UNISYS

System 80
0S/3

1974 American Standard
COBOL

Programming
Reference Manual

Copyright ® 1991 Unisys Corporation
All rights reserved.
Unisys is a registered trademark of Unisys Corporation.

0S/3 Release 14 April 1991

Printed in U S America
Priced ltem 7004 4490-000




NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product and related material
disclosed herein are only furnished pursuant and subject to the terms and conditions of a duly executed Program
Product License or Agreement to purchase or lease equipment. The only warranties made by Unisys, if any, with
respect to the products described in this document are set forth in such License or Agreement. Unisys cannot
accept financial or other responsibility that may be the result of your use of the information in this document or
software material, including direct, indirect, special, or consequential damages.

You should be very careful to ensure that the use of this information and/or software material complies with the
laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such
changes and/or additions.

Correspondence regarding this publication should be forwarded to Unisys Corporation either by using the User
Reply Form at the back of this manual or by addressing remarks directly to Unisys Corporation, SPG East Coast
Systems Documentation Development, Tredyffrin Plant, 2476 Swedesford Road, P.0. Box 203, Paoli, PA,
19301-0203, U.S.A.




PAGE STATUS SUMMARY

ISSUE: 7004 4490-000
Page Update Page Update Page Update
Part/Section Number Level Part/Section Number Level Part/Section Number Level
Cover Appendixes
. A . A 1 thru 7
Title Page/Disclaimer
B 1 thru 4
Pss B c 1 thru 42
Acknowledgement v D 1, 2
E 1 thru &
About This Manual vii thru xii
F 1 thru 7
Contents xiii thru xxv G 1 thru 6
1 1 thru 5 H 1 thru 20
1 1 thru 3
2 1 thru 20
J 1 thru 15
3 1.2 K 1 thru 15
4 1 thru 32 Glossary 1 thru 27
e Index 1 thru 10
. = 5 1 thru 77
o User Reply Form
6 1 thru 142 Back Cover
7 1 thru 6
8 1 thru 20
9 1 thru 6
10 1 thru 6
11 1, 2
12 1 thru 6
13 1 thru 5
14 1 thru 8

Unisys uses an 11-digit document numbering system. The suffix of the document number (1234 5678xyz} indicates the document level. The first digit of the suffix (x)
designates a revision fevel; the second digit {y) designates an update level. For example, the first release of a document has a suffix of -000. A suffix of -130 designates the
ok third update to revision 1. The third digit (z) is used to indicate an errata for a particular level and is not reflected in the page status summary.

7004 4490-000 i







Acknowledgment

The following acknowledgment is reproduced from the American National Standard
COBOL, X3.23-1974, as requested in that publication:

"Any organization interested in reproducing the COBOL standard and
specifications in whole or in part, using ideas from this document as the basis for
an instruction manual or for any other purpose, is free to do so. However, all such
organizations are requested to reproduce the following acknowledgment
paragraphs in their entirety as part of the preface to any such publication (any
organization using a short passage from this document, such as in a book review,
is requested to mention "COBOL" in acknowledgment of the source, but need not
quote the acknowledgment):

"COBOL is an industry language and is not the property of any company or group
of companies, or of any organization or group of organizations.

"No warranty, expressed or implied, is made by any contributor or by the
CODASYL Programming Language Committee as to the accuracy and
functioning of the programming system and language. Moreover, no
responsibility is assumed by any contributor, or by the committee, in connection
therewith.

"The authors and copyright holders of the copyrighted material used herein

FLOW-MATIC (trademark of Sperry Corporation), Programming for the
UNIVAC® I and I, Data Automation Systems copyrighted 1958, 1959, by
Sperry Corporation; 1BM® Commercial Translator Form No. F 28-8013,
copyrighted 1959 by IBM; FACT, DSI 27A5260-2760, copyrighted 1960 by
Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part, in the
COBOL specifications. Such authorization extends to the reproduction and use of
COBOL specifications in programming manuals or similar publications.”

UNIVAC is a registered trademark of Unisys Corporation.
IBM is a registered trademark of International Business Machines Corporation.

7004 4490-000







About This Manual

Purpose
This manual presents the rules for writing COBOL programs to be compiled by the

1974 American National Standard COBOL compiler and executed under the control of
the Unisys Operating System/3 (0S/3).

Scope

The COBOL language described in this manual conforms to the specifications of the
American National Standard COBOL, X3.23-1974, and supports Federal Information
Processing Standards (FIPS) Publication 21-1 (see Appendix D).

Audience

This manual is for programmers using 0S/3 COBOL.

Prerequisites

Anyone using this manual should be familiar with the concepts of the COBOL
language.

How to Use This Manual

This manual should be used as a reference for OS/3 COBOL. It is not a tutorial or a
general introduction to COBOL programming for the novice.

Organization
This manual contains 14 sections, 11 appendixes, and a glossary:
Section 1. Introduction

This section introduces COBOL and describes the symbols, rules, and notations used
in this manual.

Section 2. General Specifications

This section describes the COBOL character set, separators, character strings, classes
of data, standard alignment rules, and reference rules and format.

7004 4450-000 vii




About This Manual

viil

Section 3. Identification Division

This section describes the structure of the Identification Division of a COBOL
program.

Section 4. Environment Division

This section describes the structure of the Environment Division of a COBOL
program,.

Section 5. Data Division
This section describes the structure of the Data Division of a COBOL program.
Section 6. Procedure Division

This section describes the structure of the procedure division of a COBOL program,
including each of the COBOL verbs.

Section 7. Table Handling Summary

This section explains the language concepts and considerations for working with
tables.

Section 8. File Processing Summary

This section explains the language concepts for file processing and describes five types
of file organization: sequential, relative, indexed, SAM, and ISAM.

Section 9. Sort/Merge Summary

This section explains the language concepts and considerations for working with the
sort/merge facility.

Section 10. Segmentation Summary

This section summarizes the segmentation facility for specifying overlay
requirements.

Section 11. Library Summary

This section summarizes the library module for specifying text to be copied from a
library.

Section 12. Debugging Language Summary

This section summarizes the debug module with which you can describe a debugging
algorithm and conditions.

7004 4490000




About This Manual

Section 13. Interprogram Communication Summary

This section explains the language concepts and considerations for working with the
interprogram communication module.

Section 14. Communication Summary

This section summarizes the communication facility that lets you access, process, and
create messages.

Appendix A. Compiler Options

This appendix describes the compiler options.

Appendix B. Compiler Listings

This appendix describes the various compiler listings.
Appendix C. Compiler Diagnostics

This appendix lists and explains the diagnostic messages.
Appendix D. FIPS Flagging Facility

This appendix explains the Federal Information Processing Standard (FIPS)
Publication 21-1 (FIPS PUB 21-1).

Appendix E. Object Program Processing Considerations

This appendix describes intermediate results in arithmetic operations.
Appendix F. Non-English Language Feature

This appendix describes the non-English language feature.
Appendix G. IMS Action Programs

This appendix describes IMS COBOL action programs.

Appendix H. Job Control Stream Requirements

This appendix describes job control stream requirements for invoking the COBL74
compiler.

Appendix I. Reserved Words

This appendix provides a listing of reserved words.

7004 4490000




About This Manual

Appendix J. Standard EBCDIC and ASCII Collating Sequences

This appendix provides useful tables containing collating sequences commonly used in
data processing.

Appendix K. PICTURE Clause

This appendix provides a tutorial description of the PICTURE clause.

Results

After reading this manual, programmers will be able to write COBOL 74 programs for
05/3 systems.

Notation Conventions

Throughout this manual, specifications unique to Level 2 of a module are enclosed in
[boxes Jand Unisys extensions to the COBOL language are enclosed in dashed-line
Ebg_x_e_agj(l.ZZ).

The following conventions are used to represent COBOL elements in this manual:
e Words

All underlined uppercase words are called keywords and are required when the
functions of which they are a part are used. Uppercase words that are not
underlined are optional to the user and may or may not be present in the source
program. Uppercase words, whether underlined or not, must be spelled correctly.

Lowercase words, in a general format, are generic terms used to represent
COBOL words, literals, PICTURE character-strings, comment-entries, or a
complete syntactical entry that must be supplied by the user. Where generic
terms are repeated in a general format, a number or letter appendage to the term
serves to identify that term for explanation or discussion.

¢  Level-Numbers

When specific level-numbers appear in data description entry formats, those
specific level-numbers are required when such entries are used in a COBOL
program. In this document, the form 01, 02, ..., 09 is used to indicate level-
numbers 1 through 9. (See "Level-Numbers" under 5.2.2.)

e Brackets and Braces

When a portion of a general format is enclosed in brackets, [ ], that portion may
be included or omitted at the user’s choice. Braces, { }, enclosing a portion of a
general format means a selection of one of the options contained within the
braces must be made. In both cases, a choice is indicated by vertically stacking
the possibilities.

X 7004 4490-000



About This Manual

When brackets or braces enclose a portion of a format, but only one possibility is
shown, the function of the brackets or braces is to delimit that portion of the
format to which a following ellipsis applies. If an option within braces contains
only reserved words that are not keywords, it is a default option (implicitly
selected unless one of the other options is explicitly indicated).

¢  Ellipsis

In text, the ellipsis (...) may show the omission of a portion of a source program.
This meaning becomes apparent in context.

In the general formats, the ellipsis represents the position at which repetition
may occur at the user’s option. The portion of the format that may be repeated is
determined as follows:

Given an ellipsis in a clause or statement format, scanning right to left,
determine the ] or } immediately to the left of the ellipsis; continue scanning
right to left and determine the logically matching [ or {. The ellipsis applies
to the words between the determined pair of delimiters.

¢  Format Punctuation

The punctuation characters comma and semicolon are shown in some formats.
They are optional and may be included or omitted by the user. In the source
program, these two punctuation characters are interchangeable and either one
may be used anywhere one of them is shown in the formats. Neither one may
appear immediately preceding the first clause of an entry or paragraph.

If desired, a semicolon or comma may be used between statements in the
Procedure Division.

Paragraphs within the Identification and Procedure Divisions and the entries
within the Environment and Data Divisions must be terminated by the separator
period.

e  Use of Certain Special Characters in Formats

The characters + - > < =, when appearing in formats, although not underlined, are
required when such formats are used.

Related Product Information

The following OS/3 documents may be helpful in understanding and implementing the
information presented in this manual.

Note: Use the version that applies to the software level in use at your site.

7004 4490000 Xi




About This Manual

Xii

Consolidated Data Management Macroinstructions Programming Guide
(7004 4607)

This guide describes the data management macroinstructions.
System Service Programs (SSP) Operating Guide (UP-8841)

This guide describes various system utilities, including the librarians and the linkage
editor.

System Messages Reference Manual (7004 5190)

This manual lists and describes the system console messages issued during
compilation.

Job Conitrol Programming Guide (7004 4623)

This guide provides information on the format and usage of job control statements and
linkage editor job control procedure calls (jprocs).

Screen Format Services Technical Overview (UP-9977)

This overview describes screen format services (SFS), the interactive component of
0S/3 that provides an easy and effective method for inputting and outputting data.

General Editor (EDT) Operating Guide (7004 4599)
This guide describes the general editor and how to use it to enter COBOL source code.

Information Management System (IMS) COBOL/Assembler Action Programs
Programming Guide (UP-9207)

This guide describes IMS action programming.

Information Management System (IMS) System Support Functions
Programming Guide (UP-11907)

This guide describes IMS utilities and recovery.
Information Management System (IMS) Technical Overview (UP-9205)
Provides background information about IMS and action programming.

Integrated Communications Access Method (ICAM) Utilities Programming
Guide (7004 4565)

This guide describes the communication message control system (CMCS).

7004 4490-000




- Contents

.Acknowledgment
About This Document

Section 1. Introduction

L L. 00D o 1-1
1.2. Structure of COBOL Language ................coooivviiiiiei i 1-1
1.2.1. Module OVErVIEW ...oooeeeeieieeee e 1-2
1.2.2.  Extensions to COBOL ...ovviiiiiiiiiiee e 1-4
1.3. Formats, Rules, and Elements of COBOL ............cccoovviiviiiiiiiiiinnn. 1-5
13,1, FOrmal o 1-5
1,32, RUIBS e 1-5
1.3.3.  Elements oo e 1-5

Section 2. General Specifications

2.1. COBOL Character Set ............ocooieiiiiiiii e 2-1
2.2, SePAratOrS .......oooooiiiiiii L 2-4
2.3. Character-Strings ........cocoociviiiiiiiiiie e 2-5
2.3. 1. COBOLWOIAS viiiiiiii e 2-5
User-Defined Words ......oocviiiiie e 2-5

SysteM-NAMES .ooiiieiiiiee e 26

Reserved Words  ..oeeeeeiiiceie e 2-7

2.3.2. LHEralS e 2-8

2.3.3.  PICTURE Character-String ......coccveviieieeireeieieeeee e 2-12

2.3.4.  CommentEntries oo 2-13

2.4. Classesof Data .........ccocooovviiiiiiiiii e 2-13
2.5. Standard AlignmentRules ... 2-13
2.6. Uniqueness of Reference ..............coccciiiiiiiiiiiiiiiii 2-14
2.6.1.  QUAlIfICAtION weeeeeeieeeeeeee e 2-14

2.6.2.  SUBSCHPLING oo 2-15

2.6.3. INABXING evrieeeeee e e 2-15

2.6.4.  1dentifier ..o 2-16

2.6.5.  CondiionName ..ccveiiiei e 2-16

2.7. Reference Format ............ccocooiiiiiiiiiiiii e 2-17

Section 3. Identification Division

3.1, General Information .........ccccccvvvvieiimiiiiiir e 31
B2, SHTUCRUIE oo e et e e e 31

7004 4490-000 il




Contents

Section 4. Environment Division

4.1. General Information ..............c.cooooiiiiiiiiieicie e 4-1
4.2, SHPUCIUIE ...ooiiiiii et ee et e e eee e e e 4-1
4.3. Configuration Section ............cccecceieeninieecieer e 4-2
4.3.1.  SOURCE-COMPUTER Paragraph .....c.cccceeeevevieeeieennereieeeeennn, 42
4.3.2. OBJECT-COMPUTER Paragraph ......cccceeoeeioieeiiiieciscee e 4-3
4.3.3.  SPECIAL-NAMES Paragraph ...ccoceeeeveieeieiieeeciiiee e, 4-4
4.4, Input-Output SeCtion ...........cooeviviiiiiiee e 418
4.4.1. FILE-CONTROL Paragraph .......cocoeeeoeeeeieeeciee e 419
442, 1-O-CONTROL Paragraph ....ccccceveeeeeviiiiieieieeceee e 427

Section 5. Data Division

5.1.  General Information ............ccccooeiiiiiii i 5-1
B.2.  SITUCTUIE ..oooiiiieeeiee et et 51
5.2.1.  Heading and Sections .....ccceeeivveiieeiieeeee e 5-1

5.2.2.  ENMIES e 5-2
Levelndicators .....ociieveiii e 5-2

LevelNUMDBErs oo 5-2

Special LevelNUMbers ... 5-4

5.3, FilleSECHON ...ooooiiiiiiiceee e 54
5.3.1.  File DesCription ..ooooiiee e 55

BLOCK CONTAINS ClaUSe wuvveveeieeieiriieieeeee et eee e 57

RECORD CONTAINS Clause ...oveeeeeeeeeeeevie et 512

LABEL RECORDS ClauSe ....covcvvereeirieieiiiiee e e 513

VALUE OF ClaUSE uveveiieeeees ettt 5-14

DATA RECORDS ClaUSE ...veeivvveeerieveeeccreeeeeeiee et e 514

LINAGE ClaUSE  .eveviieee it 515

CODE-SET ClaUSE .oeeieeeieeeiieieee vttt 5-20

5.3.2.  Sort-Merge File Description .......ccoccvveiiiiiviiie e, 521

5.3.3.  Data Description ...cecoevreeeiieieeee e 5-22
LevelNUMDBEr ...oveiiii e 5-26
Data-Name/FILLER Clause ....oooiviviei e, 5-27

REDEFINES ClaUSe ...cvvvieiieiieiee et 527

PICTURE ClauSE ..vveieiieeiieeeeeee e 5-29

USAGE ClauSe ..ooieeeeiieeeseeceee e 5-42

SIGN ClaUSE woeovveeeree et 5-46

OCCURS ClaUSE .oeeeveeereee ettt 5-47

SYNCHRONIZED ClaUSe ..ociveceeeieiieeee e 551

JUSTIFIED Clause ...ooooevieieeeeeiee e 5-55

BLANK WHEN ZERO Clause ..coeeooeeeieceeeecie e 5-56

VALUE Clause ovveeeeee e 557

RENAMES ClaUSE vvviiiiviiei ettt 5-60

5.4. Working-Storage Section ...............cccceeviiiiviiiii i 562
54.1.  77Level Description Entry ooveeeeieiie e 563

5.4.2.  Record Description Entry ...ocveeeiiiiiiii e 563

v 7004 4490-000




Contents

Section 6.

7004 4490-000

5.5.

5.8.

Linkage SeCtion ...........ccccoooviiiieii e 5-64
5.5.1.  77-Level Description Entry ..occoeviiieiiie e 565
5.5.2.  Record Description Entry ..ooooiiiiiiiiee e 5-66
Communication Section ...........cccccoeeiiiiiiiii e 567
5.6.1.  Input Communication Description .........cooooiieeiiiiiiiinen 5-67
5.6.2.  Output Communication Description .......ccocovveeeeeeriiiiiiinnn. 573

Procedure Division

6.1.

6.2.

6.3.

6.4.

6.5.

General Information ............cccooiiiii i 6-1
6.1.1.  Declaratives ......coovecveeiie e 6-1
6.1.2.  ProCedures ..oooveiiiiiieee et 6-1
6.1.3.  Procedure Division Structure ........cccoeiiiiiiiiiie e 6-2
Procedure Division Header .......ccoooevvieeiiiiiiieeiie e 6-2
Procedure Division Body .....cccovvieiieiiii e 6-3
Categories of Statements ....................cocooiiiiiiii i 6-5
6.2.1.  Imperative Statements .......ooooviiiiii i 6-5
6.2.2.  Conditional Statements . ..cccooovieeee i 6-5
6.2.3.  Compiler-Directing Statements ...c..c.ccooovviiiiiiiier i, 6-6
Arithmetic EXpressions ..o 6-6
6.3.1.  Arithmetic Operators ....ccceeevivieeii e 6-6
6.3.2. Formation and Evaluation RUles ........cocoevmivviieiiiiiieiieeeee, 6-7
Conditional EXpressions .............ccccccooviiiiiiiiiie e 6-9
6.4.1.  Simple Conditions ...oooeeeeeieee e, 69
Relation Condiion ....ccoeveeeiiee e 69
Comparison of Numeric Operands ........ccccvvveeeeiiiinnen, 6-11
Comparison of Nonnumeric Operands ...........cccoevee... 6-12

Comparisons Involving Index-Names or
Index Data fems ...ooovieieieieieeic e 6-13
Class Condition ......coviiieiieieiiiiie e 6-13
Condition-Name Condition .......ceevieeieiiieieieeecee e 6-14
Switch-Status Condition ......cooveeeieieciiiecc e 6-14
Sign Condition ...eviiiii 6-15
6.4.2.  Complex CONAItIONS ....eeeeeeeeie e 6-15
Negated Simple Conditions ......c.ccovviieeiiieccee e 6-16
Combined and Negated Combined Conditions ...................... 6-16
Abbreviated Combined Relation Conditions .........ccccceeeevnne 6-18
6.4.3.  Condition Evaluation RUIES ..vveevviieiiieeiieceee e, 6-19
Common Phrases and General Rules for Statement Formats ....... 6-19
6.5.1.  The ROUNDED PRrase ....ccoceeioiiieiiiiieieeciieee e 6-20
6.5.2.  The SIZE ERROR Phrase ..cccoooveoieieiee e 6-20
6.5.3.  The CORRESPONDING Phrase ........ccoeeeveeivreeeiiieeieiineeens 6-21
6.5.4. The Arithmetic Statements .....ccoceeiiiiiii e 6-22
6.5.5.  Overlapping Operands ........cccooveviieeeciiieeceieeee e 6-22
6.5.6.  Multiple Results in Arithmetic Statements .........cccooceciiiii, 6-22
6.5.7.  WHEN-COMPILED Special Register ......c..ccccooeveiiiniieerrennnen, 6-23

XV




Contents

XVi

6.6.

COBOLVErbS ..ot 6-23
6.6.1.  ACCEPT Statement ...coveveeeiiiieiiiiee e 6-23
6.6.2.  ADD Statement .......ocooveeiiieie e 6-29
6.6.3.  ALTER Statement .....ccoooiviivieiieiee e 6-30
6.6.4.  CALL Statement .....oooooviiiieieeee e 6-31
6.6.5.  CANCEL Statement .....ocovvvviiieeieec e, 6-33
6.6.6. CLOSE Statement ....ccooveiiieiiieiiciiiieeee e 6-34
6.6.7. COMPUTE Statement .......ooooiiiiiiiieieeiiecci e 6-39
6.6.8.  COPY Statement ......ocovviiiiiieiiiiiee e 6-40
6.6.9. DELETE Statement .......coveveiiiiiiiee e 6-43
6.6.10. DISABLE Statement ........ccooiiiiiiieeiieie e 6-44
6.6.11. DISPLAY Statement .....oooovoieriiieieee e 6-45
6.6.12. DIVIDE Statement .....ccccooieiieiiiiiee e 6-49
6.6.13. ENABLE Statement ... 6-51
6.6.14. EXHIBIT Statement .....ooooiiiiiiie e 6-52
6.6.15. EXIT Statement ...ooooveevoeieeeeeeee e 6-53
6.6.16. GO TO Statement .oveviiiiiiee e 6-53
6.6.17. [F Statement ..o 6-55
6.6.18. INSPECT Statement ......ccccooiieiiieiieeee e 6-56
6.6.19. MERGE Statement .........oooveeiiiiiiiiiicie e 6-63
6.6.20. MOVE Statement ...oooeveeeieee e 6-66
6.6.21. MULTIPLY Statement ......ccccoiiiivieiiie e, 6-70
6.6.22. ON Statement ... 6-71
6.6.23. OPEN Statement ......ccoooviviieiiiiiie e, 6-72
6.6.24. PERFORM Statement ........cocooviiiieeieeieiceeeee e 6-76
6.6.25. READ Statement ....ccooveeiiiiiiiiieee e 6-84
6.6.26. RECEIVE Statement .......c.oooviiiiii e 6-89
6.6.27. RELEASE Statement ......ccooooovviiiiiiiiiee 691
6.6.28. RETURN Statement .....oooeiiiiiiee e 6-92
6.6.29. REWRITE Staternent .......cccoooiiiiiiiiii 6-93
6.6.30. SEARCH Statement ....ccoceeviiiiiiiiieec e 6-96
6.6.31. SEND Statement ......ccccvvveiiieiiiiiee e 6-100
6.6.32. SET Statement .....ooccvmiiiiiiiiiii e 6104
6.6.33. SORT Statement ......oooviiivieiiie e 6-106
0.6.34. START Statement .....ooovieeeiiiee e 6-110
6.6.35. STOP Statement ......ooovvereiieeie e 6-113
6.6.36. STRING Statement ........ccovviiiiiiiei i, 6114
6.6.37. SUBTRACT Statement .....ccccoovivieiiiiiiieeeeveeee, 6-116
6.6.38. TRACE Statement ....ccc.oeeiiiieiiiiiieeee e 6-118
6.6.39. TRANSFORM Statement ......ccccooiiiiiiiiiiiiii 6-118
6.6.40. UNSTRING Statement ......cccccevviviiiiiiieeeeeiiiee e, 6-123
6.6.41. USE Statement ...cooovrveeeiieeeeeeeeeee 6-126
6.6.42. WRITE Statement ... 6-135
6.6.43. *DEBUG Statement ........ooovveeeiiiiniieieec e 6-141

7004 4490-000



Contents

Section 7.

Section 8.

7004 4490-000

Table Handling Summary

7.1,
7.2.

7.3.
7.4.

General Information ..............cooooiiiiii 7-1
Language Concepts ..........cccoooieiiieiiee e 7-1
7.2.1.  Table Definition ...ccoooviiieeeeeeeeee e 7-1
7.2.2. References to Table fems ..ococoovviiiviiiiiieee e 7-2

SUBSCIIPHNG oo 7-3

INAEXING oottt e e e e et aee e 7-3

Range Checking ....oooveeiieie e, 74
Data Division Considerations .............c.cccccciviiiiiiii 7-4
Procedure Division Considerations ................ccccccccooiiviieiiiii. 75
7.4.1. Table Handling Statements ......ccooovvieiiiiciceeeeee 75
7.4.2. Comparisons Involving Index-Name or Index Data Items .......... 7-6
7.4.3.  Overlapping Operands in a SET Statement . .......ccocovieiiinnn. 7-6

File Processing Summary

8.1.
8.2.

8.3.

8.4.

8.5.

General Information .................ccooiiii e 81
Language Concepts ........c.ccoeiiiieeiiiiie e &1
8.2.1. File Organization and Access Methods ...........ccoeviiiiiiieenn, &1
Sequential Organization .....oooovveeiiieii e, 81
Relative Organization .......c..cccceeiviiiiiiii e, 82
Indexed Organization .........ccooooiiiiiiiiei e 82
SAM Organization .....ccvcooiveeeiiiiiccie e 83
ISAM Organization .........ccccooieeieeeiie e 83
8.2.2.  Current Record Pointer .......ccovveeeiiiiiiiiieeiee e 83
8.2.3. L0 SHAtUS oo 84
8.2.4. AT END Condition ....coovouveeieeeeeeeieeee e 85
8.2.5.  INVALID KEY Condition .......ccoovuivreiieiiiiieieee e 85
8.2.6.  LINAGE-COUNTER ...oiiiiiieee ettt 86
Sequential File Processing ..........ccoooiiiiiiiii 86
8.3.1.  Level CharacteristiCs .....vieiiivciiieiie i, 86
8.3.2. Clauses and Statements for Sequential File Processing ........... 86
Environment DIVISION ....oooveeeiiriec e 86
Data DIVISION  covvieii e 87
Procedure DIVISION .....icieie e 88
8.3.3.  Printer-Destined FIles .....covvveeiiieeieeee e 89
8.3.4, Multivolume Sequential FileS  ...ooovviiiiiiiii e, 89
Relative File Processing ............c.cccooiiiiiiiiici 89
8.4.1.  Level Characteristics .......oovvciiieeiiee e, 89
8.4.2. Clause and Statements for Relative File Processing .............. 810
Environment DIVISION .......ooovveeieiiie e 810
Data DIVISION .oovvvieeeiciie et 811
Procedure DIVISION ...eeveeieieeiieieee e 811
Indexed File Processing ...........ccocceeviiiiiiii e, 813
8.5.1.  Level Characteristics ......covveeieiiieiciee e 813
8.5.2. Clauses and Statements for Indexed File Processing ............. 813
Environment DIVISION ..cvveeeeiiiecee e 813
Data DIVISION  ..ooveeiiiii e 814
Procedure DIVISION ......ocoviiieiiiei e 815

XVii




Contents

XViii

Section 9.

Section 10.

8.6.

8.7.

SAM File Processing ........ccceevevivecieieieciee e 816
8.6.1.  Environment DIVISION ....cc.veeevieieeiriiie e i e 816
8.6.2.  Data DIVISION ..veeiiiceiieiceiieeceieeeeeerree e eeeiie et 817
8.6.3.  Procedure DIVISION .......ooovevrieeiiieeeeiieeee e 817
8.6.4.  Multivolume SAM Files .....vvioiiiiieieieeeece e, 818
ISAM File Processing ........coooveiiiiiieeiiee e 818
8.7.1.  Environment DIVISION ....ccvviviviiie e 818
8.7.2.  Data DIVISION .uveeviieieiieiieiecieeeiecreee e et e e 819
8.7.3.  Procedure DIVISION ......ccouevieevieieeieeee e 819

Sort-Merge Summary

9.1.
9.2.

9.3.

9.4.

9.5,

9.6.

General Information ............cooevvviieiee e 91
Language Concepls ... 9-2
9.2.1.  Relationship with File Processing Facility ........ccoovvvviveeiiinnn, 9.2
9.2.2.  Sort Special RegISters.........covviiiviieeeiiieie e 9-2
Environment Division Considerations ... 9-3
9.3.1.  File Control ENtry ovveeeieeee e 9-3
9.3.2.  -O-CONTROL Paragraph .......ccceceeuieisereereieiieeaiee e 93
Data Division Considerations ...............cccceoceeiiiiiiiiiiieee 9-4
Procedure Division Considerations .....................cccciiiiin e, 9-4
9.5.1.  RELEASE Statement .......cooooviriiiieiiiiiiiiee e 94
9.5.2.  RETURN Statement .....cccouvieieiiiiiiiiriiceee i rre e e 95
9.5.3.  SORT Statement ..oocveevieiieieeeee e 95
9.5.4. MERGE Statement ......ooomeiie e 95
Object Time Subroutine Sort-Merge Main Storage

ReqUIremMents ........o.oooiii i 9-6

Segmentation Summary

i0.1.
10.2.

10.3.
10.4.
10.5.

10.6.

General Information ................ccooiiviiiii 10-1
Organization ..........occveeiiiiine et 10-1
10.2.1. Fixed POrtion .....ocoeeeeiiieeeecee e, 101
10.2.2. Independent SEEMENES .....coovvvvvierereiiiiieiiieri e eeeeer e 10-2
Segmentation Classification ... 10-2
Segmentation Control ... 10-3
Structure of Program Segments .............cccccoiiviiiiiii 10-3
10.5.1. Segment NUMDEIS viiiiiieei et 10-3
10.5.2. SEGMENT-LIMIT Clause ....coovveeeeeiieeeee e 10-3
10.5.3. Object Module Naming Conventions .......ccccccceevvveiivivineerenns 10-4
10.5.4. Linkage Editor Control Statement Considerations ................ 10-4
COBOL Verbs Affected by Segmentation ..............cccoooviieeennn. 105
10.6.1. ALTER Statement ....coooovvieiiiiiiieieeeeeeeeece e 105
10.6.2. PERFORM Statement .....c..oooveeiiimiiieiieee e 105
10.6.3. SORT Statement .....oooveiiiiiiei e 165
10.6.4. MERGE Statement .........occcoviviieiieieieeiee e 10-6

7004 4490-000



Contents

Section 11.

Section 12.

Section 13.

7004 4490-000

Library Summary

11.1. General Information .............ccccoviivimeeiiiii e, 11-1
11.2. COPY Statement ............ccccoeeiiieniieiiie e etee e 11-1
11.3. Source Program Corrections during Compilation ........................ 11.2

Debugging Language Summary

12.1. General Information .............ccoccoeveiieeiiiiii e, 12-1
12.2. Language CONCEPIS .....ccevviiceveeeiiieee e 12-1
12.2.1. DEBUGHTEM RegiSter .ooivevveviiiiieeiiiiiee e 1222
12.2.2. Compile-Time SWILCh ...vevveeeririieiiiiee e, 12-3
12.2.3. Object-Time SWItCh ...ocoeeeeceee e 12-3

12.3. Environment Division Considerations .......................ccccovvviinn. 124
12.3.1. WITH DEBUGGING MODE Clause ......cceeevvuvveeiiiiieeeiiieeeinenn 124

12.4. Procedure Division Considerations ................ccoeovviiiiviiinnnnn.. 12-4
12.4.1. USE FOR DEBUGGING Statement ........cccooiveveriviviieeiiinnenne 12-4
12.4.2. Debugging LINES ..vevieiirieiiiiieres e 124
12.4.3. Extended Debugging Facility .......cccoevvveiieeiieieeii 12-5

ON Statement.......coouerieeii e 12-5

EXHIBIT Statement ......cooooeiiiiiiiiieeeceeeeee e 125

TRACE Statement .....ccoeeiieiiiiiiee e 125

Debugging Packet (*DEBUG) .......c.ocovviviiciiiie e, 12-6

Interprogram Communication Summary

13.1. General Information ..............cocoeiiiiiiii i 131
13.1.1. Transfer of Control ......ccoeiiviiieiiiii e 131
13.1.2. AccesstoData ltems ....ocoiviiiiviiiiee e, 132
13.1.3. Level Characteristics ..cveveeveieiieiiieeeeeeecee e 132

13.2. Data Division Considerations ...............cccc.ccooeeieiiiiiiii e, 133
13.2.1. Noncontiguous Linkage Storage .......cccovvcvevoiieivinncrennn.n, 133
13.2.2. Linkage Records ......ccoeveviiieeieieee e 133
13.2.3. Initial Values ovveeeeeeeeecee e 133

13.3. Procedure Division Considerations .........................c...cooeiiiil. 133
13.3.1. Procedure Division Header .......ccoocvvveevviiiiiiieciiiiie e, 133
13.3.2. CALL Statement ..o 13-4
13.3.3. CANCEL Statement .....ccooeeiiiiiiieiee e 134
13.3.4. EXIT PROGRAM Statement .......cocovveeeviieeiiiiiecciieeeeeeeenn 134

13.4. Object Program Execution Considerations ..................ccccccoeennnn. 135

Xix




Contents

XX

Section 14. Communication Summary

14.1.
14.2.
14.3.
14.4.

14.5.
14.6.

14.7.

Appendix A. Compiler Options

A.l.
A2.
A3.

Appendix B. Compiler Listings

B.1.
B.2.
B.3.
B.4.
B.5.
B.6.
B.7.

Appendix C. Compiler Diagnostics

C.L.
c.2.

Appendix D. FIPS Flagging Facility

D.1.
D.2.

General Information ...................ccoiiiii e 14-1
Message Control System ..........ccccoeviiiiiciiiiie e 14-1
COBOL Object Program .........cccoooevvveeiiieeeeee e 14-2
Relationship of COBOL Program to MCS and
Communication Devices ..........ccccoooeiiiiiiiiiiiie 142
14.4.1. Invoking the COBOL Object Program ........cccccovvviiviiveeenennnn. 14-3
Scheduled Initiation ..o 14-4
MCS INVOCATION  .eveeeceie et 14-4
Determining the Method of Invocation ..., 14-4
Concept of Messages and Message Segments ............................ 145
Concept of QUEUES .......ooovvvviiiiiee e 14-5
14.6.1. Enabling and Disabling Logical Connectives ..........cccceeue..... 14-6
14.6.2. Enqueuing and Dequeuing Methods .......ccoooiiiiiiii 14-6
14.6.3. Queue Hierarchy ....ccccceeeiiiiiiiiiiieie e 14-6
Message Control System Generation ..............cccooeeeeiiiviiinninenen... 14-8
General Information ... Al
Compiler Option Specification ...............ccc.cooiviiiii Al
Compiler Option Specification Consistency Check ......................... A6
Compilation Summary Listing ............ccccocoviiiiviiiecee e B-1
Diagnostic Listing ..........ooooiiiiiiiiie e B-1
Source Listing ........ooooviiiiiic e B-1
Object Code Listing ... B-2
Locator/Map/Cross-Reference Listings ................oooeiiiiiiinnnn, B-2
Alphabetically Ordered Cross-Reference Listing ............................ B-4
Object Code Map Listing .............coooooiiiiiiii e, B-4
General Information ... Cl
Diagnostic LIsting .........c..ccooeviiiiiiiie e C1
FIPS PUB 21-1 COBOL Levels .........c...ooooviiiiiiiec e, D1
Flagging Options ... D-2

7004 4490-000




Contents

Appendix E. Object Program Processing Considerations

E.1. Intermediate Results in Arithmetic Operations ............................... E-1
E.1.1.  Floating-Point Operands ........ccocvivviiieeiiiiieiieeeceeeee E-2
E.1.2.  ADD and SUBTRACT Statements ........cccccooeviiviiiiiiiiiieiee E-2
E.1.3.  MULTIPLY Statement ......ccoceieviriiiiiiiiiieieeeiee e, E-2
E.1.4.  DIVIDE Statement .......c.covveeiiiiiieieeeeee e E-2
E.2.  EXPressiOns ........cccccoviiiiieiiiiieeiiei et E-3

Appendix F. Non-English Language Feature

F.lo FUNCHION oo F-1
F.2. Composite Language Format ...................c.cccoooiiiiiiiiiii, F-2
F.3. Control Division ...........cc.cooiiiiiii e, F-3
F.4. Environment Division ... F5

F.A.1.  CLASSNAME Clause .....ooovviriicrieeiiiiiee e F-5
F.5. Procedure Division ..............ccccoooiiiiiiiii F-7

F.5.1.  Extended Class Condition ..........cccevviriiiiiiiiiiiiieice e F-7
F.6. Non-English Text Utility Program ....................coooiviiiiii, F-7

Appendix G. IMS Action Programs

G.1. GeneralInformation ....................ccciiiiii L G-1
G.2. Action Programs ............ccccoooiiiiiiiiiiice e G-l
G.3. Compiler Parameter Specifications and IMS Configuration
Specifications .............ocoiiiii G-4
G.4. Reentrant Action Program Work AreaUsage ..., G5
Appendix H. Job Control Stream Requirements
H.1. Generalinformation ... H-1
H.2. Procedure Call Statement ....................ccooii i H-1
H.3. Compiler Status Indicators .............ccccccovviiiiiiiiiiiiie e, H-19
H.4. Data Definition (DD) Job Control Statement Keyword
Parameters ..o H-19
Appendix |. Reserved Words
Appendix J. Standard EBCDIC and ASCII Collating Sequences
Jlo Introduction. ... J1
J.2. EBCDIC/ASCI/Hollerith Correspondence .......................ooooii, J1
J.2.1. Hollerith Punched Card Code......cccooooviiiiiiiiiciiiee J-2
J2.2. EBCDIC....eiiieieeeeeeeeee e J-2
2.3 ASCl e J-2
J.3. 0S/3 Collating Sequence for EBCDIC Graphic Characters............... J10
J.4. 05/3 Collating Sequence for ASCIl Graphic Characters.................. J13

7004 4490-000 xXi




Contents

XXii

Appendix K. PICTURE Clause

K.1. General Information ...........c..cccooveniiinieni e K-1
K.2. Use of the PICTURE Clause and Its Symbols ............................... K-1
K.3. Descriptions and Examples of PICTURE Clause Symbols ............... K-2
Glossary
Index

User Reply Form

7004 4490-000



Figures

31.
41.

51.
52.
53.
54.
55.

61.
6-2.
6-3.
6-4.
6-5.

141,
14-2.

G1.

7004 4490-000

Sample Identification Division ENHes ..o 32
Sample Environment Division Entres ..o 4.2
Sample File Section ENFES  .oovvvereeieeee ettt e et 56
Logical Page Format for Format 1 LINAGE Clause .......cccooviiriiiiinie e, 516
Sample Sort File Description Entries ..ooooeeiiiiiiiii e 5-21
Sample Working-Storage Section ENtries ...oc.oveiiveiieeeeee e 562
Sample Linkage Section ENHES .c.eeiiivieer ettt 5-64
Sample Communication Section ENrES ....ccvviiiieee e 577
Sample Procedure DIVISION ....veeeeee e 6-4
Flowchart for the VARYING Phrase Having One Condition ...........cccciiiiiieiiieee 6-80
Flowchart for the VARYING Phrase Having Two Conditions .......oooviiiiiiiiiieceeie, 6-81
Flowchart for the VARYING Phrase Having Three Condiions .........c.cccoeeiiiiiiiiiiiiiincnn, 6-82
Flowchart for a Format 1 Search Operation Containing Two WHEN Phrases ................... 6-97
COBOL Communication EnVIronmMEnt .......eeiiiiieiiiieee st rr e saie e 14-3
Hierarchy of QUEBUES ...eeeiii e e e 14-7
IMS WOrK Area USAZE ....vviieeei et ettt aae e e senaaes G-6

Xxiii







Tables

1-1.

4-1.
42,
43.
44

5-1.
52.
53.
54.

5-6.
57.
58.
59.
5-10.
511
512.

61
6-2.
6-3.
6-4.
6-5.
6-6.
6-7.
6-8.
69.

81
12-1.

Al.
A2.

D-1.
G1.
F1.

J2.
J3.

7004 4490-000

COBOL Language Processing LEVEIS ......oiiiiioeiicei e 1-1
Status Key Values for Workstations .......coooiioii o 4.9
Effects of CONNECT-FREE REPOMING covvviiiitiree ittt ettt 4-10
Effects of FUNCTION-KEYS INPUE .ot 411
Compiler Default Value of the RESERVE Clause .....ooovveviviiiieeeei e, 4.23
File Description ENtry ClaUSES ..oovieeeeeeeee et e et e e e 57
Block Size Calculations for Tape, Card Reader, Card Punch, and Printer Files ................. 59
Block Size Calculations for Mass Storage SAM and ISAM Files .......ccovvvvviieeeeeeiiiiiinee. 5-10
Buffer Size Calculations for Mass Storage Sequential, Relative, and Indexed Files ........... 511
Data Description Entry ClaUSes ......oioeeeiiiie et 5-25
Class and Category of Elementary and Group Data Items ......oocooiiiiiiiiiiiii 5-30
Type of Editing Permissible for Each Data Category .....oocevvvieeiiiciiciiicieeee, 5-36
Results Produced by Editing Sign Control Symbols .........ooooiiiiiiieiiciiiiee e 5-37
PICTURE Character Precedence Chart .......cccooiiiiiiiiieieiiiie et 5-41
Alignment Boundaries for Various Types of Elementary ltems .......cccccoiiiiiiiniiiiiaiinn. 551
Communication Status Key Condifion ........ocove i 572
Error KEY COUBS oottt ettt e e e st e et e e e e sane e e snrea e 5-76
Permissible Symbol Combinations in Arithmetic EXpressions ...ovvveovvveeieieiiie e, 6-8
Permissible Comparisons for Relation Conditions .........eeeeeoeiiiiciceeee e 6-10
Logical Operators and the Resultant Values ........ccccoiviiiiiiiiiiii e 6-16
Combinations of Conditions, Logical Operators, and Parentheses ..........ccccciieiiiiinnns 6-17
Relationship of Categories of Files and the Options of the CLOSE Statement .................. 6-35
Permissible MOVE Statement Data Transfers ..o 6-69
Permissible Input/Output Statements for Each OPEN Mode .....ccccoovvvieeriviiiiic 6-73
Valid Uses of the Format 1 SET Statement ..o 6-105
Combination of FROM and TO Options in a TRANSFORM Statement ........ccccooovvvieeenes 6-120
Status Key Values and Meanings .....cuieoeea ittt 84
Debug Conditions and Contents of DEBUGHTEM  .....ooiivieeriiiieeeeeeee e 12-2
Options of the PARAM Statement ... A2
Parameter Consistency CheCKS ouivieiiiioe et A7
Federal Standard COBOL LEVEIS ...vvviviioriiiiiieee et e D1
IMS CONFIUIATION ..ttt ettt e et e e et a e e ebebe e enarae e G-b
Cross-Reference Table: EBCDIC/ASCI/HoNErith ..coovreeeeeeeeee e J3
0S/3 Collating Sequence: EBCDIC GraphiCS....cuuuririeiiiiiiiiciieieniiiiiive e eeeeesiiiiiae e e J10
0S/3 Collating Sequence: ASCII GraphiCs ...ovvvieiiiiiiiie et J13

XXV




e



Section 1
Introduction

1.1. Scope

This manual describes the 1974 American National Standard COBOL compiler
operating in the System 80 environment.

1.2. Structure of COBOL Language

COBOL is structured into a nucleus and a number of functional processing modules.

The nucleus contains language elements for internal processing. The functional
processing modules are: table handling, sequential I-O, relative I-O, indexed I-O,
sort/merge, segmentation, library, debug, interprogram communications, and
communication.

Each module contains either two or three levels. Those with three levels contain a null

set at their lowest level, a low processing level (Level 1), and a high processing level
(Level 2). In all cases, lower levels are subsets of higher levels within the same

module. Table 1-1 lists all modules and levels implemented on the operating system.

Table 1-1. COBOL Language Processing Levels

Module Level

Nucleus

Table handling

Sequential 1-0

Relative I-0

Indexed I-0

Sort/merge

Segmentation

Library

Debug

Interprogram communication

N NN NN NN VDN NN DN NN

Communication

7004 4490-000

11




Introduction

1.2.1. Module Overview

1-2

Nucleus

The nucleus contains the language elements for internal processing. This module
is divided into two levels. The Level 1 elements perform basic internal operations,
i.e., elementary options of the various clauses and verbs. Level 2 provides more
extensive and sophisticated internal processing capabilities.

Table handling

The table handling module contains the language elements necessary for:
~  Definition of tables

—  Identification, manipulation, and use of indexes

- Reference to the items within tables

This module is divided into two levels. Level 1 provides the ability to define fixed-
length tables of up to three dimensions and to refer to items within them using
either a subscript or an index. Level 2 provides for the definition of variable-
length tables. In addition, facilities for serial and nonserial lookup are provided
by the SEARCH verb and its attendant Data Division clauses.

Sequential I-O

The sequential I-O module contains the language elements necessary for the
definition and access of sequentially organized external files. The module is
divided into two levels. Level 1 contains the basic facilities for the definition and
access of sequential files and for the specification of checkpoints. Level 2 contains
more complete facilities for defining and accessing these files.

Relative I-O

The relative I-O module provides the capability of defining and accessing mass
storage files in which records are identified by relative record numbers. This
module contains a null set as its lowest level and two processing levels. Level 1
provides basic facilities. Level 2 provides more complete facilities, including the
capability of accessing the file both randomly and sequentially in the same
COBOL program.

Indexed I-O

The indexed I-O module provides the capability of defining mass storage files in
which records are identified by the value of a key and accessed through an index.
This module contains a null set as its lowest level and two processing levels.
Level 1 provides basic facilities. Level 2 provides more complete facilities,
including alternate keys, and the capability of accessing the file both randomly
and sequentially in the same COBOL program.

7004 4490-000

ST,

PN



Introduction

7004 4490000

Sort/Merge

The sort/merge module allows for the inclusion of one or more sorts in a COBOL
program and consists of a null set and two processing levels. Level 1 contains
facilities to sort a single file only; Level 2 provides extended sorting capabilities,
including a merge facility.

Segmentation

The segmentation module provides for the overlaying at object time of Procedure
Division sections. This module consists of a null set and two processing levels.
Level 1 provides for section segment-numbers and fixed segment limits; Level 2
adds the capability for varying the segment limit.

Library

The library module consists of a null set and two processing levels.’ It provides for
the inclusion into a program of predefined COBOL text. Level 1 contains the
basic COPY verb; Level 2 adds the REPLACING phrase.

Debug

The debug module provides a means by which the user can specify his debugging
algorithm - the conditions under which data or procedure items are monitored
during execution of the program. It consists of a null set and two processing
levels. Level 1 provides a basic debugging capability, including the ability to
specify selective or full paragraph monitoring. Level 2 provides the full COBOL
debugging capability.

Interprogram Communication

The interprogram communication module provides a facility by which a program
can communicate with one or more other programs. This module consists of a null
set and two processing levels. Level 1 provides the ability to transfer control to
another program known at compile time and the ability for both programs to
have access to certain common data items. Level 2 adds the ability to transfer
control to a program not identified at compile time as well as the ability to
determine the availability of object time main storage for the called program. The
high level also provides the capability for the release of main storage areas
occupied by called programs.

Communication

The communication module provides the ability to access, process, and create
messages or portions of messages. It also provides the ability to communicate
through a COBOL message control system with local and remote communication
devices. This module consists of a null set and two processing levels. Level 1
provides basic facilities to send or receive complete messages. Level 2 provides a
more sophisticated facility including the capability to send or receive segments of
a message.

1-3




|
|
I
|
|
|
|
I
|
|
|
I
I
I
I
|
|
I
|
|
|
I
|
|
|
|
I
I
|
I
|
|
I
I
|
|
|

Introduction

1.2.2. Extensions to COBOL

14

Unisys has provided a number of extensions to the standard COBOL language. These
extensions are indicated in this manual by dashed-line boxes. The extended language

elements are as follows:

Apostrophe as quotation mark
USAGE COMPUTATIONAL-n
DISPLAY floating-point data item
Floating-point literal

Hexadecimal literal

CALL USING argument

IF THEN statement

TRANSFORM statement

ISAM file processing facility
Extended debugging facility

ON statement

WHEN-COMPILED special register
Non-English language feature
APPLY clauses

SAM file processing facility
Extended RERUN option

Standard user tape labels

Sort special registers

ASSIGN clause in SPECIAL-NAMES
Format 4 of ACCEPT statement

Format 2 of DISPLAY statement

7004 4490-000



Introduction

1.3. Formats, Rules, and Elements of COBOL

1.3.1. Format

A format is the specific arrangement of the elements of a clause or a statement. A
clause or a statement consists of elements as defined in 1.3.3. Throughout this
manual, a format is shown adjacent to information defining the clause or statement.
When more than one specific arrangement is permitted, the format is separated into
numbered formats. Clauses must be written in the sequence given except where
specifically stated in the rules associated with a given format. (Clauses that are
optional must appear in the sequence shown if they are used.) Applications,
requirements, or restrictions are shown as rules.

1.3.2. Rules

Rules are used to define or clarify:

e  The syntax or arrangement of words or elements in a larger structure, such as a
clause or statement

®*  The meaning or relationship of meanings of an element or set of elementsin a
statement and the effect of the statement on compilation or execution

1.3.3. Elements

Elements that make up a clause or a statement consist of uppercase and lowercase
words, level-numbers, brackets, braces, connectives, and special characters. See
"Notation Conventions" in the "About This Manual" section for a discussion of how
COBOL elements are presented throughout this manual.

7004 4490000 1-5







Section 2
General Specifications

2.1. COBOL Character Set

The most basic and indivisible unit of the language is the character. The set of 51
characters used to form COBOL character-strings and separators consists of the

following letters of the alphabet, digits, and special characters. The collation sequence

for these characters is given in Appendix J. (For nonnumeric literals, comment-
entries, and comment lines, the character set is expanded to include the entire

computer character set.)

7004 4490-000

0,1

2

AB,..,2Z

9

Blank or space (written on coding form as A or a blank space)

Period (decimal point)
Less than

Left parenthesis

Plus sign

Currency sign
Asterisk

Right parenthesis
Semicolon

Minus sign or hyphen
Comma (decimal point)
Greater than

Equals sign
Quotation mark

Slash (stroke, virgule)

21




General Specifications

These characters may be used as follows:
®©  Characters Used for Words

A COBOL word is a sequence of not more than 30 of the following
characters:

0,1,...,9
AB,..7Z
- (hyphen)
A word may neither begin nor end with a hyphen or contain a space.
¢ Characters Used for Punctuation
COBOL punctuation characters are:
( Left parenthesis
) Right parenthesis

Blank or space (written on coding form as A or a blank space)

Period
, Comma
; Semicolon
E{ ‘_] Quotation mark
= Equals sign

®  Characters Used in Relational Expressions

The COBOL characters used to represent relational operators are:

= Equals
> Greater than
< Less than

2-2 7004 4490-000



General Specifications

7004 4490-000

Characters Used in Arithmetic Expressions

The characters used in arithmetic expressions are:

+

ok

Plus sign (addition)
Minus sign (subtraction)
Asterisk (multiplication)
Slash (division)

Two asterisks (exponentiation)

Characters Used in Editing

The characters used in editing are:

B

0

CR

DB

Blank or space

Zero

Plus sign

Minus sign

Credit

Debit

Zero suppress

Check protect
Currency sign
Comma (decimal point)
Period (decimal point)

Slash (stroke, virgule)

2-3




General Specifications

2.2. Separators

24

A separator is a string of one or more punctuation characters. The separators and the
rules for their formation are as follows:

1.

Blank or space
a. Anywhere a space is used as a separator, more than one space may be used.
b. The space may precede all separators except:

e  As specified by reference format rules (see 2.7)

®  The separator closing quotation mark. In this case, a preceding space is
considered a part of the nonnumeric literal and not as a separator.

