
•
UNISYS System 80

OSj3
T ransactinn
Platform
System
(fPS)
Programming
Guide

Volume II

IMPORTANT NOTE!

This documentation describes the Transaction Platfoml Sustelll (TPS) software
product which is a fully functional subset of Ailinson~Ros5 Corporation

Transaction Interface Processor /30 (TIP/3D).

All references to TIP/30 in this documentation can be understood to refer to
TPS.

TIP/30 is a trademark of Allinson-Ross Corporation, Mississauga, Ontario,
Canada. TPS is a trademark of Unisys Corporation.

© Copyright Allinson-Ross Corporation, 1989

Copydght © 1990 Unisys Corporation
All rights reserved.
Unisys is a registered trademark of Unisys Corporation.

OS/3 Release 13

Priced Item

August 1990

Printed in U S America
7002 3999-100

NO WARRANTIES OF MN NATURE ARE EXTENDED BY THIS DOCUMENT. Arrj product and related material
disclosed herein are only fumished pursuant and subject to the terms and conditions of a duly executed Program
Product Ucense or Agreement to purchase or lease equipment The only warranties made by Unisys, if any, with
respect to the products described in this document are set forth in such Ucense or Agreement Unisys cannot
accept financial or other responsibility that may be the result of your use of the information in this document or
software material, including direct, indirect, special, or consequential damages.

You should be very careful to ensure that the use of this information and/or software material complies with the
laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such
changes and/or additions.

Correspondence regarding this publication should be forwarded to Unisys Corporation either by using the Business
Reply Mail form at the back of this manual or by addressing remarks directly to Unisys Corporation, OS/3 Systems
Product Information Development, P.O. Box 500, Mail Station E5-114, Blue Bell, Pennsylvania, 19424, U.S.A.

About This Document

Purpose
The TIP/3D Programming Reference Manual Volume II:

• explains TIP /30 programming facilities and

• describes, in detail, how to install, generate and maintain TIP /30.

Scope

This document provides detailed descriptions of the TIP /30 programming facilities and
provides instructions on how to install, generate and maintain TIP /30.

Audience
The primary audiences for this document are:

•

•

•

data processing programming staff

system administrators

system operators.

Prerequisites
Anyone using this document should be familiar with Unisys computer hardware and the
05/3 software system.

In addition, knowledge of the COBOL programming language is an asset.

How to Use This Document

You should read this entire document to familiarize yourself with its contents. The sections
on the TIP /30 programming facilities explain how to use these facilities in your
applications. Additional sections describe how to install, generate and maintain TIP /30.

7002 3999-1 00

About This Document

Organization

ii

This document contains ten sections and an appendix:

"Program Control System (PCS)" on page 1 .. 1

This section describes the facilities of the Program Control System (peS). All TIP /30
facilities that provide program control are included in this classification.

"Message Control System (MCS)" on page 2 .. 1

This section describes the facilities provided by TIP /30 to enable an online program to
perform input and output to a terminal.

"File Control System (FCS)" on page 3-1

This section describes the facilities of the TIP /30 File Control System (FCS). FCS is the
TIP /30 component that provides the interface between transaction programs and data files.

"TIP/30 System Generationii on page 4-1

This section describes TIP /30 generation parameters and procedures.

"TIP/30 System Files" on page 5-1

This section describes each of the files required for the operation of the TIP /30 system.

''TIP/30 Job Control OptiOIt..s" on page 6-1

This section describes the job control used to execute TIP /30 and the run-time job control
options that may be specified for TIP /30.

"Offline (Batch) Recovery" on page 7-1

This section describes offline file recovery procedures.

''TIP/30 Batch Jobs" on page 8-1

This section describes the batch job control streams supplied to support the TIP /30 system.

"Operations Guide" on page 9-1

This section contains information needed by operations personnel to operate the TIP / 30
system.

"TIP/30 Installation Guide" on page 10-1

This chapter is the installation guide for TIP /30.

''Programming Reference" on page A-l

This appendix contains programming reference tables.

7002 3999-1 00

Contents

About This Document .. i

Section 1. Program Control System {peS} •.•.•....•.......•.. 1 .. 1

pes Facilities ,............. 1-2

Online Program Structure .. , 00. 1-4

Program Execution Priority , ,........................ 1-6

Program Execution Stack ,....................... 1-8

PIS - Process Information Block ,..... 1-11

COA - Continuity Data Area ,..................... 1-20

MCS- MCS Area , , ,.,...................... 1-22

Work-Area " ,............... 1-24

GOA - Global Data Area , .. ,............ 1-25

Reentrant COBOL 1-26

Transaction End ... 1-28
PiS-LOCK-iNDiCATOR Action , 0 ••• ,. 1-29

TIPABRT - Program ABORT Trap ,............ 1-30

TIPBITS - Convert Bytes to Bits 1-32

TIPBYTES - Convert Bits to Bytes ,... 1-33

TIPDATE - Return Date .,............................... 1-34

TIPDUMP - Force Program Dump .,....................... 1-35

TIPDXC - Delayed Transfer Control , ,.. 1-36

TIPFLAG - Flag Services . ,' , .. 1-38

TIPFORK - Start Program at a Terminal 1-44

TIPFORK - Start Background Program 1-46

TI PGRPS - Retrieve Elective Groups 1-48

TIPGRPST - Change Elective Groups 1-50

TIPJUMP - Direct Transfer Control 1-52

TIPRTN - End Online Program .. , ,.... 1-53

TIPSNAP - Snap Dump Memory 1-54

7002 3999-100 iii

Contents

TlPSUB - Perlorm Program 1-55
Calling TIP/30 Utilities 1-57

TIPSUBP - Call Resident Subroutine 1-59

TIPTIMER - Timer Services 1-63

TIPUSR - Where is User 1-66

TlPUSRID - User Information 1-67

TIPXCTL - Transfer Control 1-69

TIP/30 and IMS Interaction 1-71
IMS to TIP/3Q 1-71
TIP/30 to IMS 1-72

TIP/30 Command Line 1-73

Redirected Input (.IN File) 1-75

Redirection and the Command Line 1-76

Input Redirection at LOGON 1-79

TIP130 RPG II Support 1-81
RPG II Exit Routines 1-82
Cataloguing TI P/30 RPG Programs 1-85

Section 2. Message Control System (MCS) 2 .. 1

Message Control System (MCS) 2-2
MCS Reserved Terminal Names 2-4
UNISCOPE Terminal Control Page 2-5
Down Line Loaded Screen Formats 2-6

MCS Interlace Overview 2-7

MCS Interlace' Packet 2-9

MCS Subroutine CALLS 2-13
TIPMSGO - Output Data to Screen Format 2-13
TIPMSGI- Read Data from Screen Format 2-17
TIPMSGE - Send Error Text To Screen 2-20
TIPMSGEO - Define Deferred Error Text 2-23
TIPMSGRV - Force Full Screen Transmit 2-24
TIPERASE - Erase Screen 2-25
FCC Modifications 2-26
Cursor Positioning 2-29

Line Oriented Terminal 1/0 2-30
Function Key Input 2-31
BREAK - Check For Operator Break 2-32

iv 7002 3999-1 00

Contents

PARAM - Parameterize Data 2-34
PROMPT - Prompt Terminal for Reply 2-36
PROMPTX - Prompt for Text 2-38
PROMPTX8 - Prompt for Text 2-39
ROLL - Output Line & Roll Screen 2-40
ROLLPT - Set Terminal Roll Point 2-42
TEXT - Get One Line From Terminal 2-43
TEXT80 - Get One Line From Terminal 2-44
TIPCOP - Print Screen on Aux Printer 2-45
TIPCPAGE - Set Control Page 2-46
TIPSCAN - Scan String For Parameters 2-47

Direct Communications I/O 2-48
Message Formats 2-49

TIPTERM Functions. .. 2-53
T-GET - Get Input 2~55
T-PUT - Output Message 2-57
T-TEST - Test For Input 2-59
T-UN - Send Unsolicited Message 2-60
Output Delivery Notification 2-61

Section 3. File Control System (FCS) .•...................... 3 .. 1

FCS Introduction ... 3-1

FCS Overview ... 3-2

FCS and the TIP/30 Catalogue 3-4

Techniques for Deleting Records 3-5
Logical Record Delete 3-6
Record Control Byte Deletion 3-7

Setting a File in Sequential Mode 3-8

MIRAM and Duplicate Keys-..... 3-9

Record Locking ... 3-11
HOLD=YES - Simple Record Locking 3-12
HOLD=UP - Record Locking for Update 3-13
HOLD= TR - Record Locking for Transaction 3-14
Record Locking Summary 3-14

Call TIPFCS - Common Parameters 3-15

Rle System Function Codes 3-17

FCS Interface Packets 3-19
Logical File Name Packet 3-20
File Descriptor Packet 3-21

7002 3999-1 00 v

Contents

FCS Miscellaneous Functions 3-23
FCS-SACK - ROLL BACK Changes 3-23
FCS-HOLD - Hold Resource 3-24
FCS-JOURNAL - Write User Journal Record .. ~ 3-25
FC5-RELEASE - Release Resource 3-26
FCS-TREN - Mark Transaction End 3-21

CALL TlPFCER - Interpret FCS Error 3-28

TtPFCS for Indexed Files 3-30
FCS-ADD - Indexed: Add Record ' 3-31
FCS-CLOSE - Indexed: Close File ,..... 3-32
FCS-DELETE - Indexed: Delete Record 3-33
FCS-ESETL - Indexed: End Sequential Mode 3-34
FCS-FLUSH - Indexed: Flush File 3-35
FCS-GET - Indexed: Read by Key , 3-31
FCS-GET - indexed: Read Sequential 3-38
FCS-GET - Indexed: Read Nth Duplicate 3-39
FCS-GETRN
- Indexed: Read Relative Number , 3-41
FCS-GETUP - Indexed: Read With Lock 3-43
FCS-NEXT - Indexed: Get Next Record 3-45
FCS-NOUP - Indexed: Cancel Update 3-41
FCS-OPEN - Indexed: Open File ,........ 3-48
FCS-PUT - Indexed: Update Record ,.......... 3-49
FCS-SETL - Indexed: Set Sequential Mode 3-50
FCS-SETL-BOF
- Indexed: Set Sequential Mode 3-52
FCS-SETL-EQ
- Indexed: Set Sequential Mode 3-53
FCS-SETL-GT
- Indexed: Set Sequential Mode 3-55
FCS-SKIP - Indexed: Skip Sequentially 3-51

TIPFCS for Direct Files 3-58
FCS-ADD - Direct: Add Record 3-59
FCS-CLOSE - Direct: Close File 3-60
FCS-DELETE - Direct Delete Record 3-61
FCS-FLUSH - Direct: Flush File 3-62
FCS-GET - Direct: Read Record 3-63
FCS-GETUP - Direct: Read With Lock 3-64
FCS-NOUP - Direct: Cancel Update 3-65
FCS-OPEN - Direct: Open File 3-66
FCS-PUT - Direct: Update Record 3-61

TIPFCS for Sequential Files 3-68
FCS-CLOSE - Sequential: Close File 3-69

vi 7002 3999-1 00

7002 3999-1 00

Contents

FCS-GET - Sequential: Read Record 3-70
FCS-OPEN - Sequential: Open File 3-71
FCS-PUT - Sequential: Write A Record 3-72

TIPFCS for Dynamic Files 3-73
FCS-ACCESS - Dynamic: Access File 3-75
FCS-ASSIGN - Dynamic: Assign File 3-76
FCS-CLOSE - Dynamic: Close File 3-n
FCS-CREATE - Dynamic Create File 3-78
FCS-GET - Dynamic: Read Record(s) 3-79
FCS-OPEN - Dynamic: Open File 3-81
FCS-PUT - Dynamic: Write Record(s) 3-82
FCS-SCRATCH - Dynamic: Scratch File 3-83

TIPFCS for Edit Buffers 3-84
FCS-ADD - Edit: Add/Insert Line 3-85
FCS·CLOSE = Edit: Close Buffer 3-86
FCS-DELETE - Edit: Delete Line 3-87
FCS-FLUSH - Edit: Flush Buffer 3-88
FCS-GET - Edit: Read Line 3-89
FCS-OPEN - Edit: Open Buffer 3-90
FCS=PUT ~ Edit: Replace Line 3-93
FCS-SCRATCH - Edit: Scratch Buffer 3-94

TIPFCS for Library Files 3-95
Library File Descriptor 3-96
FCS-CLOSE - Library: Close Element 3-98
FCS-GET - Library: Read Next Line 3-99
FCS-NOUP
- Library: Close Element (No update) 3-100
FCS-OPEN - Library: Open Element 3-101
FCS-PUT - Library: Write Line 3-103

TIP/30 Print Facility (TIPPRINT) 3-104
TIPPRINT Print Destinations 3-105

ROLL - Single Line Terminal Output 3-105
AUXO - Full Screen Output 3-106
AUXn - Auxiliary Device 3-106
MS-DOS File - d:xxxxx 3-108
PRNTR - Batch Printer(s) 3-109
SMIRAM File - Output to File 3-109
OFIS Link/80 3-110
UNIX: - UNIX Files 3-110

FCS-OPEN - Open T1PPRINT Interface 3-111
FCS-PUT - Output Print Line 3-120
FCS-FLUSH - Flush TIPPRINT Buffer 3-126
FCS-CLOSE - Close TIPPRINT Interface 3-128

vii

Contents

viii

PC File Transfer
FCS-OPEN - Open PCXFER Interface
FCS-GET - Input Record from PC
FCS-PUT - Output Record to PC
FCS-FLUSH - Flush PCXFER Buffer
FCS-CLOSE - Close PCXFER Interface
PCXFER Masking

Transfer from MS-DOS File
Transfer to MS-DOS File

PCXFER Compression

TlP130 OMS Interface
OMS Interface: XR31MS
DMCL Considerations
DBMS Start up
COBOL Compile PreProcessing
TiPi30 - DMS Programming
FCS Calls Related to DMS
Catalogued DMCL Names

TIP130 Journal File
Journal File Record Format
Batch Journal File Access

TIPJRNOP - Batch Journal File Open
T1PJRNCL - Batch Journal File Close
TIPJRNGT - Batch Journal File Read

3-129
3-130
3-137
3-140
3-143
3-144
3-145
3-146
3-147
3-148

3-149
3-149
3-149
3-149
3-150
~_H:::7 ...,--"

3-160
3-161

3-162
3-163
3-168
3-168
3-169
3-169

Section 4. TIP/30 System Generation ...•.. 8 • • • • • • • • • • • • • • • •• 4·1

TIPGEN Definition .. 4-4

FILE Definition .. 4-25
File Keyword XREF 4-40

CLUSTER Definition 4-42

Keyword Xref ... 4-47

TIP/3~ Generation Steps 4-51

Generation Parameter Processor 4-52

Example TIP/30 Generation 4-53

TIP/3~ New Release 4-54

OS/3 New Release 4-55

Section 5. TIP/30 System Files•.....•.................. 5-1

SYSGEN - Maintenance Library 5-3

7002 3999-1 00

Contents

TIP - Release Library 5-3

T1P$BAK - Backup File 5-4

TlP$B4- Before Image File 5-4

TIP$CAT - Catalogue File 5-5

TIP$DUMP - Dump File 5-6

TIP$HST - History File 5-6

TIP$JCS - Job Control Library 5-7

TIP$JRN - Journal File 5-7

TIP$LOD - Load Library 5-8

TIP$LOG - Log Tape 5-9

TIP$MCS - Screen Format File 5-9

TIP$MSG - TIP/30 Message File 5-10

TIP$RNDM - Random File 5-10

TIP$SWAP - Swap File 5-11

TIP$TOM - Output Message File 5-11

TIP$TSP - Sample Program File 5-12

Section 6. TIP/30 Job Control Options •...................... 6-1

TIP/30 UPSI ... 6-18

Section 7. Offline (Batch) Recovery 7-1

Quick File Recovery ,.................................. 7-4

Journal File Maintenance 7-4

Recovery Batch Jobs ,.......................... 7-6

Section 8. TIP/30 Batch Jobs 8-1

TIP/30 Job Control Procs 8-2

TIP/30 Supplied Job Control 8-3

Batch Program TB$CRB 8-14

Section 9. Operations Guide 9-1

Console Operation .. 9-1

TIP/30 Operator Access Control 9-2

7002 3999-100 ix

Contents

TIP/30 Operator Commands 9-3

Console Messages 9-9

Section 10. TlP/30 Installation Guide .••••••.••.••••.••....•. 10-1

TIP/30 Pre-installation Setup 10-1
OS/3 Supervisor Generation 10-1
OS/3 ICAM Generation 10-8
Example (CAM Generations 10-10

Installation - PART I 10-12
Step 1 - Getting Started 10-15
Step 2A - Quick Install 10-16
Step 28 - Detailed Install 10-22

Installation - PART II 10-24
Accessing the TIP/30 System 10-24
Logon TIP/30 10-25
Step 3 - Online Install 10-26
Step 4 - Load Screen Formats 10-28
Step 5 - Load Sample File Data 10-29
Step 6 - Convert IMS Parameters 10-30
Step 7 - Customize T J$TIP Job Stream 10-32
Step 8 - Shutdown TIP/30 10-33

TIP/30 Impact on Users 10-34

Multiple TIP/30 Systems 10-34

Glossary ..•.•.•....•.......... II ••••••• a _ ••••••• _. Glossary-1

Appendix A. Programming Reference D • • • • • • •• A-1

Index II • It G •• Index-1

x 7002 3999-1 00

Section 1
Program Control System (PCS)

This chapter describes the facilities of the Program Control System (peS). All TIP /30
facilities that provide program control are included in this classification.

PCS, as a component of TIP /30, controls the execution of all transaction programs and
provides monitor-level functions for transaction programs. Services are provided to
support inter-program transfer of control and to permit transaction programs to access
ti.'l1er facilities.

The facilities of PCS are available to transaction programs by issuing standard
programming language CALLs to subroutines provided with the TIP /30 system.

When transaction programs are linked, the appropriate subroutine object modules are
automatically included. In ahnost all cases, the subroutines are veri srraall interface routines
that transfer control to the resident TIP /30 PCS routines.

The linked interface routines are rarely changed, thus ensuring upward compatibility from
one release of TIP /30 to another.

7002 3999-1 00 1-1

PeS Facilities

1.1. pes Facilities

1-2

PCS subroutine CALLs are summarized here to provide an overview of the type of facilities
that are available through the PCS. The individual subroutines are described in detail in
subsequent sections.

TIP ABRT Establish exception routine to handle abnormal termination conditions.

TIP ABRT allows a program to trap certain types of abnonnal termination
events (this subroutine is available only for Assembler language transaction
programs).

TIPBITS Convert a series of 32 bytes to 32 bits.

TIPBITS is a utility subroutine provided to pennit COBOL language programs
to manipulate bit values.

TIPBYTES Convert a series of 32 bits to 32 bytes.

TIPBYTES is a utility subroutine provided to permit COBOL language
programs to manipulate bit values.

TIPDATE Return date in readable fonnat
(example: TUESDAY OCTOBER 18 1988).

TIPDATE is a utility subroutine provided to return the date in expanded
fonnat (including day of the week).

TIPDtJl\.fP Cause deliberate program check.

TIPDUMP is a utility subroutine provided to cause a deliberate program
check condition and, therefore, force a program dump for debugging
purposes.

TIPDXC Transfer control to another transaction program after the arrival of an input
message from the terminal.

TIPDXC allows a program to transfer control to another program after I XMrT I
or a function key is pressed.

TIPFLAG Provide capability to test and/or set up to 32 "flag" bits (switches).

TIPFLAG is a utility subroutine provided to permit transaction programs to
manipulate internal TIP /30 flag bits and use these flags as semaphores to
implement queueing schemes.

TIPFORK Start a transaction program running as an asynchronous process.

With TIPFORK, a program can initiate another program as an asynchronous
task, and thus create an independently executing process.

The independent process may run at another terminal in the network or as a
''background processll (without a connected terminal).

TIPGRPS Retrieve elective group membership.

The TIPGRPS subroutine is used to retrieve the names of the application
~rOUpS to wrdeh the user has membersrJp.

7002 3999-1 00

pes FacUlties

TIPGRPST Set elective group membership.

The TIPGRPST subroutine is used to change or set the names of the
application groups to which the user belongs.

TIPJUMP The TIPJUMP subroutine permits an online program to transfer control
directly to another program - passing all of the calling program's work areas
to the next program.

This call essentially allows a program to continue executing using a different
load module.

TIPRTN Terminate transaction program and return control to calling program.

All TIP /30 programs use TIPRTN to terminate and return control to the
calling program.

TIPSNAP "Snap" dump selected portions of program's memory.

The TIPSNAP subroutine is used to generate memory-image "snap" dumps of
selective portions of a transaction program's memory areas. This subroutine is
primarily used for debugging PurPoses.

TIPSUB Invoke a transaction program as a sub-function.

TIPSUB allows a program to ''PERFORM'' another program and receive
control when that program is finished.

TIPSUBP Invoke a resident subroutine.

TIPSUBP allows a program to "CALL" a resident subroutine and receive
control when that subroutine is finished.

TIPT:UvfER Delay program execution for a specified number of seconds.

TIPUSR Retrieve terminal name where a specified user is using TIP / 30 system.

TIPUSRID Retrieve information about TIP /30 user.

TIPXCTL "GOTO" another program.

Using TIPXCTL, a program can "GO TO" another program without any return
of control.

When writing online programs, these facilities (especially those allowing transfer of control
from one program to another) permit the programmer to use familiar control structures
that are taken for granted in batch programs.

All TIP /30 programs, regardless of the manner in which they were actually invoked, return
control to the calling program by issuing a call to the subroutine TIPRTN.

This standardized return mechanism means that all TIP /30 programs may operate either as
a sub function or as a main function without the need for special code in the program. This
powerful feature facilitates the creation of modular application systems.

7002 3999-100 1-3

Online Program Structure

1.2. Online Program Structure

1-4

TIP /30 provides an environment for transaction programs. Part of the environment is a
number of areas of main storage that are established automatically for use by the program.
Some areas are used to communicate infonnation to the TIP /30 system; other areas are
used as external work areas by the transaction program.

A transaction program may be servicing a number of users at one time. In order to
accomplish this, the program must have separate working areas for each instance of the
program.

TIP /30 calls a transaction program exactly as if the program was a subroutine of TIP /30.
The addresses of the fixed areas of storage that are allocated for use by the transaction
program are passed as parameters to the transaction program.

Online programs that operate in TIP /30 native mode must be aware of the parameters that
are automatically passed by TIP /30. All transaction programs are called either by TIP /30
(if executed from the command line) or another program (if called via the TIPSUB
mechanism for example).

The following discussion illustrates the general structure of a TIP /30 native mode program.
For convenience, the examples use COBOL syntax.

TIP /30 passes five parameters to a transaction program, in the following fixed order:

I.PIB

2.CDA

3.MCS

Process Information Block

Continuity Data Area

Message Control System work area

4. WORK-AREA Work area

5. GDA Global Data Area
(TIP / 30 generation option)

Each of these areas represents main storage, established by TIP /30, that the transaction
program may use.

7002 3999-1 00

Example:

DATA DIVISION.
LINKAGE SECTION.

01 PIB.
01 MCS.
01 WORK-AREA.

01 CDA.
01 GDA.

PROCEDURE DIVISION

Online Program Structure

COPY TC-PIB OF TIP.
COpy TC-MCS OF TIP.

COpy TC-CDA OF TIP.

USING PIB
CDA
MCS
WORK-AREA
"'~'l'\. \ .. :1l.J-n. •

The order of appearance of the "01" levels in the LINKAGE SECTION is not important but
the order of the areas specified in the PROCEDURE DIVISION USING statement is ~
critical, and fixed.

The names of the "01" level items are not important (although the names illustrated in the
exampie above have become somewhat of a tradition). Vv1--Iat is very crucial, however, is the
rule that each name in the USING list must refer to a corresponding named "01" level in the
LINKAGE section.

The PIB and the CDA must be present and are required. The MCS, WORK-AREA and GDA
are optional areas. If an individual program does not use one or more of these areas, using
a "dummy" linkage item to maintain the correct USING list order is recommended.

05/3 programming languages do not pennit the programmer to omit items from the
USING clause with one exception: trailing items may be omitted. If a program does not
intend to reference the Global Data Area (for example) the fifth parameter may be omitted.

7002 3999-100 1-5

Program Execution Priority

1.3. Program Execution Priority

1-6

Priority levels that are established in the Tn' /30 generation parameters control the
execution priority of an online prognun. The TIP /30 generation keywords that control
these execution priorities are:

• BACI<PRI=

• SCHDPRI=

• PRIORI1i'=

• USERPRI=.

The execution priority is also related to the priority of other jobs in the 05/3 system, and
not just TIP/30 activities; therefore, you should specify transaction priorities with care.

The PRIORI1i'= keyword in the TIP /30 Catalogue entry for the PROGram may be used to
designate a specific priority level for an individual transaction program.

Note: Use of these facilities may result in TIP/30 transactions running at 05/3 switch list
priorities (numerically) higher than 4 and, therefore, may impact other tasks in the system
such as: output writer, run processor, interactive services, etc. If changes are made to the
TIP/30 transaction priority levels, the values assigned to related 05/3 generation options
(5YMBPRI=,I5INTPRI=, PRIORITY=) must be examined.

The following discussion will help you to better understand transaction scheduling. First,
the OS /3 execution priorities that TIP /30 uses:

Assume that TIP /30 has been executed using a priority of "X" on the EXEC statement in the
job control. This value is often "1", but we will denote it as ''X'' for the purpose of this
discussion.

The default situation is as follows:

• The Tn' /30 MAIN" task runs at priority level X; this level may not be altered

• The TIP /30 COMMunication task runs at priority level X+l; this level may not be
altered

• Foreground transaction programs (those executing at a terminal) run at priority level
X+2

• The Tn' /30 scheduler task and background transaction programs run at priority level
X+3.

There are several generation keywords (or TIP /30 job control options) that allow the
specification of both the number of user transaction priority levels and the levels that are
used for various types of transactions:

PRlority=p The number of required priority levels.

Default: p=2.

Maximum: 10

The range of priority levels established by the value specified for this keyword
range from X+2 to X+2+p-l inclusive.

7002 3999-1 00

Program Execution Priority

Note: The PRIority= keyword establishes the number of priority levels that
exist beyond the levels that are reserved for the MAIN and COMM
tasks (running at levels X and X+l respectively).

The following keywords, specify a numeric value that determines the various priorities
relative to X+l:

UserPRI=u

BackPRI=b

SchdPRI=s

Priority level for foreground transactions. Foreground transactions execute at
priority level X + 1 +u.

Default: u= 1.

Priority level for background transactions. Background transactions execute at
priority level X + 1 +b.

Default: b=2.

Priority level for the Til' /30 scheduler task. The scheduler executes at priority
level X + 1 +s.

Default: 5=2.

You should not run the Til' /30 scheduler at USERPRI because the scheduler
should not preempt user transactions. If you do; scheduling new work takes
priority over transactions that are already running.

Additional Considerations:

Running a program using IDA (Interactive Debug Aid) forces that program's scheduling
priority to the lowest (worst) priority: (X+l+(value of Priority= keyword».

7002 3999-100 1-7

Program execution Stack

1.4. Program Execution Stack

1-8

Tn' /30 transaction programs operate in a stack oriented environment The standard
system prompt is displayed by the Tn' /30 command line processor to allow the terminal
operator to enter a transaction name and any initial command line parameters that may be
required by the transaction. When the program begins execution, it is considered to be
executing on stack level one - the initial Tn' /30 prompt is regarded as stack level zero.

If the initial program transfers control to another program without an implied return of
control (using Tn'DXC, Tn'JUMP or Tn'XCTL), the called program simply replaces the
initial program on the current stack level.

On the other hand, if the initial program transfers control to another program with an
implied return of control, TIP /30 does the following:

• Suspends execution of the calling program

• Saves the calling program's "activation record" (PIB, COA, MCS, and WORK-AREA) in
the TIP$SW ft.l' fHe.

• Allocates and initializes (to low values) the called program's activation record

• Copies the calling program's CDA contents into the called program's CDA (for a length
of the shorter of the two CDA areas)

• Establishes the PIB, MCS, WORK-AREA for the called program and initializes these
areas

• Begins execution of the called program.

The called program is now running at the next higher stack level (level "two" in this case).

This process of "climbing" the stack may proceed up to 64 levels. When any program issues
a call to the TIPRTN subroutine, TIP /30 does the following:

• Loads (from the TIP$SW AP file) the saved "activation record" of the program that
preceded the tenninating program on the execution stack

• Copies the contents of the COA of the terminating program to the CDA of the previous
program on the stack (for a length of the shorter of the two CDA areas)

• De-allocates the PIB, MCS, and WORK-AREA of the terminating program

• Resumes execution of the program that invoked the tenninating program.

The only infonnation that is passed from stack level to stack level in either direction is the
contents of the CDA. Since different programs have different COA sizes, TIP /30 only
copies infonnation between CDA areas for a length of the shorter CDA; therefore,
programs can invoke other programs that may represent entire applications as if they were
subroutines.

The calling program's environment is restored intact (with the exception of the CDA)
whenever the called program (or any descendants of it) terminate back down the stack. A
program that is suspended in this manner is not resumed until the stack returns to that
point - this may be rninutes, hours, or days later!

7002 3999-1 00

Program Execution Stack

The ability to stack or nest program execution is illustrated by the following hierarchy of
programs:

Example Program stack:

PROG-A Level 1

PROG-8 PROG-C Level 2

Level 3

In this example, PROG-A offers a choice of "perfonning" function B or C. Instead of
transferring control (permanently) to either of those programs, PROG-A performs a
Tll~tJH operation that "perfonnslt (in a sense similar to the COBOL PERFORM verb) the
transaction B or C. When B or C terminates, control returns to PROG-A immediately
following the call to TIPSUB.

PROG-A must ensure that PROG-B or PROG-C (or PROG-D, PROG-E or PROG-F) does not
destroy any necessary infonnation in the CDA, although, generally, the CDA is only used
for passing information to such subordinate programs and all of the programs involved
agree on the layout of the CDA area.

$

The advantage of this scheme is that PROG-B does not know how it was invoked. PROG-B
performs its function and issues a call to TIPRTN. The TIP /30 system determines the return
point.

This example must not be interpreted to mean that TIPSUB is preferable to TIPXCTL. The
programmer must choose between the two classic techniques to transfer control: GO TO
(TIPJUMP, TIPXCTL, TIPDXC) or PERFORM (TIPSUB).

Issuing a call to TIPSUB involves TIP /30 system overhead since the current activation
record is saved in the TIP$SW AP file. This overhead is somewhat more than that required
for TIPXCTL or TIPDXC.

Avoid partitioning an application system into modules that are too small.

A reasonable rule of thumb is to place code LL.lQt is related by !!§£ in one transaction
program. For example, use TIPSUB to "PERFORM" infrequently used functions that are not
worth permanently imbedding in the load module.

Avoid writing programs that are either excessively fragmented Q!: are monolithic monsters.
Avoid using a transfer of control to execute a relatively minor task.

7002 3999-100 1-9

Program Execution Stack

1-10

A particularly poor idea is designing a system that uses TIPSUB to "perform" a routine that
issues file I/O. In this case, the relatively high overhead involved in a TIPSUB call (which
almost always causes the TIP /30 system to perform input/output operations) is incurred
just to perform I/O for the application program. It is more efficient to perform the I/O directly
inline.

Using a subprogram (CALL TIPSUBP) to perform I/O is a different situation altogether
and is a much better idea.

7002 3999-1 00

PIB - Process Information Block

1.5. PIB - Process Information Block
The Process Infonnation Block (PIB) is a fixed size and fixed fonnat area that contains
infonnation about the transaction that is executing. TIP /30 establishes a PIB area for each
execution of a transaction program. Most of the fields in the PIB are read-only in the sense
that the transaction program is never required to alter the field. A few fields, however, are
occasionally modified by the transaction program as a preliminary step to calling a TIP /30
subroutine.

The layout of the PIB is contained in the COBOL copy element ''TC-PIB'' supplied in the TIP
library:

*
* TIP/30 PROCESS INFORMATION BLOCK

*
as PIB-TRID PICTURE X (8) .
as PIB-UID PICTURE X (8) .
05 PIB-TID PICTURE X (4) •

as PIB-STATUS PICTURE X (1) ..
88 PIB-GOOD VALUE , ,
88 PIB-PROG-ABEND VALUE ' A' .
88 PIB-BREAK VALUE ' B' .
88 PIB-DUP-AFT-NAME VALUE ' ,.., . '-' .
88 PIB-DUP-KEY VALUE ' D' .
nn PIB-EOF ~1'7\ T TTl:' , E' 00 y=.uv~

88 PIB-IO-ERROR VALUE ' F' .
88 PIB-FUNCTION VALUE 'G' .
88 PIB-ACTIVE VALUE ' H' .
88 PIB-SECURITY VALUE ' K' .
88 PIB-LOCKED VALUE 'L' .
88 PIB-MSG-AVAIL VALUE ' M' .
88 PIB-NO-MEM VALUE ' M' .
88 PIB-NOT-FOUND VALUE ' N' .
88 PIB-OVERFLOW VALUE ' 0' .
88 PIB-TIMED-OUT VALUE ' T' .
88 PIB-WRONG-MODE VALUE ' W' •
88 PIB-NOT-HELD . VALUE ' X' .
88 PIB-HELD VALUE ' Y' .
88 PIB-FULL VALUE ' Z' .

as PIB-SYSTEM PICTURE X(l) .
88 PIB-EOJ-PENDING VALUE ' E' .

os PIB-GROUP-1 PICTURE X (8) .
as PIB-GROUP-2 PICTURE X (8) .
05 PIB-DATE PICTURE S 9 (6) COMP-3.
05 PIB-TIME PICTURE S 9 (6) COMP-3.
05 PIB-JULIAN-DATE.

10 PIB-YEAR PICTURE n 1"'1\
;:; \ '- I Cm·1P~4 •

10 PIB-DAY-OF-YEAR PICTURE 9 (3) COMP-4.
05 PIB-SITE-NAME PICTURE X (12) .

7002 3999-100 1-11

PIS -- Process Information Block

05 PIB-SECURITY-CODE PICTURE 9 (4) COMP-4.
88 PIB-TECH-USER VALUE 1.
88 PIB-MASTER-USER VALUE 1 THRU 9.
88 PIB-SYSTEM-USER VALUE 10 THRU 19.
88 PIB-SYSTEM-OR-HIGHER VALUE 1 THRU 19.
88 PIB-PROGRAMMER-USER VALUE 20 THRU 29.
88 PIB-PROGRAMMER-OR-HIGHER VALUE 1 THRU 29.
88 PIB-APPLICATION-USER VALUE 30 THRU 255.
88 PIB-APPLICATION-OR-HIGHER VALUE 1 THRU 255.

05 PIB-ACCOUNT-NUMBER PICTURE X (4) .
05 PIB-LAST-MCS-NAME PICTURE X (8) .
05 PIB-LOCAP PICTURE X (4) .
05 PIB-WAIT-TlME PICTURE S9 (4) COMP-4.
05 PIB-DETAIL-STATUS PICTURE 9(4) COMP-4.

88 PIB-DUPS-AHEAD VALUE 1.
05 PIB-LOCK-INDICATOR PICTURE X (1) .

88 PIB-ROLLBACK VALUE ' 0' .
88 PIB-RELEASE VALu'"E ' R' .
88 PIB-HOLD VALUE' H' .

05 PIB-RPG-UPSI PICTURE X(l) .
05 PIB-ALT-MCS-ROW PICTURE 9(2) COMP-4.
05 PIB-CDA-I PICTURE 9 (6) COMP-4.
05 PIB-WRK-I. PICTURE 9 (6) COHP-4.

05 PIB-LEVEL PICTURE 9(3) COMP-4.
05 PIB-TERM-TYPE '"'.,.,...",,.~~ n 1)1 \ CO}.R..P~4 • l:'J..\",J"U.t'o.l:.l :1 \ -: I

88 PIB-U200 VALUE O.
88 PIB-UTS-400 VALUE 1.
88 PIB-UTS-20 VALUE 2.
88 PIB-UTS-30 VALUE 3.
88 PIB-UTS-40 VALUE 4.
88 PIB-UTS-10 VALUE S.
88 PIB-UTS-60 VALUE 6.
88 PIB-PC VALUE 7.
88 PIB-IBM-3270 VALUE 8.
88 PIB-BI-SYNC VALUE 9.
88 PIB-Q310 VALUE 10.
88 PIB-TELETYPE VALUE 11.
88 PIB-OFIS-LINK VALUE 12.
88 PIB-OFIS-PC VALUE 13.
88 PIB-MAPPER-S VALUE 14.
88 PIB-MAPPER-6 VALUE 15.
88 PIB-PC-UTS-30 VALUE 16.
88 PIB-PC-UTS-60 VALUE 17 ..
88 PIB-DOPS VALUE 18.
88 PIB-VIPS VALUE 19.
88 PIB-1JNIX VALUE 20.
88 PIB-UTS-20-WKST VALUE 21.
88 PIB-SVT-112X VALUE 22.
88 PIB-SPECIAL-A VALUE 23.
88 PIB-SPECIAL-B VALUE 24.

1-12 7002 3999-1 00

PIB - Process Information Block

05 PIB-MIRAM-REL-REC-NUM PICTURE 9(7) COMP-4.
05 PIB-CDA-SIZE PICTURE 9 (7) COMP-4.
05 PIB-MCS-SIZE PICTURE 9 (7) COMP-4.
05 PIB-WRK-SIZE PICTURE 9(7) COMP-4.
05 PIB-CDA-LENGTH PICTURE 9(7) COMP-4.
05 PIB-LANGUAGE PICTURE X (1) •

05 PIB-WDEL-INDICATOR PICTURE X (1) •

88 PIB-WAlT-DELIVERY VALUE ' Y' .
88 PIB-WAIT-DELIVERY VALUE 'N'.

Where:

FIB-TRIO This eight byte field contains the name of the transaction that is currently
executing.

The program may interrogate this field to determine the transaction name by
which the program was called.

Certain Tn' /30 subroutine calls (for example: TIPSUB) require the program to
move information into this field. The field is reset to the original value after a
call to a TIP /30 subroutine that required modification of this field (example:
TIPSUB, TIPSUBP).

PIB-UID This eight byte field contains one of the following values:

PIB-TID

7002 3999-100

userld

TP

BACK$nnn

CONSOLE

tttt*BYF

The userid of the user that is executing the program.

If the user is not logged on TIP /30.

If the executing program is running as a background process.
"nnn" is 3 digits representing the assigned background process
number.

If the program was executed via the "EXEC" console command.

If the program is executing on a ''bypass!! terminal. "tttt!! is the
terminal name of the originating terminal.

This four byte field is set to the name of the executing terminal (the ICAM
terminal name). The program may interrogate this field to determine the name
of the terminal running the program.

Certain TIP /30 subroutine calls, for example TIPFORK, may require the
program to move information to this field.

For background processes, this field contains the terminal name of the
originating process (the parent process).

1-13

PIS - Process Information Block

PIB-STATUS

This one byte field contains the status returned as a result of a call to a TIP /30
subroutine. A number of 88 level items are defined in the copy element for
your convenience.

It is strongly recommended that programs interrogate this status field after a call
to a TIP /30 subroutine. Subroutine calls that work one day may fail miserably
the next due to unforeseen external influences - for example, TIP /30
Catalogue entries may be "improved" or otherwise modified, thereby causing
much grief.

Note: The TIP/3D Message Control System (MCS) also uses an additional
status field in the MCS area (MCS-ST ATUS). The documentation of
the various calls to MCS describe the status that may be set for each of
those calls.

A value of PIB-GOOD indicates a successful call to the subroutine as far as
. TIP /30 is concerned. Any other value may be an error - although it may be
only a warning.

A transaction program may interrogate this field on initial entry to the
program. If the status is not PIB-GOOD, the error indicates that TIP /30 was
unable to access one or more of the files that were identified in the program's
catalogue record.1

PIB-SYSTEl\II

This one byte field is set to the value "PIB-EOJ-PENDING" if and only if
TIP /30 has been given the shutdown command "EOJ".

This mechanism allows TIP /30 native mode programs to detect EOJ requests.
When a program detects this condition, it is good practice to terminate the
program as soon as possible to expedite system shutdown procedures.

At the very least, the program should attempt to inform the terminal operator
that system shutdown has been requested.

PIB-GROUP-!

This field contains the name of the first elective group to which the user
belongs.

If the user is not a member of a user group, this field contains spaces.

PIB-GROUP-2

This field contains the name of the second elective group to which the user
belongs.

If the user is not a member of a user group, this field contains spaces.

If the TIP /30 system has been configured for more than 2 elective groups (by
the specification of the ~,.n .. J}Y1GRPS= TIPG:&"".J key'v-/ord), oPly the first two
elective group names are available in the PIB. The names of all elective groups
can be obtained by using the subroutine TIPGRPS.

1. The files required by an online program may be implicitly assigned by the use of the FILES= keyword in the catalogue entry
for the program.

1-14 7002 3999-100

PiS - Process information Siock

pm·DATE This field contains the current date (in YYMMDD format - year, month, day
sequence).

Pm-TIME This field contains the current time of day (in :I-fHM1,fSS format - hour,
minute, second sequence).

Note: Due to the way TIP/3D operates internally, this field may not be
accurate. The best resolution is approximately 1 second (this field is
updated by TIP/3D as a side effect of calling some of the TIP/3D
routines; between calls to TIP/3D service routines, the contents of this
field will not change).

Programs that require an accurate time of day (for example to time
stamp records or to generate a unique value) should obtain the current
time from the operating system; COBOL provides the ACCEPT verb
for this purpose.

PIB-JULlAN-DATE

TI-ris OIouP item contains the cU.J."Tent date in the Julian fonnat (day of the year,
example: 88 109).

Pm-SITE-NAME

This field contains the site name as specified in the TIP /30 generation
paraIneters or job control optiorLS.

PIB-SECURITY -CODE

This field contains the security level of the user running the program.

The security level is represented by a number between 1 and 255 (inclusive).

Refer to the description of the TIP /30 Catalogue Manager program (CAT) for
a detailed discussion of security levels and their use.

In the TC-pm copy element, various popular values are indicated by 88 level
items for this field.

PIB-ACCOUNT-NUMBER

This field contains the account code specified when the user logged on
Til' /30.

For further information, see the discussion of the keyword ACCT= for the
''USER'' command in the TIP/3D CAT utility program (catalogue manager
utility).

PIB-LAST-MCS-NAME

PIB-LOCAP

7002 3999-100

This field contains the name of the last Til' /30 screen format used at this
terminal.

If the last message output to the terminal was not issued via the TIP /30
Message Control System (MCS) this field contains low-values.

This field contains the name of the LOCAP (local application in a Global
rCAM) where the program is running. If a dedicated rCAM is in use, the

1-15

PIS - Process Information Block

1-16

contents of this field are not defined.

Pm-WAIT -TIl\IfE

This field may be set by a program before soliciting terminal input (via calls to
TIPMSGI, PROMPr, or TIPTERM). The system waits for an input message for
only the specified wait-time (expressed in seconds).

If an input message does not arrive within the expected time interval the
PIB·SfATUS for the corresponding input request (TIPMSGI, PROMPT, etc.) is
set to PIB-TIMED-OUT.

This field is reset to zero after each input message.

If this field is set to a value greater than zero, the system waits for the
specified number of seconds for an input message.

If this field is set to a negative value (the sign is important - not the
magnitude of the number), the system waits for the amount of time defined by
the TIP /30 generation parameter TIMEOUT=.

If this field contains a zero, the system will not impose a time limit on the
arrival of the next input message.

Pm-DETAIL-STATUS

Some TIP /30 subroutines set this field to provide additional information
about the status after a call to the subroutine.

The value denoted by the 88-level item "PIB-DUPS-AHEAD" is set by TIPFCS
after a record read request (FC5-GET, FCS-GETUP, FCS-NEXTI if there are
records with a duplicate key following the record that was read.

pm-LaCK-INDICATOR

A program sets this field to indicate to the system the type of record lock
handling desired.

TIP /30 examines this field whenever the program calls TIPRTN, TIPSUB,
TIPDXC, TIPFORK, TIPJUMP, TIPXCTL ill: calls TIPFCS with a function code
of FCS-TREN Q!. solicits terminal input (by calling TIPMSGI, PROMPT, etc.).

If this field is set to:

space

The default value.
All record locks are released and a TREN (transaction end)
record is written to the TIP$B4 file.

PIB .. ROLLBACK (0)

All updates that were made to files that were generated as "hold
for transaction (HOLD=TR)tt are rolled back and a TREN
(transaction end) record is written to the TIP$B4 file.

PIB-RELEASE (R)

All records that are held (via FCS-GETUP) and have not been
updated by a corresponding PUT are released. Record locks
acquired by updating or adding records are retained.

7002 3999-1 00

PIB - Process Information Block

PIB-HOLD (H)

All record locks are maintained and transaction end is not
recognized at this time.

For example, PROGRAM-A holds a record, moves an "Hit to this
field, and TIPSUBs to PROCRAM-B. The tTansaction end that
normally would take place when TIPSUB is called is suppressed
- PROGRAM-B will find that the record is still held for update.

This field is reset to a space only after it is examined by TIP /30. The
recommended technique is to move the appropriate value to this field before
calling a TIP /30 subroutine.

pm-RPG-UPSI

User programs may use this field to communicate one byte of infonnation
from one program stack level to the next level. This field is cleared to low
values when a transaction begins. Thereafter, the program(s) control the
,.,.. 4-'" ,...& .. ""oi"" t.;.,.1":;
\'V.ll"~.lL..w> V.l ULLo;;J ~

The field is named ''RPG-UPSI'' because TIP /30 RPG programs often use this
field.

A program could move a particular value to this field to signal some sort of
action to the next program that is called.

P!B-ALT .. MC5-ROW

PIB-CDA-I

PIB-WRK-I

7002 3999-100

Place a row number (between 1 and 24 inclusive) in this field to override the
starting row number for screen formats that are used by the program.

To permit this override action, mark the screen format using the MSGAR
command "ALTRON" - alternate row on.

This field is cleared to zero when the transaction begins; thereafter, TIP /30
does not modify this field.

Row numbefs placed in this field override the starting row number for screen
formats that are subsequently used by the transaction - if the screen format is
marked with "ALTRON".

The contents of this field have no effect if a screen fonnat is used that was
Nor marked "ALTRON".

CDA area size increment. This field may be set to a value between 0 and
32,767 (inclusive) before transferring control to another program.

The CDA of the called program is increased in size by the specified number of
bytes. The increase represents an amount in addition to the CDA= size
specified in the called program's catalogue record.

WORK-A_REA size increment. This field may be set to a value between 0 and
32,767 (inclusive) before transferring control to another program.

1-17

PIS - Process Information Block

1-18

PIB-LEVEL

The WORK-AREA of the called program is increased in size by the specified
number of bytes. The increase represents an amount in addition to the
WORK= size specified in the called program's catalogue record.

This field contains the current program execution stack level. Refer also to the
description of the program stack in the previous section of this document.

This value is the same value that is reported by the WHOSON utility program
under the heading ''Lvi''.

PIB-TERM-TYPE

This field is set by the TIP / 30 system to identify the type of tenninal that is
associated with the executing program. A number of COBOL 88-level items
are supplied for various tenninal types.

PIB-MIRAM-REL-REC-NUM

When the TIP/3D File Control System reads a record from a MIRAM file, this
binary fullword is set to the relative record number of that record. The
TIPFCS function FCS-GETRN can be used to read an indexed MIRAM file via
a specified relative record number. See the description of FCS-GETRN in the
documentation for accessing Indexed Files.

PIB-cDA-SIZE

The TIP /30 system sets this field to the size of the program's CDA (Continuity
Data Area). This value represents the number of bytes in the CDA.

Note: This field is always interpreted by the TIP/3D system in multiples of
256 bytes .. A value which is not already a multiple of 256 is adjusted to
the next higher multiple of 256.

pm-MCS-SIZE

This field is set by the TIP /30 system to the size of the program's MCS
(Message Control System Area). This value represents the number of bytes in
the MCS area.

PIB-WRK-SIZE

This field is set by the TIP /30 system to the size of the program's WORK area.
This value represents the number of bytes in the WORK area.

PIB-CDA-LENGTH

This field may be set by a program to control the number of bytes of data in
the CDA that are to be passed to or received from another program. If the
program places a value in this field that is greater than the size of the
program's CDA, the value is reduced to the size of the CDA.

A program which is transferring control may place a count in this field to
specify the maximum number of bytes to be transferred to the called program
and to limit the amount of data that may be returned in the CDA when control
returns to this program.

7002 3999-1 00

PIB - Process Information Block

Data is copied from the calling program CDA to the called program CDA for a
length which is computed as the lesser of the values in the PIB-CDA-LEN'GTI-I
field in the pm for both programs.

Upon entry to a program, this field contains the same value as the field
pm-CDA-SIZE.

Note: This field is always interpreted by the TIP/3D system in multiples of
256 bytes. A value which is not already a multiple of 256 is adjusted to
the next higher multiple of 256.

PIB-LANGUAGE

This field is set to a one character code which is the assigned language code
for the user. The language code is specified in the TIP /30 Catalogue USER
record for the userid.

See the description of the LANGuage= keyword of the USER command for the
CAT utility transaction.

PIB-WDEL-INDlCA TOR

7002 3999-100

Set this field to the value ''Y'' to request TIP /30 to unconditionally wait for
lCAM delivery notification on the next terminal output message. TIP /30 does
not necessarily wait for delivery notification after every tenninal output
message. Set this field to ''Y'' if your program needs to be sure that ICMvf
acknowledges delivery of the message.

TIP /30 resets this field to "N" after each output message.

1-19

CDA - Continuity Data Area

1.6. CDA - Continuity Data Area

1-20

The Continuity Data Area (CDA) is an area of storage that TIP /30 provides for transaction
. programs. It is the only area that is copied to and from programs during inter-program

linkage - hence the name "continuity". The programmer determines the size and format
of this area.

The TIP /30 catalogue entry for the transaction contains the size (in bytes) of the area.

If a program transfers control to another program, the program initiating the transfer of
control can specify the number of bytes in the CDA that are to be transferred to the called
program's CDA.

The actual size of the CDA is not limited (other than by the obvious constraint of available
memory). All transactions are automatically assigned a minimum CDA area of 256 bytes
- even if no CDA size is specified in the TIP /30 catalogue entry for the program.

TIP /30 always allocates the CDA in multiples of 256 bytes. If the catalogue CDA size is not
a multiple of 256, the TIP /30 system adjusts the size to the next highest multiple of 256.

If a transaction program is called from the TIP /30 command line and the transaction is
defined with CML= YES in the TIP /30 catalogue, the TIP /30 Command Line Processor
(TCP) will place data from the command line into the program's CDA.

The COBOL copy element TC-CDA in the TIP lib.lary defines the format for this particular
use of the CDA:

*
* TIP/30 COMMAND LINE FORMAT OF CDA

*
05 CDA-PARAMETERS.

10 CDA-PARAM OCCURS 8 TIMES PICTURE X (8) .

05 CDA-PARAMETERS-9 REDEFINES CDA-PARAMETERS.
10 CDA-PARAM-9 OCCURS 8 TIMES PICTURE 9(8).

05 CDA-OPTIONS.
10 CDA-OPTION OCCURS 8 TIMES PICTURE X.

05 CDA-OPTIONS-9 REDEFINES CDA-OPTIONS.
10 CDA-OPTION-9 OCCURS 8 TIMES PICTURE 9.

05 CDA-TEXT PICTURE X(80) .

CDA-P ARAMETERS

Up to eight positional command line parameters are parameterized into these
fields. Strictly numeric parameters (parameters consisting of only digits ti~''
through "9") are right justified a.l'\d leading zero filled, Non-numeric
parameters are left justified and trailing space filled.

Alphabetic characters in tl"ris field are forced to upper case by the TIP /30
command line processor (TCP).

7002 3999-1 00

CDA - Continuity Data Area

For more information about parameterization, refer to "2.5.3. P ARAM -
Parameterize Data" on page 2-34.

CDA-OPTIONS

CD A-TEXT

This field contains the command line option information. Options
immediately follow the transaction name and are concatenated with the
transaction name by a comma or a slash.

If no options are supplied, this field contains spaces.

Alphabetic characters in this field are forced to upper case by the TIP /30
command line processor (TCP).

This field contains the command line parameters (not the transaction name or
options!) in exactly the format they ~ere entered.

Alphabetic characters in the CDA-TEXT area are forced to upper case by the
TIP /30 corrur.and line processor (TO').

Additional Considerations:

If the program was not called from the TIP /30 command line, the layout and contents of
the CDA are entirely at the discretion of the calling program.

7002 3999-100 1-21

MCS - MCS Area

1.7. MCS - MCS Area

1-22

The Message Control System Area (MCS) is an optional area that Tn' /30 reserves for the
transaction program. The transaction program normally uses this area as a screen format
I/O area although it may be used as a work area for any purpose. The size of this area (in
bytes) must be correctly specified in the Tn' /30 catalogue entry for the transaction.

The MCS area is initially set to low values (X'OO') by TIP /30.

The COBOL copy element TC-MCS in the TIP library defines the layout of the MCS packet
prefix that is required to interface with the Message Control System.

*
* TIP/30 - MESSAGE CONTROL SYSTEM PACKET

*
02 MCS-NAME PICTURE X (8) .
02 MCS-TERM PICTURE X (4) .
02 MCS-FUNCTION PICTURE x.

88 MCS-RECEIVE-ALL VALUE ' A' .
88 MCS-DATA-ONLY VALUE ' 0' .
88 MCS-UNSOLICITED VALUE 'M' .
88 MCS-SCREEN-PRINT VALUE ' P' .
88 MCS-REFRESH VALUE ' R' .
88 MCS-SHORT-XMIT VALUE ' S' .

02 MCS-HOLD PICTURE X.
88 MCS-KEYBOARD-LOCK VALUE ' L' .

02 MCS-SIZE PICTURE S9 (4) COMP-4 SYNC.
02 MCS-STATUS PICTURE X.

88 MCS-GOOD VALUE , ,
88 MCS-XMIT VALUE , ,
88 MCS-MSG-WAIT VALUE ' 0' .
88 MCS-FKEYl VALUE ' l' .
88 MCS-FKEY2 VALUE ' 2' .
88 MCS-FKEY3 VALUE ' 3' .
88 MCS-FKEY4 VALUE ' 4' .
88 MCS-FKEYS VALUE ' 5' .
88 MCS-FKEY6 VALUE ' 6' .
88 MCS-FKEY7 VALUE ' 7' .
88 MCS-FKEY8 VALUE ' 8' .
88 MCS-FKEY9 VALUE f 9' .
88 MCS-FKEY1O VALUE ' A' .
88 MCS-FKEYll VALUE 'B' .
88 MCS-FKEY12 VALUE ' C' .
88 MCS-FKEY13 VALUE I D I •

88 MCS-FKEY14 VALUE 'E' .
88 MCS-FKEY15 VALUE ' F' .
88 MCS-FKEY16 VALUE ; G; •

88 MCS-FKEY17 VALUE ' H' .
00 MCS=FKEY18 VALUE ' I' 00

88 MCS-FKEY19 VALUE I J' .

7002 3999-1 00

MCS - MCS Area

88 MCS-FKEY20 VALUE ' K' .
88 MCS-FKEY21 VALUE ' L' .
88 MCS-FKEY22 VALUE ' M' .
88 MCS-FPOC VALUE 'N' .
88 MCS-F-REBUILD VALUE ' l' , 5' , N' .

88 MCS-F-NEXT VALUE ' 2' , 6' .
88 MCS-F-UPDATE VALUE ' 4' , 8' .

02 MCS-FILLER PICTURE X.
88 MeS-UNDERLINE VALUE , ,
88 MCS-ASTERISK VALUE ' *,

02 MCS-COUNT PICTURE S9 (4) COMP-4 SYNC.
/

02 MCS-DATA.

*
* USER SUPPLIED RECORD LAYOUT FOR MCS SCREEN FOLLOWS HERE

*

The fields in the MCS packet prefix are described in a separate section of this document
describing the Message Control System (MCS).

7002 3999-100 1-23

Work-Area

1.8. Work-Area

1-24

The WORK-AREA is an optional area that TIP/3D reserves for the transaction program. The
size and layout of the work area is entirely at the discretion of the programmer. Specify the
size of the work area in the TIP /30 catalogue entry for the transaction program.

The normal practice is for the programmer to simply define any work fields or areas that
are needed by the program in this LINKAGE section item.

The COBOL compiler displays a DATA DIVISION MAP which provides information about
all of the fields defined in the program's DATA DMSION. On the line where the "01" level
item is defined, there appears a length (as a number of bytes). It is this value that is
specified in the TIP /30 Catalogue entry for the program.

TIP /30 programs use the work area as an area containing fields that are modified during
execution. The modification of any field in the COBOL WORKING-STORAGE section is not
allowed by the COBOL compiler when the program is compiled with the IMSCOD= YES or
IMSCOD=REN option.

The work area is the proper place for the various record areas for files that are manipulated
online.

TIP /30 sets the work area to low values (all X'DO') before the transaction program is
entered.

7002 3999-1 00

GOA - Giobai Data Area

1.9. GOA - Global Data Area
The Global Data Area (GDA) is an optional area that may be configured when TIP /30 is
generated. If the GDA is generated in the TIP /30 system, it is an area of fixed (specified)
size that is accessible by all TIP /30 programs.

The first fullword of the GDA is set to the length2 (in bytes) of the GDA by TIP /30
initialization. The remainder of the GDA is cleared to low values (X'OO').

One possible use of the GDA is to store a common table that is referenced by many online
programs. Instead of having each program explicitly read the table into the program's work
area, the GDA can be initialized once with the desired data. Thereafter, all programs refer
to the table contained in the GDA.

Note: The GDA is a seriJlI resource! Modification of this area might involve race conditions.
Some convention must be established and followed by programs which intend to update
theGDA.

Some techr.iques tr.at rr.ay be used to qUe'..le access to th.e GDA are:

• use of the TIPFLAG subroutine

• locking a record (via a call to TIPFCS using FCS-GETUP) that is designated as a
control record for this purpose

• subroutine TIPFCS
(functions FCS-HOLD and FCS-RELEASE)

A very convenient way to initialize the contents of the GDA is to write a transaction
program for that purpose and specify that transaction name as the system STARTUP
transaction. Refer to the description of the TIP /30 generation parameter ST ARTUP= for
more information about this technique. The documentation of the utility transaction
STARTUP also contains valuable information about this topic.

TIP /30 installations which make use of the Global Data Area should consider creating a
local COpy element that user-written programs can use to define the layout of the GDA.

WARNING

The TIP library is completely rebuilt when a new
release of TIP/30 is installed - do not place such
COpy elements in the TIP libraryl Place user
copy elements in the same library that is used for
user-written online programs.

Additional Considerations:

Programs that modify the contents of the GDA must be defined in the TIP /30 Catalogue
with the specification DEBUG=i..JO, otherwise they will abort with "Protection Exception" if
they attempt to move data to any portion of the GDA.

2. The size of the GDA is specified by the TIP /30 generation parameter GDA=.
The length is for information purposes only - user programs may overwrite this information if desired.

7002 3999-100 1-25

Reentrant COBOL

1.10. Reentrant COBOL

1-26

The COBOL compiler provides the capability to generate a reentrant online program. Prior
to 05/3 Release 10, the COBOL compiler created object code that was only "sharable" in the
sense that each user had to have a unique VOLatile area, which TIP /30 and IMS systems
have to internally manage for the user program.

The Release 10 (and later) version of the compiler can generate an object program that
eliminates the VOL area by introducing a somewhat larger fixed size area that the compiler
assumes is located at the end of the program's work area (regardless of the type of
program: IMS or TIP /30). You must add the size of this reentrant work area to the size of
the work area needed by the program.

To create a reentrant transaction program, include the following run time P ARAM
statement in the compile job control:

II PARAM IMSCOD=R~

Note: This facility is relevant ONLY for online programs!

If you use this feature you will notice that the compiler now generates a message indicating
the number of bytes that must be added to the apparent size of the WORK-AREA to
support reentrant programs:

RE-ENTRANCY CONTROL = xxxxxx WORK AREA BYTES

(NOT INCLUDING PROGRAM DEFINED DATA AREAS)

This message appears on the title page of the compile (in the box that outlines the selected
compiler options).

The following table summarizes the resultant usage of an online COBOL program that uses
a linked subroutine that is also written in COBOL:

Shared Shared Reload (TIP)
Reuse (IMS)

Shared Reent Shared

Reent Shared Reload (TIP)
Reuse (IMS)

Reent Reent Reent

Note: In the above table "Shared" refers to the result of specifying IMSCOD= YES and "Reent"
refers to the result of specifying IMSCOD=REN.

Online programs that are compiled with IMSCOD=REN must specify a WORK-AREA that
is larger than the size indicated in the DATA DMSION MAP by the amount stated in the
cOnlpilation sUiIliIlary. The TIP/3D catalogue eno"f VOL: need not be stated in this case.
The appropriate work area size must be reserved in the TIP /30 Catalogue entry for the
program even if the program does not have a work area defined in the UNKAGE SECTION.

7002 3999-1 00

Reentrant COBOL

COBOL programs that are compiled with IMSCOD=REN that call linked COBOL
subroutines may be used in a reentrant manner only if all of the linked COBOL subroutines
were also compiled with the IMSCOD=REN option.

In any case, the size of the work area for the transaction must also include the sum of all of
the "reentrant control areas" - for the main program and for all linked COBOL
subroutines.

7002 3999-100 1-27

Transaction End

1.11. Transaction End

1-28

In TIP/3D terms a transaction normally begins with the initiation of a program. Since a
number of activities take place at transaction end, it is important to establish the conditions
that cause TIP /30 to consider that the transaction has terminated.

Transaction termination occurs as a result of one of the following events:

1. TIP /30 or 05/3 or the hardware aborts.

2. The transaction program ABORTS and does not contain specific coding to trap such
errors.

3. The transaction program issues a call to TIPFCS (the TIP /30 File Control System) with
a function code of FCS-TREN (a form of transaction commit).

4. The transaction program issues a call to TIPR1N (end of program).

5. The transaction program issues a call to TIPSUB, TIPXcrL, TIPDXC, TIPJUMP or
TIPFORK (various transfers of control).

6. The transaction program solicits terminal input (via TIPMSGI, PROMPT, TIPTERM,
etc.) without previously specifying that record locks are to be maintained across
terminal input.

In cases (1) and (2), the system always rolls back any updates that were performed on files
specifying HOLD=TR and releases all locks that were maintained for the program.

In cases (3) through (6), the action of the system at transaction end depends on the setting
of the PIB-LOCK-INDICATOR (described in the section "PIB-LOCK-lNDICATOR
ACTION").

In general, transaction end causes the release of record locks and the writing of a "TREN"
(mark transaction end) record to the TIP$B4 file, if records were updated in a file that is
defined as HOLD=TR.

A program may defer traftsaction end and link to another program to continue processing
(refer to the description of the PIB field PIB-LOCK-INDICATOR).

A program may choose to signal an explicit transaction end to occur (see description of the
call to TIPFCS with FCS-TREN function) in those cases where the program must ensure
that all updates made thus far are committed.

7002 3999-1 00

Transaction End

1.11.1. PIB-LOCK-INDICATOR Action

The following table summarizes the action of the TIP /30 system when it examines the field
PIB-LOCK-INDICATOR.

rm!II~I'1A1Iif;~~il?~;1.'Bil_B;
space / X'OO' Yes Released Released. No

o (roll back) Yes Released Released. Yes

R (release) No Released Kept No

H (hold) No Kept Kept No

Where:

GETUP LOCK

A record lock that is currently imposed because the program has issued a
GETUP on a record but has not yet updated the record. The FC5-HOLD
function is considered a "GETUP" lock for the purpose of this discussion.

UPDATE LOCK

A record lock that is currently imposed because the record has been updated
by the progrcnn and t'1e record is still held because t'1e file is defined as
HOLD=TR.

ROLLBACK UPDATES

7002 3999-100

Reversal of a modification of a record by the online transaction ROLLBACK
(supplied by Allinson-Ross Corporation).

1-29

TIPABRT - Program ABORT Trap

1.12. TIPABRT - Program ABORT Trap

1-30

When a user program aborts (with a program check such as a data exception), TIP /30
automatically invokes the Post Mortem Dump Analysis program (PMD A) on behalf of the
program in error. The PMDA program produces a dump for analysis and invokes
(abnormal) transaction end processing.

If the program needs to gain control when an error occurs (to take some counter action), the
program must first issue call TIP ABRT to establish an abnormal termination entry point
(island code) for the program.

When a program establishes such an abnormal termination handler, PMDA will not be
called and a program check when abort coding is activated is not considered an end of
transaction point.

Note: Only assembler language TIP/3D native mode programs may use this fadlity.

Syntax:

CALL TIPABRT, (savearea [,entry-addr])

Where:

savearea

entry-addr

The label of an area (9 doublewords) where TIP /30 stores the PSW and
registers 0 through 15 (inclusive, in that order) if an abnormal condition
occurs.

The point to transfer control after an abnormal condition occurs. If this
parameter is omitted, the entry address is assumed to be immediately
following the savearea (savearea+72).

TIP /30 saves the PSW and registers 0 through 15 in the location specified by
the first parameter and branches (via register 15) to either the address given as
the second parameter or to SAVEAREA+72.

You may use R15 as a temporary cover register for the recovery code.

Rl is loaded with the address of the original parameter list passed to the
transaction (PIB, CDA, MCS, WORK-AREA, GDA).

The programmer must keep in mind that the contents of registers other than 1
and 15 are not defined since the original program check may have occurred at
any point during execution of the program.

Once the abort routine has started, any subsequent abnormal conditions result
in loading PMDA unless the user program calls TIP ABRT again to reestablish
an abnormal termination entry point.

7002 3999-1 00

TIPABRT Program ABORT Trap

Example:

CALL TIPABRT, (ABTERM) . TRAP PROGRAM CHECKS

ABTERM DC D'O' . PSW AT TIME OF ERROR
ABREGS DC 16F'0' . REG 0-15 AT TIME OF ERROR

USING *,R15
* ABNORMAL TERMINATION ROUTINE ENTRY POINT

Additional Considerations:

The save area must be at least fullword aligned.

7002 3999-100 1-31

TIPBITS - Convert Bytes to Bits

1.13. TIPBITS -- Convert Bytes to Bits

1-32

This subroutine is supplied as a utility for COBOL language programmers that need to
manipulate bits. TIPBITS converts a string of 32 bytes (each containing a value of 0 or 1)
into a fullword (defined in COBOL as 9(9) CaMP SYNC) with the corresponding bits in the
fullword set to a zero or one (X'FO' or X'Fl').

The bits in the fullword are numbered from 31 to 0 from LEFT to RIGHI'.

Syntax:

Where:

CALL 'TIPBITS' USING BIT-SWITCHES
BYTE-SWITCHES

BIT-SWITCHES

The receiving field defined as a binary fullword - PIC 9(9) COMP SYNC.

BYTE-SWITCHES

Example:

The 32 bytes that are to be mapped into bits in the receiving field. Each byte
must contain a graphic zero or one (X'FO' or X'F1').

MOVE '11001100110011001100110011001100' TO BYTE-SWITCHES.
CALL 'TIPBITS' USING BIT-SWITCHES

BYTE-SWITCHES

The field "BIT -SWITCHES" would contain:

B~ '11001100110011001100110011001100'

Hex 'CCCCCCCC'

A supplied copy element named TC-BITS in the TIP library defines the two parameters in
the above syntax description. See the description of the TIPFLAG subroutine.

7002 3999-1 00

TIPBYTES - Convert Bits to Bytes

1.14. TIPBYTES - Convert Bits to Bytes
This subroutine is supplied as a utility for COBOL language programmers that need to
manipulate bits. TIPBYTES converts a fullword (defined in COBOL as 9(9) COMP SYNC)
into a string of 32 bytes with each byte containing a 0 or 1 (X'FO' or X'F1') depending on the
value in the corresponding bit in the fullword.

The bits in a fullword are numbered from 31 to 0 from LEFT to RIGHT.

Syntax:

Where:

CALL 'TIPBYTES' USING BIT-SWITCHES
BYTE-SWITCHES

BIT-SWITCHES

The fullword field (defined as PIC 9(9) COMP SYNC) that contains the bits
that are to be converted into a byte representation.

BYTE-SWITCHES

Example:

The resulting bytes that are set to a graphic zero or one (X'FO' or X'F1')
depending on tJle setting of the corresponding bits hTt t.'le field
BIT-SWITCHES.

MOVE 118 TO BIT-SWITCHES.
CALL 'TIPBYTES' USING BIT-SWITCHES

BYTE-SWITCHES

The field "BYTE-SWITCHES" would then contain the following:

I PIC X(32) I 'vvv,-,vvv,vvv ... ,vvV,JVVV'vvv\Jvvv1110110' I
A supplied copy element named TC-BITS in the TIP library defines the two parameters in
the above syntax description. See the description of the TIPFLAG subroutine.

7002 3999-100 1-33

TIPDATE - Return Date

1.15. TIPDATE - Return Date

1-34

This routine returns the date in a readable format. The actual characters returned depend
on the TIP /30 generation keyword LANGUAGE=. English is the default language.

An optional parameter may be supplied to convert a date other than today's date.

Syntax:

CALL 'TIPDATE'

Where:

USING DATE-AREA
[YYMMDD]

DATE-AREA

A 30 cbaracter field that receives the date in descriptive language.

Example (English) result: "MONDAY APRIL 11 1988 11

YYM1vIDD Optional parameter allowing the calling program to supply a specific date to
be translated into readable format.

This field is assumed to be defined as PIC 9(6) with the date in YYMMDD
format (example: 891225).

Example:

05 TODAYS-DATE PIC X(30).

CALL 'TIPDATE' USING TODAYS-DATE

Additional Considerations:

TIP /30 always keeps the date current. If the 05/3 system is generated with
DAYCHANGE=YES, the date changes at midnight and TIP/30's date also changes at this
time.

7002 3999-1 00

TIPDUMP - Force Program Dump

1.16. TIPDUMP - Force Program Dump
Call this subroutine to force a program dump at a specific point in the processing. This
method is simpler than the technique sometimes used by COBOL programmers to force a
deliberate program abort - adding garbage to a packed field.

Syntax:

CALL 'TIPDUMP'

Where:

'There are no parameters.

Additional Considerations:

TIP /30 causes the dump by executing an illegal machine instruction (namely: X'OODEAD')
on behalf of the transaction program. The Post Mortem Dump will indicate "OPERATION
EXCEPTION'; this error however, is not an error that is exclusively caused by calls to
TIPDUMP!

7002 3999-100 1-35

TIPDXC - Delayed Transfer Control

1.17. TIPDXC - Delayed Transfer Control

1-36

Call this subroutine to accomplish a delayed transfer of control to another program. The
calling program must specify (in the field PIB-TRIO) the transaction name of the program
to receive control. The calling program then tenninates. The called program receives
control after the next input message is available from the tenninal.

The calling program's CDA data. is copied to the CDA of the next program for a length
which is the lesser of:

• the size of the calling program's CDA area

• the size of the called program's CDA area

• the value specified by the calling program in the field PIB-CDA-LENGTH.

Syntax:

MOVE 7 TO PIB-CDA-LENGTH
MOVE '77777777' TO PIB-TRID
CALL 'TIPDXC'

PIB-CD A-LEN GTH

PIB-TRID

This field may be set to a value representing the maximum number of bytes in
the CDA that are to be passed to the CDA of the pr051affi to whiG-lot control is
being transferred.

Must be set to the transaction name of the program to which control is to be
transferred.

Error Conditions:

PIB-NOT -FOUND The program identified by the value in the field PIB-TRID is not
defined in the TIP /30 catalogue, the load module could not be
found, or there was insufficient memory to load the program.

PIB-SECURITY The user running the calling program does not have sufficient
security to run the requested program or the requested program
is locked at this time of day.

Example:

MOVE '77777?77'
CALL 'TIPDXC'

TO PIB-TRID

GO TO ERROR-CALLING-TIPDXC

7002 3999-1 00

7002 3999-100

TIPDXC - Delayed Transfer Control

WARNING

The program receiving control will not be
scheduled until an input message is available.
The calling program must, therefore, avoid the
pitfall of issuing the call to TIPDXC without having
first issued an output message to permit a
subsequent input message to be accepted by
ICAM. The ICAM interface that is used by TIP/30
does not permit an input message from a terminal
if a previous input was not followed by at least
one output message.

1-37

TIPFlAG - Flag Services

1.18. TIPFLAG -- Flag Services

1-38

TIP /30 flag services provides user programs with the ability to manipulate up to 32 binary
switches. These switches (flags> are stored as bits of a fullword within TIP /30 and may be
accessed by any TIP /30 transaction program or by console operator commands (see
description of operator commands FLAG, ON, and OFF).

The program may set or clear a flag (set to 1 or clear to 0) or may interrogate the current
setting of a flag or flags. The flags may be used individually or in combination.

An important feature of this subroutine is the ability for the program to wait for one or
more of the flags to be in a specific state (either off or on) and then immediately flip the
state of the flag or flags. This technique allows a flag or flags to be used as a semaphore to
queue access to an event

This facility is similar to that provided by the hardware instruction TS (Test and Set). The
TS instruction is commonly used to control a semaphore in a multi-tasked environment.

The TIPFLAG subroutine requires the programmer to provide a MASK field to identify the
subset of the 32 bit flags that are to be manipulated (either set, cleared, or interrogated).
This MASK field may have one or more bits set on. In most applications, the program is
interested in a single one of the flags and, in such cases, only a single bit in the MASK is on.

Note: The bits in a fullword are numbered from 31 to 0 from LEFT to RIGHT.

Syntax:

CALL 'TIPFLAG' USING FUNCTION

Where:

FUNCTION

MASK
RESULT]

A character code (X'FO' through X'F9') representing the function to be
performed by TIPFLAG;

o
1

2

3

4

5

6

Wait for any of the flag bits identified in the mask to be set.

Wait for all of the flag bits identified in the mask to be set.

Wait for any of the flag bits identified in the mask to be set, then
clear the flag bits identified by the mask.

Wait for all of the flag bits identified in the mask to be set, then
clear the flag bits identified by the mask.

Wait for any of the flag bits identified in the rnask to be clear.

Wait for all of the flag bits identified in the mask to be clear.

Wait for any of the flag bits identified in the mask to be clear,
then set the flag bits identified by the mask.

7002 3999-1 00

7

8

9

T1PFLAG - Flag Services

Wait for all of the flag bits identified in the mask to be clear, then
set the flag bits indicated by the mask.

Set the flag bits indicated by the mask.

Oear the flag bits indicated by the mask.

In the above descriptions, "set" means the value 1; "clear' means the value O.

MASK A binary fullword that identifies the flags to be acted on by this call to
TIPFLAG. Each bit represents a flag. The bits of the fullword are numbered
from 31 to 0 from left to right.

RESULT The field that receives a copy of the flag word after the indicated function is
performed.

Example:

The result field is only used by function codes 8 and 9.

An easy way to determine whether a flag (or "flags) is on or off is to specify
function code 8 or 9 with a mask that is all zero (meaning set or clear llQ. flags).
The result field after the call to TlPFLAG provides a "viewll of the current
setting of all the flags.

Assume that a flag bit (say flag 13) is nominated. to control access to an auxiliary printer (or
some other "resource"). The basic scheme is:

• if flag 13 is set on, the resource is in use and prospective users of that resource must
wait for it (this is the same as saying wait for the flag to go to zero!)

• when a program is finished using the resource, the flag must be set to zero (cleared) so
that other programs that are queued waiting for the flag can be serviced - one at a
time.

The following code illustrates the correct method for a program to "queue" for the resource
(by queueing for flag 13 in this case).

7002 3999-100 1-39

TlPfLAG - flag Services

1-40

WORKING-STORAGE SECTION.

COPY TC-FLAG OF TIP.

01 WORKAREA.

COpy TC-BITS OF TIP.

PROCEDURE DIVISION ...

8000-QUEUE-FOR-DEVICE.

MOVE 8192 TO BIT-SWITCHES.

*
* 8192 (decimal) = 2 ** 13
* 10 0000 0000 0000 (binary)

*
CALL 'TIPFLAG' USING WAIT-ALL-CLEAR-SET

BIT-SWITCHES

*
* Control will not return until flag 13 was clear

*
... do our thing

*
* when we are finished, clear flag 13 so next
* queued program can get control

*
MOVE 8192 TO BIT-SWITCHES.
CALL 'TIPFLAG' USING SET-OFF

BIT-SWITCHES.

The program first identifies which of the 32 flags are of interest (MOVE 8192 TO
BIT-SWITCHES). The program then calls TIPFLAG with a function code
'W AIT-ALL-CLEAR-SET". This has the effect of pausing the program until the specified
flag is CLEAR and immediately setting the f1ag before returning control to the program.

The program performs its function and, when finished, dears the flag to allow other
potential users to "enter the gate". It is important that all programs which are queueing for
flags use this technique to ensure that only one program at a time is able to acquire control
of the flag or flags.

7002 3999-100

TlPFLAG - Flag Services

Note: In the above example, the choice of flag 13 made it quite feasible to move a number to the
fullword and thus obtain the proper bit pattern in the mask. In practice, COBOL makes it
very awlcward to move 10 digits to a binary fullword elementary item. This is exactly the
situation that is addressed by the subroutines TIPBITS and TIPBYTES described earlier
in this documentation.

Instead of directly moving a value (say 8192 - representing flag 13) to the mask field, the
following technique can always be used:

MOVE ALL 0 TO BYTE-SWITCHES.
MOVE 1 TO SWITCH-13.
CALL 'TIPBITS' USING BIT-SWITCHES

BYTE-SWITCHES.

Additional-Considerations:

The COBOL copy element TC-FLAG in the TIP library provides a complete set of TIPFLAG
function codes. COBOL programs can make use of the subroutines TIPBITS and TIPBy-rr:~
to convert bits to bytes or vice versa.

Since this copy element uses COBOL VALUE clauses, it must be placed in the program's
WORKING-STORAGE SECTION.

**
* USED AS FUNCTION CODES TO DIRECT TIP FLAG SERVICES *
**

05 WAIT-ANY-SET PICTURE X VALUE ' 0' .
05 WAIT-ALL-SET PICTURE X VALUE ' l' .
05 WAIT-ANY-SET-CLEAR PICTURE X VALUE ' 2' .
05 WAIT-ALL-SET-CLEAR PICTURE X VALUE ' 3' .
05 WAIT-ANY-CLEAR PICTURE X VALUE ' 4' .
05 WAIT-ALL-CLEAR PICTURE X VALUE ' 5' .
05 WAIT-ANY-CLEAR-SET PICTURE X VALUE ' 6' .
05 WAIT-ALL-CLEAR-SET PICTURE X VALUE ' 7' .
05 SET-ON PICTURE X VALUE ' 8' .
05 SET-OFF PICTURE X VALUE ' 9' .

The COBOL copy element TC .. BITS in the TIP library defines work areas that may be used
by the COBOL program that is manipulating TIPFLAGs. This copy element is also used in
conjunction with the subroutines TIPBlTS and TIPBYI'ES.

This copy element is normally placed in the program's WORKAREA.

**
* DEFINE THE 32 SWITCHES USED BY TIPFLAG *
**
*

05 BIT-SWITCHES PICTURE 9 (9)
CO~~UTATIONAL=4 SYNCHRONIZED.

*
05 BYTE-SWITCHES.

7002 3999-1 00 1-41

TIPFLAG - Flag Services

10 SWITCH-31 PICTURE 9.
88 SWITCH-31-0FF VALUE '0'.
88 SWITCH-31-0N VALUE ' l' .

10 SWITCH-30 PICTURE 9.
88 SWITCH-30-0FF VALUE ' 0' •
88 SWITCH-30-0N VALUE '1'.

10 SWITCH-29 PICTURE 9.
88 SWITCH-29-0FF VALUE ' 0' .
88 SWITCH-29-0N VALUE ' l' .

10 SWITCH-28 PICTURE 9.
88 SWITCH-28-0FF VALUE '0'.
88 SWITCH-28-0N VALUE ' l' .

10 SWITCH-27 PICTURE 9.
88 SWITCH-27-0FF VALUE ' 0' .
88 SWITCH-27-0N VALUE ' l' .

10 SWITCH-26 PICTURE 9.
88 SWITCH-26-0FF VALUE ' 0' .
BB SWITCH-26-0N VALUE ' I' •

10 SWITCH-2S PICTURE 9.
88 SWITCH-2S-0FF VALUE ' 0' .
88 SWITCH-2S-0N VALUE ' l' .

10 SWITCH-24 PICTURE 9.
88 SWITCH-24-0FF VALUE ' 0' .
88 SWITCH-24-0N VALUE ' l' .

10 SWITCH-23 PICTURE 9.
88 SWITCH-23-0FF VALUE ' 0' .
88 SWITCH-23-0N VALUE ' l' .

10 SWITCH-22 PICTURE 9.
88 SWITCH-22-0FF VALUE ' 0' .
88 SWITCH-22-0N VALUE' l' .

10 SWITCH-21 PICTURE 9.
88 SWITCH-21-0FF VALUE ' 0' .
88 SWITCH-21-0N VALUE ' l' .

10 SWITCH-20 PICTURE 9.
88 SWITCH-20-0FF VALUE ' 0' .
88 SWITCH-20-0N VALUE ' l' .

10 SWITCH-19 PICTURE 9.
88 SWITCH-19-0FF VALUE ' 0' .
88 SWITCH-19-0N VALUE ' l' .

10 SWITCH-18 PICTURE 9.
88 SWITCH-18-0FF VALUE ' 0' .
88 SWITCH-18-0N VALUE ' l' .

10 SWITCH-17 PICTURE 9.
88 SWITCH"':17-0FF VALUE ' 0' .
88 SWITCH-17-0N VALUE ' l' .

10 SWITCH-16 PICTURE 9.
88 SWITCH-16-0FF VALUE ' 0' .
88 SWITCH-16-0N VALUE '1'.

10 SWITCH-IS PICTURE 9.
88 SWITCH-IS-OFF VALUE ' 0' .

1-42 7002 3999-1 00

TlPFlAG - Flag Services

88 SWITCH-1S-0N VALUE '1'.
10 SWITCH-14 PICTURE 9.

88 SWITCH-14-0FF VALUE '0'.
88 SWITCH-14-0N VALUE' l' .

10 SWITCH-13 PICTURE 9.
88 SWITCH-13-0FF VALUE '0'.
88 SWITCH-13-0N VALUE ' l' .

10 SWITCH-12 PICTURE 9.
88 SWITCH-12-0FF VALUE '0'.
88 SWITCH-12-0N VALUE '1'.

10 SWITCH-11 PICTURE 9.
88 SWITCH-11-0FF VALUE '0'.
88 SWITCH-11-0N VALUE '1'.

10 SWITCH-10 PICTURE 9.
88 SWITCH-la-OFF VALUE '0'.
88 SWITCH-la-ON VALUE ' l' .

10 SWITCH-09 PICTURE 9.
88 SWITCH-09-0FF VALUE '0'.
88 SWITCH-09-0N VALUE' l' .

10 SWITCH-08 PICTURE 9.
88 SWITCH-08-0FF VALUE '0'.
88 SWITCH-OS-ON VALUE '1'.

10 SWITCH-07 PICTURE 9.
88 SWITCH-07-0FF VALUE' 0' .
88 SWITCH-07-0N VALUE '1'.

10 SWITCH-O 6 PICTURE 9.
88 SWITCH-06-0FF VALUE '0'.
88 SWITCH-06-0N VALUE '1'.

10 SWITCH-OS PICTURE 9.
88 SWITCH-OS-OFF VALUE '0'.
88 SWITCH-aS-ON VALUE '1'.

10 SWITCH-04 PICTURE 9.
88 SWITCH-04-0FF VALUE '0'.
88 SWITCH-04-0N VALUE '1'.

10 SWITCH-03 PICTURE 9.
88 SWITCH-03-0FF VALUE '0'.
88 SWITCH-03-0N VALUE '1'.

10 SWITCH-02 PICTURE 9.
88 SWITCH-02-0FF VALUE '0'.
88 SWITCH-02-0N VALUE '1'.

10 SWITCH-01 PICTURE 9.
88 SWITCH-01-0FF VALUE ' 0' .
88 SWITCH-01-0N VALUE '1'.

10 SWITCH-OO PICTURE 9.
88 SWITCH-OO-OFF VALUE ' 0' .
88 SWITCH-OO-ON VALUE '1'.

7002 3999-100 1-43

TIPFORK - Start Program at a Terminal

1.19. TIPFORK -- Start Program at a Terminal
This call is used to start a program running on another terminal in the network as an
independent, asynchronous process. The program that is started at another terminal runs
independently of the initiating program.

The target terminal must be connected to the TIP /30 system3 and must not be in use.

Before issuing this call, the calling program must:

• move the transaction-id of the program to be started to PIB-TRID

• move the name of the intended terminal to PIB-TID.

The calling program's CD A data is copied to the CD A of the next program for a length
which is the lesser of:

• the size of the calling program's CDA area

• the size of the called program's CDA area

• the value specified by the calling program in the field PIB-CDA-LENGTH.

Syntax:

MOVE '? TO FIB-CDA-LENGTH
MOVE ''?'?'?'?'??'?'?' TO FIB-TRID
MOVE ''??'?'?' TO FIB-TID
CALL 'TIPFORK'

Where:

PIB-CDA-LENGTH

This field may be set to a value representing the maximum number of bytes in
the CDA that are to be passed to the CDA of the program that is being started.

PIB-TRID Must be set to the transaction name of the program that is to be started.

PIB-TID Must be set to the name of the terminal where the program is to be started.

The reserved terminal names *BYP and *MST may be moved to the field
PIB-TID to start a new process running on the bypass terminal or master
terminal respectively. The bypass and master terminal is determined from
information in the TIP /30 generation CLUSTER statements.

If TIPFORK is called with the field PIB-TID set to the caller's terminal name (if
for example, the program forgot to move a value to the field!) or PIB-TID
contains spaces or low values, the TIPFORK subroutine assumes that the
program to be started is to be run in background (see "1.20. TIPFORK - Start
Background Program" on page 1-46).

3. In a GLOBAL lCAM network, it must be defined as a static session or already have issued an appropriate $$SON or
$$OPEN command.

1-44 7002 3999-100

TIPFORK - Start Program at a Terminal

Example:

*
* START PRINT PROGRAM ON BYPASS TERMINAL

*
MOVE 'PRINTPGM' TO PIB-TRID
MOVE '*BYF' TO PIB-TID
CALL 'TIPFORK'
IF NOT PIE-GOOD

PERFORM REPORT-ERROR

Error Conditions:

PIB-NOT -FOUND

pm-LOCKED

PIB-SECURITY

The program is not catalogued, or the load module could not be
loaded.

The terminal name does not exist, cannot be resolved, or the
specified terminal is not session connected at this time.

There is already a program running on the specified terminal­
this may be because a user is logged on the terminal, or the
terminal is running an IMS transaction.

If this error is returned, the program issuing the call to
TIPFORK can issue a call to -the TIP /30 subroutine TIPTIMER to
delay a few seconds and then retry the call to TIPFORK.

The user running the initiating program does not have sufficient
security clearance to run the requested program or the
requested program is not available because it is locked at this
time of day.

Additional Considerations:

The progra~ issuing the call to TIPFORK will not receive control until the child process has
started running unless an error is reported.

On return from the call, the fields PIB-TRID and PIB-TID will be restored to the values
appropriate for the program which issued the call to TIPFORK.

7002 3999-100 1-45

TIPFORK - Start Background Program

1.20. TIPFORK - Start Background Program
This call starts a specified program running in ''background''. A background program is a
transaction program that is not associated with any terminal- essentially a free-standing
program. The background program runs independently of the initiating program.

The number of potential Background programs is controlled by the TIP /30 generation
parameter BACK=.

The calling program's CDA data is copied to the CD A of the next program for a length
which is the lesser of:

• the size of the calling program's CDA area

• the size of the called program's CDA area

• the value specified by the calling program in the field PIB-CDA-LENGTH.

As a background process, the program has access to all TIP /30 functions except those
functions that directly solicit input from a tenr.ir.al.

Background programs are not prohibited from using calls that solicit tenninal input; they
are, however, not allowed to actually use the terminal"for input. This implies that a
background program MAY use input redirection (See separate discussion of the topic:
"1.35. Redirection and the Command Line" on page 1-76).

A background process is useful for time consuming file processing operations, for which
the user does not require a response.

Syntax:

MOVE ? TO PIB-CDA-LENGTH
MOVE '????????' TO PIB-TRID
CALL 'TIPFORK'

Where:

PIB-CDA-LENGTH

This field may be set to a value representing the maximum number of bytes in
the CDA that are to be passed to the CDA of the program that is being started
in background.

PIB-TRID The field PIB-TRID must be set to the transaction name of the program that is
to be started in background.

Note: The field PIB-TID must not be modified before the call to this variation of TIPFORK. The
TIPFORK subroutine uses the contents of the field PIB-TID to detennine what type of
TIPFORK is intended - if PIB-TID contains the terminal name of tr,e program that is
the caller (that is, the field was not altered to some other tenninal name), the TIPFORK
request is interpreted as a-desire to start a background program.

1-46 7002 3999-1 00

TlPFORK - Start Background Program

Example:

'*
'* START "USERS" TRANSACTION IN BACKGROUND

'*
MOVE 'USERS' TO PIB-TRID
CALL 'TIPFORK'
IF NOT PIB-GOOD

PERFORM REPORT-ERROR

Error Conditions:

PIB-NOT -FOUND The program identified in the PIB .. TRID is not defined in the
TIP /30 Catalogue, or the load module could not be loaded.

There are no available background process tables (see
description of the TIP /30 generation parameter BACK=).

The specified transaction may be defined in the TIP / 30
Catalogue with the specification BACK=NO (meaning this
transaction is not allowed to be run in background),

PIB-SECURITY The user running the initiating program does not have sufficient
security clearanCe to run the requested program or the
requested program is not available because it is locked at this
time of day.

Additional Considerations:

The program issuing the call to TIPFORK will not receive control until the child process has
started running unless an error is reported.

7002 3999-100 1-47

TIPGRPS - Retrieve Elective Groups

1.21. TIPGRPS - Retrieve Elective Groups

1-48

Use this call to retrieve the elective groups to which the user has access.

Syntax:

CALL ' TIPGRPS' USING GRPS

Where:

grps A data structure that is described by the following copy element (TC-GRPS in
the TIP library):

* *
* TC-GP.PS:

*
FOR1·LAT OF TABLE RETURNED FROM' TIPGRPS' *

*
*
*

* INPUT:

*
*

MOVE NUMBER-OF-ENTRIES-WANTED TO GRPS-MAX
CALL 'TIPGRPS' USING GRPS.

*
* OUTPUT: GRPS-ACTUAL WILL BE THE NUMBER OF ENTRIES RETURNED *
* GRPS-NAME (X) HOLDS THE GROUP NAMES AS ~HEY *
* APPEAR IN THE ORDER OF SEARCH *

as GRPS.
10 GRP S-MAX PICTURE 99 COMP SYNC.

PICTURE 99 COMP SYNC. 10 GRP S - ACTUAL
10 GRPS-NAMES.

GRPS-MAX

15 GRPS-NAME PICTURE X(8) OCCURS 16 TIMES.

A binary halfword that is set by the calling program to a value between 1 and
16 (inclusive).

The value placed in this field specifies the maximum number of group names
that are to be returned. Under most circumstances, the program requests 16
(the maximum).

GRPS .. ACTUAL

A binary halfword that is set after the call to the number of group names
actually returned by the subroutine.

This value will not exceed the value provided in GRPS-MAX.

GRPS-NAME

~"1. ai"Tay of group names. Only GRPS-..ACI'UAL of t.l-tese will have resultant
values. This array corresponds (in one-to-one order) with the elective groups
in the user's current order of search.

7002 3999-100

TIPGRPS - Retrieve Elective Groups

Additional Considerations:

The TIP /30 system generation parameter NumGRPS= constrains the number of group
names actually returned. No more than the configured maximum number of elective
groups is returned. .

7002 3999-100 1-49

TIPGRPST - Change Elective Groups

1.22. TIPGRPST - Change Elective Groups

1-50

This call alters the elective groups to which the current user has access and, therefore, alters
the user's order of search. The alteration is temporary; the changes remain in effect for the
current session or until the groups are altered again.

The calling program supplies a list of group names that are to be used as the user's elective
groups. After a successful call to this subroutine, the user's order of search may be
changed.

Syntax:

CALL ' TIPGRPST' USING GRPS

Where:

grps A data structure that is described by the following copy element (TC-GRl"""JS in
the TIP library):

* *
* TC-GRPS: FORMAT OF TABLE RETURNED FROM I TIPGRPS' *
* *
* INPUT: MOVE WuMBER-OF-ENTRIES-W&~TED

.........
J.U GRPS-HAX *

* CALL ' TIPGRPS' USING GRPS. *
* *
* OUTPUT: GRPS-ACTUAL WILL BE THE NUMBER OF ENTRIES RETURNED *
* GRPS-NAME (X) HOLDS THE GROUP NAMES AS THEY *
* APPEAR IN THE ORDER OF SEARCH *

05 GRPS.
10 GRPS-MAX PICTURE 99 COMP SYNC.

PICTURE 99 COMP SYNC. 10 GRPS-ACTUAL
10 GRPS-NAMES.

GRPS-MAX

15 GRPS-NAME PICTURE X(8) OCCURS 16 TIMES.

A binary halfword that is set by the calling program to a value between 1 and
16 (inclusive). The value placed in this field indicates the number of group
names that are passed to the TIPGRPST subroutine by the calling program.

GRPS-ACTUAL

This field is not used by the TIPGRPST subroutine.

GRPS-NAME

An array of group names (only GRl"""JS-MAX of these will be examined). rnis
array corresponds (in one-to-one order) with the desired elective groups in the
order of search.

7002 3999-1 00

Error Conditions:

Pm-NOT-FOUND

TIPGRPST - Change Elective Groups

One or more of the suggested group names is not in the user's
groupset(s}.

Additional Considerations:

If the first group name contains an asterisk (Ito), the TIPGRPST subroutine resets the user's
elective groups to the elective groups defined for the user in the TIP /30 catalogue.

If a supplied group name is spaces, the corresponding group name in the order of search
will be set to spaces (implying "no group here").

7002 3999-100

WARNING

The subroutine will make either all of the
requested alterations or none of them. If any of
the requested groups names is not within the
users groupset, the TIPGRPST subroutine will
make no changes I

1-51

TIPJUMP - Direct Transfer Control

1.23. TIPJUMP - Direct Transfer Control

1-52

This call directly transfers control to another program on the same program stack level. The
calling program must move the name of the transaction to receive control to the pm· TRIO
field and then call TIPJUMP. Only TIP /30 native mode programs may be called using
TIPJUMP.

Note: This call is unlike all other subroutine calls that PCS provides to transfer control from
program to program because all of the program's work areas (PIB, CDA, MCS, WORK)
are directly handed to the program that receives control!

In this special situation, the catalogue entries which pertain to area sizes for the called
program are not relevant and are ignored.

The TIPJUMP call can be viewed as a way for a transaction program to continue execution
using a different load module.

Syntax:

MOVE '????????' TO PIB-TRID
CALL 'TIPJUMP'

Error Conditions:

PIB-NOT-FOUND The program is not catalogued, or the load module could not be
loaded, or the field PIB-TID was erroneously modified by the
program prior to calling TIPJUMP.

pm-SECURITY The user running the initiating program does not have a high
enough security to run the requested program or the transaction
is locked at this time of day.

Example:

MOVE 'PHASE2' TO PIB-TRID.
CALL ' TIPJUMP' .
IF NOT PIB-GOOD

PERFORM ERR-ON-JUMP.

7002 3999-1 00

TIPRTN - End Online Program

1.24. TIPRTN - End Online Program
This call terminates an online TIP /30 program.

If the terminating program was running in background, TIP /30 simply de-allocates all of
the areas of memory that were assigned to the program and marks the background process
table available - background programs, by definition, have no program to return to.

If the tenninating program was running in foreground (at a terminal) control returns to the
program which called the terminating program.

If the terminating program was executed from the TIP /30 command line, control returns to
the TIP /30 Command Line Processor.

Syntax:

MOVE ? TO PIB-CDA-LENGTH]
CALL 'TIPRTN'

Where:

PIB-CDA-LENGTH

The program may move a value to this field to control the number of bytes of
data in the CDA that can potentially be copied to the CDA of the program that
is next to receive control.

The number of bytes that are copied to the next program's CDA is computed
as the lesser of the values in the field Pffi-CDA-LENGTH in the PIB of each of
the two programs involved.

For example, a program that has used the CD A more or less as a work area
and does not wish to return any data to the calling program can move zero to
Pffi-CDA-LENGTH. In that case, the calling program's CDA will remain
intact.

Error Conditions:

There is no return of control after a call to TIPR1N.

Additional Considerations:

The contents of the CDA are copied back to the calling program (unless the terminating
program is running in background).

The terminating program may place a value in the field Pffi-RPG-UPSI to return
information to the calling program. This facility is primarily intended to be used in
situations where SOUle sort of exceptional status is to be returned to the calling program
(and requires the two programs to agree on some sort of convention governing the contents
of that field).

7002 3999-100 1-53

TIPSNAP - Snap Dump Memory

1.25. TIPSNAP - Snap Dump Memory

1-54

This subroutine allows a program to produce "snap" dumps of various sections of memory.
The specified locations of memory are displayed in a report that is directed to the system
printer file (PRNTR).

