UNISYS

DCP Series

Distributed Communications
Processor Operating System
(DCP/QOS)

Programming
Reference Manual

Copyright © 1990 Unisys Corporation
All rights reserved.
Unisys is a registered trademark of Unisys Corporation.

Release Level 5R1 December 1990

Printed in U S America
Priced hem UP-11540.2-A

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE DOCUMENT. Any product and related material
disclosed herein are only furnished pursuant and subject to the terms and conditions of a duly executed Program
Product License or Agreement to purchase or lease equipment. The only warranties made by Unisys, if any, with
respect to the products described in this document are set forth in such License or Agreement. Unisys cannot accept
any financial or other responsibility that may be the result of your use of the information in this document or software
material, including direct, indirect, special or consequential damages.

You should be very careful to ensure that the use of this information and/or software material complies with the laws,
rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such
changes and/or additions.

Correspondence regarding this publication should be forwarded to Unisys Corporation either by using the Business
Reply Mail form at the back of this manual or by addressing remarks directly to Communication Systems Product
Information, P.O. Box 64942 MS:WE4A, St Paul, Minnesota, 55164-0942, U.S.A,

Product Information
Announcement

O New Release © Revision @ Update © New Mail Code

UNISYS

Title:

DCP Series Distributed Communications Processor Operating System
(DCP/OS) Programming Reference Manual Level 5R2

This Product Information Announcement presents the release of update B to the
DCP Series Distributed Communications Processor Operating System (DCP/OS)
Programming Reference Manual, Level 5R1 (UP-11540.2).

The Distributed Communications Processor Operating System (DCP/OS) supports
a multiuser environment for building, loading, and executing programs. The
operating system is part of a total communications environment that uses
Distributed Communications Processors (DCP/5,15,25,30,35,40,50, and 55) to
implement intelligent network applications.

The DCP/OS level 5R2 Programming Reference Manual provides information
necessary to write programs to operate under DCP/OS level 5R2 in a
communications network environment.

This update contains information associated with DCP/OS level 5R2, which includes
enhancements to the system service calls.

Remove: Insert:

Existing pages iii through v New pages 1ii through iv
New pages iv-a through iv-b

Existing pages xvii through xxiii New pages xvii through xxiii

Existing pages 3-17 through 3-18
Existing pages 7-1 through 7-2
Existing pages 7-2a through 7-2b
Existing pages 7-11 through 7-12
Existing pages 7-12a through 7-12b
Existing pages 7-19 through 7-20
Existing pages 7-23 through 7-24
Existing pages 7-27 through 7-30

New pages 3-17 through 3-18
New pages 7-1 through 7-2
New pages 7-2a through 7-2d
New pages 7-11 through 7-12
New pages 7-12a through 7-12b
New pages 7-19 through 7-20
New pages 7-23 through 7-24

New pages 7-27 through 7-30

Continued

Announcement and attachments:
MBWA, AF01, MU99, MU59

DCP Series
Level 5R2
UP-11540.2-B

Systems:
Release:
Part number:

UNISYS Product Information
Announcement

0 New Release 0 Revision 0 Update © New Mail Code

Title:
Existing pages 7-35 through 7-38 New pages 7-35 through 7-38
Existing pages 7-38a through 7-38b New pages 7-38a through 7-38b
Existing pages 7-39 through 7-42 New pages 7-39 through 7-42
Existing pages 7-57 through 7-58 New pages 7-57 through 7-58
Existing pages 7-73 through 7-74 New pages 7-73 through 7-74
Existing pages 7-79 through 7-80 New pages 7-79 through 7-80
Existing pages 7-85 through 7-86 New pages 7-85 through 7-86
Existing pages 7-91 through 7-94 New pages 7-91 through 7-94
New pages F-1 through F-10
Existing pages Glossary 11 through 14 New pages Glossary 11 through 14

Changes are indicated by vertical bars in the margins of the replacement pages.

To receive the update package alone, order UP-11540.2-B. To receive the complete
manual including the update packages, order UP-11540.2.

To order additional copies of this document
® United States customers call Unisys Direct at 1-800-448-1424
® All other customers contact your Unisys Subsidiary Librarian

e Unisys personnel use the Electronic Literature Ordering (ELO) system

Page Status

Page Issue
iii through iv B

iv-a B

iv-b Blank

v through xiii Original
Xiv Blank
XV Original
XVi A

xxvii through xxi B

xxii through xxiii B

Xxiv through xxv B

XXVi Blank
XXVii Original
Xxviii Blank
XXiX Original
XXX Blank
1-1 through 1-10 Original
2—1 through 2-4 Original
3-1 through 3-11 Original
3-12 through 3-13 A

3-14 A

3-15 Original
3-16 A
3-16a A
3-16b Blank
3-17 through 3-18 B

4—1 through 4-5 Original
4-6 Blank
5-1 Original
5-2 A

5-3 Original
5-4 A

5-4a through 5-4b A

5-5 through 5-10 Original
5-11 A

UP 11540.2-B

age Status

Page Issue
5-12 Original
5-13 through 5-17 A

5-18 through 5-19 Original
5-20 A

5-21 through 5-26 Original
5-27 A

5-28 Original
5-29 through 5-32 A
5-32a through 5-32¢ A
5-32d Blank
5-33 through 5-41 Original
5-42 Blank
6-1 through 6-40 Original
7-1 through 7-2 B

7-2a through 7-2d B

7-3 through 7-4 B

7-5 A

7-6 through 7-10 Original
7-11 through 7-12 B
7-12a B
7-12b Blank
7—13 through 7-18 Original
7-20 B
7-20a B
7-20b Blank
7-21 through 7-23 Original
7-24 B

7-25 through 7-26 Original
7-27 B

7-28 Original
7-29 through 7-30 B
7—30a B
7-30b Blank
7-31 through 7-35 Original
7-36 through 7—38 B
7-38a through 7—38b B

7-39 through 7-41 B

7-42 through 7-56 Original
7-57 through 7-58 B

7-59 through 7-72 Original

UP 11540.2—B

Page Status

Page Issue
7-73 through 7-74 B

7-75 through 7-78 Original
7-79 through 7-80 B
7-80a B
7-80b Blank
7-81 through 7-85 Original
7-86 B

7-87 through 7-90 Original
7-91 through 7-83 B

7-94 through 7-96 A

8-1 through 8-23 Original
8-24 Blank
9-1 through 9-9 Original
9-10 Blank
A-1 through A-3 Original
A-4 A

A-5 through A-7 Original
A-8 A

A-9 through A-15 Original
A-16 Blank
B-1 Original
B-2 Blank
C—1 Original
C-2 Blank
D-1 through D-2 Original
D-3 A

D-4 Original
D-5 through D-6 A

D-7 Original
D-8 Blank
E-1 through E-3 Original
E—4 Blank
F—1 through F-9 B

F-10 Blank
Glossary—1 through 13 Original
Glossary-14 Blank
Bibliography—1 Original
Bibliography-2 Blank
Index—1 through 27 Original
Index-28 Blank

JP 11540.2-B iv-a

‘age Status

v-b UP 11540.2-B

UNISYS ion

0 New Release O Revision e Update © New Mail Code

Title:
DCP Series Distributed Communications Processor Operating System
(DCP/OS) Programming Reference Manual Level 5R1

This Product Information Announcement announces the release of update A fo the
DCP Series Distributed Communications FProcessor Operating System (DCF/OS)
Programming Reference Manual, Level 5R1 (UP-11540.2).

The Distributed Communications Processor Operating System (DCP/OS) supports
a multiuser environment for building, loading, and executing programs. The
operating system is part of a total communications environment that uses
Distributed Communications Processors (DCP/5,15,25,30,35,40, and 50) to
implement intelligent network applications.

The DCP/OS level 5R1 Programming Reference Manual provides information
necessary to write programs to operate under DCP/OS level 5R1 ina
communications network environment.

This update contains information associated with DCP/OS level 5R1, which includes
the following:

e Enhancements to the profile and logging debug features

e The addition of 15 new service calls to replace the TELSERY module on
DCP/30 and DCP/50 for Telcon and program products Contingency handling

To receive the update package alone, order UP-11540.2-A. To receive the complete
manual including the update package, order UP-11540.2.

To order additional copies of this document
e United States customers call Unisys Direct at 1-800-228-9224
e All other customers contact your Unisys Subsidiary Librarian

® Unisys personnel use the Electronic Literature Ordering (ELO) system

Announcement only: Announcement and attachments: System: DCP Series

MAC, MBW, MBZ, MCZ, MBWA, AFO1, MU99, MUSS Release: Level 5R1

MIIo, MMZ, MU1G, MU1J,

MU1K, MU1L, MU1IN, MU1Y, .

MUSS, MV7B, MV7C, MX3, Part number: UP-11540.2-A
MX5, MX8, MX8, MY1, MY3,

MYB, MY6, MY7, M154

Page Status

Page Issue
i through iv A

iv-a A

iv-b Blank

v through xiii Original
Xiv Blank
XV Original
xvi through xxvi A

XXVii Original
XXViii Blank
XXX Original
XXX Blank
1-1 through 1-10 Original
2—1 through 2-4 Original
3—1 through 3-11 Original
3-12 through 3-13 A

3—-14 through 3-15 Original
3-16 A
3-16a A
3-16b Blank
3~17 through 3-18 Original
4~1 through 4-5 Original
4-6 Blank
5-1 Original
5-2 A

5-3 Original
5-4 A

5-4a through 5-4b A

5-5 through 5-10 Original
5-11 A

5-12 Original
5-13 through 5-17 A

5-18 through 5-19 Original
5-20 A

JP-11540.2-A

age Status

Page Issue
5-21 through 5-26 Original
5-27 A

5-28 Original
5-29 through 5-32 A
5-32a through 5-32¢ A
5-32d Blank
5-33 through 5-41 Original
5-42 Blank
6-1 through 6-40 Original
7-1 Original
72 A

7-2a A

7-2b Blank
7-3 A

7-4 Original
7-5 A

7-6 through 7-16 Original
7-17 through 7-18 A

7-19 through 7-28 Original
7-29 through 7-30 A

7-31 through 7-35 Original
7-36 through 7-38 A
7-38a Blank
7-38b A

7-39 through 7-85 Original
7-86 A

7-87 through 7-91 Original
7-92 through 7-96 A

8-1 through 8-23 Original
8-24 Blank
9-1 through 9-9 Original
9-10 Blank
A-1 through A-3 Original
A4 A

A-5 through A7 Original
A-8 A

A-9 through A-15 Original
A-16 Blank
B-1 Original
B-2 Blank
C—1 Original

UP-11540.2-A

Page Status

Page Issue
C-2 Blank
D-1 through D-2 Original
D-3 A

D-4 Original
D-5 through D-6 A

D-7 Original
D-8 Blank
E-1 through E-3 Original
E-4 Blank
Glossary-1 through 13 Original
Glossary-14 Blank
Bibliography-1 Original
Bibliography-2 Blank
Index-1 through 27 Original
Index-28 Blank

UP-11540.2-A v-a

UP-11540.2-A

UNISYS

DCP Series

Distributed Communications
Processor Operating System
(DCP/0OS)

Programming
Reference Manual

Copyright © 1989 Unisys Corporation
All rights reserved.
Unisys is a trademark of Unisys Corporation

Release 4R1 June 1989

Printed in U S America
Priced item UP-11540.2

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE DOCUMENT. Any product and related material disclosed
herein are furnished only pursuant and subject to the terms and conditions of a duly executed Program Product License or
Agreement to purchase or lease equipment. The only warranties made by Unisys, if any, with respect to the products
described in this document are set forth in such License or Agreement. Unisys cannot accept any financial or other
responsibility that may be the result of your use of the information in this document or software material, including direct,
indirect, special or consequential damages.

You shouid be careful to ensure that the use of this information and/or software material complies with the laws, rules,
and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such changes
and/or additions

Correspondence regarding this publication should be forwarded using the form at the back of this manual, or may be
addressed directly to Unisys Corporation, Communication Systems Product Information, P.O. Box 64942 MS:WE4A, St.
Paul, Minnesata, 55164-0942, U.S.A.

Page Status

Page Issue
iii through xiii Original
Xiv Blank
xv through xxv Original
XXVi Blank
XXVii Original
Xxviii Blank
XXiX Original
XXX Blank
1-1 through 1-10 Qriginal
2-1 through 2-4 Original
3-1 through 3-18 Qriginal
4-1 through 4-5 Original
4-6 Blank
5-1 through 5-41 Original
5-42 Blank
6-1 through 6-40 Original
7-1 through 7-91 Original
7-92 Blank
8-1 through 8-23 Original
8-24 Blank
9-1 through 9-9 Original
9-10 Blank
A-1 through A-15 Original
A-16 Blank
B-1 Original
B-2 Blank
C-1 Original
Cc-2 Blank
D-1 through D-7 Original
D-8 Blank
E-1 through E-3 Original
E-4 Blank

UP-11540.2

Page

Glossary—1 through 13
Glossary—14
Bibliography-1
Bibliography-2
Index—1 through 27
Index—-28

Issue

Qrigina
Blank
Original
Blank
Original
Blank

UP-11540.2

About This Manual

Purpose

This manual describes how to write programs to run under the
Distributed Communications Processor Operating System (DCP/0S) on
a Distributed Communications Processor (DCP) in a communications
networking environment.

The DCP family of communications processors includes the following:

e DCP/5

e DCP/10A
e DCP/15
e DCP/20
s DCP/30
e DCP/40
e DCP/50

The DCP/OS supports a multiuser environment for building, loading,
and executing programs. The operating system is part of a total
communications environment that uses DCPs to implement intelligent
network applications.

Scope
This manual describes the following:
e User programming
e Communications Processor Architecture (CPA) module definitions
e Contingency handling
e System service calls and functions

e Common utility subroutines

UP-11540.2

out This Manual

udience

This manual is written for programmers and systems analysts.

rerequisites

The DCP/OS philosophy requires no knowledge or experience with any
particular programming language. This manual explains and specifies
the various system interfaces in the context of assembler programming.

ow to Use This Manual

This manual is a reference document. It is not expected that you will
read it from cover to cover. Rather, read the introduction, then refer to
the table of contents and the index for information about a particular
subject.

rganization
This manual is divided into nine sections and five appendixes.
Section 1: Introduction to DCP/0S Programming

This section describes the programming environment. It outlines the
source code, assembly, collection, and linking of user programs, and
describes the block structure of the DCP/OS file system.

Section 2: System Message Formats

This section describes standard system messages and system
information packets.

Section 3: CPA Module Definition MASM Procedures
This section describes the OS 1100 Meta-Assembler (MASM) procedures

CILRLCCLul e

user programs.
Section 4: Contingency Handling

This section describes the process of contingency handling for specific
port processor (PP) state items, central processor (CP) specification
exceptions, inter-program message (IPM) state changes, and throttle
level changes.

UP-11540.2

About This Manuai

Section 5: Debug Facilities

This section tells you how to use the debug facilities to debug programs
that run under the DCP/OS.

Section 6: MASM Utility Procedures

This section describes optional MASM utility procedures available from
the library file, DCPOSEQU, on the release tape.

Section 7: System Service Calls (SVCs)

This section outlines the system service calls (SVCs) available to the
user programs. It describes the system service calls by category and
provides call, entry, and exit specifications.

Section 8: Common Utility Subroutines

This section describes common utility subroutines and provides call,
entry, and exit specifications.

Section 9: Memory Management

This section explains how to apportion and manage system memory for

various purposes.
Appendix A: Data Structures

This appendix presents diagrams with field definitions of various
packets, blocks, and headers.

Appendix B: Segment Names of Available User System Structures
and Code

This appendix lists data structures and code, segment names and field
definitions, for programs.

Appendix C: Definition Elements

This appendix lists definition elements with their context and
definition.

Appendix D: Service Function Codes
This appendix lists the service function codes in hexadecimal order.
Appendix E: Programming Examples

This appendix provides four programming examples: CP programs,
assembly on OS 1100, collection on OS 1100, and build on DCP/OS.

UP-11540.2 vii

bout This Manual

lelated Product Information

Additional information is available in the following manuals.
Programming reference manuals must be ordered separately.

0S8 1100/DCP Series Communications Delivery Software
Configuration Guide, Level 4R1 (UP-9957.10)

This guide tells how to configure Communications Delivery software
level 4R1 for a data communications network. It also tells you how to
reconfigure these software products as your network evolves.

0S8 1100/DCP Series Communications Delivery Software
Configuration Reference Manual, Level 4R1 (UP-11580.1)

This manual provides reference material for configuring data
communications networks for CD level 4R1 software.

OS 1100/DCP Series Communications Delivery Software
Installation Guide, Level 4R1 (UP-9956.10)

This manual tells you how to generate, install, and verify
Communications Delivery level 4R1 (CD level 4R1) software on an

OS 1100 host and its Distributed Communications Processors (DCPs).
Generating and installing involves copying the CD level 4R1 software
components and related software products from release tapes to mass
storage and preparing the software for use with your communications
network.

DCP Series Telcon Operations Reference Manual, Level 8R1
(UP-9256.9)

This manual is part of the operations subset of the Communications
Delivery library. It is a reference to a full range of options on NMS
commands and online configuration commands. It lists online hardware
verification operations, RFS commands used to transfer files, hardware

inatriimentation narametore on the TRON command goneral NMS
INSLIUMCNLaTION parameters on i L nuny CoMmnangG, genera: ivivus

console messages, and CENL console messages.
DCP Series Telcon Operations Guide, Level 8R1 (UP-13431)

This manual is part of the operations subset of the Communications
Delivery library. It serves as a guide to Telcon operations. It explains
how a DCP network is organized, how to use NMS consoles and
commands, how to use Telcon online configuration, how to transfer

i UP-11540.2

About This Manual

files in a DCP network environment, how to turn on instrumentation,
how to interpret messages, and how to control console and logged
messages.

DCP Series Telcon Internals Programming Reference Manual,
Level 8R1 (UP-9255.8-A)

This manual describes the modular structure of Telcon and its
relationship to the DCP Operating System. It also includes details on
interfaces, registers, queues, and table and message structures that help
the programmer integrate site-developed code with Telcon.

DCP Series Telcon Terminal Handler Plaiform Programming
Reference Manual, Level 8R1 (UP-13460)

This manual provides information for writing terminal handler
programs for terminals in your network that are not provided by
Unisys.

DCP Series Distributed Communications Processor Operating
System (DCP/0OS) Operations Reference Manual, Level 4R1

(UP-11541.2)

This manual is part of the operations subset of the Communications
Delivery library. Its purpose is to familiarize the user with DCP/0OS
procedures and commands.

DCP Series Implementation Reference Manual, Volume 1,
Volume 2, Rev. 1, and Volume 3 (UP-12728)

Unisys Distributed Communications Processors implement
Communications Processor Architecture (CPA) in a range of sizes and
capacities, and offer the same general selection of line modules.

Volume 1 describes communications processor architecture and
summarizes the processor hardware.

Volume 2, Rev. 1 contains information on the line module interfaces and
protoceols. The revision includes the DCP 802.3 local area network
(LAN) line module, its associated line module exchange protocol
(LMPX), and the 8441 mass storage subsystem.

Volume 3 contains procedural and reference information on DCP Series
offline diagnostics and the maintenance control feature (MCF) for the
DCP/50 and DCP/30 models.

UP-11540.2 iX

sout This Manual

08 1100 Collector Programming Reference Manual, Level 32R2
(UP-8721.5)

This manual provides detailed instructions on how to use the OS 1100
Collector program. It describes how to include and exclude elements,
and how to use banking directives, bank-implied collections, and bank
switching. It explains how to specify program parameters and use other
program directives. It also discusses Collector-defined symbols and how
to use the Collector efficiently.

08 1100 Meta-Assembler (MASM) Programming Reference
Manual, Level 5R1 (UP-8453.4)

This reference manual provides programmers and analysts with
detailed information about the OS 1100 Meta-Assembler (MASM) level
H5R1 processor and language. It includes comprehensive information
about this release level of MASM. It is not a tutorial; thus, it does not
explain how to write MASM programs.

The Communications Delivery Level 4R1 Library

The following illustration shows how all books in the CD4R1 library
relate to one another. Use this illustration to help you look for
information in the library.

UP-11540.2

About This Manual

Installation Configuration Operations Quick Programming
Reference/ Reference
Guides Guide
S
Configuration
Guide
Installation UP-9957.10 Operations
0S 1100/ Guide Guide
DCP Series u))
i p-9956.10 Configuration UP-10041.5
Communications Roferance
Delivery
UP-11580.1
N
 ERR—— |
 EoeR R |
0S 1100] Operations Programming
Communications Reference | Reference
Management UP-9689.6 UP-9336.6
System
(CMS 1100)
-,
Operations Programming
Guide Reference
UP-13431 UP-9255.8-A
DCP Series) Terminal
Telcon Operations Handler
Reference Platform
N UP 92569 P N up134as0

UP-11540.2 Xi

sout This Manual

Installation Configuration Operations Quick Programming
Reference/ Reference
Guides Guide T
O | S | I]
cP _Series E:::] Operations [::] Programming
stributed . Reference " Reference
smmunications UP-11541.2 UP-11540.2
'ocessor
oerating System
'CP/OS)
.] S

Installation Operations Programming
51100 Guide Reference Reference
essage UP-10727.7 UP-13021.1 UP-13022.1
ontrol Bank
1CB)

otation Conventions

The general command format is similar to English language format. The
special symbol command format is defined in Table 6-1 (see Section 6).
Each command begins with a keyword indicating the action performed.

COMMAND parameter-string

where:

COMMAND the name of a command. Command names are
presented in uppercase letters to indicate that
you must enter them exactly as shown.

parameter-string the parameter string for the command. These
parameter strings are lowercase letters or
italic when the exact input is variable.

e Brackets ([]) indicate optional information.

UP-11540.2

About This Manual

e Braces ({ }) indicate that you must choose one of the items
shown.

e Braces within brackets ({{ }]) indicate that you may choose only
one of the optional items.

e Names enclosed in angle brackets (<< >) describe a class of
symbols. These are sometimes called nonterminals. Names not
enclosed in angle brackets are called terminal symbols and make up
numbers of a class.

e The symbol (::=) means “is defined as”.
e An ellipsis (...) means the preceding items can be repeated.

e Lowercase italic character strings indicate names you must provide.

UP-11540.2 xiii

e

Contents

Section 1.

Section 2.

Section 3.

