UNISYS

System 80
0S/3

Information Management
System (IMS)
COBOL/Assembler
Action Programs

Programming
Guide

Copyright © 1990 Unisys Corporation
Al rights reserved.
Unisys is a registered trademark of Unisys Corporation.

0S/3 Release 13.0 March 1990

Printed in U S America
Priced ltem UP-9207 Rev. 2 - Update A

The names, places, and/or events used in this publication are not intended to correspond to any individual, group,
or association existing, living, or otherwise. Any similarity or likeness of the names, places, and/or events with the
names of any individual living or otherwise, or that of any group or association is purely coincidental and
unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product and related material
disclosed herein are only furnished pursuant and subject to the terms and conditions of a duly executed Program
Product License or Agreement to purchase or lease equipment. The only warranties made by Unisys, if any, with
respect to the products described in this document are set forth in such License or Agreement. Unisys cannot
accept financial or other responsibility that may be the result of your use of the information in this document or
software material, including direct, indirect, special, or consequential damages.

You should be very careful to ensure that the use of this information and/or software material complies with the
laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such
changes and/or additions.

Correspondence regarding this publication should be forwarded to Unisys Corporation either by using the Business
Reply Mail form at the back of this manual or by addressing remarks directly to Unisys Corporation, 0S/3 Systems
Product Information Development, P.0. Box 500, Mail Station E5-114, Blue Bell, Pennsylvania, 19424, U.S.A.

PAGE STATUS SUMMARY

ISSUE: Update A - UP-9207 Rev. 2

Page Update Page Update Page Update
Part/Section Number Level Part/Section Number Level Part/Section Number Level
Cover Orig. 1 Tab Breaker Orig.
1 thru 1 orig.
Title Page/Disclaimer A
12 Tab Breaker Orig.
PSS iii A 1 thru 60 orig.
Acknowl edgment v orig.| |Appendix A Tab Breaker Orig.
1 thru 2 orig.
About This Guide Tab Breaker Orig.
vii thru xi Orig.| |Appendix B Tab Breaker Orig.
1 thru 69 orig.
Contents xiii thru xxviii Orig.
Appendix C Tab Breaker Orig.
1 Tab Breaker Orig. 1 thru 71 orig.
1 thru 11 orig.
Appendix D Tab Breaker Orig.
2 Tab Breaker Orig. 1 thru 13 orig.
. 1 thru 13 orig.
(ir Appendix E Tab Breaker Orig.
oy 3 Tab Breaker Orig. 1 thru 22 Orig.
1 thru 38 Oorig.
Appendix F Tab Breaker Orig.
4 Tab Breaker Orig. 1 thru 21 orig.
1 thru 19 orig.
Appendix G Tab Breaker Orig.
5 Tab Breaker Orig. 1 thru 8 Orig.
1 thru 60 orig.
Appendix H Tab Breaker Orig.
6 Tab Breaker Orig. 1 orig.
1 thru 52 orig.
Index Tab Breaker Orig.
7 Tab Breaker Orig. 1 thru 19 A*

1 thru 28 orig.

8 Tab Breaker Orig.
1 thru 8 orig.

User Comments Form

Back Cover

9 Tab Breaker Orig.
1 thru 17 Orig.

10 Tab Breaker Orig.
1 thru 27 orig.

*New pages

AN

UP-9207 Rev. 2

il
Update A

PAGE STATUS SUMMARY

(,,\ ISSUE: UP-9207 Rev. 2
Page Update Page Update Page Update
Part/Section Number Level Part/Section Number Level Part/Section Number Level
Cover 1 Tab Breaker
1 thru 11
Title Page/Disclaimer
12 Tab Breaker
PSS iii : 1 thru 60
Acknowledgment v Appendix A Tab Breaker
1 thru 2
About This Guide Tab Breaker
vii thru xi Appendix B Tab Breaker
1 thru 69
Contents xiii thru xxviii
Appendix C Tab Breaker
1 Tab Breaker 1 thru 71
1 thru 11
Appendix D Tab Breaker
2 Tab Breaker 1 thru 13
1 thru 13
Appendix E Tab Breaker
{f’“\\ 3 Tab Breaker 1 thru 22
__/ 1 thru 38
Appendix F Tab Breaker
4 Tab Breaker 1 thru 21
1 thru 19
Appendix G Tab Breaker
5 Tab Breaker 1 thru 8
1 thru 60
Appendix H Tab Breaker
6 Tab Breaker 1
1 thru 52
Index Tab Breaker
7 Tab Breaker (To be supplied)
1 thru 28
User Comments Form
8 Tab Breaker
1 thru 8 Back Cover
9 Tab Breaker
1 thru 17
10 Tab Breaker
1 thru 27

UP-9207 Rev. 2 i

N

UP-9207 Rev. 2

Acknowledgment

We are indebted to the many systems analysts and staff members of Unisys branch
offices and customer organizations who helped us develop the OS/3 IMS library. They
gave us suggestions, answered numerous questions, reviewed the manuals, and
provided us with “real-life” programming examples. The customer organizations
assisting us include:

¢ Gay and Taylor Insurance Adjustors, Winston-Salem, NC

e Penn Ventilator Company, Philadelphia, PA

* Victor Valley Community College District, Victorville, CA

The Unisys organizations assisting us include:

Los Angeles Access Center, Customer Support Services, Los Angeles, CA

Charlotte Commercial Branch, Greensboro Office, Greensboro, NC

e Minneapolis Marketing Branch, Minneapolis, MN

Wellesley General Branch, Wellesley, MA

Philadelphia Manufacturing Branch, Wayne, PA

¢ Des Moines Marketing Branch, West Des Moines, IA

System 80 Benchmark and Demonstration Services, Blue Bell, PA

LY
h

About This Guide

Purpose

This guide is one of a series designed to instruct you in using the Information
Management System (IMS) for Operating System/3 (0S/3). It describes all aspects of
writing action programs in COBOL and basic assembly language (BAL).

Scope

This guide provides detailed information on coding and implementing IMS action
programs using COBOL and the basic assembly language. IMS action programs may
be written in COBOL 74, COBOL 85, or Extended COBOL. Thus, the single term
“COBOL?” is used in this document unless it is necessary to refer to a specific version
of the language.

The major topics in this guide include the basics of IMS action programming, rules
and guidelines for coding action programs, using the special features of 08S/3 such as
screen format segvices and distributed data processing capabilities, preparing action
programs for execution, and action program problem analysis using SNAP dumps.
Numerous examples are provided to illustrate the principles and guidelines contained
in this document.

Audience

The intended audience for this document are programmers who have knowledge and
experience in software development using COBOL and/or BAL, and who wish to use
these languages to develop programs for use in the IMS environment.

Prerequisites

The programmer planning to develop IMS action programs should be experienced in
the use of COBOL and/or BAL, and have a general understanding of IMS, how it
operates, and what is needed to do to make it operational. This information is
contained in the IMS Technical Overview, UP-9205.

UP-9207 Rev. 2 vii

About This Guide

Organization

viii

Information in this guide is divided into twelve sections and eight appendices:
Section 1. Transaction Processing in the IMS Environment

Introduces COBOL and BAL programmers to action programs and their interface with
IMS. Also previews actions, transaction structures, action program termination,
succession, and single-thread and multithread environments.

Section 2. General Rules for Coding Action Programs

Discusses COBOL and BAL action program structures and compares them to regular
COBOL and BAL program structures. Describes the activation record, its contents,
structure, and use.

Section 8. Communicating with IMS

Provides a more detailed description of the COBOL and BAL program information
blocks, including formats, contents, and use.

Section 4. Receiving Input Messages

Describes the input message area, including the formats, contents, and use of the
input message control header format for COBOL and BAL programs and the
description of input message text. Explains how an IMS action program can clear
ICAM queues.

Section 5. Processing Data Files

Tells how to access and update data files.

Section 6. Sending Output Messages

Covers all aspects of output messages, including the formats, contents, and use of the
output message control header for COBOL and BAL programs; the use of the SEND
function for multiple output or message switching; the use of a work area for output
messages; continuous output; and output-for-input queueing.

Section 7. Using Screen Format Services to Format Messages

Discusses and shows examples of how to display a screen format and a replenish
screen or error format; handle error returns; receive formatted input in a successor

program,; display a screen format on an auxiliary device; and use screen formats in a
distributed data processing environment.

UP-9207 Rev. 2

P
\
{ i

About This Guide

Section 8. Calling Subprograms from Action Programs

Describes how to call subprograms from COBOL or BAL action programs, and
illustrates the use of a subprogram.

Section 9. Action Programming in a Distributed Data Processing
Environment

Presents basic distributed data processing terminology; defines and illustrates
directory, operator, and action program routing of transactions; and describes how to
initiate a remote transaction and how to process a transaction initiated by a remote
system.

Section 10. Additional Special Features

Describes the downline load feature and how to write your own downline load
program. Also describes how to disconnect a single-station dial-in line from an action
program, how to initiate batch jobs from your action program using the RUN function,
and how to perform a SETIME WAIT within an action program. Explains the use of

transaction buffers by BAL and COBOL programs to acquire and release blocks of
main storage.

Section 11. Compiling, Linking, and Storing Action Programs

Provides control streams that are needed to compile and link your action programs,
and describes how to store them in load libraries.

Section 12. Debugging Action Programs

Discusses all portions of termination and the CALL SNAP dump, and provides
examples and a step-by-step explanation of how to interpret them.

Appendix A. Statement Conventions

Describes the format conventions used in this guide.

Appendix B. COBOL Action Programming Examples

Contains complete compiler listings with accompanying flowcharts of sample COBOL
action programs discussed throughout this guide. Examples include simple and dialog
transactions, external and immediate internal succession, screen format services,
sending a message to another terminal, output-for-input queueing, and continuous
output. '

Appendix C. Basic Assembly Language (BAL) Action Programming Examples

Contains complete compiler listing with accompanying flowcharts of sample BAL
action programs discussed throughout this guide.

UP-9207 Rev. 2 X

About This Guide

Appendix D. Status and Detailed Status Codes

Provides status codes and detailed status codes returned after execution of function
calls issued by action programs.

Appendix E. Generating Edit Tables
Discusses the edit table generator, including coding rules, parameter values that
describe the edit table, edit table execution, and error processing. Shows how input

messages entered at the terminal are edited. Includes a sample action program that
uses an edit table.

Appendix F. Using Device-Independent Control Expressions and Field
Control Characters

Explains device-independent control expressions (DICE), their values, interpretation,
how to create them via the DICE macroinstructions, and when to use them.

Appendix G. Differences between Extended COBOL and 1974 ANS COBOL

Describes the minor differences between using the extended COBOL and 1974
American National Standard (ANS) COBOL compilers to compile action programs.

Appendix H. Listing IMS DSECTs

Related Product Information

As one of a series, this document is designed to guide you in programming and using
the OS/3 Information Management System. Depending on your need, you should also
refer to the current versions of other documents in the series. Complete document
names, their ordering numbers, and a general description of their contents and use
are as follows:

Note: Throughout this manual, when we refer you to another manual, use the
version that applies to the software level in use at your site.

Information Management System (IMS) Technical Overview, UP-9205
Describes the basic concepts of IMS and the facilities that IMS offers.

Information Management System (IMS) System Support Functions
Programming Guide, UP-11907

Describes the procedures to generate, initiate, and recover an online IMS system.

=

X UP-9207 Rev. 2

/ A

About This Guide

Information Management System (IMS) Action Programming in RPG II
Programming Guide, UP-9206

Describes how to write action programs in RPG II with extensive examples.

Information Management System (IMS) Data Definition and UNIQUE
Programming Guide, UP-9209

Describes data definitions for use with the uniform inquiry update element (UNIQUE)
and explains how to use UNIQUE.

Information Management System (IMS) Operations Guide, UP-12027
Describes terminal operating procedures, standard and master terminal commands,
and special-purpose IMS transaction codes. Also includes UNIQUE command formats

with brief descriptions.

Information Management System (IMS) to DMS Interface Programming
Guide, UP-8748

Describes how to access a data base management system (DMS) data base from IMS.
Extended COBOL Programming Reference Manual, UP-8059

1974 American Standard COBOL Programming Reference Manual, UP-8613
COBOL 85 Technical Overview, 7002 3982

COBOL 85 Programming Reference Manual, 7002 3940

Assembler Programming Reference Manual, UP-8914

If your action programs access a DMS data base, consult the following documents:
IMS to DMS Interface Programming Guide, UP-8748

DMS Data Description Language Programming Reference Manual, UP-8022
DMS Data Manipulation Language Programming Guide, UP-12013

DMS System Support Functions Programming Guide, UP-10870.

Notation Conventions

Information on statement conventions used in this document is contained in
Appendix A,

UP-9207 Rev. 2 Xi

Contents

Acknowledgment

About This Guide

Section 1.

Section 2.

Section 3.

UP-9207 Rev. 2

Transaction Processing in the IMS Environment

1.1, Introducing IMS ...t 11
1.2. Interacting with IMS ..ot 11
1.3. Basic IMS Terms teeeesetesissesstesesneresaatesaaearateeaeesenesssasaesatessanesras 1.2
1.4. Structuring Transactionscccccccinnniisnnsnisicsnsnisiesnesssessanssnnines 13
1.5. Writing Efficient Action Programscccccccevvvciinnnincirinncsnnssnnsecnnen. 1-7
1.6. How IMS Action Programs Interface with IMS 19

General Rules for Coding Action Programs

2.1. COBOL Action Program Structureccceceiivmnnnscnnssecssnessnnssaniens 2-1
2.1.1. Identification DIVISIONcccocereerrerrrnrecrericsensisnnnsssessssessssesesssnnsanes 2-1
2.1.2. Environment DIVISIONc.ccererreeeseerueesrensensnesssesssesssunsssnsssessssisans 2-1
2.1.3. Data DIVISIONccceeeeverreeeneesseseseesseerennessesssssssossesssessssesssnsssnsnnss 2-1
2.1.4. Procedure DIVISIONcccccoceereerneeesrerseerenseseeesseessssssssssssssesssnessnns 2-3
2.2. COBOL Program Structure Comparisoncceccvnvernecissenssencsanssens 24
2.3. COBOL Language Restrictionsccccecveccininninnnnnnessccssnnssncssannnens 26
2.4. BAL Action Program Structure . rerreesaessessaeeteenaenessnesesaasstests 28
2.5. The Activation Recordccceeeivienrrnnrcinncnnensnenissnesssessssssssannesses 2-10

Communicating with IMS

3.1. IMS Answers Action Program Message Processing Questions 31
3.2. COBOL Program Information Block Formatccoceevveieniennnnne 32
3.3. Basic Assembly Language Program Information Block Format 34
3.4. Contents of the Program Information Blockcccccevnvnnnnnensecennnns 37

xXiii

Contents

Xiv

3.5.

3.6.

3.7.
3.8.
3.9

3.10.

3.11.

3.12.
3.13.

3.14.
3.15.
3.16.
3.17.
3.18.

3.19.

Obtaining Completion Status (STATUS-CODE)c.ccoovevvervveernennnn. 37
3.5.1. Status Code of O with a Non-Zero Detailed Status Code 37
3.5.2. Testing Status Codes in a COBOL Action Programccccoeeuene 38
3.5.3. Testing Status Codes in a BAL Action Programcceceeeeeeeennne 39
3.5.4. Receiving Error RetUMScooveevvireeceiiicceeececeeeeeee e 39
Obtaining Additional Status Information
(DETAILED-STATUS-CODE)cocoveeieeeeieceeeeeeeeeeteercenr e ene s 310
3.6.1. Detailed Status Codes for Invalid Request (Status Code 3) 310
3.6.2. Detailed Status Codes for |/0 Error (Status Code 4)cceeueunee. 310
3.6.3. Detailed Status Codes for Violation of Data Definition

(Status Code 5) ...ccveeeeeveeereieieiiteceee et ene 311
3.6.4. Detailed Status Codes for Internal Message Control Errors

(Status Code 6)ccevevueeeeeieciiteseeeeeee et 311
3.6.5. Detailed Status Codes for Screen Formatting Errors

(Status Code 7) ..oerueerereecreereirececeee e 311
3.6.6. Additional Information on Detailed Status Codes (Status Code 0) .. 311
Obtaining Defined Record Status (RECORD-TYPE)cccooevveernennee 312
Identifying Succeeding Action Programs {SUCCESSOR-ID) 312
Using SUCCESSOR-ID to Display Error Codesc.ccoeouvervvveeeeenennne 313
Terminating Action Programs (TERMINATION-INDICATOR) 315
3.10.1. Normal Termination (N Indicator)ccceecervirvevvrvereireeeereeesnns 315
3.10.2. External Succession (E Indicator)ccoceeveeverevevereeeeeeeenen. 315
3.10.3. Immediate Internal Succession (I Indicator)ccoecevivvercennnennen. 317
3.10.4. Delayed Internal Succession (D Indicator)cccoeuvirricirnnnene 318
3.10.5. Abnormal Termination (A and S Indicators)ccceveveerereeennee. 319
3.10.6. Involuntary Terminationccccoeeveviereeveereeesneeceeereeeeeeseeseens 320
3.10.7. SUMMAIY ottt et ets e s e s s e s en 321
Holding Record Locks (LOCK-ROLLBACK-INDICATOR)c.c........ 322
3.11.1. Establishing a New Rollback Point (N Indicator)cceeovveueenen. 324
3.11.2. Reestablishing the Old Rollback Point (O Indicator) 324
3.11.3. Holding Record Locks Across Actions (H Indicator)cceen..... 326
3.11.4. Releasing Record Locks for Pending Updates (R Indicator) 3-26
3.11.5. Lock for Update Featurecceeeevveeveeererieiseceeeeeseeseeeneeenns 330
Transaction Identification (TRANSACTION-ID)ccooceeivveereererenenne 330
Identifying a Defined File (DATA-DEF-REC-NAME,
DEFINED-FILE-NAME)ocviiiiieeiecictecceeeee st see st ee s n 330
Obtaining Standard Message Size (STANDARD-MSG-LINE-LENGTH,
STANDARD-MSG-NUMBER-LINES)ccoovvvrerririreceeee e 333
Setting Work Area Values (WORK-AREA-LENGTH,
WORK-AREA-INC) ..ottt eene 334
Setting Continuity Data Values (CONTINUITY-DATA-INPUT-LENGTH,
CONTINUITY-DATA-OUTPUT-LENGTH,
CONTINUITY-DATA-AREA-INC)ccoitieeiicecceecee s e e 334
Success-Unit Identification (SUCCESS-UNIT-ID)ccoocovvveiveveeieenne 335
Determining Source Terminal Characteristics
(SOURCE-TERMINAL-CHARS)oooviiiitiicieeccececre e eseeenea e 336
Determining Remote Transaction Status (DDP-MODE) 338

UP-9207 Rev. 2

N

VAN

Contents

Section 4.

Section 5.

UP-9207 Rev. 2

Receiving Input Messages

4.1.
4.2,
4.3.
4.4,

45.

4.6.
47.
4.38.
4.9.
4.10.
4.11.

Need for Input Message Areacccoccceveriiinieenneninencnnenseeees 41
Input Message Area Contentscccoceceeeniniininnniincicninccnannens 42
Size of Input Message Areaccceceeveeceenncninininncnnisneienns 42
COBOL Action Program Input Message Areacccccoeveerveerceneennen. 44
4.4.1. Input Message Header Formatcccoeveenveeriernennnncccncen, 44
4.4.2. Input Message Text Descriptioncccceeveeeeerceeenenneeeseeieeneenne 44
BAL Action Program Input Message Areacccoccevveeeeecnenncnnneenns 46
45.1. Input Message Header Formatc.ccoveeieieevceenncrenecceceee, 46
Contents of Input Message Area Control Headerccocceeens 4.7
Identifying the Source Terminal (SOURCE-TERMINAL-ID) 48
Identifying the Action (DATE-TIME-STAMP)ccociininenncreceeeee 410
Obtaining Input Message Text Length (TEXT-LENGTH)c...c..... 411
Identifying Auxiliary Devices (AUXILIARY-DEVICE-NO)ccccceuee. 413
Input Message Textccccovviiivininienniereeeeee e 415
4.11.1. Control Character SEqUENCEScccvrvreerverreiercere e 415
4.11.2. Devicedndependent Control EXpressionscccceeeevceeereersennnes 415
4.11.3. Field Control Character SEQUENCEScceeevereererneeeerecrvneesensenens 418
4.11.4. Receiving FreeForm Inputoocvvieieniiieceeer e 418
4.11.5. Receiving Screen-Formatted Inputcocccveeriiiriinniiice 419

Processing Data Files

5.1.
5.2.

5.3.
5.4.

5.5.

5.6.

ACCeSSINE FIlESooovviieiieer et s e 5-1
I/OFunction Callsoooneiiiicee et 53
5.2.1. Function Call Positional Parameterscceecvvreemrcienrcceninecninenn, 53
Accessing Indexed Filescocoimiiiniiincinncccrr e 57
Random Functions for Indexed Filesc.cccccceviiiiniennicennccenciees 57
5.4.1. Reading Records Randomly (GET)ccceverimrinnercnnenicsicncnins 58
5.4.2. Reading Records for Update (GETUP)ccccvirveninninncicnnnnnne 511
5.4.3. Writing Updated Records (PUT)cccoeeereeeeeneenenrersceeneseeneeenes 512
5.4.4. Deleting Records (DELETE)cccevervrerseervensseescneeseeseneeeeesseens 513
5.4.5. Adding Records (INSERT)cceciriieeererieecereese et 5-15
Sequential Functions for Indexed Filesccccoccerviriiiinnniinnininns 517
5.5.1. Setting the Key of Reference for Sequential

Processing (SETK) ...eeeeveeeireeccie e cree e rees e 5-18
5.5.2. Setting Indexed Files from Random to Sequential

MOAE (SETL) eeeeieieieceeereeeeeesteetee e e esesseseesresaessessaessesneeeesnas 5-20
5.5.3. Reading Records Sequentially (GET)c.ccceveierrcrirnnensesieneenns 5-22
5.5.4. Setting Indexed Files from Sequential to

Random Mode (ESETL) ..eovueeeireeeicee e 523
Accessing Relative Filesccccocoviiviiiiinrieeee s 5-24

XV

Contents

XVi

5.7.

5.8.

5.9.

5.10.
5.11.

5.12

5.13.

5.14.

5.15.
5.16.

5.17

Random Functions for Relative Filesc...ccoeeveevmnierciecneeenns 524
5.7.1. Reading Records Randomly (GET)cccceeveererererierecrerenneennns 5-25
5.7.2. Reading Records for Update (GETUP)c.ccoveerecmvcrrcercnccrcenee, 5-26
5.7.3. Writing Updated Records (PUT)ccceeveeeeeecirceeeeeeeeceeeee 5-26
5.7.4. Deleting Records (DELETE)cceeeeeeeeeieeeeeereeeeeeee e 5-27
5.7.5. Adding Records (INSERT)ccceeeveeeeirirrceeceeccee e 5-30
Sequential Functions for Relative Filesccccooorenenincececnan, 5-32
5.8.1. Setting Relative Files from Random to Sequential
MOdE (SETL) oottt et eae e 5-32
5.8.2. Reading Records Sequentially (GET)ccccevereeecrercrccrerenene 5-34
5.8.3. Setting Files from Sequential to Random Mode (ESETL) 5-34
Accessing Sequential Disk and Tape Filesccccoecvvveevecvneennnenn. 5-35
5.9.1. Reading Records (GET)ccoeeeieviiiceieccteecceeeeceeeceee e 5-36
5.9.2. Writing Records (PUT)eeiiveiiieeseece ettt 5-36
Accessing Defined Filesccoceeveevmiiericiiiciicrecceecee e 5-37
Constructing Function Calls to Defined Filesccccoeevvveeeereneenn. 5-38
5.11.1. Function Call Positional Parametersccccecoevcrcinrcieccieenennee 5-38
Processing Defined Recordsccccoeveieiieieecceeccecceecceeeeae 540
5.12.1. Handling Record TYPESccevureveirieeiceeceeee e eeeeeeeseeeenne 540
5.12.2. Interpreting Status Byte Returnsccccevveeevemreveceecennneennnnn, 544
Random Functions for Defined Filesccccecuvevvrvvreceececcnnennen, 546
5.13.1. Reading Defined Records Randomly (GET)cccevvviveervrvernrenenn 5-46
5.13.2. Reading Defined Records for Update (GETUP)ccccvevrvennnneen. 5-46
5.13.3. Writing Defined Records (PUT)cceeeemeeeceeeeceeceeceececieeaeans 547
5.13.4. Deleting Defined Records (DELETE)ccoceevuveveecreecreeneernnennes 5-47
5.13.5. Adding Defined Records (INSERT)ccceevevevemeceeciriieereeeeenne 547
Sequential Functions for Defined Filesc.cccoocevevvveriiiriircennen. 548
5.14.1. Setting Defined Files from Random to Sequential
oo T S 0 I P 5-48
5.14.2. Reading Defined Files Sequentially (GET)cccecceeeeeverevvecnnnnnen. 549
5.14.3. Setting Defined Files from Sequential to Random
MOE (ESETL) ettt ettt neesens 5-50
Unlocking Records (UNLOCK)ccocovevmriiieecirecee e ccneenns 5-51
Processing User-Defined Printer Filescccccccevvuricciiniienincnennnns 552
5.16.1. Printing User Data and Controlling Forms (PRINT)ccceceveuneene. 553
5.16.2. Releasing Assigned Printer Files (UNLOCK)ccceeevveruveeneecnnnnes 554
5.16.3. Starting Spooled Printer Files before Job
Termination (BRKPT)ceeeeeeceeeeeeeeeeeee e 5-56
File Processing Considerationsc..ccccocieeiimvirceieceeceeceeeieeae 5-58
5.17.1. Opening and CloSING FIlESeeevveiirereerieieeiee e 558
5.17.2. Identifying Files to IMS ...eveeeeeeeeeeeeeceeeeecceee e 558
5.17.3. Dynamic Allocation of I/O Areascceceeevveeecveeesvensnreeeenenns 5-58
5.17.4. File SRAFNGceveeveeeeiceeecceecteceecee e b e 558
5.17.5. Work and Record Area Considerationsccccceeveereciecencnenns 559
5.17.6. Test Mode Effects onFile I/Oc.ooueeeveiieeeeeeeeeeeecieeees 559
5.17.7. Common Storage Area Filesccccovevvvevvemrveeeveeereeceereeenenenns 5-60
UP-9207 Rev. 2

P
£ \

7™

Contents

Section 6.

UP-9207 Rev. 2

Sending Output Messages
6.1. Purpose of Output Message Areacccconirniiiiniinninnninceeenenn, 61
6.2. Your Action Program’s Output Message Area Contents 6-2
6.3. Size of Output Message Areaccccoccveereieniiiiciinnsncnne e 6-3
6.4. COBOL Action Program Output Message Areaccccccevvvvniernnnnn 64
6.4.1. Output Message Header Formatcccoeeveeiiinncinnciecniinnnnn, 64
6.4.2. Output Message Text Descriptionc.cccoccerveeerrnrreesieesneeecenens 64
6.5. BAL Action Program Output Message Areacccceovriiniiniicinin 66
6.5.1. Output Message Header Formatcccoeeeriiiennicncinncieennnen, 66
6.5.2. Output Message Text Descriptionc.cccoeceevcerrersnnnnerneesinennns 68
6.6. Contents of Output Message Area Control Headerc.cc.c..... 6-10
6.7. Identifying the Destination Terminal
(DESTINATION-TERMINAL-ID)ooovireeeciirerenec e 611
6.8. Specifying Screen Format Services for Output (SFS-OPTIONS) 613
6.9. Identifying a Continuous Output Message
(CONTINUOUS-OUTPUT-CODE)ccceevieiieirceeeneneesceneene s 6-14
6.10. Supplying Output Message Text Length (TEXT-LENGTH) 6-15
6.11. Identifying Auxiliary Devices (AUXILIARY-DEVICE-ID)cccoeeeeee 6-16
6.12. Specifying Special Print Options for Auxiliary Devices
(AUX-FUNCTION)ceiiireeiereeteeie e e s s sae s 6-16
6.13. Naming Auxiliary Devices (AUX-DEVICE-NO)cccccccocvniviniinnnnn. 617
6.14. Sending a Message at the End of an Actioncccocoiiiiinnnnnnn. 6-18
6.15. Sending Additional Messages (SEND Function)c..ccccoooinnnnnin. 619
6.15.1. Transmitting Messages via the SEND Functionc.cccecevivinnnee 6-19
6.15.2. Returns from the SEND Functionccccoevevvemniinncinncieiniennns 6-23
6.16. Clearing IMS Output Messages from ICAM Queuescccoueenen. 6-25
6.17. Using a Work Area to Build Output Messagesc.ccocevriniiinnnnn. 6-26
6.18. Generating Continuous OUtputcccoiiiiiiiiiiii e 6-28
6.19. Devices That Can Receive Continuous Outputcccoccccieiiiinnes 6-28
6.20. Coding for Continuous Outputcccoriiieriiiierree s 6-28
6.20.1. Directing Continuous Output to a Terminalcccceeicenrreennnnn. 6-30
6.20.2. Directing Continuous Output to an Auxiliary Devicecccceeeenen. 6-30
6.20.3. Print Transparent Modeccccceeveeennvcnnnienniese e, 6-30
6.20.4. PrINt MOAE ..ooevvireeieeieecrie ettt 6-30
6.20.5. Other Print OptioNSceecceeeerrcietrereeee e 6-31
6.21. Writing a Continuous Output Programcccccecernrinnnnncnncnneene, 6-32
6.22. The IMS Delivery Codeooemiiiiieeeeeere e 6-35
6.23. Recovery Considerations with Continuous Outputccoceei. 6-38
6.23.1. Testing the Delivery Code in a COBOL Action Program 6-39
6.23.2. Testing the Delivery Code in a BAL Action Programcccceeue. 641
6.24. Continuous Output and Cassette/Diskette Usecccvvireiinenen. 643
6.24.1. INPUt OPHONS ...t 643
6.25. Initiating a Transaction at Another Terminalcccccciiiiininnnnnne 6-46
6.26. Coding for Output-for-Input Queueingcccoceiviniinnieneeenneen, 647

XVii

Contents

Xviii

Section 7.

Section 8.

Section 9.

6.27. Output-for-Input Queueing with Continuous Output 649
6.28. Output-for-Input Queueing with a Screen Bypass Device 650
6.29. Sending Messages to the System Consolecccccvevveenrennnee. 651

6.29.1. Error Returns on Output to the Consolecccceeeeeeevvveveeirineeins 6-52

Using Screen Format Services to Format Messages

7.1. Requirements for Using Screen Format Servicescoueenneen.. 7-1
7.2. How Screen-Formatted Messages Are Processed 7-3
7.3 Displaying aScreen Formatcccocceveiriiriiciiccieeee e 7-6
7.4. Building a Screen Buffer (BUILD)ccocevervveereiiciiceccecceeceene 78
7.5. Example Coding to Display a Screen Formatc..ccoevueenennee. 79
7.6. Error Returns from the BUILD Functionc..cccoovvmeveeriivneenceenne 7-13
7.7. Receiving Formatted Input in the Successor Program 7-15
7.8. Validating Input Datacccooceevmiieceriec e 7-18
7.9. Displaying an Error Format or Replenish Screenccoceunn... 7-19
7.10. Building an Error or Replenish Screen (REBUILD)ccccocuvenen..e. 7-20
7.11. Example Coding to Display an Error or Replenish Screen 7-21
7.12. Error Returns from the REBUILD Functioncccoevrvvrverrnnenen. 7-23
7.13. Displaying a Screen Format on an Auxiliary Device 7-24
7.14. Using Screen Formats in a Distributed

Data Processing Environmentcccoevieiieiieeesecsvee e 7-26

Calling Subprograms from Action Programs

8.1. When to Use Subprogramsccocceeceeemecemeiiesienssesseeeesessesesesenens 81
8.2. How to Use Subprogramsccoecmiriiineeinieeceee e ceeee e e 81
8.3. COBOL Action Program and Subprogram Interface 83
8.4. BAL Action Program and Subprogram Interfacecccceevemrrenenneee. 84
8.5. Subprogram Sample Applicationcccoceeeiiiiriiiereeee e, 85

Action Programming in a Distributed Data Processing Environment

9.1. Basic DDP Requirements and Terminologyccccevveveevericcrerennnen. 91
9.2. How IMS Routes Remote Transactionsccceevvvimmevicvrccvneennen. 93
9.3. Processing a Remote Transactionccccccoevvriieeieeecceeeeieeens 95
9.4. Processing an Operator-Initiated Remote Transaction 96
9.5. Processing a Program-Initiated Remote Transaction 97
9.6. Routing Transactions to a Remote IMS Systemcccccceeueenen. 910
9.7. Initiating a Remote Transaction (ACTIVATE)ccccovvviimicveeercnenn, 911
9.8. Receiving a Response Message in the
Successor Action Programccoeovveieeeeceeeseecseeceeseeeeneesneeens 913
9.9. Error Returns from an Unsuccessful Remote Transaction 914
UP-9207 Rev. 2

Contents

Section 10.

Section 11.

UP-9207 Rev. 2

Additional Special Features

10.1. Downline Load Featureccccooeriiimiieiiiccceceere e
10.2. Writing Downline Load Action Programsccccceceervmmvcrnicnnneenne
10.3. Initializing Downline Load (SETLOAD)ccccnienvmnrenirecccneene
10.4. Loading the UTS Program (GETLOAD)cccccocmrvimrirenceenserennennncens
10.5. Disconnecting a Line from an Action Programccccccenveennne
10.6. Initiating an 0S/3 Job from an Action Program (RUN)
10.7. Performing a SETIME WAIT within an Action Program
10.8. Transaction Buffersccccoeriiinniiniiiinee e
10.8.1. COBOL Data DiVISIONccceeeeverimrerieerireesineessnesssseessnenssnenses
10.8.2. COBOL Procedure DIVISIONccccerveeeriermeneesneenceeneeeeseneens
10.8.3. COBOL Action Program Call to Allocate a Transaction Buffer
10.8.4. COBOL Call to Get the Address of Previously Allocated
Transaction BUferscceeeeeeecomeesvcrciieerreecscee e
10.8.5. Determining Buffers Currently Allocated to a Transaction
10.8.6. Release from One to Three Transaction Buffersccccoeueen.ee.
10.8.7. Programming Considerationsccceeveeeeveerseerseesseerneenannnas
10.8.8. Acquiring a Transaction Bufferccececvevemricirivcensceencnennnne
10.8.9. Querying the Number of Transaction Buffers
Previously Allocatedcccoeeioemreiieeecerececcer e
10.8.10. Returning Transaction Buffers to Main Storagecccccceeeenne
10.8.11. Returning Status Codescccccvrvierrveersiernnneriinee e seee e
10.9. Opening Files from an Action Programccccceeiiinininiicnnnennenne
10.9.1. Action Program Structurecceceeveermemrcccneneenceeneeeeenn
10.9.2. Error Conditionsccceveiierieeniieneee et

Compiling, Linking, and Storing Action Programs

11.1. Preparation Action Programs for Online Processingcccceucu.e.
11.2. Compiling or Assembling Action Programscccccceriveeiicnniennnnee
11.2.1. Sharable, Nonsharable (Serially Reusable), or Reentrant
COBOL Programs ccccccereniveereesareesnssseressssssermssnsseessssssnnenes
11.2.2. Job Control for Compiling COBOL Action Programs cccceeue..
11.2.3. Job Control for Assembling BAL Action Programscccceu.ee.
11.3. Link-Editing Action Programscccccovervieneenneieneeceeseeeecnnenns
11.4. Storing Action Programs in aload Librarycccocviiinnninnn.
11.5. Replacing Action Programs in the Load Library
during Online Processingccccoeevvevmnnvinnnie e

XiX

Contents

Section 12.

Appendix A.

Appendix B.

