UNIVAC'III
G ENERAL
REFERENCE

M A N U A L

UP-3853

This manual is published by the UNIVAC®Division in loose leaf fomat as
a rapid and complete means of keeping recipients apprised of UNIVAC
Systems developments. The UNIVAC Division will issue updating packages,
utilizing primarily a page-for-page or unit replacement technique. Such
issuance will provide notification of hardware and/or software changes
and refinements. The UNIVAC Division reserves the right to make such
additions, corrections, and/or deletions as, in the judgment of the UNIVAC
Division, are required by the development of its respective Systems.

® REGISTERED TRADEMARK OF THE SPERRY RAND CORPORATION © 1963 . SPERRY RAND CORPORATION

PRINTED IN U.S.A,

December 3, 1963

UNIVAC III
UTMOST GENERAL REFERENCE MANUAL UP 3853

UPDATING PACKAGE A

SECTION ADD NEW PAGCES
Section 6 1 thru 7
Section 7 1 thru 4
Section 8 1 thru 39

The first addition to the "UTMOST Composite Manual,"” UP 3853 is Section 6 -
"Variable Connectors," and suggestions on the use of UNIVAC III System for
variable connectors are contained herein.,

Since many programs involve looking up information in the memory, Section 7 -
"Table Lookup" covers possible table lookup techniques. As an introduction to
this subject, an example table lookup illustration is given.

Section 8 - "UTMOST," details the advanced features of the UTMOST Assembler,
Of special note is the portion on the assembler directive PROC (pages 8-24 to
8-39), specifying how to construct and reference a procedure.

Place these pages in the manual in sequence of section numbers. For reference
purposes, place this page directly after INDEX, until revised INDEX is issued.,

UNIVAC III March 9, 1964
UTMOST General Reference Manual, UP-3853

UPDATING PACKAGE "B"

The attached 79 pages contain additions to "UTMOST General Reference Manual",
UP-3853.

This updating package should be utilized in the following manner:

Insert After

Title Pages TAB Labeled
ITEM LEVEL
SECTION 9 Tape File Handling 1 -55 TAPE FILE HANDLING
SECTION 13 Symbionts 1 - 24 SYMBIONTS

Please notice that no destruction is necessary with this updating package.

UNIVAC TII September 29, 1964
UTMOST General References Manual, UP3853

Updating Package "C"
This bulletin announces the release and availability of Updating

Package "C" for the UTMOST General Reference Manual, UP3853, 49 pages.
The pages should be utilized in the following manner:

Destroy Former File New
Pages Numbered Pages Numbered
Section 17-F N. A. 1 - 49 %

* These pages should be filed after the tab labeled INPUT/CUTPUT.

UNIVAC III

UTMOST General Reference Manual, UP 3853

UPDATING PACKAGE

December 10, 1964

" D"

The attached material represents additions and changes for the UNIVAC III UTMOST
General Reference Manual, UP 3353, and should be utilized in the followina

manner !

Table of Contents
Section 2-A
Section 5

Appendix E

DESTROY FORMER
PAGES NUMBERED

N.A.

21 and 22

5 and 6

N.A.

FILE NEW PAGES
UMBERED

1 -13

21 and 22 Rev.l

5 and 6 Rev.l

1 -3

UP-3853 UNIVAG Il UTIVIODST Lontents

SECTION: PAGE;

1.

2,

3.

INTRODUCTION

A. Relation of UTMOST System to UNIVAC tii

B. Programming Languages
C. Principal and Symbiont Programs

BASIC PRINCIPLES

A. Introduction to Computer Data Processing

. Introduction to Programming

B
C. Introduction to Flowcharting
D

. The UNIVAC {Il Central Processor

EDITING

. Shift Instructions

Logical Operation Instructions
Indirect Addressing

Field Selection

. The Load Field Instruction

. Example

Flowchart

Coding

—_ I O M m O O W

. Student Exercise

INDEX REGISTERS

A. Example

Coding
Flowchart
Student Exercise

m m O O W

. Modular Addressing

Iterative Versus Straightline Coding

CONTENTS

2-A-11t02-C-9

2-A-1to 2-A-21
2-B-1to 2-B-39
2-C-1to 2-C-9

3-1to3-14

3-1to3-3
3-4
3-5
3-6 to 3-9
3-10
3-11
3-12
3~-13
3-14

4-1to 4-16
4-5

4-5to 4-7
4-8 to 4-10
4-10

4-10

4-11 to 4-16

Contents

SECTION: PAGE:

‘ ‘ UNIVAC III

UTMVMOST

UP-3853

5. SUBROUTINES

m O O w

. Subroutine Flowchart Symbols

Example
Flowchart

. Coding

Ftowchart Field Notation

6. VARIABLE CONNECTORS

. Example

Flowchart
Coding
Student Exercise

7. TABLE LOOK-UP

A.
B.
C.

Example
Flowchart
Coding

8. UTMOST

c 4 v WO VO 2 2o X . — T O mMmMmMmogaooO @ >P

Example
Flowchart
Coding
Labels

Definition of Terms

. Operators

The USE Directive
Student Exercise
Indirect Addressing
Student Exercise
Literals

Student Exercise
The END Directive
Line Control

Other Units

. Two Word Constants

Multiple Word Constants

. Other Operators

Other Assembler Directives

Procedures

. Example

5-1 to 5-9

5-4
5-5
5-5
5-6
5-7 to 5-9

6-1to6-7
6-2
6-3 to 6-4
6-5to 6-6
67

7~1to 7-4

8-1 to 8-39
8-1to §-2
8-2

§-3
8-4 to 8-6
8-7

8-7
8-8 to 8-9
8-9

8-10

8-10
8-11 to 8-12
§-12

8-13
8-13 to 8-14
§-14
8-14 to 8-16
8-16
8§~-16 to £-20
8-21 to 8-24
8-24 to 8-31
8-32 to 8-39

UP-3853 UNIVAC Il UTMOST

Contents
SECTION:

PAGE:

8A. DETAILS OF UTMOST
A. Coding

1. Label Field
2. Operation Field
3. Operand Field
4. Line Control

B. Data Expressions

1. Decimal

2. Floating Decimal
3. Octal

4. Alphabetic

C. Program Instructions
1. Format

a. lInstruction Word
b. Type 0 Instructions
c. Type 1 Instructions

2. Operators and Expression Arithmetic
3. Working Registers and Computer Indicators

a. Arithmetic Registers

b. Index Registers

c¢. Increment and Compare Control Word
d. Computer Indicator Designation

1. Less than, Equal, and Greater than
2. Arithmetic Register Sign
3. Sense Indicators

4, Instruction Address

a. Label
b. Reflexive
Implied

(=N (]
. .

Program Independent
. Multiword
f. Shift Count Designation

(3°]

g. Computer Control Word Designation
(1) Indirect Address Control Word

(a) Explicit
(b) Implied

Contents

JECTION: PAGE:

‘ UNIVAC Il UTMOST

UP-3853

5.

(2) Field Select Control Word

(a) Explicit
(b) tmplied — FLD Directive

Assignment of Covering Index Registers

a.
b.
c.
d.

Address Components

UTMOST Handling of Addresses
USE Directive

SET Directive

6. Assembly Directives - Basic

(g2} (=9 o (=2 o
.

DO
END
EQU
FLD
FORM

f. GO

=0 o0a
. .

ICW
LIST

. NACL

NAME

. PROC

RES
SET
TWwC

. USE
. lmplied Directives

(1) ICW as Implied Constant
(2) Indirect Address Control Word
(3) Field Select Control Word

D. Procedures

1.

2.

Definition

o o
o .

—_— @ o o
. . - .

PROC Directive
NAME Directive
Procedure Parameters
GO Directive

DO Directive

END Directive

Utilization

UP-3853 UNIVAC Il UTMOST CTCOHtentS
SECTION: PAGE:
9. TAPE FILE HANDLING 9-1 to 9-55
A. Overflow 9-1to 9-2
B. Invalid Qperation 9-2
C. Console Typeouts 9-3 to 9-9
D. Console Typeins 9-10 to 9-12
E. The UNISERVO IilIA Tape Unit 9-13 to 9-16
F. Tape Handling 9-17 to 9-28
G. End of Job 9-29 to 9-32
H. Covering Input/Qutput Areas 9-33 to 9-36
I. Master File Handling 9-37 to 9-42
J. Label Handling 9-43 to 9-54
K. Processor Errors 9-54
L. Rerun 9-55

9A. OBJECT PROGRAM STRUCTURE

A.

Data Storage

1. RES Directive
2. EQU Directive

. END Directive

. Segmentation

1. Organization of Program
2. Simple Program
3. Compound Program

a. Main Program
b. Sub-program

4., Complex Program

a. Complete Overlay
b. Partial Overlay

(1) Retention of Control
(2) Transfer of Control

c. Chaining
5. Library Routines

Contents
SECTION: PAGE:

UNIVAC 11l UTMOST

UFP-3853

11.

12.

. PROGRAM CONTROL

. Overflow

Invalid Operation

. Typewriter Control

1. Typeout
2. Typein

Processor Errors

. Termination — End of Job

ITEM LEVEL-TAPE FILE HANDLING

A.

C.
D.

Fixed Size Item Handling — ITEMI02

1. Tape Formats
2. File Description Table
3. Storage Area

a. Pool Control Packet
b. BUFC

Calling Sequences
Significance of Write-Read
Label Checking
Checkpoint — Rerun Dumps

~J [op] o =
. . o .

. Variable Size !tem Handling VITEMIO

Tape Formats

File Description Table

Storage Areas

Calling Sequences

Write-Read, Label Checking, and Checkpoint

a0 N
e e e e .

File Call Procedures

File Handling and Tape Assignment

SORT/MERGE

A.
B.

A,

B.

Sort
Merge

. SYMBIONTS

Magnetic Tape Computer With Offline Peripheral
Operations

Nonconcurrent Computers With Online Peripherals

13-1 to 13-24

13-1 to 13-2
13-3 to 13-4

UP-3853 UNIVAC 11l UTMOST Contents [
SECTION: PAGE:
Concurrent Processing Computers 13-5to 13-9

13A.

m m O O

. Concurrent Processing on the UNIVAC 1l .

The Card to Tape Symbiont
The Tape to Printer Symbiont

CONTROL ROUTINES

. General
. Control of Programs

Tape Assignment

End of Processing and Chaining of Control Routines
Control Items Common to the Control Routines
Preparation of Control Tape

wn E=1 wo N —
.

Alternate Modes of Operation

. UPCO

1. Control ltems
2. Library Creation and Maintenance

a. Elements
b. Groups

. ACCO

Control Items
Simple Assemblies
Use of Library Input
Library Building

o -+ w ~No —
B

Stacked Assemblies

DECO

1. Control Items
2. Overlays

System Organization

. System Symbionts

1. Card to Presto Tape

a. PRESTO
b. PRESTS0

2. List/Punch Tape

a. To Print — TPRS
b, To 80 Col. Card — TPCS
c. To90 Col, Card - TPCS90

13-10 to 13-11
13-12 to 13-18
13-19 to 13-24

Content
SECTION: PAGE:

UNIVAC IIl UTMOST

UP-3853

14.

15.

16.

PROGRAM TESTING

A.

O M o m O O

Data Generation

1. Data Procedure
2. Create Procedures — Test Data Tape Generator

TMPO

TPO

EDUMP

FDUMP and DSNAP
Composite Loader
EXEC Mode of Operation

SYMBIONTS

. Tape to Print - TPRS2
. FORTRAN Output Tape to Print-FTPRS
. Card to Tape

1. 80 Col Cards — CTS
2. 90 Col Cards = CTS90/CTS90A/CTS9080

. FORTRAN Output Tape to Punch

1. 80 Column Cards — TPCSF
2. 90 Column Cards — TPCSF90

E. Paper Tape to UNISERVO IlIA Tape - PTRS
F. UNISERVO IIIA Tape to Paper Tape — PTPS
G.
H
|
J

UNISERVO IIA Tape to UNISERVO I1IA Tape — U2T0OU3

. UNISERVO IlHA Tape to UNISERVO IIA Tape — U3TOU?
. Tape to FASTRAND Drum - U3TOFR
. FASTRAND Drum to Tape — FRTOU3

MISCELLANEOUS

T o m m 9O O W P

Mathpack

Editing Routines
Move Procedures
Typein Procedure

. Typeout Procedure
. JPS, JMS Procedures
. JNL, JNE, JNG Procedures

LAED Procedure

UP-3853 WINIVALW 111 WUIIVIWJD | Contents

SECTION: PAGE:

17. INPUT/OUTPUT

A. General
B. Card Readers

1. Hardware
2. Dispatchers

a. General
b. 80 Column Card
c. 90 Column Card

C. Card Punches

1. Hardware
2. Dispatchers

a. General
b, 80 Column Card
¢. 90 Column Card

D. Paper Tape Reader/Punch

1. Hardware
2. Dispatchers

a. General
b. Basic
c. Non-Stop

E. Printer

1. Hardware
2. Dispatcher
3. Common Print Subroutine

F. FASTRAND

1. Hardware 17-F-1to 17-F-45
2. Basic FASTRAND Dispatcher
3. Data Reconstruction Subroutine

G. Communications

1. Hardware
2. Basic Communications Dispatcher

H. UNISERVO Il1A

1. Hardware
2. Basic Tape Dispatcher
3. Intermediate Level Tape Handling

Lontents

SECTION:

PAGE:

v

UNIVAG I UTIVILUDST

UP-3853

I. UNISERVO IIA

1. Hardware
2. Basic UNISERVO A Dispatcher
3. UNISERVO IIA Block Advance Routines

J. UNISERVO 1IC

1. Hardware
2. Basic UNISERVO 11IC Dispatcher

APPENDICES

L.

M.

T oo M m 9 O w I

Sample Program (to be condensed from released section &)

. Instruction Summary
. Executive Communication Summary

. Typewriter Conventions

Data File Conventions
Codedit Listing
DECO Listing

. Basic Memory Layout
. Auxiliary Card Dump Routines
. Systems Philosophy

. Symbiont Programming

1. Background and Characteristics

2. Programming Symbionts
a. Basic Dispatcher

(1) GP Channels
(2) UNISERVO IlIA Channels

b. Typeouts and Typeins
c. Releasing
d. Restrictions

e. DECO Considerations

Modulo-3 Checking

Execution Timing

E-1to E-3

UP-3853 UNIVAC Il UTMMOST

Contents

SECTION: PAGE:

1. Multiplication
2. Division
. Decimal Operations on Non Numeric Data

80 Column Card Codes

Printer Timing

O T o =2

. Input/Output Equipment Specifications

TABLES AND ILLUSTRATIONS

FIGURE TABLE

2-1 The General Data-Processing Operation 2-A-2
2-2 A Data Processing Operation 2-A-2
2-3 The Sequence of Steps in the Data-

Processing Operation 2-A-3
2-14 The Elements of a Data-Processing

Operation 7-A-4
2-5 Work Simplification 2-A-6
2-6 A Punched Card 2-A-7
2~7 Punching the tnventory File into Cards 2-A-8
2-8 Collation of Inventory and Sales ftems 2-A-9
2-9 Punched Card Equipment 2-A-11
2-10 Realtime Computer 2-A-13
2-11 Converting the Inventory File to

: Magnetic Tape 2-A-14

2-12 Reading the Information from a Tape into

the Computer via a Tape Handler 2-A-15
2-13 Qffline Computer 2-A-16
2-14 Concurrent Processing 2-A-17
2-15 Files, Items, and Fields 2-A-18
2-16 Minimizing Search Time by Ordering Files 2-A-19
2-17 Example of a Process Chart 2-A-20
2-18 6 Bit Printable Character Codes 2-B-9

2-19 Assembly in UTMOST Coding Form 2-B-17

cLontents

12

UNIVAG I UTIVIUOST UP.3853
SECTION: PAGE:
FIGURES TABLES
2-20 Arrangement of Arithmetic Registers 2-B-22
2-21 Flowchart Incorporating Boxes and Arrows 2-C-3
2-22 Flowchart Incorporating Symbols 2-C-4
2-23 Flowchart Incorporating Connectors 2-C~-5
4-1 English Language Flowchart of Iteration 4-8
4-2 Symbolic Flowchart of Iteration 4-10
4-3 Control Unit Operating Cycle 4-13
5-1 General Program Format 5-1
5-2 Schematic of Control Sequence in Subroutine
Execution 5-4
6-1 Partial Flowchart 6-3
6-2 Flowchart with Variable Connector 6-4
6-3 Flowchart with Variable Connector Settings 6-4
9-1 Console Typewriter Codes 9-3
9-2 Console Keyboard 9-10
9-3 Block Recording 9-14
9-4 Tape Path 9-15
13-1 Process Chart for a Magnetic Tape Computer
Serviced by Offline Peripherials or Satellite
Computer 13-2
13-2 Process Chart for a Nonconcurrent Computer
with Online Peripherals 13-3
13-3 Schematic of Concurrent Processing 13-7
13-4 Card-Feed Path, High/Speed Reader 13-13
13-5 Data Transfer from Reader to Memory, with
Translation, 80 Column Card 13-14
13-6 Data Transfer from Reader to Store, without
Translation, 80 Column Card 13-15
13-7 Data Transfer from Reader to Store, with
Translation, 90 Column Card 13-15
13-8 Hollerith Code, High Speed Reader 13-16
13-9 90 Column Card Code, High Speed Reader 13-16
13-10 Type Drum, High Speed Printer, Front View 13-20

PAGE:

UP-3853 UNIVAC Il UTMOST .. —ontents
FIGURES TABLES
13-11 COBOL-FORTRAN Set 13-21
13-12 UNIVAC Il Standard Set 1321
17-F-1 UNIVAC HI FASTRAND Mass Storage Unit L7-F-1
17-F-1 FASTRAND Capacity and Access Time Chart 17-F-7
17-F-2 FASTRAND Data Storage Concept 17-F-4
17-F-3 Memory Work Area Requirement for Execution
of FASTRAND Functions 17-F-11
17-F-4 Derivation of Parity Check Character
Positions 17-F-12
17-F=-2 FASTRAND Function Specifications 1/-F-15
17-F-3 Conditions Indicated through the Status Word 17-F-43
17-F-4 Sector Qrganization 17-F-49
E-1 Data Tape Block Formats E-2to E-3

UP-3853 UNIVAC IIl UTIMOST el A
2A.INTRODUCTION
TO COMPUTER DATA PROCESSING
A. THE ELEMENTS OF DATA PROCESSING

In most data-processing, there is a set of data that is altered either infrequently or else in a
known and invariable way. This type is referred to as master data. Names, addresses, badge
numbers, pay rates, year-to-date gross, year-to-date withholding tax, and quarter-to-date social
security tax are examples of master data representing the payroll area; stock numbers, descrip-
tions, on-hand amounts, and unit of measure represent the inventory-control area.

Beyond the master data, there is another type of data to be fed into any data-processing system,
this information differs in that its incidence is essentially random and unpredictable. This type

is called transaction data. Hours worked, quantities shipped, and amounts invoiced are examples
from, respectively, the areas of payroll, accounts receivable, and accounts payable.

Processing consists basically of applying the items of transaction data, either singly, as they
come up, or in cumulative batches, to update the master data.

On the other hand, processing may also be constituted by information periodically being produced
from the master data alone. An example, in the accounts-receivable area, is the production of a
monthly statement.

There is one other major item in the general data-processing operation, the report. In essence,
the report is a by-product of the processing operation in that it reflects in summatry or other form
updating of the master data, the latter being the chief function of the data-processing system.
However, for most purposes, the report can be considered the end product and therefore the most
important of the four elements. It abstracts and highlights critical aspects of the business picture
that judicious processing of transaction and master data uncover, and it is looked to by manage-
ment for necessary information for decisions in production, sales, purchasing, finance, and all
other phases of business.

2-A 2 UNIVAC Il UTMOST UP-3853

SECTION: PAGE:

The schematic in Figure 2-1 relates the four basic elements in the general data-processing

operation.

MASTER

DATA
A
\
TRANSACTION >
DATA PROCESSING
Y
REPORTS

Figure 2-1. The General Data-Processing Operation

To further investigate the elements of a data-processing operation, examine the steps in the
solution of a simplified processing application. Consider a company that keeps a record of its
stock in a ledger. Each day a clerk is supplied with a sales form. On the basis of the form, the
clerk brings the inventory up-to-date by writing a new column in the ledger. A representation of
this data-processing operation is shown in Figure 2-2.

INVENTORY OF STOCK ITEMS J STOCK ITEMS SOLD
sTock | PATE { DATE //3
NUMBER // // STOCK | NUMBER
AV NUMBER | OF ITEMS
INPUT ’ 719142 7 /
g 71/ 9 ¥
YAt - 14 3
AEIE] =7 Ny 7 | 2
/5 23| M ‘ 3 g | a
PROCESSING ’
INVENTORY OF STOCK ITEMS }
ST ‘
yll
W8] a
outeut P 7 1911311
g [77|1]n
g |181/8]1#
VAELELEY
/5 |a /
s lalAla L I

Figure 2-2. A Data-Processing Operation

UP-3853

UNIVAC Il UTMOST

SECTION:

As indicated in Figure 2-2, this data processing operation breaks down into three broad parts:

s INPUT: the information to be processed.

s OUTPUT: the information produced by the processing.
m PROCESSING: the operations required to produce the output from the input.

To do the processing represented in Figure 2-2, the clerk must go through a certain sequence of

steps. One possible sequence is represented in Figure 2-3.

1

READ THE FIRST
INVENTORY
STOCK NUMBER

\

IS THERE A SALES

> ITEM FO ?
RAT WRITE THE
L INVENTORY
YES | MO QUANTITY IN THE
NEW COLUMN
)]
SUBTRACT THE
SALES QUANTITY
FROM THE INVEN-
TORY QUANTITY
READ THE
NEXT ONE
] Y
IS THIS THE
LAST INVENTORY
STOCK NUMBER?
PUT THE
No | YES |—» LEDGER
AWAY
Figure 2-3. The Sequence of Steps in the Data-Processing Operation

To do the steps shown in this Figure:

1. The clerk must be able to do arithmetic (e.g., he must be able to subtract the sales quantity

from the inventory quantity).

2. He must be able to make logical decisions (e.g., he must be able to determine whether or

not there is a sales item for a given product).

3. He must be able to remember information (e.g., after he subtracts the sales quantity from the
inventory quantity he must remember the difference at least until he writes it in the ledger).

4. Hemust do the steps in the sequence shown or do something logically equivalent to this

sequence of steps.

SECTION:

2—-A

4 UNIVAC Il UTMOST UP-3853

PAGE:

These four elements of processing are referred to, respectively, as:

1. Arithmetic.

2. Logical Decision.
3. Memory or Storage.
4

Control.

INPUT

ARITHMETIC

— 5| LOGICAL DECISION
PROCESSING STORAGE
CONTROL

OUTPUT

Figure 2-4. The Elements of o Data-Processing Operation

Experience has determined that to do the general data-processing operation, input, arithmetic.
logical decision, storage, control, and output are required. These six elements are shown in
their logical relationship in Figure 2-4.

1. Manual Data-Processing

The above example is a simplification. An actual inventory application is more complex.
Moreover, even in the simplified form presented above, certain basic steps are left out. The
question may be asked: How does the sales form originate? When a sale is made, a sales

slip describing the commodity sold and the units of that commodity sold is prepared. Such

a slip is prepared for each sale made during a day. At the end of the day, the clerk receives
from the sales organization, not the sales form, but a bundle of sales slips, each represent-
ing a transaction. (For purposes of simplicity, assume that each transaction, and consequently,
each sales slip, involves only one commodity). To prepare the sales form from the package of
sales slips, the clerk has to first classify the sales slips by commodity, and at the same time,
or as a separate operation, sort them into stock number order to put them in the same order as
the commodities are listed in the inventory ledger. The clerk is then in a position to summarize
the sales slips by commodity, and, as a final preparatory operation, prepare the sales form.
With the resulting sales form, it is possible for the clerk to carry out the updating procedure
described in the previous section.

UP-3853

2—-A

SECTION:

UNIVAC Il UTMOST ‘

PAGE:

3o}

For an operation of low enough volume, the approach described above is adequate. It is possible
for one clerk to keep the inventory records for the simplified inventory application up to date.
However, as the volume of the company’s operations increases, the burden of keeping the in-
ventory records up to date will become too heavy for one clerk. It will be necessary to add other
clerks to handle the increased work load. With the advent of a number of people to maintain the
inventory records, management may adopt the procedure of breaking the inventory maintenance
down into a number of steps and of assigning one person to each one of the steps. Thus, one
clerk might read the sales slips and sort them into the same order the inventory commodities are
listed in the inventory ledger. Another clerk might then accept these sorted sales slips from the
first clerk and record the sales on the sales form at the same time as he summarizes the sales
slips by commodity. A third clerk might subtract the entries on the sales form from the balances
on hand and record the differences on the sales form. Finally, a fourth clerk might record these
new balances in the ledger. A schematic of this procedure is shown in Figure 2-5.

The approach shown in Figure 2-5 consists of breaking down the job into a number of simple
steps. These steps fall into categories that constitute the functions of data-processing.

m READING

s SORTING

m CALCULATING

w DECISION MAKING
m RECORDING

When a job is simplified by breaking it down into a series of steps, the data to be processed are
circulated through this series. Each step is the responsibility of a single person who performs
the step repeatedly on the continuing flow of data.

The approach just described is characteristic of manual data processing systems. Analyzing a
job and dividing it into a series of steps is the first step in the development of a data-processing
system.,

Key-Driven Devices

Some of the functions of data-processing are mechanized in the typewriter and the adding machine.
Each of these office machines performs one of the basic functions. Thus, the typewriter records,
and the adding machine calculates. For example, in the simplified inventory application depicted
in Figure 2-5, clerks two and three might use adding machines to summarize and subtract. Clerk
number four might use atypewriter to record the updated inventory.

Since these machines perform only one data processing function, they are ‘‘building block’’
machines. They can fit into the pattern of analyzing a job into a series of tasks with no loss of
flexibility. Their advantage lies in the fact that they increase both the speed and the accuracy of
their operators.

The mechanization of data-processing functions is the second step in the development of proc-
essing systems.

2-A 6 UNIVAC Il UTMOST UP-3853
SECTION: PAGE:
FROM SALES
ORGANIZATION
I
]
SALES SLIP
CLERK #1:
STOCK | QUANTITY READ AND SORT
NO.
9 1
______________ _’.‘4"_'“ -_-————_'
1
I
|
I
1 |
|
_—L SALES SLIP I
STOCK | QUANTITY |
NO. :
7] I
CLERK #2: @ e U/ le€¥—.-. |
SUMMARIZE |
SORTED
SALES SLIPS

STOCK ITEMS SOLD
DATE /3
STOCK | NUMBER | BALANCE
NUMBER |OF ITEMS
T) ——
CLERK #4: |
RECORD SUMMARIZED 9 4 i CLERK #3:
SALES FORM ’4 3 1 SUBTRACT'
I
17 2 :
18 i
|
- — — ¥
—————————————— | N
v | |
STOCK ITEMS SOLD I
INVENTORY OF STOCK ITEMS &) |
- DATE /3 |
stock |[PAT # STOCK | NUMBER | BALANCE |
NUMBER (17 |1/ |, NUMBER |OF ITEMS I
%% 7 1 71 l
7 Wg2\ey L Tt __ I
9 4 4
g 7iun
9 11818 \ 14 3 21
J 17 2 EXTENDED
78 SALES FORM
) S S
[\-“;\J

Figure 2-5. Work Simplification

UP-3853

UNIVAC Il UTMOST 2-A

SECTION: PAGE:

3. Punched Card Machines

With the keyboard-operated typewriter or adding machine, the operator must act as an in-
terpreter, taking the results produced by one machine and transferring them, through the
keyboard, to the other. For example, in the simplified inventory application shown in Figure
2-5 clerk number four must take the results produced on the adding machine by clerk number
three and enter these figures on the keyboard of her typewriter to record them on the in-
ventory records. The adding machine produces typed numbers on a paper tape but the type-
writer only ‘“understands’’ pressure on its keys. Hence, the clerk not only carries the
messages from the adding machine to the typewriter, he also translates from one language
to another.