UP-11540.2-B

About This Document

Introduction to DCP/OS Programming

1.1. DCP/OS Programming Environment

.1.1. File System
. MASM Procedures and Definition Elements

. RegisterSets

. Process Control
.1.6. Exception Handling
.1.7. HELP Facilities
1.2. Building Programs
1.2.1. Source Code
1.2.2. Assembly
1.2.3. Collection

1

1.1.2

1.1.3

1.1.4. Parameter Passing
115

1.1.6

1

1.2.5. Host/DCP C

1.3. DCP/OS File System

1.3.4. Dump Files

System Message Formats

2.1. Standard Message
2.2. System Information Packet (INFORS)

CPA Module Definition MASM Procedures

3.1. ATXREF - Sharing Lists
3.2. CPADEF - Define Defaults
3.3. ENTDEF - Additional Entry Points

1.2.4. Build o e
UL UORY o e
1.2.6. Debugging i
1.3.1. Naming Convention
1.3.2. Symbolic Element o i
1.3.3. Absolute Element (Executable Program)

_-L—L_L..L—L__L_.L.._L..A_L._L..I.LTL.TL
11
bbb lbdbbbbdbdbbbiL

|

|

S UUUE T W -
|
O W YW o

-
|
—h

NN

3-1
3-5

XV

ontents

Section 4.

o
2

o o B o

CLUOIL

5.

3.4. GPLDEF - Define Gated Procedure List 3-7
3.5. INITDEF - Generate Initial Procedure 3-8
3.6. IOPDEF - Generate PP Program Table Entry, ...
3.7. LNKDEF - Define Link Area
3.8. MARKDEF/PROCDEF/PRIVDEF - Generate Procedure

Module e e 3-12
3.9. PSTDEF - Define Procedure Segment Table 3-14
3.10. QUEDEF - Define Queue List 3-15
3.11. QUEUE - Definea Queue 3-16
3.12. SSTDEF - Define CPA System Segments 3-17

Contingency Handling

41. PP State ltems 4-1
4.2. CP Specification Exceptions 4-2
4.3. IPM State Change ol 4-3
4.4. Throttle Level Change 44
4.5. Il Contingencies: i, 4-5
Debug Facilities
5.1. Using Debug Facilities 5-1
5.2. Entering Debug Mode Ll 5-2
5.3. Command Format 5-4
5.4, Setting Program Trapscccoevnneniiennan.. 5-4
5.4a. Profiles and Logging 5-4a
5.5, Example UsingDebug 5-5
5.6. Debug Commands i, 5-9
5.6.1. A—Address ... 5-10
5.8.2. B—Breakpoint o il 5-11
56.3. C—Catch Service Call 5-18
5.6.4. D—Dump Debug Session 5-20
56.5. E—End DebugMode oLl 5-21
568.6. F=Flip ..o e 5-22
5.6.7. G—Go (Resume Trap) 5-2
56.8. H—Help o 5-24
569, I—lnspect Table i, 5-25
5.6.10. K—Display Call/Return Stack 5-26
5.6.11. L—Set Display Length oL, 5-27
56.12. M—Modify 5-28
56.13. N—Next i i 5-29
56.14. O—0ne Stepooviiiii i 5-31
5.8.14a. P—Profileo 5-31
5.6.15. Q—Query Dictionary i 5-32¢c

UP-11540.2-B

Contents

5.6.16.
5.6.17.
5.6.18.
5.6.19.
5.6.20.
5.6.21.
5.6.22.
5.6.23.
5.6.24.

R—Register Modify
S—Display Segment
T—Display Trap i
V—Inspect in Virtual Mode
W—Set Inspect Mode to Word
X—Kill Trap oo
Z—Zero Breakpoint oL
+(Plus)—Next Page
-(Minus)—Previous Page

Section 6. MASM Utility Procedures
6.1. AAWRENCH—Basic CP Utility MASM Procedures

6.1.1.
6.1.2.
6.1.3.

6.1.4.
6.1.5.
6.1.6.
6.1.7.

6.1.8.

Location Counter Handling
Constant Manipulation MASM Procedures

Field Manipulation MASM Procedures and

Functions i
Value Manipulation
Extended Instructions
Table and Instruction Generation
Display Control
AAWRENCH Procedure Summary

6.2. AEXTPROC—Extended Utility MASM Procedures

6.2.1.
6.2.2.
6.2.3.
6.2.4.
6.2.5.
6.2.6.
6.2.7.

Byte Field Manipulation
Load Operators ooviiiiinnnnn.
Store Operators viviiiiiienin...
Stack Handling MASM Procedures
Subroutine Linkageo o ool
Table and Instruction Generation
AEXTPROC Procedure Summary

6.3. AASTRPRC—Structured MASM Procedures ...

6.3.1.
6.3.2.
6.3.3.
6.3.4.
6.3.5.
6.3.6.
6.3.7.
6.3.8.

Inttialization Before Structure Statement ...
Jump Instructions ... oL
RegisterUsagec.....
IF Structure ..o e
FOR Structure et
LOOP Structure ..ot n
CASE Structure ...t iiiiiieaannn

Conditional Tests,

Section 7. System Service Calls (SVCs)
7.1. The SVC Mechanismcccvinenn.

7.1a. Extended SVC Use

UP-11540.2-B

5-33
5-34
5-35
5-36
5-37
5-38
5-39
5-40
5-41

» o

1

P
PRI R~k —h b e
DO NSN»NNO

@CPGD

? P

N
Ny N
oo

6-30
6-32
6-32
6-33
6-33
6-34
£6-35
6-36
B5-37
6-38

ontents

Cautions ... e 7-2b
Pascal-coded SVC Procedures covvunn. 7-2¢
7.2. RunServices 7-3
7.2.1. COM$—Console Output Message 7-3
7.2.1a COMS$—Console Qutput Message to Status
Line 7-3
7.2.2 COMWS$—Console Output Message and Wait for
Response i 7-4
7.2.3 CSF$—Issue Control Statement 7-4
7.2.4 DATE$—Get Current System Date 74
7.2.5. ERR$—Terminate Program with Error Code 7-5
7.2.6. EXIT$—Terminate Program 7-5
7.2.7. FACMSG$—Expand File Manager Error Code .. 7-5
7.2.8. GETC$—Get Run Control Word 7-6
7.2.9. INFO$—Get Run Information 7-6
7.2.10. LINFO$—Get Load Information 7-6
7.2.11. LOG$—Log Messageco...n. 7-7
7.2.12. PRINT$—Send Message to Current Output
SIream e 7-7
7.2.13. PRTCN$—Set Workstation Print Control 7-8
7.2.14. RAQUAL$—Read Assumed Qualifier 7-8
7.2.15. RDQUAL$—Read Dump File Qualifier 7-9
7.2.16. READ$—Read Image 7-9
7.2.17. READT$—Read Image (Transparent) 7-9
7.2.18. READW$—Read Image (from Workstation) ... 7-10
7.2.19. RINFO$—Get Run Information for a Specified
Run 7-10
7.2.20. RQUAL$—Read Project-ID (Default Qualifier) .. 7-11
7.2.21. SETC$—Set Run Control Word 7-11
7.2.21a TDATE$ —Return Date and Time 7-11
7.2.22. TREAD$S—Type and Read Image 7-12
7.3. CPA Structure Servicesccceviinnnn.. 7-12
7.3.1. CPASAAQL—Add Queue to Alternate Queue List
PP e e e 7-12a
7.3.2. CPASAGPL—AJd PNto GPL. 7-12a
7.3.3. CPASAPPQL—Add Queusto QL (PP) 7-13
7.3.4. CPASAPST—Add SSNioPST 7-13
7.3.5. CPASAQL—Add Queueto QL (PN) 7-13
7.3.6. CPASASPT—Add Segment to Procedure Table
Entry o 7-14
7.3.7. CPASASVC—Add Extended SVC Procedure ... 7-14
7.3.8. CPASCAE—Create Alternate Environment
Entry o 7-15

Jiii UP-11540.2-B

Contents

UP-11540.2-B

7.3.9. CPASCAET —Create Alternate Environment

Table ... 7-15
7.3.10. CPASCKSD —Check Segment Descriptor 7-16
7.3.11. CPASCLA—Create Link Area 7-16
7.3.12. CPASCLONQ—Clone a Queue 7-17
7.3.13. CPASCPPQL—Create PP Queue List 7-17
7.3.14. CPASCQUE—Create a Queue 7-17
7.3.15. CPASCSEG—Create a Segment 7-18
7.3.16. CPASCVIS—Check SDR Visibility 7-19
7.3.17. CPA$DAE—Delete Alternate Environment

Entry o 7-19
7.3.18. CPASDAET —Delete Alternate Environment

Table 7-20
7.3.18a CPASDASVC — Disable SVC Automation 7-20
7.3.19. CPASDPPQL—Delete PP Queue List 7-20
7.3.20. CPA$SDQUE—Delete Dynamic Queue 7-20
7.3.21. CPASDSEG—Delete Dynamic System

Segment ... e 7-21
7.3.22. CPASESSN —Extend Dynamic System

1= |5 21=1 2" 7-21
7.3.23. CPASFFGPL—Find Free GPL Entry 7-21
7.3.24. CPASFFGPLR—Find Free GPL Entry within

Range 7-22
7.3.25. CPASFFLA—Find Free LAEntry 7-22
7.3.26. CPASFFLAR—Find Free LA Entry within

Range ... i e 7-22
7.3.27. CPASFFPST—Find Free PST Entry 7-23
7.3.28. CPASFFPSTR—Find Free PST Entry within

Range ... e 7-23
7.3.29. CPASFFQL—Find Free QL Entry 7-23
7.3.30. CPASFFQLR—Find Free QL Entry within

Range 7-24
7.3.31. CPASFREES—Free Segment in Memory 7-24
7.3.32. CPASGETSD—Get SDR Contents 7-24
7.3.33. CPASGPN—Get PN from GPLEntry 7-25
7.3.34. CPASGQN—Get QN from QL Entry 7-25
7.3.35. CPASGSSN—Get SSN from PST Entry 7-26
7.3.36. CPASGSVC—Get SVC e 7-26
7.3.37. CPASHOLDS—Hold Segment in Memory 7-27
7.3.38. CPASLPST—Make PST a Loadable Segment . 7-27
7.3.39. CPASPINFO—Get PN Information 7-28
7.3.40. CPA$QLIX—Get System Queue List 1 Index .. 7-28
7.3.41. CPASQMDE —Modify Queue Mode 7-28
7.3.42. CPASQMOD—Modify Queue 7-29

Xix

ontents

7.3.42a CPASQSMD — Set Queue Mode

7.3.43.
7.3.44.

7.3.45.
7.3.46.

7.3.47.
7.3.48.
7.3.49.
7.3.50.

7.3.51.
7.3.52.
7.3.53.

7.3.54.
7.3.55.

CPASQSTAT—Get Queue Status
CPASRAQL—Remove Queue from Alternate
Queue List (PP) ... e
CPASRGPL—Remove GPL Entry
CPASRPPQL—RBemove Queue from Queue List
PP e e
CPA$SRPST—Remove SSN from PST Entry
CPAS$RQL—Remove Queue from QL (PN)
CPA$SRSPT—Remove Segment from PT Entry
CPASRSSN —Reserve Consecutive SSN

Entries oo s
CPASRSVC—Remove Extended SVC

Procedure
CPASUSSN —Unreserve Consecutive SSN
ENieS i e e,
CPASXLA—Extend Link Area
CPASXPST—Extend PST
CPASXQL—Extend Queue List

7.4. Dictionary Services i

7.4.1.

7.4.2.
7.4.3.
7.4.4.
7.4.4a

DIC$FENT — Find a Dictionary Entry by
TypefFlags ...
DIC$FIAD —Search Dictionary by Address
DIC$FINM—Search Dictionary by Name
DIC$GENT — Read a Dictionary Entry
DIC$GENTC — Read a Dictionary Entry for
Runid ...

7.5. SDF Record Servicesottt

7.5.1.
7.5.2.
7.5.3.
7.5.4.
7.5.5.
7.5.6.
7.5.7.
7.5.8.

E$GET—Get Record
E$READ—Read Record ,
E$SDFI—Read SDF Record
E$SDFIC—Close SDF Input
E$SDFll—Initialize SDF Input
E$SDFO—Write SDF Record
E$SDFOC—Close SDF Output
E$SDFOl—Initialize SDF Output

7.6. File Manager Servicesc.c.ciiinnnn

7.6.1.
7.6.2.
7.6.3.
7.6.4,
7.6.5.
7.6.6.
7.6.7.

FRSASG—AssignaDevicecocvnnn.
FR$CAT—CatalogaFilecccivnnnn..
FR$CFRO-Clear File's Read-Only Flag
FRCLS—CloseaFile,

FR$CLSI—Close Immediate

FR$DEL—Delstea File v....
FR$DOWN—Down a Device

UP-11540.2-B

Contents

7.6.8.
7.6.9.

7.6.10.

7.6.11.
7.6.12.
7.6.13.
7.6.14.
7.6.15.
7.6.16.
7.6.17.
7.6.18.
7.6.19.
7.6.20.
7.6.21.

7.6.22.
7.6.23.
7.6.24.
7.6.25.

78 900

i 0.£0.

7.6.27.
7.6.28.
7.6.29.
7.6.30.

7.7.1.
7.7.2.
7.7.3.
7.7.4.
7.7.5.

7.7.6.
7.7.7.

7.7.8.
7.7.9.

7.7.10.
7.7.11.
7.7.12.
7.7.13.
7.8. IPM Services

7.8.1.
7.8.2.

UP-11540.2-B

FRSEDEL—Delete an Element from the TOC

FRSEINS—Insert an Element into the TOC

FREENXWL —Get Element Next Write
Location

FR$FDN—Down a File

FR$POS—Position a File

1$PPBUF —Establish PP Instrumentation Buffer
I$PPSETUP—Establish PP Instrumentation

ONly
ISRUN—Set RunICW

I$RUNBUF —Establish Run Instrumentation

Buffer ...
ISSETUP—Setup Instrumentation
I$SQLE5G—Get SQL5 ACCESS oo v
1I$SQL5R—Remove SQLS Access
ISSTAPN—Return Procedure ICW
I$STAPP—Return Port Processor ICW
ISSTARUN—Return RuniCW

FR$ERS—Erasea File
FR$ESRCH--Searchthe TOC
FRSEUPWL—Update Next Write Location
FR$FREE—Freea Device
FR$FUP—UpaFile
FR$OPN—OpenaFile
FR$OPNI—Open a File Immediate
FRSPREP-—Formata Disk
FR$QFE—Move Filename into Appropriate FRP
Field o
FRSRD—Read
FR$RENF—Rename aFile
FRSRESET—Reset HBW
FR$SFRO—Set File to Read-Only
FR$STAT—Statusof File ...t
FR$STATO—Status of Open File
FR$UP—Up aDevicecciveiiiinn..
FRIWRT—Write i
FR$WCT—Write Catalog
7.7. Instrumentation Services
I$FLUSH—Flush Instrumentation
I$PN—Set Procedure ICW
I$PP—Set Port Processor ICW

IPM$CHK—Check Status of IPM Receiver
IPM$CLOS —Close an IPM Connection

7-48
7-49

7-50
7-51
7-51
7-52
7-52
7-52
7-53
7-53
7-55
7-55
7-56

7-56
7-57
7-57
7-58
7-58
7-58
7-59
7-59
7-60
7-61
7-62
7-62
7-63
7-63
7-63

7-63
7-64.

7-64
7-65
7-65
7-66
7-66
7-67
7-67
7-68
7-69
7-69

ontents

7.8.3. IPM$CONN-—Connect to IPM Receiver 7-69
7.8.4. IPM$DISC-—Disconnect an IPM Connection 7-70
7.8.5. IPM$FREE—Free an IPM Connection 7-70
7.8.6. IPM$RCV-—Establish an IPM Receiver 7-71
7.8.7. IPM$STAT—Get an IPM Connection Status 7-72
7.9. Line Module Services 7-73
7.9.1. LM$GLMID—Get Line Module Status 7-73
7.9.2. LM$LOAD—Load Line Module 7-74
7.10. Dispatch Services i, 7-75
7.10.1. PC$CBUG—DEBUG Contingency-Suspended
Process e e e 7-75
7.10.2. PC$CKILL—Kill Contingency-Suspended
Process e 7-75
7.10.3. PC$CMOD—Modify Contingency-Suspended
Process e 7-76
7.10.4. PC$CRD—READ Virtual Space from Suspended
ProCess L. e 7-76
7.10.5. PC$CREG—Register a Contingency Handler .. 7-77
7.10.6. PC$CRES —Restart Contingency-Suspended
Process .. e 7-77
7.10.7. PC$CRS—READ Contingency-Suspended
PMAST e 777
7.10.8. PC$CSTAT—Get Contingency Status 7-78
7.10.9. PC$CWFE—Clear Wait for Event 7-78
7.10.10. PC$CWT —Write Virtual Space in Suspended
Process ... 7-78
7.10.11. PC$IREG—Register for Input Contingency ... 7-79
7.10.12. PCSMRET —Modify Return Address 7-79
7.10.13. PC$POPS—Pop SRTN Entries Off the Stack . 7-80
7.10.14. PC$PAUSE—Suspend Process 7-80
7.10.14a PC$PKILL — Register for Program Kill
Notification 7-80
7.10.15. PC$SCSD—Set Common SDs 7-80
7.10.16. PC$SKAT—Schedule Procedure at Absolute
TiMe e 7-81
7.10.17. PC$SKDT—Schedule Procedure after Delta
Time e 7-81
7.10.18. PC$SKGAT—Schedule Procedure at Time by
GPLX 7-82
7.10.19. PC$SKGDT—Schedule Procedure after Delta
Timeby GPLx 7-82
7.10.20. PC$SLEEP—Suspend Indefinitely 7-82
7.10.21. PC$SREG—Register for Status Changes ... 7-83
7.10.22. PCSWAKE—Wake a Sleeping Process 7-84

i UP-11540.2-B

Contents

Section 8.

UP-11540.2-B

7.11.

7.10.23. PCSWFE—Suspend, Wait for Event

7.10.24. PCSWHO—Determine Current Process-ID

7.11.4. PP$ELIM—Eliminate PP

7.11.6. PP$FREEAS —Free a PP Assigned to a

Program

7.11.7. PPSGETLM —Get LM Microcode ID from ICT
7.11.8. PP$GETSI—Get PP Status and State ltem
7.11.9. PP$PUTLM—Store LM Microcode ID in ICT

7.11.10. PP$START —Start PP
7.11.11. PP$STATUS—Get PP Status
7.11.12. PPSSTOP—Stop PP ... e

7.11.13. PP$STOPAS—Stop a PP Assigned to a

Program
7.11.14. PP$THROT —Establish PP Throttle
. DCP/OS Level 5R1 Microcode support

7.12.1. CPA$SDRD — Set Up Read Access o a

Segment ...
7.12.2. CPASQSMD — Set Queue Mode

7.12.3. PC$CSTK — Return Information from Caller’s

Stack s

7.12.4. PCSRAEQL - Read an Alternate Environment

QL e
7.12.5. PCSRICT — Read an ICT
7.12.6. PC$RPPQL — Read a PP Queue List
7.12.7. PCSRPT — Read a Procedure Table
7.12.8. PC$RQH — Read a Queue Header

7.12.9. PC$RQL — Read a Procedure’'s Queue List

7.12.10. PC$RSST ~ Read an SST 7-96

Common Utility Subroutines

8.1.
8.2.
8.3.
8.4,

8.5.
8.6.
8.7.

SSADTOB—ASCIH Decimal to Binary

S$SADTOBE—ASCI Decimal to Binary, Extended

SSAHTOB—ASCIl Hexadecimal to Binary

S$AHTOBE —ASCII Hexadecimal to Binary,

Extended

S$AQUAL—Copy the Assumed Project-ID into FRP

S$ATOB—ASCH to Binary
S$BLDFRP—Build File Request Packet

PP Program Services
7.11.1. PPSASG—Assign PP
7.11.2. PP$CNFG—Configure PP
7.11.3. PP$CSTART —Configure and Start PP

7.11.5. PP$FREE—Free PP

.. 7-84
.. 7-84
.. 7-85
.. 7-85
.. 7-86
.. 7-86
.. 7-87
.. 7-87

.. 7-88
7-88
7-89
7-89
.. 7-90
.. 7-90
.. 7-90

.. 7-91
.. 7-91
.. 7-92

.. 7-92
.. 7-92

.. 7-93

.. 7-93
.. 7-94
. 7-94
.. 7-94
.. 7-95

7-95

xxii

ontents

8.8. S$BREL—Deallocate a Buffer Area 8-4
8.9. S$BTOA—Binary to ASCHl Decimal 8-4
8.10. SSBTOAE—Binary to ASClHl Decimal, Extended 85
8.11. S$BTOAH—Binary to ASCll Hexadecimal 8-5
8.12, S$BYST—Store Characters 8-6
8.13. S$CANBLD—Build a Message Skeleton 8-6
8.14. S$CDTOB—Convert ASClHl Decimal Character to

Binary ... 8-8
8.15. S$CHKNAME—Check Validity of ASCll Name 8-8
8.16. SSCHTOB—Convert ASCII Hexadecimal Character

toBinary 8-9
8.17. S$CINF/S$SCIPF —Build INFOR$/KEYWORD

Structure ... e 8-9
8.18. S$CONSCK—Check Workstation PDT Entry 8-10
8.19. SSDATEA —Build Date Message 8-10
8.20. SSDTMSG 8-11
8.21. S$FINDC-—Search for Character 8-11
8.22. SSGETM—Allocate Message in Primary 8-12
8.23. SSGETMA—Allocate Message in Alternate 8-12
8.24. S$GIPF—Get Parameter Type - KEYWORD

Structure e 8-13
8.25. SSIACBUFG—Generate Inspect/Change Buffer 8-13
8.26. S$IACBUFM—Generate Modified Inspect/Change

Buffer ... - 8-14
8.27. SSMOVFN—Move Name String 8-14
8.28. SSMVSTR—Move Character String 8-15
8.29. SSNXT—Get Next Character 8-15
8.30. S$PARS-—Parse Characters 8-16
8.31. S$PERCENT—Double Register Percentage

Calculation P 8-17
8.32. S3PDTCHK—Check a PDT Entry 8-18
8.33. S$QUAL—Copy Project-iDinto FRP 8-18
8.34. S$REL—Deallocate a Buffer Area 8-18
8.35. S$RJBFn—Right-Justify Blank Fill 8-19
8.36. S$SEARCHC~—Find Insert Character 8-19
8.37. S$SEARCHM—Find Insert Character 8-20
8.38. SESINF 8-20
8.39. S$SIPF—Search KEYWORD Structure 8-21
8.40. SESKIP 8-21
8.41. S$SRE—Report System Recoverable Error 8-22
8.42. S§STRC—String Compare co.... 8-22
8.43. S$TIMEA—Store Time into Message 8-23
8.44. S$UBTOA—Convert Binary to ASCIl Unsigned 8-23

<iv UP-11540.2-B

Contents

Appendix A. Data Structures

Appendix B.