Syntax:

Where:

CALL 'TIPSNAP' USING BGN-l END-l
BGN-2 END-2
BGN-3 END-3
BGN-4 END-4

Up to four pairs of parameters may be passed; each pair represents the starting and ending
location of an area of memory that is to be dumped.

Example:

CALL ' TIPSNAP' USING WORK-AREA END-WORK
MCS END-MCS

Additional Considerations:

This call is useful when debugging programs but should be removed when placing a
program in production. Excessive use of TIPSNAP degrades system performance!

The PRNTR file is not automatically breakpointed by TIP /30 when a call is issued to
TIPSNAP. To breakpoint the PRNTR for TIP /30, issue a breakpoint command for the
TIP /30 job - represented by "xxxxxxxx" in the examples below. This command may be
entered on the system console, or the TIP /30 utility transaction BR may be used:

BR ACT,PRT,JOB=xxxxxxxx

If you are running on an OS /3 system that has spooling set to non-burst mode, it is also
necessary to start a burst mode output writer to print the breakpointed print file:
PR BX,JOB=xxxxxxxx

7002 3999-100

TIPSUB - Perform Program

1.26. TIPSUB - Perform Program
This call invokes another transaction program as if it was a subroutine of the calling
program The calling program is suspended while the called program executes. The called
program may call another program, and so on, to a maximum of 64 nested calls. When a
called program terminates, control returns to the calling program

The classic example of the use of a facility such as TIPSUB is a program which offers a
menu or choice of several other programs. Typically, a screen fonnat is displayed that
offers the terminal operator a number of choices of application systems.

Once the user has indicated his choice and the selection has been validated, the program
calls TIPSUB to invoke the main transaction of the application subsystem.

When the application subsystem terminates, control returns to the original program, which
repeats the cycle.

Syntax:

MOVE 7 TO PIB-CDA-LENGTH
MOVE '77777777' TO PIB-TRID
CALL 'TIPSUB'

PIB-CDA-LENGTH

This field may be set to a value representing the maximum number of bytes in
the CDA that are to be passed to the CDA of the program that is to be
invoked.

PIB-TRIO Must be set to the transaction name of the program that is to be invoked.

The contents of the CDA of the calling program are copied to the CDA of the called
program, to serve as the called program's initial CDA contents. On return from the TIPSUB
call, the CDA contents of the called program are copied back to the CDA of the calling
program.

The calling program's CDA data is copied to the CDA of the next program for a length
which is the lesser of:

• the size of the calling program's CD A area

• the size of the called program's CDA area

• the value specified by the calling program in the field PIB-CDA-LENGTH.

7002 3999-100 1-55

TIPSUB - Perform Program

1-56

Example:

MOVE SPACES TO CDA.
MOVE 'PAYOF' TO PIB-TRID.

CALL 'TIPSUB'.
IF NOT PIB-GOOD

PERFORM ERROR-ON-SUB.

Error COnditions:

PIB-NOT .. FOUND

PIB-SEClJRITY

PIB-PROG-ABEND

The program is not catalogued, the load module could not be
loaded or the size of the load module and required areas (CDA,
WORK-AREA, MCS, etc.) is too large for available memory.

The user run.ning the initiating program does not have high
enough security to run the requested program or the requested
program is locked due to the time of day.

The called program aborted (program checked) during
execution. In this case, PMDA is called on behalf of the called
program and when PMDA has finished processing, control
returns to the calling program with this error status.

If the calling program receives PIB-PROG-ABEND status, the
contents of the CDA are undefined (since PMDA uses the CDA
as a work area).

7002 3999-1 00

TIPSUB - Perform Program

1.26.1. Calling TIP/30 Utilities

This section describes the procedures that must be followed when a user-written
transaction program calls a utility transaction supplied with the TIP /30 system.

The transaction programs that are supplied with the TIP /30 system (such as: RV, FSE, TQL,
TUB, etc.) are written on the assumption that the programs are executed directly from the
TIP /30 command line.4

To successfully call these utilities, it is necessary for the calling program to carefully
arrange the contents of the CDA to contain any needed parameters in exactly the same format as
the data would appear if the transaction was called from the TIP/3D command line.

In the following examples, it is assumed that the calling program defines the first 152 bytes
of the CDA area using the supplied COpy element TC-CDA in the TIP library. Although
the examples illustrate the use of TIPSUB to call the TIP /30 utilities, other methods of
transferring control (TIPXCfL, TIPFORK, etc.) may be used if appropriate.

Example G)

This example illustrates calling the RV transaction to initiate a batch job. The batch job
used for illustration would normally be started as follows:

TIP?~RV TJ$COB74:TJ"F=SYSGEN,E=MYPROG

The user-written program calls the RV utility transaction in this manner:

MOVE SPACES TO CDA.
MOVE 'RV' TO PIB-TRID.
MOVE 'TJ$COB74:TJ"F=SYSGEN,E=MYFROG'

TO CDA-TEXT.
CALL 'PARAM' USING CDA-PARAMETERS

CDA-TEXT.
CALL 'TIPSUB'.
IF NOT PIB-GOOD

Note:

•

•

•

•

The command line infonnation - exactly as it would be typed - is literally moved. to
the CDA field CDA-TEXT

The supplied subroutine P ARAM5 is then called to "parameterize" the data in
CDA-TEXT field into the 8x8 byte buckets at CDA-P ARAMETERS (the P ARAM
subroutine is exactly the same mechanism the TIP /30 Command Line Processor uses to
parse the command line parameters)

The program then calls TIPSUB to "perfonnll the RV transaction

The RV transaction gets control (with the contents of the CDA correctly formatted) and
performs its functions and returns control to the calling program.

4. There are some minor exceptions to this general statement.
5. This subroutine is documented in the MCS section of this manual.

7002 3999-100 1-57

TIPSUB -- Perform Program

1-58

Example@

This example illustrates calling the MSG transaction to send a message to a terminal (the
assumption is made that this terminal is one that is likely to be logged on TIP /30 -
perhaps a terminal that is next to the operator console that is used primarily to run OCN).

To invoke MSG from the command line would normally require syntax such as:

TIP1~MSG/TCll Payroll update complete •••

The user-written program calls the supplied utility MSG in this manner:

Note:

MOVE SPACES
MOVE 'MSG'
MOVE ' TCll'
MOVE 'Payroll update complete ... f

CALL ' PARAM' USING CDA-PARAMETERS

CALL 'TIPSUB'.
IF NOT PIB-GOOD

CDA-TEXT.

TO CDA.
TO PIB-TRID.
TO CDA-OPTIONS.
TO CDA-TEXT.

" In this example, data is explicitly moved to the CDA-OPTIONS field because the MSG
utilit'y transaction expects t.lte destination terrninall".ame to appear there

• The MSG utility expects the text of the message to be on the command line - it is,
therefore, moved to CD A-TEXT

• The PARAM subroutine is called to be certain that data that appears in the CDA-TEXT
field also appears (in parameterized fonn) in the CDA-PARAMETERS field.

Example@

This example illustrates calling the FCLOSE transaction to issue file CLOSE requests. If
FCLOSE was issued at the TIP /30 Command Line, it would be entered as follows:

~P7~FCLOSE *PAY,*AP,AUDITPAY

The user-written program calls the supplied utility FCLOSE in this manner:

MOVE SPACES
MOVE , FCLOSE'

TO CDA.
TO PIB-TRID.

MOVE '*PAY,*AP,AUDITPAY' TO CDA-TEXT.
CALL 'PARAM' USING CDA-PARAMETERS

CDA-TEXT.
CALL 'TIPSUB'.
IF NOT PIB-GOOD

Of course, the FOPEN utility transaction can be called in a similar manner to open files.

)

7002 3999-1 00

TIPSUBP - Can Resident Subroutine

1.27. TIPSUBP - Call Resident Subroutine
This subroutine calls subprograms that have been separately compiled and linked. Only
parameters identified by the calling program are passed to the subprogram.

Application systems often have subroutines that are used by a large number of the
programs in the system. In the batch environment, these subroutines are compiled and
included (linked) with each program which intends to call the subroutine. This scheme has
two disadvantages (at least):

• if the subroutine is large, the size of each calling program is significantly increased by
the size of the subroutine<s)

• if the subroutine requires compilation, all of the calling programs have to be re-linked
(at most sites this means re-compilation too).

The TIP /30 environment allows such subroutines to be separately compiled and linked.
These separate load modules can then be made resident and access to the routine is .
accoxnplished by calling TIPSUBP. TIP /30 ~.andles the details of establishing proper calling
linkage between the program and the subprogram.

Load modules that are called by using TIPSUBP must be made resident by using the
RESIDENT= keyword in the TIP /30 job control option stream. Refer to the documentation
of TIP /30 Generation, Maintenance and Installation.

There is negligible overhead associated with calling TIPSUBP. Basically all that is involved
is a brief iook up of the routine!s address in TIP /30 internal tables and a direct branc.~ to
the code. If the called subroutine is not reentrant, callers are queued by TIP /30 to gain
access to the subroutine.

Contrast this with the overhead involved in a TIPSUB call- it may be very beneficial to
replace TIPSUB calls to a relatively small module with TIPSUBP calls to an equivalent
separate subprogram. Care must be taken to carefully consider the parameters that must
be passed to allow the subprogram to perform the desired functions.

Subprograms are defined in the TIP /30 Catalogue with a program name equal to the load
module name. Since a subprogram is essentially an extension of the executable code for the
calling program, the subprogram does NOT have any of the external work areas that a
transaction program normally has: PIB, CDA, MCS-AREA, WORK-AREA, etc.

The TIP /30 Catalogue entry for a subprogram is required only to define the ability for the
subprogram to be shared by multiple threads (USAGE=REENT or REUSE). If a catalogue
entry for a subprogram is not found, TIP /30 assumes that the subprogram is reentrant.

The required keywords for the TIP /30 Catalogue Manager program (CAT) are:

SUBPROG=YES

To identify this entry as a subprogram entry.

USAGE= To declare the usage of the subprogram. Choices are: REENT (for a reentrant
subprogram) or REUSE (for a serially reusable subprogram).

7002 3999-100 1-59

TIPSUBP - Call Resident Subroutine

1-60

Example use of CAT to define a Subprogram:

TI1'1~CAT

CAT(1)1~PROG TIl'Y/CHKDGTOO LDM-CHKDGT SUBl'ROG-YES USAGE-REENT.
CAT(l)'?~END

The calling program must move the "load module" name to the field PIB-TRIO to identify
the desired subroutine. TIP/3D automatically assumes that the load module name has two
trailing zeroes even if only six characters are supplied.

Syntax:

MOVE '????????' TO PIB-TRID
CALL 'TIPSUBP' USING param-1

param-n

The parameters depend on the requirements of the subroutine. TIP / 30 does not pass any
parameters other than those identified on the CALL statement

In particular, if the subprogram wishes to examine fields in the PIB, the program issuing
the call to TIPSUBP must pass the PIB as a parameter.

Example:

MOVE ' CHKDGT'
CALL 'TIPSUBP'

IF NOT PIB-GOOD

TO PIB-TRID
USING PART-NUM

CHEK-DIGIT
PIB

PERFORM ERROR-CALLING-CHKDGT.

In the example above, if the subprogram o-IKDGT was written in COBOL, it would have
the following general structure:

LINKAGE SECTION.
01 PART-NUMBER.

01 CHECK-DIGIT.

01 PIB. COpy TC-PIB OF TIP.
PROCEDURE DIVISION

EXIT PROGRAM.

USING PART-NUMBER
CHECK-DIGIT
PIB.

7002 3999-1 00

TIPSUBP - Call Resident Subroutine

Error Conditions:

PIB-NOT -FOUND The subprogram is not found as a resident load module. This
may be because the value placed in pm-TRID is a spelling error,
the module name may not have been specified in the list of
resident programs identified by the RESIDENT= keyword in the
TIP /30 job control options, or there may have been a problem
during TIP /30 initialization which prevented the proper
loading of the subprogram.

Additional Considerations:

If the subprogram is not written as a reentrant routine then it must be defined in the TIP /30
catalogue as USAGE=REUSE (the default is assumed to be REENT).

The CATalogue manager utility transaction does not allow TYPE=TIP programs to be
defined as USAGE=REUSE. In this case, you must specify SUBPROG= YES before
specifying USAGE= to coerce the CAT program to accept USAGE=REUSE.

If the calling program is a TIP /30 native mode program, the subprogram may perform file
I/O operations only by calling TIPFCS. If the calling program is an emulated IMS program
the subprogram may perfonn file I/O operations only by issuing IMS style file I/O calls
(CALL 'GET', etc.).

COBOL language subprograms return control using the "EXIT PROGRAM" COBOL
statement. Assembler language subprograms return control using the "RETURN" macro.

The following table summarizes the resultant usage of an online program that uses a
subprogram, that is written in COBOL:

·Main:' :.§\1'bpr9gtc¢t:· ·.llestilt:.· .. : .. ::>,·····

Shared Shared Reload (TIP)
Reuse (IMS)

Shared Reent

Reent Shared

Reent Reent

Shared

Reload (TIP)
Reuse (IMS)

Reent

Note: In this table "Shared" refers to the result of specifying IMSCOD= YES for a COBOL
program. The tenn "Reent" refers to the result of specifying IMSCOD=REN.

70023999-100 1-61

fiPSUBP - Caii Resident Subroutine

1-62

WARNING

COBOL subprograms that are compiled with
IMSCOD=REN option always assume that the
reentrant control area that they require is located
at the end of the transaction program's work area.
This is true regardless of the type of transaction
program that calls the subprogram. All programs
that call TIPSUBP to invoke a COBOL
subprogram compiled with IMSCOD=REN must
add the appropriate number of bytes to their work
area.

Note: The TIP/3D system considers a subprogram as an extension of the instruction code of the
calling program. As a result, subprograms may perform most of the TIP/3D calls that a
nmainlinen program may call with the exception that subprograms cannot perform any
transfer of control (other than to return to the caller).

Serial subprograms (those identified in the TIP/3D catalogue as USAGE=REUSE) ?!1!!JJ.
not solicit terminal input (since access to the serial subprogram is, by definition, a serial
resource).

7002 3999-1 00

TIPTIMER - Timer Services

1 .. 28. TIPTIMER - Timer Services
This function allows the user program to pause for a specific length of time. An on line
program may choose to delay its execution for a variety of reasons:

• to wait for an input message from the tenninal

• to allow other users of the system access to the processor (to avoid monopolizing the
processor)

• to wait for a specific number of seconds for some application related reason.

Syntax:

CALL 'TIPTlMER' USING

Where:

WAIT-TIME
TIME-STATUS
PREVIEW

WAIT -TIl\tfE

A binary fullword (PIC 59(9) COMP SYNC) that specifies the number of
seconds that the issuing program wishes to wait. This parameter is required.

TIP /30 does not modify this field. If appropriate, it may be coded as a
constant in the WORKIN'G-STORAGE section of a COBOL program.

The program is reactivated when the specified number of seconds has elapsed,
or an input message is available.

A value of zero in this field implies that the program does NOT wish to delay
but is willing to relinquish control of the processor if some other process in the
TIP /30 system is ready to run.

Processes that would otherwise monopolize the system should periodically
delay with aWAIT-TIME of zero. Candidates are processes which perform:

• CPU intensive activities

• prolonged periods of sequential file reading.

If the W AIT-TIME field is set to exactly -1, the TIPTIMER subroutine will use
the value specified by the TIP /30 generation parameter TIMEOFF= (time to
automatic logoff).

Note: TIP/3D cannot provide TIMER seroices with accuracy better than one
second. The program is delayed at least the number of seconds that is
specified.

A requested wait time of 1, 2 or 3 seconds by a background process is interpreted as 4
seconds (since background programs typically execute for long periods of time, the TIP /30
system discourages frequent calls to the TIPTIMER subroutine),

7002 3999-100 1-63

iiPTIMER - Timer Services

1-64

The following technique may be used by programs which wish to "wake up" at a specific
time of day:

1. Obtain the current time of day from the operating system (the COBOL verb "ACCEPT"
is handy for this). .

2. Compute the number of seconds between the current time of day and the desired wake
up time (taking into account possible day changes).

3. Issue a TIP'ITh1ER call to wait for the computed number of seconds.

Be careful NOT to compare exactly for a specific time of day! It is better to check for a
"greater than or equal to" condition to avoid missing the exact time.

TruE-STATUS

This parameter is optional and may be omitted if the next parameter is also
omitted.

A one byte status code that is set by the TIPTIMER subroutine to indicate the
reason the program was reactivated. This result status is also returned in the
field PIB-STATUS.

PIB--MSG-AV AIL

An input message is available (the requested time has not
elapsed).

When this status is returned to the program, the program has an
input message avaiiabie. Tne normal course of action is to use
one of the TIP /30 subroutines (example: TIPMSGI, P ARAM, etc.)
to read the input message.

An input message may have been the result of the terminal user
pressing the IXMlTl key, a function key or the IMSG.WAITI key.

PIB-TlMED-OUT

The specified number of seconds has elapsed and no input
message is available.

The two status codes are mutually exclusive. Only one of the two possible
events can occur.

PREVIEW This parameter is an optional 12 byte field into which TIP /30 places the first
available 12 bytes (converted to upper case) of the input message - if an
input message is available (example: PIB-MSG-AV AIL status was returned).

The contents of this field are not defined if TIPTIMER returns a status of
''PIB-TIMED-OUT'.

7002 3999-1 00

TIPTIMER - Timer Services

Example:

05 TIMER-WAIT
05 TIMER-STATUS
05 TIMER-PREVIEW

MOVE +60

PIC S9(9) COMP SYNC.
PIC X.
PIC X(12) .

TO TIMER-WAIT.
CALL 'TIPTIMER' USING TIMER-WAIT

TIMER-STATUS
TIMER-PREVIEW.

In this example, TIP/3D suspends execution of the program for approximately 60 seconds
or until an input message from the terminal is available.

If a message arrives, TIMER-STATUS contains "M" (PIB-MSG-A V AIL) and
TIMER-PREVIEW contains the first 12 text characters (translated into upper case) of the
input message.

Additional Considerations:

When the EOr system shutdown command is issued, TIP /30 examines the queue of
processes that are currently waiting for TIPTIMER completion. The time remaining is
reduced (if necessary) so that it does not exceed the number of seconds implied by the
TIP /30 generation parameter TIMEOFF=.

In effect, an EOJ truncates the outstanding wait time to a maximum of the TIMEOFF=
generation value. This ensures that a program that is waking itself up once every hour (for
example) will have an opportunity to, at least, wake up and observe that the system is
trying to shutdown.

It is the responsibility of the program to examine the PIB-EOJ-PENDING flag in the pm
~ going back to sleep, otherwise the program may delay system shutdown
indefinitely.

Calling TIPTIMER does not cause the TIP /30 system to examine (or alter) the setting of the
PIB-LOCK-INDICATOR.

7002 3999-100

WARNING

Calling TIPTIMER with a wait time of 60 seconds
or less does not cause the TI P/30 system to
release any file system record locks acquired by
the process. This means that a process may
delay for up to 60 seconds while locking records.

If a program that has locked one or more records
caiis TiPTiMER with a deiay tim.e exceeding 60
seconds, TIP/30 aborts the program with the
ro~C!nn I"nno' "QoC!nllrf"'OC! Inf"'korl w~itinn ,"-''-' ,., •• "",""-....,. ,,""''''''''''''''''v..,..., • ..,...,.,..., , •• '-111.' 1~

TIPTIMER".

1-65

TIPUSR - Where Is User

1.29. TIPUSR - Where is User

1-66

This subroutine is called to return the name of the tenninal where a specified TIP /30 user is
located. The subroutine searches for the specified TIP /30 user on the system and returns
the tenninal name of the first location where that user is logged on.

Symax:

CALL ' TIPUSR' USING USER-PKT

Where:

USER-PKT

Example:

A group 'item in the program's work area where the user name is specified
and the terminal name is returned.

The layout of the area is illustrated in the example that follows.

05 USER-PKT.
10 USER-NAME PIC x (8) •

10 USER-TEP~ PIC X(4) .

MOVE SPACES TO USER-PKT.
MOVE 'ALLINSON' TO USER-NAME.
CALL 'TIPUSR' USING USER-PKT.
IF USER-TERM = SPACES

GO TO USER-NaT-ON.

Additional Considerations:

If the specified user is not found on the system, the terminal name in the packet is set to
spaces.

7002 3999-1 00

TIPUSRID - User Information

1.30. TIPUSRID - User Information
TIP /30 programs use this call to retrieve information about a specified TIP /30 userid.
Information on the elective groups that the user belongs to and the comment from the
user's TIP /30 catalogue record are returned.

Syntax:

Where:

CALL 'TIPUSRID' USING USER-ID-DATA
USER-ID

USER .. ID-DATA

A group item in the program's work area where the result information is
returned.

The layout of the area is illustrated in the example that follows.

The information returned includes the first two elective groups (if any) and
the optional comment infonnation that is in the users TIP /30 catalogue
entry.6

USER-ID An 8 cl'..aracter field contail".ing the userid to be used in the seare.-h for
information.

Example:

05 USER-ID-DATA.
10 USER-ID
10 USER-GRP1
10 USER-GRP2
10 USER-CMT

MOVE ' ALLINSON'
CALL 'TIPUSRID'

IF NOT PIB-GOOD

PIC X (8) .
PIC X (8) .
PIC X (8) .
PIC X (30) .

TO USER-ID
USING USER-ID-DATA

USER-ID

GO TO USER-DOESNT-EXIST.

Error Conditions:

PIB·NOT -FOUND The specified userid is not found in the TIP /30 Catalogue. The
result area is cleared to spaces \A/hen Lhjs error condition OCCllrs.

6. The TIP /30 CAT transaction program permits the system administrator to enter this information via the CM:T= keyword of
the USER command

7002 3999-100 1-67

TIPUSRID - User Information

1-68

Additional COnsiderations:

As shown in the example, the second parameter may safely be included in the area
reserved for the result.

7002 3999-1 00

TlPXCTL - Transfer Control

1.31. TIPXCTL - Transfer Control
The TIPXCfL subroutine transfers control to another program on the same program stack
leve1- once the transfer of control is complete, the calling program terminates (control will
not automatically return).

The contents of the CDA of the calling program are copied to the CDA of the called
program, to serve as the called program's initial CDA contents.

The calling program's CDA data is copied to the CDA of the next program for a length
which is the lesser of:

• the size of the calling program's CD A area

• the size of the called program's CDA area

• the value specified by the calling program in the field PIB-CDA-LENGTH.

The calling program must move the name o(the transaction to receive control to the
PIB-TRID field and then call TIPXCTL.

Syntax:

MOVE ? TO PIB-CDA-LENGTH
MOVE '????????' TO PIB-TRID
CALL 'TIPXCTL'

PIB-CDA-LENGTH

This field may be set to a value representing the maximum number of bytes in
the CDA that are to be passed to the CDA of the program that is being
invoked.

PIB· TRID Must be set to the transaction name of the program to which control is to be
transferred.

Example:

7002 3999-100

MOVE TO CDA.
MOVE 'NXTSTP' TO PIB-TRID.
CALL 'TIPXCTL'
IF NOT PIB-GOOD

PERFORM ERR-ON-XCTL.

1-69

TlPXCTL - Transfer Control

Error Conditions:

PIB-NOT-FOUND The program is not catalogued, or the load module could not be
loaded, or the field PIB-TID was erroneously modified by the
program prior to calling TIPXCTL.

PIB-SECURITY The user running the initiating program does not have a high
enough security to run the requested program or the transaction
is locked at this time of day.

Example:

An example of the use of TIPXcrL is to provide a means for a transaction program to offer
the user the ability to both exit the transaction and logoff the TIP /30 system.

To accomplish this, the program includes code such as this:

MOVE SPACES TO CDA.
MOVE 'LOGOFF' TO PIB-TRID.
CALL 'TIPXCTL'.
IF NOT PIB-GOOD

CALL 'TIPERASE'
MOVE 'UNABLE TO LOGOFF' TO ERROR-TEXT
CALL 'ROLL' USING ERROR-TEXT
CALL 'TIPRTN'.

The code illustrated above is careful to check whether or not the transfer of control to the
LOGOFF transaction was completed (if the TIPXcrL failed for any reason, the program
will not just "fall off the end").

The LOGOFF program will refuse to perform. its function unless LOGOFF is called at stack
level 1 - LOGOFF is not pennitted if the program stack is not empty.

Note: The LOGOFF program is also catalogued as a transaction named "SOFF", If this variant
of LOGOFF is called, the program can force a TIP/3D logoff and the auto transmit of a
$$SOFF command to terminate a dynamic IeAM session.

1-70 7002 3999-1 00

TIP/30 and IMS Interaction

1.32. TIP/30 and IMS Interaction
In some situations it may be necessary to have a native mode TIP /30 program call an WS
program that is running under emulation or have an WS emulated program call a TIP /30
native mode program.

IMS programs run under control of the TIP /30 WS Emulator. The WS Emulator is
designed to "emulate" the IMS environment; it does not give WS programs access to
TIP /30 facilities.

IMS and TIP /30 programs may transfer control to each other; however, this interaction
must take place according to very specific rules. In any case, the contents of the CDA are
copied to and from the programs involved.

1.32.1. IMS to TIP/30

An IMS program may "succeed" (an WS term) to a TIP /30 program by utilizing one of the
following methods:

External succession

To accomplish external succession, the IMS program must:

MOVE '777777' TO SUCCESSOR-ID.
MOVE 'E' TO TERMINATION-INDICATOR.

When the terminal user responds to the screen information that is (usually)
output when the IMS program terminates, the specified TIP /30 transaction
identified in the SUCCESSOR-ID field is called.

Delayed Internal succession

To accomplish delayed internal succession, the IMS program must:

MOVE '777777' TO SUCCESSOR-ID.
MOVE 'D'
MOVE ZERO

TO TERMINATION-INDICATOR.
TO TEXT-LENGTH OF OMA.

Note: The latter point is crucial- the TIP/3D program does NOT have an
Input Message Area (IMA). Consequently, the IMS program may
NOT leave text in the Output Message Area (OMA) to be carried
forward to the next program's Input Message Area (IMA).

Additional Considerations:

The IMS PIB field SUCCESSOR-ID is defined as a 6-byte field; the choice of TIP /30
transaction names is, therefore, limited to six characters when a TIP /30 program is called
from an IMS program.

To get around this restriction define the TIP /30 transaction twice: once with a six-character
name for succession purposes and a second time with whatever name the transaction may
need for other types of invocation.

7002 3999-1 00 1-71

TIP/30 and IMS Inteiactlon

1.32.2. TIP/30 to IMS

1-72

A Tn' /30 native mode program may call an IMS program by using the "TIPXCfL" or
''TIPDXC'' subroutines. The TIP /30 program must move the catalogued name of the IMS
program to "pm-TRID" and then issue the CALL to ''TIPXCfL'' (or "TIPDXC').

Note: You must define IMS programs, whether they are actions or transactions, in the TIP/3D
catalogue. Catalogue an action with the load module name as the TIP/3D transaction
name.

It is usually inappropriate to invoke an IMS transaction via Tn'XCTL if the transaction is
expecting data in its Input Message Area (IMA) - since control came directly from a
TIP /30 program, there will be nothing in the IMA - this will likely cause the IMS program
to be fatally confused.

7002 3999-1 00

TlP/30 Command Line

1.33. TIP/30 Command Line
The TIP /30 command line provides the facility to run a transaction as a background
process, at a specified tenninal.

To run a transaction in BACKGROUND, prefix the transaction name on the command line
with a period:

)
In this example the STATUS program is started in background - the STATUS program
recognizes that it has been run in background and reacts by printing a report. Of course,
the transaction selected for background processing MUST be suitable for execution in
background.

If the system does not have an available background process table (refer to TIP /30
generation parameter BACK=), or, if the transaction was explicitly prohibited from
running in background? the following error message is displayed:

Invalid transaction code

To run a transaction at another tenninal (for example, to run a printing program on a
bypass terminal), precede the transaction code with a period!!l<i immediately follow the
transaction code with the name of the desired terminal enclosed in parentheses:

~P,~.TLIB(T109) PR JCS/TIP30 •• AUXl)
In this example TUB runs on terminal ''Tl09tt

• The command line parameters to TUB ("PR
JCS/TIP30"AUX1") appear as they normally would. In this case, "AUX1", therefore, means
Tl09's AUXl (since the TLm program will be executing on T109).

7. 1£ the transaction catalogue entry specifies BACK=NO.

7002 3999-100 1-73

TlP/30 Command Line

1-74

To run a transaction on another terminal, the target terminal must be:

• Connected to the TIP /30 LOCAP if a Global rCAM is used - bypass terminals are
often pennanently connected to the TIP /30 LOCAP via a SESSION statement in lCAM
since it may not be possible to issue a $$SON command on the bypass terminal;

• Nor marked "down" by lCAM;

• Nor logged on to TIP /30 or running any IMS emulated transaction.

If the target tenninal does not meet the above restrictions, the following error messages are
possible:

Invalid transaction code

Terminal busy or down

7002 3999-1 00

Redirected Input (.IN File)

1.34. Redirected Input (.IN File)
Tn' /30 provides a mechanism whereby line-oriented tenninal input may be redirected to
read data from a library element or an edit buffer.

This facility is analogous to the batch or command file capability provided in the Personal
Computer world by MS-DOS ".BAT' files.

Each time a program requests line-oriented terminal input (via PROMPT, P ARAM, etc.) the
system reads the next available line of the specified element or edit buffer instead of
soliciting input directly from the terminal.

In this way, an element or edit buffer can contain input that is processed line by line as if it
came directly from the tenninal.

The advantage of this scheme is the ability to create "command streams" to perform a series
of operations. The command stream can proceed without keyboard intervention.

The librarf element or edit buffer that is hwolved in this process is often called a.IN
(pronounced "dot-in") file.

Note: TIP/3D programs that run in BACKGRO UND are not permitted to solicit input from
the terminal. However, it is perfectly legal, and often useful, for a background program
to caliline-oriented subroutines for input from a .IN file. The input comes from the .IN
file (not from the physical terminal), therefore, TIP/3D does not abort the background
program.

7002 3999-100 1-75

Redirection and the COmmand Line

1.35. Redirection and the Command Line

1-76

One way to take advantage of input redirection is via the TIP /30 command line. The
TIP /30 command processor (TCP) recognizes the following syntax on the command line:

)
OR

)
Use a a less-than character followed immediately by either a library/element specification
or an edit buffer name to specify input redirection.

If you specify input redirection in conjunction with a transaction code (with or without
accompanying parameters) precede the less-than character by a space.

If only one parameter appears following the "<", the parameter is assumed. to be the name
of an edit buffer (in the users first elective group). If two parameters (separated by a slash
or a comma) appear following the "<" they are interpreted as a library /element
specification.

TCP ignores any other data following the input redirection specification; place input
redirection after any transaction code and parameters specified for the transaction.

Example:

~P?~CAT <run/changes

~p?~<commands

7002 3999-1 00

Redirection and the Command Line

The input library element or edit buffer is opened with a logical file name of ".W". A file
with that name in the users Active File Table (AFI') is the signal for TIP /30 internal input
routines to get input from the file rather than the terminal.

A Tn' /30 native mode program is permitted to explicitly open a file with a logical file name
of ".IN" (in the file name packet). Once such a file is open, subsequent requests for
line-oriented input will use that file.

The TIP /30 system allows .W files to be nested to a depth of three. Each time a file is
opened with the logical file name ".IN", it is placed logically ahead of all other files in the
AFr. This is the only occasion where duplicate logical file names are permitted in the AFT!

When a .IN file is open, all requests for line-oriented input (subroutines BREAK, P ARAM,
PROMPf, PROMPTX, PROM1PX8, TEXT, TEXTBO) cause TIP /30 to read the next available
line from the .W file.

The program which requests the input is not aware that the input is obtained in this
manner.

For example, assume that a library element "RUN /FOO" contains the following five lines:

WHOSON
SYS J
TLIB
PRINT JCS,TIP30
E

TIP /30 executes this element when the following command is entered on the TIP /30
command line:

The result is:

• Execute WHOSON

• Execute SYS with parameter 1 set to "J"

• Execute TUB

• TUB "reads" and performs the "print" command

• TUB "reads" and performs the "eft command (causing TUB to terminate).

)

There is a minor problem with the library/element as shown above: when all five lines are
processed, TCP "stalls" because it receives "end of file" on the .IN file. TCP closes the .IN
file, but the terminal user must press the IMSG WAIT) key, a function key or the \XMITI key to
"wake up" Tep so that it issues the standard TIP / 30 prompt.

To avoid this problem, a special convention has been established for .IN files that are read
by TCP; if TCP reads a line of input from a .IN file that begins with a dollar sign character,
TCP processes the lineB and then closes the .IN file and resumes normal operation.

B. The dollar sign is ignored while processing the command line.

7002 3999-100 1-n

Redirection and the Command Line

1-78

Thus, the dollar sign convention can be used to signal the last operational line of a .IN file
that is used by TCP.

A common technique is to invoke the NOTE transaction as the last line of a .IN" file:

TLIB
PR SRC/PAY010
PR SRC/PAY020
PR SRC/PAY030
END
$NOTE all done!

This example illustrates the main reason for the existence of the NOTE transaction. Use the
NOTE transaction throughout command files to monitor the execution progress of the
command file.

A variation of the use of redirection on the command line is to specify both a transaction
name to execute and a .~"J file specification:

~P1~TLIB <foo

Where:

Edit bUl~er 11£00" contains a nlL.'T..ber of TT....IB cO!llInands:

DELETE SRC/PAY020
COpy TST/PAYX20"SRC/PAY020
PRINT SRC/PAY020
E

)

Note: The "$" convention is not required here because TUB, not Tep, is reading the IN file.

A common pitfall, avoided in the example above, is the potential appearance of an
unexpec;ted prompt If the DELETE command was missing from the above example, TLIB
might discover during the COPY command that element SRC/P AYOlO already exists and
dutifully display on the tennina}:

Element currently exists - overwrite? ~Yes ~No

TUB however, is unaware that a.IN file is in use, so it gobbles up the next line as the
answer to the unexpected prompt and of course gets quite off track!

WARNING

Caiefully consider how to use such command
files to achieve the desired results.

7002 3999-1 00

Input Redirection at LOGON

1.36. Input Redirection at LOGON
Another potential use of input redirection is at the time a TIP /30 user logs on the TIP /30
system. The TIP /30 LOCON program arbitrarily attempts to open a file called" .IN" after
the user has logged on.

Opening the .IN file follows the standard order of search:

• userid

•

•

elective groups (GRP1, GRP2, etc)

TIPY .

To establish a redirected input file to be used at LOGON, create an edit buffer with the
buffer name of ".IN" (in the appropriate group or groups) to "auto start" the user or groups
of users.

Example:

FSE ",EDP/.IN

Where:

FSE creates an edit buffer named ".IN" (which is applicable to all users in the group ''EDP").
Such an edit buffer which might contain, for example:

7002 3999-100

N()TE *
NOTE *
NOTE *
NOTE *
NOTE *
NOTE *
NOTE,W
$MAIL,'?

Todays News:

(7

Press MSG WAIT to continue

1-79

Input Redirection at LOGON

WARNING

Once the edit buffer is created it is immediately
used by the LOGON program for subsequent
Iogons. Similarly I while a user is logging on, the
edit buffer may be "in use" for a potentially long
period of time and may be difficult to modify or
correct.

Use extreme caution before unleashing .IN files
~ it is easy to create a situation that gets out of
control.

Create all such edit buffers in a private group
(your userid is a good choice) and test them
before final implementation.

Note: In situations where a command file or.IN file has "run amok", one possible course of
action is to wait for a terminal prompt (or attempt to cause a prompt by pressing the
IMSG WAltl key) and then make use of the fact that TIP/3D monitors all input messages for
the "magic" string @@DIE

If the first 5 characters of any input message exactly match9 the string @@DIE TIP/3D
will abort the program that is running.

An important side effect (the key point in this context) is that the recognition of @@DIE
causes TIP/3D to close alllN files that are open for that terminal!

9. The characters "DIE" must be upper case lettersl

1-80 7002 3999-1 00

TIP/30 RPG ii Support

1.37. TIP/30 RPG II Support
The TIP /30 Message Control System (MCS) supports:

• input-only fields

• output-only fields

• input/ output fields.

MCS also handles RPG indicators to control screen formatting.

The screen format definition program (TFD) allows the use of RPG indicators to control the
fields on the screen. If the corresponding indicator is on, the field is displayed using the
error field colour; if the corresponding indicator is off, the field is not displayed.

The MSGAR utility transaction (message archiver) provides commands which produce
RPG input or output specifications from a screen format and a command that controls
whether the program may override the starting row for the screen format

MSGAR RPGIN xxx

Create a source module containing the RPG input specifications (''I''
statements) for the specified screen format

MSGAR RPGOUT xxx

Create a source module containing the RPG output specifications ("0"
statements) for the specified screen format

The MSGAR ALTRON command sets a flag that indicates that the program controls the
starting row of the screen format. An RPG program uses RLABL SINO to activate this
feature and EXIT RPGSLN to load the current starting row.

7002 3999-100 1-81

TIP/30 RPG n Support

1.37.1. RPG II Exit Routines

1-82

A TIP /30 RPG II program may EXIT to any of the following routines:

RPGCLR Sets the MCS data area to spaces.

RPGCUR Define MCS Cursor modifications. This exit is used in conjunction with exit
RPGFCC. The TIP /30 RPG program must issue an EXIT for this label before
any screen output occurs.

RPGDl'vIP CALLs TIPDUMP.

RPGERA CALLs TIPERASE.

RPGFCC Define MCS Field (FCC) modifications. This exit is used in conjunction with
exit RPGCUR. The TIP /30 RPG program must issue an EXIT for this label
before any screen output occurs.

The RPG II program must define two areas called TIPFCC and TIPCUR.

!S'lDS DS
I 1 8 TIPFCC
I 1 2 FLD01F
I 3 4 FLD02F
I 5 6 FLD03F
I 7 8 FLD04F
I 9 12 TIPCUR
I 9 9 FLD01C
I 10 10 FLD02C
I 11 11 FLD03C
I 12 12 FLD04C

For further information about using FCC and Cursor modification, see
"2.4.7. FCC Modifications" on page 2-26 and "2.4.8. Cursor Positioning" on
page 2-29.

RPGFRK CALLs TIPFORK.

The field PIB-TRIO must contain the name of the program being called.

RPGJMP CALLs TIPJUMP.

The field PIB-TRIO must contain the name of the program being called.

RPGMSE Set the next screen output to be a CALL to TIPMSGE, using the data in the
field TIPERR. The next screen output calls TIPMSGE (using TIPERR) instead
of the usual call to TIPMSGO.

RLABL TIPERR is required. The length of TIPERR is determined by the screen
formats used in the program.

RPGMEO Set the next screen output to be a CALL to TIPMSGEO, using the data in the
field TIPERR. The next screen output calls TIPMSGEO (using TllJERR)
followed by a call to TIPMSGO.

RLABL TIPERR is required. The length of TIPERR is determined by the screen
formats used in the program.

7002 3999-1 00

TlP/30 RPG II Support

RPGPFL Flushes a TIPPRINT buffer.

RLABL TIPPRT is required and is defined as follows:

ISVDS
I
I

DS
1 102 TIPPRT
1 8 IPLFD

The name of the print file whose buffer is flushed (from the RPG II "F'
specification).

The buffer is only flushed if output is going to an auxiliary printer or to an
. MS-OOS file AND the program has 1 or more indexed files in sequential mode
(SETLL).

If a flush is needed, any files in sequential mode are put into random mode
(ESETL). You must appropriately SETLL the files following this exit.

RPGPIN ~ .. .fodifies a TIPPFTNT irtlorro..ation packet or changes the output destination of
a print file.

Do not use "lP" headings with this EXIT (see the sample print program
(TI$RPP in the TIP library) for an example and description of proper
technique).

RLABL TIPPRT is required and is defined as follows:

ISVDS
I
I

I
I

I
I

I
I
I

I

IPLFD

IPLFN

DS
1 102 TIPPRT
1 8 IPLFD
9 16 IPLFN

17 102 IPINFO
19 20 IPPGLN
21 24 IPTERM
25 25 IPTOF
26 26 IPLF
27 27 IPNOWP
28 28 IPUPPR

The name of the print file from the RPG II "F' specification.

The new destination of the print output. Any valid TIPPRINT
destination may be specified.

IPINFO The TIPPRINT information packet (some of the more popular
fields of that packet have been defined following this field).

RPGSLN Copies SLNO (2 byte packed field) to PIB-ALT-ROW.

7002 3999-100

RLA",BL SLNO is required.

Note: Perfonn this EXIT only once during the program's initial inpUt cycle
- SLNa is zeroed during the EXIT.

1-83

TIP/30 RPG it Support

RPGSUB CALLs TIPSUB.

The field PIB-TRIO must contain the name of the program to call.

RPGT.MR CALLs TIPTIMER.

The PIB-WAIT-TIME field must contain the number of seconds to wait

RPGXCT CALLs~CTL

The field PIB-TRIO must contain the name of the program to call.

1-84 7002 3999-1 00

TiP/30 RPG II Support

1.37.2. Cataloguing TIP/30 RPG Programs

The following TIP /30 catalogue keywords are significant for RPG II programs. These
keywords are also documented in the description of the TIP /30 Catalogue Manager (CAT)
utility transaction.

USAGE=RELOAD

Required for TIP /30 RPG II programs.

DEBUG=YES

Highly recommended.

S34= YES Specify this keyword as shown if the RPG II program was written to expect
data on the screen to be transmitted. when a function key is pressed.

CDA=n

MCS=n

FILES =

The TIP /30 RPG interface routines simulate this capability by reading the
screen when a function key is pressed.lO

As required by the program.

As required for the data of largest screen used by the program. Add 32 bytes
to the value the program requires.

As required by program.

WORK=n Allocate at least 1024 bytes.

Allocate an additional 3000 bytes for each printer file defined in the RPG II
program.

Allocate additional work area space equal to the size of the largest record
updated by the program.

10. This represents some overhead. but may be necessary to properly support programs from other vendors.

7002 3999-100 1-85

Section 2
Message Control System (MCS)

This chapter describes the facilities provided by TIP /30 to enable an online program to
perform input and output operations at a tenninal.

Three levels of interface are provided:

Message Control System (MCS)

MCS is a high level interface; that is, it allows application programmers to
develop screen formats (templates) and use them in online programs. Using
MCS, the programmer can achieve a high degree of hardware independence.

Line-oriented Input/Output

The Line-oriented I/O interface consists of a number of subroutines which
facilitate the interactive use of the terminal in a line by line fashion.

A program using these subroutines issues one line prompts and retrieves
single line replies.

Direct Communications Input/Output (DCIO)

7002 3999-100

The DCIO interface allows the program to exercise direct control over the
activity of the terminal. This is a low level interface that requires the
application programmer to supply the control codes that are to be sent to the
terminal.

Note: The DOO interface is primarily intended for unusual applications that
require direct control of the terminnl. It is intended for use only when
the facilities of the higher level interfaces (MCS or Line-Oriented I/O)
cannot achieve the desired results.

2-1

Message Controi System (MCSj

2.1. Message Control System (MeS)

2-2

The TIP /30 Message Control System provides the capability to create, test and use screen
formats (templates) in online programs. These screen formats are unique because they are
not defined in the programs that use them. The user program sends and receives only data
field information to and from the terminal.

The MCS System handles all communications codes and heading information. There are
four major components of MCS; three are online utility transaction programs:

1. TFD /TFU - Utility transaction to define and update screen formats.

2. MSGSHOW - Utility transaction to test screen formats.

3. MSGAR - Utility transaction that provides librarian services for screen formats.

The fourth component of MCS is the Message Formatter (MSGFMT), an internal part of
TIP /30 that provides an interface between the formats and the data supplied by the
program. MSGFMT is the TIP /30 format handler. For output operations, it merges user
data supplied in the MCS interface packet, with the information in the screen format and
sends it to a terminal. For input operations, MSGFMT extracts the data from the incoming
communications message and stores it in the MCS interface packet.

The layout of the data area of the MCS interface packet is similar to that of a fixed-length
data record. There is no provision for tab stops or cursor coordinates; such items are
defined in the screen format by TFD and handled completely by MSGFMT at user program
execr.ltion time.

The Message Formatter optimizes all output messages. For example, in the interest of
efficiency, a series of blanks may be replaced with a cursor positioning code sequence.

MCS optimization can make a significant improvement in communication throughput;
especially over low speed Common Carrier lines.

Any online program may call any defined format using its assigned eight character name.
Furthermore, the programmer may change heading information in screen formats without
changing the programs that use them. User programs only process the data since the
Message Formatter in TIP /30 handles all communications control characters and heading
information.

These features greatly reduce the programming effort and development time required to
put online programs into production.

The following diagrams illustrate the relationship between the program and the TIP /30
screen format. Further information about how a screen format is defined may be found in
the description of the utility transaction TFD (TIP /30 Format Definition).

7002 3999-1 00

Message Control System (MeS)

Assume that a screen format has been defined as follows:

ACME WIDGET COMPANY

Name: UUUUUUUUUUUUUUUUUUUUUUUUU

Address: UUUUUUUUUUUUUUUUUUUUUUUUU·
UUUUUUUUUUUUUUUUUUUUUUUUU
UUUUUUUUUUUUUUUUUUUUUUUUU

Balance: -ZZZ,ZZZ,ZZ9.99

EE

The first line is heading information; the strings of "U' characters define upper case data
fields; the "Balance" field is a numeric field with a floating and leading negative sign and
floating zero suppression. The string of "E" characters define an "errorlt field that may be
used by a program to output informational or error messages.

When the facilities of MCS are used by an online program, the program only defines the
data fields that correspond to the data fields defined in the screen format. For example,
referring to the screen format show above, the program might define 5 fields this way:11

05 S-NAME PIC X (25) .
05 S-ADDR-l PIC X (25) .
05 S-ADDR-2 PIC X (25) .
05 S-ADDR-3 PIC x (25) .
05 S-BALANCE PIC S9(9)V99.

The program deals with the data fields - the heading information and the automatic
output editing capabilities of the screen handler are transparent to the user program.

To output data for example, a program moves the desired data to the appropriate fields
and calls the TIP /30 MCS subroutine ''TIPMSGO'' to output the screen format and the data
supplied by the program.

Conversely, a call to the TIP /30 MCS subroutine ''TIPMSGI'' causes data from the screen to
be placed in the program's data fields - the program does not need to be concerned with
the mechanics of the terminal operation or the communication sub-system.

11. Error fields are not considered data fields in this context and are handled separately.

7002 3999-100 2-3

Message Control System (MCS)

2.1.1. MeS Reserved Terminal Names

2-4

Output messages are nonnally sent to the terminal that is executing the transaction
program. Logical terminal clusters may be defined in the TIP /30 generation parameters to
define a group of terminals that have similar characteristics (see the description of the
CLUSTER generation statement in TIP/3D Generation, Maintenance and Installation -
ARP-6DD-OS). This capability can be quite useful since many new terminal systems are
designed. as clusters.

If the program sends a output message to the reserved terminal name fI·MST', TIP /30
directs the output to the master terminal of the cluster to which the sending terminal
belongs.

Similarly, specifying the reserved terminal name "·nYF" directs the message to the terminal
defined as the BYF ASS terminal for the cluster. If no cluster definition or bypass/master
terminal is given, the message is sent to the originating terminal.

Example:

Assume that the following terminal cluster is defined in the TIP /30 generation parameters:

CLUSTER T10l SLAVES-(T102,T103) SYFASS=T104.

This CLUSTER statement defines a group of tenninals (T10l, T102, Tl03) to have a
common "bypass" terminal, namely: Tl04. Terminal Tl04 need not be physically related to
any of the other terminals - in fact, it may be located anywhere in the network! Terminal
Tl0l is defined as the master terminal of the cluster.

Programs executing on terminals Tl02 and Tl03 may use the reserved tenninal name *MST
to refer to terminal T101. Similarly, terminals TI01, TI02 and TI03 may use the reserved
terminal name "'BYP to refer to terminal Tl04.

The advantage of using the reserved names and defining clusters is to permit programs to
refer to another related tenninal in a way which does not require terminal names to be
directly coded in the program. This technique allows such programs to execute correctly
anywhere in the network (provided the CLUSTER statements are correctly specified).

Commercial application packages take advantage of this scheme to offer ease of use and·
flexibility to users of the package.

7002 3999-1 00

Message Control System (MCS)

2.1.2. UNISCOPE Terminal Control Page

The automatic setting of the control page XM.IT setting may be controlled at the program,
duster or system level. When TIP /30 schedules an online program the control page is set to
a particular value according to the following order of precedence:

[1] Specification of XMIT= in the PROG statement in the TIP /30 catalogue entry
for the program

[2] Specification of XMIT= in a CLUSTER statement containing the terminal

[3] The XMIT= specification in the TIPGEN section of the TIP /30 generation
parameters.

The TIP /30 Command line processor sets the control page to V AR if the last program
requested the control page set to CHAN (due to differences in the way various tenninal
types implement "CHAN", this mode is not suitable for most work and is not
recommended).

The TIP /30 LOGON program sets the control page to the XM .. ll= value specified in the
TIPGEN section of the TIP /30 generation parameters.

Note: TIP/3D does not always set the control page every time a program is run; it sets the
control page only if the desired setting is different from the last setting made by TIP/3D.

7002 3999-100

For example, if a terminal operator locally sets the control page to "ALL" and then runs a
program that is catalogued as XMIT=V AR, TIP/3D is not aware that the control page was
altered manually; it therefore decides against setting the control page.

2-5

Message Controi System (NiCS)

2.1.3. Down Line Loaded Screen Formats

2-6

An advantage of terminal clustering is that the controlling (master) tenninal may be
programmable (UTS400 terminals). This feature maybe used to improve tenninal I/O
throughput. DLL is an online utility program supplied with TIP /30 that is used to
download screen formats into UTS400 master tenninals.

When a set of formats are down loaded, MCS keeps track of their names. TIP /30 maintains
a table of down loaded format names for each defined cluster.

Whenever an online program requests that a screen format be sent to a tenninal, TIP /30
checks the format table to detennine whether the format has already been down loaded.

If the requested screen format is down loaded, TIP /30 sends a short message to the
terminal to retrieve the format from the tenninal's internal memory, followed by the data.

This technique greatly reduces transmit time. The user may change the set of displays at
any time using the utility transaction program DLL and all subsequent termihal I/O
adjusts accordingly.

Currently, only UTS-4OO terminals with user programmable memory may use this facility.

7002 3999-1 00

MCS interlace Over~iew

2.2. MeS Interface Overview
An online TIP /30 native mode program uses TIP /30 screen formats by issuing subroutine
calls to the TIP /30 Message Control System to transfer data to and from the tenninal.

The subroutines are summarized as follows:

TIPERASE

TIPMSGE

TIPMSGEO

TIPMSGI

TIPMSGO

TIPMSGRV

Erase screen.

Send "error" message to terminal.

Define a deferred error message.

Input data from tenninal.

Output data to tenninal.

Force read terminal screen.

.. AJI of these subroutines are described in subsequent sections. The following section
describes the interface packet that these subroutines use to control the action of the
subroutine.

Note: The online program issues CALLs to these subroutines and receives control directly
following the CALL to the subroutine.

This means that online programs can transfer data to and from the terminal in much the
same ff'.anl'.e1' as a batch program transfers data to and from a disk file (for example).

The MCS interface provides hardware independence by requiring the program to handle
only the data fields.

The following code fragment illustrates the general structure of a Til' /30 program that uses
screen formats. Do not interpret the following code literally - use it to conceptualize the
general structure.

Example:

7002 3999-100

SEND-OUTPUT.
CALL 'TIPMSGO' USING

GET-INPUT.
CALL 'TIPMSGI' USING
IF USER-REQUESTED-EXIT

GO TO END-PROGRAM.
--evaluate input data-­
IF ANY-ERRORS-DETECTED

MOVE ERROR TEXT TO ERROR-MESSAGE-TEXT
CALL 'TIPMSGE' USING
GO TO GET-INPUT.

--update information on file etc-­
GO TO SEND-OUTPUT.

2-7

2-8

This program. fragment is intentionally not structured the way code usually is; it merely
illustrates that the "flow" of an online progra.qt can be quite straightforward and need not
involve programming concepts that differ radically from batch programming.

The TIP library includes the COBOL source for a working TIP /30 demonstration program.
(element name IT .. SPl). This program implements a simple on-screen calculator. The
program. uses a TIP /30 screen format as the interface with the tenninal operator. The
transaction code to execute this sample program is TSPCALC.

7002 3999-1 00

Mes Interface Packet

2.3. MeS Interface Packet
The COBOL copy element TC-MCS in the TIP library defines the MCS interface packet. The
MCS interface packet controls the interface between an online program and the TIP /30
Message Control System. The Message Control System assumes that this interface packet
immediately precedes the fields that contain the data for the screen format that is in use.

If an online program uses more than one screen format, the program redefines the
MCS-DATA area to account for the differing layouts of the screen formats.

An online program interfaces with MCS through subroutine calls that transfer data to and
from the terminal. These subroutines use the information placed in the interface packet.

*
*
*

7002 3999-100

01 MCS-AREA. COpy TC-MCS OF TIP.

TIP/30 MESSAGE CONTROL SYSTEM PACKET

02 MCS-NJI...MF.

02 MCS-TERM
02 MCS-FUNCTION

88 MCS-RECEIVE-ALL
88 MCS-DATA-ONLY
88 MCS-UNSOLICITED
88 MCS-SCREEN-PRINT
88 MCS-REFRESH
88 MCS-SHORT-XMIT

02 MCS-HOLD
88 MCS-KEYBOARD-LOCK

02 MCS-SIZE
02 MCS-STATUS

88 MCS-GOOD
88 MCS-XMIT
88 MCS-MSG-WAIT
88 MCS-FKEY1
88 MCS-FKEY2
88 MCS-FKEY3
88 MCS-FKEY4
88 MCS-FKEYS
88 MCS-FKEY6
88 MCS-FKEY7
88 MCS-FKEY8
88 MCS-FKEY9
88 MCS-FKEY10
88 MCS-FKEY11
88 MCS-FKEY12
88 MCS-FKEY13
88 MCS-FKEY14
88 MCS-FKEY15
88 MCS-FKEY16
88 MCS-FKEY17
88 MCS-FKEY18

PICTURE X (8) .
PICTURE X(4).
PICTURE X.

VALUE' A' .
VALUE '0'.
VALUE 'M'.
VALUE 'P'.
VALUE 'R'.
VALUE 'Sf.

PICTURE X.
VALUE ' L' .

PICTURE S9(4) COMP-4 SYNC.
PICTURE X.

VALUE , ,
VALUE ' ,
VALUE '0'.
VALUE ' l' .
VALUE '2'.
VALUE '3'.
VALUE '4'.
VALUE '5'.
VALUE '6'.
VALUE '7'.
VALUE '8'.
VALUE '9'.
VALUE 'A'.
VALUE fB'.
VALUE ' C' .
VALUE ' 0' .
VALUE ' E' .
VALUE 'F'.
VALUE ' G'

VALUE 'H'.
VALUE ' I' .

2-9

MCS interface Packet

88 MCS-FKEY19 VALUE ' J' .
88 MCS-FKEY20 VALUE ' K' •
88 MCS-FKEY21 VALUE ' L' .
88 MCS-FKEY22 VALUE 'M' .
88 MCS-FPOC VALUE ' N' .
88 MCS-F-REBUILD VALUE ' l' , 5' 'N' .
88 MCS-F-NEXT VALUE '2' , 6' .

88 MCS-F-UPDATE VALUE ' 4' , 8' .
02 MCS-FILLER PICTURE x.

88 MCS-UNDERLINE VALUE
, ,

88 MCS-ASTERISK VALUE ' *'
02 MCS-COUNT PICTURE S9 (4) COMP-4 SYNC.

/
02 MCS-DATA.

*
* USER SUPPLIED RECORD LAYOUT FOR Mes SCREEN FOLLOWS HERE

*

Where:

MCS-NAME

MCS-TERM

A field that must contain the desired screen format name.

Screen fOI'II'.ats a.-re assigned a na..'!1e when they are defined using the
TFD /TFU program. The format name may be up to eight characters in length
and must start with a character that is not a digit.

If the field MCS-NAME contains underscore character(s), MCS replaces
underscores with the user's LANGUAGE= code (as specified in the USER
Catalogue record in the TIP /30 Catalogue), and attempts to find that screen
fonnat If the user does not have a language code assigned, underscores are
replaced with the letter "A".

This field is used to specify the intended destination of an output message (if
it is different than the terminal that is issuing the call to the MCS subroutine).

Default: if this field does not contain a valid terminal name (namely: spaces or
low values), the screen format I/O is directed to the terminal where the
program is running.

If the specified terminal is not currently connected to TIP /30 (in global reAM
network), the terminal name is ignored.

The reserved terminal names *MST and *BYP are specified to indicate
(respectively) that the intended terminal is the MASTER or BYP ASS terminal
(as defined in the CLUSTER definition for the issuing terminal).12

12. See the TIP /30 "CLUSTER" generation statement for additional information about defining terminal clusters.

2-10 7002 3999-1 00

Mes Interface Packet

MCS-FUNcnON

MCS-HOLD

MCS-SIZE

This field specifies additional optional processing. Each MCS subroutine
description includes a discussion of the relevant values of this field.

This field may be set to the value "L" before calling TIPMSGO to lock the
terminal keyboard following delivery of the output message.

To maintain downward compatibility with older TIP /30 releases, this field
may be set to the value "H' to indicate that a subsequent TIPMSGI should
NOT release any current record update locks.

The programmer is advised to maintain record locks using the field
"PIB-LOCK-INDICA TOR" in the TIP /30 Program Information Block (PIB).
See the description of this field in the PCS section of this manual.

The contents of this field are not preserved - the program must insert the
desired value before issuing a call to MCS.

MCS sets this field to the maximum number of bytes that may have been
received as a result of an input message. The online program can use this
value to determine whether the data received on an input message represents
a "full screen". This is discussed in the description of the TIPMSGI subroutine
call. .

The online program should not modify this field.

This field is set to the appropriate value after a call to an MCS subroutine (for
example, TIPMSGI).

MeS-STATUS

MCS sets this field after a call to request tenninal input. The value indicates
what type of terminal activity was detected: for example, I MSG WArT) or a
function key or IXMlTI. Various 88 level items are provided to simplify
program coding.

After an output message (TIPMSGO or TIPMSGE), if an input message is
already available this field is set to the value "M".

If auxiliary device printing is requested via TIPMSGO, this field is set to the
lCAM delivery status. See the section on "Auxiliary device I/O" for a list of the
possible status codes.

MeS-FILLER

7002 3999-100

This field is set to the desired "fill" character to use on output. Choices are:
space, underscore or asterisk character.

During TIPMSGO, the fill character is used to replace:

•

•

leading spaces in unprotected numeric fields (caused by zero suppression)

trailing spaces in unprotected alphanumeric fields .

2-11

MCS Interface Packet

2-12

Fill characters are not used in protected data fields. Fill characters received
from the terminal during TIPMSGI are replaced by spaces or zeroes
depending on the field type.

This field is not modified by MCS.

MCS-COUNT

The TIPMSGO subroutine expects this field to contain a count of the number
of data bytes in the MCS-DATA area that are output to the screen format.

If this value is less than the maximum number of data field bytes in the
format, the MCS formatter uses the MCS-FILLER character in data fields,
which follow the fields implied by the count.

When terminal input is received, the value in this field indicates the number of
data characters received:

The input count is always less than or equal to the value that MCS reports in
the MCS-SIZE field (the maximum) and always includes the full size of the
last field whe...woe data was detected.

For example, if the terminal operator enters a partial value in a long field and
presses rn!!) somewhere within that field, the value in MC5-COUNT will be
adjusted upward to include the full length of that field. The field itself in the
MCg...OATA area win be padded on the right with the appropriate character
depending on the type of field (numeric or alphanumeric).

MeS-DATA

MCS-COUNT is set to zero after a CALL to TIPMSGE.

This group item defines the start of the data fields that are defined in the
screen format.

The elementary fields in this group item must be defined by the programmer
in the same order as they appear in the screen format (top to bottom and left to
right). The type and size (in bytes) of the elementary fields must also match
the definition of the field that was specified when the screen format was
defined.

Define the fields in this group item as display type fields - packed, binary or
floating point fields are not pennitted.

Use the COBOL command provided by the MSGAR online utility program to
create a library element containing the field layout corresponding to a screen
format. This library element can then be tailored and placed following the
MCS-DATA group item.

7002 3999-1 00

MCS Subroutine CALLS

2 .. 4.. MeS Subroutine CALLS

2.4.1. TIPMSGO - Output Data to Screen Format

MCS provides the TIPMSGO subroutine to display a TIP /30 screen fonnat (with or
without) accompanying data. Since this subroutine call is normally the first interaction
between the program and TIP /30 MCS, the program must first correctly initialize various
fields in the MCS packet:

MeS-NAME

MeS-TERM

7002 3999-100

The program must supply the name of the screen fonnat to display. MCS
searches for the named fonnat in various groups according to the setting of
the keyword MCSEARCH= in the terminal user's catalogue record.

This field may be set to the name of the desired output terminal. The default
is the terminal that is running the program.

This field need only be modified if the program wants to output the screen
fonnat on a terminal other than the terminal running the program.

Note: Only screen OUTPUT may be redirected in this manner - terminal
input must always occur at the terminal that is running the program.

2-13

TIPMSGO

2-14

MCS-FUNCI10N

I::Vi;31rt.:
k::::':::::::::::::::::'

space

D

M

p

S

'T'
.L

Before issuing a call to TIPMSGO, the program may specify one of a number
of function codes in this field:

Note: When "D" is specified in MCS-FUNCTION, data fields which contain
low-values are not sent to the terminal - the program may use this
technique to avoid resending unchanged data to the terminal, thereby
reducing output transmission.

Table 2·1. MCS .. FUNCTION Values for TIPMSGO

:,-,;.::..:::::.>' ..•..••. : .': ::::: ::::: :;:,;:::::::::;:::::::::::::,:;:::.

:7::':77 :::::,:::::::;::::;:::: .::::: .:::: . :::: .:

Transmit the entire screen format (both headings and data).

Transmit data only (not the heading information).

Send the output screen format as an unsolicited message
(sends data and heading information).

Output screen format with a "print transparent" code at the
end of the output message - to transfer screen to auxiliary
printer.

Stop sending heading text when the available MCS-DATA is
exhausted (as specified by the value in MCS-COUNT).

Unsolicited and Print. The message is sent to t.he specified
tenninal as an unsolicited message. At the end of the message
text the control code to cause a "print transparent" operation is
included. When the receiving user presses the (MSG WAIT I key,
the message is displayed and printed on his AUXl printer.

MCS-HOLD

Set this field to the value t~" to cause MCS to LOCK the terminal keyboard
after the TIPMSGO is completed.

If a program wishes to send a series of outputs to the terminal, this setting
may be used to lock the keyboard on all but the final output call.

A call to TIPMSGI, or a call to TIPMSGO with MC5-HOLD not set to ItL"
unlocks the keyboard. The contents of this field are not preserved - the
program must insert the desired value before issuing a call to TIPMSGO.

MCS-FILLER

The program must specify which fill character to use: space, underscore or
asterisk. If this field contains an invalid choice of character, an underscore is
assumed.

The program must specify the number of bytes of data in the MC5-DATA area
that are to be merged with the screen format. This value can range from zero
- when the program has no data to output - to a maximum of the sum of all
data fields in the screen format.

7002 3999-1 00

MC5-DATA

Syntax:

TIPMSGO

If the screen format was defined with "default data" for some fields13 MCS
places the default data in the fields when the field is located beyond the end of
the data supplied in MCS-DATA - according to the value of MCS-COUNT.

If the program intends to output all of the data for a particular screen format, a
popular technique is to place a large value in this field (for example, 9999). If
new fields are later added to the screen format, the programmer does not need
to remember to find and modify all references to the previous high count.

If the program has data that is to be outputto the screen format, the data is
placed in the appropriate elementary fields in this group item before the
CALL is issued.

CALL 'TIPMSGO' USING MCS

CURSOR-MODS

Where:

MCS The MCS interface packet previously described.

FCC-MODS

Optional table of two byte entries (two bytes per field) that are used to modify
the FCC (field control character) attributes of selected data fields.

See "2.4.7. FCC Modificationslf on page 2-26 for details.

CURSOR-MODS

Optional table of one byte entries (one byte per field) that specifies the field
where the cursor is to rest after the call to TIPMSGO.

See "2.4.8. Cursor Positioning" on page 2-29 for details.

Additional Considerations:

When "D" is specified in MC5-FUNCTION (transmit data only), MCS assumes that the
heading data is already displayed on the terminal and sends only the data, as specified by
the value in the field MC5-COUNT.

MCS only sends a data field if the corresponding area in MCS-DATA contains a value that
is not LOW-VALUES (X'OO'). The program can output selected fields, using
MC5-FUNCTION="D"; setting those fields that are not to be sent to LOW-VALUES.

13. See description of default data in the documentation for the TFD utility transaction program.

7002 3999-100 2-15

TiPMSGO

2-16

Error Conditions:

If the screen format that is named in the field MCS-NAME cannot be located, (a spelling
error?), the program receives PIB-NOT -FOUND error status and the terminal screen is
erased. The following message is displayed on the terminal:

~DEFINED FORMAT: XXXXXXXX

Where XXXXXXXX is the data that was found in the field MCS-NAME.

7002 3999-1 00

TIPMSGI

2.4.2. TIPMSGI - Read Data from Screen Format

Online programs issue a call to the TIPMSGI subroutine to request terminal input. The use
of TIPMSGI presumes that a TIP /30 screen format has already been used to send output to
the tenninal. This call is used at points in the online program where input is required from
the tenninal, for example, after a CALL to TIPMSGO or TIPMSGE.

Before issuing a call to TIPMSGI, the program must ensure that the MCS interface packet
contains appropriate values in a number of the fields:

MCS-NAME

The program normally specifies the same screen format name in the field
"MCS-NAME" for related output and input functions.

MCS-FUNCTION

MC5-FUNCrION may be set to a space or the value "Alt. A space indicates no
special input processing is required.

Setting MC5-FUNCrION to "A" requests TIPMSGI to guarantee the input
message retrieves ALL the unprotected data from the screen. When
MC5-FUNCrION contains "A" and IXMrrl is pressed from a location that is not
within or beyond the last unprotected data field, MCS automatically places the
cursor in the bottom right corner of the screen and issues an auto-transmit
sequence to reread the entire screen.

This feature can almost double t.~e transrrJssion traffic from the tenr.inal (first
there is the partial transmit, then the full transmit) and therefore can be quite
costly.

To minimize transmission traffic, a preferable technique is to compare
MCS-COUNT (the count of actual data characters received) to MCS-SIZE (the
maximum possible received on that transmission); if MCS-COUNT is less than
MC5-SIZE, the program informs the user (via a call to TIPMSGE) that IXMlTI
was pressed at the wrong tenninallocation; then calls TIPMSGI again to allow
the terminal user to press I xMrrl from the proper location.

Before a call to TIPMSGI, the program may also modify various fields defined in the PIB:

PIB .. W AlT-'fIlWE

7002 3999-100

The program may move a value to PIB-W AlT-TIME to specify the amount of
time that TIPMSGI is to wait for input from the terminal. If PIB-WAIT-TIlvIE is
not altered (and presumably contains zero), the TIPMSGI subroutine does not
impose a time limit on the arrival of the desired input message.

If an input message does not arrive within the number of seconds defined by
the contents of PIB-WAIT-TIME, the call to TIPMSGI completes, and the
resulting value of PIB-5T A TUS is "PIB-TIMED-OUT'. Programs which place a
limit on the arrival time of input messages must be prepared to handle this
situation.

For more details, see the description of the PIB-W AIT -TIME field in the PCS
section of this manual.

2-17

TIPMSGi

2-18

PIB-LOCK-INDICATOR

Syntax:

Where:

The program may choose to move "Hit to the field PIB-LOCK-INDlCA TOR to
coerce the TIP /30 File Control System to hold any current record locks that
have been acquired by the program.

If the PIB-LOCK-INDlCA TOR is not set to "H', the file system releases all
record locks acquired by the program that is calling TIPMSGI. This action is
taken by the file system to prevent programs from locking records and waiting
for an inordinate length of time for terminal input

If the program chooses to hold record locks across a TIPMSGI call, the
program should also move an appropriate value to PIB-W AIT-TIME to place
an upper limit on the length of time that the record locks will be maintained.

CALL , TIPMSGI' USING MCS

MCS The MCS interface packet as previously described.

When the program issues a call to TIPMSGI, MCS waits for the next input message from
t.~e tenrJr.a1. UrJess the program has specified a maximum time to wait in the
pm-WAIT-TIME field in the PIB, the program does not return from the call to TIPMSGI
until input is received from the terminal. The input may be via the ~ key, the I MSG wArtl
key or a function key.

Upon returning from the call to TIPMSGI, the user program must interrogate the field
MCS-STA 11JS to establish the type of input received.

IfMC5-STA11JS indicates MC5-XMIT (or MCs-GOOD), the unprotected data from the
screen was extracted by MCS and placed in the appropriate fields within MC5-DATA.

Error Conditions:

WARNING

NO data is transferred from the device if a
function key, including IMSG wArrl is pressed.

A program may not request two consecutive inputs from a terminal without some
intervening output message. If a user program requests terminal input and does not satisfy
this constraint, TIP /30 causes the program to abort with the following reason code:

INPUT REQUEST WHEN OUTPUT IS DUE

7002 3999-1 00

TIPMSGi

If the program placed a maximum wait time value in the field PIB-WAIT-TIME, the
PIB-ST ATUS is set to either PIB-TIMED-OUT or PIB-MSG-AV AIL after the call to
TIPMSGI, depending on which of those two mutually exclusive events occurred.

A program may not have access to a serial resource when a call to TIPMSGI is issued. A
serial resource is a resource which, by nature, is available to only one online transaction
program at a time. Examples of a serial resource are:

• a file that has been placed in sequential mode (by a call to TIPFCS function FCS-SETL
and its variants)

• Imparts to the DMS data base.

Only one online program. is allowed to have a particular file in sequential mode at any
instant (unless the file is defined in the TIP /30 generation parameters as MULTISEQ=YES
- setting a MULTISEQ=YES file in sequential mode is not considered a serial resource).

TIP /30 cannot allow a transaction 'program to acquire such a serial resource and then wait
(perhaps forever) for terminal input. This scenario might cause horrendous delays in the
system and may even cause deadlock conditions (deadlock occurs when two independent
processes are waiting on each other - each process has exclusive use of the resource the
other wants to access).

Programs which have a serial resource acquired when calling TIPMSGI are aborted by
TIP /30 with a reason code of:

Resources locked; waiting input

Additional Considerations:

Well-behaved programs should periodically check (by examining the PIB field
PIB-SYSTEM-FLAG) for a pending TIP /30 system shutdown. In general, a good place to
check for this condition is after a call to TIPMSGI in the main processing loop of the
program. By doing so, the program at least ensures that no new work is started after
system shutdown has been requested. Another good technique is to place an upper limit on
the wait time for all input messages and check for PIB-EOJ-PENDING whenever a request
for input causes a timeout (the tenninal operator may have abandoned the tenninal).

7002 3999-100 2-19

TIPMSGE

2 .. 4.3. TIPMSGE - Send Error Text To Screen

2-20

After a call to TIPMSGI, the program normally validates the data received from the
terminal.

Programs can use the TIPMSGE subroutine call to:

" output an error (or informational) message

• indicate data fields that contain questionable values

• infonn the terminal user that the input was not acceptable.

The TIPMSGE subroutine can accomplish two different objectives:

1. Deliver error message text to the screen format.

2. Identify data fields that are not acceptable to the program.

To deliver error message text, the program passes a parameter which defines a string of
error text. The TIPMSGE subroutine retrieves from this location a number of bytes of
character data the length of which corresponds to the sum of all ''EEEEE'' fields in the
screen format definition.

Note: Although commonly referred to as an "error" message, the text could be a purely
informational message, such as: "Searching File - Please Wait"

To highlight data fields that are in error, the program may move HIGH-VALUES
(hexadecim..al FF) to a field or fields in the MCS-DATA area before calling: the TIPMSGE
subroutine. The TIPMSGE subroutine uses the value in MCS-COUNT to '-"determine how far
to search the MCS-DATA area for any fields containing HIGH-VALUES. Normally this
count has been set by the prior call to TIPMSGI.

TIPMSGE causes such flagged fields to "blink". On terminals that do not have the capability
to blink data fields, for example the U200, a start-blink character (X'IC') is sent to the screen
position immediately preceding the data field.

Blinking fields in error should be used with discretion on terminals like the U200 because
the X'IC' character that is output by MCS may destroy data in the screen format.

If data fields in the screen format are "blinked", TIPMSGE leaves the cursor in the first
character of the first field that is in "error". If no fields are blinked, the cursor remains in the
cursor resting location defined for the screen format.

The TIPMSGE subroutine examines the field "MCS-FUNCTION". If this field contains the
character "R", the TIPMSGE subroutine first "refreshes" all the data fields in the screen
format. The refresh operation is accomplished by resending all of the FCC attributes to the
fields (on terminals that use FCC). This effectively "unblinks" any fields that are already
blinking before causing new fields to blink.

Set MCS-FUNCTION to "R" only when there are consecutive calls to TIPMSGE, so that the
tel"n'.i..n.a! operator won't ~.ave to guess whic.l-t fields are currently blinldng (as opposed to
those blinking due to prior calls to TIPMSGE).

7002 3999-1 00

TiPMSGE

Syntax:

CALL 'TIl?MSGE' USING MCS

Where:

MCS

TEXT

TEXT
FCC-MODS
CURSOR-MODS

The MCS interface packet (previously described).

The name of an elementary field or group item that contains the "error" text to
be used to fill the type ''EEEE'' fields in the screen format.

The TIPMSGE subroutine copies characters from this field until it fills all error
fields (''EEEE'') in the screen format.

For example, if the screen format contained two error fields: one of 20
characters, another of 70, TIPMSGE expects 90 characters (20+70) in this field.

FCC·MODS

Optional table of two byte entries (two bytes per field) used in modification of
FCC (Field Control Character) attributes of each data field.

See "2.4.7. FCC ~vfodifications" on page 2~26 for details.

CURSOR-MODS

Example:
'iP

Optional table of one byte entries (one byte per field) uses in specifying the
field where the cursor is to rest after the call to TIPMSGE.

See "2.4.8. Cursor Positioning" on page 2-29 for details.

05 ERROR-TEXT PICX(30).

70023999-100

PERFORM GET-INl?UT-MSG.

IF SCREEN-ACCT-NUMBER < 'AOOOO'
MOVE HIGH-VALUES TO S-ACCT-NUMB
MOVE 'INVALID ACCOUNT NUMBER' TO ERROR-TEXT
CALL 'TIl?MSGE' USING MCS

ERROR-TEXT

2-21

TIPMSGE

2-22

Additional Considerations:

TIP /30 sets MCS-COUNT to zero after a call to the TIPMSGE subroutine.

05/3 programming languages have no provision for the omission of parameters (other
than trailing parameters) on the CALL statement. It is not possible to avoid specifying
FCC-MODS if the CURSOR-MODS parameter is specified.

7002 3999-1 00

_11_111 .. _,.,. "'"
IIt""M~UC.V

2.4.4. TIPMSGEO --- Define Deferred Error Text

Use the TIPMSGEO subroutine to "define" error message text to MCS. This error text is not
acted upon immediately but is "remembered" by MCS and is appended to the end of the
next output to the terminal by TIPMSGO.

TIPMSGEO does not actually send any data to the terminal; it is a mechanism that allows
the program to issue a TIPMSGE in anticipation of a subsequent TIPMSGO. This technique
saves the double transmission that often occurs when a program issues a TIPMSGO
immediately followed by a Tll'MSGE.

Syntax:

Where:

TEXT

CALL 'TIPMSGEO' USING TEXT

The elementary or group item field name that contains the "error" text that is
"remembered" during the next call to the TIPMSGO subroutine.

Make the TEXT area as large as the sum of the sizes of all error fields (liEEEE")
in the screen fonnat.

Additional Considerations:

MCS saves the address of the TEXT area and uses this address only on the next call to
TIPMSGO. Whatever text is in the TEXT area when the TIPMSGO occurs is the data that is
sent to the "E" fields.

A common programming "trick" is to move error text to a work field whenever an error is
detected in the input from the terminal. The paragraph that outputs data to the screen calls
TIPMSGO and then conditionally calls TIPMSGE if the work field does not contain spaces.
This results in two consecutive outputs to the terminal.

Using TIPMSGEO instead effectively merges the two outputs into a single transmission.

7002 3999-100 2-23

TIPMSGRV

2.4.5. TIPMSGRV -- Force Full Screen Transmit

2-24

On Uniscope terminals, the data between HOME or the last start of entry character (.) and
the cursor is transmitted to the host whenever the tenninal operator presses IXMlTI (the
character that is under the cursor is normally included too!).

The terminal operator may (by mistake) press @!!) part way through a screen thereby
transmitting only a partial screen instead of the whole screen. This causes only some of the
intended data to be transmitted to the host.

A TIP /30 program may use the TIPMSGRV function to ensure that the entire screen is read
when input is requested from the terminal. After a call to TIPMSGI, MCS sets the field
MCS-COUNT to the number of characters of data received. The program can compare this
value with the value in MCS-SIZE, which is the maximum number of bytes that could have
been received on that transmission.

If MCS-COUNT is less than MCS-SIZE, the cursor was not in or beyond the last data field
when ~ was pressed. The program can ignore this operator error by calling TIPMSGRV.
The TIPMSGRV subroutine positions the cursor at the bottom right corner of the terminal
(or at the end of a specific row) and causes an auto-transmit to occur (effectively
transmitting the screen contents).

After the call to TIPMSGRV 1 all unprotected data from the screen is placed in the data area
of the MCS packet - the program must not call TIPMSGI - the TIPMSGRV subroutine
repeats the call to TIPMSGI after forcing the cursor to the appropriate location and causing
an auto transmit.

Syntax:

Where:

Mes
ROW

CALL , TIPMSGRV' USING MCS
ROW

The MCS interface packet previously described.

Optional binary halfword field (PIC 9(2) COMP) that specifies the screen row
number where the cursor is placed before the auto-transmit.

For example, specify a row number of 12 to cause TIPMSGRV to position the
cursor in the last column of row 12 before issuing the auto-transmit code.

If this parameter is omitted or the value is out of range, the cursor is placed at
the end of the last row of the terminal.

Additional Considerations:

Use of this function virtually doubles the traffic on a line; use this function with discretion.

It is often preferable to send the terminal an error message (for example, Cursor Incorrectly
Placed!) and to then instruct the operator to reposition the cursor and press IXMlTI again.

7002 3999= 1 00

TiPERASE

2.4.6. TIPERASE - Erase Screen

The TIPERASE subroutine erases the terminal screen. The program may want to make this
function part of the processing that occurs when the program terminates.

Syntax:

CALL ' TIP ERASE '

Where:

There are no parameters.

Additional Considerations:

The entire screen is erased. Protected and unprotected data or heading information is
removed.

Example:

CALL 'TIPMSGI' USING MeS.
IF MCS-FKEY4

CALL 'TIPERASE'
CALL 'TIPRTN'.

The above example illustrates a technique to detect function key CE!J and erase the screen
before exiting the program.

7002 3999-100 2-25

o

FCC Modification

2.4.7. FCC Modifications

2-26

The attributes of data fields in a screen fonnat are specified in the screen format definition.
There are situations, however, when the program needs to modify the attributes of a field
in a screen format while the screen format is in use.

Using an override mechanism of MCS the program can dynamically alter the attributes of a
field - on calls to Tll'MSGE and TIPMSGO. This facility is available only on terminals that
support the Field Control Character (FCC) method of establishing field attributes.

FCC modifications are specified as a table of two-byte entries that MCS uses to modify the
attributes of the field(s) on the terminal. For additional information see the Unisys
publication urS-400 Programmer Reference (UP-8359) - FCC Sequence from Host Processor.

Each table entry consists of two characters that represent the "mil and "n" characters used in
the construction of the FCC sequence for the field corresponding to the table entry (two
bytes per field).

1'h:e field characteristics depend on the setting of the characters:

space

x'OO'

.U

.B

Set either character to this value to avoid modifying the FCC attributes of the
corresponding field.

Low values (binary zeroes) may be used in the same way as a space (see
description of "space" above).

Set either character to an asterisk to make the cursor rest in the corresponding
data field when the data is sent to the terminal.

Set the two bytes to this value to unprotect the field while leaving the other
characteristics unchanged.

Set the two bytes to this value to protect the field, while leaving the other
characteristics unchanged.

Set the two bytes to this value to blink the field, while leaving the other
characteristics unchanged.

Include the supplied COBOL copy element (TIP lTC-FCC) in the program (in the
WORKING-STORAGE SECTION) to simplify selection of the desired "m" and "nit
characters.

*
*
*
*

TIP/30 FCC MODIFICATION EQUATES

* FOLLOWING VALUES ARE USED FOR THE FCC 'M' FIELD

*
05 FCC-M-TAB-NRM-CHG PICTURE X VALUE
05 FCC-M-TAB-OFF-CHG PICTURE X VALUE
05 FCC-M-TAB-LOW-CHG PICTURE X VAT·UE

05 FCC-M-TAB-BLK-CHG PICTURE X VALUE
05 FCC-M-TAB-NRM PICTURE X VALUE
05 FCC-M-TAB-OFF PICTURE X VALUE

' 0' .
' l' .
' 2' .
' 3' .
' 4' .
' 5' .

7002 3999-1 00

FCC Modification

05 FCC-M-TAB-LOW PICTURE X VALUE ' 6' .
05 FCC-M-TAB-BLK PICTURE X VALUE ' 7' .
05 FCC-M-NRM-CHG PICTURE X VALUE ' 8' .
05 FCC-M-OFF-CHG PICTURE X VALUE ' 9' .
05 FCC-M-LOW-CHG PICTURE X VALUE ' . ,
05 FCC-M-BLK-CHG PICTURE X VALUE ' .,

I

05 FCC-M-NRM PICTURE X VALUE ' <, .
05 FCC-M-OFF PICTURE X VALUE ' ='
05 FCC-M-LOW PICTURE X VALUE ,>, .
05 FCC-M-BLK PICTURE X VALUE ' '? '

*
***** FOLLOWING VALUES ARE USED FOR THE FCC 'N' FIELD
*

05 FCC-N-ANY PICTURE X VALUE ' 0' .
05 FCC-N-ALPHA PICTURE X VALUE ' l' .
05 FCC-N-NUMERIC PICTURE X VALUE ' 2' .
05 FCC-N-PROTECT PICTURE X VALUE "3' .
05 FCC-N-ANY-RIGHT PICTURE X VALUE ; 4; .

05 FCC-N-ALPHA-RIGHT PICTURE X VALUE ' 5' .
05 FCC-N-NUMERIC-RIGHT PICTURE X VALUE ' 6' .

*
* A VALUE OF SPACE IN EITHER THE M OR N FIELD IMPLIES
* NO MODIFICATION DESIRED FOR THOSE ATTRIBUTES
*
*
***** FOLLOWING VALUES MAY BE USED TO JUST CHANGE PROTECTION

*
05 FCC-PROTECT
05 FCC-UNPROTECT
05 FCC-BLINK

Example:

PICTURE xx VALUE f .P' .
PICTURE XX VALUE' .U' .
PICTURE xx VALUE '.B'.

Assume that the screen fonnat has 3 fields: a name, an address and a credit limit:

o 5 SCREEN-NAME
05 SCREEN-ADDR
05 SCREEN-CRLIMIT

PIC X(40).
PIC· X(40).
PIC S9(5)V99.

Also assume that an FCC-MODS table is set up in the program's WORK area to build the
modifications. Although the table can be specified as an array (that is indexed or
subscripted), the following method is preferable because fields can be added or removed
from the screen fonnat without major maintenance work (since the FCC modification
entries are referenced by name rather than absolute position in the table),

05 FCC-MODS.
10 FCC-MOD-N])',lAF. PIC X (2) .
10 FCC-MOD-ADDR PIC X (2) .
10 FCC-MOD-CRLIMIT PIC X (2) .

7002 3999-100 2-27

FCC Modification

2-28

To protect the credit limit in the program (presuming that the field is defined by the screen
fonnat to be unprotected) the following statements are required:

MOVE SPACES
MOVE ' .P'

TO
TO

FCC-MODS.
FCC-MOD-CRLIMIT.

CALL 'TIPMSGO' USING MCS
FCC-MODS

In this example, the COBOL coding is relatively simple because the literal is exactly two
bytes long and conveniently matches the receiving field. Many times, however, it is
necessary to construct a two byte "m" and "n" sequence from the entries provided in the
copy element TIP lTC-FCC.

COBOL provides a STRING verb to facilitate this sort of operation:

STRING FCC-M-TAB-BLK FCC-N-NUMERIC
DELIMITED BY SIZE

INTO FCC-MOD-CRLIMIT.

The statement shown above concatenates the two named fields from the copy element (in
that order) to create a two byte value that is then placed in the field FCC-MOD-CRLIMIT.
The specification FCC-M-TAB-BLK indicates that a tab is to be set (-TAB) and that the field
is to bliIlk (-BLK). The specification FCC-N-NUMERIC indicates that the field is to have the
numeric attribute forced on.

Using the STRING verb eliminates the need to define each FCC MOD entry as a group item
with two subordinate single byte elementary items.

Additional Considerations:

It is crucial that there are exactly two bytes per field in the FCC modification table - use
the COBOL command of the MSGAR utility transaction to verify the number of data fields
in the screen fonnat

7002 3999-100

Cursor Positioning

2.4.8. Cursor Positioning

The program may wish to use the FCC-MODS parameter to alter the attributes of a field
(see previous section) and to force the cursor into a field that has an FCC mod specified.
Since the table entry Cannot simultaneously hold the FCC modification and the asterisk
character, the program must use the CURSOR-MODS parameter (when calling TIPMSGE
and TIPMSGO) in such a situation.

The CURSOR-MODS parameter specifies a table of ~ byte entries - one byte per field in
the screen format.

The program may place an asterisk (*) in the appropriate byte to force the cursor to rest in
the corresponding field in the screen format. This facility is normally required only when
the program needs to use FCC-MODS to alter a field's attributes and also needs to force the
cursor into the same field.

Additional Considerations:

It is crucial to have exactly one byte per field in the CURSOR modification table. Use the
COBOL command of the MSGAR utility transaction to verify the number of data fields in
the screen format.

7002 3999-100 2-29

Line Oriented Terminal 110

2.5. Line Oriented Terminal 1/0

2-30

The subroutines described in this section provide terminal I/O handling capabilities that
programs may use to interact with the terminal on a line by line basis. This mode of
interaction is a more primitive level of control than that offered by the TIP /30 Message
Control System (MCS), that was discussed in the previous section.

A native mode TIP /30 program may use these subroutines to facilitate direct control of
terminal input and output in situations that require low volume interaction with the user.

For example:

• Continuation prompts ("Continue Yes/No")

• Simple data entry ("Enter an account number:It).

Line oriented terminal I/O operations are similar to facilities provided by many of the
popular programming languages available on personal computers (such as BASIC). As the
r.ame implies, input and output operations are restricted to applications where single line
prompts and replies are sufficient.

Table 2 .. 2. Line Oriented Subroutine Summary

SlJbrgUW:u~< IT'"
••.. . + ,.,.,.::;:.:;:: ; ... :;:."', ,.,.;., ...

:::."",. ; ... ;.; ::::.: :::.,.;.»
BREAK Check for operator break (interrupt).

PARAM Parameterize input from terminal (or a
supplied string).

PROMPT Issue prompt and call P ARAM to process
reply.

PROMPTX Issue prompt and retrieve reply (up to 64
characters) without parameterization.

PROMPTXB Issue prompt and retrieve reply (up to 72
characters) without parameterization.

ROLL Roll terminal display up one line and output
one line on bottom row.

ROLLPT Set roll point (number of lines to freeze at top
of screen) for ROLL subroutine.

TEXT Read line of input from terminal (up to 64
characters) without parameterization.

TEXTSO Read line of input from terminal (up to 72
characters) without parameterization.

TIPCOP Print screen on auxiliary printer.

TIPCPAGE Alter terminal control page xrvfIT setting:

TIPSCAN Unstring a character string according to I specified delimiters.

7002 3999-1 00

Line Oriented Terminai iiO

2.5.1. Function Key Input
When a function key or IMSG wArrl is pressed, absolutely no data is transmitted from the
terminal. lCAM receives a signal that a particular function key has been pressed.

To allow programs to properly process function keys, TIP /30 translates the function key
notification into a string of four characters when input is solicited by calling the
Une-oriented subroutines (PROMPT, BREAK etc).

The program receives four characters in the input area (the remainder of the area is cleared
to spaces). The first two characters are always "F#".

The next two characters are digits representing the function key number, for example:

• a value of F#OO represents (MSG WAITt

• a value of FOOl represents ®
• a value of Foo2 represents ®
• and so on.

Some terminals may be configured via a hardware or software option to signal the host
computer when the terminal is reset or powered on. This is called a "Power on confidence"
signal- or POC. The signal to the host (if such a signal is received) is translated by TIP /30
into the pseudo function key cmJ 0

A utility transaction :named "POC" may be defined to handle the arrival of a POC signal
when the terminal has output a TIP /30 command line prompt. For more information see
the description of the POC utility transaction.

7002 3999-100 2-31

Line Oriented Terminal 1/0

2 .. 5 .. 2.. BREAK - Check For Operator Break

The BREAK subroutine checks for input that is already available from the terminal. This
subroutine is often called to check whether or not the terminal operator has pressed the
I MSG WAIT' key, a function key or the ~ key to interrupt continuous ROLLed output14

If an input message is not available from the terminal, the BREAK subroutine clears the
result area to spaces and returns control to the calling program.

If an input message is pending at the time the program calls BREAK, the BREAK
subroutine reads the input and discards it. BREAK next prompts the terminal operator
with a standard TIP /30 "break message":

~ntinue1 ~Yes ~No

The cursor is left in the ''Yes'' field, since this subroutine is often used. as a mechanism to
temporarily pause an otherwise continuous stream of output messages.

)

When the terminal operator responds, the reply is parameterized into the area specified as
the first parameter to the BREAK subroutine.

Syntax:

CALL ' BREAK' USING PARAM-AREA

Where:

P A.R.MI-AREA

An area - PIC X(64) - that receives the reply to the continuation query if
there was an unsolicited interruption by the terminal user. This area is
interpreted as eight occurrences of PIC X(8) - see also "2.5.3. P ARAM -
Parameterize Datan on page 2-34.

See "2.5.1. Function Key Input" on page 2-31 for a description of how function
keys are returned.

14. See ''2.5.7. ROLL -- Output Line & Roll Screen" on page 2-40.

2-32 7002 3999-1 00

7002 3999-100

Line Oriented Terminai iiO

WARNING

The programmer must be careful to avoid a
classic programming blunder; namely, assuming
that the absence of "N" in the first position of the
reply implies YES. In fact, if a function key was
pressed, the first character of the result will be "F"
(see "2.5.1. Function Key Input" on page 2-31).

Furthermore, the terminal operator could transmit
anything - the program should carefully examine
the result field and decide whether or not the
terminal operator has correctly "interrupted"
whatever processing is taking place.

2-33

Line Oriented Terminal 1/0

2.5.3. PARAM -- Parameterize Data

2-34

This subroutine takes an input string and breaks it into as many as eight fields of up to
eight bytes each.

The input string may be a field supplied by the program or the program may choose to
have P ARAM prompt the terminal user for up to 80 characters of input.

P ARAM recognizes the following characters as a single delimiter between fields:

.. acomma

• a slash

• a single space

• multiple consecutive spaces

.. an equal sign.

If an optional second parameter is supplied, it is assumed to be the name of a 72-byte data
area to be parameterized; otherwise, input is solicited from the terminal.

If input is solicited from the terminal all communications characters (DICE codes and FCC
sequences) are removed from the input data before parameterization is perfonned.

Each alphanumeric parameter is:

• translated to upper case

• left justified

• space padded on the right to a maximum of 8 characters.

Each strictly numeric parameter (a parameter which consists of digits only) is: right
justified with leading zeros to a maximum of 8 characters.

See "25.1. Function Key Input" on page 2-31 for a description of how function keys are
returned when input is obtained from the terminal.

Syntax:

Where:

CALL 'FARAM' USING PARAM-AREA
TEXT-AREA

PARAM-AREA

The name of a 64 byte area to receive the parameterized data.

TEXT-AREA

Optional input to the P ARAM subroutine.

7002 3999-1 00

Example:

Line Oriented Terminai liO

TEXT-AREA is a 72 byte field that is parameterized. If this parameter is
omitted, up to 80 characters of input are solicited from the terminal and
parameterized into rrpARAM-AREA".

05 PARAM-AREA.
10 PARAM OCCURS 8 TIMES

05 TEXT-AREA
PIC X(8) •
PIC X(64) •

The following table illustrates various input strings and the appearance of the
P ARAM-AREA after a call to P ARAM. Double quotes in the table are present only to
clearly delimit the strings; trailing parameters are not shown (they are spaces in each case):

Table 2 .. 3. Examples of Parameterization

"DR. John Smith ill"

''TSPUPDT 123/x PRWT'

DR.
JOHN
SMITH
ill

TSPUPDT
00000123
X
PRINT

"ABCDEFGHIJI(LMNOPQRST' ABCDEFGH
JKLMNOPQ
ST

Note: As illustrated in the final example in the preceding table, if a valid delimiter is not
encountered, P ARAM assumes the next character is a delimiter and discards it. Programs
must not rely on the presence or absence of this "feature ",

7002 3999-100 2-35

Line Oriented Terminal 1/0

2 .. 5.4. PROMPT -- Prompt Terminal for Reply

2-36

The PROMPT subroutine "rolls" the tenninal display up one line and outputs a single line
prompt on the bottom line of the terminal. PROMPT then calls the P A.RAM: subroutine
(already described) to wait for and parameterize the terminal operator's reply. The calling
program may provide an optional parameter that is used as the text of the prompt or may
pennit PROMPT to construct default prompt text.

If the prompt text is not provided, PROMPT constructs a prompt that consists of the
transaction name, followed by the current execution stack level, a question mark and an
SOE (~) character:

)
Syntax:

CALL ' PRO~..PT' USING PARAM-AREA
PROMPT-STR

Where:

PARAM .. AREA

The 64 byte area where the parameterized terminal input is placed.
Alphabetic data will be translated to upper case.

See "2.5.1. Function Key Input" on page 2-31 for a description of how function
keys are returned.

PROl\iPT -STR

Optional parameter; 80 character prompt string.

If this parameter is supplied, this string (up to the last non-blank character) is
used as the prompt text.

Note: The terminal operator has only the remainder of the line to enter the
response to the prompt, since prompts are output on the last line of the
terminal.

If the program supplies a prompt string, either the first or the last non-blank
character may be specified as a backslash character ("\"). In either case, when
the prompt is output to the terminal the backs lash is replaced by a start of
entry character (~)

PROMPI' recognizes two "special" trailing strings:

CD "\ YES \NO n (exactly 11 characters)

@ n\NO \YES n (exactly 11 characters)

7002 3999-1 00

Line Oriented Terminai iiO

In each of the above cases the PROMPT subroutine does the following:

converts the 11 character strings into YES INO or NO lYES style prompts

replaces backslash characters with a start of entry character (~)

translates the words YES and NO (upper case!) into ''Yes'' and "No".

The h'!.Q. spaces after each word are replaced by a TAB stop and a single
space and the cursor is placed (by default> after the first choice (hence, the
need for both variations!).

Example:

WORKING-STORAGE SECTION.
77 QUESTION PICTURE X(80)

VALUE 'Enter last name: \'.

LIN!C~GE SECTION ~

05 REPLY-AREA PICTURE X(64) .

PROCEDURE DIVISION.

CALL ' PROMPT' USING REPLY-AREA
QUESTION.

This type of prompt (and an example reply) appears as follows to the terminal operator:

~ter last name: ~Smith

In this instance, the field REPLY-AREA would contain "SMITH" followed by 59 spaces.

Additional Considerations:

)

The PROMPT subroutine does not directly modify the prompt string provi9ed by the
program - PROMPT constructs the appropriate prompt string elsewhere (in a work area
outside the domain of the calling program).

7002 3999-100 2-37

Line Oriented Terminal 1/0

2.5.5. PROMPTX - Prompt for Text

2-38

PROMPTX is identical to the PROMPT subroutine described in the previous section, with
one exception: PROMPTX does Nor parameterize the user's input!

Up to 64 bytes of the input message are stored in TEXT-AREA (without parameterization).
PROMPI'X performs upper case alphabetic translation.

Syntax:

CALL ' PROMPTX' USING TEXT-AREA
PROMPT-STR

Where:

TEXT-AREA

The 64 byte area where the unparameterized terminal input is placed.

See "2.5.1. Function Key Input" on page 2-31 for a description of how function
keys are returned.

PROlVIPT-STR

Optional parameter; 8O-character prompt string.

If this parameter is supplied, this string (up to the last non-blank d'w.racter) is
used as a prompt.

Additional Considerations:

Refer to "2.5.4. PROMPT - Prompt Terminal for Reply" on page 2-36 for additional details.

7002 3999-100

Line Oriented Terminal 1/0

2.5.6. PROMPTX8 -- Prompt for Text

PRO?vfPTX8 is identical to the PROMPT subroutine described in a previous section, with
the following two exceptions:

• PROMPTXS does NOT parameterize the user's input

• Up to 72 bytes of text from the input message are returned.