Debugging Action Programs

12.1. Types of SNap DUMPSc.coooveiiieeeieceeeeceecee e 121
12.2. Termination Snaps DUMPScoooueiriiiiiicerecee e 12-2
12.3. CALL SNAP DUIMPSoocuieieeeceeeee e et sn e s s 126

12.3.1. Layout Descriptioncccceeceeeiieiereeeceeeeecee et 126

12.3.2. SNAP Function Callcccoervmrieriireciecceecreeeeeee e ecnee e e 12-7
12.4 Single-Thread and Multithread Snap Dumpscccoevvvvvevcnrenen. 128
12.5. Sample Dump Action Program (FIXSAM)ccooiiviriiiririnenne. 1227
12.6. Analyzing the Termination Snap Dumpc.cccoeceiniinccecenne. 12-35

12.6.1. Finding Error Codes in the Program Information Block 12-39

12.6.2. Finding Other Data in the Program Information Block 12-39

12.6.3. Finding Error Causes in the Output Message Area 1240

12.6.4. Finding Error Causes in the Input Message Areacceeueneee 1240

12.6.5. Finding Error Causes in the Continuity Data Areacccuu...... 1240

12.6.6. Finding Error Causes in the Work Areacccococeeevvereeieercnnnes 1241

12.6.7. Finding Error Causes in the Action Program Load Area 1241
12.7. Other Debugging Resourcesc..cccoceviveeeeieieceerere e 1244
12.8. Analyzing an Abnormal Termination Snap Dumpcccuueen...e. 1246
12.9. Analyzing a CALL SNAPDUMPoooevrrvereicreceeeceeeceee e 1249
12.10. Online File RECOVEIYooocueieeieeceeeeecceeccee e 1251

12.10.1. Error REIUINS ..ottt e 12-52

12.10.2. Prefix Area FOrmatcooeeeeeceecieeeecceeccee e e 12-52
12.11. COBOL Action Program Error Message Buffer 1256
12.12. Snap Dump Showing Allocated Transaction Buffers 1259
Statement Conventions
COBOL Action Programming Examples
B.1. DE@SCHIPHONcocveeeeeieeeiieiccrencrcceece et e e e s as B-1
B.2. Sample COBOL Action Programs Performing Simple Transactions

(CSCAN SEIIES)cceeecreeeieeieeeeeiee e eeeet et e see e e se e resseeae e neennnans B-2
B.3. Sample COBOL Action Programs Performing a Dialog Transaction

with External Succession (ACT1 and ACT2)cccoveiiieeireveeeecieeens B-27
B.4. Sample COBOL Action Program Using Screen Format Services

(JAMENUY) ...t ettt s eeae e s e e ns B-34
B.5. Sample COBOL Action Program Performing Output-for-Input

Queueing (BEGINL)ccooviiriieeeeceecee et e B47
B.6. Sample COBOL Action Program Performing Continuous Output

with Delivery Notice Scheduling (PRINT)coooeiiviiiiviieeeeeeene B-52
B.7. Sample COBOL Action Program Assigning Printer Files and

Controlling Printer File Output (GRP1A)cocovvviiieeieceeeeeeeae B-61
B.8. Sample COBOL Program Setting Up Transaction Buffers B-65

UP-9207 Rev. 2

/,m\
\

N

Contents

Appendix C.

Appendix D.

Appendix E.

Appendix F.

UP-9207 Rev. 2

Basic Assembly Language (BAL) Action Programming Examples

C.1.
c.2

C3.

C4.

C.5.

DeSCriPtionc.ooieieee e et enean Cl
Sample BAL Action Program Performing a

Simple Transaction (ACT3)cccccoiiriiiriiencecee e Cc2
Sample BAL Action Program Processing Successive

Transactions (SUPPLY)cccoeviireciiceeceerrecee et c4
Sample BAL Action Programs Performing Dialog Transactions

{APCHKS Series)ccceceiiiriiieieiecee e s s st C-15
C.4.1. The APCHKS Action Programcceecceeecmercceeeceercceeeeceeeenens C15
C.4.2. The APITMS Action Programcecceeveueeeeemieerecieeceeeeeneeennns Cl6
Sample IMS Configurationccoeveeieiiiiieicceececee e C-70

Status Codes and Detailed Status Codes

Generating Edit Tables

E.l.
E.2.
E.3

E.4.
E.5.
E.6.
E.7.

E.8.

PUIPOSE ...ttt es e e e e eeressanesase e s saeessne s e saneean E-1
Generator Input Coding Rules for Edit Tableccoeeevrvennennnen. E-1
Edit Table Generator Parameterscccoooveevievciemiiieeecceeeeeeenne ES
Executing the Edit Table Generatorcccceeveeieveeceeciieieennene EQ
Error Processingo.cccoocvieiiiicccie et snes e re e enne e E-10
Entering Input Messages from a Terminalc.cccccevvveevnnnnnns E-13
Sample Edit Table Application Using Positional and Keyword
Parametersccoccoioiiieee e E-14
Sample Edit Table Application Including Action Program E-18
E.8.1. Edit Table for the Purchase/Payment Application E-18
E.8.2. Action Program (EDITST) for Purchase/Payment Application E-19
E.8.3. Processing the Purchase/Payment Applicationccccueeue.... E-21

Using Device-Independent Control Expressions and Field
Control Characters

F.1.
F.2.

F.3.
F.4.
F.5.
F.6.
F.7.
F.8.
F.9.

General Infformationccooviiviiiiiieee e F-1
Formatting MeSSagesc.cocceiveiieieieeeeeeeeeeee et e e e e eeeeeeeeene F-1
F.2.1. Output MESSAZES ...ooveeeeeieeeieceeeeeecteetecce et s sre e F-1
F.2.2. INPUEMESSAEES .eoeveeeeeeeeceeee ettt F-3
DICEand ICAMoo et seve e eneen F4
DICE Sequence FOormatcccoocuvemriceiieecie s F-5
Using DICE Macroinstructions in BAL Programsccccceecvevveenn... F-6
Generating DICE Codesccccoeomeriieiieiceceeee e F-7
Interpreting DICE SeqUENCESoocuvevieeeeeieeeeeeeeee e eeeeeeeeeeeeeeee F-13
Using DICE Sequences in a COBOL Action Program F-16
Using Field Control Characterscccoooceieviiivivicineeceeeee e F-18

XXi

Contents

XXii

Appendix G. Differences between Extended COBOL and 1974 ANS COBOL

G.1.
G.2.
G.3.
G.4.
G.5.
G.6.
G.7.

DIHferencescccococciiecieireiie e s s G1
Shared Code Parametercccceeevieereereieecieeceseeeseeeeeseeeessneesanes G2
Reentrant Code Parametercoooeeeeiieieeeieeiecceeeeeeecreeeeececneneee G-2
Object Module Name in Linkage Editor Control Stream G2
ENTER Statementsccccccecvviireeicieeciieecreeeeresneesssnesesseesesssessnnes G2
DICE COAES ..ot tr e e st s e s e sae s s e s s e e s snneean G-7

Extended COBOL Language Restrictions

Appendix H. Listing IMS DSECTs

Index

User Comments Form

UP-9207 Rev. 2

Figures

1-1.
1-2.
1-3.
1-4.
15.
1-6.
1-7.
1-8.
1-9.

21

22,
2-3.
24,
25,
2-6.
2-7.

31.
32.
33.
34.
35.
36.
37.
38.
39.
310.
311.
312.
313.

314.

315.
316.

UP-9207 Rev. 2

A SIMPlE TranSaCHONcccveeeiieiiiieeerteecrerre e re e e e srree s eae s ssr e s e e e s s ne s e s se e seee e s seeesnesaneens 12
A Dialog TraNSACHONccoeereeeerieeeeereeesrseeereersseeeressssassessseessassasssesaseaessesassesnsesseeaseensessens 13
Normal TErMINAtIONcoeeeeeeeeeieceece ettt st st e e e e e s e e s e s e 14
EXEErNAl SUCCESSION ..veeieeeeiiieiieerecireeteesteessee e e e e e seeeesnsasseesseessseessnsesssneeassssenansesnrenees 15
Delayed SUCCESSION ...eeeeeeeeereeeieiiieeeecteeeesee s ee s ee st esse s e et s s s e st e s ee st esnesnesane e e e snees 16
IMMEdIate SUCCESSION ...cccveeeeeeeiireereterieeereeessreeesreeeereeseseeesestessssessbaesssneessneesaneesaneesssnsnes 16
Dynamic Transaction StrUCIUIEcoeeecieiiiieeecceere ettt 1-7
Activation Record in Main StOrageccceevccveiieeiieerecieeesecceee e s cee e e ceae e e s sae e e s s en e s seneneaae 1-10
The Action Program and Its Interface Areasccccceccericiniieieinennee e eeeee 1-10
Describing Working-Storage Items in a Sharable COBOL Action Programcccceevvveeceenceennen. 2-2
Describing Interface Areas in a COBOL Action Programcccoeveevierveenceencnensieenseeseeseeneee 2-2
AccessiNg @ Data Fileeeieeeeeieeccee et s 2-3
Conventional COBOL Structure versus COBOL Action Program Structurecccovevvicvvrecnnnnne 25
Describing Interface Areas in a BAL Action Programcccoecmieiinnveinenie e 2-8
IMS/COBOL Action Program INterfaceccceeveeiciireiiinceesce e e 2-12
IMS/BAL Action Program INterfacecccevveeeeererieireciereseeerceesrseeseee e seeessee e s eesssee e 2-13
1974 American National Standard COBOL Format for Program Information Block 33
BAL Format for Program Information Block (ZA#DPIB DSECT)ccccveviereveenreeeceerreneereenene 34
Testing the Status Code in a COBOL Action Programcccoeeceeeiieinnieeniieeenereen e e e 38
Testing the Status Code in @ BAL Action Programcccceviveerceiievnnnenecn et seeeen 39
Testing Error Termination Codes and Moving Them to SUCCESSOR-D Fieldcccevunnene. 314
Using EXternal SUCCESSION eeiieieeeeieiieeeireeeeeteereeceeeseseeeeesseseeessssasassesansaessessseesssnneesn 316
Using Immediate Internal SUCCESSIONeeeeceeeeiiirciieccie e e 317
Using Delayed Internal SUCCESSIONccveeeieereiieeeiierceie s csee et ete e sves s s enee s 319
Using the N Lock Rollback INdiCatorccoceeeeeieercciiee e rrciee s see s e e 324
Using the O Lock Rollback INAICAtoreeoeeeoieeeieecer e 3-25
Using the H Lock INAICAtOrcovceeieiieneeeceeeeeee et 327
Using the R LOCK INAICAtOrcoveeieieeie et srer e s s esse e s s e e s esneas 329
Action Program Passing Data Definition Record Name and Defined File Name
1o Successor ACtion Programeeeveueeeiereierecseie s s eee e s s csrre s s e e s s s 331
IMS Passing Data Definition Record Name and Defined File Name to Successor
ACHON PrOZIAM ...eeeeieeiiiieceeceieeeceeeccteeeae e sne e e saeeseseesese e s e e s s s e e s aeesesnee s e naesnsnsensssaseeens 332
Freeing Source File for Use by Successor Actionoccvvevevercercencenee e 333
Establishing Continuity Data Area SizeScccveevereviieriiininieersceerceesienre s ssee s s 336
XXiii

Figures

41.
42.
43.

45.
47.

49,
410.
411.

61.
6-2.
6-3.

65.
66.
67.

69.

6-10.
611.
612.
613.
614.

7-1.
7-2.
7-3.
74.
7-5.
7-6.
7-7.
78.
79.
7-10.

&l
82.

o1.
9-2.
93.
10-1.

11-1.
11-2.

1974 COBOL Format for Input Message Area Control Headercoococemvveeceeiecceeneicceeeeeens 44
Sample COBOL Input Message Area DesCriPtionccceeceeereeiereeecieeesseeeeceeeesseesnneseseeecssnnens 45
BAL Format for Input Message Area Control Header (ZA#IMH DSECT) ...cccvvreviieieiicieeeceee 46
Sample BAL Input Message Area Descriptioncccceeveeereeeieenniseeeseessseeeeeeesseeeesseesennennes 47
Answers to Input Message Processing QUESHIONSccceeiieeniierciiiiiencee e 48
Identifying the Source Terminal to ICAM and the Configuratorccccevveevieecrencieeesereenee. 49
Interrogating the SOURCE-TERMINALAD Fieldcoonnieieeee et 410
Testing the TEXT-LENGTH Fieldcoveeeeeeeeeeeeeeeeee ettt e 412
Testing the AUX-DEVICE-NO Field in a COBOL Action Programccccceeeeeveeveeeeieceneeeeeneeenens 413
Testing the AUX-DEVICE-NO Field in a BAL Action Programccccoeeeviecicmneciee e 414
Receiving DICE Sequence on INPUt MESSAZEeeeeeeerrireicieieeeee et ee e sesane e s eanne 417
COBOL Format for Output Message Area Control Headerooeeeveeeeeciiieecccieeeeceeeee e, 64
Sample COBOL Output Message Area Descriptioncccoeiviieeiiiecmiiecceeee e enaeees 65
BAL Format for Output Message Area Control Header (ZA#OMH DSECT)ccvvveevvvevivveenneeennen. 66
Sample BAL Output Message Area Descriptioncccceeeieeeriieeeeieciereecceeeeeecreeeeeseeeeeeenneees 69
Answers to Output Message Processing QUESHONSc..ceeeerecereieeerceeccee et 6-10
Identifying the Destination Terminal to ICAM and the Configuratorccocvccviniiiinininiinne, 611
Setting Message Text Length for OQutput MESSagesccceveeeeeieecieerieeeecreeecere e 6-15
Specifying Output to an Auxiliary DEVICEevcceerecireeiieccie et re e e s re e 617
Sending an Output Message to the Master Terminalcccccooveeeieeiiiecrieeceecee e, 6-20
Sending an Output Message to a Destination Terminalcccoeeceeeiieeiieeeecreeecceecee e 621
Sending an Output Message from the Work Areaoooeuevveeieeeiccceeececeeeecceee e 6-27
Testing for Successful Delivery Code in a COBOL Action Programccceeeceveceecceveecienennee. 640
Testing for Successful Delivery Code in a BAL Action Programccceeceeeeeeeieeeecciveeeceennn, 642
Initiating a Transaction at Another Terminalccocoeiiiecceecceece e 647
Creating and Using Screen FOrmMatscccvveeriiiriiiriiiceccercee st e e s nens 72
Screen Format with Display Constants, Variable Data, and Input Fieldsccocovveeueevierinnnen. 7-3
Screen Format with Input Entries and Changed Address Fieldccooveeieveievenciecieeeereecnnen. 7-3
Building a Screen Format in a COBOL Action Programccceceeceeiiniiecieeeseeseeceee e 79
Building a Screen Format in @ BAL Action Programcccueveeeeeeiicceeeecceee e 7-11
Screen Format Displayed by JAMENU Action Programcccceeeveeecemrceeecreesreeeccteescsneeenne 7-15
Input Message Area Fields for Formatted INputc..ovviiiiiiiiiiiie e 7-16
Displaying Transaction Codes in Input/Output Fieldsccceeereevereiceeeieeeceeeee e 7-17
Building an Error Screen in a COBOL Action Programccccceceveeciereceenvieeneceeeesreeseeeeeenens 7-21
Building an Error Screen in a BAL Action Programccccoivieiiieeccieeeecceee e 7-22
Sample Action Program (GRP4D) Calling Subprogram (NUMPRG)c.ccccvevieirievrenneecreeeneenne. 86
Sample Subprogram (NUMPRG)oooeiiiieicie et st et sae e ssee s rae e sre e neeena 88
Processing an Operator-nitiated Remote Dialog Transactionccccvvvevrveiciienseencssieenceennne. 97
Processing a Program-nitiated Remote Transactionccccooeeeeeeiiercceeeceeceeeceeecceeeeas 98
Processing Successive Program-nitiated Remote Transactionsccceeeeveeecinricercceeeccceenne 99
Issuing Multiple ACTIVATE Calls without Operator Interventionccccveevveevieinceeceineenennenn. 911
User-Written Downline Load Action Program SKetChccccveveeeevirecceereecceeeee e 104
Compiling a COBL74 Action Program USiNg JProCcceeeveeieerieeiecieeeeeee e e eeeae e 114
Compiling a COBL74 Action Program Using Standard Job Controlcccccoveeveeveiinceenceennen, 115

UP-9207 Rev. 2

Figures

11-3.
11-4.
11-5.
11-6.
117.
11-8.
119.
11-10.
11-11.

12-1.
12-2.
12-3.
12-4.
12:5.
12-6.
12-7.
12-8.
129.

12-10.
12-11.

12-12.
12-13.
12-14.
12-15.

B-1.
B-2.
B-3.
B-4.
B-5.
B-6.
B-7.
B-8.
B-9.
B-10.
B-11.
B-12.
B-13.
B-14.
B-15.
B-16.
B-17.
B-18.
B-19.
B-20.
B-21.
B-22.
B-23.
B-24.

UP-9207 Rev. 2

Compiling an Extended COBOL Action Program Using JProcccceeveeeeeeiinieincnniinnininnene 115
Compiling an Extended COBOL Action Program Using Standard Job Controlcccceceinnee 11-6
Assembling a BAL Action Program USiNg JProCccoeveevicimmeneninensesiesnnssessesesseeene e 11-6
Assembling a BAL Action Program Using Standard Job Controlcceeveeeieeiniinininccnene, 11-7
Link-Editing an Action Program USing JProcCcoviiiiiniiinincecteen e 118
Link-Editing an Action Program Using Standard Job Controlc.covviiieinininne 118
Compiling and Linking a COBOL Action Program Using JProCcceeeenmninieniinncninnnnnnncne, 119
Assembling and Linking a BAL Action Program Using Standard Job Controlcccceeennn. 119
Recompile and Linking an Action Program during Online Processingccocevuveeeeenerennnnnas 1111
Layout of a Termination Snap DUMPccceeveeeriiiiiiiiniee e 122
Relationship between THCB and Interface Areasccccoevmviniininninceenie et 124
Layout of @ CALL SNAP DUMPccveiircninreniitieinsi ettt sa s s 126
Single-Thread Control BIOCKcoeeerrerenereitii e 129
Multithread CONtrol BIOCKeeivieeieeeieceeeecreeeee s eeesre s see e s ee st e s e ssn e snee s sanesansenns 12-13
Single-Thread Terminal Control Tableccociviiininii e 12-15
Multithread Terminal Control Tableceeeeeeemeerriieeee e 12-20
Sample Action Program (FIXSAM) Generating Snap Dumpsccccovemeveeniencnnnnnnienicienne, 12-28
Termination Snap Dump for SAMFIN Load Module (FIXSAM Load Program)cccceeerueniee. 12-36
Link Map for FIXSAM Action Programcccceveerrcrenrnnnee e necnanscee e sse s e 12-44
Program Check Abnormal Termination Snap Dump for SAMFIN Load Module
(FIXSAM ACHON PrOGram)cceeeeeeeeernereereeseessesseesesssessessssesesssssssssnssssssensessesssessassassens 12-47
CALL SNAP Dump for SAMFIN Load Module (FIXSAM Action Program)cccceeeveieninnennns 1249
Format of Prefix Area of Records in the Audit File (Online Recovery)ccocovviincniniinnnnnne, 12-53
Snap Dump for User Program Checkcccecemrrnnnencceniiciinincceceenee e 1258
Snap Dump of MEMREQs with Three Blocks of Transaction Buffers Allocated 1260
Initiating the CSCAN Transactioncccecveeeeiriniininincrcce e B-3
Output from CSCAN Transaction COAEcceererreerecreriiniiiiiiiie st B-3
Continuation of Output from CSCAN Transaction Codececcerviriiimisinniinienisinenreeneesieniens B4
Initiating a Qualified CSCAN Transactioncccceeveevininniniiirc e B4
Output from Qualified CSCAN Transaction Codecccceeriivmniniiniineccenecteee e B5
Initiating the CDETL TranSactionc.cccccerereereeneenmsniiniscnessie st B-5
Output from CDETL TranSactionccceeceeriircecesereireresetcercsneserise e e esssse s es e ssn s aas B-6
First Method for Initiating the PAYMT Transactionc.ccceecceeecrrerrmenniinniinnicnnneseeeseesseenenns B-7
Qutput from PAYMT Transaction Using Standard Payment Amountccceeevemreeiennneninicnnnne B8
Second Method for Initiating PAYMT Transactionceccevereiviiecinncnninicennneee e B9
Result of Entering Different Payment Amount on PAYMT Transactionccccevvieiveeiennnnnnne. B-10
Result of Initiating the TOTAL Transactionc.ccceeeeverreereneiiinniiniiininneeiesee et B-11
Result of Initiating the TOTAL Transaction with ALL Optionc.ccceeveeriiniiininiiiiniceees B-11
Sample COBOL Action Program DMSCANccceeriirieniecieee ettt se e B-12
Sample COBOL Action Program DMDETLccooviiiriiiiiinie et B-15
Sample COBOL Action Program DMPYMToooiiiiieree ettt B-19
Sample COBOL Action Program DMTOTLcccocvierierireeence et B-23
Sample Dialog Transaction with YES Option Takencccvviriiniiininninicicicnecieneeens B-27
Sample Dialog Transaction with NO Option Takenccceviiiiiininicieeeeee B-28
Sample Transaction With Error MESSaZecceevereerrerieiniecrniiniese et B-29
Sample COBOL Action Program ACTLcocviiierierce ettt B-30
Sample COBOL Action Program ACT2cocvirvenrerrereerre et B-32
Sample Action Program JAMENU Using Screen Formatsc.cccocviiimivrecnicieecinninnciniinns B-35
Sample Action Program BEGIN1 Using Output-fordnput Queueingccccceverineniinneniennnenen. B-48
XXV

Figures

XXVi

B-25.
B-26.
B-27.
B-28.
B-29.

C-1.
C-2.
C-3.

C-5.
C-6.
C7.

Co.

C-10.
C11.
C-12.

E-1.
E-2.
E-3.
E-4.

F-1.
F-2.
F-3.
F-4.
F-5.

G-1.
G-2.
G3.

H-1.

Sample Action Program PRINT Performing Continuous OULPULeceeeererneeseeeerseeenerseesnns B-53
Initiating the GRPIA TranSactionccecveueeiiiiiciiiiiee e eseressesees e seeeeesee s e eeeeesesneesneenens B-61
Output from GRP1A ACtiON Programceceeeeeueeeceimieiiscseeseeeescvessesseeseesessesnessessens B-62
GRP1A ACHON Programccceeeeuecreeeeeeeeesesteesecee e seesse e seeeess et sreesesesateneenneneeneens B-62
Sample COBOL Programs Setting Up Transaction BUIFErSeceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaneans B-65
Terminal Entry and Output Message for ACT3 Simple Inquiry Transactioncceceveeereereveene Cc2
Sample BAL Action Program ACT3 Processing a Simple Transactionceeeeeeeeeeeveeeeeenenns C3
Initiating the SUPLY TranSactionc.cccceeeeieieeiiciieerseiiceretseteeeeeeeeeeseeenesseseseesseeseseesnenes C4
SUPPLY Action Program Screen FOrmat REIUIMoviiuiieiiiciieecceceeeecceee et c4
Reinitiating the SUPLY Transaction with Input Dataccccoeeeieeiveeeereeeeeeees e s eeeeeeenen Cc4
Output from Second SUPLY Transactioncccecvieeiceieierreeeeeeseeeseseeseeseesseeseeseeeeesnenes C5
Sample BAL Action Program SUPPLY Processing Successive Transactionscececevvveeeeene. C6
Screen Format 1 Generated by APITMS Action Programc..ooveeeeeeeeeeeceeeeeeeeeeeeeeeeeeseeeeeneens C-16
Screen Format 2 Generated by APITMS Action Programceeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeneens Cl17
APCHKS Action Program Processing a Dialog Transaction with Delayed Internal Succession ... C-19
APITMS Action Program Processing @ Dialogooeeeeeiveiiiececeieiecrese e eeeeseeeeeseens C41
Sample IMS ConfIgUrationccoueeeeeeiimreiieiisireecetesseeee e st ee e e s e eseesseesseeesseeeseeennesnaen C-70
Edit Table Parameter Description with Positional and Keyword Parametersccccceeceevvvevrennen. E6
Sample Execution of Edit Table Generatorc.cocceeveerieirverennnns eerteeeeeeeererereeeaseeeereeaes E-9
Sample Input to Edit Table Generator and Format of Input Delivered to Action Program E-14
Sample Input to Edit Table GENEIAOrc.coviieeieieeiieece ettt e e eeeseeeeeereseeseseeesenessesna E-18
Sample Action Program (EDITST) Using Edit Table Generator Inputcceeeeeeeeeeeveeeeeeeeeeeenns E-19
Using Terminal-Oriented Control Characters to Format MesSagescccoeeeeeeeererereereseeenens F-2
Using DICE Sequences to FOrmat MESSAZESccceveeuieiineiieiiieese et se s e enesnnes F-3
COBOL Action Program Using DICE Sequences to Format Qutput Messageccccceeueeunenen. F-16
A DICE Formatted Output Message on the Terminal SCreencceeeeceeereereeereeereereeeeeeeseeens F-16
Row and Column Coordinate Values Used in Field Control Sequencescccoeveeeveeeeecunnnne F-19
Sample Transaction Displaying Customer Recordoceovreeeeiieieccenesecsee s eeeenne G-3
Sample Extended COBOL Action Program DISPc.ccuvevveeiveeneeceieceese s eessnenane G4
Example of DICE Sequences Filed in @ COPY LIBrarycoocceeveerveereereeeeeeeeeeeeeeseeeneeeeeeneseenes G6
JCL and Data Stream to List IMS DSECTSccoveeeeieeiiiiireiceciserscsesessessrssseessessseesnessnsesneens H1

UP-9207 Rev. 2

—

Tables

31.
32.

51.
5-2.
53.
54,
61.
6-2.
63.

65.

7-1.

91

10-1.
10-2.
10-3.

11-1.

12-1.
12-2,
12-3.
124,
125,
12-6.
12-7.

D-1.
D-2.
D-3.

D-5.
D-6.
D-7.

D-9.
D-10.

UP-9207 Rev. 2

Termination INAICATONSoccvveiiiieeiiecre e s e seee s e e e sr e s s e e e ae e e s emenann 321
Summary of Record Locks and Rollbackscceeeeevenninenienneneeeecerer e 323
Summary of Files Types Supported by IMS ..o 51
Summary of File /0 Function Callsccceicierieniirieciereer e e es e 52
SETL Parameter Choices for Indexed Filesccceirveireiirinvieccienre et 522
Status Byte Returns for Defined File FUNCHONSccocueiiiiiiiiiercienceerceee e 545
Status Codes and Detailed Status Codes Returned after the SEND Functioncccccevvernenen. 6-23
Settings for Auxiliary Function Byte of Output Message Headerccocoeveeeieninncnncnncnnen. 629
Output Delivery Notice Status Codes Returned by IMSoocoiiirviiieeee e 6-36
UNISCOPE and UTS 400 Auxiliary Device Condition Codesccccvvivreerevinreneereceensieneeeneens 6-37
User Message Text for Searching Cassette/Diskettecccccvveevenvienenicicsienenereeeeee 644
User Message Text for Search and Positioningc.ccveveremrecnnennenrcre e, 645
Print/Transfer Options for Writing Screen Formats to Auxiliary Devicesccccecevirieriincnnen. 7-25
Errors Returned to Input Message Area When Remote Transaction Is Unsuccessful 914
Rejected Load Error Byte Definitioncccocceiveeriiinrincercreceee et 109
GETMEM Status Codes and Detailed Status Codesccoevereverriiinciinciiercecceeeeee 10-25
RELMEM Status Codes and Detailed Status Codesccceeeueeveeninncincenicnceceeeseeceenens 10-26
Compiling Sharable, Nonsharable, and Reentrant COBOL Action Programscccccoeveeruennee. 11-3
Hexadecimal Equivalents for Function Callscccceeeiiiniiiineneeneneece e 1243
File ROIDACKeeieieeiireeeeeereereierereeeseesssee s et s s esnesssee s arasssneseseesenmeeseneeessntesennesansesane 12-51
Contents of Prefix Area for Records in the Audit File (Online Recovery)cccoceveeriencenacn. 12-54
1974 COBOL Message Buffer CONtentsccccieeeiiniiininiiniccere e ee e 12-56
1974 COBOL Error Messages for Action Programscccceeeieereceercieenscensenecsee e 12-56
Extended COBOL Message Buffer CONtentscccccceervreeriiemreseseieesrceeessneeseesssseeesenesans 1257
Extended COBOL Error Messages for Action Programs ccccccevccinniinniiennseenceessnenenes 1257
Status Codes for /0 FUNCoN Callscocveviieeieeeteeieeceec et D2
Values Returned in PIB Status Code after Function Callscccccorvinvenniericnnenceenee e, D3
Detailed Status Codes for Status Code Oeerreiieceece e D3
Detailed Status Codes for Invalid Key Errors - Status Code 1ocoiiiveiiiiiiecicieeee e, D4
Detailed Status Codes for Status Code 2eeecveeeeieerereenccerrre e e e D4
Detailed Status Codes for Invalid Requests - Status Code 3cocceieveiiieenniecer e, D5
Detailed Status Codes for |/0 Errors - Status Code 4oovevieiiciriieireecceeeeeee e D9
Detailed Status Codes for Violation of Data Definition - Status Code 5cceeveviiieincenieceennnen. D9
Detailed Status Codes for Internal Message Control Errors - Status Code 6ccceceeeveeuennne. D10
Detailed Status Codes for Screen Formatting Errors - Status Code 7covevvieeccrniiinccnnnen. D12

XXVii

Xxviii

Tables

E-1.
E-2.

F-1.
F-2.
F-3.
F-4.
F-5.

G-1.

Edit Table Diagnostic MESSAZEScueivuiuiiieieiieeeeeeeeeeeeeee e eeseee e e es e ee s es e seeee e E-11
Description of Sample Input to Edit Table GENeratorevveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeoeee E-14
DICE Input/Output Commands, Codes, and Device Interpretationooveeveeeeeeeeeeeoeoeon, F-9
DICE PriMary DEVICES ...cvueeviieieeeeieiiteeeee st esee et eee e e e eetaeseesees e e e e e es et e st et F-14
DICE Usage for AUXIliary DEVICESc.cuveveveirreeeeeeeereeeeeee e seeeeeeseneeese et F-14
Hexadecimal Codes Used as M in the FCC SEQUENCEouveeeveeeeeeeeeeeeeeeeeee oo F-20
Hexadecimal Codes Used as N in the FCC SEQUENCEceveeeeeeeeeeeeeeee e, F-21
Differences for Extended COBOL and 1974 COBOL Action Programsccceeeveeeveeeveveveesnnnns G-1

UP-9207 Rev. 2

s

/“M'\\‘

Section 1
Transaction Processing in the IMS
Environment

1.1. Introducing IMS

The Unisys Information Management System (IMS) is an interactive, transaction-
oriented file processing system. It is interactive because it carries on a conversation
with the terminal operator; it is transaction-oriented because, for each input message,
the terminal operator receives a response or output message. In this way, operators
are constantly informed of the results of their inquiries.

1.2. Interacting with IMS

Application programs, called action programs, interact with IMS to process input
messages from terminals, perform file retrieval or updating functions, and create
output messages.

You can write action programs in RPG II, COBOL, or basic assembly language (BAL).
IMS also provides a set of action programs called the uniform inquiry update element
(UNIQUE) that performs file retrieval and updating functions through commands
from the terminal.

This guide tells you how to write action programs in COBOL and BAL. Action
programs are similar to standard COBOL and BAL programs, but they must follow
specific rules because they operate under the control of IMS.

Throughout this guide, it is assumed you have read and understood the IMS Technical
Overview and the appropriate language manual. However, as required, terms and
concepts that are directly related to RPG II action programming will be briefly
described and defined.

UP-9207 Rev. 2 1-1

Transaction Processing in the IMS Environment

1.3. Basic IMS Terms

The term action programming comes from the fact that the unit of work in IMS is
the action. An action begins when an operator enters a message at a terminal and
ends when a response to that message is returned. This is an important point to
remember, since the action programs you write are involved primarily with this
activity - processing input messages, performing file retrieval or updating, and
creating output messages.

An action always consists of three activities:

1. Input

2. Processing

3. Output

A transaction is one action or a series of actions.

A simple transaction (Figure 1-1) consists of a single action.

TRANSACTION CODE

INPUT MESSAGE ——— CKACCT 2-412-733 ACCOUNT NUMBER

v

ACTION PROGRAM

v
OUTPUT MESSAGE —

CURRENT ACCOUNT BALANCE = $869.22.
PROCESSING COMPLETE

In this example, one action program processes the input message
and produces an output message - the checking account balance for the
account specified and a PROCESSING COMPLETE notice.

Figure 1-1. A Simple Transaction

1-2 UP-9207 Rev. 2

e,
£ N\
\

//A)

o
/ N\

Transaction Processing in the IMS Environment

A dialog transaction (Figure 1-2) consists of two or more related actions.

TRANSACTION CODE

INPUT MESSAGE ——f—— CUST 35567 ACCOUNT NUMBER

v

ACTION PROGRAM

+ AMOUNT DUE = $79.25.
OUTPUT MESSAGE —

ENTER PAYMENT AMOUNT $25]33

INPUT MESSAGE

v

ACTION PROGRAM

v NEW BALANCE IS $53.92
OUTPUT MESSAGE —

PROCESSING COMPLETE

In this example, two action programs are sequenced to produce amount due
information, allow data entry, and compute a new balance for a specific
customer account.

Figure 1-2. A Dialog Transaction
To begin a transaction, the operator enters a 1- to 8-character transaction code. (In
single-thread IMS, the transaction code is from 1 to 5 characters long.) This code tells

IMS the name of the action program that will process the input message.

Transaction codes are either the entire input message or a part of it. Transaction
codes are defined to IMS at configuration time.

1.4. Structuring Transactions

Sometimes a single action program can process the function required. But more often,
a series of action programs is needed. In either case, a transaction structure is created.

Transaction structure depends on how you terminate action programs. There are four
major types of termination:

¢ Normal

External succession

Delayed internal succession

Immediate internal succession

UP-9207 Rev. 2 1-3

Transaction Processing in the IMS Environment

From here on, the termination types will be referred to as normal termination, and
external, delayed, and immediate succession.

Using the words termination and succession in the same context can be somewhat
confusing. In IMS, termination means that an action program is finished processing.
Whether you specify normal termination, or external, delayed, or immediate
succession, you are telling IMS that the current action program is finished processing
and is now terminating.

Succession means that, although the action program is terminating, the transaction is
not complete. A successor action program will continue processing the transaction.

Normal termination means that the transaction itself is complete. No more processing
occurs.

However, external, delayed, or immediate succession means that another action
program follows and processing should continue.

Figures 1-3 through 1-6 illustrate these concepts.

ACTION
PROGRAM

INPUT " SPECIFIES peiipvtl g
MESSAGE 2| MESSAGE
NORMAL {

TERMINATION S

Figure 1-3. Normal Termination
Use normal termination to tell IMS that once your program creates an output
message, the transaction is complete. When you don’t specify the type of termination,

IMS terminates normally. The last action program in a transaction always ends with
normal termination.

14 UP-9207 Rev. 2

Transaction Processing in the IMS Environment

INPUT ACTION OUTPUT
MESSAGE PROGRAM MESSAGE
(1 (1 (1

INPUT : ACTION OUTPUT
MESSAGE | PROGRAM MESSAGE
(2) (2) (2)

Figure 1-4. External Succession

Use external succession to tell IMS that the current action program is sending an
output message and terminating; however, the transaction is not complete. When the
terminal operator enters a second input message, the action program you named as
external successor processes the second action, produces an output message, and

(’ terminates.

UP-9207 Rev. 2

Transaction Processing in the IMS Environment

16

INPUT
MESSAGE
(1

OUTPUT MESSAGE

(1) QUEUED AS
INPUT MESSAGE
(2)

ACTION
PROGRAM
(1)

ACTION
PROGRAM
(2)

OUTPUT
MESSAGE
(1)

OUTPUT
MESSAGE

Figure 1-5. Delayed Succession

Use delayed succession to tell IMS that the current action program has processed an
input message and produced an output message; however, that message isn’t going to
the terminal. Instead, it becomes the input message to the action program you named
as successor. The successor program produces an output message that does go to the
terminal and terminates. With delayed succession, the second action program uses the
output message of the predecessor as its input message. Even though only one input
message and one output message are seen at the terminal, internally there are two
separate actions, each with an input and output message.

INPUT ACTION
MESSAGE PROGRAM

(1)

(1)

ACTION
PROGRAM
(2)

OUTPUT
MESSAGE
(1)

Figure 1-6. Immediate Succession

Use immediate succession to tell IMS that the current action program processed an
input message but is not producing an output message. When it terminates, its
successor action program immediately takes up where processing left off, produces an
output message, and terminates. In immediate succession, there is only one input
message and one output message. Thus, two action programs are processing a single

action.

UP-9207 Rev. 2

Transaction Processing in the IMS Environment

With these four types of termination or transaction structures, there is a good deal of
flexibility in structuring transactions. There are basically no limitations on how you
can combine them. For example, you can specify immediate succession, delayed
succession, external succession, and finally normal termination, all in turn

(Figure 1-7).

NOTE:

Connecting lines represent
immediate internal, delayed
internal, or external succession,
or any combination of them.

