
•
U I System 80

OS/3
1974 American Standard
COBOL
Programming
Reference Manual

Copyright © 1991 Unisys Corporation
All rights reserved.
Unisys is a registered trademark of Unisys Corporation.

OS/3 Release 14

Priced Item

April 1991

Printed in U S America
70044490-000

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product and related material
disclosed herein are only furnished pursuant and subject to the terms and conditions of a duly executed Program
Product License or Agreement to purchase or lease equipment. The only warranties made by Unisys, if any, with
respect to the products described in this document are set forth in such License or Agreement. Unisys cannot
accept financial or other responsibility that may be the result of your use of the information in this document or
software material, including direct, indirect, special, or consequential damages.

You should be very careful to ensure that the use of this information and/or software material complies with the
laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such
changes and/or additions.

Correspondence regarding this publication should be forwarded to Unisys Corporation either by using the User
Reply Form at the back of this manual or by addressing remarks directly to Unisys Corporation, SPG East Coast
Systems Documentation Development, Tredyffrin Plant, 2476 Swedesford Road, P.O. Box 203, Paoli, PA,
19301-0203, U.S .A.

Page Update
Part/Section Number level

Cover

Title Page/Disclaimer

PSS iii

Acknowledgement v

About This Manual vii thru xii

Contents xiii thru xxv

1 1 thru 5

2 1 thru 20

3 1, 2

4 1 thru 32

5 1 thru 77

6 1 thru 142

7 1 thru 6

8 1 thru 20

9 1 thru 6

10 1 thru 6

11 1, 2

12 1 thru 6

13 1 thru 5

14 1 thru 8

PAGESTATUSSU~Y
ISSUE: 7004 4490-000

Page Update
Part/Section Number level

Appendixes

A 1 thru 7

B 1 thru 4

C 1 thru 42

D 1, 2

E 1 thru 4

F 1 thru 7

G 1 thru 6

H 1 thru 20

I 1 thru 3

J 1 thru 15

K 1 thru 15

Glossary 1 thru 27

Index 1 thru 10

User Reply Form

Back Cover

Page Update
Part/Section Number level

Unisys uses an II-digit document numbering system. The suffix of the document number (1234 5678-xyz) indicates the document level. The first digit of the suffix (xl
designates a revision level; the second digit (y) designates an update level. For example, the first release of a document has a suffix of -000. A suffix of -130 designates the
third update to revision 1. The third digit (z) is used to indicate an errata for a particular level and is not reflected in the page status summary.

70044490-000 iii

knowledgment

The following acknowledgment is reproduced from the American National Standard
COBOL, X3.23-1974, as requested in that publication:

"Any organization interested in reproducing the COBOL standard and
specifications in whole or in part, using ideas from this document as the basis for
an instruction manual or for any other purpose, is free to do so. However, all such
organizations are requested to reproduce the following acknowledgment
paragraphs in their entirety as part of the preface to any such publication (any
organization using a short passage from this document, such as in a book review,
is requested to mention "COBOL" in acknowledgment of the source, but need not
quote the acknowledgment):

"COBOL is an industry language and is not the property of any company or group
of companies, or of any organization or group of organizations.

"No warranty, expressed or implied, is made by any contributor or by the
CODASYL Programming Language Committee as to the accuracy and
functioning of the programming system and language. Moreover, no
responsibility is assumed by any contributor, or by the committee, in connection
therewith.

"The authors and copyright holders of the copyrighted material used herein

FLOW-MATIC (trademark of Sperry Corporation), Programming for the
UNIVAC® I and II, Data Automation Systems copyrighted 1958, 1959, by
Sperry Corporation; IBM® Commercial Translator Form No. F 28-8013,
copyrighted 1959 by IBM; FACT, DSI 27 A5260-2760, copyrighted 1960 by
Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part, in the
COBOL specifications. Such authorization extends to the reproduction and use of
COBOL specifications in programming manuals or similar publications."

UNIVAC is a registered trademark of Unisys Corporation.
IBM is a registered trademark of International Business Machines Corporation.

7004 4490-000 v

Ab ut This n al

Scope

This manual presents the rules for writing COBOL programs to be compiled by the
1974 American National Standard COBOL compiler and executed under the control of
the Unisys Operating System/3 (OS/3).

The COBOL language described in this manual conforms to the specifications of the
American National Standard COBOL, X3.23-1974, and supports Federal Information
Processing Standards (FIPS) Publication 21-1 (see Appendix D).

Audience

This manual is for programmers using OS/3 COBOL.

Anyone using this manual should be familiar with the concepts of the COBOL
language.

How to Use Th anual

This manual should be used as a reference for OS/3 COBOL. It is not a tutorial or a
general introduction to COBOL programming for the novice.

Organization

This manual contains 14 sections, 11 appendixes, and a glossary:

Section 1. Introduction

This section introduces COBOL and describes the symbols, rules, and notations used
in this manual.

Section 2. General Specifications

This section describes the COBOL character set, separators, character strings, classes
of data, standard alignment rules, and reference rules and format.

7004 4490-000 vii

About This Manual

VIII

Section 3. Identification Division

This section describes the structure of the Identification Division of a COBOL
program.

Section 4. Environment Division

This section describes the structure of the Environment Division of a COBOL
program.

Section 5. Data Division

This section describes the structure of the Data Division of a COBOL program.

Section 6. Procedure Division

This section describes the structure of the procedure division of a COBOL program,
including each of the COBOL verbs.

Section 7. Table Handling Summary

This section explains the language concepts and considerations for working with
tables.

Section 8. File Processing Summary

This section explains the language concepts for file processing and describes five types
of file organization: sequential, relative, indexed, SAM, and ISAM.

Section 9. SortlMerge Summary

This section explains the language concepts and considerations for working with the
sortimerge facility.

Section 10. Segmentation Summary

This section summarizes the segmentation facility for specifying overlay
requirements.

Section 11. Library Summary

This section summarizes the library module for specifying text to be copied from a
library.

Section 12. Debugging Language Summary

This section summarizes the debug module with which you can describe a debugging
algorithm and conditions.

70044490-000

About This Manual

Section 13. Interprogram Communication Summary

This section explains the language concepts and considerations for working with the
interprogram communication module.

Section 14. Communication Summary

This section summarizes the communication facility that lets you access, process, and
create messages.

Appendix A. Compiler Options

This appendix describes the compiler options.

Appendix B. Compiler Listings

This appendix describes the various compiler listings.

Appendix C. Compiler Diagnostics

This appendix lists and explains the diagnostic messages.

Appendix D. FIPS Flagging Facility

This appendix explains the Federal Information Processing Standard (FIPS)
Publication 21-1 (FIPS PUB 21-1).

Appendix E. Object Program Processing Considerations

This appendix describes intermediate results in arithmetic operations.

Appendix F. Non-English Language Feature

This appendix describes the non-English language feature.

Appendix G. IMS Action Programs

This appendix describes IMS COBOL action programs.

Appendix H. Job Control Stream Requirements

This appendix describes job control stream requirements for invoking the COBL 7 4
compiler.

Appendix I. Reserved Words

This appendix provides a listing of reserved words.

7004 4490-000 ix

About This Manual

x

DDen411Ix J. Standard EBCDIC and ASCII Collating Sequences

This appendix provides useful tables containing collating sequences commonly used in
data processing.

Appendix K. PICTURE Clause

This appendix provides a tutorial description of the PICTURE clause.

After reading this manual, programmers will be able to write COBOL 74 programs for
OS/3 systems.

Throughout this manual, specifications unique to Level 2 of a module are enclosed in
I ,boxes.land Unisys extensions to the COBOL language are enclosed in dashed-line
~b~x~~(l .2.2).

The following conventions are used to represent COBOL elements in this manual:

4) Words

All underlined uppercase words are called keywords and are required when the
functions of which they are a part are used. Uppercase words that are not
underlined are optional to the user and mayor may not be present in the source
program. Uppercase words, whether underlined or not, must be spelled correctly.

Lowercase words, in a general format, are generic terms used to represent
COBOL words, literals, PICTURE character-strings, comment-entries, or a
complete syntactical entry that must be supplied by the user. Where generic
terms are repeated in a general format, a number or letter appendage to the term
serves to identify that term for explanation or discussion.

• Level-Numbers

When specific level-numbers appear in data description entry formats, those
specific level-numbers are required when such entries are used in a COBOL
program. In this document, the form 01, 02, ... , 09 is used to indicate level­
numbers 1 through 9. (See "Level-Numbers" under 5.2.2.)

• Brackets and Braces

When a portion of a general format is enclosed in brackets, [], that portion may
be included or omitted at the user's choice. Braces, { }, enclosing a portion of a
general format means a selection of one of the options contained within the
braces must be made. In both cases, a choice is indicated by vertically stacking
the possibilities.

7004 4490-000

About This Manual

When brackets or braces enclose a portion of a format, but only one possibility is
shown, the function of the brackets or braces is to delimit that portion of the
format to which a following ellipsis applies. If an option within braces contains
only reserved words that are not keywords, it is a default option (implicitly
selected unless one of the other options is explicitly indicated).

• Ellipsis

In text, the ellipsis C ..) may show the omission of a portion of a source program.
This meaning becomes apparent in context.

In the general formats, the ellipsis represents the position at which repetition
may occur at the user's option. The portion of the format that may be repeated is
determined as follows:

Given an ellipsis in a clause or statement format, scanning right to left,
determine the] or} immediately to the left of the ellipsis; continue scanning
right to left and determine the logically matching [or {. The ellipsis applies
to the words between the determined pair of delimiters.

• Format Punctuation

The punctuation characters comma and semicolon are shown in some formats.
They are optional and may be included or omitted by the user. In the source
program, these two punctuation characters are interchangeable and either one
may be used anywhere one of them is shown in the formats. Neither one may
appear immediately preceding the first clause of an entry or paragraph.

If desired, a semicolon or comma may be used between statements in the
Procedure Division.

Paragraphs within the Identification and Procedure Divisions and the entries
within the Environment and Data Divisions must be terminated by the separator
period.

• Use of Certain Special Characters in Formats

The characters + - > < =, when appearing in formats, although not underlined, are
required when such formats are used.

Related Product Information

The following,OS/3 documents may be helpful in understanding and implementing the
information presented in this manual.

Note: Use the version that applies to the software level in use at your site.

70044490-000 XI

About This Manual

xii

Consolidated Data Management Macroinstructions Programming Guide
(70044607)

This guide describes the data management macroinstructions.

System Service Programs (SSP) Operating Guide (UP-8841)

This guide describes various system utilities, including the librarians and the linkage
editor.

System Messages Reference Manual (70045190)

This manual lists and describes the system console messages issued during
compilation.

Job Control Programming Guide (70044623)

This guide provides information on the format and usage of job control statements and
linkage editor job control procedure calls (jprocs).

Screen Format Services Technical Overview (UP-9977)

This overview describes screen format services (SFS), the interactive component of
OS/3 that provides an easy and effective method for inputting and outputting data.

General Editor (EDT) Operating Guide (70044599)

This guide describes the general editor and how to use it to enter COBOL source code.

Information Management System (IMS) COBOL/Assembler Action Programs
Programming Guide (UP-9207)

This guide describes IMS action programming.

Information Management System (IMS) System Support Functions
Programming Guide (UP-11907)

This guide describes IMS utilities and recovery.

Information Management System (IMS) Technical Overview (UP-9205)

Provides background information about IMS and action programming.

Integrated Communications Access Method (ICAM) Utilities Programming
Guide (7004 4565)

This guide describes the communication message control system (CMCS).

70044490-000

Contents

Acknowledgment

About This Document

Section 1. Introduction

1.1. Scope .. 1-1
1.2. Structure of COBOL Language ... 1-1

1.2.1. Module Overview... 1-2
1.2.2. Extensions to COBOL .. 1-4

1.3. Formats, Rules, and Elements of COBOL 1-5
1.3.1. Format ... 1-5
1.3.2. Rules ... 1-5
1.3.3. Elements .. 1-5

Section 2. General Specifications

2.1. COBOL Character Set .. 2-1
2.2. Separators... 2-4
2.3. Character-Strings.. 2-5

2.3.1. COBOL Words .. 2-5
User-Defined Words ... 2-5
System-Names ... 2-6
Reserved Words ... 2-7

2.3.2. Literals .. 2-8
2.3.3. PICTURE Character-String .. 2-12
2.3.4. Comment-Entries.. 2-13

2.4. Classes of Data .. 2-13
2.5. Standard Alignment Rules .. 2-13
2.6. Uniqueness of Reference ... 2-14

2.6.1. Qualification.. 2-14
2.6.2. Subscripting ... 2-15
2.6.3. Indexing ... 2-15
2.6.4. Identifier ... 2-16
2.6.5. Condition-Name .. 2-16

2.7. Reference Format .. 2-17

Section 3. Identification Division

3.1. Generallnformation... 3-1
3.2. Structure .. 3-1

7004 4490-000 xiii

Contents

Section 4. Environment Division

4.1. Generallnformation... 4-1
4.2. Structure ... 4-1
4.3. Configuration Section .. 4-2

4.3.1. SOURCE-COMPUTER Paragraph ... 4-2
4.3.2. OBJECT-COMPUTER Paragraph .. 4-3
4.3.3. SPECIAL-NAMES Paragraph ... 4-4

4.4. Input-Output Section .. 4-18
4.4.1. FILE-CONTROL Paragraph .. 4-19
4.4.2. I-G-CONTROL Paragraph .. 4-27

Section 5. Data Division

5.1. Generallnformation... 5-1
5.2. Structure.................. ... 5-1

5.2.1. Heading and Sections ... 5-1
5.2.2. Entries 5-2

Level-Indicators .. 5-2
Level-Numbers ... 5-2
Special Level-Numbers .. 5-4

5.3. File Section .. 5-4
5.3.1. File Description ... 5-5

BLOCK CONTAINS Clause .. 5-7
RECORD CONTAINS Clause .. 5-12
LABEL RECORDS Clause .. 5-13
VALUE OF Clause .. 5-14
DATA RECORDS Clause ... 5-14
LINAGE Clause ... 5-15
CODE-SET Clause . .. 5-20

5.3.2. Sort-Merge File Description .. 5-21
5.3.3. Data Description ... 5-22

Level-Number ... 5-26
Data-Name;fILLER Clause ... 5-27
REDEFINES Clause .. 5-27
PICTURE Clause ... 5-29
USAGE Clause .. 5-42
SIGN Clause ... 5-46
OCCURS Clause .. 5-47
SYNCHRONIZED Clause ... 5-51
JUSTIFIED Clause ... 5-55
BLANK WHEN ZERO Clause ... 5-56
VALUE Clause .. 5-57
RENAMES Clause .. 5-60

5.4. Working-Storage Section ... 5-62
5.4.1. 77-Level Description Entry... 5-63
5.4.2. Record Description Entry.... 5-63

XIV 70044490-000

Contents

5.5. linkage Section ... 5-64
5.5.1. 77-Level Description Entry............................ 5-65
5.5.2. Record Description Entry... 5-66

5.6. Communication Section ... 5-67
5.6.1. Input Communication Description .. 5-67
5.6.2. Output Communication Description 5-73

Section 6. Procedure Division

6.1. General Information 6-1
6.1.1. Decla ratives 6-1
6.1.2. Procedures .. 6-1
6.1.3. Procedure Division Structure 6-2

Procedure Division Header ... 6-2
Procedure Division Body .. 6-3

6.2. Categories of Statements ... 6-5
6.2.1. Imperative Statements 6-5
6.2.2. Conditional Statements .. 6-5
6.2.3. Compiler-Directing Statements .. 6-6

6.3. Arithmetic Expressions ... 6-6
6.3.1. Arithmetic Operators ... 6-6
6.3.2. Formation and Evaluation Rules .. 6-7

6.4. Conditional Expressions ... 6-9
6.4.1. Simple Conditions ... 6-9

Relation Condition ... 6-9
Comparison of Numeric Operands 6-11
Comparison of Nonnumeric Operands 6-12
Comparisons Involving Index-Names or

Index Data Items .. 6-13
Class Condition .. 6-13
Condition-Name Condition .. 6-14
Switch-Status Condition .. 6-14
Sign Condition .. 6-15

6.4.2. Complex Conditions ... 6-15
Negated Simple Conditions .. 6-16
Combined and Negated Combined Conditions 6-16
Abbreviated Combined Relation Conditions 6-18

6.4.3. Condition Evaluation Rules .. 6-19
6.5. Common Phrases and General Rules for Statement Formats 6-19

6.5.1. The ROUNDED Phrase ... 6-20
6.5.2. The SIZE ERROR Phrase .. 6-20
6.5.3. The CORRESPONDING Phrase .. 6-21
6.5.4. The Arithmetic Statements ... 6-22
6.5.5. Overlapping Operands ... 6-22
6.5.6. Multiple Results in Arithmetic Statements 6-22
6.5.7. WHEN-COMPILED Special Register 6-23

70044490-000 xv

Contents

6.6. COBOL Verbs ... 6-23
6.6.1. ACCEPT Statement ... 6-23
6.6.2. ADD Statement ... 6-29
6.6.3. ALTER Statement .. 6-30
6.6.4. CALL Statement ... 6-31
6.6.5. CANCEL Statement ... 6-33
6.6.6. CLOSE Statement ... 6-34
6.6.7. COMPUTE Statement .. 6-39
6.6.8. COPY Statement ... 6-40
6.6.9. DELETE Statement ... 6-43
6.6.10. DISABLE Statement .. 6-44
6.6.11. DISPLAY Statement ... 6-45
6.6.12. DIVIDE Statement ... 6-49
6.6.13. ENABLE Statement ... 6-51
6.6.14. EXHIBIT Statement .. 6-52
6.6.15. EXIT Statement ... 6-53
6.6.16. GO TO Statement ... 6-53
6.6.17. IF Statement 6-55
6.6.18. INSPECT Statement .. 6-56
6.6.19. MERGE Statement .. 6-63
6.6.20. MOVE Statement .. 6-66
6.6.21. MULTIPLY Statement .. 6-70
6.6.22. ON Statement .. 6-71
6.6.23. OPEN Statement ... 6-72
6.6.24. PERFORM Statement ... 6-76
6.6.25. READ Statement ... 6-84
6.6.26. RECEIVE Statement ... 6-89
6.6.27. RELEASE Statement .. 6-91
6.6.28. RETURN Statement ... 6-92
6.6.29. REWRITE Statement .. 6-93
6.6.30. SEARCH Statement ... 6-96
6.6.31. SEND Statement .. 6-100
6.6.32. SET Statement .. 6-104
6.6.33. SORT Statement .. 6-106
6.6.34. START Statement .. 6-110
6.6.35. STOP Statement .. 6-113
6.6.36. STRING Statement ... 6-114
6.6.37. SUBTRACT Statement .. 6-116
6.6.38. TRACE Statement .. 6-118
6.6.39. TRANSFORM Statement .. 6-118
6.6.40. UNSTRING Statement ... 6-123
6.6.41. USE Statement .. 6-126
6.6.42. WRITE Statement ... 6-135
6.6.43. *DEBUG Statement .. 6-141

XVI 70044490-000

Contents

Section 7. Table Handling Summary

7.1. Generallnformation ... 7-1
7.2. language Concepts ... 7-1

7.2.1. Table Definition ... 7-1
7.2.2. References to Table Items ... 7-2

Subscripting 7-3
Indexing ... 7-3
Range Checking .. 7-4

7.3. Data Division Considerations 7-4
7.4. Procedure Division Considerations 7-5

7.4.1. Table Handling Statements ... 7-5
7.4.2. Comparisons Involving Index-Name or Index Data Items 7-6
7.4.3. Overlapping Operands in a SET Statement 7-6

Section 8. File Processing Summary

8.1. Generallnformation... 8-1
8.2. language Concepts ... 8-1

8.2.1. File Organization and Access Methods 8-1
Sequential Organization ... 8-1
Relative Organization ... 8-2
Indexed Organization ... 8-2
SAM Organization .. 8-3
ISAM Organization ... 8-3

8.2.2. Current Record Pointer .. 8-3
8.2.3. 1-0 Status ... 8-4
8.2.4. AT END Condition .. 8-5
8.2.5. INVALID KEY Condition ... 8-5
8.2.6. LINAGE-COUNTER ... 8-6

8.3. Sequential File Processing ... 8-6
8.3.1. Level Characteristics ... 8-6
8.3.2. Clauses and Statements for Sequential File Processing 8-6

Environment Division .. 8-6
Data Division .. 8-7
Procedure Division .. 8-8

8.3.3. Printer-Destined Files ... 8-9
8.3.4. Multivolume Sequential Files ... 8-9

8.4. Relative File Processing ... 8-9
8.4.1. Level Characteristics ... 8-9
8.4.2. Clause and Statements for Relative File Processing 8-10

Environment Division .. 8-10
Data Division .. 8-11
Procedure Division .. 8-11

8.5. Indexed File Processing ... 8-13
8.5.1. Level Characteristics 8-13
8.5.2. Clauses and Statements for Indexed File Processing 8-13

Environment Division .. 8-13
Data Division .. 8-14
Procedure Division .. 8-15

70044490-000 XVII

Contents

B.6. SAM File Processing .. 8-16
8.6.1. Environment Division ... 8-16
8.6.2. Data Division .. 8-17
8.6.3. Procedure Division .. 8-17
8.6.4. Multivolume SAM Files ... 8-18

8.7 . ISAM File Processing 8-18
8.7.1. Environment Division ... 8-18
8.7.2. Data Division .. 8-19
8.7.3. Procedure Division .. 8-19

Section 9. Sort-Merge Summary

9.1. Generallnformation ... 9-1
9.2. language Concepts ... 9-2

9.2.1. Relationship with File Processing Facility 9-2
9.2.2. Sort Special Registers... 9-2

9.3. Environment Division Considerations ... 9-3
9.3.1. File Control Entry.. 9-3
9.3.2. I-O-CONTROL Paragraph .. 9-3

9.4. Data Division Considerations .. 9-4
9.S. Procedure Division Considerations ... 9-4

9.5.1. RELEASE Statement .. 9-4
9.5.2. RETURN Statement ... 9-5
9.5.3. SORT Statement ... 9-5
9.5.4. MERGE Statement .. 9-5

9.6. Object Time Subroutine Sort-Merge Main Storage
Requirements ... 9-6

Section 10. Segmentation Summary

10.1. Generallnformation ... 10-1
10.2. Organization .. 10-1

10.2.1. Fixed Portion .. 10-1
10.2.2. Independent Segments .. 10-2

10.3. Segmentation Classification ... 10-2
10.4. Segmentation Control.. 10-3
10.5. Structure of Program Segments .. 10-3

10.5.1. Segment Numbers .. 10-3
10.5.2. SEGMENT-LIMIT Clause ... 10-3
10.5.3. Object Module Naming Conventions 10-4
10.5.4. Linkage Editor Control Statement Considerations 10-4

10.6. COBOL Verbs Affected by Segmentation 10-5
10.6.1. ALTER Statement .. 10-5
10.6.2. PERFORM Statement ... 10-5
10.6.3. SORT Statement ... 10-5
10.6.4. MERGE Statement .. 10-6

XVIII 70044490-000

Contents

Section 11. Library Summary

11.1. Generallnformation 11-1
11.2. COPY Statement .. 11-1
11.3. Source Program Corrections during Compilation 11-2

Section 12. Debugging language Summary

12.1. Generallnformation ... 12-1
12.2. language Concepts ... 12-1

12.2.1. DEBUG-ITEM Register .. 12-2
12.2.2. Compile-Time Switch ... 12-3
12.2.3. Object-Time Switch .. 12-3

12.3. Environment Division Considerations .. 12-4
12.3.1. WITH DEBUGGING MODE Clause ... 12-4

12.4. Procedure Division Considerations ... 12-4
12.4.1. USE FOR DEBUGGING Statement .. 12-4
12.4.2. Debugging Lines ... 12-4
12.4.3. Extended Debugging Facility ... 12-5

ON Statement... 12-5
EXHIBIT Statement .. 12-5
TRACE Statement ... 12-5
Debugging Packet (*DEBUG) .. 12-6

Section 13. Interprogram Communication Summary

13.1. Generallnformation ... 13-1
13.1.1. Tra nsfer of Control 13-1
13.1.2. Access to Data Items 13-2
13.1. 3. Level Characteristics 13-2

13.2. Data Division Considerations .. 13-3
13.2.1. Noncontiguous Linkage Storage 13-3
13.2.2. Linkage Records 13-3
13.2.3. Initial Values 13-3

13.3. Procedure Division Considerations ... 13-3
13.3.1. Procedure Division Header ... 13-3
13.3.2. CALL Statement .. 13-4
13.3.3. CANCEL Statement ... 13-4
13.3.4. EXIT PROGRAM Statement ... 13-4

13.4. Object Program Execution Considerations 13-5

7004 4490-000 xix

Contents

Section 14. Communication Summary

14.1. Generallnformation ... 14-1
14.2. Message Control System ... 14-1
14.3. COBOL Object Program ... 14-2
14.4. Relationship of COBOL Program to MCS and

Communication Devices ... 14-2
14.4.1. Invoking the COBOL Object Program 14-3

Scheduled Initiation ... 14-4
MCS Invocation .. 14-4
Determining the Method of Invocation 14-4

14.5. Concept of Messages and Message Segments 14-5
14.6. Concept of Queues .. 14-5

14.6.1. Enabling and Disabling Logical Connectives 14-6
14.6.2. Enqueuing and Dequeuing Methods 14-6
14.6.3. Queue Hierarchy ... 14-6

14.7. Message Control System Generation ... 14-8

Appendix A. Compiler Options

A.I. General Information ... A-I
A.2. Compiler Option Specification ... A-I
A.3. Compiler Option Specification Consistency Check A-6

Appendix B. Compiler listings

B.l. Compilation Summary listing .. B-1
B.2. Diagnostic listing ... B-1
B.3. Source listing .. B-1
B.4. Object Code listing ... B-2
B.S. locatorjMapjCross-Reference listings .. B-2
B.6. Alphabetically Ordered Cross-Reference listing B-4
B.7. Object Code Map listing .. B-4

Appendix C. Compiler Diagnostics

C.l. Generallnformation ... C-l
C.2. Diagnostic listing ... C-l

Appendix D. FIPS Flagging Facility

0.1. FIPS PUB 21-1 COBOL levels .. D-l
0.2. Flagging Options .. D-2

xx 7004 4490-000

Contents

Appendix E. Object Program Processing Considerations

E.l. Intermediate Results in Arithmetic Operations E-l
E.LL Floating-Point Operands E-2
E.L2. ADD and SUBTRACT Statements ... E-2
E.!. 3. MULTIPLY Statement ... E-2
E.L4. DIVIDE Statement .. E-2

E.2. Expressions .. E-3

Appendix F. Non-English language Feature

F.l.
F.2.
F.3.
F.4.

F.S.

F.G.

Function ... F-l
Composite language Format ... F-2
Control Division .. F-3
Environment Division
F.4.L CLASS-NAME Clause
Procedure Division .. .
F.S.L Extended Class Condition .. .
Non-English Text Utility Program

F-S
F-S
F-7
F-7
F-7

Appendix G. IMS Action Programs

G.l. Generallnformation ... G-l
G.2. Action Programs .. G-l
G.3. Compiler Parameter Specifications and IMS Configuration

Specifications ... G-4
G.4. Reentrant Action Program Work Area Usage G-S

Appendix H. Job Control Stream Requirements

H.l. Generallnformation ... H-l
H.2. Procedure Call Statement .. H-l
H.3. Compiler Status Indicators ... H-19
H.4. Data Definition (DD) Job Control Statement Keyword

Parameters H-19

Appendix I. Reserved Words

Appendix J. Standard EBCDIC and ASCII Collating Sequences

J.l. Introduction ... J-l
J.2. EBCDIC/ASClljHollerith Correspondence ... J-l

J.2.1. Hollerith Punched Card Code ... J-2
J.2.2. EBCDiC ... J-2
J.2.3. ASCII .. J-2

J.3. OS/3 Collating Sequence for EBCDIC Graphic Characters J-IO
JA. OS/3 Collating Sequence for ASCII Graphic Characters J-13

7004 4490-000 XXI

Contents

xxii

Appendix K. PICTURE Clause

Glossary

Index

K.l. Generallnformation... K-l
K.2. Use of the PICTURE Clause and Its Symbols K-l
K.3. Descriptions and Examples of PICTURE Clause Symbols K-2

User Reply Form

7004 4490-000

Figures

3-1. Sample Identification Division Entries ... 3-2

4-1. Sample Environment Division Entries ... 4-2

5-1. Sample File Section Entries .. 5-6
5-2. Logical Page Format for Format 1 LINAGE Clause .. 5-16
5-3. Sample Sort File Description Entries 5-21
5-4. Sample Working-Storage Section Entries ... 5-62
5-5. Sample Linkage Section Entries 5-64
5-6. Sample Communication Section Entries ... 5-77

6-1. Sample Procedure Division ... 6-4
6-2. Flowchart for the VARYING Phrase Having One Condition ... 6-80
6-3. Flowchart for the VARYING Phrase Having Two Conditions ... 6-81
6-4. Flowchart for the VARYING Phrase Having Three Conditions ... 6-82
6-5. Flowchart for a Format 1 Search Operation Containing Two WHEN Phrases 6-97

14-1. COBOL Communication Environment ... 14-3
14-2. Hierarchy of Queues .. 14-7

G-1. IMS Work Area Usage .. G-6

70044490-000 xxiii

Tables

1-1. COBOL Language Processing Levels ... 1-1

4-1. Status Key Values for Workstations ... 4-9
4-2. Effects of CONNECT-FREE Reporting ... 4-10
4-3. Effects of FUNCTION-KEYS Input ... 4-11
4-4. Compiler Default Value of the RESERVE Clause 4-23

5-1. File Description Entry Clauses ... 5-7
5-2. Block Size Calculations for Tape, Card Reader, Card Punch, and Printer Files 5-9
5-3. Block Size Calculations for Mass Storage SAM and ISAM Files 5-10
5-4. Buffer Size Calculations for Mass Storage Sequential, Relative, and Indexed Files 5-11
5-5. Data Description Entry Clauses ... 5-25
5-6. Class and Category of Elementary and Group Data Items .. 5-30
5-7. Type of Editing Permissible for Each Data Category.. 5-36
5-8. Results Produced by Editing Sign Control Symbols .. 5-37
5-9. PICTURE Character Precedence Chart ... 5-41
5-10. Alignment Boundaries for Various Types of Elementary Items 5-51
5-11. Communication Status Key Condition ... 5-72
5-12. Error Key Codes ... 5-76

6-1. Permissible Symbol Combinations in Arithmetic Expressions .. 6-8
6-2. Permissible Comparisons for Relation Conditions .. 6-10
6-3. Logical Operators and the Resultant Values .. 6-16
6-4. Combinations of Conditions, Logical Operators, and Parentheses 6-17
6-5. Relationship of Categories of Files and the Options of the CLOSE Statement 6-35
6-6. Permissible MOVE Statement Data Transfers ... 6-69
6-7. Permissible InpuVOutput Statements for Each OPEN Mode .. 6-73
6-8. Valid Uses of the Format 1 SET Statement ... 6-105
6-9. Combination of FROM and TO Options in a TRANSFORM Statement 6-120

8-1. Status Key Values and Meanings ... 8-4

12-1. Debug Conditions and Contents of DEBUG-ITEM ... 12-2

A-I. Options of the PARAM Statement A-2
A-2. Parameter Consistency Checks .. A-7

0.1. Federal Standard COBOL Levels ... D-1

G-l. IMS Configuration .. G-5

J-l. Cross-Reference Table: EBCDIC/ASCII;11ollerith... J-3
J-2. OS/3 Collating Sequence: EBCDIC Graphics .. J-10
J-3. OS/3 Collating Sequence: ASCII Graphics ... J-13

7004 4490-000 xxv

Sectio 1
Introduction

1.1. Scope

This manual describes the 1974 American National Standard COBOL compiler
operating in the System 80 environment.

1.2. Structure of COBOL Language

COBOL is structured into a nucleus and a number of functional processing modules.
The nucleus contains language elements for internal processing. The functional
processing modules are: table handling, sequential 1-0, relative 1-0, indexed 1-0,
sortimerge, segmentation, library, debug, interprogram communications, and
communication.

Each module contains either two or three levels. Those with three levels contain a null
set at their lowest level, a low processing level (Levell), and a high processing level
(Level 2). In all cases, lower levels are subsets of higher levels within the same
module. Table 1-1 lists all modules and levels implemented on the operating system.

Table 1-1. COBOL Language Processing Levels

Module Level

Nucleus 2

Table handling 2

Sequential 1-0 2

Relative 1-0 2

Indexed 1-0 2

Sort/merge 2

Segmentation 2

Library 2

Debug 2

Interprogram communication 2

Communication 2

7004 4490-000 1-1

Introduction

1.2.1. Module Overview

1-2

• Nucleus

The nucleus contains the language elements for internal processing. This module
is divided into two levels. The Levell elements perform basic internal operations,
i.e., elementary options of the various clauses and verbs. Level 2 provides more
extensive and sophisticated internal processing capabilities.

G Table handling

The table handling module contains the language elements necessary for:

Definition of tables

Identification, manipulation, and use of indexes

Reference to the items within tables

This module is divided into two levels. Levell provides the ability to define fixed­
length tables of up to three dimensions and to refer to items within them using
either a subscript or an index. Level 2 provides for the definition of variable­
length tables. In addition, facilities for serial and nonseriallookup are provided
by the SEARCH verb and its attendant Data Division clauses.

I\) Sequential 1-0

The sequential 1-0 module contains the language elements necessary for the
definition and access of sequentially organized external files. The module is
divided into two levels. Levell contains the basic facilities for the definition and
access of sequential files and for the specification of checkpoints. Level 2 contains
more complete facilities for defining and accessing these files.

• Relative 1-0

The relative 1-0 module provides the capability of defining and accessing mass
storage files in which records are identified by relative record numbers. This
module contains a null set as its lowest level and two processing levels. Levell
provides basic facilities. Level 2 provides more complete facilities, including the
capability of accessing the file both randomly and sequentially in the same
COBOL program.

• Indexed 1-0

The indexed 1-0 module provides the capability of defining mass storage files in
which records are identified by the value of a key and accessed through an index.
This module contains a null set as its lowest level and two processing levels.
Levell provides basic facilities. Level 2 provides more complete facilities,
including alternate keys, and the capability of accessing the file both randomly
and sequentially in the same COBOL program.

7004 4490-000

Introduction

(3 SortJMerge

The sortlmerge module allows for the inclusion of one or more sorts in a COBOL
program and consists of a null set and two processing levels. Levell contains
facilities to sort a single file only; Level 2 provides extended sorting capabilities,
including a merge facility.

.. Segmentation

The segmentation module provides for the overlaying at object time of Procedure
Division sections. This module consists of a null set and two processing levels.
Levell provides for section segment-numbers and fixed segment limits; Level 2
adds the capability for varying the segment limit.

• Library

The library module consists of a null set and two processing levels. It provides for
the inclusion into a program of predefined COBOL text. Levell contains the
basic COPY verb; Level 2 adds the REPLACING phrase.

• Debug

The debug module provides a means by which the user can specify his debugging
algorithm - the conditions under which data or procedure items are monitored
during execution of the program. It consists of a null set and two processing
levels. Levell provides a basic debugging capability, including the ability to
specify selective or full paragraph monitoring. Level 2 provides the full COBOL
debugging capability.

.. Interprogram Communication

The interprogram communication module provides a facility by which a program
can communicate with one or more other programs. This module consists of a null
set and two processing levels. Levell provides the ability to transfer control to
another program known at compile time and the ability for both programs to
have access to certain common data items. Level 2 adds the ability to transfer
control to a program not identified at compile time as well as the ability to
determine the availability of object time main storage for the called program. The
high level also provides the capability for the release of main storage areas
occupied by called programs.

• Communication

70044490-000

The communication module provides the ability to access, process, and create
messages or portions of messages. It also provides the ability to communicate
through a COBOL message control system with local and remote communication
devices. This module consists of a null set and two processing levels. Levell
provides basic facilities to send or receive complete messages. Level 2 provides a
more sophisticated facility including the capability to send or receive segments of
a message.

1-3

Introduction

,------------------------------,
11.2.2. Extensions to COBOL I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
!
I
I
I
I
I
I
I
I
I
I
I

Unisys has provided a number of extensions to the standard COBOL language. These
extensions are indicated in this manual by dashed-line boxes. The extended language
elements are as follows:

Apostrophe as quotation mark

USAGE COMPUTATIONAL-n

DISPLAY floating-point data item

Floating-point literal

Hexadecimal literal

CALL USING argument

IF THEN statement

TRANSFORM statement

ISAM file processing facility

Extended debugging facility

ON statement

WHEN -COMPILED special register

Non-English language feature

APPLY clauses

SAM file processing facility

Extended RERUN option

Standard user tape labels

Sort special registers

ASSIGN clause in SPECIAL-NAMES

Format 4 of ACCEPT statement

I L e Format 2 of DISPLAY stateTllent _____________________________ J

1-4 70044490-000

Introduction

1.3. Formats, Rules, and Elements of COBOL

1.3.1. Format

A format is the specific arrangement of the elements of a clause or a statement. A
clause or a statement consists of elements as defined in 1.3.3. Throughout this
manual, a format is shown adjacent to information defining the clause or statement.
When more than one specific arrangement is permitted, the format is separated into
numbered formats. Clauses must be written in the sequence given except where
specifically stated in the rules associated with a given format. (Clauses that are
optional must appear in the sequence shown if they are used.) Applications,
requirements, or restrictions are shown as rules.

1.3.2. Rules

Rules are used to define or clarify:

41 The syntax or arrangement of words or elements in a larger structure, such as a
clause or statement

• The meaning or relationship of meanings of an element or set of elements in a
statement and the effect of the statement on compilation or execution

1.3.3. Elements

Elements that make up a clause or a statement consist of uppercase and lowercase
words, level-numbers, brackets, braces, connectives, and special characters. See
"Notation Conventions" in the "About This Manual" section for a discussion of how
COBOL elements are presented throughout this manual.

7004 4490-000 1-5

Section 2
eneral Specifications

2.1. COBOL Character Set

The most basic and indivisible unit of the language is the character. The set of 51
characters used to form COBOL character-strings and separators consists of the
following letters of the alphabet, digits, and special characters. The collation sequence
for these characters is given in Appendix J. (For nonnumeric literals, comment­
entries, and comment lines, the character set is expanded to include the entire
computer character set.)

0,1, ... ,9

A,B, ... ,Z

Blank or space (written on coding form as f:, or a blank space)

Period (decimal point)

< Less than

Left parenthesis

+ Plus sign

$ Currency sign

* Asterisk

Right parenthesis

Semicolon

Minus sign or hyphen

Cornma (decimal point)

> Greater than

= Equals sign

Quotation mark

/ Slash (stroke, virgule)

7004 4490-000 2-1

General Specifications

These characters may be used as follows:

.. Characters Used for Words

A COBOL word is a sequence of not more than 30 of the following
characters:

0,1, ... ,9

A,B, ... ,Z

- (hyphen)

A word may neither begin nor end with a hyphen or contain a space.

4» Characters U sed for Punctuation

COBOL punctuation characters are:

Left parenthesis

Right parenthesis

Blank or space (written on coding form as 6. or a blank space)

Period

Comma

Semicolon

Quotation mark

= Equals sign

• Characters Used in Relational Expressions

The COBOL characters used to represent relational operators are:

= Equals

> Greater than

< Less than

2-2 7004 4490-000

.. Characters Used in Arithmetic Expressions

The characters used in arithmetic expressions are:

+

*

/

**

Plus sign (addition)

Minus sign (subtraction)

Asterisk (multiplication)

Slash (division)

Two asterisks (exponentiation)

• Characters Used in Editing

70044490-000

The characters used in editing are:

B Blank or space

o Zero

+ Plus sign

Minus sign

CR

DB

Z

*

$

/

Credit

Debit

Zero suppress

Check protect

Currency sign

Comma (decimal point)

Period (decimal point)

Slash (stroke, virgule)

General 11.:: ... ,"' "

2-3

2-4

A separator is a string of one or more punctuation characters. The separators and the
rules for their formation are as follows:

1. Blank or space

a. Anywhere a space is used as a separator, more than one space may be used.

b. The space may precede all separators except:

• As specified by reference format rules (see 2.7)

o The separator closing quotation mark. In this case, a preceding space is
considered a part of the nonnumeric literal and not as a separator.

c. The space may follow any separator except the opening quotation mark. In
this case, a following space is considered a part of the nonnumeric literal and
not as a separator.

2. Comma, semicolon, and period immediately followed by a space

These separators may appear in a COBOL source program only where explicitly
permitted by the general formats, by format punctuation rules (see "Notation
Conventions" in the "About This Manual" section), by statement and sentence
structure definitions (see 6.2), or by reference format rules (see 2.7).

3. Right and left parentheses

Parentheses may appear only in balanced pairs of left and right parentheses
delimiting subscripts, indexes, arithmetic expressions, or conditions.

4. Quotation mark

An opening quotation mark must be immediately preceded by a space or left
parenthesis; a closing quotation mark must be immediately followed by one of the
separators: space, comma, semicolon, period, or right parenthesis.

Quotation marks may appear only in balanced pairs delimiting nonnumeric
literals except when the literal is continued (see 2.7).

5. Pseudo-text delimiters

The delimiter consists of two contiguous equals signs. An opening pseudo-text
delimiter must be immediately preceded by a space; a closing pseudo-text
delimiter must be immediately followed by one of the separators: space, comma,
semicolon, or period.

Pseudo-text delimiters may appear only in balanced pairs delimiting pseudo-text
and may not be continued across two lines.

7004 4490-000

1.

'';;o.no.lI''!lB Specifications

Any punctuation character that appears as part of the specification of a PICTURE
character-string or numeric literal is not considered as a punctuation character, but
rather as a symbol used in the specification of that PICTURE character-string or
numeric literal. PICTURE character-strings are delimited only by the separators:
space, comma, semicolon, or period.

The rules established for the formation of separators do not apply to the characters
that comprise the contents of nonnumeric literals, comment-entries, or comment lines.

A character-string is a character or a sequence of contiguous characters that forms a
COBOL word, a literal, a PICTURE character-string, or a comment-entry. A
character-string is delimited by separators.

A COBOL word is a character-string of not more than 30 char3.~ters that forms a
user-defined word, a system-name, or a reserved word. WithiL. "':~ren source
program, these classes form disjoint sets; a COBOL word may belong to one and only
one of these classes.

10.'11'11"'0.1"1 Words

A user-defined word is a COBOL word that must be supplied by the user to satisfy the
format of a clause or statement. Each character of a user-defined word is selected from
the set of characters A through Z, 0 through 9, and -, except that the hyphen may not
appear as the first or last character.

There are 15 types of user-defined words:

7004 4490-000

alphabet-name
cd-name
condition-name
data-name
file-name
index-name
level-number
library-name
mnemonic-name
paragraph-name
program-name
record-name
section-name
segment-number
text-name

2-5

General Specifications

With the exceptions of paragraph-name, section-name, level-number, and
segment-number, user-defined words must contain at least one alphabetic character.
Segment-numbers and level-numbers need not be unique; a given specification of a
segment-number or level-number may be identical to any other segment-number or
level-number and may even be identical to a paragraph-name or section-name.

The user-defined words condition-name, mnemonic-name, paragraph-name, and
section-name are defined in the following paragraphs. The definition for all other
user-defined words may be found in the glossary.

• Condition-name

A condition-name is assigned to a specific value, set of values, or range of values
within a complete set of values that a data item may assume. The data item itself
is called a conditional variable.

Condition-names may be defined in the Data Division or in the
SPECIAL-NAMES paragraph within the Environment Division, where a
condition-name must be assigned to the ON STATUS or OFF STATUS, or both,
of SYSSWCH[-n],

A condition-name is used only in conditions as an abbreviation for the relation
condition; this relation condition posits that the associated conditional variable is
equal to one of the set of values to which that condition-name is assigned.

• Mnemonic-name

A mnemonic-name assigns a user-defined word to an implementor-name. These
associations are established in the SPECIAL-NAMES paragraph of the
Environment Division.

• Paragraph-name

A paragraph-name names a paragraph in the Procedure Division.
Paragraph-names are equivalent if, and only if, they are composed of the same
sequence of the same number of digits or characters.

• Section-name

A section-name names a section in the Procedure Division. Section-names are
equivalent if, and only if, they are composed of the same sequence of the same
number of digits or characters.

System-Names

2-6

A system-name is a COBOL word used to communicate with the environment. There
are two types of system-names: computer-name and implementor-name. These names
are defined in the format or rules of the language element in which they appear.

70044490-000

General Specifications

Reserved Words

A reserved word is one of a specified list of COBOL words that may be used in COBOL
source programs but must not appear in the programs as user-defined words or
system-names. Reserved words can only be used as specified in the formats. (See
Appendix I.)

There are six types of reserved words.

1. Keywords

A keyword is required when the format in which the word appears is used in a
source program. Within each format, such words are uppercase and underlined.

There are three types of keywords:

Verbs, such as ADD, READ, and WRITE

Required words that appear in statement and entry formats

Words with a specific functional meaning, such as NEGATIVE and
SECTION

2. Optional Words

Within each format, uppercase words that are not underlined are optional and
may be used to improve readability, The presence or absence of an optional word
does not alter the semantics of the COBOL program in which it appears.

3. Connectives

There are three types of connectives:

Qualifier connectives that are used to associate a data-name, a
condition-name, a text-name, or a paragraph-name with its
qualifier: OF, IN

Series connectives that link two or more consecutive operands:
,(separator comma) or ; (separator semicolon)

Logical connectives that are used in the formation of conditions:
AND,OR

4. Special Registers

7004 4490-000

Special registers are compiler-generated storage areas used to store information
produced when using specific COBOL features. These special registers are named
with reserved words as follows: LINAGE-COUNTER (see "LINAGE Clause"
under 5.3.J), DEBUG-ITEM (see 12.2.1), WHEN-COMPILED (see 6.5.7),
SORT-FI1JE-SIZE (see 9.2.2), and SORT-MODE-SIZE (see 9.2.2).

2-7

General Specifications

5. Figurative Constants

Certain reserved words are used to name and reference specific constant values
as explained in 2.2.

6. Special-Character Words

The arithmetic operators and relation characters listed in 2.1 are reserved words.

2.3.2. Literals

2-8

A literal is a character-string whose value is implied by 1) an ordered set of characters
of which the literal is composed or 2) specification of a reserved word that references a
figurative constant.

Literals are nonnumeric, numeric, or~~~~-~~-;iJ

• Nonnumeric Literals

A nonnumeric literal is a character-string delimited on both ends by quotation
marks and consisting of any allowable character in the EBCDIC character set.
The compiler allows for nonnumeric literals from 1 through 132 characters in
length. The value of a nonnumeric literal in the object program is the string of
characters itself, with the following exceptions:

The delimiting quotation marks are excluded.

Each embedded pair of contiguous quotation marks represents a single
quotation mark character.

However, the double-quote character (") appearing within a nonnumeric literal
bounded by single quotes is treated as part of the value of the nonnumeric literal
rather than a separator.

Coding Result

TH I SIS IIEDITEDII OUTPUT

The single-quote character (') appearing within a nonnumeric literal bounded by
the double quote characters (") is also treated as part of the nonnumeric literal.

Coding Result

IITHIS IS 'EDITED' OUTPUTI! THIS IS 'EDITED' OUTPUT

7004 4490-000

General Specifications

To represent a single quote character within a nonnumeric literal bounded by
single quotes, two contiguous single quotes must be used.

Coding Result

'THIS IS ilEDITEDII OUTPUT I THIS IS 'EDITED' OUTPUT

To represent a double quote character within a nonnumeric literal bounded by
double quotes, two contiguous double quote characters must be used.

Coding

IITHIS IS III 'EDITED""

OUTPUP'

Result

TH I SIS liED ITEDII OUTPUT

All other punctuation characters are part of the value of the nonnumeric literal
rather than separators; all nonnumeric literals are category alphanumeric. (See
"PICTURE Clause" under 5.3.3.)

• Numeric Literals

There are two types of numeric literals: fixed point and@oating poin!J

1. Fixed-Point Literal

A fixed-point literal is a character-string whose characters are selected from
the digits 0 through 9, the plus sign, the minus sign, and the decimal point. A
fixed-point literal consists of from 1 through 18 digits in length.

The rules for the formation of fixed-point literals are as follows:

a. A literal must contain at least one digit.

b. A literal must not contain more than one sign character. If a sign is
used, it must appear as the leftmost character of the literal. If the literal
is unsigned, the literal is positive.

c. A literal must not contain more than one decimal point. The decimal
point may appear anywhere within the literal except as the rightmost
character. If the literal contains no decimal point, the literal is an
integer.

If a literal conforms to the rules for the formation of numeric literals,
but is enclosed in quotation marks, it is a nonnumeric literal and it is
treated as such by the compiler.

d. The value of a numeric literal is the algebraic quantity represented by
the characters in the numeric literal. Every numeric literal is category
numeric. The size of a numeric literal in standard data format
characters is equal to the number of digits specified by the user.

7004449~OOO ~9

General Specifications

2-10

,---- -------------------,
2. Floating-Point Literal I

I I
I
I
I
I
I
I
I
I
I
I
I
I
I

A floating-point literal is a numeric literal whose potential range of value is I
too great for fixed-point representation. I

A floating-point literal must have the following format:

[~] mantissa E [~] exponent

where:

The two plus or minus signs are optional.

mantissa
Consists of from 1 to 16 digits with a required decimal point; the
decimal point may appear in any position.

I
I
I
I
I
I
I
I
I
I
I I exponent

I Consists of the symbol E, followed by an optional sign, followed by I
I one or two digits. (A zero exponent may be written as 0 or 00.) I

I The literal must contain no spaces. The exponent must appear immediately I
I to the right of the mantissa. I

I The signs are the only optional characters in the format. An unsigned I
I mantissa or exponent is assumed to be positive. I
I I
I The value of the literal is the product of the mantissa and 10 raised to the I
I power given by the exponent. I

I E~m~ I

I + lo5E - 2 = 1.5 x 10-2
:

I The magnitude of the number represented by a floating-point literal must I
I not exceed .72 x 1076 . The smallest nonzero value that can be represented byl
L __ a floating-point literal is ±5.~x ~0-79. ___________ .J
I- Hexadecimal Literals- - - - - - - - - - - - - - - -- I
I I
I A hexadecimal literal is a string of hexadecimal digits bounded by single or I
I double quotation marks and immediately preceded by an equal sign. I

: Examples :

:::1I023C II i
I L __ :::i023C' ___________________ ~

7004 4490-000

General Specifications

1------------------------
The string may include any hexadecimal digits (0 through 9 and A through F). I

I The length of a hexadecimal literal ranges from 1 through 30 hexadecimal digits. I
I If the literal consists of an odd number of hexadecimal digits, a leading I
I hexadecimal zero is provided by the compiler to make the literal an even number I
I of digits. I

I A hexadecimal literal may be used anywhere a nonnumeric literal is permitted. I
I In this manual, a hexadecimal literal is considered a nonnumeric literal. I

A hexadecimal literal may be broken in such a way that part of it appears on a
continuation line. Continuation of a hexadecimal literal follows the rules for
continuation of a COBOL word.

Example

BAKER.

I
I
I
I
I
I
I

MOVE =1I13A I
L __ -_ 4C811~ F~D_. ___________________________ --I

• Figurative Constant Values

7004 4490-000

Figurative constant values are generated by the compiler and referenced through
the use of reserved words. These words must not be bounded by quotation marks
when used as figurative constants. The singular and plural forms of figurative
constants are equivalent and may be used interchangeably.

The figurative constant values and the reserved words used to reference them are
as follows:

SPACE
I SPACES I

Represents the value 0, or one or more of the character 0,
depending on context.

Represents one or more of the character space from the
computer character set.

HIGH-VALUE Represents one or more of the character that has the
I HIGH-VALUES I highest ordinal position in the program collating

sequence.

LOW-VALUE
I LOW-VALUES I

Represents one or more of the character that has the
lowest ordinal position in the program collating sequence.

Represents one or more of the character" (not the
QUOTES character '). QUOTE or QUOTES cannot be
used as a quotation mark in a source program to bound a
nonnumeric literal. Thus, QUOTE ABD QUOTE is
incorrect as a way of stating the nonnumeric literal
"ABD".

2-11

General Specifications

2-12

I ALL literal I Represents one or more of the string of characters
comprising the literal. The literal must be either a
nonnumeric literal or a figurative constant other than
ALL literal. When a figurative constant is used, ALL is
redundant and is used for readability only.

When a figurative constant represents a string of one or more characters, the
length of the string is determined by the compiler in context according to the
following rules:

1. When a figurative constant is associated with another data item, as when
the figurative constant is moved to or compared with another data item, the
string of characters specified by the figurative constant is repeated,
character by character on the right, until the size of the resultant string is
equal to the size in characters of the associated data item. This is done prior
to and independent of the application of any JUSTIFIED clause that may be
associated with the data item.

2. When a figurative constant is not associated with another data item, as
when the figurative constant appears in a DISPLAY, STRING, STOP, or
UNSTRING statement, the length of the string is one character.

A figurative constant may be used whenever a literal appears in a format, except
that whenever the literal is restricted to numeric characters, the only figurative
constant permitted is ZERO (ZEROS, ZEROES).

When the figurative constants HIGH-VALUE(S) or LOW-VALUE(S) are used in
the source program, the actual character associated with each figurative constant
depends upon the program collating sequence specified. (See 4.3.2,
"OBJECT-COMPUTER Paragraph", and 4.3.3, "SPECIAL-NAMES Paragraph.")

Each reserved word used to reference a figurative constant value is a distinct
character-string with the exception of the construction ALL literal, which is
composed of two distinct character-strings.

PICTURE Character-String

A PICTURE character-string consists of certain combinations of characters in the
COBOL character set used as symbols. See "PICTURE Clause" under 5.3.3 for the
discussion of the PICTURE character-string and for the rules that govern its use.

Any punctuation character that appears as part of the specification of a PICTURE
character-string is not considered as a punctuation character, but rather as a symbol
used in the specification of that PICTURE character-string.

70044490-000

General Specifications

Comment-Entries

A comment-entry is an entry in the Identification Division that may be any
combination of characters from the computer's character set.

2. m Classes of Data

In COBOL, data is classified into three classes: numeric, alphabetic, and
alphanumeric. The three classes are further divided into five categories: numeric,
alphabetic, numeric edited, alphanumeric edited, and alphanumeric (without editing).

Every elementary item except the index data item belongs to one of the classes and to
one of the categories. The class of a group item is treated as alphanumeric regardless
of the class of elementary items subordinate to the group item. For further
information on classes of data, refer to "PICTURE Clause" under 5.3.3.

Alignment

The standard rules for positioning data within an elementary item depend on the
category of the receiving item. These rules are:

1. If the receiving data item is described as numeric:

a. The data is aligned by decimal point and is moved to the receiving character
positions with zero fill or truncation on either end as required.

b. When an assumed decimal point is not explicitly specified, the data item is
treated as if it had an assumed decimal point immediately following its
rightmost character and is aligned as in rule 1 a.

2. If the receiving data item is a numeric-edited data item, the data moved to the
edited data item is aligned by decimal point with zero fill or truncation at either
end as required within the receiving character positions of the data item, except
where editing requirements cause replacement of the leading zeros.

3. If the receiving data item is alphanumeric (other than a numeric-edited data
item), alphanumeric edited or alphabetic, the sending data is moved to the
receiving character positions and aligned at the leftmost character position in the
data item with space fill or truncation to the right, as required.

If the JUSTIFIED clause is specified for the receiving item, these standard rules are
modified. See "JUSTIFIED Clause" under 5.3.3 for a description.

7004 4490-000 2-13

General Specifications

2.6. Uniqueness of Reference

2-14

1. Qualification

Every user-defined name that specifies an element in a COBOL source program must
be unique, either by having no other name with the identical spelling and
hyphenation, or by having the name within a hierarchy of names such that references
to the name can be made unique by mentioning one or more of the higher levels of the
hierarchy. The higher levels are called qualifiers, and the process that specifies
uniqueness is called qualification. Enough qualification must be mentioned to make
the name unique; however, it may not be necessary to mention all levels of the
hierarchy. Within the Data Division, all data-names used for qualification must be
associated with a level-indicator or a level-number. Therefore, two identical data­
names must not appear as entries subordinate to a group item unless they are capable
of being made unique through qualification. In the Procedure Division, two identical
paragraph-names must not appear in the same section.

In the hierarchy of qualification, names associated with a level indicator are the most
significant, then those names associated with level-number 01, then names associated
with level-number 02, ... ,49. A section-name is the highest (and the only) qualifier
available fot a paragraph-name. Thus, the most significant name in the hierarchy
must be unique and cannot be qualified. Subscripted or indexed data-names and
conditional variables, as well as procedure-names and data-names, may be made
unique by qualification. The name of a conditional variable can be used as a qualifier
for any of its condition-names. Regardless of the available qualification, no name can
be both a data-name and procedure-name.

Qualification is performed by following a data-name, a condition-name, or a
paragraph-name, by one or more phrases composed of a qualifier preceded by IN or
OF. IN and OF are logically equivalent.

Format 1

{
data-name-, } [{OINF}data-name-z] ...
condition-name

Format 2

paragraph-name

7004 4490-000

General Specifications

The rules for qualification are as follows:

1. Each qualifier must be of a successively higher level and within the same
hierarchy as the name it qualifies.

2. The same name must not appear at two levels in a hierarchy.

3. If a data-name or a condition-name is assigned to more than one data item in a
source program, the data-name or condition-name must be qualified each time it
is referred to in the Procedure, Environment, and Data Divisions (except in the
REDEFINES clause, where qualification is unnecessary and must not be used).

4. A paragraph-name must not be duplicated within a section. When a
paragraph-name is qualified by a section-name, the word SECTION must not
appear. A paragraph-name need not be qualified when referenced within the
same section.

5. A data-name cannot be subscripted when it is being used as a qualifier.

6. A name can be qualified even though it does not need qualifications; if there is
more than one combination of qualifiers that ensures uniqueness, then any such
set can be used. The complete set of qualifiers for a data-name must not be the
same as any partial set of qualifiers for another data-name.

7. Qualified data-names may have any number of qualifiers up to a limit of five.
However, for compatibility with existing Unisys compilers, this compiler will
accept the use of up to 50 qualifiers.

8. If more than one COBOL library is available to the compiler during compilation,
text-name must be qualified each time it is referenced.

2.6.2. Subscripting

Subscripts are used to refer to individual elements within a list or table of like
elements that have not been assigned individual data-names. (Subscripting is
described in detail in Section 7.)

2.6.3. Indexing

Indexing is a method of referring to elements within a table by using an index for a
given level of a table. The index is assigned by specifying the INDEXED BY phrase of
the OCCURS clause. (Refer to Section 7 for a detailed description of indexing.)

70044490-000 2-15

General Specifications

2.6.4. Identifier

An identifier is a term used to reflect that a data-name, if not unique in a program,
must be followed by a syntactically correct combination of qualifiers, subscripts, or
indexes necessary to ensure uniqueness.

Format 1

data-name-' [{~~}data-name-2l---[(SUbSCriPt-'['SUbSCriPt-2['SUbSCript-3]])]

Format 2

data -name -1 [{OF}data -name -2l ... [< {i ~dex -name -1 [{:!:J litera l - 2]}
IN llteral-1

[{ li~deX-name-2 [{~}literal-4]} ['{i~deX-name-3 [{~}literal-6]} ll)l
llteral-3 llteral-5

Restrictions on qualification, subscripting, and indexing are:

1. A data-name must not itself be subscripted nor indexed when that data-name is
being used as an index, subscript, or qualifier.

2. Indexing is not permitted where subscripting is not permitted.

3. An index may be modified only by the SET, SEARCH, and PERFORM
statements. Data items described by the USAGE IS INDEX clause permit storage
of the values associated with index-names as data. Such data items are called
index data items.

4. Literal-I, literal-3, literal-5 in the format must be positive numeric integers.
Literal-2, literal-4, literal-6 must be unsigned numeric integers.

2.6.5. Condition-Name

2-16

Each condition-name must be unique or be made unique through qualification and/or
indexing or subscripting.

If qualification is used to make a condition-name unique, the associated conditional
variable may be used as the first qualifier. If qualification is used, the hierarchy of
names associated with the conditional variable or the conditional variable itself must
be used to make the condition-name unique.

If references to a conditional variable require indexing or subscripting, then references
to any of its condition-names also require the same combination of indexing or
subscripting.

7004 4490-000

General Specifications

The format and restrictions on the combined use of qualification, subscripting, and
indexing of condition-names are exactly that of the identifier (see 2.6.4) except that
data-name-l is replaced by condition-name-l.

In the formats, condition-name refers to a condition-name qualified, indexed, or
subscripted, as necessary.

2.7. Reference Format

The reference format, which provides a standard method for describing COBOL source
programs, is described in terms of character positions in a line on an input/output
medium. A line consists of 72 character positions for any input media. The COBOL
compiler accepts source programs written in reference format and produces an output
listing of the source program input in reference format. Source programs written in
reference format in an 80-character card image containing user identification
information in character positions 73 through 80 are also accepted. The identification
information has no significance except that it is printed as received on the source
listing.

The rules for spacing given in this discussion of the reference format take precedence
over an other rules for spacing.

The divisions of a source program must be ordered as fonows: the Identification
Division, the Environment Division, the Data Division, then the Procedure Division.
Each division must be written according to the rules for the reference format.

.. Format Representation

70044490-000

The reference format for a line is represented as follows:

Margin Margin Margin Margin Margin
L c A B R

1 1213141516171819101 12131···1~1~

Sequence Number Area 1r Area A Area B

Indicator Area

Margin L is immediately to the left of the first character position of a
line.

Ivlargin C is between the sixth and seventh character positions of a line.

Margin A is between the seventh and eighth character positions of a
line.

2-17

General Specifications

2-18

Margin B is between the eleventh and twelfth character positions of a
line.

Margin R is immediately to the right of the seventy-second character
position of a line.

The sequence number area occupies six character positions (1-6) and is
between margin L and margin C.

The indicator area is the seventh character position of a line.

Area A occupies character positions 8, 9, 10, and 11 and is between
margin A and margin B.

Area B occupies character positions 12 through 72. It begins
immediately to the right of margin B and terminates immediately to the
left of margin R.

4& Sequence Numbers

A sequence number consisting of six digits in the sequence area may be used to
label a source program line.

It Continuation of Lines

Whenever a sentence, entry, phrase, or clause requires more than one line, it may
be continued by starting subsequent lines in area B. These subsequent lines are
called the continuation lines. The line being continued is called the continued
line. Any word or literal may be broken in such a way that part of it appears on a
continuation line.

A hyphen in the indicator area of a line indicates that the first nonblank
character in area B of the current line is the successor of the last nonblank
character of the preceding line without any intervening space. However, if the
continued line contains a nonnumeric literal without a closing quotation mark,
the first nonblank character in area B on the continuation line must be a
quotation mark, and the continuation starts with the character immediately after
that quotation mark. All spaces at the end of the continued line are considered
part of the literal. Area A of a continuation line must be blank.

If there is no hyphen in the indicator area of a line, it is assumed that the last
character in the preceding line is followed by a space.

An asterisk in the continuation indicator area of the line indicates a comment
line. (See the discussion of comment lines later in this section.)

70044490-000

General Specifications

• Blank Line

A blank line is one that is blank from margin C to margin R, inclusive. A blank
line can appear anywhere in the source program, except immediately preceding a
continuation line that has a hyphen in column 7.

• Division and Section Headers

The division header and section header must start in area A.

A section consists of paragraphs in the Environment and Procedure Divisions and
entries in the Data Division.

.. Paragraph Header, Paragraph-Name, and Paragraph

A paragraph consists of a paragraph-name followed by a period and a space and
by zero, one, or more sentences, or a paragraph header followed by one or more
entries. Comment-entries may be included within a paragraph as indicated in the
discussion of comment lines. The paragraph header or paragraph-name starts in
area A of any line following the first line of a division or a section.

The first sentence or entry in a paragraph begins either on the same line as the
paragraph header or paragraph-name or in area B of the next nonblank line that
is not a comment line. Successive sentences or entries either begin in area B of
the same line as the preceding sentence or entry or in area B of the next nonblank
line that is not a comment line.

When the sentences or entries of a paragraph require more than one line, they
may be continued as described in the earlier discussion of continuation of lines.

.. Data Division Entries

7004 4490-000

Each Data Division entry begins with a level-indicator or a level-number,
followed by a space, followed by its associated name, followed by a sequence of
independent descriptive clauses. Each clause, except the last clause of an entry,
may be terminated by either the separator semicolon or the separator comma.
The last clause is always terminated by a period followed by a space.

There are two types of data division entries: those that begin with a
level-indicator and those that begin with a level-number.

1. Level-Indicators

The level-indicators are FD, SD, and CD.

In those Data Division entries that begin with a level-indicator, the
level-indicator begins in area A followed by a space and followed in area B
with its associated name and appropriate descriptive information.

2-19

2-20

2. Level-Numbers

Those Data Division entries that begin with level-numbers are called data
description entries.

A level-number has a value taken from the set of values 1 through 49,66,77,
and 88. Level-numbers in the range 1 through 9 may be written either as a
single digit or as a zero followed by a significant digit. At least one space
must separate a level-number from the word following the level-number.

In those data description entries that begin with a level-number 01 or 77, the
level-number begins in area A followed by a space and followed in area B by
its associated record-name or item-name and appropriate descriptive
inf ormation.

All other level-numbers, 02 through 49, and special level-numbers 66 and 88
may begin in area A or B.

Successive data description entries may have the same format as the first or
may be indented according to level-number. Indentation does not affect the
magnitude of a level-number; its primary use is to improve readability.

When level-numbers are to be indented, each new level-number may begin
any number of spaces to the right of margin A. The extent of indentation to
the right is determined only by the width of the physical medium.

* Declaratives

The keyword DECLARATIVES and the keywords END DECLARATIVES that
precede and follow, respectively, the declaratives portion of the Procedure
Division must each appear on a line by itself. Each must begin in area A and be
followed by a period.

• Comment Lines

A comment line is any line with an asterisk (*) in the continuation indicator area
of the line. A comment line can appear as any line in a source program after the
Identification Division header. Any combination of characters from the computer
character set may be included in area A and area B of that line. The asterisk and
the characters in area A and area B are produced on the listing but serve as
documentation only. A special form of comment line represented by a slash in the
indicator area of the line causes page ejection prior to printing the comment.

Successive comment lines are allowed. Continuation of comment lines is
permitted, except that each continuation line must contain an asterisk in the
indicator area.

7004 4490-000

.1 B

The Identification Division identifies the source program and the resultant All"t-n"t"

listing. In addition, the user may include the date the program is written and such
other information as indicated in the format. The Identification Division must be
included in every COBOL source program.

Paragraph headers identify the type of information contained in the paragraph. The
PROGRAM-ID paragraph must be present. The other paragraphs are optional and
may be specified at the user's discretion.

Format

Rules

IDENTIFICATION DIVISION.
PROGRAM-ID. program-name.
[AUTHOR. [comment-entry.] ...]
[INSTALLATION. [comment-entry.] ...]
[DATE-WRITTEN. [comment-entry.] ...]

![DATE-COMPILED. [comment-entry.] ...]

[SECURITY. [comment-entry.] ...]

1. The Identification Division must begin with the reserved words
IDENTIFICATION DIVISION followed by a period and a space.

2. The division header must be followed by the PROGRAM-ID paragraph.

3. The program-name may contain from 1 to 30 characters. It must consist of
only letters and digits and must begin with an alphabetic character.

4. The system uses only the first six characters of program-name as the
identifying name of the object program. Therefore, these characters should
be unique for every name in a particular program library.

7004449~OOO ~l

Identification Division

3-2

5. If program-name is not supplied or not accepted because of an error, the
compiler automatically supplies the program-name COB.

6. The optional paragraphs that follow the PROGRAM-ID paragraph must be
in the same order as given in the format.

7. The comment-entry may be any combination of the characters from the
computer character set and must start in area B as designated in the
reference format. Continuation of the comment-entry by using the hyphen in
the indicator area is not permitted; however, the comment-entry may be
contained on one or more lines.

8. The DATE-COMPILED paragraph-name causes the current date to be
inserted during program compilation. If a DATE-COMPILED paragraph is
present, it is replaced during compilation with a paragraph in the form:

DATE-COMPILED. current date.

Example

Figure 3-1 shows an example of an Identification Division.

Seq
No A B

8 12
Text

001010 IDENTIFICATION DIVISION.
001020 PROGRAM-ID. PAY44.
001030 AUTHOR. JOHN SMITH.
001040 INSTALLATION. ABC COMPANY.
001050 DATE-WRITTEN. NOVEMBER 15, 1988.
001060 DATE-COMPILED. TODAY.
001070 SECURITY. PAYROLL DEPT ONLY.
001080*THIS PROGRAM ADDS COMMISSIONS TO SALARY GIVING
001090* TOTAL MONTHLY EARNINGS OF SALES PERSONNEL.

Figure 3-1. Sample Identification Division Entries

7004 4490-000

Section 4
Environment

III III III

IVlslon

4.1 R General Information

In the Environment Division of a COBOL source program, a relationship is
established between the physical requirements of the computing system on which the
source program is compiled and the characteristics of the computing system on which
the object program is to run. In addition, this division assigns input-output devices to
the files used by the object program and indicates the techniques to be used in
processing the files. This division must be included in every COBOL source program.

4. R Structure
The Environment Division consists of two sections, each of which has a fixed name.

• CONFIGURATION SECTION

" INPUT-OUTPUT SECTION

The Configuration Section identifies the source computer and object computer and
relates system-oriented device-names to user-defined mnemonic-names. The
Input-Output Section deals with the information needed to control transmission and
handling of data between external media and the object program.

Format

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. source-computer-entry.
OBJECT-COMPUTER. object-computer-entry.
[SPECIAL-NAMES. special-names-entry.]
[INPUT-OUTPUT SECTION.
FILE-CONTROL. {fiLe-control-entry.} ...
[I-O-CONTROL. input-output-control-entry.]

Rules

1. The Environment Division begins with the reserved words ENVIRONMENT
DIVISION followed by a period and a space.

2. The sections and paragraphs of the Environment Division must be written in
the order given in the format.

7004449~OOO ~1

Environment Division

Example

Figure 4-1 shows an example of an Environment Division.

Seq.
No. A B Text

1 8 12
001010 ENVIRONMENT DIVISION.
001020 CONFIGURATION SECTION.
001030 SOURCE-COMPUTER. UNISYS-OS3.
001040 OBJECT-COMPUTER. UNISYS-OS3.
001050 SPECIAL-NAMES.
001060 SYSCONSOLE IS TYPEIT.
001070 INPUT-OUTPUT SECTION.
001080 FILE-CONTROL.
001090 SELECT INPUT1 ASSIGN TO TAPE-INPUT-F_
001100 SELECT LIST ASSIGN TO PRINTER-P115-VC.
001110 SELECT CDS ASSIGN TO DISK-C129-V.
001120 I-O-CONTROL.
001130 RERUN ON DISK-CKPT20-' EVERY 5000 RECORDS OF INPUT1.

Figure 4-1. Sample Environment Division Entries

4.3. Configuration Section
The Configuration Section specifies the operating system on which the program is to
be compiled and run and relates implementor-names to user-names.

Format

CONFIGURATION SECTION.
SOURCE-COMPUTER. entry.
OBJECT-COMPUTER. entry.
[SPECIAL-NAMES. entry.]

4.3.1. SOURCE .. COMPUTER Paragraph

4-2

Function

The SOURCE-COMPUTER paragraph identifies the operating system that will
compile the source program and indicates whether the debugging sections and
debugging lines are to be compiled.

Format

SOURCE-COMPUTER.rUNISYS-OS31[WITH DEBUGGING MODE].
{SPERRY-OS3~
lUNIVAC-OS3J

7004 4490-000

Environment Division

Rules

1. UNISYS-OS3, SPERRY-OS3@, or UNIVAC-OS3 specifies that the source
program is to be compiled under the OS/3 operating system. The operating
system-name specified in the SOURCE-COMPUTER paragraph is for
documentation purposes only.

2. If the WITH DEBUGGING MODE clause is specified, all USE FOR
DEBUGGING statements and all debugging lines are compiled (see 12.4).

3. If the WITH DEBUGGING MODE clause is not specified, all USE FOR
DEBUGGING statements with associated debugging sections and all
debugging lines are compiled as if they were comment lines.

4. The WITH DEBUGGING MODE clause has no effect on debugging packets
(see "Debugging Packet (*DEBUG)" under 12.4.3),

4.3.2. OBJECT .. COMPUTER Paragraph

Function

The OBJECT-COMPUTER paragraph describes the operating system on
which the object program is to be run.

Format

OBJECT'COMPUTER.{UNISYS-OS3}
SPERRY-OS3
UNIVAC-OS3

[

,MEMORY SIZE integer{CHARACTERS}]
MODULES
WORDS

[,PROGRAM COLLATING SEQUENCE IS alphabet-name]

I[,SEGMENT'LIMIT ~ segment-numberJI.

Rules

1. UNISYS-OS3, SPERRY-OS3, or UNIVAC-OS3 specifies that the object
program is to be executed under the OS/3 operating system.

2. The MEMORY SIZE clause is for documentation purposes only. A word is 4
characters long; a module is 4,096 characters long.

SPERRY is a registered trademark of Unisys Corporation.

70044490-000 4-3

Environment Division

3. If the PROGRAM COLLATING SEQUENCE clause is specified, the
collating sequence associated with alphabet-name (see 4.3.3, rule 8) is used
to determine the truth value of any nonnumeric comparisons:

a. Explicitly specified in relation conditions (see "Relation Condition"
under 6.4.1).

b. Explicitly specified in condition-name conditions (see "Condition-Name
Condition" under 6.4.1).

4. If the PROGRAM COLLATING SEQUENCE clause is not specified, the
EBCDIC collating sequence is used.

5. If the PROGRAM COLLATING SEQUENCE clause is specified, the
program collating sequence is the collating sequence associated with the
alphabet-name specified in that clause.

6. The PROGRAM COLLATING SEQUENCE clause is also applied to any
nonnumeric merge or sort keys unless the COLLATING SEQUENCE phrase
of the respective MERGE or SORT statement is specified. (See 6.6.19,
"MERGE Statement", and 6.6.33, "SORT Statement.")

7. The PROGRAM COLLATING SEQUENCE clause applies only to the
program in which it is specified.

8. The segment-number in the SEGMENT-LIMIT clause must be an integer
ranging in value from 1 through 49. (See Section 1 0.)

9. When the SEGMENT-LIMIT clause is specified, only those segments having
segment-numbers from 0 up to, but not including, the segment-number
designated as the segment-limit are considered as permanent segments of
the object program.

10. Those segments having segment-numbers from the segment-limit through
49 are considered as overlayable fixed segments.

11. When the SEGMENT-LIMIT clause is omitted, all segments having
segment-numbers from 0 through 49 are considered as permanent segments
of the object program.

4.3.3. SPECIAL-NAMES Paragraph

4-4

Function

The SPECIAL-NAMES paragraph relates implementor-names to user-supplied
mnerl1oniC-nanles and alphabet-names to character sets or collating sequences.

7004 4490-000

Environment Division

Format

SPECIAL-NAMES.

Rules

[SYSIN l§ mnemonic-name-1]
[,SYSCONSOLE l§ mnemonic-name-2]
[,SYSLST l§ mnemonic-name-3]
[,SYSLOG l§ mnemonic-name-4]
[,SYSCHAN-n IS mnemonic-name-S]
[,SYSCOM l§ mnemonic-name-6]
[,SYSSCOPE l§ mnemonic-name-?]

[
,{SYSTERMINAL}l§ mnemonic~name-8l

SYSOUT

,{SYSFORMAT}l§ mnemonic-name-9
SYSWORK r---------------l

ASSIGN TO lfdname
- I

[

CONTROL AREA IS data-name]
I [WITH FUNCTION-KEYS] I

[WITH CONNECT-FREE]

l ______________ J

{
,SYSSWCH[-nJ }

SYSTEM-SHUTDOWN

l§ mnemonic-name,ON STATUS l§ condition-name
,OFF STATUS IS condition-name - -

l§ mnemonic-name,OFF STATUS l§ condition-name
,ON STATUS l§ condition-name

ON STATUS l§ condition-name,OFF STATUS l§
condition-name

OFF STATUS l§ condition-name,ON STATUS l§
condition-name

,alphabet-name IS STANDARD-'

STANDARD-0

literaL-1[{THROUGH} literal-2]
THRU
ALSO literal-3 [,ALSO Literal-4] ...

[

literat-S[rHROUGH} literal-6]]

T~~~o llteraL-?;[,ALSO;Literal-8] ...

[,CURRENCY SIGN l§ literal-9J
[,DECIMAL-POINT l§ COMMA].

1. The SPECIAL-NAMES paragraph is optional.

70044490-000 4-5

Environment Division

4-6

2. A comma may be used to separate each clause, and a period must follow the
last clause.

3. Mnemonic-names associated with SYSIN, SYSCONSOLE, SYSCOM,
SYSTERMINAL, SYSWORK, SYSFORMAT, SYSSCOPE, SYSSWCH, and
SYSTEM-SHUTDOWN may be used in the ACCEPT statement. Mnemonic­
names associated with SYSLST, SYSOUT, SYSLOG, SYSCONSOLE,
SYSCOM, SYSTERMINAL, SYSWORK, SYSFORMAT, SYSSCOPE, and
SYSSWCH may be used in the DISPLAY statement. The mnemonic-name
associated with SYSCHAN -n may be used in the WRITE statement.

a. SYSIN refers to the job stream device.

b. SYSCONSOLE refers to the system message lines of the workstation
activating the task and to the system log file. If the task is not activated
from a workstation or the system does not support a workstation, then
SYSCONSOLE refers to the system console and the system log file. Use
SYSCONSOLE when a reply from the operator is required.

c. SYSCOM refers to the 12-byte communications region within the job
preamble. Note that the twelfth byte of this region is the user program
switch indicator (UPS!) byte.

d. SYSSWCH refers to the UPSI byte of the communications region.
SYSSWCH is expanded by the compiler to an 8-byte storage area; each
byte represents a switch. When condition-names are associated with
SYSSWCH, the status is set:

o On when any of the eight UPSI bytes are on

• Off when all of the UPS I bytes are off

When the mnemonic-name associated with SYSSCH appears:

.. In an ACCEPT statement, character value 0 or 1
(hexadecimal FO or Fl) is returned for each UPSI byte.

• In a DISPLAY statement, the status of each corresponding
UPSI byte is set on with character value 1 (hexadecimal
Fl) and off with character value 0 (hexadecimal FO). Any
other character leaves the status unchanged.

e. SYSSWCH-n refers to the individual switches within SYSSWCH. They
are numbered from left to right: SYSSWCH-O through SYSSWCH-7.

Note: SYSSWCH-O is reserved for the COBOL object-time debugging
switch. (See 12.2.3., "Object-Time Switch.")

The status of SYSSWCH-n is set on with any character other than
hexadecimal FO and set off with hexadecimal FO.

7004 4490-000

7004 4490-000

Environment Division

f. SYSTEM-SHUTDOWN refers to an internal switch set on when the
operator enters a SHUTDOWN command through the console. When
SYSTEM-SHUTDOWN status is on (with hexadecimal value Fl), a
program that detects this status should begin termination procedures,
including closing all open files, displaying program information, and
executing a STOP RUN statement.

The status of SYSTEM-SHUTDOWN is off with hexadecimal value FO.

g. SYSLST refers to the system log file.

h. SYSLOG refers to the system message lines of the workstation
activating the task and to the system log file. If the task is not activated
from a workstation or the system does not support a workstation, then
SYSLOG refers to the system console and the system log file. Use
SYSLOG when no reply from the operator is expected.

1. SYSCHAN-n equates a particular channel en) on the printer loop to
mnemonic-name-5. Mnemonic-name-5 may appear only in a WRITE
statement. SYSCHAN 1 and 7 are normally used for form overflow and
top-of-page, respectively.

J. SYSSCOPE is treated as SYSCONSOLE. It is provided for compatibility
with VS/9 COBOL 74 language.

k. SYSTERMINAL or SYSOUT refers to system MESSAGE lines of the
workstation initiating the COBOL program task. If the task is not
activated from a workstation or the system does not support a
workstation, then SYSTERMINAL or SYSOUT refers to the system
console, SYSCONSOLE, but not the system log file.

1. SYSFORMAT refers to a workstation in data mode (attached to a
program) that calls screen format services. The lfdname in the required
ASSIGN clause is a 1- to 8-character alphanumeric name assigned to
the workstation.

m. SYSWORK refers to a workstation in data mode. The lfdname in the
required ASSIGN clause is a 1- to 8-character alphanumeric name
assigned to the workstation.

Within the SPECIAL-NAMES paragraph, each SYSFORMAT, SYSWORK,
or SYSTERMINAL clause must be specified before any alphabet-name
clauses.

If the run-unit is divided into subprograms, a particular lfdname in the
SYSFOR1\1AT or SYSVvORK clause can be used in only one program.

4-7

Environment Division

The CONTROL AREA clause specifies a 40-character area that receives data
describing workstation activity. That area may be defined in the
Working-Storage or Linkage Section. Its implicit description is:

05 WS-ID
05 FILLER
05 WS-STATUS
05 FUNCTION-KEY
05 FORMAT-NAME
05 NUMBER-CONNECTED
05 SIZE-OF-DATA-TRANSFER
05 FILLER

PIC 999.
PIC x.
PIC XX.
PIC 99.
PIC X(8).
PIC 99.
PIC 9(5).
PIC X(17).

Specification of a CONTROL AREA clause enables the COBOL program to
track the details of interaction with a workstation, especially a multivolume
workstation. When a workstation mnemonic-name is declared with a
CONTROL AREA clause, each ACCEPT or DISPLAY statement to that
workstation must include an ON EXCEPTION clause.

Specification of the WITH FUNCTION-KEYS phrase causes the COBOL
program to report function key input in the control area and, unless
overridden by response indicators, to cause activation of the ON
EXCEPTION clause after reception of function key data.

When the WITH FUNCTION-KEYS phrase is specified, ACCEPT and
DISPLAY statements that reference the workstation must appear within
only one program.

Specification of the WITH CONNECT-FREE phrase causes the COBOL
program to take an exception path on an ACCEPT statement after a
workstation connects to a multivolume workstation or disconnects from it. In
the absence of a CONTROL AREA clause, the COBOL system defaults to
minimal, but operationally effective, support for multivolume workstations.

The control area specified by the CONTROL AREA clause is a repository for
data supplied by the COBOL system. The content of each field is defined as
follows:

I) WS-ID identifies the particular device, which is part of a multivolume
workstation configuration, that participated in the most recently
performed ACCEPT or DISPLAY statement to the corresponding
workstation file.

• WS-STATUS reports the 2-character error status for the most recently
performed ACCEPT or DISPLAY statement to the corresponding
workstation file. Status key details are presented in Table 4-1.

4-8 7004 4490-000

70044490-000

Environment Division

• FORMAT-NAME is the name of the screen format that is active on the
workstation terminal that was the object of the most recently pen ormed
ACCEPT or DISPLAY statement. This field is for information purposes
only; thus, it is used as a read-only field. Altering the content of the
FORMAT-NAME field never changes the screen format currently active
on any terminal.

.. FUNCTION-KEY holds the integer denoting the keyboard function key
pressed prior to the most recently performed ACCEPT statement. It is
zero if no function key was pressed. The FUNCTION-KEY field is
maintained only if the WITH FUNCTION-KEYS phrase is specified.

it NUMBER-CONNECTED holds the number of terminals that are
currently connected to the workstation. If the workstation is not
multivolume, this number is either zero or one.

,. SIZE-OF-DATA-TRANSFER holds the number of characters actually
delivered to or received from the workstation terminal screen. If a
screen format is in effect, this number reflects the number of characters
required by that format. If a screen format is not in effect, this number,
after an ACCEPT statement, represents the number of characters
entered by the workstation operator but not exceeding the number
requested.

Table 4-1. Status Key Values for Workstations

Status Key 1

o - Successful completion

- At end

2 - Invalid format

3 - Permanent error

9 - Workstation exception

Status Key 2

o - No further information

o - Function key 15 received
6 - Only active terminal has disconnected.

(Status key 98 may take precedence.)

3 - Format not found
4 - Format constructed incorrectly

o - No further information

1 - Terminal not compatible with format
2 - Statement not compatible with format
3 - Data not compatible with format
4 - Data area not large enough for format
5 - Function key, no data
7 - New device connected, no data
8 - Device disconnected (freed), no data
9 - Device not connected

4-9

Environment Division

4-10

The WITH CONNECT-FREE phrase specifies that an exception path is to be
taken whenever a terminal connects to or disconnects from a multivolume
workstation configuration. The details of CONNECT-FREE reporting are in
Table 4-2.

The WITH FUNCTION-KEYS phrase specifies that whenever function key
input is received in an ACCEPT statement, that function key value is to be
reported in the control area specified by the CONTROL AREA clause. If the
active screen format converts the function key to an indicator, the indicator
portion of the accept data is returned to the COBOL program, and the ON
EXCEPTION clause is not activated; otherwise, the ON EXCEPTION clause
is activated. A function key and data (other than response indicators) are
never returned at the same time. The details of function key processing are
in Table 4-3.

Table 4-2. Effects of CONNECT-FREE Reporting

Workstation Options

CONTROL AREA clause with
WITH CONNECT-FREE phrase

CONTROL AREA clause without
WITH CONNECT-FREE phrase

CONTROL AREA clause
not specified

Response to WITH CONNECT-FREE Phrase

Set status byte. Set WS-ID field to report
device that was connected or freed.
Update NUMBER-CONNECTED clause.
Activate EXCEPTION clause.

Update NUMBER-CONNECTED clause.
If NUMBER-CONNECTED = 0, set status for
end-of-file and execute EXCEPTION clause.
Otherwise, do not return control to the
COBOL program until data is received.

If no terminal remains connected, terminate
the program abnormally. Otherwise, do not
return control to the COBOL program until
data is received.

7004 4490-000

7004 4490-000

Environment Division

Table 4-3. Effects of FUNCTION-KEYS Input

Response to FUNCTION-KEYS Input

Workstation Response Indicator Set Response Indicators
Options by Function Key Absent or Unaffected

CONTROL AREA clause with Return indicators without Set WITH FUNCTION-KEYS
FUNCTION-KEYS phrase screen data. Set WITH clause. Activate the

FUNCTION-KEYS clause. Do EXCEPTION clause.
not activate the EXCEPTION
clause.

CONTROL AREA clause Return indicators without Ignore the function key
without WITH FUNCTION-KEYS screen data. Do not set input. Do not return control
phrase WITH FUNCTION-KEYS clause. to the COBOL program until

Do not activate the EXCEPT ION data is received.
clause.

CONTROL AREA clause Return indicators without Ignore the function key
not specified screen data. input. Do not return

control to the COBOL
program until data is
received.

WS-ID has meaning only for multivolume workstations. It is the only field in
the control area that the COBOL program might reasonably alter. WS-ID
identifies the particular terminal to which a DISPLAY statement directs its
data. Likewise, it identifies the particular terminal from which an ACCEPT
SPECIFIC statement will take its data.

If a USING phrase is present on a general ACCEPT statement (i.e., not an
ACCEPT SPECIFIC statement), the screen format that is named by the
USING phrase is selected only for the terminal indicated by WS-ID, not for
all the terminals of the multivolume workstation.

On each transaction with a workstation, the field WS-ID is updated with a
number that identifies the particular terminal, within a multivolume
workstation, that participated in the transaction. The WS-ID field does not
need an initial value. Assigning an initial value to this field has no effect on
the behavior of the COBOL program. It is the responsibility of the COBOL
program to ensure that the WS-ID field contains a terminal number that is
valid for the implicit workstation lfdname.

One way to guarantee that this will happen is never to alter the value of the
WS-ID field. Another way is not to provide a control area using the
CONTROL AREA clause. The only reasons for changing the WS-ID field are
to display data to a particular terminal (DISPLAY statement) that is not the
one that most recently supplied input or to accept data (ACCEPT statement)
from a specific terminal rather than from the terminal that responded first.

4-11

Environment Division

4-12

If the CONTROL AREA clause is omitted, multivolume workstation
processing is restricted in the following ways:

• Each DISPLAY statement is always directed to the terminal that
completed the most recent ACCEPT statement.

• Each ACCEPT SPECIFIC statement is always directed to the terminal
that completed the most recent ACCEPT statement .

., An EXCEPTION path cannot be specified.

If a failure occurs during the first attempt to access a particular workstation,
the WS-STATUS field is set to 30 and the remainder of the control area
(CONTROL AREA clause) is undefined.

For errors arising after the first access, the control area fields have the
following meanings:

4& WS-ID - The ID of the terminal to respond to a general ACCEPT
statement; or the valid ID given in the WS-ID field upon execution of
the statement; or, if 0 was given, then 1; otherwise, the field is
undefined.

• WS-STATUS - As defined in Table 4-1.

• FUNCTION-KEYS - Unchanged by a DISPLAY statement; or 00 for an
ACCEPT statement not receiving function key input; or the actual
function key received by an ACCEPT statement.

A function key is never received at the same time data is received.
However, for screen formats having response indicators, receiving a
function key is a sign that indicator data is present.

Data is never present, however, when the ON EXCEPTION clause is
activated.

• FORMAT-NAME - The name of the screen format that is defined for the
workstation terminal named in the WS-ID field; if no screen format is
defined for that terminal, the field contains the LOW-VALUE constant.

• NUMBER-CONNECTED - Always reports the number of terminals
connected to the workstation.

($ SIZE-OF-DATA-TRANSFER - Usually undefined in the presence of an
error.

For status key 94, SIZE-OF-DATA-TRAN"sFER field is the smallest
number of characters required for the transaction.

7004 4490-000

Environment Division

When a terminal connects to a multivolume workstation declared with the
WITH CONNECT-FREE phrase, the connect event is reported to the
COBOL program, in lieu of returning input data, in response to the next
ACCEPT statement (but not an ACCEPT SPECIFIC statement).

When a terminal frees from a multivolume workstation declared with the
WITH CONNECT-FREE phrase, the free event is reported to the COBOL
program, in lieu of returning input data, in response to the next ACCEPT
statement (but not an ACCEPT SPECIFIC statement).

If a COBOL program uses screen format services for a multivolume
workstation without specifying the WITH CONNECT-FREE phrase, an
initial screen format must be supplied via job control language, and this
screen format must be input only.

If a COBOL program uses screen format services viajob control language for
a SYSWORK workstation, whether single volume or multivolume, with or
without specifying the WITH CONNECT-FREE phrase:

e An initial screen format must be supplied via job control language. In
addition, if the workstation is multivolume and the WITH
CONNECT-FREE phrase is not specified, the screen format furnished
via job control language must be an input-only screen format.

• All ACCEPT and DISPLAY statements apply to the screen named by
the initial screen parameter.

.. The USING clause cannot be used on any ACCEPT or DISPLAY
statements to the SYSWORK device.

e No data conversion may be implicit in the screen format; that is, all
fields of the screen format must be specified implicitly or explicitly as
USAGE IS DISPLAY.

• Only one identifier may receive data in an ACCEPT statement.

Ie The ACCEPT SPECIFIC statement may not be used with SYSWORK
workstations.

Additional information about screen format services is described in the
Screen Format Services Technical Overview (UP-9977).

4. The mnemonic-names associated with SYSCHAN-n may be used in the
WRITE statement. SYSCHAN-n refers to a position in a printer vertical
format buffer or form control loop; n ranges from 1 through 15, depending on
the specific printer used. The SYSCHAN-n clause is accepted for
compatibility with existing Unisys COBOL compilers.

70044490-000 4-13

4-14

Division

5. The mnemonic-name associated with SYSCOM may be used in the UPON
phrase of the DISPLAY statement to effect the passing of information to
other programs within the job or in the FROM phrase of the ACCEPT
statement to retrieve information from a program within the job.

There is only one communications region to store or retrieve information
within a job. The entire region will be overwritten if more than one
DISPLAY statement referencing SYSCOM is executed.

Examples

Program A

SYSCOM IS OUT-PARAM

77 PROG-MESSAGE PIC.X(12) VALUE "317402SQ1 Hlli.

DISPLAY PROG-MESSAGE UPON OUT-PARAM

Program B

SYSCOM IS INPUT-PARAM

77 PARAM-AREA PIC X(12) VALUE ZEROS.

ACCEPT PARAM-AREA FROM INPUT-PARAM.

6. In the SYSSWCH[-n] clause, at least one condition-name must be associated
with a switch. The status of a switch is specified by condition-names and
interrogated by testing the condition-names. (See "Switch-Status Condition"
under 6.4.1.)

Example

An individual switch can be interrogated by using condition-name in the
ON/OFF STATUS option. For instance, in the following example, control is
transferred to procedure-name-1 if switch 5 is on.

70044490-000

7004 4490-000

ENVIRONMENT DIVISION.

SPECIAL-NAMES.
SYSSWCH-5 ON STATUS IS FIVON, OFF STATUS IS FIVOFF.

PROCEDURE DIVISION.

IF FIVON GO TO procedure-name-1.

In essence, SYSSWCH-5 is a conditional variable with the condition-names
FIVON and FIVOFF, which are similar to level-88 entries.

The condition-names FIVON and FIVOFF are defined and equated with on
and off, respectively, by the COBOL compiler and must not be defined
elsewhere in the COBOL program.

7. The mnemonic-name associated with SYSSWCH[-n] may be used in the
FROM option of the ACCEPT statement to gain access to the content of
SYSSWCH[-n], or in the UPON option of the DISPLAY statement to set or
change the content of SYSSWCH[-n].

Example 1

All 8 task switches can be interrogated by use of the ACCEPT verb. This is
shown in the following example, where procedure-name-l is performed if the
SYSSWCH-2, SYSSWCH-4, SYSSWCH-6, and SYSSWCH-7 switches are on
and the others are off.

ENVIRONMENT DIVISION.
SPECIAL-NAMES.

SYSSWCH IS mnemonic-name-1.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 identifier PICTURE X(8).
PROCEDURE DIVISION.

ACCEPT identifier FROM mnemonic-name-1.
IF identifier = "001010111 1

•

PERFORM procedure-name-1.

4-15

Environment Division

Example 2

To set or change the content of SYSSWCH, the DISPLAY verb may be used
as follows:

ENVIRONMENT DIVISION.
SPECIAL-NAMES.
SYSSWCH IS SWITCH.
SYSSWCH-3 IS SWITCH-3.
PROCEDURE DIVISION.
DISPLAY 1111000100 11 UPON SWITCH (1)
DISPLAY 1 UPON SWITCH-3. (2)
DISPLAY identifier UPON SWITCH. (3)

Notes:

1. SYSSWCH will now contain "11000100".

2. SYSSWCH-3 will now contain 1; the other switches remain unchanged.

3. The 8 switches in SYSSWCH (0 through 7) are set on or off, depending on
the contents of the 8-character identifier.

8. The alphabet-name IS clause provides a means for relating a name to a
specified character code set or collating sequence. When alphabet-name is
referenced in the PROGRAM COLLATING SEQUENCE clause or the
COLLATING SEQUENCE phrase of a SORT or MERGE statement, the
alphabet-name IS clause specifies a collating sequence. When alphabet-name
is referenced in a CODE-SET clause in a file description entry, the
alphabet-name IS clause specifies a character code set.

• If the STANDARD-l phrase is specified, the character code set or
collating sequence identified is that defined in American National
Standard Code for Information Interchange, X3.4-1968. Each character
of the standard character set is associated with its corresponding
character in the EBCDIC character set as specified in Appendix J.

• If the NATIVE phrase is specified, the character code set or collating
sequence identified is EBCDIC.

• If the ST ANDARD-O phrase is specified, the character code set or
collating sequence identified is that defined by the International
Standards Organization for the 8-bit Coded Character Set for
Information Interchange, IS 646 - 1973, International Reference Version.
The collating sequence of this code set is identical to STANDARD-I.

• If the literal phrase is specified, the alphabet-name may not be
referenced in a CODE-SET clause. The collating sequence identified is
that defined according to the following rules:

4-16 70044490-000

Environment Division

a. The value of each literal specifies:

1) The ordinal number of a character within the EBCDIC
character set, if the literal is numeric. The ordinal number of
a character is always one greater than the binary value of a
character. For example, hexadecimal 00 is the first character
(ordinal position 1), and hexadecimal 01 is the second
character (ordinal position 2).

2) The actual character within the EBCDIC character set, if the
literal is nonnumeric. If the value of the nonnumeric literal
contains multiple characters, each character in the literal,
starting with the leftmost character, is assigned successive
ascending positions in the collating sequence being specified.

b. The order in which the literals appear in the alphabet-name IS
clause specifies, in ascending sequence, the ordinal number of the
character within the collating sequence being specified.

c. Any characters within the EBCDIC collating sequence that are not
explicitly specified in the literal phrase assume a position, in the
collating sequence being specified, greater than any of the explicitly
specified characters. The relative order within the set of
unspecified characters is unchanged from the EBCDIC collating
sequence.

d. If the THROUGH phrase is specified, the set of contiguous
characters in the EBCDIC character set, beginning with the
character specified by the value of literal-l and ending with the
character specified by the value of literal-2, is assigned a successive
ascending position in the collating sequence specified. In addition,
the set of contiguous characters specified by a given THROUGH
phrase may specify characters of the EBCDIC character set in
either ascending or descending sequence.

e. If the ALSO phrase is specified, the characters of the EBCDIC
character set specified by the value of literal-I, literal-3, literal-4, ... ,
are assigned to the same position in the collating sequence
specified.

9. The literals in the literal phrase of the alphabet-name clause are specified as
follows:

• If numeric, they must be unsigned integers and must have a value
within the range of 1 through 256.

• If nonnumeric and associated with a THROUGH or ALSO phrase, they
must each be one character in length.

70044490-000 4-17

Environment Division

4. . I

4-18

10. If the literal phrase of the alphabet-name IS clause is specified, a given
character must not be specified more than once in the alphabet-name clause.

11. The words THRU and THROUGH are equivalent.

12. The character that has the highest ordinal position in the program collating
sequence specified is associated with the figurative constant HIGH-VALUE.
If more than one character has the highest position in the program collating
sequence, the last character specified is associated with the figurative
constant HIGH-VALUE.

13. The character that has the lowest ordinal position in the program collating
sequence specified is associated with the figurative constant LOW-VALUE.
If more than one character has the lowest position in the program collating
sequence, the first character specified is associated with the figurative
constant LOW-VALUE.

14. The literal specified in the CURRENCY SIGN IS clause is used in the
PICTURE clause to represent the currency symbol. The literal is limited to a
nonnumeric literal of one character and must not be one of the following
characters:

• Digits 0 through 9

• Alphabetic characters ABCDLPRSVXZ or space

• Special characters * + - , . ; () " / = ~J

If this clause is not present, only the currency sign is used in the PICTURE
clause.

15. The clause DECIMAL-POINT IS COMMA means that the function of comma
and period are exchanged in the character-string of the PICTURE clause and
in numeric literals.

Section

The Input-Output Section of the Environment Division is used to specify the
inputJoutput media for the files used by the program and to provide information
needed for most efficient transmission of data between external media and the object
program.