Although the receiving area must be defined as an 8D-byte area, no more than 72 bytes will
be returned. PROMPTXB performs upper case alphabetic translation.

Syntax:

CALL ' PROMPTX8 ' US ING TEXT-AREA
PROMPT-STR

Wlie;e:

TEXT-AREA

The 80 byte area where the unparameterized tenninal input is placed.

See "2.5.1. Function Key Input" on page 2-31 for a description of how function
keys are returned.

PROMPT-STR

Optional parameter; 80 character prompt string.

If this parameter is supplied, this string (up to the last non-blank character) is
used as a prompt.

Additional Considerations:

Refer to "2.5.4. PROMPT - Prompt Terminal for Reply" on page 2-36 for details.

7002 3999-100 2-39

Line Oriented Terminal 110

2 .. 5.7. ROLL -- Output Line & Roll Screen

2-40

ROLL scrolls the screen up one line and sends one 80 byte line from TEXT-AREA to the
bottom line of the terminal. If a second parameter is specified, ROLL automatically uses
that parameter to call the ''BREAK'' subroutine (see description earlier) after the line is
output to the terminal.

If the optional second parameter is NOT specified, the program will not be notified if
terminal input is pending after this call to "ROLL".

Syntax:

Where:

CALL 'ROLL' USING LINE
PARAM-AREA

UNE An 80 byte text area to be rolled on the terminal. This text is not translated into
upper case by the ROLL subroutine.

PARAM-AREA

Optional field used to return result from call to the "BREAK" subroutine.

Example:

WORKING-STORAGE SECTION.
77 HDG-LINE

VALUE ' Amount Tax

LINKAGE SECTION.

05 DETL-LINEo
10 DETL-AMT
10 FILLER
10 DETL-TAX
10 FILLER
10 DETL-TOTAL
10 FILLER

CALL ' ROLL' USING HDG-LINE.
MOVE SPACES TO DETL-LINE.
MOVE 1000 TO DETL-AMT.
MOVE 70 TO DETL-TAX.
MOVE 1070 TO DETL-TOTAL.
CALL ' ROLL' USING DETL-LINE.

PIC X(80)
Total' .

PIC ZZZ,ZZ9.99.
PIC X (3) •

PIC Z,ZZ9.99.
PIC X (3) •

PIC Z,ZZZ,ZZ9.99.
PIC X (44) •

7002 3999-1 00

Line Oriented Terminai iiO

Additional Considerations:

An important alternative to the use of ROLL is to use Tll'PRINT to output data to the
tennina1 (special destination AUXO). Refer to the description of the TIPPRlNT subroutine in
the File Control System (FCS) chapter of this reference manual.

If ROLL is called by a background program, the text is output on the system console.

7002 3999-100 2-41

Line Oriented Terminal iiO

2.5.8. ROLLPT -- Set Terminal Roll Point

2-42

The subroutines ROLL, PROMPT, PROMPTX, PROMPTXB and BREAK all roll the tenninal
display from bottom to top - the top lines roll off the screen as new lines appear on the
bottom line. The default is to roll the entire display.

To retain a portion of the display on the screen, the program may call this subroutine to
define a new "roll point".

Syntax:

CALL , ROLLPT' USING ROLL-POINT

Where:

ROLL .. POINT

Example:

The new roll point for the terminal.

This field is a binary halfword representing the number of lines to "freeze" at
the top of the terminal.

If this field contains a value of zero, the termi:nal roll point is reset to the
default state - no lines are frozen.

77 ROLL-POINT PIC S9(2) COMP SYNC VALUE 4.

Using a value of four (as in the example above) causes the top four lines of the display to
remain on the screen while the lower lines are rolled as necessary.

This technique may be used. to freeze information (such as headings) on the screen while
detail lines are ROLled out underneath.

7002 3999-1 00

Line Oriented Terminal·liO

2 .. 5 .. 9. TEXT -- Get One Line From Terminal

The TEXT subroutine retrieves an input message of up to 64 characters without
parameterization. It is assumed that the program has already output whatever infonnation
that is to be used as a prompt; otherwise the tenninal operator may not know that input is
required!

Alphabetic characters in the data are translated to upper case.

Syntax:

CALL 'TEXT' USING TEXT-AREA

Where:

TEXT-AREA

The 64 byte area where the tenninal input is to be placed.

See "2.5.1. Function Key Input" on page 2-31 for a description of how function
keys are returned.

Example:

05 TEXT-AREA PIC X (64) •

7002 3999-100 2-43

Line Oriented Terminal 110

2.5.10. TEXT80 - Get One Line From Terminal

2-44

TEXTSO is similar to the TEXT subroutine described in the previous section, except that up
to i'2 characters are retrieved and no parameterization is performed.

Alphabetic characters in the data are translated to upper case.

Syntax:

CALL 'TEXT80' USING TEXT-AREA

Where:

TEXT-AREA

Example:

An 80 byte area where the terminal input is to be placed (without
parameterization).

Note: This field must be defined as 80 bytes, but no more than 72 bytes of
terminal data are returned.

See "2.5.1. Function Key Input"on page 2-31 for a description of how function
keys are returned.

05 TEXT-AREA PIC X(80).

7002 3999-1 00

Line Oriented Terminal I/O

2.5.11. TIPCOP - Print Screen on Aux Printer

To simplify the handling of an auxiliary printer, the program may call Tll'COP to send a
PRINT command to a selected tenninal. Tll'COP places the cursor at the last column of the
row specified in the call. A second optional parameter is the tenninal name to be used.

Syntax:

CALL 'TI~CO~' USING ROW

Where:

ROW

[TERM-NAME

The row number of the last line to be printed on the auxiliary printer. This
field must be a binary halfword. The proper output character(s) that cause the
terminal to PRINT on the auxiliary printer will be placed immediately
following this row number.

If this value is not a valid row number, the TIPCOP subroutine assumes the
last row of the terminal.

TERM-NAME

Example:

Optional parameter that supplies the name of the destination terminal.
Default: the tenToinal tr.at is calling 'TIPCOP'.

05 ROW PIC 9(2) COMP SYNC.
05 TERM-NAME PIC X(4) .

CALL 'TIPMSGO' USING MCS.
MOVE 24 TO ROW.
CALL 'TIPCOP' USING ROW.

Additional Considerations:

This subroutine is a brute force way to accomplish terminal printing. The TIPPRlNT
subroutine interface provides much more flexibility and is preferable for volume printing.

7002 3999-100 2-45

Line Oriented Terminal 1/0

2.5.12. TIPCPAGE - Set Control Page

An online program may set the control page XMIT (Transmit) Field of a UTS-40015 terminal
by calling this subroutine with the choice of transmit option.

Syntax:

CALL 'TIPCPAGE' USING CPAGE-OPTION

Where:

CP AGE-OPTION

Example:

A four character field indicating the desired transmit option:

ALL

VAR

CHAN

Transmit all (both protected and unprotected areas).

Transmit variable (unprotected data fields orJy).

Transmit only changed data fields.

77 CPAGE-OPTION PIC X(4) VALUE ' VAR' •

Additional Considerations:

The CHAN option appears attractive, but a number of tenninhls do not set the "changed"
attribute properly under some circumstances (for example, when a field is erased using the
"erase EOL" key). Since the tenninal is not reacting properly, the program must make
allowances for this type of scenario (easier said than done).

15. Or any terminal with equivalent control page.

2-46 7002 3999-1 00

Line Oriented Terminal i/O

2.5.13. TIPSCAN - Scan String For Parameters

This subroutine facilitates parsing (scanning) fields from a string of characters. It utilizes
delimiters that are specified by the calling routine.

The following example places the first field which may be up to eight bytes long and ends
with any of the specified delimiters(a comma, a slash or a space), into OSTRING-TXT.

After the call to TIPSCAN, the field ''IPTR'' is set to the zero relative offset into "ISTRING"
of the next character after the delimiter in preparation for another call to TIPSCAN.

Repeated calls to TIPSCAN scan out all such fields. The program must check the value of
IPTR after each call to determine when the end of the field ''ISTRING'' is reached.

Syntax:

CALL 'TIPSCAN' USING ISTRING
IPTR
OSTRING
DELIM-TBL

Example:

05 ISTRING PIC X(??) .
05 IPTR PIC 9(3) CaMP SYNC.
05 OSTRING.

10 OSTRING-LEN PIC 9 (3) COMP SYNC.
10 OSTRING-TXT PIC X (8) •

05 DELIM-TBL.
10 DELIM-COUNT PIC 9 (4) COMP SYNC.
10 DELIMS PIC X (3) •

MOVE ???? TO ISTRING.
MOVE 8 TO OSTRING-LEN.
MOVE 3 TO DELIM-COUNT.
MOVE ' , / , TO DELIMS.
CALL I TIPSCAN' USING ISTRING IPTR

OSTRING DELIM-TBL.

7002 3999-100 2-47

Direct Communications 1/0

2 .. 6. Direct Communications 1/0

2-48

TIP /30 provides facilities that an online program may use to directly interface with ICAM
- the host computer communications sub-system.. This Direct Communication I/O
interface is at a primitive level- that is, it is the responsibility of the program to generate
the proper control infonnation for the devices being manipulated.

With Direct Communications I/O, the program interfaces with ICAM (the operating
system communications control code) via calls to a TIP /30 subroutine named "TIPTERM".

The program is responsible for:

.. issuing messages that conform to lCAM specifications

• including the proper control codes to produce the desired effect at the terminal.

The program must also decode all input messages and, if necessary, be prepared to filter
out any imbedded terminal-dependent control codes.

Direct communication I/O is provided for reiatively rare instances where the program
requires direct control of a temtinal or a device. Applications should take advantage of the
extensive display handling capabilities of the Message Control System (MCS) and use
DCIO only when the requirements cannot otherwise be met.

The documentation in this section requires knowledge of the facilities of 05/3 reAM and
UNISCOPE communications protocol.

7002 3999-1 00

Direct Communications 1/0

2.6.1. Message Formats

All input and output messages must begin with a fixed-fonnat message prefix.

COBOL copy elements TIP /TC-DCINP and TIP /TC-DCOUT define the message prefixes
in a COBOL program.

Each copy element defines a standard message prefix as documented in the
Communications Manuals (ICAM) supplied by the manufacturer, with one exception - an
extra fullword added at the beginning of each prefix is used only by TIP /30; the remainder
of the prefix is the normal ICAM message prefix for the TO ICAM interface.

The layout of the input message area is provided by the COBOL copy element TC-DCINP
in the TIP library:

COpy TC-DCINP OF TIP.

*

COpy ELEMENT FOR DeIO INPUT PACKET '*

*

05 DCIO-INP-PKT.
10 FILLER PICTURE 9 (8) COMP SYNC.
10 FILLER PICTURE X(20) .

05 DCIO-INP-PKTR REDEFINES DCIO-INP-PKT.
10 DCIO-INP-STATUS ,-,-r,..",T'rO'C" v

J::.J.L.V~

88 DCIO-INP-GOOD VALUE SPACE.
88 DCIO-INP-NOT-AVAIL VALUE ' E' .
88 DCIO-INP-TRUNC VALUE ' E' .
88 DCIO-INP-FKEY VALUE ' F' .

10 FILLER PICTURE X.
10 DCIO-INP-BUF-LEN PICTURE 9 (4) COMP SYNC.
10 DCIO-INP-COUNT PICTURE 9 (4) COMP SYNC.
10 FILLER PICTURE X (2) .
10 DCIO-INP-TERM-ID PICTURE X (4) .
10 FILLER PICTURE X (4) .
10 FILLER PICTURE X (4) .
10 FILLER PICTURE X (4) .

05 DCIO-INP-DATA.

* USER INPUT DATA LAYOUT FOLLOWS *

*

7002 3999-100 2-49

Direct Communications liO

2-50

Where:

DCIO-INP-STATUS

This field is set to the appropriate status after calling m.1'l ERM with an input
function.

Note: Check this field to detennine the status after calling TIPTERM with an
input function.

DCIO-INP .. UUF-LEN

This field must be set to the length of the data area that is reserved by the
program after the group item "DOO-INP-DATA". In effect, the byte count
placed in this field represents the maximum size of the largest input message
that the program is willing to read into that area.

If the input message from the terminal exceeds this value, lCAM truncates the
input message and generates a warning to TIP /30. TIP /30 writes a message
to the console that indicates that "Truncated Input" OCCllITed at the noted
temrinal.

This situation is generally innocuous because lCAM is merely pointing out
that more data arrived than the program was willing to handle and the input
data that is given to the program has been truncated. This can happen if the
temrinal operator presses IXMIT, from a location that results in extra data being
sent to the host.

DCIO-INP-COUNT

On return to a call to TIPTERM with a "read input" function, this field is set to
the exact byte count of the input data that is placed in OCIO-OUT-DATA.

DCIO-INP-TERM .. m
On return from a call to TIPTERM, this field is set to the lCAM terminal name
of the terminal which generated the input. This is normally the same as the
tenninal which is running the program.

DCIO-INP-DATA

This hanging group item is the last line.of the COpy element. The intention is
that the programmer codes (immediately following this) whatever elementary
items that are needed to allow the program to examine the input message(s).

7002 3999-1 00

Direct Communications 1/0

The layout of the output message area is provided by the COBOL copy element
TC-DCOUT in the TIP library:

COPY TC·DCOUT OF TIP.

*

* COpy ELEMENT FOR DCIO OUTPUT PACKET *

*

05 DCIO-OUT-PKT.
10 FILLER PICTURE 9 (8) COMP SYNC.
10 FILLER PICTURE X(16) .

05 DCIO-OUT-PKTR REDEFINES DCIO-OUT-PKT.
10 DCIO-OUT-STATUS PICTURE X.

88 DCIO-OUT-GOOD VALUE SPACE.
88 DCIO-OUT-LINE-DOWN VALUE ' B' .
88 DCIO-OUT-TERM-DOWN VALUE ' C' .
88 DCIO-OUT-Il~J=DEST Vl\.LUE '0'
88 DCIO-OUT-NO-BUF VALUE 'E' .
88 DCIO-OUT-IO-ERR VALUE I F' .
88 DCIO-OUT-INVALID-LEN VALUE ' G' .
88 DCIO-OUT-NOT-CONN VALUE 'N' .
88 DCIO-OUT-AUX=DO~~i VALUE ' 0' .
88 DCIO-OUT-NOT-OP VALUE ' l' .
nn
00 DCIO=OUT~PAPER-OUT V~-LUE ' 2' .
88 DCIO-OUT-EOF VALUE ' 3' .
88 DCIO-OUT-NO-RESP VALUE ' 4' •

10 FILLER PICTURE X (7) .
10 DCIO-OUT-TERM-ID PICTURE X (4) •

10 FILLER PICTURE X (4) •

10 DCIO-OUT-AUX-FLD PICTURE 9 (4) COMP SYNC.
10 DCIO-OUT-AUXR REDEFINES DCIO-OUT-AUX-FLD.

15 DCIO-OUT-AUX-FUNC PICTURE X.
15 DCIO-OUT-AUX-DVC PICTURE X.

10 DCIO-OUT-COUNT PICTURE 9 (4) COMP SYNC.
05 DCIO-OUT-DATA.

* USER OUTPUT DATA LAYOUT FOLLOWS *

*

7002 3999-100 2-51

Direct Communications iiO

2-52

Where:

DCIO-OUT-STATUS

This field is set to the appropriate statuS when a call is issued to TIPTERM
with an output function.

Note: Check this field to determine the status after calling TIPTERM with an
output function. The status in PIB-ST ATUS field may indicate
PIB-GOOD - that status reflects the fact that TIP/3D accepted the
output and passed the information to lCAM. The result returned in
DClO-O ur -ST ATUS represents the output delivery status from
ICAM.

DCIO-OUT-TERM-ID

This field must be set to the name of the desired output tenninal. If it is
low-values or spaces, TIPTERM assumes that output is to be sent to the
teI'!!'~~ 1 where the progta-m is running.

DCIO-OUT-AUX-FUNC

This field may be set to the desired auxiliary function code. For the
appropriate use of this field refer to the lCAM and tenninal-specific
doc".L.TIlentation.

DCIO-OUT-AUX .. DVC

This field may be set to the desired auxiliary device number. For the
appropriate use of this field refer to the lCAM and terminal-specific
documentation. In general, a binary value is placed here (eg: X'Ol' for AUXl
and so on).

DCIO-OUT-COUNT

This field must be set to the byte count of the output message data. The count
includes any control codes that are imbedded in the text of the message.

DCIO-OUT-DATA

This hanging group item is the last line of the COPY element. The intention is
that the programmer codes (immediately following this line) the elementary
items that are need for the program to construct the desired output message
text.

7002 3999-1 00

TIPTERM Functions

2.7. TIPTERM Functions
User programs request direct terminal I/O services by calling the supplied subroutine
TIPTERM with parameters indicating the desired function and, for most functions, the
appropriate input or output message area.

Syntax:

Where:

func:

CALL 'TIPTERM' USING func
msgarea

The desired TIPTERM function code. See the COPY element (TC-DOO)
described below. This parameter is required for all calls to TIPTERM.

msgarea This optional parameter references either an input message packet (as defined
by the COPY element TC-DCINP) or an output message packet (as defined by
the COpy element TC-DCOUTI. The choice depends on whether or not the
associated TIPTERM function code implies reading or writing data.

COBOL programs use the supplied copy elements TIP /TC-DCINP and TIP /TC-DCOUT to
define the appropriate message areas. These copy elements are shown and described
below.

ASSEMBLER programs use the macros TIPIMP and TIPOMP that are supplied in the TIP
release library. A description of assembler coding and calling techniques is beyond the
scope of this manual.

7002 3999-1 00 2-53

TIPTERM Functions

COBOL programs also should include the following supplied copy element in the
WORKING-STORAGE section of the program to define the corresponding function codes
for calls to TIPTERM:

COPY TC-DCIO OF TIP.

*
** TC-DCIO COpy ELEMENT FOR TIP/30 DCIO TERMINAL CONTROL

*
**
* THE FOLLOWING ITEMS ARE TIPTERM FUNCTION CODES *
**

05 T-GET PICTURE X VALUE ' G' •
05 T-PUT PICTURE X VALUE ' P' .
05 T-READ PICTURE X VALUE ' R' .
05 T-SEND PICTURE X VALUE ' S' .
05 T-UN PICTURE X VALUE 'u' .
05 T-MSGO PICTURE X VALUE ' 0' .
05 T-MSGI PICTURE X VALUE ' I' .
05 T-MSGE PICTURE X VALUE 'E' .
05 T-PHN PICTURE X VALUE ' 4F' •
05 T-DISC PICTURE X VALUE ' D' •
05 T-HELD PICTURE X VALUE 'H' .
05 T-TEST PICTURE X VALUE 'w' .

Note: Many of the function codes listed in the TC·DCIO COpy element are not discussed in
this documentation. The description of these functions are beyond the scope of this
manual.

2-54 7002 3999-100

TIPTERM Functions

2.7.1. T-GET -- Get Input

The TIPTERM T -GET function reads input from the terminal.

Syntax:

MOVE ?? TO PIB-WAIT-TIME.

MOVE ?? TO DCIO-INP-BUF-LEN.

CALL 'TIPTERM' USING T-GET
DCIO-INP-PKT

PIB-W AIT -TIME

If necessary, the program may move a value to the field PIB-WAIT-TIME to
instruct the TIPTERM subroutine to wait for an input mesSage for no longer
than the specified number of seconds.

If a non-zero value is provided in PIB-WAIT-TIME the PIB-STATUS field is set
to ''PIB-MSG-AV AIL" or ''PIB-TIMED-OUT' status as appropriate. See the
description of the field PIB-WAIT-TIME.

DCIO-INP-BUF-LEN

Prior to the call to TIPTERM with the T -GET function, the input message
packet must be initialized. In particular, the field DOO-It'dT-BUF-LEN" must
be set to the maximum number of bytes that the program is willing to read
from the terminal. This value cannot exceed the number of bytes of space
reserved after the TC-DCINP copy element - recall that the last line of that
copy element was a group item.

There are often occasions when the program moves a smaller value into the
field to avoid reading excess data when a small input message is expected.

This situation is exactly the scenario for the "Input Truncated" warning that
sometimes occurs. For example, the program outputs a simple prompt at the
top of the terminal, expects a YES or NO reply and moves say, 80, to the input
buffer length. The terminal operator keys in 'NO" but places the cursor in the
bottom right of the screen, presses I XMrr I and sends more than 1900 bytes in as
an input message.

The result: the input is duly truncated by lCAM (and noted on the console by
TIP /30) and the program continues with no more than the requested 80
characters.

Additional Considerations:

After control returns from the call, the input data (if any) is placed in the area
rv'"'Tr'LT1\.TP_nA'T'A ~ ~ 1"\4=1-.. ... 4-0'" "'l"'h • .,.l1'1r"'oro''''~;c! r\l!:1I"'~;n .. ho t;ol~
I....I"'-J.'-'-U""l.&. -J..,I..c-J...L..c-l.. a..&.lU. '-J.n;; l.lU..l.lI~.L VI. LI'] .. ,-~ "'-&.UU.&...I.] .L'-'-'-'.I.V,-u. J..;J yJ.l.4"-\OOO J..&.I. "' ... ,'- .A. ... '-.........

DCIO-INP-COUNT.

The program must be aware that the data received likely contains DICE codes, FCC
sequences, DATA characters etc. The program is responsible for filtering through all of the
various bits of data that arrive.

7002 3999-100 2-55

TIPTERM Functions

2-56

The program must take care to observe the byte count in the field provided for that
purpose.

Table 2-4. TIPTERM (T.GET) Result Status

:::?"'2~:.I?: '~;;'::.:;j::::':::::::::::::':':::::::.::;) r.:
;:<:::;;.:.; •• ;;:;:;:;:;.::::;::;:;:::::;:;;;;:;::::;:\\

DCIO-INP-PKEY Function key received. First byte of
DCIO-il'U'-DATA is function key code (see
note which follows).

DCIO-INP-GOOD Input message received ok.

DCIO-INP-TRUNC Truncated input Input Message Area was
smaller than input message.

Note: When a function key is pressed, the first byte of the DQO-INP-DATA field contains the
code representing the function key. These codes are exactly the same codes that are used by
the Message Control System (MCS) to encode function keys in the field MCS-STATUS;
namely, 0 (zero) means I MSG WAIT) and a value of 1 means em etc.

WARNING

NO DATA from the terminal screen is returned
when I MSG WAitt or a function key is pressed. This
is a feature of UNISCOPE terminals!

7002 3999-1 00

TIPTERM Functions

2.7.2. T .. PUT - Output Message

The TIPTERM T-PUT function is used to output a message to a terminal. If required, the
message data may include appropriate cursor positjoning control codes (DICE) and
possibly Field Control Characters (FCC).

Refer to "2.7.5. Output Delivery Notification" on page 2-61 for the possible result status
codes <output delivery notification).

Symax:

MOVE? TO DCIO-OUT-COUNT.

MOVE ? TO DCIO-OUT-DATA.

MOVE? TO DCIO-OUT-TERM-ID.

CALL 'TIPTERM' USING T-PUT
DCIO-OUT-PKT.

DClO-OUT-COUNT

The count of the number of bytes to be output must be moved into the field
DCIO-OUT -COUNT before issuing this call. This count includes control
characters such as DICE codes, FCC characters etc.

OOO-OUT-DATA

The data bytes to be output must be moved into the group item
OCIO-OUT-DATA before issuing this call. Normally this group item is
defined and redefined to accommodate many different types of output
messages that the program might emit.

DCIO-OUT-TERM-ID

The field DCIO-OUT-TERM-ID may be set to the ICAM terminal name of the
intended destination terminal. If this field is invalid, output is sent to the
terminal where the program is running.

The following output message can be used to home the cursor and clear the screen:

Example:

MOVE ='lOOlOl0127D4' TO DClO-OUT-DATA.
MOVE 6 TO DClO-OUT-COUNT.

CALL 'TlPTERM' USING T-PUT
DCIO-OUT-PKT.

7002 3999-100 2-57

TIPTERM Functions

2-58

The hexadecimal sequence ='10010101' is DICE codes to position the cursor (1001) at row
and column 1,1 (0101). The hex value 27 represents the code for ESC and hex D4 represents
an "M". ESC-M, when sent to a UNISCOPE tenninal, causes the tenninal to perform the
CLEAR PROTECTED function (clear all data unprotected and protected).

The programming manuals for the various types of terminal contain this type of detailed
infonnation about controlling the terminal.

7002 3999-1 00

TIPTERM Functions

2.7.3. T-TEST - Test For Input

. The TIPTERM function T-TEST allows the program to determine whether input has
occurred. Pressing IMSG WAITt or IXMITI or some function key is sometimes used as a "break"
signal for programs that generate continuing output. By periodically issuing a call to
TIPTERM with the T -TEST function, the program can, in effect, "listen" for input from the
terminal (and may choose to interpret the arrival of such an input message as a signal to
stop output).

For example, a program that displays data from a file may generate many lines of output
(by rolling the screen). By testing for input after every few lines of output the program can
determine if input had been generated (if the operator presses I MSG WAIT) for example) and
send a message to the operator to ask if continuation is desired.

Syntax:

MOVE ?? TO DCIO-INP-BUF-LEN.

CALL 'TIPTERM' USING T-TEST
DCIO-INP-PKT.

nOO .. INP-BUF-LEN

Prior to the call to TIPTERM with the T -TEST function, the input message
pac..l(et must be i!'itialized. The field DCIO-INP-BUF-LEN must be set to the
maximum number of bytes that the program is willing to read from the
terminal. This value cannot exceed the number of bytes of space reserved after
the TC-OClNP copy element - recall that the last line of that copy element is
a group item.

See the description of this field in the discussion of the T -GET function code.

Additional Considerations:

After the call is completed, the program must check the status to determine if a message
was available and was read. The T-TEST function does not wait for input; it reads an input
message if one is available.

Table 2·5. TIPTERM (T -TEST) Result Status

DOO-INP-FKEY

DOO-INP-GOOD

Function key received. The first byte of the
data area contains the function key code. See
description of T -GET function call.

Input message received.

I DCTO-INP-NOT-AV AIL I No input message available.

7002 3999-100 2-59

TIPTERM Functions

2.7.4. T .. UN - Send Unsolicited Message

2-60

The TIPrERM function T-UN allows a program to send an unsolicited output message to a
tenninal. An unsolicited message is one that is not expected by the receiving tenninal.
TIP /30 actually sends two outputs to the destination tenninal on the high priority queue.
The first part is what is called a "sona alert" (a beep). The second part is the actual text of
the message.

The sona alert is sent in such a way that the receipt of that message at the terminal causes
the Message Waiting alarm to sound (most terminals implements this as a continuous
regular "beeping" sound).

The message text (which follows the sona alert) is released from the queue when the
terminal operator presses I MSG WAIT) and is displayed wherever the cursor is resting unless the
message contains explicit cursor positioning codes at the beginning of the text.

Pressing I KEya UNLK I (keyboard unlock) or any function key causes the terminal to stop
beeping. It does !!.Q! free the high queue or deliver the text of the message.

The terminal operator should position the cursor to an unused area on the terminal prior to
pressing the IMSG WAIT) key. The terminal operator often has no idea what is coming in the
text message so it is usually quite prudent to finish what is in progress before pressing the
IMSG WAITI key.

Refer to "2.7.5. Output Delivery Notification" on page 2-61 for the possible result status
codes.

Syntax:

MOVE 77 TO DClO-OUT-DATA.

MOVE 77 TO DClO-OUT-COUNT.

MOVE 77 TO DClO-OUT-TERM-ID.

CALL 'TIPTERM' USING T-UN
DClO-OUT-PKT.

DClO-OUT-DATA

The desired output data (and control codes if any) must be placed in the
group item OCIO-OUT-DATA.

DClO-OUT-COUNT

The number of bytes of data (and control codes if any) must be placed in the
field OCIO-OUT -COUNT. Only this number of characters is sent.

DClO-OUT-TERM-ID

The field DCIO-OUT-IERlvf=ID xr.ay be set to the reAM terminal name of the
intended destination tenninal. If this field is invalid, output is sent to the
terminal where the program is running.

7002 3999-1 00

TIPTERM Functions

2.7.5. Output Delivery Notification

For all output messages sent to an auxiliary device, the program is not re-scheduled by
TIP /30 until lCAM notifies TIP /30 that the message has been delivered. This notification is
known as "Output Delivery Notification". For Direct I/O (CALLs to TlP'IERM), the output
delivery status is returned in the first byte of the output message packet.

WARNING

In some (rare) circumstances 30 seconds or more
may elapse before ICAM returns Delivery
Notification to TIP/30. TIP/30 may wait several
minutes before deciding that delivery notification
is not forthcoming.

All messages sent to auxiliary devices are sent on the LOW priority communications queue,
while messages sent to the terminal ar-e sent on the :rviEDIlJT},,1 priorit'f queue. Tl"Js
arrangement permits the program to send important informational messages to the
terminal operator even though an auxiliary device encounters an error condition.

The delivery status codes are tabled below:

Table 2-6. OUTPUT Delivery Notification Status

•. Status::.:::::»?::'(:{/.\u::::.U:': •. »}iP·~~<:ripp.f.lI\' ... '{::""H"':':::'.>: .• »':':::"::::::"::: '''::':'::::::.'::.::. i

DOO-OUT-GOOD Good delivery.

DCIO-OUT-LINE-OOWN Line Down.

DCIO-OUT-TERM-OOWN Terminal Down.

DOO-OUT -INV -DEST Invalid Destination.

DCIO-OUT -NO-BUF No available buffers.

DOO-OUT -IO-ERR Disk I/O error.

DOO-OUT -INV AUD-LEN Invalid output message length.

DOO-OUT-NOT-CONN Destination terminal not connected.

DOO-OUT-AUX-OOWN Auxiliary device down.

DOO-OUT-NOT-OP Read/Write inoperative.

DOO-OUT -P APER-OUT Printer out of paper.

DCIO-OUT-EOF End of cassette.

DOO-OUT-NO-RESP No response.

In all cases other than DCIO-OUT-GOOD, the output message that caused the error is
deleted and the application program must take some recovery action.

7002 3999-100 2-61

Section 3
File Control System (FCS)

3.1. FCS Introduction
This section describes the facilities of the TIP /30 File Control System (FCS). FCS is the
TIP /30 component that provides the interface between transaction programs and data files.

FCS allows transaction programs to access:

• Standard OS/3 Data Management files

• Standard OS /3 SAT libraries

• TIP /30 dynamic files (files used on demand)

• TIP /30 edit buffers.

Tne interface is implemented at the subroutine call level - all requests for file services call
a supplied subroutine with appropriate parameters describing the required information.

7002 3999-1 00 3-1

FCS Overview

3 .. 2.. FCS Overview

3-2

FCS is the interface between transaction programs and online files; it provides services at
the program "CALL" level. Programs call one subroutine (TIPFCS), and provide
parameters that select the desired function and relevant file and record information.

Programs refer to files by referencing a Logical File Name (LPN). The LPN is the name by
which the file is known to TIP /30. The LPN need not be the same as the actual physical file
name (LFD) as supplied in the Job Control for TIP /30. An entry in the TIP /30 catalogue
relates a LPN to the actual physical file. All online files must have an entry in the TIP /30
catalogue.

Each file entry in the TIP /30 catalogue specifies the group ownership of the file and the
security level required to access the file. Programs may only access files that are assigned
to the program (either by an explicit OPEN request to FCS or an implicit OPEN requested
in the program's TIP /30 catalogue entry).

Example:

PROG EDP/SAMPLE SECURITY=PROG LOADM=LOADPROG
CDA=152 WORK=1024
FILES=PAYMAST,PAYDETL
TYPE=TIP USAGE=REENT.

All files assigned to programs have entries in the Active File Table (AFI') for the process.
Files that have entries in the AFT are available (by reference to the LPN) to all programs
that are run by that process until they are unaSSigned.

FCS fully supports the following file organizations:

ISAM

DAM

!RAM

SAM

MIRAM

Indexed Sequential Access Method.

Direct Access Method.

Indexed Random Access Method.

Sequential Access Method.

Multiple Indexed Random Access Method.

FCS also provides:

• the ability to access OS/3library elements

• the capability of creating (on demand) TIP /30 Dynamic Files

• the ability to access Edit Buffers (a specific type of dynamic file).

A record locking feature maintains file integrity. Records being updated are locked when
read; locked. records are unavailable to other processes until they are released.

TIP /30 has a generalized resource locking facility that enables a program to enter (or
remove) a value in the TIP /30 key-holding table. Once a given value has been entered in
the table, any process that attempts to enter the same value for the same file receives a
'1ocked" status.

7002 3999-1 00

FCS Overview

This ability can be used as a generalized queuing mechanism to control access to any
resource, for example, an entire file or a group of records.

An online file may be joumaled by specifying a TIP /30 generation option. This facility
allows either before images or after images (or both) to be written to the TIP /30 journal file:

• Before images are often used to roll back updates that were not completed due to a
hardware or software failure.

• .After images can be used as audit trail information or applied to backup files to
reprocess updates in the event of a hardware or software failure.

Dynamic files are direct access files that are managed by TIP /30 (and are in fact subsets of
the TIP /30 file ''TIP$RNDM''). Programs may create or erase dynamic files, as necessary.

7002 3999-100 3-3

FCS and the TlP/30 Catalogue

3.3. FCS and the TIP/30 Catalogue

3-4

The files that a transaction program needs to access may be specified in the entry for the
program in the TIP /30 catalogue. This technique is highly recommended because this
feature of the TIP /30 catalogue allows the program to avoid the need to open or close such
files explicitly.

A maximum of 12 files may be specified in the program's catalogue entry. If a program
requires more than 12 files, explicit calls must be issued by the program (namely:
FCS-OPEN and FCS-CLOSE) to gain and relinquish access to the additional files.

Refer to the TIP /30 Catalogue Manager Program (CAT) for information about defining a
transaction program.

7002 3999-1 00

Techniques for Deleting Records

3.4. Techniques for Deleting Records·
Tn' /30 supports two types of record delete schemes:

1. Logical record deletion (often called delete flag)

2. Record Control Byte (RCB) deletion.

Logical record delete is available whether the file is an indexed file or a relative record (or
direct) file.

RCB delete is available only for MIRAM files created with the RCB delete specification
(/ / DD RCB=YES)

The desired method of deleting records must be specified in the TIP / 30 generation
parameters for the file. See the documentation of the DELETE= FILE definition keyword in
TIP/30 Generation, Maintenance and Installation - ARP-600-OS. Online programs issue a call
to the TIP /30 File Control System (TIPFCS) to delete a record. TIPFCS performs the type of
delete operation stated in the generation parameters for the file.

7002 3999-100 3-5

Techniques for Deleting Records

3.4.1. Logical Record Delete

3-6

Logical record deletion is a convention established when a file is defined in the TIP /30
generation. A specific byte in the record is identified as the "delete flag". A specific value is
designated as the "flag value". The convention that TIP /30 follows is:

When TIP/3D reads a record from the file that contains the specified flag value in the specified
location, TIP/3D pretends that the record does not exist.

The crucial point of the convention is contained in the word pretends. The record
physically exists, but is flagged with a specific flag value to make it "appear to TIP / 30" as if
it was deleted. The location that is nonnally chosen for the delete flag is the first byte of the
record that is not part of a key field; in fact, many records contain some sort of status field
that may be used for this purpose.

The designated value can be any value; X'FF' is often used although displayable graphics
characters are easier to recognize (eg: X'C4' = C'D').

Note: Programmers must realize that this scheme is merely a convention tr..at TIP/3D follows­
the records appear perfectly normal to 05/3 Data Management. In particular, batch
programs must be prepared to recognize such "deleted" records and take appropriate
action (such as ignoring them!)

MIRAM indexed files that have one or more secondary keys where duplicates are not
allowed should use RCB deletion; otherwise it is not possible to add a record that has a
seconda.ry key that Illatc..hes a previously '1ogically deleted" record.

7002 3999-1 00

Techniques for Deleting Records

3.4.2. Record Control Byte Deletion

05/3 Data Management provides a record deletion technique for MIRAM files: ReB
(Record control byte). This form of record deletion is not a convention - it is a real and
effectively permanent delete. An extra byte (the Record Control Byte) is physically
associated with each record in the file.

This control byte is !1Q! accessible by any program; Data Management uses it to
permanently flag a deleted record. Once a record is deleted using the RCB, no program can
read the record.

All references to an RCB deleted record are removed from the indices of the file; the data
space occupied by the record is not reclaimed - the data space remains as orphaned space
in the data partition.

To reclaim the space occupied by ReB deleted records, the file must be physically unloaded
and reloaded; the unload program cannot read deleted records and "drops" them. To
choose this method of deleting records, you must initially open the MIRAM file with a job
control DO statement (or the equivalent statement in the program's file control blocks):

II 00 RCB=YES

MIRAM indexed files that have one or more secondary keys where duplicates are not
allowed should use ReB deletion; otherwise it is not possible to add a record that has a
seconda.ry key that matches a previously "logically deleted" record.

7002 3999-100 3-7

Setting a File In Sequential Mode

3.5. Setting a File in Sequential Mode
In the online environment that TIP /30 provides, transaction programs often read indexed
files in random mode - that is, by providing a specific key of the desired record.

When it is necessary for an online program to process an indexed file sequentially, a special
purpose call (FCS-SETL) is made to the TIP /30 File Control System to place the file in
sequential mode. This technique is analogous to the batch COBOL verb "START".

In general, TIP /30 can allow only one online program at a time to have a particular file in
sequential mode. Each program that requests to set that file in sequential mode is queued
behind other programs that have that file in sequential mode.

As a side effect of setting a file in sequential mode, the program normally specifies a
"starting point" by supplying a key value for one of the indices of the file.

Once a file is set in sequential mode, each call to FCS with the GF.(function code retrieves
the next record in sequence.

When the program wishes to terminate sequential processing of a file, another special
purpose call is issued (FC5-ESETL) to return to random processing mode.

Note: Records cannot be updated while a file is set in sequential mode. Only read operations are
permitted for a file in sequential mode.

3-8 7002 3999-1 00

MIRAM and Duplicate Keys

3 .. 6.. MIRAM and Duplicate Keys
You may define a MIRAM file to allow duplicate values on secondary keys although the
duplicate keys may present a programming problem when a program must cycle through a
set of records that have identical keys.

Consider the following scenario:

An online program wishes to display information from several records in an indexed file.
The records are to be accessed via a (secondary) key that allows duplicates. After every
screen of data, the user may press a function key to continue viewing subsequent records.

You would probably implement this program according to the following algorithm:

1. Set the file in sequential mode via the secondary key.

2. Read several records (enough to construct one screen full).

3. Set the file to random mode (out of sequential mode).

4. Output the screen.

5. Request terminal input;
If the user requests to continue the display, go to step 1.

When a program issues a SETL request using a (secondary) key that allows duplicates,
Data Management always positions the file at the beginning of the set of duplicates - this
is undesirable (except the first time through the cycle!)

TIP /30 requires a program to release all serial resources (which includes a file in sequential
mode) before requesting tenninal input. However, if the specification MUL TISEQ= YES is
specified for this file in the TIP /30 generation parameters, TIP /30 will not treat setting this
file in sequential mode as locking a serial resource and the program need not issue an
ESETL function across tenninal input.

One approach to this problem is to have the program read and ignore already displayed
records. To accomplish this, the program can save the primary key of the last record on the
current screen full - the primary key must be unique by definition - and on the next cycle
skip records until it encounters the primary key again.

WARNING

What happens if some other user deletes that
particular record in the meantime? The program
must be prepared to handle that possibility.

Another approach is to construct a table of the PRIMARY keys of the records in the
duplicate set (how big a table?) and then use the table to "step" through the keys by reading
randoIl"Jy vi.a the priIl".ary key L'1. the table.

Each of these approaches has positive and negative aspects. The first approach may be an
"optimistic" approach because it works best if the user doesn't step too far through the set
of duplicates.

7002 3999-100 3-9

MIRAM and Duplicate Keys

3-10

The latter approach incurs much of the I/O overhead of building the table of keys on the
assumption that the user usually steps a long way through the set of duplicates.

Perhaps a combination of the two approaches is best.

An alternative that is available for MIRAM files that are accessed using Consolidated Data
Management (CDM) and on 05/3 Release 11 (or later) is to generate the file to allow
multiple sequential readers (file generation parameter MUL TISEQ= YES). This Specification
informs TIP /30 there is no need to queue programs trying to set this file in sequential
mode. Since no queuing is involved, this situation is not treated as a serial resource and
terminal input is permitted while the file is in sequential mode.

7002 3999-1 00

Record Locking

3.7. Record Locking
It is generally accepted that two batch jobs should not simultaneously update the same file.
Similarly, online users should be protected from the race conditions inherent in updating
the same record at the same time.

To illustrate the problem, assume that JOE and TOM are working at different terminals
updating FlLEX and there is no record locking capability:

1. JOE displays record 500 intending to update it.

2. JOE is interrupted for a moment and TOM reads record 500, changes it at his terminal
and rewrites the record in the file.

3. JOE then changes the record and rewrites it in the file, overlaying TOM's update and
perhaps causing problems that may not appear until much later.

With the record locking capability provided by FCS, this situation cannot occur; the logical
integrity of the updating process is maintained.

The TIP /30 File Control System enforces the rule that a record to be updated must first be
read and a lock requested (function FC5-GETUP). When the modification to the data is
complete, the program may request a record rewrite (FCS-PUT).

7002 3999-100 3-11

RecOrd locking

3.7.1. HOLD=YES - Simple Record Locking

3-12

Specify HOLD= YES in the TIP /30 generation parameters for a file to select simple record
locking. Specifying HOLD = YES implies that a program may lock a single record (at a
time) from this file.

If the user program receives a PIB-HELD status when it attempts to FCS-GETUP a record
from a file with HOLD: YES, TIPFCS releases all other record locks acquired by the
program (for files defined as HOLD: YES) and the program must re-acquire all those
record locks.

If a user program receives a function status of PIB-HELD in response to a FCS-GETUP
(meaning the record is locked by some other process) then FCS automatically pauses the
caller for slightly less than one second. The program may try the GETUP again or CALL
TIPTIMER to wait a little longer.

If the program issues a FCS-PUT without locking the record via an FCS-GETUP then the
function status will be PIB-NOT-HELD and the FCS-PUT is rejected. This record holding
scheme does not provide for online roll back of incomplete updates - since there is only a
single record involved, the update is considered complete when the new record data is
written.

7002 3999-1 00

Record Locking

3.7.2. HOLD=UP - Record Locking for Update

Specifying HOLD=UP in the TIP /30 generation parameters for a file allows a program to
lock more than one record for the file at a time. The lock on each record remains in effect
until that particular record is updated (via an FCS-PUT) or until that record is released (via
an FC5-NOUP). This record holding scheme does not provide for online roll back.

This technique is often used in situations where there is a control record for a file (for
example record 1) and that control record contains a pointer to "the next available" record.

Example:

GETUP (rec 41:1)

next available record from pointer in rec *1

GETUP (next available record)

move information to record area

PUT (next available record)

update next available pointer in rec 41:1

PUT (rec 41:1)

If the system crashes at any point during this process, the control record remains intact and
the next available record is still the next available record (although it may have different
contents than it did before the attempted update).

7002 3999-100 3-13

Record Locking

3.7.3. HOLD=TR - Record Locking for Transaction

Specifying HOLD=TR in the TIP /30 generation parameters for a file causes the TIP /30 File
Control System to lock the records for that file for the duration of the transaction.

Refer also to the definition of transaction end in the Program Control System (PCS) section
of this documentation.

This record locking scheme allows a program to lock several records for this file at one
time. A program that receives a ''held'' status for a record in a file defined as HOLD=TR can
retry the FCS-GETUP. TIP /30 does not release any locks if an FCS-GETUP to a HOLD=TR
file fails with a pm-HELD status.

TIPFCS writes a "quick before image" of an updated record to the TIP$B4 file. TIP /30 uses
these quick before images to roll back the record if the transaction does llQ! complete
nonnally.

A user program may issue a CALL to PCS-BACK to roll back updates on a file-by-file basis
Jor HOLD=1'R files (or mOre sL.-nply use the facilities pro'vided by t."e field
"Pm-LOCK-INDICATOR" as described in the Program Control System section).

3.7.4. Record Locking Summary

3-14

The table below compares the record locking schemes that are supported by TIP /30.

Tabie 3-i. Record Locking Summary

.. R~~ .. back:.·.:·:.::.: ,:: NO NO YES

.•. c:apal;)ilitynr/)/:»
" ..

YES YES

When:Records •. ,. n/ Update, NOUP, Update or NOUP TREN
.Released,?·.:'·:':.n./?\Y\ or next GETUP

.Release:'on·,}' . .)' .. //.:. YES
··PIB~HELD:Sta.tus?::

Possible'Decul1oCk? NO

NO NO

YES YES

7002 3999-1 00

(

Can TJPFCS -' Common Parameters

3.8. Call TIPFCS - Common Parameters
Calls to TIPFCS must pass a number of parameters. The first parameter is always a function
code. The parameters after the first generally follow the format shown below, although
there are a few minor exceptions as noted in the documentation:

Syntax:

CALL 'TIPFCS' USING function
[file-pkt

Where:

[record-area
[key-value
[index-num

function The TIPFCS function code. See the next section describing the copy element
TC-FCS from the TIP library.

Warning: passing an invalid function code to the TIPFCS subroutine may
cause unpredictable results.

file-pkt The Logical file name packet.

record-area

key-value

index-num

7002 3999-100

Must contain the logical file name of the file (as it is defined in the TIP / 30
Catalogue).

The record area.

This area is where the data for a record is placed for a read operation or where
the data is obtained for a write operation.

The record area ill!:!§! be large enough to accommodate the largest record for
the particular file.

For an indexed file, this holds the record key. In some cases, a partial key
value (that is, some key prefix) may be permitted.

This parameter may be omitted (as documented) for some functions. For a
direct (or non-indexed) file this is a binary fullword that holds the relative
record number (ie: PIC 9(6) COMP SYNC).

For multi-indexed MIRAM, this specifies the desired index number (one
through five inclusive).

Define this field as a binary halfword (PIC 9 COMP SYNC). If this parameter
is omitted, the primary key for the file is assumed.

3-15

Can TlPFCS - Common Parameters

Note: Throughout this document, references are made to the possibility of omitting parameters
when calling TIPFCS. The implication in all cases is that a parameter may be omitted
only if all following parameters are also omitted.

This is a restriction imposed by the operating system - each parameter passed on a CALL
statement is identified by an address pointer. The called program (TIPFCS in this case)
can only determine the end of the parameter list that is passed. There is no convention to
identify 'omitted parameters.

3-16 7002 3999-1 00

File System Function Codes

3.9. File System Function Codes
The first parameter on every call to TIP /30 FCS is a one-byte function code that specifies
the file system operation to be performed. A copy element is supplied with TIP /30 that
COBOL programs can use to define the function codes.

Include this copy element in the WORKIN'G-STORAGE SECTION of the COBOL program
(the name selected for the 01 level item is not particularly important):

01 FCS-FUNCTION-CODES. COPY TC-FCS OF TIP.

* TC-FCS COpy ELEMENT FOR TIP/30 FILE CONTROL INTERFACE

**
* THE FOLLOWING DATA ITEMS ARE FCS FUNCTION CODES *
**

05 FCS-ACCESS PICTURE X VALUE I A' .
05 FCS-ADD PICTURE X VALUE I 9 I •

05 FCS-ASSIGN PICTURE X VALUE ' >, .
05 FCS-BACK PICTURE X VALUE I B' .
05 FCS-CLOSE PICTURE X VALUE 'D' .
05 FCS-CREATE PICTURE X VALUE 'N' .
05 FCS-DELETE PICTURE X VALUE ' <, .
05 FCS-ESETL PICTURE X VALUE ' 6' .
05 FCS-FLUSH PICTURE X VALUE 'F' .
05 FCS-GET PICTURE X VALUE ' G' .
05 FCS-GETUP PICTURE X VALUE ' 0' .
05 FCS-GETRN PICTURE X VALUE '7' .
05 FCS-HOLD PICTURE X VALUE I H' .
05 FCS-JOURNAL PICTURE X VALUE ' T' .
05 FCS-NEXT PICTURE X VALUE 'X' .
05 FCS-NOUP PICTURE X VALUE '2' .
05 E'CS-OPEN PICTURE is VALUE ' 0' .
05 FCS-PUT PICTURE X VALUE ' P' .
05 FCS-RELEASE PICTURE X VALUE 'R' .
05 FCS.-SCRATCH PICTURE X VALUE 'Q' .
05 FCS-SETL PICTURE X VALUE ' 5' .
05 FCS-SETL-BOF PICTURE X VALUE ' S' .
05 FCS-SETL-EQ PICTURE X VALUE ' E' .
05 FCS-SETL-GT PICTURE X VALUE ' Z' .
05 FCS-SKIP PICTURE X VALUE ' I' .
05 FCS-TREN PICTURE X VALUE ' *'

**
* THE FOLLOWING DATA ITEMS ARE FCS DYNAMIC FILE CLASSES *
**

05 FCS-CLASS-PERM PICTURE X VALUE f P f •

05 FCS-CLASS-TEMP PICTURE X VALUE 'T' .
At::.
V..J

'C'''''~_''''T -a ~ ~ _f'YI.'T'\
J.,;: "'-'toJ '-'-'-U. .. vv)&, PICTURE X V},T.UE ' E' .

**
* THE FOLLOWING DATA ITEMS ARE FCS DYNAMIC FILE TYPES *

7002 3999-100 3-17

File System Function Codes

3-18

**
05 FCS-TYFE-NEW
05 FCS-TYFE-OLD

PICTURE X VALUE 'C'.
PICTURE X VALUE 'E'.

*******************************~********************************

* THE FOLLOWING DATA ITEMS ARE FCS FILE PERMISSIONS *
**

05 FCS-PERM-READONLY
05 FCS-PERM-WRITEONLY
05 FCS-PERM-UPDATE

PICTURE X VALUE 'R'.
PICTURE X VALUE ' W' .
PICTURE X VALUE 'U'.

**
* THE FOLLOWING DATA ITEMS ARE FCS LOCK OPTIONS *
**

05 FCS-LOCK-YES
05 FCS-LOCK-NO

PICTURE X VALUE ' Y' .
PICTURE X VALUE 'N'.

7002 3999-1 00

FCS Interface Packets

3.10. FCS Interface Packets
Two packets are used to control processing of files through FCS:

1. Logical File Name Packet

2. File Descriptor Packet.

All calls to TIPFCS make use of a Logical File Name packet; only calls to TIPFCS with the
FCS-OPEN function use a File Descriptor Packet.

7002 3999-100 3-19

FCS Interface Packets

3.10.1. Logical File Name Packet

3-20

This is the primary control packet used for processing files. It consists of two fields:

1. An eight byte field containing the Logical File Name (LPN) assigned to the file by the
program. The value placed in this field is used to search the information in the TIP /30
Catalogue to detennine which physical file is actually used by the program

2. A one byte status field where FCS stores the completion status of the last call to TIPFCS
for the file. This status code is the same as that returned in the PIB-STATUS field in the
pm.

Example of a Logical File Nams Packet

05 PART-FILE.
10 PART-LFN

Example:

10 PART-FILE-STATUS

MOVE 'PAYMAST' TO PART-FILE.
CALL 'TIPFCS' USING FCS-GET

PICTURE X(8) .
PICTURE X.

This example moves the logical fiie name "P A YMAST' to the file rliune packet before
issuing a call to TIPFCS. FCS examines the logical file name and uses that name to search
information in the Tn' /30 Catalogue to associate the logical name with the physical name
(the LFD).

Since TIPFCS modifies the status byte in this packet, the packet must be placed in the
program's LINKAGE SECTION area.

7002 3999-1 00

FCS Interface Packets

3.10.2. File Descriptor Packet
This packet is used during a call to FCS using the FCS-OPEN function. It establishes the
relationship between a logical file name (LPN) and the real file to which I/O is to be done.

A file descriptor packet is required to open Til' /30 Dynamic Files, TIP /30 Edit Buffers,
Ubraty elements and, in situations where unusual processing is desired (such as opening a
file with read-only access).

02 FILE-DESCRIPTOR. con TC-FOES OF TIP.
**
* FCS FILE DESCRIPTOR PACKET *
**

05 FDES-USER-ID PICTURE X (8) •

05 FDES-CATALOG PICTURE X (8) •

05 FDES-FILE-NAME PICTURE X (8) •

05 FDES-PASSWORD • PICTURE X (8) •
I'\r= FDES-FCS-CLASS PICTu~ 'U'
V;;J h.

05 FDES-FCS-TYFE PICTURE X.
05 FDES-FCS-PERM PICTURE x.
05 FDES-FCS-LOCK PICTURE x.

**
* ADDITIONAL FIELDS FOR LIBRARY ELEMENT ACCESS *
**

Where:

05 FDES-ELE..V..ENT
05 FOES-COMMENTS
05 FDES-DATE
05 FDES-TIME

PICTURE X (8) •

PICTURE x (30) .
PICTURE X(8) .
PICTURE X(5) .

FOES-USERID

May contain the USERID or Group name to which the file belongs.

If opening for:

A complete search of the TIP /30 catalogue is done. Read

Output Uses the specified value. If creating a dynamic file, this is set to
the callers USERID.

FOES-CATALOG

Additional level of naming provided for dynamic files.

If left as spaces or low values, this field is set to the FDE5-FILE-NAME.

FDES-FILE-NAME

7002 3999-100

File name for dynarrtic files or the catalog-ued logical file naiTle for data
management files.

3-21

FCS Interface Packets

3-22

If left as spaces or low values, this field is set to the name in the logical file
name packet (LPN).

FOES-PASSWORD

This field may be used to assign an access password to a Tn' /30 Dynamic file
or Edit Buffer. The password may be established when the file is created;
thereafter, all attempts to open the file must supply the same password that
was used to create the file.

If this field is spaces or low-values, no password is assigned for the file.

FDES-FCs-cLASS

Oass of opened file.

If this field is a space or low values, TIPFCS opens the first file that it can find
in the TIP /30 catalogue with the supplied name.

E Edit Buffer.

P Permanent dynamic file.

S Data management file.

T Temporary dynamic file.

FDES-FC§-TYPE

Designates type of file (or element) desired:

C Create new file.

Open existing file. E

(space) Access if it exists or create if it does not exist (dynamic files).

FDES-FCS-PERM

Designates type of file access:

R

W

U

(space)

FDES-FCS-LOCK

Read only.

Write only.

Input file with PUT allowed.

Read/write.

For Edit Buffers and TIP / 30 Dynamic files, this field may be set to a "Y" or "N"
to indicate whether exclusive use of the file is required.

If this field is not set to "Y", a value of "Nt is assumed.

Note: PIB-LOCKED status is returned if any other process (online program)
is using the Edit Buffer or Dynamic File.

7002 3999-1 00

FCS Miscellaneous Functions

3.11. FCS Miscellaneous Functions

3.11.1. FCS .. BACK - ROLL BACK Changes

The FCS-BACK function causes Fes to roll back (undo) changes made to a specified file by
the issuing process, since the last transaction end point (a discussion of transaction end is
contained in the "Program Control System" chapter of this manual). This function is
applicable only to a file that is defined to have record holding for the duration of the
transaction (HOLD=TR in the TIP /30 generation parameters).

TIP /30 accomplishes the roll back using the information retained in the TIP /30 quick
before look file (TIP$B4 file).

Syntax:

WARNING

This function rolls back all changes (updates,
adds, deietes, etc.) for the singie fHe identified by
the CALL. If the program wishes to roll back all
changes made by the transaction, the field
PIS-LOCK-INDICATOR should be used.

CALL 'TIPFCS' USING FCS-BACK
file-pkt

FCS .. BACK

file-pkt

Function code from the TC-FCS copy book.

Logical file name packet.

Error Conditions:

PIB-FUNCTION The file named in the file-pkt is not assigned to the program.

Additional Considerations:

A side effect of the use of this function is that the file is taken out of sequential mode (if it
was in that mode).

7002 3999-100 3-23

FCS Miscellaneous Functions

3.11.2. FCS .. HOLD -- Hold Resource

3-24

A program may use this function to place a user-defined value in the TIP /30 key holding
table. Using this feature, cooperating processes can use some string of characters as a
"sentinel" to implement a queuing mechanism so that only one of the processes runs at a
time.

The value contained by the 'key holding table is treated as a "HOLD=UP" type of lock - no
roll back considerations apply and the lock is !!Q! discarded if the process receives
PIB-HELD status on some other FeS-HOLD call.

An important point to understand is that the value placed in the key holding table is the
combination of the user-defined value and a pointer to the actual physical LFD name of the
associated file.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-HOLD
file-pkt
hold-value

FeS-HOLD Function code from the TC~FCS copy book.

file-pkt Logical file name packet.

This packet !!ll!§! contain the LPN of a file that the program has accessed.

hold-value A field containing the character string entered in the key-holding table.
Exactly 4 bytes of data are entered in the table. If this parameter is omitted, a
value of a fullword of one is used.

Error Conditions:

PIB-FUNCTION

PIB-HELD

The logical file name is not assigned to the program.

Some other process currently holds the specified value for the
same physical file (LFD).

7002 3999-1 00

FCS Miscellaneous Functions

3.11.3. FCS-JOURNAL - Write User Journal Record

Programs may use this function to write a user defined record to the TIP /30 Journal file
(TIP$}RN> or the TIP /30 Log file (TIP$LOG). These "user" journal records are often used for
accounting or audit purposes. A separate section of this manual describes the contents of
the journal file records and the mechanics of reading the journal file in a user written batch
program. This Section describes how an online program can create and write "user" type
records to the TIP /30 journal (or log) file.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-JOURNAL
dummy
rec

FCS-JOURNAL

dummy

journal-ree

Function code from the TC-FCS copy book.

This is a dummy parameter required to maintain symmetry with other file
system calls. FCS ignores the contents of this parameter.

Record area containing the journal record data that is to be written to the
TIP$JRN or TIP$LOG file.

Additional Considerations:

The copy element TIP /TC-JRN (see the section of this manual entitled. "Journal File
Processing") is provided as a layout of the journal record. Before issuinBaa call to
FCS-]OURNAL, the user program must move an appropriate value to the length field (in
the copy element it is named JRN-REC-LEN>.

The value placed in JRN-REC-LEN is the length of the journal record prefix (56 bytes) plus
the number of bytes of data that follows the prefix.

The program need not supply any other information in the prefix area since the TIP /30 file
system fills in the information before writing the USER record to the journal file.

7002 3999-100 3-25

FCS Miscellaneous Functions

3.11.4. FCS ... RELEASE - Release Resource

3-26

Release an entry in the TIP /30 key holding table that was entered by a prior call to Tll'FCS
with the FCS-HOLD function.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-RELEASE
file-pkt
hold-value]

FCS-RELEASE

file-pkt

Function code from the TC-FCS copy book.

Logical file name packet.

This packet must contain the LFN of the file that was specified when the
corresponding FCS-HOLD operation was issued.

hold-value A field containing the character string in the key-holding table that is to be
released. Exactly 4 bytes of data is required.

If this parameter is omitted, a value of a fullword of one is U&;~.

Error Conditions:

PIB-FUNCTION

PIB-NOT-HELD

The logical file name is not assigned to the program.

The specified key value was not found in the key-holding table.

7002 3999-1 00

FCS Miscellaneous Functions

3.11.5. FCS-TREN - Mark Transaction End

If a file is defined in the TIP /30 Generation parameters with HOLD=TR ("hold for
transaction"), TIP /30 automatically rolls back any updates if a program aborts while
updating that file. The PCS-TREN function may be used explicitly (for example) if a
program updates batches of records and wishes to establish a new "roll back" point after
each "batch" to limit how far automatic roll back will occur if a subsequent abort occurs.

Syntax:

CALL' 'TIPFCS' USING -FCS-TREN

Where:

FCS-TREN

Function code from the TC-FCS copy book.

Only one parameter is required; any other parameters are ignored.

Use of PCS-TREN signals transaction end to TIP /30. Another use of this function is to
cause TIP / 30 to examine a value that the program has placed in the field
pm-LOCK-INDICATOR - for example, a program may place "0" in that field and then
call FCS-TREN to force a transaction roll back.

Example Q) Roll back updates done so far:

MOVE '0' TO PIB-LOCK-INDICATOR
CALL 'TIPFCS' USING FCS-TREN

Example @ Mark new roll back point:

>.MOVE SPACE TO PIB-LOCK-INDICATOR
CALL 'TIPFCS' USING FCS-TREN

7002 3999-100 3-27

CALL TIPFCER" - Interpret FCS Error "

3.12. CALL TIPFCER - Interpret FCS Error

3-28

A special purpose subroutine is provided to enable application programs to interpret error
codes that are returned by the TIP /30 File Control System (FCS). When a program issues a
call to TIPFCS, any error status is returned in two places:

1. the pm (pm-Sf ATUS)

2. the ninth byte of the file name packet (the byte after the Logical File Name).

Programs are generally coded to anticipate a subset of the possible error conditions that
might occur and take the appropriate action depending on the circumstances. For example,
a "not found" error might be quite reasonable for certain read operations (eg: customer not
on file).

If the program needs to generate a "generic" error message for rare or unexpected error
conditions, the TIPFCER subroutine may be used. This subroutine returns a
standard-fonnat error message text that describes the error condition that is passed as a
parameter. ntis standard error text can then be used to form an infonr.ational message for
the terminal operator.

Syntax:

Where:

CALL 'TIPFCER' USING file-pkt
msg-area

file-pkt The logical file name packet (9 bytes, consisting of an 8-byte LFN and one byte
status field) that was in use at the time an error was detected.

msg-area An 8D-byte work field that is to receive the standard error message text for the
error status that is found in the file-pkt.

Example of result text:

FCS Error=?, File=????????, Meaning=' '

7002 399g e 1 00

CALL TIPFCER - Interpret FCS Error

Example of using TlPFCER:

05 PAYMAST-LFN
05 FCS-ERROR-TEXT

{ ... }

PIC X(9) .
PICX(80).

CALL 'TIPFCS' USING FCS-GET
PAYMAST-LFN { ... }

IF NOT PIB-GOOD
CALL 'TIPFCER' USING PAYMAST-LFN

FCS-ERROR-TEXT
CALL 'ROLL'
{ ... }

USING FCS-ERROR-TEXT

This example illustrates using the result from the call to TIPFCER to output a single line on
the terminal. Of course, the message text can be used in whatever fashion the program
considers appropriate.

7002 3999-100 3-29

TIPFCS for Indexed Flies

3.13. TIPFCS for Indexed Files

3-30

This section describes TIP /30 file control system operations you may specify for indexed
files. Indexed files include ISAM, MIRAM (single or multi-index) and !RAM. TIP /30 uses
:MIRA.M data management to access !RAM files.

User programs may access :MIRA.M files via any of the indices defined for the file. VVhen a
:MIRA.M multi-indexed file is defined in the TIP /30 generation parameters, the length,
location, and the attributes of each of the keys must be stated and one of the keys must be
designated (PKEY=) as the primary key (KEY1 is the default primary key).

Multi-indexed MIRAM files used by TIP /30 ill!!§! have the primary key defined as
(NDUP ,NCHG) - no duplicate key values and no changes allowed to this key.

In the TIP /30 catalogue entry for a file, the keyword KREF= may be specified to establish a
default index number for the file. If a program accesses a file and does not explicitly state
the implied index number that is meant, the KREF= value is used by TIPFCS to determine
which index the user program is using (1 through 5).

7002 3999-1 00

TlPFCS for Indexed Files

3.13.1. FCS-ADD -Indexed: Add Record
The FCS-ADD function code adds a new record to a file. The data supplied in the record
area must contain the proper key information in the appropriate location(s).

If the file is defined to use Logical Record delete, the designated delete flag byte should be
set to some neutral value before issuing an FCS-ADD function. If the delete flag byte
contains the designated delete flag value, a lOgically deleted record is added - a
subsequent FCS-GET operation returns pm-NaT-FOUND.

If an FCS-ADD function is issued for a record that is logically deleted, the Til' /30 File
System allows the "add" operation by rewriting the logically deleted record.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-ADD
file-pkt
record

FCS-ADD Function code from the TC-FCS copy element.

fUe"'pkt Logical fHe r~"ne packet.

record Record area containing new record data.

Error Conditions:

PIB-DUP-KEY

PIB-FUNCTION

PIB-Ia-ERROR

PIB-WRONG-MODE

7002 3999~ 100

A record with the same key already exists.

The file is not assigned to the program.

An I/O error occurred on the disk.

Write operations are not permitted for the file.

3-31

TIPFCS for Indexed Flies

3.13.2. FCS-CLOSE -Indexed: Close File

3-32

The FCS-CLOSE function call indicates that a program is relinquishing access to a file. The
corresponding entry for the file is removed from the Active File Table (AFT) of the issuing
process. If there are no other online users of the file and the file was generated with
OPEN=NO, TIPFCS physically CLOSEs the file by issuing a "CLOSE" imperative macro to
Data Management.

Syntax:

Where:

file-pkt

CALL 'TIPFCS' USING FCS-CLOSE
file-pkt

Function code from the TC-FCS copy element

Logical file name packet.

Error Conditions:

pm-FUNcrION File is not assigned to the program.

Additional Considerations:

This function is appropriate for files that were opened by issuing an FCS-OPEN function
(files explicitly accessed by the program).

7002 3999-1 00

TIPFCS for indexed Flies

3 .. 13 .. 3 .. FC5-0ELETE -Indexed: Delete Record

The FCS-DELETE function call deletes a record from the file: The Til' /30 file system uses
the applicable delete scheme as specified in the TIP /30 generation parameters for the file. If
DELETE=RCB is specified in the file's generation parameters, TIPFCS deletes the record
using RCB, otherwise, the defined delete flag value is placed in the record and the record is
updated in the file.

For additional information, see "3.4. Techniques for Deleting Records" on page 3-5.

The program must acquire a record lock (by a call to FCS-GETUP} before issuing this
function call.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-DELETE
file-pkt
record

FeS-DELETE

Function code from the TC-FCS copy element.

file-pkt

record

Logical file name packet.

Record area.

Error ConditIons:

PIB-FUNCTION

PIB-IO-ERROR

The file is not assigned to the program.

An I/O error occurred on the disk.

PIB-NOT -HELD A prior FC5-GETUP for this record was not successful or the
record lock was released by TIP /30.

Additional Considerations:

!f the file is defined to use '1ogical record deletion" - for example, X'FF' in a particular byte
- the application program need not move the delete value to the appropriate location in
the record area since the FCS-DELETE activity performs this automatically.

7002 3999-100 3-33

TIPFCS for Indexed Files

3.13.4. FCS .. ESETL -Indexed: End Sequential Mode

3-34

Set a file to random processing mode (terminate sequential processing of the file). Til' /30
allows only one process at time to set a particular file in sequential mode. Other processes
that wish to set the file in sequential mode are queued waiting for the file to be ESETL.

A process that has a file in sequential mode may not ask for input from the terminal. If an
attempt is made the process is tenninated with a "Resource Lock Exception" error. Before
requesting terminal input, the program must issue an FCS-ESETL function call for each file
that is in SETL mode.

The foregoing discussion applies to files that are not defined with MUL TISEQ= YES in the
generation parameters for the file. When multiple sequential readers are allowed, Til' /30
does not consider having that file in sequential mode as a serial resource. Therefore, leaving
such a file in sequential mode across screen input is pennitted..

Syntax;

Where:

CALL 'TIPFCS' USING FCS-ESETL
file-pkt

FCS .. ESETL

Function code from the TC-FCS copy element.

file-pkt

Logical file name packet

Error Conditions:

PIB-FUNCTION The file is not assigned to the program.

7002 3999-1 00

TlPFCS for Indexed Flies

3.13.5. FCS-FLUSH -Indexed: Flush File

The FCS-FLUSH function requests the TIP /30 file system to physically CLOSE and reopen
a specific file. This function forces the updating of the VTOC end-of-data pointers after
records are added to a file.

Use the FCS-FLUSH with discretion since it is a relatively time consuming operation that
makes the file inaccessible to everyone for a short period of time.

WARNING

If this function is issued for a file that is generated
as MUlTISEQ=YES, the function is not
performed. Physically closing a file that has
multiple sequential readers caLises Data
Management to lose the sequential position
information that was being maintained for all the
sequential readers.

This function was occasionally beneficial before the introduction of Consolidated Data
Management and, specifically, before the introduction of the MIRAM recovery option. If
the indexed file was created with / / DD RECV=YES there is no valid reason to issue an
FCS-FLUSH function for that file.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-FLUSH
file-pkt

FCS-FLUSH

Function code from the TC-FCS copy element.

file-pkt

Logical file name packet.

Error Conditions:

PIB-FUNCTION

PIB-IC-ERROR

7002 3999-100

The file is not assigned to the program.

An I/O error occurred on the disk. See additional
considerations that follow.

3-35

TIPFCS for Indexed Files

3-36

Additional Considerations:

In a multi-job environment, there is the chance of a race condition that would allow a batch
job that was waiting for the file to gain access to the file after TIPFCS issued the CLOSE but
before TIPFCS is able to issue the OPEN. In this case, the OPEN may fail (with DM88) and
the program receives PIB-lO-ERROR status.

7002 3999-1 00

TlPFCS for Indexed Flies

3.13.6. FCS .. GET -Indexed: Read by Key

Read a record with a specific key from a file. Using FCS-GET implies that the record is not
locked for update.

This section discusses the behaviour of FCS-GET assuming that the file is !1Q! already set in
sequential mode.

Syntax:

CALL 'TIPFCS' USING FCS-GET
file-pkt
record
key
index-num

FCS-GET Function code from the TC-FCS copy element

file-pkt Logical file name packet

recOl'd Area where the record data is placed.

key Record key. If t-his par~meter is omitted, the key is taken from the record area.

index-num Binary halfword holding the intended index number.

If the index-num field is omitted, the default index number for the file is used.
The default index is not necessarily the index for the primary key. The Logical
File definition in the TIP /30 catalogue may have specified a default index
nw"'liber by use of the KEYREF= keyword (see description of that keyword in
the documentation of the CAT transaction FILE command). If an explicit
KEYREF= value is not provided, the default index corresponds to the primary
key of the file.

Error Conditions:

PIB-FUNCTION

PIB-IO-ERROR

PIB-NOT -FOUND

PIB-DUPS-Al-it:AD

7002 3999-100

The file is not assigned to the program.

An I/O error occurred on the disk.

The record does not exist or is flagged as deleted using a logical
delete flag.

If the record was logically deleted, the record i§. returned in the
specified record area.

Is set in the field PIB-DETAIL-STATuS if there is another record
following the retrieved record with a duplicate key.

This setting can alert the program there ~ further records in a
set of duplicates.

3-37

TIPFCS for Indexed Flies

3 .. 13.7. FCS .. GET Indexed: Read Sequential

Read the next record from a file that has already been set in sequential mode (by a prior call
to one of the various type of FCS-SETL-xx function). Using FC5-GET implies that the
record is!!Q! locked for update.

Syntax:

CALL 'TIPFCS' USING FCS-GET
file-pkt
record

Where:

FCS .. GET

Function c'Ode from the TC-FCS copy _element.

file-pkt

record

Logical file name packet.

Area where record data is placed.

Error Conditions:

PIB-FUNCrION

PIB-IO-ERROR

pm-EOF

pm-NOT-FOUND

PIB-DUP S-AHEAD

The fiie is not assigned to the program.

An I/O error occurred on the disk.

End of file is reached.

End of file is reached. This status may be returned if the file was
placed in sequential mode by issuing a call to TIPFCS with the
function FCS-SETL-GT.

Is set in the field PIB-DETAIL-STATUS if there is another record
following the retrieved record with a duplicate key.

This setting can alert the program there ~ further records in a
set of duplicates.

Note: An FCS-GET issued for a file in sequential mode ~ returns logically deleted records
- TIPFCS automatically skips these records when in sequential mode. Records deleted by
the RCB method cannot be read under any circumstances and cannot be returned either!

3-38 7002 3999-1 00

TlPFCS for Indexed Flies

3.13.8. FCS .. GET -Indexed: Read Nth Duplicate

A common processing requirement is to retrieve a specific record within a set of identical
key values - naturally, the implication is that we are dealing with a MIRAM file with a
secondary key that allows duplicates.

The FCS-GET function may be used to retrieve a specific record within a set of duplicate
records.

Since this operation mimics the processing that the application program would nonnally
have to perform in sequential mode, the treatment of deleted records is that same as that
observed during sequential FCS-GET operations: deleted records are ignored by this FCS
function - the appearance of a deleted record does not affect the "count" while the file
system is searching for the Nth occurrence.

When using logical record deletion for the file, the deleted records~ be read and
skipped by the file system (the records must be physically read to determine that they are
flagged as deleted records!). If ReB deletion is being used for the file, deleted records are
not an issue since they cannot be read by any program.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-GET
file-pkt
record
key
index-num
dup-count

FeS-GET Function code from the TC-FCS copy element.

file-pkt Logical file name packet.

record Area where record data is placed.

key Record key.

index-num Binary halfword holding the intended index number.

dup-count Binary fullword holding the ordinal number of the desired record. For
example: 100 means "return the l00th record".

Note: The presence of 6 parameters on this function call is the method that FCS uses to detect
that this special use of FCS-GET is desired. All parameters must be supplied.

7002 3999-1 00 3-39

TIPFCS for Indexed Files

3-40

Error Conditions:

PIB-FUNCI'ION

PIB-ID-ERROR

PIB-NOT-FOUND

PIB-EOF

PIB-DUP5-AHEAD

The file is not assigned to the program.

An I/O error occurred on the disk.

The Nth record does not exist.

End of file is reached.

This value is set in the field PIB-DETAlL-STATUS if there is
another record following the retrieved record with a duplicate
key.

This setting can alert the program there ~ further records in a
set of duplicates.

7002 3999-1 00

TlPFCS for Indexed Flies

3.13.9. FCS .. GETRN -Indexed: Read Relative Number
Read a record from an indexed MIRAM file via a relative record number. Using
FCS-GETRN implies that the record is !lQ! locked for update.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-GETRN
file-pkt
record
rel-rec-num

FCS-GETRN

file-pkt

. record

Function code from the TC-FCS copy element.

Logical file name packet

Area where. the record data is placed .

rel .. rec .. num A binary fullword containing the relative record number of the record to read.

7002 3999-100

After reading a record from a MIRAM file, the TIP /30 File Control System
piaces the relative record number of that record in the pm field
PIB-MIRAM-REL-REC-NUM so that interested programs can save this value
as an independent marker to the record.

Programs that need to read through an indexed MIRAM file and are not
concerned with the order of the records, can read the file using FCS-GETRN
(incrementing the requested relative record number before each call).

This technique can be employed, for example, when a search of a file is
requested and the data is not part of any key. Although the program could
easily search the file in sequential mode, reading the file using repeated
FCS-GETRN calls bypasses the overhead of manipulating the index.

3-41

TIPFCS for Indexed Files

3-42

Error Conditions:

PIB .. EOF

pm-FUNCTION

PIB .. la-ERROR

PIB-NOT-FOUND

The requested record is beyond the last record in the file. The
field PIB-MIRAM-REL-REC-NUM is set to the highest valid
record number in the file.

The file is not assigned to the program.

An I/O error occurred on the disk.

The record does not exist, has been deleted using RCB (Record
Control Bytes), is flagged deleted using a logical delete flag, or
is beyond the limits of the file.

If the record is logically deleted, the record data is returned in
the specified record area.

Additional Considerations:

Programs may issue this call whether or not the file is in sequential mode. The appropriate
record and status is returned without disturbing the current sequential read position
(subsequent FC5-GET operations resume where they were suspended).

7002 3999-1 00

TIPFCS for Indexed Files

3.13.10. FCS-GETUP -Indexed: Read With Lock

Read the record with the specified key with intent to update. The PRIMARY key of the
record is placed in the TIP /30 internal key holding table (see separate discussion of this
topic). The record is LOCKED - other processes receive an error status if an attempt is
made to FC5-GETUP or FCS-ADD the same record. Use this function only when the file is
in random processing mode - TIP /30 does not support record updating for a file in
sequential mode.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-GETUP
file-pkt
record
key
index-num

FCS-GETUP

file-pkt

record

key

Function code from the TC-FCS copy element.

Logical file name packet.

Area where the record data is placed.

Record key. If omitted, the key is taken from the record area.

index-num Binary halfword holding the desired index number.

7002 3999-100

If the index-num field is omitted, the default index number for the file is used.
The default index is not necessarily the index for the primary key. The Logical
File definition in the TIP /30 catalogue may have specified a default index
number by use of the KEYREF= keyword (see description of that keyword in
the documentation of the CAT transaction FILE command). If an explicit
KEYREF= value is not provided, the default index corresponds to the primary
key of the file.

3-43

TIPFCS for Indexed Flies

Error Conditions:

PIB-FUNcrION

PIB-Ia-ERROR

Pm-NOT-FOUND

PIB-HELD

PIB-WRONG-MODE

The file is not assigned to the program.

An I/O error occurred on the disk.

The record does not exist or is flagged as deleted using a logical
delete flag.

If the record was logically deleted, the record is returned in the
specified record area.

The record is currently locked by some other process in the
TIP /30 system.

Normally, programs that receive PIB-HELD will retry the
GETUP request.

Is set in the field PIB-DETAlL·STATUS if there is another record
following the retrieved record with a duplicate key.

This setting can alert the program there ~ further records in a
set of duplicates.

FCS-GETUP issued for a file that is not set for random
processing.

Additional Considerations:

If the program receives the error status ''PIB-HELD'', the program probably should retry the
FCS-GETUP function (possibly after a brief delay via TIPTIM:ER).

The number of times the retry is attempted is dependent on the expected length of time the
"other process" may lock the record and the probability of such conflicting attempts to
update the same record. After some reasonable number of retries, the program must
consider some alternate action such as informing the terminal operator about the situation
and asking whether or not the program should continue to retry.

The key information that is stored in the key holding table (and is used by TIP /30 to
enforce record locks), is a length computed as the lesser of:

• the length of the primary key for the file

• the value specified for the KEYHOLD= parameter for the FILE

• the width of the TIP /30 key holding table (see TIPGEN keyword KEYTABLE=).

3-44 7002 3999-1 00

TIPFCS for Indexed Flies

3.13.11. FCS-NEXT -Indexed: Get Next Record

The FCS-NEXT function retrieves the next record (sequentially) from an indexed file. This
function code is the equivalent of issuing calls (in sequence) for FCS-SETL-GT, FCS-GET
and FCS-ESETL.

Use FCS-NEXT only when one record is required at a time. If a number of records are to be
read, it is more efficient to place the file in sequential mode (using a function of
FCS-SETL-xx) and issuing the required number of FCS-GET functions to read the file
sequentially.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-NEXT
file-pkt
record
key
index-num

FCS-NEXT Function code from the TC-FCS copy element.

file .. pkt

record

key

Lomcal file name oacket. v ..

Record area where the data is placed.

Record key. If this parameter is omitted, the key is taken from the record area.

WARNING

If this parameter is supplied, the actual key of the
record returned is placed in this field by TIPFCS
- this facilitates a subsequent call to FCS-NEXT.
This action, however, alters the field and means
that the field must be located in the program's
LINKAGE SECTION to permit the program to run
as a reentrant process.

index-num Binary halfword holding the index number.

7002 3999-100

If the index-num field is omitted, the default index number for the file is used.
The default index is not necessarily the index for the primary key. The Logical
File definition in the TIP /30 catalogue may have specified a default index
number by use of the KEYREF= keyword (see description of that keyword in
the documentation of the CAT transaction FILE command). If an explicit
KEYREF= value is not provided, the default index corresponds to the primary
key of the file.

3-45

TIPFCS for Indexed Flies

3-46

Error Conditions:

PIB .. FUNCI10N

Pm-IQ..ERROR

Pm-NOT-FOUND

PIB-WRONG ... MODE

PIB-OUP S-AHEAD

The file is not assigned to the program.

An I/O error occurred on the disk.

The next record does not exist.

PCS-NEXT issued for a file that is not currently set for random
processing.

Is set in the field PIB-DETAIL-STATUS if there is another record
following the retrieved record with a duplicate key.

This setting can alert the program there ~ further records in a
set of duplicates.

7002 3999-1 00

TIPFCS for Indexed Flies

3.13.12. FCS-NOUP -Indexed: Cancel Update

The FCS-NOUP function call is used to "unlock" a record that has been acquired via a prior
call to FCS-GETUP. In certain situations, a program may issue an FCS-GETUP and lock a
record only to later determine that an update is !1Q! appropriate.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-NOUP
file-pkt
key]

FCS-NOUP Function code from the TC-FCS copy element

file-pkt Logical file name packet

key Specific key value that is to be released.

If omitted, all key values currently held by this process for the specified file
are released.

Error Conditions:

pm-FUN CIl ON

PIB-NOT-HELD

PIB-WRONG-MODE

7002 3999-100

The file is not assigned to the program.

The record was not held.

FC5-NOUP for a file that is not set for random processing.

3-47

TIPFCS for Indexed Files

3 .. 13 .. 13. FCS-OPEN -Indexed: Open File

3-48

Make the specified file available for processing by programs at the calling terminal. An
entry in the Active File Table (AFT) is created for the process issuing this call.

Files are normally automatically made available to the program by an implicit request for
(up to 12) file names as defined in the program's TIP /30 catalogue entry. If a program
needs to access more than 12 files, some of them must be opened by issuing explicit calls to
TIPFCS with the FCS-OPEN function.

For the FCS-OPEN function to be successful, the file to be opened must be:

41 defined in the TIP /30 job control stream - user data files are normally defined in the
job control Proc named 'TIPDATA"

41 defined in the TIP /30 Catalogue (this is where the connection is made between a
logical file name (LPN) and the physical file name (LFD)

41 defined in the TIP /30 Generation parameters (see the FILE generation statement).

If there are no other users of the file and the file is specified in the TIP /30 generation
parameters as "OPEN=NO", TIPFCS physically attempts to OPEN the file by issuing a Data
Management OPEN.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-OPEN
file-pkt
file-desc

FeS-OPEN Function code from the TC-FCS copy element.

file .. pkt Logical file name packet.

file-desc File descriptor packet - see separate description of the copy element
''TC-FDES''. If omitted, the name in the file-pkt is used to build a file
descriptor.

Error Conditions:

PIB-IO-ERROR

PIB-DUP-AFT-NAME

PIB-LOCKED

An I/O error occurred while opening the file.

An entry already exists in the Active File Table (for the issuing
process) that matches the logical file name used in the file-pkt
field.

The file is closed.

7002 3999-1 00

TIPFCS for Indexed Files

3.13.14. FCS-PUT -Indexed: Update Record

Update (rewrite) a record that was read and '1ocked for update" by a prior call to TIPFCS
with the FC5-GETUP function.

Syntax:

CALL 'TIPFCS' USING FCS-PUT
file-pkt
record

Where:

FCS .. PUT Function code from the TC-FCS copy element.

file-pkt Logical file name packet

record Record area containing the record contents.

Error Conditions:

PIB-FUNCTION

PIB-IO-ERROR

PIB-NOT-HELD

PIB .. WRONG-MODE

7002 3999-100

The file is not assigned to the program.

An I/O error occurred on the disk.

The primary key for the record is not currently in the TIP /30
key holding table.

This may be a result of not issuing a prior FCS-GETUP to lock
the record for update Q! the previously acquired record lock
was discarded by TIP /30 (see discussion of record locking
techniques) .

Write operations are not permitted for the file.

3-49

TIPFCS for Indexed Files

3.13.15. FCS-SETL -Indexed: Set Sequential Mode

3-50

The FCS-SETL function sets a file in sequential processhlg mode beginning with the first
record with a key greater than or equal to the key supplied.

Note: This function does !1!2l. return a record - it simply establishes a starting point for
sequential reading.

Subsequent calls with a FCS-GET function retrieve records in sequence. If the file is
currently set in sequential mode by another process, TIPFCS queues this request until the
file is set back to random mode. You should ensure that an ESETL is issued for the file prior
to requesting input from the tenninal- if you do not, the program may abort with a
''Resource Lock Exception" error message.

Refer also to the description of the FCS-ESETL function.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-SETL
file-pkt
key
index-num.
key-len

FCS-SETL Function code from the TC-FCS copy element.

file-pkt Logical file name packet.

key Record key.

If omitted, processing begins with the first record in the file according to the
primary key. (If this parameter is omitted, all following parameters must be
omitted too since COBOL has no provision for omitting parameters in the
middle of a list).

index-num Binary halfword holding the index number.

If the index-num field is omitted, the default index number for the file is used.
The default index is not necessarily the index for the primary key. The Logical
File definition in the TIP /30 catalogue may have specified a default index
number by use of the KEYREF= keyword (see description of that keyword in
the documentation of the CAT transaction FILE command). If an explicit
KEYREF= value is not provided, the default index corresponds to the primary
key of the file.

key-len MIRAM only. Binary fullword holding the length (in bytes) of a partial key
value that is supplied in the key field.

Use of this parameter implies that the key value provided is a prefix of the key
desired.

7002 3999-1 00

TIPFCS for Indexed Files

If this parameter is omitted, TIPFCS assumes that the value supplied as the
key is a complete key.

Error Conditions:

Pm-FUNCTION

pm-Io-ERROR

7002 3999-1 00

The file is not assigned to the program.

An I/O error occurred on the disk.

3-51

TIPFCS for Indexed Files

3.13.16. FCS-SETL ... BOF Indexed: Set Sequential Mode

3-52

The FCS-SETL-BOP function sets a file in sequential processing mode at the beginning of
the file according to a specified index; this eliminates the need to perform. an FCS-SETL
function with a dummy key consisting of low-values.

Note: This junction does !!!l! return a record - it simply establishes a starting paint for
sequential reading. Subsequent calls with a FCS-GET function will retrieve records in
sequence.

If the file is currently set in sequential mode by another process, TIPFCS queues this
request until the file is set back to random mode. Ensure that an ESETL is issued for the file
prior to requesting input from the terminal otherwise the program may abort with a
''Resource Lock Exception" error message.

Refer also to the description of the FCS-ESETL function.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-SETL-BOF
file-pkt
index-num]

FCS-SETL-BOF

Function code from the TC-FCS copy element

file-pkt Logical file name packet.

index-num Binary halfword holding the index number.

If the index-num field is omitted, the default index number for the file is used.
The default index is not necessarily the index for the primary key. The Logical
File definition in the TIP 130 catalogue may have specified a default index
number by use of the KEYREF= keyword (see description of that keyword in
the documentation of the CAT transaction FILE command). If an explicit
KEYREF= value is not provided, the default index corresponds to the primary
key of the file.

Error Conditions:

PIB-FUNCTION

PIB-IO-ERROR

The file is not assigned to the program.

An I/O error occurred on the disk.

7002 3999-1 00

TIPFCS for Indexed Files

3.13.17 .. FCS-SETL .. EQ -Indexed: Set Sequential Mode

The FCS-SETL-EQ function sets a file in sequential processing mode beginning with the
first record with a key equal to the key supplied. This function is only operational on
MIRAM files; if the function is used on an !SAM file, it is treated as an ordinary FCS-SETL.

Note: This function does m21. return a record - it simply establishes a starting point for
sequential reading. Subsequent calls with a FCS-GET function retrieve records in
sequence.

If the file is currently set in sequential mode by another process, TIPFCS queues this
request until the file is set back to random mode. Ensure that an ESETL is issued for the file
prior to requesting input from the tenninal otherwise the program may abort with a
"Resource Lock Exception".

Refer also to the description of the F~ESETL function.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-SETL-EQ
file-pkt
key
index-num
key-len

FCS-SETL-EQ

file-pkt

key

Function code from the TC-FCS copy element.

Logical file name packet.

Record key.

If omitted, processing begins with the first record in the file.

index-num Binary halfword holding the index number.

key-len

7002 3999-1 00

If the index-num field is omitted, the default index number for the file is used.
The default index is not necessarily the index for the primary key. The Logical
File definition in the TIP /30 catalogue may have specified a default index
number by use of the KEYREF= keyword (see description of that keyword in
the documentation of the CAT transaction FILE command). If an explicit
KEYREF= value is not provided, the default index corresponds to the primary
key of the file.

MIRAMonly.

Binary fullword holding the length (in bytes) of a partial key value that is
supplied in the key field. Use of this parameter implies that the key value is a
prefix of the key desired.

If this parameter is omitted, TIPFCS assumes that the key value supplied is
complete.

3-53

TIPFCS for Indexed FUes

3-54

Error Conditions:

PIB-FUNCI'ION

PIB-IO-ERROR

PIB-NOT-FOUND

The file is not assigned to the program.

An I/O error occurred on the disk.

The specific record does not exist.

Additional ConSiderations:

Use of FCS-SETL-EQ may result in a sequential reading start position that represents a
logically deleted record. In this case, the subsequent call with an FCS-GET function skips
the logically deleted record (or records) and returns the next record in sequence that is !lQ!
logically deleted.

The first FCS-GET operation that is issued after a FCS-SETL-EQ may return a record that
does NOT have the key that was specified in the FCS-SETL-EQ.

7002 3999-1 00

TIPFCS for Indexed Files

3 .. 13.18. FCS-SETL .. GT Indexed: Set Sequential Mode

The FCS-SETL-GT function sets a file in sequential processing mode beginning with the
first record w:ith a key greater than the key supplied. This function is intended for MIRAM
files; if the function is used on an ISAM file, it is treated as FCS-SETL.

Note: This function does !!Q1. return a record - it simply establishes a starting point for
sequential reading. Subsequent calls with a FCS-GET function will retrieve records in
sequence.

If the file is currently set in sequential mode by another process, TIPFCS queues this
request until the file is set back to random mode. Ensure that an ESETL is issued for the file
prior to requesting input from the terminal otherwise the program may abort with a
"Resource Lock Exception" error.

Refer also to the description of the FCS-ESETL function.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-SETL-GT
file-pkt
key
index-num
key-len

FCS-SETL-GT

file-pkt

key

Function code from the TC-FCS copy element.

Logical file name packet.
s

Record key.

If omitted, processing begins with the first record in the file.

index-num Binary halfword holding the index number.

key-len

7002 3999-100

If the index-num field is omitted, the default index number for the file is used.
The default index is not necessarily the index for the primary key. The Logical
File definition in the TIP /30 catalogue may have specified a default index
number by use of the KEYREF= keyword (see description of that keyword in
the documentation of the CAT transaction FILE command). If an explicit
KEYREF= value is not provided, the default index corresponds to the primary
key of the file.

MIRAM only. Binary fullword that holds the length (in bytes) of a partial key
value that is supplied in the key field.

Use of this parameter implies that the key value is a prefix of the key desired.
If this parameter is omitted, TIPFCS assumes that the key value supplied is
complete.

3-55

TIPFCS for Indexed Files

3-56

Error Conditions:

PIB .. FUNCTION

PIB-IO-ERROR

PIB .. NOT-FOUND

The file is not assigned to the program.

An 1/0 error occurred on the disk.

There are no records with a key greater than the specified key.

7002 3999-1 00

TIPFCS for Indexed Files

3.13.19. FCS-SKIP - Indexed: Skip Sequentially

The FCS-SKIP function is appropriate only for an indexed MIRAM file set in sequential
mode. A specified number of records are skipped. Subsequent calls with a FCS-GET
function (read sequentially) continue at the point where the FCS-SKIP ended.

Note: This function does NOT return a record - it simply establishes a starting point for
subsequent sequential reading.

If the MIRAM file is specified with RCB record deletion, the records are very quickly
skipped by utilizing the index of the file - the records are not physically read.

If the MIRAM file is specified with logical record deletion, the records must be physically
read to determine whether or not a record has been flagged deleted.

In any case, deleted. records are not included in the number of records skipped - FCS-SKIP
skips the specified. number of non.-deleted records.

CALL 'TIPFCS' USING FCS-SKIP
file-pkt
skip-count

FCS-SKIP Function code from the TC-FCS copy element.

file-pkt Logical file name packet.

skip-count Binary fullword holding the number of records to skip.

Error Conditions:

PIB-FUNCTION

PIB-WRONG-MODE

PIB-IO-ERROR

PIB-EOF

7002 3999-100

The file is not assigned to the program.

The file is not MIRAM type, or is not already in sequential
mode.

An I/O error occurred on the disk.

End of file reached.

3-57

TIPFCS for Direct Files

3.14. TIPFCS for Direct Files

3-58

This section describes TIP /30 file control system operations you may specify for direct
access files. Direct files include non-indexed MIRAM or !RAM and DA (direct access).
Records are referenced by a relative record number; for example, record number 1 is the
first record in the file. For DAM, the relative record number is also known as the "block
number".

In all cases the key passed to TIPFCS is a binary fullword that holds the relative record
number of the record to be processed.

7002 3999-1 00

TIPFCS for Direct Files

3.14.1. FCS-ADD Direct: Add Record

The FCS-ADD function code adds a new record to a non-indexed file or rewrites an existing
record.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-ADD
file-pkt
record
rel-rec-num

FeS-ADD Function code from the TC-FCS copy element.

fiie-pkt

record

rel .. .rec .. num

Logical file name packet

Record area containing new record data.

Binary fullword containing the relative record number of the record that will
be added to the file.

If this relative record number is beyond the current end-of-data (EOD)
pointer, TIPFCS writes the record using relative record number EOD+l.

Note: TIPFCS always updates this field to reflect the actual relative record
number that was written. For this reason, this field must appear in the
program's UNKAGE SECTION to permit reentrant execution.

Error Conditions:

PIB-FUNCTION

PIB-IO-ERROR

PIB-HELD

The File is not assigned to the program.

An I/O error occurred on the disk.

Some other process has the specified record locked.

Additional Considerations:

The FCS-ADD function rewrites the record if the specified record number already exists in
the file. The record is rewritten and is joumaled (if required) as a new record.

Using FCS-ADD to rewrite records is in direct conflict with standard record locking
facilities - some race conditions may occur if this technique is employed. The user
program must ensure that the race conditions are not a problem.

A popular technique is to perform a conventional FCS-GETUP on a control record before
issuing such FCS-ADD operations. In this way programs essentially use the FCS-GETUP on
the control record as a queuing mechanism.

7002 3999-100 3-59

TIPFCS for Direct Files

3.14.2. FCS .. CLOSE Direct: Close File

3-60

The FCS-CLOSE function call indicates that a program is relinquishing access to a file.
TIP /30 removes the corresponding entry for the file from the Active File Table (AFT) of the
issuing process.

If there are no other online users of the file and the file was generated with OPEN=NO,
TIPFCS physically closes the file by issuing a "CLOSE" imperative macro to Data
Management.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-CLOSE
file-pkt

FCS-CLOSE

file-pkt

Function code from the TC-FCS copy element

Logical file name packet.

Error Conditions:

pm·FUNcrION File is not assigned to the program.

Additional Considerations:

This function is used for files that were opened. by issuing an FCS-OPEN function (files
explicitly accessed by the program).

7002 3999-1 00

TIPFCS for Direct Files

3.14.3. FCS-DELETE -- Direct: Delete Record

The FCS-DELETE function call deletes a record from the file. FCS uses the applicable delete
scheme as specified in the TIP /30 generation parameters for the file:

• Record Control Byte (RCB) deletion (allowed by MIRAM)

• Logical record deletion.

A separate section of this chapter provides details about the two delete schemes (see
references to "DELETE").

Before issuing this function call the program must first acquire the record with an update
lock by issuing a prior call with the FCS-GETUP function.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-DELETE
file-pkt
record
rel-rec-num

FCS-DELETE

file-pkt

record

rel-rec-num

Function code from the TC-FCS copy element.

Logical file name packet.

Record area.

Binary fullword that contains the relative record number of the record that is
to be deleted.

If you omit this parameter, the default is the last record number referenced by
the process.

Error Conditions:

PIB-FUNCTION

PIB-IO-ERROR

PIB-NOT-HELD

The File is not assigned to the program.

An I/O error occurred on the disk.

A prior FCS-GETUP was not successfully done for this record or
the record lock was released.

Additional Considerations:

If the file is defined to use '1ogical record deletion" (for example: X'FF' in a particular byte>,
the application program need not move the delete value to the appropriate location in the
record area - the FCS-DELETE activity does this automatically.

7002 3999-100 3-61

TIPFCS for Direct Flies

3.14.4. FCS ... FLUSH -- Direct: Flush File

3-62

The FCS-FLUSH function requests that the TIP /30 file system physically CLOSE and
reopen a specific file.

Use the FCS-FLUSH with discretion since it is a relatively time consuming operation that
makes the file inaccessible to everyone for a short time.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-FLUSH
file-pkt

FCS-FLUSH

file-pkt

Function code from the TC-FCS copy element

Logical file name packet.

Error Conditions:

FIB-FUNCTION

PIB-IO-ERROR

The File is not assigned to the program.

An I/O error occurred on the disk.

7002 3999-1 00

TIPFCS for Direct Files

3.14.5. FCS .. GET -- Direct: Read Record

Read a specific record from a direct file. Using FCS-GET implies that the record is not
locked for update.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-GET
file-pkt
record
rel-rec-num

FCS-GET Function code from the TC-FCS copy element.

file-pkt Logical file name packet.

record Area where record data is to be placed.

rel-rec-num

Binary fullword containing the relative record number of the record to read.

Error Conditions:

PIB-EOF

PIB-FUNCTION

PIB-Ia-ERROR

PIB-NOT -FOUND

7002 3999-100

The requested record is beyond the last record in the file.

The File is not assigned to the program.

An I/O error occurred on the disk.

The record does not exist or it is flagged deleted using a logical
delete flag. t!1

If the record is logically deleted, the record data is returned in
the Specified record area (to allow the program to reset the
delete flag character and add the record by using the FC5-ADD
function).