ACTION
PROGRAM
1

ACTION ACTION
PROGRAM PROGRAM
2 3

. ACTION ACTION
PROGRAM PROGRAM
5

s

TRANSACTION
TERMINATION

ACTION ACTION ACTION
PROGRAM PROGRAM PROGRAM
6 7 8

Figure 1-7. Dynamic Transaction Structure

UP-9207 Rev. 2 1.7

Transaction Processing in the IMS Environment

1.5. Writing Efficient Action Programs

18

N

In part, the coding you use in your action program determines the efficiency of your
message processing. The most efficient way to code an action program is to make the
code reentrant or sharable. Action programs can be shared only in a multithread IMS
environment. However, even in a single-thread environment, you should write
reentrant or sharable code because you may later wish to use multithread IMS.

A reentrant program is completely sharable, and none of the code is self-modifying.
BAL and COBOL action programs can be reentrant. This can mean great performance
improvement because it prevents waiting when several actions require the same
action program.

MAIN STORAGE

ACTION
PROGRAM

ACTION 1 ACTION 2

Shared code is a means of executing a COBOL program as if it were reentrant.
Shared-code COBOL programs are sharable in the procedure division and working-
storage section but not in IMS control regions. Don’t use shared code in 1974 COBOL
programs.

A third type of coding that is used for action programs is serially reusable code.
Serially reusable action programs can process only one action at a time. You can
modify the action program code, but you must reset or restore it because the same
copy of the program sometimes remains in storage to process the next action.

MAIN STORAGE

ACTION 1 ACTION 1

ACTION
ACTION 2 PROGRAM
(PROGA)

UP-9207 Rev. 2

fﬂh\\

Transaction Processing in the IMS Environment

Remember that your action programs should serve the best interests of terminal
operators who request information from your file. For this reason, messages you
receive or create should be simple and understandable with a minimum of operator-
entered codes or other data required at the terminal.

1.6. How IMS Action Programs Interface with IMS

To communicate with IMS, an action program must link itself to IMS. This link is the
activation record, which handles the control and communication of data between IMS
and your action program. The activation record can contain up to six interface areas:
e Input message area

* QOutput message area (OMA)

® Program information block (PIB)

e Continuity data area (CDA)

¢ Work area (WA)

e Defined record area (DRA)

Whether or not you use all six interface areas depends on the needs of your action
program. All the interface areas are optional except the input message area and

program information block.

Even if you don’t access the program information block, IMS automatically returns
values there to the status code fields after each I/O request.

Figure 1-8 shows how main storage looks when the action program PROGO1 is loaded
in a multithread IMS system. The layout of the activation record is slightly different
in single-thread IMS.

UP-9207 Rev. 2 19

Transaction Processing in the IMS Environment

MAIN STORAGE %

PROGRAM
INFORMATION
BLOCK

OUTPUT
MESSAGE
AREA

CONTINUITY ,
DATA AREA . ACTION

PROGRAM

WORK PROGO1
AREA

INPUT
MESSAGE
AREA

DEFINED
RECORD
AREA

Figure 1-8. Activation Record in Main Storage

Figure 1-9 shows the relationship between an action program and its interface areas. -~

ACTIVATION RECORD

PROGRAM OUTPUT CONTINUITY
INFORMATION MESSAGE DATA
BLOCK AREA AREA

INPUT DEFINED
MESSAGE RECORD
AREA AREA

Figure 1-9. The Action Program and Its Interface Areas

1-10 UP-9207 Rev. 2

Transaction Processing in the IMS Environment

Your action program must define the formats of the interface areas that make up the
activation record.

For COBOL action programs, you use COPY statements to copy the program
information block and the input and output message area headers into the linkage
section of your action program. You have to code the descriptions of the continuity
data area and work area according to the action program application.

In BAL action programs, you assign registers to receive the addresses of interface
areas. The formats for the program information block and the input and output
message area headers are in the form of DSECTs in the system macro library,
YMAC. You issue macroinstructions to copy these formats into your program.

Action programs also interface with IMS through the COBOL CALL statement or the
BAL CALL or ZG#CALL macroinstruction. You use these CALL functions to issue
requests to IMS for file access and other operations.

UP-9207 Rev. 2 1-11

e\

Section 2
General Rules for Coding Action Programs

2.1. COBOL Action Program Structure

Though COBOL action programs are similar to conventional COBOL programs,
certain differences characterize them.
2.1.1. ldentification Division

The identification division is the same as any COBOL identification division.

2.1.2. Environment Division
The first important difference is in the environment division.

You must omit the input-output section in the environment division. It is not needed
because you supply a file description in the file section of the IMS configuration. You
also name your files, give file types, and give any additional information concerning
file processing as part of IMS configuration.

2.1.3. Data Division

Instead of using an FD statement to name the file you are accessing, omit the file
section and place the file name in the working-storage section.

When you use a function CALL statement for a particular file later in your program,
IMS associates the file name you specified at configuration time with the file you
name in the working-storage section.

In a sharable or reentrant COBOL action program, the working-storage section in an
action program may contain constants only. Describe each elementary item in the
working-storage section with a VALUE clause.

Figure 2-1 shows an example of correct and incorrect working-storage section coding
for an action program.

UP-9207 Rev. 2 2-1

General Rules for Coding Action Programs

2-2

INCORRECT

CORRECT

DATA DIVISION.

01 ERR-MSG-LITS.

WORKING-STORAGE SECTION.
77 ERR-INDICATOR PIC X(19).

02 ERR-1 PIC X(19).
02 ERR-2 PIC X(19).
02 ERR-3 PIC X(19).

@ ERR-4 PIC X(19).

01

NO VALUE CLAUSES

DATA DIVISION.
WORKING-STORAGE SECTION.
77 DMOALT PIC X(6) VALUE 'DMOALT!.

ERR-MSG-LITS.

02

02

02

02

ERR-1
Y,

ERR-2 PIC X(19)
v -

Figure 2-1. Describing Working-Storage Items in a Sharable COBOL Action Program

Every COBOL action program requires a linkage section. This section is optional in a
conventional COBOL program.

Your action program’s linkage section defines the areas your program uses to interface

with IMS. The names of these areas must correspond with the interface areas in the
activation record and also with the names in the USING clause parameter list in the
procedure division (Figure 2-2).

01
21
21
01
01

DATA DIVISION.

LINKAGE SECTION.

P-1-B. COPY PIB74.
I1-M-A. COPY IMA74.
W-A.

0-M-A. COPY OMA74.
C-D-A.

0-M-A C-D-A.

PROCEDURE DIVISION USING P-1-B I-M-A W-A

Figure 2-2. Describing Interface Areas in a COBOL Action Program

UP-9207 Rev. 2

General Rules for Coding Action Programs

2.1.4. Procedure Division

An action program always contains a USING clause in the procedure division
statement. This is for naming the interface areas your program uses in processing
messages.

Because parameters in the USING list are positional, you must code them in the
prescribed order shown in Figure 2-2.

If, for example, your COBOL action program does not need the work area and
continuity data area, you must still code a dummy parameter to indicate their
omission from the USING list as follows:

PROCEDURE DIVISION USING PROGRAM-INFORMATION-BLOCK
INPUT -MESSAGE - ARE OUTPUT -MESSAGE - AREA.

In this case, you are choosing the letter D as a dummy parameter name. Because
continuity data area is the last parameter of the list, you can omit the dummy
parameter.

Action programs do not use standard I/O COBOL verbs in the procedure division.
Instead, they issue CALL function statements to IMS. (See Section 5.)

Figure 2-3 shows the correct and incorrect way to access data files from a COBOL
action program.

INCORRECT CORRECT
PROCEDURE DIVISION USING PROCEDURE DIVISION USING
PROGRAM- INFORMATION-BLOCK PROGRAM- INFORMATION-BLOCK
INPUT-MESSAGE-AREA D INPUT-MESSAGE-AREA D
OUTPUT -MESSAGE - AREA OUTPUT -MESSAGE - AREA.
BEGIN-ROUT. BEGIN-ROUT.

OPEN MYFIL.
READ MYFIL.

MUST BE CALL FUNCTION,
NOT COBOL VERB

Figure 2-3. Accessing a Data File

UP-9207 Rev. 2 23

General Rules for Coding Action Programs

When you want to end an action program, use the CALL ‘RETURN’ function. It
returns control to IMS, and if you've built an output message in the output message
area, the CALL ‘RETURN’ sends the output message to the destination terminal.

ACTION
PROGRAM

INPUT
MESSAGE
AREA

CALL
‘RETURN’

OUTPUT
(1 M™EssaGe

AREA

2.2. COBOL Program Structure Comparison

COBOL action programs are distinguished from conventional COBOL programs by

the:
e Absence of an input-output section

¢ Absence of a file section

* Linkage section containing a 77- or 01-level data description corresponding to

each parameter on the procedure division USING clause
¢ CALL functions to access and manipulate files

¢ CALL ‘RETURN’ function that ends the action program

Figure 2-4 shows the similarities and differences between conventional COBOL

programs and COBOL action programs.

24

UP-9207 Rev. 2

General Rules for Coding Action Programs

CONVENTIONAL PROGRAM STRUCTURE

ACTION PROGRAM STRUCTURE

IDENTIFICATION DIVISION.
PROGRAM-ID. program-name.

(Any optional entry)
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. UNISYS 0S3.
OBJECT-COMPUTER. UNISYS 0S3.
SPECIAL -NAMES.

(Any 0S/3 implementor-names)
INPUT-OUTPUT SECTION.
FILE-CONTROL

SELECT filename

ASSIGN TO DISK-lfdname-V

ORGANIZATION file-type.
DATA DIVISION.
FILE SECTION.
FD filename

LABEL RECORD STANDARD.
01 data-name-2

02 data-name-2

02 data-name-3

WORKING-STORAGE SECTION.
77 data-name.
81 record-name.

[LINKAGE SECTION.]

(No control area description)

IDENTIFICATION DIVISION.
PROGRAM-ID. program-name.

(Any optional entry)
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. UNISYS 0S/3.
OBJECT-COMPUTER. UNISYS 0S/3.
SPECIAL -NAMES.

{No special names)

(No input-output section)

DATA DIVISION.
(No file section)

WORKING-STORAGE SECTION.
77 data-name.

LINKAGE SECTION.
01 PROGRAM- INFORMATION-BLOCK

01 INPUT-MESSAGE-AREA

[01 WORK-AREA]

[01 OUTPUT-MESSAGE-AREA]

Figure 2-4. Conventional COBOL Structure versus COBOL Action Program Structure

(Part 1 of 2)

UP-9207 Rev. 2

General Rules for Coding Action Programs

CONVENTIONAL PROGRAM STRUCTURE ACTION PROGRAM STRUCTURE

[01 CONTINUITY-DATA-AREA]

PROCEDURE DIVISION. PROCEDURE DIVISION USING program-
information-block input-message-area
[work-arealloutput-message-areal
[continuity-data-areal.

Para-1.

Para-2.

CALL'RETURN'.

Figure 2-4. Conventional COBOL Structure versus COBOL Action Program Structure
(Part 2 of 2)

2.3. COBOL Language Restrictions

26

In addition to omitting input-output and file sections, there are several restrictions to
observe when you write a COBOL action program.

Some programmers like to use a function key to identify the action program load
module. If you do this, don’t use a function key (F#nn) as the program-id name
because the COBOL compiler treats the # symbol as invalid. Instead, supply a valid
program-id name in the identification division and then include a LOADM statement
with F#nn as the load module name at link-edit time.

For example, you can identify your action program as follows:

IDENTIFICATION DIVISION.
PROGRAM-1D. CREDIT.

CREDIT is your program name. You then associate your program-id with a function
key at link-edit time in the following job control stream:

// EXEC LNKEDT
/%

/*

Some COBOL verbs, clauses, and sections are illegal in action programs. If you
compile them with the shared code parameter, PARAM IMSCOD=YES, or with the
reentrant parameter, PARAM IMSCOD=REN, the compiler locates and deletes them
from your program. (See Section 11.)

UP-9207 Rev. 2

Y

PN
/ \
! \

General Rules for Coding Action Programs

The following reserved words are illegal in COBOL action programs. For language
restrictions on extended COBOL programs, refer to G.7.

ACCEPT MESSAGE COUNT
ALTER

CALL identifier

CANCEL

CLOSE

COMMUNICATION SECTION
DECLARATIVES

DELETE

DISABLE

ENABLE

EXHIBIT

FILE SECTION
INPUT-OUTPUT SECTION
MERGE

OPEN

READ

RECEIVE

RELEASE

RETURN

REWRITE

SEGMENT-LIMIT
SEND

SORT

START

STOP
SYSCHAN-n
SYSCONSOLE
SYSFORMAT
SYSIN

SYSIPT
SYSLOG
SYSLST
SYSOPT
SYSout
SYSSCOPE
SYSTERMINAL
SYSWORK
TRACE

WRITE

Other COBOL verbs must not have working-storage items as receiving operands.

These verbs are:

ACCEPT
ADD
COMPUTE
DIVIDE
INSPECT
MOVE
MULTIPLY

PERFORM (varying)
SEARCH (varying)
SET

STRING
SUBTRACT
TRANSFORM
UNSTRING

When you compile your action program with the shared code parameter, the compiler
flags the erroneous statement and issues a precautionary diagnostic.

When you compile your COBOL action program with the IMSCOD=REN parameter,
the compiler deletes the erroneous statement and issues a serious diagnostic.

Do not use these subroutine names in reentrant COBOL action programs:

e TIPDXC
e TIPJUMP
* TIPRTN
¢ TIPXCTL

UP-9207 Rev. 2

27

General Rules for Coding Action Programs

The compiler generates special object code for these names, which deallocates the
object program reentrancy control area for the calling program, and the action
program may be abnormally terminated.

For extended COBOL language restrictions on action programs, refer to G.7.

2.4. BAL Action Program Structure

Similar to COBOL action programs, BAL action programs must provide a receiving
area for the IMS activation record interface areas. You handle this by assigning
registers to receive the addresses of the interface areas.

There are macroinstruction calls for the program information block and input and
output message header formats. When you issue one of these macroinstructions, it
calls a corresponding DSECT that generates the interface area format into your action
program.

USING ZA#DPIB,R9
ZM#DPIB

USING ZA#IMH,R12
ZM#DIMH

USING WA,R6

USING ZA#DOMH

USING CDA,R4

Figure 2-5. Describing Interface Areas in a BAL Action Program

28 UP-9207 Rev. 2

General Rules for Coding Action Programs

A BAL action program, like COBOL, uses function calls to access files. There are two
forms of function calls, the CALL or the ZG#CALL macroinstruction.

ACTION
PROGRAM

ZG#CALL GET -%a
.

When you enter a message at the terminal and IMS transfers control to your BAL
action program entry point, register 1 always points to a parameter list containing, in
order:
1. Program information block address

N 2. Input message area address
3. Work area address

4. Output message area address

5. Continuity data area address

ACTION
PROGRAM
v

PARAMETER
LIST

PIB ADDR.
IMA ADDR.

WA ADDR.
OMA ADDR.
CDA ADDR.

IMA

UP-9207 Rev. 2 29

General Rules for Coding Action Programs

The work area, output message area, and continuity data area are optional. If you
don’t need them in your program, IMS assigns a binary 0 to their place in the
parameter list.

Other registers contain save area and action program entry point addresses. (See 6.5
for more detail about BAL action programming.)

Several ways you can distinguish a BAL action program from other BAL programs
are:

* Registers assigned to the addresses of interface area DSECT's
e Use of CALL or ZG#CALL macroinstructions to access and manipulate files

e Use of ZM#DPIB, ZM#DOMH, or ZM#DIMH macroinstructions to transfer the
program information block and the control header formats from the IMS
activation record to the BAL program

® Use of ZG#CALL RETURN function to end the action program

2.5. The Activation Record

Each time IMS initiates an action, it constructs an activation record in main storage.

Each activation record has a program information block and an input message area. It
may also have an output message area, work area, continuity data area, and a defined
record area.

The program information block contains information that IMS uses to communicate
with your action program. By testing fields in the program information block for the
status of IMS functions, your program can control the processing of files and the
succession of action programs.

IMS uses the input message area to exchange input message processing information
with your program. Fields in the IMA hold control information that identifies input
terminals, and gives message text length as well as message text.

The work area is an interface area that you often use when your action programs are
sharable or reentrant. It is modifiable working storage that your action program uses
to build output messages (see 6.1) or as a record area for file input and output.

Output message area fields notify IMS of output message control information, such as
output terminal identification, special output options, and output message text length.
It also provides a place where IMS can interface with output message text.

When used, the continuity data area provides the interface area where your action
program passes data from action to action in a dialog transaction. IMS uses the
continuity data area to interface with your action program’s transfer of data from one
action to another.

2-10 UP-9207 Rev. 2

/mm\
/ \

General Rules for Coding Action Programs

ACTION

ACTION PROGRAM 2

PROGRAM 1

CONTINUITY
DATA
AREA

PN

REFERENCING

CONTINUITY

DATA AREA
FIELDS

IMS uses the defined record area to reference defined records. Your action program
can’t access a defined record area (DRA) or write into the DRA. You do not define this
area in your program.

When you enter a message at a terminal, IMS:

* Dynamically allocates the activation record interface areas that your program
needs to converse with IMS

® Schedules and loads the action program needed to process the action

When IMS schedules a COBOL action program, that program must contain a linkage
section where it can exchange data with IMS. Part of the linkage section must be
formatted in a certain way. The IMS copy library provides this formatted source code.

You use a COPY statement to transfer the formats of the program information block
area, input message area header, and output message area header from the IMS copy
library areas to the linkage section of your COBOL action program.

When you compile your COBOL action program using the extended COBOL compiler,
the IMS copy library makes the program information block format and the output
message area and input message area control headers available under the names PIB,

OMA, and IMA, respectively.

When you use the 1974 American National Standard COBOL compiler, your COPY
statement must use the names PIB74, OMA74, and IMA74 to transfer the interface
area formats needed by your program.

UP-9207 Rev. 2 211

General Rules for Coding Action Programs

2-12

Figure 2-6 shows how a COBOL action program converses with IMS via the activation
record. IMS sets up space in the activation record for each interface area your action

program uses.

INPUT MESSAGE

PROGRAM
INFORMATION
BLOCK

OUTPUT
MESSAGE
AREA

CONTINUITY

| 01 P-I-B. COPY PIB74
01 I-M-A. COPY IMA74.

WORK 01 W-A.

AREA 01 O-M-A. COPY OMA74.

01 C-D-A.

INPUT PROCEDURE DIVISION USING

DATA AREA

MESSAGE P-I-B I-M-A W-A O-M-A
AREA C-D-A.

DEFINED
RECORD
AREA

The COPY verb moves interface area formats from the IMS copy library to your action
program'’s linkage section and your program converses with the IMS interface areas in the
activation record. Note that your action program cannot access or write into the defined
record area.

A BAL action program accesses the activation record interface areas via

Figure 2-6. IMS/COBOL Action Program Interface

macroinstructions that call DSECT's from the YMAC system macro library or a user
macro library. The ZM#DPIB macroinstruction calls the ZA#DPIB DSECT, the
ZM#DOMH macroinstruction calls the ZA#OMH DSECT, and the ZM#DIMH
macroinstruction calls the ZA#IMH DSECT. (See Appendix H.)

UP-9207 Rev. 2

General Rules for Coding Action Programs

Figure 2-7 shows IMS communicating with a BAL action program via the activation
record. Again, IMS sets up an interface area in the activation record for each interface
area used by your BAL action program.

$YSMAC

TRANSACTION CODE

DSECTS

PROGRAM
INFORMATION
BLOCK

OUTPUT
MESSAGE : ZIM#DPIB
AREA

CONTINUITY
DATA AREA ZM#DIMH

WORK
AREA

, . ~ INPUT .

AREA

DEFINED
RECORD
AREA

The ZM#DPIB, ZM#DOMH, and ZM#DIMH macroinstructions call the format headers from the
SYSMAC system macro library. If you use a work area or continuity data area, you must
define and cover them in your action program. Note that your action program cannot access
or write into the defined record area.

Figure 2-7. IMS/BAL Action Program Interface

UP-9207 Rev. 2 213

Section 4
Receiving Input Messages

4.1. Need for Input Message Area

When a terminal operator enters a transaction code, your action program must define
an input area to receive it. The same is true when the terminal operator enters an
input message in response to an output message.

When you use internal succession and pass data as input to the next action program,
you must define an input area in the successor program to receive the data.

ACTION
PROGRAM 2

ACTION PROGRAM 1 INPUT

AREA

An input message area is always required in your action program because each action
program must receive an input message, either via the terminal or action program

succession, to produce an output response. Without an input message, no message
processing is possible.

UP-9207 Rev. 2 41

Receiving Input Messages

4.2. Input Message Area Contents C

The first part of any input message area description is the 16-byte control header.
Your program obtains the appropriate COBOL or BAL input message control header
format from the copy library or macro library.

The second part of the input message area description is the text of the message itself.
The input message text consists of the input fields your program expects to receive
either from the terminal operator or by succession from a previous action program.

NPUT MESSAGE
CONTROL HEADER
(16 BYTES)

INPUT
MESSAGE
TEXT

4.3. Size of Input Message Area

You tell IMS the size of your input message area at configuration time when you <\
specify the INSIZE parameter in the ACTION section. The value given for the INSIZE
parameter is the number of bytes in the input message header plus the message text
length, including any control characters you expect to receive in your program. You
receive control characters in your action program only when you specify EDIT=NONE
in the configurator ACTION section.

4 BYTES 30 BYTES

Instead of specifying an input message area length on the INSIZE parameter, you can
specify a standard message size (INSIZE=STAN); IMS allocates an area based on your
CHRS/LIN and LNS/MSG parameter values in the GENERAL section.

a

42 UP-9207 Rev. 2

Receiving Input Messages

When you omit the INSIZE parameter or specify an inadequate amount of space for
the input message area, IMS automatically allocates an area large enough to contain

the actual input message.

INPUT MESSAGE
CONTROL HEADER

INPUT MESSAGE TEXT

| ENTER CUSTOMER ID ‘

(AND ZIP CODE. l

Automatic space allocation doesn’t occur if you use an edit table (EDIT=tablename), so
you must specify the number of bytes for the input message area on the INSIZE

parameter.

On the other hand, if you specify more space than is needed, IMS fills the balance of

the area with blanks.

INPUT MESSAGE
CONTROL HEADER

INPUT MESSAGE TEXT

| ENTER CUSTOMER ID]

[AND ZIP CODE.

FARVANANANVANVANIVAN
LLA

Note that you're wasting storage when you overestimate input message area size. If
you're not using the edit table generator and you aren’t sure of the input message area
size, omit the INSIZE parameter and let IMS determine the input message area

length.

UP-9207 Rev. 2

43

Receiving Input Messages

4.4. COBOL Action Program Input Message Area

4.4.1. Input Message Header Format

IMS supplies input message control header formats for extended COBOL and 1974
American National Standard COBOL. There is only a slight difference in their
content. The COBOL input message header format is available in the IMS copy
library under the name IMA for extended COBOL, or under the name IMA74 for 1974
American National Standard COBOL. Figure 4-1 shows the format of the 1974
COBOL input message area control header. Note the different data names of TODAY
and HR-MIN-SEC fields for extended COBOL.

@1 INPUT-MESSAGE-AREA.

02 SOURCE-TERMINAL-ID PIC X(4).

02 DATE-TIME-STAMP.
03 YEAR PIC 9(4) COMP-4.
@3 TODAY PIC 9(4) COMP-4.
03 HR-MIN-SEC PIC 9¢9) COMP-4.

02 TEXT-LENGTH PIC 9(4) COMP-4.

82 AUXILIARY-DEVICE-ID.
03 FILLER PIC X.
@3 AUX-DEVICE-NO PIC X.

Notes:

@ The name of this field in extended COBOL is DAY.
@ The name of this field in extended COBOL is TIME.

Figure 4-1. 1974 COBOL Format for Input Message Area Control Header

When you code your COBOL action program’s linkage section, copy the input message
area control header format into your action program from the copy library by using a
COPY verb.

4.4.2. Input Message Text Description

The input message text description immediately follows the input message control
header format. You describe the input message text expected by your program from
the terminal or previous action program. In COBOL, describe the input message text
as data items subordinate to the 01-level input message area description. The shaded
area in Figure 4-2 shows the input message area control header formats generated by
the COPY verb. Fields immediately following the shaded area represent the input text
expected by the program.

44 UP9207 Rev. 2

N

Vamn N

AN

Receiving Input Messages

Note: An action program’s input message must not begin with the characters ZZ in

the first two positions. These characters are reserved to indicate master
terminal commands.

Refer to the CSCAN action program example, PAYMT-3, in Appendix B for an
example of this input text. When you copy the input message control header format
from the copy library, all its fields are accessible to the CSCAN action program and

can be referenced in the procedure division.

LINKAGE SECTION.
01 P-1-B

02 FILLER
02 CUSTID
02 FILLER
02 MSG-PAY.
03 MSG-CHAR
02 FILLER

copy PIB74

PIC X(6).
PIC X(6).
PIC X.

PIC X OCCURS 7 INDEXED by 1.
PIC X.

IMA

CONTROL
HEADER
DESCRIPTION

INPUT
MESSAGE
TEXT
DESCRIPTION

Figure 4-2. Sample COBOL Input Message Area Description

UP-9207 Rev. 2

45

Receiving Input Messages

4.5. BAL Action Program Input Message Area

4.5.1. Input Message Header Format

IMS supplies an input message area control header format for BAL action programs.
It is in the form of a DSECT called by a macroinstruction in your action program.
Figure 4-3 shows the format of the BAL input message area control header.

155 ZA#DIMH
156+ZA#IMH DSECT

157+%

158+* INPUT MESSAGE HEADER
159+*

16@+ZA#ISTID DS CL4 SOURCE TERMINAL ID

161+ZA#1DTS DS XL8 DATE/TIME STAMP

162+ZA#1TRID EQU ZA#IDTS,L'ZA#IDTS UNIQUE TRANSACTION ID
163+ZA#IMHL EQU *-ZA#IMH INPUT MESSAGE AREA HEADER LENGTH
164+ZA#1TL DS H TEXT LENGTH

165+ DS CL1 RESERVED FOR SYSTEM USE

166+ZA#IDEV DS CL1 AUX DEVICE ID

167+*

168+* EQUATES FOR ZA#IDEV

169+*

170+ZA#IDID1 EQU C'1' DEVICE = AUX 1

171+ZA#IDID2 EQU C'2' DEVICE = AUX 2

172+ZA#IDID3 EQU C'3' DEVICE = AUX 3

173+ZA#IDID4 EQU C'4' DEVICE = AUX 4

174+ZA#IDID5 [EQU C'5' DEVICE = AUX 5 ,
175+ZA#IDID6 EQU C'6' DEVICE = AUX 6 -
176+ZA#1DID7 EQU C!'7' DEVICE = AUX 7

177+ZA#1DID8 EQU C'8' DEVICE = AUX 8

178+ZA#IDID9 EQU C'9' DEVICE = AUX 9

179+IMSDSECT CSECT
180 IMSDSECT CSECT

Figure 4-3. BAL Format for Input Message Area Control Header (ZA#IMH DSECT)

You issue the ZM#DIMH macroinstruction in your BAL action program to generate
inline the input message control header (ZA#IMH DSECT). If you don’t want to see
the ZM#DIMH macro expansion inline, use the PRINT NOGEN instruction before you
issue the ZM#DIMH macroinstruction. Even though the input message control header
fields are not seen in your program coding, they are still available and you can
reference them in your program.

46 UP-9207 Rev. 2

Receiving Input Messages

Immediately following the ZM#DIMH macroinstruction, you describe the input
message text fields. Using define-storage (DS) statements, you describe each field of
your input message text. Figure 4-4 illustrates the macroinstruction to generate the
input message control header format followed by the description of input message text
expected from the terminal (transaction code and state name key). Refer to

Appendix B for this example in the full context of the IMS state capital action
program. Note that PRINT NOGEN is specified and the ZM#DIMH macroinstruction
is not expanded inline. Nevertheless, this action program can still access any fields in
the control header for values placed there by IMS.

Suppresses inline
macro expansion.

Makes IMA control header
fields available.

TCODE DS X TRANSACTION CODE
DS X SPACE Input Message Text
SNKEY DS XL4 STATE NAME KEY

Figure 4-4. Sample BAL Input Message Area Description

4.6. Contents of Input Message Area Control Header

The header format identifies the terminal that sent the input message, the date and
time when the message was sent, the length of the input text, and whether or not an
auxiliary device transmitted input to the action program. Figure 4-5 shows some of
the questions about input messages that the input message control header answers
when IMS sets values in the control header fields. Subsections 4.7 through 4.10
describe input message header fields.

UP-9207 Rev. 2 47

Receiving Input Messages

WHICH TERMINA
SENT THIS
MESSAGE?

INPUT
MESSAGE
AREA

WHICH INPUT
MESSAGE IS
THIS?

HOW LONG IS
THIS INPUT
MESSAGE?

Figure 4-5. Answers to Input Message Processing Questions

4.7. ldentifying the Source Terminal
(SOURCE-TERMINAL-ID)

The SOURCE-TERMINAL-ID (ZA#ISTID) field specifies a 1- to 4-byte name of the
terminal that originated the input message. Your action program may need to check
this field to determine which terminal sent a particular input message. This terminal
name is the same name specified for the terminal in the ICAM network definition and
in a TERMINAL section of the configuration (Figure 4-6).

48 UP-9207 Rev. 2

O

Receiving Input Messages

ICAM_NETWORK DEFINITION

IMS1 CCA TYPE=(GBL,,S),GAWAKE=YES, SAVE=YES, X
FEATURES=(OPCOM, OUTDELV)
BUFFERS 10,512,2,ARP=20
WOLO LOCAP TYPE=(TCI),LOW=MAIN,MEDIUM=MAIN, HIGH=MAIN
LNE1 LINE DEVICE=(LWS)
il TERM ADDR=(312),FEATURES=(LWS) ,LOW=MAIN, INPUT=(YES), X
MEDIUM=MAIN, HIGH=MAIN, TCTUPD=YES
LINE DEVICE=(LWS)
TERM ADDR=(313), FEATURES=(LWS),LOW=MAIN, INPUT=(YES), X
MEDIUM=MAIN, HIGH=MAIN, TCTUPD=YES
LINE DEVICE=(LWS)
TERM ADDR=(314),FEATURES=(LWS),LOW=MAIN, INPUT=(YES), X
MEDIUM=MAIN, HIGH=MAIN, TCTUPD=YES
LNE4 LINE DEVICE=(LWS)
TERM ADDR=(315),FEATURES=(LWS),LOW=MAIN, INPUT=(YES), X
MEDIUM=MAIN, H1GH=MAIN, TCTUPD=YES
PRC1 PRCS LOW=MAIN
ENDCCA

IMS CONFIGURATION

NETHWORK

UNSOL=ACTION

UNSOL=ACTION

UNSOL=ACTION

TERMINA UNSOL=ACTION

TRANSACT MENU ACTION=JAMENU

TRANSACT SIGN ACTION=JASIGN

ACTION JAMENU CDASIZE=1024 EDIT=NONE MAXSIZE=12000
OUTSIZE=4096 WORKSIZE=1024
FILES=SYSCTL,CUSTMST,XREF1,XREF2

ACTION JASIGN CDASIZE=1024 EDIT=NONE MAXSIZE=12000

Figure 4-6. ldentifying the Source Terminal to ICAM and the Configurator

Suppose your action program processes input messages differently, depending on
which terminal sent the message. Before it can decide how to process the message,
your program needs to check the name of the source terminal that sent the input
message.

Let’s say that if your program receives a message from source terminals T100 through
T300, it performs routine A. On the other hand, if your program receives a message
from source terminals T400 through T600, it performs routine B. Your program
simply interrogates the SOURCE-TERMINAL-ID field of the input message header
as shown in Figure 4-7 and processes the input message according to the values placed
in the SOURCE-TERMINAL-ID field.

UP-9207 Rev. 2 49

Receiving Input Messages

100-TERM-TEST.
IF SOURCE-TERMINAL-ID GREATER THAN OR EQUAL TO 'T100!
AND LESS THAN OR EQUAL TO 'T300!
PERFORM ROUT-A
ELSE IF SOURCE-TERMINAL-ID GREATER THAN OR EQUAL TO 'T4@8' AND
LESS THAN OR EQUAL TO 'T600°'
PERFORM ROUT-B.
GO TO ERR-ROUT.
ROUT-A.

ROUT-B.

ERR-ROUT.

Figure 4-7. Interrogating the SOURCE-TERMINAL-ID Field

4.8. Identifying the Action (DATE-TIME-STAMP)

When IMS receives an input message, it places the date and time as a binary value in
the DATE-TIME-STAMP field (ZA#IDTS) of your input message header. The first
half-word of the field contains the year; the second half-word of the field contains the
Julian day. The second word contains a sequence number unique to this input
message. The date/time stamp is used for recovery purposes and not for determining
the time of day.

IMS uses this field to distinguish actions. Each time IMS receives an input message, it
identifies the action via this date/time stamp. If you need the accurate date or time in
your action program, you should interrogate the TRANSACTION-DATE and TIME-
OF-DAY under SUCCESS-UNIT-ID in the program information block.

410 UP-9207 Rev. 2

Receiving Input Messages

4.9. Obtaining Input Message Text Length (TEXT-LENGTH)

Once the terminal operator enters an input message, or a previous action program
passes input data to a successor action program, IMS places a binary half-word value
indicating the input message length plus 4 bytes for the TEXT-LENGTH (ZA#ITL)
field itself into the TEXT-LENGTH field.

Your action program may want to print out all input messages for a day’s
transactions. Suppose the input messages received by your action program can vary in
length and you plan to write them as variable-length unblocked records to a
sequential file.

The value IMS places in the TEXT-LENGTH field contains the length of the input
message text your action program receives plus 4 bytes for the TEXT-LENGTH field.
Each time your program receives an input message, it must first subtract 4 bytes from
the value in TEXT-LENGTH. Your program then compares the resulting value with
the different input message lengths that the program expects. When the program
determines which size message was received, it moves TEXT-LENGTH minus 4 bytes
to the record length field of your record area description in the work area. Finally, it
moves the appropriate input message to the work area and writes it to the sequential
file. Figure 4-8 shows the coding to test the TEXT-LENGTH field in the input
message area. Note that you must subtract a binary 4 from the COMP-4 TEXT-
LENGTH field, and the RECORD-LENGTH field in the work area must also be a
binary value.

When you access the TEXT-LENGTH field in the input message area, your COBOL

program must qualify the TEXT-LENGTH field by identifying it as a part of the input
message area header; that is, TEXT-LENGTH IN INPUT-MESSAGE-AREA.

UP-9207 Rev. 2 411

Receiving Input Messages

412

WORKING-STORAGE SECTION.

77 FOUR PIC 9 COMP-4 VALUE 4.
77 FORTY PIC 99 COMP-4 VALUE 40.
LINKAGE SECTION.
01 INPUT-MESSAGE-AREA. COPY IMA74.
05 MSG-IN-1.
10 TRANS-CODE-1 PIC X(5).
10 IN-MSG-TEXT-1 PIC X(35).
05 MSG-IN-2 REDEFINES MSG-IN-1.
10 IN-MSG-TEXT-2.
20 TRANS-CODE-2 PIC X(5).
20 TEXT-2 PIC X(20).
10 FILLER PIC X(15).
01 WORK-AREA.
05 IN-MSG-REC.
10 REC-LEN PIC 9¢4) COMP-4.
10 MSG-TEXT.
20 MsG-1 PIC X(25).
20 FILLER PIC X(15).
01 OUTPUT-MESSAGE-AREA. COPY OMA74.

PROCEDURE DIVISION

USING PROGRAM- INFORMATION-BLOCK
INPUT -MESSAGE - AREA

WORK - AREA

OUTPUT -MESSAGE - AREA.

IN-MSG-MOVE

MOVE TEXT-LENGTH IN INPUT-MESSAGE-AREA TO REC-LEN.
SUBTRACT FOUR FROM TEXT-LENGTH IN INPUT-MESSAGE-AREA.
MOVE SPACES TO MSG-TEXT.

IF TEXT-LENGTH IN INPUT-MESSAGE-AREA EQUAL FORTY

MOVE MSG-IN-1 TO MSG-TEXT

ELSE MOVE IN-MSG-TEXT-2 TO MSG-1.
CALL 'PUT' USING IN-MSG-FIL IN-MSG-REC.

IF STATUS-CODE > @ GO TO ERR-ROUT.

ERROR-ROUT.

Figure 4-8. Testing the TEXT-LENGTH Field

UP-9207 Rev. 2

Receiving Input Messages

4.10. Identifying Auxiliary Devices (AUXILIARY-DEVICE-NO)

When an input message is received from an auxiliary device, IMS places the number
of the auxiliary device in the second byte of the AUXILIARY-DEVICE-ID (ZA#IDEV)
field, AUX-DEVICE-NO. Auxiliary device values range from 1 to 9. The first byte is
reserved for system use.