¢. The space may follow any separator except the opening quotation mark. In
this case, a following space is considered a part of the nonnumeric literal and
not as a separator.

Comma, semicolon, and period immediately followed by a space

These separators may appear in a COBOL source program only where explicitly
permitted by the general formats, by format punctuation rules (see "Notation
Conventions" in the "About This Manual" section), by statement and sentence
structure definitions (see 6.2), or by reference format rules (see 2.7).

Right and left parentheses

Parentheses may appear only in balanced pairs of left and right parentheses
delimiting subseripts, indexes, arithmetic expressions, or conditions.

Quotation mark
An opening quotation mark must be immediately preceded by a space or left
parenthesis; a closing quotation mark must be immediately followed by one of the

separators: space, comma, semicolon, period, or right parenthesis.

Quotation marks may appear only in balanced pairs delimiting nonnumeric
literals except when the literal is continued (see 2.7).

Pseudo-text delimiters

The delimiter consists of two contiguous equals signs. An opening pseudo-text
delimiter must be immediately preceded by a space; a closing pseudo-text
delimiter must be immediately followed by one of the separators: space, comma,

semicolon, or period.

Pseudo-text delimiters may appear only in balanced pairs delimiting pseudo-text
and may not be continued across two lines.

7004 4490000

e



General Specifications

Any punctuation character that appears as part of the specification of a PICTURE
character-string or numeric literal is not considered as a punctuation character, but
rather as a symbol used in the specification of that PICTURE character-string or
numeric literal. PICTURE character-strings are delimited only by the separators:
space, comma, semicolon, or period.

The rules established for the formation of separators do not apply to the characters
that comprise the contents of nonnumeric literals, comment-entries, or comment lines.

2.3. Character-Strings

A character-string is a character or a sequence of contiguous characters that forms a
COBOL word, a literal, a PICTURE character-string, or a comment-entry. A
character-string is delimited by separators.

2.3.1. COBOL Words

A COBOL word is a character-string of not more than 30 characters that forms a
user-defined word, a system-name, or a reserved word. Withii.  “ven source
program, these classes form disjoint sets; a COBOL word may belong to one and only
one of these classes.

User-Defined Words

A user-defined word is a COBOL word that must be supplied by the user to satisfy the
format of a clause or statement. Each character of a user-defined word is selected from
the set of characters A through Z, 0 through 9, and -, except that the hyphen may not
appear as the first or last character.

There are 15 types of user-defined words:

alphabet-name
cd-name
condition-name
data-name
file-name
index-name
level-number
library-name
mnemonic-name
paragraph-name
program-name
record-name
section-name
segment-number
text-name

7004 4490000 25




General Specifications

With the exceptions of paragraph-name, section-name, level-number, and
segment-number, user-defined words must contain at least one alphabetic character.
Segment-numbers and level-numbers need not be unique; a given specification of a
segment-number or level-number may be identical to any other segment-number or
level-number and may even be identical to a paragraph-name or section-name.

The user-defined words condition-name, mnemonic-name, paragraph-name, and
section-name are defined in the following paragraphs. The definition for all other
user-defined words may be found in the glossary.

Condition-name

A condition-name is assigned to a specific value, set of values, or range of values
within a complete set of values that a data item may assume. The data item itself
is called a conditional variable.

Condition-names may be defined in the Data Division or in the
SPECIAL-NAMES paragraph within the Environment Division, where a
condition-name must be assigned to the ON STATUS or OFF STATUS, or both,
of SYSSWCHI-r].

A condition-name is used only in conditions as an abbreviation for the relation
condition; this relation condition posits that the associated conditional variable is
equal to one of the set of values to which that condition-name is assigned.

Mnemonic-name

A mnemonic-name assigns a user-defined word to an implementor-name. These
associations are established in the SPECIAL-NAMES paragraph of the
Environment Division.

Paragraph-name

A paragraph-name names a paragraph in the Procedure Division.
Paragraph-names are equivalent if, and only if, they are composed of the same
sequence of the same number of digits or characters.

Section-name

A section-name names a section in the Procedure Division. Section-names are

equivalent if, and only if, they are composed of the same sequence of the same
number of digits or characters.

System-Names

A system-name is a COBOL word used to communicate with the environment. There
are two types of system-names: computer-name and implementor-name. These names
are defined in the format or rules of the language element in which they appear.

26

7004 4490-000



General Specifications

Reserved Words

A reserved word is one of a specified list of COBOL words that may be used in COBOL
source programs but must not appear in the programs as user-defined words or
system-names. Reserved words can only be used as specified in the formats. (See
Appendix I.)

There are six types of reserved words.

1.

7004 4490-000

Keywords

A keyword is required when the format in which the word appears is used in a
source program. Within each format, such words are uppercase and underlined.

There are three types of keywords:
~  Verbs, such as ADD, READ, and WRITE
- Required words that appear in statement and entry formats

- Words with a specific functional meaning, such as NEGATIVE and
SECTION

Optional Words

Within each format, uppercase words that are not underlined are optional and

‘may be used to improve readability. The presence or absence of an optional word

does not alter the semantics of the COBOL program in which it appears.
Connectives

There are three types of connectives:

- Qualifier connectives that are used to associate a data-name, a

condition-name, a text-name, or a paragraph-name with its
qualifier: OF, IN

—  Series connectives that link two or more consecutive operands:
,(separator comma) or ; (separator semicolon)

~  Logical connectives that are used in the formation of conditions:
AND, OR

Special Registers

Special registers are compiler-generated storage areas used to store information
produced when using specific COBOL features. These special registers are named
with reserved words as follows: LINAGE-COUNTER (see "LINAGE Clause”
under 5.3.1), DEBUG-ITEM (see 12.2.1), WHEN-COMPILED (see 6.5.7),
SORT-FIiL.E-SIZE (see 9.2.2), and SORT-MODE-SIZE (see 9.2.2).

2-7




General Specifications

Figurative Constants

Certain reserved words are used to name and reference specific constant values
as explained in 2.2.

Special-Character Words

The arithmetic operators and relation characters listed in 2.1 are reserved words.

2.3.2. Literals

Aliteral is a character-string whose value is implied by 1) an ordered set of characters
of which the literal is composed or 2) specification of a reserved word that references a
figurative constant.

28

Nonnumeric Literals

A nonnumeric literal is a character-string delimited on both ends by quotation
marks and consisting of any allowable character in the EBCDIC character set.
The compiler allows for nonnumeric literals from 1 through 132 characters in

length. The value of a nonnumeric literal in the object program is the string of
characters itself, with the following exceptions:

- The delimiting quotation marks are excluded.

- Each embedded pair of contiguous quotation marks represents a single
quotation mark character.

However, the double-quote character (") appearing within a nonnumeric literal
bounded by single quotes is treated as part of the value of the nonnumeric literal
rather than a separator.

Coding Result

'THIS IS "“EDITED" OUTPUT! THIS IS "EDITED"™ OUTPUT

The single-quote character () appearing within a nonnumeric literal bounded by
the double quote characters (") is also treated as part of the nonnumeric literal.

Coding Result

"THIS IS 'EDITED' OUTPUT® THIS IS 'EDITED' OUTPUT

7004 4490000



General Specifications

7004 4490-000

To represent a single quote character within a nonnumeric literal bounded by
single quotes, two contiguous single quotes must be used.

Coding Result
'THIS IS MEDITED" OQUTPUT' THIS IS 'EDITED' OUTPUT

To represent a double quote character within a nonnumeric literal bounded by
double quotes, two contiguous double quote characters must be used.

Coding Result
MTHIS IS ''''EDITED!!!! THIS IS “EDITED" OUTPUT
OUTPUTH

All other punctuation characters are part of the value of the nonnumeric literal
rather than separators; all nonnumeric literals are category alphanumeric. (See
"PICTURE Clause" under 5.3.3.)

Numeric Literals

There are two types of numeric literals: fixed point andEl(Laltiﬂg _Qo_i_nﬁ

1. Fixed-Point Literal

A fixed-point literal is a character-string whose characters are selected from
the digits 0 through 9, the plus sign, the minus sign, and the decimal point. A
fixed-point literal consists of from 1 through 18 digits in length.

The rules for the formation of fixed-point literals are as follows:
a. Aliteral must contain at least one digit.

b. A literal must not contain more than one sign character. If a sign is
used, it must appear as the leftmost character of the literal. If the literal
is unsigned, the literal is positive.

c¢. Aliteral must not contain more than one decimal point. The decimal
point may appear anywhere within the literal except as the rightmost
character. If the literal contains no decimal point, the literal is an
integer.

If a literal conforms to the rules for the formation of numeric literals,
but is enclosed in quotation marks, it is a nonnumeric literal and it is
treated as such by the compiler.

d. The value of a numeric literal is the algebraic quantity represented by
the characters in the numeric literal. Every numeric literal is category
numeric. The size of a numeric literal in standard data format
characters is equal to the number of digits specified by the user.

29




General Specifications

| 2.  Floating-Point Literal _]

A floating-point literal is a numeric literal whose potential range of value is |
too great for fixed-point representation. l

A floating-point literal must have the following format:
[+] mantissa E [+] exponent

where:

i+

The two plus or minus signs are optional.

mantissa
Consists of from 1 to 16 digits with a required decimal point; the
decimal point may appear in any position.

Consists of the symbol E, followed by an optional sign, followed by
one or two digits. (A zero exponent may be written as 0 or 00.)

The literal must contain no spaces. The exponent must appear immediately
to the right of the mantissa.

The signs are the only optional characters in the format. An unsigned
mantissa or exponent is assumed to be positive.

The value of the literal is the product of the mantissa and 10 raised to the
power given by the exponent.

Example
+15E-2=15x%x10"?

The magnitude of the number represented by a floating-point literal must |
not exceed .72 x 107¢. The smallest nonzero value that can be represented by |
I_ a floating-point literal is +5.4 x 1077°.

|
|
I

|
’I |

|
| |
| |
| I
| |
| |
| I
| |
| exponent I
| |
| |

l
| ;
| l
| |
| l
| |
| |
| I
| l
| I
l

[+~ Hexadecimal Literals 1

A hexadecimal literal is a string of hexadecimal digits bounded by single or
double quotation marks and immediately preceded by an equal sign.

Examples

=1g23cH

L—‘ =1@23c! __J

210 7004 4490-000



General Specifications

The string may include any hexadecimal digits (0 through 9 and A through F).
The length of a hexadecimal literal ranges from 1 through 30 hexadecimal digits. I
If the literal consists of an odd number of hexadecimal digits, a leading |
hexadecimal zero is provided by the compiler to make the literal an even number |
of digits.

|

l

] A hexadecimal literal may be used anywhere a nonnumeric literal is permitted.
| In this manual, a hexadecimal literal is considered a nonnumeric literal.
i

|

|

|
l
|
|
A hexadecimal literal may be broken in such a way that part of it appears on a |
continuation line. Continuation of a hexadecimal literal follows the rules for |
continuation of a COBOL word. |

l

|

I

Example

BAKER.
MOVE ="13A

L_ - 4C8" TO FIELD. l

e Figurative Constant Values

Figurative constant values are generated by the compiler and referenced through
the use of reserved words. These words must not be bounded by quotation marks
when used as figurative constants. The singular and plural forms of figurative
constants are equivalent and may be used interchangeably.

The figurative constant values and the reserved words used to reference them are

as follows:
ZERO Represents the value 0, or one or more of the character 0,
ZEROS depending on context.
ZEROES
SPACE Represents one or more of the character space from the

SPACES computer character set.

HIGH-VALUE  Represents one or more of the character that has the
[ HIGH-VALUES | highest ordinal position in the program collating
sequence.

LOW-VALUE Represents one or more of the character that has the
[ LOW-VALUES | lowest ordinal position in the program collating sequence.

QUOTE Represents one or more of the character " (not the
QUOTES QUOTES character’). QUOTE or QUOTES cannot be

used as a quotation mark in a source program to bound a
nonnumeric literal. Thus, QUOTE ABD QUOTE is
incorrect as a way of stating the nonnumeric literal
"ABD".

7004 4490-000 2-11




General Specifications

ALL literal Represents one or more of the string of characters

comprising the literal. The literal must be either a
nonnumeric literal or a figurative constant other than
ALL literal. When a figurative constant is used, ALL is
redundant and is used for readability only.

When a figurative constant represents a string of one or more characters, the
length of the string is determined by the compiler in context according to the
following rules:

1.  When a figurative constant is associated with another data item, as when
the figurative constant is moved to or compared with another data item, the
string of characters specified by the figurative constant is repeated,
character by character on the right, until the size of the resultant string is
equal to the size in characters of the associated data item. This is done prior
to and independent of the application of any JUSTIFIED clause that may be
associated with the data item.

2. When a figurative constant is not associated with another data item, as
when the figurative constant appears in a DISPLAY, STRING, STOP, or
UNSTRING statement, the length of the string is one character.

A figurative constant may be used whenever a literal appears in a format, except
that whenever the literal is restricted to numeric characters, the only figurative
constant permitted is ZERO (ZEROS, ZEROES).

When the figurative constants HIGH-VALUE(S) or LOW-VALUE(S) are used in
the source program, the actual character associated with each figurative constant
depends upon the program collating sequence specified. (See 4.3.2,
"OBJECT-COMPUTER Paragraph", and 4.3.3, "SPECIAL-NAMES Paragraph.")

Each reserved word used to reference a figurative constant value is a distinct
character-string with the exception of the construction ALL literal, which is
composed of two distinct character-strings.

2.3.3. PICTURE Character-String

A PICTURE character-string consists of certain combinations of characters in the
COBOL character set used as symbols. See "PICTURE Clause" under 5.3.3 for the
discussion of the PICTURE character-string and for the rules that govern its use.

Any punctuation character that appears as part of the specification of a PICTURE

character-string is not considered as a punctuation character, but rather as a symbol
used in the specification of that PICTURE character-string.

2-12 7004 4490-000



General Specifications

2.3.4. Comment-Entries

A comment-entry is an entry in the Identification Division that may be any
combination of characters from the computer’s character set.

2.4. Classes of Data

In COBOL, data is classified into three classes: numeric, alphabetic, and
alphanumeric. The three classes are further divided into five categories: numeric,
alphabetic, numeric edited, alphanumeric edited, and alphanumeric (without editing).

Every elementary item except the index data item belongs to one of the classes and to
one of the categories. The class of a group item is treated as alphanumeric regardless
of the class of elementary items subordinate to the group item. For further
information on classes of data, refer to "PICTURE Clause" under 5.3.3.

2.5. Standard Alignment Rules

The standard rules for positioning data within an elementary item depend on the
category of the receiving item. These rules are:

1. If the receiving data item is described as numeric:

a. The data is aligned by decimal point and is moved to the receiving character
positions with zero fill or truncation on either end as required.

b. When an assumed decimal point is not explicitly specified, the data item is
treated as if it had an assumed decimal point immediately following its
rightmost character and is aligned as in rule 1a.

2. If the receiving data item is a numeric-edited data item, the data moved to the
edited data item is aligned by decimal point with zero fill or truncation at either
end as required within the receiving character positions of the data item, except
where editing requirements cause replacement of the leading zeros.

3. If the receiving data item is alphanumeric (other than a numeric-edited data
item), alphanumeric edited or alphabetic, the sending data is moved to the
receiving character positions and aligned at the leftmost character position in the
data item with space fill or truncation to the right, as required.

If the JUSTIFIED clause is specified for the receiving item, these standard rules are
modified. See "JUSTIFIED Clause" under 5.3.3 for a description.

7004 4490-000 213




General Specifications

2.6. Uniqueness of Reference

2.6.1. Qualification

214

Every user-defined name that specifies an element in a COBOL source program must
be unique, either by having no other name with the identical spelling and
hyphenation, or by having the name within a hierarchy of names such that references
to the name can be made unique by mentioning one or more of the higher levels of the
hierarchy. The higher levels are called qualifiers, and the process that specifies
uniqueness is called qualification. Enough qualification must be mentioned to make
the name unique; however, it may not be necessary to mention all levels of the
hierarchy. Within the Data Division, all data-names used for qualification must be
associated with a level-indicator or a level-number. Therefore, two identical data-
names must not appear as entries subordinate to a group item unless they are capable
of being made unique through qualification. In the Procedure Division, two identical
paragraph-names must not appear in the same section.

In the hierarchy of gqualification, names associated with a level indicator are the most
significant, then those names associated with level-number 01, then names associated
with level-number 02, ..., 49. A section-name is the highest (and the only) qualifier
available for a paragraph-name. Thus, the most significant name in the hierarchy
must be unique and cannot be qualified. Subscripted or indexed data-names and
conditional variables, as well as procedure-names and data-names, may be made
unique by qualification. The name of a conditional variable can be used as a qualifier
for any of its condition-names. Regardless of the available qualification, no name can
be both a data-name and procedure-name.

Qualification is performed by following a data-name, a condition-name, or a
paragraph-name, by one or more phrases composed of a qualifier preceded by IN or

OF. IN and OF are logically equivalent.

Format 1

data-name- 1 OF |data-name-2]...
condi tion-name IN

Format 2

paragraph-name [{gﬁ}section-name
IN

7004 4490-000

T



General Specifications

The rules for qualification are as follows:

1. Each qualifier must be of a successively higher level and within the same
hierarchy as the name it qualifies.

2. The same name must not appear at two levels in a hierarchy.

3. If a data-name or a condition-name is assigned to more than one data itemin a
source program, the data-name or condition-name must be qualified each time it
is referred to in the Procedure, Environment, and Data Divisions (except in the
REDEFINES clause, where qualification is unnecessary and must not be used).

4. A paragraph-name must not be duplicated within a section. When a
paragraph-name is qualified by a section-name, the word SECTION must not
appear. A paragraph-name need not be qualified when referenced within the
same section.

5. A data-name cannot be subscripted when it is being used as a qualifier.

6. A name can be qualified even though it does not need qualifications; if there is
more than one combination of qualifiers that ensures uniqueness, then any such
set can be used. The complete set of qualifiers for a data-name must not be the
same as any partial set of qualifiers for another data-name.

7. Qualified data-names may have any number of qualifiers up to a limit of five.
However, for compatibility with existing Unisys compilers, this compiler will

accept the use of up to 50 qualifiers.

8. If more than one COBOL library is available to the compiler during compilation,
text-name must be qualified each time it is referenced.

2.6.2. Subscripting
Subscripts are used to refer to individual elements within a list or table of like

elements that have not been assigned individual data-names. (Subscripting is
described in detail in Section 7.)

2.6.3. Indexing

Indexing is a method of referring to elements within a table by using an index for a
given level of a table. The index is assigned by specifying the INDEXED BY phrase of
the OCCURS clause. (Refer to Section 7 for a detailed description of indexing.)

7004 4490-000 2-15




General Specifications

2.6.4. ldentifier

An identifier is a term used to reflect that a data-name, if not unique in a program,
must be followed by a syntactically correct combination of qualifiers, subscripts, or
indexes necessary to ensure uniqueness.

Format 1

data-name-1 {gﬁ}data-name-Z ...[(subscript-1[,subscript-2[,subscript-311)1
IN

Format 2

data-name-1 |[OF]data-name-2|...|([index-name-1 [{+}literal-2]
IN literal-1

literal-3 literal-5

[{,index-name-Z [{i}literal-4]} [,{indax-name-S [{t}literal-él} }})J

Restrictions on qualification, subscripting, and indexing are:

1. A data-name must not itself be subscripted nor indexed when that data-name is
being used as an index, subscript, or qualifier.

2. Indexing is not permitted where subscripting is not permitted.

3. An index may be modified only by the SET, SEARCH, and PERFORM
statements. Data items described by the USAGE IS INDEX clause permit storage
of the values associated with index-names as data. Such data items are called
index data items.

4. Literal-1, literal-3, literal-5 in the format must be positive numeric integers.
Literal-2, literal-4, literal-6 must be unsigned numeric integers.

2.6.5. Condition-Name

2-16

Each condition-name must be unique or be made unique through qualification and/or
indexing or subscripting.

If qualification is used to make a condition-name unique, the associated conditional
variable may be used as the first qualifier. If qualification is used, the hierarchy of
names associated with the conditional variable or the conditional variable itself must
be used to make the condition-name unique.

If references to a conditional variable require indexing or subscripting, then references

to any of its condition-names also require the same combination of indexing or
subscripting.

7004 4490-000

P ,/“4?\"



General Specifications

The format and restrictions on the combined use of qualification, subscripting, and
indexing of condition-names are exactly that of the identifier (see 2.6.4) except that
data-name-1 is replaced by condition-name-1.

In the formats, condition-name refers to a condition-name qualified, indexed, or
subscripted, as necessary.

2.7. Reference Format

The reference format, which provides a standard method for describing COBOL source
programs, is described in terms of character positions in a line on an input/output
medium. A line consists of 72 character positions for any input media. The COBOL
compiler accepts source programs written in reference format and produces an output
listing of the source program input in reference format. Source programs written in
reference format in an 80-character card image containing user identification
information in character positions 73 through 80 are also accepted. The identification
information has no significance except that it is printed as received on the source
listing.

The rules for spacing given in this discussion of the reference format take precedence
over all other rules for spacing.

The divisions of a source program must be ordered as follows: the Identification
Division, the Environment Division, the Data Division, then the Procedure Division.
Each division must be written according to the rules for the reference format.

e  Format Representation

The reference format, for a line is represented as follows:

Margin Margin Margin Margin Margin
L c A B R
11111 717
112 314 |5 |6 71819101213 213
| 1 | || |
Sequence Number Area Area A Area B

Indicator Area

Margin L is immediately to the left of the first character position of a
line.

Margin C is between the sixth and seventh character positions of a line.

Margin A is between the seventh and eighth character positions of a
line.

7004 4490-000 2-17




General Specifications

Margin B is between the eleventh and twelfth character positions of a
line.

Margin R is immediately to the right of the seventy-second character
position of a line.

The sequence number area occupies six character positions (1-6) and is
between margin L and margin C.

The indicator area is the seventh character position of a line.

Area A occupies character positions 8, 9, 10, and 11 and is between
margin A and margin B.

Area B occupies character positions 12 through 72. It begins
immediately to the right of margin B and terminates immediately to the
left of margin R.

e  Sequence Numbers

A sequence number consisting of six digits in the sequence area may be used to
label a source program line.

e  (Continuation of Lines

Whenever a sentence, entry, phrase, or clause requires more than one line, it may
be continued by starting subsequent lines in area B. These subsequent lines are
called the continuation lines. The line being continued is called the continued
line. Any word or literal may be broken in such a way that part of it appears on a
continuation line.

A hyphen in the indicator area of a line indicates that the first nonblank
character in area B of the current line is the successor of the last nonblank
character of the preceding line without any intervening space. However, if the
continued line contains a nonnumeric literal without a closing quotation mark,
the first nonblank character in area B on the continuation line must be a
quotation mark, and the continuation starts with the character immediately after
that quotation mark. All spaces at the end of the continued line are considered
part of the literal. Area A of a continuation line must be blank.

If there is no hyphen in the indicator area of a line, it is assumed that the last
character in the preceding line is followed by a space.

An asterisk in the continuation indicator area of the line indicates a comment
line. (See the discussion of comment lines later in this section.)

2-18 7004 4490-000



General Specifications

7004 4490-000

Blank Line

A blank line is one that is blank from margin C to margin R, inclusive. A blank
line can appear anywhere in the source program, except immediately preceding a
continuation line that has a hyphen in column 7.

Division and Section Headers
The division header and section header must start in area A.

A section consists of paragraphs in the Environment and Procedure Divisions and
entries in the Data Division.

Paragraph Header, Paragraph-Name, and Paragraph

A paragraph consists of a paragraph-name followed by a period and a space and
by zero, one, or more sentences, or a paragraph header followed by one or more
entries. Comment-entries may be included within a paragraph as indicated in the
discussion of comment lines. The paragraph header or paragraph-name starts in
area A of any line following the first line of a division or a section.

The first sentence or entry in a paragraph begins either on the same line as the
paragraph header or paragraph-name or in area B of the next nonblank line that
is not a comment line. Successive sentences or entries either begin in area B of
the same line as the preceding sentence or entry or in area B of the next nonblank
line that is not a comment line.

When the sentences or entries of a paragraph require more than one line, they
may be continued as described in the earlier discussion of continuation of lines.

Data Division Entries

Each Data Division entry begins with a level-indicator or a level-number,
followed by a space, followed by its associated name, followed by a sequence of
independent descriptive clauses. Each clause, except the last clause of an entry,

may be terminated by either the separator semicolon or the separator comma.
The last clause is always terminated by a period followed by a space.

There are two types of data division entries: those that begin with a
level-indicator and those that begin with a level-number.

1. Level-Indicators
The level-indicators are FD, SD, and CD.
In those Data Division entries that begin with a level-indicator, the

level-indicator begins in area A followed by a space and followed in area B
with its associated name and appropriate descriptive information.

219




General Specifications

2-20

2. Level-Numbers

Those Data Division entries that begin with level-numbers are called data
description entries.

A level-number has a value taken from the set of values 1 through 49, 66, 77,
and 88. Level-numbers in the range 1 through 9 may be written either as a
single digit or as a zero followed by a significant digit. At least one space
must separate a level-number from the word following the level-number.

In those data description entries that begin with a level-number 01 or 77, the
level-number begins in area A followed by a space and followed in area B by
its associated record-name or item-name and appropriate descriptive
information.

All other level-numbers, 02 through 49, and special level-numbers 66 and 88
may begin in area A or B.

Successive data description entries may have the same format as the first or
may be indented according to level-number. Indentation does not affect the
magnitude of a level-number; its primary use is to improve readability.

When level-numbers are to be indented, each new level-number may begin
any number of spaces to the right of margin A. The extent of indentation to
the right is determined only by the width of the physical medium.

Declaratives

The keyword DECLARATIVES and the keywords END DECLARATIVES that
precede and follow, respectively, the declaratives portion of the Procedure
Division must each appear on a line by itself. Each must begin in area A and be
followed by a period.

Comment Lines

A comment line is any line with an asterisk (*) in the continuation indicator area
of the line. A comment line can appear as any line in a source program after the
Identification Division header. Any combination of characters from the computer
character set may be included in area A and area B of that line. The asterisk and
the characters in area A and area B are produced on the listing but serve as
documentation only. A special form of comment line represented by a slash in the
indicator area of the line causes page ejection prior to printing the comment.

Successive comment lines are allowed. Continuation of comment lines is

permitted, except that each continuation line must contain an asterisk in the
indicator area.

7004 4490-000

P



Section 3

Identification Division

3.1. Generallnformation

The Identification Division identifies the source program and the resultant output
listing. In addition, the user may include the date the program is written and such
other information as indicated in the format. The Identification Division must be
included in every COBOL source program.

3.2. Structure

Paragraph headers identify the type of information contained in the paragraph. The
PROGRAM-ID paragraph must be present. The other paragraphs are optional and
may be specified at the user’s discretion.

Format

Rules
1.
2.
3.
4.
7004 4490-000

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

[AUTHOR. [comment-entry.] ...]
[INSTALLATION. [comment-entry.l ...}
[DATE-WRITTEN. [comment-entry.l ...}

[[DATE-COMPILED. [comment-entry.] ...1]

[SECURITY. [comment-entry.]l ...]

The Identification Division must begin with the reserved words
IDENTIFICATION DIVISION followed by a period and a space.

The division header must be foilowed by the PROGRAM-ID paragraph.

The program-name may contain from 1 to 30 characters. It must consist of
only letters and digits and must begin with an alphabetic character.

The system uses only the first six characters of program-name as the

identifying name of the object program. Therefore, these characters should
be unique for every name in a particular program library.

31




ldentification Division

5. If program-name is not supplied or not accepted because of an error, the
compiler automatically supplies the program-name COB.

6. The optional paragraphs that follow the PROGRAM-ID paragraph must be
in the same order as given in the format.

7. The comment-entry may be any combination of the characters from the
computer character set and must start in area B as designated in the
reference format. Continuation of the comment-entry by using the hyphen in
the indicator area is not permitted; however, the comment-entry may be
contained on one or more lines.

8. The DATE-COMPILED paragraph-name causes the current date to be
inserted during program compilation. If a DATE-COMPILED paragraph is
present, it is replaced during compilation with a paragraph in the form:

DATE-COMPILED. current date.

Example

Figure 3-1 shows an example of an Identification Division.

Seq
No A B Text
1 8 12

001010 IDENTIFICATION DIVISION.

001020 PROGRAM-ID. PAY44.

601030 AUTHOR. JOHN SMITH.

001040 INSTALLATION. ABC COMPANY.

001050 DATE-WRITTEN. NOVEMBER 15, 1988.

0061060 DATE-COMPILED. TODAY.

001070 SECURITY. PAYROLL DEPT ONLY.

001080*THIS PROGRAM ADDS COMMISSIONS TO SALARY GIVING
001090* TOTAL MONTHLY EARNINGS OF SALES PERSONNEL.

Figure 3-1. Sample Identification Division Entries

32 7004 4490-000



Section 4
Environment Division

4.1. General Information

In the Environment Division of a COBOL source program, a relationship is
established between the physical requirements of the computing system on which the
source program is compiled and the characteristics of the computing system on which
the object program is to run. In addition, this division assigns input-output devices to
the files used by the object program and indicates the techniques to be used in
processing the files. This division must be included in every COBOL source program.

4.2. Structure

The Environment Division consists of two sections, each of which has a fixed name.
¢  CONFIGURATION SECTION
¢ INPUT-OUTPUT SECTION

The Configuration Section identifies the source computer and object computer and
relates system-oriented device-names to user-defined mnemonic-names. The
Input-Output Section deals with the information needed to control transmission and
handling of data between external media and the object program.

Format

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE -COMPUTER. source-computer-entry.
OBJECT-COMPUTER. object-computer-entry.
[SPECIAL-NAMES. special-names-entry.]
[INPUT-QUTPUT SECTION.

FILE-CONTROL. {file-control-entry.}...
[1-0-CONTROL. input-output-control-entry.] 1]

Rules

1. The Environment Division begins with the reserved words ENVIRONMENT
DIVISION followed by a period and a space.

2. The sections and paragraphs of the Environment Division must be written in
the order given in the format.

7004 4490-000 41




Environment Division

Example

Figure 4-1 shows an example of an Environment Division.

Seq.

No. A B Text

1 8 12

001016 ENVIRONMENT DIVISION.

061026 CONFIGURATION SECTION.
261036 SOURCE-COMPUTER. UNISYS-0S3.
801040 OBJECT-COMPUTER. UNISYS-0S3.
001056 SPECIAL-NAMES.
001060 SYSCONSOLE 1S TYPEIT.
001070 INPUT-OUTPUT SECTION.
0010808 FILE-CONTROL.

001090 SELECT INPUT1 ASSIGN TO TAPE-INPUT-F.

001100 SELECT LIST ASSIGN TO PRINTER-P115-VC.

001110 SELECT CDS ASSIGN TO DISK-C129-V.

001120 I-0-CONTROL.

061130 RERUN ON DISK-CKPT20@-1 EVERY 5080 RECORDS OF INPUTT.

Figure 4-1. Sample Environment Division Entries

4.3. Configuration Section

The Configuration Section specifies the operating system on which the program is to
be compiled and run and relates implementor-names to user-names.

Format

CONFIGURATION SECTION.

SOURCE-COMPUTER. entry.
OBJECT-COMPUTER. entry.
[SPECTAL -NAMES. entry.]

4.3.1. SOURCE-COMPUTER Paragraph

Function

The SOURCE-COMPUTER paragraph identifies the operating system that will
compile the source program and indicates whether the debugging sections and
debugging lines are to be compiled.

Format

SPERRY-0S3

SOURCE - COMPUTER. [UNISYS-OS3| [WITH DEBUGGING MODE].
UNIVAC-0S3

42 7004 4490-000



Environment Division

Rules

1. UNISYS-0S3, SPERRY—OS3®, or UNIVAC-0S3 specifies that the source
program is to be compiled under the OS/3 operating system. The operating
system-name specified in the SOURCE-COMPUTER paragraph is for
documentation purposes only.

2. If the WITH DEBUGGING MODE clause is specified, all USE FOR
DEBUGGING statements and all debugging lines are compiled (see 12.4).

3. If the WITH DEBUGGING MODE clause is not specified, all USE FOR
DEBUGGING statements with associated debugging sections and all
debugging lines are compiled as if they were comment lines.

4. The WITH DEBUGGING MODE clause has no effect on debugging packets
(see "Debugging Packet *DEBUG)" under 12.4.3).

4.3.2. OBJECT-COMPUTER Paragraph

Function

The OBJECT-COMPUTER paragraph describes the operating system on
which the object program is to be run.

Format

SPERRY-0S3

OBJECT-COMPUTER. [UNISYS-0S3
UNTVAC-0S3

MODULES

,MEMORY SIZE integer|CHARACTERS
WORDS

[,PROGRAM COLLATING SEQUENCE 1S alphabet-namel

[,SEGMENT-LIMIT IS segment-number]l.

Rules

1. UNISYS-0S3, SPERRY-0S3, or UNIVAC-0S3 specifies that the object
program is to be executed under the OS/3 operating system.

2. The MEMORY SIZE clause is for documentation purposes only. A word is 4
characters long; a module is 4,096 characters long.

SPERRY is a registered trademark of Unisys Corporation.

7004 4490-000 43




Environment Division

If the PROGRAM COLLATING SEQUENCE clause is specified, the
collating sequence associated with alphabet-name (see 4.3.3, rule 8) is used
to determine the truth value of any nonnumeric comparisons:

a. Explicitly specified in relation conditions (see "Relation Condition"
under 6.4.1).

b. Explicitly specified in condition-name conditions (see "Condition-Name
Condition" under 6.4.1).

If the PROGRAM COLLATING SEQUENCE clause is not specified, the
EBCDIC collating sequence is used.

If the PROGRAM COLLATING SEQUENCE clause is specified, the
program collating sequence is the collating sequence associated with the
alphabet-name specified in that clause.

The PROGRAM COLLATING SEQUENCE clause is also applied to any
nonnumeric merge or sort keys unless the COLLATING SEQUENCE phrase
of the respective MERGE or SORT statement is specified. (See 6.6.19,
"MERGE Statement”, and 6.6.33, "SORT Statement.")

The PROGRAM COLLATING SEQUENCE clause applies only to the
program in which it is specified.

10.

11.

The segment-number in the SEGMENT-LIMIT clause must be an integer
ranging in value from 1 through 49. (See Section 10.)

When the SEGMENT-LIMIT clause is specified, only those segments having
segment-numbers from 0 up to, but not including, the segment-number
designated as the segment-limit are considered as permanent segments of
the object program.

Those segments having segment-numbers from the segment-limit through
49 are considered as overlayable fixed segments.

When the SEGMENT-LIMIT clause is omitted, all segments having
segment-numbers from 0 through 49 are considered as permanent segments
of the object program.

4.3.3. SPECIAL-NAMES Paragraph

44

Function

The SPECIAL-NAMES paragraph relates implementor-names to user-supplied
mnemonic-names and alphabet-names to character sets or collating sequences.

7004 4490-000



Environment Division

Format

SPECIAL -NAMES.

Rules

7004 4450-000

[SYSIN IS mnemonic-name-1]
[,SYSCONSOLE IS mnemonic-name-2]
[,SYSLST IS mnemonic-name-31
[,SYSLOG IS mnemonic-name-41
[,SYSCHAN-n IS mnemonic-name-5]
[,SYSCOM IS mnemonic-name-6]
[,SYSSCOPE IS mnemonic-name-71
, |SYSTERMINAL]IS mnemonic-name-8
{SYSOUT }

+ [SYSFORMAT] IS mnemonic-name-9
SYSWORK

CONTROL AREA IS data-name
[WITH FUNCTION-KEYS1
[WITH CONNECT-FREE]

s SYSSWCHI -n]
SYSTEM- SHUTDOWN

'lg mnemonic-name,ON STATUS IS condition-name
,OFF STATUS IS condition-name )

,ON STATUS IS condition-name
ON STATUS IS condition-name,QOFF STATUS IS
condi tion-name
OFF STATUS IS condition-name,ON STATUS IS
L condi tion-name

,alphabet-name IS|STANDARD-1
NATIVE
STANDARD-Q

1S mnemonic-name,OFF STATUS IS condition-name

THRU

THRU

literal-1 {THROUGH literal-2

ALSO literal-3 [,ALSO literal-4]...

literal-5 {THROUGH} literal-6

ALSO titeral-7;[,ALSO;literal-8]...

[,CURRENCY SIGN IS literal-9]
[,DECIMAL-POINT IS COMMAI.

The SPECIAL-NAMES paragraph is optional.

45




Environment Division

46

A comma may be used to separate each clause, and a period must follow the
last clause.

Mnemonic-names associated with SYSIN, SYSCONSOLE, SYSCOM,
SYSTERMINAL, SYSWORK, SYSFORMAT, SYSSCOPE, SYSSWCH, and
SYSTEM-SHUTDOWN may be used in the ACCEPT statement. Mnemonic-
names associated with SYSLST, SYSOUT, SYSLOG, SYSCONSOLE,
SYSCOM, SYSTERMINAL, SYSWORK, SYSFORMAT, SYSSCOPE, and
SYSSWCH may be used in the DISPLAY statement. The mnemonic-name
associated with SYSCHAN-n may be used in the WRITE statement.

a.

b.

SYSIN refers to the job stream device.

SYSCONSOLE refers to the system message lines of the workstation

activating the task and to the system log file. If the task is not activated

from a workstation or the system does not support a workstation, then
SYSCONSOLE refers to the system console and the system log file. Use
SYSCONSOLE when a reply from the operator is required.

SYSCOM refers to the 12-byte communications region within the job
preamble. Note that the twelfth byte of this region is the user program
switch indicator (UPSI) byte.

SYSSWCH refers to the UPSI byte of the communications region.
SYSSWCH is expanded by the compiler to an 8-byte storage area; each

byte represents a switch. When condition-names are associated with
SYSSWCH, the status is set:

¢ On when any of the eight UPSI bytes are on
e  Off when all of the UPSI bytes are off
When the mnemonic-name associated with SYSSCH appears:

e Inan ACCEPT statement, character value O or 1
(hexadecimal FO or F1) is returned for each UPSI byte.

¢ In a DISPLAY statement, the status of each corresponding
UPSI byte is set on with character value 1 (hexadecimal
F1) and off with character value 0 (hexadecimal F0). Any
other character leaves the status unchanged.

SYSSWCH-n refers to the individual switches within SYSSWCH. They
are numbered from left to right: SYSSWCH-0 through SYSSWCH-7.

Note: SYSSWCH-0 is reserved for the COBOL object-time debugging
switch. (See 12.2.3., "Objeci-Time Switch."”)

The status of SYSSWCH-n is set on with any character other than
hexadecimal F0 and set off with hexadecimal FO.

7004 4490-000



Environment Division

™

SYSTEM-SHUTDOWN refers to an internal switch set on when the
operator enters a SHUTDOWN command through the console. When
SYSTEM-SHUTDOWN status is on (with hexadecimal value F1), a
program that detects this status should begin termination procedures,
including closing all open files, displaying program information, and
executing a STOP RUN statement.

The status of SYSTEM-SHUTDOWN is of f with hexadecimal value FO.
g. SYSLST refers to the system log file.

h. SYSLOG refers to the system message lines of the workstation
activating the task and to the system log file. If the task is not activated
from a workstation or the system does not support a workstation, then
SYSLOG refers to the system console and the system log file. Use
SYSLOG when no reply from the operator is expected.

1.  SYSCHAN-n equates a particular channel (n) on the printer loop to
mnemonic-name-5. Mnemonic-name-5 may appear only in a WRITE
statement. SYSCHAN 1 and 7 are normally used for form overflow and
top-of-page, respectively.

j.  SYSSCOPE is treated as SYSCONSQOLE. It is provided for compatibility
with VS/9 COBOL 74 language.

k. SYSTERMINAL or SYSOUT refers to system MESSAGE lines of the
workstation initiating the COBOL program task. If the task is not
activated from a workstation or the system does not support a
workstation, then SYSTERMINAL or SYSOUT refers to the system
console, SYSCONSOLE, but not the system log file.

1.  SYSFORMAT refers to a workstation in data mode (attached to a
program) that calls screen format services. The Ifdname in the required
ASSIGN clause is a 1- to 8-character alphanumeric name assigned to
the workstation.

m. SYSWORK refers to a workstation in data mode. The Ifdname in the
required ASSIGN clause is a 1- to 8-character alphanumeric name
assigned to the workstation.

Within the SPECIAL-NAMES paragraph, each SYSFORMAT, SYSWORK,
or SYSTERMINAL clause must be specified before any alphabet-name

clauses.

If the run-unit is divided into subprograms, a particular Ifdname in the
SYSFORMAT or SYSWORK clause can be used in only one program.

7004 4490-000 4.7




Environment Division

The CONTROL AREA clause specifies a 40-character area that receives data
describing workstation activity. That area may be defined in the
Working-Storage or Linkage Section. Its implicit description is:

05 Ws-1D PIC 999.
85 FILLER PIC X.

05 WS-STATUS PIC XX.

05 FUNCTION-KEY PIC 99.

@5 FORMAT -NAME PIC X(83.
85 NUMBER-CONNECTED PIC 99.

05 SIZE-OF-DATA-TRANSFER PIC 9(5).
85 FILLER PIC X(17).

Specification of a CONTROL AREA clause enables the COBOL program to
track the details of interaction with a workstation, especially a multivolume
workstation. When a workstation mnemonic-name is declared with a
CONTROL AREA clause, each ACCEPT or DISPLAY statement to that
workstation must include an ON EXCEPTION clause.

Specification of the WITH FUNCTION-KEYS phrase causes the COBOL
program to report function key input in the control area and, unless
overridden by response indicators, to cause activation of the ON
EXCEPTION clause after reception of function key data.

When the WITH FUNCTION-KEYS phrase is specified, ACCEPT and
DISPLAY statements that reference the workstation must appear within
only one program.

Specification of the WITH CONNECT-FREE phrase causes the COBOL
program to take an exception path on an ACCEPT statement after a
workstation connects to a multivolume workstation or disconnects from it. In
the absence of a CONTROL AREA clause, the COBOL system defaults to
minimal, but operationally effective, support for multivolume workstations.

The control area specified by the CONTROL AREA clause is a repository for
data supplied by the COBOL system. The content of each field is defined as
follows:

e  WS-ID identifies the particular device, which is part of a multivolume
workstation configuration, that participated in the most recently
performed ACCEPT or DISPLAY statement to the corresponding
workstation file.

e WS-STATUS reports the 2-character error status for the most recently

performed ACCEPT or DISPLAY statement to the corresponding
workstation file. Status key details are presented in Table 4-1.

48 7004 4490000



Environment Division

e  FORMAT-NAME is the name of the screen format that is active on the
workstation terminal that was the object of the most recently performed
ACCEPT or DISPLAY statement. This field is for information purposes
only; thus, it is used as a read-only field. Altering the content of the
FORMAT-NAME field never changes the screen format currently active
on any terminal.

¢  FUNCTION-KEY holds the integer denoting the keyboard function key
pressed prior to the most recently performed ACCEPT statement. It is
zero if no function key was pressed. The FUNCTION-KEY field is
maintained only if the WITH FUNCTION-KEYS phrase is specified.

e NUMBER-CONNECTED holds the number of terminals that are
currently connected to the workstation. If the workstation is not
multivolume, this number is either zero or one.

¢  SIZE-OF-DATA-TRANSFER holds the number of characters actually
delivered to or received from the workstation terminal screen. If a
screen format is in effect, this number reflects the number of characters
required by that format. If a screen format is not in effect, this number,
after an ACCEPT statement, represents the number of characters
entered by the workstation operator but not exceeding the number

requested.
Table 4-1. Status Key Values for Workstations
Status Key 1 Status Key 2
@ - Successful completion @ - No further information
1 - At end 9@ - Function key 15 received
6 - Only active terminal has disconnected.
(Status key 98 may take precedence.)
2 - Invalid format 3 - Format not found
4 - Format constructed incorrectly
3 - Permanent error ® - No further information
9 - Workstation exception 1 - Terminal not compatible with format
2 - Statement not compatible with format
3 - Data not compatible with format
4 - Data area not large enough for format
5 - Function key, no data
7 - New device connected, no data
8 - Device disconnected (freed), no data
9 - Device not connected

7004 4490-000 49




Environment Division

410

The WITH CONNECT-FREE phrase specifies that an exception path is to be
taken whenever a terminal connects to or disconnects from a multivolume
workstation configuration. The details of CONNECT-FREE reporting are in
Table 4-2.

The WITH FUNCTION-KEYS phrase specifies that whenever function key
input is received in an ACCEPT statement, that function key value is to be
reported in the control area specified by the CONTROL AREA clause. If the
active screen format converts the function key to an indicator, the indicator
portion of the accept data is returned to the COBOL program, and the ON
EXCEPTION clause is not activated; otherwise, the ON EXCEPTION clause
is activated. A function key and data (other than response indicators) are

never returned at the same time. The details of function key processing are
in Table 4-3.

Table 4-2. Effects of CONNECT-FREE Reporting

Workstation Options Response to WITH CONNECT-FREE Phrase
CONTROL AREA clause with Set status byte. Set WS-ID field to report
WITH CONNECT-FREE phrase device that was connected or freed.

Update NUMBER-CONNECTED clause.
Activate EXCEPTION clause.

CONTROL AREA clause without Update NUMBER-CONNECTED clause.

WITH CONNECT-FREE phrase If NUMBER-CONNECTED = @, set status for
end-of-file and execute EXCEPTION clause.
Otherwise, do not return control to the
COBOL program until data is received.

CONTROL AREA clause If no terminal remains connected, terminate
not specified the program abnormally. Otherwise, do not
return control to the COBOL program until
data is received.

7004 4490-000



Environment Division

Table 4-3. Effects of FUNCTION-KEYS input

Workstation
Options

Response to FUNCTION-KEYS Input

Response Indicator Set
by Function Key

Response Indicators
Absent or Unaffected

CONTROL AREA clause with
FUNCTION-KEYS phrase

Return indicators without
screen data. Set WITH
FUNCTION-KEYS clause. Do
not activate the EXCEPTION
clause.

Set WITH FUNCTION-KEYS
clause. Activate the
EXCEPTION clause.

CONTROL AREA clause
without WITH FUNCTION-KEYS
phrase

Return indicators without
screen data. Do not set

WITH FUNCTION-KEYS clause.

Do not activate the EXCEPTION
clause.

Ignore the function key
input. Do not return control
to the COBOL program until
data is received.

CONTROL AREA clause
not specified

Return indicators without
screen data.

Ignore the function key
input. Do not return
control to the COBOL
program until data is
received.

7004 4490-000

WS-ID has meaning only for multivolume workstations. It is the only field in
the control area that the COBOL program might reasonably alter. WS-ID
identifies the particular terminal to which a DISPLAY statement directs its
data. Likewise, it identifies the particular terminal from which an ACCEPT
SPECIFIC statement will take its data.

If a USING phrase is present on a general ACCEPT statement (i.e., not an
ACCEPT SPECIFIC statement), the screen format that is named by the
USING phrase is selected only for the terminal indicated by WS-ID, not for

all the terminals of the multivolume workstation.

On each transaction with a workstation, the field WS-ID is updated with a
number that identifies the particular terminal, within a multivolume
workstation, that participated in the transaction. The WS-ID field does not
need an initial value. Assigning an initial value to this field has no effect on
the behavior of the COBOL program. It is the responsibility of the COBOL
program to ensure that the WS-ID field contains a terminal number that is
valid for the implicit workstation Ifdname.

One way to guarantee that this will happen is never to alter the value of the
WS-ID field. Another way is not to provide a control area using the

CONTROL AREA clause. The only reasons for changing the WS-ID field are
to display data to a particular terminal (DISPLAY statement) that is not the
one that most recently supplied input or to accept data (ACCEPT statement)
from a specific terminal rather than from the terminal that responded first.

411




Environment Division

If the CONTROL AREA clause is omitted, multivolume workstation
processing is restricted in the following ways:

e  Each DISPLAY statement is always directed to the terminal that
completed the most recent ACCEPT statement.

e Each ACCEPT SPECIFIC statement is always directed to the terminal
that completed the most recent ACCEPT statement.

e  An EXCEPTION path cannot be specified.

If a failure occurs during the first attempt to access a particular workstation,
the WS-STATUS field is set to 30 and the remainder of the control area
(CONTROL AREA clause) is undefined.

For errors arising after the first access, the control area fields have the
following meanings:

e  WS-ID - The ID of the terminal to respond to a general ACCEPT
statement; or the valid ID given in the WS-ID field upon execution of
the statement,; or, if 0 was given, then 1; otherwise, the field is
undefined.

e  WS-STATUS - As defined in Table 4-1.

¢  FUNCTION-KEYS - Unchanged by a DISPLAY statement; or 00 for an
ACCEPT statement not receiving function key input; or the actual
function key received by an ACCEPT statement.

A function key is never received at the same time data is received.
However, for screen formats having response indicators, receiving a
function key is a sign that indicator data is present.

Data is never present, however, when the ON EXCEPTION clause is
activated.

¢  FORMAT-NAME - The name of the screen format that is defined for the
workstation terminal named in the WS-ID field; if no screen format is
defined for that terminal, the field contains the LOW-VALUE constant.

¢ NUMBER-CONNECTED - Always reports the number of terminals
connected to the workstation.

e  SIZE-OF-DATA-TRANSFER - Usually undefined in the presence of an
error.

For status key 94, SIZE-OF-DATA-TRANSFER field is the smallest
number of characters required for the transaction.

412 7004 4490000



Environment Division

7004 4490-000

When a terminal connects to a multivelume workstation declared with the
WITH CONNECT-FREE phrase, the connect event is reported to the
COBOL program, in lieu of returning input data, in response to the next
ACCEPT statement (but not an ACCEPT SPECIFIC statement).

When a terminal frees from a multivolume workstation declared with the
WITH CONNECT-FREE phrase, the free event is reported to the COBOL
program, in lieu of returning input data, in response to the next ACCEPT
statement (but not an ACCEPT SPECIFIC statement).

If a COBOL program uses screen format services for a multivolume
workstation without specifying the WITH CONNECT-FREE phrase, an
initial screen format must be supplied via job control language, and this
screen format must be input only.

If a COBOL program uses screen format services via job control language for
a SYSWORK workstation, whether single volume or multivolume, with or
without specifying the WITH CONNECT-FREE phrase:

®  An initial screen format must be supplied via job control language. In
addition, if the workstation is multivolume and the WITH
CONNECT-FREE phrase is not specified, the screen format furnished
via job control language must be an input-only screen format.

e  All ACCEPT and DISPLAY statements apply to the screen named by
the initial screen parameter.

®  The USING clause cannot be used on any ACCEPT or DISPLAY
statements to the SYSWORK device.

»  No data conversion may be implicit in the screen format; that is, all
fields of the screen format must be specified implicitly or explicitly as
USAGE IS DISPLAY.

®  Only one identifier may receive data in an ACCEPT statement.

¢ The ACCEPT SPECIFIC statement may not be used with SYSWORK
workstations.

Additional information about screen format services is described in the
Screen Format Services Technical Overview (UP-9977).

The mnemonic-names associated with SYSCHAN-n may be used in the
WRITE statement. SYSCHAN-n refers to a position in a printer vertical
format buffer or form control loop; n ranges from 1 through 15, depending on
the specific printer used. The SYSCHAN-n clause is accepted for
compatibility with existing Unisys COBOL compilers.

413




Environment Division

5.  The mnemonic-name associated with SYSCOM may be used in the UPON
phrase of the DISPLAY statement to effect the passing of information to
other programs within the job or in the FROM phrase of the ACCEPT
statement to retrieve information from a program within the job.

There is only one communications region to store or retrieve information
within a job. The entire region will be overwritten if more than one
DISPLAY statement referencing SYSCOM is executed.