3-63

TIPFCS for Direct Files

3.14.6. FCS-GETUP Direct: Read With Lock

3-64

Read the record with the specified relative record number with intent to update. The
relative record number is placed in the TIP /30 internal key holding table. The record is
LOCKED - other processes receive an error status if they attempt to FC5-GETUP or
Fes-ADD a record for this file with the same relative record number.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-GETUP
file-pkt
record
rel-rec-num

FeS-GETUP

file-pkt

record

rel-rec-num

Function code from the TC-FCS copy element

Logical file name packet

Area where the record data is placed.

Binary fullword that contains the relative record number of the record to be
read.

Error Conditions:

pm-FUNCTION

PIB .. Io-ERROR

PIB-NOT-FOUND

The File is not assigned to the program.

An I/O error occurred on the disk.

The record does not exist or is flagged as logically deleted.

PIB-HELD The record is currently locked by some other process in the
TIP /30 system.

Additional Considerations:

If the program receives the error status "pm-HELD", the program probably should retry the
FC5-GETUP function (possibly after a brief delay via TIPTll\1ER). The number of times the
retry is attempted is application-dependent; after some number of retries, consider some
alternate action.

7002 3999-1 00

TIPFCS for Direct FUes

3.14.7. FCS-NOUP -- Direct: Cancel Update

You may use the FCS-NOUP function call to release the lock on a record that was acquired
via a previous call to FCS-GETUP. In certain situations, a program may issue a FCS-GETUP
and lock a record and only then determine that an update is not appropriate.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-NOUP
file-pkt
rel-rec-num

FCS·NOUP Function code from the TC-FCS copy element

file-pkt Logical file name packet.

rel-rec-num

Binary fullword containing the relative record number of the specific record to
be released.

Omit this parameter to release all records currently held by this process (for
the specified file).

Error Conditions:

PIB-FUNCTION

PIB-NOT-HELD

7002 3999-100

The File is not assigned to the program.

The specified record was not held.

3-65

TIPfCS for Direct Files

3.14.8. FCS-OPEN - Direct: Open File

Make the specified file available for processing by programs at the calling tenninal. Tn' /30
creates an entry in the Active File Table (AFT) for the process issuing this call. If there are
no other users of the file and the Tn' /30 generation parameters specify the file as
"OPEN=NO", Tn'FCS will physically attempt to OPEN the file by issuing a Data
Management OPEN.

This function is needed only for files which are not implicitly opened as result of the
FILES= keyword in the program's TIP /30 Catalogue entry.

For the FCS-OPEN function to be successful, the file to be opened must be:

• defined in the TIP /30 job control stream - user data files are normally defined in the
job control Froc named ''TIPDATA''

• defined in the Tn' /30 Catalogue (this is where the connection is made between a
logical file name (LFN) and the physical file name (LFD)

• defined in the TIP /30 Generation parameters (see the FILE generation statement).

Syntax:

Where:

CALL 'TIPFCS' USING FCS-OPEN
file-pkt
file-desc

FeS-OPEN Function code from the TC-FCS copy element.

file-pkt Logical file name packet

file-desc File descriptor packet - see separate description of the copy element
TC-FDES. If this parameter is omitted, TIP /30 uses the name in the file-pkt to
build a file descriptor.

Error Conditions:

PIB-IO-ERROR An I/O error occurred while opening the file.

PIB-Dup .. AFf-NAME An entry already exists in the Active File Table (for the issuing
process) that matches the logical file name used in the file-pkt
field.

3-66 7002 3999-100

TIPFCS for Direct Files

3.14.9. FCS ... PUT -- Direct: Update Record

Update (rewrite) a record obtained by a previous FC5-GETUP.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-PUT
file-pkt
record
rel-rec-num

FCS .. PUT Function code from the TC-FCS copy element.

file-pkt Logical file name packet.

record Record area containing the new record contents.

rel-rec-num

Binary fullword that contains the relative record number of the record TIPFCS
is to update.

If this parameter is omitted, the default is the last record number referenced
by the process for this file.

Error CondItIons:

PIB-FUNCTION

PIB-IO-ERROR

PIB-NOT-HELD

7002 3999-100

The File is not assigned to the program.

An 110 error occurred on the disk.

The relative record number is not currently in the TIP 130 key
holding table.

This may be a result of not issuing a prior FC5-GETUP to lock
'the record for update or TIP 130 has discarded the previously
acquired record lock (see discussion of record locking elsewhere
in this manual).

3-67

TIPFCS for Sequential Files

3.15. TIPFCS for Sequential Files

3-68

This section describes TIP/3D file control system operations for sequential files. Sequential
files include:

• Sequential MIRAM

• !RAM

• PRINT

• PUNCH

• TAPE.

A sequential file must be designated in the TIP /30 generation parameters as either an
INPUT or OUTPUT file (INOUT is not available for sequential processing).

Sequential files may not be assigned to a program by specifying the filename in the
program's TIP /30 catalogue entry. Sequential files must be explicitly opened and closed by
the program by issuing FCS-OPEN and FC5-CLOSE function calls to the TIP /30 File
Control System (TIPFCS).

The operating systems spooling facilities normally process printer and punch files. This
spooling activity is transparent to FCS.

Print files use a standard Unisys variable length print line. The layout of the print line is the
5a-'!le as the layout requLred by Lhe TIP /30 printing interface ItTIPPRINT". (Refer to that
section of this documentation or the copy element TC-PLINE).

7002 3999-1 00

TIPFCS for Sequential Files

3.15.1. FCS-CLOSE - Sequential: Close File

The FCS-CLOSE function indicates that a program is relinquishing access to a file. TIP /30
removes the corresponding entry for the file from the Active File Table (AFT) of the issuing
process.

If there are no other online users of the file and the file was generated with OPEN=NO,
TIPFCS will physically CLOSE the file by issuing a "CLOSE" imperative macro to Data
Management.

Syntax:

CALL 'TIPFCS' USING FCS-CLOSE
file-pkt

Where:

FCS-CLOSE

Function code from the TC-FCS copy element

file-=pkt Logical file name packet

Error Conditions:

PIB-FUNCTION File is not assigned to the program.

Additional Considerations:

Issue this function only for files that were opened by issuing a FCS-OPEN function (files
explicitly accessed by the program). When a FCS-CLOSE function is issued for a PRINT or
PUNCH file, the TIP /30 file system issues a breakpoint for the file.

7002 3999-1 00 3-69

TIPFCS for Sequential Flies

3.15.2. FCS-GET Sequential: Read Record

3-70

Read the next record from a sequential input file.

Attempts to have more than one program simultaneously read the same input file can
result in interleaved read operations (each program will "miss" whatever records the other
programs read).

Furthennore, there is no provision for specifying a particular starting position - an
FCS-GET issued for a sequential file obtains the next record in the file - regardless of who
read the last record.

For this reason, it is recommended that sequential input files be declared as OPEN=NO in
the TIP /30 generation parameters for the file and steps be taken to ensure that only one
program reads the file at a time.

One way to do this is to make use of the TIPFLAGS subroutine (see documentation of that
subroutine in the PCS section of this manual) or by using the FC5-HOLD and
Fcs...RELEi~...sE f1.lnction calls of TIPFCS.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-GET
file-pkt
record

FCS-GET Function code from the TC-FCS copy element.

file-pkt Logical file name packet.

record Area where record data is to be placed.

Error Conditions:

The File is not assigned to the program.

An I/O error occurred on the disk.

End of file has been reached.

File is not defined as an input file.

PIB-FUNCTION

pm-la-ERROR

PIB-EOF

pm-WRONG-MODE

PIB-NOT -FOUND The record does not exist or is flagged deleted using a logical
delete flag. If the record is logically deleted, the record data !§
returned in the specified record area.

7002 3999-1 00

TlPFCS for Sequential Flies

3.15.3. FCS-OPEN - Sequential: Open File

Make the specified file available for processing by programs at the calling tenninal. TIP /30
creates an entry in the Active File Table (AFT) for the process issuing this call.

If there are no other users of the file and the file was specified in the TIP / 30 generation
parameters as "OPEL'l=NO", TIPFCS will physically OPEN the file by issuing a Data
Management OPEN.

For the FCS-OPEN function to be successful, the file to be opened must be:

• defined in the TIP /30 job control stream - user data files are normally defined in the
job control Proc named 'TIPDATA"

• defined in the TIP /30 Catalogue (this is where the connection is made between a
logical file name (LPN) and the physical file name (LFD)

• defined in the TIP /30 Generation parameters (see the FILE generation statement).

CALL 'TIPFCS' USING FCS-OPEN
file-pkt
file-desc

FCS-OPEN Function code from the TC-FCS copy element.

file-pkt Logical file name packet.

file-desc File descriptor packet - see separate description of the copy element
"TC-FOES".

If omitted, the name in the file-pkt parameter is used to build a file descriptor.

Error Conditions:

PIB-IC-ERROR

pm-Dup-AFT-NAME

7002 3999-100

An I/O error occurred while opening the file.

An entry already exists in the Active File Table (for the issuing
process) that matches the logical file name used in the file-pkt
field.

3-71

TIPFCS for Sequential Files

3 .. 15 .. 4 .. FCS-PUT - Sequential: Write A Record

3-72

Write a record to a sequential output file.

FCS pennits multiple concurrent writers for an output sequential file. Each program
appends a new record to the file - in other words, the write operations may be
interleaved.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-PUT
file-pkt
record

Fes-PUT Function code from the TC-FCS copy element

file-pkt Logical file name packet

record Record area containing data for the record to be added.

If the output file is a printer file (generation type "PRINT"), the first 5 bytes of
the record must be a properly constructed header containing the length of the
record area and the printer spacing control cod'e. Refer to the description of
the structure of print line records in the section describing TIPPRINT and the
supplied copy element TIP /TC-PUNE.

Error Conditions:

Pm-FUNCTION

PIB-IO-ERROR

PIB-EOF

PIB-WRONG-MODE

The File is not assigned to the program.

An I/O error occurred on the disk.

The file is full and cannot be extended.

The file is not defined as an output file, or for PCS-PUT to a
printer file, the printer spacing code (in the 5 byte header) is not
a valid spacing code.

7002 3999-1 00

TIPFCS for Dynamic Files

3.16. TIPFCS for Dynamic Files
TIP /30 supports a file organization known as a "dynamic file". Dynamic files have the
following characteristics:

• Dynamic files may be created and scratched on demand by TIP /30 programs.

• Record size is fixed at 512 bytes.

• Records are referenced by a relative record number (in a similar manner as a direct
access file).

• Dynamic File names consist of three sections (each name may be up to 8 characters
long) - an example is: EDP /BATCH/OO7

• Dynamic files are allocated by TIP /30 from available blocks in the TlP$RNDM file.

• The TIP /30 generation parameter FCSEXTENT= detennines the initial allocation of
512-byte blocks (default value: 40 blocks).

• Dynamic files may extend to include up to a maximum of:

(48 extents) x (FCSEXTENT= number of blocks)
x (512 bytes per block)

• Programs can dynamically create records in any sequence desired; for example, if only
40 records exist at the moment and the program specifies a read or a write of record 87,
the file system will allocate more blocks for the file and then access block (record) 87.

• When dynamic files are created, the application program is responsible for initializing
the allocated blocks (blocks in the TIP$RNDM file are reused as needed, but they are
llil! initialized by TIPFCS).

• To allow maximum flexibility, TIPFCS allows the program to read or write multiple
(sequential) records with a single operation. This, for example, allows a program to
simulate a record size of 1024 by always writing two records at a time - blocks 1 and
2, then blocks 3 and 4, and so on.

• Dynamic files may be created as "permanent" or "temporary" files - temporary files
are automatically scratched when the program terminates; programs must explicitly
scratch permanent dynamic files.

7002 3999-100 3-73

TIPFCS for Dynamic Files

3-74

Dynamic files support the following functions (the function names refer to function codes
defined by the FCS copy element TC-FCS).

Table 3-8. TIPFCS Functions for Dynamic Flies

I:> ... ":"':",,,,., ":':"::":':::::":::', :,:,,:.:.~,>:::,~,:~:::~,:c,::::: :::::: ':::::

I',::::}:::::,,,,: ' ::::::

FCS-ACCESS Open an existing file.

FCS-ASSIGN Open file; create if necessary.

FCS-CLOSE Close a file.

FCS-CREATE Create a new file.

FCS-GET Read record(s) from the file.

FCS-OPEN Open file
(choice of ACCESS, ASSIGN or CREATE).

PCS-PUT Write record(s) to the file.

FCS-SCRATCH Scratch a file.

7002 3999-1 00

TIPFCS for Dynamic Files

3.16.1. FCS-ACCESS - Dynamic: Access File

Before an application program can perfonn I/O to an existing dynamic file, the file must be
assigned to the program. Use the function FCS-ACCESS to open an existing dynamic file.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-ACCESS
file-pkt
file-desc

FCS-ACCESS

Function code from the TC-FCS copy element

file-pkt Logical file name packet

file-desc File descriptor packet. Refer to the description of the copy element TC-FDES.

Example of Accessing an Existing Dynamic File:

To access an existing dynamic file named: EDP /TAX/TABLES (for read-only operations):

02 TAXTABLE-LFN
02 TAXTABLE-FDES.

MOVE ' TAXTABLE'
MOVE 'EDP'
MOVE 'TAX'
MOVE ' TABLES'
MOVE SPACES
MOVE FCS-CLASS-PERM
MOVE SPACE

PIC X(9) .
COPY TC-FDES OF TIP.

TO TAXTABLE-LFN
TO FDES-USER-ID
TO FDES-CATALOG
TO FDES-FILE-NAME
TO FDES-PASSWORD
TO FDES-FCS-CLASS
TO FDES-FCS-TYPE

MOVE FCS-PERM-READONLY TO FDES-FCS-PERM
MOVE FCS-LOCK-NO TO FDES-FCS-LOCK

CALL 'TIPFCS' USING FCS-ACCESS
TAXTABLE-LFN
TAXTABLE-FDES

Error Conditions:

PIB-DUP-AFr-NAME

PIB-NOT -FOUND

7002 3999-100

A file with the logical file name specified in the file-pkt
parameter is already present in the active file table (AFT) for the
process.

The requested file does not exist.

3-75

TIPFCS for Dynamic Files

3.16.2. FCS .. ASSIGN - Dynamic: Assign File

3-76

This FCS function will assign an existing Dynamic file for use by the calling program. If the
file does not exist, TIPFCS will automatically create a new file according to the
specifications given in the FILE-DESCRIPTOR packet

Syntax:

Where:

CALL 'TIPFCS' USING FCS-ASSIGN
file-pkt
file-dese

FCS .. ASSIGN

Function code from the TC-FCS copy element.

file-pkt Logical file name packet

file-desc File descriptor packet.

Example:

Refer to the description earlier of the copy element TC-FDES.

CALL 'TIPFCS' USING FCS-ASSIGN
DATA-ENTRY-BATCH-FILE
DATA-ENTRY-BATCH-FDES.

Error Conditions:

PIB-DUP-AFrooNAME A file with the logical file name specified in the file-pkt
parameter is already present in the active file table (AFT) for the
process.

7002 3999-1 00

TIPFCS for Dynamic Files

3.16.3. FCS-CLOSE - Dynamic: Close File

When an application program is finished with a dynamic file it should remove the file from
the Active File Table by issuing a FCS-CLOSE. If the program created a dynamic file as a
"temporary" file, this operation will scratch the file. If the file was created as a permanent
dynamic file, the FCS-CLOSE operation only removes the file from the Active File Table.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-CLOSE
file-pkt

FCS-CLOSE

Function code from the TC-FCS copy element.

file-pkt Logical file name packet.

Error Conditions:

PIB-FUNCTION The file is not assigned to the program.

7002 3999-100 3-n

TIPFCS for Dynamic Flies

3 .. 16.4. FCS-CREA TE - Dynamic Create File

This function creates new dynamic files, either temporary or permanent. The application
program must first fill in the fields of the FILE-DESCRIPTOR with appropriate values.

H the field FDES-USER-ID is spaces or low-values, TIPFCS will use the userid from the PIB
(PIB-UID).

H the field FDES-CATALOG is SPACES or low-values, TIPFCS will construct a unique
name consisting of the terminal-id (PIB-TID) and program execution stack level
(PIB-LEVEL).

Set the field FOE5-FCS-TYPE to the value FCS-TYPE-NEW.

Set FDE5-FILE-CLASS to FCS-CLASS-PERM or FCS-CLAS5-TEMP to create a permanent
or temporary file.

Set FDE5-FCS-LOCK to FCS-LOCK-YES or FCS-LOCK-NO to indicate whether the
progra..m desires exclusive use of this dynamic file.

Syntax:

Where:

CALL 'TIPFCS' USING PCS-CREATE
file-pkt
file-desc

FCS-CREATE

Function code from the TC-FCS copy element.

file-pkt Logical file name packet

file-desc File descriptor packet.

Refer to the earlier description of the copy element TC-FDES.

Error Conditions:

PIB-Dup .. AFr -NAM:E A file of the name given in the file-pkt is already assigned to the
process.

PIB-NOT -FOUND The requested file already exists.

3-78 7002 3999-100

TIPFCS for Dynamic Flies

3.16.5. FCS .. GET - Dynamic: Read Record(s)

Records in FCS Dynamic files are referenced by relative record number. The program
specifies a relative record number (as a fullword) to read.

If the optional parameter REC-COUNT is specified, FCS will read that many records
(starting with the relative record indicated by REC-NUM) into the record area.

If the optional parameter REC-COUNT is not specified, FCS will read a single record into
the record area specified.

You must fullword align the record area; it must also be large enough to accommodate the
number of records requested by REC-COUNT (that is, REC-COUNT * 512 bytes).

If a requested record is beyond the current allocation of blocks, TIPFCS will allocate more
blocks to the file, up to the maximum allowable limit for a dynamic file.

Note: When TIPFCS returns blocks to the calling program, the data in the blocks is not
inif.alized; the program must take responsibility for the contents of the blocks.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-GET
file-pkt
record
rec-nULTL
rec-count

FCS-GET Function code from the TC-FCS copy element.

file-pkt Logical file name packet

record Record area with a size of (512 x REC-COUNT) bytes.

This area must be fullword aligned.

rec-num Binary fullword that specifies the relative record number of the first record to
read. .

rec-count Optional fullword that specifies how many records to read. Default is one
record.

7002 3999-100 3-79

TIPFCS for Dynamic Flies

3-80

Example:

OS LFN-PKT
OS REL-REC-NUM
os REC-COUNT
OS DYN-REC.

10 FILLER
10 FILLER

PIC X (9) .
PIC 9(7) COMP SYNC.
PIC 9(7) COMP SYNC.

PIC 9(7) COMP SYNC.
PIC X(1020) .

MOVE 1 TO REL-REC-NUM
MOVE 2 TO REC-COUNT
CALL 'TIPFCS' USING FCS-GET

LFN-PKT
DYN-REC
REC-COUNT

In the example above, the program must next increment the REL-REC-NUM field by
REC-COUNT to read the next set of records.

7002 3999-1 00

TIPFCS for Dynamic Files

3.16.6. FCS .. QPEN --- Dynamic: Open File

Use the FCS-OPEN function to open any dynamic file. The file descriptor supplied with the
call and any existing TIP /30 catalogue record information is used to determine what type
of file is to be opened:

• To open an existing file set FOES-FCS-TYPE to FCS-TYPE-OLD. If the FDE5-FCS-TYPE
is left as a space and the file exists, it is opened. If the file does not exist, it is created.

• To create a new file set FOES-FeS-TYPE to FC5-TYPE-NEW.

Thus, depending on the values set in the file descriptor, FCS-OPEN can perform the same
functions as FCS-ACCESS, FC5-ASSIGN and FCS-CREATE.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-OPEN
file-pkt
file-desc

FCS-OPEN'

Function code from the TC-FCS copy element.

file-pkt Logical file name packet

file-desc File descriptor packet.

Refer to the earlier description of the copy element TC-FDES.

Error Conditions:

PIB-DUP-AFT-NAME A file of the name given in the file-pkt is already assigned to the
process.

PIB-NOT -FOUND The requested file does not exist.

7002 3999-100 3-81

TIPFCS for Dynamic Files

3.16.7. FCS-PUT -- Dynam"ic: Write Record(s)

Dynamic file records are a fixed size of 512 bytes. The FCS-PUT function allows the
program to write one or more records (in sequence) to a dynamic file.

If a RECORD-NUMBER is specified that is beyond the current limit of the file, FCS will
expand the file to accept that record up to the maximum file size allowed for a dynamic file.

Files are expanded to the dynamic file upper limit:

(48 extents) x (FCSEXTENT= blocks) x (512 bytes)

FCSEXTENT= is a TIP /30 generation parameter that nonnally defaults to 40.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-PUT
file-pkt
record
rec-num
rec-count

FCS-PUT Function code from the TC-FCS copy element.

file-pkt Logical file name packet

record Record area. The size of this area must be 512 bytes times the value of
REC-COUNT.

This field must be full word aligned.

rec-num Binary fullword that specifies the relative record number of the first record to
be written.

rec-count Optional fullword that specifies the number of records to be written. Default
is one record.

3-82 7002 3999-1 00

TIPFCS for Dynamic Files

3111611811 FCS-SCRATCH -- Dynamic: Scratch File

The FCS-SCRA TCH function deletes either "temporary" or "permanent" dynamic files from
the FCS system.

A file must be assigned before it can be scratched. Temporary Dynamic files are
automatically scratched if TIP /30 terminates abnormally or if the transaction aborts; one of
the PMDA processing functions issues a FCS-SCRATCH function for any temporary
dynamic files that it finds in the aborting program's Active File Table (AFT).

Syntax:

Where:

CALL 'TIPFCS' USING FCS-SCRATCH
file-pkt

FCS-SCRATCH

Function code from the TC-FCS copy element.

file-pkt Logical file name packet

Error Conditions:

PIB .. FUNCTION

PIB-WRONG-MODE

The file is not assigned to the program.

The file is not a dynamic file.

Additional Considerations:

After TIP /30 scratches the dynamic file, it frees the blocks of the TIP$RNDM file formerly
occupied by the file.

Note: TIP/3D does not erase the contents of the blocks - if the file contained sensitive
infonnation, the program could first rewrite all records with low-values and then use
FCS-SCRATCH to erase the file.

7002 3999-100 3-83

TIPFCS for Edit Buffers

3.17. TIPFCS for Edit Buffers

3-84

The text editors supplied with TIP /30 do all editing in a special purpose FCS dynamic file
called an "edit buffer".

TIP /30 uses a two part name (unlike dynamic files that have three part names) to name edit
buffers. Each part of the name may be from one to 8 characters. For example:

EDP/PAY020

The first part of the name is normally detennined by the group membership of the user
who created. the edit buffer. This is the assumption made by the TIP /30 text editors;
however, this is not a hard and fast rule.

TIPFCS maintains the file structure used for edit buffers within a TIP /30 permanent
dynamic file. An edit buffer consists of:

.. a control record (block #1)

., index blocks

., data blocks.

Although edit buffers may define their own record length, the most popular record length
(used by the TIP /30 editors) is 85 bytes (80 bytes of data; followed by 5 bytes of control
information). Each data block (512 bytes) may hold up to six 85-byte records. The first 80
characters are the data in the line image from the library. The 81st byte is a binary version
number.

Note: TIP/3D reserves bytes 82 through 85. Records in an edit buffer are accessed by a line
number relative to one.

If a record is deleted all following records move up (their line number decreases by one). If
a record is added all following records move down (their line number increases by one).

User-written TIP/3D programs may find this file structure convenient in applications where
they must create a dynamic file for purposes of manipulation in a line by line m~nner.

70023999-100

TIPFCS for Edit Buffers

3.17.1. FCS-ADD - Edit: Add/Insert Line

The FCS-ADD function adds or inserts a new record to an edit buffer.

Syntax:

Where:

CALL 'TIPFCS' USING FeS-ADO
file-pkt
record
line-num

FeS-ADD Function code from the Te-FCS copy element.

file-pkt Logical file name packet.

record Record area.

line-num Binary fullword holding the relative record number that is to be added.

The supplied record becomes the new contents of the specified line number.
All records that follow this line number will have their record number
increased by 1.

If this field contains a value t~at is higher tha.."1 the cu.."Tent last line nUIl'.ber,
this record is added at the end of the edit buffer and TIPFCS modifies the field
to reflect the resulting actual line number of the added record.

Error Conditions:

PIB-EOF

PIB-NOT -FOUND

This error status indicates that the edit buffer is full.

The edit buffer is not assigned to the process.

Additional Considerations:

The record is written to the file at the specified position. TIP /30 shifts any records
currently at that position or higher to the next higher position by altering the index to
reflect their new logical position in the file.

7002 3999-100 3-85

TIPFCS for Edit Buffers

3.17.2. FCS-CLOSE - Edit: Close Buffer

3-86

The FCS-CLOSE function closes an edit buffer and removes the entry for the edit buffer
from the Active File Table (AFT) of the process.

Note: Before issuing this call, the program must be certain to issue an FeS-FLUSH function
(see description of this [unction), otherwise some changes to the edit buffer may not be
written to the disk.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-CLOSE
file-pkt

'FCS-CLOSE

Function code from the TC-FCS copy element.

file-pkt Logical file name packet.

Error Conditions:

PIB-NOT-FOUND The edit buffer is not assigned to the process.

7002 3999-1 00

3.17.3. FC5-0ELETE -- Edit: Delete Line

The FCS-DELETE function deletes a line from an edit buffer.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-DELETE
file-pkt
record
line-num

FCS-DELETE

file-pkt

record

Function code from the Te-FCS copy element.

Logical file name packet.

Record area.

TIPFCS for Edit Buffers

This parameter is a dummy parameter to maintain symmetry with other calls
to TIPFCS.

line-num Binary fullword holding the relative line number to be deleted.

Error COnditions:

PIB-NOT -FOUND The edit buffer is not assigned to the process.

Additional Considerations:

TIP /30 deletes the record at the specified position from the file. Any records with a higher
line number are shifted down one line number by changing the index to reflect their new
logical position in the file.

Note: The specification of a line number that is out of bounds (for example, past end of file> will
not result in an error status!

70023999-100 3-87

TlPFCS for Edit Buffers

3.17.4. FCS-FLUSH -- Edit: Flush Buffer

3-88

TIPFCS assumes responsibility for the maintenance of the index for an edit buffer.
Updated blocks are not written to disk unless TIPFCS determines that they need to be
written to make space in the I/O buffer that is maintained in memory.

The FCS-FLUSH function forces TIPFCS to update all modified blocks. This function must
be the last function used prior to a FCS-CLOSE when the program has modified the edit
buffer.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-FLUSH
file-pkt

FCS .. FLUSH

fUe-pkt

Function code from the TC-FCS copy element.

Logical file name packet.

Error Conditions:

PIB-NOT -FOUND The edit buffer is not assigned to the process.

7002 3999-1 00

TIPFCS for Edit Buffers

3.17.5. FCS-GET - Edit: Read Line

The FC5-GET function reads a line from an edit buffer.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-GET
file-pkt
record
line-num

FCS-GET Function code from the TC-FCS copy element.

file-pkt Logical file name packet.

record Record area.

This area must be large enough to hold a record from the edit buffer.

line-num' Binary fullword holding the relative line number to read.

Error Conditions:

PIB-EOF

PIB-NOT -FOUND

7002 3999-100

The record number is out of bounds.

The edit buffer is not assigned to the process.

3-89

TIPFCS for Edit Buffers

3.17.6. FCS-OPEN - Edit: Open Buffer

3-90

TIP /30 Edit Buffers are a specific implementation of an access method that uses TIP /30
dynamic files as the storage medium. Edit buffers are '1ine-oriented" in the sense that they
manipulate ''lines'' of data. The most common implementation of edit buffers (used by
TIP /30 editors) specifies a line length of 85 characters. TIP /30 always references the lines
in an edit buffer by positive whole numbers that range from one in increments of one.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-OPEN
file-pkt
file-desc
buffer
num-buffers
line-length

FCS-OPEN Function code from the TC-FCS copy element.

£ile-pkt Logical file name packet.

file-desc: File descriptor packet (see copy element TC-FDES). The example which
follows illustrates additional details.

buffer A work area that TIPFCS may use as an I/O buffer for the file. If this
parameter is omitted, FCS attempts to allocate a dynamic buffer (of 1536
bytes) from the TIP /30 free memory pool (TIP /30 generation parameter
FREEM=).

If this parameter is provided, it must represent a FULL WORD aligned area of
at least 3,012 bytes - also see description of the following parameter.

Note: Omit this (and following parameters) if the program is to open the edit
buffer with the intention of shared read access.

num-buffers

The second halfword of this buffer always contains a binary number
representing the number of lines currently in the edit buffer.

The user program must never modify the contents of this buffer -
only TIPFCS is intended to access this buffer.

A halfword that indicates the number of 512 byte data blocks that immediately
follow the mandatory initial index block in the "buffer" specified in the
previous parameter.

Minimum specified value is two (implying that ''buffer'' is 512 + (2*512) bytes

}y1aximum Specified value is 12 (implying that ''buffer'' is 512 + (12*512) bytes

7002 3999-1 00

line-length

TIPFCS for Edit Buffers

The larger the number of data blocks allocated in the buffer, the more
potential work can be accomplished in memory (rather than performing disk
I/O).

A halfword containing the desired line length for this edit buffer.

Range: 64 through 512 bytes inclusive.

Default value (if parameter is omitted or is out of the allowable range) is 85.

Note: The TIP/3D editors default to creating edit buffers that have a line
length of 85 characters (80 bytes of user data plus 5 bytes of control
information) .

Error Conditions:

PIB-NOT -FOUND The edit buffer is not assigned to the process.

PIB-DUP-AFT .. NAME The logical file name is already in use by the process.

70023999-100 3-91

TIPFCS for Edit Buffers

3-92

Example:

in the program's WORKING-STORAGE

77 NUM-BUFFERS PIC 9(2) CaMP SYNC VALUE 3.

in the program's work area ...
02 EDIT-BUF-DESC. COPY TC-FDBS OF TIP.

05 EDIT-BUF-LFN PIC X(9) .
05 EDIT-WORKAREA.

PIC 9(7) CaMP SYNC. 10 EDIT-BUFFER-WORD1
10 ED IT-BUFFER-WORDlR

15 FILLER
REDEFINES EDIT-BUFFER-WORD1.

MOVE
MOVE
MOVE

MOVE
MOVE
MOVE

10
10
10
10

15 EDIT-LINES
FILLER
FILLER
FILLER
FILLER

PIC X (2) .
PIC 9(4) CaMP.
PICX(508).
PIC X(5l2) .
PIC X(5l2) .
PIC X (512) .

... in the PROCEDURE DIVISION

'WORKFIL' TO EDIT-BUF-LFN
'EDP' TO FDES-USERID
'SOMEDATA' TO FDES-CATALOG

FDES-FILE-NAME
SPACES TO FDES-PASSWORD
FCS-CLASS-QED TO FDES-FCS-CLASS
SPACE TO FDES-FCS-TYPE

FDES-FCS-PERM·
FDES-FCS-LOCK

CALL 'TIPFCS' USING FCS-OPEN
EDIT-BUF-LFN
EDIT-BUF-DESC
EDIT-WORKAREA
NUM-BUFFERS

This example opens an edit buffer named !tEDP /SOMEDATA". Since FDES-FC5-1YPE is
space, it will either open an existing edit buffer or (if necessary) create one by that name.

Note: In the definition of the edit work area the first word is defined as a binary synchronized
item to force proper alignment of the group item! The second halfword is redefined to
allow interrogation of the number of lines in the edit buffer.

The stated number of buffers is three; therefore, three filler items that are 512 bytes each
follow the first block of 512 bytes.

7002 3999-1 00

TIPFCS for Edit Buffers

3.17.7. FCS-PUT - Edit: Replace Line

The FCS-PUT function replaces or rewrites an existing line in an edit buffer.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-PUT
file-pkt
record
line-num

FCS-PUT Function code from the TC-FCS copy element.

£ile-pkt Logical file name paCket.

record Record area.

line-num Binary fullword holding the relative record number to be replaced.

Error Conditions:

PIB-EOF

PIB-NOT-FOUND

7002 3999-100

The line number is out of bounds.

The edit buffer is not assigned to the process.

3-93

TIPFCS for Edit Buffers

3.17.8. FCS-SCRA TCH - Edit: Scratch Buffer

3-94

Use the FCS-SCRA TCH function to erase (scratch) an edit buffer that has already been
opened by the program.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-SCRATCH
file-pkt

FCS .. SCRATCH

Function code from the TC-FCS copy element.

Logical file v..a.m.e packet identifying the edit buffer.

Error Conditions:

PIB-NOT-FOUND The edit buffer is not assigned to the process.

Additional Considerations:

TIP /30 creates edit buffers as iipermanent'; dynamic fiies - this prevents their
disappearance when a system crash occurs. Since they are permanent dynamic files, they
must be explicitly scratched to erase them from the TIP$RNDM file. The TIP /30 CAT
program (Catalogue Manager) and the TIP /30 text editors can also be used to discard
(scratch) edit buffers.

7002 3999-1 00

TIPFCS for Library Files

3.18. TIPFCS for Library Files
TIP /30 programs may access library elements stored. in a SAT format library. TIP /30
supports limited (read) access to load or object modules and pennits (read) access to the
directory of a library.

Note: TIP /30 does not support access to MlRAM libraries.

Library elements contain lines of data that are up to 128 bytes in length. TIP /30 assumes
that the record area that is designated by the program for read or write operations is 128
bytes long.

TIP /30 supports the following function codes for library elements:

Table 3-9. Functions for Library Access

... "'-"'&. '11 --r-... 66_ _._ ... - -..
FCS-GET Get next input record (line).

FCS-PUT Output next output record (line).

FCS-CLOSE Oose library element.
If reading: de-access file.
If writing: the old module is flagged "deleted"
and the latest element flagged "active".

FCS-NOUP Oose file (cancel update).
If reading: de-access file.
If writing: old module is not flagged deleted.

7002 3999-100 3-95

TIPFCS for Library Files

3.18.1. Library File Descriptor

3-96

The layout of the FILE-DESCRIPTOR packet for library files is described in the copy
element TC-FDES in the TIP /30 library: .

01 LIB-FOES. COpy TC-FDES OF TIP.
**
* FCS FILE DESCRIPTOR PACKET
**

05 FOES-USER-ID PICTURE X (8) •

05 FOES-CATALOG PICTURE X (8) •

05 FDES-FILE-NAME PICTURE X (8) •

05 FDES-PASSWORD PICTURE X (8) •

05 FDES-FCS-CLASS PICTURE X.
05 FDES-FCS-TYPE PICTURE X.
05 FDES-FCS-PERM PICTURE x.
05 FDES-FCS-LOCK PICTURE X.

**
* ADDITIONAL FIELDS FOR LIBRARY ELEMENT ACCESS *
**

Where:

05 FOES-ELEMENT
05 FOES-COMMENTS
05 FDES-DATE
05 FDES-TIME

PICTURE X(8) .
PICTURE X(30) .
PICTURE X(8) .
PICTURE X(5).

FDES-USERID

The group name (or user name) associated with the TIP /30 catalogue entry for
the library file.

If this field is spaces or low-values, TIPFCS will perform a "standard order of
search" for the correct catalogue entry to reference.

FDES-CATALOG

Logical file name for the library (as Specified in the TIP /30 catalogue).

This field normally contains the same value as the following field
(FOES-FILE-NAME), although the library open routines will accept a logical
file name in either this field or the next.

FOES-FILE-NAME

Logical file name for the library (as specified in the TIP /30 catalogue).

FDES-FCS-CLASS

S .. Search only for an 05/3 file (this is the preferred value for
opening library elements).

7002 3999-1 00

TIPFCS for Library Flies

Space (or low-value). The catalogue search may "find" an edit buffer or
dynamic file.

FDES .. FCS-TYPE

Library element type codes. TIP /30 supports the following values:

S Source module.

M Macro or proc.

I Internal symbol dictionary for load module.

D Read detailed directory of file.

F Read fast directory of file (no comments or time stamp).

Note: Types If D, and F are read-only access.

IDES-FCS .. PERM

Specified when the element is opened.

If read access desired, set to "R".

If write access desired, set to 'W".

The following fields are uniquely used for access to library elements:

IDES-EL F1\.1F.NT

Element (module) name within library.

This field contains the actual element name for "5" or "M" elements.

This field may contain a prefix if the type is "0" or ''PI (directory retrieval).

FDES-COrvlMENTS

Comments (stored in element header record)

FOES-DATE

Date module was created: ''YY /MM/DD" format

IDES-TIME

Time module was created: "HH:MM" format

7002 3999-100 3-97

TIPFCS for Library Files

3.18.2. FCS-CLOSE Library: Close Element

3-98

The FCS-CLOSE function closes the specified library element and removes the entry for the
file from the Active File Table (AFr) for the process. TIP /30 always (physically) closes
library files - they do not remain open.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-CLOSE
file-pkt

FCS-CLOSE

Function code from the TC-FCS copy element

file-pkt Logical file name packet.

Error Conditions:

PIB-FUNCI'ION File is not assigned to the program.

7002 3999-1 00

TIPFCS for Library Files

3.18.3. FC5-GET -- Library: Read Next Line

The FCS-GET function reads the next line of an input library element.

Syntax:

CALL 'TIPFCS' USING FCS-GET
file-pkt
record

Where:

FCS-GET Function code from the TC-FCS copy element.

file-pkt Logical file name packet.

recOA-d Record area where line data is placed.

The record area is a fixed size of 128 bytes.

Error Conditions:

PIB-FUNCTION

YIlt-la-ERROR

PIB-EOF

PIB-WRONG .. MODE

7002 3999-100

The file is not assigned to the program

An I/O enOf occurred on the disk.

The end of the element has been reached.

The library file was not opened for input processing.

3-99

TIPFCS for Library Files

3.18.4. FCS-NOUP - Library: Close Element (No update)

3-100

The FCS-NOUP function is similar to a FCS-CLOSE function. If the element is currently
open with 'Write" access, the element will not be activated - the previous version of the
element, if any, will remain the current element.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-NOUP
file-pkt

FCS .. NOUP Function code from the TC-FCS copy element.

fUe-pkt Logical file name packet.

Error Conditions:

PIB-FUNcrION File is not assigned to the program.

7002 3999-1 00

TIPFCS for Library Files

3.18.5. FCS-OPEN -- Library: Open Element

The FCS-OPEN' function assigns the library to the issuing process and makes an
appropriate entry for the logical file in the Active File Table (AFT). Tll'FCS issues a Data
Management OPEN for the library and attempts to make the specified element available.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-OPEN
file-pkt
file-dese

FCS-OPEN Function code from the TC-FCS copy element.

flle-pkt

file-desc

Logical file name packet.

File descriptor packet (see earlier description of the TC-FDES library
descriptor packet).

Example:

~n the progr~~/s work area

02 LIB-FDES.
02 LIB-LFN
02 LIB-REC

COpy TC-FDES OF TIP.
PIC X(9).
PIC X(128).

in the PROCEDURE DIVISION

MOVE SPACES TO LIB-FDES
MOVE 'INFILE' TO LIB-LFN
MOVE ' TIP' TO FDES-FILE-NAME
MOVE ' R' TO FDES-FCS-PERM
MOVE ' S' TO FDES-FCS-CLASS
MOVE fTC-FDES' TO FDES-ELEMENT
CALL 'TIPFCS' USING FCS-OPEN

LIB-LFN
LIB-FDES

The above example opens the library element "TIP I TC-FDES" for read operations
(FOES-FCS-PERM).

Note: The name in the LFN file packet ("INFILE") can be any name the programmer chooses -
the TIP/3D file system uses the name to determine which file the program is referring to
during subsequent calis to TIPFCS.

70023999-100 3-101

TIPFCS for Library Files

3-102

Error Conditions:

PIB-I()"ERROR

PIB-DUP-AFr-NAME

PIB-DUP-KEY

PIB-FUNCTION

PIB-LOCKED

An I/O error occurred while opening the file.

A file with the name given in file-pkt is already assigned to the
terminal.

An element of that name already exists in the library.

Note: This is a warning that is given when an existing
element is opened with " Write " access. The program
may choose to ignore this error - and thereby update
an existing element when the FCS-CLOSE is issued
later.

An attempt was made to open a file that is not a library.

Some other TIP /30 application program or batch job has
exclusive access to the Hbmry.

7002 3999-1 00

TIPFCS for library Files

3.18.6. FCS-PUT -- Library: Write Line

The FCS-PUT function will output the next line (sequential fashion) to the library element.

Syntax:

CALL 'TIPFCS' USING FCS-PUT
file-pkt
record

Where:

FCS .. PUT

file-pkt

Function code from the TC-FCS copy element.

Logical file name packet

record

Error Conditions:

PIB-FUNCTION

PIB-Io-ERROR

PI1J...EOF

PIB-WRONG-MODE

7002 3999-100

The File is not assigned to the program.

An 1/0 error occurred on the file.

The file is fuii.

The library file was not opened for output processing.

3-103

TIP/30 Print Facility (TIPPRINT)

3.19. TIP/30 Print Facility (TIPPRINT)

3-104

TIP /30 native mode programs may call the reentrant subroutine TIPPRINT to perform
printing functions. TIPPRINT directs print lines to any of the following "destinations":

• a batch print file (via the 05/3 spooling system)

II an OS /3 sequential output file

• an auxiliary (communications) printer

• an MS-DOS file (assuming that the terminal is a personal computer running with
appropriate terminal emulation software and hardware)

• a terminal (in full screen display mode),

• A UNIX system (assuming that there is an appropriate interface between the OS /3
system and a UNIX machine)

• An OFIS Link/80 file (assuming that the OFIS link/80 interface is installed).

The user interface with TIPPRINT is similar to the interface used in standard TIPFCS calls.
The first three parameters, function-code, filename, and record, are common to both
interfaces - the fourth parameter of TIPPRINT, however, supplies the name of a user
supplied work area that TIPPRINT uses as a buffer. TIPPRINT uses the filename (2nd
parameter) to determine the destination of the print file (illustrated in the list above),

TIPPRINT deals with variable length print lines that must contain a (device independent)
carriage control code (see the Unisys publication 05/3 BASIC DATA MANAGEMENT
USER GUIDE [UP-8068] Table 7-1, Device Independent Control Character Codes).

If a user program needs to print only on the main site printer and the application does not
need the capability to print on an auxiliary device printer, use direct calls to the TIP /30 File
Control System (FCS). When the destination is a batch printer file TIPPRINT issues calls
directly to TIPFCS.

A TIP /30 native mode program issues Calls to the TIPPRINT subroutine to perform the
following functions:

OPEN

PUT

FLUSH

CLOSE

Initiate the interface to TIPPRINT.

Pass a single print line image to TIPPRINT.

Force TIPPRINT to empty its internal buffer.

Terminate the interface with TIPPRINT.

The program provides the print lines and TIPPRINT ensures their delivery to the specified
printer.

7002 3999-1 00

TIP/30 Print FaclUty (TIPPRINT)

Additional Considerations:

TIP /30 sends all auxiliary device messages generated by TIPPRINT to the printer via the
ICAM MEDIUM tenninal queue.

Generate ICAM with FEATURES=(OPCOM,OUIDELV) to support TIPPRlNT auxiliary
printing. TIPPRINT always waits for delivery notification from ICAM when performing
auxiliary device I/O. Since TIPPRINT is usually buffering print lines (to send as a single
message rather than several little messages), the user program should avoid having a serial
resource locked when calling TIPPRINT.

The program may nQ! have a file (or files) in SEQUENTIAL mode (SETL) or be imparted to
a data base when issuing a call to TIPPRINT.

The following sections describe the various calls to TIPPRINT. The calls are described in
the sequence that they are normally encountered in a program; namely, OPEN, PUT,
FLUSH, and CLOSE.

3.19.1. TIPPRINT Print Destinations

The TIPPRINT subroutine can direct print lines to a number of potential destinations.
Programs that call TIPPRINT provide printer destination information when opening the
interface to specify where the print lines are to be sent. This section describes the various
supported destinations and also discusses special information that may interest the
programmer.

The second parameter on all calls to TIPPRINT is a standard nine-byte filename packet.
This filename packet is the primary place where the program can indicate the desired
destination of the output. In some cases, the program may choose to supply additional
destination information in the "INFO-PKT" that is the third parameter passed on a
FCS-OPEN function call.

3.19.1.1. ROLL - Single Line Terminal Output

Specifying the character string ''ROLL'' as a destination tells TIPPRINT to "roll" out the
generated lines of output to the terminal that is calling TIPPRINT. In this case, TIPPRINT
passes the data portion of the generated print lines to the standard TIP /30 output routine
"ROLL".

ROLL will move the contents of the tenninal up one line (the top line disappears off the
screen) and then outputs the current data to the last line of the terminal. This print
destination is often used to test or debug print programs when a printer is not available.

7002 3999-100 3-105

TIP/30 Print Facility (TJPPRINT)

3.19.1.2. AUXO - Fun Screen Output

Specifying a destination of "AUXO" tells TIPPRINT to output the print data one screen full
at a time. TIPPRINT accumulates print lines until there are N-llines (N is the number of
rows on the tenninal). TIPPRINT then outputs the N-llines of data (truncated to the width
of the screen if necessary) on lines two through N of the terminal where the program is
executing and automatically displays a continuation prompt on the first line of the
terminal:

~ntinUe? ~Yes ~No

Reply:

• Yes if you wish to see the next screen full of infonnation

• No to return PIB-BREAK status to the calling program and thus halt printing as soon as
possible.

AUXO is the default print destination for many of the TIP /30 utility programs that display
information on the tenninal. If you specify this destination for an IBM-327x style terminal,
TIP /30 changes it to ''ROLL'' since the 327x does not support this type of output.

3.19.1.3.. AUXn - Auxiliary Device

3-106

You n"'aay dL~t TIPPFJNT output to a terminal auxiliary device (typically a printer):

AUXnTTTT

You can, theoretically, connect AUX devices (for example, printers, cassettes, or diskettes)
on anyone of a number of auxiliary interfaces (numbered 1 through F). Specify the device
number n (1 through F) immediately following the string "AUX". The last four characters
TIT!' represent the desired terminal name.

Note: For historical purposes, TIP/3D considers the strings "COP" and "DCT" to be synonyms
o!"AUX".

The default terminal name (if the ITIT field is spaces or low values) is the terminal that is
calling Tll'PRINT. You can route output to any other terminal in the network by placing
the desired terminal name in the TI'TT field.

TIPPRINT recognizes the following special character strings as reserved terminal names:

The bypass terminal (as determined by searching the TIP /30 CLUSTER
generation statements - see the CLUSTER statement in TIP/3D Generation,
Maintenance and Installation, ARP-600-OS.

The master terminal of the calling terminal's cluster. See *BYP above.

TIP /30 ignores the TI"IT Specification if either of the above special names cannot be
resolved. The output is routed to the calling terminal.

For output sent to an auxiliary device, TIP /30 first displays the data on the terminal
associated with the auxiliary device (TTTT). TIPPRINT places an appropriate terminal

7002 3999-1 00

TIP/30 Print Facility (TIPPRINT)

control code at the end of each screen full of data to cause the terminal to PRINT its display
contents on the indicated aux device.

Some terminals have a "bypass printer" mechanism that consists of memory that holds the
data. destined for the "screen". The advantage of this mechanism is that it is relatively
tra.nsparent to the terminal operator; printing utilizes the bypass memory rather than tying
up the operator's display.

Note: Data that will be printed must first be output to the "screen". The tenninal must advance
to the next line on the screen when it receives a carriage-return character. This implies
that auxiliary printers cannot support the traditional "print without spacing".

TIPPRINT simulates the ability to print without advancing the paper (sometimes called
"overprinting"), by enforcing the following rules when such a print line is sent to an AUX
device:

• A print line that specifies "print with no spacing" is NOT discarded, but the data will be
merged with the next line that specifies "print with spacing"

• Underscore characters override spaces

• Printable characters override spaces and underscores

• The last data received overrides previous data.

Example of Print With No Space:

Line #1 (print no space): "This is a test line

Line #2 (print no space): "

Line #3 (print & skip 1)" TEST 001"

RESULT PRINT LINE: "This_is_a_TEST _______ 001"

In previous releases of TIPPRlNT, lines containing carriage control codes specifying "print
with no space" were discarded!

7002 3999-100 3-107

TIP/30 Print facUlty (TiPPRINT)

3.19.1.4. M5-DOS file - d :xxxxx

3-108

TIPPRINT can output "print lines" to a terminal that is a personal computer (PC) with the
appropriate combination of hardware and software:

4) a Unisys Terminal Emulation Package (STEP) or

4) Computer Logic's Personal Emulator Package (PEP). To support this, TIPPRINT
recognizes a printer destination of the form:

d:xxxxxx

Where:

• d is the M5-DOS drive designator

• : is literally a colon character

• ::ooooa is the desired M5-DOS filename.

Since the filename packet is limited to eight characters, Tll'PRll\IT automatically supplies
an M5-DOS extension of "PRN". Filenames are, thus, limited to six characters.

To specify a larger filename, or to create a different file extension, specify the complete
MS-DOS filename by filling in the appropriate fields in the INFO-PKT during the
FCS-OPEN call to Tll'PRINT. .

WARNING

Due to present limitations in the STEP and PEP
packages, you CANNOT specify MS-DOS path
information for this type of file transfer. PEP/STEP
creates the filename in the active directory of the
disk drive specified.

TIPPRINT transfers data to the M5-DOS file in a manner similar to that used for auxiliary
printing: the data is output to the screen and then transferred to the appropriate MS-DOS
file. TIPPRINT fills in the correct information in the PC control page (STEP or PEP). This
type of data transfer allows the transmission of displayable graphics characters only.

There is !lQ. provision for specifying which display to use to transfer data to the PC.
TIPPRINT does not alter the terminal index number in the STEP or PEP control page­
TIPPRINT assumes that the transfer is taking place on the correct rid I sid.

Note: Users of the Computer Logics PEP board (and the Unisys STEP board) are aware that the
file transfer capability does NOT pravide any way to specify a complete MS-DOS
filename - the MS-DOS file name is assumed to be in the current subdirectory for the
specified drive.

This restriction can be circumvented by making use of the MS-DOS SUBST command. The
SUBST command allows you to designate a pseudo drive name for a specific path name. In
some versions of MS-DOS, you can also redirect a real drive name to a different directory
path.

7002 3999-1 00

TIP/30 Print Facility (TIPPRINT)

Refer to the appropriate MS-DOS documentation for the specific details of the SUBST
command for your PC. The following example illustrates how to use this MS-DOS
command.

Example:

MS-DOS:

SUBST H: C:\BUDGET\1988

The example above substitutes the MS-DOS drive name H: for the path C:\BUDGET\1988.
By using drive H: in the TIPPRINT destination specification, MS-DOS creates the file in the
desired directory.

There may be revision levels of PEP and STEP that do not recognize some MS-DOS drive
names as valid drives. There are also restrictions that some versions of MS-DOS impose on
the operation of "d..tives" specified ,villi a StJBST COI!'.l!'.and - refer to the appropriate PC
documentation.

Some versions of MS-OOS require adjustment of the LASTDRIVE= specification in the
CONFIG.SYS file to accommodate drive names used in a SUBST command.

3.19.1.5. PRNTR - Batch Printer(s)

TIPPRlNT can output "print lines" to a standard 05/3 file. The filename specified in the
file packet is a TIP /30 logical filename. You must define the filename in the TIP /30
catalogue.

If the file resolves to be a print file, the print lines will be sent to the OS /3 spooling system.
TIP /30 automatically breakpoints the print file when a FCS-CLOSE is issued to TIPPRlNT.

Note: You may generate more than one print file in the TIP/3D system - "PRNTR 1/ is
automatically defined in the TIP/3D system.

3 .. 19.1.6. SMIRAM File - Output to File

A standard logical file name can be used as a TIPPRINT destination to route print lines to
an output sequential file.

If the filename resolves to be an OS/3 data management file, TIPPRINT issues an FCS-PUT
function to the file with the print line (including the five-byte header information) as the
data. This works best if the file is a sequential MIRAM output file.

7002 3999-100 3-109

TIP/30 Print Facility (TIPPRINT)

3.19.1.7. OFIS Link/SO

The reserved names 'WORKING" and "IN-MAIL" represent OFIS U~/80 destinations.
TIPPRIl'IT routes the print lines to the appropriate OFIS Unk/80 file.

Note: The program may place information in the INFO-PKT when FCS-OPEN is issued to
specify a OFIS Link/SO drawer and folder other than the special1Ulmes " WORKING " or
"IN-MAlL".

To use this facility, you must install (and correctly configure) the TIP /30 - OFIS Unk/80
interface software Refer to the following TIP /30 publications:

II OFIS Link/SO Administration Guide - ARP-607-00

• OFIS Link/SO User Guide - ARP-612-OO.

3.19.1.8. UNIX: - UNIX Files

IlPP~J:NT ran output "print lines" to a file on a Unisys UNIX system (Series SOOO machine).
TIPPRIl'IT will route the data to the receive file that is designated on the UNIX side of the
interface. To utilize this facility, you must properly set up the UNIX machine to support file
transfer and you must be logged on to TIP /30 using the UNISCOPE Emulator.

For further infonnation, consult the latest version of the publication Unisys 5000 and 7000
Series System Communication UNISCOPE Emulation Guide, UP-l1S69 (Series 5000 and 7000
System Library). The section titled ''FILE TRANSFER OPERATION" contains a brief outline
of the necessary steps.

Note: The specification of the receiving filename is done on the UNIX side of the interface;
hence, you may only speafy the reserved name "UNIX:" in the TIPPRINT filename
packet.

3-110 7002 3999-1 00

TIP/3~ Print Facility (TIPPRINT)

3.19.2. FCS-OPEN - Open TIPPRINT Interface

The program must first establish the interface to the Tll'PRINT subroutine by issuing a call
to Tll'PRIl'IT with a function code of "FCS-OPEN'. This call:

• Initializes the Tll'PRll'IT interface

• Establishes the desired print destination and

• Specifies printing options that you require.

Syntax:

Whet'S:

CALL 'TIPPRINT' USING FCS-OPEN
FILE-PKT
INFO-PKT
BUFFER.

FCS-OPEN

FILE-PKT

7002 3999-100

This function code (normally defined via the supplied. copy element
TIP /TC-FCS) indicates that the desired. function is to OPEN the interface.

Standard (8+1 byte) filename packet that is used to specify the output device
that Tll'PRINT is to use.

Refer also to description ofTIPPRINT destinations in "3.19.1. Tll'PRINT Print
Destinations" on page 3-105.

The filename may be the name of a batch print file (for example, PRNTR) or
may be the name of an auxiliary print device.

If the first four characters of the filename are "ROLL", TIPPRINT outputs print
lines by passing the data to the TIP /30 subroutine ''ROLL'' (output one line at
a time after moving the screen contents up one line).

If the first four characters of the filename are "AUXO", TIPPRINT accumulates
print lines and display the print lines one screen full at a time and prompt the
terminal operator for continuation.

If the first three characters of the filename are "AUX", "COplt or ''OCT'',
TIPPRINT routes printing to the auxiliary printer. In this case, TIPPRINT uses
the fourth character of the filename to specify the auxiliary device number
(usually "1" through "Ft).

Y au rr..ay use t.."'te trailing four c~..aracters of the filenaIlle to indicate a specLfic
terminal name for the auxiliary I/O data transfer.

Tne default tenninal is the tenuinal being used. by the prot,!am calling
TIPPRINT.

3-111

TIP/3D Print Facility (TiPPRINT)

3-112

Use the tennina1 name ' Byp" to direct output to the bypass terminal of the
associated CLUSTER

Use the terminal name ' MST" to direct output to the master terminal of the
associated CLUSTER

TIPPRINT also can transfer print lines to an MS-DOS file. To do this, specify
the filename as an MS-DOS filename, for example:

X:YYY'YYY

"X" is the diskette drive designation (A: thru Z:) and 'YYYYYY" is a six
character filename.

TIPPRINT sets the MS-DOS file extension to Ii.PRN'

To create an MS-DOS file, the terminal must be an IBM compatible PC that has the
appropriate hardware and software to support UNISCOPE terminal emulation and file
tr::1_Ilsfer (either the Unisys "STEP" package or the COMPUTER LOGICS "PEP" package).

INFQ-PKT

Infonnation packet required ONLY on the call to TIPP~ with the
FCS-OPEN function.

7002 3999-1 00

*

TIP/3~ Print Facility (TIPPRINT)

The supplied copy element TIP lTC-PRINT defines the format of the
infonnation packet:

05 INFO-PKT COpy TC-P~ OF TIP.

** COpy ELEMENT FOR TIPPRINT INFORMATION PACKET

*

Whsl't:J:

10
10
10
10
10
10
10
10
10

10
10
10

PRINT-BUF-LEN
PRINT-PAG-LEN
PRINT-ERR-TERM
PRINT-TOP-OF-FORM
PRINT-LINE-FEED
PRINT-NOW-PRINTING
PRINT-OPPER-CASE
PRINT-RESERVED
PRINT-VFB-INFO
PRINT-FULL-FILE-INFO
PRINT-TITLE
PRINT-SUBJECT
PRINT-FULL-FILE-NAME

PICTURE 9 (4) COMP-4
PICTURE 9 (4) COMP-4
PICTURE X (4) .
PICTURE X.
PICTURE X.
PICTURE X.
PICTURE X.
PICTURE X.
PICTURE x.
PICTURE X.
PICTURE X.
PICTURE X (20) .
PICTURE X (20) .

10 PRINT-SPERRYLINK-FILE-NAME
P~DEFlNES PRINT-FULL-FILE-NAME.
15 PRINT-DRAWER PICTURE xeS) .
15 PRINT-FOLDER PICTURE X(12) .

10 PRINT-MS-DOS-FILE-NAME
REDEFINES PRINT-FULL-FILE-NAME.
15 PRINT-MS-DOS-DRIVE PICTURE x.
15 PRINT-MS-DOS-FILE PICTURE X(16) .
15 PRINT-MS-DOS-EXTENSION PICTURE X(3) .

10 PRINT-VFB-CHANNEL OCCURS 15 TIMES
PICTURE 9(4) COMP-4.

SYNC.
SYNC.

PRINT -BUF-LEN

Used to specify the length of the buffer that the user program is providing for
TIPPRINT to use to buffer print lines (the fourth parameter).

The program must move the length of the buffer that has been reserved for
TIPPRINT's use to this field before issuing the FCS-OPEN function.

The minimum buffer size is 1,024 bytes; the maximum (usable) buffer size is
3584.

PRTI'\IT -P AG .. LEN

7002 3999 .. 100

The desired number of lines per page.

TIPPRINT will return the status PIB-OV ERr'LOW whenever the TIPPRINI
interface has printed this many lines.

3-113

TIP/30 Print Facility (TiPPRINT)

3-114

Your program may ignore this overflow status OR may use it as a signal to
output headings.

If this field is set to zero (or spaces) the default value is the value specified by
the PRINTLPP= keyword in the Tn' /30 generation parameters.

Note: This keyword is not applicable when the destination printer is a batch
device (such as PRNTR). In such cases, Data Management determines
the overflow status according to the VFB information that is defined for
the spedfied print file. TIPPRINT returns an overflow status when it
receives such an indication from Data Management.

PRINT-ERR-TERM

Specifies the name of the terminal that is to receive an error message if an
error condition occurs.

Default: terminal that is invoking Tll'PRINT.

The value snecified may be: - --- - --- - - ~- - "

• The name of a valid terminal in the network

• The value u"'CON" to indicate the 05/3 operator console or,

• The value '''''RET'' to indicate that no error message is to be sent.

In the case of ""'RET", TIPPRINT will not output any error message and
wHl sLmply return to the calling program with PIB-BREAK status in the
PIB.

Specify the reserved terminal name '''''MST'' to cause the error message to
be routed to the MASTER terminal of the associated terminal CLUSTER.

Specify the reserved terminal name '''''BYP'' to cause the error message to
be routed to the BYPASS terminal of the associated terminal CLUSTER.

PRINT .. TOP-oF-FORM

Specify as either "yn or "N' or space.

y

N

space

PRINT-LINE-FEED

TIPPRINT automatically forces a skip to top of form before
starting any printing.

TIPPRINT does not automatically skip to top of form.

Tn'PRINT takes the default as specified by the PRINTTOF=
keyword in the TIP /30 generation parameters.

Specify as either ''Y'' or ''N'' or space.

Some communications printers automatically provide a "free" line feed
cr~racter whenever a full screen of data is tra1".sferred from the te!'!l'\ip~ 1 to the
printer.

Set this field to "Y" Of ''t~'' to indicate whe'"Jier TIPPRfrIT is to insert a line feed
character at the end of every data transfer to the communications printer.

Set this field to a space to indicate that the default is to be used:

7002 3999-1 00

•
•

TIP/30 Print Facility (TIPPRINT)

PRINTLF= in the TIP /30 TIPGEN parameter or

The PRINTLF= keyword in a CLUSTER statement associated with the
terminal.

PRINT-NOW-PRINTING

Specify as either ''N'' or 'ry" (default).

If this field is not an ''N'', TIPPRINT displays the ''NOW PRINTIN'G" message
on the terminal when the call to OPEN TIPPRINT is issued. The message will
be erased when the TIPPRINT interface is CLOSEd.

If you set this field to ''N'', the ''NOW PRINTING" message will not be
displayed on the terminal.

The NOW PRINTIN'G message is more than a convenience message. If the
NOW PRINTIN'G message is suppressed there is no way you can interrupt the
printing (by pressing MSG-W AIT) because the last activity at the terminal was
an input message and ICA_M win not anow two input messages without an
intervening output message (issuing the NOW PRINTIN'G message meets this
requirement!).

The NOW PRINTIN'G message is often suppressed because the program is
using a screen format. In this case, the program nonnally issues its own
version of this message (for example by using a call to TIPMSGE).

PP~TT =l.JPPER .. C.ASE

Specify as either 'ry" or "N" or space.

Y Indicates that TIPPRINT is to translate alphabetic characters to
uppercase.

N Indicates that no translation is to occur.

space Indicates that the system default is to be taken (as specified in the
PRINTUC= keyword of the TIPGEN parameters).

PRINT-RESERVED

This field is reserved for future use and is currently not examined by
TIPPRINT.

PRINT-VFB-INFO

If you set this field to any", TIPPRINT expects to find valid VFB information
in the field PRINT-VFB-CHANNEL (see description following).

Any other value in this field implies that TIPPRINT may ignore the contents of
PRINT -VFB-CHANNEL.

PRINT -FULL-FILE-INFO

7002 3999-100

Set this field to an "5" to indicate that TIPPRlNT is to route the print lines to a
OFIS Link/SO document.

TIPPRINT expects the program to set the fields PRINT-DRAWER and
PRINT·FOLDER to the desired OFIS Link/SO filename information.

3-115

TIP/30 Print Facility (TIPPRINT)

3-116

Using "5" in this field allows the program to output print lines to a OFIS
Unk/80 document other than 'WORKING" or "IN-MAIL"; you may specify
either of these by placing the appropriate name in the FILE-PKT.

Set this field to a "D" to indicate that TIPPRINT is to route the print lines to an
MS-DOS file on a PC.

If you wish to create an MS-DOS file with a filename that is no more than six
characters and has a file extension of "PRN", simply put the MS-DOS filename
in the FILE-PKT (for example, A:TEST).

TIPPRINT expects that you will set the fields PRINT-MSDOS-DRIVE,
PRINT-MSDOS-FILE and PRINT-MSOOS-EXTENSION to the desired
MS-OOS filename information.

Use a "D" in this field to allow your program to output print lines to an
MS-OOS file with a full eight character filename and/or a file extension other
than "PRN",

Note: RestricrdJrJS in the STEP/PEP sofi'r.JJare 1P.alce specification of MS-DOS
path names impossible; the file will always be written to the active
directory on the specified drive. See also discussion in
H3.19.1. TIPPRINT Print Destinations n on page 3-105.

Pll-INT -Ill LE

If you set this field to a try", TIPPRINT expects to find up to 20 characters of
program supplied data in the field pRI'r'-.,rr-SUBJECf.

TIPPRINT will generate a title page (similar to a WRTSML that includes the
subject and userid etc).

If you set this field to an "S" (indicating that data is in the PRINT -SUBJEcr
field), TIPPRINT will suppress the title page for non-batch destinations and
will generate a title page for batch printer destinations depending on the
setting of the TIP /30 generation parameter PRintTIL=.

If you use any other value in this field the contents of PRINT -SUl3JEcr will be
ignored and no title page will be produced.

PRINT-SUBJECT

See prior description of PRINT-TITLE.

PRINT -FULL-FILE-NAME

See prior description of PRINT -FULL-PILE-INFO.

PRINT-VFB-CHANNEL

See prior description of PRINT-VFB-INFO.

This item is an array of 15 binary HALFwords that TIPPRINT may reference
if. and only if the field PRll".JT-VFB~ll'-~FO contains a "Y", Each halfword
corresponds to channels 1 through 15 of a virtual carriage control tape. The
value in the item represents a 1-relative line number that corresponds to that
channel number.

7002 3999-1 00

TIP/30 Print Facility (TIPPRINT)

If a print line contains a skip code such as "print and skip to channel #nit,
TIPPRINT will use the corresponding entry in this array to determine which
relative line number to advance to after printing the line. Using skip codes that
refer to array entries which contain invalid entries result in a skip to the home
position.

Note: TIPPRINT simply computes the appropriate number of UNE-FEED
characters required to move from the current line on the page to the
desired line on the page.

Example: PRINT-VFB-CHANNEL (5) contains 37 and the program is
currently "at" line 12 on the page. TIPPRINT will react to a skip code
of "print and sldp to channelS" by outputting the print line (as it
normally would) followed by enough line feed characters to move to line
37.

BUFFER The fourth parameter on the call to TIPPRINT with a FCS-OPEN function
code identifies the buffer that the user program must provide for TIPPRINT to
use.

7002 3999-100

This buffer must be a minimum of 1,024 bytes and may be a maximum of
3,584 bytes (any additional space is wasted!).

Note: You must fullword align this buffer.

The program need not initialize this buffer - TIPPRINT manages this area
directly.

The program must not modify any field in this buffer from the time it passes
an OPEN function to TIPPRINT to the time it passes a CLOSE function to
TIPPRINT.

The third byte of the buff~r will contain the lCAM status code if an
"unrecoverable" error occurs during printing to an auxiliary device.
TIPPRINT uses all other areas of the print buffer in ways that may change
from release to release.

WARNING

Programs should not make any assumptions
about any observed contents of this bufferl

3-117

TIP/30 Print Facility (TiPPRINT)

3-118

You may copy the supplied copy element TIP /TC-PBUFR into your program's work area
to define the buffer:

'*
'*
'*
'*

COpy ~C-PBUF.R OF ~~P.

TIPPRINT BUFFER PACKET
USER PROGRAM SHOULD NOT MODIFY THESE FIELDS

05 TIPPRINT-BUF.
10 FILLER
10 FILLER

PICTURE 9(8) COMP-4 SYNC.
PICTURE X(2556) .

05 TIPPRINT-BUFFER REDEFINES TIPPRINT-BUF.
10 BU-PAGE-LENGTH PICTURE 9(4) COMP-4 SYNC.
10 BU-IeAM-STATUS PICTURE X.
10 FILLER PICTURE X(2557) .

Where:

BU-P AGE-LENGTH

While the TIPPRINT interface is open, this field contains the number of lines
per page that TIPPRINT has determined from the INFO packet or from the
CLUSTER or other generation parameters.

This field is intended for informational purposes only; do not modify it in
your program.

BU .. ICAM-STATUS

When PIB-BREAK status is set, this field may contain a detailed status code
that indicates the reason for delivery notification failure:

:CfuihICter: >:GL '-~:~~f::?):::
:: :2:>(1?<[£:T~TI :::<::::::::::

o Device Down.

1 Read/Write Error.

2 Out of Forms.

3 End of Tape.

4 Device Off line.

B UneDown.

C Terminal Down.

D Invalid Destination.

E No t~etvvork Buffers.

F Disk Error.

G Wrong Buffer Length.

? Unknown Status.

7002 3999-1 00

Error Conditions:

PIB-FUNCI10N

PIB-IQ-ERROR

PIB-LOCKED

PIB-NO-MEM

PIB-NOT -FOUND

7002 3999-100

TIP/30 Print Facility (TIPPRINT)

Invalid parameter. Function code is not FCS-OPEN, FCS-PUT,
FCS-FLUSH or FCS-CLOSE.

Invalid parameter list

TIP /30 may return this status !f your program specified '''''RET'
in the PRINT -ERR-TERM field in the info packet and the
destination printer is locked when the FCS-OPEN is issued.

If you do not set PRINT -ERR-TERM to '''''RET', TIPPRINT will
display the message 'Waiting for printer" on the terminal and
will wait for the printer to be available before returning to the
program.

Buffer length too small (less than 1024 bytes).

Destination or error terminal not found.

3-119

TIP/3D Print Facility (TiPPRINT)

3.19.3. FCS-PUT - Output Print Line

3-120

User programs call the TIPPRINT subroutine with a function of FCS-PUT to output each
print line. A description appears below of the format of the print line. The program
fonnats the print line with whatever text is desired, inserts an appropriate device
independent carriage control code and passes the print line to TIPPRINT for delivery.

You must be aware that TIPPRINT may be accumulating print lines in the buffer that is
provided as a TIPPRINT work area. This means that the line that is passed. on a PUT call to
TIPPRINT may not be physically printed at the time the call is issued (refer also to the
description of the FCS-FLUSH function call to TIPPRINT).

TIPPRINT buffers print lines when they are destined for a communications or auxiliary
printer or an M5-DOS file - TIPPRINT simply calls standard TIPFCS routines to send
output to a Data Management printer file like PRNTR.

Syntax:

Where:

CALL 'TIPPRINT' USING FCS-PUT
FILE-PKT
PRINT-LINE
BUFFER.

FCS-PUT

FILE-PKT

This function code (nonnally defined via the supplied copy element
TIP /TC-FCS) indicates that the desired function is to outPUT a print line to
the interface.

Use this standard (nine-byte) filename packet to specify the printer that
TIPPRINT is to use. This is the same packet as described in the previous
section (TIPPRINT: open).

7002 3999-1 00

TIP/30 Print Facility (TIPPRINT)

PRINT·LINE

This is the print line (packet) that contains the data to be printed (and the
carriage control to use):

You may use the supplied copy element TIP /TC-PLINE to define this area:

COpy TC-PLINZ or TIP.

** COPY ELEMENT FOR TIPPRINT LINE PACKET

*
05 PRINT-LINE.

10 LI-LENGTH
10 FILLER

PICTURE 9(4) COMP-4 SYNC.
PICTURE XX.

10 LI-DI-CONTROL PICTURE X.
88 LI-DI-HOME VALUE ='27' .
88 LI-DI-SPACE1 VALUE ='01'.
88 LI-DI-SPACE2 VALUE ='02'.
88 LI-DI-SPACE3 VALUE ='03'.

10 LI-DATA PICTURE X(132) .

Where:

PRINT-LINE

A variable length record containing a length field, a DI code (for carriage
contron, and the data to be printed.

The above copy element defines the print line as a fixed length area for
convenience only.

Your program may establish several print lines of varying length for specific
purposes (for example, headings).

U-LEN'GTH

The length of the entire print line packet.

Note: The length specified must include the five bytes preceding the actual
data. In the copy element for example, you would move 137 to
U-LENGTH.

TIPPRINT supports a maximum length of 250 bytes for data to be printed.

If the field LI-LENGTH contains a value greater than 255 (250+5), TIPPRINT
truncates the print line to 250 characters.

Note: The minimum specification for this field is a value of five bytes. Some
carriage control codes cannot specify data at the same time; ie: skip to
top of page: X/2l'.

U-DI-CONTROL

7002 3999-100

This field contains the Device-Independent Control character that indicates the
desired type of printer spacing used when printing this print line.

3-121

TIP/3D Print Facility (TIP PRINT)

Standard FORTRAN spacing codes may be used if TIPPRINT is printing on a
tenninal auxiliary device although it may be better to use the codes as
described in the OS/3 BASIC DATA MANAGEMENT USER GUIDE [UP-806B]
Table 7-1 - Deoice Independent Control Character codes.

Standard FORTRAN skip codes are:

space Single space

o Double space

Triple space

1 Skip to the top of a new page

TIPPRINT recognizes a special DI-code - ''Bu.

This code indicates that TIPPRINT is to output the data portion of the print
line using BLOCK characters (similar to an 05/3 WRTSML function).

TIPPRINT recognizes a carriage return character (X'DD') as a signal to begin a
new line of block characters. You may use this special DI-code to create
custom title pages or separator pages.

TIPPRINT recognizes a special DI-code - 'V" when the output is an auxiliary
device. This code instructs TIPPRINT to output the contents of the print line to
the device without any translation or other interpretation.

This allows you to send arbitrary character codes to an auxiliary device to be
able to directly control the device - some printers are designed to react to
character sequences to perform advanced functions like bar code printing or
double striking.

Note: ICAM UNISCOPE protocol cannot allaw certain characters to be sent
to a terminal because their transmission as text would violate the rules
of the protocol.

Another consideration is that UNISCOPE terminals may react to
certain escape sequences (character strings that begin with the
ESC character) by performing built-in firmware functions (such
as: clearing the screen, erasing to the end of the line, and so on)
and may not permit escape sequences to be sent to the auxiliary
printer.

To ensure that printer control codes can be handled, Personal
Computer (PC) users who are using a PEP or STEP
hardware/ software interface can configure PEP or STEP to
perform "screen to printer translation". This configuration option
permits one or more characters to be translated into ESC before
the data is sent to the auxiliary printer.

For example, the vertical bar character can be translated to the
ESC character (X'lB'). To send the printer control sequence "ESC
3", the program places the string" 13" in the appropriate place in
the print line data :..- PEP or STEP takes care of translating the " Itt
into an ESC character.

U-DATA This field contains the text of the print line.

3-122 7002 3999-1 00

TIP/30 Print Facility (TIPPRINT)

BUFFER The buffer that is assigned for TIPPRINT's use as described in the previous
section TIPPRINT: open.

Additional Considerations:

The supplied copy element TIP /TC-DI defines some commonly used carriage control
codes. Since 'this copy element contains VALUE clauses you must place it in the
WORKIN'G-STORAGE SECTION of your program.

COpy '.rC-DI OF '.rIP.

'*
'*
'*

05
05

05
05

05
"c:. V..J

05
05

05
05

05
05

PIB-FULL

7002 3999-100

DEFINE CODES USED FOR PRINTER CARRIAGE CONTROL"

TC-DI-1 PIC 9 (4) COMP-4 VALUE 9985.
TC-FILLER1 REDEFINES TC-DI-1.
10 TC-DI-HOME PIC X.
10 TC-DI-PRINT-SPACE1 PIC x.

TC-DI-2 PIC 9 (4) COMP-4 VALUE 515.
TC-FILLER2 REDEFINES TC-DI-2.
10 TC-DI-PRINT-SPACE2 PIC X.
10 TC-DI-PRINT-SPACE3 PIC x.

TC-DI-3 PIC 9(4) COMP-4 VALUE 1029.
TC-FILLER3 P~DEFINES TC-DI-3.
10 TC-DI-PRINT-SPACE4 PIC X.
10 TC-DI-PRINT-SPACE5 PIC x.

TC-DI-4 PIC 9 (4) COMP-4 VALUE 1543.
TC-FILLER4 REDEFINES TC-DI-4.
10 TC-DI-PRINT-SPACE6 PIC x.
10 TC-DI-PRINT-SPACE7 PIC x.

TC-DI-5 PIC 9 (4) COMP-4 VALUE 2057.
TC-FILLERS REDEFINES TC-DI-5.
10 TC-DI-PRINT-SPACE8 PIC x.
10 TC-DI-PRINT-SPACE9 PIC x.

TC-DI-G PIC 9 (4) COMP-4 VALUE 2576.
TC-FILLER6 REDEFINES TC-DI-6.
10 TC-DI-PRINT-SPACE10 PIC X.
10 TC-DI-PRINT-NO-SPACE PIC x.

TIP /30 returns this status if your program has a serial resource
locked and this FCS-PUT caused the TIPPRINT buffer to be full.
Even though this status was returned, TIPPRINT accepted the
print line and placed it in the buffer ...

NO!'!!l.ally TIPPRINT would flush the buffer to the device at this
point since there is a serial resource locked, TIPPRINT warns
the program that it cannot flush the buffer right now.

3-123

TIP/30 Print FacUlty (TiPPRINT)

PIB-LOCKED

PIB-OVERFLOW

PIB-BREAK

3-124

If the program issues another FCS-PUTwith serial resources
still locked, that FCS-PUT will be rejected with PIB-LOCKED
status.

If an FCS-FLUSH or FCS-CLOSE is issued with serial resources
locked, TIPPRINT will go ahead and flush the buffer and
TIP /30 will probably abort the program and issue a resources
locked, waiting message.

This pm·STATUS is applicable only to non-batch print
destinations.

TIP /30 returns this status if the program issues further
PCS-PUT functions when the TIPPRINT buffer is already full
and serial resources are locked. TIPPRINT ignores the print line.

This PIB-ST A TUS is applicable only to non-batch print
destinations.

TIP /30 retU.&T&5 this status if the device-independent carriage
control character in the print-line is an unrecognized value.
TIPPRIr"IT ignores the print line.

TIP /30 returns this status if TIPPRINT detennines that the
number of lines per page (as declared in the INFO packet on the
preceding OPEN) has been exceeded.

Note: This is not an error condition - merely overflaw
notification. Your program may choose to ignore this
event as it may be counting its own lines or may use
this as a signal to output page headings.

TIP /30 returns this status when the printer is no longer
available due to a delivery notification error OR because you
have interrupted the TIPPRINT process and have indicated that
you do not want it to continue.

You may interrupt TIPPRINT processing (presuming that a
"NOW PRINTING" message has been displayed!) by pressing
IMSG.WAiTl. TIPPRINT will interrupt (break) before the next data
transfer to the print device.

TIPPRINT displays the BREAK prompt as follows:

Break - Continue? .YES .NO

If you enter "Non to this break message, TIP / 30 returns a
PIB-BREAK status to the program.

Note: It is imperative that the program check for FIB-BREAK
status after every FeS-PUT.

TIP /30 also returns PIB-BREAK status if, for example, the
printer is out of paper. Your program should take appropriate
defensive action; it should probably should stop printing in any
case.

7002 3999-1 00

7002 3999-100

TIP/30 Print Facility (TIPPRINn

If an I/O error occurs on an auxiliary device, TIP /30 sends a
message to the error reporting terminal (as specified in the
information packet supplied at the time TIPPRINT was
OPENed). The message identifies the error and the name of the
terminal associated with the error.

The text of the message is as follows:

PRINT ERROR AT __ , ERROR = ' __ _

If this condition occurs, PIB-BREAK status is returned to the
program to indicate that the printed output has been broken.
The program can check the field BU-lCAM-STA TUS (in the
TIPPRINT buffer - see ("3.19.2 FCS-OPEN - Open TIPPRINT
Interface" on page 3-111) to report potential reAM errors.

3-125

TIP/30 Print Facility (TiPPRINT)

3.19.4. FC5-FLUSH - Flush TIPPRINT Buffer

3-126

Since TIPPRINT may be buffering the print lines that are being passed by the user program,
your program may need to force a FLUSH of the TIPPRll'IT buffer. An example of this
situation occurs during the printing of cheques:

The program may "print" several lines (via TIPPRlNT) and proceed to update a master file
to indicate that a cheque was printed for the customer. If it could not be verified that the
cheque was printed and a system crash OCCUlTed before the cheque was actually printed,
the master file would not reflect the real world situation. In this situation, the program can
issue a FLUSH request to Tll'PRINT after every complete cheque is printed and in effect
"wait" to be certain that printing was complete. .

Note: The FLUSH request should be issued after each complete cheque and not after every line of
the cheque!

TIPPRINT automatically performs a FLUSH operation whenever the Tll'PRINT interface is
closed by the program. It is not necessary for your program to issue a FLUSH before
issuing a CLOSE to Tll'PRINT.

Syntax:

CALL 'TIPPRINT' USING FCS-FLUSH
FILE-PKT
dununy
BUFFER.

Where:

FCS-FLUSH

HLE-PKT

dummy

BUPFER.

This function code (normally defined via the supplied copy element
TIP /TC-FCS) indicates that you wish to FLUSH the TIPPRINT buffer.

Standard (9-byte) filename packet that is used to specify the printer that
TIPPRINT is to use. This is the same packet as described in the previous
section (TIPPRINT: open).

The third parameter is a dummy parameter (the usual line packet couid be
used) that is present only to preserve symmetry with the other calls to
TIPPRINT.

You cannot supply a line of print data on a FLUSH call- TIPPRINT ignores
the parameter.

The buffer that is assiOlled. for TIPPRll'-"fr's use as described in the previous
section TIPPRINT: open.

7002 3999-1 00

TIP/30 Print FacUlty (TIPPRINT)

Additional Considerations:

The FLUSH operation delivers any buffered print data that is in the TIPPRINT buffer (this
would nonnally only occur when the buffer was full).

There is no need to FLUSH the buffer unless your program must be certain that the print
lines that have been passed across the TIPPRINT interface have in fact been printed.

Error Conditions:

TIP /30 may return a PIB-STATUS value of "PIB-BREAK" if there is a problem with the
printer (see previous section TIPPRINT: Put).

7002 3999-100 3-127

TIP/SO Print Facility (TIPPRINT)

3.19.5.. FCS-CLOSE --Close TIPPRINT Interface

3-128

When the program has finished generating print lines it must close the interface to
TIPPRINT. The CLOSE function automatically performs the FLUSH function (see previous
section). The close function breakpoints the printer file if the print file that TIPPRINT was
using was a real Data Management Printer file (like PRNTR). If TIPPRINT does not
encounter a CLOSE function call unpredictable results may occur - one real possibility is
the loss of the last buffer of print lines.

Syntax:

wnere:

CALL 'TIPPRINT' USING FCS-CLOSE
FILE-PKT
dummy
BUFFER.

FCS-cLOSE

FILE-PKT

dummy

BUFFER

This function code (normally defined via the supplied copy element
TIP I TC-FCS) indicates that the desired function is to CLOSE the TIPPRINT
interface.

Standard (9-byte) filename packet that specifies the printer that TIPPRINT is
to use. This is the same packet as described in the previous section (TIPPRINT:
open).

The third parameter is a dummy parameter - you could use the usual line
packet. It is present only to preserve symmetry with the other calls to
TIPPRINT.

You cannot supply a line of print data on a CLOSE call as TIPPRINT ignores
the parameter.

The buffer that is assigned for TIPPRINT's use as described in the previous
section TIPPRINT: open.

Additional Considerations:

The CLOSE operation delivers any buffered print data that is in the TIPPRINT buffer. You
do not need to explicitly FLUSH the buffer before calling the CLOSE function. Once the
interface to TIPPRINT is dosed you may reopen it with a different printer specification.

Error Conditions:

TIP 130 returns a PIB-STA TUS value of "PIB-BREAK" if there is a problem with the printer
(see previous section TIPPRINT: Put).

7002 3999-1 00

PC File Transfer

3.20. PC File Transfer
TIP /30 provides a set of reentrant subroutines that Tn' /30 native mode programs may call
to transfer data to and from a Personal Computer (PC):

TIPH2P Copy from HOST to the PC.

TIPP2H Copy from PC to the HOST.

A TIP /30 native mode program that uses these routines must be running on a PC with the
PEP (Personal Emulation Package from Computer Logics Inc.) or STEP (Unisys Terminal
Emulation Package) hardware and software running UNISCOPE terminal emulation.

Note: Due to restrictions in these packages, it is not possible to simultaneously per/onn input
and output operations at the same PC.

The user interface with PCXFER is similar to that used by Tn'FCS calls (ie: function-code,
filename, record). PCXFER, however, requires a fourth parameter; this parameter is always
the name of a user suppiied work area that PCXFER uses as a buffer. PCXFER uses the
filename (2nd parameter) to indicate the MS-DOS filename (source or destination).

PCXFER handles variable length records. There is no maximum length for these records.
A TIP /30 native mode program issues calls to the PC transfer subroutine to perform the
following functions:

OPEN

GET

PUT

FLUSH

CLOSE

Initiate the interface to TIPH2P or Tn'P2H.

Retrieve a record image from an MS-DOS file (TIPP2H).

Pass a single record image to an MS-DOS file (TIPH2P).

Force TIPH2P to empty its internal buffer.

Terminate the interface with TIPH2P or Tn'P2H.

Additional Considerations:

To support PC File Transfer from user written online programs:

1. Generate ~CAM with FEATURES=(OPCOM,OUTDELV)

2. Specify the TIP /30 job control option PCXFER= YES.

PCXFER always waits for delivery notification from ICAM when performing file transfers.
For efficiency, PCXFER buffers records to fill a screen; therefore, the program must be
careful to avoid having a serial resource locked when calling TIPH2P or TIPP2H.

This implies that the program may nQ! have a file (or files) in sequential mode (SETL) 16 or
be imparted to a data base when a call is issued to TIPH2P or Tn'P2H.

16. With the exception of files specified as MULTISEQ=YES in the TIP /30 Generation parameters.

7002 3999-100 3-129

PC FUe Transfer

3.20.1. FCS-OPEN - Open PCXFER Interface

3-130

Establish the interface to the file transfer subroutines by issuing a call to the specific
subroutine with a function code of "FCS-OPEN". This call serves to initialize the transfer
facility. It is used to establish the desired MS-DOS file destination or source and to specify
transfer options that are required.

A header record may be written to the MS-DOS file during the open (See
PCINF-COMMENT field for further details).

Note: Users of the Computer Logics PEP board (and the Unisys STEP board) are aware that the
file transfer capability does NOT pravide any way to specify a complete MS-DOS
filename - the MS-DOS file name is assumed to be in the current subdirectory for the
specified drive.

This restriction can be circumvented by making use of the MS-DOS SUBST command. The
SUBST command allows you to designate a pseudo drive name for a specific path name. In
some versions of MS-DOS, you can also redirect a real drive name to a different directory
path.

Refer to the appropriate MS-DOS documentation for the specific details of th~ SUBsr
command for your PC. The following example illustrates how to use this MS-DOS
command.

Example:

SUBST H: C:\BUDGET\1988

The example above substitutes the MS-DOS drive name H: for the path C:\BUDGET\1988.
By using drive H: as the destination drive specification, MS-DOS creates the file in the
desired directory.

There are versions of PEP (and there may be versions of STEP) that do not recognize some
MS-DOS drive names as valid drives. There are also restrictions that MS-DOS imposes on
the operation of "drives" specified with a SUBST command.

Some versio1).s of MS-DOS require adjustment of the LASTDRIVE= specification in the
CONFIG.5YS file to accommodate drive names used in a SUBST command.

7002 3999-1 00

PC File Transfer

Syntax:

CALL 'TIPH2P' USING FCS-OPEN
FILE-PKT
INFO-PKT
PC-BUFFER

CALL 'TIPP2H' USING FCS-OPEN

Where:

FCS-OPEN

FILE-PKT

*
* FILE

'*
10
10
10
10
10
10

FILE-PKT
INFO-PKT
PC-BUFFER

This function code (normally defined via the supplied copy book
TIP ITC-FeS) indicates that the desired function is to OPEN the interface.

Use this filename packet to specify the MS-DOS file and drive that TIPH2P or
TIPP2H is to use.

When transferring records to the PC, if the filename and extension match an
existing file on the diskette, the data in that file is overwritten - this is a
consequence of the way PEP I STEP file transfer is designed.

The program does not receive any notification if this occurs. If the file does
not exist it is allocated.

The format of the file packet is defined by the supplied copy book
TIP ITC-PCFIL. This copy element should be included in the LINKAGE
SECTION of the program:

05 FILE-PKT. COpy 'rC-PCFIL OF 'rIP.

PACKET FOR HOST/PC TRANSFER

PCFIL-DRIVE PICTURE X.

PCFIL-FILE-NAME PICTURE X (8) •

PCFIL-EXTENSION PICTURE X (3) •

FILLER PICTURE X (4) •

PCFIL-STATUS PICTURE X.

PCFIL-ACKNOWLEDGE PICTURE X (4) •

PCFP DRI'IE

7002 3999-100

Specifies the drive designator on which the MS-DOS file is to be read or
written.

Specify a drive letter between "A" through "Z" (inclusive),

3-131

PC File Transfer

3-132

PCFIL-FILE-NAME

The filename of the MS-DOS file to be accessed and must confonn to MS-DOS
rules.

Note: See the description of the use of the MS-DOS command nSUBST" at
the beginning of this section.

PCFIL-EXTENSION

The three character extension name used for this file.

PCFIL-STATUS

A status byte that is set to the same return status value as PIB-STATUS (except
during FCS-OPEN when the FILE-PKT existence has not been conclusively
established).

PCFIL-ACKN"OWLEDGE

The last four characters contain th.e "ACK" or ''NAK'' returned by the PC
software.

Note: End of description of fields in TC-PCFIL copy element.

INFO-PKT

'*
'*
'*

Information packet required only on the call to TIPH2P or TIPP2H with the
FCS-OPEN function. The supplied copy book TIP /TC-PCINF defines the
format of the information paCket. Place-this copy element in a convenient area
of the LINKAGE SECTION of the program:

05 INFO-PKT. COpy TC-PCINF OF TIP.

COpy ELEMENT FOR MSDOS TRANSFER INFO PACKET

10 PCINF-BUF-LEN PICTURE 9 (4) COMP-4 SYNC.
10 PCINF-ERR-TERM PICTURE X (4) .
10 PCINF-INDEX PICTURE X.
10 PCINF-OPTIONS PICTURE X (8) .
10 PCINF-SEPARATOR PICTURE X (2) •
10 PCINF-END-OF-FILE.

15 PCINF-PROMPT PICTURE X (2) .
15 PCINF-MAX-REC-LEN PICTURE 9 (4) •
15 FILLER PICTURE X(10) •

10 PCINF-CONTROL-CODE PICTURE X.
88 PCINF-SPACE-SUPR VALUE , ,
88 PCINF-NO-SUPR VALUE ' N' .
88 PCINF-HEX-WITH-SS VALUE ' Bf •

88 PCINF-HEX-WOUT-SS VALUE 'H' .
88 PCINF-TRANSLATE VALUE 'T' .

10 FILLER PICTURE X (10) •
, f'I ... "" PCINF-COMM~NTS PICTURE X(60) .
10 PCINF-COMPRESS PICTURE X.
10 PCINF-RESERVED PICTURE X (23) .

7002 3999-1 00

PC File Transfer

PCINF-BUF-LEN

Specifies the length of a buffering area in the user program into which
PCXFER: OPEN blocks record images into screen images for efficient data
communication transfer.

This is a numerical value which is the length of the buffering area. Set this
field before issuing the FCS-OPEN function.

The minimum buffer size is 768 bytes; the recommended buffer size is 2560. In
general, the larger the buffer, the greater the efficiency of the transfer
subroutines. A further consideration on the buffer size is discussed in
"PCXFER Masking" on page 3-145.

PCINF-ERR-TERM

Not used at this time.

PCINF-INDEX

The number of the dispiay screen to be used in the transfer.

If this field is a space, the index is set to 1.

If this field contains "?", the index value on the control page is not changed.

PCINF-OPTIONS

As defined by STEP or PEP software.

Defaults are in effect when this field contains spaces and vary according to the
value contained in the field: PCINF-CONTROL-CODE.

This field nonnally does not require attention as the transfer subroutine sets
the appropriate options for file transfers.

If you set your own PEP options this may restrict record lengths to 1910
characters and result in less efficient transfer rates.

PCINF-SEPARATOR

Record separator required when transferring EBCDIC or ASCII files.

The default value when this field is spaces is PIC X(2} VALUE '18'
(representing the value X/18' - hexadecimal).

PCINF-ENO-OF-FILE

This field is only used on transfers from the host to an MS-DOS file.

This is a character string that STEP /PEP uses to identify the end of file on
transfers from host to MS-OOS files.

This field is nonnally set to spaces - this instructs PCXFER to unlock the
keyboard on the last transferred screen that STEP /PEP accepts as EOF.

PCINF-PROl\1PT

7002 3999-100

This field is ~ used on transfers from an MS-OOS file to the host.

This field is normally set to space - this allows the default value of "IE" (an
SOE character.) to be used.

3-133

PC File Transfer

3-134

PCINF-MAX .. REC .. LEN

This field is only used on transfers from an MS-DOS file to the host.

This field should contain the length of the largest record expected from the
MS-OOS file.

PCINF-CONTROL-CODE

This character detennines the type of transfer to take place. The following
values are recognized:

:", ..
~LL··>~ .9~::"··::":":':": :::'::.:'.::'::::":':::.:.':

.: ..
f::;:;::::·>:;:: . \:::: :.:::::

space Used when transferring purely graphic
character data. In this mode of operation,
spaces at the end of a line are suppressed.

B Implies that records are subject to trailing
space suppression, the remaining data is
''hexi£ied'' as in the "H" mode.

H Used when transferring binary or packed
decimal data. The entire record is "hexified"
and transferred in core image mode.

N No trailing space suppression is to take place.

T Used when traIlsferring records containing
EBCDIC and binary data to or from the PC.
The data is ''hexified'' and requires EBCDIC to
ASOI, or ASCII to EBCDIC translation. For
further information see "PCXFER Masking" on
page 3-145.

PCINF-COMI'vlENTS

This is a 60 character field that may contain any desired comment or header
information. This field is recognized only on a call to FCS-OPEN.

When uris field contains some value other than spaces, a header record is
written as the first line of the MS-DOS file during an open call to TIPH2P. The
record header consists of the prefix U$*UBHDR*$" followed by the 60
character comment field.

When the comment field contains spaces no header record is written.

During an open call to TIPP2H the first record is read and checked for the
header prefix; if this is a header record the 60 characters following the prefix
are placed in the comment field.

The comment field contains spaces if no header record is present.

Only displayable characters are allowed in the comments field.

PCINF-COMPRESS

Setting this field to tty" causes PCXFER to apply a compression algorithm to
the data that is sent to the PC. Use of the compression facility can reduce the

7002 3999-1 00

PC File Transfer

amount of data sent to the PC (and therefore, proportionally reduce the
transfer time.

To be able to decompress the data on the PC, the supplied decompression PC
program must be available on the PC.

For more information, see "PCXFER Compression" on page 3-148.

Setting this field to a space or 'N' indicates that no data compression is to be
attempted.

PCINF-RESERVED

This field is reserved for future use.

Note: End of description of fields in TC-PCINF copy element .

.. PC-BUFFER

*
*
*
*

The fourth parameter on the call with a FC5-0PEN function code identifies
the buffer that the user program provides for PCXFER subroutines to use.

This buffer must be a minimum of 768 bytes and may be as large as 2560
bytes. This area must be fullword aligned.

The program need not initialize this buffer. The program should not modify
any field in this buffer from the time an FCS-OPEN function is issued to the
time an FCS-CLOSE function is issued.

Use the supplied copy book TIP I TC-PCBUF to define the buffer! Place this
copy element in any convenient area of the LINKAGE SECTION of the
program:

COpy TC-PCBOF OF TIP.

COPY ELEMENT FOR MSDOS TRANSFER BUFFER PACKET
USER PROGRAM SHOULD NOT MODIFY THESE FIELDS

10 PCBUF-AREA.
15 PCBUF-LENGTH
15 FILLER

PCBUF-LENGTH

PICTURE 9(8) COMP-4 SYNC.
PICTURE X(2556) .

While the transfer interface is open, this field contains the length of the buffer.
This field is for informational purposes only and must not be modified by the
user program.

Note: End of description of fields in TC-PCBUF copy element.

7002 3999-1 00 3-135

PC File Transfer

3-136

Error Conditions:

PIB-FUNCrION

PIB-BREAK

PIB-IO-ERROR

PIB-NO-MEM

PIB-NOT-FOUND

The program appears to executing on a terminal that is not
equipped with a PEP or STEP interface, or the first parameter is
invalid (not one of: FCS-OPEN, FCS-PUT, FC5-FLUSH or
FCS-CLOSE).

Buffer not initialized, not opened or error on the previous
FCS-GET.

Invalid parameter list.

Buffer length too small (less than 1024 bytes).

Destination or error terminal not found.

PIB-WRONG-MODE Invalid screen number (only 1 through 8 is valid), or
non-graphic data found in the field PCINF-COMMENTS.

Additional Considerations:

Once a successful FCS-OPEN function is performed, the program should not terminate
without issuing an FCS-CLOSE function for the PCXFER interface. Failing to properly
close the interface can leave unwanted data in the PEP /STEP control page settings.

7002 3999-1 00

PC File Transfer

3.20.2. FCS .. GET -- Input Record from PC

Call the TIPP2H subroutine repeatedly when you need to input records. The format of the
record that is passed is described below. The program issues the FCS-GET function and
receives the data from the Ms.-DOS file in the designated RECORD-PKT area.

Syntax:

CALL 'TIPP2H' USING FCS-GET

Where:

FCS-GET

FILE-PKT
RECORD-PKT
BUFFER

This function code, as defined by the supplied copy book TIP ITC-FCS,
indicates that you wish to retrieve a record from the interface.

File name packet that specifies the drive and M5-nOS file that TIPP2H is to
use. This is the same packet as described in the previous section
(TIPH2P ITIPP2H: FCS-OPEN).

RECORD-PKT

*
*
*

*
*
*

7002 3999-100

This is the record area into which FC5-GET returns the M5-nOS data. Use the
supplied copy book TIP ITC-PCREC to define this area! This copy element
must appear in an area of the LINKAGE SECTION of the program:

05 RECORD-PKT. COpy TC-PCREC OF TIP.

COpy ELEMENT FOR MSDOS TRANSFER RECORD PACKET

10 PCREC-LENGTH
10 PCREC-CONTROL
10 FILLER
10 PCREC-DATA.

PICTURE 9(4) COMP-4 SYNC.
PICTURE x.
PICTURE X.