Format

r
INPUT-OUTPUT SECTION. 1
FILE-CONTROL. {entry.} ... l [I-O-CONTROL. entry.]

7004 4490-000

Environment Division

4.4.1. FILE-CONTROL Paragraph

Function

The FILE-CONTROL paragraph names each file and allows specification of other
file-related information. A separate format is required for each type of file
organization: sequential, relative, indexed, rsMf.J1'-AM:la~ ~ort. Refer J..o Section
8 for further information on sequential, relative, indexed,I§.AM2..Jand[!§~files,
and to Section 9 for a summary of the sort feature.

Format 1 (Sequential Files)

FILE-CONTROL.

file-name

ASSIGN TO implementor-name-1 [,implementor-name-2]

[
;RESERVE integer-,[AREA II

AREAS

[;ORGANIZATION IS SEQUENTIAL]
[;ACCESS MODE IS SEQUENTIAL]
[;FILE STATUS IS data-name-1].

Format 2 (Relative Files)

7004 4490-000

FILE-CONTROL.
SELECT file-name
ASSIGN TO impLementor-name-1 [,implementor-name-2]

[
;RESERVE integer-1[AREA II

AREAS

;ORGANIZATION IS RELATIVE

;ACCESS MODE IS{SEQUENTIAL [,RELATIVE KEY IS;data-name-1] }
RANDOM },RELATIVE KEY IS data-name-'

!DYNAMIC!

[;FILE STATUS IS data-name-2].

4-19

Environment Division

4-20

Format 3 (Indexed Files)

FILE-CONTROL.
SELECT file-name
ASSIGN TO implementor-name-1 [,implementor-name-2]

[
;RESERVE integer-1[AREA II

AREAS

;ORGANIZATION IS INDEXED

;ACCESS MODE I S{SEQUENTIAL}
RANDOM

!DYNAMIC!

;RECORD KEY IS;data-name-1

[;ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES]]

[;FILE STATUS IS data-name-3].

~-------------------

I Format 4 (SAM Files) I
I

I, FILE-CONTROL. I
SELECT [OPTIONAL] file-name

I ASSIGN TO implementor-name-1 [,implementor-name-Z] .. 0 I

I [;RESERVE integer-1 [AREA II I I AREAS I
I ;ORGANIZATION IS SAM I
I [;ACCESS MODE IS SEQUENTIAL] I
I [;FILE STATUS IS data-name-1]. I

: Format 5 (ISAM Files) :

I FILE -CONTROL. I
I SELECT file-name I
I ASSIGN TO implementor-name-1 [,implementor-name-ZJ ... I

i [;RESERVE integer-' [~:~~sll :
I ;ORGANIZATION IS ISAM I

" [;ACCESS MODE IS (SEQUENTIAL}] I,

RANDOM
I DYNAMIC I
I ;RECORD KEY IS data-nameD, I
L __ ~I~ STATUS ~data-nam:..!]_. ________ ~

Format 6 (Sort or Merge Files)

FILE CONTROL.
SELECT file-name
ASSIGN TO implementor-name-1 [,implementor-name-Z]

70044490-000

Environment Division

Rules

7004 4490-000

1. The SELECT clause must be specified first. The order of the remaining
clauses is optional.

2. Each file described in the data division must be named once and only once as
file-name in the FILE-CONTROL paragraph. Each file specified in the file
control entry must have a file description entry or sort-merge file description
entry in the Data Division.

3. The ASSIGN clause specifies the association of the file referenced by file­
name to a storage medium.

4. All files must be assigned to an implementor-name. Any implementor-name
beyond the first for a file is treated as comments.

5. Implementor-name is in the form of device-Ifdname-mode. The format and
options for each file organization are:

o Sequential Files

CARDREADER-lfdname-F
CARDPUNcH.lfdname·{~l

PRINTER.lfdname.{~

TAPE.lfdname·\!~1

{~~~~}-lfdnamel~ }
FC
vc

C --I
4& Relative, Indexed, andl.!..S~Files

{
DISC}-lfdname'{E}
DISK Y

{~}-lfdname-{w DISK Y
. FC

VC

4-21

Environment Division

II Sort and Merge Files

{Ql~ -lfdname-{£}
DISK y..
TAPE

The implementor-name in the form of device-lfdname-mode has three
subfields:

II The device field specifies the type of device associated with the file. The
types of devices supported are CARDPUNCH, CARDREADER, DISC
(or DISK), PRINTER, and TAPE. DISC and DISK are equivalent; TAPE
refers to magnetic tape.

49 Lfdname specifies the lfdname to the job control definition of the file.
The lfdname is a 1- to 8-character alphanumeric field. For programs
using the sortJmerge feature, lfdnames in the form DMxx (xx=Ol,
02, ... ,08) or SMxx (xx=Ol, 02, ... ,06) should not be used because the
sortJmerge feature uses these lfdnames for scratch work files.

If the run-unit contains multiple implementor-names for the same
lfdname, then only one file associated with the lfdname can be opened
at a time.

II Mode is a 1- or 2-character field that specifies the format of the records
in the file. It may be F, FC, V, VC, U, or UC. The character C indicates
the presence of a device-independent control character for a printer­
destined file. When FC, VC, or UC is specified for a printer-destined
file, the compiler appends a device-independent control character
preceding the logical record.

Mode F indicates fixed-length records and can be specified only when each of
the logical records in a file has the same length. When F is specified, the
fonowing rules apply:

.. Format 2 of the OCCURS clause must not be specified within any record
description for the file.

49 If the BLOCK CONTAINS clause is specified in the file description
entry, it must contain a fixed number of records.

• If more than one record description entry is specified for a file
description, each record in the file must have the same length.

II Record-length and block-descriptor fields are not present with fixed­
length records.

II If the RECORD CONTAINS clause is specified, it must specify a fixed
number of characters in the record.

4-22 7004 4490-000

70044490-000

Environment Division

Mode V indicates variable-length records. When V is specified, the following
rules apply:

til For tape,[§A1vIJor@~files, if the BLOCK CONTAINS clause is
specified in the file description entry, all the logical records comprising a
block must be wholly contained within the block

• Each variable-length logical record is preceded by a control field
containing the length of the logical record. This field is generated by the
compiler and is not available to the user.

Mode U indicates an undefined format and may be used for any combination
of record descriptions, either fixed or variable. Mode U is comparable to
mode V except that mode U records may not be blocked and have no
preceding control field. When U is specified, the BLOCK CONTAINS clause
in the file description entry is not required.

The hyphens shown in the format must appear in this form of the
implementor-name.

6. The RESERVE clause specifies the number of inputloutput buffer areas
allocated for the file.

The value of integer-l may be 1 or 2. For sequential files, two areas may be
reserved. For relative files, if the ACCESS MODE is sequential, two areas
may be specified and if the ACCESS MODE is dynamic or random, only Q~
area may be specified. For indexed files, only one area is permitted. For:SA1!J r-----' --
@~d l~AM_liles, two areas may be reserved.

If the value of integer-l specifies two areas where the operating system
permits only one area, the compiler reserves only one area regardless of the
value specified in the RESERVE clause.

If the RESERVE clause is not specified, the compiler supplies a default value
compatible with the operating system specifications. The compiler-supplied
default value is shown in Table 4-4.

Table 4-4. Compiler Default Value of the RESERVE Clause

File Organization Access Mode Default Integer-1 Value

Sequential All 2
Relative Sequential 2
Relative Random 1
Relative Dynamic 1
Indexed All 1
SAM All 2
ISAM All 2

4-23

Environment Division

4-24

7. When the FILE STATUS clause is specified, a value is moved by the
operating system into the data item specified by data-name after the
execution of every statement that refers to the file either explicitly or
implicitly. This value indicates the status of execution of the statement. (See
Section 8.)

8. The organization clause specifies the logical structure of a file. The file
organization is established at the time a file is created and, subsequently,
cannot be changed.

Note: Rules 9 through 14 pertain to sequential and[§~files only.

9. Data-name-1 must be defined in the Data Division as a 2-character
alphanumeric data item and must not be defined in the File Section or the
Communication Section.

10. Data-name-1 may be qualified.

11. In format 1, if the ORGANIZATION IS SEQUENTIAL clause is not
specified, it is implied.

~--------------------~

I In format 4, the ORGANIZATION IS SAM clause is required. This clause I
I specifies that the file is to be supported by disk sequential access method I
I data management (disk SAM). If this clause is not specified, sequential I
I organization is assumed. (See 8.3.) I L ____________________ ---1

12. The OPTIONAL phrase may only be specified for input files that are not
necessarily present each time the object program is executed.

13. Records in the file are accessed in the sequence dictated by the file
organization. This sequence is specified by predecessor/successor record
relationships established by the execution of WRITE statements when the
file is created or extended.

14. If the ACCESS MODE clause is not specified, sequential access is implied.

Note: Rules 15 through 26 pertain to relative files only.

15. Data-name-2 must be defined in the Data Division as a 2-character
alphanumeric data item and must not be defined in the File Section or the
Communication Section.

16. Data-name-1 and data-name-2 may be qualified.

17. If a relative file is to be referenced by a START statement, the RELATIVE
KEY phrase must be specified for that file.

18. Data-name-1 must not be defined in a record description entry associated
with that file-name.

7004 4490-000

7004 4490-000

Environment Division

19. The data item referenced by data-name-l must be defined as an unsigned
integer.

20. The ORGANIZATION clause is required. If the ORGANIZATION IS
RELATIVE clause is not specified, sequential organization is assumed.

21. When the access mode is sequential, records in the file are accessed in the
sequence dictated by the file organization. This sequence is the order of
ascending relative record numbers of existing records in the file.

22. If the access mode is random, the value of the RELATIVE KEY data item
indicates the record to be accessed.

23. When the access mode is dynamic, records in the file may be accessed either
sequentially or randomly or both. (See rules 22 and 24.)

24. If the ACCESS MODE clause is not specified, the ACCESS MODE IS
SEQUENTIAL clause is implied.

25. All records stored in a relative file are uniquely identified by relative record
numbers. The relative record number of a given record specifies the logical
ordinal position of the record in the file. The first logical record has a relative
record number of 1, and subsequent logical records have relative record
numbers of 2, 3, 4,

26. The data item specified by data-name-l is used to communicate a relative
record number between the COBOL object program and the operating
system.

Note: Rules 27 through 40 pertain to indexed files only.

27. Data-name-l,ldata-name-2,land data-name-3 may be qualified.

28. The data items referenced by data-name-ll and data-name-2Imust each be
defined as a data item of the category alphanumeric within a record
description entry associated with that file-name.

29. The maximum size of the data item referenced by data-name-l or data­
I name-2lmay not exceed 80 bytes. Neither data-name-l nor data-name-2 can
describe an item whose size is variable. (See "OCCURS Clause" under 5.3.3.)

30. Data-name-2 cannot reference an item whose leftmost character position
corresponds to the leftmost character position of an item referenced by
data-name-l or by any other data-name-2 associated with this file.

31. Data-name-3 must be defined in the Data Division as a 2-character
alphanumeric data item and must not be defined in the File Section or the
Communication Section.

4-25

Environment Division

4-26

32. The ORGANIZATION IS INDEXED clause is required. If this clause is not
specified, sequential organization is assumed.

33. If the ACCESS MODE clause is not specified, the sequential access is
implied.

34. When the access mode is sequential, records in the file are accessed in the
sequence dictated by the file organization. For indexed files, this sequence is
the order of ascending record key values within a given key of reference.

35. If the access mode is random, the value of the record key data item indicates
the record to be accessed.

36. When the access mode is dynamic, records in the file may be accessed either
sequentially or randomly or both. (See rules 34 and 35.)

37. The RECORD KEY clause specifies the prime record key for the file. The
values of the prime record key must be unique among records of the file. This
prime record key provides an access path to records in an indexed file.

38. An ALTERNATE RECORD KEY clause specifies an alternate record key for
the file. This alternate record key provides an alternate access path to
records in an indexed file. A maximum of four alternate record keys may be
specified for an indexed file.

39. The data descriptions of data-name-1Iand data-name-2Ias well as their
relative locations within a record must be the same as those used when the
file was created. The number of alternate keys for the file must also be the
same as that used when the file was created.

40. The DUPLICATES phrase specifies that the value of the associated
alternate record key may be duplicated within any of the records in the file.
If the DUPLICATES phrase is not specified, the value of the associated
alternate record key must not be duplicated among any of the records in the
file.

r----- -- - -- -------------,
I Note: Rules 41 through 51 pertain to ISAM files only. I
I I
141. When the ORGANIZATION IS ISAM clause is specified, the file is to be I
I processed by ISAM data management. I
I I I 42. When the access mode is sequential, records in the file are accessed in the I

sequence dictated by the file organization. For ISAM files, this sequence is
I the order of ascending record key values within a given key of reference. I
I 1

143. If the access mode is random, the value of the record key data item indicates I
L ~he record to be accessed. ______________ ~

70044490-000

Environment Division

144.-When ili;-acces~ode is dynamic, records in the file may be accessed - I
I sequentially or randomly or both. (See rules 41 and 42.) i

145. If the ACCESS MODE clause is not specified, the ACCESS MODE IS I
I SEQUENTIAL clause is implied. I

146. The RECORD KEY clause specifies the record key for the file. The values of I
I the record key must be unique among records of the file. This record key I

provides the access path to records in an ISAM file. I
I
147. Data-name-1 and data-name-2 may be qualified. :

148. The data item referenced by data-name-l must be defined as an I

I
alphanumeric data item within a record description entry associated with
that file-name. I

: 49. The size of the data item referenced by data-name-1 must be greater than 2 I

and less than or equal to 249 bytes. Data-name-l must not describe an item I
I whose size is variable. (See "OCCURS Clause" under 5.3.3.) I
I I
1

50. Data-name-2 must be defined in the Data Division as a 2-character I

alphanumeric data item and must not be defined in the File Section or the
I Communication Section. I

/51. The data description of data-name-l and its relative location within a record I
L ---.!!lust be the same as that us~ when the file was~eated. _____ ~

Note: Rule 52 pertains to sort or merge files only.

52. Only the ASSIGN clause is permitted to follow file-name in the FILE­
CONTROL paragraph for a sort or merge file.

4.4.2. I-O-CONTROl Paragraph

Function

7004 4490-000

The I-O-CONTROL paragraph specifies the points at which rerun is to be
established and the main storage area to be shared by different files. In addition,
this paragraph specifies the location of files on a multifile reel for sequential file
organization as well as special inputJoutput techniques for file processing using
the APPLY clauses.

4-27

Environment Division

4-28

Format

Rules

[I -O-CONTROL.

iRERUN ON [{~~~~ -lfdname-{~}l EVERY

TAPE
r----,
lfdname

L ___ -'

integer-1 RECORDS OF file-name-1 ...

[

RECORD 1 AREA FOR file-name-2{,file-name-3}
SORT
SORT-MERGE

[;MULTIPLE FILE TAPE CONTAINS fite-name-4 [POSITION integer-2]
[,file-name-5 [POSITION integer-3]] ... J •••

r---------------------------------l

I [:APPLY BLOCK-COUNT ON {file-name-6 [file-name-7] .. _}] ...
TAPES

I --- I
[;APPLY CYLINDER-INDEX AREA OF integer-4 INDICES ON file-name-8.

I [, f ile-name-9] ...] ..• I
[;APPLY CYLINDER-OVERFLOW AREA OF integer-5 PERCENT ON file-name-10
I [I file -name - 11] •••] ••• I
[;APPLI VERIFY ON file-name-12 [,file-name-13] ...] ...
I [;APPLY INDEX-AREA OF integer-6 CHARACTERS ON file-name-14 I

[, file-name-15]. .. J. ...] L _________________________________ J

1. The I-O-CONTROL paragraph is optional.

2. The RERUN clause specifies when and where the rerun information is
recorded. The rerun information is recorded on the device specified whenever
integer-l records of file-name-l are processed. File-name-l may be any type
of file with any organization or access except a sort or merge file.

3. The value of integer-l in the RERUN clause must be within the range of 1 to
8,388,607.

4. There are two forms of the implementor-name in the RERUN clause.

a. The form specifies a dedicated rerun receiver.

{

DISC -lfdname-{l}
DISK f
TAPE

7004 4490-000

Environment Division

• DISC, DISK, and TAPE are the types of devices supported for a
user file dedicated for receiving checkpoint records.

• The lfdname field is a 1- to 8-character alphanumeric field. This
field specifies the lfdname of the dedicated receiver file.

.. The field

{i}

is a I-character field, where the value 1 indicates that all
checkpoint records are to be written consecutively on one dedicated
receiver file, and the value 2 indicates that checkpoint records are
to be written alternately on two dedicated receiver files, each file
containing only the latest alternate checkpoint record. When two
dedicated receiver files are specified, the INIT parameter must be
designated in the LFD job control statements for both receiver files.

b. The form [lf4l2?~~ specifies the name of an output data file on which
both data records and checkpoint records are to be written. The name
specified must be the lfdname of a standard sequential EBCDIC tape
file described by an FD entry with standard system labels.

Note: This form of the implementor-name is not supported in the mixed
mode or consolidated data management mode.

5. The file-name of a dedicated rerun receiver file is generated by the compiler
by using the lfdname specified in the Ifdname field of the RERUN clause.

If one dedicated receiver file is specified, the If dname is used as the
file-name of the rerun receiver.

If two dedicated receiver files are specified, a suffix, A or B, is appended as
the last character of a given If dname of seven or fewer characters, or the
suffix replaces the last character of an 8-character If dname to form a unique
file-name for each receiver file. The file-names for the two receiver files are
IfdnameA and lfdnameB.

Odd-numbered checkpoints are written on the file:

lfdnameA

Even-numbered checkpoints are written on the file:

lfdnameB

6. More than one RERUN clause may be specified; but no two of them may
specify the same file-name-I.

7004 4490-000 4-29

7. The SAME AREA clause specifies that two or more files that do not
represent sort or merge files are to use the same main storage area during
processing. The area being shared includes all storage areas assigned to the
files specified; therefore, only one file may be open at any given time. (See
rule 9c.)

8. The SAME RECORD AREA clause specifies that two or more files are to use
the same main storage area for processing of the current logical record. All
the files may be open at the same time. A logical record in the SAME
RECORD AREA is considered as: 1) a logical record of each opened output
file whose file-name appears in this SAME RECORD AREA clause, and 2) a
logical record of the most recently read input file whose file-name appears in
this SAME RECORD AREA clause. This is equivalent to an implicit
redefinition of the area; i.e., records are aligned on the leftmost character
position.

9. More than one SAME clause may be included in a program; however, the
following rules also apply:

a. A file-name must not appear in more than one SAME AREA clause.

b. A file-name must not appear in more than one SAME RECORD AREA
clause.

c. If one or more file-names of a SAME AREA clause appear in a SAME
RECORD AREA clause, all the file-names in that SAME AREA clause
must appear in the SAME RECORD AREA clause. However, additional
file-names not appearing in that SAME AREA clause may also appear
in that SAME RECORD AREA clause. The rule that only one of the files
mentioned in a SAME AREA clause can be open at any given time takes
precedence over the rule that all files mentioned in a SAME RECORD
AREA clause can be open at any given time.

10. The files referenced in the SAME AREA orlSAME RECORD AREAlclause
need not all have the same organization or access.

11. The SAME SORT AREA or SAME SORT-MERGE AREA clause is for
documentation purposes only.

12. The MULTIPLE FILE clause applies to sequential files only and is required
when two or more files share the same physical reel of tape. Regardless of
the number of files on a single reel, only those files that are used in the
object program need be specified. If all file-names are listed in consecutive
order, the POSITION clause need not be given. If any file in the sequence is
not listed, the position relative to the beginning of the tape must be given.
Not more than one file on the same tape reel may be open at one time.

~30 7004449~OOO

7004 4490-000

13. All files sharing the same physical reel of tape must specify the LABEL
RECORDS STANDARD or data-name clause in the associated FD entries;
the LABEL RECORDS OMITTED clause is not permitted.

14. The REVERSE phrase of the OPEN statement must not be used for files
sharing the same physical reel of tape.

~--------------------

I 15. The APPLY BLOCK-COUNT clause is used only for tape files. For each file-
name specified, this clause inserts a 3-byte block number at the of I
each block on tape. I

If the TAPES option is specified, all tape files present are affected. This
clause must be specified for all input tape files that contain a block count.

16. The APPLY CYLINDER-INDEX AREA clause is used only for ISAM files
(ORGANIZATION IS ISAM). The clause indicates that sufficient main
storage area should be allocated to contain integer-4 top index entries.

I
I
I
I
I
I

The method for calculating the value of integer-4 is described in detail in the I
Consolidated Data Management Macroinstructions Programming Guide
(7004 4607). I

I
If the file already exists, use the following formula to determine the value of I
integer-4: I

n = b/(s+3)

where:

n

b

s

Note:

Is integer-4 of the APPLY clause.

Signifies bytes that are required for main storage and that can be
obtained from a display of VTOC. The number of bytes is shown
under the heading Bytes Required for Main Storage.

Signifies size of the record key.

If the remainder of the divide operation in the formula is not
equal to zero, add 1 to the quotient (i.e., add 1 to nJ.

17. The APPLY CYLINDER-OVERFLOW AREA clause is used only for ISAM
files. Integer-5 indicates the percentage of each cylinder in the prime data
area will be reserved for cylinder overflow.

I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I

If this clause is omitted, 20 percent of the cylinders specified as prime data I
area are automatically allocated. If no cylinder overflow is desired, 0 percent I
should be specified. If no overflow area exists, new records cannot be added

L_~~~_· __________________ _

4-31

Environment Division

118~h-; APPLY VERIFY clause is used for any mass storage files. It request; I
I verification of disk records after they have been written (read after write). Ifl
I this clause is omitted, no verification is performed. I

1,19. The APPLY INDEX-AREA clause is used only for indexed files I
(ORGANIZATION IS INDEXED). The clause specifies the size of the index- I

I area used by MIRAM data management during the loading and retrieving of I

I
indexed MIRAM files. The size of the index-area for file retrieval, therefore, I
must be the same as the size when the file was created. I

I I I Integer-6 must be a multiple of 256. I

I If the clause is not specified, an index-area of 256 characters is provided for I
L -=-ach indexed file defined in the File Section~ _ _ _ _ _ __ _ ~

4-32 70044490-000

Section 5
ata III 1111 ill

IVISlon

5.1. General Information
The Data Division describes the data that the object program is to accept as input and
to manipulate, to create, or to produce as output. Data to be processed falls into three
categories:

1. That which is contained in files and enters or leaves main storage from a
specified area or areas

2. That which is developed internally and placed into intermediate or working
storage or placed into specific format for output reporting purposes

3. Constants that are defined by the user

The Data Division must be included in every COBOL source program .

. 2. Structure

5.2.1. Heading and Sections

The Data Division begins with the reserved words DATA DIVISION followed by a
period and a space and is structured into File, Working-Storage, Linkage, and
Communication Sections. Each section is optional but, when used, must be in the
following order:

7004 4490-000

DATA D I VI S ION.

FILE SECTION.

[
file-description-entry 1

{record-description-entry} ...

[
sort-merge-fite-descriPtion-entry 1

{record-description-entry} ...

r WORKING-STORAGE SECTION.

l [
77-level-des:ri~tion-entrYj-
record-descrlptl0n-entry

continued

5-1

Data Division

LINKAGE SECTION.

[
77-leVel-descriPtion-entry]
record-description-entry

COMMUNICATION SECTION.

[
communication-description-entry

[record-description-entry] ...] ...

The File Section defines the structure of data files. Each file is defined by a file
description (FD) or sort-merge file description (SD) entry and is followed by one or
more record descriptions. A record description describes all named items of data in the
record.

The Working-Storage Section describes records and noncontiguous data items that are
not part of external data files but are developed and processed internally. It also
describes data items whose values are assigned in the source program and do not
change during the execution of the object program.

The Linkage Section appears in the called program and describes data items that are
defined by the calling program and referred to by the called program. Its structure is
the same as the Working-Storage Section.

The Communication Section describes the data items that name the interface areas
between the message control system and the object program. (See 5.6 and Section 14.)

5. Entries

Each Data Division entry begins with a level-indicator or a level-number, followed by
one or more spaces, the name of the data item, and sequence of clauses describing the
data item. The last clause is always terminated by a period followed by a space.

Level-Indicators

There are three types of level-indicators: FD, SD, and CD. FD indicates the start of a
file description entry, SD indicates the start of a sort-merge file description entry, and
CD indicates the start of a communication description entry.

Level-Numbers

5-2

Level-numbers are used to specify subdivisions of a logical record. The most basic
subdivisions of a record, that is, those not further subdivided, are called elementary
items; consequently, a record is said to consist of a sequence of elementary items, or
the record itself may be an elementary item.

70044490-000

Data Division

In order to refer to a set of elementary items, they are combined into groups. Each
group consists of a named sequence of one or more elementary items. Groups, in turn,
may be combined into groups. Thus, an elementary item may belong to more than one
group.

A system of level-numbers shows the organization of elementary items and group
items. Since records are the most inclusive data items, level-numbers for records start
at 01. Less inclusive data items are assigned higher (not necessarily successive)
level-numbers not greater in value than 49.

A group includes all group and elementary items following it until a level-number less
than or equal to the level-number of that group is encountered. All items that are
immediately subordinate to a given group item must be described using identical
level-numbers greater than the level-number used to describe that group item. The
following example indicates how level-numbers may be used to indicate this structure
in the description of the record.

01 RECORD-A
05 GROUP-ITEM-1

07 GROUP-ITEM-2
08 GROUP- ITEM-3

10 ELEMENTARY-ITEM-1
10 ELEMENTARY-ITEM-2

08 ELEMENTARY-ITEM-3
07 GROUP- ITEM-4

08 ELEMENTARY-ITEM-4
08 ELEMENTARY-ITEM-5

05 ELEMENTARY-ITEM-6

In the preceding example, both GROUP-ITEM-3 and ELEMENTARY-ITEM-3 are
part of GROUP-ITEM-2; and GROUP-ITEM-2 and GROUP-ITEM-4 are part of
GROUP-ITEM-I. Therefore, the level-numbers assigned to both GROUP-ITEM-3 and
ELEMENTARY-ITEM-3 must be identical and must be greater than that assigned to
GROUP-ITEM-2. Similarly, GROUP-ITEM-2 and GROUP-ITEM-4 must be assigned
identical level-numbers greater than that assigned to GROUP-ITEM-I.

The principal rules for assigning level-numbers are:

«9 The level-number 01 is reserved exclusively for identifying a logical record.

«9 Level-numbers range from 01 through 49.

4& An item at any level may be an elementary item when no items are subordinate
to it.

«9 An item is contained in the preceding group, if the following conditions are met:

7004 4490-000

The item has been assigned a numerically higher level-number than
that of the preceding group.

The item directly follows the group of which it is a part.

5-3

Data Division

Special level-Numbers

5-4

Three types of entries exist for which there is no true concept of level and for which
the special level-numbers 66, 77, and 88 are assigned. The three types of entries are as
follows:

1. Level-number 66 introduces entries that specify elementary items or groups by
means of RENAMES clauses for the purpose of regrouping data items.

2. Level-number 77 introduces entries that specify noncontiguous data items but
which are not subdivisions of other items and are not themselves subdivided.

3. Level-number 88 introduces entries that specify condition-names to be associated
with particular values of a conditional variable.

Section

The File Section begins with the reserved words FILE SECTION followed by a period
and a space. The File Section contains file description (FD) entries and sort-merge file
description (SD) entries, each one followed by its associated record description entries.

In a COBOL program, an FD or SD entry represents the highest level of organization
in the File Section. The FD entry provides information about the physical structure
and identification of a file and gives the names of data records associated with the file.
The SD ent indicates the size and names of the data records associated with the file
to be sorted or merged. There are no label procedures that the user can control, and
the rules for blocking and storage are peculiar to the SORTland MERGElstatements.

A record description consists of a set of data description entries that describe the
characteristics of a particular record. Each data description entry consists of a
level-number followed by a data-name if required, followed by a series of independent
clauses as required. A record description has a hierarchical structure and, therefore,
the clauses used with an entry may vary considerably, depending upon whether it is
followed by subordinate entries.

Format

FILE SECTION.

[
file-description-entry 1

{record-description-entry} .eo •••

[
sort-merge-file-description-entry 1

{record-description-entry} .0. D ••
..I

70044490-000

5.3.1.

Data Division

Description

Function

A file description is written for each file processed in the program. The
information contained therein pertains to the physical aspects, identification, and
record names of the file. A file description consists of a level-indicator (FD), a
file-name, and a series of independent clauses that describe the physical and
logical characteristics of the file. The FD entry itself is terminated by a period.

The functions and usage of the file description entry clauses are summarized in
Table 5-1. Sample program entries are given in Figure 5-1.

Format

FD file-name

[
;BLOCK CONTAINS I[integer-, TO]I integer-2 {RECORDS }]

. . CHARACTERS

[;RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]

;LABEL {RECORD IS } {STANDARD }
RECORDS ARE OMITTED

r - - - -- - - - l
{data-name-0} ... L ________ J

;VALUE OF FILE-ID IS { Idata-name-'I } [,PASSWORD IS { Idata-name-21 }]

literal-' literal-2

{

Idata-name-21 } [,~ IS { Idata-name-'I }]

literal-2 literal-1

PASSWORD IS

[
;DATA {RECORD IS } data-name-3 [,data-name-4] ..•]

RECORDS ARE

[
;LINAGE IS {~ata-name-5} LINES

mteger -5

[
,WITH FOOTING AT {~ata-name-6}]

lnteger-6

[
'LINES AT TOP {~ata-name-7}]

mteger -7

[
,LINES AT BOTTOM {~ata-name-8} 1

lnteger-8
'- .J

r-----------l
;LINAGE IS SYSTEM LINES

L =-=-=-__ =-=-=-___ J

[;CODE-SET IS alphabet-name].

70044490-000 5-5

Data Division

Rules

5-6

1. The level-indicator FD identifies the beginning of a file description and must
precede the file-name.

2. The clauses that follow the name of the file are optional except for LABEL
RECORDS, and their order of appearance is optional.

3. One or more record description entries must follow the file description entry.

Seq.
No.

030010
030020
030030
030040
030050
030060
030070
030080
030090
030100
030110
030120
030130
030140
030150
030160
030170
030180
030190
030200
031010
031020
031030
031040
031050
031060
031070
031080
031090
031100

A B

8 12 Text
DATA DIVISION.
FILE SECTION.
FD SAMPLE-FILE.

BLOCK CONTAINS 5 RECORDS,
RECORD CONTAINS 100 CHARACTERS,
LABEL RECORD IS STANDARD,
VALUE OF FILE-ID IS IISAMPLE FILEII,
DATA RECORD IS SAMPLE-RECORD-1, SAMPLE-RECORD-2.

01 SAMPLE-RECORD-' PICTURE X(100).
01 SAMPLE-RECORD-2.

02 NAME.
03 GIVEN PICTURE X(15).
03 MIDDLE PICTURE X(15).
03 FAMILY PICTURE X(20).

02 SEX PICTURE X.
88 MALE VALUE IS IIMII, IIBII, 11111.

88 FEMALE VALUE IS IIFII, IIGII, "211.

02 MARITAL-STATUS PICTURE x.
88 SINGLE VALUE IISII.

88 MARRIED VALUE IIM'I.

88 DIVORCED VALUE liD!!.

88 WIDOWED VALUE ilWIl.

88 OTHER VALUE 110 11 •

02 ADDRESS.
03 SPECIAL PICTURE X(5).
03 STREET PICTURE X(13).
03 crTY PICTURE X(13).
03 STATE PICTURE X(2).
03 COUNTRY PICTURE X(10).
03 ZIP PICTURE X(5).

Figure 5-1. Sample File Section Entries

7004 4490-000

Data Division

Table 5-1. File Description Entry Clauses

File
Clause Usage Organization Function

BLOCK CONTAINS Optional'* All Specifies block size or buffer size of a file

RECORD CONTAINS Optional All Specifies logical record size

LABEL RECORDS Required All Specifies whether labels are standard or
user1s

VALUE OF Optional ALL Indicates values of standard label items

DATA RECORDS Optional All Specifies names of records in file

LINAGE Optional Sequential Defines the size of a logical page
or SAM

CODE-SET Optional Sequential Specifies character code set used to represent
data in sequential tape files

'* Required in some instances. See rule 1 in "BLOCK CONTAINS Clausell in this subsection.

CONTAINS Clause

Function

The BLOCK CONTAINS clause specifies the size of the physical record or block.
For more efficiently processing files in which the concept of grouping logical
records into blocks is not applicable, this clause may be used to specify the size of
buffers.

Format

BLOCK CONTAINS I[integer-, TO]I integer-2 {CHARACTERS}
RECORDS

Rules

70044490-000

1. This clause may be specified on any file but is only required when one of the
following conditions exists:

CD The file is assigned to TAPE and the block (or physical record)
contains more than one logical record.

• The file ORGANIZATION IS SAM or ISAM and the block contains more
than one logical record.

5-7

Data Division

5-8

2. I Integer-1,lifused, is for documentation purposes only.

3. When the word RECORDS is used, integer-2 defines the block size in terms
of the number of records (using maximum 01 record size) in each block.
When variable-length records are blocked, more than integer-2 records may
be grouped in a block due to some records being smaller than the maximum
01 record size.

4. When the word CHARACTERS is specified, integer-2 specifies the number of
characters (bytes) per block, including all system control fields.

5. Files specified with device type CARD READER or CARDPUNCH may be
directed to the diskette device as a card substitute device. In this case, the
BLOCK CONTAINS clause, if specified, indicates the size of the buffer areas
to be used for multisector access. Multisector access improves processing
efficiency because multiple records may be read or written with one physical
inputloutput command even though they are not grouped into blocks. The
maximum buffer size for multisector access is 1,024 bytes.

6. The MIRAM data management processes files specified with
ORGANIZATION IS SEQUENTIAL and assigned to disk, or with
ORGANIZATION IS RELATIVE, or INDEXED; in MIRAM the concept of
grouping logical records does not apply. For these files, the BLOCK
CONTAINS clause specifies the size of the buffer areas. Larger buffers allow
multiple records to be read or written with one physical access.

7. If the BLOCK CONTAINS clause is not specified, BLOCK CONTAINS 1
RECORD is assumed.

Table 5-2 shows how to calculate block size for tape, card reader, card punch, and
printer files. A formula for the calculation and an example follow.

Formula

BLOCK SIZE (bytes) == (((01 RECORD SIZE) + RH + PC) * BLOCKING FACTOR) + BH

Example

Assume a tape file with variable mode, 8 records per block, and a maximum 01
record size of 230 bytes.

BLOCK SIZE == (((230) + 4 + 0) ,. 8) + 4 == 1876

7004 4490-000

Data Division

Table 5-2. Block Size Calculations for Tape, Card Reader, Card Punch, and Printer Files

Tape

Field F V U FC VC

PC (Printer Control) 0 0 0 1 1

BH (Block Header) 0 4* 0 0 4

RH (Record Header) 0 4 0 0 4

Multiple Records per Y Y N Y Y

Block Permitted
(determines
blocking factor)

*0 if CODE-SET is STANDARD-0 or STANDARD-'
**See ruLe 5 in this subsection.

Legend:

70044490-000

Y :: Yes
N :: No

Device

UC

1

0

0

N

Type and Mode

Card Card
Reader Punch Printer

F F V U FC VC UC

0 0 0 0 1 1 1

0 0 0 0 0 4 0

0 0 4 0 0 4 0

y** y** y** y** N N N

5-9

Data Division

5-10

Table 5-3 shows how to calculate block size for mass storage SAM and ISAM files.
A formula for the calculation and an example follow.

Formula

BLOCK SIZE (bytes) = (((01 record size) + PC + RH + LF) * BLOCKING FACTOR) + BH

Example

Assume a SAM file with VC mode, ORGANIZATION SAM, BLOCK 10
RECORDS, and a maximum 01 record size of 200 bytes.

BLOCK SIZE = (((200) + 1 + 4 + 0) * 10) + 4 = 2,054 bytes

Table 5-3. Block Size Calculations for Mass Storage SAM and ISAM Files

File Organization and Mode

SAM ISAM*

Field F V FC VC F V

PC (Printer Control) 0 0 1 1 0 0

BH (Block Header) 0 4 0 4 2 2

RH (Record Header) 0 4 0 4 0 2

LF (Link Field) 0 0 0 0 5 5

* For ISAM files, the minimum block size is 256 bytes.

7004 4490-000

70044490-000

Data Division

Table 5-4 shows how to calculate buffer size for mass storage, sequential, relative,
and indexed files. A formula for the calculation and an example follow.

Formula

BUFFER SIZE (as a number of 256-byte sectors) =
(((((01 RECORD SIZE) + RH + PC + RCB) * BLOCKING FACTOR) + 255) / 256) + 1

where the I operator is an integer divide.

Example

Assume a relative file with F mode, BLOCK 5 RECORDS, and a record size
of 300 bytes.

BUFFER SIZE = (((((300) + 0 + 0 + 1) *5) + 255) / 256) + 1 =
7 sectors of 256 bytes each.

Note that relative and indexed files always use the MIRAM record control byte
feature. If a language processor other than COBOL creates an IRAM or MIRAM
file without the record control byte feature and no DELETE statement is issued
for these files, they can be processed by a COBOL program

Table 5-4. Buffer Size Calculations for Mass Storage Sequential,
Relative, and Indexed Files

File Organization and Mode

Sequential (Mass Storage) Relative Indexed

Field F V FC VC F V F V

PC (Printer Control) 0 0 1 1 0 0 0 0

RH (Record Header) 0 4 0 4 0 4 0 4

RCB (Record Control Byte) 1** 0 1** 0* 1 0* 1 0*

*For files with V or VC mode, the record control byte is contained in the
record header.

**For compatibility, COBOL assumes the RCB to be present and allows for it in
the block size. However, sequential files created by COBOL do not have an RCB.

5-11

Data Division

RECORD CONTAINS Clause

5-12

Function

The RECORD CONTAINS clause specifies the size of data records.

Format

RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS

Rules

1. Since the size of each data record is defined within its respective record
description entry, the RECORD CONTAINS clause is optional.

2. Integer-2 may not be used by itself unless the size of each data record in the
file is the same. In this case, integer-2 represents the exact number of
characters in the data record.

Example

RECORD CONTAINS 80 CHARACTERS

3. If integer-1 and integer-2 are both shown, they refer to the minimum
number of characters in the smallest size data record and the maximum
number of characters in the largest size data record, respectively.

Example

RECORD CONTAINS 115 TO 165 CHARACTERS.

No record in the file is shorter than 115 characters nor longer than 165
characters. However, if 115 TO were deleted, each record would be exactly
165 characters long.

4. The size is specified in terms of the number of character positions (bytes)
required to store the logical record, regardless of the types of characters used
to represent the items within the logical record.

5. The length of a data record in the File Section may not exceed 524,287 bytes.

6. The record size specified in a COBOL program, whether specified in a
RECORD CONTAINS clause or in the record description clause (the size of
the 01 record), refers only to the logical data part of the record and not to any
OS/3 control fields appended to the record. The BLOCK CONTAINS clause
shows when control fields are present and how big they are. For more
detailed information, refer to Tables 5-2, 5-3, and 5-4 in this section.

Note: When the term "record size" is used in places other than a COBOL
program, such as in a data management manual or a VTOC print,
the record size includes the control fields.

7004 4490-000

Data Division

LABEL RECORDS vuau.:n,

Function

The LABEL RECORDS clause specifies whether labels are present. If
labels are present, this clause also identifies the label.

Format

RECORD IS
LABEL {RECORDS ARE!

Rules

70044490-000

1. This clause is required in every file description entry.

2. OMITTED specifies that no explicit labels exist for the file or the device to
which the file is assigned. OMITTED must be specified for files assigned to
CARD READER, CARDPUNCH, and PRINTER.

3. STANDARD specifies that standard system labels exist for the file or the
device to which the file is assigned and the labels conform to the standard
system label specifications. STANDARD must be specified for files assigned
to mass storage devices.

14. -Data-names may be specified for sequential tape file~nly. Data-names I
I specify that both standard system labels and standard user labels exist for I

I
the file or the device to which the file is assigned. Standard user labels must I
conform to system specifications. Refer to the Consolidated Data I

I Management Macroinstructions Programming Guide (7004 4607). I

I If LABEL RECORDS STANDARD is specified for the tape file, standard I
I user labels may also be present. However, standard user labels should not be I
I checked on input files or written on output files. I

I 5. Data-names are names of standard user label records and must have record I
I descriptions subordinate to the associated file description. I

I 6. References to data-names specified in this clause, or to items subordinate to I
I these data-names, must appear within USE LABEL procedures. (See 6.6.41, I
L~SEStatement.") _________________ ~

5-13

Function

The VALUE OF clause specifies the value of an item in the standard system file
label record associated with a file. This clause is for documentation only.

Format

FILE-ID IS {ldata-name-1 I} [,PASSWORD IS { Idata-name-2'}]

literal-' literal-2

PASSWORD IS {'data-name-2'}[,FILE-ID IS { ldata-name-'l}]

literal-2 literal-1

Clause

Function

The DATA RECORDS clause only documents the names of data records
in a given file.

Format

DATA {RECORDS ARE} data-name-1[,data-name-2] ...
RECORD IS

Rules

1. Data-name-1 and data-name-2 are the names of data records and must have
01 level-number record descriptions, with the same names, associated with
them.

2. The presence of more than one data-name indicates that the file contains
more than one type of data record. These records may be of differing sizes
and formats and can be listed in any order.

3. Conceptually, all data records within a file share the same area. This is in no
way altered by the presence of more than one type of data record within the
file.

5-14 70044490-000

Clause

Function

The LINAGE clause specifies the size of a logical page in terms of number of
lines. It also specifies the size of the top and bottom margins on the logical page
and the line number, within the page body, at which the footing area begins. (See
Figure 5-2.)

Format 1

LINAGE IS {?ata-name-,} LINES
mteger-1

[
,WITH FOOTING AT {?ata-name-2} 1

lnteger-2

[
'LINES AT TOP {?ata-name-3} 1

mteger-3

[
,LINES AT BOTTOM {?ata-name-4} 1

lnteger-4

1--------,
I Format 2 I

L

I LI NAGE IS SYSTEM LI NES :

Rules

Note: Rules 1 through 13 apply to format 1 only.

1. The LINAGE clause may be used only for sequential files assigned to devices
other than CARD READER and CARDPUNCH.

2. When the LINAGE clause is specified, the character C must be specified in
the mode field for an implementor-name. (See ASSIGN clause details under
4.4.1., "FILE-CONTROL Paragraph.")

3. Data-name-l, data-name-2, data-name-3, and data-name-4 must reference
elementary unsigned numeric integer data items.

70044490-000 5-15

Data Division

4. The LINAGE clause expresses logical page size as the sum of the values
referenced by each phrase except the FOOTING phrase. If the LINES AT
TOP or LINES AT BOTTOM phrase is not specified, the value for this
function is zero. If the FOOTING phrase is not specified, the assumed value
is equal to integer-lor the content of the data item referenced by data-name-
1, whichever is specified. Although the FOOTING value is assumed to be
equal to the LINAGE value, when the FOOTING phrase is not specified,
there is no FOOTING area.

The size of the logical page and the size of a physical page are not necessarily
related.

integer-3

LOGICAL integer-1
PAGE

integer-4

Notes:

-

-

TOP
MARGIN

PAGE
BODY

_____ I'IIIIIII _______

FOOTING
AREA

BOTTOM
MARGIN

integer-2

integer-2
<-- (line number)

1. Size of logical page in lines = the sum of integer-3, integer-1, and integer-4.
2. Size of FOOTING area in number of lines = integer-1 less integer-2 + 1.
3. Integer-1 must be > zero.

Integer-3 must be ? zero.
Integer-2 must be ~ integer-I.
Integer-4 must be ? zero.

Figure 5-2. logical Page Format for Format 1 LINAGE Clause

5. The value of integer-lor the data item referenced by data-name-l specifies
the number of lines that can be written or spaced on the logical page. The
value must be greater than zero and must not exceed 999. That part of the
logical page in which these lines can be written or spaced is called the page
body.

6. The value of integer-3 or the data item referenced by data-name-3 specifies
the number of lines that comprise the top margin on the logical page. The
value may be zero.

7. The value of integer-4 or the data item referenced by data-name-4 specifies
the number of lines that comprise the bottom margin on the logical page.
The value may be zero .

. 5-16 70044490-000

Data Division

8. The value of integer-2 or the data item referenced by data-name-2 specifies
the line number within the page body at which the footing area begins. The
value must be greater than zero and not greater than the value of integer-1
or the data item referenced by data-name-1.

The footing area comprises the area of the logical page between the line
represented by the value of integer-2 or the data item referenced by data­
name-2 and the line represented by the value of integer-lor the data item
referenced by data-name-1, inclusive.

9. The value of integer-I, integer-3, and integer-4, if specified, is used at the
time the file is opened by the execution of an OPEN statement with the
OUTPUT phrase to specify the number of lines that comprise each of the
indicated sections of a logical page. The value of integer-2, if specified, is
used at that time to define the footing area. These values are used for an
logical pages written for the file during a given execution of the program.

10. The values of the data items referenced by data-name-1, data-name-3, and
data-name-4, if specified, are used as follows:

e When an OPEN statement with the OUTPUT phrase is executed
for the file, they specify the number of lines that are to
comprise each of the indicated sections for the first logical
page.

.. When a WRITE statement with the ADVANCING PAGE phrase
is executed or a page overflow condition occurs, they are used
to specify the number of lines that are to comprise each of the
indicated sections for the next logical page.

11. The value of the data item referenced by data-name-2, if specified, at the
time an OPEN statement with the OUTPUT phrase is executed for the file is
used to define the footing area for the first logical page. At the time a
WRITE statement with the ADVANCING PAGE phrase is executed or a
page overflow condition occurs, it is used to define the footing area for the
next logical page.

12. A LINAGE-COUNTER is generated by the presence of a LINAGE clause.
The value in the LINAGE-COUNTER at any given time represents the line
number at which the device is positioned within the current page body. The
rules governing the LINAGE-COUNTER are as follows:

a. A separate LINAGE-COUNTER is supplied for each file described in
the File Section having a file description entry containing a LINAGE
clause.

b. LINAGE-COUNTER may be referenced, but not modified, by Procedure
Division statements. If more than one LINAGE-COUNTER exists in a
program, the user must qualify LINAGE-COUNTER by file-name.

70044490-000 5-17

Data Division

5-18

c. LINAGE-COUNTER is automatically modified during execution of a
WRITE statement to an associated file as follows:

1) When the ADVANCING PAGE phrase of the WRITE statement is
specified, the LINAGE-COUNTER is automatically reset to 1.

2) When the ADVANCING identifier-2 or integer phrase of the
WRITE statement is specified, the LINAGE-COUNTER is
incremented by integer or the value of the data item referenced by
identifier-2.

3) When the ADVANCING phrase of the WRITE statement is not
specified, the LINAGE-COUNTER is incremented by the value 1.

4) The value of LINAGE-COUNTER is automatically reset to 1 when
the device is repositioned to the first line that can be written on for
each of the succeeding logical pages. (See 6.6.42, "WRITE
Statement.")

d. The value of LINAGE-COUNTER is automatically set to 1 at the time
an OPEN statement is executed for the associated file.

13. Each logical page is contiguous to the next with no additional spacing
provided.

lNote:-Rules 14through 19 apply to format2 only. - - - - - - -I
I I

14. Format 2 of the LINAGE clause may be used only with files assigned to I
I PRINTER. It may not be used with printer-destined files assigned to other
I devices. I

I 15. Format 2 of the LINAGE clause specifies a logical page in which the first line:
I of the page is defined by the home-paper position in the printer file's vertical I
I format buffer. It also allows detection of an end-of-page condition based uponl
I the overflow line position in the printer file's vertical format buffer. See the I

I
Job Control Programming Guide (7004-4623) and the Consolidated Data
Management Macroinstructions Programming Guide (70044607) for I

I information regarding vertical format buffer specification and page overflow
I reporting. I

I 16. The size of the logical page is undefined (no upper limit). The end of a logical I
I page does not occur until a WRITE statement with an ADVANCING PAGE I
I phrase is executed. I

I 17. The footing area comprises the area of the logical page beginning with the I
I line on which the operating system reports that the overflow line position in
I the vertical format buffer has been crossed and ending at the end of the I
L_~~P~_. ____________________ ~

7004 4490-000

70044490-000

Data Division

r;----- ----- --- -------
I 18. Top and bottom margins are not part of the logical page processed by the I

COBOL program. However, top and bottom margins may be created on the I
physical page by executing a WRITE statement with an ADVANCING
PAGE phrase. This positions the form to the next home-paper position. I

19. A LINAGE-COUNTER register is generated by the presence of a LINAGE
clause. The value in the LINAGE-COUNTER at any given time represents
the line number at which the device is positioned within the current page
body. The rules governing the LINAGE-COUNTER are:

a. A separate LINAGE-COUNTER is supplied for each file described in
the File Section whose file description entry contains a LINAGE clause.

b. LINAGE-COUNTER may be referenced, but not modified, by Procedure
Division statements. If more than one LINAGE-COUNTER exists in a
program, the user must qualify LINAGE-COUNTER by file-name.

c. LINAGE-COUNTER is automatically modified during the execution of
a WRITE statement to an associated file as follows:

• When the ADVANCING PAGE phrase of the WRITE statement is
specified, the LINAGE-COUNTER is automatically reset to 1.

• When the ADVANCING identifier-2 or integer phrase of the
WRITE statement is specified, the LINAGE-COUNTER is
incremented by integer or the value of the data item referenced by
identifier-2.

• When the ADVANCING phrase of the WRITE statement is not
specified, the LINAGE-COUNTER is incremented by the value 1.

I
I
I
I

When you specify the ADVANCING mnemonic-name phrase of the I
WRITE statement, the LINAGE-COUNTER is unchanged, but
does not accurately reflect the device position in the current page.
The LINAGE-COUNTER remains inaccurate until an
ADVANCING PAGE phrase is used.

I
I
I

I d. The value of LINAGE-COUNTER is automatically set to 1 at the time I
L an OPEN statement is executed for the associated file. I
----------------------1

5-19

Data Division

CODE-SET Clause

Function

The CODE-SET clause specifies the character code set used to represent
data on the external media.

Format

CODE-SET IS alphabet-name

Rules

1. When the CODE-SET clause is specified for a file, all data in that file must
be described as USAGE IS DISPLAY and any signed numeric data must be
described with the SIGN IS SEPARATE clause.

2. The alphabet-name clause referenced by the CODE-SET clause must not
specify the literal phrase.

3. The CODE-SET clause may only be specified for sequential tape files or files
assigned to a CARD READER or CARDPUNCH.

4. If the CODE-SET clause is specified, alphabet-name specifies the character
code convention used to represent data on the external media. It also
specifies the algorithm for converting the character codes on the external
media from/to the EBCDIC character codes. This code conversion occurs
during the execution of an input or output operation. (See 4.3.3,
"SPECIAL-NAMES Paragraph.")

5. If the CODE-SET clause is not specified, the native character code set is
assumed for data on the external media.

6. For sequential tape files, if the alphabet-name is associated with
STANDARD-l in the SPECIAL-NAMES paragraph, the tape must conform
to the standards set forth in American National Standard Magnetic Tape
Labels for Information Interchange, X3.27-1969, at the level supported by
SAM data management. Fixed, variable, and undefined record formats are
permitted. However, the compiler assumes a buffer offset of zero. For an
explanation of buffer offset and ASCII tape file formats, see the Consolidated
Data Management Macroinstructions Programming Guide (7004 4607).

7. If the alphabet-name is associated with ST ANDARD-O, it is treated the same
as STANDARD-1.

5-20 7004 4490-000

Data Division

5.3.2. Sort-Merge Description

The sort-merge file description furnishes information concerning the physical
structure, identification, and record names of the file to be sortedlor merged.ISample
sort file description entries are given in Figure 5-3.

Format

SD file-name
[;RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS]

[
;DATA {RECORD IS } data-nameD, [,data-name-21' .. j'

RECORDS ARE

Rules

7004 4490-000

1. The level-indicator SD identifies the beginning of the sort-merge file
description and must precede the file-name.

2. The clauses that follow the name of the file are optional and their order of
appearance is optional.

3. One or more record description entries must follow the sort-merge file
description entry; however, no input/output statements can be executed for
this file.

4. The RECORD CONTAINS clause and the DATA RECORDS clause are
described in 5.3.1.

Seq.
No.

A B Text
8 12

040010 SD SORT-FILE
040020 RECORD CONTAINS 50 TO 100 CHARACTERS
040030 DATA RECORD IS SORT-RECORD.
040040 01 SORT-RECORD.
040050 02 ACCOUNT-NUMBER PICTURE 9(8).
040060
040070
040080
040090

02 NUMBER-OF-CUSTOMERS, USAGE IS COMPUTATIONAL,
PICTURE S9(4).

02 CUSTOMER-DESCRIPTION, OCCURS 4 TO 9 TIMES DEPENDING
ON NUMBER-OF-CUSTOMERS, PICTURE X(10).

Figure 5-3. Sample Sort File Description Entries

5-21

Data Division

5.3.3. Data Description

Function

A data description entry specifies the characteristics of a specific data item.

5-22

Format 1

level-number {data-nameD'}
FILLER

[;REDEFINES data-name-2]

[;{::~TURE} IS character-string]

;[USAGE IS] COMPUTATIONAL
COMP
r-------l
COMPUT A TI ONAL - 1

!COMP-1 I
COMPUTATIONAL-2

!COMP-2 I
COMPUTATIONAL-3

ICOMP-3 I
COMPUTATIONAL-4

l C~M~ -: ____ J
DISPLAY
INDEX

[
;[SIGN IS] {LEADING} [SEPARATE CHARACTER]]

TRAILING

;OCCURS {~nteger-1} TO integer-2 TIMES DEPENDING ON
mteger -2 TIMES

[{
ASCENDING} KEY IS data-name-4 [,data-name-5]
DESCENDING

[INDEXED BY index-nameD' [,index-name-2] ...]

[
;{SYNCHRONIZED}[{LEFT }]]

SYNC RIGHT

[; {~IFIED} RIGHT]

[;BLANK WHEN ZERO]
[;VALUE IS literal].

data-name-3

---]- --

7004 4490-000

Data Division

Format 2

66 data-name-1;RENAMES data-name-2 [{~~:~UGH} data-name-3]_

Format 3

88 condition-name; {VALUE IS } literal-1 [{THROUGH} literal-2]
VALUES ARE THRU

[, LiteraL -3 [{~~:~UGH} LiteraL -4]] __ _

Rules

1. There are three formats for data description entries:

4) Format 1 is used for record description entries in the file, working­
storage, and Linkage Sections and for data item description entries in
the working-storage and Linkage Sections.

• Format 2 is used to assign alternative names to existing data items or
groups of items. (See "RENAMES Clause" in this subsection.)

• Format 3 is used to assign a name to the values that an associated
conditional variable may possess during object program execution. (See
format 2 under "VALUE Clause" in this subsection.)

2. In Levell, the level-number in format 1 may be any number from 01
through 10 or 77. In Level 2, the level-number in format 1 may be any
number from 01 through 49 or 77.

3. The clauses may be written in any order with two exceptions:

• The data-name-1 or FILLER clause must immediately follow the
level-number .

., The REDEFINES clause, when used, must immediately follow the
data-name-1 clause.

4. The PICTURE clause must be specified for every elementary item except an
index data item, for which use of this clause is prohibited.

5. The words THRU and THROUGH are equivalent.

7004 4490-000 5-23

Data Division

5-24

6. The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK
WHEN ZERO must not be specified except for an elementary data item.

7. Format 3 is used for each condition-name. Each condition-name requires a
separate entry with level-number 88. Format 3 contains the name of the
condition and the value, values, or range of values associated with the
condition-name. The condition-name entries for a particular conditional
variable must follow the entry describing the item with which the
condition-name is associated.

A condition-name can be associated with any data description entry that
contains a level-number except the following:

• Another condition-name

• A level-66 item

• A group containing items with descriptions including JUSTIFIED,
SYNCHRONIZED, or USAGE other than USAGE IS DISPLAY

e An index data item (See format 2 under "USAGE Clause" later in this
subsection.)

Table 5-5 summarizes the functions of the clauses used in data description entries.
The formats and functions of these clauses are described in detail in the paragraphs
that follow.

7004 4490-000

Data Division

Table 5-5. Data Description Entry Clauses

Clause Function

data-name or FILLER Specifies the name of the data being described

REDEF I NES Allows the programmer to give an alternate description of an area
of computer storage

PICTURE Indicates the size, class (alphabetic, numeric, or alphanumeric),
and the editing requirements for an elementary data item

USAGE Specifies the manner in which the data is stored in main storage

SIGN Specifies the position and mode of representation of the
operational sign for numeric data

OCCURS Indicates the number of elements contained in a table

SYNCHRONIZED Specifies the alignment of an elementary item on a natural boundary
of the computer memory

JUSTI F I ED Specifies that nonnumeric data is to be right-justified
in a nonnumeric field

BLANK WHEN ZERO Specifies that an item is to be set to blanks whenever its value
is zero

VALUE Defines the initial value of a working-storage item or a value or
range of values associated with a condition-name

RENAMES Permits alternate, possibly overlapping, groupings of elementary
items

70044490-000 5-25

Data Division

Level-Number

Function

The level-number shows the hierarchy of data within a logical record.
In addition, it is used to identify entries for working-storage items,
linkage items,lcondition-names, and the RENAMES clause. I

Format

level-number

Rules

1. A level-number is required as the first element in each data description
entry.

2. Data description entries subordinate to an FD, SD, or CD entry must have
level-numbers with the values 01 through 10 in Levell; 01 through 49,66, or
88 in Level 2.

3. Data description entries in the Working-Storage Section and Linkage
Section must have level-numbers with the values 01 through 10 or 77 in
Level 1;101 through 49,66,77, or 88 in Level 2.1

4. The level-number 01 identifies the first entry in each record description.

5. Special level-numbers are assigned to certain entries where there is no real
concept of level:

4& Level-number 77 is assigned to identify noncontiguous data
items and can be used only as described by format 1.

4& Level-number 66 is assigned to identify RENAMES entries and
can be used only as described in format 2.

• Level-number 88 is assigned to entries that define
condition-names associated with a conditional variable and can
be used only as described in format 3.

6. Multiple level 01 entries subordinate to any given level-indicator represent
implicit redefinitions of the same area.

5-26 7004 4490-000

Division

Data-NamejFlllER Clause

Function

A data-name specifies the name of the data being described. The keyword
FILLER specifies an elementary item of the logical record that cannot be referred
to explicitly.

Format

{
data-name}
FILLER

Rules

1. In the File, Working-Storage, and Linkage Sections, a data-name or the
keyword FILLER must be the first word following the level-number in each
data description entry.

2. The keyword FILLER may be used to name an elementary item in a record.
Under no circumstances can a FILLER item be referred to explicitly.
However, the keyword FILLER may be used as a conditional variable
because such use does not require explicit reference to the FILLER item, but
to its value.

REDEFINES Clause

Function

The REDEFINES clause allows the same computer storage area to be
described by different data description entries.

Format

level-number data-name-1;REDEFINES data-name-2

Note: Level-number, data-name-l, I and the semicolon I are shown in the format
to improve clarity. Level-number and data-name-l are not part of the
REDEFINES clause.

Rules

1. The REDEFINES clause, when specified, must immediately follow
data-name-1.

2. The level-numbers of data-name-! and data-name-2 must be identical, but
must not be 66 or 88.

70044490-000 5-27

Data Division

5-28

3. This clause must not be used in level 01 entries in the File Section or the
Communication Section.

4. No entry having a level-number numerically lower than the level-number of
data-name-2 and data-name-l may occur between the data description
entries of data-name-2 and data-name-l.

5. Redefinition starts at data-name-2 and ends when a level-number less than
or equal to that of data-name-2 is encountered.

6. When the level-number of data-name-l is other than 01, it must specify the
same number of character positions that the data item referenced by
data-name-2 contains. The REDEFINES clause specifies the redefinition of a
storage area, not of the data items occupying the area.