Appendix C.

Appendix D.

Appendix E.

UP-11540.2-B

AT,
A2.
A3.
A4,
A.5.
AB.
AT,
A.8.
A9,

Module Library File Organization
Preamble Format
[PM Request Packet
Dictionary Entry Format/Request Packet

ABS Element Header Block
Dump File Header Block
File Request Packet Format
Table of Contents Block
MCT/Buffers Interface to File Manager .

A.10. Contingency Packet Format
A1l LogFileEntry,
A2, File Control Block

A121. FCBFormat ...,
A12.2. Extent Profile
A123. FCB Flags
A.12.4. File Manager Functions

Segment Names of Available User System
Structures and Code

Definition Elements

Service Function Codes

B.1.
D.2.
D.3.
D.4.
D.5.
D.6.
D.7.
D.g.
D.9.

Function Codes - File Services (FILE$) .
Function Codes - CPA Services (CPAS)
Function Codes - Run Control Services
Function Codes - Process Control (PC$%)
Function Codes - PP Services (PP$) ...

Function Codes - Line Module Loader (LM$)
Function Codes - Dictionary Services (DICS)

Function Codes - IPM Services (IPM$) .

Function Codes - SDF Record Services (E$)
D.10. Function Codes - Instrumentation Services (I$)

Programming Examples

CP Program Example
Assembly Example (on 0S 1100)
Collection Example (on OS 1100)

A-10
A-11
A-12
A-12
A-12
A-14
A-14
A-15

D-1
D-2

D4
D-5

D-6
D-6
D-6
D-7

=1
E-3
E-3

ontents

Xvi

Appendix F.

Build Example (on DCP/OS)

Multiple CP Processing (DCP/35 and 55)

F.1.

F.2.

F.3.

F.4.

F.5.

F.6.

GQITEM/ARMQ (include PC$WFE) :
F.1.1. TypicalUser ... i
F.1.2. Scenario o
FA1.3. Cost o
Fi4. Benefit i

LOK e
F.2.1. TypicalUser
F.2.2.8cenario cooviiiiiiiiinniinen.
F23. Cost oo i e
F24 Benefit

TS/PAUSE
F.3.4. Typical User o...
F.3.2.8cenario oviiiiiiiiiiii
F3.3. Cost oo
F.3.4. Benefit i i

TS/SPIN
F.4.1. TypicalUser cooiiiiio..
F.42.8Scenario vviiiiiiiiiiieinn.
F4.3. Cost e
Fd4.4 Benefit

TS/SPIN/PAUSE i

F.5.1. Typical User

F.5.2. 8Scenario ...
F5.3. Cost ..o
F5.4. Benefit it
F.5.5. Cautionscviiiiiiininnnnnnn.
Cascading of Queues
F.6.1. System Queue List1
F.6.2. Setting Up Cascading Queues
F.6.3. Runtime Example of Cascading

......... F-2
......... F-2
......... F-2
......... F-2

......... F—4

......... e

UP-11540.2-B

1-1 Stages in Building Programs 1-5
1-2. Absolute Element Layout 1-10
1-3 Dump File Layout 1-10
2-1 Message Header Format 2-1
2-2. System Information Packet 2-4
5-1. Debug Screen ... 5-3
6-1. Fixed Protocol Header i 6-18
9-1. Buffer Pool Profile 9-5

UP-11540.2 XXVii

Tables

[
e

[U

1

[N

[

i
P i 2 2 0 00 N O O A WD

ORON RO

mmmo»mmmcpmmmmmmm &)

UP-11540.2

Debug Functions o

Key to Symbols Used
Location Counter Handling
Constant Manipulation MASM Procedures ...
Field Manipulation MASM Procedures
Value Manipulation MASM Procedures
Extended Instructions
Table and Instruction Generation (AAWRENCH)
Display Control
Summary of AAWRENCH MASM Procedures

Byte Field Manipulation (BEQUF Functions) .
Store Operators ol
Subroutine Linkage MASM Procedures
Table and Instruction Generation (AAEXTPROC)
Summary of AEXTPROC MASM Procedures .

1
it

11 [N N N o) e o) @) le) B o)) &3}
WRNNMNDN = = = T
QWO PRPNORANEOONOC W

O‘!O\O')G)CIDO')GOW@

XXiX

Section 1
Introduction to DCP/0S Programming

This section describes the following:
e The DCP/OS programming environment
e The stages for building programs

e The DCP/OS file system

1.1. DCP/0OS Programming Environment

A DCP/0S program runs on Communications Processor Architecture
(CPA)-defined computers. The DCP/OS is composed of procedures,
segments, port processor programs, and queues -- all of which are
CPA-defined architectural entities. These structures ensure protection
and security. The instructions supported by CPA to manipulate these
structures are privileged.

To maintain the protection afforded by CPA, snly DCP/OS procedures
may run in privileged mode. If other programs need to manipulate
certain CPA structures at run time to create segments and extra
queues, a system service call (SVC) instruction activates privileged
DCP/OS service. See Section 7 of this manual for further information
regarding system service calls.

Some basic concepts of the DCP/OS environment are described in 1.1.1
to 1.1.6.

1.1.1. File System

The DCP/OS file system manager provides services to create and use
contiguous files on a variety of mass storage media, including diskettes,
cartridges, and Winchester disks. During program development, the file
system holds omnibus elements (modules), absolute elements
(executable programs), and add streams (symbolic elements). Files are
named as follows: qualifier*filename.

UP-11540.2 1-1

itroduction to DCP/OS Programming

Elements are referenced in general as qualifier*filename.element.
System files use the special qualifier SYS$.

.1.2. MASM Procedures and Definition Elements

The OS 1100 Meta-Assembler (MASM) processor assembles programs
for any target machine by processing each instruction as a MASM
procedure. All system-wide definitions, including the assembler
instructions, are fully defined in the form of definition elements.

The elements are categorized according to use and context. Appendix C
contains a list of the definition elements. The primary definition
element is AAWRENCH, which contains the central processor (CP)
instruction set, extended instruction definitions, and module definition
MASM procedures. See Section 6 for more information on MASM utility
procedures.

.1.3. Register Sets

M.

The CPA environment supports separate register sets for process mode
and control mode. Both the process mode and control mode sets have
two subsets. One subset contains segment descriptor registers (SDRs),
and the other subset contains general registers (R0O-R15).

Programs must use the process mode register set. You can automatically
specify this mode by using the PROCDEF MASM procedure to define a
user procedure.

.1.4. Parameter Passing

Parameters may be passed between procedures in registers or in data
areas. The user can completely define the register convention. Note,
however, that any data area must be in the caller’s visibility before the
call, and cannot be in the virtual address range X’0000° to X' 1FFF’

because CPA replaces the first four SDRs on a CALL.

.1.5. Process Control

The maximum number of concurrent tasks or processes is fixed at build
time, and defaults to one. The maximum number of tasks may also be
specified at assembly time, using the CPADEF MASM procedure.
However, tasks themselves are not fixed.

-2 UP-11540.2

Introduction to DCP/0S Programming

A new task (or process) is created when

e Initial procedure is dispatched (on loading).

e Queue threshold is crossed.

e Service call is invoked to dispatch a procedure.

Each task (process) starts at a given initial procedure which may call
(using CALL or SCALL) additional procedures and subroutines. The
initial procedure of the task (process) works back up the
CALL/RETURN stack through a series of RTN and SRTN instructions.
When the initial procedure of the process receives control and issues an
RTN instruction, control is then returned to the DCP/OS dispatcher.

Any procedure that services several input queues is made more
efficient by using cascaded queues. See the DCP Series I'mplementation
Reference Manual, Volume 1, Volume 2 Rev.1, and Volume 3
(UP-12728) for a description of cascading.

1.1.6. Exception Handling

The CPA traps all errors in CP programs. All control and errors are
transferred to a DCP/OS procedure. This mechanism is termed a forced
call.

The CPA also traps port processor (PP) program errors, but the
mechanism is different. The current state of the PP program is
captured, stored in a buffer, and queued to DCP/0S. See the DCP Series
Implementation Reference Manual (UP-12728) for a full description of
these CPA mechanisms.

Once DCP/OS detects a CP or PP fault, the action taken depends upon
the mode in which the program was running.

Program% may specify a contingency handling procedure for specific

ture enables programs to survive trivial errors.
LUre enavies programs 1o sut

In interactive mode, you may automatically invoke full-screen debug
when any program faults. In batch mode, the program is aborted. The
program also aborts if no auto-debug trap is set. A dump is taken if it
was previously specified. See the @CRASH command in the DCP Series,
Distributed Communications Processor Operating System (DCP/0S)
Operations Reference Manual (UP-11541).

UP-11540.2 1-3

:roduction to DCP/0OS Programming

1.7. HELP Facilities

Most DCP/OS utilities provide HELP facilities. The DCP/0OS reserves the
H option on the command line for help. It is recommended that
programs provide HELP facilities and indicate on the screen how to
access help by displaying a prompt similar to the following:

Please enter command (H=help) -

By displaying HELP screens only upon user requests (through
prompts), you can avoid perpetual bombardment with menus containing
myriad help options.

.2. Building Programs

Figure 1-1 illustrates the stages of program building. The current
software availability dictates the following split of the development
environment:

e (S 1100 - Editing (Source Code), Assembly, Collection, Building

The OS 1100 environment Remote Symbiont Interface (RSI)
DEMAND is specified in the OS 1100 documentation. The DCP/0OS
environment is compatible with the OS 1100 environment, and
provides a simple facility to copy elements between the two.

e DCP - Building, Debugging

The DCP/OS is a multiuser system. A user can invoke a single or
multitasking program with complete protection from other users.

4 UP-11540.2

Introduction to DCP/0S Programming

1100 Host

Source Code

] (('MASM K

Assembled Program

Element in OS 1100 Format

| @ pcrapp
Element in DCP Format
(@ DCPBUILD Dep
Element in Executable Format Executable Program
: o, .
o e
(' DCPFT («t: COPY

Figure 1-1. Stages in Building Programs

1.2.1. Source Code

For communications processor programs, the host program file
maintains the source code in symbolic elements. The typical assembler
program begins with 3INCLUDE statements, followed by MASM
procedures defining the procedure-related structures (GPL, PST, QL,
and LA). These MASM procedures are GPLDEF , PSTDEF, QUEDEF, and
LNKDEF.

UP-11540.2 1-5

troduction to DCP/0S Programming

The main body of code then follows. The segments of code and data
generated by the assembly are defined by system segment table (S5T)
definition MASM procedures (SSTDEF) at the end of the element.

The assembler program ends with any CPA procedure definitions
(PROCDEF) and the MASM terminator ($END). For a full description of
the MASM facilities, refer to the OS 1100 Meta-Assembler (MASM)
Programming Reference Manual (UP-8453).

The port processor (PP) programs follow the same principle, except
that the procedures are defined by IOPDEF MASM procedures.

See Appendix E for program examples.

2.2. Assembly

Programs are assembled by the MASM assembler on a host system. The
required definition elements are specified in the $INCLUDE statements
at the beginning of the program. These elements are user-dependent.

The CP programs are initialized with the WRENCH MASM procedure, as -
follows:)

$INCLUDE *AAWRENCH'
WRENCH

The PP programs are initialized with the WREC MASM procedure, as
follows:

$INCLUDE 'AAWRENCH'
$INCLUDE 'AAPPROC' WREC

The MASM facility creates OS 1100 relocatable elements.

2.3. Collection
The coliection process has two stages:
e (@WMAP-—collects relocatable elements
e (@DCPAPP—converts O5 1100 format into DCP format

The @MAP (collector) utility is specified in the O8 1100 Collector
Programming Reference Manual (UP-8721). The @MAP utility
produces an intermediate element of modules in 36-bit format.

6 UpP-11540.2

Introduction to DCP/0S Programming

This element must be post-processed (by DCPAPP) into the DCP format.
The output to DCPAPP is called the module library file (MLF).

The MASM output is organized under separate location counters (LCs).
The BUILDER preambles that describe the various CPA modules, such
as segments and queues, appear under special LCs 60 to 63 as follows:

special LCs63—-'DY' header

62-—PROCDEF,ENTDEF, TOPDEF ,QUEUE preambles

61-—-SSTDEF preambles

60--0ther data associated with LC 62 preambles. GPL, PST
etc.

It is important that the Collector include segments (SSTDEFs) in the
same order as stated in the assembly. You can define location counter
sequence and use a simple IN directive to @MAP. Otherwise you must
explicitly request the chosen sequence with multiple IN statements at
MAP time.

1.2.4. Build

The build process can be achieved on the 05 1100 host with the
(@DCPBUILD utility program or on the DCP with the @BUILD utility
program. The @DCPBUILD utility program is faster and provides
greater mass storage capabilities. In this manual, when the DCP/0OS
utility program (@BUILD is not specified, the host utility program
(@DCPBUILD will be assumed.

To create an executable program, independent components of a program
are linked using the @DCPBUILD utility program. The (@DCPBUILD
utility program resolves intercomponent CPA entity references and
automatically generates a dictionary containing the names of these CPA
entities. Creating executable programs from independently created
components allows and encourages a structured program discipline,
Refer to Appendix A for more information on formatting a dictionary
entry.

The required run-time tables for the absolute program are in the header
block. These may be overridden at execution time by parameters on the
call line. Refer to the DCP/0S Operations Reference Manual (UP-11541)
for details on the @DCPBUILD and @BUILD utility programs.

UP-11540.2 1-7

roduction to DCP/0S Programming

The module library file (MLF) input elements contain definitions of the
CPA structures (such as queues and segments) and satisfies all
cross-references by name. For example, a procedure structure (defined
by PROCDEF) contains references to the initial segments that are
defined in segment structures (defined by SSTDEF). The @DCPBUILD
utility program satisfies these cross-references when building a
program.

2.5. Host/DCP Copy

The host utility program DCPFT is used to pair with DCP/0OS across a
channel. The DCP/OS command @COPY can then be used to copy files
and elements from host to DCP and vice versa. See the DCP Series,
DCP/OS Operations Reference Manual (UP-11541) for details.

2.6. Debugging

The DCP/OS has a powerful debug facility. It provides a facility for
looking at the contents of memory, changing the contents of memory,
trapping errors, displaying CPA structure, and a novel debugging
methodology. Debug commands are defined in Section 5.

.3. DCP/0S File System

The DCP/OS file system supports contiguous files accessed by logical
block numbers. To copy files from one device to another, the logical
block size is fixed to facilitate internal block chaining independent of
device characteristics.

The file manager regards each disk file as a logically contiguous
number of fixed-length blocks. This block size is fixed at 256 bytes for
disk files, regardless of the physical device sector sizes. (For example,
cartridge disk sector size is 256 bytes, but diskette sector size is 128
bytes.)

There are two basic file formats: data file and program file. The data
file format is user-defined. A program file, however, is defined by the
DCP/OS. The program file structure supports subfiles called elements.

Elements are logically contiguous sets of blocks. The program file
includes one or more TOC (table of contents) blocks. These TOC blocks
are used by the file system and are transparent to the user program.

8 UP-11540.2

Introduction to DCP/0S Programming

1.3.

o
(98]

1.3.

The supported element types are as follows:
e Omnibus (user defined)

e Symbolic (see 1.3.2.)

e Absolute (see 1.3.3.)

1. Naming Convention

The DCP/OS uses the qualifier*filename.element naming convention.
The maximum character length of the qualifier is six characters, the
file name is eight characters, and the element name is 12 characters. All
files have qualifiers.

The DCP/OS uses various files for system functions. These file names
all begin with SYS and have the file qualifier SYS$. Users should avoid
naming files in this fashion.

For example, the following filenames designate system files:
e SYS$*SYSLIB (system library)

e SYS$*SYSJOB (system runstreams)

e SYS$*SYSLMC (line module code) line module

9 Qumhnliec Flomant
. 2YMDOIIC Liement

A symbolic element contains variable-length text records terminated by
end-of-file sentinels. Each record begins with a 16-bit count that
specifies the number of data bytes in the record. The ASCII data bytes
then follow. Each element ends with an end-of-file terminator, which is
a record byte count of X'FFFF’.

3. Absolute Element (Executable Program)
The absolute element (ABS) shown in Figure 1-2 is described as follows:

e The first block of each ABS is a header record that describes the
executable system contained in following blocks. See Appendix A.

e The header fields specify such characteristics as the size of the 85T,
procedure table (PT), and the initial procedure number (IPN).

UP-11540.2 1-9

troduction to DCP/0OS Programming

e The arrangement of segments and other CPA structures in the
element is not fixed, but depends on the order in which modules are
presented to the build process.

e The SST starts at a fixed block number in the element and is used
as a directory for the rest of the system.

See Appendix A for the layout of the header block.

Block

0 Header Block

1 First SST segment

10
Other Segments
- PT, PPPT, QT, GPL, PST, QL
- Queue headers
- Code and data segments
- Dictionary segments

>end<

Figure 1-2. Absolute Element Layout

.3.4. Dump Files

The dump files are in normal data file format, but are created by the
system. Dump files have a defined internal structure, mapped by the
header block described in Appendix A. The dump file can be analyzed
using the IDUMP or DMPI commands, or transferred to an OS-1100 host
and formatted by DCPFOR/DCPDUMP. See the DCP Series, DCP/0OS
Operations Reference Manual (UP-11541) for details. Figure 1-3 shows
the dump file layout.

Block
0 Header Record
1 Dump data

Figure 1-3. Dump File Layout

-10 UP-11540.2

Section 2
System Message Formats

This section describes the following:
e The DCP/OS system messages

e The DCP/OS system information packet structure

2.1. Standard Message

The system supports a program-user dialog with system service calls
(such as READS$ and PRINT$). Data is exchanged as discrete messages
in CPA message control tables (MCT) and buffers.

The system message format is a DCP/OS convention that describes the
message by message type, length, and position. The message field
offsets and message types are defined in the definition element
AARUNDEF. Fields used within the message header vary, depending on
the message type. The message header format is shown in Figure 2-1.

WORD CONTENT
15 0
0 MH$MTYP message type
1 MH$CNSN workstation ordinal number
2 MH$DBO data byte offset
3 MH$DBC data byte count
4 MHS$ID run-id (or zero)
5 MH$SUPPA supplementary word A
6 MH$SUPPB supplementary word B
7 MH$SUPPC supplementary word C

Figure 2-1. Message Header Format

UP-11540.2 2-1

stem Message Formats

The currently defined user message types are

MH$MCO Output message

MH$MCOT Output message transparent (no scroll)
MH$MCI Input message

MH$MCIT Input message transparent (escape mode)
MH$MCIF Input function key (logical 1-65)
MH$MREAD Input data

MH$MEOF End-of-file to read request

MH$MINFOR INFOR$ or KEYWORD structured message
MH$MRDRQT read

2. System Information Packet (INFOR$)

The INFOR$ packet is an encoded version of a program execution
statement. It is created by the system manager when it detects the
traffic as control mode data. It is also created by the run manager on
data read from a batch READS$ file if the run is in control mode. The
input to an INFOR$ packet is data similar to the program call notation
structure used by the OS 1100. After the packet is created, it is saved
for reference by the user and is accessed by invoking the run service
READS. Once the user has acquired the packet, the packet becomes the
user’s responsibility.

The INFOR$ packet output is a structure using control bytes and length
bytes. You can reference this structure directly, or you may use the
string handling subroutines to retrieve pertinent information about the
input. The packet is built with a standard MH$ header with a message
type of MH$MINFOR. The originating work station or run unit is stored
in the header. The packet attributes are stored within the
supplementary words MH$SUPPA through MH$SUPPC. This
encompasses a byte containing the highest specification created
(IF$LSPEC), whether it has 0S 1100 type file references in the packet
(IF$FGN), or whether it is a nonstandard INFORS$ structure (IF$IPF). If
the structure is nonstandard (the IF$IPF bit is set), it means that a user
has parsed an input by calling the S$CIPF utility subroutine using
SCALL. This packet then contains the KEYWORD=(PARM,PARM)
structures and does not reflect standard file notation data.

> UP-11540.2

System Message Formats

If the packet is the standard INFOR$ type, then MH$SUPPA and
MH$SUPPC contain a bit map of the options supplied on specification
zero of the input. You can reference the option bits by the names
IF$AOPT through IF$ZOPT inclusively.

To reference a standard INFOR$ structure, use the specification number
and field type. The typical format of an INFORS$ input is

@QUAL*FILE.ELEMENT,OPTIONS Q*F/R/W.E...

The read and write keys (fields R and W) are not processed by the file
manager on local files. The defaults defined in OS 1100 file notation
apply. OS 1100 file cycles, versions, and element cycles are not

supported.

The following are the currently supported control bytes:

IF$bOPT
[F$SPEC
IF$CTYP
IFSNAME
IF$KEYW
IF$PARM
[F$VOL
IF$QUAL
IFSREADK
[F$WRITK
IFSFILE
IF$ELT
IF$ASCII
IF$FOE

TFETND
ix

QR VIN R

IF$SLNT1
IF$SLNT2
[F$SLNT3

b is an option of A through Z. This is a bit.
Data is a specification number.
Data is a keyword card type.
Data is a keyword card name.
Data is a keyword.

Data is keyword parameter.
Data is a host or volume name.
Data is a file qualifier.

Data is an 1100 file read key.
Data is an 1100 file write key.
Data is a file name.

Data is an element name.

Data is an ASCII string.

Data is a file or element.

This is the END of the packet.
Data following first slash (/).
Data following second slash (/).
Data following third slash (/).