Examples

Program A
SYSCOM IS OUT-PARAM
77 PROG-MESSAGE PIC.X(12) VALUE "317402SQ110%.

DISPLAY PROG-MESSAGE UPON OUT-PARAM

Program B
SYSCOM IS INPUT-PARAM
77 PARAM-AREA PIC X(12) VALUE ZEROS.

ACCEPT PARAM-AREA FROM INPUT-PARAM.

6. Inthe SYSSWCHI[-n] clause, at least one condition-name must be associated
with a switch. The status of a switch is specified by condition-names and
interrogated by testing the condition-names. (See "Switch-Status Condition"
under 6.4.1.)

Example
An individual switch can be interrogated by using condition-name in the

ON/OFF STATUS option. For instance, in the following example, control is
transferred to procedure-name-1 if switch 5 is on.

414 7004 4490-000



Environment Division

7004 4490000

ENVIRONMENT DIVISION.

SPECIAL-NAMES.
SYSSWCH-5 ON STATUS IS FIVON, OFF STATUS IS FIVOFF.

PROCEDURE DIVISION.

IF FIVON GO TO procedure-name-1.

In essence, SYSSWCH-5 is a conditional variable with the condition-names
FIVON and FIVOFF, which are similar to level-88 entries.

The condition-names FIVON and FIVOFF are defined and equated with on
and off, respectively, by the COBOL compiler and must not be defined
elsewhere in the COBOL program.

The mnemonic-name associated with SYSSWCH[-n] may be used in the
FROM option of the ACCEPT statement to gain access to the content of
SYSSWCHI-n], or in the UPON option of the DISPLAY statement to set or
change the content of SYSSWCHI[-n].

Example 1

All 8 task switches can be interrogated by use of the ACCEPT verb. This is
shown in the following example, where procedure-name-1 is performed if the
SYSSWCH-2, SYSSWCH-4, SYSSWCH-6, and SYSSWCH-7 switches are on
and the others are off.

ENVIRONMENT DIVISION.
SPECIAL-NAMES.
SYSSWCH 1S mnemonic-name-1.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 identifier PICTURE X(8).
PROCEDURE DIVISION.
ACCEPT identifier FROM mnemonic-name-1.
IF identifier = "001081011".
PERFORM procedure-name-1.

415




Environment Division

Example 2

To set or change the content of SYSSWCH, the DISPLAY verb may be used
as follows:

ENVIRONMENT DIVISION.
SPECIAL-NAMES.
SYSSWCH IS SWITCH.
SYSSWCH-3 1S SWITCH-3.
PROCEDURE DIVISION.

DISPLAY "11000188" UPON SWITCH h

DISPLAY 1 UPON SWITCH-3. )

DISPLAY identifier UPON SWITCH. &)
Notes:

1. SYSSWCH will now contain "11000100".
2. SYSSWCH-3 will now contain 1; the other switches remain unchanged.

3. The 8 switches in SYSSWCH (0 through 7) are set on or off, depending on
the contents of the 8-character identifier.

8. The alphabet-name IS clause provides a means for relating a name to a
specified character code set or collating sequence. When alphabet-name is
referenced in the PROGRAM COLLATING SEQUENCE clause or the
COLLATING SEQUENCE phrase of a SORT or MERGE statement, the
alphabet-name IS clause specifies a collating sequence. When alphabet-name
is referenced in a CODE-SET clause in a file description entry, the
alphabet-name IS clause specifies a character code set.

e  If the STANDARD-1 phrase is specified, the character code set or
collating sequence identified is that defined in American National
Standard Code for Information Interchange, X3.4-1968. Each character
of the standard character set is associated with its corresponding
character in the EBCDIC character set as specified in Appendix J.

e If the NATIVE phrase is specified, the character code set or collating
sequence identified is EBCDIC.

e If the STANDARD-0 phrase is specified, the character code set or
collating sequence identified is that defined by the International
Standards Organization for the 8-bit Coded Character Set for
Information Interchange, IS 646 - 1973, International Reference Version.
The collating sequence of this code set is identical to STANDARD-1.

e If the literal phrase is specified, the alphabet-name may not be
referenced in a CODE-SET clause. The collating sequence identified is
that defined according to the following rules:

416 7004 4490-000



Environment Division

7004 4490-000

9.

a. The value of each literal specifies:

1) The ordinal number of a character within the EBCDIC
character set, if the literal is numeric. The ordinal number of
a character is always one greater than the binary value of a
character. For example, hexadecimal 00 is the first character
(ordinal position 1), and hexadecimal 01 is the second
character (ordinal position 2).

2) The actual character within the EBCDIC character set, if the
literal is nonnumeric. If the value of the nonnumeric literal
contains multiple characters, each character in the literal,
starting with the leftmost character, is assigned successive
ascending positions in the collating sequence being specified.

b. The order in which the literals appear in the alphabet-name IS
clause specifies, in ascending sequence, the ordinal number of the
character within the collating sequence being specified.

¢. Any characters within the EBCDIC collating sequence that are not
explicitly specified in the literal phrase assume a position, in the
collating sequence being specified, greater than any of the explicitly
specified characters. The relative order within the set of
unspecified characters is unchanged from the EBCDIC collating
sequence.

d. If the THROUGH phrase is specified, the set of contiguous
characters in the EBCDIC character set, beginning with the
character specified by the value of literal-1 and ending with the
character specified by the value of literal-2, is assigned a successive
ascending position in the collating sequence specified. In addition,
the set of contiguous characters specified by a given THROUGH
phrase may specify characters of the EBCDIC character set in
either ascending or descending sequence.

e. If the ALSO phrase is specified, the characters of the EBCDIC
character set specified by the value of literal-1, literal-3, literal-4,...,
are assigned to the same position in the collating sequence
specified.

The literals in the literal phrase of the alphabet-name clause are specified as
follows:

e If numeric, they must be unsigned integers and must have a value
within the range of 1 through 2586.

e  If nonnumeric and associated with a THROUGH or ALSO phrase, they
must each be one character in length.

417




Environment Division

10.

11.

If the literal phrase of the alphabet-name IS clause is specified, a given
character must not be specified more than once in the alphabet-name clause.

The words THRU and THROUGH are equivalent.

12.

13.

14.

15.

The character that has the highest ordinal position in the program collating
sequence specified is associated with the figurative constant HIGH-VALUE.
If more than one character has the highest position in the program collating
sequence, the last character specified is associated with the figurative
constant HIGH-VALUE.

The character that has the lowest ordinal position in the program collating
sequence specified is associated with the figurative constant LOW-VALUE.
If more than one character has the lowest position in the program collating
sequence, the first character specified is associated with the figurative
constant LOW-VALUE.

The literal specified in the CURRENCY SIGN IS clause is used in the
PICTURE clause to represent the currency symbol. The literal is limited to a
nonnumeric literal of one character and must not be one of the following
characters:

¢ Digits 0 through 9

® Alphabetic characters ABCDLPRSVXZ or space
M " r:_l

e Special characters *+-,.;() /=|__'

If this clause is not present, only the currency sign is used in the PICTURE
clause.

The clause DECIMAL-POINT IS COMMA means that the function of comma
and period are exchanged in the character-string of the PICTURE clause and
in numeric literals.

4.4. Input-Output Section

The Input-Output Section of the Environment Division is used to specify the
input/output media for the files used by the program and to provide information
needed for most efficient transmission of data between external media and the object

program.

Format

INPUT-OUTPUT SECTION.
FILE-CONTROL. {entry.}...
L [1-0-CONTROL. entry.]

418

7004 44380000



Environment Division

4.4.1. FILE-CONTROL Paragraph

Function

The FILE-CONTROL paragraph names each file and allows specification of other
file-related information. A separate format is required for each type of file
organization: sequential, relative, indexed,iSAM_,_ISéM:}ar_lg  sort. Refer to Section
8 for further information on sequential, relative, indexed,iSAM_:_[ and 'fl_SAl?I]files,

and to Section 9 for a summary of the sort feature.

Format 1 (Sequential Files)

FILE-CONTROL.

SELECT|[OPTIONALI|file-name

ASSIGN TO implementor-name-1 [, implementor-name-21 ...

;RESERVE integer-1| AREA
AREAS

[;ORGANIZATION IS SEQUENTIAL]
[;ACCESS MODE IS SEQUENTIAL]I
[;FILE STATUS IS data-name-1].

Format 2 (Relative Files)

FILE-CONTROL.
SELECT file-name
ASSIGN TO implementor-name-1 [, implementor-name-21 ...

;RESERVE integer-1| AREA
AREAS

;ORGANIZATION IS RELATIVE

;ACCESS MODE IS|SEQUENTIAL [,RELATIVE KEY IS;data-name-1]
RANDOM ,RELATIVE KEY IS data-name-1

DYNAMIC

[;FILE STATUS IS data-name-2].

7004 4490-000 419




Environment Division

Format 3 (Indexed Files)

FILE-CONTROL.
SELECT file-name
ASSIGN TO implementor-name-1 [, implementor-name-2]1 ...

;RESERVE integer-1| AREA
AREAS

;ORGANIZATION IS INDEXED

;ACCESS MODE IS SEQUENTIAL]
RANDOM

DYNAMIC

;RECORD KEY 1S;data-name-1

[;ALTERNATE RECORD KEY 1S data-name-2 [WITH DUPLICATES 11 .

[;FILE STATUS IS data-name-3].

[_i?‘ormat 4 (SAM Files)

FILE-CONTROL.
SELECT [OPTIONAL] file-name
ASSIGN TO implementor-name-1 [,implementor-name-21 ...

sRESERVE integer-1 |AREA
AREAS

;ORGANIZATION IS SAM
[ ;ACCESS MODE IS SEQUENTIAL]
[;FILE STATUS IS data-name-1].

Format 5 (ISAM Files)

SELECT file-name

ASSIGN TO implementor-name-1 [, implementor-name-21 ...
:RESERVE integer-1 |AREA

AREAS

;ORGANIZATION IS ISAM
;ACCESS MODE IS |SEQUENTIAL
RANDOM
DYNAMIC

|
|
1
l
l
|
|
|
|
|
| FILE-CONTROL.
|
|
l
|
|
|
|
|
|

;RECORD KEY IS data-name-1
L_. [;FILE STATUS IS data-name-2]. __J

Format 6 (Sort or Merge Files)

FILE CONTROL.
SELECT file-name /
ASSIGN TO implementor-name-1 [,implementor-name-2]1 ... . 5

4-20 7004 4490-000



Environment Division

Rules

7004 4490-000

The SELECT clause must be specified first. The order of the remaining
clauses is optional.

Each file described in the data division must be named once and only once as
file-name in the FILE-CONTROL paragraph. Each file specified in the file
control entry must have a file description entry or sort-merge file description
entry in the Data Division.

The ASSIGN clause specifies the association of the file referenced by file-
name to a storage medium.

All files must be assigned to an implementor-name. Any implementor-name
beyond the first for a file is treated as comments.

Implementor-name is in the form of device-Ifdname-mode. The format and
options for each file organization are:

e  Sequential Files

[CARDREADER -  fdname-F |
CARDPUNCH- ¢ fdname - F}

PRINTER- | fdname- {gg

TAPE - | fdname -

DISC}-Lfdname- |F
fouse} N
FC
| ve

¢ Relative, Indexed, andESEl@Files

DISC] -l fdname- [F
DISK v

* [SAMFiles

DISC]- L fdname-
DISK

<|'ﬂ|<l'ﬂ
(eR{e]

421




Environment Division

422

e Sort and Merge Files

DISC|-lfdname- [F
DISK \

TAPE -

The implementor-name in the form of device-Ifdname-mode has three
subfields:

The device field specifies the type of device associated with the file. The
types of devices supported are CARDPUNCH, CARDREADER, DISC
(or DISK), PRINTER, and TAPE. DISC and DISK are equivalent; TAPE
refers to magnetic tape.

Lfdname specifies the Ifdname to the job control definition of the file.
The Ifdname is a 1- to 8-character alphanumeric field. For programs
using the sort/merge feature, If dnames in the form DMzxx (xx=01,
02,...,08) or SMuxx (xx=01, 02,...,06) should not be used because the
sort/merge feature uses these Ifdnames for scratch work files.

If the run-unit contains multiple implementor-names for the same
Ifdname, then only one file associated with the Ifdname can be opened
at a time.

Mode is a 1- or 2-character field that specifies the format of the records
in the file. It may be F, FC, V, VC, U, or UC. The character C indicates
the presence of a device-independent control character for a printer-
destined file. When FC, VC, or UC is specified for a printer-destined
file, the compiler appends a device-independent control character
preceding the logical record.

Mode F indicates fixed-length records and can be specified only when each of
the logical records in a file has the same length. When F is specified, the
following rules apply:

Format 2 of the OCCURS clause must not be specified within any record
description for the file.

If the BLOCK CONTAINS clause is specified in the file description
entry, it must contain a fixed number of records.

If more than one record description entry is specified for a file
description, each record in the file must have the same length.

Record-length and block-descriptor fields are not present with fixed-
length records.

If the RECORD CONTAINS clause is specified, it must specify a fixed
number of characters in the record.

7004 4490-000



Environment Division

7004 4490-000

Mode V indicates variable-length records. When V is specified, the following
rules apply:

*  For tape,[SAM,jorISAM files, if the BLOCK CONTAINS clause is
specified in the file description entry, all the logical records comprising a
block must be wholly contained within the block.

¢  Each variable-length logical record is preceded by a control field
containing the length of the logical record. This field is generated by the
compiler and is not available to the user.

Mode U indicates an undefined format and may be used for any combination
of record descriptions, either fixed or variable. Mode U is comparable to
mode V except that mode U records may not be blocked and have no
preceding control field. When U is specified, the BLOCK CONTAINS clause
in the file description entry is not required.

The hyphens shown in the format must appear in this form of the
implementor-name.

The RESERVE clause specifies the number of input/output buffer areas
allocated for the file.

The value of integer-1 may be 1 or 2. For sequential files, two areas may be
reserved. For relative files, if the ACCESS MODE is sequential, two areas
may be specified and if the ACCESS MODE is dynamlc or random only one

,_and ISAMjfiles, two areas may be reserved

If the value of integer-1 specifies two areas where the operating system
permits only one area, the compiler reserves only one area regardless of the
value specified in the RESERVE clause.

If the RESERVE clause is not specified, the compiler supplies a default value
compatible with the operating system specifications. The compiler-supplied

default value is shown in Table 4-4.

Table 4-4. Compiler Default Value of the RESERVE Clause

File Organization | Access Mode | Default Integer-1 Value
Sequential All 2
Relative Sequential 2
Relative Random 1
Relative Dynamic 1
Indexed ALL 1
SAM ALl 2
ISAM All 2

423




Environment Division

7.  When the FILE STATUS clause is specified, a value is moved by the
operating system into the data item specified by data-name after the
execution of every statement that refers to the file either explicitly or
implicitly. This value indicates the status of execution of the statement. (See
Section 8.)

8. The organization clause specifies the logical structure of a file. The file
organization is established at the time a file is created and, subsequently,
cannot be changed.

Note: Rules 9 through 14 pertain to sequential and?@ﬁles only.

9. Data-name-1 must be defined in the Data Division as a 2-character
alphanumeric data item and must not be defined in the File Section or the
Communication Section. '

10. Data-name-1 may be qualified.

11. Informat1, if the ORGANIZATION IS SEQUENTIAL clause is not
specified, it is implied.
:—I—n format 4, the ORGANIZATION IS SAM clause is required. This claus:{
| specifies that the file is to be supported by disk sequential access method |
| data management (disk SAM). If this clause is not specified, sequential

12. The OPTIONAL phrase may only be specified for input files that are not
necessarily present each time the object program is executed.

13. Records in the file are accessed in the sequence dictated by the file
organization. This sequence is specified by predecessor/successor record
relationships established by the execution of WRITE statements when the
file is created or extended.

14. If the ACCESS MODE clause is not specified, sequential access is implied.

Note: Rules 15 through 26 pertain to relative files only.

15. Data-name-2 must be defined in the Data Division as a 2-character
alphanumeric data item and must not be defined in the File Section or the

Communication Section.

16. Data-name-1 and data-name-2 may be qualified.

17. If a relative file is to be referenced by a START statement, the RELATIVE
KEY phrase must be specified for that file.

18. Data-name-1 must not be defined in a record description entry associated
with that file-name.

424 7004 4490000



Environment Division

7004 4490-000

19.

20.

21.

22.

The data item referenced by data-name-1 must be defined as an unsigned
integer.

The ORGANIZATION clause is required. If the ORGANIZATION IS
RELATIVE clause is not specified, sequential organization is assumed.

When the access mode is sequential, records in the file are accessed in the
sequence dictated by the file organization. This sequence is the order of
ascending relative record numbers of existing records in the file.

If the access mode is random, the value of the RELATIVE KEY data item
indicates the record to be accessed.

23.

When the access mode is dynamic, records in the file may be accessed either
sequentially or randomly or both. (See rules 22 and 24.)

24.

25.

26.

If the ACCESS MODE clause is not specified, the ACCESS MODE IS
SEQUENTIAL clause is implied.

All records stored in a relative file are uniquely identified by relative record
numbers. The relative record number of a given record specifies the logical
ordinal position of the record in the file. The first logical record has a relative
record number of 1, and subsequent logical records have relative record
numbers of 2, 3,4, ....

The data item specified by data-name-1 is used to communicate a relative
record number between the COBOL object program and the operating
system.

Note: Rules 27 through 40 pertain to indexed files only.

217,

28.

29.

Data-name-1, data-name-Z,‘and data-name-3 may be qualified.

The data items referenced by data-name-1]and data-name-2|must each be
defined as a data item of the category alphanumeric within a record
description entry associated with that file-name.

The maximum size of the data item referenced by dataw
[name-2]may not exceed 80 bytes. Neither data-name-1|nor data-name-2|can
describe an item whose size is variable. (See "OCCURS Clause" under 5.3.3.)

30. Data-name-2 cannot reference an item whose leftmost character position
corresponds to the leftmost character position of an item referenced by
data-name-1 or by any other data-name-2 associated with this file.

31. Data-name-3 must be defined in the Data Division as a 2-character

alphanumeric data item and must not be defined in the File Section or the
Communication Section.

425




Environment Division

4-26

32.

33.

34.

35.

The ORGANIZATION IS INDEXED clause is required. If this clause is not
specified, sequential organization is assumed.

If the ACCESS MODE clause is not specified, the sequential access is
implied.

When the access mode is sequential, records in the file are accessed in the
sequence dictated by the file organization. For indexed files, this sequence is
the order of ascending record key values within a given key of reference.

If the access mode is random, the value of the record key data item indicates
the record to be accessed.

36.

When the access mode is dynamic, records in the file may be accessed either
sequentially or randomly or both. (See rules 34 and 35.)

37.

The RECORD KEY clause specifies the prime record key for the file. The
values of the prime record key must be unique among records of the file. This
prime record key provides an access path to records in an indexed file.

38.

An ALTERNATE RECORD KEY clause specifies an alternate record key for
the file. This alternate record key provides an alternate access path to
records in an indexed file. A maximum of four alternate record keys may be
specified for an indexed file.

39.

The data descriptions of data-name-1{and data-name-2]as well as their

relative locations within a record must be the same as those used when the

file was created./The number of alternate keys for the file must also be the
Lsame as that used when the file was created.

40.

The DUPLICATES phrase specifies that the value of the associated
alternate record key may be duplicated within any of the records in the file.
If the DUPLICATES phrase is not specified, the value of the associated

alternate record key must not be duplicated among any of the records in the
file.

| 41.
|
|
| 42.
I
I
| 43.

When the ORGANIZATION IS ISAM clause is specified, the file is to be
processed by ISAM data management.

sequence dictated by the file organization. For ISAM files, this sequence is

|
I
|
When the access mode is sequential, records in the file are accessed in the I
the order of ascending record key values within a given key of reference. |

|

If the access mode is random, the value of the record key data item indicates

7004 4490-000

P\



Environment Division

|51.

sequentially or randomly or both. (See rules 41 and 42.)

. If the ACCESS MODE clause is not specified, the ACCESS MODE IS

SEQUENTIAL clause is implied.

the record key must be unique among records of the file. This record key
provides the access path to records in an ISAM file.

. Data-name-1 and data-name-2 may be qualified.

The data item referenced by data-name-1 must be defined as an
alphanumeric data item within a record description entry associated with
that file-name.

. The size of the data item referenced by data-name-1 must be greater than 2

and less than or equal to 249 bytes. Data-name-1 must not describe an item
whose size is variable. (See "OCCURS Clause" under 5.3.3.)

Data-name-2 must be defined in the Data Division as a 2-character
alphanumeric data item and must not be defined in the File Section or the
Communication Section.

The data description of data-name-1 and its relative location within a record

Note: Rule 52 pertains to sort or merge files only.

52. Only the ASSIGN clause is permitted to follow file-name in the FILE-

CONTROL paragraph for a sort or merge file.

4.4.2. 1-O-CONTROL Paragraph

Function

7004 4490-000

The I-O-CONTROL paragraph specifies the points at which rerun is to be
established and the main storage area to be shared by different files. In addition,
this paragraph specifies the location of files on a multifile reel for sequential file

organization as well as special input/output techniques for file processing using
the APPLY clauses.

. When the access mode is dynamic, records in the file may be accessed o

|
|
|
|

. The RECORD KEY clause specifies the record key for the file. The values of I

|
|
|
|
}
|
|
|
|
|
|
|

4.27




Environment Division

Format

[1-O-CONTROL.

;RERUN ON [[DISC|-lfdname-{1]| EVERY integer-1 RECORDS OF file-name-1|...
DISK 2
TAPE

L | fdname

;SAME | |RECORD AREA FOR file-name-2{,file-name-3}...|...
SORT
SORT -MERGE

[;MULTIPLE FILE TAPE CONTAINS file-name-4 [POSITION integer-2]
[,file-name-5 [POSITION integer-311...1 ...

1 ;APPLY BLOCK-COUNT ON {fite-name-é [file-name~7]...}}...
TAPES

[;APPLY CYLINDER-INDEX AREA OF integer-4 INDICES ON file-name-8.
[,file-name-9] ...]1 ...

[;APPLY CYLINDER-OVERFLOW AREA OF integer-5 PERCENT ON file-name-10
[,file-name-113 ...1 ...

[;APPLY VERIFY ON file-name-12 [,file-name-131 ... ...

|[;APPLY INDEX-AREA OF integer-6 CHARACTERS ON file-name-14
[,file-name-15]...3... .1

|
|
|
I
l

Rules
1. The I-O-CONTROL paragraph is optional.
2. The RERUN clause specifies when and where the rerun information is
recorded. The rerun information is recorded on the device specified whenever
integer-1 records of file-name-1 are processed. File-name-1 may be any type

of file with any organization or access except a sort or merge file.

3. The value of integer-1 in the RERUN clause must be within the range of 1 to
8,388,607.

4. There are two forms of the implementer-name in the RERUN clause.

a. The form specifies a dedicated rerun receiver.

DISC|-tfdname-[1
DISK 2

TAPE a

428 7004 4490-000



Environment Division

7004 4490-000

e  DISC, DISK, and TAPE are the types of devices supported for a
user file dedicated for receiving checkpoint records.

®  The Ifdname field is a 1- to 8-character alphanumeric field. This
field specifies the ifdname of the dedicated receiver file.

e The field
1
H

is a 1-character field, where the value 1 indicates that all
checkpoint records are to be written consecutively on one dedicated
receiver file, and the value 2 indicates that checkpoint records are
to be written alternately on two dedicated receiver files, each file
containing only the latest alternate checkpoint record. When two
dedicated receiver files are specified, the INIT parameter must be
designated in the LFD job control statements for both receiver files.

b. The form @Q@ma specifies the name of an output data file on which
both data records and checkpoint records are to be written. The name
specified must be the Ifdname of a standard sequential EBCDIC tape
file described by an FD entry with standard system labels.

Note: This form of the implementor-name is not supported in the mixed
mode or consolidated data management mode.

The file-name of a dedicated rerun receiver file is generated by the compiler
by using the Ifdname specified in the Ifdname field of the RERUN clause.

If one dedicated receiver file is specified, the If dname is used as the
file-name of the rerun receiver.

If two dedicated receiver files are specified, a suffix, A or B, is appended as
the last character of a given Ifdname of seven or fewer characters, or the
suffix replaces the last character of an 8-character Ifdname to form a unique
file-name for each receiver file. The file-names for the two receiver files are
IfdnameA and IfdnameB.
Odd-numbered checkpoints are written on the file:

L fdnameA
Even-numbered checkpoints are written on the file:

L fdnameB

More than one RERUN clause may be specified; but no two of them may
specify the same file-name-1.

429




Environment Division

430

The SAME AREA clause specifies that two or more files that do not
represent sort or merge files are to use the same main storage area during
processing. The area being shared includes all storage areas assigned to the
files specified; therefore, only one file may be open at any given time. (See
rule 9¢.)

The SAME RECORD AREA clause specifies that two or more files are to use
the same main storage area for processing of the current logical record. All
the files may be open at the same time. A logical record in the SAME
RECORD AREA is considered as: 1) a logical record of each opened output
file whose file-name appears in this SAME RECORD AREA clause, and 2) a
logical record of the most recently read input file whose file-name appears in
this SAME RECORD AREA clause. This is equivalent to an implicit
redefinition of the area;i.e., records are aligned on the leftmost character
position,

10.

More than one SAME clause may be included in a program; however, the
following rules also apply:

a. Afile-name must not appear in more than one SAME AREA clause.

b. A file-name must not appear in more than one SAME RECORD AREA
clause.

c¢. If one or more file-names of a SAME AREA clause appear in a SAME
RECORD AREA clause, all the file-names in that SAME AREA clause
must appear in the SAME RECORD AREA clause. However, additional
file-names not appearing in that SAME AREA clause may also appear
in that SAME RECORD AREA clause. The rule that only one of the files
mentioned in a SAME AREA clause can be open at any given time takes
precedence over the rule that all files mentioned in a SAME RECORD
AREA clause can be open at any given time.

The files referenced in the SAME AREA or[SAME RECORD AREA|clause
need not all have the same organization or access.

11.

12

The SAME SORT AREA or SAME SORT-MERGE AREA clause is for
documentation purposes only.

The MULTIPLE FILE clause applies to sequential files only and is required
when two or more files share the same physical reel of tape. Regardless of
the number of files on a single reel, only those files that are used in the
object program need be specified. If all file-names are listed in consecutive
order, the POSITION clause need not be given. If any file in the sequence is
not listed, the position relative to the beginning of the tape must be given.
Not more than one file on the same tape reel may be open at one time.

7004 4490000

ST,



Environment Division

7004 4490-000

13.

14.

16.

17.

All files sharing the same physical reel of tape must specify the LABEL
RECORDS STANDARD or data-name clause in the associated FD entries;
the LABEL RECORDS OMITTED clause is not permitted.

The REVERSE phrase of the OPEN statement must not be used for files
sharing the same physical reel of tape.

. The APPLY BLOCK-COUNT clause is used only for tape files. For each file- |

name specified, this clause inserts a 3-byte block number at the beginning of |
each block on tape. I

If the TAPES option is specified, all tape files present are affected. This
clause must be specified for all input tape files that contain a block count.

|
The APPLY CYLINDER-INDEX AREA clause is used only for ISAM files |
(ORGANIZATION IS ISAM). The clause indicates that sufficient main ’
storage area should be allocated to contain integer-4 top index entries. |
|
|

The method for calculating the value of integer-4 is described in detail in the
Consolidated Data Management Macroinstructions Programming Guide
(7004 4607).

If the file already exists, use the following formula to determine the value of l
integer-4:

n = b/(s+3)

where:
Is integer-4 of the APPLY clause.

|
|
|
Signifies bytes that are required for main storage and that can be I
obtained from a display of VI'OC. The number of bytes is shown
under the heading Bytes Required for Main Storage. |
|
I
l
|
|
|

Signifies size of the record key.

Note:  If the remainder of the divide operation in the formula is not
equal to zero, add 1 to the quotient (i.e., add I to n).

The APPLY CYLINDER-OVERFLOW AREA clause is used only for ISAM
files. Integer-5 indicates the percentage of each cylinder in the prime data
area will be reserved for cylinder overflow.

If this clause is omitted, 20 percent of the cylinders specified as prime data
area are automatically allocated. If no cylinder overflow is desired, 0 percent
should be specified. If no overflow area exists, new records cannot be added I
to the file.

4-31




Environment Division

4-32

verification of disk records after they have been written (read after write). If|
this clause is omitted, no verification is performed. I

The APPLY INDEX-AREA clause is used only for indexed files [
(ORGANIZATION IS INDEXED). The clause specifies the size of the index- |
area used by MIRAM data management during the loading and retrieving of |
indexed MIRAM files. The size of the index-area for file retrieval, therefore, |
must be the same as the size when the file was created.

|
Integer-6 must be a multiple of 256. :

If the clause is not specified, an index-area of 256 characters is provided for |
each indexed file defined in the File Section. __l

7004 4490000



Section 5
Data Division

5.1. General Information

The Data Division describes the data that the object program is to accept as input and
to manipulate, to create, or to produce as output. Data to be processed falls into three
categories:

1. That which is contained in files and enters or leaves main storage from a
specified area or areas

2. That which is developed internally and placed into intermediate or working
storage or placed into specific format for output reporting purposes

3. Constants that are defined by the user

The Data Division must be included in every COBOL source program.

5.2. Structure

5.2.1. Heading and Sections

The Data Division begins with the reserved words DATA DIVISION followed by a
period and a space and is structured into File, Working-Storage, Linkage, and
Communication Sections. Each section is optional but, when used, must be in the
following order:

DATA DIVISION.

FILE SECTION.

file-description-entry cee
{record-description-entry}...

{record-description-entry}...

sort-merge-fite-description-entry } -

WORKING-STORAGE SECTION.

77-level -description-entry| ...
record-description-entry

continued

7004 4490000 51




Data Division

LINKAGE SECTION.

77-level-description-entry
record-description-entry

L

COMMUNICATION SECTION.

[record-description-entryl ..

communication-description-entry }...

The File Section defines the structure of data files. Each file is defined by a file
description (FD) or sort-merge file description (SD) entry and is followed by one or
more record descriptions. A record description describes all named items of data in the
record.

The Working-Storage Section describes records and noncontiguous data items that are
not part of external data files but are developed and processed internally. It also
describes data items whose values are assigned in the source program and do not
change during the execution of the object program.

The Linkage Section appears in the called program and describes data items that are
defined by the calling program and referred to by the called program. Its structure is
the same as the Working-Storage Section.

The Communication Section describes the data items that name the interface areas
between the message control system and the object program. (See 5.6 and Section 14.)

5.2.2. Entries

Each Data Division entry begins with a level-indicator or a level-number, followed by
one or more spaces, the name of the data item, and sequence of clauses describing the
data item. The last clause is always terminated by a period followed by a space.

Level-indicators

There are three types of level-indicators: FD, SD, and CD. FD indicates the start of a
file description entry, SD indicates the start of a sort-merge file description entry, and
CD indicates the start of a communication description entry.

Level-Numbers

52

Level-numbers are used to specify subdivisions of a logical record. The most basic
subdivisions of a record, that is, those not further subdivided, are called elementary
items; consequently, a record is said to consist of a sequence of elementary items, or
the record itself may be an elementary item.

7004 4490-000



Data Division

In order to refer to a set of elementary items, they are combined into groups. Each
group consists of a named sequence of one or more elementary items. Groups, in turn,
may be combined into groups. Thus, an elementary item may belong to more than one
group.

A system of level-numbers shows the organization of elementary items and group
items. Since records are the most inclusive data items, level-numbers for records start
at 01. Less inclusive data items are assigned higher (not necessarily successive)
level-numbers not greater in value than 49.

A group includes all group and elementary items following it until a level-number less
than or equal to the level-number of that group is encountered. All items that are
immediately subordinate to a given group item must be described using identical
level-numbers greater than the level-number used to describe that group item. The
following example indicates how level-numbers may be used to indicate this structure
in the description of the record.

@1 RECORD-A
05 GROUP-ITEM-1
07 GROUP-ITEM-2
08 GROUP-ITEM-3
10 ELEMENTARY-ITEM-1
10 ELEMENTARY-ITEM-2
08 ELEMENTARY-ITEM-3
07 GROUP-ITEM-4
08 ELEMENTARY-ITEM-4
08 ELEMENTARY-ITEM-5
05 ELEMENTARY-ITEM-6

In the preceding example, both GROUP-ITEM-3 and ELEMENTARY-ITEM-3 are
part of GROUP-ITEM-2; and GROUP-ITEM-2 and GROUP-ITEM-4 are part of
GROUP-ITEM-1. Therefore, the level-numbers assigned to both GROUP-ITEM-3 and
ELEMENTARY-ITEM-3 must be identical and must be greater than that assigned to
GROUP-ITEM-2. Similarly, GROUP-ITEM-2 and GROUP-ITEM-4 must be assigned
identical level-numbers greater than that assigned to GROUP-ITEM-1,

The principal rules for assigning level-numbers are:

e  The level-number 01 is reserved exclusively for identifying a logical record.

¢  Level-numbers range from 01 through 49.

¢  Anitem at any level may be an elementary item when no items are subordinate
to it.

¢  Anitem is contained in the preceding group, if the following conditions are met:

- The item has been assigned a numerically higher level-number than
that of the preceding group.

- The item directly follows the group of which it is a part.

7004 4490000 53




Data Division

Special Level-Numbers

Three types of entries exist for which there is no true concept of level and for which
the special level-numbers 66, 77, and 88 are assigned. The three types of entries are as
follows:

1. Level-number 66 introduces entries that specify elementary items or groups by
means of RENAMES clauses for the purpose of regrouping data items.

2.  Level-number 77 introduces entries that specify noncontiguous data items but
which are not subdivisions of other items and are not themselves subdivided.

3. Level-number 88 introduces entries that specify condition-names to be associated
with particular values of a conditional variable.

5.3. File Section

54

The File Section begins with the reserved words FILE SECTION followed by a period
and a space. The File Section contains file description (FD) entries and sort-merge file
description {SD) entries, each one followed by its associated record description entries.

In a COBOL program, an FD or SD entry represents the highest level of organization
in the File Section. The FD entry provides information about the physical structure
and identification of a file and gives the names of data records associated with the file.
The SD entry indicates the size and names of the data records associated with the file
to be sortedThere are no label procedures that the user can control, and
the rules for blocking and storage are peculiar to the SORTstatements.

A record description consists of a set of data description entries that describe the
characteristics of a particular record. Each data description entry consists of a
level-number followed by a data-name if required, followed by a series of independent
clauses as required. A record description has a hierarchical structure and, therefore,
the clauses used with an entry may vary considerably, depending upon whether it is
followed by subordinate entries.

Format

FILE SECTION.

file-description-entry
{record-description-entry} ...|...

sort-merge-file-description-entry
{record-description-entry} ...|...

7004 4490000



Data Division

5.3.1. File Description

Function

A file description is written for each file processed in the program. The
information contained therein pertains to the physical aspects, identification, and
record names of the file. A file description consists of a level-indicator (FD), a
file-name, and a series of independent clauses that describe the physical and
logical characteristics of the file. The FD entry itself is terminated by a period.

The functions and usage of the file description entry clauses are summarized in
Table 5-1. Sample program entries are given in Figure 5-1.

Format

7004 4490-000

FD file-name

;BLOCK CONTAINS |[integer-1 T01| integer-2 [RECORDS
CHARACTERS

[;RECORD CONTAINS [integer-3 TOl integer-4qCHARACTERS]
;LABEL [RECORD IS STANDARD
RECORDS ARE[ |OMITTED

_______ 1
________ -

;VALUE OF [ FILE-ID IS[ data-name- 1 }

,PASSWORD IS [ data-name-2 ] }

literal-1 L literal-2
PASSWORD 1S data-name-2 {,FILE-ID IS data-name-1 }
literal-2 literal-1

;DATA [RECORD IS data-name-3 [,data-name-41 ...
RECORDS ARE

;LINAGE 1S [data-name-5] LINES
integer-5

,WITH FOOTING AT [data-name-6
integer-6

,LINES AT TOP [data-name-7
integer-7

,LINES AT BOTTOM [data-name-8
integer-8

[;CODE-SET IS alphabet-name].

55




Data Division

Rules

56

1. The level-indicator FD identifies the beginning of a file description and must
precede the file-name.

2. The clauses that follow the name of the file are optional except for LABEL

RECORDS, and their order of appearance is optional.

3. One or more record description entries must follow the file description entry.

Seq.
No.

A B
1 8 12 Text
030018 DATA DIVISION.
030020 FILE SECTION.
030030 FD SAMPLE-FILE.
030040 BLOCK CONTAINS 5 RECORDS,
030050 RECORD CONTAINS 100 CHARACTERS,
0930060 LABEL RECORD IS STANDARD,
0930070 VALUE OF FILE-ID IS "SAMPLE FILEY,
030080 DATA RECORD 1S SAMPLE-RECORD-1, SAMPLE-RECORD-2.
030090 01 SAMPLE-RECORD-1 PICTURE X(100).
0308100 @1 SAMPLE-RECORD-2.
0306110 02 NAME.
030120 03 GIVEN PICTURE X(15).
230130 @3 MIDDLE PICTURE X(15).
930140 03 FAMILY PICTURE X(20).
030150 92 SEX PICTURE X.
030160 88 MALE VALUE IS "M®, ngu, #pn,
038170 88 FEMALE VALUE 1S Mg, ugh, wuagw,
830180 02 MARITAL-STATUS PICTURE X.
030190 88 SINGLE VALUE “sv,
030200 88 MARRIED VALUE M,
231010 88 DIVORCED VALUE "D".
031020 88 WIDOWED VALUE """,
031030 88 OTHER VALUE 0",
031040 02 ADDRESS.
031050 03 SPECIAL PICTURE X(5).
031060 03 STREET PICTURE X(13).
031070 93 CITY PICTURE X(13).
031080 03 STATE PICTURE X(2).
0931090 03 COUNTRY PICTURE X(10@).
031100 83 z1IP PICTURE X(5).

Figure 5-1. Sample File Section Entries

7004 4490-000

) /MN’Y\\

AT



Data Division

Table 5-1. File Description Entry Clauses

File
Clause Usage Organization Function
BLOCK CONTAINS Optional* | All Specifies block size or buffer size of a file
RECORD CONTAINS | Optional ALl Specifies logical record size
LABEL RECORDS Required All Specifies whether labels are standard or
user's
VALUE OF Optional All Indicates values of standard label items
DATA RECORDS Optional All Specifies names of records in file
LINAGE Optional Sequential Defines the size of a logical page
or SAM
CODE-SET Optional Sequential Specifies character code set used to represent
data in sequential tape files

* Required in some instances.

BLOCK CONTAINS Clause

Function

See rule 1 in "BLOCK CONTAINS Clause" in this subsection.

The BLOCK CONTAINS clause specifies the size of the physical record or block.
For more efficiently processing files in which the concept of grouping logical
records into blocks is not applicable, this clause may be used to specify the size of

buffers.

Format

BLOCK CONTAINS |[[integer-1 T0J

Rules

integer-2 {CHARACTERS}

RECORDS

1. This clause may be specified on any file but is only required when one of the
following conditions exists:

7004 4490-000

The file is assigned to TAPE and the block (or physical record)
contains more than one logical record.

The file ORGANIZATION IS SAM or ISAM and the block contains more
than one logical record.




Data Division

58

N

Integer-1,|if used, is for documentation purposes only.

When the word RECORDS is used, integer-2 defines the block size in terms
of the number of records (using maximum 01 record size) in each block.
When variable-length records are blocked, more than integer-2 records may
be grouped in a block due to some records being smaller than the maximum
01 record size.

When the word CHARACTERS is specified, integer-2 specifies the number of
characters (bytes) per block, including all system control fields.

Files specified with device type CARDREADER or CARDPUNCH may be
directed to the diskette device as a card substitute device. In this case, the
BLOCK CONTAINS clause, if specified, indicates the size of the buffer areas
to be used for multisector access. Multisector access improves processing
efficiency because multiple records may be read or written with one physical
input/output command even though they are not grouped into blocks. The
maximum buffer size for multisector access is 1,024 bytes.

The MIRAM data management processes files specified with
ORGANIZATION IS SEQUENTIAL and assigned to disk, or with
ORGANIZATION IS RELATIVE, or INDEXED; in MIRAM the concept of
grouping logical records does not apply. For these files, the BLOCK
CONTAINS clause specifies the size of the buffer areas. Larger buffers allow
multiple records to be read or written with one physical access.

If the BLOCK CONTAINS clause is not specified, BLOCK CONTAINS 1
RECORD is assumed.

Table 5-2 shows how to calculate block size for tape, card reader, card punch, and
printer files. A formula for the calculation and an example follow.

Formula

BLOCK SIZE (bytes) = (((01 RECORD SIZE) + RH + PC) * BLOCKING FACTOR) + BH

Example

Assume a tape file with variable mode, 8 records per block, and a maximum 01
record size of 230 bytes.

BLOCK SIZE = (((230) + 4 + 0) * 8) + 4 = 1876

7004 4490-000



Data Division

Table 5-2. Block Size Calculations for Tape, Card Reader, Card Punch, and Printer Files

Device Type and Mode
Card Card
Tape Reader Punch Printer

Field F \% u FC | VC | UC F F \ U FC Ve uc
PC (Printer Control) { 0 | @ e |1 1 1 0 0 2 %} 1 1 1
BH (Block Header) B |4 10|60 4 [} 0 '} [} 0 7} 4 2
RH (Record Header) 91 4 210 4 2 0 0 4 0 0 4 0
Multiple Records per | Y | Y N Y Y N Y R Gt I S I G B N N
Block Permitted
(determines
blocking factor)

*Q if CODE-SET is STANDARD-Q or STANDARD-1
**See rule 5 in this subsection.

Legend:
Y = Yes
N = No
7004 4490-000

59




Data Division

510

Table 5-3 shows how to calculate block size for mass storage SAM and ISAM files.

A formula for the calculation and an example follow.

Formula

BLOCK SIZE (bytes) = ({01 record size) + PC + RH + LF) * BLOCKING FACTOR) + BH

Example

Assume a SAM file with VC mode, ORGANIZATION SAM, BLOCK 10
RECORDS, and a maximum 01 record size of 200 bytes.

BLOCK SIZE = (((200) + 1 + 4 + 0) *10) + 4 = 2,054 bytes

Table 5-3. Block Size Calculations for Mass Storage SAM and ISAM Files

File Organization and Mode

SAM I SAM*

Field F \' FC | VvC F v

PC (Printer Control) 0|10 |1 1 0 0
BH (Block Header) 0| 4|0 4 2 2
RH (Record Header) 86|40 4 @ 2
LF (Link Field) 2|00 0 5 5

* For ISAM files, the minimum block size is 256 bytes.

7004 4490-000



Data Division

Table 5-4 shows how to calculate buffer size for mass storage, sequential, relative,
and indexed files. A formula for the calculation and an example follow.

Formula

BUFFER SIZE (as a number of 256-byte sectors) =
(((((01 RECORD SIZE) + RH + PC + RCB) * BLOCKING FACTOR) + 255) / 256) + 1

where the / operator is an integer divide.
Example

Assume a relative file with F mode, BLOCK 5 RECORDS, and a record size
of 300 bytes. ‘

BUFFER SIZE = ((((300) + 0 + 0 + 1) *5) + 255)/256) + 1 =
7 sectors of 256 bytes each.

Note that relative and indexed files always use the MIRAM record control byte
feature. If a language processor other than COBOL creates an IRAM or MIRAM
file without the record control byte feature and no DELETE statement is issued
for these files, they can be processed by a COBOL program

Table 5-4. Buffer Size Calculations for Mass Storage Sequential,
Relative, and Indexed Files

File Organization and Mode

Sequential (Mass Storage)|Relative | Indexed
Field F v FC vC F1V FlV
PC (Printer Control) 0 e 1 1 0|0 0|0
RH (Record Header) 2} 4 0 4 0|4 0|4
RCB (Record Control Byte) 1** 1 9 %% | Q* 1] 0% 11 o

*For files with V or VC mode, the record control byte is contained in the
record header.

**For compatibility, COBOL assumes the RCB to be present and allows for it in
the block size. However, sequential files created by COBOL do not have an RCB.

7004 4450000 511




Data Division

RECORD CONTAINS Clause

Function

The RECORD CONTAINS clause specifies the size of data records.

Format

RECORD CONTAINS [integer-1 I0] integer-2 CHARACTERS

Rules

1.

512

Since the size of each data record is defined within its respective record
description entry, the RECORD CONTAINS clause is optional.

Integer-2 may not be used by itself unless the size of each data record in the
file is the same. In this case, integer-2 represents the exact number of
characters in the data record.

Example
RECORD CONTAINS 88 CHARACTERS

If integer-1 and integer-2 are both shown, they refer to the minimum
number of characters in the smallest size data record and the maximum
number of characters in the largest size data record, respectively.

Example
RECORD CONTAINS 115 TO 165 CHARACTERS.

No record in the file is shorter than 115 characters nor longer than 165
characters. However, if 115 70 were deleted, each record would be exactly
165 characters long.

The size is specified in terms of the number of character positions (bytes)
required to store the logical record, regardless of the types of characters used
to represent the items within the logical record.

The length of a data record in the File Section may not exceed 524,287 bytes.

The record size specified in a COBOL program, whether specified in a
RECORD CONTAINS clause or in the record description clause (the size of
the 01 record), refers only to the logical data part of the record and not to any
0S/3 control fields appended to the record. The BLOCK CONTAINS clause
shows when control fields are present and how big they are. For more
detailed information, refer to Tables 5-2, 5-3, and 5-4 in this section.

Note:  When the term "record size” is used in places other than a COBOL

program, such as in a data management manual or a VIOC print,
the record size includes the conirol fields.

7004 4490-000

/W\\A



Data Division

LABEL RECORDS Clause

Function

Format

The LABEL RECORDS clause specifies whether labels are present. If
labels are present, this clause also identifies the label.

Rules

7004 44590-000

LABEL [RECORDS ARE| OMITTED
RECORD IS STANDARD

This clause is required in every file description entry.

OMITTED specifies that no explicit labels exist for the file or the device to
which the file is assigned. OMITTED must be specified for files assigned to
CARDREADER, CARDPUNCH, and PRINTER.

STANDARD specifies that standard system labels exist for the file or the
device to which the file is assigned and the labels conform to the standard
system label specifications. STANDARD must be specified for files assigned
to mass storage devices.

specify that both standard system labels and standard user labels exist for |
the file or the device to which the file is assigned. Standard user labels must |
conform to system specifications. Refer to the Consolidated Data
Management Macroinstructions Programming Guide (7004 4607).

If LABEL RECORDS STANDARD is specified for the tape file, standard
user labels may also be present. However, standard user labels should not be
checked on input files or written on output files.

Data-names are names of standard user label records and must have record
descriptions subordinate to the associated file description.

References to data-names specified in this clause, or to items subordinate to
these data-names, must appear within USE LABEL procedures. (See 6.6.41,

|
|
|
i
|
|
|
|

513




Data Division

VALUE OF Clause
Function

The VALUE OF clause specifies the value of an item in the standard system file
label record associated with a file. This clause is for documentation only.

Format

VALUE OF [ FILE-ID IS { data-name- 1 H,PASSNORD Is [ data-name-2 H

Literal-1 titeral-2

PASSWORD IS ||data-name-2 {,FILE-!D IS data-name- 1 }
literal-2

literal-1

DATA RECORDS Clause

Function

The DATA RECORDS clause only documents the names of data records
in a given file.

Format

DATA [RECORDS ARE] data-name-1[,data-name-2]...
RECORD IS

Rules

1. Data-name-1 and data-name-2 are the names of data records and must have
01 level-number record descriptions, with the same names, associated with
them.

2.  The presence of more than one data-name indicates that the file contains
more than one type of data record. These records may be of differing sizes
and formats and can be listed in any order.

3. Conceptually, all data records within a file share the same area. This is in no
way altered by the presence of more than one type of data record within the
file.

514 7004 4490000



Data Division

LINAGE Clause
Function
The LINAGE clause specifies the size of a logical page in terms of number of

lines. It also specifies the size of the top and bottom margins on the logical page

and the line number, within the page body, at which the footing area begins. (See
Figure 5-2.)

Format 1

LINAGE IS [data-name-1] LINES
integer-1

,WITH FOOTING AT [data-name-2
integer-2
,LINES AT TOP [data-name-3
integer-3

integer-4

,LINES AT BOTTOM {data-name-4} }

Rules
Note: Rules 1 through 13 apply to format 1 only.

1. The LINAGE clause may be used only for sequential files assigned to devices
other than CARDREADER and CARDPUNCH.

2. When the LINAGE clause is specified, the character C must be specified in
the mode field for an implementor-name. (See ASSIGN clause details under
4.4.1.,"FILE-CONTROL Paragraph.”)

3. Data-name-1, data-name-2, data-name-3, and data-name-4 must reference
elementary unsigned numeric integer data items.

7004 4490-000 515




Data Division

4. The LINAGE clause expresses logical page size as the sum of the values
referenced by each phrase except the FOOTING phrase. If the LINES AT
TOP or LINES AT BOTTOM phrase is not specified, the value for this
function is zero. If the FOOTING phrase is not specified, the assumed value
is equal to integer-1 or the content of the data item referenced by data-name-
1, whichever is specified. Although the FOOTING value is assumed to be
equal to the LINAGE value, when the FOOTING phrase is not specified,
there is no FOOTING area.

The size of the logical page and the size of a physical page are not necessarily
related.

TOP
integer -3 MARGIN

PAGE
LOGICAL{ integer-1 BODY integer-2
PAGE

integer-2

i <— (line number)

FOOTING
AREA

T

BOTTOM
integer -4 MARGIN

Notes:

1. Size of logical page in lines = the sum of integer-3, integer-1, and integer-4.
2. Size of FOOTING area in number of lines = integer-1 less integer-2+1.
3 Integer-1 must be > zero.

Integer-3 must be > zero.

Integer-2 must be < integer-1.

Integer-4 must be > zero.

Figure 5-2. Logical Page Format for Format 1 LINAGE Clause

5. The value of integer-1 or the data item referenced by data-name-1 specifies
the number of lines that can be written or spaced on the logical page. The
value must be greater than zero and must not exceed 999. That part of the

logical page in which these lines can be written or spaced is called the page
body.

6. The value of integer-3 or the data item referenced by data-name-3 specifies
the number of lines that comprise the top margin on the logical page. The
value may be zero.

7. The value of integer-4 or the data item referenced by data-name-4 specifies
the number of lines that comprise the bottom margin on the logical page.
The value may be zero. Nl

. 516 7004 4490000



Data Division

7004 4490-000

10.

11.

12.

The value of integer-2 or the data item referenced by data-name-2 specifies
the line number within the page body at which the footing area begins. The
value must be greater than zero and not greater than the value of integer-1
or the data item referenced by data-name-1.

The footing area comprises the area of the logical page between the line
represented by the value of integer-2 or the data item referenced by data-
name-2 and the line represented by the value of integer-1 or the data item
referenced by data-name-1, inclusive.

The value of integer-1, integer-3, and integer-4, if specified, is used at the
time the file is opened by the execution of an OPEN statement with the

OUTPUT phrase to specify the number of lines that comprise each of the
indicated sections of a logical page. The value of integer-2, if specified, is
used at that time to define the footing area. These values are used for all
logical pages written for the file during a given execution of the program.

The values of the data items referenced by data-name-1, data-name-3, and
data-name-4, if specified, are used as follows:

e  When an OPEN statement with the OUTPUT phrase is executed
for the file, they specify the number of lines that are to
comprise each of the indicated sections for the first logical
page.

°  When a WRITE statement with the ADVANCING PAGE phrase
is executed or a page overflow condition occurs, they are used
to specify the number of lines that are to comprise each of the
indicated sections for the next logical page.

