for memory operations used
by memory-map option

LA

LB

MAD

mask

memory map

microinstruc-

tion

microprogram

MIR
MIRS

MK

MR

MS

MT

MULS

NORM

OF

OoP

OPR

overflow

page

microinstruction field which in
conjunction with AA specifies the
ALU input on bus A
microinstruction field which in

conjunction with BB specifies the
ALU input on bus B

Memory Address Register

literal constant ANDed with instruc-
tion register

hardware option to allow addressing
memory to 256K

64-bit word from WCS specifying the
actions to occur during one cycle

vehicle for implementing control
function of a computer

Memory Input Register
flag for memory input register sign

16-bit mask field (assembler
mnemonic)

microinstruction bit 37 used to
specify 1/0 address bit 6 or to
control AB field use

microinstruction addressing field

bit 50 of microinstruction which
specifies bit 7 of an 1/0 address

Multiply Sign flag

Normalize flag

Operand fetch

microinstruction fields combined to
specify ALU action (bits 23 - 17)

operand register
ALU action indicated by OVFL flag;
condition caused by attempt to

push too many addresses into micro-
program stack

program counter

unit of writable control store of
512 words, 64 bits each

varian data machines

page jump

pop
processor

program
counter

push

pipelining

QUOS

RF

ROM

SC
SF
SH

SHFT

SHTC

a branch with a microprogram beyond

the extent of the page currently being
executed

to remove an address from top
of microprogram stack

unit that performs and controls
execution of instruction

register for memory address:
usually used for keeping track
of MACRO level execution

to add an address to top
of stack

" technique which allows next instruc-

tion ta be fetched during an other-
wise unused memory cycle

flag for quotient

microinstruction field of bits 24
through 26 used to specify transfer
and increment of some special
registers

Read Only Memory: such as page 0
of V70 series control stores;
contains the microinstructions

to emulate Varian 620 system

bit 15 of microinstruction; specifies
shift of operand register or is part
of mask literal

bits 42 and 43 of microinstruction;
specify interpretation of the IM
field

microinstruction field which
specifies some special ALU
actions or shift operations

flag for shift

flag for overflow of the shift
counter

GLOSSARY OF MICROPROGRAMMING

stack, linked storage locations (16) used

microprogram in microprogram subroutine call and
return

STAT processor status word

STEP mode of computer execution one

instruction at a time
SSw SENSE switch 1 - 3 on control panel

SUPR supervisor mode flag, bit 1 of
processor status word

TF microinstruction field of bits 45
and 46 which specify whether
testing occurs and whether it is
for true or false condition

TS microinstruction field of bits 60
through 63, which selects a field
from the instruction register,
specifies a page number for a
page jump, contributes a portion
of an 1/0 address, or enables
selected interrupts

underflow condition upon attempting to remove
or pop more addresses than are in
a microprogram stack

VF microinstruction bit 14, which
specifies moving bit 15 of RO to
divide-sign bit (DSB), or a part
of mask

WCS Writable Control Store; which is read
and loaded over the /0 bus

WR microinstruction field of bit
16 that specifies whether or
not the general-purpose registers
are being loaded

WF single bit (13) in microinstruction
to designate transfer of the ALU

93

	00-00
	00-01
	00-02
	00-03
	00-04
	00-05
	00-06
	00-07
	00-08
	00-09
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	09-01
	09-02
	09-03