Just as your action program can check the source terminal identification, it can also
check auxiliary device identification. To determine which auxiliary device sent the
input message, your action program interrogates the AUX-DEVICE-NO field.

Suppose your action program logic depends upon which auxiliary device transmitted a
particular input message. If your input message came from auxiliary device 1, your
program performs one routine. If device 2 transmitted the message, your program
performs another routine. Figure 4-9 shows the procedure division coding used to
check the number of the auxiliary device that sent the input message to your action
program.

AUX-DEV-TEXT.
IF AUX-DEVICE-NO EQUAL 1
PERFORM ROUT-A.
ELSE IF AUX-DEVICE-NO EQUAL 2
PERFORM ROUT-B.
GO TO ERR-ROUT.
ROUT-A.

ROUT-B.

ERR-ROUT.

Figure 4-9. Testing the AUX-DEVICE-NO Field in a COBOL Action Program

UP-9207 Rev. 2 413

Receiving Input Messages

414

The same test can be performed in a BAL action program by using the CLI instruction
and branching to the appropriate routine to handle the processing of a message from
either auxiliary device 1 or 2. Figure 4-10 shows this coding for a BAL action program.

1 10 16
CLI ZA#IDEV+1, C'1!
BE ROUTA
CLI ZA#IDEV+1, C'2!
BE ROUTB

ROUTA

ROUTB

Figure 4-10. Testing the AUX-DEVICE-NO Field in a BAL Action Program

UP-9207 Rev. 2

~

Receiving Input Messages

4.11. Input Message Text

Though input message texts vary according to individual applications, you must
consider three important options before defining your input message area in your
action program:

* Receiving control character sequences
* Use of the edit table generator to edit input messages

® Use of screen format services to receive input on formatted screens

4.11.1. Control Character Sequences

Two input message control character sequences are used on input messages: device-
independent control expressions (DICE) and field control character sequences (FCC).
Field control characters apply only to UTS devices and workstations.

4.11.2. Device-Independent Control Expressions

ICAM automatically inserts DICE sequences into input messages. DICE sequences
show the format of input messages. A DICE sequence consists of the select character
(10,4), a hexadecimal function code, and two hexadecimal coordinates: the first
representing a row, and the second representing a column on the terminal. Function
codes position the cursor, control carriage return, control forms, control line, feed line,
and erase the screen. (See Table F-1 for further details.) The following diagram shows
the relationship between the DICE sequences received in your program and their
appearance on the screen.

UP-9207 Rev. 2 415

Receiving Input Messages

In most cases, you configure the removal of DICE codes from input messages by
specifying EDIT=tablename or EDIT=c in the configurator ACTION section, or by
omitting the EDIT parameter.

If you wish to receive DICE sequences on input messages, you configure
EDIT=NONE, which indicates no input message editing. You may want to receive
DICE sequences on input in order to:

* Obtain cursor positioning control values for an input message and use this data
in screen positioning output messages

¢ Switch a message to another terminal via the SEND function

Configuring EDIT=NONE also means that all blanks entered at the terminal,
including leading blanks, are received in your input message area. However, in the
case of an input message from the system console, leading blanks are removed.

Suppose you receive an input message from a terminal and want to send that message
to another terminal; you want that message to arrive at the destination terminal in
the same screen position as when it was entered on input.

First, define an area in the first 4 bytes of your input message area to receive the
DICE control sequence. In the procedure division, move the DICE sequence from the
input message area to the output message area before moving the destination
terminal identification and output message text to the output message area and
issuing the SEND function (Figure 4-11).

416 UP-9207 Rev. 2

Receiving Input Messages

WORKING-STORAGE SECTION.
77 ELEVEN PIC 99 COMP-4 VALUE 11.
LINKAGE SECTION.

@81 INPUT-MESSAGE-AREA. COPY IMA.

05 DICE-SEQ PIC X(4). é=———— RECEIVE DICE CONTROL SEQUENCES
05 TRANS-CODE PIC X(5).
05 FILLER PIC X.
05 DEST-TERM PIC X(4).
05 FILLER PIC X.
05 IN-TEXT PIC X(28).
81 OUTPUT-MESSAGE-AREA. COPY OMA74.
05 CURSOR-POS PIC X(4). ¢ RECEIVE DICE CONTROL SEQUENCES
85 OUT-TEXT PIC X(28).
PROCEDURE DIVISION USING PROGRAM- INFORMAT ION-BLOCK

INPUT-MESSAGE-AREA D
OUTPUT -MESSAGE - AREA.

MOVE -MESSAGE.
MOVE DEST-TERM TO DESTINATION-TERMINAL-ID.
SUBTRACT ELEVEN FROM TEXT-LENGTH IN INPUT-MESSAGE-AREA
GIVING TEXT-LENGTH IN OUTPUT-MESSAGE-AREA.
MOVE DICE-SEQ TO CURSOR-POS.
MOVE IN-TEXT TO OUT-TEXT.
. CALL 'SEND' USING OUTPUT-MESSAGE-AREA.
{:L* IF STATUS-CODE NOT EQUAL @ GO TO ERROR-PROC.
e

ERROR-PROC.

Figure 4-11. Receiving DICE Sequence on Input Message

UP-9207 Rev. 2 417

Receiving Input Messages

4.11.3. Field Control Character Sequences

To receive FCC sequences in your input from a UTS terminal or workstation, specify
EDIT=NONE or FCCEDIT=NO in the configurator ACTION section. Leave 5 bytes in
your input message text wherever you expect to receive the sequences. You describe
the input message text including the FCC sequences much the same as you do for
DICE sequences. Both FCC and DICE sequences can be interspersed in the message
text instead of just at the beginning.

4.11.4. Receiving Free-Form Input

418

Let’s consider the use of an edit table (EDIT=tablename) to edit input messages. You
create an edit table by executing an offline IMS utility, the edit table generator, and
configuring EDIT=tablename. This allows the operator to enter input messages in free
form at the terminal. IMS uses the edit table to convert the free-form input message
into the format your program requires.

You describe the input message text in your action program to reflect the formatted
input message you want to receive. IMS receives free-form input from the terminal,
formats and validates this input as you specify on edit table parameters, and sends it
to your program’s input message text in the format described there. For a description
of how to use the edit table generator and a sample program that uses an edit table,
see Appendix E.

. ACCEPT

CUST-ORD ' FORM
INPUT AP

CONVERT KEY-NO
CUST-ORD

SEND
FORMATTED
OUTPUT

UP-9207 Rev. 2

Receiving Input Messages

4.11.5. Receiving Screen-Formatted Input

Your action program can receive input entered on screen formats, using screen format
services. Your action program displays the screen format by issuing a BUILD function.
In your input message area, you describe all input or input/output fields entered by
the operator. For more details about receiving screen-formatted input, see Section 7.

UP-9207 Rev. 2 419

VN

Section 5

Processing Data Files

5.1. Accessing Files

Most IMS applications require access to data files. Your action programs exist to
process messages that depend on data obtained from files. Though your action

programs don’t directly access data files, they do issue I/O function calls that tell IMS
to retrieve, insert, update, or delete records.

When IMS receives a function call from your action program, it makes records
available for processing. Data management access methods, SAM, DAM, ISAM, or
MIRAM, perform the functions your action program requests. To access IRAM files,

you must configure them as MIRAM files.

IMS supports sequential, relative, and indexed files as well as defined files that are in
indexed organization. Table 5-1 summarizes the files supported by IMS.

Table 5-1. Summary of File Types Supported by IMS

Functions Available
File Access Data Management through IMS
Organization Mode Access Method File Management
Sequential Sequential SAM/dedicated MIRAM | Retrieve, Append
(tape and disk) (write unblocked output)
Relative Random DAM/MIRAM Retrieve*, Update,
(nonindexed) Insert, Delete
Sequential MIRAM Retrieve
Indexed Random ISAM/MIRAM Retrieve*, Update,
Insert, Delete
Sequential ISAM/MIRAM Retrieve
Indexed Random ISAM/DAM/ Retrieve*, Update, Insert,
(defined file MIRAM Delete
Sequential 1SAM/DAM/ Retrieve
MIRAM

*Both retrieve and retrieve-with-the-intent-to-update can be requested.

UP-9207 Rev. 2

51

Processing Data Files

Your action programs may issue random and sequential I/O functions to indexed and
relative files but only sequential I/O functions to sequential files. Table 5-2 lists the
file I/O functions allowed with each file organization and the CALL function
parameters.

Table 5-2. Summary of File I/0 Function Calls

Random Functions Sequential Functions

File
Organization

CALL | Parameters CALL |Parameters
Sequential GET |[filename

record-area
PUT |filename
record-area

Relative GET filename record-area record number (:) SETL |filename position
(nonindexed) | GETUP filename record-area record number [record-number]

PUT filename record-area [record-number](@) | GET |filename
record-area
INSERT | filename record-name record-number ESETL | filename
DELETE | filename record-area record-number SETK |filename [key-of-refl
Indexed GET filename record-area key [key-of-ref SETL |filename position
GETUP [dup-key-ct]] [key[partial-key-
count]]
PUT filename record-area GET |filename
record-area
INSERT | filename record-name ESETL | filename
DELETE | filename record-area SETK |filename [key-of-ref](:)
Indexed GET filename record-area key SETL |filename position [key]
(defined GETUP filename record-area key GET |filename record-area
file) PUT filename record-area ESETL | filename

INSERT | filename record-area key
DELETE | filename record-area

Notes:
@Sequential functions available with MIRAM, not DAM.
@Recordﬂumber required for DAM files.

@Optional parameters available for MIRAM only.

52

UP-9207 Rev. 2

VN

m\

Vi

PN

Processing Data Files

5.2. 1/0 Function Calls

Function calls are your program’s means of accessing data on files. You can issue an
I/O function call in either COBOL or BAL action programs; their formats differ
slightly.

The COBOL CALL function statement format is:

CALL 'function' USING filename, param-1,...param-n.

The BAL CALL function is in the format of a macroinstruction. BAL action programs
use either the CALL or ZG#CALL macroinstruction:

1 10 16
CALL function, (filename,param-1,...param-n)
ZGHCALL
where:
function . .
Is the name of the I/O function requested by your action program.
filename

Is the name of the file on which the function is performed.

param-1,...param-n
Indicates the record-area, record-number, key, partial-key-count, key-of -
reference, duplicate-key-count, or position relative to the record being

processed.

After processing an I/0 function call, IMS sets a status code value in the STATUS-
CODE field (COBOL action program) or ZA#PSC location (BAL action program) of the
program information block. The status codes returned by IMS are explained in more
detail in Table D-1.

IMS returns detailed status codes after processing certain I/O functions. These
detailed status codes give more description of the error that occurred. For detailed
status codes and their descriptions, see 3.6, 3.7, and Appendix D.

For advisory status codes, see 5.12 and Appendix D.

5.2.1. Function Call Positional Parameters

Both COBOL and BAL function CALL statements contain positional parameters that
refer to data names in the data division of a COBOL action program or labels of
storage locations in a BAL action program. Positional parameters include filename,
record-area, record-number, key, partial-key-count, key-of -reference, duplicate-key-
count, position, record-size, control-character-area, and lock-disposition.

Filename is a field containing the 7-character name of the file on which the specified
function is performed. This name is left-justified and blank-filled.

UP-9207 Rev. 2 53

Processing Data Files

In a COBOL action program, the file name can be defined in the working-storage
section:

PIC X(7) VALUE 'CUSTMST'.

CALL 'GET' USING

In a BAL action program, the file name can be defined as a constant in storage:

1 1 16
BN DC CL7'STATE'
and called in the macro:
1 1 16
CALL GET, (BEATE, IMS-RECORD-AREA, IMS-KEY)

Record-area is the area to or from which IMS moves a logical or defined record. You
define the record area within an 01-level item of the linkage section, usually the work
area.

detailed record is moved by IMS on an input function, or from which a defined record
is passed to IMS on an output function call. The area must be large enough to include
the entire defined record along with the item status bytes.

Record-area is the data name or storage location that designates the area into which a (“\

01 WORK-AREA.
05 PARAMETER-LIST.
10 IMS-FILENAME PIC X(7).

In a BAL action program, you define the record area in a defined storage statement:

1 10 16

WORK DSECT WORK AREA

AN

54 UP-9207 Rev. 2

‘/ﬂm‘\

Processing Data Files

Record-area-size must be equal to or greater than the largest logical record it will
contain. If your records are ISAM variable length, your record description must begin
with a 2-byte binary field describing the length of the record. Other file types need a 4-
byte binary field describing length. In a COBOL action program, describing MIRAM or
SAM variable-length records, the description might be:

02
10 FILLER PIC XX.
10 FIXED-PORTION.
20 MAIN-INFO PIC X(25).
20 NR-OF -TRAILERS PIC 99 COMP-4.

10 VARIABLE-PORTION OCCURS @ TO 10 TIMES
DEPENDING ON NR-OF -TRAILERS.
20 TRAILER PIC X(15).
20 TRAILER-2 PIC X(5).

The description for an ISAM variable-length record would not need the FILLER
statement after the record length field. For DAM files, the record area should be a
multiple of 256 bytes and larger than or equal to the record size.

In a BAL action program, the statement might be:

1 10 16

VARLN Ds CL4

Record-number is an 8-byte field containing a right-justified binary number that
specifies the position of the record relative to the beginning of a relative file. The first
number is 1. The COBOL description of this field might be:

10 IMS-REC-NUMBER PIC 9(10) USAGE COMP-4.

A BAL action program might describe the record number as:

1 10 16

RECNO DS XL8

Before issuing function calls containing the record-number parameter, move a
record-number value to this field.

Key contains the value that identifies the record to be retrieved from or inserted into a
file. You describe it in a COBOL action program’s linkage section. A record key
description in your COBOL action program might be:

10 IMS-KEY PIC X(14).

In a BAL action program, the equivalent statement might be:

RECKEY. DS CL14

UP-9207 Rev. 2 55

Processing Data Files

56

Again, before issuing function calls containing the key parameter, you must place a
key value in this field.

Partial-key-count is used in the SETL function call for indexed MIRAM files when the
position parameter is G, K, or H. It is the symbolic address of a 4-byte field containing
a right-justified binary number. This binary number indicates the number of leading
bytes in the key used to locate the record.

The partial key count can be defined in the linkage section or the working-storage
section of a COBOL action program. If defined in working storage, it must have a
VALUE clause. For example,

WORKING-STORAGE SECTION.
7 PIC 9¢4) USAGE COMP-4 VALUE 3.

defines your partial key count before you issue the SETL function call using STPT as
your partial-key-count parameter.

The following data item has a binary value of 3 referring to the first three characters
(279) of the specified key:

CALL 'SETL' USING MYFIL POS IMS-KEY §

The partial-key-count should be defined in a BAL action program using a DC
statement: {ﬂ

1 10 16

DC X'00000003"'

before being referenced in the macroinstruction:

1 10 16

2GHCALL SETL,(MYFIL,POS, IMS-KEY, §TP%

Key-of-reference is the symbolic address of a 4-byte field containing a right-justified
binary number. This binary number indicates which key of multiple keys is used for
retrieving the record. Use the same type working-storage (COBOL) or defined storage
(BAL) statements as in the partial-key-count example to define the key-of-reference,
and assign a value to it before issuing the SETK function call. The value of key-of-
reference must be between 1 and 5.

Duplicate-key-count is the symbolic address of a 4-byte field containing a right-
justified binary number. This binary number indicates the number of the record for
retrieval within a duplicate key set. The duplicate-key-count value must be defined
before you reference it in your I/O function call. See examples of how this is done in
the previous description of partial-key-count.

£ \
\'\‘\‘ !

UP-9207 Rev. 2

Processing Data Files

Position is a symbolic address of a storage location containing a 1-byte value. This
value designates the position of the file at completion of the SETL function. Values
are listed in the SETL function descriptions.

Record-size is a symbolic address of a 2-byte binary field indicating the number of
printable characters to be moved to the I/O area.

Control-character-area is a symbolic address of a 1-byte field containing a device-
independent control character (DICE) used for printer control.

Lock-disposition is a symbolic address of a 1-byte field containing the EBCDIC

character H. This specifies the retention of the current printer file assignment after
the printer file is breakpointed.

5.3. Accessing Indexed Files

The indexed-sequential and multiple-indexed random access methods (ISAM and
MIRAM) process function calls issued by your action program to indexed files. With
several exceptions, a key specification characterizes most file functions issued to
indexed files. Although IMS supports multiple-key MIRAM files, you must use only
the primary key identified in the configurator FILE section (PKEY=n parameter) to
insert or update records. Changes or duplicates of alternate keys are allowed, except
for primary keys.

Note: You must specify MODE=RAN in the FILE section of the configuration to

access MIRAM files randomly. If a file is configured as MODE=SEQ, you can
use only the sequential functions GET and PUT (5.9).

5.4. Random Functions for Indexed Files
The random function calls GET, GETUP, PUT, INSERT, and DELETE:
¢ Retrieve records with or without updating
® Write records back to a file
* Logically or physically delete records
* QOverwrite an existing record or add a new record to a file

For error status codes resulting from the execution of each of the random I/O function
calls, see Table D-1.

UP-9207 Rev. 2 57

Processing Data Files

5.4.1. Reading Records Randomly (GET)

The random GET function retrieves the record designated by the key value from the
named file and places it into the specified record area. IMS does not perform the GET
function if the requested record is currently locked by a different transaction. You
cannot update a record retrieved by the GET function; use GETUP to retrieve a record
for updating.

The COBOL and BAL formats for the random GET function calls are:
e COBOL format 1 (ISAM files)

CALL 'GET' USING filename record-area key.

¢ COBOL format 2 (MIRAM files)

CALL 'GET' USING filename record-area key
[key-of-reference [duplicate-key-countl].

e BAL format 1 (ISAM files)

CALL GET, (filename,record-area,key)
ZGHCALL

e BAL format 2 (MIRAM files)

CALL GET, (filename,record-area,key
ZGHCALL [,key-of-referencel,duplicate-key-countll)

For MIRAM files (format 2), the key-of-reference value indicates which key of multiple
keys is used for retrieving the record. This key level number must coincide with one of
the data management KEYn specifications designated at configuration time.

For example, your configurator FILE section might have KEYn designations of
KEY1=(6,6), KEY2=(6,0), and KEY3=(5,12). (Key 1 starts in position 6 of the file, key 2
starts in position 0, and key 3 starts in position 12.) Key 2 is configured as the primary
key (PKEY=2 specification), so key 1 and key 3 are alternate keys. You want to access
the file using key 1, so you use the key-of-reference value 1. When the key-of-reference
value is omitted, IMS uses the primary key, in this case, key 2.

UP-9207 Rev. 2

Processing Data Files

WORKING-STORAGE SECTION.

77 TWO PIC 9¢5) COM UE
77 THREE PIC 9(5) COMP-4 VALUE 3.

PROCEDURE DIVISION.

CALL 'GET' USING FIL-A REC-A KEY-A ONEZ

PRIMARY KEY OF
KEY REFERENCE

AAAAA1 299448 44813

AAAAA2 299448 45731

BBBBB1 299448 59063

BBBBB2 299448 87776
L1 |
KEY2=(6,0) l KEY3=(5,12)

KEY1=(6,6)

Also, on function calls to MIRAM files, you can specify a duplicate-key-count value to

indicate which record within a duplicate key set to retrieve. Retrieving a record with a
large number of duplicate key values can be time-consuming. An alternative would be
to use the undedicated sequential retrieval method (see 5.5).

UP-9207 Rev. 2

WORKING-STORAGE SECTION.

CALL 'GET' USING FIL-A REC-A KEY-A ONE

59

Processing Data Files

510

KEY1=(6,6)

[INNEN]

IN LOCATION 6

STARTi
[IRERN

AAAAA1T 299448 44813
AAAAA2 299448 45731
BBBBB1 59063
BBBBB2 299448 87776
DUPLICATE
KEY SET

If you omit this parameter or if it equals 1, IMS retrieves the first record within the
duplicate key set. If the value is zero or exceeds the number of records within the

duplicate key set, IMS sets status code and detailed status code to 1.

WORKING-STORAGE SECTION.
77 DUP-KEY-CT PIC 9(5) USAGE COMP-4 VALUE 8.

AAAAAT | 299448 | 44813
AAAAA2 | 299448 | 45731
BBBBB1 | 299448 | 59063
BBBBB2 | 299448 | 87776
THERE IS NO EIGHTH
DUPLICATE ¢ DUPLICATE KEY
KEY SET SO
DETAILED
STATUS 01 01 STATUS
CODE CODE
(IN HEXADECIMAL)

Note that the sequence of records in a duplicate key set changes when one of the
records in the set is deleted. If the deleted record is later restored by online or offline
recovery, it is placed at the end of the duplicate key set instead of in its original

position.

UP-9207 Rev. 2

Processing Data Files

If you configure physical deletion of records (DELETP=YES) in the FILE section, you
can retrieve any logically deleted records on MIRAM files as normal data. You must
configure physical deletion of records when files are multikeyed.

The logical sequence of MIRAM records, containing duplicate secondary keys, is not
maintained when one of these records is deleted and either online or offline recovery is
performed for that file.

5.4.2. Reading Records for Update (GETUP)

The GETUP function retrieves the record for updating and temporarily locks the
requested record from access by other transactions. IMS does not perform the GETUP
function if the requested record is currently locked by a different transaction. As with
the GET function, IMS uses the key you specify on the GETUP function to locate the
required record. Unlike the GET function, you can access a record for update only by
the primary key.

The COBOL and BAL formats for the GETUP function call to all indexed files are:

¢ COBOL format

CALL 'GETUP' USING filename record-area key.
e BAL format

CALL GETUP, (filename, record-area,key)
2GH#CALL

To update or delete the record requested, issue a PUT or DELETE function call
following the GETUP function. Other function calls to the same file may not
intervene. Otherwise, the record must be retrieved again with a GETUP function
before a PUT or DELETE can be performed. You may, however, issue other
instructions and function calls to other files between the GETUP and PUT or

DELETE functions.
Incorrect Correct

CALL 'GETUP' USING MYFIL CALL 'GETUP' USING MYFIL
IMS-REC-AREA MYKEY. IMS-REC-AREA MYKEY.

MOVE CUST-NAME TO NAME-FIELD.

L AEGRARES hEL. CALL 'PUT' USING MYFIL

MOVE T-NAME TO NAME-FIELD. IMS-REC-AREA.

CALL 'PUT' USING MYFIL
IMS-REC-AREA.

UP-9207 Rev. 2 511

Processing Data Files

For ISAM files, you must not change the key value in the record area between the
GETUP and succeeding PUT or DELETE function calls. IMS does not return an error,

but you may damage your data file.

For MIRAM files, do not change the value of the primary key in the record area
between the GETUP and succeeding PUT or DELETE function calls. You may,

however, change the value of alternate keys.

For ISAM files, do not change the value of the key field used for the key parameter
between the GETUP and succeeding PUT or DELETE function calls. This value may

be changed when you use MIRAM files.

01 WORK-AREA.

05 REC-AREA
Primary key. e 10 ACCTNO
Do not change 10 NAME

Alternate key [———=—— 10 ADDRESS

Key parameter 10 OTHER-DATA
field. Do not }— 05 MYKEY
change for ISAM| .

PROCEDURE DIVISION.
MOVE INPUT-KEY TO MYKEY.

MOVE INPUT-NAME TO NAME.

PIC X(6)
PIC X(20)

PIC X(20)

PIC X(50).

PIC X(6).

CALL 'GETUP' USING MYFIL REC-AREA MYKEY.

CALL 'PUT' USING MYFIL REC-AREA.

If you configure physical deletion of records, you can retrieve any logically deleted

records on MIRAM files as normal data.

5.4.3. Writing Updated Records (PUT)

The random PUT function writes an updated record back to the file. It must be
preceded by a GETUP function that retrieves the record for update. The first byte of
nonkey data must not contain X’FF°, unless you have configured physical deletion for

512

MIRAM files (DELETP=YES).

No key is required on a PUT function because the key is in the specified key location

in the record area. If you specify a key parameter, IMS returns a status code of 3 and a

detailed status code of 1.

UP-9207 Rev. 2

/ \

~

Processing Data Files

The COBOL and BAL formats for the PUT function call are:
e COBOL format

CALL 'PUT! USING filename record-area.

¢ BAL format
CALL PUT, (filename,record-area)
2G#CALL

5.4.4. Deleting Records (DELETE)

The DELETE function deletes a record that was retrieved for updating. The DELETE
function must be preceded by a GETUP function. If other function calls to the same
file intervene, you must reissue the GETUP function before the record can be deleted.

The COBOL and BAL formats for the DELETE function call are:

e COBOL format

CALL 'DELETE' USING filename record-area.

e BAL format
CALL DELETE, (filename,record-area)
2G#CALL

The DELETE function for ISAM files is a logical deletion. A logical record deletion

changes the first byte of nonkey data to X’FF’ before the record is written back to the

file.

BEFORE LOGICAL DELETION

KEY DATA & & i s e e e e e e e DATA

KEY

THIS RECORD
IS LOGICALLY
DELETED.
DELETION FLAG
OF X'FF'.

UP-9207 Rev. 2

513

Processing Data Files

The DELETE function for single-keyed MIRAM files can be a logical or a physical

deletion. A physical deletion is always performed for multikeyed MIRAM files.

To logically delete single-keyed MIRAM records, configure DELETP=NO or default to
this value. The results of this logical deletion are the same as for ISAM records on
logical deletion (for example, XFF’ in first byte of nonkey data).

To physically delete a single-keyed MIRAM record, create the file with the data
management keyword RCB=YES and configure IMS with the DELETP=YES
parameter. (DELETP=YES is assumed for multikeyed MIRAM.) The DELETE

function then physically deletes the record from the file.

CONFIGURATOR
FILE SECTION

CALL !

Sl s

CALL 'GETUP' USING FIL-A REC-A KEY-A.

KEY | DATA . . . v v v v v i v v s e s DATA
AFTER PHYSICAL DELETION
r—-—""""""">"""""/"—"”7~—/— 1
- |

Suppose the record you call for deletion is previously flagged as logically deleted. If
you configure physical deletion, the GETUP function retrieves the requested record. If
you configure logical deletion, the GETUP function returns a record not found status.

Note: When IMS logically deletes a record (XFF’ in the first byte of nonkey data)
and you later access the file from a non-IMS program, the record will not be
recognized as deleted. You must check for HIGH-VALUES or XFF’ in the first
byte of nonkey data.

514

UP-9207 Rev. 2

Processing Data Files

5.4.5. Adding Records (INSERT)

The INSERT function places a new record into the file or overwrites a previously
deleted record. This function is not preceded by a GETUP function. The first byte of
nonkey data in the record being inserted must not contain a deleted record value of
X‘FF’, unless you have configured physical deletion for MIRAM files. The COBOL and
BAL formats for the random INSERT function calls are:

¢ COBOL format
CALL 'INSERT' USING filename record-area.
e BALformat

CALL INSERT, (filename, record-area)
ZGH#CALL

Indexed files do not require a key parameter in the INSERT function. Their keys must
be embedded in the record. The key of the new record must have a value that is
different from any already existing in the file.

CALL 'INSERT' USING FIL-A REC-A.

4097 DATA . .

(

KEY OF RECORD
INSERTED MUST
BE UNIQUE AND
EMBEDDED IN
RECORD.

An INSERT function using a previously deleted record slot removes the delete control
character. You can change the length field for variable-length records in MIRAM files,
but not in ISAM files.

UP-9207 Rev. 2 515

Processing Data Files

516

For MIRAM files, you cannot overwrite a logically deleted record, when physical
deletion is configured. An attempt to do this results in a status code of 1, invalid key.

DELETP=YES

SPECIFIED IN
CONFIGURATOR
FILE SECTION

FLAG. IMS RETURNS
INVALID KEY STATUS
CODE.

CALL 'INSERT' USING FIL-A REC-A.
FIL-A (MIRAM FILE)
KEY-A
3587 DATA DATA
4097 | DATA DATA { 4097 | FFL DATA DATA
SLOT FOR INSERTION 1487 DATA DATA
HAS LOGICAL DELETE

STATUS CODE

0

1

(IN HEXADECIMAL)

UP-9207 Rev. 2

Processing Data Files

5.5. Sequential Functions for Indexed Files

Sequential function calls SETK, SETL, GET, and ESETL:

For error status codes resulting from the execution of each of the sequential I/O
function calls, see Table D-1.

Set a key of reference for sequential processing

Retrieve records sequentially

Reset the indexed file from sequential mode to random mode

Set an indexed file into sequential mode and position it to a selected location in

When accessing an indexed file sequentially, your action program must first set the
file into sequential mode via the SETL function. During this time, the file is accessed
exclusively by the transaction that sets the mode. Requests by other transactions for

sequential or random mode functions are queued for later processing.

Sequential mode exists until your program requests an ESETL function or until the

current action terminates. In either case, the indexed file returns to random mode.

The file also returns to random mode if an error occurs on a SETK or SETL function or
an invalid request (status code 3) occurs on a GET function.

UP-9207 Rev. 2

STARTING
POINT

CHANGE TO
SEQUENTIAL
MODE

FIRST GET [

SECOND GET [

THIRD GET [

GeT D

GET DD

KEY-A

3587 DATA DATA
4097 DATA DATA
1487 DATA DATA
6883 DATA DATA
RETURN TO
RANDOM MODE
KEY-A
3587 DATA DATA
4097 DATA DATA
1487 DATA DATA
6883 DATA DATA

517

Processing Data Files

Note: Shared file access among transactions is done only in random mode. The use
of sequential mode by one transaction can significantly degrade the response
time for other transactions accessing the same file.

5.5.1. Setting the Key of Reference for Sequential Processing (SETK)

518

The SETK function establishes the key-of-reference for subsequent indexed file
positioning and retrieval. This function is used exclusively with multikeyed MIRAM
files.

The COBOL and BAL function call formats for the SETK function are:

¢ COBOL format

CALL 'SETK' USING filename [key-of-referencel.
¢ BAL format

CALL SETK, (filenamelkey-of-referencel)
ZG#CALL

The key-of -reference is the symbolic address of a 4-byte field containing a right-
justified binary number. This value indicates which of the multiple keys to use on the
succeeding SETL and GET functions. If the key-of-reference parameter is omitted,
IMS uses the primary key for the search.

UP-9207 Rev. 2

i

Processing Data Files

FIL-A (MIRAM FILE)

KEY-A
(PRIMARY KEY) KEY-B KEY-C

t

KEY OF REFERENCE

CONFIGURE: FILE FIL-A FILETYPE=DMRAM
PKEY=1

KEY3=(2,80)

WORKING-STORAGE SECTION.
77 KEY-A PIC 9(5) COMP-4 VALUE 1.

(77 KEY-C PIC 9(5) COMP-4 VALUE 3.

PROCEDURE DIVISION.
PARA-1. -
CALL 'SETK' USING FIL-A KEVZE

CALL 'ESETL' USING FIL-A.

A GET function cannot directly follow a SETK function; you must position the file
with the SETL function before retrieving records. It can be issued many times to
change the key of reference. Once established, however, the specified key of reference
remains in effect until another SETK, ESETL, or action termination.

When any error occurs on a SETK function, the file is reset to random mode and any
file locks in effect are released. For further sequential processing, you must issue
another SETL and SETK function to reestablish the sequential mode and the key of
reference.

UP-9207 Rev. 2 519

Processing Data Files

5.5.2. Setting Indexed Files from Random to Sequential Mode (SETL)

The SETL function sets an indexed file into sequential mode and logically positions
the file as follows:

Value Meaning

B Beginning of file

G Greater than or equal to the key supplied
K Equal to key supplied

H Greater than key supplied

The value of the position parameter determines the logical position of the file at
completion of the SETL function. Indexed files start at position 0. You can reissue the
SETL function any time to change the sequential position of the file. For ISAM files,
however, you must issue an ESETL function before reissuing another SETL function.

The COBOL and BAL formats for the SETL function call are:

e COBOL format

CALL 'SETL' USING filename position [key[partial-key-countl].
¢ BAL format

CALL SETL, (filename,position[,key[,partial-key-count]l) '\\3
ZGH#CALL L

You must supply a file name and choose a position value. Depending upon the position
chosen, you also supply a key parameter.

In addition, the SETL function allows for partial key search of indexed MIRAM files.
To do this, use the optional partial-key-count parameter. It is the symbolic address of
a 4-byte field containing a right-justified binary number. This binary number
indicates the number of leading bytes used from the key to locate the record. If you
omit the partial-key-count parameter, data management uses the entire key to locate
the record.

520 UP-9207 Rev. 2

Processing Data Files

NAME OF USE ONLY

FILE FIRST 2
BYTES OF KEY-A
FOR THE SEARCH
POSITION
FILE-A AT

VALUE GREATER
THAN OR EQUAL
TO KEY-A

DEFINED IN
WORKING STORAGE
WITH VALUE OF

63FBI

FILE-A (MIRAM FILE)

KEY-A

37FBI|DATA DATA
40FBI|DATA DATA
50UNI| DATA DATA

POSITION FILE HERE £

When any error occurs on a SETL function, the file is reset to random mode and any
file locks in effect are released. For further sequential processing, you must issue
another SETL function call.

UP-9207 Rev. 2 521

Processing Data Files

Table 5-3 lists the SETL parameter choices for ISAM and MIRAM files.

Table 5-3. SETL Parameter Choices for Indexed Files

Parameters

File Type Filename Position

B| G| K| H]| Key | Partial

ISAM X X1 X|X X

Indexed MIRAM X X| XXX X X

5.5.3. Reading Records Sequentially (GET)

522

The sequential GET function retrieves the next logical record in sequential order
unless the record is marked logically deleted (that is, XFF in the first byte). If the
record is marked logically deleted, the GET function retrieves the following record.
For MIRAM files, if DELETP=YES is configured or assumed, data management

retrieves logically deleted records as normal data.

Filename and record-area parameters are required on sequential GET functions for

indexed files.
The COBOL and BAL formats for the sequential GET function call are:

e COBOL format

CALL 'GET' USING filename record-area.

e BAL format

CALL GET, (filename,record-area)
ZG#CALL

When an invalid request error occurs on a sequential GET function, after a SETL
function, the file is reset to random mode and any file locks in effect are released.

UP-9207 Rev. 2

(.

Processing Data Files

5.5.4. Setting Indexed Files from Sequential to Random Mode (ESETL)
The ESETL function changes the mode of indexed files from sequential to random. If a
file is in the sequential mode for a transaction and you do not issue an ESETL
function before termination of the current action, IMS resets the file to random mode.
The ESETL function always requires a filename parameter.
The COBOL and BAL formats for the ESETL function call are:
¢ COBOL format

CALL 'ESETL' USING filename.

e BAL format

CALL ESETL, (filename)
ZG#CALL

UP-9207 Rev. 2 523

Processing Data Files

5.6. Accessing Relative Files
The direct and multiple-indexed random access methods (DAM and MIRAM) process
function calls issued by your action program to relative files. A record-number
parameter characterizes most file functions to relative files although record numbers
are not required on sequential functions. Random and sequential functions are
supported for MIRAM files but only random functions for DAM files.
Note: You must specify MODE=RAN in the FILE section of the configuration to

access MIRAM files randomly. If a file is configured as MODE=SEQ, you can
use only the sequential functions GET and PUT (5.9).

5.7. Random Functions for Relative Files
The random function calls GET, GETUP, PUT, INSERT, and DELETE:
® Retrieve records with or without updating
® Write records back to a file
® Logically or physically delete records
® Overwrite an existing record or add a new record to a file (

For error status codes resulting from the execution of each of the random I/O
functions, see Table D-1.

You must preformat DAM files offline before their initial use, and they must contain
the maximum number of physical records to be referenced online under IMS.

5-24 UP-9207 Rev. 2

Processing Data Files

5.7.1. Reading Records Randomly (GET)

The random GET function retrieves the record you request by record number and
places it into the specified record area. All record number fields must be 8 bytes long
and binary. You cannot update a record retrieved by the GET function; use GETUP to
retrieve a record for updating.

If the requested record is currently locked by a different transaction, IMS does not
perform the GET function.

The COBOL and BAL formats for the random GET function call are:

e COBOL format

CALL 'GET' USING filename record-area record-number.
e BAL format

CALL GET, (filename,record-area, record-number)
ZG#CALL

If a transaction requests a logically deleted record (X’FF’ in the first byte), IMS
returns an invalid record number status code of 1. However, if DELETP=YES is
configured for a MIRAM file, logically deleted records are retrieved as normal data.