The value of the data item referenced by data-name-2, if specified, at the
time an OPEN statement with the OUTPUT phrase is executed for the file is
used to define the footing area for the first logical page. At the time a
WRITE statement with the ADVANCING PAGE phrase is executed or a
page overflow condition occurs, it is used to define the footing area for the
next logical page.

A LINAGE-COUNTER is generated by the presence of a LINAGE clause.
The value in the LINAGE-COUNTER at any given time represents the line
number at which the device is positioned within the current page body. The
rules governing the LINAGE-COUNTER are as follows:

a. A separate LINAGE-COUNTER is supplied for each file described in
the File Section having a file description entry containing a LINAGE
clause.

b. LINAGE-COUNTER may be referenced, but not modified, by Procedure
Division statements. If more than one LINAGE-COUNTER exists in a
program, the user must qualify LINAGE-COUNTER by file-name.

517




Data Division

518

¢. LINAGE-COUNTER is automatically modified during execution of a
WRITE statement to an associated file as follows:

1) When the ADVANCING PAGE phrase of the WRITE statement is
specified, the LINAGE-COUNTER is automatically reset to 1.

2) When the ADVANCING identifier-2 or integer phrase of the
WRITE statement is specified, the LINAGE-COUNTER is
incremented by integer or the value of the data item referenced by
identifier-2.

3) When the ADVANCING phrase of the WRITE statement is not
specified, the LINAGE-COUNTER is incremented by the value 1.

4) The value of LINAGE-COUNTER is automatically reset to 1 when
the device is repositioned to the first line that can be written on for
each of the succeeding logical pages. (See 6.6.42, "WRITE
Statement.")

d. The value of LINAGE-COUNTER is automatically set to 1 at the time
an OPEN statement is executed for the associated file.

13. Each logical page is contiguous to the next with no additional spacing

provided.

Note: Rules 14 through 19 apply to format 2 only. _l

1

1

1

|
|
|
|
|
|
I
|
|
|
|
l
|
|
|
l

14. Format 2 of the LINAGE clause may be used only with files assigned to

|
PRINTER. It may not be used with printer-destined files assigned to other |
devices. l

|

. Format 2 of the LINAGE clause specifies a logical page in which the first line |
of the page is defined by the home-paper position in the printer file’s vertical |
format buffer. It also allows detection of an end-of-page condition based upon
the overflow line position in the printer file’s vertical format buffer. See the
Job Control Programming Guide (7004-4623) and the Consolidated Data '
Management Macroinstructions Programming Guide (7004 4607) for |
information regarding vertical format buffer specification and page overflow
reporting.

. The size of the logical page is undefined (no upper limit). The end of a logical
page does not occur until a WRITE statement with an ADVANCING PAGE
phrase is executed.

. The footing area comprises the area of the logical page beginning with the
line on which the operating system reports that the overflow line position in
the vertical format buffer has been crossed and ending at the end of the

logical page. __,

|
|
|
|
|

7004 4490-000



Data Division

COBOL program. However, top and bottom margins may be created on the
physical page by executing a WRITE statement with an ADVANCING
PAGE phrase. This positions the form to the next home-paper position.

19. A LINAGE-COUNTER register is generated by the presence of a LINAGE
clause. The value in the LINAGE-COUNTER at any given time represents
the line number at which the device is positioned within the current page
body. The rules governing the LINAGE-COUNTER are:

7004 44390000

| |
| |
] l
l a. A separate LINAGE-COUNTER is supplied for each file described in ‘
l the File Section whose file description entry contains a LINAGE clause. |
l
l b. LINAGE-COUNTER may be referenced, but not modified, by Procedurel
Division statements. If more than one LINAGE-COUNTER exists in a |
‘ program, the user must qualify LINAGE-COUNTER by file-name. ]
] c. LINAGE-COUNTER is automatically modified during the execution of ‘
% a WRITE statement to an associated file as follows: [
‘ ®  When the ADVANCING PAGE phrase of the WRITE statement is ;
] specified, the LINAGE-COUNTER is automatically reset to 1. |
] ¢ When the ADVANCING identifier-2 or integer phrase of the l
I WRITE statement is specified, the LINAGE-COUNTER is
incremented by integer or the value of the data item referenced by I
l identifier-2. ’
|
I *  When the ADVANCING phrase of the WRITE statement is not I
I specified, the LINAGE-COUNTER is incremented by the value 1. ‘
! When you specify the ADVANCING mnemonic-name phrase of the l
I WRITE statement, the LINAGE-COUNTER is unchanged, but [
does not accurately reflect the device position in the current page.
l The LINAGE-COUNTER remains inaccurate until an !
‘ ADVANCING PAGE phrase is used. ’
I d. The value of LINAGE-COUNTER is automatically set to 1 at the time '
[ anOPEN statement is executed for the associated file. |
519




Data Division

CODE-SET Clause

Function

The CODE-SET clause specifies the character code set used to represent

data on the external media.
Format

CODE-SET IS alphabet-name
Rules

1. When the CODE-SET clause is specified for a file, all data in that file must
be described as USAGE IS DISPLAY and any signed numeric data must be
described with the SIGN IS SEPARATE clause.

2. The alphabet-name clause referenced by the CODE-SET clause must not
specify the literal phrase.

3. The CODE-SET clause may only be specified for sequential tape files or files
assigned to a CARDREADER or CARDPUNCH.

4. If the CODE-SET clause is specified, alphabet-name specifies the character
code convention used to represent data on the external media. It also
specifies the algorithm for converting the character codes on the external
media from/to the EBCDIC character codes. This code conversion occurs
during the execution of an input or output operation. (See 4.3.3,
"SPECIAL-NAMES Paragraph.")

5. If the CODE-SET clause is not specified, the native character code set is
assumed for data on the external media.

6. For sequential tape files, if the alphabet-name is associated with
STANDARD-1 in the SPECIAL-NAMES paragraph, the tape must conform
to the standards set forth in American National Standard Magnetic Tape
Labels for Information Interchange, X3.27-1969, at the level supported by
SAM data management. Fixed, variable, and undefined record formats are
permitted. However, the compiler assumes a buffer offset of zero. For an
explanation of buffer offset and ASCII tape file formats, see the Consolidated
Data Management Macroinstructions Programming Guide (7004 4607).

7. If the alphabet-name is associated with STANDARD-0, it is treated the same

5-20

as STANDARD-1.

7004 4490-000



Data Division

5.3.2. Sort-Merge File Description

The sort-merge file description furnishes information concerning the physical
structure, identification, and record names of the file to be sortedSample
sort file description entries are given in Figure 5-3.

Format

SD file-name
[;RECORD CONTAINS [integer-1 T0] integer-2 CHARACTERS]

;DATA [RECORD IS data-name-1 [,data-name-2]...|.
RECORDS ARE

Rules

1. The level-indicator SD identifies the beginning of the sort-merge file
description and must precede the file-name.

2.  The clauses that follow the name of the file are optional and their order of
appearance is optional.

3.  One or more record description entries must follow the sort-merge file
description entry; however, no input/output statements can be executed for

this file.
4. The RECORD CONTAINS clause and the DATA RECORDS clause are
described in 5.3.1.
Seq.
No.
A B Text
1 8 12

040010 SD SORT-FILE

040020 RECORD CONTAINS 50 TO 100 CHARACTERS
040030 DATA RECORD 1S SORT-RECORD.

040048 ©1 SORT-RECORD.

0400508 @2 ACCOUNT-NUMBER PICTURE 9(8).

040060 @2 NUMBER-OF - CUSTOMERS, USAGE 1S COMPUTATIONAL,

040070 PICTURE $§9¢4).

040080 02 CUSTOMER-DESCRIPTION, OCCURS 4 TO 9 TIMES DEPENDING
040090 ON NUMBER-OF -CUSTOMERS, PICTURE X(1@).

Figure 5-3. Sample Sort File Description Entries

7004 4490000 521




Data Division

5.3.3. Data Description

522

Function

A data description entry specifies the characteristics of a specific data item.

Format 1

level -number [data-name-1
FILLER

[;REDEFINES data-name-2]
;{PICTURE} IS character-string
PIC

;[USAGE 1S1 [ COMPUTATIONAL
conp
—-r———==- 1
COMPUTATIONAL- 1
lcowp-1 |
COMPUTATIONAL-2
lcowp-2 |
COMPUTATIONAL-3
cowp-3 |
COMPUTATIONAL -4
[COMP 4 J

DISPLAY
| INDEX

;ISIGN IS] [LEADING | [SEPARATE CHARACTER]
TRAILING

integer-2| TIMES

DESCENDING

s [SYNCHRONIZED] | [LEFT
SYNC RIGHT

JUST

; {JUSTIFIED} RIGHT

[ ;BLANK WHEN ZERO]
[;VALUE IS literall].

[INDEXED BY index-name-1 [,index-name-2] ..

;OCCURS {integer-1} TO integer-2 TIMES DEPENDING ON data-name-3

{ASCENDING } KEY IS data-name-4 [,data-name-51 ...

.1

7004 4490-000

™



Data Division

Format 2

66 data-name-1;RENAMES data-name-2 [ {THROUGH} data-name-B].
THRU

Format 3

88 condition-name; [VALUE IS literal-1 |[THROUGH} Lliteral-2
VALUES ARE THRU

,Literal-3 |[THROUGH] literal-4 .
THRU

Rules
1. There are three formats for data description entries:

e Format 1 is used for record description entries in the file, working-
storage, and Linkage Sections and for data item description entries in
the working-storage and Linkage Sections.

¢  Format 2 is used to assign alternative names to existing data items or
groups of items. (See "RENAMES Clause" in this subsection.)

*  Format 3 is used to assign a name to the values that an associated
conditional variable may possess during object program execution. (See
format 2 under "VALUE Clause" in this subsection.)

2. In Level 1, the level-number in format 1 may be any number from 01
through 10 or 77.|In Level 2, the level-number in format 1 may be any
| number from 01 through 49 or 77.

3. The clauses may be written in any order with two exceptions:

¢  The data-name-1 or FILLER clause must immediately follow the
level-number.

¢  The REDEFINES clause, when used, must immediately follow the
data-name-1 clause.

4. The PICTURE clause must be specified for every elementary item except an
index data item, for which use of this clause is prohibited.

5. The words THRU and THROUGH are equivalent.

7004 4490-000 523




Data Division

6. 'The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK
WHEN ZERO must not be specified except for an elementary data item.

7. Format 3 is used for each condition-name. Each condition-name requires a
separate entry with level-number 88. Format 3 contains the name of the
condition and the value, values, or range of values associated with the
condition-name. The condition-name entries for a particular conditional
variable must follow the entry describing the item with which the
condition-name is associated.

A condition-name can be associated with any data description entry that
contains a level-number except the following:

e Another condition-name

e Alevel-66 item

® A group containing items with descriptions including JUSTIFIED,
SYNCHRONIZED, or USAGE other than USAGE IS DISPLAY

¢  Anindex data item (See format 2 under "USAGE Clause" later in this
subsection.)

Table 5-5 summarizes the functions of the clauses used in data description entries.

The formats and functions of these clauses are described in detail in the paragraphs
that follow.

5-24 7004 4490-000



Data Division

Table 5-5. Data Description Entry Clauses

Clause

Function

data-name or FILLER

Specifies the name of the data being described

REDEFINES Allows the programmer to give an alternate description of an area
of computer storage

PICTURE Indicates the size, class (alphabetic, numeric, or alphanumeric),
and the editing requirements for an elementary data item

USAGE Specifies the manner in which the data is stored in main storage

SIGN Specifies the position and mode of representation of the
operational sign for numeric data

OCCURS Indicates the number of elements contained in a table

SYNCHRONIZED Specifies the alignment of an elementary item on a natural boundary
of the computer memory

JUSTIFIED Specifies that nonnumeric data is to be right-justified

in a nonnumeric field

BLANK WHEN ZERO

Specifies that an item is to be set to blanks whenever its value
is zero

VALUE Defines the initial value of a working-storage item or a value or
range of values associated with a condition-name
RENAMES Permits alternate, possibly overlapping, groupings of elementary
items
7004 4490-000 5-25




Data Division

Level-Number
Function
The level-number shows the hierarchy of data within a logical record.

In addition, it is used to identify entries for working-storage items,
linkage items,l@ndition-names, and the RENAMES clause. |

Format
level -number

Rules

1. Alevel-number is required as the first element in each data description
entry.

2. Data description entries subordinate to an FD, SD, or CD entry must have
level-numbers with the values 01 through 10 in Level 1 ;|01 through 49, 66, or
| 88 in Level 2.

3. Data description entries in the Working-Storage Section and Linkage
Section must have level-numbers with the values 01 through 10 or 77 in
Level 1;|01 through 49, 66, 77, or 88 in Level 2.]

4. The level-number 01 identifies the first entry in each record description. e

5. Special level-numbers are assigned to certain entries where there is no real
concept of level:

*  Level-number 77 is assigned to identify noncontiguous data
items and can be used only as described by format 1.

¢  Level-number 66 is assigned to identify RENAMES entries and
can be used only as described in format 2.

¢ Level-number 88 is assigned to entries that define
condition-names associated with a conditional variable and can
be used only as described in format 3.

6. Multiple level 01 entries subordinate to any given level-indicator represent
implicit redefinitions of the same area.

526 7004 4490-000



Data Division

Data-Name/FILLER Clause
Function

A data-name specifies the name of the data being described. The keyword
FILLER specifies an elementary item of the logical record that cannot be referred
to explicitly.

Format
data-name
FILLER

Rules

1. Inthe File, Working-Storage, and Linkage Sections, a data-name or the
keyword FILLER must be the first word following the level-number in each
data description entry.

2.  The keyword FILLER may be used to name an elementary item in a record.
Under no circumstances can a FILLER item be referred to explicitly.
However, the keyword FILLER may be used as a conditional variable
because such use does not require explicit reference to the FILLER item, but
to its value.

REDEFINES Clause
Function

The REDEFINES clause allows the same computer storage area to be
described by different data description entries.

Format

level -number data-name-1;REDEFINES data-name-2

Note: Level-number, data-name-1, land the semicolon |are shown in the format
to improve clarity. Level-number and data-name-1 are not part of the
REDEFINES clause.

Rules

1. The REDEFINES clause, when specified, must immediately follow
data-name-1.

2. The level-numbers of data-name-1 and data-name-2 must be identical,lbut
| must not be 66 or 88.

7004 4490-000 527




Data Division

528

This clause must not be used in level 01 entries in the File Section or the
Communication Section.

No entry having a level-number numerically lower than the level-number of
data-name-2 and data-name-1 may occur between the data description
entries of data-name-2 and data-name-1.

Redefinition starts at data-name-2 and ends when a level-number less than
or equal to that of data-name-2 is encountered.

When the level-number of data-name-1 is other than 01, it must specify the
same number of character positions that the data item referenced by
data-name-2 contains. The REDEFINES clause specifies the redefinition of a
storage area, not of the data items occupying the area.

The data description entry for data-name-2 cannot contain a REDEFINES

clause. In Level 1, data-name-2 cannot be subordinate to an entry that

contains a REDEFINES clause.|In Level 2, data-name-2 may be subordinate]|
| to an entry that contains a REDEFINES clauseJThe data description entry
for data-name-2 cannot contain an OCCURS clause.|However, data-name-2
may be subordinate to an item whose data description entry contains an
OCCURS clause. In this case, the reference to data-name-2 in the
REDEFINES clause may not be subscripted or indexed.|Neither the original
definition nor the redefinition can include an item whose size is variable as
defined in the OCCURS clause.

Multiple redefinitions of the same character positions are permitted. The
entries giving new descriptions of character positions must follow the entries
defining the area being redefined without intervening entries defining new
character positions. Multiple redefinitions of the same character positions
must all use the data-name of the entry that originally defined the area.

Example

02 A.
04 A1 PICTURE X(3).
04 A2 PICTURE 99V99.
02 B REDEFINES A.
04 B1 PICTURE 9.
04 B2 PICTURE A(4).
84 B3 PICTURE XX.
02 C REDEFINES A PICTURE 9(4)V9(3).

The entries giving the new description of the character positions must not
contain any VALUE clauses[except in condition-name entries. |

Multiple level 01 entries subordinate to any given level-indicator represent
implicit redefinitions of the same area.

7004 4490-000



Data Division

PICTURE Clause

Function

The PICTURE clause describes the general characteristics and editing
requirements of an elementary item. See Appendix K for a tutorial description of
the PICTURE clause and for additional examples.

Format

Rules
1.

2.

7004 4490000

{PICTURE} IS character-string
PIC

A PICTURE clause can be specified only at elementary item level.
The maximum number of characters allowed in the character-string is 30.
PIC is an abbreviation for PICTURE.

The PICTURE clause must be specified for every elementary item except an

clause is prohibited.

A character-string consists of certain allowable combinations of characters in
the COBOL character set used as symbols. The allowable combinations
determine the category of the elementary item.

There are five categories of data that can be described with a PICTURE
clause: alphabetic, numeric, alphanumeric, alphanumeric edited, and
numeric edited.

The five categories of data items are grouped into three classes: alphabetic,
numeric, and alphanumeric. For alphabetic and numeric, the class and the
category are synonymous. The alphanumeric class includes the categories of
alphanumeric (without editing), alphanumeric edited, and numeric edited.

Every elementary item except for an index data item belongs to one of the
classes and to one of the categories. The class of a group item is treated at
object time as alphanumeric regardless of the class of elementary items
subordinate to that group item.

The relationship of the class and category for elementary and group data
items is shown in Table 5-6.

5-29




Data Division

Table 5-6. Class and Category of Elementary and Group Data ltems

Level of Item | Class Category
Elementary Alphabetic Alphabetic
Numeric Numeric

Alphanumeric | Numeric edited
Alphanumeric edited
Alphanumeric

Group Alphanumeric | Alphabetic

Numeric

Numeric edited
Alphanumeric edited
Alphanumeric

7.  The maximum size of an elementary item is defined as follows:
Alphabetic 4,092 bytes
Numeric Size in bytes is determined by the USAGE

and SIGN clauses, which are described in
this subsection.

Numeric edited 120 bytes
Alphanumeric edited 120 bytes
Alphanumeric 4,092 bytes

8. To define an item as alphabetic:
a. Its PICTURE character-string can only contain the symbols A and B.

b. Its content when represented in standard data format must be any
combination of the 26 letters in the alphabet and the space character.

9. To define an item as numeric:

¢  Fixed-Point Items

The PICTURE character-string of a fixed-point item can only contain
the symbols 9, P, S, and V. The number of digit positions that can be
described by the PICTURE character-string must range from 1 to 18,
inclusive.

5-30 7004 4490-000



Data Division

7004 4490-000

If unsigned, the contents of a data item represented in standard data
format must be a combination of the numerals 0 through 9; if signed,
the item may also contain a +, -, or other representation of an
operational sign. (See "SIGN Clause" in this subsection.)

Floating-Point Items

The floating-point items define data having a potential range of value
too great for fixed-point presentation. The magnitude of the number
represented by a floating-point item must be greater than 5.4 x 10°7°
but must not exceed 0.72 x 107,

There are two types of floating-point items: internal floating-point and
external floating-point.

No PICTURE clause may be associated with an internal floating-point
item. The USAGE clause for an internal floating-point item is
COMPUTATIONAL-1 or COMPUTATIONAL-2. (See "USAGE Clause"
in this subsection.)

An external floating-point item has the USAGE of DISPLAY and a
PICTURE character-string in the following format:

{+} mantissa E {+} exponent

{+}
A plus indicates that the data is positive if preceded by a plus,
or negative if preceded by a minus.

A minus indicates that the data is positive if preceded by a
space character, or negative if preceded by a minus.

The plus sign, the space character, or the minus sign occupies
one byte of main storage.

mantissa
Is represented by the symbols: 9, period (), or V. Each 9
represents a digit position and occupies one byte of main
storage. From one to sixteen 9s may be present in the
mantissa string.

|

|

|

|

I

|

I

!

l

|

where: |

I

!

I

l

|

!

|

The period represents an actual decimal point and occupies |

one byte of storage. The V represents an assumed decimal l

point, which does not occupy any main storage. l

One actual or assumed decimal point must be present in the {
mantissa as a leading, embedded, or trailing symbol.

531




Data Division

5-32

Indicates the exponent. It occupies one byte of main storage.

exponent
Specifies a power of 10 that is used as a multiplier. It is

represented by two consecutive 9’s. Each 9 occupies one byte of

main storage.

No VALUE clause may be associated with an external floating-point
item.

10. To define an item as alphanumeric:

e

Its PICTURE character-string is restricted to certain combinations of
the symbols A, X, and 9, and the item is treated as if the
character-string contained all X’s. A PICTURE character-string that
contains all A’s or all 9’s does not define an alphanumeric item.

Its content, when represented in standard data format, is allowable
characters in the computer character set.

11. To define an item as alphanumeric edited:

Its PICTURE character-string is restricted to certain combinations of
the following symbols:

AX9BO/
As a minimum, it must contain either of the following:
- Atleastone B, 0,or/and one X
- Atleastone 0 or/and one A

Its content, when represented in standard data format, is allowable
characters in the computer character set.

12. To define an item as numeric edited:

Its PICTURE character-string is restricted to certain combinations of
the following symbols:

B/PVZ09,.*+-CRDB or currency symbol

- The allowable combinations are determined from the order of
precedence of symbols and the editing rules.

- The number of digit positions that can be represented in the
PICTURE character-string must range from 1 to 18 inclusive.

7004 4490-000



Data Division

7004 44590-000

The character-string must contain at least one of the following
symbols:

0B/Z*+,.-CRDB or currency symbol

s  The content of the character positions of these symbols that are allowed
to represent a digit in standard data format must be one of the
numerals.

13. An integer that is enclosed in parentheses following the symbols:

14.

A,X9PZ*B/0+-or currency symbol

indicates the number of consecutive occurrences of the symbol. The following
symbols may appear only once in a given PICTURE:

SV.CRDBE

The functions of the symbols used in a PICTURE character-string other than
floating point to describe an elementary item are explained as follows:

Symbol

A

Description

Represents a character position that contains only a letter of
the alphabet or a space

Represents a character position into which the space character
is to be inserted

Indicates an assumed decimal scaling position and specifies
the location of an assumed decimal point when the point is not
within the number thatappears in the data item. The P is not
counted in the size of the data item, but is counted in
determining the maximum number of digit positions (18) in
numeric-edited items or numeric items. The P can appear only
to the left or right as a continuous string of P’s within a
PICTURE description.

Since the P implies an assumed decimal point (to the left of
the P’s if P’s are leftmost PICTURE characters, and to the
right if the P’s are rightmost PICTURE characters), the
assumed decimal point symbol V is redundant as either the
leftmost or rightmost character within such a PICTURE
description,

The character P and the period insertion character (. ) cannot
both occur in the same PICTURE character-string.

533




Data Division

Symbol

(cont.)

0 (zero)

/ (slash)

, (comma)

5-34

Description

If, in any operation involving conversion of data from one form
of internal representation to another, the data item being
converted is described with the PICTURE character P, each
digit position described by a P is considered to contain the
value zero, and the size of the data item is considered to
include the digit positions so described.

Indicates the presence of an operational sign but not its
representation nor, necessarily, its position. It must be written
as the leftmost character in the PICTURE and is not counted
in determining the size (in terms of standard data format
characters) of the elementary item unless the entry is subject
to a SIGN clause that specifies the optional SEPARATE
CHARACTER phrase. (See "SIGN Clause" in this subsection.)

Indicates the location of the assumed decimal point and may
only appear once in a character-string. The V does not
represent a character position and, therefore, is not counted in
the size of the elementary item. When the assumed decimal
point is to the right of the rightmost symbol in the string, the
V is redundant.

Represents a character position that contains any allowable
character from the computer character set.

Represents a leading numeric character position. When that
position contains a 0, the 0 is replaced by a space character.
Each Z is counted in the size of the item.

Represents a character position that contains a numeral and is
counted in the size of the item.

Represents a character position into which the numeral 0 is to
be inserted. The 0 is counted in the size of the item.

Represents a character position into which the stroke
character is to be inserted. The /is counted in the size of the
item.

Represents a character position into which a comma is to be
inserted. This character position is counted in the size of the
item. The comma insertion character must not be the last
character in the PICTURE character-string.

7004 4490000



Data Division

Symbol Description

. (period) Is an editing symbol that represents the decimal point for
alignment purposes and, in addition, represents a character
position into which a decimal point is to be inserted. A period
is counted in the size of the item. The functions of the period
and comma are exchanged if the clause DECIMAL-POINT IS
COMMA is stated in the SPECIAL-NAMES paragraph. In this
exchange, the rules for the period apply to the comma and the
rules for the comma apply to the period wherever they appear
in a PICTURE clause. The insertion character period must not
be the last character in the PICTURE character-string.

+-CRDB  Areused as editing sign control symbols. They represent the
character position into which the editing sign control symbol is
placed. These symbols are mutually exclusive in any one
character-string and each character used in the symbol is
counted in determining the size of the data item.

* Represents a leading numeric character position into which an
asterisk is placed when that position contains a zero. Each
asterisk is counted in the size of the item.

cs Represents a character position into which a currency symbol

is to be placed. The currency symbol in a character-string is
represented by either the currency sign ($) or by the single
character specified in the CURRENCY SIGN clause in the
SPECIAL-NAMES paragraph. The currency symbol is counted
in the size of the item.

15. There are two general methods of performing editing in the PICTURE
clause: insertion or suppression and replacement.

The four types of insertion editing are:

¢  Simple insertion

e  Special insertion

®  Fixed insertion

¢  Floating insertion

The two types of suppression and replacement editing are:
e  Zero suppression and replacement with spaces

e Zero suppression and replacement with asterisks

7004 4490-000 5-35




Data Division

16. The type of editing that may be performed upon an item is dependent upon
the category to which the item belongs. (See Table 5-7.)

Table 5-7. Type of Editing Permissible for Each Data Category

Data Category Type of Editing
Alphabetic Simple inserticn B only
Numeric None

Alphanumeric Nonhe

Alphanumeric edited | Simple insertion , 8 B and /

Numeric edited All, subject to rule 17

17. Floating-insertion editing and editing by zero suppression and replacement
are mutually exclusive in a PICTURE clause. Only one type of editing may
be used in a PICTURE clause.

18. Insertion editing is described as follows:
¢  The simple insertion-editing characters are:
,BO/

Insertion characters are counted in the size of the item and represent
the position in the item into which the character is to be inserted.

¢  The special insertion character is the . (period). When used as an actual
decimal point, the insertion character is counted in the size of the item.
In addition, the period is used to represent the decimal point for
alignment purposes. The use of the assumed decimal point (represented
by the symbol V) and the actual decimal point (represented by the
insertion character) in the same PICTURE character-string is
disallowed. The insertion character appears in the edited item in the
same position as shown in the character-string.

e  The fixed-insertion editing characters are the currency symbol (cs) and
the editing sign control symbols:

+-CRDB

Only one currency symbol and one editing sign control symbol can be
used in a given PICTURE character-string. When the symbols CR or DB
are used, they represent two character positions in determining the size
of the item, and they must represent the rightmost character positions
that are counted in the size of the item. The symbol + or - must be either
the leftmost or rightmost character position to be counted in the size of
the item. The currency symbol must be the leftmost character position

5-36 7004 4490-000



Data Division

7004 4490-000

to be counted in the size of the item except that it can be preceded by
either a + or a - symbol. The insertion character occupies the same
character position in the edited item as it occupies in the PICTURE
character-string. Editing sign control symbols produce the results given
in Table 5-8, depending upon the value of the data item.

Table 5-8. Results Produced by Editing Sign Control Symbols

Result
Editing Symbol in Data Item Data Item
PICTURE Characterjstring Positive or Zero | Negative
+ +
Space
CR 2 spaces CR
DB 2 spaces DB

The floating-insertion editing characters are the currency symbol (cs)
and the editing sign control symbols (+ and -). The symbols are mutually
exclusive as floating-insertion characters in a given PICTURE
character-string.

Floating-insertion editing is indicated in a PICTURE character-string
by using a string of at least two floating-insertion characters. This
string may contain any of the fixed insertion symbols or have
fixed-insertion characters immediately to the right of this string. These
simple insertion characters are part of the floating string.

The leftmost character of the floating insertion string represents the
leftmost limit of the floating symbol in the data item. The rightmost
character of the floating string represents the rightmost limit of the

floating symbols in the data item.

The second floating character from the left represents the leftmost limit
of the numeric data that can be stored in the data item. Nonzero
numeric data replaces all the characters at or to the right of this limit.

There are two ways of representing floating-insertion editing. One way
is to represent any or all leading numeric character positions on the left
of the decimal point by the insertion character (examples 1 and 2
below). The other way is to represent all of the numeric character
positions in the PICTURE character-string by the insertion character
(example 3 below).

5-37




Data Division

If the insertion characters are only to the left of the decimal point, only
a single floating-insertion character is placed into the character position
immediately preceding either the decimal point or the first nonzero digit
in the data represented by the insertion symbol string, whichever is
farther to the left in the PICTURE character-string. The character
positions preceding the insertion character are replaced with spaces.

If all numeric character positions in the PICTURE character-string are
represented by the insertion character, the result depends upon the
value of the data. If the value is zero, the entire data item will contain
spaces. If the value is not zero, the result is the same as when the
insertion character is only to the left of the decimal point (examples 4, 5,
and 6 below).

To avoid truncation, the minimum size of the PICTURE
character-string for the receiving data item must be the number of
characters in the sending data item, plus the number of nonfloating
insertion characters being edited into the receiving data item, plus one
for the floating-insertion character.

Examples
PICTURE Data Edited Result
1. $89.99 12,34 $12.34 £ 0
2. $%,$35.99 123400 $1,234.00 e
3. $3%.9% 12.34 $12.34
4. $%,395.93 000600 (all spaces)
5. 4, bt 4t 000000 +1.00
6. mgmeeae- -0000.01 -.01

19. In zero-suppression editing, the suppression of leading 0’s in numeric
character positions is indicated by the use of the alphabetic character Z or
the character * (asterisk) as suppression symbols in a PICTURE
character-string. These symbols are mutually exclusive in a given PICTURE
character-string. Each suppression symbol is counted in determining the size
of the item.

If Z is used, the replacement character is a space. If the asterisk is used, the
replacement character is * (asterisk).

Zero suppression and replacement is indicated in a PICTURE
character-string in the following manner: A string of one or more of the
allowable symbols (* or Z) is used to represent leading numeric character
positions to be replaced when the associated character position in the data
contains a 0. Any of the simple insertion characters (, B 0/) embedded in the
string of symbols or to the immediate right of this string are part of the
string.

538 7004 4490-000



Data Division

7004 4490-000

20.

21.

The two ways of representing zero suppression in a PICTURE
character-string are:

e Any or all of the leading numeric character positions to the left of the
decimal point are represented by suppression symbols.

e  All numeric character positions in the character-string are represented
by suppression symbols.

If the suppression symbols appear only to the left of the decimal point, any
leading 0 in the data that corresponds to a symbol in the string is replaced by
the replacement character. Suppression terminates at the first nonzero digit
in the data represented by the suppression symbol string or at the decimal
point, whichever is encountered first.

If all numeric character positions in the PICTURE character-string are
represented by suppression symbols and the value of the data is not zero, the
result is the same as if the suppression characters were only to the left of the
decimal point. If the value is zero and the suppression symbol is Z, the entire
data item will be spaces. If the value is zero and the suppression symbol is *,
the data item will be all * except for the actual decimal point.

Examples
PICTURE Data Item Edited Result
2299.99 0000.00 00.00
2222.99 0000.00 .00
2222.22 0000.00 (all spaces)
*kkk QO 0000.00 *kkk 00
****_** @800,\00 ****'**
* kkk kkk GOBBCR -2135.05 *k%*D 135.05 CR

The symbols + - * Z and the currency symbol, when used as floating
replacement characters, are mutually exclusive within a given
character-string.

Table 5-9 shows the order of precedence when using characters as symbols in
a character-string.

At least one of the symbols
AX7Z9*

or at least two of the symbols
+ - ¢s (currency symbol)

must be present in a PICTURE character-string.

5-39




Data Division

540

Nonfloating-insertion symbols + and -, floating-insertion symbols Z * + - and
¢s, and the other symbol P appear twice in the PICTURE character
precedence chart, Table 5-9. The leftmost column and uppermost row for
each symbol represents its use to the left of the decimal point position. The
second appearance of the symbol in the table represents its use to the right
of the decimal point position.

The PICTURE character precedence chart (Table 5-9) summarizes the
preceding rules and provides a quick check on the legal order of PICTURE
symbols. For example, the chart shows that PICTURE string $+99 is illegal
because the intersection of the column (nonfloating-insertion symbol cs) and
row (nonfloating-insertion symbol {+} L) contains no X. This summarizes
rule 18,

7004 4490-000




Data Division

Table 5-9. PICTURE Character Precedence Chart

First Symbol
No‘nﬂoating Floating Other Symbols
Second Insertion Symbols Inssrtion Symbols
Symbol
+ + z z + +
CR A
B 0 / . . {—} {—} cs {’} {“} {-} {‘} es | e 9 3 v P
DB X
O|® O® ORI O|® ©
8 X X X X X X X X X X X X X X X X
o X X X X X X X X X X X X X X X X
/ X X X X X X X X X X X X X X X X
- : X X X X X X X X X X X X X X X
o8
g [3 X X X X X X X X X X
® >
X2
%8 +
i fho
*} @ x | x| x| x|x x | x| x x | x | x X | x
CR
oB X X X X X X X X X X X X X
cs X
Zz
{“} ® 1| x X | x | x X X | X
z
. {'} ® 1] x X i x | x| x| x X | x| x X
©
£
:E:’ & {“} OIS X X X X %
3 & —
L8
L
3 {*} ®x x| x| x|x X x | x X
s O] x X X X X X
s B X X X X X X X X X
g X X X X X X X X X X X X X X
A X X X X X
o X
£
£ S
)
§ \ X X X X X X X X X X X X
P OIx | x| x| x X X | x X X X X X
P ® X X x | x
LEGEND:
X Indicates that symbol at top of column may precede symbol at left of row.
{ } Indicates that symbols are mutually exclusive.

¢s  Indicates a currency symbol.

© Indicates the occurrence of the symbol to the left of the decimal point.
® Indicates the occurrence of the symbol to the right of the decimal point.
NOTE

7004 4490-000 ‘ 541




Data Division

USAGE Clause

Fun

ction

The USAGE clause specifies the format of a data item in computer storage.

Format 1

[USAGE ISl COMPUTATIONAL

COMP

(

COMP- 1
COMPUTATIONAL-2 |
coMp-2
COMPUTATIONAL-3 |
coMP-3
COMPUTATIONAL-4 |
CoMP-4

DISPLAY

Format 2

[USAGE IS] INDEX

Rules

542

1. The USAGE clause can be written at any level. If the USAGE clause is
written at a group level, it applies to each elementary item in the group. The
USAGE clause of an elementary item cannot contradict the USAGE clause of

a group to which the item belongs.
Note: Rules 2 through 13 apply to format 1 only.

2. This clause specifies the manner in which a data item is represented in
computer storage. It does not affect the use of the data item, although the
specifications for some statements in the Procedure Division may restrict the
USAGE clause of the operands referred to. The USAGE clause may affect

the radix or type of character representation of the item.

If the USAGE clause is not specified for an elementary item, or for any group
to which the item belongs, the usage is implicitly DISPLAY.

The USAGE IS DISPLAY specifies that the item is stored in character form,
one character per byte; it is used for alphabetic, alphanumeric,

7004 4490-000



Data Division

6. COMPUTATIONAL andLEOMPUTATIONALA are synonymou;I

7. A COMPUTATIONALJC‘EOMPUTATIONAL—I, COMPUTATIONAL-%]

representing a value to be used in computations and must be numeric. If the
USAGE clause of a group item is specified with any of these options, only the
elementary items within the group have the specified USAGE; the group
item itself cannot be used in computations.

8. The PICTURE character-string of a COMPUTATIONAL,

the operational sign character S, the implied decimal point character V, or
one or more P’s. (See "PICTURE Clause" in this subsection.)

9. No VALUE clause may be specified for items with descriptions that include
the USAGE IS INDEX clause.

data item is to be stored in binary format.

Example
Description Value Internal Representation
S
PICTURE $9999 +6879 2081 1012 1101 1111
COMPUTATIONAL
1 byte
S
PICTURE $9999 -6879 1110 0181 0010 0001
1 byte

Note: S indicates a sign bit.
The number of digits (9 characters) specified in the PICTURE
character-string determines the size in bytes of a COMPUTATIONAL or
COMPUTATIONAL-4 item.

Number of Digits Size in Bytes

lto4d 2
5to09 4
10to 18 8

7004 4490-000 543




Data Division

544

in single-precision, floating-point format. COMPUTATIONAL-2 specifies |
that the value of a data item is to be stored in double-precision, |

floating-point format. j
Examples
COMP-1
S exponent mantissa
81 718 31
| |
I
bits
COMP-2
) exponent mantissa
011 7i8 63
L |
[
bits

S = sign of mantissa

COMPUTATIONAL-3 specifies that the value of a data item is to be store(f}

in internal decimal format (packed decimal format). ]
Example
Description Value Internal Representation
9999 6879 06879F
$9999 +6879 86879C
S9999 -6879 B6879D
7004 4490-000



Data Division

The number of digits (9 characters) in the PICTURE character-string
determines the size, in bytes, of a COMPUTATIONAL-3 data item.

Number of Digits Size in Bytes

1

2t03
4t05
Gto7
8409
10to 11
12t013
14t015
16to 17
18

O 00 =3 O U1 A b

0
Note: Rules 14 through 18 apply to format 2 only.

14. An elementary item described with the USAGE IS INDEX clause is called an
index data item and contains a value that must correspond to an cccurrence
number of a table element. The elementary item cannot be a conditional
variable. If a group item is described with the USAGE IS INDEX clause, the
elementary items in the group are all index data items. The group itself is
not an index data item and cannot be used in theSET
statement or in a relation condition.

15. Anindex data item defines a data item of eight characters in length and
contains the binary representation of the character displacement of a table
element occurrence within a table. An index data item does not require
synchronization and is not aligned to any machine boundary other than a
character or byte boundary.

16. Anindex data item is a save area where the value of an index-name can be
placed. Do not use it as a subscript or as an index to refer to an individual
element within a table. Refer directly to an index data item only in a

SET statement, a relational condition, the USING phrase of a
Procedure Division header, or the USING phrase of a CALL statement.

17. Anindex data item can be part of a group that is referred te in a MOVE or
input/output statement, in which case no conversion will take place.

18. The SYNCHRONIZED, JUSTIFIED, PICTURE, VALUE, and BLANK

WHEN ZERO clauses cannot be used to describe group or elementary items
described with the USAGE IS INDEX clause.

7004 4490-000 5-45




Data Division

SIGN Clause

546

Function

The SIGN clause specifies the position and the mode of representation
of the operational sign when it is necessary to describe these properties
explicitly.

Format

[SIGN IS] {LEADING } [SEPARATE CHARACTER]

Rules

1.

TRAILING

The SIGN clause may be specified only for a numeric data description entry
whose PICTURE contains the character S, or a group item containing at
least one such numeric data description entry.

The numeric data description entries to which the SIGN clause applies must
be described as USAGE IS DISPLAY except for floating-point display.

At most, one SIGN clause may apply to any given numeric data description
entry.

If the CODE-SET clause is specified, any signed numeric data description
entries associated with that file description entry must be described with the
SIGN IS SEPARATE clause.

The optional SIGN clause specifies the position and the mode of
representation of the operational sign for the numeric data description entry
to which it applies, or for each numeric data description entry subordinate to
the group to which it applies. The SIGN clause applies only to numeric data
description entries whose PICTURE contains the character S; the S indicates
the presence of, but neither the representation nor, necessarily, the position
of the operational sign.

A numeric data description entry whose PICTURE contains the character S,
but to which no optional SIGN clause applies, has an operational sign. The
sign is considered to be TRAILING, without the SEPARATE CHARACTER
option.

If the optional SEPARATE CHARACTER phrase is not present, then

a. The operational sign is presumed to be associated with the leading or,
respectively, trailing digit position of the elementary numeric data item.

b. The letter S in a PICTURE character-string is not counted in

determining the size of the item (in terms of standard data format
characters).

7004 4450-000



Data Division

The valid signs for numeric data items occur in the zone portion of
LEADING or TRAILING character position. The hexadecimal value C
represents a positive sign, and the value D represents a negative sign.
The hexadecimal value F is considered as a positive sign if the
PICTURE character-string contains an S, and considered unsigned if
the PICTURE character-string does not contain an S.

8. If the optional SEPARATE CHARACTER phrase is present, then

a.

The operational sign is presumed to be the leading or, respectively,
trailing character position of the elementary numeric data item; this
character position is not a digit position.

The letter S in a PICTURE character-string is counted in determining
the size of the item (in terms of standard data format characters).

The operational signs for positive and negative are the standard data
format characters + and -, respectively.

9. Every numeric data description entry whose PICTURE contains the
character S is a signed numeric data description entry. If a SIGN clause
applies to such an entry and conversion is necessary for computation or
comparisons, conversion is automatic.

OCCURS Clause

Function

The OCCURS clause eliminates the need for separate entries for
repeated data items and supplies information required for the
application of subscripts or indexes.

Format1

OCCURS integer-2 TIMES

ASCENDING | KEY IS data-name-2 [,data-name-3] ...|...
DESCENDING

[INDEXED BY index-name-1 [,index-name-21 ...]

Format 2

OCCURS integer-1 TO integer-2 TIMES DEPENDING ON data-name-1

ASCENDING 1 KEY IS data-name-2 [,data-name-31 ...|...
DESCENDING

[INDEXED BY index-name-1 [,index-name-2] ...]

7004 4490-000

547




Data Division

Rules

1. The OCCURS clause is used in defining tables and other homogeneous sets
of repeated data items. The data-name, which is the subject of the data
description entry, must be either subscripted or indexed whenever it is
referred to in a statement other than SEARCH or USE FOR DEBUGGING.
Further, if the subject of this entry is the name of a group item, then all
data-names belonging to the group must be subscripted or indexed whenever
they are used as operands, except as the object of a REDEFINES clause. (See
2.6.2, "Subscripting;" 2.6.3, "Indexing;" 2.6.4, "Identifier.”)

2. The KEY IS phrase indicates that the repeated data is arranged in
ascending or descending order according to the values contained in’
data-name-2, data-name-3, etc. The ascending or descending order is
determined according to the rules for comparison of operands (see
"Comparison of Numeric Operands” and "Comparison of Nonnumeric
Operands” under 6.4.1.) The data-names are listed in their descending order
of significance.

3.  An INDEXED BY phrase is required if the subject of this entry, or an entry
subordinate to this entry, is to be referred to by indexing. The index-name
identified by this clause is not defined elsewhere since its allocation and
format are dependent on the hardware and, not being data, cannot be
associated with any data hierarchy.

4. The number of occurrences of the subject entry is defined as follows:

e Informat 1, the value of integer-2 represents the exact number of
occurrences.

e | In format 2, the current value of the data item referenced by data-name-1
represents the number of occurrences. This format specifies that the
subject of this entry has a variable number of occurrences. The value of
integer-2 represents the maximum number of occurrences, and the value
of integer-1 represents the minimum number of occurrences. This does
not imply that the length of the subject of the entry is variable, but

that the number of occurrences is variable.

The value of the data item referenced by data-name-1 must fall within the
range integer-1 through integer-2. Reducing the value of the data item
referenced by data-name-1 makes the content of data items, whose
occurrence numbers now exceed the value of the data item referenced by
data-name-1 unpredictable.

5. Except for the OCCURS clause itself, all data description clauses associated
with an item whose description includes an OCCURS clause apply to each
occurrence of the item described. (See rule 11 under "VALUE Clause" in this
subsection.)

548 7004 4490-000



Data Division

7004 4490-000

6. The OCCURS clause cannot be specified in a data description entry that

does one of the following:

e Hasa0l, 66, 77, or an 88 level-number

o  Describes an item whose size is variable. The size of an
item is variable if the data description of any subordinate
item contains format 2 of the OCCURS clause.

7. 'The length of a table element (i.e., the size of the item containing an
OCCUBRS clause) may not exceed 32,767 bytes. The maximum number of
occurrences of a table element (i.e., the value of integer-2) may not exceed
65,535.

Example 1

@2 A PIC X(2) OCCURS 65800 TIMES.
This entry is valid because the length of table element A is 2 bytes, and the
number of occurrences of A does not exceed 65,535.
Example 2

02 X OCCURS 2 TIMES.

@4 Y PIC X(100@) OCCURS 4@ TIMES.
These entries are incorrect because the length of table element X is 40,000
bytes, which exceeds the maximum length permitted for a table element.

8. Informat 1, the value of integer-2 must be greater than 0 and less than
65,536.

In format 2, the value of integer-1 may range from 0 through 65,534, and the
value of integer-2 must be greater than the value of integer-1 and less than
65,536.

9. The data description of data-name-1 must describe a positive integer.

10. Data-name-1, data-name-2, data-name-3, ..., may be qualified.

11. Data-name-2 must either be the name of the entry containing the OCCURS
clause or the name of an entry subordinate to the entry containing the
OCCURS clause.

12. Data-name-3, ..., must be the name of an entry subordinate to the group item
that is the subject of this entry.

13. Index-name-1, index-name-2, ..., must be unique words within the program.

549




Data Division

14. If data-name-2 is not the subject of this entry, then:

a. All the items identified by the data-names in the KEY IS phrase must
be within the group item which is the subject of this entry.

b. Items identified by the data-name in the KEY IS phrase must not
contain an OCCURS clause.

c¢. There must not be any entry that contains an OCCURS clause between
the items identified by the data-names in the KEY IS phrase and the
subject of this entry.

15. A data description entry that contains format 2 of the OCCURS clause may
only be followed, within that record description, by data description entries
subordinate to it.

16. When a group item with a subordinate entry that specifies format 2 of the
OCCURS clause is referenced, only that part of the table area that is
specified by the value of data-name-1 is used in the operation.

17. Informat 2, if the data item defined by data-name-1 appears in the same
record as the table it controls, it must appear before that table.

Example 1

01 EMPLOYEE-TABLE.
@2 DEPARTMENT, OCCURS 5 TIMES.
03 EMPLOYEE, OCCURS 50 TIMES, PICTURE X(20).

This example defines a table containing 50 entries for employees, grouped into
five departments. The picture for each entry is X(20). This gives a total of
5 x 50 = 250 entries.

Example 2

5-50

01 DATA-RECORD.

02 FIXED-PORTION.
23 MAIN-INFO PICTURE X(25).
@3 NR-OF-TRAILERS PICTURE S99 COMPUTATIONAL.

02 VARIABLE-PORTION OCCURS 1 TO 108 TIMES
DEPENDING ON NR-OF-TRAILERS.

03 TRAILER PICTURE X{15).
03 TRAILER-2 PICTURE X(5).

In this example, format 2 of the OCCURS clause is used to describe variable-
length records. The fixed portion of 27 bytes always appears in each record. The
presence of trailer items in a record is dependent on the content of the data item
NR-OF-TRAILERS. When NR-OF-TRAILERS contains a value of 0, the record
length is 27 bytes; when the value is 1, record length is 47 bytes; when the value
is 2, record length is 67, etc.

7004 4490-000




Data Division

Example 3

01 TABLE-A.
02 [ITEM-A PICTURE 99, OCCURS 5 TIMES
INDEXED BY INDX-1.
01 TABLE-B.
02 I1TEM-B PICTURE 99, OCCURS 5 TIMES:

In a program containing these descriptions, INDX-1 cannot be used to refer to an
element in TABLE-B.

SYNCHRONIZED Clause

Function

The SYNCHRONIZED clause specifies that an elementary item is to be
aligned on the proper boundary of the computer main storage for
efficiency in using the elementary item.

Format

SYNC
SYNCHRONIZED

Rules

1. The proper alignment boundary for the various types of elementary item
formats as specified in the USAGE clause is given in Table 5-10.

Table 5-10. Alignment Boundaries for Various Types of Elementary ltems

Item Alignment
Format Item Length Boundary
COMP S9 through S9(4) Half word
- - S9(5) through $9(18) Full word
COMP-4

[CEME 1 ] Full word

[CBME 2 ] Double word
INDEX

r—=—-1

CoMP-3 | Bytes
DISPLAY

7004 4450-000

551




Data Division

552

This clause may only appear with an elementary item.
SYNC is an abbreviation for SYNCHRONIZED.
The LEFT and RIGHT options are treated as comments.

Regardless of whether the SYNCHRONIZED clause is used, all 01-level
entries are aligned by the compiler on double-word boundaries.

Slack bytes (unused character positions) are inserted immediately preceding
the elementary item to be synchronized. Although the length of the
elementary item is not affected by the SYNCHRONIZED clause, the inserted
slack bytes are included in:

e  The size of any group items to which the elementary item belongs

e  The character positions redefined when this data item is the object of a
REDEFINES clause

Example

81 REC.
02 A.
03 M.
04 S PIC X.
@4 T PIC S9 COMP
03 N USAGE COMP-2.
02 B USAGE COMP-1.

If the SYNCHRONIZED clause is not specified, the elementary items appear
in the computer main storage as follows:

811 293 10011 14

If the SYNCHRONIZED clause is specified for item T, one slack byte is
inserted preceding item T to align T on a half-word boundary as follows:

RO rw

67112 34 11112 15

The inserted slack byte does not affect the size of the synchronized item T,
but is included in the length of the group item M.

7004 4490000



Data Division

7004 4490-000

If the SYNCHRONIZED clause is specified for elementary items T, N, and B,
slack bytes are inserted as follows:

AOPBruv
RorPrrwyv

01142 3js 718 15§16 19

T is a COMP item and is aligned on a half-word boundary by the insertion of
one slack byte. N is ajCOMP-2litem that requires alignment on a double-
word boundary that is provided by the insertion of four slack bytes, Bison a
double-word boundary and requires no slack bytes. The size of group item,
then, includes the five inserted slack bytes.

The algorithm used by the compiler to determine the insertion of slack bytes
is explained as follows:

a. Aseach item to be synchronized is encountered, the total number of
bytes occupied by all the elementary items up to but not including this
one is added to the total number of slack bytes already inserted.

b. This total divided by x, where:

X Item Length

2 COMP 1 to 4 digits
4 COMP 5 to 18 digits
4 [comp-1 ]

8 [comp-2 ]

c. If there is no remainder for the division, no slack bytes are necessary. If
there is a remainder, the number of slack bytes required is equal to x
minus the remainder.

For the example, the algorithm would be used as follows:

®  For the first synchronized item, T, the total number of bytes in the
record so faris 1; x for this COMP item is 2; the remainder of the
division is 1. Thus, x (2) minus 1 equals 1; therefore, 1 is the number of
slack bytes required.

* ForN, aECQME:Z_]item, the storage already occupied is 1 (for S) + 1 (the
first slack byte) + 2 (for T), a total of 4. The value of x to be used is 8,
and the remainder of the division is 4; therefore, x (8) minus 4 equals 4,
so four slack bytes were inserted in positions 4 through 7 to align N.

553




Data Division

¢ When B is encountered, the total storage already occupied is 16; when
this is divided by 4, the value of x for B, there is no remainder. No slack
bytes were required.

7. When the SYNCHRONIZED clause is specified in a data description entry
that also contains an OCCURS clause, or in a data description entry
subordinate to an entry that contains an OCCURS clause, then:

a. Each occurrence of the data item is SYNCHRONIZED.

b. Any slack bytes generated for other data items within that same table
are generated for each occurrence of those data items.

Example

01 A.
82 A1 OCCURS 3 TIMES.
@3 A1A PIC X.
03 A1B PIC S9 USAGE COMP SYNC.
03 A1C USAGE COMP-1 SYNC.
03 A1D PIC S9 USAGE COMP SYNC.