USER SUPPLIED RECORD LAYOUT FOLLOWS HERE

3-137

PC File Transfer

3-138

Where:

RECORD-PKT

A variable length record containing a length field, and the data to transferred.
from the MS-DOS file.

The program must define the appropriate record fields immediately after
PCREC-DATA. Multiple record types are handled by redefinition.

PCREC-LENGTH

The length of the record packet.

Note: The length specified must include the 4 bytes preceding the actual data.
See also description of the field PCREC-LENGTH in the description of
the FCS-O PEN function call.

There is no maximum record length if you set the
PCIr"--.rF=OPTIOl'J field to spaces. This field must be explicitly set
before each call to FC5-GET. After a call to FC5-GET this field is
set by the PCXFER interface to the actual record length returned
from the MS-DOS file.

PCREC-CONTROL

If set to ''M'' this field indicates the masking feature is on when translation is in
effect. See section "PCX.FER Maskjng" on page 3-145.

PCREC-DATA

This field contains the data of the record to be transferred.

Note: End of description of fields in the copy element TC-PCREC.

BUFFER

The buffer that is assigned for use by TIPP2H as described in the previous
discussion of TIPH2P /TIPP2H: FCS-OPEN.

Error Conditions:

PIB-EOF

PIB-NO-MEM

This status is returned when STEP /PEP detects end of file or the
I MSG WAIT I key is pressed.

This status is returned if the record length is longer than the
buffer provided. This applies only if the default options are not
used.

7002 3999-1 00

PIB-BREAK

7002 3999-100

PC File Transfer

This status is returned if an error has been detected at the PC. If
PEP is configured correctly the error can be further analyzed by
looking at the contents of PCFIL-ACKNOWLEDGE:

NAKl

NAK2

NAIO

NAK4

Disk full transfer not completed.

Disk not ready.

Disk is write protected.

I/O error on diskette.

3-139

PC FUe Transfer

3.20.3. FCS-PUT - Output Record to PC

3-140

The TIPH2P subroutine is called to output each record. The format of the record that is
passed is described. below. The program issues the FCS-PUT function to deliver the record
to the MS-DOS file from the RECORD-PKT.

The programmer must keep in mind that TIPH2P is blocking the records into the transfer
buffer to build a screen full of data. This means that the line that is passed with a FCS-PUT
function to TIPH2P may not be physically transferred at the time the call is issued! Also see
the description of the FCS-FLUSH function of TIPH2P.

Syntax:

CALL 'TIPH2P' USING FCS-PUT

Where:

FCS-PUT

FILE-PKT

FILE-PKT
RECORD-PKT
BUFFER

This function code, as defined by the supplied copy book Til'/TC-FCS,
indicates that the desired function is to output a record to the MS-DOS.

Use this file name packet to specify the drive and MS-DOS file that TIPH2P is
to use. This is the same packet as described in the previous section (TIPH2P
and TIPP2H: FCS-OPEN).

RECORD-PKT

*
*
*

*
*
*

This is the record packet that contains the data to be transferred.

Use the supplied copy book TIP I TC-PCREC to define this area! This copy
element must be placed in any convenient area of the LINKAGE SECTION of
the program:

05 RECORD-PKT. COpy TC-PCREC OF TIP.

COPY ELEMENT FOR MSDOS TRANSFER RECORD PACKET

10 PCREC-LENGTH
10 PCREC-CONTROL
10 FILLER
10 PCREC-DATA.

PICTURE 9(4) COMP-4 SYNC.
PICTURE x.
PICTURE X.

USER SUPPLIED "RECORD LAYOUT FOLLOWS HERE

7002 3999-1 00

PC File Transfer

Where:

RECORD·PKT

A variable length area containing a length field, and the data to be transferred
to the MS-DOS file.

The program must define the data fields immediately after PCREC-DATA.
Multiple record types are handled by redefinition.

PCREC-LENGTH

The length of the entire record packet.

This field should be specified explicitly before each call to FCS-PUT.

Note: The length specified must include the four bytes preceding the actual
data. For example, if the record length was 256 bytes long move 260 to
PCREC-LENGTH.

There is no maximum record length if you set the PCINF-OPTION
field to spaces.

PCREC-CONTROL

If this field is set to "M", the masking feature is set on when translation is
being done. See section "PCXFER Masking" on page 3-145.

PCREC-DATA

This field contains the data of the record to be transferred.

Note: End of description of fields in TC-PCREC copy element.

BUFFER

The buffer that is assigned for use by the TIPH2P subroutine as described in
the previous section TIPH2P: FCS-OPEN.

Error Conditions:

PIB-NO-MEM

PIB-WRONG-MODE

7002 3999-100

This status is returned if the record length is longer than the
buffer provided. Only applies when not using default options.

This status is returned if non-displayable characters are detected
in the record data.

If this status appears when not expected, double check the
parameter list supplied on the call; the TIPH2P subroutine may
not be examining the same data area that you think is being
examined!

3-141

PC File Transfer

PIB-BREAK

PIB-EOF

3-142

This status is returned if an error has been detected at the PC.
Further analyse the problem by looking at the contents of
PCFIL-ACKNOWLEDGE. The following values appear in that
field (assuming STEP /PEP has been configured with the default
error responses):

NAKl

NAK2

NAK3

NAK4

Disk full transfer not completed.

Disk not ready.

Disk is write protected.

I/O error on diskette or the interface has not been
correctly opened.

This status is returned if the tenninal user has forced a
premature end of file condition by aborting the file transfer
process (by pressing the I MSG WAITI key for example).

7002 3999-1 00

PC File Transfer

3.20.4. FCS-FLUSH - Flush PCXFER Buffer

Since Tll'H2P is buffering the records that the user program is passing, the program may
need to flush the content of the TIPH2P buffer prematurely. Normally you need not
consider issuing the FCS-FLUSH operation, an automatic flush occurs when the buffer fills
and when a close is issued.

Syntax:

CALL 'TIPH2P' USING FCS-FLUSH

Where:

FCS-FLUSH

FILE-PKT

dummy

BUFFER

FILE-PKT
dummy
BUFFER

This function code, defined by the supplied copy book TIP /TC-FCS, indicates
that the desired function is to flush the TIPH2P buffer.

This file name packet specifies the drive and MS-DOS file that TIPH2P is to
use. This is the same packet as described in the previous section (TIPH2P:
FCS-OPEN).

The third parameter is a dummy parameter (the usual record packet could be
used) that is present only to preserve symmetry with the other calls to
TIPH2P. Record data cannot be provided with a call to the FCS-FLUSH
function - it is ignored.

The buffer that is assigned for TIPH2P's use as described in the previous
section TIPH2P: FCS-OPEN.

Additional Considerations:

The FLUSH operation delivers any buffered record data that is in the TIPH2P buffer. This
normally only occurs when the buffer is full. Since flushing defeats blocking and increases
communication overhead, perform this operation only when your program must be certain
that terminal I/O occurs at a specific time (for example, when your program is awaiting
further input to a background process).

7002 3999-1 00 3-143

PC File Transfer

3.20.5. FCS-CLOSE - Close PCXFER Interface

3-144

When your program has finished transferring records, the program must close the interface
to PCXFER. The FCS-CLOSE function automatically flushes any buffered data (see
description of the FCS-FLUSH function in the previous section).

If the program does not issue an FCS-CLOSE function to TIPH2P or TIPP2H, unpredictable
results may occur; one real possibility is the potential loss of the last buffer of data.

Syntax:

CALL 'TIPH2P' USING FCS-CLOSE

FCS-CLOSE

HLE-PKT

dummy

BUFFER

FILE-PKT
dummy
BUFFER

This function code, as defined by the supplied copy book Tn' /TC-FCS,
indicates that the desired function is to close the PCXFER subroutine interface.

File name packet that specifies the drive and MS-DOS file that TIPH2P and
Tn'P2H are to use. This is the same packet as described in the previous section
(TIPH2P and TIPP2H: FCS-OPEN).

The third parameter is a dummy parameter (the usual line packet could be
used) that is present only to preserve symmetry with the other calls. Record
data cannot be supplied with a call to the FC5-CLOSE function - it is ignored.

The buffer that is assigned for the subroutines use as described in the previous
section.

Additional Considerations:

The CLOSE operation delivers any buffered data that is in the transfer buffer. There is no
need to flush the buffer explicitly before issuing the do~ function.

Once the CLOSE operation doses the interface, the program may reopen the interface and
start another transfer.

The CLOSE operation also guarantees that the PC software/hardware is notified that the
file transfer operation is complete - this can prevent sub&;aquent file transfer attempts
from having problems.

7002 3999-1 00

PC File Transfer

3.20.6. PCXFER Masking

Programs using PCXFER require the masking feature of the transfer subroutines whenever
the data to be transferred includes EBCDIC or ASCI data mixed with binary or packed
decimal fields.

UNISCOPE protocol cannot handle data of this type because the data may contain bit
patterns that are reserved for use by the protocol itself. Both TIPH2P /TIPP2H and
STEP /PEP must therefore ''hexifY' this data.

The following diagrams show the effect of different values in the field
PCINF-CONTROL-CODE on the data that is transferred:

Example Normal Transfer (space):

MS-DOS ICAM ALE
PEP PCXFER

Characters: Convert
-ABC· "ABC· BABC· ASCII -ABC· -ABC·

~ h.. to liIo. - -~

ASCII: II' y EBCDIC Il" f"

414243 414243 414243 C1C2C3 C1C2C3

I !

TIP/30
TRIO

Characters:
"ABC·

EBCDIC:
C1C2C3

In this example ICAM translates the printable data from ASOI to EBCDIC so that you do
not need. to be concerned with it. This data must contain only printable data.

Example Hex/flcatlon; no translation (H):

US-DOS ICAM
TIP/30

ALE TRID
PEP PCXFER

Characters: ASCII: Characters:
"ABC· -ABC· Option X 414243 ASCII 414243 PCcode H "ABC· "ABC·

b... to.. to !l!.. ~

ASCII: y HEXify " EBCDIC II' unHEXify fi'" ASCII:
414243 414243 3431 F4F1 414243 414243

3432 F4F2
3433 F4F3

In this case we have asked PEP and PCXFER to "hexify" the data. It is assumed that some
portion of the record contains non-printable data. lCAM still does a translation but on the
expanded or "hexified" data. This leaves us (after "unhexification") with ASOI data in our
TIP /30 program. This method would be fine if we only intend to return this data to another
PC using the HOST as temporary storage place and a connection between remote end
users.

7002 3999-100 3-145

PC File Transfer

Example Hex/tlcat/on and Translation (T):

US-DOS ICAM TIP/30
FILE TRIO

PEP PCXFER
Characters: EBCDIC: Characters:

BABC· BABC· Option X 414243 ASCII 414243 PCcode T -ABC· -ABC·
h. tit.. to .. ~ .~

ASCII: ,,- HEXify ,,- EBCDIC .,. unHEXify II" EBCDIC:
414243 414243 3431 F4F1 & Translate C1C2C3 C1C2C3

3432 F4F2
3433 F4F3

In this example, we are transferring data with a mix of printable characters and binary or
numeric packed data. In this case, however, we would like the data to be in usable fonn on
the HOST. PCXFER translates the data from .AC;CII to EBCDIC after "ullhexificationlt of the
data.

This brings us to another problem. If we allow all the data to be translated by PC<FER
including the binary or packed data fields. The resulting data in those fields would be
unpredictable. The following paragraphs describe a masking procedure which will allow
you to indicate which portions of a record are to be translated and which are to be left
untouched.

To mask a character for translation, the corresponding byte in the mask record is set to a
space (X' 40'). Any other value placed in the mask inhibits the translation of the character in
the corresponding data location. The method for setting the mask record is depends on the
direction of the data transfer.

3.20.6.1. Transfer from MS-DOS File

3-146

When transferring from the MS-DOS file to the host, move spaces to PCREC-DATA then
move LOW-VALUES to those fields that do not require translation.

Next set PCREC-CONTROL to a value of ItM" to indicate masking is required and then
issue the FCS-GET function as described in previous section (TIPP2H: FCS-GET).

The record is returned as it normally would be - except that the appropriate fields are not
translated.

The program must place the mask record in PCREC-DATA before each use of the FCS-GET
function.

7002 3999-1 00

PC File Transfer

3.20.6.2. Transfer to Ms.-COS File

The process is slightly more difficult when the transfer is done from the host to the
MS-DOS file since your program must provide the mask to TIPH2P before sending the
record data. The mask information is saved in the top of the buffer area, you must provide
a buffer area one record size larger than normal to contain the mask information.

When your program issues the FCS-PUT function with the mask in the record area and
PCREC-CONTROL set to "M", Tll'H2P saves the mask and translates all subsequent
records passed to Tll'H2P. The program should set PCREC-CONTROL back to a space
when record data is sent It can send the mask again any time the interface is open.

7002 3999-100 3-147

PC File Transfer

3.20.7. PCXFER Compression

Data compression may be requested when transferring data to a PC by placing a 'Y' in the
PCINF-COMPRESS field before opening the transfer interface. This will cause the data to
be character compressed.

Any string of 4 or more identical characters will be compressed into a 3 character code. If
you have also requested "hexification" of the data (by setting PC-CONTROL-CODE to an
"Rn or ''1'''), the data will not be ''hexified'' but will be compressed and folded. Depending
on the data which you are transferring this can substantially reduce the amount of data sent
down the communication line.

The data file received at the PC is in compressed format and may not be usable on the PC
unless you only intend to copy it to another TIP /30 system. A PC program has been
provided that decompresses and, if necessary, unfolds the file that has been copied to the
PC.

The PC program is named PC-COMP. It must be copied to the PC with the following
command entered at the TIP /30 command line prompt:

~P?~COPY.x TIP/TC$COMP"C:PC-COMP.EXE)
Of course, the example above assumes that the program is to be copied to the "Cit drive on
the PC; adjust the command as necessary for your PC17.

If TC-CO?vfP is executed vvitJi.out conunaIld line par~T.eters, t.l-te following syntax help
information is displayed:

C:>TC-COMP

Error => Invalid command syntax.

Usage is :
TC-COMP <command> <source-file> <target-file>

where command is :
-C - Compress using ASCII compression.
-0 - Decompress file.
-H - Compress using hexification.

Additional Considerations:

The n-c' command is used to compress a PC file that is known to contain only displayable
ASCll characters. The "-Hit command is used to compress and fold a PC file (this is
required if the file contains non-displayable characters).

The source-file is required; the target-file defaults to the source-file.

When a file is copied to the host TIP /30 system, the transfer code automatically determines
if the file needs to be uncompressed or unfolded. The data is always retLlrned to its natural
state.

17. The PC program can be given any name; TC-COMP.EXE is a suggestion.

3-148 7002 3999-1 00

TIP/30 OMS Interface

3.21. TIP/30 OMS Interface
This section provides infonnation regarding the implementation of the various features
provided by the Multi-thread DMS interface, primarily as they apply to programs written
in a native TIP /30 environment.

3.21.1. OMS Interface: XR31MS

TIP /30 utilizes the same interface to DMS as is used by the IMS product. There are several
considerations for using DMS with TIP /30 that are discussed. in detail in following
subsections. To fully comprehend these discussions you must have a working knowledge
of the various DMS components and their acronyms, such as DMCL and DUPL. You can
obtain this infonnation by reviewing the various DMS manuals supplied by the
manufacturer.

3.21.2. Ofv1CL Considerations

Since TIP /30 uses the IMS/DMS interface, you must generate your database DMCLs that
are to be accessed via online programs with the ONLINE QUICK-BEFORE-LOOKS
statement.18 Although various DMS options allow you to execute online programs that
update the database without using QUICK-BEFORE-LOOKS, this is highly undesirable.
Suppression of QBL facilities implies that should a program terminate abnormally without
having fully completed a series of related updates, the database may be left in a physically,
as well as logically, compromised state.

3.21.3. DBMS Start up

You must supply statements within the DUPL commands used. for DBMS start up. The
statements that are of primary concern are the MAXIMUM ONLINE-THREADS and
ONLINE-TERMINALS statements.

MAXIMUM ONLINE-TERMINALS must always specify a value that is at least equal to the
number of terminals that will access DMS. Take care to count all logical terminals, not just
physical ones. Also be sure to include DMS transactions that are either user initiated, or
program initiated (for example, via a call to the TIPFORK subroutine) at screen bypass
terminals.

Set MAXIMUM ONLINE-THREADS according to the DBMS option that is selected in the
TIPGEN parameters. Set the ONLINE-THREADS statement to be equal to the number of
threads indicated by the TIPGEN DBMS=DMS specification. Both single and multi-thread
IMS emulated programs will function under the TIP /30 - DMS interface.

18. Before Release 12 of 05/3 the word "ONLINE" was coded as "IMS",
"ONLINE" now is used as a more generic term.

7002 3999-100 3-149

TIP/30 OMS Interlace

3.21.4. COBOL Compile PreProcessing

When preprocessing TIP /30 COBOL programs for the purpose of compiling them, code the
OMLP OUPL as though an IMS program is being compiled, for example: PRE-PROCESS
IMS PROCRAM

Note: As of Release 12.0 of OS/3, the preprocessor allows use of the statement: PRE-PROCESS
TIP PROGRAM. This causes the preprocessor to generate calls to the module "TIPDMS"
(rather than "XR3IMS"). This minor change eliminates the possible accidental inclusion
of the IMS interface module in a TIP/3D program.

A TIP /30 copy module is supplied that can be used for the OMS-STATUS section. This
module, TIP /TC-DMSSf, is intended to be the equivalent of the IMS module IMSTA174.

The copy element TC-DMSSf expects that the MCS area includes a COpy statement for the
element TC-DMSER from the TIP library. The TC-DMSER copy element contains message
data items used by TC-DMSSf to construct error messages which are displayed under
certain error conditions.

The copy element TIP /TC-DMSSf contains:

/
DMS-STATUS SECTION.

* **
*
*
*
*

*
*
*
*

DMS-STATUS SECTION FOR TIP/30 PROGRAMS *
(SHOULD NOT BE USED IN TIP SUBPROGRAMS. USE *
TC-DMSSP INSTEAD, TO AVOID RECURSIVE *
SUBPROGRAM CALLS!) *

* **
*
*
*

*

*

TC-DMSST VERSION 3.2 11/10/88

STATUS-PARA.

IF (ERROR-STATUS NOT
(ERROR-STATUS NOT
PERFORM'DMS-ABORT
CALL 'TIPDUMP'.

ZEROES) AND
'1601')

* END OF DMS-STATUS SECTION.

*
DMS-ABORT SECTION.

*
** REPORT A DMS ERROR TO USER

*
ABORT-PARA.

MOVE SPACES
MOv~ t:"~nr\n_C!""1\""TTc!

.c..J:'\.,J.;\.V~-...;J .J...n.~ V!..J

MOVE RB-ERROR-CODE
MOVE ERROR-RECORD
MOVE ERROR-SET

TO TF-DMSER-DATA.
TO EFROR-STATUS-DMSER .
TO RB-ERROR-CODE-DMSER.
TO ERROR-RECORD-DMSER.
TO ERROR-SET-DMSER.

3-150 70023999-100

TIP/30 OMS Interface

MOVE ERROR-AREA
MOVE RECORD-NAME
MOVE AREA-NAME
DIVIDE DBKEY BY 256

TO ERROR-AREA-DMSER.
TO RECORD-NAME-DMSER.
TO AREA-NAME-DMSER.
GIVING DBKEY-DMSER.

COMPUTE DBKEY-LIN-DMSER = DBKEY - (DBKEY-DMSER * 256).
DIVIDE DlRECT-DBK BY 256 GIVING DlRECT-DBK-DMSER.
COMPUTE DlRECT-DBK-LIN-DMSER = DlRECT-DBK -

(DlRECT-DBK-DMSER *
MOVE CALL-RETURN-ADDR TO CALL-RETURN-DMSER.
MOVE ' TF$DMSER' TO MCS-NAME.
MOVE 116 TO MCS-COUNT.
MOVE SPACE TO MCS-FUNCTION.
IF RB-ERROR-CAUSE-DMSER NOT = ZEROS

MOVE 'TT-DMS' TO PIB-TRID
CALL 'TIPSUBP' USING MCS
IF ERROR-TEXT-DMSER NOT = SPACES

CALL 'TIPMSGEO' USING EF~~R-TEXT-DMSER=
CALL 'TIPMSGO' OSING MCS.

256) .

DMS-ROLLBACK SECTION.

*
* **
* * DMS-ROLLBACK SECTION FOR TIP/30 PROGRAMS *
* **
*

DMS-ROLLBACK-PARA.
* **
*
*
*
*

*
*
*
*

USER PROGRAM SHOULD DEFINE DMS-ROLLBACK-LOCK *
PARAGRAPH TO HANDLE WAIT LOCK ERRORS IN-LINE. *
YOU MAY CODE "GO TO DMS-ROLLBACK-CONTlNUE." IF *
YOU WANT WAIT LOCK ERRORS TO SIMPLY ABORT. *

* **
IF (RB-ERR-CAUSE == '15' OR '18' OR '19') OR

* **
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*

CONTROL PASSES TO: DMS-ROLLBACK-LOCK *
WHEN STANDARD RECORD/PAGE LOCK ABORTS OCCUR, *
-OR- IF THE USER HAS SET THE FREE-CKPT-CODE *
TO A VALUE OF 'BACK' (THIS COULD BE DONE ONCE *
AT THE TIME OF IMPART). THIS LATER TECHNIQUE *
CAN BE USED WHEN THE USER PROGRAM DESIRES TO *
HANDLE -ALL- ROLLBACK ERRORS. THIS WOULD BE *
REQUIRED, FOR INSTANCE, IF THE PROGRAM WAS
RUNNING IN BACKGROUND, WHERE THE STANDARD
'ERROR SCREEN' TERMINATION WOULD NOT BE
APPROPRIATE.

*
*
*
*

* **
(FREE-CKPT-CODE = 'BACK')

GO TO DMS-ROLLBACK-LOCK.

DMS-ROLLBACK-CONTlNUE.
PERFORM OMS-ABORT.

7002 3999-100 3-151

TIP/30 OMS Interface

MOVE 300 TO PIB-WAIT-TIME.
IF ERROR-TEXTX-DMSER = SPACE

* ALLOW TERMINAL USER TO READ ERROR MESSAGE
CALL 'TEXT' USING ERROR-TEXT3-DMSER

* THEN DIE WHEN ERROR IS NOT TRANSLATABLE
CALL ' TIl?DUMP'

ELSE
* ALLOW TERMINAL USER TO READ ERROR MESSAGE

CALL 'TEXT' USING ERROR-TEXT3-DMSER
* THEN DISPLAY IT AND RETURN NORMALLY

CALL ' TIPRTN' .

*
* END OF DMS-ROLLBACK SECTION.

Copy element TIP /TC-DMSER contains:

*
** MCS-DATA LAYOUT FOR 'TF$DMSER', TO REPORT DMS ERRORS

*
03 TF-DMSER-DATA.

05 CALL-RETURN-DMSER
05 ERROR-STATUS-DMSER
05 RB-ERROR-CODE-DMSER.

10 FILLER

PICTURE X(OS) .
PICTURE X(04) .

PICTURE XX.
10 RB-ERROR-CAUSE-DMSER PICTURE XX.

05 ERROR-RECORD-DMSER PICTURE X(16) .
05 ERROR-5ET-DMSER PICTURE X(16) .
05 ERROR-AREA-DMSER PICTURE X(16) .
05 RECORD-NAME-DMSER PICTURE X(16) .
05 AREA-NAME-DM5ER PICTURE X(16) .
05 DBKEY-DMSER PICTURE 9 (07),.
05 DBKEY-LIN-DMSER PICTURE 59(03).
05 DIRECT-DBK-DMSER PICTURE 9(07).
05 DIRECT-DBK-LIN-DM5ER PICTURE 59(03).
05 FILLER PICTURE X(4) .
05 ERROR-TEXT-DMSER.

10 ERROR-TEXT1-DM5ER.
15 ERROR-TEXTX-DM5ER PICTURE X.
15 FILLER PICTURE X(79) .

10 ERROR-TEXT2-DM5ER PICTURE X(80) .
10 ERROR-TEXT3-DM5ER PICTURE X(80) .

3-152 7002 3999-1 00

TIP/30 OMS Interlace'

The status coding is designed to output a screen fonnat (assumed name: TF$DMSO.J
explaining the error situation. The following screen fonnat is supplied with the TIP /30
system:

Data Base Management System Error Has Occurred

Aborting program
Call return address
Error status
Rollback status
Error record
Error set
Error area
Last good record
Last good area

Direct dbk pagel line __ _

20 JUL 89 11:05

l
Dbkey page I line

---~~---""""

The code in the TIP /30 supplied DM5-STATUS module (TC-DMSST) calls TIPSUBP to call
a resident subprogram named TI-DMS19 This call is issued for the purpose of translating
certain common DMS error return codes into messages which can be understood by
application terminal operators.

19. The source coding for this module is included in the TIP library for installations that need to alter it to accommodate local
language.

7002 3999-100 3-153

TIP/30 OMS Interface

3-154

This method has been chosen to minimize the need for memory at run time. However, this
technique does not work if the routines which use the TIP /30 supplied status module are
themselves used in a subprogram since a subprogram cannot call another subprogram.
Subprograms which use the DMS interface must use the TIP /30 supplied status module
named ''TC-DMSSP'' (from the TIP library):

/
OMS-STATUS SECTION.

* **
*
*
*

*
*
*

OMS-STATUS SECTION FOR TIP/3D RESIOENT SUBPROGRAMS *
(CAN BE USED IN REGULAR PROGRAMS, BUT TC-DMSST
IS SMALLER AND MORE EFFICIENT!)

*
*

* **
*
*
*

*

*

TC-OMSSP VERSION 3.2 11/10/88

STATUS-PARA.

IF (ERROR-STATUS NOT - ZEROES) AND
(ERROR-STATUS NOT = '1601')
PERFORM OMS-ABORT
CALL ' T IPOUMP' .

* END OF OMS-STATUS SECTION.

*
OMS-ABORT SECTION.

*
** REPORT A OMS ERROR TO USER

*
ABORT-PARA.

*

MOVE SPACES TO TF-DMSER-DATA.
MOVE ERROR-STATUS TO ERROR-STATUS-OMSER.
MOVE RB-ERROR-COOE TO RB-ERROR-COOE-DMSER.
MOVE ERROR-RECORD TO ERROR-RECORD-DMSER.
MOVE ERROR-SET TO ERROR-SET-DMSER.
MOVE ERROR-AREA TO ERROR-AREA-DMSER.
MOVE RECORD-NAME TO RECORD-NAME-DMSER.
MOVE AREA-NAME TO AREA-NAME-DMSER.
OIVIDE OBKEY BY 256 GIVING OBKEY-DMSER.
COMPUTE DBKEY-LIN-DMSER = DBKEY - (DBKEY-DMSER * 256).
DIVIDE OIRECT-DBK BY 256 GIVING DIRECT-DBK-DMSER.
COMPUTE DIRECT-DBK-LIN-DMSER = OIRECT-DBK -

(DIRECT-DBK-DMSER * 256) .
MOVE CALL-RETURN-ADDR TO CALL-RETURN-DMSER.
MOVE ' TF$DMSER' TO MCS-NAME.
MOVE 116 TO MCS-COUNT.
MOVE SPACE TO MCS-FUNCTION.
MOVE SPACES TO ERROR-TEXT-DMSER.

ANALYZE THE ROLLBACK CAUSE ALREADY SET IN THE MCS AREA!

7002 3999-1 00

TIP/30 OMS Interface

IF RB-ERROR-CAUSE-DMSER = '10'
* INSUFFICIENT MAIN STORAGE FOR LOCKS

MOVE
'Notify DATA PROCESSING that the LOCK POOL is too sma
'11' TO ERROR-TEXT1-DMSER

MOVE 'the transaction may be able to work if you try it ag
'ain!' TO ERROR-TEXT2-DMSER

ELSE IF RB-ERROR-CAUSE-DMSER = '15' OR '18' OR '19'
* RECORD/AREA WAIT TIME EXCEEDED (RO CONFLICT)

MOVE 'The records needed by this transaction were in use e
'lsewhere in the system,'

TO ERROR-TEXT1-DMSER
MOVE 'you should rekey the transaction code and try again

, ! ' TO ERROR-TEXT2-DMSER

ELSE IF RB-ERROR-CAUSE-DMSER = '30'
* REQUESTED DMCL NOT LOADED

MOVE 'The database needed by this program is not currently
, available,' TO ERROR-TEXT1-DMSER

MOVE 'contact DATA PROCESSING to determine when it will be
, made available!' TO ERROR-TEXT2-DMSER

ELSE IF RB-ERROR-CAUSE-DMSER = '32'
* INSUFFICIENT MAIN STORAGE IN SUBSCHEMA POOL

MOVE 'Notify DATA PROCESSING that the SUBSCHEMA POOL is to
'0 small,' TO ERROR-TEXT1-DMSER

MOVE 'the transaction may be able to work if you try it ag
'ain!' TO ERROR-TEXT2-DMSER

ELSE IF RB-ERROR-CAUSE-DMSER = '39'
* SUBSCHEMA DATE/TIME MISMATCH

MOVE 'Notify DATA PROCESSING that this transcation has a D
'ATE/TIME mismatch,'

TO ERROR-TEXT1-DMSER
MOVE 'they will need to recompile this 'program BEFORE it c

'an be used again!' TO ERROR-TEXT2-DMSER

ELSE IF RB-ERROR-CAUSE-DMSER = '40'
* ONLINE TERMINAL LIMIT EXCEEDED

MOVE 'Notify DATA PROCESSING that the DMS TERMINAL LIMIT w
'as exceeded,' TO ERROR-TEXT1-DMSER

MOVE 'the transaction may be able to work if you try it ag
'ain!' TO ERROR-TEXT2-DMSER

ELSE IF RB-ERROR-CAUSE-DMSER = '43' OR ;45'
* DATABASE OR AREA SHUTDOWN

7002 3999-1 00

MO\~ 'The database has been made unavailable due to an err
'or,' TO ERROR-TEXT1-DMSER

MOVE 'contact DATA PROCESSING to determine when it will be
, made available!' TO ERROR-TEXT2-DMSER

3-155

TIP/30 OMS Interface

3-156

ELSE IF RB-ERROR-CAUSE-DMSER = '51' OR '52' OR '53'
* NEW IMPART INHIBITED FOR DBMS, DBA, OR DMCL

MOVE 'The database needed by this program is not currently
, opened,' TO ERROR-TEXT1-DMSER

MOVE 'contact DATA PROCESSING to determine when it will be
, re-opened!' TO ERROR-TEXT2-DMSER

ELSE IF RB-ERROR-CAUSE-DMSER a '58' OR '59'
* ONLINE ACCESS INHIBITED FOR DMCL OR DBMS

MOVE 'The database needed by this program is currently res
'tricted from online access,'

TO ERROR-TEXT1-DMSER
MOVE 'contact DATA PROCESSING to determine when it will be

, made available!' TO ERROR-TEXT2-DMSER

ELSE IF RB-ERROR-CAUSE-DMSER = '97'
SVC PROCESSING EP~OR
MOVE 'The computer job that controls the database does not

, appear to be running,'
TO ERROR-TEXT1-DMSER

MOVE 'contact DATA PROCESSING to determine when it will be
, made available!' TO ERROR-TEXT2-DMSER.

IF ERROR-TEXT-DMSER NOT = SPACES
CALL 'TIPMSGEO' USING ERROR-TEXT-DMSER.

CALL 'TIPMSGO' USING MCS.
DMS-ROLLBACK SECTION.

*
* **
* * DMS-ROLLBACK SECTION FOR TIP/30 PROGRAMS *
* **

*
DMS-ROLLBACK-PARA.

* **

*
*
*
*

*
*
*
*

USER PROGRAM SHOULD DEFINE DMS-ROLLBACK-LOCK *
PARAGRAPH TO HANDLE WAIT LOCK ERRORS IN-LINE. *
YOU MAY CODE "GO TO DMS-ROLLBACK-CONTlNUE." IF *
YOU WANT WAIT LOCK ERRORS TO SIMPLY ABORT. *

* **
IF (RB-ERR-CAUSE = '15' OR '18' OR '19') OR

* **
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

CONTROL PASSES TO: DMS-ROLLBACK-LOCK *
WHEN STANDARD RECORD/PAGE LOCK ABORTS OCCUR, *
-OR- IF THE USER HAS SET THE FREE-CKPT-CODE *
TO A VALUE OF 'BACK' (THIS COULD BE DONE ONCE *
AT THE TIME OF IMPART). THIS LATER TECHNIQUE *
CAN BE USED WHEN THE USER PROGRAM DESIRES TO *
HANDLE -ALL- ROLLBACK ERRORS. THIS WOULD BE *
F~QUIF~D; ,FOR INSTANCE, IF THE PROGRAM WAS *
RUNNING IN BACKGROUND, WHERE THE STANDARD *

70023999-100

TIP/3~ OMS Interface

*
*

*
*

'ERROR SCREEN' TERMINATION WOULD NOT BE
APPROPRIATE.

*
*

* **
(FREE-CKPT-CODE = 'BACK')

GO TO DMS-ROLLBACK-LOCK.

DMS-ROLLBACK-CONTINUE.
PERFORM DMS-ABORT.
MOVE 300 TO PIB-WAIT-TIME.
IF ERROR-TEXTX-DMSER = SPACE

* ALLOW TERMINAL USER TO READ ERROR MESSAGE
CALL 'TEXT' USING ERROR-TEXT3-DMSER

* THEN DIE WHEN ERROR IS NOT TRANSLATABLE
CALL ' T IPDUMP '

ELSE
* ALLOW TERMINAL USER TO READ ERROR MES SAGE

CALL 'TEXT' USING ERROR-TEXT3-DMSER
* THEN DISPLAY IT AND RETURN NORMALLY

CALL 'TIPRTN'.

*
* END OF DMS-ROLLBACK SECTION.

This module is functionally equivalent to TC-DMSST, but will not result in a recursive
subpro~am call. .

3.21.5. TIP/30-DMS Programming

TIP /30 native programs utilize the multi-thread online version of DMS. In addition to
allowing multiple online programs to be simultaneously IMP ARTed to DMS, resulting in
concurrent database access, this interface affords significant capability to maintain a DMS
''Success Unit,,20 beyond the scope of a single dialog with a terminal user.

Specifically, programs may hold various DMS record locks and roll back capabilities across
screen outputs and inputs and across program transfer of control. You should use the DML
UNBIND and BIND verbs in this environment to properly coordinate the use of these
facili ties.

A program that has issued an IMP ART to DMS may not transfer control to another
program or solicit input without issuing either a DEPART or an UNBIND statement.
Neither of these DML verbs is executed immediately by TIP /30. Instead, TIP /30 internally
notes their use and the verbs are executed only when their use can be properly coordinated
with processing that might be occurring against conventional OS /3 files, such as MIRAM
files. This is done so that should a user or system initiated "roll back" be requested, the
database and the conventional files can be kept in proper synchronization.

20. See the OMS DML manual and the IMS/DMS manual for discussions on success units.

7002 3999-100 3-157

TIP/30 DMS Interface

3-158

All user intentions for special processing with regard to the holding of various locks or
establishing new roll back points are indicated by use of the pm-LOCK-INDICA TOR field.
If special processing is required, set this field just prior to issuing any of the following
TIP /30 calls:

CD TIPDXC • TIPXcn.

• TIPJUMP • PROMPT

• Tll'MSGI • PROMPrX

CD TIPMSGRV CD PROMPTXB

• TIPR1N • TEXT

• TIPSUB • TEXT80

• TIPSUBP • TIPTERM (T -GET)

• TIPTIMER

These calls divide into the same two groups previously described:

1. Requesting Input and

2. Transferring program control.

When you use the PIB-LOCI<:-INDICATOR, it describes what action should be taken for
both OMS and conventional files. This discussion however, is limited to the effect on the
OMS environment.

The following table shows each of the combinations that exist with regard to issuing either
OEP ART /UNBIND and setting the PIB-LOCK-INDICATOR.

~~j>:!:ii:n .: .•. ' .• ::l'IB• :;.1..0• C, •..... K ... ,.::.~,: •. ':' .• :'q11I'l'¢Jl.&~~~p::.:::.update".A:rea:>
V4 INDICATORr.ol':kS::: ".L .• ·,.·.oP<S .• ".·.·, <.-} :liLOCk$! ;S,fafu~.

,.1 "C-:':::::":.::::::::::::::' =:=" •• :: ••••• : •••.••• :.'>::::.,'.:::

OEP ART space Release Release Release o o sed

UNBIl\ID· space Release Release Release Open

DEPART HorR Release Release Held Oosed

UNBIl\ID· R Release Release Held Open

UNBIND· H Release Held Held Open

UNBIND· 0 Release Release Roll back Open

DEPART 0 Release Release Roll back Oased

7002 3999-1 00

TlP/30 OMS Interface

Legend:

R

H

o

Assumes that the subsequent BIND accesses the same subschema.

Causes the "success unit" to be extended by holding update locks, but
RELEASES all other record locks.

Does all that ''Rtf does, but HOLDS all DMS KEEP locks as well.

Causes all updates and locks created within the current "success-unit" to be
"rolled back". This is the logical equivalent to a DML ROLLBACK or DEP ART
WTIH ROLLBACK, when used with the UNBIND or DEPART, respectively.

As noted, the various UNBIND status codes apply when the UNBIND /BIND sequence is
used with a single subschema. When this is not the case, the UNBIND will resemble a
DEPART with an H/R/O lock indicator. Note also that these same conditions exist when a
program or subprogram UNBIND /BIND is issued, such as might occur with a TIPSUBP.

When a BIND is issued after a previous UNBIND; use the DML OPEN AREA verb only in
those instances indicated above, that show that the areas will have been closed, such as
when a different subschema is being requested.

Much flexibility exists because a given program may UNBIND from DMS and then jump
either laterally to another program (TIPXCTL), or go up or down the stack
(TIPSUB/TIPRTN), and during each of these operations it may continue to impose various
locks upon records in DMS (and FCS).

Consider the following points when doing this type of programming:

• If DMS locks are to be continually imposed throughout a series of program transfers,
the PIB-LOCK-INDICATOR must be explicitly set at each transfer point to continue the
imposition of the DMS locks.

This is especially important if one of the intennediate programs does not access DMS.
That program must still set the indicator appropriately, or all locks will be released,
and a new "success unit" created.

• Some program, in a program transfer chain, must eventually issue a DEPART with a
blank PIB-LOCK-INDICATOR, to indicate a full release of DMS resources. If a
program ever attempts to return control to the bottom of the TIP /30 stack, or in other
words, a program attempts to call TIPRTN with no programs ''beneath'' it, and internal
TIP /30 information indicates that a proper DEPART has not been done, that program is
terminated and error message TI094 is issued.

• Because a DMS program may not always be initiated from the bottom of the TIP /30
"stack", the problem described in the previous bullet item might not always be
detectable. The potential exists, due to the PCS TIPSUB /TIPRTN calls, for a program
that has been called by TIPSUB to IMP ART and erroneously fail to DEPART, before
TIPRTN to the originating program.

To eliminate tl-ris potential problem, TIP /30 enforces a restriction on D:MS prograIIls
that remain "connected" to DMS across program boundaries. Sped·fically, no program
may TIPRTN below the stack level at which it first issued. an IMP ART, without having
issued a DEPART with a space in PIB-LOCK-INDICATOR.

7002 3999-100 3-159

TIP/30 OMS Interface

In other words, you may IMPART at a low stack level, and remain connected to DMS
up through higher stack levels (TIPSUBs), but you may not initially IMP ART at a high
stack level and remain connected to DMS down through lower stack levels (Tll'RTN).

• It is important to realize that the use of the pm-LOCK-INDlCA TOR within a DMS
environment, while soliciting an input message, begins to increase the chance that
some other DMS program in the system will be "waited" and possibly rolled back by
DMS because it could not gain access to a record being held by the first program.

All aspects of these locks are controlled totally by DMS itself, and should be well
understood, as discussed in the DMS Data Manipulation Language manual.

• DMS controls its online user environment on the basis of "terminal-id". If a user
program only issues an UNBIND, or attempts to hold locks while soliciting an input
message (such as TIPMSGI), the terminal on which it is executing is technically still
attached to DMS. If the end user then attempted to use the TIP /30 escape feature21 of
TIP /30 to execute an entirely different program (possibly another DMS program) total
confusion may result, because DMS would interpret the calls from these programs as
one continuous "event".

To prevent this from happening, use specify ESCAPE=NO in the TIP /30 Catalogue
definition for programs of this type. This effectively turns off the ESCAPE feature

... while executing that program.

3.21.Se FCS Calls Related to OMS

As has been discussed above, DMS access and conventional file access are closely
monitored by TIP /30 to ensure that "checkpoints" and "roll backs" are always coordinated.
Consequently, one of the available FCS calls that is provided by TIP /30 has meaning to
DMS users as well.

Use of the FC5-TREN function causes the establishment of a new "commit" point. This
causes a TIP /30 internal call to DMS to provide for equivalent processing. The FREE WITH
CIiECKPOINT DML verb is actually issued internally by TIP /30.

Use of the FCS-TRE.J function, with a PIB-LOCK-INDICATOR setting of "a", causes
conventional files to be rolled back to the previous "commit" point. This will also cause
DMS updates to be rolled back as well. This is the logical equivalent to the DML verb,
ROLLBACK. .

Use the FC5-TREN function if you want to initiate either a ROLLBACK or FREE WITH
CHECKPOINT.

21. See the documentation of the ESCAPE= TIP /30 generation keyword.

3-160 7002 3999-1 00

TIP/30 OMS Interface

3.21.7. Catalogued DMCL Names

DMS users should be aware of an optional facility that can be invoked for any DMS
programs executing under Til' /30. The method that DMS utilizes to properly select the
database a user desires when he issues an IMP ART, is to examine the DMCL name in the
DMCA of the user program. This, and only this, determines which database will be used.

If you want to have both a production and test database for the exact same schema, each
with its own DMCL to control it, the nonnal DMS procedures require compiling the
program with a DMS INVOKE statement referencing the DMCL of the test database, for the
purpose of program testing. Once tested, you must change the INVOKE statement to
reference the production database DMCL, and recompile the program.

TIP /30 provides facilities that make this unnecessary. The TIP /30 catalogue FILE statement
provides a facility by which DMCL names can be defined to relate "logical" DMCL names
to "physical" ones, on a group by group basis, as is done with conventional files.

w-nen a DMS IMP ART is issued from a program running under Til' /30, the catalogtle is
examined to determine if a FILE DMCL= entry exists for the requested DMCL, using
standard order of search processing. If no record is found, the program is simply allowed to
IMP ART to the requested DMCL. However, if a FILE DMCL= entry exists, the DMCL name
that was compiled in the program will be overridden when the IMPART is issued to DMS .

..
Thus, it is possible to have production and test databases for one schema, or even multiple
production databases for that schema, all being accessed by one compiled version of a
program. See the FILE statement as described for the CAT utility transaction program for
proper syntax.

Refer to the description of the TIP /30 run-time parameter DMSCAT= for additional
infonnation.

7002 3999-1 00 3-161

TIP/30 Journal File

3.22. TIP/30 Journal File

3-162

The TIP /30 File Control System (FCS) automatically writes BEFORE and/or AFTER images
of updated records to the TIP /30 Journal file (TIP$JRN) or the TIP /30 Log File (TIP$LOG).
Parameters specified for each file in the TIP /30 generation parameters control the writing
of before and after images.

FCS also allows a user program to write records to the journal file. Such records can be
written to the journal file, for example, to mark certain exceptional events or to be able to
monitor transaction usage.

The format of a "user' record in the journal file is entirely at the discretion of the program
writing the record. The only restriction is that the record must contain a proper record
prefix (described in a following section).

Syntax:

Where:

CALL 'TIPFCS' USING FCS-JOURNAL
file-pkt
JRN-RECORD

FCS-JOtJKNAL

file-pkt

Function code from the TC-FCS copy element.

Logical filename packet.

This parameter is not used. It is required to maintain symmetry with other
TIPFCS calls.

JRN-RECORD

The record to be written to the TIP$JRN or TIP$LOG file.

This group item must be halfword aligned and must contain a proper journal
record prefix including the total length of the prefix and user data.

For more information see the description of the journal file record layouts in
the following section.

7002 3999-1 00

TIP/30 Journal File

3.22.1. Journal File Record Format
The TIP /30 Journal file (TIP$JRN) or the TIP /30 Log File (TIP$LOG) contains variable
length records. Each record has a journal prefix which contains a record length field, record
type field and assorted infonnation about the data that mayor may not follow the prefix.
Some journal records contain NO data - they are simply a prefix.

The supplied copy book TIP /TC-JRN describes the layout of the various records that may
appear in the journal file.

• *
*
•
•

TIP/30 JOURNAL FILE RECORD DEFINITION
•
•
•

* • • • • • • • • • • • • • • • • ..• • • • • • • • • • • * * * * *

*
•
•
'*
'*
*
*
'*
'*
'*
•
*
'*
'*
'*
'*
'*
*
'*
'*
*
'*
'*
*
'*
'*
•
*
'*

'*
'*
'*

7002 3999-100

05 JRN-RECORD.

10 JRN-PREFIX.

JRN-REC-LEN LENGTH OF RECORD (INCL PREFIX)
ZERO LENGTH IMPLIES END-OF-FILE

JRN-REC-TYPE TYPE OF JOURNAL RECORD -

AFTR - IMAGE OF A DATA RECORD AFTER UPDATE
(INCLUDING LOGICAL DELETE)

BEFR
CKPT

DELT
LGOF
LGON
NEW
PREN
PRST
STAT
TREN
USER

- IMAGE OF A DATA RECORD BEFORE UPDATE
- NOTIFICATION A DATA FILE WAS CLOSED
- NOTIFICATION A LIBRARY ELEMENT WAS

READ -OR- WRITTEN
- IMAGE OF A MIRAM RECORD DELETED VIA RCB
- TIP/30 USER LOGOFF
- TIP/30 USER LOGON
- IMAGE OF A NEW DATA RECORD THAT WAS ADDED
- NOTIFICATION OF END OF TRANSACTION PROG
- NOTIFICATION OF START OF TRANSACTION PROG
- TIP/30 STATISTICS RECORD
- END OF TRANSACTION MARKER
- USER WRITTEN JOURNAL RECORD

- FORMAT DEFINED BY PROGRAM WHICH WRITES
THE RECORD TO THE JOURNAL FILE

- RECORD WRITTEN FOR THIS USERID JRN-UID
JRN-TRID
JRN-LFD
JRN-DATE
JRN-TIME

- EXECUTING THIS TRANSACTION PROGRAM
- FILE LFD NAME
- DATE STAMP (YYMMDD)
- TIME STAMP (HHMMSS)

JRN-TID - RECORD wKITTEN FOR THIS TEru~INAL

JRN-DIRECT-BLK-NO - BLOCK NUMBER (RELATIVE FILES ONLY)
JRN-ACCT - USER'S LOGON ACCOUNT NUMBER
JRN-ROLLBACK - SET TO "RLBK" IF THIS JOURNAL

3-163

TIP/30 Journal File

'* RECORD WAS WRITTEN AS A RESULT OF

'* ONLINE ROLLBACK (TRANSACTION

'* ABORTED OR FCS-BACK OR REQUESTED

'* ROLLBACK VIA PIB-LOCK-INDICATOR)
/

15 JRN-REC-LEN PICTURE 9 (4) COMP-4 SYNC.
15 FILLER PICTURE X (2) .
15 JRN-REC-TYFE PICTURE X (4) .

88 JRN-AE'TR VALUE ' AE'TR' .
88 JRN-BEFR VALUE 'BEFR' .
88 JRN-CKPT VALUE 'CKPT' .
88 JRN-DELT VALUE 'DELT' .
88 JRN-LGOF VALUE I LGOF' .
88 JRN-LGON VALUE I LGON' .
88 JRN-NEW VALUE 'NEW ' .
88 JRN-PREN VALUE 'PREN' .
88 JRN-PRST VALUE 'PRST' .
a8 JRN-STAT VALUE ' c::-m"",,' y ,j,rl.,j,

88 JRN-TREN VALUE ' TREN' .
88 JRN-USER VALUE 'USER' .

15 JRN-UID PICTURE X (8) .
15 JRN-TRID PICTURE X (8) .
15 JRN-LFD PICTURE X (8) .
15 JRN-LFN REDEFINES

JF.N-LFD PICTURE X (8) •

15 JRN-DATE PICTURE 9 (6) COMP-3.
15 JRN-TIME PICTURE 9 (6) COMP-3.
15 JRN-TID PICTURE X (4) .
15 JRN-DIRECT-BLK-NO PICTURE 9 (8) COMP-4.
15 JRN-ACCT PICTURE X (4) .
15 JRN-ROLLBACK PICTURE X (4) .

88 JRN-RLBK VALUE ' RLBK' .

10 JRN-DATA.
15 FILLER PICTURE X(4092) .
15 FILLER PICTURE X(4092) .

/
10 JRN-STAT-REC REDEFINES JRN-DATA.

15 JRN-STAT-MSG-IN PICTURE 9 (8) COMP-4.
15 JRN-STAT-MSG-QUT PICTURE 9 (8) COMP-4.
15 JRN-STAT-LEN-IN PICTURE 9 (8) COMP-4.
15 JRN-STAT-LEN-QUT PICTURE 9 (8) COMP-4.
15 JRN-STAT-SWAP PICTURE 9 (8) COMP-4.
15 JRN-STAT-CAT-REQ PICTURE 9 (8) COMP-4.
15 JRN-STAT-LOADM-REQ PICTURE 9 (8) COMP-4.
, c:: JRN~STAT-LOADM-ACT PICTURE 9 (8) CO~..P-4 . .. oj

15 JRN-STAT-TOT-RESP PICTURE 9 (8) COMP-4.
15 JRN-STAT-TOT-SCHED PICTURE 9 (8) COMP-4.
15 JRN-STAT-TOT-COMM PICTURE 9 (8) COMP-4.
15 JRN-STAT-FILE-SWAP PICTURE 9 (8) COMP-4.

3-164 7002 3999-1 00

/
*

15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15

JRN-STAT-CAT-ACT
JRN-STAT-MCS-ACT
JRN-STAT-DYN-ACT
JRN-STAT-ALL-BUSY
JRN-STAT-MCS-REQ
JRN-STAT-TOT-IO
JRN-STAT-TOT-BUSY
JRN-STAT-BUSY-I0
JRN-STAT-BUSY-15
JRN-STAT-BUSY-20
JRN-STAT-DBMS-IO
JRN-STAT-DBMS-IMP
JRN-STAT-MAX-B4
JRN-STAT-PRNTR-IO
JRN-'STAT-BLK-ACT
JRN-STAT-JRN-ACT •

15 JRN-STAT-RESERVED
15 FILLER
15 FILLER

PICTURE 9 (8)

PICTURE 9 (8)
PICTURE 9(8)
PICTURE 9 (8)

PICTURE 9 (8)

PICTURE 9 (8)

PICTURE 9 (8)

PICTURE 9 (8)

PICTURE 9 (8)

PICTURE 9 (8)

PICTURE 9 (8)

PICTURE 9 (8)

PICTURE 9(8)
PICTURE 9 (8)

PICTURE 9 (8)

PICTURE 9 (8)

PICTURE 9 (8)

TIP/30 Journal File

COMP-4.
COMP-4.
COMP-4.
COMP-4.
COMP-4.
COMP-4.
COMP-4.
COMP-4.
COMP-4.
COMP-4.
COMP-4.
COMP-4.
COMP-4.
COMP-4.
COMP-4.
COMP-4.

PICTURE 9(8) COMP-4.
PICTURE X(3972) .
PICTURE X(4092) .

* LOGOFF RECORD:

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

7002 3999-100

HOURS LOGGED ON
MINUTES LOGGED ON
SECONDS LOGGED ON

JRN-LGOF-LGON-HH
JRN-LGOF-LGON-MM
JRN-LGOF-LGON-SS
JRN-LGOF-WALL-MSEC
JRN-LGOF-I-O
JRN-LGOF-MSGIN
JRN-LGOF-MSGOUT
JRN-LGOF-LGON-DATE
JRN-LGOF-LGON-TIME
JRN-LGOF-DATE
JRN-LGOF-TIME
JRN-LGOF-AVG-RESP

TOTAL TIME LOGGED ON (MILLISEC)
TOTAL NO I/O'S ISSUED
TOTAL INPUT MESSAGES
TOTAL OUTPUT MESSAGES
DATE OF LOGON (YYMMDD)
TIME OF LOGON (HHMMS S)
DATE OF LOGOFF (YYMMDD)
TIME OF LOGOFF (HHMMSS)
AVERAGE RESPONSE TIME (MILLISEC)

10 JRN-LGOF-REC REDEFINES JRN-DATA.
15 FILLER PICTURE X(2) .
15 JRN-LGOF-LGON-HH PICTURE 9 (2) COMP-3.
15 JRN-LGOF-LGON-MM PICTURE 9 (2) COMP-3.
15 JRN-LGOF-LGON-SS PICTURE 9(2) COMP-3.
15 JRN-LGOF-WALL-MSEC PICTURE 9 (8) COMP-4.
15 JRN-LGOF-I-O PICTURE 9 (8) COMP-4.
15 JRN-LGOF-MSGIN PICTURE 9 (4) COMP-4.
15 JRN-LGOF-MSGOUT PICTURE 9 (4) COMP-4.
15 JP~-LGOF-LGON-DATE PICTURE 9 (6) COM.2-3.
15 JRN-LGOF-LGON-TIME PICTURE 9 (6) COMP-3.
15 JRN-LGOF-DATE PICTURE 9 (6) COMP-3.

3-165

TIP/3D Journal File

3-166

15 JRN-LGOF-TIME PICTURE 9 (6) COMl?-3.
15 JRN-LGOF-AVG-RESP PICTURE 9 (8) COMP-4.
15 FILLER PICTURE X(4052) .
15 FILLER PICTURE X(4092) .

*
* LOGON RECORD:

*
* JRN-LGON-DATE DATE OF LOGON (YYMMDD)

* JRN-LGON-TIME TIME OF LOGON (HHMMSS)

*
10 JRN-LGON-REC REDEFINES JRN-DATA.

15 FILLER PICTURE X(20) .
15 JRN-LGON-DATE PICTURE 9 (6) COMl?-3.
15 JRN-LGON-TIME PICTURE 9 (6) COMP-3.
15 FILLER PICTURE X(4064) .
15 FILLER PICTURE X(4092) .

*
* CKPT P~COPD: (FOR LIBRARY ELEMENT READ OR WRITE)

*
ELEMENT NAME *

*
*
*

JRN-CKPT-ELT-NAME
JRN-CKPT-ELT-TYPE
JRN-CKPT-ACCESS

ELEMENT TYPE (S-OURCE M-ACRO ETC)
READ / WRITE ACCESS BY USER

10 JRN-CKPT-REC REDEFINES JRN-DATA.
15 JRN-CKPT-ELT-NAME PICTURE X(8) .
15 JRN-CKPT-ELT-TYPE PICTURE X.
15 JRN-CKPT-ACCESS PICTURE X.

88 JRN-CKPT-READ VALUE 'R' .
88 JRN-CKPT-WRITE VALUE f W' •

15 FILLER PICTURE X(4082) .
15 FILLER PICTURE X(4092} .

*
* JOURNAL RECORD TYPES: AFTR
* BEFR
* DELT
* NEW
* USER

*
*
*
*

CONTAIN A VARIABLE AMOUNT OF DATA IN JRN-DATA
DEPENDING ON THE RECORD SIZE OF THE
FILE TO WHICH THE IMAGE APPLIES

*
* JOURNAL RECORD TYPES: CKPT (EXCEPTING LIBRARIES)
* PREN
* PRST
* TREN

*
*

CONTAIN ---NO--- DATA OTHER THAN THE PREFIX.

*

7002 3999-1 00

TIP/30 Journal File

JRN-PREFIX

A fixed length prefix that appears on the front of ALL records in the journal
file.

JRN-REC-LEN

Binary halfword containing the length of the journal file record.

This length includes the number of bytes in the record prefix.

JRN .. REC-TYPE

JRN-UID

JRN-TRID

JRN-LFD

JRN-DATE

JRN .. TIlViE

JRN .. TID

The type of joUrnal file record.

This journal record was written on behalf of this TIP /30 user.

The TIP /30 transaction name that was executing when this record was
written.

The applicable file LFD name (applies to file related journal records).

The date st&Tip of t..'lis record in YnMADD fonnat.

The time stamp of this record in HHM:MSS format.

The name of the terminal related to this journal record.

JRN-DIRECT -BLK-NO

JRN-ACCT

The relative record number if this journal record is a before (BEFR) or after
(AFTR) image of a direct (non-indexed) file.

The logon account number of the user to which this journal record pertains.
This field contains the account number that was specified when the user
logged on TIP /30.

JRN-ROLLBACK

JRN-DATA

This field contains the character string ''RLBK'' if this journal record was
written by TIP /30 online roll back. This occurs, for example, when an AFTR
image is written as a result of an update being rolled back after a transaction
aborted.

A group item indicating the start of t.~e "datan portion of the journal record.

Note: The copy element reserves a great deal of space to accommodate a fairly large record - the
record length of the journaled record can be large.

7002 3999-100 3-167

TIP/30 Journal FI~e

3 .. 22.2. Batch Journal File Access

The TIP /30 library contains an object module (element name = TI$JRN) which must be
linked with user batch programs that read the TIP$]RN, TIP$B4 or TIP$LOG file.

This object module contains entry points to the subroutines that provide I/O services for
the batch program.

You may write a batch program to use these supplied subroutines to read the TIP /30
journal file (or TIPHST, TIPB4 or TIP$LOG file).

Note: You !!!E§l.place your batch program load module in the TIP$LOD library and execute the
batch program from that library. The access subroutines supplied with TIP/3D use other
supplied routines to perform the actual file 110. These subordinate routines are not linked
in the load module but are fetched at execution time from the job step library.

The supplied job stream TJ$LST, in the TIP /30 job control library, sorts andlists the
TIP$JRN file (or TIP$B4 or TIP$LOG). Refer to the description of the TJ$LST job stream in
TIP/3D Generation, l'v1ainterdlr~e and Ir.stallation.

3.22.2 .. 1. TIPJRNOP - Batch Journal File Open

3-168

'This subroutine OPENs the input "journal" file. The subroutine OPENs the first LFD that it
finds from the following list:

1. TIP$JRN
2. TIP$B4

3. TIP$LOG.

The JeL for your program should specify ~ of the LFD names from the preceding list
(whichever file is to be read). If the program wishes to read a TIP /30 History file, simply
define the history file with an LFD of TIP$JRN. .

Syntax:

CALL 'TIPJRNOP'

Where:

No parameters required.

Additional Considerations:

TIP /30 does not provide an error status; if the input file fails to open, the batch program is
terminated abnormally and the supplied interface routines send an error message to the
operator console.

7002 3999-1 00

TIP/30 Journal File

3.22.2.2. TIPJRNCL - Batch Journal File Close

This subroutine CLOSEs the input "journal" file. The subroutine CLOSEs whatever file was
previously OPENed via a call to TIP]RNOP (see previous description).

Your program should not attempt a call to this subroutine unless it has completed a prior
call to TIP]RNOP.

Syntax:

CALL 'TIPJRNCL'

Where:

No parameters required.

3.22.2.3. TIPJRNGT - Batch Journal File Read

This subroutine READs the next record from the input file and moves it to the area
specified as the (only) parameter on the CALL statement.

Syntax:

CALL 'TIPJRNGT' USING JRN-RECORD

Where:

JRN-RECORD

Parameter indicating where the subroutine is to place the next record from the
input file.

You should use the previously described copy element (TIP ITC-JRN) to
define this area.

Additional Considerations:

If the record length (JRN-REC-LEN) is zero after a call to TIPJRNGT, the program must
treat this as an end of file indication.

Note: The batch journal file access routines return a variable length record. In particular, there
may be very large records in the input file <for example, BEFR and AFTR images of user
data records).

7002 3999-100

If your program has no interest in a particular record type, the record can be ignored
when it is delivered by the call to the TIPJRNGT subroutine; however, the program must
allow sufficient space in the definition of the record area (JRN-RECORD) to house the
largest possible journal record!

This is the reason for the rather generous FILLER items that are defined as part of the
group item "JRN-DAT A" in the supplied copy element.

3-169

Section 4
TIP/30 System Generation

The TIP /30 system is generated by preparing a library element containing TIP /30
generation statements and parameters that define and select various aspects of the TIP /30
system.

This input stream contains generation control statements, parameters, keywords and
options that are read and interpreted by a supplied batch program (TB$GEN).

The output of the TB$GEN program is a job stream containing:

• an ASSEMBLY step (to assemble the TIP / 30 Control Area - TCA)

• a LNKEDT step to link the TCA into a load module and (if necessary) a load module
that is used by the TIP /30 offline recovery program

• UBS steps to copy these load modules to the appropriate libraries and to erase the job
that was dynamically built by the TB$GEN program.

The TB$GEN program assumes the responsibility of conforming to assembler coding
conventions.

The user prepares a library element containing free-format statements that specify the
TIP /30 requirements for the site and specifies that library element as the input to the
n$p ARAM job (the parameter processor).

The parameter processor allows the use of comments in standard assembler format (an
asterisk in column 1) and allows the use of a slash in column 1 to indicate "skip to a new
page" to improve the readability of the printed output.

The parameter processor does not require the use of any sort of "continuation flag". Each
statement begins with the name of the statement, any required positional parameters,
followed by the keywords selected for that statement.

Example:

FILE PAYMAST,MIRAM BLKSIZE=256 KEYLEN=8 KEYLOC=Q
RECSIZE=256
HOLD=TR DELETE=(X'FF' ,8).

Each generation statement (not each line) should be terminated with a period after the last
keyword that applies to that statement.

The output of the parameter processor is a printed report indicating the result of the
analysis of the parameters. The parameter processor also generates a table that cross

7002 3999-100 4-1

System Generation

4-2

references each file in the generation with the page number in the parameter listing and an
indication of which files occupy various internal file buffers.

Each generation of TIP /30 must be given a TCA name. This name is used to identify the
particular generation. It is possible and quite reasonable to have a number of "variants" of
TIP /30 generated, each for a specific use.

TIP /30 does not dynamically reference the TCA once TIP /30 is running. This means that
you can generate TIP /30 (even the TCA that is running) while TIP /30 is executing.

This practice may be somewhat cavalier - the recommended procedure is to establish a
cycle of TCA names (the first 3 characters of the TCA name must be unique) to allow you to
fall back to a working generation if there are problems with the latest generation
parameters.

There are three basic generation control statements:

TIPGEN Selects general options. This statement is required. Only one TIPGEN
statement may be specified.

FILE Defines an online file that TIP /30 may access. One FILE statement is required
for each online file.

CLUSTER Define logical tenninal groups and/ or override generation options for specific
tenninals. CLUSTER statement(s) are optional.

These generation control statements have required positional parameters and optional
key-words t...'lat s~fy va..wiable ir.ionr.ation. The fcllc\''ling sections describe the generation
control statements and their parameter and keyword requirements.

Many of the keywords described have short forms. Keywords are illustrated as a
combination of upper and lower case letters. The short form of a keyword is the sequence
of just the upper case letters. You may omit lower case letters (but they must be correctly
placed if specified!).

When a keyword requires a numeric value, the value is always interpreted as a decimal
number (base 10). Do not enter numbers with any imbedded commas (for example: specify
30000 not 30,000).

When a keyword requires a character string as a value, enclose the value in single quotes
only if the string contains a period or one or more imbedded spaces.

Some keywords do not have a meaningful default value. The presence (or absence) of the
keyword dictates the action of the parameter processor. As a general rule, the facility or
feature governed by the keyword is not relevant unless the keyword is present.

7002 3999-1 00

System Generation

The TB$GEN program supports the use of a COPY statement as a means of including
groups of generation statements from a library element. This coding convenience allows
(for example) groups of related FILE statements to be included in different generation
parameter streams.

Syntax:

COpy Ifd,elt

Where:

lfd The first parameter after the reserved word COpy is the LFD name of the
library to read. The most appropriate place to include the job control for this
library is in the TIP/3D job control proc named TIPUBS.

elt

7002 3999-100

Tnis job control proe is included in the supplied job control for the TIP /30
parameter processor.

The second parameter is the element name to read. This library element is
assumed to by a source type element.

4-3

TIPGEN Definition

4.1. TIPGEN Definition

4-4

The Tll'GEN control statement begins the definition of the characteristics of the TIP /30
system. This statement must appear only once in a particular generation stream and must
be the first generation statement encountered.

The information constructed by the generation process is known as the TIP /30 Control
Area (TCA).

The TCA name is used to uniquely identify a set of TIP/3D generation parameters. The
name of the TCA is a required execution-time parameter that must be supplied in the jol;>
control imbedded data set for TIP /30.

Note: The TeA name must be at least 3 characters long, and the first 3 characters must be
unique.

Syntax:

TIPGEN tcaname
keyword=value
keyword==value

keyword==value
keyword==value.

The parameter processor treats the input as a string of text; more than one keyword may be
specified on an input line - however, you may find it convenient to specify each keyword
on a separate line to perrr.it the lineS containing keY'Nords to be sorted (see the Full Screen
Editor "SA" command).

Table 4-10. TIPGEN Statement

J<eyw()rd<·· ·.rl< .. < < .!~ ... d._ l .• >< ·········U·:>.· < ••... : :.:.: ... ·•··· .. ,.>.: .•. :.~:.~ •• : •••.•• n:>< •••
tcaname Name assigned to this set of generation Required.

parameters.

AFT= Average number of active files per program. See text.

BaCK= Maximum number of background programs. 2.

BackPRI= Background transaction priority. 2.

B4= Use quick before image file (Tll'$B4). See text.

CATPooL= Number of catalogue pool entries. 6.

CURrency= Currency symbol. "$".

DBMS= Database to be used.

DECIMAL= Define decimal point character. DEOMAL.

OMSAWT= OMS area wait time (seconds). o.
DMSRWT= OMS record wait time (seconds). o.

continued ...

7002 3999-1 00

TIPGEN Definition

>.:::::': :;::'::::::::::::::::.::::::::: ;..,. ~.>:::~ ::,:: ::}{
,::\: :':2j>:C:»:'.::'~: :>:~ :::. : ,>:" ,,>: '-'::". ~,::,~ Li,::;":: iii:::':»~»~>: :::::::::.:.::

:"'~.
,;:;:-:::::::

EDiTstmp= Default·update stamping fOf FSE editOf. See text.

ESCape: System escape character. n@".

FaSTLoaD= Fastload index size. (25,50).

FCSxtent= FCS Dynamic file extent size. 40.

FiLeBufs= Number of file buffers. 3.

FileTab= Internal FILE cat record table. Yes.

FREEmem= Size of TIP /30 free memory pool. 2560.

GDA= Global data area size. O.

llv1S= IMS emulation options. -
IMSDT= Delay time for IMS delayed internal to self. O.

IMSROW= Tenninal row number for IMS messages. 1.

IMStranL= IMS transaction code length. 5.

IMSUNSDT= IMS emulator send messages to down No.
tenninals.

JOB= Next gen job name to create. See text.

JouRNaL= Use joumaling to TIP$JRN disk file. No.

KeYTaBLe= Key holding table size. -
LANGuage= Local language. ENGUSH.

UST= Generation list option. No.

LOCAP= Global rCAM locap name. -
LOG = Use journaling to TIP$LOG tape file. No.

LoGoN= Logon is required. Yes.

MaXCaLLs= Define limits on program CALLs. (512,50000).

MaXPRoG= Minimum required paged memory. 30000.

MAXTiMe= Program timeout (seconds). 30.

MCSPooL= TIP /30 screen format pool size. (3,500).

NCS= OFIS LINK national character set. -
NETwork= rCAM network name and password. (TIPC,TIPPWD).

~JumGRPS= Number of elective groups fOf a user. 2.

PRintLF= Default TIPPRINT LF= option. No.

PRintLPP= Default TIPPRINT lines per page. 60.

continued ...

7002 3999-100 4-5

TIPGEN Definition

:.::::::::::::-:-::. Il" •. .', .. : :~ ::::::: ::::::::: ::::::::::
::::::

.::::::: ,.::: :':c.::::
;,..,.: :.:,. :: /:: ::::: :::-: :::

~:.:.:.::: .
.:::: \:

:::::::::: ::-::: .. :-::::: .':::-::::.- ::::: -:-:

PRintTOF= Default Tll'PRINT top of form. No.

PRint'ITL= Default Tll'PRINT header page wanted. Yes.

PRintUC= Default Tll'PRINT uppercase translation. Yes.

PRIority: Number of transaction priority levels. 2.

PRSTEN= Journal program start/ end information. No.

ReaDYmsg= Send ready message at startup. No.

RESMEM= Configure IMS transaction buffers. -
SchdPRI= Execution priority of TIP /30 scheduler. 2.

SF'SPooL= SF'S format pool size. 10.

shutDowr--.J= 'T' ~,.,. ~ ~ ~ 'T'TP 1'::1(\ ti("n
.I..I.Q .. u . .;,g ... L.l.UJ.L \.U J.UJ.LQ\. ,J.,J.,J. ,,-,v .J..A_Jo -

SITEid= Si te identification. Tll'30.

startUP= Transaction to run at Tll' /30 startup. -
STatS= Statistics interval. (15,240).

TeRMS: Maximum terminals in network. Required.

termSiZe= Terminal screen size. (24,80).

TermtYPe= Type of terminal. UNISCOPE.

TIMeoff= Automatic logoff timeout (minutes). 10.

TIMeouT= External succession timeout (minutes). 540.

Tll'FILES= JPROC to be called by job. Tll'FILES.

UpPeR= Override TIP/3D uppercase translate table. -
UserPRI= Execution priority of transactions. 1.

WORKl= ASM work file 1. RES.

WORK2= ASM work file 2. RUN.

XMIT= UTS400 control page option. -
XmitALL= UTS400 Fn key to XMIT ALL. -
XmitCHan= UTS400 Fn key to XMIT CHAN. -
XmitVAR= UTS400 Fn key to XMIT V AR. -
. (period) Mark last keyword specified .

4-6 7002 3999-1 00

Where:

tcaname

AFT=n

BaCK=n

BackPRI=n

7002 3999-100

TIPGEN Definition

Required positional parameter. A minimum of three characters is required -
a maximum of 6 characters is allowed.

This name is used as the load module name for the TIP /30 Generation and
must be specified as the first (positional) parameter of the TIPGEN control
statement

If any file in the generation is defined with HOLD=1R the generation process
will also link edit a recovery load module. The recovery load module is
assigned the load module name xxx$RC (where E2£ is the first three characters
of the tcaname) - this is why the first three characters of the TCA name must
be unique.

The average number of active files expected per transaction program. This
parameter allocates memory for the "Active File Table" for each executing
online program.

If omitted, TIP /30 ensures that there is enough room for every telTI'inal to
have every file open concurrently. This is dearly a waste of memory at most
sites; the parameter should be specified as a reasonable value.

When a program "opens" a file and the program's AFf is full, additional space
is allocated from the TIP /30 Free Memory Pool (FREEmem=). Each entry in
the AFf is small (approximately 32 bytes).

The maximum number of background online programs that may be running
concurrently.

One background (process) table is reserved for handling console operator
commands. The value specified should take this into account.

Default: BACK=2

The default scheduling priority for programs that run in background.

The value specified represents an offset from (1 + the execution priority that is
specified on the EXEC job control statement for TIP /30).

Default: 2 (implying EXEC+ 1 +2)

If the value specified for this keyword exceeds the number of generated
priority levels (PRIORITY=), the generation program sets
BAC.XPF1=PF10RITY ,

4-7

TIPGEN Definition

B4=YES

CATPooL=n

CURrency::

DBMS=

Configure a TIP$B4 file. The TIP$B4 file is used for online record rollback
when transactions abort.

This parameter is independent of the specification for joumaling (JRNL= YES)
or tape logging (LOG= YES).

Whenever records of files defined as HOLD=TR are read with lock (ie:
GETUP), a copy of the record image is placed in the TIP$B4 file. This "before
image" may be used to roll back the update if the transaction aborts.

Default=YES if any file is defined as HOLD=TR.

The number of entries in the CATALOGUE record pool. All records read
from the TIP/3D Catalogue are eligible to remain in the pool.

TIP /30 ~ll keep this number of the most recently read catalogue records in
metnorf·

TIP /30 catalogue entries (and therefore these pool entries) are 256 bytes in
length.

Default: CATPOOL=6

The size of the CATPOOL can be overridden at execution time by sped.fying a
new value for the pool for the file TIP$CA T by using the run-time keyword
FiLePooL= in "TIP /30 Job Control Options" on page 6-1.

The floating currency symbol used by TIP /30 Screen Format System (MCS).

Default: CURRENCY=$ (a dollar sign).

DMS

DMT,n

Interface to single thread OMS.

Interface to multi-thread OMS, where "ntl is the number of
threads to allow.

DECIMAL=COMMA

DMSAWT=

4-8

Reverses the meaning of the decimal point and the comma for the purpose of
editing numeric fields in TIP /30 screen formats.

Eg: 3.100,10 instead of 3,100.10

Default: OECIMAL=DECIMAL

DMS area wait time - defines the maximum time (in seconds) that DMS
waits for an area to become available.

Default: 0 seconds (OMS will cause immediate rollback if the area is locked by .
some other DMS user).

7002 3999-1 00

DMSRWT=

EDITstmp=

ESCape=

7002 3999-100

TIPGEN Definition

DMS record wait time - defines the maximum time (in seconds) that DMS
waits for a data base record to become available.

Default: 5 seconds

This keyword controls the DEFAULT update stamping technique used by the
TIP /30 Full Screen Editor (FSE).

Each user of FSE may change the update stamping technique during an
individual FSE session.

YES Use "standard" stamping (the version number in columns 73:75,
an asterisk in column 76 of lines that cbange).

NO No update stamping desired.

DATE Piace the current date ("t'iMMDD fonnat) in columns 73:78 of
lines that change.

USERID Place the userid in columns 73:80 ..

Defaults: COBOL, DOCUMENT, and ASSEMBLER all default to ''YES''. Any
other language type defaults to "NO",

Defines the TIP /30 system escape character.

Default: ESCAPE=@ (commercial at-sign)

If this character is the first character of any input message, TIP /30 "escapes" to
the transaction name following the escape character.

Escaping to another transaction program causes the currently executing
transaction to be suspended while the next transaction is executed. VVhen the
next transaction terminates, control returns to the original transaction -
which is still awaiting the input message that was intercepted by TIP /30. For
further information refer to the description of the TIPFORK subroutine call
described in the Program Control System documentation.

Certain characters cannot be specified as the system escape character, namely:
period, comma or less-than. A popular alternative character is the vertical bar
character (I).

To disable the Escape feature of TIP /30, specify ESCAPE=NO.

4-9

TIPGEN Definition

FaSTLoaD=(m,n)

FCSxtent=n

FiLeBufs=n

4-10

If this keyword is specified, TIP /30 maintains a table of "fast load information"
that facilitates the rapid loading of program load modules. By using
information in this table, TIP /30 can minimize operating system overhead
when loading load modules from the TIP$LOD library.

Two subparameters are provided to maintain downward compatability with
previous TIP /30 releases. The two values are summed to compute the desired
number of table entries. Each entry in the table is approximately 20 bytes of
data.

Default: F ASTLOAD=(25,50)

The number of blocks of the TIP$RNDM file used as both the initial and the
secondary allocation for a TIP /30 dynamic file (edit buffers are specific
implementations of TIP /30 dynamic files).

Default: FcSX l.b'rr=40.

A dynamic file may have a maximum of 48 logical extents (each of which is
the number of blocks specified by the value of FCSxtent=).

The value of FCSEXTENT= cannot be changed if there are any existing
dynamic files. See the the description of the batch program TB$CRB in "Batch
Program TB$CRBtt on page 8-14 - the restore operation can specify a new
FCSxtent= value when reloa(iing the TIP$RNDM fiJe.

The number of internal file buffers that TIP /30 is to configure.

Each file buffer holds the system control blocks, index area, I/O area and
work area for one or more files.

Default: FILEBUFS=3

Minimum: 3

Maximum: 25

Each file defined in the TIP /30 generation parameters must be specified to be
either a resident file or assigned to a file buffer.

Files that are assigned to the same buffer share the buffer space. When TIP /30
needs to perform I/O operations for a file, the control blocks and I/O areas for
the file may have to be swapped into the file buffer.

Assign unrelated files to the same buffer to minimize the need to swap or
exchange buffer contents. .

7002 3999-1 00

FileTab=

TIPGEN Definition

Specifies whether TIP /30 is to maintain an internal table of file catalogue
record information (this applies only to data management files).

Default: FILETAB= YES

TIP /30 can access catalogue record information for (data management) files
faster when this table is configured. Each table entry is approximately 24 bytes
of data.

FREEmem=n

GDA=n

7002 3999-100

The amount of additional memory to be reserved for the TIP /30 "free"
memory pool. TIP /30 uses this memory pool for occasional functions. For
example an OS /3 spool work area required by the SPL and TLIB programs is
approximately 1500 bytes.

TIP /30 will always reserve at least 3K bytes - the actual amount that is
reserved in advanc-e depends on such v~";ables as the number of te!!!'inals.

The amount specified by this keyword is in addition to the amount that
TIP /30 reserves in advance.

Default: FREEmem=2560.

TIP /30 attempts to use this free memory area to hold the contents of the CDA
during inter-:-program transfer of control (the alternative is to use the
TIP$SW AP file).

In an environment that supports a great deal of TIPSUB, TIPXcrL, or
TIPFORK activity, a large specification for FREEmem= may be a wise use of
(spare?) memory.

The IMS emulator always uses the TIP$SW AP file to hold the COA during
IMS external succession - the CD A may be held in free memory for other
types of succession.

The size (in bytes) of the optional Global Data Area.

The address of the Global Data Area (GOA) is passed as a parameter to
TIP /30 transaction programs. The GOA may be used as a common storage
area by all TIP /30 transactions. For further information, refer to the section of
the reference manual entitled "PCS - Program Control System",

Default: GOA=O

Unusual IMS emulation options. Omit this keyword unless you specifically
need one or more of the "features" offered.

Specified as (up to) seven parameters. Tne order of the parameters is not
significant.

D2I Interpret delayed internal succession as internal succession.

DNOWRK Do not dear WORKAREA on delayed internal succession.

4-11

TIPGEN Definition

IMSDT=n

Il\fANULL Oear Input Message Area (IMA) to low-values (X'DO') instead of
spaces.

MT

RETIiLD

SFS

Emulate IMS multi-thread (this is the default).

Coerce the IMS emulator to return "record held" status on a call
to GETUP if the record is locked by another transaction progam.
This status is normally only returned by IMS single thread; by
using this parameter, the IMS emulator will return record held
status whether or not single thread is specified.

The status code returned is (3,18) - decimal.

Support Screen Format Services (SF'S).

ST Emulate IMS single-thread. The IMS emulation routines will
enforce single thread processing (an IMS transaction must
complete before another IMS transaction may begin).22

Example: ~=(MT ,IMANULL,SFS)

Default: the IMS emulator will behave according to the specifications of the
Unisys documentation for the IMS multi-thread product.

A value specifying the number of seconds that an IMS program is to be
delayed (via an internal call to TIPTIMER) if the program performs delayed
internal succession to itself.

A modest delay prevents such programs from completely monopolizing the
processor.

Default: 0 seconds

IMSROW=n

IM:StranL=n

Define the tenninal row number where IMS system messages are output.

Examples of such IMS messages are: t'Transaction completed" and "No
Message in Queue".

Default: IMSROW=l

The maximum number of characters in an IMS transaction name for IMS
programs running under emulation.

Default: IMSTRANL=5

IM:SUNSDT=

YES INO option controlling whether or not the IMS emulator should send
messages to terminals that are down (and let lCAM queue them) or to return
appropriate error status.

Default: IMSUNSDT=NO (do not send messages to down terminals).

22. 'This has no effect on TIP /30 transactions which continue to run multi-thread..

4-12 7002 3999-1 00

TIPGEN Definition

JOB=(j obname,queue,acct,execprl)

up to four positional parameters defining the attributes of the JOB that is
created by the parameter processor (as the second step of the TIP /30
generation process).

The order of these parameters !§. significant

jobname Job name to create. Default ''TJ$GEN'.

queue Job queue to be used to run the job (Low, Medium, High,
Preemptive). Default is H - high queue.

acd Job account number for the job (default is "TIP").

execpri Execution priority to be placed on each EXEC statement in the
generated job. Default no explicit execution priority is specified
(job runs at the default batch job priority).

Note: The generated job will be written. to the Y!CS library unless a library
with an LFD name of "TIP$JCS" is defined in the job control for the
TJ$P ARAM job.

JouRNaL= YES

7002 3999-100

The TIP$JRN file is to be used by TIP /30 to journal specified file before/after
images etc.

Default: JOURNAL=NO

WARNING

Specifying JOURNAL= YES causes the default
value for ALL (non-library) files to be
JOURNAL=YES and AFTER=YES.

If you specify JOURNAL=YES in the TIPGEN
statement remember that you must specifically
state JOURNAL=NO for files that you do not want
joumaled.

4-13

TIPGEN Definition

KeYTaBLe=

The value "m" is the maximum number of records that may be
concurrently held for update within the TIP /30 system. For a file
that is generated with HOLD=TR, ADD, CHANGE and DELETE
operations are considered an update operation.

The value "n" is the size in bytes of the largest key that may be
held for update.

KeYTaBLe=m

An alternative way of specifying the maximum number of
records that may be concurrently held for update by the TIP /30
system.

The second format (specifying only a single value) is recommended for the
KEYr ABLE= specification because it leaves the computation of the largest key
to the parameter processor. This eliminates the possibility of overlooking a file
and understating the size of key holding table entries.

If an online program (TIP /30 native mode or an IMS program running under
emulation) attempts to lock a record (this includes ADD, DELETE or
CHANGE operations) and the TIP /30 key holding table is full, the program is
aborted.

The default number of entries in the key holding table is set to allow 1 entry
for each file that is generated as HOLD= YES and 3 entries for each fHe that is
generated as HOLD=UP or HOLD=TR.

LANGuage=

UST=YES

4-14

The desired local (or default) language used by TIP /30.

Default: ENGUSH

Other choices currently supported are: FRENCH, GERMAN, SWEDISH,
FINNISH, ITALIAN, SPANISH.

This setting affects the result of a call to the TIPDATE subroutine and the
value that is returned by the MCS special heading field $DDl\11vfl\1YY$

List all of the generated code for the TIP /30 system generation. This is not
recommended because it causes the next job (an assembly) to generate an
expanded output listing.

Default: UST=NO

7002 3999-1 00

LOCAP=

LOG=YES

LoGoN=NO

7002 3999-100

TIPGEN Definition

The name of the Local Application (LOCAP) in a Global leAM system that
Tn' /30 is to use.

This parameter may be overridden by the identically named run-time job
control option.

No default value.

If this keyword is omitted in both the generation parameters and in the
run-time options, Tn' /30 assumes that the interface is with a dedicated lCAM.

Indicates that journal data is to be written to the TIP$LOG log tape.

Default: LOG=NO

WARNING

Specifying LOG= YES causes the default value for
all (non-library) files to be JOURNAL=YES and
AFTER=YES.

If you specify LOG=YES in the TIPGEN
statement remember that you must specifically
state JOURNAL=NO for files that you do not 'wA/ant
joumaled.

Specifies that tenninals do not require users to log on to TIP /30 before
running transactions.

You may alter this specification on a CLUSTER basis by coding in subsequent
CLUSTER statements.

Default: LOGON= YES

4-15

TIPGEN Definition

MaXCaLLs=(sw,abort)

Two subparameters that establish thresholds on certain types of TIP /30
CALLs:

sw Maximum number of calls that a transaction program issues
before getting automatically switched to lowest priority level
(default is 512 calls).

abort Maximum number of calls that a transaction program issues
before getting automatically aborted (default is 50000 calls).

The internal counter that is compared to the abort limit is "reset" whenever a
call is issued that allows the process to be eligible to be swapped out of main
memory (eg: TIPTIMER, TIPMSGI, TIPSUB, TIPXcrL etc). Calls to TIPFCS do
Nor allow swapping to occur and therefore do not cause the counter to be
reset.

Setting the abort limit to a less generous value may help catch programs that
would otherwise loop forever (continuously reading the same record, for
example).

MaXPRoG=n

The minimum number of bytes to reserve for "paged memory". At
initialization, TIP /30 ensures that at least this amount of memory is allocated
to paged memory (the memory used to hold online program load modules
and activation records),

If this amount of paged memory cannot be allocated, TIP /30 initialization fails
to complete. In this case, a larger memory allocation on the JOB card is
required.

Default: MAXPROG=30000

MAXTiMe=n

The maximum time (in seconds) that may elapse before an online program
calls a TIP /30 subroutine.

If an online program does NOT call a TIP /30 subroutine within this number
of seconds, TIP /30 aborts the program23 under the assumption that the
program is probably looping or is monopolizing the TIP /30 system.

Programs that consume a large amount of CPU time should issue a call to the
TIPTIMER subroutine to surrender control of the processor at convenient
intervals (this practice satisfies the MAXTIME= constraint and prevents the
program from starving other transactions).

Default: MAXTIME=30 (seconds).

23. With a fictional "Process Timeout" exception error code.

4-16 7002 3999-1 00

TIPGEN Definition

MCSPooL=(m,n)

Nes=

Define main storage pooling for TIP /30 screen formats. Value "m" is the
number of TIP /30 screen format pool entries reserved in memory; "n" is the
size of each pool entry in bytes.

Default: MCSPOOL=(3,500)

TIP /30 screen formats that have an internal size greater than "nil bytes cannot
be pooled in memory and must always be read from the TIP$MCS file.

The internal size of TIP /30 screen formats is displayed by the MSGAR utility
transaction and is summarized by the batch job TJ$LC.

The number of screen formats to pool (but not the size of the pool entry) can
be overridden at execution time by specifying a new value for the pool for the
file TIP$MCS by using the run-time keyword FiLePooL= in 'TIP /30 Job
Control Options" on page 6-1.

National Character Set for OFIS Link/SO. Refer to separate documentation
describing the TIP /30 interface to OFIS Link/SO.

NETwork=(cc3tpwd)

NumGRPS=

PRintLF=

7002 3999-100

cca The ICAM CCA name.

pwd The IC .. ~~ CCA password (optional).

Default: NETWORK=(TIPC,TIPPWD)

You may override this parameter with a TIP /30 job control specification.

The number of elective groups to which a user may belong.

The number of elective groups specified here is in addition to the user's
private group (the userid) and the universal group (TIPY).

Default: NUMGRPS=2

Maximum: 16

Minimum: 2

Default: PRINTLF=NO

Default TIPPRINT option for appending a line feed to each message
transmitted to an AUX device. TIPPRINT normally buffers a number of
output print lines so that a screen full of data can be sent to the terminal and
printer as one output message.

Some printers automatically provide a line feed character when a screen full of
data is sent to the printer. Many printers do not provide this option; in this
case, TIPPp..n.rr must append a Line Feed character to the end of every buffer
that is output.

4-17

TIPGEN Definition

4-18

PRintLPP=n

If an online program does not specify a value for the PRINT-LINE-FEED field
when the TIPPRINT interface is opened, this specification (possibly
overridden by a CLUSTER statement) is taken as the default by TIPPRINT.

If this value is incorrectly specified, reports printed on auxiliary printers may
appear with an occasional extra blank line or a missing blank line.

Specify this keyword as required by the majority of auxiliary printers in use at
your site and override the specification on CLUSTER statements for the
terminals or printers that are different.

Default TIPPRINT value for number of lines per page for an auxiliary device.

If an online program does not specify a value for the PRINT-PAGE-LEN field
when the TIPPRINT interface is opened, this specification (possibly
overridden by a CLUSTER statement) is taken as the default by nr:PRINT.

Default: PRlNTLPP=60

PRintTOF= YES

PRintTTL=

Default TIPPRINT value for guaranteeing a form feed before and after
printing to an auxiliary printer.

When YES is specified, TIPPRINT ensures that a form feed is issued when an
FCS-OPEN function or an FCS-CLOSE function is performed.

If the first (or last) output via TIPPRINT already causes a form feed,
TIPPRINT does not insert an extra one.

If an online program does not specify a value for the PRINT-TOP-OF-FORM
field when the TIPPRINT interface is opened, this specification is taken as the
default by TIPPRINT.

Default: PRINTTOF=NO

Default TIPPRINT value that controls whether or not TIPPRINT prints a title
page.

If a user online program does not specify a value for the PRINT-TITLE field
when the TIPPRINT interface is opened, this specification is taken as the
default by TIPPRINT.

Default: PRINTITL= YES

PRintUC= YES

Default TIPPRINT value for forcing alphabetic characters in a print line to
uppercase.

If an online program does not specify a value for the PRINT -UPPER-CASE
field when the TIPPRINT interface is opened, this specification is taken as the
default by TIPPRINT.

Default: PRINTUC=YES

7002 3999-1 00

PRIority=n

TIPGEN Definition

The number of transaction priority levels to establish. These priority levels are
relative to (1 + the execution priority specified for TIP /30 in the EXEC
statement in the TIP /30 job controD.

Default: PRIOR!TY=2 (implies EXEC+l+l and EXEC+l+2)

Range: 2 through 10 inclusive

Example: PRI=4 and TIP /30 executing at priority 1, means that transactions
may run at levels 3 through 6.

See also discussion in PCS section of this manual.

PRSTEN'=YES

Specifies whether statistical journal records PRST (program start) and PREN
(program end) are to be written to the TIP$JRN or TIP$LOG file.

Default: PRSTI1.1\..J=NO

This keyword has no effect unless TIP /30 joumaling (or logging) is in effect
(JOURNAL=YES or LOG= YES).

ReaDYmsg=YES .

7002 3999-1 00

TIP /30 must send a "ready" message (a greeting) to tenninals that connect to
TIP/30.

Default: READYMSG=NO

The text of the ready message is specified by the job control keywords
Banner1=' .. ,' and Banner2=' ... '.

You may override this specification on a CLUSTER basis or in the TIP /30 job
control options.

Note: This ready message is always sent to local workstations and dynamic
sessions (those that use $$SON in a Global ICAM environment).

Specification of this option may increase lCAM ARP utilization
(remember that an ARP shortage in ICAM is usually a fatal error).

4-19

TIPGEN Definition

RESMEM:=(nl,n2,n3)

ScltdPRI=n

SFSPooL=n

This keyword configures IMS transaction buffers. This facility may be
required to emulate IMS transaction programs that make use of transaction
buffers.

The three values specified represent, respectively:

1. the number of buffers to establish in the pool (this value is required if the
RESMEM= keyword is specified)

2. optional maximum number of buffers to acquire if the main pool is
depleted (default for this value is zero)

3. the maximum number of buffers that a particular transaction may acquire;
this parameter may not exceed 16 - default value is 4.

If this keyword is omitted, no IMS transaction buffers are established.

For additional information see IMS Support Functions Programming Guide -
J TD '1'101'17
u.c--J.J.JVI.

The relative execution priority of the TIP /30 scheduler task.

The value specified represents an offset from (1 + the execution priority that is
specified on the EXEC job control statement for TIP /30).

Default: 2 (implying EXEC+1+2)

You should not specifiy a value that is LESS mAN the value specified for
USERPRI=.

The number of SFS (Screen Format Services) screen formats to be pooled in
main storage.

Default: SFSPooL= 10 (max is 255).

This keyword is only relevant if TIP /30 is running IMS programs (under
emulation) that are using Unisys Screen Format Services (SFS).

This value is used by SF'S to pool SFS screen fonnats in main storage. The
pool is shared by all TIP /30 terminals accessing Screen Fonnat Services.

shutDowN=trid

The transaction name of an online program automatically started in
background (via a call to TIPFORK) when the TIP /30 EOJ console command
(or transaction) is executed.

The shutdown program will not be started until there are no users remaining
on the TIP /30 system.

You must catalogue this program in group TIr1iY$ or a group to which the
optional userid CONSOLE has access.

Default: no program will be scheduled

Also see the description of the SHUTDOWN utility transaction.

7002 3999-1 00

TIPGEN Definition

SITEid=siteid

startUP=trid

A character string to use as a descriptive identifer for the TIP /30 system. This
string is often set to the company's name or to some string that represents the
purpose of the TIP /30 system such as ''Test System" etc.)

This infonnation is used to construct the TIP / 30 ready message.

You may specify up to 12 characters (in quotes if the string contains a period
character or one or more space characters).

Default: SITEID=TIP30

The transaction name of a program that is automatically started in
background (via a call to TIPFORK) as soon as TIP /30 has completed
ini tialization.

You must catalogue this program in group TIPY or a group to which the
optional userid CONSOLE has access.

Default: no program will be scheduled

Also see the description of the STARTUP utility transaction.

STatS=(jrn,con)

TeRMS=n

jm Specifies the time interval (in minutes) to control writing of
statistics records (type code "STAT') to the TIP$Jl~ or TIP$LOG
file.

Default: 15 (minutes). Specify zero if no STAT type records are to
be written.

con Specifies the time interval (in minutes) to control the display of
TIP /30 statistics on the system console.

Default: 240 (4 hours). Specify zero to inhibit the display of this
information on the console.

Maximum number of terminals TIP /30 may attach.

In a dedicated rCAM network, the specified value must be greater than or
equal to the number of TERM statements specified in the rCAM generation.

In a GLOBAL rCAM network, the specified value determines the maximum
number of concurrent sessions that may be active (this includes static and
dynamic sessions).

This keyword must be specified.

termSiZe=(rows,cols)

7002 3999-100

The number of rows and columns (respectively) for terminals in the network.

Default: TEIUv1SIZE=(24,80)

You may override this value on a CLUSTER basis by specifications in a
subsequent CLUSTER statement.

4-21

TIPGEN Definition

Te.nnt'YPe=

TIMeoff=n

TIMeouT=n

TIPFILES=

4-22

The most common type of online terminal in the network.

Default: TERMTYPE=UNISCOPE

Other choices:

U10 U20 U20D U30 U40 U400

U400F TTY U200 SPC SVT

U400F is a U400 with the character protect feature installed.

SPC is a Personal Computer which is emulating a Uniscope Terminal by using
a Computer Logics PEP board or a Unisys STEP board and related PC
software.

SVT is an SVT -112x terminal

You may override this value on a CLUSTER basis by specifications in
CLUSTER statement(s).

The time (in minutes) that must elapse before TIP / 30 automatically logs off an
idle user.

A user is considered idle if he is logged on and waiting at the TIP /30 system
prompt (example: TIP?~).

Default: TIMEOFF= 10

The maximum amount of time (minutes) that an IMS program waits in
external succession or a TIP /30 program waits for TIPDXC (delayed transfer
control).

Default: TIMEOUT=540 (also the maximum allowed value).

Name of a job control PROC used (instead of TIPFILES) by the next step of the
generation procedure (l}$GEN job).

Default: TIPFlLES=TIPFILES

7002 3999-1 00

UpPeR=

UserPRI=n

TIPGEN Definition

Override the translate table that TIP /30 uses to map lower case alphabetics to
uppercase.

'This keyword is used primarily in European countries to control the correct
character set mappings for local graphic characters.

The parameters are pairs of character values representing the hex value of the
lower case character and the corresponding upper case character
(respectively).

Example: UPPER=(X' 81',X' AI' X' 82' X' A2') convert X'81' to X' Al' etc.

Default: TIP /30 uses the standard (English) translate table.

The transaction scheduling priority for transactions that are NOT running in
background.

The value specified represents an offset from (1 + the execution priority that is
specified on the EXEC job control statement for TIP /30).

Default: USERPRI= 1 (implying EXEC + 1 + 1)

The execution priority of a particular transaction may be explicitly specified in
the TIP /30 catalogue entry for the PROGram - the value specified for this
key-word defines the desired default transaction priority.

WORK1=vol[,dve]

vol The disk volume that is to be specified for the WORKI file in the
generation job (TJ$GEN) that is automatically scheduled by the
parameter processor.

Eg: WORI<I=TEMPOI,SO

The abbreviations ''RES'' or "RUN" are allowed.

dve The device number to be used (may be omitted if the "vol"
parameter was specified as RES or RUN).

Default: use WORK I job control proc.

WORK2=vol[,dve]

Xl\IlIT=

7002 3999-1 00

Similar to the above description of WORKl.

TIP /30 alters the terminal control page X1vfIT value (at LOGON time) to this
value (for tenninals with a control page!).

Choices: ALL CHAN V AR

Default: no alteration of the control page

4-23

TIPGEN Definition

XmitALL=n

Specifies a function key number that is interpreted by TIP /30 as a request to
place the cursor in the bottom right corner of terminal followed by a
TRANSMIT ALL sequence.

Eg: XM:IT ALL=22 causes function key 22 to behave in the manner described
above.

Default: functionality not assigned.

XmitCHan=n

XmitVAR=

• (period)

4-24

Similar to XMITALL= except that a TRANSMIT CHANGED sequence is
performed.

Default: functionality not aSSigned.

, Similar to XMITALL=, except that a TRANSMIT UNPROTECTED sequence is
performed.

DefaUlt: functionality not aSSigned .

Place a period at the end of the last keyword specified for the TIPGEN
statement to signal the end of the TIPGEN' statement.

7002 3999-1 00

TIPGEN Definition

4.2. FILE Definition
Every online file must be defined in the TIP/3D Generation parameters. A minor exception
is made in the case of 05/3 SAT libraries that may be dynamically accessed by TIP /30.