7. The data description entry for data-name-2 cannot contain a REDEFINES
clause. In Levell, data-name-2 cannot be subordinate to an entry that
contains a REDEFINES clause. In Level 2, data-name-2 rna be subordinate
to an entry that contains a REDEFINES clause. The data description entry
for data-name-2 cannot contain an OCCURS clause.IHowever, data-name-2
may be subordinate to an item whose data description entry contains an
OCCURS clause. In this case, the reference to data-name-2 in the

~~~~~--~~~ 

REDEFINES clause may not be subscripted or indexed.IN either the original 
definition nor the redefinition can include an item whose size is variable as 
defined in the OCCURS clause. 

8. Multiple redefinitions of the same character positions are permitted. The 
entries giving new descriptions of character positions must follow the entries 
defining the area being redefined without intervening entries defining new 
character positions. Multiple redefinitions of the same character positions 
must all use the data-name of the entry that originally defined the area. 

Example 

02 A. 
04 A1 PICTURE X(3). 
04 A2 PICTURE 99V99. 

02 B REDEFINES A. 
04 B1 PICTURE 9. 
04 B2 PICTURE A(4). 
04 B3 PICTURE XX. 

02 C REDEFINES A PICTURE 9(4)V9(3). 

9. The entries giving the new description of the character positions must not 
contain any VALUE clauses [except in condition-name entries. I 

10. Multiple level 01 entries subordinate to any given level-indicator represent 
implicit redefinitions of the same area. 

7004 4490-000 



Data Division 

PICTURE Clause 

Function 

The PICTURE clause describes the general characteristics and editing 
requirements of an elementary item. See Appendix K for a tutorial description of 
the PICTURE clause and for additional examples. 

Format 

{
PICTURE} IS character-string 
PIC 

Rules 

7004 4490-000 

1. A PICTURE clause can be specified only at elementary item level. 

2. The maximum number of characters allowed in the character-string is 30. 

3. PIC is an abbreviation for PICTURE. 

4. The PICTURE clause must be specified for every elementary item except an 
index data item@i!~.fallE1terna!!loatini-~~f}~iEfor which use of this 
clause is prohibited. 

5. A character-string consists of certain allowable combinations of characters in 
the COBOL character set used as symbols. The allowable combinations 
determine the category of the elementary item. 

6. There are five categories of data that can be described with a PICTURE 
clause: alphabetic, numeric, alphanumeric, alphanumeric edited, and 
numeric edited. 

The five categories of data items are grouped into three classes: alphabetic, 
numeric, and alphanumeric. For alphabetic and numeric, the class and the 
category are synonymous. The alphanumeric class includes the categories of 
alphanumeric (without editing), alphanumeric edited, and numeric edited. 

Every elementary item except for an index data item belongs to one of the 
classes and to one of the categories. The class of a group item is treated at 
object time as alphanumeric regardless of the class of elementary items 
subordinate to that group item. 

The relationship of the class and category for elementary and group data 
items is shown in Table 5-6. 

5-29 



5-30 

Table 5-6. Class and Category of Elementary and Group Data Items 

Level of Item Class Category 

Elementary Alphabetic Alphabetic 

Numeric Numeric 

Alphanumeric Numeric edited 
Alphanumeric edited 
Alphanumeric 

Group ALphanumeric Alphabetic 
Numeric 
Numeric edited 
Alphanumeric edited 
Alphanumeric 

7. The maximum size of an elementary item is defined as follows: 

Alphabetic 

Numeric 

Numeric edited 

Alphanumeric edited 

Alphanumeric 

8. To define an item as alphabetic: 

4,092 bytes 

Size in bytes is determined by the USAGE 
and SIGN clauses, which are described in 
this subsection. 

120 bytes 

120 bytes 

4,092 bytes 

a. Its PICTURE character-string can only contain the symbols A and B. 

b. Its content when represented in standard data format must be any 
combination of the 26 letters in the alphabet and the space character. 

9. To define an item as numeric: 

• Fixed-Point Items 

_Tj:l~r~ ~~ t.h~~ types of fixed-point items: external decimal, binary, and 
li~t~~~~e~IE:~jCSee "USAGE Clause" in this subsection.) 

The PICTURE character-string of a fixed-point item can only contain 
the symbols 9, P, S, and V. The number of digit positions that can be 
described by the PICTURE character-string must range from 1 to 18, 
inclusive. 

7004 4490-000 



70044490-000 

If unsigned, the contents of a data item represented in standard data 
format must be a combination of the numerals 0 through 9; if signed, 
the item may also contain a +, -, or other representation of an 
operational sign. (See "SIGN Clause" in this subsection.) 

~------------------------~ 

I· Floating-Point Items I 

I The floating-point items define data having a potential range of value I 
I too great for fixed-point presentation. The magnitude of the number I 
I represented by a floating-point item must be greater than 5.4 x 10-79 I 
I but must not exceed 0.72 x 1076

, I 

I There are two types of floating-point items: internal floating-point and I 
I external floating-point. I 

I 
i No PICTURE clause may be associated with an internal floating-point I 

I 
item. The USAGE clause for an internal floating-point item is I 
COMPUTATIONAL-lor COMPUTATIONAL-2. (See "USAGE Clause" I 

I in this subsection.) I 

I An external floating-point item has the USAGE of DISPLAY and a I 
I PICTURE character-string in the following format: I 
I I I {~} mantissa E {~} exponent I 

: where: I 

I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

A plus indicates that the data is positive if preceded by a plus, 
or negative if preceded by a minus. 

A minus indicates that the data is positive if preceded by a 
space character, or negative if preceded by a minus. 

The plus sign, the space character, or the minus sign occupies 
one byte of main storage. 

mantissa 

Is represented by the symbols: 9, period C), or V. Each 9 
represents a digit position and occupies one byte of main 
storage. From one to sixteen 9s may be present in the 
mantissa string. 

The period represents an actual decimal point and occupies 
one byte of storage. The V represents an assumed decimal 
point, which does not occupy any main storage. 

I One actual or assumed decimal point must be present in the 

L mantissa as a leading, embedded, or trailing symbol. .J 
----------------------

5-31 



Data Division 

5-32 

,------------------------l 

: E Indicates the exponent. It occupies one byte of main storage. : 

I exponent I 
I Specifies a power of10 that is used as a multiplier. It is I 
I represented by two consecutive 9's. Each 9 occupies one byte of I 
I main storage. I 
I 
I No VALUE clause may be associated with an external floating-point II 

I item. L __________________________ ~ 

10. To define an item as alphanumeric: 

., Its PICTURE character-string is restricted to certain combinations of 
the symbols A, X, and 9, and the item is treated as if the 
character-string contained all X's. A PICTURE character-string that 
contains all Ns or all 9's does not define an alphanumeric item. 

.. Its content, when represented in standard data format, is allowable 
characters in the computer character set. 

11. To define an item as alphanumeric edited: 

.. Its PICTURE character-string is restricted to certain combinations of 
the following symbols: 

AX9 B 01 

As a minimum, it must contain either of the following: 

At least one B, 0, or 1 and one X 

At least one 0 or 1 and one A 

• Its content, when represented i~ standard data format, is allowable 
characters in the computer character set. 

12. To define an item as numeric edited: 

• Its PICTURE character-string is restricted to certain combinations of 
the following symbols: 

B 1 P V Z 0 9 , . * + - CR DB or currency symbol 

The allowable combinations are determined from the order of 
precedence of symbols and the editing rules. 

The number of digit positions that can be represented in the 
PICTURE character-string must range from 1 to 18 inclusive. 

70044490-000 



7004 4490-000 

Data Division 

The character-string must contain at least one of the following 
symbols: 

OBI Z * + , . - CR DB or currency symbol 

• The content of the character positions of these symbols that are allowed 
to represent a digit in standard data format must be one of the 
numerals. 

13. An integer that is enclosed in parentheses following the symbols: 

A , X 9 P Z * B I 0 + - or currency symbol 

indicates the number of consecutive occurrences of the symbol. The following 
symbols may appear only once in a given PICTURE: 

SV. CRDB E 

14. The functions of the symbols used in a PICTURE character-string other than 
floating point to describe an elementary item are explained as follows: 

Symbol 

A 

B 

P 

Description 

Represents a character position that contains only a letter of 
the alphabet or a space 

Represents a character position into which the space character 
is to be inserted 

Indicates an assumed decimal scaling position and specifies 
the location of an assumed decimal point when the point is not 
within the number thatappears in the data item. The P is not 
counted in the size of the data item, but is counted in 
determining the maximum number of digit positions (18) in 
numeric-edited items or numeric items. The P can appear only 
to the left or right as a continuous string ofP's within a 
PICTURE description. 

Since the P implies an assumed decimal point (to the left of 
the P's if P's are leftmost PICTURE characters, and to the 
right if the P's are rightmost PICTURE characters), the 
assumed decimal point symbol V is redundant as either the 
leftmost or rightmost character within such a PICTURE 
description. 

The character P and the period insertion character ( . ) cannot 
both occur in the same PICTURE character-string. 

5-33 



Data Division 

5-34 

Symbol 

P 
(cont.) 

S 

v 

x 

z 

9 

o (zero) 

/ (slash) 

, (comma) 

Description 

If, in any operation involving conversion of data from one form 
of internal representation to another, the data item being 
converted is described with the PICTURE character P, each 
digit position described by a P is considered to contain the 
value zero, and the size of the data item is considered to 
include the digit positions so described. 

Indicates the presence of an operational sign but not its 
representation nor, necessarily, its position. It must be written 
as the leftmost character in the PICTURE and is not counted 
in determining the size (in terms of standard data format 
characters) of the elementary item unless the entry is subject 
to a SIGN clause that specifies the optional SEPARATE 
CHARACTER phrase. (See "SIGN Clause" in this subsection.) 

Indicates the location of the assumed decimal point and may 
only appear once in a character-string. The V does not 
represent a character position and, therefore, is not counted in 
the size of the elementary item. When the assumed decimal 
point is to the right of the rightmost symbol in the string, the 
V is redundant. 

Represents a character position that contains any allowable 
character from the computer character set. 

Represents a leading numeric character position. When that 
position contains a 0, the 0 is replaced by a space character. 
Each Z is counted in the size of the item. 

Represents a character position that contains a numeral and is 
counted in the size of the item. 

Represents a character position into which the numeral 0 is to 
be inserted. The 0 is counted in the size of the iten1. 

Represents a character position into which the stroke 
character is to be inserted. The / is counted in the size of the 
item. 

Represents a character position into which a comma is to be 
inserted. This character position is counted in the size of the 
item. The comma insertion character must not be the last 
character in the PICTURE character-string. 

70044490-000 



Data Division 

Symbol Description 

. (period) Is an editing symbol that represents the decimal point for 
alignment purposes and, in addition, represents a character 
position into which a decimal point is to be inserted. A period 
is counted in the size of the item. The functions of the period 
and comma are exchanged if the clause DECIMAL-POINT IS 
COMMA is stated in the SPECIAL-NAMES paragraph. In this 
exchange, the rules for the period apply to the comma and the 
rules for the comma apply to the period wherever they appear 
in a PICTURE clause. The insertion character period must not 
be the last character in the PICTURE character-string. 

+ - CRDB Are used as editing sign control symbols. They represent the 
character position into which the editing sign control symbol is 
placed. These symbols are mutually exclusive in anyone 
character-string and each character used in the symbol is 
counted in determining the size of the data item. 

* 

cs 

Represents a leading numeric character position into which an 
asterisk is placed when that position contains a zero. Each 
asterisk is counted in the size of the item. 

Represents a character position into which a currency symbol 
is to be placed. The currency symbol in a character-string is 
represented by either the currency sign ($) or by the single 
character specified in the CURRENCY SIGN clause in the 
SPECIAL-NAMES paragraph. The currency symbol is counted 
in the size of the item. 

15. There are two general methods of performing editing in the PICTURE 
clause: insertion or suppression and replacement. 

The four types of insertion editing are: 

• Simple insertion 

• Special insertion 

• Fixed insertion 

• Floating insertion 

The two types of suppression and replacement editing are: 

411 Zero suppression and replacement with spaces 

• Zero suppression and replacement with asterisks 

7004 4490-000 5-35 



Data UlVISlrm 

5-36 

16. The type of editing that may be performed upon an item is dependent upon 
the category to which the item belongs. (See Table 5-7.) 

Table 5-7. Type of Editing Permissible for Each Data Category 

Data Category Type of Editing 

Alphabetic Simple insertion B only 

Numeric None 

Alphanumeric None 

Alphanumeric edited Simple insertion, 0 B and I 

Numeric edited All, subject to rule 17 

17. Floating-insertion editing and editing by zero suppression and replacement 
are mutually exclusive in a PICTURE clause. Only one type of editing may 
be used in a PICTURE clause. 

18. Insertion editing is described as follows: 

• The simple insertion-editing characters are: 

,B 0/ 

Insertion characters are counted in the size of the item and represent 
the position in the item into which the character is to be inserted. 

• The special insertion character is the. (period). When used as an actual 
decimal point, the insertion character is counted in the size of the item. 
In addition, the period is used to represent the decimal point for 
alignment purposes. The use of the assumed decimal point (represented 
by the symbol V) and the actual decimal point (represented by the 
insertion character) in the same PICTURE character-string is 
disallowed. The insertion character appears in the edited item in the 
same position as shown in the character-string. 

• The fixed-insertion editing characters are the currency symbol (cs) and 
the editing sign control symbols: 

+ - CRDB 

Only one currency symbol and one editing sign control syn1bol can be 
used in a given PICTURE character-string. When the symbols CR or DB 
are used, they represent two character positions in determining the size 
of the item, and they must represent the rightmost character positions 
that are counted in the size of the item. The symbol + or - must be either 
the leftmost or rightmost character position to be counted in the size of 
the item. The currency symbol must be the leftmost character position 

7004 4490-000 



70044490-000 

to be counted in the size of the item except that it can be preceded by 
either a + or a - symbol. The insertion character occupies the same 
charadeI' position in the edited item as it occupies in the PICTURE 
character-string. Editing sign control symbols produce the results given 
in Table 5-8, depending upon the value of the data item. 

Table 5-8. Results Produced Sign Control Symbols 

Result 

Editing Symbol in Data Item Data Item 
PICTURE Character-String Positive or Zero Negative 

+ + 

Space 

CR 2 spaces CR 

DB 2 spaces DB 

• The floating-insertion editing characters are the currency symbol (cs) 
and the editing sign control symbols (+ and -). The symbols are mutually 
exclusive as floating-insertion characters in a given PICTURE 
character-string. 

Floating-insertion editing is indicated in a PICTURE character-string 
by using a string of at least two floating-insertion characters. This 
string may contain any of the fixed insertion symbols or have 
fixed-insertion characters immediately to the right of this string. These 
simple insertion characters are part of the floating string. 

The leftmost character of the floating insertion string represents the 
leftmost limit of the floating symbol in the data item. The rightmost 
character of the floating string represents the rightmost limit of the 
floating symbols in the data item. 

The second floating character from the left represents the leftmost limit 
of the numeric data that can be stored in the data item. Nonzero 
numeric data replaces all the characters at or to the right of this limit. 

There are two ways of representing floating-insertion editing. One way 
is to represent any or all leading numeric character positions on the left 
of the decimal point by the insertion character (examples 1 and 2 
below), The other way is to represent all of the numeric character 
positions in the PICTURE character-string by the insertion character 
(example 3 below). 

5-37 



Data Division 

5-38 

If the insertion characters are only to the left of the decimal point, only 
a single floating-insertion character is placed into the character position 
immediately preceding either the decimal point or the first nonzero digit 
in the data represented by the insertion symbol string, whichever is 
farther to the left in the PICTURE character-string. The character 
positions preceding the insertion character are replaced with spaces. 

If all numeric character positions in the PICTURE character-string are 
represented by the insertion character, the result depends upon the 
value of the data. If the value is zero, the entire data item will contain 
spaces. If the value is not zero, the result is the same as when the 
insertion character is only to the left of the decimal point (examples 4, 5, 
and 6 below). 

To avoid truncation, the minimum size of the PICTURE 
character-string for the receiving data item must be the number of 
characters in the sending data item, plus the number of nonfloating 
insertion characters being edited into the receiving data item, plus one 
for the floating-insertion character. 

Examples 

PICTURE Data Edited Result 

1. $$9.99 12,,34 $12.34 
2. $$,$$$.99 1234,,00 $1,234.00 
3. $$$.$$ 12,,34 $12.34 
4. $$,$$$.$$ 0000,,00 (all spaces) 
5. ++,+++.++ 0000,,00 +1.00 
6. - -, _ .. o. '0000,,01 . .01 

19. In zero-suppression editing, the suppression of leading O's in numeric 
character positions is indicated by the use of the alphabetic character Z or 
the character * (asterisk) as suppression symbols in a PICTURE 
character-string. These symbols are mutually exclusive in a given PICTURE 
character-string. Each suppression symbol is counted in detern1ining the size 
of the item. 

If Z is used, the replacement character is a space. If the asterisk is used, the 
replacement character is * (asterisk). 

Zero suppression and replacement is indicated in a PICTURE 
character-string in the following manner: A string of one or more of the 
allowable symbols (* or Z) is used to represent leading numeric character 
positions to be replaced when the associated character position in the data 
contains a O. Any of the simple insertion characters (, B 0 j) embedded in the 
string of symbols or to the immediate right of this string are part of the 
string. 

70044490-000 



70044490-000 

Data Division 

The two ways of representing zero suppression in a PICTURE 
character-string are: 

II» Any or all of the leading numeric character positions to the left of the 
decimal point are represented by suppression symbols. 

.. All numeric character positions in the character-string are represented 
by suppression symbols. 

If the suppression symbols appear only to the left of the decimal point, any 
leading 0 in the data that corresponds to a symbol in the string is replaced by 
the replacement character. Suppression terminates at the first nonzero digit 
in the data represented by the suppression symbol string or at the decimal 
point, whichever is encountered first. 

If all numeric character positions in the PICTURE character-string are 
represented by suppression symbols and the value of the data is not zero, the 
result is the same as if the suppression characters were only to the left of the 
decimal point. If the value is zero and the suppression symbol is Z, the entire 
data item will be spaces. If the value is zero and the suppression symbol is *, 
the data item will be all * except for the actual decimal point. 

Examples 

PICTURE Data Item Edited Result 

ZZ99.99 0000,,00 00.00 
ZZZZ.99 0000,,00 .00 
ZZZZ.ZZ 0000,,0O (all spaces) 
****.99 0000,,00 ****.00 
****.** 0000,,00 ****.** 

*,***,***.99BBCR -2135"O5 ****2,135.05 CR 

20. The symbols + - * Z and the currency symbol, when used as floating 
replacement characters, are mutually exclusive within a given 
character-string. 

21. Table 5-9 shows the order of precedence when using characters as symbols in 
a character-string. 

At least one of the symbols 

AXZ9* 

or at least two of the symbols 

+ - cs (currency symbol) 

must be present in a PICTURE character-string. 

5-39 



Data Division 

5-40 

Nonfloating-insertion symbols + and -, floating-insertion symbols Z * + - and 
cs, and the other symbol P appear twice in the PICTURE character 
precedence chart, Table 5-9. The leftmost column and uppermost row for 
each symbol represents its use to the left of the decimal point position. The 
second appearance of the symbol in the table represents its use to the right 
of the decimal point position. 

The PICTURE character precedence chart (Table 5-9) summarizes the 
preceding rules and provides a quick check on the legal order of PICTURE 
symbols. For example, the chart shows that PICTURE string $+99 is illegal 
because the intersection of the column (nonfloating-insertion symbol cs) and 
row (nonfloating-insertion symbol {.:t} L) contains no X. This summarizes 
rule 18. 

70044490-000 



Table 5-9. PICTURE Character Precedence Chart 

First Symbol 

l'\Ionflollting Flollting Other Symbols 
Second Insertion Symbols Insertion Symbols 
Symbol 

B 0 I {~} {~} {~:} es {~} {~} {~} {~} es ell 9 {~} S V P P 

C0 ® © ® © ® © ® CO ® 
B X X X X X X X X X X X X X X X X X 

0 X X X X X X X X X X X X X X X X X 

/ X X X X X X X X X X X X X X X X X 

.. X X X X X X X X X X X X X X X X 

co] 
.~ E X X X X X X X X X X 

~~ 
;:;:: c: 

{~}© 15 .~ 
Zj 

{~} X X X X X X X X X X X X X X 

{~:} X X X X X X X X X X X X X X 

cs X 

{~}© X X X X X X X 

{~} ® X X X X X X X X X X X 
'" "0 

.Cl 

{:~} 
CI> E 
c:: >- X X X X X X -;:;tIl 
<0 C 

.2 " u.. '¥ 

{~} ® j X X X X X X X X X X 

cs X X X X X X 

cs ® X X X X X X X X X X 

9 X X X X X X X X X X X X X X X 

r 
t~} X X X X X 

'" :8 
E S 
>-

til 
; 

V X X X X X X X X X X X X J: 

0 
p © X X X X X X X X X X X X 

p X X X X X 

LEGEND: 

X Indicates that symbol at top of column may precede symbol at left of row. 

{ } Indicates that symbols are mutually exclusive. 

cs Indicates a currency symbol. 

© Indicates the occurrence of the symbol to the left of the decimal point. 

® Indicates the occurrence of the symbol to the right of the decimal point. 

NOTE: 

7004 4490-000 5-41 



Data Division 

USAGE Clause 

5-42 

Function 

The USAGE clause specifies the format of a data item in computer storage. 

Format 1 

[USAGE IS] COMPUTATIONAL 
CaMP 

r ~O~P~T~T~O~A~-~ 1 
I COMP-1 

COMPUTATIONAL-2 I 
I COMP-2 

COMPUTATIONAL-3 I 
I COMP-3 

COMPUTATIONAL-4 I 
l COMP-4 ::::-::::-=-_ _ _ _ _ J 

DISPLAY 

Format 2 

[USAGE IS] INDEX 

Rules 

1. The USAGE clause can be written at any level. If the USAGE clause is 
written at a group level, it applies to each elementary item in the group. The 
USAGE clause of an elementary item cannot contradict the USAGE clause of 
a group to which the item belongs. 

Note: Rules 2 through 13 apply to format 1 only. 

2. 

3. 

4. 

5. 

This clause specifies the manner in which a data item is represented in 
computer storage. It does not affect the use of the data item, although the 
specifications for some statements in the Procedure Division may restrict the 
USAGE clause of the operands referred to. The USAGE clause may affect 
the radix or type of character representation of the item. 

If the USAGE clause is not specified for an elementary item, or for any group 
to which the item belongs, the usage is implicitly DISPLAY. 

The USAGE IS DISPLAY specifies that the item is stored in character form, 
one character per byte; it is used for alphabetic, alphanumeric, 
alphanumeric-edi~d, numeric-edited, external decimal,~~~e~t~na] 

ffloating-point items~ L- _______ -l 

r;::;----------------;-r 
COM~COMP-l, COMP-2, COMP-3, and COMP-4@re abbreviations for 

!COMPUTATIONAL, COMPUTATIONAL-I, COMPUTATIONAL}J 
I COlvIPUTATIONAL-3, and COlviPUTATIONAL-4,rrespectively. L..:.... _________________ .:.J 

7004 4490-000 



7004 4490-000 

6. COMPUTATIONAL andI§OMPUTATIONAL-4 are synonymou~ 

7. k~OMPUTATIONALJCOMPUTATIONAL-1-:-COMPUTATIONAL-~ 
L.90MPUTATIONAL-3, or COMPUTATIONAL.:!litem is capable of 
representing a value to be used in computations and must be numeric. If the 
USAGE clause of a group item is specified with any of these options, only the 
elementary items within the group have the specified USAGE; the group 
item itself cannot be used in computations. 

8. The PICTURE character-string of a COMPUTATIONAL, 
ICOMPUTATIONAL-3,or COMPUTATIONAL-=ijitem can contain only 9's, 
the operational sign character S, the implied decimal point character V, or 
one or more P's. (See "PICTURE Clause" in this subsection.) 

9. No VALUE clause may be specified for items with descriptions that include 
the USAGE IS INDEX clause. 

~-------------------------~ 
10. I No PICTURE clause may be sp~cifiedio~a~OMPUTATIONAL-1~~ 

LCOMPUTATIONAL-2 ite~ 

11. COMPUTATIONAL or[QOMPUTATIONA~~specifies that the value of a 
data item is to be stored in binary format. 

Example 

Description 

PICTURE S9999 
COMPUTATIONAL 

PICTURE S9999 

+6879 

-6879 

Internal Representation 

S 

0001 1010 1101 1111 
I I 

I 
1 byte 

S 

1110 0101 0010 0001 
I I 

I 
1 byte 

Note: S indicates a sign bit. 

The number of digits (9 characters) specified in the PICTURE 
character-string determines the size in bytes of a COMPUTATIONAL or 
COMPUTATIONAL-4 item. 

Number of Digits 

1 to 4 
5 to 9 
10 to 18 

Size in Bytes 

2 
4 
8 

5-43 



5-44 

r;- - - - - - - - - - - - - - - - - - - - - - - - - - ---l 
,12. COMPUTATIONAL-l specifies that the value of a data item is to be stored I 
I in single-precision, floating-point format. COMPUTATIONAL-2 specifies I 
I that the value of a data item is to be stored in double-precision, I 
L floating-point format. J 
-- - -- - - - - - - - - - - - - - - - - - - -- - --

Examples 

COMP-1 

COMP-2 

5 = sign of mantissa 

I 
bits 

I 
bits 

r:;--------- -- - ---- ------- - -----:-1 
113. COMPUTATIONAL-3 specifies that the value of a data item is to be stored I 

L in internal decimal format (packed decimal format). ! _____________________________ --1. 

Description 

9999 
59999 
59999 

6879 
+6879 
-6879 

Internal Representation 

06879F 
06879C 
068790 

7004 4490-000 



The number of digits in the PICTURE character-string 
determines the size, in bytes, of a COMPUTATIONAL-3 data item. 

Number of Digits 

1 
2 to 3 
4 to 5 
6 to 7 
8 to 9 
10 to 11 
12 to 13 
14 to 15 
16 to 17 
18 

Note: Rules 14 18 to 

Size in Bytes 

2 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

14. An item with the IS INDEX clause is called an 
index data item and contains a value that must to an occurrence 
number of a table element. The elementary item cannot be a conditional 
variable. If a group item is described with the USAGE IS INDEX the 
elementary items in the group are all index data itself is 
not an index data item and cannot be In 
statement or in a relation condition. 

15. An index data item defines a data item of 
contains the representation of the 
<;:OA .... AU ... ,LL\J occurrence within a An index data item does not 
SYllCtllromz:at:lon and is not to any machine UV'_HHAGU than a 

16. An index data item is a save area where value of an index-name can be 
placed. Do not use it as a subscript or as an index to refer to an individual 

a table. Refer to an index data item 
a relational the of a 

or the USING of a CALL statement. 

17. An index data item can be of a group that is referred to in a MOVE or 
inputJoutput statement, in which case no conversion will take 

18. and BLANK 
",M.A ..... ", ... ,.., cannot be used to describe group or items 

described with the USAGE IS INDEX clause. 

70044490-000 5-45 



Function 

The SIGN clause specifies the position and the mode of representation 
of the operational sign when it is necessary to describe these properties 
explicitly. 

Format 

[SIGN IS] {LEADING} [SEPARATE CHARACTER] 
TRAILING 

Rules 

1. The SIGN clause may be specified only for a numeric data description entry 
whose PICTURE contains the character S, or a group item containing at 
least one such numeric data description entry. 

2. The numeric data description entries to which the SIGN clause applies must 
be described as USAGE IS DISPLAY except for floating-point display. 

3. At most, one SIGN clause may apply to any given numeric data description 
entry. 

4. If the CODE-SET clause is specified, any signed numeric data description 
entries associated with that file description entry must be described with the 
SIGN IS SEPARATE clause. 

5. The optional SIGN clause specifies the position and the mode of 
representation of the operational sign for the numeric data description entry 
to which it applies, or for each numeric data description entry subordinate to 
the group to which it applies. The SIGN clause applies only to numeric data 
description entries whose PICTURE contains the character S; the S indicates 
the presence of, but neither the representation nor, necessarily, the position 
of the operational sign. 

6. A numeric data description entry whose PICTURE contains the character S, 
but to which no optional SIGN clause applies, has an operational sign. The 
sign is considered to be TRAILING, without the SEPARATE CHARACTER 
option. 

7, If the optional SEPARATE CHARACTER phrase is not present, then 

a. The operational sign is presumed to be associated with the leading or, 
respectively, trailing digit position of the elementary numeric data item. 

b. The letter S in a PICTURE character-string is not counted in 
determining the size of the item (in terms of standard data format 
characters), 

5-46 70044490-000 



c. The valid signs for numeric data items occur in the zone portion of 
LEADING or TRAILING character position. The hexadecimal value C 
represents a positive sign, and the value D represents a negative sign. 
The hexadecimal value F is considered as a positive sign if the 
PICTURE character-string contains an S, and considered unsigned if 
the PICTURE character-string does not contain an S. 

8. If the optional SEPARATE CHARACTER phrase is present, then 

a. The operational sign is presumed to be the leading or, respectively, 
trailing character position of the elementary numeric data item; this 
character position is not a digit position. 

h. The letter S in a PICTURE character-string is counted in determining 
the size of the item (in terms of standard data format characters). 

c. The operational signs for positive and negative are the standard data 
format characters + and -, respectively. 

9. Every numeric data description entry whose PICTURE contains the 
character S is a signed numeric data description entry. If a SIGN clause 
applies to such an entry and conversion is necessary for computation or 
comparisons, conversion is automatic. 

OCCURS Clause 

Function 

The OCCURS clause eliminates the need for separate entries for 
repeated data items and supplies information required for the 
application of subscripts or indexes. 

Format 1 

OCCURS integer-2 TIMES 

[{
ASCENDING} KEY IS data-name-2 [,data-name-3] ... J ... 
DESCENDING 

[INDEXED BY index-name-' [,index-name-2] ... ] 

Format 2 

70044490-000 

OCCURS integer-1 TO integer-2 TIMES DEPENDING ON data-name-1 

r {ASCENDING} KEY IS data-name-2 [,data-name-3] ... 1J ... l DESCENDING 

[INDEXED BY index-name-' [,index-name-2J ... J 

5-47 



5-48 

Rules 

1. The OCCURS clause is used in tables and other homogeneous sets 
re]:>eated data items. The data-name, which is the subject of the data 

aeiScfmtlOn entry, must be either subscripted or indexed whenever it is 
... ",+"""., .. ",rI to in a statement other SEARCH or USE FOR 

if the subject of this is the name of a group item, then all 
data-names belonging to group must be subscripted or indexed whenever 
they are used as operands, except as the object of a REDEFINES clause. (See 

h","",,..,r.'t...-r,ty· 2.6.3, "Indexing;" 2.6.4, "Identifier.") 

2. The KEY IS indicates that the data is arranged in 
ascending or order according to the values contained in 
u'u'iJ<A-~HAUH .. ,-,&J. data-name-3, etc. The ascending or descending order is 

to the rules for comparison of operands (see 
l/omlJar'lSCm of Numeric Operands" and "Comparison of Nonnumeric 

under 6.4.1.) The data-names are listed in their descending order 
of significance. 

3. An INDEXED BY phrase is required if the subject of this entry, or an entry 
subordinate to this is to be referred to by indexing. The index-name 
identified by this clause is not defined elsewhere since its allocation and 
format are dependent on the hardware and, not being data, cannot be 
associated with any data hierarchy. 

4. The nurnber of occurrences of the subject entry is defined as follows: 

5. 

'* In format 1, the value of integer-2 represents the exact number of 
occurrences. 

Iii In format 2, the current value of the data item referenced by data-name-1 
represents the number of occurrences. This format specifies that the 
subject of this entry has a variable number of occurrences. The value of 
integer-2 represents the maxilnum number of occurrences, and the value 
of integer-l represents the minimum number of occurrences. This does 
not imply that the length of the subject of the entry is but 
that the number of occurrences is variable. 

The value of the data item referenced data-name-l must fall within the 
range integer-l through integer-2. Reducing the value of the data item 
referenced by data-nmne-l makes the content of data items, whose 
occurrence numbers now exceed value of the data item referenced by 
data-name-1 unpredictable. 

!I-I'",yn,,,.,.,.1- for the OCCURS clause 
with an item whose nn,"", ... "..." 

occurrence of the item 

all data description clauses associated 
includes an OCCURS to each 

(See rule 11 under "VALUE Clause" in this 

7004 4490-000 



70044490-000 

Division 

6. The OCCURS clause cannot be specified in a data description entry that 
does one of the following: 

• Has a 01, 66, 77, or an 88 level-number 

* Describes an item whose size is variable. The size of an 
item is variable if the data description of any subordinate 
item contains format 2 of the OCCURS clause. 

7. The length of a table element (i.e., the size of the item containing an 
OCCURS clause) may not exceed 32,767 bytes. The maximum number of 
occurrences of a table element (i.e., the value of integer-2) may not exceed 
65,535. 

02 A PIC X(2) OCCURS 65000 TIMES. 

This entry is valid because the length of table element A is 2 bytes, and the 
number of occurrences of A does not exceed 65,535. 

Example 2 

02 X OCCURS 2 TIMES. 
04 Y PIC X(1000) OCCURS 40 TIMES. 

These entries are incorrect because the length of table element X is 40,000 
bytes, which exceeds the maximum length permitted for a table element. 

8. In format 1, the value of integer-2 must be greater than 0 and less than 
65,536. 

In format 2, the value of integer-l may range from 0 through 65,534, and the 
value of integer-2 must be greater than the value of integer-l and less than 
65,536. 

9. The data description of data-name-l must describe a positive integer. 

10. Data-name-l, data-name-2, data-name-3, ... , may be qualified. 

11. Data-name-2 must either be the name of the entry containing the OCCURS 
clause or the name of an entry subordinate to the entry containing the 
OCCURS clause. 

12. Data-name-3, ... , must be the name of an entry subordinate to the group item 
I that is the subject of this entry. 

13. Index-name-l, index-name-2, ... , must be unique words within the program. 

5-49 



5-50 

14. If data-name-2 is not the subject of this entry, then: 

a. All the items identified by the data-names in the KEY IS phrase must 
be within the group item which is the subject of this entry. 

b. Items identified by the data-name in the KEY IS phrase must not 
contain an OCCURS clause. 

c. There must not be any entry that contains an OCCURS clause between 
the items identified by the data-names in the KEY IS phrase and the 
subject of this entry. 

15. A data description entry that contains format 2 of the OCCURS clause may 
only be followed, within that record description, by data description entries 
subordinate to it. 

16. When a group item with a subordinate entry that specifies format 2 of the 
OCCURS clause is referenced, only that part of the table area that is 
specified by the value of data-name-1 is used in the operation. 

17. In format 2, if the data item defined by data-name-l appears in the same 
record as the table it controls, it must appear before that table. 

Example 1 

01 EMPLOYEE-TABLE. 
02 DEPARTMENT, OCCURS 5 TIMES. 

03 EMPLOYEE, OCCURS 50 TIMES, PICTURE X(20). 

This example defines a table containing 50 entries for employees, grouped into 
five departments. The picture for each entry is X(20). This gives a total of 
5 x 50 = 250 entries. 

Example 2 

01 DATA-RECORD. 
02 FIXED-PORTION. 

03 MAIN-INFO PICTURE X(25). 
03 NR-OF-TRAILERS PICTURE S99 COMPUTATIONAL. 

02 VARIABLE-PORTION OCCURS 1 TO 10 TIMES 
DEPENDING ON NR-OF-TRAILERS. 
03 TRAILER 
03 TRAILER-2 

PICTURE X(15). 
PICTURE X(5). 

In this example, format 2 of the OCCURS clause is used to describe variable­
length records. The fixed portion of 27 bytes always appears in each record. The 
presence of trailer items in a record is dependent on the content of the data item 
NR-OF-TRAILERS. When NR-OF-TRAILERS contains a value of 0, the record 
length is 27 bytes; when the value is 1, record length is 47 bytes; when the value 
is 2, record length is 67; etc. 

7004 4490-000 



Data Division 

Example 3 

01 TABLE-A. 
02 ITEM-A PICTURE 99, OCCURS 5 TIMES 

INDEXED BY INDX-1. 
01 TABLE-B. 

02 ITEM-B PICTURE 99, OCCURS 5 TIMES: 

In a program containing these descriptions, INDX-1 cannot be used to refer to an 
element in TABLE-B. 

SYNCHRONIZED Clause 

Function 

The SYNCHRONIZED clause specifies that an elementary item is to be 
aligned on the proper boundary of the computer main storage for 
efficiency in using the elementary item. 

Format 

{;~~~HRONIZED} [ {~i~~T} 1 

Rules 

70044490-000 

1. The proper alignment boundary for the various types of elementary item 
formats as specified in the USAGE clause is given in Table 5-10. 

Table 5-10. Alignment Boundaries for Various Types of Elementary Items 

Item Alignment 
Format Item Length Boundary 

{ 
COMP 

} 
S9 through S9(4) Half word 

r - - I S9(5) through S9(18) Full word 
COMP-4 

L __ .J 

[C~M~-~ ] Full word 

[C~M~-~ ] Double word 

J 
INDEX 

) 
r - - - 1 
COMP-3 Bytes 

l L ___ J 
DISPLAY 

5-51 



5-52 

2. This clause may only appear with an elementary item. 

3. SYNC is an abbreviation for SYNCHRONIZED. 

4. The LEFT and RIGHT options are treated as comments. 

5. Regardless of whether the SYNCHRONIZED clause is used, all Ol-level 
entries are aligned by the compiler on double-word boundaries. 

6. Slack bytes (unused character positions) are inserted immediately preceding 
the elementary item to be synchronized. Although the length of the 
elementary item is not affected by the SYNCHRONIZED clause, the inserted 
slack bytes are included in: 

* The size of any group items to which the elementary item belongs 

II) The character positions redefined when this data item is the object of a 
REDEFINES clause 

01 REC. 
02 A. 

03 M. 
04 S PIC X. 
04 T PIC S9 CaMP 

03 N USAGE COMP-2. 
02 B USAGE COMpo'. 

If the SYNCHRONIZED clause is not specified, the elementary items appear 
in the computer main storage as follows: 

S T N B 

0 1 2 3 10 11 14 

If the SYNCHRONIZED clause is specified for item T, one slack byte is 
inserted preceding item T to align T on a half-word boundary as follows: 

S 
L 
A 

S C T N B 
K 

0 1 2 3 4 11 12 15 

The inserted slack byte does not affect the size of the synchronized item 
but is included in the length of the group item M. 

7004 4490-000 



If the SYNCHRONIZED clause is specified for elementary items T, N, and B, 
slack bytes are inserted as follows: 

s S 
L L 
A A 

S C T C til B 
K K 

0 1 2 3 4 7 8 15 16 19 

T is a CaMP item and is aligned on a half-word boundary by the insertion of 
r:;::;----

one slack byte. N is a~Q~~~item that requires alignment on a double-
word boundary that is provided by the insertion of four slack bytes. B is on a 
double-word boundary and requires no slack bytes. The size of group item, 
then, includes the five inserted slack bytes. 

The algorithm used by the compiler to determine the insertion of slack bytes 
is explained as follows: 

a. As each item to be synchronized is encountered, the total number of 
bytes occupied by all the elementary items up to but not including this 
one is added to the total number of slack bytes already inserted. 

b. This total divided by x, where: 

x Item Length 

2 CaMP 1 to 4 digits 
4 CaMP 5 to 18 digits 

4 [C~M~-~ ] 

8 [C~M~-~ ] 

c. If there is no remainder for the division, no slack bytes are necessary. If 
there is a remainder, the number of slack bytes required is equal to x 
minus the remainder. 

For the example, the algorithm would be used as follows: 

• For the first synchronized item, T, the total number of bytes in the 
record so far is 1; x for this CaMP item is 2; the remainder of the 
division is 1. Thus, x (2) minus 1 equals 1; therefore, 1 is the number of 
slack bytes required. 

• For N, a[QaMJ:.:~item, the storage already occupied is 1 (for S) + 1 (the 
first slack byte) + 2 (for T), a total of 4. The value of x to be used is 8, 
and the remainder of the division is 4; therefore, x (8) minus 4 equals 4, 
so four slack bytes were inserted in positions 4 through 7 to align N. 

7004 4490-000 5-53 



Data Division 

5-54 

• When B is encountered, the total storage already occupied is 16; when 
this is divided by 4, the value of x for B, there is no remainder. No slack 
bytes were required. 

7. When the SYNCHRONIZED clause is specified in a data description entry 
that also contains an OCCURS clause, or in a data description entry 
subordinate to an entry that contains an OCCURS clause, then: 

a. Each occurrence of the data item is SYNCHRONIZED. 

b. Any slack bytes generated for other data items within that same table 
are generated for each occurrence of those data items. 

Example 

01 A. 
02 A1 OCCURS 3 TIMES. 

03 A1A PIC X. 
03 A1B PIC S9 USAGE COMP SYNC. 
03 A1C USAGE COMP-1 SYNC. 
03 A1D PIC S9 USAGE CaMP SYNC. 

One occurrence would be synchronized as 

S 
A L A A 
1 A 1 A1C 1 
A C B D 

K 

0 1 2 3 4 7 8 9 10 

If the second occurrence began immediately with byte 10, slack bytes in the 
second occurrence would have to be as follows because A1C must be aligned 
on a full-word boundary: 

S S 
A L A L A 
1 A 1 A A1C 1 
A C B C D 

K K 

10 11 12 13 14 15 16 19 20 21 22 

The group cannot have different lengths with each occurrence; therefore, 
slack bytes are inserted at the end of each occurrence so that each occurrence 
has the same length and the proper alignment of elementary items. 

70044490-000 



Data Division 

The actual storage use for the example is: 

S S S S S S 
A l A A A l A l A A A l A l A A A l 
1 A 1 1 1 A 1 A 1 1 1 A 1 A 1 1 1 A 
A C B C D C A C B C D C A C B C D C 

K K K K K K 

o 1 234 789 10 11 12 13 14 15 16 19 20 21 22 23 24 25 26 27 28 31 32 33 34 35 

JUSTIFIED Clause 

The slack bytes are inserted in positions 10 and 11, in positions 22 and 23, 
and in positions 34 and 35. The algorithm used is as follows: 

.. The total number of bytes occupied by the group, including slack bytes, 
is divided by the largest value of x necessary in the group. 

" If there is no remainder, no slack bytes are inserted between groups. 
Otherwise, the number of slack bytes necessary is equal to x minus the 
remainder. 

For the example given, the process is: 

• The total number of bytes occupied in one occurrence of the group is 10 
bytes. This is divided by 4, the x value for Ale, a[QQM:e:-~item. 

4& The remainder of the division is 2; x (4) minus 2 equals 2, so the number 
of slack bytes necessary for each occurrence is 2. 

Function 

The JUSTIFIED clause specifies nonstandard positioning of data within 
a receiving data item. 

Format 

{
JUSTIFIED} RIGHT 
JUST 

Rules 

1. The JUSTIFIED clause is used to override standard positioning of data 
within a receiving alphabetic or alphanumeric data item. Standard 
positioning for this type of data is left-justified with space-fill on the right; 
when this clause is specified, the data is right-justified and the unused 
positions are space-filled. 

2. The JUSTIFIED clause can be specified only at the elementary item level. 

70044490-000 5-55 



3. JUST is an abbreviation for JUSTIFIED. 

4. The JUSTIFIED clause has no effect on the initialization of the VALUE 
clause. 

5. The JUSTIFIED clause cannot be specified for any data item described as 
numeric or for editing is specified. 

When the sending data item is larger than the receiving data item described 
with the JUSTIFIED clause, the leftmost characters are truncated. When 
the receiving data item is larger than the sending data item, the data is 
aligned at the rightmost character position in the data item with space-fill 
for the leftmost character positions. 

When the JUSTIFIED clause is omitted, the standard rules for aligning data 
within an elementary item apply. (See 2.5.) 

Function 

The BLANK WHEN ZERO clause permits the blanking of an item 
when its value is zero. 

Format 

BLANK WHEN ZERO 

Rules 

1. This clause can be specified only at the elen1entary item level, and can be 
used only with a numeric or numeric-edited item. When used with a numeric 
item, the category of the item is considered numeric edited. 

2. The effect is not necessarily the same as zero suppression editing via the 
PICTURE clause because the item is affected only when its numeric value is 
O. 

3. When the BLANK WHEN ZERO clause is used, the item will contain only 
spaces if the value of the item is zero. 

4. The BLANK WHEN ZERO clause and the zero suppression symbol * may 
not appear in the same entry. 

5. The BLANK WHEN ZERO clause has no effect on the initialization of the 
VALUE clause. 

5-56 70044490-000 



Function 

The VALUE clause defines the value of constants, the initial value of 
working-storage items,land the values associated with a condition-name. I 

Format 1 

VALUE IS literal 

Format 2 

{
VALUE IS } literal-1 [{THROUGH} literal-2] 
VALUES ARE THRU 

[,literal-3 [{~~:~GH} literal-4]] ___ _ 

Rules 

7004 4490-000 

1. Format 1 is used to define the initial value of a working-storage item. 
Format 2 is used to specify a value or range of values associated with a 
condition-name. 

I 2. The words THRU and THROUGH are equivalent. I 

3. The VALUE clause cannot be stated for any items having variable size. (See 
"OCCURS Clause" in this subsection.) 

4. A signed numeric literal must have a signed numeric PICTURE 
character-string associated with it. 

5. All numeric literals in a VALUE clause of an item must have a value that is 
within the range of values indicated by the PICTURE clause and must not 
have a value that will require truncation of nonzero digits. Nonnumeric 
literals in a VALUE clause of an item must not exceed the size indicated by 
the PICTURE clause. 

6. The VALUE clause must not conflict with other clauses in the data 
description of the item or in the data description within the hierarchy of the 
item. The following rules apply: 

• If the category of the item is numeric, all literals in the VALUE clause 
must be numeric. If the literal defines the value of a working-storage 
item, the literal is aligned in the data item according to the standard 
alignment rules. 

~-----------------------l 

• If the literal is floating point, the data item must be an internal I 
floating-point item. I - ___________________ ---1 

5-57 



Data Division 

5-58 

• If the category of the item is alphabetic, alphanumeric, alphanumeric 
edited or numeric edited, all literals in the VALUE clause must be 
nonnumeric literals. The literal is aligned in the data item as if the data 
item had been described as alphanumeric. (See the standard alignment 
rules in 2.5.) Editing characters in the PICTURE clause are included in 
determining the size of the data item (see "PICTURE Clause" in this 
subsection), but they have no effect on its initialization. Therefore, the 
VALUE for an edited item must be specified in an edited form. 

• Initialization takes place independently of any BLANK WHEN ZERO 
or JUSTIFIED clause that may be specified. 

7. A figurative constant may be substituted in both format 1 and format 2 
wherever a literal is specified. 

8. In a condition-name entry, the VALUE clause is required. The VALUE 
clause and the condition-name itself are the only two clauses permitted in 
the entry. The characteristics of a condition-name are implicitly those of its 
conditional variable. 

9. Format 2 can be used only in connection with condition-names. (See 2.6.5, 
"Condition-Name.") Wherever the THRU phrase is used, literal-1 must be 
less than literal-2, literal-3 less than literal-4, etc. 

10. Rules governing the use of the VALUE clause differ with the respective 
sections of the Data Division: 

• In Levell the VALUE clause cannot be used in the File Section. In the 

• In the Working-Storage Section and the Communication Section,lthe I 
I VALUE clause must be used in condition-name entries.lThe VALUE 
clause may also be used to specify the initial value of any other data 
item, in which case the clause causes the item to assume the specified 
value at the start of the object program. If the VALUE clause is not used 
in an item description, the initial value is undefined. 

• In Levell, the VALUE clause cannot be used in the Linkage Section. In 
the Linkage Section, the VALUE clause may be used only in 
condition-name entries. 

11. The VALUE must not be stated in a data description entry that contains an 
OCCURS clause or is subordinate to an entry containing an OCCURS clause. 

I This rule does not apply to condition-name entries.I(See "OCCURS Clause" 
in this subsection.) 

7004 4490-000 



Data Division 

12. The VALUE clause must not be stated in a data description entry that 
contains a REDEFINES clause, or is subordinate to an entry containing a 
REDEFINES clause.IThis rule does not apply to condition-name entries. I 

13. If the VALUE clause is used in an entry at the group level, the literal must 
be a figurative constant or a nonnumeric literal, and the group area is 
initialized without consideration for the individual elementary or group 
items contained within this group. The VALUE clause cannot be stated at 
the subordinate levels within this group. 

14. The VALUE clause must not be written for a group containing items with 
descriptions including JUSTIFIED, SYNCHRONIZED, USAGE INDEX, or 
any form of COMPUTATIONAL. 

r-------.---.- ---- - - ---- - - - - -- .. -.---.--- - --, 

L15. The VALUE clause must not be specified for external floating-point items. I _____________________ _____ ..--l 

Example 1 

02 STATE-RATE PICTURE 9. 
88 TEXAS VALUE 1. 
88 CALIFORNIA VALUE 2. 
88 NEW YORK VALUE 5. 
88 PENNSYLVANIA VALUE 3. 

STATE-RATE is a conditional variable; TEXAS, CALIFORNIA, NEW YORK, and 
PENNSYLVANIA are condition-names. If the statement IF PENNSYLVANIA 
GO TO NEXT-TEST were to appear in the Procedure Division, the value of the 
conditional variable STATE-RATE would be compared to the value 3; this 
statement would be equivalent to the statement IF STATE-RATE IS EQUAL 
TO 3 GO TO NEXT-TEST. 

Example 2 

7004 4490-000 

02 AGE PICTURE 99. 
88 TWENTIES VALUE 20 THRU 29. 
88 THIRTIES VALUE 30 THRU 39. 

If the statement IF TWENTIES ... were to appear in the Procedure Division, the 
value of the conditional variable AGE would be tested for not less than 20 and not 
greater than 29. 

5-59 



JAMES Clause 

Function 

The RENAMES clause permits alternative, possibly overlapping, 
groupings of elementary items. 

Format 

66 data-name-l;RENAMES data-nam.-Z [{~~:~GH} data-nam.-3] _ 

Note: Level-number 66, data-name-l, and the semicolon, although not part of the 
RENAMES clause, are shown in the format to improve clarity. 

Rules 

1. All RENAMES entries referring to data items within a given logical record 
must immediately follow the last data description entry of the associated 
record description entry. 

2. Data-name-2 and data-name-3 must be names of elementary items or groups 
of elementary items in the same logical record, and cannot be the same data­
name. A 66-level entry cannot rename another 66-level entry nor can it 
rename a 77-, 88-, or 01-level entry. 

3. Data-name-l cannot be used as a qualifier, and can only be qualified by the 
names of the associated level 01, FD, or SD entries. Neither data-name-2 nor 
data-name-3 may have an OCCURS clause in its data description entry nor 
be subordinate to an item that has an OCCURS clause in its data description 
entry. (See "OCCURS Clause" in this subsection.) 

4. The beginning of the area described by data-name-3 must not be to the left of 
the beginning of the area described by data-name-2. The end of the area 
described by data-name-3 must be to the right of the end of the area 
described by data-name-2. Data-name-3, therefore, cannot be subordinate to 
data-name-2. 

5. Data-name-2 and data-name-3 may be qualified. 

6. The words THRU and THROUGH are equivalent. 

7. None of the items within the range data-name-2 through data-name-3, if 
specified, can be an item whose size is variable as defined in the OCCURS 
clause. 

8. One or more RENAMES entries can be written for a logical record. 

5-60 7004 4490-000 



7004 4490-000 

9. 

10. 

01 

includes 
is an 

item in data-name-2 (if data-name-
COllCHl.mng with data-name-3 data-name-3 is an 

....... """' .... ,,...,., item in data-name-3 

U<A.uU:-,UU.,"J.H~-U is not data-name-2 can either a group or an 
item. When data-name-2 is a group data-name-l is treated 

and is an 'GAC,LLJI''CU,ucu, 

INPUT-RECORD. 
STATE-TAX-NJ. 
03 PER-CENT-ST PIC 99. 
03 PERCENT-CNTY PIC 99. 
1213 PERCENT-LaC PIC 99. 

02 STATE-TAX-PA. 
03 PER-CENT ST PIC 99. 
03 PER-CENT-CNTY PIC 99. 
03 PER-CENT-lOC PIC 99. 

02 STATE-TAX-DEl. 
03 PER-CENT-ST PIC 99. 
03 PER-CENT-CNTY PIC 99. 
03 PER-CENT-LOe PIC 99. 

66 TAX-NJ RENAMES STATE-TAX-NJ. 
66 TAX-B1-STATES RENAMES STATE-TAX-NJ THRU STATE-TAX-PA. 
66 TAX-DEL-VAL RENAMES STATE-TAX-NJ THRU STATE-TAX-DEL. 

A reference to TAX-NJ accesses the group item a reference to 
accesses the group items STATE-TAX-NJ and STATE-TAX-PA 

and a reference to TAX-DEL-VAL accesses items 
and STATE-TAX-DEL. 

5-61 



5-62 

Section 

The Working-Storage Section describes records and noncontiguous data items that are 
not part of external data files but are developed and processed internally. It also 
describes data items whose values are assigned in the source program and do not 
change during the execution of the object program. Sample Working-Storage Section 
entries are provided in Figure 5-4. 

Format 

WORKING-STORAGE SECTION: 

[
77.tevel-descri Ption-entrv] 
record-description-entrv 

Rules 

1. The Working-Storage Section is composed of the section header followed by 
data description entries for noncontiguous data items or record description 
entries. 

2. Each Working-Storage Section record-name and noncontiguous item-name 
must be unique since it cannot be qualified. Subordinate data-names need 
not be unique if they can be made unique by qualification. 

010010 WORKING-STORAGE SECTION. 
010020 77 I, COMPUTATIONAL, PICTURE S9(8). 
010030 77 J, COMPUTATIONAL, PICTURE S9(8). 
010040 77 ADDED-TIME, COMPUTATIONAL-3, PICTURE S9(5)V9(4). 

DATA-CONVERSION-AREA. 
02 BINARY-WORK-AREA. 

03 TWO·BYTES. 

010050 01 
010060 
010070 
010080 
010090 
010100 
010110 
010120 
010130 
010140 
010150 

04 FILLER PICTURE X VALUE LOW-VALUE. 
04 ONE-BYTE-BINARY PICTURE X. 

03 TWO-BYTE-BINARY REDEFINES TWO-BYTES, 
USAGE IS COMPUTATIONAL, PICTURE S9(4). 

02 CPU-TIME-WORK-AREA. 
03 CPU-TIME-IN, COMPUTATIONAL-3, PICTURE S9(11). 
03 CPU-TIME OUT REDEFINES CPU-TIME-IN, 

USAGE IS COMPUTATIONAL-3, PICTURE S9(7)V9(4). 

Figure 5-4. Sample Working-Storage Section Entries 

70044490-000 



5.4.1. 77-Level Description Entry 

Function 

Items and constants in working-storage that bear no hierarchical relationship to 
one another need not be grouped into records, provided they do not need to be 
further subdivided. Instead, they are classified and defined as noncontiguous 
elementary items. Each of these items is defined in a separate data description 
entry that begins with the special level-number, 77. 

Format 

77 data-name; 
(data description clauses). 

Rules 

1. The following are required in each data description entry: 

a. 

b. 

c. 

Level-number 77 

Data-name 

r;-- --:-1 
JIQJ'lJRE clause or USAGE IS INDEX or USAGEt.9QJM~!J or 
LC.9lv1Y-=..2Jclause 

2. Other data description clauses are optional and can be used to complete the 
description of the item, if necessary. 

3. The initial value of any item in the Working-Storage Section except an index 
data item is specified by using the VALUE clause with the data item. The 
initial value of any index data item is unpredictable. 

4. Each independent entry must have a unique data-name. 

5.4. Record Description Entry 

Function 

Data elements and constants in working-storage that bear a definite 
hierarchic relationship to one another must be grouped into records 
according to the rules for formation of record descriptions. 

Format 

131 record-name. 
(subordinate data items and clauses) 

70044490-000 5-63 



5-64 

Rules 

1. Each record-name must be UnlQUle because it cannot be qualified by a 
file-name or section-name. data-names need not be unique if 

can be 

2. All clauses that are used in record in the File Section can 
be used in record in the Working-Storage Section. 

3. The of a 01-level record may not exceed bytes. 

The describes data available through a ~~".""h program but is to be 
referred to in both the and caned program. 

Format 

LINKAGE SECTION. 

level-des:ri~tion-entrYl 
lptlOn-entry 

Rules 

1. The Linkage Section is meaningful if and if the object program is to 
function under the control of a CALL statement containing a USING phrase 
in the program. 

2. The Section consists of a section header followed by data description 
entries for noncontiguous data items and/or description entries. (See 

5-5.) 

015010 
015020 
015030 
015040 
015050 
015060 
015070 
015080 
015090 
015100 
015110 
015120 
015130 
015140 
015150 

LINKAGE SECTION. 
77 TYPE-Of-INPUT 

88 fIRST-INPUT 
88 CONTINUATION 
88 lAST-INPUT 

77 ERROR-INDICATOR 
01 PAST-RECORD. 

02 SALES-HISTORY 

PICTURE X. 
VALUE IIFiI. 
VALUE.IIC". 
VAlUE.illll. 

PICTURE X. 

03 MONTH, OCCURS 12 TIMES, PICTURE S9(7)V99, 
USAGE IS COMPUTATIONAl-3. 

02 PRODUCT PICTURE X(3). 
02 THREE-MONTH-AVERAGE PICTURE S9(7)V99, 

USAGE IS COMPUTATIONAl-3. 
02 TWElVE-MONTH-AVERAGE PICTURE S9(7)V99, 

USAGE IS COMPUTATIONAl-3. 

5~5. ;;:)«:ilrm;Jle ... ," , .... ,,15."" Section Entries 

70044490-000 



3. No space is allocated in the program for data items referenced by 
data-names in the Linkage Section of that program. Procedure Division 
references to these data items are resolved at object time by equating the 
reference in the caned program to the location used in the calling program. 
In the case of index-names, no such correspondence is established. Index­
names in the called and calling program always refer to separate indexes. 

4. Data items defined in the Linkage Section of the called program may be 
referenced within the Procedure Division of the called program only if they 
are specified as operands of the USING phrase of the Procedure Division 
header or are subordinate to such operands, and the object program is under 
the control of a CALL statement that specifies a USING phrase. 

5. Each Linkage Section record-name and noncontiguous item-name must be 
unique within the called program since it cannot be qualified. 

6. Of those items defined in the Linkage Section only data-name-l, 
data-name-2, .. " in the USING phrase of the Procedure Division header, data 
items subordinate to these data-names and condition-names, or index-names 
associated with such data-names or subordinate data items may be 
referenced in the Procedure Division. 

7. The VALUE clause must not be specified in the Linkage Section except in 
condition-name entries Clevel 88). 

1. Description 

Function 

Items in the Linkage Section that bear no hierarchic relationship to one another 
need not be grouped into records and are classified and defined as noncontiguous 
elementary items. Each of these data items is defined in a separate data 
description entry that begins with the special level-number 77. 

Format 

77 data-name; 
(data description clauses). 

Rules 

1. The following are required in each data description entry: 

a. Level-number 77 

b. Data-name 

c. PICTURE clause or USAGE IS INDEX clause 

7004 4490-000 5-65 



Division 

2. Other data description clauses are optional and can be used to complete the 
description of the item if necessary. 

Description Entry 

Function 

Data elements in the Linkage Section that bear a definite hierarchic 
relationship to one another must be grouped into records according to 
the rules for formation of record descriptions. 

Format 

01 record-name. 
<subordinate data items and clauses) 

Rules 

1. All clauses that are used in record descriptions in the File Section (5.3) can 
be used in record descriptions in the Linkage Section. 

2. Record description entries in the Linkage Section provide names and 
descriptions, but storage within the program is not reserved because the 
data exists elsewhere. 

3. The length of a OI-level record may not exceed 524,287 bytes. 

5-66 7004 4490-000 



Data Division 

5.6. Communication Section 
Function 

The communication description specifies the interface area between the 
message control system (MCS) and a COBOL program. 

5.6.1. Input Communication Description 

Format 

CD cd-name: 

FOR 

Rules 

[;SYMBOLIC QUEUE IS data-name-1] 
[;SYMBOLIC SUB-QUEUE-1 IS data-name-2] 
[;SYMBOLIC SUB-QUEUE-2 IS data-name-3] 
[;SYMBOLIC SUB-QUEUE-3 IS data-name-4] 
[;MESSAGE DATE IS date-name-S] 

INPUT [;MESSAGE TIME IS date-name-6] 
[;SYMBOLIC SOURCE IS date-nameD?] 
[;TEXT LENGTH IS data-name-8] 
[;END KEY IS data-name-9] 
[;STATUS KEY IS data-name-10] 
[;MESSAGE COUNT IS data-name-11] 

[data-name-1, data-name-2, "', data-name-11] 

1. A CD must appear only in the Communication Section. 

2. Within a single program, the INITIAL clause may be specified in only one 
CD. The INITIAL clause must not be used in a program that specifies the 
USING phrase of the Procedure Division header. (See 6.1.3, "Procedure 
Division Structure. If) 

3. I Except for the INITIAL clause,lthe optional clauses may be written in any 
order. 

4. If neither option in the format is specified, an 01-level data description entry 
must follow the CD description entry. Either option may be followed by an 
01-level data description entry. 

5. For each input CD, a record area of 87 contiguous standard data format 
characters is allocated. This record area is defined to the MCS as follows: 

a. The SYMBOLIC QUEUE clause defines data-name-l as the name of an 
elementary alphanumeric data item of 12 characters occupying 
positions 1 through 12 in the record. 

70044490-000 5-67 



5-68 

b. The SYMBOLIC SUB-QUEUE-l clause defines data-name-2 as the 
name of an elementary alphanumeric data item of 12 characters 
occupying positions 13 through 24 in the record. 

c. The SYMBOLIC SUB-QUEUE-2 clause defines data-name-3 as the 
name of an elementary alphanumeric data item of 12 characters 
occupying positions 25 through 36 in the record. 

d. The SYMBOLIC SUB-QUEUE-3 clause defines data-name-4 as the 
name of an elementary alphanumeric data item of 12 characters 
occupying positions 37 through 48 in the record. 

e. The MESSAGE DATE clause defines data-name-5 as the name of a 
data item whose implicit description is that of an integer of six digits 
without an operational sign occupying character positions 49 through 54 
in the record. 

f. The MESSAGE TIME clause defines data-name-6 as the name of a data 
item whose implicit description is that of an integer of eight digits 
without an operational sign occupying character positions 55 through 62 
in the record. 

g. The SYMBOLIC SOURCE clause defines data-name-7 as the name of 
an elementary alphanumeric data item of 12 characters occupying 
positions 63 through 74 in the record. 

h. The TEXT LENGTH clause defines data-name-8 as the name of an 
elementary data item whose implicit description is that of an integer of 
four digits without an operational sign occupying character positions 75 
through 78 in the record. 

1. The END KEY clause defines data-name-9 as the name of an 
elementary alphanumeric data item of one character occupying position 
79 in the record. 

j. The STATUS KEY clause defines data-name-l0 as the name of an 
elementary alphanumeric data item of two characters occupying 
positions 80 and 81 in the record. 

k. The MESSAGE COUNT clause defines data-name-ll as the name of an 
elementary data item whose implicit description is that of an integer of 
six digits without an operational sign occupying character positions 82 
through 87 in the record. 

The listed clauses (see bulleted items in rule 5) may be replaced by a series 
data-names (data-name-l, data-name-2, ... , data-name-ll) that 

correspond to the order of defined by these clauses. 

7004 4490-000 



70044490-000 

Note: Specification of a series of data-names on a single source line results 
in an incorrect cross-reference listing. The preferred method of writing 
a series of data-names is to specify each data-name on a separate 
source line. 

Use of either option results in a record whose implicit description is 
equivalent to the following: 

Implicit Description 

01 data-name-0 

02 data-nameD, PICTURE X(12). 
02 data-name-2 PICTURE X(12). 
02 data-name-3 PICTURE X(12). 
02 data-name-4 PICTURE X(12). 
02 data-name-5 PICTURE 9(06). 
02 data-name-6 PICTURE 9(08). 
02 data-name-? PICTURE X(12). 
02 data-name-8 PICTURE 9(04). 
02 data-name-9 PICTURE X. 
02 data-name-10 PICTURE XX. 
02 data-name-11 PICTURE 9(06). 

SYMBOLIC QUEUE 
SYMBOLIC SUB-QUEUE-1 
SYMBOLIC SUB-QUEUE-2 
SYMBOLIC SUB-QUEUE-3 
MESSAGE DATE 
MESSAGE TIME 
SYMBOLIC SOURCE 
TEXT LENGTH 
END KEY 
STATUS KEY 
MESSAGE COUNT 

Note: The comments are for clarification and are not part of the 
description. 

6. Record description entries following an input CD implicitly redefine this 
record and must describe a record of exactly 87 characters. Multiple 
redefinitions of this record are permitted; but only the first redefinition may 
contain VALUE clauses. However, the MCS always references the record 
according to the data descriptions defined in rule 5. 

7. Data-name-l, data-name-2, ... , data-name-ll must be unique within the CD. 
Within this series, any data-name may be replaced by the reserved word 
FILLER. 

8. The input CD information constitutes the communication between the MCS 
and the program as information about the message being handled. This 
information does not come from the terminal as part of the message. 

9. The data items referenced by data-name-l, data-name-2, data-name-3, and 
data-name-4 (SYMBOLIC QUEUE, SYMBOLIC SUB-QUEUE-l, 
SYMBOLIC SUB-QUEUE-2, and SYMBOLIC SUB-QUEUE-3) contain 
symbolic names designating queues and subqueues. All symbolic names 
must follow the rules for the formation of system names and must have been 
defined previously to the MCS. 

10. The content of the data items referenced by data-name-2, data-name-3, and 
data-name-4, when not being used, must contain spaces. 

5-69 



Data Division 

11. A RECEIVE statement causes the serial return of the next messagelor a I 
I portion of a messagelfrom the queue as specified by the entries in the CD. 

When a RECEIVE statement is executed, the input CD area must contain, in 
the content of data-name-l, the name of a symbolic queue. The data items 
specified by data-name-2, data-name-3, and data-name-4 may contain 
symbolic subqueue names or spaces. When a given level of the queue 
structure is specified, all higher levels must also be specified. If less than all 
the levels of the queue hierarchy are specified, the MCS determines the next 
message or portion of a message to be accessed within the queue or subqueue 
specifie in the input CD. 

After the execution of a RECEIVE statement, the content of the data items 
referenced by data-name-l through data-name-4 contains the symbolic 
names of all the levels of the queue structure. 

12. Whenever a program is scheduled by the MCS to process a message, the 
symbolic names of the queue structure that demanded this activity are 
placed in the data items referenced by data-name-1 through data-name-4 of 
the CD associated with the INITIAL clause, as applicable. In all other cases, 
the contents of the data items referenced by data-name-1 through data-

: name-4 of the CD associated with the INITIAL clause are initialized to 
spaces. 

The symbolic names are inserted or the initialization to spaces is completed 
prior to the execution of the first Procedure Division statement. 

The execution of a subsequent RECEIVE statement naming the same 
contents of the data items referenced by data-name-1 through data-name-4 
will return the actual message that caused the program to be scheduled. 
Only at that time will the remainder of the CD be updated. 

13. The content of data-name-5 (MESSAGE DATE) has the format yymmdd 
(year, month, day). This represents the date on which the MCS recognizes 
that the message is complete. 

The content of the data item referenced by data-name-5 is only updated by 
the MCS as part of the execution of a RECEIVE statement. 

14. The content of data-name-6 (MESSAGE TIME) has the format hhmmsstt 
(hours, minutes, seconds, hundredths of a second) and its content represents 
the time at which the MCS recognizes that the message is complete. The 
content of the data item referenced by data-name-6 is only updated by the 
MCS as part of the execution of the RECEIVE statement. 

5-70 70044490-000 



Data Division 

15. During the execution of a RECEIVE statement, the MCS provides, in the 
data item referenced by data-name-7 (SYMBOLIC SOURCE), the symbolic 
name of the communications terminal that is the source of the message 
being transferred. However, if the symbolic name of the communications 
terminal is not known to the MCS, the content of the data item referenced by 
data-name-7 will contain spaces. 

16. The MCS indicates, via the content of the data item referenced by data­
name-8 (TEXT LENGTH), the number of character positions filled as a 
result of the execution of the RECEIVE statement. 

17. The content of the data item referenced by data-name-9 (END KEY) is set 
only by the MCS as part of the execution of a RECEIVE statement according 
to the following rules: 

• When the RECEIVE MESSAGE phrase is specified: 

If an end of group has been detected, the content is set to 3. 

If an end of message has been detected, the content is set to 2. 

If less than a message is transferred, the content is set to O. 

• When the RECEIVE SEGMENT phrase is specified: 

If an end of group has been detected, the content is set to 3. 

If an end of message has been detected, the content is set to 2. 

If an end of segment has been detected, the content is set to 1. 

If less than a message segment is transferred, the content is set 
to O. 

When more than one of the above conditions is satisfied simultaneously, the 
rule first satisfied in the order listed determines the content of the data item 
referenced by data-name-9. 

18. The content of the data item referenced by data-name-10 (STATUS KEY) 
indicates the status condition of the previously executed RECEIVE, 
ACCEPT MESSAGE COUNT, ENABLE INPUT, or DISABLE INPUT 
statements. The actual association between the content of the data item 
referenced by data-name-10 and the status condition itself is defined in 
Table 5-11. 

19. The content of the data item referenced by data-name-11 (MESSAGE 
COUNT) indicates the number of messages that exist in a queue, 
sub-queue-1, ... , sub-queue-3. The MCS updates the content of the data item 
referenced by data-name-11 only as part of the execution of an ACCEPT 
statement with the COUNT phrase. 

70044490-000 5-71 



Table 5-11. Communication Status Key Condition 

""' "" ...J ...J 
« « 
2 ,.... 2 ,..... Q) 

UJ - ...J ...... ...J ..... \J 
<.:J ::E « I- I-::E 1-« ::::l 0 
« I- 0:: I- 2 ::::l ::::l0:: ::::l2 0... U 
(/) ::::lUJ ::::l~ 0... 0... UJ 0... ...... l-
(/) 0... I- 0...::E I- Z I- Z::E ::::l >-
UJ 2 Z 0:: ::::l ..... -0:: 0 UJ 
::E ..... .I-J ..... UJ 0 .I-J UJ ~ 

UJ ::J I- UJ::J UJ I- UJ > I- UJO UJ UJ ...JO ...J ...J (/) DESCR I PT ION ...... 0...1- ...J...c ...J...c ...J CD...c CD...c CD ::::l 
UJ Cl UJ 2 CD.I-J CD-I-I CD «-1-1 «-1-1 « I-
U Z U::::l « .~ « .~ « (/) .~ (/).~ (/) « 
UJ UJ UO 23 23 2 ~3 ...... 3 ~ I-
0:: (/) «u UJ '-' UJ '-' UJ Cl '-" Cl '-' Cl (/) 

X X X X X X X X X 00 No error detected. Action completed. 

X 10 One or more destinations disabled. Action completed. 
(See Table 5-12.) 

X X X X X X 15 One or more queues or destinations already 
disabled/enabled. (See Table 5-12.) 

X X X 20 One or more destinations unknown. Action completed 
for known destinations. (See Table 5-12.) 

X X X X 20 One or more queues or subqueues unknown. No action taken. 

X X 20 Symbolic source unknown. No action taken. 

X 2A One or more destinations in destination table were not in 
the table when the first portion of the message was sent. 
(See Table 5-12.) 

X X X 30 Destination count invalid. No action taken. 

X X X X X X 40 Password invalid. No action taken. 

X 50 Text length exceeds size of identifier-1. No action 
taken. 

X 60 Partial segment with zero text length or no identi-
fier-' specified. No action taken. 

X 65 Output queue capacity exceeded. No action taken. 

X X X X X 80 A combination of at least two status key conditions 
1O, 15, and 20 occurred. 

91 rCAM NAT TACH error. This error occurs during network ini -
tialization. The procedure division code of the program 
doesnlt execute. Status code 91 appears only in a CE44 
error message. 

X 92 ICAM QDEPTH error. No action taken. 

X X X X 93 ICAM TRMREP error. No action taken. 

X X 94 ICAM QHOLDjQRELSE error. No action taken. 

continued 

5-72 7004 4490-000 



Table 5-11. Communication Status Condition (cont.) 

""' '"' .....I .....I « « 
UJ 

:z ,.... 
Z ,...,. <l! .... .....I ..... .....I I- "U <.::l :::E « I- I-:::E 1-« ::J 0 « I-e.:: I- Z ::J ::Je.:: ::JZ 0.. U (f) ::JUJ ::J- 0.. 0.. UJ 0.. ....... I-

(f) 0.. I- 0..:::E I- Z I- Z:::E ::J >-UJ Z Z e.:: :::J - -e.:: 0 UJ 
UJ 

:::E ...... -I-' .-. UJ 0 -I-' UJ ~ 
:::l I- UJ:::l UJ I- UJ > I- UJo UJ UJ .....10 .....I .....I (f) - 0.. I- -I..c -I..c .....I co ..c co ..c co ::J UJ Cl UJ Z CO-l-l co -I-' co «-I-' «-1-1 « I-U Z U::J « .~ « .~ « (f) .~ (f).~ (f) « UJ UJ uo z:::;: z:::;: :z ~:::;: ...... :::;: ~ l-e.:: (f) «u UJ ....., UJ '>oJ UJ Cl '-' Cl ......, Cl (f) DESCRIPTION 

X 95 ICAM GETCP error. No action taken. 

X 96 ICAM PUTCP error. No action taken. 

X X X X X X X X X 99 Unrecoverable leAM error. No action taken. 

X X X X X X 9A Process f it e unde fined. No action taken. 

X 9C Insufficient DTFs in CMCS to handle all output CDs. 
action taken. 

Legend: X = Possible code for statement 
Note: Status codes 93, 94, 99, and 9A may also be reported as part of a CE44 error message. 

Format 

CD cd-name:0, FOR OUTPUT 
[;DESTINATION COUNT IS data-name-1] 
[;TEXT LENGTH IS data-name-2] 
[;STATUS KEY IS data-name-3] 
[;DESTINATION TABLE OCCURS integer-2 TIMES 

[;INDEXED BY index-name-1 [,index-name-2J ... ]] 
[;ERROR KEY IS data-name-4J 
[;SYMBOLIC DESTINATION IS data-name-5]. 

Rules 

7004 4490-000 

1. A CD must appear only in the Communication Section. 

2. If none of the optional clauses of the CD is specified, an 01-level data 
description entry must fonow the CD description entry. 

3. For each output CD, a record area of contiguous standard data format 
characters is allocated according to the following formula: 

10 + (13 * integer-2). 

-

No 

5-73 



Data Division 

a. The DESTINATION COUNT clause defines data-name-l as the name 
of a data item whose implicit description is that of an integer without an 
operational sign occupying character positions 1 through 4 in the record. 

b. The TEXT LENGTH clause defines data-name-2 as the name of an 
elementary data item whose implicit description is that of an integer of 
four digits without an operational sign occupying character positions 5 
through 8 in the record. 

c. The STATUS KEY clause defines data-name-3 to be an elementary 
alphanumeric data item of two characters occupying positions 9 and 10 
in the record. 

d. Character positions 11 through 23 and every set of 13 characters 
thereafter will form table items of the following description: 

1) The ERROR KEY clause defines data-name-4 as the name of an 
elementary alphanumeric data item of one character. 

2) The SYMBOLIC DESTINATION clause defines data-name-5 as 
the name of an elementary alphanumeric data item of 12 
characters. 

Use of these clauses results in a record whose implicit description is 
equivalent to the following: 

Implicit Description 

01 data-name-0. 
02 data-name-1 PICTURE 9(04). 
02 data-name-2 PICTURE 9(04). 
02 data-name-3 PICTURE XX. 
02 data-name OCCURS integer-2 TIMES. 

03 data-name-4 PICTURE X. 
03 data-name-5 PICTURE X(12). 

DESTINATION COUNT 
TEXT LENGTH 
STATUS KEY 
DESTINATION TABLE 
ERROR KEY 
SYMBOLIC DESTINATION 

Note: The comments are for clarification and are not part of the 
description. 

4. Record descriptions following an output CD implicitly redefine this record. 
Multiple redefinitions of this record are permitted; however, only the first 
redefinition may contain VALUE clauses. However, the MCS will always 
reference the record according to the data descriptions defined in rule 3. 

5. Data-name-l, data-name-2, .0., data-name-5 must be unique within a CD. 

6. If the DESTINATION TABLE OCCURS clause is not specified, one ERROR 
KEY and one SYMBOLIC DESTINATION area are assumed. In this case, 
neither subscripting nor indexing is permitted when referencing these data 
items. 

5-74 70044490-000 



7004 4490-000 

7. If the DESTINATION TABLE OCCURS clause is specified, data-name-4 
(ERROR KEy) and data-name-5 (SYMBOLIC DESTINATION) may be 
referenced only by subscripting or indexing. 

8. In Levell, the value of the data item referenced by data-name-l 
(DESTINATION COUNT) and integer-2 must be 1. 

In Level 2, the value of the data item referenced by data-name-l and 
integer-2 may not exceed 9,999. 

9. Output CD information is not sent to the terminal, but constitutes the 
communication between the program and the MCS as information about the 
message being handled. 

10. During the execution of a SEND, ENABLE OUTPUT, or DISABLE 
OUTPUT statement, the content of the data item referenced by data-name-l 
(DESTINATION COUNT) will indicate to the MCS the number of symbolic 
destinations that are to be used from the area referenced by data-name-5. 

The MCS finds the first symbolic destination in the first occurrence of the 
area referenced by data-name-5, the second symbolic destination in the 
second occurrence of the area referenced by data-name-5, ... , up to and 
including the occurrence of the area referenced by data-name-5 indicated by 
the content of data-name-I. 

If during the execution of a SEND, ENABLE OUTPUT, or DISABLE 
OUTPUT statement the value of the data item referenced by data-name-l is 
outside the range of 11 through integer-2,lan error condition is indicated and 
the execution of the SEND, ENABLE OUTPUT, or DISABLE OUTPUT 
statement is terminated. 

11. It is the responsibility of the user to ensure that the value of the data item 
referenced by data-name-l (DESTINATION COUNT) is valid at the time of 
execution of the SEND, ENABLE OUTPUT, or DISABLE OUTPUT 
statement. 

12. As part of the execution of a SEND statement, the MCS interprets the 
content of the data item referenced by data-name-2 (TEXT LENGTH) to be 
the user's indication of the number of leftmost character positions of the data 
item referenced by the associated SEND identifier from which data is to be 
transferred. (See 6.6.31, "SEND Statement",) 

13. Each occurrence of the data item referenced by data-name-5 contains the 
name of a symbolic destination previously known to the MCS. These 
symbolic destination names must follow the rules for the formation of 
system-names. 

5-75 



14. The content of the data item referenced by data-name-3 (STATUS 
indicates the status condition of the previously executed SEND, ENABLE 
OUTPUT, or DISABLE OUTPUT statement. The actual association between 
the content of the data item referenced by data-name-3 and the status 
condition itself is defined in Table 5-11. 

15. If, during the execution of a SEND, an ENABLE OUTPUT, or a DISABLE 
OUTPUT statement, the MCS determines that any specified destination is 
unknown, the content of the data item referenced by data-name-3 and all 
occurrences of the data items referenced by data-name-4 KEY) are 
updated. The actual association between the content of the data item 
referenced by data-name-3 and the status condition itself is defined in 
Table 5-12, 

Codes 

I- (l) 
I- :::> "U 
:::> a... 0 a... l- t.) 
I- :::> 
:::> a >-a UJ 

UJ ::..:: 
UJ ...J 

0 
...J co cr: co <J; a :z <J; (fJ cr: UJ :z ;::; cr: Description (fJ UJ UJ 

X X X 0 No error 

X X X 1 Symbolic destination unknown 

X 2 Symbolic destination disabled 

X X 5 Symbolic destination already enabled/disabled 

X A Entries in destination table changed before message 
completion. SEND performed on original destinations 

5-6 provides a sample Communication Section, including: 

• An communication description with certain optional (lines 
050100 through 050800), followed by an optional 01-level record description 
(lines 050900 through 051600). 

• An input communication description without clauses (line 051 700), 
followed by a required 01-level record description (lines 051800 through 
052600), 

• An output communication description without optional clauses (line 052700), 
followed by a 01-level description (lines 052800 through 
053400). 

5-76 70044490-000 



70044490-000 

Seq. 
No. A B Text 

13513121121121 COMMUNICATION SECTION. 
12151211121121 CD COM-A-IN FOR INPUT 
1215121213121 SYMBOLIC QUEUE IS QUEUE-A; 
13512131210 
12151214121121 

135135121121 
05121600 
12151217121121 

121508121121 

12151219121121 01 

0511211210 

121511121121 

121512013 

121513121121 
051412113 

1215151210 

1215160121 

1215171210 CD 
121518121121 1211 

12151900 
12152121121121 

121521121121 

121522121121 

121523121121 

12152400 

12152512113 

05260121 

121527121121 CD 

MESSAGE DATE IS MSG-DATE-A; 
MESSAGE TIME IS MSG-TIME-A; 
SYMBOLIC SOURCE IS SYM-SRC-A; 
TEXT LENGTH IS TXT-lGTH-A; 
STATUS KEY IS STAT-KEY-A; 
MESSAGE COUNT IS QUEUE-CNT-A. 
COM-A-REC. 
02 FILLER PIC X(78) • 

02 END-KEY-A PIC X. 
88 PART-SEG VALUE 1112111. 

88 END-SEG VALUE 111". 

88 END-MSG VALUE 
88 END-TRANS VALUE 

02 F LLER X(8). 

COM-B-IN FOR INPUT. 
COM-S-REC. 
02 QUEUE-B PIC 12). 
1212 SUB-QUEUE-B PIC 12). 
02 FILLER PIC X(38). 

02 SYM-SRC-B PIC X(12} 

02 TXT-LGTH- PIC 
02 END-KEY-B PIC X. 
02 STAT-KEY-B PIC XX. 

QUEUE-CNT-B PIC 9(6). 
COM-OUT FOR OUTPUT. 

121528121121 1211 COM-OUT-REC. 
121529121121 1212 -CNT PI 9(4). 
1353121121121 1212 TXT-LGTH-OUT PIC 9(4). 
05311210 
053200 

053300 

0534013 

02 -KEY-OUT PIC XX. 
02 DEST-TBL OCCURS 10 TIMES. 

04 ERR-KEY PIC X. 
04 SYM-DEST PIC 12). 

IC 9(6). 

;;)ClIlrllple Corrlml.mi~r;at.ion Selcticln Entries 

5-77 





.1 m 

1.1. 

1 

The Procedure Division of a COBOL program contains the n""'",\f'orlll..,.OC' ne~;:;a€~a 

a data processing problem. These are written in 
may be combined to form sentences. of sentences may form 
paragraphs may be grouped to form sections. 

The Procedure Division is for every COBOL source program. 
the division header PROCEDURE DIVISION 
which are followed by nondeclarative 

Declaratives specify those conditions that cannot be tested 
programmer and the associated procedures to be executed when the 
conditions occur. 

Declaratives consist of one or more sections grouped at the 1'\1"\,-.-."",..-. 

Division. The declarative sections are by the 
followed by the keywords END DECLARATIVES. A declarative section .... V'"A" ... ,"''''' 

section header followed by a USE sentence followed 
one, or more associated paragraphs (see 6.1.3). 

A procedure is composed of a "'"''''.,...", ....... ''','1''\ 

section or group of successive sections 
is in a section, then all paragraphs must be in sections. A 
used to refer to a paragraph or section in the source program in 
consists of a paragraph-name, which may be or a section-name. 

The end of the Procedure Division and the ""' .. "'TC'''' ..... end of the .,-,,..."' ......... .., 
position in a COBOL source program after which no further 1r\""''\f'nrl'''vn0 0:",,"\,'"\£1<],.,. 

A section consists a section header 
paragraphs. A section ends the next section 
Procedure Division or, in the declaratives section of the Procedure 
keywords END DECLARATIVES. 

7004 4490-000 



6-2 

A nal'·QlY>'anh consists of a 
zero, one, or more successive sentences. A ""o·".o' ....... """'h 

next or section-name or at the end of the Procedure Division or, in 
the section of the Procedure at END 

A sentence consists of one or more statements and is terminated 
a space. 

A statement is a " .. n.L'l'['fl";t,lr~:JLA.L.J valid combination of words and 
a COBOL 

Execution with the first statement of the .---,.,(\("0'''''11, ... 0 

declaratives. Staternents are then executed in the order in which 
for where the rules indicate some other order. 

The Procedure Division is and must 

PROCEDURE DIVISION [USING data-name-1 [,data-name-2] ... ]. 

Rules 

a followed 

beginning with 

1. The USING phrase is if and if the object program is to function 
under the control of a CALL statement and the CALL statement in the 
~~~~AA"h program contains a USING 

in the USING of the Procedure Division header
U.'."CAUvU. as a data item in the Section of the program in

occurs, and it must have a 01 or 77

Within a caned program, U.U,~"(J'J:;V section data items are processed
to data descriptions in the called program.

3.

7004 4490-000

Division header of the called program; however, a given data-name,
[~~lfi"~~,_ ~_- --orcd-nai~may appear more once in the same
USING phrase a statement.

4. If the USING
any CD

is specified, the clause must not be present in

The body the '''.,o'rh''·o Division must conform to one of the following formats:

Format 1

[DECLARA TI VES 0

{section-name SECTION [segment-number]. declarative-sentence
[paragraph-name. [sentence] .0.] .0. }
END DECLARATIVES.]
{section-name SECTION [segment-number],
[paragraph-name. [sentence] ...] ... }

Format 2

{paragraph-name. [sentence] .. , } , ..

Rules

1. The Procedure Division must be divided into sections when the program is to
be segmented or when declaratives are present.

2. Format 2 is used when the entire Procedure Division is composed of
paragraphs only. However, if one paragraph is in a section, then all
paragraphs must be in sections.

3. If sections are used, section-names must be unique within a program and
paragraph-names must be unique within a section. If sections are not used,
paragraph-names must be unique within a program.

4. When program segmentation is used, sections are classified by
segment-numbers. The segment-number must be an integer ranging in value
from 0 through 99. All sections with the same segment-number constitute a
program segment. In Levell, sections with the same segment-number must
be contiguous in the source program.

In Level 2, sections with the same segment-number need not be physically
contiguous in the source program.

5. Segments with segment-numbers 0 through 49 belong to the fixed portion of
the object program. In Levell, all sections with segment-numbers 0 through
49 must be together in the same program. Segments with segment-numbers
50 through 99 are independent segments.

7004 4490-000 6-3

6-4

6. If the segment-number is omitted from the section header, the
segment-number is assumed to be O.

7. Sections in the declaratives must contain segment-numbers less than 50.

Example

An example of the Procedure Division is given in Figure 6-1.

Seq.
No. A B Text

071020
071030
071040
071050
071060
071070
071080
071090
071100
071110
0711213
071130
071140
071150
071160
071170
071180
072010
072020
072030
072040
07213513
0720613
0720713
072080
072090
072100
072110
072120
072130
072140
072150
072160

PROCEDURE DIVISION.
DECLARATIVES.
ALPHA SECTION. USE AFTER STANDARD ERROR PROCEDURE ON FILE-A.
A-1.

A-2.

A-3.

A-4.

ADD 1 TO ERROR-COUNT.
IF ERROR-COUNT> 10 GO TO A-4.
IF INDICATOR NOT EQUAL 1 GO TO A-3.

DISPLAY "HAD A IITYPE-ERRORII ERROR. RECOVEREDII.
GO TO A-5.

DISPLAY IIUNRECOVERABLE ERROR ON FILE-All ERROR-TYPE.
STOP RUN.

DISPLAY IIMORE THAN TEN ERRORS ON FILE-A. TERMINATING.II.
STOP RUN.

A-5. EXIT.
END DECLARATIVES.
MAl N SECT ION.
HOUSEKEEPING.

ACCEPT CURRENT-NAME FROM MSG-DEVICE.
OPEN INPUT-FILE-A.
OPEN OUTPUT FILE-B.
MOVE IICII TO B-SWITCH.

BAS I C- ROUTI NE.
READ FILE-A, AT END GO TO END-ROUTINE.
MOVE CORRESPONDING RECORD-A TO RECORD-B.
ADD NUMBER-A TO HASH-TOTAL.
GO TO BASIC-ROUTINE.

END-ROUTINE.
DISPLAY IIFINAL HASH TOTAL WAS IIHASH-TOTALII.II

UPON MSG-DEVICE.
CLOSE FILE-A, FILE-B.

STOP RUN.

Figure 6-1. Sample Procedure Division

7004 4490-000

Procedure Division

6.2. Categories of Statements
There are three types of statements: imperative, conditional, and compiler directing.

6.2.1. Imperative Statements

An imperative statement indicates a specific unconditional action to be taken by the
object program. An imperative statement may consist of a sequence of imperative
statements.

The COBOL verbs used in imperative statements are:

ACCEPT
ADD
ALTER
CALL
CANCEL
CLOSE
COMPUTE
DELETE
DISABLE
DISPLAY
DIVIDE
ENABLE

'EXHIBiifl L ____ ~
EXIT
GO TO
INSPECT
MERGE
MOVE
MULTIPLY
OPEN
PERFORM
READ
RECEIVE
RELEASE

6.2.2. Conditional Statements

REWRITE
SEND
SET
SORT
START
STOP
STRING
SUBTRACT

'TRACE-----r
I TRANSFORM I L ______ J

UNSTRING
WRITE

A conditional statement specifies that the truth value of a condition is to be
determined and that the subsequent action of the object program is dependent on this
truth value.

The COBOL verbs used in conditional statements are listed as follows. The optional
phrase in parentheses, when included with the statement, causes otherwise
imperative statements to become conditionals.

ADD (SIZE ERROR)
CALL (OVERFLOW)
COMPUTE (SIZE ERROR)
DELETE (INVALID KEy)
DIVIDE (SIZE ERROR)

[J[XHIB1T (CHANGE0J
IF

RECEIVE (NO DATA)
RETURN
REWRITE (INVALID KEY)
SEARCH
START (INVALID KEY)
STRING (OVERFLOW)
SUBTRACT (SIZE ERROR)
UNSTRING (OVERFLOW) MULTIPLY (SIZE ERROR)

rON' L __ I WRITE (INVALID KEY or END-OF-PAGE)
READ (END or INVALID KEY)

70044490-000 6-5

1.

6-6

USE
*DEBUG

statement causes the compiler to take a specific action during
verbs used in compiler-directing statements are:

Arithmetic AV-'''' ,,,,,,A"Ir'''' are used as A-n''',' of certain conditional and arithmetic
statements.

An arithmetic V""Y .. n,,'<:',r.v. can consist of any of the

o An identifier of a numeric elementary item

• A numeric literal

• A combination of item 1 and 2 identifiers and literals separated by arithmetic
operators

o Two "".U.I..I..lC'''.1'-' expressions separated by an arithmetic operator

• An arithmetic expression enclosed in parentheses

Any arithmetic expression may be preceded a unary operator. The identifiers and
literals appearing in an arithmetic expression must represent either numeric
elementary items or numeric literals on which arithmetic may be performed.

an arithmetic expression:
I I
I I
I
• If one of the two operands in a simple operation is a floating-point the

intermediate resultant item is floating point. I
I I
I 1& If an exponentiation is specified, the intermediate resultant item is floating I
I
: Floating-point operations preserve high-order digit accuracy but lose low-order digit i
tYrecision. (See~52' ~~ and Appendix G.) ______________ J

There are five binary arithmetic operators and two unary arithmetic operators that
may be used in arithmetic expressions. are represented by specific characters
that must be preceded by a space and followed by a space.

7004 4490-000

+

*
I
**

+

Addition
Subtraction

Division

The effect of .l.UUL.lIJ.1lfJAH,UIJJlV.lJl

by numeric literal +1

The effect of multiplication
numeric literal -1

Parentheses may be used in arithmetic expressions to specify the order in which
elements are to be evaluated. Expressions within parentheses are evaluated
within nested parentheses, evaluation proceeds from the least inclusive set to the
most inclusive set.

When parentheses are not used or parenthesized expressions are at the same level of
inclusiveness, the following hierarchical order of execution is implied:

First - Unary and minus
Second - Exponentiation
Third - Multiplication and division
Fourth - Addition and subtraction

Parentheses are used either to eliminate ambiguities in where consecutive
operations of the same hierarchical level appear or to modify the hierarchical
sequence execution in expressions where it is necessary to have some deviation
from the normal precedence. When the sequence of execution is not specified by
parel1ttleses, the order of execution of consecutive operations of the same
level is from left to

In the expression

A + B - C * D

C and D are A is then added to and the of C * D is
subtracted from the result of A + B.

7004 4490-000 6-7

Procedure Division

Example 2

In the expression

A + (8 - C) * D

C is first subtracted from B, (B - C) is then multiplied by D, and the total is added
toA.

Example 3

In the expression

A + (8 / C) + {(D * E) ** F) - G

The order of evaluation is 1) division, 2) multiplication, 3) exponentiation, and
4) addition and subtraction from left to right.

Operators, variables, and parentheses that may be combined in an arithmetic
expression are summarized in Table 6-1.

An arithmetic expression may only begin with the symbol (, +, -, or a variable, and
may only end with a) or a variable. There must be a one-to-one correspondence
between left and right parentheses of an arithmetic expression such that each left
parenthesis is to the left of its corresponding right parenthesis.

Arithmetic expressions allow the user to combine arithmetic operations without
restrictions on composite of operand and/or receiving data items. (See 6.6.2, rule 3 and
Appendix E.)

Table 6-1. Permissible Symbol Combinations in Arithmetic Expressions

Second Symbol
First
Symbol Variable * / * * + Unary + or ()

Variable P P

* /* * + p p p

Unary + or P P

(P P P

) P P

Legend:
P Indicates that the two symbols may appear consecutively

Indicates that the two symbols may not appear consecutively
Variable Represents an identifier or a literal

6-8 7004 4490-000

Procedure Division

.4. Conditional Expressions

Conditional expressions identify conditions that are tested to enable the object
program to select between alternate paths of control depending upon the truth value
of the condition. Conditional expressions are specified in the IF, PERFORM, and
SEARCH statements. There are two categories of conditions associated with
conditional expressions: simple conditions and complex conditions. Each may be
enclosed within any number of paired parentheses, in which case its category is not
changed.

1. Simple Conditions

The simple conditions are:

.. Relation condition

III Class condition

I 0 Condition-name condition I
" Switch-status condition

I III Sign condition

A simple condition has a truth value of true or false. The inclusion in parentheses of
simple conditions does not change the simple truth value.

Relation Condition

A relation condition causes a comparison of two operands, each of which may be the
data item referenced by an identifier, a literal,lor the value resulting from an I

I arithmetic expression.\A relation condition has a truth value of true if the relation
exists between the operands. Comparison of two numeric operands is permitted
regardless of the formats specified in their respective USAGE clauses. However, for all
other comparisons the operands must have the same usage. If either of the operands is
a group item, the nonnumeric comparison rules apply. See Table 6-2 for a summary of
permissible comparisons.

7004 4490-000 6-9

Table 6-2. Permissible rnrnIn12riC!nl'lC! for Relation Conditions

Second Operand

1
FC ZR

First Operand GR AL AN AlliE NE NNL NL ED

Group (GR) NN NN NN NN NN NN NN NN

Alphabetic (AL) NN NN NN NN NN NN NN NN

ALphanumeric (AN) NN NN NN NN NN Nil! NN NN

Alphanumeric edited (ANE) NN NN NN NN NN NN NN NN

Numeric edited (filE) NN NN NN NN NN NN NN NN

1
Figurative constant (Fe) NN NN NN NN NN NN
and nonnumeric literal (NNL)

Figurative constant ZERO (ZR) NN NN NN NN NN NU
and numeric literal (NL)

External decimal (ED) NN NN NN NN NN NN NU NU

Binary (81) NU NU
r--------------- - - - - - - - -

Internal decimal

I
(ID) NU NU

External floating point

I
(EF) NN NN NN NN NN NN NU NU

Internal floating point (IF) NU NU L _______________ - - - - - - - -

2
Index name (IN) IN IN

Index data item (!DI)

Notes: 1 FC includes all figurative constants except ZERO.
2 Valid only if the numeric item is an integer.

Legend: NN - comparison as described for nonnumeric operands
NU comparison as described for numeric operands
TI - comparison as described between two index names

BI ID - .
I
I

I
I

I
I

I
I

I
I

I
I
I

NU INU

I

Nll !NU

NU INU
-

NU NU

NU NU

NU NU
- -

2 2 2
IN IN

EF
F ...

NN

NN

NN

NN

NN

NN

NU

NU

NU

NU

NU

NU
-

IN - comparison as described between index-name and numeric integer

2

IF IN . .-
I
I

I
I

I
I

I
I

I
I

I
I
I

NU I IN
2

I

NU I I .2
I

NU III
-

2
NU IN

-

NU I

NU I

-

TI

1D

IDI

r---

r--

ID

ID

ID - comparison as described between index data item and index-name or other index data tern

6-10 7004 4490-000

Format

IS [NOT] GREATER THAN
IS [NOT] LESS THAN
IS [NOT] EQUAL TO

IS [NOT] >
IS [NOT] <:

IS [NOT]

literal-2

[

identifier-2)

Note: The required relational characters> < and = are not underlined to avoid
confusion with other symbols, such as ~ (greater than or to).

The first Ar"a1"'<:l,rlru is the of the the operand is the
':::>' .. U.II'J IJ and object may not both be literals.

The relational operator the of comparison to be made in a relation
condition. The relational operators and their are as follows:

Greater than or not greater

Less than or not less than

to or not to

Relational

IS [NOT] ==::.=~ THAN

IS [NQTJ >

THAN

=-=~=TO
r-------,

..,.n/>"'r"~'" > < and = are not underlined to avoid

of the

A space must and follow each reserved word in the relational When
NOT and the next keyword or relation character form one relational

that defines the to be executed for truth e.g., NOT
truth test for an comparison; NOT GREATER is a truth test for an or
less cmuparJlson.

:nll1nn=:U'I<I:~nn of Numeric

For numeric class a comparison is made of the
The length of the literal terms of

number of digits represented, is not ,.aJi-.AAA~AVU.AAV.
regardless of the sign.

7004 4490-000 6-11

Procedure Division

Comparison of these operands is permitted regardless of the manner in which their
usage is described. Unsigned numeric operands are considered positive for purposes of
comparison.

Comparison of Nonnumeric Operands

6-12

For nonnumeric operands, or one numeric and one nonnumeric operand, a comparison
is made with respect to a specified collating sequence of characters (see 4.3.2,
"OBJECT-COMPUTER Paragraph"). If one of the operands is specified as numeric, it
must be an integer data item or an integer literal and

• If the nonnumeric operand is an elementary data item or a nonnumeric literal,
the numeric operand is treated as though it were moved to an elementary
alphanumeric data item of the same size as the numeric data item (in terms of
standard data format characters), and the content of this alphanumeric data item
was then compared to the nonnumeric operand. (See 6.6.20, "MOVE Statement,"
and "PICTURE Clause" under 5.3.3 for the PICTURE character P.)

• If the nonnumeric operand is a group item, the numeric operand is treated as
though it were moved to a group item of the same size as the numeric data item
(in terms of standard data format characters), and the content of this group item
was then compared to the nonnumeric operand. (See 6.6.20, "MOVE Statement,"
and "PICTURE Clause" under 5.3.3 for the PICTURE character P.)

4& A noninteger numeric operand cannot be compared to a nonnumeric operand.

The size of an operand is the total number of standard data format characters in the
operand. Numeric and nonnumeric operands may be compared only when their usage
is the same.

There are two cases to consider: operands of equal size andloperands of unequal size. I

• Operands of equal size - If the operands are of equal size, characters in
corresponding character positions are compared starting from the high-order end
and continuing until either a pair of unequal characters is encountered or the
low-order end of the operand is reached, whichever comes first. The operands are
determined to be equal if all pairs of characters compare equally through the last
pair, when the low-order end is reached.

The first encountered pair of unequal characters is compared to determine their
relative position in the collating sequence. The operand that contains the
character that is positioned higher in the collating sequence is considered to be
the greater operand.

Operands of unequal size - If the operands are of unequal size, comparison
proceeds as though the shorter operand were extended on the right by sufficient
spaces to make the operands of equal size.

7004 4490-000

Procedure Division

Comparisons Involving Index-Names or Index Data Items

The comparison of two index-names is equivalent to the comparison of their
corresponding occurrence numbers.

The comparison of an index-name with a numeric item (data item or literal) is
permitted if the numeric item is an integer. The numeric integer is treated as an
occurrence number.

In the comparison of an index data item with an index-name or with another index
data item, the actual values are compared without conversion.

Other comparisons involving an index-name or index data item are not allowed.

Class Condition

The class condition determines whether the operand is numeric (consists entirely of
the digits 0 through 9, with or without the operational sign) or alphabetic (consists
entirely of the characters A through Z and space).

Format

identifier IS [NOT] {ALPHABETIC}
NUMERIC

The USAGE of the operand must be described explicitly or implicitly as DISPLAY or
r;---------:;:;:-T
LCOMPUTATIONAL.:..3..:,l When used, NOT and the next keyword specify one class
condition that defines the class test to be executed for truth value; e.g., NOT
NUMERIC is a truth test for determining that an operand is nonnumeric.

The ALPHABETIC test cannot be used with an item whose data description describes
it as numeric. The item being tested is determined to be alphabetic only if its content
consists of any combination of the alphabetic characters A through Z and the space.

The NUMERIC test cannot be used with an item whose data description describes it
as alphabetic,~~~~£.n~f~aJfng-=-poiri1Jor as a group item composed of elementary
items whose data descriptions indicate the presence of operational signs.

If the data description of the item being tested does not indicate the presence of an
operational sign, the item being tested is determined to be numeric only if its content
is numeric and the operational sign position contains a hexadecimal value of F.

If the data description of the item does indicate the presence of an operational sign,
the item being tested is determined to be numeric only if its content is numeric and a
valid operational sign is present. Valid operational signs for data items described with
the SIGN IS SEPARATE clause are the standard data format characters, + and-.
Valid operational signs for data items not described with the SIGN IS SEPARATE
clause are the hexadecimal values C or F and D. (See "SIGN Clause" under 5.3.3,)

7004 4490-000 6-13

Procedure Division

Examples
Data-Item

PICTURE Data Is Considered
S99 X1 F1F2 1 NUMERIC
S99 XIF1C2 i NUMERIC
S99 X1 F1D2 1 NUMERIC
99 XIF1F2 1 NUMERIC
99 XiF1C2 1 NOT NUMERIC
99 X1 F1D2 1 NOT NUMERIC

Condition-Name Condition

6-14

In a condition-name condition, a conditional variable is tested to determine whether
its value is equal to one of the values associated with a condition-name.

Format

condition-name

If the condition-name is associated with a range or ranges of values, the conditional
variable is tested to determine whether its value falls in this range, including the end
values.

The rules for comparing a conditional variable with a condition-name value are the
same as those specified earlier in this subsection for relation conditions.

The result of the test is true if one of the values corresponding to the condition-name
equals the value of its associated conditional variable.

A switch-status condition determines the on or off status of a system task switch. The
switch name and the on or off value associated with the condition are named in the
SPECIAL-NAMES paragraph of the Environment Division (see 4.3.3).

Format

condition-name

The result of the test is true if the switch is set to the specified position corresponding
to the condition-name.

70044490-000

The sign condition determines whether the algebraic value of an arithmetic expression
is less than, greater than, or equal to zero.

Format

arithmetic-expression IS [NOT] {POSITIVE}
NEGATIVE
ZERO

The arithmetic expression must contain at least one reference to a variable.

An operand is positive if its value is greater than zero, negative if its value is less than
zero, and zero if its is to zero.

When used, NOT and the next key word one sign condition that defines the
,n-o,",W"o·,n test to be executed for truth value; e.g., NOT ZERO is a truth test for a

nonzero (positive or negative) value.

A condition is fonned by combining simple conditions, cm:TIbln€~a ro''Yn/"i,t--,A

or complex conditions. The conditions are either connected J.V>::.J.""U.J.J.

operators AND or OR, or negated logically with the logical

The logical and their meanings are:

AND Logical conjunction; the truth value is true if
both of the conditions are false if

OR

NOT

The logical fvn,,, ... a,+n,,.,,, must be

one or both of the conjoined conditions is false.

Logical inclusive OR; the truth valu.e is true if
one or both of the included conditions is
false if both included conditions are false.

Logical negation or reversal of truth value; the
truth value is true if the condition is false
if the condition is true.

,-,,,,,-,uc;·u. by a space and followed a space.

The truth value of a whether parenthesized or is the truth
value results from: 1) the interaction of all the stated logical operators on the
individual truth values of conditions; or 2) the intermediate truth values of
corld11~lOrlS logically connected or logically J.H..o,;uuc;u.

7004 4490-000 6-15

Procedure Division

Value
of A

True

False

True

False

Table 6-3 shows the relationship between the logical operators and simple conditions
A and B.

Table 6-3. logical Operators and the Resultant Values

Value NOT A A AND B A OR B NOT (A AND B) NOT A AND B NOT (A OR B) NOT A OR B
of B

True False True True False False False True

True True False True True True False True

False False False True True False False False

False True False False True False True True

Negated Simple Conditions

A simple condition (6.4.1) is negated through the use of the logical operator NOT. The
negated simple condition effects the opposite truth value for a simple condition. Thus,
the truth value of a negated simple condition is true if and only if the truth value of
the simple condition is false; the truth value of a negated simple condition is false if
and only if the truth value of the simple condition is true. The inclusion in parentheses
of a negated simple condition does not change the truth value.

Format

NOT simple-condition

Combined and Negated Combined Conditions

A combined condition results from connecting conditions with one of the logical
operators AND or OR.

Format

condition { {~~D} condition}

The condition may be one of the following:

1. A simple condition

2. A negated simple condition

3. A combined condition

6-16 70044490-000

Procedure Division

4. A negated combined condition, i.e., the NOT logical operator followed by a
combined condition enclosed within parentheses

5. Combinations of the first four conditions specified according to the rules
summarized in Table 6-4

Although parentheses need never be used when either AND or OR (but not both) is
used exclusively in a combined condition, parentheses may be used to effect a final
truth value when a mixture of AND, OR, and NOT is used. Table 6-4 indicates the
ways in which conditions and logical operators may be combined and parenthesized.
There must be a one-to-one correspondence between left and right parentheses such
that each left parenthesis is to the left of its corresponding right parenthesis. Thus,
the element pair OR NOT is permissible while the pair NOT OR is not permissible;
NOT (is permissible while NOT NOT is not permissible. (See 6.4.3, "Condition
Evaluation Rules.")

Table 6-4. Combinations of Conditions, logical Operators, and Parentheses

Location (left-to-right)

First Last Intermediate Position

Allowable Allowable
Element Preceding Elements Following Elements

C* Yes Yes OR, NOT, AND, (OR, AND, (

OR or AND No No C,) C, NOT, (

NOT Yes No OR, AND, (C, (

(Yes No OR, NOT, AND, (C, NOT, (

) No Yes C,) OR, AND,)

7004 4490-000 6-17

6-18

When simple or negated simple relation conditions are combined with logical
connectives in a consecutive sequence such that a succeeding relation condition
contains a subject or subject and relational operator that is common with the
preceding relation and no parentheses are used within such a consecutive
sequence, any relation condition except the first may be abbreviated as follows:

1. Omission of the subject of the relation condition

2. Omission of the subject and relational operator of the relation condition

Format

relation-condition { {~~D} [NOT] [relational-operator] Object} __ _

Within a sequence of relation conditions, both forms of abbreviation may be used. The
effect of using such abbreviations is as if the last preceding stated subject were
inserted in place of the omitted subject and the last stated relational operator were
inserted in place of the omitted relational operator. The result of such implied
insertion must comply with the rules of Table 6-4. This insertion of an omitted subject
or omitted subject and relational operator terminates once a complete simple
condition is encountered within a complex condition.

The interpretation applied to the use of the word NOT in an abbreviated combined
relation condition is as follows:

1. If the word immediately following NOT is GREATER, >, LESS, <, EQUAL, =,
then the NOT participates as part of the relational operator; otherwise

2. The NOT is interpreted as a logical operand and, therefore, the implied insertion
of subject or relational operator results in a negated relation condition.

Some examples of abbreviated combined and negated combined relation conditions
and expanded equivalents follow:

Abbreviated Combined
Relation Condition

a > b AND NOT < e OR d

a NOT EQUAL b OR e

NOT a := b OR e

NOT (a GREATER b OR < e)

NOT (a NOT> bAND e AND NOT d)

((a > b) AND (a NOT <e)) OR (a NOT < d)

(a NOT EQUAL b) OR (aNOT EQUAL e)

(NOT (a := b)) OR (a := e)

NOT ((a GREATER b) OR (a< e))

NOT (((a NOT> b) AND (a NOT> e)) AND
(NOT (a NOT> d)))

70044490-000

Procedure Division

6.4.3. Condition Evaluation Rules

Parentheses may be used to specify the order in which individual conditions of a
complex condition are to be evaluated when it is necessary to depart from the implied
evaluation precedence. Conditions within parentheses are evaluated first, and, within
nested parentheses, evaluation proceeds from the least inclusive condition to the most
inclusive condition. When parentheses are not used, or parenthesized conditions are at
the same level of inclusiveness, the following hierarchical order of logical evaluation is
implied until the final truth value is determined:

1. Values are established for arithmetic expressions. (See 6.3.)

2. Truth values for simple conditions are established in the following order:

a. Relation (following the expansion of any abbreviated relation condition)

b. Class

c. Condition-name

d. Switch-status

e. Sign

3. Truth values for negated simple conditions are established.

4. Truth values for combined conditions are established - AND logical operators,
followed by OR logical operators.

5. Truth values for negated combined conditions are established.

6. When the sequence of evaluation is not completely specified by parentheses, the
order of evaluation of consecutive operations of the same hierarchical level is
from left to right.

6.5. Common Phrases and General Rules for Statement
Formats

In the statement descriptions in 6.6, several phrases appear frequently: the
ROUNDED phrase, the SIZE ERROR phrase, and thelCORRESPONDING phrase. I

In the following discussion, a resultant-identifier is that identifier associated with a
result of an arithmetic operation.

7004 4490-000 6-19

Procedure Division

6.5.1. The ROUNDED Phrase

If, after decimal point alignment, the number of places in the fraction of the result of
an arithmetic operation is greater than the number of places provided for the fraction
of the resultant-identifier, truncation is relative to the size provided for the resultant­
identifier. When rounding is requested, the absolute value of the resultant-identifier is
increased by 1 whenever the most significant digit of the excess is greater than or
equal to 5.

When the low-order integer positions in a resultant-identifier are represented by the
character P in the picture for that resultant-identifier, rounding or truncation occurs
relative to the rightmost integer position for which storage is allocated.

r------------------ - - - - - -- ---,
LThe ROUNDED phrase is not applicable to a floating-point resultant-identifier. I __________________________ --.J

6.5.2. The SIZE ERROR Phrase

6-20

If, after decimal point alignment, the absolute value of a result exceeds the largest
value that can be contained in the associated resultant-identifier, a size error
condition exits. Division by zero always causes a size error condition. The size error
condition applies only to the final results of an arithmetic operation and not to
intermediate results except for the MULTIPLY and DIVIDE statements. If the
ROUNDED phrase is specified, rounding takes place before checking for size error.
When such a size error condition occurs, the subsequent action depends on whether or
not the SIZE ERROR phrase is specified.

• If the SIZE ERROR phrase is not specified and a size error condition occurs, the
value of those resultant-identifiers affected is undefined. Values of
resultant-identifiers for which no size error condition occurs are unaffected by
size errors that occur for other resultant-identifiers during execution of this
operation.

• If the SIZE ERROR phrase is specified and a size error condition occurs, then the
values of resultant-identifiers affected by the size errors are not altered.IValues of
resultant-identifiers for which no size error condition occurs are unaffected by
size errors that occur for other resultant-identifiers during execution of this
operation.IAfter completion of the execution of this operation, the imperative
statement in the SIZE ERROR phrase is executed.

1.-----------------------------,
I The SIZE ERROR phrase is not applicable to floating-point resultant-identifiers, I

Lexcept division by zero whic~lwa~causes a si~erro~onditio~ _______ J
If any of the individual operations of an ADD or SUBTRACT statement with the
CORRESPONDING phrase produces a size error condition, the imperative statement
in the SIZE ERROR phrase is not executed until all of the individual additions or
subtractions are completed.

70044490-000

Procedure Division

6.5.3. The CORRESPONDING Phrase

In the ADD, SUBTRACT, or MOVE statement with the CORRESPONDING phrase,
both identifier-l and identifier-2 must refer to group items. In the following
discussion, d, and dz refer to identifier-l and identifier-2, respectively.

A data item from d, and one from dz correspond under the following conditions:

A data item in d1 and a data item in dz are not designated by the key word
FILLER and have the same data-name and the same qualifiers up to, but not
including, d1 and dz.

At least one of the data items is an elementary data item in the case of a MOVE
statement with the CORRESPONDING phrase; and both of the data items are
elementary numeric data items in the case of the ADD or SUBTRACT statement
with the CORRESPONDING phrase.

The description of d1 and dz must not contain level-number 66, 77, or 88 or the
USAGE IS INDEX clause.

A data item that is subordinate to d1 or dz and contains a REDEFINES,
RENAMES, OCCURS, or USAGE IS INDEX clause is ignored, as well as those
data items subordinate to the data item that contains the REDEFINES,
OCCURS, or USAGE IS INDEX clause. However, d1 and dz may have
REDEFINES or OCCURS clauses or be subordinate to data items with
REDEFINES or OCCURS clauses. (See "OCCURS Clause" under 5.3.3.)

Example

70044490-000

SUBTRACT CORRESPONDING EMPLOYEE-RECORD FROM PAYROLL-CHECK

Data Division Entries

101 EMPLOYEE-RECORD
102 EMPLOYEE-NUMBER

103 FILLER
103 PLANT-LOCATION
103 CLOCK-NUMBER

104 SHIFT-CODE
104 CONTROL-NUMBER

02 INCOME
103 HOURS-WORKED
103 PAY-RATE

102 FICA-RATE
102 DEDUCT IONS

101 PAYROLL-CHECK
102 EMPLOYEE-NUMBER

103 CLOCK-NUMBER
103 FILLER

102 DEDUCTIONS
103 FICA-RATE
103 WITHHOLDING-TAX
103 PERSONAL-LOANS

102 INCOME
103 HOURS-WORKED
103 PAY-RATE

102 NET-PAY
102 EMPLOYEE-NAME

103 SHIFT-CODE

6-21

In the example, the corresponding items are HOURS -WORKED and PAY -RATE. The following
items are not corresponding in the example for the reasons stated:

Item Reason

EMPLOYEE-NUMBER Items not elementary

FILLER FILLER not considered corresponding items

CLOCK-NUMBER Item not elementary in one group

SHIFT-CODE Qualifications not identical

INCOME Items not elementary

FICA-RATE Qualifications not identical

DEDUCTIONS Item not elementary in one group

Arithmetic Statements

The operands of the ADD,lcOMPUTE,IDIVIDE, MULTIPLY, and SUBTRACT
statements have several common features:

• The data descriptions of the operands need not be the same; any necessary
conversion and decimal point alignment is supplied throughout the calculation.

• The maximum size of each operand is 18 decimal digits. The composite of
operands, which is a hypothetical data item resulting from the superimposition of
specified operands in a statement aligned on their decimal points, must not
contain more than 18 decimal digits.

6.5.5. Overlapping Operands

When a sending and a receiving item in an arithmetic statement or an INSPECT,
MOVE, SET,ISTRING, or UNSTRING!statement share a part of their storage areas,
the result of the execution of such a statement is undefined.

6.5.6. Multiple Results in Arithmetic Statements

The ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements may have
multiple results. Such statements behave as though they had been written in the
following way:

1. A statement that performs all arithmetic necessary to arrive at the result to be
stored in the receiving items, and stores that result in a temporary storage
location.

6-22 7004 4490-000

2. A sequence of statements transferring or combining the value of this temporary
location with a single result. These statements are considered to be written in the
same left-to-right sequence in which the multiple results are listed.

The result of the statement

ADD a, b, c TO c, d (c), e

is equivalent to

ADD a, b, c GIVING temp
ADD temp TO c
ADD temp TO d (c)
ADD temp TO e

where temp is an intermediate result item provided by the compiler.

--------------------------------l
UIL; RUH Register I

I
The reserved word WHEN-COMPILED is the name of a compiler-generated 1 7 -byte I

I alphanumeric field. It makes the date and time of the compilation available to the I
L ___ object~rogram~ Th~ormat of this field is yy/mm/dd.6_hh:mm:sso ________ J

.6. COBOL Verbs

The COBOL verbs listed in 6.2 are explained in detail in this paragraph. The verbs
are presented alphabetically, with formats and rules.

6.6.1. ACCEPT Statement

Function

The ACCEPT statement causes low-volume data to be made available to
the specified data item.

Format 1

ACCEPT identifierl[ERQM mnemonic-name] I

Format 2

70044490-000

ACCEPT identifier FROM {DATE]
DAY
TIME

6-23

Procedure Division

6-24

Format 3

ACCEPT cd-name MESSAGE COUNT

Format 4

r---------------------l
ACCEPT identifier-1 [,identifier-2] ...
I FROM [SPECIFIC] mnemonic-name I

[
USING {~~~:~!rier-3} 1 I

I .. I
[ON EXCEPTION lmperatlve-statementJ L _____________________ J

Format 5

r--------------------i
ACCEPT identifier-' FROM mnemonic-name

[ON EXCEPTION imperative-statement]
L ______________ ~-----~

Rules

1. The size of a data transfer is defined as follows:

SYSIN 80, 90, or 128 characters. If the length of a
record is other than 80 or 96, 128 is used as the
size of a data transfer. Records that are not 80
or 90 characters in length commonly occur when
a job stream file is created/updated by the
general editor.

SYSCONSOLE 60 characters

SYSCOM 12 characters

SYSSWCH 8 characters

SYSSWCH-n 1 character

SYSTEM-SHUTDOWN 1 character

SYSWORK 1 - 1,920 characters

SYSFORMAT 1 - 1,920 characters

SYSTERMINAL 60 characters

If the size of the data being transferred exceeds the appropriate size of a
data transfer, the excess data is lost during a data transfer.

7004 4490-000

70044490-000

Procedure Division

Note: Rules 2 through 10 pertain to format 1 only.

2. The identifier must be defined implicitly or explicitly as USAGE IS
DISPLAY.

3. The mnemonic-name must also be specified in the SPECIAL-NAMES
paragraph of the Environment Division and must be associated with SYSIN,
SYSCONSOLE, SYSCOM, SYSSWCH, SYSTERMINAL, SYSSWCH-n,
SYSTEM-SHUTDOWN, or SYSWORK

4. The ACCEPT statement causes the transfer of data from a system logical
device. This data replaces the content of the data item named by the
identifier. No editing or error checking of the incoming data is performed.

5. If the mnemonic-name is associated with SYSIN or SYSCONSOLE and:

a. If the length of the receiving data item is less than or equal to the
appropriate size of a data transfer, the transferred data is stored in the
receiving data item left-aligned with space-fill or truncation to the right,
when appropriate.

b. If the size of the receiving data item exceeds the appropriate size of a
data transfer, the transferred data is stored left-aligned in the receiving
data item. Additional data is requested and stored contiguously in the
remaining portion of the receiving data item. When the remaining
portion is less than or equal to the appropriate size, additional data is
requested again. Transferred data is stored in the remaining portion
with space-fill or truncation to the right as appropriate.

6. If the mnemonic-name is associated with SYSCOM, the 12-byte information
in the communications region of the job preamble is moved to the 12-byte
area described by the identifier.

7. If the mnemonic-name is associated with SYSSWCH, the information in the
user program switch indicator (UPS!) byte is expanded to 8 bytes. Each byte
represents an individual switch. If the mnemonic-name is associated with
SYSSWCH-n, the appropriate switch is expanded to 1 byte.

8. If the mnemonic name is associated with SYSTEM-SHUTDOWN, the
shutdown indicator in the system information block (SIB) is expanded to 1
byte, with a character value of 0 or 1 (hexadecimal FO or Fl). Hexadecimal
Fl indicates that the system operator entered a shutdown command through
the console and plans to terminate all system processing.

9. If thelFROM phraselis not specified, the system logical device SYSIN is
assumed.

10. The 1* is not accepted as an end statement into the program when accepting
embedded data.

6-25

Procedure Division

Note: Rules 11 through 14 pertain to format 2 only.

11. The ACCEPT statement causes the information requested to be transferred
to the data item specified by the identifier according to the rules of the
MOVE statement. DATE, DAY, and TIME are conceptual data items and,
therefore, are not described in the COBOL program.

12. DATE is composed of the data elements: year of century, month of year, and
day of month. The sequence of the data element codes is from high order to
low order (left to right), year of century, month of year, and day of month.
Therefore, July 1,1968 would be expressed as 680701. DATE, when accessed
by a COBOL program, behaves as if it had been described in the COBOL
program as an unsigned elementary numeric integer data item six digits in
length.

13. DAY is composed of the data elements year of century and day of year. The
sequence of the data element codes is from high order to low order (left to
right) year of century, day of year. Therefore, July 1,1968 would be
expressed as 68183. DAY, when accessed by a COBOL program, behaves as
if it had been described in a COBOL program as an unsigned elementary
numeric integer data item five digits in length.

14. TIME is composed of the data elements: hours, minutes, seconds, and
hundredths of a second. TIME is based on elapsed time after midnight on a
24-hour clock basis; thus, 2:41 p.m. would be expressed as 14410000. TIME,
when accessed by a COBOL program, behaves as if it had been described in a
COBOL program as an unsigned elementary numeric integer data item eight
digits in length. The minimum value of TIME is 00000000; the maximum
value of TIME is 23595999.

Note: It is possible for the maximum number of hours to be 99 if the system
generation parameter TIMER is set to NO or MIN.

Note: Rules 15 through 17 pertain to format 3 only.

15. Cd-name must reference an input CD.

16. The ACCEPT MESSAGE COUNT statement causes the MESSAGE COUNT
field specified for cd-name to be updated to indicate the number of messages
that exist in a queue, sub-queue-l, ... , sub-queue-3.

17. Upon execution of the ACCEPT MESSAGE COUNT statement, the content
of the area specified by a communication description entry must contain at
least the name of the symbolic queue to be tested. Testing the condition
causes the contents of the data items referenced by data-name-10 (STATUS
KEy) and data-name-ll (MESSAGE COUNT) of the area associated with
the communication entry to be appropriately updated.

6-26 7004 4490-000

7004 4490-000

Division

Note: Rules 18 through 32 pertain to format 4 only.
,-------- ------ - -------------
I 18. Format 4 is used to accept data from a workstation terminal that calls scree;l
I format services. The FROM phrase must be specified.

I
I 19. The data description of identifier-1 or identifier-2, ... , must not contain a
I subordinate entry that specifies an OCCURS DEPENDING clause.

I
I 20. Mnemonic-name must also be specified in the SPECIAL-NAMES paragraph
I of the Environment Division and must be associated with SYSFORMAT.
I
I 21. The literal must be a nonnumeric literal.

I
I 22. The literal or the contents of identifier-3 is made up of a 1- to 8-character
I name of the screen format.
I
I 23. More than one receiving data item may be specified. Identifier-1 or

identifier-2 need not be described explicitly or implicitly as USAGE IS
DISPLAY. If USAGE other than DISPLAY is specified, no data conversion is
performed by the COBOL-generated object code. If data conversion is
required, it must be specified in the controlling screen format.

I
I

I
I
I
I
I
I
I
I
I

24. The SPECIFIC phrase is meaningful only for a multivolume workstation. It
indicates that data is to be accepted from a particular workstation terminal;
that is, the terminal indicated in the WS-ID field, if the CONTROL AREA
clause is specified with the mnemonic-name in the SPECIAL-NAMES
paragraph, or the terminal that participated in the most recently executed
ACCEPT or DISPLAY statement that references the same mnemonic-name.

25. The ON EXCEPTION phrase must be specified if the mnemonic-name is
declared in the SPECIAL-NAMES paragraph with the CONTROL AREA
clause. The ON EXCEPTION phrase must not be specified if the
mnemonic-name is declared without the CONTROL AREA clause.

26. The ON EXCEPTION phrase is executed when the execution of the ACCEPT
statement is unsuccessful. (See key code 1, 2, 3, or 9 in the "Status Key 1"
column in Table 4-1.)

27. A screen format must be specified for a given workstation before data can be
accepted or displayed. A screen format may be specified via job control
language or by the USING phrase of an ACCEPT or DISPLAY statement.

28. When the USING phrase of an ACCEPT statement specifies a format
different from the current screen format on the last-used terminal, the new
format must be an input-only screen format.

: 29. Another way of specifying a different screen format is to use the DISPLAY
statement with the USING phrase referencing the new input-only screen

: format. The new format is displayed on the terminal; but no data is I
L __ transmitte~ t~the !~reen since it ~a~nput-only format. _______ J

6-27

Procedure Division

6-28

r----------------------------~
30. For a multivolume workstation, the USING phrase of an ACCEPT I

I statement that references a new screen format changes the screen only on I

lone terminal; that is, the terminal indicated in the WS-ID field if the I
I CONTROL AREA clause is specified, or the terminal most recently accessed I
I if the CONTROL AREA clause is not specified. I
I I I 31. For a multivolume workstation, the terminal that responds to an ACCEPT I
I statement whose USING phrase references a new screen format could be
I different from the terminal whose screen format has been changed by the I,

I very same ACCEPT statement.

I I I 32. After an ACCEPT statement referencing a screen format that is erased after I
I input (that is, option 3 of the ERASEIUNLOCK function was selected at I
I screen format generation), the next ACCEPT or DISPLAY statement I
I accessing the same terminal must include a USING phrase. I

: Note: Rules 33 through 40 pertain to format 5 only. i

I 33. Format 5 is used to accept data from a workstation terminal without using I
I screen format services. I
I I I 34. Identifier-l must be specified explicitly or implicitly with the USAGE IS I
I DISPLAY phrase. I

: 35. The data description of identifier-lor identifier-2, ... , must not contain a II

subordinate entry that specifies an OCCURS DEPENDING clause.

36. The FROM phrase is required. Mnemonic-name must also be specified in the
SPECIAL-NAMES paragraph of the Environment Division and must be
associated with SYSWORK.

37. The ON EXCEPTION phrase must be specified if the mnemonic-name is
declared in the SPECIAL-NAMES paragraph with the CONTROL AREA
clause. The ON EXCEPTION phrase must not be specified if the
mnemonic-name is not described with the CONTROL AREA clause.

38. The ON EXCEPTION phrase is executed when the execution of the ACCEPT
statement is unsuccessful. (See key code 1, 2, 3, or 9 in the "Status Key I"
column of Table 4-1.)

39. If the length of the receiving data item (identifier-I) exceeds 1920 characters,
the transferred data is stored in the receiving data item left-aligned and
space-filled. No additional data is requested. If the length of the receiving
data item is less than 1920 characters, the transferred data is stored in the
receiving data item left-aligned with space-fill or truncation to the right,
when appropriate.

I
I
I
I
I
I

I

I

I

I

I
I
I
I
I
I
I
I

I 40. After the execution of a format 5 ACCEPT statement, the cursor is I
IL positioned at the start of the next line. I
--- - - - -- - - -------------------

7004 4490-000

Procedure Division

6.6.2. ADD Statement

Function

The ADD statement causes two or more numeric operands to be summed and the
result to be stored.

Format 1

ADD {identifier-,} [,identifier-2] ..• TO identifier-m [ROUNDED]
literal-1 ,literal-2

I[,identifier-n [~] .•• I[;ON SIZE ERROR imperative-statement]

Format 2

ADD {identifier-,}
literal-' {

identifier-2} [,identifier-3] ...
literal-2 ,literal-3

GIVING identifier-m [ROUNDED] I[,identifier-n [~]]I

[;ON SIZE ERROR imperative-statement]

Format 3

ADD {CORRESPONDING} identifier-' TO identifier-2 [ROUNDED]
CORR

[;ON SIZE ERROR imperative-statement]

Rules

1. In formats 1 and 2, each identifier must refer to an elementary numeric
item, except that in format 2 each identifier following the word GIVING
must refer to either an elementary numeric item or an elementary
numeric-edited item. lIn format 3, each identifier must refer to a group item. I

2. Each literal must be a numeric literal.

3. The composite of fixed-point operands must not contain more than 18 digits.
(See 6.5.4.)

• In format 1, the composite of operands is determined by using all of the
fixed-point operands in a given statement.

.. In format 2, the composite of operands is determined by using all of the
fixed-point operands in a given statement excluding the data items that
follow the word GIVING.

• In format 3, the composite of operands is determined separately for each
pair of corresponding data items.

7004 4490-000 6-29

4. CORR is an abbreviation for CORRESPONDING.'

5. I See 6.5.1 "ROUNDED Phrase;"16.5.2, "SIZE ERROR Phrase;" 6.5.3,
"CORRESPONDING Phrase;" 6.5.4, "Arithmetic Statements;" 6.5.5,
"Overlapping Operands;" andI6.5.6, "Multiple Results in Arithmetic I

I Statements." I

6. If format 1 is used, the values of the operands preceding the word TO are
added together, then the sum is added to the current value of identifier-m
storing the result immediately into identifier-m, and repeating this process
respectively for each operand f onowing the word TO.

7. If format 2 is used, the values of the operands preceding the word GIVING
are added together, then the sum is stored as the new value of leach I
identifier-m,lidentifier-n,I ... , the resultant identifiers.

8. If format 3 is used, data items in identifier-1 are added to and stored in
corresponding data items in identifier-2.

Function

The ALTER statement modifies a predetermined sequence of operations.

Format

ALTER procedure-name-1 lQ [~ lQ] procedure-name-2

[,procedure-name-3 lQ [~IQ] procedure-name-4] .. , I

Rules

1. Each procedure-name-1,lprocedure-name-3,1 ... , is the name of a paragraph
that contains a single sentence consisting of a GO TO statement without the
DEPENDING phrase.

2. Each procedure-name-2,lprocedure-name-4,1 ... , is the name of a paragraph or
section in the Procedure Division.

3. Execution of the ALTER statement modifies the GO TO statement in the
paragraph named procedure-name-1,lprocedure-name-3,1 ... , so that
subsequent execution of the modified GO TO statements transfers control to
procedure-name-2,[P!OCedure-name-4, ... , respectively., Modified GO TO
statements in independent segments may, under some circumstances, be
returned to their initial states. (See 10.2.2.)

6-30 7004 4490-000

A GO TO statement in a section whose is than or
an ALTER statement in a section with

All other uses of the ALTER statement are valid and are -no· .. FI"'I.1I"n-.or!

IDI·oc,ealurE~-nlaTIae··~IlIS in an ""H~ ... I,y",n

Function

The statement causes control to be transferred from one program to
another within the run-unit.

Format

CAL L {'---------'}

literal-'

1

data-name-')
r------l
cd-name-'
I i dent if i er -2 I
fi le-name-' L ______ J

data-name-2

I identifier-3 I
file-name-2

L ______ J

Rules

1. Literal-1 must be a nonnumeric literal.

3. The value a 1- to 6-character load
module name, or the the name of the
if the called program is "'''U''~v'CAU'.' the program.

4. is included in the CALL statement if there is
in the Procedure Division header of the called program. The

number of nr"" ... ""nrl in each USING must be identical.

5.

6. program whose name is value of literal-1 ~29:~~~~
called program; the program which the CALL oJIJUI...,,-,'"LS.'VLAIJ

'V"",,'UlJlLJlo;;;. program.

7004 4490-000 6-31

Procedure Division

6-32

7. Execution of a CALL statement causes control to pass to the called program.

8. A called program is in its initial state the first time it is called within a
run-unit and the first time it is called after a CANCEL to the called
program. On all other entries into the called program, the state of the
program remains unchanged from its state when last exited. This includes
data fields, the status and positioning of files, and alterable switch settings.

9. If, during execution of a CALL statement, it is determined that the available
portion of object time storage is incapable of accommodating the program
specified in the CALL statement and the ON OVERFLOW phrase is
specified, no action is taken and the imperative statement is executed. If the
ON OVERFLOW phrase is not specified, the calling program is terminated
and the disposition of the run unit is handled by the operating system.

10. Called programs may contain CALL statements. However, a called program
must not contain a CALL statement that directly or indirectly calls the
calling program.

11. The data-names specified by the USING phrase of the CALL statement
indicate those data items available to a calling program that may be referred
to in the called program. The order of appearance of the data-names in the
USING phrase of the CALL statement and the USING phrase in the
Procedure Division header is critical. Corresponding data-names refer to a
single set of data that is available to the called and calling program. The
correspondence is positional, not by name. In the case of index-names, no
such correspondence is established. Index-names in the called and calling
program always refer to separate indexes.

12. The CALL statement may appear anywhere within a segmented program.
When a CALL statement appears in a section with a segment-number
greater than or equal to 50, that segment is in its last used state when the
EXIT PROGRAM statement returns control to the calling program. When
using parameter CALLST=YES in a segmented program, the linkage editor
commands must ensure that the called program can be accessed from the
overlay that contains the CALL statement (see 10.5.4).

13.1 Literal-lor the content of the data item referenced by identifier-II is used to
identify the called program.

r-------------------------,
I 14. When the called program is a COBOL program, each of the operands in the
I USING phrase of the calling program must be defined as a data item in the I
I File, Working-Storage, or Linkage Section. If the called program is written in I
I a language other than COBOL, the operands of the USING clause may also
I be file-names and the address of the data management keyword attributes :

L (DTF or RIB) is passed to the called program. I _______________________ ---J

15. Programs called by the literal-1 option exclusively may be linked with the
calling program or dynamically loaded. (Refer to Appendix A for the
CALLST compiler option parameter.) Programs called by the identifier-1
option are always dynamically loaded.

7004 4490-000

Procedure Division

6.6.5. CANCEL Statement

Function

The CANCEL statement releases the main storage areas occupied by the
ref erenced program.

Format

CANCEL {identifier-1} [, identifier-2] •••
literal-1 ,literal-2

Rules

1. Literal-I, literal-2, .,., must each be a nonnumeric literal.

2. Identifer-I, identifier-2, .. " must each be defined as an alphanumeric data
item such that its value can be a program name.

3. Refer to 6.6.4, "CALL Statement," for a description of the value of
identifier-I and literal-1.

4. Literal-I, literal-2, ... , must refer to called programs that are dynamically
loaded. (Refer to Appendix A for the CALLST compiler option parameter.)

5. Subsequent to the execution of a CANCEL statement, the program
referenced therein ceases to have any logical relationship to the run-unit in
which the CANCEL statement appears. A subsequently executed CALL
statement naming the same program will result in that program being
initiated in its initial state. The main storage areas associated with the
named programs are released so as to be made available for disposition by
the operating system.

6. A program named in the CANCEL statement must not refer to any program
that has been called but that has not yet executed an EXIT PROGRAM
statement.

7. A logical relationship to a canceled subprogram is established only by
executing a subsequent CALL statement.

8. A called program is canceled either by being referred to as the operand of a
CANCEL statement or by the terminal of the run-unit of which the program
is a member.

9. No action is taken when a CANCEL statement is executed naming a
program that has not been called in this run-unit or has been called and is at
present canceled. Control passes to the next statement.

70044490-000 6-33

6-34

10. hn,,."'O,..Cil1rTI must not contain a CANCEL statement that or
"'U"-''''O;:;;.''" the program, or any other program than

11.

12. Literal-lor the content
lUEmtuy the canceled program.

Function

The CLOSE statelnent terminates the

item ... ",t,' ,nr" ri by identifier-1 is

V,-,\"_,,,,::>,UA k of reels/units and files with
'-'OJ'J~V'.A""L rewind or lock or removal where afJfJ,LI.'vU"'~"O;:;;.

Format 1

CLOSE filename-1

,file-name-2

Format 2 ltlABlatlV'e

WITH {NO REWI NO}
LOCK

{
REEL}
UNIT

WITH

[
WITH NO REWI NO]
FOR REMOVAL

REWIND}

CLOSE file-nameD, [WITH LOCK] [,file-name-2 [WITH LOCK]] .•.

Rules

1. The REEL or UNIT phrase must be used for sequential~r-=--

2. ". t ' nri in the CLOSE statement need not all have the same

to

7004 4490-000

70044490-000

3. Except where otherwise stated, the terms reel and unit are synonymous and
completely interchangeable in the CLOSE statement. Treatment of mass
storage sequential[Q-rJ3EMlfiles is logically equivalent to the treatment of a
file on tape or analogous sequential media.

4. A CLOSE statement may only be executed for a file in an open mode.

5. To show the effect of various types of CLOSE statements as applied to
various storage media, all files are divided into the following categories:

a. Non-reel/unit - A file whose input or output medium is such that the
concepts of rewind and reels/units have no meaning.

h. Sequential single reel/unit - A sequential~~S~file that is entirely
contained on one reel/unit.

c. Sequential multiple reel/unit - A sequentiallQ.r SAl\i]file that is
contained on more than one reel/unit.

d. Nonsequential single/multiple reel/unit - A relative, indexed,~0S~J
file contained on one or more units.

6. The results of executing each type of CLOSE statement for each category of
files are given in Table 6-5.

Note: The symbols used in Table 6-5 are defined following the table. Definitions
apply to all input, output, and input / output files except where noted.

Table 6-5. Relationship of Categories of Files and the Options of the CLOSE Statement

File Category

CLOSE Non-Reel/Unit Sequential Sequential Nonsequential
Statement Single Multiple Single/Multiple
Format Reel/Unit Reel/Unit Reel/Unit

CLOSE C C, G C, G, A C

CLOSE WITH LOCK C, E C, G, E C, G, E, A C, E

CLOSE WITH NO REWIND X C, B C, B, A X

CLOSE REEL/UN IT X X F,G X

CLOSE REEL/UN IT X X F, D, G X
REMOVAL

CLOSE REEL/UNIT X X F,B X
WITH NO REWI ND

6-35

Procedure Division

The symbols used in Table 6-5 are defined as follows:

Symbol

A

Definition

Previous ReelslU nits Unaffected

e Input Files and Input I Output Files - All reels/units in the
file prior to the current reel/unit are processed according
to the system standard reel/unit swap procedure, except
those controlled by a prior CLOSE REELIUNIT
statement. If the current reel/unit is not the last one in
the file, those reels/units in the file following the current
one are not processed.