One occurrence would be synchronized as

S
AL A A
T1A 1 AlC 1
AjC B D
K

81112 34 718 910

If the second occurrence began immediately with byte 10, slack bytes in the
second occurrence would have to be as follows because A1C must be aligned
on a full-word boundary:

S S
AlL A L A
11A 1 A A1C 1
Al C B C D
K K

10 111 {12 13314 15116 19128 21]22

The group cannot have different lengths with each occurrence; therefore,
slack bytes are inserted at the end of each occurrence so that each occurrence
has the same length and the proper alignment of elementary items.

5-54 7004 4490-000




Data Division

The actual storage use for the example is:

S S S S
AjL] A A A L JA L A A A L A
1A} 1 11 1 A J1 A 1 1 1 A 1
AjiC C C (A |C c C A
K K K K

0]182 314 718 9110 11]12]13114 15]16 19]20 21}22 2324

RAROX>r-w

25

-

26 27

[ =Y

28 31

—_
AOrrrw

32 33§34 35

The slack bytes are inserted in positions 10 and 11, in positions 22 and 23,
and in positions 34 and 35. The algorithm used is as follows:

¢ The total number of bytes occupied by the group, including slack bytes,

is divided by the largest value of x necessary in the group.

e If there is no remainder, no slack bytes are inserted between groups.
Otherwise, the number of slack bytes necessary is equal to x minus the

remainder.

For the example given, the process is:

®  The total number of bytes occupied in one occurrence of the group is 10
bytes. This is divided by 4, the x value for A1C, ajCOMP-1litem.

¢  The remainder of the division is 2; x (4) minus 2 equals 2, so the number

of slack bytes necessary for each occurrence is 2.

JUSTIFIED Clause

Function

The JUSTIFIED clause specifies nonstandard positioning of data within

a receiving data item.

Format

JUSTIFIED] RIGHT
JUST

Rules

1. The JUSTIFIED clause is used to override standard positioning of data
within a receiving alphabetic or alphanumeric data item. Standard
positioning for this type of data is left-justified with space-fill on the right;
when this clause is specified, the data is right-justified and the unused

positions are space-filled.

2.  The JUSTIFIED clause can be specified only at the elementary item level.

7004 4490-000

5-65




Data Division

3. JUST is an abbreviation for JUSTIFIED.

4. The JUSTIFIED clause has no effect on the initialization of the VALUE
clause.

5. The JUSTIFIED clause cannot be specified for any data item described as
numeric or for which editing is specified.

When the sending data item is larger than the receiving data item described
with the JUSTIFIED clause, the leftmost characters are truncated. When
the receiving data item is larger than the sending data item, the data is
aligned at the rightmost character position in the data item with space-fill
for the leftmost character positions.

When the JUSTIFIED clause is omitted, the standard rules for aligning data
within an elementary item apply. (See 2.5.)

BLANK WHEN ZERO Clause

Function

The BLANK WHEN ZERO clause permits the blanking of an item
when its value is zero.

Format
BLANK WHEN ZERO

Rules

1. This clause can be specified only at the elementary item level, and can be
used only with a numeric or numeric-edited item. When used with a numeric
item, the category of the item is considered numeric edited.

2. The effect is not necessarily the same as zero suppression editing via the
PICTURE clause because the item is affected only when its numeric value is
0.

3.  When the BLANK WHEN ZERO clause is used, the item will contain only
spaces if the value of the item is zero.

4. The BLANK WHEN ZERO clause and the zero suppression symbol * may
not appear in the same entry.

5. The BLANK WHEN ZERO clause has no effect on the initialization of the
VALUE clause.

5-56 7004 4490-000




Data Division

VALUE Clause
Function

The VALUE clause defines the value of constants, the initial value of
working-storage items,[and the values associated with a condition-name.|

Format 1

VALUE 1S literal

Format 2

VALUE IS literal-1 THROUGH] Lliteral-2
VALUES ARE THRU

,literal-3 |[THROUGH] literal-4}| .
THRU

Rules

1. Format1 is used to define the initial value of a working-storage item.
Format 2 is used to specify a value or range of values associated with a
condition-name.

2. The words THRU and THROUGH are equivalent.

3. The VALUE clause cannot be stated for any items having variable size. (See
"OCCURS Clause" in this subsection.)

4. A signed numeric literal must have a signed numeric PICTURE
character-string associated with it.

5. All numeric literals in a VALUE clause of an item must have a value that is
within the range of values indicated by the PICTURE clause and must not
have a value that will require truncation of nonzero digits. Nonnumeric
literals in a VALUE clause of an item must not exceed the size indicated by
the PICTURE clause.

6. The VALUE clause must not conflict with other clauses in the data
description of the item or in the data description within the hierarchy of the
item. The following rules apply:

e If the category of the item is numeric, all literals in the VALUE clause
must be numeric. If the literal defines the value of a working-storage
item, the literal is aligned in the data item according to the standard
alignment rules.

T gﬁel_ﬂ:;aﬁsﬁo;ti;ag;;ias,_t—l;é—(i;t—ahi—!:e; ;ust be an ;;ternal—{
| floating-point item. 1

7004 4490-000 5-57




Data Division

558

If the category of the item is alphabetic, alphanumeric, alphanumeric
edited or numeric edited, all literals in the VALUE clause must be
nonnumeric literals. The literal is aligned in the data item as if the data
item had been described as alphanumeric. (See the standard alignment
rules in 2.5.) Editing characters in the PICTURE clause are included in
determining the size of the data item (see "PICTURE Clause" in this
subsection), but they have no effect on its initialization. Therefore, the
VALUE for an edited item must be specified in an edited form.

Initialization takes place independently of any BLANK WHEN ZERO
or JUSTIFIED clause that may be specified.

A figurative constant may be substituted in both format 1 and format 2
wherever a literal is specified. N

In a condition-name entry, the VALUE clause is required. The VALUE
clause and the condition-name itself are the only two clauses permitted in
the entry. The characteristics of a condition-name are implicitly those of its
conditional variable.

Format 2 can be used only in connection with condition-names. (See 2.6.5,
"Condition-Name.") Wherever the THRU phrase is used, literal-1 must be
less than literal-2, literal-3 less than literal-4, ete.

10.

Rules governing the use of the VALUE clause differ with the respective
sections of the Data Division:

In Level 1, the VALUE clause cannot be used in the File Section.lln the
File Section, the VALUE clause may be used only in condition-name

entries. |

In the Working-Storage Section and the Communication Section,@

| VALUE clause must be used in condition-name entries./The VALUE
clause may also be used to specify the initial value of any other data
item, in which case the clause causes the item to assume the specified
value at the start of the object program. If the VALUE clause is not used
in an item description, the initial value is undefined.

In Level 1, the VALUE clause cannot be used in the Linkage Section. In
the Linkage Section,[the VALUE clause may be used only in |
| condition-name entries. |

11. The VALUE must not be stated in a data description entry that contains an
OCCURS clause or is subordinate to an entry containing an OCCURS clause.

[ This rule does not apply to condition-name entries.|[(See "OCCURS Clause"

in this subsection.)

7004 4490000




Data Division

12. The VALUE clause must not be stated in a data description entry that
contains a REDEFINES clause, or is subordinate to an entry containing a
REDEFINES clause.lg‘his rule does not apply to condition-name entries.]

13. If the VALUE clause is used in an entry at the group level, the literal must
be a figurative constant or a nonnumeric literal, and the group area is
initialized without consideration for the individual elementary or group
items contained within this group. The VALUE clause cannot be stated at
the subordinate levels within this group.

14. The VALUE clause must not be written for a group containing items with
descriptions including JUSTIFIED, SYNCHRONIZED, USAGE INDEX, or
any form of COMPUTATIONAL.

[—1—5.~ The VALUE clause must not be specified f or external f loating-point items;1

Example 1

02 STATE-RATE PICTURE 9.
88 TEXAS VALUE 1.
88 CALIFORNIA VALUE 2.
88 NEW YORK VALUE 5.
88 PENNSYLVANIA VALUE 3.

STATE-RATE is a conditional variable; TEXAS, CALIFORNIA, NEW YORK, and
PENNSYLVANIA are condition-names. If the statement IF PENNSYLVANIA
GO TO NEXT-TEST were to appear in the Procedure Division, the value of the
conditional variable STATE-RATE would be compared to the value 3; this
statement would be equivalent to the statement IF STATE-RATE IS EQUAL

TO 3 GO TO NEXT-TEST.

Example 2

7004 4490-000

02 AGE PICTURE 99.
88 TWENTIES VALUE 2@ THRU 29.
88 THIRTIES VALUE 3@ THRU 39.

If the statement IF TWENTIES ... were to appear in the Procedure Division, the

value of the conditional variable AGE would be tested for not less than 20 and not
greater than 29.

559




Data Division

RENAMES Clause
Function

The RENAMES clause permits alternative, possibly overlapping,
groupings of elementary items.

Format

66 data-name-1;RENAMES data-name-2 {{THROUGH} data-name-:ﬂ .
THRU

Note: Level-number 66, data-name-1, and the semicolon, although not part of the
RENAMES clause, are shown in the format to improve clarity.

Rules

1. All RENAMES entries referring to data items within a given logical record
must immediately follow the last data description entry of the associated
record description entry.

2. Data-name-2 and data-name-3 must be names of elementary items or groups
of elementary items in the same logical record, and cannot be the same data-
name. A 66-level entry cannot rename another 66-level entry nor can it
rename a 77-, 88-, or 01-level entry.

3. Data-name-1 cannot be used as a qualifier, and can only be qualified by the
names of the associated level 01, FD, or SD entries. Neither data-name-2 nor
data-name-3 may have an OCCURS clause in its data description entry nor
be subordinate to an item that has an OCCURS clause in its data description
entry. (See "OCCURS Clause" in this subsection.)

4. The beginning of the area described by data-name-3 must not be to the left of
the beginning of the area described by data-name-2. The end of the area
described by data-name-3 must be to the right of the end of the area
described by data-name-2. Data-name-3, therefore, cannot be subordinate to
data-name-2.

5. Data-name-2 and data-name-3 may be qualified.

6. The words THRU and THROUGH are equivalent.

7.  None of the items within the range data-name-2 through data-name-3, if
specified, can be an item whose size is variable as defined in the OCCURS

clause.

8. One or more RENAMES entries can be written for a logical record.

560 7004 4490000




Data Division

9. When data-name-3 is specified, data-name-1 is a group item which includes
all elementary items starting with data-name-2 (if data-name-2 is an
elementary item) or the first elementary item in data-name-2 (if data-name-
2 is a group item), and concluding with data-name-3 (if data-name-3 is an
elementary item) or the last elementary item in data-name-3 (if data-name-3
is a group item).

10. When data-name-3 is not specified, data-name-2 can be either a group or an
elementary item. When data-name-2 is a group item, data-name-1 is treated
as a group item, and when data-name-2 is an elementary item, data-name-1
is treated as an elementary item.

Example

7004 4490-000

81 INPUT-RECORD.
02 STATE-TAX-NJ.

@3 PER-CENT-ST PIC 99.

@3 PERCENT-CNTY PIC 99.

03 PERCENT-LOC PIC 99.
02 STATE-TAX-PA.

03 PER-CENT-ST PIC 99.

03 PER-CENT-CNTY  PIC 99.
@3 PER-CENT-LOC PIC 99.
02 STATE-TAX-DEL.
@3 PER-CENT-ST PIC 99.
@3 PER-CENT-CNTY  PIC 99.
03 PER-CENT-LOC PIC 99.
66 TAX-NJ RENAMES STATE-TAX-NJ.
66 TAX-B1-STATES RENAMES STATE-TAX-NJ THRU STATE-TAX-PA.
66 TAX-DEL-VAL RENAMES STATE-TAX-NJ THRU STATE-TAX-DEL.

A reference to TAX-NdJ accesses the group item STATE-TAX-NJ, a reference to
TAX-B1-STATES accesses the group items STATE-TAX-NJ and STATE-TAX-PA
and a reference to TAX-DEL-VAL accesses the items STATE-TAX-NJ,
STATE-TAX-PA, and STATE-TAX-DEL.




Data Division

5.4. Working-Storage Section

5-62

The Working-Storage Section describes records and noncontiguous data items that are
not part of external data files but are developed and processed internally. It also
describes data items whose values are assigned in the source program and do not
change during the execution of the object program. Sample Working-Storage Section
entries are provided in Figure 5-4.

Format

WORKING-STORAGE SECTION:

77-level -description-entry
record-description-entry

Rules

1. The Working-Storage Section is composed of the section header followed by
data description entries for noncontiguous data items or record description

entries.

2. Each Working-Storage Section record-name and noncontiguous item-name
must be unique since it cannot be qualified. Subordinate data-names need
not be unique if they can be made unique by qualification.

810010
010020
010030
010040
010050
010060
010070
010080
010090
010100
010110
010120
010130
010140
010150

WORKING-STORAGE SECTION.
77 I, COMPUTATIONAL, PICTURE S9(8).
77 J, COMPUTATIONAL, PICTURE S9(8).
77 ADDED-TIME, COMPUTATIONAL-3, PICTURE S9(5)V9(4).
81 DATA-CONVERSION-AREA.
02 BINARY-WORK-AREA.
03 TWO-BYTES.
04 FILLER PICTURE X VALUE LOW-VALUE.
@4 ONE-BYTE-BINARY PICTURE X.
93 TWO-BYTE-BINARY REDEFINES TWO-BYTES,
USAGE IS COMPUTATIONAL, PICTURE S9(4).
92 CPU-TIME-WORK-AREA.
@3 CPU-TIME-IN, COMPUTATIONAL-3, PICTURE S9(11).
@3 CPU-TIME OUT REDEFINES CPU-TIME-IN,
USAGE IS COMPUTATIONAL-3, PICTURE S9(7)V9(4).

Figure 5-4. Sample Working-Storage Section Entries

7004 4490-000




Data Division

5.4.1. 77-Level Description Entry
Function
Items and constants in working-storage that bear no hierarchical relationship to
one another need not be grouped into records, provided they do not need to be
further subdivided. Instead, they are classified and defined as noncontiguous
elementary items. Each of these items is defined in a separate data description
entry that begins with the special level-number, 77.

Format

77 data-name;
(data description clauses).

Rules
1. The following are required in each data description entry:
a. Level-number 77
b. Data-name

¢. PICTURE clause or USAGE IS INDEX or USAGE{COMP-1|or

{COMP-2|clause

2. Other data description clauses are optional and can be used to complete the
description of the item, if necessary.

3. The initial value of any item in the Working-Storage Section except an index
data item is specified by using the VALUE clause with the data item. The

initial value of any index data item is unpredictable.

4. Each independent entry must have a unique data-name.

5.4.2. Record Description Entry
Function
Data elements and constants in working-storage that bear a definite
hierarchic relationship to one another must be grouped into records
according to the rules for formation of record descriptions.

Format

81 record-name.
(subordinate data items and clauses)

7004 4490-000 563




Data Division

Rules

Each record-name must be unique because it cannot be qualified by a
file-name or section-name. Subordinate data-names need not be unique if
they can be qualified.

All clauses that are used in record descriptions in the File Section (5.3) can
be used in record descriptions in the Working-Storage Section.

The length of a 01-level record may not exceed 524,287 bytes.

5.5. Linkage Section

564

The Linkage Section describes data available through a calling program but is to be
referred to in both the calling and called program.

Format

LINKAGE SECTION.

Rules

77-level-description-entry

record-description-entry

The Linkage Section is meaningful if and only if the object program is to
function under the control of a CALL statement containing a USING phrase
in the calling program.

The Linkage Section consists of a section header followed by data description
entries for noncontiguous data items and/or record description entries. (See
Figure 5-5.)

815010 LINKAGE SECTION.

015020 77 TYPE-OF-INPUT PICTURE X.

015030 88 FIRST-INPUT VALUE "'Fe.
015040 88 CONTINUATION VALUE."CY.
8150568 88 LAST-INPUT VALUE.®L"™.
01586@ 77 ERROR-INDICATOR PICTURE X.
015076 @1 PAST-RECORD.

815080 02 SALES-HISTORY

615090 @3 MONTH, OCCURS 12 TIMES, PICTURE S9(7)V99,
215100 USAGE IS COMPUTATIONAL-3.

815110 92 PRODUCT PICTURE X(3).
815120 02 THREE-MONTH-AVERAGE PICTURE S9(7)V99,
815130 USAGE IS COMPUTATIONAL-3.

015140 02 TWELVE-MONTH-AVERAGE PICTURE S9(7)V99,
0151506 USAGE 1S COMPUTATIONAL-3.

Figure 5-5. Sample Linkage Section Entries

7004 4490-000



Data Division

3. No space is allocated in the program for data items referenced by
data-names in the Linkage Section of that program. Procedure Division
references to these data items are resolved at object time by equating the
reference in the called program to the location used in the calling program.
In the case of index-names, no such correspondence is established. Index-
names in the called and calling program always refer to separate indexes.

4. Data items defined in the Linkage Section of the called program may be
referenced within the Procedure Division of the called program only if they
are specified as operands of the USING phrase of the Procedure Division
header or are subordinate to such operands, and the object program is under
the control of a CALL statement that specifies a USING phrase.

5. Each Linkage Section record-name and noncontiguous item-name must be
unique within the called program since it cannot be qualified.

6. Of those items defined in the Linkage Section only data-name-1,
data-name-2, ..., in the USING phrase of the Procedure Division header, data
items subordinate to these data-names and condition-names, or index-names
associated with such data-names or subordinate data items may be
referenced in the Procedure Division.

7. The VALUE clause must not be specified in the Linkage Section except in
condition-name entries (level 88).

5.5.1. 77-Level Description Entry
Function
Items in the Linkage Section that bear no hierarchic relationship to one another
need not be grouped into records and are classified and defined as noncontiguous
elementary items. Each of these data items is defined in a separate data
description entry that begins with the special level-number 77,

Format

77 data-name;
(data description clauses).

Rules
1. The following are required in each data description entry:
a. Level-number 77
b. Data-name

¢. PICTURE clause or USAGE IS INDEX clause

7004 4490-000 565




Data Division

2. Other data description clauses are optional and can be used to complete the

description of the item if necessary.

5.5.2. Record Description Entry

Function

Data elements in the Linkage Section that bear a definite hierarchic

relationship to one another must be grouped into records according to
the rules for formation of record descriptions.

Format

81 record-name.
(subordinate data items and clauses)

Rules

1. All clauses that are used in record descriptions in the File Section (5.3) can
be used in record descriptions in the Linkage Section.

2. Record description entries in the Linkage Section provide names and

descriptions, but storage within the program is not reserved because the
data exists elsewhere.

3.  The length of a 01-level record may not exceed 524,287 bytes.

5-66

7004 4490-000

PN




Data Division

5.6. Communication Section

Function

The communication description specifies the interface area between the
message control system (MCS) and a COBOL program.

5.6.1. Input Communication Description

Format

CD cd-name:

Rules

FOR|[INITIALI}INPUT

L

[data-name-1, data-name-2, ...

[;SYMBOLIC QUEUE IS data-name-11]

[;SYMBOLIC SUB-QUEUE-1 IS data-name-2]
[;SYMBOLIC SUB-QUEUE-2 IS data-name-3]
[;SYMBOLIC SUB-QUEUE-3 IS data-name-4]
[ ;MESSAGE DATE IS date-name-5]
[;MESSAGE TIME IS date-name-61]
[;SYMBOLIC SOURCE IS date-name-71]
[;TEXT LENGTH IS data-name-8]

[;END KEY IS data-name-9]

[;STATUS KEY IS data-name-101]
[;MESSAGE COUNT IS data-name-11]

A CD must appear only in the Communication Section.

, data-name-111

Within a single program, the INITIAL clause may be specified in only one
CD. The INITIAL clause must not be used in a program that specifies the
USING phrase of the Procedure Division header. (See 6.1.3, "Procedure
Division Structure.”)

w

7004 44590-000

Except for the INITIAL clause,|the optional clauses may be written in any

order.

If neither option in the format is specified, an 01-level data description entry
must follow the CD description entry. Either option may be followed by an
01-level data description entry.

For each input CD, a record area of 87 contiguous standard data format
characters is allocated. This record area is defined to the MCS as follows:

a. The SYMBOLIC QUEUE clause defines data-name-1 as the name of an
elementary alphanumeric data item of 12 characters occupying
positions 1 through 12 in the record.

567




Data Division

568

The SYMBOLIC SUB-QUEUE-1 clause defines data-name-2 as the
name of an elementary alphanumeric data item of 12 characters
occupying positions 13 through 24 in the record.

The SYMBOLIC SUB-QUEUE-2 clause defines data-name-3 as the
name of an elementary alphanumeric data item of 12 characters
occupying positions 25 through 36 in the record.

The SYMBOLIC SUB-QUEUE-3 clause defines data-name-4 as the
name of an elementary alphanumeric data item of 12 characters
occupying positions 37 through 48 in the record.

The MESSAGE DATE clause defines data-name-5 as the name of a
data item whose implicit description is that of an integer of six digits
without an operational sign occupying character positions 49 through 54
in the record.

The MESSAGE TIME clause defines data-name-6 as the name of a data
item whose implicit description is that of an integer of eight digits
without an operational sign occupying character positions 55 through 62
in the record.

The SYMBOLIC SOURCE clause defines data-name-7 as the name of
an elementary alphanumeric data item of 12 characters occupying
positions 63 through 74 in the record.

The TEXT LENGTH clause defines data-name-8 as the name of an
elementary data item whose implicit description is that of an integer of

four digits without an operational sign occupying character positions 75
through 78 in the record.

The END KEY clause defines data-name-9 as the name of an
elementary alphanumeric data item of one character occupying position
79 in the record.

The STATUS KEY clause defines data-name-10 as the name of an
elementary alphanumeric data item of two characters occupying
positions 80 and 81 in the record.

The MESSAGE COUNT clause defines data-name-11 as the name of an
elementary data item whose implicit description is that of an integer of
six digits without an operational sign occupying character positions 82
through 87 in the record.

The listed clauses (see bulleted items in rule 5) may be replaced by a series
of data-names (data-name-1, data-name-2, ..., data-name-11) that
correspond to the order of data-names defined by these clauses.

7004 4490-000



Data Division

7004 4490-000

10.

Note: Specification of a series of data-names on a single source line results
in an incorrect cross-reference listing. The preferred method of writing
a series of data-names is to specify each data-name on a separate
source line.

Use of either option results in a record whose implicit description is
equivalent to the following:

Implicit Description Comment

21 data-name-0

92 data-name-
02 data-name-
82 data-name-
02 data-name-
02 data-name-
02 data-name-
92 data-name-

PICTURE X(12). SYMBOLIC QUEUE
PICTURE X{12). SYMBOLIC SUB-QUEUE-1
PICTURE X(12). SYMBOLIC SUB-QUEUE-2
PICTURE X(12). SYMBOLIC SUB-QUEUE-3
PICTURE 9(@6). MESSAGE DATE

PICTURE 9(08). MESSAGE TIME

PICTURE X(12). SYMBOLIC SOURCE

02 data-name- PICTURE 9(04). TEXT LENGTH

92 data-name- PICTURE X. END KEY

02 data-name-1@ PICTURE XX. STATUS KEY

02 data-name-11 PICTURE 9(06).  MESSAGE COUNT

OO0 ~NONT W -

Note: The comments are for clarification and are not part of the
description.

Record description entries following an input CD implicitly redefine this
record and must describe a record of exactly 87 characters. Multiple
redefinitions of this record are permitted; but only the first redefinition may
contain VALUE clauses. However, the MCS always references the record
according to the data descriptions defined in rule 5.

Data-name-1, data-name-2, ..., data-name-11 must be unique within the CD.
Within this series, any data-name may be replaced by the reserved word
FILLER.

The input CD information constitutes the communication between the MCS
and the program as information about the message being handled. This
information does not come from the terminal as part of the message.

The data items referenced by data-name-1, data-name-2, data-name-3, and
data-name-4 (SYMBOLIC QUEUE, SYMBOLIC SUB-QUEUE-1,
SYMBOLIC SUB-QUEUE-2, and SYMBOLIC SUB-QUEUE-3) contain
symbolic names designating queues and subqueues. All symbeolic names
must follow the rules for the formation of system names and must have been
defined previously to the MCS.

The content of the data items referenced by data-name-2, data-name-3, and
data-name-4, when not being used, must contain spaces.

5-69




Data Division

11. A RECEIVE statement causes the serial return of the next message
[portion of a message|from the queue as specified by the entries in the CD.

When a RECEIVE statement is executed, the input CD area must contain, in
the content of data-name-1, the name of a symbolic queue. The data items
specified by data-name-2, data-name-3, and data-name-4 may contain
symbolic subqueue names or spaces. When a given level of the queue
structure is specified, all higher levels must also be specified. If less than all
the levels of the queue hierarchy are specified, the MCS determines the next
message|or portion of a message|to be accessed within the queue or subqueue
specified in the input CD.

After the execution of a RECEIVE statement, the content of the data items
referenced by data-name-1 through data-name-4 contains the symbolic
names of all the levels of the queue structure.

12. Whenever a program is scheduled by the MCS to process a message, the
symbolic names of the queue structure that demanded this activity are
placed in the data items referenced by data-name-1 through data-name-4 of
the CD associated with the INITIAL clause, as applicable. In all other cases,
the contents of the data items referenced by data-name-1 through data-

iname-4 of the CD associated with the INITIAL clause are initialized to
spaces.

The symbolic names are inserted or the initialization to spaces is completed
prior to the execution of the first Procedure Division statement.

The execution of a subsequent RECEIVE statement naming the same
contents of the data items referenced by data-name-1 through data-name-4
will return the actual message that caused the program to be scheduled.
Only at that time will the remainder of the CD be updated.

13. The content of data-name-5 (MESSAGE DATE) has the format yymmdd
(year, month, day). This represents the date on which the MCS recognizes
that the message is complete.

The content of the data item referenced by data-name-5 is only updated by
the MCS as part of the execution of a RECEIVE statement.

14. The content of data-name-6 (MESSAGE TIME) has the format hhmmsstt
(hours, minutes, seconds, hundredths of a second) and its content represents
the time at which the MCS recognizes that the message is complete. The
content of the data item referenced by data-name-6 is only updated by the
MCS as part of the execution of the RECEIVE statement.

570 7004 4490-000



Data Division

7004 4490-000

15.

16.

17.

18.

19.

During the execution of a RECEIVE statement, the MCS provides, in the
data item referenced by data-name-7 (SYMBOLIC SOURCE), the symbolic
name of the communications terminal that is the source of the message
being transferred. However, if the symbolic name of the communications
terminal is not known to the MCS, the content of the data item referenced by
data-name-7 will contain spaces.

The MCS indicates, via the content of the data item referenced by data-
name-8 (TEXT LENGTH), the number of character positions filled as a
result of the execution of the RECEIVE statement.
The content of the data item referenced by data-name-9 (END KEY) is set
only by the MCS as part of the execution of a RECEIVE statement according
to the following rules:
¢  When the RECEIVE MESSAGE phrase is specified:

~ If an end of group has been detected, the content is set to 3.

— If an end of message has been detected, the content is set to 2.

—  If less than a message is transferred, the content is set to 0.
¢  When the RECEIVE SEGMENT phrase is specified:
- If an end of group has been detected, the content is set to 3.
— If an end of message has been detected, the content is set to 2.
—  If an end of segment has been detected, the content is set to 1.

- If less than a message segment is transferred, the content is set
to 0.

When more than one of the above conditions is satisfied simultaneously, the
rule first satisfied in the order listed determines the content of the data item
referenced by data-name-9.

The content of the data item referenced by data-name-10 (STATUS KEY)
indicates the status condition of the previously executed RECEIVE,
ACCEPT MESSAGE COUNT, ENABLE INPUT, or DISABLE INPUT
statements. The actual association between the content of the data item

referenced by data-name-10 and the status condition itself is defined in
Table 5-11.

The content of the data item referenced by data-name-11 (MESSAGE
COUNT) indicates the number of messages that exist in a queue,
sub-queue-1, ..., sub-queue-3. The MCS updates the content of the data item
referenced by data-name-11 only as part of the execution of an ACCEPT
statement with the COUNT phrase.

571




Data Division

Table 5-11. Communication Status Key Condition

- -
= =
w =z a ' =z S - 3
2 |=E|l=2|5|58|52| 2|8
] Sw|(o=| & |EL|gS) =
7] Ar-loas| F 1 Z-lzs| D >
w = Zzo| D | Zx|] O w
= ZelZw| O w | T ~
E e wdlw | wla3UE] Yy DESCRIPTION
= or|lac|lac| Jlaglaes| 2|2
L O lW=Z|m+«© o+ m <L+ <L -
[ Zzl 0S|l -~ | < |-Gl o] <
W | wlodlzzlzz| 2 | =223 2
o L2 =G ¥ O IR VR RN I T QRN TN ] QAT o w
X | X | X X X X | X X X |08 | No error detected. Action completed.
X 18 | One or more destinations disabled. Action completed.
(See Table 5-12.)
X X X | X X X {15 | One or more queues or destinations already
disabled/enabled. (See Tabie 5-12.)
X X X |20 | One or more destinations unknown. Action completed
for known destinations. (See Table 5-12.)
X X X X 208 | One or more gueues or subqueues unknown. No action taken.
X X 28 | Symbolic source unknown. No action taken.
X 2A | One or more destinations in destination table were not in
the table when the first portion of the message was sent.
(See Table 5-12.)
X X X |30 | Destination count invalid. No action taken.
X X X 1 X X X |40 | Password invalid. No action taken.
X 50 | Text length exceeds size of identifier-1. No action
taken.
X 60 | Partial segment with zero text length or no identi-
fier-1 specified. No action taken.
X 65 | Output queue capacity exceeded. No action taken.
X X X | X X |80 | A combination of at least two status key conditions
1@, 15, and 2@ occurred.

91 ICAM NATTACH error. This error occurs during network ini-
tialization. The procedure division code of the program
doesn't execute. Status code 91 appears only in a CE44
error message.

X 92 | ICAM QDEPTH error. No action taken.
X X X X 93 | ICAM TRMREP error. No action taken.
X X |94 | ICAM QHOLD/QRELSE error. No action taken.

572

continued

7004 4490-000

AT,



Data Division

Table 5-11. Communication Status Key Condition (cont.)

—~ ~
- -t
3| 4 =
R S 0 I =1 Nl = -
< -l | -2 o 55 5% :da_ 8
v D D= A AR e | b
w o | O = izZ2-lzs| 2 >
i = =z e T Ry | O L
= — 4 e i o 4 il jvi
S — 3 - w S| | w
u O f w | 30| - w
o Ol Joci L) JlmEime| M o
O | WZ | moewm om <L | <L 4 < [
D& 68|25(33| 225|252 | =
x|l o|lac|Gd|E3| T |23 |=23|3 |G DESCRIPTION
X 95 | ICAM GETCP error. No action taken.
X 96 ICAM PUTCP error. No action taken.

Unrecoverable ICAM error. No action taken.

Process file undefined. No action taken.

9C

Insufficient DTFs in CMCS to handle all output CDs. No
action taken.

Legend: X = Possible code for statement
Note: Status codes 93, 94, 99, and 9A may also be reported as part of a CE44 error message.

5.6.2. Output Communication Description

Format

CD cd-name:@, FOR OUTPUT

[;DESTINATION COUNT IS data-name-1]

[;TEXT LENGTH IS data-name-2]

[;STATUS KEY IS data-name-3]

[;DESTINATION TABLE OCCURS integer-2 TIMES

[;INDEXED BY index-name-1 [,index-name-21...1]
[;ERROR KEY IS data-name-4]
[;SYMBOLIC DESTINATION IS data-name-5].

Rules

7004 4490-000

1. A CD must appear only in the Communication Section.

2.  If none of the optional clauses of the CD is specified, an 01-level data
description entry must follow the CD description entry.

3. For each output CD, a record area of contiguous standard data format
characters is allocated according to the following formula:

10 + (13 * integer-2).

573




Data Division

a. The DESTINATION COUNT clause defines data-name-1 as the name
of a data item whose implicit description is that of an integer without an
operational sign occupying character positions 1 through 4 in the record.

b. The TEXT LENGTH clause defines data-name-2 as the name of an
elementary data item whose implicit description is that of an integer of
four digits without an operational sign occupying character positions 5
through 8 in the record.

¢. The STATUS KEY clause defines data-name-3 to be an elementary
alphanumeric data item of two characters occupying positions 9 and 10
in the record.

d. Character positions 11 through 23 and every set of 13 characters
thereafter will form table items of the following description:

1) The ERROR KEY clause defines data-name-4 as the name of an
elementary alphanumeric data item of one character.

2) The SYMBOLIC DESTINATION clause defines data-name-5 as
the name of an elementary alphanumeric data item of 12
characters.

Use of these clauses results in a record whose implicit description is
equivalent to the following:

Implicit Description Comment

@1 data-name-0.

92 data-name-1 PICTURE 9(04). DESTINATION COUNT
02 data-name-2 PICTURE 9(04). TEXT LENGTH
02 data-name-3 PICTURE XX. STATUS KEY
02 data-name OCCURS integer-2 TIMES. DESTINATION TABLE
03 data-name-4 PICTURE X. ERROR KEY
03 data-name-5 PICTURE X(12). SYMBOLIC DESTINATION

Note: The comments are for clarification and are not part of the
description.

4. Record descriptions following an output CD implicitly redefine this record.
Multiple redefinitions of this record are permitted; however, only the first
redefinition may contain VALUE clauses. However, the MCS will always
reference the record according to the data descriptions defined in rule 3.

5. Data-name-1, data-name-2, ..., data-name-5 must be unique within a CD.

6. If the DESTINATION TABLE OCCURS clause is not specified, one ERROR
KEY and one SYMBOLIC DESTINATION area are assumed. In this case,

neither subscripting nor indexing is permitted when referencing these data
items.

574 7004 4490000



Data Division

7004 4490-000

10.

11.

12.

13.

If the DESTINATION TABLE OCCURS clause is specified, data-name-4
(ERROR KEY) and data-name-5 (SYMBOLIC DESTINATION) may be
referenced only by subscripting or indexing.

In Level 1, the value of the data item referenced by data-name-1
(DESTINATION COUNT) and integer-2 must be 1.

In Level 2, the value of the data item referenced by data-name-1 and
integer-2 may not exceed 9,999.

Output CD information is not sent to the terminal, but constitutes the
communication between the program and the MCS as information about the
message being handled.

During the execution of a SEND, ENABLE OUTPUT, or DISABLE
OUTPUT statement, the content of the data item referenced by data-name-1
(DESTINATION COUNT) will indicate to the MCS the number of symbolic
destinations that are to be used from the area referenced by data-name-5.

The MCS finds the first symbolic destination in the first occurrence of the
area referenced by data-name-5, the second symbolic destination in the
second occurrence of the area referenced by data-name-5, ..., up to and
including the occurrence of the area referenced by data-name-5 indicated by
the content of data-name-1.

If during the execution of a SEND, ENABLE OUTPUT, or DISABLE
OUTPUT statement the value of the data item referenced by data-name-1 is
outside the range of 1[through integer-2,|an error condition is indicated and
the execution of the SEND, ENABLE OUTPUT, or DISABLE OUTPUT
statement is terminated.

It is the responsibility of the user to ensure that the value of the data item
referenced by data-name-1 (DESTINATION COUNT) is valid at the time of
execution of the SEND, ENABLE OUTPUT, or DISABLE OUTPUT
statement.

As part of the execution of a SEND statement, the MCS interprets the
content of the data item referenced by data-name-2 (TEXT LENGTH) to be
the user’s indication of the number of leftmost character positions of the data
item referenced by the associated SEND identifier from which data is to be
transferred. (See 6.6.31, "SEND Statement".)

Each occurrence of the data item referenced by data-name-5 contains the
name of a symbolic destination previously known to the MCS. These
symbolic destination names must follow the rules for the formation of
system-names.

575




Data Division

14.

15.

The content of the data item referenced by data-name-3 (STATUS KEY)
indicates the status condition of the previously executed SEND, ENABLE
OUTPUT, or DISABLE OUTPUT statement. The actual association between
the content of the data item referenced by data-name-3 and the status
condition itself is defined in Table 5-11.

If, during the execution of a SEND, an ENABLE OUTPUT, or a DISABLE
OUTPUT statement, the MCS determines that any specified destination is
unknown, the content of the data item referenced by data-name-3 and all
occurrences of the data items referenced by data-name-4 (ERROR KEY) are
updated. The actual association between the content of the data item
referenced by data-name-3 and the status condition itself is defined in
Table 5-12.

Table 5-12. Error Key Codes

SEND
ENABLE OUTPUT

DISABLE QUTPUT
ERROR KEY Code

Description

>
>
>
(=]

No error

>
>
>
-

Symbolic destination unknown

>
n

Symbol ic destination disabled

X | X | 5| Symbolic destination already enabled/disabled

X A | Entries in destination table changed before message
completion. SEND performed on original destinations

Example

Figure 5-6 provides a sample Communication Section, including;:

576

An input communication description with certain optional clauses (lines
050100 through 050800), followed by an optional 01-level record description
(lines 050900 through 051600).

An input communication description without optional clauses (line 051700),
followed by a required 01-level record description (lines 051800 through
052600).

An output communication description without optional clauses (line 052700),
followed by a required 01-level record description (lines 652800 through
053400).

7004 4490-000

T



Data Division

Seq.
No.

A
8

B
12

Text

050000 COMMUNICATION SECTION.
CD COM-A-IN FOR INPUT
SYMBOLIC QUEUE IS QUEUE-A;
MESSAGE DATE IS MSG-DATE-A;
MESSAGE TIME IS MSG-TIME-A;
SYMBOLIC SOQURCE IS SYM-SRC-A;
TEXT LENGTH IS TXT-LGTH-A;
STATUS KEY [S STAT-KEY-A;
MESSAGE COUNT IS QUEUE-CNT-A.
COM-A-REC. .
FILLER PIC X(78).
END-KEY-A  PIC X.

050100
050200
250300
050400
050500
050600
050700
050800
050900
051000
8511060
851200
851300
651400
851500
851608
851700
851800
851900
252000
852100
852200
852300
852400
852500
052600
652760
852800
852900
953002
853100
053200
053300
053400

01

cb
21

co
21

02
02

82

82

88 PART-SEG
88 END-SEG
88 END-MSG
88 END-TRANS

VALUE @,
VALUE 1%,
VALUE m2n,
VALUE "3%,

FILLER PIC X(8).
COM-B-IN FOR INPUT.
COM-B-REC.

QUEUE-B PIC
SUB-QUEUE-B PIC
FILLER PIC
SYM-SRC-B PIC
TXT-LGTH-B  PIC
END-KEY-B PIC
STAT-KEY-B  PIC
QUEUE-CNT-B PIC

COM-QUT FOR QUTPUT.
COM-0OUT-REC.

DEST-CNT PIC
TXT-LGTH-0UT PIC
STAT-KEY-OUT PIC
DEST-TBL OCCURS
04 ERR-KEY PIC
04  SYM-DEST PIC

X(12).

X(12>.

X(38).

X(12)

94 .

X.

XX.

9¢6). IC 9(6).

94y .
9(4).
XX.

18 TIMES.
X.
X¢12).

Figure 5-6. Sample Communication Section Entries

7004 4490000

577







Section 6
Procedure Division

6.1. General Information

The Procedure Division of a COBOL program contains the procedures needed to solve
a data processing problem. These procedures are written in COBOL statements that
may be combined to form sentences. Groups of sentences may form paragraphs, and
paragraphs may be grouped to form sections.

The Procedure Division is required for every COBOL source program. It begins with
the division header PROCEDURE DIVISION followed, optionally, by declaratives,
which are followed by nondeclarative procedures.

6.1.1. Declaratives

Declaratives specify those conditions that normally cannot be tested by the
programmer and the associated procedures to be executed when the specified
conditions occur.

Declaratives consist of one or more sections grouped at the beginning of the Procedure
Division. The declarative sections are preceded by the keyword DECLARATIVES and
followed by the keywords END DECLARATIVES. A declarative section consists of a
section header followed by a USE compiler-directing sentence followed by a set of zero,
one, or more associated paragraphs (see 6.1.3).

6.1.2. Procedures

A procedure is composed of a paragraph or group of successive paragraphs, or a
section or group of successive sections within the Procedure Division. If one paragraph
is in a section, then all paragraphs must be in sections. A procedure-name is a word
used to refer to a paragraph or section in the source program in which it occurs. It
consists of a paragraph-name, which may be qualified, or a section-name.

The end of the Procedure Division and the physical end of the program is that physical
position in a COBOL source program after which no further procedures appear.

A section consists of a section header followed by zero, one, or more successive
paragraphs. A section ends immediately before the next section or at the end of the
Procedure Division or, in the declaratives section of the Procedure Division, at the
keywords END DECLARATIVES.

7004 4490-000 61




Procedure Division

A paragraph consists of a paragraph-name followed by a period and a space and by
zero, one, or more successive sentences. A paragraph ends immediately before the
next paragraph-name or section-name or at the end of the Procedure Division or, in
the declaratives section of the Procedure Division, at the keywords END
DECLARATIVES.

A sentence consists of one or more statements and is terminated by a period followed
by a space.

A statement is a syntactically valid combination of words and symbols beginning with
a COBOL verb.

Execution begins with the first statement of the Procedure Division, excluding
declaratives. Statements are then executed in the order in which they are presented
for compilation, except where the rules indicate some other order.

6.1.3. Procedure Division Structure

Procedure Division Header

6-2

The Procedure Division is identified by and must begin with the following header:

PROCEDURE DIVISION [USING data-name-1 [,data-name-2] ... 1.

Rules

1. 'The USING phrase is present if and only if the object program is to function
under the control of a CALL statement and the CALL statement in the
calling program contains a USING phrase.

2. Each of the operands in the USING phrase of the Procedure Division header
must be defined as a data item in the Linkage Section of the program in
which this header occurs, and it must have a 01 or 77 level-number.

Within a called program, linkage section data items are processed according
to their data descriptions given in the called program.

3.  When the USING phrase is present the object program operates as if

the CALL statement in the calhng program refer to a smgle set of data that
is equally available to both the called and calling programs. Their
descriptions must define an equal number of character positions; however,
they need not be the same name. In like manner, there is an equivalent
relationship between data- name -2, ..., in the USING phrase of the called

program and data-name-2,;i Ldfl}i}l__flgﬁ_f;llg -name-2, or c_c}gqlng_?_ in the

USING phrase of the CALL statement in the calling program. A data -name
must not appear more than once in the USING phrase in the Procedure

7004 4490000



Procedure Division

4.

Division header of the called program; however, a given data-name,

T amtiFior Flo-mame o oot et J

identifier, file-name, or ¢d-name may appear more than once in the same
3 3 d

USING phrase of a CALL statement.

If the USING phrase is specified, the INITIAL clause must not be present in
any CD entry.

Procedure Division Body

The body of the Procedure Division must conform to one of the following formats:

Format 1
[DECLARATIVES.
{section-name SECTION [segment-number]. declarative-sentence
[paragraph-name. [sentencel ... 1 ... }

END DECLARATIVES.]

{section-name SECTION [segment-number].

[paragraph-name. [sentencel ... ] ... } ...
Format 2

{paragraph-name. [sentencel ... } ...
Rules

1. The Procedure Division must be divided into sections when the program is to
be segmented or when declaratives are present.

2. Format 2 is used when the entire Procedure Division is composed of
paragraphs only. However, if one paragraph is in a section, then all
paragraphs must be in sections.

3. If sections are used, section-names must be unique within a program and
paragraph-names must be unique within a section. If sections are not used,
paragraph-names must be unique within a program.

4. When program segmentation is used, sections are classified by
segment-numbers. The segment-number must be an integer ranging in value
from 0 through 99. All sections with the same segment-number constitute a
program segment. In Level 1, sections with the same segment-number must
be contiguous in the source program.

In Level 2, sections with the same segment-number need not be physically
contiguous in the source program.

5.  Segments with segment-numbers 0 through 49 belong to the fixed portion of

7004 4490000

the object program. In Level 1, all sections with segment-numbers 0 through
49 must be together in the same program. Segments with segment-numbers
50 through 99 are independent segments.

6-3




Procedure Division

6.

7.

Example

An example of the Procedure Division is given in Figure 6-1.

Seq.
No. A
1 8

If the segment-number is omitted from the section header, the
segment-number is assumed to be 0.

Text

12

071010
0710620
071030
071040
071050
071060
071070
071080
071090
071100
871110
071120
871130
071140
271156
071160
071170
071180
072010
072020
072030
072040
072050
672060
672070
072080
872050
072100
072110
072120
072130
072140
072150
072160

PROCEDURE DIVISION.
DECLARATIVES.

ALPHA SECTION. USE AFTER STANDARD ERROR PROCEDURE ON FILE-A.

A-1.
ADD 1 TO ERROR-COUNT.
IF ERROR-COUNT > 10 GO TO A-4.
IF INDICATOR NOT EQUAL 1 GO TO A-3.

DISPLAY "HAD A "TYPE-ERROR"™ ERROR. RECOVERED!.

GO TO A-5.
A-3.

DISPLAY "UNRECOVERABLE ERROR ON FILE-A™ ERROR-TYPE.

STOP RUN.
A-4.

DISPLAY "MORE THAN TEN ERRORS ON FILE-A. TERMINATING.".

STOP RUN.
A-5. EXIT.
END DECLARATIVES.
MAIN SECTION.
HOUSEKEEPING.
ACCEPT CURRENT-NAME FROM MSG-DEVICE.
OPEN INPUT-FILE-A.
OPEN OUTPUT FILE-B.
MOVE "“C" TO B-SWITCH.
BASIC-ROUTINE.
READ FILE-A, AT END GO TO END-ROUTINE.

MOVE CORRESPONDING RECORD-A TO RECORD-B.

ADD NUMBER-A TO HASH-TOTAL.
GO TO BASIC-ROUTINE.
END-ROUTINE.

DISPLAY ®FINAL HASH TOTAL WAS "HASH-TOTAL"."

UPON MSG-DEVICE.
CLOSE FILE-A, FILE-B.
STOP RUN.

Figure 6-1. Sample Procedure Division

Sections in the declaratives must contain segment-numbers less than 50.

7004 4490-000




Procedure Division

6.2. Categories of Statements

There are three types of statements: imperative, conditional, and compiler directing.

6.2.1. Imperative Statements
An imperative statement indicates a specific unconditional action to be taken by the
object program. An imperative statement may consist of a sequence of imperative

statements.

The COBOL verbs used in imperative statements are:

ACCEPT | EXHIBIT | REWRITE
ADD EXIT SEND

ALTER GOTO SET

CALL INSPECT SORT
CANCEL MERGE START
CLOSE MOVE STOP
COMPUTE MULTIPLY STRING
DELETE OPEN SUBTRACT
DISABLE PERFORM {“TRACE "‘i‘
DISPLAY READ L TRANSFORM |
DIVIDE RECEIVE UNSTRING
ENABLE RELEASE WRITE

6.2.2. Conditional Statements

A conditional statement specifies that the truth value of a condition is to be
determined and that the subsequent action of the object program is dependent on this
truth value.

The COBOL verbs used in conditional statements are listed as follows. The optional
phrase in parentheses, when included with the statement, causes otherwise
imperative statements to become conditionals.

ADD (SIZE ERROR) RECEIVE (NO DATA)
CALL (OVERFLOW) RETURN
COMPUTE (SIZE ERROR) REWRITE (INVALID KEY)
DELETE (INVALID KEY) SEARCH
DIVIDE (SIZE ERROR) START (INVALID KEY)
"EXHIBIT (CHANGED) | STRING (OVERFLOW)
IF SUBTRACT (SIZE ERROR)
MULTIPLY (SIZE ERROR) UNSTRING (OVERFLOW)
LON| WRITE (INVALID KEY or END-OF-PAGE)
READ (END or INVALID KEY)

7004 4490-000 65




Procedure Division

6.2.3. Compiler-Directing Statements

A compiler-directing statement causes the compiler to take a specific action during
compilation. COBOL verbs used in compiler-directing statements are:

COPY
USE
*DEBUG

6.3. Arithmetic Expressions

Arithmetic expressions are used as operands of certain conditional and arithmetic
statements.

An arithmetic expression can consist of any of the following:
¢ An identifier of a numeric elementary item
® A numeric literal

® A combination of item 1 and 2 identifiers and literals separated by arithmetic
operators

e  Two arithmetic expressions separated by an arithmetic operator
¢  An arithmetic expression enclosed in parentheses
Any arithmetic expression may be preceded by a unary operator. The identifiers and

literals appearing in an arithmetic expression must represent either numeric
elementary items or numeric literals on which arithmetic may be performed.

r—In an arithmetic expression: N

intermediate resultant item is floating point.

1

I' e  If one of the two operands in a simple operation is a floating-point item, the

l

: ®  If an exponentiation is specified, the intermediate resultant item is floating point.

P

Floating-point operations preserve high-order digit accuracy but lose low-order digit

6.3.1. Arithmetic Operators

There are five binary arithmetic operators and two unary arithmetic operators that
may be used in arithmetic expressions. They are represented by specific characters
that must be preceded by a space and followed by a space.

|
l
!
|
|

recision. (See 6.5.1, 6.5.2, and Appendix G.) N

6-6

7004 4490-000




Procedure Division

Binary Arithmetic

Operators Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

*ok Exponentiation

Unary Arithmetic

Operators Meaning

+ The effect of multiplication

by numeric literal +1

- The effect of multiplication
by numeric literal -1

6.3.2. Formation and Evaluation Rules

Parentheses may be used in arithmetic expressions to specify the order in which
elements are to be evaluated. Expressions within parentheses are evaluated first;
within nested parentheses, evaluation proceeds from the least inclusive set to the
most inclusive set.

When parentheses are not used or parenthesized expressions are at the same level of
inclusiveness, the following hierarchical order of execution is implied:

First - Unary plus and minus
Second - Exponentiation

Third - Multiplication and division
Fourth - Addition and subtraction

Parentheses are used either to eliminate ambiguities in logic where consecutive
operations of the same hierarchical level appear or to modify the normal hierarchical
sequence of execution in expressions where it is necessary to have some deviation
from the normal precedence. When the sequence of execution is not specified by
parentheses, the order of execution of consecutive operations of the same hierarchical
level is from left to right.

Example 1
In the expression
A+B-C*D

C and D are multiplied first, A is then added to B, and the product of C * D is
subtracted from the result of A + B.

7004 4490000 67




Procedure Division

Example 2
In the expression
A+ (B-C)*D

C is first subtracted from B, (B - C) is then multiplied by D, and the total is added
to A,

Example 3
In the expression
A+ (B/C)+ ((D*E)* F) -G

The order of evaluation is 1) division, 2) multiplication, 3) exponentiation, and
4) addition and subtraction from left to right.

Operators, variables, and parentheses that may be combined in an arithmetic
expression are summarized in Table 6-1.

An arithmetic expression may only begin with the symbol (| +, -, or a variable, and
may only end with a ) or a variable. There must be a one-to-one correspondence
between left and right parentheses of an arithmetic expression such that each left
parenthesis is to the left of its corresponding right parenthesis.

Arithmetic expressions allow the user to combine arithmetic operations without
restrictions on composite of operand and/or receiving data items. (See 6.6.2, rule 3 and
Appendix E.)

Table 6-1. Permissible Symbol Combinations in Arithmetic Expressions

Second Symbol
First
Symbol Variabte | * / * * - + | Unary + or - ( )
Variable - P - - P
* ok ok o4 P - P P
Unary + or - P - - P
( P - P p
) - P - - P
Legend:
P Indicates that the two symbols may appear consecutively

Indicates that the two symbols may not appear consecutively
Variable Represents an identifier or a literal

6-8 7004 4490-000




Procedure Division

6.4. Conditional Expressions

Conditional expressions identify conditions that are tested to enable the object
program to select between alternate paths of control depending upon the truth value
of the condition. Conditional expressions are specified in the IF, PERFORM, and
SEARCH statements. There are two categories of conditions associated with
conditional expressions: simple conditions and complex conditions. Each may be

enclosed within any number of paired parentheses, in which case its category is not
changed.