TIP /30 must construct the control blocks required by OS /3 Data Management to be able to
access the files.

With the exception of 05/3 libraries, the following rules apply:

• A file must be defined in the TIP /30 generation to be accessed via TIP /30

• The job control statements for the file must be present in the TIP /30 run-time job
control stream.

The definition of a file in the TIP /30 generation parameters ~ correctly reflect the
physical characteristics of the actual file or unpredictable results may oc~r.

You must desi~tate the fJes that are deHned to TIP /30 as resident or buffered. Identifying
a file as a resident file means that the control blocks and I/O areas for that file are
permanently allocated space in the TIP /30 memory region and I/O to the file may proceed.
directly.

The control blocks and I/O areas of buffered files share a "file bufferlf. TIP /30 may haVe to
swap occupants of file buffers from main storage to disk (and back) be able to perform I/O
for a file that is currently not in the file buffer.

Files that are accessed frequently are good resident file candidates (memory permitting of
course); designate infrequently used files as buffered files.

A library cannot be specified as a resident file.

TIP /30 restricts the number of buffered files to 99. This is not an arbitrary restriction­
each buffered file is implemented as an OS/3load module overlay of the TCA. 05/3 has a
limit of 99 overlays since the last two characters of the load module name are reserved for
the two-digit overlay number.

Several files are automatically known to TIP /30 and cannot be explicitly stated in the
generation parameters (although they MUST be defined in the TIP/3D Catalogue):

•

•

•

system libraries (YJCS, Y5RC, etc)

the TIP and TIP$LOD libraries

the system printer (PRNTR)

the system punch (PUNCH).

To define a file in the TIP /30 generation parameters, the FILE statement is used. One FILE
statement is coded for each online file. The FILE statements appear after the TIPGEN
statement described in the previous section.

7002 3999-100 4-25

FILE Definition

Syntax:

4-26

FILE lfdname,type
keyword-value
keyword-value

keyword=value
keyword=value.

Table 4-11. FILE Statement

i'i'
:::::::::

;:;::::: ./.

;,;. :.::::<:,:::::::::.:::::::,.::: :: .. :.::::::::-::::::,::::

~::·:::·:·:I·:::·.::::::::i:::·.:::::·:: i:.:::.·

lfdname,type Required positional parameters.

ACCess: File share access.

AFI'ER= Journal after images.

AUTOIO= CDM file; force I/O.

BEFoRe= Journal before images.

BLKsiZe= Block size.

BUFfer: File buffer number.

CLOSE = Leave file initially closed.

COtvfSToRe= Conunon storage file.

DeLeTe= Deleted record convention.

FILesiZe= Maximum number of records.

HoLD= Type of record locking.

lNDsiZe= Index buffer size.

10= INPUT /OUTPUT /INOUT file.

JouRNaL= Journal or log changes to this file?

KeyHoLD= Bytes of key to hold.

KeYLeN= Length of (only) key.

KeYLoC= Bytes ahead of (only) key.

KEY 1 = MIRAMKeyl.

KEY2= MIRAM Key 2.

KEY3= MIRAMKey3.

KEY4= MIRAMKey4.

KEYS = MIRAMKeyS.

MuLTiSeQ= Allow multiple sequential readers.

OPEr'"~= File open procedures.
,~ _.,~-J

..... v,0'

7002 3999-1 00

FILE Definition

:::::: ::::::: .. :;:;:;:: .::::.:::':: :.:':: :::::::::::::::::::::"{': :Hi>
co::::: ::::: .:.:' co:::

"":::'::::::""::: .<::::,,:,:::: <:,:, ::::c::":.: :::::~ .. '::: :::::::::;:
:::.::::::: :-:-::

OPTioNal= Optional file.

PCYLofl= Percent cylinder overflow.

PKEY= Identify which key is primary key.

POOL= Number of records to pool.

PRINTOV= Forms overflow reporting.

ReCForM= Record format.

RECsiZe= Record size.

RESident: Control blocks resident.

RCB= MIRAM file with ReB?

USEFiLe= Use parameters of another file.

VSEC= Variable sector size.

. (period) Mark end of last keyword for this file.

Where:

lfdname The LFD name of the file as specified in the TIP /30 job control.

This positional parameter is required.

type The type of file (see discussion following). This positional parameter is
required.

Valid file types are:

DAM Direct access.

DlVlIRAM Relative MIRAM.

!RAM IRAM (keyed).

ISAM Indexed Sequential.

UB SAT library.

MEM Memory resident DMIRAM.

TIP /30 supports a file type ''MEM'' - indicating that the records
of the file (that is treated as relative MIRAM) are all to be kept in
main storage. These records must be loaded in advance (often a
system startup transaction is used to accomplish this).

MIRAM Il1dexed MIRAM.

PRINT Sequential print file (spooled by operating system).

PUNCH Sequential punch file (spooled by operating system).

SAM Sequential file.

7002 3999-100 4-27

FILE Definition

ACCess=

AFTER=

4-28

S:MIRAM Sequential MIRAM.

TAPE Sequential TAPE file.

The type of access to the file needed by TIP /30.

Default ACCESS=EXCR (TIP /30 has exclusive access for updating, but allows
other readers).

If a It/ / DD ACCESS=" statement appears in the job control definition of this
file, that value overrides the value specified in the TIP /30 generation
parameters.

Although Data Management supports "SADD" (shared add), and "UCP" (user
controlled by program) these access types are NOT recommended for use with
files that are accessed by TIP /30.

Performance degradation and/or data corruption is possible with the use of
SADD or UlP access!

Reference: 05/3 Consolidated Data Management Concepts and Facilities (UP-9978)
section 5.4.3.

YES specifies that "after" images of modified records (this includes added,
changed, or deleted records!) are to be written to the TIP$JRN or TIP$LOG
Cl_
Illlt::.

Default: AFTER= YES (if joumaling or logging is in effect for this file) I
otherwise AFTER=NO.

7002 3999-1 00

AUTOIO=

BEFoRe=

BLKsiZe=n

7002 3999-100

FILE Definition

This keyword applies only to files which are accessed using CDM
(Consolidated. Data Management).

Default: If TIP /30 is generated with Consolidated Data Management support
(CDM=YES or CDM=MIXED) and 05/3 release is 11 or later, the default is
AUTOIO=WRIT'E. Otherwise, default is AUTOIO=NO

NO Specifies that read requests may be satisfied from data already in
memory and write operations must always be "vvritten through"
to the disk.

TIP /30 internally specifies the appropriate settings for Data
Management to control read and write operations.

YES Specifies that a physical I/O must be performed for read and
write operations for this file - irrespective of the contents of
memory.

WRITE

TIP /30 internally specifies the appropriate settings for Data
Management to control read and write operations.

A version of AUTOIO=NO (see above) that is performed by
OS /3 Data Management rather than dynamically specified by
TIP/30.

The AUTOIO=\AJRfTE specification Il".ay be used only with
MIRAM files accessed via Consolidated Data Management and
using 05/3 release 11 (or later).

This specification is highly recommended (assuming that Release
11 or later is in use).

BEFORE= YES specifies that "before" images of changed records (includes
added, changed, or deleted records!) will be written to the TIP$JRN or
TIP$LOG file.

Default: BEFORE=NO

The block size (I/O buffer area size) for this file. This parameter is required.

This value must be a multiple of the actual VSEC size of the file and may need
to be larger than otherwise obvious because a record may span more than one
VSEC.

For MIRAM files created with RCB specified, the BLKSIZE must take into
account the presence of an additional byte per record that is needed for the
record control byte (RCB).

For ISAM files, the BLKSIZE must include an additional 5 bytes per record
~:n.d an additional 2 bytes per block.

The value specified must be at least the minimum required by Data
Management; a larger value may be specified (at the expense of additional

4-29

FILE Definition

BUFfer=n

4-30

memory!) to attempt to enhance the performance of certain file operations
(sequential reading, for example).

The following computation algorithm is adapted from the formula given in
Consolidated Data Management Macroinstructions (UP-9979) section 2.3.1, for the
keyword parameter BFSZ= for MIRAM files:

MOVE
MOVE

[value in gen for VSEC=]
[value in gen for RECSIZE=]

IF RCB=YES AND RECFORM=FIXED
COMPUTE S S + 1.

TO LSS.
TO S.

DIVIDE S BY LSS GIVING

IF R=O

N REMAINDER R.

COMPUTE BLKSIZE = N * VSEC
ELSE IF [R evenly divides LSS]

COMPUTE . BLKSIZE = (N + 1) * VSEC
ELSE

COMPUTE BLKSIZE = (N + 2) * VSEC.

Table 4-12. Example BLKSIZE calculation

::RJ;q$-~Ji:RCn?: -::'Y$EQ: \Mii1:JJ~I<S:rz.E
256 N 256 256

256 Y 256 512

258 Y 256 768

767 Y 1024 2048

The number of the file buffer to which this file is assigned.

This keyword allows the user to assign a file to a specific file buffer (the
number of such buffers is specified by the FILEBUFS= keyword in the
TIPGEN statement).

This keyword and the specification RESIDENT=YES are mutually exclusive (a
file is either buffered or resident).

Default: the generation process assigns files to the available file buffers in a
round-robin fashion.

The maximum number that may be specified as a buffer number is the value
specified for the keyword FILEBUFS= in the TIPGEN statement.

Note: File buffers 1,2 and 3 automatically are used by TIP/3D for files such as
the TIP and TIP$LOD libraries, the PRNTR and PUNCH files and for
system libraries such as Y!CS etc.

At the end of the printed report generated by the TJ$P ARAM job there
is a matrix of buffer numbers versus LFD names that may occupy the
buffer.

7002 3999-1 00

FILE Definition

Examine this matrix to look for gaffes such as:

., only one file in a buffer (might as well make that file resident>

• files which are used concurrently in the same buffer (this situation
often results in excessive swapping operations>.

CLOSE=YES

Specify CLOSE= YES to instruct TIP /30 to not open the file automatically at
system startup.

The file must be explicitly opened by the console operator (via the OPEN
command) or a terminal user (via the FOPEN transaction) before it may be
used.

Default: CLOSE=NO

COMSToRe=

DeLeTe=

7002 3999-1 00

Establish fIle as a "conunon storage fHen
• "AJ! of the records in a cornman

storage file are kept in main storage. The records are initially loaded into
memory during TIP /30 initialization.

YES Specifies that updates to this common storage file are maintained
both in memory and on disk. Updated records are written to the
disk file and updated in memory.

NO"\~ E Specifies that updates to trJs conunon storage fHe are m..aintained
ONLY in memory. Updated records are NOT written to the disk
file.

Common storage files are restricted as follows:

file must be ISAM or single key MIRAM

HOLD=UP, RESident=YES and JOURNAL=NO are forced

POOL= specification is ignored

• records are NOT written to disk file at system shutdown or file close

• FC5-ADD, FCS-DELETE and FC5-FLUSH operations are not allowed.

This keyword controls the way TIP /30 deletes records from this file. The two
choices are: logical delete flag and record control byte (RCB). The latter option
is available only for MlRAM files.

Default: logical delete flag; X'FF' in the first byte of the record that is not part of
a key.

4-31

FILE Definition

FILesiZe=n

4-32

DeLeTe=(flag,lod

Selects logical delete flag scheme and specifies the flag character
and the location of the character within the record.

flag Specify the flag character as X'??' or C'?' Default for
"flag" is X'FF' (HIGH V ALVES).

loc the number of bytes that precede the byte of the
record that is reserved for the delete flag.

Default for 'Ioc' is the first byte of the record that is
Nor part of a key field.

If the specified byte contains the designated flag character when
a record is read from this file, TIP /30 places the record contents
in the user's record area but returns PIB-NOT -FOUND status (to
indicate that TIP /30 has detected this magic flag value).

This logical delete flagging is merely an agreed convention
between TIP /30 and user programs - the record is a perfectly
valid record.

DeLeTe=RCB

Specifies that TIP /30 is to use the Record Control Byte (RCB)
method of deleting records for this file.

The RCB option must be requested for the file by the job that
initially OPENS the file. U / DD RCB= YES)

When this format of the DELETE keyword is used Data
Management unconditionally flags deleted records and !1Q.
program, online or batch, is able to read such records (contrast
this with the preceding description of logical delete flag).

The record control byte is not accessible by programs; its
presence affects the calculation of the value to be specified for the
BLKSIZE= keyword discussed earlier.

By specifying DELETE=RCB, the default value of the RCB=
keyword is forced to RCB=YES (for this file).

The maximum number of records in the file. This parameter is required for
files defined as type MEM (memory files) and may not be specified for other
types of files.

7002 3999-1 00

HoLD =

INDsiZe=n

7002 3999-100

FILE Definition

This keyword defines the type of record holding that is desired for this file.
The three available techniques are described below.

For a more detailed description of the various techniques, refer also to the
section of the TIP /30 manual that describes transaction end (in the PCS
section) and the section on "record holding" (in the FCS section).

To read a record and lock the record for update, a transaction program first
issues a call to TIT'FCS with a function code of FCS-GETUP. To perform the
update the program uses an FC5-PUT function code.

The default for the HOLD= keyword is HOLD= YES.

TR Indicates that record update locks for this file are maintained
until the end of the transaction.

A transaction program may hold multiple records from this file
defined as HOLD=TR.

If the transaction aborts, such records may be "rolled back".

Use of this keyword (on any file) forces the use of a TIT'$B4 file
(TIPGEN: B4=YES).

UP Indicates that records will be held until they are updated (or the
lock is released by FCS-NOUP).

There is no provision for online record roll back.

A transaction program may hold multiple records from a file
defined as HOLD=UP.

YES Indicates that a record from this file is held until the record is
updated or released OR another GETUP is made to this file.

Refer to the section of the TIP /30 reference manual describing
transaction end (in the PCS section) and the section on "record
holding" in the FCS section.

A transaction program may hold only ONE record at a time from
a file defined as HOLD=YES.

The INDEX BUFFER SIZE for this file.

Default: INDSIZE=256.

This value MUST match the value specified when the file was initially opened
(/ / DD INDS=)

4-33

FILE Definition

4-34

10= The type of I/O operations that may be perfonned on this file. The valid
choices are:

JouRNaL=

• INPUT

• OUTPUT

• INOUT

This parameter is required for sequential files.

Default: IO=INOUT (for non-sequential files).

INOUT is not supported·for sequential files.

YES or NO to indicate whether changes to this file are to be journaled (to
TIP$JRN file) or logged (to Tll'$LOG file).

Default: whatever was specified in either the JOURNAL= or LOG= keyword
in the TIPGEN section. .

This keyword is not valid for library files.

WARNING

Since the default is taken from the JOURNAL=
keyword in the TIPGEN statement, we
recommend that this key-word be explicitly stated
for each file (if the TIPGEN value was
thoughtlessly changed, critical journal information
may be accidently turned OFF or ON).

KeyHoLD=n

KeYLeN=n

The number of bytes of the primary key that TIP /30 must keep in the key
holding table to enforce TIP /30 record locking.

Default: the full length of the primary key

You may feel that some subset of the full key is sufficient for record locking
purposes. Think about this carefully! Choosing too small a number of bytes
could cause programs to receive PIB-HELD status when they least expect it.

Refer also to the discussion of record locking in the FCS section of the TIP /30
documentation.

The length of the (only) key for the file.

Omit this keyword for indexed MlRAM files (use KEY1= etc).

7002 3999-1 00

KeYLoC=n

FILE Definition

The zero relative location of the key in the record (the number of bytes
preceding the key).

Default: KEYLOC=O

Omit this keyword for indexed MIRAM files (use KEY1= etc).

KEYl=(leng~loc,DUPINDUP ,CHGINCHG)

Defines MIRAM index 1. See also description of PKEY= keyword.

A choice must be made to allow duplicate key values in this index (DUP) or to
not allow duplicate key values (NDUP). A choice must also be made to allow
this key to change (CHG) or to prevent key value changes (NCHG).

Note: Data Management restricts a MlRAM key field to a minimum of 1 byte
and a maximum af 80 bytes.

The " location " specified is zero-relative (it is convenient to think of the
location value as the number of bytes that precede the first byte of the
key field).

KEY2.=(1eng~loc,DUPINDUP ,CHGINCHG)

Defines MIRAM index 2. See also description of PKEY = keyword.

KEY3=(length,loc,DUPINDUP ,CHGINCHG)

Defines MIRAM index 3. See also description of PKEY = keyword.

KEY4=(length,loc,DUPINDUP ,CHGINCHG)

Defines MIRAM index 4. See also description of PKEY = keyword.

KEY5=(length,loc,DUPINDUP,CHGINCHG)

Defines MIRAM index 5. See also description of PKEY= keyword.

MuL TiSeQ= YES

7002 3999-100

Allow multiple sequential readers of this file.

This specification allows more than one online program to have this MlRAM
file in sequential mode at the same time.

TIP /30 does not treat setting this type of file in sequential mode as a use of a
serial resource. As a result, programs which have a MULTISEQ=YES file in
sequential mode 00 NOT need to issue an FCS-ESETL function before
requesting tenninal input.

Available only for indexed MIRAM files that are accessed using Consolidated
Data Management. Requires 05/3 release 11 (or later).

4-35

FILE Definition

OPEN=

OPTioNal=

PCYLofl=n

4-36

This keyword controls the way TIP /30 opens this file.

Default: OPEN=YES

NO

DEFER

Indicates that TIP /30 must physically CLOSE this file if no online
program is using it (the file is NOT to remain open).

Physical file CLOSE operations are relatively time consuming
operations.

Ubrary files are always closed when not actually in use; the
OPEN= keyword is not relevant for library files.

TIP /30 is not to open this file during TIP /30 startup processing.

The physical open operation is deferred until the first transaction
runs that requests this file.

Once the file is opened, it will remain open (as if OPEN=YES was
specified).

This specification may make TIP /30 startup operations faster at
the expense of shifting the overhead of opening the file to the
first transaction that uses the file.

The specification OPTIONAL= YES indicates that this file is optional and may
not ~ defined in the job control stream for TIP / 30. . .

If input is requested from this file (and the file is not present) TIP /30 returns
end of file status to the program.

If output is attempted (and the file is not present) the output is ignored, but no
indication of an error is returned to the program.

Default: OPTIONAL=NO

The percentage of cylinder overflow for ISAM.

Default: no PCYLOFL value established.

7002 3999-1 00

PKEY=n

POOL=n

7002 3999-1 00

FILE Definition

The number of the key (of a multi-key M1RAM file) that is to be considered
the primary key (and the default key) for this file.

If an online program does not specify an explicit index number on calls to the
Tn' /30 File System (Tn'FCS), the PKEY = parameter specifies the index to be
used. The Tn' /30 catalogue entry for the file may specify KeyREF= to override
the PKEY = specification.

Default: PKEY=l

Note: TIP/3D requires the primary key of an indexed MIRAM file to be
defined as NDUP/NCHG (no duplicate keys and no key changes
allowed), The primary key of a record (or a portion of it) is the value
that TIP/3D enters in the key holding table to enforce record locking
conventions.

Reserves memory for "n" record-size areas where the TIP /30 File Control
System maintains a "pool" of the most recently read records for this file. This
facility is available for indexed and direct access (or relative record number
access) files.

Record pooling does not apply to sequential read operations. Furthermore,
only random read requests issued via the primary key for the file are
maintained in the pool.

This internal "pool" implements record caching for the·file. TIPFCS may be
able to satisfy a random read request for a record by retrieving the record
from the pool for the file (and thereby avoid a physical read). If a pooled
record is updated, the updated record is written to the physical file and the
pool is updated.

You can override the number of records to be pooled by using the run-time
option FiLePooL=. Even though PooL= is not specified for a file in the
generation specifications, record pooling can be enabled through the run-time
parameter. See description of the run-time option FiLePooL=.

Default: no record pooling for this file.

Note: Specifying POOL= in the generation parameters forces the file (and the
associated record pool) to be "resident II (as if RESID ENT = YE 5 was
specified),

4-37

FILE Definition

PRINTOV=

ReCForM=

RECsiZe=n

RESident=:

RCB=YES

4-38

For files of type "print", this keyword specifies how form overflow status is
handled.

REPORT The default value; specifies that when forms overflow is detected
by Data Management, the program· is to receive PIB-OVERFLOW
status.

SKIP Specifies that when forms overflow is detected by Data
Management, an automatic skip to top of form is to be requested
and the calling programming will receive no error indication.

The record format.

Choices: FIXBLK, V ARBLK, FIXUNB, V ARUNB.

Default: RECFORM=FIXBLK

The record size (NOT including the RCB byte if the file is a MIRAM file
created with RCB).

This keyword is required.

YES indicates frUit the control blocks CL."1d I/O areas for this fHe must
permanently reside in memory rather than in a particular file buffer.

Specify this keyword for files that are accessed very frequently (assuming
memory is available for this purpose).

Default: file is not resident. Keep in mind that the file may be forced to be
resident for other reasons, for example, use of record pooling.

This keyword and BUFFER= are mutually exclusive.

Include this specification if the file is a MIRAM file that was created with a
Record Control Byte (RCB). This keyword applies only to MIRAM files.

If DELETE=RCB is specified for this file, default is RCB=YES otherwise
default is RCB=NO.

Note: This specification is needed only to allow the generation parameter
processor to verify the BLKSIZE for this file.

This keyword has nothing to do with the method that TIP/3D uses to
delete records from this file (if requested to do so by an online program).

The DELETE= keyword described earlier controls the method TIP/3D
uses to delete records.

7002 3999-100

USEFiLe=

VSEC=n

• (period)

7002 3999-100

FILE Definition

The keyword parameters that apply to Data Management characteristics of
this file are exactly the same as a previously defined buffered file.

All parameters must be repeated and must be exactly the same as the
parameters for the other FILE (with the exception of parameters that are !!Q!
related to 05/3 Data Management BEFORE=, AFTER=, JOURNAL= etc).

This keyword may be used to circumvent the restriction of 99 buffered files
since this file and its "clones" will share a single set of Data Management
Control blocks.

Default: the file will have its own control blocks.

Note: The file specified in the USEFiLe= keyword may not be resident file.

WARNING

A file that is defined with USEFiLe= cannot be
handled by TIP/30 offline (batch) recovery.

For MIRAM files, defines the variable sector size (see 05/3 Data Management
manuals for additional information).

This value must match the value that was established for the file when the file
was created.

Default: VSEC=256

Place a period at the end of the last keyword Specified for each FILE statement
to signal the end of that FILE statement.

4-39

FILE Keyword Xref

4.2.1. File Keyword XREF

4-40

This section contains a table of all FILE generation keywords related to each type of file that
is supported by TIP /30.

Note: This table is provided only as a quick guide because there is a great potential of
typographic errors. Consult the description of the FILE statement keywords to be certain
that the effect of each keyword is fully understood.

The table indicates whether a particular keyword is either: required (R), optional (0) or
undefined (-) for that type of file.

Table 4-13. FILE Keyword Cross Reference

,:::>:>", M :~,: :~ i~ :-'.1 :::::::>:::::,:>,.:1: ::::;:::::

:::::: ::::> :>:;::>::>:: ::::':', :::::::::::'::>:::::::::::':::::;:::;::::':{:: ,:,:: :::';:} ::>:::::

: : t
: !:>:'"7'":~:~: :::::~, '.I: ':»:»/: ::>::;::::;:' , >,::::::' !::::::,:::':;:':: ::;:::::>::::: »::»:} ::::,:>::::::"',::,,',: :::,LZ

ACCess: 0 0 0 0 0 - 0 0

AFrER= 0 0 0 0 0 .. a a - -
AUT01O= a .. 0 0 .. - 0 -
BEFoRe= 0 0 0 0 0 .. 0 0 .. -
BLKsiZe= R R R R R .. R R
BUFfer: 0 a 0 0 0 .. 0 0 0 0

CLOSE = 0 0 0 0 0 0 0 0 0 a
COMSToRe= 0 0 - - - ..
DeLeTe= a 0 0 a a a 0

ffiesiZe= - - - R - -
HoLD= 0 a 0 0 0 0 - -
INDsiZe= a a 0 - -
10= a 0 0 a 0 a R R .. -
JouRNaL= 0 0 0 0 0 .. 0 a - -
KeyHoLD= 0 0 0 - - .. - - - -
KeYLeN= 0 R R .. - - -
KeYLoC= a R R .. - - - - - ..

KEY 1 = a .. 0 - - - ..

KEY2= a - - - ..

KEY3= 0 .. eo - - - -
KEY4= U - .. - -

KEYS= 0 - -

-- "' __ 8'.

7002 3999-1 00

FILE Keyword Xref

f::':>;.;.;:, ::.;.;.;.; :;.;::, ;:;::;;:,:,:,:::<:;:,: '.';':'; :::>:;::1t. l~"Y:/:':: : ::::::: :::::::::::::.;.;:> >:::.; :::>:. ;:7 :::::.::::: ::::::::.:::: : .::::'.~::::: .;:::;:::::::: :::.; ::';:::::::::'::',::
}:::: :::: : :

v:::::: : :~{ ::: :::::;:::' :::;:;:::::;:: :::;::::;"7:: .:::'::': .',>".;/

MuLTiSeQ= 0 - - . - - ... - ... -
OPEN= 0 0 0 0 0 0 0 0 - ...

OPTioNal= 0 0 0 0 0 - 0 0 ... -
PCYLofl= - 0 - - ... - - -
PKEY= 0 - ... - - ... - ... - ...

POOL= 0 0 0 0 0 ... - ... - -
PRINTOV= - - 0

RCB= 0 ... 0 0 - ... 0 ... - ...

ReCForM= 0 0 0 0 0 ... 0 0 ... -
RECsiZe= R R R R R R R R 0 ...

RESident: 0 0 0 0 0 0 0 0 ... -
USEFiLe= 0 0 0 0 0 ... 0 a ... -
VSEC= 0 ... 0 0 0 -

7002 3999-1 00 4-41

FILE Keyword Xref

4.3. CLUSTER Definition
The TIPGEN control statement keywords TermtYPe= and termSiZe= are specified to
define the default characteristics of terminals in the network.

The CLUSTER control statement enables the user to define logical clusters or sets of
terminals that have characteristics that differ from the default terminal.

The CLUSTER statement is also used to define terminal bypass printers and some of the
characteristics of the printers.

Infonnation stated in these CLUSTER statements is used by TIP /30 to modify internal
tables so that the output produced for the different terminal types will be of the correct
fonnat and size.

All terminal names that are referenced in CLUSTER statements (master, slaves or bypass)
must refer to real TERM names as specified in the rCAM generation used by TIP /30.

Note: These cluster definitions revresent Io!lical ~ou."s of terminals with similar characteristics.
The clustered t~iruzls n~ NOT have a'ity physical interconnections.

Syntax:

CLUSTER name
keyword=value keyword=value
keyword=value keyword=value.

4-42 7002 3999-1 00

CLUSTER Definition

Tabla 4-14. CLUSTER Statement

t:~ <,<--.:.;;-> >::»>.

?: »»> »<>:»>:<>:::; «> »><

::.~.>- _i.':> ~»:;>'- »:
><:> - - »»> »>: -><-::> »-

name Required positional parameter naming master
tenninal.

BICS=
OFIS Link option: Basic International
Character Set.

BYpass= Name of ''bypass'' terminal for this cluster.

LFFF=
TIPPRINT precede form feeds (FF) with
linefeed.

LoGoN= TIP /30 LOGON required-at this tenninal?

NCS= OFIS Link National Olaracter Set designation.

PRintLF= Printer needs LF at end of text?

PRintLPP= Default lines per page for TIPPRINT.

ReaDYmsg= Send ready message to these terminals.

SLaVes=(I1I) Up to 8 slave (similar) tenninal names.

SP= Set destructive space bar (U20/U30/U40).

TCP= Alternative TCP program for cluster.

termSiZe=(r,c) Size (rows,cois) for terminals in cluster.

TermtYPe= Type of terminals in cluster.

UNSoL= Allow receipt of unsolicited messages?

XMIT= Default control page XMIT value.

. (period) End of CLUSTER statement.

Where:

name Required positional parameter that specifies the lCAM terminal name of the
terminal which is considered the "master" terminal for the cluster.

BIes=

7002 3999-100

Programs executing on a terminal in this cluster may refer to this terminal by
using the pseudo terminal name *MST.

The designation of a "master" terminal has no mystical significance other than
the ability to be referred to by the generic name *MST.

OFIS Link option to indicate whether or not terminals in this cluster use BICS.
Refer to relevant OFIS Link documentation (OFIS LINK System Administrator
Guide). .

4-43

CLUSTER Definition

4-44

BYpass=

LFFF=

LoGoN=

Nes=

PRintLF=

The name of the bypass terminal for this cluster.

Programs executing on terminals in this duster may refer to this tenninal by
using the pseudo tenninal name *B'YP.

The "bypass" terminal is often a designated terminal that is used for printing
purposes. Any terminal in the network may be specified as a bypass tenninal
for any other terminal.

LFFF= YES indicates that TIPPRINT (when printing to an auxiliary device on a
tenninal in this duster) will precede each form. feed character (FF) with a
linefeed character (LF).

Default: NO.

NO indicates that TIPPRINT will !::iQI insert a line feed character in front of
eac.1-t form feed cha.-racter (some pri..nters do Nor autornaticaUy supply a LF
character when they receive a form. feed character).

NO Indicates that the terminals in this duster do not have to LOGON
TTI' /30.

YES Indicates that the tenninals in this cluster are required and
expected to LOGON TIP /30. -

Default: LOGON= specification in TIPGEN statement.

Terminals that do not LOGON TIP /30 execute programs as an unknown user
(userid is ''TP'' - transaction program) with membership only in the universal
group TIPY and a security level of 32 (or whatever value is specified by the
SECUR= run-time keyword).

OFIS Link National Character Set designation. See OFIS Unk System
Administrator guide for information.

YES or NO indicating whether auxiliary printers used by terminals in this
cluster require a line feed (LF) character at the end of each physical message
(screenfull of data) transmitted to the auxiliary device.

This entry overrides (for this CLUSTER) the value specified in the
corresponding TIPGEN statement.

PRintLPP=n

Specifies the default number of lines per page (for TIPPRINT) when printing
to an auxiliary device on a terminal in this cluster.

This entry overrides (for this CLUSTER) the value specified in the
corresponding TIPGEN statement.

7002 3999-1 00

ReaDYmsg=

SLa Ves=(",)

SP=

TCP=

CLUSTER Definition

YES or NO specifying whether or not the terminals in this cluster are to be
sent the TIP /30 ready message.

Default: READYMSG= specification in TIPGEN statement.

A list of up to 8 other terminals in this cluster.

These "slave" terminals are not necessarily physically related to the master;
they simply have the same characteristics and are grouped together for
convenience.

Default: no slaves.

For U20/U30/U40 style terminals, setting SP=DS causes TIP /30 to alter the
control page to define the space bar as destructive. Specifications other than
"OS" (destructive) are not supported by this keyword.

Default: (if omitted) - no alteration of the space bar setting.

Name of a non-standard TCP program for this duster of terminals.

This parameter is used to override the st;}nd;}Td TIP /30 command processor
and should be specified only on the advice of customer support personnel.

termSiZe=(r,c)

TermtYFe=

UNSoL=

7002 3999-1 00

The screen size of terminals in this duster. The "r" parameter specifies the
number of rows; "e" specifies the number of columns.

Default: tennSiZe= specification in TIPGEN statement.

The terminal type of all terminals in this cluster.

Choices are the same as those listed for the keyword TermtYPe= in the
TIPGEN statement previously described.

Default: whatever was specified for TermtYPe= in TIPGEN.

Establishes for all terminals in the CLUSTER whether or not unsolicited
messages may be sent to the terminal.

YES Terminals are able to receive unsolicited messages.

NO Terminals are not to receive unsolicited messages.

Default: YES

4-45

CLUSTER Definition

4-46

The control page XMIT value to be set at LOGON time for terminals in this
cluster. Choices are the same as those described in the)O.,1IT= keyword in the
TIPGEN statement.

• (period)

Default is the value specified for)O.,1IT= in the TIPGEN statement .

Place a period at the end of the last keyword specified for each CLUSTER
statement to signal the end of that CLUSTER statement.

Example:

CLUSTER ARCl SLAVES=(ARC2) TYPE=SPC
BYPASS-ARC3 UNSOL-NO.

A C.&..USTER sta~-nent is often used to define Personal Computers that are operating as
UNISCOPE terminals using PEP /STEP software and hardware.

A common technique is to define the PC to be three (or more!) tenninals from ICAM's
point of view (three or more TERM statements in the ICAM generation parameters - each
terminal with a different polling address). Often one display is used as a 'bypass" terminal
for unattended printing.

Exampie:

CLUSTER PCOl SLAVES-(PC02)
TYPE=U20 BYPASS=PC03.

This example defines two ICAM terminal names as a TIP /30 logical tenninal cluster. The
BYP ASS terminal is stated to be a third terminal: PC03.

TIP /30 transactions that are running on the master or a slave terminal (PCOI or PC02) can
route screen output or TIPPRINT output to the generic terminal name "'BYP to have the
information sent to PC03:

)
This command line executes the utility transaction PRINT on terminal "'BYP (TIP /30
resolves this reference by checking the invoking terminal's CLUSTER membership). The
PRINT program (which is started on the bypass terminal) routes its output to AUXI - the
printer attached to the bypass terminal.

7002 3999-1 00

Keyword Xref

4.4. Keyword Xref
This section presents a matrix showing all of the keywords that may be specified in the
TIPGEN parameters, CLUSTER parameters, and the TIP /30 job control imbedded data set
(see description in "TIP /30 Job Control Options" on page 6-1).

The " symbol indicates that the keyword may be specified for the indicated statement.

Table 4-15. Keyword XREF

::1i!iYm-~:~::::i::ij:'::::::':: :jag::' ,\:,9BY§~~{: ::~MP:':
AFr= " "
BaCK=

BackPRI= " ~n.nerl= ,- ./

Banner2= ./

Bles= " BYpass: "
B4= ./

CATPooL= ./ ./

acs= ./

CLose= ./

COMM= ./

CONTINUE::: ./

CURrency= ./ ./

DBMS= ,/ ./

DEBUG= ./

DECIMAL= ./ ./

DEFOPEN= ./

DMname= ./

DMSAWT= ./

DMSCAT= ./

I ~ I
I " I l.I!lJf rstmp=

continued ...

7002 3999-1 00 4-47

Keyword Xref

... - .::

.. :, :.:.:: :;':.::: .. ;:.
: ., : : : ::::.

ESCape: " - " FaSTLoaD= " - -
FCSxtent= " - " FiLeBufs= " - -
FiLePooL= - - "
FileTab= " - " FREEmem= " - " GDA= " - " lCAM= - - "
!MS=' " - -
IMSDT= " - " IMSemul= - - " IMSROW= " - " IMStranL= " - " IMSUNSDT= " - " JOB= " - -
JouRNaL= " - -
KeYTaBLe= " - .t

LANGuage= " - " LFFF= - " -
UBLKSZ= - - " LiNEreq= - - " UST= " - -
LOCAP= " - " LOC= " - -
LoGoN= " " -
MaXCaLLs= " - " MaXPRoG= " - " \"0\1"''"" .. ,' .. ,,...,''' •••

4-48 7002 3999-1 00

Keyword Xref

--;:.:':::::?~:::::':::::.
MAXTiMe= ,J' - ,J'

MCSPooL= ,J' - ,J'

McsTab=

MSGPooL=

NCS=

NETwork=

NumGRPS=

OPen=

OPRQuesz=

PCXFER=

PRinT=

PRintLF=

PRintLPP=

PRintTOF=

PRintTTL=

PRintUC=

PRIority=

ProgTab=

PRoMPT=

PRSTEN=

ReaDYmsg=

RESident:

RESMEM=

RESMOD=

RESOVLY=

srnDname=

Sc.l-tdPF1=

SECuR=

7002 3999-1 00 4-49

Keyword Xref

SFSPooL= "

shutDowN= "

SITEid= "

SLaVes::

SP=

startUP=

STatS=

TCP=

TeRMS=

termSiZe=

TenntYPe=

TIMeoff=

TIMeouT=

TIPFILE5=

TIPDUMP=

UNSoL=

UpPeR=

UserPRI=

WARMstrt=

WORK1=

WORK2=

)(1.fIT=

XmitALL=

XmitO-!an=

XmitVAR=

4-50 7002 3999-1 00

TIP/30 Generation Steps

4.5 .. TIP/30 Generation Steps
The following steps are required to generate a Tn' /30 system:

1. Create a library element containing the appropriate selection of generation statements
as described in the preceding sections

2. Make sure that there is only one TIPGEN statement and that it is the first statement

3. Make certain that the TCAname specified in the TIPGEN statement is a name that does
not conflict with an existing TCA.

4. Make sure that there is one FILE statement for each LFD that is to be accessed by online
programs through Tn' /30.

5. Make sure that all the FILE statements follow the TIPGEN statement

6. Make sure that (any) CLUSTER statements follow the FILE statement(s).

7. Run the supplied batch job stream n$p ARAM (described in the following section). Be
sure to specify the library and element name of the set of parameters you have
prepared.

8. If there are errors in your parameters, correct them and rerun the n$p ARAM job.

9. If there are no errors in the parameters, the n$p ARAM job creates (in YJCS or
Tll'$JCS) the next job (default name is n$GEN). This job is automatically scheduled by
the n$p ARAM job (unless you override by using GBL RUN=NO when running the
TI$P ARAM job).

10. If the TJ$GEN output is correct you now have a version of TIP /30 that may be used.

Note: The last step of the constructed job is a UBS step to delete the constructed job (TJ$GEN)
from the library. This action prevents reruns of the TJ$GEN job without first going
through the TJ$P ARAM process.

7002 3999-100 4-51

Generation Parameter Processor

4.6. Generation Parameter Processor

4-52

The supplied job stream TJ$P ARAM executes the TB$GEN" program. Global parameters
are provided to specify the element name containing the previously prepared generation
parameter stream.

If an LFD named TIP$JCS is defined in the job control stream (this is usually the case), the
generated job is written to the library TIP$JCS; otherwise, the job stream is written to
YJCS.

The TJ$P ARAM job stream accepts some global symbols to determine what processing
options are desired:

RUN-

TCA-

Specify the LFD name of the library where the TIP /30 generation parameters
are located. Default is L=SYSGEN.

Specify RUN=NO if you do NOT wish to have the second step of the
generation procedure automatically scheduled.

Specify the name of the element that contains the TIP /30 generation
parameters that are to be processed.

This parameter must be specified.

7002 3999-1 00

Example TIP/3D Generation

4.7. Example TIP/30 Generation
The following example TIP/3D generation parameter stream illustrates some of the
keywords that have been described. This generation stream is intended only as an example
- it is not necessarily an endorsement of a particular method of organizing a TIP /30
system.

TIPGEN XX1TCA

*
* LIBRARY FILES

*

AFT=2
B4=YES
CATPOOL=lO
FREEM=5000
MSGPOOL=(5,800)
SITEID='ARC'
TERMS=15
TERMTYPE=UTS20
XMIT=VAR.

FILE SYSGEN, LIB BUF=4.

*

BACK=4

FILEBUFS=5
JOURNAL=NO

STATS=(30,300)
READYMSG=YES
TIMEOFF=lO

CLUSTER PCOl SLAVE=(PC02) BYPASS=PC03 TYPE=SPC.
CLUSTER ARCl TYPE=U200.
CLUSTER ARC2 TYPE=U20D.

7002 3999-100 4-53

TIP/3D New Release

4.8. TIP/30 New Release
When a new release of TIP/3D becomes available, customers are sent an order form. Part of
the material that is sent with a new release is a set of detailed upgrade instructions.

In some situations, a user may elect to receive a "replacement" TIP /30 release tape (or
diskettes). This is sometimes the simplest way to upgrade to a new revision level.

To install such a "replacement" release tape (or diskettes), the following steps should be
performed:

• Make sure there is valid backup of Til' and TIP$LOD files

• Run job TJ$LOAD

• Run job TJ$JC5

• Run job TJ$COP

• Regenerate TIP /30.

Note: This procedure is only valid if you are installing an updated version of the release that you
are presently using. The installation of a new release level of TIP/3D is described in the
release notice that announces the availability of that release.

4-54 7002 3999-1 00

OS/3 New Release

4.9. 05/3 New Release
When a new release of the Unisys Operating system (05/3) is installed the system
programmer must consider the following points that are related to the TIP /30
environment:

• If you are upgrading major 05/3 release levels (for example, from release 10 to 11),
TIP /30 must be generated under the new release before attempting to run TIP /30.
Unpredictable results will occur if TIP /30 is not generated under the release of the
operating system that is in use.

e If you are simply applying a minor upgrade (for example, 11.0.A to 11.0.B), there is
usually no need to generate TIP /30 (although this cannot be absolutely guaranteed).

• If your site uses the RPG II language to write online TIP /30 programs, you must run
the job TJ$UPRPG (see description of supplied batch jobs) and, depending on release
level of 05/3, it may be necessary to rerun the installation job TJ$RPGxx (where xx
specifies the 05/3 release level: 10, 11, 12, etc.).

Note: Whenever it is necessary to generate TIP/3D, we recommend that a new TCA name be
established (remember also that the first 3 characters of the TCA name have to be unique if
you use offline batch recovery).

7002 3999-1 00 4-55

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Section 5
TIP/30 System Files

The TIP /30 system requires a number of files in addition to the site's data files and
libraries. These additional files are used by TIP / 30 to manage the TIP / 30 system.

This section describes each of these files and outlines the use of the file by TIP /30, backup
considerations, physical placement information etc.

Since the actual LBL name of a file may vary, this section refers to the files by the actual
LFD name. (Some sites run more than one TIP /30 system and therefore use different LBL
names for the TIP /30 system files).

Some of the files are always required by TIP /30; several are optional depending on
parameters that are specified in the TIP /30 configuration for the site.

Most of these files will be created during the standard installation procedures when TIP /30
is installed. In some situations, optional files may have been left out according to the
choices made by the installation personnel.

The individual jobs that are described in the installation procedures may be used to
re-create a file or to create a file that was initially not configured.

Files which are referred to as "library" files are standard SAT format OS /3 libraries and
may be manipulated by the OS /3 UBS program (batch librarian),

SAT files which are not identified as '1ibrary" files are normally managed only by TIP /30
supplied programs (with exceptions as noted) and must not be indiscriminately
manipulated by programs other than those indicated.

7002 3999-100 5-1

5-2

Table 5-16. TIP/30 System Flies

;····::::::::::::::::.::.,::.:::::::::::·:::::;1·::·:[:::1:::':::::': .. :?~:.':
~: .. :";';.:::'::'::':: ::.' : .. ::«

'::::':::::::::'. ::::,:::::.'::.:

SYSGEN SAT library No UBS

TIP SAT library Yes UBS

TIP$BAK SMIRAM No
or TAPE

TIP$B4 SAT No D?vfPRST

TIP$CAT SAT Yes JobTJ$aBAK Job TJ$CRRST

TIP$DUMP SAT Yes

TIP$HST SAT No D?vfPRST

TIP$JC5 SAT library Yes UBS

TIP$JRN SAT No D?vfPRST

TIP$LOD SAT library Yes UBS

TIP$LOG SAT tape No

TIP$MCS SAT Yes Job TJ$CRBAK Job TJ$CRRST

TIP$MSG SAT Yes D?vfPRST

TIP$RNDM SAT Yes Job TJ$CRBAK Job TJ$CRRST

TIP$SWAP SAT Yes

TIP$TOM SAT No DMPRST

TIP$TSP MIRAM (3 keys) No DATA

All of these files may be backed up and restored using the standard 05/3 dump/restore
utility (DMPRST). Some of the files (as noted) may be backed up or restored only with
DMPRST.

The job streams named TJ$CRBAK and TJ$CRRST provide backup, restore and
reorganization operations for the TIPCAT, TIPMCS, TIP$RNDM files as a group.

Note: In the following descriptions of the files that are used by the TIP/3D system many LBL
names are shown including the string "id". This does not mean that string literally, but
the value of the job control symbol &$ID which is presumed to be set to the appropriate
value for the individual TIP/3D system (for example: PROD for production system, TEST
for test system>.

7002 3999-1 00

SYSGEN - Maintenance LIbrary

5.1. SYSGEN - Maintenance Library

TIP .id.GEN SYSGEN optional

The purpose of the SYSGEN library is to hold the TIP /30 generation parameters. This
library is optional, but we recommend that the site create this library and use it. The LBL
name illustrated is the default LBL name.

The SYSGEN library is a convenient place to keep all parameters used to generate the
operating system, TIP /30, lCAM etc. Other information concerning "system software" can
also be stored in this library (for example: patch jobs, copies of JCL procs etc.).

A number of job streams supplied with TIP /30 assume the existence of a library with an
LFD name 'SYSGEN". If the site chooses to omit this library, some job streams may require
modification.

5.2. TIP - Release Library

YTIP TIP I required

The TIP /30 release library is provided on the System 80 Model 7E processor or is supplied
on a release tape or release diskettes for other models. If necessary, this library is loaded to
disk by the initial installation procedures and is assumed to be accessible by TIP /30 and
various batch jobs (compile jobs, link edit jobs, etc).

The release library is completely rebuilt when a new TIP /30 release is installed. It is
suggested that no user modules be placed in this library because such modules are lost
when the release library is reloaded during the installation of a new release!

This file is a standard OS /3 library and is referenced by:

• The TIP /30 HELP utility transaction and the HELP command recognized by many
TIP /30 utilities

• Compile and link edit job control streams (the compilers are usually directed to search
the TIP library for TIP /30 copy elements, assembler macros etc.; the linkage editor
searches the TIP library to resolve calls to TIP /30 subroutines and object modules)

• The TIP /30 generation process uses modules stored in the TIP library during TIP /30
generation.

This library is not referenced extensively by the online system and may be placed on any
convenient disk drive.

7002 3999-1 00 5-3

TIP$BAK - Backup File

5.3. TIP$BAK - Backup File

:~.!H!J4.:p.~iU:: ::}:\:::U:?:\rt1iP::~im:Hm):{

TIP.id.BAK TIP$BAK I optional

The TIP /30 Backup file (TIP$BAK) is an optional file that is used by the supplied job
streams TJ$CRBAK/TJ$CRRST (catalogue and random backup and restore) as a backup of
the TIP /30 Catalogue (1'IP$CATI, the TIP /30 Random File (TIP$RNDM) and the TIP /30
Screen Format File (TIP$MCS). The TIP$BAK file may be a disk or tape file.

The job TJ$BAK will allocate a suitable size TIP$BAK file on disk. (Using the
TJ$CRBAK/TJ$CRRST jobs with backup on tape is a function of global parameters for
those jobs and is discussed in the documentation of those job streams).

The TIP$BAK file is a MIRAM file that the TIP /30 backup utility uses to hold the contents
of the TIP$~ T, TIP$RNDM and TIP$MCS files.

This file is optional unless use is made of the supplied job streams TJ$CRBAK/TJ$CRRST.

5.4. TIP$B4 - Before Image File

5-4

The Til' /30 Before File (TIP$B4) is an optional file that is used by TIP /30 to store "quick
before images" of records that are being held for update for the duration of a transaction.
This file is used. by Til' /30 only if there is one or more generated files specified with
HOLD=TR in the TIP /30 generation parameters.

The TIP$B4 file is a SAT file that is managed by TIP /30.

When a transaction program updates a record (for a file that is configured as HOLD=TR), a
''before image" of the record is written to the TIP$B4 file.

Similarly, if an online program adds a record to a HOLD=TR file, the record image is
written to the TIP$B4 file (it is marked as a "NEW' record).

These ''before'' images may be used by the TIP /30 system for online roll back (if the
transaction aborts for example) or by the TIP /30 system or the batch recovery program for
roll back of incomplete transactions after a catastrophic system failure.

The TIP$B4 file may be heavily used at a site which employs HOLD=TR for a large number
of files.

The TIP$B4 file is created by using the job stream TJ$B4. The initial disk allocation is not as
large as one might expect because the TIP /30 system reuses the space in the TIP$B4 file to
minimize the disk space required for this file. -

If possible, the TIP$B4 fHe should be allocated on a disk (hive that does not contain a file
that is specified as HOLD=TR (this avoids head contention on the drive).

7002 3999-1 00

TIP$B4 - Before Image File

This file is initialized (only) by TIP /30 startup and normally never requires maintenance or
backup.

The file may be backed-up/restored by the standard 05/3 system utility DMPRST.

This file is optional unless there are files generated with HOLD=TR.

5.5. TIP$CAT - Catalogue File

TIP.id.CAT TIP$CAT required

The TIP /30 Catalogue file (Tll'$CAT) is used by TIP /30 to maintain critical information
concerning the TIP /30 users, online programs and files. The TIP /30 catalogue information
controls the manner in which TIP /30 runs online programs and accesses online files.

The TIP$CAT file is a SAT file containing the catalogue records for:

• USER information

• PROGRAM information

• FILE information

• GROUP set information.

There is a TIP /30 batch program (TB$CRB) that is described elsewhere in this section of the
manual which is used to reorganize/backup the TIP$CAT file (and the TIP$MCS and
TIP$RNDM files).

WARNING

The TI P$CAT file is absolutely crucial to the
operation of TIP/30. The utmost care must be
taken to ensure that there is always a backup of
this file.

Although the information in the TIP /30 catalogue file is referenced often by TIP /30, the
actual number of I/O operations for the file is not proportionally high. This is because the
TIP /30 system maintains an internal ''bit maplt indicating which physical records in the file
actually contain data. ''No find" situations are therefore easily resolved without I/O.

In addition, a TIP /30 generation parameter (CATPOOL=) can be specified to create a "pool"
of the most recently used catalogue records in main memory.

To minimize the number of accesses of FILE information from the TIP$CAT file, the
FILETAB= TIP /30 generation parameter may be used to specify that FILE information be
maintained in main memory.

The TIP$CA T file must be pre-formatted by the TIP /30 batch file format utility (refer to the
job TJ$CAT).

7002 3999-100 5-5

TIP$CAT - Catalogue File

The Tn' /30 system will only make use of a maximum of 8,191 catalogue records (each
record is 256 bytes) - a larger allocation is totally wasted.

5.6. TIP$DUMP - Dump File

:::71 ::·.·:.nr2<~::>:::><
TIP.id.DUMP TlP$DUMP optional

The Tn' /30 Dump file (TIP$DUMP) is a required file that is used by TIP /30 in the unlikely
event that Tn' /30 tenninates abnormally. TIP /30 copies the image of memory to this file so
that the supplied job TJ$DMP can print or copy the memory dump for offline analysis.

The TIP$DUMP file is a SAT file that is managed by the TIP /30 system.

5.7. TIP$HST - History File

5-6

...................... :':;::>
TIP.id.HST TIP$HST I optional

The TIP /30 History File (TlP$HST) is an optional file that is used to accumulate TIP /30
Journal or Log infonnation. The information that is written to the TIP$JRN file (or
TIP$LOG) file can be periodically appended to the TIP /30 History File (TIr-'$HST).

The TIP$HST file is a SAT disk file that is managed by batch programs supplied with
TIP /30. The file is not used online by the TIP /30 system.

''Normal'' practice is to copy the TIP$JRN (or TIP$LOG) file to the TIP$HST file when
TIP /30 shuts down. The TIP$JRN (or TIP$LOG) file is then initialized and ready to receive
the journal records for the next session.

Of course, abnormal shutdown situations may require some deviation from this simplistic
scheme.

The TIP$HST file may be backed up by the standard 05/3 dump/restore utility
(DMPRST).

The following (supplied) job control streams may be used to perform the indicated function
related to the TIP$HST file:

• TJ$HST - create and initialize the TIP$HST file

• TJ$JR2HS - copy TIP$JRN to TIP$HST and initialize the TIP$JRN file.

These job streams are documented elsewhere in this section of the manual.

7002 3999-1 00

TIP$JCS - Job Control Library

5.8. TIP$JCS - Job Control Library

::::::::::::,:"",,:,,:,,'

varies TIP$JCS optional

The purpose of the TIP$JC5 library is to hold the job control streams that are supplied with
TIP /30 (along with any other TIP /30 related job control that is created by the site).

The LBL name for this file can be in the "standard" format (TIP.id.JCS) but this has severe
drawbacks when the LBL name is needed to execute jobs, since the full LBL name must be
provided.

The recommended LBL name is often a short name such as "TI".

There must be a unique job control library for each unique TIP /30 system on a single
processor. This requirement is not onerous since the libraries are relatively small.
Experience I-aas showTL frtat rtaving a separate job controllibra.1''Y for each TIP /30 system can
avoid many pitfalls.

5.9. TIP$JRN - Journal File

TIP.id.JRN

The TIP /30 Journal File (TIP$JRN) is an optional file that is used by TIP /30 to "journal"
information about updated records and the system. The information that is written to the
TIP$JRN file depends on various TIP /30 generation parameters.

If a TIP$JRN file is configured, the TIP /30 system will automatically write information to
this file concerning user LOGON /LOCOFF, library element reads and writes, and TIP /30
internal statistics at a specified interval.

In addition, "before" and/or "after" images of data file records (for·HOLD=TR files) that are
modified, deleted or added are written to this file (all according to various TIP /30
generation parameters).

The TIP$JRN file should be allocated on a disk drive that does not contain any application
data files that are being journaled - the loss of the drive may mean the loss of both the
data files and the only means to reconstruct the information. Ideally, the TIP$JRN file
should be allocated on a drive that is the least used disk drive - the TIP$JRN file may be a
very heavily used file depending on the TIP /30 system generation options that are selected.

The TIP$JRN file may serve several purposes:

• an audit trail of system activity

• record of images that may be used for (off line, batch) roll back or roll forward
(reapplication of updates)

• TIP /30 system statistics collection.

7002 3999-100 5-7

TIP$JRN - Journal File

More information about the type and format of records written to the TIP$JRN file can be
found in the Journal section of the description of the TIP /30 File Control System (FCS).

"Normal" practice is to copy the TIP$JRN file to a history file (TIP$HST) when TIP /30 shuts
down. The TIP$JRN file is then initialized and ready to receive the journal records for the
next session. Of course, abnonnal shutdown situations may require deviation from this
simplistic scheme.

It is also good practice to refresh the TIP$JRN file before installing a new TIP /30 release or
patch level and whenever a new TCA (TIP /30 Control Area or generation set) is used -
the offline recovery procedures use information contained in the TCA to control recovery
- if the file information in the generation parameters is changed, the new TCA may not be
appropriate to perform offline recovery using older journal information!

The TIP$JRN file is a SAT file and may only be manipulated by programs supplied with
TIP /30 or by the standard 05/3 dump/restore utility DMPRST.

The following (supplied) job control streams may be used to perform the indicated function
related to the TIP$JRN file:

• TJ$JRlNT - initialize the TlP$JRN file

• TJ$1RN - allocate and initialize the TlP$JRN file

• TJ$JR2HS - copy TIP$JRN file to TIP$HST and initialize the TIP$JRN file.

These job streams are documented elsewhere in this section of the manual.

This file is optional unless JOURNAL=YES was specified in the TIP /30 generation
parameters.

5.10. TIP$LOD - Load Library

5-8

•• LBLnam.e:··· ><><>~FD·naJ1l~>:
TIP.id.LOD TIP$LOD I required

The TIP$LOD library is the library containing all online program load modules. This library
also contains the resulting load module(s) produced by TIP /30 generations (TCAs). This
library is a standard format OS/3library.

TIP$LOD is initially built by the installation procedures and contains all online program
load modules supplied with TIP /30 and all user written online program load modules.

Online programs to be used with TIP /30 must be linked so that the load module is placed
in this library. It is not mandatory to use the 05/3 LIBS ''block load" facility for online load
modules.

This library must be packed and backed up frequently (especially at sites where program
development is a major activity).

7002 3999-1 00

TIP$LOG - Log Tape

5.11. TIP$LOG - Log Tape

TIP$LCG TIP$LOG optional

The TIP /30 Log Tape (TIP$LCG) may be used as an alternative or a supplement to the
TIP /30 Journal File (a disk file). TIP$LCG is used for exactly the same purpose as the
TIP$)RN file - the difference is that the information is written to tape.

The TIP$LOG file and the TIP /30 Journal file (TIP$JRN) are mutually exclusive files.

More information about the type and format of records written to the TIP$LOG file can be
found in the Journal section of the description of the TIP /30 File Control System (FCS).

''Normal'' practice is to copy the TIP$LOG tape to a history file (TIP$HST) when TIP /30
shuts down. A new TIP$LOG tape is then used to receive the journal records for the next
session. Of course, abnonr..al shutdovJn sit"..lations rnay require some deviation from tpis
simplistic scheme.

This file is optional unless LOG = YES was specified in the TIP /30 generation parameters.

5.12. TIP$MCS - Screen Format File

:.:LBL:name(::>:>::IW:Q::it.triie·:/:<

TIP.id.MCS TIP$MCS I required

The TIP /30 Screen Format File (TIP$MCS) is used by TIP /30 to contain TIP /30 screen
formats. The formats are stored in an internal (compressed) format in this file.

The TIP$MCS file is a SAT file with one partition containing records that are 2,560 bytes in
length.

There is a TIP /30 batch program (TB$CRB) that is described elsewhere in this section of the
manual which is used to reorganize/backup the TIP$MCS file (and the TIP$CAT and
TIP$RNDM files).

The TIP$MCS file must be pre-formatted by the TIP /30 batch file fonnat utility (this
operation is performed by the TIP /30 installation procedure).

The TIP /30 system will only make use of a maximum of 8,191 screen records (each record
is 2,560 bytes) - a larger allocation is totally wasted.

The TIP /30 job control parameter MCSPOOL= defines a pool of memory that is used to
keep the most recently used screen formats in memory to eliminate some reads from this
file.

7002 3999-100 5-9

TIP$MSG - TIP/30 Message FHe

5.13. TIP$MSG - TIP/30 Message File
,>:>:: ..•.... 1::\:::::'>1:

.:·>mt:>?:>?<
TIP .id.MSG TIP$MSG required

The TIP /30 canned Message Files (TIP$MSG) is used by Tn' /30 to contain many of the
messages that are output by TIP /30 or by utility transactions supplied with Tn' /30.

The TIP$MSG file is a MIRAM file containing 256 byte records.

The TIP /30 job control parameter FILEPOOL= can be used to establish record pooling for
this file to keep the most recently used messages in memory and reduce physical I/O
requests for this file.

5.14. TIP$RNDM - Random File

5-10

The TIP /30 Random File is a SAT file that is used by TIP /30 to allocate Edit buffers and
FCS Dynamic files.

Each FCS dynamic file has an initial allocation of 40 blocks (each. block is a fixed size of 512
bytes). The dynamic file may grow (based on the demands made by an online program) in
increments of 40 blocks. (In actual fact, 40 is the default initial and secondary block
allocation - the actual value used is given by the TIP /30 generation parameter
FCSxrENT=).

The Tll'$RNDM file is managed. intemally by TIP /30 and may extend (and frequently
does!) depending on the utilization of edit buffers and other dynamic files. The maximum
size of the TIP$RNDM file that is supported by TIP /30 is:

(8192 x FCSXTENT) 512-byte blocks

The site administrator should maintain a close watch (via the CAT utility transaction) on
the proliferation of edit buffers and dynamic files.

Because the TIP$RNDM file is a SAT file, there is no mechanism available to directly
compress the file. Once the file extends, it remains extended (even though much of the
space may not actually be in use).

There is a TIP /30 batch program (TB$CRB) - described elsewhere - that can be used to
reorganize/backup the TIP$RNDM file (and the TIP$CAT and TIP$MCS files). note> The
TIP$RNDM file is directly related to entries in the Tn' /30 Catalogue File (TIP$CA T) and
must be considered as a logical "extension" of the TIP$CAT file (that is, one file ~ be
restored/reoq,anized independently of the ot.'1er).

The TIP$RNDM file must be pre-formatted by the Tn' /30 batch file format utility.

7002 3999-1 00

TIP$RNDM - Random File

Since library elements are frequently copied into an Edit buffer the TIP$RNDM file should
preferably be placed on a drive that does not contain any of the user's libraries (to reduce
head contention).

5.15. TIP$SWAP - Swap File

TIP.id.SW AP TIP$SW AP required

The TIP /30 Swapping Storage File (TIP$SW AP) is used by TIP /30 to provide high speed
physical memory swapping. The file is managed by TIP /30 using SAT Data Management.

This file may be extended (if necessary) by TIP /30 if the space is available on the volume.

The TIP$SW AP file may be used by TIP /30 to:"

• temporarily save the memory contents of programs that are "swapped out;; (waiting for
input for example)

• temporarily save the memory contents of a TIP /30 file buffer if the current buffer
occupant (file) is not the desired occupant

• temporarily save the contents of the CDA (in some cases) while TIP /30 is transferring
control from· one user program to another

• fast loading of certain TIP /30 internal transient functions.

The TIP$SW AP file may be a very heavily used file and is best placed on non-sectored disk
drives (if a choice is available); in any case, first consideration should be to place the
TIP$SW AP file on a disk drive that is used the least.

The TIP$SW AP file contains NO data of any consequence when TIP /30 is not running. It is
not necessary to include this file in backup procedures.

The TIP$SW AP file must be preformatted by the TIP /30 batch file format utility (refer to
the job TJ$SW AP).

If possible, the user should allocate the TIP$SW AP file as a contiguous disk extent and, for
premium performance, attempt to avoid any alternate track assignments within the
TIP$SW AP file space.

5.16. TIP$TOM - Output Message File

TIP.id.TOM TIP$TOM optional

The TIP$TOM file is an optional file that may be allocated for use by TIP /30 to support the
DLMSG (Display Last output Message) transaction that provides compatability with IMS.

The TIP$TOM file is a SAT format file that is managed by TIP /30. This file is optional
unless use is made of the DLMSG transaction.

7002 3999-100 5-11

TIP$TSP - Sample Program File

5.17. TIP$TSP - Sample Program File

5-12

:;::>'::::}::::::;:>:>::>:>:<::: ::;::<;::::::<»,.

TIP .id.TSP .1 TIP$TSP optional

The TIP /30 Sample Program File (TlP$'ISP) is an optional file that is used by the TIP /30
sample programs (transactions TSP, TSPUPDT and TSPRNT).

The sample program is supplied with TIP /30 to illustrate how a typical TIP /30 native
mode program may be written. This file contains sample data so that the sample program
can actually be run and observed.

The TIP$TSP file is a standard indexed MIRAM file with 1 index.

The TIP$'ISP file is normally generated into the TIP /30 system by the initial installation
procedures.

The file is configured in the Til' /30 generation parameters as follows:

FILE TIP$TSP,MIRAM ACCESS=EXC
BLKSIZE=1024
HOLD=YES
KEY1=(8,O,NDUP,NCHG)
KEY2=(25,9,DUP,CHG)
KEY3=(lO,116,DUP,CHG)
RECSIZE=335.

Note: ACCESS=EXC may be used because the file is nonnally only used online by TIP /30 and
is not referenced in batch.

The T1P$TSP file does not need to be pre-fonnatted in any way; allocate the file and ensure
that it is defined in the TIP /30 generation parameters.

The TIP$TSP file may be backed up using the DATA utility or by using the standard 05/3
dump / restore utility (DMPRST).

The T1P$TSP file may be periodically unloaded/reload (using the 05/3 DATA or MILOAD
utility) but the volatility of this file is nonnally very low and therefore this reorganization is
seldom necessary.

This file is optional unless use is made of the Til' /30 sample programs.

7002 3999-1 00

Section 6
TIP/30 Job Control Options

There are many options that can be specified when TIP /30 is executed. These options are
entered on run control statements that are free format (similar to the generation control
statements).

The information specified in these control statements is used to modify internal tables in
TIP /30 and override certain parameters that were selected or defined in the TIP /30 system
generation.

This provides a certain degree of flexibility in that some generation choices can be changed
without having to do a complete TIP /30 generation.

The analysis of the job control parameters validates the parameters carefully. If an error is
detected, the statement in error is displayed and the following console message is issued:

"CANCEL TIP/30 OR IGNORE ERROR? (elI)"

If the operator responds "I" (ignore) or enters a null reply, the keyword in error is treated as
if it had not been specified. If the operator responds lie" (cancel), the remaining statement
are checked, but TIP /30 initialization is not started and TIP /30 terminates. After a "C' reply
is given, other subsequent errors are logged, but the operator is not prompted for any
further responses (since he has already indicated a cancel operation).

7002 3999-100

WARNING

Errors in the syntax MAY MAKE IT IMPOSSIBLE
to run TIP/30. ALWAYS make a backup of the
TIP/30 job control stream BEFORE making any
"improvements" .

6-1

Job Control Options

6-2

The parameters are supplied as an "imbedded data set" (card images bounded by a /$ and
/"" statement) in the TIP /30 job control. The card images are not scanned beyond column
72.

Example:

// EXEC TBTIP,TIPLOD,l
/$

/*

imbedded data set containing
TIP/30 run-time options

The following run-time control statements may be specified as parameters to TIP / 30.
Keywords are illustrated in the standard format (upper case letters are required letters;
lower case letters may be omitted). '

Some of the keywords allow the specification of a list of items (or sub-parameters). In such
cases, the keyword may be repeated as many times as needed to specify all desired
parameters, for example:

RESIDENT-TTTCP,TTFCS
RESIDENT-SUBPROG1,SUBPROG2,SUBPROG3
RESIDENT-(PAY020,PAY035)

Table 6-17. TlP/30 Run-time Parameters

k.· •• <"·"·':':::::><:::::·<·::::::'·.:',·:"".~~ .•.,.,: .. :.:,<".,: •.••. '., '.;:.,.," •• ,: •• ,'<: •• :<
!:.<:, ••••••• , }\,.",.:: •• '.':', •••• <' •••• '.> ... :.: •• :': .• : .••........ ' :.::: •.. : •...•• <:.:<:<:: ••..• :.:, ..•.• ::., •• : ••• : .•••• <>: ••• :.<.) .••• « .••.•
S .. 1"UIt.·.· ..• ·.··.· •. clfi.··.·.·.· ' .. Ca.·'.'.'. tiO.·.· .. '.'.·.1t.·., ,.~~ ~. ,..;, :.; <:«<:: <: :,'< «:« <:: ...• !
.:,«l':~:: .. :< .. <:.:: ... : .. ,:'":' .. :; A;" ... :,::;:., .• ,.:,:: : <, •.••• <:......:<:.
tcaname Name of TIP /30 generation parameters to use.

AFt=

BackPRI=

Bannerl=

Banner2=

CATPooL=

CICS=

CLose:

COMM=

CURrency=
I - I

Default size of Active File Table per process.

Background transaction scheduling priority.

Text for line one of TIP /30 ready message.

Text for line two of TIP /30 ready message.

Size of CATalogue pool.

Load module for OCS progTam interface.

Files (LFDs) not available until OPENed.

TIP / 30 - lCAM interface load module.

Whether or not TIP /30 continues running after
detecting memory corruption.

Currency symbol.

continued ...

7002 3999-1 00

Job Control Options

;:::: ':'c::::;;","::':"c:c':':':"':'::::"~::": ::.:.:. :'::;:<:{

: ... : J:~":;::2:; ':.:::::: ,::.'.:::., - :::::::;:::

'< ::;::::":::' , :::::: ::::::::::'

DBMS:: DMS configuration.

DEBUG= System debug option.

DEOMAL= Define decimal point character.

DEFOPEN= Override deferred open files.

DMname=
TIP /30 data management interface load
module.

DMSAWT= DMS area wait time.

DMSCAT= DMS DMCL names controlled by catalogue.

DMSRWT= DMS record wait time.

EDiTstmp= Default update stamping f.or FSE editor.

ESCape= System escape character.

FCSxtent= FCS Dynamic file extent size.

FiLePooL= Override record pool size for one or more files.

FileTab= Generate in-memory file table.

1:t) ~l< "".0",,-
..&. ... ""'-'Ao.f.,I.41.'w - Size of Til' /30 Free Memory Pool.

GDA= Size of Global Data Area.

ICAM= Restart ICAM queues?

IMSDT=
Delay time for IMS delayed internal succession
to self.

IMSemul= IMS emulator load module.

IMSROW= Terminal row number for IMS messages.

IMStranL= IMS transaction code length.

IMSUNSDT=
IMS emulator send messages to down
terminals?

KeYTaBLe= Size of TIP /30 key holding table.

LANGuage: System default language code.

LIBLKSZ= Block size for TIP /30 access to library files.

LiNEreq= Ust of network lines to open at startup.

LOCAP= Global lCAM Local Application to connect.

MaXCaLT.~= Specify max calls before progr~m is aborted.

MaXPRoG= Minimum required paged memory.

MAXTiMe= Program timeout.

conttnued ...

7002 3999-100 6-3

Job Control Options

::::::::: ':<'.
:·m·,:::'·;:::: :>

, . ..,.:-::.:-.:>,,:< ::;:::c
:\,.\.; .. : ";.\:.:::\.:.'.:,::);;\,\.:).;.;: .. \.;:,··:··),·\,:m;·::·,·.':·:·:,:[·· ..

McSgPooL= Override size of TIP$MCS record pool.

McsTab= Generate in-memory screen table.

NETwork= lCAM CCA network name and password.

NumGRPS= Override number of elective user groups.

OPen= Specify files (LFDs) to be OPENed at startup.

OPRQuesz= Size of operator unsolicited message stack.

PCXFER= PC file transfer load module.

PRinT= TIPPRINT interface load module.

PRintLF= Override TIPPRINT line feed option.

PRil1tT .FP= Override TIPPRlNT default lines per page.

PRintTOF= Override TIPPRlNT top of form option.

PRintTIL= Override TIPPRINT title page option.

PRintUC= Override TIPPRlNT upper case translation.

PRIority= Number of transaction scheduling priority
levels.

ProgTab= Generate in-memory program table.

PRoMPT= Define system prompt string.

PRSTEN= Journal program start & end information.

ReaDYmsg= Override READYMSG= gen value.

RESident: Load modules to make memory resident.

RESMEM= Define resident memory pool for !MS.

RESMOD= Specify resident TIP internal modules.

RESOVLY= Specify resident TIP overlays.

SCHDname= Specify TIP/3D scheduler load module.

SchdPRI= Til' /30 scheduler execution priority level.

SECuR= Security level for LOGON=NO terminals.

SFSPooL= SFS format pool size.

shutDowN= Background transaction run at TIP /30 EOJ.

SITEid= Site name.

startUP= Background transaction run at TIP /30 startup.

STatS= Define statistics intervals.

confin1~ed ...

6-4 7002 3999-1 00

Job Control Options

::':::.::jj .. ::
':':, :;.:':;.:::::::.' :'C';' :::::::: <:;:::}}::: I::

:;.::; :::;.:::::::::::::::: ::.:: ;.;.: :>;::

;::;..:: ::::::

I:::::::;:'~:'::: . :;.:.::::,::: :;.;.;.;.:::::
.;':::::":",-.:::.: ..):':::':j::

Where:

tcaname

AFT::I

tennSiZe= Terminal screen size: (rows,columns).

TermtYFe= General terminal type.

TIMeoff= Automatic logoff timeout.

TIMeouT= Maximum external succession time.

TIPDUMP= Define external processing if TIP /30 dumps.

UpPeR= Override TIP / 30 uppercase translate table.

UserPRI= Foreground priority level.

WARMstrt= Type of warm start (roll1;>ack) desired.

XMIT= UTS400 control page XN1IT option.

XmitALL= UTS400 Fn key to XMIT ALL

XmitCHan= UTS400 Fn key to XMIT CHAN

XmitVAR= UTS400 Fn key to XMIT V AR

The tcaname is the only required positional parameter and must appear before
any keyword parameters. The name specified is the name of the TIP /30
Control Area (TCA) that represents the particular set of TIP /30 generation
parameters to use for this execution run.

This must be the first parameter in the imbedded data set (since it is a
positional parameter NOT a keyword parameter).

Overrides corresponding TIPGEN parameter.

Back.PRI:

Banner1:' ... '

7002 3999-100

Overrides corresponding TIPGEN parameter.

The text of the first (of two) lines of the TIP /30 ready message that may be
sent to tenninals when TIP /30 begins execution.

Up to 48 characters may be supplied (enclosed in single quotes).

The text of the second (of two) lines of the TIP /30 ready message that is sent
to terminals when TIP /30 begins execution.

Up to 48 characters may be supplied (enclosed in single quotes).

6-5

Job Control Options

6-6

CATPooLz

acs=

CLose-

COMl\{z

Overrides corresponding TIPGEN parameter.

Specifies the load module name of the acs program interface. IF aes= YES
is specified, the default eICS interface handler is loaded. If this keyword is not
specified, the acs interface is not loaded.

A list of LFD names (or prefixes) of online files that are NOT to be opened at
startup and are to remain CLOSED and UNAVAILABLE for online use until
the operator issues the console OPEN command (or a user runs the FOP EN
online utility) for the file.

Example: CLOSE=(TIP$TSP,·P AY)

A maximum of 100 files may be specified by using this keyword.

Specifies the load module name of the TIP /30 communications handler. If
this keyword is not specified, TIP /30 loads the appropriate communications
handler depending on the generations options selected.

This keyword is normally specified only under the direction of customer
support personnel.

CONTINUE=

CURrency:

DBMS=

Specifies whether or not TIP /30 is to continue execution if TIP /30 detects that
low order memory is corrupted. TIP / 30 periodically examines various
locations near address 0 (zero) of the TIP /30 job region. These areas are
supposed to be binary zeroes. If TIP /30 detects any other value, the
assumption is made that some transaction program (or TIP /30 itself) is
erroneously modifying memory.

If eONTINUE=YES is specified in the run-time parameters, TIP /30 will take
an online dump and will reset the area to binary zeroes and resume
processing.

If eONTINUE=YES was not specified, TIP /30 will immediately terminate
with error code 9F4.

Overrides corresponding TIPGEN parameter.

Overrides corresponding TIPGEN parameter.

7002 3999-1 00

DEBUG::

DEQl\,lAL:a

DEFOPEN=

DMname:a

7002 3999-100

Job Control Options

System debug option. This option controls the use of hardware storage
protection by Til' /30. The option controls the default situation only;
individual transaction programs may be defined in the TIP /30 Catalogue to
use or not use storage protection. (See description of same keyword for
PROGram entries in the TIP /30 Catalogue Manager utility transaction -
CAn.
When DEBUG is set, Til' /30 isolates the transaction program that is running
from the rest of the TIP /30 region by establishing a different storage
protection key for the program's work areas (PIB, CDA, MCS, WORK, VOL).

If the program attempts to alter memory outside it's allocated area, the
hardware will suppress the offending instruction and signal a "Protection
Exception" and the transaction program will be be aborted before causing any
havoc in the neighbourhood.

There is overhead associated with the use of this option (approximately a
millisecond per CALL (on a SYS/80 Model 20) to i1P /30 - to set and reset
storage keys). We recommend that well tested and debugged systems be
specified in the TIP /30 Catalogue with DEBUG=NO to minimize overhead.

New and untried programs should be defined in the TIP /30 Catalogue with
the DEBUG= YES specification.

Specifying DEBUG= in a program's Catalogue entry overrides the system
specification for that particular program.

Default: DEBUG=YES (run Til' /30 system in debug mode; all transaction
programs will run with hardware storage protection unless overriden by the
Til' /30 Catalogue entry for the program).

Specify DEBUG=NO to override the default (do not run TIP /30 system in
debug mode).

Overrides corresponding TIPGEN parameter.

Specify list of file names that are to be treated as if OPEN=DEFER was
specified in the generation parameter for the file. This keyword permits the
dynamic specification of OPEN=DEFER in the TIP /30 job control stream.

Up to 100 file names (or file name prefixes may be specified).

This keyword overrides the OPEN= specification for the named files.

Example: DEFOPEN=(*P AY,ARMAST)

Name of the load module that is to be used by TIP /30 to interface with as /3
data management.

This keyword should only be specified under the direction of customer
support personnel.

6-7

Job Control Options

DMSAWT.

DMSCAT.

DMSRWT=

EDiTstmp.

ESCape-

FCSxtent=

FiLePooL=

FileTab=

6-8

Overrides corresponding TIPGEN parameter.

Specify whether or not DMS database DMCL names must be resolved by
referring to the TIP /30 catalogue entries.

Default is NO.

If DMSCAT=YES is specified, all DMS DMCL names ~ appear in the
TIP /30 catalogue (see description of the DMCL= keyword for the FILE
command in the CAT utility transaction).

If DMSCAT=NO is set (or is assumed by default), TIP /30 first attempts to
locate a definition of the DMCL name in the TIP /30 catalogue. If no catalogue
entry is found, the raw DMCL name is used asis.

Overrides corresponding TIPGEt~ parail1eter.

Overrides corresponding TIPGEN parameter.

Overrides corresponding TIPGEN parameter.

Overrides corresponding TIPGEN parameter.

Override record pool size for one or more files.

This keyword is specified as a number of pairs of sub-parameters; the first
subparameter is the LFD name, the second subparameter is the desired size of
the record pool for that LFD.

You may use this keyword to either override record pooling for files that are
specified in the generation parameters with the PooL= keyword or to
establish record pooling for a file that was not generated with a PooL= value.
In the latter case, the file is not forced to be a resident file.

Example: FLPL=(P A YMAST,40,ARMAST, 10)

A maximum of 20 pairs of entries may be specified via this keyword.

The number of screen formats in the TIP /30 MCS pool can be overridden by
specifying an LFD name of "TIP$MCS". Similarly, the number of records in the
TIP /30 Catalogue pool can be overridden by specifying an LFD name of
"TlP$CAT'.

Overrides corresponding TIPGEN parameter.

7002 3999-1 00

Job Control Options

FREEmem=

Overrides TIPGEN parameter FREEm=.

GDA=

Overrides corresponding TIPGEN parameter.

lCAM-RESTART .

IMSDT=

IMSemul=

IMSROW=-

IMStranL=

Specifying ICAM=REST ART will cause TIP /30 to specify warm recovery of
rCAM disk queues when TIP /30 opens the ICAM network (at startup time).

This specification recovers all outstanding messages in the ICAM disk queues
(typically these might be unsolicited messages that were not retrieved by
users).

In order for this specification to work, the lCAM disk queues must not be
specified with the 1NIT option on the corresponding LFD statements in Job
Control.

Default: ICAM disk queues are not recovered.

Overrides corresponding TIPGEN parameter.

Specify the load module name of the desired IMS emulator.

YES Use the standard IMS emulator (TT$IMS) - no support of
Unisys Screen Fonnat Services (SFS).

IT$IS8 Use the IMS emulator that runs on OS/3 release 8 and later
releases and supports Screen Fonnat Services (SFS).

Overrides corresponding TIPGEN parameter.

Overrides corresponding TIPGEN parameter.

IMSUNSDT=

Overrides corresponding TIPGEN parameter.

KeYTaBLe=

Overrides corresponding TIPGEN parameter.

LANGuage=

7002 3999-100

Specify language code for TIP /30 messages that are retrieved from the
TIP$MSG file.

The default is LANGUAGE=A (American English).

6-9

Job Control Options

UBLKSZ=

UNEreqz

LOCAP=

MaXCaLLs=

MaXPRoG=

MAXTiMe=

McSgPooL=

McsTab::E

NETwork=

6-10

Specifies the internal blocksize that TIP /30 is to use when accessing 05/3
(SAT) libraries.

The default blocksize is 1280 (5~6). The maximum allowed blocksize is 24576
(96~). The minimum specification is 256 (no buffering).

Specify the type of network open that TIP /30 is to use when connecting with
rCAM.

This keyword is valid only with a dedicated rCAM and is ignored if a Global
rCAM is being used.

If this keyword is omitted (and a dedicated lCAM is being used), TIP /30 will
automatically issue a line request for each line in the network (the user doesn't
need to know or specify each line).

LNE= YES indicates that TIP /30 is to open the entire network; if any line fails
to open correctly, the network win fail to open (and TIP /30 will not runD.

LNE=(lnel,lne2, ...) indicates that only the lines specified are to be opened
when the network is opened.

A maximum of 50 lines may be opened via this keyword.

Overrides corresponding TIPGEN' parcuueter.

Overrides corresponding TIPGEN parameter.

Overrides corresponding TIPGEN parameter.

Overrides corresponding TIPGEN parameter.

Override number of entries in the TIP /30 screen fonnat pool as defined by the
corresponding TIPGEN parameter - the size of the pool entries cannot be
adjusted by this run-time parameter, only the number of pool entries.

YES indicates that TIP /30 is to maintain an internal memory table of all MCS
screen formats. Each table entry occupies 16 bytes (group/name).

Default: NO

Sites with surplus memory may consider using this parameter (along with
MCSPOOL=) to improve TIP /30 screen format access times.

Overrides corresponding TIPGEN parameter.

7002 3999-1 00

NumGRPS=

OPen-

OPRQuesz:II

PCXFER:::II

PRinT=

PRintLF=

PRintLPP=

PRintTOF=

PRintllL=

7002 3999-100

Job Control Options

Overrides corresponding TIPGEN parameter.

A list of LFD names (or prefixes) to be OPEN'ed at startup.

A maximum of 100 files may be opened via this keyword.

This keyword may be used to override the specification of CLOSE= YES in the
generation parameters for a FILE.

Example: OPEN=*PAY,* AR,SECFILE

Size of (operator) unsolicited message queue. Specified as a number of
commands that may be queued.

Default: OPRQUESZ=10 (up to 10 unsolicited console commands may be -.~\
'iu..:;;u.~,.

Load module for file transfer between TIP /30 and Personal Computers (PCs).

Default: if this keyword is not present, the PC file transfer interface is NOT
available for user-written programs. Utility transactions supplied with TIP /30
use a built in version of this interface and do not require this keyword
specification.

PCXFER=YES directs TIP /30 to include the "standard" PC file transfer
interface routine Goad module TR$PCX).

Specification of this keyword is only necessary if user-written programs
intend to call the PC file transfer subroutines TIPP2H or TIPH2P.

Load module for TIPPRINT support.

Default: the standard TIPPRINT resident interface load module (TR$PRT) is
automatically included.

Specification of this keyword is normally not necessary unless directed by
customer support personnel.

Overrides corresponding TIPGEN parameter.

Overrides corresponding TIPGEN parameter.

Overrides corresponding TIPGEN parameter.

Overrides corresponding TIPGEN parameter.

6-11

Job Control Options

6-12

PRintUC::a

PRIority-

ProgTab=

PRoMPT=

PRSTEN=

Overrides corresponding TIPGEN parameter.

Overrides corresponding TIPGEN parameter.

Specifying ProgTab= YES causes TIP /30 to maintain a table (in memory) of
valid catalogue PRCX:; entries. A table entry is made for all valid transaction
names that are not in the group TIPY. Table entries are approximately 16
bytes (group name and transaction name).

This table is used to quickly verify that a transaction name is valid (before
proceeding with a catalogue search).

Default: NO.

Define the character string to be used as the TIP /30 command line prompt.

DEFAULT Set the system prompt string to "TIP? .. " Naturally, this is the
default value!

LOCAP

NETWORK

SOE

I ,

Set the system prompt string to the 4 character lCAM LOCAP
name followed by a question mark and an SOE character (..). The
LOCAP name will be the same LOCAP that TIP /30 has
connected.

Set the system prompt string to the 4 character rCAM
NETWORK name followed by a question mark and an SOE
character (..).

Set the system prompt string to a question mark followed by an
SOE character (..).

Set the system prompt string to the character string specified
(maximum of eight characters) followed by an SOE character (..).

If the string contains an imbedded space or period the string
must be enclosed in single quotes.

Example: PROMPT=' A.R.C' results in A.R.C ..

Overrides corresponding TIPGEN parameter.

ReaDYmsg=

Overrides corresponding TIPGEN parameter.

7002 3999-1 00

RESident-

RESMEM:=

RESMOD=

RESOVLY=

Job Control Options

Specifies the names of online load modules that are to be made permanently
memory-resident at TIP/3D initialization.

A maximum of 90 load modules may be made resident - this keyword may
be repeated to allow up to the maximum number of load module names.

The load module of resident programs remains permanently in memory. (The
RELOAD utility transaction will allow you to force the use of a new copy of
the load module of a resident program but the previously resident copy is
marked "not usable" and the space that it occupied is wasted until TIP /30
shutdown).

IMS or TIP /30 sub-programs ~ be made resident. TIP /30 initialization
routines scan the TIP /30 catalogue to build various internal tables. Any load
modules that are identified in a TIP /30 catalogue entry with the Specification
SUBPROG= YES are automatically made resident and need not be explicitly
identified using the RESIDENT= run-time specification.

TIP /30 attempts to keep often used programs in memory. It therefore makes
sense to make a program permanently resident ONLY IF the program is used
almost all the time or the program is a SUBPROG (which must, by definition,
be resident).

Example: RESIDENT=TITCP,TIFSE

Overrides corresponding TIPGEN parameter.

Specify alternate TIP /30 internal routines to use.

A maximum of 8 modules may be specified via this keyword.

Specify resident TIP overlays.

A maximum of 12 modules may be specified via this keyword.

$UB

$DYN

Make the library open and close routine resident (this routine is
approximately X'EOO' bytes in size).

Make the open and dose routine for non-library files resident
(this routine is approximately X'EOO' bytes in size).

For sites with spare memory, making either or both of these routines resident
may improve performance of these functions.

SCHDname=

SchdPRI=

7002 3999-100

Specify the load module name of the TIP /30 scheduler. This keyword should
only be specified under the direction of customer support personnel.

Overrides corresponding TIPGEN parameter.

6-13

Job Control Options

SEeuR-

SFSPooL==

shutDowN:::

SITEid-

startUP=

STatS=

termSiZe-

TermtYP=

TIMeoff=

TIMeouT=

6-14

Specify the default security level to assign to users who do not logon the
TIP /30 system. Terminals may be designated as LOGON=NO tenninals
(either in the TIPGEN parameters or individually in CLUSTER statements).

If a terminal does not require a TIP /30 logon, TIP /30 defaults to a fictional
user id of "TP" and a default security level.

Since the user id is not real, transactions which are to execute at such terminals
must be defined in the TIP /30 Catalogue in the group TIPY.

The SECuR= keyword may be specified in the job control parameters to set the
desired security level for such tenninals.

Default: SECuR=32

Overrides corresponding TIPGEN parameter.

Overrides corresponding TIPGEN parameter.

Overrides corresponding TIPGEN parameter.

Overrides corresponding ·l1.1:'GbN parameter.

Overrides corresponding TIPGEN parameter.

Overrides corresponding TIPGEN parameter.

Overrides corresponding TIPGEN parameter.

Overrides corresponding TIPGEN parameter.

Overrides corresponding TIPGEN parameter.

7002 3999-1 00

TIPDUMP=

UpPeR:a

Us erPRI =

7002 3999-100

Job Control Options

This keyword allows the specification of the processing that is to occur when
(if) TIP /30 temtinates abnonnally.

TIPDUMP=OS

Specifies that TIP /30 is to issue an operating system CANCEL
directive when an abnormal condition is detected (and therefore
produce a jobdump or whatever type of dump is specified for the
job).

TIPDUMP=NO

Specifies that no special processing is to occur.

TIPDUMP=NOSUBMIT

Specifies that a dump image is to be written to the TIP$DUMP
file, but do not schedule a job to process the dump.

TIPDUMP='RV _'

If the TIPDUMP specification is a quoted string, it is assumed to
be an RV command (or SC command) that is to be submitted to
the operating system by TIP /30 after the dump image is written
to the TIP$DUMP file.

The supplied job stream TJ$DMP is provided to process dump
images written to the TIP$DUMP file. If the quoted string is too
long to fit on one card image, break the specification into two or
more instances of this keyword - be sure to break the string at a
multiple of 8 characters!

If this parameter is not specified, the default action is to write a dump image
to the TIP$DUMP file and submit the command "RV TJ$DMP" to the
operating system just before terminating abnormally.

Overrides corresponding TIPGEN parameter~

Overrides corresponding TIPGEN parameter.

6-15

Job Control Options

WARMstrt=

XmitALL=

XmitCHan=

XmitVAR=

6-16

YES

NO

ONLY

This is the default value for this keyword - TIP /30 is to examine
the TIP$B4 file and roll back changes made to HOLD=TR files by
transactions that did not complete normally.

TIP /30 is NOT to examine the TIP$B4 file and roll back changes
made to HOLD=TR files by transactions that did not complete
normally. The Tn'$B4 file is reset by this option.

The actions indicated by ''YES'' are to be performed, BUT TIP /30
is to shutdown immediately after roll back (the IeAM network is
Nor opened - users do not have an opportunity to logon to
TIP/30).

W ARM=NO should only be considered if some sort of error on the TIP$B4 file
prevents Tn' /30 from properly initializing. It would be prudent to attempt
offline batch QUICK roll back before resorting to this option.

W ARM=ON:'LY is implemented to enable sites to pt:rform the roll back and
keep users from logging on the system (this may be useful when an abnormal
shutdown occurred just befure a scheduled shutdown and TIP /30 was not
going to be brought back up immediately).

If no errors are detected during TIP /30 wannstart, the TIP$B4 file is initialized
regardless of the setting of W ARMstrt=.

SpeciJyiIlg ,AI APJ-... 1:strt=l'-JO bypasses the last c.hance to perform the roll back of
any interrupted transactions!

Overrides corresponding TIPGEN parameter.

Overrides corresponding Tn'GEN parameter.

Overrides corresponding TIPGEN parameter.

Overrides corresponding TIPGEN parameter.

7002 3999-1 00

Example:

II EXEC TBTIP,TIPLOD,l
1$
AR1TCA
RESIDENT-(TTFSE,TTTCP)
DEBUG-NO
LOCAP-TIPl
READY=YES
CLOSE=TIP$TSP
1*

Additional Considerations:

Job Control Options

The tcaname (AR1TCA in the example shown above) must be the first positional parameter
in the imbedded data set.

Keywords that specify a list of items (CLOSE=, RESIDENT=, RESMOD= etc.) may appear
more than once (continuation of the list is implied in that case).

7002 3999-100 6-17

TIP/30 UPSI

6.1. TIP/30 UPSI

6-18

TIP /30 sets the UPSI switch to indicate the circumstances of TIP /30 tennination. The
setting of the UPSI can be interrogated by subsequent job steps to determine whether or not
any special processing needs to be performed.

A description of the various UPSI settings follows (if the hexadecimal value is shown with
the character ''x'', that nibble is irrelevant in that case):

X'9r Initialization failure. Abnormal tennination.

X' AX Initialization failure during online rollback or lCAM initialization. Abnormal
tennination.

X'ex' Initialization failure during mainline processing. Abnormal termination.

X'8r Failure in termination processing. Abnonnal termination.

X'lx' Premature tennination before TIP$B4 processing complete. Abnormal
tennination.

X'OO' Normal termination - No rollback of interrupted transactions required.

The right (low order) nibble of the UPSI may be set to indicate whether or not transactions
were interrupted and whether or not a dump was taken:

X'x!' If this bit is set, the TIP$B4 file has information that must be used to rollback
transactions that were in progress. This can be performed by running TIP /30
with the W ARMSTRT=O:r.rLY option (for example).

Note: This bit is undefined if the UPSI value is set to X'lx',

X'x8' If this bit is set, a dump was written to the TIP$DUMP file.

7002 3999-1 00

Section 7
Offline (Batch) Recovery

The TB$RCV batch program (as executed by the supplied job stream TJ$RCV) is an offline
recovery program that provides a number of important capabilities:

• selectively roll back updates made to online files

• apply updates to a backup version of online files

.. roll back updates rr.ade to orJine fUes by transactions wr.ich did not complete ber-ause
the system crashed.

Transaction roll back or roll forward can be perfonned only on online files which are
configured in the TIP /30 generation as HOLD=TR (hold for transaction). The PCS section
of this manual contains a description of record locking and online roll back.

The recovery process is accomplished by referring to information that has been logged in
the Tll;' /30 Journal file (LFD=w1iJRN1, the TIP /30 log tape (LFD=TIP$LOG) or the TIP /30
History file (LFD=TIP$HST). The TB$RCV program is able to use any of these files as
input

It may be necessary to ROLL BACK updates to a file if an error is discovered in a
transaction program (for example an erroneous computation that was put into production).

The classic example of ROLL FORW ARD is required when a disk failure (crash) occurs and
completed transactions have to be reapplied to a backup copy of the online files that were
on that disk.

The TB$RCV program reads commands from an imbedded data set in the job stream. The
commands must appear within columns 1 through 70 of the card image.

All commands must begin with the word "ROLL" or "QUICK" and end with a semicolon (;).
Spaces are normally used to separate items in the command. Commands may be continued
on additional card images - the semicolon is used to indicate the end of each command.

7002 3999-100 7-1

Offline Recovery

7-2

There MUST be a / / P ARAM statement preceding the imbedded data which identifies the
TCA used when TIP /30 was executing. The TB$RCV program uses the file definitions from
the TIP /30 generation. The TB$RCV program must be executed from the TIP$LOD library.

Syntax:

II EXEC TBRCV,TIPLOD
I I PARAM tcaname
1$
QUICK;
ROLL direction lfd
ROLL

[FOR clause] [FROM clause] [TO clause];

ROLL

1*

Where:

tcaname

QUICK;

ROLL

The name of the TIP /30 control area (TeA) which was in use while TIP /30
was executing.

The TCA name selected implicitly defines the files that may participate in the
recovery process.

Whenever files are removed from the TIP /30 generation parameters, the
system programmer must remember that the new TeA (without the file
definition) may NOT be appropriate for a subsequent ROLLBACK or ROLL
FORWARD.

This keyword indicates that TB$RCV is to perform a roll back of updates that
were in progress at the time of a crash (this type of roll back is normally
performed using data in the TIP$B4 file).

This activity is normally performed when TIP /30 begins executing - it may,
however, sometimes be more convenient to perform this activity in a batch
environment.

WARNING

Quick roll back by T8$RCV is NOT journaled to
the TIP$JRN or TIP$LOG file (the quick roll back
that may be performed by TIP/30 startup!§. written
to the journal or log file and therefore is
preferable) .

Each ROLL command (there may be several) specifies the recovery action to
be taken for a pcu-ticular file (or all fJes). Updates can be rolled fOl"Nard (that
is, re-applied) or rolled backward (undone).

7002 3999-1 00

direction

lfd

FOR clause

Offline Recovery

The direction the ROLL (recovery) is to take.

Choose one of "FORWARD" (reapply updates) or ''BACKW ARDIt (roll back
updates).

The LFD name of the file this command applies to.

Ito ALL may be specified if this command is to apply to all eligible files in the
TeA.

the word "FOR" is required if this clause is used.

USER=uid - process updates done by this user.

TRAN=trid - process updates done by the identified transaction.

TERM=tid - process updates done at the identified terminal.

FROM clause

TO clause

the word "FROM" is required if this clause is used.

FROM YY /MM/DD HH:MM

process recovery records with a timestamp after this date and time.

Note: This time stamp is interpreted literally by the recovery program - we
recommend that a time is chosen when TIP/3D was NOT running to
avoid attempting to perform recovery from a point in time when a
transaction was in progress.

the word "TO" is required if this clause is used.

TO YY /MM/DD HH:MM

process recovery records with'a timestamp before this date and time.

Note: This time stamp is interpreted literally by the recovery program - we
recommend that a time is chosen when TIP/3D was NOT running to
avoid attempting to perform recovery to a point in time when a
transaction was in progress.

i (semi-colon)

Each recovery request must be terminated by a semicolon character (since one
request may span several card images).

As many commands as required may be entered.

A quick recovery will do a scan of the input file (TIPJRN, TIPLOG, or TIP$B4) to create
recovery requests for all files which TIP /30 had active and was logging at the time of an
abnormai shutdown.

A quick recovery will also cause updates done by transactions in progress (at the time of
the crash) to be rolled back to the state of the record before the transaction started.

7002 3999-1 00 7-3

Offline Recovery

If QUICK recovery is specified, it must be stated first in the TB$RCV control stream; it may
be followed by other 'ROLL' requests. QUICK recovery is actually performed last - after
all other recovery requests (transactions that were interrupted by a crash were presumably
the last online activity!).

If TIP /30 was creating a log tape (TIP$LOC) then the !ecovery job control should assign the
input tape using an LFD name of TIP$LOG.

When doing a QUICK recovery from the before image file, the user should assign the
before image file (in place of the journal file) with an LFD name of TIP$B4.

7.1. Quick File Recovery
Prior to release 3.1 of TIP /30, TB$RCV had to be executed as a separate job step (before
executing TIP /30) to roll back any partially completed transactions. Starting with release
3.1, TIP /30 automatically perfonns this function as a normal startup procedure~

As part of TIP /30 ir'j+i~H'7ation, the quic..1(before look fUe (1ll'$B4) is read and any updates
which were performed by transactions that did not terminate normally will be rolled back.

There is a TIP /30 run time parameter which may be specified to control whether or not this
automatic warm start is to be performed: W ARMstrt= (refer to the section describing
TIP /30 run-time options elsewhere in this Il"UUlual).

WARNING

Quick roll back by TB$RCV is NOT journaled to
the TIP$JRN or TIP$LOG file (the quick roll back
that may be performed by TIP/30 startup IS
reflected in the journal or log file and therefore is
to be preferred).

7.2. Journal File Maintenance

7-4

This section describes the files that may be involved in joumaling and recovery operations.
The job streams that may be used to perform routine maintenance on these files are also
described.

Keep in mind that this discussion applies only to online files that are generated in the
TIP /30 parameters as HOLD=TR.

TIP$B4

The TlP$B4 file is a disk file that contains BEFORE images that TIP /30 (or
TB$RCV) may use to roll back transactions that do not complete.

Norm..a11y; t-his file does not QI'OW verv larQ:e and the allocated file space is
automatically reused by TIP/3D. .! u ~

Ul"'Jec:...s TIP/3D experiences a.Tt abnorIl';:!l shutdown; the contents of this file are
of no interest.