It is uneconomical for a person to do a substantial amount of this transferring, translating
and copying when it can be done mechanically with more speed and accuracy. One solution
to this problem is the punched-card machine, which approaches this problem of communica-
tions in the following way. The medium of communication in this type of system is a card
on which one column is equivalent to one character of information. Holes punched in
combinations of rows in a column represent these characters in coded form in the same way
as the dots and dashes in Morse code represent characters. Figure 2-6 shows a card with

0123456789 ABCDEFGHIJKLMNO

POV 213 T4 15 16 Y7 18 1920 21 22 23 24 05 76 27 28 29 i E O R R)

lllllllllllIIIIIlllllllllflllllllllll

i S254 5455 %6 5 %8 59 6O 61 62 6 64 65 66 67 B B G T 1T ') 4 5 %6 T 18 19 80

1lll|l1llllllllll I} IRERERERERERE

some codes punched in it.
i T
000000000 ! \ ooooo0o0o00

]
T“ l,ou|
go0o0o00000 ooooooo0o0
123456708
trrrinnt

2222222222l2222222222222222]22222zzzlzz22z72|22222222222222222222222222222222222
33333333333093333333333333333033333333\93333333033333333333333330 303303 0333333333
'EEEERERTERYY INRY YRR YRRV YYY FENRYREY] FYVENRY) IRYRRRYYYORRYRRRY FuY IYY FY IRRRRRRY)
555655555555550555555555555555505555555505555555055555555555555555555555555555555
66666666666666B566666666665666GM6666666606666666W5666G666665666566666666666665560
ISRRRRERREREREE] PRRRRRRRRRERRRER] RRRRRRRR] RRRRRRE] RRRRRRERERRRRRERRERRRRRRRRRERE]
sssassasssnassaselecssssssansaacechosssosoolescecassMencasscssccBRasNBclBBNsscsssss

9999999999999999909999999999999999H9999999909999999099999999993999999953 9 9 9 93
1234567059 2 ey

10011213 | lSIll Ill’nl‘uﬂl‘ﬁﬂﬂnﬂm]l121]3415!113‘]9“!"lZlJ“lS“ﬂ“"ﬂlSl51535455!57“”"‘151‘)““&57“l! ol 13I8 8T

Figure 2-6. A Punched Card

By means of pins which make mechanical contact, a beam of light which activates a photo-
electric cell, or brushes that make electrical contact through the holes punched in the card,
punched-card machines can sense and ‘‘understand’’ the information punched in the card.

2-A 8 UNIVAC IIl UTMOST UP-3853

SECTION: PAGE:

Thus, the machines ¢

‘communicate’’ with each other through the medium of the holes in the
punched card. All that is necessary is that, initially, all data to be processed be punched
into cards in the common or ““machine language’’ code. These cards are then used by an
array of specialized punched-card machines: sorters, collators, card reproducers, calcu-
lators, punches, and tabulators. Each of these machines performs one of the data-processing
functions. As a consequence, punched-card machines are also ‘‘building block’’ machines,
able to incorporate a complex of operations formerly dealt with by manual means, and can be
arranged in many ways to perform data-processing operations,

For example, the simplified inventory application might be done on punched-card equipment
in the following way. Initially, the information in the inventory ledger has to be converted to
punched-card form. This operation is executed on a key punch. One card is produced for each
commodity in the inventory. Each such card contains, in coded form, the stock number of the
commodity that this card represents and the current inventory balance for this commodity.
The cards in this deck are kept in stock number order, the same way the stock numbers were
listed in the ledger.

INVENTORY CARD DECK

INVENTORY LEDGER

KEY PUNCH

Figure 2-7. Punching the Inventory File into Cards

Once prepared, this inventory card deck never has to be prepared again, because the punched-
card system maintains the deck in much the same way as the clerk maintained the ledger.

When the sales slips are received from the sales organization, they are punched into cards, one
card for each sales slip, on the key punch. Each card in the sales deck now contains a stock
number and a sales quantity. Another piece of card equipment called a sorter is then used to
sort the cards into stock number order.

Now a piece of equipment called a collator is used. The collator capable of sensing or ‘‘read-
ing’’ punched-cards has two input magazines. The inventory card deck is placed in one of
these magazines. The sales deck is placed in the other. The collator also has a number of
output stackers in which it stores cards which it has read. For the operation at hand, the
collator is used to match the stock number of the inventory card in the bottom of the inventory
deck magazine with the stock number of the sales card in the bottom of the sales magazine.

If the stock numbers do not match, the inventory card is ‘“not active’’ and is placed in one
stacker. If the numbers match, the inventory card is active and it, together with the sales card
and all sales cards following having the same stock number, are placed in another (‘‘active’’)
stacker. This operation of the collator is shown schematically in Figure 2-8.

UP-3853 UNIVAC 11l UTMOST 2-A
SECTION: PAGE:
INVENTORY SALES
FILE FILE
- 17 - 17
- 16 - 15
- 15 - 15
——o——— 13 - 12
- 12 - 11
INPUT ¢ 11 f——————— 11
MAGAZINES -« 10 - 10
- 08 - 10
< 07 - 07
- 06 - 06
fe— 05 — 04
- 04 -t 04
COLLATOR
Y \
17 (SALES)
17 (INVENTQORY)
15 (SALES)
15 (SALES)
15 (INVENTORY)
12 (SALES)
12 (INVENTORY)
11 (SALES)
11 (SALES)
OUTPUT 11 (INVENTORY)
STACKERS 10 (SALES)
10 (SALES)
10 (INVENTORY)
07 (SALES)
07 (INVENTORY)
06 (SALES)
06 (INVENTORY) 16
04 (SALES) 13
04 (SALES) 08
04 (INVENTORY) 05
COLLATED INACTIVE
ACTIVE INVENTORY INVENTORY
AND SALES ITEMS ITEMS

Figure

2-8. Collation of Inventory and Sales [tems

2-A

SECTION: PAGE:

10 l | UNIVAC 11l UTMOST 03853

At the completion of the collation operation, the collated active inventory and sales cards are
run through a tabulator, which subtracts the sales quantities in the sales cards from the on-hand
quantities of the associated inventory cards.

Attached to the tabulator is an automatic card punch. For every active inventory card read into
the tabulator, the punch produces from a blank card a new inventory card with the same stock
number and the new on-hand amount as supplied by the tabulator.

Finally, the collator is used once more. This time the updated inventory cards are placed in one
input magazine and the previously inactive inventory cards are placed in the other. For this
operation, the collator compares the stock numbers of the two cards in the bottom of the two
magazines and places the one with the lower stock number in an output stacker. The collator
then repeats this process over and over until all the cards are in stock number sequence in the
stacker. This operation creates the updated inventory deck, which can be used as the inventory
deck for the next day’s operation.

Holes punched in cards are not conveniently interpreted by persons using them. A machine
called an interpreter performs this function for the convenience of operating personnel. In
addition, it is necessary in a punched-card installation to have some printing facility for
preparing reports for management, This printing facility is located in the tabulator. In the
case of the simplified inventory application, any necessary reports can be printed by the
tabulator at the same time that it is updating the inventory balances.

A schematic of this system is shown in Figure 2-9.

The punched-card also serves as a storage medium for information. In terms of the simplified
inventory, this fact means that the inventory ledger has been replaced by the inventory card
deck. The result of the communications and storage aspects of the punched-card is that data-
processing becomes a materials handling job. The punched-cards are transferred from machine
to machine and can be stored indefinitely for future use.

4. Punched Paper Tape

Punched paper tape is another form of ‘““machine language’” medium. The approach here is the
same as in punched-cards: characters are represented in coded form, the code consisting of
various combinations of punched holes. There are three basic differences between punched-
cards and paper tape. First, the medium in which the punching is done is a paper tape of
variable length rather then a fixed sized catd. Second, card equipment handles information on
cards a card at a time; paper tape equipment handles information a character at a time. Third,
punched-card code is different from paper tape code.

Paper tape is used to a great extent in communications, the message being sent over wire
and arriving in the form of a punched paper tape. However, the use of paper tape is not re-
stricted to the field of communications. Paper tape punches and readers can be attached to
conventional office equipment such as typewriters or accounting machines with the result
that information entered on the keyboard of these machines can be taken off in the form of
punched paper tape. This resulting tape can be read by the same or other equipment, This
reading operation of an already prepared tape allows the processing of the information by the
equipment without the necessity for re-entering the information on the equipment keyboard.

UP-3853

UNIVAC Il UTMOST

2—-A

SECTION:

PAGE:

11

KEY PUNCH

L~
SALES SLIPS

SORTED
SALES DECK

ACTIVE INVENTORY
AND SALES DECK

INVENTORY DECK

|

COLLATOR

INACTIVE
INVENTORY DECK

TABULATOR

REPORTS

UPDATED ACTIVE
INVENTORY DECK

Figure 2-9.

COLLATOR

Punched Card Equipment

UPDATED
INVENTORY DECK

2-A 12 UNIVAC Il UTMOST UP-3853

SECTION: PAGE:

There are various types of equipment that read paper tape and produce punched cards and vice
versa. Therefore, paper tape and punched-card equipment can be used cooperatively on the same
batch of information without manually recording it in both paper tape and punched-card form. One
recording in either form is sufficient. For example, in the simplified inventory application, if
the sales organization were geographically widespread, the sales slip information might be
sent over wire and arrive in the accounting office in the form of paper tape. This paper tape
information can then be converted to punched-cards in which form it can enter the card system
shown in Figure 2-9 at the point where the sales deck is sorted.

5. Magnetic Tape

Besides punched-cards and punched paper tape, a third type of bulk storage and communication
medium is magnetic tape. Magnetic tape consists of a long strip of plastic material on which
information is recorded in coded form. In this case, the code is a combination of magnetized
spots rather than punchedholes. The data-processing equipment reads and writes the recorded
information by means of tape handlers, each of which is similar to a household tape recorder.
Equipment exists to convert information in magnetic tape form to or from either paper tape or
punched card form.

The advantages of magnetic tape are that it allows (1) a denser packing of information than
does either paper tape or punched-cards; (2) a higher rate of reading and recording. Conse-
quently, more information can be stored in less space, and higher speed data-processing devices
can be utilized.

6. Computers

A common language medium in the form of punched-cards and paper and magnetic tape is the
third step in the development of data-processing systems. Except for data origination and the
handling of bulk data (decks of cards and reels of tape), the human function in a common
language data-processing system is reduced to following the right procedure. The following of
such procedures is handled automatically by the computer, the latest step in the development
of data-processing systems.

a. Real Time Computers

In general, computers are divided into two broad categories. The first is used to apply
transaction data to the master file as the transaction data occurs. In the other type, the
transaction data is batched over a period of time and is applied by the computer to the
master file data in the resulting batches. The fitst type is known as a real-time computer;
the second, as an offline computer.

To get some idea of the operation of a real time computer, consider the simplified in-
ventory application. If the computer is to reduce the on hand quantity for any commodity
at the time that the commodity is being sold and if any commodity in the line can be
sold at any time, then the computer must have immediate access to the whole inventory
record at all times. This need can be met by recording the inventory information on
some type of ‘‘storage’’ device. One such device resembles a juke box, in which the
information is recorded on the records and the computerhas the power to place a record
arm on any part of any record that it desires. Another consists of a drum and has the
information recorded in tracks around the surface of the drum. The computer has the
ability to read information from or record information on any part of any track that it
desires. Such devices are referred to as mass storage devices.

UP-3853

UNIVAC Il UTMOST 2-A 13

SECTION: PAGE:

Secondly, to perform the operations required, there must be some mechanism to allow
each transaction to be entered into the computer for processing as it occurs. This re-
quirement can be met by some type of keyboard device that allows the salesman to send
the necessary information to the computer at the same time as he is recording the sale
for the customer.

Finally, since all inventory information is stored on the mass storage device and is not
accessible to management, a printer must be available to the computer so that all
required reports can be printed. The computer has the ability to post a transaction to the
proper inventory record when it occurs and to select the proper information for reports. A
schematic of the real-time computer system described above is shown in Figure 2-10.

ENTRY KEYBOARD
FOR
SALESMAN A

ENTRY KEYBOARD
FOR
SALESMAN B

INVENTORY
FILE

COMPUTER MASS STORAGE

DEVICE

PRINTER
Y
ENTRY KEYBOARD
FOR
SALESMAN N
REPORTS

Figure 2-10. Realtime Computer

SECTION:

2—-A

14 UNIVAC 11l UTMOST

PAGE:

UP-3853

The advantage of the real-time .computer is that the application in which it is used in-
volves master data that is up to date. For example, in the simplified inventory application,
the inventory data reflects the current actual inventory situation. However, if the computer
is to apply transaction data to the master data randomly as the transaction data occurs,

all of the master data must always be stored on the mass storage device, and the computer
must constantly be available for the updating calculations without interference from other
uses of the computer. For example, in the inventory application, the inventory data must
always be stored on the mass storage device. This fact means that the mass storage device
can be used only for those data-processing applications for which the master data per-
manently stored on it is applicable. Mass storage devices are currently not inexpensive
and, as of now, the applications that can justify such a device on the merits of one
application are relatively few.

Off-Line Computers

In the off-line computer, the master data is stored not on a mass storage device, but on
magnetic tape. Consequently, addition of more applications with various master files to
the computer data-processing system is a matter of recording the master files involved. A
consequence of this approach is that no master file is available to the computer in its
entirety. Therefore, transaction data cannot be applied as it occurs. Instead, transaction
data is batchedover a period of time and is applied by the computer to the master data

in the resulting batches on a cyclical basis. This approach results in the fact that no
master file is ever completely up to date. However, the speed and accuracy with which the
computer operates allows acyclical updating period of short duration. This short cycle
results in master files, the timeliness and accuracy of which cannot be approached by any
other kind of equipment. The off-line computer is the standard computer used in data-
processing today.

As an example of an off-line computer operation, consider the simplified inventory appli-
cation as it might be applied to an off-line computer.

When the computer is first introduced as the data processor, the inventory tape would have
to be prepared in some way. For example, it might be punched into cards, the punched-card
deck then being converted to tape as shown in Figure 2-11.

Once prepared, this inventory tape would never have to be prepared again, because the
computer would maintain it in much the same way as the punched-card system maintained
the information in punched-card form.

The company operation-generates the sales form for the computer system the same way as
before. However, before the computer system can use the information on the sales form, it
must first be converted to tape in a manner similar to the way in which the inventory tape
is initially prepared.

i / \
A

INVENTORY INVENTORY CARD TO TAPE
LEDGER KEY PUNCH CARD DECK CONVERSION INVENTORY TAPE
Figure 2-11. Converting the Inventory File to Magnetic Tape

UP-3853

2-A 15

SECTION: PAGE:

UNIVAC Il UTMOST |

The computer then reads this sales data from this sales tape by means of a tape handler
(Figure 2-12). The computer sorts the sales data into stock number order and summarizes
it. This sorted and summarized sales data is then written by the computer on a blank
tape mounted on another tape handler.

/\

TAPE TAPE HANDLER

COMPUTER

Figure 2-12. Reading the Information from a Tape into the Computer via a Tape Handler

The processing operations of arithmetic, logical decision, storage, and control, which
are necessary to produce the updated inventory from the information given on the current
inventory tape and on the sorted sales tape, are done by the computer. The inventory tape
is read by means of a tape handler., The sales tape is read by means of a second tape
handler.

In the computer system, the computer brings the inventory up to date by producing an
updated inventory tape which is an exact reproduction of the current inventory tape,
except that those changes in stock level required by the information on the sales tape
have been made. The computer records the updated inventory information on a blank tape
already mounted on a third tape handler.

The updated inventory tape produced on one day becomes the inventory input tape on the
next day, while the sales tape continues to originate from without the system.

In any data-processing system, it becomes necessary from time to time to inspect the
results of the processing. Thus, for example, in the manual inventory system previously
described, management will want to see the stock levels for various stock items. Although
many of the purposes for which management would want to make this inspection will be
handled automatically by the computer, with the result that manual reference to files in a
computer system should be significantly less than such reference in any other kind of
system, there will still be occasions when it will be necessary for management to view
the records maintained by the computer. Since tape-recording is neither visible nor
legible, it isnecessary in a computer system to have some type of printing equipment to
produce the reports required by management. The computer records the information to
appear in the report on a blank tape mounted on a fourth tape handler. This report tape

is used as input the printer in the production of the report.

A schematic of this computer system is shown in Figure 2-13.

SECTION:

2-A

16

PAGE:

UNIVAC 11l UTMOST

UP-3853

CARD READER

7

SALES DECK

T T

SALES SLIPS

it —> e
COMPUTER TAPE HANDLER SALES TAPE TAPE HANDLER COMPUTER TAPE HANDLER
INVENTORY SORTED
TAPE TAPE HANDLER COMPUTER TAPE HANDLER SALES TAPE
[)
|

UPDATED
INVENTORY TAPE

TAPE HANDLER

~

REPORT TAPE

TAPE HANDLER

COMPUTER

TAPE HANDLER

REPORTS

Figure 2-13. Offline Computer

UP-3853

2—-A 17

SECTION: PAGE:

UNIVAC Il UTMOST '

C.

Concurrent Processing

The power of computers currently being marketed is such that it is possible for the computer
to do different operations at once. For example, the computer can be doing a processing
operation such as was described for updating the inventory tape on the basis of the in-
formation on the sales tape, convert information punched on cards to magnetic tape, and
print information read from a tape onto paper via the printer all at the same time. This
approach to computer data processing is known as concurrent processing and is shown
schematically in Figure 2-14.

)
)

CARD DECK TAPE

TAPE HANDLERS CARD READER TAPE HANDLER

| |

CARD TO TAPE

P
ROCESSING CONVERSION

PRINTING

R I N ——

I
|
|
|
|
COMPUTER JI

TAPE HANDLERS TAPE HANDLER PRINTER

N | |
NG

TAPE TAPE TAPE REPORTS

Figure 2-14. Concurrent Processing

SECTION:

2-A

PAGE:

18 l ‘ UNIVAC IIl UTMOST

UP-3853

BASIC OFF-LINE DATA-PROCESSING

The reading of input data from input tapes, the processing of that data to produce output data,
and the writing of the output data on output tapes is known as a computer run. A computer
data-processing system is always made up of one or more — generally more — computer runs.

The input and output of a computer run can always be classified into a number of files. For
example, in the simplified inventory run there are two input files, the inventory file and the
sales file; and one output file, the updated inventory file. (Actually, there are two output files,
since the report file must also be considered an output file, but for purposes of this discussion
this file will be ignored). The unit of information in a file is called an item, and character-
istically, a file is made up of a series of items. For example, in the simplified inventory run,
the inventory file would be made up of a series of inventory items, each inventory item referring
to one commodity in the company’s stock line, and one inventory item appearing on the inven-
tory file for each such commodity. Similarly, the sales file would be made up of a series of
sales items, each referring to a commodity on which there has been activity during the day for
which the sales file has been prepared.

Each item in a file is made up of a set of fields (Figure 2-15). A field is a subunit of information
which describes some aspect of whatever the item containing the field refers to. For example,
each inventory item contains a stock number field, which specifies the particular number by
which the commodity to which the item refers is known, and a quantity field, which specifies the
number of units of this commodity that the company has on hand. In reality, of course, an in-
ventory item in an actual data-processing application would contain many more fields than are
specified above, but for the simplified inventory run described here, these fields are adequate.

INVENTORY FILE
— ;
]
1 [
0] (e} o]
ST| o] [} o]

e
ST/

ST

STOCK NUMBER QUANTITY

o o o o
o}

AN

INVENTORY _/_\/_/\
STOCK INVENTORY
NUMBER INVENTORY ITEM QUANTITY
FIELD FIELD

Figure 2-15. Files, Items, and Fields

Now that the terms, run, file, item, and field have been introduced, the fundamental nature of the
way in which an off-line computer processes data can be described in more detail. This descrip-
tion is presented within the framework of the example of the simplified inventory updating run.
The inventory file is the master file of this run. The sorted sales file is the transaction file. The
items in the sorted sales file are items that have been batched over a period of time and are now
going to be applied to the inventory file to update it. The computer reads information from a tape
by means of the reading head of the tape handler on which the tape is mounted. This fact means
that the computer has access to only one item on the inventory file and one sales item at a time.

UP-3853

UNIVAC 11l UTMOST 2-A 19

SECTION: PAGE:

The computer reads the first sales item, and on the basis of the stock-number field which it
finds in the item, starts a search on the inventory file for the proper item to be updated. If the
items on the inventory and sales files are arranged in random order, the computer is going to
spend a good deal of time passing the inventory tape over the reading head to accomplish this
search. No processing is done during search time. However, if both the inventory and sales items
are arranged in the same order, say ascending order, by stock number, the time spent in search-
ing for the correct inventory item is minimized. The fitst sales item is read. Items are then read
from the inventory file until the item with the matching stock number is located, at which point
updating occurs. The next sales item is then read. Because of the way the files are ordered, the
inventory item to be updated by this sales item is either the one updated by the last sales item
or the next active inventory item to be found in moving down the inventory file. In this manner,
the next inventory item to be updated is always the one that is closest to the reading head
(Figure 2-16).

A general characteristic of off-line data processing is that the items in the files involved are
ordered by the field on which searching for updating is to be done. This field is known as the
key of the item. It is not necessary to reorder the master file each time, since the updated
master file from the last cycle becomes the master file for the current cycle. Once the master
file is put in order, the updating process produces the updated master file in the same order

in which the current master file is read. However, the transaction files, such as the sales file,
are generated in random order and must be ordered before being used in a run.

INVENTORY FILE SALES FILE
ITEM ITEM
STOCK NUMBERS STOCK NUMBERS

A

2 /3
3 - 3
4 - 4
5 - 5
6 -- 6
7 --— 7
8

Figure 2-16. Minimizing Search Time by Ordering Files

SECTION:

2—-A

20 UNIVAC Il UTMOST

PAGE:

UP-3853

PROGRAMMING THE COMPUTER

The computer, as a data processor, has the ability to read, remember, and write information;
do arithmetic; and make logical decisions. It also has the ability to follow a series of in-
structions that tell it to perform these operations in a particular sequence. However, it is
incapable of preparing this series of instructions for itself; this job must be done by a man
who both understands what output is to be prepared from what input and what sequence of
processing operations isrequired to form the output from the input. This series of instructions
that a computer follows in processing data is known as a program, and the man who prepares
programs for the computer is known as a programmer,

When a programmer is assigned to a computer run, he is generally told by the designer of the
data-processing system into which this run fits what input files will be fed into the run and
what output files are expected from it. This information is usually described in terms of a
process chart. A process chart is the laying out of a data-processing system in terms of input,
processing and output. For example, Figure 2-17 is a process chart of the computer inventory
system shown in Figure 2-13. (Production of the report is eliminated in Figure 2-17.) In this
manual, programming exercises will be given in problem — statement form. However, each
problem will specify the same three things as a process chart: input, processing and output.

SALES
CARD DECK

RUN 1
CONVERT CARDS
TO TAPE

RUN 2

INVENTORY

SORT AND SUMMARIZE FILE
SALES ITEMS
RUN 3
UPDATE THE

INVENTORY FILE

UPDATED

INVENTORY
FILE

Figure 2-17. Example of a Process Chart

UP-3853

UNIVAC 11l UTMOST 2-A

SECTION: PAGE:

21

To a greater or lesser extent the programmer will also be given information about the items and
fields in the input and output files he is to process in his run. It is the programmer’s responsi-
bility to complete this job of item design. For each item in each file, the programmer must
specify in complete detail what fields make up the item. He must specify the order in which the
fields are to be recorded and how many characters are to be allocated to each field. For example,
for the simplified inventory run (run 3 in Figure 2-17), the programmer must specify the following
file, item and field information.

The simplified inventory run involves three files:
1. The inventory file.
2. The (sorted) sales file.

3. The updated inventory file.

Each inventory-file item consists of two fields:
1. The stock-number field.

2. The quantity-on-hand field.

Each sales-file item consists of two fields:
1. The stock-number field.

2. The quantity-sold field.

Finally, each updated inventory file item consists of two fields:
1. The stock-number field.

2. The quantity-on-hand field.

Notice that the fields for the updated inventory item are identical to the fields of the inventory
item; this situation is as it should be, since the updated inventory file is basically a copy of
the inventory file, the only changes made being those specified by the sales file.

In this manual, item design will be one of the givens in the programming exercises.

Besides completing the item design forthe run he has been assigned to, the programmer must
also figure out the sequence of logical steps that must be gone through to produce output files
from the input files. This job is called the logical analysis of the run. For example, for the
simplified inventory updating run, the logical analysis might be as follows.

The first inventory item and the first sales item are read from their respective files into the
computer’s store. The stock number field of the inventory item currently in the store is
then compared with the stock number field of the current sales item. If the two stock numbers
are not equal, the current inventory item is not altered, but instead becomes the current up-
dated inventory item, which is written on theupdated inventory file; the next inventory item is
read from the inventory file into the store; and the comparison of stock numbers is once

more made. As long as this comparison does not check out for equality, this process continues,
since the arrangement of the items in the files determines that the current sales item refers to
an inventory item which is further down the inventory file and that all items preceding this

SECTION:

2—-A

PAGE:

22 l Rev. 1 | UNIVAC I UTMOST UP-3853

inventory item on the inventory file were not active during the period the current sales file was
being compiled. When the stock numbers of the current inventory and sales items prove to be
equal, the quantity-on-hand field of the current inventory item is reduced by the quantity-sold
field of the current sales item, the next sales item from the sales tape is read, and the compar-
ison of stock numbers is resumed. Notice thatthe inventory item just updated does not immedi-
ately become the updated inventory item, since more than one sales item may refer to it. This
process is continued until there are no more sales items, at which point there are no more
inventory items to be updated, and the inventory items remaining in the inventory file are moved
to the updated inventory file., When there are no more inventory items, the run is complete.

A more formal statement of this logical analysis is shown below.

1. Read The First Inventory ltem.
Read The First Sales |tem.

Compare The Stock-Number Field Of The
Current Inventory Item With The Stock-
Number Field Of The Current Sales |tem;
[f They Are Equal, Go To Step 8.

4. Make The Current Inventory [tem The
Current Updated Inventory ltem.

Write The Current Updated Inventory ltem.

Read The Next Inventory ltem; |f There
Are No More, Go To Step 13.

Go To Step 3.

8. Subtract The Quantity-Sold Field Of The
Current Sales Item From The Quantity-
On-Hand Field Of The Current Inventory

[tem.

9. Read The Next Sales Item; |f There Are
No More, Go To Step 11.

10. Go To Siep 3.

11. Change Step 7 To Go To Step 4.
12, Go To Step 4.

13. Stop.

2-B

SECTION: PAGE:

UP-3853 UNIVAC Il UTMOST I

2B.INTRODUCTION TO PROGRAMMING

A. REPRESENTATION OF INFORMATION

Any positive number can be repesented by a row of marks such as 111111111 (or 9), although
all but the smallest numbers become unwieldy in such notation. For ease of manipulation a
positional notation using symbols to represent different rows of marks is more convenient. One
such notation is the Arabic, which uses ten different symbols or digits, 0, 1, 2, 3, 4,5,6, 7, 8
and 9.

The number of different digits used in a positional notation or system is known as the base of
the system. Using one digit position, quantities as large as nine can be represented in the
decimal system. To represent a quantity larger than nine another digit position must be used.
Thus, to represent the quantity ten a carry is made into the digit position to the left and the
original digit position reverts to zero. The expansion of this system is exemplified by the
odometer of a car. In positional notation each digit position, or column, implies a power of the
base as a multiplier of the digit in the column. The decimal number 1076 is positional notation
for the expression,

(1 x 1000) + (0 x 100) + (7 x 10) + (6 x 1)

The columns imply powers of ten,

1=1 = 10°
10 = 10 = 10!
100 = 10 x 10 = 102

1000 = 10 x 10 x 10 = 10°

and, appropriately enough, are named the units column, the tens column, the hundreds column,
and so omn.