IMS-REC-
NUMBER

THIS RECORD NOT RETREIV-
ED IF DAM FILE OR IF
MIRAM FILE AND
DELETP=NO IS CONFIGURED

. THIS RECORD RETRIEVED
IF MIRAM FILE
DATA .. G AND DELETP=YES

IS CONFIGURED

IF NOT RETREIVED, IMS SETS
INVALID REC-NUMBER STATUS CODE

&
STATUS-CODE

0] 1

(IN HEXADECIMAL)

S

UP-9207 Rev. 2 525

Processing Data Files

5.7.2. Reading Records for Update (GETUP)

The random GETUP function uses a record number to retrieve a requested record for
updating and temporarily locks that record from access by other transactions. IMS
does not perform a random GETUP function if the requested record is currently locked
by a different transaction. All record number fields must be 8 bytes long and binary.

The COBOL and BAL formats for the random GETUP function call are:

e COBOL format

CALL 'GETUP' USING filename record-area record-number.

e BAL format

CALL GET, (filename, record-area,record-number)
ZGHCALL

A GETUP function can be followed by a PUT function to update the record, or a
DELETE function to mark the record as logically deleted or to physically delete it.

If the record-number parameter is omitted from the PUT or DELETE function that
follows a GETUP function (MIRAM files only), the record field in your program must
remain unaltered until IMS completes the PUT or DELETE function.

If the DELETP=YES parameter is configured and you issue a GETUP function call for
a logically deleted record, IMS returns the logically deleted record as normal data. For
DAM files, and for MIRAM files with DELETP=NO configured, IMS returns an
invalid record number status of 1.

5.7.3. Writing Updated Records (PUT)

The random PUT function is used with the GETUP function to write an updated
record back to the file. A PUT function must be preceded by a GETUP function that
retrieves the requested record for update. The first byte of data in a record must not
contain an X‘FF’ unless you have configured physical deletion for MIRAM files.

526 UP-9207 Rev. 2

Processing Data Files

The COBOL and BAL formats for the PUT function call are:
e COBOL format

CALL 'PUT' USING filename record-area [record-numberl].
e BAL format

CALL PUT, (filename,record-areal, record-number])
2GHCALL

A record-number parameter is required on the PUT function for DAM files, but is
optional for MIRAM relative files. When you omit the record-number parameter for
MIRAM files, no function call for the same file may be between the GETUP and PUT
function.

GIVEN: IMS-REC-NUMBER = 3
IMS-REC-
NUMBER
1 DATA . . .
RETRIEVE THIS RECORD. 2 DATA . . .
UPDATE IT; AND
WRITE IT BACK —p 3 DATA . . .
TO THE FILE.
4 DATA . . .

5.7.4. Deleting Records (DELETE)

The DELETE function for DAM files logically deletes a record that was retrieved for
updating.

For MIRAM files, this function physically deletes a record if the file was created with
the data management keyword RCB=YES and configured with the DELETP=YES
parameter. For MIRAM files configured with DELETP=NO, the deletion is logical.

For an effective logical or physical deletion, this function must be immediately
preceded by a GETUP function. If other functions intervene, the GETUP function
must be reissued before the record can be deleted.

The COBOL and BAL formats for the DELETE function call are:

e COBOL format

CALL 'DELETE' USING filename record-area [record-number].

UP-9207 Rev. 2 527

Processing Data Files

¢ BAL format
CALL DELETE, (filename,record-areal,record-numberl)
ZGH#CALL

You must supply a record-number parameter on the DELETE function for DAM files;
it is optional for MIRAM files.

The logical DELETE function changes the first byte of data in a record retrieved for
update to X’FF’ before the record is written to the file.

528 UP-9207 Rev. 2

Processing Data Files

CALL 'GETUP' USING FIL-A IMS:=RE ’
CALL 'DELETE' USING FILE-A REC-A. ¢—|RECORD NUMBER

NOT REQUIRED
BEFORE LOGICAL DELETION FOR MIRAM

FILES.

DATA DATA

AFTER LOGICAL DELETION

THIS RECORD IS
LOGICALLY DELETED.

DELETION FLAG
OF X!FF!

On the other hand, a physical DELETE actually removes the record from the file.

(! SPE
- N

CONF IGURATOR
FILE SECTION

CALL 'GETUP' USING FIL-A REC-A IMS-REC-NUMBER.
CALL 'DELETE' USING FILE-A REC-A.

BEFORE PHYSICAL DELETION

DATA + v v o v« o« « . . DATA

AFTER PHYSICAL DELETION

Note: When IMS logically deletes a record (XFF’in the first byte) and you later
access the file from a non-IMS program, the record will not be recognized as
deleted. You must check for HIGH-VALUES or XFF’ in the first byte.

UP-9207 Rev. 2 529

Processing Data Files

5.7.5. Adding Records (INSERT)

5-30

The INSERT function places a new record into the file or overwrites a previously
deleted record. This function is not preceded by a GETUP function. The first byte of
data in the record being inserted must not contain a deleted record value of XFF’.

An INSERT function using a previously deleted record slot removes the delete control
character. You can change the RECORD-LENGTH field for variable-length records in
MIRAM files only. The INSERT function for MIRAM files can also overwrite
nondeleted records.

The COBOL and BAL formats for the INSERT function call are:

e COBOL format

CALL 'INSERT' USING filename record-area record-number.
e BALformat

CALL INSERT, (filename, record-areal,record-number])
ZGH#CALL

INSERT functions issued to a relative file must supply a record-number parameter. If
you configure MIRAM files with RCB=NO, any record you add to a relative file must
be assigned a relative record number one higher than the last record in the file. This
prevents the occurrence of erroneous data between the last record and the new ~
inserted record. You may insert records within or beyond the limits of nonindexed (
MIRAM files; file extension is permitted. B

UP-9207 Rev. 2

Processing Data Files

CALL 'INSERT' USING FIL-A REC-A |

Given: REC-NO = 3

CALL 'INSERT' USING FIL-A REC-A |

Given: REC-NO = 6

INSERT IMS-REC-
OVERWRITES NUMBER FIL-A
A PREVIOUSLY
DELETED RECORD. 1 DATA
! 2 DATA
DATA . .
4 DATA
5 DATA
DATA
______ _J

!

INSERT TO

EXTEND FILE
™ RECORD NO.
) ONE HIGHER
- THAN LAST

RECORD NO.

UP-9207 Rev. 2 531

Processing Data Files

5.8. Sequential Functions for Relative Files
Sequential function calls SETL, GET, and ESETL:

* Set a nonindexed MIRAM file into sequential mode and position it to a selected a
location in the file

® Retrieve records sequentially
® Reset the file from sequential mode to random mode
Sequential functions cannot be processed by the direct access method (DAM).

For error status codes resulting from the execution of each of the sequential I/O
functions, see Table D-1.

When accessing a relative file sequentially, action programs must first set the file into
sequential mode via the SETL function. During this time, files are accessed
exclusively by the transaction that set the mode. Requests by other transactions for
sequential or random mode functions are queued for later processing.

Sequential mode exists until your program requests an ESETL function or until the
current action terminates. In either case, the indexed file returns to random mode.

Note: Shared file access among transactions is done only in random mode. The use

of sequential mode by one transaction can significantly degrade the response
time for other transactions accessing the same file.

5.8.1. Setting Relative Files from Random to Sequential Mode (SETL)

The SETL function sets a relative file into sequential mode and logically positions the
file as follows:

Value Meaning

B Beginning of file

G Greater than or equal to the record number supplied
K Equal to record number supplied

H Greater than record number supplied

The value of the position parameter determines the logical position of the file at
completion of the SETL function. Relative files start at position 1. You can reissue the
SETL function any time you wish to change the sequential position of the file.

532 UP-9207 Rev. 2

\«

Processing Data Files

N The COBOL and BAL formats for the SETL function call are:
e COBOL format

CALL 'SETL' USING filename positionirecord-number].

e BAL format

CALL SETL, (filename,position[,record-number])
ZGH#CALL :

You must supply a file name and choose a position value on the SETL function for
relative files. The record-number parameter is not used with the B position value.
When G, K, or H is specified for position, record-number must be specified.

. CALL 'SETL' USING FIL-A i@ IMS-REC-NUMBER.
GIVEN: IMS-REC-NUMBER has value of 3.

IMS-REC-
NUMBER
DATA
DATA
IMS POINTS HERE
AFTER THE DATA *
£ SETL FUNCTION.
J DATA

* If record number 3 was logically deleted,
IMS still points to record number 3 after
the SETL function; however, on the next GET
function, IMS retrieves the following record.

When any error occurs on a SETL function, the file is reset to random mode and any
file locks in effect are released. For further sequential processing, you must issue
another SETL function call.

UP-9207 Rev. 2 533

Processing Data Files

5.8.2. Reading Records Sequentially (GET) i

The sequential GET function retrieves the next logical record in sequential order
unless the record is marked logically deleted (that is, X’FF’ in the first byte). If the
record is marked logically deleted, the GET function retrieves the following record. If
DELETP=YES is configured, IMS retrieves logically deleted records as normal data.

The COBOL and BAL formats for the sequential GET function call are:
e COBOL format

CALL 'GET' USING filename record-area.

¢ BAL format

CALL GET, (filename,record-area)
ZGHCALL

Filename and record-area parameters are required.

When an invalid request error occurs on a sequential GET function, the file is reset to
random mode and any file locks in effect are released.

5.8.3. Setting Files from Sequential to Random Mode (ESETL)
The ESETL function changes the mode of relative files from sequential to random. If a (
file is in the sequential mode for a transaction and you do not issue an ESETL -

function before termination of the current action, IMS resets the file to random mode.
The ESETL function always requires a filename parameter.

The COBOL and BAL formats for the ESETL function call are:

e COBOL format

CALL 'ESETL' USING filename.

e BAL format

CALL ESETL, (filename)
ZGHCALL

5-34 UP-9207 Rev. 2

Processing Data Files

5.9. Accessing Sequential Disk and Tape Files

The sequential and multiple-indexed random access methods (SAM and MIRAM)
process function calls issued by your action program to sequential disk or magnetic

tape files. A sequential MIRAM disk file is defined in the configurator FILE section as
MODE=SEQ.

Only two functions, GET and PUT, are issued to sequential files. You can’t use the
same SAM or the same sequential MIRAM file for both input and output. (These files
are defined individually in the configurator FILE section as input files or output files.)
Input files may only be accessed by the sequential GET function. For output files, only
the sequential PUT function is used.

CONFIGURATION:
FILE A FILETYPE=DMRAM OUTPUT=NO MOD=SEQ | INPUT
FILE
FILE FILETYPE=DMRAM OUTPUT=YES MOD=SEQ ¢——| OUTPUT
FILE

ACTION PROGRAM:

CALL 'GET' USING I REC-A.

CALL 'PUT' USING &

REC-B.

For error status codes resulting from the execution of each of the following sequential
I/0O functions, see Table D-1.

UP-9207 Rev. 2 5-35

Processing Data Files

5.9.1. Reading Records (GET) (

The sequential GET function retrieves the next logical record in sequential order.
Every record in the file is accessible regardless of contents. The first record of a
sequential file retrieved in an IMS session is always the first record of the file.

The COBOL and BAL formats for the sequential GET function call are:

e COBOL format

CALL 'GET' USING filename record-area.
¢ BAL format

CALL GET, (filename,record-area)
ZGH#CALL

Filename and record-area parameters are required on the GET function.

5.9.2. Writing Records (PUT)

The sequential PUT function writes fixed- or variable-length logical records to
sequential files on tape or disk. Filename and record-area parameters are always
required on this function.

When writing to a MIRAM sequential file, the records are appended to the end of the (
file, thus extending it. If you plan to write a new file, use the INIT parameter on the
LFD statement for this file.

The COBOL and BAL formats for the sequential PUT function call are:
¢ COBOL format

CALL 'PUT! USING filename record-area.

¢ BAL format

CALL PUT, (filename,record-area)
2GH#CALL

5-36 UP-9207 Rev. 2

Processing Data Files

(| 5.10. Accessing Defined Files

Defined record management services requests from action programs to retrieve and
update the records of defined files. An action program can call upon the random access
functions GET, GETUP, PUT, DELETE, and INSERT and also the sequential access
functions SETL, GET, and ESETL. In response, IMS places defined records into (and
takes them from) the record area named in the I/O function call.

A transaction can access only one defined file during a given action -- the file that was
allocated before the beginning of the action. One action of a transaction can select a
defined file not allocated to it and designate that the selected file be allocated to the
succeeding action. (See the description of the DEFINED-FILE-NAME field in 3.13.)

During a given action, a transaction can access only one defined file but can also
access ISAM, SAM, DAM, or MIRAM conventional files if they are not referenced by

the defined file. Access standard files by using the I/O function call formats pertaining
to them.

N

UP-9207 Rev. 2 537

Processing Data Files

5.11.

5.11.1.

5-38

Constructing Function Calls to Defined Files (

Certain rules apply to defined files and to the parameters accompanying the function
calls for them.

Function Call Positional Parameters

I/O function calls to IMS defined record management use filename, position, key, and
record-area parameters.

Filename is a data name (COBOL) or storage location (BAL) that contains the 7-byte
defined file name or subfile name assigned to this action.

Position is a data name or storage location containing the value B, G, or H that
determines which defined record is returned by the first execution of the GET call
following the SETL function call.

Key is a data name or storage location that contains the identifier of a defined record.
An identifier consists of one or more segments.

Generally, action programs access a defined record via a single identifier.

DEFINED RECORD

SINGLE IDENTIFIER

There are instances when your program needs to access a defined record that contains
an identifier with multiple segments.

A segment must be delimited by an end-of-segment character (3D,,), unless the
segment contains the maximum number of characters defined for it, in which case this
character is optional. Every segment must contain at least one character.

The entire identifier must be delimited by an end-of-identifier character (3E,,). The
ignore character (3F,,) can appear any number of times within the identifier and is
always ignored. It is used for editing input messages that contain characters not
needed by your action program.

UP-9207 Rev. 2

Processing Data Files

MYKEY
*

ABC DEF GHI i DATA « v v v v v v .
SEG-1 I SEG-2 I SEG-3 I
X'3D! X'3D! X13E!
END-OF - END-OF - END-OF -
SEGMENT SEGMENT IDENTIFIER

MULTIPLE-SEGMENT IDENTIFIER

When this happens, define the identifier with all its segments and separators in your
action program linkage section. Define your key (identifier) as a group item in COBOL
followed by the segments and separators as follows:

01 MYKEY.
05 SEG-1 PIC XXX.
05 SEP-1 PIC X.
05 SEG-2 PIC XXX.
05 SEP-2 PIC X.
85 SEG-3 PIC XXX.
05 SEP-3 PIC X.

Before issuing a function call using the key value, move the identifier segment values
to SEG-1, SEG-2, and SEG-3, and the values ‘3D’, ‘3D’, and ‘3E’ to SEP-1, SEP-2, and
SEP-3.

To define an identifier with multiple segments in a BAL action program, use define-
storage and define-constant statements.

1 10 16

MYKEY DS cL12
ORG
SEG-1 DS CL3
SEP-1 DS XL1
SEG-2 DS CL3
SEP-2 DS XL1
SEG-3 DS CL3
SEP-3 DS XL1

Record-area is a data name or storage location that designates the area into which a
defined record is moved by IMS on an input function, or from which a defined record is
passed to IMS on an output function call. This area must be big enough to contain the
entire defined record, including item status bytes.

UP-9207 Rev. 2 5-39

Processing Data Files

5.12. Processing Defined Records

In response to a function call, IMS uses the TYPE statement of the data definition to
determine the type of defined record involved in the call. IMS returns the record type
to the action program in the program information block’s DETAILED-STATUS-CODE
field (ZG#PDSC) redefined in COBOL as the RECORD-TYPE field. IMS returns the
requested record type in the DELIVERED-RECORD-TYPE portion of the RECORD-
TYPE field (byte 2 of the ZA#PDSC in the BAL program information block).

CoBOL

DETAILED-STATUS-CODE

PREDICTED-RECORD-TYPE DELIVERED-RECORD-TYPE

REDEFINED AS RECORD-TYPE

BAL

ZA#PDSC (DETAILED STATUS CODE)

BYTE 1 BYTE 2
(PREDICTED-RECORD-TYPE) |(DELIVERED-RECORD-TYPE)

5.12.1. Handling Record Types

Before issuing any random GET, GETUP, or INSERT function call, the action
program can indicate to IMS the record type it expects to receive by placing the
desired record type in the PREDICTED-RECORD-TYPE byte of the RECORD-TYPE
field (byte 1 of the ZA#PDSC). If IMS finds a value other than zero, it verifies the
prediction before carrying out the retrieval or insertion.

540 UP-9207 Rev. 2

Processing Data Files

USING FIL-D REC-D MYKEY.

‘CALL 'GET!

SEARCH A
FOR RECORD
TYPE ‘A’ DELIVERED- :EEE)II;:;—ED
IN FIL-D RECORD- TYPE
FILE TYPE

RETRIEVE

RECORD TYPE A FOUND

ZERO FILL
PREDICTED-
RECORD-
TYPE

¢ PREDICTED- A DELIVERED-
RECORD- RECORD-

TYPE TYPE

If the predicted type is not correct, IMS does not move the requested record; instead, it
returns a status code of 1 to the calling program.

CALL 'GET' USING FIL-D REC-D MYKEY.

SEARCH FOR

DO NOT
RETRIEVE
RECORD

STATUS-CODE

pro—

541

UP-9207 Rev. 2

Processing Data Files

542

If the predicted type is correct, IMS performs the function and the PREDICTED-
RECORD-TYPE byte reverts to zero. The action program, therefore, can use the
PREDICTED-RECORD-TYPE byte before the request to prevent an unexpected type
of defined record from being moved to (or from) the record area. If the defined file
contains more than one type of defined record, you are strongly advised to use this
feature. This assures that further processing applies the correct defined record
definition.

When you issue the sequential function calls SETL and GET, IMS returns the record
type of the next sequential record to the PREDICTED-RECORD-TYPE byte in the
program information block. If the delivered record type is the parent of the predicted
record type and you wish to skip over the current record type to the next record type,
you can change the contents of the predicted record byte in your action program to
equal the DELIVERED-RECORD-TYPE byte. The result is that IMS skips all sets
subordinate to the current delivered record type. When one or more records in a set
have already been delivered, you cannot change the PREDICTED-RECORD-TYPE
byte to skip over the remaining records of that set.

N

UP-9207 Rev. 2

Processing Data Files

SEQUENTIAL CALLS TO DEFINED FILES

DEFINED FILE

PREDICTED RECORD-TYPE | DELIVERED RECORD-TYPE PARENT-REC-A |=—

B A CHILD-REC-1B

CHILD-REC-2B

CHILD-REC-3B

CALL 'SETL' USING FILE-D B. CHILD-REC-4B
MOVE 'A' TO PREDICTED-RECORD-TYPE.
CALL 'GET' FIL-D MYKEY. CHILD-REC-5B
IF AMT EQUAL 5000 AND PREDICTED-RECORD-TYPE
NOT EQUAL DELIVERED-RECORD-TYPE PARENT-REC-C |¢=—

:] CHILD-REC- 1D
ELSE GO TO NEXT-ROUT.

CHILD-REC-2D

CHILD-REC-3D

CHILD-REC-4D
THIS SKIPS FROM SET-A TO SET-C

CHILD-REC-5D

CHILD-REC-6D

C ’ PARENT-REC-E

CHILD-REC- 1F

CHILD-REC-2F

CHILD-REC-3F

CHILD-REC-4F

UP-9207 Rev. 2 543

Processing Data Files

5.12.2. Interpreting Status Byte Returns

‘When IMS responds to a GET, GETUP, PUT, or INSERT function request, it also
places a value in the status byte associated with each item of the defined record.
(Status bytes are allocated by the data definition processor and have data names in
the format S-item-name. For sample data definition processor output listings showing
status bytes, see the IMS Data Definition and UNIQUE Programming Guide,
UP-9209.) You can test these values (in COBOL programs for fixed-length records but
not variable-length records) to check the validity of individual items in the defined
record.

IMS returns the value X‘80’ in the status byte for all functions to indicate that the
item was successfully delivered.

For GET and GETUP functions, IMS returns a value of X'40’ to indicate that the item
cannot be retrieved because it is null (nonexistent). Null items contain blanks if
alphanumeric, zeros if numeric. If IMS returns X‘40’ for one or more items along with
a value of zero in the status code, it means a supplement cannot be found via the value
in the pointer item. If returned along with a value of 1 in the status code, it means the
key parameter points to a nonexistent primary part. See Table D-2 for detailed status
codes when the status code is 1.

For PUT and INSERT functions, IMS returns a value of X‘20’ in the item status byte,
along with a value of 5 in the status code to indicate that the item being changed or
added does not conform to conditions specified in the data definition. This error can be
caused by any of the following:

* The new item value does not meet VALUE statement conditions.

® The new item value is inconsistent with the PICTURE clause in the data division.

* A change was not permitted for this item (PUT only).

* No new value was entered for a MUST ADD item (INSERT only).

544 UP-9207 Rev. 2

Processing Data Files

If an error occurs while IMS is accessing a file, before returning control to your action
program, IMS changes the LOCK-ROLLBACK-INDICATOR in the program

information block to "O". This causes a rollback of any updates since the last rollback
point.

Table 5-4 shows status byte returns and status codes for the GET, GETUP, PUT, and

INSERT function calls to defined files.

UP-9207 Rev. 2

Table 5-4. Status Byte Returns for Defined File Functions

Functions Status Byte Values Status Codes Meaning

ALl X80 X'0000! Item successfully delivered

GET or X140! X'0000" Supplement can't be found

GETUP using specified pointer
X'0001* Key points to nonexistent

primary part
PUT or X120 X'0005' * Incorrect VALUE statement
INSERT

» Inconsistent PIC clause
1 Change not permitted

1 Value missing for a MUST
ADD item.

545

Processing Data Files

5.13. Random Functions for Defined Files

1/0 function calls to access defined files randomly are GET, GETUP, PUT, DELETE,
and INSERT. During random access to defined files, IMS locks logical records
involved in the GETUP and INSERT functions. For error status codes resulting from
the execution of each of the following random I/O function calls, see Table D-1.

5.13.1. Reading Defined Records Randomly (GET)

Using a key parameter, the GET function retrieves a record from the named file and
places the record into the record area of your action program. You cannot update or
delete a record retrieved by a GET function.

The COBOL and BAL formats for the GET function call are:
¢ COBOL format

CALL 'GET' USING filename record-area key.
¢ BAL format

CALL GET, (filename,record-area,key)
ZGHCALL

5.13.2. Reading Defined Records for Update (GETUP)

Using a key parameter, the GETUP function retrieves a record for update from the
named file and places the record into the record area of your action program. A

GETUP is followed by a PUT or DELETE function. No other function calls to the
defined file can intervene.

The COBOL and BAL formats for the GETUP function call are:
¢ COBOL format

CALL 'GETUP' USING filename record-area key.
¢ BALformat

CALL GETUP, (filename, record-area,key)
ZG#HCALL

UP-9207 Rev. 2

C

Processing Data Files

5.13.3. Writing Defined Records (PUT)

The PUT function writes a record that was retrieved for update back to the file. For
the record to be effectively updated, the PUT function must immediately follow the
GETUP function. The COBOL and BAL formats for the PUT function call are:

e COBOL format

CALL 'PUT!' USING filename record-area.
¢ BAL format

CALL PUT, (filename, record-area)
ZGHCALL

5.13.4. Deleting Defined Records (DELETE)

The DELETE function logically deletes a record that was retrieved for update. The
DELETE function must immediately follow the GETUP function to effectively delete
the record. COBOL and BAL formats for the DELETE function call are:

¢ COBOL format

CALL 'DELETE' USING filename record-area.
e BAL format

CALL DELETE, (filename,record-area)
ZGHCALL

5.13.5. Adding Defined Records (INSERT)

The INSERT function enters a new record into a file. The identifier value in the key

parameter must not already exist in the file. COBOL and BAL formats for the
INSERT function call are:

¢ COBOL format

CALL 'INSERT' USING filename record-area key.
* BAL format

CALL INSERT, (filename, record-area, key)
ZG#CALL

UP-9207 Rev. 2 547

Processing Data Files

5.14.

5.14.1.

~

Sequential Functions for Defined Files

I/0 function calls to access defined files sequentially include the SETL, sequential
GET, and ESETL function calls. For error status codes resulting from the execution of
each of the following sequential function calls, see Table D-1.

Setting Defined Files from Random to Sequential Mode (SETL)

The SETL function sets a defined file into the sequential mode and logically positions
the file. The position parameter is a data name or storage location that contains one of
the following values:

Value Meaning

B Beginning of file

G Greater than or equal to key
H Greater than key

The COBOL and BAL formats for the SETL function call are:

¢ COBOL format

CALL 'SETL' USING filename position [keyl.
e BAL format <

CALL SETL, (filename,position[, keyl)
ZGHCALL

When the value of the position parameter is B, the key parameter is omitted. The
SETL function always returns successful completion (status code of 0).

UP-9207 Rev. 2

Processing Data Files

5.14.2. Reading Defined Files Sequentially (GET)

The GET function retrieves the next defined record in the file in sequential order.
The COBOL and BAL formats for the sequential GET function are:
e COBOL format

CALL 'GET' USING filename record-area.

¢ BAL format

CALL GET, (filename,record-area)
ZGHCALL

If IMS returns a status code of 0 (detail cycle), IMS returns a new defined record to
your action program. The DELIVERED-RECORD-TYPE byte identifies the record

type.

A status code of 2 (total cycle) means that there are no more records in the current set.
IMS returns no new defined record. The detailed status code (RECORD-TYPE)
indicates the record type of the completed set. A status code of 2 with a detailed status
code of 0 indicates end of all data; there are no more sets in this defined file.

DETAILED-
STATUS-CODE STATUS- CODE
00 02 00 00
END
OF
DATA

After IMS delivers a detail record, it also delivers all subordinate records in response
to subsequent GET function calls. When a set of subordinate records is empty, the
response to the GET function that requests the first record of the set is a status code of
2 and a detailed status code (DELIVERED-RECORD-TYPE) equal to the record type
of the empty set.

Your action program selects the appropriate record area by interrogating the value in

the first byte of the DETAILED-STATUS-CODE (PREDICTED-RECORD-TYPE byte)
returned by the preceding GET or SETL function.

UP-9207 Rev. 2 549

Processing Data Files

STATUS-CODE

CALL 'SETL' USING FIL-A B.

(RECORD TYPE)
-STATUS-CODE

ELSE

00 00 00
1 PREDICTED- DELIVERED-
RECORD- RECORD-
TYPE TYPE
SUCCESSFUL
SETL
FUNCTION

IF PREDICTED-RECORD-TYPE EQUALS 'A®
CALL 'GET' USING FIL-A REC-A

CALL 'GET' USING FIL-A REC-B.

5.14.3. Setting Defined Files from Sequential to Random Mode (ESETL)

550

The ESETL function changes the mode of a defined file from sequential to random. If
a file is in the sequential mode and an ESETL function is not performed before
termination of the current action, IMS changes the file to random mode at action
termination. COBOL and BAL formats for the ESETL function call follow.

e COBOL format

CALL 'ESETL' USING filename.
e BAL format

CALL ESETL, (filename)
ZGHCALL

UP-9207 Rev. 2

Processing Data Files

5.15. Unlocking Records (UNLOCK)

The UNLOCK function releases record locks not released as a result of normal
transaction termination or file updating. It also makes available for processing ISAM
and MIRAM files held for a transaction pending an update.

The COBOL and BAL formats for the UNLOCK function are:

¢ COBOL format

CALL 'UNLOCK' USING filename.

e BAL format

CALL UNLOCK, (filename)
ZGH#CALL

The UNLOCK function applies to both the lock-for-update and lock-for-transaction
instructions imposed on DAM, MIRAM, or ISAM files. When you configure either type
lock for these files and an update of a record is currently pending for a transaction, the
UNLOCK function aborts the update by releasing the record lock. The following lines
of COBOL code demonstrate:

CALL 'GETUP' USING MYFIL IMS-REC-AREA MYKEY.

MOVE CUST-NAME TO NAME-FIELD.
et e e e e sk e e e ke e ek ek ek e ek ek ek

* UPDATE PENDING / AWAITING PUT OR DELETE *
dededededed ke dededededede ke ek ke dek A ke dek iRk R kR Kk kk ke ek

CALL 'UNLOCK' USING MYFIL.

Releases Lock on MYFIL

For ISAM files, the UNLOCK function makes the file, as well as the individual record,
accessible for processing requests from other transactions. For DAM files, the
UNLOCK function unlocks only the individual record. The rest of the file remains
accessible to other transactions.

The UNLOCK function cannot be used against a file in undedicated sequential mode.
This applies to any ISAM, IRAM, or MIRAM file placed in sequential mode following a
SETL or SETK function. Any attempt to issue the UNLOCK function while a file is in
undedicated sequential mode results in an INVALID FUNCTION error (0307) being
posted in the PIB status bytes.

UP-9207 Rev. 2 551

Processing Data Files

5.16. Processing User-Defined Printer Files

You need printer files when you have no terminal printers and want to obtain logging
information or a listing of data on your files.

To define printer files, specify the FILETYPE=PRNT parameter in the configurator
FILE section. You must define them after all other user-defined files at configuration

time.

Three special function calls, issued by your action program, are used only for
processing user-defined printer files:

1. PRINT assigns printer files to terminals.
2. UNLOCK releases assigned printer files.
3. BRKPT controls spooler output printing.

All printer files are assigned by terminal. You may assign any number of printer files
to the same terminal.

The first time an action program successfully executes a PRINT function call, IMS
assigns a printer file to the terminal where that action program originated. Once
printer files are assigned to a terminal, any attempts to access those files from
another terminal cause IMS to return an invalid request status code in the program
information block.

All printer files assigned to a particular terminal remain effective until:

* Your action program issues an UNLOCK or BRKPT function while executing
from that terminal.

¢ A BRKPT transaction code causes IMS to execute the breakpoint (refer to the
IMS Operations Guide, UP-12027).

¢ A transaction that uses assigned printer files is executing at a terminal and
terminates abnormally (see the description of BRKPT function call).

* The terminal is signed off ($$SOFF).

* The file lock is released at normal transaction termination, when the printer file
was assigned to a spool file at a remote location (DDP environment).

For error status codes resulting from the execution of the PRINT, UNLOCK, and
BRKPT function calls, see Table D-1.

552 UP-9207 Rev. 2

C

Processing Data Files

5.16.1. Printing User Data and Controlling Forms (PRINT)

The PRINT function prints your data and controls forms positioning. It also associates
the file you name on the PRINT function with the printer file that IMS assigns to a
terminal the first time your action program executes that PRINT function.

e COBOL format

CALL 'PRINT' USING file-name rec-area
[rec-size [cntrl-char-areall.

e BAL format

CALL PRINT, (file-name,rec-area
ZGH#CALL [,rec-size [,cntrl-char-areall)

The file name you specify on your PRINT function call must be the same name you
configured in the FILE section on the filename positional parameter. For more details,
see the IMS System Support Functions Programming Guide, UP-11907. If the file
name is not one of those you configured as a printer file, IMS returns a status code of 3
(invalid request) and a detailed status code 7 (invalid function) in the program
information block.

The record area may contain only printable data. Control characters are not permitted
in this area.

The record size parameter is the symbolic address of a 2-byte binary field indicating
the number of printable characters moved to the I/O area.

IMS allows up to 160 characters for record size; however, the record size cannot exceed
the maximum print positions of the printer selected. If it does, the record is truncated.

If you specify a record size less than the configured block size, IMS fills the remaining
bytes with spaces (X‘40).

If you want to control forms movement without printing, specify a record size of zero.
When you omit the record size parameter, IMS assumes a record size of 120 bytes.

The control-character-area parameter is a symbolic address of a 1-byte field
containing a printer device-independent control character.

IMS supplies a control character code of X‘01’ when you omit this parameter. This
prints one line and then spaces to the next line.

UP-9207 Rev. 2 553

Processing Data Files

5.16.2.

554

When you specify PRINTOV=SKIP, automatic advance to the home paper position
occurs when an overflow condition is detected. Use this configurator specification for
most normal printing requirements.

Specifying PRINTOV=filename (DTF mode) allows you to print either footnotes at the
bottom of a page or advance to the home paper position to print special page headers.

IMS returns status code 1 on a forms overflow condition. This occurs when you don’t
specify PRINTOV=SKIP but configure instead PRINTOV=filename (DTF mode) or
PRINTOV=REPORT (CDM mode).

See B.7 for a programming example of PRINT function.

Releasing Assigned Printer Files (UNLOCK)

The UNLOCK function releases the printer file assignment from the current terminal.
This means the printer file can now be extended by action programs initiated from
other terminals.

e COBOL format
CALL 'UNLOCK' USING filename
e BAL format

CALL UNLOCK, (filename)
ZG#CALL

As soon as your action program issues a successful PRINT function call, IMS assigns
the printer file and initiates a file lock. Locking prevents output from several
terminals from being sent to the same printer file concurrently.

UP-9207 Rev. 2

P

Processing Data Files

You can unlock a printer file only if the action program issuing the UNLOCK function
is initiated at the terminal to which that file is assigned. Otherwise, IMS returns a
status code of 3 (invalid request) and a detailed status code of 7 (invalid function). The
following diagram illustrates locking and unlocking of printer files.

UP-9207 Rev. 2 555

Processing Data Files

5.16.3. Starting Spooled Printer Files before Job Termination (BRKPT)

The BRKPT function allows you to unlock and start printing a spooled printer file
before the IMS job terminates. This makes the printer file available for reassignment.

During the breakpoint process, the current action program may continue to issue
PRINT functions to assign and extend the current spooled printer file.

Avoid sending output directly to printer devices. Spooling output to printer files is
faster.

* COBOL format
CALL 'BRKPT' USING filename [lock-dispositionl.
o BAL format

CALL BRKPT, (filename[, Lock-disposition])
ZG#CALL

The lock-disposition parameter is a symbolic address of a 1-byte field containing
EBCDIC character H. This value indicates that, after the printer file is breakpointed,
IMS retains the file assigned to the current terminal.

If your printer file is not spooled, the breakpoint request is ignored and, if you
specified the lock-disposition parameter, the file lock is held.

The following diagram illustrates the BRKPT execution for a spooled printer file when
the lock-disposition parameter is not specified.

556 UP-9207 Rev. 2

Processing Data Files

If you omit the lock-disposition parameter, IMS releases the current printer file after
it is breakpointed.

When your printer files are nonspooled, a BRKPT function issued without the lock-
disposition parameter results in an unlock operation.

The action program that issues your BRKPT function must be initiated from the
terminal assigned to the printer file being breakpointed. If the printer file is not
assigned to that terminal, IMS ignores the BRKPT request and returns a status code 3
(invalid request) and a detailed status code of 7 (invalid function) in the program
information block.

See B.7 for a programming example of BRKPT function.

UP-9207 Rev. 2 5-57

Processing Data Files

2.17.

5.17.1.

5.17.2.

5.17.3.

5.17.4.

558

File Processing Considerations (

Opening and Closing Files

At start-up time, IMS opens all the files you configure and, at shutdown time, IMS
closes them. You must assign each file in the job control stream at start-up. You can
close and reopen files from the master terminal using the master terminal commands
ZZCLS and ZZOPN. When IMS receives these commands, it issues calls to data
management to perform close and reopen functions. You cannot open and close files
from your action program. For a description of ZZCLS and ZZOPN, see the IMS
Operations Guide, UP-120217.

Identifying Files to IMS

Describe each of your data files in a FILE section of the IMS configuration. Each file
you configure has a single file descriptor entry in the file control table. IMS uses this
table to reference files that you access and to queue requests to each file while
servicing each request.

Dynamic Allocation of I/0 Areas

In a normal programming environment, you would allocate I/O areas to receive data ™
from files and to contain changes sent back to files. In multithread IMS, these I/O (
areas are preallocated. And in single-thread IMS, they are allocated when required.

No more than one I/O area is allocated to a file at a given time. Once allocated, an I/O

area can be used to support multiple-file functions for a number of different

transactions. When no function calls to a file are outstanding, IMS releases the I/O

area to main storage management.

File Sharing

More than one transaction can share access to a file. Locking procedures for ISAM and
MIRAM file updates make it more efficient to program more than one function call in
one action (for example, GETUP and its corresponding function call, PUT or DELETE,
in the same action).

The lock on a record being updated can be held from one action to another. However,

another GETUP must be issued. It is, therefore, more efficient to update ISAM or
MIRAM files in a single action.

UP-9207 Rev. 2

Processing Data Files

5.17.5. Work and Record Area Considerations

If your DAM file resides on a fixed-sector disk, OS/3 data management requires that
the length of the I/O area be some multiple of 256 bytes and half-word aligned. To
achieve device independence across disk subsystems, so that your program can access
a DAM file on any disk used under OS/3, the same is true -- I/O areas should be
multiples of 256 bytes in length.