7002 3999-1 00

Journal File Maintenance

If TIP /30 experiences a crash (HPR, internal TIP /30 failure etc.), there may be
BEFORE images in the TIP$B4 file which have to be rewritten to the
corresponding files to reverse the effects of updates that were done by
transactions which did not complete before the TIP /30 crash.

TIP$JRN I TIP$LOG

TIP$HST

7002 3999-100

The journal file (T1P$JRN) or the log file (TIP$LOG) are (respectively) disk and
tape implementations of a recovery audit file. Either or both of these files may
be in use depending on site requirements.

Regardless of the choice of media, the information written to the files is
identical.

The TIP$JRN (disk) file grows as the online transaction activity proceeds.
Depending on TIP /30 generation options, there may be a large number of
records output to the file.

If the TIP$JRN'file is to be used simply for audit trail purposes, it can simply
be saved (via D~..1PRSn and ~.iti~H7'ed whenever it is convenient (for
example: after TIP /30 shutdown),

If the T1P$JRN file is to be used for recovery purposes, the initialization must
be co-ordinated with other events.

Recovery (by this is meant ROLL FORWARD updates applied to a backup)
must have access to a consolidated journal file or files so that all updates can
be reapplied to a specific backup set.

The journal file can only be initialized when there is confidence that every
update done thus far has been correctly completed and a full backup has been
taken and verified.

Since one rarely has that sort of confidence, an alternative mechanism is
available for archiving journal information:

The TIP /30 history file (TIP$HST) is a disk file that may be used to
accumulate journal information. Since all records written to the journal file are
time stamped, it is quite feasible to append the journal file information for
each TIP /30 session to a history file.

Once the journal information has been appended to the TIP$HST file, the
journal file may be initialized and logging can begin anew.

If a catastrophe occurs, one should append the current journal file information
to the history file and then use the history file (if necessary) as input.to the
batch recovery program to rebuild data files from a backup etc.

Since the history file is merely a concatenation of a number of journal files, the
history file can be periodically archived to tape (or whatever) and initialized.
This activity is likely to be included as part of a regular off site backup
procedure.

7-5

Recovery Batch Jobs

7.3. Recovery Batch Jobs

7-6

A number of job control streams are provided with TIP /30 that may be useful for
maintenance and backup of the various files that are involved in recovery and journaling
procedures. The global parameters for these job streams are described later in a section that
describes all supplied job streams.

What follows here is a brief description of each of the jobs that is supplied for file recovery
subsystems.

TJ$B4

TJ$JRN

TJ$HST

TJ$JR2HS

This job is the installation job which creates a TIP$B4 file.

Although the job has a global to allow scratching an existing TIP$B4 file, the
user will probably find that there is seldom a need to use this job stream.

The TIP$B4 file space is normally reused by TIP /30; recreating this file would
only be required in rare situations where abnormally high transaction activity
caused the file to extend more than anticipated.

If the TIP$B4 file is to be moved, this job should be used to scratch the existing
file and create a new one on the desired volume. This job recreates the job
control PROC that assigns the TIP$B4 file (or updates the YCAT entry)­
thereby eliminating some housekeeping.

This job is the installation job which creates a TIP$JRN' file.

Since the journal file can (and usually does!) extend to accommodate online
activity, the jOUr-nal fJe should be monitored for abnonnal exte:llsion.

Before the journal file gets out of hand (say weekly?) the user should copy the
TIP$JRN file to the history file (if one is in use) and then run the TJ$JRN job to
recreate a new journal file.

There is a job (TJ$JR2HS) which copies the journal information from the
journal file to the history file and resets the journal file pointers to reuse the
space. This procedure would not "shrink" the journal file back to a normal size
if it had extended.

This job is the installation job which creates a TIP$HST file.

Since the TIP$HST file is designed to extend to hold the contents of a number
of journal files, the history file should be archived and recreated to avoid tying
up a large extent all of the time.

There are no supplied job streams to archive the TIP$HST file - DMPRST (to
tape) is probably the most popular method of archiving this file.

This supplied job stream appends the TIP$JRN file (or a TIP$LOG file) to the
TIP$HST file.

After copying the TIP$JRN file to TIP$HST, the job simply initializes the
TIP$JRN file (beware! this does not shrink the TIP$JRN file if it had extended).

7002 3999-1 00

TJ$JRINT

TJ$RCV

TJ$LST

7002 3999-100

Recovery Batch Jobs

This supplied job stream. simply initializes the TIP$JRN file (beware! - it does
not shrink the file if it had extended).

Some sites use the TIP$JRN file simply as an audit trail and need a job stream
to "reset" the Tll'$JRN file after the audit infonnation has been read and
printed.

Sites such as those tend to have a small Tll'$JRN file and seldom worry about
rampant extension of the file.

This job stream will perform a complete roll forward of updates from a
specified input file (usually the TIP$JRN file).

This job stream prints a report from the specified input file (default is
Tll'$JRN) detailing the journal information in the file.

Global parameters are provided to govern the sort that takes place and to
influence t.~e types of records that a.~ selected (ALL, by user, by terminal
name, etc.)

7-7

Section 8
TIP/30 atch Jobs

This section describes many of the batch job streams that are supplied to support the online
TIP /30 system. Only those job streams that are likely to be run on a regular basis are
described - many of the jobs are intended to be run only under the control of the
installation programs and are not documented here.

The TIP /30 installation procedure copies the supplied job streams to the private job control
library defined for the 111.1/30 system to which they apply. Tne installation procedure also
creates (in that library) important job control proes that are used by the job streams. The
intention is that these jobs must be run from that library so that they will access the correct
job control proes.

The supplied job streams have job names (and element names) which begin with the three
characters: TJS.

Before running any of these jobs, examine the job control stream for the job as it appears in
your job control library and as it is described in this section to make certain that you
understand what global parameters (if any) are required and the ramifications of running
the job.

The actual JCL statements for these jobs are NOT listed here simply because JCL can
contain errors (just like programs) and any listing here might be somewhat different than
the latest field release job control.

The supplied job control is intended to execute correctly on all 05/3 releases supported by
TIP/30.

7002 3999-1 00

WARNING

Modification of the job streams is not
recommended. If you experience difficulty running
any of the jobs or have suggestions for
modifications please contact the support
department personnel.

The supplied job stream TJ$TIP is a skeleton job
control stream for executing TIP/3~. This job
stream is normally not modified but is instead
"cloned" and localized for the site to take into
account any site dependent job control
conventions and requirements.

8-1

TIP/30 Job Control Procs

8.1. TIP/30 Job Control Procs

8-2

The job control streams supplied with Til' /30 presume the existence of a number of job
control procs (also supplied with TIP /30 or dynamically created by supplied jobs). These
procs are referenced extensively in the supplied job streams and should not be modified
without very careful consideration and study.

The following procs are assumed to exist: (the name is the element name used to file the
proc in the job control library):

TIPDATA This proc defines all user online data files (that is, all online files other than
libraries).

The TIPDATA proc is used in the batch recovery job stream to make sure all
data files referenced by the online system are defined to the TIP /30 offline
recovery program.

Avoid specifying the ACCESS= parameter on any job control DD statements if
, vou intend to make use of the ability of the FOPEN transaction (or TIP /30
~perator console command) to dynIDrucally alter the ACCESS that TIP /30 has
to a file (a job control ACCESS= specification overrides all other file sharing
specifications).

Refer also to the discussion of ACCESS= in the description of the FOPEN
utility transaction.

TIPENV This proc defines a number of globals that are used by the n$MAINT job.
This proc is intended to be used internally and is nonnally not of interest.

TIPFILES An extensively used proc which defines a PRNTR file, the TIP release library
(LFD=TIP) and the TIP /30 load library (LFD=TIP$LOD).

The TIPFILES proc accepts a single positional parameter which is used as the
first parameter on a // SPL statement in the device assignment that is
generated for the print file PRNTR.

The TIPFILES proc also defines a number of global symbols that may be
referenced by jobs that use this proc. .

TIPlCAM This proc defines the disk files required by ICAM. The files are normally
defined as job temporary files (although other techniques are possible).

These files are used by ICAM for queueing messages on disk.

In a GLOBAL lCAM environment, the rCAM disk files must be defined in the
job control for the GUST job.

TIPLIBS This proc defines all the libraries that are used online with TIP /30.

TIPSCR

The TIPUBS proc is also referenced in the job streams that are supplied to
compile and link online programs; for example: TJ$COB74 and TJ$RPG.

This proc is used by various TIP /30 job streams to conditionally scratch a file
that is about to be created or re-created. This proc is intended to be used
internally and is nonnally not of interest.

7002 3999-1 00

TIP/30 Supplied Job Control

8.2. TIP/30 Supplied Job Control
This section provides a list of the supplied job control streams (in alphabetical order by job
name) and gives a brief description of the purpose of the job stream and the globals that
may be specified when the job is run.

These jobs must be run from the library where the TIP /30 job control is located for the
appropriate TIP /30 system. Although most of the supplied jobs have global parameters
that permit the pmc names to be overridden (TF=xxxxxxxx) 1 there should seldom be a need
to specify alternate prO(! names. The jobs use the information in the TIPFILES proc (from
the private library where they are executed) to identify the environment for the job.

The TIPFILES proc is automatically included by all of these job streams. The TIPFILES proc
defines a number of globals that can affect the execution of jobs. An important global is
"$PRI".

The $PRI global is used to set the execution priority for the job. The default is priority 6. If a
different priorit-y is desired fur ~ p~'"tiC1l1ar job, it rnay easily be overridden:

RV TJ$COB74:JT,,$PRI=1,E=PAY010,L=PAYSRC

TJSCOB74 Compile and link online TIP /30 COBOL-74 language program.

TF- May be used. to specify a proc to be used in place of the TIPFILES
proc.

TL= May be used. to specify the proc to be used in place of the
TIPUBS pmc.

E= Specify the element name containing the COBOL-74 program
source. This global is required.

L= Specify the LFD name of the input library. The default for this
global is the SYSGEN library.

TJSCOB85 Compile and link online TIP /30 COBOL-85 language program.

TF=

TL=

E=

L=

7002 3999-100

May be used to specify a proc to be used in place of the TIPFILES
proc.

May be used to specify the proc to be used in place of the
TIPUBS proc.

Specify the element name containing the COBOL-85 program
source. This global is required.

Specify the LFD name of the input library. The default for this
global is the SYSGEN library.

8-3

· TIP/30 Supplied Job Control

8-4

Tj$COP Copy the load modules for all online transaction programs supplied with
TIP /30 from the TIP (release) library to the TIP$LOD library. This job is
normally used to refresh the TIP$LOD library with the load modules from a
new TIP /30 release library.

W ARNIN"G: this job automatically perfonns a pac operation on the TIP$LOD
library - do not pac the TlP$LOD library while the related TIP /30 system is
running!

DEL-

RPG=

May be used to specify a proc to be used in place of the TIPFILES
proc.

Default: N.

This global controls whether or not existing TIP /30 load modules
will first be deleted from TIP$LOD. DEL= Y need only be
specified to update an existing TIP$LOD library.

Specify ''N'' to suppress the step to copy TIP /30 RPG II modules
to the YOBJ library. Default is RPG=Y (copy RPG II modules to
YOBJ).

TJ'COR Skeleton jcl for installing TIP/3D patches. This job should only be used under
the direction of support department personnel.

TJ$CRBAK Backup TIP$CAT, TIP$RNDM, TIP$MCS files to TIP$BAK file (tape or disk).

TF= May be used to specify a proc to be used in place of the TIPFILES
proc.

M= The M= global controls the type of output media (M=T indicates
tape output; M=D indicates disc output). If the output media is
tape, the job will prep the tape.

Default: M=T

v= The V= global controls the volume serial number of the output
media.

Default: V =TIPBAK

7002 3999-1 00

TIP/30 Supplied Job Control

TJSCRRST Restore TIPCAT, TIPRNDM and TIP$MCS files from TIP$BAK file (tape or
disk).

TJSDEL

7002 3999-100

TF- May be used to specify a proc to be used in place of the TIPFILES
proe.

M- The M= global controls the type of input media (M=T indicates
tape input; M=D indicates disc input).

Default: M=T

V. The V= global controls the volume serial number of the input
media.

FMT=

Default: V=TIPBAK

This global controls whether or not the TIPCAT, TIPMCS and
TIP$RNDM files are to be pre-formatted before the restore
procedure begins. The default is FMT=Y.

Specify FMT=N to avoid the pre-format step (if, for example, you
are making use of the ability of the backup / restore program to
selectively restore from a backup - see the description of the
TB$CRB batch program).

Before fonnatting proceeds, a password is solicited from the
console. Refer to the description of the console message for a
discussion of the password that is required (see reference to
console message ''TI105'').

Delete a specified element from any library that is defined in the TIP FILES or
TIPUBS job control proes.

TF= May be used to specify a proc to be used in place of the TIPFILEs
proc.

TL- May be used to specify the proc to be used in place of the
TIPUBS proc.

L- Global to indicate the LFD name of the library containing the
element to be deleted.

E=

Default: L=TIP$LOD

Specify the name of the element to delete. This global is
required.

TY= The TY = global controls the type of library element that is to be
deleted. Possible type codes are the same as those codes
accepted by the LIBs utility (s=source, L=load, O=object, etc).

Default: TY=L

8-5

TIP/30 Supplied Job Control

TJ$Dl\fP TIP /30 Dump Processor. This job stream processes a dump of TIP /30 that has
been written to the TIP$DUMP file.

TF= May be used to specify a proc to be used in place of the TIPFILES
~. '

ASK= This global controls whether or not the dump program is to issue
a prompt before printing the dump. Specify ASK=N to suppress
the prompt.

Default: ASK= Y.

MODE:::z This global controls the recording density of the output tape that
the TJ$DMP program creates when tape output is selected.
Specify MODE=l600 or MODE=6250 or the actual job control
mode code (such as NMCO).

Default: MODE=l600.

ST:::z This global controls the disposition of the spool file output of this
job. SpecifyST=HOLD or sr=RETAll~ to hold or retain
(respectively) the spool file for this job.

Default: ST= (spool file is not held).

The TY= global controls the desired processing of the TIP /30 dump file.
Choices are:

TY=PD Print from disk.. This specification prints the entire dump in the
TIP$DUMP file. - - -

TY=SD Show from disk. This specification prints a one page summary of
the dump in the TIP$DUMP file.

TY=RD Reset dump file. This specification marks the TIP$DUMP file as
"processed" - this is typically used to ignore a TIP$DUMP that
was produced and is not wanted.

TY=CDT Copy from disk to tape. This specification copies the TIP$DUMP
file contents to an output tape.

TY=CTD Copy from tape to disk. This specification creates the TIP$DUMP
file contents from an input tape.

TY=PT Print from tape. This specification prints the entire dump from a
previously created tape copy of the TIP$DUMP file.

8-6 7002 3999-1 00

TIP/30 Supplied Job Control

TJSGUST Canned job stream to run GUST (Global lCAM User Services Task) - handy
if you wish to run Global lCAM but do not have the JCL figured out). The
ICAM network name that is used by this job is defined in the TIPFILES job
control pmc.

TJ$JCS

TF=

TIs

ICAM=

May be used to specify a proc to be used in place of the TIPFILES
proc.

Used to specify the proc to be used in place of the TIPICAM prac.

Default: n=TIPICAM

This global allows the specification of the lCAM symbiont name
that is to be loaded by this job. If ICAM is already running, the
attempt to start another ICAM symbiont is graciously ignored by
05/3.

Default: ICAM=Cl

This job is the II'.ain TIP /30 ins~nation job. The documentation for this job can
be found in the TIP /30 Installation Guide.

Copy JCL from the TIP /30 library into your JCL library.

This job stream is described in the TIP /30 Release Notice.

TJ$JRINT Initializes (pre-fonnats) the TIPJRN, TIPB4 or TIP$HST file.

7002 3999-100

TF= May be used to :;pecify a pioe to be used in place of the TIPFIIES
pree.

F= This global controls the file to initialize. The default value is the
Journal file that is identified by the TIPFILES proc that is used.

Specify F=B4 to initialize the TIP$B4 file.

Specify F=HST to initialize the TIP$HST file.

8-7

TIP/SO Supplied Job Control

8-8

TJS}R2HS This job copies the TIPJRN, TIPLOG or Tll'$B4 file to the TIP$HST file.

1j$LC

Typically, this job is used to copy the contents of the TIP /30 journal file to the
journal history file (TIP$HST). This job automatically initializes the input file
after it is copied to the output file.

TF- May be used to specify a proc to be used in place of the TIPFILES
proc.

VI= VSN of the input file. This global is required if the input is tape.

!\fi= This global specifies the type of media of the input file. Specify
MI=T for tape input (a TIP$LOG tape), or M=ID for disk input
(TIP$JRN or Tll'$B4 file).

Default: MI=D.

VO. VSN of the output file. This global is required if the output is
tape.

MO= This global specifies the type of media of the output file. Specify
MO=T for tape output (a Tll'$LOG tape that is to be extended),
or MO=D for disk output (TIP$HST file).

Default: MO=D.

B4=a This global is used to indicate the special case that the TIP$B4 file
is the desired input file. Specify B4= Y to indicate that the Tll'$B4
file is the input file (MI=D must also be specified to indicate the
input is disk).

Default: B4=N.

Sort and list the TIP$CAT file. Also summarize the TIP /30 screen formats that
are defined in the TIP$MCS file.

TF=

MCS=

XREF=

USER=

May be used to specify a proc to be used in place of the TIPFILES
proc.

This global controls whether or not information about the
TIP$MCS (screen format file) is to be listed. The default is ''Y'',

This global controls whether or not an XREF is desired for all
catalogue information that is listed. The default is "Y",

This global permits the specification of a particular TIP /30
userid. If a specific user is specified via this global, the job
displays only the TIP /30 catalogue information that is accessible
by that user. .

If this specification is omitted (the default case) the entire TIP /30
catalogue is listed.

1j$LCOS3 Sort and list the 05/3 YCAT file.

TF= May be used to specify a proc to be used in place of the TIPFILES
proc.

1j$LOAD Load the TIP /30 release tape.

This job stream is described in the TIP /30 Release Notice.

7002 3999-1 00

TIP/30 Supplied Job Control

TJSLOG Prep tape for TIP$LOG.

TJ$LST

7002 3999-100

TF= May be used to specify a proc to be used in place of the TIPFILES
pree.

Va This global is used to specify the desired tape volume serial
number. This global is required - the job attempts to initialize
(PREP) a tape with the volume serial specified.

The tape is prepped with LBL name "TIP .id.LOG".

Sort and list infonnation from TIPJRN, TIPLOG, TIP$B4 or TIP$HST file.

TF= May be used to specify a proc to be used in place of the TIPFILES
pree.

F= This global specifies the input file to be listed. The default is the
TIP$JRN file that is identified by the TIPFILES proe that is in use.

The value of this global is used to construct the suffix of the input
'file LBL name (for example: TIP.id.xxx).

Other specifications are: F=LOG, F=B4 and F=HST.

WK= This global specifies the number of blocks to allocate to each of
the three work files that are assigned by this job (WORK1,
WORK2 and WORK3).

UST=

A-(",)

L=(",)

p=(",)

Default: WK=4000.

This global identifies the type of listing that is desired: If this
global symbol is empty (or omitted), the job stream assumes that
one of the globals (A=, L=, P=, T=, Y=, U= - see later) will be
specified.

ALL Specifies that the entire input file is to be listed.

SUM1vfARY

Choosing this value causes the other globals (A=,
L=, P=, T=, Y=, U=) to be ignored.

Specifies that a summary listing of the input file is
desired. Choosing this value causes the other
globals (A=, L=, P=, T=, Y=, U=) to be ignored.

This global permits the specification of up to 7 TIP /30 account
numbers. Input file information that is related to any of the
specified accounts will be listed.

This global permits the specification of up to 7 TIP /30 LFD
names. Input information that is related to any of the specified
LFD names will be listed.

This global permits the specification of up to 7 TIP /30 transaction
ids. Input file information that is related to any of the specified
transactions will be listed.

8-9

TIP/30 Supplied Jab Control

8-10

TJSPAC

T=(",)

U=(",)

This global permits the specification of up to 7 terminal ids. Input
file infonnation that is related to any of the specified terminals
will be listed.

This global permits the specification of up to 7 TIP /30 userids.
Input file infonnation that is related to any of the specified users
will be listed.

This global permits the specification of up to 7 journal record
types. Input file infonnation from the specified record types will
be listed.

Job to PAC a library using the LlBS utility.

TF= May be used to specify a proc to be used in place of the TIPFILES
pree.

TLa May be used to specify the proc to be used in place of the
TIPUBS proc.

L:: This global specifies the LFD name of the library to be packed.
The default value is L=SYSGEN.

Note: Some libraries (TIP$LOD for example) must not be packed while
TIP/3D is running!

TJSP ARAM TIP /30 generation parameter validation and generation.

This job also builds (and optionally schedules) the second aJ.,d final job in the
generation procedure).

This job stream is described in the TIP /30 generation procedures in
"4.6. Generation Parameter Processor" on page 4-52.

TF=

TL=

RUN=

L=

TCA=

May be used to specify a proc to be used in place of the TIPFlLES
pree.

May be used to specify the proc to be used in place of the
TIPLlBS proc.

This global controls whether or not the second job stream is to be
automatically scheduled.

Specify RUN=NO to inhibit scheduling the TJ$GEN (generated)
job.

Default: RUN=AUTO (schedule TJ$GEN if no parameter errors).

Specify the LFD name of the library where the TIP /30 generation
parameters are located. Default is L=SYSGEN.

This global is used to specify the element name of the set of
TIP /30 generation parameters that are to be scrutinized by the
TIP /30 parameter processor.

7002 3999-1 00

TJ'RCV

7002 3999-1 00

TIP/30 Supplied Job Control

Off line batch recovery using the TIP /30 Journal Files.

TF:III May be used to specify a proc to be used in place of the TIPFILES
pree.

TD:III May be used to specify the proc to be used in place of the
TIPDATA proc.

F:III This global specifies the input file to the recovery program. The
default is F=JRN (the TIP$JRN file that is identified by the
TIPFILES proc that is in use).

MIN:

ROLL:

TCA:

The value of this global is used to construct the suffix of the input
file LBL name (for example: TIP.id.xxx).

Specify a single LFD name that is to be recovered.

Default: »ALL (all files are eligible for recovery).

Note: This job stream is designed to recover either a single LFD
or all eligible LFD names. If you wish to recovery some
subset of all of the LFD names, you must either run this
job stream multiple times or make a copy of this job
stream and manually insert appropriate ROLL
commands for the LFD names involved.

This global controls the amount of memory allocated to the job.
The value is used directly in a / / OPTION MIN = statement and
must be coded appropriately for that purpose.

Default: MIN=50000 (hexadecimal).

Specify the type of offline recovery desired.

Default: ROLL=FORW ARD

Other choice is ROLL=BACKW ARD

FORWARD recovery re-applies updates for specified LFD names
by using information in the journal file.

BACKWARD recovery rolls back updates for specified LFD
names by using information in the journal file.

Specify the name of the TIP /30 generation parameters (TIP /30
Control Area - TCA) that is to be used to determine the
configuration parameters for the files that are to be used.

If this parameter is not specified, a QGBL prompt is issued to
solicit a value.

It is important to use the teaname that was in use when the input
journal file was created (because the recovery program obtains
file information from the tea information).

8-11

TIP/30 Supplied Job Control

8-12

TJ$RENAM Rename a file.

TJ$RPG

TJ$SCR

FI=

FOz

v=

CAT=

A=

This keyword specifies the LBL name of the input (old) file. This
global is required.

This keyword specifies the LBL name of the output (new) file.
This global is required.

This keyword specifies the LFD name of the new file. The LFD
name is used to catalogue the file in the operating system
catalogue (YCA n. This global is required.

This keyword specifies the VSN of the existing (old) file. This
global is required.

This keyword specifies whether or not the existing (old) file is
defined in the system catalogue (YCAT). Specify CAT=N if the
old file was not in the catalogue.

Default: CAT=Y.

This keyword pennits the job account number of the job to be
specified.

Compile and link an online TIP /30 program written in the RPG II language.

TF= May be used to specify a proc to be used in place of the TIPFILES
proe.

TL= May be used to specify the proc to be used in place of the
TIPUBS proc.

E= Specify the element name of the RPG program source. This
global is required.

L= Specify the LFD name of the input library. The default for this
global is the SYSGEN library.

Scratch (and decatalogue) a file.

v=

F=

CAT=

D=

This global specifies the volume serial number of the volume
containing the file to be scratched. This global is required.

This global specifies the LBL name of the file to be scratched.
This global is required.

This global may be specified as CAT=N if the file to be scratched
is not catalogued in the 05/3 system catalogue (YCAT).

Default CAT= Y (scratch file and decatalogue file.

The device number to use to assign the file. Default: D=50.

7002 3999-1 00

TIP/30 Supplied Job Control

WARNING

T J$SCRTP is an extremely dangerous job - it
scratches entire T1P/30 systemsl

"IJ$SCRTP Scratch and decatalogue an entire set of TIP /30 system files. This job
schedules a number of instances of the subordinate job 'I}$SCR1.

IDa This global specifies the TIP /30 system identifier of the file set to
be scratched.

This global is required. The value of the global is used to
construct the middle portion of the LBL names to scratch and
decatalogue. For example, ID=TEST results in job names of the
fonn: TIP .TEST.xxxxx

Be VERY careful when specifying this parameter!

J= This global specifies the LBL name of job control library to be
used to execute the subordinate job TJ$SCRl. This global is
required. The TJ$SCRTP job issues a QGBL prompt at run time
to ask whether or not this job control library is to be scratched.

"IJ$TIP Skeleton job control for TIP /30. Used to execute the bootstrap version of
Tn' /30 with the BOOTCA generation parameters.

This job stream is normally "cloned" and tailored to any specific site job
control requirements (such as running any pre-TIP or post-TIP job steps).

TJ$UPRPG Modify 05/3 YOBJ library to supoprt TIP /30 RPG IT programs. A number
of replacement object modules are copied from the TIP library into YOBJ
and then renamed. This job is required for sites which run or intend to run
TIP /30 programs written in the RPG II language. This procedure is also
imbedded in the 'I}$COP job.

TF=

Note:

7002 3999-1 00

May be used to specify a proc to be used in place of the TIPFlLES
proc.

This job PACs the YOBJ library after the replacement modules are
copied to that library.

8-13

TIP/30 Supplied Job Control

8.3. Batch Program TB$CRB

8-14

The batch program TB$CRB is a specialized dump/restore program for the TIP /30 files
TlPCAT, TIPRNDM and TIP$MCS. These files are crucial to the operation of the Til' /30
system. The files are implemented as System Access Technique (SAT) files but they are
Nor libraries and £!!l!lQ! be manipulated with 05/3 utilities other than DMPRST.

This utility is provided to manipulate the files as a related set of files.

The program is most often used as a simple dump/restore program for the files; however,
there are run-time control cards that may be specified to control the behaviour of the
program during a restore operation.

During a restore operation, data from the CATALOCUE (TIP$CAT), RANDOM FILE
(TIP$RNDM) or the screen format file (TIP$MCS) may be selected or omitted as desired.

Parameter cards may be submitted to the TB$CRB program via an imbedded data set (/$
through /It). These parameters are free-format and may be submitted in any order (since all
parC1J.neter cards Cil""'e read before h'le pro~c:u-n begins processing).

DUMP-T.APE

Indicates that TB$CRB is to dump all of the information from Tll'$CA T,
TIP$RNDM and TIP$MCS to tape (TIP$BAK).

. 1Jris is the default behaviour of the TB$CRB program.

DL~.fP=DISC

Indicates that TB$CRB is to dump all of the information from TIP$CA T,
TIP$RNDM and TIP$MCS to disc (TIP$BAK).

RESTore=T APE

Indicates that TB$CRB is to restore information from an input tape (TIP$BAK)
to TIPCAT, TIPRNDM and TIP$MCS depending on any further SEL or DEL
information.

RESTore=DISC

Indicates that TB$CRB is to restore information from an input disc file
(TIP$BAK) to TIP$CAT, TIP$RNDM and TIP$MCS depending on any further
SEL or DEL information.

Only one of DU11P= or RESTORE= should be specified; they are mutually exclusive
operations!

VERIfy=NO

Indicates that TB$CRB is NOT to verify the contents of the tape/disc produced
by the DUMP= option.

Default is VERIFY=YES

The verification procedure should always be specified for DUMP operations.

This option is ignored on a RFSTore operation.

7002 3999-1 00

Batch Program TB$CRB

FCSXTENT=nn

Indicates the size of the FCS extent and must match the value specified in the
corresponding TIP /30 generation parameter.

Default is 40 (same default as Tll'GEN).

This value is validated to be between 10 and 256.

On a DUMP operation this value !!ll!§1 match the FCSXTENT value for the
TIP$RNDM file that is being dumped - otherwise DATA WILL PROBABLY
BE LOST!.

On a RESTORE operation this value !ill!§! match the FCSXTENT value for the
TIP$RNDM file that is being reloaded. To be able to access the reloaded
TIP$RNDM, the TCA must specify the same FCSXTENT= value.

If the value of FCSEXTENT is being changed, the TIP$RNDM file must be
initialized before running the restore job (or at least specify PMT= Y as a global
for the l1$CRRST job stream).

The following types of SEL and DEL cards may be specified to control the data that is to be
restored from a tape/disc created by TB$CRB.

For the sake of safety, SEL and DEL parameters are only allowed on a RESTORE operation;
ALL infonnation is processed during a DUMP operation.

TB$CRB allows approximately 100 DEL/SEL statements (some statements are treated as
more than one internal table entry). Since multiple specifications may be mutuaHy
exclusive the rule is that SELections are performed first (in the order specified); DELetions
are processed after all SElections.

Each of the subparameters on the SEL and DEL statement may be specified using standard
TIP /30 prefix notation (It> ABC means ''begins with ABC").

The subparameters in the CAT SEL command correspond to the four parameters required
by the list command in the on-line catalogue manager program (CAT).

The subparameters in the MCS SEL command correspond to the group and screen format
name.

CAT SEL=?!?!?!?

Select catalogue (or TIP$RNDM) entries which match the four subparameters
specified (the CAT key).

CAT DEL=?!?/?/?

Discard catalogue (or TIP$RNDM) entries which match the four
subparameters specified (the CAT key).

MCS SEL=GRP/name

Select screen fOnTld.ts which rn.atG.~ the group and screen name specified.

MCS DEL=GRP/name

Discard screen fonnats which match the group and screen name specified.

7002 3999-100 8-15

Batch Program TB$CRB

WARNING

The defauH operation of the TB$CRB program is
to restore all of the information for the CATalogue
and for the MCS files.
The appearance of the first $EL or DEL card
causes TB$CRB to abandon the default operation
and perform ONLY what is specified by the SEL
and DEL cards that appear in the input stream.
For example, if a "CAT SEL=EDP,*,*" statement
(select all catalogue entries for the group EDP)
was the only SEL or DEL statement in the input
stream - TB$CRB would !JQ! restore any of the
MCS screen formats.

Example of use of SEL and DEL cards:

Mes SEL=l8o ,!TEST

Restore screen formats from ALL groups provided the screen name does not
begin with the characters ''TEST'.

CAT DEL=l8o,·DUMP"D

Discard (during the restore operation) all catalogue entries (and TIP$Rt~DtYf
entries!) in any group for dynamic files with names beginning with the
characters ''DUMP''.

For examples of job control streams for this program, refer to the supplied job streams
"TJ$CRBAK" and ''TJ$CRRST''.

Additional Considerations:

The TB$CRB program sets a non-zero UPSI value if the program detects any errors in the
parameter statements or during the operation of the program.

7002 3999-1 00

Section 9
Operations Guide

This section describes the operational aspects of TIP /30 from the point of view of the
system operator. Included is a description of the various TIP /30 console commands that
are available to the operator. The console commands allow the operator to monitor and
control the operation of TIP / 30.

ft.oj " ____ 1_ 1""\ _ ; 1IfII"IIb

~II I II \JUII~UI" UtI"l CIa.IUII

The system operator should ~ change the system date or time while TIP /30 is running.
If the date or time is incorrect, critical journal information may be incorrectly written.

Furthermore, user programs may be dependent on the date and time for scheduling
activity etc.

WARNING

DO NOT CHANGE THE TIME OR DATE WHILE
TIP/30 IS RUNNINGI

TIP /30 is critically dependent. on the timer services provided by the operating system. If
the time is changed while TIP /30 is running, TIP /30 may go into a continuous wait state.

If TIP /30 is (inadvertently) executed when the TIME or DATE is not correct, we
recommend that you shutdown TIP /30 as soon as possible using the STOP TIP /30 console
command. The STOP command does not perform transaction roll back and is suggested
because transaction roll back may be dangerous when the time or date is incorrect. Correct
the date and time and restart TIP /30. When TIP /30 restarts, the normal start up procedures
examine the TIP /30 before image file and perform any necessary roll back operations.

The following section describes commands that may be presented to TIP /30 as unsolicited
operator console commands.

An unsolicited command is submitted by prefixing the command text with the string
!tUNS" followed by a space and the current TIP /30 jobname:

UNS xxxxxxxx WHOSON

7002 3999-100 9-1

TIP/30 Operator Access Control

9 .. 2 .. TIP/30 Operator Access Control

9-2

TIP /30 provides a mechanism whereby console operator access can be controlled through
the TIP /30 Catalogue. The reserved TIP /30 userid "CONSOLE" may be created to control
which programs and files may be accessed by the TIP /30 console operator.

SaIne of the operator console commands that are described in the following sections are
implemented as transaction programs that are executed in background; the other
commands are executed internally by TIP /30. The operator functions that are executed as
transaction programs are affected by the presence or absence of a userid named
"CONSOLE".

The following console commands are "external" (implemented as transactions):

.. APB
• CLOSE (FCLOSE)

.. EXEC (xxxxxxxx)

• MSG

• OPEN (FOPEN)

• SET.

External commands execute the corresponding TIP /30 transaction. Exceptions are:

.. OPRN and CLOSE cOIIullands execute the tran.sactions "FOPFN" and "FO-,OSE"
(respectively)

• the EXEC command executes the transaction named as the parameter to the EXEC
command.

When an external command is executed, the default action of the TIP /30 system is to set
the background userid to the string "CONSOLE", set the security level to 1 and set no
elective group membership.

If the reserved userid "CONSOLE" is defined in the TIP /30 catalogue, the security and
group membership is set to the values specified in that user catalogue record.

Example:

USER CONSOLE SECUR=29 GROUPS=(EDP,MANUFACT).

In this example, the system console operator can execute transaction programs (via the
EXEC command) as if he has programmer level security and membership only in the
elective groups "EDP" and ''MANUF ACT".

7002 3999-1 00

TIP/30 Operator Commands

9.3. TIP/30 Operator Commands
The following commands are all available as unsolicited console key ins to the TIP /30 job.

Note: Although many of the operator commands have identically named utility transactions,
this section documents the behaviour of commands assuming that the command is
submitted as an unsolicited console command.

Some commands are not implemented as utility transactions.

APB ... text...

Send the specified text as a one line unsolicited message to all users logged on
TIP /30. The message text does not have to be enclosed in quotes but is
restricted to a maximum of 60 characters.

APB/ALL _text...

Send the specified text as a one line unsolicited message to all tenninals
currently connected to Tll' /30 (whether or not logged on TIP /30).

The message text does not have to be enclosed in quotes but is restricted to a
maximum of 60 characters.

CLOSE lfd,lfd _

CRASH

7002 3999-100

~v'.tark the specified file or fHes as "not available for online use" and issue a Data
Management CLOSE operation for each file.

If there are online transactions currently using the file a message is sent to the
operators console indicating the number of current users accessing the file.

No new program is allowed to access the file from this point until a
subsequent OPEN command is issued.

Any online program which attempts to access a CLOSED file receives an error
status in the PIB-STATUS field.

Online programs currently using the file are allowed to continue using the file.
Once no online program is using the file, it is CLOSED and a message is sent
to the console operator.

This feature is useful when the operator wants to run a batch program against
a file which is being used by the online system and later return the use of the
file to the online system.

A number of lfd names may be specified (separated by commas).

A filename may be specified using standard prefix notation. For example:
CLOSE *AP,*PAY

Same as STOP command except that a dump is produced. See description of
STOP command which follows.

9-3

TIP/30 Operator Commands

DATE

DIElxxxx

DOwnIline

DOwnlterm

DUMP

DUMPF

9-4

Display the current date and time.

Example result: TUESDAY FEBRUARY 231988 at 11:23

Cancel the program running for the specified user-id (xxxx) or at the specified
terminal (xxxx) with a "Process Cancel" error code.

It may be necessary to cause some sort of input (for example by pressing the
I. WAITI key) at the specified terminal to enable TIP /30 to cancel the
transaction program.

TIP /30 issues a request to lCAM to set down the specified line.

This command is ignored in a GLOBAL ICAM environment.

If the specified line is a workstation, the terminal is made available to
interactive services.

TIP /30 requests reAM to set down the line which is implied by the tenninal
name specified (xxxx). (Tenninal names are often more readily known than
line names).

This conulland is ignored in a GLOBAL ICAM.

If this is a workstation then the terminal is made available to interactive
services.

Invoke TIP /30 online dump. TIP /30 writes a dump image to the TIP$DUMP
file and resumes normal processing. If the TIP$DUMP file contains a previous
dump that has not been processed, this request for a dump is rejected. If an
error occurs during the dump process, an operating system jobdump is
enabled in case of subsequent failures.

If a dump is su~cessfully taken, this command invokes the processing defined
by the run-time TIP /30 job control parameter TIPDUMP= (see description of
that option in "TIP /30 Job Control Options" on page 6-1.

This command is identical to the "DUMP" command described above, with the
exception that there is implied permission to overwrite any existing dump
infonnation in the TIP$DUMP file.

If a dump is successfully taken, this command invokes the processing defined
by the run-time TIP /30 job control parameter TIPDUMP= (see description of
that option in "TIP /30 Job Control Optionsll on page 6-1.

7002 3999-100

TIP/3D Operator Commands

EOJ [timeout]

EOJOFF

Request a TIP /30 orderly shutdown.

TIP /30 immediately inhibits any further logon requests and waits for all
currently logged on users to logoff.

If the timeout parameter is specified (representing a number of minutes),
programs which are waiting for a specific period of time wait no longer than
"timeout" minutes and then are reactivated. There is no guarantee, however,
that a program is properly checking for an orderly TIP /30 system shutdown.

It may be necessary to issue a STOP command sometime after the EOJ
command is issued to force users off the TIP /30 system.

The operator should follow the procedure that is established by the site
administrator.

Rescind a previously issued. delayed EOj cornrnand.

This command has to be entered relatively quickly after an unintended EOJ
command!

EXEC cmdline

Start a transaction program in background.

The supplied text (cmdline) is processed as a norma 1 command line; the
indicated transaction is started in background by a TIPFORK operation.

Refer to "9.2. TIP /30 Operator Access Control" on page 9-2 for a deSCription of
the mechanism whereby such transactions are executed.

EXEC SET NOLOGONS

Execute the SET program to inhibit TIP /30 logons.

EXEC SET LOGONS

Execute the SET program to allow TIP /30 logons.

FILES/- prefix

FLAG

GOtenn

7002 3999-100

Produce an I/O summary report of active 05/3 files assigned to TIP /30. The
option field may contain an "a" (FILES/a) or "C" (FILES/C) to restrict the
display to files which are currently OPENED or CLOSED (respectively).

Parameter 1 may be specified to filter the resulting output to include only LFD
names which match the prefix that is specified. For example, entering
FILES "'P AY displays infonnation about files with an LFD name that begins
with ''PAY'',

Display the current status of the 32 TIP /30 t1ags.

Restart a previously PAUSEd process

9-5

TIP/30 Operator Commands

9-6

LMOFFtenn

LMONterm

Tum off software line monitor on specified terminal.

To obtain the line monitor printout

1. Breakpoint the print queue for the active TIP /30 job:
BR ACT,PR,JOB=xxxxxxxx

2. Start a burst mode output writer for the active TIP /30 job:
PR BX,JOB-xxxxxxxx

Tum on the software line monitor for a specific terminal.

A display of all input and output messages (including delivery notification
from rCAM) for the specified terminal is printed (in SNAP dump format) on
theP~.

Refer to the previous description of the LMOFF command to find out how to
obtain the printout.

MSG/ter.m _.text...

Send a one line unsolicited message to the specified terminal.

The text does not have to be enclosed in quotes and is restricted to
approximately 60 characters.

MSGiuser _text.._

Send a one line unsolicited message to the specified user (if logged on).

The text does not have to be enclosed in quotes and is restricted to
approximately 60 characters.

OFF flag#,-.,flag#

Cause the named TIPFLAGS to be placed in the OFF state.

The values of flag# may be 0 through 31 inclusive.

This command should 'not be used indiscriminately; online programs may be
critically dependent on the setting of flags.

ON flag#,. .. ,flag#

Cause the named TIPFLAGS to be placed in the ON state.

The values of flag# may be 0 through 31 inclusive.

This command should not be used indiscriminately; online programs may be
Critically dependent on the setting of flags.

7002 3999-1 00

TIP/30 Operator Commands

OPEN lfd,lfd,...

Mark the file or files specified as "available for online use" and issue a Data
Management OPEN for the file(s).

This is the inverse of the CLOSE command.

Severallfd ~ may be specified (separated by commas).

LFD names may be specified using standard prefix notation (for example:
OPEN~AP).

OPEN/SRD lfd,lfd,.._

Open the specified file or files and change TIP/30's ACCESS to those files to
ACCESS=SRD.

This option opens the specified files so that the online system may read the
files and batch jobs may update the files.

OPENIEXCR lfd,lfd,..-

PAusexxxx

Open the specified files and change TIP /30's ACCESS to those files to
ACCESS=EXCR.

This option opens the specified files so that the online system may update the
files and batch jobs may only read the files.

PAUSE the specified process (by specifying either the terrninal name or t.h.e
userid).

PURGFlxxxx

Purge the specified user-id (xxxx) or the specified terminal (xxxx) from the
system. This command may be needed in situations where a DIE command is
unable to cancel a running process.

QCLEAR te.rm,queue

SET ...

STAT

7002 3999-100

TIP /30 issues a request to lCAM to flush a message queue for the specified
terminal.

Only one queue may be specified at a time; the value specified must be "H"
(high), ItM" (medium) or "L" (low).

Invoke the SET utility transaction to alter the attributes of a process or some
aspect of the system.

See separate documentation of the SET utility transaction.

Display TIP /30 statistics report on the console.

9-7

TIP/30 Operator Commands

STOP

TERM

UPxxxx

WHO SON

9-8

Terminate TIP /30 immediately.

TIP /30 immediately doses all files and tenninates.

If user transactions were in progress, they are prematurely stopped (console
message TI097 may be generated too - see the description of that console
message).

The system shutdown program (if one is specified in the generation
parameters or in the TIP /30 job control) is NOT scheduled.

It may be necessary to use this command to shutdown TIP /30 if user
programs do not properly recognize a prior EOJ command.

The STOP command does NOT perform transaction roll back.

List all terminals in the lCAM network, showing status (up / down). If a
TIP /30 user is logged on at a terurinal, the userid is also shown.

TIP /30 issues a request to lCAM to set up the specified line.

TId.s command is ignored in a GLOBAL ICAM environment.

If the TIP /30 ready message is configured, it is sent to the first terminal on the
line.

TIP /30 requests ICAM to UP the line associated with the terminal named xxxx
(terminal names are often more readily known than line names).

This command is ignored in a GLOBAL IeAM environment.

If the TIP /30 ready message is configured, it is sent to the first terminal on the
line.

List users that are currently logged on TIP /30.

7002 3999-1 00

Console Messages

9.4. Console Messages
Following is a list of TIP /30 console messages that may occur, along with a description of
the specific situation and any suggested course of action. In the examples of message text,
underscores represent data in the message that will be supplied by TIP /30.

Gaps in the numbering of messages are the result of either:

• the elimination of messages that are not relevant to the version of TIP /30 to which this
documentation applies, or

• messages which are reserved for future use.

Messages from TIP /30 are prefixed by the string ''TInnn'' where "nnn" represents the
internal message number or identifier.

TIOOl TIP/30 Initialization Allinson-Ross Corporation

Informational message; TIP /30 initialization has been started.

TIOO2 -1-1_"_:_=_ TIP/30.readyfol' ___ _

Informational message; TIP /30 initialization completed at the date and time specified. The
SITE-IO is shown at the end of the message text.

TIOO4 Unknown operator .request .. consult manual

The operator has entered an unsolicited console command that is not recognized by TIP /30
- please refer to the section of the TIP /30 reference manual titled "05/3 CONSOLE
OPERA nON" for the correct spelling and syntax of operator commands.

TIOO5 Errol' attaching schd TCB

An error occurred when the main TIP /30 task tried to "ATTACH" the subtask that
performs all program scheduling. This error may occur if an insufficient number of TCBs
was requested on the JOB card (number of TCBs must be greater than 3). TIP /30 will
terminate when this error occurs.

TIOO6 Errol' attaching comm TeB

An error occurred when the main TIP /30 task tried to "ATTACH" the subtask that handles
all network communications (via ICAM). This error usually indicates that an insufficient
number of TCBs was specified on the JOB card.

7002 3999-100 9-9

Console Messages

9-10

TIOO7 Error opening lCAM L-J __,J), code::. __ _

An error occurred when TIP /30 tried to open the communications network (via rCAM
MOPEN macro call). This error usually indicates that the CCA name or network password
is incorrect.

This error may also occur if any lCAM disk queue files are not allocated as a "contiguous"
extent or are not large enough, or a dedicated lCAM network has more terminals defined
than was generated into TIP /30 (see TERMS= parameter of TIPGEN macro). TIP /30
terminates when this error occurs.

The error codes are listed in 05/3 System Messages (UP-8076 Table A-I, Category "AA").

TIOO8 Unable to load control module __ _

TIP /30 is unable to load the TCA module which is produced by the TIPGEN procedure.
TIP /30 will terminate.

TIOlO TIP/30 terminated

This message appears when TIP /30 has encountered an unrecoverable error.

TIOll Insufficient memory to execute TIP/30

The amount of paged memory that is available after TIP /30 has completed initialization is
less than the minimum amount (specified by the MAXPROG= keyword in the TIP /30
generation parameters).

This error usually indicates that an insufficient amount of memory was specified on the
JOB card for the TIP /30 execution. TIP /30 will tenninate when this error occurs.

TIOl3 Fatal initialization error ... TIP/30 aborted

A previous error has occurred and the execution of TIP /30 cannot continue.

TIOl4 Invalid option selected at __ _

An invalid option was selected in the run control statements provided in the imbedded
data set in the TIP /30 JCL.

TIOl5 is now available for online use

This message is confirmation that a dosed file has been successfully reopened.

70023999-100

Console Messages

n016 ___ has __ users. Close held pending

Waming that the requested close of a file is being deferred until all current users of the file
have relinquished control of the file.

While a file close operation is pending, no users may access the file (other than those users
who were already granted access before the CLOSE was issued).

When all current users have finished with the file, the system will issue the following
message (TIOl7) to confirm the file has (finally) been dosed.

n011 ___ is closed & not available for online use

This :message is confirmation that an online file has been dosed (and is now available for
use by other jobs).

n018 File ___ does not exist

This message is a warning that the requested file was not found (possible spelling error).

n019 Unable to load PMDA : _____ _

There is insufficient memory available to load the TIP /30 Post Mortem Dump Analysis
(PMDA) program for the indicated user and transaction. TIP /30 continues running, but
the indicated user will not receive a dump.

nolO Fatal: TIP$SW AP file not assigned

The required TIP$SW AP file has not been assigned to the TIP /30 job. The job control
stream should be updated to include the required file (LFD name is TIP$SW AP).

This message represents a fatal error.

TI02l Unable to load resident program: __ _

The indicated program, which is named in a RESIDENT= job control statement, cannot be
loaded. Processing continues, but the program will not be made resident.

TI024 TIP$SW AP .. space lost due to fragmentation

TI025 TIP$SW AP .. extending file by ___ blocks

The TIP /30 Swap file (TIP$SW Al') is being automatically extended by TIP /30. The number
of blocks that are being added to the extent size is shown in the text of the message.

7002 3999-100 9-11

Console Messages

9-12

n026 TIP$SW AP • I/O errol' - DM __

An unrecoverable hardware I/O error has oCCUlTed on the TIP$SW AP file. As a temporary
solution, try moving the file to another location or disk drive (refer to supplied job stream
TJ$SWAP).

The hardware customer engineer should by made aware of this error so that the hardware
error log may be checked (ONUERL). TIP /30 will terminate when this error occurs.

n021 Memory management errol' - job cancelled

An error has occurred which has corrupted TIP /30 internal memory management. Possibly
a rogue user program has destroyed part of the TIP /30 region. TIP /30 terminates when
this error occurs.

n028 Program exception - PSW= _____ _

An program check exception has occurred within TIP /30. If the error cannot be traced to
rogue user programs, then the memory dump produced by this condition should be
forwarded to Customer Support with as much supporting information as possible. TIP /30
terminates if this error occurs.

n029 TIP/30 internal software failure

TIP /30 has detected an unrecoverable error (internal tables have been modified in error). If
the error cannot be traced to rogue user programs, the memory dump produced by this
condition should be forwarded to Customer Support with as much supporting information
as possible. TIP /30 terminates if this error occurs.

TIOSO Unable to attach user task

TIP /30 was unable to A TI ACH a new user task.

TIP /30 terminates when this error condition occurs.

TI03t lCAM note on __ .. _________ _

TIP /30 was informed by lCAM that an error, as noted, occurred on the line indicated. This
may be a warning; consult the appropriate ICAM error message description.

TI032 ICAM eI'1'or __ ...I' from __ = ____ _
An ICAM error occurred when TIP /30 issued a request to the specified terminal. This may
be a warning; consult the appropriate IeAM error message description.

7002 3999-1 00

Console Messages

TIOl3 Tmncated input from :II __ program = __ _

TIP /30 is reporting that input has been truncated. The input message was from the
indicated terminal and was read by the indicated program.

This can occur (for example) if the tenninal user pressed XMIT from a location BEYOND
the designated cursor resting location in a TIP /30 screen format

Essentially, more data than the program was expecting has arrived and has been
appropriately truncated by lCAM.

This is a warning message and nonnally may be ignor~.

TI034 TIP/30 version - statistics

TI035 at _:_:_

TI036 Msg in average length: _~_

TIOl7 Msg out average length: __ _

TIOl8 TlP$SWAP 110: __ _

TIOl9 ___ program loads for ___ requests

TI040 Average response time is ____ seconds

TI0411lP/30 began execution at_: :~ on-1-1_

This set of information and statistics is displayed as part of the TIP /30 shutdown
procedure, in response to the STATS unsolicited command, or on a regular basis (at a
frequency specified by the TIP /30 generation keyword STATS=).

TI042 is not logged on

An invalid userid has been specified as a parameter in an unsolicited command to TIP /30.

TI043 __ is an invalid terminal name

An invalid terminal name has been specified as a parameter in an unsolicited command to
TIP/30.

TI046 Flag - State Flag - State Flag - State Flag - State

TI047_- __ - __ - __ -_

This heading line and detail lines are displayed in response to the FLAGS console operator
command.

7002 3999-100 9-13

Console Messages

9-14

TI048 FUe #IJO's Output Pooled Users Open
TIM9 ________________________ __

This heading line and details lines are displayed in response to the FILES operator
command. The information displayed includes:

.. the file name

.. the total number of I/O requests issued for this file

.. the number of I/O requests which were outputs

.. the number of reads which were satisfied from the file's record pool

.. the current number of users of the file

• whether the file is open.

n050 TIP/30 requires at least 4: task control blocks

This message is displayed when TIP /30 determines that an insufficient number of task
control blocks (TCBs) have been specified on the TIP /30 JOB card.

TIP /30 terminates if this error occurs.

noSl TIP 130 will not use mOl'e than 50 tasks

This warning message is displayed if more than 50 task control blocks were requested on
the TIP /30 JOB card.

TIOS2 No memory to logon __

The memory manager in TIP /30 is unable to acquire enough free memory (from the pool of
free memory specified via the TIP /30 generation parameter FREEM=) to LOGON the user
at the named terminal.

TIOS3 Unable to load for

TIP /30 was unable to load the specified program. The program does exist in the load
library but an I/O error occurred during the load. The program should be re-linked and
placed back into the TIP$LOD library. (The TIP$LOD library may be compromised!)

TIOM No memory to _ for __

The memory manager in TIP /30 is unable to acquire enough free memory to complete the
indicated function for the user.

7002 3999-1 00

Console Messages

TIOSS ___ <->:, _____________ _
This is a message to the operator from the user and terminal indicated.

TIOS6 Key holding table full <-> __ _
This message is displayed whenever TIP /30 detects that the TIP /30 key holding table is
FULL

Any requests to hold a record when the table is full, will receive a "record held" status.

This error should be brought to the attention of the systems programmer - who should
consider making the key holding table larger and investigate why so many records were
being held at the same time (a program may have been looping).

TIOS7 Command queue full .. Command rej eded .

This message indicates that TIP /30 is still processing the previous unsolicit~ console
command and that the most recent unsolicited command has therefore been ignored.

TI058 Unauthorized user attempted logon at __

The operator is being infonned that an unsuccessful attempt to logon has been detected at
the indicated terminal.

TIOS9 DLL: load of ----' size:: __ bytes

The named terminal has been down line loaded with a module of the size indicated.

TI060 DLL: status from __ :: _______ _

The status of the down line load to the named terminal is given.

TI061 TIP$MCS lIO: ___ reads; ___ writes

Informational; the number of physical read and write operations to th~ TIP$MCS file.

TI062 TIP$CAT I/O: ___ reads; ___ writes

Infonnational; the number of physical read and write operations to the TIP$CA T file.

TI063 TIP$RNDM I/O: ____ reads; ___ writes

Infonnational; the number of I/Os to the TIP /30 Random File (TIP$RNDM).

7002 3999-100 9-15

Console Messages

9-16

nOM All tasks were busy ___ times.

The number of times all tasks were busy. If this number is ~ high then the number of
Task Control Blocks on the TIP /30 JOB card should be increased (minimum number of
TCBs is 4; maximum is 50).

n065 TIP$RNDMerrorDM_for ' __1 __ _

An I/O error has occurred on this file, check the System Message handbook for description
of the DMxx error.

n066 ___ L->:. ___ Abended:, ___ _

Reports the USER-ID(tenninal):program name, which has aborted. If TIP /30 is able to
determine information about the cause of the abnormal termination of the program, the
reason will appear after the word "Abended".

TI076 ___ L->: __ issued to ___ file

Informational: the userid at the indicated terminal has issued a file OPEN or CLOSE
request (as indicated in the text of the message) for the file. This message makes it easier for
the console operator to keep track of who has opened or closed files.

n077 is _ % full

This message indicates the percentage that the indicated file is to being full. This is
informational.

n078 No background tables for __

TIP /30 is unable to honour a request to start a background process from the specified
terminal due to insufficient background table entries. The maximum number of concurrent
background tasks is a TIPGEN option (BACK=) and may need to be modified.

TI079 __ __ ___ blocks in use

Informational; the number of blocks of the indicated file which have been used to date.

TIOSO file not assigned

The specified file was not found in the TIP /30 job control. The file is not used for a critical
function - execution of TIP /30 will continue without the associated function. This
condition should be brought to the attention of the system programmer.

7002 3999-1 00

Console Messages

TI097 Outstanding record locks • quick recovery recommended

This message is displayed when the TIP /30 system has been terminated with a STOP or
CRASH command and records for HOLD=TR files were locked by transaction programs
that were in progress.

The operator is advised that quick recovery must be performed before running any batch
processing that uses the online files.

A reply is required - any reply will suffice; this is a very important message and we want
be sure that it was NOT overlooked!

If you do not intend to restart TIP /30 before proceeding with batch processing, we
recommend that you quickly restart TIP /30 with the run-time parameter W ARM=ONL Y -
this will perform any necessary transaction roll back and then shutdown without allowing
users to log on TIP /30.

TI098 TIPi30 has expired - contact A.R.C.

This message is reserved for future use and may be ignored.

TI099 ___ <->:, ____ rolled back __ _

The USER-ID(TERM-ID) using the named program has caused a record roll back on the file
named.

TIl00 Gen parameters validated - Start ___ 1 (YIN)

The TIP /30 parameter processor has successfully completed the analysis of the TIP /30
generation parameters and needs to know whether the named generation job should be
scheduled.

TII01 TIP/30 file formatter version _____ _

This informational message indicates the version of the TIP /30 file formatting program that
is beginning execution.

TII02 ___ formatted, blocks = __ _
The named file has been formatted to the specified number of blocks.

TII03 ___ successfully copied to __ _

The LFD na..f!\.e fi_rst sperHied has been copied to the indicated LFD name.

7002 3999-100 9-19

Console Messages

9-20

TIIM About to initiaJ.ize ___ OK? (YIN)

The TIP /30 file initialization program is requesting confirmation to initialize the specified
file (do you really want to do this?) Answering liN' will prevent it; nyu will initialize the
named file.

TIIOS Enter password to initialize this file

The TIP/3D file initialization program is requesting password authorization before
initializing the named file. Be absolutely sure you know what you are doing, or be
prepared to test your site's recovery procedures.

This message represents the point of no return.

The password is the name of a popular teleprocessing monitor package that is available for
Unisys computer users.

Enter the three character reply TIP to initialize the file; any other response will terminate
the job STEP immediately. If you are not sure exactly what is happening, it might be
prudent to cancel the job and investigate!

TII06 ___ will use __ records

The named file has been initialized and has a record capacity as specified. The allocated
number of blocks has been rounded down to the nearest prime number of blocks (this is to
ensure that the key hashing algorithm will function properly).

TIIO?' ___ unused __ records

The indicated file has been initialized. The specified number of records (blocks) represent
the unused difference between the number of allocated blocks and the blocks that will
actually be used. See also message number TIl06.

TIIOS Invalid user-idlpassword - Catalogue not processed

The operator has not specified the correct password for the initialization of the file; the
function will not be performed.

TII09 Enter catalogue list options?

The batch catalogue listing program has found that there is insufficient data in the job
control stream and is prompting the user at the 05/3 console for display options. Refer to
batch job documentation for replies.

A console response that ends with a period (It.") discontinues prompting.

7002 3999-1 00

Console Messages

TIllO 110 en'01' on WORKl, DM_

The system scratch file (WORK!) has suffered a Data Management error as specified. See
the 05/3 System Messages handbook for a description of the DMxx error.

TIlll No files assigned inrec::overy JCL

The TIP /30 Recovery module being executed has not been able to find required LFD
infonnation from the job control stream. Check the spelling of the LFDs with the file names
in the TIP /30 generation.

TIl12 Insufficient memory to load TCA

The TCA specified in the TIP /30 job stream will not fit in the memory space specified on
the JOB card. More memory must be allocated for this job.

TIl13 Recovery module (TCA) not found

The TCA specified does not exist, or did not specify journaling. Check generation options
and recovery job JCL to resolve problem. The tcaname supplied to the TIP /30 batch
recovery program must match the tcaname that was in use when TIP /30 created the
journal or log file that is input to the batch recovery program.

TIl14 TIP recovery in progress version _____ _

Infonnationa1; The TIP /30 Recovery module is being executed.

TIllS Syntax error· correct and try again

The parameters Specified are incorrect for this job.

TIl16 Missing semi-colon - Continue? (YIN)

The recovery program has detected a syntax error in the control stream and is prompting
the user for permission to continue in spite of the error.

This error may be a symptom of more serious errors or omissions in the recovery job
control run-time parameters! The most prudent approach is to cancel the job and
investigate why the run-time parameters do not include the required semicolon after each
recovery statement.

TIl17 ___ not joumalled or DVC .. LFD sequence missing

The JCL for the file named is missing or incorrectly spelled or the specified file naple is not
defined as a joumaled file in the TIP /30 generation parameters that the recovery program
has been told to use.

7002 3999-100 9-21

Console Messages

9=22

TIllS Too many errors - recovery terminated

The recovery program has detected too many syntax errors and is terminating abnonnally.

TIl19 ___ journal records read &it ___ processed

Informational; statement of the number of journal records read and processed during
forward file recovery.

TII20 ___ journal records read for backward recovery

Informational; statement of the number of journal records read during backward file
recovery (roll back).

TIUI Beginning scan for quick recovery

Informational; recovery program is running and is beginning the scan to see if any quick
roll back operations need to be performed.

TI122 TIP/30 file recovery completed

Informational; normal job termination of the batch off line recovery program.

TI123 ___ fcvd ___ on ___ U-1 __ :->
Informational; number of records recovered (either forward or backward as indicated) for
the named file as of the indicated date and time.

TIU4 No dump. Previous dump not processed. __ _

An unsolicited console DUMP command was issued, but a previous dump has not been
processed. Issue a DUMPF command to overwrite dump.

7002 3999-1 00

Console Messages

TI125 Retry,Cance~Overwrlte,None. __ _ ? (RIC/OIN)

This message indicates that TIP /30 is attemptir.g to write a dump, but the dump file still
has a dump from a previous time which has not been processed (printed or copied). The
date/time is that of the existing dump in the file. This message is only seen if the dump
analysis program (TB$DMP) has not completed processing the file.

The following replies are recognized:

R RETRY. If the dump job has not been run or has not completed, you may wish to
wait for that job to complete before answering R. The dump file will be examined
again to see if it has been processed.

C CANCEL. For some reason, you do not wish to overwrite the dump file but you
want a dump. CANCEL will create an 05/3 job dump. TIP /30 will force an 05/3
job dump. There will be no normal termination processing.

o OVERWRITE. The dump in the file is not desired. You wish to have the current
contents of TIP /30 memory vv'ritten to the file, ove~Nriting the older dump. TIP /30
will overwrite the dump and continue with normal termination processing.

N NONE. The current contents of TIP memory are not to be dumped. TIP will just
continue with normal termination processing.

TI126 Euor in resume all tasks. For online dump.

Internal error while trying to take an online dump.

TIU7 Euor in tpause all tasks. For online dump.

Internal error while trying to take an online dump.

TIUS Begin TIP/30 termination processing.

TIP /30 has begun normal termination processing.

TIU9 Cannot schedule TIP dump job.

Attempt to schedule job to analyze TIP /30 dump failed.

TI130 Console request failed: no free memory!

Unsolicited operator command ignored due to no memory in free memory pool.

TI131 05/3 job dump enabled for possible fatal error.

Inlorrnational. An OS /3 style job dump has been enabled if TIP /30 encounters a fatal error.

7002 3999-100 9-23

Console Messages

9-24

TI132 Begin write dump to TlP$DUlV1P file.

TIP /30 is beginning the process of writing dump information to the TIP$DUMP file.

TI133 Complete write to TIP$DUMP file.

The process of writing dump information to the TIP$DUMP file is complete.

TI134 Online dump not taken. Dump set for OS/3 job dump_

An online dump has not been taken. An 05/3 style job dump is taken instead.

TI135 Reset B4 file. No B4recoms to rollback.

Informational. At termination, the TIP$B4 file has no records to roll back. The TlP$B4 file
has been reset to an initialized state.

TI136 All console input (except STOPIEO}) has been ignored

During TIP /30 initialization, operator input has been ignored (except STOP and EOJ
commands).

TI131 Schedule TIP dump job.

Informational message on job log.

TI138 All tasks suspended during online dump.

Infonnational message on job log.

TI139 All tasks resumed. Online dump complete.

Infonnational message on job log.

TIl40 TIP lower memory has been corrupted. Taking online dump.

Periodic validation of lower TIP /30 job memory indicates some program has overwritten
lower memory. This is an indication of a program bug. This message is displayed only if
CONTINUE=YES is specified in TIP /30 run-time job control options.

TI141 Abend during online dump.

Infonnational message on job log.

7002 3999-1 00

Console Messages

TIl42 File ___ may have outstanding record locks

Informational. During normal termination processing (last step), the listed files may have
outstanding record locks.

TIl43 ___ file is not initialized

Fatal error. The specified file is not initialized or cannot be processed.

TIl44 Unable to load file OTF for __ _

The control blocks for the specified file cannot be created or accessed.

TIl45 __ _ % full, __ % records not at home position

Ir.fonr.ational. The specified fHe is the indicated percent full. The percentage of records not
at the "home" position is also shown. Records not at the "home" position are a natural result
of the hashed file organization, but a large percentage not at home position may result in
poor performance when accessing the file.

TIl46 ____ k. of memory assigned to free memory pool

Informational.

TIl47 ____ k of memory available in pool, before page memory allocation

Informational.

TIl48 ____ k of free memory required from TIPGEN & Jes

Informational.

TIl49 ____ k allocated for paged memory (programs)

The specified amount of memory (in 1024 byte blocks) has been allocated by TIP /30 for
transaction program execution.

7002 3999-100 9-25

Console Messages

9 .. 26

roso Not enough memory. Function -I Amount ___ _

JCL error, region size inadequate. ''Function'' is memory request which failed. Problem is
with this parameter or some prior parameter. "Amount" is amount of memory required for
current function.

::EunCfion: ::::;;;;.,.-:: ... :.: -::. :-:-:-:::::::::

.;:::::::::::;::<::::::::::":::::::;:;:;::::: :::;::; ~~: :::-:: ::

AF AFT buffer pool

PI' File Table

MP MAXPROG for Paged Memory

MT MCStable

PM Paged Memory Map

PT Program table

RC Reentrant Control Table

RE Load RESIDENT or SUBPR()G module

RQ Free Memory Buffer Pool

TI< Task Control Table

TIl51 Error in RESMOD TP$COlVlM: list module: _____ _

Internal TIP /30 error.

TI152 TIP/30 Version: _____ _ TCA module: __ _

Informational. This message displays the current version of TIP /30 and the name of the
TIP /30 generation parameter set (TeA) that is in use.

TIl53 Replace RESMOD ___ is missing new name

Development & debugging use only.

TIl54 Replace RESMOD with __ _

Informational message. The indicated module name that is referenced in the job control is
no longer valid; the default module name (as shown) is assumed.

TI155 Waming: Replace RESMOD ___ is not defined

Developrrl€nt & debugging use only.

7002 3999-100

Console Messages

TI156 Start of buffer pool: __ _

Development & debugging use only.

TIlS1 Jes __ _ Parameter :I ___ in error.

This message indicates that the noted run-time keyword or associated parameter is invalid.

TIl58 Module ___ is not a TeA module name (1st JeS)

This message indicates that the TCA name found in the run-time options is not valid. A
possible cause is a missing TCA name - the TCA name must be supplied on the first card
image of the imbedded data set in the TIP /30 job control stream.

TIl59 Jes un:recognized keyword: __ _

The specified keyword was specified in the run-time options for TIP /30, but is not
recognized as a valid keyword. Check the spelling of the keyword.

TIl60 Warning: No floating point defined in OS/3 gene

The 05/3 operating system was generated without floating point arithmetic support
(FLOAT=YE5).

TIl6l Waming: No CDM support defined in OS/3 gene

The 05/3 operating system was generated without support for Consolidate Data
Management (CDM). TIP /30 requires CDM support in 05/3.

TIl62 ~aming: No FILELOCK=SHARE defined in OS/3 gen

The 05/3 operating system was generated without the proper level of file locking. TIP /30
requires FILELOCK=SHARE.

TIl63 Fatal error. Only OS/3 release 8.1 or better supported

The 05/3 operating system must be at least levelS.l or later to support TIP /30.

TIl64 Waming: Remove DMNAME=xxxxxx from Jes; ignored.

This message is a warning. An obsolete Specification for the DMname= keyword was
detected in the run~ti.,.'"ne optior.s and is ignored. To avoid conlusion; the obsolete
specification should be removed from the TIP /30 job control parameters.

7002 3999-100 9-27

Console Messages

9-28

11165 JCS parameter error, partially processed.

JCS error. The named JCS parameter has been processed and stored up to the point the
error was detected.

TIl66 ___ parameter error. File ___ not found.

A file name specified as a run-time parameter is not found.

TI167 Termination of TIP/30, taking dump_

TIP /30 terminating due to some event. Further console key ins are ignored.

11168 CANCEL TIP/30 or Ignore error? (CII)

JCS error. One or more JCS errors have been detected. A reply of "C" terminates TIP /30
immediately after processing the rest of the JCS. A reply of iT' ignores the error and
continues with TIP /30 initialization.

TI169 ____ Program records in CAT file

Informational. The number of ''Program'' definition records were detected in the TIP$CA T
FJe durUlg iraitialization.

TI170 ____ File records in CAT file

Informational. The number of ''File'' definition records were detected in the TIP$CA T file
during initialization.

TIl11 Internal error. invalid parameter list to TR$INITB

Internal TIP /30 error.

TI172 Internal error. TASK open

Internal TIP / 30 error.

TI173 TIP$DUMP FILE ERROR CODE: DM_

An error has been reported to TIP /30 (by 05/3 Data Management) for the TIP$DUMP file.
The DMxx error code is shown.

7002 3999-1 00

TIl74 All files are closed

Informational message. TIP /30 has successfully closed all files.

TIl7S Boot unable to load overlay: __ _

Internal TIP/3D error.

TII76 TB$TIP Link Edit __ _

Informational. The date and time that Tn' /30 was linked is shown.

TIl" ICAM note on __ - line down, disconnected

lCAM returned the specified status to TIP /30.

TIl7S ICAM note on __ • line down, not disconnected

lCAM returned the specified status to TIP /30.

TIl79 ICAM note on __ - disk ~r during output

ICAM returned the specified status to TIP /30.

TII80 ICAM note on __ - line is now up

ICAM returned the specified status to TIP /30.

TIISI ICAM note on __ - line already active

ICAM returned the specified status to TIP /30.

TIlS2 ICAM note on __ - unidentified terminal

ICAM returned the specified status to TIP /30.

TII83 ICAM note on __ - ARP buffers depleted

ICAM returned the specified status to TIP /30.

TII84 ICAM note on __ - network buffers depleted

ICAM returned the specified status to TIP /30.

7002 3999-100

Console Messages

9-29

Console Messages

9-30

TIl90 ICAM en'Or __ ...I' from __ = Boundary eI'l'Or; table alignment

lCAM returned the specified status to TIP /30.

TI191 ICAM en'Or __ ...I' from __ = Limits eI'l'or; address not in job region

ICAM returned the specified status to TIP /30.

TI192 ICAM en'Or __ ...I, from __ :l1li Decode error; invalid function

ICAM returned the specified status to TIP /30.

TI193 ICAM en'Or __ ...I, from __ = No message available

lCAM returned the specified status to TIP /30.

TI194 ICAM error __ ...I' from __ = Missing or invalid destination

ICAM returned the specified status to TIP /30.

TI195 ICAM error __ ..,,' from __ = No network buffer

ICAM returned the specified status to TIP /30.

TI196 ICAM error __ -,' from __ = Disk eI'l'or

ICAM returned the specified status to TIP /30.

TI197 ICAM eI'l'or __ ...I' from __ = Invalid length

ICAM returned the specified status to TIP /30.

TI199 Completed statistics journal

Informational message. Statistical records written to TIP$JRN or TIP$LOG file.

TI201 User ---J TID ---J eI'l'Or in access __ ---J' TRIO __ _

The user at the terminal name shown is attempting to access a product that has not been
correctly installed. The product name and transaction name is also shown.

7002 3999-1 00

Console Messages

m02 User __ at __ is not authorized to access via __ _

The user at the terminal name shown does not have proper TIP /30 Catalogue security
specified to access the item.

TI204 ___ is an invalid destination name

The specified character string is not recognized as a valid destination name.

TI20S Product ___ in DEMO mode, Expire -'_

The identified product has expired; users accessing the product are using it in demo mode.
After the date shown the product cannot be accessed.

TI206 Product ___ will expire -'_

The identified product will expire on the date shown. This message is displayed when the
product is within 30 days of expiry.

TI207 leS ___ reference to ___ has changed, default ___ used.

Infonnational message. The indicated module name that is referenced in the job control is
no longer valid; the default module name (as shown) is assumed. The job controi
parameters should be modified to remove the obsolete name reference.

7002 3999-100 9-31

Section 10
TIP/30 Installation Guide

This section is the installation guide for TIP /30 (Transaction Interface Processor), a
software product developed by Allinson-Ross Corporation.

10.0.1. TIP/30 Pre-installation Setup

Before proceeding with the installation of TIP /30, there are a few procedures wrj~~ should
be followed to make the installation as smooth as possible. This installation guide outlines
these procedures.

WARNING

It is very important that you read all of this
installation guide before attempting to perform
any of the steps that are described.

10.0.2. OS/3 Supervisor Generation

The following items should be checked in the generation parameters for the 05/3
supervisor. Some keywords apply only to older releases of 05/3 and may not be applicable
to your release.

SYMBPRI=5

05/3 symbionts (run processor, output writer, etc) and batch jobs should not
execute at priority levels that conflict with the priority levels used by TIP /30.

PRIORITY=5+#job classes

7002 3999-100

There should be enough priority levels to run TIP /30 (at levels 1 through 4),
symbionts (at levelS), and each "class" of batch job at a different priority level
(if required). We recommend that you not have excessive priority levels (no
more than needed).

Assuming that TIP /30 is executed at priority levell, TIP /30 makes use of
priority levels 1 through 4 and may make use of priority levels beyond 4
depending on the Til"' /30 generation keyword parameter PRiority'::::.

If you have batch jobs which specify an explicit execution priority on job
control EXEC statements, it is wise to review those job control streams tE> make
sure that batch jobs do not run at a priority that conflicts with TIP /30.

10-1

OS/3 Supervisor

10-2

ISINTPRI=6

RESHARE.

A reasonable rule of thumb is to run I/O bound jobs at higher priority
(numerically lower value) than CPU bound jobs.

If you intend to use OS /3 interactive services, add one more level to the
PRIORTIY keyword and set this keyword to 6. This setting will help prevent
interactive-services users from monopolizing the system.

TIP /30 does not require any resident shared code. However, you should make
resident those shared code modules that are used by your system (batch and
online). The 05/3 job SCUST may be run to produce a listing of OS/3 shared
code modules. The comment that appears next to each module might help you
detennine whether or not that module is important enough to be made
resident via the RESHARE= specification.

RESHARE=DM$MIAQ (for 05/3 release 11 and later) is suggested if TIP /30 is
to S1..1pport multiple conCtLrrent sequential readers of MIRAM ,files.

RESMOD-SMSTASK,SMSASCKE,SMSLOCK,SMSSTXIT,SM$GTPUT

These are the only transients that are recommended or required to be made
resident for use by TIP /30. Other transients may be declared resident
according to the requirements of other systems.

Note: SM$ASCKE must be made resident. If this resmod is not specified, the
system may enter a permanent RW"; state when TIP/3D is executed.

COM:M:=#CAs,#ports

This parameter is required to support the communications hardware.

SPOOLING=INFUT

FILELOCK=

This is-not mandatory, however we recommend this since it will allow you to
use facilities in TIP /30 to run batch jobs without writing the job control
statements to a library.

If the type of spooling is changed, the first use of the new supervisor requires
initialization of the spool file. Be sure to clear out the spool file before !PLing.

FILELOCK=SHARE is recommended for use with TIP / 30.

The specification FILELOCK= YES can lead to library files being compromised
and is not recommended. A -warning message is issued at TIP /30 startup if
FILELOCK=SHARE is not specified.

The specification FILELOCK=NO is not supported.

JOBACCI=YES

This is not mandatory but including job accounting aliows various TIP /30
utilities to monitor the performance of the 05/3 system.

7002 3999-1 00

SELACC=34

OS/3 Supervisor

!fyou are using selector type disk subsystems (8430/8433) specify
SELACC=34 on each selector disk declaration for maximum performance.

FLOATPT=YES

7002 3999-100

This is required if you intend to use TIP /30 BASIC, OS /3 FORTRAN, or
COMP-l or COMP-2 (floating point) fields in online COBOL programs.

10-3

0513 Supervisor

nus is an example of an OS/3 Supervisor generation for use with TIP /30 on a SYS/80
Model 6.

SUl?GEN

END
I/OGEN

SUl?VRNAM-TIPSUl?
COMM=1,8
FILELOCK=SHARE
FLOATPT=YES
ISLOCAPID-ISSN
ISINTPRI=6
ISNETNAME=TIPC
JOBACCT=YES
JOBSLOTS=7
PRIORITY=12
RESMOD=SM$TASK,SM$ASCKE,SM$LOCK,SM$STXIT,SM$GTPUT
ROLLOUT=YES
RUNVSN-SYSRUN
SPOOLBUFR-16
SPOOLOWBUFR==8
SPOOLCYL=lOO
SPOOLHDR==NO
SPOOLING-INPUT
SPOOLMAP-75
SPOOLVSN==SYSSPL
STciBPRI-5
SYSLOG=YES
TIMER=MAX
TRANS=15

PRINTER TYFE=0770 LCB-OWNLCl PRINTPOS=132
CHARSET=48 VFB=STANDl ATTNRE=YES

READER AT TNRE=YES
DISC TYFE=8418 ADDR=OO-03
DISC TYFE=8430 ADDR=OO-05 CHAN=4 SELACC=34
TAPE TYPE=6 ADDR=OO-03
PRINTER VIRTUAL=5
END

10-4 7002 3999-1 00

OS/3 Supervisor

This is an example of 05/3 Supervisor generation parameters for use with TIP /30 (on a
SYS/80 Model 20):

SUPGEN

7002 3999-100

SUPVRNAM SY$STD
CACHESEGSIZE=12
CHAN-13
COMM-8
COMM1==NO
CONALARM-NO
CONPRINT-YES
CONSOLOG-MAX
DAYCHANGE-YES
DDPSC-NO
DLOADBUFR-4096
DLOADTABLE=8
DMGTMODE=MlXED
DMRECV-YES
ERRLOGBUF=6
EXECPRI-12
EXPREGION-4096
FILELOCK-SHARE
FLOATPT-YES
lGNORESFT-YES
lORS SO
lSBATCHLMT-4
lSlNTLMT=lO
lSlNTPRl-7
lSLOCAPlD=INTS
ISLOGONSC==NO
I SNETNAME= INET
JCREADWKS=NO
JOBACCT-YES
JOBQUEREC=HOLD
JOBSLOTS=18
MAXTlME-O
MAXTYPE-NONE
PASSWORD-NO
PRlORlTY=lS
RECOVERDS=YES
RESHARE=DD$Tl110,DM$CFMOO,DM$FSPOO,DM$MIAQO,D3$MlllO
RESHARE==PR$IOEOO
RESMGT==NO
RESMOD=SM$ASCKE,SM$ATCH,SM$GTPUT,SM$LOCK,SM$LOD
RESMOD==SM$STXlT,SM$TASK
RETAINLOG=NO
ROLLOUT-YES
RUNVSN==SYSRUN
SAM-YES
SCDINDEX-YES
SHAREDMGT=32

10-5

0513 Supervisor

10-6

END
I/OGEN

SPOOLBUFR-16
SPOOLBURST=NO
SPOOLCOMP-YES
SPOOLCYL=-l
SPOOLVSN-SYSRUN
SPOOLCYL2=-80
SPOOLVSN2-SYSSPL
SPOOLFARSI-NO
SPOOLHDR-NO
SPOOLICAM-Cl
SPOOLING-REMOTE
SPOOLMAP-300
SPOOLMAXLINE-20
SPOOLMODE-PRI
SPOOLNOINPUT==NO
SPOOLOWBUFR-16
SPOOLPRT=ALL
SPOOLRECV-CLOSED
SPOOLTEST=YES
SPOOLUPDATE-YES
SYMBPRI==6
SYSLOG=NO
SYSTEMDATE-YMD
TAPEBLKNO==NO
TRANS=8
TRNWKAREA-64
UNATCONSOLE=O
VOLTABLE=YES
VVAVR-YES

DISC CHAN-l
ADDR-AO-A7
CACHE=YES
COADDR=AO-A7
COCHAN-2
TYPE=8494

DISC CHAN=l
ADDR=90-97
CACHE=YES
TYPE=8470

DISC CHAN=2
ADDR=BO-B2
CACHE=YES
TYFE=8417

DISC CHAN=2

TAPE

ADDR=B3
CACHE=YES

CHAN=3

7002 3999-1 00

ADDR-80-81
DENSITY-DUAL
MODE-C3
TRANSLAT-NO
TYPE-28

PRINTER CHAN-3
ADDR-EO
ATTNRE-YES
CHARSET-STD
LCB-OWNLCl
PRINTPOS-160
REMOTE-NO
TYPE-0770
VFB-STANDl

DISKETTE CHAN=C
ADDR=20
AUTOLOAD=NO
TYPE=8420

WORKSTATION CHAN-C
ADDR-ll,12
DESPACE-YES
TYPE-3560

REMWORKSTATION
AMOUNT = 1 0
SCRENMEM=l

PRINTER VIRTUAL-24
PUNCH VIRTUAL=3
READER VIRTUAL-3
END

7002 3999-100

OS/3 Supervisor

10-7

OSl31CAM

10.0.3. 05/3 ICAM Generation

The following items should be checked in the 05/3 reAM generation parameters:

CCA statement

The CCA statement controls the type of ICAM that is to be generated (a
dedicated or stand-alone ICAM, or a GLOBAL lCAM). Although Tn' /30 will
function correctly in either environment, a GLOBAL lCAM offers a more
flexible environment and is recommended.

TYPE=(TCI)

A dedicated lCAM must be generated as a TCI network for
TIP/30.

TYPE=(GBL"node)

If you intend to use a global IeAM then specify the GBL
parameter; it will also be necessary to define a LOCAP for use by
TIP/30.

The node name can be up to four characters that identifies your
site in a multi-node IeAM network. This name is not important
for TIP /30 use but must not contlict with any TERM or LOCAP
names that are used.

FEATURES=(OPCOM,OUTDEL V)

These are the only reAM features which are required by Tn' /30.
Other features may be included if needed for other
communication applications.

PASSWORD=

BUFFERS statement

The password feature of ICAM is not required by TIP /30. If a
password is assigned, it, along with the NETWORK name, must
be supplied as run-time parameters to TIP /30.

As a general guide, choose a buffer size which is large enough to hold the
average output message for your network and mix of applications. It is often
better to have a large number of medium size buffers rather than a small
number of very large buffers. reAM chains buffers together to hold a large
output (or input) message, but the buffer size should be chosen according to
the most common traffic conditions.

The maximum size of a single message is specified in sub-parameter 2 of the
DEVICE= keyword parameter on the LINE statement.

STAT=YES

The keyword STAT= (note the spelling) on the BUfFER
statement will allow use of the TIP /30 utility transaction CCA to
display lCAM buffer and ARP utilization statistics.

7002 3999-1 00

OS/3ICAM

The overhead involved in maintaining these statistics is
negligible. We recommend that this option be specified on the
BUFFER statement.

UNE statement

LBL-

QUEUES

The line buffer length for local workstations must be large
enough to accommodate the largest output message that is
anticipated, otherwise output messages may be truncated by
lCAM. For local workstations, LBL=900 is usually sufficient.

The LOW queue is used by TIP /30 for the TIP /30 ready message
and for auxiliary I/O (eg: printing).

The MEDIUM queue is used for all nonnal terminal traffic.

The HIGH queue is used for unsolicited messages to the
tenninal.

If remote batch devices are used with TIP /30, all queues for those
devices must be disk queues.

Note: if disk queueing is specified, ICAM may use the disk queue
file to buffer messages. This overhead can be avoided by using
main memory queues. If sufficient main storage is available,
assign the queues for interactive terminals to "MAIN".

RECONECT=

This keyword (note the spelling) is applicable only to switched
lines (dialed lines). DO NOT use this keyword on any other type
of line!

STATS=YES

The keyword STATS= (note the spelling) on LINE statements will
allow use of the TIP /30 utility transaction CCA to display line
and terminal statistics.

The overhead involved in maintaining these statistics is
negligible. We recommend that this option be specified on all
LINE statements.

TCIDTF statement

7002 3999-100

MSGSIZE=n

The recommended value is 3584. Specify the size of the largest
message that can be output. Too small a number may result in
output message truncation.

10-9

OSl31CAM

10.0.4. Example ICAM Generations

This is an example of the generation parameters for a dedicated (non-Global) ICAM.

COMMCT
TIPC CCA TYPE-(TCI),FEATURES-(OPCOM,OUTDELV),PASSWORD~PWD

BUFFERS 30,64,5,ARP-40,STAT~YES

L311 LINE DEVICE-(LWS),LBL=900,STATS=YES
T311 TERM ADDR=(311),FEATURES=(LWS), X

LOW=DQFILE1,MEDIUM=MAIN,HIGH=MAIN
L312 LINE DEVICE=(LWS),LBL=900,STATS=YES
T312 TERM ADDR=(312),FEATURES=(LWS), X

LOW=DQFILE1,MEDIUM=MAIN,HIGH=MAIN
L313 LINE DEVICE-(LWS),LBL=900,STATS~YES

T313 TERM ADDR-(313),FEATURES=(LWS), X
LOW=DQFILE1,MEDIUM=MAIN,HIGH=MAIN

LNoe LIN~ DEVICE-(m~ISCOPE),TYPE=(9600,SYNC),ID=08,STATS=YES

ARC 1 TERM ADDR=(21,51),FEATURES=(U400,1920),AUX1=(COP,73), X
LOW=DQFILE1,MEDIUM=MAIN,HIGH=MAIN

ARC2 TERM ADDR=(21,52),FEATURES=(U400,1920),AUX1={COP,73), X
LOW-DQFILE1,MEDIUM=MAIN,HIGH=MAIN

SBPl TERM ADD~=(22,51),FEATURES=(U40,1920),AUX1=(COP,73), X
LOW=DQFILE2,MEDIUM=DQFILE2,HIGH=DQFILE2

..... ,,1'\/'\

.uJ.'\I v ::I
T TlI.n;o .., -.. DEVICE-(UNISCOPE);TYPE=(2400,SYNC,SWCH,UNAT),ID=09, x

RECONECT-YES
TRMl TERM ADDR-(22,51),FEATURES=(U200,1920),AUX1=(COP,73), X

LOW=DQFILE1,MEDIUM=MAIN,HIGH=MAIN
DQFILEl DISCFILE FILEDIV-10
DQFILE2 DISCFILE FILEDIV-10
TCIDTF DISCFILE MSGSIZE=3584

ENDCCA
MCP MCPNAME =M5

CACH= (08,9600, SYNC)
CACH-(09,2400, SWITCHED, SYNC)

END

10-10 7002 3999-1 00

OS/31CAM

This is an example of a global reAM.

COMMCT
NET 1

'*

'*
'*
'*
TIPC

'*
'*
'*
ISSN

'*
L311
T311

L312
T312

LN08

ARC 1

ARC 2

'*
'*
'*

'*
DQFILE
TCIFLE

END

7002 3999-100

CCA TYFE=(GBL"ARC),FEATURES=(OPCOM,OUTDELV),GAWAKE=YES

BUFFERS 30, 128,5,ARP=50,STAT=YES

TIP/30 TCI LOCAP

LOCAP TYPE= (TCI)

INTERACTIVE SERVICES LOCAP

LOCAP TYFE={DMI),IAS=(YES,OFF),MT=YES,
LOW=DQFILE,MEDIUM=MAIN,HIGH=MAIN

DEVICE=(LWS),LBL=900,STATS~YES

x

LINE
TERM ADDR=(311),FEATURES=(LWS),TCTUPD=YES, X

LINE
TERM

LINE

TERM

TERM

LOW=DQFILE,MEDIUM=MAIN,HIGH=MAIN,INPUT=(YES)
DEVICE=(LWS),LBL=900,STATS=YES
ADDR=(312),FEATURES=(LWS),TCTUPD=YES, X

LOW=DQFILE,MEDIUM=MAIN,HIGH=MAIN,INPUT=(YES)
DEVICE=(UNISCOPE),TYPE=(9600,SYNC),ID=08,STATS=YES, x
LBL=64
ADDR=(21,51),FEATURES=(U400,1920),TCTUPD=YES,
LOW=DQFILE,MEDIUM=MAIN,HIGH=MAIN,INPUT=(YES),
AUXl=(COP,73)
ADDR=(21,52),FEATURES=(U400,1920),TCTUPD=YES,
LOW=DQFILE,MEDIUM-MAIN,HIGH~MAIN,INPUT=(YES),

AUX1=(COP,73)

x
x

x
x

FORCE SOME TERMINALS ONTO TIP/30 LOCAP

SESSION
SESSION

EU1=(ARC1),EU2~(TIPC)

EU1=(ARC2),EU2=(TIPC)

DISCFILE FILEDIV~5

DISCFILE MSGSIZE=3584
ENDCCA
MCP

MCPNAME =C3
CACH=(08,9600,SYNC)

10-11

Installation - PART I

10.1. Installation - PART I

10-12

The TIP /30 system is released on tape or diskette in UBS format. For the System 80 Model
7E, the TIP /30 release library is named YTIP and is pre-loaded on the RES volume.

The installation of TIP /30 includes the creation of a number of files that are used by the
TIP /30 system. The following tables show the files that may be created (some are optional
files). Included in the tables is the default allocation for the files and the approximate size of
each file (in cylinders) on several popular disk types.

7002 3999-1 00

Installation - PART I

The installation procedure allocates these files by using block allocation (BLK) or track
block allocation (TBLK) to pennit the job control to run regardless of the actual destination
disk type.

The following table gives approximate cylinder allocations for the default sizes of the
various files used by TIP/3D. LBL nam~ enclosed in parentheses are default LBL names
that may be overridden during the installation procedure; the string !tid" represents the
selected system identifier.

Table 1()..18. Disk Space Requirements

~;III~I-
',: . ;'" ',' ,. ::::/:> :·:a!: ·::'8::··:···: ::;,::::e;:::::;::

:/:: :::.:< :<;>

SYSGEN (TIP.id.GEN) 1400 (256) 2 4 3 1 1
.. -

TIP (YTIP) 21000 (256) 25 60 34 7 12

TIP$BAK TIPjd.BAK 16000 (512) 39 92 52 11 18

TIP$B4 TIPjd.B4 1400 (256) 2 4 3 1 1

TIP$CAT TIP.id.CAT 4096 (256) 5 12 7 2 3

TIP$DUMP TIPjd.DUMP 15000 (256) 18 43 24 5 9

TIP$HST TIP.id.HST 8000 (512) 20 46 26 6 9

TIP$JC5 IrT"I 500 (256) 1 2 1 1 1 \J 1>./

TIP$JRN TIP.id.JRN 8000 (512) 20 46 26 6 9

TIP$LOD TIP.id.LOD 10000 (256) 12 29 16 4 6

TIP$MCS TIP.id.MCS 1400 (2560) 17 40 23 5 8

TIP$MSG TIP.id.MSG 500 (256) 1 2 1 1 1

TIP$RNDM TIP.id.RNDM 10000 (512) 24 58 32 7 12

TIP$SWAP TIP .id.5W AP 12000 (256) 15 35 20 4 7

TIP$TOM TIP.id.TOM 200 (4096) 4 10 6 2 2

TIP$TSP TIP.id.TSP 200 (256) 1 1 1 1 1

Totals 206 484 275 64 100

7002 3999-100 10-13

Installation - PART I

Table 10-19. TlP/30 Disk File Allocation

.... :c·:,··:<L

SYSGEN SATIib Yes 1400 (256)

TIP SATIib Yes 21000 (256)

TIP$BAK Miram Opt 16000 (512)

TIP$B4 SAT Opt 1400 (256)

TIP$CAT SAT Yes 4096 (256)

TIP$DUMP SAT Yes 15000 (256)

TIP$HST SAT Opt 8000 (512)

TIP$JC5 SATIib Yes 500 (256)

TIP$JRN SAT Opt 8000 (512)

TIP$LOD SATIib Yes 10000 (256)

TIP$MCS SAT Yes 1400 (2560)

TIP$MSG Miram Yes 500 (256)

TIP$RNDM SAT Yes 10000 (512)

TIP$S\'VAP Yes

TIP$TOM SAT Opt 200 (4096)

TIP$TSP Miram Opt 200 (256)

10-14 7002 3999-1 00

Installation - PART I

10.1.1. Step 1 - Getting Started

If you are using 05/3 Release 13 or later, this step can be skipped - proceed directly to
"10.1.2. Step 2A - Quick Install" on page 10-16.

Before executing the installation job, three modules must be copied from the Til' /30 release
media to the appropriate 05/3 libraries. To do this, enter the appropriate Interactive
Services commands from the choices shown below:

(j) Copy modules from release TAPE:

COpy TJ$INS,TIP30$VER$0400,TIP$30,DEV=xxx TO TJ$INS,$Y$JCS

COPY TJ$LOAD,TIP30$VER$0400,TIP$30,DEV=xxx TO TJ$LOAD,$Y$JCS

COpy SMCUTPOO,TIP30VER0400,TIP$30,L,DEV=xxx TO SMCUTPOO,YLOD"L

Note: T'ne DEV=xxx parameter !1pecifies the dt::uice address of the tape drive where the TIP /30
release tape is mounted. Specify the correct device address for your configuration.

@ Copy modules from :release DISKETIE:

COpy TJ$INS,DATA,TIP$30 TO TJ$INS,$Y$JCS

COpy TJ$LOAD,DATA,TIP$30 TO TJ$LOAD,$Y$JCS

COpy SMCUTPOO,DATA,TIP$30,L TO SMCUTPOO,$Y$LOD"L

7002 3999-100 10-15

Installation - PART I

10.1.2. Step 2A -- Quick Install

10-16

The job TJ$INS is provided to guide you through the installation of TIP /30. The job
presents a menu of possible activities including the initial installation of a TIP /30 system.

To execute the TJ$INS job, issue the following command from a workstation or the system
console (a workstation is recommended ~use running this job from the console while
other jobs are executing can make reading the prompts difficult).

RV TJ$INS:$Y$JCS"A-xxxx

WhSf8:

A=xxxx This job global can be used to specify the account number for the job. The
default job account number is "TIP".

The TJ$INS job may be restarted by using the global RESTART=name. The name specified
is the job name where the restart is to begin. For example, if an unrecoverabie error
occurred during the execution of the job TJ$CAT, the TJ$INS job can be rerun this way:

~v TJSINS •• A-xxxx.RESTART-TJSCAT

If it is necessary to abandon the installation procedure and start over from scratch, first run
the job TJ$SCRTP to erase all files for a specified system identifier, then restart the TJ$IN'S
job from the beginning. See the description of the job TJ$SCRTP.

The Tl$SCRTP job may optionally scratch the job control library associated with the TIP /30
system that is being scratched. The TIP release library associated with the TIP /30 system
being scratched is not scratched by the TJ$SCRTP job - this action eliminates the need to
reload the TIP library when the installation procedure is started over.

When the installation job begins processing, the main menu appears:

11 LOGON003 IS19 LOGON ACCEPTED AT 13:29:26 ON 89/12/11, REV 13.0.0S4
~rv tj$ins

12 RV2039
13 RV2039
14 TJ$INS
15 TJ$INS
16 TJ$INS
17 TJ$INS
18 TJ$INS
19 TJ$INS
20 TJ$INS
21 TJ$INS
22 TJ$INS
23 TJ$INS
24 TJ$INS
25 '?TJ$INS

TJ$INS: TIP/30 INSTALLATION/MAINTENANCE JOB
R03 RUN PROCESSOR SUCCESSFULLY PROCESSED TJ$INS
JC01 JOB TJ$INS EXECUTING JOB STEP SMCUTPOO #001 14:09:28
TPS TRANSACTION PLATFORM SYSTEM

ENTRY LEVEL TIP/30 INSTALLATION/MAINTENANCE UTILITY
COMMAND DESCRIPTION ==> INSTALL MENU <==
END END INSTALLATION PROGRAM
1 QUICK INSTALLATION OF TIP/30
2 STANDARD INSTALLATION OF TIP/30
3 UPDATE TIP/30 RELEASE 3.2 TO 4.0
8 DISPLAY "@" COMMAND LIST
9 HELP - SUMMARY OF OPTIONS FROM THIS MENU
ENTER COMMAND

~---
Items @ and @ provide help information and are not described here.

7002 3999-1 00

Installation - PART I

This section describes selection (i) from the main installation menu, "Quick Installation of
TIP /30". A "Quick installation" can be selected only if all of the following conditions apply:

• You accept the default size allocations for the various TIP /30 system files that are
required

• The TIP /30 system files are to be installed on no more than 2 disk volumes

• You do not (initially) require any of the optional TIP /30 files such as the TIP/3D
Journal file, TIP /30 History file or TIP /30 Log file.

• You accept the default asSignment of the TIP /30 system identifier (this identifier is
used to construct unique file LBL names). The system identifier defaults to the LOCAP
name (if a GLOBAL lCAM is used) or the NE1WORK name (if a dedicated leAM is
used).

If all of the above conditions are n2! met, you can not select the "Quick Installation". You
must select item @ and proceed to ''Step 2B - Detailed Install" on page 10-22.

When the "quick installation" option is chosen, the TJ$INS program prompts you for a few
crucial items of information. The prompts are shown below (as an illustration) and are
described in detail following the example.

~2S 1
26 TJ$INS FUNCTION: ENTRY LEVEL TIP/30 (TPS) INSTALLATION
27 TJ$INS THIS FUNCTION WILL RESULT IN A NEW TPS SYSTEM
28 TJ$INS BEING INST~LT,FD.

29?TJSINS ENTER LBL NAME OF TIP/30 RELEASE LIBRARY (YTIP)

ENTER LBL NAME OF TIP RELEASE UBRARY (DEFAULT IS YTIP)

This prompt is requesting the desired LBL name of the TIP /30 release library. The
default LBL name is YTIP. System 80 Model 7E users have the TIP /30 release library
pre-loaded on the sysres volume with the LBL name "YTIP" and should take the
default response to this prompt.