• Output Files - All reels/units in the file prior to the
current reel/unit are processed according to the system
standard reel/unit swap procedure, except those
controlled by a prior CLOSE REELIUNIT statement.

B No Rewind of Current Reel - The current reel/unit is left in its
current position.

C Close File

• Input Files and Input I Output Files (Sequential Access
Mode) - If the file is positioned at its end and standard
system label records are specified for the file, the system
labels are processed according to the system standard
label convention. Closing operations specified by the
system are executed. If the file is positioned at its end and
standard system label records are not specified for the
file, label processing does not take place but other closing
operations specified by the system are executed. If the file
is positioned other than at its end, the closing operations
specified by the system are executed, but there is no
ending label processing.

.. Input Files and Input I Output Files (Random or Dynamic
Access Mode); Output Files (Random, Dynamic, or
Sequential Access Mode) - If standard system label records
are specified for the file, the labels are processed
according to the system standard label convention.
Closing system operations specified by the system are
executed. If standard system label records are not
specified for the file, label processing does not take place
but other closing operations specified by the system are
executed.

6-36 7004 4490-000

(

Symbol

D

E

F

G

x

7004 4490-000

Procedure Division

Definition

ReelJUnit Removal- The current reel or unit is rewound when
applicable, and the operating system is notified that the reel or
unit is logically removed from this run-unit; however, the reel
or unit may be accessed again, in its proper order of reels or
units within the file, if a CLOSE statement withoutthe REEL
or UNIT phrase is subsequently executed for this file followed
by the execution of an OPEN statement for the file.

File Lock - The operating system is notified to ensure that this
file cannot be opened again during this execution of this
run-unit.

Close ReelJUnit

• Input Files - The following operations take place:

Reel/unit swap

Standard beginning reel/unit label procedure

The next executed READ statement for that file makes
available the next data record on the new reel/unit.

• Output Files and Input / Output Files - The following
operations take place:

For output files only - standard ending reel/unit label
procedure

Reel/unit swap

Standard beginning reel/unit label procedure

For input/output files, the next executed READ statement
that references that file makes the next logical data
record on the next mass storage unit available. For output
files, the next executed WRITE statement that references
that file directs the next logical data record to the next
reel/unit of the file.

Rewind - The current reel is positioned at its physical
beginning.

Illegal - This is an illegal combination of a CLOSE option and
a file category. The results at object time are undefined.

6-37

6-38

7. If the file is in open mode when a STOP RUN statement is executed, it is to
be closed by the compiler-generated object code. The result is unpredictable
if the file has been opened in a called program and not closed in that
program to the execution of a CANCEL statement for that program.

8. If the OPTIONAL phrase has been specified for the file in the
FILE-CONTROL paragraph of the Environment Division and the file is not
present, the standard end-of-file processing is not performed for that file.

9. If a CLOSE statementlwithout the REEL or UNIT phraselhas been executed
for a file, no other statement (except the SORT statement with the USING or
GIVING phrases) can be executed that references that file, either explicitly
or unless an intervening OPEN statement for that file is executed.

10. WITH REWIND and FOR REMOVAL phrases have no effect at object
time if they do not apply to the storage media on which the file resides.

11. Following the successful execution of a CLOSE statement§thout the REEL I
lor UNIT phrase,lthe record area associated with file-name is no longer
available. The unsuccessful execution of such a CLOSE statement leaves the
availability of the record area undefined.

12. With the CLOSE WITH LOCK phrase, single-reel tape files are rewound but
are not unloaded.

70044490-000

.--~

Function

The COMPUTE statement assigns to one or more data items the value of
an arithmetic expression.

Format

COMPUTE identifier-' [ROUNDED] [,identifier-2 [ROUNDED]] ...
= arithmetic-expression [;ON SIZE ERROR imperative-statement]

Rules

1. Identifiers that appear only to the left of = must refer to either an
elementary numeric item or an elementary numeric-edited item.

2. See 6.5.1, "ROUNDED Phrase;" 6.5.2, "SIZE ERROR Phrase;" 6.5.4,
"Arithmetic Statements;" 6.5.5, "Overlapping and "Multiple
Results in Arithmetic Statements."

3. An arithmetic expression consisting of a single identifier or literal provides a
method of setting the values of identifier-1, identifier-2, etc., equal to the
value of the single identifier or literal. (See 6.3.)

4. If more than one identifier is specified for the result of the operation
(preceding =), the value of the arithmetic expression is computed then stored
as the new value of each of identifier-1, identifier-2, etc., in turn.

5. The COMPUTE statement allows the user to combine arithrnetic operations
without the restrictions on composite of operands or receiving data items
imposed by the arithmetic statements ADD, SUBTRACT, MULTIPLY, and
DIVIDE. (See Appendix E.)

70044490-000 6-39

Procedure Division

6.6.8. COpy Statement

6-40

Function

The COpy statement incorporates text into a COBOL source program.

Format

COPY text-name [{~:} library-name 1

REPLACING { , {==pseUdo-text.,==} BY {==pseUdo-text-2==} } .•.
identifier-1 identifier-2
literal-' literal-2
word-1 word-2

Rules

1. Text-name or library-name must follow the rules for formation of a user­
defined word; however, only the first eight characters of a text-name or
library-name are used by the operating system. A text-name is used to
identify a COBOL library text. A library-name is used as the LFD name to
identify a COBOL library file.

2. If more than one COBOL library is available during compilation, text-name
can be qualified by the library-name identifying the COBOL library in which
the text associated with text-name resides.

If the library-name is not specified, the file-names given in the LIN
parameter are used. (See Appendix A, "Compiler Options.")

If the library-name is omitted in the COpy statement and the LIN
parameter is not given, the default name COPY$ is used as the
library-name.

3. The COpy statement must be preceded by a space and terminated by the
separator period.

4. A COpy statement may occur in the source program anywhere a
character-string or a separator may occur except that a COpy statement
must not occur within a COpy statement. The word COpy appearing in any
comment-entry is treated as a comment.

5. Pseudo-text-l must not be null, nor may it consist solely of the character
space, spaces, or comment lines.

6. Pseudo-text-2 may be null.

7004 4490-000

70044490-000

Procedure Division

7. Character-strings within pseudo-text-1 and pseudo-text-2 may be continued.
However, both characters of a pseudo-text delimiter must be on the same
line. (See 2.7.)

8. Word-lor word-2 may be any single COBOL word.

9. The compilation of a source program containing COpy statements is
logically equivalent to processing all COpy statements prior to the
processing of the resulting source program.

10. The effect of processing a COpy statement is that the library text associated
with text-name is copied into the source program, logically replacing the
entire COpy statement beginning with the reserved word COpy and ending
with the punctuation character period, inclusively.

11. If the REPLACING phrase is not specified,lthe library text is copied
unchanged.IIf the REPLACING phrase is specified, the library text is copied
and each properly matched occurrence of pseudo-text-I, identifier-I, word-I,
and literal-1 in the library text is replaced by the corresponding
pseudo-text-2, identifier-2, word-2, or literal-2. Pseudo-text-I, identifier-1,
word-1, and literal-1 must not be a prefix or a suffix.

The following is an example of a COpy statement with multiple
REPLACING phrases:

COPY COPYLIBX REPLACING 'IXF1WRKI BY 'IXF1DUM'
iIXF2WRK' BY I IXF2DUMI

12. For purposes of matching, identifier-1, word-1, and literal-1 are treated as
pseudo-text containing only identifier-1, word-I, or literal-1, respectively.

13. The comparison operation to determine text replacement occurs in the
following manner:

Any separator comma, semicolon, or space(s) preceding the leftmost library
text-word is copied into the source program. Starting with the leftmost
library text-word and the first pseudo-text-1, identifier-1, word-1, or literal-1
that was specified in the REPLACING phrase, the entire REPLACING
phrase operand that precedes the reserved word BY is compared to an
equivalent number of contiguous library text-words.

Pseudo-text-I, identifier-I, word-I, or literal-I match the library text if, and
only if, the ordered sequence of text-words that forms pseudo-text-I,
identifier-1, word-I, or literal-1 is equal, character for character, to the
ordered sequence of library text-words. For purposes of matching, each
occurrence of a separator comma or semicolon in pseudo-text-1 or in the
library text is considered to be a single space except when pseudo-text-l
consists solely of either a separator comma or semicolon, in which case it
participates in the match as a text-word. Each sequence of one or more space
separators is considered to be a single space.

6-41

6-42

If no match occurs, the comparison is repeated with each successive pseudo­
text-I, identifier-I, word-I, or literal-I, if any, in the REPLACING phrase
until either a match is found or there is no successive REPLACING Ar"O:>1"'Q,nrl

When all the REPLACING phrase operands have been compared and no
match has the leftmost library text-word is copied into the source
program. The next successive library text-word is then considered as the
leftmost library text-word, and the comparison cycle starts again with the
first pseudo-text-l, identifier-I, or literal-1 specified in the

phrase.

Whenever a match occurs between pseudo-text-1, identifier-I, , or
and the library text, the corresponding pseudo-text-2, identifier-2,

or literal-2 is placed into the source program. The library
immediately following the rightmost text-word that participated in the
match is then considered as the leftmost library text-word. The comparison
cycle starts again with the first pseudo-text-1, word-1, or
literal-1 specified in the REPLACING phrase.

The comparison operation continues until the rightmost text-word in the
library text has either participated in a match or been considered as a
leftmost library text-word and participated in a complete cycle.

14. A comment line occurring in the library text and pseudo-text-1 is
interpreted, for purposes of matching, as a single space. Comment
appearing inlpseudo-text-2 andllibrary text are copied into the source
program unchanged.

15. Debugging lines are permitted within text and pseudo-text-2.
Debugging lines are not permitted within pseudo-text-1; text-words within a
debugging line participate in the matching rules as if the 'D' did not appear
in the indicator area. If a COpy statement is specified on a u.GjUUj~5~AA5
then the text that is the result of the processing of the COpy statement will
appear as though it were specified on debugging lines with the
exc:eotIOll1: comment lines in library text will appear as comment lines in the
resultant source program.

16. Syntactic correctness of the library text cannot be independently determined.
Syntactic correctness of the entire source program cannot be
determined until all COpy statements have been completely processed.

17. Library text must conform to the for reference format.

18. Text-words after replacement are placed in the source program listing
according to the rules for reference format.

7004 4490-000

Function

The DELETE statement logically removes a record from a mass storage file.

Format

DELETE file-name RECORD [;INVAlID KEY imperative-statement]

Rules

1. File-name must be name of a relative or indexed file.

2. The INVALID KEY phrase must not be specified for a DELETE statement
that refers to a file in sequential access mode.

3. The INVALID KEY phrase must be for a DELETE statement
refers to a file not in sequential access mode and for an ""ppLLVU-'JA.V

USE procedure is not specified.

4. The associated file must be open in 1-0 mode at the time of the execution of
this statement. (See 6.6.23, "OPEN Statement.")

5. For files in the sequential access mode, the last inputJoutput statement
executed for file-name to the execution of the DELETE statement must
have been a successfully executed READ statement. The system
logically removes from the file the record that was accessed by that READ
statement.

6. For a file in randomlor dynamiclaccess mode, the operating system logically
removes from the file that record identified by the content of the RELATIVE
KEY or the prime record key data item associated with file-name. If the file
does not contain the record specified by the key, an INVALID KEY condition
exists. (See 8.2.5, "INVALID KEY Condition.")

7. After the successful execution of a DELETE statement, the identified record
has been logically removed from the file and can no longer be accessed.

8. The execution of a DELETE statement does not affect the content of the
record area associated with file-name.

9. The current record pointer is not affected by the execution of a DELETE
statement.

10. execution of the DELETE statement causes the value of the specified
FILE STATUS data if any, associated with file-name to be iJ\AU"''"'U.

(See 8.2.3, Status.")

70044490-000 6-43

Procedure Division

6.6.10. DISABLE Statement

Function

The DISABLE statement notifies the message control system (MCS) to inhibit
data transfer between specified output queues and destinations for output or
between specified sources and input queues for input.

Format

DISABLE {INPUT } cd-name WITH KEY {identifier-,}
OUTPUT L..-__ ---' l i teral-'

Rules

1. Cd-name must reference an input CD when the INPUT phrase is specified.

2. Cd-name must reference an output CD when the OUTPUT phrase is
specified.

3. Literal-lor the data item referenced by identifier-l must be defined as
alphanumeric, and its length must not exceed 10 characters.

4. The DISABLE statement provides a logical disconnection between the MCS
and the specified sources or destinations. When this logical disconnection is
already in existence, or is to be handled by some other means external to this
program, the DISABLE statement is not required in this program. The
logical path for the transfer of data between the COBOL programs and the
MCS is not affected by the DISABLE statement.

5. When the INPUT phrase with the optional word TERMINAL is specified,
the logical path between the source and all queues and subqueues is
deactivated. Only the content of the data item referenced by data-name-7
(SYMBOLIC SOURCE) of the area referenced by cd-name ismeaningful.

7. When the OUTPUT phrase is specified, the logical path for destination,~
I the logical paths for all destinations,lspecified by the content of the data item
referenced by data-name-5 (SYMBOLIC DESTINATION) of the area
referenced by cd-name is deactivated.

6-44 7004 4490-000

Procedure Division

8. Literal-lor the content of the data item referenced by identifier-l is
matched with a password built into the system. The DISABLE statement is
honored only if literal-lor the content and the size of the data item
referenced by identifier-l matches the system password. When literal-lor
the content and the size of the data item referenced by identifier-l does not
match the system password, the value of the STATUS KEY item in the area
referenced by cd-name is updated.

The length of a password ranges from 1 to 10 characters, inclusive.

9. The execution of a DISABLE statement causes the logical disconnection at
the earliest time the source or destination is inactive. The execution of the
DISABLE statement never causes the remaining portion of the message to
be terminated during transmission to or from a terminal.

6.6.11. DISPLAY Statement

Function

The DISPLAY statement causes low-volume data to be transferred to an
appropriate system logical device.

Format 1

DISPLAY {identifier-,} ['i~entifier-2 "'J j[UPON mnemoniC-nameJj
literal-' ,llteral-2· .

Format 2

r---------------------l

IDISPLAY {identifier-,} [,identifier-2] .. _
literal-1 ,literal-2

I .
UPON mnemonlc-name

[
USING {i~entifier-3}]

II teral-3

I
I

I
I

I I
[ON EXCEPTION imperative-statement] L _____________________ J

Format 3
r---------------------i

IDISPLAY {identifier.,} [,identifier-2] ... I
literal-1 ,literal'2

I . I
UPON mnemonlc-name

I .. I
[ON EXCEPTION lmperatlve-statement] L _____________________ ~

70044490-000 6-45

Rules

Note: Rules 1 through 5 pertain to all formats.

1. The DISPLAY statement causes the content of each operand to be
to the device in the order listed.

2. Each literal may be any figurative constant except ALL.

3. If a figurative constant is specified as one of the operands, only one
occurrence of the constant is displayed.

4. If the literal is numeric, it must be an unsigned integer.

5. The size a transfer is defined as

Device Number of Characters

SYSLST or SYSOUT 120

SYSLOG 55

SYSCONSOLE 55

SYSTERMINAL 55

SYSCOM 12

SYSSWCH 8

SYSSWCH-n 1

SYSWORK 1-1920

SYSFORMAT 1-1920

Note: Rules 6 through 14 pertain to format 1 only.

6. Mnemonic name is associated with a system logical device in the
SPECIAL-NAMES paragraph of the Environment Division and must be
associated with SYSLST, SYSOUT, SYSLOG, SYSCONSOLE,
SYSTERMINAL, SYSCOM, SYSSWCH, or SYSSWCH-n.

I 7. If the UPON phrase is not specified, SYSLST is used. I
8. If mnemonic-name is associated with SYSCOM, SYSSWCH, or SYSSWCH-n,

only one operand is permitted in the statement.

6-46 7004 4490-000

7004 4490-000

I
I
I

9. If the mnemonic-name is associated with SYSLST or and:

a. If the length of the data item transferred is less than or
120 characters, the data is transferred to the associated ",,,,,::·f-C>1rY>

device.

b. If the size of the data item transferred exceeds 120
beginning with the leftmost character and up to the limit of 120

is stored in the associated device .
... "','"nO, ,T"I,.". data is transferred "'0.,..,,'"', ,-,

10. If the mnemonic-name
of data to be ,~~~"',;.."!~'!:.,<Ynrl is limited to 55 characters.

11. If mnemonic-name is associated with

one character is transferred.

12. When a DISPLAY statement contains more than one
sellOlng item is the sum of the sizes associated with the ",.,..,.,,,, ... ,,,,-n..,

values of the are in the sequence in which the
are encountered.

13. If the identifiers are described
the contents of the data

DISPLAY format.

14. For numeric data items described with an "'..-.,"',....-,'.,.'r'

IS SEPARATE the operatlOn:al

Note: Rules 15 2

SIGN

Format 2 is used to data on a workstation terminal 'VUj,LUJl':;::' screen
services. The UPON must be

I 16. Mnemonic-name must also be in the SPECIAL-NAMES
! of the Environment Division and must be associated with SYSFORMAT.

I
I 17. Literal-3 must be a nonnumeric literaL
I
I 18. Literal-3 or the content of identifier-3 is made up of a 1- to
I of the screen format.

I
I 19.

I
If identifier-lor ... is a group the data
any subordinate item in the group must not contain an OCCURS
DEPENDING clause.

Procedure Division

6-48

r--------------------------l
I 20. If identifier-lor identifier-2 is described implicitly or explicitly as USAGE
I other than DISPLAY, no data conversion is performed by the I
I COBOL-generated object code. If data conversion is required, it must be I
I specified in the controlling screen format. I

I

21. The ON EXCEPTION phrase must be specified if the mnemonic-name is
declared in the SPECIAL-NAMES paragraph with the CONTROL AREA
clause. The ON EXCEPTION phrase must not be specified if the
mnemonic-name is not described with the CONTROL AREA clause.

22. The ON EXCEPTION phrase is executed when the execution of the
DISPLAY statement is unsuccessful. (See key code 1, 2, 3, or 9 in the "Status
Key 1" column of Table 4-1.)

23. A screen format must be specified for a given workstation before data can be
displayed. A screen format may be specified via job control language or by
the USING phrase of a DISPLAY statement.

I Note: Rules 24 through 29 pertain to format 3 only.
I
I 24. Format 3 is used to display data on a workstation terminal without using

screen format services. The UPON phrase must be specified.
I

II 25. Mnemonic-name must also be specified in the SPECIAL-NAMES paragraph
of the Environment Division and must be associated with SYSWORK.

26. If identifier-lor identifier-2, ... is a group item, the data description entry of
any subordinate item in the group must not contain an OCCURS
DEPENDING clause.

27. The ON EXCEPTION phrase must be specified if the mnemonic-name is
declared in the SPECIAL-NAMES paragraph with the CONTROL AREA
clause. The ON EXCEPTION phrase must not be specified if the
mnemonic-name is declared without the CONTROL AREA clause.

28. The ON EXCEPTION phrase is executed when the execution of the
DISPLAY statement is unsuccessful. (See key code 1,2,3 or 9 in the "Status
Key I" column of Table 4-1.)

I
I
I

i 29. Mter the execution of a format 3 DISPLAY statement, the cursor is I
L __ ~o:~~~~~~ ~~ t!2: start of the next line. ______________ J

70044490-000

Procedure Division

6.6.12. DIVIDE Statement

Function

The DIVIDE statement divides one numeric data item into others and sets the
values of data items equal to the quotient~emainder.1

Format 1

DIVIDE {identifier.1} INTO identifier-2 [ROUNDED]
literal-'

1[, i dent i f i er -3 [~] .•. 1 [;ON SIZE ERROR imperat ive -statement]

Format 2

DIVIDE {identifier-1} INTO {identifier-2} GIVING identifier-3 [ROUNDED]
literal-' literal-2

![,identifier-4 [~]] ... I[;ON SIZE ERROR imperative-statement]

Format 3

DIVIDE {identifier-1} BY {identifier-2} GIVING identifier-3 [ROUNDED]
literal-' literal 2

1[,identifier-4 [ROUNDED]] ... I[;ON SIZE ERROR imperative-statement]

Format 4

DIVIDE {identifier-,} INTO {identifier-2} GIVING identifier-3 [ROUNDED]
literal-1 literal-2

REMAINDER identifier-4 [;ON SIZE ERROR imperative-statement]

Format 5

DIVIDE {identifier-,} BY {identifier-2} GIVING identifier-3 [ROUNDED]
literal-' literal-2

REMAINDER identifier-4 [;ON SIZE ERROR imperative-statement]

Rules

1. Each identifier must refer to an elementary numeric item, except that any
identifier associated with the GIVING or REMAINDER phrase must refer to
either an elementary numeric item or an elementary numeric-edited item.

7004 4490-000 6-49

2. Each literal must a numeric

4.

5. When format 1 is used, the value of identifier-lor literal-1 is divided into the
value of identifier-2. The value of the .nHj''''~l:'."n \~,-",,-, •• ,, ••

6. When format 2 is the value of identifier-lor literal-1 is
identifier-2 or literal-2 and the result is stored in A""""""",

,-:-::---:-:;:-:------,

7. When format 3 is used, the value of identifier-lor literal-1 is divided the
value of identifier-2 or literal-2 and the result is stored in

8. Formats 4 and 5 are used when a remainder from the division is
desired, namely identifier-4. The remainder in COBOL is defined as the
result of the product of the (identifier-3) and the divisor
from the dividend. If identifier-3 is defined as a numeric-edited the
quotient used to calculate the remainder is an intermediate field nAr,1""'"'"in

the unedited If ROUNDED is the used to calculate
the remainder is an intermediate field that contains the of the
DIVIDE truncated rather than rounded. When the REMAINDER

is specified, none of the may be floating

9. In formats 4 and 5, the accuracy of the REMAINDER data item \lQ1ent;n

10.

is by the calculation described in rule 8. decimal
angnmEmt and truncation (not will be for the content of
the data item referenced by as needed.

SIZE phrase is used in formats 4 5,

a. If the size error occurs on quotient, no remainder calculation is
Thus, the contents of the data items referenced by both

and identifier-4 will remain unchanged.

b. If the size error occurs on the remainder, the content of the data item
referenced identifier-4 remains as with other
instances of results of arithmetic the user will
have to determine which situation has actually occurred.

6-50 7004 4490-000

1

Function

The ENABLE statement notifies the message control system (MCS) to allow data
transfer between specified output queues and destinations for output or between
specified sources and input queues for input.

Format

ENABLE {INPUT
OUTPUT

Rules

1. Cd-name must reference an input CD when INPUT phrase is specified.

2. Cd-name must reference an output CD when the OUTPUT phrase is
specified.

3. Literal-lor the data item referenced by identifier-l must be defined as
alphanumeric, and its length must not exceed 10 characters.

4. The ENABLE statement provides a logical connection between the MCS and
the specified sources or destinations. When this logical connection is already
in existence, or is to be handled by some other means external to this
program, the ENABLE statement is not required in this program. The
logical path for the transfer of data between the COBOL programs and the
MCS is not affected by the ENABLE statement.

5. When the INPUT phrase with the optional word TERMINAL is specified,
the logical path between the source and all associated queues and subqueues
which are already enabled is activated. Only the content of the data item
referenced by data-name-7 (SYMBOLIC SOURCE) of the area referenced by
cd-name is meaningful to the MCS.

6. When the INPUT phraselwithout the optional word TERMINAL lis specified,
the logical paths for all of the sources associated with the queue and
subqueues specified by the contents of data-name-l (SYMBOLIC QUEUE)
through data-name-4 (SYMBOLIC SUB-QUEUE-3) of the area referenced
by cd-name are activated.

7. When the OUTPUT phrase is specified, the logical path for destination,~
I the logical paths for all destinations,lspecified by the content of the data item
referenced by data-name-5 (SYMBOLIC DESTINATION) of the area
referenced by cd-name is activated.

70044490-000 6-51

Procedure Division

8. Literal-lor the content of the data item referenced by identifier-l is
matched with a password built into the system. The ENABLE statement is
honored only if literal-lor the content and the size of the data item
referenced by identifier-l matches the system password. When literal-lor
the content and the size of the data item referenced by identifier-l does not
match the system password, the value of the STATUS KEY item in the area
referenced by cd-name is updated.

The length of a password ranges from 1 to 10 characters inclusive.

~----------------------------------l

I 6.6.14. EXHIBIT Statement I
I
I Function I
I I
I The EXHIBIT statement displays the current values of data items at selected I
I points in the program) I

Format

Rules

1.

2.

3.

4.

{
identifier } ...
nonnumeric-literal

An identifier length may not exceed 256 character positions.

An identifier may not be an index-data-item.

An EXHIBIT statement may appear anywhere in the Procedure Division or
in a debugging packet.

Variable-length identifiers are not permitted with the CHANGED or
CHANGED NAMED options.

I
I
I
I
I
I
!
I
I
I
I
I
I
I
1

I
I

5. The NAMED option displays the names of the identifiers specified with their I

6.

current values and any nonnumeric literals specified. I

The CHANGED NAMED option displays the names of the identifiers
specified with their current value only if the value has changed since the
EXHIBIT statement was last encountered. Any nonnumeric literals are
displayed on every encounter.

I
I
I
I
I
I

7. The CHANGED option displays the value of the identifier specified, but only I
I if the value has changed since the EXHIBIT statement was last encountered. I
L _________ Any nonnumeric literals ar~isplayed or: every encounte~ _______ .-J

6-52 7004 4490-000

Procedure Division

r------------------------------l I 8. The first time an EXHIBIT statement is executed, all identifier values are
I considered changed. I
I I
I 9. Values of identifiers are displayed on SYSLST (4.3.3). I
I I
I 10. If two EXHIBIT statements each specify either the CHANGED or I
I CHANGED NAMED option and the same identifier, the change in value of I L ______ the identifier is associated ind~pendently with eac~f th~two ~atements~ J

6.6.1~'~-EXIT Statement

Function

The EXIT statement provides a common end point for a series of procedures or
marks the logical end of a called program.

Format

EXIT [PROGRAM]

Rules

1. The EXIT statement must appear in a sentence by itself. It must be preceded
by a paragraph-name and be the only sentence in the paragraph.

2. An EXIT statement without the optional word PROGRAM serves only to
enable the user to assign a procedure-name to a given point in a program. It
has no other effect on the compilation or execution of the program.

3. An execution of an EXIT PROGRAM statement in a called program causes
control to be passed to the calling program. An EXIT PROGRA1.Vl statement
in a program that is not called is executed like an EXIT statement without
the PROGRAM phrase.

6.6.16. GO TO Statement

Function

The GO TO statement causes control to be transferred from one part of the
Procedure Division to another.

r------------------------l
I A format 3 GO TO statement is used as a special exit from a USE LABEL I
t procedure. I
~ ______ _______ _____________ ---1

Format 1

GO TO ITJ procedure-name-1 IT]

7004 4490-000 6-53

6-54

Format 2

GO TO procedure-name-1 [,procedure-name-2] ... ,procedure-name-n

DEPENDING ON identifier

-----------,
n......-rn-c.1I" 3 i

I I

1 ___ GO T~ MOR~LABELS J
Rules

1. is name of a numeric elementary item described without any
OJv'-,..<1J ,JIL/V to the of the point

2. A paragraph that is referenced by an ALTER staten1ent must consist of only
a header followed a format 1 GO TO statement.

st2lte:mEmt without procedure-name-1 must be the

4. If a TO statement represented by format 1 appears in a consecutive
sequence of imperative statements within a sentence, it must appear as the
last statement in that sequence.

5. When a GO TO statement represented by format 1 is executed, control is
transferred to or to another procedure-name if the GO TO
statement has been modified by an ALTER statement.

6. If procedure-name-1 is not specified in format 1, an ALTER statement
referring to this GO TO statement must be executed to the execution of

GO TO statement.

7. When a GO TO statement represented by format 2 is executed, control is
transferred to procedure-name-1, procedure-name-2, etc., depending on the
value of the identifier being 1, 2, ... , n. If the value of the identifier is

other than the positive or unsigned integers 1, 2, ... , n , then no
transfer occurs and control passes to the next statement in the normal
sequence for execution.

1,- --- - ---------- -----------------,
I 8. A format 3 GO TO statement can appear only within a USE LABEL
I procedure. I
I I I 9. When an input tape file is being processed, a format 3 GO TO statement is a I
I request to the input/output control system to make the next standard USE I
I LABELrecord available and return control to the beginning of the same USE I

LABEL procedure for further checking of labels. The USE LABEL procedure I
I is reentered only if there is another standard USE LABEL to be processed. I
I there need not be a program path flows through the last I
L _ ~tat~ment in th~USE LABEL .R.rocedure. _____________ ..J

70044490-000

1

- ------ - --- -- ---- --------1
an output tape file is being processed, a 3 TO statement I

reCluests the input/output control system to write the USE LABEL I
return control to the of the same USE LABEL procedure for I

further last USE LABEL is created, a I
that flows the last statement of the I

----------------~

Function

The IF statement causes a to be evaluated. (See 6.4.) The subsequent
action of the object program depends on whether the value of the condition is true
or false.

Format

IF conditf6n-l-T~~N j {statement-, }
- L - - J NEXT SENTENCE

o

statement- 2 }
NEXT SENTENCE

Rules

1. Statement-I and statement-2 represent either an imperative statement or a
conditional statement. Either may be fonowed by a conditional statement.

2. The ELSE NEXT SENTENCE phrase may be omitted if it .UJ.J.AU'VU..Il,-"",vA

precedes the terminal period of the sentence.

3. When an IF statement is executed, the following transfers of control occur:

a. If the condition is true, statement-I is executed, if specified. If
statement-I contains a procedure branching lor conditionallstatement,
control is explicitly transferred in accordance with the rules of that
statement. If it does not, the ELSE phrase, if specified, is ignored and
control passes to the next executable sentence.

b. If the condition is true and the NEXT SENTENCE phrase is
instead of statement-I, the ELSE phrase, if specified, is ignored and
control passes to the next executable sentence.

c. If the condition is false, statement-lor its surrogate NEXT SENTENCE
is ignored, and statement-2, if specified, is executed. If statement-2
contains a procedure branchinglor conditional I statement, control is
explicitly transferred in accordance with the of that statement. If
it does not, control passes to the next executable sentence. If the ELSE
statement-2 phrase is not specified, statement-I is ignored and control
passes to the next executable sentence.

7004 4490-000 6-55

Procedure Division

d. If the condition is false, and the ELSE NEXT SENTENCE phrase is
specified, statement-1 is ignored, if specified, and control passes to the
next executable sentence.

4. IF statement-1 or statement-2 contains an IF statement, the IF statement is
said to be nested.

5. IF statements within IF statements may be considered as paired IF and
ELSE combinations, proceeding from left to right. Thus, any ELSE
encountered is considered to apply to the immediately preceding IF that has
not been already paired with an ELSE.

6.6.18. INSPECT Statement

6-56

Function

The INSPECT statement provides the capability to perform the following
operations on occurences of single characterslor groups o~ charactersJin a data
item:

Ie Tally (format 1)

e Replace (format 2)

.. Tally and replace (format 3)

Format 1

INSPECT identifier-1 TALLYING

'{ {~ } {identifier-3} } LEADING literal-1
CHARACTERS

00 ,identifier-2 FOR

[{
BEFORE} INITIAL {i~entifier-4}]
AFTER llteral-2

Format 2

INSPECT identifier-1 REPLACING

CHARACTERS BY {identifier-6} [{BEFORE} INITIAL {i~entifier-?}]
literal-4 AFTER llteral-5

j

' m:~~NG} j'{~~~:~!~~~r-5} BY {~~~:~!~~~r-6})0)0
[{

BEFOREl INITIAL {identifier-?}]
AFTER J literal-5

70044490-000

Procedure Division

Format 3

INSPECT identifier-1 TALLYING

l,identifier
0

2 FOR 1 '{ {ALL } {identifier-3}}) D··) D·· LEADING literal-1
CHARACTERS

[{
BEFORE} INITIAL {i?entifier-4}]
AFTER llteral-2

REPLACING

CHARACTERS BY {identifier-6} [{BEFORE} INITIAL {identifier-?}]
literal-4 AFTER literal-5

l

,{ALL } 1 {identifier-S} BY {identifier-6}) D·· D·· LEADING literal-3 literal-4
FIRST

[{
BEFORE} INITIAL {i?entifier-7}1
AFTER llteral-S

Rules

1. Identifier-l must refer to either a group item or any category of elementary
item described either implicitly or explicitly as USAGE IS DISPLAY.

2. Identifier-3 ... identifier-n must refer to either an elementary alphabetic,
alphanumeric, or numeric item described either implicitly or explicitly as
USAGE IS DISPLAY.

3. Each literal must be nonnumeric and may be any figurative constant except
ALL.

4. Literal-I, literal-2, literal-3, literal-4 and literal-5, and the data items
referenced by identifier-3, identifier-4, identifier-5, identifier-6, and
identifier-7 must be one character in length in Levell. Except as specifically

[Eoted in the r~es, this_re~~iction on length does not apply to Level 2.

5. Identifier-2 must refer to an elementary numeric data item (formats I
and 3).

6. If either literal-lor literal-2 is a figurative constant, the figurative constant
refers to an implicit I-character data item (formats I and 3).

7. The size of the data referenced by literal-4 or identifier-6 must be equal to
the size of the data referenced by literal-3 or identifier-5. When a figurative
constant is used as literal-4, the size of the figurative constant is equal to the
size of literal-3 or the size of the data item referenced by identifier-5
(formats 2 and 3).

7004 4490-000 6-57

8. When the CHARACTERS is used, literal-4, literal-5 or the size of the
data item referenced by identifier-6, identifier-7 must be one character in

",'1-<"< 2 and 3).

9. When a figurative constant is used as the data referenced
literal-4 or identifier-6 must be one character in (formats 2 and 3).

10. Inspection, the comparison cycle, the establishment of
boundaries for the BEFORE or AFTER phrase, and the mechanism for

or replacing, begins at the leftmost character position of the data
item referenced by identifier-I, regardless of its class, and proceeds from
left to right to the rightmost character position as described in rules 13
1-1-0, .. "',·· 1-015.

11. For use in the INSPECT statement, the content of the data item referenced
identifier-I, identifier-3, identifier-4, or

identifier-7 is treated as follows:

a. If an identifier is described as alphanumeric edited, the INSPECT
statement treats the content of the identifier as a

b. If an identifier is described as edited, numeric or
unsigned numeric, the data item is inspected as it had been
redefined as alphanumeric (refer back to rule and the INSPECT
statement had been written to reference the redefined data item.

c. If an identifier is described as signed numeric, the data item is
inspected as though it had been moved to an unsigned numeric data
item of the same length and rule lIb had been (See
"MOVE Statement.")

12. In rules 13 through all references to literal-l literal-2,
and literal-5 apply equally to the content of the data item referenced

identifier-4, and,rlO, ·h1-,

13. inspection of the content of the data item referenced
........ /', "'''''''' matched occurrence of literal-l is tallied (formats 1 and

each matched occurrence of literal-3 is replaced literal-4
2 and 3).

14. The comparison operation to determine the occurrences of literal-l to be
tallied or occurrences of literal-3 to be replaced occurs as follows:

a. The operands of the TALLYING and REPLACING phrases are
considered in the order they are specified in the statement
from left to The first literal-3 is to an
number of contiguous starting with the leftmost character
!-,"'''}.H"eVAA In data item referenced identifier-I. Literal-I,
and that of the content of the data item referenced by
identifier-l match only if they are equal, character for character.

6-58 70044490-000

7004 4490-000

b. If no match occurs in the comparison of the first literal-1, the
comparison is with each successive literal-1, literal-3, if any,
until either a match is found or there is no next successive literal-1,
literal-3. When there is no next successive literal-1, the
character position in the data item referenced by identifier-1
immediately to the right of the leftmost character position considered in
the last comparison cycle is considered as the leftmost character
position, and the comparison cycle begins again with the first literal-1,
literal-3.

c. Whenever a match occurs, or takes place as described
in rules 17 19. The character position in the data item
referenced by identifier-1 immediately to right of the ,rT'ht-'..,..A'''t-

character position that participated in the match is now to be
the leftmost character position of the data item referenced
identifier-1, and the comparison cycle starts again with the first
literal-1, literal-3.

d. The comparison operation continues until the rightmost character
position of the data item referenced by identifier-1 has in a
match or has been considered as the leftmost character position. When
this occurs, inspection is terminated.

e. If the CHARACTERS phrase is specified, an 1-character
operand participates in the cycle described in rules 14a
except that no comparison to the content of the data item referenced
identifier-1 takes This implied character is considered to
match the leftmost character of the content of the data item ... A"f"r. r'...,

by identifier-1 -na· ... t,-' ,..,"~I-',t-.. J', ... nA,... in the current comparison

15. The comparison operation defined in rule 14 is affected by the BEFORE and
AFTER phrases as fonows:

a. If the BEFORE and AFTER phrase is not specified, literal-1, literal-3 or
the implied operand of the CHARACTERS in the
comparison operation as described in rule 14.

b. If the BEFORE phrase is specified, associated literal-1, or
the implied operand the CHARACTERS phrase participates in
those comparison cycles that involve that portion of the content of the
data item referenced identifier-1 from its leftmost character y\A,::"T',nrl

up to, but not the first occurrence of literal-2,
the content of the data item referenced identifier-I. The ,,",,1--,"­

this first occurrence is determined before the first cycle of the
comparison operation described in rule 14 is begun.
comparison cycle, literal-1, or the
CHARACTERS phrase is not eligible to it is considered not
to the content of the data item referenced by . If there
is no occurrence of literal-5 within the content of the data item

6-59

Procedure Division

referenced by identifier-I, its associated literal-I, literal-3, or the
implied operand of the CHARACTERS phrase participates in the
comparison operation as though the BEFORE phrase had not been
specified.

c. If the AFTER phrase is specified, the associated literal-I, literal-3, or
the implied operand of the CHARACTERS phrase may participate only
in those comparison cycles that involve that portion of the content of the
data item referenced by identifier-l from the character position
immediately to the right of the rightmost character position of the first
occurrence of literal-2, literal-5 within the content of the data item
referenced by identifier-l and the rightmost character position of the
data item referenced by identifier-I. The position of the first occurrence
is determined before the first cycle of the comparison operation
described in rule 14 is begun. If, on any comparison cycle, literal-I,
literal-3 or the implied operand of the CHARACTERS phrase is not
eligible to participate, it is considered not to match the content of the
data item referenced by identifier-I. If there is no occurrence of literal-2,
literal-5 within the content of the data item referenced by identifier-I,
its associated literal-I, literal-3, or the implied operand of the
CHARACTERS phrase is never eligible to participate in the comparison
operation.

Note: Rules 16 and 17 pertain to format 1 only.

16. The content of the data item referenced by identifier-2 is not initialized by
the execution of the INSPECT statement.

17. The rules for tallying are as follows:

a. If the ALL phrase is specified, the content of the data item referenced
by identifier-2 is incremented by 1 for each occurrence of literal-l
matched within the content of the data item referenced by identifier-I.

b. If the LEADING phrase is specified, the content of the data item
referenced by identifier-2 is incremented by 1 for each contiguous
occurrence of literal-l matched within the content of the data item
referenced by identifier-I, provided that the leftmost such occurrence is
at the point where comparison began in the first comparison cycle in
which literal-l was eligible to participate.

c. If the CHARACTERS phrase is specified, the content of the data item
referenced by identifier-2 is incremented by 1 for each character
matched (see rule 14e) within the content of the data item referenced by
identifier-I.

6-60 7004 4490-000

Procedure Division

Note: Rules 18 and 19 pertain to format 2 only.

18. The required words ALL, LEADING, and FIRST are adjectives that apply to
each succeeding BY phrase until the next adjective appears.

19. The rules for replacement are as follows:

a. When the CHARACTERS phrase is specified, each character matched
(see rule 14e) in the content of the data item referenced by identifier-l
is replaced by literal-4.

b. When the adjective ALL is specified, each occurrence of literal-3
matched in the content of the data item referenced by identifier-1 is
replaced by literal-4.

c. When the adjective LEADING is specified, each contiguous occurrence
of literal-3 matched in the content of the data item referenced by
identifier-1 is replaced by literal-4, provided that the leftmost
occurrence is at the point where comparison began in the first
comparison cycle in which literal-3 was eligible to participate.

d. When the adjective FIRST is specified, the leftmost occurrence of
literal-3 matched within the content of the data item referenced by
identifier-1 is replaced by literal-4.

Note: Rule 20 pertains to format 3 only.

20. A format 3 INSPECT statement is interpreted and executed as though two
successive INSPECT statements specifying the same identifier-l had been
written with one statement being a format 1 statement with TALLYING
phrases identical to those specified in the format 3 statement, and the other
statement being a format 2 statement with REPLACING phrases identical
to those specified in the format 3 statement. The rules given for matching
and counting apply to the format 1 statement and the rules given for
matching and replacing apply to the format 2 statement.

Example 1

INSPECT word TALLYING count for LEADING IILII BEFORE INITIAL IIAII,
count-1 FOR LEADING IIAII BEFORE INITIAL IILII.

where:

7004 4490-000

word = LARGE, count = 1, count-' = 0
word = ANALYST, count = 0, count-1 =

6-61

6-62

Example 2

INSPECT word TALLYING count FOR ALL liLli, REPLACING LEADING IIAII
BY liP' AFTER INITIAL DlLOI.

where:

word CALLAR, count 2, word CALLAR
word SALAMI I count 1, word SALEMI
word LATTER, count 1, word LETTER

3

INSPECT word REPLACING ALL IIAIi BY IIGII BEFORE INITIAL IiX".

where:

word = ARXAX, word = GRXAX
word = HANDAX, word HGNDGX

Example 4

INSPECT word TALLYING count FOR CHARACTERS AFTER INITIAL IIJiI
REPLACING ALL IWI BY IIBII.

where:

word ADJECTIVE, count = 6, word = BDJECTIVE
word JACK, count = 3, word = JBCK
word JUJMAB, count = 5, word = JUJMBB

Example 5

INSPECT word REPLACING ALL "XII BY UYiS, IIBII BY "ZII, IiW" BY liQII AFTER INITIAL IIRII.

where:

word RXXBQWY, word = RYYZQQY
word YZACDWBR, word = YZACDWZR
word RAWRXEB, word = RAQRYEZ

Example 6

INSPECT word REPLACING CHARACTERS BY IIBII BEFORE INITIAL IIAII.

where:

word before:
word after:

1 2 X Z ABC D
B B B B B ABC D

70044490-000

Function

The MERGE statement combines two or more identically sequenced files on a set
of specified keys and, the process, makes records in merge

to an output or to an output file.

Format

MERGE file-nameD, ON KEY data-nameD, [,data-name-2] ...

ON KEY data-name-3 [,data-name-4] ..•

[COLLATING SEQUENCE IS alphabet-name]

USING fi le-name-2, fi le-name-3[, fi le-name-4] ...

{

OUTPUT P~OCEDURE IS section-nameD, [{~~:~UGH} section-name-2]}

GIVING flle-name-5

Rules

70044490-000

1. File-name-l must be described in a
Data Division.

2. Section-name-l -,.",....,,,.ocn,,-,.,-C' the name of an

3.

file

implicitly or explicitly as having organization in
FILE-CONTROL paragraph and must be described in a file riAl',.,,.,,,,

in the

not in a sort-merge file description entry in the Data Division. The
actual size of the records described for
file-name-4, and file-name-5 must be equal to the actual size of the
record described for file-name-1. If the data of the elemEmt.lrY
items that up
responsibility to describe the records so as to cause an
number of character positions to be allocated for the records.

4. The words THRU and THROUGH are equivalent.

5. data-name-3, and data-name-4 are KEY
data-names and are subject to the following rules:

a. The data items identified by KEY data-names must be
records associated with file-name-1.

b. KEY data-names may be

c. identified
items.

KEY data-names must not be

in

6-63

Procedure Division

6-64

d. If file-name-1 has more than one record description, the data items
identified by KEY data-names need be described in only one of the
record descriptions.

e. None of the data items identified by KEY data-names can be described
by an entry that either contains an OCCURS clause or is subordinate to
an entry containing an OCCURS clause.

6. No more than one file-name from a multifile reel can appear in the MERGE
statement.

7. File-names must not be repeated within the MERGE statement. The
file-names specified in the USING phrase must not exceed 15.

8. MERGE statements may appear anywhere except in the declaratives portion
of the Procedure Division or in an input or output procedure associated with
a SORT or MERGE statement.

9. The MERGE statement will merge all records contained on file-name-2, file­
name-3, and file-name-4. The files referenced in the MERGE statement
must not be open at the time the MERGE statement is executed. These files
are automatically opened and closed by the merge operation with all implicit
functions performed, such as the execution of any associated USE
procedures. The terminating function for all files is performed as if a CLOSE
statement without optional phrases had been executed for each file.

10. The data-names following the word KEY are listed from left to right in the
MERGE statement in order of decreasing significance, disregarding how
they are divided into KEY phrases. In the format, data-name-1 is the major
key, data-name-2 is the next most significant key, etc.

III When the ASCENDING phrase is specified, the merged sequence will
be from the lowest value of the contents of the data items identified by
the KEY data-names to the highest value, according to the rules for
comparison of operands in a relational condition.

III When the DESCENDING phrase is specified, the merged sequence will
be from the lowest value of the contents of the data items identified by
the KEY data-names to the highest value, according to the rules for
comparison of operands in a relational condition.

11. The collating sequence that applies to the comparison of the nonnumeric key
data items specified is determined in the following order of precedence:

a. First, the collating sequence established by the COLLATING
SEQUENCE phrase, if specified, in that MERGE statement.

b. Second, the collating sequence established as the program collating
sequence.

7004 4490-000

70044490-000

Procedure Division

12. The output procedure must consist of one or more sections that appear
contiguously in a source program and do not form a part of any other
procedure. In order to make merged records available for processing, the
output procedure must include the execution of at least one RETURN
statement. Control must not be passed to the output procedure except when
a related SORT or MERGE statement is being executed. The output
procedure may consist of any procedures needed to select, modify, or copy the
records that are being returned one at a time in merged order from file­
name-I. The rules for procedural statements within the output procedure are
as follows:

a. The output procedure must not contain any transfers of control to points
outside the output procedure; ALTER, GO TO, and PERFORM
statements in the output procedure are not permitted to refer to
procedure-names outside the output procedure. COBOL statements are
allowed that will cause an implied transfer of control to declaratives.

b. The output procedures must not contain any SORT,IMERGE,lor CALL
statements.

c. The remainder of the Procedure Division must not contain any transfers
of control to points inside the output procedures; ALTER, GO TO, and
PERFORM statements in the remainder of the Procedure Division are
not permitted to refer to procedure-names within the output procedures.

13. If an output procedure is specified, control passes to it during execution of
the MERGE statement. The compiler inserts a return mechanism at the end
of the last section in the output procedure. When control passes the last
statement in the output procedure, the return mechanism provides for
termination of the merge and then passes control to the next executable
statement after the MERGE statement. Before entering the output
procedure, the merge procedure reaches a point at which it can select the
next record in merged order when requested. The RETURN statements in
the output procedure are the requests for the next record.

14. Segmentation (Section 10) can be applied to programs containing the
MERGE statement under the following conditions:

\III If the MERGE statement appears in a section that is not in an
independent segment, the output procedure referenced by that MERGE
statement must appear in one of the following ways:

Totally within nonindependent segments

Wholly contained in a single independent segment

6-65

6-66

• If a MERGE statement appears in an segment, then any
output procedure referenced by that MERGE statement must be
contained in one of the following ways:

nonindependent segments

Wholly within the same independent segment as the MERGE
statement

15. If GIVING is specified, the merged records in file-name-l are
automatically written on file-name-5 as the output for this
.U.i..i..:J..I.\,'U.i..:J statement.

16. In the case of an equal compare (according to the rules for comparison of
operands in a relation condition) on the contents of the data items identified
by all the KEY data-names between records from two or more files

the records are written on file­
name-5 or returned to the output procedure, depending on the phrase

in the order that the associated input files are specified in the
MERGE statement.

17. The results of the merge operation are predictable only when the records in
the files referenced by file-name-2, file-name-3, ... , are ordered as described
in the ASCENDING or DESCENDING KEY clause associated with the
MERGE statement.

18. The mode specified in the implementor-name of the ASSIGN clause for
file-name-2, file-name-3, file-name-4, or file-name-5 must be the same as the
mode specified for file-name-l.

Function

The MOVE statement transfers data to one or more data areas in accordance
with the rules of editing.

Format 1

MOVE {identifier-,} TO identifier-2 [,identifier-3] .•.
literal

Format 2

MOVE {CORRESPONDING} identifier-' TO identifier-2
CORR

7004 4490-000

Rules

L Identifier-l and literal represent the sending area; identifier-2,
identifier-3, ... , represent the receiving area.

2. CORR is an abbreviation for CORRESPONDING.

3. When the CORRESPONDING phrase is used, both identifiers must be group
items.

4. An index data item cannot appear as an operand of a MOVE statement. (See
"USAGE Clause" under 5.3.3.)

5. If the CORRESPONDING phrase is used, selected items within identifier-l
are moved to selected items within identifier-2, according to the rules given
in 6.5.3. The results are the same as if the user had referred to each pair of
corresponding identifiers in separate MOVE statements.

6. The data designated by the literal or identifier-l is moved first to identifier-
2, then to identifier-3, The rules referring to identifier-2 also apply to the
other receiving area.

7. Any move operation in which the sending and receiving items are both
elementary items is an elementary move. Every elementary item belongs to
one of the following categories: numeric, alphabetic, alphanumeric, numeric
edited, or alphanumeric edited (see "PICTURE Clause" under 5.3.3).
Numeric literals belong to the category numeric, and nonnumeric literals
belong to the category alphanumeric. The figurative constant ZERO belongs
to the category numeric. The figurative constant SPACE belongs to the
category alphabetic. All other figurative constants belong to the category
alphanumeric.

The following rules apply to an elementary move between these categories:

a. The figurative constant SPACE, a numeric-edited, alphanumeric-edited,
or alphabetic data item must not be moved to a numeric or
numeric-edited data item.

b. A numeric literal, the figurative constant ZERO, a numeric data item, or
a numeric-edited data item must not be moved to an alphabetic data
item.

c. A noninteger numeric literal or a noninteger numeric data item must
not be moved to an alphanumeric or alphanumeric-edited data item.

d. All other elementary moves are legal and are performed according to
rule 8.

70044490-000 6-67

Procedure Division

6-68

8. Any necessary conversion of data from one form of internal representation to
another takes place during legal elementary moves, along with any editing
specified for the receiving data item:

a. When an alphanumeric-edited or alphanumeric item is a receiving item,
alignment and any necessary space filling takes place as defined in 2.5.
If the size of the sending item is greater than the size of the receiving
item, the excess characters are truncated on the right after the receiving
item is filled. If the sending item is described as being signed numeric,
the operational sign will not be moved; if the operational sign occupied a
separate character position (see "SIGN Clause" under 5.3.3), that
character will not be moved and the size of the sending item will be
considered to be one less than its actual size (in terms of standard data
format characters).

b. When a numeric or numeric-edited item is the receiving item, alignment
by decimal point and any necessary zero-filling takes place as defined in
2.5, except where zeroes are replaced because of editing requirements.

• When a signed numeric item is the receiving item, the sign of the
sending item is placed in the receiving item (see "SIGN Clause"
under 5.3.3). The representation of the sign is converted as
necessary. If the sending item is unsigned, a positive sign is
generated for the receiving item.

It When an unsigned numeric item is the receiving item, the absolute
value of the sending item is moved and no operational sign is
generated for the receiving item.

• When a data item described as alphanumeric is the sending item,
data is moved as if the sending item were described as an unsigned
numeric integer.

c. When a receiving field is described as alphabetic, justification and any
necessary space-filling takes place (see 2.5). If the size of the sending
item is greater than the size of the receiving item, the excess characters
are truncated on the right.

9. Any move that is not an elementary move is treated as an alphanumeric-to­
alphanumeric elementary move, except that there is no conversion of data
from one form of internal representation to another. In such a move, the
receiving area will be filled without consideration for the individual
elementary or group items contained within either the sending or receiving
area, except as noted in rule 15 of the OCCURS clause (see "OCCURS
Clause" under 5.3.3).

10. Table 6-6 summarizes the validity of the various types of MOVE statements.
The notes indicate the rules that prohibit the move or describe the behavior
of a legal move.

70044490-000

7004 4490-000

Procedure Division

Table 6-6. Permissible MOVE Statement Data Transfers

Receiving Field

Source Field GR AL AN ED BI NE ANE ID EF

1 1 1 1 1
Group (GR) y y y y y y y y y

Alphabetic (AL) y y y N N N Y N N

4 4 4 4
Alphanumeric (AN) y y y y y y y y y

1 2 2
External decimal (ED) y N Y Y Y Y Y Y Y

1 2 2
Binary (Bl) y N Y Y Y Y Y Y Y

Numeric edited (NE) y N Y N N N Y N N

Alphanumeric edited (ANE) y y y N N N Y N N

3 3 3 3
ZEROS (numeric or y N Y Y Y Y Y Y Y
alphanumeric)

SPACES (AN) y y y N N N Y N N

5 5 5 5
ALL ilcharacter li Y Y y Y y Y y Y N

1 2 2
Numeric literal y N Y Y y y y y y

5 5 5 5
Nonnumeric literal (NNL) y y y y y y y y N

1 2 2
Internal decimal (1D) y N Y Y Y Y Y Y Y

External floating point (EF) y 1
N N Y Y Y N Y Y

1
Internal floating point (I F) Y N N Y y Y N Y Y

Floating point literal y 1
N N Y Y y N y y

Legend: Y - Denotes valid move
N - Denotes invalid move

Notes: 1 Move without conversion <like AN to AN)
2 Only if the decimal point is at the right of the least

significant digit
3 Numeric move

IF

1 1 y

N

4 4 y

Y

Y

N

N

3 3 y

N

N

y

N

Y

y

Y

y

4 The aLphanumeric field is treated as an ED (integer) field.
S The literal must consist only of numeric characters.

6-69

1.

Function

The MULTIPLY statement causes numeric data items to be multiplied and sets
the values of data items equal to the results.

Format 1

MULTIPLY
{

identifier-,} BY ldentifier-2 [ROUNDED]
literal-1

1[,identifier-3 [~] ..• 1 [;ON SIZE ERROR imperative-statement]

Format 2

MULTIPLY
{

identifier-,} BY {identifier-2} GIVING identifier-3 [ROUNDED]
literal-1 literal-2

1r-[-,-id-e-n-t-if-j-e-r--4-[R-O-U-ND-E-D-]--.-.-'.1 [;ON SIZE ERROR imperative-statement]

Rules

1. Each identifier must refer to a numeric elementary item, except that in
format 2 each identifier following the word GIVING must refer to either an
elementary numeric item or an elementary numeric-edited item.

2. Each literal must be a numeric literal.

3. The composite of operands, which is that hypothetical data item resulting
from the superimposition of all fixed-point receiving data items of a given
statement aligned on their decimal points, must not contain more than 18
digits.

4. See 6.5.1, "ROUNDED Phrase;" 6.5.2, "SIZE ERROR Phrase;" 6.5.4,
"Arithmetic Statements;" 6.5.5, "Overlapping Operands;"land 6.5.6, "Multiple I

I Results in Arithmetic Statements." I

5. When format 1 is used, the value of identifier-l or literal-l is multiplied by
the value of identifier-2. The value of the multi lier Cidentifier-2) is re laced
by this product; similarly for identifier-l or literal-l and identifier-3, etc.

6. When format 2 is used, the value of identifier-l or literal-l is multiplied by
identifier-2 or literal-2 and the result is stored in identifier-3,lidentifier-4, I

I etc. I

6-70 70044490-000

--------------------------------~

I
I
I
I
I
I
I

Function

The ON statement is a conditional statement that specifies both the condition to
be met and the statements to be executed.

Format

ON integer-1 [AND EVERY integer-Z] [UNTIL integer-3]

Rules

1.

2.

3.

4.

5.

6.

7.

{
statement-1 } [ELSE {statement-2 }]
NEXT SENTENCE NEXT SENTENCE

Integer-I, integer-2, and integer-3 are positive numeric literals.

Statement-I and statenlent-2 represent imperative statements.

The ELSE NEXT SENTENCE phrase may be omitted if it immediately
precedes the terminal period of the sentence.

A counter is associated with each ON statement. Each time the path of
control reaches the ON statement, the counter is advanced by one and the
count condition is evaluated. Statement-l is executed when the value of the
counter is equal to integer-lor integer-I + (m * integer-2), but less than
integer-3 (where m is any positive integer or zero). If the counter is not
equal, statement-2 is executed.

If the ELSE phrase is omitted, or ELSE NEXT SENTENCE is specified and
the counter is unequal, statement-I is ignored and control passes to the
sequence following the ON statement.

When integer-3 is not specified, no upper limit is assumed.

When integer-2 is omitted, but integer-3 is specified, integer-2 is assumed to
have the value 1.

I 8. When integer-2 and integer-3 are both omitted, statement-I is executed only
, once. L _______________________________ _

7004 4490-000 6-71

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Procedure Division

6.6.23. OPEN Statement

Function

The OPEN statement initiates the processing of files. It also performs checking
and writing of labels and other inputJoutput operations.

Format 1 (Sequential andl§:"~Files)

OPEN INPUT file-name-1
[
REVERSED] [, fi le-name-2 [REVERSED II

OUTPUT file-name-3
l:..Q file-name-5

WITH NO REWIND WITH NO REWIND

[WITH NO REWIND] [,file-name-4 [WITH NO REWIND]] ...
[,file-name-6]

EXTEND file-name-? [,file-name-8] '0.

Format 2 (Relative, Indexed, and~~~Files)

OPEN {INPUT file-name-' [,file-name-2l ... } ...
OUTPUT file-name-3 [,file-name-4] .0.
l:..Q file-name-5 [,file-name-6] ...

Rules

1. The OPEN statement must not reference a sort or merge file.

D

2. The successful execution of an OPEN statement determines the availability
of the file and results in the file being in an open mode.

3. The successful execution of an OPEN statement makes the associated record
area available to the program, but does not obtain or release the first data
record.

4. Upon successful execution of an OPEN statement with the OUTPUT phrase
specified, a file is created. At that time, the associated file contains no data

~------------------------
r~ords..:J For ISAM files, the OPEN OUTPUT statement indicates that the I

jfile is to be loaded or extended. The creation of a file (LOAD) is assumed :
Lunless ~he fil! alreadLexists, in which case file .!xtension is implie~ _ ~

5. An OPEN statement must be successfully executed before execution of any of
the permissible inputJoutput statements.

6. Table 6-7 indicates the permissible inputJoutput statements for each open
mode for the various file organizations and access modes.

6-72 70044490-000

7004 4490-000

Procedure Division

Table 6-1. Permissible Input/Output Statements for Each OPEN Mode

OPEN Mode
File File Access

Organization Mode Statement Input Output 1-0 Extend

Sequential READ X X
and Sequential WRITE X X
r - 1 REWRITE X

SAM
L _ J

Relative, READ X X
Indexed, WRITE X
and Sequential REWRITE X
r - - 1 START X X

ISAM DELETE X*
L __ J

READ X X
WRITE X* X

Random REWR ITE X
START
DELETE X*

READ X X
WRITE X X

Dynamic REWR ITE X
START X X
DELETE X*

r - - 1
*Not permitted for ISAM files.

L __ J

7. If standard system label records are specified for the file, the beginning
labels are processed as follows:

a. When the INPUT phrase is specified, the execution of the OPEN
statement causes the system labels to be checked in accordance with the
system-specified conventions for input label checking.

b. When the OUTPUT phrase is specified, the execution of the OPEN
statement causes the system labels to be written in accordance with the
system-specified conventions for output label writing.

8. For files being opened with the INPUT or 1-0 phrase, the OPEN statement
sets the current record pointer to the first record currently existing within
the file. For indexed files, the prime record key is established as the key of
reference and is used to determine the first record to be accessed.

If no records exist in the file, the current record pointer is set so the next
executed format 1 or format 2 READ statement for the file will result in an
at-end condition.

6-73

9. When the 1-0 phrase is specified and the LABEL RECORDS STANDARD
clause is present, the execution of the OPEN statement includes the
following steps:

a. The system labels are checked in accordance with the system-specified
conventions for inputJoutput label checking.

b. The new system labels are written in accordance with the
system-specified conventions for inputJoutput label writing.

Note: Rules 10 through 25 pertain to sequential and[§~files only.

10. ThelREVERSEDlandlNO REWINDlphrases apply only to single
REEUUNIT tape files.

11. The 1-0 phrase can be used only for mass storage files.

The EXTEND phrase can be used only for sequential files assigned to tape or
mass storage devices, and for SAM files.

13. The EXTEND phrase must not be specified for multiple file reels. (See 4.4.2
"I-O-CONTROL Paragraph".)

14. The files referenced in the OPEN statement need not all have the same
organization or access.

15. Prior to the successful execution of an OPEN statement for a given file, no
statement (except a SORT statement with the USING or GIVING phrase)
can be executed that references the file, either explicitly or implicitly.

16. A file may be opened with the INPUT, OUTPUT,IEXTEND,land 1-0 phrases
in the same program. Following the initial execution of an OPEN statement
for a file, each subsequent OPEN statement execution for that same file
must be preceded by the execution of a CLOSE statement, without the
REEL, UNIT,lor LOCKlphrase, for that file.

17. When the EXTEND phrase is specified and the LABEL RECORDS clause
indicates label records are present, the execution of the OPEN statement
includes the following steps:

a. The beginning file labels are processed only in the case of a single
reel/unit file.

b. The beginning reel/unit labels on the last existing reel/unit are
processed as though the file was being opened with the INPUT phrase.

c. The existing ending file labels are processed as though the file is being
opened with the INPUT phrase. These labels are then deleted.

d. Processing then proceeds as though the file had been opened with the
OUTPUT phrase.

~74 7004449~OOO

7004 4490-000

18. The 1-0 phrase permits the opening of a mass storage file for both input and
output operations. Since this implies the existence of the file, it
cannot be used if the mass storage file is being initially created.

19. The files referenced in the OPEN statement need not all have the same
organization or access.

20. The file description ent for file-name-1,lfile-name-2,lfile-name-5,lfile-1
name-6, file-name-7, or file-name-8 must be equivalent to that used when
this file was created.

21. If an input file is designated with OPTIONAL phrase in its SELECT
clause, the object program causes an interrogation for the presence or
absence of this file. If the file is not present, the first READ statement for
this file causes the at-end condition to occur. (See 6.6.25, "READ
Statement.")

22. The REVERSED phrase will be ignored if it does not apply to the storage
media on which the file resides.

23. If the storage medium for the
rules apply:

permits reverse processing, the fonowing

a. ! When neither the REVERSED nor the EXTEND phrase is specified, I
execution of the OPEN statement causes the file to be positioned at its
beginning.

b. When the REVERSED phrase is specified, the file is positioned at its
end by execution of the OPEN statement.

24. When the REVERSED phrase is specified, the subsequent READ statements
for the file make the data records of the file available in reversed order; that
is, starting with the last record.

25. When the EXTEND phrase is specified, the OPEN statement positions the
file immediately following the last logical record of that file. Subsequent
WRITE statements referencing the file will add records to the file as though
the file had been opened with the OUTPUT phrase.

------------------------------~

Note: Rules 26 through 30 pertain to relative, indexed, and~~files.

26. The files referenced in the OPEN statement need not all have the same
organization or access.

27. Prior to the successful execution of an OPEN statement for a given file, no
statement can be executed that references that file, either explicitly or
implicitly.

28. A file may be opened with the INPUT, OUTPUT, and 1-0 phrases in the
same program. Following the initial execution of an OPEN statement for a
file, each subsequent OPEN statement execution for that same file must be

6-75

Procedure Division

preceded by the execution of a CLOSE statement, without the LOCK phrase,
for that file.

29. The file description entry for file-name-I, file-name-2, file-name-5, or
file-name-6 must be equivalent to that used when this file was created.

30. The 1-0 phrase permits the opening of a file for both input and output
operations. Since this phrase implies the existence of the file, it cannot be
used if the file is being initially created.

6.6.24. PERFORM Statement

6-76

Function

The PERFORM statement is used to transfer control explicitly to one or more
procedures and to return control implicitly when execution of the specified
procedure is completed.

Format 1

PERFORM procedure-name-1 [{;~:~UGH} procedure-name-2]

Format 2

PERFORM procedure-name-1 [{THROUGH} procedure-name-2] {~dentifier-1} TIMES
THRU lnteger-1

Format 3

PERFORM procedure-name-' [{;::~GH} procedure-name-2] UNTIL condition-'

Format 4

PERFORM procedure-name-1 [{;::~GH} procedure-name-2]

VARYING {identifier-2} FROM {identifier-3}
index-name-1 indes-name-2

literal-1
BY {identifier-4} UNTIL condition-1

literal-2
continued

7004 4490-000

Rules

AFTER {identifier-S} FROM {identifier-6}
index-name-3 index-name-4

literaL-3
BY {identifier-?} UNTIL condition-2

literal-4

AFTER {identifier-S} FROM {identifier-9}
index-name-5 index-name-6

literat-5
BY {identifier-10} UNTIL condition-3

literal-6

Procedure Division

1. Each identifier represents a numeric elementary item described in the Data
Division. In format 2, identifier-1 must be described as a numeric integer.

2. Each literal represents a numeric literal.

3. The words THRU and THROUGH are equivalent.

4. If an index-name is specified in the VARYING or AFTER phrase, then:

a. The identifier in the associated FROM and BY phrase must be an
integer data item.

b. The literal in the associated FROM phrase must be a positive integer.

c. The literal in the associated BY phrase must be a nonzero integer.

5. If an index-name is specified in the FROM phrase, then:

a. The identifier in the associated VARYING or AFTER phrase must be
an integer data item.

b. The identifier in the associated BY phrase must be an integer data item.

c. The literal in the associated BY phrase must be an integer.

6. Literal in the BY phrase must not be zero.

7. Condition-I, condition-2, and condition-3 may be any conditional expression,
as described in 6.4.

8. Where procedure-name-I and procedure-name-2 are both specified and
either is the name of a procedure in the declarative section of the program,
then both must be procedure-names in the same declarative section.

9. The data items referenced by identifier-4, identifier-7, and identifier-I 0 must
not have a zero value.

70044490-000 6-77

6-78

10. If an index-name is specified in the VARYING or AFTER phrase, and an
identifier is specified in the associated FROM phrase, then the data item
referenced by the identifier must have a positive value.

11. When the PERFORM statement is executed, control is transferred to the
first statement of the procedure named procedure-name-l, except as
........ \. "' • .4'"''''\..< in rules 15, and 17. This transfer of control occurs once for
each execution of a PERFORM statement. For those cases where a transfer
of control to the named procedure does take place, an implicit transfer of
control to the next executable statement following the PERFORM statement
is established as follows:

(I If procedure-name-l is a paragraph-name and procedure-name-2 is not
specified, the return is after the last statement of procedure-name-l.

• If procedure-name-l is a section-name and procedure-name-2 is not
specified, the return is after the last statement of the last paragraph in
procedure-name-1.

• If procedure-name-2 is specified and it is a paragraph-name, the return
is after the last statement of the paragraph.

" If procedure-name-2 is specified and it is a section-name, the return is
after the last statement of the last paragraph in the section.

12. There is no necessary relationship between procedure-name-l and
procedure-name-2 except that a consecutive sequence of is to be
executed beginning at the procedure named procedure-name-l and ending
with the execution of the procedure named procedure-name-2. In particular,
GO TO and PERFORM statements may occur between procedure-name-l
and the end of procedure-name-2. If there are two or more logical paths to
the return point, then procedure-name-2 may be the name of a paragraph
consisting of the EXIT statement, to which all of these paths must lead.

13. If control passes to the procedures mentioned in rule 12 by means other than
a PERFORM statement, control win pass through the last statement of the
procedure to the next executable statement as if no PERFORM statement
mentioned these procedures.

14. Format 1 is the basic PERFORM statement. A procedure referenced by this
of PERFORM statement is executed once and then control passes to the

next executable statement following the PERFORM statement.

15. Format 2 is the The procedures are performed the
number of times specified by integer-lor by the initial value of the data item
referenced by identifier-l for that execution. The value of or the
initial contents of identifier-l may not exceed at the time of
execution of a PERFORM statement, the value of the data item rClt-ClY',Dnr'Qri

identifier-1 is to zero or is negative, control passes to the next
the PERFORM statement. Following the

7004 4490-000

16.

1

70044490-000

execution of the the number of
to the next executable statement

statement.

control is
the PERFORM

execution of the references to ,,''!o:n1C'T'

the number of times the are to be executed from that
the initial value of identifier-I.

the is is
after the PERFORM statement. If

no transfer to .,...,,...r,,,n,,rl,,, .. ,.,

is iJU'::>';:"::;'u' to the next executable statement
statement.

Format 4 is the

identifiers or index-names in an
PERFORM statement. In the
identifier as the of the

This variation of the

a. In format 4, when one identifier is varied
to the value of or the current value of
initial execution the PERFORM stalteJment;
the UNTIL nn1l"'QCO

1

continues until this condition is
transferred to the next executable statement
statement. If condition-l is true at the '-''-'!';'".U,'U.U'F,

PERFORM control is
statement.

6-79

Procedure Division

Entrance

Set Identlfler-2 equal to
current FROM value

Condltlon-1

False

Execute procedurename-'
THRU procedure-name-2

Augment Identlfler-2 with
current BY value

True
EXit

Figure 6-2. Flowchart for the VARYING Phrase Having One Condition

6-80

b. In format 4, when two identifiers are varied (Figure 6-3), identifier-2
and identifier-5 are set to the current value of identifier-3 and
identifier-6, respectively. After the identifiers have been set, condition-!
is evaluated; if true, control is transferred to the next executable
statement; if false, condition-2 is evaluated. If condition-2 is false,
procedure-name-l through procedure-name-2 is executed once, then
identifier-5 is augmented by identifier-7 or literal-4, and condition-2 is
evaluated again. This cycle of evaluation and augmentation continues
until this condition is true. When condition-2 is true, identifier-5 is set
to the value of literal-3 or the current value of identifier-6, identifier-2 is
augmented by identifier-4, and condition-l is reevaluated. The
PERFORM statement is completed if condition-l is true; if not, the cycle
continues until condition-l is true.

During the execution of the procedures associated with the PERFORM
statement, any change to the VARYING variable (identifier-2 and
index-name-l), the BY variable (identifier-4), the AFTER variable
(identifier-5 and index-name-3), or the FROM variable (identifier-3 and
index-name-2) will be taken into consideration and will affect the
operation of the PERFORM statement.

7004 4490-000

Entrance

Set Identtfler-2 and Identlfler-5
to current FROM values

Procedure Division

True
Conditlon- 1 1-'-------..... EXit

False

Condltlon-2

False

Execute procedure-name-1
THRU procedure-name-2

Augment Identlfler-5 with

current BY value

True

Set Identlfler- 5 to Its
current FROM value

Augment Identlfler- 2 with

current BY value

Figure 6-3. Flowchart for the VARYING Phrase Having Two Conditions

At the termination of the PERFORM statement, identifier-5 contains
the current value of identifier-·6. Identifier-2 has a value that exceeds
the last used setting by an increment or decrement value, unless
condition-l was true when the PERFORM statement was entered, in
which case identifier-2 contains the current value of identifier-3.

When two identifiers are varied, identifier-5 goes through a complete
cycle (FROM, BY, UNTIL) each time identifier-2 is varied.

c. In format 4, when three identifiers are varied (Figure 6-4), the
mechanism is the same as for two identifiers except that identifier-8
goes through a complete cycle each time that identifier-5 is augmented
by identifier-7 or literal-4, which in turn goes through a complete cycle
each time identifier-2 is varied.

70044490-000 6-81

"',,,, ... 'U ... vAAU, identifier-5
r'TllO ... _ and

condition-l is true when
in which case contains

Entrance

t
Set Identifier 2 Identifier 5,

and Identlfler-8 to

current FROM values

!
True

Conditlon- 1 EXit

l False

True
Condltlon- 2

l False

True
Condltlon- 3

1 False

Execute procedure, name· 1 Set Identlfler·S to Set IdentlflE~r·5 to

THRU procedurename,2 liS current FROM value Its current FROM value

l
Augment IdentifierS Augment Identifier 5 Augment Identlfler- 2

Wlttl current BY value with curren! BY value with current BY value

6~4. Flowchart for the VARYING Phrase Three Conditions

6-82 70044490-000

18. If a sequence of statements referenced by a PERFORM statement includes
another PERFORM statement, the sequence of procedures associated with
the included PERFORM must itself either be totally included in, or totally
excluded from, the logical sequence referred to by the first PERFORM. Thus,
an active PERFORM statement whose execution point within the
range of another active PERFORM statement must not allow control to pass
to the exit of the other active PERFORM statement; two or
more such active PERFORM statements may not have a common exit. For
example:

Incorrect

x PERFORM a THRU m

a

d PERFORM f THRU

f

m

x PERFORM a THRU

a

d PERFORM f THRU

f J_ m

19. A PERFORM statement that appears in a section that is not in an
independent segment can have within its range, in addition to any
declarative sections whose execution is caused within that range, only one of
the following:

a. Sections or paragraphs wholly contained in one or more nonindependent
segments

b. Sections or paragraphs wholly contained in a single independent
segment

7004 4490-000 6-83

Procedure Division

20. A PERFORM statement that appears in an independent segment can have
within its range, in addition to any declarative sections whose execution is
caused within that range, only one of the following:

a. Sections or paragraphs wholly contained in one or more nonindependent
segments

b. Sections or paragraphs wholly contained in the same independent
segment as that PERFORM statement

READ Statement

Function

The READ statement makes available the next logical or specified record from a
file.

Format 1 (Sequential and~~Files)

READ file-name RECORD [INTO identifier] [;AT END imperative-statement]

r,:--:;,
Format 2 (Relative, Indexed, andL!~~Files)

READ file-name I[NEXT]I RECORD [INTO identifier] [;AT END imperative-statement]

Format 3 (Relative and~~~Files)

READ file-name RECORD [INTO identifier] [;INVALID KEY imperative-statement]

Format 4 (Indexed Files Only)

READ file-name RECORD [INTO identifier] [;KEY IS data-name]
[; INVALID KEY imperative-statement] L...-______ --'

Rules

1. The associated file must be open in the INPUT or 1-0 mode at the time the
statement is executed. (See 6.6.23, "OPEN Statement.")

2. A record is available to the object program immediately after the execution
of the READ statement.

3. The execution of the READ statement causes the value of the FILE STATUS
data item, if any, associated with file-name to be updated. (See 8.2.3.)

6-84 70044490-000

70044490-000

Procedure Division

4. The INTO phrase must not be used when the input file contains logical
records of various sizes as indicated by their record descriptions. The storage
area associated with identifier and the record area associated with file-name
must not be the same storage area.

5. When the logical records of a file are described with more than one record
description, these records automatically share the same storage area; this is
equivalent to an implicit redefinition of the area. The contents of any data
items that lie beyond the range of the current data record are undefined at
the completion of the execution of the READ statement.

6. If the INTO phrase is specified, the record being read is moved from the
record area to the area specified by identifier according to the rules specified
for the MOVE statement without the CORRESPONDING phrase. The
implied MOVE does not occur if the execution of the READ statement was
unsuccessful. Any subscripting or indexing associated with identifier is
evaluated after the record is read and immediately before it is moved to the
data item.

7. When the INTO phrase is used, the record being read is available in both the
input record area and the data area associated with the identifier.

8. If, at the time of execution of a format 1 or format 2 READ statement, the
position of the current record pointer for that file is undefined, the execution
of that READ statement is unsuccessful.

9. If, at the time of the execution of a format 1 or format 2 READ statement, no
next logical record exists in the file, the at-end condition occurs, and the
execution of the READ statement is considered unsuccessful. (See 8.2.3, "1-0
Status".)

10. When the at-end condition is recognized, the following actions are taken in
the specified order:

a. A value is placed into the FILE STATUS data item, if specified for this
file, to indicate an at-end condition. (See 8.2.4.)

b. If the AT END phrase is specified in the statement causing the
condition, control is transferred to the AT END imperative statement.
Any format 1 USE procedure specified for this file is not executed.

c. If the AT END phrase is not specified, a format 1 USE procedure must
be specified, either explicitly or implicitly, for this file, and that
procedure is executed.

When the at-end condition occurs, execution of the inputJoutput
statement that caused the condition is unsuccessful.

11. Following the unsuccessful execution of any READ statement, the content of
the associated record area and the position of the current record pointer are
undefined. For indexed files, the key of reference is also undefined.

6-85

6-86

Note: Rules 12 through "'''·-/ern''''' to sequential and[§~files only.

12. The AT END must be specified if no applicable format 1 USE
"""",,,,,,,",,1"1,,,'.<> is specified for file-name.

13. The record to be made
follows:

the READ statement is determined as

a. If the current record was by the execution of the
OPEN statement, the record pointed to by the current record pointer is
made

b. If the current record pointer was positioned by the execution of a
previous READ statement, the pointer is advanced to the next record in
the file and then that record is made available.

14. If the end of a reel or unit is execution of a READ
st8lteJment, and the end-of-file has not been the following

are executed:

a. The standard vJtJt,",,-J..lJ.f.:.. reel/unit label procedure

b. A ree1!unit swap

c. The standard beginning ree1!unit label procedure

d. The first data record of the new ree1!unit is made available

15. If a file described with the OPTIONAL phrase is not present at the time the
file is opened, then at the time of execution of the first READ statement for
the file, the AT END condition occurs and the execution of the READ
statement is unsuccessful. The standard end-of-file procedures are not
performed. (See 4.4.1, "FILE-CONTROL Paragraph;" 6.6.23, "OPEN
Statement;" 6.6.41, "USE Statement;" and 8.2.3, "1-0 Status.") Execution of
the program then proceeds as specified in rule 10.

16. When the at-end condition is recognized, a READ statement for that file
must not be executed until a successful CLOSE statement followed by a
successful OPEN statement for that file is executed.

1 7. Format 1 must be used for all files in sequential access mode.

18. For printer-destined files (files assigned to PRINTER or defined with an FC,
UC, or VC mode in the implementor-name of the ASSIGN clause), the READ
statement referencing this file does not make available any record that
contains only vertical positioning control information. (See 8.3.3.)

70044490-000

Note: Rules 19 through 33 pertain to ~AI,"'+"." indexed, and~~files.

20. Format 3 is used for relative or ISAM files in random access mode or in
dynamic access mode when records are to be retrieved ralldolml

21. Format 4 is used for indexed files in access mode or
Olurt"lc.n records are to be retrieved randomly.

'----------'-

22. The KEY phrase may be specified only for indexed files. Data-name must be
the name of a data item specified as a record key associated with file-name.
Data-name may be qualified.

23. The INVALID KEY or the AT END phrase must be specified if no
applicable USE procedure is specified for file-name.

24. The record to be made available by a format 2 READ statement is
determined as follows:

• For relative or ISAM files, the record pointed to by the current record
pointer (see 8.2.2) is made available if the current record pointer was
positioned by thelSTART orlOPEN statement and the record is still
accessible through the path indicated by the current record pointer. If
the record is no longer accessible, possibly caused by the deletion of the
record, the current record pointer is updated to to the next
existing record in the file and that record is then made available.

• For indexed files:

a. The record, pointed to by the current record is made
available provided that the current record pointer was positioned
by thelSTART orlOPEN statement and the record is still accessible
through the path indicated by the current record pointer; if the
record is no longer accessible, which may have been caused by the
deletion of the recordlor a change in an alternate record key,lthe
current record pointer is updated to point to the next existing
record within the established key of reference and that record is
then made available.

b. If the current record pointer was positioned by the execution of a
previous READ statement, the current record pointer is updated to
point to the next existing record in the file with the established key
of reference and then that record is made available.

7004 4490-000 6-87

Procedure Division

25. When the at-end condition has been recognized, a format 2 READ statement
for that file must not be executed without first executing one of the following:

a. A successful CLOSE statement followed by the execution of a successful
OPEN statement for that file

b. A successful START statement for that file

c. A successful format 3 or format 4 READ statement for that file

26. For a file for which dynamic access mode is specified, a format 2 READ
statement with the NEXT phrase specified causes the next logical record to
be retrieved from the file as described in rule 24.

27. If the RELATIVE KEY phrase is specified for a relative file, the execution of
a format 2 READ statement updates the contents of the RELATIVE KEY
data item such that it contains the relative record number of the record
made available.

28. For a relative file, the execution of a format 3 READ statement sets the
current record pointer to, and makes available, the record whose relative
record number is contained in the data item named in the RELATIVE KEY
phrase for the file. If the file does not contain such a record, the INVALID
KEY condition exists and execution of the READ statement is unsuccessful.
(See 8.2.5, "INVALID KEY Condition.")

29. For an indexed file being sequentially accessed, records having the same
duplicate value in an alternate record key, which is the key of reference, are
made available in the same order in which they are released by execution of
WRITE statements, or by execution of REWRITE statements that create
such duplicate values.

30. For an indexed file, if the KEY phrase is specified in a format 4 READ
statement, data-name is established as the key of reference for this retrieva1.
If the dynamic access mode is specified, this key of reference is also used for
retrievals by any subsequent executions of format 2 READ statements for
the file until a different key of reference is established for the file.

31. If the KEY phrase is not specified in a format 4 READ statement, the prime
record key is established as the key of reference for this retrieval.IIf the
dynamic access mode is specified, this key of reference is also used for
retrievals by any subsequent executions of format 2 READ statements for
the file until a different key of reference is established for the file.

6-88 7004 4490-000

Procedure Division

32. Execution of a format 4 READ statement causes the value of the key of
reference to be compared with the value contained in the corresponding data
item of the stored records in the file, until the first record with an equal
value is found. The current record pointer is positioned to this record, which
is then made available. If no record is so identified, the INVALID KEY
condition (see 8.2.5) exists and execution of the READ statement is
unsuccessful.

I------------------------------~

I 33. For an ISAM file, execution of a format 3 READ statement causes the record I
I key to be compared with the value contained in the corresponding data item I
: of the stored records in the file, until the first record with an equal value is I
I found. The current record pointer is positioned to this record, which is then I
I made available. If no record is so identified, the INVALID KEY condition :
: __ (se~.2.5) exists ~n~ execution ~f the REA~ statemen~i~~successfu~ __ I

Statement

Function

The RECEIVE statement makes available to the COBOL program a message,
I message segment, or a portion of a message or segment,land pertinent

information about that data from a queue maintained by the message control
system (MCS). The RECEIVE statement allows for a specific imperative
statement when no data is available.

Format

RECEIVE cd-name {MESSAGE } INTO identifier-1.[;NO DATA imperative-statement]

ISEGMENTI

Rules

1. Cd-name must reference an input CD.

2. The contents of the data items specified by data-name-l (SYMBOLIC
QUEUE) through data-name-4 (SYMBOLIC SUB-QUEUE-3) of the area
referenced by cd-name designate the queue structure containing the
message. (See 5.6.1.)

3. The message,)message segment, or portion of a message or segmentlis
transferred to the receiving character positions of the area referenced by
identifier-l aligned to the left without space-fill.

4. When, during the execution of a RECEIVE statement, the MCS makes data
available in the data item referenced by identifier-I, control is transferred to
the next executable statement, whether or not the NO DATA phrase is
specified.

7004 4490-000 6-89

6-90

5. during the execution of a RECEIVE statement, the MCS does not
make data available in data item referenced by identifier-I:

a. If the NO DATA phrase is specified, RECEIVE is
terminated with the indication that action is completed (see rule and

'rn ,.,.' .. ."t-nTO statement in the NO DATA phrase is executed.

b. If the NO DATA is not specified, execution of the object program
is suspended until data is made available in the data item referenced
iden tifier-l.

c. If one or more queues or subqueues is to MCS, control
passes to the next statement whether or not the NO DATA
phrase is specified. (See Table

6. The data items identified by the input CD TEXT
END STATUS are 0"'''',,..,,,,,.,.., the MCS

at each execution of a RECEIVE statement. (See 5.6.1.)

7. A single execution of a RECEIVE statement never returns to the data item
referenced by identifier-l more a single when MESSAGE
phrase is used or a single segment when the IJ.L''VIJ''.L ... '''

However, the MCS does not pass any portion of a message to the object
program until the entire message is available in the queue, even if the
SEGMENT of the RECEIVE statement is "' r '-t-'AN

S. When the MESSAGE phrase is used, end-of-segment indicators are

9.

and the rules apply to the data transfer:

a. If a message is the same size as the area referenced by identifier-l the
message is stored in the area referenced by identifier-I.

b. If a message size is less than the area ot·o,..'nnl>or!

message is aligned to the leftmost character
referenced identifier-l with no ~u,-."r:;-.

the

c. If a message size is than the area referenced by identifier-I, the
message fills the area referenced by identifier-l left to

==------~~~~--~--~
with the leftmost character of the message. The remainder of the
message can area referenced by identifier-l with
subsequent RECEIVE statelnents to the same queue and
subqueues. The remainder of the message, for the purposes of applying
rules Sa, Sb, and Sc, is treated as a new message.

SEGMENT is used, the following rules apply:

a. If a segment is the same size as the area referenced
segment is stored in the area referenced by identifier-I.

the

70044490-000

b. If the size is less than the area referenced by ,rI ... "..., ,1",,., the
segment is aligned to the character position of
referenced by identifier-l with no space-fill.

c. If a segment size is greater than the area referenced by identifier-I, the
segment fills the area referenced by identifier-l left to right starting
with the leftmost character of the segment. The remainder of the
segment can be transferred to the area referenced by identifier-l with
subsequent RECEIVE statements calling out the same queue and
subqueues. The remainder of the segment, for the purposes of

9b, and 9c, is treated as a new segment.

d. If the text to be accessed by the statement has U",.;JV'-'AULIIJU.

with it an end-of-message indicator or end-of-group indicator, the
existence of an end-of-segment indicator associated with the test is
implied and the text is treated as a message segment to
rule 9.

10. Once the execution of a ,'-".L statement has returned a of a
message, subsequent execution of RECEIVE statements in
run-unit can cause the remaining portion of the message to be returned.

11. Mter the execution of a RUN statement, the
message partially obtained in that run-unit is lost.

Function

The RELEASE statement transfers records to the initial phase of a sort

Format

RELEASE record-name [FROM identifier]

Rules

1. A RELEASE statement may only be range of an
-n-,'r\r>Q,r-i" .. ·o associated with a SORT statement for a file whose
contains record-name. (See "SORT Statement.")

2. Record-name must be the name of a record in the associated SD
and maybe

3. Record-name and .J.U .. ,.LHI.LLJi'vL must not to the same area.

4. The execution of a RELEASE statement causes the record na-mea
record-name to be released to the initial of a sort 1"\11'"\,,, ... ,,,.1->(',,....

70044490-000 6-91

Procedure Division

5. If the FROM phrase is used, the content of the identifier data area is moved
to record-name, then the content of record-name is released to the sort file.
Moving takes place according to the rules specified for the MOVE statement
without the CORRESPONDING phrase. The information in the record area
is no longer available; but the information in the data area associated with
identifier is available.

6. After execution of a RELEASE statement, the logical record is no longer
available in the record area unless the associated sort file is named in a
SAME RECORD AREA clause. The logical record is also available to the
program as a record of other files referenced in the same SAME RECORD
AREA clause as the associated sort file, as well as to the file associated with
record-name. When control passes from the input procedure, the file consists
of all the records placed in it by execution of RELEASE statements.

6.6.28. RETURN Statement

Function

The RETURN statement obtains either sorted records from the final phase of a
sort operation or merged records during a merge operation.

Format

RETURN file-name RECORD [INTO identifier] ;AT END imperative-statement

Rules

1. File-name must be described by a sort-merge file description entry in the
Data Division.

2. A RETURN statement may only be used within the range of an output
procedure associated with a SORT/or MERGElstatement for file-name.

3. The INTO phrase must not be used when the input file contains logical
records of various sizes as indicated by their record descriptions. The storage
area associated with identifier and the record area associated with file-name
must not be the same storage area.

4. When the logical records of a file are described with more than one record
description, these records automatically share the same storage area; this is
equivalent to an implicit redefinition of the area. The contents of any data
items which lie beyond the range of the current data record are undefined at
the completion of the execution of the RETURN statement.

5. Execution of a RETURN statement causes the next record, in the order
specified by the keys listed in a SORTlor MERGE Istatement, to be made
available for processing in the record areas associated with the sort-merge
file.

6-92 7004 4490-000

Procedure Division

6. If the INTO phrase is specified, the current record is moved from the input
area to the area specified by identifier according to the rules for the MOVE
statement without the CORRESPONDING phrase. The implied MOVE does
not occur if there is an at-end condition. Any subscripting or indexing
associated with identifier is evaluated after the record is returned and
immediately before it is moved to the data item.

7. When the INTO phrase is used, the data is available in both the input record
area and the data area associated with identifier.

8. If no next logical record exists for the file at the time of the execution of a
RETURN statement, the at-end condition occurs. The contents of the record
areas associated with the file are undefined. After the execution of the
imperative statement in an AT END phrase, no RETURN statement may be
executed as part of the current output procedure.

6.6.29. REWRITE Statement

Function

The REWRITE statement logically replaces a record existing in a mass storage
file.

Format 1 (Sequential and[~Files)

REWRITE record-name [FROM identifier]

Format 2 (Relative, Indexed, and~AM1Files)

REWRITE record-name [FROM identifier] [;INVALID KEY imperative-statement]

Rules

1. Record-name and identifier must not refer to the same storage area.

2. Record-name is the name of a logical record in the File Section of the Data
Division and may be qualified.

3. The file associated with record-name must be a mass storage file and must
be open in the 1-0 mode at the time of execution of this statement. (See
6.6.23, "OPEN Statement.")

4. The number of character positions in the record referenced by record-name
must be equal to the number of character positions in the record being
replaced.

7004 4490-000 6-93

Procedure Division

5. The logical record released by a successful execution of the REWRITE
statement is no longer available in the record areal unless the associated file
is named in a SAME RECORD AREA clause, in which case the logical record
is available to the program as a record of other files appearing in the same
SAME RECORD AREA clause as the associated 1-0 file, as well as to the file
associated with record-name.

6. The execution of a REWRITE statement with the FROM phrase is
equivalent to the execution of MOVE identifier TO record-name fonowed by
the execution of the same REWRITE statement without the FROM phrase.
The content of the record area prior to the execution of the implicit MOVE
statement has no effect on the execution of the REWRITE statement.

7. The current record pointer is not affected by the execution of a REWRITE
statement.

8. The execution of the REWRITE statement causes the value of the FILE
STATUS data item, if any, associated with the file to be updated. (See 8.2.3,
"1-0 Status.")

9. For sequential files, the last 1-0 statement executed for the associated file
prior to the execution of the REWRITE statement must have been a
successfully executed READ statement. The operating system logically
replaces the record that was accessed by the READ statement.

Note: Rules 10 through 17 pertain to relative, indexed, and~:[4Rlfiles only.

10. The INVALID KEY phrase must not be specified for a REWRITE statement
that references a relative file in sequential access mode.

11. The INVALID KEY phrase must be specified in a REWRITE statement for
relative files in random or dynamic mode and for indexed or ISAM files in all
access modes if an appropriate USE procedure is not specified for the file.

12. For files in the sequential access mode, the last 1-0 statement executed for
the associated file prior to the execution of the REWRITE statement must
have been a successfully executed READ statement. The operating system
logically replaces the record that was accessed by the READ statement.

13. For a relative file accessed in either random or dynamic access mode, the
operating system logically replaces the record specified by the content of the
RELATIVE KEY data item associated with the file. If the file does not
contain the record specified by the key, the INVALID KEY condition exists.
(See 8.2.5.) The updating operation does not take place, and the data in the
record area is unaffected.

14. For an indexed file in the sequential access mode, the record to be replaced is
specified by the value contained in the prime record key. When the
REWRITE statement is executed, the value contained in the prime record
key data item of the record to be replaced must be equal to the value of the
prime record key of the last record read from this file.

6-94 7004 4490-000

7004 4490-000

Procedure UIV'I!iUm

15. For an indexed file in the randomlor dynamiclaccess mode, the record to be
replaced is specified by the prime record key data item.

16. The contents of alternate record key data items of the record being rewritten
may differ from those in the record being replaced. The MCS utilizes the
contents of the record key data items during the execution of the REWRITE
statement in such a way that subsequent access of the record may be made
based upon any of those specified record keys.

17. For an indexed file, the INVALID KEY condition exists when one of the
following occurs:

a. The access mode is sequential and the value contained in the prime
record key data item of the record to be replaced is not equal to the
value of the prime record key of the last record read from this file.

b. The value contained in the prime record key data item does not equal
that of any record stored in the file.

c. The value contained in an alternate record key data item for which a
DUPLICATES clause has not been specified is equal to that of a record
already stored in the file.

The updating operation does not take place and the data in the record area is
unaffected. (See 8.2.5.)

Note: Rules 18 through 20 pertain to [SAM files only.

F~ an ISAM file i~equential access mod~ the~cordto be replaced is- -l
specified by the value in the record key. When a REWRITE statement is I
executed, the value in the record key data item of the record to be replaced I
must equal the record key value of the last record read from this file. I

19. For an ISAM file in random or dynamic access mode, the record to be
replaced is specified in the record key data item.

I
I
I

20. An INVALID KEY condition exists
I

either of the following conditions: I
I

a. The access mode is sequential and the value in the record key data item I
of the record to be replaced does not equal the record key value of the I
last record read from this file. I

I
b. The value in the record key data item does not equal any record stored I

in the file. I

: The updating operation does not take place and data in the record area is I
L _~naffected (se~.2.52 __________________ J

6-95

Procedure Division

6.6.30. SEARCH Statement

Function

The SEARCH statement is used to search a table for a table element that
satisfies the specified condition and to adjust the associated index-name to
indicate that table element.

Format 1

SEARCH identifier-'
[
VARYING {~dentifier-2}l

lndex-name-1

[;AT END imperative-statement-1]
;WHEN condition-' {imperative-statement-2}

NEXT SENTENCE

[
;WHEN condition-2 {imperative-statement-3}]

NEXT SENTENCE

Format 2

SEARCH ALL identifier-' [;AT END imperative-statement-1]
;WHEN {data-name-1 {IS EQUAL TO} !i~entifier-3 }}

IS = llteral-1
arithmetic-expression-1

condition-nameD,

AND {data-name-2 {~~ :QUAL TO}

condition-name-2

{
imperative-statement-2}
NEXT SENTENCE

!

identifier-4 }} ...
literal-2
arithmetic-expression-2

Note: The required relational character = is not underlined to avoid confusion
with other symbols.

Rules

1. In both formats 1 and 2, identifier-I must not be subscripted or indexed; but
its description must contain an OCCURS clause and an INDEXED BY
clause. The description of identifier-l in format 2 must also contain the KEY
IS phrase in its OCCURS clause.

2. Identifier-2, when specified, must be described as USAGE IS INDEX or as a
numeric elementary item without any positions to the right of the assumed
decimal point.

3. In format 1, condition-I, condition-2, etc., may be any condition as described
in 6.4. Refer to Figure 6-5 for the logic of a SEARCH statement containing
two WHEN phrases.

6-96 7004 4490-000

Procedure Division

NOTES

Increment
Index-name-l (for
a different table)

or Identlfler-2

Imperallve­
statement-l

Imperatlve­
statement-2

Imperatlve­
statement-3

CD

CD These operations are options Included only when specified In the SEARCH statement

o Each of these control transfers IS to the next executable sentence unless the
Imperative-statement ends with a GO TO statement

Figure 6-5. Flowchart for Format 1 Search Operation Containing Two WHEN Phrases

70044490-000 6-97

Procedure umVISlfm

4. In format 2, all referenced condition-names must be defined as having only a
single value. The data-name associated with a condition-name must appear
in the KEY clause of identifier-I. Each data-name-I and data-name-2 may
be qualified. Each data-name-I and data-name-2 must be indexed by the
first index-name associated with identifier-I along with other indexes or
literals as required, and must be referenced in the KEY clause of identifier-I.
Identifier-3, identifier-4, or identifiers specified in arithmetic-expressIon-V
arithmetic-expression-2 must not be referenced in the KEY clause of
identifier-lor be indexed by the first index-name associated with
identifier-I.

In format 2, when a data-name in the KEY clause of identifier-I is
referenced, or when a condition-name associated with a data-name in the
KEY clause of identifier-I is referenced, all preceding data-names in the
KEY clause of identifier-lor their associated condition-names must also be
ref erenced.

5. If format 1 of the SEARCH statement is used, a serial type of search
operation takes place, starting with the current index setting.

a. If, at the start of execution of the SEARCH statement, the index-name
associated with identifier-I contains a value that corresponds to an
occurrence number that is greater than the highest permissible
occurrence number for identifier-I, the search is terminated
immediately. (The number of occurrences of identifier-I, the last of
which is the highest permissible, is discussed in the OCCURS clause.
(See "OCCURS Clause" under 5.3.3.) Then, if the AT END phrase is
specified, imperative-statement-l is executed; if the AT END phrase is
not specified, control passes to the next executable sentence.

b. If, at the start of execution of the SEARCH statement, the index-name
associated with identifier-I contains a value that corresponds to an
occurrence number that is not greater than the highest permissible
occurrence number for identifier-I (as explained in "OCCURS Clause"
under 5.3.3), the SEARCH statement evaluates the conditions in the
order that they are written, making use of the index settings, wherever
specified, to determine the occurrence of those items to be tested. If
none of the conditions are satisfied, the index-name for identifier-I is
incremented to obtain reference to the next occurrence. The process is
then repeated using the new index-name settings unless the new value
of the index-name settings for identifier-I corresponds to a table
element outside the permissible range of occurrence values, in which
case the search terminates as indicated in step 5a. If one of the
conditions is satisfied upon its evaluation, the search terminates
immediately and the imperative statement associated with that
condition is executed; the index-name remains set at the occurrence
which caused the condition to be satisfied.

6-98 7004 4490-000

Procedure Division

6. In a format 2 SEARCH statement, the results of the SEARCH ALL
operation are predictable only when one of the following conditions exists:

a. The data in the table is ordered in the same manner as described in the
ASCENDING/ DESCENDING KEY clause associated with the
description of identifier-I.

b. The contents of the keys referenced in the WHEN clause are sufficient
to identify a unique table element.

7. If format 2 of the SEARCH statement is used, a binary search operation
takes place. The initial setting of the index-name for identifier-l is ignored
and its setting is varied during the search operation so that it is never set to
a value that exceeds the value corresponding to the last element of the table
or is less than the value corresponding to the first element of the table. The
length of the table is discussed in "OCCURS Clause" under 5.3.3. If any of
the conditions specified in the WHEN clause cannot be satisfied for any
setting of the index within the permitted range, control is passed to
imperative-statement-l of the AT END phrase, when specified, or to the next
executable sentence when this phrase is not specified; in either case, the
final setting of the index is not predictable. If all the conditions can be
satisfied, the index indicates an occurrence that allows the conditions to be
satisfied, and control passes to imperative-statement-2.