To ensure device independence in a BAL or COBOL action program that accesses
DAM files, you should ensure that the record-area parameter of any IMS function call
(GET, GETUP, PUT, DELETE, or INSERT) refers to an area whose reserved length is
some multiple of 256 bytes on a half-word boundary.

There are other considerations (such as record or block length, and the track capacity
of the disk subsystem in use) to keep in mind in establishing work-area and record-
area lengths for your action programs. For further details, refer to the Consolidated
Data Management Macroinstructions Programming Guide, UP-9979.

5.17.6. Test Mode Effects on File I/0

When you enter a ZZTMD terminal command to place that terminal in the test mode,
any request to IMS to change the contents of a file are only simulated. No UPDATE,
DELETE, or INSERT functions are performed. Control returns to the requesting
transaction with a successful completion status code.

You can put a terminal in the test mode after completing a transaction; that is, when
not in an interactive mode. To revert to normal mode, use the ZZNRM terminal
command. Test mode is used to train new terminal operators to handle update
transactions. All terminal entries made by the operator are the same in test mode as
in the normal mode except that no file modifications actually occur. Test mode also is
useful in testing newly written or modified action programs that perform file
modifications. For more details about the ZZTMD and ZZNRM terminal commands,
see the IMS Operations Guide, UP-12027.

UP-9207 Rev. 2 559

Processing Data Files

5.17.7. Common Storage Area Files {

You can increase file processing efficiency by making frequently accessed ISAM or
MIRAM files resident in a special common storage area (CSA). This feature is
especially useful for maintaining vital information used by many action programs.
You must have adequate main storage to use this feature.

CONF IGURATION

FILE MYFILE

MAIN STORAGE

MYFILE
COMMON
STORAGE
AREA
You can index and access CSA files only in indexed random mode. You use GET, (4

GETUP, and PUT function calls the same way as for any ISAM or MIRAM file, but
INSERT and DELETE functions are not valid. CSA files are not accessible through
UNIQUE.

If you specify CUPDATE=YES to the configurator, IMS updates the disk as well as
the resident file. This saves disk accesses on reads but not on writes. However, if
you've configured CSA files and omit CUPDATE or specify CUPDATE=NO, IMS
updates the resident file but does not update the disk file until shutdown, when the
entire CSA file is written to disk. File locking and recovery functions are the same for
the CSA file as for a disk file.

560 UP-9207 Rev. 2

Section 6
Sending Output Messages

6.1. Purpose of Output Message Area

When an action program issues an output message, the message is normally sent from
the output message area.

According to application requirements, action programs can issue output messages:

* To the source terminal, auxiliary device, or successor action program at the end of

an action via the CALL RETURN function

* To the source or other terminal or auxiliary device via the CALL SEND function.

/ ™
/ \

UP-9207 Rev. 2 61

Sending Output Messages

6.2. Your Action Program’s Output Message Area Contents

The output message area you describe has two parts: a 16-byte control header and a

variable-length message text.

OUTPUT MSG
CONTROL HDR

OUTPUT
MESSAGE
TEXT

Your program copies the appropriate COBOL or BAL message control header format
from the IMS copy library. The second part of the output message area contains the
output message text your program sends to a terminal, auxiliary device, or successor

action program.

OUTPUT MSG
CONTROL HEADER

ACTION OUTPUT MSG

PROGRAM [3 TEXT
1

AUXILIARY
DEVICE

62

UP-9207 Rev. 2

PN

Sending Output Messages

At action initiation, IMS sets the message text portion of the output message area to
blanks.

When an action terminates normally, IMS sends the output message to the source
terminal unless otherwise specified.

6.3. Size of Output Message Area

The OUTSIZE parameter in the ACTION section of the configurator specifies the
length of the output message area. The size you specify depends on whether you use
screen format services for the action and whether you build your screen format in the
output message area or in dynamic main storage.

If you build a screen format in the output message area, the OUTSIZE value must be
large enough to accommodate the screen format buffer contents including variable
output data buffer contents, display constants, and device control characters.

Instead of specifying an output message area length on the OUTSIZE parameter, you
can specify a standard output message size (OUTSIZE=STAN). IMS allocates an
output area based on your CHRS/LIN and LNS/MSG parameter values in the
GENERAL section of the configuration.

For formulas to calculate output message area length, see the IMS System Support
Functions Programming Guide, UP-11907.

UP-9207 Rev. 2 63

Sending Output Messages

6.4. COBOL Action Program Output Message Area L
6.4.1. Output Message Header Format
The COBOL output message header format is available in the IMS copy library under

the name OMA for extended COBOL or under the name OMA74 for 1974 American
National Standard COBOL. Figure 6-1 shows the output message area control header

format.
@1 OUTPUT-MESSAGE-AREA.

02 DESTINATION-TERMINAL-ID PIC X(4).
@2 SFS-OPTIONS

03 SFS-TYPE PIC X.

@3 SFS-LOCATION PIC X.
02 FILLER PIC X(2).
02 CONTINUOUS-OUTPUT - CODE PIC X(4).
02 TEXT-LENGTH PIC 9(4) COMP-4.
@2 AUXILIARY-DEVICE-ID.

@3 AUX-FUNCTION PIC X.

03 AUX-DEVICE-NO PIC X.

Figure 6-1. COBOL Format for Output Message Area Control Header

When you code your COBOL action program’s linkage section, copy the output
message area control header format into your action program from the IMS copy
library using a COPY verb. Once you copy the output message control header from the ™
IMS copy library, your program can access any of these control fields by referencing (.
them in the procedure division.

6.4.2. Output Message Text Description

The output message text description immediately follows the output message control
header format copied from the IMS copy library. Describe the output message text
fields your program issues to a terminal, auxiliary device, or succeeding action
program. Define the output message text as those data items subordinate to the
01-level output message area description. The shaded area in Figure 6-2 shows the
output message area control header fields generated by the COPY verb. Fields
immediately following the control header represent output text sent by your program.

Note that the first 02-level item describes the device-independent control expression
(DICE sequence) that formats the output message. (Appendix F explains this use in
detail.) DICE control sequences are needed to position output messages unless you use
screen format services (see Section 7).

64 UP-9207 Rev. 2

Sending Output Messages

OUTPUT MESSAGE AREA
CONTROFAFEADER

LINKAGE SECTION.

21 0-M-A. COPY OMA74. ¢
[@2 DICE-OUT.
CONTROL J 03 FILLER PIC XX.
CHARACTER @3 DICE-Y PIC X.
SEQUENCE | 03 FILLER PIC X.
02 OUT-MSG.
03 PAY-OUT PIC $$$9.99.
OUTPUT 03 LIT-OUT.
MESSAGE 94 FILLER PIC X(32).
f‘" TEXT @4 CUST-OUT PIC X(6).
(DESCRIPTION @4 FILLER PIC X(18).
i 83 NEW-BAL PIC $$$9.99

Figure 6-2. Sample COBOL Output Message Area Description

AT

UP-9207 Rev. 2 65

Sending Output Messages

6.5. BAL Action Program Output Message Area
6.5.1. Output Message Header Format

IMS also supplies an output message area control header format for BAL action
programs. It is in the form of a DSECT called by a macroinstruction (ZM#DOMH) in
your action program, Figure 6-3 shows the format of the BAL output message area
control header. (To list the current DSECT's on your system, see Appendix H.)

ZA#OMH DSECT
*
* OQUTPUT MESSAGE HEADER
%*
ZA#ODTID DS CL4 DESTINATION TERMINAL ID
ZA#OSFSO DS OCL2 SFS OPTIONS
*
ZA#SFTYP DS CL1 FORMAT TYPE
ZA#SFLOC DS CL1 FORMAT LOCATION
* EQUATES FOR ZA#SFTYP & ZA#SFLOC
ZA#OSFSI EQU C'I' INPUT FORMAT
ZA#SFDYN EQU C'D! DYNAMIC MEMORY

DS cL2 RESERVED FOR SYSTEM USE
ZA#CONT DS XL4 CONTINUOUS OUTPUT CODE
ZA#OMHL EQU *-ZA#OMH OUTPUT MSG AREA HEADER LENGTH
ZA#OTL DS H MESSAGE LENGTH
ZA#OAUX DS CL2 AUXILIARY-DEVICE-ID
*
* EQUATES FOR ZA#OAUX {f
*
ZA#ONCOP EQU X'00! NO COP SUPPORT REQUESTED -
ZA#OCO EQU X'C3! CONTINUOUS OUTPUT REQ
ZA#001Q EQU X'C9' QUEUE AS INPUT FOR DEST: TCT
ZA#OHANG EQU X'DO' RESERVED FOR IMS/9@ SYSTEM USE
ZAHOCOP EQU X'FO' COP OUTPUT REQUESTED
ZAHOCOCP EQU X'F3! CONTINUOUS OUTPUT TO COP
ZA#OPTCP EQU X'F4! PRINT TRANSPARENT TO COP
ZA#OPCOC EQU X'F7! CONTINUOUS OUTPUT TO COP WITH
* PRINT TRANSPARENT
* SS: SPACE SUPRESSION Iss: INHIBIT SPACE SUPPRESSION
* c: CONTINUOUS OUTPUT NC: NOT CONTINUOUS OUTPUT
%*
ZA#OCSPM EQU X'F3' 3: C,SS,PRINT MODE
ZA#ONSPM EQU X'FO! 0: NC,SS,PRINT MODE
ZA#OCSPT EQU X'F7! 7: C,SS,PRINT TRANSPARENT
ZAHONSPT EQU X'F4! 4: NC,SS,PRINT TRANSPARENT
ZAHOCIPM EQU X'F5! 5: C,ISS,PRINT MODE

Figure 6-3. BAL Format for Output Message Area Control Header (ZA#OMH DSECT] (Part 1 of 2)

PR
/ N

66 UP-9207 Rev. 2

f/&\

Sending Output Messages

ZAHONIPM EQU X'F2! 2: NC,1SS,PRINT MODE
ZA#OCIPT EQU X'F9! : C,ISS,PRINT TRANSPARENT
ZA#ONIPT EQU X'F6! : NC,ISS,PRINT TRANSPARENT
ZA#OCSPF EQU X'C1' A: C,SS,PRINT FORM (ESC H)
ZA#ONSPF EQU X'D1' : NC,SS,PRINT FORM (ESC H)
ZA#OCSTA EQU X'C2' : C,SS,TRANSFER ALL (ESC G)
ZA#ONSTA EQU X'D2' K: NC,SS,TRANSFER ALL (ESC G)
ZA#OCSTV EQU X'C4! D: C,SS,TRANSFER VARIABLE (ESC F)
ZAHONSTV EQU X'D4' M: NC,SS,TRANSFER VARIABLE (ESC F)
ZA#OCSTC EQU X'C5! : C,SS,TRANSFER CHANGED (ESC E)
ZA#ONSTC EQU X'D5' N: NC,SS,TRANSFER CHANGED (ESC E)
ZA#OCIPF EQU X'C6* : C,1SS,PRINT FORM (ESC H)
ZAHONIPF EQU X'D6' : NC,ISS,PRINT FORM (ESC H)
ZA#OCITA EQU X'C7" G: C,ISS,TRANSFER ALL (ESC G)
ZAHONITA EQU X'D7' P: NC,ISS,TRANSFER ALL (ESC G)
ZA#OCITV EQU X'C8! H: C,ISS,TRANSFER VARIABLE (ESC F)
ZAONITV EQU X'D8! Q: NC,ISS,TRANSFER VARIABLE (ESC F)
ZA#OCTIC EQU X'E8' Y: C,1SS,TRANSFER CHANGED (ESC E)
ZAHONITC EQU X'F8! 8: NC,1SS,TRANSFER CHANGED (ESC E)
ZAHONTRM EQU X'D9" R: C,READ MODE

ZAHONTRT EQU X'E2' S: C,READ TRANSPARENT

ZA#ONTSR EQU X'E3! T: C,SEARCH AND READ MODE
ZA#ONTST EQU X'E5' V: C,SEARCH AND READ TRANSPARENT
ZAHONTRA EQU X'E6! W: C,REPORT ADDRESS

ZA#OCTBB EQU X'D3' L: C,BACK ONE BLOCK

ZAHONTBB EQU X'E7' X: NC,BACK ONE BLOCK

ZAHOCTSP EQU X'E9" : C,SEARCH AND POSITION

ZAHONTSP EQU X'E4' U: NC,SEARCH AND POSITION

ZA#HOD EQU X'5B! $: NC,CLEAR ICAM QUEUE

*

* EQUATES FOR ZA#OAUX+1

*

ZA#ODID1 EQU C'1 DEVICE = AUX1

ZA#ODID2 EQU C'2' DEVICE = AUX2

ZA#ODID3 EQU C'3! DEVICE = AUX3

ZA#ODID4 EQU C'4! DEVICE = AUX4

ZA#ODIDS EQU C'5! DEVICE = AUXS

ZA#ODID6 EQU C'6! DEVICE = AUX6

ZA#ODID7 EQU C'7° DEVICE = AUX7

ZA#ODID8 EQU C'8! DEVICE = AUX8

ZA#ODID9 EQU C'9! DEVICE = AUX9

ZA#ODOA EQU X'70! ALL ICAM QUEUES (H, M, L)

ZA#ODQH EQU X'10° ICAM HIGH QUEUE

ZA#ODGM EQU X'20! ICAM MEDIUM QUEUE

ZA#ODGL EQU X'4Q° ICAM LOW QUEUE

Figure 6-3. BAL Format for Output Message Area Control Header (ZA#OMH DSECT) (Part 2 of 2)

UP-9207 Rev. 2 67

Sending Output Messages

To generate inline the output message control header (the macro expansion of the
ZA#OMH DSECT), you issue the ZM#DOMH macroinstruction in your BAL action
program. If you don’t want to see the ZM#DOMH macro expansion inline, use the
PRINT NOGEN instruction before you issue the ZM#DOMH macroinstruction.
Though the output message control header fields are not seen in your program coding,
they are still available and you can reference them.

6.5.2. Output Message Text Description

Immediately following the ZM#DOMH macroinstruction, you describe the output
message text fields your program wants to send to the terminal, auxiliary device, or
successor action program. Using defined-constant (DC) statements, you describe each
field of your output message text.

Figure 6-4 illustrates the macroinstruction that generates the output message control
header followed by the description of output text being sent to a terminal (in this case,
a 42-byte area containing a 4-byte control character field, the word CAPITAL, and
space to enter the name of a state capital). Refer to Appendix B for this example in the
full context of the IMS state capital action program. Note that PRINT NOGEN is
specified and the ZM#DOMH macro is not expanded inline. Nevertheless, this action
program can still access any field in the control header.

Note that the first four bytes of OUTTEXT contain the device-independent control

expression (DICE sequence) that clears the line and positions the output message on (
the new line. (Appendix F explains their use in detail.) DICE control sequences are ",
needed to format output messages unless you use screen format services.

(See Section 7.)

6-8 UP-9207 Rev. 2

Sending Output Messages

1 10 16 72

PRINT NOGEN

*BUILD OUTPUT MESSAGE

MVC OUTTEXT(4),NEWLINE PUT DEVICE INDEPENDENT CONTROL
* CHARACTERS INTO MESSAGE TO CLEAR
* TO END OF LINE AND POSITION TO
* BEGINNING OF NEXT LINE

MVC OUTTEXT+4(L'MSGCON1) ,MSGCON1 PUT TEXT CONSTANT INTO MESSAGE
MVC OUTTEXT+4+L'MSGCON1(L'SCAPITAL),SCAPITAL PUT CAPITAL NAME INTO

* MESSAGE
*CONSTANTS

STATE DC CL7'STATE® ISAM FILENAME

MSGCON1 DC C'CAPITAL!

NEWLINE ZOPOSC 0,0 ICAM PROCEDURE TO GENERATE
* DICE SEQUENCE FOR NEW LINE
* CONTROL WITH CLEAR
SCAPITAL DS XL25 STATE CAPITAL

Figure 6-4. Sample BAL Output Message Area Description

UP-9207 Rev. 2 69

Sending Output Messages

6.6. Contents of Output Message Area Control Header

The header format identifies the terminal that is to receive the output message,
screen formatting options (if used), continuous output code (if used), the length of the
output message text, auxiliary function code (if used), and auxiliary device number (if
used). Figure 6-5 shows some of the questions about output messages that the output
message control header answers when the action program sets values in the control
header fields. Subsections 6.7 through 6.13 describe output message header fields.

610

CALLED SCREEN
FORMAT USED
* FOR INPUT,

1/0, OR QUTPUT?

OUTPUT
MESSAGE HOW LONG
AREA : IS THE
OUTPUT MESSAGE
TEXT?

WHAT PRINT
OPTIONS USED
FOR AUXILIARY

DEVICE?

WHICH TERMINAL
RECEIVES
OUTPUT MESSAGE?

WHAT CODE
USED TO
COMMUNICATE
WITH SUCCESSOR
AP PROCESSING
CONTINUOUS
OUTPUT?

WHICH AUXILIARY
DEV RECEIVES
OUTPUT
MESSAGE?

Figure 6-5. Answers to Output Message Processing Questions

UP-9207 Rev. 2

Sending Output Messages

(6.7. ldentifying the Destination Terminal
(DESTINATION-TERMINAL-ID)

IMS needs to know the terminal to which it sends the output message your action
program builds. The 1- to 4-byte value in the DESTINATION-TERMINAL-ID field
(ZA#0ODTID) identifies the terminal to which IMS sends the output message.

If you don’t move a value to this field before issuing a CALL RETURN or CALL SEND
function, IMS assumes the source terminal to be the destination terminal.

The destination terminal name must be left-justified and blank-filled. Also, you must
identify this terminal in your ICAM network definition and optionally in a
TERMINAL section of the configuration (Figure 6-6).

ICAM Network Definition

LNE1 LINE DEVICE=(LWS)
Ws1 TERM ADDR=(312),FEATURES=(LWS),LOW=MAIN, INPUT=(YES), X
MEDIUM=MAIN,HIGH=MAIN

; LNE3 LINE DEVICE=(LWS)
‘ Ws3 TERM ADDR=(314),FEATURES=(LWS),LOW=MAIN, INPUT=(YES), X
MEDIUM=MAIN, HIGH=MAIN
LNE4 LINE DEVICE=(LWS)
WSk TERM ADDR=(315),FEATURES=(LWS),LOW=MAIN, INPUT=(YES), X
MEDIUM=MAIN, HIGH=MAIN

IMS Configuration

=ACTION
ETION

TERMINAL WS1

TERMINAL W52

TERMINAL WS3 UNSOL=ACTION

TERMINAL WS4 UNSOL=ACTION

TRANSACT MENU ~ACTION=JAMENU

TRANSACT SIGN ACTION=JASIGN

ACTION JAMENU CDASIZE=1024 EDIT=NONE MAXSIZE=12000
OUTSIZE=4096 WORKSIZE=1024
FILES=SYSCTL ,CUSTMST , XREF 1, XREF2

ACTION ~ JASIGN CDASIZE=1024 EDIT=NONE MAXSIZE=12000

Figure 6-6. ldentifying the Destination Terminal to ICAM and the Configurator

UP-9207 Rev. 2 611

Sending Output Messages

612

The most common use of the DESTINATION-TERMINAL-ID field is to send an
output message to a terminal other than the source. Place a value in the
DESTINATION-TERMINAL-ID field before issuing the SEND function to transmit
the message.

The following COBOL statement moves a terminal identification other than the
source terminal to the output message area DESTINATION-TERMINAL-ID field.

MOVE DEST-TERM TO DESTINATION-TERMINAL-ID.

The terminal operator enters the value of the desired destination terminal from the
source terminal. This value is received in the input message area and described as a
text field (DEST-TERM) in the input message area of the program’s linkage section.
For more details, see the sample COBOL action program, BEGIN1, in Appendix B,
Figure B-24.

UP-9207 Rev. 2

N
¢ y

Sending Output Messages

6.8. Specifying Screen Format Services for Output
(SFS-OPTIONS)

When you use screen format services for output messages and issue a CALL BUILD
function for an input or I/O screen format, IMS places a value of I in the SFS-TYPE
field (ZA#SFTYP). This means that IMS is to use the screen format you name on your
BUILD function call for the following input. When the screen format is for output
only, this field contains hexadecimal zeros.

Each time you issue a BUILD function, IMS resets the SFS-TYPE field. To override
an I/O format, set this field to hexadecimal zero before issuing a CALL RETURN.
This tells IMS to use the screen format you name on the BUILD function call for
output only. (For more information describing input-only, I/O, and output-only screen
formats, refer to Section 7.)

To build a formatted output message in dynamic main storage instead of in your
output message area, move a character D (C'D’) to the SFS-LOCATION field
(ZA#SFLOC), the second byte of the SFS-OPTIONS field (ZA#OSFSO). Once you've
built the screen format in dynamic main storage, if you want to send a message from
the output message area, first clear SFS-LOCATION by filling it with hexadecimal
zeros before issuing the SEND or RETURN function. In a COBOL action program, you
can do this by coding the statement:

MOVE LOW-VALUES TO SFS-LOCATION.

In a BAL action program, the statement

1 10 16

MVI ZA#S$SFLOC, X100

does the same thing.

For a complete description of screen format services, see Section 7.

UP-9207 Rev. 2 613

Sending Output Messages

6.9. Identifying é Continuous Output Message
(CONTINUOUS-OUTPUT-CODE)

614

When you issue a continuous output message, an action program can succeed to itself
or to another action program to continue sending output. The CONTINUOUS-
OUTPUT-CODE field can be used to communicate between the action program that
originated the continuous output and its successor.

If you do not move a value into this field, IMS sets the field to zeros and when the
program passes control to its successor, the first four bytes of input message received
by the successor action program are zeros. Though the CONTINUOUS-OUTPUT-
CODE field can be used, this field is not mandatory in generating continuous output.
It can, however, be helpful to indicate the last output message sent. Set this field only
when the AUX-FUNCTION field indicates that continuous output is desired. For a
complete description of continuous output, see subsections 6.18 through 6.24.

UP-9207 Rev. 2

C

Sending Output Messages

6.10. Supplying Output Message Text Length
(TEXT-LENGTH)

The TEXT-LENGTH field (ZA#0TL) is a binary half-word integer that specifies the
length of the output message text. IMS sets this value to a predefined output message
text length at action initiation, and the action program may reduce the value to reflect
the true output message text length. This output message length control is necessary
when your action program issues multiple output messages. If the value is set to zero
and no output message is sent by the action program, IMS sends a default termination
message to the source terminal.

The predefined output message text length is specified at configuration time via the
OUTSIZE parameter in the ACTION section. In your action program, the value you
place in TEXT-LENGTH must include the length of the actual text plus 4 bytes for the
TEXT-LENGTH field itself. Be sure to move this value to the TEXT-LENGTH field
before your program sends an output message to a terminal. Figure 6-7 shows the
logic involved in moving a message text length to the TEXT-LENGTH field in the
output message area.

OUTPUT
MESSAGE

TO TEXT-LENGTH

Figure 6-7. Setting Message Text Length for Output Messages

UP-9207 Rev. 2 6-15

Sending Output Messages

6.11.

6.12.

6-16

Identifying Auxiliary Devices (AUXILIARY-DEVICE-ID)

The AUXILIARY-DEVICE-ID field (ZA#0OAUX) is a 2-byte field that indicates
whether the output message should be sent to an auxiliary device and, if so, it
identifies the device. You also use this field to specify printing options.

To list the output message on an auxiliary device attached to the destination terminal,
use each byte of the AUXILIARY-DEVICE-ID field - the AUX-FUNCTION byte
(ZA#0OAUX) and the AUX-DEVICE-NO byte (ZA#OAUX+1).

The AUX-FUNCTION byte describes the print options used for continuous output and
to send the output message to an auxiliary device. For AUX-FUNCTION byte
settings, refer to Table 6-2. The AUX-DEVICE-NO field specifies the number of the
auxiliary device receiving the output message (1 through 9) as defined in the ICAM
network definition.

If you don’t send the output message to an auxiliary device or want continuous output,
set the entire field to binary zeros. This is the original value of the field set by IMS
when it generates the output message area control header. Zeroing out this field
displays or lists the output message on the primary device - the destination terminal
with no special options. The following COBOL coding zeros out the AUXILIARY-
DEVICE-ID field in the output message area control header:

MOVE LOW-VALUES TO AUXILIARY-DEVICE-ID.

Specifying Special Print Options for Auxiliary
Devices (AUX-FUNCTION)

You can choose numerous print options to send output messages to auxiliary devices.
For example, to list the output message on the communications output printer (COP)
or terminal printer (TP) in print mode, set the AUX-FUNCTION byte to X'F0’; to list
it in print transparent mode, set the AUX-FUNCTION byte to X'F4’.

The AUX-FUNCTION field has another use when you send continuous output to a
terminal rather than to an auxiliary device. For more detail, see 6.20.

UP-9207 Rev. 2

~

Sending Output Messages

6.13.

Figure 6-8 shows the coding statements that specify continuous output to an auxiliary
device at the primary destination terminal, or continuous output in print transparent
mode at a communications output printer attached to the first auxiliary device
configured at that terminal.

CREATE-CONTINUOUS-OUTPUT.
IF COP-OUTPUT NOT EQUAL TO 'COP*
'C' TO AUX-FUNCTION

o
10X ‘
MOVE CURRENT-CONT-CODE TO CONTINUOUS-OUTPUT-CODE.

Figure 6-8. Specifying Output to an Auxiliary Device

For an explanation of print mode, print transparent mode, space suppression, and
other print options, see 6.20; also, refer to Table 6-1 for a summary of the AUX-
FUNCTION byte settings.

Naming Auxiliary Devices (AUX-DEVICE-NO)

When you send an output message to an auxiliary device, you must identify its
number in the AUX-DEVICE-NO byte of the AUXILIARY-DEVICE-ID field. The
value you place in this byte must be a number from 1 to 9. This number identifies the
auxiliary device number appended to the AUX operand of the TERM macroinstruction
in your ICAM network definition. (See the IMS System Support Functions
Programming Guide, UP-11907.

If you send an output message to an auxiliary device attached to the destination
terminal as shown in Figure 6-8, the network definition must contain a TERM
macroinstruction with an AUX operand appended with the same value placed in the
AUX-DEVICE-NO field. The following portion of a network definition shows the AUX
operand with the appended number:

MOVE §1@ TO AUX-DEVICE-NO.
1 10 16 72

o

TRM1 TERM ADDR=(29,52),
FEATURES=(U400, 1920) ,

cl=e, 77y,

HIGH=MAIN,

MEDIUM=MAIN,

LOW=DQF ILE1

xX X X X X

UP-9207 Rev. 2 617

Sending Output Messages

6.14. Sending a Message at the End of an Action

618

Normally, action programs send messages from the output message area to the
designated terminal when you issue the RETURN function at action termination. This
output can be:

* Displayed on the source terminal or the terminal indicated by the
DESTINATION-TERMINAL-ID field

¢ Listed on an auxiliary device attached to the source terminal or destination
terminal

* Printed as continuous output at the source terminal or on an auxiliary device
attached to the source terminal (see 6.11)

* Queued as input to a successor action program terminating in delayed internal
succession

PRINT
DISPLAY CONTINUOUS
OUTPUT

QUEUED
AS INPUT

SUCCESSOR
ACTION
PROGRAM

AUXILIARY
DEVICE

AUXILIARY
DEVICE

N

UP-9207 Rev. 2

Sending Output Messages

6.15. Sending Additional Messages (SEND Function)

Sometimes you may want to issue more than one message during an action, or you
may want to send a message to a terminal other than a source terminal. This is called
switched output. To issue multiple or switched output messages, use the SEND
function call.

6.15.1. Transmitting Messages via the SEND Function

The SEND function transmits messages to a terminal other than the source terminal
or multiple messages to the source terminal. It can also initiate a transaction at
another terminal via output-for-input queueing (described in 6.26); however, when you
issue a SEND function for both output-for-input queueing and switched output from
the same action program, IMS returns a status code of 6,, and a detailed status code
of 2, indicating that these two operations are not permitted in the same procedure.

In addition, the SEND function can designate the master terminal as the destination
for messages without naming the master terminal in the program. This is useful for
sending error messages to the master terminal when the source terminal can’t handle
the error. In the case where there are multiple master terminals, the message will be
sent to the first master terminal in the IMS-MT configuration.

The COBOL and BAL source formats for the SEND function call are:

e COBOL format:

CALL 'SEND' USING output-buffer [master].

e BAL format

CALL SEND, (output-buffer [,masterl)
ZGHCALL

The output-buffer parameter refers to a data-name (COBOL) or storage area (BAL)
where the output message is built. This area must contain an output message header
and text. The output buffer doesn’t have to be the output message area described in
the linkage section. You can send an output message from the work area or other
interface area. This area, however, must be aligned on a full-word boundary.
Subsection 6.17 discusses the use of a work area to build output messages and
explains how to send output messages from a work area.

UP-9207 Rev. 2 619

Sending Output Messages

The master parameter refers to a data-name or storage location that contains the
value ‘M’ indicating that this message is sent to the master terminal.

Figure 6-9 illustrates COBOL coding to send an output message to the master
terminal.

ACTION PROGRAM

WORKING
STORAGE

WORKING-STORAGE - SECTION

PROCEDURE DIVISION.

) @

CALL 'SEND' USING OUTPUT-MESSAGE-AREA

Figure 6-9. Sending an Output Message to the Master Terminal

When the data-name referenced does not contain the value M, IMS returns a status
code of 3 (invalid request) and a detailed status code of 3 (incorrect parameter value)
to the program information block of your action program.

When you omit this parameter, IMS sends the message to the terminal specified in
the DESTINATION-TERMINAL-ID field of the output message area, or to the source
terminal when DESTINATION-TERMINAL-ID is not specified.

Figure 6-10 illustrates the COBOL coding to send an output message to a destination
terminal.

620 UP-9207 Rev. 2

Sending Output Messages

ACTION PROGRAM

OUTPUT MESSAGE
HEADER

TRM4

PROCEDURE DIVISION.

CALL 'SEND' USING OUTPUT-MESSAGE-AREA.

Figure 6-10. Sending an Output Message to a Destination Terminal

You can send a message to the system console or master workstation if console
support is configured. To send a message to the console or master workstation, enter
the name 1CNS in the DESTINATION-TERMINAL-ID field. When you send a
message to the console, your message may not exceed 120 characters. For more
information about the system console and master workstation, see 6.29.

IMS does not send an output message to the designated terminal until the successful
termination of the current action. After IMS moves the output message from the
output message area and writes it to the output message queue, control returns to the
statement following the CALL SEND statement.

If the transaction terminates abnormally or is canceled in the current action, IMS
deletes from the queue all output messages generated in the action and does not
deliver any messages to the terminal. Instead, it sends a message to the source
terminal indicating the reason for termination.

UP-9207 Rev. 2 621

Sending Output Messages

N
/

To use the SEND function, you must specify the UNSOL=YES parameter in the
OPTIONS section of the configurator. In your ICAM network definition, you must:

1. Specify FEATURES=(OUTDELYV) on the CCA macroinstruction.

2. Create three queues for each terminal (LOW, MEDIUM, and HIGH operands on
the TERM macroinstruction).

3. Create at least one process file (PRCS macroinstruction).

4. If a global network, create a static session for each process file in the SESSION
macroinstruction.

If you use the SEND function frequently, you should specify disk queueing. Refer to
the IMS System Support Functions Programming Guide, UP-11907.

622 UP-9207 Rev. 2

Sending Output Messages

(6.15.2. Returns from the SEND Function

After executing a SEND function, IMS notifies the action program whether the
request succeeded or failed by placing binary values in the STATUS-CODE and
DETAILED-STATUS-CODE fields of the program information block. Table 6-1 shows
status and detailed status codes IMS can return after unsuccessful completion of the
SEND function.

Table 6-1. Status Codes and Detailed Status Codes Returned after the SEND Function

STATUS-CODE DETAILED-STATUS-CODE

(Decimal) (Decimal) Description
e Successful
3 3 Parameter error
3 12 UNSOL=YES or CONTOUT=YES was not configured, or
no process files were created in ICAM network
definition.
6 2 Returned when output-for-input queueing is

requested and:
1. Destination terminal is in interactive mode

2. Destination terminal has an input message on
queue

{i:;/ 3. ZZHLD or ZZDWN command was entered for
destination terminal

4. Destination terminal is marked physically down
to ICAM

5. IMS cannot allocate a main storage buffer
(multithread only); INBUFSIZ specification
inadequate

6 3 Destination terminal physically or logically
down; message queued

6 4 Invalid destination terminal, auxiliary device,
or auxiliary function specified

6 5 No ICAM network buffer available

6 6 Disk error or recoverable system error on output
message to console

6 7 Invalid length specification

UP-9207 Rev. 2 623

Sending Output Messages

624

IMS returns a status code of 6 and a detailed status code of 2 only when you use the
SEND function to initiate a transaction at another terminal (output-for-input
queueing). The conditions causing this error are not permanent. The output message
header is valid, and you may be able to retransmit the same message successfully at a
later time.

Some of the conditions causing a detailed status code of 3 (with status code 6) are the
same as those for a detailed status code of 2. However, this error is returned when you
use the SEND function for message switching, not output-for-input queueing. In this
case, the message sent is queued for the destination terminal and is automatically
transmitted when the terminal is operational.

If you configure ERET=YES, the action program regains control at the instruction
after the SEND function call and must interrogate these status bytes. If you don’t
configure ERET=YES, the program does not regain control if the SEND function is
unsuccessful and IMS abnormally terminates the program. At this time, IMS also
sends a 3-line transaction termination message to the system console. Transaction
termination messages are documented in the System Messages Reference Manual,
UP-8076.

UP-9207 Rev. 2

Sending Output Messages

6.16. Clearing IMS Output Messages from ICAM Queues

Due to hardware malfunction or program errors, ICAM queues may contain IMS
output messages that are undeliverable. This may utilize excess ICAM resources and
ICAM error recovery could occur.

You may delete or clear the IMS output messages from the ICAM queue(s) by using
the CALL SEND queue clear option.

To delete the messages from the queue, set the AUX-function byte ZA#OAUX to a C'$’
or X’5B’ and the AUX-DEVICE-NO ZA#OAUX+1 value for the queue to clear. The
following is a list of values to clear the queues:

Values to Clear ICAM Queues

All ICAM Queues ZA#ODQA EQU X170
ICAM High Queue ZA#ODQH EQU X110!
ICAM Medium Queue ZA#ODQM EQU X120!
ICAM Low Queue ZA#0DQL EQU X140!

To clear the ICAM low queue for the terminal executing your transaction:

e COBOL example

MOVE "“$" TO AUX-FUNCTION.
MOVE LOW TO AUX-DEVICE-NO.
CALL 'SEND' USING output-buffer.

e BAL example:

MVI ZA#OAUX, ZA#ODEQ
MVI ZA#OAUX+1, ZA#ODQL

CALL SEND, (output-buffer)
ZG#CALL

The output-buffer parameter refers to a data-name in COBOL or a storage area in
BAL where the output message is built.

UP-9207 Rev. 2 625

Sending Output Messages

6.17. Using a Work Area to Build Output Messages

6-26

When you use the SEND function you can use the work area or other interface area in
the activation record to build your output message. If you decide to use the work area,
you must configure the work area size via the WORKSIZE parameter in the
configuration ACTION section. IMS does not generate a work area without this
parameter. You describe the work area in your action program’s linkage section.

The length of the work area in multithread IMS equals the WORKSIZE length
configured, plus the work area increment (WORK-AREA-INC) length specified by the
preceding action. In single-thread IMS, the work area length equals the WORKSIZE
length configured. The WORK-AREA-INC value is not supported in single-thread
IMS.

You can build output messages in four areas in your action program. The output
message area is most commonly used. In addition, you have the convenience of
building output messages in the work area or continuity data area. If you don’t need to
save the previous contents of the input message area, you can even build an output
message there.

The important difference is that when you build your output message in the output
message area, you may use the CALL RETURN function to transmit the message. On
the other hand, you must use the SEND function to transmit messages built in any
area other than the output message area.

When you issue a SEND function to transmit an output message from the output
message area or any other area, you must be sure to use the same name you use for
the output-buffer parameter in your SEND function call as you use for the output
message description in your work area or continuity data area. This tells IMS where
to go to find the output message you are sending.

When sending an output message from any area other than the output message area,
you must code your own output message header. You can’t use the IMS copy library
when creating the OMA header in a section other than the output message area.
Figure 6-11 shows the COBOL coding to send a message to the master terminal from
the work area.

UP-9207 Rev. 2

Sending Output Messages

WORKING-STORAGE SECTION.
77 MAST-TERM PIC X VALUE 'M'.

LINKAGE SECTION.

01 WORK-AREA

03‘ DESTINATION-TERMINAL-ID PIC X(4).
03 SFS-OPTIONS PIC X(2).