Figure 2-2 describes the INFOR$ packet structure of the following

example:

@QUAL*MYFILE.MYELT,ABC MYFILEL. ,MYELT2

UP-11540.2

2-3

stem Message Formats

WORD | CONTENT
15 0
0 MH$MINFOR (message type)
1 n (workstation ordinal number)
2 x' 0010’ (data byte offset)
3 x' 002D’ (data byte count)
4 n (run-id)
5% 0 (no special flag) 2 (highest spec number)
6 IF$ AOPT IF$BOPT, IF$COPT
7 (option bits set)
8 IF$SPEC 0 (spec number)
9 IF$QUAL 4 (length)
A Q’ oK
B A’ L
C IF$FILE 6 (length)
D ™ Y’
E B T
F L B
10 IF$ELT 5 (length)
11 M 'Y’
12 K L
13 T IF$SPEC
14 1 (spec 1) IF$FILE
15 7 (length) ‘M’
16 Y’ F
17 T L
18 E 1’
19 IF$SPEC 2 (spec number)
1A IF$ELT 6 (length)
1B ‘M’ Y’
1C E L
1D T "2
1E [F$END 0

Figure 2-2. System Information Packet

UP-11540.2

Section 3
CPA Module Definition MASM Procedures

This section describes the following:

e The MASM procedures that create the CPA entities

These module definition MASM procedures (defined in AAWRENCH)
produce the information required to subsequently build a program.
Refer to the @BUILD utility program in the DCP Series, DCP/0OS

Operations Reference Manual (UP-11541) for more information on the
build program.

Each of the following MASM procedures generates either a full CPA
entity module (such as SSTDEF -> segment) or part of a module (such
as GPLDEF -> procedure). The difference is transparent, because each
MASM procedure is used for a specific purpose within the program.

3.1. ATXREF - Sharing Lists

The GPL, PST, QL, and LA lists are normally constrained to use within
one assembly.

The ATXREF MASM procedure allows sharing of the GPL, PST, QL, and
LA lists between assemblies. The ATXREF MASM procedure does not
allow forward references. A referenced table must be defined before
build time. See the PROCDEF MASM procedure definition.

Format
ATXREF[,'< export-reference>'] < import/export list>
Parameters

< export-reference> A 1- to 4-character name.

<import/export list> .:='<import>’/
‘<lexport>’/
'<import>’<import/export list>

UP-11540.2 3-1

'A Module Definition MASM Procedures

'<<export>’<import/export list>

and
<export>:= GPL / QUE / PST / LNK
<import>:= <export>=<lexport reference>

Note: Blanks are not allowed within strings.
Example

ATXREF, 'NEWA' 'GPL','LNK','QUE'
ATXREF, 'QUE=NEWA','LNK=PQR'
ATXREF, 'PQR" 'LNK','GPL=NEWA'

Fuanction

The ATXREF MASM procedure generates import and export capabilities
for selected architectural MASM procedures.

Note: The ATXREF MASM procedure should be coded before any
architectural MASM procedures.

An export reference is a name used to label architectural tables (AT)
and prefix their entry points. It is the name that a potential shar
an AT uses to specify where it should be picked up.

Architectural tables that can be exported are the GPL, PST, QL, and
LA. To export one of these, code GPL, PST, QUE, or LNXK in the
ATXREF call line, along with an export name.

To import references, that is, to pick up CFACCS from a GPL, the
importer must encode the relevant GPL. The entries, in any order,
require encoding. This encoding does not need to correspond exactly to
that encoded by the exporter. Similarly, only the names of the
references are necessary. Add any subfields for clarity.

If no references are needed within an assembly, no corresponding
architectural MASM procedure need be coded by an importer. For
example, the table and not its contents is important (as is always the
case with the L.A), so no corresponding MASM procedure need be coded
by the importer.

To import an AT, the relevant AT identifier is equated to the export
reference of the exporter, for example, 'GPL=ABC’. Up to four tables
may be simultaneously exported or imported, but a table marked for
export cannot be imported.

2 UP-11540.2

CPA Nodule Definition MASM Procedures

Always include the MASM procedure because no AT is exported unless
you invoke the relevant MASM procedure. All the affected MASM
procedures (PROCDEF, GPLDEF, LNKDEF, and PSTDEF) are

unchanged in their external form.

Example of ATXREF Exporting GPL and QL

$INCLU
WRENCH

DE 'AAWRENCH!

ATXREF,*ABC' 'GPL','QUE'

GPLDEF "SICOMP '

QUEDEF
PSTDEF
ENTRY
LOADC
CALL
51 SSTDEF

TEST PROCDE
$END

'CFACCS';
etc
,20 'QLl',G,P,A;
Q2 ,PLA;
etc

CFACCS
a'l

F,1 '"ENTRY'

. ABC is export reference
. GPL is marked for export
. QL s marked for export
. Define GPL as normal

. Define QL as normal

. PST required but not exported

. Use current entry references
. Ditto
. Still need old label (1)

. for PSTDEF
. Ditto

The following external entry points (EEPs) are created:

ABCSUABRT $EQU

ABCCFACCS $EQU
ABCOL SEQU
ABCQ2 $EQU

SUABRT
CFACCS

Ql
Q2

Note: No external entries are generated for the PST.

Example of ATXREF Importing the GPL and QL

$INCLUDE
WRENCH
ATXREF
GPLDEF
QUEDEF

PSTDEF

UP-11540.2

' AAWRENCH'
'GPL=ABC', 'QUE=ABC"

'CFACCS!
IQll 'Qzl

R4,Q2

. GPL, QL marked for import

. Only require CFACCS

. No point in specifying

. access

. This is our very own PST ENTRY

. Queues and procedures used normally

3-3

A Module Definition MASM Procedures

CALL CFACCS . Ditto

ééé‘. SSTDEF, 1 . Must define segment for code
TEST1 PROCDEF,1 'ENTRY',,,,*TEST,,*TEST . GPL and QL from procedure TEST
$END

ATXREF creates the following equates:

CFACCS $EQU ABCCFACCS

02 $EQU ABCQ2

Q1 $EQU ABCQ1L

Example of ATXREF Cross-Referencing from a Set of Service
Routines

If you have a collection of separately assembled subroutines, you can
use the import technique. The only difference is that you do not use
PROCDEF.

$INCLUDE 'AAWRENCH!

WRENCH .
ATXREF "GPL=ABC','QUE=ABC' . GPL and LQ marked for import
GPLDEF "CFACCS' . Requires CFACCS only
QUEDEF QL Q2! . No point in specifying access
CALL CFACCS . Ditto

NEWSEG SSTDEF . Must define segment for code
$END

TXREF generates the same definitions as for the previous import
case.
CFACCS $EQU ABCCFACCS
Qz $EQU ABCQ2
Q1 $EQU ABCQL

} UP-11540.2

CPA Module Definition MASM Procedures

3.2. CPADEF - Define Defaults

The CPADEF MASM procedure defines default reservations for dynamic
segments, dynamic queues, process control stacks, and lock table.
Although the system automatically expands the program space as
segments or queues are requested, if a specific reserve is required,
CPADEF signals to the DCP/OS loader that it requires this amount of
space at load time. This procedure can alsc help you avoid
unnecessarily fragmenting bank space.

The CPADEF MASM procedure must be the last CPA module MASM
procedure in the element.

Format

CPADEF xgt, xsst, stks, locks

Parameters

xqt The additional number of spare queue table entries.

xsst The additional number of spare system segment table
entries.

stks The maximum number of active process control stacks.

locks The size of the lock table.

UP-11540.2 3-5

\ Module Definition MASM Procedures

3. ENTDEF - Additional Entry Points

The ENTDEF MASM procedure specifies additional entry points that
share all the properties of a paired procedure number (PN). See the
PROCDEF/PRIVDEF or INITDEF MASM procedures.

Format

pname ENTDEF ‘ep','pair'

Parameters

prname The procedure name (maximum eight characters).
Because this is the name other users must specify in
their GPLDEF, it is the name used to call the
procedure.

ep The entry point label.

pair The paired procedure name (PNAME).

UP-11540.2

CPA Module Definition MASM Procedures

3.4. GPLDEF - Define Gated Procedure List

The GPLDEF MASM procedure defines a gated procedure list (GPL). It
specifies the names of all procedures called by the procedure.

Format

[gplnm} GPLDEF,m ‘pname',BLOCK,;

Parameters

aplnm

m

prname

BLOCK

UP-11540.2

"pname' ,BLOCK, k;
.etc ...
The name of this GPL (optional).

Number of blank entries to reserve at the start of the
table.

The name of a called procedure.

Causes initial blocking of access to this PN. The builder

~ e £ ~1 A

creates a flag from this field which is stored in the
most significant bit of the PN.

Number of slots to reserve before inserting next PN.

3-7

A Module Definition MASM Procedures

5. INITDEF - Generate Initial Procedure

The INITDEF MASM procedure defines a procedure in the same way as
PROCDEF, but also specifies that the generated procedure is to be the
initial procedure of the built program. See 3.8 for additional discussion
on procedure entry points and shared lists.

Format

pname INITDEF,n,BLK 'ep',[7cw],psw,,gpl,pst,ql,la;
‘snamea' ,WRITE *snameb' ,WRITE

Parameters

prame The procedure name (maximum eight characters).
Because this is the name that other users must use in
their GPLDEF, it is the name used to call the
procedure.

n The SSTDEF cross-reference value from which system
segment numbers (SSNs) are taken. If » is not present,
only segments given with SNAME are used.

BLK Causes the procedure to be initially blocked.

ep The entry point label.

tcw The initial instrumentation control word for the
procedure (optional).

DSW The initial PSW setting.

gpl The GPL name (defaults to unnamed GPL).

pst The PST name (defaults to unnamed PST).

ql The QL name (defaults to unnamed QL).

la The LA name (defaults to unnamed LA).

snamex The name segment (SNAMEx) loaded on CALL.

UP-11540.2

CPA Module Definition MASM Procedures

WRITE

UP-11540.2

Notes:

1. The number of segments may vary from zero to
three.

2. If the SSTDEF cross-reference (n) is not used, the
segment names are provided in the sequence
SD0,SD1,5D2,5D3.

3. If the SSTDEF cross-reference is used, the order is
SD3,8D2,SD1,5D0.

Gives this procedure write access on segment 1, 2, 3, or
4. The builder creates a flag in the most significant bit
of each SSN field in the PT. It is redundant if write
access is specified in the SSTDEF for the named
segment.

3-9

A Module Definition MASM Procedures

6. IOPDEF - Generate PP Program Table Entry

The IOPDEF MASM procedure generates a port processor (PP) program
table entry.

Format
IOPDEF 'name' ‘'pao’,'[pail’ ‘proct ‘'qlist'
'seg0','segl', 'seg?', " 'seg3’

Parameters

name The name of this PP program.

pao The program address for output.

pai The program address for input (optional).

proc The name of the CP procedure scheduled when this PP
stops due to a specification error (see 4.1).

qlist The name of the queue list (optional). If this parameter
is a number rather than a name, it is used as the length
of an empty queue list.

segx The segment visibility needed (optional).

0 UP-11540.2

CPA Module Definition MASM Procedures

3.7. LNKDEF - Define Link Area
The LNKDEF MASM procedure defines a link area (LA).
Format

[Tnknm] LNKDEF,m

Parameters
Inknm The name of this link area (optional).
m The number of entries to reserve.

UP-11540.2 3-11

A Module Definition MASM Procedures

.8. MARKDEF/PROCDEF/PRIVDEF - Generate

-12

Procedure Module

These MASM procedures generate a procedure module with the PSW set up
for a user or for privileged software, depending on the MASM procedure used
(MARKDEF, PROCDEF, or PRIVDEF).

MARKDEF sets the marked procedure flag bit in the dictionary entry. Use
MARKDEF with the new DICSFENT service to allow runtime scarches for
flagged procedures.

Procedure Entry Points

The first PROCDEF MASM procedure in an assembly generates a full module
definition, Subsequent PROCDEF MASM procedures generate new procedures
sharing the GPL, PST, OL, and LA (GPQL) of the first (paired) procedure but
with their own SSNs and entry point (EP).

Shared Lists

The GPL, PST, QL, and LA parameters are not normally provided. This results
in the unnamed lists being associated with the procedure definition.

Each list may be specified by name in one of two ways:
® Specific list
® Cross-reference list

A specific list can specify a named list within the assembly. This allows you to
use multiple lists within an assembly. In this case, you provide the list name
without quotation marks.

A cross-reference list can specify a list that is actually generated in another
assembly. In this case, you provide the name of the owner procedure, in the
following format:

*'name'

The list resolution is processed at build time. See the ATXREF MASM
procedure that is used in conjunction with this facility.

Format

pname PROCDEF,n,BLK 'ep',,,.gpl,pst,ql, 1a ;
"snamea' \WMRITE 'snameb' WRITE .

UP-11540.2-A

CPA Module Definition MASM Procedures

pname PRIVDEF,n,BLK ‘ep', Tcw,psw,,gpl,pst,ql,la ;
'snamea' ,WRITE 'snameb' ,WRITE ..

pname MARKDEF,n,BLK 'ep',icw,psw,,gpl,pst,ql,la ;
'spamea' ,WRITE 'snameb' ,WRITE .

Parameters

pname The procedure name (maximum eight characters). Because
this is the name that other users must specify in their
GPLDETF, it is the name used to call the procedure.

n The SSTDEF cross-reference value from which SSNs will be
taken. If »n is not present, only segments given with SNAME
are used.

BLK Indicates that the procedure is initially blocked.

ep The entry point label.

icw The initial instrumentation control word for the procedure.

psw The initial PSW setting.

gl The GPL name (defaults to unnamed GPL).

pst The PST name (defaulits to unnamed PST).

ql The QL name (defaults to unnamed QL).

la The LA name (defaults to unnamed LA).

snamex The name segment (SNAMEX) loaded on CALL.

Notes:

by
|
S
3
]
=
(3]
3
=3

2. If the SSTDEF cross-reference (n) is not used, the segment
names are provided in the sequence SD0,SD1LSD2,SD3.

3. If the SSTDEF cross-reference is used, the order is
SD3,8D2,5D1,SDO.

UP-11540.2-A 313

SPA Module Definition MASM Procedures

WRITE

Gives this procedure write access on segment 1, 2, 3, or

4. The builder creates a flag in the most significant bit of each
SSN field in the PT. It is redundant if write access is specified
in the SSTDEF for the named segment

3.9. PSTDEF - Define Procedure Segment

Table

The PSTDEF MASM procedure defines a procedure segment table (PST). It
specifies the names of all segments that can be loaded (LSEG) by the

procedure.

Format

[pstnm]

sname

WRITE

14

PSTDEF[,m] 'sname' \WRITE[, k] ;
"sname' \WRITE[, &];

The name of this PST (optional).

The number of blank entries to reserve at the start of the
table (optional).

The name of the segment that may be loaded (using LSEG)
by a procedure in this assembly element.

Permits write access to the segment. The builder creates a
flag from this field that is stored in the most significant bit of
the SSN.

Caution: Any writes to a transient segment will be lost unless
the segment is held in memory. See the CPASHOLD and
CPASFRELES services in Section 7 and the descriptions of
resident and transient segments in Section 9.

The number of slots to reserve before inserting the next SSN
(optional).

UP-11540.2-B

CPA Module Definition MASM Procedures

3.10. QUEDEF - Define Queue List

The QUEDEF MASM procedure defines a queue list. It specifies the names of
all queues used by the procedure.

Format

[glnm] QUEDEF[,m] 'qname’,g,p,al.k];

“gname', g, p,al k]
..ete..,

Parameters

glnm The name of this queue list (optional).

m The number of blank entries to reserve at the start of the
table (optional).

gname The name of the queue used.

apa Get, put, or arm. Field position is significant; separate unused
fields with commas. For example: ,,a

k The number of slots to reserve before inserting the next entry
(optional).

UP-11540.2 3-15

A Module Definition MASM Procedures

11. QUEUE - Define a Queue
The QUEUE MASM procedure defines a queue.

Format

gname QUEUE, addr type size mode thrshld,'procedure', qx Rl

Parameters

gname The queue name.

addr The hardware ID (for example, RID, SID).

type MCT (message control table queue)
LIT (literal queue)
SAIL (software attention item queue; uses the

SOL1 for the run)
SPACE (space queue)
LIST (linked MCT queue)
SAI CPA (software attention item queue; uses the
CPA SQLI)

size The queue size.

mode The number of back entries allowed.

thrshid The queue threshold (maximum 255).

procedure The name of SAI PN scheduled.

qx The queue priority (0 to 3). If a queue name is given instead,
the named target queue is placed in either the CPA SQL1 or
the SQL1 of the run by the builder/loader and is used as a
cascade queue.

RI The 16-bit parameter in R1 on initial dispatch.

Note: See the INFO file on the DCPJOS level 5RI release tape for additional
information on cascading queues.

16 UP-11540.2-A

CPA Module Definition MASM Procedures

A queue defined as SAICPA becomes an event queue and is placed in the CPA
architectural SQL1.

A quene defined as SAI becomes an event queue and is placed in the
non-architectural SQL1 of the run.

Worker queues specifying a Qx with a SAICPA queue name have the following

SAIL
Run/PN User R1
Parameter
16 bits 16 bits

‘Worker queues specifying a Qx with a SAI queue name have the following SAIL
User R1 Real Address of
Parameter Event SAI Queue
8 bits 24 bits
Up to 251 even

e

queues can be defined on the SQL1 for each run.

Up to 251 event queues can be defined for the one CPA SQL1 in the system.

UP-11540.2-A 3-16a

-16b UP-11540.2-A

CPA Module Definition MASM Procedures

3.12. SSTDEF - Define CPA System Segments

The SSTDEF MASM procedure defines one or more CPA system
segments. One or more segment modules are created, depending on the
size of the code or data. If the segment size exceeds the 4K byte
boundary, another segment is automatically generated. These extra
segments are named as follows:

segnam$n

where

segnam The original segment name.

n The sequential number, starting at 1.

Format

snamex SSTREF,n ‘memtype’ mode~flags offset,max,min lc,Ic,...

Parameters

Snamex The segment name (maximum six characters).

7 A cross-reference to PROCDEF. The associated
procedure uses all 58T entries generated without
having to name each one.

memiype The acceptable parameters are
TAASZRES for resident segments
TAASZTRN for transient segments

mode-flags At least one of the following modes must be specified:
CP communications processor (CP)

executable
or port processor (10P) executable
READ segment may be read from
SUBSEG segment may be subsegmented (default)
WRITE segment may be written to
CONTIG segment should be contiguous
offset The base virtual address; for example, SDR2.

UP-11540.2 3-17

A Module Definition MASM Procedures

max An optional parameter specifying the maximum number
of SDRs this segment can use. A warning is given if the
size is greater. T

min An optional parameter specifying the minimum number
of SDRs this segment can use. A warning is given if the

size is less.

lc The location counter to include in this segment.

8 UP-11540.2

Section 4
Contingency Handling

This section describes the following:

e Contingency handling for PP state item

e Contingency handling for CP specification exception
e Contingency handling for IPM state change

e (Contingency handling for throttle level change

e Contingency handling for II console command

Contingency handling allows a designated procedure called a
contingency handler to examine the event type and the task which
experienced the event. It also provides for taking other appropriate
action, such as cleaning up the affected environment and rearming the
queues.

The user program may directly dispatch a specific procedure when
certain exception conditions are detected. The process of invoking user
contingency handlers for all cases is detailed in the following
subsections. In general, the contingency handling procedures are simply
dispatched with a parameter that specifies the identity of the entity in
question. The contingency handler can then invoke a DCP/OS service to
retrieve detailed contingency information and take appropriate action.

4.1. PP State ltems

A PP state item is posted whenever a PP program errs or halts. A CP
contingency procedure may be designated for each PP program on the
IOPDEF statement in the PP program source. This statement defines the
PP program environment.

At run time, if a state item is posted from any port running that PP
program, the CP contingency procedure is dispatched with the dispatch
parameter (R1) set to the port number.

UP-11540.2 4-1

ntingency Handling

The contingency procedure then takes the required action. This could
simply be to kill the PP (via PP$ELIM) and restart it. Usually, the
handler will invoke the DCP/OS service PP$GETSI to retrieve the state
item. The cause of the PP stop may then be determined. If the state
item was caused by the PP issuing a HALT instruction, it may well be
that an operator had commanded the program to stop the PP. In this
case it is likely that the handler will be programmed to free the PP and
return. If the state item was caused by a PP program error, the handler
may be programmed to restart the port.

These decisions are made when designing the contingency handler.

.2. CP Specification Exceptions

The DCP/OS traps all CP errors with CPA forced calls to PN1 or PN4. If
the program process errs and registers a contingency handler to manage
the error, then the process in error is suspended and the process-1D is
queued on a literal queue. This contingency literal queue is specified
when the contingency registration service (PC$CREG) is called.

If the contingency handling process itself crashes, the program is
aborted.

When such a CP contingency occurs, a literal specifying the contingency
type and process-ID is placed on the designated queue. If the
contingency queue is full, the program is aborted, since this is regarded
as an error in the contingency handler itself.

The CP contingency literal is 32 bits wide. It uses the 32 bits as follows:

31 15 16 0

2 UP-11540.2

Contingency Handling

Bit 31 of the error type can take one of the following values:
s 1 DCP/OS error code
e () CPA error code

The process-1D (PID) enables the contingency handler to identify the
crashed process on calls to PC$CKILL, PC$CSTAT, and so forth.

The contingency handling services provide the user program with tools
to construct a sophisticated, nonstop environment.

The simplest method of recovering from errors in a CPA environment is
to clean up a crashed process and to ensure that all queues serviced by
the initial procedure are rearmed. The contingency handler kills the
errant process (PC$CKILL) and reschedules the initial procedure. Some
data may be lost but the program survives what would otherwise be
fatal errors.

4.3. IPM State Change

The inter-program message (IPM) services provide a facility to transfer
messages between separate, cooperating programs. An IPM connection
implies the existence of a receiver and a transmitter. If the program at
either end of the connection aborts or closes down its end of the
connection, the result is an IPM state change. An IPM connect request,
issued by a transmitter, also results in a state change at the receiver

end.

An IPM contingency queue signals this change of state to the paired end
of the connection. The caller designates the contingency queue when
registering a receiver or setting up an IPM connection. It is an optional
facility. If a contingency queue is not specified, the program using the
IPM must maintain its own contingency checking (with timers and calls
to get the IPM connection status, and so forth).

When such an IPM contingency occurs, a literal specifying the IPM
connection-1D is placed on the designated queue. If the contingency
queue is full, the contingency is ignored and it is up to the IPM user to
request the connection status at some future time.

UP-11540.2 4-3

itingency Handling

The IPM contingency literal is 22 bits wide. It uses the 32 bits as
follows:

31 15 16 0

Contingency Status | IPM Connection-1D

The contingency status can take one of the following values:
s [PC$CONN (Transmitter issued a connect - IPM$CONN)

e [PC$DISC (Transmitter issued a disconnect - IPM$DISC)

o IPC$FREE (Receiver issued a free - IPM$FREE)

In an IPC$DISC or IPC$FREE contingency, terminate the IPM
connection and retry.