SECTION:

UP-3853

l UNIVAC IIl UTMOST

A computer that represents numbers in decimal notation must have storage elements capable of
assuming ten easily distinguishable stable states, one for each possible digit. While such ele-
ments exist, their cost prohibits the construction of a computer that represents numbers in
decimal notation. Electronic elements lend themselves most naturally to two-stable-state devices.
Thus, computers usually represent numbers in the base two or binary system. The binary system
can be built up in a way dnalogous to the decimal. There are two possible digits, 0 and 1, used
in conjunction with successive powers of two.

20

21= 2
2°= 4
2°= 8

Thus, the binary equivalent of a decimal nine is 1001, which is binary notation for the expression—
1x8)+(0x4)+O0x2)+(1x1)

1. Student Exercises

Write the binary equivalents of the decimal numbers 6, 13, 15, 27 and 43,

2. Binary Addition

The addition table for the binary system is

0+0=0

0+1=1

1+1=10
1+1+1=11

The sum of two binary ones is the binary number 10, the binary equivalent of a decimal two. The
binary number 10 is not what is called ten, which is a decimal, not a binary number. Similar
remarks hold for the sum of three binary ones, which is the binary number 11, not the decimal

number eleven.

a. Example:

DECIMAL BINARY
13 1101
14 1110
27 11011
b. Student Exercises
Add the following:
1011 1010 11001
1111 10111 10111

UP-3853

UNIVAC 11l UTMOST '

2-B

SECTION: PAGE:

Addition of Two Numbers with Opposite Signs

While addition of two numbers with opposite sign could be done by use of a subtraction table,
computers use the method of complementation. For any given number there exists a second
number which when added to the first will produce a sum consisting of a one followed by as
many zeros as there are digits in the first number. The second number is the complement of

the first.
m To get the complement of a binary number
1. Replace the ones with zeros and the zeros with one and,
2. Add a binary one to the result.
For example, given 1101 replace ones with zeros and zeros with ones, and add a
binary one
0010
1
Complement 0011
Proof: 1101 + 0011 = 10000
m To add two numbers with opposite signs:
1. Equalize the number of digit positions by inserting non significant zeros in the
number with the smaller absolute value.
2. Take the complement of the absolute value of the smaller in absolute value.
3. Add the absolute value of the other number to the result.
4. Drop the most significant carry and,
5. Prefix the sign of the number with the larger absolute value to the sum.
a. Example:
Add -101101
+ 1011
Step 1. -101101
+001011

Step 2. The smaller in absolute value is
001011

110100
+ 1

110101

Step 3. 101101
+ 110101

1100010
Step 4. 100010
Step 5. —100010

2-B

4
PAGE:

SECTION:

| UNIVAC IIl UTMOST

UP-3853

b. Student Exercises

Add the following:

-1011

+1111

4. Subtraction

+ 1010 -11001

-10111 -10111

Subtraction can be accomplished through the use of addition by changing the sign of the
subtrahend and adding the subtrahend to the minuend.

5. Multiplication

Binary multiplication, like decimal multiplication, can be done by a series of additions.

6. Division

Binary division, like decimal division, can be done by a series of additions and subtractions.

123

1
11

12)1476
12 -
27
12—
15
12 -
36 <+—— Subtraction
12 —
24
12
12
12 ~-~—
0

Thus, division can be done by addition.

7. Coded Binary

Binaty representation is used in computers in one of two forms, The first is the binary
notation just described called pure binary representation. The other is called coded
binary representation. In this representation, only the pure binary equivalents of the

ten decimal digits are used.

UP-3853 UNIVVAC Il UTMOST 2-B

SECTION: PAGE:

DECIMAL PURE BINARY

8421
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

O 00 IO N b Wi O

Any decimal number greater than nine is represented by a combination of the above codes.
For example, the decimal number 147 would be represented as

0001 0100 0111

One modification of coded binary representation is called the excess-three representation.
The excess-three expression of a decimal number is equal to the pure binary representation
of a decimal that is three greater than the number being represented. For example, the

excess-three representation of decimal 5 is 1000, which in pure binary represents decimal
8 —— or 3 greater than 5.

DECIMAL EXCESS-THREE (XS$-3)

8421
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100

O 03O0 N1 »Hh W KN = O

Excess-three representation has two advantages over straight coded binary.

1. The addition of two excess-three numbers produces a carry if the addition of
their decimal equivalents produces a carry.

2. An excess-three number can be complemented in the same way as a pure binary
number.

2-B 6 UNIVAC Il UTMOST UP-3853

SECTION: PAGE:

8. Excess-Three Arithmetic

If two like signed excess-three digits are added, the decimal equivalent of their sum is not
equal to the sum of the decimal equivalents of the digits.

DECIMAL EXCESS-THREE
5 1000
1 0100
6 1100

The decimal equivalent of the excess-three digit 1100 is not six, but nine. The reason for
this fact is that if the addition does not produce a carry the sum is not in excess-three
representation, but in excess-six notation. To convert the sum to excess-three representa-
tion it is necessary to subtract the pure binary equivalent of a decimal three, 0011. The
complement of the pure binary number 0011 is 1101. Thus, to correct the sum of two excess-
three digits that do not produce a carry, add the pure binary number 1101 to the sum.

1100
1101
1001

The excess-three digit 1001 is the equivalent of a decimal six. However, if the addition of
two excess-three digits produces a carry, the sum is not represented in excess-six.

5 1000
6 1001

The reason for the above fact is that the carry in the excess-three addition carries the equiva-
lent of a decimal 16 out of the sum. Ten of this 16 is the decimal carry to the next column,
which is desired; three of the 16 is what previously produced an excess-six sum, and its carry
is of no concern; but the last threeis what was necessary to produce an excess-three sum. Thus,
the sum comes out in pure binary representation. To convert the sum to excess-three representa-
tion it is necessary to add the pure binary equivalent of a decimal three, 0011, to the sum,

0001
0011
0100

The excess-three digit 0100 is the equivalent of a decimal one. In summary, to add two like
signed excess-three numbers:

I. Add the numbers according to the rules of pure binary addition and

2. Apply ‘‘correction factors’’ to each digit in the sum.

The correction factors are as follows:

2-B

SECTION:

UP-3853 UNIVAC 11l UTMOST I

PAGE:

m If the column in which the digit appears did not produce a carry, add the correction
factor 1101.

m If the column produced a carry, add 0011.

a. Example.

0100 0111 1010
1001 0110 1000

Intermedjate sum 1101 1110 ,— 0010
Correction factors 1101 1101 0011
Excess-three sum 1010 1011 0101

Since the correction factors apply only to individual digits and not the entire sum, any
carry produced is ignored.
b. Student Exercises

Add 0110 1010 0011
0111 1000 1010

1000 0101 1100
1010 0111 0101

c. Addition of Two Excess-Three Numbers with Opposite Signs
Two excess-three numbers with opposite sign are added in the same way as two pure
binary numbers with opposite signs.
1) Example:

Add -1010 0111 1001 0100
+ 0100 0110 1100

Step 1. —1010 0111 1001 0100
+0011 0100 0110 1100

Step 2. 1100 1011 1001 0011

1100 1011 1001 0100

Step 3. 1010 0111 1001 0100
1100 1011 1001 0100

0111 ,~0011 ,~0010 1000

00i1 0011 0011 1101

,-1010 0110 0101 0101

Step 4. 1010 0110 0101 0101

Step 5. —1010 0110 0101 0101

UNIVAC Il UTMOST

2-B 8 UP-3853
SECTION: PAGE:
2) Student Exercises
Add +1010 0011 0111
PROBLEM 1
-0101 0011 1010
-0111 1011 1100
PROBLEM 2
+1000 0110 0101
9. Decimal Representation
The four-bit binary coded excess-three notation is referred to as decimal representation.
This allows for sixteen characters whose values range from 0000 to 1111. In this group are
included all the numerics and some special characters, but no alphabetics.
10. Alphanumeric Representation
To represent the twenty-six alphabetic characters the sixteen possibilities of decimal re-
presentation are not sufficient. Therefore, in this representation, a two-bit zone is added
and precedes each binary coded excess-three notation. The other four bits are called the
numeric portion.
Each representation in the numeric portion may be preceded by one of four possible zones:
00, 01, 10 or 11. A total of sixty-four different characters may be designated in this format,
Alphanumeric information may be distinguished from decimal information by the zone. It
is possible to present numeric characters in both decimal format and alphanumeric format.
A complete table of character representation can be found in the Character Code Chart,
Figure 2-18.
11. Octal Representation

Consider the following pure binary number.

001101000101011001111100

The length of this binary number written in this notation makes it difficult to both read the
number and transcribe it correctly. Reading and transcription is eased by breaking the number

into groups, as follows:

001 101 000 101 011 001 111 000

Nevertheless, the number is still difficult to handle. To ease binary number manipulation, a
convention of writing binary numbers in a code is generally adopted. The code used is octal.
Octal notation is a number system with a base of eight. Thus, the coefficients in the octal
number system are 0, 1, 2, 3, 4, 5, 6 and 7. The binary equivalents of these octal numbers are

as follows:

OCTAL

0

N OO AW N

BINARY

000
001
010
011
100
101
110
111

UP-3853 UNIVAC Il UTMOST l

SECTION:

COBOL - FORTRAN SET

00 01 10 n
0000 A blank .

0001 ;) * (
0010 - $.
0011 0 (Apos.)
0100 ! A J Y
0101 2 B K s
0110 3 C L T
0 4 D M U
1000 5 E N v
1001 6 F 0 w
1010 7 G P X
1011 8 H Q v
1100 9 | R z
1101 ~

110

1 >

Figure 2-18.

6-Bit Printable Character Codes

2-B 10 UNIVAC Il UTMOST UP-3853

SECTION: PAGE:

Thus, the octal numbers have as théir binary equivalents all binary numbers that can be
represented in three bit positions. As a result, octal notation is a natural as a code for

binary notation, each octal digit standing for a three bit group of binary numbers. For example,
in octal code, the above binary number would be written as follows:

153053170

B. THE CENTRAL PROCESSOR

The focus of the UNIVAC III computer is the Central Processor. The Processor accepts informa-
tion from input units, stores that information, does arithmetic operations, makes logical decisions,
and produces new — or updated — information for output. The information handled in this way

is called data. Stock numbers, inventory quantities, and sales quantities are examples of data.
The arithmetic operations and logical decisions done on the data is called processing.

1. The Storage Unit

To process data, the Processor must have stored in an accessible place three types of informa-
tion:

1. the data itself,
2. Instructions, and

3. constants.

Instructions are coded units of information which are used to direct the Processor in the process-
ing of data. A program must include an instruction for each operation that the Processor is to do,
such as the subtraction of one quantity from another. Constants are units of information which the
Processor must have to perform certain operations. For example, if a salesman’s commission on a
sale is ten percent of the sales price, the processor must multiply the sales price by ten percent to
develop this commission amount. To do this the Processor must have available to it a constant of
ten percent,

Data, instructions and constants are made immediately available to the Processor by storing them in

the Processor’s store. The store is made up of storage locations. The amount of store available
on the UNIVAC III is variable at the user’s option. Store is obtainable in the following amounts:

m 8192 storage locations,

16,384 storage locations,

24,576 storage locations, and

m 32,768 storage locations.

UP-3853

2-B

SECTION:

11

UNIVAC IIl UTMOST ‘

PAGE:

For ease in reference, these store sizes are spoken of as 8K, 16K, 24K and 32K, respectively. Any .
storage location may be used to store data, instructions or constants. The amount of information
that can be stored in one storage location is fixed. This fixed amount of information stored in any
one storage location is called a word. A word consists of 27 binary bits of information. The bit posi-
tions, for reference, are numbered 1 through 27, from right to left. The rightmost bit (bit 1) is the
Least Significant Bit (LSB) and the leftmost bit is the Most Significant Bit (MSB). This 27-bit word
is divided into three portions:

1. The Data Portion (bits 1 through 24).
2. The Sign (bit 25).
3. The Checking Portion (bits 26 and 27).

CHE CK
1ECK] 5 DATA
27]26 |25 |24]

The sign of the wordis used in arithmetic and comparison operations. In this position a binary
0 represents a positive value while a binary 1 indicates a negative value.

The checking bits are used by the checking circuitry of the system to assure that there is no
change in the information content of the words because of some malfunction or electronic
phenomenon as the words are transferred through the circuitry of the system. The type of check-
ing used is modulo 3, residue zero. Since there is no possible access to these bit positions
through programming and they have no value as data, no further reference will be made to them
and only bits 1 through 25 will be considered.

Addressing

Each storage location has a label or address by which its contents may be referenced so
that each may be distinguished from any other. The addresses used within the Central
Processor are in pure binary form. For ease of representation, only their decimal equiva-
lents will be used here. The numbering of these addresses is sequential and the first
storage address of any system is 00000. The highest storage address of a system having
the maximum size store is 32767. This allows for the addressing of a possible 32,768
words.

STORAGE ADDRESS CONTENTS

Word 1 00000 25 bit positions

Word 32768 32767 25 bit positions

2-B 12 UNIVAC Il UTMOST UP-3853
SECTION: PAGE:
A given word in a storage location may be referenced as often as desired, because when
it has been stored in that location it remains there until it is ‘‘erased’’ by the transfer
of another word into the same location.
b. Data Word Format

In the UNIVAC III there are three types of data words. All three types use bit position 25
to represent the sign of the word.
1) The Decimal Data Word

S| DIGIT 6 DIGIT 5 DIGIT 4 DIGIT 3 DIGIT 2 DIGIT 1

25 |24 21[20 17116 13[12 918 514 1
The data that is represented in bit positions 1-24 is arranged in six, fixed, 4-bit groups.
These groups are coded in binary excess-3 representation. Bit positions 1 through 4
represent the LSD and bit positions 21 through 24 the MSD.
Example:

0f1 100100 0|1 001(0 1 10/01 00|01 0 1] =+956312
2) The Alphanumeric Data Word

S DIGIT 4 DIGIT 3 DIGIT 2 DIGIT 1

25124 19118 13[12 716 1
The data is arranged in 4, fixed, 6-bit groups. These groups are coded in binary excess-3
representation with zone. Bit positions 1-6 represent the LSD and bit positions 19-24 the
MSD.
Example:

0|0 1010110 0110(110111/000 1 11} =+BLU4

3) The Binary Data Word

S 24-BIT BINARY VALUE

25|24 1

UP-3853 UNIVAC 11l UTMOST 2-B

SECTION: PAGE:

The data is represented as one pure binary 24-bit value ranging from 0 through plus or
minus 16,777,215, (2%-1).

Example:

0|0 00010 00O0010O000O0O1O0O011 10 1| =+532637

2. The Arithmetic Unit

The Processor does arithmetic operations and makes logical decisions by means of its
internal arithmetic unit. This unit has characteristics in common with a desk calculator,
since it contains an adder to produce the sum or difference of two quantities, and circuitry
to use the adder in the development of a product of two quantities or the quotient of one
quantity divided by the other. Additional circuitry allows the Processor to use the adder to
make logical decisions concerning the equality or relative magnitude of two quantities.

To operate on a quantity, the Processor must transfer it from the store to the arithmetic unit.
Four arithmetic registers provide temporary storage for such quantities within the arithmetic
unit. These arithmetic registers are designated by a four bit positional representation. The
designations are 1000, 0100, 0010 and 0001. Since these designations are the pure binary
representations of the decimal numbers 8, 4, 2 and 1, these registers are referred to as ARS,
AR4, AR2 and AR1, where AR stands for arithmetic register. Each register is similar to a
storage location in that it has the capacity to store one word of information.

3. Control Unit

The function of the control unit is to select, in the proper sequence, each instruction from
storage, interpret, and execute it.

The selection of an instruction is performed in a sequential manner. If the instruction just
executed were located in storage address 00698, the next instruction would come from storage
address 00699, and so on sequentially through the store.

Each instruction is a UNIVAC III word and, as such, is 25 bits in length. Its structure as
shown in the diagram below, is different from any of the data word formats.

1A

Fs X OP CODE AR m

25)24 2120 1514 11]10 1

Of the sections shown only three will be considered for the present time.

m The contents of bit positions 1 through 10 represent the binary storage address
of the instruction operand. It is the contents of this storage location which will
be operated upon by the instruction. With binary 1’s in each of these bit posi-
tions the highest storage location that could be indicated in the m portion is
1023. The method of addressing storage locations greater than 1023 will be
discussed later. For the present, consider a store whose size is 1024 words with
an address range of 0000 - 1023.

o |
SECTION: PAGE:;

‘ ’ UNIVAC 11l UTMOST UP-3853

AR

OP CODE

C. CODING

The contents of bit positions 11 through 14 represent the address of an arithmetic
register in the arithmetic unit. Each arithmetic register is a temporary storage
location for one UNIVAC III word and therefore is 25 bits in length, Utilizing bit
positions 11-14, respectively, the addresses are:

AR DECIMAL
8421 EQUIVALENT
1000 8
0100 4
0010 2
0001 1

The contents of bit positions 15 through 20 represent the OPeration Code which
indicates the operation to be performed. Although the Central Processor only
recognizes a binary configuration as the OP Code, for ease of coding, a mnemonic
OP Code will be used to designate each instruction.

Coding is the translation of a logical analysis of a run into an organized series of instructions
that are intelligible to the Processor. An inStruction must be given to the Processor for each
operation it is to do. In the UNIVAC III, an instruction generally specifies three things:

1.

The operation to be done.

2. The address of the data to be operated on.

3. The arithmetic register with respect to which the operation is to be done,

These three elements of an instruction are specified, respectively, in the OP, m and AR portions

of the instruction.

To see how coding might appear, consider the function of adding two quantities together and
storing the resulting sum. The Processor would perform this function in three operations.

1,

Select one quantity.

2. Select the second quantity and add it to the first.

3. Store the sum.

For the Processor to do these three operations in the order indicated, it must have a program of
instructions. The program for this addition problem would consist of three instructions, one for
each of the operations. These particular instructions might have the following mnemonic codes.

m LA - Select the quantity from the storage location specified and transfer it to the AR

specified.

m DA — Select the quantity from the storage location specified and add it to the quantity
in the AR specified, the sum to be returned to that same AR.

2-B

SECTION: PAGE:

UP-3853 UNIVAC Il UTMOST '

m SA — Store the quantity in the AR specified into the storage location specified.
A corresponding problem might be stated as follows:

1. Assume that the two quantities to be added are stored in storage locations 800 and
801.

2. Store the sum of these quantities in storage location 802.

The coding needed to execute the problem might look like the following.

LOCATION OF INSTRUCTION

INSTRUCTION oP AR m
0 LA 8 800
1 DA 8 801
2 SA 8 802

The first line of coding brings the quantity stored in location 800 into AR8. The second line
adds the quantity stored in location 801 to the quantity now in ARS8 and stores the resulting
sum in ARS8. The last instruction stores in storage location 802 the quantity now in ARS.

The storage location for storage of the first instruction (storage location Q) was chosen
arbitrarily. However, the second and third instructions were stored, respectively, in storage
locations 1 and 2 to assure that the control unit of the Processor would cause the instructions
to be executed in the order written. Only in this order of execution would the instructions effect
the desired result.

Of course, in the computer’s store, the op codes would appear as six bit codes (LA happens to
be 001010, DA 010000, and SA 001000), the AR designation would appear as a four bit posi-
tional representation (AR8 is 1000), and the m portions would appear as 10 bit binary addresses
(800 is 1100100000, 801 is 1100100001, and 802 1100100010). Therefore, to be effective in the
computer, the above instructions would have to be stored in storage locations (-2 in the follow-

ing form:
IA X oP AR m
0 0000 001010 1000 1100100000
0 0000 010000 1000 1100100001
0 0000 001000 1000 1100100010

Instructions would be hard to write in such form, and would be even harder to read after having
been written. As a consequence, instructions are not written in this object code form, but are
instead written in another source code form. This source code form is the UTMOST language.
A program written in UTMOST language is recorded on tape and fed into a computer program
called the UTMOST Assembler. The Assembler has the function of writing out on another tape
object code instructions corresponding to the source code instructions fed into the Assembler
as input. The coding on this object code tape can then be loaded into the computer to do the
operations described by the programmer in source code. All examples in this manual will be
coded in the UTMOST language.

SECTION:

2-B

PAGE:

6 | | UNIVAC Il UTMOST UP-3853

UTMOST Coding is written on UTMOST coding paper, an example of which is shown in figure
2-19. The coding paper is essentially nothing more than a series of lines each marked off into
80/90 character segments. Writing of UTMOST code is restricted to the first 72 of these posi-
tions. The coding paper is used in the following way.

In general, one instruction is written per line. The address of the storage location in which an
instruction is to be stored must be justified left in the line on which the instruction is written,
(In actuality, UTMOST uses ‘‘labels’’ rather than storage addresses for this purpose, but
introduction of the concept of labels is delayed until later in this manual.) The address must be
followed by one or more spaces. The number of spaces used is an option of the programmer. The
mnemonic op code for the instruction is then written, The op code must also be followed by one
or more spaces. The AR and m portions of the instruction are then written. They must be
separated by a comma. Following the m portion of an instruction, provided that at least one
space separates the m portion and the comment, the programmer may write any comments

about this instruction that he wishes. As indicated, op codes are written in mnemonic form,
AR’s are indicated by the decimal equivalent of their pure binary code (8, 4, 2, and 1), and

the addresses in the m portion are written in decimal.

LOAD AR - LA

Transfer the contents of the storage location specified to the arithmetic register specified.

Example:
LABEL A OPERATION A OPERAND A k
— —_—

(AR8) i = — 012345 (AR8) f = + 987654

il

(800) i

It

+ 987654 (800) f = + 987654

The notation used in this example is as follows. Parentheses stand for ‘‘the contents of’’.

1

Thus (800) means ‘‘the contents of storage location 800’’, Parentheses followed by an ‘i

stand for ‘‘the contents of before instruction execution’’. Thus, (800) i means ‘‘the

contents of storage location 800 before instruction execution’’. Parentheses followed by an
‘‘f? stand for ‘‘the contents of
contents of storage location 800 after instruction execution. Mnemonically, ‘‘i’’ stands for
““initial’’, ““f*’ for ‘“final’’.

after instruction execution’’. Thus, (800)f means ‘‘the

UNIVAC ASSEMBLY IN UTMOST UNIVAC Il

PROGRAMMING FORM

PROGRAM . PROGRAMMER DATE PAGE_____ OF___ _PAGES
LABEL A OPERATION A OPERAND \ COMMENTS
1 80 90|
PR N T T S 0 U U S S T S S G S ST S SR U SV S S W S S S K S S S U S T O VU (WA, SENr A S Y S0 S S S S VT S S A E S Y S S S S Y S V00 S S S BT W
P S N S S U S VS SO S S S S R S W S S S SO A U S S S S ST S N TS S S ST S S S S S S S S S I S S T U S S A S S

LLlJlllllllALklAJAAlllIlJlLl‘lleJJllLJllLJJl l||||lﬂ\ll||il|tlﬂlIlllllllllllleLLlllllll
N S S S i Loy N B S S SR S R)»“.‘|A‘|‘»‘x.‘|...A\‘I.ln‘k.‘nn‘xnnanlxxull
P S RS RS TS S U S S U ST S N N S S S S A S ST U (S ST S ST ST SO VU WA U0 N SN0 S S S SN SIS ST ST S ST S W U ST S S S S 0 S WA SO W U 100 100 W0 SO0 S N ST S ST S
I W N S} IAI‘IIAAIAIAl1AAJIAJIJA1LLJJJLJALIALJlLiLlll);lAlll|AIIIIAA1L1AA|1Alllllllllllﬁlllj
PR U S S S S S S S (VS S S S U S S S S N S S SV S G S S U W G W SV O U SO 0 U S U U S W S S A W W
P U U S S S A S S U (S S S (N S S S S G S G S S G N S S S S S S S ST USROS S VOO S T W SO SV S WU S S S G S S R

S A N S S E U S S N S S S T LSS S Y S U S U U S S S S S S A S S S U U WS SN (A S ST S N VA S0 S SO0 O S VU S SO S S
T S U SO S TS S SO YU SO U S S S S S T SO SO S SV S VA W S O S S S TS Y V0T GO YO0 S A 0TS WS S S G GO S 0 W U G TS U W S T NS S T S S Y U0 T U S VO S T
PSS SR G e [T " TS R S S S S S IS U S U I S i L JU SN TR W R S W W S SV ST S S S S S S0 WY S
PSS S S WU SN A ST S S S U SN NSNS U NN S G N S U SV N VA T S S ST Y SV U U S S S WP FU S S S U S W SO WO SN S SN S0 S SN ST SN0 SO0 VAN VAT A SN Y NN SN0 WO S0 ST WO S0 WS W G0 N W S0 N S |
A S U N N GO G S S S S W SO0 S S S G S US ST WO SO S S S WA WU SO S L O S U S T U S T S S G S S U W0 S S T S U WY S B O S S Wt
IO S N W T U S S I S R U S ST TR U S S U S S S S L PSS S S N U S SN HAT N UG S0 GO U Y S G D U U0 U Ut S U W0 U0 S0 U T B B W
PR GV SIS T NIV S S T I RS R S S | R A Y S S S S S U S G S S Y S ST N S S ST S Y OO0 U WA S U U WO U W S S0 A
U U U S VR U S S T S S S S S U S S S S SO0 W S S U T U G A S U GO S S S W S S GG U U VAU O S0 VAU SO WO T G WU W SO N O I 0 U T G B S S

UP.2507 REV.? {8690 COLUMN FORMI

Figure 2-19. Assembly in UTMOST Coding Form

‘ €S8e-dN

LSOINLNA 111 DYAINN

NOI1LD3s

‘a3ovd

L1

SECTION:

2-B

PAGE:

18 ’

l UNIVAC 11l UTMOST

UP-3853

LOAD AR NEGATIVE - LAN

Transfer the contents of the storage location specified to the arithmetic register specified

and change the sign.

Example:
. LABEL A OPERATION A OPERAND
_—

(AR8) i = - 012345

!

(800) i =+ 987654

STORE AR - SA

(ARS8) f = —987654
(800) f=+987654

Transfer the contents of the arithmetic register specified to the storage location specified.

Example:
' LABEL A OPERATION A OPERAND A >

(AR8) i = — 012345
(800) i =+ 987654

STORE A NEGATIVE - SAN

Transfer the contents of the arithmetic register specified to the storage location specified and

change the sign.

(ARS) f = 012345
(800) f = _ 012345

Example:
jv
LABEL A OPERATION A OPERAND (
lllSlAlNl_‘LE‘I'lslololllllIALgL#lllllllllllllll _J‘l
N\/\/____\/WW

(ARB) i - — 012345
(800) i - 4 987654

(AR8) f - — 012345
(800) f =+ 012345

2-B

SECTION:

19

PAGE:

Up-3853 UNIVAC 1l UTMOST '

DECIMAL ADD - DA

Add the contents of the storage location specified to the contents of the arithmetic register specificd

and store the sum in that arithmetic register. The Processor assumes that the operands are in decimal
format. In the operands, a decimal digit with a bit combination of 0000 (decimal “‘digit’’ “‘space’’) will
be treated as a bit combination of 0011 (decimal digit ““zero’’)

Example:

LABEL A OPERATION A OPERAND \ Z

D A

11 1 1 | 18|’l

8010,

(AR8) i - —012345 (AR8) f 1 975309
(800) i -~ :987654 (800) f « 987654

DECIMAL SUBTRACT - DS

Subtract the contents of the storage location specified from the contents of the arithmetic register
specified and store the difference in that arithmetic register. The Processor assumes that the

operands are in decimal format. In the operands a decimal digit with a bit combination of 0000 will
be treated as a decimal zero.

Example:

LABEL A OPERATION A OPERAND \)
| =

DS 18_L.’_18 10[01

|
1 1 i 1 L 1 1 1 l 1 ' i L I A L 1 I 1 1 . 1 i i1 . 1l

(AR8) i~ — 012345 (AR8) f - + 999999
(800) i -+ 987654 (800) f -+ 987654

SECTION:

2-B

PAGE:

20 ‘) UNIVAC Il UTMOST UP-3853

BINARY ADD - BA

Add the contents of the storage location specified to the contents of the arithmetic register specified
and store the sum in that arithmetic register. The Processor assumes that the operands are in binary
format.