8. Mter execution of an imperative statement that does not terminate with a
GO TO statement, control passes to the next executable sentence.

9. In format 2, the index-name that is used for the search operation is the first
(or only) index-name that appears in the INDEXED BY phrase of
identifier-I. Any other index-names for identifier-l remain unchanged.

10. In format 1, if the VARYING phrase is not used, the index-name that is used
for the search operation is the first (or only) index-name that appears in the
INDEXED BY phrase of identifier-I. Any other index-names for identifier-l
remain unchanged.

11. In format 1, if the VARYING index-name-l phrase is specified and if index­
name-l appears in the INDEXED BY phrase of identifier-I, that index-name
is used for this search. If not, or if the VARYING identifier-2 phrase is
specified, the first (or only) index-name given in the INDEXED BY phrase of
identifier-l is used for the search. In addition, the following operations win
occur:

a. If the VARYING index-name-l phrase is used, and if index-name-l
appears in the INDEXED BY phrase of another table entry, the
occurrence number represented by index-name-l is incremented by the
same amount as, and at the same time as, the occurrence number
represented by the index-name associated with identifier-l is
incremented.

7004 4490-000 6-99

Procedure Division

b. If the VARYING identifier-2 phrase is specified and identifier-2 is an
index data item, then the data item referenced by identifier-2 is
incremented by the same amount as, and at the same time as, the index
associated with identifier-l is incremented. If identifier-2 is not an
index data item, the data item referenced by identifier-2 is incremented
by 1 at the same time as the index referenced by the index-name
associated with identifier-l is incremented.

12. If identifier-l is a data item subordinate to a data item that contains an
OCCURS clause (providing for a 2- or 3-dimensional table), an index-name
must be associated with each dimension of the table through the INDEXED
BY phrase of the OCCURS clause. Only the setting of the index-name
associated with identifier-l (and the data item identifier-2 or index-name-l,
if present) is modified by the execution of the SEARCH statement. To search
an entire 2- or 3-dimensional table, it is necessary to execute a SEARCH
statement several times. Prior to each execution of a SEARCH statement,
SET statements must be executed whenever index-names must be adjusted
to appropriate settings.

6.6.31. SEND Statement

6-100

Function

The SEND statement causes a message, a message segment, or a portion of a message
I or segment Ito be released to one or more output queues maintained by the message

control system (MCS).

Format 1

SEND cd-name FROM identifier-'

Format 2

SEND cd-name [FROM identifier-1] WITH identifier-2
WITH ill

Rules

WITH ill
WITH ill

[{
BEFORE} ADVANCING {{{~dentifier-3} [LINE]}}]
AFTER lnteger LINES

PAGE

1. Cd-name must reference an output CD.

2. Identifier-2 must reference a I-character integer without an operational
sign.

70044490-000

Procedure Division

3. When identifier-3 is used in the ADVANCING phrase, it must be the name
of an elementary integer item.

4. The integer or the value of the data item referenced by identifier-3 may be
zero, but may not exceed 255.

5. When a receiving communications device (printer, display screen,
teletypewriter terminal, etc.) is oriented to a fixed line size:

a. Each message lor message segmentlwill begin at the leftmost character
position of the physical line.

b. A messagelor message segmentlthat is smaller than the physical line
size is released so as to appear space-filled to the right.

c. Excess characters of a messagelor message segmentlwill not be
truncated. Characters will be packed to a size equal to that of the
physical line and then outputted to the device. The process continues on
the next line with the excess characters.

6. When a receiving communication device (another program, another
computer, etc.) is oriented to handle variable-length messages, each message

lor message segmentlwill begin on the next available character position of the
communications device.

7. As part of the execution of a SEND statement, MCS will interpret the
content of the data item referenced by data-name-2 (TEXT LENGTH) of the
area referenced by cd-name to be the user's indication of the number of
leftmost character positions of the data item referenced by identifier-l from
which data is to be transferred.

If the content of the data item referenced by data-name-2 (TEXT LENGTH)
of the area referenced by cd-name is zero, no characters of the data item
referenced by identifier-l are transferred.

If the content of the data item referenced by data-name-2 (TEXT LENGTH)
of the area referenced by cd-name is outside the range of zero through the
size of the data item referenced by identifier-l inclusive, an error is indicated
by the value of the data item referenced by data-name-3 (STATUS KEY) of
the area referenced by cd-name, and no data is transferred. (See Table 5-11.)

8. As part of the execution of a SEND statement, the content of the data item
referenced by data-name-3 (STATUS KEY) of the area referenced by
cd-name is updated by MCS. (See 5.6.2.)

9. The effect of having special control characters within the content of the data
item referenced by identifier-l is the user's responsibility.

70044490-000 6-101

Procedure

10. A single execution of a SEND statement for format 1 releases only a single
portion of a message or of a message segment to MCS.

A single execution of a SEND statement of format 2 never releases to MCS
more than a single message or a single message segment as indicatedlby the I
content of the data item referenced by identifier-2 or by the specified
indicator ESI, EM!, or EGL

MCS will not transmit any portion of a message to a communications device
until the entire message is placed in the output queue.

11. During execution of the run-unit, a portion of a message not terminated by
an EMI or EGI is not sent to a destination, since the message does not
logically exist for MCS.

Mter execution of a STOP RUN statement, any portion of a message
transferred from the run-unit via a SEND statement, but not terminated by
an EMI or EGI, is purged from the system. Thus, no portion of the message
is senL

12. Once the execution of a SEND statement has released a portion of a message
to MCS, only subsequent execution of SEND statements in the same
run-unit can cause the remaining portion of the message to be released.

1,------------- - ------ - - ----- -- ----,
I 13. When an incomplete message is sent (format 1 or format 2 with ESI), the I
I output CD referenced by the SEND statement can only be used to add to or :
I complete the message. Until a message is completed, the content of I
L data-name-5 (SYMBOLIC DESTINATION table) cannot be changed. I
______________________________ --1

Note: Rules 14 through 19 pertain to format 2 only.

14. The content of the data item referenced by identifier-2 indicates that the
content of the data item referenced by identifier-1 is to have associated with
it an end-of-segment indicator, an end-of-message indicator, or an end-of­
transmission indicator according to the following schedule:

If the content then the content of
of identifier-2 identifier-' has
is associated with it which means

0 No indicator No indicator

1 ESI An end-of-segment indicator

2 EMI An end-of-message indicator

3 EGI An end-of-group indicator treated as
an end-of-message indicator

6-102 70044490-000

Procedure Division

Any character other than 1, 2, or 3 will be interpreted as O.

If the content of the data item referenced by identifier-2 is other than 1, 2, or
3, and identifier-1 is not specified, then an error is indicated by the value in
the data item referenced by data-name-3 (STATUS KEy) of the area
referenced by cd-name, and no data is transferred.

15.1 The ESI indicates to MCS that the message segment is completed.IThe EMI
indicates to MCS that the message is complete. The EGI is treated by MCS
as the equivalent of an EM!. MCS recognizes these indications and
maintains group, message,land segmentlcontrol.

16. The hierarchy of ending indicators is EGI, EMI, and ES!. An EGI need not
be preceded by an ESI or EMI. An EMI need not be preceded by an ESI.

17. The ADVANCING phrase allows control of the vertical positioning of each
message or message segment on a communication devices where vertical
positioning is applicable. If vertical positioning is not applicable on the
device, MCS will ignore the vertical positioning specified or implied.

18. If identifier-2 is specified and the content of the data item referenced by
identifier-2 is zero, the ADVANCING phrase is ignored by MCS.

19. On a device where vertical positioning is applicable and the ADVANCING
phrase is not specified, automatic advancing will be provided to act as if the
user had specified AFTER ADVANCING 1 LINE.

20. If the ADVANCING phrase is implicitly or explicitly specified and vertical
positioning is applicable, the following rules apply:

a. If identifier-3 or integer is specified, characters transmitted to the
communications device will be repositioned vertically downward the
number of lines equal to the value associated with the data item
referenced by identifier-3 or integer.

b. If the BEFORE phrase is used, the messagelor message segment lis
represented on the communications device before vertical repositioning.

c. If the AFTER phrase is used, the messagelor message segmentlis
represented on the communications device after vertical repositioning.

d. If PAGE is specified, characters transmitted to the communications
device will be represented on the device before or after (depending upon
the phrase used) the device is repositioned to the next page. If PAGE is
specified but page has no meaning in conjunction with a specific device,
then advancing will be provided to act as if the user had specified
BEFORE or AFTER (depending upon the phrase used) ADVANCING 1
LINE.

70044490-000 6-103

Procedure Division

6.6.32. SET Statement

6-104

Function

The SET statement establishes reference points for table handling operations by
setting index-names associated with table elements.

Format 1

SET {!~~:~~~!~:~~ ~:!~~:~~~!~::~~ :::} TO {:~~:~~~!~::~:}
integer-'

Format 2

Rules

lndex-name-4 [,index-name-Sl ... {UP BY }
DOWN BY { ~dentifier-4} lnteger-2

1. All references to index-name-I, identifier-I, and index-name-4 apply equally
to index-name-2, identifier-2, and index-name-5, respectively.

2. Identifier-I and identifier-3 must name either index data items or
elementary items described as an integer.

3. Identifier-4 must be described as an elementary numeric integer.

4. Integer-l and integer-2 may be signed. Integer-I must be positive.

5. Index-names are considered related to a given table and are defined by being
specified in the INDEXED BY phrase of the OCCURS clause.

6. If index-name-3 is specified, the value of the index before the execution of
the SET statement must correspond to an occurrence number of an element
in the associated table.

If index-name-4, index-name-5 is specified, the value of the index both before
and after the execution of the SET statement must correspond to an
occurrence number of an element in the associated table. If index-name-I,
index-name-2 is specified, the value of the index after the execution of the
SET statement must correspond to an occurrence number of an element in
the associated table. The value of the index associated with an index-name
after the execution of a SEARCH or PERFORM statement may be
undefined. (See 6.6.30, "SEARCH Statement;" and 6.6.24, "PERFORM
Statement.")

7004 4490-000

7004 4490-000

Procedure Division

7. In format I, the following action occurs:

a. Index-name-I is set to a value causing it to refer to the table element
that corresponds in occurrence number to the table element referenced
by index-name-3, identifier-3, or integer-I. If identifier-3 is an index
data item, or if index-name-3 is related to the same table as index­
name-I, no conversion takes place.

b. If identifier-I is an index data item, it may be set equal to either the
contents of index-name-3 or identifier-3, where identifier-3 is also an
index data item; no conversion takes place in either case.

c. If identifier-I is not an index data item, it may be set only to an
occurrence number that corresponds to the value of index-name-3.
Neither identifier-3 nor integer-I can be used in this case.

d. The process is repeated for index-name-2, identifier-2, etc., if specified.
Each time, the value of index-name-3 or identifier-3 is used as it was at
the beginning of the execution of the statement. Any subscripting or
indexing associated with identifier-I, etc., is evaluated immediately
before the value of the respective data item is changed.

8. In format 2, the content of index-name-4 is incremented (UP BY) or
decremented (DOWN BY) by a value that corresponds to the number of
occurrences represented by the value of integer-2 or identifier-4; thereafter,
the process is repeated for index-name-5, etc. Each time, the value of
identifier-4 is used as it was at the beginning of the execution of the
statement.

9. Table 6-8 indicates the validity of various operand combinations in the SET
statement and the applicable rule reference.

Table 6-8. Valid Uses of the Format 1 SET Statement

Receiving Item

Sending Item Integer Data Item Index-name Index Data Item

Integer literal No (rule 7c) Valid (rule 7a) No (rule 7b)

Integer data item No (rule 7c) Valid (rule 7a) No (rule 7b)

Index-name Valid (rule 7c) Valid (rule 7a) Valid (rule 7b)*

Index data item No (rule 7c) Valid (rule 1a)* Valid (ruLe 7b)*

*No conversion takes pLace

6-105

Procedure Division

6.6.33. SORT Statement

Function

The SORT statement creates a sort file by executing input procedures or
transferring records from another file; sorts the records in the sort file on a set of
specified keys; and, in the final phase of the sort operation, makes available each
record from the sort file, in sorted order, to some output procedures or to an
output file.

Format

SORT file-name-1 ON {ASCENDING} KEY data-name-1 [,data-name-2]
DESCENDING

Rules

[
ON {ASCENDING} KEY data-name-3 [,data-name-4] ...] ...

DESCENDING

[COLLATING SEQUENCE IS alphabet-name]

INPUT PROCEDURE IS section-name-' [{~::~GH} section-name-2]

USING file-name-2 1[,file-name-3J ••. 1

{

OUTPUT PROCEDURE IS section-name-3 [{~~:~UGH} section-name-4l}

GIVING file-name-4

1. File-name-1 must be described in a sort-merge file description entry in the
Data Division.

2. Section-name-1 is the name of an input procedure. Section-name-3 is the
name of an output procedure.

3. The file names specified in the USING phrase must not exceed 15.

4. File-name-2,lfile-name-3,land file-name-4 must be defined implicitly or
explicitly as having sequential organization in the FILE-CONTROL
paragraph and must be described in a file description entry, not in a
sort-merge file description entry, in the Data Division. The actual size of the
logical records described for file-name-2,lfile-name-3,land file-name-4 must
be equal to the actual size of the logical records described for file-name-1. If
the data descriptions of the elementary items that make up these records are
not identical, the programmer then must describe the corresponding records
so that equal amounts of character positions are allocated for the
corresponding records.

6-106 70044490-000

Procedure UIVISICIn

5. Data-name-1, data-name-2, data-name-3, and data-name-4 are KEY
data-names and are subject to the following rules:

a. The data items identified by KEY data-names must be described in
records associated with file-name-1.

b. KEY data-names may be qualified.

c. The data items identified by KEY data-names must not be
variable-length items.

d. If file-name-1 has more than one record description, the data items
identified by KEY data-names need by described in only one of the
record descriptions.

e. None of the data items identified by KEY data-names can be described
by an entry that either contains an OCCURS clause or is subordinate to
an entry that contains an OCCURS clause.

6. The words THRU and THROUGH are equivalent.

7. SORT statements may appear anywhere except in the declaratives portion of
the Procedure Division or in an input or output procedure associated with a
SORTlor MERGElstatement.

8. Only one file-name from a multifile reel can appear in a SORT statement.

9. In Levell, the Procedure Division of a program contains one SORT
statement and a STOP RUN statement in the first nondeclarative portion.
Other sections consist of only the input and output procedures associated
with the SORT statement.

10. In Level 2, the Procedure Division may contain more than one SORT
statement appearing anywhere except:

a. In the declaratives portion

b. In the input and output procedures associated with a SORT or MERGE
statement

11. The data-names following the word KEY are listed from left to right in the
SORT statement in order of decreasing significance without regard to how
they are divided into KEY phrases. In the format, data-name-1 is the major
key, data-name-2 is the next most significant key, etc.

a. When the ASCENDING phrase is specified, the sorted sequence will be
from the lowest value of the contents of the data items identified by the
KEY data-names to the highest value, according to the rules for
comparison of operands in a relational condition.

70044490-000 6-107

Procedure Division

6-108

h. When the DESCENDING phrase is specified, the sort sequence is from
the highest value of the contents of the data items identified by the KEY
data-names to the lowest value, according to the rules for comparison of
operands in a relational condition.

,------ ---- ----------------- ----,
I c. When the KEY data-names are described as DISPLAY floating-point I
I items, the sort sequence is based on the rules for comparison of I L alphanumeric operands in a relational condition. J
----------------- ------------

12. The collating sequence that applies to the comparison of the nonnumeric key
data items specified is determined in the following order of precedence:

a. The collating sequence established by the COLLATING SEQUENCE
phrase, if specified, in the SORT statement

b. The collating sequence established as the program collating sequence

13. The input procedure must consist of one or more sections that appear
contiguously in a source program and do not form a part of any output
procedure. To transfer records to the file referenced by file-name-l, the input
procedure must include the execution of at least one RELEASE statement.
Control must not be passed to the input procedure except when a related
SORT statement is being executed. The input procedure can include any
procedures needed to select, create, or modify records. The restrictions on the
procedural statements within the input procedure are as follows:

a. The input procedure must not contain any SORT,IMERGE,lor CALL
statements.

b. The input procedure must not contain any explicit transfers of control to
points outside the input procedure; ALTER, GO TO, and PERFORM
statements in the input procedure are not permitted to refer to
procedure-names outside the input procedure. COBOL statements are
allowed that will cause an implied transfer of control to declaratives.

c. The remainder of the Procedure Division must not contain any transfers
of control to points inside the input procedure; ALTER GO TO and
PERFORM statements in the remainder of the Procedure Division must
not refer to procedure-names within the input procedure.

14. If an input procedure is specified, control is passed to the input procedure
before file-name-l is sequenced by the SORT statement. The compiler
inserts a return mechanism at the end of the last section in the input
procedure and when control passes the last statement in the input
procedure, the records that have been released to file-name-l are sorted.

15. The output procedure must consist of one or more sections that appear
contiguously in a source program and do not form part of any input
procedure. To make sorted records available for processing, the output
procedure must include the execution of at least one RETURN statement.

70044490-000

Control must not be passed to the output procedure except when a related
SORT statement is being executed. The output procedure may consist of any
procedures needed to select, modify, or copy the records that are being
returned, one at a time in sorted order, from the sort file. The restrictions on
the procedural statements within the output procedure are as follows:

a. The output procedure must not contain any SORT,IMERGE,lor CALL
statements.

b. The output procedure must not contain any explicit transfers of control
to points outside the output procedure; ALTER, GO TO, and PERFORM
statements in the output procedure are not permitted to refer to
procedure-names outside the output procedure. COBOL statements are
allowed that will cause an implied transfer of control to declaratives.

c. The remainder of the Procedure Division must not contain any transfers
of control to points inside the output procedure; ALTER, GO TO and
PERFORM statements in the remainder of the procedure division are
not permitted to refer to procedure-names within the output procedure.

16. If an output procedure is specified, control passes to it after file-name-1 is
sequenced by the SORT statement. The compiler inserts a return mechanism
at the end of the last statement in the output procedure, the return
mechanism provides for termination of the sort and then passes control to
the next executable statement after the SORT statement. Before entering
the output procedure, the sort procedure reaches a point at which it can
select the next record in sorted order when requested. The RETURN
statements in the output procedure are the requests for the next record.

17. Segmentation as defined in Section 10 can be applied to programs containing
the SORT statement in accordance with the following rules:

a. If a SORT statement appears in a section that is not in an independent
segment, then any input procedures or output procedures referenced by
that SORT statement must appear in one of the following ways:

• Totally within nonindependent segments

• Wholly contained in a single independent segment

b. If a SORT statement appears in an independent segment, then any
input procedures or output procedures referenced by that SORT
statement must be contained in one of the following ways:

• Totally within nonindependent segments

EO Wholly within the same independent segment as that SORT
statement

70044490-000 6-109

6-110

18. If the USING

19. If the GIVING is all the sorted records in file-name-1 are
......... uv .. jUUl..J ... "'''UAJ written on file-name-4 as the for this

statement. At the time of execution of the SORT OvO'vc;.JLU.c;.iJ.lI.

file-name-4 must not be open. The SORT statement initiates
the processing of, releases the logical to, and terminates the
processing of file-name-4. These functions are so that any
associated USE are executed. The function is

as if a CLOSE had

J.J.u Ucv J functions of the return of the sorted records from the final of
the sort and the of the records from the file area for
file-name-1 to the file area for file-name-4.

20. The mode specified in the of the ASSIGN clause for
or file-name-4 must be the same as mode

for file-name-1.

Function

Format 1 ttlAEH3.tl\i'e and Indexed

START file-name KEY IS EQUAL TO
IS =
IS GREATER THAN
IS >
IS NOT LESS THAN
IS NOT <

I KEY imperative-statement]

pOSltlOrnng within a

data-name

7004 4490-000

Format 2 \. ,

r-------------------------i

Note:

file-name

NOT LESS
S NOT <:

I [;1 I KEY imperative-statement]
------ - --------------~

to avoid

Rules

1. File-name must be the name of a file with access.

2. Data-name may be

3. File-name must be open in the INPUT I-a mode the time that the
statement is eXI~Cultel].

4. The execution of the START statement causes the value of the FILE
data if any, associated with file-name to be UIJ' ... UA""'U..

5. format 1

6. If the KEY TO is

Note: Rules 7 10 to relative

7. He-·name must be the name of a relative file.

8. if must be in RELATIVE

9. u."' ... v.U<.4Jl Anl" a'l'"A· .. in the KEY
occurs between a associated with a record in the file referenced

He--naUle and a data item as in rule 10.

a. The current record is PO:Slt:lOnlea to the first
v.C>dl....," U"" in the file whose satisfies the nA n."...·::. ' ":or",,,

b. If is not satisfied an INVALID
KEY condition the execution

and the of the current record "'1"\,..--1",,, is undefined.
"INVALID KEY Condition.")

7004 4490-000 6-111

100 The comparison described in rule 9 uses the data item referenced by the
RELATIVE KEY clause associated with file-name.

Note: Rules 11 through 17 pertain to indexed files onlyo

11. File-name must be the name of an indexed file.

12. If the KEY phrase is specified, data-name may reference a data item
specified as a record key associated with file-name. The data-name may also
reference any alphanumeric data item subordinate to the data-name
specified as a record key associated with file-name. However, when a data­
name references a subordinate record key data item, the leftmost character
position of the data-name must correspond to the leftmost character position
of that record key data item.

13. The type of comparison specified by the relational operator in the KEY
phrase occurs between a key associated with a record in the file referenced
by file-name and a data item as specified in rule 14. If file-name references
an indexed file and the operands are of unequal size, comparison proceeds as
though the longer one were truncated on the right such that its length is
equal to that of the shorter. All other nonnumeric comparison rules apply
except that the presence of the PROGRAM COLLATING SEQUENCE
clause will have no effect on the comparison. (See "Comparison of
Nonnumeric Operands" under 6.4.1.)

a. The current record pointer is positioned to the first logical record
currently existing in the file whose key satisfies the comparison.

b. If the comparison is not satisfied by any record in the file, an INVALID
KEY condition exists, the execution of the START statement is
unsuccessful, and the position of the current record pointer is undefined.
(See 8.2.5.)

140 If the KEY phrase is specified, the comparison described in rule 9 uses the
data item referenced by data-name.

15. If the KEY phrase is not specified, the comparison described in rule 9 uses
the data item referenced in the RECORD KEY clause associated with
file-name.

16. Upon completion of the successful execution of the START statement, a key
of reference is established and used in subsequent format 2 READ
statements (6.6.25) as follows:

a. If the KEY phrase is not specified, the prime record key specified or
file-name becomes the key of referenced.

b. If the KEY phrase is specified, and data-name is specified as a record
key for file-name, that record key becomes the key of reference.

6-112 70044490-000

6.6.35.

Division

c. If the KEY phrase is specified, the data-name is not specified as a
record key for file-name, the record key whose leftmost character
position corresponds to the leftmost character position of the data item
specified by data-name becomes the key of reference.

17. If the execution of the START statement is not successful, the key of
reference is undefined.

Note: Rules 18 through 20 pertain to~~~files only.

~-------------------------------~

I 18. File-name must be the name of an ISAM file.

I I 19. Data-name, if specified, must be the data item specified in the RECORD
I KEY clause of the associated file-control entry.

I I 20. The type of comparison specified or implied occurs between a key associated
with a record in the file referenced by file-name and the data item specified
in the RECORD KEY clause of the associated file-control entry. All
nonnumeric comparison rules apply except that the presence of the
PROGRAM COLLATING SEQUENCE clause will have no effect on the
comparison. (See "Comparison of Nonnumeric Operands" under 6.4.1.)

I
I

I
I
I

a. The current record pointer is positioned to the first logical record
currently existing in the file whose key satisfies the comparison.

I b. If the comparison is not satisfied by any record in the file, an INVALID
I KEY condition exists, execution of the START statement is
i unsuccessful, and the position of the current record pointer is undefined.:
L ___ ~ee8.~~ _____________________ ~

Function

The STOP statement causes a permanent or temporary suspension of the
execution of the object program.

Format

STOP {RUN }
literal

Rules

1. The literal may be numeric or nonnumeric or may be any figurative constant
except ALL.

2. If the literal is numeric, then it must be an unsigned integer.

7004 4490-000 6-113

3. If a STOP RUN statement appears in a consecutive sequence of 1rY'1,T'\Cl,V"'1-nl'n

statements within a it must appear as last statement in that
sequence.

4. execution of the run-unit is terrninated and
control is ,...,. c· ... A'"",,,,,,, to the

5. If

C01nnluruc:abon, execution resumes at the next executable statement in
sequence.

Function

The STRING statement """"nn'-."'C' lux:tal)Osltlcm of the or H~I-''''-''Jv contents

Format

Rules

ifier-,} ['identi
iteral-' ,literal-2

••• DELIMITED BY

l,{identifier-4} [,identifier-s] ..• DELIMITED BY
literal-4 ,literal-5

INTO identifier-? [WITH POINTER identifier-B]
(;ON OVERFLOW imperative-statement]

1. Each literal may be any +"-.... ,, .. ·...,+·"71"\ constant without the "''''.-'A..-' word ALL.

2. must be described as nonnumeric
must be described ~A.UI-" "'.I."Ay

DISPLAY.

3. Identifier-7 must an 'VJc<;:,AU'C'.UI.IUA data item without
or the JUSTIFIED clause.

4. Identifier-B must represent an elementary numeric data item of
sufficient size to contain a value equal to the size 1 of the area
referenced identifier-7. The symbol P may not be used in the PICTURE

U.,.. __ '-'Tl ... ,.nn- of identifier-B.

5. . .. , or identifier-3 is an numeric
data it must be described as an without the symbol P in its
PICTURE roho,"' "t-n cot-.. "1"\fY

6-114 70044490-000

7004 4490-000

6.

7. represent the U'VAU.U.AAb items.

S. characters delimiting the move. If the
phrase is used, the data item defined identifer-l, literal-l

literal-2 is moved. When a figurative constant is used as the
it stands for a I-character nonnumeric literal.

9. When a figurative constant is specified as literal-I, literal-3, it
to an I-character data item whose usage is DISPLAY.

10. When a STRING statement is eXE~cu,te(l. the transfer of data is governed
the rules:

or from the content of the data
are transferred to

content of identifier-7 in accordance with the rules for alphanumeric-to-
moves, that no win be provided. (See

"MOVE Statement.")

b. If the DELIMITED is specified without the SIZE phrase, the
content of the data item referenced by identifier-I, identifier-2, or the
value of literal-2 is to the data item in
the sequence specified in the STRING statement beginning with the
leftmost character and continuing from left to right until the end of the
data item is reached, or until the characters specified by literal-3, or by
the content of identifier-3 are encountered. The characters specified by
literal-3 or the data item referenced by identifier-3 are not

c. If DELIMITED BY SIZE is specified, the entire content of literal-I,
or the content of the data item referenced by identifier-I,

identifier-2 is transferred, in the sequence specified in the STRING
.... vu.V 'CUvAAU, to the data item referenced by identifier-7 until all data has
been transferred or the end of the data item referenced by identifier-7
has been reached.

11. If the phrase is specified, identifier-S is explicitly available to the
programmer, who is responsible for setting its initial value. The initial value
must not be less than 1.

12. If the POINTER phrase is not specified, rules 13 through 16 apply as if the
user had specified identifier-S with an initial value of 1.

6-115

Procedure Division

13. When characters are transferred to the data item referenced by identifier-7,
the moves behave as though the characters were moved one at a time from
the source into the character position of the data item referenced by
identifier-7 designated by the value associated with identifier-8, and then
identifier-8 was increased by one prior to the move of the next character. The
value associated with identifier-8 is changed during execution of the
STRING statement only by the behavior specified.

14. After execution of the STRING statement, only the portion of the data item
referenced by identifier-7 that was referenced during the execution of the
STRING statement is changed. All other portions of the data item referenced
by identifier-7 contain data that was present before this execution of the
STRING statement.

15. If at any point at or after initialization of the STRING statement, but before
execution of the STRING statement is completed, the value associated with
identifier-8 is either less than 1 or exceeds the number of character positions
in the data item referenced by identifier-7, no (further) data is transferred to
the data item referenced by identifier-7, and the imperative statement in the
ON OVERFLOW phrase is executed, if specified.

16. If the ON OVERFLOW phrase is not specified when the conditions described
in rule 15 are encountered, control is transferred to the next executable
statement.

6.6.37. SUBTRACT Statement

6-116

Function

The SUBTRACT statement is used to subtract one, or the sum of two or more,
numeric data items from one or more items, and set the values of one or more
items equal to the results.

Format 1

SUBTRACT
{

identifier.,}
literal-' [

, identifier-2]
,literal-2

FROM identifier-m [ROUNDED] [,identifier-n [~]] ... I
[;ON SIZE ERROR imperative-statement]

7004 4490-000

Procedure Division

Format 2

SUBTRACT {identifier.,}
literal-1 [

,identifier-2] •.• FROM {identifier-m}
,literal-2 literal-m

GIVING identifier-n [ROUNDED] I [,identifier-o [~]] .•. I
[;ON SIZE ERROR imperative-statement]

Format 3

SUBTRACT {CORRESPONDING} identifier-' FROM identifier-2 [ROUNDED]
CORR

[;ON SIZE ERROR imperative-statement]

Rules

1. Each identifier must refer to a numeric elementary item except that:

a. In format 2, each identifier following the word GIVING must refer to an
elementary numeric item or an elementary numeric-edited item.

b. In format 3, each identifier must refer to a group item.

2. Each literal must be a numeric literal.

3. The composite of operands must not contain more than 18 digits. (See 6.5.4,
"Arithmetic Statements.")

a. In format 1, the composite of operands is determined by using all the
fixed-point operands in a given statement.

b. In format 2, the composite of operands is determined by using all the
fixed-point operands in a given statement, excluding the data items that
follow the word GIVING.

c. In format 3, the composite of operands is determined separately for each
pair of corresponding data items.

4. CORR is an abbreviation for CORRESPONDING.

5. See 6.5.1, "The ROUNDED Phrase;" 6.5.2, "The SIZE ERROR Phrase;"16.5.3, I
"The CORRESPONDING Phrase;" 6.5.4, "The Arithmetic Statements;" 6.5.5,
"Overlapping Operands;" and 6.5.6, "Multiple Results in Arithmetic

[§Otements." I

6. In format 1, all literals or identifiers preceding the word FROM are added

70044490-000 6-117

7. In format 2, all literals or
tOE~eUler the sum is

is

data items
cOl~reSp()n(lIng data items

--------------------------------------1

Function

The statement initiates

Rules

trace function.

I
I
I
I
I
I
I
I
I
I
I
I
I
I

1. on SYSLST the name and line number of I
a section or at the start of its execution. I

2. The statement READY TRACE initiates trace ont-nni-u when the flow of
I
I

program control passes to it

3. The TRACE statement terminates trace

4. -:1In'UUTno~'O within

Function

I
I

I
Procedure Division I

I

I
I
I
I
I

The TRANSFORM statement may be used to alter characters of an identifier
I

I

I
to a user-defined transformation rule or table.

Format 1

TRANSFORM identifier- [,identifier-2] CHARACTERS

ifier-3 } TO
"""""""'-' literal-'

ive-constant-1

I
I
I
I
I
I

L- _________________________________l

6-118 70044490-000

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

I
I
I

I
1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

- - - F'ormat 2 - - - - - - --- - - - - - - - - - - - - --1
TRANSFORM identifier-' [,identifier-2] ••. CHARACTERS I

I
I
I

Rules

1.

2.

3.

4.

5.

6.

7.

identif i eroS

I
I

eX~HlC:ltlyor asUSAGEIS I
and identifier-5 may not be variable- I

In format 1, identifier-3 and identifier-4 must not exceed 256 characters in
~"""A"'hU"'4. The of identifier-4 or nonnumeric-literal-2 must be either

I
I
I
I

to the of nonnumeric-literal-l, or have a of I
one character. I
In format I, all T,nn,.."o'l-,IUQ constants are pe]-mlttea

I
ALL nonnumeric I

In format 1, a character must not be UlULIJAAvU.'''JU. in identifier-3 or in
nonnumeric-literal-l.

In format 2, identifier-5 must have a of 256 characters.

The least digit of a decimal numeric display item
without a SEPARATE SIGN clause is treated as single not a

The most significant of a signed decimal numeric
---·'--~-.l item with a SIGN IS LEADING CHARACTER clause is treated as a

character, not a signed

For format 1, the following summarized in Table
various FROwrO combinations:

a. identifier-3 TO identifier-4
identifier-3 TO nonnumeric-literal-2
identifier-3 TO figurative-constant-2
nonnumeric-literal-' TO identifier-4
nonnumeric-literal-' TO nonnumeric-literal-2
nonnumeric-literal-' TO figurative-constant-2

• If the FROM and the TO r.T"IQran

occurrence in identifier-I, ,rll~ 1;·,1;,o,.._

character) in r.Y'I,nrO::lnrL

"n <~ roTr in the corTe~;po:nd],ng,.<""..-,,..,

describe the

I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

. I

one character, any occurrence in '-,-,-".L.LV'-'-'"

ope~rarld IS I
etc., of I

any character in operand-l is character in I
L ______________________________ _

70044490-000 6-119

Procedure Division

,------------ ------------- -----
I b. figurative-constant-' TO identifier-4

I
I
I
I

8.

figurative-constant-' TO nonnumeric-literal-2
figurative-constant-1 TO figurative-constant-2

• Length of operand-l and operand-2 is one character. Any occurrence
in identifier-l of the single character in operand-l is replaced by the
single character in operand-2.

For format 2, identifier-5 is a 0-255 binary-value positional translate table.
Any character in identifier-l with a binary value of 0 will be transformed to
the character in the first position of identifier-5; any character in identifier-l
with a binary value of 1 will be transformed to the character in the second
position of identifier-5, etc.

Table 6-9. Combination of FROM and TO Options in a TRANSFORM Statement

Ident.-' I dent. -1
Operands Rule Before FROM TO After

FROM All occurrences of figurative 111211113 QUOTE ZERO 102003
figurative-const.-1 constant-1 in the item represented
TO by identifier-' are replaced by
figurative-const.-2 figurative-constant-2. (Each operand

must be a single character.)

FROM All occurrences of figurative 1fl2fl3 SPACE 117 11 17273
figurative-const.-1 constant-' in the item represented
TO by identifier-' are replaced by
nonnumeric-literal-2 nonnumeric-literal-2. (Each operand

must be a single character.)

FROM All occurrences of figurative 1fl2fl3 SPACE ALPHA 1B2B3
figurative-const.-1 constant-' in the item represented (current
TO by i dent if i er-1 are replaced by value of
identifier-4 the item represented by ALPHA = B)

identifier-2. (Each operand must be
a single character.)

FROM All occurrences of any character of AB12X7P 111234567890 11 SPACE ABMX~P

nonnumeric-literaL-1 nonnumeric-literal-1 in the item
TO represented by identifier-1 are
figurative-const.-2 replaced by the singLe-character

figurative-constant-2.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I

I
I
I
I

continued I L ________________________________ J

6-120 70044490-000

Procedure Division

r-------------------------------~

I Table 6-9. Combination of FROM and TO Options in a TRANSFORM Statement (cant.) I

I I
I Ident.-' Ident.-' I
I Operands Rule Before FROM TO After I
i FROM Nonnumeri col i teral-1 and nonnumer i c- ABCD12X "ABCDEFGH I J" "1234567890" 123412X I

nonnumeric-literal-' literal-2 must be equal in length, I
I TO or nonnumeric-Literal-2 must be a
I nonnumeric-literal-2 single character. I
I I f the operands are equal in length. I
I any character in the item
I represented by identifier-1 is
I replaced by the character in the

I
corresponding position of non-
numeric-literal-2.

I
I
I
I
I
I
I
I
I

If nonnumeric-literal-2 is a single
character, then all occurrences of
any character of nonnumeric-literal-
1 in the item represented by
identifier-1 are replaced by the
single character in nonnumeric­
literal-2.

FROM The two operands must be equal in
nonnumeric-literal-1 length, or identifier-4 must
TO represent a single-character item.

I identifier-4
If the operands are equal in length,
any character in the item
represented by identifier-1 that is
equal to a character in nonnumeric­
literal-' is replaced by the
character in the corresponding
position of the iterm represented
by i den t if i e r -4 .

I

I
I
I
I
I I If identifier-4 is a single

character, then all occurrences of
I any character of nonnumeric-

I
literal-1 in the item represented
by identifier-1 are replaced by the

I character represented by

AB21X73

162MEF 1IfJ.12DEFII

ABC

BETA
(current
value of
BETA =
FED216)

GAMMA
(current
value of
GAMMA=1)

ABLLXLL

EFDF216

1BC

I identifier-4. I
I continued I L ________________________________ ~

70044490-000 6-121

----------------- - ---------- -------,

I
I

Tabie 6-9. Combination of FROM and TO in a TRANSFORM Statement

I
I
I FROM

Operands

I identifier-3
I TO

figurative-const.-2
I
I
I FROM

identifier-3
I TO
I nonnumeric-literal-2

I
I
I
I
I
I
I
I
I
I
I
I
I FROM
I identifer-3

I TO
identifier-4

I
I
I

Rule

All occurrences of any character of
the item represented by identifier-3
in identifiers' are replaced by the
single character figurative­
constant-2.

The two operands must be equal in
length; or nonnumeric-literals' must
be a single-character item.

f the operands are equal in length
any character in the item
represented by identifiers' that is
equal to a character in the item
represented by identifier-3 is
replaced by the character in the
corresponding position of
nonnumeric-literal-2.

f nonnumeric-literal-2 is a single
character, then all occurrences of
any character of the item represent­
ed by identifier-3 in the item
represented by identifier-' are
replaced by nonnumeric-literal-2.

Any character in the item represent­
ed identifier-1 that is equal to
a character in the item represented
by identifier-3 is replaced by the
character in the corresponding
position of the item represented
by identifier-4.

I Both operands must be of equal

Ident.-1
Before

A12B

ABCD

ABeD

1AB4

FROM

GAMMA
(current
value of
GAMMA :::: ABC)

ALPHA
(current
value of
ALPHA ::::
A12B)

DELTA
(current
value of
DELTA =
ABCDEF)

ITEM-A
(current
value of
ITEM-A :::
1234)

TO

QUOTE

ITEM-S
(current
value of
ITEM-S =
ABCD)

Ident.-1
After

DACD

6666

AABD

I length. Each of the operands may I
I contain one or more characters. I
L _________________________________ ~

6-122 7004 4490-000

Function

corltHW()US data in a ""-'LAU.A.U;;;;' be
into JLlUlUU." .. ".H'-' "ror'or<nnrr fields.

Format

UNSTRING identifier-'

INTO identifier-4 [,DELIMITER IN identifier-5] [,COUNT IN ident fier-6]
[,identifier-? [,DELIMITER IN identifier-B] [,COUNT IN identifier-9]]
[WITH POINTER identifier-10] [TALLYING IN identifier-11]
[;ON OVERFLOW imperative-statement]

Rules

70044490-000

1. Each literal must be a nonnumeric or any rn",...,'/-·nTA constant without

2.

3.

4.

the word ALL.

and identifier-8 must be
data items.

nOlnr'TH""".J' and identifier-7 may as
B may not be used in the PICTURE

that the P may not be used in the
and must be described as USAGE IS DISPLAY.

and identifier-II must be described as
that the P may not be

5. No ,rI",n'!-l'!-"Y" may name a level-88

6. DELIMITER IN
if the DELIMITED BY

7. All references to
to

and all recursions thereof.

8. Identifier-I "rO"-'"rOC'O'''I'!-<:' the "''''.H.U.AAF, area.

9. rLH~7'B"'OlroT'" the data "ror'onnnN area. Identifier-5 "'-Ol"'l ... C,<:'01nt-<:,

6-123

Procedure Division

10. Literal-lor the data item referenced by identifier-2 specifies a delimiter.

11. Identifier-6 represents the count of the number of characters within the data
item referenced by identifier-1 isolated by the delimiters for the move to
identifier-4. This value does not include a count of the delimiter characters.

12. The data item referenced by identifier-l 0 contains a value that indicates a
relative character position within the area defined by identifier-I.

13. The data item referenced by identifier-II is a counter that records the
number of data items acted upon during the execution of an UNSTRING
statement.

14. A figurative constant used as the delimiter represents a single-character
nonnumeric literal. When the ALL phrase is specified, one occurrence or two
or more contiguous occurrences of literal-l (figurative constant or not), or the
content of the data item referenced by identifier-2 are treated as only one
occurrence. This occurrence is moved to the receiving data item according to
rule 19d.

15. When any examination encounters two contiguous delimiters, the current
receiving area is either space- or zero-filled according to the description of
the receiving area.

16. Literal-lor the content of the data item referenced by identifier-2 can
contain any character in the computer character set.

17. Each literal-lor the data item referenced by identifier-2 represents one
delimiter. When a delimiter contains two or more characters, all the
characters must be present in contiguous positions of the sending item and
in the order given to be recognized as a delimiter.

18. When two or more delimiters are specified in the DELIMITED BY phrase,
an OR condition exists between them. Each delimiter is compared to the
sending field. If a match occurs, the characters in the sending field are
considered to be a single delimiter. No characters in the sending field can be
considered a part of more than one delimiter. Each delimiter is applied to
the sending field in the sequence specified in the UNSTRING statement.

19. When the UNSTRING statement is initiated, the current receiving area is
the data item referenced by identifier-4. Data is transferred from the data
item referenced by identifier-l to the data item referenced by identifier-4
according to the following rules:

a. If the POINTER phrase is specified, the string of characters referenced
by identifier-l is examined beginning with the relative character
position indicated by the content of the data item referenced by
identifier-l0. If the POINTER phrase is not specified, the string of
characters is examined beginning with the leftmost character position.

6-124 70044490-000

Procedure Division

b. If the DELIMITED BY phrase is specified, the examination proceeds
left to right until either a delimiter specified by the value of literal-l or
the data item referenced by identifier-2 is encountered. (See rule 17.) If
the DELIMITED BY phrase is not specified, the number of characters
examined is equal to the size of the current receiving area. However, if
the sign of the receiving item is defined as occupying a separate
character position, the number of characters examined is one less than
the size of the current receiving area.

If the end of the data item referenced by identifier-l is encountered
before the delimiting condition is met, the examination terminates with
the last character examined.

c. The characters thus examined (excluding the delimiting characters if
any) are treated as an elementary alphanumeric data item and are
moved into the current receiving area according to the rules for the
MOVE statement.

d. If the DELIMITER IN phrase is specified, the delimiting characters are
treated as an elementary alphanumeric data item and are moved into
the data item referenced by identifier-5 according to the rules for the
MOVE statement. If the delimiting condition is the end of the data item
referenced by identifier-I, then the data item referenced by identifier-5
is space-filled.

e. If the COUNT IN phrase is specified, a value equal to the number of
characters thus examined (excluding the delimiter character if any) is
moved into the area referenced by identifier-6 according to the rules for
an elementary move.

f. If the DELIMITED BY phrase is specified, the string of characters is
further examined beginning with the first character to the right of the
delimiter. If the DELIMITED BY phrase is not specified, the string of
characters is further examined beginning with the character to the right
of the last character transferred.

g. After data is transferred to the data referenced by identifier-4, the
current receiving area is the data item referenced by identifier-7. The
behavior described in rules 19b through 19f is repeated until either all
the characters are exhausted in the data item referenced by identifier-l
or until there are no more receiving areas.

20. The initialization of the contents of the data items associated with the
POINTER phrase or the TALLYING phrase is the responsibility of the user.

21. The content of the data item referenced by identifier-l 0 will be incremented
by 1 for each character examined in the data item referenced by identifier-I.
When the execution of an UNSTRING statement with a POINTER phrase is
completed, the content of the data item referenced by identifier-l 0 will
contain a value equal to the initial value plus the number of characters
examined in the data item referenced by identifier-1.

70044490-000 6-125

6-126

22. When the execution
is completed, the c011te~nt
contains a value
items acted upon.

23. Either of the situations causes an condition:

a. An is initiated, and the value in the data item 1I"ot"01",on,"or!

by is less 1 or than size of
referenced by identifier-I.

b. execution of an UNSTRING statement, all data
have been upon, and the data item referenced
contains characters that have not been ex:amllnled.

24. When an overflow condition exists, the UNSTRING Ar.,o. ... ""'t",I',

If an ON OVERFLOW phrase has been specified,
included in the ON OVERFLOW phrase is executed. If the ON

is not specified, control is transferred to the next exE~cultalbl
statement.

25. The evaluation of subscripting and indexing for identifiers is

a. Any subscripting or associated with identifier-I, A,-",AA"'U.

or identifier-II is evaluated once, before
transferred as the result the execution of the UNSTRING staltelmen

b. Any subscripting or associated with AU. .. ,AA".U.

identifier-5, identifier-6 is evaluated Im.nH~mav~ly
the transfer of data into the data item.

Function

• The USE ERROR PROCEDURE statement specifies r. '·"'orln· .. "'"

nntlo'nt:rmt error that are in addition to
In rHrH"'on by the input'output control system.

• The USE 0 ,.·'1"""" the user items that are to
be monitored by the associated ,,'v j"-F, •.•• F,

-----------------------------,
The LABEL PROCEDURE statement specifies procedures for input'output I

I tape label handling that are in addition to the standard label procedures I
I provided by the inputJoutput control system. JI L_____________________ _ __

70044490-000

Formatl

USE AFTER STANDARD

PROCEDURE ON

Format 2

USE FOR DEBUGGING ON

'------------)
procedure-name-2
ALL PROCEDURES

Format 3
r----------------------------

IUSE STANDARD I

I
LABEL PROCEDURE ON ile-name-2] """} • I

L ____________________________ J

Rules

1. A USE statement must foHow a section header in the
declaratives section and must be followed a followed
The of the section must consist of zero, one, or more
paragraps that define the to be used.

2. The statement itself is never eX(~Culte~l; defines the ,",VAAu.A •• a""""

'-'U-A""LUALj;:. for the execution of the USE n"""f>orlll""OC'

3. A-Clpean:ln(~e of a file-name in a USE statement must not cause the
ru".""",r for execution of more than one USE n"","f'C,rll'-..O

4. sort or merge file may be referenced in a format 2 USE statement.

70044490-000 6-127

Procedure Division

6-128

5. Within a USE procedure, there must not be any reference to any
nondeclarative procedures. Conversely, in the nondeclarative portion, there
must be no reference to procedure-names that appear in the declarative
portion, except that PERFORM statements may refer to a format 1 or 3 USE
statement or to the procedures associated with such a USE statement.

6. Within a USE procedure, there must not be the execution of any statement
that would cause the execution of a USE procedure that had previously been
invoked and had not yet returned control to the invoking routine.

Note: Rules 7 through 11 pertain to format 1 only.

7. The words ERROR and EXCEPTION are synonymous and may be used
interchangeably.

8. The files implicitly or explicitly referenced in a USE statement need not all
have the same organization or access.

9. A file-name may not be explicitly referred to in more than one format 1 USE
statement.

10. The designated procedures are executed by the input/output system after
completing the standard input/output error routine or upon recognition of
the AT END or INVALID KEY condition when the AT END phrase or
INVALID KEY phrase, respectively, has not been specified in the
input/output statement.

11. After execution of a USE procedure, control is returned to the invoking
routine.

Note: Rules 12 through 46 pertain to format 2 only.

12. Debugging sections, if specified, must appear together immediately after the
DECLARATIVES header.

13. Except in the USE FOR DEBUGGING statement itself, there must be no
reference to any nondeclarative procedure within the debugging section.

14. Statements appearing outside the set of debugging sections must not
reference procedure-names defined within the set of debugging sections.

15. Except for the USE FOR DEBUGGING statement itself, statements
appearing within a given debugging section may reference procedure-names
defined within a different USE procedure only with a PERFORM statement.

16. Procedure-names defined within debugging sections~r-deb~g~~g~~ck~~
must not appear within USE FOR DEBUGGING statements.

17. Any givenlidentifier, file-name, orlprocedure-name may appear in only one
USE FOR DEBUGGING statement and may appear only once in that
statement.

7004 4490-000

7004 4490-000

Procedure Division

18. The ALL PROCEDURES phrase can appear only once in a program.

19. When the ALL PROCEDURES phrase is specified, procedure-name-1,
procedure-name-2, ... , must not be specified in any USE FOR DEBUGGING
statement.

20. If the data description entry of the data item referenced by identifier-1,
identifier-2, ... , contains an OCCURS clause or is subordinate to a data
description entry that does contain one, identifier-1, identifier-2, ... , must be
specified without the subscripting or indexing normally required.

21. References to the special register DEBUG-ITEM are restricted to references
from within a debugging section.

22. Procedure-names defined within debugging packets must not appear within
USE FOR DEBUGGING statements.

23.

24. Automatic execution of a debugging section is not caused by a statement
appearing in a debugging section.

25. When file-name-1 is specified in a USE FOR DEBUGGING statement, that
debugging section is executed:

a. After the execution of any OPEN or CLOSE statement that references
file-name-1

b. After the execution of any READ statement Cafter any other specified
USE procedure) not resulting in the execution of an associated AT END
or INVALID KEY imperative statement

c. After the execution of any DELETE or START statement that
references file-name-1

26. When procedure-name-1 is specified in a USE FOR DEBUGGING
statement, that debugging section is executed:

a. Immediately before each execution of the named procedure

b. Immediately after the execution of an ALTER statement that references
procedure-name-1

27. The ALL PROCEDURES phrase causes the effects described in rule 35 to
occur for every procedure-name in the program, except those appearing
within a debugging section.

6-129

28. When the ALL REFERENCES OF identifier-I phrase is that
ctelbul?:gJng section is for every statement
identifier-I at each of the times:

a. before execution of a WRITE or REWRITE statement after
the execution of any move from the presence of the
FROM phrase

b. For a GO TO statement with a DEPENDING ON
control is transferred and to execution of any

section associated the "'r·£'l,rln-r£'-...... to which control is to be
transf erred

c. For a PERFORM statement in which a
phrase references identifier-I, immediately after each AAU.lJ'-U,U."-',U-lJ-'VU,

-,-vUlJ-'-VJlL. or evaluation of the content of the item

d. For any other
statement

IJU.uvHJ''-'U.''. lInrrlea.lat;el~ after execution of that

In a that is not executed nor the
U.vIVU-j;:;'F.,.HF. section is not executed.

29. When identifier-I is without the ALL REFERENCES OF
that debugging section is executed at each of the times:

a. For a WRITE or REWRITE statement identifier-I,
immediately before execution of the statement and after execution of
any implicit move from the presence of the FROM phrase

b. For a PERFORM statement in which a
phrase references identifier-I, immediately after each -'AH.IJUA.L'."-'LU'A.VAA,

-,-,-,uv-'-VJn. or evaluation of the content of the data item referenced by

c. after execution of any other COBOL statement
explicitly references and causes the content of the
referenced data item to be vAH-'-,U~~vu.

If identifier-l is specified in a phrase that is not executed or evaluated, the
associated debugging section is not executed.

30. The associated debugging section is not executed for a operand more
than once as a result of execution of a single regardless of how
many times the operand is explicitly In the case of a PERFORM
statement that causes iterative execution of a referenced the
associated debugging section is executed once for each iteration. Within an
,-n-ono,,.af-nro stalte:ment, each individual occurrence of an imperative verb

statement for purpose of debugging.

6-130 7004 4490-000

70044490-000

31. A reference ['ulc;u-naJme
does~~--~~---=----~~'-~~~~~

procedure-name-l as a
the debugging

described in the pn~ce,amlg'

32. Associated execution of a section is the special register
DEBUG-ITEM, which provides information about the conditions that caused
the execution of a debugging section. DEBUG-ITEM has the following
implicit description:

01 DEBUG ITEM.
02 DEBUG-LINE PICTURE IS X(6).
02 FILLER PICTURE IS X VALUE SPACE.
02 DEBUG-NAME PICTURE IS X(30).
02 FILLER PICTURE IS X VALUE SPACE.
02 DEBUG-SUB-' PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
02 FILLER PICTURE IS X VALUE SPACE.
02 DEBUG-SUB-2 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
02 FILLER PICTURE IS X VALUE SPACE.
02 DEBUG-SUB-3 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
02 FILLER PICTURE IS X VALUE SPACE.
02 DEBUG-CONTENTS PI CTURE IS X(n)*.

*The size of DEBUG-CONTENTS ranges from 30 to 4,096 characters, depending on the
size of the largest data item being monitored.

33. Prior to each execution of a debugging section, the content of the data item
referenced by DEBUG-ITEM is space-filled. The contents of data items
subordinate to DEBUG-ITEM are then updated, according to rules 34
through immediately before control is passed to that debugging section.
The content of any data item not specified in the rules remains spaces.

Updating is accomplished in accordance with the rules for the MOVE
statement, except for the move to DEBUG-CONTENTS when the move is
treated as an alphanumeric-to-alphanumeric elementary move with no
conversion of data from one form of internal representation to another.

34. The content of DEBUG-LINE is the compiler-generated
identifies a particular source statement.

number that

35. DEBUG-NAME contains the first 30 characters of the name that caused the
debugging section to be executed. All qualifiers of the name are separated in
DEBUG-NAME by the word IN or OF. Subscripts/indexes, if any, are not
entered into DEBUG-NAME.

36. If the reference to a data item that causes the debugging section to be
executed is subscripted/indexed, the occurrence number of each level is
entered in DEBUG-SUB-I, DEBUG-SUB-2, DEBUG-SUB-3, respectively, as
necessary.

37. DEBUG-CONTENTS is a data item that is large enough to contain the data
required the following rules.

6-131

Procedure Division

6-132

38. If the first execution of the first nondeclarative procedure in the program
causes the debugging section to be executed, then:

a. DEBUG-LINE identifies the first statement of that procedure.

b. DEBUG-NAME contains the name of that procedure.

c. DEBUG-CONTENTS contains START PROGRAM.

39. If a reference to procedure-name-1 in an ALTER statement causes the
debugging section to be executed, then:

a. DEBUG-LINE identifies the ALTER statement that references
procedure-name-1.

b. DEBUG-NAME contains the applicable procedure-name associated
with the TO phrase of the ALTER statement.

c. DEBUG-CONTENTS contains the applicable procedure-name
associated with the TO phrase of the ALTER statement.

40. If the transfer of control associated with the execution of a GO TO statement
causes the debugging section to be executed, then:

a. DEBUG-LINE identifies the GO TO statement whose execution
transfers control to procedure-name-l.

b. DEBUG-NAME contains procedure-name-l.

41. If reference to procedure-name-1 in the INPUT or OUTPUT phrase of a
SORT statement causes the debugging section to be executed, then:

a. DEBUG-LINE identifies the SORT statement that references
procedure-name-I.

b. DEBUG-NAME contains procedure-name-1.

c. DEBUG-CONTENTS contains:

., SORT INPUT, if the reference to procedure-name-1 is in the
INPUT phrase of a SORT statement

«I SORT OUTPUT, if the reference to procedure-name-1 is in the
OUTPUT phrase of a SORT statement

42. If the transfer of control from the control mechanism associated with a
PERFORM statement caused the debugging section associated with
procedure-name-1 to be executed, then:

7004 4490-000

Function

The WRITE statement releases a
It also provides control of the U"" .. t-,fl",

"""""1 U."AA~,U.U. files.

Format 1

WRITE record-name;[FROM;identifier-1]

ADVANCING '----} [~:~~sl
'-------'}

imperative-statement]

WRITE record-name [FROM identifier] [;INVALID KEY imperative-statement]

Rules

1. Record-name and the identifier of the FROM must not refer to the
same C!T" ... acro area.

2. The record-name is the name of a logical
Data Division and may be qualified.

in the File Section of

3. The logical record released by execution of the WRITE statement is no
longer available in the record area unlesslthe associated file is named in al

I SAME RECORD AREA clause orlexecution of the WRITE statement was
unsuccessful due to a boundary violation or an INVALID KEY condition. The
logical record is also available to the program as a record of other files
referenced in the same SAME RECORD AREA clause as the associated
output as well as to the file associated with record-name.

4. The result of execution of the WRITE statement with the FROM phrase is
equivalent to execution of the statement MOVE identifier TO record-name
according to the rules specified for the MOVE the
same WRITE statement without the FROM The content of the
record area to execution of the MOVE statement has no effect
on the execution of this WRITE statement.

70044490-000 6-135

Procedure Division

6-136

After execution of the WRITE statement is complete, the information in the
area referenced by identifier is available, even though the information in the
area referenced by record-name may not be. (See rule 3.)

5. The current record pointer is unaffected by execution of a WRITE statement.

6. Execution of the WRITE statement causes the value of the FILE STATUS
data item, if any, associated with the file to be updated. (See 8.2.3, "1-0
Status.")

7. The maximum record size for a file is established at the time the file is
created and must not subsequently be changed.

8. The number of character positions on a mass storage device required to store
a logical record in a file mayor may not be equal to the number of character
positions defined by the logical description of that record in the program.

9. Execution of the WRITE statement releases a logical record to the operating
system.

Note: Rules 10 through 22 pertain to sequential and[§~files only.

10. When mnemonic-narne is specified, the name is associated with a particular
feature SYSCHAN-n and is defined in the SPECIAL-NAMES paragraph of
the Environment Division.

11. When identifier-2 is used in the ADVANCING phrase, it must be the name
of an elementary integer data item.

12. Integer[O!}he value of the data item referenced by identifier-2lmay be zero,
but may not exceed 255.

13. If the END-OF-PAGE phrase is specified, the LINAGE clause must be
specified in the file description entry for the associated file.

14. The words END-OF-PAGE and EOP are equivalent.

15. The ADVANCING mnemonic-name phrase cannot be specified when writing
a record to a file whose file description entry contains any LINAGE clause,
~cep1 the LINAGE IS SYSTEM LINES clau~.J

16. The associated file must be open in the OUTPUT lor EXTENDlmode at the
time of the execution of this statement. (See 6.6.23, "OPEN Statement.")

17. I Bothlthe ADVANCING phraseland the END-OF-PAGE phraselallow control
of the vertical positioning of each line on a representation of a printed page.
If the ADVANCING phrase is not used, automatic advancing is provided as
if the user had specified AFTER ADVANCING 1 LINE. If the ADVANCING
phrase is used, advancing is provided as follows:

7004 4490-000

Procedure Division

a. If identifier-2 is specified, the representation of the printed page is
advanced the number of lines equal to the current value associated with
identifier-2.

b. If integer is specified, the representation of the printed page is
advanced the number of lines equal to the value of integer.

c. If mnemonic-name is specified, the representation of the printed page is
advanced to the line specified by SYSCHAN -no (See 4.3.3.)

d. If the BEFORE phrase is used, the line is presented before the
representation of the printed page is advanced according to rules 1 7 a, b,
and c.

e. If the AFTER phrase is used, the line is presented after the
representation of the printed page is advanced according to rules 1 7a, b,
and c.

f. If PAGE is specified, the record is presented on the logical page before
or after (depending on the phrase used) the device is repositioned to the
next logical page.\If the record to be written is associated with a file
whose file description entry contains a LINAGE clause, the
repositioning is to the first line that can be written on the next page as
specified in the LINAGE clause.rIf the record to be written is associated
with a file whose file description entry does not contain a LINAGE
clause, the device is repositioned to the first line of the next page as
defined by the operating system. If PAGE has no meaning in
conjunction with a specific device, then the compiler-generated code
advances the device as if the user had specified BEFORE or AFTER
(depending on the phrase used) ADVANCING 1 LINE.

18. If the logical end of the representation of the printed page is reached during
execution of a WRITE statement with the END-OF-PAGE phrase, the
imperative statement specified in the END-OF-PAGE phrase is executed.
The logical end is specified in the LINAGE clause associated with
record-name.

19. An end-of-page condition is reached whenever execution of a given WRITE
statement with the END-OF ~PAGE phrase causes printing or spacing within
the footing area of a page body. This occurs when execution of such a WRITE
statement causes the LINAGE-COUNTER to equal or exceed the value
specified by integer-2 or the data item referenced by data-name-2 of the
~l~AG~claus~ifspecifieyfi&S~TEMLINESoptionoffu~INAGEj
I clause is specified, an end-of-page condition occurs when the LINAGE- I
I COUNTER equals or exceeds the line on which the operating system reports I
L!:...hat th~verflow lin~ositio~f the vertical format buffer has~een ~ossecU
In these cases, the WRITE statement is executed, and then the imperative
statement in the END-OF-PAGE phrase is executed.

70044490-000 6-137

An automatic page overflow condition is execution of a
WRITE statement or without an END-OF-PAGE cannot

-l
the SYSTEM LINES I

_ "LINAGE Claus~ under_J

This occurs when a WRITE would cause LINAGE-
COUNTER to exceed value or the data item
.... nt··n-".,o.n'>oN by data-name-l of the LINAGE clause. In this case, the record is

res,enlcea. on the page before or after on the
the device is to first can be written on the next

in the LINAGE clause. The statement in
is eXE~CU1t.ea after the is written

and the

If or data-name-2 of the LINAGE clause is not no end-of-
page condition distinct from the page overflow condition is detected. The

condition and page overflow condition occur S1nlUJ.talleClU

If or data-name-2 of the LINAGE clause is execution
of a WRITE statement would cause LINAGE-COUNTER to exceed the
value of both integer-2 or the data item

or the data item referenced
as if Int~8g-er-

~---~

20. files opened for to PRINTER or
VC, or UC in an a command to

IJV".lIJ~""H is issued when the first WRITE statement is
executed. If the first WRITE statement executed blank

an AFTER PAGE phrase or a record all JVA<-UU'.U

PAGE that initial page is deleted from the
the command to to the home-

paper PO:SltllOn).

21. att,errlpt is made to write defined boundaries
eX(~eD'tlOn condition and the content of the

action takes

a. The
is set to a value '>'AAU'",,",,-,'''",A'',,,, a hr." ''! ""'''''

tI)

b. If a USE AFTER STANDARD EXCEPTION declarative is ,-,.n.~JAAVA"A.y or
for the that declarative will then be

executed.

c. If a USE AFTER STANDARD EXCEPTION declarative is not nv-'·' ",-.".-

or for the the is undefined.

6-138 7004 4490-000

7004 4490-000

22. At the end of a reel/unit of a the WRITE
statement the

a. The standard 'VAA'",-AA"E, reel/unit label ,,,,...."11,, ... '"

b, A reel/unit swap

c. The standard "-'''-'eC,.''ULUJ1U,E, reel/unit label "' ... ,f'>ror'rh· '"

Note: Rules 23

23. The INVALID KEynh"'~'~O apI=HlCclDle USE
is not for the aSS:OClate:(1

24. The associated file must be open in the or mode at the time of
the execution of this statement. "OPEN Statement.

25. When the INVALID KEY condition is the execution of the
WRITE statement is the content of the record area is

and the FILE STATUS data if any, with
file-name of the associated file is set to a value H.ALL 'ULJJl .. JlF.

condition. Execution of the program nr •• {'C"on

"Invalid also
to the rules stated in

Status.")

Note: Rules 26

26. When relative file is A ' ... Y'lI"n records may be into
the file one of the

a. If the access mode is
to be released to the ,.....-..l:> ... a1',....,O' e,ref-,"'''''''' The first record has a relative
record number of 1 and records released have relative
record numbers of 2, 3, 4, If the RELATIVE KEY data item has been

in the file control for the associated file, the relative
record number of the record related is into the RELATIVE
KEY data item the system execution of the WRITE
statement.

b. If the access mode is random or to the execution of the
WRITE the value of the RELATIVE KEY data item must be
initialized in the program with the relative record number to be
associated with the record in the record area. That record is then
released to the system execution of the WRITE statement.

27. When a relative file is VI-"'JAA\.."U. in the 1-0 mode and the access mode is
random or records are to be inserted in the associated file. 1'he
value of the RELATIVE KEY data item must be initialized the program
with the relative record number to be associated with the record in the

6-139

Procedure Division

record area. Execution of a WRITE statement then causes the content of the
record area to be released to the operating system.

28. The INVALID KEY condition exists under either of the following conditions:

a. When the access mode is random or dynamic, and the RELATIVE KEY
data item specifies a record that already exists in the file

b. When an attempt is made to write beyond the externally defined
boundaries of the file

Note: Rules 29 through 35 pertain to indexed files only.

29. The execution of the WRITE statement causes the content of the record area
to be released. The operating system utilizes the content of the record keys
in such a way that subsequent access of the record key may be made based
upon any of those specified record keys.

30. The value of the prime record key must be unique within the records in the
file.

31. The data item specified as the prime record key must be set by the program
to the desired value prior to the execution of the WRITE statement. (See
rule 4.)

32. If sequential access mode is specified for the file, records must be released to
the operating system in ascending order of prime record key values.

33. If randomlor dynamiclaccess mode is specified, records may be released to
the operating system in any program-specified order.

34. When the ALTERNATE RECORD KEY clause is specified in the file control
entry for an indexed file, the value of the alternate record key may be
nonunique only if the DUPLICATES phrase is specified for that data item.
In this case, the operating system provides storage of records such that when
records are accessed sequentially, the order of retrieval of those records is
the order in which they are released to the operating system.

35. The INVALID KEY condition exists under any of the following
circumstances:

a. When sequential access mode is specified for a file opened in the output
mode, and the value of the prime record key is not greater than the
value of the prime record key of the previous record

b. When the file is opened in the output or 1-0 mode, and the value of the
prime record key is equal to the value of a prime record key of a record
already existing in the file

6-140 70044490-000

Procedure Division

c. When the file is opened in the output or 1-0 mode, and the value of an
alternate record key for which duplicates are not allowed equals the
corresponding data item of a record already existing in the file

d. When an attempt is made to write beyond the externally defined
boundaries of the file

Note: Rules 36 through 40 pertain toII~4Y"Jriles only.

1--------------- - - -- ---- ---------
I 36. The value of the record key must be unique within the records in the file. !

I 37. The data item specified as the record key must be set to the desired value by I
I the program prior to execution of the WRITE statement (see rule 4). I
I I
I 38. When a file is being created, sequential"lor dynamic[access mode must be I
I specified. Records must be released to the operating system in ascending I
I order of record key values, even if dynamic mode is specified. I
I I
I 39. If random lor dynamiclaccess mode is specified, records may be released to I
I the operating system in any program-specified order. I

I 40. The INVALID KEY condition exists under any of the following i
I circumstances: I

I a. When sequentiallor dynamiclaccess mode is specified for a file opened in I
I output mode and the record key value is not greater than the record key I
I value of the previous record I

: b. When the file is opened in output or 1-0 mode and the record key value II

equals the record key value of a record already existing in the file
I I
I
I
I
I

c. When an attempt is made to write beyond externally defined
boundaries of the file

I 6.6.43. *DEBUG Statement
I
I
I
I
I
I
I
I

Function

The *DEBUG statement indicates the location of the program at which a
debugging packet is to be executed. (See "The Debugging Packet (*DEBUG)"
under 12.4.3.)

Format

I
*DEBUG procedure-name J L _____ ~ ________________ ~ _________ _

70044490-000 6-141

Procedure Division

6-142

~----------------------------I

I Rules I
I I I 1. The word *DEBUG must begin at margin L; however, procedure-name may I
I appear anywhere between margin A and margin R. I

i 2. Procedure-name may be qualified. :

I 3. Procedure-name may not appear within the group of debugging packets, nor I
I may it appear in more than one *DEBUG statement. I

I I
I 4. A *DEBUG statement is required as a header for each debugging packet. I

I
I
I
I
I

5. Debugging packets are placed immediately behind the last source statement I
in the Procedure Division for compilation; but the debugging packets are I
executed at object time as though each packet appeared immediately
following the referenced procedure-name in the program but before the
source statements (procedure) associated with the procedure-name.

: 6. Statements in the debugging packets must not refer to the DEBUG-ITEM of II

L ___ a_USE~ORDEBUGGINGsectio~ ______________ ~

7004 4490-000

(

.1.

1.

Ii

The table handling module provides a means of defining contiguous data items in a
tabular form and accessing any item regardless of its position in the table.

Table handling Levell provides a capability for accessing items in up to
3-dimensional, fixed-length tables. This level also provides series options and the
capability to vary the contents of indexes by an increment or decrement.

Table handling Level 2 provides a capability for accessing items in up to
3-dimensional, variable-length tables. This level also provides the additional facilities
for specifying ascending or descending keys and for searching a dimension of a table
for an item satisfying a specified condition.

COBOL tables are defined structurally by including the OCCURS clause in the data
description entries. The OCCURS clause specifies the number of times an item is to be
repeated. An item described by an OCCURS clause is called a table element, and the
name and description of the table element applies to each repetition or occurrence.

Because the data-name is the same for each occurrence of a table element, a reference
to a desired occurrence can be made only by specifying the data-name of the table
element with the occurrence number of the desired table element. The occurrence
number is specified by either subscripting or indexing.

To define a I-dimensional table, an OCCURS clause is written as part of the data
description of the table element. The OCCURS clause, however, must not appear in
the description of group items that contain the table element.

Example

01 TABLE-1-
02 TABLE-ELEMENT OCCURS 20 TIMES.

03 NAME ..•......
03 ADDRESS

7004 4490-000 7-1

Table Handling Summary

Defining a I-dimensional table within each occurrence of an element of another
I-dimensional table gives rise to a 2-dimensional table. To define a 2-dimensional
table, an OCCURS clause must appear in the data description of the element of the
table, and in the description of only one group item which contains that table element.
To define a 3-dimensional table, the OCCURS clause should appear in the data
description of the table element and in the description of two group items that contain
the element. In COBOL, tables of up to three dimensions are permitted.

Example

01 CORPORATION-TABLE.
02 COMPANY-TABLE OCCURS 5 TIMES.

04 COMPANY-NAME PIC X(12).
04 DIVISION-TABLE OCCURS 10 TIMES.

06 DIVISION-CODE PIC X(4).
06 DEPARTMENT-TABLE OCCURS 100 TIMES.

08 DEPARTMENT-CODE PIC 9(3).
08 EMPLOYEES PIC 9(4).

This example defines a table of one dimension for COMPANY-NAME, two dimensions
for DIVISION-CODE, and three dimensions for DEPARTMENT-CODE and
EMPLOYEES.

The table consists of 10,055 data items:

• 5 for COMPANY-NAME

• 50 for DIVISION-CODE

.. 5000 for DEPARTMENT-CODE

• 5000 for EMPLOYEES

Within the table, there are 5 occurrences of COMPANY-NAME. Within each
COMPANY-NAME, there are 10 occurrences of DIVISION-CODE, and within each
DIVISION-CODE, there are 100 occurrences each of DEPARTMENT-CODE and
EMPLOYEES.

7.2.2. References to Table Items

7-2

When referring to a table element, the reference must indicate the intended
occurrence of the element. For access to a I-dimensional table, the occurrence number
of the desired element provides complete information. For access to tables of more
than one dimension, an occurrence number must be supplied for each dimension of the
table accessed.

Occurrence numbers may be specified either by subscripting or by indexing. However,
data-name subscript and index-name must not be mixed within a single reference to a
table element that requires more than one occurrence number.

7004 4490-000

Table Handling Summary

Subscripting

Indexing

Subscripts are used only to refer to an individual element within a table of like
elements that have not been assigned individual data-names.

Format

{data:n~me } (subscript-1[,subscript-2[,subscript-3]])
condltl0n-name

A subscript is an integer that identifies the occurrence number of a particular table
element. The subscript can be represented either by a numeric literal that is an
integer or by a data-name. The data-name must be a numeric elementary item that
represents an integer. When the subscript is represented by a data-name, the
data-name may be qualified but not subscripted.

The subscript, or set of subscripts, is enclosed in parentheses and appears
immediately following the space that terminates the data-name of the table element.
When more than one subscript is specified within a pair of parentheses, each subscript
must be separated from the next by a space, and the subscripts are written in the
order of successively less inclusive dimensions of the data organization, that is, in the
same order as the OCCURS clauses.

The subscript may be signed and, if signed, it must be positive. The lowest possible
subscript value is 1. This value points to the first element of the table. The next
sequential elements of the table are pointed to by subscripts whose values are 2, 3,
The highest permissible subscript value, in any particular case, is the maximum
number of occurrences of the item as specified in the OCCURS clause.

References can be made to individual elements within a table of like elements by
specifying indexing for that reference. An index is assigned to that level of the table by
using the INDEXED BY phrase of the OCCURS clause in the definition of a table. A
name given in the INDEXED BY phrase is known as an index-name and is used to
refer to the assigned index. The value of an index corresponds to the occurrence
number of an element in the associated table. An index-name must be initialized
before it is used as a table reference. An index-name can be given an initial value by a
SET,lsEARCH ALL, or format 4 PERFORMlstatement.

7004 4490-000 7-3

7-4

Format

{
data-name }
condition-name {

indeX-name-, [{ ~ }literal-21}
l iteral-1

,{indeX-name-2 [{ ~ }literal-41}
literaL-3

['{i~deX-name-3 [{+}literal-6J}]
llteral-5

Direct indexing is specified by using an index-name like a subscript. Relative indexing
is specified when the index-name is followed by the operator + or - and an unsigned
integer numeric literal, all enclosed in parentheses following the space that
terminates the data-name of the table element. The occurrence number resulting from
relative indexing is determined by incrementing C+ operator) or decrementing
C- operator), by the value of the literal, the occurrence number represented by the
value of the index. When more than one index-name is required, they are written in
the order of successively less inclusive dimensions of the data organization.

At the time of execution of a statement that refers to an indexed table element, the
value contained in the index referenced by the index-name associated with the table
element must not correspond to a value less than 1 or greater than the highest
permissible occurrence number of an element of the associated table. This restriction
also applies to the value resultant from relative indexing.

Normally, the values of subscripts and indices are not checked to ensure that the table
reference is within the limits of the OCCURS clause, and results are unpredictable if
the subscript or index is out of range. If the compile-time parameter SUBCK= YES is
specified, subscripts and indices are checked for validity. An out-of-range condition
results in an object program termination with a CE58 error message. Refer to
Appendix A for a description of the SUBCK parameter. Refer to the System Messages
Reference Manual (7004 5190) for an explanation of the CE58 error message.

Considerations

There are two table handling clauses in the Data Division - the OCCURS clause and
the USAGE IS INDEX clause.

70044490-000

Table Handling Summary

The OCCURS clause indicates the number of elements contained in a table, and also
supplies information required for the application of subscripts or indexes. Format 1 of
the OCCURS clause indicates the exact number of occurrences of a specified data
item. Format 2 of the OCCURS clause indicates that the item described by the
OCCURS clause has a variable number of occurrences. This option gives the minimum
and maximum number of occurrences and specifies the data item that controls the
number of occurrences.

The length of a table element may not exceed 32,767 bytes. The maximum number of
occurrences of a table element may not exceed 65,535.

The USAGE IS INDEX clause specifies that a data item is to be used as temporary
storage for the values of an index.

Detailed descriptions of the OCCURS clause and of the USAGE IS INDEX clause are
given under 5.3.3.

1. Handling Statements

The table handling statements for the Procedure Division consist of thelSEARCHland
SET statements.

The SEARCH statement is used to search a table for a table element that satisfies a
specified condition and to adjust the associated index-name to point to that table
element. Format 1 of the SEARCH statement is used to perform a serial search of a
table. Format 2 is used to perform a nonserial search of a large data table.

The SET statement is used to change the value of an index-name or index data item,
or to obtain the occurrence number that corresponds to the current value of an
index-name. The index-names can then be used as reference points for table handling
operations. Format 1 sets an integer data item, index-name, or index data item to a
specified value. Format 2 increments or decrements the value of an index-name to
represent a new occurrence number.

A detailed description of thejSEARCHlstatement is given in 6.6.30 and of the SET
statement in 6.6.32.

7004 4490-000 7-5

Table Handling Summary

7.4.2. Comparisons Involving Index-Name or Index Data Items

Relation tests involving index-name or index data items may be made as explained in
"Comparisons Involving Index-Names or Index Data Items" under 6.4.1.

7.4.3. Overlapping Operands in a SET Statement

7-6

When a sending and a receiving item in a SET statement share a part of their storage
areas, the result of the execution of such a statement is undefined.

7004 4490-000

Section 8
File Processing Summary

8.1. General Information
The organization of a file specifies the logical structure of the file and determines the
technique to be used for processing of the file.

Files may be organized in a sequential form or in a nonsequential form. The
organization of a file is established at the time the file is created and cannot
subsequently be changed.

8.2. Language Concepts

8.2.1. File Organization and Access Methods

Five types of file organization are available:

4& Sequential

ell Relative

• Indexed

• 'sMi{i 12_:.J

• 1sAW ~-~

Sequential Organization

A sequential file can only be accessed in the sequential mode. Records in such a file
can be accessed in the sequence established as a result of writing the records to the
file. A sequential mass storage file may be used for input and output at the same time.
One file maintenance method made possible by this facility is to read a record, process
it, and, if it is updated, return it, modified, to its previous position.

Each record in a sequential file except the first has a unique predecessor record, and
each record except the last has a unique successor record. These predecessor/successor
relationships are established by the order of WRITE statements when the file is
created. Once established, the predecessor/successor relationships do not change
except in the case where records are added to the end of the file.

70044490-000 8-1

8-2

A relative file is stored only on mass storage devices and is accessed sequentially,
dynamically, or randomly. Each record in a relative file is uniquely identified by an
integer value greater than zero that specifies the logical ordinal position of the record
in the file. The file may be considered as composed of a serial string of areas, each
capable of holding a logical record. Each area is denominated by a relative record
number, and records are stored and retrieved based on this number.

In the sequential access mode, the sequence in which records are accessed is the
ascending order of the relative record numbers of all currently existing records within
the file.

In the random access mode, the sequence in which records are accessed is controlled
by the programmer. The desired record is accessed by placing its relative record
number in a relative key data item. For example, the tenth record is the one
addressed by relative record number 10 and is in the tenth record area, whether or not
records have been written in the first nine record areas.

In the dynamic access mode, the programmer may change at will from sequential
access to random access using appropriate forms of inputJoutput statements.

An indexed file is a mass storage file in which data records are identified by one or
more keys within those records. The position of each logical record in the file is
determined by indexes created and maintained by the operating system. The indexes
are based on keys provided by the data items named in the RECORD KEY and
ALTERNATE RECORD KEY clauses of the file control entry for that file.

For inserting, updating, and deleting records in a file, each record is identified solely
by the value its prime record key. This value must, therefore, be unique and must
not be changed when updating the record. For retrieval of records, the value of the
prime record key provides a logical path to the data records. The values of alternate
record keys, if specified, provide alternate access paths. The values of alternate record
keys need not be unique if the DUPLICATE phrase is specified.

An indexed file can be accessed sequentially, dynamically, or randomly. Sequential
access provides access to the data records in the ascending order of the record key
values. The order of retrieval of records within a set of records having duplicate record
key values is the order in which the records were written into the set.

In the random access mode, the sequence in which records are accessed is controlled
by the programmer. The desired record is accessed by placing the value of its record
key in a record key data item before accessing the record.

In the dynamic access mode, the programmer may change at will from sequential
access to random access by using appropriate forms of inputJoutput statements.

7004 4490-000

tBr(lCE!SSllne: Summary

~---------------------------i

I SAM Organization I

I A SAM file is a sequentially organized mass storage file supported by the OS/3 disk I
I sequential access method (disk SAM). This file organization is a Unisys extension to I
I support user~s existing sequential mass storage files created by the OS/3 disk SAM I
I data management. I

I, In concept, a SAM file has all the characteristics of a mass storage file with sequential I
organization; however, the file structure of a SAM file on a mass storage device differs I

I considerably from the file structure of a sequential mass storage file created by the I
I OS/3 MlRAM (unkeyed) data management. By using the SAM file organization, a I
I compatibility with existing sequential mass storage files is achieved. I

I I
I I

I The ISAM organization is a Unisys extension to support the user's existing indexed I
I sequential files created by 08/3 indexed sequential access method (ISAM) data I
I management. I

I An ISAM file is a mass storage file in which data records are accessed based on a key I
I field contained in each record. The position of each logical record in the file is I
I determined by indexes created and maintained by the operating system. The indexes I
I are based on keys provided by the data item named in the RECORD KEY clause of the I
I file control entry for that file. I
I For inserting and updating records in a file, each record is identified solely by the I
I value of its record key. This value must, therefore, be unique and must not be changed I
I when updating the record. I

I
I
I
I
I

In sequential access mode, the sequence in which records are accessed is the ascending I
order of the record key values. I

In random access mode, the sequence in which records are accessed is controlled by
the programmer. The desired record is accessed by placing the value of its record key
in a record key data item.

: In dynamic access mode, the programmer may change at will from sequential access to :
L ___ random access using appropriate form~f inputJoutput statements. _______ .J

8. Current Record,nlln'l'If:ll1l"

The current record pointer is a conceptual entity used to indicate the next record to be
accessed within a file that is opened in the INPUT or 1-0 mode. The concept of the
current record pointer has no meaning for a file opened in the output mode. The
setting of the current record pointer is affected only by the OPEN,ISTART,land READ
statements.

7004 4490-000 8-3

File Processing Summary

8.2.3. 1 .. 0 Status

8-4

If the FILE STATUS clause (see 4.4.1) is specified, a value is placed by the operating
system into the specified 2-character data item to indicate to the COBOL program the
status of that inputJoutput operation. The value is placed in the FILE STATUS data
item during the execution of an OPEN, CLOSE, READ, WRITE, REWRITE, DELETE,
or I START Istatement for that file and before the execution of any associated AT
ENDIINV ALID KEY imperative statement or any applicable format 1 USE procedure.

The leftmost character position of the FILE STATUS data item is known as status
key 1; the rightmost character position is known as status key 2. Status key 1 is set to
indicate a specific condition; status key 2 provides further information, if any, about
the inputJoutput operation. Table 8-1 lists the status key values and their meanings
for each type of file organization. The meanings for the key values are further
described in the notes following the table.

Table 8-1. Status Key Values and Meanings

F He Type Status Key 1 Status Key 2

Sequential o - Successful completion o - No further information

and 1 - At end o - No further information
r - 1

SAM 3 - Permanent error o - No further information
L _ J 4 - Boundary violation

Relative o - Successful completion o - No further information

1 - At end o - No further information

2 - Invalid key 2 - Duplicate key
3 - No record found
4 - Boundary violation

3 . Permanent error o . No further information

Indexed o - Successful completion o - No further information
2 - Duplicate key

and (indexed files only)
r - - 1

ISAM 1 - At end o - No further information
L __ J

2 - Invalid key 1 - Sequence error
2 - Dupl icate key
3 . No record found
4 - Boundary violation

3 . Permanent error o . No further information

continued

7004 4490-000

File Processing Summary

Table 8-1. Status Key Values and Meanings (cont.)

Notes:

1. At end - A format 1 or format 2 READ statement is unsuccessful because no next logical
record exists, or an OPTIONAL file is not available at OPEN time.

2. Boundary violation - An attempt is made to write beyond the externally defined
boundaries of a file.

3. Duplicate key - An attempt is made to write a record to a relative file, or to write
or rewrite a record to an indexed or [~BJfile, which will create a duplicate key in
the file.

4. No record found - An attempt is made to access a record, identified by a key, and that
record does not exist in the file.

5. Permanent error - The 1/0 statement is unsuccessful because of an unrecoverable 1/0
error, or a boundary violation for a sequential file.

6. Sequence error - For a sequentially accessed indexed or G~~J fi le, the ascending
sequence requirements for successive RECORD KEY values are violated, or the prime
record key value of an indexed file, or the RECORD KEY value of an D~~MJfile is
changed by the COBOL program between the successful execution of a READ statement and
the execution of the next REWRITE statement for that file.

8.2.4. AT END Condition

The AT END condition can occur as a result of the execution of a format 1 or format 2
READ statement. For details about the causes of the condition, see 6.6.25, "READ
Statement."

8.2.5. INVALID KEY Condition

The INVALID KEY condition can occur as a result of the execution of alST ART, 1
READ, WRITE, REWRITE, or DELETE statement for a relative, indexed, or ISAM
file. For details of the causes of the condition, see 6.6.34,I"START Statement;"16.6.25,
"READ Statement;" 6.6.42, "WRITE Statement;" 6.6.29, "REWRITE Statement;" and
6.6.9, "DELETE Statement."

When the INVALID KEY condition is recognized, the operating system takes these
actions in the following order:

1. A value is placed into the FILE STATUS data item, if specified for this file, to
indicate an INVALID KEY condition.

2. If the INVALID KEY phrase is specified in the statement causing the condition,
control is transferred to the INVALID KEY imperative statement. Any USE
procedure specified for this file is not executed.

7004449~OOO 8~

Processing _ T1Inn

. 3 .

. 1.

8-6

3. If the INVALID KEY phrase is not specified, but a USE procedure is specified for
this file, either explicitly or implicitly, that procedure is executed.

When the INVALID KEY condition occurs, execution of the inputJoutput statement
that recognized the condition is unsuccessful and the file is not affected.

The reserved word LINAGE-COUNTER is a name for a special register generated by
the presence of a LINAGE clause in a file description entry for a sequential file. The
maximum size of a logical page or the maximum value of LINAGE-COUNTER is 999.
See "LINAGE Clause" under 5.3.1 for the rules governing the LINAGE-COUNTER .

Sequential 1-0 Levell does not provide COBOL facilities for the FILE-
CONTROL, 1-0 CONTROL, and FD entries as specified in the formats of this module.
Within the procedure division, the sequential 1-0 Levell provides limited capabilities
for the CLOSE, OPEN, USE, and WRITE statements and full capabilities for the
READ and REWRITE statements, as specified in the formats of this module.

Sequential 1-0 Level 2 provides full facilities for the FILE-CONTROL, 1-0-
CONTROL, and FD entries as specified in the formats of this module. Within the
procedure division, the sequential 1-0 Level 2 provides full capabilities for the
CLOSE, OPEN, READ, REWRITE, USE, and WRITE statements, as specified in the
formats of this module. The additional features available in Level 2 include:
OPTIONAL files, the RESERVE clause, SAME RECORD AREA, MULTIPLE FILE
tapes, REVERSED, EXTEND, and additional flexibility through series options.

Processing

The following paragraphs summarize the basic clauses and statements for sequential
file processing.

• ASSIGN TO implementor-name

The ASSIGN clause specifies implementor-name in the form of device-type
lfdname mode (record format). For files assigned to CARDREADER,
CARDPUNCH, PRINTER, TAPE, DISC, or DISK, the record format may be F, V,
U, FC, VC, or UC.

7004 4490-000

RESERVE {~} AREAS

The integer in the RESERVE clause can be only 1 or 2. If the clause is not
specified, two areas are reserved.

• ORGANIZATION IS SEQUENTIAL

The ORGANIZATION IS SEQUENTIAL clause states that the file is organized
in a sequential manner. Records are accessed one after another. If this clause is
omitted, ORGANIZATION IS SEQUENTIAL is implied. Keys are not allowed
with sequential files.

Sequential files assigned to CARDREADER, CARD PUNCH, PRINTER, or TAPE
are processed by the SAM data management. Sequential files assigned to DISC
or DISK are processed by MIRAM (unkeyed, no RCB) data management.

• ACCESS MODE IS SEQUENTIAL

This clause specifies the manner in which records are to be accessed. Since the
access mode is always sequential for sequential files, this clause is optionaL

• FILE STATUS

A value is placed by the operating system in the FILE STATUS data item to
indicate the status of an inputJoutput operation.

• LABEL RECORDS

For mass storage files, LABEL RECORDS STANDARD is required. For magnetic
tape files, LABEL RECORDS OMITTED, STANDARD, or data-name is
permissible. For card-reader, card-punch, and printer files, LABEL RECORDS
OMITTED is required.

• LI NAGE

The LINAGE clause defines the size of a logical page of a printer-destined file. If
this clause is specified, a LINAGE-COUNTER is provided and maintained by the
compiler-generated code to indicate the line number within the current page body
at any given time during the execution of the object program .

., CODE-SET

70044490-000

The CODE-SET clause may only be specified for tape files. It specifies the
character code set used to represent data on a sequential tape file. When
STANDARD-lor STANDARD-O is specified in the SPECIAL NAMES paragraph
(see 4.3.3), all data must be described as usage is DISPLAY, and any signed

8-7

File Processing Summary

numeric data must be described with SIGN IS SEPARATE. The compiler
assumes that the file has a buffer offset of zero. (See the PROGRAM
COLLATING SEQUENCE clause in 4.3.2.)

Procedure Division

8-8

• OPEN INPUT

The OPEN INPUT statement specifies that a file is accessed by READ
statements only. The REVERSED and NO REWIND phrases apply only to single­
reel files assigned to magnetic tape.

• OPEN OUTPUT

The OPEN OUTPUT statement specifies that the file is to be created by WRITE
statements only. The NO REWIND phrase applies only to single-reel files
assigned to magnetic tape.

• OPEN 1-0

The OPEN 1-0 statement is for mass storage files only. It indicates that a file is
to be updated by pairs of READ and REWRITE statements.

• OPEN EXTEND

The OPEN EXTEND statement specifies that a file is to be extended by adding
new records (with the WRITE statement) to the end of the file. The EXTEND
phrase may only be specified for tape or mass storage files and must not be
specified for files stored on multifile tape.

• CLOSE

The CLOSE statement terminates processing of a file. The LOCK phrase
prevents the file from being opened again during the current execution of this
run-unit. The CLOSE WITH NO REWIND phrase applies only to single-reel files
assigned to magnetic tape.

• READ

The READ statement makes available the next logical record from a file. If the
AT END phrase is not specified, an applicable USE ERROR procedure is
required.

1& WRITE

The WRITE statement releases a logical record for an output file. The
ADVANCING phrase is used for vertical positioning of lines within a logical page
of a printer-destined file.

7004 4490-000

File Processing Summary

• REWR ITE

The REWRITE statement replaces a record previously read in a mass storage
file.

8.3.3. Printer-Destined Files

Printer-destined files are files that are defined with a mode of FC, VC, or UC in the
implementor-name of the ASSIGN clause. Each logical record of a printer-destined file
is preceded by a device-independent control character. This control character,
however, is not accessible to the COBOL programs.

To accommodate vertical form positioning beyond the device-independent control
character limit of 15 lines, records containing control character information are
created for form positioning purposes only. These control records are not printed nor
made available by a READ statement when the file is opened as INPUT.

The presence of a control character must be considered in computing the block size for
the file. (See "BLOCK CONTAINS Clause" under 5.3.1.)

Files assigned to PRINTER are automatically printed. Printer-destined files assigned
to devices other than PRINTER require a print routine for printing.

8.3.4. Multivolume Sequential Files

For multivolume mass storage sequential files, only one volume is mounted at a time.
After one volume is processed, it must be dismounted, and then the next volume must
be mounted before processing continues.

For multireel tape sequential files, one or two reels are mounted at a time. When two
reels are mounted, reel swapping is automatic.

8.4. Relative File Processing

8.4.1. Level Characteristics

Relative 1-0 Levell does not provide full COBOL facilities for the FILE-CONTROL,
I-a-CONTROL, and FD entries as specified in the formats of this module. Within the
procedure division, the relative I-a Levell provides limited capabilities for the READ
and USE statements and full capabilities for the CLOSE, DELETE, OPEN,
REWRITE, and WRITE statements as specified in the formats of this module.

70044490-000 8-9

File Processing Summary

Relative 1-0 Level 2 provides full facilities for the FILE-CONTROL, I-a-CONTROL,
and FD entries as specified in the formats of this module. Within the Procedure
Division, the relative 1-0 Level 2 provides full capabilities for the CLOSE, DELETE,
OPEN, READ, REWRITE, START, USE, and WRITE statements as specified in the
formats of this module. The additional features available in Level 2 include the
RESERVE clause, DYNAMIC accessing, SAME RECORD AREA, READ NEXT, and
the entire START statement.

Clauses Statements for Relative File Processing

The following paragraphs summarize the basic clauses and statements for relative file
processing.

Environment Division

8-10

ASSIGN TO implementor-name

The ASSIGN clause specifies implementor-name in the form of device-type
lfdname mode (record format). The device type permitted is DISC or DISK, and
the record format must be F or V.

RESERVE {~} AREAS

The integer in the RESERVE clause can be only 1 or 2. For relative files, if the
ACCESS MODE is sequential, one or two areas may be specified; if it is random
or dynamic, only one area is allocated regardless of the value specified in the
RESERVE clause. If RESERVE is not specified, two areas are allocated when the
ACCESS MODE is sequential and one when it is random or dynamic.

• ORGANIZATION IS RELATIVE

The ORGANIZATION IS RELATIVE clause designates the file as relatively
organized. Each record in the file is identified by a relative record number. This
clause is required. If this clause is not specified, ORGANIZATION IS
SEQUENTIAL is assumed. Relative files are processed by MIRAM (unkeyed,
RCB) data management.

ACCESS MODE IS {SEQUENTIAL}
RANDOM
DYNAMIC

Sequential access processes the file in a sequential manner. Random access
indicates that the sequence in which the records are accessed is based on the
content of the RELATIVE KEY data item provided by the COBOL program.

7004 4490-000

Dynamic access indicates that the may be processed sequentially, randomly,
or depending on the appropriate input/output statements.

If this clause is not specified, ACCESS IS SEQUENTIAL is implied.

• RELATIVE KEY

The value placed in the RELATIVE KEY data item by the COBOL program
represents logical ordinal position of the intended record. The RELATIVE
KEY data item, therefore, must not be defined as a of the data record of the
file. For files accessed randomly, the RELATIVE KEY item specifies the
record to be processed. For files accessed sequentially, the record number
processed is returned in the RELATIVE KEY data item.

In the access mode, the RELATIVE KEY phrase is optional; in the
random or dynamic access mode, the phrase is required.

• FILE STATUS

A value is placed by the operating system in the FILE STATUS data item to
indicate the status of an inputJoutput operation.

• LABEL RECORDS ARE STANDARD

Standard labels are required for relative files.

• OPEN INPUT

The OPEN INPUT statement indicates that a file is to be accessed by the READ
or START statement, and standard labels are checked by the operating system.

• OPEN OUTPUT

The OPEN OUTPUT statement indicates that a file is to be created by the
WRITE statement either sequentially or randomly. Standard labels are written
by the operating system.

• OPEN 1-0

7004 4490-000

The OPEN 1-0 statement indicates that a file to be processed for both input and
output operations. Standard labels are checked by the operating system.

8-11

File Processing Summary

8-12

• START

The START statement positions a file to the desired record for subsequent
sequential retrieval. The INVALID KEY phrase is required if no applicable USE
ERROR procedure is specified.

• READ

The READ statement makes available either the next logical record for
sequential access or the specified record for random access. The NEXT phrase
must be specified for sequential retrieval in the dynamic access mode. The AT
END or INVALID KEY phrase is required if no applicable USE ERROR
procedure is specified.

• WRITE

The WRITE statement releases a logical record for an output or input/output file.
In the sequential access mode, the sequence in which records are released
constitutes the logical ordinal positions of the records in the file. In the random or
dynamic access mode, each record is placed in file according to the relative record
number provided in the RELATIVE KEY data item by the COBOL program. The
INVALID KEY phrase is required if no applicable USE ERROR procedure is
specified.

• REWRITE

In the sequential access mode, a REWRITE statement replaces the last logical
record read by a READ statement. In the random or dynamic access mode, a
logical record is stored in the file based on the relative record number supplied by
the COBOL in the RELATIVE KEY data item. The INVALID KEY phrase is
required if no applicable USE ERROR procedure is specified.

• DELETE

In the sequential access mode, the last logical record read by a READ statement
is deleted. In the random or dynamic mode, the logical record identified by the
relative record number supplied by the COBOL program is logically removed.
The INVALID KEY phrase is required if no applicable USE ERROR procedure is
specified.

4& CLOSE

The CLOSE statement terminates the processing of a file. The LOCK phrase, if
specified, prevents the file from being opened again during the current execution
of this run-unit. Standard labels are processed by the operating system.

7004 4490-000

File Processing Summary

8.5. Indexed File Processing

8.5.1. Level Characteristics

Indexed 1-0 Levell does not provide full COBOL facilities for the FILE-CONTROL, 1-
O-CONTROL, and FD entries as specified in the formats of this module. Within the
Procedure Division, the indexed 1-0 Levell provides limited capabilities for the
READ and USE statements and full capabilities for the CLOSE, DELETE, OPEN,
REWRITE, and WRITE statements, as specified in the formats for this module.

Indexed 1-0 Level 2 provides full facilities for the FILE-CONTROL, I-O-CONTROL,
and FD entries as specified in the formats for this module. Within the Procedure
Division, the indexed 1-0 Level 2 provides full capabilities for the CLOSE, DELETE,
OPEN, READ, REWRITE, START, USE, and WRITE statements as specified in the
formats for this module. The additional features available in Level 2 include: the
RESERVE clause, DYNAMIC accessing, ALTERNATE KEYS, SAME RECORD
AREA, READ NEXT, and the entire START statement.

8.5.2. Clauses and Statements for Indexed File Processing

The basic clauses and statements for indexed file processing are summarized in the
following paragraphs.

Environment Division

ASSIGN TO implementor-name

The ASSIGN clause specifies implementor-name in the form of device-type
lfdname mode (record format). The device type permitted is DISC or DISK. The
record format must be For V.

RESERVE {~} AREAS

Only one area is allocated regardless of the value specified in the RESERVE
clause. If the clause is omitted, one area is reserved by the compiler.

• ORGANIZATION IS INDEXED

70044490-000

The ORGANIZATION IS INDEXED clause is required to indicate that the file
organization is indexed. If this clause is not specified, ORGANIZATION IS
SEQUENTIAL is assumed. Indexed files are supported by MIRAM (keyed, RCB)
data management.

8-13

8-14

ACCESS MODE IS {SEQUENTIAL}
RANDOM
DYNAMIC

In sequential access mode, the sequence in which records are accessed is the
ascending order the record key values. The order of retrieval of records within
a set of records having duplicate record key values is the order in which the
records were written into the set.

In random access mode, the sequence in which records are accessed is controlled
the programmer. The desired record is accessed by placing the value of its

record key in a record key data item.

In dynamic access mode, the programmer may change at will from sequential
access to random access using appropriate forms of input/output statements.

• RECORD KEY

The RECORD KEY clause is required. It specifies the prime record key for the
file. The values of the prime record key must be unique among records of the file.
The data item named in the RECORD KEY clause must be described in the
record description of the file.

• ALTERNATE RECORD KEY

The ALTERNATE RECORD KEY clause is optional. It specifies a record key that
is an alternate record key for the file. Up to four alternate record keys may be
specified for the file. The values of alternate record keys need not be unique if the
DUPLICATE phrase is specified. The data item named in an ALTERNATE
RECORD KEY clause must be described in the record description of the file.

• FILE STATUS

A value is placed by the operating system in the FILE STATUS data item to
indicate the status of an input/output operation.

• APPLY INDEX-AREA

Division

The clause specifies the size of the index-area used by data management during
the loading and retrieval of indexed files.

• LABEL RECORDS ARE STANDARD

Standard system labels are required.

7004 4490-000

File Processing Summary

Procedure UIV'lsu-:m

• OPEN INPUT

The OPEN INPUT statement indicates that a file is to be accessed by the READ
or START statements. The standard labels are checked by the operating system.