If you have received TIP /30 on a release tape or diskettes, you must enter the LBL
name you wish to use for the TIP / 30 release library.

The recommended "LBL name is constructed like this:

TIP.id.RELEASE

Where "id" represents the system identifier for this TIP /30 system (the identifier
defaults to the LOCAP name for a GLOBAL lCAM, or the lCAM NE1WORK name if a
dedicated lCAM is used).

7002 3999-100 10-17

Installation - PART I

10-18

30 TJ$INS DOES TIP/30 RELEASE LIBRARY ALREADY EXIST? (Y/N)
.30 Y

31 TJ$INS RE-LOAD TIP RELEASE LIBRARY (NOW)? YIN
.31 11

32 TJ$INS ENTER PRIMARY DEFAULT VOLUME NAME FOR NEW TIP/30 FILES
.32 &941&6

33?TJ$INS ENTER SECONDARY DEFAULT VSN FOR NEW TIP/3D FILES (DEFAULT:A941A6)
.33

DOES THE RELEASE LIBRARY ALREADY EXIST? (YIN)

This prompt is asking whether or not the TIP /30 release library already exists. System
80 Model 7E users should reply "Y" (because the library YTIP on RES is shipped on
the RES volume for that hardware system). Other users reply 'N" to have the TJ$il'JS
job automatically load the release media or reply 'ry' to use a previously loaded release
library.

RE-LOAD TIP RELEASE LIBRARY (NOW) YIN

This prompt is asking whether or not you want to reload the contents of the TIP /30
release library right now. In most cases, the response is "N", but the option exists to
load tape or diskettes to an existing TIP /30 release library (in case you have received a
more recent version on tape or diskettes).

If a try' response is given to reload the TIP release library, the following prompt is
issued:

MEDIA OF TIP/30 RELEASE LIB IS TAPE? (YIN)

Reply '''{'' to this prompt to reload the TIP release library from a tape, otherwise reply
"N" to reload the library from diskettes.

ENTER PRIMARY DEFAULT VOLUME NAME FOR NEW TIP/30 FILES

This prompt is requesting the volume serial number of a disk that is to be primary disk
of choice for allocating TIP /30 system files. Reply with the volume serial number of a
disk drive that is currently mounted and will always be mounted when TIP /30 is to
run.

This prompt requires a response.

ENTER SECONDARY DEFAULT VSN FOR NEW TIP/30 FILES
(DEFAULT: xxxxxxxx)

This prompt is requesting the volume serial number of a disk that is to be an alternate
disk of choice for allocating TIP /30 system files. Reply with the volume serial number
of a disk drive that is currently mounted and will always be mounted when TIP/3D is
to run.

If a null response is given to this prompt, the TJ$il'JS job assumes that all of the TIP /30
system files are to be allocated on the primary disk drive (shown as the default value in
the prompt).

The TJ$INS job allocates the TIP /30 system files so that the files are intelligently
allocated on the one or two disk volumes available.

7002 3999-1 00

Installation - PART I

34 TJ$INS ENTER ICAM NETWORK NAME
~34 net2

3S TJ$INS ENTER ICAM NETWORK PASSWORD (NULL, 1-8 CHARS)
~3!

36 TJ$INS ENTER ICAM LOCAP NAME (4 CHARS, NULL=DEDICATED)
~36 t.t2

37 TJ$INS ENTER LEL NAME FOR JCS LIBRARY (DEFAULT=JT)
~37

38 TJ$INS ENTER VSN FOR FILE JT (DEFAULT:A941A6)
~38

ENTER lCAM NETWORK NAME

This prompt is requesting the name of the lCAM network that is to be used in
conjunction with TIP /30.

This prompt requires a response.

Enter the network name as it appears in the lCAM generation for your site (this is the
name on the CCA statement in the IeAM generation parameters).

ENTER lCAM NETWORK PASSWORD (NULL, 1-8 CHARS)

If your lCAM network was generated with a "password", supply that password as the
response to this prompt. If your IeAM does not have a "password", enter a null
~ponse.

ENTER lCAM LOCAP NAME (4 CHARS,NULL=DEDlCATED)

This prompt is requesting the name of the ICAM LOCAP that this TIP /30 system is to
use.

If you are using a dedicated leAM, enter a null response.

If you are using a GLOBAL IeAM enter the desired LOCAP name as it appears in the
lCAM generation for your site (this is the name on a LOCAP statement that specifies
TYPE=(TCD in the IeAM generation parameters).

ENTER LBL NAME FOR JCS UBRARY (DEFAULT=JT)

Each TIP /30 system requires a dedicated job control library for the TIP /30 job control
streams. This prompt is requesting the desired LBL name for that library. Since the LBL
name may need to be specified when running TIP /30 related jobs, a short LBL name is
recommended to minimize typing effort.

ENTER VSN FOR FILE xxxxxxxx (DEFAULT: xxxxxxxx)

This prompt is issued to request the volume serial number for the file name identified
in the prompt. In this context, the prompt is issued for the private job control library
identified in the previous prompt.

Enter the volume serial number for the disk where the job control library for this
TIP /30 system is to be located.

7002 3999-100 10-19

Installation - PART I

10-20

After answering the above prompts, the TJ$IN"S job submits and monitors a number of jobs
to:

• Allocate and initialize the various Tn' /30 system files

• Catalogue the TIP /30 system files in the operating system catalogue (YCAT)

• Create (if necessary) a job control library for the TIP /30 system and create in that
library a number of job control PROCS that are referenced by the various supplied
TIP /30 batch jobs.

The following prompt appears at the point where the SYSGEN library is to be allocated:

DOES SYSGEN UBRARY ALREADY EXIST? YIN

The answer to this prompt determines whether or not the installation procedure creates
a new SYSGEN library or uses an existing SYSGEN library.

If the reply is try", you are prompted for the LBL name of the existing SYSGEN library
to be used. If the existing SYSGEN library is not catalogued, you are prompted for the
VSN for that library so that it can be catalogued.

If the reply to this prompt is "N", the installation procedure creates a SYSGEN library
with the default file name (TIP.id.GEN).

When all of the files are allocated and prepared, a bootstrap version of TIP /30 is assembled
and the final job (TJ$Tn') is executed to run this bootstrap version of Tn' /30. At this point,
the quick installation of TIP /30 is complete - although the TJ$IN"S job remains running
until the bootstrap Tn' /30 job (TJ$Tn') terminates.

The TJ$Tn' job stream includes a PAUSE statement that is issued to permit you to wait
until the necessary job streams have finished running:

REPLY WHEN TIPGEN COMPLETED (xxn$GEN)

Reply to this message when the job xxxx$GEN has completed - "xxxx" represents the
system identifier (LOCAP or NETWORK name).

The last portion of the workstation or console output of the TJ$TIP job is similar to the
following:

58 TJ$INS
59 TJ$TIP
60 TJ$TIP
61 TJ$TIP
62 TJ$TIP
63 TJ$TIP
64 TJ$TIP
65 TJ$TIP
66 TJ$TIP
67 TJ$TIP
68 TJ$TIP
69 TJ$TIP
70 TJ$TIP
71 TJ$TIP
72 TJ$TIP
73 TJ$TIP
74 TJ$TIP
75 TJ$TIP

JOB TJ$TIP STARTED.

* *
* TIP / 3 0 V E R S ION 4. 0 *

*

TI01 USING TCA=BOOT40
TI03 USING LOCAP=TST2
TI04 USING NET=NET2
JC01 JOB TJ$TIP EXECUTING JOB STEP TB$TIPOO #001 11:20:23
TI001 TIP/30 INITIALIZATION ALLINSON-ROSS CORPORATION
TI152 TIP/30 VERSION: 4.0 C40RO-000 TCA MODULE: BOOT4000
TI145 TIP$CAT 5% FULL, 0% RECORDS NOT AT HOME POSITION
T1145 TIPSMCS 0% FULL, 0% RECORDS NOT AT HOME POSITION
TI149 736K ALLOCATED FOR PAGED MEMORY (PROGRAMS)
TI079 TIPSRNDM - 0 BLOCKS IN USE
~I002 89/09/27 - 11:21:02 TIP/30 READY FOR TST2 TIP30
TI035 WEDNESDAY SEPTEMBER 27 1989 AT 11:21:02

7002 3999-1 00

Installation - PART I

Of course, some of the details may vary depending on your choice of rCAM network name,
LOCAP name and so on.

At this point, two jobs are running:

1. TJ$INS (the installation job) which executed the bootstrap TIP /30 system

2. TJ$TIP - the bootstrap TIP /30 system.

The TJ$INS job waits for the job TJ$TIP (TIP /30) to terminate.

The next step is to LOGON the bootstrap version of TIP /30 to complete Part II of the
TIP /30 installation procedure (the online portion). Proceed to "10.2. Installation - PART
II" on page 10-24.

7002 3999-1 00 10-21

Installation - PART I

10.1.3. Step 28 - Detailed Install

10-22

This section describes the installation procedures that are followed when a "quick
installation" cannot be used.

When a ''Standard Installation" is selected from the main menu of the TJ$INS job, the
following prompts appear:

12 TJ$INS
13 TJ$INS
14 TJ$INS
lS TJ$INS

.. 15 Y
16 TJ$INS

.. 16
17 TJ$INS

.. 17 Y
18 TJ$INS

.. 18 n
19?TJ$INS

.. 19 n

FUNCTION: ENTRY LEVEL TIP/30 (TPS) INSTALLATION
THIS FUNCTION WILL RESULT IN A NEW TPS SYSTEM
BEING INSTALLED.
PERFORM THIS FUNCTION? YIN

ENTER LBL NAME OF TIP/30 RELEASE LIBRARY (YTIP)

DOES TIP/30 RELEASE LIBRARY ALREADY EXIST? (YIN)

RE-LOAD TIP RELEASE LIBRARY (NOW)? YIN

USE DEFAULT SIZES FOR TIP/30 SYSTEM FILES? YIN

,,---~
In general, the prompts are similar to the prompts issued for the quick install, except that
you may be prompted for the sizes for individual files and you may be prompted for the
desired VSN for individual files depending on your response to the last question shown
above. Another difference is that some of the TIP /30 files are optional (for example, the
TIP /30 Journal file - TIP$JRN)i you will be prompted to decide whether or not such
optionai files are to be allocated at this time.

Remember, at any prompt you may issue any of the global "@" commands that are
available, such as: @VOL, @HELP, etc.

As the prompts are answered, the TJ$INS job submits and monitors jobs to:

• Allocate and prepare the various TIP /30 system files

• Catalogue the TIP /30 system files in the system catalogue (YCA T)

• Create a job control library for the TIP /30 system and create in that library a number of
job control PROCS that are referenced by the various supplied TIP /30 batch jobs.

When all of the files are allocated and prepared, a bootstrap version of TIP /30 is assembled
and the final job (TJ$TIP) is executed to run this bootstrap version of TIP /30. At this point,
the batch portion of the installation of TIP /30 is complete - although the TJ$INS job does
not terminate until the job TJ$TIP terminates.

7002 3999-1 00

Installation - PART I

The workstation or console output of the TJ$TIP job stream will look something like this:

54 RV3732
55 RV3732
56 TJ$INS
57 RV3732
58 TJ$INS
59 TJ$TIP
60 TJ$TIP
61 TJ$TIP
62 TJ$TIP
63 TJ$TIP
64 TJ$TIP
65 TJ$TIP
66 TJ$TIP
67 TJ$TIP
68 TJ$TIP
69 TJ$TIP
70 TJ$TIP
71 TJ$TIP
72 TJ$TIP
73 TJ$TIP
74 TJ$TIP
75 TJ$TIP

TJ$TIP: LOCAP-TST2, NETzNET2, ID=TST2
TJ$TIP: ASSOCIATED ALT JCS LIB:JT
JOB TJ$TIP COMPLETED BY RUN PROCESSOR.
R03 RUN PROCESSOR SUCCESSFULLY PROCESSED TJ$TIP
JOB TJ$TIP STARTED.

* 'If

* TIP /30 V E R S ION 4. 0 *
* *

TI01 USING TCA=BOOT40
TI03 USING LOCAP=TST2
TI04 USING NET-NET2
JCOl JOB TJ$TIP EXECUTING JOB STEP TB$TIPOO i001 11:20:23
TIOOl TIP/30 INITIALIZATION ALLINSON-ROSS CORPORATION
TI152 TIP/30 VERSION: 4.0 C40RO-OOO TCA MODULE: BOOT4000
TI145 TIP$CAT 5% FULL, 0% RECORDS. NOT AT HOME POSITION
TI145 TIP$MCS 0% FULL, 0% RECORDS NOT AT HOME POSITION
TI149 736K ALLOCATED FOR PAGED MEMORY (PROGRAMS)
~Tn7q TIP$RNDM - 0 BLOCKS IN USE
~X002 89/09/27 - 11:21:02 ~IP/30 READY FOR TST2 TIP30
TI035 WEDNESDAY SEPTEMBER 27 1989 AT 11:21:02

Of course, some of the details may vary depending on your choice of lCAM network name,
LOCAP name and so on. The important line to look for is the highlighted one shown in the
above display - the TIP /30 ready message.

At this point, two jobs are running:

1. TJ$I!\rS (the installation job) which executed the bootstrap TIP /30 system

2. TJ$Tll' - the bootstrap TIP /30 system.

The TJ$IN'S job waits for the job n$TIP (TIP /30) to terminate.

The next step is to LOGON the bootstrap version of TIP /30 to complete Part II of the
TIP /30 installation procedure (the online portion). Proceed to tt10.2. Installation - PART
II" on page 10-24.

7002 3999-100 10-23

Installation - PART II

10.2. Installation - PART II
Once the bootstrap version of TIP /30 is generated, TIP /30 is executed to provide a
platform for the final installation steps that are performed using online programs and
utilities.

10.2.1. Accessing the TIP/30 System

This section describes how to logon the bootstrap TIP /30 system. The assumption is made
that the bootstrap TIP /30 system (job name rr$TIP) is executing.

To logon the TIP /30 system, you must use a terminal that is able to access the TIP /30
system. Access to the TIP /30 system may vary depending on terminal type, type of rCAM,
and whether or not a DCP (Distributed Communications Processor) is involved.

The following points provide guidelines for accessing the TIP/3D system:

• \"IORKSTATIO~.j ~ Before attempting to connect to TIP /30, you must first logon 05/3
Interactive Services. Once that task is complete, enter system mode and enter a $$SON
command to connect to the TIP /30 LOCAP. When the connection is made with TIP /30,
the workstation side of the terminal is connected to TIP /30. Proceed to "10.2.2. Logon
TIP /30" on page 10-25.

• Dedicated lCAM - In a dedicated ICAM environment, the terminals that are defined
in the network that TIP /30 is using should be polling and directly available for use.
Proceed to "10.2.2. Logon TIP /30" on page 10-25.

• GLOBAL lCAM - In a GLOBAL ICAM, it may be necessary to make a connection
from the tenninal chosen to the TIP /30 LOCAP by issuing a $$SON command.
Terminals may optionally be hard assigned to the TIP /30 LOCAP by using a SESSION
statement in the lCAM generation parameters. In that case, those terminals are
considered to be permanently connected to the TIP /30 LOCAP and a $$SON command
is not needed. Issue a $$SON to the LOCAP name that TIP /30 is using and proceed to
"10.22. Logon TIP /30" on page 10-25.

10-24 7002 3999-100

Installation - PART II

10.2.2. Logon TIP/30

Once a connection is made to the TIP /30 system, a TIP /30 ready message is nonnally
displayed (the ready message may not appear in a dedicated IeAM environment):

«< TIP/30 Version 4.0 C40RO-OOO Ready for xxxxxxxxxxxx yy/mm/dd hh:mm »>

* BOOT STRAP SYSTEM *
* BOOT40 *

To logon the TIP /30 system, press any function key, the IXMlTI key, or the IMSG WAIT I key.
The TIP /30 system responds with a prompt like the following to permit you to logon the
TIP /30 system:

WEDNESDAY AUGUST 27 1989 Please logon

Allinson-Ross Corporation T1F/~U Logon
Enter:User-Id/Password/Account-No Site = xxxxxxxxxxxx
~

The cursor is positioned immediately to the right of the start of entry character on the
bottom line. The prompt instructs you to enter a userid followed by a password.

The TIP /30 system irtitially contains a sLngle defined userid and password. Enter the
following information and press the ~ key:

WEDNESDAX AUGUST 27 1989 Please logon

Allinson-Ross Corporation TIP/30 Logon
Enter:User-Id/Password/Account-No Site = xxxxxxxxxxxx
~'!IP30/ADHIH

Note: If your response is not accepted (spelling problem?), the LOGON prompt appears again.
If your response takes more than 60 seconds, the screen is erased. If this happens, start this
logon procedure over again (by pressing a function key, the I MSG WAITJ key, or the IXMlTI

key).

Once the logon userid and password have been correctly entered, the standard TIP /30
system prompt is displayed on the tenninal:

The logon to the TIP /30 system is now complete.

7002 3999-100

)

10-25

Installation -- PART n

10.2.3. Step 3 - Online Install

10-26

Once the bootstrap version of TIP /30 has been initially generated, and you have logged on
TIP /30 according to the information provided in the previous section, the installation
procedure is continued using an online program.

To continue the installation procedure, enter the following on the Til' /30 command line
and press the (!!!J key:

The INSTALL program displays the following main menu:

-------=-- Allinson-Ross Corporation ==========
TIP/30 Online Installation

You may use Function keys instead of numbers
to select functions. (ie F1 - 1)

Main menu

1. Entry Level TIP/30 (TPS) initial install menu
2. IMS Conversion menu
3. Product menu
4. TIP 130 Update 'install menu
8. Help
9. Quit program (or MSG-WAIT)

Enter number for corresponding function. ~

)

The program expects a choice to be entered. You may enter the desired numeric value and
press the ~ key, or press the function key to select the corresponding item. The
I MAd WIlT) key corresponds to the quit function for this and all subordinate menus.

The main menu selections offer the following choices:

1. Entry Level TIP/30 (TPS) initial install menu

Selection 1 displays a subordinate menu of functions that are available for the initial
installation of the Transaction Platform System (TPS).

2. Il\1S Conversion menu

Selection 2 displays a subordinate menu of functions that are available to assist in the
conversion of ~neration parameters from an existing IMS system.

3. Product menu

Selection 3 displays a subordinate menu of functions that are available to install and/ or
maintain other products related to TIP /30

4. TIP/30 Update install menu

Selection 4 displays a subordinate menu of functions that are available for
miscellaneous post-installation activities.

7002 3999-100

8. Help

Selection 8 displays help information about this menu.

9. Quit program

Selection 9 terminates the online lNSTALL program.

7002 3999-100

Installation - PART II

10-27

Installation - PART II

10 .. 2 .. 4. Step 4 - Load Screen Formats

10-28

Many of the utilities supplied with the TIP /30 system use TIP /30 screen formats to interact
with the terminal. These screen formats are supplied in the TIP library and must now be
loaded into the TIT' /30 screen format file (LFD=TIP$MCS).

To perform this function, select item number 1 from the main install menu:

---------- Allinson-Ross Corporation ------=--­
TIP/30 Online Installation

You may use Function keys instead of numbers
to select functions. (ie F1 - 1)

Main menu

1. Entry Level TIP/30 (TPS) initial install menu
2. IMS Conversion menu
3. Product menu
4. TIP / 3-0 Update install menu
8. Help
9. Quit program (or MSG-WAIT)

Enter number for corresponding function. ~l

As a resuit, the foiiowing subordinate menu appears:

a= ________ Allinson-Ross Corporation 2=========
TIP/30 Online Installation

Initial Install TIP/30 menu

1. Initial install of TIP/30 (Define screens)
2. Install TIP/30 Sample Program file/data (TSP)
8. Help
9. Quit menu 'return (or MSG-WAIT)

Enter number for corresponding function. ~l

Item number 1 is the action required to load the TIP /30 screen formats.

After selecting item 1, the display will output one line for each screen format that is
restored from the TIP library. When all screens have been restored, control returns to the
menu shown above.

7002 3999-1 00

Installation -- PART II

10.2.5. Step 5 -- Load Sample File Data

The sample program supplied with the TIP /30 system uses a small MIRAM file
(LFD=TIP$TSP) to contain sample data to demonstrate how the program operates.

To load data into the TIP$TSP file, select item number 2 from the Initial Install TIP /30
menu:

---------- Allinson-Ross Corporation -=-~--==-=
TIP/30 Online Installation

Initial Install TIP/30 menu

1. Initial install of TIP/30 (Define screens)
2. Install TIP/30 Sample Program file/data (TSP)
8. Help
9. Quit menu & return (or MSG-WAIT)

Enter number for corresponding function. ~2

After selecting item 2, a procedure is run to load a small number of records into the
TlP$TSP file. When the file has been loaded, control returns to the menu shown above.

7002 3999-100 10-29

Installation - PART II

10.2.6. Step 6 - Convert IMS Parameters

10-30

This step is required if you currently run the Information Management System (IMS)
product from Unisys and you wish to migrate the IMS transactions to the TIP /30 system.

Before attempting this, you must copy the IMS configuration parameters to the TIP /30
SYSGEN library. The default LBL name of the SYSGEN" library is ''TIP.id.GEN"'' (!lid" is the
system identifier) unless an alternate name was specified during a detail install.

The install main menu indicates that there is a subordinate menu for the conversion of IMS
ba~ systems (item 2):

---------- Allinson-Ross Corporation -=-=======
TIP/30 Online Installation

You may use Function keys instead of numbers
to select functions. (ie F1 - 1)

Main menu

1. Entry Level TIP/30 (TPS) initial install menu
2. IMS Conversion menu
3. Product menu
4. TIP/30 Update install menu
8. Help
9. Quit program (or MSG-WAIT)

Enter number for corresponding function. ~2

The following subordinate menu is displayed:

---------- Allinson-Ross Corporation ~=~-~=====
TIP/3Q Online Installation

IMS Conversion menu

For IMS conversion, do these steps in order.
1 Run IMSCNV transaction to begin IMS conversion
2. RV job to copy IMS load modules to TIP$LOD
3. Run CAT to process IMS generated statements
8. Help --- Please read - note new TIPGEN.
9. Quit menu & return (or MSG-WAIT)

Enter number for corresponding function. ~

To convert the IMS parameters to the corresponding TIP /30 parameters, perform steps 1
through 3 in sequence.

Note: ConverSion of IMS parameters does not create a loadable TIP /30 for these parameters.
TIP/3D must be generated after the conversion process is complete. For a description,
please select option 8 (HELP) of the IMS Conversion Menu.

7002 3999-100

Installation - PART II

Note: Please see the IMS to TIP/3D Conversion Restrictions in the System Release Description
(SRD) for your operating system.

7002 3999-100 10-31

Installation - PART II

10.2.7. Step 7 -- Customize TJ$TIP Job Stream

10-32

The job stream TJ$TIP that is executed to run the bootstrap TIP /30 system must be cloned
to create the job stream that will be regularly used to execute TIP /30. Although the TJ$TIP
jobstream has a number of global symbols that can be overridden, we recommend that a
customized version of the job be created - this job is often called "TIP" or IlTIP30", but you
are free to choose any name you wish.

At some sites, various housekeeping activities are required before and possibly after
TIP /30 is run. This cloned job stream is an ideal place to execute such job steps.

Until such time as a customized version of this job stream is created, you may start TIP /30
by running the TJ$TIP job stream directly:

RV TJ$TIP:JT

Note: This RV command assumes that the default TIP/3D job control library LBL name was .
chosen (LBL:JT).lf this is r..ot the case, crUlnge ":JT" to the LBL 1".ame th.at was chosen.

The TJ$TIP job contains a number of globals variables that may be overridden on the RV
command. The default value for all of the global symbols are established by the initial
installation dialogue with the job TJ$INS; the initial global values are set in a job control
proc named "TIPFILES It located in the same library as the TJ$TIP job stream.

An important global defined in the TJ$TIP job is TCA=. This global specifies the name
assigned to a set of TIP/3D generation parameters and controls which of many potential
"generations" of TIP/3D that is to be executed. For further information, see the
documentation of TIP/3D System Generation.

7002 3999-1 00

Installation - PART n

10.2.8. Step 8 - Shutdown TIP/30

When you have finished performing the installation steps, TIP /30 may be shutdown by
issuing the following command at the TIP /30 command line:

~P'?"BOJ 1

The EOJ transaction begins an orderly TIP /30 system shutdown. If TIP /30 does not begin
shutdown within approximately one minute, there may be terminals connected to the
TIP /30 system that are in middle of a transaction. To force those users off the TIP /30
system, issue the following operator command from the system console:

UNS TJ$TIP STOP

The STOP command terminates TIP /30 immediately.

7002 3999-100 10-33

TIP/30 Impact on Users

10.3. TIP/30 Impact on Users
The installation of TIP /30 may have some observable impact for tenninal operators.
Although all existing IMS action programs will perform as they did under IMS, other
aspects of TIP /30 may mean slight changes for user departments.

The security system is an important feature of TIP /30. You may choose not to implement
TIP /30 security at this time. If you do want TIP /30 security, a userid and logon password
must be established for every user of the system. Both the user-id and password are from
one to eight characters in length, and must start with a letter.

If you assign user-ids, be sure to make an accurate list of each user-id and the associated
password.

10.4. Multiple TIP/30 ~ystems

10-34

This section provides information for sites which plan to run more than one TIP /30 system
on a single processor.

To be able to run more than one TIP /30 system (or a combination of Unisys IMS and
TIP /30 systems), it is necessary to run a Global rCAM. A Global rCAM permits the
definition of a number of LOCAPs - each of which represents an application that uses
ICAM services.

For an e..y..a.mple of the generation parameters for a Global lCAM, please refer to ''Example
lCAM Generations" on page 10-10.

Each TIP/3D system must be assigned a unique LOCAP name that it will use (the LOCAP
name that a TIP /30 system uses is normally specified in the job control statements that
execute that TIP / 30 system).

Each TIP /30 system MUST be a free-standing system - it must have unique TIP /30
system files for its operation. The following TIP /30 system files - if they are used - must
be unique for each TIP/3D system and absolutely cannot be shared between TIP /30 systems
under any circumstances:

• TIP$BAK - Backup File

• TIP$B4 - Quick Before Image File

• TIP$CA T - Catalogue

• TIP$DUMP - TIP/3D Dump File

• TIP$HST - Journal History File

• TIP$JCS - Job control library

• TIP$JRN - Journal File

• TIP$LOG - Log Tape

• TIP$MCS - Screen Format File

• TlP$RNlJM - Random Fiie

• TIP$SW AP- Swap File

7002 3999-1 00

Multiple TIP/30 Systems

• TIP$TOM - IMS Trace Output File

The TIP /30 files that are 05/3 SAT Libraries (namely: Til' and TIP$LOD) may be shared
across multiple TIP /30 systems, but care must be taken to avoid conflicting load module
name usage in the TIP$LOD library. Of course, this also assumes that both TIP /30 systems
are at identical revision levels.

7002 3999-100 10-35

Glossary

This section supplies working definitions of some of the common terms used in the TIP /30
documentation. The definitions are not intended to be rigorous; they are explanations
within the context of the TIP /30 system.

A
ACK

ASCll

Acknowledge(ment). A signal indicating that error detection logic has failed.

American Standard Code for Information Interchange. A set of character
representations that associates single byte binary values with external graphic
characters. See also ''byte'' and "EBCDICtI. The ASCII character set is typically
used by conununications hardware for data transmission.

asyncl:t.ronous

Happening simultaneously but independently.

auxiliary device

B
Background

A peripheral unit (such as a printer, diskette, or cassette) attached to a
tenninal.

As in ... process. A background process is a TIP /30 online transaction that is
running but not associated with a physical terminal.

Background processes are non-interactive programs.

batch Not interactive.

bi-synch Bi-synchronous; a communications protocol which implies that traffic is
synchronized in both directions byacknowledgement messages.

bit bucket A mythical and cavernous receptacle which is provided by hardware
manufacturers to hold any data which is deliberately or accidentally mislaid
during data manipulation.

For example, digits to the right of the decimal place that are truncated by a
move operation fall into the bit bucket.

bypass A tenninal that has an identifiable polling address but typically has no
keyboard or display screen. Bypass terminals are often utilized to perform
printing operations since they do have memory and auxiliary device
capability.

7002 3999-1 00 Glossary-1

Glossary

c

The smallest addressable unit of storage in memory. A byte is composed of 8
bits (binary digits). The value of a byte ranges from zero to 255 (decimal) or 0
to FF (hexadecimal). Each of the characters in the computer's character set
(either ASaI or EBCDIC) may be stored in a byte using a unique
representation from the 256 possible binary values that may be stored in a
byte.

catalogue (05/3)

A directory of file names and corresponding volume label location
information (stored in file YCA TI.

catalogue (TIP/30)

CRT

cursor

D

A directory of information about users, transaction programs, and online files.

Literally, Cathode Ray Tube. Often used to refer to the dispiay screen of a
computer terminal.

A current position marker on a CRT. Usually a blinking rectangle or underline
character that reminds the user where the next character will appear on the
screen.

Direct Access

A file organization technique that numbers fixed size records using integers
from 1 to the highest record number.

Doubleword

On 05/3 hardware a doubleword is 8 consecutive bytes beginning on an
address that is evenly divisible by 8 <the right most 3 bits of the address are
zero).

An area is said to be "doubleword aligned" if it begins at an address that is
evenly divisible by 8.

COBOL aligns all WORKING-STORAGE level 01 items on a doubleword
boundary.

TIP /30 aligns all of the external work areas for a transaction program (pm,
CDA, MCS, WORKAREA) on a doubleword boundary.

dynamic file

Glossary-2

A TIP /30 pseudo-file that has the characteristics of direct access.

May be created, manipulated and erased (scratched) on demand by TIP /30
transaction programs.

7002 3999-1 00

Glossary

E
EBCDIC Extended Binary-Coded Decimal Interchange Code. A set of character

representations that associates single byte binary values with external graphic
characters. See also "byte" and "ASCII". The EBCDIC character set is typically
used by the CPU for internal data representation.

edit buffer A particular type of TIP /30 dynamiC file that is used by the TIP /30 text
editors as a work space for editing.

element The name of a library member or module.

F
FCS File Control System. TIP /30 interface between programs and on-line files.

Foreground

Fullword

As in ... process. A foreground process is a TIP /30 online transaction that is
running at a physical terminal.

On 05/3 hardware a fullword is 4 consecutive bytes beginning on an address
~.at is eve!'ly divisible by 4 (the "right most 2 bits of the address are zero).

An area is said to be "fullword aligned" if it begins at an address that is evenly
divisible by 4.

A fullword can be defined in COBOL by specifying a PICTURE of 9(6)
through 9(9) CaMP SYNC.

Function Key

H
Halfword

A key on a UNISCOPE terminal keyboard (numbered Fl through F22) which
signals the host computer when pressed. NO data is sent from the terminal.

On 05/3 hardware a halfword is 2 consecutive bytes beginning on an address
that is evenly divisible by 2 (the right most bit of the address is zero).

An area is said to be ''halfword aligned" if it begins at an address that is evenly
divisible by 2.

A halfword can be defined in COBOL by specifying a PICI'URE of 9(1)
J..uL.~"gh alA \ rrn • .rn C:Vl\.Tr UUU l 7\"7:1 ,-,-,J.VU- ...,

hardware The physical computer equipment.

hashing A technique of computing a key from a value. Typically used to map a large
number of values onto a smaller set of values.

70023999-100 Glossary-3

Glossary

Host computer

The main computer; the computer which is running TIP /30.

I
Il\{S A Unisys software product that provides an execution environment for

transaction programs.

Il\{S emulation

index

interactive

ISAM

K

A facility of TIP/3D which enables a transaction program written to use the
facilities of IMS to run under control of TIP /30 without change or
recompilation.

A collection of keys and associated location information that can be searched
to locate an item with a given key.

Operating in "question and answer" mode.

An interactive program presents decisions for a user to make and acts
according to the response.

Indexed Sequential Access Method. A file organization method that allows
access to records either randomly by a single key or sequentially by a single
key.

Records may be fixed length or variable length (in the Unisys 05/3
implementation).

key A portion of the data in a record which is used to index the record.

L
LFD The name of a file as stated in the Job Control information for the job which

refers to the file.

LFN Logical File Name. The name by which a TIP /30 program refers to a file. The
logical file name is associated with the LFD name of the file by TIP /30
catalogue information.

M
MIRAM

Glossary-4

Multiple Indexed Random Access Method. File organization method that is
similar to ISAM with the exception that there may be from one to five keys.

7002 3999-1 00

MSc;..WAlT

multi thread

N
native mode

Glossary

Key on UNISCOPE terminals that signals the host computer when pressed
(NO data is sent from the terminal).

A number of transactions concurren~y sharing resources.

A program that uses TIP /30 facilities that is NOT running under the control of
the TIP /30 IMS/90 emulator is said to be running in this mode.

NAK Negative acknowledgement.

o
OS/3 Operating System 3. The control software supplied by Unisys for use on Series

90 and System 80 machines.

p
prefix notation

s

A notation convention adopted by most TIP /30 utilities to allow selection by
prefix.

Eg: '''ABCt means all names with prefix "ABC"

Eg: "!XYZ" means all names NOT with prefix '?aZ"

An imbedded "?" or "." character implies that the corresponding position may
be occupied by any character (for example: '" A??B matches A12B or AXYB).

single thread

A method of transaction processing which allows one ~ansaction to
monopolize resources until completion of the transaction.

SOE (character). Start Of Entry character. On UNISCOPE terminals a character
(shaped like a pennant blowing from left to right) which marks the left most
boundary of data to be transmitted to the host computer.

Example: ~

software The programs which control the operation of the hardware or other
(application) programs.

7002 3999-100 Glossary-5

Glossary

T
TPS Transaction Platfonn System. A significant subset of the TIP /30 system that is

included with System 80 Model 7E processors and available as a priced item
for other 05/3 hardware platfonns.

transaction

TIP

TIP/30

u
unsolicited

x
XMIT

Glossary-6

A program that executes under the control of TIP /30.

SeeTIP/30.

Transaction Interface Processor - a system software product of Allinson-Ross
Corporation.

As in ... message. A message sent to a terminal that is not necessarily a
response to a previous input message.

In effect, a message sent gratuitously by another process in the system which
arrives unexpectedly.

An unsolicited message is queued by rCAM until such time as the terminal
operator presses the MSG-W AIT key (at which time ICAM will display the
message on the tenninal).

Transmit. A key on UNISCOPE terminals that sends data from the CRT to the
host computer.

7002 3999-1 00

Appendix A
Programming Reference

The following table may be used to convert decimal numbers (base 10) to and from
hexadecimal numbers (base 16).

o
1

2

3

4

5

6

Table A-1. Hexadeclmal- Decimal Conversion

o 0 o 0 o
1 048 576 1 65 536 1 4096

2097152 2 131 072 2 8192

3 145 728 3 196608 3 12288

4 194304 4 262 144 4 16384

5 242 880 5 327 680 5 20480

6 291 456 6 393 216 6 24576

o
1

2

3

4

5

6

.. ' ::::::':::::.:-'". :.

o 0

256

512

768

1024
1 ,,\on
.1 ~ou

1536

1

2

3

4

5

6

. '1:::,-"",::::'

I::::/~::'

o o 0

16 1 1

32 2 2

48 3 3

64 4 4

80 5 5

96 6 6

7 7 340 032 7 458 752 7 28 672 7 1 792 7 112 7 7

8 8 388 608 8 524 288 8 32 768 8 2 048 8 128 8 8

9 9437184 9 589824 9 36864 9 2304 9 144 9 9

A 10485 760 A 655360 A 40960 A 2560 A 160 A 10

B 11534336 B 720896 B 45056 B 2816 B 176 B 11

C 12 582 912 C 786432 C 49 152 C 3 072 C 192 C 12

D 13 631 488 D 851 968 D 53 248 D 3 328 D 208 .D 13

E 14 680 064 E 917 504 E 57 344 E 3 584 E 224 E 14

F 15 728 640 F 983 040 F 61 440 F 3 840 F 240 F 15

7002 3999-100 A-1

Programming Reference

Table A·2. Powers of 2

I:::::{:;::::: ~::::: : ::::'::::::;;;:;:;:::: ::;:::.:j::: ,:::: .. :::::;:::::;:::::::::::

1'::::: ::::::::::::::::;:::. :.:::c:::::;.;::.::::::.::.:::.·::.:::

0 1 11 2048 22 4194304

1 2 12 4096 23 8388608

2 4 13 8192 24 16m216

3 8 14 16384 25 33554 432

4 16 15 32768 26 67108 864

5 32 16 65536 27 134 217728

6 64 17 131072 28 268435456

7 128 18 262144 29 536870912

8 256 19 524288 30 1073 741824

Q r:;,,,
20 1 048576 31 2147483648 J 'OJ A"-

10 1 024 21 2 097152 32 4 294967296

Table A-3. Powers of 16

- -

1 16 9 68 719 476 736

2 256 10 1099 511 627776

3 4096 11 17 592 186 044 416

4 65536 12 281474976710656

5 1048576 13 4503599627370496

6 16777216 14 72 057 594 037 927 936

7 268 435 456 15 1 152 921 504 606 846 976

A-2 7002 3999-1 00

Programming Reference

The following table is the character code table for the American Standard Code for
Infonnation Interchange (ASCll).

Table A-4. ASCII Code Chart

::.: [,:J:

i:\:.~· nul soh stx etx eot enq ad< bel bs ht 1£ vt ff cr so si

I:~..:~ dIe del dc2 dc3 de4 nak syn etb can em sub esc fs gs rs us

sp # $ % & + /

o 1 2 3 4 5 6 7 8 9 < = > ?
:.,:< @
.. ::,::: A B c o E F G H I J K L M N a

".% p Q R s T u v w x y z \

a b c d e f g h k m n o

p q r s t u v w x y z del

sp # $ % & + /
o 1 2 3 4 5 6 7 8 9 < = > ?

A B c o E F G H J K L M N a
Q R s T u v w x y z \

a b c d e f g h k m n o

.~:: p q r s u v w x y z del

.. ~ .. - not defined -

,~ - not defined -

7002 3999-100 A-3

Programming Reference

A-4

The following table is the character code table for the Extended Binary-Coded Decimal
Interdlange Code (EBCDIC).

Table A-S. EBCDIC Code Chart

.::.~ nul soh stx etx ht del vt ff cr so si

Il:::~ dIe del dc2 dc3 bs can em fs gs rs us

ds sos is If etb esc enq ack bel

syn eat dc4 nak sub

[< (+ !

&] $ *)

/ % > ?

@ =
a b c d e f g h

k 1 m n 0 p q r

s t u v w x y z

A B C D E F G H I

J K L M N 0 P Q R

5 T U V W X Y z
1 2 345 6 7 8 9

7002 3999-1 00

Index

$-sign
useof 1-77

YCAT File Glossary-2
(05/3) Glossary-2
·B)1P 1-44,2-4,3-106,3-112
·MSf 1-44,2-4,3-106,3-112
.IN Files 1-75
TIP /30 Catalogue 3-161
TIP /30 Dynamic Files 3-1
TIP /30 Edit Buffers 3-1, 3-84
TIP /30 Flags 1-38
Tn' /30 LOGON program 2-5
TIP /30 program CALL to IMS program 1-72
TIP /30 transaction termination 1-28
@@DIE 1-80

A
Abort Condition Trapping 1-2
ACCEPT 1-15
Access Glossary-2
ACCess:

FILE Statement 4-28
ACCT= 1-15
Accuracy of time 1-15
ACK Glossary-l
Activation record 1-8
Active File Table 1-77,3-2,3-32,3-60,3-69,3-71,

3-77,3-98
Add Record To File 3-31
Adding bytes to WORK-AREA 1-26
PUrr 3-2,3-32,3-48,3~,3-69,3-71,3-77,3-98
PUrr=

Run-time Statement 6-5
TIPGEN Statement 4-7

AJ!rER Images 3-162
After Images 3-3
AJ!rER=

FILE Statement 4-28
.. aYfR LT.age 3-169
ALTRON 1-17

7002 3999-100

APB
Operator Command 9-3

APB/ALL
Operator Command 9-3

Applications
assembly language 2-1

ASO! Glossary-I, A-3
Assembly language applications 2-1
Assigning format names 2-10
asynchronous Glossary-1
Asynchronous process 1-2
A-sync.hronous process creation 1-44
Audit 3-25
AUTOIO=

FILE Statement 4-29
AUXdevices

connection 3-106
auxiliary Glossary-l
Auxiliary printer 2-45

B
B4=

TIPGEN Statement 4-8
BACK= 1-46, 1-47, 1-73
BaCK=

TIPGEN Statement 4-7
Background 1-13, Glossary-1

. Background process 1-73
use of 1-46

Background program 1-46
Background transactions 1-7
BACKPRI= 1-6
BackPRI=

Run-time Statement 6-5
TIPGEN Statement 4-7

BackPRI=b 1-7
Backup 8-14
Backup File 5-4
Banner1=

Run-time Statement 6-5

Index-1

Index

Banner2=
Run-time Statement 6-5

batch Glossary-l
Batch Journal File Access 3-168
Batch Journal File Cose 3-169
Batch Journal File Open 3-168
Batch Journal Fl1e Read 3-169
Beep 2-60
Before Image File 5-4
BEFORE Images 3-162
Before Images 3-3
BEFoRe:

FILE Statement 4-29
BEFR Image 3-169
bi-synch Glossary-l
BICS=:

CLUSTER Statement 4-43
BIND 3-157
bit Glossary-l
BLKsiZe:

FILE Statement 4-29
Blocking Records 3-140
BREAK 1-77
Break message 2-32
BREAK subroutine 2-32
Breakpoint

File 3-69
BU-lCAM-STATUS 3-118
BU-PAGE-LmGTH 3-118
bucket Glossary-1
BUFFER 3-123,3-126,3-128

TIPPRlNT 3-117
buffer Glossary-3
Buffer size

maximum 3-113
minimum 3-113

BUFfer:
FILE Statement 4-30

Buffering
TIPPRlNT 3-120

bypass Glossary-l
Bypass printer mechanism 3-107
BYPASS tenninal 2-4,2-10
Bypass Tenninal 1-13
Bypass tenr.iraal 4-46

Index-2

BYpass=
CLUSTER Statement 4-44

byte Glossary-2

c
Call TIPFCS 3-15
CALls

subroutine 2-7
Cancel Update 3-47
CAT 1-15
catalogue Glossary-2
Catalogue File 5-5
Catalogue Manager (CAT) 1-15
Cataloguing RPG programs 1-85
CATPooL=- --

Run-tim~ Statement 6-6
TIPGEN" Statement 4-8

Cause deliberate dump 1-2
CDA 1-4, 1-20
CDAFieid

CDA-OPTIONS 1-21
CDA-PARAMETERS 1-20
CDA-TEXT 1-21

CDA-OPTIONS 1-21
CDA-PARAMETERS 1-20
CDA-TEXT 1-21
CDM 3-10
CHAN 2-5
Check for operator break 2-32
OCS=

Run-time Statement 6-6
Oimbing the stack 1-8
CLOSE 3-35, 3-104

Data Management macro 3-60
Operator Command 9-3

Gose File 3-32
CLOSE Files 3-62
CLOSE Macro

Data Management 3-69,3-71
CLOSE Operation 3-128
Gose TIPPRINT Interface 3-128
CLOSE =

FILE Statement 4-31

7002 3999-1 00

CLose:
Run-time Statement 6-6

CLUSTER
BICS=: 4-43
BYpass: 4-44
Generation Statement 4-42
LFFF= 4-44
LoGoN= 4-44
NCS= 4-44
PRintLF= 4-44
PRintLPP=n 4-44
ReaDYmsg= 4-45
SLaVes= 4-45
SP= 4-45
TO'= 4-45
tennSiZe= 4-45
TermtYPe= 4-45
UNSoL= 4-45
XMlT= 4-46

CLUSTER generation statement 2-10
CLUSTER statement 2-5
COBOL

reentrant 1-26
COBOL programs 3-150
Coding suggestion 1-9
Combining transmissions 2-23
COMM=

Run-time Statement 6-6
Command file 1-75
Command processor (TCP) 1-76
Common carrier lines 2-2
Communications Codes 2-2
Composition of Edit Buffers 3-84
computer Glossary-4
Computer Logics

PEP Board 3-129
COMSToRe=

FILE Statement 4-31
Connecting AUX devices 3-106
Console Message

TIOOl 9-9
TIOO2 9-9
TIOO4 9-9
TIOO5 9-9
TIOO6 9-9

7002 3999-100

TIOO79-10
TIOO8 9-10
TI010 9-10
TI012 9-10
TI013 9-10
TI014 9-10
TI015 9-10
TI016 9-11
TI017 9-11
TI01S 9-11
TI019 9-11
TI020 9-11
TI021 9-11
TI024 9-11
TI025 9-11
TI026 9-12
TI027 9-12
TI028 9-12
TI029 9-12
TI030 9-12
TI031 9-12.
TI032·9-12
"""""'''''"' n of"" llU.j.j '-l.j

TI034 9-13
TI042 9-13
TI043 9-13
TI046 9-13
TI048 9-14
TIOSO 9-14
TI051 9-14
TI052 9-14
TI053 9-14
TI054 9-14
TI055 9-14
TI056 9-15
TI057 9-15
TI058 9-15
TI059 9-15
TI060 9-15
TI061 9-15
TI062 9-15
TI063 9-15
TI064 9-16
TI065 9-16
TI066 9-16

Index

Index-3

Index

TI076 9-16 TIl22 9-22
TI077 9-16 TIl23 9-22
TI078 9-16 TI124 9-22
TI079 9-16 TIl25 9-23
TIOSO 9-16 TI126 9-23
TIOSI 9-17 TI1279-23
TIOS3 9-17 TI128 9-23
TI084 9-17 TI129 9-23
TI085 9-17 TI130 9-23
TI086 9-17 TI131 9-23
TIOS79-17 TI132 9-24
TIOS8 9-17 TI133 9-24
TIOS9 9-17 TIl34 9-24
TI090 9-18 TI13S 9-24
TI091 9-18 TI136 9-24
TI092 9-18 TI137 9=24
TI093 9-18 TI138 9-24
TI094 9-18 TI139 9-24
TI09S 9-18 TI140 9-24
TI096 9-18 TI141 9-24
TI0979-19 TI142 9-25
TI098 9-19 TI143 9-25
TI099 9-19 TIl44 9-25
TIl00 9-19 TI14S 9-25
TI101 9-19 TI146 9-25
TII02 9-19 TI147 9-25
TII03 9-19 TI148 9-25
TI104 9-20 TI149 9-25
TI10S 9-20 TIlS0 9-26
TII06 9-20 TIlS1 9-26
TII07 9-20 TIlS2 9-26
TII08 9-20 TIlS3 9-26
TII09 9-20 TIlS4 9-26
TIII0 9-21 TIISS 9-26
TIl11 9-21 TIIS6 9-27
TI112 9-21 TIlS7 9-27
TI113 9-21 TIlS8 9-27
TIl14 9-21 TIlS9 9-27
TIllS 9-21 TI160 9-27
TI116 9-21 TIl61 9-27
TI117 9-21 TI162 9-27
TIl18 9-22 TIl63 9-27
TIl19 9-22 TIl64 9-27
TI120 9-22 TI16S 9-28
T1121 9-22 ,..,.,.-y .. // f'\ '-'0

11100 '-£.0

Index-4 7002 3999-1 00

TII679-28
TII68 9-28
TII69 9-28
TII70 9-28
TII71 9-28
TII72 9-28
TII73 9-28
TII74 9-29
TIl75 9-29
TII76 9-29
TII77 9-29
TIl78 9-29
TIl79 9-29
TI180 9-29
TII81 9-29
TII82 9-29
TI183 9-29
T1184 9-29
TIl90 9-30
TII9I 9-30
TII92 9-30
TI193 9-30
TI194 9-30
TI195 9-30
TI196 9-30
TI197 9-30
TI199 9-30
TI201 9-30
TI202 9-31
TI204 9-31
TI205 9-31
TI206 9-31
TI2079-31

CONSOLE Security 9-2
CONSOLE userid 9-2
Consolidated Data Management 3-10
Construction of prompt 2-36
Continuation prompts 2-30
CONTINUE=

Run-time Statement 6-6
Continuity Data Area (CDA) 1-4, 1-20
Control

delayed transfer 1-2
oroeram to program 1-2

Co~trcl. codes "2-1

7002 3999-100

Control page 2-46
specific setting 2-5
UNISCOPE tenninal 2-5

Convert Bits to Bytes 1-2
Convert Bytes to Bits 1-2
COP 3-106
Copy element

IMSTA174 3-150
TC-BITS 1-32, 1-33, 1-41
TC-CDA 1-20
TC-DCINP 2-49
TC-DOO 2-54
TC-DCOUT 2-49, 2-51
TC-DI 3-123
TC-DtvfSER 3-152
TC-DMSSP 3-154
TC-DMSST 3-150
TC-FCC 2-26
TC-FCS 3-17
TC-FDES 3-21,3-96
TC-FLAG 1-41
TC-GR1"S 1-48, 1-50
TC-JRN 3-163
TC-MCS 1-22,2-9
TC-PBUFR 3-118
TC-PCBUF 3-135
TC-PCFIL 3-131
TC-PONF 3-132
TC-PCREC 3-137,3-140
TC-PIB 1-11
TC-PLINE 3-68,3-121
TC-PRrNT 3-113

CRASH
Operator Command 9-3

Create asynchronous process 1-44
Creating screen fonnats 2-2
CRT Glossary-2
CURrency=

Run-time Statement 6-6
TIPGEN Statement 4-8

cursor Glossary-2
Cursor positioning 2-29

Index

CURSOR-MODS parameter 2-15,2-21,2-29

Index-5

Index

D
DA 3-58
DAM 3-2, 3-58
Data

default 2-15
input 2-7
output 2-7

Data area layout 2-2
Data Management CLOSE Macro 3-69, 3-71
Data Management CLOSE macro 3-60
Data Management OPEN 3-48,3-66
Data validation 2-20
DATE

Operator Command 9-4
Date 1-2
DAYCHANGE= 1-34
DBMS start up 3-149
DBMS= 4-8

Run-time Statement 6-6
TIPGEN Statement 4-8

ocr 3-106
Deadlock 2-19
DEBUG=

Run-time Statement 6-7
DEBUG=NQ 1-25
DEOMAL=

Run-time Statement 6-7
TIPGEN Statement 4-8

Default data 2-15
Default tenninal destination 2-10
Deferral of transaction end 1-28
Deferred error message 2-7
DEFOPEN=

Run-time Statement 6-7
Delay program execution 1-63
Delayed Internal succession 1-71
Delayed Transfer Control 1-36
Delayed transfer control 1-2
Delete Flag 3-5
Delete Record 3-33
DeLeTe=

FILE Statement 4-31
Deletion

Index-6

Logical Record 3-61
RCB 3-61

Delimiters
parameter 2-34

Delivery Notification 2-61
DEPART 3-:-157
Determining Key Information 3-44
device Glossary-1
Device Independent Control Character Codes

3-104
DIE

Operator Command 9-4
Direct Glossary-2
Direct Access 3-58
Direct communications I/O 2-48
Direct Transfer of control 1-52
Direct transfer of control 1-3
Display type fields 2-12
Distributed transaction 1-73
DLL 2-6
DLL utility program 2-6
DMCL Considerations 3-149
DML BIND 3-157
DML UNBIND 3-157
DMLP DUPL 3-150
DMname=

Run-time Statement 6-7
DMS 4-8,4-9
DMS Interface

Multi-thread 3-149
DMS Success Unit 3-157
DMS-STA TUS section 3-150
DMSAWT=

Run-time Statement 6-8
TIPGEN Statement 4-8

DMSCAT= 3-161
Run-time Statement 6-8

DMSRWT=
Run-time Statement 6-8
TIPGEN Statement 4-9

Dot-in files 1-75
Doubleword Glossary-2
Down line loaded format names 2-6
DOwn/line

Operator Command 9-4

7002 3999-1 00

DOwn/term
Operator Command 9-4

Dummy linkage items 1-5
DillvfP

Operator Command 9-4
Dump File 5-6
DUMPF

Operator Command 9-4
Duplicate Keys 3-9
dynamic Glossary-2
Dynamic File Characteristics 3-73
Dynamic Files 3-3,3-73
Dynamic re-specification of field attributes 2-26

E
EBCDIC Glossary-3, A-4
edit Glossary-3
Edit Buffer Composition 3-84
Edit Buffers

TIP/30 3-84
EDiTstrnp=

Run-time Statement 6-8
TIPGEN Statement 4-9

element Glossary-3
Elimination of VOL area 1-26
emulation Glossary-4
End Online Program 1-53
End Sequential Processing 3-34
EOJ 1-65

Operator Command 9-5
EOJOFF

Operator Command 9-5
Erasing screen 2-25
Error message 2-7
ESC Sequences and printing 3-122
Escape Codes and printing 3-122
ESCape=

Run-time Statement 6-8
TIPGEN Statement 4-9

ESCAPE=NO 3-160
ESETL 3-34
Example

transaction scheduling 1-6

7002 3999-1 00

Index

Example of FCC modification 2-27
Example of FCS-ACCESS and Dynamic Files

3-75
Example of FCS-OPEN and Edit Buffers 3-92
Example of FCS-OPEN and Library Elements

3-101
Example of program stack 1-9
Example of using screen formats 2-7
EXEC

Operator Command 9-5
Execution stack

program 1-8
Explicit transaction end 1-28
External succession 1-71

F
FaSTLoaD=

TIPGEN Statement 4-10
FCC

m character 2-26
n cb..aracter 2-26

FCC modification
example of 2-27

FCC modifications 2-26
FCC-MODS parameter 2-15,2-21
Fes Glossary-3
Fes errors 3-28
Fes Functions

Summary 3-2
Fes Interface Packets 3-19
FCS-ACCESS

and Dynamic Files Example 3-75
Dynamic ·Files 3-75

FCS-ADD
Direct Files 3-59
Edit Buffers 3-85
Indexed Files 3-31

FCS-ASSIGN
Dynamic Files 3-76

FCS-BACK 3-23
FCS-CLOSE

Direct Files 3-60
Dynamic Files 3-77

Index-7

Index

Edit Buffers 3-86
Indexed Files 3-32
Ubrary Elements 3-98
PC Ftle Transfer 3-144
Sequential Files 3-69
TIPPRINT 3-128

FCS-CREATE
Dynamic Files 3-78

FCS-DELETE
Direct Files 3-61
Edit Buffers 3-87
Indexed Files 3-33

FCS-ESETL 3-8, 3-34
Indexed Files 3-34

FCS-FLUSH 3-86
Direct Files 3-62
Edit Buffers 3-88
Indexed Files 3-35
PC File Transfer 3-143
TIPPRINT 3-126

FC5-GET 1-16
Direct Files 3-63
Dvnamic Files 3-79
Edit Buffers 3-89
Indexed Files 3-37-3-39
Indexed Files (Random) 3-37
Indexed Files (Read Duplicate) 3-39
Indexed Files (Sequential) 3-38
Ubrary Elements 3-99
PC File Transfer 3-137
Sequential Files 3-70

FCS-GETRN 1-18
Indexed Files 3-41

FCS-GETUP 1-16
Direct Files 3-64
Indexed Files 3-43

peS-HOLD 3-24
PC5-JOURNAL 3-25, 3-162
PC5-NEXT 1-16

Indexed Files 3-45
FCS-NOUP

Direct Files 3-65
Indexed Files 3-47
Ubrary Elements 3-100

'r""""" ,.......T-..,.., T
r~r1!!~

Index-8

Direct Files 3-66
Dynamic Files 3-81
Edit Buffers 3-90
Edit Buffers Example 3-92
Indexed Files 3-48
Ubrary Elements 3-101
Ubrary Elements Example 3-101
PC File Transfer 3-130
Sequential Files 3-71
TIPPRINT 3-111

FCS-PUT
Direct Files 3-67
Dynamic Files 3-82
Edit Buffers 3-93
Indexed Files 3-49
Libra..ry Elements 3-103
PC File Transfer 3-140
Sequential Files 3-72
TIPPRINT 3-120

FCS-RELEASE 3-26
FCS-SCRA TCH

Dynamic Files 3-83
Edit Buffers 3-94

FCS-SETL 3-8
Indexed Files 3-50

FCS-SETL-BOF
Indexed Files 3-52

FCS-SETL-EQ
Indexed Files 3-53

FCS-SETL-GT
Indexed Piles 3-55

PCS-SKIP
Indexed Files 3-57

FCS-11tE~ 1-16,3-27,3-160
FCSEX'Till'IT = 3-73
FCSxtent=

Run-time Statement 6-8
TIPG~ Statement 4-10

FOE5-CATALOG 3-21
FOES-FCS-CLASS 3-22
FOES-FCS-LOCK 3-22
FOES-PCS-PERM 3-22
FOE5-FCS-TYPE 3-22
FOES-PILE-NAME 3-21
FDES-PASSV/ORD 3=22

7002 3999-1 00

FDES-USERID 3-21
FEATURES=(OPCOM

OUTDEL V) 3-105
Field attributes

dynamic re-specification 2-26
modification 2-26

Field name
TEXT 2-23

Fields
display type 2-12

FILE
ACCess= 4-28
AFTER= 4-28
AUTOIO= 4-29
BEFoRe= 4-29
BLKsiZe= 4-29
BUFfer: 4-30
CLOSE= 4-31
COMSToRe= 4-31
DeLeTe= 4-31
FILesiZe= 4-32
Generation Statement 4-25
HoLD= 4-33
INDsiZe= 4-33
10= 4-34
JouRNaL= 4-34
KEY1= 4-35
KEY2= 4-35
KEY3= 4-35
KEY4= 4-35
KEY5= 4-35
KeyHoLD= 4-34
KeYLeN= 4-34
KeYLoC= 4-35
MuLTiSeQ= 4-35
OPEN= 4-36
OPTioNal= 4-36
PCYLofl= 4-36
PKEY= 4-37
POOL= 4-37
PRINTOV= 4-38
RCB= 4-38
ReCForM= 4-38
RECsiZe= 4-38
RESident= 4-38

7002 3999-100

USEFiLe= 4-39
VSEC= 4-39

File
SYSGm 5-3
TIP 5-3
TIP$B4 5-4
TIP$BAK 5-4
TIP$CAT 5-5
TIP$DUMP 5-6
TIP$HST 5-6
TIP$JC5 5-7
TIP$JRN 5-7
TIP$LOD 5-8
TIP$LOG 5-9
TIP$MCS 5-9
TIP$MSG 5-10
TIP$RNDM 5-10
TIP$SW AP 5-11
TIP$TOM 5-11
TIP$TSP 5-12

File Breakpoint 3-69
File Descriptor Packet 3-19,3-21
File Organizations Supported 3-2
File System Function Codes 3-17
FTILE-P~ 3-111,3-120,3-126
file-pkt 3-162
FiLeBufs=

TIPGm Statement 4-10
Filename 3-104
FiLePooL= 4-8,4-17

Run-time Statement 6-8
FTILES

Operator Command 9-5
Files

Dynamic 3-73
.IN 1-75

FILesiZe=
FTILE Statement 4-32

FileTab=
Run-time Statement 6-8
TIPGm Statement 4-11

Fill character 2-11
Fixed format message prefix 2-49
Fixed order parameter passing 1-4
FLAG

Index

Index-9

Index

Operator Command 9-5
Flag bits 1-32
FLUSH 3-104
Flush File 3-35
Flush Print Buffer 3-126
Force Program Dump 1-35
Force read screen 2-7
Foreground Glossary-3
Foreground transactions 1-7
Fonnat handler 2-2
Fonnat names

down line loaded 2-6
Fonnat of Calls to TIPFCS 3-15
Format table 2-6
FORTRAN Skip Codes 3-122
FREE \A·lITH CHECKPOll'-IT 3-160
FREEM= 3-90
FREEmem=

Run-time Statement 6-9
TIPGEN Statement 4-11

FSE
edit stamp 4-9

Fullword Qossary-3
Function Glossary-3
Function-code 3-104

G
GDA 1-4, 1-25
GDA as serial resource 1-25
GDA=

Run-time Statement 6-9
TIPGEN Statement 4-11

General structure of TIP /30 program 2-7
Generate Program Snap Dump 1-3
Generation Statement

CLUSTER 4-42
FILE 4-25
TIPGEN 4-4

Get Next Record 3-45
Get one line from terminal 2-43,2-44
GETUP LOCK 1-29
Global Data Area (GDA) 1-4, 1-25
GO

Index-10

Operator Command 9-5
GOTO

program 1-3

H
Halfword Glossary-3
hardware Glossary-3
hashing Glossary-3
HlGH-V ALVES

moving 2-20
History File 5-6
HoLD=

FILE Statement 4-33
HOLD=TR 3-14
HOLD=UP 3-13
HOLD=UP Lock 3-24
HOLD= YES 3-12
Host Glossary-4

IBM 327x terminal 3-106
lCAM MEDIUM terminal queue 3-105
lCAM=

Run-time Statement 6-9
IDA and program priority 1-7
IMA 1-71
IMP ART 3-157
Improving terminal II 0 throughput 2-6
IMS Glossary-4
IMS Emulator 1-71
IMS program CALL to TIP /30 program 1-71
IMS programs in TIP /30 Catalogue

definition 1-72
IMS=

TIPGEN Statement 4-11
IMSCOD=REN 1-26
IMSCOD=YES 1-26
IMSDT=

Run-time Statement 6-9
TIPGEN Statement 4-12

LMSemul=

7002 3999-1 00

Run-time Statement 6-9
llvISROW=

Run-time Statement 6-9
TIPGEN' Statement 4-12

llvISTA 17 4
Copy Element 3-150

llvIStranL=
Run-time Statement 6-9
TIPGEN' Statement 4-12

llvISUNSDT=
Run-time Statement 6-9
TIPGEN' Statement 4-12

IN'-MAIL
OFIS Link/80 File 3-110,3-116

index Glossary-4
Indexed Files 3-30
INDsiZe=

FILE Statement 4-33
INFO-PKT 3-112
IN"OUT Files 3-68
Input data 2-7
INPUT Files 3-68
Input Message Area (IMA) 1-71
interactive Glossary-4
Interface Level 3-1
Interface packet 2-7

MCS 2-9
10=

FILE Statement 4-34
~ 3-2,3-58,3~
!SAM 3-2, Glossary-4
Island code 1-30

J
Job

TJ$COB74 8-3
TJ$C0B85 8-3
TJ$COP 8-4
TJ$COR 8-4
TJ$CRBAK 8-4
TJ$CRRST 8-5
TJ$DEL 8-5
TJ$DMP 8-6

7002 3999-100

TJ$GUST 8-7
TJ$IN"S 8-7
TJ$JCS 8-7
TJ$JR2HS 8-8
TJ$JRINT 8-7
TJ$LC 8-8
TJ$LCOS3 8-8
TJ$LOAD 8-8
TJ$LOG 8-9
TJ$LST 8-9
TJ$PAC 8-10
TJ$P ARAM 8-10
TJ$RCV 8-11

. TJ$RENAM.8-12
TJ$RPG 8-12
TJ$SLK 8-12
TJ$SCRTP 8-13
TJ$TIP 8-13
TJ$UPRPG 8-13

Job Control Library 5-7
Job Control Proc

TIPDATA 8-2

TIPICAM 8-2
TIPUBS 8-2
TIPSCR 8-2

JOB=
TIPGEN Statement 4-13

Journal File 5-7
Journal File Processing 3-162
Journal prefix 3-163
Journal Record 3-25
JouRNaL:

FILE Statement 4-34
TIPGEN Statement 4-13

Journaled Online Files 3-3
JRN-ACcr 3-167
JRN-DATA 3-167
JRN-DATE 3-167
JRN-DIRECT-BLK-NO 3-167
JRN-LFD 3-167
JRN-PREFIX 3-167
JRN-REC-LEN 3-167
JRN-REC-TYPE 3-167
JRN-RECORD 3-162, 3-169

Index

Index-11

Index

JRN-ROLLBACK 3-167
JRN-TID 3-167
JRN-TIME 3-167
JRN-TRIO 3-167
JRN-UID 3-167

K
Key Glossary-3
key Glossary-4
Key holding table 4-34
KEY1=

FILE Statement 4-35
KEY2=

FILE Statement 4-35
KEY3=

FILE Statement 4-35
KEY4=

FILE Statement 4-35
KEY5=

FILE Statement 4-35
Keyboard unlock key 2-60
KeyHoLD= -

FILE Statement 4-34
KeYLeN=

FILE Statement 4-34
KeYLoC=

FILE Statement 4-35
KeYTaBLe=

L

Run-time Statement 6-9
TIPGEN Statement 4-14

LANGuage=
Run-time Statement 6-9
TIPGEN Statement 4-14

LANGUAGE= keyword 1-34
Less-than character

use of 1-76
LFD 3-2, Glossary-4
LFFF=

CLUSTER StateIl".ent 4-44

Index-12

LPN 3-2, Glossary-4
U-DATA 3-122
U-DI-CONTROL 3-121
U-LENGTH 3-121
UBLKSZ=

Run-time Statement 6-10
Line Oriented Tenninal I/O 2-30
line-by-line usage 2-1
Line-oriented subroutines 2-1
LiNEreq=

Run-time Statement 6-10
Linkage

subprogram 1-59
Linkage items

dummy 1-5
LINKA,.GE SECTION 3-20
UST=

TIPGEN Statement 4-14
LMOFF

Operator Command 9-6
LMON

Operator Command 9-6
Load Library 5-8
LOCAP=

Run-time Statement 6-10
TIPGEN Statement 4-15

LogTape 5-9
LOG=

TIPGEN Statement 4-15
Logical File Name 3-2
Logical File Name Packet 3-19,3-20
Logical Record Delete 3-6
Logical Record Deletion 3-5,3-61
Logical terminal clusters 2-4
LOGON

TIP /30 program 2-5
LoGoN=

CLUSTER Statement 4-44
TIPGEN Statement 4-15

M
Main storage

areas 1-4

7002 3999-1 00

Maintenance Library 5-3
Manipulate Bit Flags 1-2
Mark Transaction End 3-27
MASTER tenninal 2-10
Master tenninal 2-4

programmable 2-6
MaXCaLLs=

Run-time Statement 6-10
TIPGEN Statement 4-1~

MAXIMUM ONLINE-THREADS statement
3-149

MaXPRoG=
Run-time Statement 6-10
TIPGEN Statement 4-16

MAX11Me=
Run-time Statement 6-10
TIPGEN Statement 4-16

MCS 1-4, 1-22
MCS Area 1-22
MCS interface packet 2-2, 2-9
MCS override mechanism 2-26
MCS parameter 2-15, 2-21
tvlCS Subroutine CALLs 2-7
M~O~ 2-12,2-14
MCS-DATA 2-12,2-15
MCS-DATAarea 2-9
MCS-FTLL~ 2-11,2-12,2-14
MCS-FUNCTION 2-11, 2-14
MCS-HOLD 2-11,2-14
MCS-NAME 2-10, 2-13
MCS-SI2JE 2-11
MCS-STATUS 2-11,2-18,2-56
MCS-TERM 2-10,2-13
McSgPooL=

Run-time Statement 6-10
MCSPooL=

TIPGEN Statement 4-17
McsTab=

Run-time Statement 6-10
Memory

Snap Dump 1-54
Message

deferred error 2-7
error 2-7

Message Control System (MCS) 1-4

7002 3999-100

Index

Message Control System Area (MCS) 1-22
Message-Waiting alann 2-60
MIRAM 3-2,3-68, Glossary-4

non-indexed 3-58
mode Glossary-5
Modifying field attributes 2-26
Moving IDGH-VALUES 2-20
MS-DOS 3-129
MS-DOS file

printing to 3-112
MSG

Operator Command 9-6
MSG-W AIT Glossary-5
MSGAR 1-81, 2-2

ALTRON command 1-81
RPGIN' command 1-81
RPGOUT command 1-81

MSGFMT 2-2
MSGSHOW 2-2
multi thread Glossary-5
Multi-thread DMS Interface 3-149
MuLTiSeQ=

FrLE Statement 4-35
MULTISEQ=YES 3-9

N
NAK Glossary-5
native Glossary-5
Native mode program 2-30

general structure 1-4
NCS=

CLUSTER Statement 4-44
TIPGEN Statement 4-17

NETwork=
Run-time Statement 6-10
TIPGEN Statement 4-17

New Release
05/3 4-55
TIP 4-54

notation Glossary-5
NOTE transaction

use of 1-78
NOW PRlNTII'JG message 3-115

Index-13

Index

NOW PRINTIN'G message suppression 3-115
NumGRPS= 1-49

Run-time Statement 6-11
TIPGEN Statement 4-17

o
OFF

Operator Command 9-6
OFIS Link/80 3-110

IN-MAIL File 3-110,3-116
WORKING File 3-110,3-116

ON
Operator Command 9-6

ONLINE
definition 3-149

Online program structure 1-4
Online QUICK-BEFORE-LooKS 3-149
ONLINE-TERMIN'ALS statement 3-149
OPEN 3-35,3-104

Data Management 3-66
Operator Command 9-7

Open File 3-48
OPEN Files 3-62
Open PCXFER Interface 3-130
OPEN=

FILE Statement 4-36
OPen=

Run-time Statement 6-11
OPEN=N() 3-32,3-66,3-69,3-71
Operator Command

APB 9-3
APB/ALL 9-3
CLOSE 9-3
CRASH 9-3
DATE 9-4
DIE 9-4
OOwn/line 9-4
DOwn/term 9-4
DUMP 9-4
DUMPF9-4
EOJ 9-5
EOJ OFF 9-S
EXEC 9-5

Index-14

FILES 9-S
FLAG 9-S
GO 9-S
LMOFF 9-6
LMON 9-6
MSG 9-6
OFF 9-6
ON 9-6
OPEN 9-7
PAUSE 9-7
PURGE 9-7
QCLEAR 9-7
SET 9-7
STAT 9-7
STOP 9-8
TERrv! 9-8
UP 9-8
WHOSON 9-8

Operator error 2-24
OPRQuesz=

Run-time Statement 6-11
Optimization of output messages 2-2
OPTioNal=

FILE Statement 4-36
05/3 Glossary-S
05/3 Data Management 3-6
05/3 execution priorities 1-6
05/3 SAT Libraries 3-1
Output a message 2-57
Output data 2-7
OUTPUT Files 3-68
Output Message File 5-11
Output message optimization 2-2
Output one line and roll the screen 2-40
Overflow Notification 3-124

p
Packet

interface 2-7
PARAM 1-77

run time 1-26
P ARAM subroutine 2-34
Parameter delirniters 2-34

7002 3999-1 00

Parameter passing
fixed order 1-4

Parameter processor 4-1
Parameterize an input message 2-34
Parameters

automatic passing of 1-4
Partial screen

transmission of 2-24
Passing of parameters 1-4
PAUSE

Operator Command 9-7
PC File Transfer 3-129
PC-BUFFER 3-135
PCFIL-DRIVE 3-131
PCINF-BUF-LEN 3-133
PONF-COMMhN"g 3-134
PCINF-ERR-TERM 3-133
PCS 2-11

introduction 1-1
PCXFER 3-129
PCXFER= 3-129

Run-time Statement 6-11
PCYLofl=

FILE Statement 4-36
PEP 3-108,3-129
PEP path name restrictions 3-116
Permanent Deletion 3-7
Permanent Files 3-73,3-83
Personal Emulation Package 3-108
PIB 1-4,1-11,2-11
PIB Field

PIB-ACCOUNT-NUMBER 1-15
PIB-ALT-MC5-ROW 1-17
PIB-CDA-I 1-17
PIB-CDA-LENGTH 1-18
PIB-CDA-SIZE 1-18
PIB-DATE 1-15
PIB-DETAIL-STATUS 1-16
PIB-GROUP-l 1-14
PIB-GROUP-2 1-14
PIB-]UUAN-DATE 1-15
PIB-LANGUAGE 1-19
PIB-LAST-MC5-NAME 1-15
PIB-LEVEL 1-18
PIB-LOCAP 1-15

7002 3999-100

PIB-LOCK":INDlCATOR 1-16
PIB-MC5-SIZE 1-18
PIB-MIRAM-REL-REC-NUM 1-18
PIB-RPG-UPSI 1-17
PIB-SECURITY -CODE 1-15
PIB-SITE·NAME 1-15
PIB-STATUS 1-14
PIB-SYSTEM 1-14
PIB-TERM-TYPE 1-18
PIB-TID 1-13
PIB-TIME 1-15
PIB-TRID 1-13
PIB-UID 1-13
PIB-WAlT-TIME 1-16
PIB-WRK-I 1-17
PIB-W""KK-SIZE 1-18

PIB-ACCOUNT-NUMBER 1-15
PIB-ALT-MC5-ROW 1-17
PIB-BREAK 3-124
PIB-CDA-I 1-17
PIB-CDA-LENGTH 1-18
PIB-CDA-SIZE 1-18
PIB-DATE 1-15
PIB-DETAIL-STATUS 1-16
PIB-DUPS-AHEAD 1-16
PIB-EOJ-PENDING 1-14
PIB-FULL 3-123
PIB-FUNCTION 3-119
PIB-GROUP-1 1-14
PIB-GROUP-2 1-14
PIB-HELD Status 3-12
PIB-HOLD 1-17
PIB-IO-ERROR 3-119
PIB-JULIAN-DATE 1-15
PIB-LANGUAGE 1-19
PIB-LAST-MC5-NAME 1-15
PIB-LEVEL 1-18
PIB-LOCAP 1-15

Index

PIB-LOCK-INDlCATOR 1-16, 1-29,2-11,3-158
PIB-LOC~D 3-119,3-124
PIB-MC5-SIZE 1-18
PIB-MIRAM-REL-REC-NUM 1-18,3-41
PIB-MSG-AV AIL 2-19
PIB-NO-MEM 3-119
PIB-NCYr-FOtn\nJ 3-119,3-124

Index-15

Index

PIB-NOT-HELD Status 3-12
P~\r.E~OVV 3-113,3-124
PIB-RELEASE 1-16
PIB-ROLLBACK 1-16
PIB-RPG-UPSI 1-17
PIB-SECURITY -CODE 1-15
PIB-SITE·NAME 1-15
PIB-STATUS 1-14,2-19
PIB-SYSTEM 1-14
PIB-TERM-TYPE 1-18
PIB-TID 1-13
PIB-TIME 1-15
PIB-TIMED-OUT 1-16,2-19
PIB-TRIO 1-13
PIB-UID 1-13
pIB-VJArr-Tllvm 1-16,2=19
PIB-VVRK-I 1-17
PIB-VVRK-SIZE 1-18
P!<EY= 3-30

FILE Statement 4-37
POOL=

FILE Statement 4-37
prefix Glos5a-ry-5
Print Destinations 3-104,3-105
Print Error Message 3-125
PRINT Files 3-68
Print screen 2-14
PRINT-BUF-LEN 3-113
PRINT-ERR-TERM 3-114
PRINT -FULL-FILE-INFO 3-115
PRINT-FULL-FILE-NAME 3-116
PRINT-LINE 3-121
PRINT-LINE-FEED 3-114
PRINT-NOVV-PRINTING 3-115
PRINT-PAG-LEN 3-113
PRINT-RESERVED 3-115
PRINT -SUBJEcr 3-116
PRINT-TITLE 3-116
PRINT-TOP-OF-FORM 3-114
PRINT-UPPER-CASE 3-115
PRINT-VFB-CHANNEL 3-116
PRINT -VFB-INFO 3-115
PRinT=

Run-time Statement 6-11
Printing

Index-16

ESC Sequences 3-122
Printing to MS-DOS file 3-112
PRINTLF= 3-115
PRintLF=

CLUSTER Statement 4-44
Run-time Statement 6-11
TIPGEN Statement 4-17

PRINTLPP= 3-114
PRintLPP=

CLUSTER Statement 4-44
Run-time Statement 6-11
TIPGEN Statement 4-18

PRINTOV=
FILE Statement 4-38

PRintTOF=
Run=time Statement 6-11
TIPGEN Statement 4-18

PRintTI'L=
Run-time Statement 6-11
TIPGEN Statement 4-18

PRintUC=
Run-time Statement 6-12
TIPGEN Statement 4-18

Priority levels 1-6
user transactions 1-6

PRIORITY= 1-6
PRIority= 1-6

Run-time Statement 6-12
TIPGEN Statement 4-19

PRNTR 1-54, 3-109
Process

asynchronous 1-2
Process Information Block (PIB) 1-4, 1-11
PROG statement 2-5
Program

native mode 2-30
Program (native mode)

general structure 1-4
Program Control

Transfer of 3-158
Program control after CALL 2-7
Program execution stack 1-8
Program GOTO 1-3
Program priority and IDA 1-7
Program ret-urn 1-3

7002 3999-100

Program stack
example of 1-9

Program structure
online 1-4

Program to program control 1-2
Program-Program data transfer 1-8
Programmable master terminal 2-6
ProgTab=

Run-time Statement 6-12
PROMPT 1-16, 1-77,3-158
Prompt for text 2-38
PROMPT subroutine 2-36
Prompt Terminal for reply 2-36
Prompt the user for text 2-39
I?RoMPT=

Run-time Statement 6-12
Prompts

issuing 2-1
PROMPTX 1-77,3-158
PROMPTX subroutine 2-38
PROMPTX8 3-158
PROMPTXB subroutine 2-39
PROMTPX8 1-77
PRSTEN=

Run-time Statement 6-12
TIPGEN Statement 4-19

PUNCH Files 3-68
PURGE

Operator Command 9-7
PUT 3-104

Q
QBL facilities

suppression of 3-149
QCLEAR

Operator Command 9-7
Queuing Mechanism 3-3,3-59

R
Race Conditions 3-59
Random File 5-10

7002 3999-1 00

RCB 3-7
Record Control Byte 3-5

RCB Deletion 3-5, 3-61
RCB=

FILE Statement 4-38
Read Nth Duplicate Record 3-39
Read Record By Key 3-37
Read Record By Relative Number 3-41
Read Record Sequential Mode 3-38
Read Record With Lock 3-43
ReaDYmsg=

CLUSTER Statement 4-45
Run-time Statement 6-12
.TIPGEN Statement 4-19

ReCForM=
FIl.E Statement 4-38

Reclaiming Data Space 3-7
Record 3-104

activation 1-8
Record Blocking 3-140
Record Control Byte Deletion 3-7,3-61
Record Delete Techniques 3-5
Record Lock 1-28, 1-29
Record Locking 3-2, 3-11, 3-14

for transaction 3-14
HOLD=TR 3-14
HOLD=UP 3-13
HOLD = YES 3-12
multiple 3-13
simple 3-12

Record locking 4-33, 4-34
Record Locking Summary 3-14
Record locks 2-11
RECORD-PKT 3-140
RECOVERY 6-16
Recovery 7-1
RECsiZe=

FILE Statement 4-38
Redirected input 1-75
Reentrant COBOL 1-26
Relative Record Number 3-58
Release Library 5-3
Release Resource 3-26
Rereading screen contents 2-24
Reserved terminal names 2-4

Index

Index-17

Index

RESIDENT= 1-59
RESident=

FILE Statement 4-38
Run-time Statement 6-13

RESMEM=
Run-time Statement 6-13
TIPGEN Statement 4-20

RESMOD=
Run-time Statement 6-13

Resource Lock Exception 3-34
RESOVLY=

Run-time Statement 6-13
Retrieve IDective Groups 1-2
Retrieve User Information 1-3
Retrieve User Terminal 1-3
RLL\BL SLNO 1-83
RLABL TIPPRT 1-83
ROLL 3-111
Roll Back Changes 3-23
ROLL subroutine 2-40
ROLLBACK 1-28, 1-29,3-160
Rollback 3-14,7-1
ROLLPT subroutine 2-42
RPG Exit

RPGCLR 1-82
RPGCUR 1-82
RPGDMP 1-82
RPGERA 1-82
RPGFCC 1-82
RPGFRK 1-82
RPGJMP 1-82
RPGMEO 1-82
RPGMSE 1-82
RPGPFL 1-83
RPGPIN 1-83
RPGSLN 1-83
RPGSUB 1-84
RPGTMR 1-84
RPGXCT 1-84

RPG II 4-55
RPG II exit routines 1-82
RPG support 1-81
Run time P ARAM 1-26
Run-time

Index-18

BackPRI= 6-5
Banner1= 6-5
Banner2= 6-5
CATPooL= 6-6
Oes= 6-6
CLose= 6-6
COMM= 6-6
CONTINUE= 6-6
CURrency= 6-6
DBMS: 6-6
DEBUG= 6-7
DECIMAL= 6-7
DEFOPEN= 6-7
DMname= 6-7
DMSAWT= 6-8
DMSCAT= 6-8
DMSRWT= 6-8
EDiTstmp= 6-8
ESCape= 6-8
FCSxtent= 6-8
FiLePooL= 6-8
FileTab= 6-8
FREEmem= 6-9
GDA= 6-9
lCAM= 6-9
IMSDT= 6-9
IMSemul= 6-9
IMSROW= 6-9
IMStranL= 6-9
IMSUNSDT= 6-9
KeYTaBLe= 6-9
LANGuage= 6-9
UBLKSZ= 6-10
LiNEreq= 6-10
LOCAP= 6-10
MaXCaLLs= 6-10
MaXPRoG= 6-10
MAXTiMe= 6-10
McSgPooL= 6-10
McsTab= 6-10
NETwork= 6-10
NumGRPS= 6-11
OPen= 6-11
OPRQuesz= 6-11
PCXFER= 6=11

70023999-100

PRinT= 6-11
PRintLF= 6-11
PRintLPP= 6-11
PRintTOF= 6-11
PRintTIL= 6-~ 1
PRintUC= 6-12
PRIority= 6-12
ProgTab= 6-12
PRoMPT= 6-12
PRSTEN= 6-12
ReaDYmsg= 6-12
RESident: 6-13
RESMEM= 6-13
RESMOD= 6-13
RESOVL y = 6-13
SOIDname= 6-13
SchdPRI= 6-13
SECuR= 6-14
SFSPooL= 6-14
shutDowN= 6-14
SITEid= 6-14
startUP= 6-14
STatS= 6-14
termSiZe= 6-14
TermtYP= 6-14
TIMeoff= 6-14
TIMeouT= 6-14
TIPDUMP= 6-15
UpPeR= 6-15
UserPRI= 6-15
WARMstrt= 6-16
XMIT= 6-16
XmitALL= 6-16
Xmi~Han= 6-16
XmitV AR= 6-16

s
S34= YES 1-85
SAM 3-2
Sample program 2-8
Sample Program File 5-12
SAT Format Library 3-95
Scan string for parameters 2-47

7002 3999-100

SCHDname=
Run-time Statement 6-13

SCHDPRI= 1-6
SchdPRI= 1-7

Run-time Statement 6-13
Tll'GEN Statement 4-20

Screen
erase 2-7
erasing 2-25
force read 2-7

Screen contents
rereading 2-24

Screen Format File 5-9
Screen format name 2-10
Screen formats 2-1

creating and testing 2-2
unique 2-2

SECuR=
Run-time Statement 6-14

Security
Console Operation 9-2

Send an unsolicited message 2-60
Send print code 2-45
Sentinel for Queuing 3-24
Sequential Mode 3-8
Serial resource

GDAas 1-25
SET

Operator Command 9-7
Set Control page 2-46
Set Elective Groups 1-3
Set Sequential Mode 3-53,3-55
Set terminal roll point 2-42
Set Transmit Field 2-46
SETL 3-50,3-52,3-53,3-55, 3-105
SETL Request 3-9
SFSPooL=

Run-time Statement 6-14
Tll'GEN Statement 4-20

shutDowN=
Run-time Statement 6-14
Tll'GEN Statement 4-20

single thread Glossary-5
SITEid=

Run-time Statement 6-14

Index

Index-19

Index

TIPGEN Statement 4-21
Skip Codes 3-122
Skip Records Sequentially 3-57
SlaVes: .

CLUSTER Statement 4-45
Snap Dump Memory 1-54
SOE Glossary-5
software Glossary-5
Soliciting Input 3-158
Sona alert 2-60
SP=

CLUSTER Statement 4-45
Stack

climbing the 1-8
program execution 1-8

C.M,.,1, 1 ... " 1.,
t.J1I.Q'-AA.'lWlf"'A.~

number of 1-8
Standard OS/3'Files 3-1
Start-blink character 2-20
startUP=

Run-time Statement 6-14
TIPGEN Statement 4-21

STAT
Operator Command 9-7

STatS=
Run-time Statement 6-14
TIPGEN Statement 4-21

STEP 3-108, 3-129
STEP path name restrictions 3-116
STOP

Operator Command 9-8
Storage

main areas 1-4
Structure

native mode program 1-4
SUBPROG 1-59
Subprogram Linkage 1-59
Subroutine CALL 1-3
Subroutine CALLs 2-7
Subroutines

Une-oriented 2-1
linked 1-26

Success Unit 3-157,3-159
SUCCESSOR-ID 1-71
Suggestion

Index-20

coding 1-9
Suppression of QBL facilities 3-149
Swap File 5-11
SYSGEN File 5-3

T
T-GET 3-158
Table

ASOI Code Chart A-3
CLUSTER Statement 4-43
Disk Space Requirements 10-13
EBCDIC Code Chart A-4
Example BLKSIZE Calculation 4-30
Examples of Parameterization 2-35
FILE Keyword Cross Reference 4-40
FILE Statement 4-26
Functions for Ubrary Access 3-95
Hexadecimal- Decimal Conversion A-1
Keyword XREF 4-47
Une Oriented Subroutine Summary 2-30
MCS-FUNCTION Values for TIPMSGO 2-14
OUTPUT Delivery Notification Status 2-61
Powers of 16 A-2
Powers of 2 A-2
Record Locking Summary 3-14
TIP /30 Disk File Allocation 10-14
TIP /30 Run-time Parameters 6-2
TIP /30 System Files 5-2
TIPFCS Functions for Dynamic Files 3-74
TIPGEN Statement 4-4
TIPTERM (T -GET) Result Status 2-56
TIPTERM (T-TEST) Result Status 2-59

Table of Active Files 1-77
TAPE Files 3-68
Task

COMMunication 1-7
MAIN 1-7

TB$RCV 7-1
TC-BITS

Copy Element 1-32, 1-33, 1-41
TC-CDA

Copy Element 1-20
TC-DCll'-W

7002 3999-1 00

Copy Element 2-49
TC-DOO

Copy Element 2-54
TC-DCOUT

Copy Element 2-49, 2-51
TC-OI

Copy Element 3-123
TC-OMSER

Copy Element 3-152
TC-OMSSP

Copy Element 3-154
TC-OMSST

Copy Element 3-150
TC-FCC

Copy Element 2-26
TC-FCS

Copy Element 3-17
TC-FOES

Copy Element 3-21,3-96
TC-FLAG

Copy Element. 1-41
TC-GRPS

Copy Element 1-48,1-50
TC-JRN

Copy Element 3-163
TC-MCS

Copy Element 1-22,2-9
TC-PBUFR

Copy Element 3-118
TC-PCBUF

Copy Element 3-135
TC-PCFIL '

Copy Element 3-131
TC-PCINF

Copy Element 3-132
TC-PCREC

Copy Element 3-137,3-140
TC-PIB

Copy Element 1-11
TC-PLINE

Copy Element 3-68, 3-121
TC-PRINT

Copy Element 3-113
TCA 4-1
TCP 1-76

7002 3999-100

TCP=
CLUSTER Statement 4-45

Techniques For Deleting Records 3-5
Templates 2-1
Temporary Files 3-73,3-83
TERM ,

Operator Command 9-8
Tenninal

BYPASS 2-4
mM 327x 3-106

Tenninal alarm 2-60
Tenninal destination 2-10
Tenninal ~es

reserved 2-4
Tenninals supporting FCC 2-26
'!'bRMINATION-u"IDlCA TOR 1-71
TeRMS=

TIPGEN Statement 4-21
termSiZe=

CLUSTER Statement 445
Run-time Statement 6-14
TIPGEN Statement 4-21

TermtYP=
Run-time Statement 6-14

TermtYPe=
CLUSTER Statement 4-45
TIPGEN Statement 4-22

Test for input 2-59
Testing screen formats 2-2
11DCr 1-77,3-158
TEXT field name 2-23
TEXT subroutine 2-43
11DCr80 1-77,3-158
TEXT80 subroutine 2-44
TFD 1-81
TFD/TFU 2-2
TFD/TFU program 2-10
Time

accuracy of 1-15
TIMEOFF= 1-63, 1-65
TIMeoff=

Run-time Statement 6-14
TIPGEN Statement 4-22

TIMEOUT= 1-16
TIMeouT=

Index

Index-21

Index

Run-time Statement 6-14
TIPGEN' Statement 4-22

Timer Services 1-3
TIP Glossary-6
TIP File 5-3
TIP$B4 3-14,3-23,3-168,7-4,7-6
TIP$B4 File 5-4
TIP$BAK File 5-4
TIP$CA T 8-14
TIP$CA T File 5-5
TIP$CA T File Entries 3-2
TIP$DUMP File 5-6
TIP$HST 3-168,7-5,7-6
TIP$HST File 5-6
TIP$JCS File 5-7
T!P$JF,N 3-?r.;, 3-168, 4-21; 7';'5-7-7
TIP$JRN File 5-7
TIP$LOD File 5-8
TIP$LOG 3-25,3-168,7-5
TIP$LOG File 5-9
TlP$MCS 8-14
TIP$MCS File 5-9
TIP$MSG File 5-10
TIP$~M 3-73,3~,4-10,8-14

TIP$~M File 5-10
TIP$SW AP 1-8
TIP$SW AP File 5-11
TIP$TOM File 5-11
TIP$TSP File 5-12
TIP /30 Glossary-6
TIP /30 Message File 5-10
TIP /TC-DMSST 3-150
TIPABRT 1-2, 1-30
TIPBITS 1-2, 1-32
TIPBYTES 1-2, 1-33
TIPCOP subroutine 2-45
TIPCP AGE subroutine 2-46
TIPDATA 8-2

Pree 8-2
TIPDATE 1-2, 1-34
TIPDMS 3-150
TIPDUMP 1-2, 1-35
TIPDUMP=

Run-time Statement 6-15

Index-22

TIPENV 8-2
Proe 8-2

TIPERASE 2-7,2-25
TIPFCER 3-28
TIPFCS 3-2, 3-5
TIPFILES 8-2

Proe 8-2
TIPFILES=

TIPGEN Statement 4-22
TIPFLAG 1-2, 1-38
TIPFOFU< 1-2, 1-16, 1-44, 1-46
TIPGEN 4-4

AFr= 4-7
B4= 4-8
BaCK= 4-7
BackPR1= 4-7
CATPooL= 4-8
CURrency= 4-8
DBMS: 4-8
DECIMAL= 4-8
DMSAWT= 4-8
DMSRWT= 4-9
EDiTstmp= 4-9
ESCape=· 4-9
FaSTLoaD= 4-10
FCSxtent= 4-10
FiLeBufs: 4-10
FileTab= 4-11
FREEmem= 4-11
GDA= 4-11
Generation Statement 4-4
IMS= 4-11
IMSDT= 4-12
IMSROW= 4-12
IMStranL= 4-12
IMSUNSDT= 4-12
JOB= 4-13
JouRNaL= 4-13
KeYTaBLe= 4-14
LANGuage= 4-14
LIST= 4-14
LOCAP= 4-15
LOG= 4-15
LoGoN= 4-15
tv1aXCaLLs= 4-16

7002 3999-1 00

MaXPRoG= 4-16
MAXTiMe= 4-16
MCSPooL= 4-17
NCS= 4-17
NETwork= 4-17
NumGRPS= 4-17
PRintLF= 4-17
PRintLPP= 4-18
PRintTOF= 4-18
PRintTIL= 4-18
PRintUC= 4-18
PRIority= 4-19
PRSTEN= 4-19
ReaDYmsg= 4-19
RESMEM= 4-20
SchdPRI= 4-20
SFSPooL= 4-20
shutDowN= 4-20
SITEid= 4-21
startUP= 4-21
STatS= 4-21
TeRMS= 4-21
tennSiZe= 4-21
TermtYFe= 4-22
TIMeoff::: 4-22
TIMeouT= 4-22
TIPFILES= 4-22
UpPeR= 4-23
UserPRI= 4-23
WORK1= 4-23
WORK2= 4-23
XMIT= 2-5, 4-23
XmitALL= 4-24
XmitC~= 4-24
XmitV AR= 4-24

TIPGRPS 1-2, 1-48
TIPGRPST 1-3, 1-50
TIPH2P Subroutine 3-129
TIPlCAM 8-2

Pree 8-2
TIPJRNCL 3-169
Tll'JRNGT 3-169
TIPJRNOP 3-168
TIPJUMP 1-3, 1-8, 1-16, 1-52,3-158
TIPilBS 8-2

7002 3999-1 00

Proe 8-2
TIPMSGE 2-7,2-20

uses of 2-20
TIPMSGEO 2-7,2-23
TIPMSGI 1-16,2-7,2-17,3-158
TIPMSGO 2-7, 2-13
T1PM~V 2-7,2-24,3-158
TIPP2H Subroutine 3-129
TIPPRINT 4-18
TIPPRINT Buffering 3-120
TIPR~ 1-3,1-16,1-53,3-158
TIPSCAN subroutine 2-47
TIPSCR 8-2

Proe 8-2
TIPSNAP 1-3, 1-54
TIPSUB 1-3, 1-16, 1-55,3-158
TIPSUBP 1-3, 1-59,3-153,3-158
TIP'IERM 2-48,2-53,3-158
11JYrUVUER 1-3, 1~, 1-65,3-158
TIPUSR 1-3, 1-66
TIPUSRID 1-3, 1-67
TIPXCTL 1-3, 1-8, 1-16, 1-69, 1-72,3-158
'T'T(Ul A '7 C.
.l)-+'1J'1: I-V

TJ$COB74
Job 8-3

TJ$C0B85
Job 8-3

TJ$COP
Job 8-4

TJ$COR
Job 8-4

TJ$CRBAK 8-14 .
Job 8-4

TJ$CRRST 8-14
Job 8-5

TJ$DEL
Job 8-5

TJ$DMP
Job 8-6

TJ$GUST
Job 8-7

TJ$HST 7-6
TJ$INS

Job 8-7
TJ$JCS

Index

Index-23

Index

Job 8-7
TJ$JR2HS 7-6

Job 8-8
TJ$JRINT 7-6

Job 8-7
TJ$JRN 7-6
TJ$LC

Job 8-8
TJ$LCOS3

Job 8-8
TJ$LOAD

Job 8-8
TJ$L(x;

Job 8-9
TJ$LST 3-168,7-7

Job 8-9
TJ$PAC

Job 8-10
TJ$P~ 4-1,4-52

Job 8-10
TJ$RCV 7-1,7-7

Job 8-11
TJ$RENAM

Job 8-12
TJ$RPG

Job 8-12
TJ$SCR

Job 8-12
TJ$SCRTP

Job 8-13
TJ$TIP

Job 8-13
TJ$UPRPG

Job 8-13
TPS Glossary-6
transaction Glossary-6
Transaction End 1-28
Transaction end 3-14
Transaction initiation 1-28
Transaction scheduling example 1-6
Transactions

background 1-7
foreground 1-7

Transfer control 1-69
Transfer of ProgrCLT. Control 3~ 158

Index-24

Transmitting partial screen 2-24
Trap Abort Conditions 1-2
Truncated Input 2-50
TT-DMS 3-153

u
UNBIND 3-157
Undo Changes 3-23
Unique screen formats 2-2
UNISCOPE Emulator 3-110
UNISCOPE terminal control page 2-5
Unisys Terminal Emulation Package 3-108
UNIX 3-110
UNSoL=

CLUSTER Statement 4-45
unsolicited Glossary-6
UP

Operator Command 9-8
UPDATE LOCK 1-29
Update Record 3-49
Update VTOC Pointers 3-35
UpPeR=

Run-time Statement 6-15
TIPGEN Statement 4-23

Use of $-sign 1-77
Use of background process 1-46
Use of NOTE transaction 1-78
USEFiLe=

FILE Statement 4-39
User

MCSEARCH= 2-13
USER command 1-15
User Information 1-67
User Terminal Infonnation 1-66
User transaction priority levels 1-6
User written subprograms 1-59
USERPRI= 1-6
UserPRI= 1-7

Run-time Statement 6-15
TIPGEN Statement 4-23

Uses of TIPMSGE 2-20
Using screen formats

example 2-7

7002 3999-100

lJTS..400 2-6

v
Validation of data 2-20
VAR 2-5
VOL area

elimination of 1-26
VSEC=

FILE Statement 4-39

w
Wait for n seconds 1-63
WARMstrt=

Run-time Statement 6-16
WHOSON

Operator Command 9-8
WorkArea 1-4
WORK-AREA 1-4, 1-24

adding bytes to 1-26
WORK1=

TIPGEN Statement 4-23
WORI<2=

TIPGEN Statement 4-23

7002 3999-100

WORKIN"G
OFIS Link/80 File 3-110,3-116

x
XMIT Glossary-6
XMIT= 2-5

CLUSTER Statement 4-46
Run-time Statement 6-16
TIPGEN Statement 4-23

XMIT= in TIPGEN 2-5
XMIT= setting

program level 2-5
system level 2-5
ten1'linal cluster level 2-5

XmitALL=
Run-time Statement 6-16
TIPGEN Statement 4-24

XmitCHan=
Run-time Statement 6-16
TIPGEN Statement 4-24

YJnit V.AR==
Run-time Statement 6-16
TIPGEN Statement 4-24

XR3IMS 3-150

Index

Index-25

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