Example:
\b
i LABEL A OPERATION A OPERAND A
| o — —— —— —
(AR8) i = — 15053170, (AR8) f = + 45651417,

|

(800) i= + 62724607, (800) f = + 62724607,

Notice that the binary numbers in this example are expressed in octal notation.

BINARY SUBTRACT - BS

Subtract the contents of the storage location specified from the contents of the arithmetic register speci-
fied and store the difference in that arithmetic register. The Processor assumes that the operands are in
binary format.

Example:
LABEL A OPERATION A OPERAND

(AR8) i = - 15053170 (AR8) f= - 77777777,
(800) i =+ 62724607, (800) f=+ 62724607,

UP-3853

UNIVAC 11l UTMOST 2-B

SECTION: PAGE:

21

Example using Preceding Instructions

The onhand quantity of a commodity is stored in location 800, the onorder quantity in location
801, and the expected requirements for the next 60 days in 802. All quantities are in decimal
format. Store the sum of the onhand and onorder quantities reduced by the expected requirements
in location 803.
a. Logical Analysis

1. Add the onorder quantity to the onhand quantity.

2. Reduce the sum by the expected requirements.

3. Store the difference.

b. Coding

LABEL A OPERATION A OPERAND A

0, ., 4L, A .8;,,800 , , ADD|, ONORDER, AND ONHAND {+ = = = |
L ., DA 8,801 .4,,141,.14.1.1..11..1,4_,..1“\
2] . LD|SJ l8 |’ ‘8J012. L LSIUJBIT.RIALC,TL lEIX‘PlEiCl Tl E.01 1R1E|01U1' anEanExN;Tlsj
3, , , ,S,A ,8/,,803, , , S TORE DI FFERENCE | . . | | | ., 1. 15

To produce this coding, the programmer might have approached the problem in the following
manner. As indicated in the logical analysis, the first data-processing step is to add the
onorder quantity to the onhand quantity. Since the quantities are in decimal format, to do an
addition the Processor must be given a DA instruction. This instruction requires that one of
the quantities to be added must be in an arithmetic register. The other quantity must be
selected from the storage location specified. Since both quantities are presently in storage
locations, one of them must be transferred to an arithmetic register before they can be added
together. The choice of the arithmetic register is arbitrary. Suppose ARS8 is chosen. To place
the onhand quantity in ARS8, the Processor must execute an instruction of the form LA 8, 800.

Choice of storage location 0 for storage of the LA instruction is arbitrary. However, it does
require that the next instruction in the program be stored in storage location 1. Following
execution of the LA 8, 800 instruction, the onhand quantity is stored in AR8. To add the on-
order quantity to the contents of ARS8, the Processor should have as its next instruction,
DA 8, 801. This instruction must be stored in storage location 1. After executing the DA
instruction, the Processor has the sum of the onhand and onorder quantities stored in ARS.

The logical analysis indicates that the next operation to be done is the subtraction of the
required quantity from this sum. This step calls for a DS instruction. To execute this
instruction, the desired minuend must be in an arithmetic register and the subtrahend in a
storage location. Since both of these conditions are satisfied, a DS 8, 802 instruction is
stored in storage location 2 to subtract the required quantity from the sum of the onhand
and onorder quantities in ARS.

2-B 22 UNIVAC Il UTMOST UP-3853
SECTION: PAGE:
The final step is to store the difference in storage location 803, This operation can be
done by the execution of a SA 8, 803 instruction stored in storage location 3.
2. Student Exercises
(1) A quantity is stored in storage location 800. Store the quantity in storage locations
801, 802 and 803.
(2) Two quantities are stored in locations 800 and 801. Interchange the quantities.
(3) Three quantities are stored in locations 800, 801 and 802 in decimal format. Store
the sum of the quantities in location 803.
(4) Quantities A, B, C and D are stored in locations 800 — 803, respectively, in decimal
format. If
R=-2A -8B+ 3(C + D)
calculate R and store it in location 804.
D. MULTIWORD OPERANDS

Most instructions may specify multiword operands which may be two, three or four words in
length., The number of words in an operand is determined by the number of arithmetic registers
specified in the AR portion of the instruction. For example, suppose it is desired to load a
two word operand in AR’s 8 and 4. The positional notation for ARS8 is 1000, for AR4 0100.
Therefore, the positional notation for AR’s 8 and 4 would be 1100. The decimal equivalent of
the pure binary number 1100 is 12, which happens to be the sum of eight and four. Thus, to
load a two word operand into AR’s 8 and 4, an LA instruction with 12 in its AR portion would
be specified. This convention holds true in all cases. Thus, if it is desired to load a three
word operand into AR’s 4, 2 and 1, an LA instruction with 7 in its AR portion would be
specified. (Seven is the sum of four, two and one.)

The arithmetic registers can be conceived of as being arranged in a line, as shown in Figure

2-20.

ARS8 AR4 AR2 ARI1

Figure 2-20. Arrangement of Arithmetic Registers

Thus, arranged from ‘‘most significant’’ register to ‘‘least significant’’ register the arithmetic
registers are listed as AR8, AR4, AR2 and AR1. When using arithmetic registers in a multi-
word operation, the least significant word of the multiword operand is found in the least
significant register indicated, the next least significant word in the next least significant
regéster, and so on, until the most significant word of the multiword operand is found in the
most significant register.

UP-3853

23

PAGE:

2-B

lSECTION:

UNIVAC IIl UTMOST '

When the AR portion of an instruction calls for a multiword operand, the m portion of the in-
struction specifies the location of the least significant word of the multiword operand, Words
of increasing significance in the multiword operand are found in continguous storage locations
moving ‘‘backword’’ through the store. Thus, if an instruction specifying a three word operand
addresses location 802 in the m portion, the three word operand is found in locations 800, 801
and 802. The most significant word of the three word operand is stored in location 800, the
next most significant word in location 801, and the least significant word in location 802. For

example, the instruction

LABEL A OPERATION A OPERAND A }

w———
——

LA 8|0121 A) R S | Il Il L l 1 I 1 L1 | 1 1 I ! 1 1 | L 1 1 1 1 l 12

/I\‘/;/lil/l\f’\/\/\/_ﬂ—_—/_/\\

would load the contents of location 802 into AR2, the contents of 801 into AR4, and the contents
of 800 into ARS.

Figure 2-20 is misleading in the sense that the arithmetic registers are not physically connected

in any way. Thus, it is not necessary to load a two word operand in AR’s 8 and 4, 4 and 2, or 2

and 1. Any two arithmetic register may be used. For example, the instruction

LABEL A OPERATION A OPERAND A 2
| ———————— — — — =
oo gLy A 1,3,081002 0y b e s e by Ly

would load the contents of location 802 into AR1, the contents of 801 into AR4, and the contents
of 800 into ARS.

Multiword operands may be used with any of the instructions previously defined in this manual.

24 ' ‘ UNIVAC 11l UTMOST UP-3853

2-B
SECTION: PAGE:
1. Example
A quantity is stored in locations 800, 801 and 802. Store the quantity in locations 803, 804
and 805. Do not destroy the contents of AR4.
a. Coding
LABEL A OPERATION A OPERAND A
_—eee————— =
]
01 1 1 1 i ILJAl 11111'1810121 1 L I L [1 L | L 1 | | A1 l 1 1 1 1 1 1 1 1 1 l l!
]LIILLISJAIL]i1Ll1810151lllJliLlllllllllllLlllllll}
/\/\/\/\’\N\—ﬁ/\/\/\/\,—

2. Multiword Arithmetic Instructions

In an arithmetic operation the sign of a multiword operand is determined by the sign of the
least significant word of the operand. Therefore, in an arithmetic operation, if the contents

of storage location m-1 are —~XXXXXX and the contents of m are + XXXXXX, any multiword
instruction addressing m as the least significant portion of an operand will involve a positive
quantity regardless of the signs of the most significant words. After an arithmetic operation,
the correct sign will appear in every word of the result.

Example:

LABEL A OPERATION A OPERAND A

(AR8) i = + 222222 (AR8) f = + 888889
(AR4) i =+ 333333 (AR4) f =+ 177777
(800)i = — 666666 (800) f = — 666666

(801) i =+ 844444 (801) f = + 844444

I

2-B

SECTION:

25

PAGE:

UP-3853 UNIVAC Il UTMOST ‘

DECIMAL ADD HIGHER - DAH

The decimal add higher instruction may be used with one word or two word operands. If a one word
operand is used, two AR’s are specified. If a two word operand is used, all four AR’s are specified.

1. If two AR’s are specified, add the contents of the storage location specified to the contents of
the more significant register specified and store the sum in the less significant register specified.

Example:
LABEL A OPERATION A OPERAND A)
—_— — —

(AR8) i = — 012345 (ARS8) f = — 012345
(AR4) i = + 789012 (AR4) f = + 975309
(800) i = + 987654 (800) f = + 987654

2. If four AR’s are specified, add the storage operand specified by m (the contents of m-1 and m)
to-the contents of AR’s 8 and 4 and store the sum in AR’s 2 and 1.

Example:
LABEL A OPERATION A OPERAND A }
_—e—e—e—e—— = — —

L 1 lDlAlH] 4]L51'1810111 L 1 1 1 1 L LJ L i1 1 1 1 1 l i 1 1 1 1 1 1 1 1 l lf

(AR8) i = + 333333 (AR8) f = + 333333

(AR4) i = + 999999 (AR4) f = + 999999

(AR2) i =+ 444444 (AR2) f = + 555556

(AR1)i=+ 111111 (AR1) f = + 000005

(800) i =+ 222222 (800) f =+ 222222

(801) i =+ 000006 (801) f =+ 000006

In both cases (one or two word operands) the Processor assumes that the operands are in decimal
format. In the operands, a decimal digit with a bit combination of 0000 will be treated as a decimal
zero.

2-B

SECTION:

26 ‘ ‘ UNIVAC Il UTMOST UP-3853

PAGE:

DECIMAL SUBTRACT HIGHER - DSH

If two AR’s are specified, subtract the contents of the storage location specified from the contents of the
more significant register specified and store the sum in the less significant register specified. If four
AR’s are specified, subtract the storage operand specified by m from the contents of AR’s 8 and 4 and
store the sum in AR’S 2 and 1. The Processor assumes that the operands are in decimal format. In the
operands, a decimal digit with a bit combination of 0000 will be treated as a decimal zero.

BINARY ADD H!GHER - BAH

If two AR’s are specified, add the contents of the storagelocation specified to the contents of the
more significant register specified and store the sum in the less significant register specified. If
four AR’s are specified, add the storage operand specified by m to the contents of AR’s 8 and 4 and
store the sum in AR’s 2 and 1. The Processor assumes that the operands are in binary format.

BINARY SUBTRACT HIGHER - BSH

If two AR’s are specified, subtract the contents of the storage location specified from the contents
of the more significant register specified and store the difference in the less significant register
specified. If four AR’s are specified, subtract the storage operand specified by m from the contents
of AR’s 8 and 4 and store the sum in AR’s 2 and 1. The Processor assumes that the operands are

in binary format.

3. Student Exercises
(1) Two quantities are stored in locations 800 and 801. Interchange the quantities.
(2) Quantity A is stored in locations 800 and 801, quantity B in locations 802 and 803,

and quantity C in 804 and 805. All quantities are in decimal format. Compute A + B
and store the sum in 806 and 807. Compute A + C and store the sum in 808 and 809.

UP-3853 UNIVAC Il UTMOST l

2-B

SECTION:

27

PAGE

E. MULTIPLICATION AND DIVISION

DECIMAL MULTIPLY - DM

Multiply the contents of the storage location specified by the contents of arithmetic register 8 to
produce a 12 digit product. Store the six most significant digits of the product in arithmetic register

4 and the six least significant digits in arithmetic register 2. Store the sign of the product in the sign
position of both arithmetic register 4 and arithmetic register 2. The Processor assumes that the
operands are in decimal format. In the operands, a decimal digit with a bit combination of 0000 will

be treated as such. It will not be treated as a decimal zero. The programmer has no choice as to which
arithmetic registers to use. Arithmetic register 8 is always used to hold the operand, and arithmetic
registers 4 and 2 to receive the product. As a consequence, in the UTMOST language, no AR portion

need be specified in the instruction.

Example:
LABEL A OPERATION A OPERAND A }
(AR8) i - . 000600 (AR8) f -+ 000600
(AR4) i - — 123456 (AR4) f - + 000002
(AR2)1 - - 987654 (AR2) f - + 400000
(800) i - + 004000 (800) f = + 004000

DECIMAL DIVIDE - DD

Divide a 12 digit dividend in arithmetic registers 8 and 4 by the contents of the storage location
specified to produce a six digit quotient in arithmetic register 4 and a remainder in arithmetic
register 8. The sign of the remainder will be the same as the sign of the contents of arithmetic
register 4 before instruction execution. The Processor assumes that the operands are in decimal
format. In the operands, a decimal digit with a bit combination of 0000 will be treated as such. The
programmer has no choice as to which arithmetic registers to use. As a consequence, in the UTMOST
language, no AR portion need be specified in the instruction.

Example:
LABEL A OPERATION A OPERAND A >
1 1 LDJ Dl laAglol I R B S S S 1 1 1 1 e J L L | i L i l 1 1 L 1 1 1 I 1 1 l
Ww
(AR8) i - - 060000 (AR8) f = — 100000
(AR4) i - - 010000 (AR4) f = — 300000

(800) i - 200000 (800) f ~ - 200000

2-B 28 ’ UNIVAC Il UTMOST UP-3853

SECTION: PAGE:

F. THE DECIMAL POINT

The Processor has been so designed that, in all arithmetic operations, the decimal point of each
operand is considered to be immediately to the left of the most significant digit of the operand.
Consequently, so far as the Processor is concerned, the value of all operands lies between plus

one and minus one, and are, consequently, fractional.

To represent quantities of greater or lesser magnitude than recognized by the Processor, the
programmer must mentally assign the decimal point to a position other than that fixed by the
Processor. This assumed decimal point is called the program decimal point, and in this manual,
is indicated by a carat. Thus, the programmer may mentally assign a decimal point to a one word
operand in decimal format as follows.

006000

To the programmer this operand is the quantity 60.00. However, to the Processor it is the quantity
.006000, and the Processor will treat it as such. Since the Processor ignores the program decimal
point, a record of program decimal points must be maintained by the programmer. The position of
the program decimal point in the results of an arithmetic operation can be determined by means of
the following rules:

1. Rule for Addition and Subtraction

In adding or subtracting quantities in the Processor, the program decimal points must be lined
up in both operands. The program decimal point in the result will be in the same position as in
the operands entering the addition ot subtraction.

Thus, the rule for handling the program decimal point in addition and subtraction is the same as
the rule for handling the decimal point in pencil and paper addition and subtraction.

Example:
PENCIL AND PAPER UNIVAC Il
$3600.05 360005
156.23 0156[23
Sum $3756.28 375628

2. Rule for Multiplication

The Processor multiplies one 6 digit operand by another 6 digit operand to produce a 12 digit
product. As with addition and subtraction, position of the program decimal point in the product
is determined the same way placing the decimal point in pencil and paper multiplication is
effected. The number of decimal places in the product is the sum of the decimal places in the

multiplier and the multiplicand.

Example:
PENCIL AND PAPER UNIVAC Il
2.46 000246
3.29 000329

8.0934 000000080934

UP-3853 UNIVAC 11l UTMOST 2-B

SECTION: PAGE:

3. Rule for Division

Let M be the number of digit positions that the program decimal point is to the right or left

of the Processor decimal point in the dividend. If the program decimal point is to the right of
the Processor decimal point, M is positive; if to the left, M is negative. Let N be the number
of digit positions that the program decimal point is to the right or left of the Processor decimal
point in the divisor. If the program decimal point is to the tight of the Processor decimal point
N, is positive; if to the left N is negative. Then M-N is the number of digit positions that the
program decimal point is to the right or left of the Processor decimal point in the quotient. If
the result of M-N is positive, the program decimal point is to the right of the Processor decimal
point in the quotient. If the result of M-N is negative the program decimal point is to the left

of the Processor decimal point in the quotient.

Example: Divide 000632497100 by 020000

To the Processor this problem appears as follows: Divide .000632497100 by .020000. Thus, the
Processor will come up with a quotient of .031624. In this case M is 5 and N is 2. Therefore,
M-N is 3 and the quotient with the program decimal point is 031624.

To determine the program decimal point of the remainder it is necessary to consider it as being
twelve digits, by adding 6 zeros to the left of the most significant digit position. Then the pro-
gram decimal point would be located in the same position as it was in the twelve digit dividend.

In the case of the above example, the Processor would come up with a remainder of .017100
whereas according to the above, the program decimal point would be 0000Q0017100. As an
example of how this may be used, assume that it is desired to verify the division, similar to
the paper and pencil method, then:

Quotient 031624
Divisor 020000
Partial Dividend m
Remainder 000040017100

Dividend 000632497100

G. NONZERO DIGITS

It is sometimes important for the programmer to determine the maximum number of nonzero digits
that may appear in the result of an arithmetic operation. The following rules are designed to make
this determination.

1. Addition or Subtraction

If two operands are added, or if one operand is subtracted from another, the maximum number of
nonzero digits in the sum or difference is one more than the number of nonzero digits in the
operand having the greater number of nonzero digits. In the following example, nonzero digits

are indicated by X’s.
0XXXX0

00XXX0
XXXXX0

2-B 30 UNIVAC Il UTMOST UP-3853
SECTION: PAGE:
2. Multiplication

The number of zeros before the first nonzero digit in the product is equal to the sum of the
number of zeros before the first nonzero digit in the multiplier, added to the number of zeros
before the first nonzero digit in the multiplicand. The maximum number of nonzero digits in
the product is equal to the sum of the number of nonzero digits in the multiplier, added to
the number of nonzero digits in the multiplicand. The remaining digits in the product are
Zeros.
Example: C = OXXX‘XX

D - 0XXX00

C x D - 00XXXXXXXX00
3. Division

If, in the values just prior to dividing, u is the number of zeros before the first nonzero digit
of the dividend and v is the number of zeros before the first nonzero digit of the divisor, then
there will be a minimum of u minus v minus 1 zeros before the first nonzero digit of the
quotient, All the other digits in the quotient may be nonzero. For example, given E and F.

E = OOXX‘XX

F - 0XXX00

E/F = XAXXXXX

sinceu -2 and v - 1

then u minus v minus 1 = 0
In this case, the remainder would have the same format as the divisor F:

0XXX00
Ifu —v — 1= —1 this indicates that the most significant X will be a zero.

H. CONSTANTS

A constant is any UNIVAC III word (or words) which is neither executed as an instruction nor
is a part of the data.

In solving a problem it is often necessary to use values that are not introduced with the data
but are essential to the successful execution of a program. These values are established and
written by the programmer at the time the program is written and, therefore, will be included
with the instructions. Then at the time that the instructions are read into the Processor the
constants necessary for the successful completion are also introduced.

Example:

Company X desires to give every employee a $100.00 bonus. The salary of each employee may
be read into the Processor as a part of the data or may have been computed during a payroll run.
Now the programmer desires to add $100.00 to this pay. He has at his disposal an ADD instruc-
tion to perform the addition but he does not have the value $100.00 as a part of the data. This
value may be established as a constant by writing it on the coding paper and assigning it to a

UP-3853

2-B

SECTION:

UNIVAC 11l UTMOST l

! PAGE:

o)

31

storage location that isnot being used for the data or instructions. Since the constant is to be
placed with the instructions but may not be executed as an instruction the following considera-
tion must be given. UNIVAC III is a sequential processor and when control for execution has
been given to the Processor it will continue to execute each instruction in sequence until some-
thing occurs to break this sequence. It is obvious that a constant may not be placed in direct
line with this execution. Therefore, constants may be listed after a break in sequence with no
fear of the control unit accessing them as instructions. Consideration must also be given by the
programmer to the format of the constant.

In UTMOST language, constants are written in the following way. As is the case with instruc-
tions, the address of the storage location in which the constant is to be stored is left justificd
on the line on which the constant is to be written. This address is followed by one or more
spaces. The next thing to appear on the line is a ““plus sign’’ or a ‘“‘minus sign’’. If the constunt
is to be positive, the ““plus sign’’ is used; if negative, the “‘minus sign’’. The sign may or ma:
not be followed by spaces at the programmer’s option. There then follows the absolute vilue o
the constant.

The programmer has the need to write three formats for constants: alphabetic, decimal and
binary. If it is desired to write a constant word in six bit aphabetic format, the constant is
written with characters and numbers and is surrounded by ‘‘apostrophes’’. In the Processor, vue
word holds four six bit characters. However, in UTMOST language it is not necessary to write
any more characters than is desired. The UTMOST Assembler will take the characters enclosed
in the ‘‘apostrophes”, right justify them in the word into which they are to be stored, and {il!
the rest of the word with six bit space symbols (binary code 000000). The following are som:
examples of the operation of the UTMOST Assembler on alphabetic constants.

LOCATION OF | UTMOST BINARY CODE ALPHABETIC
CONSTANT l LANGUAGE STORED REPRESENTATICHN
0 l + “ ABCD’ 0010100010101010110010111 ABCD
1 + " ABC’ 0000000010100010101010110 + VABC
2 ‘ —"Al’ 10000000000600010100000100 — A\ AL

If it is desired to write a constant in four bit decimal format, the constant is written with Co gl
numbers and is preceded by a ‘““‘colon’’. It is not necessary to write any more numbers thun is
desired. The UTMOST assembler will take the numbers between the colon and the first following
space, right justify them, and fill the rest of the word with four bit space symbols (binary cuode
0000). The following are some examples of the operation of the Assembler on decimal constants.

LOCATION OF UTMOST BINARY CODE DECIMAL
CONSTANT LANGUAGE STORED REPRESENTATION
0 + 1123456 0010001010110011110001001 + 123456

+ 123 0000000000000010001010110 AL
2 —: 14 1000000000000000001000111 ANV 14

32 ’ J UNIVAC III UTIMOST UP-3853

2-B
SECTION: PAGE:
If it is desired to write a constant in binary format, the programmer may write the number in
decimal or in octal. If written in decimal, it is written with decimal numbers alone. The most
significant number may not be a zero. If written in octal, it is written with octal numbers preceded
by a ‘‘zero’. In both cases it is not necessary to write any more numbers than is desired. The
binary equivalent of the numbers written will be right justified and preceded by binary zeros. The
following are some examples of the operation of the Assembler on binary constants.
LOCATION OF UTMOST BINARY
CONSTANT LANGUAGE CODE
0 + 017 0000000000000000000001111
1 + 07007 0000000000000111000000111
2 -9 1000000000000000000001001
3 + 1024 0000000000000010000000000
1. Example:
A dollar amount is stored in location 800 in format OXXAXXO. Add $25.74 to the amount.
a. Coding
LABEL A OPERATION A OPERAND A W
_---—-—-———— —— —— —— —
ol 1 1 1 1) I — lLlAl 1481'1810101 1 l 1 L do 1 I o4 1 1 l i | 1 1 1 1 Il 1 1 |
]lllllll DlAl 181'11A012|311 1AllLJllllllLlllLll
21 1 ¥ 1 1 L 1 lSlAL 1 181’1810101 1 l i i 1 L 1 1 Il 11 LI i 1 i 1 1 | 1 1 l

JlLllllll}LlllllllllLlllllllllllllllllll

2. Student Exercises

(1) If A has the form ,00XXXX, and B the form ,0XXXXX, what is the form of AB?

(2) If A has the form OXX)Q(X, and B the form XX)&XXO, what is the form of AB?
(3) If A has the form 000X XXXXXXXX, and B the form OOXX‘XX, what is the form of A= B?

(4) Three quantities of form + QQQQQQ are stored in locations 800, 801 and 802. Store the
18 digit product of the three quantities in locations 803, 804 and 805.

UP-3853

UNIVAC 11l UTMMOST

PAGE:

33

(5) Given the following:

DATA FORM LOCATION
Quantity A .0XX000 800
Quantity B A0XX000 801
Quantity C L0X X000 802
Quantity D ,0X X000 803

= AB

= AB
9C

= AB -D
9C

Quantity C has a value of .011

locations 804, 805 and 806.

(6)

or greater. Store quantities E, F and G, respectively, in

DATA FORM LOCATION
Income GGGGGGGGO0000 800, 801,
Number of PP,0000 802

Dependents
Deductions other 00AAAAAA0000 803, 804

than for Dependents

A deduction of $600 is allowed for each dependent. The tax is 20% of the taxable income.

Store the unrounded tax in form 0000TTTTTT,TT in locations 805 and 806.

I. Branching

In certain operations, the next instruction to be executed is dependent of the nature of the data
being processed. If, for example, a customer is to receive a discount only on orders of $10,000
or more, the billing procedure must consist of two different paths. One path bills the customer
with a discount, the other bills him without a discount. Decision of which path to take for a
particular customer depends on the amount of his order. The separation of the flow path of the
sequence of instruction execution is called branching. Choice of which branch of instructions to
take is determined by a logical decision. In this case, the logical decision is embodied in the
question: Is the customer’s order amount $10,000 or more? In the Processor, logical decisions
are made on the basis of comparisons.

SECTION:

2-B

34 UNIVAC 11l UTMOST UP-3853

PAGE:

o]

Comparisons

In the Processor, comparison is made between two operands. The results of a comparision is
reflected in the resulting condition of indicators. An indicator has two states: on and off.
There are three comparison indicators: high, low and equal. The first step in the execution

of a comparison instruction is to set all three indicators to off. The comparison between one
operand (in the arithmetic registers) and the other (in storage) is then made. If the two operands
are equal, the equal indicator is turned on. If the operand in the arithmetic unit is larger than
the operand in storage, the high indicator isturned on. If the operand in the arithmetic unit

is smaller, the low indicator is turned on. Once a comparison has been made, the indicators
remain in the state resulting from the comparison until one of the following occurs:

m Another comparison is made.

® An addition or subtraction is made. (A zero sum or difference turns the equal indicator on.
A nonzero sum or difference turns the equal indicator off.)

The Collation Sequence of Characters

There is no question about the meaning of the equal indicator being turned on as the result of
a comparison. Nor is the result ambiguous when the high or low indicator is turned on as the
result of comparing binary or decimal operands. However, some question may arise as to what
a high or low indicator may mean as a result of a comparison of alphabetic operands.

There is an arithmetic relation of relative magnitude with respect to numbers. Thus, two is
larger than one, three is larger than two, and so on. This relation is called the collation

sequence of numbers.

For purposes of comparing two alphabetic operands for relative magnitude, the Processor
recognizes a collation sequence of characters. This collation sequence is as follows. If the
characters are read off of Figure 2-18 by reading down the first column, then down the second,
then down the third, and finally down the fourth, the characters are being read from smallest
in magnitude to largest in magnitude. Thus, ‘“A’’ is larger than ‘3”’, ¢“Q’’ is larger than “‘K’’,
‘U’ is larger than *“ P, and so on.

2-B

SECTION: PAGE:

UP-3853 UNIVAC Il UTMOST l

3. Comparison Instructions

COMPARE - C
Compare the operand specified by AR with the operand specified by m and turn the appropriate indica-

tor on. This comparison takes into consideration the signs of the operands and is, consequently, an

algebraic comparison. This instruction allows the use of multiword operands.

Example:
\ LABEL A OPERATION A OPERAND A ?
I 1 Lcl 18‘,48‘0‘01 1 1 1 | L 1 ngl;l N y 1 1 L4 1 1 1 1 1 1 1 | 1 1 l l]
If: (AR8) = + AAAAAA
(800) = +666666

The high indicator is turned on.

If: (AR8) = + AAAAAA
(800) = — 666666

The high indicator is turned on.

If: (ARS) —AAAAAA

-666666

(800)

The low indicator is turned on.

2-B

SECTION: PAGE:

36 | ‘ UNIVAC Il UTMOST UP-3853

COMPARE MAGNITUDE - CM

Compare the operand specified by AR with the operand specified by m and turn the appropriate
indicator on. The signs of the operands are not taken into consideration, and consequently, this is
a comparison of absolute values. This instruction allows the use of multiword operands.

Examples:
LABEL A OPERATION A OPERAND A >
'& —— —— —
1 | lcl lsjﬂJjLOJOI 1 1 i A A e 1 L 1 l I A 1 i L 1 A . 1 1 _— 1 1 1 1 1 1 I J)

If: (AR8) = + AAAAAA
(800) = + 666666

The high indicator is turned on.