• OPEN OUTPUT

The OPEN OUTPUT statement indicates that a new file is to be created by the
WRITE statement either sequentially or randomly. Standard labels are written
by the operating system.

• OPEN I-a

The OPEN 1-0 statement indicates that a file is to be processed for both input
and output operations. Standard labels are checked by the operating system.

.. START

The START statement positions a file to the desired area for subsequent
sequential retrieval. Any relational operator may be specified in the KEY phrase
of this statement.

• READ

The READ statement makes available either the next logical record for
sequential access or the next specified record for random access. The NEXT
phrase must be specified for sequential retrieval in the dynamic access mode. The
AT END or INVALID KEY phrase is required if no applicable USE ERROR
procedure is specified.

• WRITE

The WRITE statement releases a logical record for an output or inputJoutput file.
In sequential access mode, records are released in the ascending order of the
record key values. In random or dynamic access mode, records may be released in
any program-specified order. The INVALID KEY phrase is required if no
applicable USE ERROR procedure is specified.

41& REWRITE

70044490-000

In sequential access mode, a REWRITE statement replaces the logical record last
read by a READ statement. In random or dynamic access mode, the record to be
released is specified by the key value in the RECORD KEY data item. The
INVALID KEY phrase is required if no applicable USE ERROR procedure is
specified.

8-15

File Processing Summary

• DELETE

In sequential access mode, the logical record last read by a READ statement is
deleted. In random or dynamic access mode, the record identified by the content
of the RECORD KEY data item is deleted. The INVAlID KEY phrase is required
if no applicable USE ERROR procedure is specified.

• CLOSE

The CLOSE statement terminates the processing of a file. The LOCK phrase, if
specified, prevents the file from being opened again during the current execution
of this run-unit. Standard labels are processed by the operating system.

r-- - ------------- ------------ ----I

18.6. SAM File Processing I
" I The SAM file processing facility is provided for compatibility with files created by the
I disk sequential access method (disk SAM) of the OS/3 data management I

I
The basic clauses and statements for SAM file processing are summarized in the
following paragraphs.

I
I
I

8.6.1. Environment Division I
I
I
I

I
I
,
,

I
I
I
I
I
I
,
I
L __

8-16

ASSIGN TO implementor-name

The ASSIGN clause specifies implementor-name in the form of device-type I
lfdname mode (record format). SAM files must be assigned to DISC or DISK. The I
record format may be F, V, FC, or VC. I

RESERVE {~} AREAS

The integer in the RESERVE clause can be only 1 or 2. If the clause is omitted,
two areas are reserved.

• ORGANIZATION IS SAM

The ORGANIZATION IS SAM clause specifies that the file will be supported by
the disk sequential access method (disk SAM). If this clause is omitted,
ORGANIZATION IS SEQUENTIAL (MIRAM, unkeyed) is implied. Keys are not
allowed with SAM files.

• ACCESS MODE IS SEQUENTIAL

This clause specifies the method used to access records. For SAM files, the access

I
I
I

mode is always sequential. The clause, therefore, is optional. I
-- -- - --- -- ------______________ ---1

70044490-000

File Processing Summary

r----·-FrLe;TAT~----- - -- --- ---- - ------,

I I

I The operating system places a value in the FILE STATUS data item to indicate :
I the status of an input/output operation. I

I I
I 8.6.2. Data Division :
I I
I • LABEL RECORDS I
I I I For SAM files, the LABEL RECORDS STANDARD clause is required. I

I I
I • LINAGE I
II The LINAGE clause defines the size of a logical page of a printer-destined file. If I

the LINAGE clause is specified, a LINAGE-COUNTER is provided and I
I maintained by the compiler-generated code to indicate the line number within I
I the current page body at any given time during the execution of the object I
I program. I

I I
8.6.3. Procedure Division :

OPEN INPUT

The OPEN INPUT statement specifies that a file is accessed by READ
statements only. Specification of this statement causes the operating system to
check standard system labels.

OPEN OUTPUT

The OPEN OUTPUT statement specifies that the file will be created by WRITE
statements only. Specification of this statement causes the operating system to
create system labels.

OPEN 1-0

I
I
I
I
I
I
I
I
I
I
I
I
I
I

The OPEN 1-0 statement indicates that an existing file will be updated by pairs I
of READ and REWRITE statements. I

OPEN EXTEND

The OPEN EXTEND statement specifies that a file will be extended by adding
new records (with the WRITE statement) to the end of the file.

READ

The READ statement makes available the next logical record from a file. If the

I
I
I
I
I
I
I
I I AT END phrase is not specified, an applicable USE ERROR procedure is I

L ____ 3~~~ _______________________ ~

70044490-000 8-17

File n)CE!SSlln~

,------------------------------1
I II WRITE I

I The WRITE statement releases a logical record for an output file. The I
ADVANCING phrase is used for vertical positioning of lines within a logical page I
of a printer-destined file. :

4[1 REWRITE

The REWRITE statement replaces a record previously read.

• CLOSE

The CLOSE statement terminates the processing of a file. The LOCK phrase
prevents the file from being opened again during the current execution of this
run-unit.

For multivolume mass storage SAM files, only one volume is mounted at a time. Mter
one volume is processed, it must be dismounted, and then the next volume must be
mounted before processing continues.

D ISAM File

1.

The ISAM file processing facility is provided for compatibility with files created by the
indexed sequential access method (ISAM) of the OS/3 operating system.

The basic clauses and statements for ISAM file processing are summarized in the
following paragraphs.

n'Ulu"nnn"U'lUi'''II'I'' Division

ASSIGN TO implementor-name

The ASSIGN clause specifies implementor-name in the form of device-type
lfdname mode (record format). The device types permitted are DISC and DISK.
The record format must be F or V.

RESERVE {~} AREAS

I
I
I

I The integer in the RESERVE clause can be only 1 or 2. If the clause is not :

L specified, two areas are reserved. J
- -------- -- ------------------ ----

8-18 7004 4490-000

,-------------------------------1
I • ORGANIZATION IS ISAM I
I I
I The ORGANIZATION IS ISAM clause is required to indicate that the file
I organization is ISAM. ISAM files are processed by ISAM data management. i

I • ACCESS MODE IS {SEQUENTIAL} I
I RANDOM I
I DYNAMIC I

I In sequential access mode, records are accessed in the ascending order of the I
I record key values. For random access, the desired record is accessed based on the I,

value in the record key data item provided by the COBOL program. In dynamic
I access mode, a file may be processed sequentially, randomly, or both, depending I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Is.
I
I
I
I
I
I
I
I

on the appropriate input/output statements. I

RECORD KEY

The RECORD KEY data item is the key field contained in each record. This is a
required clause. The data item named in the RECORD KEY clauses must be
described in the record description of the file.

FILE STATUS

A value is placed by the operating system in the FILE STATUS data item to
indicate the status of an input/output operation.

APPLY CYLINDER-INDEX AREA

The clause indicates that sufficient main storage area should be allocated to
contain the specified number of index entries.

APPLY CYLINDER-OVERFLOW AREA

The clause indicates what percentage of each cylinder in the prime data area will
be reserved for cylinder overflow.

Data Division

LABEL RECORDS ARE STANDARD

Standard labels are required for ISAM files.

Procedure Division

OPEN INPUT

I
I
I
I

I
I

I
I
I
I
I
I

I
I
I

: The OPEN INPUT statement indicates that a file is to be accessed by the READ I

L ____ ~ START~tatements!he standard~abel~re checked by the operatin~ystemJ

7004 4490-000 8-19

File Processing Summary

8-20

r-----------------------------l
• OPEN OUTPUT I

The OPEN OUTPUT statement indicates that a new file is to be sequentially I
created by the WRITE statement. Standard labels are written by the operating I
system. I

OPEN 1-0

The OPEN 1-0 statement indicates that a file is to be processed for both input
and output operations. Standard labels are checked by the operating system.

START

The START statement positions a file to the desired area for subsequent
sequential retrieval. For an ISAM file, the relational operators permitted in the
KEY phrase are NOT LESS THAN or NOT <, and EQUAL TO or =. The
INVALID KEY clause is required if no applicable USE ERROR procedure is
specified.

READ

The READ statement makes available either the next logical record for

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

sequential access or the next specified record for random access. The NEXT I
phrase must be specified for sequential retrieval in the dynamic access mode. The
AT END or INVALID KEY phrase is required if no applicable USE ERROR
procedure is specified .

., WRITE

The WRITE statement releases a logical record for an output or inputJoutput file.
In sequential access mode, records are released in the ascending order of the
record key values. In random access mode, records may be released in any
program-specified order. In dynamic access mode, if the file is opened as
OUTPUT, records must be released in ascending order of the record key values. If
the file is opened as 1-0, records may be released in any program-specified order.
The INVALID KEY phrase is required if no applicable USE ERROR procedure is
specified.

• REWR ITE

In sequential access mode, a REWRITE statement replaces the logical record last
read by a READ statement. In random or dynamic access mode, the record to be
released is specified by the key value in the RECORD KEY data item. The
INVALID KEY phrase is required if no applicable USE ERROR procedure is
specified.

• CLOSE

The CLOSE statement terminates the processing of a file. The LOCK phrase, if
specified, prevents the file from being opened again during the current execution

L of this run-unit. Standard labels are processed by the operating system. I ________ ___________________ --1

7004 4490-000

Section 9
Sort-Merge Summary

9.1. General Information
The COBOL sort-merge facility provides the capability to order one or more files of
records,lor to combine two or more identically ordered files of records,laccording to a
set of user-specified keys contained within each record. Optionally, a user may apply
some special processing to each of the individual records by input or output
procedures. This special processing may be applied before or after the records are
ordered by the SORT statement lor after the records have been combined by the I

I MERGE statement.IThe standard system utility sort-merge subroutine is used to
perform the sort and merge operations.

In general, a sort operation proceeds as follows:

1. Control passes to a SORT statement. The SORT statement specifies the sort file
to be created and the data keys that guide the sort operation. It either identifies
the input procedure and output procedure or names the soutce of the unsorted
input records and that file which is to receive the sorted output records.

2. The input procedure, if named in the SORT statement, is executed. This input
procedure must contain at least one RELEASE statement. If no input procedure
is specified, the input file is named in the USING phrase of the SORT statement.
The effect of either option is to make input records available to the sort operation.

3. The records made available to the sort operation are sorted on a set of specified
keys as shown in the KEY phrase according to the EBCDIC collating sequence, or
a user-specified collating sequence.

4. The SORT statement passes control to the output procedure, if one is named. The
output procedure must contain at least one RETURN statement to return the
sorted record from the sort file to the COBOL program. If no output procedure is
used, the GIVING phrase must specify the output file.

5. The execution of the SORT statement is terminated and control passes to the
next statement in sequence.

When the input or output procedure is in control, all transfers of control must refer to
procedures contained within that input or output procedure. Conversely, control
cannot be transferred into an input or output procedure from points in the Procedure
Division outside the limits of the input or output procedure. Neither an input nor an
output procedure may contain a SORTlor MERGElstatement.

7004 4490-000 9-1

1.

The process of a merge operation is similar to a sort operation except:

• Two or more files in identical sequence are merged into one output file.

• The input jJ! U\,;~d.Ul~ is not permitted in a MERGE statement. Files to be merged
must specified in the USING phrase.

Sort-merge Levell provides the facility for sorting a single file only once within a
execution of a COBOL program. Procedures for special handling of each record

in the file before or after it has been sorted are also provided.

Sort-merge Level 2 provides the facility for sorting one or more files, or combining two
or more files, one or more times within a given execution of a COBOL program.

The files specified in the USING and GIVING phrases of the SORTland MERGE-I
statements must be described implicitly or explicitly in the FILE-CONTROL
paragraph as having sequentialjQr S~organization. No input/output statement may
be executed for the file named in the sort-merge file description.

----------------------------1

Two sort special registers, SORT-FILE-SIZE and SORT-MaDE-SIZE, provide a
means of object-time communication between the COBOL program and the
sort-merge routine, and they aid in the efficiency of the sort operation.

The registers may be referenced as operands of any statements where signed binary

I
I
I
I
I
I

data items are permitted. The information to be contained in the registers must be I
passed before the SORT statement is executed. The registers are data items generated I
by the compiler and initialized by the compiler to zeros, but are not reset after a sort I
operation is completed. I

SORT-FILE-SIZE

The reserved word SORT-FILE-SIZE is the name of a binary data item whose
PICTURE is S9(8). It is the estimated number of records in the file to be sorted.

SORT-MODE-SIZE

I
I
I
I
I
I
I
I

The reserved word SORT-MaDE-SIZE is the name of a binary data item whose I
PICTURE is S9(4). It is used for variable-length records. If the length of most I
records in the file is significantly different from the average record length, I

: performance is improved by specifying the most frequently occurring record I
L length.
-----------------------------~

9-2 7004 4490-000

9.3.1.

SELECT clauses must be included for the following types of files:

• Files used within input and output procedures

• The sortlor mergelfile

• Files named in the USING and GIVING options of the SORT lor MERGE I
statement

The file control entry names a sortlor mergelfile and specifies the association of the
file to a storage medium.

Format

SELECT file-name ASSIGN TO implementor-name-1 [,implementor-name-2J ...

Work files required by sort or merge operations may be assigned to WORKl,
WORK2, ... WORKn; where n ranges from 1 through 8 for disks, or from 1 through 6
for tapes.

Refer to the SELECT entry in 4.4.1.

The I-O-CONTROL paragraph specifies the main storage area to be shared by
different files.

Format

I-O-CONTROl.

[

RECORD j AREA FOR file-name-1,file-name-2 [,file-name-3] "'j'" .
SORT
SORT-MERGE

Refer to 4.4.2, "I-O-CONTROL Paragraph."

7004 4490-000 9-3

Sort-Merge Summary

9.4. Data Division Considerations

The File Section of the Data Division must include the following entries:

• File description entries for all files used within input and output procedures

6\1 File description entries for files named in the USING and GIVING phrases of the
SORTlor MERGElstatement

1& Sort-merge file description entries for the sortlor mergelfiles

6\1 Record description entries for all files

A sort-merge file description gives information about the size and the names of the
data records associated with the file to be sortedlor merged.IThere are no label
procedures that the user can control, and the rules for blocking and internal storage
are peculiar to the SORTland MERGElstatements.

Format

SD file-name
[;RECORD CONTAINS clause]

[
;DATA {RECORD IS } clause]

RECORDS ARE

Refer to 5.3.2 for details concerning the sort-merge file description entry.

9.5. Procedure Division Considerations

The Procedure Division must contain a SORTlor MERGElstatement to control the
sortinglor mergingloperation, and, optionally, may contain input and output
procedures to process records before and after the sort, or output procedure to make
merged records available for processing.

An input procedure must include a RELEASE statement to release records to the sort
file, and an output procedure must include a RETURN statement to obtain records
from the sort or merge file. In addition, the EXIT statement may be used as a common
end point for the input or output procedure used with the sort-merge feature.

9.5.1. RELEASE Statement

9-4

The RELEASE statement transfers records to the initial phase of a sort operation.
Details for using this statement are given in 6.6.27.

Format

RELEASE record-name [FROM identifier]

70044490-000

Sort-Merge Summary

9.5.2. RETURN Statement

The RETURN statement obtains sorted records from the final phase of a sort
operation,lor merged records during a merge operation. [Details for using this
statement are given in 6.6.28.

Format

RETURN file-name RECORD [INTO identifier] ;AT END imperative-statement

9.5.3. SORT Statement

The SORT statement creates a sort file by executing input procedures or by
transferring records from another file, sorts the records in the sort file on a set of
specified keys, and, in the final phase of the sort operation, makes available each
record from the sort file, in sorted order, to some output procedures or to an output
file. Details for use of this statement are given in 6.6.33.

Format

SORT file-name-' ON {ASCENDING} KEY phrase
DESCENDING

[COLLATING SEQUENCE] phrase

{
INPUT PROCEDURE} phrase
USING

{
OUTPUT PROCEDURE} phrase
GIVING

9.5.4. MERGE Statement

The MERGE statement combines two or more identically sequenced files on a set of
specified keys and makes merged records available to an output procedure or to an
output file. Details for use of this statement are given in 6.6.19.

Format

MERGE file-name-1 ON {ASCENDING} KEY phrase
DESCENDING

70044490-000

[COLLATING SEQUENCE] phrase
USING phrase

{
OUTPUT PROCEDURE} phrase
GIVING

9-5

Sort-Merge Summary

9.6. Object Time Subroutine Sort- erge Main Storage
Requirements

9-6

When a SORT or MERGE statement is included in a COBOL program, the object code
generated by the compiler dynamically invokes the OS/3 subroutine sort-merge to
perform a sorting or merging operation.

The minimum main storage required by the subroutine sort-merge is 13,000 (32C8 16)

bytes. This requirement is dynamically requested within the job region by the COBOL
run-time interface subroutine via a DMEM macro. Therefore, the user must include
this main storage requirement in the size of the job region in the II JOB job control
statement.

For sort-merge programs containing statically bound subprograms (compiler option
CALLST=YES), the minimum job region size is 13,000 bytes plus the size of the load
module.

For sort-merge programs involving dynamic subprograms (compiler option
CALLST=NO), the minimum job region size is 13,000 bytes plus all active load
modules at the time a sort or merge is in operation.

If main storage space more than the sort-merge minimum requirement is available in
the job region, the additional space is utilized in the sorting operation to improve
efficiency.

Sort-merge is more efficient when 50,000 to 150,000 bytes of main storage are
allocated.

70044490-000

S ctio
Segm

1
ntatio u ry

10.

10.2.1.

COBOL segmentation is a facility enables the user to communicate with the
compiler to specify object program overlay requirements. COBOL segmentation deals
only with segmentation of procedures. Only the Procedure Division and the
Environment Division are considered in determining segmentation requirements for
an object program.

When segmentation is used, the entire Procedure Division must be in sections. In
addition, each section must be classified as belonging either to the fixed portion or to
one of the independent segments of the object program.

Under segmentation Levell, users can specify permanent and independent segments.
All sections with the same segment-number must be contiguous in the source
program. All segments specified as permanent segments must be contiguous in the
source program.

Under segmentation Level 2, users can intermix sections with different segment
numbers and the fixed portion of the source program may contain segments that may
be overlaid.

The fixed portion is defined as part of the object program that is logically treated as if
it were always in main storage. This portion of the program is composed ofltwo types I

I of segments:lfixed permanent segments land fixed overlayable segments. I

A fixed permanent segment is a segment in the fixed portion that cannot be overlaid
by any other part of the program.JA fixed overlayable segment is a segment in the
fixed portion that, although logically treated as if it were always in main storage, can
be overlaid by another segment to optimize main storage utilization. Variation of the
number of fixed permanent segments in the fixed portion can be accomplished by
using a special facility called the SEGMENT-LIMIT clause (see 4.3.2). Such a
segment, if called for by the program, is always made available in its last used state.

70044490-000 10-1

Segmentation Summary

10.2.2. Independent Segments

An independent segment is defined as part of the object program that can overlay, and
can be overlaid by,leither a fixed overlayable segment orlanother independent
segment. An independent segment is in its initial state whenever control is
transferred (either implicitly or explicitly) to that segment for the first time during
the execution of a program. On subsequent transfers of control to the segment, an
independent segment is also in its initial state when:

1. Control is transferred to that segment as a result of the implicit transfer of
control between consecutive statements from a segment with a different segment
number.

2. Control is transferred to that segment as the result of the implicit transfer of
control between a SORT statement, in a segment with a different number, and an
associated input or output procedure in that independent segment.

3. Control is transferred explicitly to that segment from a segment with a different
segment number (with the exception noted in item 2 in the following paragraph).

On subsequent transfer of control to the segment, an independent segment is in its
last-used state when:

1. Control is transferred implicitly to that segment from a segment with a different
segment number (except as noted in 1 and 2 in the preceding paragraph).

2. Control is transferred explicitly to that segment as the result of the execution of
an EXIT PROGRAM statement.

10.3. Segmentation Classification

10-2

Sections to be segmented are classified by means of a system of segment numbers
using the following criteria:

• Logic Requirements

Sections that must be available for reference at all times or are referred to
frequently are normally classified as belonging to one of the permanent segments;
sections that are used less frequently are normally classified as belonging\either I

I to one of the overlayable fixed segments or\to one of the independent segments,
depending on logic requirements.

It Frequency of Use

Generally, the more frequently a section is referred to, the lower its segment
number; the less frequently it is referred to, the higher its segment number.

7004 4490-000

Segmentation Summary

• Relationship to Other Sections

Sections that frequently communicate with one another should be given the same
segment numbers.

10.4. Segmentation Control
The logical sequence of the program is the same as the physical sequence except for
specific transfers of control. The compiler automatically provides transfers of control
from one segment to another.

Control may be transferred within a source program to any paragraph in a section;
that is, it is not mandatory to transfer control to the beginning of a section.

10.5. Structure of Program Segments

10.5.1. Segment Numbers

Section classification is accomplished via a system of segment numbers. The segment
number is included in the section header.

Format

section-name SECTION [segment-number] .

Refer to "Procedure Division Body" under 6.1.3 for details on using segment numbers.

10.5.2. SEGMENT-LIMIT Clause

Ideally, all program segments having segment numbers ranging from 0 through 49
should be specified as permanent segments_ However, when insufficient storage is
available to contain all permanent segments plus the largest overlayable segment, it
becomes necessary to decrease the number of permanent segments. The
SEGMENT-LIMIT feature provides the user with a means by which he can reduce the
number of permanent segments in his program, while still retaining the logical
properties of fixed portion segments (segment numbers 0 through 49).

Format

[,SEGMENT-LIMIT] clause

Refer to 4.3.2 for details on using this clause.

70044490-000 10-3

Segmentation Summary

1 Naming

For a segmented object program, two or more object modules are produced. The
naming conventions for these modules are explained here.

One module (the root phase) consists of the initialization code, data areas, and fixed
permanent segments of the Procedure Division code. The name of this module is taken
from the first six characters of the program-name in the PROGRAM-ID paragraph. If
the program-name is less than six characters, the program-name is used.

One module (overlay) is produced for each fixed overlayable segment and for each
independent segment. The module name for each overlay is composed of eight
characters: the first six characters of the root module (if the name is less than six
characters, zeros are added to the right to form six characters) and a 2-character
numeric suffix assigned consecutively from 01 to 99. For example, a segmented
program named PAY4A in the PROGRAM-ID paragraph would have object modules
named PAY4A, PAY4A001, PAY4A002, etc.

10.5.4. linkage Control Statement Considerations

10-4

Each object module (except the last) produced for a segmented program contains
embedded linkage editor control statements that define an overlay point and include
the next object module in the series of object modules. For example, a segmented
program object module named PAYA4002 would contain the embedded control
statements:

OVERLAY PAYA4###
INCLUDE PAY4A003.

An example of the linkage editor commands used to link a segmented program is:

LOADM PAY4A
INCLUDE PAY4A.

The proper overlay structure is automatically generated by the embedded linkage
editor control statements.

When linking subprograms with a segmented program, the programmer must ensure
that the linkage editor control statements do not conflict with the compiler-generated
linkage editor control statements embedded in the object modules of the segmented
program. In particular, the subprogram must not be included in an overlay unless it is
called only from the same overlay or the root. It is recommended that subprograms be
included in the root or in a linkage editor region so that they can be called from any
overlay in the segmented COBOL program.

The compiler-generated linkage editor control statements can be suppressed by
specifying the compiler option parameter LNKCON=NO. (See Appendix A.)

7004 4490-000

Segmentation Summary

1 . COBOL Verbs Affected by Segmentation

When segmentation is used, the following restrictions are placed on the ALTER,
PERFORM,[MERGE,land SORT statements.

10.6.1. ALTER Statement

A GO TO statement in a section whose segment number is greater than or equal to 50
must not be referred to by an ALTER statement in a section with a different segment
number.

All other uses of the ALTER statement are valid and are performed even if the GO TO
to which the ALTER refers is in a fixed overlayable segment.

10.6.2. PERFORM Statement

A PERFORM statement in a section that is not in an independent segment can have
within its range, in addition to any declarative sections whose execution is caused
within that range, only one of the following:

e Sections or paragraphs wholly contained in one or more nonindependent
segments

• Sections or paragraphs wholly contained in a single independent segment

A PERFORM statement in an independent segment can have within its range, in
addition to any declarative sections whose execution is caused within that range, only
one of the following:

• Sections or paragraphs wholly contained in one or more nonindependent
segments

.. Sections or paragraphs wholly contained in the same independent segment as
that PERFORM statement

10.6.3. SORT Statement

If a SORT statement appears in a section that is not an independent segment, any
input procedures or output procedures referenced by that SORT statement must
appear in one of the following ways:

" Totally within nonindependent segments

• Wholly contained in a single independent segment

7004 4490-000 10-5

Segmentation Summary

If a SORT statement appears in an independent segment, any input procedures or
output procedures referenced by that SORT statement must be contained in one of the
following ways:

.. Totally within nonindependent segments

III Wholly within the same independent segment as that SORT statement

10.6.4. MERGE Statement

If the MERGE statement appears in a section that is not in an independent segment,
then any output procedure referenced by that MERGE statement must appear in one
of the following ways:

.. Totally within nonindependent segments

• Wholly contained in a single independent segment

If a MERGE statement appears in an independent segment, then any output
procedure referenced by that MERGE statement must be contained in one of the
following ways:

• Totally within nonindependent segments

• Wholly within the same independent segment as that MERGE statement

10-6 70044490-000

Section 11
Library ummary

11.1. General Information
The library module provides a capability for specifying text that is to be copied from a
library.

COBOL libraries contain library texts that are available to the compiler for copying at
compile time. The effect of the interpretation of the COpy statement is to insert text
into the source program, where it will be treated by the compiler as part of the source
program.

The compilation summary listing shows the volume (VOL), label (LBL), and LFD
information for all library files accessed by the compiler.

COBOL library text is placed on the OS/3 copy library by the system librarian routine.
See the System Service Programs (SSP) Operating Guide (UP-884l).

Library Levell facilitates copying text from a single library into the source program.
Text is copied from the library without change.

Library Level 2 provides the additional capability of replacing all occurrences of a
given literal, identifier, word, or group of words in the library text with alternate text
during the copying process. Level 2 also makes more than one COBOL library
available at compile time.

11.2. COPY Statement
The COpy statement incorporates text into a COBOL source program.

Format

COPY text-name [{~~} library-name]

[REPLACING phrase]

Details for using this statement are given in 6.6.8.

7004 4490-000 11-1

Summary

11.3. Source

11-2

A complete source program to be compiled from a library via the IN parameter (see
Appendix A) may be corrected temporarily during the compilation process using the
SEQ, REC, and SKI system librarian control statements. See the System Service
Programs (SSP) Operating Guide (UP-8841).

The correction deck is interchangeable between the compiler and the librarian except
that the librarian uses the added COR control statement, whereas the correction deck
for the compilation always starts with the SEQ control statement as the first card.

The correction deck must be included within the data delimiters, /$ and /*. If there are
no data cards between the data delimiters, no source correction is performed.

7004 4490-000

Section 12
ebugging guage Sum

1 .1. General Information
The debug module provides a means by which the user can describe a debugging
algorithm and the conditions under which data items or procedures are to be
monitored during the execution of the object program.

The decisions of what to monitor and what information to display on the output device
are explicitly in the domain of the user. The COBOL debug facility simply provides a
convenient access to pertinent information.

The user statements required to accomplish this monitoring are included in the source
program and can be compiled or not according to the presence or absence of one clause
in the source program. Once compiled into the program, these statements may be
executed or ignored at run time according to the setting of a run-time switch.

Debug Levell provides a basic debugging capability to specify selective or full
procedure monitoring, and optionally compiled debugging statements.

Debug Level 2 provides the additional COBOL debugging capability of specifying
identifiers and file-names for monitoring by the USE FOR DEBUGGING statement.

r-;::- ---- - - - ---- --- -- - --.
LFhe *DEBU~tatement provides debugging packet~

12.2. Language Concepts
The features of the COBOL language that support the debug module are:

o A compile-time switch - WITH DEBUGGING MODE

4» An object-time switch - bit 0 of the UPS I byte

• A USE FOR DEBUGGING statement

• A special register - DEBUG-ITEM

• Debugging lines
1:-----------1
I· *DEBUG - debugging packet I L-__________ ---I

70044490-000 12-1

Debugging Language Summary

12.2.1. DEBUG-ITEM Register

12-2

The reserved word DEBUG-ITEM is the name for a special register generated
automatically that supports the debugging facility. Only one DEBUG-ITEM is
allocated per program. The names of the subordinate data items in DEBUG-ITEM are
also reserved words. This register provides information about the conditions that
cause the execution of a debugging section. (See Table 12-1.)

Table 12-1. Debug Conditions and Contents of DEBUG-ITEM

Condition

If debugging section is
executed because of:

1. First execution of the
first non-declarative
procedure

2. Reference to procedure­
name-1 in an ALTER
statement

3. Transfer of control
associated with the
execution of a GO TO
statement

4. Refer to procedure-
name-1 in INPUT or
OUTPUT phrase of a
SORT statement

5. Transfer of control
from the control mech·
anism associated with
a PERFORM statement

6. Implicit transfer of
control from previous
sequential paragraph to
procedure-name-1

7. References to file-
name-1

8. Reference to
i dent if i er-1

DEBUG- LINE
Identifies

First statement of
that procedure

DEBUG-NAME
Contains

Name of that
procedure

DEBUG-CONTENTS
Contents

'START PROGRAM'

ALTER statement that Procedure-name-' Applicable procedure-
references name associated with
procedure-name-1 the TO phrase of the

ALTER statement

GO TO statement that Procedure-name-1 Space
transfers control to
procedure-name-1

SORT statement that
references
procedure-name-1

PERFORM statement
that references
procedure-name-1

Previous statement

Source statement
that references
file-name-1

Source statement
that references
identifier-1

Procedure-name-1 'SORT INPUT' for IN­
PUT phrase
'SORT OUTPUT' for
OUTPUT phrase

Procedure-name-' ·PERFORM LOOp·

Procedure'name-1 'FALL THROUGH'

Name of 1. Entire record read
file-name-1 for READ

Name of
identifier-1

2. Spaces for all
other references
to file-name-'

Contents of data item
referenced by
identifier-1 at time
control passes to
debugging section

continued

7004 4490-000

Debugging language Summary

Table 12-1. Debug Conditions and Contents of DEBUG-ITEM (cont.)

Condition DEBUG-LINE DEBUG-NAME DEBUG-CONTENTS
Identifies Contains Contents

If procedure-name-1 is a Statement that Procedure-name-1 'USE PROCEDURE I

USE procedure to be exe- causes execution
cuted and procedure-name- of USE procedure
1 is referenced in a USE
FOR DEBUGGING statement

12.2.2. Compile-Time Switch

The WITH DEBUGGING MODE clause is written as part of the SOURCE­
COMPUTER paragraph. It serves as a compile-time switch over the debugging
statements written in the program.:E"ebugging packets are unaffectedby the swit~j

When the WITH DEBUGGING MODE clause is specified in a program, all debugging
sections and all debugging lines are compiled as specified in this section of the
document. When the WITH DEBUGGING MODE clause is not specified, all
debugging lines and all debugging sections are compiled as if they were comment
lines.

12.2.3. Object .. Time Switch

An object-time switch dynamically activates the debugging code inserted by the
compiler. This switch setting should not be changed by the program; it is controlled
outside the COBOL environment. If the switch is on, all the effects of the standard
debugging language written in the source program are permitted. If the switch is off,
all the effects described in 6.6.41 are inhibited. Recompilation of the source program is
not required to provide or take away this facility.

The object-time switch is bit 0 of the UPS I byte and may be set with the job control
statement:

II SET UPSII{~}

The object-time switch has no effect on the execution of the object program if the
WITH DEBUGGING MODE clause was not specified in the source program at
compile time.

r;;:------- -- ------ -- -- ------:l
I The object-time switch has no effect on the execution of the extended debugging I
facilities. I L _______________________ ~

7004 4490-000 12-3

Debugging language Summary

12. III'"Ilfil""ll!"'ll""II"'II"III" Division Considerations

12.3.1. WITH DEBUGGING MODE Clause

1

1 1.

1

12-4

The WITH DEBUGGING MODE clause indicates that all debugging sections and all
debugging lines are to be compiled. If this clause is not specified, all debugging lines
and sections are compiled as if they were comment lines. Details for using this clause
are given in 4.3.1.

Format

SOURCE-COMPUTER: computer-name [WITH DEBUGGING MODE]:

DEBUGGING Statement

The USE FOR DEBUGGING statement identifies the user items that are to be
monitored by the associated debugging section. Details for using this statement are
given in 6.6.41.

phrase

lines

A debugging line is any line with a D in the indicator area of the line. Any debugging
line that consists solely of spaces from margin A to margin R is considered the same as
a blank line.

The contents of debugging lines must be such that a syntactically correct program is
formed with or without the debugging lines being considered as comment lines.

A debugging line is considered to have all the characteristics of a comment line if the
WITH DEBUGGING MODE clause is not specified in the SOURCE-COMPUTER
paragraph.

7004 4490-000

I
\

Debugging language Summary

Successive debugging lines are allowed. Continuation of debugging lines is permitted,
except that each continuation line must contain a D in the indicator area, and
character-strings may not be broken across two lines.
A debugging line is only permitted in the program after the OBJECT-COMPUTER
paragraph.

r------------------------l
12.4.3. Extended Debugging

I
The extended debugging facility consists of the functions provided by ON, EXHIBIT, I
and TRACE statements and the debugging packets. I

ON Statem ent

The ON conditional statement specifies when the statements it contains are to be
executed. Details for using this statement are given in 6.6.22.

Format

ON integer-1 [AND EVERY integer-2]
[UNTIL integer-3] {statement-, }

NEXT SENTENCE

ELSE {statement-2 }
NEXT SENTENCE

EXHIBIT Statement

The EXHIBIT statement displays, on SYSOUT, the current values of data items at
selected points in the program. Details for using this statement are given in 6.6.14.

Format

{
identifier } ...
nonnumeric-literal

TRACE Statement

The TRACE statement initiates or terminates the display, on SYSLST (4.3.3), of the
name and line-number of a section or paragraph at the start of its execution. Details
for using this statement are given in 6.6.38.

Format

{
READY} TRACE

L RESET
----~------------------------

I
I
I
I
I
I
I
I
I
I

7004 4490-000 12-5

Debugging language Summary

~------------------------

I Debugging Packet (* DEBUG) l
I
I
I
I
I
I
I

I
I
I

The debugging packet consists of a set of testing statements for a specific procedure in
a source program. It is compiled at the end of the source program but is executed as
though it were placed immediately following the procedure-name but before the first
statement of the source program procedure to be tested. The debugging packet is
headed by the *DEBUG statement that names the source procedure it is intended to
debug.

Any procedure in the source program may include a debugging packet. All packets are
grouped together and placed immediately following the last statement of the source
program.

Format

*DEBUG procedure-name

I Details for using this statement are given in 6.6.43. L _________________________ _

12-6 7004 4490-000

Section 13
Interprogram Communication
Summary

13.1. General Information
The interprogram communication module provides a facility that enables a program to
communicate with other programs. This communication is provided by:

1. The ability to transfer control from one program to another within a run-unit

2. The ability for both programs to have access to the same data items

The interprogram communication facility is supported by the compiler in two ways.
The first method makes use of the dynamic loading and unloading system facility
during program execution and supports full COBOL language. The second method
supports only Levell of the inter-program communication facility and makes use of
the static binding of programs by the linkage editor. The second method is invoked by
the compiler option parameter CALLST= YES (Appendix A) in conjunction with the
literal option of the CALL statement.

13.1.1. Transfer of Control

The CALL statement initiates the transfer of control from one program to another
within a run-unit. A program that is activated by a CALL statement may itself
contain CALL statements. However, results are unpredictable where circularity of
control is initiated; i.e., where program A calls program B, then program B calls
program A or another program that calls program A.

When control is passed to a called program, procedure statements are executed
normally beginning with the first nondeclarative statement. If control reaches a STOP
RUN statement, this signals the logical end of the run-unit. If control reaches an EXIT
PROGRAM statement, this signals the logical end of the called program only, and
control then reverts to the point immediately following the CALL statement in the
calling program. The EXIT PROGRAM statement terminates only the program in
which it occurs, and the STOP RUN statement terminates the entire run-unit.

If the called program is not a COBOL program, the termination of the run-unit or the
return to the calling program must be programmed in accordance with the language of
the called program.

7004 4490-000 13-1

Interprogram Communication Summary

13.1 Access to Data Items

In the calling program, the common data items are described along with all other data
items in the File Section, Working-Storage Section, Communication Section, or
Linkage Section, and, at object time, main storage is allocated for the entire Data
Division. In the called program, common data items are described in the Linkage
Section, but, at object time, main storage space is not allocated for this section.
Communication between the called program and the common data items stored in the
calling program is effected through USING clauses contained in both programs.

The USING clause in the calling program is contained in the CALL statelnent and the
operands are a list of common data identifiers described in its Data Division. The
USING clause in the called program follows the Procedure Division header and the
operands are a list of common data identifiers described in its Linkage Section. The
identifiers specified by the USING clause of the CALL statement indicate those data
items available to a calling program that may be referred to in the called program.
The sequence of appearance of the identifiers in the USING clause of the CALL
statement and the USING clause in the Procedure Division header is significant.
Corresponding identifiers refer to a single set of data available to the calling program.
The correspondence is positional and not by name. While the called program is being
executed, every reference to an operand whose identifier appears in the called
program USING clause is treated as a reference to the corresponding operand in the
USING clause of the active CALL statement.

After control leaves a called program, its state is maintained until a CANCEL is
executed naming that program. Therefore, initialization of the program in case of
repetitive calls is not necessary.

Execution of the CANCEL statement allows the user to indicate that the main storage
areas occupied by called programs may be released. In addition, the CANCEL
guarantees that the canceled program will be in its initial state when called by a
subsequent CALL statement.

13.1.3. level Characteristics

13-2

Interprogram communication Levell provides a capability to transfer control to one
or more programs whose names are known at compile time and for the sharing of data
among such programs.

Additionally, interprogram communication Level 2 provides the capability to transfer
control to one or more programs whose names are not known at compile time as well
as the ability to determine the availability of object- time main storage for the
program to which control is being passed.

70044490-000

Int.oll"r'lill"n.O'Ii":~rn Communication

13. & Data Division Considerations

1 1. Noncontiguous Linkage Storage

Items in the Linkage Section that have no hierarchic relationship to one another need
not be grouped into records and are classified and defined as noncontiguous
elementary items. Each of these data items is defined in a separate data description
entry that begins with the special level-number 77.

The following data clauses are required in each data description entry:

a. Level-number 77

b. Data-name

c. PICTURE clause or USAGE IS INDEX clause

Other data description clauses are optional and can be used to complete the
description of the item if necessary.

1 Linkage Records

1

Data elements in the Linkage Section that have a hierarchic relationship must be
grouped into records according to the rules for formation of record descriptions. Any
clause in an input or output record description can be used in a Linkage Section.

Initial Values

The VALUE clause must not be specified in the linkage section except in condition­
name entries (level 88).

13. . Procedure Division

1 1. Procedure Division Header

Format

PROCEDURE DIVISION [USING data-name-' [,data-name-2] ...].

When the USING phrase is present, the object program operates as if data-name-l of
the Procedure Division header in the called program and[d~~if[~~in the USING
phrase of the CALL statement in the calling program refer to a single set of data that
is equally available to both the called and calling programs. Their descriptions must
define an equal number of character positions; however, they need not be the same

70044490-000 13-3

Interprogram Communication Summary

name. In like manner, there is an equivalent relationship between data-name-2, ... in
the USING phrase of the called program and[@~nTIfIer=-3~.J.in the USING phrase of
the CALL statement in the calling program. A data-name must not appear more than
once in the USING phrase in the Procedure Division header of the called program;
however, a given[di~iTIe!]may appear more than once in the same USING phrase of
a CALL statement.

Details for using the header are given in 6.1.3.

13.3.2. CAll Statement

The CALL statement transfers control from one object program to another within the
run-unit. Details for using the statement are given in 6.6.4.

Format

CALL {lidentifier.1
1
} [USING phrase] I[ON OVERFLOW phrase]

literal-1

13.3.3. CANCEL Statement

The CANCEL statement releases the main storage areas occupied by the referenced
program. Details for using this statement are given in 6.6.5.

Format

CANCEL {identifier-,} [,identifier-2] ...
literal-1 ,literal-2

13.3.4. EXIT PROGRAM Statement

13-4

The EXIT PROGRAM statement marks the logical end of a called program. Details for
using this statement are given in 6.6.15.

Format

EXIT [PROGRAM].

7004 4490-000

Interprogram Communication Summary

13.4. Object Program Execution Considerations

A parameter in either SYSGEN or job control must be specified for the execution of a
COBOL object program containing code produced for a CALL statement referencing a
called program that is to be dynamically loaded.

In SYSGEN, the ROLLOUT=YES parameter plus the size of the buffer and buffer
table must be specified. In job control, the DLOAD parameter of the SFT job control
statement is included in the job stream. Refer to the installation guide that applies to
your system and the Job Control Programming Guide (70044623).

70044490-000 13-5

Section 14
Commu ication Summary

14.1. General Information
The communication facility provides the ability to access, process, and create
messages or portions of messages. It provides the ability to communicate through a
message control system (MCS) with local and remote communications devices.

Communication Levell does not provide the full COBOL facility for the CD entry as
specified in the formats for this module. In the Procedure Division, Levell provides
limited capabilities for the ENABLE, DISABLE, RECEIVE, and SEND statements, as
specified in the formats of this module. There is also a provision for determining the
number of messages in an input queue.

Communication Level 2 provides full facility for the CD entry as specified in the
formats of this module. Within the Procedure Division, full capabilities are provided
for the ENABLE, DISABLE, RECEIVE, and SEND statements, as specified in the
formats for this module. The additional features available in Level 2 include: partial
messages, segmented messages, multiple-destination message processing, and
program invocation by the MCS as specified by the INITIAL CD.

14. essage Control System
The MCS consists of a COBOL message control system (CMCS) and the integrated
communications access method (ICAM). The MCS is present in the COBOL object
program's operating environment.

The MCS is the logical interface to the operating system under which the COBOL
object program operates. The primary functions of the MCS are to:

• Act as an interface between the COBOL object program and the network of
communications devices, in much the same manner as an operating system acts
as an interface between the COBOL object program and such devices as card
readers, magnetic tape and mass storage devices, and printers .

., Perform line discipline, including such tasks as dial-up, polling, and
synchronization.

• Perform device-dependent tasks, such as character translation and insertion of
control characters, so that the COBOL user can create device-independent
programs.

7004 4490-000 14-1

Communication Summary

Messages from communications devices are placed in input queues by the MCS while
awaiting disposition by the COBOL object program. Output messages from the
COBOL object program are placed in output queues by the MCS while awaiting
transmission to communications devices. The structures, formats, and symbolic names
of the queues are defined by the user to the MCS at some time prior to the execution
of the COBOL object program. Symbolic names for message sources and destinations
are also defined at that time. The COBOL user must specify in his COBOL program
symbolic names that are known to the MCS.

During execution of a COBOL object program, the MCS performs all necessary actions
to update the various queues as required.

14.3. COBOL Object Program

The COBOL object program interfaces with the MCS when it is necessary to send
data, receive data, or to interrogate the status and the various queues created and
maintained by the MCS. In addition, the COBOL object program may direct the MCS
to establish or break the logical connection between the communications device and a
specified portion of the MCS queue structure. The method of handling the physical
connection is a function of the MCS.

14.4. Relationship of COBOL Program to MCS and
Communications Devices

The interfaces that exist in a COBOL communication environment are established by
the use of a CD and associated clauses in the Communication Section of the Data
Division. There are two such interfaces:

• The interface between the COBOL object program and the MCS

.. The interface between the MCS and the communications devices

The COBOL source program uses three statements to control the interface with the
MCS:

.. The RECEIVE statement, which causes data in a queue to be passed to the
COBOL object program

.. The SEND statement, which causes data associated with the COBOL object
program to be passed to one or more queues

.. The ACCEPT statement with the COUNT phrase, which causes the MCS to
indicate to the COBOL object program the number of complete messages in the
specified queue structure

14-2 70044490-000

Communication Summary

The COBOL source program uses two statements to control the interface between the
MCS and the communications devices:

4) The ENABLE statement, which establishes logical connection between the MCS
and one or more given communications devices

4) The DISABLE statement, which breaks a logical connection between the MCS
and one or more given communications devices

These relationships are shown in Figure 14-1.

COBOL PROGRAM MESSAGE CONTROL SYSTEM
(MCS)

COMMUNICATIONS
DEVICES

RECEIVE

RECEIVE

SEND

SEND

(f)

z
0
1= «
Sd

COBOL/MCS
INTERFACE

UJ
..J
a:l «
(f)

(5
"--
UJ
..J
a:l « z
UJ

MCS/COMMUNICATIONS
DEVICE INTERFACE

figure 14-1. COBOL Communication Environment

14.4.1. Invoking the COBOL Object Program

There are two methods of invoking a COBOL communication object program:
scheduled initiation andlMCS invocation.IRegardless of the method of invocation, the
only operating difference between the two methods is thatlMCS invocationlcauses the
areas referenced by the symbolic queue and subqueue names in the specified CD to be
filled.

7004 4490-000 14-3

Communication

Scheduled Initiation

A COBOL object program using the communication facility may be scheduled for
execution through the normal means available in the program?s operating
environment, such asjob control language. In that case, the COBOL program can use
three methods to determine what messages, if any, are available in the input queues:

• The ACCEPT MESSAGE COUNT statement

• The RECEIVE statement with a NO DATA phrase

• The RECEIVE statement without a NO DATA phrase (in which case a program
wait is implied if no data is available)

MCS Invocation

It is sometimes desirable to schedule a COBOL object communication program only
when there is work available for it to do. Such scheduling occurs if the MCS
determines what COBOL object program is required to process the available message
and subsequently causes that program to be scheduled for execution. Prior to the
execution of the COBOL object program, the MCS places symbolic queue and
subqueue names in the data items of the CD that specifies the FOR INITIAL INPUT
clause.

A subsequent RECEIVE statement directed to that CD will result in the available
message being passed to the COBOL object program.

Determining Method of Invocation

A COBOL source program can be written so that its object program can operate with
either of the two methods of invocation. To determine which method was used to load
the COBOL object program, the following is one technique that may be used:

.. One CD must contain a FOR INITIAL INPUT clause.

.. The Procedure Division may contain statements to test the initial value of the
symbolic queue name in that CD. If it is space-filled, job control statements were
used to schedule the COBOL object program. If not space-filled, the MCS has
invoked the COBOL object program and replaced the spaces with the symbolic
name of the queue containing the message to be processed.

14-4 7004 4490-000

Communication Summary

1 .5. Concept of essages and Message Segments

A message consists of some arbitrary amount of information, usually character data,
whose beginning and end are defined or implied. As such, messages comprise the
fundamental but not necessarily the most elementary unit of data to be processed in a
COBOL communication environment.

Messages may be logically subdivided into smaller units of data called message
segments, which are delimited within a message by means of end-of-segment
indicators (ESIs). A message consisting of one or more segments is delimited from the
next message by means of an end-of-message indicator (EMI). In a similar manner, a
group of several messages may be logically separated from succeeding messages by
means of an end-of-group indicator (EGI). When a message or message segment is
received by the COBOL program, a communication description interface area is
updated by the MCS to indicate which, if any, delimiter was associated with the text
transferred during the execution of that RECEIVE statement. On output, the
delimiter, if any, to be associated with the text released to the MCS during execution
of a SEND statement is specified or referenced in the SEND statement. Thus, the
presence of these logical indicators is recognized and specified both by the MCS and by
the COBOL object program; however, no indicators are included in the message text
processed by COBOL programs.

A precedence relationship exists between the indicators EGI, EMI, and ESI. EGI is
the most inclusive indicator, and ESI is the least inclusive indicator. The existence of
an indicator associated with message text implies the association of all less-inclusive
indicators with that text. For example, the existence of the EGI implies the existence
of EMI and ESI.

14.6. Concept of Queues

Queues consist of one or more messages from or to one or more communications
devices and, as such, form the data buffers between the COBOL object program and
the MCS. Input queues are logically separate from output queues.

The MCS logically places in queues or removes from queues only complete messages.
Portions of messages are not logically placed in queues until the entire message is
available to the MCS. That is, the MCS will not pass a message segment to a COBOL
object program unless all segments of that message are in the input queue, even
though the COBOL source program uses the SEGMENT phrase of the RECEIVE
statement. For output messages, the MCS will not transmit any segment of a message
until all its segments are in the output queue. The number of messages that exist in a
given queue reflects only the number of complete messages that exist in the queue.

The process by which messages are placed into a queue is called enqueuing. The
process by which messages are removed from a queue is called dequeuing.

70044490-000 14-5

Communication Summary

14.6.1. Enabling and Disabling logical Connectives

Usually, the MCS logically connects and disconnects sources and destinations based
on the parameters specified in the CMCS network definition. However, the COBOL
program has the ability to perform these functions by using the ENABLE and
DISABLE statements.

A key is required in both statements in order to prevent indiscriminate use of the
facility by a COBOL user who is not aware of the total network environment, and who
may therefore disrupt system functions by the untimely issuance of ENABLE and
DISABLE statements. However, this action never interrupts a transmission.

14.6.2. Enqueuing and Oequeuing Methods

It may be necessary that the user specify to the MCS, prior to execution of programs
that reference these facilities, the selection algorithm and other designated MCS
functions to be used by the MCS in placing messages in the various queues. A typical
selection algorithm, for example, would specify that all messages from a given source
be placed in a given input queue, or that all messages to be sent to a given destination
be placed in a given output queue.

Dequeuing is always done on a first-in, first-out basis. Thus, messages dequeued from
either an input or output queue are those messages that have been in the queue for
the longest period of time.

14.6.3. Queue Hierarchy

To control more explicitly the messages being enqueued/dequeued, it is possible to
define in the MCS a hierarchy of input queues, i.e., queues comprising queues. In
COBOL, four levels of queues are available to the user. In order of decreasing
significance, the queue levels are named queue, sub-queue-1, sub-queue-2, and
sub-queue-3. The full queue structure is depicted in Figure 14-2, where queues and
subqueues have been named with the letters A through O. Messages have been
identified with a letter according to their source (X, Y, or Z) and with a sequential
number.

Let's assume that the MCS is operating under the following queuing algorithm:

• Messages are placed in queues according to the content of some specified data
field in each message.

.. With the RECEIVE statement, if the user does not specify a given subqueue
level, the MCS will choose the subqueue from that level in alphabetical order;
e.g., if subqueue-1 is not specified by the user, the MCS will dequeue from
subqueue-1 B.

14-6 7004 4490-000

Communication Summary

QUEUE {

SUBQUEUE (1) {

SUBQUEUE (2) {

SUBQUEUE (3) {

MESSAGE {

B

D E

r--'-- r-'--

H

Z1
X2

I J

X3 X1
X4 Y3
XS YS

ZS

K

Z6
Z7
Y6

A

F

r--'-

l

Y7
YB

M

Y1
Y2

Figure 14-2. Hierarchy of Queues

C

G

.--L-

N 0

X6 Z2

Y4

Z3
Z4

The following examples, using Figure 14-2, illustrate the effect of these algorithms:

1. The program executes a RECEIVE statement, specifying via the CD:

Queue A

MCS returns:

Message Z1

2. The program executes a RECEIVE statement, specifying via the CD:

Queue A
Subqueue-1 C

MCS returns:

Message Y7

3. The program executes a RECEIVE statement, specifying via the CD:

7004 4490-000

Queue A
Subqueue-1 B
Subqueue-2 E

MCS returns:

Message X1

14-7

Communication Summary

1

14-8

4. The program executes a RECEIVE statement, specifying via the CD:

Queue A
Subqueue-1 C

Subqueue-2 G
Subqueue-3 N

MCS returns:

Message X6

If the COBOL programmer wishes to access the next message in a queue, regardless of
which subqueue that message may be in, he specifies the queue name only. The MCS,
when supplying the message, will return to the COBOL object program any applicable
subqueue names via the data items in the associated CD. If, however, he desires the
next message in a given subqueue, he must specify both the queue name and any
applicable sub queue names.

For output, the COBOL user specifies only the destination of the message, and the
MCS places the message in the proper output queue structure.

Control System Generation

The MCS consists of a COBOL message control system (CMCS) and the integrated
communications access method (ICAM).

The ICAM network needs to be defined and generated. The ICAM system generation
defines the lines, terminals, and queues to be used by the COBOL object program. It
may also specify the queuing algorithms directing messages to various queues based
on text content or terminal names.

A CMCS module also must be generated. The CMCS module generation defines the
relationship between the symbolic names of the source, destination, queue, subqueues,
etc., specified in the COBOL program and the corresponding ICAM names.

The CMCS module may be statically bound with the COBOL object program, or
dynamically loaded at execution time. This option and the CMCS module name are
specified by the CMCSST= YESINO and CMCS=module-name parameters. (See
Appendix A.)

After the ICAM and CMCS have been generated, the COBOL object program may
then be linked and executed.

Detailed procedures for ICAM system generation and CMCS module generation are
described in the lCAM Utilities Programming Guide (7004 4565).

7004 4490-000

Appendix
ompiler ptions

1. General Information
The compiler provides a number of options, described in A.2, that the user may
specify. The compiler options may be specified on two levels: SYSGEN specification,
and compile-time parameters. The SYSGEN specification may be overridden by the
compile-time parameters. The compiler performs a consistency check for all
specifications. (See A.3.) If none of the compiler options are specified, the following
default options are effected:

1. Accept the highest level of the standard language supported and the OS/3
extensions.

2. Produce a source listing with copied text, if any.

3. Produce a diagnostic listing using a page width of 120 characters.

4. Generate an object module that dynamically loads any called programs.

2. Compiler Option Specification
The SYSGEN specifications for compiler option parameters are entered at SYSGEN
time by the COBGEN label card, followed by individual option specification cards and
then by the END card. For more information about SYSGEN operations, see the
software installation guide for your system.

Example

COBGEN

OBJLST=YES,AXREF=YES

END

70044490-000 A-I

Compiler Options

A-2

The compile-time parameters are specified by the P ARAM job control statements. See
the Job Control Programming Reference Manual (UP-9984). The format for the
P ARAM statements is:

II PARAM option-1,option-2 ...

where:

option-1,option-2 ...

Represents compiler option parameters.

Examples

II PARAM CPYTXT=NO,IN=PAYROLL/COB3
II PARAM DIAGWN=NO,OBJLST=YES

A parameter must be contained wholly on one P ARAM card. Any number of P ARAM
cards are permitted. Within one card, parameters are separated from each other by
commas, and the last parameter on the card is terminated by a space.

The parameters used on PARAM statements are described in Table A-I. Compiler
defaults are shaded.

Parameter

CALLST= {~~S}

Table A-I. Options of the PARAM Statement

Function

Suppresses nonreferenced entries in an alphabetically
ordered cross-reference listing.

Specifies an alphabetically ordered cross-reference
listing.

Specifies static CALL of subprograms referenced by
the literal option. YES indicates that subprograms
named by the literal option of the CALL statements are to
be linked with the main program. NO indicates that
subprograms named either by the literal or identifier
option of the CALL statements are to be dynamically loaded
when called.

continued

7004 4490-000

Compiler Options

Table A·!. Options of the PARAM Statement (cant.)

Parameter Function

CDMIO= {~~$l YES specifies that consolidated data management will
be used for all fi les except ISAM and SAM disk files.

NO specifies that OTF interfaces will be used for all
files except workstation files.

MI specifies that CMO interfaces will be used for MIRAM
and workstation files only; OTF interfaces will be used
for all other fiLes.

CMCS=name Specifies a ,- to 8-character module name of the COBOL
communication control system. If this parameter is not
specified for a COBOL communication program, a default
name, consisting of six characters of the PROGRAM-ID name
(left-justified and zero-filled, if necessary) and a
suffix of two characters (CM), is used.

CMCSST= {~~S} YES indicates that the CMCS module is bound with the COBOL
object program. NO indicates that the CMCS module will be
dynamically loaded at execution time.

CPYTXT= {~~$} I ncl udes COBOL library text in source listing.

DrAG= {~6S} Specifies a diagnostic listing.

DIAGWN= {~6$} Includes warning diagnostics in the diagnostic Listing.

ERRFIL=module-name/ Specifies generation of an error-file element of
Lfdname compile-time diagnostics. The module-name is the

1- to 8-character module name of the element. The lfdname
is the ,- to 8-character name of the MIRAM library where
the element wi II be generated.

The ERRFIL parameter is ignored unless the IN parameter is
also specified. The error-file element is used by the OS/3
editor error file processing facility (@EFP command).

continued

7004 4490-000 A-3

Compiler Options

Table A5 1. Options of the PARAM Statement (cant.)

Parameter Function

FIPS= [j) Specifies a FIPS PUB 21-1 flagging option. See Appendix D.

IMSCOD= {~~S} Specifies IMS·compatible code; i.e. I COBOL programs are to
be executed under control of IMS as action programs. When

REN IMSCOD=YES or IMSCOD=REN is specified, the COBOL language
elements restricted by IMS are flagged and deleted. YES
indicates generation of a shared code action program. REN
indicates generation of a reentrant action program.

IN=m-n/f-n M-n is a ,- to 8-character source module name in the
library. F-n is a ,- to 8-character LFD name identifying
the file on which the source module resides. If fen is
om; tted, the default name YSRC is used.

LI N=f; lename/ Filename is a ,- to 8-character LFD name identifying the
filename file(s) where the COpy library resides. A maximum of

10 LfD names can be specified, allowing multiple COpy
libraries to be searched. If mUltiple LfD names are
specified, they must be separated by slash characters (j) .

If the library-name is specified in the COPY statement
(6.6.8), it takes precedence. If the library-name is
omitted in the COPY statement, the filename(s) in the LIN
parameter are used. Multiple filenames are searched
sequentially in the order specified on the LIN parameter.
If the parameter is omi tted, COPY$ is used as the default
name of the LI N parameter.

LIST= {~~S} Specifies a source program listing.

LNKCON= {~6$} Specifies generation or suppression of linker control
statements in the object module.

LSTREf= {~~$} Specifies a source listing with definition references.

LSTWTH= nnn Specifies the page width. nnn ranges from 120 through 160.
Default vaLue is 120 characters per line.

continued

A-4 7004 4490-000

Compiler Options

Table A-I. Options of the PARAM Statement (cont.)

Parameter Function

MAP= {~~S} Specifies an object program locator/map listing.

MXNON= {~bS} Suppresses nonreferenced entries in the map listing with
cross-references.

MXREF= {~bS} Specifies a map listing with cross-references.

OBJ=filename Filename is a 1· to 8-character LFD name of the file on
which the generated object moduLe is to be stored. If the
parameter is not specified, the default name YRUN is
used.

OBJLST= {~bS} Specifies an object program listing.

OBJMOD= {~~$} Specifies object module production.

PAGOVF= {~~S} YES provides automatic printer page eject feature in the
object program. NO indicates omission of the eject feature
in the object program. PAGOVF=YES should not be specified
if the LINAGE clause or the ADVANCING PAGE phrase is
specified in the source program.

PROVER= {~bS} YES specifies the production of a t isting of
procedure-names and verbs with associated source line
numbers and object program relative addresses. NO
indicates suppression of the listing.

SIGNFX= {~~S} Specifies that the compiler is to generate extra code to
ensure a valid sign nibble for DISPLAY decimal (unpacked)
fields used in MOVEs, numeric compares (other than IF
NUMERIC), or arithmetic. DISPLAY decimal fields containing
SPACES are therefore treated as zeros.

SPRLST= {~~S} Suppresses all listings unconditionally_ This parameter
overrides all other listing parameters.

continued

70044490-000 A-S

Compiler Options

Parameter

SPROUT= Ii}

SUBCK

SYNCHK= {~~S}

Table A-I. Options of the PARAM Statement (cant.)

Function

Suppresses compiler output (except source listing,
diagnostic listing, memory map and cross-reference
listings, and related options) when severity code level 1,
2, or 3 errors are encountered.

YES specifies range checking of subscripts and indexes. If
a subscript/index exceeds the table size, a CE58 run time
error message is issued (see the System Messages Reference
Manual (7004 5190». When NO is specified, the compiler
does not generate range-checking code, and the results
are unpredictable.

Specifies syntax check only or normal compiLation. When
SYNCHK=YES is specified, only the FIPS and LSTWTH
parameters may be specified_ A source program listing and
a diagnostic listing are produced automatically by the
compi ler.

YES indicates generation of a transfer address in the
object module. NO indicates suppression of a transfer
address; in which case, the program cannot be executed
unless it is called.

YES indicates that data truncation on binary items is
based on the decimaL digits specified in the PICTURE
character-string. NO indicates that data truncation is
based on the actual storage size allocated to the items.
In either case, SIZE ERROR detection is based on the
decimal digit size specified in the PICTURE clause.

A.3. Compiler Option Specification Consistency Check

A-6

When SYSGEN specifications and the compile-time parameters are read, the compiler
inspects the resulting values for consistencies. If inconsistent specifications exist, the
compiler resets the values of certain options to make them logically consistent. The
consistency check is performed in the order shown in the left column of Table A-2, and
the values of certain parameters are reset as shown in the right column of Table A-2.

7004 4490-000

Compiler Options

Table A-2. Parameter Consistency Checks

User Specifications Compiler Actions

Parameter Value Parameter Value

AXNON YES AXREF YES
IMSCOD REN CALLST YES
IMSCOD YES CALLST YES
LIST NO CPYTXT NO
LIST NO LSTREF NO
MXNON YES MXREF YES
MXREF YES MAP YES
OBJMOD NO PROVER NO
SYNCHK YES AXREF NO
SYNCHK YES DIAG YES
SYNCHK YES LIST YES
SYNCHK YES LNKCOM NO
SYNCHK YES MAP NO
SYNCHK YES MXREF NO
SYNCHK YES OBJLST NO
SYNCHK YES OBJMOD NO
SYNCHK YES PAGOVF NO
SYNCHK YES PROVER NO
SYNCHK YES TRNADR NO
SPRLST YES AXREF NO
SPRLST YES CPYTXT NO
SPRLST YES DIAG NO
SPRLST YES LIST NO
SPRLST YES LSTREF NO
SPRLST YES MAP NO
SPRLST YES MXREF NO
SPRLST YES OBJLST NO

7004 4490-000 A-7

Appendix B
Compiler Listings

The compiler produces seven output listings directed to the SYSLST file. The listings,
shown in the order in which they are produced by the compiler, are:

1. Compilation summary

2. Diagnostic

3. Source

4. Object code

5. Locator/map

6. Alphanumerically ordered cross-reference

7. Object code map listing

.1. Compilation Summary Listing
The compilation summary listing contains:

Volume (VOL), label (LBL), and LFD information for all library files accessed by
the compiler.

Date, time, and version number of the source module being compiled.

8.2. Diagnostic Listing

The diagnostic listing contains a diagnostic message for each source program error
other than sequence number errors. Detailed information concerning diagnostic
listings and messages is given in Appendix C.

B.3. Source listing

The source listing shows the source program as it is compiled. Compiler-generated
line numbers are displayed to the left of each line compiled, regardless of whether it
came from the basic source or from a COpy statement. The compiler-generated line
numbers are used in all diagnostic messages.

7004 4490-000 8-1

Compiler Listings

The sequence numbers of the input source program are checked for proper order and
any sequence errors are flagged with an S to the left of the source line in error. If a
source line has spaces in columns 1 through 6, no sequence check is performed on that
line. A line is considered to be in sequence if the nonblank value in columns 1 through
6 is higher (in terms of the EBCDIC alphanumeric collating sequence) than the
previous nonblank value in columns 1 through 6.

Sequence checking of columns 1 through 6 is not done for text copied in via a COpy
statement.

When a COpy statement occurs in the main input source, the COpy statement is
printed in its original form; the copied text of the library entry is then printed as it
appears after any replacement specified in the COpy statement has taken place. The
copied text is flagged with a C in the left margin, or an R if the text has been modified
by a REPLACING phrase.

If the SUPPRESS COPIED TEXT option is specified, the copied source is not listed
but it is still assigned compiler line numbers.

When the LSTREF option is specified, the source listing will also have, to the right of
each line that references a data item or procedure, the compiler-generated line
number of the definition of that item.

B.4. Object Code Listing
The object code listing shows the compiler-generated line number with the
corresponding object code. It also shows the local base register and displacement as
well as an object program relative location counter. It shows the DTF expansion code,
the machine language instruction or constant, object program relative operand
addresses, and assembly language mnemonic corresponding to the machine language
op code. It also shows a comments field that contains information useful in relating
this portion of the object program to the source program.

Explanatory comments in the fixed-code portion of the object module are especially
important in helping the programmer understand the logic of control in the COBOL
object program.

B.5. LocatorjMap/Cross-Reference Listings

8-2

The locator/map listing consists of the Data Division storage map and the Procedure
Division storage map. If the MXREF parameter is specified, the MAP listings also
contain the compiler-generated line numbers of the COBOL statements in which the
data-name or procedure-name is referenced.

7004 4490-000

Compiler Listings

.. Data Division Storage Map

The Data Division storage map shows the layout of the object program main
storage for the Data Division. It shows the compiler-generated line number, the
name, the level number or level indicator, the base register and displacement, the
relative address, and the data type, size, and number of occurrences of the data
item. It also shows any mnemonic-names defined in the SPECIAL-NAMES
paragraph of the Environment Division.

The base register field in the listing identifies a permanently assigned machine
register (R5 through R8) or a 2-digit number that represents an entry in a table of
base register values. This table is called the base address tags table and is shown
on the first page of the Data Division storage map listing.

The address field in the listing identifies the object program relative address of
the data item or, for linkage section data items, the displacement within a leve1
01 record description. (The address of linkage section data items is determined
only at object program execution time.)

-- Procedure Division Storage Map

70044490-000

The Procedure Division storage map shows the layout of the object program main
storage for the Procedure Division. It contains the compiler-generated line
number of the procedure, and an indication as to whether the procedure is a
section or paragraph, the segment number of the section, the starting address of
the procedure, and indicators as to whether the procedure is referenced by GO TO
or PERFORM statements or USE FOR DEBUGGING procedures. Paragraph­
names are indented to show their inclusion within a section. The beginning and
the end of the declaratives are indicated. The CSECT names of the segments in a
segmented program are also shown.

The Procedure Division storage map also displays PERFORM statement exit
bucket addresses. An exit bucket is a save area in main storage that holds return
linkage information. The exit buckets are helpful in evaluating object program
main storage dumps.

Each procedure-name that is a PERFORM statement exit point is designated by
a PX (perform exit point) or SX (sort inputJoutput procedure exit point) on the
Procedure Division storage map listing. Each PX or SX has an exit bucket
associated with it. The address of the exit bucket is shown in parentheses next to
the PX or SX designation. At the end of the storage map listing, the exit bucket
addresses are listed in address order and next to each exit bucket address is the
line-number of its associated procedure-name. In a reentrant action program, the
address of the exit bucket is actually a displacement into the object program
reentrancy control area (see G.4).

8-3

Compiler listings

Each exit bucket is 8 bytes long and has an initial setting of binary zeros. When a
PERFORM statement is executed, the return address (usually the address of the
statement after the PERFORM statement) is stored in the first 4 bytes and the
local cover register value for the PERFORM statement object code is stored in the
next 4 bytes. When the end of a PERFORM range is reached and program
execution returns to the point following the PERFORM statement, the first 4
bytes are reset to binary zeros.

When an exit bucket statement is all binary zeros, no PERFORM statement was
executed for that procedure. When the first 4 bytes are binary zeros and the next
4 are not, a PERFORM statement was executed for the procedure and the
procedure reached its exit point. When all 8 bytes are not binary zeros, a
PERFORM statement was executed for the procedure and the procedure has not
yet reached its exit point. The first 4 bytes identify the particular PERFORM
statement that was executed.

If the MXNON parameter is specified, nonreferenced names are not shown in the
listing.

B.6. Alphabetically Ordered Cross-Reference Listi

The alphabetically ordered cross-reference listing shows the program special registers
and user-defined names in ascending alphanumeric sequence by name. It also
contains the compiler-generated line number on which the name is defined and the
compiler-generated line numbers of COBOL statements in which the name is
referenced. If the AXNON parameter is specified, nonreferenced names are not shown
in the listing.

B.7. Object Code Map Listing

B-4

The object code map listing shows the compiler-generated symbols for each procedure,
and each statement within a procedure, as well as the object program relative address
assigned to each.

7004 4490-000

Appendix C
Co piler iagnostics

C.l B General Information

This appendix contains the compile-time diagnostic listing messages. The console and
terminal messages relating to the compilation process and the run-time error
messages are given in the System Messages Reference Manual (7004 5190).

C.2. Diagnostic Listing

The diagnostic listing contains a diagnostic message for each error encountered in the
source program other than sequence number errors. Each diagnostic message contains
the compiler-generated line number on which the error occurred, a diagnostic message
number, a severity code associated with the type of error, and a diagnostic message
text

There are four severity codes:

Code

o

1

2

3

Description

This is for a precautionary or warning diagnostic. The source program
contains a legal but potentially undesirable situation.

This is for a conditional, or changed, diagnostic. An error has been
encountered in the source program, but the compiler has been able to
make a corrective assumption and continue processing.

This is for a serious error for which the compiler is not able to make any
corrective assumption. The statement containing the error has been
deleted.

A fatal error situation has been encountered. The compilation is
continued for error checking purposes, but recompilation is necessary.

The diagnostic text consists of a concise description of the error, including any possible
compiler recovery action.

At the end of the diagnostic listing, there is a summary report of the number of each
type of diagnostic encountered and the number of source sequence errors detected. If
there are no errors encountered, an explicit message is given.

70044490-000 C-1

Compiler Diagnostics

C-2

The remainder of this appendix lists compile-time diagnostic messages, their message
numbers, and severity codes. The chart also includes message explanations and
recovery procedures.

Message Severity
Number Code Message/Explanation/Action

0001 a INPUT RECORD EXCEEDS 80 CHARACTERS. EXCESS CHARACTERS
TRUNCATED.

A source statement of over 80 characters was encountered.

All characters past position 80 of the input record are deleted.

0002 1 NONBLANK CHARACTERS APPEAR IN AREA A OF A CONTINUATION
LINE. CHARACTERS ACCEPTED.

A nonblank character has been found in area A (columns 8 to 11) when
continuation has been specified by a hyphen in column 7.

The first nonblank character after column 7 is accepted as the beginning
of continuation.

0003 1 ILLEGAL CHARACTER IN COLUMN 7. SPACE ASSUMED.

An invalid character has been found in column 7.

A space is assumed to have been found in column 7.

0004 2 COpy STATEMENT APPEARS IN COPiED TEXT. IMBEDDED WORD
COPY IGNORED.

T ext encountered while processing a COpy statement includes the word
COPY.

The word COPY is ignored.

0005 1 NONNUMERIC UTERALIN A CONTINUATION LINE NOT BEGIN WITH
QUOTATION MARK. CONTINUATION STARTS WITH FIRST
NONBLANK CHARACTER.

The continued portion of a nonnumeric literal did not begin with a quote or
apostrophe.

Processing continues as if a quote or apostrophe occurred prior to the
first nonblank character.

70044490-000

Compiler Diagnostics

Message Severity
Number Code MessagejExplanation/Action

0006 1 CHARACTER char-string NOT PRECEDED BY A SPACE. A SPACE
ASSUMED.

A space that should be used to delimit two characters or character
strings was not found.

A space is assumed to precede the character.

0007 1 CHARACTER STRING char-string EXCEEDS PERMISSIBLE LENGTH.
EXCESS CHARACTERS TRUNCATED.

A character string that is greater than its maximum legal size has been
detected. The first 30 characters of the string are noted in the
diagnostic.

Processing continues after the excessive characters are discarded.

0008 1 INVALID CHARACTER char-string. CHARACTER IGNORED.

A character in the COBOL character set was used incorrectly.

The character is ignored.

0009 1 COLUMN number CONTAINS AN ILLEGAL CHARACTER char-string.
CHARACTER IGNORED.

A character not in the COBOL character set was encountered.

The character is ignored.

0010 1 NONNUMERIC LITERAL OF ZERO LENGTH. A LITERAL OF ONE
SPACE ASSUMED.

Two Quotes or apostrophes with no intervening characters were
encountered.

A nonnumeric literal of one space character is assumed.

0011 1 NONNUMERIC LITERAL NOT TERMINATED BY QUOTATION MARK
NOR CONTINUED ON NEXT LINE. LITERAL TERMINATED AT LAST
NONBLANK CHARACTER OF CURRENT LINE.

There is no terminating Quote or apostrophe on the source line and no
hyphen in column 7 of the next source line.

The nonnumeric literal is terminated at the last nonblank character of the
current line.

7004 4490-000 C-3

Compiler Diagnostics

Message Severity
Number Code MessagejExplanation/Action

0012 2 language-element NOT IMPLEMENTED. LANGUAGE ELEMENT
IGNORED.

The COBOL language element encountered is not implemented.

The language element is not processed.

0013 0 LANGUAGE ELEMENT xxx EXCEEDS SPECIFIED FIPS LEVEL
ELEMENT BELONGS TO LEVEL nnn. NO CORRECTIVE ACTION
TAKEN.

The language element used in the program exceeds the specified FIPS
processing level.

The language element is accepted.

0014 1 OPTIONAL CLAUSE, DATA-NAME, OR A LEVEL 01 ENTRY NOT
SPECIFIED WITH THE CD ENTRY.

If the optional clauses or data-names are not specified in the CD entry, a
level 01 data description must follow the CD entry,

For input CD, an area of 87 characters with FILLER items is assumed. For
output CD, an area of 23 characters with FILLER items is
assumed. Source corrections and recompilation are required if the CD
area is referenced in the program.

0015 1 SPECIFIED SEGMENT-LIMIT GREATER THAN 49. SEGMENT-LIMIT
49 ASSUMED.

The value of integer specified in the SEGMENT-LIMIT clause must be within
the range from 1 to 49.

Segment-limit of 49 is assumed.

0016 2 ALPHABET-NAME OR CLASS-NAME SPECIFICATION ERROR.
CLAUSE INCOMPLETE.

An integer or literal may have been specified more than once.

The remainder of this clause is ignored.

C-4 7004 4490-000

Compiler Diagnostics

Message Severity
Number Code MessagejExplanation/Action

0017 1 THE OPTIONAL PHRASE SPECIFIED FOR ORGANIZATION OTHER
THAN SEQUENTIAL OR SAM, OR FOR A DEVICE WHICH CANNOT BE
OPENED INPUT. PHRASE IGNORED.

The OPTIONAL phrase was specified for a file with relative, indexed, or
ISAM organization, or for a device that cannot be opened input.

The phrase is ignored.

0018 1 DEVICE NAME IN element CLAUSE NOT VALID. DISC-*DUMMY-V
ASSUMED.

The device type in the ASSIGN or RERUN clause is invalid.

Processing continues with the assumed name.

0019 2 IMPLEMENTOR-NAME SPECIFIED IN ASSIGN CLAUSE
INCOMPLETE. DISC-*DUMMY-V ASSUMED.

The implementor-name format is device-Ifdname-mode. The Ifdname-mode
was not specified.

Processing continues with the assumed name.

0020 1 LINK NAME IN element CLAUSE EXCEEDS 8 CHARACTERS. FIRST 8

CHARACTERS USED.

The Ifdname (same as linkname) may not exceed eight characters.

Characters beyond the first eight are truncated.

0021 1 MODE INVALID OR NOT SPECIFIED IN ASSIGN CLAUSE,
DISC-*DUMMY-V ASSUMED.

The mode in the implementor-name of the ASSIGN clause is not specified
or specified incorrectly.

Values assumed are DISC for device, *DUMMY for Ifdname, and V for
mode.

0022 1 CLASS-NAME CLAUSE SPECIFIED WITH NO VALUE PHRASE OR
SOURCE-ALPHABET CLAUSE. COBOL CHARACTER SET USED.

When the VALUE phrase is omitted in the CLASS-NAME clause, the
SOURCE-ALPHABET clause must be specified.

The COBOL character set is used for the CLASS-NAME mnemonic-name

test.

70044490-000 C-5

Compiler Diagnostics

Message Severity
Number Code MessagejExplanation/Action

0023 1 ASSIGN CLAUSE NOT SPECIFIED IN SELECT SENTENCE. NO
CORRECTIVE ACTION TAKEN.

The ASSIGN clause is missing in the SELECT sentence.

Processing continues as if an ASSIGN clause specifying a DISK device
were encountered.

0024 0 INTEGER SPECIFIED IN RESERVE AREA CLAUSE GREATER THAN 2.
lWO AREAS ASSUMED.

The value of the integer in the RESERVE clause may not exceed 2.

RESERVE 2 AREAS assumed.

0025 1 ILLEGAL ACCESS MODE SPECIFIED FOR SEQUENTIAL
ORGANIZATION. SEQUENTIAL ACCESS ASSUMED.

RANDOM or DYNAMIC ACCESS MODE was specified for a sequential file.

Sequential access mode is assumed.

0026 1 SPECIFIED KEY(S) NOT VALID FOR THE FILE ORGANIZATION.
ILLEGAL KEYS IGNORED.

The key or keys specified for the file is not allowed for the file
organization.

Illegal key or keys ignored.

0027 1 RELATIVE KEY NOT SPECIFIED FOR RELATIVE FILE WITH RANDOM
OR DYNAMIC ACCESS. NO CORRECTIVE ACTION TAKEN.

The RELATIVE KEY clause must be specified for a relative file with random
or dynamic access.

Processing continues.

0028 2 RECORD KEY NOT SPECIFIED FOR INDEXED OR ISAM FILE. NO
CORRECTIVE ACTION TAKEN.

The RECORD KEY clause must be specified for an INDEXED or ISAM file.

Processing continues.

C-6 7004 4490-000

Compiler Diagnostics

Message Severity
Number Code MessagejExplanation/Action

0029 2 NUMBER OF ALTERNATE KEYS SPECIFIED EXCEEDS LIMIT. THIS
KEY IGNORED.

Alternate keys for a file may not exceed 4.

The key specified on the line indicated by the line number is ignored.

0030 2 OCCURS CLAUSE SPECIFIED IN LEVEL 01 OR 77 ENTRY. CLAUSE
IGNORED.

The OCCURS clause may not be specified for a level 01 or 77 entry.

The OCCURS clause is ignored.

0031 2 INTEGER-lOR INTEGER-2 IN OCCURS CLAUSE EXCEEDS LIMIT. IF
INTEGER-I, IT IS SET TO 1; IF INTEGER-2, IT IS IGNORED.

The value of integer-lor integer-2 specified in the OCCURS clause
exceeds limit.

If integer-1 exceeds limit, it is set to 1. If integer-2 exceeds limit, it is
ignored.

0032 1 integer NOT A VALID LEVEL NUMBER. LEVEL 49 ASSUMED.

An invalid level number was encountered.

Level number 49 is assumed.

0033 2 UNSIGNED NONZERO INTEGER EXPECTED WHERE xxx SPECIFIED
IN element CLAUSE. CLAUSE IGNORED.

An unsigned nonzero integer is expected in clause analysis.

The clause is ignored.

0034 1 FILE-NAME xxx APPEARS MORE THAN ONCE IN element
CLAUSE(S). FIRST SPECIFICATION USED.

The file name appears more than once as a rerun controller, or in the
SAME AREA or MULTIPLE FILE TAPE clause.

Only the first specification is used.

7004 4490-000 C-7

Compiler Diagnostics

Message Severity
Number Code MessagejExpianation/Action

0035 1 FILE-NAME xxx IN element CLAUSE NOT SPECIFIED IN SELECT
CLAUSE. FILE-NAME IGNORED.

The file name was not found in the SELECT clause.

The file name is ignored.

0036 2 FILE-NAME xxx ALREADY SPECIFIED IN A SELECT CLAUSE.
CLAUSE DELETED.

The same file name was specified in a previous SELECT clause.

The SELECT clause is syntax-checked and ignored.

0037 1 PERIOD MISSING IN element. PERIOD ASSUMED.

A character other than a period was found where a period was expected.

A period is assumed.

0038 2 LINK-NAME IN RERUN CLAUSE DOES NOT MATCH ANY SELECT
LINK-NAME. RERUN CLAUSE IGNORED.

The Ifdname (same as linkname) in the OS/3 RERUN ON Ifdname option
did not match with a Ifdname in any of the SELECT clauses.

The RERUN clause is ignored.

0039 2 RERUN RECEIVER NAME FORMAT ERROR. RERUN CLAUSE
IGNORED.

The implementor-name in the RERUN clause must be in the device-
Ifdname-option format.

The RERUN clause is ignored.

0040 1 OPTION 1 OR 2 NOT SPECIFIED IN RERUN RECEIVER NAME.
OPTION 1 ASSUMED.

The value 1 or 2 was not specified in the implementor-name of the RERUN
clause.

One dedicated receiver file is assumed.

C-8 70044490-000

Compiler Diagnostics

Message Severity
Number Code MessagejExplanation/Action

0041 1 VALUE OF INTEGER IN RERUN CLAUSE EXCEEDS LIMIT. VALUE SET
TO 5000.

The value of integer in the RERUN clause may not exceed 8,388,607.

The value of integer is set to 5000.

0042 1 VAlUE OF INTEGER IN MULTIPLE FILE POSITION CLAUSE EXCEEDS
256. VALUE SET TO PREVIOUS POSITION PLUS 1.

Self-explanatory.

Processing continues as if a value equal to the previous position plus 1
were specified.

0043 2 FILE-NAME xxx IN MULTIPLE FILE CLAUSE NOT DEFINED AS TAPE
FILE. FILE-NAME IGNORED.

The file name in the MULTIPLE FILE TAPE clause was assigned to a device
other than tape.

The file name is ignored.

0045 2 ILLEGAL CHARACTER STRING char-string. CHARACTER STRING
IGNORED.

A set of characters that does not form any COBOL word or literal was
encountered.

The string is ignored.

0046 1 A FILE WITH ORGANIZATION SAM IS ASSIGNED TO A DEVICE
OTHER THAN DISK. ORGANIZATION SEQUENTIAL ASSUMED.

A file specified with ORGANIZATION IS SAM clause must be assigned to a
disk.

ORGANIZATION SEQUENTIAL is assumed for the file.

0047 1 TEXT-NAME OR LIBRARY-NAME char-string EXCEEDS 8
CHARACTERS. FIRST 8 CHARACTERS USED.

A library or file name of a copy module is longer than eight characters.

The first eight characters of the name provided are used.

7004 4490-000 C-9

Compiler Diagnostics

Message Severity
Number Code MessagejExplanation/Action

0048 2 division-name DIVISION HEADER MISSING OR OUT OF SEQUENCE.
NO CORRECTIVE ACTION TAKEN.

A division header other than the next one in sequence was encountered.

Processing continues with the division header encountered.

0049 3 type name CANNOT BE ACCESSED. COpy STATEMENT IGNORED.

The text or library used in a COpy statement cannot be accessed. There
was an I/O error while trying to open the library file or the text
requested was not on the library file.

The COPY statement is ignored. Scanning of the source program for other
COpy statements and reference format errors is performed, after
which compilation is terminated.

0050 2 FILE file-name IN APPLY CLAUSE NOT DEFINED AS xxx FILE.
FILE-NAME IGNORED.

I.File referenced in APPLY VERIFY clause was assigned to a device other
than disk.

2.File referenced in APPLY BLOCK-COUNT clause was assigned to a
device other than tape.

3.File referenced in APPLY CYLINDER-OVERFLOW, CYLINDER-INDEX, or
INDEXED-AREA clause was not specified as ISAM.

The file-name in the APPLY clause or the clause itself is ignored.

0051 2 WORD xxx DOES NOT BEGIN ANY CLAUSE. PROCESSING
CONTINUES WITH NEXT CLAUSE.

A new clause was expected but the word encountered does not begin any
clause.

All words are ignored until a word that begins an appropriate clause is
found.

0052 2 element CLAUSE NOT IMPLEMENTED. CLAUSE IGNORED.

Report writer feature is not implemented.

The language element is ignored.

ColO 70044490-000

Compiler Diagnostics

Message Severity
Number Code MessagejExplanation/Action

0053 1 NUMERIC LITERAL nnnn EXCEEDS 18 DIGITS. TRUNCATED TO
nnnn.

A numeric literal may not exceed 18 digits.

The literal is truncated from the right.

0054 1 NUMBER OF RECORDS IN LINKAGE SECTION NOT EQUAL TO
NUMBER OF ARGUMENTS IN USING LIST. USING LIST ACCEPTED.

The LINKAGE section should correspond to the arguments in the USING
list. There are more records in one than the other.

The USING list is accepted and compilation continues. Errors occur if
items not mentioned in both lists are used.

0055 2 SERIOUS ERROR IN USE STATEMENT. item INVALID. SECTION
section-name DELETED.

The named item in the USE statement is invalid.

The entire section for the USE statement is deleted.

0058 2 LEVEL 88 condition-name ENTRY NOT PRECEDED BY
CONDITIONAL VARIABLE. LEVEL 01 FILLER ENTRY GENERATED.

The level 88 entry is the first entry in the data division.

The compiler creates a level 01 named FILLER, length 1, signed for the
conditional variable.

0059 2 LEVEL 66 data-name ENTRY NOT AT END OF HIERARCHY. LEVEL
01 FILLER ENTRY GENERATED.

The level 66 entry was not followed by one of the following: a level 01
entry, an FD or SD entry, a level 77 entry, a level 66 entry, or a
PROCEDURE DIVISION header.

A level 01 named FILLER is created to follow the level 66 entry.

0061 2 LEVEL number ENTRY NOT SUBORDINATE TO LEVEL 01 ENTRY.
LEVEL 01 FILLER ENTRY GENERATED.

A data entry with a level between 02 and 49 follows a level 77 or DATA
DIVISION header.

A level 01 named FILLER is created to precede the data entry.

7004 4490-000 C-ll

Compiler Diagnostics

Message Severity

Number Code MessagejExplanation/Action

0062 2 CONSISTENCY ERROR: element clause INVALID WHEN USED WITH
element clause. FIRST CLAUSE DELETED.

Conflict between description clauses of the data entry, i.e., USAGE
COMP-3 and alphanumeric PICTURE.

The first clause is ignored.

0063 0 GO TO DEPENDING STATEMENT CONTAINS ONLY ONE
PROCEDURE-NAME. NO CORRECTIVE ACTION TAKEN.

At least two procedure names are required in a GO TO statement with the
DEPENDING option.

Control is transferred to procedure name if value of identifier is 1.
Otherwise, control is passed to the next sentence.

0064 2 PICTURE CLAUSE INVALID FOR GROUP ITEM data-name. PICTURE
CLAUSE DELETED.

The data entry was determined to be a group item from level number
structure and a PICTURE clause conflicts with a group entry.

The compiler deletes the PICTURE clause on the group item.

0065 2 IMS ENVIRONMENT PROHIBITS USE OF LANGUAGE ELEMENT xxx.
ELEMENT DELETED.

The specifying element is not allowed under IMS processing mode.

The specified element is selected.

0066 2 PROCEDURE DIVISION USING REQUIRED IN IMS ENVIRONMENT.
NO CORRECTIVE ACTION TAKEN.

Procedure division USING must be present in the IMS environment.

No action is taken by the compiler.

0067 2 ALL PROCEDURES PHRASE SPECIFIED MORE THAN ONCE. EXCESS
CLAUSE DELETED.

The ALL PROCEDURES clause can appear only once in a program.

No action is taken by the compiler.

C-12 7004 4490-000

Compiler Diagnostics

Message Severity
Number Code MessagejExpianation/Action

0068 0 LITERAL literal-string TRUNCATED AND MOVED TO element

The literal contains more character positions than the receiver or contains
more digits than the receiver when it is aligned on the decimal
point.

The literal is truncated and moved.

0070 1 BLOCK OR RECORD SIZE FOR FiLE file-name EXCEEDS 32,767.
SIZE SET TO 32,767.

The block size (buffer size for MIRAM files) or record size is larger than
the OS/3 limit of 32,767 bytes. OS/3 block length headers, variable
record length headers, and physical I/O BCW data length fields use an
unsigned halfword to contain the length value (15 bits or a maximum

length of 32,767). The actual permitted length is often less than 32,767
due to disk track capacities, multiplexer channel limits, etc.

The size is set to 32,767.

0073 0 SiZE OF LEVEL 01 REDEFINING AREA data-name UNEQUAL TO SIZE
OF LEVEL 01 REDEFINED AREA.

The REDEFINES clause is valid. The size of each area conforms to the
exact description of each entry.

This message is for warning only.

0074 1 USAGE OF data-name CONFLICTS WITH USAGE OF GROUP. NO
CORRECTIVE ACTION TAKEN.

A data entry usage conflicts with the usage of one or more of the group
entries that this data entry is subordinate to, or usage conflicts with a
value on a group level.

The compiler assumes group entry's usage as proper usage.

0075 2 OCCURS CLAUSE IN data-name ENTRY INVALID. 4 DIMENSION
TABLE DESCRIBED. CLAUSE DELETED.

A data entry with an OCCURS clause was encountered, which would cause
more than three levels of subscripting.

The compiler deletes the OCCURS clause on the data entry.

70044490-000 C-13

Compiler Diagnostics

Message Severity

Number Code MessagejExplanation/Action

0076 2 FILE file-name HAS NO DATA RECORD. NO CORRECTIVE ACTION
TAKEN.

A level 01 data record was not encountered for this file. No action is
taken by the compiler.

0077 2 PRINTER CONTROL CHARACTER SPECIFICATION INVALID FOR

file-name. SPECIFICATION IGNORED.

Printer control character may only be specified on file with sequential
organization.

Compiler ignores control character specification.

0078 3 ADDITIONAL MEMORY REQUIRED FOR PROCESSING LABEL
RECORD DESCRIPTIONS. OBJECT MODULE NOT PRODUCED.

There is not enough main storage available for holding all the label name

definitions for this file.

Compiler assumes label name definitions that do not fit do not exist. Main
storage is required to hold SELECTS and label name definitions. To allow
processing of more label names, allocate more main storage, shorten
size of SELECT entries, or define fewer label names.

0079 1 BLOCK LENGTH FOR FILE file-name NOT A MULTIPLE OF RECORD
LENGTH. BLOCK SHORTENED TO HOLD AN INTEGRAL NUMBER OF
RECORDS.

The block length is not evenly divisible by the record length for fixed mode
tape, card reader, card punch, fixed mode SAM, or ISAM.

The block is shortened to contain an integral number of records.

0080 1 FILE-NAME file-name NOT FOUND IN SELECT CLAUSES. A SELECT
ENTRY ASSIGNED TO DISK ASSUMED.

A file that does not have a SELECT entry (matched by file name) was

encountered.

Compiler assumes a SELECT entry defined with file name and assigned to

disk device.

0081 1 INVALID MODE SPECIFIED FOR FILE file-name. MODE F ASSUMED.

The mode specified is not permissible for this file.

Mode F is assumed.

C-14 7004 4490-000

Compiler Diagnostics

Message Severity
Number Code MessagejExplanation/Action

0083 1 BLOCK CONTAINS MORE THAN 1 RECORD NOT PERMITIED FOR
FILE file-name. BLOCK CONTAINS 1 RECORD ASSUMED.

A file assigned to U mode tape or printer with a BLOCK CONTAINS clause
specifying more than one record was encountered.

Compiler assumes block contains one record.

0084 1 LABEL RECORDS OMITIED REQUIRED FOR FILE file-name.
OMITIED ASSUMED.

A file assigned to a unit record device with other than LABEL RECORDS
OMITIED was encountered.

Compiler assumes labels to be omitted,

0085 1 BLOCK SIZE SPECIFIED FOR FILE file-name INSUFFICIENT FOR
MINIMUM I/O BUFFER. MINIMUM SIZE ASSUMED.

The BLOCK CONTAINS CHARACTERS clause specifies a buffer size
insufficient for the minimum data management buffer.

The minimum allowable buffer size is used.

0087 2 RECORD DESCRIPTION ENTRY FOR LABEL RECORD data-name
NOT FOUND. NO CORRECTIVE ACTION TAKEN.

A label name (from LABEL RECORDS ARE clause) with no 01 label
description was encountered.

The compiler assumes the label name does not exist.

0089 1 LABEL RECORDS STANDARD REQUIRED FOR FILE file-name.
STANDARD ASSUMED.

A file assigned to mass storage device must specify LABEL RECORDS
STANDARD clause.

LABEL RECORDS STANDARD clause assumed.

0091 2 SYNTAX REQUIRES element, char-string INVALID. STATEMENT

IGNORED.

The character string encountered does not conform to the language
element required by the COBOL syntax.

Processing continues at the end of the statement.

70044490-000 C-15

Compiler Diagnostics

Message Severity
Number Code MessagejExplanation/Action

0092 3 MEMORY INSUFFICIENT FOR element PROCESSING. OVERFLOW
DETECTED ON char-string. OBJECT MODULE NOT PRODUCED.

Processing of the language element could not continue due to insufficient
storage.

All previous processing of the language element is deleted and current
processing of the character string is completed.

0093 1 LITERAL 0 INVALID FOR SIGN CONDITION TEST. FIGURATIVE
CONSTANT ZERO ASSUMED.

Literal 0 may not be specified in a sign condition test.

Figurative constant ZERO substituted.

0094 1 CHARACTER IN CHARACTER POSITION integer INVALID FOR type
PICTURE pic-string. PICTURE SET TO S9.

Illegal PICTURE character, PICTURE character inconsistent with PICTURE
type, or violation of PICTURE precedence rules has been detected.

In order not to delete the data descriptor, compiler sets picture to S9.

0095 1 type PICTURE pic-string INCOMPLETE. PICTURE SET TO S9.

Picture is incomplete and cannot be processed, e.g., SPPPP.

In order not to delete the data descriptor, compiler sets picture to S9.

0097 1 SIZE LIMIT OF integer BYTES EXCEEDED BY PICTURE pic-string.
PICTURE SET TO S9.

PICTURE clause specifies more storage than the maximum allowed for the
picture type.

In order not to delete the data descriptor, compiler sets picture to S9.

0098 1 PICTURE pic-string EXCEEDS 18 DIGIT POSITIONS. PICTURE SET
TOS9.

The number of digit positions in the picture exceeds 18.

In order not to delete the data descriptor, compiler sets picture to S9.

C-16 70044490-000

Compiler Diagnostics

Message Severity
Number Code MessagejExplanation/Action

0099 1 VALUE OF INTEGER IN PARENTHESIS EQUALS ZERO OR GREATER
THAN 4092 IN PICTURE pic-string. INTEGER SET TO 1.

A value contained within parentheses is either 0 or greater than 4092.

The value within parentheses is set to 1 and processing of the picture
continues.

0100 1 INTEGER DOES NOT FOLLOW LEFT PARENTHESIS IN PICTURE
pic-string. PICTURE SET TO S9.

A left parenthesis within the PICTURE clause is not followed by a numeric
integer.

In order not to delete the data descriptor, compiler sets picture to S9.

0101 1 RIGHT PARENTHESIS MISSING FROM PICTURE pic-string. PICTURE
SET TO 59.

A right parenthesis does not follow a numeric integer preceded by a left
parenthesis.

In order not to delete the data descriptor, compiler sets picture to S9.

0102 1 BOTH LEADING AND TRAILING SIGN INSERTION SPECIFIED IN
PICTURE pic-string. PICTURE SET TO 59.

Two insertion sign characters have been encountered in the numeric
edited picture.

In order not to delete the data descriptor, compiler sets picture to S9.

0105 1 INITIAL VALUE EXCEEDS SIZE OF DATA ITEM. EXCESS
CHARACTERS TRUNCATED.

The value specified for the data item contains a greater number of
characters than the data item, or is a numeric value that, when the
decimal point is aligned, is larger than the maximum value the data item
can contain.

The excess characters are truncated.

7004 4490-000 C-17

Compiler Diagnostics

Message Severity
Number Code MessagejExplanation/Action

0106 2 INVAliD POSITIONING OF KEY data-name IN HIERARCHY. KEY

CLAUSE IGNORED.

There must not be any items with an OCCURS clause between the table

item and its keys.

The named key is processed as a regular data item, the key information is

ignored.

0107 3 ADDITIONAl MEMORY REQUIRED TO PROCESS HIERARCHY
CONTAINING data-name. OBJECT MODULE NOT PRODUCED.

There is not enough main storage available to contain all entries
subordinate to the 01 data entry. There are too many entries for the 01
hierarchy for main storage allocated.

The compiler will not process the data entries that are not contained in
main storage. To compensate, shorten the hierarchy, shorten
names in data entries, or assign more main storage to compiler.

0108 3 data-name EXCEEDS REDEFINES NESTING LIMIT. REDEFINES
CLAUSE IGNORED.

There are too many levels of redefinition. This data entry exceeds the limit
of redefinition.

The compiler assumes this entry does not have REDEFINES clause.

0109 1 data-name-l HAS IMPROPER REDEFINES OBJECT data-name-2.
OBJECT OF REDEFINES ASSUMED TO BE THE LAST DEFINED

AREA.

The redefined area is a redefining area; i.e., the object of the REDEFINES
clause has or is subordinate to a REDEFINES clause.

The compiler assumes the redefinition of the last defined area with the
same level as the subject of the REDEFINES clause.

0111 2 DATA DESCRIPTION OF data-name NOT FOUND IN HIERARCHY.

QUALIFIER IGNORED.

The definition of the entry is not in the current hierarchy.

The compiler assumes the qualifier name in error does not exist.

C-18 7004 4490-000

Compiler Diagnostics

Message Severity
Number Code MessagejExplanation/Action

0112 1 RENAMES-OCCURS CONFLICT BETWEEN data-name-l AND data-
name-2. LAST ELEMENTARY ITEM ASSUMED AS OBJECT OF
RENAMES.

The object of the RENAMES clause on data-name-l has or is subordinate
to an OCCURS clause.

The compiler assumes the last elementary item in the hierarchy is the
object of the RENAMES clause.

0113 1 SIZE OF REDEFINING AREA data-name UNEQUAL TO SIZE OF
REDEFINED AREA. LARGER SIZE ASSU~jED FOR THE AREA.

The calculated length of the redefined area is not the same as the length
of the redefining area.

The larger size is used for the area.

0114 1 SIZE OF ELEMENTARY ITEM data-name EXCEEDS LIMIT. SIZE SET
TO LIMIT.

An elementary item with a length larger than the maximum was
encountered.

The compiler assumes the length to be 4092 for the elementary item.

0115 1 SIZE OF GROUP ITEM data-name EXCEEDS LIMIT. SIZE OF GROUP
ITEM SET TO 524,280. ENTIRE AREA SPECIFIED IS, HOWEVER,
ALLOCATED.

The calculated length of a group item exceeds maximum limit.

The length of group item is set to 524,280. The entire area specified,
however, is allocated.

0116 1 SIZE OF ITEM data-name CONTAINING AN OCCURS CLAUSE
EXCEEDS LIMIT. ENTIRE AREA SPECIFIED IS ALLOCATED BUT
SUBSCRIPTED REFERENCES TO THE TABLE MAY NOT GIVE
CORRECT RESULTS.

The length of a table element (i.e., the size of the item containing an
OCCURS clause) exceeds the maximum limit of 32,767 bytes.

The compiler allocates the entire area for the table element; however,
subscripted references to the table item may not work.