03 OUTPUT-TEXT-1 PIC X(50).

PROCEDURE DIVISION

PARA-X.
CALL

MASTER
TERMINAL

OUTPUT -
TEXT-1

Figure 6-11. Sending an Output Message from the Work Area

UP-9207 Rev. 2 6-27

Sending Output Messages

6.18.

6.19.

6.20.

6-28

Generating Continuous Output

When you want to print lengthy reports at a terminal or auxiliary device attached to a
terminal, the continuous output feature is very useful.

By generating continuous output you can transmit a series of output messages to a
terminal, or more commonly to an auxiliary device attached to a terminal, without
operator intervention.

To use this feature, you must specify CONTOUT=YES in the OPTIONS section of
your configuration.

You also must define an ICAM network that supports unsolicited output. (ICAM
requirements are discussed in 6.16.)

Continuous output can be used in batch processing mode -- online for production or
offline for listing -- as well as in interactive mode.

Devices That Can Receive Continuous Output

Action programs can direct continuous output to hard-copy terminals or to auxiliary
devices (printer, tape cassette, or diskette) at display terminals. For a complete list of
terminals and auxiliary devices supported by IMS, see the IMS System Support
Functions Programming Guide, UP-11907.

Coding for Continuous Output

To distinguish continuous output messages from other output messages, an action
program must move a specific value to the AUX-FUNCTION field (ZA#OAUX) of the
output message area header. When the program terminates, IMS checks this field and
recognizes that the program generated a continuous output message.

If that message goes to an auxiliary device rather than a terminal, the program must
also move a value to the AUX-DEVICE-NO field (ZA#OAUX+1) of the output message
header. This value tells IMS which auxiliary device (1 through 9) receives the
continuous output message. Remember to assign a unique number to each auxiliary
device when you define your communications network.

Table 6-2 summarizes the settings for the AUX-FUNCTION field when your action
program transmits continuous output to a terminal or to an auxiliary device. Note
that you can use these print and transfer options to transmit messages to auxiliary
devices for normal output as well as continuous output.

UP-9207 Rev. 2

Sending Output Messages

Table 6-2. Settings for Auxiliary Function Byte of Output Message Header

Devices Input/Output Options) Contents of AUX-FUNCTION Field
Inhibit |Continuous Output |No Continuous Output
Primary|Auxiliary Name Space Space
Suppression|Suppression|Hex Character Hex Character
X c3 c 00
X Print Mode X F3 3 FO 0
X F5 5 F2 2
Print Transparent X F7 7 F4 4
X F9 9 F6 6
Print Form (ESC H) X c1 A D1 J
X cé F D6 0
Transfer ALl X c2 B D2 K
(ESC G)
X c7 G D7 P
Transfer Variable X C4 D D4 M
(ESC F)
X c8 H D8 Q
Transfer Changed X c5 E D5 N
(ESC E)
X E8 Y F8 8
Read D9 R
Read Transparent E2 S
Search and Read E3 T
Search and Read E5 v
Transparent
Report Address E6 W
Backward One D3 L E7 X
Block
Search and E9 z E4 U
Position
X Clear ICAM Queue 58 $

UP-9207 Rev. 2 629

Sending Output Messages

6.20.1.

6.20.2.

6.20.3.

6.20.4.

6-30

Directing Continuous Output to a Terminal

To send continuous output to the terminal (primary device), move the character C or a
hexadecimal C3 to the AUX-FUNCTION field (see Table 6-2). The following COBOL
statement will send continuous output to the terminal:

MOVE 'C' TO AUX-FUNCTION.
In a BAL action program this statement does the same thing:

1 10 16

MVI ZA#OAUX, ZA#0CO

Directing Continuous Output to an Auxiliary Device

When transmitting continuous output to a printer, cassette, or diskette auxiliary
device, you must also set the AUX-DEVICE-NO byte. The value you move to the AUX-
DEVICE-NO field indicates the number configured for that auxiliary device. Each
auxiliary device attached to a terminal has a specific number as defined in the
communications network definition.

Print Transparent Mode

The print transparent mode is a commonly used option. In this mode, although the
continuous output message generated goes through the logic of the primary device, its
format is independent of the terminal format on the screen. The device-independent
code (DICE) sequences and field control characters (FCCs) you include to format the
continuous output message apply. The cursor return characters normally inserted by
the terminal are not transmitted. Thus, the length of a line written to the auxiliary
device is independent of the line length of the screen.

When using print transparent mode with a UNISCOPE display terminal, make sure
that the output message generated doesn’t exceed screen capacity. If it does, the
excess lines wrap around and overlay the first few lines originally at the top of the
display. The transmitted result is a message beginning with the excess lines instead of
the original lines. The same consideration applies to other terminals; however, their
larger screen capacity makes wraparound less likely.

Print Mode

In print mode, the continuous output message transmitted to the auxiliary device has
the same format as the screen - that is, cursor return characters apply.

UP-9207 Rev. 2

Sending Output Messages

6.20.5.

When choosing either print or transfer options, you can allow or inhibit space
suppression (see Table 6-2). When you specify allow space suppression, ICAM
suppresses all nonsignificant spaces in the output message. When you specify inhibit
space suppression, ICAM changes all spaces to DC3 characters, making it necessary to
strap the auxiliary device to space when it receives a DC3 character in the output
message text.

For instance, let’s assume you want to transmit continuous output to a cassette using
the transfer all option. You would specify hexadecimal C2 or the character B in the
AUX-FUNCTION field. In AUX-DEVICE-NO, you would put the device number
configured for the auxiliary device to which you are directing continuous output. The
following COBOL coding sets these values:

MOVE 'B' TO AUX-FUNCTION.
MOVE 5 TO AUX-DEVICE-NO.

To do the same thing in a BAL action program, use the following statements:

1 10 16

MVI ZA#OAUX,ZA#OCSTA
MVI ZA#OAUX+1, ZA#OD1D5

Other Print Options

In addition to print and print transparent options, you can direct the following print
options with or without the inhibit space suppression option to the UTS 400 terminal
printers, cassettes, or diskettes.

Note: Unless the inhibit space suppression option is specified with each of these
print options, nonsignificant spaces are suppressed.

¢ Print form (ESC H) - Sends to the terminal printer, cassette, or diskette all of the
unprotected characters and protected characters from the start-of-entry (SOE or
home position) to the cursor. Spaces are substituted for protected data. Field
control characters (FCCs), are suppressed.

¢ Transfer all (ESC G) - Sends to the terminal printer, cassette, or diskette all
characters from SOE to cursor including FCC sequences.

¢ Transfer variable (ESC F) - Sends to the terminal printer, cassette, or diskette
only the variable (unprotected) characters between the SOE and cursor including
FCC sequences.

* Transfer changed (ESC E) - Sends to the terminal printer, cassette, or diskette
only the changed characters (or altered fields) between the SOE and the cursor
including FCC sequences.

UP-9207 Rev. 2 631

Sending Output Messages

6.21. Writing a Continuous Output Program

Normally when an action program generates multiple output messages in one
transaction, the terminal operator must acknowledge each message after the first by
pressing the message wait key. However, once you identify an output message to IMS
as continuous output, the message is transmitted to the terminal or auxiliary device
and the successor program is scheduled to continue generating continuous output.
There is no need for operator intervention. This is how very lengthy reports can be
printed at an interactive terminal.

You write an action program to generate continuous output as you would any action
program. However, there are some special considerations.

First, if you're transmitting continuous output to the terminal, you must move
hexadecimal C3 or the character C to the AUX-FUNCTION field of the output
message area header. This informs IMS at action program termination that this
program generated a continuous output message. It is not common to direct
continuous output to a terminal exclusively; however, it is common to direct
continuous output to a terminal connected to a hard-copy device such as Teletype
DCT 500.

If you’re transmitting the continuous output message to an auxiliary device attached

to the terminal, you select the value specifying the print or transfer option you want

and move it to the AUX-FUNCTION field. (Refer to Table 6-2 for a summary of these .
options.) In addition, you must move the number configured for the auxiliary device (/
into the AUX-DEVICE-NO field of the output message area header. The following —
COBOL coding generates continuous output to a printer using the print transparent

option with inhibit space suppression:

MOVE 9 TO AUX-FUNCTION.
MOVE 6 TO AUX-DEVICE-NO.

To do the same thing in a BAL program you can use these statements:

1 10 16

MVI ZA#OAUX,ZA#OCIPT
MVI ZA#OAUX+1,ZA#ODID6

*Teletype is a registered trademark of Teletype Corporation.

6-32 UP-9207 Rev. 2

Sending Output Messages

An action program can generate only one continuous output message. This message
can be as large as the screen capacity of the terminal receiving the message. Of course,
screen capacity varies depending on the type of terminal or workstation you're using.
Whether the message is destined for the terminal or for an auxiliary device, it always
passes through the terminal screen. If the message is larger than the screen, it wraps
around and when it is transmitted to the auxiliary device, the beginning of the
message is lost.

The term “continuous output” suggests lengthy output messages. If an action program
can produce only one continuous output message and the largest message can be only
the size of a screen, how do you generate long messages?

The answer is that the first program generates its continuous output message and
names a successor program to continue generating the continuous output. In turn,
each program names a successor, either itself or another action program until the last
screenful of output is processed.

Remember, each action program can generate only one continuous output message.
However, it can reschedule itself or another program as successor to continue this
process for as long as the application requires.

To continue generating continuous output, an action program must:

¢ Terminate in external succession by moving an E to the TERMINATION-
INDICATOR field in the program information block

¢ Move its name or another action program’s name to the SUCCESSOR-ID field of
the program information block when the program terminates

® Pass to the successor program (via the continuity data area) any data required to
prepare the next of the continuous series of output messages

This is the same procedure any action program follows for naming a successor.

The reason for specifying external succession (E) rather than other termination
indicators is that when continuous output takes place, IMS generates a 5-character
message that it sends as input to the successor program. This program must be
prepared to accept that input. External succession means that the successor action
program is ready to accept an input message. If you use any other IMS termination
indicator, IMS abnormally terminates the transaction and does not transmit the
generated message.

UP-9207 Rev. 2 6-33

Sending Output Messages

A final point to remember when generating continuous output is that this message
must be the final message the action program creates. This means that a continuous
output message must always be transmitted via the RETURN function when the
action program terminates. You can’t use the SEND function to transmit a continuous
output message.

This does not mean, however, that an action program generating continuous output
may never use the SEND function. The program can generate as many output
messages as it chooses before creating the continuous output message; however, you
must transmit all previous messages using the SEND function.

6-34 UP-9207 Rev. 2

Ve

Sending Output Messages

6.22. The IMS Delivery Code

Whenever an action program generates a continuous output message, its successor
program receives a 5-character input message from IMS. The first four characters
contain the value placed in the CONTINUOUS-OUTPUT-CODE field of the output
message area header by the previous program. If the program didn’t move a value to
this field, it contains binary zeros.

The fifth character of the input message is a delivery code. The delivery code indicates
whether ICAM successfully delivered the continuous output message to its
destination.

The following COBOL coding moves a value to the CONTINUOUS-OUTPUT-CODE
field:

MOVE 3 TO AUX-FUNCTION.
MOVE 3 TO AUX-DEVICE-NO.
MOVE APG1 TO CONTINUOUS-OUTPUT-CODE.

IMS returns this value plus the delivery code to the successor action program in the
first five bytes of its input message text.

ACTION PROGRAM

OUTPUT ‘
MESSAGE | CONTINUOUS
HEADER | OUTPUT MESSAGE |

DESTINATION MESSAGE
TERMINAL RECEIVED?

CONTINUOUS
OUTPUT
CODE

2>0 -

SUCCESSOR

ACTION PROGRAM SUCCESSFUL

DELIVERY
INPUT MESSAGE CODE

Here the value your action program moves to the CONTINUOUS-OUTPUT-CODE
field in its output message area is APG1. When the action program terminates, it
transmits the continuous output message. When the destination terminal receives and
acknowledges it, IMS schedules the successor action program and sends the value
APG1 plus the delivery code acknowledgment from ICAM as input to the successor
program. The value APG1 comes into the successor program in the first four bytes of
the input message text. The delivery code comes into the program in the fifth byte.

The other two output fields in the previous coding (AUX-FUNCTION and AUX-
DEVICE-NO, respectively) indicate that the continuous output message generated by
this action program goes to an auxiliary device attached to the terminal. IMS sends
the message using print mode with space suppression. The configured number for the
auxiliary device is 3.

UP-9207 Rev. 2 6-35

Sending Output Messages

The fifth character of the input message is one of particular interest to the successor
action program because it contains a value indicating the status of the continuous
output message sent by the predecessor program. IMS returns a hexadecimal value to
the successor action program to indicate whether the continuous output message was
successfully delivered. Tables 6-3 and 6-4 summarize the output delivery notice status
codes that can be returned to an action program.

Table 6-3. Output Delivery Notice Status Codes Returned by IMS

Condition

Primary Devices Addressed

Polled

Nonpol Lled

UNISCOPE,
UTS Devices, and
Workstations

DCT 1000

DCT 500 TTY

Corresponding
Labels in
1cs psecT (D)

Hexadecimal
Value

Successful output
completion

Yes

Yes

Yes, Yes,

regardless|regardless

of of
delivery

delivery

TM#TDNEM

81 @

Line down or
disconnected.
Message deleted
by IMS.

Yes

Yes

Yes Yes

TM#TDLNO

1

Terminal

marked down.
Message deleted
by IMS.

Yes

Yes

No No

TM#TDDNA

12

Auxiliary
device down.
Message deleted
by IMS.

Output may be
addressed to the
primary device.

Yes

No

No No

TM#TDNAX

40 @

Missing or
invalid
destination or
auxiliary
specification
in header.

Yes

Yes

Yes Yes

TM#TEDST

No ICAM
network buffer
available

Yes

Yes

Yes Yes

TM#TENBA

8 @

Disk error

Yes

Yes

Yes Yes

TM#TEDER

Invalid output
buffer length

Yes

Yes

Yes Yes

TMETEILG

@
)

87

6-36

continued

UP-9207 Rev. 2

Sending Output Messages

Table 6-3. Output Delivery Notice Status Codes Returned by IMS (cont.)
Notes:

A BAL action program should access the labels in the TCS DSECT instead of testing the hexadecimal values in the input
message directly. The hexadecimal values shown in the table can change in future releases, but the DSECT labels will remain
the same.

The hexadecimal value 81, indicating successful output completion, is translated to the character A if the lowercase-to-
uppercase translate option is specified for messages input to the successor action. Similarly, the hexadecimal values 84
through 87, indicating error conditions, are translated to the characters D through G if the translate option is specified.

When a terminal is marked down, input solicitation (polling) by ICAM continues automatically. When ICAM receives input from
a downed terminal, that terminal is marked up and the input is scheduled for IMS.

Refer to Table 64 for UNISCOPE and UTS 400 auxiliary device condition codes that are ORed with TM#TDNAX.

If this condition exists, a user action program can try to resend the last continuous output message.

©e ® ® 6

Table 6-4. UNISCOPE and UTS 400 Auxiliary Device Condition Codes

Hexadecimal Hexadecimal UNISCOPE
Value Value When | or UTS 400
Auxiliary Device Label (:) Equated ORed with Auxiliary
Condition to Label TMHTDNAX (@) Status
. Ready (good) status TM#TDDS1 01 41 1
) but COP/TP write
S function inoperative
Device out of paper, TM#TDDS2 02 42 2
inoperative, or in
test mode
Data error on TCS TM#TDDS3 03 43 3
Device is not TM#TDDS4 04 44 4
responding; it
may be disconnected
or a read of unwritten
tape may have
occurred.
Notes:

@ Your action program should access the labels in the DSECT instead of testing the value directly
because the equate (EQU) value for each label in the DSECT can vary in future releases. The
labels will always remain the same.

@ The label TM#TDNAX represents the auxiliary-device-down condition. (Refer to Table 6-3.)

7N

UP-9207 Rev. 2 6-37

Sending Output Messages

6.23. Recovery Considerations with Continuous Output

6-38

Recovery and restart processing are the responsibility of your action program. When
the successor action program receives an unsuccessful delivery notice, it can continue
processing continuous output or terminate the transaction. When the successor
program continues processing, it can send a regular output message to the destination
terminal requesting assistance and then terminate with external succession. Note that
when a continuous output message is unsuccessfully sent to an auxiliary device, only
that device is marked down. You can still send output to the primary device.

After the error condition is corrected, the terminal operator can send an input
message to the successor program to reinitiate the continuous output transaction. In
this case, the successor program must be prepared to accept input from the
destination terminal when necessary, as well as the delivery notice returned by IMS.

Both operator-entered input and delivery notice input can cause attempts to schedule
your action program. If operator input exists, IMS processes it and discards the
delivery notice. You should, therefore, code your action program to handle keyboard
input that can end, temporarily break, and resume a continuous output transaction.
The best way to interrupt continuous output is to use function keys as keyboard input.
Function keys are faster to use because they are never locked.

When a delivery attempt is unsuccessful, there are a number of recovery options. In
planning recovery and handling unsuccessful delivery notices, however, it’s important
to realize the difference between polled and unpolled devices.

The DCT 1000, UNISCOPE 100 and 200, UTS 10, 20, 40, and 400 terminals, and
workstations are polled devices and transmit an acknowledgment to ICAM after
receiving a continuous output message. The nonpolled devices, Teletype and DCT 500
terminals, do not. For nonpolled devices, a delivery notice is automatically generated;
it always indicates successful delivery regardless of whether or not the output
message was successfully delivered. Only a line-down condition returns an
unsuccessful delivery notice.

Consequently, IMS almost always receives a successful completion status from ICAM
when a message is delivered to a nonpolled device. IMS sends this delivery code to the
successor action program which, in turn, generates more continuous output. As you
can see, this is a situation to be avoided. So, in critical parts of continuous output
applications, avoid using nonpolled devices.

You can use delivery codes to recover continuous output messages when output
message errors are detected at queueing time as well as at delivery time. Errors with
hexadecimal values 84 through 87 (Table 6-3) are discovered at output queueing time.
All others are detected at the time output is delivered to the terminal.

UP-9207 Rev. 2

o

Sending Output Messages

Reasons for output message errors are:

* A missing or invalid destination in the output message header
¢ An invalid output buffer length in the output message header
* No ICAM network buffer available

* A disk error occurred

If the no-ICAM-network-buffer-available status exists, your action program can try to
resend the last continuous output message.

6.23.1. Testing the Delivery Code in a COBOL Action Program

When IMS returns the delivery code in the fifth byte of your action program’s input
message text, your program must test this byte to see if the continuous output
message was delivered successfully. IMS places a hexadecimal 81 or the letter A into
this fifth byte when a successful completion occurs. It returns the letter A
(hexadecimal C1) when you configure the lowercase-to-uppercase translate option for
messages input to a successor action. Otherwise, it returns the hexadecimal value 81.
Tables 6-3 and 6-4 list the hexadecimal values for delivery codes returned by IMS.

To test for a successful delivery code, you can set up a 77-level item in working storage
to contain the hexadecimal value 81 or the value A (depending on the translate option
configured) and compare the value with the value IMS returns in the fifth byte of the
input message text. You can also compare the first 5 bytes of input message text with
a 5-byte literal containing the value A or 81 (for example, =* A’ or =* 81°). Figure 6-12
shows the specific statements needed to test for a successful output delivery code of A.
For a complete continuous output program example in COBOL, see the PRINT
program in Appendix B.

After the PRINT action program determines from a terminal input value that it will
process a continuous output message, it processes this message by succeeding to itself
(external succession) and testing for a successful delivery code of A in the fifth byte of
the input message text after each screenful of output message. If the delivery code is
successful, PRINT terminates in external succession. If it is unsuccessful, PRINT
handles the error status code and terminates normally. When continuous output is
completed, PRINT terminates normally.

UP-9207 Rev. 2 6-39

Sending Output Messages

DATA DIVISION.
WORKING-STORAGE SECTION.

LINKAGE SECTION.
01 PIB. COPY-PIB74.
01 IMA. COPY IMA74.

02 TRANS-IN.

04 CODE PIC X(5).

04 DEL-NOTICE-MSG REDEFINES CODE.
08 EL -NOTICE - CODE PIC X(4).
28

04 FILLER PIC X.

04 TST-NUM PIC X.

04 INPUT-TEXT PIC X(100).

04 FILLER PIC X(1813).

01 OMA. COPY OMA74.
02 PRNT-LINE.

04 DI-1 PIC 9(4) COMP.

04 DI-2 PIC 9(4) COMP.

04 OUTPUT-TEXT PIC X(1916).
PROCEDURE DIVISION USING PIB IMA D OMA.
START - HERE.

IF CODE EQUAL 'PRTPO' GO TO START-IT.

IF CODE EQUAL 'CCCC' GO TO CONT-CONTINUE.
IF CODE EQUAL 'STOP' GO TO TERMINATION-EXIT.
START-IT.

CONT-PRINT.

TEST-RETURN.

CONT-CONTINUE.
MOVE 'E' TO TERMINATION-INDICATOR.
MOVE 'BUS0@20' TO SUCCESSOR-ID.
GO TO ALL-EXITS.
TERMINATION-EXIT.
MOVE 'N' TO TERMINATION-INDICATOR.

ALL-EXITS.
CALL 'RETURN'.

IF CODE EQUAL 'PPPP' or EQUAL 'TTTT' GO TO TEST-RETURN.

Figure 6-12. Testing for Successful Delivery Code in a COBOL Action Program

640

UP-9207 Rev. 2

VN

Sending Output Messages

6.23.2. Testing the Delivery Code in a BAL Action Program

BAL action programs processing continuous output should access the ICAM labels in
the transaction control section (TCS) DSECT, TM#TCS. Tables 6-3 and 6-4 list these
labels that correspond with the hexadecimal values equated to the delivery notice
status codes.

BAL action programs should generate the TCS DSECT inline and access the labels
instead of testing the hexadecimal value directly in the input message. The reason for
this is that these hexadecimal values are equated (EQU) for each DSECT label and
can change in future releases; however, the ICAM DSECT labels always remain the
same. If you access the labels, you only have to reassemble your BAL action program
with each new release to be sure your DSECT is current; otherwise, you must change
your code and reassemble.

To generate the TCS DSECT inline when your BAL program is assembled, call the
ICAM procedure, TM#DSECT, using the operand TCS. Figure 6-13 shows the
TM#DSECT procedure and a portion of the ICAM TCS DSECT showing output
delivery notice status codes and their labels. Also shown are the specific BAL
statements that test for a successful delivery code in the fifth byte of the input
message area. Note that the contents listed with each label in the DSECT indicate
that the message is being held by ICAM; however, IMS deletes these messages from
the queue.

Note also that if you configure TRANSLAT=YES for the action, you cannot use ICAM
DSECTSs to evaluate delivery status codes because the codes are changed by the
translate routine.

UP-9207 Rev. 2 641

Sending Output Messages

642

PORTION OF
ICAM DSECT
SHOWING
OUTPUT
DELIVERY
STATUS
CODES

TM#TDDNA EQU X'12! TERMINAL MARKED DOWN, MESSAGE HELD
TMH#TDNAX EQU X'40! AUXILIARY DEVICE DOWN, MESSAGE HELD
* OUTPUT CAN STILL BE SENT TO PRIMARY

TM#TDDS1 EQU X'@1! UNISCOPE AUXILIARY STATUS ONE

* MESSAGE HELD, GOOD STATUS BUT READ/MWRITE
* FUNCTION INOPERATIVE

TM#TDDS2 EQU X'@2' UNISCOPE AUX STATUS TWO

* MESSAGE HELD, PRINTER OUT OF PAPER,

* INOPERATIVE OR IN TEST MODE

TM#TDDS3 EQU X'03! UNISCOPE AUX STATUS THREE

* MESSAGE HELD, TAPE CASSETTE END-OF-TAPE

UNISCOPE AUX STATUS FOUR
MESSAGE HELD, NO RESPONSE FROM DEVICE WHEN
OF TAPE

TM#TDDS4 EQU X'04*
*

* ATTEMPTING TO READ BLOCK

TM#TDLNO EQU X'11!
*

TM#TEDST EQU X'84'

LINE DOWN/DISCONNECTED, MESSAGE HELD

MISSING OR INVALID DESTINATION
TM#TENBA EQU X'85! NO ICAM NETWORK BUFFER AVAILABLE
TM#TEDER EQU X'86! DISK ERROR OCCURRED SERVICING SVC
TM#TEILG EQU X'87! INVALID OUTPUT BUFFER LENGTH

*

* TEST DELIVERY CODE

ZM#IMH

£
TEXT DS CL100

Figure 6-13. Testing for Successful Delivery Code in a BAL Action Program

UP-9207 Rev. 2

Sending Output Messages

6.24.

6.24.1.

Continuous Output and Cassette/Diskette Use

You can read and write, search, or position data on cassette and diskette auxiliary
devices by using the continuous output feature. To do this, you must move a value to
the AUX-FUNCTION and AUX-DEVICE-NO fields of the output message area
header just as you do when generating a continuous output message. Table 6-2
summarizes the settings for the AUX-FUNCTION field when reading from or writing
data to cassettes or diskettes.

~ Notice in Table 6-2 that all the options beginning with the read option, except

backward-one-block and search-and-position, must be used with the IMS continuous
output feature. Backward-one-block and search-and-position can be used with
continuous output and regular output by simply moving the appropriate value to the
AUX-FUNCTION and AUX-DEVICE-NO fields.

Input Options

There are four input options used with cassette/diskette: read, read-transparent,
search-and-read, and search-and-read-transparent. The continuous output feature
must be used with any of these input options.

1. The read option reads a block of data from the cassette/diskette to the terminal
screen. When you specify this option, do not put any message text in the output
message area. Also, you must move the value 4 to the TEXT-LENGTH field of the
output message area header.

2. The read-transparent option reads a block of data from the cassette/diskette
and the remote device handler deletes the SOE cursor sequence, carriage return
codes, and DICE codes.

3. The search-and-read option reads a block of data from the cassette/diskette
only if a search argument specified in the message text of the output message
area is satisfied. When the argument is satisfied, the block of data is moved to the
terminal screen. Your search argument may be in one of three search and read
modes. Table 6-5 shows the formats for these modes. When you use the search-
and-read option, the only contents of the output message area message text
should be the search argument in the mode you choose.

4. The search-and-read-transparent option performs the same function as the
search-and-read option except the remote device handler removes all DICE
sequences, SOE cursor sequences, and carriage return characters from the input
message.

UP-9207 Rev. 2 643

Sending Output Messages

Table 6-5. User Message Text for Searching Cassette/Diskette

Search Argument Format

Search Type

Ataaaa
or
1taaaa
or
ataaaa

Mode search to position the tape to a partucilar
address and then read one block, where A, 1, or
a is constant, and:
t
Is the track address (1 or 2).

aaaa
Is the address where the tape is
to be positioned.

Btaaaa/c...c
or

2taaaa/c...c
or

btaaaa/c...c

Mode search to position the tape to a particular
address, search for a specific character string,
and:
t
Is the track address (1 or 2).

aaaa
Is the block address.

c...c
Is the character string. Up to
16 characters can be specified.

Ct/c...c
or

3t/c...c
or

ct/c...c

Mode search to find the specified character
string, where C, 3, or c is constant, and:
t
Is the track address (1 or 2).

C...C
Is the character string. Up to 16
characters can be specified.

The search starts at the present
tape position.

The report-address option displays the address of the cassette/diskette device on the
terminal screen. To use this option, you must also use the continuous output feature
and must specify the value 4 in the TEXT-LENGTH field of the output message area

header.

UP-9207 Rev. 2

i,
/

Va ™

Sending Output Messages

The two other options available for cassette/diskette are the search-and-position and
backward-one-block options. Only these two input options can be used with either
continuous or regular output messages.

¢ The search-and-position option positions the cassette/diskette to the block
requested in the search argument that your action program supplies in the
output message text. (See Table 6-6 for formats used in describing the search
argument.) Your output message text cannot contain any other entries.

¢ The backward-one-block option repositions the cassette/diskette one block in
reverse. The AUX-DEVICE-NO field must be set and the TEXT-LENGTH field in
the output message area must be 4.

Table 6-6. User Message Text for Search and Positioning

Search Argument Format Search Type
Atssss Mode search to position the tape, where:
or a, 0, or (apostrophe) is constant,
Otssss and:
or t
'tssss Is the track address (1 or 2).

ssss
Is the address where the tape
is to be positioned. If specified
as 0000, the tape is rewound.

In addition to making the required settings in the AUX-FUNCTION and AUX-
DEVICE-NO fields of the output message area header, you can also insert into the 4-
character CONTINUOUS-OUTPUT-CODE field of the output message area header a
code that identifies the continuous output message you generated. This code is
returned to the successor program as part of a 5-character input message. If you do
not specify a code, the first four characters of the input message generated by IMS for
your external successor program contains binary zeros.

The CONTINUOUS-OUTPUT-CODE field assumes special importance when you use
any of the four input options or the report address option for cassettes and diskettes.
When you specify one of these options, IMS returns a delivery code to the successor
program only if the message wasn’t delivered. Otherwise, there is no input to the
successor program until a message is transmitted from the cassette/diskette via the
terminal screen. For any terminals performing these input options, unless the
terminal operator always presses the transmit key, no input is transmitted to the
successor program until the AUTO-TRANSMIT feature is set on to allow data to be
transmitted from the cassette/diskette.

UP-9207 Rev. 2 ’ 645

Sending Output Messages

When using a screen bypass terminal, set the control page for that terminal to take

advantage of the autotransmit capability. If this is not done for any of these five input
options and a successful delivery notice is returned by the cassette/diskette device, the
screen bypass terminal stays in the interactive mode waiting for input it won’t receive.

Because a successor action program may receive as input either a delivery notice error
or an input message from the cassette or diskette, the CONTINUOUS-OUTPUT-
CODE specified by the predecessor action program should be distinguishable from the
first four characters of any input message being read from the cassette or diskette. In
this way, the successor program determines what type of input message it receives
(that is, delivery notice error or input message text) and processes it accordingly. In
either case, the successor action program must be capable of handling both
unsuccessful delivery notices and standard input messages.

6.25. Initiating a Transaction at Another Terminal

646

Another special capability of an output message generated by an action program is to
initiate a transaction at another terminal. We call this output-for-input queueing. It
means that when an action program issues a CALL SEND, the output message
generated by that program is queued as input to IMS for the destination terminal in
the form of a transaction code that initiates a transaction there.

ACTION
PROGRAM
(PROG A)

INPUT MESSAGE
QUEUE

’ TRANT - ACTION
TRAN2 PROGRAM

TRAN3 (TRAN1)
| TRANZ ; -
TRANS

To use the output-for-input queueing option, specify the CONTOUT=YES parameter
in the OPTIONS section of the IMS configuration.

UP-9207 Rev. 2

Sending Output Messages

C 6.26. Coding for Output-for-Input Queueing

You must transmit any output message that initiates a transaction at another
terminal using a SEND function. To do this, your action program moves the
hexadecimal value C9 or the character I to the AUX-FUNCTION field of the output
message area header. This value tells IMS to queue the generated output message as
input to IMS from another terminal. You identify the receiving terminal by moving its
configured value to the DESTINATION-TERMINAL-ID field. Figure 6-14 shows the
coding required to accomplish these functions.

LINKAGE SECTION.
01 PROGRAM- INFORMATION-BLOCK COPY PIB74.

01 INPUT -MESSAGE - AREA COPY IMA.
01 TEXT PIC X(100).
01 OUTPUT -MESSAGE - AREA COPY OMA.

02 SFS-OPTIONS

03 SFS-TYPE PIC X.
03 SFS-LOCATION PIC X.
02 FILLER PIC X(4).
— 02 CONTINUOUS-OUTPUT-CODE PIC X(4).
(:; 02 TEXT-LENGTH PIC 9(4) COMP-4.
02 AUXILIARY-DEVICE-ID.
(Rl T10 -
03 AUX-DEVICE-NO PIC X.
02 OUTPUT-TEXT PIC X(100).
PROCEDURE DIVISION USING PROGRAM- INFORMATION-BLOCK

INPUT-MESSAGE-AREA D
OUTPUT -MESSAGE -AREA.

GO-CONT-0UTPUT.

MOVE TEXT TO OUTPUT-TEXT.

N

Figure 6-14. Initiating a Transaction at Another Terminal

UP-9207 Rev. 2 647

Sending Output Messages

The only other requirement is that the output message must contain the transaction
code that initiates the new transaction at the destination terminal. This code, and any
other output generated along with it, is queued immediately as input to IMS for the
destination terminal.

If, after issuing the SEND function using output-for-input queuing, the action
program terminates abnormally, then the new transaction is still initiated at the
destination terminal.

If the destination terminal is in interactive mode when the SEND function is executed
(that is, an IMS transaction is already in progress) or if it already has an outstanding
input message queued for it, the output message sent using output-for-input queueing
cannot cause scheduling of a new transaction. In this case, the action program issuing
the SEND function receives an unsuccessful status code in the program information
block. (See 6.29.)

When an action program generates an output message and requests that it be queued
as input to another terminal, IMS validates the output message area header and the
status of the destination terminal. Any errors are indicated to the originating action
program by values returned to the STATUS-CODE and DETAILED-STATUS-CODE
fields in the program information block. For example, when you issue a SEND
function for output-for-input queueing and switched output message from the same
action program, IMS returns a status code of 6,, and a detailed-status-code of 246
indicating that it does not permit these two operations in the same action program.

Any errors in the text of the output message (such as invalid transaction code) are not
reported to the originating action program but rather to the action program processing
the new transaction at the destination terminal. As a result, this program must be
prepared to handle such error conditions, and, if necessary, to report these conditions
to the originating terminal.

For a complete listing of error codes that IMS returns to the STATUS-CODE and
DETAILED-STATUS-CODE fields of your action program following the SEND
function, see Table 6-1.

Generally, a program that generates output using the output-for-input queueing

option terminates with normal termination; however, it can specify external
succession. It cannot terminate with delayed internal succession.

648 UP-9207 Rev. 2

Sending Output Messages

6.27. Output-for-Input Queueing with Continuous Output

It is fairly common to use the output-for-input queueing and continuous output
features together. For instance, one transaction could create the records you want
printed and write them to a MIRAM file. The last stage of this transaction could then
generate an output message using output-for-input queueing for a destination
terminal where another transaction actually prints the records. The transaction
initiated at the destination terminal reads the MIRAM file and prints the message as
continuous output. See Figures B-24 and B-25 for sample COBOL action programs
performing output-for-input queueing and continuous output.

. . ACTION
INPUT MESSAGE)| PROGRAM
— (PROGA)

INPUT MESSAGE
QUEUE

PRINT ACTION
TRAN2 PROGRAM
TRAN3 (PRINT
TRANZ -
| TRANS

OUTPUT
PRINTER

REPORT

UP-9207 Rev. 2 649

Sending Output Messages

6.28. Output-for-Input Queueing with a Screen

650

Bypass Device

Another situation where you can use output-for-input queueing is with the UTS 400
screen bypass device. This device is defined to the communications network as a
logical terminal. Nevertheless, because it is physically a separate buffer that can have
a telecommunications printer attached to it, it has no way of sending input. Thus, the
only way to access a screen bypass device is to use output-for-input queueing. Another
terminal in the IMS network calls an action program to generate an output message
that initiates a transaction at the screen bypass device. This must be a continuous
output transaction and a report could be generated as output on a printer attached to
the screen bypass device.

PROGRAM
(PROGA)

INPUT MESSAGE
QUEUE

TRAN1 ; - ACTION
TRAN2 PROGRAM
TRANZ ; ; (TRAN1)
TRANZ .

[TRANS

OUTPUT ; : - SCREEN

PRINTER BYPASS
REPORT 2 - DEVICE

UP-9207 Rev. 2

)

C

Sending Output Messages

6.29. Sending Messages to the System Console

Your action program can send output messages to the system console if console
support is configured. You configure console support by specifying OPCOM=YES in
the OPTIONS section of the IMS configuration or by not specifying a master terminal
in any TERMINAL section.

To send output to the system console, place the terminal-id 1CNS in the
DESTINATION-TERMINAL-ID field of the output message header:

MOVE '1CNS' TO DESTINATION-TERMINAL-ID.

Sometimes an IMS session has a master workstation associated with it. A master
workstation is a workstation from which the IMS start-up job control stream is
entered, or it may be defined in the job control stream. When there is a master
workstation and you use the destination-terminal-id 1CNS, your output message goes
to the master workstation instead of to the console. When the master workstation logs
off or is disabled, then the message goes to the console.

You can send normal output, multiple output, switched output, continuous output, and
output-for-input queueing messages to the system console. However, there are certain
restrictions on output to the console:

* You cannot send output to an auxiliary device at the system console. The only
auxiliary function settings you can use are hexadecimal 00, C3 (continuous
output), or C9 (output-for-input queueing).