If: (AR8) = + AAAAAA

(800) ~-666666

The high indicator is turned on.

If: (AR8) = — AAAAAA

(800)

[}

- 666666
The high indicator is turned on.

COMPARE PRODUCT WITH A - CPA

If the operand specified by m has a one in every bit position where the operand specified by AR

has a one, the equal indicator is turned on., Otherwise, the high indicator is turned on. This instruc-
tion allows the use of multiword operands.

Examples:
\’
) LABEL A OPERATION A OPERAND A j
g — — \b
A A ICJPIAI 18l'l810101 i i i 1 1 LLl 4 L A 1 1 l | 1 yu l 1 i 1 1 1 ! 1 1 1 l lr
/\’\’_\N\—/\M/\/\'/\—\/\/\.—’Jl
If: (AR8) = 0100100000000000000000000
(800) = 0101100000000000000000000

The equal indicator is turned on.

If: (AR8) = 0100100000000000000000000
(800) = 01110000000000000000000000

The high indicator is turned on.

SECTION:

0p-3853 UNIVAC Il UTMOST |

COMPARE PRODUCT WITH ZERO - CPZ
If the operand specified by m has a zero in every bit position where the operand specified by AR has

a one, the equal indicator is turned on. Otherwise, the high indicator is turned on. This instruction
allows the use of multiword operands.

Examples:

LABEL A OPERATION A OPERAND A

If: (ARS8)

1101000000000000000000000
0000100000000000000000000

1

(800)

The equal indicator is turned on.

If: (ARS)

1101000000000000000000000
1100100000000000000000000

n

(800)

The high indicator is turned on.

4. Transfer of Control

The Processor normally executes instructions sequentially. That is, after the instruction in
storage location ¢ is executed, the processor normally executes the instruction in storage
location ¢ + I. To effect branching, this normal sequence must be broken. The sequence is
broken by means of a transfer of control instruction. For example, if the instruction in storage
location c is being executed, and this instruction is an unconditional transfer of control instruc-
tion, the next instruction to be executed is found, not in storage location ¢ + [, but in the storage
location specified in the m portion of the transfer of control instruction.

For brevity, transfer of control instructions are called jump instructions, since they “‘jump’’ the
Processor out of the normal sequence of instruction execution to a new sequence. Once the jump
has been effected, normal sequential execution of instructions resumes.

SECTION:

2-B

PAGE:

3] ‘ UNIVAC Il UTMOST

UP-3853

JUMP - J

The next instruction to be executed is to be found in the storage location specified by m.

Example:

LOCATION OF

INSTRUCTION INSTRUCTION
4 J 10

Normally, the next instruction would be found in storage location 5. Execution of the jump
instruction causes the next instruction to be found in storage location 10.

Notice that the jump instruction has no entry in the AR portion. Consequently, in the UTMOST
language no AR portion is written.

The jump instruction is an unconditional transfer of control. Control is transferred regardless of
any conditions present. As a result, it cannot be used for branching. The following instructions
are conditional transfers of control. They jump only if some specified condition is met. Conse-

quently, they, together with the comparison instructions, provide the means to effect branching.

JUMP EQUAL - JE

If the equal indicator is turned on, jump to m. That is, if the equal indicator is on, the next
instruction to be executed is to be found in the storage location specified by m. If the equal
indicator is off, normal sequential execution of instructions continues. In writing the instruction
in UTMOST language, no AR portion is specified.

JUMP GREATER - JG

If the high indicator is on, jump to m. In writing the instruction, no AR portion is specified.

JUMP LESS - JL

If the low indicator is on, jump to m. No AR portion is specified.

JUMP POSITIVE - JP

If the contents of the arithmetic register specified are positive, jump to m.

NO OPERATION - NOP

This instruction does nothing. The Processor just goes to the next storage location in sequence
to select the next instruction. Although, the NOP instruction involves neither AR or m, in the
UTMOST language it must have an m portion. For example:

NOP 0

Uses of the NOP instruction will become clear later in this manual.

UP-3853 UNIVAC Il UTMOST 2-B

SECTION: PAGE:
5. Example:
DATA FORM LOCATION
Account Number 0AAAAA 800
Delinquent Account 0DDDDD 801

Number

If the account number is equal to the delinquent account number, jump to storage loca-
tion 100. If not, jump to location 200.

a. Logical Analysis

1. Is the account number equal to the delinquent account number?

U S 'Y T W Bl

la. No 1b. Yes.
2. Jump to 200. 2. Jump to 100.
b. Coding
\
, LABEL A OPERATION A OPERAND A COMMENTS)
ENT ?
0 ., ,,, ,t,A 8,800 1S THE ACCOUNT NUMBER EQUAL TO THE DELINQUEN
.., ,¢ . 8,801 , , ACCOUNT NUMBER? | \ |l 4 vttt b)
2, LE A‘IOAOA L njxuanpn lTloA I]lolok I W SN ST SN NN TAE U NN S0 WO WU SN0 ST WS Wl N NV NS ST SN S S WA G U ST S
3 Jl 1 1 l Azlolol 1 1 i lJlUlMIP To 1210101 l 1 1 1 L 1 i 1 1 1 [1 1 1 1 L I Il I i l 1 l 1 1 1 F U S { i &.4.:_>

/_\W\/\,—\/—\A/_a——_/_/__‘/\,q, N‘_/ﬁ«/\’/_ﬂ/&v’““*&

6. Student Exercises

(1) If the absolute value of the contents of storage location 800 are less than the absolute
value of the contents of location 801, add the contents of 802 to the contents of 803 and
jump to 100. Otherwise, subtract the contents of 804 from the contents of 803 and ump
to 200.

(2) lf bit positions 12, 14 and 16 of the contents of storage location 800 are ones and bit
positions 8, 9 and 10 are zeros, add the contents of location 801 to the contents of 802,
store the sum in 803, and jump to 100. Otherwise, subtract the contents of 802 from the
contents of 801, store the difference in 804, and jump to 200.

(3) DATA | FORM LOCATION
Pay PPPEPP 800
Deduction 00DDDD | 801

If the deduction will not reduce the pay below $15.00, make the deduction. Otherwise,
store the deduction in storage location 802. In any case, store the pay to be received
by the employee in location 803. When finished, jump to location 100.

UP-3853 UNIVAC Il UTMOST 2-C

SECTION: PAGE:

2C.INTRODUCTION TO FLOWCHARTING

The subject of flowcharting may be best presented by means of example.

Example:
DATA FORM LOCATION
Days of Medical Absence AA‘OOOO 800
Remaining Days of Medical Leave LL,0000 801
Hourly Rate of Pay R, RR000 802

Update the medical leave and store the medical pay in form PPPPiPP in storage location 803,
Then jump to location 100,

The first step in the solution of the above programming exetcise is to make a logical analysis of
the problem. The logical analysis might take the following form.

1. Is medical absence equal to zero?

la. No. 1b. Yes.
2. Is medical leave equal to zero?

2a. No. 2b. Yes.

3. Is medical leave greater than medical absence?

3a. No. 3b. Yes.

4. Store medical leave in storage. 4. Store medical absence in storage.

5. Store zero in medical leave. 5. Reduce medical leave by medical absence.

6. Multiply storage by eight.
7. Multiply product by rate.

8. Store product in pay. 8. Store zero in pay.

9. Jump to 100.

SECTION:

2-C 2 UNIVAC Il UTMOST UP-3853

While correct, the above analysis is bulky and unwieldy. Consequently, when developing a logical
analysis, the programmer uses a different form of notation called flowcharting, and the form which
his logical analysis takes in this notation is known as a flowchart.

Flowcharts differ from logical analyses in several respects. For one thing, the steps in a flowchart
are typically shown in boxes, and arrows are used to indicate the sequence of steps. For example,
the above logical analysis would be modified to look like the flowchart in Figure 2-21.

Notice that on those boxes in Figure 2-21 which have more than one arrow emerging from the box, the
condition under which each path is taken is indicated on the arrow symbolizing the path. For example,
the second box in Figure 2-21 represents a logical decision and has two paths emerging from it, one
to be taken if the condition being tested for is met, and the other to be taken when the condition is
not met. The two paths are labelled appropriately.

Programmers further reduce the bulkiness of their flowcharts by using symbols to represent fields,
operations and conditions. Thus, the medical absence field might be represented by an ‘“A?’’, the
medical leave field by an “L’’, the pay rate by an ““R’’, storage by an ““S’’, and the pay by a ““‘P’’.
Many algebraic symbols are borrowed from mathematics to represent operations and conditions. Thus.
¢, represents addition, ‘¢ —?’ subtraction, ““x ?’ multiplication, ¢ +?’ division, ““=’’ equal to, ““#?
not egual to, ‘=" greater than, ‘- 7’ less than, ‘* > ’’ greater than or equal to, and ‘<’ less than

or equal to. The operation of storing one field in another field (such as storing the medical absence

in storage) is represented by an arrow. For example, the operation ‘‘store medical absence in storage’’
would be represented as:

A—S§

An arrow is also used to fill out an arithmetic operation. For example, the operation ‘‘reduce medical
leave by medical absence’” would be represented as:

L-A—L

Where the arrow indicates that the new ‘L'’ is constituted by the difference between ¢‘A’? subtracted
from the old ¢‘L'".

The operation of comparing one field with another is represented by a colon. For example, the opera-
tion ‘“is medical leave greater than medical absence’’ is a comparison of medical leave and medical
absence. Consequently, it would be represented as:

By convention, logical decisions are shown on flowcharts in the form of diamonds rather than rec-
tangles. Such a ““logical decision box’’ always has at least two arrows emerging from it, each arrow
being marked by the condition that must hold for the path to be taken.

UNIVAC Ill UTMOST |

UP-3853 2-C
SECTION: PAGE:
START
IS MEDICAL ABSENCE
YES
EQUAL TO ZERO?
NO
| <
IS MEDICAL LEAVE | yco STORE ZERO
EQUAL TO ZERO? IN PAY.
NO
Y
IS MEDICAL LEAVE VES STORE MEDICAL REDUCE MEDICAL
GREATER THAN > ABSENCE IN LEAVE BY
MEDICAL ABSENCE? STORAGE. MEDICAL ABSENCE.
NO
STORE MEDICAL STORE ZERO
> LEAVE IN IN MEDICAL
STORAGE. LEAVE.
J ' y
MULTIPLY STORAGE MULTIPLY PRODUCT STORE PRODUCT
~> JUMP TO 100.

BY EIGHT.

BY RATE.

IN PAY,

Figure 2-21.

Flowchart Incorporating Boxes and Arrows.

SECTION:

.] 1 UNIVAC Il UTMOST

UP-3853

Adopting the conventions described above, the flowchart shown in Figure 2-21 would be modified to
look like the flowchart in Figure 2-22.

Notice that the latter flowchart contains a legend which defines the arbitrary symbols used in the
flowchart. Such a legend is always necessary in order to make a flow chart incorporating symbols
legible.

To make their flowcharts even more compact, programmers make use of a special symbol, called a
connector, to eliminate the long arrows that otherwise crisscross the flowchart to show the logical
line of flow. A connector is a numbered circle. When, in a flowchart, an arrow leads to a connector,
the next operation in the logical line of flow follows the arrow leading out of the connector con-
taining the same number. Using connectors, the flowchart shown in Figure 2-22 would be modified to
look like that in Figure 2-23.

Notice that, to distinguish between different connectors, different numbers are used. Notice also that
a connector containing a given number and having an arrow leading into it can appear in a flowchart
as many times as is necessary, but to avoid ambiguity, only one connector containing the number and
having an arrow leading out of it can appear,

JUMP TO
100

START

')

> L - A=—>L — 8RS—>P

IN

LEGEND

L=—S$S > O=—»L

A - medical absence

L - medical leave

R - pay rate
P - pay
S ~ storage

Figure 2-22. Flowchart Incorporating Symbols

UP-3853 UNIVAC Il UTMOST 2-C

SECTION: PAGE:

In the flowchart in Figure 2-23, the ‘“START’’ legend is shown in an oval. This is conventional,

‘ — o 0

—> L - AL "@-’ 8RS—»P -’@

> L= § O—>L —»@
LEGEND

A - medical absence

L - medical leave

R - pay rate
P - pay
S - storage

Figure 2-23. Flowchart Incorporating Connectors

Figure 2-23 shows the flowchart as a programmer might have originally produced it. Programmers and
installations vary as to the style of flowchart produced. Any cross between the flowchart shown in
Figure 2-23 and the one shown in Figure 2-21 is possible,

The coding for the above exercise is shown on the following page.

6 ‘ ’ UNIVAC Il UTMOST 0p-3853

2-C
SECTION: PAGE:
. LABEL A OPERATION A OPERAND Aj
011n11L1A4|181'|810101111A|:|011llLL|1‘|||| TR R SRR SRR

]1) S 1C1 ! 1481'|]|0A2131 T Y l | Y WS W E SN T U U | 1 | SR U T N S N T T | l 1
24) lJlEl L | []J9l PR SR W SO R NS N SR WO S S 1 11 1 l | WSSO S U WS S W W W | l Il
31 1 1 1 lLlAl L lslllalol]l | lLl: lol L1 i 1 1 1 1 1| l 11 L 1 1 § U l lk
41 i 1 | 1c1 i 1 18l' 111012131 y R S W l N S T . | I\ I\ [l Ll 1 | § RN W N S| 17
5L1 |- 1J1E1 11 I 11191 PR S S VA NS N S T S N | Y N S | | | SR WS W SO TN S N N | l 1}

|
C_

61 l 1 1 lcl) le’lslolol 1 1 lL: Al 1
11161

—

llllllJLll llllll[llll¢llllllllllllll

l4|'|]1012131 0-.-1- -, L 1
9 S A 41’1810111

d A l L Aol A L

-
-
-
—
-
-

S

—
S

]OLI L 1D1M1 o 1810121 L1 18;RASI'1'1’1P1 R S U S | l A T GRS NN WA WO TUN S
1 S, A 4,,1.022,

-
-
-
-
-
-
-
-
-
-
-
-
-
—
-
-

-
-
-
-
-
-
-
-
-
b

12 LA 8;,,1,02 2
3 3 oM 02y by e b
4, (SA L 4.,803 e
5 v vy ty00, ,, TO0, (1,00, L L
6 , , , (DS H, 1”21:1810101 1 1L1'LA1'L'1'1L| T SR Y N 0 YA W SO T S SO N W
17, (LA, 8,800, A [0Sy e b

-

—

—

0 iy A Ay B Ay

—

8 3 o b e b o by g
19 e LLlAl L ISIIA‘L042L3LI nol‘l'l‘xpl AT W VT U SN U U AR S SN S SN AT SN N
2q | lSlTI 118|'1810131 R T BN B R SR N R NN VO W NN S T W N

:-_/'\.J

SN

2y 4 4oy b ooy 040 10 (1,050, oy o b

U SN U S S VO TS WY S N YA NN S S N NN WY G B (AT WS NN SO N NN N G S A B SRR NS SR O
o S S W WA NN W T SR WA AN Y S S S SO SN SN SN SN SN SN S SN SO HUNY S SN S S A W SO S WY N N U M O
1 1 | 1 1 1 1 1 L I 1 1| 11 1 A 1 1 l 1 1 S 1 d 1 1 l 1 1 1 1 1] 1 1 1 l:)
.ILOJ 2111 1 8 OLOIOJOIO 1 1 I 1 1 1 [1 i I 1 d i1 1 1 1 l 1 1 1 1 L 1 L 1 i l l/
11012121 1+Iol 11 1 [SR S WU NS W U I I i WS N W NN SN T W T | l

-

= &

%023 ,4:000000, \ vyl e b

|
L

Up-3853 UNIVAC Il UTMOST ’

.
SECTION:

PAGE:

A. EXAMPLE

DATA FORM LOCATION
YTD FICA Earnings EEEE‘EE 880
YTD FICA Tax oTTT, 7T 881
Current Pay ppppApp 882

Update the year to date FICA earnings and tax, and store the current FICA tax in form OOCC,CC

in location 883, Then jump to 500.

B. FLOWCHART

()

-

START »< 4800 : E o0—C
£
E+ P=»E - 03625P—C | T+C—T
> 4800 —E > 144 — T=—C — 144 =T

-

LEGEND

E-YTD FICA earnings
T-YTD FICA tax

P — current pay

C - current tax

2-C ‘ ‘ UNIVAC Il UTMOST y~ e
sECTION: PAGE
C. CODING
! LABEL A OPERATION A OPERAND A ‘>
_——8 88— ——————— e
0, , , , JL,A, , ,8¢,1,0,2,3, , ,4,8,040 | 4 L | ,t
., ¢, 8,,880 1 Lew L 1.)
2 ., JE | ;1,8 L |, | - L i lk
3, , , 4, ,DS,H 12,880 , 4,800] L L | 1]
4, , , , ,C ., 4),,882 6 | | L — LJ/
5., ., 36 WY T 1 1)
6, , , , LA |, 4y,,1,022 1 44---T i L L | :g
7, ,,, /,DSH 6/.,881 , 1,44 [L | /
8 ,, , ,SA 12,881 |, [Ly L | |[
o . JSA L 020,883 1 L L 1,)
%, ,, .4 , , , |, 500 TO 500 | Ly Ly le
" , ,, LA , 8,882 .03625FP-- [L 0 | J\
2, , ,, ,bM ., . ,1,0021 |, | Ly L | ./
13, , , , SA, |, 4].,883 ., , , , |, | L 4 | 1\
14, , , LA 12,881 +Pl-- - EB; T+C--- T L | /
15 , , , DA , ,1]2,,,8,8,3, |, , | |, | Ly L | ,\
16 |, lSlAl . |]l21’18181]1 L 1, | Ly L ka
7 0 0 0 145490 | 1 | L1 L | 1(
% , , , LA 8,1020 ,0--)-€ | P L1 | l)
9 , , , ,SA , 8, 883 = {, L L L []/
2 . ., . Jd . .. 1,500 , ,TO 500 Ui p/
Lo v by | 11 | L L Il)
PR S SO S NN NS Y S0 YO N S S S SN Y M N |41 | L1 [ll(
el Y
1,020, ,+:,0,00)000, , , , ., |, 1 L L | ,&
1021 1+|:10|316J215101 Dy |, | L - | /
1,0 2 2 01 4400 | ., | Ly L 1 b
1023l 480100011 | { lJ’)
/\/\/\/\/\f\/’\.—W

UP-3853 UNIVAC Il UTMOST l

2-C
SECTION: PAGE:
D. STUDENT EXERCISES
1.
DATA FORM LOCATION
Quantity A + AAAAAA‘ 880
Quantity B +BBBBBB, 881
Quantity C tCcccee, 882
Store the smallest of the three quantities in storage location 883. Then jump to location
500.
2.

DATA FORM LOCATION
Badge Number NNNNNN 880
Bond Deduction OODD‘DD 881
Cumulative Bond Deduction OCCC‘CC 882
Bond Price OF’PP‘PP 883

Update the cumulative bond deduction, and if a bond can be purchased, store the badge

number in storage location 844 and the bond price in location 885. Then jump to 500

SECTION: PAGE:

UP-3853 UNIVAC IIl UTMOST I

3. EDITING

Fields of data fed into the Processor through the input units and put out by the Processor through
output units may vary widely in form and content. A word may contain more than one field of
information. To operate on one of these fields it may be necessary to isolate it from the other
fields in a word. Two fields to be added together may not have their program decimal points lined
up. To add the two fields it is then necessary to shift one or both of the fields to iine up the
decimal points prior to addition. Such field manipulation is acéomplished through the use of editing
instructions.

A. SHIFT INSTRUCTIONS

DECIMAL SHIFT RIGHT - DSR

Shift right the contents of the arithmetic register(s) specified the number of digit positions specified
in m. Signs are not shifted. Digits shifted outside the register(s)’ capacity are dropped. Decimal
zeros are inserted in the vacated digit positions. The contents of one or two arithmetic registers
may be shifted.

Example:
LABEL A OPERATION A OPERAND A (
_
L 1 1 lDlS IRAJ_~I81’ 121 1 1 1 | 1 1 1 i l 1 1 I A J 1 i i l 1 1 1 1 1 1 1 1 L l l(

(AR8) i = + 123456 (ARS8) f = + 001234

DECIMAL SHIFT LEFT - DSL

Shift left the contents of the arithmetic register(s) specified the number of digit positions specified
in m. Signs are not shifted. Digits shifted outside the register(s)’ capacity are dropped. Decimal zeros
are inserted in the vacated digit positions. The contents of one or two arithmetic registers may be

shifted.
Example:
LABEL A OPERATION A OPERAND
| —————— m—
1 i\ 1 lDlS‘LAJ._lal' 121 L i A 1 § W S l i 1 1 1 1 L i1 It l - 1 1 1 1 | 1

(AR8B) i = + 123456 (AR8) f = + 345600

l ‘ UNIVAC IIl UTMOST UP-3853

IECTION: PAGE:

The decimal shift instructions treat operands in four bit groups. In four bits, sixteen different codes
can be represented, as follows.
CODE DECIMAL DIGIT

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

O 00~ O bW~ O

As indicated above, ten of these codes represent the ten decimal coefficients in excess three code.
These ten codes retain their integrity during a decimal shift. The other six, however, change their
nature as follows.

BEFORE AFTER
0000 0011
0001 0011
0010 0011
1101 0011
1110 0100
1111 0101 *

Also, those three codes with an asterisk produce an arithmetic carry into the digit position to the
left when the shift is performed.

ALPHANUMERIC SHIFT RIGHT - ASR

Shift right the contents of the arithmetic register(s) specified the number of characters specified in
m. Signs are not shifted. Characters shifted outside the register(s)’ capacity are dropped. ‘“‘Space”’
characters are inserted in the vacated digit positions. The contents of one or two arithmetic
registers may be shifted.

Example:

. LABEL A OPERATION A OPERAND A f

E================= =
I 1 J;JAIS lR_‘glal' 12I Il i [) N S | . l Il Il 11 1 1 | i 1 l I | 1 1 1 1 i ! 1 l {

L~ T T ————]
(AR8)i = + ABCD (AR8) f = + AAAB

UP-3853 UNIVAC 11l UTMOST]

SECTION: PAGE:

ALPHANUMERIC SHIFT LEFT - ASL

Shift left the contents of the arithmetic register(s) specified the number of characters specified in m
Signs are not shifted. Characters shifted outside the register(s)’ capacity are dropped. ‘“Space’’
characters are inserted in the vacated digit positions. The contents of one or two arithmetic registers
may be shifted.

Example:
" LABEL A OPERATION A OPERAND A 2
| —————— =

BINARY ROTATE RIGHT - BRR

Shift right the contents of the arithmetic register specified the number of bits specified in m. The sign
is shifted. Bits shifted beyond the right band of the registers capacity ‘‘circulate’’ and are reinserted
at the left. The contents of a maximum of one arithmetic register may be shifted.

Example:
\
LABEL A OPERATION A OPERAND A

(ARS8) i

1111111111000000000000000

(ARS8) f = 0000001111111111000000000

1

In the case of any shift instruction, if the number of positions to be shifted, which is specified in m,
exceeds the number of positions in the operand, the result of the shift is unpredictable and useless.
An example of such a useless instruction would be ASR 12, 9 instruction.

UNIVAC Il UTMOST

PAGE:

|

UP-3853

B. LOGICAL OPERATION INSTRUCTIONS

AND

For every bit position containing a zero in the operand specified by m place a zero in the correspond-

ing bit position of the operand specified by AR. Multiword operands may be used. All 25 bit positions
are examined.

Example:

LABEL A OPERATION

OPERAND

—

A JAINIDAL 18111810101 Al L I 1 i

=

(AR8)1i=0111111111111110000000000

(800) i = 0000000011111110000011111
(AR8) f = 0000000011111110000000000
(800) f = 0000000011111110000011111

OR

For every bit position containing a one in the operand specified by m place a one in the
corresponding bit position of the operand specified by AR. Multiword operands may be used.
All 25 bit positions are examined.

Example:

LABEL A OPERATION

OPERAND

1 1 1 10LR1_1£UL810|0| B R G SO S |

(AR8) 1 =0111111111111110000000000

(800) i 0000000011111110000011111
(AR8)f-0111111111111110000011111

(800) f

0000000011111110000011111

SECTION: PAGE:

0P-3853 UNIVAC Il UTMOST ‘

C. INDIRECT ADDRESSING

With the exception of the NOP instruction, all instructions introduced thus far in this manual
have a meaningful m portion. In all these latter cases m has been defined as being used to
specify either the location of an operand, as in the case of the LA instruction, or a shift count,
as in the DSR instruction. This holds true as long as the contents of bit 25 of the instruction
(the indirect address bit) contains a zero. If bit position 25 of the instruction contains a one
instead of a zero, then m specifies, not an operand location or a shift count, but an address at
which the operand location or shift count can be found. Thus, the instruction addresses the
operand not directly, but indirectly. In this case the contents of the storage location specified
by m is called the indirect address control word.

The format of the indirect address control word is as follows.

1. Bits 1-15, the | portion, contain a 15 bit address which corresponds to the m portion of an
instruction without indirect addressing. Thus, it becomes the operand address or shift count.
Notice that, since the | portion of the indirect address control word consists of 15 bits, indirect
addressing provides one means of addressing any location in the store. A more general method
of such addressing will be described later in this manual.

2. Bits 16-20 always contain binary zeros.

3. Bits 21-24 perform a function similar to that which these same bits perform in an instruction
word. This function will be discussed later in this manual.

4. Bit 25 is the indirect address bit just as it is in an instruction word. Thus, if bit 25 is a zero,
then | is an operand address or shift count. If bit 25 is one, then | also is an address at which
the operand address or shift count can be found. This ‘‘cascading’’ of indirect addresses can
be carried as far as the programmer desires.

In UTMOST language, an instruction that is to use indirect addressing is indicated by placing an
asterisk immediately before the m portion of the instruction. An indirect address control word is
written like a constant, that is, a plus or minus sign followed by the 1 portion of the indirect
address control word. If | is preceded by a plus, then | is the operand address or shift count. If |
is preceded by a minus then | also is an indirect address, and cascading results.

Example-
LABEL A OPERATION A OPERAND A e
_ m— — A
(16) = + 800
(AR8) i = + 123456 (AR8) f = + 987654
(800) 1 = + 987654 (800) f - + 987654

Indirect addressing may be used with any instruction in which the m portion of the instruction is
significant.

SECTION:

PAGE:

6 UNIVAC 11l UTMOST

UP-3853

FIELD SELECTION

The mechanism used to achieve indirect addressing is also used to achieve the operation of
field selection. That is, if field selection is to occur during instruction execution, then bit

25 of the instruction word is to be a one. In UTMOST language, this means that the m portion

of the instruction is to be preceded by an asterisk. Whether field selection or indirect addressing
is to result is determined by the word found in the m address. If bits 16-20 of this word are
binary zeros, then indirect addressing is to result. If any of these bits is a one, then field
selection is to result. In this latter case, the word is referred to as a field select control word.

Like an indirect address control word, a field select control word contains the address of the
operand. However, a field select control word also specifies certain bits within the operand
specified by 1. The function of field selection is to allow the Processor to operate on only those
bits of the operand specified by the field select control word.

A field select control word has the following format.

1. Bits 1-10, the 1 portion, contain a 10 bit address which corresponds to the m portion of an
instruction without indirect addressing. Thus, it becomes the operand address.

2. Bits 11-15 specify in XS3 code the rightmost bit within the operand that the instruction is
to operate on.

3. Bits 16-20 specify in XS3 code the leftmost bit within the operand that the instruction is
to operate on.

4. Bits 21-24 perform a function similar to that which these same bits perform in an instruction
word or indirect address control word. This function will be discussed later in this manual.

5. Bit 25 must contain a zero.

In UTMOST language, a field select control word is written in the following way:

where:

m e, is theleftmost bit to be operated on and is written as a decimal number representing the
number of the bit desired.

m e, is the rightmost bit to be operated on, and is written as a decimal number representing
the number of the bit desired.

m e, is the |l operand address, and is written in the usual way. In writing a field select control

word, the programmer may optionally insert one or more spaces after the plus sign and each
of the commas.