6.4.1. Simple Conditions
The simple conditions are:
e  Relation condition

¢ (Class condition

¢  Condition-name condition ]

¢  Switch-status condition

[ ®  Sign condition J

A simple condition has a truth value of true or false. The inclusion in parentheses of
simple conditions does not change the simple truth value.

Relation Condition

A relation condition causes a comparison of two operands, each of which may be the
data item referenced by an identifier, a literal,|or the value resulting from an|

| arithmetic expression.|A relation condition has a truth value of true if the relation
exists between the operands. Comparison of two numeric operands is permitted
regardless of the formats specified in their respective USAGE clauses. However, for all
other comparisons the operands must have the same usage. If either of the operands is

a group item, the nonnumeric comparison rules apply. See Table 6-2 for a summary of
permissible comparisons.

7004 4490000 69




Procedure Division

Table 6-2. Permissible Comparisons for Relation Conditions

Second Operand
1 2
FC |ZR
First Operand GR [AL |AN |ANE(NE (NNL{NL {ED (BI |ID {EF [IF |IN (IDI
Group (GR) NN |NN (NN [NN |[NN |NN [NN |NN | NN
| |
Alphabetic (AL) NN |NN |NN [NN [NN [NN [NN |NN | NN
i i
Alphanumeric (AN) NN |{NN |NN |[NN |NN |[NN |NN |[NN |. NN
[ ]
Alphanumeric edited (ANE) NN [NN |NN [NN |NN NN |NN |NH ' NN
| |
Numeric edited (NE) NN |NN |NN [NN |[NN |[NN |NN |NN | NN
1 |
Figurative constant (FC) NN [NN [NN |NN [NN NN |
and nonnumeric literal (NNL) | |
I | 5
Figurative constant ZERO (ZR) |NN |[NN [NN |NN |NN NU [NU[NU [N |NU |
and numeric Literal (NL)
. 2
External decimal (ED) NN [NN |[NN (NN [NN (NN |NU |[NU [NU 'NU |NU |NU "IN
. 2 {
Binary (BI) NU [NU [NU "NU |NU |NU "IN \M
r-—-——=-=-~=-=7=77777 T T T T T T T T T ‘ "2""‘"‘_
Internal decimal (ID) NU [NU [NU |NU |NU [NU |IN
External floating point (EF) NN JNN NN [NN INN |NN |NU |NU [NU {NU I{NU |NU |
]
L Internal floating point (IF) NU [NU |[NU [NU [NU |NU
21 21 21 2
Index name (IN) IN [IN |IN |IN TI |ID
Index data item (IDI) ID |ID

Notes: 1 FC includes all figurative constants except ZERO.
2 Valid only if the numeric item is an integer.

Legend: NN - comparison as described for nonnumeric operands
NU - comparison as described for numeric operands
TI - comparison as described between two index names
IN - comparison as described between index-name and numeric integer
ID - comparison as described between index data item and index-name or other index data item

6-10 7004 4490-000



Procedure Division

Format

identifier (15 [NOT] GREATER THAN] [identifier-2

literal-1 IS [NOT] LESS THAN literal-2
IS [NOT] EQUAL TO

arithmetic-expression-1|| | | ||arithmetic-expression-2
IS [NOT] >
Is [NOT] <
IS [NOT] =

Note: The required relational characters > < and = are not underlined to avoid
confusion with other symbols, such as > (greater than or equal to).

The first operand is the subject of the condition; the second operand is the object of the
condition. The subject and object may not both be literals.

The relational operator specifies the type of comparison to be made in a relation
condition. The relational operators and their meanings are as follows:

Meaning Relational Operator

Greater than or not greater than IS[NOT] GREATER THAN

Less than or not less than IS INOT] LESS THAN
IS [NOTT <

Equal to or not equal to IS [NOT] EQUAL TO
IS [NOT1 =

Note: The required relational characters > < and = are not underlined to avoid
confusion with other symbols such as > (greater than or equal to).

A space must precede and follow each reserved word in the relational operator. When
used, NOT and the next keyword or relation character form one relational operator
that defines the comparison to be executed for truth value; e.g., NOT EQUAL is a

truth test for an unequal comparison; NOT GREATER is a truth test for an equal or
less comparison.

Comparison of Numeric Operands

For numeric class operands, a comparison is made of the algebraic value of the
operands. The length of the literal or|arithmetic expression operands,|in terms of
number of digits represented, is not significant. Zero is considered a unique value
regardless of the sign.

7004 4490-000 611




Procedure Division

Comparison of these operands is permitted regardless of the manner in which their
usage is described. Unsigned numeric operands are considered positive for purposes of
comparison.

Comparison of Nonnumeric Operands

For nonnumeric operands, or one numeric and one nonnumeric operand, a comparison
is made with respect to a specified collating sequence of characters (see 4.3.2,
"OBJECT-COMPUTER Paragraph"). If one of the operands is specified as numeric, it
must be an integer data item or an integer literal and

e If the nonnumeric operand is an elementary data item or a nonnumeric literal,
the numeric operand is treated as though it were moved to an elementary
alphanumeric data item of the same size as the numeric data item (in terms of
standard data format characters), and the content of this alphanumeric data item
was then compared to the nonnumeric operand. (See 6.6.20, "MOVE Statement,”
and "PICTURE Clause" under 5.3.3 for the PICTURE character P.)

e If the nonnumeric operand is a group item, the numeric operand is treated as
though it were moved to a group item of the same size as the numeric data item
(in terms of standard data format characters), and the content of this group item
was then compared to the nonnumeric operand. (See 6.6.20, "MOVE Statement,"
and "PICTURE Clause" under 5.3.3 for the PICTURE character P.)

® A noninteger numeric operand cannot be compared to a nonnumeric operand.
The size of an operand is the total number of standard data format characters in the

operand. Numeric and nonnumeric operands may be compared only when their usage
is the same.

There are two cases to consider: operands of equal size and|operands of unequal size.

¢  Operands of equal size - If the operands are of equal size, characters in
corresponding character positions are compared starting from the high-order end
and continuing until either a pair of unequal characters is encountered or the
low-order end of the operand is reached, whichever comes first. The operands are
determined to be equal if all pairs of characters compare equally through the last
pair, when the low-order end is reached.

The first encountered pair of unequal characters is compared to determine their
relative position in the collating sequence. The operand that contains the
character that is positioned higher in the collating sequence is considered to be
the greater operand.

¢  QOperands of unequal size - If the operands are of unequal size, comparison

proceeds as though the shorter operand were extended on the right by sufficient
spaces to make the operands of equal size.

6-12 7004 4490-000



Procedure Division

Comparisons Involving index-Names or Index Data ltems

The comparison of two index-names is equivalent to the comparison of their
corresponding occurrence numbers.

The comparison of an index-name with a numeric item (data item or literal) is
permitted if the numeric item is an integer. The numeric integer is treated as an

occurrence number.

In the comparison of an index data item with an index-name or with another index
data item, the actual values are compared without conversion.

Other comparisons involving an index-name or index data item are not allowed.

Class Condition

The class condition determines whether the operand is numeric (consists entirely of
the digits 0 through 9, with or without the operational sign) or alphabetic (consists
entirely of the characters A through Z and space).

Format

identifier IS [NOT]1 [ALPHABETIC
NUMERIC

The USAGE of the operand must be described explicitly or implicitly as DISPLAY or

condition that defines the class test to be executed for truth value; e.g., NOT
NUMERIC is a truth test for determining that an operand is nonnumeric.

The ALPHABETIC test cannot be used with an item whose data description describes
it as numeric. The item being tested is determined to be alphabetic only if its content
consists of any combination of the alphabetic characters A through Z and the space.

The NUMERIC test cannot be used with an item whose data description describes it

as alphabetic,'zls_ external floaiin_g—_go_i_r_lisjlor as a group item composed of elementary

items whose data descriptions indicate the presence of operational signs.

If the data description of the item being tested does not indicate the presence of an
operational sign, the item being tested is determined to be numeric only if its content
is numeric and the operational sign position contains a hexadecimal value of F.

If the data description of the item does indicate the presence of an operational sign,
the item being tested is determined to be numeric only if its content is numeric and a
valid operational sign is present. Valid operational signs for data items described with
the SIGN IS SEPARATE clause are the standard data format characters, + and -.
Valid operational signs for data items not described with the SIGN IS SEPARATE
clause are the hexadecimal values C or ¥ and D. (See "SIGN Clause" under 5.3.3.)

7004 4490000 613




Procedure Division

Examples
Data-Item

PICTURE Data Is Considered
S99 X'F1F2! NUMERIC

$99 X'F1C2° NUMERIC

$99 XtF1D2! NUMERIC

99 XF1F2! NUMERIC

99 X'Fice! NOT NUMERIC
99 X'F1iD2! NOT NUMERIC

Condition-Name Condition

In a condition-name condition, a conditional variable is tested to determine whether
its value is equal to one of the values associated with a condition-name.

Format

condition-name
If the condition-name is associated with a range or ranges of values, the conditional
variable is tested to determine whether its value falls in this range, including the end

values.

The rules for comparing a conditional variable with a condition-name value are the
same as those specified earlier in this subsection for relation conditions.

The result of the test is true if one of the values corresponding to the condition-name
equals the value of its associated conditional variable.

Switch-Status Condition
A switch-status condition determines the on or off status of a system task switch. The
switch name and the on or off value associated with the condition are named in the
SPECIAL-NAMES paragraph of the Environment Division (see 4.3.3).
Format

condition-name

The result of the test is true if the switch is set to the specified position corresponding
to the condition-name.

614 : 7004 4490-000



Procedure Division

Sign Condition

The sign condition determines whether the algebraic value of an arithmetic expression
is less than, greater than, or equal to zero.

Format

NEGATIVE

arithmetic-expression IS [NOTI |POSITIVE
ZERO

The arithmetic expression must contain at least one reference to a variable.

An operand is positive if its value is greater than zero, negative if its value is less than
zero, and zero if its value is equal to zero.

When used, NOT and the next key word specify one sign condition that defines the
algebraic test to be executed for truth value; e.g., NOT ZERO is a truth test for a
nonzero (positive or negative) value.

6.4.2. Complex Conditions

A complex condition is formed by combining simple conditions, combined conditions,
or complex conditions. The conditions are either connected logically with the logical
operators AND or OR, or negated logically with the logical operator NOT.

The logical operators and their meanings are:
Logical Operator Meaning

AND Logical conjunction; the truth value is true if
both of the conjoined conditions are true; false if
one or both of the conjoined conditions is false.

OR Logical inclusive OR; the truth value is true if
one or both of the included conditions is true;
false if both included conditions are false.

NOT Logical negation or reversal of truth value; the
truth value is true if the condition is false; false
if the condition is true.

The logical operators must be preceded by a space and followed by a space.

The truth value of a complex condition, whether parenthesized or not, is the truth
value that results from: 1) the interaction of all the stated logical operators on the
individual truth values of simple conditions; or 2) the intermediate truth values of
conditions logically connected or logically negated.

7004 4490-000 6-15




Procedure Division

Table 6-3 shows the relationship between the logical operators and simple conditions

A and B.

Table 6-3. Logical Operators and the Resultant Values

Value | Value | NOT A { A AND B | A OR B |NOT (A AND B)|NOT A AND B| NOT (A OR B)| NOT A OR B
of A | of B

True True False True True False False False True
False | True True False True True True False True
True False | False False True True False False False
False | False | True False False True False True True

Negated Simple Conditions

A simple condition (6.4.1) is negated through the use of the logical operator NOT. The
negated simple condition effects the opposite truth value for a simple condition. Thus,
the truth value of a negated simple condition is true if and only if the truth value of
the simple condition is false; the truth value of a negated simple condition is false if

and only if the truth value of the simple condition is true. The inclusion in parentheses

of a negated simple condition does not change the truth value.

Format

NOT simple-condition

Combined and Negated Combined Conditions

A combined condition results from connecting conditions with one of the logical

operators AND or OR.

Format

condition {Aﬁg} condition
OR

The condition may be one of the following:

1. A simple condition
2. Anegated simple condition

3. A combined condition

616

7004 4490-000

T,
\

ST



Procedure Division

4. A negated combined condition, i.e., the NOT logical operator followed by a
combined condition enclosed within parentheses

5. Combinations of the first four conditions specified according to the rules

summarized in Table 6-4

Although parentheses need never be used when either AND or OR (but not both) is
used exclusively in a combined condition, parentheses may be used to effect a final
truth value when a mixture of AND, OR, and NOT is used. Table 6-4 indicates the
ways in which conditions and logical operators may be combined and parenthesized.
There must be a one-to-one correspondence between left and right parentheses such
that each left parenthesis is to the left of its corresponding right parenthesis. Thus,
the element pair OR NOT is permissible while the pair NOT OR is not permissible;
NOT (is permissible while NOT NOT is not permissible. (See 6.4.3, "Condition
Evaluation Rules.”)

Table 6-4. Combinations of Conditions, Logical Operators, and Parentheses

Location (left-to-right)

First | Last Intermediate Position
Al lowable Allowable
Element Preceding Elements Following Elements
c* Yes Yes OR, NOT, AND, ( OR, AND, (
OR or AND | No No c,) c, NOT, ¢
NOT Yes No OR, AND, ( c, ¢
( Yes No OR, NOT, AND, ¢ C, NOT, ¢
) No Yes c, ) OR, AND, )

7004 4490-000

617




Procedure Division

Abbreviated Combined Relation Conditions

When simple or negated simple relation conditions are combined with logical
connectives in a consecutive sequence such that a succeeding relation condition
contains a subject or subject and relational operator that is common with the
preceding relation condition, and no parentheses are used within such a consecutive
sequence, any relation condition except the first may be abbreviated as follows:

1.  Omission of the subject of the relation condition
2. Omission of the subject and relational operator of the relation condition

Format

relation-condition {Aﬂg} [NOT] [relational-operator] object
OR

Within a sequence of relation conditions, both forms of abbreviation may be used. The
effect of using such abbreviations is as if the last preceding stated subject were
inserted in place of the omitted subject and the last stated relational operator were
inserted in place of the omitted relational operator. The result of such implied
insertion must comply with the rules of Table 6-4. This insertion of an omitted subject
or omitted subject and relational operator terminates once a complete simple
condition is encountered within a complex condition.

The interpretation applied to the use of the word NOT in an abbreviated combined
relation condition is as follows:

1. If the word immediately following NOT is GREATER, >, LESS, <, EQUAL, =,
then the NOT participates as part of the relational operator; otherwise

2. The NOT is interpreted as a logical operand and, therefore, the implied insertion
of subject or relational operator results in a negated relation condition.

Some examples of abbreviated combined and negated combined relation conditions
and expanded equivalents follow:

Abbreviated Combined

Relation Condition Expanded Equivalent
a>bANDNOT <cORd ((a > b) AND {a NOT <c)) OR (a NOT < d)
a NOT EQUALb ORc {a NOT EQUAL b) OR (aNOT EQUAL c)
NOTa=bORcC (NOT (a = b)) OR {a = ¢}

NOT (a GREATER b OR < ¢} NOT ((a GREATER b) OR (a< ¢))

NOT {a NOT > b AND ¢ AND NOT d) NOT ({{a NOT > b) AND (a NOT > c)) AND

(NOT {a NOT > d)))

618

7004 4490-000




Procedure Division

6.4.3. Condition Evaluation Rules

Parentheses may be used to specify the order in which individual conditions of a
complex condition are to be evaluated when it is necessary to depart from the implied
evaluation precedence. Conditions within parentheses are evaluated first, and, within
nested parentheses, evaluation proceeds from the least inclusive condition to the most
inclusive condition. When parentheses are not used, or parenthesized conditions are at
the same level of inclusiveness, the following hierarchical order of logical evaluation is
implied until the final truth value is determined:
1. Values are established for arithmetic expressions. (See 6.3.)
2. Truth values for simple conditions are established in the following order:

a. Relation (following the expansion of any abbreviated relation condition)

b. Class

c¢. Condition-name

d. Switch-status

e. Sign

3. Truth values for negated simple conditions are established.

4. Truth values for combined conditions are established - AND logical operators,
followed by OR logical operators.

5. Truth values for negated combined conditions are established.
6. When the sequence of evaluation is not completely specified by parentheses, the

order of evaluation of consecutive operations of the same hierarchical level is
from left to right.

6.5. Common Phrases and General Rules for Statement
Formats

In the statement descriptions in 6.6, several phrases appear frequently: the
ROUNDED phrase, the SIZE ERROR phrase, and the[CORRESPONDING phrase. |

In the following discussion, a resultant-identifier is that identifier associated with a
result of an arithmetic operation.

7004 4490000 619




Procedure Division

6.5.1. The ROUNDED Phrase

If, after decimal point alignment, the number of places in the fraction of the result of
an arithmetic operation is greater than the number of places provided for the fraction
of the resultant-identifier, truncation is relative to the size provided for the resultant-
identifier. When rounding is requested, the absolute value of the resultant-identifier is
increased by 1 whenever the most significant digit of the excess is greater than or
equal to 5.

When the low-order integer positions in a resultant-identifier are represented by the
character P in the picture for that resultant-identifier, rounding or truncation occurs
relative to the rightmost integer position for which storage is allocated.

Ths ROUNDED phase s ot applieabl o  floafing pont rosltant- ortiFe

6.5.2. The SIZE ERROR Phrase

If, after decimal point alignment, the absolute value of a result exceeds the largest
value that can be contained in the associated resultant-identifier, a size error
condition exits. Division by zero always causes a size error condition. The size error
condition applies only to the final results of an arithmetic operation and not to
intermediate results except for the MULTIPLY and DIVIDE statements. If the
ROUNDED phrase is specified, rounding takes place before checking for size error.
When such a size error condition occurs, the subsequent action depends on whether or
not the SIZE ERROR phrase is specified.

e If the SIZE ERROR phrase is not specified and a size error condition occurs, the
value of those resultant-identifiers affected is undefined. Values of
resultant-identifiers for which no size error condition occurs are unaffected by
size errors that occur for other resultant-identifiers during execution of this
operation.

e If the SIZE ERROR phrase is specified and a size error condition occurs, then the

values of resultant-identifiers affected by the size errors are not altered.[Values of

resultant-identifiers for which no size error condition occurs are unaffected by

size errors that occur for other resultant-identifiers during execution of this

‘ operation.[After completion of the execution of this operation, the imperative
statement in the SIZE ERROR phrase is executed.

N Mt DD 1 . T T T T T T T T T T
'—The SIZE ERROR phrase is not applicable to floating-point resultant-identifiers, |
|_except division by zero which always causes a size error condition. y

If any of the individual operations of an ADD or SUBTRACT statement with the
CORRESPONDING phrase produces a size error condition, the imperative statement
in the SIZE ERROR phrase is not executed until all of the individual additions or
subtractions are completed.

620 7004 44390-000



Procedure Division

6.5.3. The CORRESPONDING Phrase

In the ADD, SUBTRACT, or MOVE statement with the CORRESPONDING phrase,
both identifier-1 and identifier-2 must refer to group items. In the following
discussion, d, and d, refer to identifier-1 and identifier-2, respectively.

A data item from d; and one from d, correspond under the following conditions:

° Adataitemin d; and a data item in d, are not designated by the key word
FILLER and have the same data-name and the same qualifiers up to, but not
including, d, and d,.

® At least one of the data items is an elementary data item in the case of a MOVE
statement with the CORRESPONDING phrase; and both of the data items are
elementary numeric data items in the case of the ADD or SUBTRACT statement
with the CORRESPONDING phrase.

¢ The description of d; and d, must not contain level-number 66, 77, or 88 or the
USAGE IS INDEX clause.

*  Adataitem that is subordinate to d, or d, and contains a REDEFINES,
RENAMES, OCCURS, or USAGE IS INDEX clause is ignored, as well as those
data items subordinate to the data item that contains the REDEFINES,
OCCURS, or USAGE IS INDEX clause. However, d, and d, may have
REDEFINES or OCCURS clauses or be subordinate to data items with
REDEFINES or OCCURS clauses. (See "OCCURS Clause" under 5.3.3.)

Example
SUBTRACT CORRESPONDING EMPLOYEE-RECORD FROM PAYROLL-CHECK

Data Division Entries

01 EMPLOYEE-RECORD
02 EMPLOYEE-NUMBER
03 FILLER

81 PAYROLL-CHECK
02 EMPLOYEE-NUMBER
@3 CLOCK-NUMBER

@3 PLANT-LOCATION
03 CLOCK-NUMBER
@4 SHIFT-CODE
04 CONTROL -NUMBER

02

03 FILLER
DEDUCTIONS

03 FICA-RATE

03 WITHHOLDING-TAX

02 INCOME 03 PERSONAL -LOANS
03 HOURS-WORKED 02 INCOME
03 PAY-RATE 03 HOURS-WORKED
@2 FICA-RATE 03 PAY-RATE
02 DEDUCTIONS 02 NET-PAY
02 EMPLOYEE-NAME

7004 4490-000

03 SHIFT-CODE

6-21




Procedure Division

In the example, the corresponding items are HoURs-WORKED and PAY-RATE. The following
items are not corresponding in the example for the reasons stated:

Item Reason

EMPLOYEE - NUMBER Items not elementary

FILLER FILLER not considered corresponding items
CLOCK - NUMBER Item not elementary in one group
SHIFT-CODE Quualifications not identical

INCOME Items not elementary

FICA-RATE Qualifications not identical

DEDUCTIONS Item not elementary in one group

6.5.4. The Arithmetic Statements

The operands of the ADD,)ICOMPUTE,|DIVIDE, MULTIPLY, and SUBTRACT
statements have several common features:

¢  The data descriptions of the operands need not be the same; any necessary
conversion and decimal point alignment is supplied throughout the calculation.

¢ The maximum size of each operand is 18 decimal digits. The composite of
operands, which is a hypothetical data item resulting from the superimposition of
specified operands in a statement aligned on their decimal points, must not
contain more than 18 decimal digits.

6.5.5. Overlapping Operands

When a sending and a receiving item in an arithmetic statement or an INSPECT,
MOVE, SET,[STRING, or UNSTRING/|statement share a part of their storage areas,
the result of the execution of such a statement is undefined.

6.5.6. Multiple Results in Arithmetic Statements

The ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements may have
multiple results. Such statements behave as though they had been written in the
following way:

1. A statement that performs all arithmetic necessary to arrive at the result to be
stored in the receiving items, and stores that result in a temporary storage
location.

622 7004 4490000



Procedure Division

2. A sequence of statements transferring or combining the value of this temporary
location with a single result. These statements are considered to be written in the
same left-to-right sequence in which the multiple results are listed.

The result of the statement
ADD a, b, ¢ TO ¢, d (¢c), e
is equivalent to
ADD a, b, ¢ GIVING temp
ADD temp TO ¢

ADD temp 7O d (c)
ADD temp TO e

where temp is an intermediate result item provided by the compiler.

[ The reserved word WHEN-COMPILED is the name of a compiler-generated 17-byte
| alphanumeric field. It makes the date and time of the compilation available to the
L object program. The format of this field is yy/mm/ddAhh:mm:ss.

6.6. COBOL Verbs

The COBOL verbs listed in 6.2 are explained in detail in this paragraph. The verbs
are presented alphabetically, with formats and rules.

6.6.1. ACCEPT Statement

Function

The ACCEPT statement causes low-volume data to be made available to
the specified data item.

Format1

ACCEPT identifier|[FROM mnemonic-name]‘

Format 2

DAY

ACCEPT identifier FROM |DATE
TIME

7004 4490-000 6-23




Procedure Division

Format 3

ACCEPT cd-name MESSAGE COUNT

Format 4

ACCEPT identifier-1 [,identifier-21 ...

FROM [SPECIFIC] mnemonic-name

USING [identifier-3
literal

[ON EXCEPTION imperative-statement]

ACCEPT identifier-1 FROM mnemonic-name
[ON EXCEPTION imperative-statementjj

1.

6-24

The size of a data transfer is defined as follows:

SYSIN

SYSCONSOLE

SYSCOM

SYSSWCH

SYSSWCH-N

SYSTEM- SHUTDOWN

SYSWORK

SYSFORMAT

SYSTERMINAL

80, 90, or 128 characters. If the length of a
record is other than 80 or 96, 128 is used as the
size of a data transfer. Records that are not 80
or 90 characters in length commonly occur when
a job stream file is created/updated by the
general editor.

60 characters

12 characters

8 characters

1 character

1 character

1-1,920 characters

1-1,920 characters

60 characters

If the size of the data being transferred exceeds the appropriate size of a
data transfer, the excess data is lost during a data transfer.

7004 4490-000



Procedure Division

7004 4490-000

Note: Rules 2 through 10 pertain to format 1 only.

2.

The identifier must be defined implicitly or explicitly as USAGE IS
DISPLAY.

The mnemonic-name must also be specified in the SPECIAL-NAMES
paragraph of the Environment Division and must be associated with SYSIN,
SYSCONSOLE, SYSCOM, SYSSWCH, SYSTERMINAL, SYSSWCH-n,
SYSTEM-SHUTDOWN, or SYSWORK.

10.

The ACCEPT statement causes the transfer of data from a system logical
device. This data replaces the content of the data item named by the
identifier. No editing or error checking of the incoming data is performed.

If the mnemonic-name is associated with SYSIN or SYSCONSOLE and:

a. If the length of the receiving data item is less than or equal to the
appropriate size of a data transfer, the transferred data is stored in the
receiving data item left-aligned with space-fill or truncation to the right,
when appropriate.

b. If the size of the receiving data item exceeds the appropriate size of a
data transfer, the transferred data is stored left-aligned in the receiving
data item. Additional data is requested and stored contiguously in the
remaining portion of the receiving data item. When the remaining
portion is less than or equal to the appropriate size, additional data is
requested again. Transferred data is stored in the remaining portion
with space-fill or truncation to the right as appropriate.

If the mnemonic-name is associated with SYSCOM, the 12-byte information
in the communications region of the job preamble is moved to the 12-byte
area described by the identifier.

If the mnemonic-name is associated with SYSSWCH, the information in the
user program switch indicator (UPSI) byte is expanded to 8 bytes. Each byte
represents an individual switch. If the mnemonic-name is associated with
SYSSWCH-n, the appropriate switch is expanded to 1 byte.

If the mnemonic name is associated with SYSTEM-SHUTDOWN, the
shutdown indicator in the system information block (SIB) is expanded to 1
byte, with a character value of 0 or 1 (hexadecimal F0 or F1). Hexadecimal
F1 indicates that the system operator entered a shutdown command through
the console and plans to terminate all system processing.

If the][FROM phrase|is not specified, the system logical device SYSIN is

assumed.

The /* is not accepted as an end statement into the program when accepting
embedded data.

6-25




Procedure Division

6-26

Note: Rules 11 through 14 pertain to format 2 only.

11.

12.

13.

14.

The ACCEPT statement causes the information requested to be transferred
to the data item specified by the identifier according to the rules of the
MOVE statement. DATE, DAY, and TIME are conceptual data items and,
therefore, are not described in the COBOL program.

DATE is composed of the data elements: year of century, month of year, and
day of month. The sequence of the data element codes is from high order to
low order (left to right), year of century, month of year, and day of month.
Therefore, July 1, 1968 would be expressed as 680701. DATE, when accessed
by a COBOL program, behaves as if it had been described in the COBOL
program as an unsigned elementary numeric integer data item six digits in
length.

DAY is composed of the data elements year of century and day of year. The
sequence of the data element codes is from high order to low order (left to
right) year of century, day of year. Therefore, July 1, 1968 would be
expressed as 68183. DAY, when accessed by a COBOL program, behaves as
if it had been described in a COBOL program as an unsigned elementary
numeric integer data item five digits in length.

TIME is composed of the data elements: hours, minutes, seconds, and
hundredths of a second. TIME is based on elapsed time after midnight on a
24-hour clock basis; thus, 2:41 p.m. would be expressed as 14410000. TIME,
when accessed by a COBOL program, behaves as if it had been described in a
COBOL program as an unsigned elementary numeric integer data item eight
digits in length. The minimum value of TIME is 00000000; the maximum
value of TIME is 23595999.

Note: It is possible for the maximum number of hours to be 89 if the system
generation parameter TIMER is set to NO or MIN,

Note: Rules 15 through 17 pertain to format 3 only.

15.

16.

17.

Cd-name must reference an input CD.

The ACCEPT MESSAGE COUNT statement causes the MESSAGE COUNT
field specified for cd-name to be updated to indicate the number of messages
that exist in a queue, sub-queue-1, ..., sub-queue-3.

Upon execution of the ACCEPT MESSAGE COUNT statement, the content
of the area specified by a communication description entry must contain at
least the name of the symbolic queue to be tested. Testing the condition
causes the contents of the data items referenced by data-name-10 (STATUS
KEY) and data-name-11 (MESSAGE COUNT) of the area associated with
the communication entry to be appropriately updated.

7004 4490000

P
e 5



Procedure Division

7004 4490-000

Note: Rules 18 through 32 pertain to format 4 only.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

format services. The FROM phrase must be specified.

. The data description of identifier-1 or identifier-2, ..., must not contain a

subordinate entry that specifies an OCCURS DEPENDING clause.

Mnemonic-name must also be specified in the SPECIAL-NAMES paragraph
of the Environment Division and must be associated with SYSFORMAT.

The literal must be a nonnumeric literal.

The literal or the contents of identifier-3 is made up of a 1- to 8-character
name of the screen format.

More than one receiving data item may be specified. Identifier-1 or
identifier-2 need not be described explicitly or implicitly as USAGE IS
DISPLAY. If USAGE other than DISPLAY is specified, no data conversion is
performed by the COBOL-generated object code. If data conversion is
required, it must be specified in the controlling screen format.

l

I

l

l

|

|

!

!

|

|

I

i

|

|

l

|
The SPECIFIC phrase is meaningful only for a multivolume workstation. It |
indicates that data is to be accepted from a particular workstation terminal; |
that is, the terminal indicated in the WS-ID field, if the CONTROL AREA ]
clause is specified with the mnemonic-name in the SPECIAL-NAMES l
paragraph, or the terminal that participated in the most recently executed |
ACCEPT or DISPLAY statement that references the same mnemonic-name. |
|

l

l

!

§

l

i

|

|

|

|

|

|

I

l

I

|

|

i

|

The ON EXCEPTION phrase must be specified if the mnemonic-name is
declared in the SPECIAL-NAMES paragraph with the CONTROL AREA
clause. The ON EXCEPTION phrase must not be specified if the
mnemonic-name is declared without the CONTROL AREA clause.

The ON EXCEPTION phrase is executed when the execution of the ACCEPT
statement is unsuccessful. (See key code 1, 2, 3, or 9 in the "Status Key 1"
column in Table 4-1.)

A screen format must be specified for a given workstation before data can be
accepted or displayed. A screen format may be specified via job control
language or by the USING phrase of an ACCEPT or DISPLAY statement.

When the USING phrase of an ACCEPT statement specifies a format
different from the current screen format on the last-used terminal, the new
format must be an input-only screen format.

Another way of specifying a different screen format is to use the DISPLAY
statement with the USING phrase referencing the new input-only screen
format. The new format is displayed on the terminal; but no data is
transmitted to the screen since it is an input-only format.

6-27




Procedure Division

30. For a multivolume workstation, the USING phrase of an ACCEPT
statement that references a new screen format changes the screen only on
one terminal; that is, the terminal indicated in the WS-ID field if the
CONTROL AREA clause is specified, or the terminal most recently accessed
if the CONTROL AREA clause is not specified.

31. For a multivolume workstation, the terminal that responds to an ACCEPT
statement whose USING phrase references a new screen format could be
different from the terminal whose screen format has been changed by the
very same ACCEPT statement.

32. After an ACCEPT statement referencing a screen format that is erased after
input (that is, option 3 of the ERASE/UNLOCK function was selected at
screen format generation), the next ACCEPT or DISPLAY statement
accessing the same terminal must include a USING phrase.

Note: Rules 33 through 40 pertain to format 5 only.

33. Format 5 is used to accept data from a workstation terminal without using
screen format services.

DISPLAY phrase.

35. The data description of identifier-1 or identifier-2, ..., must not contain a
subordinate entry that specifies an OCCURS DEPENDING clause.

36. The FROM phrase is required. Mnemonic-name must also be specified in the
SPECIAL-NAMES paragraph of the Environment Division and must be
associated with SYSWORK.

37. The ON EXCEPTION phrase must be specified if the mnemonic-name is
declared in the SPECIAL-NAMES paragraph with the CONTROL AREA
clause. The ON EXCEPTION phrase must not be specified if the
mnemonic-name is not described with the CONTROL AREA clause.

38. The ON EXCEPTION phrase is executed when the execution of the ACCEPT
statement is unsuccessful. (See key code 1, 2, 3, or 9 in the "Status Key 1"
column of Table 4-1.)

39. If the length of the receiving data item (identifier-1) exceeds 1920 characters,
the transferred data is stored in the receiving data item left-aligned and
space-filled. No additional data is requested. If the length of the receiving
data item is less than 1920 characters, the transferred data is stored in the
receiving data item left-aligned with space-fill or truncation to the right,
when appropriate.

40. After the execution of a format 5§ ACCEPT statement, the cursor is

|
l
!
I
I
|
!
I
l
|
|
|
|
l
|
I
|
l
l
l 34. Identifier-1 must be specified explicitly or implicitly with the USAGE IS
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l
' positioned at the start of the next line. ‘

6-28 7004 4490-000



Procedure Division

6.6.2. ADD Statement

Function

The ADD statement causes two or more numeric operands to be summed and the
result to be stored.

Format1

ADD [identifier-1]} |,identifier-2| ... I0 identifier-m [ROUNDED]
literal-1 ,Lliteral-2

[[,identifier-n [ROUNDED] 1 ...

[;ON SIZE ERROR imperative-statement]

Format 2

ADD [identifier-1 identifier-2 ,identifier-3| ...
literal-1 literal-2 ,literal-3

GIVING identifier-m [ROUNDED]

[,identifier-n [ROUNDED]]

[;ON SIZE ERROR imperative-statement]

Format 3

ADD {CORRESPONDING} identifier-1 T0 identifier-2 [ROUNDED]
CORR

[;ON SIZE ERROR imperative-statement]

Rules

1. Informats1 and 2, each identifier must refer to an elementary numeric
item, except that in format 2 each identifier following the word GIVING
must refer to either an elementary numeric item or an elementary
numeric-edited item.|In format 3, each identifier must refer to a group item.|

2. Each literal must be a numeric literal.

3. The composite of fixed-point operands must not contain more than 18 digits.
(See 6.5.4.)

e Informat 1, the composite of operands is determined by using all of the
fixed-point operands in a given statement.

¢ Informat 2, the composite of operands is determined by using all of the
fixed-point operands in a given statement excluding the data items that
follow the word GIVING.

e Informat 3, the composite of operands is determined separately for each
pair of corresponding data items.

7004 4490000 6-29



Procedure Division

| 4.

CORR is an abbreviation for CORRESPONDING. |

5.

6.

| See 6.5.1 "ROUNDED Phrase;"|6.5.2, "SIZE ERROR Phrase;" 6.5.3,

"CORRESPONDING Phrase;" 6.5.4, "Arithmetic Statements;" 6.5.5,
"Overlapping Operands;" and|6.5.6, "Multiple Results in Arithmetic |

Statements."]

If format 1 is used, the values of the operands preceding the word TO are

added together, then the sum is added to the current value of identifier-m

storing the result immediately into identifier-m,land repeating this process |
[ respectively for each operand following the word TO. |

If format 2 is used, the values of the operands preceding the word GIVING
are added together, then the sum is stored as the new value of

identifier-m, ..., the resultant identifiers.

If format 3 is used, data items in identifier-1 are added to and stored in
corresponding data items in identifier-2,

6.6.3. ALTER Statement

Function

The ALTER statement modifies a predetermined sequence of operations.

Format

ALTER procedure-name-1 TO [PROCEED T0] procedure-name-2

Rules

6-30

l [,procedure-name-3 TCO [PROCEED T0] procedure-name-41 ...

Each procedure-name-l,lprocedure-name-S,!..., is the name of a paragraph
that contains a single sentence consisting of a GO TO statement without the
DEPENDING phrase.

Each procedure-name-2,Iprocedure-name—4,|..., is the name of a paragraph or
section in the Procedure Division.

Execution of the ALTER statement modifies the GO TO statement in the
paragraph named procedure-name-l,Iprocedure-name-S,l..., so that
subsequent execution of the modified GO TO statements transfers control to
procedure-name-2, [procedure-name-4, ..., respectively.| Modified GO TO
statements in independent segments may, under some circumstances, be
returned to their initial states. (See 10.2.2.)

7004 4490-000




Procedure Division

A GO TO statement in a section whose segment-number is greater than or
equal to 50 must not be referred to by an ALTER statement in a section with
a different segment-number.

All other uses of the ALTER statement are valid and are performed even if
procedure-name-1,/procedure-name-3|is in an overlayable fixed segment.
(See Section 10.)

6.6.4. CALL Statement

Function

The CALL statement causes control to be transferred from one object program to
another within the run-unit.

Format
CALL identifier-1 USING | data-name-1 .1 data-name-2
i fr-———--- 1 r-—=----
literal-1 cd-name- 1 cd-name-2
identifier-2 | |identifier-3 |
file-name-1 file-name-2
______ J L
l [;ON OVERFLOW imperative-statement] I
Rules

1. Literal-1 must be a nonnumeric literal.

2. Identifier-1 must be defined as an alphanumeric data item.

3. The value of literal-1{or identifier-1{represents a 1- to 6-character load

module name, or the value of literal-1 represents the name of the entry point
if the called program is statically bound with the calling program.

4, The USING phrase is included in the CALL statement only if there is a
USING phrase in the Procedure Division header of the called program. The
number of operands in each USING phrase must be identical.

5. Each operand in the USING phrase must have been defined as a data item

Data-name-1, data-name-2,..., may be qualified when they reference data
items defined in the File Section or the Communication Section.

6. The program whose name is specified by the value of literaLl[or identifier—ll

is the called program; the program in which the CALL statement appears is
the calling program.

7004 4490-000 6-31




Procedure Division

7. Execution of a CALL statement causes control to pass to the called program.

8. A called program is in its initial state the first time it is called within a
run-unit(and the first time it is called after a CANCEL to the called ]
program.|On all other entries into the called program, the state of the
program remains unchanged from its state when last exited. This includes
data fields, the status and positioning of files, and alterable switch settings.

9. If, during execution of a CALL statement, it is determined that the available
portion of object time storage is incapable of accommodating the program
specified in the CALL statement and the ON OVERFLOW phrase is
specified, no action is taken and the imperative statement is executed. If the
ON OVERFLOW phrase is not specified, the calling program is terminated
and the disposition of the run unit is handled by the operating system.

10. Called programs may contain CALL statements. However, a called program
must not contain a CALL statement that directly or indirectly calls the
calling program.

11. The data-names specified by the USING phrase of the CALL statement
indicate those data items available to a calling program that may be referred
to in the called program. The order of appearance of the data-names in the
USING phrase of the CALL statement and the USING phrase in the
Procedure Division header is critical. Corresponding data-names refer to a
single set of data that is available to the called and calling program. The
correspondence is positional, not by name. In the case of index-names, no
such correspondence is established. Index-names in the called and calling
program always refer to separate indexes.

12. The CALL statement may appear anywhere within a segmented program.
When a CALL statement appears in a section with a segment-number
greater than or equal to 50, that segment is in its last used state when the
EXIT PROGRAM statement returns control to the calling program. When
using parameter CALLST=YES in a segmented program, the linkage editor
commands must ensure that the called program can be accessed from the
overlay that contains the CALL statement (see 10.5.4).

13. | Literal-1 or the content of the data item referenced by identifier-ﬂ is used to
identify the called program.

| USING phrase of the calling program must be defined as a data item in the

| File, Working-Storage, or Linkage Section. If the called program is written in

| a language other than COBOL, the operands of the USING clause may also |
| be file-names and the address of the data management keyword attributes l

15. Programs called by the literal-1 option exclusively may be linked with the
calling program or dynamically loaded. (Refer to Appendix A for the
CALLST compiler option parameter.)[Programs called by the identifier-1 |

[ option are always dynamically loaded. |

6-32 7004 4490-000



Procedure Division

6.6.5. CANCEL Statement
Funetion

The CANCEL statement releases the main storage areas occupied by the
referenced program.

Format

CANCEL [identifier-1 ,identifier-2| ...
literal-1 ,literal-2

Rules
1. Literal-1, literal-2, ..., must each be a nonnumeric literal.

2. Identifer-1, identifier-2, ..., must each be defined as an alphanumeric data
item such that its value can be a program name.

3. Refer to 6.6.4, "CALL Statement,” for a description of the value of
identifier-1 and literal-1.

4. Literal-1, literal-2, ..., must refer to called programs that are dynamically
loaded. (Refer to Appendix A for the CALLST compiler option parameter.)

5. Subsequent to the execution of a CANCEL statement, the program
referenced therein ceases to have any logical relationship to the run-unit in
which the CANCEL statement appears. A subsequently executed CALL
statement naming the same program will result in that program being
initiated in its initial state. The main storage areas associated with the
named programs are released so as to be made available for disposition by
the operating system.

6. A program named in the CANCEL statement must not refer to any program
that has been called but that has not yet executed an EXIT PROGRAM
statement.

7. Alogical relationship to a canceled subprogram is established only by
executing a subsequent CALL statement.

8. A called program is canceled either by being referred to as the operand of a
CANCEL statement or by the terminal of the run-unit of which the program
is a member.

9. No action is taken when a CANCEL statement is executed naming a
program that has not been called in this run-unit or has been called and is at
present canceled. Control passes to the next statement.

7004 4490-000 6-33



Procedure Division

10. A called subprogram must not contain a CANCEL statement that directly or
indirectly cancels the calling program, or any other program higher than
itself in the calling hierarchy.

11. A program may cancel a program that it did not call, providing that in the
calling hierarchy it is higher than or equal to the program it is canceling.

12. Literal-1 or the content of the data item referenced by identifier-1 is used to
identify the canceled program.

6.6.6. CLOSE Statement

Function

The CLOSE statement terminates the processing of reels/units and files with
optional rewind or lock or removal where applicable.

Format 1 (Sequential and r@i@_l(’[_,ulbﬁles)

CLOSE filename-1 REEL WITH NO REWIND
UNIT FOR REMOVAL

WITH [NO REWIND
LOCK

UNIT[ |FOR REMOVAL

,file-name-2 {REEL} [WITH NO REWIND

. e .
Format 2 (Relative, Indexed, and g_Sé_@Flles)
CLOSE file-name-1 [WITH LOCK1 [,file-name-2 [WITH LOCK] 1 ...

Rules

1. The REEL or UNIT phrase must only be used for sequentialEr_A_{\Z_'lfﬂes.

2. The files referenced in the CLOSE statement need not all have the same
organization or access.

6-34 7004 4490-000



Procedure Division

3. Except where otherwise stated, the terms reel and unit are synonymous and
completely interchangeable in the CLOSE statement. Treatment of mass
storage sequential',-gr AMjfiles is logically equivalent to the treatment of a

file on tape or analogous sequential media.
4. A CLOSE statement may only be executed for a file in an open mode.

5. To show the effect of various types of CLOSE statements as applied to
various storage media, all files are divided into the following categories:

a. Non-reel/unit - A file whose input or output medium is such that the
concepts of rewind and reels/units have no meaning,.

b. Sequential single reel/unit - A sequential@ingl_\/Tinle that is entirely
contained on one reel/unit.

c¢. Sequential multiple reel/unit - A sequential Er:SA:M]f ile that is
contained on more than one reel/unit.

d. Nonsequential single/multiple reel/unit - A relative, indexed,ElzIS__AZ\/I]
file contained on one or more units.

6. The results of executing each type of CLOSE statement for each category of
files are given in Table 6-5.

Note: The symbols used in Table 6-5 are defined following the table. Definitions

apply to all input, output, and input/output files except where noted.

Table 6-5. Relationship of Categories of Files and the Options of the CLOSE Statement

File Category
CLOSE Non-Reel/Unit | Sequential | Sequential | Nonsequential
Statement Single Multiple Single/Multiple
Format Reel/Unit Reel/Unit Reel/Unit
CLOSE c c, G c, G, A c
CLOSE WITH LOCK c, E c, 6, E C, G, E, A cC, E
CLOSE WITH NO REWIND X c, B C, B, A X
CLOSE REEL/UNIT X X F, G X
CLOSE REEL/UNIT X X F, D, G X
REMOVAL
CLOSE REEL/UNIT X X F, B X
WITH NO REWIND

7004 4490000

6-35




Procedure Division

The symbols used in Table 6-5 are defined as follows:

Symbol Definition

A Previous Reels/Units Unaffected

Input Files and Input/Output Files - All reels/units in the
file prior to the current reel/unit are processed according
to the system standard reel/unit swap procedure, except
those controlled by a prior CLOSE REEL/UNIT
statement. If the current reel/unit is not the last one in
the file, those reels/units in the file following the current
one are not processed.

Output Files - All reels/units in the file prior to the
current reel/unit are processed according to the system

standard reel/unit swap procedure, except those
controlled by a prior CLOSE REEL/UNIT statement.

B No Rewind of Current Reel - The current reel/unit is left in its
current position.

C Close File

6-36

Input Files and Input/ Output Files (Sequential Access
Mode) - If the file is positioned at its end and standard
system label records are specified for the file, the system
labels are processed according to the system standard
label convention. Closing operations specified by the
system are executed. If the file is positioned at its end and
standard system label records are not specified for the
file, label processing does not take place but other closing
operations specified by the system are executed. If the file
is positioned other than at its end, the closing operations
specified by the system are executed, but there is no
ending label processing.

Input Files and Input |/ Output Files (Random or Dynamic
Access Mode); Output Files (Random, Dynamic, or
Sequential Access Mode) - If standard system label records
are specified for the file, the labels are processed
according to the system standard label convention.
Closing system operations specified by the system are
executed. If standard system label records are not
specified for the file, label processing does not take place
but other closing operations specified by the system are
executed.

7004 4490-000




Procedure Division

7004 4490-000

Symbol

Definition

Reel/Unit Removal - The current reel or unit is rewound when
applicable, and the operating system is notified that the reel or
unit is logically removed from this run-unit; however, the reel
or unit may be accessed again, in its proper order of reels or
units within the file, if a CLOSE statement without the REEL
or UNIT phrase is subsequently executed for this file followed
by the execution of an OPEN statement for the file.

File Lock - The operating system is notified to ensure that this
file cannot be opened again during this execution of this
run-unit.

Close Reel/Unit

e  Input Files - The following operations take place:
- Reel/unit swap
- Standard beginning reel/unit label procedure

The next executed READ statement for that file makes
available the next data record on the new reel/unit.

e Output Files and Input/Output Files - The following
operations take place:

- For output files only - standard ending reel/unit label
procedure

- Reel/unit swap
- Standard beginning reel/unit label procedure

For input/output files, the next executed READ statement
that references that file makes the next logical data
record on the next mass storage unit available. For output
files, the next executed WRITE statement that references
that file directs the next logical data record to the next
reel/unit of the file.

Rewind - The current reel is positioned at its physical
beginning.

Illegal - This is an illegal combination of a CLOSE option and
a file category. The results at object time are undefined.

6-37




Procedure Division

6-38

If the file is in open mode when a STOP RUN statement is executed, it is to
be closed by the compiler-generated object code. The result is unpredictable
if the file has been opened in a called program and not closed in that
program prior to the execution of a CANCEL statement for that program.

If the OPTIONAL phrase has been specified for the file in the
FILE-CONTROL paragraph of the Environment Division and the file is not
present, the standard end-of-file processing is not performed for that file.

If a CLOSE statementhithout the REEL or UNIT phrase|has been executed
for a file, no other statement (except the SORT statement with the USING or
GIVING phrases) can be executed that references that file, either explicitly
or implicitly, unless an intervening OPEN statement for that file is executed.

10.

WITH NO REWIND and FOR REMOVAL phrases have no effect at object
time if they do not apply to the storage media on which the file resides.

11.

12,

Following the successful execution of a CLOSE statement|without the REEL |

| or UNIT phrase,|the record area associated with file-name is no longer
available. The unsuccessful execution of such a CLOSE statement leaves the
availability of the record area undefined.

With the CLOSE WITH LOCK phrase, single-reel tape files are rewound but
are not unloaded.

7004 4490-000



Procedure Division

6.6.7. COMPUTE Statement

Function

The COMPUTE statement assigns to one or more data items the value of
an arithmetic expression.

Format

COMPUTE identifier-1 [ROUNDED] [,identifier-2 [ROUNDEDY 1 ...

Rules

1.

= arithmetic-expression [;ON SIZE ERROR imperative-statement]

Identifiers that appear only to the left of = must refer to either an
elementary numeric item or an elementary numeric-edited item.

See 6.5.1, "ROUNDED Phrase;" 6.5.2, "SIZE ERROR Phrase;" 6.5.4,
"Arithmetic Statements;" 6.5.5, "Overlapping Operands;" and 6.5.6, "Multiple
Results in Arithmetic Statements."

An arithmetic expression consisting of a single identifier or literal provides a
method of setting the values of identifier-1, identifier-2, etc., equal to the
value of the single identifier or literal. (See 6.3.)

If more than one identifier is specified for the result of the operation
(preceding =), the value of the arithmetic expression is computed then stored
as the new value of each of identifier-1, identifier-2, ete., in turn.

The COMPUTE statement allows the user to combine arithmetic operations
without the restrictions on composite of operands or receiving data items
imposed by the arithmetic statements ADD, SUBTRACT, MULTIPLY, and
DIVIDE. (See Appendix E.)

7004 4490-000

6-39




Procedure Division

6.6.8. COPY Statement
Function
The COPY statement incorporates text into a COBOL source program.

Format

COPY text-name { {gﬁ} Library-name ]

REPLACING | , |==pseudo-text-1==| BY |==pseudo-text-2==

identifier-1 identifier-2
literal-1 literal-2
word-1 word-2

Rules

1. Text-name or library-name must follow the rules for formation of a user-
defined word; however, only the first eight characters of a text-name or
library-name are used by the operating system. A text-name is used to
identify a COBOL library text. A library-name is used as the LFD name to
identify a COBOL library file.

P

2. If more than one COBOL library is available during compilation, text-name
can be qualified by the library-name identifying the COBOL library in which
the text associated with text-name resides.

If the library-name is not specified, the file-names given in the LIN
parameter are used. (See Appendix A, "Compiler Options.")

If the library-name is omitted in the COPY statement and the LIN
parameter is not given, the default name COPY$ is used as the
library-name.

3. The COPY statement must be preceded by a space and terminated by the
separator period.

4. A COPY statement may occur in the source program anywhere a
character-string or a separator may occur except that a COPY statement
must not occur within a COPY statement. The word COPY appearing in any
comment-entry is treated as a comment.

5. Pseudo-text-1 must not be null, nor may it consist solely of the character
space, spaces, or comment lines.

6. Pseudo-text-2 may be null.

6-40 7004 4450-000



Procedure Division

7004 4490-000

Character-strings within pseudo-text-1 and pseudo-text-2 may be continued.
However, both characters of a pseudo-text delimiter must be on the same
line. (See 2.7.)

Word-1 or word-2 may be any single COBOL word.

10.

11.

The compilation of a source program containing COPY statements is
logically equivalent, to processing all COPY statements prior to the
processing of the resulting source program.