7004 4490-000 C-19

Compiler Diagnostics

Message Severity
Number Code MessagejExplanation/Action

0117 1 INVAliD LEVEL NUMBER STRUCTURE ENCOUNTERED AT
data-name. NO CORRECTIVE ACTION TAKEN.

A level number equal to the level of the data entry should have appeared
in the hierarchy directly subordinate to the 01.

The compiler assumes there is a level number missing on a data entry
directly subordinate to the 01 (e.g., a record with a level number structure
of 01. .. 05 ... 02 is processed as if it had a level number structure of
01...02 ... 05 ... 02).

0118 1 FIRST OBJECT OF LEVEL 66 ENTRY data-name ENDS AFTER
SECOND OBJECT. SECOND OBJECT IGNORED.

The first object of a RENAMES clause does not precede the area of the
second object of the RENAMES clause.

The compiler assumes the second object does not exist.

0119 1 SECOND OBJECT OF LEVEL 66 ENTRY data-name STARTS BEFORE
FIRST OBJECT. ORDER OF OBJECTS ASSUMED REVERSED.

The second object of a RENAMES clause does not precede the first
object of the RENAMES clause.

The compiler assumes the objects are reversed. (The first is the second
and the second is the first.)

0120 1 USAGE INDEX CLAUSE INVALID FOR CONDITIONAL VARIABLE
data-name. CLAUSE IGNORED.

A condition name entry is defined for a data with a USAGE INDEX clause.

The compiler assumes alphanumeric usage for the conditional variable.

0121 1 SIZE OF RECORD record-name UNEQUAL TO THAT OF OTHER
RECORDS IN FILE SPECIFIED WITH MODE F.LARGER SIZE
ASSUMED TO BE THE RECORD SIZE OF FILE.

A file defined with fixed-length record format does not have data records
of the same length.

The compiler assumes the largest data record length for calculation of
record length for the file.

C-20 70044490-000

Compiler Diagnostics

Message Severity
Number Code MessagejExplanation/Action

0122 1 SIZE OF LABEL RECORD data-name NOT 80 CHARACTERS.
80 ASSUMED.

Length of a standard user label record description is not 80 characters.

A length of 80 characters is assumed.

0123 2 SYNC CLAUSE SPECIFIED FOR data-name REQUIRES DIFFERENT
SYNCHRONIZATION THAN OBJECT OF REDEFINES. SYNC CLAUSE
IGNORED.

Self-explanatory

The SYNC clause is ignored.

0124 1 BLOCK CONTAINS iNSUFFICIENT CHARACTERS TO HOLD ONE
RECORD FOR FILE file-name. BLOCK SET TO CONTAIN ONE
RECORD.

The value in the BLOCK CONTAINS integer CHARACTERS clause is less
than that needed to contain the largest record plus control bytes.

The compiler assumes BLOCK CONTAINS 1 RECORD.

0127 1 RECORD CONTAINS SPECIFICATION NOT EQUAL TO SIZE OF
LARGEST RECORD. LARGEST RECORD SIZE USED.

RECORD CONTAINS clause does not specify length of largest data record.

The compiler assumes that the length of the largest data record is
specified in the RECORD CONTAINS clause.

0129 2 REDEFINES CLAUSE NOT PERMITTED FOR LEVEL 01 ENTRY IN
FILE OR COMMUNICATION SECTION. CLAUSE IGNORED.

A level 01 entry with a REDEFINES clause was encountered in the file or
communication section.

The compiler assumes the REDEFINES clause does not exist.

0130 2 SUBJECT OF REDEFINES, data-name, NOT IN SAME SECTION AS
OBJECT OF REDEFINES. REDEFINES CLAUSE IGNORED.

Subject of a REDEFINES clause is not in same section as entry with
REDEFINES.

The compiler assumes the REDEFINES clause does not exist.

7004 4490-000 C-21

Compiler Diagnostics

Message Severity
Number Code MessagejExplanation/Action

0131 2 OBJECT OF REDEFINES, data-name, WITHIN RANGE OF OCCURS.
REDEFINES CLAUSE IGNORED.

The object of a REDEFINES clause is subordinate to an OCCURS clause.

The compiler assumes the REDEFINES clause does not exist.

0132 2 REDEFINES OBJECT, data-name, AND SUBJECT DATA NAME DO
NOT HAVE IDENTICAL LEVEL NUMBERS. REDEFINES CLAUSE
IGNORED.

Object and subjects of a REDEFINES clause do not have same level
numbers.

The compiler assumes the REDEFINES clause does not exist.

0133 3 INDEX NAME data-name EXCEEDS LIMIT. PREVIOUS INDEX NAMES
ASSIGNMENT INVALIDATED.

The current compiler limit of index names is 255. This entry is the 256
specified index name.

The compiler starts index name storage assignment over and reassigns
the storage to the index names being processed.

0134 1 NO LENGTH INDICATED IN ELEMENTARY ITEM data-name. LENGTH
OF 1 ASSUMED.

An elementary item, determined from level number structure, with no
length specified or assumed, was encountered.

The compiler assumes a length of 1, signed was specified.

0136 1 OBJECT OF RENAMES data-name HAS ILLEGAL LEVEL NUMBER.
LAST ELEMENTARY ITEM ASSUMED AS OBJECT.

The object of the RENAMES clause has illegal level number.

The compiler assumes the last elementary item as specified object of the
RENAMES clause.

0137 2 OBJECT OF REDEFINES IN data-name ENTRY HAS ILLEGAL LEVEL
NUMBER. REDEFINES CLAUSE IGNORED,

The object of the REDEFINES clause is not a legal level for redefinition.

The compiler assumes the REDEFINES clause does not exist.

C-22 7004 4490-000

Compiler Diagnostics

Message Severity
Number Code MessagejExplanation/Action

0138 1 USE DEBUGGING SECTIONS NOT GROUPED TOGETHER AT
BEGINNING OF DECLARATIVES. PROCESSED AS IF IN CORRECT
SEQUENCE.

All debugging sections must appear together immediately following the
DECLARATIVES header.

The debugging sections are processed as though they had appeared at
the beginning of the DECLARATIVES.

0139 1 SEGMENT NUMBER INCORRECT OR OUT OF SEQUENCE. SEGMENT
NUMBER 0 ASSUMED.

The value of segment number does not fall within range of 0 to 99.

The segment number is set to O.

0140 2 NO EXIT PROGRAM STATEMENT IN PROCEDURE DIVISION
SPECIFIED WITH USING PHRASE. NO CORRECTIVE ACTION TAKEN.

No return mechanism to the calling program is provided.

No corrective action is taken.

0142 2 NO PROCEDURE DIVISION USING PHRASE OR EXIT PROGRAM
STATEMENT ASSOCIATED WITH LINKAGE SECTION. NO
CORRECTIVE ACTION TAKEN.

No mechanism provided for passing of arguments or exit to calling
program.

No corrective action is taken.

0143 2 UNPAIRED ELSE ENCOUNTERED IN IF STATEMENT. IF STATEMENT
TERMINATED AT THIS POINT.

ELSE encountered in IF statement with no preceding IF verb to match it
with.

The conditional statement is terminated at this point.

0144 0 STOP RUN STATEMENT NOT ENCOUNTERED. NO CORRECTIVE
ACTION TAKEN.

The STOP RUN statement was not encountered.

No corrective action is taken.

70044490-000 C-23

Compiler Diagnostics

Message Severity
Number Code MessagejExplanation/Action

0145 2 EXIT STATEMENT NOT THE ONLY STATEMENT IN PARAGRAPH. NO
CORRECTIVE ACTION TAKEN.

The EXIT statement must be the only statement in a paragraph.

No corrective action is taken.

0146 1 THE BEFORE OPTION OF THE USE STATEMENT IS NOT
APPLICABLE. THE AFTER OPTION IS ASSUMED.

The BEFORE option is not applicable to the operating system.

The AFTER option is assumed.

0147 1 LENGTH OF PROGRAM NAME IN CALL STATEMENT EXCEEDS
LIMIT. EXCESS CHARACTERS TRUNCATED.

Program name exceeds 8 or 80 characters in length.

The program name in CALL statement truncated to 8 or 80 characters.

0148 2 REFERENCE TO name CANNOT BE RESOLVED. STATEMENT
DELETED.

A definition of the listed name has not been encountered.

The statement containing the reference is deleted.

0149 2 QUALIFIED REFERENCE TO name CANNOT BE RESOLVED.
STATEMENT DELETED.

A definition of the listed name has not been encountered under the
specified qualifiers.

The statement containing the reference is deleted.

0150 1 REFERENCE TO PROCEDURE name AMBiGUOUS. DEFINITION AT
LINE number USED.

A definition of the listed paragraph name has not been encountered within
the section from which the reference is made, while multiple
definitions exist outside the section of reference.

Reference is resolved by the paragraph name at the listed line number.

C-24 7004 4490-000

Compiler Diagnostics

Message Severity
Number Code MessagejExplanation/Action

0151 2 REFERENCE TO name OF name CANNOT BE RESOLVED DUE TO
IMPROPER QUALIFIER AT LINE number. STATEMENT DELETED.

The qualifier of a procedure reference is not a section name, or is found
in the data division; or the qualifier of a data reference is found in the
procedure division.

The statement containing the reference is deleted.

0152 1 REFERENCE TO name AMBIGUOUS DUE TO DEFINITION AT LINE
number. DEFINITION AT LINE number USED.

Duplicate definition of listed unqualified name found in same division.

The definition at listed line number is used.

0153 1 IMPROPER DEFINITION OF name AT LINE number IMPLIED BY
MANNER OF REFERENCE. STATEMENT DELETED IF REFERENCE
NOT RESOLVED.

Duplicate definition of listed unqualified name found in another division.

If the reference cannot be resolved within the COBOL division
corresponding to the reference type, the statement is deleted.

0154 1 name NOT UNIQUE. DUPLICATE DEFINITION FOUND AT LINE
number. STATEMENT DELETED IF REFERENCE NOT RESOLVED.

Duplicate definition found for qualifier.

If the reference cannot be resolved within the COBOL division
corresponding to the reference type, the statement is deleted.

0155 0 IMPERATIVE STATEMENT NOT TERMINATED BY PERIOD AT END OF
PARAGRAPH. PERIOD ASSUMED.

Last sentence of a paragraph was not terminated by a period. A period is
required for correct COBOL syntax, even though it does not affect
execution of imperative statements.

A period is assumed after the last statement in the paragraph.

7004 4490-000 C-25

Compiler Diagnostics

Message Severity
Number Code MessagejExplanation/Action

0156 2 BOTH CD INITIAL AND PROCEDURE DIVISION USING SPECIFIED.
USING PHRASE IGNORED.

If the USING phrase is specified in the PROCEDURE DIVISION header, the
INITIAL clause must not be present in any CD entry.

The USING phrase is deleted.

0157 0 verb STATEMENT OPERAND name IMPROPERLY INDEXED. NO
ACTION TAKEN.

An index name used to address a table element is not associated with the
table but with another table with the same element size.

No action. Precautionary warning.

0158 0 verb STATEMENT REFERENCES WORKING-STORAGE ITEM data-
name WHICH, IN IMS ENVIRONMENT, SHOULD NOT BE MODIFIED.
NO ACTION TAKEN.

Due to shared nature of programs operating under IMS mode, errors
could occur if working-storage items are modified at object time.

No action. Precautionary warning.

0159 2 verb STATEMENT CONTAINS INVALID OPERAND data-name.
STATEMENT DELETED.

The specified data item does not satisfy the requirements for the
designated verb; for example, an alphabetic operand in an ADD
statement.

The statement containing the listed operand is deleted.

0160 2 verb STATEMENT OPERAND data-name IMPROPERLY
SUBSCRIPTED. STATEMENT DELETED.

Data item contains too many, too few, or an improper type of subscript.

The statement containing the subscript error is deleted.

0161 2 verb STATEMENT CONTAINS INCONSISTENT OPERAND data-name.
STATEMENT DELETED.

The combination of operands in the statement conflict in their usage; for
example, moving a numeric item to an alphabetic operand.

The statement containing the inconsistent operand is deleted.

C-26 7004 4490-000

Compiler Diagnostics

Message Severity
Number Code MessagejExplanation/Action

0162 1 verb STATEMENT CONTAINS SIGNED LITERAL literal. SIGN
DELETED.

A signed literal has been encountered.

The sign of the literal is deleted.

0163 2 COMPOSITE OF OPERANDS IN verb statement EXCEEDS 18
DIGITS. STATEMENT DELETED.

The superimposition of all operands to the left of the word GIVING
exceeds 18 digits.

The statement containing the composite error is deleted.

0164 2 GO TO PRECEDES IMPERATIVE STATEMENTS. IMPERATIVE
STATEMENTS DELETED.

A GO TO statement is followed by other imperative statements.

The statements between the GO TO and the ELSE, IF, or period are
deleted.

0165 2 verb STATEMENT OPERAND data-name NOT DEFINED IN LINKAGE
SECTION. STATEMENT DELETED.

The referenced data-name has not been defined in the linkage section.

The statement containing the listed operand is deleted.

0166 1 CONDITIONAL STATEMENT NOT TERMINATED BY PERIOD AT END
OF PARAGRAPH. PERIOD ASSUMED.

Last sentence of a paragraph containing a conditional statement was not
terminated by a period. A period is required to indicate where conditional
statement ends. This does affect execution of the program.

A period is assumed after the last statement in the paragraph.

0167 3 ADDITIONAL MEMORY REQUIRED TO PROCESS STATEMENT
CONTAINING data-name. OBJECT MODULE NOT PRODUCED.

This statement exceeds the main storage area available to process
statements with multiple operands.

The statement is deleted. Additional main storage should be assigned to
the compiler or the statement must be rewritten as multiple statements.

70044490-000 C-27

Compiler Diagnostics

Message Severity
Number Code MessagejExplanation/Action

0168 2 verb STATEMENT EXCEEDS LIMIT OF INTERMEDIATE RESULT
AREAS. STATEMENT DELETED.

The maximum number of temporary arithmetic data areas has been
exceeded.

Reduce the complexity of the expression or reduce the number of
expressions in the statement.

0169 2 verb STATEMENT OPERAND name NOT A RECORD OR FILE NAME.
STATEMENT DELETED.

The inpuVoutput statement does not reference a record name or file
name.

The statement in error is deleted.

0170 2 SENTENCE PRODUCES EXCESSIVE OBJECT CODE. NO
CORRECTIVE ACTION TAKEN.

The maximum size of the object code produced for one sentence may not
exceed 2048 bytes. Incorrect branching may occur during object (
program execution.

Reduce the sentence size by rewriting it as several sentences or
paragraphs.

0171 2 NEXT SENTENCE PHRASE NOT FOLLOWED BY A PERIOD OR WORD
ELSE OR WHEN. PHRASE DELETED.

NEXT SENTENCE must be followed by ELSE, period, or WHEN.

The NEXT SENTENCE phrase is ignored.

0172 0 PERFORM STATEMENT IN DECLARATIVES REFERENCES A NON-
DECLARATIVE PROCEDURE. NO ACTION TAKEN.

A PERFORM within the declarative section referenced a procedure outside
of the declarative section.

No action. Precautionary warning.

0173 2 verb STATEMENT OPERAND name REFERS TO FILE RECORD AREA.
STATEMENT DELETED.

Both operands in the statement refer to the same storage area.

The statement is deleted.

C-28 70044490-000

Compiler Diagnostics

Message Severity
Number Code MessagejExplanation/Action

0174 2 verb STATEMENT RECORD-NAME name NOT DEFINED IN FILE
SECTION. STATEMENT DELETED.

The listed operand is not defined in the file section.

The statement is deleted.

0175 0 COMPARISON FOR EQUAliTY INVOLVING A FLOATING-POINT
OPERAND MAY NOT YIELD EXPECTED RESULTS. PRECAUTIONARY
WARNING.

A floating-point operand appears in an equal- or not-equal-relation
condition. Because of the limited precision in a floating-point number, the
values of the two operands may not compare as equal or not equal.

No action. Precautionary warning.

0176 2 DESCRIPTIONS OF OPERANDS IN DIVIDE STATEMENT COULD
PRODUCE ONLY ZERO RESULT. STATEMENT DELETED.

The description of the operands in a DIVIDE statement is structured so
that only zeros could result for the quotient in the specified receiver.

The DIVIDE statement is deleted.

0177 2 verb STATEMENT CONFLICTS WITH SEGMENTATION RULES.
STATEMENT DELETED.

A branching verb is invalidly specified according to the rules of
segmentation, or an ALTER statement refers to a paragraph that does not
begin with a GO TO.

The statement in error is deleted.

0178 2 verb STATEMENT INCOMPLETE OR CONTAINS INVALID OPERAND
OR OPTION. STATEMENT DELETED.

An operand conflicts with a specified option or with another operand, or
an option that must be specified for a given statement was not
encountered. For example, a WRITE statement to a mass storage device
must contain an INVALID KEY clause.

The statement is deleted.

7004 4490-000 C-29

Compiler Diagnostics

Message Severity
Number Code Message/Explanation/Action

0179 2 INTERNAl lABEL TABLE OVERFLOW. PROCESSING INCOMPLETE.

Either a sentence requires more than 256 internal labels or more than 24
internal labels are active.

Requirements for internal labels may be lowered by reducing the number
of statements in a sentence.

0180 2 CLASS OF LITERAl CONFLICTS WITH CLASS OF data-name. MOVE
OPERATION DELETED.

A nonnumeric literal containing numeric characters is being moved to an
alphabetic item, or a nonnumeric literal containing nonnumeric
characters is being moved to a numeric item.

The MOVE operation is deleted.

0181 0 element-l TRUNCATED AND MOVED TO element-2.

The item being moved contains a greater number of character positions
than the receiver, or, when decimal-point aligned, contains a
greater number of digit positions than the receiver.

The data name or intermediate result is truncated and moved.

0182 2 COMPLETE TRUNCATION OF SIGNIFICANT DIGITS OF element-I.
ZEROS MOVED TO element-2.

Decimal point alignment is such that no portion of the item being moved
can be contained in the receiving operand.

Zeros moved to the receiving field or intermediate result.

0183 0 REDUNDANT ROUND ON data-name. ROUNDING IGNORED.

The numeric description of the arithmetic result is such that no excess
digit positions are available for rounding into the listed operand.

The round operation is deleted.

0184 0 REDUNDANT SIZE ERROR ON data-name.

Numeric description of arithmetic result is such that its value could never
exceed the largest value that can be contained in the listed operand.

No action taken.

C-30 70044490-000

Compiler Diagnostics

Message Severity
Number Code MessagejExplanation/Action

0185 1 literal IN DISPLAY OR STOP STATEMENT NOT AN UNSIGNED
INTEGER. NON-INTEGER TRUNCATED OR SIGN REMOVED.

Literal operand in DISPLAY or STOP statement must be an unsigned
integer.

The literal is made unsigned or truncated to an integer.

0186 1 VALUE OF INTEGER TIMES IN PERFORM STATEMENT EXCEEDS
LIMIT. VALUE SET TO MAXIMUM LIMIT.

The value of integer TIMES IN PERFORM statement exceeds maximum
limit of 32,767.

The value is set to 32,767.

0187 1 VALUE OF INTEGER IN WRITE ADVANCING STATEMENT EXCEEDS
LIMIT. VALUE SET TO l.

Integer specified in WRITE ADVANCING statement exceeds limit of 255.

The value is set to 1.

0188 2 FILE ON LINE number HAS NO ASSOCIATED verb STATEMENT
WITHIN PROGRAM. NO CORRECTIVE ACTION TAKEN.

An OPEN or CLOSE statement has not been specified for the file or the
OPEN statement is inconsistent with the activity associated with
the file.

Results during execution are unpredictable.

0189 2 verb STATEMENT NOT PERMITIED IN USE LABEL PROCEDURE.
STATEMENT DELETED.

CALL, CANCEL, and all I/O statements except ACCEPT (from software
devices) and DISPLAY are not allowed within a USE LABEL PROCEDURE.

The statement is deleted.

0190 2 ADDITIONAL MEMORY REQUIRED TO PRODUCE OBJECT PROGRAM
LISTING. LISTING NOT PRODUCED.

The main storage assigned for the compiler is insufficient to generate the
object program listing. The object module, however, is produced.

To obtain the object program listing, a recompilation with more main
storage assignment is required.

7004 4490-000 C-31

Compiler Diagnostics

Message Severity
Number Code MessagejExplanation/Action

0191 3 ADDITIONAL MEMORY REQUIRED TO PRODUCE OBJECT
PROGRAM. OBJECT MODULE NOT PRODUCED.

The main storage assigned to the compiler is insufficient to generate the
object module.

A recompilation with more main storage assignment is necessary.

0192 0 TRUNCATION MAY OCCUR WHEN FLOATING-POINT ITEM element-l
IS MOVED TO element-2. MOVE PERFORMED.

A floating-point item is being moved to a receiver which is not floating-
point, and there may be a loss of significance.

The move is performed.

0193 2 ON STATEMENT CONTAINS INVALID INTEGER integer. STATEMENT
DELETED.

The literal in an ON statement is negative, noninteger, or its value is
greater than the allowable maximum (2147483648).

The ON statement is deleted.

0194 2 ON STATEMENT CONTAINS INCONSISTENT INTEGER
SPECIFICATIONS. STATEMENT DELETED.

Values of literals in the statement are inconsistent. The value of the literal
in the ON phrase plus the value of the literal in the AND EVERY phrase, if
present, is greater than the value of the literal in the UNTIL phrase.

The ON statement is deleted.

0195 2 verb STATEMENT REFERENCES WORKING-STORAGE ITEM data-
name WHICH, IN ARE-ENTRANT IMS ENVIRONMENT, MUST NOT
BE MODIFIED. STATEMENT DELETED.

Due to the shared nature of programs operating under IMS reentrant
mode, working-storage items cannot be modified at object time.

The statement is deleted.

0196 1 CURRENCY SIGN SYMBOL symbol INVALID. "$" USED.

A character that may not be used as a currency sign was specified in the
currency sign clause of SPECIAL-NAMES section.

The symbol $ is used for the currency sign.

C-32 70044490-000

Compiler Diagnostics

Message Severity
Number Code MessagejExplanation/Action

0197 1 MORE THAN ONE CHARACTER SPECIFIED FOR element LITERAL.
FIRST CHARACTER USED.

A currency sign literal or the second literal of a SOURCE-ALPHABET
clause has more than one character.

The first character of the string is used.

0198 2 INCORRECT DIVISION OR SECTION HEADER IN CONTROL DiVISION.
PROCESSING CONTINUES WITH NEXT VALID CLAUSE.

The CONTROL DIVISION or ALPHABET SECTION statement is specified
incorrectly.

Processing resumes at SOURCE-ALPHABET or MESSAGES statement.

0199 2 INVALID LITERAL literal IN SOURCE ALPHABET CLAUSE. LITERAL
IGNORED.

The second literal of the SOURCE-ALPHABET clause is less than the first
literal, or the literal is greater than 255.

The literal is ignored.

0200 2 MULTIPLE ERRORS FOUND IN element CLAUSE. PROCESSING
CONTINUES WITH NEXT VALID CLAUSE.

Another error has been found during an error recovery processing of the
first error.

All words are ignored until a valid clause is found.

0201 1 EXTRANEOUS PERiOD SPECIFIED IN element CLAUSE. PERIOD
IGNORED.

A period precedes an expected element.

The period is ignored.

0202 2 A PERIOD TERMINATES AN INCOMPLETE element CLAUSE.
CLAUSE IGNORED.

A period is found instead of the expected element, and the expected
element is not found immediately following the period.

All words are ignored until a valid clause is found.

70044490-000 C-33

Compiler Diagnostics

Message Severity
Number Code MessagejExplanation/Action

0203 2 element CLAUSE SPECIFIED OUT OF SEQUENCE. CLAUSE
IGNORED.

The clause is not in the proper paragraph or section or out of sequence
within the paragraph, or has already been specified.

The clause is ignored.

0204 1 CRITICAl RESERVED WORD MISSING WHERE)00{ APPEARS IN
element CLAUSE. CLAUSE IGNORED.

The syntax analysis on this clause cannot be continued because of a
missing reserved word critical to the syntax of a clause.

The clause is ignored.

0205 1 RESERVED WORD MISSING WHERE)00{ APPEARS IN element
CLAUSE. MISSING WORD ASSUMED PRESENT.

The missing reserved word is required in the format but not critical to
syntax analysis.

Processing continues as if the reserved word were specified.

0206 1 TERMINATING PERIOD MISSING FOR element CLAUSE. PERIOD
ASSUMED.

The clause is not terminated by a period.

A terminating period is assumed.

0207 1 element CLAUSE SHOULD NOT BEGIN IN AREA B. AREA A
ASSUMED.

The first word of this clause starts in area B.

The clause is assumed to have started in area A.

0208 1 element CLAUSE SHOULD NOT BEGIN IN AREA A. AREA B
ASSUMED.

The first word of this clause starts in area A.

The clause is assumed to begin in area B.

C-34 7004 4490-000

Compiler Diagnostics

Message Severity
Number Code MessagejExpianation/Action

0209 2 element CLAUSE MISSING OR OUT OF SEQUENCE. OUT OF
SEQUENCE CLAUSE IGNORED.

The processing of a paragraph, section, or division is completed but a
mandatory clause was not encountered.

If the missing clause is encountered later, it will be ignored.

0210 1 RESERVED WORD EXPECTED WHERE xxx APPEARS IN element
CLAUSE. RESERVED WORD ASSUMED MISSPELLED.

A user-defined word was encountered where a noncritical reserved word
was expected.

The reserved word is assumed to be misspelled.

0211 2 LITERAL EXPECTED WHERE xxx APPEARS IN element CLAUSE.
CLAUSE IGNORED.

The missing literal is critical to syntax analysis for the clause.

All words are ignored until a valid clause is encountered.

0212 2 USER-DEFINED WORD EXPECTED WHERE xxx APPEARS IN element
CLAUSE. CLAUSE IGNORED.

The expected user-defined word was not found.

The clause is ignored.

0213 1 RESERVED WORD xxx USED AS USER-DEFINED WORD IN element
CLAUSE. NO CORRECTIVE ACTION TAKEN.

A reserved word was found where a user-defined word was expected.

No corrective action taken.

0215 1 element CLAUSE SPECIFIED MORE THAN ONCE. CLAUSE
IGNORED.

The clause has already been specified in the program.

The clause is ignored.

7004 4490-000 C-35

Compiler Diagnostics

Message Severity
Number Code MessagejExplanation/Action

0216 1 INVALID DEVICE TYPE FOR SPECIFIED ORGANIZATION. DISK
ASSUMED.

The device type specified for the file conflicts with the file organization.

The disk device is assumed.

0217 1 DUPLICATE VAlUE OF CLAUSES SPECIFIED IN FD ENTRY.
DUPLICATE CLAUSE IGNORED.

The file-id or password appears more than once in the VALUE OF clause.

The duplicate entry is ignored.

0218 1 TERMINATING PERIOD FOR A SEQUENCE OF CLAUSES MISSING.
PERIOD ASSUMED.

The expected terminating period was not found. If a COpy statement is
the prior clause, a period is missing before the word COPY.

A terminating period is assumed.

0220 1 name MONITORED BY MORE THAN ONE USE FOR DEBUGGING
PROCEDURE. FIRST MONITORING PROCEDURE USED.

The indicated name is monitored by more than one USE FOR DEBUGGING
statement.

The first monitoring procedure encountered is used.

0221 2 USE FOR DEBUGGING PROCEDURE-NAME name MONITORED AT
LINE number. STATEMENT IGNORED.

Procedure names defined within debugging sections must not appear in a
USE FOR DEBUGGING statement.

The statement is ignored.

0222 2 ALL PROCEDURES PHRASE SPECiFIED IN USE FOR DEBUGGING
AND PROCEDURE·NAME name ALSO MONITORED AT LINE number.
STATEMENT FOR PROCEDURE-NAME IGNORED.

When the ALL PROCEDURES phrase is specified, individual procedure
names must not appear in USE FOR DEBUGGING statements.

The statement referencing the procedure name is ignored.

C-36 7004 4490-000

Compiler Diagnostics

Message Severity
Number Code MessagejExplanation/Actiol'!

0223 2 FIRST ENTRY IN xxx section NOT type ENTRY. A DUMMY type
ENTRY GENERATED.

The first entry in the file section or communcation section was not an FD
or a CD entry.

The compiler generates a dummy level 01 entry. The period is ignored.

0224 2 FIRST ENTRY SUBROUTINE TO type entry NOT A type entry. A
DUMMY type ENTRY GENERATED.

The first entry subroutine to an FD entry was not a level 01 entry.

The compiler generates a dummy level 01 entry.

0225 1 INTEGER-2 NOT GREATER THAN INTEGER-liN OCCURS CLAUSE,
INTEGER-2 IGNORED.

Integer-2 must be greater than integer-1 in the OCCURS clause.

The greater value is used as maximum number of occurrences.

0226 1 FOOTING INTEGER GREATER THAN LINAGE INTEGER, SAME VALUE
ASSUMED.

Integer-2 must be greater than integer-l in the OCCURS clause.

The greater value is used as maximum number of occurrences.

0227 2 element CLAUSE NOT PERMITTED IN IMS/90 ENVIRONMENT.
CLAUSE IGNORED.

The clause is not allowed when IMSCOD=YES is specified.

The clause is ignored.

0228 2 data-name NOT SUBORDINATE TO ITEM WITH OCCURS
DEPENDING ON CLAUSE. RESULTS ARE UNPREDICTABLE.

A data entry that has an OCCURS DEPENDING ON clause may only be
followed by data entries subordinate to it.

No corrective action is taken.

7004 4490-000 C-37

Compiler Diagnostics

Message Severity
Number Code MessagejExplanation/Action

0229 2 MULTIPLE OCCURS DEPENDING ON CLAUSES NOT ALLOWED IN
HIERARCHY. RESULTS ARE UNPREDICTABLE.

Only one OCCURS DEPENDING ON clause is allowed in a hierarchy.

No corrective action is taken.

0230 2 LEVEL 11 NOT AlLOWED IN FILE OR COMMUNICATION SECTION.
LEVEL 01 ASSUMED.

Self-explanatory.

The level number is changed to 01.

0231 1 INTEGER-2 NOT GREATER THAN INTEGER-liN RECORD CONTAINS
CLAUSE. INTEGER-2 IGNORED.

Integer-2 must be greater than integer-l in the RECORD CONTAINS clause.

The greater value is used.

0232 1 xxx NOT VALID CHANNEL NUMBER IN SYSCHAN CLAUSE.
SYSCHAN-l ASSUMED.

The specified channel number is not valid for the associated operating
system.

Channel 1 is assumed.

0233 1 STANDARD-O OR STANDARD-l NOT VALID WHEN VARIABLE
RECORD FORMAT FOR THE FILE INDICATED. CODE-SET CLAUSE
IGNORED.

Only fixed record format is permitted for a tape file specified with
STANDARD-O or STANDARD-I.

The CODE-SET clause is ignored.

0234 0 INTO PHRASE USED IN verb STATEMENT FOR name FILE WITH
VARIABLE RECORD FORMAT. INTO OPERATION PERFORMED.

The iNTO phrase is used with a file containing logical records of variable
sizes.

The INTO phrase is performed.

C-38 7004 4490-000

Compiler Diagnostics

Message Severity
Number Code MessagejExplanation/Action

0235 0 COMPARISON OF AlPHANUMERIC ITEM TO NUMERIC EMBEDDED
SIGN ITEM data-name MAY NOT PRODUCE EXPECTED RESULTS.

ANSI COBOL rules require that the byte containing the embedded
(overpunch) sign participate in the comparison but that the sign itself not
participate. The required manipulation of the overpunch sign byte makes it
unlikely that the comparison will work as intended.

The comparison is performed.

0236 1 INITIAL CLAUSE APPEARS IN MORE THAN ONE CD ENTRY. CLAUSE
IGNORED.

Only one input CD entry may contain the INITIAL clause.

The clause is ignored.

0237 1 SIZE OF INPUT CD RECORD data-name NOT EQUAL TO 87
CHARACTERS. RECORD SIZE SET TO 87.

The size of an input CD area must be exactly 87 characters.

The size is set to 87 characters.

0238 1 element NOT SUPPORTED. ELEMENT CHANGED TO xxx.

The indicated logical device name is not supported in this system.

logical device name is changed as indicated in the message.

0239 2 NUMBER OF INDEX-NAMES SPECIFIED IN DESTINATION TABLE
EXCEEDS LIMIT. EXCESS IGNORED.

The number of index names specified for one destination table may not
exceed 10.

The excess index names are ignored.

0240 1 CODE-SET CLAUSE SPECIFIED FOR NON-TAPE FILE. CLAUSE
IGNORED.

The CODE-SET clause may be specified only for tape files.

The native character code-set is assumed.

7004 4490-000 C-39

Compiler Diagnostics

Message Severity
Number Code MessagejExplanation/Action

0241 0 MORE THAN ONE CLASS-NAME CLAUSE WITHOUT VALUE PHRASE
SPECIFIED. DEFAULT VALUE USED.

Only one CLASS-NAME clause may be specified without the VALUE
phrase.

The character set specified in the SOURCE-ALPHABET clause is used.

0242 1 FORMAT ERROR ON BASIS CARD CONTAINING char-string. FIRST 8
CHARACTERS OF SPECIFIED NAME USED. IF NAME MISSING
"SOURCE" USED AS NAME.

The BASIS card has format error.

The first eight characters of the specified name are used. If the name is
not specified, a default name "SOURCE" is used.

0243 1 KEY SPECIFIED IN verb STATEMENT EXCEEDS LIMIT. KEY
TRUNCATED TO 10 CHARACTERS.

Password for ENAB or DISABLE statement may not exceed 10
characters.

The KEY is truncated to 10 characters.

0244 2 LINAGE-COUNTER MODIFIED BY verb STATEMENT. STATEMENT
IGNORED.

LlNAGE-COUNTER may only be referenced but not modified.

The statement is ignored.

0245 1 INTEGER SPECIFIED IN APPLY CYLINDER-OVERFLOW AREA
CLAUSE EQUAL TO OR GREATER THAN 100. TWENTY PERCENT IS
USED.

A percent of 100 or greater was specified for cylinder overflow area.

20 percent of each cylinder is used for overflow area.

0246 1 INTEGER IN APPLY CYLINDER-INDEX CLAUSE EXCEEDS THE LIMIT
OF 32,767. THE LIMIT IS USED.

The value of integer in the APPLY CYLINDER-INDEX clause may not exceed
the limit of 32,767.

Value is assumed to be 32,767.

C-40 7004 4490-000

Compiler Diagnostics

Message Severity
Number Code MessagejExplanation/Action

0247 1 ALPHABET-NAME REFERENCED IN CODE-SET CLAUSE DEFINED AS
LITERAL CODE-SET CLAUSE IGNORED.

The alphabet-name referenced in a CODE-SET clause specifies the
character code set of the file and must be defined by one of the reserved
word phrases in the SPECIAL-NAMES paragraph.

The native character code set is assumed.

0248 2 INVALID PSEUDO-TEXT IN COpy STATEMENT. PSEUDO-TEXT

IGNORED.

The pseudo-text preceding the reserved word BY is null or contains a
debugging line or comments only.

The pseudo-text is not processed.

0249 2 DATA-NAME REFERENCED IN KEY PHRASE OF READ OR START
STATEMENT NOT SPECIFIED IN SELECT CLAUSE. STATEMENT
DELETED.

The data-name referenced in the KEY phrase of a random READ or in a
START statement is not specified in the SELECT clause for that file. The
READ or START function is deleted. Other parts of the statement, such as
INTO and FROM moves, and error checking may be present.

Execution of the statement yields unpredictable results.

0250 0 LANGUAGE ELEMENT xxx yyy EXCEEDS SPECIFIED FIPS LEVEL.
ELEMENT BELONGS TO LEVEL nnn. NO CORRECTIVE ACTION
TAKEN.

The language element used in the program exceeds the specified FIPS
processing level.

The language element is accepted.

0251 0 ALTERNATE KEY SHARES LEFTMOST POSITION WITH OTHER KEYS
IN SAME FILE.

Although ANSI COBOL rules prohibit keys having the same leftmost
position, OS/3 COBOL permits it for compatibilty with other OS/3
processors.

The ALTERNATE KEY clause is accepted.

70044490-000 C-41

Compiler Diagnostics

Message Severity
Number Code MessagejExpianation/Action

0252 2 verb STATEMENT NOT ALLOWED IN DECLARATIVE. STATEMENT
DELETED.

InpuVoutput verbs and sort or merge statements are not allowed in
DECLARATIVES.

The statement is ignored.

0253 1 SIZE OF INDEX-AREA IN APPLY CLAUSE NOT A MULTIPLE OF 256
OR EXCEEDS LIMIT OF 32,512. A SIZE OF nnnn CHARACTERS IS
USED.

Integer-6 in APPLY INDEX-AREA clause is not a multiple of 256 or exceeds
the limit.

The value indicated in the message text is used.

0254 0 EXTRANEOUS PERIOD SPECIFIED PRIOR TO element CLAUSE.
PERIOD IGNORED.

A period should not appear before the clause.

The period is ignored.

12* * 3 COMPILER ERROR code.

A compiler error occurred when processing the source program line
indicated by the line number.

Contact your local Unisys representative. Correcting any source program
error on or before the indicated line may avoid the compiler error.

C-42 7004 4490-000

Appendix D
FIPS Flagging Facility

0.1. FIPS PUB 21 .. 1 COBOL Levels

The Federal Information Processing Standard Publication 21-1 (FIPS PUB 21-1)
identifies the Federal Standard COBOL by four levels:

• Low

" Low-intermediate

• High-intermediate

• High

The Federal Standard COBOL is a subset of American National Standard COBOL,
X3.23-1974. Table D-l identifies the COBOL modules that comprise each of the four
federal levels.

Table D-l. Federal Standard COBOL levels

Level

Module Low Low-Intermediate High-Intermediate High

Nucleus 1 1 2 2

Table handling 1 1 2 2

Sequential 1-0 1 1 2 2

Relative 1-0 1 2 2

Indexed 1-0 2

Sort/merge 1 2

Report writer*
Segmentation 1 1 2

Library 1 1 2

Debug 1 2 2

Interprogram communications 1 2 2

Communication 2 2

*The report writer is not required for any Federal Standard level.

7004 4490-000 D-1

FIPS Flagging Facility

0.2. Flagging Options

0-2

The compiler provides five options for monitoring a source program at compile time.
Four options comprise the four levels of Federal Standard COBOL (Table D-l); the
fifth option is concerned with OS/3 extensions to the language:

Option

5

4

3

2

1

Function

Allows all language elements supported by the compiler, both
standard and extended, without flags

Flags all language elements beyond the high level of the Federal
Standard COBOL, indicating those that are extensions

Flags all language elements beyond the high-intermediate Federal
level, indicating those that are extensions and those that belong to
the high Federal Standard COBOL level

Flags all language elements beyond low-intermediate level,
indicating those that are extensions and those that belong to the
high-intermediate or high level of the Federal Standard COBOL

Flags all language elements beyond the low Federal level,
indicating those that are extensions and those that belong to the
higher levels

Note: The language elements pertaining to the file processing facilities that exceed the
user-specified FIPS level are flagged on the ORGANIZATION clause in the file
control entry, but not on references to the file.

The user may specify any of the five levels as a SYSGEN option or a compile-time
parameter option. If none of the FIPS options is specified, compiler default option 5 is
used.

The flagged language elements, if syntactically correct, are retained for compilation.

7004 4490-000

Appendix E
Object Program

..
rocesslng onsiderations

E.l. Intermediate Results In Arithmetic Operations

The compiler reduces arithmetic statements to a series of one or more simple
arithmetic operations, each producing an intermediate result. The intermediate resu1t
of an arithmetic operation may be used as an operand in subsequent arithmetic
operations or may be used as the final result of a statement.

Example

COMPUTE Y = A + B " C - 0 / E + F "* G

where:

Intermediate
Operand 1 Operator Operand 2 Result (ir)

F G irl

B C ir2

o / E ir3

A + ir2 ir4

ir4 ir3 ir5

ir5 + irl Y

The compiler provides a description for each intermediate result that is appropriate
for use in the operation or series of operations for which it is intended. The description
can be expressed as a numeric PICTURE; however, an intermediate result may
contain as many as 30 digits. If the number of digits in an intermediate result is
computed to exceed 30, the result is truncated to use the 30 least significant digits.

A description of an intermediate result requires only a digit size and a point location.
In terms of the PICTURE clause, the digit size is equivalent to the number of 9's in
the PICTURE character-string and the point location is the number of digit places
that the assumed decimal point is displaced from the least significant digit.

7004 4490-000 E-l

Object Program Processing Considerations

Example

Digit Point
PICTURE Size location

99V9 3
PP999 3 5
99PP 2 -2

1----------------------------,
I E.l.l. Floating-Point Operands I
I I
I If at least one floating-point (COMP-1 or COMP-2), floating-point display, or floating-,
I point literal operand is used, the range of intermediate results is ±5.4 *10 -79 to I

+7.2*1075 . L __ ~ ______________________ J
Note: The following paragraphs apply only to non-floating-point operands.

E.l.2. ADD and SUBTRACT Statements

The description of the intermediate result area is determined by forming the
composite of operands (6.6.2) and appending one additional digit in the most
significant position to contain overflow when 10 or fewer operands immediately follow
the verb, or two digits for more than 10 operands.

E.l.3. MULTIPLY Statement

The description of the intermediate result has a digit size equal to the sum of the djgit
sizes of the two operands being multiplied and has a point location equal to the sum of
the point locations of the two operands.

E.l.4. DIVIDE Statement

E-2

The following abbreviations are used in the discussion of the DIVIDE statement:

DD Dividend
DR Divisor
Q Quotient
pI Point location
ds Digit size

The description of the quotient intermediate result has a point location equal to the
point location of the composite of receiving operands. If the ROUNDED phrase is
specified for any operand, the point location for that operand is increased by 1 to form
the composite.

70044490-000

Object Program Processing Considerations

The digit size for the description of the quotient intermediate result is computed as
follows:

quotient digit size = DDpl-DRpl+Qpl+DDds

The point location and digit size for the description of the remainder intermediate
result is computed as follows:

A=O
B = DDpl-Qpl-DRpl

If B < 0 then
A = absolute value of B, and
B=O

remainder point location = DDpl+A
remainder digit size = DRds+ B

Note: The value of A represents the number of zero digits that must be padded on
the low-order end of the dividend to produce the desired quotient described
by the PICTURE character-string. The value of B represents the number of
zero digits that must be padded on the low-order end of the divisor to
produce the desired quotient described by the PICTURE character-string.

E.2. Expressions

For arithmetic expressions the following abbreviations are used:

7004 4490-000

L Length in mappable digits

pI Point location, which is the number of places that the decimal point is
displaced from the position it would occupy if the mappable digits were
considered an integer. For example, for the PICTURE 99V9, pI = 1,
because the decimal point has been displaced one position; for the
PICTURE PP999, pI = 5. A negative value in pI indicates trailing P's in
the associated PICTURE, e.g., for the PICTURE 99PP, pl=-2.

OPl First operand

OP2 Second operand

lr Intermediate result

comp Composite of operands

mag Magnitude = L - pI

The maximum value that a variable can assume is lOmag-lO-pl_l

E-3

Object Program Processing Considerations

E-4

When expressions are evaluated, a composite is formed of all operands except those
immediately to the right of the exponentiation operator. The receiving data item,
when present, is considered in determining the composite. The following rules apply:

Operator

+-

'*

I

**

Description

pl. = max (p l , p l)
lr OP1 OP2

Lir = max (magOP1,magOP2) + plir+

pl. -pl + pl
lr OP1 OP2

L = mag + mag + pl.
ir OP1 OP2 lr

pl. = pl
lr comp

L = pl - pl + L + pl.
ir OP2 OP1 OP1 lr

Intermediate result is floating point
(E.1.1)

Note: When an expression appears in a COMPUTE statement and the ROUNDED
option is specified, one digit is added in the least significant position of the
receiver description before the composite is formed.

When application of the preceding rules produces an intermediate result length that is
greater than 30, the description must be readjusted. In these cases, L ir = 30.

7004 4490-000

!
\

Appendix F
Non- nglish Lan

~---------------------------I

I F.l. Function i
I The non-English language feature supported by this compiler involves three aspects of I
I a COBOL program: I

i · User-defined words in source programs :

I Data-names, procedure-names, and other user-defined words (except system- I
I related words) may be composed of characters specified via the source program. I

I The set of COBOL characters that may be used to form user-defined words may I
I be extended by a user program to include additional characters from the I
I computer character set. I

: • Compiler listing headings and diagnostics I

I A user program may specify that an alternate set of the compiler listing headings I
I and diagnostics may be used during compilation. I

I · Object program class test I

I A mnemonic-name may be associated with a user-generated set of computer I
I characters. This name may then be used in a class test to determine if the I
L ___ ~onten~o~ data item ~nsist entirely of the specifi~characters. _____ I

70044490-000 F-l

Non-English Language Feature

1--- -- ---------- ------------,
I F.2. Composite Language Format I

I The following is the composite language fonnat of the non-English language feature. i

I The leftmost margin is equivalent to margin A in a COBOL source program. The first I
I indentation after the leftmost margin is equivalent to margin B in a COBOL source

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

program.

Format

Margin
A

Margin
B

[CONTROL DIVISION.
ALPHABET SECTION.

[SOURCE-ALPHABET clause]
[MESSAGES clause].]

ENVIRONMENT DIVISION_
CONFIGURATION SECTION.

[CLASS-NAME clause] ...]

PROCEDURE DIVISION.

I .
L identifier IS [NOT] CLASS-NAME mnemonic-name J
--- -- ------------------------

F-2 7004 4490-000

Non-English Language Feature

---------------------------1
: F.3. Control Division I
I I
I fu~~ I

I The Control Division identifies the character set from which user-defined words I
may be formed in the source program. It also names the load module containing I
the alternate text of compiler listing headings and diagnostics. I

I
I

I

I
I
I
I L_

Format

Margin
A

Margin
B

[CONTROL DIVISION.
ALPHABET SECTION.

[SOURCE-ALPHABET CHARACTERS ARE

l iteral-' [{~::~UGH} literal-2]

[literal-3 [{~::~UGH} literal-4]]_ ..]
[MESSAGES ARE alternate-text-module-name].]

Rules

1. The Control Division follows the reference format rules of a COBOL source
program. However, the Control Division, if present, must be the first division
of a COBOL source program followed by the Identification Division, the
Environment Division, the Data Division, and the Procedure Division.

Within the Control Division, the format defines the order of presentation in
the source program.

2. The control division must begin with the reserved words CONTROL
DIVISION followed by a period and a space.

3. The Alphabet Section must begin with the reserved words ALPHABET
SECTION followed by a period and a space.

4. The SOURCE-ALPHABET clause defines the additional characters to
extend the standard COBOL character set. These extended characters are

I
I
I
I

__ used in t~ user-defined words in the source program_. ________ J

7004 4490-000 F-3

Non-English Language Feature

F-4

,- - - - -------------------l
I Example

I
I

I If the SOURCE-ALPHABET clause is defined as: I

I SOURCE-ALPHABET CHARACTERS ARE 124, 125_ I

I I
I

Then, the characters # and @ are used to form a data-name or procedure- I
name, such as:

I I
I PARA#10 I
I #@ I
I AMOUNT I

I 5. The literals in the SOURCE-ALPHABET clause may be numeric or I
I nonnumeric literals. I

i · A numeric literal specifies the decimal ordinal position (1 through 256) I

I
within the native computer character set (EBCDIC) of valid source I
alphabets from which user-defined words may be formed. This ordinal

I position is always one greater than the binary value of the character. I
I For example, hexadecimal 00 is the first character Cordinal position), I
I and hexadecimal 01 is the second character Cordinal position 2). I

I • A nonnumeric literal represents non-English alphabet characters. The I
I bit configuration of each character in the native computer character set I
I specified in the nonnumeric literal is included in the set of bit I
I configurations for valid source alphabets from which user-defined words

may be formed. I

I I I • When the THROUGH option is used, the nonnumeric literal must

I
consist of only one character. All bit configurations within the range I
specified are included in the set of valid source alphabets. The range of

I bit configurations must indicate an ascending sequence of binary values.

I
I
I
I
I 6.

I
I
I 7.

I

The literals may not specify those characters in the standard COBOL
character set that denote special meanings in the syntax of the COBOL
language.

The alternate-text-module-name is a user-defined system-related word. The
first five characters are to be used as a unique name of the load module of
the non-English listing headings and diagnostic message text.

The Control Division is required only if the non-English language feature is
invoked.

I 8. The COpy statement may appear in the Control Division just as in any other

L _ division_. _ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __

7004 4490-000

Non-English language Feature

r---- ---------------------~

I
I
I
I
I
I
I
I
I
I
I

I
I

9. The following user-defined system-related words must conform to the I
standard COBOL rules for formation of user-defined words: I

alternate-text-module-name
library-name
lfdname
program-name
text-name
literal-l in the CALL and CANCEL statements
contents of identifier-l in the CALL and CANCEL statements

F .4. Environment Division

F.4.1. CLASS-NAME Clause

Function

The CLASS-NAME clause in the SPECIAL-NAMES paragraph provides a means
of specifying a mnemonic-name for class test purposes and relating it to a
specified set of characters.

Format

B
12

[CLASS-NAME IS mnemonic-name

[VALUE IS literal-' [{~::~UGH} literal-2]

Rules

1.

[l i teral-3 [{~::~UGH} l i teral-4]]_ -_]] __ _

The CLASS-NAME clause has no relationship with a CODE-SET clause, the
alphabet-name clause relating to a PROGRAM COLLATING SEQUENCE
clause, or a COLLATING SEQUENCE phrase of a SORT or MERGE
statement.

I
I
I
I
I
I
I
I

I 2. The CLASS-NAME clause defines the complete set of characters used as I
I data. Data fields containing these characters are tested by the extended class I
L _____ ro~~_. ______________________________ J

70044490-000 F-5

Non-English language Feature

F-6

,---------------------1
Example 1 I

The following clause defines 10 characters as the complete set of characters
used as data:

CLASS-NAME IS ABC

Example 2

I
I
I
I
I
I

The following clause defines the first 10 characters of the computer character I
set and the alphabetic characters A through Z as the complete set of I
characters used as data:

CLASS-NAME IS XYZ
VALUE IS

1 THRU 10
="C1 11 THRU ="C9 11

IIJII THRU IIRIi

"S" THRU IIZII.

3. If the VALUE phrase is omitted, the SOURCE-ALPHABET clause must be
specified, and it is assumed that the same set of characters specified in the
SOURCE-ALPHABET clause is to be associated with the mnemonic-name.

Example

SOURCE-ALPHABET CHARACTERS ARE 124, 125.

CLASS-NAME IS DEF.

In this example, the VALUE phrase is omitted because the character set
used in the CLASS-NAME test is the same character set defined in the
SOURCE-ALPHABET clause. Therefore, the entire COBOL character set
plus the characters # and @ are tested in the extended class condition.

4. The standard COBOL class condition NUMERIC and ALPHABETIC
maintain their standard COBOL definitions and cannot be redefined by the
CLASS-NAME clause.

5. More than one CLASS-NAME clause is permitted if the VALUE phrase is
specified. Only one CLASS-NAME clause without the VALUE phrase can be

L __ use~ _____________________ ~

7004 4490-000

Non-English language Feature

~-------------------------I

I F.S. Procedure Division I

I I
I F .5.1. Extended Class Condition I
I I
I Function I

I The extended class condition determines if the operand consists entirely of the I
I characters specified in the associated CLASS-NAME clause. I
I I
I fu~~ I

I identifier IS [NOT] CLASS-NAME mnemonic-name I
I I
I Rules I

I 1. The mnemonic-name must also be specified in the CLASS-NAME clause in i
I the SPECIAL-NAMES paragraph of the Environment Division. I

I 2. The extended class condition has no bearing upon the standard COBOL I
I NUMERIC test and ALPHABETIC test. The standard COBOL class I
I condition maintains its definitions of NUMERIC and ALPHABETIC. I

I I
I F.6. Non-English Text Utility Program I
I The non-English text utility program accepts as input the alternate text for the I
I compiler listing headings and diagnostics. It produces a source file containing the I
I alternate text, which is assembled and linked into a load module. The load module is I
L __ ~en loade~s the text to be used during compilation. __________ ~

7004 4490-000 F-7

Appendix G
I S Action Programs

G .1. General

COBOL programs to be executed under control of the Unisys Information
Management System OMS) should be compiled using the IMSCOD= YES parameter
for serially-reusable and shared-code action programs, or the IMSCOD=REN
parameter for reentrant action programs. (See Appendix A.)

G.2. Action Programs

A COBOL program running under control of IMS is called an action program. Specify
the IMSCOD=REN compiler parameter to generate reentrant action programs. To
generate shared-code action programs, specify the IMSCOD=YES compiler parameter.
To generate serially-reusable action programs, specify the IMSCOD=YES compiler
parameter. The following rules and restrictions of COBOL action programs must be
observed, when the IMSCOD= YES or IMSCOD=REN parameter is specified.

Rules

7004 4490-000

1. The following COBOL verbs, clauses, and sections are illegal in the IMS
environment and the compiler deletes them from the program.

ACCEPT MESSAGE COUNT
ALTER
CALL identifier
CANCEL
CLOSE
COMMUNICATION SECTION
DECLARATIVES
DELETE
DISABLE
ENABLE
EXHIBIT
FILE SECTION
INPUT-OUTPUT SECTION
MERGE
OPEN
READ
RECEIVE
RELEASE
RETURN
REWRITE

SEGMENT -LIMIT
SEND
SORT
START
STOP
SYSCHAN-n
SYSCONSOLE
SYSFORMAT
SYSIN
SYSIPT
SYSLOG
SYSLST
SYSOPT
SYSOUT
SYSSCOPE
SYSTEM-SHUTDOWN
SYSTERMINAL
SYSWORK
TRACE
WRITE

G-l

IMS Action Programs

G-2

2. The PROCEDURE DIVISION header must contain a USING clause.

3. The IMS action program may invoke IMS functions via the CALL statement
with the IMS function name expressed as a nonnumeric literal. For a list of
IMS function names, refer to the IMS COBOL/Assembler Action Programs
Programming Guide (UP-9207).

In a shared-code action program (IMSCOD= YES), IMS functions may not be
invoked from linked-in subroutines; function calls must be coded in the main
program.

In reentrant action programs (IMSCOD=REN), the IMS functions RETURN
or ACTIVATE, and the TIP/30® functions TIPDXC, TIPJUMP, TIPRTN,
and TIPXCTL, should not be called from linked-in subroutines. COBOL
generates special object code for these function names to deallocate the
object program reentrancy control area in the IMS work area. Calls to these
functions from linked-in subroutines deallocates the object program
reentrancy control area for that linked-in subroutine. Reentrancy control
areas allocated before this problem occurs are not affected. Control areas
could be allocated after these inactive control areas (see G.4). Because of
this, you may run out of space in the work area, which destroys program
data areas and, possibly, abnormally terminates the action program.

4. A segment number greater than or equal to 50 is diagnosed and changed
to O.

5. In the SPECIAL-NAMES paragraph, only two implementor-names,
SYSCOM and SYSSWCH[-n], may be defined.

6. The following verbs should not have working-storage items as receiving
operands:

ACCEPT
ADD
COMPUTE
DIVIDE
INSPECT
MOVE
MULTIPLY

PERFO RM (varying)
SEARCH (varying)
SET
STRING
SUBTRACT
TRANSFORM
UNSTRING

If IMSCOD=YES and the compiler detects a statement in a shared-code or
serially-reusable action program that modifies working-storage, the
compiler:

• Generates the object code for the statement

• Issues a precautionary diagnostic message

TIP /30 is a registered trademark of the Allinson-Ross Corporation.

70044490-000

7004 4490-000

IMS Action Programs

If IMSCOD=REN and the compiler detects a statement in a reentrant action
program that modifies working-storage, the compiler deletes the statement
and issues a serious diagnostic message.

The contents of working-storage items in a COBOL action program should
not be modified because a COBOL action program is potentially sharable or
reentrant. If the contents were modified, the modified contents could have
been modified again by a concurrent execution of the same action program.
Therefore, the contents of the modified working-storage items at the time
immediately before the interrupt could be different than those at the time
immediately following the interrupt.

Note: Index-names are not working-storage items and may be modified in
IMS action programs.

7. In addition to invoking IMS functions with CALL statements, a COBOL
action program may call subroutines. If the action program is shared or
serially-reusable (compiled with IMSCOD=YES), compile all COBOL
subroutines with the IMSCOD= YES parameter. If the subroutines are not
written in COBOL, they should follow the conventions of an IMS
environment (see the 1MS Technical Overview (UP-9205». If the action
program is reentrant (compiled with IMSCOD=REN), compile all
subroutines as reentrant, regardless of whether they are written in COBOL.

All subroutines associated with a COBOL action program must be statically
bound with the action program. (CALLST= YES is assumed by the compiler
when IMSCOD=YES or IMSCOD=REN is specified.) In this case, all CALL
statements must specify subroutine names with nonnumeric literals. Do not
use the subroutine names ACTIVATE, RETURN, TIPDXC, TIPJUMP,
TIPRTN, or TIPXCTL because the compiler generates special object code for
these names. This code deallocates the object program reentrancy control
area in the IMS work area for the calling program (see G.4).

The values of index-names in a reentrant COBOL subroutine are not saved
between successive executions of the subroutine. Index names are part of the
object program reentrancy control area, and are allocated in the IMS work
area on each entry to the subroutine and deallocate it on each exit from the
subroutine.

8. For a COBOL shared-code object program to be reentrant at CALL
interrupts (IMSCOD= YES), the volatile work area used by the program
must be saved and restored by the IMS system. The size of the work area,
which varies between programs, is displayed in decimal on the compilation
summary listing. The message reads:

SHARED CODE VOLATILE DATA AREA=nnn BYTES

This size is used in computing the SHRDSIZE parameter in the IMS
configurator. Refer to the 1MS System Support Functions Programming
Guide (UP-11907).

G-3

IMS Action Programs

9. When you specify IMSCOD=REN, the COBOL compiler generates a
reentrant object module. This is achieved by placing object program
reentrancy control variables in the high order portion of the IMS work area.
The compiler reports the additional work area required for object program
reentrancy control in the compilation summary listing with the message:

RE-ENTRANCY CONTROL = xxxxxx WORKAREA BYTES
(NOT INCLUDING PROGRAM DEFINED DATA AREAS)

Configure IMS with this work area size plus the size of the program-defined
data areas on the WORKSIZE parameter. When the action program calls
subroutines, WORKSIZE must be large enough to meet the maximum
program data area requirements and the size of all the concurrently active
object program reentrancy control areas. If you don't specify a large enough
work area, program-defined data areas are destroyed, and the action
program may be abnormally terminated.

For more information, see the IMS System Support Functions Programming
Guide (UP-11907), IMS COBOL/Assembler Action Programs Programming
Guide (UP-9207), and GA in this manual.

10. Normally, execution time errors result in a CE error message and program
termination. In an action program, execution time errors result in a program
check interrupt, a snapshot dump with the address of the CE message in
register 1, and termination of the action program. If there is insufficient
work area available for the COBOL reentrancy control variables
(IMSCOD=REN), the action program may terminate with a program check,
with the program status word address in the dump pointing to the error
message.

11. The compiler does not diagnose the ACCEPT and DISPLAY statements that
reference DATE, DAY, TIME, SYSCOM, or SYSSWCH. These statements
(ACCEPT and DISPLAy) cannot be used in an IMS action program,
especially in a multithread environment. IMS provides date and time
information as part of the action program's linkage section data.

G.3. Compiler Parameter Specifications and IMS
Configuration Specifications

G-4

Table G-1 indicates which settings of the IMS configuration parameter are allowed for
action programs compiled with the IMSCOD parameter settings. Compile serially­
reusable action programs and subroutines with the IMSCOD= YES parameter.

Shared-code action programs are not recommended. They are only supported to be
compatible with earlier releases, and offer no advantages over reentrant action
programs. Compile reentrant action programs with the IMSCOD=REN parameter.

7004 4490-000

IMS Action Programs

Table G-l. IMS Configuration

IMS Action Program IMS Action Subroutine

IMSCOD
Parameter Seri all y Seriall y
Setting Reusable Shared Code Reentrant Reusable Reentrant

IMSCOD=NO Allowed 1 Not allowed Not allowed Allowed 1 Not allowed

IMSCOD=YES Recommended At Lowed Not allowed Recommended Not allowed

IMSCOD=REN Allowed2 Allowed2,3 Recommended Allowed2 Recommended

Notes:

1. Because the compiler performs no validation against non-IMS system interfaces,
adhere to the IMS environment programming rules (see the IMS Technical
Overview (UP-9205».

2. The program allocates object program reentrancy control areas in the IMS work area,
even though the program is not reentrant. Configure work area using rule 9 in G.2.

3. Configure a volatile data area even though the compiler does not report the
volatile data area size.

G.4. Reentrant Action Program Work Area Usage

COBOL reentrant action programs use the high-order portion of the IMS work area
for object program reentrancy control variables. A marker at the end of each object
program reentrancy control area contains a 6-byte character string, COBL74, and a
2-byte binary count of the number of bytes to the next marker. When an action
program uses more than one COBOL reentrant object module, the areas are stacked
from back to front, linked by these markers.

A new object program searches the work area from back to front, looking at these
markers until it finds a marker that does not contain COBL. The object program puts
the character string COBL 74 and the 2-byte count (of the number of bytes to the next
marker) in this marker and moves the object program control variables into the area
preceding the marker.

Because there is no way for the object program to determine where the program data
area ends, the object program control variables may overwrite the program data area.
If the marker search hits the beginning of the work area, the object program forces a
program check of the action program.

7004 4490-000 G-5

IMS Action Programs

G-6

When an object program encounters an EXIT PROGRAM statement, or a CALL
statement to ACTIVATE, RETURN, TIPDXC, TIPJUMP, TIPRTN, or TIPXCTL
function, the object program zeros out the marker, freeing the control area for future
object programs. Figure G-l shows the use of the IMS work area.

WORKAREA

PROGRAM LOGIC
VARIABLES

SEARCH [

0000000000000000

object prog-3
control area

COB L 7 4 dddd

object prog-2
control area

COB L 7 4 dddd

object prog-1
control area

COB L 7 4 dddd

] SEARCH

] SEARCH

Figure G-l. IMS Work Area Usage

7004 4490-000

Appendix H
Job Control Stream Requirements

H .1. General Information
There are two ways to invoke the COBL74 compiler:

• Provide the required job control statements in the job stream (see the Job Control
Programming Guide (7004 4623)).

• Use a single job control procedure call statement (JPROC call) provided by
Unisys.

A JPROC call generates all the job control statements needed to execute the COBL 7 4
compiler. By specifying the proper options for the keyword parameters of the JPROC
call, a desired job control stream is generated. The JPROC calls provide the ability to
compile, link-edit, and immediately execute this load module (COBL74LG).

Note: The COBL74 compiler requires three disk scratch files, a printer file named
PRNTR, and X~OOO' bytes of storage.

H.2. Procedure Call Statement
Function

This procedure call statement generates the necessary job control statements to
execute the COBOL language processor (COBL74). Optionally, it can generate
the job control statements that specify the following:

• Input source library

., Output object library

• Copy library

• P ARAM control statements that specify the compiler options

70044490-000 H-l

Job Control Stream Requirements

H-2

Format

where:

II [source-module-name] {COBL74 } PRNTR= {N ' .•... '.' .• '. } COBL74L <{tun} [,vol-ser-no])
COBL74LG N

20

,IN= !<VOl-ser-nO,label»)
(RES)
(RES, label)
(RUN, l abe l)
(*, label)

, LI N= ["".<.",V.,.".,O", .• l,.,.,.,.-",.,.S, .• ,.,.e,.".,.r, .• ,.,.,-.".,.n,.,.,.,.O, .• ,.,.'".,.l abe l »)
(RES, label)
(RUN, label)
(*, Label)
(RES~YSRC')

,LINn= {<VOl-ser-no,tabel>}
(RES, label)
(RUN,label) •••

, OB J = [.(•. "V, .. ,.,.O",.,.l, .•. , ..• -... ,.,.S.,. ,.e,. ".'.' .r, .• ,.,.-,.,.,.,.n,.,.,.,.O,.,.,.,.'"", l abe l »)
(RES, label)
(RUN, label

(* I label) (*, label)
(RUN~YRUN)

, AL T LOD= j.""",<"" ... '.V •. :. ", .. O •. ".,:.l".,. , .•. -•. " .. ':.s •..• ,.,.e., .•. ,: •• ,.r •. :,: ••.. -.,.':.,: .••• n,: •• ,.,.,:.O., .• ,.,: •• ,.'.,." •. l abe l ») [, op t i on= spec i f i cat i on]

(RES, label)
(RUN,label)
(*,label)
(RES~YLOD)

(RES~YRUN)

[ERRFIL=(vol-ser-no,label,module-name)]

source-module-name

Specifies the 1- to 6-character source module name; only needed when the IN
parameter is used.

COBL74

Specifies compilation of an ANSI 1974 COBOL source program.

COBL74L

Specifies compilation of an ANSI 1974 COBOL source program and link-edit
of the object modules.

COBL74LG

Specifies compilation of an ANSI 1974 COBOL source program, link-edit of
the object modules, and execution of the load module.

Note: Device assignment sets must be specified prior to the JPROC.

7004 4490-000

Job Control Stream Requirements

PRNTR Keyword Parameter

PRNTR= {N }
({~~n} [,vol-ser-no)

Specifies the logical unit number of the printer. N specifies that the device
assignment set for the printer is to be manually inserted in the control
stream.

IN Keyword Parameter

This parameter specifies the input file definition and generates a P ARAM IN
control statement. The options are:

IN=(vol-ser-no,label)
Specifies the file identifier (label) and the volume serial number Cvol-ser-no)
where the source input is located.

IN=(RES)
Specifies that the source input is located on the SYSRES device in YSRC.

IN=(RES,label)
This is used if the source input is located on the SYSRES device, but the fHe
identifier (label) is of user-own specification, not YSRC.

IN=(RUN,label)
Specifies that the source input is located on the job's YRUN file, with the
file identifier (label) of user-own specification.

IN=(*,label)
Specifies that the source input is located on a catalog file identified by the
file identifier (label).

If omitted, the source input is in the form of embedded data cards (/$,source
deck, 1*).

LIN Keyword Parameter

7004 4490-000

LIN=(vol-ser-no,label)
Defines the volume serial number Cvol-ser-no) and the file identifier (label)
where the copy modules are located. The LFD name is COPY$.

LIN=(RES,label)
Specifies that the copy modules are located on the job's SYSRES device in
the file identified by the file identifier (label).

H-3

Job Control Stream Requirements

H-4

LI N=(RUN,l abel)
Specifies that the copy modules are located on the job's YRUN file, with
the file identifier (label) specified by the user.

LI N = (* , l abe l)

Specifies that the copy modules are located on a catalog file identified by the
file identifier (label).

If more than one copy library is present, the additional libraries are specified
with the LINn parameter. The n value varies from a minimum of 1 to a
maximum of 9. The compiler searches the libraries in the following order:
LIN, LIN1, LIN2, etc, through LIN9.

Note: Use the LINn format only with JPROC calls, not in PARAM statements
(see A.2 for the PARAM statement format).

OBJ Keyword Parameter

This parameter specifies the output file definition and generates a P ARAM OBJ
control statement. The options are:

OBJ=(vol-ser-no,label)
Specifies the file identifier (label) and the volume serial number (vol-ser-no)
where the object module is located.

OBJ=(RES,label)
Specifies that the object module is located on the SYSRES device, with the
file identifier specified by the label parameter.

OBJ=(RUN,label)
Specifies that the object module is located on the job's YRUN file, with a
file identifier (label) of user-own specification.

OBJ=(*,label)
Specifies that the object module is located on a catalog file identified by the
file identifier (label),

If omitted, the object module is located on the job's YRUN file.

Note: The OBJ keyword parameter must not be used with COBL74L or
COBL74LG.

SCRI Keyword Parameter

SCR 1 = {,.v.,. ,.0.".,. l.". - ser -no}
RES

Specifies volume serial number of work file with an identifier of $SCR1.

7004 4490-000

Job Control Stream Requirements

SCR2 Keyword Parameter

SCR2= {v.,.,.,.,.o.,.,.,l.,.,. -ser -no}
RE:S

Specifies volume serial number of the work with an identifier of $SCR2.

SCR3 Keyword Parameter

SCR3= {,.v.,.,.,.~.,.l.,.,. -ser -no}
RUN

Specifies volume serial number of work file with an identifier of $SCR3.

ALTLOD Keyword Parameter

ALTLOD=(vol-ser-no,label)
Specifies the location of the compiler to be used, if other than YLOD.

ALTLOD=(RES,Label)
Specifies that the alternate load library is located on the job's SYSRES
device in the file identified by the file identifier (label).

ALTLOD=(RUN,label)
Specifies that the alternate load library is located on the job's YRUN file,
with the file identifier (label) specified by the user.

ALTLOD=(*,label)
Specifies that the alternate load library is located on a catalog file identified
by the file identifier (label).

If omitted, the compiler is loaded from YRUN for execution and YLOD for
compilation and linking.

Option Keyword Parameter

option=specification
Specifies the various compiler options parameters (e.g., LIST= YES; see
Appendix A.) It cannot specify IN, LIN, and OBJ parameters because these
are job parameters that require job control language automatically
generated by a JPROC.

ERRFIL Keyword Parameter:

70044490-000

ERRFIL=(vol-ser-no,label,module-name)
Defines an error file for compile-time diagnostics and generates a P ARAM
ERRFIL control statement. The module name, volume serial number, and
file identifier (label) must be specified.

Note: The ERRFIL keyword parameter must not be specified unless the IN
keyword parameter is also specified.

H-S

Job Control Stream Requirements

H-6

Example la

The following illustrates the use of the COBL74 procedure call statement in its
basic form:

10 16 72

1- II JOB COBOL1A
2. II COBL74
3. 1$
4.
5. o source deck
6.
7. 1*

Line Explanation

1 Indicates that the name of the job is COBOLIA

2 Indicates the name of the procedure being called (COBL 7 4). There
are no keyword parameters specifying special options for this
compilation.

3 Indicates start of data

4-6 Represents the source deck to be compiled

7 Indicates end of data

As coded, this example can be the first step in ajob to be followed by the link-edit
JPROC call, or it can be an entire job in itself by specifying a 1& (end-of-job)
statement and a II FIN (terminate card reader operations) statement on lines 8
and 9, respectively. The latter case could be used to test-compile a new progyam
or an updated version of an existing progyam.

7004 4490-000

Job Control Stream Requirements

Example Ib

70044490-000

The basic form given in example 1a generates the fonowing control stream:

10 16

1. // JOB COBOL1A
2. // DVC 20/ // LFD PRNTR
3. // DVC RES
4. // EXT ST,C,3,CYL,1
5. // LBL $SCR1 // LFD $SCR1
6. // DVC RES
7. // EXT ST,C,3,CYL,1
8. // LBL $SCR2 // LFD $SCR2
9. // DVC RUN
10 // EXT ST,C,3,CYL,1
11. // LBL $SCR3 // LFD $SCR3
12. // EXEC COBL74
13. /$
14.
15. source deck
16.
17. /*

Explanation

1 Indicates that the name of the job is COBOL1A

72

2 Indicates the default logical unit number and LFD name of the
printer

3-5 Indicates that the first work file needed for compiling is, by default,
on the SYSRES device, has both a file identifier and LFD name of
$SCR1, and uses the sequential access technique that allocation is
contiguous, with three cylinders anocated for the secondary
increment and one cylinder of initial allocation.

6-8

9-11

12

13

14-16

17

Identifies the second work file needed for compiling. The only
difference between this work file and the first work file is that file
identifier and LFD name are $SCR2 rather than $SCR1.

Indicates that the third work file needed for compiling is, by
default, on the device containing the job's YRUN file. Both the
file identifier and the LFD name are $SCR3, and the file extent
specification is the same as the first and second work files.

Loads the COBL74 compiler from YLOD

Indicates start of data

Represents the source deck to be compiled

Indicates end of data

H-7

Job Control Stream Requirements

H-8

As with example la, this example can be the first step in a job, or it can be the
entire job in itself by specifying the 1& statement and the II FIN statement on
lines 18 and 19, respectively.

Example 2a

The following example illustrates the use of a COBL74 procedure call statement
that defines many of the keyword parameters:

10 16

1. II JOB COBOL2A
2. IIPROGNM COBL74 PRNTR=21,IN=(RES,U$SRC),
3. 111 OBJ=(DSC2,U$OBJ),
4. 112 LIN=(DSC1,COPYLIB1),
5. 113 SCR1=DSC4,SCR2=DSC1,
6. 114 LSTREF=YES,OBJLST=NO,AXREF=YES,
7. 115 PROVER=YES
8. 1&
9. II FIN

Line Explanation

1 Indicates that the name of the job is COBOL2A

72

x
x
x
x
x

2 Indicates the name of the procedure being called (COBL74). The
source module name is PROGNM. The logical unit number of the
printer is 21, and the input file is on the SYSRES device, with a file
identifier of U$SRC.

3 Indicates that the output file volume serial number is DSC2, with a
file identifier of U$OBJ

4 Indicates that the copy module volume serial number is DSC1, with
a file identifier of COPYLIB1

5 Indicates that the second work file needed for compiling is on the
device with a volume serial number of DSC4, and the third work
file is on the device with a volume serial number of DSC1. By
default, the device for the first work file is the SYSRES device.

6-7 Indicates the compiler options for this compilation:

LSTREF=YES
Specifies the generation of a source program listing including
the definition line numbers of operands.

OBJLST=NO
Specifies not to generate an object code listing.

70044490-000

Job Control Stream Requirements

AXREF=YES
Specifies the generation of an alphabetically ordered
cross-reference listing of procedure and data names.

PROVER=YES
Specifies the generation of an address map list of procedure
names and verb statements.

8 End of job

9 Terminates card reader operations

As written, this example is a I-step job that compiles your source program. It
produces a nonexecutable object module. Before your program could be executed,
ajob step would have to be inserted in the control stream that would link-edit the
object module to produce an executable load module.

Example 2b

Based on the keyword parameters specified in example 2a, the following control
stream is generated:

10 16 72

1. II JOB COBOL2A
2. II DVC 21 II LFD PRNTR
3. II DVC RES
4. II LBL U$SRC II LFD INCPUT
5. II DVC 50 II VOL DSC2
6. II LBL U$OBJ II LFD OUTCPUT
7. II DVC 51 II VOL DSC1
8. II LBL COPYLIB1 II LFD COPY$
9. II DVC RES
10. II EXT ST,C,3,CYL,1
11. II LBL $SCR1 II LFD $SCR1
12. II DVC 52 II VOL DSC4
13. II EXT ST,C,3,CYL,1
14. II LBL $SCR2 II LFD $SCR2
15. II DVC 51 II VOL DSC1
16. II EXT ST,C,3,CYL,1
17. II LBL $SCR3 II LFD $SCR3
18. II EXEC COBL74
19. II PARAM IN=PROGNM/INCPUT
20. II PARAM OBJ=OUTCPUT
21. II PARAM LSTREF=YES
22. II PARAM OBJLST=NO
23. II PARAM AXREF=YES
24. II PARAM PROVER=YES
25. 1&
26. II FIN

70044490-000 H-9

Job Control Stream Requirements

H-IO

Line Explanation

1 Indicates that the name of the job is COBOL2A

2 Indicates that the printer is to be assigned to the logical unit
number 21, with an LFD name of PRNTR. This was obtained from
line 2 in example 2a.

3 Indicates that the input file is on the device containing the
SYSRES volume. This was obtained from the IN parameter on line
2 in example 2a.

4 Indicates that the input file has a file identifier of U$SRC, with an
LFD name of INCPUT. This was obtained from the IN parameter
on line 2 in example 2a.

5 Indicates that the output file volume serial number is DSC2. This
was obtained from the OBJ parameter on line 3 in example 2a. It is
assigned to the device with a logical unit number of 50, which was
the first available number in the range of 50-54.

6 Indicates that the output file has a file identifier of U$OBJ, with an
LFD name of OUTCPUT. This was obtained from the OBJ
parameter on line 3 in example 2a.

7

8

9-11

12-14

Indicates that the copy library has a volume serial number of
DSCl. It is assigned to the device with a logical unit number of 51,
which was the next available number in the range of 50-54. Logical
unit number 50 was already assigned to the device with a volume
serial number of DSC2 (line 5), so the next available logical unit
number is used. This was obtained from the LIN parameter on line
4 in example 2a.

Indicates that the copy library is labeled COPYLIB1, with an LFD
name of COPY$. This was obtained from the LIN parameter on line
4 in example 2a.

Indicates that the first work file needed for compiling is, by default,
on the SYSRES device, has both a file identifier and LFD name of
$SCR1, and uses the sequential access technique; and that
allocation is contiguous, with three cylinders allocated for the
secondary increment and one cylinder of initial allocation.

Indicates that the second work file needed for compiling has a
volume serial nUlnber of DSC4. This volume serial number has not
been previously used in this job, so the next available logical unit
number (52) is assigned to this device. This work file has both a file
identifier and LFD name of $SCR2, and has the same file extent
specification as the first work file. This was obtained from the
SCR2 parameter on line 5 in example 2a.

7004 4490-000

15-17

18

19-24

25

26

7004 4490-000

Job Control Stream Requirements

Explanation

Indicates that the third work file needed for compiling has a
volume serial number of DSCI. Since this volume serial number
was already used, this work file uses the same device logical unit
number of 51. This work file has both a file identifier and LFD
name of $SCR3, and has the same file extent specification as the
first and second work files. This was obtained from the SCR3
parameter on line 5 in example 2a.

Loads the COBL74 compiler from YLOD

P ARAM control statements identify the processing options for the
ANSI 1974 COBOL compiler (COBL74). These are generated in the
following manner:

Line 19 - The module name PROGNM is generated from the label
field in line 2 of example 2a. The filename INCPUT is generated
automatically when the IN parameter is specified.

Line 20 - The filename OUTCPUT is generated automatically when
the OBJ parameter is used.

Lines 21-24 - Generated by the compiler options specifications of
lines 6 and 7 in example 2a.

End of job

Terminates card reader operations

H-ll

Job Control Stream Requirements

H-12

Example 3a

The following example illustrates the use of the COBL74L procedure call
statement:

10 16

1. II JOB MASTER
2. II DVC 50
3. II VOL DSC1
4. II LBL U$LOD
5. II LFD LNKLIB
6. II COBL74 MXREF=YES,PROVER=YES
7. 1$

8. . COBOL source program

9. 1*
10. 1$
11. LINKOP OUT=LNKLIB
12. LOADM ABC123
13. 1*
14. 1&
15. II FIN

Explanation

1 Indicates that the name of the job is MASTER

72

2-5 Defines a file U$LOD on volume DSCI to be used to hold the linked
object module

6

7

8

9

10

11

12

13

Indicates the name of the procedure being called (COBL74L) and
indicates the compiler options for this compilation

Indicates start of data

Indicates the COBOL source program

Indicates end of data

Indicates start of data

Indicates that the linkage editor is to write the load module to the
file with the lfdname LNKLIB

Indicates that the name of the load module is ABC123

Indicates end of data

70044490-000

Job Control Stream Requirements

14 Indicates end of job

15 Terminates card reader operations

Example 3b

7004 4490-000

Based on the keyword parameters specified explicitly and implicitly in example
3a, the following control stream is generated:

10 16 72

1. II JOB MASTER
2. II DVC 50 II VBL DSC1 II LBL U$LOD II LFD LNKLIB
3. II DVC 20 II LFD PRNTR
4. II DVC RES II EXT ST,C,3,CYL,1 II LBL $SCR1 II LFD $SCR1
5. II DVC RES II EXT ST,C,3,CYL,1 II LBL $SCR2 II LFD $SCR2
6. II DVC RES II EXT ST,C,3,CYL,1 II LBL $SCR3 II LFD $SCR3
7. II EXEC COBL74
8. II PARAM MXREF=YES,PROVER=YES
9. 1$

10. . COBOL source program
I

11. 1*
12. II DVC RES II EXT ST,C,3,CYL,1 II LBL $SCR1 II LFD $SCR1
13. II EXEC LNKEDT
14. 1$
15. LINKOP OUT=LNKLIB
16. LOADM ABC123
17. 1*
18. &
19. II FIN

Explanation

1 Indicates that the name of the job is MASTER

2 Defines a file U$LOD on volume DSC1 to be used to hold the linked
object module

3

4-6

7

8

9

Indicates that the printer is to be assigned to logical unit number
20 with an lfdname of PRNTR

Defines the three work files necessary for compiler execution

Loads and executes the COBL74 compiler

Indicates parameter options

Indicates start of data

H-13

Job Control Stream Requirements

H-14

Line Explanation

10 Indicates the COBOL source program

11 Indicates end of data

12 Defines the work file necessary for LNKEDT execution

13 Loads and executes the linkage editor

14 Indicates start of data

15 Indicates that the linkage editor is to write the load module to the
file with the If dname LNKLIB

16 Indicates that the name of the load module is ABC123

1 7 Indicates end of data

18 Indicates end of job

19 Terminate card reader operations

Example 4a

The following example illustrates the use of the COBL74LG procedure call
statement. The input file and the output listings for the compiler are defined.

1121 16 72

1. II JOB MASTER
2. II DVC ... II LFD
3. IIMASTER COBL74LG IN=(ABC123,PAYMAST), x
4. 111 LSTREF=YES,AXREF=YES,PROVER=YES
5. 1&
6. II FIN
7. data
8. 1*

Explanation

1 Indicates that the name of the job is MASTER

2 Indicates the device assignment sets needed to execute the
resulting load module

7004 4490-000

Job Control Stream Requirements

Line Explanation

3 Indicates that the name of the source module is MASTER and the
name of the procedure being called is COBL74LG. Therefore, this
example compiles, link-edits, and executes the source program
MASTER. The input file (source language) is on the device with a
volume serial number of ABC123 and has a file identifier of
PAYMAST.

4 Indicates the compiler listing options

5 End of job

6 Terminates card reader operations

7 Indicates the data for the program

8 Indicates end of data

Example 4b

70044490-000

Based on the keyword parameters specified explicitly and implicitly in example
4a, the following control stream is generated:

10 16 72

1. II JOB MASTER
2. II DVC ... II LFD
3. II OPTION LINK,GO
4. 1/ DVC 20 II LFD PRNTR
5. 1/ DVC 50 II VOL ABC123
6. II LBL PAYMAST II LFD INCPUT
7. II DVC RES
8. II EXT ST,C,3,CYL,1
9. II LBL $SCR1 II LFD $SCR1

10. II DVC RES
11. II EXT ST,C,3,CYL,1
12. II LBL $SCR2 /1 LFD $SCR2
13. II DVC RUN
14. II EXT ST,C,3,CYL,1
15. II LBL $SCR3 II LFD $SCR3
16. II EXEC COBL74
17. II PARAM IN=MASTER/INCPUT
18. II PARAM LSTREF=YES
19. 1/ PARAM AXREF=YES
20. II PARAM PROVER=YES
21. 1&
22. I I FIN
23. data
24. /*

H-15

Job Control Stream Requirements

1

2

3

4

5

6

7-9

10-12

13-15

16

17-20

H-16

Explanation

Indicates that the name of the job is MASTER

Indicates the device assignment sets needed to execute the
resulting load module

Indicates that the source program is to be link-edited and then
executed after it has been compiled. This was obtained from
COBL74LG specified on line 2 in example 4a.

Indicates, by default, that the printer is to be assigned to the logical
unit number 20, with an LFD name of PRNTR

Indicates that the input file (source language) is on the device with
the logical unit number of 50 and has a volume serial number of
ABC123. This was obtained from the IN parameter on line 2 in
example 4a.

Indicates that the input file (source language) has a file identifier
of PAYMAST, with an LFD name of INCPUT. This was obtained
from the IN parameter on line 2 in example 4a.

Indicates, by default, that the first work file needed for compiling is
on the SYSRES device, has both a file identifier and LFD name of
$SCR1, uses sequential access technique; that allocation is
contiguous, with three cylinders allocated for the secondary
increment and one cylinder of initial allocation.

Indicates, by default, that the second work file needed for
compiling is on the SYSRES device. This work file has both a file
identifier and LFD name of $SCR2. It has the same file extent
specification as the first work file.

Indicates, by default, that the third work file needed for compiling
is on the SYSRUN device. This work file has both a file identifier
and LFD name of $SCR3. It has the same file extent specification
as the first and second work file.

Loads the COBL74 compiler from YLOD

PARAM control statements that identify the processing options for
the COBL74 compiler. These are generated as follows:

Line 16 - The module name MASTER is generated from the label
field on line 2 of example 4a. The filename INCPUT is generated
automatically when the IN parameter is specified.

Lines 17-19 - Generated by the compiler options specifications of
line 3 in example 4a.

7004 4490-000

Job Control Stream Requirements

Line Explanation

21 End of job

22 Terminates card reader operations

23 Indicates the data for the program

24 Indicates end of data

Any output from the compiler is temporarily stored on the YRUN device.

Implicit in the II OPTION LINK,GO statement on line 2 of example 4b is the
creation of a load module named LNKLOD by the linkage editor and the
execution of that load module. This is performed after the source program has
been compiled.

Example 5

70044490-000

The following example shows a typical compilation from a workstation:

1.
2.

3.

4.
5.

1

2

10 16 72

LOGON SYSPUBS,6944,DOIT
/EDT

COBOL source program

@WRITE
@HALT

RV JC$BUILD

job control stream

RV COMPIL
LOGOFF

Explanation

Identifies the user-id SYSPUBS, the account-number 6944, and the
password DOlT

Calls the system editor. The COBOL source program immediately
follows IEDT command. Mter the last COBOL source statement,
the @WRITE command is issued to save the source program in a
library. The @HALT command ends the EDT session.

H-17

Job Control Stream Requirements

H-18

Line Explanation

3 Calls the system build command. This command writes the job
control stream to the system job control stream library file
(YJCS). This job control stream defines the system resources the
source program requires.

4 Calls the control stream from YJCS. This step compiles the
source program.

5 Ends the workstation session

Example 6

The following example also shows compilation from a workstation:

10 16

1. LOGON user-id
2. IEDT

• COBOL source program

@WRITE INPUT1
II JOB COMPIL
/ICOBOL1 COBL74,IN=INPUT1
1&
@WRITE YJCS
@HALT

3. RV COMPIL
4. LOGOFF

Explanation

1 Connects the workstation terminal to the system and also
identifies the user

2 Calls the system editor (EDT)

3 Compiles the program

4 Disconnects the workstation terminal from the system

7004 4490-000

Job Control Stream Requirements

H.3. Compiler Status Indicators

The compiler sets the following status indicators in the user program switch indicator
(UPS I) byte. These indicators may be used in conjunction with the II SKIP job control
card:

• Switch-O (X'80') is set to 1 if the compiler does not create a complete object
module. This condition might be caused by an "insufficient memory available"
diagnostic or the SPROUT option.

• Switch-l (X'40') is set to 1 if the compiler issues any diagnostic message with
severity code 2 or 3.

• Switch-2 (X'20') is set to 1 if the compiler issues any diagnostic messages with the
severity code 1.

H. . Data Definition (DO) Job Control Statement Keyword
Parameters

The DD job control statement is used to change data management keywords at
execution time. Instead of changing your COBOL source code, you can override data
management keyword specifications when your COBOL object program is executing.
The DD statement keyword parameters that may be specified are:

7004 4490-000

ACCESS= jEXECj EXCR
SRDO
SRD
SUPD
SADD

FILABl= {NO }
NSTD
STD

LACE=n

RCB= {~~S}

RECV= {YES}
FCE

TPMARK=NO

UOS=n

VMNT= {~~E}

VSEC= {~~S}

H-19

Job Control Stream Ikl'fil'lll gl.'fi..,.ifin'ioif!'

H-20

When specifying these keyword parameters, extreme care must be used so that the
effect of changing one parameter does not cause a conflict with another parameter. To
avoid conflicts, the user should carefully examine the file usage specified in COBOL
programs and the default parameters set by the compiler-generated data
management specifications.

The DD statement applies to basic data management users and consolidated data
management users. For keyword parameter information, see the Consolidated Data
Management Macroinstructions Programming Guide (70044607). A complete
description of the DD job control statement is included in the Job Control
Programming Guide (7004 4623).

7004 4490-000

Append" I
e rved

The following reserved words are part of the OS/3 COBOL language structure and
cannot be used as user-defined words or system-names.

ACCEPT CH CYLINDER-INDEX
ACCESS CHANGED CYLINDER-OVERFLOW
ADD CHARACTER
ADVANCING CHARACTERS DATA
AFTER CLASS-NAME DATE
ALL CLOCK-UNITS DATE-COMPILED
ALPHABET CLOSE DATE-WRITTEN
ALPHABETIC COBOL DAY
ALSO CODE DE
ALTER CODE-SET DEBUG-CONTENTS
ALTERNATE COLLATING DEBUG-ITEM
AND COLUMN DEBUG-LINE
APPLY COMMA DEBUG-NAME
ARE COMMUNICATION DEBUG-SUB-l
AREA COMP DEBUG-SUB-2
AREAS COMP-l DEBUG-SUB-3
ASCENDING COMP-2 DEBUGGING
ASSIGN COMP-3 DECIMAL-POINT
AT COMP-4 DECLARATIVES
AUTHOR COM PUT ATIONAL DELETE

COMPUTATIONAL-l DELIMITED
BEFORE COMPUT ATIONAL-2 DELIMITER
BEGINNING COMPUTATIONAL-3 DEPENDING
BLANK COMPUTATIONAL-4 DESCENDING
BLOCK COMPUTE DESTINATION
BLOCK-COUNT CONFIGURATION DETAIL
BOTTOM CONNECT-FREE DISABLE
BY CONTAINS DISPLAY

CONTROL DIVIDE
CALL CONTROLS DIVISION
CANCEL COPY DOWN
CD CORR DUPLICATES
CF CORRESPONDING DYNAMIC

COUNT
CURRENCY

70044490-000 1-1

Reserved Words

EGI INPUT OBJECT -COMPUTER
ELSE INPUT -OUTPUT OCCURS
EMI INSPECT OF
ENABLE INSTALLATION OFF
END INTO OMITIED
ENDING INVALID ON
END-OF-PAGE IS OPEN
ENTER ISAM OPTIONAL
ENVIRONMENT OR
EOP JUST ORGANIZATION
EQUAL JUSTIFIED OUTPUT
ERROR OVERFLOW
ESI KEY
EVERY PAGE
EXCEPTION LABEL PAGE-COUNTER
EXHIBIT LAST PASSWORD
EXIT LEADING PERCENT
EXTEND LEFT PERFORM

LENGTH PF
FD LESS PH
FILE LIMIT PIC
FILE-CONTROL LIMITS PICTURE
FILE-ID LINAGE PLUS
FILLER LINAGE -COUNTER POINTER
FINAL LINE POSITION
FIRST LlNE-COUNTER POSITIVE
FOOTING LINES PRINTING
FOR LINKAGE PROCEDURE
FROM LOCK PROCEDURES
FUNCTION-KEYS LOW-VALUE PROCEED

LOW-VALUES PROGRAM
GENERATE PROGRAM-ID
GIVING MEMORY PRINTER
GO MERGE QUEUE
GREATER MESSAGE QUOTE
GROUP MESSAGES QUOTES

MODE
HEADING MODULES RANDOM
HIGH-VALUE MORE-LABELS RD
HIGH-VALUES MOVE READ

MULTIPLE READY
1-0 MULTIPLY RECEIVE
I-O-CONTROL RECORD
IDENTIFICATION NAMED RECORDS
IF NATIVE REDEFINES
IN NEGATIVE REEL
INDEX NEXT REFERENCES
INDEX-AREA NO RELATIVE
INDEXED NOT RELEASE
INDICATE NUMBER REMAINDER
INDICES NUMERIC REMOVAL
INITIAL
INITIATE

1-2 7004 4490-000

Reserved Words

RENAMES STANDARD TRACE
REPLACING ST ANDARIM TRAILING
REPORT STANDARD-l TRANSFORM
REPORTING START TYPE
REPORTS STATUS
RERUN STOP UNIT
RESERVE STRING UNSTRING
RESET SUB-QUEUE-l UNTIL
RETURN SUB-QUEUE-2 UP
REVERSED SUB-QUEUE-3 UPON
REWIND SUBTRACT USAGE
REWRITE SUM USE
RF SUPPRESS USING
RH SYMBOLIC VALUE
RIGHT SYNC VALUES
ROUNDED SYNCHRONIZED VARYING
RUN SYSCHAN-n (n = 1 thru 15) VERIFY

SYSCOM
SAM SYSCONSOLE WHEN
SAME SYSFORMAT WHEN-COMPILED
SO SYSIN WITH
SEARCH SYSIPT WORDS
SECTION SYSLOG WORKING-STORAGE
SECURITY SYSLST WRITE
SEGMENT SYSOPT
SEGMENT-LIMIT SYSOUT ZERO
SELECT SYSSCOPE ZEROES
SEND SYSSWCH ZEROS
SENTENCE SYSSWCH-n (n = 0 thru 31)
SEPARATE SYSTEM "DEBUG
SEQUENCE SYSTEM-SHUTDOWN +
SEQUENTIAL SYSTERMINAL
SET SYSWORK
SIGN /
SIZE TABLE
SORT TALLYING >

SORT-FILE-SIZE TAPE <

SORT-MERGE TAPES
SORT-MODE-SIZE TERMINAL
SOURCE TERMINATE
SOURCE -ALPHABET TEXT
SOURCE-COMPUTER THAN
SPACE THEN
SPACES THROUGH
SPECIAL-NAMES THRU
SPECIFIC TIME

TIMES
TO
TOP

7004 4490-000 1-3

Appendix J
Standard E
Sequences

J.l u Introduction

IC and S II Collating

Appendix J provides three useful tables containing collating sequences. The first
(Table J-1) presents a cross-reference table that enables you to compare the following
standard codes commonly used in data processing and in OS/3:

.. Hollerith punched card code

• EBCDIC (Extended Binary-Coded Decimal Interchange Code)

.. ASCII (American National Standard Code for Information Interchange)

.. Binary bit-pattern (bit-configuration) representation for an 8-bit system

• Hexadecimal representation

Table J-2 provides a convenient chart of OS/3 EBCDIC graphics only, and Table J-3
lists OS/3 ASCII graphics only.

J.2. EBCDICjASClljHolierith Correspondence

Table J-1 is a cross-reference table showing the correspondences among the Hollerith
punched card code, ASCII, and EBCDIC. The table is arranged in the sorting (or
collating) sequence of the binary bit patterns assigned to the codes, with 0000 0000
being the lowest value in the sequence and 11111111 the highest. These binary bit
patterns are sorted in a left-to-right sequence (most significant to least significant bit).

The column headed Dec. uses decimal numbers to represent the positions of the codes
and bit patterns in this sequence, but counts the position of the lowest value as the
zero position rather than the first. Thus, the position of the highest value bit pattern
11111111 is represented by 255, whereas it is actually the 256th in the sequence. This
scheme corresponds to the common convention for numbering bytes, where the first
byte of a group is byte O. This is convenient when you are constructing a 256-byte
translation table.

7004 4490-000 J-l

Standard EBCDIC and ASCII Collating Sequences

The column headed Dec. also represents the collating sequence for the ASCII graphic
characters shown in the fourth column of the table; the fifth column, Hollerith Code,
contains the hole patterns assigned to these ASCII graphics. The ASCII space
character is represented in the fourth column by the conventional notation SP at
decimal position 32, and the corresponding card code is No punches. The shading in
the ASCII graphic character column indicates where the 128-character ASCII code
leaves off; there are no ASCII graphic or control characters that correspond to the bit
patterns higher in collating sequence than 01111111 (the 128th in Table J-1).

The EBCDIC graphic characters, listed in the sixth column of Table J-1, are also in
their collating sequence, and the hole patterns in the seventh column correspond to
the EBCDIC graphics. The EBCDIC space character is represented by the notation SP
in the sixth column at decimal position 64; the corresponding card code is, again, No
punches. The empty space in the sixth column represents the positions of the EBCDIC
control characters.

J.2.1. Hollerith Punched Card Code

The standard Hollerith punched card code specifies 256 hole-patterns in 12-row
punched cards. Hole-patterns are assigned to the 128 characters of ASCII and to 128
additional characters for use in 8-bit coded systems. These include the EBCDIC set.
Note that no sorting sequence is implied by the Hollerith code itself.

J.2.2. EBCDIC

EBCDIC is an extension of Hollerith coding practices. It comprises 256 characters,
each of which is represented by an 8-bit pattern. Table J-1 shows the EBCDIC graphic
characters only; the EBCDIC control characters are not indicated.

J.2.3. ASCII

J-2

ASCII comprises 128 coded characters, each represented by an 8-bit pattern, and
includes both control characters and graphic characters. Only the latter are shown in
Table J-l.

70044490-000

Standard EBCDIC and ASCII Collating Sequences

Table J-l. Cross-Reference Table: EBCDIC/ASClljHolierith

Numeric Values ASCI I EBCDIC

ASCII Hollerith EBCDIC Hollerith
Dec. Hex. Binary Char. Code Char. Code

0 00 0000 0000 NUL 12-0-9-8-' 12-0-9-8-'
1 131 0000 0001 12-9-' 12-9-1
2 02 0000 0010 12-9-2 12-9-2
3 03 0000 0011 12-9-3 12-9-3
4 04 0000 01130 9-7 12-9-4

5 05 0000 0101 0-9-8-5 12-9-5
6 06 0000 0110 0-9-8-6 12-9-6
7 07 13000 0111 13-9-8-7 12-9-7
8 08 0000 1000 11-9-6 12-9-8
9 09 00013 10131 12-9-5 12-9-8-1

10 0A 0000 1010 0-9-5 12-9-8-2
11 0B 0000 1011 12-9-8-3 12-9-8-3
12 0C 0000 1100 12-9-8-4 12-9-8-4
13 0D 0000 1101 12-9-8-5 12-9-8-5
14 0E 0000 1110 12-9-8-6 12-9-8-6

15 0F 0000 1111 12-9-8-7 12-9-8-7
16 10 0001 0000 12-11-9-8-1 12-11-9-8-1
17 11 0001 0001 11-9-1 11- 9 - 1
18 12 0001 0010 11-9-2 11-9-2
19 13 0001 0011 11-9-3 11-9-3

20 14 0001 0100 9-8-4 11-9-4
21 15 0001 0101 9-8-5 11-9-5
22 16 0001 0110 9-2 11-9-6
23 17 0001 0111 0-9-6 11-9-7
24 18 0001 1000 11-9-8 11-9-8

25 19 0001 1001 11-9-8-1 11-9-8-1
26 1A 0001 1010 9-8-7 11-9-8-2
27 1B 0001 1011 0-9-7 11-9-8-3
28 1C 0001 1100 11-9-8-4 11-9-8-4
29 1D 0001 1101 11-9-8-5 11-9-8-5

30 1E 0001 1110 11-9-8-6 11-9-8-6
31 1F 0001 1111 11-9-8-7 11-9-8-7
32 20 0010 0000 SP No punches 11-0-9-8-1
33 21 0010 0001 ! 12-8-7 0-9-1
34 22 0010 0010 .. 8-7 0-9-2

35 23 0010 0011 # 8-3 0-9-3
36 24 0010 0100 $ 11-8-3 0-9-4
37 25 0010 0101 % 0-8-4 0-9-5
38 26 0010 0110 & 12 0-9-6
39 27 0010 0111 I 8-5 0-9-7

continued

70044490-000 J-3

Standard EBCDIC and ASCII Collating Sequences

Table J-l. Cross-Reference Table: EBCDIC/ASClljHolierith (cant.)