Bit positions outside those bits specified in the field select control word are considered as
containing binary zeros. Moreover, sign bits cannot be included in a field select operation. Thus,
all operands field selected become positive when operated on.

UP-3853 UNIVAC Il UTMOST ‘

SECTION: PAGE:

LABEL A OPERATION A OPERAND A }

(16) = + 18, 7, 800
(AR8) i = — ABCD (AR8) f = + AXYA

(800)i = - WXYZ (800) £
Example.

- WXYZ

LABEL A OPERATION A OPERAND \7

(AR8)1i = — ABCD (AR8) f = — AXYA
(800)i = WXYZ (16) -+ 18, 7, 800

Note in the second example that the field selected operand comes from the store with a

positive sign. The operation of the LAN instruction then changes this sign to minus. L AN
with FS always produces a negative quantity.

Field selection has meaning when an operand is to be selected from the store to be operated
on. Thus, field selection is not pertinent with respect to shift instructions, jump instructions,
and store arithmetic register instructions. Also, it is not possible to use field selection with
the multiply or divide instruction. Operation of field selection with respect to the load
arithmetic register instructions is exemplified in the above illustrations.

When field selection is used with addition or subtraction instructions, the field selection

occurs on the operand as it comes from the store. No field selection occurs on the operand
coming from the arithmetic register(s).

Example:

LABEL A OPERATION A

OPERAND \ Z

(16) =+ 20, 5, 800
(AR8) i = + 123456 (ARS8) f = + 223446

(800) i = — 999999 (800) f = — 999999

] l UNIVAC Il UTMOST UP-3853

SECTION: PAGE:

With respect to comparison instructions, field selection operates on both the operand from the
store and the operand from the arithmetic registers. Also, with the C instruction, the sign of
the AR operand also enters the comparison. Execution of all other comparison instructions

with field selection ignores the sign bit.

LABEL A OPERATION A OPERAND A }
| —— — 1
(16) =+ 18, 7, 800

(ARB) = + ABCD

(800) =~ YBCZ

After instruction execution, the equal indicator is turned on.

Example:

1 LABEL A OPERATION A OPERAND A %

| e —— =
(16) =+ 18, 7, 800

(AR8) = - ABCD

(800) = -~ YBCZ
After instruction execution, the low indicator is turned on.

The logical instructions, AND and OR, use field selection in a similar way in that only the
portion of the AR operand specified by the field selection is affected by instruction execution.

SECTION:

UP-3853 UNIVAC Il UTMOST !

Example:

LABEL A OPERATION A OPERAND \ K

(16) =+ 21, 11, 800

!

(AR8) i =0111111111111110001100000
(800) i = 0000000011111110000011111
(ARS8) f

It

0111000011111110001100000
(800) f

H

0000000011111110000011111

When field selection is used with multiword operands, the rightmost bit of the field selected
is to be found in the least significant word of the operand, the leftmost bit in the most
significant word of the operand.

Example:

LABEL A OPERATION A OPERAND \

I
Il
i

LA, ,1.2,1*16,

Al|lJLllllJl#llllllllllllllJ‘

(16) =+ 18,7, 801
(AR8)i = - ABCD (AR8) f = + ATUV
(AR4)i = - EFGH (AR4) f = + WXYA\
(800)i = - STUV (800) f = - STUV
(801)i = - WXYZ (801) f = - WXYZ

SECTION:

10

PAGE:

i l UNIVAC Il UTMOST UP-3853

E. THE LOAD FIELD INSTRUCTION

LOAD FIELD - LF

The LF instruction is similar to the L A instruction in that it causes the operand specified by m to
be loaded into the arithmetic register(s) specified. Multiword operands and indirect addressing may
be used with the LF instruction. The LF instruction differs from the LA instruction in the way it
operates when field selection is specified. With the LA instruction, arithmetic register bit positions
outside the field specified are set to zero. With the LF instruction, the contents of the arithmetic
register bit positions outside of the field specified are undisturbed.

Example:

LABEL A OPERATION A OPERAND A j

(16) v 18, 7, 800
(AR8)1 - - ABCD (AR8) f - AXYD
(800)i1 =+ WXYZ (800) £ -+ WXYZ

If the LF instruction is used without field selection, it operates in the same manner as the LA
instruction except that the sign of the arithmetic register(s) is undisturbed.

Example:

LABEL A OPERATION A OPERAND A 2

I

L F 8,8|00 | | l‘(
J W R W W TN W N SR | | R Y WY SO S SR S S L1 4+ 1 1 4 1 1 L1111 1 1 1 3

(AR8)1i1 = - ABCD (AR8) f = - WXYZ

(800)i =+ WXYZ (800) f - + WXYZ

UP-3853 UNIVVAC Il UTMOST

SECTION:

PAGE:

11

F. EXAMPLE

Given:
LOCATION FORM
880 NNNNNN
881 OLLLLL,
882 LLMMMM
883 MMMVVV
884 VVVVPP
885 PPPEPP
where:
N is a job number
L is the cost of labor for the job
M is the material cost for the job
V is the overhead cost
P is the price the job is contracted for

Create the following

LOCATION FORM
886 NNNNNN
887 AAAAAA,
888 AA0000

where:
is the job number

A is the profit for the job

When done, jump to storage location 500.

SECTION:

PAGE:

12

UNIVAC Il UTMOST

UP-3853

G. FLOWCHART

LEGEN

IN —
ON _
P

> <
|

D

the
the
the
the
the
the
the

IN =—ON

input job number

output job number

contract price

overhead cost

material cost

labor cost

profit

> P_V_-M-L—-A

TO 500

UP-3853 UNIVAC Il UTMOST

SECTION: PAGE:

H. CODING

. LABEL A OPERATION A OPERAND \ }
e -
o . LA 8, ., 880 ‘ l dN-=--O0ON =)
T S A 8, 88 6)
2, kA V2, *1023 L e e e | 1}
3, o sy Y2 R] (
4 DS oy v2., V0422 Ly }
5, ., ,,0s8L | vz ., YL L ‘X
6, 2SS 2. 10120 Jl/
7, s v 2y e b]
8, ., , ,bs o 12, *1020 T

'\ i 1 4 | i1
110121]1 | 1+1 T 1]161’]L3A'18[8131 T S S | 11L1 NS S R
‘1012121 1 1+1 [1]121' 9’1818141 SRR AR SN S S S R |
10 23 + 8 ,1,885
157 I R Lt SIS S SR U S A S S S A S S R

UP-3853 UNIVAC 11l UTMOST '

SECTION: PAGE:

4. INDEX REGISTERS

The user has the option of obtaining his Processor with either 9 or 15 index registers. Index
registers are identified by number. Thus, there is X1, X2, X3, and so on, up through X15, where
““X’’ is a commonly used abbreviation for ‘‘index register’’.

An index register has the capacity to store 16 bits, although for most purposes only the least
significant 15 bits have meaning. Bit positions in an index register are numbered from right to
left as 1 through 16. An index register has no sign bit position. The contents of an index register
are always considered to be a positive binary number.

An instruction, indirect address control word, and field select control word address index
registers by means of bit positions 21-24. The number of the index register to be addressed is
represented in pure binary in these bit positions.

In UTMOST language an index register is addressed by placing a comma after the m portion of an
instruction (or | portion of an indirect address control word or field select control word) and
following the comma by the number of the index register to be addressed. This number is written
in decimal. The programmer may optionally leave one or more spaces between the comma and the
index register specification.

Index registers have the following function. When an instruction is to be executed, the contents
of the index register specified are added to the m portion of the instruction. The sum of this
addition is the address of the operand (or shift count), and is commonly referred to as m’ (m prime).

Example:
LABEL A OPERATION A OPERAND \
llLlLlAl‘LgL'l6lll]llelllltLllllll\)lll]ll\l\l[J_\
(X15) = 10000*
(AR8)i -+ ABCD (AR8) f = - WXYZ
(10006) i1 - - WXYZ (10006) 1 = - WXYZ

If binary zeros are placed in the index register portion of an instruction, no indexing results. In
UTMOST language, binary zeros in the index register portion of an instruction is indicated by not
specifying an index register in the instruction. Thus, all instructions shown thus far in this manual
(with the exception of the one in the last example) do not call for indexing.

Manipulation of the contents of index registers is achieved by means of the following instructions,
which specify the index register whose contents is to be manipulated in the AR portion of the
instruction.

x
Although written here in decimal for ease of presentation, the contents of index register 15 would actually be the binary
equivalent of a decimal! 10,000.

SECTION:

PAGE:

l | UNIVAC 11l UTMOST UP-3853

LOAD INDEX REGISTER - LX

Load the contents of bits one through 15 of the storage location specified by m’ in the index register
specified in AR. Multiword operands are meaningless with this instruction. Indirect addressing may
be used. However, field selection is not allowed.

Example:
LABEL A OPERATION A OPERAND A e
..1IL.X.J\SL'L‘*B}"Uuull1..“,..141..“.“11
WMI
(X15)i = 15000* (X15) f = 20000%
(800) 1 = 20000%* (800) f - 20000*

STORE INDEX REGISTER - $X

Store the contents of the index register specified by AR in bits one through 16 of the storage location
specified by m’. Store binary zeros in the other bit positions of location m’. Actually, bit position 16
of the index register will always contain a zero. Consequently, this instruction could be defined as
follows.

Store the contents of bits one through 15 of the index register specified by AR in bits one through
15 of the storage location specified by m’. Store binary zeros in the other bit positions of storage
location m-’.

Multiword operands and field selection are meaningless with this instruction. Indirect addressing may
be used.

Example:
LABEL A OPERATION A OPERAND A
—_— — — —
(X15) i = 15000* (X15) f = 15000%*
(800) i = 20000* (800) f = 15000*

If a Processor is equipped with nine index registers and index register 10 through 15 is
specified in the AR portion of a SX instruction, binary ones will be stored in bit positions 1-16
of the storage location specified by m’. Binary zeros are stored in the other bit positions of
storage location m’.

If binary zeros are placed in the AR portion of a SX instruction, binary zeros are stored in the
storage location specified by m. UTMOST language provides a special instruction for this operation.

* Actually binary numbers. Moreover, only the 15 least significant bits of the contents of storage location 800 are shown.

UP-3853 UNIVAC Il UTMOST '

SECTION: PAGE:
STORE ZEROS - SZ
Store binary zeros in the storage location specified by m-.
Example:
. LABEL A OPERATION A OPERAND A ?
—

(800) 1 = - ABCD (800) f = + \AAN

Since the binary format of a NOP instruction is all binary zeros, the SZ instruction can be used to
create a NOP instruction in storage location m’.

INCREMENT INDEX REGISTER - IX

Add, in binary, add the contents of bit positions one through nine of the storage location specified
by m’ to the contents of the index register specified by AR. An algebraic addition which attends to
the contents of the sign bit of storage location m’ is performed. Thus, if the sign of the contents of
location m’ is positive, the contents of the index register specified are increased, or incremented.
If negative, the contents of the index register are decreased, or decremented. If as a result of this
addition, a carry is propogated from bit position 15 of the index register, this carry is dropped.
Thus, the contents of bit position 16 of the index register always remains zero. Multiword operands
are meaningless with this instruction. Indirect addressing may be used. However, field selection
is not allowed.

Example:

LABEL A OPERATION A OPERAND A)

I X 15,1800
| — | S Y

i i L i i 1 l 1 i Lol 1 il L i l 11 1 i3 1 1 1 1 1 l |

(X15) i = 15000%* (X15) f = 15010*
(800)1 = + 10 (800) f = + 10

SECTION:

(‘ UNIVAC Il UTMOST UP-3853

PAGE:

INCREMENT INDEX REGISTER AND COMPARE - IXC

Add, in binary, add the contents of bit positions one through nine of the storage location specified
by m’ to the contents of the index register specified by AR. The addition takes into consideration
the contents of the sign bit of storage location m’. Carry from bit position 15 of the index register

is inhibited. After the index register has been incremented, the contents of bits one through 15 of
the index register are compared with the contents of bits 10 through 24 of location m’. If the two

are equal, the equal indicator is turned on. If the contents of bits one through 15 of the index reg-
ister are greater than the contents of bits 10 through 14 of m’, the high indicator is turned on.
Otherwise, the low indicator is turned on. Multiword operands and field selection are meaningless with
this instruction. Indirect addressing may be used. If binary zeros are placed in the AR portion of an
1XC instruction, no incrementation occurs, and for purposes of comparison the index register is
considered to contain binary zeros. If a Processor is equipped with nine index registers and index
register 10 through 15 is specified in the AR portion of an IXC instruction, no incrementation occurs,
and for purposes of comparison the index register is considered to contain all binary ones.

The contents of the storage location specified by m’ of an IXC instruction is called an increment and
compare word. In UTMOST language, an increment and compare word is written as follows.

where:

1. e, is the comparison amount (bits 10 -24) usually written in decimal.

2. e, is the increment amount (bits 1-9) usually written in decimal.

At least one space must be left between ICW and e,. The programmer may optionally leave one or

more spaces between the comma and e,. If it is desired to decrement, e, is preceded by a minus sign.

2

Example:
LABEL A OPERATION A OPERAND
| — — —_—

I X C 151,800
L I W W T §

(X15) i = 15000* (X15) f = 15002*
(800) i

1

ICW 16000,2 (800)f = ICW 16000, 2

At the end of instruction execution, the low indicator is turned on.

UP-3853 UNIVAC 11l UTMOST

SECTION: PAGE:

A. EXAMPLE

There are 100 delinquent account numbers stored in storage locations 400 through 499, If the
new account number stored in location 500 is delinquent, jump to 300. Otherwise, jump to 350.

B. CODING

This problem could be coded as follows.

LABEL A OPERATION A OPERAND A COMMENTS

01 Lo a1 1L1AL N LT i 1510101 Ll -I A54 ATLHIEA INIEIwI lAlclclolUlNlTl INLULMIBIEIRI AEIQlulAlLA 1

]A 1 1 A 1]CJ A A l 181'1 L 1 A IAAOAOI 1 ITAOA ATIHIEI lFIIIRIslTI |DIEILIIINIQIUIEINITI AAlclclolulNlTl 1)
21 PR U B IJLEL N T S S |3|0|0| L lNlulMlBIEIRl?I Y W T S ST S U R ST ST RO SS W N S S U B S 1\
31 O S | lcl T |8|'1 - 1410111 Ll l'lsl lllTl 1ELQ|U1A1LI Jlol lTlHlEl ISIEACIOANIDL 1 l F S W | 1(
4 JE | 3001 DELINQUIENT ACCOUNT NUMBER? | X
F S D W N S SR T S | TN SRS NS TR S WY S R U R W WO T T B 'Y T T T S S T Tl Bl I S RS T B T S R T | dd

51 U S | 1C;] 181;L| Lo .410121 1 1‘151 1' lTl IEIQIUIAILI |T1 01 1T1H1E1 lTlHil 1R1D1 101N[E1?1 { 1/
6| T T 1J|E1 T B S S S T J310|01 P S N S S U S0 N WA U S H U G S S S O SN N VAT ST A S NS S SR 1)
’111111'114[1'1 PR S U S UL SN S SRS R U Illllllllll lIllllnllL;LllLttllg
‘lAILll'AAA]j‘]Al1||I.lllllljlllllllllIJllIIIIIII\AlIllIIIl(
ke, Lxl'nnnln'nnnnlnn'llnl||41LL111111111111AlnxnllxnllAllT\
]|9|9| | S TS el SO N X l lsl’l 1 I4A9I9] i1 lI|541 1' ITL JE101U1AAL| JAOJ lTIHlEl |L1A|S|Tl lolNlel?l i) l(
2lolol 1 1 lJ1El 1 [) U I N T | 1310l01 11) R TR VS TN W Y I | I W Y W S W I | l | S IR (N W VA N W N § l N S l)
2 01) | 350, JUMP TO 350 . 1 1 |

This solution requires 202 lines of coding. Such an approach is referred to as straight line
coding. Study of this coding may allow reduction of this number of lines.

Notice that the body of this coding consists of a repetition of two lines of the following form.

\ LABEL A OPERATION A OPERAND \
———— —
c : , {
1 1 1 1 1 1 A L i l 1 1 i 1 | L 1 AL . l 1 L L L 1 A 1 I\ L] 1 1 1 1 1 1 1 11 l

SECTION:

UNIVAC Il UTMOST UP-3853

PAGE:

In each set of two lines, y is one more than it was last time. Thus, in the first set it is 400,
in the second set 401, in the third 402, and so on. This observation leads to the conclusion
that this is a natural situation for the use of index registers. The following coding employs

index registers.

A OPERATION OPERAND COMMENTS

JTAKIE THE F IRST DELINQUEINT AC |
1 Loy A 8, 500 e Ly .(
2 Lo LS 8 400,415 DOES THE NEW JALCJC10.U1N1T1 NUMBER |)
3 L |J1E| Ll 13|0 L0J Lyt 1 1 1M1A1TICIH| 1T1H1lls| |D|E1L|||NIQIU1E|N1T| lAlClclolUlNlTl\
4 L lllxl] ‘115‘, ‘]|0L242l T |T1A1K1E1 ATLHIEI 1N|E|X|T| lDIELL4|‘NlQiulEINITl ‘AACICI /
5 l.llN.O.PAl.“.J...O.II..L.l.ul..l...1..1...¢.....|.‘....\
6 vy 20y MO0 e .,111
lll]lLllllllJJllllllllleLlllllllllllllllllllllllllll(
ILLIAAJIAIIIAAIIIIAIlLLJlJlllllllllllllllllllllllljll}
'LA_lj.ll..IA.A.‘n...lle...AAnl..nJlllixllllxljJLlllLt1A¥

1922 ot b N e b

20,23, vyl e Y% b b e v b v b g
/\/\/—/\/\/—\/W/\M_—A/\J

In this coding the instruction in line 0 loads X15 with binary zeros. Line 1 loads the new

account number into AR8. The m portion of the instruction in line 2 is 400. This instruction
specifies modification of m by the contents of X15. Since the contents of X15 are zero, m’ is
400. Thus, the new account number is compared against the first delinquent account number.

Line 3 tests for equality. If the two are not equal, line 4 increases the contents of X15 by one.
Thus, X15 now contains one. Line 5 is a do nothing line, and line 6 returns control to line 2.
Now m’ is 401, since the contents of X15 are one. Thus, the new account number is compared
with the second delinquent account number. If these are not equal, the contents of X15 are
again increased by one. On return of control to line 2, m’ is now 402, since the contents of
X15 are now two. Thus, the new account number is compared with the third delinquent account
number. And so on.

The above coding is known as iterative coding. The distinguishing characteristic of interative
coding is that it processes many items with the same set of coding, which it modifies and loops
through once for each item.

The above coding incorporates such an iterative loop. However, it is a ‘¢

closed’ loop. If the
new account number is unequal to all 100 delinquent account numbers, this coding provides no

way to exit from the loop after all 100 delinquent account numbers have been tested.

UP-3853

UNIVAC 11l UTMOST

SECTION:

PAGE:

When all 100 delinquent account numbers have been tested, X15 will contain 99. If an IXC
instruction is substituted for the IX in line 4, and if the comparison ‘‘element’’ of the associated
ICW is set at 100, the equal indicator will be set after all 100 delinquent account numbers have

been tested. The following coding incorporates this change.

P S Y S SR VN N S S WS U SO SN S AT NN NS S S S WY Y

1 l § W SN WU S S W S |

] LABEL A OPERATION A OPERAND A COMMENTS)

_— —

0 LX ., 15, 1023 TAKE THE FIRST DELINQUENT AC&
Ld i i AR Lottty IR s i I i Tl Tl VO (R Sl Sl S e S S S Sl Sl W SO R T R T R R |

]A 1 1 - lLAAl 1 l i l8| L A lsAolol 1 4 1 1. . 1 i 1 l 1 1 1 1 i 1 4 4 i l A 1 1 A 1 A1 1 " 1 l i i i l i i i AJ
2 11| ICA T xsx’. 1 1410101'11151 F I Y W'Y 101015151 ITIHIEX 1NLE|wl lAchClDAUjNITI lNlUIMlBIEIRI 1 A
3A 111 |J1E1 T R S SR laloloL SN G S S | AM1A1T|C|HI 1T|H1llsl IDAEILIIANIQIUIEANlTl AAAclcxolutNtTn)
4 I.XC | 1,5, 1022 TAKE THE NEXT DELINQUENT ACC‘_X
A e e ! 4 & A i J— I A . A A L s i I A — . 1 i 1 A It I 4 N P A W 1 | e il 4 & & i il "

5 35,0 JUMP TO 350,. ‘_{
R RSl ST R S ST S Pl i T S ST S SE S N W St G S SN Wl Tt ST hV ol e S N N0 SN VY U U S S H S W SA SR

6 J 2 LOOP. ‘)
Lo et S SR N S S S S S ST S ST ES bl S ST SO S O S Wi B e Y N S S S G S S ST S ST SO T G S T S S S G A S L{

-
oo

A slightly more efficient use of index registers to set up the iterative loop is shown in the
following coding.

A OPERATION OPERAND

TAlKE THE
L il SR el

COMMENTS

AFIIARISITI IDIEILXIINlQlUlElNITA AAlCl

11 T W' anAn P 18.'. 15;0]01 PV S N T S S (VS Y S VO S ST S S U SO S S U U SO0 S VAT S S Y S W S W x{
21 1 1 i lcl i i l A lal'l A‘lololllllsl 1 1 IDIOIEISI ITIHIEI lNlElwl |AICLCAOIUINALLNlulMABJElRI A)
3 JE 30,0 MATCH THIS DELINQUENT ACCOUNT‘)
O T - i S T U Rl Rl O W W { 14 l ey e Sy gy S e ey e e ey

4 I X C 15 1022 TAKE THE NEXT DELINQUENT ACC
ekl R W T ST S U S SR Rt H S S S S PR U S Rt T S S S S S Tl STt R
5 JL 2 LOOP .

I P ol W SN S0 0 G S S RO SN U et ST S S0 S S A Y S tht g G AT PRI WY RO U N U T S G S S VA N G NS N SR T
6 J 35,0 JUMP TO 35

T RN N S SO R il ST S Ny P T e e b

JJLLlllLALJIIIIIIileIl]lllllllJ

U .t 1 i
IS s v b v by v e e b ey e b e L
F U S S llAlllllLLllllllllljlllllllllllllllAIAALAAAI'IALLLJLA
1022 1CW | 100, .1 | | | |

IR Nl it R S A P Sl Wl S S S S G TR W S U WA S T S | T T W TS S T SO O | R N Y S N S S | | T T W N N S
1023 + | 0 | |

F I J S N T GRS S N S DU S S) N TS Y S S TSN U T | llllllllllllLlll\LlllLllllL

— A~

SECTION: PAGE: ‘

UNIVAC Il UTMOST

UP-3853

C. FLOWCHART

An English language flowchart of the previous coding might look like that shown in Figure 4-1.

TAKE THE FIRST
DELINQUENT
ACCOUNT NUMBER
ITEM

Figure 4-1.

DOES THE NEW
ACCOUNT NUMBER
MATCH THIS
DELINQUENT
ACCOUNT NUMBER?

YES

IS THIS DELINQUENT
ACCOUNT NUMBER
ITEM THE LAST
DELINQUENT ACCOUNT
NUMBER ITEM?

TAKE THE NEXT
DELINQUENT
ACCOUNT NUMBER
ITEM

English Language Flowchart of [teration

UP-3853

UNIVAC 11l UTMOST (

[SECTION: PAGE:

Symbols commonly used to show an iterative process in a flowchart are as follows:

1. A capital letter is used to symbolize a set of data. For example, ‘“D’’ might be used to
symbolize the set of 100 delinquent account numbers.

1. Numeric subscripts to the set symbol are used to distinguish between units in the set. For
example, D, would stand for the first delinquent account number item in the set of
delinquent account number items D, D2 stands for the second delinquent account number
item in the set D, D, stands for the third delinquent account number item, and so on, until
D,,, stands for the 100th delinquent account number.

3. The general unit of the set is shown by means of an alphabetic subscript to the set symbol.
For example, D; would symbolize the ith delinquent account number item in the set D. The
ith item is only one item, but it is not any particular one. The ith item is the general item.
For example, the previous coding is designed to process only one delinquent account number
item. Which one it happens to process depends on the contents of X15. The coding is designed
to process the general delinquent account number item, D;. The coding is particularized to
process a certain delinquent account number item by establishing the contents of X15.

4. Initially, in the previous program, the contents of X15 are set so the general processing
processes the first delinquent account number. Symbolically, this condition is shown as:

Thus, Di becomes D,.

5. After one delinquent account number has been processed, the contents of X15 are increased
by one so the general coding which is looped through will process the next delinquent
account number. Symbolically, this operation is shown as:

1+ 1—»i

Thus, if Dy (Dy with i equal to 6) has just been processed, then D, (Di with i equal to 7) is
the next item to be processed. As shown above, such operations are customarily shown in an
‘““operation box’’ with a double line on the left.

Using the above symbols, the flowchart in Figure 4-1 might appear as shown in Figure 4-2. Notice
in this flowchart that initial conditions (in this case, the fact that i is initially equal to one) are
shown in an assertion flag set on the line of flow at the point at which the assertion shown in

the flag holds true.

" | 1 UNIVAC IIl UTMOST Up.3853

SECTION: PAGE: |
i- 1

START @ ~{ 70 300

1 TO 350
i+ 1= 7@

LEGEND

A — the new account number

D - a set of delinquent account number items

D, - the ith itemin D, i=1, 2,3, ..., 100

Figure 4-2. Symbolic Flowchart of Iteration

D. STUDENT EXERCISE

There are 100 delinquent account numbers in ascending order in storage locations 200-299, There
are 10 account numbers in random order in locations 300-309. Store the account numbers that are
delinquent in sequential locations beginning at 310. When finished, jump to 100.

E. ITERATIVE versus STRAIGHTLINE CODING

Section B of this chapter shows both a straightline and an iterative solution to the same coding
problem. These solutions exemplify the principle characteristics of these two approaches.

1. Straightline coding requires many storage locations but involves few instructions to be executed
per item processed.

2. Iterative coding requires fewer storage locations but involves more instructions to be executed
per item.

UP-3853

UNIVAC Il UTMOST

SECTION:

PAGE:

11

MODULAR ADDRESSING

The operation of the index register specified during instruction execution is to have its contents
added to the m portion of the instruction to yield m’, the operand address. The result of this

addition is a 15 bit operand address. Thus, by means of index registers, any storage location in
the Processor may be addressed. The following example shows how the index registers are used to

achieve this addressing.

1. Example

There are 100 delinquent account numbers stored in storage locations 5120-5219. If the new
account number stored in location 6144 is delinquent, jump to 2000. If not, jump to 1500. Start
your coding in 1026. Presume that index register 3 contains 1024. (Index register 3 is known as

a cover index register, since it ‘‘covers’’ the coding. That is, it is the index register whose

contents allow the instructions to address each other.)