The effect of processing a COPY statement is that the library text associated
with text-name is copied into the source program, logically replacing the
entire COPY statement beginning with the reserved word COPY and ending
with the punctuation character period, inclusively.

unchanged.|If the REPLACING phrase is specified, the library text is copied
and each properly matched occurrence of pseudo-text-1, identifier-1, word-1,
and literal-1 in the library text is replaced by the corresponding
pseudo-text-2, identifier-2, word-2, or literal-2. Pseudo-text-1, identifier-1,
word-1, and literal-1 must not be a prefix or a suffix.

| If the REPLACING phrase is not specified,lthe library text is copied

The following is an example of a COPY statement with multiple
REPLACING phrases:

COPY COPYLIBX REPLACING 'IXFIWRK! BY 'IXF1DUM®
VIXF2WRK' BY 'IXF2DUM!

12.

13.

For purposes of matching, identifier-1, word-1, and literal-1 are treated as
pseudo-text containing only identifier-1, word-1, or literal-1, respectively.

The comparison operation to determine text replacement occurs in the
following manner:

Any separator comma, semicolon, or space(s) preceding the leftmost library
text-word is copied into the source program. Starting with the leftmost
library text-word and the first pseudo-text-1, identifier-1, word-1, or literal-1
that was specified in the REPLACING phrase, the entire REPLACING
phrase operand that precedes the reserved word BY is compared to an
equivalent number of contiguous library text-words.

Pseudo-text-1, identifier-1, word-1, or literal-1 match the library text if, and
only if, the ordered sequence of text-words that forms pseudo-text-1,
identifier-1, word-1, or literal-1 is equal, character for character, to the
ordered sequence of library text-words. For purposes of matching, each
occurrence of a separator comma or semicolon in pseudo-text-1 or in the
library text is considered to be a single space except when pseudo-text-1
consists solely of either a separator comma or semicolon, in which case it
participates in the match as a text-word. Each sequence of one or more space
separators is considered to be a single space.

641




Procedure Division

If no match occurs, the comparison is repeated with each successive pseudo-
text-1, identifier-1, word-1, or literal-1, if any, in the REPLACING phrase
until either a match is found or there is no successive REPLACING operand.

When all the REPLACING phrase operands have been compared and no
match has occurred, the leftmost library text-word is copied into the source
program. The next successive library text-word is then considered as the
leftmost library text-word, and the comparison cycle starts again with the
first pseudo-text-1, identifier-1, word-1, or literal-1 specified in the
REPLACING phrase.

Whenever a match occurs between pseudo-text-1, identifier-1, word-1, or
literal-1 and the library text, the corresponding pseudo-text-2, identifier-2,
word-2, or literal-2 is placed into the source program. The library text-word
immediately following the rightmost text-word that participated in the
match is then considered as the leftmost library text-word. The comparison
cycle starts again with the first pseudo-text-1, identifier-1, word-1, or
literal-1 specified in the REPLACING phrase.

The comparison operation continues until the rightmost text-word in the
library text has either participated in a match or been considered as a
leftmost library text-word and participated in a complete comparison cycle.

14.

A comment line occurring in the library text and pseudo-text-1 is
interpreted, for purposes of matching, as a single space.|Comment lines

15,

appearing injpseudo-text-2 and|library text are copied into the source
program unchanged.

Debugging lines are permitted within library text|and pseudo-text-2.

Debugging lines are not permitted within pseudo-text-1; text-words within a
debugging line participate in the matching rules as if the ‘D’ did not appear

in the indicator area.[If a COPY statement is specified on a debugging line,

16.

17.

then the text that is the result of the processing of the COPY statement will
appear as though it were specified on debugging lines with the following
exception: comment lines in library text will appear as comment lines in the
resultant source program.

Syntactic correctness of the library text cannot be independently determined.
Syntactic correctness of the entire COBOL source program cannot be

determined until all COPY statements have been completely processed.

Library text must conform to the rules for COBOL reference format.

18.

Text-words after replacement are placed in the source program listing
according to the rules for reference format.

642

7004 4490000




Procedure Division

6.6.9. DELETE Statement

Function

Format

The DELETE statement logically removes a record from a mass storage file.

DELETE file-name RECORD [;INVALID KEY imperative-statement]

Rules

7004 4490-000

1.

2.

10.

File-name must be the name of a relative or indexed file.

The INVALID KEY phrase must not be specified for a DELETE statement
that refers to a file in the sequential access mode.

The INVALID KEY phrase must be specified for a DELETE statement that
refers to a file not in sequential access mode and for which an applicable
USE procedure is not specified.

The associated file must be open in I-O mode at the time of the execution of
this statement. (See 6.6.23, "OPEN Statement.”)

For files in the sequential access mode, the last input/output statement
executed for file-name prior to the execution of the DELETE statement must
have been a successfully executed READ statement. The operating system
logically removes from the file the record that was accessed by that READ
statement.

For afile in randomaccess mode, the operating system logically
removes from the file that record identified by the content of the RELATIVE

KEY or the prime record key data item associated with file-name. If the file
does not contain the record specified by the key, an INVALID KEY condition
exists. (See 8.2.5, "INVALID KEY Condition.")

After the successful execution of a DELETE statement, the identified record
has been logically removed from the file and can no longer be accessed.

The execution of a DELETE statement does not affect the content of the
record area associated with file-name.

The current record pointer is not affected by the execution of a DELETE
statement.

The execution of the DELETE statement causes the value of the specified

FILE STATUS data item, if any, associated with file-name to be updated.
(See 8.2.3, "I-0O Status.”)

643




Procedure Division

6.6.10. DISABLE Statement

Function
The DISABLE statement notifies the message control system (MCS) to inhibit
data transfer between specified output queues and destinations for output or

between specified sources and input queues for input.

Format

QUTPUT literal-1

DISABLE {INPUT [TERMINAL] } cd-name WITH KEY {identifier-1}

Rules
1. Cd-name must reference an input CD when the INPUT phrase is specified.

2. Cd-name must reference an output CD when the OUTPUT phrase is
specified.

3. Literal-1 or the data item referenced by identifier-1 must be defined as
alphanumeric, and its length must not exceed 10 characters.

4. The DISABLE statement provides a logical disconnection between the MCS
and the specified sources or destinations. When this logical disconnection is
already in existence, or is to be handled by some other means external to this
program, the DISABLE statement is not required in this program. The
logical path for the transfer of data between the COBOL programs and the
MCS is not affected by the DISABLE statement.

5. When the INPUT phrase with the optional word TERMINAL is specified,
the logical path between the source and all queues and subqueues is
deactivated. Only the content of the data item referenced by data-name-7
(SYMBOLIC SOURCE) of the area referenced by cd-name is meaningful.

6. When the INPUT phrase|without the optional word TERMINALis specified,
the logical paths for all of the sources associated with the queues and
subqueues specified by the contents of data-name-1 (SYMBOLIC QUEUE)
through data-name-4 (SYMBOLIC SUB-QUEUE-3) of the area referenced
by cd-name are deactivated.

7. When the OUTPUT phrase is specified, the logical path for destination,
{the logical paths for all destinations, |specified by the content of the data item
referenced by data-name-5 (SYMBOLIC DESTINATION) of the area
referenced by cd-name is deactivated.

6-44 7004 4490-000



Procedure Division

Literal-1 or the content of the data item referenced by identifier-1 is
matched with a password built into the system. The DISABLE statement is
honored only if literal-1 or the content and the size of the data item
referenced by identifier-1 matches the system password. When literal-1 or
the content and the size of the data item referenced by identifier-1 does not
match the system password, the value of the STATUS KEY item in the area
referenced by cd-name is updated.

The length of a password ranges from 1 to 10 characters, inclusive.

The execution of a DISABLE statement causes the logical disconnection at
the earliest time the source or destination is inactive. The execution of the
DISABLE statement never causes the remaining portion of the message to
be terminated during transmission to or from a terminal.

6.6.11. DISPLAY Statement

Function

The DISPLAY statement causes low-volume data to be transferred to an
appropriate system logical device.

Format1

DISPLAY {identifier-1} {,identifier~2 ...} [UPON mnemonic-name]

literal-1 ,Literal-2

Format 2

7004 4490-000

|rspLaY {identifier-‘l} [,identifier-z}...

|pIspLAY {identifier-1} [,identifier-Z } |

literal-1 ,literal-2

UPON mnemonic-name
USING [identifier-3
literal-3

[ON EXCEPTION imperative-statement]J

literal-1 ,Literal-2

[ON EXCEPTION imperative—statementiI

UPON mnemonic-name

645




Procedure Division

6-46

Rules

Note: Rules 1 through 5 pertain to all formatis.

1.

The DISPLAY statement causes the content of each operand to be
transferred to the device in the order listed.

Each literal may be any figurative constant except ALL.

If a figurative constant is specified as one of the operands, only one
occurrence of the constant is displayed.

If the literal is numeric, it must be an unsigned integer.

The size of a data transfer is defined as follows:

Logical Device Number of Characters
SYSLST or SYSOUT 120

SYSLOG 55

SYSCONSOLE 55

SYSTERMINAL 55

SYSCOM 12

SYSSWCH 8

SYSSWCH-n 1

SYSWORK 1-1920

SYSFORMAT 1-1920

Note: Rules 6 through 14 pertain to format 1 only.

6.

Mnemonic name is associated with a system logical device in the
SPECIAL-NAMES paragraph of the Environment Division and must be
associated with SYSLST, SYSOUT, SYSLOG, SYSCONSOLE,
SYSTERMINAL, SYSCOM, SYSSWCH, or SYSSWCH-n.

If the UPON phrase is not specified, SYSLST is used.

If mnemonic-name is associated with SYSCOM, SYSSWCH, or SYSSWCH-n,
only one operand is permitted in the statement.

7004 4450000

ST



Procedure Division

7004 4490-000

10.

11.

12.

13.

14.

If the mnemonic-name is associated with SYSLST or SYSOUT, and:

a. If the length of the data item being transferred is less than or equal to
120 characters, the data is transferred to the associated system logical
device.

b. If the size of the data item being transferred exceeds 120 characters, the
data, beginning with the leftmost character and up to the limit of 120
characters, is stored left-aligned in the associated system logical device.
The remaining data is transferred sequentially in a like manner until
all data is transferred.

If the mnemonic-name is associated with SYSLOG or SYSCONSOLE, the
length of data to be displayed is limited to 55 characters.

If mnemonic-name is associated with SYSSWCH, eight characters are
transferred. If mnemonic-name is associated with a single switch,
SYSSWCH-n, one character is transferred.

When a DISPLAY statement contains more than one operand, the size of the
sending item is the sum of the sizes associated with the operands, and the
values of the operands are transferred in the sequence in which the operands
are encountered.

If the identifiers are described implicitly or explicitly as USAGE other than
DISPLAY, the contents of the data items, when transferred, are converted to
DISPLAY format.

For numeric data items described with an operational sign without the SIGN
IS SEPARATE clause, the operational sign is displayed as a separate
character immediately following the data.

Note: Rules 15 through 23 pertain to format 2 only.

=t
~

ey
®

Format 2 is used to display data on a workstation terminal calling screen
format services. The UPON phrase must be specified.

Mnemonic-name must also be specified in the SPECIAL-NAMES paragraph
of the Environment Division and must be associated with SYSFORMAT.

Literal-3 must be a nonnumeric literal.

Literal-3 or the content of identifier-3 is made up of a 1- to 8-character name
of the screen format,

If identifier-1 or identifier-2, ... is a group item, the data description entry of
any subordinate item in the group must not contain an OCCURS

|
|
|
|
|
!
!
|
f
|
l
|
DEPENDING clause. |

6-47




Procedure Division

648

‘ 20. If identifier-1 or identifier-2 is described implicitly or explicitly as USAGE l

! other than DISPLAY, no data conversion is performed by the
COBOL-generated object code. If data conversion is required, it must be
specified in the controlling screen format.

21. The ON EXCEPTION phrase must be specified if the mnemonic-name is
declared in the SPECIAL-NAMES paragraph with the CONTROL AREA
clause. The ON EXCEPTION phrase must not be specified if the
mnemonic-name is not described with the CONTROL AREA clause.

22. The ON EXCEPTION phrase is executed when the execution of the
DISPLAY statement is unsuccessful. (See key code 1, 2, 3, or 9 in the "Status
Key 1" column of Table 4-1.)

23. A screen format must be specified for a given workstation before data can be
displayed. A screen format may be specified via job control language or by
the USING phrase of a DISPLAY statement.

Note: Rules 24 through 29 pertain to format 3 only.

screen format services. The UPON phrase must be specified.

25. Mnemonic-name must also be specified in the SPECIAL-NAMES paragraph
of the Environment Division and must be associated with SYSWORK.

26. If identifier-1 or identifier-2, ... is a group item, the data description entry of
any subordinate item in the group must not contain an QCCURS
DEPENDING clause.

27. The ON EXCEPTION phrase must be specified if the mnemonic-name is
declared in the SPECIAL-NAMES paragraph with the CONTROL AREA
clause. The ON EXCEPTION phrase must not be specified if the
mnemonic-name is declared without the CONTROL AREA clause.

DISPLAY statement is unsuccessful. (See key code 1, 2, 3 or 9 in the "Status
Key 1" column of Table 4-1.)

I
|
|
|
|
|
!
|
|
|
|
l
5
{
1
|
|
|
!
I
|
|
!
|
|
|
|
l
!
|
|

l
!
l
|
1
l
|
i
|
i
!
I
i
!
|
i
!
i
I
| 24. Format 3 is used to display data on a workstation terminal without using
|
|
|
|
|
i
l
|
!
I
|
{
i
|
|
l
|
!
l
I
I

28. The ON EXCEPTION phrase is executed when the execution of the
9

29. After the execution of a format 3 DISPLAY statement, the cursor is
L positioned at the start of the next line. g

7004 44590-000




Procedure Division

6.6.12. DIVIDE Statement

Function

The DIVIDE statement divides one numeric data item into others and sets the
values of data items equal to the quotient|and remainder.|

Format1

DIVIDE [identifier-1] INTO identifier-2 [ROUNDED]
literal-1

[[,identifier-3 [ROUNDED] 1 ...|[;ON SIZE ERROR imperative-statement]

Format 2

DIVIDE [identifier-1] INTO [identifier-2] GIVING identifier-3 [ROUNDED]
literal-1 literal-2

[[,identifier-4 [ROUNDED] 1 ...

[;ON SIZE ERROR imperative-statement]

Format 3

DIVIDE [identifier-1] BY [identifier-2] GIVING identifier-3 [ROUNDED]
Literal-1 literal-2

l[,identifier-A [ROUNDED] 1] ...}[;ON SIZE ERROR imperative-statement]

Format 4

DIVIDE [identifier-1] INTO [identifier-2] GIVING identifier-3 [ROUNDED]
literal-1 literal-2

REMAINDER identifier-4 [;ON SIZE ERROR imperative-statement]

Format 5

DIVIDE [identifier-1] BY [identifier-2] GIVING identifier-3 [ROUNDED]
literal-1 literal-2

REMAINDER identifier-4 [;ON SIZE ERROR imperative-statement]

Rules
1. Each identifier must refer to an elementary numeric item, except that any

identifier associated with the GIVING or REMAINDER phrase must refer to
either an elementary numeric item or an elementary numeric-edited item.

7004 4490000 6-49




Procedure Division

6-50

Each literal must be a numeric literal.

The composite of operands, which is the hypothetical data item resulting
from the superimposition of all receiving data items (except the

REMAINDER data item or any’lﬂoating-pointjitems) of a given statement

aligned on their decimal points, must not contain more than 18 digits.

For a description of these functions, see 6.5.1, "ROUNDED phrase;" 6.5.2,
"SIZE ERROR Phrase;" 6.5.4, "Arithmetic Statements;" 6.5.5, "Overlapping

Operands;"jand 6.5.6, "Multiple Results in Arithmetic Statements.” See also

rules 8 through 10 for a discussion of the ROUNDED phrase and the SIZE
ERROR phrase as they pertain to formats 4 and 5.

When format 1 is used, the value of identifier-1 or literal-1 is divided into the
value of identifier-2. The value of the dividend (identifier-2) is replaced by

this quotient;|similarly for identifier-1 or literal-1 and identifier-3, etc.

When format 2 is used, the value of identifier-1 or literal-1 is divided into
identifier-2 or literal-2 and the result is stored in identifier-3,|identifier-4, |

ete. ]

When format 3 is used, the value of identifier-1 or literal-1 is divided by the
value of identifier-2 or literal-2 and the result is stored in identifier-3,
| identifier-4, etc. |

10.

Formats 4 and 5 are used when a remainder from the division operation is
desired, namely identifier-4. The remainder in COBOL is defined as the
result of subtracting the product of the quotient (identifier-3) and the divisor
from the dividend. If identifier-3 is defined as a numeric-edited item, the
quotient used to calculate the remainder is an intermediate field containing
the unedited quotient. If ROUNDED is used, the quotient used to calculate
the remainder is an intermediate field that contains the quotient of the
DIVIDE statement, truncated rather than rounded. When the REMAINDER
phrase is specified, none of the operands may be floating point.

In formats 4 and 5, the accuracy of the REMAINDER data item (identifier-4)
is defined by the calculation described in rule 8. Appropriate decimal
alignment and truncation (not rounding) will be performed for the content of
the data item referenced by identifier-4, as needed.

When the ON SIZE ERROR phrase is used in formats 4 and 5, the following
rules pertain:

a. If the size error occurs on the quotient, no remainder calculation is
meaningful. Thus, the contents of the data items referenced by both
identifier-3 and identifier-4 will remain unchanged.

b. If the size error occurs on the remainder, the content, of the data item
referenced by identifier-4 remains unchanged. However, as with other
instances of multiple results of arithmetic statements, the user will
have to determine which situation has actually occurred.

7004 4490-000



Procedure Division

6.6.13. ENABLE Statement

Function

The ENABLE statement notifies the message control system (MCS) to allow data
transfer between specified output queues and destinations for output or between
specified sources and input queues for input.

Format

literal-1

ENABLE {INPUT |[TERMINAL] } cd-name WITH KEY {identifier-1}

Rules

1.

2.

OUTPUT

Cd-name must reference an input CD when the INPUT phrase is specified.

Cd-name must reference an output CD when the OUTPUT phrase is
specified.

Literal-1 or the data item referenced by identifier-1 must be defined as
alphanumeric, and its length must not exceed 10 characters.

The ENABLE statement provides a logical connection between the MCS and
the specified sources or destinations. When this logical connection is already
in existence, or is to be handled by some other means external to this
program, the ENABLE statement is not required in this program. The
logical path for the transfer of data between the COBOL programs and the
MCS is not affected by the ENABLE statement.

When the INPUT phrase with the optional word TERMINAL is specified,
the logical path between the source and all associated queues and subqueues
which are already enabled is activated. Only the content of the data item
referenced by data-name-7 (SYMBOLIC SOURCE) of the area referenced by
cd-name is meaningful to the MCS.

7004 4490-000

When the INPUT phrase[without the optional word TERMINALJis specified,
the logical paths for all of the sources associated with the queue and
subqueues specified by the contents of data-name-1 (SYMBOLIC QUEUE)
through data-name-4 (SYMBOLIC SUB-QUEUE-3) of the area referenced
by cd-name are activated.

When the QUTPUT phrase is specified, the logical path for destination,

] the logical paths for all destinations |specxf1ed by the content of the data item
referenced by data-name-5 (SYMBOLIC DESTINATION) of the area
referenced by cd-name is activated.

6-51




Procedure Division

8. Literal-1 or the content of the data item referenced by identifier-1 is
matched with a password built into the system. The ENABLE statement is
honored only if literal-1 or the content and the size of the data item
referenced by identifier-1 matches the system password. When literal-1 or
the content and the size of the data item referenced by identifier-1 does not
match the system password, the value of the STATUS KEY item in the area
referenced by cd-name is updated.

The length of a password ranges from 1 to 10 characters inclusive.

| 6.6.14. EXHIBIT Statement i

Function

The EXHIBIT statement displays the current values of data items at selected
points in the program% W@@

Format ng *‘/g Zw

CHANGED NAMED nonnumeric-literal

EXHIBIT {NAMED ] {identifier } .

CHANGED

Rules

1. Anidentifier length may not exceed 256 character positions.

3. An EXHIBIT statement may appear anywhere in the Procedure Division or
in a debugging packet.

4. Variable-length identifiers are not permitted with the CHANGED or
CHANGED NAMED options.

5. The NAMED option displays the names of the identifiers specified with their
current values and any nonnumeric literals specified.

6. The CHANGED NAMED option displays the names of the identifiers
specified with their current value only if the value has changed since the
EXHIBIT statement was last encountered. Any nonnumeric literals are
displayed on every encounter.

7. The CHANGED option displays the value of the identifier specified, but only
if the value has changed since the EXHIBIT statement was last encountered.
L Any nonnumeric literals are displayed on every encounter. ]

|
| |
| |
| 1
| I
| l
' |
' |
| 1
' 1
| |
| |
| |
| |
| |
| |
§ 2. An identifier may not be an index-data-item. |
| |
' i
|
| l
| |
; |
| 1
| |
1 !
i |
| i
; |
l
| |

6-52 7004 4490-000

Ty



Procedure Division

considered changed.
9. Values of identifiers are displayed on SYSLST (4.3.3).

10. If two EXHIBIT statements each specify either the CHANGED or
CHANGED NAMED option and the same identifier, the change in value of
L the identifier is associated independently with each of the two statements. N

6.6.15EXIT Statement

Function

The EXIT statement provides a common end point for a series of procedures or
marks the logical end of a called program.

Format
EXIT [PROGRAMI
Rules

1. The EXIT statement must appear in a sentence by itself. It must be preceded
by a paragraph-name and be the only sentence in the paragraph.

2. An EXIT statement without the optional word PROGRAM serves only to
enable the user to assign a procedure-name to a given point in a program. It
has no other effect on the compilation or execution of the program.

3. An execution of an EXIT PROGRAM statement in a called program causes
control to be passed to the calling program. An EXIT PROGRAM statement
in a program that is not called is executed like an EXIT statement without
the PROGRAM phrase.

6.6.16. GO TO Statement

Function

The GO TO statement causes control to be transferred from one part of the
Procedure Division to another.

A format 3 GO TO statement is used as a special exit from a USE LABEL |

Format 1l

GO TO procedure-name-1

7004 4490-000 653




Procedure Division

6-54

Format 2

GO TO procedure-name-1 [,procedure-name-2] ... ,procedure-name-n

DEPENDING ON identifier

Identifier is the name of a numeric elementary item described without any
positions to the right of the assumed decimal point.

A paragraph that is referenced by an ALTER statement must consist of only
a paragraph header followed by a format 1 GO TO statement.

A format 1 GO TO statement without procedure-name-1 must be the only
statement in the paragraph.

If a GO TO statement represented by format 1 appears in a consecutive
sequence of imperative statements within a sentence, it must appear as the
last statement in that sequence.

When a GO TO statement represented by format 1 is executed, control is
transferred to procedure-name-1 or to another procedure-name if the GO TO
statement has been modified by an ALTER statement.

If procedure-name-1 is not specified in fermat 1, an ALTER statement
referring to this GO TO statement must be executed prior to the execution of
this GO TO statement.

When a GO TG statement represented by format 2 is executed, control is
transferred to procedure-name-1, procedure-name-2, etc., depending on the
value of the identifier being 1, 2, ..., n. If the value of the identifier is
anything other than the positive or unsigned integers 1, 2, ..., n, then no
transfer occurs and control passes to the next statement in the normal
sequence for execution.

A format 3 GO TO statement can appear only within a USE LABEL 1
procedure.

When an input tape file is being processed, a format 3 GO TO statement is a
request to the input/output control system to make the next standard USE
LABELrecord available and return control to the beginning of the same USE
LABEL procedure for further checking of labels. The USE LABEL procedure
is reentered only if there is another standard USE LABEL to be processed.

Hence, there need not be a program path that flows through the last
statement in the USE LABEL procedure.

7004 4490-000




Procedure Division

S —

| requests the input/output control system to write the standard USE LABEL
| and return control to the beginning of the same USE LABEL procedure for

| further label creation. After the last standard USE LABEL is created, a

| program path must be provided that flows through the last statement of the

|
l
l
USE LABEL procedure. |

6.6.17. IF Statement
Function

The IF statement causes a condition to be evaluated. (See 6.4.) The subsequent
action of the object program depends on whether the value of the condition is true
or false.

Format

IF conditf&n"[ITm&N

statement-1 ;ELSE statement- 2
NEXT SENTENCE sELSE NEXT SENTENCE

Rules

1. Statement-1 and statement-2 represent eitherlan imperative statement!or a
| conditional statement. Either may be followed by a conditional statement.

2.  The ELSE NEXT SENTENCE phrase may be omitted if it immediately
precedes the terminal period of the sentence.

3. When an IF statement is executed, the following transfers of control occur:

a. If the condition is true, statement-1 is executed, if specified. If
statement-1 contains a procedure branchingstatement,
control is explicitly transferred in accordance with the rules of that
statement. If it does not, the ELSE phrase, if specified, is ignored and
control passes to the next executable sentence.

b. If the condition is true and the NEXT SENTENCE phrase is specified
instead of statement-1, the ELSE phrase, if specified, is ignored and
control passes to the next executable sentence.

¢. If the condition is false, statement-1 or its surrogate NEXT SENTENCE
is ignored, and statement-2, if specified, is executed. If statement-2
contains a procedure branchingstatement, control is
explicitly transferred in accordance with the rules of that statement. If
it does not, control passes to the next executable sentence. If the ELSE
statement-2 phrase is not specified, statement-1 is ignored and control
passes to the next executable sentence.

7004 4490-000 6-55




Procedure Division

d. If the condition is false, and the ELSE NEXT SENTENCE phrase is

specified, statement-1 is ignored, if specified, and control passes to the
next executable sentence.

4. IF statement-1 or statement-2 contains an IF statement, the IF statement is
said to be nested.

5. IF statements within IF statements may be considered as paired IF and
ELSE combinations, proceeding from left to right. Thus, any ELSE
encountered is considered to apply to the immediately preceding IF that has
not been already paired with an ELSE.

6.6.18. INSPECT Statement

Function

The INSPECT statement provides the capability to perform the following

operations on occurences of single characters[or groups of charactersjin a data
item:

e Tally (format 1)

*  Replace (format 2)

e  Tally and replace (format 3)
Format 1

INSPECT identifier-1 TALLYING

,identifier-2 FOR | ,| [ALL identifier-3 [::] [::}
LEADING[ }Jliteral-1

CHARACTERS
BEFORE] INITIAL [identifier-4
AFTER literal-2
Format 2

INSPECT identifier-1 REPLACING

literal-4 AFTER literal-5
,ALL ,[identifier-5] BY [identifier-6 r
LEADING literal-3 literal-4 ‘...

FIRST
BEFOREY INITIAL [identifier-7
AFTER [ literal-5

[ CHARACTERS BY {identifier-é} { {BEFORE} INITIAL {identifier‘7}

6-56 7004 4490-000

,,,,,,,,




Procedure Division

Format 3

INSPECT identifier-1 TALLYING

,identifier-2 FOR ,{

REPLACING

[ CHARACTERS BY [identifier-6
literal-4

ALL
LEADING

CHARACTERS

identifie
literal-1

AFTER

BEFORE
AFTER

[{BEFORE} INITIAL

} INITIAL {

,[aLL
LEADING
FIRST

identifier-5
literal-3

BEFORE
AFTER

BY [identifier-6
literal-4

INITIAL [identifier
literal-5

r-B}}

{identifier-4

literal-2

identifier-7
literal-5

j

=

.7}}

)
H

] |

Rules

7004 4490-000

Identifier-1 must refer to either a group item or any category of elementary
item described either implicitly or explicitly as USAGE IS DISPLAY.

Identifier-3 ... identifier-n must refer to either an elementary alphabetic,
alphanumeric, or numeric item described either implicitly or explicitly as
USAGE IS DISPLAY.

Each literal must be nonnumeric and may be any figurative constant except
ALL.

Literal-1, literal-2, literal-3, literal-4 and literal-5, and the data items
referenced by identifier-3, identifier-4, identifier-5, identifier-6, and

identifier-7 must be one character in length in Level 1.|Except as specifically
| noted in the rules, this restriction on length does not apply to Level 2.

Identifier-2 must refer to an elementary numeric data item (formats 1
and 3).

If either literal-1 or literal-2 is a figurative constant, the figurative constant
refers to an implicit 1-character data item (formats 1 and 3).

The size of the data referenced by literal-4 or identifier-6 must be equal to
the size of the data referenced by literal-3 or identifier-5. When a figurative
constant is used as literal-4, the size of the figurative constant is equal to the
size of literal-3 or the size of the data item referenced by identifier-5
(formats 2 and 3).

6-57




Procedure Division

6-58

10.

11.

12

13.

14.

When the CHARACTERS phrase is used, literal-4, literal-5 or the size of the
data item referenced by identifier-6, identifier-7 must be one character in
length (formats 2 and 3).

When a figurative constant is used as literal-3, the data referenced by
literal-4 or identifier-6 must be one character in length (formats 2 and 3).

Inspection, which includes the comparison cycle, the establishment of
boundaries for the BEFORE or AFTER phrase, and the mechanism for
tallying or replacing, begins at the leftmost character position of the data
item referenced by identifier-1, regardless of its class, and proceeds from
left to right to the rightmost character position as described in rules 13
through 15,

For use in the INSPECT statement, the content of the data item referenced
by identifier-1, identifier-3, identifier-4, identifier-5, identifier-6, or
identifier-7 is treated as follows:

a. If an identifier is described as alphanumeric edited, the INSPECT
statement treats the content of the identifier as a character-string.

b. If an identifier is described as alphanumeric edited, numeric edited, or
unsigned numeric, the data item is inspected as though it had been
redefined as alphanumeric (refer back to rule 11a) and the INSPECT
statement had been written to reference the redefined data item.

¢. If an identifier is described as signed numeric, the data item is
inspected as though it had been moved to an unsigned numeric data
item of the same length and rule 11b had been applied. (See 6.6.20,
"MOVE Statement.")

In rules 13 through 20, all references to literal-1 literal-2, literal-3, literal-4,
and literal-5 apply equally to the content of the data item referenced by
identifier-3, identifier-4, identifier-5, identifier-6, and 1dentifier-7,
respectively.

During inspection of the content of the data item referenced by identifier-1,
each properly matched occurrence of literal-1 is tallied (formats 1 and 3) and
each properly matched occurrence of literal-3 is replaced by literal-4 (formats
2 and 3).

The comparison operation to determine the occurrences of literal-1 to be
tallied or occurrences of literal-3 to be replaced occurs as follows:

a. The operands of the TALLYING and REPLACING phrases are
considered in the order they are specified in the INSPECT statement
from left to right. The first literal-1, literal-3 is compared to an equal
number of contiguous characters, starting with the leftmost character
position in the data item referenced by identifier-1. Literal-1, literal-3,
and that portion of the content of the data item referenced by
identifier-1 match only if they are equal, character for character.

7004 4490-000



Procedure Division

7004 4490-000

If no match occurs in the comparison of the first literal-1, literal-3, the
comparison is repeated with each successive literal-1, literal-3, if any,
until either a match is found or there is no next successive literal-1,
literal-3. When there is no next successive literal-1, literal-3, the
character position in the data item referenced by identifier-1
immediately to the right of the leftmost character position considered in
the last comparison cycle is considered as the leftmost character
position, and the comparison cycle begins again with the first literal-1,
literal-3.

Whenever a match occurs, tallying or replacing takes place as described
in rules 17 through 19. The character position in the data item
referenced by identifier-1 immediately to the right of the rightmost
character position that participated in the match is now considered to be
the leftmost character position of the data item referenced by
identifier-1, and the comparison cycle starts again with the first
literal-1, literal-3.

The comparison operation continues until the rightmost character
position of the data item referenced by identifier-1 has participated in a
match or has been considered as the leftmost character position. When
this occurs, inspection is terminated.

If the CHARACTERS phrase is specified, an implied 1-character
operand participates in the cycle described in rules 14a through 144,
except that no comparison to the content of the data item referenced by
identifier-1 takes place. This implied character is considered always to
match the leftmost character of the content of the data item referenced
by identifier-1 participating in the current comparison cycle.

15. The comparison operation defined in rule 14 is affected by the BEFORE and
AFTER phrases as follows:

a.

If the BEFORE and AFTER phrase is not specified, literal-1, literal-3 or
the implied operand of the CHARACTERS phrase participates in the
comparison operation as described in rule 14.

If the BEFORE phrase is specified, the associated literal-1, literal-3, or
the implied operand of the CHARACTERS phrase participates only in
those comparison cycles that involve that portion of the content of the
data item referenced by identifier-1 from its leftmost character position
up to, but not including, the first occurrence of literal-2, literal-5 within
the content of the data item referenced by identifier-1. The position of
this first occurrence is determined before the first cycle of the
comparison operation described in rule 14 is begun. If, on any
comparison cycle, literal-1, literal-3, or the implied operand of the
CHARACTERS phrase is not eligible to participate, it is considered not
to match the content of the data item referenced by identifier-1. If there
is no occurrence of literal-1, literal-5 within the content of the data item

6-59




Procedure Division

referenced by identifier-1, its associated literal-1, literal-3, or the
implied operand of the CHARACTERS phrase participates in the
comparison operation as though the BEFORE phrase had not been
specified.

c. If the AFTER phrase is specified, the associated literal-1, literal-3, or
the implied operand of the CHARACTERS phrase may participate only
in those comparison cycles that involve that portion of the content of the
data item referenced by identifier-1 from the character position
immediately to the right of the rightmost character position of the first
occurrence of literal-2, literal-5 within the content of the data item
referenced by identifier-1 and the rightmost character position of the
data item referenced by identifier-1. The position of the first occurrence
is determined before the first cycle of the comparison operation
described in rule 14 is begun. If, on any comparison cycle, literal-1,
literal-3 or the implied operand of the CHARACTERS phrase is not
eligible to participate, it is considered not to match the content of the
data item referenced by identifier-1. If there is no occurrence of literal-2,
literal-5 within the content of the data item referenced by identifier-1,
its associated literal-1, literal-3, or the implied operand of the
CHARACTERS phrase is never eligible to participate in the comparison
operation,

Note: Rules 16 and 17 pertain to format 1 only.

16. The content of the data item referenced by identifier-2 is not initialized by
the execution of the INSPECT statement.

17. The rules for tallying are as follows:

a. If the ALL phrase is specified, the content of the data item referenced
by identifier-2 is incremented by 1 for each occurrence of literal-1
matched within the content of the data item referenced by identifier-1.

b. If the LEADING phrase is specified, the content of the data item
referenced by identifier-2 is incremented by 1 for each contiguous
occurrence of literal-1 matched within the content of the data item
referenced by identifier-1, provided that the leftmost such occurrence is
at the point where comparison began in the first comparison cycle in
which literal-1 was eligible to participate.

c. If the CHARACTERS phrase is specified, the content of the data item
referenced by identifier-2 is incremented by 1 for each character
matched (see rule 14e) within the content of the data item referenced by
identifier-1.

6-60 7004 4490-000



Procedure Division

Note: Rules 18 and 19 pertain to format 2 only.

18. The required words ALL, LEADING, and FIRST are adjectiveslthat apply to
I each succeeding BY phrase until the next adjective appears.

19. The rules for replacement are as follows:

a. When the CHARACTERS phrase is specified, each character matched
(see rule 14e) in the content of the data item referenced by identifier-1
is replaced by literal-4.

b. When the adjective ALL is specified, each occurrence of literal-3
matched in the content of the data item referenced by identifier-1 is
replaced by literal-4.

c¢. When the adjective LEADING is specified, each contiguous occurrence
of literal-3 matched in the content of the data item referenced by
identifier-1 is replaced by literal-4, provided that the leftmost
occurrence is at the point where comparison began in the first
comparison cycle in which literal-3 was eligible to participate.

d. When the adjective FIRST is specified, the leftmost occurrence of
literal-3 matched within the content of the data item referenced by
identifier-1 is replaced by literal-4.

Note: Rule 20 pertains to format 3 only.

20. A format 3 INSPECT statement is interpreted and executed as though two
successive INSPECT statements specifying the same identifier-1 had been
written with one statement being a format 1 statement with TALLYING
phrases identical to those specified in the format 3 statement, and the other
statement being a format 2 statement with REPLACING phrases identical
to those specified in the format 3 statement. The rules given for matching
and counting apply to the format 1 statement and the rules given for
matching and replacing apply to the format 2 statement.

Example 1

INSPECT word TALLYING count for LEADING "L" BEFORE INITIAL MAM,
count-1 FOR LEADING "A™ BEFORE INITIAL "L".

where:

word = LARGE, count = 1, count-1 =0
word = ANALYST, count = @, count-1 = 1

7004 4490-000 6-61




Procedure Division

Example 2

INSPECT word TALLYING count FOR ALL "L®", REPLACING LEADING "A"
BY “E" AFTER INITIAL ®L®,

where:

word = CALLAR, count =
word = SALAMI, count
word = LATTER, count =

Example 3

INSPECT word REPLACING

2, word = CALLAR
1, word = SALEMI
1, word = LETTER

ALL "A" BY "G"™ BEFORE INITIAL wmXm,

where:
word = ARXAX, word = GRXAX
word = HANDAX, word HGNDGX
Example 4

INSPECT word TALLYING count FOR CHARACTERS AFTER INITIAL #J®

REPLACING ALL M"A®" BY

where:

IIBII_

word = ADJECTIVE, count = 6, word = BDJECTIVE

word = JACK, count = 3,

word = JUJMAB, count =
Example 5

INSPECT word REPLACING
where:

word = RXXBQWY, word =

word = YZACDWBR, word =

word = RAWRXEB, word =
Example 6

INSPECT word REPLACING
where:

word before: 12 X
word after: BBBSB

6-62

word = JBCK
5, word = JUJMBB

ALL #X® BY Uyw, wBw By uzw, wym By uQu AFTER INITIAL "RY.

RYYZQQY
YZACDWZR
RAQGRYEZ

CHARACTERS BY “B" BEFORE INITIAL UA™,

ZABCD
BABCD

7004 4490-000



Procedure Division

6.6.19. MERGE Statement

Function

The MERGE statement combines twe or more identically sequenced files on a set
of specified keys and, during the process, makes records available, in merge
order, to an output procedure or to an output file.

Format

MERGE file-name-1 ON [ASCENDING | KEY data-name-1 [,data-name-2]...
DESCENDING

ON [ASCENDING | KEY data-name-3 [,data-name-4)... ...
DESCENDING

[COLLATING SEQUENCE IS alphabet-namel

USING file-name-2, file-name-3[,file-name-41...

THRU
GIVING file-name-5

[OUTPUT PROCEDURE IS section-name-1 {{THROUGH} section-name-Z}]

Rules

i. File-name-1 must be described in a sort-merge file description entry in the
Data Division.

2. Section-name-1 represents the name of an output procedure.

3. File-name-2, file-name-3, file-name-4, and file-name-5 must be defined
implicitly or explicitly as having sequential organization in the
FILE-CONTROL paragraph and must be described in a file description
entry, not in a sort-merge file description entry in the Data Division. The
actual size of the logical records described for file-name-2, file-name-3,
file-name-4, and file-name-5 must be equal to the actual size of the logical
record described for file-name-1. If the data descriptions of the elementary
items that make up these records are not identical, it is the programmer’s
responsibility to describe the corresponding records so as to cause an equal
number of character positions to be allocated for the corresponding records.

4.  The words THRU and THROUGH are equivalent.

5. Data-name-1, data-name-2, data-name-3, and data-name-4 are KEY
data-names and are subject to the following rules:

a. The data items identified by KEY data-names must be described in
records associated with file-name-1.

b. KEY data-names may be qualified.

c. The data items identified by KEY data-names must not be
variable-length items.

7004 4490-000 663




Procedure Division

10.

11.

d. If file-name-1 has more than one record description, the data items
identified by KEY data-names need be described in only one of the
record descriptions.

e. None of the data items identified by KEY data-names can be described
by an entry that either contains an OCCURS clause or is subordinate to
an entry containing an OCCURS clause.

No more than one file-name from a multifile reel can appear in the MERGE
statement.

File-names must not be repeated within the MERGE statement. The
file-names specified in the USING phrase must not exceed 15.

MERGE statements may appear anywhere except in the declaratives portion
of the Procedure Division or in an input or output procedure associated with
a SORT or MERGE statement.

The MERGE statement will merge all records contained on file-name-2, file-
name-3, and file-name-4. The files referenced in the MERGE statement
must not be open at the time the MERGE statement is executed. These files
are automatically opened and closed by the merge operation with all implicit
functions performed, such as the execution of any associated USE
procedures. The terminating function for all files is performed as if a CLOSE
statement without optional phrases had been executed for each file.

The data-names following the word KEY are listed from left to right in the
MERGE statement in order of decreasing significance, disregarding how
they are divided into KEY phrases. In the format, data-name-1 is the major
key, data-name-2 is the next most significant key, etc.

®  When the ASCENDING phrase is specified, the merged sequence will
be from the lowest value of the contents of the data items identified by
the KEY data-names to the highest value, according to the rules for
comparison of operands in a relational condition.

®  When the DESCENDING phrase is specified, the merged sequence will
be from the lowest value of the contents of the data items identified by
the KEY data-names to the highest value, according to the rules for
comparison of operands in a relational condition.

The collating sequence that applies to the comparison of the nonnumeric key
data items specified is determined in the following order of precedence:

a. First, the collating sequence established by the COLLATING
SEQUENCE phrase, if specified, in that MERGE statement.

b. Second, the collating sequence established as the program collating
sequence.

6-64

7004 4490-000



Procedure Division

12. The output procedure must consist of one or more sections that appear
contiguously in a source program and do not form a part of any other
procedure. In order to make merged records available for processing, the
output procedure must include the execution of at least one RETURN
statement. Control must not be passed to the output procedure except when
a related SORT or MERGE statement is being executed. The output
procedure may consist of any procedures needed to select, modify, or copy the
records that are being returned one at a time in merged order from file-
name-1. The rules for procedural statements within the output procedure are
as follows:

a. The output procedure must not contain any transfers of control to points
outside the output procedure; ALTER, GO TO, and PERFORM
statements in the output procedure are not permitted to refer to
procedure-names outside the output procedure. COBOL statements are
allowed that will cause an implied transfer of control to declaratives.

b. The output procedures must not contain any SORT,MERGE,|or CALL
statements.

¢. The remainder of the Procedure Division must not contain any transfers
of control to points inside the output procedures; ALTER, GO TO, and
PERFORM statements in the remainder of the Procedure Division are
not permitted to refer to procedure-names within the output procedures.

13. If an output procedure is specified, control passes to it during execution of
the MERGE statement. The compiler inserts a return mechanism at the end
of the last section in the output procedure. When control passes the last
statement in the output procedure, the return mechanism provides for
termination of the merge and then passes control to the next executable
statement after the MERGE statement. Before entering the output
procedure, the merge procedure reaches a point at which it can select the
next record in merged order when requested. The RETURN statements in
the output procedure are the requests for the next record.

14. Segmentation (Section 10) can be applied to programs containing the
MERGE statement under the following conditions:

¢ If the MERGE statement appears in a section that is not in an
independent segment, the output procedure referenced by that MERGE
statement must appear in one of the following ways:

- Totally within nonindependent segments

- Wholly contained in a single independent segment

7004 44950-000 6-65




Procedure Division

15.

16.

17.

18.

e If a MERGE statement appears in an independent segment, then any
output procedure referenced by that MERGE statement must be
contained in one of the following ways:

- Totally within nonindependent, segments

- Wholly within the same independent segment as the MERGE
statement

If the GIVING phrase is specified, all the merged records in file-name-1 are
automatically written on file-name-5 as the implied output procedure for this
MERGE statement.

In the case of an equal compare (according to the rules for comparison of
operands in a relation condition) on the contents of the data items identified
by all the KEY data-names between records from two or more input files
(file-name-2, file-name-3, file-name-4, ...), the records are written on file-
name-5 or returned to the output procedure, depending on the phrase
specified, in the order that the associated input files are specified in the
MERGE statement.

The results of the merge operation are predictable only when the records in
the files referenced by file-name-2, file-name-3, ..., are ordered as described
in the ASCENDING or DESCENDING KEY clause associated with the
MERGE statement.

The mode specified in the implementor-name of the ASSIGN clause for
file-name-2, file-name-3, file-name-4, or file-name-5 must be the same as the
mode specified for file-name-1.

6.6.20. MOVE Statement

Function

The MOVE statement transfers data to one or more data areas in accordance

with

the rules of editing.

Format 1

MOVE

identifier-1] I0 identifier-2 [,identifier-31 ...
literal

Format 2

MOVE {CORRESPONDING} identifier-1 10 identifier-2

CORR

6-66

7004 4490-000

AT



Procedure Division

Rules

Identifier-1 and literal represent the sending area; identifier-2,
identifier-3, ..., represent the receiving area.

CORR is an abbreviation for CORRESPONDING.

When the CORRESPONDING phrase is used, both identifiers must be group
items.

An index data item cannot appear as an operand of a MOVE statement. (See
"USAGE Clause" under 5.3.3.)

If the CORRESPONDING phrase is used, selected items within identifier-1
are moved to selected items within identifier-2, according to the rules given
in 6.5.3. The results are the same as if the user had referred to each pair of
corresponding identifiers in separate MOVE statements.

7004 4490-000

The data designated by the literal or identifier-1 is moved first to identifier-
2, then to identifier-3, ... . The rules referring to identifier-2 also apply to the
other receiving area.

Any move operation in which the sending and receiving items are both
elementary items is an elementary move. Every elementary item belongs to
one of the following categories: numeric, alphabetic, alphanumeric, numeric
edited, or alphanumeric edited (see "PICTURE Clause" under 5.3.3).
Numeric literals belong to the category numeric, and nonnumeric literals
belong to the category alphanumeric. The figurative constant ZERO belongs
to the category numeric. The figurative constant SPACE belongs to the
category alphabetic. All other figurative constants belong to the category
alphanumeric.

The following rules apply to an elementary move between these categories:

a. The figurative constant SPACE, a numeric-edited, alphanumeric-edited,
or alphabetic data item must not be moved to a numeric or
numeric-edited data item.

b. A numeric literal, the figurative constant ZERO, a numeric data item, or
a numeric-edited data item must not be moved to an alphabetic data

item.

¢. A noninteger numeric literal or a noninteger numeric data item must
not be moved to an alphanumeric or alphanumeric-edited data item.

d. All other elementary moves are legal and are performed according to
rule 8.

6-67




Procedure Division

8. Any necessary conversion of data from one form of internal representation to
another takes place during legal elementary moves, along with any editing
specified for the receiving data item:

a. When an alphanumeric-edited or alphanumeric item is a receiving item,
alignment and any necessary space filling takes place as defined in 2.5.
If the size of the sending item is greater than the size of the receiving
item, the excess characters are truncated on the right after the receiving
item is filled. If the sending item is described as being signed numeric,
the operational sign will not be moved,; if the operational sign occupied a
separate character position (see "SIGN Clause" under 5.3.3), that
character will not be moved and the size of the sending item will be
considered to be one less than its actual size (in terms of standard data
format characters).

b. When a numeric or numeric-edited item is the receiving item, alignment
by decimal point and any necessary zero-filling takes place as defined in
2.5, except where zeroes are replaced because of editing requirements.

e When a signed numeric item is the receiving item, the sign of the
sending item is placed in the receiving item (see "SIGN Clause"
under 5.3.3). The representation of the sign is converted as
necessary. If the sending item is unsigned, a positive sign is
generated for the receiving item.

¢ When an unsigned numeric item is the receiving item, the absolute
value of the sending item is moved and no operational sign is
generated for the receiving item.

e When a data item described as alphanumeric is the sending item,
data is moved as if the sending item were described as an unsigned
numeric integer.

c. When a receiving field is described as alphabetic, justification and any
necessary space-filling takes place (see 2.5). If the size of the sending
item is greater than the size of the receiving item, the excess characters
are truncated on the right.

9.  Any move that is not an elementary move is treated as an alphanumeric-to-
alphanumeric elementary move, except that there is no conversion of data
from one form of internal representation to another. In such a move, the
receiving area will be filled without consideration for the individual
elementary or group items contained within either the sending or receiving
area, except as noted in rule 15 of the OCCURS clause (see "OCCURS
Clause” under 5.3.3).

10. Table 6-6 summarizes the validity of the various types of MOVE statements.
The notes indicate the rules that prohibit the move or describe the behavior
of a legal move.

6-68 7004 4490-000



Procedure Division

Table 6-6. Permissible MOVE Statement Data Transfers

Receiving Field

Source Field GR [AL |AN |ED |BI |NE |ANE|ID |EF |IF
L IR TR O S 1 O B
Group (GR) YILY([Y | Y]Y|Y|]Y]Y Y Y
Alphabetic (AL) Y Y Y N N N Y N N N
. 41 4 4 Ll 4 4
Alphanumeric (AN) Y| Y| Y| YLl Y] Y | Y |Y]Y]Y
. 2
External decimal (ED) YIN[Y | Y [Y | Y[Y|Y]Y]|Y
. 2
Binary (BI) Y| N YL Y LY | Y| YL|Y LYY
Numeric edited (NE) Y[ NJY | N|NIN|Y]|[N]NI]N
Alphanumeric edited (ANE) Y| Y] Y| N|[N]|]N]Y]|N|[N]|N
. 31 3] .3 31 3] .3
ZEROS (numeric or Y N Y Y Y Y Y Y Y Y
alphanumeric)
SPACES (AN) Y Y Y N N N Y N N N
51 51 5 5
ALL "character® Y[ Y Y YL Y [ Y[ Y] Y] N]|N
- . 2
Numeric literal YINJY | YL Y Y Y Yy [Yyjty
. - 5 .51 .5 5
Nonnumeric literal (NNL) Y| Y[ Y[ Y |[Y|[Y]Y]Y]|N|N
. 2
Internal decimal (ID) Y[ N|Y[Y[|[Y | Y] Y|]Y]Y]|Y
External floating point (EF) Y| N|N]Y|[Y|Y [N]JY]Y|Y
Internal floating point (IF) YN[ N]JYLY Y [ N]JTY | YY
Floating point literal Y NJNLY Y Y PN Y Y LY

7004 4490-000

Legend: Y - Denotes valid move
N - Denotes invalid move
Notes: 1

Move without conversion (like AN to AN)

2 Only if the decimal point is at the right of the least

significant digit
Numeric move

3
4 The alphanumeric field is treated as an ED (integer) field.
5

The literal must consist only of numeric characters.

6-69




Procedure Division

6.6.21. MULTIPLY Statement

6-70

Function

The MULTIPLY statement causes numeric data items to be multiplied and sets
the values of data items equal to the results.

Format1

MULTIPLY [identifier-1] BY identifier-2 [ROUNDED]
literal-1

[,identifier-3 [ROUNDED] 1 ...| [;ON SIZE ERROR imperative-statement]

Format 2

MULTIPLY f[identifier-1] BY [identifier-2] GIVING identifier-3 [ROUNDED]
literal-1 literal-2

[,identifier-4 [ROUNDED] 1 ...|[;ON SIZE ERROR imperative-statement]

Rules
1. Each identifier must refer to a numeric elementary item, except that in
format 2 each identifier following the word GIVING must refer to either an

elementary numeric item or an elementary numeric-edited item.

2. Each literal must be a numeric literal.

3. The composite of operands, which is that hypothetical data item resulting
from the superimposition of all fixed-point receiving data items of a given
statement aligned on their decimal points, must not contain more than 18
digits.

4. See 6.5.1,"ROUNDED Phrase;" 6.5.2, "SIZE ERROR Phrase;" 6.5.4,

"Arithmetic Statements;" 6.5.5, "Overlapping Operands;’|and 6.5.6, "Multiple |

| Results in Arithmetic Statements." |

5. When format 1 is used, the value of identifier-1 or literal-1 is multiplied by
the value of identifier-2. The value of the multiplier (identifier-2) is replaced
by this produet;|similarly for identifier-1 or literal-1 and identifier-3, etc. |

6. When format 2 is used, the value of identifier-1 or literal-1 is multiplied by
identifier-2 or literal-2 and the result is stored in identifier-3,jidentifier-4,
[ete.]