In an IPC$CONN contingency, open an IPM connection in the reverse
direction. Establish a two-way pipe as follows:

e Retrieve the connection status using IPM$STAT.

e Get the transmitter’s IPM name from [P$REPLY. field

e Issue an IPM connect request using IPM$CONN.

4. Throttle Level Change

A DCP/OS system specifies a number of buffers that satisfy normal
operation. This number reflects the real and usual demand for buffers
by the system including all programs that are run. When the system’s
demand for buffers goes beyond this number, all programs that have
registered a procedure to receive status changes (using PC$SREG) will
receive a throttle level change indication. Any program can access
segments SCT and SYSINF to ascertain the current memory conditions
using the memory management variables and parameters contained in
these segments.

UP-11540.2

Contingency Handling

Based upon the status change indication, and the additional memory
management information (if needed), the registered program should
modify its own behavior in order to protect itself and to help prevent
the exhaustion of the potential buffer pool. The program should view
this indication with some urgency since the demand for buffers by some
programs is at that point very high.

When in throttle, the DCP/OS reduces demand for buffers by
preventing the following activities:

e New program loads except for privileged runs

e New transient segment loads (into buffers) except for DCP/0OS
transients, privileged runs, and programs registered for status
change notification (this is logically transparent)

e Instrumentation

When in throttle, the DCP/OS breaks banks into 128-byte buffers or
4096 byte segments, as required. Adjustable memory management
parameters exist for various frequency and sizing considerations.

If the entire potential buffer pool is exhausted, the DCP/OS will begin
to kill programs as determined by the run priority. Lower priority jobs
are killed first.

The run-priority is a number from 1 to 26 according to the priority
letter entered on the @RUN line where A corresponds to 26, B
corresponds to 25, and so on.

When the system’s demand for buffers returns to normal and the
throttle condition subsides, all programs that have registered using
PC$SREG receive a throttle level change indication.

See Section 9 for more information on throttling and on memory
management.

4.5. 1l Contingencies
When an operator enters
II run-name

on the DCP/0OS console, the contingency procedure for that run
(registered in PC$IREG) is dispatched with the value of ST$II in R1.

UP-11540.2 4-5

%,

Section 5
Debug Facilities

This section provides the following information:
® Describes the tasks debug can perform
Explains how to enter debug mode

@
® Lists the debug commands
@

Describes the function and format of each debug command

5.1. Using Debug Facilities

Debug 1s the tool for debugging programs under DCP/OS. It uses full-screen
displays and supports the functions shown in Table 5-1. The debug commands

are fully described in 5.6.

Table 5-1. Debug Functions

Description

Command

Set the address display to byte mode

Set and display breakpoint parameters

Catch system service call (SVC) to be trapped
Dump debug session

End debug mode

Flip register display

Resume a trapped process

List available commands

Inspect Communications Processor Architecture (CPA)
tables

T & m m T O W

UP-11540.2

continued

5-1

bug Facilities

Table 5-1. Debug Functions (cont.)

Description | Command

Display the current call return stac!; o “ : K T
Set the display length of the inspect area L
Modify the current display area M
Step through the next one or more instructions N
Step, but treat SCALL and CALL instructions as one (0]
instruction

Set and display profile parameters P
Query dictionary Q
Modify registers R
Display segments S
Switch the status display to trap T
Inspect the virtual environment of a trapped process V

Set the inspect mode to word W

Kill the current trap X

Set breakpoint parameters to zero Z
Display the next page of memory +
Display the previous page of memory -

2.

Entering Debug Mode

You can enter debug mode in one of these ways:

®

Using the console mode command DEB. See the DCP Series, DCP/OS
Operations Reference Manual.

Using the $ option when invoking a program in demand mode. See the
(@CRASH utility in the DCP Series, DCP/OS Operations Reference Manual.

Using the demand mode bypass command @@DEB. See the DCP Series,
DCPIOS Operations Reference Manual.

UP-11540.2-A

Debug Facilities

@ Automatically, on encountering a program error, a breakpoint, or a system
service call (SVC) catch

Note: In demand mode, you must be privileged to enter debug mode if you
are not debugging a program. See the @PRIV command in the DCP
Series, DCP/OS Operations Reference Manual.

Regardless of what method you choose, you are presented with a full-screen
display, comprising an inspect arca and a status display area (see Figure 5-1).
After you enter debug mode, you may begin entering any of the debug
commands listed in Table 5-1.

~ h

DEBUG Wed 16 Nov 88 11:29:48

Commands: A=address B=breakpoint C=catch SVC D=dump E=end
F=flip G=go H=help I=insp tab J=n/a K=stack
L=1ength M=mod memory N=single step O=one step P=profile Q=query
R=mod regs S=segment T=disp trap U=n/a V=virtual W=word
X=kill trap Y=n/a Z=zero brkpt +=next page -=prev page

For help in the use of a particular command enter: H <command >

Status: Amod=WORD Imod=REAL Adr=000000 #Tr=00 U=Y

Figure 5-1 . Debug Screen

UP-11540.2 5-3

bug Facilities

3. Command Format

The command format and a description of each command are in the following
subsections. If you enter the command correctly, a display appears. If you enter
the command incorrectly, you may hear a beep (depending upon the type of
terminal you use). The command line remains on the screen so you may reenter
the command correctly.

All numbers are in hexadecimal except the display length, breakpoint count, and
the number of instruction steps.

4. Setting Program Traps
Starting Up

You usually initiate debug sessions by executing the user program with the $
option in demand mode. This option forces a pseudotrap at the entry point to
the user program so you may set breakpoints and patches before executing the
program. '

Debugginge
o o

RS

After entering debug using the $ option, you must cause your program to trap
at a required point and then examine the virtual memory environment before
proceeding.

There are two methods of causing program traps:

Opidaliz

@ Using the debug B command (breakpoint) to set breakpoint instructions

® Using the debug C command (catch service call) to trap user-selectable
service system calls (SVCs)

A troublesome area may be swiftly pinpointed if a program contains many
SVCs. By dynamically redefining the CATCH options and modifying code and
data, you can patch several problems in a short time.

If you have reached the problem area, and the solution is not obvious, you may
have to set a breakpoint at a specific address in user code and then examine the
conditions when the program hits the breakpoint. While on a breakpoint, you
may want to use the NEXT command to observe registers and memory as each
instruction is executed.

UP-11540.2-A

Débug Facilities

5.4a. Profiles and Logging

You can dump portions of a running Telcon system or a program without
terminating Telcon to analyze problems that occur during online traffic. The
debug P command (profile) executes nearly any combination of debug
commands at breakpoints you specify, and displays them. If you choose to log
the results to disk, you can run the program unattended and use the utility
program (@SYS to view the log file using the debug option (@SYS,DQ).

The breakpoint and profile combinations can be simple and concise or varied

and complex depending on the type and extent of the data you are gathering.

You can instruct profile commands to select the breakpoints on which specified
commands execute. You can specifiy up to 8 profiles (numbered 1 through 8).
The profile numbers you use change and zero out profiles. You can, however,
omit the number when you add a new profile, because the new profile is
assigned the next available profile number. ‘

Use L to specify the logging option. You can attach the L to the profile number
as follows:

Example
P IL

Or, if you do not specify a profile number, you can specify the logging option
directly after the profile command as follows:

Example
P L

You specify BRKPTs within parentheses. If you omit the BRKPT, the profile
(P) command assigns the BRKPTs. Use a semicolon () to separate profile-
specified commands.

Use a percent sign {%) before each comment.

The following example enters a new profile that logs its output on all current
BRKPTs:

Example

B 1,PFRED,02a
B 2,PFRED,60a
P L,V 5800; V 8000; K % On all BPs, Log mem & stk

UP-11540.2-A 5-4a

ebug Facilities

The following example enters a new profile that takes a program dump when
BRKPT 4 is reached.

Note: Memory dumps are written to the specified file and not to the
SYS$*SYSLOG file.

Example

B 4, PFRED,614
P (4),D SYS$*SYSDUMP,P

Section 5.6.14a shows the format and additional examples of the P command.

This comparison between a normal session and a logging session illustrates how
the profile (P) command fits into the debugging scheme:

Normal session Logging session

set some breakpoints set some breakpoints
set some profiles (P command
with logging specified)

do a G(o) command do a G(o) command

BRKPT occurs, is displayed BRKPT occurs, is logged

do some commands {V's.., §'s.., P commands string of specified
K's..,, N's.., I's., etc...) commands are automatically done,

resuiting dispiays iogged

do another G(o) command resumes upon expiration of
P commands string of commands, a
G(o) at string-end ok too

more of the same... leave it running, walk away
@@DEB, Z command Z command on a BRKPT conditioned
profile

A third type of session may be a combination in which only part of the profile
settings specify logging. As BRKPTs are reached, logging occurs only where
specified.

In a normal session, you can preset commands on a profile to save reentering
them as each breakpoint is reached.

When you need a logging session with complex BRKPT/profile settings, you can
test a normal session (without logging) first, and then you can add the logging
(L) to the profiles and enter a go (G) command.

UP-11540.2-A

Debug Facilities

5.5. Example Using Debug

The following example assumes that you invoked the @CRASH utility
using the D option, which specifies that you enter debug automatically
when a trap occurs. A Communication Processor Architecture (CPA)
specification error occurred and you automatically entered debug mode.

The screen status provides the following information:

Loc

PN
Op

Err

The approximate address where the error occurred in the
program (varies with DCP type)

The name of the procedure where the program crashed
The instruction operation code
The error code of the trap, which is either:

X /XX CPA-detected error
XXXX DCP/0OS-detected error

(When you use @FAC x-xx or @FAC xxxx to display error
code, the error code slash changes to a hyphen.)

The following four steps show how to use this information in the
problem-solving process.

UP-11540.2

ug Facilities

Step 1 A trap occurred in LINSVS at 1A7 on an 1F instruction
with a 4/01 error. This error (@FAC 4-01) indicates a
blocked procedure. See the DCP Series Implementation
Reference Manual, Volume 1, Volume 2, Rev. 1, and Volume ’
3 (UP-12728). The three items are on the call/return stack.

Enter V 1A0 to check the code. You find it is a CALL (1F)
instruction at 1A5 with GPLx=2.

Enter V 1A0

Response

CALL (1F) dinstruction

DEBUG Wed 16 Nov 88 11:29:48 Run=LES Program=TEL7R2

0001A0: B801 160A 0005 O041A 046F 1FO0 0002 04F6 O..vn..

0001A8: 120A 0005 CB0D 9D06 1F20 029t B803 8280

000180: 0276 B804 160A 0005 O041A 0429 0002 1F00 Ve).0..

0001B8: 0002 04F6 120A 0005 C80D 9D06 0002 O029E

0001C0O: B8O3 8280 0276 B26B 0007 (8Dl 0002 BBFS ... v.kooo. W.. E
0001C8: 0008 9103 B24B 0005 0600 3800 0002 226B k....8.c."k 7
0001DO: 9115 071F 2004 CO14 4022 0600 0002 C300 D

0001D8: 0000 D220 BOOO 0412 0600 8107 C€300 0000 e
Trap: Loc=01A7 PN=LINSVS CC=cvPz Op=1F #Stk=03 Err=4/01 [XS=1B0000]
0-07: AAOGFAOD 00000000 00000000 00000000 EFIDIOC9E EB1B21GC 006000000 00000000
8-15: 00000000 00000000 00000000 8CO5SCCYF 000CCOOO GOOOOO00 00000000 00000000
16-23: 8CO4F29F 00000000 00000000 00000000 8E09651F 00000000 00000000 00000000
24-31: 00000000 00000000 00000000 00000000 0000GO0C 60000000 00000000 00000000

R 0-07: 0001 5800 0000 8000 0252 0000 000L 8O00A
R §-15: 8000 580A 5800 AOCOC 0000 0001 0000 0001

Status: Amod=WORD Imod=VIRTUAL Adr=0001A0 #Tr=01 U=Y Seg=LNSYSS SSN=01C9

EFnter command (H=help)-

UP-11540.2

Debug Facilities

Step 2 Enter K to display the stack and confirm the call/return
addressing with a code listing.

Enter K

Response
DEBUG Wed 16 Nov 88 11:49:06 Run=LES Program=TEL7R2
1B0200: 20D2 005C 0000 0000 0180 0006 0000 0000 N
1B0210: Q00D D85D Q000 0000 0180 012D 8000 0000 R e
1B0220: O1A7 D15D 0000 0800 0180 012D 0000 0000 R I R
Trap: Loc=01A7 PN=LINSYS CC=cyPz Op=1F #Stk=03 Err=4/01 [XS=1B0000]

S 0-07: AADGFACD 06000000 00000000 00000000 EF1DIOYE EB1B210C 00000000 00000000
S 8-15: 00000000 00000000 00000000 8COSCCIF 00000006 GOCCO0OO 00000000 0000000C
516-23: 8COAF29F 00000000 00000000 00000000 8EQ9651F 00000000 00000000 00000000
$24-31: 00000000 00000000 00000000 00000000 0O0OO00C 00000000 00000000 00000000

R 0-07: 0001 5800 0000 8000 0252 0000 0001 800A
R 8-15: 8000 580A 5800 AO0O 0000 0001 0000 0001

Status: Amod=BYTE Imod=REAL Adr=1B0200 #Tr=01 U=Y

Enter command (H=help)-

UP-11540.2

o
!
~

ug Facilities

Step 3 Enter I GPL, LINSVS to display the gated procedure list.

Entry number 2 is 803F, which means procedure 03F, but

access 1s blocked.
Enter I GPL,LINSVS

Response

blocked procedure 03F

DEBUG Wed 16 Nov 88 11:32:22 Run=LES Program=TEL7R2
103720: 000B 00A6 803F 0121 0055 0075 0013 Q00O 2.0 U0u. ..
Trap: Loc=01A7 PN=LINSVS CC=cv Pz #Stk=03 Err=4/01 [XS=1B0000]

S 0-07: AAO6FAGD 00000000 00000000 00000000 EFIDIO9E EB1B210C 00000000 00000000
S 8-15: 00000000 0000C000 00000000 8COS5CCIF 00000000 00000000 0OOOOO00 00000000
$16-23: 8C04F29F 00000000 000000C0 00000000 8L09651F 00000000 00000000 GOOGC000

S24-31: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

R 0-07: 0001 5800 0000 8000 0252 0000 0001 8O0OA
R 8-15: 8000 580A 5800 A000 0000 0001 0000 0001

Status: Amod=BYTE Imod=REAL Adr=1D3720 #Tr=01 U=Y

Enter command (H=help)-

UP-11540.2

Debug Facilities

Step 4 Enter Q PT,03F to find the name of procedure X’3F’, which
turns out to be CFACCS. This is the procedure you
attempted to call. Note that the defined flag is not set.

Enter Q PT,03F

Response

defined flag name of procedure

DEBUG Wed 16 Nov 88 11:35:49 Run=LES Program=TEL7R2

09FCl4: 4346 4143 4353 2020 0002 0000 0000 O003F CFACCS ?

Trap: Loc=01A7 PN=LINSVS CC=cvPz Op=1F #Stk=03 Err=4/01 [XS=1B000O]
07: AAODGFAOD 00000000 00000000 00000000 EF1DI09E EB1B210C 00000000 00000000
-15: 00000000 00000000 00000000 8COSCCOF 00000000 00000000 00000000 00000000
6-23: 8C04F29F 00000000 00000000 00000000 8EQ9651F 00000000 00000000 00000000
4-31: 00000000 00000000 00000000 00000000 0COOCOOC 00000000 00000000 0VOOOCOO

R 0-07: 0001 5800 0000 8000 0252 0000 0001 800A
R 8-15: 8000 580A 5800 A000 0000 0001 0000 0001

Status: Amod=BYTE Imod=REAL Adr=09FC14 #Tr=01 U=Y

Analysis

The CFACCS entry in the GPL of LINSVS was marked INITIALLY
BLOCKED because the CFACCS procedure was not included at build
time.

Solution

Rebuild your program with an MLF that contains the procedure

fakniVWaralel

LI ALULD.

5.6. Debug Commands

The debug commands are described next in alphabetical order. The
descriptions include function, format, and parameters.

UP-11540.2 5-9

ig Facilities

1. A—Address
The A command sets the address display to byte mode.

Additional byte mode addresses may be entered without the A
command, since debug remembers the current addressing mode. The
number of bytes displayed is governed by the current length setting
(see L command), which defaults to the maximum of 128 bytes when a
program is started.

Format

A [address]

Parameters

gits
£1t5s

address A real-memory hexadecimal address, from one to six di

UP-11540.2

Debug Facilities

5.6.2. B—Breakpoint

The B command sets, suspends, or displays breakpoints. Breakpoints are
specified by procedure or segment, and are optionally qualified by countdown
value, register content, or virtual memory content.

You may specify up to eight breakpoints at a time. When a valid PN or segment
and address are entered, the breakpoint instruction is set. You may alter any
parameter at any time for the respective breakpoint number.

When setting a continuous trace (a special form of breakpoint - see variant 3 of
format), you must omit the PN, segment, and address parameters and set the
register condition and the memory condition. The count parameter is optional.
If you subsequently enter the PN or segment and address, the continuous trace
becomes a normal breakpoint. Continuous trace can be used with only one
breakpoint number at a time.

The breakpoint status is displayed on the bottom half of the trap screen, which
can be redisplayed using the B command. The following is an example of a
breakpoint status screen display:

Brkpt # PN Segment Adrs Count Reg/Int Cond Mem/Date Condition
| 1 FRED | SFRED | 0012 8/150 | R15 = 34CF | 200314 ='DISKDRIV']
2~ DUMMYPN 0122 0000 - R5 = 0003 | B0O20 # AODOFFFF

3 *S558S3 0024 - - -
4 0156 0101 0198 - RO <0000S -

» 5 DISK SDISK 000E - - 1000 = 00F2
6p FRED SFRED 002A - Int = 0015 | 900731 / 07:30
7 - - - - R8 = OEOE -
8 ? ? ? 003/004 CC = cvPz | & R8 =>8000S

The display columns are defined as follows:

Brkpt #

The breakpoint table number ranging from 1 to 8. Up to 8 breakpoints may be
defined.

An arrow (->) points to the current breakpoint (if any).

A minus sign (-} after the breakpoint number means this breakpoint is currently
suspended.

The letter p following the breakpoint number indicates that a profile command
has referenced the breakpoint.

UP-11540.2-A 5-11

bug Facilities

12

PN

The procedure number (PN) specified on the B command when setiing a
breakpoint.

Segment

The segment specified on the B command when setting a breakpoint or the
segment implied by specifying a PN on the B command. If no PN is specified on
the B command, the segment is preceded by an asterisk.

Adrs

The address where the breakpoint is set, either segment-relative or
procedure-relative, as entered on the B command.

Note: A question mark (?) in the PN, Segment, and Adrs field means a
continuous frace is active.

Count

An optional field that specifics that a trap is to be activated only after the
specified number of times the breakpoint is hit. The second number (150) shows
the count that was entered on the B command. The first number shows the
current count (8). These two numbers will be equal when the trap is activated.
The first number resets to zero after the trap.

Reg/Int Cond

This field displays the conditional register setting for a register conditional trap
or a time interval conditional trap, as entered on the B command when
specifying a breakpoint.

Note CC == ¢vPz in breakpoint 8. Here the condition code of the program status
word (PSW) is checked for four conditions to be true. These conditions are as
follows:

1

= N0 carry
no overflow
= positive
Z = NONZero

<O
1l

Breakpoint 4 shows the constant 0000S. The S (signed) suffix here indicates that
the comparison is arithmetic. Otherwise, all comparisons are logical.

UP-11540.2

Debug Facilities

Memory/Date Condition

This field indicates the memory condition, or a date and time condition, for a
virtual address trap, as entered on the B command when specifying a
breakpoint.

The ampersand (&) on breakpoint 8 indicates that both the register condition
and memory condition must be true for the breakpoint to be activated. Without
the ampersand, only one of the conditions need be true.

Breakpoint 1 shows a virtual byte address indicated by I4 (register pair R4 and
R3S5). In this case, 2003 (the contents of R4) is the effective word base address.
R5 contains the byte offset beyond the base.

When a breakpoint occurs, the banner line s displayed as follows:

Brkpt 1: Loc=11B0O PN=PMNFG CC=cvPz Op=1F #5tk=02

Format

Format 1 R (Display breakpoints)

Format 2 B {nlname,adif ,count, R op value,{&ladrR op value]
(Set breakpoints)

Format 3 B n],name, adi| ,count INT=min, DT =date time]
(Set breakpoints with date, time, and interval)

Format 4 B InLl,.count, R op value,[&ladrR op value]
(Continuous trace)

Format 5 B InLL INT=min DT =date/time]
(Set date, time and interval)

Format 6 B 7,-
{Suspend breakpoint)

Format 7 B n,+

(Activate breakpoint)

P-11540.2-A 5-13

:bug Facilities

Format 8

Format 9

Parameters

R

name

adr

count

op

B
(Suspend all breakpoints)

B +
(Activate all breakpoints)

Breakpoint number (1 through 8)

Procedure or segment name/number

Note: Use an asterisk (*) prefix to specify a segment (for
example, *SDISK or *96). The name/number without an
asterisk is searched primarily as a procedure and,
secondly, as a segment.

Virtual address in PN or segment

Optional count value (decimal 1 through 999). A counter is

on cach breakpoint. When the counter reaches the
count value, a trap occurs and the debug screen is displayed. The
counter resets to zero after the breakpoint,

N
7

M te
MCrementica

Q.

In the same manner, the counter is incremented and checked
against the count each time continuous trace conditions are
satisfied.

Optional condition register

Rn = single register (RO - R15)
CC = condition code (in PSW)

Relational operator
= equal to value

not equal to value
> greater than value
< less than value

UP-11540.2-A

Debug Facilities

value

Value to be compared with register contents

If Rn is specified, the value may be
aa’ = one or two ASCII characters

hhhh[S] = from one to four hex digits, right-justified and
zero-filled.

optional S (signed) indicates the comparison is to be
arithmetic.

If CC is speafied, the value may be from one to four of the
following alpha letters. Uppercase and lowercase letters represent

mutually exclusive conditions. Therefore, choose only one case for
each letter.

C = carry ¢ = no carry
V = overflow v = no overflow
P = positive p = not positive
Z = zero Z = NONZero

If the register content on each breakpoint check matches the condition specified,
a breakpoint occurs and the debug screen is displayed.