¢ The maximum length of the output message is 120 characters, not including the
output message header. Additional characters are truncated.

* Because of the message length restriction, you cannot output a screen format to
the console.

® Qutput messages are not edited. DICE functions, FCCs, and other control
characters appear as blanks, or in a few cases as printable characters.

e There is no message waiting signal. Switched output and multiple output
messages are sent immediately.

UP-9207 Rev. 2 651

Sending Output Messages

6.29.1. Error Returns on Output to the Console

652

IMS returns a status code of 6 and a detailed status code of 4 when you attempt to
send output to an auxiliary device at the system console. These are the same codes
IMS returns when you have an invalid destination terminal, auxiliary device, or
auxiliary function specification on output messages to regular terminals.

When your output message can’t be delivered because the console is physically or
logically down, the action IMS takes depends on the type of output message it
receives:

® With a switched message, IMS returns a status code of 6 and a detailed status
code of 6. With a continuous output message, IMS returns a delivery notice status
of X‘'86’. These codes indicate recoverable system errors.

® With other types of output messages (such as normal output in response to input
from the console), IMS returns a successful status code of 0. The reason IMS does
this is that an error status would cause a “TRANSACTION CANCELLED”
message to be sent to the console, and this could cause an abnormal termination
of the IMS session.

UP-9207 Rev. 2

O

~~

Section 7
Using Screen Format Services to Format

Messages

7.1. Requirements for Using Screen Format Services

The OS/3 screen format services facility lets you display predefined formatted screens
at terminals without tedious programming of DICE codes and other control
characters. In addition, screen format services does validation checking of input data.
As you know, screen formats simplify the task of data entry and are an essential tool
in a transaction processing environment.

To display screen formats, issue the BUILD and REBUILD function calls in your
action program. The BUILD function places the predefined screen format you request
in the action program or in a dynamic main storage area; the REBUILD function
replenishes input fields or builds an error formatted screen.

You can direct screen formats to any display terminal supported by IMS except the
IBM 3270, and also to auxiliary devices attached to display terminals. You cannot
output screen formats to hard-copy terminals.

UNISCOPE 100 and UNISCOPE 200 terminals must have the screen protection
feature, and UTS 400 terminals operating in native mode must have the
PROTECT/FCC switch set to FCC and the control page set to XMIT VAR. For
local workstations, specify a line buffer length of at least 900 words on the LBL
operand in the ICAM network definition.

You predefine screen formats offline using the screen format generator. (See the
Screen Format Services Technical Overview, UP-9977.) The screen format generator
stores the formats in the system screen format file §Y$FMT or other disk files in
MIRAM format. The screen formats for an IMS session may reside in one or two
screen format files.

To use screen format services, you must generate a supervisor in consolidated data

management (CDM) or mixed mode. However, you can configure IMS in either CDM
or DTF mode.

UP-9207 Rev. 2 7-1

Using Screen Format Services to Format Messages

7-2

To make screen format services available to action programs, include the SFS
parameter in the OPTIONS section at IMS configuration, specifying the maximum
number of terminals that may use screen formats at one time. With the RESFMT
parameter, also in the OPTIONS section, specify the number of screen formats you
want retained in main storage between function calls.

In the job control stream at IMS start-up, include a device assignment set for each
screen format file, using the LFD name TCO1FMTF for the primary file and
TCO2FMTF for the secondary file, if there is one.

The IMS System Support Functions Programming Guide, UP-11907, describes the

configuration and start-up requirements.

Figure 7-1 illustrates the steps you require to create and use screen formats with IMS.

CREATE SCREENS
USING 0S/3
SCREEN FORMAT
GENERATOR

WRITE ACTION
PROGRAMS USING
BUILD AND REBUILD
FUNCTION CALLS

CONFIGURE IMS
WITH SFS=n AND
RESFMT=n IN
OPTIONS SECTION

START UP IMS
WITH DEVICE
ASSIGNMENTS FOR
SCREEN FORMAT
FILES

SCREEN SCREEN
FORMAT FORMAT
FILE 1 FILE 2

PROCESS
TRANSACTIONS

Figure 7-1. Creating and Using Screen Formats

UP-9207 Rev. 2

Using Screen Format Services to Format Messages

7.2. How Screen-Formatted Messages Are Processed

Your action program requests a screen format by issuing a BUILD function call. IMS
retrieves the screen format from the screen format file. (When you assign two screen
format files, IMS checks TCOLFMTF first, then TCO2FMTF.) IMS places the screen
format in an output buffer area in your program or in dynamic main storage.

The screen format placed in the buffer area contains the output display constants
defined at screen format generation. These constants are always protected; the
terminal operator cannot change them.

IMS inserts into the screen buffer any variable data you supply in the action program.
Figure 7-2 shows a screen format containing display constants and variable data.
Underlines represent input fields.

PERSONAL CREDIT REPORT
NAME: JOHN DOE

ADDR: 1552 MAIN ST. STATE:PA ZIP: 19140
ACCOUNT NO:193-A564

BALANCE :350. 00

PAYMENT : DATE:_/_/__

Figure 7-2. Screen Format with Display Constants, Variable Data, and Input Fields

Variable fields defined at screen format generation as input or input/output are
unprotected. The terminal operator can enter data in input fields and can make
changes to input/output fields. Fields defined as output-only are protected. In
Figure 7-3, the terminal operator has changed the address field and entered a
payment amount and date.

PERSONAL CREDIT REPORT

NAME : JOHN DOE

ADDR:224 PINE ST. STATE:PA Z1P:19102
ACCOUNT NO:193-A564

BALANCE:350.00

PAYMENT:25.00 DATE 12/23/80

Figure 7-3. Screen Format with Input Entries and Changed Address Field

Like any other output message, screen formats are not actually sent to the terminal
until a RETURN function call ends the action. You can also output a screen format by
issuing a SEND function call. The CALL SEND lets you send a formatted message to
a different terminal or multiple formatted messages to the originating terminal.

UP-9207 Rev. 2 7-3

Using Screen Format Services to Format Messages

74

ACTION
PROGRAM

When you use the SEND function or continuous output to transmit a screen format,
the format must be output-only because the terminal operator does not have an
opportunity to enter input. Also, when your action program ends in delayed internal
succession, you can use only an output format. Instead of going out to the terminal,
the screen format is queued as input to the successor action program.

You can transmit an input/output screen format by terminating the action program
with external succession or normal termination. The terminal operator enters input on
the format, and IMS schedules a successor action program or a new transaction based
on this input.

For normal termination, the first input or input/output field in the format must ()
contain a transaction code. IMS verifies the transaction code and if it is invalid, /
resends the screen format and causes the transaction code to blink. The terminal

operator can reenter the input message.

IMS also checks the input for terminal commands. If the input contains a terminal
command other than ZZRSD, IMS processes the command and cancels the screen
format.

Normally, ZZRSD causes the last output message to be sent again, thus retaining the
current screen format. However, if the screen format is built in dynamic main storage
instead of in the output message area, it can’t be sent again and the screen format is
canceled. The terminal operator receives a “NO MSG IN QUEUE” message and can’t
enter input on the formatted screen.

When the input does not contain a terminal command or invalid transaction code, the
screen format coordinator validates the data before IMS passes it to the successor
action program. IMS does no additional input editing regardless of the type of editing
configured for the action.

If the input contains errors, the screen format coordinator blinks the invalid fields.
The terminal operator can correct the input until the retry count specified at screen
format generation time is reached. Once the retry count is exhausted, the successor
action program receives control.

VN

UP-9207 Rev. 2

Using Screen Format Services to Format Messages

Your action program can validate input data on a more detailed level than the screen
format coordinator. When an action program determines that input data is invalid,
you can issue the REBUILD function call to construct an error screen format. IMS
replaces fields in which you place hexadecimal Fs with blink characters. Then, when
your program issues a RETURN function call, the error fields blink on the screen
format at the terminal and all other fields remain unchanged.

You can also use the REBUILD function call to replenish input and input/output fields
instead of constructing a new screen format for each input record. After the terminal
operator transmits an input screen, the input data is replaced by underlines (or other
replenish values defined at screen format creation).

You can make temporary changes to a screen format by defining option indicators at
screen format generation time and setting the indicators on before issuing a BUILD
function call. Option indicators let you protect fields that are normally unprotected,
highlight fields, blink error fields, and replenish input fields. For example, you can
build an error screen or replenish screen by using option indicators and issuing a
BUILD instead of a REBUILD function call. You cannot use the REBUILD function
with a screen format that has option indicators defined.

UP-9207 Rev. 2 75

Using Screen Format Services to Format Messages

7.3. Displaying a Screen Format

7-6

Do the following in your action program to display a screen format . . .

1.

Define an output buffer (usually the output message area). This area must be
full-word aligned and begin with a 16-byte output message header. When you use
the dynamic main storage option, you still need the output message header.

Move the destination terminal-id into the first 4 bytes of the output message
header. This step is optional when you want to display the screen format at the
source terminal.

When you want the screen format built in the output buffer, move the output
buffer length into the TEXT-LENGTH field of the output message header. (See
the formula described on the OUTSIZE parameter in the configurator ACTION
section in the IMS System Support Functions Programming Guide, UP-11907.)
On return from a successful BUILD function, IMS places the actual length
required for the format in this field.

When you want the screen format built in dynamic main storage, move C‘'D’ to
SFS-LOCATION (COBOL) or set ZA#SFDYN in ZA#SFLOC (BAL).

Define an 8-byte field containing the name of the screen format. This area must
be left-justified and space-filled.

When your screen format uses output option indicators or variable data, define a
variable data area and a 2-byte field containing the length of the variable data
area. Define option indicator bytes, if any, as the first entries in the variable data
area. To set option indicators on, move C‘1’ to the option indicator byte locations
before issuing the BUILD function call.

When you want the screen format coordinator to validate output data, define an
output status area large enough to contain one status byte for each variable field.

Issue the BUILD function call.

If you defined an input or input/output screen at screen format generation time
and want to use the screen for output-only, move the value X‘0’ to the SFS-
OPTIONS field (COBOL) or ZA#0OSFSO field (BAL) of the output message
header. Termination of this action with normal succession frees the input
capabilities of an input-only or bidirectional screen and redefines it for output-
only.

10. Issue the RETURN or SEND function call.

UP-9207 Rev. 2

Using Screen Format Services to Format Messages

Once an action program issues the BUILD function, do not change the contents of the
buffer area. Modifying the area can cause unpredictable results in both the output
screen and any input entered on the format.

If you want to send a message from the output message area after building a screen
format in dynamic main storage, clear the SFS-LOCATION field to zeros in a COBOL
program or move X00’ to the ZA#SFLOC field in a BAL program. This might be
necessary, for example, when you output a screen format using the SEND function
and then want to output a unformatted message with the CALL RETURN.

UP9207 Rev. 2 17

Using Screen Format Services to Format Messages

7.4. Building a Screen Buffer (BUILD)

78

The BUILD function call constructs a screen buffer in the output buffer or in dynamic
main storage. The screen buffer contains the display constants defined at screen
format generation time and any variable data defined in the program.

The COBOL and BAL formats for the BUILD function call are:

¢ COBOL format

CALL 'BUILD' USING output-buffer format-name
[variable-data data-size [output-statusl].

¢ BAL format

CALL BUILD, (output-buffer,format-namel[,variable-data,
ZG#CALL data-size [,output-statusll)

where:

output-buffer
Identifies the output area where the screen format is built. This area is full-

word aligned and begins with a 16-byte output message header. When you
use the dynamic main storage option, this area contains only the output
message header.

format-name
Identifies an 8-byte field containing the name of the desired screen format.

variable-data
Identifies an area containing output option indicator bytes (if any) followed
by a string of variable data (if any). Omit this parameter when your screen
format does not use either option indicators or variable data.

data-size
Identifies a 2-byte field containing the length of the variable data area which
should be at least as large as the screen size. This parameter is required
when you specify a variable data area.

output-status
Identifies an area where the screen format coordinator places status errors

found in the output validation of variable data. If omitted, no output
validation is performed.

UP-9207 Rev. 2

Using Screen Format Services to Format Messages

(,, 7.5. Example Coding to Display a Screen Format

Figure 7-4 shows excerpts from a COBOL action program that builds a screen format
in the output message area. The program provides two variable data fields (date and
time) and a status area for output validation. The complete action program,
JAMENTU, is illustrated in Appendix B. Figure 7-5 shows the equivalent coding in a
BAL action program.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 SCREEN-FORMAT-IDS.
05 SF-MENU PIC X(8) VALUE 'JASMENU '.

LINKAGE SECTION.

01 WORK-AREA.
05 IMS-PARAMETER-LIST.

10 IMS-SCREEN-ID PIC X(8).
10 SCREEN-SIZE PIC 9¢4) COMP SYNC.
@5 SCREEN-RECORD.
10 SR-DATE PIC 9(6).
10 SR-TIME PIC 9(¢6).
05 REFORMAT-DATE.
- 10 P-MONTH PIC 99.
<:ir i 10 P-DATE PIC 99.
// 10 P-YEAR PIC 99.
05 SG-STAT PIC X(5).

01 OUTPUT-MESSAGE-AREA. COPY OMA.

05 OMA-TEXT PIC X(3000).
PROCEDURE DIVISION USING PROGRAM- INFORMATION-BLOCK
INPUT -MESSAGE - AREA
WORK -AREA

OUTPUT -MESSAGE - AREA
CONTINUITY-DATA-AREA.

Figure 7-4. Building a Screen Format in a COBOL Action Program (Part 1 of 2)

UP-9207 Rev. 2 7-9

Using Screen Format Services to Format Messages

7-10

200-BUILD-SCREEN.
MOVE SOURCE-TERMINAL-ID TO DESTINATION-TERM-ID.

MOVE SF-MENU TO IMS-SCREEN-1ID.
MOVE ALL 'O' TO SCREEN-RECORD.
MOVE REFORMAT -DATE TO SR-DATE.

MOVE TIME-OF-DAY TO SR-TIME.

MOVE 12 TO SCREEN-SIZE.

PERFORM 505-BUILD.

505-BUILD.

CALL 'BUILD! USING OUTPUT-MESSAGE-AREA
IMS-SCREEN-ID
SCREEN-RECORD
SCREEN-SIZE
SG-STAT.

IF STATUS-CODE IS GREATER THAN 0

MOVE '3' TO ERR-FLAG.

507-RETURN.
CALL 'RETURN'.

Figure 7-4. Building a Screen Format in a COBOL Action Program (Part 2 of 2)

UP-9207 Rev. 2

Using Screen Format Services to Format Messages

1 10 16 72

PROG1 START 0
* ALLOCATE REGISTERS TO COVER ACTIVATION RECORD
USING *,R2
USING ZA#DPIB,R3
USING ZA#IMH,R4
USING WORK,R5
USING ZA#OMH,R6
USING CONT-DTA,R7
* INITIALIZE REGISTERS

* BUILD SCREEN

MVC ZA#ODTID,ZA#ISTID MOVE SOURCE-TERMINAL-ID TO
* DESTINATION-TERMINAL-ID
MVC SCRNID,SFMENU MOVE SCREEN NAME TO SCREEN-ID
MVC SCRNREC(12),ZEROS CLEAR DATE/TIME FIELD
MVC SRDATE(2),ZA#DTE+2 MOVE PIB DATE TO SCREEN RECORD

MVC SRDATE+2(2) ,ZA#DTE+4 AFTER REFORMATTING DATE
MVC SRDATE+4,ZA#DTE

MVC SRTIME,ZA#TME MOVE PIB TIME TO SCREEN RECORD
MVC SCRNSIZ,TWELVE SET SCREEN SIZE
B SCRNBLD
™ SCRNBLD ZG#CALL BUILD, (OMAREA,SCRNID,SCRNREC,SCRNSIZ,SSGSTAT)
(ij\ CLI ZA#PSC+1,X'00’ ERROR CHECKING
- BNE BLDERR
B TERM

BLDERR

TERM ZGH#CALL RETURN

* CONSTANTS

SFMENU CL8'JAMENU ! SCREEN FORMAT NAME
ZEROS DC CL12'000000000000"

TWELVE DC XLz2'oc!

*

* ACTIVATION RECORD DEFINITION

ZM#DP1B
ZM#DIMH
WORK DSECT WORK AREA
PRMLST EQU *
SCRNID DS cL8 SCREEN IDENTIFICATION
SCRNSIZ DS XL2 SCREEN SIZE

SCRNREC EQU *

SRDATE DS CL6

SRTIME DS CLé6

SGSTAT DS CL5

OMAREA ZM#DOMH

OMATEXT DS CL3000 OUTPUT MESSAGE TEXT AREA

Figure 7-5. Building a Screen Format in a BAL Action Program

UP-9207 Rev. 2 7-11

Using Screen Format Services to Format Messages

7-12

P i
/

Note that the COBOL action program moves zeros to the variable data area before
entering values. Do not use the LOW-VALUES figurative because it translates to
binary zeros.

The example action programs do not move the output buffer length into the TEXT-
LENGTH field; but we recommend that you do so when building a screen format in
the output buffer. This is not necessary when you want to build a format in dynamic
main storage.

To build a format in dynamic main storage, include the following statement in a
COBOL action program:

MOVE 'D' to SFS-LOCATION.

In BAL, code the following instruction:

1 10 16

MVI ZA#SFLOC, ZA#SFDYN

When your screen format uses both output option indicators and variable data, code
the option indicator bytes as the first entries in the variable data area. For instance, if
you defined option indicators that highlight certain fields on the screen format
displayed by the COBOL action program in Figure 7-4, the variable data area might
look like this:

05 SCREEN-RECORD. <ji;f

10 OPTION- INDICATOR- 1 PIC X VALUE '@'

10 OPTION- INDICATOR-2 PIC X VALUE '@

10 SR-DATE PIC 9(6)

10 SR-TIME PIC 9(6)
Then, to turn either option indicator on, move ‘1’ to OPTION-INDICATOR-1 or
OPTION-INDICATOR-2.

Remember to include the option indicator bytes in the length of the variable data area:

MOVE 14 to SCREEN-SIZE.

UP-9207 Rev. 2

Using Screen Format Services to Format Messages

7.6. Error Returns from the BUILD Function

Action programs can receive two types of error returns:

1. Status codes and detailed status codes in the program information block when
the BUILD function is unsuccessful.

2. Error codes in the variable data area when the screen format coordinator finds

output validation errors.

When the BUILD function call is unsuccessful, no screen buffer is constructed and
IMS returns one of the following pairs of status and detailed status codes to the

program information block:

Status Code Detailed Status

(Decimal) Code (Decimal) Explanation

1 Named format cannot be found

3 1 Incorrect number of parameters

3 3 Invalid parameter value

3 12 Screen format services not configured

6 4 Invalid terminal name or type

7 0 Output validation error

7 1 Buffer area not large enough; IMS places the actual length
required for the format in the TEXT-LENGTH field

7 2 Variable data area not large enough

7 3 Not enough terminals configured

7 3 Variable-data parameter specified when no variable data
area exists

7 5 Format size larger than screen size

7 6 I/0 error reading screen format file

7 10 Screen format incorrectly generated

7 11 System error

UP-9207 Rev. 2

713

Using Screen Format Services to Format Messages

7-14

Status Code Detailed Status

(Decimal) Code (Decimal) Explanation

7 16 Inadequate main storage available in system; or format
contains protected fields and terminal does not have
protect feature or is not in protect mode

7 17 Screen format services error

7 18 Action program processing DDP transaction attempted to

send screen format to initiating action program

See Appendix D for a complete listing of status and detailed status codes in

hexadecimal.

When you define variable data and an output status area in your program, the screen
format coordinator validates the variable data. When validation errors occur, the
screen format coordinator places X’FF’ into each error field in the variable data area
and one of the following error codes into the status byte for each invalid field:

Output Validation

Error Code Explanation

1 Nonnumeric value defined for a numeric field

2 Nonalphabetic value defined for an alphabetic field
5 Range check failure

6 Numeric field not in packed decimal format

UP-9207 Rev. 2

Using Screen Format Services to Format Messages

7.7. Receiving Formatted Input in the Successor Program

You can display an input or input/output screen format only when the action program
terminates with external succession or normal termination. The terminal operator
enters input on the format, and IMS schedules a successor action program or a new
transaction based on this input.

The operator can enter a function key instead of formatted input, if the action
program is prepared to accept it. A function key cancels the screen format.

When the action program displaying the screen format terminates with external
succession, IMS schedules the action program named in the SUCCESSOR-ID field of
the program information block and sends the input data entries to the successor
program’s input message area.

In the JAMENU action program in Appendix B, the same COBOL action program
displays a screen format and also accepts input entered on the format. After building
the screen format, JAMENU terminates with external succession, naming itself as
successor. Figure 7-6 shows the screen format JAMENU displays, and Figure 7-7
shows the input message fields to receive the formatted input.

06/23/81 06:49:28 JASMENU 02/09/81
ENTITLEMENT ACCOUNTING SYSTEM

SELECT ONE (1) OF THE FOLLOWING OPTIONS:
1. ADD A NEW CUSTOMER RECORD.
*2. UPDATE CUSTOMER NAME/ADDRESS INFORMATION.
*3. UPDATE BRANCH CUSTOMER INFORMATION.
*4. UPDATE CUSTOMER ENTITLEMENTS.
*5. DELETE A CUSTOMER RECORD.
*6. DISPLAY CUSTOMER INFORMATION.
7. LIST ALL ACCOUNTS (ON THE WORKSTATION).
8. ENTER WORKSTATION ACTIVITY RECORDS.
9. LOGOFF SYSTEM.

Input
*ENTER CUSTOMER NUMBER ¢ Message
MENU SELECTION: — ¢ Fields

PLACE CURSOR HERE TO TRANSMIT [_] ¢

Figure 7-6. Screen Format Displayed by JAMENU Action Program

UP-9207 Rev. 2 7-15

Using Screen Format Services to Format Messages

01 INPUT-MESSAGE-AREA. COPY IMA.

05 IMA-SCREEN-REC REDEFINES IMA-PASS-1.

10 SR-CUST-NBR PIC 9¢6).
10 SR-MENU PIC 99.
10 SR-TRSMIT PIC X.
10 FILLER PIC X(4).

Figure 7-7. Input Message Area Fields for Formatted Input

In the case of normal termination, the first input field in the format must contain a
valid transaction code because IMS must schedule a new transaction to receive the
input data. IMS sends the input data, including the transaction code, to the action
program named in the configurator TRANSACT section.

A convenient way to ensure that the terminal operator enters the appropriate
transaction code in the first input field is to define that field as an input/output
variable. Display the transaction code and when the terminal operator transmits the
screen, the transaction code is automatically entered as input data.

Figure 7-8 shows an input/output screen format displayed in response to the CSCAN
transaction code. Initially, the cursor is positioned after the CSCAN transaction code.
To list more names and addresses, the terminal operator simply presses the
TRANSMIT key and the CSCAN transaction is rescheduled. To get details about a
certain customer, the operator positions the start-of-entry character and cursor on the
line for that customer and transmits. This schedules the CDETL transaction. (The
CSCAN and CDETL action programs in Appendix B do not use screen format services
but could have generated the same screens with screen format services.)

7-16 UP-9207 Rev. 2

P N
M)

Using Screen Format Services to Format Messages

PCDETL
PCDETL
PCDETL
PCDETL
PCDETL
PCDETL
PCDETL
PCDETL
PCDETL
PCDETL

CSCAN 07009 RILEY

181089
091479
139915
044246
179363
122399
805257
152069
181050
029997

805238

FISH
HAFLEIGH
LAMBKA
LONGENECKER
MAGEDMAN
MCLAUGHLIN
ROGERS
WILLIAMS
ROHRER
BOONE

ROBER
WILLI
IRWIN
R

DAVID
EDWAR
CLESS
GEORG
GARRY
GEORG

17 CHERRY
3 HIGHFIEL
DIRECTOR H
20 RICHARD
27 CEDARS
17 SPRUCE
51 RAVINE
60 MCKINLE
219 CARTER
64 BRUNSWI

07006
07006
07006
07006
07006
07006
07006
07006
07008
07009

Figure 7-8. Displaying Transaction Codes in Input/Output Fields

Although you can display an input/output screen format using either external

succession or normal termination, external succession is more efficient. For a complete
example of an action program using a screen format with external succession, see the
JAMENU program in Appendix B. JAMENU also uses immediate internal succession
to pass control to succeeding action programs that process the menu selection entered
by the terminal operator.

Note: You can define certain input option indicators at screen format generation
time. IMS does not support these input option indicators. However, if you

defined any input option indicators for this screen format, perhaps for use
with another program, you must code option indicator bytes as the first entries

in the input message area.

UP-9207 Rev. 2

717

Using Screen Format Services to Format Messages

M

7.8. Validating Input Data

The screen format coordinator validates the input data entered at the terminal and
blinks invalid fields. The terminal operator can correct the invalid entries until the
retry count specified at screen format generation time is reached. At that point, IMS
schedules the successor program and places a 7 in the STATUS-CODE field and a 0 in
the DETAILED-STATUS-CODE field in the program information block.

The input data is followed by one status byte for each input field. You must allow
space for these fields in your input message area, but the length field in the input
message header includes only the input data items and not their status bytes. When
validation errors occur, the screen format coordinator places an error code into the
status byte for the invalid fields and replaces the invalid fields with X'FF’. The input
validation error codes are:

Input Validation

Error Code Explanation

1 Nonnumeric keyin for a numeric field

2 Nonalphabetic keyin for an alphabetic field

3 Incorrect number of characters entered (
4 Decimal point alignment error -
5 Range check failure

When your program receives a validation error, you will probably want it to send a
message to the terminal operator and terminate the transaction.

7-18 UP-9207 Rev. 2

Using Screen Format Services to Format Messages

7.9. Displaying an Error Format or Replenish Screen

After the terminal operator enters input on a screen format and the screen format
coordinator validates the input, you can retain the format at the terminal and make
changes to it by issuing a REBUILD function call. You can use the REBUILD function
in two different ways:

1. Construct an error screen. Your action program performs additional validation of
input fields and fills the input fields that are in error with X’FF’ (HIGH-
VALUES). When you issue the REBUILD function, the screen format generator
blinks any input fields filled with X’FF".

2. Construct a replenish screen to prompt the terminal operator for the next input.
When you issue the REBUILD function call, the screen format generator replaces
input and input/output fields with underlines or other replenish value defined at
screen format generation.

When you want to build an error screen, identify the area containing the error fields
(usually the input message area) with the variable-data parameter on the REBUILD
function. Omit this parameter when you want to build a replenish screen.

As with the BUILD function, you must define an output buffer, full-word aligned and
starting with a 16-byte output message header.

You can request that the error or replenish screen be built in the output buffer or in
dynamic main storage. However, because of the smaller size of the message you send
with the REBUILD function, you may want to use the output buffer instead of
dynamic main storage.

If you want the screen built in the output buffer, move the output buffer length into
the TEXT-LENGTH field of the output message header. (To determine the output
buffer length, allow approximately 10 bytes per blinking field or replenish field plus
25 bytes for overhead.) To build the screen in dynamic main storage, move C‘D’ to
SFS-LOCATION (set ZA#SFDYN in ZA#FLOC).

After issuing the REBUILD function to construct an error or replenish screen, issue
the RETURN function to send the screen to the terminal. Never use the SEND
function with a CALL REBUILD function, because the error or replenish screen
requests input from the terminal operator. For the same reason, you must terminate
the action program with external succession or normal termination.

You can also build an error or replenish screen (or a combination) by using option
indicators and issuing a second BUILD function call instead of the REBUILD
function. When you build an error screen this way, you do not have to fill the error
fields with X’FF". Set the appropriate indicators on by moving C‘1’ to the option
indicator byte locations before issuing the BUILD function call. You cannot use the
REBUILD function with a screen format that has any option indicators defined.

UP-9207 Rev. 2 7-19

Using Screen Format Services to Format Messages

7.10. Building an Error or Replenish Screen (REBUILD)

The REBUILD function call constructs an error or replenish screen in the output
buffer or in dynamic main storage. The screen format from the previous BUILD

function remains in effect at the terminal, and error fields are blinked or input fields
are replenished.

The COBOL and BAL formats for the REBUILD function call are:
e COBOL format

CALL 'REBUILD' USING output-buffer [variable-datal.
* BAL format

CALL REBUILD, (output-buffer[,variable-datal)
ZGHCALL

where:

output-buffer
Identifies the output area where the error or replenish format is built. This
area is full-word aligned and begins with a 16-byte output message header.
When you use the dynamic main storage option, this area contains only the
output message header.

variable-data

Identifies an area containing the input message fields including error fields.
This is usually the input message area.

When you include the variable-data parameter, the screen format coordinator blinks
all fields filled with X’FF’. When you omit this parameter, the screen format
coordinator replaces all input and input/output fields with the replenish value you
defined at screen format generation, which is usually underlines.

7-20 UP-9207 Rev. 2

C

Using Screen Format Services to Format Messages

(7.11. Example Coding to Display an Error or Replenish
Screen

Assuming you displayed the screen format shown in Figure 7-6 using the BUILD
function, Figure 7-9 shows an example of the COBOL coding to validate the menu
selection field and display an error screen using the REBUILD function. Figure 7-10
shows this coding in a BAL action program.

Note in the COBOL coding that the input fields are redefined as alphanumeric. This is
necessary because you cannot move HIGH-VALUES to a numeric field.

01 INPUT-MESSAGE-AREA. COPY IMA.

05 [IMA-SCREEN-REC REDEFINES IMA-PASS-1.

10 SR-CUST-NBR PIC 9(6).

10 SR-CUST-NBR-ERR REDEFINES SR-CUST-NBR PIC X(6).
10 SR-MENU PIC 99.

10 SR-MENU-ERR REDEFINES SR-MENU PIC XX.

10 SR-TRSMIT PIC X.

18 FILLER PIC X(4).

@1 OUTPUT-MESSAGE-AREA. COPY OMA.

<ii‘\‘ 05 OMA-TEXT PIC X(3000).
PROCEDURE DIVISION USING PROGRAM- INFORMATION-BLOCK
INPUT -MESSAGE - AREA
WORK - AREA

OUTPUT -MESSAGE - AREA
CONTINUITY-DATA-AREA.

255-VALIDATE-MENU-SEL.
IF SR-MENU < 10R > 9
MOVE HIGH-VALUES TO SR-MENU-ERR
PERFORM 506-REBUILD

Figure 7-9. Building an Error Screen in a COBOL Action Program (Part 1 of 2)

UP-9207 Rev. 2 7-21

Using Screen Format Services to Format Messages

722

ELSE
PERFORM SET-MENU.

506-REBUILD.
MOVE 108 TO TEXT-LENGTH.
CALL 'REBUILD!' USING OUTPUT-MESSAGE-AREA
IMA-SCREEN-REC.
IF STATUS-CODE IS GREATER THAN 0@
MOVE '3' TO ERR-FLAG.
507-RETURN.
CALL 'RETURN'.

Figure 7-9. Building an Error Screen in a COBOL Action Program (Part 2 of 2)

1 10 16

* VALIDATE MENU SELECTION
CLI SRMENU,X'F1!

BL REBLD
CLI SRMENU,X'F9!
BH REBLD

* BUILD ERROR SCREEN

REBLD MVC ZA#OTL,MSGSIZE SET TEXT-LENGTH FIELD
ZGH#CALL REBUILD,(OMAREA, IMAREC)
CLI ZA#PSC+1,X'00! ERROR CHECKING
BNE BLDERR
B TERM
BLDERR

TERM ZGHCALL RETURN
*

* CONSTANTS

MSGSIZE DC H'100!

* ACTIVATION RECORD DEFINITION

ZM#DIMH
IMAREC EQU *
SRCUST DS CL6
SRMENU DS cL2 INPUT MESSAGE FIELDS
SRXMIT DS CL5
OMAREA ZM#DOMH
OMATEXT DS CL3000

Figure 7-10. Building an Error Screen in a BAL Action Program

UP-9207 Rev. 2

(ﬂﬂ“m\

Using Screen Format Services to Format Messages

7.12.

To build a replenish screen, you need only move a value to the TEXT-LENGTH field
(or move C'D’ to SFS-LOCATION to build the screen in dynamic main storage) and
issue the REBUILD function call without the variable-data parameter:

MOVE 100 TO TEXT-LENGTH.
CALL 'REBUILD' USING OUTPUT-MESSAGE-AREA.

To build an error or replenish screen using option indicators and the BUILD function,
use the same coding used to display the screen format initially, except that you move
C1’ to the appropriate option indicator bytes before issuing the BUILD function. (See
7.5.)

Error Returns from the REBUILD Function

When the REBUILD function call is unsuccessful, no error format or replenish screen
is constructed and IMS returns one of the following pairs of status and detailed status
codes to the program information block:

Status Code Detailed Status

{Decimal) Code (Decimal) Explanation

1 Internal error

7 1 Buffer area not large enough; IMS places the actual length
required for the format in the TEXT-LENGTH field.

7 5 Internal error

7 6 I/0 error reading screen format file

7 7 REBUILD not allowed because screen format has no input
fields

7 8 Invalid field in variable data area

7 9 Variable-data parameter specified but no error field
detected

7 11 System error

See Appendix D for a complete listing of status codes and detailed status codes in
hexadecimal.

UP-9207 Rev. 2 7-23

Using Screen Format Services to Format Messages

7.13. Displaying a Screen Format on an Auxiliary Device

724

You can use the BUILD function call to output a screen format to an auxiliary device -
printer, cassette, or diskette - attached to a display terminal.

To output a screen format to an auxiliary device, you place values in the AUX-
FUNCTION and AUX-DEVICE-NO fields in the output message header before
issuing the BUILD function call. The AUX-FUNCTION setting tells IMS which print
or transfer option to use, and the AUX-DEVICE-NO identifies the auxiliary device.

Table 7-1 lists the print and transfer options IMS supports for the writing of screen
formats and the settings for the AUX-FUNCTION field in continuous and
noncontinuous output modes. For an explanation of the print and transfer options, see
6.20.

Because the terminal operator cannot enter input at an auxiliary device, the screen
format must be output-only. For the same reason, you cannot use the REBUILD
function call to write an error or replenish screen to an auxiliary device.

Note: When you build a screen in dynamic main storage, all values, including
auxiliary device numbers and functions, must be present in the output
message header before you issue the CALL BUILD. If any header values
(except SFS-OPTIONS) are changed after the CALL BUILD, the new values

are ignored.

UP-9207 Rev. 2

o

S

Using Screen Format Services to Format Messages

Table 7-1. Print/Transfer Options for Writing Screen Formats to Auxiliary Devices

Print Mode X F3 3] 0

X

X
(recommended) @ @ (recommended) @
X F5 5 F2 2 X X
(recommended) 0]©) (unpredictable
output at screen
and auxiliary
device)
Print X F7 7 F4 4 X® ® X®
Transparent
X F9 9 6 6 X® ® X
(unpredictable
output at screen
and auxiliary
device)
Print Form X Cl A D1 J X® X©
(ESC H)
X C6 F D6 0 X(‘D X©
™ Transfer X c2 B D2 K| x x®
All (recommended) @
— (ESC G)
X c7 G D7 P X© X®
Transfer X c4 D D4 M X@ X©
Variable
(ESC F) X C8 H D8 Q X(ZD X©
Transfer X C5 E D5 N X (field control X©
Changed characters not
(ESC E) supported)
X E8 Y F8 8 X (feld control X©
characters not
supported)
LEGEND:

Printer - same format as screen
Printer - same information as screen; no carriage returns
Cassette/diskette - same format as screen; no field control characters

Cassette/diskette - same format as screen; only records unprotected fields

CHCNONCONCONC

Cassette/diskette - not available

UP-9207 Rev. 2

Cassette/diskette ~ same format as screen; records all fields and all field control characters

725

Using Screen Format Services to Format Messages

7.14. Using Screen Formats in a Distributed Data L

726

Processing Environment

Your action programs can call on screen format services in a distributed data
processing environment using the IMS transaction facility. (See Section 9.)

When your action program processes a transaction that is initiated by a terminal
operator at a remote system, you can:

1.

2.

Issue a CALL BUILD followed by a CALL RETURN to display a screen format at
the terminal that initiated the transaction at the remote system. You cannot
output a screen format to an auxiliary device at the remote system (primary IMS)
or to an action program initiating a remote transaction.

IMS2

TRANSACTION CODE

s
CALL RETURN M FORMAT
T " FILE

Issue a CALL BUILD followed by a CALL SEND to display a screen format at a
terminal (or auxiliary device) attached to your local IMS system. You cannot use
a CALL SEND to display a screen format at the remote system (primary IMS).

IMS2

ACTION SCREEN
PROGRAM FORMAT

FILE

UP-9207 Rev. 2

Using Scr