2. Coding

LABEL A OPERATION A

OPERAND

A COMMENTS

01 PN TR YU A VAT U NN TR0 Y S S S S SOV ST S HNY ST S GG T S R ITIHII Isl Ilsl ILlolclAlTlllolNl 111012A41 L1
11 TN S S T S S U S S W W PRTE R R S S S S T |TlH.I nsn IIISI |L|°|C|A|T|IA01N1 1]|012A5] IT‘
2 L X 15, 1023, 3 THI S 1S LOCATLION 1026

PR WS U SRS WS T Tk S N (Y S S N it Tl I et TR T PR Sl Y Sl el S St Bkl [t Wl S S SR M Bl Sl il A N
3\ I D T | Llel o |]14|'| 11101212\"131 I T | IT‘Hnl ISI llksl ILIOlClAlTlIIOINl 11101217l -
4 LA | L8, 0, 14 THIS () LOCATION 1028,
Lebeandemmbr—e—h— dend | R A VOSSN S N W Ll) 1 | ERS TN N SR T | W' R S '} | FET " 1 A
51 FI S | ICA | 18| LTSN W S N T Lolll‘lsl T W W R 1 1T1Hl| |SL lIISl |L|°1C1A1T1|L04N1 1]1012191 T
6| Lo 1J|E| TR R S S S U N 191716|'131 I S WD G S T { 1T|H1| 151 1'151 1LIOAC|A1T||;°1N1 1]1013101 1
71 U S lllxjcl l 11|5Q¢ 1 1]L01211l'l3l B VS Y W S S ¢ lTlHlI 1SL1|151 lLlolcl ALT1|1°1N1 1]1013111 11
81 [S IJJLI PR S W S S S S 151’131 T T N T | 1T1H1I151 11151 LLLOLCJALT[ILOINl L]AOI3L21 L
9 J 4 76,3 TH I S [LOGATI ON 1033

U S SR U s SUS S R S VA S il I W S S R T 1|1111L111|IL1411141A|11
lllJlJlAllllll]llllllllllllIJllllllLllllllllllllllll

L \/m: ot

L0 QAT ON 2047 |

1 1 1 1) D S T | l L1 I 1 i1 1 I 1 L1 1 | i | 1 1 l | | I L1 110 l L1 L 1 1 1 L 1 L l 1 I
PR Y VT GO VT R T T SO S VT UU S VO S VA VU A A W Y N U Y SO G VT S A N T S Y U S ST Ui S U ST WY SONY VA ST S VAN S A /
41716‘4 A1 S 1 O O | 1 - 11 l -t 1 1 1 L 1 lTlHll |sl Ilsl lLlolclAl TlllolNl 1115101 oLl l\
PSS S VN YO ST SO Y ST U N Y VO VONY NN VAU SNV N ST WS S T SN VAT A SN SO (NN N G SN YA SHNNT U SN Tt S NS NS VA ST ST W WU SRAPU x)
LN U N AN WY SN U U SN AT G SO S S U SO S N SN N O T S A ST S SN N A U SN S U T N O Ut N0 AN Y SO S S ST WA WA J
AR S U TN SO Y A VA Y SN WO N G SO U N G SN S S S VAT SN0 VAN S T S T G S S U S N Sl S NN S S S S SN S WU B il
917161 1 1 1 1 11 l Lo d_1 1 1 Ll 1 1 l)| R S U S | 1 1 ITIHLI ls I |SL lLlol C1A|TlllolNl 121010101 1 J_(
TSNS SN U Y N0 Y VA S [N T T S T S TS NS O A I N W S AV TV T S Tt N S S O Y G O)
P S U NS TS YOS U U A S U N WO SN U T VUV (Y SHNT WY S S TR SR SHY WS S NSO SANS UHNS S SN SR VU W S AU SN T VAT S VT S S G A&
P VN W U U SO S S N YA YO VAN YOS VO S S NGO ST ST O YA CON S S Y (N TSNS S ST AU U S SN ST U S SN WY SO UG TN W OO .)
1027, v Cew 52200 vy g IS s, L9 9ATION 2045) iE
11012|21 | l*l o l6|]l4I41 Lt l) SN W W N N S LJTlHlllsl I lsl lLlol clA1T1|101N1 12L014 161 J/
)

SECTION:

0 \ } UNIVAC Ill UTMOST

PAGE:

UP-3853

Notice in this coding that the first entry in a line is no longer the address of the storage
location in which the instruction or constant is to be stored, but is now the address
relative to the contents of the cover index register (index register 3, whose contents is
1024). Thus, storage location 1024 is assigned the relative address 0 (1024 + 0 = 1024).
location 1030 is assigned the relative address 6 (1024 + 6 = 1030), 2045 is assigned the
relative address 1021 (1024 + 1021 = 2045), and so on. These relative addresses are the
ones used in the m portion of the instructions specifying that this m portion should be
modified by index register 3 to develop m’. From now on this convention will be followed
in this manual until the concept of labels is introduced.

In the above exercise the contents of the cover register was given. Suppose that such is
not the case. It is then the programmer’s responsibility to load his cover index registers.
To demonstrate how this is done, it is necessary to have a finer understanding of how
the control unit of the Processor works and to have the definition of one more instruc-
tion. These are given below.

Control Unit Operation

The control unit contains a fifteen bit register called the control counter, customarily
abbreviated as cc. In general, the control counter contains the address of the instruction
currently being executed.

The control unithas an operating cycle depicted in flowchart form in Figure 4-3. The
operating cycle begins at connector one.

The flowchart in Figure 4-3 demonstrates how the control unit effects the sequential
instruction execution characteristic of the Processor, and also how the jump instructions
interrupt this sequence. It also indicates that, during the execution of any instruction
other than jump instructions, the control counter contains the address of the storage
location from which the instruction was selected for execution.

UP-3853 UNIVAC 11l UTMOST ’

SECTION: PAGE:

SELECT THE INSTRUCTION
STORED IN THE STORAGE
LOCATION WHOSE ADDRESS
IS STORED IN THE CONTROL
COUNTER.

IS THIS
INSTRUCTION AN
UNCONDITIONAL
JUMP INSTRUCTION?

YES
~(2)

IS THIS A
CONDITIONAL JUMP
INSTRUCTION?

IS THIS
CONDITION
SATISFIED?

STORE THE m’

GENERATED BY THE
@—> INSTRUCTION INTO —‘—>@
THE CONTROL
COUNTER

INCREASE THE
@_, EXECUTE THE | CONTENTs OF THE _.®
INSTRUCTION CONTROL COUNTER

BY ONE

Figure 4-3. Control Unit Operating Cycle

SECTION:

y ’ ‘ UNIVAC 1Il UTMOST

PAGE:

UP-3853

4. The Store Location Instruction

STORE LOCATION - SL

Store the contents of the control counter in bits one through 15 of the storage location
specified by m’. Store binary zeros in the other bit positions of m’. Multiword operands and
field selection are meaningless with this instruction. Indirect addressing may be used.

Example:
i LABEL A OPERATION A OPERAND A (
— m—

(cc) = 1024*

(1)1 =+ 012345 (1) f = 1024*

5. Loading Cover Index Registers

Before any cover index registers are loaded, which is the case at the beginning of a

program, the only storage locations that an instruction may address are locations 0 — 1023.
Since the executive routine preempts these locations, they are not available to the programmer.
However, because of the need to use at least one of these locations until a cover index
register is loaded, the executive routine makes available for programmer use storage locations
0 and 1. The following example shows how one of these locations might be used to load a cover
index register

[V

Example

There are 100 delinquent account numbers stored in storage locations 5120-5219. If the
new account number stored in location 6144 is delinquent, jump to 2000. If not, jump to
1500. Start your coding in 1024.

* Actually binary numbers. Moreover, only the contents of the 15 least significant bits of the final contents of

storage location 1 are shown.

UP-3853

UNIVAC I1Il UTMOST

SECTION:

PAGE:

15

b. Coding

C.

Student Exercise

There are 100 delinquent account numbers stored in ascending order in storage
locations 5120 -5219. There are 10 account numbers stored in random order in
locations 6144 - 6153, Store the account numbers that are delinquent in sequential
locations beginning at 7168. When finished, jump to location 1500. Start your coding
at 1024.

Test

There are 100 consumption items stored in storage locations 5120-5319 in the form:

WORD | DATA

0 NNNNNN
1 00AAAA,

. LABEL A OPERATION A OPERAND \ }
m A
01 1 11 1541_54 T S S S A lln [S W S N W NN SO T S S S i J 1?
]1 J. 1 1 1 1L1x1 I l 1 131’A B R VR S U | l]I i Ll 1 1 { 1 1 l 1 | | I SO S J—| I L[
2 L X 15, 1023, 3 l
L0 1oy |- Tty el Wl VTS W SO S N (T S S SN N S SN T Lot
31 R S 1L1X1 T 11141'1 ! 012121’131 N WS U U G| l [U N W U W S IJ
4 L A 8 , 0,114 A DI !
| U S S S [l [VR WA W S S WA | | S S R S RS Dt S U S SN S B | | 1
5 c 8 . 0,15)
R WY SN DU [N N W S T | l | I W U R W WU S W 1 11 1 F I W S | l | Y W N VRS I N S 1 L
61 U W S | |J1E1 [ST N R R S I9L7l61’131 I S S S S | l RS U NN N G G S | 1_\
L W R S | 1IAX|C‘ l 1 |115L'| i 1]1012111'13J F - i1 III:L]LOO '] 1|l+l]L _l—ll}
81 PR VN W | |J1L1 N T I R T T ISL'131 | N U U U N | l N VN A VN R SR B § l A_/
91 a1 IJL N S S S 47l6 ! 3 T SN B T S S S G S | LB
1 1 1 U S | j S l § U W Y U SR U W S | l § I W U I N S . S | L4) S N W S | (S 1 L]
S W Y VS TN U U SN TS YN S S S N N S SN NN HN SO S SN N S SO W SN N T S N S NN SN N M L(
NS VS T VY VS W WA S U WA W U ST S U W S A YT SN S SR O S l) A U W W U S SR | L}
11012111 lllclwl l 15l212101'l11 i l I TR N Y I S S S l | U | 1 J b1 l L\
11012121 l+l i L i 161114441 Ll Ll | 1 L 1 L L 1 l 11 1 L 1 A 1 1 l L/

UNIVAC |1l

SECTION: PAGE:

UTMOST

UP-3853

where:
N is a meter number

A is a consumption amount

Compute the body of the following table.

CONSUMP TION TOTAL TOTAL
RANGE CONSUMPTION NUMBER OF
AMOUNT METERS
0 - 100
101 — 500
501 — 1000
1000 and over

Store your results in decimal form in eight storage locations. When finished, jump to

location 1500. Start your coding in 1024,

UP-3853 UNIVAC Il UTMOST ¢

SECTION: PAGE:

5. SUBROUTINES

The general format of a program is shown in Figure 5-1. The processing that is done on input items

to produce output items is unique to the program. However, the coding required to advance input and
output items is usually quite standard from one program to the next. This input and output item
advance coding is, consequently, generally written as units and used by whatever program needs them.
These units are called subroutines. Thus, there might be an input item advance subroutine and an
output item advance subroutine.

I I I I
| 'S I PROCESS THE | DELIVER THE |

THERE DELIVER THE | | | INPUTITEM | | |outPuT ITEM| |

ANOTHER INPUT INPUT ITEM TO [F1*] TO CREATE [T+ FROM —-r@
ITEM TO BE PROCESSING AN OUTPUT

: PROCESSED ? } TEM : PROCESSING =
| I | |
| | | |
I I I I
I | I I
| GO TO THE | | I
| END OF THE | | I
| PROGRAM | |]
I I I I
| | | OUTPUT ITEM |
L INPUT ITEM ADVANCE | PROCESSING | ADVANCE N

Figure 5-1. General Program Format

Subroutines are not restricted to input and output item advance handling. Other examples of subroutines
that are generally useful are rounding subroutines, double precision arithmetic subroutines, floating
point subroutines, and so on.

UNIVAC 11l UTVOST UP-3853

SECTION: PAGE:

Nor is the use of the subroutine concept restricted to functions that are useful across programs. For
example, a program may need to do a standard type of editing at several points along the chaia of pro-
cessing. Rather than code the instructions needed to perform this editing at each point at which it is
required in the processing chain, the editing can be coded once as a subroutine. Then, whenever in the
chain of processing it is required to do the editing, the editing subroutine can be ‘‘executed’’. Such a
subroutine is called a common subroutine, because it is ““common’’ to more than one point in the

program.

Subroutines are characteristically executed by means of the store location and jump instructicn.

STORE LOCATION AND JUMP - SLJ

Add one to the contents of the control counter and store the sum in bit positions one through 15 of the

storage location specified by m’. Set the other bit positions of the location to zero. Jump to m’ ¢ 1.
Multiword operands and field selection are meaningless with this instruction. Indirect addressing may
be used.
Example:

LABEL A OPERATION A OPERAND \ ?

rl-_g
SLJ 161'1314111llllllilllilllllxllllllll(

1 Lo 1 i i 1 |
o

(X3) - 1024*
(ccy = 1027%
(1040) i = + NNAN (1040)f = 1028*

The next instruction to be executed is found in storage location 1041.

The general form of a subroutine which is n - 1 words in length and which begins in storage location
m is as follows:

m NOP 0O
m -~ 1
coding to perform
the function of
5 the subroutine.
m - n] *m

Line m of the subroutine is called the return line, line m + 1 the entrance line, and line m + n the exit

line.

* Actually in binary. Moreover, only the final contents of the 15 least significant bits of storage location 1040 are shown.

UP-3853 UNIVAC Il UTMOST

SECTION: PAGE:

To exemplify the way in which a subroutine is executed, suppose an input item advance subroutine has
the following characteristics.

1. The return line is found in location 1040.

2. The entrance line is found in 1041.

3. Lines 1041 - 1050 contain the coding required to perform the input item advance.
4. The exit line is found in 1051 and has the form | * 16,3.

Suppose further that the sequence of coding of the main chain of the program is such that the programmer
is now ready to write an instruction that will ultimately be stored in storage location 1027. The pro-
grammer is using index register 3 as a cover index register, and index register 3 contains 1024. He now
wants to execute an input item advance. Therefore, he should write the instruction SLJ 16,3.

As a result of the execution of this instruction, the contents of the control counter (1027) plus one will

be stored in location 1040 (1024 + 16). Thus, 1040 will now contain 1028. Control is transferred to loca-
tion 1041 (m’ + 1), where the instructions stored in locations 1041 through 1050 will be executed to perform
the input item advance. Control then goes to the instruction stored in location 1051, This instruction

(J *16,3) will transfer control to the address stored in location 1040 (1024 + 16) by means of indirect ad-
dressing. Thus, control returns to the instruction stored in location 1028, the next instruction in sequence
in the programmer’s main chain. A schematic of this sequence of control is shown in Figure 5-2.

SECTION: PAGE:

. . UNIVAC 1l UTMOST UP-3853

A. SUBROUTINE FLOWCHART SYMBOLS

MAIN
P ROCRAM SUBROUTINE
LOCATION LOCATION

1024 1040

1025 1041

1026 v —— 1042

1027 SLJ 16,3 1043

1028 _

1029 L2 (1040)

1030 .

v 1050

J*16,3 1051

Figure 5-2. Schematic of Control Sequence in Subroutine Execution

When on the logical line of flow, the programmer wants to execute a subroutine, he shows the
following symbol.

The name of the subroutine to be executed is written inside the subroutine symbol.

If the programmer wants to flowchart a subroutine itself, the logical operations constituting the
subroutine are enclosed within the following symbols.

logical operations of subroutine —’(
N

The symbol on the left indicates the beginning of the subroutine, the symbol on the right the end
of the subroutine. The name of the subroutine should appear in both the beginning and ending
symbol.

UP-3853 UNIVAC IIl UTMOST |

SECTION:

B. EXAMPLE

There are 100 delinquent account numbers stored in ascending sequence in storage locations

5120 - 5219. Executing a input item advance subroutine with an SL]J to location 2048 will deliver
the address of an account number in 2100. If the account number is delinquent, store it in an output
area. Executing an input/output item advance subroutine with an SL]J to location 2548 will store in
an output area the account number whose address is in 2100 and will store the address of the next
account number in 2100. Start your coding in 1024.

C. FLOWCHART

O~{ o D

LEGEND ADV F o l— @

A~ an account number

D ~ a set of delinquent account numbers

D, - the inth delinquent account number in D,
i=1,2,3...,100

F — an account number found delinquent

PAGE:

[Rev. 1 | UNIVAC Il UTMOST UP-3853

SEC TION: PAGE:
D. CODING
LABEL A OPERATION A OPERAND A COMMENTS

llAAJlllA]JlellJllllllllIllllIlllLllIlllI

J i i . lSleJI i [i 1 1 l*l]L01213l'1 1 lAIDIv IAA [1 L L i i L i I\ 1 l 1

L

3
31 1 i 1 LLIXI 11 I 1 1]I5111*1110l21211l3l 1 i Il 1 i 1 1 l 1 L 1 H 1 Il 1 i i I 11 1 1 I 1 1 1 1 l]
44 o W S LLLx14] l 1 l]I411L |]|0|2I]ll|3

III]lIlllllllllllllllllllllllLll

5 o, LA 8y s A D L i
6, . . ¢ .18 v O YA e e
7o e 283 v b e v v b ey ey by k
8 46 Y8 A e D iy (
9, , , , (S, LJ ., 510200 ,3, ADY, F 1, 00 v o b s ,)
1.0..1.1....l.xl...,..3|:.3.lilLJi.lllnlljllLl|....11LLI|Z
vy hxe 04, 1,019,380 s 080 ey s sy gl Il
{

Vo2 o by aSv 20 b v v v v b v e by gy

i

UP-3853 UNIVAC Il UTMOST l -
SECTION: PAGE:
FE. FLOWCHART FIELD NOTATION
An item is shown on a flowchart by means of a capital letter, either subscripted or not, depending on

whether the item is an element of a set of items. For example, the letter] might be used to represent
a job item.

An item may consist of several fields. Fields are also symbolized by capital letters, but are written as
superscripts to their item symbol. Thus, JN might be used to represent the job number field of & job item,
JC to represent the contract price field of the job item, J& the labor cost field of the job item, |M the
material cost of the job item, and JV the overhead cost of the job.

1. Example

Given a job item of form:

WORD DATA
0 NNNNNN
1 OCCC‘CC
2 OLLLALL
3 OMMMMM
4 OVVVVV
where:

N is the job number

C is the contract price

L is the labor cost

M is the material cost

\" is the overhead cost

Produce a profit item of form:

WORD DATA
0 NNNNNN
1 OAAAAA

where:

N is the job number

A is the profit

Executing an input item advance subroutine with an SLJ to storage location 2048 will deliver
the address of the zero word of a job item in location 2100. Executing an output item advance
subroutine with an SLJ to 2548 will deliver in 2600 the address of the zero word of an output
area for a profit item. Start your coding in 1024.

SECTION:

PAG

o

UNIVAC Il UTMOST

UP-3853

2. Flowchart

(1) ADV P MNempN Ll JC_M_jb_ Vs ph
LEGEND
J - ajobitem
JN —~ the job number of J
JC — the contract price of J
JM —~ the material cost of J
JL —~ the labor of J
Jv — the overhead cost of J
P~ a profit item
PN — the job number of P
PA— the profit of P
3. Coding
LABEL A OPERATION A OPERAND A COMMENTS

2, S L2 0423,,,3, ADY U, il L ey e

3, v v g8 X oy V50922003 0 e L] 1(
4, , , S LYoy, o ,0421,,,3 , ADV (P T T | 1}
5 ., ., JLXx 4 14,1020, 3 Ly L Ll i 1(
6, LA 2, vy N e PN] 1)
7, 4 s abs o A 2,0y 3, C LM e e e N e s PAY l\
8, v DSy A L3 S b e b ey e .‘
9 o oS 4 LA S /
e o SA Ly 2 Y N e e e e \
]lll 1 1 IJL - [U T Tt 1 I Il 1 l 121’131 1 1 i i1 l |- { 1 1 1 | | 1 I i i1l 1 ll l>
TR VT S Y S S U S S S S S AU U N ST S S S SRS N T S S SR WA SNV N S SR S Lo ‘(
L. 4 1 1 1 1 1) WD N S T SR S T T & l 1 S U S S W N T . | I | S VY W S W U N S | I I N (N T (S N N Y | I L)
R YU S S S S VU N VU VN D VAN G S AN U VA HNU0 VLD W S S S ST SAO S S N S S S SO S U W YO S (N OT SO S S S S SR 1\
w020 , o+ Ly, 2600,]y e by v e e e] 1}
11012111 1 I+l J— l 1 4 & LzlslAJsALl l Y W D T U N W | l F U W W R S | | l) D N U P VO W T | 1 I l(
]|012121 1 I+l 11 l 11 1 lzlllolol | l N SO WO W I W Y ll | S N T W W S S | [S N W S S G I | l 11
L0923, oy Ly 2094080 0 L e v b g | |i

SECTIiON: PAGE:

UP-3853 UNIVAC IIl UTMOST ‘

4, Student Exercise

Given an inventory item of form:

WORD DATA
0 NNNNNN
1 OHHHHHa
2 XXXXXX
3 XXXXXX
where:
N is a stock number

H is the onhand quantity
X is other data

Also given a sales item of form:

WORD DATA
0 NNNNNN
1 0QQQQQ
where:
N is a stock number

Q is the sales quantity

Executing an input item advance subroutine with an SLJ to storage location 2048 will deliver the
address of the zero word of an inventory item in location 2100. Executing an input item advance
subroutine with an SLJ to 2548 will deliver the address of the zero word of a sales item in location
2600. Executing an input/output item advance subroutine with an SLJ to 2848 will store in an output
area the inventory item whose address is in 2100 and will store the address of the zero word of the
next inventory item in 2100. The first inventory item and the first sales item have the same stock
number, the second inventory item and second sales item have the same stock number, the third
inventory item and sales item have the same stock number, and so on. Update the inventory. Start
your coding in 1024.

6

PAGE:

UP-3853 UNIVAC Il UTMOST ‘

l SECTION:

6. VARIABLE CONNECTORS

A programming technique based on instruction modification is the use of a variable connector.
This operation is a variation of branching, in which a decision is made to branch between two or
more alternative lines of processing. In a branch the decision and the branch are made at the same
point in the program. When a variable connector is used, the decision is made at one point and

the branch is made at a later point. The result of the decision is stored in the form of the setting
of a switch, or variable connector, which indicates the branch to be taken at a later point in the
program.

A set of instructions that is sometimes used to implement variable connectors is the set of
instructions which manipulate the sense indicators. A sense indicator is similar to the high,
low and equal indicators. It is a two state device that can be turned on or off and whose setting
can be tested by means of a jump sense instruction. The Processor provides eight sense indi-
cators, numbered one through eight The instructions that operate on the sense indicators are as
follows.

SET SENSE - SS§

Turn the sense indicator specified in the AR portion of the instruction on. The number of the sense
indicator to be turned on is specified in excess seven binary code in the AR portion. In UTMOST
language this number is written as a decimal number (8-15). Multiword operands, indirect addressing,
and field selection are not applicable to this instruction.

Example:
1 LABEL A OPERATION A OPERAND A ?
| ———————————— —— - |

At the end of instruction execution, sense indicator one is turned on.

UTMOST generates this line of coding into

i
A/Fs x oP AR m

SECTION:

6

. l ' UNIVAC IIl UTMOST UP.3853

PAGE:

RESET SENSE - RS

Turn the sense indicator specified in the AR portion off. The number of the sense indicator is
specified in excess seven binary code in the AR portion. In UTMOST language this number is
written as a decimal number (8-15). Multiword operands, indirect addressing, and field selection are
not applicable.

Example:
LABEL A OPERATION A OPERAND A
——— ———————— =
A 1 lRlsl 1. Isl I 1 i i 1 1 1 1 1 1 I 1 i Lol 1 1 1 I\ i I 1 1 | 1 L1 1 1 1 l 1
P’A’\/WW\M

At the end of instruction execution, sense indicator one is turned off.

UTMOST generates this line of coding into

I
&FS x oP AR m

0 0 61 10 0 110 0

JUMP SENSE - JS

If the sense indicator specified in the AR portion is on, jump to m’. Otherwise, go to the next
instruction. The number of the sense indicator is specified in excess seven binary code. In UTMOST
language the number is written as a decimal number (8-15). Multiword operands and field selection
are not applicable. Indirect addressing may be used.

Example:
| LABEL A OPERATION A OPERAND A !
m

b3S ey vee e b
UTMOST generates this line of coding ir:ol—v g

l%s x oP AR m

0 0 60 1 0 1 01]0 0 1 0 0

Control will be transferred to location 100 if Sense Indicator 3 is set.
A. EXAMPLE

There are 100 quantities stored in storage locations 5120 - 5219 in the form 0QQQQQ, Add
25 to the first, fourth, seventh, etc. quantities. Add 50 to the second, fifth, eighth, etc.
quantities. Add 75 to the third, sixth, ninth, etc. quantities. Process the quantity stored in
location 5120 first, the quantity in location 5121 second, the quantity in 5122 third, and so
on. When finished jump to 2000. Start your coding in 1024.

UP-3853

UNIVAC Il UTMOST 6

SECTION: PAGE:

FLOWCHART

A partial flowchart for this example is shown in Figure 6-1. This flowchart is indeterminate
at connector one. The first time control reaches this connector, process one should be
executed. The second time, process two should be executed. The third time process three
should be executed. The fourth time, process one. And so on. Connector one must be variable.
This is indicated by subscripting the one with a ‘‘v’’. The connector is then the terminal of a
switch. The poles of the switch are also indicated by connectors, the connectors being identi-
fied by the same number but being subscripted with successive letters of the alphabet. Figure
6-2 shows the flowchart in Figure 6-1 with the variable connector included.