Numeric Values ASCI I EBCDIC

ASCI I Hollerith EBCDIC Hollerith
Dec. Hex. Binary Char. Code Char. Code

40 28 0010 1000 (12-8-5 0-9-8
41 29 0010 1001) 11-8-5 0-9-8-'
42 2A 0010 1010 * 11-8-4 0-9-8-2
43 2B 0010 1011 + 12-8-6 0-9-8-3
44 2c 0010 1100 , 0-8-3 0-9-8-4

45 2D 0010 1101 11 0-9-8-5
46 2E 0010 1110 12-8-3 0-9-8-6
47 2F 0010 1111 I 0-1 0-9-8-7
48 30 0011 0000 0 0 12-11-0-9-8-1
49 31 0011 0001 1 1 9-1

50 32 0011 0010 2 2 9-2
51 33 0011 0011 3 3 9-3
52 34 0011 0100 4 4 9-4
53 35 0011 0101 5 5 9-5
54 36 0011 0110 6 6 9-6

55 37 0011 0111 7 7 9-7
56 38 0011 1000 8 8 9-8
57 39 0011 1001 9 9 9-8-'
58 3A 0011 1010 : 8-2 9-8-2
59 3B 0011 1011 ; 11-8-6 9-8-3 (
60 3c 0011 1100 < 12-8-4 9-8-4
61 3D 0011 1101 = 8-6 9-8-5
62 3E 0011 1110 > 0-8-6 9-8-6
63 3F 0011 1111 ? 0-8-7 9-8-7
64 40 0100 0000 @ 8-4 SP No punches

65 41 0100 0001 A 12-1 12-0-9-'
66 42 0100 0010 B 12-2 12-0-9-2
67 43 0100 0011 C 12-3 12-0-9-3
68 44 0100 0100 D 12-4 12-0-9-4
69 45 0100 0101 E 12-5 12-0-9-5

70 46 0100 0110 F 12-6 12-0-9-6
71 47 0100 0111 G 12-7 12-0-9-7
72 48 0100 1000 H 12-8 12-0-9-8
73 49 0100 1001 I 12-9 12-8-1
74 4A 0100 1010 J 11 -1 [12-8-2

75 4B 0100 1011 K 11- 2 12-8-3
76 4c 0100 1100 L 11-3 < 12-8-4
77 4D 0100 1101 M 11-4 (12-8-5
78 4E 0100 1110 N 11-5 + 12-8-6
79 4F 0100 1111 a 11-6 ! 12-8-7

continued

J-4 7004 4490-000

Standard EBCDIC and ASCII Collating Sequences

Table J-l. Cross-Reference Table: EBCDIC/ASClljHollerith (cant.)

Numeric Values ASCI I EBCDIC

ASCII Hollerith EBCDIC Hollerith
Dec. Hex. Binary Char. Code Char. Code

80 50 0101 0000 P 11-7 & 12
81 51 0101 0001 Q 11-8 12-11-9-1
82 52 0101 0010 R 11-9 12-11-9-2
83 53 0101 0011 S 0-2 12-11-9-3
84 54 0101 0100 T 0-3 12-11-9-4

85 55 0101 0101 U 0-4 12-11-9-5
86 56 0101 0110 V 0-5 12-11-9-6
87 57 0101 0111 W 0-6 12-11-9-7
88 58 0101 1000 X 0-7 12-11-9-8
89 59 0101 1001 y 0-8 11- 8 - 1

90 5A 0101 1010 Z 0-9] 11-8-2
91 5B 0101 1011 [12-8-2 $ 11-8-3
92 5C 0101 1100 \ 0-8-2 'I< 11-8-4
93 5D 0101 1101] 11-8- 2) 11-8-5
94 5E 0101 1110 " 11-8-7 ; 11-8-6

95 5F 0101 1111 0-8-5 fl 11-8-7 -
96 60 0110 0000 I 8-1 11
97 61 0110 0001 a 12-0-1 I 0-1
98 62 0110 0010 b 12-0-2 11-0-9-2
99 63 0110 0011 c 12-0-3 11-0-9-3

100 64 0110 0100 d 12-0-4 11-0-9-4
101 65 0110 0101 e 12-0-5 11-0-9-5
102 66 0110 0110 f 12-0-6 11-0-9-6
103 67 0110 0111 9 12-0-7 11-0-9-7
104 68 0110 1000 h 12-0-8 11-0-9-8

105 69 0110 1001 i 12-0-9 0-8-1
106 6A 0110 1010 j 12-11-1 I 12 - 11
107 6B 0110 1011 k 12-11-2 , 0-8-3
108 6C 0110 1100 l 12-11-3 % 0-8-4
109 6D 0110 1101 m 12-11-4 0-8-5 -

110 6E 0110 1110 n 12-11-5 > 0-8-6
111 6F 0110 1111 0 12-11-6 ? 0-8-7
112 70 0111 0000 P 12-11-7 12-11-0
113 71 0111 0001 q 12-11-8 12-11-0-9-1
114 72 0111 0010 r 12-11-9 12-11-0-9-2

continued

70044490-000 J-5

Standard EBCDIC and ASCII Collating Sequences

Table J-l. Cross-Reference Table: EBCDICjASClljHoilerith (cant.)

Numeric Values ASCI I EBCDIC

ASCII Hollerith EBCDIC Hollerith
Dec. Hex. Binary Char. Code Char. Code

115 73 0111 0011 s 11-0-2 12-11-0-9-3
116 74 0111 0100 t 11-0-3 12-11-0-9-4
117 75 0111 0101 u 11-0-4 12-11-0-9-5
118 76 0111 0110 v 11-0-5 12-11-0-9-6
119 77 0111 0111 w 11-0-6 12-11-0-9-7

120 78 0111 1000 x 11-0-7 12-11-0-9-8
121 79 0111 1001 y 11-0-8 8-'
122 7A 0111 1010 z 11-0-9 : 8-2
123 7B 0111 1011 { 12-0 # 8-3
124 7C 0111 1100 I 12 -11 @ 8-4

125 70 0111 1101 } 11-0 I 8-5
126 7E 0111 1110 - 11-0-1 = 8-6
127 7F 0111 1111 12-9-7 II 8-7
128 80 1000 0000 11-0-9-8-1 12-0-8-1
129 81 1000 0001

I.·.··.····.·.····.··········

0-9-1 a 12-0-1

130 82 1000 0010
•••••••••••••••••••••••••••

0-9-2 b 12-0-2
131 83 1000 0011 •••..••••..•••• > ••.•.•.•• 0-9-3 c 12-0-3
132 84 1000 0100

••••••••••••••••••••••••••••
0-9-4 d 12-0-4

133 85 1000 0101 > •.•••.••••• 11-9- 5 e 12-0-5
134 86 1000 0110 12-9-6 f 12-0-6 (

135 87 1000 0111

•••

:
11-9-7 9 12-0-7

136 88 1000 1000 0-9-8 h 12-0-8
137 89 1000 1001 ••••• .. •·· •• •·•·· .. · ... T· 0-9-8-' i 12-0-9
138 8A 1000 1010 0-9-8-2 12-0-8-2
139 8B 1000 1011 0-9-8-3 12-0-8-3

140 8c 1000 1100 0-9-8-4 12-0-8-4
141 80 1000 1101 / 12-9-8-1 12-0-8-5
142 8E 1000 1110 12-9-8-2 12-0-8-6
143 8F 1000 1111 nT 11-9-8-3 12-0-8-7
144 90 1001 0000 12-11-0-9-8-1 12-11-8-1

145 91 1001 0001 9-1 j 12-11-1
146 92 1001 0010 11-9-8-2 k 12-11-2
147 93 1001 0011 t: 9-3 l 12-11-3
148 94 1001 0100 1.···.' 9-4 m 12-11-4

I·· •• • •••••••••••• •• 149 95 1001 0101 I····n\. 9-5 n 12-11-5

150 96 1001 0110 9-6 0 12-11-6
151 97 1001 0111 12-9-8 P 12-11-7
152 98 1001 1000 9-8 q 12-11-8
153 99 1001 1001 9-8-' r 12-11-9
154 9A 1001 1010 I: 9-8-2 12-11-8-2

continued

J-6 70044490-000

70044490-000

Standard EBCDIC and ASCII Collating Sequences

Table J-l. Cross-Reference Table: EBCDICjASClljHolierith (cant.)

Numeric Values ASCI I

Dec. Hex.

155
156
157
158
159

161.3
161
162
163
164

165
166
167
168
169

170
171
172
173
174

175
176
177
178
179

181.3
181
182
183
184

185
186
187
188
189

190
191
192
193
194

9B
9C
90
9E
9F

A 1.3
A1
A2
A3
A4

A5
A6
A7
A8
A9

AA
AB
AC
AD
AE

AF
B1.3
B1
B2
B3

B4
B5
B6
B7
B8

B9
BA
BB
BC
BD

BE
BF
C1.3
C1
C2

Binary

101.31 11.311
101.31 1101.3
11.31.31 111.31
11.31.31 1111.3
11.31.31 1111

11.311.3 1.31.31.31.3
11.311.3 1.31.31.31
11.310 1.31.311.3

ASCII
Char.

11.311.3 1.31.311 •••
11.311.3 1.311.31.3 ' .. ' •. ' .• '\.' ••.• ,::,.,',.::,

1011.3 1.311.31 ••••.••••••••. , nIt
11.311.3 1.3111.3 •.•/
11.311.3 1.3111!
11.311.3 11.301.3 I. • .•

11.310 11.301 I

I .'.
... '
" .. .

Hollerith
Code

9-8-3
12-9-4
11-9-4
9-8-6
11-1.3-9-1

12-1.3-9-'
12-1.3-9-2
12-1.3-9-3
12-1.3-9-4
12-1.3-9-5

12-1.3-9-6
12-1.3-9-7
12-1.3-9-8
12-8-1
12-11-9-1

12-11-9-2
12-11-9-3
12-11-9-4
12-11-9-5

11.311.3 1011.3
1011.3 11.311
11.310 111.30
11.310 1101
11.311.3 1111.3

•••

• •. 12-11-9-6

1010 1111< ' .. 12-11-9-7
1011 1.301.30
11.311 1.3001
11.311 1.3010
1011 1.3011

1011 011.30
11.311 1.311.31
11.3110111.3
11.311 1.3111
1011 11.301.3

12-11-9-8 t •••• ' ••• '.'.".. 11- 8-1

> •• '..... ~ ~ ~ : ~ ~: ~
ttt 11-1.3-9-4

11-1.3-9-5
......... ".. ••• 11-1.3-9-6
,"'.
eH .•••. 11-0-9-7

11-0-9-8

1011 1001'><n 0-8-1
11.311 1010 .,., ••.• , " •••• ', 12 - 11 -0
11.311 11.311> < .• , 12 - 11 -0 -9 - 1
11.311 111.31.3 12-11-1.3-9-2
11.311 111.31 12-11-1.3-9-3

11.311 1111.3 I. 12 - 11 - 1.3 -9 -4
11.311 1111 I» ,.,........ 12 - 11 - 1.3 -9 -5
111.31.3 1.31.301.3 I<n 12-11- 1.3-9-6
111.31.3 1.31.31.31 I> 12-11-1.3-9-7
111.31.3 1.31.311.3 1« 12-11-1.3-9-8

EBCDIC
Char.

{
A
B

s
t
u

v
w
x
y
z

EBCDIC

Hollerith
Code

12-11-8-3
12-11-8-4
12-11-8-5
12-11-8-6
12-11-8-7

11-1.3-8-1
11- 0 - 1
11-1.3-2
11-0-3
11-0-4

11-1.3-5
11-1.3-6
11-0-7
11-0-8
11-0-9

11-0-8-2
11-0-8-3
11-0-8-4
11-0-8-5
11-1.3-8-6

11-1.3-8-7
12-11-0-8-1
12-11- 0-1
12-11-0-2
12-11-0-3

12-11- 1.3-4
12-11-0-5
12-11-1.3-6
12-11-0-7
12-11-0-8

12-11-0-9
12-11-0-8-2
12-11-0-8-3
12-11-1.3-8-4
12-11-1.3-8-5

12-11-0-8-6
12-11-1.3-8-7
12-1.3
12-1
12-2

continued

J-7

Standard EBCDIC and ASCII Collating Sequences

Table J-l. Cross-Reference Table: EBCDIC/ASClljHolierith (cant.)

Numeric Values ASCI I EBCDIC

ASCII Hollerith EBCDIC Hollerith
Dec. Hex. Binary Char. Code Char. Code

195 C3 1100 0011 I""""""""""" 12-0-8-' C 12-3
196 C4 1100 0100 I",,,,,,,,,,,,,,,,,,,,,,,,,, 12-0-8-2 D 12-4
197 C5 1100 0101 12-0-8-3 E 12-5
198 C6 1100 0110 12-0-8-4 F 12-6
199 C7 1100 0111 12-0-8-5 G 12-7

200 C8 1100 1000 ""'",,''''''''''''''''''' 12-0-8-6 H 12-8
201 C9 1100 1001 12-0-8-7 I 12-9
202 CA 1100 1010 12-11-8-1 12-0-9-8-2
203 CB 1100 1011

.... ' , ... '
12-11-8-2 12-0-9-8-3

204 CC 1100 1100 12-11-8-3 12-0-9-8-4

205 CD 1100 1101 I"·"",:",,,. 12-11-8-4 12-0-9-8-5
206 CE 1100 1110 1"""'"'''·'':0,''' 12-11-8-5 12-0-9-8-6
207 CF 1100 1111 .,'.,' 12-11-8-6 12-0-9-8-7
208 D0 1101 0000 I::JI 12-11-8-7 } 11- 0
209 D1 1101 0001 I ••• •·• •• ··•••••• •••• ·, ••••• · 11-0-8-1 J 11 - 1

210 D2 1101 0010 11-0-8-2 K 11-2
211 D3 1101 0011 <,

wi
11-0-8-3 L 11- 3

212 D4 1101 0100 ' ,.' ... ' .. 11-0-8-4 M 11-4
213 D5 1101 0101

••••••

11-0-8-5 N 11-5
214 D6 1101 0110 ' •• '''>.''',', 11-0-8-6 0 11-6

215 D7 1101 0111
i ••• '.· ••.• '·.·: .• " •• • ••••••

11-0-8-7 P 11-7
216 D8 1101 1000 12-11-0-8-1 Q 11-8
217 D9 1101 1001

,):< •••
12-11-0-' R 11- 9

218 DA 1101 1010 12-11-0-2 12-11-9-8-2
219 DB 1101 1011 ,J<'. 12-11-0-3 12-11-9-8-3

220 DC 1101 1100
I·.·,··'··· :.

12-11-0-4 12-11-9-8-4
221 DD 1101 1101

I···" · '.',· ··
12-11-0-5 12-11-9-8-5

222 DE 1101 1110 IH< 12-11-0-6 12-11-9-8-6
223 DF 1101 1111 II 12-11-0-7 12-11-9-8-7
224 E0 1110 0000

I'·':'·"·::····
12-11-0-8 \ 0-8-2

225 E1 1110 0001
II!

12-11-0-9 11-0-9-'
226 E2 1110 0010 12-11-0-8-2 S 0-2
227 E3 1110 0011 1< .•• 12-11-0-8-3 T 0-3
228 E4 1110 0100

1::/
12-11-0-8-4 u 0-4

229 E5 1110 0101 12-11-0-8-5 V 0-5

230 E6 1110 0110 III
••••••••••

12-11-0-8-6 w 0-6
231 E7 1110 0111

: y 12-11-0-8-7 X 0-7
232 E8 1110 1000

••••••••••

12-0-9-8-2 y 0-8
233 E9 1110 1001 : .. 12-0-9-8-3 z 0-9
234 EA 1110 1010 n·nH 12-0-9-8-4 11-0-9-8-2

continued

J-8 7004 4490-000

Standard EBCDIC and ASCII Collating Sequences

Table J-l. Cross-Reference Table: EBCDIC/ASClljHolierith (cant.)

Numeric Values ASCII EBCDIC

ASCI I Hollerith EBCDIC Hollerith
Dec. Hex. Binary Char. Code Char. Code

235 EB 1110 1011 12-0-9-8-5 11-0-9-8-3
236 EC 1110 1100 12-0-9-8-6 11-0-9-8-4
237 ED 1110 1101 12-0-9-8-7 11-0-9-8-5
238 EE 1110 1110 12-11-9-8-2 11-0-9-8-6
239 EF 1110 1111 12-11-9-8-3 11-0-9-8-7

240 F0 1111 0000 12-11-9-8-4 0 0
241 F1 1111 0001 12-11-9-8-5 1 1
242 F2 1111 0010 12-11-9-8-6 2 2
243 F3 1111 0011 12-11-9-8-7 3 3
244 F4 1111 0100 11-0-9-8-2 4 4

245 F5 1111 0101
••••••

"
11-0-9-8-3 5 5

246 F6 1111 0110 11-0-9-8-4 6 6 •••••• >',' >'.,,'
247 F7 1111 0111 ' /

••••••••

11-0-9-8-5 7 7
248 F8 1111 1000 11-0-9-8-6 8 8
249 F9 1111 1001 '.".' 11-0-9-8-7 9 9 y

250 FA 1111 1010 12-11-0-9-8-2 12-11-0-9-8-2
251 FB 1111 1011 12-11-0-9-8-3 12-11-0-9-8-3
252 FC 1111 1100 12-11-0-9-8-4 12-11-0-9-8-4
253 FD 1111 1101 12-11-0-9-8-5 12-11-0-9-8-5
254 FE 1111 1110

.'
12-11-0-9-8-6 12-11-0-9-8-6

255 FF 1111 1111 ' ' .. 12-11-0-9-8-7 12-11-0-9-8-7

7004 4490-000 J-9

Standard EBCDIC and ASCII Collating Sequences

J.3.

J-IO

05/3 Collating Sequence for EBCDIC Graphic
Characters

Table J-2 shows the OS/3 collating sequence for EBCDIC characters and unsigned
decimal data. The collating sequence ranges from low (00000000) to high (11111111).
The bit configurations that do not correspond to symbols (for example, 0-73, 81-89,
and so forth) are not shown. Some of these correspond to control commands for
printers and other devices.

Packed decimal, zoned decimal, fixed-point, and normalized floating-point data is
collated algebraically; i.e., each quantity is interpreted as having a sign.

Table J-2. OS/3 Collating Sequence: EBCDIC Graphics

Collating Bit
Sequence Configuration Symbol Meaning

0 0000 0000

64 0010 0000 SP Space

74 0100 1010 [Opening bracket
75 0100 1011 Period, decimal point
76 0100 1100 < Less than sign
77 0100 1101 (Left parenthesis
78 0100 1110 + Plus sign
79 0100 1111 ! Exclamation point
80 0101 0000 & Ampersand

90 0101 1010] Closing bracket
91 0101 1011 $ Dollar sign
92 0101 1100 * Asterisk
93 0101 1101) Right parenthesis
94 0101 1110 ; Semicolon
95 0101 1111 1 Logical NOT
96 0110 0000 Minus sign, hyphen
97 0110 0001 I Slash

106 0110 1010 I Vertical bar
107 0110 1011 , COlmla
108 0110 1100 % Percent sign
109 0110 1101 Underscore -
110 0110 1110 > Greater than sign
111 0110 1111 ? Question mark

continued

7004 4490-000

Standard EBCDIC and ASCII Collating Sequences

Table J-2. OS/3 Collating Sequence: EBCDIC Graphics (cant.)

Collating Bit
Sequence Configuration Symbol Meaning

122 13111 113113 : Colon
123 13111 11311 # Number sign
124 13111 1100 @ At sign
125 0111 11131 0 Apostrophe, prime
126 13111 11113 :: Equal sign
127 13111 1111 II Quotation marks

129 113013 1313131 a
1313 113130 130113 b
131 1131313 131311 c
132 1131313 1311313 d
133 1131313 131131 e
134 1131313 131113 f
135 1131313 13111 g
136 1131313 1131313 h
137 1131313 113131 i
145 113131 1313131 j
146 113131 1313113 k
147 1001 0011 l
148 10131 0100 m

149 10131 01131 n
150 113131 131113 0

151 11301 0111 P
152 11301 1000 q
153 1001 1001 r

161 1010 13001 - Tilde
162 113113 1313113 s
163 113113 131311 t
164 113113 1311313 u
165 1010 0101 v
166 113113 131113 w
167 113113 13111 x
168 113113 1131313 y
169 113113 11301 z

192 1100 0000 { Opening brace

continued

70044490-000 J-ll

Standard EBCDIC and ASCII Collating Sequences

Table J-2. OS/3 Collating Sequence: EBCDIC Graphics (cant.)

Collating Bit
Sequence Configuration Symbol Meaning

193 1100 0001 A
194 1100 0010 B
195 1100 0011 C
196 1100 0100 D
197 1100 0101 E
198 11000110 F
199 1100 0111 G
200 1100 1000 H
201 1100 1001 I

208 1101 0000 } Closing brace
209 1101 0001 J
210 1101 0010 K
211 1101 0011 l
212 1101 0100 M
213 1101 0101 N
214 1101 0110 a
215 1101 0111 P
216 1101 1000 Q

217 1101 1001 R

224 1110 0000 \ Reverse slash

226 1110 0010 S
227 1110 0011 T
228 1110 0100 U
229 1110 0101 V
230 1110 0110 W
231 1110 0111 X
232 1110 1000 y
233 1110 1001 z

240 1111 0000 0
241 1111 0001 1
242 1111 0010 2
243 1111 0011 3
244 1111 0100 4
245 1111 0101 5
246 1111 0110 6
247 1111 0111 7
248 1111 1000 8
249 1111 1001 9

J-12 7004 4490-000

J.4.

Standard EBCDIC and ASCII Collating Sequences

OS/3 Collating Sequence for ASCII Graphic
Characters

Table J-3 shows the 08/3 collating sequence for ASCII characters and unsigned
decimal data. The collating sequence ranges from low (00000000) to high (01111111).
Bit configurations that do not correspond to symbols are not shown.

Packed decimal, zoned decimal, fixed-point normalized floating-point data, and the
signed numeric data formats are collated algebraically; that is, each quantity is
interpreted as having a sign.

Table J-3. OS/3 Collating Sequence: ASCII Graphics

Collating Bit
Sequence Configuration Symbol Meaning

0 0000 0000 Null

32 0010 0000 SP Space
33 0010 0001 ! Excl amat ion mark
34 0010 0010 II Quotation mark
35 0010 0011 # Number sign
36 0010 0100 $ Dollar sign
37 0010 0101 % Percent sign
38 0010 0110 & Ampersand
39 0010 0111 0 Apostrophe, prime
40 0010 1000 (Opening parenthesis
41 0010 1001) Closing parenthesis
42 0010 1010 '* Asterisk
43 0010 1011 + Plus sign
44 0010 1100 , Comma
45 0010 1101 Hyphen, minus sign
46 0010 1110 Period, decimal point
47 0010 1111 I Slash
48 0011 0000 0
49 0011 0001 1
50 0011 0010 2
51 0011 0011 3
52 0011 0100 4
53 0011 0101 5
54 0011 0110 6
55 0011 0111 7
56 0011 1000 8
57 0011 1001 9
58 0011 1010 : Colon
59 0011 1011 ; Semicolon
60 0011 1100 < Less than sign
61 0011 1101 = Equal sign
62 0011 1110 > Greater than sign
63 0011 1111 ? Question mark
64 0100 0000 @ At sign
65 0100 0001 A
66 0100 0010 B
67 0100 0011 C

continued

7004 4490-000 J-13

Standard EBCDIC and ASCII Collating Sequences

Table J u 3. OS/3 Collating Sequence: ASCII Graphics (cant.)

Collating Bit
Sequence Configuration Symbol Meaning

68 0100 0100 D
69 0100 0101 E
70 0100 0110 F
71 0100 0111 G
72 0100 1000 H
73 0100 1001 I
74 0100 1010 J
75 0100 1011 K
76 0100 1100 L
77 0100 1101 M
78 0100 1110 N
79 0100 1111 a
80 0101 0000 P
81 0101 0001 Q

82 0101 0010 R
83 0101 0011 S
84 0101 0100 T
85 0101 0101 U
86 0101 0110 V
87 0101 0111 w
88 0101 1000 X
89 0101 1001 y

90 0101 1010 Z
91 0101 1011 [Opening bracket
92 0101 1100 \ Reverse slash
93 0101 1101] Closing bracket
94 0101 1110 A Circumflex
95 0101 1111 Underscore -
96 0110 0000 I Grave accent
97 0110 0001 a
98 0110 0010 b
99 0110 0011 c
100 0110 0100 d
101 0110 0101 e
102 01100110 f
103 0110 0111 g
104 0110 1000 h
105 0110 1001 i
106 0110 1010 j
107 0110 1011 k
108 0110 1100 l
109 0110 1101 m
110 0110 1110 n
111 0110 1111 0

112 0111 0000 P
113 0111 0001 q

continued

J-14 7004 4490-000

Standard EBCDIC and ASCII Collating Sequences

Table J-3. OS/3 Collating Sequence: ASCII Graphics (cant.)

Collating Bit Symbol Meaning
Sequence Configuration

114 0111 0010 r
115 0111 0011 s
116 0111 1311313 t
117 13111 13101 u
118 13111 131113 v
119 0111 0111 w
1213 0111 1000 x
121 0111 10131 y
122 131111010 z
123 13111 11311 { Opening brace
124 0111 1100 I Vertical line
125 0111 1101 } Closing brace
126 0111 1110 - Tilde

70044490-000 J-15

Appendix K
PICTU E Clause

K.1. General Information

This appendix is intended as a tutorial guide to using the PICTURE clause. It is not
intended to replace the standard text that covers more detailed rules governing the
PICTURE clause and its relation to other clauses in other divisions of a COBOL
program.

K.2. Use of the PICTURE Clause and Its Symbols

The PICTURE clause describes the general characteristics and editing requirements
of an elementary data item. It must be specified for every elementary item but is not
allowed with an index data item, an internal floating-point data item, or a group item.

The format of the PICTURE clause is:

PICTURE IS character-string

A character-string in a PICTURE clause consists of certain allowable combinations of
PICTURE symbols. The allowable combinations determine the category of the
elementary item. The length of the character-string can be from 1 to 30 characters.

The standard for COBOL defines three types of PICTURE symbols: data type, sign
and assumed decimal point, and editing symbols:

1. Data Type Symbols

The data type symbols are: A, 9, and X. A defines alphabetic data; 9 defines
numeric data; X defines alphanumeric data.

2. Sign and Assumed Decimal Point Symbols

These symbols are: S, V, and P.

• S describes the presence of an operational sign.

• V indicates the location of the assumed decimal point.

\I P specifies the location of the assumed decimal point when the point is not
within or adjacent to the digits that appear in the data item.

7004449~OOO ~l

PICTURE Clause

3. Editing Symbols

There are two types of editing symbols:

• Insertion editing symbols

(6 Zero suppression and replacement editing symbols

The insertion editing symbols are: B a I , . + -q $ (or alternate currency symbol),
CR, and DB. Among these symbols, the CS, +, and - serve both as fixed insertion
symbols and floating insertion symbols. The rest are fixed insertion symbols.

The zero suppression and replacement editing symbols are: Z and *.

The following symbols can appear only once in one PICTURE character string:

SV. CRDB

The following symbols can appear more than once in one PICTURE character­
string:

ABPXZ90/,+-*$

Note: The PICTURE symbols used to describe an external/loating point data item
are: +, -,9, V, and E. Floating point data items are the OS /3 COBOL
extensions to the standard COBOL. For more on the use and meaning of
external floating point PICTURE character strings, see "PICTURE Clause"
under 5.3.3.

K.3. Descriptions and Examples of PICTURE Clause
Symbols

K-2

The following paragraphs describe each of the standard COBOL PICTURE symbols.
Examples are provided with each description. It is assumed in the following examples
that the DECIMAL-POINT IS COMMA and CURRENCY SIGN IS literal clauses are
not specified.

Symbol

A

Explanation

Each A in the character string represents a character position that
contains a letter or a space. The symbol defines an alphabetic,
alphanumeric, or alphanumeric edited data item and is counted in the
size of the data item.

Examples

PICTURE IS A(10).
The data item is 10 bytes long and alphabetic.

7004 4490-000

(

Symbol

9

70044490-000

PICTURE Clause

Explanation

PICTURE IS AAA9999.
The data item is seven bytes long and alphanumeric (because of the
mixture of letters and numbers). It is equivalent to the PICTURE string
X(7).

When you use the character A with any other PICTURE character
except B, the data item becomes alphanumeric or alphanumeric edited.
In these cases, PICTURE character A is the same as the PICTURE
character X.

PICTURE IS XX099BA.
The data item is seven long and alphanumeric edited. The largest
elementary data item that can be moved to this item without truncation
is five bytes (because the 0 and B are editing characters). This picture
string is equivalent to the string XXOXXBX.

Each 0 in the character string represents a character position that
contains a numeral. The symbol defines a numeric or numeric edited
data item and is counted in the size of the item. It can also describe an
alphanumeric or an alphanumeric edited item.

Examples:

PICTURE IS 999V99
The data item is five bytes long (unless a USAGE clause is specified)
and numeric. The V indicates the position of the decimal point.

PICTURE IS $999.99.
The data item is seven bytes long and numeric edited. The largest
numeric item that can be moved to this field without truncation has a
PICTURE string of 999V99. Typical values for this data item are:
$123.45, and $001.50.

PICTURE IS x99AA.
The data item is five bytes long and alphanumeric. It is equivalent to
the PICTURE string X(5).

PICTURE IS AAAB999.
The data item is seven bytes long and alphanumeric edited. It is
equivalent to X(3)BX(3).

K-3

PICTURE Clause

Symbol

x

S

v

K-4

Explanation

Each X in the character string represents a character position that
contains any character from X'OO' through X'FF', defines an
alphanumeric or alphanumeric edited item, and is counted in the size of
the item.

Examples

PICTURE IS xxx.
The data item is three bytes long and alphanumeric.

PICTURE IS XXBBXXX.
The data item is seven bytes long and alphanumeric edited. The largest
elementary data item that can be moved to this item without truncation
is five bytes long (because of the two B editing characters). A typical
value for this item is AB.6..6.CDE.

The symbol S in a character string indicates an operational sign in a
numeric data item. It is written as the leftmost character in the
PICTURE string. The symbol is not counted in the size of the item
unless an associated SIGN clause specifies the SEPARATE
CHARACTER option.

Examples

PICTURE IS S999.
The data item is three bytes long and numeric. In the absence of a SIGN
clause, the sign is a trailing overpunch sign (i.e., an X'C' or X'D' in high
order four bits of the last bytes). The value +123 appears on this data
item as X'FIF2C3'; the value -123 would appear as X'FIF2D3'.

PICTURE IS S9(8)V99 SIGN IS LEADING SEPARATE CHARACTER.
This data item is 11 bytes long and numeric. The value +123.45 appears
in this data item as the character string +0000012345.

The symbol V indicates the location of the assumed decimal point and
may appear only once in a character string. The V does not represent a
character position and is not counted in the size of the item. When the
assumed decimal point is to the right of the rightmost symbol in the
string, the V is redundant.

70044490-000

Symbol

p

70044490-000

PICTURE Clause

Explanation

Examples

PICTURE IS 9(6)V9(2).
The data item is eight bytes long and numeric. The position of the V
indicates that the least significant two digits in this field are to the right
of the decimal point. The value 1234 appears as the character string
00123400; the value 789.5 appears as 00078950.

PICTURE IS V9(5).
The data item is five bytes long and numeric. The leading digit in the
field is immediately to the right of the decimal point. The value .25
appears as the character string 25000.

Each P indicates an assumed decimal scaling position. The symbol is
used to specify the location of an assumed decimal point where the point
is not within the number that appears in the data item. The symbol P is
not counted in the size of the item. However, it is counted in
determining the maximum number of digit positions allowed for a
numeric or numeric edited data item. The symbol P can appear only to
the left or the right of 9's as a continuous string of Ps within a
PICTURE description.

Examples

PICTURE IS PP999.
The data item is three bytes long, numeric, and the leading digit is two
decimal positions to the right of the decimal point (i.e., the maximum
value in this data item is .00999). The value .00125 appears in this item
as 125. If the value .0123 were moved to this item, it would be truncated
and appear as the character string 230 (having the value .0023).

PICTURE IS $$,$$$,$$$PPP.

The data item is 10 bytes long, numeric edited, and the least significant
digit is three decimal places to the left of the decimal point (i.e., the
smallest nonzero value that can be held in this item is 1000). Such a
PICTURE string might be useful for financial reports represented in
thousands of dollars. The value 12345000 moved to this item results in
the character string 666$12,345.

K-5

PICTURE Clause

Symbol

B

o

K-6

Explanation

Each B represents a character position where a space character is to
appear. The symbol may appear in the character string to describe an
alphanumeric edited data item. Each B is counted in the size of the data
item.

Examples

PICTURE IS AAAB999.
The data item is seven bytes long and alphanumeric edited. It is
equivalent to XXXBXXX.

Sending Field Sending Field
PICTURE Value Edited Result

X(6) ABC123 ABCt1l23
X(5) ABC12 ABC612[\
X(7) ABC1234 ABC6123

PICTURE IS 99B99B99.
The data item is eight bytes long, numeric edited, and holds six
numeric digits.

Sending Field Sending Field
PICTURE Value Edited Result

9(6) 123456 12634656
9(7) 1234567 23[\45[\67
9(5) 12345 01623[\45
S9(6) +123456 12[\34656
S9(6) -123456 12[\34656

Each 0 in the character string represents a character position where the
number 0 is inserted. The 0 is counted in the size of the item. The
symbol may appear in the PICTURE character string to describe an
alphanumeric edited or numeric edited data item.

Examples

PICTURE IS X0AA0XX.
The data item is seven bytes long and alphanumeric edited.

Sending Field
PICTURE

X(5)

Sending Field
Value

ABCDE

Edited Result

AOBCODE

70044490-000

Symbol

I

7004 4490-000

PICTURE Clause

Explanation

PICTURE IS $99,999.00.
The data item is 10 bytes long and numeric edited. The largest
numeric field that can be moved to the item without truncation
has the numeric PICTURE 9(5).

Sending Field Sending Field
PICTURE Value Edited Result

9(5) 1234 $01,234.00
9(6)V99 123456.78 $23,456.00
S9(3)V99 -1.5 $00,001.00

Each stroke in the character string represents a character position
where the stroke character will appear. The I is counted in the size of
the item. The symbol may appear in the PICTURE character string to
describe an alphanumeric edited or numeric edited data item.

Examples

PICTURE IS XX/XX/XX.
The data item is eight bytes long and alphanumeric edited.

Sending Field Sending Field
PICTURE Value Edited Result

X(6) ABCDEF AB/CDjEF
X(3) ABC AB/Cll/M
X(7) ABCDEFG AB/CD/EF

PICTURE IS 99/99/99.
The data item is eight bytes long, numeric edited, and holds six
numeric digits.

Sending Field Sending Field
PICTURE Value Edited Result

9(6) 830228 83/02/28
9(5) 12345 01/23/45
S9(7)V9 -1234567.8 23/45/67

K-7

PICTURE Clause

K-8

Symbol

+ -
eRDB

Explanation

Each comma (,) represents a character position where the comma
character will appear. The symbol is counted in the size of the data
item. The symbol is used only to describe a numeric edited data item
and must not be the last character in the string.

Examples

PICTURE IS $9,999,999.
The data item is 10 bytes long, numeric edited, and holds 7
numeric digits.

Sending Field Sending Field
PICTURE Value Edited Result

9(7) 1234567 $1,234,567
S9{4} -1234 $0,001,234
9(8)V99 12345678.90 $2,345,678

The period (.) represents a character position where the period will
appear. It also represents the decimal point for alignment purposes. The
symbol is counted in the size of the item and must not be the last
character in the string. When the DECIMAL-POINT IS COMMA clause
is specified in the SPECIAL-NAMES paragraph, the functions of the
period and the comma are exchanged.

Examples

PICTURE IS 999.99.
The data item is six bytes long, numeric edited, and holds five
decimal digits.

Sending Field
PICTURE

9(3)V99
9(5)

Sending Field
Value

123.45
12345

Edited Result

123.45
345.00

These symbols are used as editing sign control symbols. They represent
the character position where the editing sign control symbol is placed.
The symbols are mutually exclusive in anyone character string. The
symbol + or - must be specified either as the leftmost or rightmost
character position and is counted in the size of the item. The symbol CR
or DB must be specified as the rightmost character position in the
character string. Each symbol represents the character position in

7004 4490-000

PICTURE Clause

Symbol Explanation

determining the size of the data item. The symbol + indicates that a + or
- character is used to represent the sign in the field. The symbols -, CR,
and DB represent a negative value and space characters represent a
positive or zero value.

Examples

PICTURE IS +$99.99.

Sending Field Sending Field
PICTURE Value Edited Result

99V99 12.34 +$12.34
S999 -123 -$23.00
9V9 1.5 +$01.50

PICTURE IS 999.99-.

Sending Field Sending Field
PICTURE Value Edited Result

S9(3)V9(2) -123.45 123.45-
S9(3)V9(2) +123.45 123.456

PICTURE IS $9(4).9(2)CR.

Sending Field Sending Field
PICTURE Value Edited Result

S9(4)V9(2) -123.45 $0123.45CR
S9(4)V9(2) +123.45 $0123.45M

PICTURE IS $999.99DB.

Sending Field Sending Field
PICTURE Value Edited Result

S99V99 -12.34 $0012.34DB
S99V99 +12.34 $0012.34M

7004 4490-000 K-9

PICTURE Clause

K-IO

Symbol

$

Floating
Insertion
Editing
+-$

Explanation

The $ (or alternate currency symbol) represents a character position
where a currency symbol will appear. The currency symbol is
represented by either the dollar sign or by the single character specified
in the CURRENCY SIGN clause in the SPECIAL-NAMES paragraph.
The currency symbol is counted in the size of the item. Unless it is
preceded by a + or a - symbol, the currency sign must be in the leftmost
character position in the character string.

Examples

PICTURE IS $999.99.

Sending Field
PICTURE

9(3)V99

PICTURE IS -$9(5).99.

Sending Field
PICTURE

9(5)
S9(6)
S9(2)V9(2)

Sending Field
Value

123.45

Sending Field
Value

123
-123456
+12.34

Edited Result

$123.45

Edited Result

6$00123.00
-$23456.00
6$00012.34

The + - and $ symbols are used either as fixed insertion
characters or as floating insertion characters. Floating
insertion editing is specified by using a string of at least two
allowable floating insertion symbols in a PICTURE character
string. The leftmost symbol of the floating insertion string represents
the leftmost limit at which this character can appear in the data
item. The rightmost floating insertion symbol represents the rightmost
limit at which this character can appear. The second leftmost floating
insertion symbol represents the leftmost limit at which numeric data
can appear within the data item. Nonzero numeric data can replace all
characters at or to the right of this limit.

70044490-000

Symbol

70044490-000

Explanation

Examples

PICTURE IS ++.99.

Sending Field
PICTURE

S99V999
S9V99
S9V99
S9V99

PICTURE IS - - - - - .99.

Sending Field
PICTURE

S9(4)V99
S9(4)V99
S9(5)
S99V99

PICTURE IS $$$$.99.

Sending Field
PICTURE

9(4)V99
9(4)V99
S9(2)

Sending Field
Value

+12.345
-1.23

+0.12
+0.01

Sending Field
Value

-12.34
-0.01
-12345
+l.23

Sending Field
Value

1234.56
l.23
-3

PICTURE Clause

Edited Result

+2.34
-1.23

~+.l2

~+.01

Edited Result

M-12.34
6.M-.01

-2345.00
MMl.23

Edited Result

$234.56
M$1.23
M$3.00

Any fixed insertion symbols (B,O, /,,) within or to the right of the floating
insertion string are considered part of the floating insertion string.

Examples

PICTURE IS ++,+++,++9.00.

Sending Field
PICTURE

S9(4)
S9(4)
S9(4)V99
S9(7)

Sending Field
Value

-1234
o
+1234.56
+1234567

Edited Result

MM-1,234.00
MMMM+O.OO
MM+1,234.00
+1,234,567.00

K-ll

PICTURE Clause

K-12

Symbol Explanation

PICTURE IS $(2),$(3),$$9.99.

Sending Field
PICTURE

9(7)V99
9(7)V99
9(7)V99
9(7)V99

Sending Field
Value

1234567.89
67.89
0.89
0

Edited Result

$1,234,567.89
AMMM$67.89
MAMMA$0.89
MMMM$O.OO

A second method of floating insertion editing is to represent all numeric
character positions by the floating insertion symbol. When editing is
performed, the result depends on the value of the data. If the value is
zero, the entire data item contains spaces. If the value is nonzero, the
result is the same as if the floating insertion character were used only to
the left of the decimal point.

Examples

PICTURE IS _ ...•

Sending Field
PICTURE

S9(3)
S9(3)
S9(3)
S9(3)V99
S9(3)V99

PICTURE I S ++ I +++ • ++.

Sending Field
PICTURE

S9(4)V99
S9(4)V99
S9(4)V99
S9(5)V99
S9(5)V99

PICTURE IS $$,$$$.$$.

Sending Field
PICTURE

S9(4)V99
S9(4)V99
S9(4)V99
S9(4)V99

Sending Field
Value

+12
-1
o
-0.5
-1.5

Sending Field
Value

+123
-0.01
o
+1234
+10000

Sending Field
Value

+123.45
-123.45
+0.01
o

Edited Result

M12
M-l
MM
MM
M-l

Edited Result

M+123.00
MMA-.Ol
AMMMM
+1,234.00
MMAMM

Edited Result

M$123.45
M$123.45
AMM$.Ol
MAMMM

7004 4490-000

Symbol

z

*

7004 4490-000

PICTURE Clause

Explanation

Each Z in a character string represents the leftmost leading numeric
character positions that are replaced by a space character when the
content of that character position is zero. Each Z is counted in the size of
the item.

Examples

PICTURE IS Z99.99+.

Sending Field
PICTURE

S999V99
S999V99
S999V99

PICTURE IS $ZZ999.99.

Sending Field
PICTURE

9(5)V99
9(5)V99
9(6)

9(6)

Sending Field
Value

+123.45
-1.2
o

Sending Field
Value

12345.67
1.23
1234
123456

Edited Result

123.45+
1101.20-
1100.00+

Edited Result

$12345.67
$MOO1.23
$111234.00
$23456.00

Each asterisk represents a character position where an asterisk is
placed when the content of that position is zero. Each * is counted in the
size of the item.

Examples

PICTURE IS -*99.99.

Sending Field
PICTURE

S9(3)V99
S9(3)V99
S9(3)V99

Sending Field
Value

+123.45
+12.34
-1.23

Edited Result

11123.45
11 *12.34
-*01.23

K-13

PICTURE Clause

K-14

Symbol Explanation

PICTURE IS $**,***.99.

Sending Field
PICTURE

9(5)V99
9(5)V99
9(5)V99
9(5)V99

Sending Field
Value

12345.67
345.67
0.67
o

Edited Result

$12,345.67
$***345.67
$******.67
S * * * * * * .00

Zero The symbols Z and * are used for zero suppresion. These symbols are
Suppression! mutually exclusive in a PICTURE character string. Zero suppression
Replacement and replacement editing is specified by using a string of one or more of
Editing the allowable symbols to represent leading numeric character positions.
Z and * These positions are replaced with spaces (Z) or asterisks (*) when the

associated character position in the data contains a zero.

In a PICTURE character string, there are two ways to represent zero
suppression and replacement editing.

One way is to represent any or all of the leading numeric character
positions to the left of the decimal point by suppression symbols. When
editing is performed, any leading zeros in the data appearing in the
same character position as a suppression symbol are replaced by the
replacement character. Suppression terminates at the first nonzero digit
in the data represented by the suppression symbol string or at the
decimal point, whichever is encountered first.

The other way is to represent all numeric character positions as
suppression symbols in the PICTURE character string. When editing is
performed and the value of the data is nonzero, the result is the same as
if the suppression characters were only to the left of the decimal point.
If the value is zero and the suppression symbol is Z, the entire data item
contains spaces. If the value is zero and the suppression symbol is *, the
entire data item except the actual decimal point contains asterisks.

Examples

PICTURE IS $**,***.**.

Sending Field
PICTURE

S9(5)V99
S9(5)V99
S9(5)V99
S9(5)V99

Sending Field
Value

12345.67
1.23
0.01
o

Edited Result

$12,345.67
$*****1.23
$******.01

70044490-000

Symbol

7004 4490-000

Explanation

PICTURE IS ZZ,ZZZ.ZZ.

Sending Field
PICTURE

S9(5)V99
S9(5)V99
S9(5)V99
S9(5)V99

PICTURE IS ZZ,ZZZ.ZZ+.

Sending Field
PICTURE

S9(5)V99
S9(5)V99
S9(5)V99
S9(5)V99

Sending Field
Value

12345.67
1.67
0.01
o

Sending Field
Value

+12345.67
-1.67
+0.01
o

PICTURE Clause

Edited Result

12,345.67
MM61.67
MMM.Ol
MMMM6

Edited Result

12,345.67+
M6M1.67-
MMM.01+
MMMMM

Any fixed insertion symbol (B,O, /,,) within or to the immediate right of
the string of floating zero suppression symbols is considered part of the
string.

Examples

PICTURE IS $**,***.**B-.

Sending Field
PICTURE

S9(5)V99
S9(5)V99
S9(5)V99
S9(5)V99

PICTURE IS ZZZ,999.

Sending Field
PICTURE

9(6)

9(6)

9(6)

9(6)

Sending Field
Value

-12345.67
+1.67
-0.01
o

Sending Field
Value

123456
1234
123
1

Edited Result

$12,345.676-
$*****1.67M
$******.016-

Edited Result

123,456
M1,234
MM123
MM001

The Z * + - and CS symbols are mutually exclusive as floating
replacement symbols in one PICTURE character string (for example,
the PICTURE string $$$***.99 is illegal). The asterisk as zero
suppression symbol and the BLANK WHEN ZERO clause must not be
specified for the same entry.

K-15

Glossary

This glossary contains an alphabetically arranged collection of definitions of terms,
abbreviations, acronyms, and symbols used in this document. The terms are defined in
accordance with their meanings in COBOL and may not have the same meaning for other
languages.

Most of the definitions are brief and do not include detailed descriptions, because they are items
in support of the text.

A
abbreviated combined relation condition

The combined condition that results from the explicit omission of a common subject or
a common subject and common relational operator in a consecutive sequence of
relation conditions.

access mode
The manner in which records are to be operated upon within a file.

actual decimal point
The physical representation, using either of the decimal point characters period (.) or
comma (,), of the decimal point position in a data item.

alphabet-name
A user-defined word in the SPECIAL-NAMES paragraph of the Environnlent Division
that assigns a name to a specific character set and/or collating sequence.

alphabetic character
A character that belongs to the set of letters A through Z and the space.

alphanumeric character
Any character in the EBCDIC character set.

alterna te record key
A key, other than the prime record key, whose contents identify a record within an
indexed file.

arithmetic expression
An identifier of a numeric elementary item, a numeric literal, such identifiers and
literals separated by arithmetic operators, two arithmetic expressions separated by an
arithmetic operator, or an arithmetic expression enclosed in parentheses.

7004 4490-000 Glossary-l

Glossary

arithmetic operator
A single character or a fixed 2-character combination that belongs to the following set:

+

*
I
**

addition
subtraction
multiplication
division
exponentiation

ascending key
A key whose values determine the ordering of data (starting with the lowest value of
key to the highest value of key) according to the rules for comparing data items.

assumed decimal point
A decimal point position that does not involve the existence of an actual character in a
data item. The assumed decimal point has logical meaning but no physical
representation.

at end condition

B
block

c

A condition caused during the execution of:

1. a READ statement for a sequentially accessed file;

2. a RETURN statement, when no next logical record exists for the associated sort
or merge file; or

3. a SEARCH statement, when the search operation terminates without satisfying
the condition specified in any of the associated WHEN phrases.

A physical unit of data that is normally composed of one or more logical records. For
mass storage files, a block may contain a portion of a logical record. The size of a block
has no direct relationship to the size of the file within which the block is contained or
to the size of the logical records that are either continued within the block or that
overlap the block. The term is synonymous with physical record.

called program
A program that is the object of a CALL statement combined at object time with the
calling program to produce a run unit.

calling program
A program that executes a CALL to another program.

Glossary-2 7004 4490-000

cd-name

Glossary

A user-defined word that names an MCS interface area described in a communication
description entry within the communication section of the data division.

character
The basic indivisible unit of the language.

character position
The amount of physical storage required to store a single standard data format
character described as usage is DISPLAY. Further characteristics of the physical
storage are defined by the implementor.

character-string
A sequence of contiguous characters that form a COBOL word, a literal, a PICTURE
character-string, or a comment-entry.

class condition

clause

CMCS

The proposition, for which a truth value can be determined, that the content of an
item is wholly alphabetic or is wholly numeric.

An ordered set of consecutive COBOL character-strings whose purpose is to specify an
attribute of an entry.

See COBOL message control system.

COBOL character set
The complete set consisting of the following 51 characters:

70044490-000

0-9
A-Z

+

*
/
=
$

II

>
<

r - - 1

L ~r -..J

digit
letter
space (blank)
plus sign
minus sign (hyphen)
asterisk
stroke (virgule, slash)
equal sign
currency sign
comma (decimal point)
semicolon
period (decimal point)

quotation mark

left parenthesis
right parenthesis
greater than symbol
less than symbol

Glossary-3

Glossary

COBOL message control system
A component of the message control system that interfaces the COBOL
communication object program with the integrated communications access method.

COBOL word
See word.

collating sequence

column

The sequence in which the characters that are acceptable in a computer are ordered
for purposes of sorting, merging, and comparing.

A character position within a print line. The columns are numbered from 1, by 1,
starting at the leftmost character position of the print line and extending to the
rightmost position of the print line.

combined condition
A condition that is the result of connecting two or more conditions with the AND or
the OR logical operator.

comment-entry
An entry in the identification division that may be any combination of characters from
the computer character set.

comment line
A source program line represented by an asterisk in the indicator area of the line and
any characters from the computer's character set in area A and area B of that line.
The comment line serves only for documentation in a program. A special form of
comment line represented by a stroke (I) in the indicator area of the line and any
characters from the computer's character set in area A and area B of that line causes
page ejection prior to printing the comment.

communication description entry
An entry in the communication section of the data division that is composed of the
level indicator CD, followed by a cd-name, and then followed by a set of clauses as
required. It describes the interface between the message control system (MeS) and
the COBOL program.

communication device
A mechanism (hardware or hardware/software) capable of sending data to a queue
andlor receiving data from a queue. This mechanism may be a computer or a
peripheral device. One or more programs containing communication description
entries and residing within the same computer define one or more of these
mechanisms.

communication section

Glossary-4

The section of the data division that describes the interface areas between the MCS
and the program, composed of one or more CD description entries.

70044490-000

Glossary

compile time
The time at which a COBOL compiler translates a COBOL source program to a
COBOL object program.

compiler directing statement
A statement, beginning with a compiler directing verb, that causes the compiler to
take a specific action during compilation.

complex condition
A condition in which one or more logical operators act upon one or more conditions.
See also negated simple condition, combined condition, and negated combined
condition.

computer-name

condition

A system-name that identifies the computer upon which the program is to be compiled
or run.

A status of a program at execution time for which a truth value can be determined.
Where the term condition (condition-I, condition-2, ...) appears in these language
specifications in or in reference to condition (condition-I, condition-2, ...) of a general
format, it is a conditional expression consisting of either a simple condition optionally
parenthesized or a combined condition consisting of the syntactically correct
combination of simple conditions, logical operators, and parentheses, for which a truth
value can be determined.

condition-name
A user-defined word assigned to a specific value, set of values, or range of values,
within the complete set of values that a conditional variable may possess; or the user­
defined word assigned to a status of an implementor-defined switch or device.

condition-name condition
The proposition, for which a truth value can be determined, that the value of a
conditional variable is a member of the set of values attributed to a condition-name
associated with the conditional variable.

conditional expression
A simple condition or a complex condition specified in an IF, PERFORM, or SEARCH
statement. See also simple condition and complex condition.

conditional statement
Specifies that the truth value of a condition is to be determined and that the
subsequent action of the object program is dependent on this truth value.

conditional variable
A data item that has a condition-name assigned to one or more of its values.

70044490-000 Glossary-5

Glossary

configuration section
A section of the environment division that describes overall specifications of source
and object computers.

connective
A reserved word that is used to:

1. associate a data-name, paragraph-name, condition-name, or text-name with its
qualifier;

2. link two or more operands written in a series; and

3. form conditions (logical connectives). See logical operator.

contiguous items

counter

Items that are described by consecutive entries in the data division and have a
definite hierarchic relationship to each other.

A data item used for storing numbers or number representations in a manner that
permits these numbers to be increased or decreased by the value of another number,
or to be changed or reset to zero or to an arbitrary positive or negative value.

currency sign
The character $ of the COBOL character set.

currency symbol
The character defined by the CURRENCY SIGN clause in the SPECIAL-NAMES
paragraph. Ifno CURRENCY SIGN clause is present in a COBOL source program,
the currency symbol is identical to the currency sign.

current record
The record available in the record area associated with the file.

current record pointer
A conceptual entity that is used in the selection of the next record.

D

data clause
A clause appearing in a data description entry in the data division that describes a
particular attribute of a data item.

data description entry

Glossary-6

An entry in the data division that is composed of a level-number followed by a data­
name, if required, and then followed by a set of data clauses, as required.

70044490-000

data item

Glossary

A character or a set of contiguous characters (excluding literals) defined as a unit of
data by the COBOL program.

data-name
A user-defined word that names a data item described in a data description entry in
the data division. When used in the formats, represents a word that cannot be
subscripted, indexed, or qualified unless specifically permitted by the rules for that
format.

debugging line
Any line with D in the indicator area.

de bugging section
A section that contains a USE FOR DEBUGGING statement.

declarative-sentence
A compiler-directing sentence consisting of a single USE statement terminated by the
separator period.

declaratives

delimiter

A set of one or more special-purpose sections, written at the beginning of the
procedure division, the first of which is preceded by the key word DECLARATIVES
and the last of which is followed by the key words END DECLARATIVES. A
declarative is composed of a section header, followed by a USE compiler-directing
sentence, followed by a set of zero, one, or more associated paragraphs.

A character or a sequence of contiguous characters identifying the end of a string of
characters and separating that string of characters from the following string of
characters. A delimiter is not part of the string of characters that it delimits.

descending key
A key whose values arrange data in order starting with the highest value of key down
to the lowest value of key, in accordance with the rules for comparing data items.

destination
The symbolic identification of the receiver of a transmission from a queue.

digit position

division

The amount of physical storage required to store a single digit. This amount may vary
depending on the usage of the data item describing the digit position. Further
characteristics of the physical storage are defined by the implementor.

A set of zero, one, or more sections of paragraphs, called the division body, that are
formed and combined according to specific rules. There are four divisions in a COBOL
program: identification, environment, data, and procedure.

7004 4490-000 Glossary-7

Glossary

division header
A combination of words followed by a period and a space indicating the beginning of a
division. The division headers are:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION [USING data-name-l [data-name-2] ...] .

dynamic access

E

An access mode in which specific logical records can be obtained from or placed into a
mass storage file in a nonsequential manner (see random access) and obtained from a
file in a sequential manner (see also sequential access method (SAM)), during the
scope of the same OPEN statement.

editing character
A single character or a fixed 2-character combination belonging to the following set:

B space
0 zero
+ plus

minus
CR credit
DB debit
Z zero suppress

* check protect
$ currency sign

comma (decimal point)
period (decimal point)

/ stroke (virgule, slash)

elementary item
A data item that is described as not being further logically subdivided.

end of procedure division

entry

The physical position in a COBOL source program after which no further procedures
appear.

An descriptive set of consecutive clauses terminated by a period and written in the
identification division, environment division, or data division of a COBOL source
program.

environment clause
A clause that appears as part of an environment division entry.

Glossary-8 70044490-000

Glossary

execution time
See object time.

extend mode

F

The state of a file after execution of an OPEN statement for that file, with the
EXTEND phrase specified, and before the execution of a CLOSE statement for that
file.

figurative constant
A compiler-generated value referenced through the use of certain reserved words.

file
A collection of records.

file clause
A clause that appears as part of either of the following data division entries:

File description (FD)
Sort file description (SD)

FILE-CONTROL
The name of an environment division paragraph in which the data files for a given
source program are declared.

file description entry

file-name

An entry in the file section of the data division that is composed of the level indicator
FD, followed by a file-name, followed by a set offile clauses, as required.

A user-defined word that names a file described in a file description entry or a sort file
description entry within the file section of the data division.

file organization
The permanent logical file structure established at the time a file is created.

file section

format

The section of the data division that contains file description and sort file description
entries together with their associated record descriptions.

A specific arrangement of a set of data.

70044490-000 Glossary-9

Glossary

G
group item

A named contiguous set of elementary or group items.

H
hexadecimal literal

A string of hexadecimal digits bounded by quotation marks and immediately preceded
by an equal sign. The string may include any hexadecimal digits up to a maximum of
30 digits.

high-order end

I
ICAM

identifier

The leftmost character of a string of characters.

See integrated communications access method.

A data-name followed, as required, by the syntactically correct combination of
qualifiers, subscripts, and indexes necessary to make unique reference to a data item.

imperative statement
A statement that begins with an imperative verb and specifies an unconditional action
to be taken. An imperative statement may consist of a sequence of imperative
statements.

implementor-name

index

A system-name that refers to a particular feature available on Unisys systems.

A computer storage position or register, the contents of which represent the
identification of a particular element in a table.

INDEX-AREA
The location in main storage in which index blocks are processed by MIRAM files
during keyed operations on indexed files (ORGANIZATION IS INDEXED).

index data item

Glossary-10

A data item in which the value associated with an index-name can be stored in a form
specified by the implementor.

70044490-000

Glossary

index-name
A user-defined word that names an index associated with a specific table.

indexed data-name
An identifier composed of a data-name, followed by one or more index-names enclosed
in parentheses.

indexed file
A file with indexed organization.

indexed organization
The permanent logical file structure in which each record is identified by the value of
one or more keys within that record.

indexed sequential access method (ISAM)

input file

An access method that uses record keys from an index file to access files randomly or
sequentially.

A file opened in the input mode.

input mode
The state of a file after execution of an OPEN statement for that file, with the INPUT
phrase specified, and before the execution of a CLOSE statement for that file.

input/output file
A file opened in the 1-0 mode.

input-output section
The section of the environment division that names the files and the external media
required by an object program and that provides information required for
transmission and handling of data during execution of the object program.

input procedure

integer

A set of statements executed each time a record is released to the sort file.

A numeric literal or a numeric data item that does not include any character positions
to the right of the assumed decimal point. Where the term integer appears in general
formats, integer must not be a numeric data item, and must not be signed or zero
unless explicitly allowed by the rules of that format.

integrated communications access method (ICAM)
A component of the message control system that is the communications subsystem of
the OS/3 operating system.

70044490-000 Glossary-II

Glossary

invalid key condition
A condition at object time caused when a specific value of the key associated with an
indexed or relative file is determined to be invalid.

I-O-CONTROL

1-0 mode

ISAM

ISAMfile

The name of an environment division paragraph in which object program
requirements are specified for specific inputJoutput techniques, rerun points, sharing
of same areas by several data files, and multiple file storage on a single inputJoutput
device.

The state of a file after execution of an OPEN statement for that file, with the 1-0
phrase specified, and before the execution of a CLOSE statement for that file.

See indexed sequential access method.

A file with ISAM organization.

ISAM organization

K
key

The file structure supporting existing indexed sequential files created by the indexed
sequential access method (ISAM) data management.

A data item that identifies the location of a record, or a set of data items that identify
the ordering of data.

key of reference

keyword

L

The key, either prime or alternate, currently being used to access records within an
indexed file.

A reserved word required when the format in which the word appears is used in a
source program.

level indicator

Glossary-12

Two alphabetic characters that identify a specific type offile or a position in a
hierarchy.

7004 4490-000

Glossary

level-number
A user-defined word that indicates the position of a data item in the hierarchical
structure of a logical record or that indicates special properties of a data description
entry. A level-number is expressed as a 1- or 2-digit number. Level-numbers in the
range 1 through 49 indicate the position of a data item in the hierarchical structure of
a logical record. Level-numbers in the range 1 through 9 may be written either as a
single digit or as a zero followed by a significant digit. Level-numbers 66,77, and 88
identify special properties of a data description entry.

library-name
A user-defined word that names a COBOL library that is to be used by the compiler
for a given source program compilation.

library text
A sequence of character-strings and/or separators in a COBOL library.

line number
An integer that denotes the vertical position of a report line on a page.

linkage section

literal

The section in the data division of the called program that describes data items
available from the calling program. These data items may be referred to by both the
calling and called program.

A character-string whose value is implied by the ordered set of characters comprising
the string.

logical operator
One of the reserved words AND, OR, or NOT. In the formation of a condition, AND,
OR, or both can be used as logical connectives. NOT can be used for logical negation.

logical record
The most inclusive data item. The level-number for a record is 01.

low-order end
The rightmost character of a string of characters.

M
mass storage

A storage medium on which data may be organized and maintained in both a
sequential and nonsequential manner.

mass storage file
A collection of records that is assigned to a mass storage medium.

70044490-000 Glossary-l 3

Glossary

MCS
See message control system.

merge file

message

A collection of records to be merged by a MERGE statement. The merge file is created
and can be used only by the merge function.

Data associated with an end-of-message indicator or an end-of-group indicator. (See
message indicators')

message control system
A communication control system that supports the processing of messages.

message count
The count of the number of complete messages existing in the designated queue of
messages.

message indicators
Conceptual indications that notify the MCS that a specific condition exists (end of
group, end of message, or end of segment). The message indicators are EGI (end-of­
group indicator), EMI (end-of-message indicator), and ESI (end-of-segment indicator).

Within the hierarchy of EGI, EMI, and ESI, an EGI is conceptually equivalent to an
ESI, EMI, and EGI. An EMI is conceptually equivalent to an ESI and EMI. Thus, a
segment may be terminated by an ESI, EMI, or EGI. A message may be terminated by
an EMI or EGI.

message segment
Data that forms a logical subdivision of a message normally associated with an end-of­
segment indicator.

mnemonic-name

N

A user-defined word that is associated in the environment division with a specified
implementor-name.

native character set
The character set associated with the computer specified in the OBJECT -COMPUTER
paragraph.

native collating sequence

Glossary-14

The collating sequence associated with the computer specified in the OBJECT­
COMPUTER paragraph.

70044490-000

negated combined condition
The NOT logical operator immediately followed by a parenthesized combined
condition.

negated simple condition
The NOT logical operator immediately followed by a simple condition.

next executable sentence

Glossary

The next sentence to which control will be transferred after execution of the current
statement is complete.

next executable statement
The next statement to which control will be transferred after execution of the current
statement is complete.

next record
The record that logically follows the current record of a file.

noncontiguous items
Elementary data items, in the working-storage and linkage sections, that bear no
hierarchic relationship to other data items.

nonnumeric item
A data item whose description permits its contents to be composed of any combination
of characters taken from the computer's character set. Certain categories of
nonnumeric items may be formed from more restricted character sets.

nonnumeric literal
A character-string bounded by quotation marks. The string of characters may include
any character in the EBCDIC character set. To represent a single quotation mark
character within a nonnumeric literal, two contiguous quotation marks must be used.

numeric character
A character that belongs to the set of digits 0 through 9.

numeric item
A data item whose description restricts its contents to a value represented by
characters chosen from the digits 0 through 9; if signed, the item may also contain a +,
-, other representation of an operational sign.

70044490-000 Glossary-IS

Glossary

numeric literal

Glossa ry-16

There are two types of numeric literals: fixed-point and floating-point.

A fixed-point literal is a string of characters chosen from the following set:

0-9
+ (plus)
- (minus)
. (decimal)

Fixed-point literals must be formed according to the following rules:

1. The literal may contain 1 to 18 digits.

2. The literal may contain only one sign character. If a sign is used, it must be the
leftmost character of the literal. An unsigned literal is assumed to be positive.

3. The literal may contain only one decimal point. The decimal point may appear
anywhere in the literal except as the rightmost character. A decimal point
designates an assumed decimal point location. (The assumed decimal point in
any numeric literal or data item is where the compiler and the object program
assume the decimal point to be, though no memory position is reserved for a
separate decimal point character.) A literal with no decimal point is an integer.

A floating-point literal is a data item whose potential range of value is too great for
fixed-point representation.

A floating-point literal must have the following format:

{~} mantissa E {~} exponent

where:

The two plus or minus signs are optional.

mantissa
Consists of 1 to 16 digits with a required decimal point; the decimal point
may appear in any position.

exponent
Consists of the symbol E, followed by an optional sign, followed by one or two
digits. (A zero exponent may be written as 0 or 00.)

The literal must contain no spaces. The exponent must appear immediately to the
right of the mantissa.

70044490-000

o

Glossary

The signs are the only optional characters in the format. An unsigned mantissa or
exponent is assumed to be positive.

The value of the literal is the product of the mantissa and 10 raised to the power given
by the exponent.

Example:

+1.5E - 2 = 1.5 x 10- 2

The ma~itude of the number represented by a floating-point literal must not exceed
.72 x 10 6.

OBJECT-COMPUTER
The name of an environment division paragraph that describes the complete
environment in which the object program is executed.

object of entry
A set of operands and reserved words within a data division entry that immediately
follows the subject of the entry.

object program
A set or group of executable machine language instructions and other material
designed to interact with data to provide problem solutions. In this context, an object
program is generally the machine language result of the operation of a COBOL
compiler on a source program. Where there is no danger of ambiguity, the word
program alone may be used in place of the phrase object program.

object time

The time an object program is executed.

open mode

operand

The state of a file after execution of an OPEN statement for that file and before the
execution of a CLOSE statement for that file. The particular open mode is specified in
the OPEN statement as either INPUT, OUTPUT, I-O, or EXTEND.

Whereas the general definition of operand is that component which is operated upon,
for the purposes of this publication, any lowercase word (or words) that appears in a
statement or entry format may be considered to be an operand and, as such, is an
implied reference to the data indicated by the operand.

7004 4490-000 Glossary-I 7

Glossary

operational sign
An algebraic sign, associated with a numeric data item or a numeric literal, to indicate
whether its value is positive or negative.

optional word
A reserved word that is included in a specific format only to improve the readability of
the language and whose presence is optional to the user when the format in which the
word appears is used in a source program.

output file
A file that is opened in either the output mode or extend mode.

output mode
The state of a file after execution of an OPEN statement for that file, with the
OUTPUT or EXTEND phrase specified, and before the execution of a CLOSE
statement for that file.

output procedure

p

page

A set of statements to which control is given during execution of a SORT statement
after the sort function is completed, or during execution of a MERGE statement after
the merge function has selected the next record in merged order.

A vertical division of a report representing a physical separation of report data, the
separation being based on internal reporting requirements andlor external
characteristics of the reporting medium.

page body
That part of the logical page in which lines can be written or spaced.

paragraph
In the procedure division, a paragraph-name followed by a period and a space and by
zero, one, or more sentences. In the identification and environment divisions, a
paragraph header followed by zero, one, or more entries.

paragraph header

Glossary-1S

A reserved word, followed by a period and a space, that indicates the beginning of a
paragraph in the identification and environment divisions. The permissible
paragraph headers are:

70044490-000

• Identification Division
PROGRAM-ID.
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.

• Environment Division
SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
FILE-CONTROL.
I-O-CONTROL.

paragraph-name

Glossary

A user-defined word that identifies and begins a paragraph in the procedure division.

phrase
An ordered set of one or more consecutive COBOL character-strings that form a
portion of a COBOL procedural statement or clause.

physical record
See block.

prime record key
A key whose contents uniquely identify a record within an indexed file.

procedure
A paragraph or group of logically successive paragraphs, or a section or group of
logically successive sections within the procedure division.

procedure-name
A user-defined word used to name a paragraph or section in the procedure division. It
consists of a paragraph-name (that may be qualified) or a section-name.

program-name
A user-defined word that identifies a COBOL source program.

pseudo-text
A sequence of character-strings or separators bounded by, but not including, pseudo­
text delimiters.

pseudo-text delimiter
Two contiguous equal sign (=) characters used to delimit pseudo-text.

7004 4490-000 Glossary-19

Glossary

punctuation character

Q

A character that belongs to the following set:

II

=

r - - 1

comma
semicolon
period

L ~r ~ quotation mark

left parenthesis
right parenthesis
space
equal sign

qualified data-name

qualifier

queue

An identifier that is composed of a data-name followed by one or more sets of either of
the connectives OF and IN followed by a data-name qualifier.

1. A data-name used in a reference with another data name at a lower level in the
same hierarchy.

2. A section-name used in a reference with a paragraph-name specified in that
section.

3. A library-name used in a reference with a text-name associated with that library.

A logical collection of messages awaiting transmission or processing.

queue name

R

A symbolic name that indicates to the MeS the logical path by which a message or a
portion of a completed message may be accessible in a queue.

random access

record

An access mode in which the program-specified value of a key data item identifies the
logical record obtained from, deleted from, or placed into a relative or indexed file.

See logical record.

record area

Glossary-20

A storage area allocated for the purpose of processing the record described in a record
description entry in the file section.

7004 4490-000

Glossary

record description
See record description entry.

record description entry
The total set of data description entries asociated with a particular record.

record key
A key whose contents identify a record within an ISAM file.

record-name
A user-defined word that names a record described in a record description entry in the
data division.

reentrant program
A computer program that can be entered repeatedly and can be used simultaneously
by more than one program, as long as its external program parameters and
instructions are not modified during its execution.

reference format
A format that provides a standard method for describing COBOL source programs.

relation
See relational operator.

relation character
A character that belongs to the following set:

> greater than
< less than
= equal to

relation condition
The proposition, for which a truth value can be determined, that the value of an
arithmetic expression or data item has a specific relationship to the value of another
arithmetic expression or data item. See relational operator.

relational operator
A reserved word, a relation character, a group of consecutive reserved words, or a
group of consecutive reserved words and relation characters used in the construction
of a relation condition. The permissible operators and their meanings are:

7004 4490-000

Relational Operator

IS [NOT] GREATER THAN
IS [NOT] >
IS [NOT] LESS THAN
IS [NOT] <
IS [NOT] EQUAL TO
IS [NOT] =

Meaning

Greater than or not greater than

Less than or not less than

Equal to or not equal to

Glossary-21

Glossary

relative file
A file with relative organization.

relative key
A key whose contents identify a logical record in a relative file.

relative organization
The permanent logical file structure in which each record is uniquely identified by an
integer value greater than zero, which specifies the record's logical ordinal position in
the file.

reserved word

run unit

s
SAM

SAM file

A COBOL word, specified in the list of words, may be used in COBOL source
programs, but which must not appear in the programs as user-defined words or
system-names.

A set of one or more object programs that function at object time as a unit to provide
problem solutions.

See sequential access method.

A file with SAM organization.

SAM organization

section

The file structure supported by the sequential access method (SAM) data
management.

A set of zero, one, or more paragraphs or entries, called a section body, the first of
which is preceded by a section header. Each section consists of the section header and
the related section body.

section header
A combination of words, followed by a period and a space, that indicates the beginning
of a section in the environment, data, and procedure divisions.

In the environment and data divisions, a section header is composed of reserved words
followed by a period and a space. The permissible section headers are:

• Environment Division
CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

Glossary-22 7004 4490-000

• Data Division
FILE SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.
COMMUNICATION SECTION.

Glossary

In the procedure division, a section header is composed of a section-name, followed by
the reserved word SECTION, followed by a segment-number (optional), followed by a
period and a space.

sectionmname
A user-defined word that names a section in the procedure division.

segment-number

sentence

A user-defined word that classifies sections in the procedure division for purposes of
segmentation. Segment-numbers may contain only the characters 0 through 9. A
segment-number may be expressed either as a 1- or 2-digit number.

A sequence of one or more statements, the last of which is terminated by a period
followed by a space.

separator
A punctuation character used to delimit character-strings.

sequential access method (SAM)
An access method in which logical records are obtained from or placed into a file in a
consecutive predecessor-to-successor logical record sequence determined by the order
of records in the file.

sequential file
A file with sequential organization.

sequential organization
The permanent logical file structure in which a record is identified by a predecessor­
successor relationship established when the record is placed into the file.

serially-reusable program
A program that lets only one user at a time access the action program. The program is
not available to other users until the current user is finished with it.

shared-code program
A program that lets two or more users access an action program concurrently. Shared
code programs are only partially shareable and must be COBOL action programs.

sign condition
The proposition, for which a truth value can be determined, that the algebraic value of
a data item or an arithmetic expression is either less than, greater than, or equal to
zero.

70044490-000 Glossary-23

Glossary

simple condition
Any single condition chosen from the set:

relation condition
class condition
condition-name condition
switch-status condition
sign condition
(simple-condition)

slack byte

sort file

An unused character position provided by the compiler for synchronization purposes.

A collection of records to be sorted by a SORT statement. The sort file is created and
can be used by the sort function only.

sort/merge file description entry

source

An entry in the file section of the data division that is composed of the level indicator
SD, followed by a file-name, followed by a set offile clauses, as required.

The symbolic identification of the originator of a transmission to a queue.

SOURCE-COMPUTER
The name of an environment division paragraph that describes the computer
environment in which the source program is compiled.

source program
Although it is recognized that a source program may be represented by other forms
and symbols, in this document it always refers to a syntactically correct set of COBOL
statements beginning with an identification division and ending with the end of the
procedure division. In contexts where there is no danger of ambiguity, the word
program alone may be used in place of the phrase source program.

special character

Glossary-24

A character that belongs to the following set:

+

*
/
=
$

plus sign
minus sign
asterisk
stroke (virgule, slash)
equal sign
currency sign
comma (decimal point)
semicolon
period (decimal point)

70044490-000

II

>
<

r - - 1
L o~ ~ quotation mark

left parenthesis
right parenthesis
greater than symbol
less than symbol

Glossary

special-character word
A reserved word that is an arithmetic operator or a relation character.

SPECIAL·NAMES
The name of the environment division paragraph in which implementor-names are
related to user-specified mnemonic-names.

special registers
Compiler-generated storage areas primarily used to store information produced for
use of specific COBOL features.

standard data format
The specification plan used to describe characteristics of data in a COBOL data
division where characteristics or properties of data are expressed according to the
appearance of the data on printed pages.

statement
A syntactically valid combination of words and symbols written in the procedure
division and beginning with a verb.

subject of entry
An operand or reserved word that appears immediately following the level indicator or
the level-number in a data division entry.

subprogram
See called program.

sub queue
A logical hierarchical division of a queue.

subscript
An integer whose value identifies a particular element in a table.

subscripted data-name
An identifier composed of a data-name followed by one or more subscripts enclosed in
parentheses.

70044490-000 Glossary-25

Glossary

switch-status condition
The proposition, for which a truth value can be determined, that an implementor­
defined switch capable of being set to an on or off status has been set to a specific
status.

system-name

table

A COBOL word used to communicate with the operating environment.

A set of logically consecutive items of data that are defined in the Data Division by
means of the OCCURS clause.

table element

terminal

A data item that belongs to the set of repeated items comprising a table.

The originator of a transmission to a queue, or the receiver of a transmission from a
queue.

text-name
A user-defined word that identifies library text.

text-word
Any character-string or separator, except space, in a COBOL library or in pseudo text.

truth value

u

The representation of the result of the evaluation of a condition in terms of the values
true and false.

unary operator

unit

A plus (+) or a minus (-) sign that precedes a variable or a left parenthesis in an
arithmetic expression and has the effect of multiplying the expression of +1 or -1,
re spectively.

A module of mass storage the dimensions of which are determined by each
implementor.

user-defined word

Glossary-26

A COBOL word that must be supplied by the user to satisfy the format of a clause or
statement.

70044490-000

v
variable

verb

w
word

Glossary

A data item whose value may be changed by execution of the object program. A
variable used in an arithmetic expression must be a numeric elementary item.

A word that expresses an action to be taken by a COBOL compiler or object program.

A character-string of not more than 30 characters that forms a user-defined word, a
system-name, or a reserved word.

working-storage section
The section of the data division that describes working-storage data items and is
composed of either noncontiguous items or working-storage records, or both.

77 -level-description-entry
A data description entry that describes a noncontiguous data item with the level­
number 77.

70044490-000 Glossary-27

Index

A

ACCEPT statement, 6-23
access methods

indexed, 8-2
ISAM, 8-3
relative, 8-2
SAM, 8-3
sequential, 8-1

action programs, IMS
description, G-1
illegal COBOL verbs, clauses and

sections, G-1
ADD statement

description, 6-29
intermediate arithmetic results, E-2

alignment
elementary item, boundaries, (table) 5-51
standard rules, 2-13

alphabet-name, 2-5
ALTER statement

description, 6-30
segmentation effects, 10-5
SORT statement rules, 6-106

arithmetic expressions
evaluation rules, 6-7
operators, 6-6
permissible symbol combinations, (table)

6-8
arithmetic statements

description, 6-22
multiple results, 6-22

ascending sequence
INSPECT statement, 6-56
MERGE statement, 9-5
SORT statement, rules, 6-106

ASCII
collating sequence for graphic characters,

J-13, (table) J-13
collating sequences, J-1
EBCDIC/Hollerith correspondence, J-1,

(table) J-3

7004 4490-000

B

BLANK WHEN ZERO clause, 5-56
BLOCK CONTAINS clause

c

block size calculations, mass storage,
(table) 5-10

block size calculations, tape, card, print,
(table) 5-9

format and rules, 5-7
body,Procedure Division, 6-3

CALL statement
action programs, G-1
description, 6-31
interprogram communication, 13-4

CANCEL statement, 6-33, 13-4
CD clause, 5-67
cd-name

description, 2-5
input, 5-67
output, 5-67

character sets, 2-1, J-1
character strings

COBOL words, 2-5
comment-entries, 2-13
description, 2-5
literals, 2-8
PICTURE, 2-12

class condition
extended, F-7
simple, 6-9

CLASS-NAME clause, F-2, F-5
CLOSE statement

description, 6-34
statement options, (table) 6-35

COBOL
character set, 2-1
character-strings, 2-5
comment-entries, 2-13

Index-l

Index

COBOL (cont)
extensions, 1-4
language structure, modular, 1-1
literals, 2-8
object program, invoking, 14-3
PICTURE character-string, 2-12
reserved words, I-I
separators, 2-4
source coding format rules, 2-14
words, 2-5

CODE-SET clause, 5-20
collating sequence

EBCDIC and ASCII, Appendix J
MERGE statement, 9-5
SORT statement, 6-106

combined and negated combined conditions
format and rules, 6-16
permissible combinations, (table) 6-15

communication
COBOL object program, description, 14-2
COBOL object program, invoking, 4-3
COBOL object program, scheduled

initiation, 14-4
description, 14-1
devices, relationship to COBOL programs,

14-2
environment, (figure) 14-3
message control system, 14-1, 14-8
messages and message segments, 14-5
queues, 14-5

communication, interprogram (See
Interprogram communication.)

communication section
CD input clause, 5-67
CD output clause, 5-73
DESTINATION COUNT clause, 5-73
DESTINATION TABLE OCCURS clause

5-73
END-KEY clause, 5-67
ERROR KEY clause, 5-73
error key codes, (table) 5-72
INDEXED BY clause, 5-73
input communication description, 5-67
MESSAGE COUNT clause, 5-67
MESSAGE DATE clause, 5-67
MESSAGE TIME clause, 5-67
output communication description, 5-73
STATUS KEY clause, input 5-67
STATUS KEY clause, output, 5-73

Index-2

SYMBOLIC DESTINATION clause, 5-73
SYMBOLIC QUEUE clause, 5-67
SYMBOLIC SUB-QUEUE clauses, 5-67
TEXT LENGTH clause, input, 5-67
TEXT LENGTH clause, output, 5-73

comparison
index-names or index data items, 6-13
nonnumeric operands, 6-12
numeric operands, 6-11

compiler
alphabetically ordered cross-reference

listings, B-4
compilation summary listing, B-1
cross-reference listing, B-4
diagnostic listing, B-1, C-l
diagnostic messages, C-l
listings, Appendix B
locator/map/cross-reference listing, B-2
object code listing, B-4
options, A-I, (table) A-2
options of P ARAM statement, (table) A-2
source listing, B-1

compiler-directing statements, Procedure
Division, 6-6

complex conditions, 6-15
COMPUTATIONAL, USAGE clause, 5-42
COMPUTE statement, 6-39
condition-name, 2-5, 2-16
condition-name condition, 6-14
conditional expressions

abbreviated combined relation conditions,
6-18

class condition, 6-13
combined and negated combined

conditions, 6-16
complex conditions, 6-15
condition-name condition, 6-14
evaluation rules, 6-19
negated simple conditions, 6-16
permissible comparisons, (table) 6-10
relation condition, 6-9
sign condition, 6-15
simple conditions, 6-9
switch-status condition, 6-14

conditional statements, Procedure Division,
6-5

7004 4490-000

conditional expressions, Procedure Division
class, 6-13
complex, 6-15
condition-name, 6-14
evaluation rules, 6-19
relation, 6-9
sign, 6-15
simple, 6-9
switch-status, 6-14

conditions
AT END, 8-5
evaluation rules, 6-19
INVALID KEY, 8-5

configuration section, format, 4-2
CONNECT-FREE phrase, 4-5, (table) 4-10
constants, figurative, 2-8
continuation, lines, 2-18
control statement considerations, linkage

editor, 10-4
COpy statement, 6-40, 11-1
CORRESPONDING phrase, 6-21
currency symbol, 5-33
current record pointer, 8-3

D

data, classes, 2-13
data description

entry clauses, (table) 5-25
format and rules, 5-22

Data Division
communication section, 5-67
data description, 5-22
description, 5-1
entries, 5-2

file description, format and rules, 5-5
file section, 5-4
format, 5-1
headings, 5-1
indexed file processing, 8-13
interprogram communication, 13-3
ISAM file processing, 8-18
level-indicators, 5-2
level-numbers, 5-2
linkage section, 5-64
relative file processing, 8-11

70044490-000

SAM file processing, 8-16
sections, 5-1
sequential file processing, 8-6
sort-merge file descriptions, 5-21
sort programs, 9-4
special level-numbers, 5-4
structure, 5-1
table handling, 7-4
working storage section, 5-62

data items, class and category, elementary
and group, (table) 5-25

data-name, 2-5
DATA RECORDS clause, 5-14
DATE, 6-26
DAY, 6-26
DEBUG statement, 6-141
debugging language

compile-time switch, 2-3

Index

conditions and contents of DEBUG-item,
(table) 12-2

DEBUG-ITEM register, 12-2
*DEBUG packet, 12-6
description, 12-1
Environment Division, 12-4
EXHIBIT statement, 12-5
extended debugging facility, 12-5
language concepts, 12-1
object-time switch, 12-3
ON statement, 12-5
Procedure Division, 12-4
TRACK statement, 12-5
USE FOR DEBUGGING statement, 12-4
WITH DEBUGGING MODE clause, 12-4

declaratives, 6-1
DELETE statement, 6-43
descending sequence

INSPECT statement, 6-56
MERGE statement, 9-5
SORT statement, rules, 6-106

description entry
record, linkage section, 5-66
record, working storage, 5-63
77-level, linkage section, 5-64
77-level, working storage, 5-63

DESTINATION COUNT clause, 5-73
DESTINATION TABLE OCCURS clause,

5-73

Index-3

Index

DISABLE statement, 6-44
DISPLAY statement, 6-45
DIVIDE statement

description, 6-49
intermediate arithmetic results, E-2

dynamic access mode
description, 8-2

E

indexed files, Environment Division, 8-13
READ statement, rules, 6-84
REWRITE statement, rules, 6-93

EBCDIC/ASCII/Hollerith code
correspondence, J1, (table) J-3

EBCDIC collating sequence for graphic
characters, J-10, (table) J-10

editing, sign control symbol results, (table)
5-7,5-29

EGI, 6-100
elements, COBOL, 1-5
EMI, 6-100
ENABLE statement, 6-51
end-of-group indicator, 6-100
end-of-message indicator, 6-100
end-of-segment indicator, 6-100
entries, Data Division

description, 5-2
level-indicators, 5-2
level-numbers, 5-2
special level-numbers, 5-4

Environment Division
configuration section, 4-2
debugging language, 12-4
description, 4-1
FILE-CONTROL paragraph, 4-19
indexed file processing, 8-10
input-output section, 4-18
I-O-CONTROL paragraph, 4-27
ISAM file processing, 8-18
non-English language feature, Appendix F
OBJECT-COMPUTER paragraph, 4-3
relative file processing, 8-10
SAM file processing, 8-16
sequential file processing, 8-6
sort programs, 9-3

Index-4

SOURCE-COMPUTER paragraph, 4-2
SPECIAL-NAMES paragraph, 4-4
structure, 4-1
WITH DEBUGGING MODE clause, 12-4

ERROR KEY clause, 5-73
error key codes, (table) 5-76
ESI, 6-100
EXHIBIT statement, 6-52, 12-5
EXIT PROGRAM statement, 13-4
EXIT statement, 6-53
extensions to COBOL, 1-4

F

Federal Information Processing Standard
flagging facility

COBOL levels, federal standard (table)
D-1

FIPS PUB 21-1 COBOL levels, D-1
flagging options, D-2

figurative constants
description, 2-8
TRANSFORM statement, rules, 6-118

FILE-CONTROL paragraph, 4-19
file-name, 2-5
file organizations

indexed, 8-2
ISAM, 8-3
relative, 8-2
SAM, 8-3
sequential, 8-1

file processing
AT END condition, 8-5
current record pointer, 8-3
description, 8-1
file organization and access methods, 8-1
indexed, 8-13
INVALID KEY condition, 8-5
1-0 status, 8-4
language concepts, 8-1
ISAM, 8-18
LINAGE-COUNTER, 8-6
relative, 8-9
SAM, 8-16
sequential, 8-6

7004 4490-000

file section
data description, 5-22
file description, 5-5
sort/merge file description, 5-21

FILLER clause, 5-22
FIPS flagging facility, (See Federal

Information Processing Standard
flagging facility.)

floating point
items, 5-29
numeric literals, 2-8
operands, E-2

format, COBOL, 1-5
FUNCTION-KEYS phrase, 4-5, (table) 4-10

G

GO TO statement
description, 6-53
SORT statement, rules, 6-106

H

Hollerith punched card code
collating sequence, J-l, (table) J-3
description, J-2

headings and sections, Data Division, 5-1
header, Procedure Division, 6-2

Identification Division
description, 3-1
structure, 3-1

identifier, 2-16
IF statement, 6-55
imperative statements, Procedure Division,

6-5
IMS action programs

description, G-2
parameter and configuration

specifications, G-4
reentrant program work area usage, G-5

70044490-000

index-name
comparison, 6-13
SET statement use, 6-104
user-defined word, 2-5

INDEXED BY clause, 5-73
indexed file processing, 8-13
indexed 1-0 module, 1-1
indexed organization

ISAM, 8-3
SAM, 8-3

indexing, 2-15
input-output section, 4-18

Index

insertion editing, types and characters, 5-29,
(table) 5-30

INSPECT statement, 6-56
intermediate arithmetic results, object

program processing, E-l
interprogram communication

access to data items, 13-2
CALL statement, 13-4
CANCEL statement, 13-4
Data Division, 13-3
EXIT PROGR.AJ\1 statement, 13-4
initial values, 13-3
level characteristics, 13-2
linkage records, 13-3
noncontiguous linkage storage, 13-3
object program execution, 13-5
Procedure Division, 13-3
transfer of control, 13-1
values, initial, 13-3

1-0 CONTROL paragraph
Environment Division, 4-27
sort program, 9-3

1-0 status, 8-4
ISAM file processing, 8-16

J

job control stream requirements
description, H-l
compiler status indicators, H-19
data definition (DD) job control statement

keyword parameters, H -19
procedure call statement, H-1

JUSTIFIED clause, 5-55

Index-5

Index

K

key

L

INVALID KEY condition, 8-5
INVALID KEY phrase, DELETE

statement, 6-43
READ statement, INVALID KEY phrase,

6-84
RECORD KEY phrase, 6-36
REWRITE clause, INVALID KEY phrase

6-43
START statement, KEYIINVALID KEY

phrase, 6-110
WITH KEY phrase, DISABLE statement,

6-44
WITH KEY phrase, ENABLE statement

6-51
WRITE statement, INVALID KEY phrase

6-135

LABEL RECORDS clause, 5-13
level characteristics

indexed files, 8-13
interprogram communication, 13-2
relative files, 8-9
sequential files, 8-6

level-indicators, 5-2
level-numbers

regular, 2-6, 5-2, 5-26
special, 5-4

library
COpy statement, 11-1
description, 11-1
source program corrections, 11-2

library-name, 12-5
LINAGE clause, 5-15
LINAGE-COUNTER special register, 8-6
linkage editor control statements, 10-4
linkage section

record description entry, 5-66
77-level description entry, 5-65

literals, rules, 2-8
LOCK phrase

CLOSE, use, 6-34
OPEN, use, 6-74

Index-6

logical devices

M

ACCEPT statement, 6-23
DISPLAY statement, 6-45

MCS (See message control system.)
MERGE statement

description, 6-63
segmentation effects, 10-6
sort programs, 9-5

message control system
COBOL object program, 14-2
description, 14-1
generation, 14-8
invocation, 14-4
relationship to COBOL programs, 4-2

MESSAGE COUNT clause
ACCEPT statement, 6-26
description, 5-68

MESSAGE DATE clause, 5-68
MESSAGE TIME clause, 5-68
messages

compiler diagnostic, C-1
complete and segmented, handling, 14-5

mnemonic-name, 2-5
MOVE statement

description, 6-66
permissible moves, (table) 6-69

MULTIPLY statement
description, 6-70
intermediate arithmetic results, E-2

multivolume SAM files, 8-18
multivolume sequential files, 8-9

N

naming convention, object module, 10-4
non-English language feature

CLASS-NAME clause, F-5
composite language format, F-2
Control Division, F-3
description, F-1
Environment Division, F-5
extended class condition, F-7

7004 4490-000

non-English language feature (cont)
format, F-3
Procedure Division, F-7
text utility program, F-7

nonnumeric literals, TRANSFORM
statement rules, 6-119

nonnumeric operands, comparison, 6-12
numeric operands, comparison, 6-11

o
OBJECT-COMPUTER paragraph, 4-3
object module naming convention, 10-4
object program, COBOL

description, 14-2
execution considerations, 13-5
expressions, E-3
intermediate results, arithmetic

operations, E-1
invoking, 14-3
processing, Appendix E
scheduled initiation, 14-4

OCCURS clause, 5-47
ON statement, 6-71, 12-5
OPEN statement

description, 6-72
permissible I/O statements, OPEN mode,

(table) 6-62
operands, overlapping, 6-22

p

page, logical
format, (figure) 5-15
size, 5-15
spacing, SEND statement, 6-100

page spacing
SEND statement, 6-100
WRITE statement, 6-135

paragraph-name, 2-6
P ARAM statement, options, (table) A-2
PERFORM statement

description, 6-76
segmentation effects, 10-5
SORT statement, rules, 6-106

70044490-000

Index

PICTURE clause
character precedence chart, (table), 5-41
function and format, 5-29
tutorial guide, Appendix K

pointer, current record, 8-3
printer-destined files

description, 8-9
READ statement, rules, 6-84

procedure call, job control H-1
Procedure Division

action programs, G-1
arithmetic expressions, 6-6
CALL statement, 13-4
CANCEL statement, 13-4
categories of statements, 6-5
COBOL verbs, 6-23
common phrases, 6-19
conditional expressions, 6-9
debugging language, 12-4
declaratives, 6-1
description, 6-1
EXIT PROGRAM statement, 13-4
format, 6-3
indexed file processing, 8-15
interprogram communication, 13-3
ISAM file processing, 8-18
non-English language feature, F-7
procedures, 6-1
relative file processing, 8-11
SAM file processing, 8-17
sequential file processing, 8-8
sort programs, 9-4
statement formats, 6-19
structure, 6-2
table handling, 7-5
verbs, 6-23

program-name, 2-5
pseudo-text delimiters, 2-4

Q

qualification, 2-14
queues, message

description, 14-5
enqueuing/de queuing, 14-6
hierarchy, 14-6
logical disconnectives, enabling/disabling,

14-6

Index-7

Index

R

range checking, 7-4
READ statement, 6-84
RECEIVE statement, 6-89
RECORD CONTAINS clause, 5-12
record-name, 2-5
REDEFINES clause, 5-27
REENTRANT action program, G-l
references

format, 2-17
uniqueness, 2-14

relation condition
abbreviated combined, 6-18
description, 6-9

relative file processing, 8-9
RELEASE statement, 6-91, 9-4
RENAMES clause, 5-60
reserved words, COBOL, Appendix I
RETURN statement, 6-92, 9-5
REWRITE statement, 6-93
ROUNDED phrase

ADD statement, 6-29
description, 6-20
DIVIDE statement, 6-49
MULTIPLY statement, 6-70
SUBTRACT statement, 6-116

rules, COBOL, 1-5

s
SEARCH statement

description, 6-96
with two WHEN phrases, (figure) 6-97

section-name, 2-5
SEGMENT-LIMIT clause, 10-3
segment-number, 2-5, 6-3
segmentation

ALTER statement, 10-5
classification, 10-2
control, 10-3
description, 10-1
fixed portion, 10-1
independent segments, 10-2
MERGE statement, 10-6
PERFORM statement, 10-5
program structure, 10-3
SORT statement, 10-5

Index-8

SEND statement, 6-100
separators, rules, 2-4
sequential file processing, 8-6
SET statement, 6-104,7-6
SIGN clause, 5-46
sign condition, 6-15
simple conditions, negated, 6-16
SIZE ERROR phrase

ADD statement, 6-29
DIVIDE statement, 6-49
general description, 6-20
MULTIPLY statement, 6-70
SUBTRACT statement, 6-116

sortlmerge
description, 9-1
control entry, 9-3
Data Division, 5-21, 9-9
Environment Division, 9-3
file processing, 9-2
1-0 CONTROL paragraph, 9-3
language concepts, 9-2
MERGE statement, 9-5
module, 1-1
Procedure Division, 9-4
RELEASE statement, 9-4
RETURN statement, 9-5
SORT statement, 9-5
special registers, 9-2
subroutine sort-merge, 9-6

SORT statement
description, 6-106, 9-5
segmentation effects, 10-5

SOURCE-COMPUTER paragraph, 4-2
SPECIAL-NAMES paragraph

action programs, G-l
Environment Division, 4-4

special registers, sort, 9-2
START statement, 6-110
statements

compiler-directing, 6-6
conditional, 6-5
continuation, 2-18
imperative, 6-5

status key clause, 5-67, 5-73
values and meanings, (table) 8-4
workstations, (table) 4-8

STOP statement, 6-113
STRING statement, 6-114
subscripting, 2-15

7004 4490-000

SUBTRACT statement
description, 6-116
intermediate arithmetic results, E-2

switch-status condition, 6-14
SYMBOLIC DESTINATION clause, 5-73
SYMBOLIC QUEUE clause, 5-63
SYMBOLIC SUB-QUEUE clause, 5-67
SYNCHRONIZED clause, 5-51
SYSCHAN -n, 4-4
SYSCOM

ACCEPT statement, 6-23
DISPLAY statement, 6-45

SYSCONSOLE
ACCEPT statement, 6-23
DISPLAY statement, 6-45

SYSFORMAT
ACCEPT statement, 6-24
DISPLAY statement, 6-46
SPECIAL NAMES paragraph, 4-4

SYSIN, ACCEPT statement, 6-24
SYSLOG, 6-45
SYSOUT, 6-45
SYSSWCH

ACCEPT statement, 6-24
DISPLAY statement, 6-46

SYSSWCH-n
ACCEPT statement, 6-24
DISPLAY statement, 6-46

SYSTEM-SHUTDOWN, 4-5
SYSTERMINAL

ACCEPT statement, 6-24
DISPLAY statement, 6-46
SPECIAL NAMES paragraph, 4-5

SYSWORK

T

ACCEPT statement, 6-24
DISPLAY statement, 6-46
SPECIAL NAMES paragraph, 4-5

table handling
comparisons, index-name or data item,

7-6
Data Division, 7-4
definition, 7-1
description, 7-1
indexing, 7-3

7004 4490-000

Index

language concepts, 7-1
Procedure Division, 7-4
range checking, 7-4
referencing table items, 7-2
SET statement, overlapping operands, 7-6
statements, 7-5
subscripting, 7-3
table definitions, 7-1

tallying and/or replacing
INSPECT statement, 6-56
UNSTRING statement, 6-123

TEXT-LENGTH clause
input, 5-67
output, 5-73

text-name, 2-5
TIME, 6-23
TRACE statement, 6-118, 12-5
TRANSFORM statement

description, 6-118
permissible FROMtrO options,

(table) 6-120
truncation, 5-29

u
UNSTRING statement, 6-123
USAGE clause, 5-42
USE statement, 6-126

v
VALUE clause, 5-57
VALUE OF clause, 5-14
VARYING phrase

one condition, PERFORM statement,
(figure) 6-80

SEARCH statement, 6-96
three conditions, PERFORM statement,

(figure) 6-82
two conditions, PERFORM statement,

(figure) 6-81
verbs, COBOL

ACCEPT, 6-23
ADD, 6-23
ALTER, 6-29

Index-9

Index

verbs, COBOL (cont)
CALL, 6-31
CANCEL, 6-33
CLOSE, 6-34
COMPUTE, 6-39
COPY, 6-40
DEBUG, 6-141
DELETE, 6-43
DISABLE, 6-44
DISPLAY, 6-45
DIVIDE, 6-49
ENABLE, 6-51
EXHIBIT, 6-52
EXIT, 6-53
GO TO, 6-53
IF, 6-55
INSPECT, 6-56
MERGE, 6-63
MOVE, 6-66
MULTIPLY, 6-70
ON, 6-71
OPEN, 6-72
PERFORM, 6-76
READ, 6-84
RECEIVE, 6-89
RELEASE, 6-91
RETURN, 6-92
REWRITE, 6-93
SEARCH, 6-96
SEND, 6-100
SET, 6-104

Index-IO

w

SORT, 6-106
START, 6-110
STOP, 6-113
STRING, 6-114
SUBTRACT, 6-116
TRACE, 6-118
TRANSFORM, 6-118
UNSTRING, 6-123
USE, 6-126
WRITE, 6-135

WHEN COMPILED special register, 6-23
words

COBOL 2-5
reserved, 2-7
system names, 2-6
user-defined, 2-5

working storage section
record description entry, 5-63
77-level description entry, 5-63

workstation status key values, (table) 4-9
WRITE statement, 6-135

z
zero suppression, editing, 5-29

7004 4490-000