&

adrR

UP-11540.2-A

Optionally specifies that both the register condition and the
memory condition must be true to display the breakpoint screen.
If this parameter is omitted, either condition will cause the
breakpoint display.

Optional virtual address whose contents are compared against a
specified value. Valid forms of this entry are

adr = virtual address.

R = virtual address is contents of R

adrR = virtual address is adr + contents of R
adr/byte = explicit virtual address with byte offset

where R is specified as follows:

For word addressing
Rn = virtual address (R1 - R15)

5-15

wg Facilities

op

value

INT

min

DT

dateltime

For byte addressing (Im)
paired even/odd registers
(R2/R3,R4/R5..R14/R15)
Im = virtual word address
Im+1 = byte offset

For byte addressing (adr/byte)
adr = virtual word address
byte = byte offset

Relational operator

= cqual to value
not equal to value
> greater than value
< less than value

Value to be compared with memory contents

‘aaaaaaaa’ = from onc to eight ASCII characters
hhhhhhhh = from one to eight hex digits

If the virtual address content on each breakpoint check matches
the condition specified above, a breakpoint occurs and the debug
screen is displayed.

Specifies to set time interval (INT = min)
Example: INT = 20

Optional time interval (decimal 1 through 1440 minutes). When a
breakpoint occurs, the debug screen displays when the interval
expires. The interval is reset after each expiration. If you specily
the interval without an associated breakpoint segment and
address, the help screen displays with zero traps.

Sets date and time (DT = date/time).
Example: DT = 891130/0700

Optional date or time (YYMMDD/HHMM). When the associaied
breakpoint occurs, the debug screen displays only if the current
date and time is greater than or equal to the specified date/time.
If you specify the date/time without an associated breakpoint
segment and address, the help screen displays with zero traps. If
you specify date/time and INT parameter after the first breakpoint
is reached, subsequent displays will be under the control of the
specified interval.

UP-11540.2-A

Debug Facilities

Notes:

1. Format 4 of the B command Is for a continuous trace. A continuous trace is
activated when the segment and address parameters are omilted and a
conditional parameter is specified. A trap occurs when the condition is
satisfied. The instruction, segment, and address are then displayed. This feature
enables you to pinpoint where memory is being comupted. Since each
instruction is breakpointed, performance is affected.

The continuous trace mode is terminated by pressing MSG WAIT and entering
@@DEB.

2. The effective virtual address specified in a memory condition may be a 16-bit
word address or a word address with byte offset. The word/byte offset mode is
known as Im addressing.

® Word addressing (adrRn, adr, or Rn):

The effective word address specifics a single 16-bit word in the virtual
address range O-FFFF (where n = 1,2,...15).

@ Im byte addressing (adrlm, Im, or adr/byte):
The effective word address is a similar combination of adr and Im
(m=2,4,..14). A byte offset from this effective word address is specified in
Im+1 or as a constant. In this mode, a breakpoint condition works on an

arbitrary string of characters or hex digits starting at even or odd byte
addresses.

Example
The following are examples of setting breakpoint:

B ,SDISK,20,10,R1=5000,5800/A ="DISK’
B, R13>7FF,&200R7# FFF

B ,PDISK,80A,,110=FFFFFFFF

B ,SFRED2A,INT=15DT=900731/0730

This is the resulting display that appears on the bottom half of the trap screen:

Brkpt PN Segment Adrs Count Reg/Int Cond ' Mem/Date Condition
1 *SDISK 0020 0007010 R1 = 5000 5800/00A ='DISK!
2 7 | ? 7 R13>07FF &0200R7 #FFF
PDISK SDISK | 080A 110 =FFFFFFFF
*SFRED 002A INT=0015 900731 /07:30

QN I N,

UP-11540.2-A 5-17

bug Facilities

5.3. C—Catch Service Call

18

The C command specifies system scrvice calls (SVCs) to be trapped on eniry
and exit. This enables you to view the SVC request parameters and the results
of the SVC.

Additionally, the C ERR command filters only SVC error returns for display. By
default, all procedures in your program are monitored, but use of the PN proc
parameter further limits SVC traps to the specified procedure.

You may specify multiple SVC traps in a single command line. Trap selections
are cleared with the OFF parameter, which clears all SVC trap flags. The ALL
parameter invokes a trap on every SVC your program specifies. You may use
the C command to redefine the trap options any time a program is active. If you
do not have an active program, you may hear a warning beep (depending upon
the type of terminal you are using) if you try to enter the C command.

Format

C [ERR,] [PNproc,]| [param,param,...]
b3

ERR Catch SVC error returns only
proc The procedure name or number (defaults to ALL)
param SVC-type, OFF, or ALL

SVC-type is one of the following:

CPA Trap CPA services

DIC Trap dictionary services

ELT Trap E$ SDF services

FILE Trap FILE services

INST Trap instrumentation services
IPM Trap IPM services

LM Trap line module services

PC Trap dispatcher services

PP Trap PP services

RUN Trap run services

UP-11540.2

Debug Facilities

Example

CPA

C PP,LM,PN,PPORT

C ERR,ALL

UP-11540.2

Catches all CPA SVCs on entry and exit in all
procedures

Catches only PP and LM type SVCs in
procedure PPORT

Catches all SVC error returns

bug Facilities

3.4. D—Dump Debug Session

The D command invokes a dump without terminating a session. The amount of
memory dumped and the file to which the dump is taken are specified by the
@CRASH utility program (executed before the current program) or by the
parameters used with the D command.

Format
D {filename]|,options]
Parameter

filename The optional filename to which you direct the dump

oplions
F performs a full dump (all memory)
P dumps user program and DCP/OS memozy

Note: If no option is specified, the default is P.

0 UP-11540.2-A

Debug Facilities

5.6.5. E—End Debug Mode

The E command exits debug if no traps are active, and returns you to
system control. If any traps are active, a warning beep may sound
(depending upon the type of terminal you are using). All traps must be
inactive before you exit (see the X command).

Format

E

UP-11540.2 5-21

ug Facilities

.6. F—Flip

The F command switches the display from segment descriptor registers

(SDRs) to process control registers (PCRs) and system control registers
(SCRs) or vice versa.

The current display is swapped to the other display for this and
subsequent trap displays. This command is valid only if a trap is active.

Format

F

UP-11540.2

Debug Facilities

5.6.7. G—Go (Resume Trap)

The G command resumes a trapped process. The trap may simply be
resumed at the current location. You may also resume the process at a
different location by giving the address parameter and optionally trap
at that location.

DCP types vary the precision of the address of a specification exception
condition. The location is often given as the address following the
instruction in error or trap. You should carefully note the location
before using G without an address parameter. This does not apply to
SVC traps invoked by the C command, since the DCP/OS always

handles these correctly.

If no trap is active, you may hear a warning beep (depending upon the
type of terminal you are using).

Format

G irtual address] [, N]

Parameters

virtual address Indicates a hexadecimal word address in the
current virtual visibility

N Forces into step mode at specified address

Example

G Go (resume trap) at the current address

G912 Go (resume trap) at virtual address 912

G 912N Go (resume trap) at virtual address 912 and trap

into step mode

UP-11540.2 5-23

ug Facilities

.8. H—Help

The H command without a parameter displays an abbreviated list of
available commands in the lower half of the screen. This is the default
display when no trap is active.

Use the T command to display the registers of an active trap.
Format

H [command]

Parameters

command The debug command name. If you use this parameter, the
format of the optional command is displayed.

Example

HC Displays help information for the C command.

UP-11540.2

Debug Facilities

5.6.9. I—inspect Table

The T command inspects Communications Processor Architecture (CPA)
tables. The display length is set to the entry length of the table type
specified. Always prefix your numbers with a zero.

Format
I table-name [index]
Parameters

table-name

EXEC Exec process stack table
GPL Gated procedure list
1ICT Interface control table
LA Link area

PPIT PP instrumentation table
PPPT PP program table

PPQL PP queue list

PST Procedure segment table
PT Procedure table

PUT Procedure use table

Q Queue

QL Queue list

QT Queue table

SST System segment table
index As follows:

TABLE NAME INDEX

PT, GPL, PST, QL, LA, and PUT

Procedure name or number to which table
belongs

SST Segment name or number
PPPT Program name or number
ICT, PPQL, PPIT PP number

QT, Q Queue name or number
EXEC Run number

UP-11540.2

5-25

wg Facilities

.10. K—Display Call/Return Stack

The K command displays the current call/return stack in the inspect
area of the screen.

Format

K

Example

DEBUG Wed 16 Nov 88 14:38:48
198200: 20D4 005C 0000 0000 0100
198210: 0851 DO5D 0400 0807 0100
198220: 0044 D35D 0000 0000 0100

SVC-Exit: SVC=FILE[8000] called from

S 0-07:
S 8-15:
S16-23:
S24-31:

Status:

AAO6GF482 AAOF7691 8AOBB0O8S
00280008 00290009 00000000
00000000 00000000 00000000
00000000 00000000 00000000

: 00IE 5000 5000 0000 0000
: 0000 0000 8000 0004 8000

Run=LESA Program=DISK

0006 0000 0000
000A 0000 0000
000D 0000 0000

0014 in PN=PMENUS

EBO2611C 00000000
8CO5AD1F 00000000
00000000 AAO3FCO6
003B001B 003C001€C

5000 0000 0000
0000 0000 0000

Amod=BYTE Imod=REAL Adr=198200 #Tr=01 LU=Y
CATCH SVC: FILE,CPA,RUN,PC,PP,LM,DIC,IPM,ELT,INST

[X$=198000]

8AO0F0607
CC074980
00350015
CBOOSA0B

00000000 8CO44F9F
00000000 00000000
00000000 00000000
CBO25E84 AAOAOF8ED

UP-11540.2

Debug Facilities

5.6.11. L—Set Display Length

The L command sets the display length of the inspect area (top half of the
screen) to the specified (decimal) number of bytes/words, depending upon the
current display mode.

Format

L length

Parameters

length The display length for the inspect area (1 through 128); larger (up
to 4096) when P and L are used together

Examples

L Reset length to 128, the maximum

L 16 Set display length to 16

P L,V 5800;L 900
Set display length to 900 when profile command specifies logging
(the first L specifics logging; the sccond L specifics length)

UP-11540.2-A 597

wug Facilities

.12. M—Modify

The M command modifies the current display area and register contents o
according to the current (modified) contents on the screen or the optional j
parameter values from the command line. '

To modify memory and change the contents on the screen when no parameters
are specified, enter M and press XMIT to transmit. You may also use function
key 4 (F4) instead of entering the M command.

When optional parameter values are specified, memory is modified starting at
the first location of the display area. It uses as many of the parameter values as
can fit on the command line. Registers are not modified in this case.

In both cases, with or without parameters, only the displayed memory is
modified by the M command. A warning beep may sound (depending on the
type of terminal you are using) if a nonprivileged user attempts to modify either
real memory or DCP/OS segments.

Note: It is advisable to set the display length to the number of bytes required (L
command) when modifying a volatile area of memory. This prevents you
from inadvertently modifying other locations.

If a segment 1s modified, the segment use count automatically increments by 1,
which freezes the segment in memory.

Format

M |valuelfvalue2...jvaluen) or function key 4 (F4)

Parameters
value 1 to 4 hexadecimal digits separated by a comma, a space, or a
slash. Values are right-justified and zero-filled before you modify
memory.

8 UP-11540.2

Debug Facilities

5.6.13. N—Next

The N command sets the debug mode into single-step action, which executes
one nstruction. Service calls (SVCs) are treated as only one mstruction. After
the first N command is entered (following a trap), you can simply transmit to
continue single-stepping. This is faster than reentering the N command.

The N command is a powerful feature with several variants. In its simplest form,
N single-steps through the current instruction and traps, causing a new debug
display. If another command is entered (such as V or S to display memory),
then single-step mode may be resumed by entering N again.

Another variation of the N command is to specify the number of instructions to
be stepped through. The default is 1. In this variant, it is also possible to specify
whether or not the debug page is to be displayed on cach instruction or only at
the completion of the number of instructions specified. This 1s done by using the
D parameter.

All user mode instructions may be single-stepped. This includes CALL, RTN,
SCALL, SRTN, jumps, and conditional jumps. All forced calls, including the
SVC mstruction, are effectively treated as single instructions. This means that
when you single-step through code, any SVC or segment load (using PN4)
appears transparently as a single instruction.

Format
N [number] [, D]
N 1, inst
NV, va

UP—11540.2-A 5-29

sbug Facilities

Parameters

number

I, inst

V, va

In step mode,

Step:

-30

Specifies the number of instructions (1-9999) to execute before
trapping. For example, N 100 executes 100 instructions.

Note: A breakpoint encountered along this path preempits the
specified number of instructions from being completed.

Displays screen on each single-stepped instruction. Thus, registers
and memory displays can be viewed during execution of the
specified number of instructions.

Traps at the next instruction that matches the value of inst. For
example, N I, 06 traps at the next operations code 06.

Traps at the next virtual address that matches the value of va. For
example, N V, 081 traps at the next virtual address containing the
first three digits 081.

the following banner line is displayed:

Loc=12CC PN=PMNFG CC=cvPz Op=B8 #Stk=03

UP—11540.2-A

Debug Facilities

5.6.14. O—One Step

The O command functions the same as the N command, except that the CALLs
and SCALLs are treated as one instruction, similar to the SVC, As a result, by
using the O command, you can avoid stepping through uninteresting subroutines
and procedures.

Format
O [number]|, D]
O 1, inst
OV, va

5.6.14a. P—Profile

The P command sets, clears, or displays profiles. You can specify one or more
debug commands with a P command to display profiles of memory and
registers.

Formats

p

Use this format to display profiles.

P prof#

Use this format to change a profile.

P lprof#][1L] [(bp#s)], cmdl; cmd?2; ... cmdn
Use this format to add a profile.

rPZ

Use this format to zero all profiles.

P Zprof#

Use this format to zero a specified profile.

Parameters

prof# 1s the profile number that you want to change or clear. The profile

command string redisplays on the prompt line for reediting when
you use Format 2. When you use Format 3 and omit the profile
number, the next available profile number is used.

UP-11540.2-A 5-31

oug Facilities

L is the log screen display parameter. When you use this parameter,
the debug screen displays are written to disk.

bp#s are the BRKPTs on which you execute profile commands. The
~default is all BRKPTs.

cmd is any debug command and its respective parameters (except E); in
addition, only one P command can be specified for the cmd
parameter and it must be the last (or rightmost). You can
substitute the space and a semicolon (;) for the XMT key. Separate
each command and its parameter with a semicolon (;) and leave a
space between each command and its parameters.

Note: If you omit the command, only the breakpoint screen is
logged.

Examples
P L
P 21(1)
z specifies that you want to clear profiles.

Debug Screen Display

When you enter a P command, the profile setting status is displayed on the top
half of the screen. The following are two examples of command entries and
screen displays follow.

32 UP-11540.2-A

Debug Facilities

Example 1

B 1,FRED,2a,,INTV=15,D7T=890717/0730

P L (1),A 24000; L 300 % log data(300 bytes) each 15 min
8 2,,,,.D7=890717/1030

P L {(2),D SYS$*DUMP; @@X % Dump pgm and kill run after 3 hours
DEBUG Tue Jul 89 15:58:28 Run= WTH Program=DISK
Prof# (Brkpts) Profile** Command**Strings
L {1)} A 24000; L 300 % log data(300 wds) & stack each 15 min
2L (2 ; D SYS$*DUMP; @@X % Dump pgm and kill run after 3 hours
3 |
4 |)
5 1)
6 |()
7)
8 I)

A EkAEEEREIERAEX XX AR L XXX LA A AR A AL A AL AR XK XA AL XA A XA XX AL XS T RA AR LA XL AL A4 hdd T
FAAA A A AR A AR AR AR LA A ARSI EA AR AL LA AL AR RE S AL A AR AR A A A XA XA XA A LA AL 5525222400444k dh

Brkpt PN Segment Adrs Count Reg/Int Cond Mem/Date Condition
1p | FRED | *SFRED 002a | | INTV= 15 [890717 / 07:30 |
2p 890717 / 10:30
3
4
5
]

7
8 | | o |

Enter command, 1 Traps (H=help)-b

In the first example, for BRKPT 1, at the specified time, a BRKPT is set in
segment FRED at address 002a. When the BRKPT is reached for the first time,
the commands of profile 1 are executed and the output is logged to disk.
Thereafter, the first BRKPT is reached after each 15-minute interval and causes
logging. At the specified time on BRKPT 2, Profile 2 executes a dump
command, followed by @@X to terminate the run.

Note: The L following prof# number (ftop half of screen) indicates logging for this
profile. The p following the BRKPT number (bottom half of screen)
indicates at least 1 profile for this BRKPT.

UP-11540.2-A 5-32a

yug Facilities

Example 2

B 1
B 2

B 3,

P oL (1),
P oL (1),
PoL (1),

P L (2), L 10; V 205¢c
P L {3), S SFRED,40;M 0720/1020:7:7 P

DEBUG

Prof# (
i (1
2L (1

3L (1

i

5L

6

7

g |

Brkpts

2
3

, SFRED, 10

, SFRED,3a

SFRED, 12f

(At initialization time)

(During main program loop)

(At termination time)

S SFRED 40:; M 1£20/07a0; %

07a0; M 0720/1020
0610/0050/2710/281c/1d20

Tue Jul

a°

o

BN

&

89 15:58:28 Run= WTH
) Profile***Comm
) S SFRED 40: M 1f20/07a0:

} 07a0; ¥ 0720/1020

} 0610/0050/2710/281c/1d20

) L 10; V 205¢

) S SFRED,40:M 0720/1020:7:7 P
)

)

S B¢ OF OF oF

EXT S = 30

Enter command,

*

PH

*

FEEEEEEFEF A AL T AL LE XL S A X HA AT A5 A S 2 kb k

FEEFEF AL R A XTI L A A A AR AR Ak AN

SCALL out to patch area
Execute clobbered instruction
Do patch & return

log 10 wds data per BRKPT 2

End: remove patch, zero all

Program=DISK

nd***Strings

SCALL out to patch area
Execute clobbered instr.

Do patch & return

log 10 wds data per BRKPT 2
End: remove patch, zero all

* * dkkdkkkk Tk ik khkdd

Segment Adrs
SFRED 0010
SFRED 003a
SFRED 012f

i Traps (H=help}-

FhkhkhkkthE

Count Reg/Int Cond Mem/Date Condition

EEEE SRS TR S LS R ST Tt b

The second example shows how to specify multiple profile strings for the same
BRKPT (BRKPT 1). Comments are shown here, but could be omitted, allowing
the entire profile command string section to be used only for commands.

UP—11540.2-A

Debug Facilities

5.6.15. Q—~Query Dictionary

The Q command queries the dictionary and, if it finds the entry, displays it in
the display area.

Two forms of this command are available. The first form has a single parameter,
which 1s the name of the entry to be searched for. The second form requests a
search for a specific entry of a given CPA type.

If a named entity cannot be found, check that the correct program is in debug
and that the dictionary is toggled on (U option).

Format 1
Q name
Format 2

Q typenumber

Parameters
name Any 8-character name in the dictionary
type A table type:
PT Procedure table
QT Queue table
SST System segment table
PPPT Port processor program table
number Relative number within type
Example

QO MYSEG Searches for entry named MYSEG

Q SST,0123 Searches for entry of segment 123

UP-11540.2-A 5-32¢

2d

This page is intentionally left blank.

UP-11540.2-A

Debug Facilities

5.6.16. R—Register Modify

The R command either reads the current screen display of registers or,
if present, the optional parameter values from the command line. In
either case, you can modify the registers of the trapped process. To
modify registers, you change the registers on the screen, tab forward to
the command line, enter R, and press XMIT (transmit). Or you can
specify the register change-value as a parameter.

The R command is relevant only when a trap is active. If no trap is
active, you may hear a warning beep (depending upon the type of
terminal you are using).

Format

R [r,nnnn]

Parameters

r = register numbers (0 to 15)

nnnn = 1 to 4 hexadecimal digits. This value is right-justified and
zero-filled before modifying the register.

UP-11540.2 5-33

ug Facilities

.17. S—Display Segment

The S command displays the requested segment in ASCII and
hexadecimal and resets the display length to 128 bytes.

Note: If the virtual address goes out of range as you page forward
through a segment, the inspect area (upper half) of the screen
is blanked. You can restore the display by entering a new, valid
virtual address or paging back (P) into range.

If the specified address is greater than a full segment length (X’800°
words), the segment number is automatically rounded up and the
address is rounded down within the range of a full segment. In these
cases, verify the segment name.

Format

S segment-ID |address]

Parameters

segment-1D

address

Example

S 0100

S SDISK 04B8

Segment name or number

Relative word address (defaults to zero)

Displays segment 100 from address zero

Displays segment SDISK from address 4B8

UP-11540.2

Debug Facilities

5.6.18. T—Display Trap

The T command switches the status display area from HELP (if
current) to TRAP. The trap area displays the SDRs and registers that
are pertinent at the time of the trap. If no trap is active, you may hear
a warning beep (depending upon the type of terminal you are using).

Format

T

UP-11540.2 5-35

ug Facilities

.19. V—Inspect in Virtual Mode

The V command inspects the virtual environment of a trapped process
or of an active port processor (PP).

Note: If the virtual address goes out of range as you page forward
through virtual memory, the inspect area (upper half) of the
screen s blanked. You can restore the screen display by
entering a new, valid virtual address or paging back into
range.

In CP mode, the V command is relevant only when a trap is active.
However, you can enter debug to set up the display before invoking a
trap, since the mode is remembered over debug entries. For example,
you may expect to find a message at virtual address X’5800° at many
points in a program. The display mode may be set to 'V 5800’ at any
time in anticipation of a trap. The message is automatically displayed
at the appropriate time.

Format

V {address] CP mode

V [address]/port] PP mode

Parameter

address Virtual address 0000-FFFF words for CP

/port Port number 0000-3FFF bytes for PP

Example

V 1800 Displays from virtual word address 1800 in the CP context

V 1000/6 Displays from virtual byte address 1000 of PP #6

) UP-11540.2

Debug Facilities

5.6.20. W—Set Inspect Mode to Word

The W command sets the inspect mode to word and displays from a
specified word address in real memory.

Format

W [address]

UP-11540.2 5-37

1g Facilities

21. X—Kill Trap

The X command kills the current trap by releasing all segments,
allocatable space, and the task stack. If present, the next queued-up
trap is displayed. Otherwise, control is returned to the system manager.
(Compare with the E command.) This command does not kill the whole
program, even if it is single-tasking. After returning to run mode, the
program may be killed by using the @@X T command.