The flowchart in Figure 6-2 is still indeterminate in that it does not show which pole
connector 1v is set to. Setting a variable connector is shown in an operation box. The pole
to which the connector is to be set is written in the operation box and is preceded by a
period (.), a customary abbreviation for ‘‘set’” Figure 6-3 shows the flowchart in Figure
6-2 with the setting of the variable connector included.

i=1 PROCESS 1

|
| |

TO 2000

PROCESS 2 .
i+ 1= —»@
L a +50q, __.@

PROCESS 3

|
|
LEGEND L q; +75>q —“‘@

Q

— a set of quantities

Q; - the ith quantity inQ, i=1,2,3,..., 100

Figure 6-1. Partial Flowchart

6

SECTION:

‘ UNIVAC IIl UTMOST l UP-3853

PAGE: I

Q; + 50->Q;

Q, +75+Q, _.@

LEGEND

Q - a set of quantities

Q; — the ith quantity inQ, i =1,2,3,..., 100

Figure 6-2. Flowchart with Variable Connector

TO 2000

|
M o 250,

A B Qs s0-q,

©

i+ 1= _,.()

@— Jda P Q +75+Q,

®

LEGEND
Q - a set of quantities
Q; - the ith quantity inQ, i =1,2,3,..., 100

Figure 6-3. Flowchart with Variable Connector Settings

UP-3853

UNIVAC Il

UTMVMIOST

SECTION:

PAGE:

C. CODING

o

A

OPERATION

OPERAND

LI | IAA'L“.I,I,..L#JLALA,.“..J......,.fx
2 L L X L, vs, 11023 ,3 b =t Ll N lj.)
3......£5..|14,8.+l..|...Lu-llAlu...l...m.l..ll.ﬂ
4 ., LA | - U R Y T L ‘/
5 00 s o8 33 e e by 11 1k
6......115.,1.1.9.'““1‘17“,3‘1....|......‘..14“41..1(
78S 8 b VA AT S N S S T H Y S S L1 J)
8 , , ., /DA | , , 8, 1022,3 QI + 75 —-=-- QI . || - 1(
LA A B S B UL N P S
10 1, XC | L, 415, 1021v,3 I . qro00 ;. 0 o+ g1 === L
]1]1 | S - 1J1L| y | T T S SR | 144’131 T N N § l PR S T A ST TN W VT A W TN M T L1 |L
112‘ Lo a4 L91716L,l3l , l'|'I0I 1210&01 T e (
13, RS b e b v b Li l\
‘.4.LL..5.5..1...9.....|.......UIL,...H;ll“.....,'/
115| Ly lDLAJ L L ’81,1 . IOJZIOL,.3I . 1QII| Lt AS[< 1-1401”#4 L L IJX
16, v v 03 AR B ARAL A AR SR R SN TR B L1 l{
Vi RS LSRRI RS SR A T S A A S S A Ly |1}\
TS B TR SR LIS AR A L LAl B L el B o A B S R S AN TN 11/
‘.9.,11.L,.11..1....1.9¢'.3.1..L11LHH....1.”..AL.LX
[T 0 Y R U S R AU S T SO S S U W S U T T YA T N T T U YUY S WA O SO A SO WO U llnl/
[B B A NN S S O N N N S S S N S TR S U NN T NN T SO Y A DA A O AU O O L1 J&
T S T S A S S S| P S T G S G W [N VOV YU G G U VY U A U VA VO U VO A W S S T W W M W W l)
100V,9 0t 0 | L0 05900050 v b e b 1J_(
1020 + - |:10‘0A0L01215| T T o
102 1 L|_LC.LWI | , 151212101'1 ll T T L
]lolzlzl 1 l+l 11 l 1 l:lololol°l7151 11 L1 1 l | I 11 1o 1 1 1t 1 1 . | l
11012131 1 l+l l_1 l 11 lslllzlolLJ I N W N O | 11 I 111 | | 11 | I R | I i . | J\
IS T ST S T S | U TR Y Y WSO SN S TV S WUV ST OO0 NN AN [ANY AN S ST VAN S0 WA ST S O U0 W0 M ' |
T Y U S W VWU YV U SN S NN WU O N AN WO O YO U NN N T WY S N TN W N TN TN SO SO0 U A WY N Y U U S M WU |

6 6 UNIVAC Il UTMOST UP-3853

SECTION: PAGE:

Another method of coding this example is as follows:

LABEL A OPERATION A OPERAND A COMMENTS

]l 1 A L 1 1 llel | i I A l3lll i 1 1 I I]I 1 1 i I i 1 1 I A 1 . 1 1 1 I 1 i l " 1 L i 1 I 1 i A I I 1 " l)
21 Lo 41 ALixl I]ISI'L L]L012L31'A3;Ll L4 1 lll i 111 PR E N S NS T ST R WO S S ST SR G S |(
31 PR T 1L|A| | L]121’1 lll012121'13|4L i1 lQlll 171 12|51 i Y |Q||| T R S B LLL)
4 DA 8, 0,15 {
W W WS TN VS SR T SO e | 1 GRS T T N TR U W T | B Y Y i NN T U W S | I I O N [N T S S - I | S TR W VRN TN WO S W1 l Ledd
51 O N | ISIALL Lo 4 181'1 Lo 101’11151) I S l | WY T N VU OSSN S | l § VR U N TS W N W | l 1 1 l\
6 S A 4 , 3,3 . 1B /
) N WS T N Y N N l I I WO I WA VU W SR 1 I 1) § W N SO W T S]) I T OO [T | |) [§ W N T [T N S s 1 l J W S
7| Lo1a g |lnxncl L1 lllsl'L A .011161'131 Loy lln 1 1L0401 171 III S 111 Ty lll L1 A\
81 U T N | AJALJ l [I S S W U N S T | I 131’L3|) D W T | I j S W WY WU SN W N l I SR DU S S S W 1 I L1 1)
9 J

11111[!.1llnlnnll||9|7L61113||llllllll;llllllllnllllln;lljg

-

o

L

=

I

L
g N =y %

1016 I CW 5220 ,1

L1 1 1 1 J l i 1 | S U I S 1 l 11 lllLJllI) S T S | | I | | 11 1 1 | | l 1 Lt
1017 + 0000 7,5

1 | T | 1 1 hd I 1 1 A 1) 1 I] 1 l L 1 1 1 i i 1 I Ll 1 1 i i 1 ! 1 I 1 L 1 1 1 I 1 1 i I L } I
llolllal 1 lLlAl l | U | 11121 1 jllolzlzlllal 11 1 1 l L 1 1 L1 1 11 1 l 1 1 1 1 1 1 J l) S -
101 9 + 000050

1 1 i 1 1 l 1 l 1 i 1 11 1 1 Ill 1 1 llllll 1 1 1 1 1 1 1 l 1 1 1 1 141 1 1 Il 1 1
1020 L A | 1 2, 10118,3 l | | \
1 1 1 4 1 1 1 1 1 4§ | L1 1L {1 J N G |) S I S | .1 1 1 1 1 1 j I N | 1 1 T |
1021 R 000025 [
T T N i O S A G PR Wt Soul Sl [S U U T Y SN Y S OO O WO Y U T U U U O AN N W T N S A0 S O MY SR N B
1022 L A 12, 1020 ,3 \
31 1 L & D I L H A i L L 4 I " . L i I ll W S N | L I A 1 1 I Lo 4l 1 Ll i 'l lll | 1
]10|2|31 TR 5,120 Lo v v v by v v o by v vy by j

UP-3853

UNIVAC I UTMOST ’

SECTION:

PAGE:

D. STUDENT EXERCISE

There are 166 six-word job items stored beginning at storage location 5120 in the form:

where:

L
M
v
P

WORD DATA

NNNNNN

LLMMMM
MMMV V'V
VVVVPP
PPPPPP

U A W NN -~ O

is a jobnumber

is a salesman’s key and may be
1 for salesman one

2 for salesman two

3 for salesman three

is the labor cost

is the material cost

is the overhead cost

is the contract price

Compute for each salesman:

1. The gross sales amount.

2. The number of sales netting $1500 or more.

When finished, jump to location 2000. Start your coding in 1024.

SLLLLL,

UP-3853

SECTION: PAGE:

UNIVAC Il UTMOST |

7. TABLE LOOKUP

Many programs involve looking up information in a table stored in the memory. The technique used to
do such a table lookup varies with the construction and sequence of the table involved. As an intro-
duction to this subject an example table lookup illustration is given,

A.

EXAMPLE

Storage locations 10,240 - 10,639 contain 400 six digit part numbers listed in ascending sequence.
Listed in locations 10,640 - 11,039 are the unit costs for the parts whose part numbers are in the
part number list. Each unit cost is in the form OOCCCC. The unit cost stored in 10,640 is the unit
cost of the part whose part number is stored in 10,240. The unit cost stored in 10,641 is the unit
cost of the part whose part number is in 10,241, The unit cost in 10,542 is the unit cost of the part
whose part number is in 10,242, And so on. Given a sales item of the form:

WORD DATA
0 KKKKKK
1 NNNNNN
2 QQQQ00
3 000000
where:
K is a key

N is a part number
Q is the quantity sold

Compute the total cost for the sales item and store it in words 2 and 3 of the sales item in the
form:

WORD DATA

QQQQTT

TTTTTIT
where:

T is the total cost.

If the part number of a sales item cannot be found in the part number list, jump to 2000. Executing
an input item advance subroutine with an SLJ to 2048 will deliver the address of the zero word of
a sales item in 2100. Executing an input/output item advance subroutine with an SLJ to 2848 will
store in an output area the sales item whose address is in 2100 and will store the address of the
zero word of the next sales item in 2100. Start your coding in 1024.

7

SECTION: PAGE:

) , | UNIVAC Il UTMOST UP.3853

B. FLOWCHART

LEGEND

S — a sales item

SQ — the quantity of S
SN — the part number of S
ST — the total cost of S
CN— the price of SN

U - an updated sales item

UP-3853 UNIVAC Il UTMOST 7

SECTION: PAGE:
C. CODING
LABEL A OPERATION A OPERAND A P
OIIIAAlAlAISILleI]IIALIAAIILALAIll]LJLIIlJJIllIJIII}
v, VX3 .]x oo by ey n}

2I 1 1 A1 1 1 A 1 1 JiJLlJLI A i i 1 I*III0I2A3I'I3I 1 IAID|VI ISI 1 1 IJ;LAL)‘ 1 1 1 1 i

]ASIII*I‘IQLZJZI’lsl T U S A S S N S T SO S S N SN U W S S

1 1.5

L WU R U S S S S U WA T S S S S S S

B, 0 bX

S N Sy

PLLLAILJLlLlAlIIAA'ILl)ll

LA L

unl|‘|0|21]1'L3|||||1||||||1|11|Al|

L

L0 7L
J*l]lolll7

TN U S N VU ST S SO S N B S S

6
S A L 4
8

LAlIIJilIICAIIIAl

3l

i) 1'131 111 IALJ W T WY N S W | i N WD WO S S
L.‘...A.A1J.Lju....11.9.7.61,3...11#4“..LHI..“..)
oy . a ISUA ‘2‘,‘ {1.0||‘9J,.3‘ . 'TIAIEJ.LEL ‘L.OIOJK‘ulPl L |l
0 v vy IBA 2, VOV e e b |)
v vy v o IBRRY 20 v by Y ey e b e l\
1,2, L OR 2, Y06, 3 ‘/
L T S . T T JE T LT L I T e T T
1,4, ., , , ., qc 8, *110718,3 0 vl
15 v vy by e b 3 v b e
]I6I | IR S N U N | IJIEI N IO S T | Ll l 1 12I21'13l 1 1 | B0 W N T W S N | l Lo)
YWhooo v e 1S ey 20 Ve Y7 3 b b)
108y oy vy vy WOE v 1R800 3 v by h

]l9llllAlA115AAllllll'l l]IOI‘I7J'J3_LJJI|4A;llAIlLIAIAJIII

~—_

200 oy IBA 20 V993 b

20 0 v vy My ey e L W3 o by v 1‘1\
2,2, L BA 2, V01,5, ,,3, , SQ X CSN e4-- ST | lf
2,3, L ISIA 2, 088 e ;\
2,4, oy qbA 8 2 VS A(
2,5 , 0, IDSRE B Yy 02 by by

2161A11leianMlj_LLxl1J:l]1011181’£11|l|ll|1|1111|11411

2|7| I S Y T S T leFLl V| 14111*111011141'131 | I | l#lllllllllllllll
2.84“..H.IS‘Aluuéu.llL..3.141,5A.1|L“..L.1.t.‘u.j
Y N L N T e LU L R T T D
30 v v e 3

LU Y S R S VR S S N NN U0 U S S S S T SO UG SN W SN SN N T S U0 N SO Y A O N SO NV S O S S W N

kS

LU S N W S S S YO S0 N VA TS VN O SN VOO WA AN SN T SN S ST N S SR SR S0 AN YT VAT S WO S S S S A U S N N
'A_Llllt.nnln--nnxAnllnl11|11|||1||14A4|_LJ1|1|||)
1|0.1.3.,..H|+..,,“2A8‘4.8|...41....1A...“L‘.|A.A...T\
l|0,l,4,,1,,,|+‘,H‘,2,41“91,,2,,,1,51,,,,ll,,,lllll\lll‘lj
1,0,1.5...,Ulh...‘AAOAO.I..LLI....l.A.A..LUlA.llll
vevé, oo,y Ity 077,717, 7,7,7,70 0 0 o L0 b

IB IOLTLTI ol MI

-
L
-

wWoon7 ooy e 9

LMIIIDIDILIEI) W U N W § ‘ N I S

llolllslIlllll+JLlllI011!lllLAll

ITIOLPI 1 Il 1 S l 1 L 1 1 1

LO V9, o e 0

LA L~ — N

110|210|41111|+111_L 1]10121‘101|L111l|l|Llllllq;llllllll

1,02, 1, oy ey 106,400 e

]lolzlzlllllll+llllllzlllololllllllllllllllllllllllli

lnolzlgl1|l|J|+lll|1|2|o|418|l|l|l|111|4Lllllllxl||11|

|

L—d

SECTION:

7

PAGE:

A ‘ | UNIVAC Il UTMOST UP.3853

The table lookup coding at C. is a specific example of a general technique known as log 2 lookup.
This lookup employs the technique of comparing the middle table argument with the problem argument
to determine in which half of the table the desired value lies. The selected half of the table is then
divided to determine in which quarter of the table the desired value lies. This process continues until
the choice is narrowed down to two values, at which point the desired value is chosen. The name of
the technique derives from the fact that, if the log of the lowest power of two equal to or greater than
the number of entries in the table is taken to the base 2, the result is the maximum number of compari-
sons required to find a specific entry.

The list of delinquent account numbers used in the delinquent account number example presented earlier
in this manual can be considered a table. Lookup in this table was done by means of sequential table
lookup. In sequential table lookup, the first entry in the table is interrogated to see if it is appropriate.
If not, the second entry is interrogated. Then the third. And so on until the appropriate entry is found or
the end of the table is reached.

An example of a third type of table lookup, function table lookup, will be given later in this manual.

8

SECTION: PAGE:

UP-3853 UNIVAC Il UTMOST l

8 UTMOST

Up to this point in this manual a restricted subset of the facilities available in the UTMOST
language has been used in the coding of examples. The purpose of this chapter is to introduce
the programmer to the full range of the UTMOST language. This presentation will be made in
terms of an illustrative example, the statement of which follows.

A. EXAMPLE

Given a taxpayer item of the form:

WORD DATA
0 NNNNNN
1 GGGGGG,
2 GGOOO0O
3 PRO0O0O
4 OOAAAA,
5 AA0000

where:

N is a taxpayer identification
G is the income

P is the number of dependents
A

is the deductions other than for dependents

Produce a tax item of the form:

WORD DATA
0 NNNNNN
1 OOOOTT
2 TTTTTT

where:

N is the taxpayer identification

T is the unrounded tax

SECTION: PAGE:

2 ‘ ‘ UNIVAC Il UTMOST UP-3853

A deduction of $600 is allowed for each dependent. The tax is 20% of the taxable income.
Executing an input item advance subroutine with an SLJ to 2048 will deliver the address of
the zero word of a taxpayer item in 2100. Executing an output item advance subroutine with
an SLJ to 2548 will deliver in 2600 the address of the zero word of an output area for a tax
item. Start your coding in 1024,

B. FLOWCHART

0 ADV P ADV T pPN—TN 7.2(PG-600PP—PA)—>TT——®

LEGEND

P —-a taxpayer item

PN — the identification of P

PG — the income of P

PP — the number of dependents of P
PA — the other deductions of P

T — a tax item

TN - the taxpayer identification of T

TT - the amount of T

UP-3853

UNIVAC Il UTMOST

SECTION:

PAGE:

CODING

As has been done previously in this manual, this example might be coded as follows.

LABEL

A

OPERATION A

OPERAND

COMMENTS

-

L. U S 0 U RN S S NP \
2, ., 8Ly L 4 ., 10423 ,3 ADYV P L T L .(
3, ., , . bX Ly Y5 10422 03 L Ly L a1y L 1\
4. ., ., ,SLJ N *1021v ,3 ADV ;T T T) |1{
5, ., LX) L, . V4, 10420,,,3 b T L l\
6 ., LA .. .8, . .1 ,3.,15 .2 (PG - I610AOJPIP1 PA) =t=- TT J(
7, ., , ,,DM | R N T e T L L\
LA I B IV L UL L A R S A uJ
9 ., ., DA Coy W8 ¢2|'.l.5. T vy | L ‘X
'||01 L ISIA. , T |].0|l.3|'|3| T T Ll a1 L 1f
11‘1 L1 lLIAI L L1 |8|'| L |]|o|]|6|'|3| PR T ST N0 WA W A S S N N T O Lol J 1(
1.2 |, DM T N L - T e N LAJ
1131 | — | IsIAl 1 11 1 14I'I 1 Illolllsl'lal) O (O U S | I | S RN TN Y O Y S By | l 1 | I T - | lJ L A
| L. N B P L S N RS MR UJ(
VS5 ., /BA Wb VYYS e 8 a L SR R S| Ll A\
16, LA ‘o 8y 49t PN = TN S B L 1<
1171 i lslAl L | - Jll4l'l L1 l 121’1‘l4l I | l | W N N U N W T - | l 1 U B S . | l 1 J - l\
Ve R R S U SRS AT ST RS S N ST S ST ST S S S A A Lo L J
P G S S S T PN YN N VA W U UV SN S S W TN Y S SH WA (N S ST S WY SN WV SN RN S o 1 — .(
| W AN VO WY S U G W | y IS NS W T N S N GO | J I S N U S W R . L) IR VO SN T WO NS N | l 1 y U D U -t l 1 L1 l)
Y ST NN N N GOV S S S S S U A VY Y Y N N OOV YO N S U N T WY S A TS ST L1 1\
1lolll4l 1 |+l 1 4 4 1§ lolololololol B | Lt 11 l 11 | I N N R T l 1 J I S S l 1 11 l)
llolillsl 1 |+l il | S lol U T) lLlJ B I T T S I | l) Y W U T N S W S | ' L) T S SO N 1 1 L1 l\
1016 +, Doy, ,:,0000200 b sy 4 T L 1/
10v7 0ty v by e O b e L NI I 11&
‘Iolllsl 1 l+l 1 1 | lol R S | l R N U T U U S | l | N T W TS NN N W T | | 1 111) 9 l i Ll l\
l|01119| [S W W 1:1016I0|°lolol) W S WY S N W S I | S W T T S W W I 1 | S S T | 1 1 11 l(
1020 + L, ., ,2600 4l i i iy i aaLl T L ‘}
1021 o - 2548 I T N L. 1(
110|2|2| R L ‘2‘1L0.01 T e L L L LX
1023, 4 | 2048 Y N

8

SECTION: PAGE:

4 } ‘ UNIVAC 11l UTMOST UP-3853

D. LABELS

UTMOST language relieves the programmer from keeping track of relative addresses. Instead a
label is used, A label may be from one through sixteen characters long, through only the first
eight(8) characters are considered by the assembler. The first character may be letters of the
alphabet or decimal numbers. A label must begin in the first column of a line and must contain no
spaces, but must be followed by a space. The example used in this chapter is restated below to
make it appropriate for coding with labels.

1. Example

Given a taxpayer item of the form:

WORD DATA

0 NNNNNN
GGGGGG,
GGOO0O
PPO0O0O
OOAAAA,
AAOO00

G b W N

where:

is a taxpayer identification

N

G is the income

P is the number of dependents
A

is the deductions other than for dependents

Produce a tax item of the form:

WORD DATA
0 NNNNNN
1 00O0OTT
2 TTTTIT

where:

N is the taxpayer identification

T is the unrounded tax

A deduction of $600 is allowed for each dependent. The tax is 20% of the taxable income.
Executing an input item advance subroutine with an SLJ to the label FRD will deliver the
the address of the zero word of a taxpayer item in the storage location labelled FILEP.

Executing an output item advance subroutine by means of an SL] FWR will deliver in
label FILET the address of the zero word of an output area for a tax item. Label the first
instruction in your program to be executed with the label START.

UP-3853 UNIVAC Il UTMOST 8 :
SECTION: PAGE:
2. Coding
LABEL A OPERATION A OPERAND A COMMENTS
slTlAlRlTl leLl I N N Y W S | l]l_._L - IAL W N TN W S W S S l | VS W W WS VS W W Y l 11 U S T S 1 l § W W W S
Y S W |J}Lx4 | 434'4 L]l FURTU USSP URE WS N WA TN W SN NS VA T S S S S S SR SR oo by
c l. i1) xSALn'lI S SN T B | |*|K|]|’131 1 QLAJDIVA IPI) S N T . lLLl | - § VO W W Y l § WS I W S W
TR T N W | |4L|x1 | 1]151 -*lKlzl'lsLl PR S Y WA U WU N SR Y A ST S MO U AR I ST N R L(
il d I L i ISALIJI il l L l i\ I*IKJ3I'131 1 1 L IAIDIv ITI Ll Il) I Y l Lo, A L i i d I N J
T T S R T le‘ | l]L4A'l*l_KL4l’|31 P SN TR U S YA D WO ST R WA SN N SO W S ST U I N ST Lk
RS W W W S JJ-¢A1 | 181’1 131’1 1151 S S S S 121 |(1 lPlGl 16 OAOLPIPI L Al 1)1 il B JTlTl l)
§ S U WO T | lDIMl l J DR R W B | |K|5|'13| | Y W N T U SO S S | l) I T T S S N S T | l 11 F I T T l F I S S L\
BN WO NS W S B | 1Dlsl | |6|'| |5|'|l.51 TSI TR T N WY SR WY G I IS VY TS (N U N SUU SN 1 l 41 L4t l W N 1/
I & i} Il Il 1 IDAAI I o — 161’ I2L'lllsl . l) I l Akl I dedd l 4 I J. 4 1 ;Ll 1 - A A
| I OO [T N | lslAl | - |6|’| |K|7|'|314 I Y S W N T U | l U T S TN N G N S | | Ll B W Y W S | l S B | L/
L1 LA L 8 K8 3 v b] [R B S l\
1 1 1 i 1 I S T | IJ A 1 i IKI7I'I31 1 L i 1 1t 1 l L1 1 i A | I i1 l 1 1 1 1 Il . A l 1 i.L 1 L)
i W | lslAl | |41'| LKl‘lol'lsj T I T N U I B | | P SR N R i N B T I S 1 I N 1&
. dd L 1 IDIMI I Il I I 1 I IKI6I'I3I I L I A A 1 Il L 1 l 4 1 A 1 L 1 I\ 4 4 ' L 1 L I L A A] PR 1 " L_)
B W W U T | LDAAI 4 161'1 1K|]401'134L1 PR S T ST WA ST W AN U N N WY WA WU S S S B O [R E S W S 1(
R T U W | anAn | lleL lol’ulasl [I;LPINI iy I 1T1N| [TR S ool L)
S W S N R I | ISIAI | 1114|'|21’|]|4| PR TN NS T SN0 Y W WA TS Y SN SO TN WA N S WY S A N W I T | l . J
ol AT S ST S ST S S S S N AT S AT ST RN WY NI [I B AR | L)
K| .II Il I 1 L 1+l 4 l A il lFJRlDA I A l b i il I L A 1 A 1 l A 1 1 i Lk R ‘ | - - i i 3 b l 1 4. A 4 l\
K|2| [| PN |F1I|L|ELP1 PR T G T YOO S T OO S T N WA S SO Y WA W0 VA S S WY [R ST B S R l)
K3 oot b R e a s b i L [N B 11&
K|4| AR LSRN N lFillLlELTl PR TS T TN VAN WA O WA T N U0 VRO T U D S S0 N OO N O PRI S SRR BN 13
KS v e by 42®6,90000) b e IR U B R 1{
Kl6| _— L 1 J+1 A l Il Il lol A i PR e l#l il § S S N U T l _— 1 1 A 1 L — l - N d I\ 1 l ¥ A IJ
K171 TSNS S N R 1041 P S G U NN S S S TN N ST OO WO W N O T W ST S S S U S PN S S RS S L(
K18| cr v ot |:|010|°|o|210| TN U W S WY WA W N N VY T N W S B SN AN O O FR R T W N G S S l\
K9 v v v oty vl 0420000000 v b e s L R S U B S L(
Klllol F S | l+l Il | r | 1°| | S S P W1 | F IS W W N N W I S | l | S T TR U U N W Bt l I U B U T | l R L\
[N TN VNS YOO SN SN U WU VAN VNS VO VAN N VN CRNT VNN S A0 VA SN S ST SO ST 0 WA T (N OO0 S S S W MY A A AU LllullLlll)

8

SECTION:

6 ‘ } UNIVAC Il UTMOST UP-3853

PAGE:

3. STUDENT EXERCISE

Given an input item of the form:

WORD DATA
0 NNNNNN
1 L0AAOQO
2 OBBOOO
3 OCCOo00
4 ODbDO0O
where:

N is a key

A is a quantity

B is another quantity

C is a third quantity and has a minimum value of .011

D is a fourth quantity produce

produce an output item of the form

WORD DATA
0 NNNNNN
1 OOEEEE
2 FFFFFF
3 GGGGGG
where:
N is the key
E = AB
F - AB
.9C
G-AB-D
.9C

Executing SLJ FDR will deliver the address of the zero word of an input item to FILEI.
Executing SLJ FWR will deliver in FILEO the address of the zero word of an output area
for an output item. Label the first instruction in your program START.

UP-3853

8

SECTION:

UNIVAC 11l UTMOST |

PAGE:

DEFINITION OF TERMS

A line of UTMOST coding consists of three fields, a label, an operation, and an operand. Labels
have been defined above.

The operation is the second field on a line. Examples of operations are the mnemonic op codes
of instructions, the plus or minus sign of a constant, and the ICW of an increment and compare
word. An operation can contain no spaces within it, must be preceded by at least one space and
in general, must be followed by at least one space. The plus and minus operations are the sole
exceptions to this last rule in that, if the programmer desires, the operand of a constant line
can immediately follow the plus or minus operation with no intervening space.

The operand constitutes the rest of the UTMOST line. An operand is made up of one or more
expressions, the expressions being separated by commas. An expression together with its
following comma can contain no spaces within it. However, if the programmer so desires, spaces
may be left between the comma of one expression and the beginning of the following expression.
The last expression in an operand has no comma following it.

OPERATORS

All expressions written thus far in this manual have consisted of one unit. The following are
examples of units taken from the above coding.

C1

: 060000

UTMOST allows an expression to consist of two or more units connected by operators. The
operator describes to the UTMOST assembler how the units making up the expression in
source code are to be combined to form the expression in object code. For example, ‘“+’’
an operator. It tells the assembler to form the object code expression out of the arithmetic sum
of the source code units.

is

To clarify this explanation, consider the label K5 used as the address of the first DM
instruction in the above coding. In transforming this source coding to object code, the UTMOST
assembler is going to substitute for K5 in this DM instruction the relative address that it
assigns to the constant—:060000.

Now consider the expression K5 + 3. This tells the UTMOST assembler to arithmetically add
together the relative address it assigns to the label K3 and the binary equivalent of the decimal
number three. The result will be the relative address assigned to the label K8. Thus, in the
above coding the expressions K5 + 3 and K8 are equivalent. Consequently, in this coding the
instruction LA 8, K8, 3 could have been just as correctly written LA 8, K5 + 3, 3.

Other operators will be described later in this chapter.

8

SECTION:

g | 1 UNIVAC IIl UTMOST UP-3853

PAGE:

G. THE USE DIRECTIVE

Instead of the programmer specifying the cover index register in instructions addressing the coding
itself, the USE directive may be employed. A USE directive has the following form:
USE e1 , ezy 8,3, ...

where USE is the operation, and e, €, €5, ... the operand. The expressions €, €, €4, 0.
s
are index register numbers,

The UTMOST assembler treats the USE directive in the following way. It interprets the directive
to mean that the next 1024 lines of coding immediately following the USE directive are to be
covered by the first index register specified, that the next 1024 lines of coding are to be covered
by the second index register specified, that the next 1024 are to be covered by the third index
register specified and so on. On the basis of this assumption, the UTMOST assembler will insert
the proper cover index register specification into the instructions addressing the coding itself.

In addition to causing UTMOST to insert cover index register specifications, the USE directive
also causes the executive routine to properly load a program’s cover index registers before turning

over control to the program. Consequently, once a USE directive has been given, no further concern
with cover index registers is necessary.

For efficient index register use, it is recommended that in writing a program, only one USE direc-
tive be used to specify cover index registers for coding.

The USE directive is an assembler directive. It is a communication between the programmer and
the assembler. As a consequence, although it takes up a line of source code, it will not cause the
generation of any lines of object coding. It is, instead, absorbed by the assembler.

The following is coding, incorporating the use directive, for the example being used in this
chapter.

UP-3853

UNIVAC I

UTMOST

SECTION: PAGE:
LABEL A OPERATION A OPERAND A COMMENTS
v 1 USE R B Low v vy b
SATJAIRITA 1 A - l ASLLA Jl i 1 I 1 l*lKIll L 1 IAIDIVI IPI 1 1 l 1 1
RS W N WO WU S R T | Alen 1 Alnsl'n l*lKlzl 1. i | T B 1 I L1 14 l VU L l
1 1 1 1 1 1 1 il I llelJI 1 1 I 1 I.IKI3I 1 1 lAlDLvl]T 1 1 I 1 1 1 1 1 I . l
A Il A A L D, l llel 1 A114l'l l*lKl4l Il 1 l 1 i 1 L 1 L 1 I 1 L 1 L l A Il 4 i
) I G NS S S S T S 1 I 1L|A| Il |3A'| 1 131’1‘ 51 1 |'121 l(l ‘PIG = |61;0¢°1P L 1PLAi - ITATL
i i 1 L 1 1 1 1 1 I IDAMI 1 1 1 I 1 IKISI 1 1 1 l 1 1 1 1 1 1 1 l 1 1 1 ' 1 l A 1 A ll
1 1 1 1 1 1 1 A1 l ADISL 1 I6A'I L Isl'l‘lsl i l 1 i 1 i 1 1 1 l 1 1 1 1 l 1l 1 1 l}
PR S S R SRS | JDlAl It 16"1 L 121'11451 L | DS S S S S | 1 | ol [1 l\
L i ! 1 J s A 1 I ISAAI A I6 I'] s lKI7l 1 L L I Y W NN N | L L L I L 4 A Ll A 1 A l\
1 1 i 1 1 1 A J i I 1 Ll AI 1 LB 't l L 1 Klsl 1 1 1 l 1 1 1 i . 1 l 1 1 1 1 1 l 11 L 1/
TS A AT SRR L AL M IKL7