7004 4490-000



Procedure Division

[6.6.22. ON Statement

Function

The ON statement is a conditional statement that specifies both the condition to
be met and the statements to be executed.

Format

ON integer-1 [AND EVERY integer-2] [UNTIL integer-3]
statement-1 ELSE ([statement-2
NEXT SENTENCE NEXT SENTENCE
Rules

1. Integer-1, integer-2, and integer-3 are positive numeric literals.

2. Statement-1 and statement-2 represent imperative statements.

precedes the terminal period of the sentence.

4. A counter is associated with each ON statement. Each time the path of
control reaches the ON statement, the counter is advanced by one and the
count condition is evaluated. Statement-1 is executed when the value of the
counter is equal to integer-1 or integer-1 + (m * integer-2), but less than
integer-3 (where m is any positive integer or zero). If the counter is not
equal, statement-2 is executed.

5. If the ELSE phrase is omitted, or ELSE NEXT SENTENCE is specified and
the counter is unequal, statement-1 is ignored and control passes to the
sequence following the ON statement.

6. When integer-3 is not specified, no upper limit is assumed.

7.  When integer-2 is omitted, but integer-3 is specified, integer-2 is assumed to

|
|
I
|
|
l
I
|
l
|
i
|
!
!
i
|
l
|
: 3. The ELSE NEXT SENTENCE phrase may be omitted if it immediately
I
|
|
|
|
|
|
|
l
|
!
l
|
§ have the value 1.
|
|
|

7004 4490-000 671




Procedure Division

6.6.23. OPEN Statement

Function

The
and

Format

OPEN

Format

OPEN

Rules

672

OPEN statement initiates the processing of files. It also performs checking
writing of labels and other input/output operations.

o & 4Ry .
1 (Sequential and @él\j[]Flles)
INPUT file-name-1 REVERSED ,file-name-2 |REVERSED e [:::
WITH NO REWIND WITH NO REWIND
OUTPUT file-name-3| [WITH NO REWIND] [,file-name-4 [WITH NO REWIND] 1
1-0 file-name-5 [,file-name-6] ...
| |EXTEND file-name-7 [,file-name-8] ...

2 (Relative, Indexed, and ES:@Files)

INPUT file-name-1 [,file-name-2} ...
OUTPUT file-name-3 [,file-name-4]1 ...
1-0 file-name-5 [,file-name-6] ...

The OPEN statement must not reference a sort or merge file.

The successful execution of an OPEN statement determines the availability
of the file and results in the file being in an open mode.

The successful execution of an OPEN statement makes the associated record
area available to the program, but does not obtain or release the first data
record.

Upon successful execution of an OPEN statement with the OUTPUT phrase

An OPEN statement must be successfully executed before execution of any of
the permissible input/output statements.

Table 6-7 indicates the permissible input/output statements for each open
mode for the various file organizations and access modes.

7004 4490-000




Procedure Division

7004 4490-000

Table 6-7. Permissible Input/Output Statements for Each OPEN Mode

OPEN Mode
File File Access
Organization Mode Statement|Input|Output| 1-0 |Extend
Sequential READ X X
and Sequential [WRITE X X
r=1 REWRITE X
SAM
L_1
Relative, READ X X
Indexed, WRITE X
and Sequential |REWRITE X
r— - START X X
ISAM DELETE X*
READ X X
WRITE X* X
Random REWRITE X
START
DELETE X*
READ X X
WRITE X X
Dynamic REWRITE X
START X X
DELETE X*

F—=1
*Not permitted forLISAM

files.

If standard system label records are specified for the file, the beginning

labels are processed as follows:

a.

When the INPUT phrase is specified, the execution of the OPEN
statement causes the system labels to be checked in accordance with the
system-specified conventions for input label checking.

When the OUTPUT phrase is specified, the execution of the OPEN
statement causes the system labels to be written in accordance with the
system-specified conventions for output label writing.

For files being opened with the INPUT or I-O phrase, the OPEN statement
sets the current record pointer to the first record currently existing within
the file. For indexed files, the prime record key is established as the key of
reference and is used to determine the first record to be accessed.

If no records exist in the file, the current record pointer is set so the next
executed format 1 or format 2 READ statement for the file will result in an
at-end condition.

673




Procedure Division

674

When the I-O phrase is specified and the LABEL RECORDS STANDARD
clause is present, the execution of the OPEN statement includes the
following steps:

a. The system labels are checked in accordance with the system-specified
conventions for input/output label checking.

b. The new system labels are written in accordance with the
system-specified conventions for input/output label writing.

Note: Rules 10 through 25 pertain to sequential and@@ﬁles only.

10.

11.

The/REVERSED|and|[NO REWIND|phrases apply only to single
REEL/UNIT tape files.

The I-O phrase can be used only for mass storage files.

12.

13.

14.

The EXTEND phrase can be used only for sequential files assigned to tape or
mass storage devices, and for SAM files.

The EXTEND phrase must not be specified for multiple file reels. (See 4.4.2
"I-O-CONTROL Paragraph”.)

The files referenced in the OPEN statement need not all have the same
organization or access.

15.

16.

Prior to the successful execution of an OPEN statement for a given file, no
statement (except a SORT statement with the USING or GIVING phrase)
can be executed that references the file, either explicitly or implicitly.

A file may be opened with the INPUT, OUTPUT,[EXTEND,|and I-O phrases
in the same program. Following the initial execution of an OPEN statement
for a file, each subsequent OPEN statement execution for that same file
must be preceded by the execution of a CLOSE statement, without the

REEL, UNIT,|or LOCK|phrase, for that file.

17.

When the EXTEND phrase is specified and the LABEL RECORDS clause
indicates label records are present, the execution of the OPEN statement
includes the following steps:

a. The beginning file labels are processed only in the case of a single
reel/unit file.

b. The beginning reel/unit labels on the last existing reel/unit are
processed as though the file was being opened with the INPUT phrase.

c. The existing ending file labels are processed as though the file is being
opened with the INPUT phrase. These labels are then deleted.

d. Processing then proceeds as though the file had been opened with the
OUTPUT phrase.

7004 4490-000

T,
£ £



Procedure Division

7004 4490-000

18.

19.

20.

The I-O phrase permits the opening of a mass storage file for both input and
output operations. Since this phrase implies the existence of the file, it
cannot be used if the mass storage file is being initially created.

The files referenced in the OPEN statement need not all have the same
organization or access.

The file description entry for file-name-1,{file-name-2,|f ile—name—5,

[ name-6, file-name-7, or {’ ile-name-S]must be equivalent to that used when

this file was created.

21.

22.

If an input file is designated with the OPTIONAL phrase in its SELECT
clause, the object program causes an interrogation for the presence or
absence of this file. If the file is not present, the first READ statement for
this file causes the at-end condition to occur. (See 6.6.25, "READ
Statement.")

The REVERSED phrase will be ignored if it does not apply to the storage
media on which the file resides.

23.

If the storage medium for the file permits reverse processing, the following
rules apply:

a. | When neither the REVERSED nor the EXTEND phrase is specified, |
execution of the OPEN statement causes the file to be positioned at its
beginning.

24.

25.

b. When the REVERSED phrase is specified, the file is positioned at its
end by execution of the OPEN statement.

When the REVERSED phrase is specified, the subsequent READ statements
for the file make the data records of the file available in reversed order; that
is, starting with the last record.

When the EXTEND phrase is specified, the OPEN statement positions the
file immediately following the last logical record of that file. Subsequent
WRITE statements referencing the file will add records to the file as though
the file had been opened with the OUTPUT phrase.

Note: Rules 26 through 30 pertain to relative, indexed, and@g@ﬁles.

26.

217.

28.

The files referenced in the OPEN statement need not all have the same
organization or access.

Prior to the successful execution of an OPEN statement for a given file, no
statement can be executed that references that file, either explicitly or
implicitly.

A file may be opened with the INPUT, OUTPUT, and I-O phrases in the

same program. Following the initial execution of an OPEN statement for a
file, each subsequent OPEN statement execution for that same file must be

6-75




Procedure Division

preceded by the execution of a CLOSE statement, without the LOCK phrase,
for that file.

29. The file description entry for file-name-1, file-name-2, file-name-5, or
file-name-6 must be equivalent to that used when this file was created.

30. The I-O phrase permits the opening of a file for both input and output
operations. Since this phrase implies the existence of the file, it cannot be
used if the file is being initially created.

6.6.24. PERFORM Statement

6-76

Function
The PERFORM statement is used to transfer control explicitly to one or more
procedures and to return control implicitly when execution of the specified

procedure is completed.

Format1

PERFORM procedure-name-1 {{THROUGH} procedure-name-Z]
THRU

Format 2

PERFORM procedure-name-1 |[THROUGH] procedure-name-2| [identifier-1] TIMES
THRU integer-1

Format 3

PERFORM procedure-name-1 {{THROUGH} procedure-name-2] UNTIL condition-1
THRU

Format 4

PERFORM procedure-name- 1 [{THROUGH} procedure-name“Z}
THRU

index-name-1 indes-name-2
literal-1
BY [identifier-4] UNTIL condition-1
{literal-z }

VARYING {identifier-Z} FROM {identifier-S}

continued

7004 4490000



Procedure Division

AFTER {identifier-S} FROM

index-name-4
literal-3
BY {identifier-?} UNTIL condition-2

identifier-6
index-name-3

literal-4

index-name-5 index-name-6
literal-5
BY [identifier-1@] UNTIL condition-3
{literal~6 }

AFTER {identifier-8} FROM {identifier-9]

Rules

Each identifier represents a numeric elementary item described in the Data
Division. In format 2, identifier-1 must be described as a numeric integer.

Each literal represents a numeric literalﬂ

The words THRU and THROUGH are equivalent.

If an index-name is specified in the VARYING or AFTER phrase, then:

a. The identifier in the associated FROM and BY phrase must be an
integer data item.

b. The literal in the associated FROM phrase must be a positive integer.
c. The literal in the associated BY phrase must be a nonzero integer.
If an index-name is specified in the FROM phrase, then:

a. The identifier in the associated VARYING or AFTER phrase must be
an integer data item.

b. The identifier in the associated BY phrase must be an integer data item.
c¢. The literal in the associated BY phrase must be an integer.
Literal in the BY phrase must not be zero.

Condition-1, condition-2, and condition-3 may be any conditional expression,
as described in 6.4.

Where procedure-name-1 and procedure-name-2 are both specified and
either is the name of a procedure in the declarative section of the program,
then both must be procedure-names in the same declarative section.

The data items referenced by identifier-4, identifier-7, and identifier-10 must
not have a zero value.

7004 4490000

6-77




Procedure Division

6-78

10.

If an index-name is specified in the VARYING or AFTER phrase, and an
identifier is specified in the associated FROM phrase, then the data item
referenced by the identifier must have a positive value.

11.

12.

13.

14.

15.

When the PERFORM statement is executed, control is transferred to the
first statement of the procedure named procedure-name-1, except as
indicated in rules 15, 16, and 17. This transfer of control occurs only once for
each execution of a PERFORM statement. For those cases where a transfer
of control to the named procedure does take place, an implicit transfer of
control to the next executable statement following the PERFORM statement
is established as follows:

e If procedure-name-1 is a paragraph-name and procedure-name-2 is not
specified, the return is after the last statement of procedure-name-1.

e If procedure-name-1 is a sectiocn-name and procedure-name-2 is not
specified, the return is after the last statement of the last paragraph in
procedure-name-1.

®  If procedure-name-2 is specified and it is a paragraph-name, the return
is after the last statement of the paragraph.

¢ If procedure-name-2 is specified and it is a section-name, the return is
after the last statement of the last paragraph in the section.

There is no necessary relationship between procedure-name-1 and
procedure-name-2 except that a consecutive sequence of operations is to be
executed beginning at the procedure named procedure-name-1 and ending
with the execution of the procedure named procedure-name-2. In particular,
GO TO and PERFORM statements may occur between procedure-name-1
and the end of procedure-name-2. If there are two or more logical paths to
the return point, then procedure-name-2 may be the name of a paragraph
consisting of the EXIT statement, to which all of these paths must lead.

If control passes to the procedures mentioned in rule 12 by means other than
a PERFORM statement, control will pass through the last statement of the
procedure to the next executable statement as if no PERFORM statement
mentioned these procedures.

Format 1 is the basic PERFORM statement. A procedure referenced by this
type of PERFORM statement is executed once and then control passes to the
next executable statement following the PERFORM statement.

Format 2 is the PERFORM... TIMES. The procedures are performed the
number of times specified by integer-1 or by the initial value of the data item
referenced by identifier-1 for that execution. The value of integer-1 or the
initial contents of identifier-1 may not exceed 32,767. If, at the time of
execution of a PERFORM statement, the value of the data item referenced
by identifier-1 is equal to zero or is negative, control passes to the next
executable statement following the PERFORM statement. Following the

7004 4490-000

T



Procedure Division

execution of the procedures the specified number of times, control is
transferred to the next executable statement following the PERFORM
statement.

During execution of the PERFORM statement, references to identifier-1
cannot alter the number of times the procedures are to be executed from that
which was indicated by the initial value of identifier-1.

16. Format 3 is the PERFORM...UNTIL. The specified procedures are
performed until the condition specified by the UNTIL phrase is true. When
the condition is true, control is transferred to the next executable statement
after the PERFORM statement. If the condition is true when the PERFORM
statement is entered, no transfer to procedure-name-1 takes place, and
control is passed to the next executable statement following the PERFORM
statement.

17. Format 4 is the PERFORM...VARYING. This variation of the PERFORM
statement is used to augment the values referenced by one or more
identifiers or index-names in an orderly fashion during the execution of a
PERFORM statement. In the following discussion, every reference to
identifier as the object of the VARYING, AFTER, and FROM (current value)
phrases also refers to index-names. When index-name appears in a
VARYING or AFTER phrase, it is initialized and subsequently augmented
according to the rules of the SET statement. When index-name appears in
the FROM phrase, the identifier, when it appears in an associated
VARYING or AFTER phrase, is initialized according to the rules of the SET
statement; subsequent augmentation is as described in the following
paragraphs:

a. Informat 4, when one identifier is varied (Figure 6-2), identifier-2 is set
to the value of literal-1 or the current value of identifier-3 at the point of
initial execution of the PERFORM statement; then, if the condition of
the UNTIL phrase is false, the sequence of procedures, procedure-name
1 through procedure-name-2, is executed once. The value of identifier-2
is augmented by the specified increment or decrement value (the value
of identifier-4 or literal-2) and condition-1 is evaluated again. The cycle
continues until this condition is true, at which point control is
transferred to the next executable statement following the PERFORM
statement. If condition-1 is true at the beginning of execution of the
PERFORM statement, control is transferred to the next executable
statement.

7004 4490-000 679




Procedure Division

6-80

Entrance

&

Set identifier-2 equal to
current FROM value

4

True
Condition-1 Exit

False
3

Execute procedure-name-1
THRU procedure-name-2

Augment identifier-2 with
current BY value

Figure 6-2. Flowchart for the VARYING Phrase Having One Condition

b.

In format 4, when two identifiers are varied (Figure 6-3), identifier-2
and identifier-5 are set to the current value of identifier-3 and
identifier-6, respectively. After the identifiers have been set, condition-1
is evaluated; if true, control is transferred to the next executable
statement; if false, condition-2 is evaluated. If condition-2 is false,
procedure-name-1 through procedure-name-2 is executed once, then
identifier-5 is augmented by identifier-7 or literal-4, and condition-2 is
evaluated again. This cycle of evaluation and augmentation continues
until this condition is true. When condition-2 is true, identifier-5 is set
to the value of literal-3 or the current value of identifier-6, identifier-2 is
augmented by identifier-4, and condition-1 is reevaluated. The
PERFORM statement is completed if condition-1 is true; if not, the cycle
continues until condition-1 is true.

During the execution of the procedures associated with the PERFORM
statement, any change to the VARYING variable (identifier-2 and
index-name-1), the BY variable (identifier-4), the AFTER variable
(identifier-5 and index-name-3), or the FROM variable (identifier-3 and
index-name-2) will be taken into consideration and will affect the
operation of the PERFORM statement.

7004 4490-000




Procedure Division

7004 4490-000

Entrance

|

Set identifier-2 and identifier-5
to current FROM values

)

True
Condition- 1 s Exit
False
r
\ True
[l Condition-2 F
False
[ \
Execute procedure-name-1 Set identifier-5 to its
THRU procedure-name-2 current FROM value
Augment identifier-5 with Augment identifier-2 with
current BY value current BY value

]

Figure 6-3. Flowchart for the VARYING Phrase Having Two Conditions

At the termination of the PERFORM statement, identifier-5 contains
the current value of identifier-6. Identifier-2 has a value that exceeds
the last used setting by an increment or decrement value, unless
condition-1 was true when the PERFORM statement was entered, in
which case identifier-2 contains the current value of identifier-3.

When two identifiers are varied, identifier-5 goes through a complete
cycle (FROM, BY, UNTIL) each time identifier-2 is varied.

In format 4, when three identifiers are varied (Figure 6-4), the
mechanism is the same as for two identifiers except that identifier-8
goes through a complete cycle each time that identifier-5 is augmented
by identifier-7 or literal-4, which in turn goes through a complete cycle
each time identifier-2 is varied.

681




Procedure Division

After the completion of a format 4 PERFORM statement, identifier-5
and identifier-8 contain the current value of identifier-6 and identifier-
9, respectively. Identifier-2 has a value that exceeds its last used setting
by one increment or decrement value, unless condition-1 is true when
the PERFORM statement is entered, in which case identifier-2 contains
the current value of identifier-3.

Entrance

Set identifier-2. identfier-5,
and denufier-8 to
current FROM values

:

True

Condition- 1

N

False

’

Condition-2

Exit

True

\

False

’

True

Condition-3 /'
—

False

Execute procedure name- !
THRU procedure name-2

Set idenufier-8 10
its current FROM value

Set dentifier-5 to
1ts current FROM value

}

{

Augment identifier. 8
witty current BY value

Augment identifier 5
with current BY value

Augment identifier-2
with current BY value

Figure 6-4. Flowchart for the VARYING Phrase Having Three Conditions

7004 4490-000




Procedure Division

7004 4490-000

18.

19.

If a sequence of statements referenced by a PERFORM statement includes
another PERFORM statement, the sequence of procedures associated with
the included PERFORM must itself either be totally included in, or totally
excluded from, the logical sequence referred to by the first PERFORM. Thus,
an active PERFORM statement whose execution point begins within the
range of another active PERFORM statement must not allow control to pass
to the exit of the other active PERFORM statement; furthermore, two or
more such active PERFORM statements may not have a common exit. For
example:

Correct Incorrect

X  PERFORM a THRU m X  PERFORM a THRU m
a a

d  PERFORM f THRU j d PERFORM f THRU j
I — I
L m

m j  —

X  PERFORM a THRU m X  PERFORM a THRU j Gl dus .
a a

d  PERFORM f THRU j d  PERFORM f THRU j
h

m .

I — m

A PERFORM statement that appears in a section that is not in an
independent segment can have within its range, in addition to any
declarative sections whose execution is caused within that range, only one of
the following:

a. Sections or paragraphs wholly contained in one or more nonindependent
segments

b. Sections or paragraphs wholly contained in a single independent
segment

6-83




Procedure Division

20. A PERFORM statement that appears in an independent segment can have
within its range, in addition to any declarative sections whose execution is
caused within that range, only one of the following:

a. Sections or paragraphs wholly contained in one or more nonindependent
segments

b. Sections or paragraphs wholly contained in the same independent
segment as that PERFORM statement

6.6.25. READ Statement

6-84

Function

The READ statement makes available the next logical or specified record from a
file.

Format 1 (Sequential andi__SAM]Files)
READ file-name RECORD {INTO identifierl [;AT END imperative-statement]

Format 2 (Relative, Indexed, anerié_A__l\@Files)

READ file-name |[NEXT1| RECORD [INTO identifier] [;AT END imperative-statement]

Format 3 (Relative and/ISAM Files)

READ file-name RECORD [INTO identifier] [;INVALID KEY imperative-statement]

Format 4 (Indexed Files Only)

READ file-name RECORD [INTO identifier] |[;KEY IS data-name]
[;INVALID KEY imperative-statement]

Rules

1. The associated file must be open in the INPUT or I-O mode at the time the
statement is executed. (See 6.6.23, "OPEN Statement.")

2. A record is available to the object program immediately after the execution
of the READ statement.

3. The execution of the READ statement causes the value of the FILE STATUS
data item, if any, associated with file-name to be updated. (See 8.2.3.)

7004 4490000




Procedure Division

7004 4490-000

10.

11.

The INTO phrase must not be used when the input file contains logical
records of various sizes as indicated by their record descriptions. The storage
area associated with identifier and the record area associated with file-name
must not be the same storage area.

When the logical records of a file are described with more than one record
description, these records automatically share the same storage area; this is
equivalent to an implicit redefinition of the area. The contents of any data
items that lie beyond the range of the current data record are undefined at
the completion of the execution of the READ statement.

If the INTO phrase is specified, the record being read is moved from the
record area to the area specified by identifier according to the rules specified
for the MOVE statement without the CORRESPONDING phrase. The
implied MOVE does not occur if the execution of the READ statement was
unsuccessful. Any subscripting or indexing associated with identifier is
evaluated after the record is read and immediately before it is moved to the
data item.

When the INTO phrase is used, the record being read is available in both the
input record area and the data area associated with the identifier.

If, at the time of execution of a format 1 or format 2 READ statement, the
position of the current record pointer for that file is undefined, the execution
of that READ statement is unsuccessful.

If, at the time of the execution of a format 1 or format 2 READ statement, no
next logical record exists in the file, the at-end condition occurs, and the
execution of the READ statement is considered unsuccessful. (See 8.2.3, "I-O
Status".)

When the at-end condition is recognized, the following actions are taken in
the specified order:

a. Avalueis placed into the FILE STATUS data item, if specified for this
file, to indicate an at-end condition. (See 8.2.4.)

b. If the AT END phrase is specified in the statement causing the
condition, control is transferred to the AT END imperative statement.
Any format 1 USE procedure specified for this file is not executed.

c. If the AT END phrase is not specified, a format 1 USE procedure must
.be specified, either explicitly or implicitly, for this file, and that
procedure is executed.

When the at-end condition occurs, execution of the input/output
statement that caused the condition is unsuccessful.

Following the unsuccessful execution of any READ statement, the content of

the associated record area and the position of the current record pointer are
undefined. For indexed files, the key of reference is also undefined.

6-85




Procedure Division

Note: Rules 12 through 18 pertain to sequential and@_?@]files only.

12. The AT END phrase must be specified if no applicable format 1 USE
procedure is specified for file-name.

13. The record to be made available by the READ statement is determined as
follows:

a. If the current record pointer was positioned by the execution of the
OPEN statement, the record pointed to by the current record pointer is
made available.

b. If the current record pointer was positioned by the execution of a
previous READ statement, the pointer is advanced to the next record in
the file and then that record is made available.

14. If the end of a reel or unit is recognized during execution of a READ
statement, and the logical end-of-file has not been reached, the following
operations are executed:

a. The standard ending reel/unit label procedure

b. Areel/unit swap

c. The standard beginning reel/unit label procedure

d. The first data record of the new reel/unit is made available

15. If afile described with the OPTIONAL phrase is not present at the time the
file is opened, then at the time of execution of the first READ statement for
the file, the AT END condition occurs and the execution of the READ
statement is unsuccessful. The standard end-of-file procedures are not
performed. (See 4.4.1, "FILE-CONTROL Paragraph;" 6.6.23, "OPEN
Statement;” 6.6.41, "USE Statement;" and 8.2.3, "I-O Status.") Execution of
the program then proceeds as specified in rule 10.

16. When the at-end condition is recognized, a READ statement for that file
must not be executed until a successful CLOSE statement followed by a
successful OPEN statement for that file is executed.

17. Format 1 must be used for all files in sequential access mode.

18. For printer-destined files (files assigned toe PRINTER or defined with an FC,
UC, or VC mode in the implementor-name of the ASSIGN clause), the READ
statement referencing this file does not make available any record that
contains only vertical positioning control information. (See 8.3.3.)

6-86 7004 4490000



Procedure Division

7004 4490-000

Note: Rules 19 through 33 pertain to relative, indexed, andE.S—_A:Mjfiles.

19.

20.

21.

Format 2 must be used for all files in sequential access mode./The NEXT

phrase must be specified for files in dynamic access mode when records are
to be retrieved sequentially.

Format 3 is used for relative or ISAM files in random access mode or in
dynamic access mode when records are to be retrieved randomly.

Format 4 is used for indexed files in random access mode or in|dynamic
access mode|when records are to be retrieved randomly.

22.

The KEY phrase may be specified only for indexed files. Data-name must be
the name of a data item specified as a record key associated with file-name.
Data-name may be qualified.

23.

24.

The INVALID KEY phrase or the AT END phrase must be specified if no
applicable USE procedure is specified for file-name.

The record to be made available by a format 2 READ statement is
determined as follows:

¢ For relative or ISAM files, the record pointed to by the current record
pointer (see 8.2.2) is made available if the current record pointer was
positioned by the[START or|OPEN statement and the record is still
accessible through the path indicated by the current record pointer, If
the record is no longer accessible, possibly caused by the deletion of the
record, the current record pointer is updated to point to the next
existing record in the file and that record is then made available.

¢  Forindexed files:

a. The record, pointed to by the current record pointer, is made
available provided that the current record pointer was positioned
by the[START or]OPEN statement and the record is still accessible
through the path indicated by the current record pointer; if the
record is no longer accessible, which may have been caused by the
deletion of the record|or a change in an alternate record key,|the
current record pointer is updated to point to the next existing
record within the established key of reference and that record is
then made available.

b. If the current record pointer was positioned by the execution of a
previous READ statement, the current record pointer is updated to
point to the next existing record in the file with the established key
of reference and then that record is made available.

6-87




Procedure Division

6-88

25.

When the at-end condition has been recognized, a format 2 READ statement
for that file must not be executed without first executing one of the following:

a. A successful CLOSE statement followed by the execution of a successful
OPEN statement for that file

26.

b. A successful START statement for that file
c. A successful format 3 or format 4 READ statement for that file
For a file for which dynamic access mode is specified, a format 2 READ

statement with the NEXT phrase specified causes the next logical record to
be retrieved from the file as described in rule 24.

27.

28.

If the RELATIVE KEY phrase is specified for a relative file, the execution of
a format 2 READ statement updates the contents of the RELATIVE KEY
data item such that it contains the relative record number of the record
made available.

For a relative file, the execution of a format 3 READ statement sets the
current record pointer to, and makes available, the record whose relative
record number is contained in the data item named in the RELATIVE KEY
phrase for the file. If the file does not contain such a record, the INVALID
KEY condition exists and execution of the READ statement is unsuccessful.
(See 8.2.5, "INVALID KEY Condition.")

29.

30.

For an indexed file being sequentially accessed, records having the same
duplicate value in an alternate record key, which is the key of reference, are
made available in the same order in which they are released by execution of
WRITE statements, or by execution of REWRITE statements that create
such duplicate values.

For an indexed file, if the KEY phrase is specified in a format 4 READ
statement, data-name is established as the key of reference for this retrieval.
If the dynamic access mode is specified, this key of reference is also used for
retrievals by any subsequent executions of format 2 READ statements for
the file until a different key of reference is established for the file.

31.

If the KEY phrase is not specified in a format 4 READ statement, the prime
record key is established as the key of reference for this retrieval [If the

dynamic access mode is specified, this key of reference 1s also used for
retrievals by any subsequent executions of format 2 READ statements for
the file until a different key of reference is established for the file.

7004 4490-000



Procedure Division

32. Execution of a format 4 READ statement causes the value of the key of

reference to be compared with the value contained in the corresponding data
item of the stored records in the file, until the first record with an equal
value is found. The current record pointer is positioned to this record, which
is then made available. If no record is so identified, the INVALID KEY
condition (see 8.2.5) exists and execution of the READ statement is
unsuccessful.

For an ISAM file, execution of a format 3 READ statement causes the recor(ﬂ
key to be compared with the value contained in the corresponding data item

of the stored records in the file, until the first record with an equal value is |
found. The current record pointer is positioned to this record, which is then |
made available. If no record is so identified, the INVALID KEY condition :
(see 8.2.5) exists and execution of the READ statement is unsuccessful. |

6.6.26. RECEIVE Statement

Function

The RECEIVE statement makes available to the COBOL program a message,

| message segment, or a portion of a message or segment,Jand pertinent

information about that data from a queue maintained by the message control
system (MCS). The RECEIVE statement allows for a specific imperative
statement when no data is available.

Format
RECEIVE cd-name |MESSAGE INTO identifier-1.[;NO DATA imperative-statement]
SEGMENT
Rules

1. Cd-name must reference an input CD.

2. The contents of the data items specified by data-name-1 (SYMBOLIC
QUEUE) through data-name-4 (SYMBOLIC SUB-QUEUE-3) of the area
referenced by cd-name designate the queue structure containing the
message. (See 5.6.1.)

3. The message,|message segment, or portion of a message or segmentlis
transferred to the receiving character positions of the area referenced by
identifier-1 aligned to the left without space-fill.

4.  When, during the execution of a RECEIVE statement, the MCS makes data

7004 4490-000

available in the data item referenced by identifier-1, control is transferred to
the next executable statement, whether or not the NO DATA phrase is
specified.

6-89




Procedure Division

6-90

When, during the execution of a RECEIVE statement, the MCS does not
make data available in the data item referenced by identifier-1:

a. If the NO DATA phrase is specified, the RECEIVE operation is
terminated with the indication that action is completed (see rule 6), and
the imperative statement in the NO DATA phrase is executed.

b. If the NO DATA phrase is not specified, execution of the object program
is suspended until data is made available in the data item referenced by
identifier-1.

c¢. If one or more queues or subqueues is unknown to the MCS, control
passes to the next executable statement whether or not the NO DATA
phrase is specified. (See Table 5-11.)

The data items identified by the input CD (SYMBOLIC SOURCE, TEXT
LENGTH, END KEY, STATUS KEY) are appropriately updated by the MCS
at each execution of a RECEIVE statement. (See 5.6.1.)

A single execution of a RECEIVE statement never returns to the data item
referenced by identifier-1 more than a single message when the MESSAGE

phrase is used|or a single segment when the SEGMENT phrase is used.

However, the MCS does not pass any portion of a message to the object
program until the entire message is available in the input queue, even if the
SEGMENT phrase of the RECEIVE statement is specified.

When the MESSAGE phrase is used, end-of-segment indicators are ignored,
and the following rules apply to the data transfer:

a. If a message is the same size as the area referenced by identifier-1, the
message is stored in the area referenced by identifier-1.

b. If a message size is less than the area referenced by identifier-1, the
message is aligned to the leftmost character position of the area
referenced by identifier-1 with no space-fill.

c. If a message size is greater than the area referenced by identifier-1, the
message fills the area referenced by identifier-1 left to right starting

with the leftmost character of the message.[The remainder of the
message can be transferred to the area referenced by identifier-1 with
subsequent RECEIVE statements referring to the same queue and
subqueues. The remainder of the message, for the purposes of applying
rules 8a, 8b, and 8¢, is treated as a new message.

When the SEGMENT phrase is used, the following rules apply:

a. If a segment is the same size as the area referenced by identifier-1, the
segment is stored in the area referenced by identifier-1.

7004 4450000



Procedure Division

b. If the segment size is less than the area referenced by identifier-1, the
segment is aligned to the leftmost character position of the area
referenced by identifier-1 with no space-fill.

c¢. If a segment size is greater than the area referenced by identifier-1, the
segment fills the area referenced by identifier-1 left to right starting
with the leftmost character of the segment. The remainder of the
segment can be transferred to the area referenced by identifier-1 with
subsequent RECEIVE statements calling out the same queue and
subqueues. The remainder of the segment, for the purposes of applying
rules 9a, Sb, and 9¢, is treated as a new segment.

d. If the text to be accessed by the RECEIVE statement has associated
with it an end-of-message indicator or end-of-group indicator, the
existence of an end-of-segment indicator associated with the test is
implied and the text is treated as a message segment according to
rule 9.

10. Once the execution of a RECEIVE statement has returned a portion of a

message, only subsequent execution of RECEIVE statements in that
run-unit can cause the remaining portion of the message to be returned.

11.

After the execution of a STOP RUN statement, the remaining portion of a
message partially obtained in that run-unit is lost.

6.6.27. RELEASE Statement

Function

The RELEASE statement transfers records to the initial phase of a sort
operation.

Format

RELEASE record-name [FROM identifier]

Rules
1.
2.
3.
4,
7004 4490-000

A RELEASE statement may only be used within the range of an input
procedure associated with a SORT statement for a file whose (SD) entry
contains record-name. (See 6.6.33, "SORT Statement.")

Record-name must be the name of a logical record in the associated SD entry
and may be qualified.

Record-name and identifier must not refer to the same storage area.

The execution of a RELEASE statement causes the record named by
record-name to be released to the initial phase of a sort operation.

6-91




Procedure Division

5. If the FROM phrase is used, the content of the identifier data area is moved
to record-name, then the content of record-name is released to the sort file.
Moving takes place according to the rules specified for the MOVE statement
without the CORRESPONDING phrase. The information in the record area
is no longer available; but the information in the data area associated with
identifier is available.

6. After execution of a RELEASE statement, the logical record is no longer
available in the record area unless the associated sort file is named in a
SAME RECORD AREA clause. The logical record is also available to the
program as a record of other files referenced in the same SAME RECORD
AREA clause as the associated sort file, as well as to the file associated with
record-name. When control passes from the input procedure, the file consists
of all the records placed in it by execution of RELEASE statements.

6.6.28. RETURN Statement

692

Function

The RETURN statement obtains|either|sorted records from the final phase of a
sort operation]or merged records during a merge operation. |

Format

RETURN file-name RECORD [INTO identifier] ;AT END imperative-statement
Rules

1. File-name must be described by a sort-merge file description entry in the
Data Division.

2. A RETURN statement may only be used within the range of an output
procedure associated with a SORT|or MERGE |statement for file-name.

3.  The INTO phrase must not be used when the input file contains logical
records of various sizes as indicated by their record descriptions. The storage
area associated with identifier and the record area associated with file-name
must not be the same storage area.

4., When the logical records of a file are described with more than one record
description, these records automatically share the same storage area; this is
equivalent to an implicit redefinition of the area. The contents of any data
items which lie beyond the range of the current data record are undefined at
the completion of the execution of the RETURN statement.

5. Execution of a RETURN statement causes the next record, in the order
specified by the keys listed in a SORT|or MERGE [statement, to be made
available for processing in the record areas associated with the sort-merge
file.

7004 4430-000



Procedure Division

If the INTO phrase is specified, the current record is moved from the input
area to the area specified by identifier according to the rules for the MOVE
statement without the CORRESPONDING phrase. The implied MOVE does
not occur if there is an at-end condition. Any subscripting or indexing
associated with identifier is evaluated after the record is returned and
immediately before it is moved to the data item.

When the INTO phrase is used, the data is available in both the input record
area and the data area associated with identifier.

If no next logical record exists for the file at the time of the execution of a
RETURN statement, the at-end condition occurs. The contents of the record
areas associated with the file are undefined. After the execution of the
imperative statement in an AT END phrase, no RETURN statement may be
executed as part of the current output procedure.

6.6.29. REWRITE Statement

Function

The REWRITE statement logically replaces a record existing in a mass storage

file.

Format 1 (Sequential andE@Files)

REWRITE record-name [FROM identifier]

Format 2 (Relative, Indexed, and ISAM|Files)

REWRITE record-name [FROM identifier] [;INVALID KEY imperative-statement]

Rules
1.
2.
3.
4,
7004 4490-000

Record-name and identifier must not refer to the same storage area.

Record-name is the name of a logical record in the File Section of the Data
Division and may be qualified.

The file associated with record-name must be a mass storage file and must
be open in the I-O mode at the time of execution of this statement. (See
6.6.23, "OPEN Statement.")

The number of character positions in the record referenced by record-name
must be equal to the number of character positions in the record being
replaced.

693




Procedure Division

6-94

The logical record released by a successful execution of the REWRITE

statement is no longer available in the record areajunless the associated file

is named in a SAME RECORD AREA clause, in which case the logical record
is available to the program as a record of other files appearing in the same
SAME RECORD AREA clause as the associated I-O file, as well as to the file
associated with record-name.

The execution of a REWRITE statement with the FROM phrase is
equivalent to the execution of MOVE identifier TO record-name followed by
the execution of the same REWRITE statement without the FROM phrase.
The content of the record area prior to the execution of the implicit MOVE
statement has no effect on the execution of the REWRITE statement.

The current record pointer is not affected by the execution of a REWRITE
statement.

The execution of the REWRITE statement causes the value of the FILE
STATUS data item, if any, associated with the file to be updated. (See 8.2.3,
"I-O Status.”)

For sequential files, the last I-O statement executed for the associated file
prior to the execution of the REWRITE statement must have been a
successfully executed READ statement. The operating system logically
replaces the record that was accessed by the READ statement.

Note:  Rules 10 through 17 pertain to relative, indexed, andEIEAjJ_Mjfiles only.

10.

11.

12.

13.

14.

The INVALID KEY phrase must not be specified for a REWRITE statement
that references a relative file in sequential access mode.

The INVALID KEY phrase must be specified in a REWRITE statement for
relative files in random or dynamic mode and for indexed or ISAM files in all
access modes if an appropriate USE procedure is not specified for the file.

For files in the sequential access mode, the last I-O statement executed for
the associated file prior to the execution of the REWRITE statement must
have been a successfully executed READ statement. The operating system
logically replaces the record that was accessed by the READ statement.

For a relative file accessed in either random or dynamic access mode, the
operating system logically replaces the record specified by the content of the
RELATIVE KEY data item associated with the file. If the file does not
contain the record specified by the key, the INVALID KEY condition exists.
(See 8.2.5.) The updating operation does not take place, and the data in the
record area is unaffected.

For an indexed file in the sequential access mode, the record to be replaced is
specified by the value contained in the prime record key. When the
REWRITE statement is executed, the value contained in the prime record
key data item of the record to be replaced must be equal to the value of the
prime record key of the last record read from this file.

7004 4490-000

L

P



Procedure Division

7004 4490-000

15. For an indexed file in the random access mode, the record to be
replaced is specified by the prime record key data item.

1

6.

The contents of alternate record key data items of the record being rewritten
may differ from those in the record being replaced. The MCS utilizes the
contents of the record key data items during the execution of the REWRITE
statement in such a way that subsequent access of the record may be made
based upon any of those specified record keys.

riS. For an ISAM file in sequential access mode, the record to be replaced is _l

I
l
l
l
!
|
|
|
l
|
|
|
l
|
|
|

1

1

2

7.

9.
0.

For an indexed file, the INVALID KEY condition exists when one of the
following occurs:

a.

The access mode is sequential and the value contained in the prime
record key data item of the record to be replaced is not equal to the
value of the prime record key of the last record read from this file.

The value contained in the prime record key data item does not equal
that of any record stored in the file.

The value contained in an alternate record key data item for which a
DUPLICATES clause has not been specified is equal to that of a record
already stored in the file.

The updating operation does not take place and the data in the record area is
unaffected. (See 8.2.5.)

specified by the value in the record key. When a REWRITE statement is
executed, the value in the record key data item of the record to be replaced
must equal the record key value of the last record read from this file.

For an ISAM file in random or dynamic access mode, the record to be
replaced is specified in the record key data item.

a.

The access mode is sequential and the value in the record key data item
of the record to be replaced does not equal the record key value of the
last record read from this file.

The value in the record key data item does not equal any record stored
in the file.

|
|
|
|
I
|
|
An INVALID KEY condition exists under either of the following conditions: |
|
|
|
|
|
l
|

The updating operation does not take place and data in the record area is
unaffected (see 8.2.5.) ]

6-95




Procedure Division

6.6.30. SEARCH Statement

Function

The SEARCH statement is used to search a table for a table element that
satisfies the specified condition and to adjust the associated index-name to
indicate that table element.

Format1

SEARCH identifier-1 |[VARYING [identifier-2
index-name-1
[;AT END imperative-statement-1]
;WHEN condition-1 [imperative-statement-2
NEXT SENTENCE

;WHEN condition-2 [imperative-statement-3
NEXT SENTENCE

SEARCH ALL identifier-1 [;AT END

mperative-statement- 1]

i

SWHEN [data-name-1 [1S EQUAL TO identifier-3 ]
{IS = } literal-1 L

arithmetic-expression-1

lcondition-name-1

AND [data-name-2 [IS EQUAL TO] [identifier-4 ]
{IS = } literal-2 |

arithmetic-expression-2

Lcondition-name-2 ]

imperative-statement-2
NEXT SENTENCE

Note: The required relational character = is not underlined to avoid confusion
with other symbols.

Rules

1. Inboth formats 1 and 2, identifier-1 must not be subscripted or indexed; but
its description must contain an OCCURS clause and an INDEXED BY
clause. The description of identifier-1 in format 2 must also contain the KEY
IS phrase in its OCCURS clause.

2. Identifier-2, when specified, must be described as USAGE IS INDEX or as a
numeric elementary item without any positions to the right of the assumed
decimal point.

3. Informat 1, condition-1, condition-2, etc., may be any condition as described
in 6.4. Refer to Figure 6-5 for the logic of a SEARCH statement containing
two WHEN phrases.

6-96 7004 4490-000



Procedure Division

START

Index setting:
highest permissible
occurrence number

> AT END imperative-

statement-1

<

\ True

imperative-
condition-1 P

-ﬁ
/ statement-2 @

False

\® True @
condition-2

imperative-
S——
/ statement-3

False
'

Increment
index-name for
identifier-1
(index-name-1
if applicable)

-

Increment
" Index-name-1 (for
a different table)
or identifier-2

NOTES:

®
@

These operations are options included only when specified in the SEARCH statement

Each of these control transfers is to the next executable sentence unless the
imperative-statement ends with a GO TO statement

Figure 6-5. Flowchart for Format 1 Search Operation Containing Two WHEN Phrases

7004 4490-000 697




Procedure Division

4. Informat 2, all referenced condition-names must be defined as having only a
single value. The data-name associated with a condition-name must appear
in the KEY clause of identifier-1. Each data-name-1 and data-name-2 may
be qualified. Each data-name-1 and data-name-2 must be indexed by the
first index-name associated with identifier-1 along with other indexes or
literals as required, and must be referenced in the KEY clause of identifier-1.
Identifier-3, identifier-4, or identifiers specified in arithmetic-expression-1/
arithmetic-expression-2 must not be referenced in the KEY clause of
identifier-1 or be indexed by the first index-name associated with
identifier-1.

In format 2, when a data-name in the KEY clause of identifier-1 is
referenced, or when a condition-name associated with a data-name in the
KEY clause of identifier-1 is referenced, all preceding data-names in the
KEY clause of identifier-1 or their associated condition-names must also be
referenced.

5. If format 1 of the SEARCH statement is used, a serial type of search
operation takes place, starting with the current index setting.

a. If, at the start of execution of the SEARCH statement, the index-name
associated with identifier-1 contains a value that corresponds to an
occurrence number that is greater than the highest permissible
occurrence number for identifier-1, the search is terminated
immediately. (The number of occurrences of identifier-1, the last of
which is the highest permissible, is discussed in the OCCURS clause.
(See "OCCURS Clause" under 5.3.3.) Then, if the AT END phrase is
specified, imperative-statement-1 is executed; if the AT END phrase is
not specified, control passes to the next executable sentence.

b. If, at the start of execution of the SEARCH statement, the index-name
associated with identifier-1 contains a value that corresponds to an
occurrence number that is not greater than the highest permissible
occurrence number for identifier-1 (as explained in "OCCURS Clause”
under 5.3.3), the SEARCH statement evaluates the conditions in the
order that they are written, making use of the index settings, wherever
specified, to determine the occurrence of those items to be tested. If
none of the conditions are satisfied, the index-name for identifier-1 is
incremented to obtain reference to the next occurrence. The process is
then repeated using the new index-name settings unless the new value
of the index-name settings for identifier-1 corresponds to a table
element outside the permissible range of occurrence values, in which
case the search terminates as indicated in step 5a. If one of the
conditions is satisfied upon its evaluation, the search terminates
immediately and the imperative statement associated with that
condition is executed; the index-name remains set at the occurrence
which caused the condition to be satisfied.

6-98 7004 4490-000



Procedure Division

7004 4490-000

10.

11.

In a format 2 SEARCH statement, the results of the SEARCH ALL
operation are predictable only when one of the following conditions exists:

a. The data in the table is ordered in the same manner as described in the
ASCENDING/ DESCENDING KEY clause associated with the
description of identifier-1.

b. The contents of the keys referenced in the WHEN clause are sufficient
to identify a unique table element.

If format 2 of the SEARCH statement is used, a binary search operation
takes place. The initial setting of the index-name for identifier-1 is ignored
and its setting is varied during the search operation so that it is never set to
a value that exceeds the value corresponding to the last element of the table
or is less than the value corresponding to the first element of the table. The
length of the table is discussed in "OCCURS Clause" under 5.3.3. If any of
the conditions specified in the WHEN clause cannot be satisfied for any
setting of the index within the permitted range, control is passed to
imperative-statement-1 of the AT END phrase, when specified, or to the next
executable sentence when this phrase is not specified; in either case, the
final setting of the index is not predictable. If all the conditions can be
satisfied, the index indicates an occurrence that allows the conditions to be
satisfied, and control passes to imperative-statement-2.

After execution of an imperative statement that does not terminate with a
GO TO statement, control passes to the next executable sentence.

In format 2, the index-name that is used for the search operation is the first
(or only) index-name that appears in the INDEXED BY phrase of
identifier-1. Any other index-names for identifier-1 remain unchanged.

In format 1, if the VARYING phrase is not used, the index-name that is used
for the search operation is the first (or only) index-name that appears in the
INDEXED BY phrase of identifier-1. Any other index-names for identifier-1
remain unchanged.

In format 1, if the VARYING index-name-1 phrase is specified and if index-
name-1 appears in the INDEXED BY phrase of identifier-1, that index-name
is used for this search. If not, or if the VARYING identifier-2 phrase is
specified, the first (or only) index-name given in the INDEXED BY phrase of
identifier-1 is used for the search. In addition, the following operations will
oceur:

a. If the VARYING index-name-1 phrase is used, and if index-name-1
appears in the INDEXED BY phrase of another table entry, the
occurrence number represented by index-name-1 is incremented by the
same amount as, and at the same time as, the occurrence number
represented by the index-name associated with identifier-1 is
incremented.

699




Procedure Division

b. If the VARYING identifier-2 phrase is specified and identifier-2 is an
index data item, then the data item referenced by identifier-2 is
incremented by the same amount as, and at the same time as, the index
associated with identifier-1 is incremented. If identifier-2 is not an
index data item, the data item referenced by identifier-2 is incremented
by 1 at the same time as the index referenced by the index-name
associated with identifier-1 is incremented.

12. If identifier-1 is a data item subordinate to a data item that contains an
OCCURS clause (providing for a 2- or 3-dimensional table), an index-name
must be associated with each dimension of the table through the INDEXED
BY phrase of the OCCURS clause. Only the setting of the index-name
associated with identifier-1 (and the data item identifier-2 or index-name-1,
if present) is modified by the execution of the SEARCH statement. To search
an entire 2- or 3-dimensional table, it is necessary to execute a SEARCH
statement several times. Prior to each execution of a SEARCH statement,
SET statements must be executed whenever index-names must be adjusted
to appropriate settings.

6.6.31. SEND Statement

Function

The SEND statement causes a message,|a message segment, or a portion of a message

{ or segment|to be released to onejor more[output queues maintained by the message
control system (MCS).

Format1

SEND cd-name FROM identifier-1

Format 2

SEND cd-name [FROM identifier-1] ||{WITH identifier-2

WITH ESI
WITH EMI
WITH EGI
BEFORE] ADVANCING identifier-3 LINE
AFTER integer LINES
PAGE

Rules

1.  Cd-name must reference an output CD.

2. Identifier-2 must reference a 1-character integer without an operational
sign.

6-100 7004 4490-000

m}a

AT




Procedure Division

7004 4490-000

When identifier-3 is used in the ADVANCING phrase, it must be the name
of an elementary integer item.

The integer or the value of the data item referenced by identifier-3 may be
zero, but may not exceed 255.

When a receiving communications device (printer, display screen,
teletypewriter terminal, etc.) is oriented to a fixed line size:

a. Each message|or message segment|will begin at the leftmost character
position of the physical line.

b. A message[or message segment[that is smaller than the physical line
size is released so as to appear space-filled to the right.

c. Excess characters of a messagefor message segment|will not be
truncated. Characters will be packed to a size equal to that of the
physical line and then outputted to the device. The process continues on
the next line with the excess characters.

When a receiving communication device (another program, another
computer, ete.) is oriented to handle variable-length messages, each message

[ or message segment]will begin on the next available character position of the
communications device.

As part of the execution of a SEND statement, MCS will interpret the
content of the data item referenced by data-name-2 (TEXT LENGTH) of the
area referenced by cd-name to be the user’s indication of the number of
leftmost character positions of the data item referenced by identifier-1 from
which data is to be transferred.

If the content of the data item referenced by data-name-2 (TEXT LENGTH)
of the area referenced by cd-name is zero, no characters of the data item
referenced by identifier-1 are transferred.

If the content of the data item referenced by data-name-2 (TEXT LENGTH)
of the area referenced by cd-name is outside the range of zero through the
size of the data item referenced by identifier-1 inclusive, an error is indicated
by the value of the data item referenced by data-name-3 (STATUS KEY) of
the area referenced by cd-name, and no data is transferred. (See Table 5-11.)

As part of the execution of a SEND statement, the content of the data item
referenced by data-name-3 (STATUS KEY) of the area referenced by
cd-name is updated by MCS. (See 5.6.2.)

The effect of having special control characters within the content of the data
item referenced by identifier-1 is the user’s responsibility.

6101




Procedure Division

10.

A single execution of a SEND statement, for format 1 releases only a single
portion of a message or of a message segment to MCS.

A single execution of a SEND statement of format 2 never releases to MCS
more than a single message|or a single message segment|as indicated|by the

{

content of the data item referenced by identifier-2 or|by the specified

indicator|ESI,|EMI, or EGI.

MCS will not transmit any portion of a message to a communications device
until the entire message is placed in the output queue.

11.

12.

During execution of the run-unit, a portion of a message not terminated by
an EMI or EGI is not sent to a destination, since the message does not
logically exist for MCS.

After execution of a STOP RUN statement, any portion of a message
transferred from the run-unit via a SEND statement, but not terminated by
an EMI or EGI, is purged from the system. Thus, no portion of the message
is sent.

Once the execution of a SEND statement has released a portion of a message
to MCS, only subsequent execution of SEND statements in the same
run-unit can cause the remaining portion of the message to be released.

ri3. When an incomplete message is sent (format 1 or format 2 with ESI), the —E
output CD referenced by the SEND statement can only be used to add to or
complete the message. Until a message is completed, the content of I
data-name-5 (SYMBOLIC DESTINATION table) cannot be changed. _1

Note: Rules 14 through 19 pertain to format 2 only.

14.

The content of the data item referenced by identifier-2 indicates that the
content of the data item referenced by identifier-1 is to have associated with
it an end-of-segment indicator, an end-of-message indicator, or an end-of-
transmission indicator according to the following schedule:

If the content then the content of
of identifier-2 identifier-1 has
is associated with it which means
" No indicator No indicator
1 ESI An end-of-segment indicator
2 EMI An end-of-message indicator
3 EGI An e