If no trap is present, you may hear a warning beep (depending upon the
type of terminal you are using).

Format

X

UP-11540.2

Debug Faciiities

5.6.22. Z—Zero Breakpoint

The Z command clears any or all breakpoints and redisplays the current
breakpoint settings.

Format

Z [number,CRM]

Parameters

number

CRM

UP-11540.2

The breakpoint number to clear. If the number is omitted,
all breakpoint settings are cleared.

The breakpoint count, register, and memory parameters
may be cleared without clearing the entire breakpoint. Any
combination of the following:

C clear the count

R = clear the register condition
M = clear the memory condition

5-39

ug Facilities

23. +(Plus)—Next Page

The + (plus) command displays the next page of memory when you are
in step mode. The length of the display is not changed. Any default
inspect length or user set display length is used when paging through
memory. Use the XMIT key to display the next page when you are not
in step mode.

Format

+

UP-11540.2

Debug Facilities

5.6.24. -(Minus)—Previous Page

The - (minus) command displays the previous page of memory. The
display length is not altered. After the first - (minus) command is
entered, each time you press XMIT the program will go back one more
page.

Format

UP-11540.2 5-41

Section 6
MASM Utility Procedures

This section describes the following general MASM procedures:

e Basic CP Utility MASM Procedure (AAWRENCH)

e Extended Utility MASM Procedure (AEXTPROC)

e Structured MASM Procedures (AASTPROC)

These procedures are in the library file, DCPOSEQU, on the release

tape.
6.1. AAWRENCH—Basic CP Utility MASM
Procedures

The basic central processor (CP) utility, AAWRENCH, provides MASM
procedures for the CPA CP instructions and CPA module definitions. It
also offers a series of instructions and table definition enhancements.
The CPA module definitions are discussed in Section 3. The CPA
instructions are defined in the DCP Series Implementation Reference
Manual, Volume 1, Volume 2 Rev. 1, and Volume 3 (UP-12728).

Table 6-1 defines the symbols used for the procedure descriptions.

Table 6-1. Key to Symbols Used

Symbeol Definition
BQF Byte-equated field: symbol defined by BEQUF procedure.
EQ Simple equated value with no relocation.
EQF Field defined as an EQUF or simple equate (no relocation).
EQR Equated value that may have relocation (not EQUF).

continued

UP-11540.2 6-1

M Utility Procedures

Table 6-1. Key to Symbols Used (cont.)

Symboi Definition

Im Pair of index registers (Im, Im+1 : Im even) containing Im mode
address.

N Integer.

Q Field defined as a BEQUF (possibly with some added relocation
information).

R Register.

RA Source/destination register.

RM Index register containing word address or offset.

RW Work register.

RWE Even work register.

RWO Odd work register.

S String.

TV Truth value : true<<>0 false=0.

w An EQF, possibly with some added relocation information.

X Any acceptable MASM value.

[...] Contents optional.

<> Parameter written as contents <BLOCK> = parameter is
written as BLOCK.

{...} Repeat contents (with blank separator) any number (>0) of times.

n*{..} Repeat contents at most n times, but at least once.

{{..}} Repeat contents (with comma separator) any number (>0) of
times.

n*{{...}} Repeat contents at most n times, but at least once.

* Following parameter flagged with *.
This is a shorthand way of writing <<*>.

v <- The function (func) takes parameters (params) and returns type (v).

func(params)

/ Use preceding or following options, but not both.

UP-11540.2

MASM Utility Procedures

6.1.1. Location Counter Handling

The following MASM procedures in Table 6-2 can alter the location
counter when invoked. Use them carefully since setting the location
counter to a specified place does not guarantee that the actual code or
data generated is similarly aligned. The use of segments constructed
from multiple location counters can also lead to addresses having
different properties from those expected.

Table 6-2. Location Counter Handling

MASM
Proc
Format Definition
EVEN EVEN . No parameters Rounds the current location counter to the
even word boundary.
OoDD ODD . No parameters Rounds the current iocation counter to the
odd word boundary.
ZM2K ZM2K . No parameters Rounds the current location counter to the
next SDR.
ZM64 ZM64 . No parameters Rounds the current location counter to the
next granule.

6.1.2. Constant Manipulation MASM Procedures

The group of MASM procedures in Table 6-3 generates either a nibble
instruction or the equivalent 16-bit instruction. For example, LOADC
generates either a load nibble (LN) or a load constant (LK) instruction
(or a load from R, (LR) instruction, under certain circumstances). For
more information on LN, LK, or LR, see the DCP Series Implementation
Reference Manual, Volume 1, Volume 2 Rev. 1, and Volume 3

(UP-12728).

UP-11540.2 6-3

M Utility Procedures

Table 6-3. Constant Manipulation MASM Procedures
MASM
Proc Format Definition

ADDC ADDC RAEQR [,RM] Adds the constant into a register.

ASHFL ASHFL RAEQR [,RM] Arithmetic shift left register by constant.

ASHFLD ASHFLD RA,EQR [,RM] Arithmetic shift left register pair by
constant.

ASHFR ASHFR RAEQR [,RM] Arithmetic shift right register by constant.

ASHFRD ASHFRD RAEQR [[RM] Arithmetic shift right register pair by
constant.

coOMC coMmc RA,EQR [,RM] Compares (signed) the constant with a
register.

ComMuC comuc RAEQR [,RM] Compares (unsigned) the constant with a
register.

CSHFL CSHFL RAEQR [,[RM] Circular shift left register by constant.

CSHFLD CSHFLD RA,EQR Circular shift left register pair by constant.

[[RM]
CRSN CRSN RAEQ . EQ Circular right shift nibble.
<16

DIVC DivVC RA,EQR [,RM] Divides register pair by a constant.

LOADC LOADC RAEQR [,RM] Loads the constant into a register.

LSHFR LSHFR RAEQR [,RM] Logical shift right register by constant.

LSHFRD LSHFRD RAEQR [,[RM] Logical shift right register pair by constant.

MULTC MULTC RA,EQR [,RM] Multiplies register pair by a constant.

SBITS SBITS RA,[*]EQF Sets bits in a register.

SUBC SUBC RAEQR [,RM] Subtracts the constant from a register.

SVC SVC EQ Issues an SVC instruction for the function
specified.

TBITS TBITS[,RW] RA,[*]EQF Tests bits in a register.

ZBITS ZBITS RA,[*]EQF Clears bits in a register.

*The value is taken as a mask for the bits to be tested; otherwise, it is taken as an EQUF and
thus defines a set of bits.

UP-11540.2

MASM Utility Procedures

6.1.3. Field Manipulation MASM Procedures and Functions

A field is any value defined by an EQUF. Fields are used to hide table
formats, allowing them to be varied without necessitating
reprogramming, only recompiling. Fields defined by EQUF, which act on
words, should be distinguished from the fields defined by BEQUF,
which act on bytes.

Table 6-4 lists the MASM procedures used to manipulate fields.

Table 6-4. Field Manipulation MASM Procedures

MASM
Proc

Format

Definition

ALL

ALLBUT

BIT

BYTELIKE

CMASK

EQUF

N <- ALL({{EQF}})

N <- ALLBUT({EQF})

N <- BIT(EQF)

TV <- BYTELIKE(W)

N <- CMASK(EQF)
EQUF EQ [[EQ [[EQ]]

Returns a value equal to the logical OR of
the mask generated by the individual
parameters. If a parameter is an EQUF, the
mask is given by the function MASK. If it is
an equate, the mask is the single bit equal
to 1*/equate.

Returns the one’s complement of the above
(ALL) function.

Returns the leftmost (most significant) bit
of the field.

Returns true if the parameter passed is a
byte (8 bits long and aligned with
left-bit=15 or 7); otherwise, it returns
false.

Returns the one’'s complement of mask.

The EQUF directive defines word-oriented
fields. Use it for DCP coding rather than
the MASM directive $EQUF.

For example: EQ,EQ,EQ = F,LB,LEN
where

F The field offset (which may be
relocatable).

LB The starting (leftmost) bit of the
field. Defaults to O.

UP-11540.2

continued

6-5

M Utility Procedures

Table 6-4. Field Manipulation MASM Procedures (cont.)

MASM
Proc Format Definition
LEN The length of the field, O implies 16.
Defaults to O.

FIELDLIKE TV <<- FIELDLIKE(W) Returns true if the field is neither wordlike
nor bytelike; otherwise, it returns false.

LEN N <- LEN(EQF) Returns the field length in bits.

MASK N <- MASK(EQF) Returns a value with ones occupying the
field position, and zeros elsewhere.

MAXVAL N <- MAXVAL(EQF) Returns the largest integer that can be
contained within a field.

RBIT N <- RBIT(EQF) Returns the rightmost (least significant) bit
of the field.

WORD/WD N <- WORD(EQF) Returns the word offset defined within an
EQUF

N <- WD(EQF) (WD is a shorter name).

WORDLIKE TV <- WORDLIKE(W) Returns true if the parameter passed is a

word (16 bits); otherwise, it returns false.

4. Value Manipulation

The functions in Table 6-5 provide simple facilities for manipulating
and testing values.

Table 6-5. Value Manipulation MASM Procedures

MASM
Proc Format Definition

MAXIMUM N <- MAXIMUM({{EQ}}) Returns the maximum integer passed as a
parameter.

MINIMUM N <- MINIMUM({{EQ}}) Returns the minimum integer passed as a
parameter.

continued

UP-11540.2

MASM Utility Procedures

Table 6-5. Value Manipulation MASM Procedures (cont.)

MASM
Proc Format Definition

RELOC$ TV <<- RELOC$(X) Returns true if the value passed is
relocatable; otherwise, it returns false.

TABL TV <- TABL(X) Returns true if the value passed is a field;
otherwise, it returns false.

TBEQUF TV <- TBEQUF(X) Returns true if the value passed is a byte
field; otherwise, it returns false.

TWOS EQ <- TWOS(EQ) Returns a value converted to two's
complement form, for example, TWOS(-1)
-> OFFFF, TWOS(-2) -> OFFFE, etc. A
negative number must be passed as a
parameter; otherwise, TWOS adds one to
the value.

TREG TV <<- TREG(X) Returns true if the value passed is a
register; otherwise, it returns false.

WORD$ EQR <- WORD$(W) Returns an EQR with the relocation of the
original parameter. This function removes
the EQUF information from the parameter.

X N <- X(EQ) Returns a hexadecimal value.

6.1.5. Extended Instructions

The MASM procedures in Table 6-6 extend the DCP instruction set.
Most of them use field definitions, performing the same operation as
the equivalent machine instruction, but using the field rather than a
constant. For example, LOAD R1,ABC,R12 loads R1 from the field
machine instruction L. R1,ABC,R12, which loads R1 from the wordlike
ABC, offset by R12. In most cases, the format of the extended
instruction is identical to the machine instruction, except for the use of
an optional work register.

All of the following MASM procedures can accept W-field specifications
that contain relocation. They can thus be used with any type of field or
label specification.

UP-11540.2 6-7

M Utility Procedures

Table 6-6. Extended Instructions
MASM
Proc Format Definition

ADD ADD[,RW] RA,W[,RM] Adds the contents of a field in memory to a
register.

CLEAR CLEAR[,[*]RW] W[,RM] Clears (sets to zero) the contents of a field
in memory. * Implies RW already contains
the contents of the word in which the field
is defined.

COM COM[,RW] RA,W[,RM] Compares (signed) a field in memory
against a register.

comu COMUL,RW] RAW[,RM] Compares (unsigned) a field in memory
against a register.

EXC EXC RA,RM Exchanges the contents of two registers.

EXTRACT EXTRACT W[,RM] Extracts a field from a register and
right-justifies it in a register.

JTBL JTBL[EQIEQ]] Generates instructions to jump to the

RA,[*JEQR[,RM] address given by the table entry.

LDK LDK RAEQ Loads a 32-bit constant into a register pair.

LOAD LOAD RA,W[,RM] Loads a register from a field within
memory.

MOVE MOVE[,RW[,RW] W,RM] Moves the contents of a field in memory to

W,RM a field in memory.
RADD RADD[,[*]RW] Adds the contents of register RA + 1 into a
[*IRAW[,RM] field in memory and sets the register RA
with the result.
* RW contains offset to the field,
* RA means RA can be changed.
RDEC RDEC[,[*]RW] Decrements the field in memory by one
[*IRA,W[,RM] and stores the result in a register.
* RW contains offset to the fieid;
* RA may be changed and is used as a
work register.
RINC RINCE,[*]RW] Increments the field in memory by one and
[*IRA,W[,RM] stores the result in a register.
* RW contains offset to the field;
* RA may be changed and is used as a
work register.

continued

UP-11540.2

MASM Utility Procedures

Table 6-6.

Extended Instructions (cont.)

MASM
Proc

Format

Definition

RSUB

SET

STORE

STOREC
SUB

SZMIE

TEST

RSUB[[*]RW]
[*]RA,W[,RM]

SET[,[*] RW] W[,RM]

STORE[,RW]
[*]RA,W[,RM]

STOREC[,RW] EQ,W[,RM]

SUB[RW] RA,W[,RM]

SZMIE [*JEQ,[*]RM

TESTL,[*] RW] W[,RM]

Subtracts the contents of the register RA +
1 from a field in memory and sets the
register RA with the result.

* RW contains offset to the field;

* RA means RA can be changed.

Sets the contents of a field in memory to

ones.

* Implies RW already holds the contents of
the word in which the field is defined.

Stores the value in a register into a field in
memory.
* Restores RA to its original value.

Stores a constant into a field in memory.

Subtracts the contents of a field in memory
from a register.

Clears muitiple words in memory with
optional advance of the index register
(EQ+1 words are cleared).
IF * set on EQ:
at completion RM is unpredictable
ELSE * not set on EQ
IF * set on RM
at completion RM points to the
first nonzeroed word
ELSE * not set on RM
at completion RM unchanged
(normal)
ENDIF
ENDIF

Tests the contents of a field in memory
against 0.

* Implies RW already contains the contents of the word in which the field is defined.

UP-11540.2

6-9

M Utility Procedures

6. Table and Instruction Generation
The MASM procedures in Table 6-7 generate code or data.

The GEN MASM procedure generates a variable number of constants
and provides conversion for two’s complement negatives. One or two
operands may be supplied. With one operand, that operand is the value
of the word. With two operands (separated by a comma), each operand
is the value of the respective byte of the word. Where negative
constants might appear, use this MASM procedure instead of the +
operator.

The GEN MASM procedure avoids the disadvantage of the RES MASM
directive while providing capabilities not found in the RES statement.

Format
GEN[, [*]rpt] vall[,val2]
Parameters

rpt A one-field repeat parameter immediately after the call
name indicates the nonnegative (0,1,2,...) number of
words to generate with the same value.

Default: 1

rpt An asterisk () before the repeat parameter signifies
that every word must be listed (unless unlist is set).
Otherwise, only the first and last words are listed
(unless unlist is set).

vall This value (positive or negative) goes in the left half of
the word. If val2 is not present, vall is the value of the
whole word.

vall This value (positive or negative) goes in the right half
of the word. If val2 is not present, vall may also be a
multiple character string. If vall is flagged, example
* ABCDEFGHIJKL’, then only the first 8 characters are
displayed.

UP-11540.2

MASM Utility Procedures

Example
0000 0001 GEN 1
0001 FFFF GEN -1
0002 0102 GEN 1,2
0003 O1FE GEN 1,-2
0004 FEO2 GEN,5 -2,2
0008 FEO?2
0009 0101 GEN,*4 1,1
000A 0101
000B 0101
000C 0101
000D 4845 GEN 'HELLO.'
000E 4C4C
000F 4F2E
Table 6-7. Table and Instruction Generation (AAWRENCH)
MASM
Proc Format Definition
GEN GEN[,[*]RPT] VAL1[,VAL2] Generates a variable number of
constants and converts two's
complement negatives.
GENTAB GENTAB[EQ[,EQ]] Generates a table in which the
{[*IS[,LEQF[,EQJI/EQL.EQF]} values, which cannot have any
relocation, are positioned
according to field definitions.
There is no maximum table size.
GINL GINL 4*{{S}} Generates an instruction with
simultaneous display. it looks like
the SHOW MASM procedure, but
generates the specified instruction.
Used with MASM procedures to
save typing.
For example:
GINL
'LABEL''LOAD’''R2,FIELD,R12'GET
FIELD’
JMPTBL/ JMPTBL[,[S] [LEQ] [LEQ] [LEQ]] Generates a table (word/byte
BYTBL {EQR[,EQN oriented).
BYTBLL[S] [,EQ] [LEQ] [LEQ]] Generally used to build jump
{EQR[,EQ]} tables. The maximum table size is
255 words/bytes.
UP-11540.2 6-11

sM Utility Procedures

.7. Display Control

The MASM procedures and functions in Table 6-8 can be used to
perform standard display operations. See also the GINL MASM
procedure in Table 6-7.

Table 6-8. Display Control

MASM
Proc

Format

Definition

CVALAS

DISL

NOLIST

OPSTR

OPSTR$

S <- CVALAS(R/EQF/W/S/BQF)

DISL{{{S/[*EQ] }}1 }

NOLIST §

S <- OPSTR (3*{{ [*]
R/EQF/EQR 1)

S <- OPSTR$ (3*

£
R/EQF/W/S/BQF 1})

Converts a MASM value into a
string that can be assembled.

Displays one or more lines
constructed from mixed numeric
(decimal or binary) and string
values.

Switches on (S='ON’) or off
(S="OFF’) the display of MASM
procedure expansions. It is initially
set to on, but it clarifies a listing if
no MASM procedure expansions
are produced.

Generates a string that represents
the operand field of an instruction.
It is often used in conjunction with
the SHOW or GINL MASM
procedures. See also OPSTRS$.

Similar to OPSTR except that the
string produced can also be
assembled if used within a
microstring. The format of the
string produced is often less
obvious than that of OPSTR, but it
has the advantage of losing no
relocation or control information in
the conversion. It can be used well
with GINL.

continued

UP-11540.2

MASM Utility Procedures

Table 6-8. Display Control (cont.)

MASM
Proc

Format

Definition

PROCLIST

SCREAM

SHOW

TAB

WARNING

PROCLIST S / 5*{{EQ}} SEQ

SCREAM { {{ S /[*]EQ 3} }

SHOW 4*{{S}}

S <- TAB(S,EQ)

WARNING { {{ S/ [*EQ] }} }

Sets display control parameters
such as tab positions, etc. In
particular, the comment character
generated in front of all lines
produced by the SHOW MASM
procedure can be changed from
to '+', making it easier to
distinguish between real
comments and generated
comments and lines.

[

Displays the error message
consisting of the prefix *****
ERROR , connected with one or
more lines of mixed numeric
(decimal or binary) and string
values
Note: An F-flag is generated for
each use of SCREAM.

Displays an instruction from within
a proc.

Pads out a string to the specified
tab position.’

Displays a warning message
consisting of the prefix “*****
WARNING", connected with one or
more lines of mixed numeric
(decimal or binary) and string
values.

UP-11540.2

6-13

M Utility Procedures

8. AAWRENCH Procedure Summary

Groups of AAWRENCH procedures were dealt with in 6.1 through
6.1.7. Table 6-9 summarizes the MASM procedures found in

AAWRENCH.
Table 6-9. Summary of ABWRENCH MASM Procedures

MASM

Proc Format Type
ADD ADD[,RW] RA,W[,RM] Extended instructions
ADDC ADDC RAEQR [,RM] Constant manipulation
ALL N <<- ALL({{EQF}}) Field manipulation
ALLBUT N <<- ALLBUT({EQF}) Field manipulation
ASHFL ASHFL RA,EQR [,RM] Constant manipulation
ASHFLD ASHFLD RAEQR [,RM] Constant manipulation
ASHFR ASHFR RAEQR [,RM] Constant manipulation
ASHFRD ASHFRD RA,EQR [,RM] Constant manipulation
BIT N <- BIT(EQF) Field manipulation
BYTELIKE TV <- BYTELIKE(W) Field manipulation
BYTBL BYTBL[[S] [LEQ] [LEQ] [,EQN Table and instruction

{EQRLEQD generation

CLEAR CLEAR[,[*IRW] WI[,RM] Extended instructions
CMASK N <- CMASK(EQF) Field manipulation
COM COM[,RW] RAW[,RM] Extended instructions
COMC COMC RAEQR [,RM] Constant manipulation
coMuU COMU[,RW] RA,W[,RM] Extended instructions
COMUC COMUC RA,EQR [,RM] Constant manipulation
CSHFL CSHFL RAEQR [,RM] Constant manipulation
CSHFLD CSHFLD RA,EQR [,RM] Constant manipulation
CRSN CRSN RAEQ . EQ <16 Constant manipulation
CVALAS S <- CVALAS(R/EQF/W/S/BQF) Display control
DISL DISL { {{ S/[*EQ] }}} Display control

continued
UP-11540.2

MASM Utility Procedures

Table 6-9. Summary of AAWRENCH MASM Procedures (cont.)
MASM
Proc Format Type
DivC DIVC RAEQR [,RM] Constant manipulation
EQUF EQUF EQ [LEQ [LEQ]] Field manipulation
EVEN EVEN . No parameters Location counter handling
EXC EXC RA,RM Extended instructions
EXTRACT EXTRACT W[,RM] Extended instructions
FIELDLIKE TV <<- FIELDLIKE(W) Field manipulation
GEN GEN[,[*]RPT] VAL1[,VAL2] Table and instruction
generation
GENTAB GENTAB[EQ[,EQ]] Table and instruction
{[*]SLEQF[EQI/EQLEQF]} generation
GINL GINL 4*{{S}} Table and instruction
generation
JMPTBL JMPTBLL,[S] [LEQ] [LEQ] [LEQT] Table and instruction
{EQR[EQN generation
JTBL JTBL[IEQ][,EQ]] RA,[*IEQR[,RM] Extended instructions
LDK LDK RAEQ Extended instructions
LEN N <<- LEN(EQF) Field manipulation
LOAD LOAD RA,W[,RM] Extended instructions
LOADC LOADC RA,EQR [,RM] Constant manipulation
LSHFR LSHFR RAEQR [,RM] Constant manipulation
LSHFRD LSHFRD RA,EQR [,RM] Constant manipulation
MASK N <<- MASK(EQF) Field manipulation
MAXIMUM N <- MAXIMUM({{EQ}}) Value manipulation
MAXVAL N <- MAXVAL(EQF) Field manipulation
MINIMUM N <- MINIMUM({{EQ}}) Value manipulation
MOVE MOVE[,RW[,RW]] W,RM W,RM Extended instructions
MULTC MULTC RAEQR [,RM] Constant manipulation
NOLIST NOLIST S Display control
oDD ODD . No parameters Location counter handling
continued
UP-11540.2 6-15

iM Utility Procedures

Table 6-9. Summary of AAWRENCH MASM Procedures (cont.)

MASM
Proc Format Type
OPSTR S <- OPSTR (3*{{[*] R/EQF/EQR }}) Display control
OPSTR$ S <- OPSTR$ (3*{{[*] Display control
R/EQF/W/S/BQF 11})

PROCLIST PROCLIST S/ 5*{{EQ}} SEQ Display control

RADD RADD[,[*IRW] [*IRA,W[,RM] Extended instructions
RBIT N <- RBIT(EQF) Field manipulation
RDEC RDEC[,[*IRW] [*IRA,W[,RM] Extended instructions
RELOC$ TV <<- RELOC$(X) Value manipulation
RINC RINC[,[*]RW] [*IRA,W[,RM] Extended instructions
RSUB RSUBL,[*IRW] [*]RA,W[,RM] Extended instructions
SBITS SBITS RA[*]JEQF Constant manipulation
SCREAM SCREAM { {{ S/[*IEQ }}} Display control

SET SET[,[*] RW] W[,RM] Extended instructions
SHOW SHOW 4*{{S}} Display control

STORE STORE[,RW] [*IRA,W[,RM] Extended instructions
STOREC STOREC[,RW] EQ,W[,RM] Extended instructions
SUB SUB[,RW] RA,W[,RM] Extended instructions
SUBC SUBC RA,EQR [,RM] Constant manipulation
SVC SvC EQ Constant manipulation
SZMIE SZMIE [*]EQ,[*IRM Extended instructions
TAB S <- TAB(S,EQ) Display control

TABL TV <- TABL(X) Value manipulation
TBEQUF TV < TBEQUF(X) Value manipulation
TBITS TBITS[,RW] RA[*]EQF Constant manipulation
TEST TEST[,[*] RW] W[,RM] Extended instructions
TREG TV <- TREG(X) Value manipulation
TWOS EQ <- TWOS(EQ) Value manipulation
WARNING WARNING { {{ S/ [*EQ] }} } Display control

continued

UP-11540.2

MASM Utility Procedures

Table 6-9. Summary of AAWRENCH MASM Procedures (cont.)

MASM
Proc Format Type
WORD$ EQR <- WORDS$(W) Value manipulation
WORD/WD N <- WORD(EQF) Field manipulation
N <- WD(EQF) (WD is a shorter name.)

WORDLIKE TV <- WORDLIKE(W) Field manipulation

X N <- X(EQ) Value manipulation

ZBITS ZBITS RA,[*]EQF Constant manipulation
ZM2K ZM2K . No parameters Location counter handling
M6e4 ZM64 . No parameters Location counter handling

6.2. AEXTPROC—Extended Utility MASM
Procedures

The AEXTPROC utility element contains a number of additional MASM
procedures you may find useful. See Table 6-1 for symbols used in this
section.

6.2.1. Byte Field Manipulation

Fields may be defined as being part of bytes (as is the case with EQUTF)
rather than words. A field can be defined as any contiguous sequence
of bits of minimum length 1, and of maximum length 16. Such a
maximum permits the definition of wordlike fields or of other extended
fields such as sequence counts.

However, to limit the complexity of manipulating arbitrary 16-bit
fields, a field cannot extend over more than two contiguous bytes. Thus
a 16-bit BEQUF can start only at the most significant bit of one byte
(bit 7) and finish at the least significant bit (0) of the immediately
succeeding byte. A 9-bit field may start anywhere within a byte, and

extend through into the next byte.

UP-11540.2 6-17

SM Utility Procedures

Figure 6-1 illustrates the use of BEQUF with fixed protocol headers:

7 6 5 4 3 2 1 0
0 Fi F2 F3
1
F4
2
3 F5 F6
4 F7

Figure 6-1. Fixed Protocol Header

The following defines the Figure 6-1 header:

F1 BEQUF 0,7,2
F2 BEQUF 0,5,2
F3 BEQUF 0,34
F4 BEQUF 1,7,16
F5 BEQUF 3,74
F6 BEQUF 3,34
F7 BEQUF 4,7,8

The format can be seen as EQUF; the main differences are that the
offsets are byte-oriented and that the field lengths can appear to be
incompatible with the left bit used.

To make use of these definitions, a register pair must be initialized to
point to the first byte of the header. Once this is done, the LBF, SBF,
and SMBF MASM procedures may be freely used.

Format

BEQUF B[,LB[,LEN]]

3 UP-11540.2

MASM Utility Procedures

Parameters

B byte offset

LB leftmost bit of the field (default is 7)
LEN length of the field in bits (default is 8)

If LB>7 or LEN>LB+9, an error is flagged and the default definitions
are used.

The BEQUF defaults are such that if no LB or LEN specifications are
given, the BEQUF generated is equivalent to a single byte at the offset
specified.

Example

The F7 definition described earlier could have been written as follows:
F7 BEQUF 4

Function

In general, the format of the BEQUF functions is identical to the

corresponding EQUF function.

Tabie 6-10. Byte Field Manipulation (BEQUF Functions)

MASM
Proc Format Definition
BBIT N<<-BBIT(value) Returns the leftmost bit (MSB) for the given
value.
BBYTE N<<-BBYTE(value) Returns the byte offset for the given value. The

value must be a BEQUF or a simple numeric
equate (without relocation).

BMASK N <-BMASK(value) Returns a 16-bit mask corresponding to the
BEQUF passed as a value. If the BEQUF is
simple (that is, does not extend over a byte
boundary), the high byte of the mask is zero and
the low byte is as might be expected. For a
multiple-byte BEQUF, the mask is that resulting
from the two bytes being considered as a word.
The masked bits generally are clustered around
the center of the word.

For example, BMASK(F1) returns 0CO.

BMASK(F3) returns OF, BMASK(F4) returns
OFFFF.

continued

UP-11540.2 6-19

SM Utility Procedures

Table 6-10. Byte Field Manipulation (BEQUF Functions) (cont.)

MASM
Proc Format Definition /
BLEN N<<-BLEN(value) Returns the length of the field.
BRBIT N<-BRBIT(value) Returns the rightmost bit (LSB) for the given
value.
CBMASK N<<-CBMASK(value) Returns the 16-bit one’s complement of BMASK.
TBEQUF TV<<-TBEQUF(value) Returns true(l) if the value is a BEQUF;
otherwise, false(0).

.2. Load Operators

The LBF procedure is a single operation which loads a register from a
field defined by BEQUF header.

Format

LBF[.EW] ["IRA,[*]Q,["IRM

Parameter

RW A work register (default is RO).

RA \ result register.

Q BEQUTF or a simple numeric equate.

RM A pair of registers (RM,RM+1 : RM even) containing

an Im-byte address.

The value contained in the field defined by Q and RM is loaded into the
register RA. A work register may be necessary.

) UP-11540.2

MASM Utility Procedures

Condition

Result

Q is flagged

Q is not flagged

RA is flagged

RM is flagged

RM is not flagged

RA is not flagged

RA is flagged

Any offset information within the BEQUF is ignored; that is, the
offset is assumed to be zero. This can be used in conjunction
with flaggi~z RM to achieve increased efficiency of code
generation.

The offset is added to RM+1 to enable access of the required
byte.

It is preserved across the MASM procedure call.

The RM pair is not reset to its initial vatue; that is, any offset
added into RM+1 is not subtracted on completion of the
operation. This can result in substantial code savings. Use with
care because redefinition of the fields could result in incorrectly
generated code.

The RM pair is always set back to its original value.

The condition codes are set to correspond to the value loaded
into RA. Note that in the general case, only Z or NZ are
meaningful tests to perform, though 16-bit fields also correctly
set the P/NP bit.

The condition codes resulting from the load are not meaningful.
This can result in saving a superfluous LR instruction.

e If RW is used, it may not equal RA, RM, or RM+1.
A

e R/

2

UP-11540.2

ay not equal RM or RM+1.

6-21

M Utility Procedures

3. Store Operators

Two store operators are currently defined as listed in Table 6-11. The
parameter descriptions follow the table.

Table 6-11. Store Operators

MASM
Proc Format Definition
SBF SBF[,RW] [*] RA,*Q,[*]RM Store byte field
The SBF takes the contents
of a register and stores it
into the specified field.
SMBF SMBF[,RW] RA[*IRM £[Q,[*IW[,RX] store multiple byte field
£]
The SMBF can build an
entire protocol header and
store it into a specified field.
This is noticeably more
efficient and should be used
in all possible cases.
Parameters
RA For SBF, RA is a register from which the contents
are stored. For SMBF, it is an intermediate storage
register that must be defined.
RM A pair of registers (RM,RM+1 : RM even) containing
an Im-byte address.
RW A work register (default is RO).
RX An optional index register.
Q BEQUF or simple numeric constant.
w EQUF or equate with or without relocation.

UP-11540.2

MASM Utility Procedures

SBF conditions

Result

Q is flagged

Q is not flagged

RA is flagged
RM is flagged

RM is not flagged

Q is a simple
numeric constant

Any offset information within the BEQUF is ignored; that is, the
offset is assumed to be zero. This can be used in conjunction
with flagging RM to achieve increased efficiency of code
generation,

The offset is added to RM+1 to enable the required byte to be
accessed.

RA is preserved across the MASM procedure call.

The RM pair is not reset to its initial value; that is, any offset
added into RM+1 is not subtracted on completion of the
operation. The same comments apply as for the LBF proc.

The RM pair is always set back to its original value.

The entire byte at offset given by Q**OFFFF is assumed to be
written.

For SMBF, the combination @,W,RX is repeated for every field set up.
SMBF merges all such set-up requests and then optimizes the creation
and storing away of values. The flag conditions and the constraints
imposed on register choices are described as follows:

SMBF conditions

Result

W is flagged

RM is flagged

The value to be inserted in the field is taken to be a constant;
otherwise, it is assumed to define a fieldlike zone in memory.

The RM pair is not reset to its initial value; that is, the offset
added into RM+1 is not subtracted on completion of the
operation.

Other conditions:

e RW may not equal RA, RM, or RM+1.

® RA may not equal RM or RM+1.

e RX may not equal RA or RM+1.

UP-11540.2

5M Utility Procedures

4. Stack Handling MASM Procedures

Stack handling facilitates the writing of recursive or reentrant code and
provides a convenient means for saving and restoring registers as you
go. All stack operations require the use of a stack register. This register

is defined as an equate to provide maximum flexibility.

The register can be redefined within the program, if necessary. To
redefine the stack register, include AAWRENCH then insert the
following where 7 is the required register (0..15):

STK$$ EQUR n .
The default register is R14.

The SETSTACK MASM procedure sets up a stack area and initializes
the stack pointer. The PUSH$ and POP$ MASM procedures save and
restore registers, respectively. The REMSTACK MASM procedure
deallocates the stack. The CHKSTACK MASM procedure ensures that n
words remain on the stack. Table 6-12 describes these procedures.

Table 6-12. Stack Handling MAS

Goam o am e 2 an
i Procedures

MASM
Proc

Format

Definition

CHKSTACK

PUSH$

POP$

RDSTK

CHKSTACK [stackbase],size

PUSH$ registers

POP$ registers

RDSTK RA,W subroutine linkage
pkg

Generates in-line code to
determine if a specified number
or number of words remain on
the stack. If not, a specification
exception is generated.

Pushes the values in the register
or registers specified onto the
stack.

Pops to the top of the stack
register values that have been
pushed onto the stack.

Generates code that provides
access to data pushed onto the
stack. It does so without having
to pop and then repush data.
Note the CAUTION that follows
Additional Discussion.

continued

UP-11540.2

MASM Utility Procedures

Table 6-12. Stack Handling MASM Procedures (cont.)
MASM
Proc Format Definition
REMSTACK REMSTACK[,RW] Deallocates a stack area
[stackbase[,size]] allocated by SETSTACK. See
Additional Discussion.
SETSTACK SETSTACK[,RW] Initializes the stack pointer,
[*]stackbase[,[*]size[, <RSVD>]] STK$$.
See Additional Discussion.
Parameters
stackbase The address of the base of the stack. If not defined,
the value used is that in the previous SETSTACK.
size The number of words left on the stack.
registers

<registers>::=<register pair>/<register pair><blank> <registers>

<<register pair>:=<register>/<register> <comma> <register>

RA

RW

w

<RSVD>

UP-11540.2

The destination register.

A work register.

Defines an offset, relative to the current stack top,
where the data can be found.

This optional parameter reserves words at the base
of the stack area. Since this starts at constant
address stackbase, it can be used as a dynamic
table area. Checks are made to see that the area
requested is sufficiently large to enclose the

reserved area.

6-25

M Utility Procedures

Additional Discussion

When using PUSHS$, the registers are saved from left to right; that
is, the first mentioned are pushed the deepest.

Example

PUSH$ R1,R4 R8 . Saves R1,R2,R3,R4, and R8
PUSH$ R13,R6 . Saves R13,R14,R15,R0,R1..R6
PUSH$ R4 R2 R9,R10 . Saves R4,R2,R9, and R10

When using POP$, the order of restore is from right to left; that is,
the last mentioned are popped first. This means that the same
parameter list can be used for both PUSH$ and POPS$.

Example 1
PUSH$ R1,R3 . Saves original Rl to R3
POP$ R1,R3 . Restores R3 with original R3
. Restores R2 with original R2
. Restores Rl with original Rl
Example 2
PUSH$ R1,R3 . Saves original Rl to R3
PUSH$ R7 . Saves original R7
POP$ R1,R4 . Restores R4 with original R7

. Restores R3 with original R3
. Restores R2 with original R2
. Restores R1 with original RI

UP-11540.2

MASM Utility Procedures

Caution

The RDSTK MASM procedure is dangerous since it presupposes knowledge
of what and how data is stored on the stack. Exercise great care when using
this procedure. Remember that the stack pointer is not altered by this
instruction.

e It is advisable to use the predefined variable, TOP$STACK, when
using the RDSTK MASM procedure. The topmost (latest pushed)
entry is found at TOP$STACK, the next highest at TOP$STACK-1,
and the next highest at TOP$STACK-2, and so on (note the sign: -1,
-2).

e When using REMSTACK, if stackbase is specified, size (default is
128) bytes are deallocated at stackbase. If the previous use of
SETSTACK did not allocate any memory, this MASM procedure is a
NOP. Otherwise, the memory previously allocated is deallocated.
Three work registers are required for this, usually R1, R2, and R3,
but they can be redefined by specifying RW. As for SETSTACK, RW
must be odd and < 14, If defined, RW, RW+1, and RW+2 are used.

» When using SETSTACK, two types of initialization can take place,
depending on whether the “*” option is taken. A SETSTACK
stackbase sets the stack pointer to stackbase. This assumes the data
area (read/write) is set up and visible.

The alternative option, SETSTACK *stackbase, requests that a data
area be allocated at address stackbase. In this case, two options are
possible. Since allocation requires the use of three work registers,
usually taken as R1, R2, and R3, they may be specified explicitly by
defining RW. In this case, RW, RW+1, and RW+2 are used as work
registers. RW must be odd and << 14. Similarly, the stack size can be
explicitly defined. If this is not done, it is taken to be 128 bytes.

Size is measured in bytes. If size is either 128 or 4096 bytes,
non-subsegmented space is allocated. This can be overridden by
prefixing size with an asterisk.

UP-11540.2 6-27

‘M Utility Procedures

Example of SETSTACK

SETSTACK *SDR9 . Allocates granule at SDR 9
SETSTACK STACK . STK$$ <- address(STACK)
SETSTACK,R13 *SDR29,256 . Allocates 256 bytes at SDR 29

5. Subroutine Linkage

The following MASM procedures provide a simple subroutine linkage
package. MASM procedures are available to define entry and return
points from subroutines, as well as the required CALL statements. The
JLR instruction is used for calling and the link register is R13.

Note: The existence of a stack ts assumed.

Table 6-13. Subroutine Linkage MASM Procedures

MASM
Proc Format Definition

ENTRY ENTRY[,S][[RA,RM / Defines the start of a subroutine. Only one
RA] entry point/routine may exist. The optional
S parameter is used to suppress the
automatic save of the link register.
Registers may be saved on entry. These are
restored by the RETURN MASM procedure.

GOSuUB GOSUB [*] EQR [,RM] Passes control to a named subroutine. It is
not required that the entry statement
define the called routine; all that is
necessary is that the same linkage is
assumed.

RETURN RETURN Defines a point at which control is returned
to the calling routine. Many such points
may exist per routine. Any registers saved
by the ENTRY MASM procedure are
restored.

UP-11540.2

MASM Utility Procedures

6.2.6. Table and Instruction Generation

The MASM procedures listed in Table 6-14 generate code or data.

Table 6-14. Table and Instruction Generation (AAEXTPROC)
MASM
Proc Format Definition
GTABLE GTABLE[,[EQ] [,EQ] [EQR Generates a table similar to GENTAB
[LEQF]] except that relocatable values can be used.
There is no maximum table size.
LMREG LMREG [,RW] {[RA]] Loads multiple registers from a variety
[*EQR [,[RM]/W[,RM]/RM] ensuring the integrity of the load ordering.
STABLE STABLE[,RW] [*]RA,RM Builds a table with or without clearing
[W[,RX]/*EQR[,RX]/RX] former contents from almost any type of
source: registers, fields, constants. The
code, though not optimal, is better than
can be done by applying the
LOAD/LOADC/ STORE MASM procedures.
in particuiar, it can be used to build words
containing several fields, with no
intermediate stores being performed
between successive loads.
TABLEDEF TABLEDEF Generates a set of EQUFs that describe a
[[*IEQ/[*1S[,EQL,EQLEQIN table. With this MASM procedure, the
individual fields within the table can be
defined automatically.
TCLR TCLR W[,RM] Clears a field as set by TSET.
TSET TSET[,<L> / <<S>] Tests and sets a field with wait and retry if
[*IW[,RM] the value is already set. Two types of waits
may exist: a short wait and a long wait of
several milliseconds that requires process
suspension.

UP-11540.2

6-29

‘M Utility Procedures

7. AEXTPROC Procedure Summary

Table 6-15 summarizes the MASM procedures found in AEXTPROC.

Table 6-15. Summary of AEXTPROC MASM Procedures
MASM
Proc Format Type
BBIT N<<-BBIT(value) Byte field manipulation
BBYTE N<-BBYTE(value) Byte field manipulation
BEQUF BEQUF B[,LB[,LEN]] Byte field manipulation
BLEN N <-BLEN(value) Byte field manipulation
BMASK N<<-BMASK(value)byte field
manipulation
BRBIT N <-BRBIT(value) Byte field manipulation
CBMASK N<<-CBMASK(value) Byte field manipulation
CHKSTACK CHKSTACK [stackbase],size Stack handling
ENTRY ENTRY[,S][[RARM /RA 1] Subroutine linkage
GOSUB GOSUB [*] EQR [,RM] Subroutine linkage
GTABLE GTABLE[,[EQ]] [LEQ] [EQR [LEQF]] Table and instruction
generation
LBF LBF[,RW] [*]RA,[*]1Q,[*]RM Load operator
LMREG LMREG [,RW] [[RA]] [*EQR Table and instruction
[LRM]/W[,RM]/RM] generation
POPS$ POPS$ registers Stack handling
PUSH$ PUSH$ registers Stack handling
RDSTK RDSTK RA,W subroutine linkage pkg Stack handling
REMSTACK REMSTACK[,RW] [stackbase[,size]] Stack handling
RETURN RETURN Subroutine linkage
SBF SBF[,RW] [*]RA,*Q,[*]RM Store operator
SETSTACK SETSTACK[,RW] Stack handling

continued

UP-11540.2

MASM Utility Procedures

Table 6-15. Summary of AEXTPROC MASM Procedures (cont.)

MASM
Proc Format Type
SMBF SMBF[,RW] RA[*IRM [Q,[*IW[,RX]] Store operator
STABLE STABLE[,RW] [*]RA,RM Table and instruction
[W[,RX]/*EQR[,RX]/RX] generation
TABLEDEF TABLEDEF [*] S Table and instruction
[[*IEQ/[*IS[LEQL,EQLEQN] generation
TBEQUF TV <-TBEQUF(value) Byte field manipulation
TCLR TCLR W[,RM] Table and instruction
generation
TSET TSET[, <L>/<S>1[*IW[,RM] Table and instruction
generation

UP-11540.2 6-31

M Utility Procedures

). AASTRPRC—Structured MASM Procedures

The following describes program-structuring MASM procedures that
assist implementation and improve clarity of programs by using higher
level control statements in conjunction with assembler coding.

Do not confuse these procedures with a compiler. Very little
optimization or syntax checking is performed. You should inspect the
generated output for register conflicts.

For clarity, wherever the name of a construct is to be understood as the
AASTRPRC keyword, it is printed in uppercase.

The following structure types are available:

e [F (with ELSIF in fix groups and ORIF and ANDIF continuation

tests)
e FOR
e LOOP
s CASE

1. Initialization Before Structure Statement

The omnibus element containing the MASM procedures is called
AASTRPRC. It must be included at the head of each program.

$INCLUDE 'AASTRPRC’

The MASM procedures require an initialization call before the first
structure statement is used.

Format
STRPRC <list>, <base>>, <jump-type>
Parameters

<list> If this parameter is NOLIST, the generated code is
displayed as comments following the statements.
Advisable for final released versions but not for
test runs.

UP-11540.2

MASM Utility Procedures

<base> If specified in conjunction with the jump-type,
<base> is used as the index register on jump
instructions.

<jump-type=> If specified as LONG, all jump instructions generate

long rather than local jumps.

6.3.2. Jump Instructions

Unless the LONG parameter is placed on the STRPRC call, the structure
MASM procedures normally generate local jump instructions. If the
destination is out of range, then the usual E flag is out of range. The
usual E flag and comment are printed.

To force a long format jump to be generated by a particular MASM
procedure, code LONG following the MASM procedure keyword. For
example:

IF <<condition>
would be changed to:
IF,LONG <condition>

If the range of a structure is beyond the extent of a local jump, the
structure is probably too extensive for clear understanding and further
use of subroutines is desirable.

6.3.3. Register Usage

The IF and UNTIL constructions may require one or more work
registers. These constructions always use RO if they require one, and
RO and R1 if they require two.

UP-11540.2 6-33

VI Utility Procedures

1. IF Structure

The IF